Remedial Investigation/ Alternative Analysis Report/ Interim Remedial Measures Report

2250 Factory Outlet Blvd. Site Town of Niagara, New York BCP Site No. C932127

September 2007 Revised November 2007 0105-003-300

Prepared For:

NF-3rd Associates, LLC

Prepared By:

726 Exchange Street, Suite 624, Buffalo, New York | phone: (716) 856-0599 | fax: (716) 856-0583

RI/AAR/IRM REPORT 2250 Factory Outlet Boulevard Site Table of Contents

1.0	INTRODUCTION1			
	1.1	Purpose and Scope	1	
	1.2	Background		
		1.2.1 Property and Site Description		
		1.2.1.1 Site Topography and Drainage		
		1.2.1.2 Site Geology and Hydrogeology		
		1.2.1.3 Climate		
		1.2.1.4 Population and Land Use		
		1.2.1.5 Utilities and Groundwater Use		
		1.2.1.6 Wetlands and Floodplains		
		1.2.2 Previous Investigations		
		1.2.2.1 December 1995 – Phase I Environmental Site Assessment	5	
		1.2.2.2 February/March 2006 – Phase II Subsurface Environmental Assessment		
		1.2.2.3 June 2006 – Supplemental Phase II Site Investigation Findings		
	1.3	Constituents of Primary Concern (COPCs)		
	1.5	constituents of Finnary concern (cor cs)		
2.0	INV	ESTIGATION APPROACH	8	
	2.1	Soil/Fill Investigation	8	
		2.1.1 Radiological Screening		
		2.1.2 Chromium Sampling		
		2.1.3 TCLP Chromium Sampling		
		2.1.4 Other Parameters Sampling		
	2.2	Groundwater Investigation.		
		2.2.1 Overburden Drilling		
		2.2.2 Monitoring Well Installation		
		2.2.3 Groundwater Sampling		
		2.2.4 Bench-Scale Soil Treatability Testing		
	2.3	Site Survey		
3.0		E PHYSICAL CHARACTERISTICS		
	3.1	Surface Features		
	3.2	Geology	13	
	3.3	Hydrogeology	13	
4.0	Ινιν	ESTIGATION RESULTS BY MEDIA	14	
4.0				
	4.1	Soil/Fill		
		4.1.1 Radiological Screening		
		4.1.2 Chromium		
		4.1.3 TCLP Chromium4.1.4 Site Characterization		
	4.0			
	4.2	Groundwater	10	

RI/AAR/IRM REPORT 2250 Factory Outlet Boulevard Site

Table of Contents

		4.2.1 Volatile Organic Compounds	
		4.2.2 Semi-Volatile Organic Compounds	
		4.2.3 Metals	
		4.2.4 Polychlorinated Biphenyls	
		4.2.5 Summary	
	4.3	Data Usability Summary	17
5.0	Fат	'E AND TRANSPORT OF COPCs	
	5.1	Airborne Pathways	
		5.1.1 Volatilization	
		5.1.2 Fugitive Dust Generation	
	5.2	Waterborne Pathways	
		5.2.1 Surface Water Runoff	
		5.2.2 Leaching	
	5.3	Exposure Pathways	19
6.0	ΟΠ	ALITATIVE RISK ASSESSMENT	20
0.0	-		
	6.1	Potential Human Health Risks	
	6.2	Potential Ecological Risks	21
7.0	Rem	AEDIAL INVESTIGATION SUMMARY AND CONCLUSIONS	
8.0	INT	ERIM REMEDIAL MEASURES (IRM)	24
9.0	Ren	IEDIAL ALTERNATIVES EVALUATION	26
	9.1	Remedial Action Objectives	
	9.2	Alternatives Evaluation	
	.2	9.2.1 No Further Action	
		9.2.2 Unrestricted Use Alternative	
	9.3	Recommended Remedial Measure	
	1.0		
10.0	REF	ERENCES	32

RI/AAR/IRM REPORT 2250 Factory Outlet Boulevard Site Table of Contents

LIST OF TABLES

- Table 1Chromium Analytical Data for Soil
- Table 2Site Characterization Data Summary
- Table 3Groundwater Analytical Data Summary
- Table 4Bench-Scale Soil Treatability Testing Results
- Table 5Cost Estimate for Unrestricted Use Alternative

LIST OF FIGURES

- Figure 1 Site Location and Vicinity Map
- Figure 2 Site Plan
- Figure 3 RI/IRM Activities
- Figure 4 Groundwater Isopotential Map
- Figure 5 IRM Excavation Limits
- Figure 6 Areas Requiring Excavation to Achieve Unrestricted Use SCOs

APPENDICES

- Appendix A Previous Investigations Sampling Results
- Appendix B Field Borehole Logs, Test Pit Logs, and Well Construction Details
- Appendix C RI Sampling Data
- Appendix D Data Usability Summary Report (DUSR)
- Appendix E Land Use Evaluation

1.0 INTRODUCTION

This Remedial Investigation / Alternatives Analysis Report / Interim Remedial Measures (RI/AAR/IRM) Report has been prepared on behalf of NF-3rd Associates, LLC (NF-3rd) for the 2250 Factory Outlet Boulevard Site in the Town of Niagara, New York (see Figure 1).

In July 2006, NF-3rd, Benchmark Environmental Engineering & Science, PLLC (Benchmark) and Harter, Secrest and Emery, LLP met with the New York State Department of Environmental Conservation (NYSDEC) to discuss the known chromium-impacted green-colored soil/fill at the property and to discuss the potential for applying to the NYSDEC Brownfield Cleanup Program (BCP) to investigate and cleanup the property. Based on those discussions with the NYSDEC, it was decided that NF-3rd would submit a BCP application concurrently with an RI/AAR/IRM Work Plan. Based on previous investigations, which identified that only green-colored soil/fill contained elevated concentrations of chromium above NYSDEC Part 375 restricted-commercial Soil Cleanup Objectives (SCOs), the IRM component was included in the Work Plan to address the known impacted area concurrent with the RI/AAR activities in lieu of delaying this measure until after completion of the RI/AAR.

The RI/AAR/IRM Work Plan was approved by the NYSDEC on December 19, 2006 and a Brownfield Cleanup Agreement (BCA) was executed between NF-3rd and the NYSDEC on December 29, 2006 (BCP No. C932127). As indicated in the BCA, and based on the approximate area of the green-colored soil/fill, the NYSDEC determined that an approximate 1.81-acre portion (Site or BCP Site) of the greater 4.75-acre parcel is subject to the BCA (see Figure 2).

Benchmark implemented RI activities at the Site starting in December 2006. Based on the RI findings and findings of previous investigations, IRM activities (i.e., removal of green-colored soil/fill within the BCP Site) were completed in February-July 2007.

1.1 **Purpose and Scope**

NF-3rd intends to redevelop the subject property for commercial use. The primary objectives of the RI were to better delineate the nature and extent of soil/fill and groundwater contamination; to determine if the concentrations of constituents of concern in Site soil/fill and groundwater pose potential unacceptable risks to human health and the

environment; and to provide the data needed to evaluate potential remedial measures and determine appropriate actions to address potential significant risks.

This RI/RAR/IRM Report has been prepared on behalf of NF-3rd to: describe and present the findings of the December 2006 RI and subsequent IRM activities (February-March 2007); and, evaluate the IRM as the final remedial alternative for the Site.

This report contains the following sections:

- Section 2.0 presents the approach for the soil and groundwater investigation.
- Section 3.0 describes the physical characteristics of the Site as they pertain to the investigation findings.
- Section 4.0 presents the investigation results by media.
- Section 5.0 describes the fate and transport of the constituents of primary concern (COPCs).
- Section 6.0 presents the qualitative risk assessment.
- Section 7.0 presents the RI summary and conclusions.
- Section 8.0 summarizes the Interim Remedial Measures.
- Section 9.0 evaluates remedial alternatives for the Site.
- Section 10.0 provides a list of references for this report.

1.2 Background

1.2.1 Property and Site Description

The property located at 2250 Factory Outlet Boulevard, in the Town of Niagara, New York (Niagara County Tax Map No. 145.20-1-1) is an approximate 5-acre parcel owned by NF-3rd Associates, LLC (see Figure 2). An approximate 1.81-acre portion (Site or BCP Site) of the greater 5-acre parcel is subject to the Brownfield Cleanup Agreement (BCA) with the NYSDEC. Previous environmental investigations have determined that portions of the Site soil/fill were contaminated with chromium.

The property is bounded by Interstate 190 to the west, a car dealership to the north, Military Road to the northeast, Factory Outlet Boulevard to the southeast, and an automobile oil and lube facility to the south. The approximate 39,000 square foot vacant concrete block building (slab-on-grade) located on the western portion of the property was demolished in January 2007. The remainder of the Site is covered with asphalt or grass/landscaping. The BCP Site is located in the southeast corner of the property that fronts on Factory Outlet Boulevard. Planned redevelopment of the Site includes a Niagara Frontier Transportation Authority (NFTA) bus terminal and offices with associated drives and surface lot parking (see Figure 2).

1.2.1.1 Site Topography and Drainage

A majority of the Site is covered with asphalt and manicured lawn along the eastern and southern borders. The Site is generally flat with limited distinguishable Site features. Precipitation (i.e., rain or melting snow) either infiltrates into the soil or runs off asphalt to the storm drains present in the parking areas via overland flow. A subsurface storm water detention system, consisting of perforated PVC pipes, is reportedly located north of the former building and drains to a culvert along the western property boundary. Surface and shallow groundwater flow are likely impacted by subsurface fill placed during former site development, as well as utility lines and foundations.

1.2.1.2 Site Geology and Hydrogeology

A summary of boring logs in the Phase II Subsurface Environmental Assessments (Ref. 1) and the Supplemental Phase II Investigation (Ref. 2) indicate that the subsurface soil at the Site consists of three distinct horizons: (1) asphalt, concrete or topsoil at grade to approximately 0.3 feet below ground surface (fbgs); (2) a soil/fill layer consisting of mostly sand and gravel with some topsoil, concrete, and asphalt ranging in thickness from 1-foot to approximately 4.0 feet; and, (3) a native reddish brown silty clay. During the previous investigations, some of the soil/fill was identified has having a characteristic green-color; however, it was not prevalent across the entire greater 5.33-acre parcel.

The U.S. Department of Agriculture Soil Conservation Service soil survey map of Niagara County describes the general soil type at the Site as an association of Darien-Cazenovia-Nunda types and Urban Land (Ref.3).

The Site is located in the Erie-Ontario Lake Plain Physiographic Province of Western New York. The geology of the Erie-Niagara Basin is described as consisting of unconsolidated deposits (predominantly of glacial origin) overlying Silurian- and Devonianage sedimentary bedded or layered bedrock (Refs. 4 and 5). The naturally occurring unconsolidated deposits in the area consist of the following three types: alluvial silt, sand, and gravel deposited during comparatively recent geologic time; Lacustrine sediments composed primarily of silt, sand, and clay deposited during the late Pleistocene Epoch; and glacial till, a heterogeneous mixture of particles (i.e., clay, silt, sand, gravel, and cobbles) deposited directly from glacial ice during the Pleistocene Epoch. Relief in the area is generally flat and the result of pre-glacial erosion of bedrock and subsequent topographic modification by glaciation.

The bedrock formations in the region dip to the south at approximately 30 to 40 feet per mile and exhibit only very gentle folding. In the Erie-Niagara Basin, the major areas of groundwater are within coarser overburden deposits and limestone and shale bedrock. The main sources of groundwater within the bedrock are fractures and solution cavities. Regional groundwater appears to flow south toward the Niagara River.

1.2.1.3 Climate

Western New York has a cold continental climate, with moisture from Lake Erie causing increased precipitation. Average annual precipitation is reportedly 40.5 inches and snowfall is 93.6 inches (NOAA, 2000) to the northern part of the watershed with over 150 inches per year falling on the southern portion of the watershed. Average monthly temperatures range from 24.5 degrees Fahrenheit in January to 70.8 degrees Fahrenheit in July (NOAA, 2000). The ground and lakes typically remain frozen from December to March. Winds are generally from the southwest (240 degrees) with a mean velocity of 10 miles per hour (Buffalo Airport, 1999).

1.2.1.4 Population and Land Use

The Town of Niagara, encompassing 9.4 square miles, has a population of approximately 8,649 (2005 estimate, U.S. Census Bureau), a decrease of 329 from the 2000 U.S. Census. The Town of Niagara is primarily zoned residential and commercial use, with community and public service use as well. The Site is located in Census Tract 226.02, in an area of the Town zoned commercial/residential, and has a population density of 1,074

people per square mile. Land uses adjacent to the Site include a car dealership to the north and an automobile oil and lube facility to the south. The property is bounded by Interstate 190 to the west, Military Road to the northeast, and Factory Outlet Boulevard to the southeast.

1.2.1.5 Utilities and Groundwater Use

The subject property has access to major public and private utilities, including water (Niagara County Water District), sanitary and storm sewers (Town of Niagara), electric (Niagara Grid Corporation) and natural gas (National Fuel Gas).

Groundwater at the Site is assigned Class "GA" by 6NYCRR Part 701.15. Benchmark contacted the Niagara County Department of Public Health (Environmental Health), and was informed that all water users within the Town of Niagara are required to connect to the available municipal potable water supply. The Department of Public Health has no records indicating the existence of secondary potable water wells within the vicinity of the Site.

1.2.1.6 Wetlands and Floodplains

Niagara County Internet Mapping Service shows that no State or Federal wetlands or floodplains exist on the subject property. Federal wetlands and a 100-year flood plain are located approximately 0.1 miles to the west of the Site.

1.2.2 Previous Investigations

The following sections describe the results of pre-RI sampling programs to provide a historic-based description of the nature and distribution of chemical constituents at the Site. Appendix A presents the analytical data tables from these previous investigations. Sample locations are shown on Figure 3.

1.2.2.1 December 1995 – Phase I Environmental Site Assessment

A Phase I Environmental Assessment (Ref. 6) of the property was completed in December 1995 by Maxim-Empire Soils Investigations, Inc. (Maxim-Empire). That study indicated that the property was first developed in the early 1970s by Grossman's Building Supply. Prior to that time, the Site was reportedly undeveloped. The Phase I ESA indicated that the former "Union Carbide Dump" was located less than 1,000 feet west of the property, but concluded that it was unlikely that portions of the property are within the

limits of the "Union-Carbide Dump." Maxim-Empire did not identify recognized environmental concerns associated with the property.

1.2.2.2 February/March 2006 – Phase II Subsurface Environmental Assessment

In February and March 2006, Panamerican Environmental, Inc. (PEI) performed a Phase II subsurface environmental assessment at the property (Ref. 1). That investigation included 32 soil borings across the property. Select soil/fill samples were analyzed for target compound list (TCL) volatile organic compounds (VOCs), TCL semi-volatile organic compounds (SVOCs), TCL pesticides, polychlorinated biphenyls (PCBs) and Resource Conservation and Recovery Act (RCRA) metals. Analytical results indicated that VOCs, SVOCs, pesticides and PCBs were not constituents of concern. However, it was determined that portions of Site have been impacted with chromium. The concentration of chromium exceeded the NYSDEC Part 375 restricted-commercial Soil Cleanup Objective (SCO) of 400 ppm at five locations, ranging from 4,650 ppm to 16,900 ppm in the 1 to 3 fbgs interval. Additional testing (Ref. 7) of one soil/fill sample (BH2-01, 1-3 fbgs) with an elevated chromium concentration (11 mg/L) completed by PEI subsequent to that investigation indicated that some of the soil/fill could be considered a characteristic hazardous waste due to exceedance of the toxicity characteristic leaching procedure (TCLP) threshold of 5 mg/L. PEI concluded that the source of the chromium impact could be either imported fill materials or historic dumping associated with former landfill activities by Union Carbide in the vicinity of the property.

1.2.2.3 June 2006 – Supplemental Phase II Site Investigation Findings

In June 2006, Benchmark performed a supplemental soil/fill investigation (Ref. 2) focused on collecting near-surface (i.e., 0-4 fbgs) soil/fill samples to evaluate the areal extent of previously identified chromium impact on the property. Eleven (11) soil borings were completed on the property; six (6) within and five (5) outside the former building footprint. Total chromium concentrations ranged from non-detect to 66 ppm, well below the hexavalent chromium Part 375 SCO of 400 ppm.

1.3 Constituents of Primary Concern (COPCs)

Based on findings to date, the only Constituent of Potential Concern (COPC) is chromium. The Remedial Investigation approach described in the RI Work Plan (Ref. 8) focused on sampling for total and hexavalent chromium (site-wide) and TCLP chromium at select locations on the Site.

2.0 INVESTIGATION APPROACH

The purpose of the RI field activities was to more fully define the nature and extent of contamination on the BCP Site, and to collect data of sufficient quantity and quality to perform the remedial alternatives evaluation. On-Site field activities included: surface and subsurface soil sampling; monitoring well installation; groundwater sampling of newly installed monitoring wells and one existing well; collection of hydraulic data; and, benchscale soil treatability testing.

2.1 Soil/Fill Investigation

To supplement the previous Site investigations performed by PEI and Benchmark, additional surface and subsurface soil/fill samples were collected via a series of soil borings (SBs) and test pits (TPs), designated as SB-12 through SB-23 and TP-1 through TP-12 (see Figure 3). Samples were collected between December 18 and 21, 2006 to more fully delineate the nature and extent of contamination in Site soil/fill. The soil/fill investigation included Site-wide sampling for chromium and limited sampling for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs) and other metals. Based on previous investigations, only chromium was identified within on-site soil/fill at elevated concentrations relative to the NYSDEC Part 375 restricted-commercial SCOs. The soil/fill investigation was designed to delineate the vertical and areal extent of chromium impact on-site; to determine the extent and quantity of characteristic hazardous waste; and to assess whether other potential contaminants exist within on-site soil/fill at concentrations of concern.

Soil/fill samples were collected using dedicated stainless steel sampling tools. Representative soil/fill samples were placed in pre-cleaned sample bottles provided by the laboratory, cooled to 4°C in the field, and transported under chain-of-custody command to Severn Trent Laboratories, Inc. (STL), located in Amherst, New York, a New York State Department of Health (NYSDOH) ELAP-certified analytical laboratory. Soil/fill samples were submitted for total and hexavalent chromium (Site-wide) and TCLP chromium (select locations). For Site characterization purposes, additional soil/fill samples were analyzed for TCL VOCs, TCL SVOCs, TCL PCBs and TAL Metals in accordance with NYSDEC ASP CLP methodology. Sample locations are shown on Figure 3.

2.1.1 Radiological Screening

Soil/fill materials investigated during test pits and soil borings were field-screened for the presence of radionuclides using a handheld Radiation Alert[®] Inspector⁺ radiation meter equipped with a Geiger-Mueller (GM) pancake probe.

2.1.2 Chromium Sampling

Chromium sampling focused on collecting soil/fill samples proximate the area of known impact to delineate the extent of chromium contamination. Delineation activities were completed via a series of test pits in a manner that allowed visual observation of soil/fill materials to determine the extent of green-colored fill materials. Specifically, test pits were initiated in an area of known impact (i.e., green-colored soil/fill) and continued in a radial pattern toward areas previously identified as "clean" (see Figure 3).

A total of 22 soil/fill samples were collected from various depth intervals from 12 test pits in the area of known impact and analyzed for total chromium, hexavalent chromium, and TCLP chromium (TCLP sampling is discussed further below). Trivalent chromium concentrations were calculated as the difference between total chromium and hexavalent chromium concentrations. An additional 12 soil borings were completed using a direct-push drill rig to assess potential chromium impact in other areas of the Site (see Figure 3). Thirteen samples were collected from the 12 soil borings and were analyzed for total chromium. Appendix B contains test pit and field borehole logs.

Soil sampling for chromium focused on collecting samples from the visually impacted soil/fill within the top 4 fbgs. In areas where samples were collected within discolored soil/fill, select samples were collected from the native material beneath visually impacted soil/fill (i.e., 4-6 fbgs) and held at the laboratory. If analytical data from the visually impacted soil/fill indicated concentrations of chromium above the NYSDEC Part 375 restricted-commercial SCO, the archived sample from that test pit or soil boring was analyzed to document the chromium concentration in the native material.

2.1.3 TCLP Chromium Sampling

To determine the whether additional characteristic hazardous chromium-containing soil/fill was present on-site, 13 soil samples in the area east of the former building were analyzed for TCLP chromium. All samples were collected from green-colored fill material.

2.1.4 Other Parameters Sampling

As a requirement of the NYSDEC BCP, surface and subsurface soil samples were collected at select areas of the Site and analyzed for TCL SVOCs, Pesticides/PCBs, Herbicides, and Target Analyte List (TAL) metals to evaluate the potential presence of these contaminants at concentrations of concern. Three subsurface samples were collected from borings MW-1 through MW-3. One composite surface soil sample consisted of two grab samples collected in the grass-covered area of the Site. Since VOCs were not detected during field screening with a PID, samples were not submitted for analysis of TCL VOCs.

2.2 Groundwater Investigation

In accordance with the Work Plan, three overburden groundwater monitoring wells were installed to provide groundwater flow information as well as groundwater quality information. An existing well, designated by Benchmark as MW-4, was discovered east of the former building within the chromium-impacted area (see Figure 3). The 2-inch diameter PVC flush mount well measured approximately 16 fbgs. Monitoring well installation, well development, and groundwater sample collection are discussed in the following sections.

2.2.1 Overburden Drilling

On December 21, 2006, three borings were advanced at the locations shown on Figure 3 to facilitate installation of permanent groundwater monitoring wells MW-1 through MW-3.

Each boring location was advanced using hollow stem auger drilling methods to a depth of 10 fbgs. A 2-inch diameter, 2-foot long split spoon sampler was advanced ahead of the auger string with a standard 140-pound hammer falling freely over a 30-inch fall until 24 inches had penetrated or 50 blows applied. Due to drill rig problems, MW-2 was split-spooned sampled to 4 fbgs then augured to 10 fbgs. Recovered samples were described in the field by qualified Benchmark personnel using the Unified Soil Classification System (USCS), scanned for total volatile organic vapors with a calibrated photoionization detector (PID) equipped with a 10.6 eV lamp (or equivalent), and characterized for impacts via visual and/or olfactory observations. All non-dedicated drilling tools and equipment were decontaminated between boring locations using potable tap water and a phosphate-free detergent (e.g., Alconox).

Soil descriptions, PID scan results, and visual/olfactory observations recorded during boring advancement are presented on the Field Borehole Logs in Appendix B.

2.2.2 Monitoring Well Installation

Subsequent to boring completion, a 2-inch diameter flush-joint Schedule 40 PVC monitoring well was installed at each location. Each well was constructed with a 5-foot flush-joint Schedule 40 PVC, 0.010-inch machine slotted well screen. Each well screen and attached riser was placed at the bottom of each borehole and a silica sand filter pack (size #0) was installed from the base of the well to a maximum of 2 feet above the top of the screen. A minimum 2-foot thick bentonite chip seal was installed and allowed to hydrate sufficiently to mitigate the potential for downhole grout contamination. Cement/bentonite grout was installed to approximately one-foot below ground surface via pressure tremie-pipe procedures. The newly installed monitoring wells were completed with keyed alike locks, a lockable J-plug, and an 8-inch diameter steel flush mounted road box anchored within a 2-foot by 2-foot by 1-foot square concrete pad. Monitoring well construction details are presented in Appendix B.

2.2.3 Groundwater Sampling

Existing and newly installed monitoring wells were developed prior to sampling to remove residual sediments and ensure good hydraulic connection with the water-bearing zone. Newly installed wells were developed a minimum of two days after installation. A minimum of three well volumes were removed from each well. Prior to sample collection, static water levels were measured and recorded.

Dedicated, disposable PVC bailers equipped with a bottom check-valve were used for sample collection. Bailers were lowered gently with minimal water agitation into the well with dedicated polyethylene or polypropylene line.

All groundwater samples were analyzed for TCL VOCs, SVOCs, PCBs, and TAL total and soluble metals (including hexavalent chromium) in accordance with NYSDEC ASP CLP methodology.

2.2.4 Bench-Scale Soil Treatability Testing

Bench-scale treatability testing was completed on January 12 and 30, 2007 to evaluate potential soil amendments that would result in a reduction of the TCLP concentration below 5 mg/L and consequently result in the soil/fill not exhibiting hazardous waste characteristics. The test on January 12 used Portland cement at 0.5%, 2%, and 5% by weight. Since this amendment did not achieve the desired results for Samples 1 and 2, a second test was conducted on January 30 and involved addition of ferrous sulfate (2% and 5%), lime (15%), and Portland cement (10%). The treatability testing was conducted as follows:

- Four, 5-gallon buckets of soil/fill were collected from three locations exhibiting hazardous waste characteristics for chromium (i.e., TP-2, TP-6, and TP-11) and transported under standard chain of custody to STL Laboratories. The bench-scale treatability tests were completed at STL Laboratories by Benchmark personnel.
- The four sample buckets were combined, mixed, and weighed.
- Varying concentrations of soil/fill amendments were added to and mixed with the soil/fill sample aliquots. De-ionized water was used to enhance dispersion of the amendments into the soil/fill samples.
- The treated soil/fill was re-tested for TCLP chromium.

2.3 Site Survey

A Site map was developed during the RI field activities. All sample points and relevant Site features, including the former building, were located on the Site map. Benchmark employed a Trimble GeoXT handheld GPS unit to identify the locations of all soil borings and newly installed wells relative to New York State planar grid coordinates. Monitoring well elevations were measured by Benchmark's surveyor. An isopotential map showing the general direction of groundwater flow was prepared based on water level measurements (see Table B-1 in Appendix B) relative to USGS vertical datum (see Figure 4).

3.0 SITE PHYSICAL CHARACTERISTICS

The physical characteristics of the Site observed during the RI are described in the following sections.

3.1 Surface Features

The Site is generally flat with limited distinguishable surface features. During RI sampling, the majority of the Site was covered with asphalt and some manicured lawn along the eastern and southern borders. Demolition of the building on the portion of the property west of the BCP Site was completed in January 2007.

3.2 Geology

The Site geology described in Section 1.2.1.2 of this report was confirmed during this investigation. Soil/fill observed in the soil borings and test pits ranged from approximately 0.2 to 3.0 fbgs.

3.3 Hydrogeology

Groundwater was generally observed between approximately 3.8 and 4.2 fbgs. Based on the Site topography and surface water elevations, regional groundwater flow is anticipated to be in a southerly direction toward the Niagara River, which is approximately 9,000 feet south of the Site. Based on the water levels measured during the RI, groundwater appears to flow in southerly and southeasterly directions from the Site (see Figure 4).

4.0 INVESTIGATION RESULTS BY MEDIA

The following sections discuss the analytical results of the Remedial Investigation. Tables 1 through 3 summarize the soil and groundwater analytical data. Analytical data is included in Appendix C. Figure 3 presents the soil sampling and groundwater monitoring well locations.

4.1 Soil/Fill

Tables 1 and 2 present a comparison of the detected soil/fill parameters to Soil Cleanup Objectives (SCOs) for protection of public health on both unrestricted and restricted-commercial properties per regulations contained in 6NYCRR Part 375-6 (December 2006). Although the Site is intended to be used for commercial purposes (see Section 9.0 and Appendix F), evaluating a more restricted-use scenario is a requirement of the BCP. Therefore, Table 2 also includes a comparison of the soil/fill analytical data to Part 375-6 Unrestricted SCOs. Sample results are described below according to contaminant class.

4.1.1 Radiological Screening

Field screening of soil materials for the presence of radionuclides during test pits and soil borings did not identify elevated readings above site background. The NYSDEC was present during these field screening activities. The radiological screening levels are noted in the field borehole logs and the test pit excavation logs in Appendix B.

4.1.2 Chromium

As indicated in Table 1, trivalent chromium was detected above its restrictedcommercial SCO of 1,500 mg/kg in one soil boring (SB-17) and 11 test pit samples. These samples were collected from green-colored soil/fill within the interval of 0-3 fbgs. The highest chromium concentration (7,622 mg/kg) was observed in the 0-2.5 fbgs interval within test pit TP-2. Samples TP-1 SL#1 (2-2.5), TP-1 SL#2 (0-2), TP-2 (2.5-3), TP-3 SL#1 (2-3), TP-3 SL#2 (0-2), TP-4 (2.5-3.5), TP-5 SL#1 (2.5-3), TP-5 SL#2 (2-2.5), TP-6 SL#1 (3.3.5) and TP-6 SL#2 (0-3), collected from native soil beneath or adjacent to the chromium-impacted (green-colored) fill were analyzed for chromium and found to contain concentrations well below the commercial SCO. Based on the results of this sampling

effort, it was estimated that approximately 4,000 cubic yards of soil were impacted with chromium from approximately 0.5-3 fbgs. Hexavalent chromium was not detected above the restricted-commercial SCO of 400 mg/kg in any soil/fill samples.

4.1.3 TCLP Chromium

As summarized on Table 1, four of the 13 green-colored soil samples analyzed for TCLP chromium exceeded the TCLP threshold for characteristic chromium (5 mg/L). Table 1 also compares the TCLP and total chromium results. Although all the samples that exceeded the TCLP threshold also exceeded the restricted-commercial SCO for trivalent chromium, other soil/fill samples with higher trivalent chromium concentrations did not exceed the TCLP threshold. Therefore, a correlation does not appear to exist between total and TCLP chromium concentrations.

4.1.4 Site Characterization

As presented on Table 2, Benchmark collected one surface (0-0.5 fbgs) and three subsurface (up to 10 fbgs) soil/fill samples for analysis of TCL SVOCs, pesticides/herbicides, PCBs, and TAL metals. None of the surface or subsurface soil/fill samples exceeded the restricted-commercial SCOs for SVOCs, pesticides/herbicides, PCBs, or TAL metals. As indicated on Table 2, the pH range for the soil/fill samples was 7.1 to 7.47.

4.1.5 Bench-Scale Results

Based on the results of the treatability testing as summarized on Table 4, addition of ferrous sulfate appears to be the most suitable amendment of those evaluated. A concentration of 2% by weight of ferrous sulfate rendered the chromium-impacted soil/fill non-hazardous (i.e., below 5 mg/L TCLP chromium) by characterization.

4.1.6 Summary

As described above, chromium concentrations in excess of the restricted-commercial SCO were generally limited to the green-colored fill area in the southeastern portion of the Site. Based on these results, it was estimated that approximately 4,000 cubic yards of soil/fill were impacted with chromium to a maximum depth of 3 fbgs. Four of the 13 soil/fill samples analyzed for TCLP chromium exceeded the TCLP hazardous waste characteristic

threshold concentration, indicating the possible need to treat the chromium-impacted soil prior to disposal or dispose of the soil as a characteristic hazardous waste. None of the soil/fill characterization samples, outside of the green-colored fill area, contained contaminant concentrations in excess of the restricted-commercial SCOs.

4.2 Groundwater

Table 3 presents a comparison of the detected groundwater parameters to the Class GA Groundwater Quality Standards (GWQS) per NYSDEC TOGS 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 1988). The sampling results for monitoring wells MW-1 through MW-4 are discussed in the following sections.

4.2.1 Volatile Organic Compounds

One VOC (tetrachloroethene) was detected in monitoring well MW-1 but at a concentration (1.0 J ug/L) well below the GWQS of 5 ug/L.

4.2.2 Semi-Volatile Organic Compounds

Bis(2-ethylhexyl)phthalate was detected in all 3 newly installed monitoring wells; however, this compound is a common sampling/laboratory artifact and was detected in the method blank as well as in the sample. As such, the data validator qualified the data as "undetected".

4.2.3 Metals

Total chromium was detected in the existing (upgradient) well MW-4 at a concentration of 75.9 ug/L, which exceeds the GWQS of 50 ug/L. The soluble chromium concentration in MW-4 (0.95 B) is well below the GWQS. Hexavalent chromium was not detected in any groundwater sample. Other metals detected at levels above GWQS/GV were limited to total iron, lead, magnesium, manganese, and sodium. Soluble magnesium, manganese, and sodium also exceeded their respective GWQS.

4.2.4 Polychlorinated Biphenyls

All of the analyzed PCBs were reported as non-detectable in each of the wells sampled.

4.2.5 Summary

Groundwater data indicates a minor groundwater quality impact only in the greencolored fill area. With the exception of one total chromium exceedance in existing well MW-4, located within the green-colored fill area, all other detected groundwater constituents on the Site were generally limited to naturally-occurring metals and minerals.

4.3 Data Usability Summary

In accordance with the Section 9.0 of the RI Work Plan (Ref. 8), the laboratory analytical data from this investigation was independently assessed and, as required, submitted for independent review. Ms. Judy Harry of Data Validation Services located in North Creek, New York performed the data usability summary assessment, which involved a review of the summary form information and sample raw data, and a limited review of associated QC raw data. Specifically, the following items were reviewed:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate Recoveries
- Field Duplicate Correlation
- Preparation/Calibration Blanks
- Control Spike/Laboratory Control Samples
- Instrumental IDLs
- Calibration/CRI/CRA Standards
- ICP Interference Check Standards
- ICP Serial Dilution Correlations
- Sample Results Verification

The Data Usability Summary Report (DUSR) was conducted using guidance from the USEPA Region 2 validation Standard Operating Procedures, the USEPA National Functional Guidelines for Data Review, as well as professional judgment. Appendix D includes the DUSR, which was prepared in accordance with Appendix 2B of NYSDEC's draft DER-10 guidance (Ref. 9).

5.0 FATE AND TRANSPORT OF COPCS

The soil and groundwater sample analytical results were incorporated with the physical characterization of the Site to evaluate the fate and transport of COPCs in Site media. The mechanisms by which the COPCs can migrate to other areas or media are briefly outlined below.

5.1 Airborne Pathways

Volatilizations, when volatilizing chemicals are present in Site media, and the generation of fugitive dust are two potential migration pathways for airborne transport of COPCs.

5.1.1 Volatilization

Volatile chemicals are not present in Site soil and groundwater; therefore, this migration pathway is not relevant.

5.1.2 Fugitive Dust Generation

Non-volatile chemicals present in soil can be released to ambient air as a result of fugitive dust generation. However, since the majority of the Site is covered by asphalt and grass/landscaping, suspension due to wind erosion or physical disturbance of surface soil particles is unlikely.

Under a hypothetical future commercial land use, the majority of the Site would be covered by structures, asphalt, and grass/ornamental landscaping. Since fugitive dusts may be generated during excavation activities under both the current and future use scenarios, this migration pathway is potentially relevant under the current and reasonably anticipated future land use.

5.2 Waterborne Pathways

Chemicals in subsurface soils could be potentially transported via storm water runoff during excavation or construction activities, or leaching to groundwater.

5.2.1 Surface Water Runoff

The potential for soil particle transport with surface water runoff is low, as the Site is generally covered by asphalt and vegetative growth, and is serviced by a storm water

collection system. The storm sewer collection system provides a mechanism for controlled surface water transport but will ultimately result in sediment capture in the grit chambers followed by disposal at a permitted sanitary landfill.

5.2.2 Leaching

Leaching refers to chemicals present in soil migrating downward to groundwater as a result of infiltration of precipitation. However, it is necessary to determine how much of that contamination will actually contribute to a violation of groundwater standards upon reaching and dispersing into groundwater.

TCLP results for the Site, show that within the green-colored fill area, total chromium was detected above the Class GA water quality standard in the groundwater sample collected from one monitoring well (MW-4) in that area. Soluble chromium was not detected in any groundwater sample. As elevated chromium was not detected in down-gradient monitoring wells on-site, there is reduced concern for this pathway.

5.3 Exposure Pathways

Based on the analysis of chemical fate and transport provided above, the pathway through which Site COPCs could reach receptors off-site at significant exposure point concentrations is fugitive dust emissions via physical disturbance of soil particles. This exposure pathway may be reduced, but would not necessarily be fully addressed, under the future unremediated commercial land use scenario discussed in Section 6.0.

6.0 QUALITATIVE RISK ASSESSMENT

6.1 Potential Human Health Risks

The identification of potential human receptors is based on the characteristics of the Site, the surrounding land uses, and the probable future land uses. The 2250 Factory Outlet Boulevard BCP Site, and surrounding NF-3rd project are currently vacant. Under unremediated Site use conditions, human contact with Site-related COPCs can be expected to occur primarily by construction workers that may access the Site to service subsurface utilities. Additionally, trespassers could be considered receptors only if the exisiting asphalt and grass cover system were compromised, such as during subsurface construction activities.

Trespassers may be comprised of children, adolescents, and adults, whereas construction workers would be limited to adults. The Site and surrounding properties are serviced by municipal (supplied) water. Therefore, direct exposure to on-site or off-site groundwater would be limited to direct contact by construction workers.

In terms of planned future use, the current Site owner (NF-3rd) intends to redevelop the Site as a Niagara Frontier Transportation Authority (NFTA) bus terminal and offices with associated drives and surface lot parking. This planned use is consistent with surrounding property use and Site zoning. Accordingly, the reasonably anticipated future use of the Site is for commercial purposes, with exposed on-site receptors comprised of the general public, the commercial worker (groundskeeper), and the construction worker (utilities).

The only chemical prevalent in unremediated soil/fill at elevated concentrations is chromium and only within the identified chromium-impacted area of the Site. Total chromium was also present in one groundwater sample located within the chromiumimpacted area of the Site. Non-volatile metals (i.e total chromium) present in soil/fill may be released to ambient air as a result of fugitive dust generation, if and when disturbed. Offsite transport of chemicals via storm water runoff and leaching is also possible, although not probable as the site is serviced by storm water collection system and chromium has not been detected on down-gradient wells. Under both the unremediated current and future (commercial) use conditions, potential exposure routes are incidental ingestion, dermal contact, and inhalation of re-suspended particulates in air; and dermal contact with compounds in surface water runoff or groundwater.

For construction worker and potential trespasser scenarios, health-risk based lookup values specifically addressing these types of receptors are not widely published, as estimates of exposure frequency and duration tend to be site-specific in nature. However, the NYSDEC has published health risk-based lookup values for several chemicals under various exposure scenarios in the September 2006 document entitled "New York State Brownfield Cleanup Program, Development of Soil Cleanup Objectives, Technical Support Document" (a.k.a., "Technical Support Document"). The Technical Support Document forms the basis for the health-based SCOs presented in 6NYCRR Part 375-6. Based on incorporation of these types of receptors and exposures, the commercial health-based SCOs presented in the Technical Support Document are considered protective of human health under both the current and future Site use conditions. Referring to Table 5.3.6-2, Chronic Human Health-Based Soil Cleanup Objectives, the commercial SCO of 1,500 mg/kg (child, non-carcinogenic) is the basis for the Part 375 SCO for trivalent chromium.

Historic soil data was reviewed to determine the highest exposure point concentration for chromium detected on the Site. The highest chromium concentration of 16,900 mg/kg was observed in subsurface soil/fill sample BH2-01 (1-3 fbgs) during the March 2006 Phase II Subsurface Environmental Assessment. Unacceptable health risks attributable to chromium in soil/fill are indicated for the potential receptors identified above under the current and future use scenarios. The health-based criterion described above is for individual constituents; cumulative or synergistic effects among chemicals may yield greater risks.

RI data for monitoring well MW-4 indicates an exceedance of the NY State Class GA groundwater quality standard for total chromium, suggesting that groundwater impacts are present and localized to the chromium-impacted area. As down-gradient chromium in groundwater impacts were not identified, the unremediated condition may pose a potential risk to on-site receptors.

6.2 Potential Ecological Risks

The 2250 Factory Outlet Boulevard BCP Site is a former commercial facility located within a developed, urban area in the Town of Niagara. The Site is currently vacant and covered with asphalt and grass/ornamental landscaping, providing little or no wildlife habitat or food value. Until it was demolished in January 2007, an approximate 39,000 square foot concrete block building was located on the western portion of the property. No natural

waterways are present on or adjacent to the Site. The reasonably anticipated future use is commercial with the majority of the Site covered by buildings and asphalt. As such, no unacceptable ecological risks are anticipated under the current or reasonably anticipated future use scenario.

7.0 REMEDIAL INVESTIGATION SUMMARY AND CONCLUSIONS

Based on the information and analyses presented in the preceding sections, the only constituent of concern (COC) at the Site is trivalent chromium in the green-colored soil/fill area of the Site, and to a lesser extent, groundwater in that same general vicinity. Chromium concentrations exceed the restricted-commercial SCO in the soil/fill and GWQS in the groundwater within the green-colored soil/fill area only (see Figure 3). Soil/fill and groundwater concentrations indicate unacceptable human health risk to current and reasonably anticipated future receptors, indicating a human health and environmental concern only within the green-colored soil/fill area.

It was determined during the course of RI planning that interim remedial measures would be required to address impacted soil/fill at the 2250 Factory Outlet Boulevard BCP Site. Specifically, an Interim Remedial Measure (IRM) involving soil/fill remediation was recommended during the RI process in lieu of delaying this measure until after completion of the RI/AAR. A discussion of the IRM construction is presented in Section 8.0.

8.0 INTERIM REMEDIAL MEASURES (IRM)

An IRM was implemented at the 2250 Factory Outlet Boulevard Site concurrent with RI activities in accordance with the RI/AAR/IRM Work Plan (Ref. 8), as approved by the NYSDEC on December 9, 2006. Based on the nature and extent of the green-colored soil/fill, which was contaminated with chromium, some exhibiting hazardous characteristics, the Work Plan called for source removal via excavation, with off-site disposal and/or treatment and off-site disposal of impacted soil/fill. The lateral extent of the impacted area as shown on Figure 5 was excavated and disposed off-site per the approved Work Plan. Specific elements of the IRM, as implemented, generally included:

- Excavation and on-site staging of asphalt cover (0.5-1.0 ft thick); asphalt was returned to the excavation prior to backfilling.
- Excavation of approximately 1,569 tons of chromium-impacted soil/fill exhibiting hazardous waste characteristics followed by on-site staging within a staging area on the northern portion of the property. Based on the TCLP sampling completed subsequent to staging that soil, approximately ¹/₄ of the stockpile did not exhibit hazardous characteristics and, therefore, was disposed off-site at Modern Landfill, Inc. in Lewiston, New York. The remaining stockpiled soil/fill exhibited hazardous waste characteristics and was disposed off-site at Chemical Waste Management in Lewiston, New York.
- Excavation of approximately 4,509 tons of chromium-impacted soil/fill not exhibiting hazardous waste characteristics followed by off-site transportation (Pariso Trucking) and disposal at Allied Waste (BFI) Landfill in Niagara Falls, New York.
- Placement and compaction of crushed concrete backfill from Metzger Recycling, Inc. in Niagara Falls, New York. Sampling of the backfill upon placement revealed elevated levels of PCBs and SVOCs. The impacted backfill material was excavated to pre-backfill limits and returned to its original source.
- Placement and compaction of gravel backfill from the Lafarge borrow source in Lockport, NY to pre-existing grade.
- Excavation of approximately 850 tons of chromium-impacted soil from the area surrounding a power pole and the eastern boundary of the Site during re-routing

of underground utilities as Site re-development and building construction was initiated. The material was stockpiled and analyzed via TCLP analysis. The results indicated that the soil/fill did not exhibit hazardous characteristics; therefore, the soil/fill was disposed off-site at Modern Landfill, Inc. in Lewiston, New York.

 Placement of soil/fill recovered during staging area clean up in two 55-gallon drums with transportation to the CWM facility for disposal.

The Final Engineering Report (Ref. 10), to be submitted as a separate document, includes the details of the IRM. The Final Engineering Report is supplemented with a Site Management Plan (Ref. 11).

9.0 **REMEDIAL ALTERNATIVES EVALUATION**

9.1 Remedial Action Objectives

The final remedial measures for the 2250 Factory Outlet Boulevard Site must satisfy Remedial Action Objectives (RAOs). Remedial Action Objectives are site-specific statements that convey the goals for minimizing or eliminating substantial risks to public health and the environment. Appropriate RAOs for the 2250 Factory Outlet Boulevard Site are:

- Removal of chromium-impacted soil/fill within the green-colored fill area to levels protective of human health (restricted-commercial SCO).
- Mitigate contaminant loadings to groundwater from chromium-impacted soil/fill sufficiently to or nearly achieve compliance with groundwater quality standards.

In addition to achieving RAOs, NYSDEC's Brownfield Cleanup Program calls for remedy evaluation in accordance with DER-10 Technical Guidance for Site Investigation and Remediation (Ref. 9). Specifically, the guidance states "When proposing an appropriate remedy, the person responsible for conducting the investigation and/or remediation should identify and develop a remedial action that is based on the following criteria..."

- Overall Protection of Public Health and the Environment. This criterion is an evaluation of the remedy's ability to protect public health and the environment, assessing how risks posed through each existing or potential pathway of exposure are eliminated, reduced, or controlled through removal, treatment, engineering controls, or institutional controls.
- **Compliance with Standards, Criteria, and Guidance (SCGs)**. Compliance with SCGs addresses whether a remedy will meet applicable environmental laws, regulations, standards, and guidance.
- Long-Term Effectiveness and Permanence. This criterion evaluates the long-term effectiveness of the remedy after implementation. If wastes or treated residuals remain on-site after the selected remedy has been implemented, the following items are evaluated: (i) the magnitude of the remaining risks (i.e., will there be any significant threats, exposure pathways, or risks to the community and environment from the remaining wastes or treated residuals), (ii) the adequacy of the engineering

and institutional controls intended to limit the risk, (iii) the reliability of these controls, and (iv) the ability of the remedy to continue to meet RAOs in the future.

- Reduction of Toxicity, Mobility or Volume with Treatment. This criterion evaluates the remedy's ability to reduce the toxicity, mobility, or volume of Site contamination. Preference is given to remedies that permanently and significantly reduce the toxicity, mobility, or volume of the wastes at the Site.
- Short-Term Effectiveness. Short-term effectiveness is an evaluation of the potential short-term adverse impacts and risks of the remedy upon the community, the workers, and the environment during construction and/or implementation. This includes a discussion of how the identified adverse impacts and health risks to the community or workers at the Site will be controlled, and the effectiveness of the controls. This criterion also includes a discussion of engineering controls that will be used to mitigate short term impacts (i.e., dust control measures), and an estimate of the length of time needed to achieve the remedial objectives.
- **Implementability**. The implementability criterion evaluates the technical and administrative feasibility of implementing the remedy. Technical feasibility includes the difficulties associated with the construction and the ability to monitor the effectiveness of the remedy. For administrative feasibility, the availability of the necessary personnel and material is evaluated along with potential difficulties in obtaining specific operating approvals, access for construction, etc.
- **Cost**. Capital, operation, maintenance, and monitoring costs are estimated for the remedy and presented on a present worth basis.
- **Community Acceptance**. This criterion evaluates the public's comments, concerns, and overall perception of the remedy.

9.2 Alternatives Evaluation

Because the IRM achieved removal of the chromium-impacted soil/fill on-Site within the impacted area to below restricted-commercial SCOs, which, in turn, is expected to protect and improve on-Site groundwater quality, the IRM successfully achieved the abovedescribed remedial action objectives. Accordingly the No Further Action alternative is screened below. The No Further Action alternative assumes use of the Site for commercial purposes. In addition, an unrestricted use alternative has been evaluated to provide a basis for comparison to the No Further Action alternative.

In developing and screening the remedial alternatives, NYSDEC's Part 375 regulations require that the reasonable anticipated future land use be factored into the evaluation. The regulations identify 16 criteria that must be considered. These criteria and the resultant outcome for the 2250 Factory Outlet Boulevard Site are presented in Appendix E. As indicated, Appendix E supports commercial redevelopment as the reasonably anticipated future use of the 2250 Factory Outlet Boulevard Site.

9.2.1 No Further Action

"No further action" is defined as performing no additional cleanup activities at the Site beyond that which was already performed at the Site as an IRM (i.e., excavation and offsite disposal of approximately 1,569 tons of hazardous and 5,359 tons of non-hazardous chromium-impacted soil/fill). The efficacy of the No Further Action alternative will continue to be maintained and monitored via the Site Management Plan (Ref. 11). The Site Management Plan addresses two key post-remedial areas: soil/fill management, which assures soil/fill removed from the Site is handled in a safe and environmentally responsible manner and provides methods for addressing unknown areas of impact, if discovered; and the environmental easement, which limits use of the Site for commercial or industrial purposes (restricted use) and precludes use of Site groundwater.

Overall Protection of Public Health and the Environment – Since the IRM achieved removal of all known chromium-impacted soil/fill on the Site to restricted-commercial SCOs, the No Further Action alternative is fully protective of human health and the environment and successfully achieves all RAOs for the Site. The Site Management Plan will address any chromium-impacted areas discovered during post-development maintenance activities.

Compliance with SCGs – The IRM was performed in accordance with applicable, relevant, and appropriate standards, guidance, and criteria. Accordingly, the No Further Action alternative satisfies this criterion.

Long-Term Effectiveness and Permanence – Since the IRM achieved removal of all known chromium-impacted soil/fill exceeding restricted-commercial SCOs, no residual

soil/fill above restricted-commercial SCOs remains on the Site. As such, the No Further Action alternative is expected to provide long-term effectiveness and permanence.

Reduction of Toxicity, Mobility, or Volume with Treatment – Through removal of all identified chromium-impacted soil/fill exceeding restricted-commercial SCOs, the IRM permanently and significantly reduced the toxicity, mobility, and volume of Site contamination. Accordingly, the No Further Action alternative satisfies this criterion.

Short-Term Effectiveness – The short-term adverse impacts and risks to the community, workers, and environment during implementation of the IRM were effectively controlled. Temporary safety construction fencing was placed around the outer perimeter of the work area to distinguish the work zone and discourage trespassing. During soil/fill excavation and loading activities, dust monitoring was performed to assure conformance with NYSDOH-approved community air monitoring action levels. Erosion and sedimentation control were accomplished at the work perimeter by installing continuous double-wall silt fencing prior to the initiation of excavation activities; the silt fencing remained on the work perimeter until the backfill was placed. The potential for chemical exposures and physical injuries were reduced through safe work practices, proper personal protection, environmental monitoring, establishment of work zones and Site control, and appropriate decontamination procedures. The IRM achieved the RAOs for the Site in approximately 4 months.

Implementability – No technical or action-specific administrative implementability issues were associated with implementation of the IRM.

Cost – The capital cost of the IRM was approximately \$500,000. Annual certification is estimated at \$2,000 per year.

Community Acceptance – The RI/AAR/IRM Work Plan was advertised and made available for comment with the BCP application. No comments opposing the work were received.

9.2.2 Unrestricted Use Alternative

An Unrestricted Use alternative would necessitate remediation of all soil/fill where chromium concentrations exceed the unrestricted use SCO per 6NYCRR Part 375. At a minimum, this would involve additional remedial work in two areas (see Figure 5). For Unrestricted Use scenarios, excavation and off-site disposal of impacted soil/fill is generally regarded as the most applicable remedial measure, because institutional controls cannot be used to supplement the remedy. As such, the Unrestricted Use alternative assumes that Area 1 would be excavated to approximately 4 fbgs and Area 2 would be excavated to approximately 2 fbgs for disposal at an off-site commercial solid waste landfill. The estimated total volume of impacted soil/fill that would be removed from these areas is approximately 18,550 cubic yards. This alternative assumes that no groundwater remediation or long-term monitoring is required.

Overall Protection of Public Health and the Environment – The Unrestricted Use alternative would achieve the corresponding Part 375 SCOs, which are designed to be protective of human health under any reuse scenario.

Compliance with SCGs – Similar to the IRM soil/fill removal activities, the Unrestricted Use alternative would need to be performed in accordance with applicable, relevant, and appropriate standards, guidance, and criteria.

Long-Term Effectiveness and Permanence – The Unrestricted Use alternative would achieve removal of all residual impacted soil/fill; therefore, no soil/fill exceeding the unrestricted use SCOs would remain on the Site. As such, the Unrestricted Use alternative would provide long-term effectiveness and permanence. Post-remedial monitoring and certifications would not be required.

Reduction of Toxicity, Mobility, or Volume with Treatment – Through removal of all impacted soil/fill, the Unrestricted Use alternative would permanently and significantly reduce the toxicity, mobility, and volume of Site contamination.

Short-Term Effectiveness – The short-term adverse impacts and risks to the community, workers, and environment during implementation of the Unrestricted Use alternative are not considered significant and are controllable, but would increase the duration of time community, workers, and the environment is exposed to fugitive dust and off-site exposures during remediation.

Implementability – No technical implementability issues would be encountered in construction of the Unrestricted Use alternative. Administrative implementability issues may include the need for rezoning of the area, since residential, agricultural, and other unrestricted uses are not consistent with current zoning or the reasonably anticipated future use of the Site.

Cost – The capital cost of implementing an Unrestricted Use alternative (post IRM) is estimated at \$2.9 million (see Table 5). Post-remedial groundwater monitoring and annual certification costs would not be incurred.

Community Acceptance – Community acceptance will be evaluated based on comments to be received from the public in response to Fact Sheets and other planned Citizen Participation activities.

9.3 Recommended Remedial Measure

Based on the above screening and the conclusions of the Remedial Investigation and Final Engineering Report (Ref. 10), the IRM fully satisfies the remedial action objectives and is fully protective of human health and the environment. Accordingly, No Further Action with the implementation of a Site Management Plan is the recommended final remedial approach for the 2250 Factory Outlet Boulevard Site.

10.0 REFERENCES

- 1. Panamerican Environmental, Inc. Phase II Subsurface Environmental Assessment for Former Grossman's Building Site, 2250 Factory Outlet Boulevard, Town of Niagara, New York. March 2006.
- 2. Benchmark Environmental Engineering and Science, PLLC. Supplemental Phase II Investigation, 2250 Factory Outlet Boulevard, Niagara Falls, New York. June 2006.
- 3. United States Department of Agriculture, Soil Conservation Service. Soil Survey of Niagara County, New York. October 1972.
- 4. New York State Museum & Science Service. Map & Chart Series No. 15, Surficial Geologic Map of New York, Niagara Sheet. 1988.
- 5. New York State Museum & Science Service. Map & Chart Series No. 15, Geologic Map of New York, Niagara Sheet. March 1970.
- 6. Maxim-Empire Soils Investigation, Inc. Phase I Environmental Site Assessment (ESA) for Grossman's Building Supply Facility, 2250 Third Avenue, Niagara Falls, New York. November 1995.
- 7. Panamerican Environmental, Inc. TCLP and Hexavalent Chromium Analysis- Grossman's Building Facility Site- 4.5-acre Property Located at 2250 Third Avenue Street, Factory Outlet Boulevard, Niagara Falls, New York. March 2006.
- 8. Benchmark Environmental Engineering and Science, PLLC. Remedial Investigation / Alternative Analysis Report / Interim Remedial Measures Work Plan, 2250 Factory Outlet Boulevard, Niagara Falls, New York. September 2006, Revised December 2006.
- 9. New York State Department of Environmental Conservation. *Draft DER-10; Technical Guidance for Site Investigation and Remediation.* December 2002.
- 10. Benchmark Environmental Engineering and Science, PLLC. Final Engineering Report, 2250 Factory Outlet Boulevard, Town of Niagara, New York. August 2007.
- 11. Benchmark Environmental Engineering and Science, PLLC. Site Management Plan, 2250 Factory Outlet Boulevard, Town of Niagara, New York. August 2007.

CHROMIUM ANALYTICAL DATA FOR SOIL¹

RI / AAR / IRM Report 2250 Factory Outlet Boulevard

				nokol alent Chronius		ngi lu
			al Chromium I	nother int	n lm	rno ^{fton} Comments
Sample Location	Sample Interval (fbgs)		omium	chromit	romiun	comments
			alchie	alent	ant Ch.	3011
		10	Hexav	Triva		
Remedial activities perfo	ormed by Benchmark December 2	2006	<u> </u>			
SB-12	1-2	22.3 J	NS	NS	NS	No discoloration in the sample
SB-13	2-3	76 J	NS	NS	NS	No discoloration in the sample
SB-14	1.5-2.5	39.2 J	NS	NS	NS	No discoloration in the sample
SB-15	1-2	4.1 J	NS	NS	NS	No discoloration in the sample
SB-16	1-2	5.1 J	NS	NS	NS	No discoloration in the sample
SB-17	1-2	2940 J	ND	2940 J	3.85	Sample was collected from green-colored fill
SB-17	4-5	103 J	NS	NS	NS	Sample was collected from native soil beneath green-colored fill
SB-18	1-2	29.5 J	NS	NS	NS	No discoloration in the sample
SB-19	1-2	25.9 J	NS	NS	NS	No discoloration in the sample
SB-20	1-2	84.9 J	NS	NS	NS	No discoloration in the sample
SB-21	0.5-1.5	57.5 J	NS	NS	NS	No discoloration in the sample
SB-22	1-2	225 J	NS	NS	NS	No discoloration in the sample
SB-23	1-2	37.1 J	NS	NS	NS	No discoloration in the sample
TP-1/ SL#1	0-2	3690 J	4.7 J	3690 J	4.59	Sample was collected from green-colored fill
Blind duplicate #1		4050 J	129 J	3921 J	NS	Sample was collected from green-colored fill
TP-1/ SL#1	2-2.5	76.3 J	NS	NS	NS	Sample was collected from native soil beneath green-colored fill
TP-1/ SL#2	0-2	5.2 J	ND	5.2 J	NS	Sample collected from fill material adjacent to green-colored fill
TP-2	0-2.5	7980 J	358 J	7622 J	6.91	Sample was collected from green-colored fill
Blind duplicate #2	0-2.5	6830 J	304 J	6526 J	6.7	Sample was collected from green-colored fill
TP-2	2.5-3	33.6 J	NS	NS	NS	Sample was collected from native soil beneath green-colored fill
TP-3/ SL#1	0-2	6000 J	214 J	5786 J	3.57	Sample was collected from green-colored fill
TP-3/ SL#1	2-3	35.6 J	NS	NS	NS	Sample was collected from native soil beneath green-colored fill
TP-3/ SL#2	0-2	4.6 J	ND	4.6 J	NS	Sample collected from fill material adjacent to green-colored fill
TP-4	0-2.5	5410 J	257 J	5153 J	NS	Sample was collected from green-colored fill
TP-4	2.5-3.5	30.9 J	NS	NS	NS	Sample was collected from native soil beneath green-colored fill
TP-5/ SL#1	2-2.5	2460 J	31.1 J	2430 J	0.724	Sample was collected from green-colored fill
TP-5/ SL#1	2.5-3	32.1 J	NS	NS	NS	Sample was collected from native soil beneath green-colored fill
TP-5/ SL#2	2-2.5	45.5 J	ND	45.5 J	NS	Sample collected from fill material adjacent to green-colored fill
TP-6/ SL#1	0-3	5100 J	158 J	4942 J	5.31	Sample was collected from green-colored fill
TP-6/ SL#1	3-3.5	45.6 J	NS	NS	NS	Sample was collected from native soil beneath green-colored fill
TP-6/ SL#2	0-3	2.3 J	ND	2.3 J	NS	Sample collected from fill material adjacent to green-colored fill
TP-7	0-3	4900 J	156 J	4744 J	4.73	Sample was collected from green-colored fill
TP-8	0-2	2740 J	52.7 J	2690 J	0.199	Sample was collected from green-colored fill
TP-9	0-3	3250 J	32.7 J	3220 J	1.83	Sample was collected from green-colored fill
TP-10	0-1.5	964 J	30.6 J	933 J	2.3	Sample was collected from green-colored fill
TP-11	0-2	4830 J	113 J	4717 J	8.97	Sample was collected from green-colored fill
TP-12	1.5-2.5	6710 J	227 J	6480 J	3.4	Sample was collected from green-colored fill
Sampling performed by I						
SB - 2	0.0 - 1.5	66	NS	NS	NS	No discoloration in the sample
SB - 3	0.0 - 1.5	34.7	NS	NS	NS	No discoloration in the sample
SB - 4	0.0 - 2.3	30.2	NS	NS	NS	No discoloration in the sample
SB - 5	0.0 - 4.0	32.1	NS	NS	NS	No discoloration in the sample
SB - 6	0.0 - 4.0	34	NS	NS	NS	No discoloration in the sample
SB - 7	0.0 - 2.0	34.8	NS	NS	NS	No discoloration in the sample
SB - 8	0.0 - 2.0	10.5	NS	NS	NS	No discoloration in the sample
SB - 9	0.0 - 1.1	13.7	NS	NS	NS	No discoloration in the sample
SB - 10	0.0 - 25	38	NS	NS	NS	No discoloration in the sample
SB - 11	1.0 - 2.5	44	NS	NS	NS	No discoloration in the sample

CHROMIUM ANALYTICAL DATA FOR SOIL¹

RI / AAR / IRM Report 2250 Factory Outlet Boulevard

Sample Location	Sample Interval (fbgs)	TOP	A Chromium!	alent Chomius	n Ingkal	trophol ¹ LP Chronium Ingl ¹ LP Chronium Ingl ¹
Sampling performed by	Panamerican Environmental Ma	rch 2006		-		
BH2 - GM - 01	1.0 -3.0	16,900	NS	NS	11	Sample was collected from green-colored fill
BH2 - GM - 02	1.0 - 3.0	69.4	NS	NS	NS	No discoloration in the sample
BH2 - GM - 03	1.0 - 2.5	5,140	NS	NS	NS	Sample was collected from green-colored fill
BH2 - GM - 04	1.0 - 3.0	4,650	NS	NS	NS	Sample was collected from green-colored fill
BH2 - GM - 05	1.0 - 3.0	6,470	NS	NS	NS	Sample was collected from green-colored fill
BH2 -GM - 06	1.0 - 2.5	4.8	NS	NS	NS	No discoloration in the sample
BH2 - GM - 07	2.0 - 3.0	8.4	NS	NS	NS	No discoloration in the sample
BH2 - GM - 08	2.0 - 3.0	22.3	NS	NS	NS	No discoloration in the sample
BH2 - GM - 09	1.0 - 2.5	64.6	NS	NS	NS	No discoloration in the sample
BH2 - GM - 10	2.0 - 3.5	26.9	NS	NS	NS	No discoloration in the sample
Sampling performed by	Panamerican Environmental Feb	oruary 2006		-		
BH - GM - 04	1.0 - 3.0	23.2	NS	NS	NS	No discoloration in the sample
BH - GM - 14	1.0 - 3.0	4780	NS	NS	NS	Sample was collected from green-colored fill
BH - GM - 18	1.0 - 2.0	194	NS	NS	NS	No discoloration in the sample
BH - GM - 20	2.0 - 3.5	241	NS	NS	NS	No discoloration in the sample
NYSDEC Part 375-6 Co	ommercial SCOs (mg/kg)	NA	400	1,500	NA	
Characteristic hazardou	is chromium threshold (mg/L)	NA	NA	NA	5	
Notes:						

Notes:

1. Data collected prior to IRM implementation

2. Trivalent chromium concentration is calculated as total chromium concentration minus hexavalent chromium concentration

Definitions:

SB = soil boring TP = test pit

fbgs = feet below ground surface

NA = not applicable

ND = not detected above the laboratory method detection limit

NS = not sampled for that parameter

mg/kg = milligrams per kilogram

mg/L = milligrams per liter

J =estimated value

TCLP = toxicity characteristic leaching procedure

BOLDIndicates exceedance of NYSDEC Part 375-6 restricted commercial soil cleanup objectives (SCOs)BOLDIndicates exceedance of USEPA TCLP threshold for characteristic hazardous chromium (mg/L)

Page 2 of 2

ON-SITE SURFACE/SUBSURFACE SOIL ANALYTICAL DATA SUMMARY FOR SITE CHARACTERIZATION

RI / AAR / IRM Report 2250 Factory Outlet Boulevard Site

									Sample L	ocation and De	epth (fbgs)										
		BENCH	ARK (DECEM	BER 2006)		P	ANAMERICAN (FEBRUARY 200	06)					PANAMERICA	N (MARCH 2006)					Destrict
	Subs	surface Soil Sar	nples	Subsurface	Soil Samples		Subsurface \$	Soil Samples						Subsurface	Soil Samples					Unrestricted	Restricted - Commercial
	MW-1 (6.0-8.0)	MW-2 (2.0-4.0)	MW-3 (8.0-10.0)	SS-1,2 COMP	Blind Dup ²	BH - GM - 04 (1.0 - 2.5)	BH - GM - 14 (1.0 - 3.0)	BH - GM - 18 (1.0 - 2.0)	BH - GM - 20 (2.0 - 3.5)	BH2 - GM - 01 (1.0 - 3.0)	BH2 - GM - 02 (1.0 - 3.0)	BH2 - GM - 03 (1.0 - 2.5)	BH2 - GM - 04 (1.0 - 3.0)		6 BH2 - GM - 06 (1.0 - 2.5)	BH2 - GM - 07 (2.0 - 3.0)	BH2 - GM - 08 (2.0 - 3.0)	BH2 - GM - 09 (1.0 - 2.5)	BH2 - GM - 10 (2.0 - 3.5)	(ppm) ³	(ppm) ³
TCL VOCs (mg/kg)																					
Acetone	NS	NS	NS	NS	NS	0.028 J	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.05	500 ⁵
2 - Butanone (MEK)	NS	NS	NS	NS	NS	0.004 J	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.12	500 ⁵
Carbon Disulfide Chloroform	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.37	 350
Ethylbenzene	NS	NS	NS	NS	NS	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1	390
Isopropylbenzene	NS	NS	NS	NS	NS	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Methylene Chloride	NS	NS	NS	NS	NS	0.006	0.007	ND	0.006	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.05	500 ⁵
Methylcyclohexane	NS	NS	NS	NS	NS	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
TOTAL Xylenes	NS	NS	NS	NS	NS	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.26	500 ⁵
Total VOCs (mg/kg)						0.038	0.007	0	0.006												
TCL SVOCs (mg/kg)	ND	ND	ND	0.00.1	0.000 1	ND	ND	ND	ND	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		5
Acenaphthene	ND	ND	ND	0.03 J	0.026 J	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	20 100 ⁴	500 ⁵
Acenaphthylene Anthracene	ND ND	ND ND	ND ND	0.019 J 0.053 J	0.075 J 0.1 J	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<u>100 ⁴</u>	500 ⁵ 500 ⁵
Benzo (a) anthracene	ND	ND	ND	0.26 J	0.48	0.32	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1 ⁶	5.6
Benzo (b) fluoranthene	ND	ND	ND	0.44	0.94	0.37	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1 ⁶	5.6
Benzo (k) fluoranthene	ND	ND	ND	0.14 J	0.25 J	0.4	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.8 ⁶	56
Benzo (a) pyrene	ND	ND	ND	0.28 J	0.52	0.21	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1 ⁶	1
Benzo (g,h,i) perylene	ND	ND	ND	0.12 J	0.14 J	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	100	500 ⁵
Bis(2 - ethylhexyl) phthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Butyl benzyl phthalate	ND	ND	ND	0.075 J	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	-	
Carbazole Chrysene	ND ND	ND ND	ND ND	0.034 J 0.3 J	0.069 J 0.56	ND 0.24	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	 1 ⁶	 56
Dibenzo (a,h) anthracene	ND	ND	ND	0.049 J	0.068 J	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.33 7	0.56
Dibenzofuran	ND	ND	ND	0.014 J	0.028 J	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Di - n - butyl phthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Di - n - octyl phthalate	ND	ND	ND	ND	0.025 J	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Fluoranthene	ND	ND	ND	0.43	0.79	0.44	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	100 ⁴	500 ⁵
Fluorene	ND	ND	ND	ND	0.029 J	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	30	500 ⁵
Indeno (1,2,3 - cd) pyrene	ND	ND	ND	0.16 J	0.22 J	ND ND	ND	ND ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.5 ⁶	5.6
2 - Methylnaphthalene Naphthalene	ND ND	ND ND	ND ND	0.016 J 0.019 J	0.04 J 0.033 J	ND	ND ND	ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	12	 500 ⁵
4-Nitrophenol	ND	ND	ND	ND	0.033 J	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Pentachlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.8 ⁷	6.7
Phenanthrene	ND	ND	ND	0.22 J	0.36 J	0.27	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	100	500 ⁵
Phenol	ND	ND	ND	0.036 J	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.33 ⁷	500 ⁵
Pyrene	ND	ND	ND	0.32 J	0.5	0.28	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	100	500 ⁵
Total SVOCs (mg/kg)	0.000	0.000	0.000	3.02	5.25	2.53	0	0	0												
TAL Metals (mg/Kg) Aluminum	13800	23200	14400	18000	7690	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		-
Antimony	13800 ND	23200 ND	14400 ND	18000 ND	9.7 N	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Arsenic	1.9 N J	3.1 N J	3.5 N J	7.6 N J	15.8 N J	4.2	ND	4.8	7.7	ND	9.4	ND	ND	ND	3.8	4.4	3.6	4.8	3	13 ⁶	16
Barium	186	149	125	135	100	238	64	148	160	101	118	74	117	128	6.2	16.3	147	87.5	148	350 ⁶	400
Beryllium	ND	1.1 BE*	ND	0.98	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	7.2	590
Cadmium	0.25 B	0.24 B	0.2 B	0.96	0.95	0.38	0.41	ND	ND	ND	0.61	ND	ND	ND	1.5	0.36	0.41	0.71	26.9	2.5 ⁶	9.3
Calcium	84400 *	10900 *	36900 *	17500 *	13900 *	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Chromium	18.8 N J	20.5 N J	20 N J	45.5 N J	15.8 N J	23.2	4780	194 N	241 N	16900	69.4	5140	4650	6470	4.8	8.4	22.3	64.6	16.5	30 ⁶	1500
Cobalt	9.0 13.9 N J	13.3	9.6	13 33.5 N J	6.7	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS	NS NS	NS NS	NS	NS NS	NS NS	NS	NS NS	50	 270
Copper Iron	13.9 N J 22000	19.8 N J 31300	19.3 N J 24500	26900	68.8 N J 22400	NS	NS NS	NS	NS	NS NS	NS	NS NS	NS	NS	NS NS	NS	NS	NS NS	NS		
Lead	4.9	9.9	7.2	87.6	22400 219	22.2	13.4	30.8	18.8	3.7	34.5	11.9	5.4	13	23.3	21.9	37.9	27.1	ND	63 ⁶	1000
Magnesium	9250	12200	11100	8540	3960	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Manganese	455 *	341 *	406 *	478 *	819 *	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1600 ⁶	10000
TAL Metals (mg/kg)		- 	•	•	•	-		- 		•	·		• 		•	•		•	·		

ON-SITE SURFACE/SUBSURFACE SOIL ANALYTICAL DATA SUMMARY FOR SITE CHARACTERIZATION

RI / AAR / IRM Report 2250 Factory Outlet Boulevard Site

									Sample L	ocation and De	epth (fbgs)										
		BENCHN	MARK (DECEME	3ER 2006)		P.	ANAMERICAN (FEBRUARY 200	06)					PANAMERICA	N (MARCH 2006	5)					Restricted -
PARAMETER ¹	Subs	urface Soil San	nples	Subsurface	Soil Samples		Subsurface	Soil Samples						Subsurface	Soil Samples					Unrestricted (ppm) ³	Commercial
	MW-1 (6.0-8.0)	MW-2 (2.0-4.0)	MW-3 (8.0-10.0)	SS-1,2 COMP	Blind Dup ²	BH - GM - 04 (1.0 - 2.5)	BH - GM - 14 (1.0 - 3.0)	BH - GM - 18 (1.0 - 2.0)	BH - GM - 20 (2.0 - 3.5)	BH2 - GM - 01 (1.0 - 3.0)	BH2 - GM - 02 (1.0 - 3.0)	BH2 - GM - 03 (1.0 - 2.5)	BH2 - GM - 04 (1.0 - 3.0)	BH2 - GM - 05 (1.0 - 3.0)	BH2 - GM - 06 (1.0 - 2.5)	BH2 - GM - 07 (2.0 - 3.0)	BH2 - GM - 08 (2.0 - 3.0)	BH2 - GM - 09 (1.0 - 2.5)	BH2 - GM - 10 (2.0 - 3.5)	(ppm)	(ppm) ³
Mercury	ND	ND	ND	0.143	0.174	0.069	0.074	0.062	ND	0.08	0.26	ND	ND	ND	ND	0.029	0.062	0.086	0.026	0.18 ⁶	2.8
Nickel	23.1	34.4	25.3	27.4	20.5	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	30	310
Potassium	2080	2040	2250	1900	911	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Selenium	1.3 B	2.3 B	1.5 B	2 B	2.3 B	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	3.9 ⁶	1500
Silver	ND	ND	ND	ND	0.14 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	2	1500
Sodium	125 B	102 B	126 B	64 B	71.8 B	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Thallium	0.93 B	1.1 B	1.1 B	1.5 B	1.1 B	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Vanadium	22.2 N	33.7 N	25.4 N	33.1 N	17.7 N	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Zinc	51.7 NE J	75.1 NE J	61.5 NE J	134 NE J	167 NE J	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	109 ⁶	10000
Wet Chemistry Analysis (units a	s indicated)																				
Leachable pH (S.U.)	7.28	7.38	7.47	7.1	7.35	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
PCBs (mg/kg)																					
PCB Aroclor 1254	NS	NS	NS	NS	NS	ND	0.14	0.052	0.056	NS	0.1										
Pesticides/Herbicides (mg/kg)																					
2,4-D	ND	ND	ND	0.16 J	0.012 J	ND	ND	ND	ND	NS											
beta-BHC	ND	ND	ND	0.00082 J	ND	ND	ND	ND	ND	NS	0.036	3									
4,4' - DDE	ND	ND	ND	0.00088 JP	ND	ND	ND	ND	ND	NS	0.0033 ⁷	62									
4,4' - DDT	ND	ND	ND	0.0043 JP NJ	ND	ND	ND	ND	ND	NS	0.0033 ⁷	47									
Endrin ketone	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS											
Endosulfan II	ND	ND	ND	0.0022 JP NJ	ND	ND	ND	ND	ND	NS	2.4	200									
Dieldrin	ND	ND	ND	ND	ND	ND	0.014 J	0.0017 J	ND	NS	0.005 ⁶										
Methoxychlor	ND	ND	ND	ND	ND	ND	ND	ND		NS											

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in table; all other compounds reported as non-detect.

2. Blind duplicate for sample SS-1,2 COMP.

3. Values per NYSDEC Part 375 Soil Cleanup Objectives (December 2006).

4. The SCOs for residential use were capped at a maximum value of 100 ppm.

5. The SCOs for commercial use were capped at a maximum value of 500 ppm.

6. Rural soil background concentration used where calculated SCO was lower than than rural background.

7. Contract required quantitation limit (CRQL) use where calculated SCO was lower than CRQL.

BOLD = Analytical result exceeds Unrestricted SCO.

= Analytical result exceeds Restricted-Commercial SCO.

BOLD

GROUNDWATER ANALYTICAL DATA SUMMARY

RI / AAR / IRM Report 2250 Factory Outlet Boulevard

		Sa	mple Locati	on		
PARAMETER ¹	MW-1	Blind Dup ²	MW-2	MW-3	MW-4	GWQS/GV (ug/L) ³
TCL VOCs (ug/L)						
Tetrachloroethene	1 J	U	U	U	NA	5
TAL Total Metals (ug/L)	•	•		•		
Aluminum	1080 N* J	492 N* J	945 N* J	151 BN* J	18000 N* J	
Arsenic	U	U	U	U	7.4 B	25
Barium	34.3 B	29.7 B	36.8 B	26.4 B	111 B	1,000
Beryllium	0.42 B	U	U	0.32 B	0.71 B	3
Cadmium	U	U	U	U	0.65 B	5
Calcium	359000	355000	148000	397000	245000	
Chromium	2.9 B	2.2 B	1.4 B	U	75.9	50
Cobalt	2.4 B	2.1 B	1.1 B	U	13 B	
Copper	2.9 B	2.2 B	1.9 B	U	34.6	200
Iron	1710 N J	891 N J	712 N J	315 N J	24700 N J	300
Lead	U	U	U	U	29.5	25
Magnesium	261000	259000	209000	244000	124000	35000 **
Manganese	455 N	446 H	48.2 N	136 N	1340 N	300
Nickel	3.4 B	2.4 B	2.9 B	3 B	30.7 B	100
Potassium	3650 B	3490 B	2940 B	3470 B	6340	
Sodium	53900	53600	4060000 J	61000	77500 J	20000
Vanadium	1.4 B	U	1.6 B	U	35.9 B	
Zinc	10.7 B	7.1 B	7.7 B	4 B	170	
TAL Soluble Metals (ug/L)						
Arsenic	UJ	UJ	UJ	UJ	7.2 B J	25
Barium	26.4 B J	287.2 B J	33.1 B J	27.1 B J	13.4 B J	1,000
Beryllium	0.3 B J	0.26 B J	UJ	0.27 B J	UJ	3
Calcium	369000 J	385000 J	153000 J	412000 J	105000 J	
Chromium	UJ	UJ	UJ	UJ	0.95B J	50
Cobalt	1.8 B J	1.4 B J	UJ	1.2 B J	1 B J	
Copper	1.3 B J	UJ	UJ	UJ	4.4 B J	200
Iron	UJ	UJ	UJ	UJ	36.7 B J	300
Magnesium	262000 J	269000 J	215000 J	254000 J	75900 J	35000 **
Manganese	410 J	330 J	49.1 J	144 J	171 J	300
Nickel	1.7 B J	2.5 B J	2.1 B J	2.3 B J	5.6 B J	100
Potassium	3980 BE J	4540 BE J	3580 BE J	3950 BE J	1990 J	
Selenium	U	8.2 B J	U	U	U	10
Sodium	54900 J	56500 J	44900 J	64200 J	94300 J	20000

GROUNDWATER ANALYTICAL DATA SUMMARY

RI / AAR / IRM Report 2250 Factory Outlet Boulevard

		Sa	mple Locati	on		
PARAMETER ¹	MW-1	Blind Dup ²	MW-2	MW-3	MW-4	GWQS/GV (ug/L) ³
TAL Soluble Metals (ug/L)						
Vanadium	UJ	UJ	UJ	UJ	3.4 B J	
Zinc	5.4 B J	4.7 B J	2.8 B J	2.8 B J	16.1 B J	

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. Blind duplicate collected from MW-1.

3. Values per NYSDEC Ambient Water Quality Standards/Guidance Values and Groundwater Effluent Limitations (TOGS 1.1.1). Class GA Groundwater Standard presented.

Definitions:

NA = Sample not analyzed for parameter.

B (organic) = Analyte also found in the associated blank.

B (inorganic) = Value is between the IDL and the CRDL.

* = Indicates analysis is not within quality control limits.

** = Indicates guidance value

BOLD

N = Spike sample recovery is not within quality control limits.

E = Indicates value estimated or not reported due to the presence of interferences.

H = Indicates analytical holding time exceedance; therefore, value should be considered an estimate.

U= undetected above method detection limit.

= Result exceeds GA Groundwater Standard/Guidance Value.

BENCH-SCALE SOIL TREATABILITY TESTING RESULTS

RI / AAR / IRM Report 2250 Factory Outlet Boulevard Site

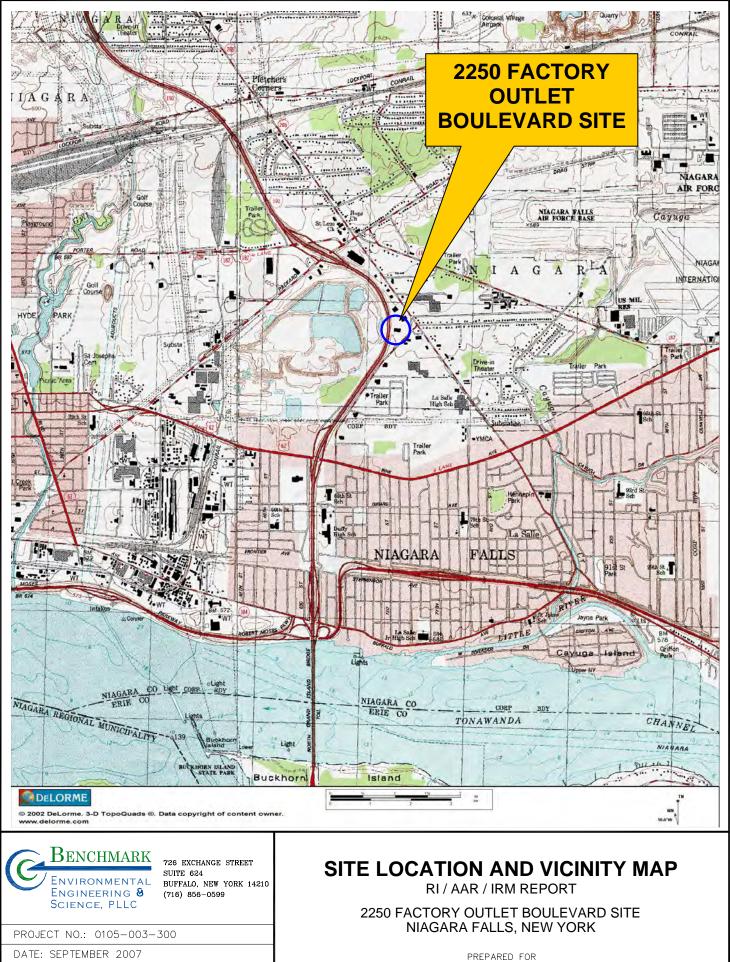
		Treatment	t (Trial 1)			Т	reatment (Trial 2	2)		TCLP
Sample	Initial TCLP	0.5% Portland Cement	2% Portland Cement	5% Portland Cement	Initial TCLP	2% Ferrous Sulfate	5% Ferrous Sulfate	15% Lime	10% Portland Cement	Chromium Regulatory Level (mg/L)
Sample 1 (TP-2)	7.85	7.52	7.45	5.69	6.6	2.85	4.32	5.91	12.3	5
Sample 2 (TP-6)	6.44	6.79	9.75	12.7	6.04	2.69	2.57	5.49	12.2	5
Sample 3 (TP-11)	11.3	4.03	3.9	4.2	NT	NT	NT	NT	NT	5

Notes:

NT = Not tested

BOLD = Exceedance of 6 NYCRR Part 261.24 Toxicity Characteristic Leaching Procedure (TCLP) Regulatory Level for Chromium.

COST ESTIMATE FOR UNRESTRICTED USE ALTERNATIVE


Item	Quantity	Units		Unit Cost	Total Cost
Impacted Soil/Fill Removal					
Soil/Fill Excavating & Hauling - Area 1	16152	CY	\$	20.00	\$ 323,040
Soil/Fill Excavating & Hauling - Area 2	2406	CY	\$	20.00	\$ 48,123
Disposal at TSDF	27837	TON	\$	50.00	\$ 1,391,861
Verification Sampling (total chromium)	36	EA	\$	25.00	\$ 900
Subtotal:					\$ 1,763,924
Site Restoration Backfill, Place & Compact	18558	СҮ	\$	15.00	\$ 278,372
Subtotal:		-	Ť		\$ 278,372
Subtotal Capital Cost					\$ 2,042,296
Contractor Mobilization/Demobilization (5%)					\$ 102,115
Health and Safety (2%)					\$ 40,846
Engineering/Contingency (35%)					\$ 714,804
Total Capital Cost					\$ 2,900,061

RI/AAR/IRM REPORT 2250 Factory Outlet Boulevard Site

FIGURES

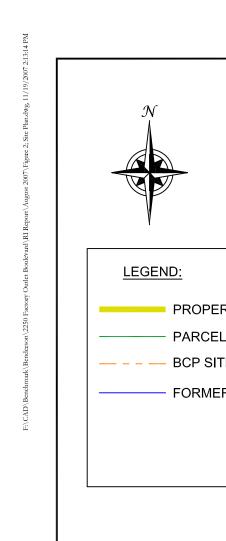
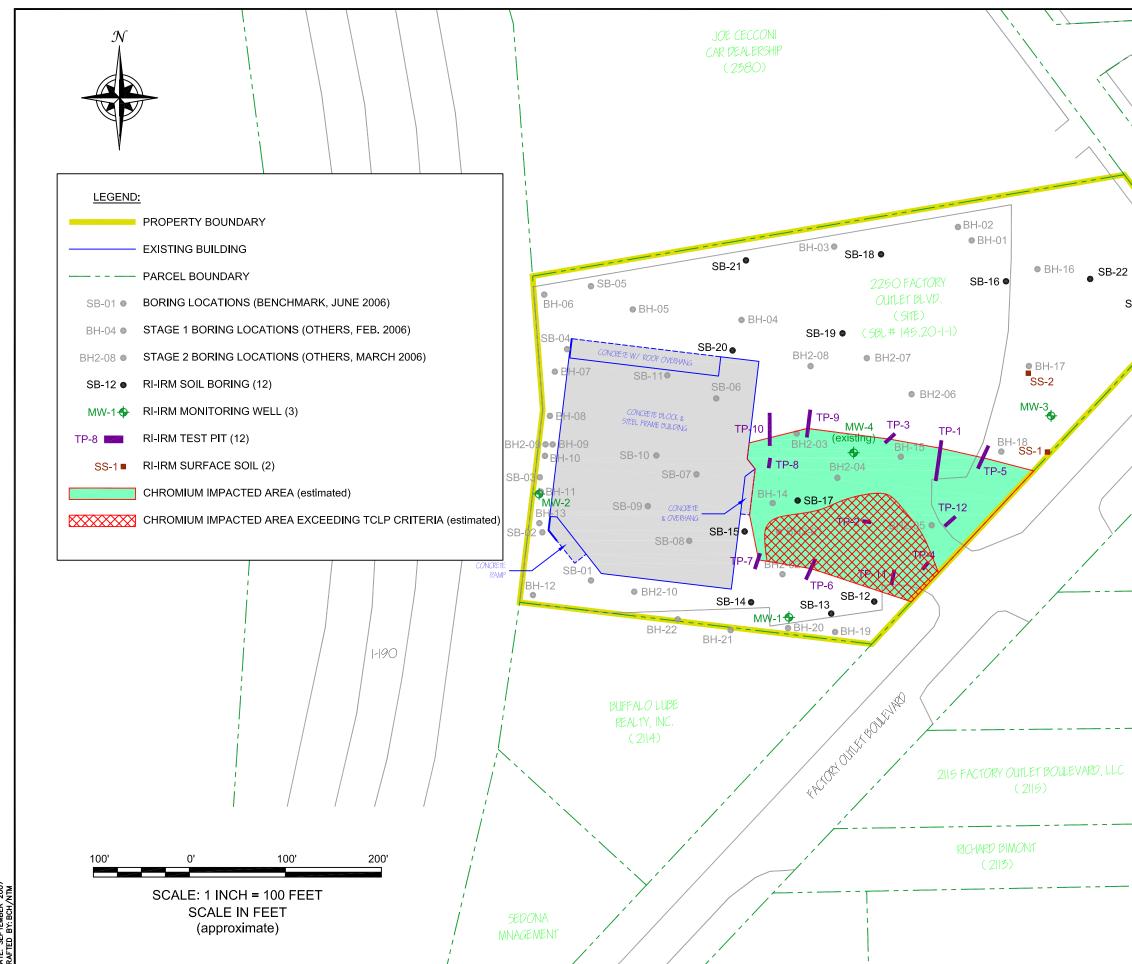
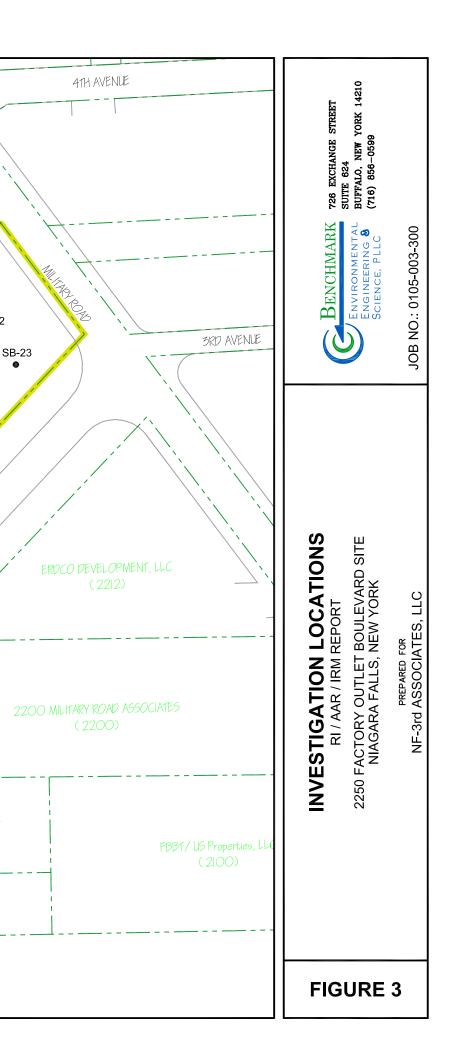
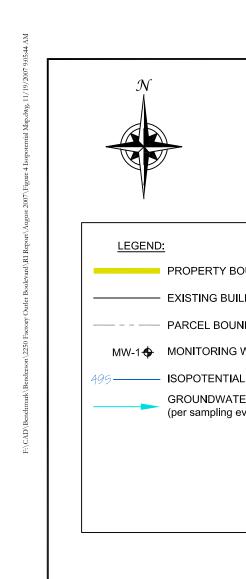


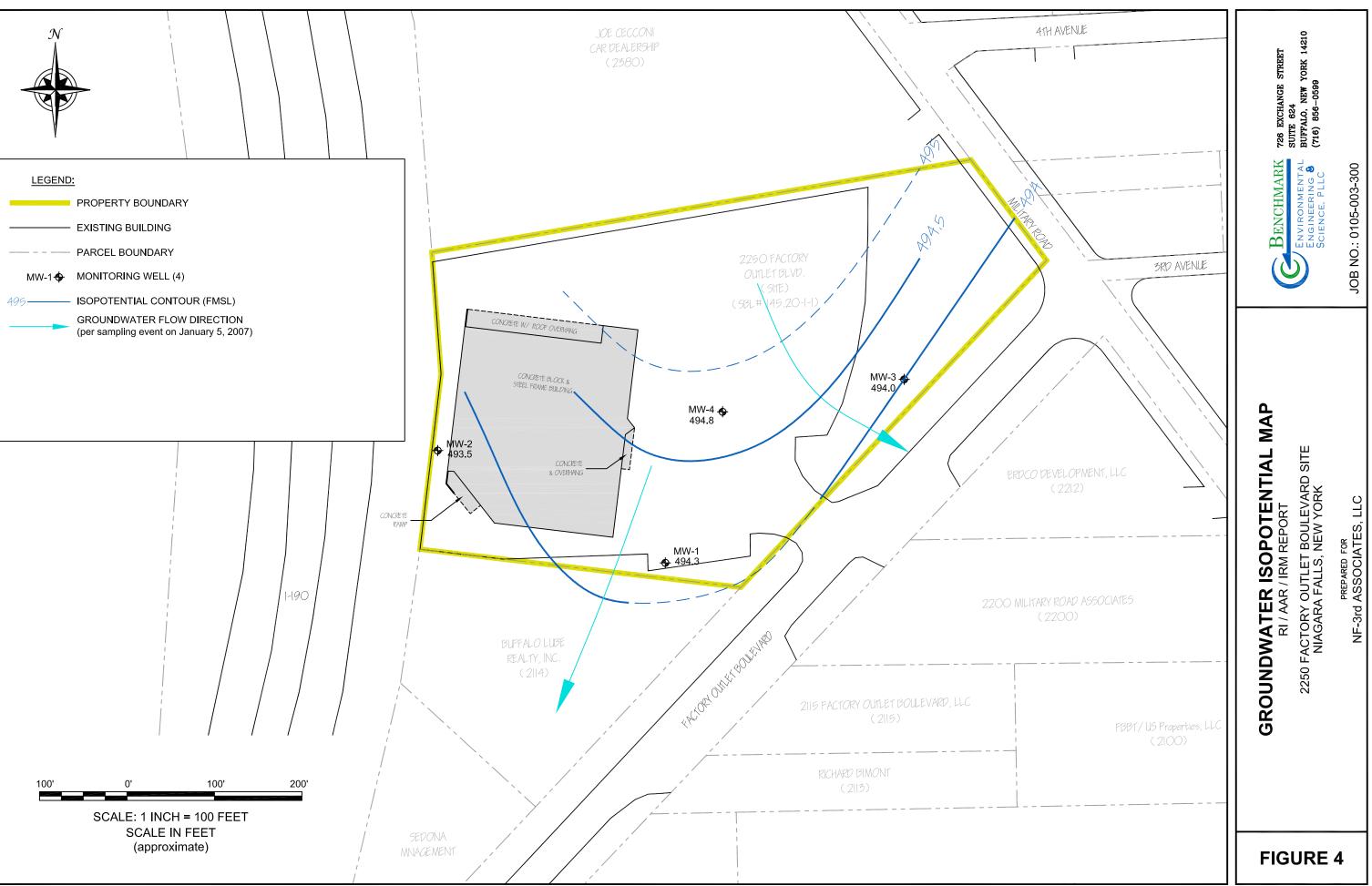
FIGURE 1

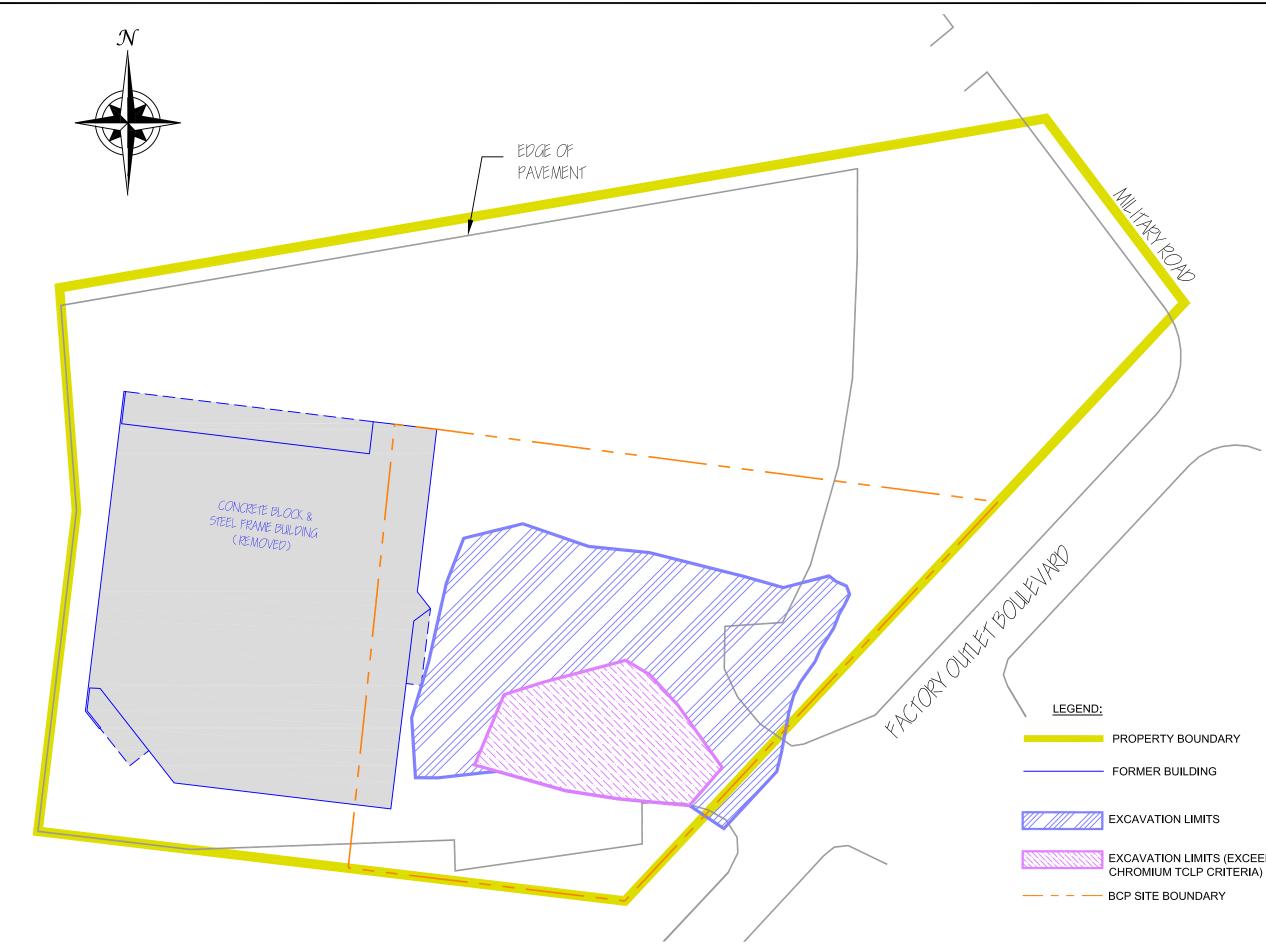


NF-3rd ASSOCIATES, LLC

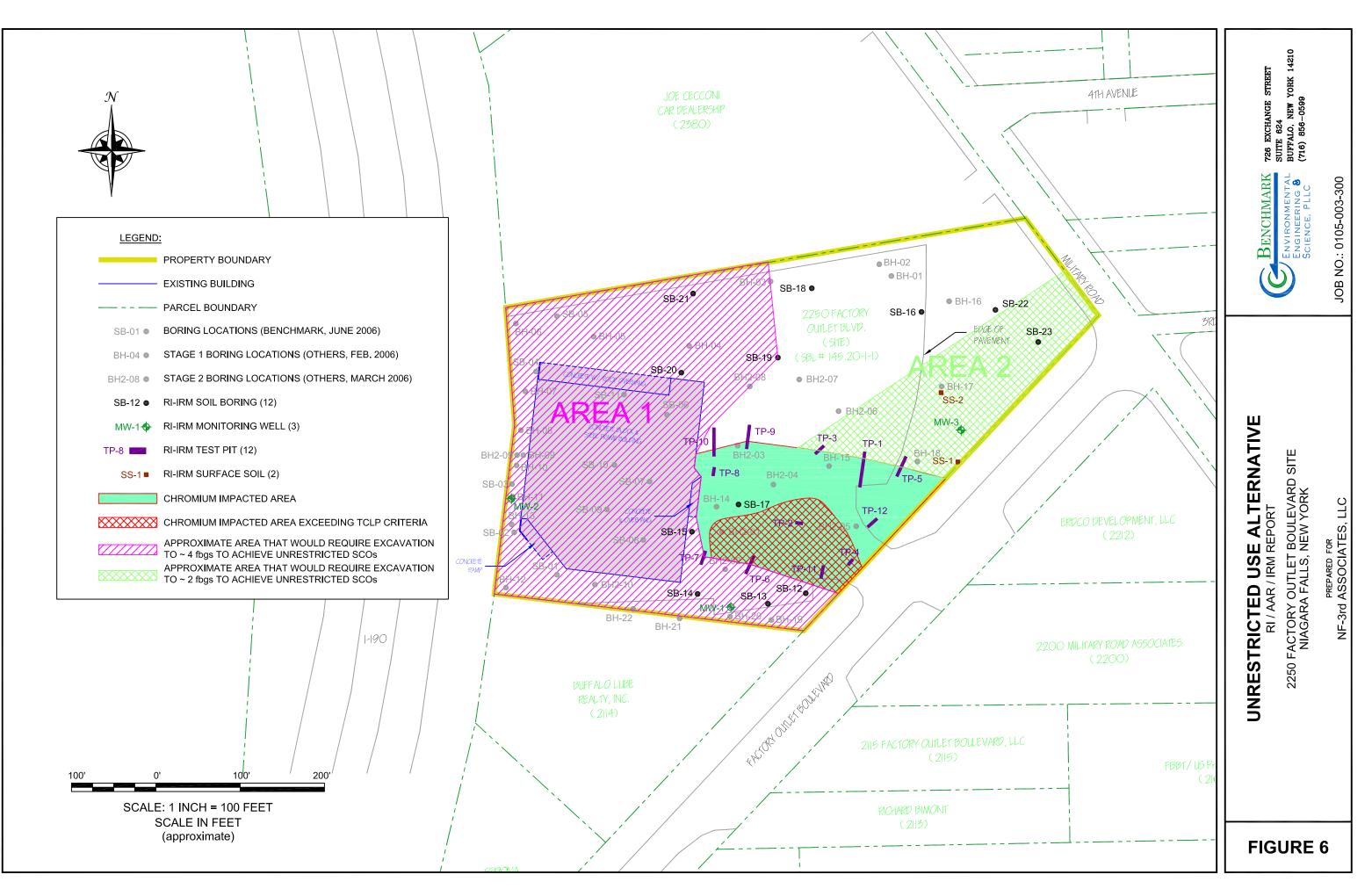

DRAFTED BY: NTM







N 1001 DATE: SEPTEMBER DRAFTED BY: BCH



DATE: NRAFTED

EXCAVATION LIMITS (EXCEEDING CHROMIUM TCLP CRITERIA)

DATE: SEPTEMBER 200 DRAFTED BY: NTM

APPENDIX A

PREVIOUS INVESTIGATIONS SAMPLING RESULTS

Table 1 Stage 1 Soil Sampling Results Summary Grossman's Property - 2250 Third Avenue Town of Niagara Falls, New York

			·		Eastern	Rec. Soil
······································					USA	Cleanup
	BH-04	BH-14	BH-18	BH-20	Background	Values
Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	1-2.5 ft.	1-3 ft.	1-2 ft.	2-3.5 ft.		TAGM
Sample Depth	1-2.5 11.	1-5 11.	1-2 11.	2-0.0 10.		
RCRA Metals			<u> </u>	7.7	3 to 12	7.5 or SB
Aresnic	4.2	ND	4.8		15 to 600	300 or SB
Barium	238	64	148	160	0.1-1	1 or SB
Cadmium	0.38	0.41	ND	ND	0.1-1 1.5 to 40	10 or SB
Chromium	23.2	4780	194			SB****200-500
Lead	22.2	13.4	30.8	18.8	200 to 500	· · · · · · · · · · · · · · · · · · ·
Mercury	0.069	0.072	0.062	ND	0.001 to 0.2	0.1
Pest						
Dieldrin	ND	0.014 J	0.0017 J	ND	N/A	0.044
PCB's	2					
PCB Aroclor 1254	ND	0.14	0.052	0.056	N/A	1.0 Surf/10 Sub
Semi-Volatile Organics						
Phenanthrene	0.27	ND	ND	ND	N/A	50
Fluoranthene	0.44	ND	ND	ND	N/A	50
Pyrene	0.28	ND	ND	ND	N/A	50
Benzo(a)anthracene	0.32	ND	ND	ND	N/A	0.224 / MDL
Chrysene	0.24	ND	ND	ND	N/A	0.4
Benzo(b)fluoranthene	0.37	ND	ND	ND	N/A	1.1
Benzo(k)fluoranthene	0.4	ND	ND	ND	N/A	1.1
Benzo(a)pyrene	0.21	ND	ND	ND	N/A	0.061 / MDL
Total cPAH	1.54	0	0	0	N/A	N/A
Total SVOC	2.53	0	0	0	N/A	N/A
Volatile Organics	0.004 J	ND	ND	ND	N/A	0.3
2-Butanone		ND ND	ND	ND	N/A	0.2
Acetone	0.028 J		ND ND	0.006	N/A	0.1
Methylene chloride	0.006	0.007		SB - Site Backg	·	م و و و و و و و و و و و و و و و و و و و
ND - Non Detect	N/A - Not Applic			**Result above		00ppm

* Result above Total cPAH level of 10ppm

**Result above Total SVOC of 100ppm J - Results Below Quantitation Limits

:

Shading - Results above NYSDEC Guidelines

Total cPAH value includes: benzo(a)anthracene, chrysene, benzo(b)fluoranthene,

benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene,

dibenzo(a,h)anthracene

Table 2
Stage 2 Soil Sampling Results Summary
Grossman's Property - 2250 Third Avenue
Town of Niagara Falls, New York

,

. ;

I

.

											Eastern	Rec. Soil
						1 1					USA	Cleanup
	BH2-01	BH2-02	BH2-03	BH2-04	BH2-05	BH2-06	BH2-07	BH2-08	BH2-09	BH2-10	Background	Values
Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Sample Depth	1-3 ft.	1-3 ft.	1-2.5 ft.	1-3 ft.	1-3 ft.	1-2.5 ft.	2-3 ft.	2-3 ft.	1-2.5 ft.	2-3,5 ft.		TAGM
RCRA Metals										<u> </u>		
Aresnic	ND	9.4	ND	ND	ND	3.8	4.4	3.6	4.8	3	3 to 12	7.5 or SB
Barium	101	118	74	117	128	6.2	16.3	147	87.5	148	15 to 600	300 or SB
Cadmium	ND	0.61	ND	ND	ND	1.5	0.36	0.41	0.71	ND	0.1-1	1 or SB
Chromium	16900	69.4	5140	4650	6470	4.8	8.4	22.3	64.6	26.9	1.5 to 40	10 or SB
Lead	3.7	34.5	11.9	5.4	13	23.3	21.9	37.9	27.1	16.5	200 to 500	SB****200-500
Mercury	0.08	0.26	ND	ND	ND	ND	0.029	0.062	0.086	0.026	0.001 to 0.2	0.1
Silver	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	SB	SB

.

1

KEY KEY ND - Non Detect SB - Site Background Shading - Results above NYSDEC Guidelines

•

٠

TABLE 1- CHROMIUM DATA2250 Factory Outlet BoulevardNiagara Falls, New York

PARAMETER	SB-2	SB-3	SB-4	SB-5	SB-6	SB-7	SB-8	SB-9	SB-10	SB-11
	0-1.5 ft.	0-1.5 ft.	0-2.3 ft.	<u>. 0-4 ft.</u>	0-4 ft	0-2 ft	0-2.ft		0-2.5 ft	
Chromium (mg/kg)	66	34.7	30.2	32.1	34	34.8	10.5	13.7	38	44
		• - •								
	Service Service	a and a state	State of the second	ile a recent a tableau	completed	and an and a second	ALC: NOT SHOW	t 18 Million and 18 Million	<u>.</u>	
PARAMETER	BH-04	BH-14	BH-18	BH-20	BH2-01	BH2-02	BH2-03	BH2-04-	BH2-05	BH2-06
	1-2.5 ft.	. 1-3 ft,	1-2 ft. 🕵	2-3.5 ft.	1-3 ft.		1-2.5;ft.	201-3 ft.	1-3 ft.	
Chromium (mg/kg)	23.2	4780	194	241	16,900	69.4	5,140	4,650	6,470	4.8
TCLP Chromium (mg/L)	NA	NA	NA	NA		NA	NA	NA	NA	NA
PARAMETER	5)r(2-0)//	(B)#(20)5	514(1.))) 	istrik∠ 1(3)						
Chromium (mg/kg)	8.4	22.3 22.3	64.6	26.9						
lotes:	atta la a al-ta									
<pre>FCLP = toxicity characteri NA = Not analyzed.</pre>	stic leaching	g procedure.								

APPENDIX B

FIELD BOREHOLE LOGS, TEST PIT LOGS, AND WELL CONSTRUCTION DETAILS

-1

G	BENCHMARK
C	ENVIRONMENTAL Engineering & Science, PLLC

PRO	OJEC	CT:	2250	Fac	tory C	Dutlet Blvd.	Log of Boring No.:	SB-12
BOF	RING	G LOC	ATIC)N:			ELEVATION AND DATUM:	
DRI	LLIN	GCC	ONTR	ACT	OR:	Trec	DATE STARTED: 12/18/06	DATE FINISHED 12/18/06
DRI	LLIN	GM	ETHO	D:	<u></u>	Directpush geoprobe	TOTAL DEPTH: 8	SCREEN INTERVAL: NA
DRI	LLIN	GEC	QUIPN	IEN	DEPTH TO FIRST: NA COMPL.: WATER:	NA CASING: NA		
SAN	MPLI	NG N	1ETH	OD:			LOGGED BY: TAB	
DRI	LLE	र /н	ELPE	R:		Jim Agar	RESPONSIBLE PROFESSIONAL:	TAB REG. NO.
	SA	MPL	ES			SAMPLE DESCR	RIPTION	
Depth (fbgs)	Sample No.	Sample	Recovery	PID Scan (ppm)	PID HDSP (ppm)	USCS Classification: Color, Moisture Condition, P (<5% Trace, 10-15% Little, 15-30% Few, 35-45% thinly bedded, bedded, thickly bedded, laminated Consistency/Density (Standard Penetration Test, S Materials (if present	6 Some), Structure (varved, stratified, d, fissured, blocky, lensed, massive), SPT), Weathering/Fracturing, Odor, Fill	REMARKS
						SURFACE ELEVATION (FMSL):		
0	_					0.0 - 0.2 Black asphalt.		
						0.2 - 1.4 Light brown and grey, moist		
']	v			mdd		silt with some sand, some o	oarse grained sand with	
2 -	, 		2.7	0.0 p		few fine grained gravels.	with little cond clight	
_				0		1.4 - 2.7 Dark grey silty clay, moist, v laminations, with rootlets an		
4								
4 -		·				· · · · · · · · · · · · · · · · · · ·		
-	у					······································	· · · · · · · · · · · · · · · · · · ·	
ا _			2 6	mqq		0.0 - 3.6 Reddish brown, moist, silty	clay with few sand trace	
6 -			3.6	0.0 p		coarse grained sand, lamina	ited, hard.	
]				U		· · · · · · · · · · · · · · · · · · ·		
8 -								
_								
_						· · · · · · · · · · · · · · · · · · ·		
-								
-	_					· · · · · · · · · · · · · · · · · · ·		
-			1			·····		
1								
]								
						· · · · · · · · · · · · · · · · · · ·		
-						· · · · · · · · · · · · · · · · · · ·		
-								
-		· ·				· · · · · · · · · · · · · · · · ·		
-								
Proi	iect N	No [.]	0105	-003	-300	Benchmark Environment	al Engineering & Science, PLL	.C Figure
						nole Logs Page		Prepared By:

PR	PROJECT: 2250 Factory Outlet Blvd.						Log of Boring No.:	SB-13
BO	RIN	G LO	CATIO	ON:			ELEVATION AND DATUM:	
DR	DRILLING CONTRACTOR: Trec						DATE STARTED: 12/18/06	DATE FINISHED 12/18/06
DR	ILLIN	NG M	ETHO	DD:		Direct push geoprobe	TOTAL DEPTH: 8	SCREEN INTERVAL: NA
DR	ILLIN	NG E		MEN	T :	Truck mounted Geoprobe	DEPTH TO FIRST: NA COMPL.: I WATER:	VA CASING: NA
SA	MPLI	ING N	/ETH	OD:		direct push	LOGGED BY: TAB	
DR	ILLE	R/H	ELPE	R:		Jim Agar	RESPONSIBLE PROFESSIONAL: T	AB REG. NO.
Depth (fbgs)	Sample No.	Samp le	Recovery	PID Scan (ppm)	PID HDSP (ppm)	SAMPLE DESCR USCS Classification: Color, Moisture Condition, P (<5% Trace, 10-15% Little, 15-30% Few, 35-45% thinly bedded, bedded, thickly bedded SURFACE ELEVATION (FMSL):	rimary Soil Type, Secondary Soil Type 5 Some), Structure (varved, stratified,	REMARKS
0	_	-				0.0 - 0.3 Black asphalt.		
0 _ 1 - 2 - - -	y		2.3	0.0 ppm		0.3 - 1.8 Light brown and grey, moist silt with some sand, some c few fine grained gravels, loc 1.8 - 2.3 Dark grey silty clay, moist, v laminations, stiff, with rootle	oarse grained sand with se when disturbed. vith little sand slight	
4 -	У							
- 6 - -	· 		3.9	0.0 ppm		0.0 - 3.9 Reddish brown, moist, silty coarse grained sand, lamina		
8 -				_			•	
_						·		
-								
-								
_								
-								
]								
_								
-								
-								
Ргој	ect N	lo:	0105	003-	300	Benchmark Environmenta	al Engineering & Science, PLLC	Figure

FIELD GEOPROBE BOREHOLE LOG

PROJECT: 2250 Fact	tory Outlet Blvd.	Log of Boring No.:	SB-14
BORING LOCATION:		ELEVATION AND DATUM:	
DRILLING CONTRACT	OR: Trec	DATE STARTED: 12/18/06	DATE FINISHED 12/18/06
DRILLING METHOD:	Direct push geoprobe	TOTAL DEPTH: 8	SCREEN INTERVAL: NA
DRILLING EQUIPMENT	T: Truck mounted Geoprobe	DEPTH TO FIRST: NA COMPL.: NA WATER:	A CASING: NA
SAMPLING METHOD:		LOGGED BY: TAB	
DRILLER / HELPER:	Jim Agar	RESPONSIBLE PROFESSIONAL: TA	B REG. NO.
SAMPLES	SAMPLE DESCI	RIPTION	
Depth (fbgs) Sample No. Sample Recovery PID Scan (ppm)	E SAMPLE DESCI A USCS Classification: Color, Moisture Condition, F (<5% Trace, 10-15% Little, 15-30% Few, 35-45%	Primary Soil Type, Secondary Soil Type % Some), Structure (varved, stratified,	REMARKS
	SURFACE ELEVATION (FMSL):		
0 1 2 y 3.4 0 0 3.4 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 - 0.1 Black asphalt. 0.1 - 1.8 Light brown and grey, mois silt with some sand, some of few fine grained gravels, loo 1.8 - 3.4 Dark grey silty clay, moist, orange staining, medium so 0.0 - 3.8 Reddish brown, moist, silty coarse grained sand, lamina	coarse grained sand with ose when disturbed. with little sand some ft, with rootlets.	
		· · · · ·	
.			
	· · · · · · · · · · · · · · · · · · ·		
Project No: 0105-003-	-300 Benchmark Environment	tal Engineering & Science, PLLC	Figure
Appendix B; Geoprobe E			Prepared By:

FIELD GEOPROBE BOREHOLE LOG

PF	OJE	CT:	225	50 Fa	ctory	Outlet Blvd.	Log of Boring No.:	SB-15
BC	RIN	G LO	CAT	ION:		•••	ELEVATION AND DATUM:	·····
DF	RILLII	NG C	ONT	RAC	TOR:	Trec	DATE STARTED: 12/18/06	DATE FINISHED 12/18/06
DF	RILLI	NG M	ETH	OD:		Direct push geoprobe	TOTAL DEPTH: 8	SCREEN INTERVAL: NA
DF	RILLI	NGE	QUIF	PMEN	IT:	Truck mounted Geoprobe	DEPTH TO FIRST: NA COMPL.: NA WATER:	CASING: NA
SA	MPL	ING	METI	HOD:			LOGGED BY: TAB	
DR	ILLE	R7F	ELP	ER:		Jim Agar	RESPONSIBLE PROFESSIONAL: TAB	REG. NO.
Depth (fbgs)	Sample No.	Sample	Recovery	PID Scan (ppm)	PID HDSP (ppm)		rimary Soil Type, Secondary Soil Type 6 Some), Structure (varved, stratified,	REMARKS
			-	-	┢			
0 1 - 2 - -	у		2.3	0.0 ppm		0.0 - 0.2 Black asphalt. 0.2 - 2.3 Medium brown/ light grey, n sub grade, silty with some sa grained sand, and trace coa	and and some coarse	
4 -						0.0 - 1.0 Med brown, wet, silt with so	me sand little coarse	
6 -	у		4.0	0.0 ppm		grained sand and fine graine when disturbed.	d gravel, dense loose	
- 8						1.0 - 3.9 Reddish brown, moist, silty coarse grained sand, lamina		
-							· · · · · · · · · · · · · · · · · · ·	
-						· · · · · · · · · · · · · · · · · · ·		
-							_	
						,		
-						· · · · · · · · · · · · · · · · · · ·	······································	
_								
1								
4								
]							······································	
]								
1							······································	
Proje	ect N	o:	0105	-003-	300	Benchmark Environmenta	I Engineering & Science, PLLC	Figure

PI	PROJECT: 2250 Factory Outlet Blvd.						Log of Boring No.:	SB-16
BC	DRIN	G LC	CAT	ION:			ELEVATION AND DATUM:	
DF	DRILLING CONTRACTOR: Trec						DATE STARTED: 12/18/06	DATE FINISHED 12/18/06
Df	RILLI	NGN	IETH	OD:		Direct push geoprobe	TOTAL DEPTH: 8	SCREEN INTERVAL: NA
DF	RILLI	NG E	QUIF	MEN	T:	Truck mounted Geoprobe	DEPTH TO FIRST: NA COMPL.: NA WATER:	CASING: NA
SA	MPL	ING	METI	HOD:			LOGGED BY: TAB	
DF	RILLE	R/F	IELPI	ER:		Jim Agar	RESPONSIBLE PROFESSIONAL: TAB	REG. NO.
	S,	AMP	LES					
Depth (fbgs)	Sample No.	Sample	Recovery	PID Scan (ppm)	PID HDSP (ppm)	SAMPLE DESCR <u>USCS Classification:</u> Color, Moisture Condition, Pri (<5% Trace, 10-15% Little, 15-30% Few, 35-45% thinly bedded, bedded, thickly bedded,	imary Soil Type, Secondary Soil Type Some), Structure (varved, stratified,	REMARKS
						SURFACE ELEVATION (FMSL):		
0 1 -		 				0.0 - 0.3 Black asphalt. 0.3 - 2.6 Light brown and grey, moist		
-	y		2.6	bbu		silt with some sand, some co few fine grained gravels, loos		
2 -			2.0	0.0		lew line grained gravels, loos		
-								
4 -								
-	у	[0.0 - 1.0 Med brown, wet, silt with son		
-				bpm		grained sand and fine grained when disturbed.	gravei, dense loose	
6 -			4.0	0.0 pj		1.0 - 3.9 Reddish brown moist silty cla	ay with trace sand,	
_				0		with stratified from 2.0 - 4.0'		
8 -						yellow, reddish brown grey, v	ery stiff.	
-		····						
_								
-					··			
-								
1							· · · · · · · · · · · · · · · · ·	
]								-
4								
-							· · · · · · · · · · · · · · · · · · ·	
-							·····	
-								
-								
]					-			
4								
Ргој	ect N	o:	0105-	-003-3	300	Benchmark Environmental	Engineering & Science, PLLC	Figure

FIELD GEOPROBE BOREHOLE LOG

PRO	JEC	CT:	2250) Fac	tory (Dutlet Blvd.	Log of Boring No.:	SB-17
BOR	ING	LOC	CATIC	DN:			ELEVATION AND DATUM	
DRIL	DRILLING CONTRACTOR: DATE STAR						DATE STARTED: 12/18/06	DATE FINISHED 12/18/06
DRIL	LIN	G MI	ETHC	D:		Direct push geoprobe	TOTAL DEPTH: 8	SCREEN INTERVAL: NA
DRIL	LIN	G EC	QUIPI	MEN	r:	Truck mounted Geoprobe	DEPTH TO FIRST: NA COMPL.: I WATER:	NA CASING: NA
SAM	PLI	NGN	IETH	OD:	_		LOGGED BY: TAB	
DRIL	LEF	R/H	ELPE	R:		Jim Agar	RESPONSIBLE PROFESSIONAL: T	AB REG. NO.
Depth (fbgs)	SAMPLES SAMPLES SAMPLES SAMPLE DESCRIPTION SAMPLE DESCRIPTION					imary Soil Type, Secondary Soil Type Some), Structure (varved, stratified,	REMARKS	
	Sar	S	Re	Did	Old	SURFACE ELEVATION (FMSL):		
2	y y		3.0	0.0 ppm 0.0 ppm		0.0 - 0.3 Black asphalt. 0.3 - 0.5 Brown, moist, silt with some grained sand and fine graine 0.5 - 2.5 Light green/ light grey, mois fines, with coarse grained gr coloring, loose. 2.5 - 3.0 Dark brown, moist, silty clay with rootlets. Medium soft. 0.0 - 4.0 Reddish brown, moist, silty coarse grained sand, lamina	ed gravel, loose. t, soil/fill silt with some ravel that has silver with little sand, clay with few sand trace	Radiation Survey Meter Background 0.006 MR/hr 0.0 - 4.0 0.008 MR/hr 4.0 - 8.0 0.008 MR/hr
						· · · · · · · · · · · · · · · · · · ·		
Projec	ct N	o:	0105	-003-	300	Benchmark Environment	al Engineering & Science, PLL	C Figure

PR	PROJECT: 2250 Factory Outlet Blvd.						Log of Boring No.:	SB-18	
BO	RING	LOC	CATIC)N:			ELEVATION AND DATUM:		
DR	ILLIN	G CC	ONTR	ACT	OR:	Trec	DATE STARTED: 12/18/06	DATE FINISHED 12/18/06	
DR	ILLIN	G ME	ETHO	D:		Direct push geoprobe	TOTAL DEPTH: 8	SCREEN INTERVAL: NA	
DR	ILLIN	IG EC	QUIPN	/EN1	T:	Truck mounted Geoprobe	DEPTH TO FIRST: NA COMPL.: N WATER:	IA CASING: NA	
SA	MPLI	NG N	IETH	OD:			LOGGED BY: TAB		
DR	ILLEF	R/H	ELPE	R:		Jim Agar	RESPONSIBLE PROFESSIONAL: T/	AB REG. NO.	
	SA	MPL	ES		_	SAMPLE DESCR			
Depth (fbgs)	Sample No.	Sample	Recovery	PID Scan (ppm)	PID HDSP (ppm)	SAMPLE DESCR USCS Classification: Color, Moisture Condition, P (<5% Trace, 10-15% Little, 15-30% Few, 35-45% thinly bedded, bedded, thickly bedded	rimary Soil Type, Secondary Soil Type 6 Some), Structure (varved, stratified,	REMARKS	
						SURFACE ELEVATION (FMSL):			
0_						0.0 - 0.4 Black asphalt. 0.4 - 1.7 Light grey/ brown, moist, pa	arking lot sub grade, silt	Radiation Survey Meter	
1 -				ε		with some sand and some c		Background 0.009 MR/hr	
2 -	У		4.0	0.0 100	mqq .		gravels.		0.0 - 4.0 0.014 MR/hr 4.0 - 8.0 0.011 MR/hr
				o.		1.7 - 4.0 Reddish brown, moist, silty coarse grained sand, lamina		4.0 - 8.0 0.011 MIR/III	
-									
4 -	y								
-				mqq		0.0 - 3.9 Reddish brown, moist, silty	clay with few sand trace		
6 -			3.9	0.0 pp		coarse grained sand, lamina			
				0					
8 -	 					· · ·			
-									
-									
-		ļ				· · · · · · · · · · · · · · · · · · ·			
-					_	· · · · · · · · · · · · · · · ·			
-	l								
-									
	<u> </u>								
-									
-				-					
-		···=							
-									
Pro	Project No: 0105-003-300 Benchmark Environmental Engineering & Science, PLLC Figure								

BENCHMARK Environmental Engineering & Science, PLLC

PR	PROJECT: 2250 Factory Outlet Blvd.						Log of Boring No.:	SB-19
BC	RING	G LO	CATI	ON:	_		ELEVATION AND DATUM:	
DR		NG C	ONTF	RACT	OR:	Trec	DATE STARTED: 12/18/06	DATE FINISHED 12/18/06
DR	ILLIN	NG M	ÉTHO	DD:		Direct push geoprobe	TOTAL DEPTH: 8	SCREEN INTERVAL: NA
DR	ILLIN	NG E		MEN	T:	Truck mounted Geoprobe	DEPTH TO FIRST: NA COMPL.: N WATER:	IA CASING: NA
SA	MPL	ING I	IET H	IOD:			LOGGED BY: TAB	
DR	ILLE	R/H	ELPĒ	R:	<u> </u>	Jim Agar	RESPONSIBLE PROFESSIONAL: T	AB REG. NO.
Depth (fbgs)	SAMPLES Image: Sample Sample Sample Sample Description Sample Sample Description Sample Description Sample Description Sample Description					rimary Soil Type, Secondary Soil Type Some), Structure (varved, stratified,	REMARKS	
0		-				SURFACE ELEVATION (FMSL): 0.0 - 0.3 Black asphalt.		
-						0.3 - 0.7 Light grey/ brown, moist, pa	rking lot sub grade, silt	Radiation Survey Meter
1 -	у		3.0	mqq		with some sand and some co gravels.	parse grained sands and	Background 0.007 MR/hr 0.0 - 4.0 0.007 MR/hr
2 -			0.0	0.0		0.7 - 3.0 Reddish brown, moist, silty of	clay with few sand trace	4.0 - 8.0 0.009 MR/hr
-						coarse grained sand, lamina	ted, medium soft.	
4 -						· · · · · · · · · · · · · · · · · · ·		
_	у			_				
- 6 -			4.0	mqq		0.0 - 4.0 Reddish brown, moist, silty o		
_				0.0		coarse grained sand, lamina	ted, hard.	
-								
8 -								
_							• • • • • • • • • • • • • • • • • • • •	
-								
I I								
-								
-								
]								
_								
-	. –					· · · · · · · · · · · · · · · · · · ·		
-	·							
					_	·		
-								
Proj	ect N	lo:	0105-	-003-	300	Benchmark Environmenta	I Engineering & Science, PLLC	Figure

FIELD GEOPROBE BOREHOLE LOG

PF	PROJECT: 2250 Factory Outlet Blvd.						Log of Boring No.:	SB-20
вс	RIN	G LO	CATI	ON:			ELEVATION AND DATUM:	
DF	RILLI	NG C	ONTI	RACT	OR:	Trec	DATE STARTED: 12/18/06	DATE FINISHED 12/18/06
DF	RILLI	NG M	ETH	DD:		Direct push geoprobe	TOTAL DEPTH: 8	SCREEN INTERVAL: NA
DF	RILLI	NGE	QUIP	MEN	T:	Truck mounted Geoprobe	DEPTH TO FIRST: NA COMPL.: N WATER:	NA CASING: NA
SA	MPL	ING I	METH	IOD:			LOGGED BY: TAB	• <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
DF	RILLE	R7H	ELPE	R:		Jim Agar	RESPONSIBLE PROFESSIONAL: T	AB REG. NO.
<u> </u>	S	AMPL	.ES			SAMPLE DESC		
Depth (fbgs)	Sample No.	Sample	Recovery	PID Scan (ppm)	PID HDSP (ppm)	USCS Classification: Color, Moisture Condition, P (<5% Trace, 10-15% Little, 15-30% Few, 35-45% thinly bedded, bedded, thickly bedded	rimary Soil Type, Secondary Soil Type 6 Some), Structure (varved, stratified,	REMARKS
						SURFACE ELEVATION (FMSL):		
0 1 - - - - - - - - - - - - -	y y		4.0	0.0 ppm		0.0 - 0.4 Black asphalt. 0.4 - 1.0 Light grey/ brown, moist, pa with some sand and some c gravels. 1.0 - 3.2 Reddish brown, moist, silty coarse grained sand, lamina 0.0 - 4.0 Reddish brown, moist, silty coarse grained sand, lamina	clay with few sand trace	Radiation Survey Meter Background 0.007 MR/hr 0.0 - 4.0 0.007 MR/hr 4.0 - 8.0 0.007 MR/hr
-						······································		
Pro	ject N	lo:	0105	-003-	300	Benchmark Environment	al Engineering & Science, PLLC	Figure

PROJECT: 2250 Factory Outlet Blvd. Log of Boring							Log of Boring No.:	SB-21
BC	RING	G LOO	CATIC	DN:			ELEVATION AND DATUM:	- *
DR	RILLIN	IG CO	ONTR	ACT	OR:	Trec	DATE STARTED: 12/18/06	DATE FINISHED 12/18/06
DR	RILLIN	ig Mi	THC	D:	TOTAL DEPTH: 8	SCREEN INTERVAL: NA		
DF	RILLIN	IG EC	UIP	MENT	DEPTH TO FIRST: NA COMPL.: WATER:	NA CASING: NA		
SA	MPLI	NG	IETH	OD:			LOGGED BY: TAB	
DR	ILLEI	R/H	ELPE	R:		Jim Agar	RESPONSIBLE PROFESSIONAL:	TAB REG. NO.
	SA	MPL	ES					
Depth (fbgs)							imary Soil Type, Secondary Soil Type Some), Structure (varved, stratified,	REMARKS
						SURFACE ELEVATION (FMSL):		
0						0.0 - 0.2 Black asphalt.		
1 -	y			_		0.2 - 0.7 Light grey/ brown, moist, par		Radiation Survey Meter Background 0.008 MR/hr
-			3.1	ppm		with some sand and some co gravels.		0.0 - 4.0 0.008 MR/hr
2 -			5.1	0.0		0.7 - 3.1 reddish brown, moist, silty c	lay with some sand,	4.0 - 8.0 0.008 MR/hr
-						trace coarse grained sand ar		
4 -						medium soft, massive.		
6 - - 8 - - - -	у 		4.2	0.0 ppm		0.0 - 4.2 reddish brown, moist, silty cl trace coarse grained sand ar medium soft, massive.		
-								
-	·						·····	
-	· · · · · · · · · · · · · · · · · · ·							
-								
Pro	ject N	lo:	0105	-003-	300	Benchmark Environmenta	al Engineering & Science, PLL	C Figure
Ap	pendi	x B; (Seopr	obe E	Boreh	ole Logs Page	of	Prepared By:

,

PR	PROJECT: 2250 Factory Outlet Blvd.						Log of Boring No.:	SB-22
во	RING	S LOO	ATIC	DN:		·	ELEVATION AND DATUM:	
DR	ILLÍN	IG CO	DNTR	ACT	OR:	Trec	DATE STARTED: 12/18/06	DATE FINISHED 12/18/06
DR	ILLIN	IG M	ТНС	D:		Direct push geoprobe	TOTAL DEPTH: 8	SCREEN INTERVAL: NA
DR	ILLIN	IG EC	QUIP	MENT	ŕ:	Truck mounted Geoprobe	DEPTH TO FIRST: NA COMPL.: WATER:	NA CASING: NA
SA	MPLI	NG N	IETH	OD:	_		LOGGED BY: TAB	
DR	ILLE	R/H	ELPE	R:		Jim Agar	RESPONSIBLE PROFESSIONAL: 1	REG. NO.
	SA	AMPL	ES	_		SAMPLE DESCR	IPTION	
Depth (fbgs)	Sample No.	Sample	Recovery	PID Scan (ppm)	PID HDSP (ppm)	<u>USCS Classification:</u> Color, Moisture Condition, Pri (<5% Trace, 10-15% Little, 15-30% Few, 35-45% thinly bedded, bedded, thickly bedded,	imary Soil Type, Secondary Soil Type Some), Structure (varved, stratified,	REMARKS
						SURFACE ELEVATION (FMSL):		
	y y		4.0	0.0 ppm		0.0 - 2.0 Dark brown, moist, topsoil, s few coarse grained sand with rootlets. 2.0 - 3.0 Dark grey, moist, silty clay w orange staining with rootlets. 0.0 - 4.0 reddish brown, moist, silty cl grey sandy areas, stratified, v	a pieces of asphalt and with some sand and ay with some sand,	Radiation Survey Meter Background 0.007 MR/hr 0.0 - 4.0 0.007 MR/hr 4.0 - 8.0 0.007 MR/hr
-								
Pro	oject l	No:	0105	-003	-300	Benchmark Environmenta	al Engineering & Science, PLL	C Figure
							of	Prepared By:

BENCHMARK Environmental Engineering & Science, Pllc

PROJECT: 2250 Factory Outlet Blvd.) Fac	tory (Outlet Blvd.	Log of Boring No.:				
BO	RINC	G LOO	CATIO	DN:		(a)) ²⁰¹	ELEVATION AND DATUM:				
DRILLING CONTRACTOR: Trec					OR:	Trec	DATE STARTED: 12/18/06	DATE FINISHED 12/18/06			
DRILLING METHOD: Direct push geoprobe						Direct push geoprobe	TOTAL DEPTH: 8	SCREEN INTERVAL: NA			
DRILLING EQUIPMENT: Truck mounted Geoprobe						Truck mounted Geoprobe	DEPTH TO FIRST: NA COMPL.: N WATER:	NA CASING: NA			
SAMPLING METHOD:							LOGGED BY: TAB				
DR	ILLE	R/H	ELPE	R:		Jim Agar	RESPONSIBLE PROFESSIONAL: T	TAB REG. NO			
Depth (fbgs)	Sample No.	SAMPLES						REMARKS			
0						0.0 - 1.0 Dark brown, moist, topsoil					
- 1 - 2 - - - 4 -	у		3.2	0.0 ppm		few coarse grained sand w rootlets. 1.0 - 3.2 reddish brown, moist, silty grey sandy areas, stratified	clay with some sand,	Radiation Survey Meter Background 0.011 MR/hr 0.0 - 4.0 0.014 MR/hr 4.0 - 8.0 0.019 MR/hr			
6 - 1	У		4.1	0.0 ppm		0.0 - 4.1 reddish brown, moist, silty grey sandy areas, stratified					
Ŭ -											
_							· · · · · · · · · · · · · · · · · · ·				
-											
_											
1											
_											
_											
						······································					
_											
							· •				
-											
_			-								
-											
]		_									
Pro	ject N	lo:	0105	-003-	300	Benchmark Environmer	tal Engineering & Science, PLLC	_C Figure			

TEST PIT EXCAVATION LOG

Project:	2250 Factory Outlet Blvd.	TEST PIT I.D.:	TP - 1
Project No.:	0105 - 003 - 300	Excavation Date:	12/19/06
Client:	Benderson	Excavation Method:	Kabota kx121 - 3
Location:	2250 Factory Outlet Blvd.	Logged / Checked By:	ТАВ

24		10	Test Pit Cr	oss Section:		19 Julie		
The second	TP - 3 TP - 5		Grade - 0'	Contraction of the local division of the	ASPI	IALT		
Carlos and	TP-9 TP-1	1117-5		N 🗲		and the second second	→ S	
TP - 10	TTTT /				COIL	/TTIT T		
- TP - 8		- 12	1.		SOIL	/FILL		
A STATE OF A		and the second s						
TP - 7	TP-6 TP-2 TP-11	P-4	2		SO	IL/FILL		
	10 00 40 20 V 074 11 Streaming []] [] 100	ull 1281.0	2					
TIME Start:	E Length: 52.0 ft 9:00 Width: 2.0 ft	(approx.) (approx.)			C	LAY		
End:	9:45 Depth: 3.0 ft	(approx.)				1		
Depth	USCS	Symbol & So	oil		PID Scan	Photos	Samples Collected	
(fbgs)	De	escription			(ppm)	Y/N	(fbgs)	
0.0 - 0.3	Asphalt				0.0	У	N	
	Light green (south) to light brown (north), soil/fill,	moist, silt with	some sand,	0.0 у у			
0.3 - 1.6	coarse grained sands and gravels, end of TP - 1 crushed limestone fro	om 2.0 - 2.5 ft	ogs on top of fa	abric.				
1.6 - 2.2	Dark brown, wet , soil/fill, silt with s	and and coar	se grained gra	vel and pieces	0.0 у у			
	of slag.							
2.2 - 2.5	Dark grey, silty clay, moist, with tra	ce sand.			0.0 у у			
COMMENTS:							1	
	TER ENCOUNTERED:	V YES	NO NO	If yes, depth t	o GW:	~2.0 fbgs		
VISUAL IMP		NO NO	Describe:	light green soi	I/fill			
	OBSERVATIONS:	✓ NO	Describe:					
	FILL ENCOUNTERED:	NO NO						
OTHER OBS	ERVATIONS:	NO NO	Describe:					
SAMPLES C	OLLECTED:	Yes						
RADIONUCLIE	DES (mR/H) Backgroun	d 0.011 mR/h	nr					
	0.0 -2.5 x 5	52 ft 0.011mF	R/hr					

TEST PIT EXCAVATION LOG

Project:	2250 Factory Outlet Blvd.	TEST PIT I.D.:	TP - 2
Project No.:	0105 - 003 - 300	Excavation Date:	12/19/06
Client:	Benderson	Excavation Method:	Kabota kx121 - 3
Location:	2250 Factory Outlet Blvd.	Logged / Checked By:	ТАВ

TP - 10 • TP - 8 • TP - 7	TP - 3 TP - 9 TP - 9 TP - 1 TP - 1 TP - 6 TP - 2	TP - 5 TP - 12 TP - 11 TP - 4	Test Pit Cro Grade - 0'- 1- 2-			HALT		
TIME Start:	10:45 Length:	8.0 ft (approx.) 2.0 ft (approx.)			CI	LAY		
End:	11:30 Depth:	3.0 ft (approx.)	3.		-			
Depth (fbgs)		USCS Symbol & So Description	oil		PID Scan (ppm)	Photos Y / N	Samples Collected (fbgs)	
0.0 - 0.5	Asphalt				0.0	У	N	
0.5 - 2.5		blue, soil/fill, moist, silt w els, large cobbles and pi		coarse	0.0	У	У	
2.5 - 3.0	Dark grey, silty clay, mo	bist, with trace sand.			0.0	y y		
COMMENTS:								
GROUNDWA	TER ENCOUNTERED:	✓ YES	NO NO	If yes, depth	to GW:	2.5 fbgs		
VISUAL IMPA	CTS:	✓ YES	NO NO	Describe:	light green soi	I/fill		
OLFACTORY	OBSERVATIONS:	YES	✓ NO	Describe:				
NON-NATIVE	FILL ENCOUNTERED:	✓ YES	□ NO					
OTHER OBSE	ERVATIONS:	YES	V NO	Describe:				
SAMPLES CC	LLECTED:	Yes						
RADIONUCLIDE	ES (mR/H)	Background 0.010 mR/h	nr					
		0.0 -3.0 x 8 ft 0.011mR/	/hr					

Project:	2250 Factory Outlet Blvd.	TEST PIT I.D.:	TP - 3
Project No.:	0105 - 003 - 300	Excavation Date:	12/19/06
Client:	Benderson	Excavation Method:	Kabota kx121 - 3
Location:	2250 Factory Outlet Blvd.	Logged / Checked By:	ТАВ

TP - 10 TP - 8 TP - 7 TIME Start:	TP-6 TP-2 TI	TP - 5 TP - 12 - 11 TP - 4 - 0.0 ft (approx.) 2.0 ft (approx.)	Test Pit Grade -		ASP SOIL		→ s]
End: Depth (fbgs)	10:30 Depth:	3.0 ft (approx.) USCS Symbol & S Description	oil		PID Scan (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 1.0	Asphalt				0.0	у	N
1.0 - 2.0	- 2.0 Light green (south) to light brown (north), soil/fill, moist, silt with some sand, coarse grained sands and gravels, large cobbles and pieces of slag, at north end of TP - 3 crushed limestone from 2.0 - 2.5 fbgs on top of fabric.				0.0	у	У
2.0 - 3.0	Dark grey, silty clay, mois	et, with trace sand.			0.0	у	У
COMMENTS:							
	TER ENCOUNTERED:	✓ YES	NO NO	If yes, depth	to GW:	~2.5 fbgs	
VISUAL IMPA		V YES		Describe:	light green soil		
	OBSERVATIONS:		✓ NO	Describe:		*	
	FILL ENCOUNTERED:	✓ YES					
	ERVATIONS:		✓ NO	Describe:			
SAMPLES CO		Yes					
RADIONUCLID		ackground 0.010 mR/	hr				
		.0 -2.5 x 9 ft 0.034 mF					

Project:	2250 Factory Outlet Blvd.	TEST PIT I.D.:	TP - 4
Project No.:	0105 - 003 - 300	Excavation Date:	12/19/06
Client:	Benderson	Excavation Method:	Kabota kx121 - 3
Location:	2250 Factory Outlet Blvd.	Logged / Checked By:	ТАВ

TP - 10 TP - 8 TP - 7 TP - 6	TP -1 TP -1 TP -2 TP -1 Length: 8.0	TP - 5 TP - 12 TP - 4 TP - 4 O ft (approx.	Grade -	Cross Section:	SOI	PHALT M	
Start: 12:30 End: 13:30	and the second se) ft (approx.) ft (approx.		3			
Depth (fbgs)		SCS Symbol & Description			PID Scan (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.2 Asphalt					0.0	У	N
	soil/fill, moist to v ned sands and gra				0.0	у	У
2.5 - 3.0 Dark grey to) reddish brown, s	ilty clay, moist, w	rith trace sand		0.0	У	У
COMMENTS:							
GROUNDWATER ENCOUN	ITERED:	✓ YES	NO NO	If yes, depth	to GW:	2.5 fbgs	
VISUAL IMPACTS:		✓ YES	🗌 NO	Describe:	light green soi	I/fill	
OLFACTORY OBSERVATIO	DNS:	YES	✓ NO	Describe:			
NON-NATIVE FILL ENCOU	NTERED:	✓ YES	NO NO				
OTHER OBSERVATIONS:		YES	✓ NO	Describe:			
SAMPLES COLLECTED:		Yes					
RADIONUCLIDES (mR/H)	Backg	ground 0.010 mR	/hr				
	0.0 -2	.5 x 9 ft 0.011mF	R/hr				

Project:	2250 Factory Outlet Blvd.	TEST PIT I.D.:	TP - 5
Project No.:	0105 - 003 - 300	Excavation Date:	12/19/06
Client:	Benderson	Excavation Method:	Kabota kx121 - 3
Location:	2250 Factory Outlet Blvd.	Logged / Checked By:	ТАВ

	TP - 6	v 67411 Storemin	T TP - 11	P - 12	Grade -	Cross Section: 0'	TOPS	OIL /FILL	S
TIME Start:	15:19	Length: Width:	21.0 ft 2.0 ft	(approx. (approx.	_	3	CL	.AY	
End: Depth (fbgs)	15:15	Depth:		(approx. Symbol & Sescription		5	PID Scan (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 2.0	Dark Brov	vn, moist, top	soil, silt with	n some sand	, with few cla	y and rootlets.	0.0	у	N
2.0 - 2.5	Light gree gravels, la going to th	arge cobbles a	ist, silt with and pieces of	some sand, of slag, Ligh	coarse grain ht green layer	ed sands and becomes thinner	0.0	у	У
2.5 - 3.0	Dark grey	, silty clay, mo	oist, with tra	ice sand.			0.0	У	У
COMMENTS:	TED ENCOL					If yes, depth	to GW:	~3.0 fbgs	
GROUNDWA		JNIERED.		✓ YES		Describe:	light green soil		
OLFACTORY				YES YES	✓ NO	Describe:	ing in green son		
NON-NATIVE				✓ YES		00001001			
OTHER OBS				YES	✓ NO	Describe:			
SAMPLES CO				Yes					
RADIONUCLID			Backgroun	d 0.011 mR	/hr				
1. TOTOTO DE D	(21 ft 0.017 r					

Project:	2250 Factory Outlet Blvd.	TEST PIT I.D.:	TP - 6
Project No.:	0105 - 003 - 300	Excavation Date:	12/19/06
Client:	Benderson	Excavation Method:	Kabota kx121 - 3
Location:	2250 Factory Outlet Blvd.	Logged / Checked By:	ТАВ

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	*			Test Pit 0	Cross Section:			
IP-10 IP-10 <td< th=""><th></th><th>TP - 3 TP - 9 TP - 1</th><th>TP-5</th><th>Grade -</th><th>"</th><th>ASPH</th><th>ALT</th><th></th></td<>		TP - 3 TP - 9 TP - 1	TP-5	Grade -	"	ASPH	ALT	
End: 15:15 Depth: 3.5 ft. (approx.) Depth (fbgs) USCS Symbol & Soil Description PID Scan (ppm) Photos Y / N Collecter (fbgs) 0.0 - 0.6 Asphalt 0.0 y N 0.6 - 3.0 Light green (north) to light brown (south), soil/fill, moist, silt with some sand, coarse grained sands and gravels, large cobbles and pieces of slag, gw water at fill clay interface. 0.0 y y 3.0 - 3.5 Dark grey, silty clay, moist, with trace sand. 0.0 y y COMMENTS: GROUNDWATER ENCOUNTERED: YES NO If yes, depth to GW: ~3.0 fbgs VISUAL IMPACTS: YES NO Describe: light green soil/fill OLFACTORY OBSERVATIONS: YES NO Describe: light green soil/fill OLFACTORY OBSERVATIONS: YES NO Describe: SAMPLES SAMPLES COLLECTED: YES NO Describe: SAMPLES RADIONUCLIDES (mR/H) Background 0.009 mR/hr Describe: SAMPLES	TP - S	8 7 TP - 6 TP - 2 Length: 2	11 TP - 4 1.0 ft (approx.)	2 - N			→ s
Depth (fbgs) USCS Symbol & Soil Description Scan (ppm) Photos Y / N Collected (fbgs) 0.0 - 0.6 Asphalt 0.0 y N 0.6 - 3.0 Light green (north) to light brown (south), soil/fill, moist, silt with some sand, coarse grained sands and gravels, large cobbles and pieces of slag, gw water at fill clay interface. 0.0 y y 3.0 - 3.5 Dark grey, silty clay, moist, with trace sand. 0.0 y y GROUNDWATER ENCOUNTERED: YES NO If yes, depth to GW: ~3.0 fbgs VISUAL IMPACTS: YES NO Describe: ight green soil/fill OLFACTORY OBSERVATIONS: YES NO Describe: ight green soil/fill OUFHER OBSERVATIONS: YES NO Describe: Scan SAMPLES COLLECTED: Yes NO Describe: Scan RADIONUCLIDES (mR/H) Background 0.009 mR/hr Describe: Scan Scan			NAME ADDRESS OF TAXABLE PARTY AND ADDRESS OF TAXABLE PARTY.					
0.6 - 3.0 Light green (north) to light brown (south), soil/fill, moist, silt with some sand, coarse grained sands and gravels, large cobbles and pieces of slag, gw water 0.0 y y 3.0 - 3.5 Dark grey, silty clay, moist, with trace sand. 0.0 y y 3.0 - 3.5 Dark grey, silty clay, moist, with trace sand. 0.0 y y GROUNDWATER ENCOUNTERED: YES NO If yes, depth to GW: ~3.0 fbgs VISUAL IMPACTS: YES NO Describe: ight green soil/fill OLFACTORY OBSERVATIONS: YES NO Describe:		l		Soil		Scan		Samples Collected (fbgs)
0.6 - 3.0 coarse grained sands and gravels, large cobbles and pieces of slag, gw water at fill clay interface. 0.0 y y 3.0 - 3.5 Dark grey, silty clay, moist, with trace sand. 0.0 y y 0.0 y y y y 0.0 y y y comments Image: state	0.0 - 0.6	Asphalt				0.0	у	N
COMMENTS: GROUNDWATER ENCOUNTERED: YES NO If yes, depth to GW: ~3.0 fbgs VISUAL IMPACTS: YES NO Describe: light green soil/fill OLFACTORY OBSERVATIONS: YES NO Describe: light green soil/fill OLFACTORY OBSERVATIONS: YES NO Describe: NON-NATIVE FILL ENCOUNTERED: YES NO OTHER OBSERVATIONS: YES NO OTHER OBSERVATIONS: YES NO OTHER OBSERVATIONS: YES NO OTHER OBSERVATIONS: YES NO MON-NATIVE FILL ENCOUNTERED: YES NO OTHER OBSERVATIONS: YES NO OTHER OBSERVATIONS: YES NO OTHER OBSERVATIONS: YES NO SAMPLES COLLECTED: Yes RADIONUCLIDES (mR/H) Background 0.009 mR/hr	0.6 - 3.0	coarse grained sands and g				0.0	у	у
GROUNDWATER ENCOUNTERED: Image: Yes NO If yes, depth to GW: ~3.0 fbgs VISUAL IMPACTS: Image: Yes NO Describe: light green soil/fill OLFACTORY OBSERVATIONS: Image: Yes NO Describe: light green soil/fill NON-NATIVE FILL ENCOUNTERED: Image: Yes Image: NO Describe: Image: Yes OTHER OBSERVATIONS: Image: Yes Image: NO Describe: Image: Yes SAMPLES COLLECTED: Yes Image: Yes Image: Yes Image: Yes RADIONUCLIDES (mR/H) Background 0.009 mR/hr Image: Yes Image: Yes	3.0 - 3.5	Dark grey, silty clay, moist,	with trace sand.			0.0	У	У
GROUNDWATER ENCOUNTERED: Image: Yes NO If yes, depth to GW: ~3.0 fbgs VISUAL IMPACTS: Image: Yes NO Describe: light green soil/fill OLFACTORY OBSERVATIONS: Image: Yes NO Describe: light green soil/fill NON-NATIVE FILL ENCOUNTERED: Image: Yes Image: NO Describe: Image: Yes OTHER OBSERVATIONS: Image: Yes Image: NO Describe: Image: Yes SAMPLES COLLECTED: Yes Image: Yes Image: Yes Image: Yes RADIONUCLIDES (mR/H) Background 0.009 mR/hr Image: Yes Image: Yes								
GROUNDWATER ENCOUNTERED: Image: Yes NO If yes, depth to GW: ~3.0 fbgs VISUAL IMPACTS: Image: Yes NO Describe: light green soil/fill OLFACTORY OBSERVATIONS: Image: Yes NO Describe: light green soil/fill NON-NATIVE FILL ENCOUNTERED: Image: Yes Image: NO Describe: Image: Yes OTHER OBSERVATIONS: Image: Yes Image: NO Describe: Image: Yes SAMPLES COLLECTED: Yes Image: Yes Image: Yes Image: Yes RADIONUCLIDES (mR/H) Background 0.009 mR/hr Image: Yes Image: Yes								
VISUAL IMPACTS: Image: Section of the section of t								
OLFACTORY OBSERVATIONS: YES NO Describe: NON-NATIVE FILL ENCOUNTERED: YES NO OTHER OBSERVATIONS: YES NO SAMPLES COLLECTED: Yes RADIONUCLIDES (mR/H) Background 0.009 mR/hr								
NON-NATIVE FILL ENCOUNTERED: Image: Yes Image: No OTHER OBSERVATIONS: Image: Yes Image: No SAMPLES COLLECTED: Yes Image: Yes RADIONUCLIDES (mR/H) Background 0.009 mR/hr Image: Yes						light green soil	/fill	
OTHER OBSERVATIONS: YES NO Describe: SAMPLES COLLECTED: Yes RADIONUCLIDES (mR/H) Background 0.009 mR/hr					Describe:			
SAMPLES COLLECTED: Yes RADIONUCLIDES (mR/H) Background 0.009 mR/hr					D			
RADIONUCLIDES (mR/H) Background 0.009 mR/hr				✓ NO	Describe:			
				/h.e.				
	RADIONUCLID		-					

Project:	2250 Factory Outlet Blvd.	TEST PIT I.D.:	TP - 7
Project No.:	0105 - 003 - 300	Excavation Date:	12/19/06
Client:	Benderson	Excavation Method:	Kabota kx121 - 3
Location:	2250 Factory Outlet Blvd.	Logged / Checked By:	ТАВ

TP - 10 - TP - 8 TP - 7 TIME Start: End:	TP - 12 TP - 6 TP - 2 TP - 11 TP - 6 TP - 2 TP - 11 Length: 11.5 ft (ap 15:45 PM Width: 2.0 ft (ap	pprox.) pprox.)		SOIL	PHALT	→ S
Depth (fbgs)	USCS Symb Descrip			PID Scan (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.5	Asphalt			0.0	У	N
0.5 - 3.0	Light green/ light grey, soil/fill, moist to w grained sands and gravels, large cobble layer becomes thinner going to the south	s and pieces of slag	, Light green	0.0	У	у
3.0	Dark grey, silty clay, moist, with trace sa	nd.		0.0	у	N
COMMENTS:						
GROUNDWA	TER ENCOUNTERED:		If yes, depth		~2.5 fbgs	
VISUAL IMPA			Describe:	light green soil	/fill	
		YES 🗹 NO	Describe:			
	FILL ENCOUNTERED:					
		YES 🔽 NO	Describe:			
SAMPLES CO		Yes				
RADIONUCLID						
	0.0 -2.5 x 11.5 ft	0.013 mR/hr				

Project:	2250 Factory Outlet Blvd.	TEST PIT I.D.:	TP - 8
Project No.:	0105 - 003 - 300	Excavation Date:	12/20/06
Client:	Benderson	Excavation Method:	JCB 260L excavator
Location:	2250 Factory Outlet Blvd.	Logged / Checked By:	ТАВ

TP - II TP - II TP - II TP -		TP - 5 TP - 12 TP - 4			ASP	nali j]
TIM	78168'48 2/2 W siev 674 11. Streaming 1111	10.0 ft (approx.)	2-		CL	AY	
Start:	8:20 Width:	4.5 ft (approx.)					
End: Depth (fbgs)		2.5 ft. (approx.) USCS Symbol & So Description	11		PID Scan (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.3	Asphalt				0.0	у	n
0.3 - 2.0	Light green/ light grey, soil, sands and gravels, large c			grained	0.0	у	У
2.0 - 2.5	reddish brown, moist, silty	clay with trace sand.			0.0	у	n
COMMENTS:							
	ATER ENCOUNTERED:	YES -	NO NO	lf yes, depth	to GW:		
VISUAL IMP				Describe:	light green soil	/fill	
OLFACTORY	OBSERVATIONS:	YES -	∕ NO	Describe:			
NON-NATIVE	E FILL ENCOUNTERED:	VES	NO				
OTHER OBS	ERVATIONS:	YES 🖸	NO NO	Describe:			
SAMPLES CO	OLLECTED:	Yes					
RADIONUCLID	DES (mR/H) Bad	ckground 0.006 mR/hr					
	0.0	- 2.5 x 10 ft 0.006mR	/hr		4		

Project:	2250 Factory Outlet Blvd.	TEST PIT I.D.:	TP - 9
Project No.:	0105 - 003 - 300	Excavation Date:	12/20/06
Client:	Benderson	Excavation Method:	JCB 260L excavator
Location:	2250 Factory Outlet Blvd.	Logged / Checked By:	ТАВ

	and a		Test Pit Cross S	ection:			
2 A MENT	TP -3 TP -9	TP-5			ASP	TALI M	
Puinter 43 00'02.24" N 78-08 4	1 202 W wey 674 11 Streaming	TP - 12 P - 11 TP - 4		v V	SOIL/	/FILL	→ s
TIME Start: 9	:15 Length:	27.0 ft (approx.) 4.5 ft (approx.)			CL	AY	
End: 9	:40 Depth:	3.5 ft. (approx.)		41.523	212	1	
Depth (fbgs)		USCS Symbol & So Description	bil		PID Scan (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.7 A	sphalt				0.0	У	n
0.7 - 3.0 sa		oil/fill, moist, silt with som cobbles and pieces of s			0.0	у	у
3.0 - 3.5 re	ddish brown, moist, sil	ty clay with trace sand.			0.0	у	n
COMMENTS:							
GROUNDWATER	ENCOUNTERED:	✓ YES [NO If ye	es, depth t	o GW:	~ 3.0 fbgs	
VISUAL IMPACTS	3:	✓ YES [NO Des	cribe:	light green soil	/fill	
OLFACTORY OB	SERVATIONS:	YES	✓ NO Des	cribe:			
NON-NATIVE FILI	LENCOUNTERED:	✓ YES [NO				
OTHER OBSERV	ATIONS:	YES -	✓ NO Des	cribe:			
SAMPLES COLLE	CTED:	Yes					
RADIONUCLIDES (mR/H) E	Background 0.010 mR/hr	•				
	(0.0 - 2.5 x 10 ft 0.006mR	l/hr				1

Project:	2250 Factory Outlet Blvd.	TEST PIT I.D.:	TP - 10
Project No.:	0105 - 003 - 300	Excavation Date:	12/20/06
Client:	Benderson	Excavation Method:	JCB 260L excavator
Location:	2250 Factory Outlet Blvd.	Logged / Checked By:	ТАВ

TIME Start:	9:55 Length: 2 Width: 4	29.0 ft (approx.) 4.5 ft (approx.)	1 2		SOIL/.	FILL	→ s
End: Depth (fbgs)		2.0 ft. (approx.) USCS Symbol & S Description	oil		PID Scan (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.4	Asphalt				0.0	У	n
0.4 - 1.5	Light brown north end of te silt with sand with coarse a			uth end of test pit,	0.0	У	У
1.5 - 2.0	reddish brown, moist, silty o	clay with trace sand.			0.0	у	n
COMMENTS:				If you don'th	to CIN/:		
	TER ENCOUNTERED:	YES	✓ NO	If yes, depth		/611	
VISUAL IMPAC		✓ YES	NO NO	Describe:	light green soil/	1111	
	OBSERVATIONS:	YES	✓ NO	Describe:			
	FILL ENCOUNTERED:	YES		Deperiher			
OTHER OBSE		YES Yes	✓ NO	Describe:			
SAMPLES CO		Yes					
RADIONUCLIDE		ckground 0.009 mR/f - 2.5 x 29 ft 0.009 m					

Project:	2250 Factory Outlet Blvd.	TEST PIT I.D.:	TP - 11
Project No.:	0105 - 003 - 300	Excavation Date:	12/20/06
Client:	Benderson	Excavation Method:	JCB 260L excavator
Location:	2250 Factory Outlet Blvd.	Logged / Checked By:	ТАВ

TP - 10 TP - 10 TP - 2 TP - 2 TP - 2 TIME Start: End:	8 7 TP - 6 TP -2 TP - Length: 13 10:45 Width: 2		st Pit Cross Section: ade - 0'	SOI	PHAIT	
Depth (fbgs)		JSCS Symbol & Soil Description		PID Scan (ppm)	Photos Y / N	Samples Collected (fbgs)
0.0 - 0.5	Asphalt			0.0	У	n
0.5 - 2.0	Light green, soil/fill, moist to coarse grained sands and g			0.0	у	У
2.0 - 2.5	Dark grey to reddish brown,	silty clay, moist, with trace	e sand.	0.0	у	n
COMMENTS:			li con denti	to (11/4	0.0 fbra	
	TER ENCOUNTERED:				~2.0 fbgs	
				light green soi	/111	
	OBSERVATIONS:					
	ERVATIONS:					
SAMPLES CO		Yes	, Describe.			
RADIONUCLID		ground 0.008 mR/hr				
I ADIONOOLID	Baci Baci	ground 0.000 mitvin				

Project:	2250 Factory Outlet Blvd.	TEST PIT I.D.:	TP - 12
Project No.:	0105 - 003 - 300	Excavation Date:	12/20/06
Client:	Benderson	Excavation Method:	JCB 260L excavator
Location:	2250 Factory Outlet Blvd.	Logged / Checked By:	ТАВ

	-			Test Pit C	Cross Section:			
TPP-10 TOPSOIL TOPSOIL TOPSOIL Site::::::::::::::::::::::::::::::::::::	The second	TP-1	TP-5	Grade - 0	D' -			
TP-0 TP-1 TP-4 TIME Length: 13.0 ft (approx) SOIL/FILL SOIL/FILL CLAY CLAY Depth CLAY Depth OUSCS Symbol & Soil PID Scan Photos Samples CLAY Opth USCS Symbol & Soil PiD Scan Photos Samples Opth USCS Symbol & Soil PiD Scan Photos Samples 0.0 - 1.5 Dark Brown, moist, topsoil, silt with some sand, with few clay and rootlets. 0.0 y 1.5 - 2.5 Light green, soil/fill, moist to wet at fill clay interface, silt with some sand, coarse grained sands and gravels, large cobbies and pieces of slag. 0.0 y y 2.5 - 3.0 Dark grey to reddish brown, silty clay, moist, with trace sand. 0.0 y n COMMENTS: GROUNDWATER ENCOUNTER	TP - 10	TP-9				TOP	SOIL	
TP - 6 TP - 2 TP - 1 TP - 4 Start: 11:45 Length: 13.0 ft (approx.) Depth USCS Symbol & Soil PID Photos Samples O.0 - 1.5 Dark Brown, moist, topsoil, silt with some sand, with few clay and rootets. 0.0 y n 15 - 2.5 Light green, soil/fill, moist to wet at fill clay interface, silt with some sand, coarse grained sands and gravels, large cobbles and pieces of slag. 0.0 y n 2.5 - 3.0 Dark grey to reddish brown, silty clay, moist, with trace sand. 0.0 y n COMMENTS: Q YES No If yes, depth to GW: -2.0 fbgs VISUAL IMPACTS: YES No Describe: Ight green soil/fill OLFACTORY OBSERVATIONS: YES No Describe: Ight green soil/fill OLFACTORY OBSERVATIONS: YES No Describe: Samples: NON-NATIVE FILL ENCOUNTERED: YES No Describe: Samples: SAMPLES COLLECTED: Yes No Describe: Samples:	- TP - 8		TP - 12		-			
TIME Start: Length: 13.0 ft (approx.) Width: 4.5 ft (approx.) Depth: 12:30 Depth: 3.0 ft (approx.) 3 CLAY Depth 12:30 Depth: 3.0 ft (approx.) 3 CLAY Clay Depth USCS Symbol & Soil Description Scan (ppm) Photos Y/N Samples Collecter (fbgs) 0.0 - 1.5 Dark Brown, moist, topsoil, silt with some sand, with few clay and rootlets. 0.0 y n 1.5 - 2.5 Light green, soil/fill, moist to wet at fill clay interface, silt with some sand, coarse grained sands and gravels, large cobbles and pieces of slag. 0.0 y y 2.5 - 3.0 Dark grey to reddish brown, silty clay, moist, with trace sand. 0.0 y n COMMENTS: GROUNDWATER ENCOUNTERED: I YES NO Describe: -2.0 fbgs VISUAL IMPACTS: YES NO Describe: NO Describe: -2.0 fbgs OLFACTORY OBSERVATIONS: YES NO Describe: NO NO -2.0 fbgs OTHER OBSERVATIONS: YES NO Describe: SAMPLE		TP-6 TP-2	TP - 11 TP - 4		2-	SOIL	/FILL]
Start: 11:4:3 Widn: 4:3 if (approx.) 3 End: 12:30 Depth: 3.0 ft (approx.) 3 Depth (fbgs) USCS Symbol & Soil Description PID Scan (ppm) Photos Y / N Samples Collecter (fbgs) 0.0 - 1.5 Dark Brown, moist, topsoil, silt with some sand, with few clay and rootlets. 0.0 y n 1.5 - 2.5 Light green, soil/fill, moist to wet at fill clay interface, silt with some sand, coarse grained sands and gravels, large cobbles and pieces of slag. 0.0 y y 2.5 - 3.0 Dark grey to reddish brown, silty clay, moist, with trace sand. 0.0 y n COMMENTS: GROUNDWATER ENCOUNTERED: YES No If yes, depth to GW: ~2.0 fbgs VISUAL IMPACTS: YES No Describe: light green soil/fill OLFACTORY OBSERVATIONS: YES No Describe: No Describe: SAMPLES COLLECTED: YES No SAMPLES COLLECTED: YES No Describe: SAMPLES Yes		E Length:				CI	AV	1
Depth (fbgs) USCS Symbol & Soil Description PID Scan (ppm) Photos Y / N Samples Collecter (fbgs) 0.0 - 1.5 Dark Brown, moist, topsoil, silt with some sand, with few clay and rootlets. 0.0 y n 1.5 - 2.5 Light green, soil/fill, moist to wet at fill clay interface, silt with some sand, coarse grained sands and gravels, large cobbles and pieces of slag. 0.0 y y 2.5 - 3.0 Dark grey to reddish brown, silty clay, moist, with trace sand. 0.0 y n COMMENTS:			the second se		3			
0.5 * No Exclusion model of provide and prov	Depth		USCS Symbol & S	Soil		Scan		Samples Collected (fbgs)
1.5 - 2.5 coarse grained sands and gravels, large cobbles and pieces of slag. 0.0 y y 2.5 - 3.0 Dark grey to reddish brown, silty clay, moist, with trace sand. 0.0 y n 2.5 - 3.0 Dark grey to reddish brown, silty clay, moist, with trace sand. 0.0 y n COMMENTS: Image: comparison of trace sand. COMMENTS: Image: comparison of trace sand. COMMENTS: Image: comparison of trace sand. COMMENTS: Image: comparison of trace sand. COMMENTS: Image: comparison of trace sand. OLFACTORY OBSERVATIONS: Image: comparison of tra	0.0 - 1.5	Dark Brown, moist, tops	oil, silt with some sand,	, with few clay	and rootlets.	0.0	У	n
LO OLO	1.5 - 2.5					0.0	у	у
GROUNDWATER ENCOUNTERED: Image: Yes NO If yes, depth to GW: ~2.0 fbgs VISUAL IMPACTS: Image: Yes NO Describe: light green soil/fill OLFACTORY OBSERVATIONS: Image: Yes Image: NO Describe: light green soil/fill NON-NATIVE FILL ENCOUNTERED: Image: Yes Image: NO Describe: Image: Yes OTHER OBSERVATIONS: Image: Yes Image: NO Describe: Image: Yes SAMPLES COLLECTED: Yes Yes Image: Yes Image: Yes	2.5 - 3.0	Dark grey to reddish bro	own, silty clay, moist, wi	th trace sand.		0.0	У	n
GROUNDWATER ENCOUNTERED: Image: Yes NO If yes, depth to GW: ~2.0 fbgs VISUAL IMPACTS: Image: Yes NO Describe: light green soil/fill OLFACTORY OBSERVATIONS: Image: Yes Image: NO Describe: light green soil/fill NON-NATIVE FILL ENCOUNTERED: Image: Yes Image: NO Describe: Image: Yes OTHER OBSERVATIONS: Image: Yes Image: NO Describe: Image: Yes SAMPLES COLLECTED: Yes Yes Image: Yes Image: Yes								
VISUAL IMPACTS: Image: Section of the section of t	COMMENTS:							
OLFACTORY OBSERVATIONS: YES NO Describe: NON-NATIVE FILL ENCOUNTERED: YES NO OTHER OBSERVATIONS: YES NO SAMPLES COLLECTED: Yes Yes	GROUNDWA	ATER ENCOUNTERED:		NO NO				
NON-NATIVE FILL ENCOUNTERED: Image: Second seco			✓ YES			light green soi	I/fill	
OTHER OBSERVATIONS: YES NO Describe: SAMPLES COLLECTED: Yes Yes					Describe:			
SAMPLES COLLECTED: Yes	NON-NATIVE	FILL ENCOUNTERED:						
				✓ NO	Describe:		<u> </u>	
RADIONUCLIDES (mR/H) Background 0.010 mR/hr	SAMPLES CO	OLLECTED:						
	RADIONUCLIE	DES (mR/H)	Background 0.010 mR/	'nr			<u></u>	

TABLE B-1

GROUNDWATER ELEVATION MEASUREMENTS

RI / AAR / IRM Report 2250 Factory Outlet Blvd Benderson Development Company

Monitoring Location	Top of Protective Casing Elev.	Top of PVC Riser Elev.	Depth to Water	Groundwater Elevation
MW-1	498.43	498.08	3.83	494.25
MW-2	497.84	497.65	4.19	493.46
MW-3	498.65	498.13	4.11	494.02
MW-4	499.11	498.67	3.86	494.81

Notes:

1. All wells were surveyed on 1/11/07 with site specific datum of 500 feet.

2. Top of protective casing elevation equals ground surface elevation.

G	BENCHMARK
G	Environmental Engineering & Science, PLLC

FIELD BOREHO	LE/MONITORING	INSTALL	ATION LOG
--------------	----------------------	---------	-----------

Project Name: 2250 Factory Outlet Blvd. Project Number: 0105-003-200 Drilling Company: SJB Client: Benderson Driller: Thomas Kilburn Helper: Conrad Wojcicki -----Rig Type: CME pull behind

MW - 1 BORING NUMBER:

Location: 2250	Factory outlet	blvo	J.		
Start Date/Time:	12/21/2006	1	12:40 PM		
End Date/Time:	12/21/2006	1	14:10 PM		
Logged By: TAB					
Drilling Method:	split spoon				
	1 10	014	10 5		

٦

Weather: Overcast, low 40s wind SW 0 - 5 mph Τ

Elevation (fmsl)	Depth (fbgs)	Sample No.	Blows (per 6")	S	PT N-Value	Recovery (feet)	SAMPLE DESCRIPTION USCS Classification: Color, Moisture Condition, Primary Soil Type, Secondary Soil Type (<5% Trace, 10-15% Little, 15-30% Few, 35-45% Some), Structure (varved, stratified, thinly bedded, bedded, thickly bedded, laminated, fissured, bloc	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	RADIONUCLIDES (mR/H)		weil construction Details
498.4 496.4		S1	BT 8 5 8	13	0 40 40	1.0	Black and grey, moist, black top and sub grade, silt with some sand and coarse grained sand, dense, loose when disturbed. Dark grey, moist, silty clay, with trace sand, stiff, massive.		0.0	na	n	0.004	Med bentonite chips Cement	Riser
490.4		S2	4 5 6 9	11		1.3	Dark grey, moist, silty clay, with trace sand, stiff, with rootlets, and some orange staining. Reddish brown, moist, silty clay, with trace sand, stiff, massive with rootlets.		0.0	na	n	0.01	Med bent	Sch. 40 PVC Riser
		S 3	5 6 7 10	13		0.0	No recovery.		0.0	na	n	NA	q	
492.4	6	S4	12 16 16 17	32		0.3	Reddish brown silty clay, with trace sand, stiff, massive with rootlets and stratified.		0.0	na	у	0.008	# on sand	0.010" slot screen
490.4	8	S5	4 7 7	14		2.0	Reddish brown silty clay, with trace sand, stiff, massive with rootlets and stratified.		0.0	na	n	0.011		0.010"
488.4	10	S6	4	0			eob @ 10.0 fbgs.							
486.4	12	S 7		0	•									
484.4	14	S8		0	•									
482.4	16	S9		0										
480.4	18													
					ROUTING:									
					bentonite grout			ole depth =						
					bentonite grout	insta		diameter = ole radius =	0	00 fe	et			
					resolution:				.					
	If yes, explain resolution: Method of installation: tremie grouted from bottom to top of borehole													

G	BENCHMARK
C	ENVIRONMENTAL Engineering & Science, PLLC

FIELD BOREHOLE/MONITORING INSTALLATION LOG

Project Nam	e: 2250 Factory Outlet Blvd.
Project Num	ber: 0105-003-200
Client: Be	nderson
Drilling Corr	ipany: SJB
Driller:	Thomas Kilburn
	Conrad Wojcicki
Rig Type:	CME pull behind

···· ······· -- ---

MW - 2 BORING NUMBER: Location: 2250 Factory outlet blvd. 12/21/2006 / 14:35 PM Start Date/Time: 12/21/2006 / 15:15 PM End Date/Time: TAB Logged By: Drilling Method: split spoon Weather: Overcast, low 40s wind SW 0 - 5 mph

Elevation (fmsl)	Depth (fbgs)	Sample No.	Blows (per 6")	S	PT N-	Value	Recovery (feet)	SAMPLE DESCRIPTION USCS Classification: Color, Moisture Condition, Primary Soil Type, Secondary Soil Type (<5% Trace, 10-15% Little, 15-30% Few, 35-45% Some), Structure (varved, stratified, thinly bedded, bedded, thickly bedded, laminated, fissured, bloc	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	RADIONUCLIDES (mR/H)	Well Construction Details
497.8	0	S1	BT 12 6 5	18	0	2 R	1.1	Black and grey, moist, black top and sub grade, silt with some sand and coarse grained sand, dense, loose when disturbed. Dark grey, moist, silty clay, with trace sand, stiff, massive.		0.0	na	n	0.009	Med bentonite chips cement 0 PVC Riser
495.8	2	S2	6 8 7 11	15			1.4	Dark grey, moist, silty clay, with trace sand, stiff, with rootlets. Reddish brown, moist, silty clay, with trace sand, stiff, massive with rootlets and grey desecration cracks.		0.0	na	у	0.012	Med bentoi Sch. 40 PVC
493.8	4	S 3		0			0.0	Due to rig problems and time constraints MW - 2 was split spooned to 4.0 fbgs then augured to 10.0 fbgs. eob @ 10.0 fbgs.		0.0	na	n	NA	g
491.8	6	S4		0	• • • • •		0.3			0.0	na	n	NA	# on sand 0.010" slot screen
489.8	8	S5		0			2.0			0.0	na	n	NA	0.010"
487.8	10	S6		0	• • • • •		-							
485.8	12	S 7		0	•					1				
483.8	14	S 8	· · · · · · · · · · · · · · · · · · ·	0	•									
481.8	16			0										
				Ĭ	•									
479.8 MON		RIN	G WI		GROU	FING:	I			<u> </u>	<u> </u>		L	<u> </u>
· · · · · · · · · · · · · · · · · · ·	Volu Volu Has	ime ime brid If ye	of ce of ce ging es, ex	ment ment of gro	/bento /bento out occ resolu	nite gro nite gro curred?	ut inst	alled: borehole	ble depth = diameter = le radius =	:	.00 fe	eet		

FIELD BOREHOLE/MONITORING INSTALLATION LOG

Project Name: 2250 Factory Outlet Blvd.	BORING NUMBER: MW - 3
Project Number: 0105-003-200	Location: 2250 Factory outlet blvd.
Client: Benderson	Start Date/Time: 12/21/2006 / 09:06 AM
Drilling Company: SJB	End Date/Time: 12/21/2006 / 11:45 AM
Driller: Thomas Kilburn	Logged By: TAB
Helper: Conrad Wojcicki	Drilling Method: split spoon
Rig Type: CME pull behind	Weather: Overcast, low 40s wind SW 0 - 5 mph

-

Elevation (fmsl)	Depth (fbgs)	Sample No.	Blows (per 6")	S	SPT N-Value	Recovery (feet)	SAMPLE DESCRIPTION USCS Classification: Color, Moisture Condition, Primary Soil Type, Secondary Soil Type (<5% Trace, 10-15% Little, 15-30% Few, 35-45% Some), Structure (varved, stratified, thinly bedded, bedded, thickly bedded, laminated, fissured, blocky, lensed, massive), Consistency/Density (Standard Penetration Test, SPT). Weathering/Fracturing, Odor, Fill Materials (if present), Other		PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	RADIONUCLIDES (mR/H)		wen construction Details
498.7	0	S1	2 2 2 8	4	0 40 20 0	1.1	Dark brown, moist, topsoil, silt with some sand and little clay with asphalt pieces and wood chips with some rootlets, wet at bottom		0.0		n	0.006	bentonite chips cement	Riser
496.7	2	S2	8 12 5	17		0.3	Wet coarse grained gravel.		0.0		n	0.01	Med benton	Sch. 40 PVC Riser
494.7	4	S 3	5 4 8 10	18		0.2	Reddish brown, silty clay.		0.0		n	0.008		07
492.7	6	S4	11 13 15 17	32		0.3	Reddish brown, silty clay.		0.0		n	0.006	# oon sand	0.010" slot screen
490.7	8	S5	8 4 7 7	14		2.0	Reddish brown, moist, silty clay with trace sand, stratified yellow and grey sand areas, more massive at bottom with grey sand desecration cracks, very stiff.		0.0		у			0.010" \$
488.7	10	S6	4	0			eob @ 10.0 fbgs.							
486.7	12	S7		0	• • • • • • • • •									
484.7	14	S8		0										
482.7	16	S9		0										
480.7														
					ROUTING:									
					bentonite grout			ole depth =				· ·		
	Volume of cement/bentonite grout installed: borehole diameter = Has bridging of grout occurred? yes in no borehole radius = 0.00 feet													
	If yes, explain resolution:													
	Method of installation: tremie grouted from bottom to top of borehole													

APPENDIX C

RI SAMPLING DATA

APPENDIX C

RI SAMPLING DATA

ANALYTICAL REPORT

Job#: <u>A06-F190,A06-F191,A06-F288,A06-F361</u>

STL Project#: NY4A9217 SDG#: F190 Site Name: <u>Benchmark</u> Task: 2250 Factory Outlet Blvd.

> Mr. Mike Lesakowski Benchmark Environmental 726 Exchange St., Ste 624 Buffalo, NY 14210

> > STL Buffalo

Brian J XFischer Project Nanager

01/16/2007

SAMPLE SUMMARY

		SAMPI	ED	RECEIVE	Ð
LAB SAMPLE ID CLIENT SAM	LE ID MATRIX	DATE	TIME	DATE	<u>TIME</u>
A6F28802 BLIND DUP #1	SOIL	12/19/2006	09:00	12/20/2006	10:25
A6F36102 BLIND DUP #1	SOIL	12/19/2006	09:00	12/20/2006	10:25
A6F19001 SB-12 (1-2)	SOIL	12/18/2006	08:39	12/18/2006	15:55
A6F19002 SB-13 (2-3)	SOIL	12/18/2006	08:57	12/18/2006	15:55
A6F19003 SB-14 (1.5-2	5) SOIL	12/18/2006	09:26	12/18/2006	15:55
A6F19004 SB-15 (1-2)	SOIL	12/18/2006	09:46	12/18/2006	15:55
A6F19005 SB-16 (1-2)	SOIL	12/18/2006	10:14	12/18/2006	15:55
A6F19006 SB-17 (1-2)	SOIL	12/18/2006	10:46	12/18/2006	15:55
A6F19101 SB-17 (1-2)	SOIL	12/18/2006	10:46	12/18/2006	15:55
A6F19007 SB-17 (4-5)	SOIL	12/18/2006	10:55	12/18/2006	15:55
A6F19008 SB-18 (1-2)	SOIL	12/18/2006	11:37	12/18/2006	15:55
A6F19009 SB-19 (1-2)	SOIL	12/18/2006	12:31	12/18/2006	15:55
A6F19010 SB-20 (1-2)	SOIL	12/18/2006	12:47	12/18/2006	15:55
A6F19011 SB-21 (0.5-1	5) SOIL	12/18/2006	13:11	12/18/2006	15:55
A6F19012 SB-22 (1-2)	SOIL	12/18/2006	13:50	12/18/2006	15:55
A6F19013 SB-23 (1-2)	SOIL	12/18/2006	14:14	12/18/2006	15:55
A6F28803 TP-1/ SL#1 (2		12/19/2006	10:45	12/20/2006	10:25
A6F28804 TP-1/ SL#2 (0		12/19/2006	11:14	12/20/2006	10:25
A6F28801 TP-1/SL#1 (0		12/19/2006	10:24	12/20/2006	10:25
A6F28801MS TP-1/SL#1 (0		12/19/2006	10:24	12/20/2006	10:25
A6F28801SD TP-1/SI#1 (0		12/19/2006	10:24	12/20/2006	10:25
	0-2.0) SOIL	12/19/2006	10:24	12/20/2006	10:25
	0-2.0) SOIL	12/19/2006	10:24	12/20/2006	10:25
	0-2.0) SOIL	12/19/2006	10:24	12/20/2006	10:25
	0-2.0) SOIL	12/19/2006	11:19	12/20/2006	10:25
A6F28808 TP-2 (2.5-3.0		12/19/2006	11:47	12/20/2006	10:25
A6F28809 TP-3 SL#1 (0.		12/19/2006	13:10	12/20/2006	10:25
A6F28810 TP-3 SL#1 (2-		12/19/2006	13:17	12/20/2006	10:25
A6F36106 TP-3/SL#1 (0·	2) SOIL	12/19/2006	T3:T0	12/20/2006	10:25

METHODS SUMMARY

Job#: A06-F190, A06-F191, A06-F288, A06-F361

STL Project#: <u>NY4A9217</u> SDG#: <u>F190</u> Site Name: <u>Benchmark</u>

PARAMETER	ANALYI'ICAL METHOD
Chromium - Total	ASP00 CLP-M
Chromium - Total	SW8463 6010
Hexavalent Chromium - Total	SW8463 7196A
Toxicity Characteristic Leaching Procedure	SW8463 1311

References:

- ASP00 "Analytical Services Protocol", New York State Department of Conservation, June 2000.
- SW8463 "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

NON-CONFORMANCE SUMMARY

Job#: A06-F190, A06-F191, A06-F288, A06-F361

STL Project#: <u>NY4A9217</u> SDG#: <u>F190</u> Site Name: <u>Benchmark</u>

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-F190 Sample Cooler(s) were received at the following temperature(s); 5.2 °C All samples were received in good condition. A06-F191 Sample Cooler(s) were received at the following temperature(s); 5.2 °C All samples were received in good condition. A06-F288 Sample Cooler(s) were received at the following temperature(s); 3.0 °C All samples were received in good condition. A06-F361 Sample Cooler(s) were received at the following temperature(s); 3.0 °C All samples were received at the following temperature(s); 3.0 °C All sample Cooler(s) were received at the following temperature(s); 3.0 °C

Metals Data

The recoveries of sample TP-1/SL#1 (0.0-2.0) Matrix Spike and Matrix Spike Duplicate exhibited results below the quality control limits for Chromium. The sample result is more than four times greater than the spike added. The RPD of sample TP-1/SL#1 (0.0-2.0) Matrix Spike and Matrix Spike Duplicate exceeded the quality control limits for Chromium. The LCS is acceptable.

The recovery of sample TP-1/SL#1 (0.0-2.0) Post Spike exhibited a result below the quality control limits for Chromium. However, the LCS was acceptable.

The Serial Dilution of sample TP-1/SL#1 (0.0-2.0) exceeded the quality control limits for Chromium. However, the LCS was acceptable.

Wet Chemistry Data

Hexavalent Chromium was subcontracted to STL Pittsburgh. The complete subcontract report is included in this report as Appendix A. Comments pertaining to Hexavalent Chromium may be found within the comment summary of the subcontract report.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

÷

		Benchr	nark Environmental & Engineering \$ -1-	Science		
			INORGANIC ANALYSIS DATA SHEET	SAMPL	ENO.	
Contract:	NY04-133			BLIND	DUP #1	
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.:	F190	
Matrix (so.	il/water):	SOIL	Lab Sample ID:	AD679984		
Level (low,	/med): L(W	Date Received:	12/20/2006		
<pre>% Solids:</pre>	68					

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	4050		E*	P

Color Before:	GRAY	Clarity Before:	CLOUDY	Texture:	COARSE
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					

STL BUFFALO

Matrix (soil/water):

Level (low/med):

% Solids: 83

SOIL

LOW

		Benchi	ience	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
				SB-12 (1-2)
Contract:	NY04-133			.
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F190

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	с	Q	м
7440-47-3	Chromium	22.3	1	E*	P

Lab Sample ID: AD679969

12/18/2006

.

Date Received:

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	CLAY
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					
<u></u>	<u> </u>		,		

STL BUFFALO

	·······	Benchm	ark Environmental & Engineering S -1-	Science	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.	
				SB-13 (2-3)	
Contract:	NY04-133				
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F190	
Matrix (soi	il/water):	SOIL	Lab Sample ID:	AD679970	
Level (low,	/med): L	OW	Date Received:	12/18/2006	
<pre>% Solids:</pre>	77				

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	76.0		E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	CLAY
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					<u> </u>
-					
-					

-

STL BUFFALO

Benchmark Environmental & Engineering Science -1-INORGANIC ANALYSIS DATA SHEET SAMPLE NO.

Contract:	NY04-133			SB-14	(1.5-2.5)
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.:	F190
Matrix (so	il/water):	SOIL	Lab Sample ID:	AD679971	
Level (low,	/med):]	WO	Date Received:	12/18/2006	
% Solids:	93				

CAS No.	Analyte	Concentration	C	Q	м
7440-47-3	Chromium	39.2	ĺ	E*	P

Color	Before:	BROWN	Clarity Before:	CLOUDY	Texture:	GRAVEL
Color	After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Commer	ts:					

-

STL BUFFALO

		Benchmark]	Environmental & Engineering S -1-	Science	
		INO	RGANIC ANALYSIS DATA SHEET	SAMPLE NO.	
Contract:	NY04-133			SB-15 (1-2)	
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F190	
Matrix (soi	1/water):	SOIL	Lab Sample ID:	AD679972	
Level (low/	/med): I	WO	Date Received:	12/18/2006	
<pre>% Solids:</pre>	97				

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	4.1	<u> </u>	E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	GRAVEL
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:	<u></u>				
					· · · · · · · · · · · · · · · · · · ·

-

		Benchr	nark Environmental & Engineering S -1-	Science	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.	
Contract:	NY04-133			SB-16 (1-2)	
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F190	
Matrix (so	il/water):	SOIL	Lab Sample ID:	AD679973	
Level (low,	$(med): \underline{L}$	OW	Date Received:	12/18/2006	
% Solids:	86				

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	5.1		E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	GRAVEL
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					
			······································		

.

Benchmark Environmental & Engineering Science -1-								
		II	NORGANIC ANALYSIS DATA SHEET	SAMPLE NO.	<u> </u>			
				SB-17 (1-2)				
Contract:	NY04-133							
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F190				
Matrix (so:	il/water):	SOIL	Lab Sample ID:	AD700330				
Level (low,	/med): L	OW	Date Received:	12/18/2006				
<pre>% Solids:</pre>	83							

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chronium	2940			P

Color Before:	YELLOW	Clarity Before:	CLEAR	Texture:	NONE
Color After:	YELLOW	Clarity After:	CLEAR	Artifacts:	
Comments:					

Benchmark Environmental & Engineering Science

- 1 -INORGANIC ANALYSIS DATA PACKAGE

nalyte	Concentration	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	. 1
								Ала	lytical			
Prep Batch ID:	A6B32400				Pre	p Date:	12/2	1/2006				
% Solids:		Sar	nple V	Wt/Vol:	50.0)	Final	Vol:	50.0			
Matrix: WAT	ER	Dat	e Rec	eived:	12/1	8/2006	Date (Collected:	12/18/200	6 Level:	LOW	
Sample ID: A6F	19006-TCLP						Client I	D: SB-17 (1-	2)-TCLP			

.

Comments:

STL BUFFALO

		Benchmai	rk Environmental & Engineering S -1-	Science	
		11	NORGANIC ANALYSIS DATA SHEET	SAMPLE	NO.
				SB-17	(4-5)
Contract:	NY04-133				
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.:	F190
Matrix (so:	il/water):	SOIL	Lab Sample ID:	AD679974	·
Level (low,	/med): L(WC	Date Received:	12/18/2006	
<pre>% Solids:</pre>	78				

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	103		E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	CLAY
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					
_					

•

STL BUFFALO

Benchmark Environmental & Engineering Science -1-

INORGANIC ANALYSIS DATA SHEET

		INC	DRGANIC ANALYSIS DATA SHEET	SAMPLI	ENO.
				SB-18	(1-2)
Contract:	NY04-133			<u> </u>	
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.:	F190
Matrix (soi	il/water):	SOIL	Lab Sample ID:	AD679975	
Level (low/	/med): L(W	Date Received:	12/18/2006	
% Solids:	79				

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	29.5	Í	E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	CLAY
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					
			_		

.

STL BUFFALO

		Benchm	ark Environmental & Engineering S -1-	Science	
			INORGANIC ANALYSIS DATA SHEET	SAMPLI	E NO.
				SB-19	(1-2)
Contract:	NY04-133			<u>l</u>	
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.:	F190
Matrix (soi	il/water):	SOIL	Lab Sample ID:	AD679976	
Level (low/	/med): LA	OW	Date Received:	1 2/18/2006	
<pre>% Solids:</pre>	81				

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	25.9		E*	P

Color	Before:	BROWN	Clarity	Before:	CLOUDY	Texture:	CLAY
Color	After:	YELLOW	Clarity	After:	CLR/FIL	Artifacts:	
Commen	ts:						
					·····		

STL BUFFALO

		Benchn	nark Environmental & Engineering S -1-	cience	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.	<u>.</u>
				SB-20 (1-2)	
Contract:	NY04-133				
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F190	<u>.</u>
Matrix (so:	il/water):	SOIL	Lab Sample ID:	AD679977	
Level (low,	/med): L	OW	Date Received:	12/18/2006	
<pre>% Solids:</pre>	84				

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	84.9		E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	CLAY
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					
-	······································				

		Benchm	ark Environmental & Engineering S -1-	Science	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.	
				SB-21 (0.5-1.5)	
Contract:	NY04~133				
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F190	
Matrix (so	il/water):	SOIL	Lab Sample ID:	AD679978	
Level (low,	/med): L(W	Date Received:	12/18/2006	
<pre>% Solids:</pre>	84				

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	57.5		E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	TOPSOIL
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:				····	
			·····		

-

Benchmark Environmental & Engineering Science -1-INORGANIC ANALYSIS DATA SHEET SAMPLE NO.

.				SB-22	(1-2)
Contract:	NY04-133			L	
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.:	F190
Matrix (so:	il/water):	SOIL	Lab Sample ID:	AD679979	
Level (low,	/med): L	OW	Date Received:	12/18/2006	
<pre>% Solids:</pre>	79				

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	22.5	1	E*	P

Color After: YELLOW Clarity After: CLR/FIL Artifacts:	Color Before	BROWN	Clarity Before:	CLOUDY	Texture:	TOPSOIL
Comments:	Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
	Comments:					

SAMPLE NO.

.

STL BUFFALO

Benchmark Environmental & Engineering Science

INORGANIC	ANALYSIS	DATA SHEET	

				SB-23	(1-2)
Contract:	NY04-133			.	J
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.:	F190
Matrix (soi	il/water):	SOIL	Lab Sample ID:	AD679980	
Level (low/	/med): L	0W	Date Received:	12/18/2006	
<pre>% Solids:</pre>	78				

CAS No.	Analyte	Concentration	с	Q	м
7440-47-3	Chromium	37.1		E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	CLAY
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					
-					ngan - Pita
_					

STL BUFFALO

28/1103

•

		Benchn	nark Environmental & Engineering S -1-	beience	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.	
Contract:	NY04-133			TP-1/ SL#1 (2-2.5)	
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F190	
Matrix (so:	il/water):	SOIL	Lab Sample ID:	AD679985	
Level (low,	/med): L4	OW	Date Received:	12/20/2006	
<pre>% Solids:</pre>	81				

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	76.3		E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture :	MUD
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:				· · · · · · · · · · · · · · · · · · ·	
	·····				

STL BUFFALO

		Benchm	ark Environmental & Engineering S -1-	Science	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE	NO.
Contract:	NY04-133			TP-1/ \$	SL#2 (0-2.0)
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.:	F190
Matrix (so:	il/water):	SOIL	Lab Sample ID:	AD679986	
Level (low,	/med): L	OW	Date Received:	12/20/2006	
% Solids:	94				·····

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	5.2		E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	GRAVEL
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:			· · · · · · · · · · · · · · · · · · ·		

STL BUFFALO

		Benchn	nark Environmental & Engineering S -1-	Science
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
Contract:	NY04-133			TP-1/SL#1 (0.0-2.0)
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F190
Matrix (soi	1/water):	SOIL	Lab Sample ID:	AD679981
Level (low/	/med): L	OW	Date Received:	12/20/2006
% Solids:	67			

CAS No.	Analyte	Concentration	C	Q	м
7440-47-3	Chromium	3690		E*	P

Color Befor	re: YELLOW	Clarity Before:	CLEAR	Texture:	NONE
Color After	r: <u>COLORLESS</u>	Clarity After:	CLEAR	Artifacts:	
Comments:	·····			· · · · ·	
		······································			

Benchmark Environmental & Engineering Science

- 1 -INORGANIC ANALYSIS DATA PACKAGE

		g/L		4.0	4.0	-	12/28/2006	18:34	SUPERTRACE2	A12280x	Ŧ
nalyte Con	centration U	Inits C	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
						····	Anal	ytical			
Prep Batch ID: A	6B32695			Pre	p Date:	12/28	8/2006				
% Solids:		Sampie	W U V UI.	50.0)			0.0			
% Solids:		Somple	Wt/Vol:	50.0	h	Final	Vol· 4	50.0			
Matrix: WATER		Date Ro	ceived:	12/20	0/2006	Date (Collected:	12/19/200	6 Level:	LOW	
Sample ID: A6F2880	I-TCLP					Client I	D: TP-1/SL#1	(0.0-2.0)-T	CLP		

.

STL BUFFALO

		Benchma	ark Environmental & Engineering S -1-	deience
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
				TP-2 (2.5-3.0)
Contract:	NY04-133			l
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F190
Matrix (soil/water): SOIL		SOIL	Lab Sample ID:	AD679987
Level (low/	/med): L(W	Date Received:	12/20/2006
<pre>% Solids:</pre>	76			

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	33.6		E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	CLAY
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					
-					·····
_	·····				

.

STL BUFFALO

Benchmark Environmental & Engineering Science -1-									
			INORGANIC ANALYSIS DATA SHEET	SAMPLE	NO.				
Contract.	NR64 122			TP-3 S	L#1 (0-2)				
Contract:	NY04-133			.					
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.:	F190				
Matrix (soi	l/water):	SOIL	Lab Sample ID:	AD679988					
Level (low/	/med): L	DW	Date Received:	12/20/2006					
<pre>% Solids:</pre>	64								

CAS No.	Analyte	Concentration	C	Q	м
7440-47-3	Chromium	6000		Е*	P

Color Before:	YELLOW	Clarity Before:	CLEAR	Texture:	NONE
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:				<u> </u>	
-			······································	······································	
-					

Benchmark Environmental & Engineering Science

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchr	nark Environmer	ntal & E	ngine	SDG	No.:	F190		Met	hod Type:			
Sample ID: A	5F28809-TCLP						Client I	D: TP-3 SL#	‡1 (0-2)-TCLP	,		
Matrix: WA	TER	Dat	te Rec	eived:	12/2	0/2006	Date	Collected:	12/19/200	6 Level:	LOW	
% Solids:		Sa	nple '	Wt/Vol:	50.0)	Final	Vol:	50.0			
Prep Batch ID	A6B32695				Pre	p Date:	12/2	8/2006				
<u></u>	· · · ·							Ana	lytical			
nalyte	Concentration	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
Chromium	3570	ug/L			4.0	4.0	1	12/28/2000	6 18:39	SUPERTRACE2	A12280x	P

-

.

STL BUFFALO

		Benchn	nark Environmental & Engineering S -1-	Science	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.	
Contract:	NY04-133			TP-3 SL#1 (2-3)	
Lab Code:		Case No.:	SAS No.:	SDG NO.: F190	
Lab Code:	STLBLFO	Case NO.:	SAS NO.:	SDG NO.: F190	
Matrix (so:	il/water):	SOIL	Lab Sample ID:	AD679989	
Level (low,	/med): L(Ŵ	Date Received:	12/20/2006	
<pre>% Solids:</pre>	77				

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	35.6	İ	E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	CLAY
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:				<u></u>	
_					······································

36/1103

Client Sample No.

Lab Name CITT Duffeele	Contract:				BLIND DUP #1			
Lab Name: <u>STL Buffalo</u>	Concract							
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SDG No.: F190					.90		
Matrix (soil/water): SOIL Lab Sample ID: A6F36102								
% Solids:0.0	Date Samp/Recv: <u>12/19/2006</u> <u>12/20/2006</u>					/20/2006		
Parameter Name	Units of Measure	Result	С	Q	м	Method Number	Analyzed Date	
Hexavalent Chromium - Total	UG/G	129			A	7196A	01/06/2007	

37/1103

Client Sample No.

SB-17 (1-2) Contract: Lab Name: <u>STL Buffalo</u>
 Lab Code:
 RECNY
 Case No.:
 SAS No.:
 SDG No.: <u>F190</u> Lab Sample ID: <u>A6F19101</u> Matrix (soil/water): SOIL Date Samp/Recv: <u>12/18/2006</u> <u>12/18/2006</u> % Solids: __0.0 Analyzed Method Units of C М Number Date Measure Result Q Parameter Name Hexavalent Chromium - Total 0.50 U Α 7196A 12/22/2006 UG/G

Comments:

ד אורוראבז ליזניז

38/1103

Client Sample No.

							TP-1/SL#1 (0.0-2.0)
Lab Name: <u>STL Buffalo</u>		Contract	:			L	· · ·]
Lab Code: <u>RECNY</u>	Case No.:	SAS No.	:			S	SDG No.: <u>F1</u>	90
Matrix (soil/water): S	OIL		Lab Samp	pl€	e ID:	<u>A61</u>	736101	
% Solids:	0.0		Date Sar	πp,	Recv:	<u>12</u>	/19/2006 12,	/20/2006
Parame	ter Name	Units of Measure	Result	С	Q	м	Method Number	Analyzed Date
Hexavalent Chromium -	Total	UG/G	4.7			A	7196A	01/06/2007

Comments:

TYNDM T T.T~7

39/1103

Client Sample No.

						5	rp-1/SL#1 ((0.0-2.0)
Lab Name: <u>STL Buffalo</u>		Contract:				L		
Lab Code: <u>RECNY</u>	Case No.:	SAS No.	:			ŝ	5DG No.: <u>F19</u>	<u>90 </u>
Matrix (soil/water): SC		Lab Samp	ple	e ID:	<u>A61</u>	F36101MS		
% Solids:	0.0	Date Samp/Recv: <u>12/19/2006</u> <u>12/20/2006</u>						/20/2006
Paramet	er Name	Units of Measure		С	Q	м	Method Number	Analyzed Date
Hexavalent Chromium -	Total	UG/G	14.3			A	7196A	01/06/2007

Comments:

40/1103

Client Sample No.

Lab Name: STL Buffalo	Contract	Contract:				TP-1/SL#1 (0.0-2.0)		
Lab Code: <u>RECNY</u> Case No.:	SAS No.	SAS No.: SDG No.: F					90	
Matrix (soil/water): <u>SOIL</u>		Lab Sam	ole	e ID:	<u>A6</u>	F36101SD		
% Solids:0.0		Date Samp/Recv: <u>12/19/2006</u> <u>12/20/2006</u>					/20/2006	
Parameter Name	Units of Measure	Result	C	Q	M	Method Number	Analyzed Date	
Hexavalent Chromium - Total	UG/G	7.7			A	7196A	01/06/2007	

41/1103

_

Client Sample No.

TP-1/SL#2 (0.0-2.0) Contract: _____ Lab Name: <u>STL Buffalo</u> SDG No.: <u>F190</u> Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: _____ Lab Sample ID: <u>A6F36104</u> Matrix (soil/water): <u>SOIL</u> Date Samp/Recv: <u>12/19/2006</u> <u>12/20/2006</u> % Solids: _____0.0 _____ -

Parameter Name	Units of Measure		С	Q	М	Method Number	Analyzed Date
Hexavalent Chromium - Total	UG/G	0.43	υ		A	7196A	01/06/2007

Comments:

Г

42/1103

Client Sample No. TP-3/SL#1 (0-2) Lab Name: <u>STL Buffalo</u> Contract: _____ Lab Code: <u>RECNY</u> Case No.: ____ SDG No.: <u>F190</u> SAS No.: _____ Lab Sample ID: <u>A6F36106</u> Matrix (soil/water): SOIL % Solids: 0.0 Date Samp/Recv: <u>12/19/2006</u> <u>12/20/2006</u> Analyzed Units of Method C Date Q M Number Parameter Name Measure Result 7196A 01/06/2007 Α Hexavalent Chromium - Total UG/G 214

ANALYTICAL REPORT

Job#: <u>A06-F297, A06-F362</u>

SIL Project#: NY4A9217 SDC#: F297 Site Name: <u>Benchmark</u> Task: 2250 Factory Outlet Blvd.

> Mr. Mike Lesakowski Benchmark Environmental 726 Exchange St., Ste 624 Buffalo, NY 14210

> > STL Buffalo

Brian J. Fischer Project Manager

01/16/2007

1/767

SAMPLE SUMMARY

			SAMPI	ED	RECEIVE	Ð
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A6F36202	BLIND DUP #2	SOIL	12/19/2006	09:05	12/20/2006	10:25
A6F29702	BLIND DUP#2	SOIL	12/19/2006	09:05	12/20/2006	10:25
A6F29715	TP-10 (0.0-1.5)	SOIL	12/20/2006	10:25	12/20/2006	10:25
A6F36215	TP-10(0.0-1.5)	SOIL	12/20/2006	10:25	12/20/2006	14:45
A6F29716	TP-11 (0.0-2.0)	SOIL	12/20/2006	11:19	12/20/2006	10:25
A6F36216	TP-11(0.0-2.0)	SOIL	12/20/2006	11:19	12/20/2006	14:45
A6F29717	TP-12 (1.5-2.5)	SOIL	12/20/2006	12:02	12/20/2006	10:25
A6F36217	TP-12(1.5-2.5)	SOIL	12/20/2006	12:02	12/20/2006	14:45
A6F29701	TP-2 (0.0-2.5)	SOIL	12/19/2006	11:30	12/20/2006	10:25
A6F29701MS	TP-2 (0.0-2.5)	SOIL	12/19/2006	11:30	12/20/2006	10:25
A6F29701SD	TP-2 (0.0-2.5)	SOIL	12/19/2006	11:30	12/20/2006	10:25
A6F36201	TP-2 (0.0-2.5)	SOIL	12/19/2006	11:30	12/20/2006	10:25
A6F29703	TP-3/SL#2 (0-2)	SOIL	12/19/2006	13:20	12/20/2006	10:25
A6F36203	TP-3/SL#2 (0-2)	SOIL	12/19/2006	13:20	12/20/2006	10:25
A6F29704	TP-4 (0.0-2.5)	SOIL	12/19/2006	13:46	12/20/2006	10:25
A6F36204	TP-4 (0.0-2.5)	SOIL	12/19/2006	13:46	12/20/2006	10:25
A6F29705	TP-4 (2.5-3.0)	SOIL	12/19/2006	13:50	12/20/2006	10:25
A6F29707	TP-5/SL#1 (2.0-2.5)	SOIL	12/19/2006	14:35	12/20/2006	10:25
A6F36207	TP-5/SL#1 (2.0-2.5)	SOIL	12/19/2006	14:35	12/20/2006	10:25
A6F29706	TP-5/SL#1 (2.5-3.0)	SOIL	12/19/2006	14:41	12/20/2006	10:25
A6F29708	TP-5/SL#2 (2.0-2.5)	SOIL	12/19/2006	14:43	12/20/2006	10:25
A6F36208	TP-5/SL#2 (2.0-2.5)	SOIL	12/19/2006	14:43	12/20/2006	10:25
A6F29709	TP-6/SL#1 (0.0-3.0)	SOIL	12/19/2006	15:30	12/20/2006	10:25
A6F36209	TP-6/SL#1 (0.0-3.0)	SOIL	12/19/2006	15:30	12/20/2006	10:25
A6F29710	TP-6/SL#1 (3.0-3.5)	SOIL	12/19/2006	15:37	12/20/2006	10:25
A6F29711	TP-6/SL#2 (0.0-3.0)	SOIL	12/19/2006	15:41	12/20/2006	10.25
A6F36211	TP-6/SL#2 (0.0-3.0)	SOIL	12/19/2006	15:41	12/20/2006 12/20/2006	10:25
A6F29712	TP-7 (0.0-3.0)	SOIL	12/19/2006	10:31	12/20/2006	10.25
A6F36212	TP-7 (0.0-3.0)	SOIL	12/19/2006	T0:3T	12/20/2006	10:25
A6F29713	TP-8 (0.0-2.0)	SOIL	12/20/2006	08:50	12/20/2006	1/1./5
A6F36213	TP-8 (0.0-2.0)	SOIL	12/20/2006	00.45	12/20/2006 12/20/2006	10,75
A6F29714	TP-9 (0.0-3.0)	SOIL			12/20/2006	
A6F36214	TP-9 (0.0-3.0)	SOIL	12/20/2006	09:45	12/20/2006	74:40

METHODS SUMMARY

Job#: A06-F297, A06-F362

STL Project#: <u>NY4A9217</u> SDG#: <u>F297</u> Site Name: <u>Benchmark</u>

PARAMETER	ANALYTICAL METHOD
Chromium - Total	ASP00 CLP-M
Chromium - Total	SW8463 6010
Hexavalent Chromium - Total	SW8463 7196A
Toxicity Characteristic Leaching Procedure	SW8463 1311

References:

- ASP00 "Analytical Services Protocol", New York State Department of Conservation, June 2000.
- SW8463 "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

NON-CONFORMANCE SUMMARY

Job#: A06-F297, A06-F362

STL Project#: <u>NY4A9217</u> SDS#: <u>F297</u> Site Name: <u>Benchmark</u>

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-F297

Sample Cooler(s) were received at the following temperature(s); 3.0 °C All samples were received in good condition. A06-F362 Sample Cooler(s) were received at the following temperature(s); 3.0 °C

All samples were received in good condition.

Metals Data

The recoveries of sample TP-2 (0.0-2.5) Matrix Spike and Matrix Spike Duplicate exhibited results below the quality control limits for Chromium. The recoveries of TCLP sample TP-2 (0.0-2.5) exhibited results above the quality control limits for Chromium. The sample result is more than four times greater than the spike added. The RPD of sample TP-2 (0.0-2.5) Matrix Spike and Matrix Spike Duplicate exceeded the quality control limits for Chromium. The LCS's were acceptable.

The recovery of sample TP-2 (0.0-2.5) Post Spike exhibited a result below the quality control limits for Chromium. However, the LCS was acceptable.

The RPD of sample TP-2 (0.0-2.5) and the Matrix Duplicate exceeded the quality control limits for Chromium. However, the LCS was acceptable.

The Serial Dilution of sample TP-2 (0.0-2.5) exceeded the quality control limits for Chromium. However, the LCS was acceptable.

.

Wet Chemistry Data

Hexavalent Chromium was subcontracted to STL Pittsburgh. The complete subcontract report is included in this report as Appendix A. Comments pertaining to Hexavalent Chromium may be found within the comment summary of the subcontract report.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

STL BUFFALO

Benchmark Environmental & Engineering Science -1-INORGANIC ANALYSIS DATA SHEET

			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
				BLIND DUP#2
Contract:	NY04-133			
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F297
Matrix (soi	l/water):	SOIL	Lab Sample ID:	AD679997
Level (low/	med): L(W	Date Received:	12/20/2006
<pre>% Solids:</pre>	68		·	

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	6830		E*	P

Color	Before:	GRAY	Clarity Before:	CLOUDY	Texture:	COARSE
Color	After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Commer	its:					
				······		

.

Benchmark Environmental & Engineering Science

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchr	nark Environmental	& Engine	e SDG	No.:	F297		Met	hod Type:			
Sample ID: A	6F29702-TCLP					Client l	D: BLIND I	OUP#2-TCLP			
Matrix: W2	ATER	Date Re	ceived:	12/2	0/2006	Date	Collected:	12/19/200)6 Level:	LOW	
% Solids:		Sample	Wt/Vol:	50.0)	Final	Vol:	50.0			
Prep Batch ID	: A6B32695			Pre	p Date:	12/2	8/2006				
<u> </u>							Ana	lytical		<u>_</u>	
Analyte	Concentration U	nits C	Qual	RL	RL	Dil	Date	Time	Instrument	Run	M
Chromium	6770 uş	g/L		4.0	4.0	1	12/28/200	6 19:08	SUPERTRACE2	A12280x	Р

-

•

STL BUFFALO

Benchmark Environmental & Engineering Science -1-

INORGANIC ANALYSIS DATA SHEET

			INORGANIC ANALYSIS DATA SHE	ET	SAMPLE NO.		
					TP-10	(0.0-1.5)	
Contract:	NY04-133						
Lab Code:	STLBLFO	Case No.:	SAS No.:	S	DG NO.:	F297	
Matrix (so:	il/water):	SOIL	Lab Sample I	D: AD68	0010		
Level (low,	/med): L	OW	Date Receive	d: <u>12/2</u>	0/2006		
% Solids:	81						

CAS No.	Analyte	Concentration	C	Q	м
7440-47-3	Chromium	964		E*	P

Color Before	BROWN	Clarity Before:	CLOUDY	Texture:	GRAVEL
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:		······			
			······		
	<u></u>			,	

Benchmark Environmental & Engineering Science

- 1 -INORGANIC ANALYSIS DATA PACKAGE

nalyte	Concentration	Units	С	Qual	RL 4.0	RL 4.0	Dil	Date 12/28/2006	Time 5 19:49	Instrument SUPERTRACE2	Run A12280x
·								Апа	lytical		
Prep Batch ID:	A6B32695				Pre	p Date:	12/2	8/2006			
% Solids:		Sa	mple `	Wt/Vol:	50.0)	Final	Vol:	50.0		
Matrix: WAT	ER	Dat	te Rec	eived:	12/20	0/2006	Date	Collected:	12/20/200)6 Level:	LOW
Sample ID: A6	29715-TCLP						Client I	D: TP-10 (0.	0-1.5)-TCLP		

•

STL BUFFALO

Benchmark Environmental & Engineering Science -1-

			INORGANIC ANALYSIS DATA SHEET		SAMPLE	NO.
Contract:	NY04-133				TP-11	(0.0-2.0)
Lab Code:	STLBLFO	Case No.:	SAS No.:	sr	OGNO.:	F297
Matrix (so:	il/water):	SOIL	Lab Sample ID:	AD68	0011	······································
Level (low,	/med): L(W	Date Received:	12/2	0/2006	

% Solids: 76

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	4830		E*	P

Color Before:	GRAY	Clarity Before:	CLOUDY	Texture:	COARSE
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:			, 1981		
	······································			· · · · · · · · · · · · · · · · · · ·	······································

Benchmark Environmental & Engineering Science

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchm	ark Environment	tal & En	igine	SDG	No.:	F 297		Met	hod Type:			
				······								
Sample ID: A6	F29716-TCLP						Client I	D: TP-11 (0.	.0-2.0)-TCLP			
Matrix: WA	ΓER	Date	e Rec	eived:	12/2	0/2006	Date	Collected:	12/20/200	6 Level:	LOW	
% Solids:		San	nple V	Wt/Vol:	50.0)	Final	Vol:	50.0			
Prep Batch ID:	A6B32695				Pre	p Date:	12/2	8/2006				
				·				Ana	lytical			
Inalyte	Concentration	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	Μ
Chromium	8970	ug/L			4.0	4.0	1	12/28/200	6 20:44	SUPERTRACE2	A12280x	Р

.

•

• • • • •

STL BUFFALO

Contract:

Lab Code:

	Benchma	Benchmark Environmental & Engineering Scien -1-						
	I	NORGANIC ANALYSIS DATA SHEET	SAMPLE NO.					
NY04-133			TP-12 (1.5-2.5)					
STLBLFO	Case No.:	SAS No.:	SDG NO.: F297					

Matrix (soil/water):	SOIL	Lab Sample ID:	AD680012	
Level (low/med):	LOW	Date Received:	12/20/2006	
<pre>% Solids: 63</pre>				

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	6710	t	E*	P

Color Before:	GRAY	Clarity Before:	CLOUDY	Texture:	COARSE
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:			1		
-					······································
_					

_---

_

Benchmark Environmental & Engineering Science

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Inalyte	Concentration	Units	С	Qual		RL	Dil	Date 12/28/2000	Time 5 19:54	Instrument SUPERTRACE2	Run A12280x	M
	<u> </u>	.							lytical			······
Prep Batch ID:	A6B32695				Pre	p Date:	12/2	8/2006				
% Solids:		Sa	mple `	Wt/Vol:	50.0)	Final	Vol:	50.0			
Matrix: WAT	ER	Da	te Rec	eived:	12/2	0/2006	Date	Collected:	12/20/200)6 Level:	LOW	
Sample ID: A6	29717-TCLP						Client I	D: TP-12 (1	. 5-2 .5)-TCLP			

.

.

STL BUFFALO

Benchmark Environmental & Engineering Science -1-INORGANIC ANALYSIS DATA SHEET SAMPLE NO. TP-2 (0.0-2.5)

Contract:	NY04-133			L	
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.:	F297
Matrix (soi	1/water):	SOIL	Lab Sample ID:	AD679993	·······
Level (low/	(med): I	.OW	Date Received:	12/20/2006	
% Solids:	73				

CAS No.	Analyte	Concentration	C	2	м
7440-47-3	Chromium	7980		E*	<u>†</u> ₽

Color Before:	GRAY	Clarity Before:	CLOUDY	Texture:	COARSE
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					

Benchmark Environmental & Engineering Science

- 1 -INORGANIC ANALYSIS DATA PACKAGE

alyte Concentration U	Jnits C	Qual	RL	RL	Dil	Date	Time	Instrument	Run
						Ana	ytical		
Prep Batch ID: A6B32695			Pre	p Date:	12/2	8/2006			
% Solids:	Sampl	e Wt/Vol:	50.0)	Final	Vol:	50.0		
Matrix: WATER	Date R	eceived:	12/2	0/2006	Date	Collected:	12/19/200	6 Level:	LOW
Sample ID: A6F29701-TCLP					Client I	D: TP-2 (0.0-	2.5)-TCLP		

-

-

		Benchm	ark Environmental & Engineering S -1-	Science	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.	
Combos of a	NR/04 100			TP-3/SL#2 (0-2)	
Contract:	NY04-133				
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F297	
Matrix (so	il/water):	SOIL	Lab Sample ID:	AD679998	
Level (low,	/med): L(W	Date Received:	12/20/2006	
<pre>% Solids:</pre>	97				

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	4.6	[E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	GRAVEL
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					
	- <u></u>				

STL BUFFALO

Benchmark Environmental & Engineering Science -1-						
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.		
Contract:	NY04-133			TP-4 (0.0-2.5)		
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F297		
Matrix (soi	ll/water):	SOIL	Lab Sample ID:	AD679999		
Level (low/	(med): L(W	Date Received:	12/20/2006		
% Solids:	67					

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	5410		E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	GRAVEL	
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:		
Comments:			·			

STL BUFFALO

Benchmark Environmental & Engineering Science -1-**INORGANIC ANALYSIS DATA SHEET** SAMPLE NO. TP-4 (2.5-3.0) Contract: NY04-133 STLBLFO Case No.: SAS No.: SDG NO.: F297 Matrix (soil/water): SOIL Lab Sample ID: AD680000

% Solids: 76

Level (low/med):

LOW

Lab Code:

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	30.9	1	E*	P

Date Received:

12/20/2006

.

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	CLAY
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					
		····	· · · · · · · · · · · · · · · · · · ·	·····	

_

STL BUFFALO

Benchmark Environmental & Engineering Science

-1-

			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.		
				TP-5/SL#1 (2.0-2.5)		
Contract:	NY04-133			l		
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F297		
Matrix (soil/water): SOIL		Lab Sample ID:	AD680002			
Level (low,	/med): L4	OW	Date Received:	12/20/2006		
% Solids:	80					

CAS No.	Analyte	Concentration	c	Q	м
7440-47-3	Chromium	2460		E*	P

Color Before:	BROWN	Clarity Before:			
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					
		·····			

Benchmark Environmental & Engineering Science

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchmark E	Environmental	& Engine	e SDG	No.:	F297		Meti	hod Type:			
Sample ID: A6F2970	07-TCLP					Client l	D: TP-5/SL#	1 (2.0-2.5)-	ICLP		
Matrix: WATER		Date Ree	ceived:	12/2	0/2006	Date	Collected:	12/19/20	06 Level:	LOW	
% Solids:		Sample	Wt/Vol:	50.0)	Final	Vol:	50.0			
Prep Batch ID:	A6B32695			Pre	p Date:	12/2	8/2006				
<u> </u>						Analytical					
Analyte Co	ncentration Un	its C	Qual	RL	RL	Dil	Date	Time	Instrument	Run	Μ
Chromium	724 ug	/L		4.0	4.0	1	12/28/2000	5 19:24	SUPERTRACE2	A12280x	Р

.

•

STL BUFFALO

		Science		
			-1- INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
Contract:	NY04-133			TP-5/SL#1 (2.5-3.0)
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F297
Matrix (soi	il/water):	SOIL	Lab Sample ID:	AD680001
Level (low/	/med): L	OW	Date Received:	12/20/2006
% Solids:	76			

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	C	Q	м
7440-47-3	Chromium	32.1		E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	CLAY
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					
Comments: 				······································	

- --

.

STL BUFFALO

		Benchm	ark Environmental & Engineering S -1-	cience	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE	NO.
Contract:	NY04-133			TP-5/S	L#2 (2.0-2.5)
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.:	F297
Matrix (so	il/water):	SOIL	Lab Sample ID:	AD680003	
Level (low	/med): L	W	Date Received:	12/20/2006	
% Solids:	80	······			

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	45.5		E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	TOPSOIL
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					
_					

.

STL BUFFALO

Level (low/med):

% Solids: 69

LOW

		Benchr	nark Environmental & Engineering S -1-	science	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE	NO.
Contract:	NY04-133			TP-6/SI	L#1 (0.0-3.0
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.:	F297
Matrix (so:	il/water):	SOIL	Lab Sample ID:	AD680004	

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	5100	†	E*	İP

Date Received: 12/20/2006

Color Before:	GRAY	Clarity Before:	CLOUDY	Texture:	COARSE
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	••==•=
Comments:	<u> </u>				
		······			

Benchmark Environmental & Engineering Science

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Sample ID: A6F29709-TCLP Client ID: TP-6/SL#1 (0.0-3.0)-TCLP Matrix: WATER Date Received: 12/20/2006 Date Collected: 12/19/2006 Level: I % Solids: Sample Wt/Vol: 50.0 Final Vol: 50.0 Prep Batch ID: A6B32695 Prep Date: 12/28/2006	LOW	LOW	
% Solids: Sample Wt/Vol: 50.0 Final Vol: 50.0	LOW	LOW	
Prep Batch ID: A6B32695 Prep Date: 12/28/2006			
Analytical	· · · .		
Analyte Concentration Units C Qual RL RL Dil Date Time Instrument	Run	Run	
Chromium 5310 ug/L 4.0 4.0 1 12/28/2006 19:29 SUPERTRACE2	A12280x	A12280x	

-

.

STL BUFFALO

		Benchn	nark Environmental & Engineering S -1-	Science	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.	
				TP-6/SL#1 (3.0-3.5)	
Contract:	NY04-133		· · · · · · · · · · · · · · · · · · ·		
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F297	
Matrix (so:	il/water):	SOIL	Lab Sample ID:	AD680005	
Level (low,	/med): L(OW	Date Received:	12/20/2006	
<pre>% Solids:</pre>	70				

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	с	Q	м
7440-47-3	Chromium	45.6	<u> </u>	E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	CLAY
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					

STL BUFFALO

Benchmark Environmental & Engineering Science -1-INORGANIC ANALYSIS DATA SHEET

			INORGANIC ANALYSIS DA	IA SHEET	SAMPLE	NO.
					TP-6/SI	u#2 (0.0-3.0)
Contract:	NY04-133					-
Lab Code:	STLBLFO	Case No.:	SAS No.:	_	SDG NO.:	F297
Matrix (soi	il/water):	SOIL	Lab Sa	ample ID:	AD680006	
Level (low/	/med):	W	Date F	Received:	12/20/2006	
% Solids:	95					

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	2.3		E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	GRAVEL
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					

-

STL BUFFALO

		Benchr	nark Environmental & Engineering S -1-	Science	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.	
Contract:	NY04-133			TP-7 (0.0-3.0)	
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F297	
Matrix (soi	il/water):	SOIL	Lab Sample ID:	AD680007	
Level (low/	(med): L	WC	Date Received:	12/20/2006	

% Solids: 71

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	4900	1	E*	P

Color Before:	GRAY	Clarity Before:	CLOUDY	Texture:	COARSE
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					
	-				

Benchmark Environmental & Engineering Science

- 1 -INORGANIC ANALYSIS DATA PACKAGE

nalyte Conc	entration Units	с	Qual	RL	RL	Dil	Ana Date	lytical Time	Instrument	Run	N
	B32695	impic			, p Date:		8/2006	50.0			
Matrix: WATER	_		eived: Wt/Vol:	12/20 50.0	0/2006	Date (Final	Collected:	12/19/200 50.0	6 Level:	LOW	
Sample ID: A6F29712-	TCLP					Client I	D: TP-7 (0.0	-3.0)-TCLP			

.

•

STL BUFFALO

		Benchmark	Environmental & Engineering S -1-	Science	
		INO	RGANIC ANALYSIS DATA SHEET	SAMPLE	NO.
-				TP-8 (0.0-2.0)
Contract:	NY04-133				
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.:	F297
Matrix (soi	il/water):	SOIL	Lab Sample ID:	AD680008	
Level (low,	/med): L	OW	Date Received:	12/20/2006	
<pre>% Solids:</pre>	73				

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	C	Q	м
7440-47-3	Chromium	2740		E*	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	GRAVEL	
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:		
Comments:						
_						

Benchmark Environmental & Engineering Science

- 1 -INORGANIC ANALYSIS DATA PACKAGE

					4.0	4.0	1	12/28/2000		SUPERTRACE2	A12280x
nalyte	Concentration	Units	с	Oual	RL	RL	Dil	Ana Date	lytical Time	Instrument	Run
Prep Batch ID:	A6B32695				Pre	p Date:	12/2	8/2006			
% Solids:		Sai	mple '	Wt/Vol:	50.0)	Final	Vol:	50.0		
Matrix: WAI	ER	Dat	te Rec	eived:	12/2	0/2006	Date	Collected:	12/20/200	6 Level:	LOW
Sample ID: A6F	29713-TCLP						Client l	D: TP -8 (0 .0	-2.0)-TCLP		

.

STL BUFFALO

		Benchn	nark Environmental & Engineering S -1-	Science
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
Contract:	NY04-133			TP-9 (0.0-3.0)
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.: F297
Matrix (so	il/water):	SOIL	Lab Sample ID:	AD680009
Level (low,	/med):	WC	Date Received:	12/20/2006
% Solids:	71			

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7440-47-3	Chromium	3250		E*	₽

Color Before:	GRAY	Clarity Before:	CLOUDY	Texture:	COARSE
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					

STL BUFFALO

Benchmark Environmental & Engineering Science

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Chromium		1830	ug/L			4.0	4.0	1	12/28/2000	5 19:44	SUPERTRACE2	A12280x	I
halyte		Concentration	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
									Ana	lytical			
Prep l	Batch ID:	A6B32695				Pre	p Date:	12/2	8/2006				
% Sol	ids:		Sa	mple	Wt/Vol:	50.0)	Final	Vol:	50.0			
Matri	x: WAT	ER	Da	te Reo	eived:	12/2	0/2006	Date	Collected:	12/20/200	6 Level:	LOW	
Samp	ie ID: A6F	29714-TCLP						Client I	D: TP-9 (0.0	-3.0)-TCLP			
Client:	Benchma	rk Environmer	ntal & E	ngine	SDG	No.:	F297		Met	hod Type:			

.

40/767

		alanaboar				(Client Samp	le No.
						I	BLIND DUP #	2
Lab Name: <u>STL Buffal</u>	2	Contract	:		_	L		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Lab Code: <u>RECNY</u>	Case No.:	SAS No	.:			ŝ	SDG No.: <u>F2</u>	97
Matrix (soil/water):	SOIL		Lab Sam	ole	e ID:	<u>A6</u>]	F36202	
% Solids:	0.0		Date Sar	ηp,	/Recv:	<u>12</u>	/19/2006 12	/20/2006
Para	neter Name	Units of Measure	Result	С	Q	м	Method Number	Analyzed Date
Hexavalent Chromium	- Total	_UG/G	304			A	7196A	01/06/2007

41/767

01/06/2007

7196A

Α

Client Sample No. TP-10(0.0-1.5) Contract: Lab Name: <u>STL Buffalo</u> Lab Code: <u>RECNY</u> Case No.: SAS No.: _____ SDG No.: <u>F297</u> Matrix (soil/water): SOIL Lab Sample ID: A6F36215 0.0 Date Samp/Recv: <u>12/20/2006</u> <u>12/20/2006</u> % Solids: Analyzed Method Units of C Date Result Q M Number Parameter Name Measure

UG/G

30.6

Comments:

Hexavalent Chromium - Total

42/767

01/06/2007

Client Sample No.

		Contract]]	TP-11(0.0-2	.0)
Lab Name: <u>STL Buffalc</u>								
Lab Code: <u>RECNY</u>	Case No.:	SAS NO.	:			5	SDG No.: <u>F29</u>	97
Matrix (soil/water):	SOIL		Lab Sam	ple	e ID:	<u>A61</u>	36216	
% Solids:	0.0		Date Sa	۳Þ	Recv:	<u>12</u> /	/20/2006 12,	/20/2006
Param	eter Name	Units of Measure	Result	С	Q	м	Method Number	Analyzed Date

UG/G

113

A

7196A

Comments:

Hexavalent Chromium - Total_

43/767

01/06/2007

7196A

Α

Client Sample No. TP-12(1.5-2.5) Lab Name: <u>STL Buffalo</u> Contract: _____
 Lab Code:
 RECNY
 Case No.:
 SAS No.:
 SDG No.: <u>F297</u> Lab Sample ID: A6F36217 Matrix (soil/water): SOIL 0.0 Date Samp/Recv: 12/20/2006 12/20/2006 % Solids: Analyzed Method Units of C Date Parameter Name Result Q M Number Measure

UG/G

227

Comments:

Hexavalent Chromium - Total

Client Sample No. TP-2 (0.0-2.5) Lab Name: <u>STL Buffalo</u> Contract: _____ SDG No.: <u>F297</u> Lab Code: RECNY Case No.: ____ SAS No.: ____ Lab Sample ID: A6F36201 Matrix (soil/water): SOIL Date Samp/Recv: <u>12/19/2006</u> <u>12/20/2006</u> % Solids: ____0.0 Analyzed Method Units of c o M Number Date Result Parameter Name Measure A 7196A 01/06/2007 358 UG/G Hexavalent Chromium - Total

45/767

Client Sample No. TP-3/SL#2 (0-2) Lab Name: STL Buffalo Contract:
 Lab Code:
 <u>RECNY</u>
 Case No.:

 SDG No.: <u>F297</u> Lab Sample ID: A6F36203 Matrix (soil/water): SOIL Date Samp/Recv: <u>12/19/2006</u> <u>12/20/2006</u> % Solids: 0.0 Analyzed Units of Method C Date Parameter Name Measure Result Q М Number 0.45 U 7196A 01/06/2007 Hexavalent Chromium - Total_ Α UG/G

Comments:

ייארוריגד אורוריגד

46/767

Client Sample No. TP-4 (0.0-2.5) Contract: _____ Lab Name: <u>STL Buffalo</u> Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: ____ SDG No.: F297 Lab Sample ID: <u>A6F36204</u> Matrix (soil/water): SOIL Date Samp/Recv: <u>12/19/2006</u> <u>12/20/2006</u> % Solids: 0.0 Analyzed Method Units of C Number Date Parameter Name Measure Result Q Μ Α 7196A 01/06/2007 Hexavalent Chromium - Total UG/G 257

Comments:

Wet	Chemistry	Analysis
-----	-----------	----------

٦

Client Sample No.

Contract:			-			
SAS NO.:				S	EDG No.: <u>F29</u>	<u>97 </u>
	Lab Samp	ole	ID:	<u>A61</u>	<u>*36207</u>	
	Date Sam	np∕I	Recv:	<u>12/</u>	/ <u>19/2006</u> <u>12</u> /	/20/2006
uits of asure	Result	с	Q	м	Method Number	Analyzed Date
J/G	31.1			Α	7196A	01/06/2007
1	its of asure	Date San its of asure Result	Lab Sample Date Samp/I its of asure Result C	Lab Sample ID: Date Samp/Recv: its of asure Result C Q	Lab Sample ID: <u>A6E</u> Date Samp/Recv: <u>12</u> its of asure Result C Q M	Lab Sample ID: <u>A6F36207</u> Date Samp/Recv: <u>12/19/2006</u> <u>12/</u> its of asure Result C Q M Number

Comments:

48/767

Client Sample No.

Lab Name: <u>STL Buffalo</u>	Contract	::		_	<i>,</i>	IP-5/SL#2 (2.0-2.5)
Lab Code: <u>RECNY</u> Case No.:	SAS No.	.:			i	SDG No.: <u>F2</u>	97
Matrix (soil/water): <u>SOIL</u>		Lab Sam	ple	e ID:	<u>A6</u>	F36208	
% Solids:0.0		Date Sar	πp/	Recv:	<u>12</u>	/19/2006 <u>12</u>	/20/2006
Parameter Name	Units of Measure	Result	С	Q	м	Method Number	Analyzed Date
Hexavalent Chromium - Total	UG/G	0.50	υ		A	7196A	01/06/2007

49/767

Client Sample No. TP-6/SL#1 (0.0-3.0) Contract: Lab Name: <u>STL Buffalo</u> Lab Code: <u>RECINY</u> Case No.: _____ SAS No.: _____ SDG No.: <u>F297</u> Lab Sample ID: A6F36209 Matrix (soil/water): SOIL % Solids: 0.0 Date Samp/Recv: 12/19/2006 12/20/2006 Analyzed Units of Method C Number Date Parameter Name Measure Result Q М 7196A Α 01/06/2007 Hexavalent Chromium - Total UG/G 158

	Wet Chemistry	Analysis			(50/ Client Samp	
Lab Name: <u>STL Buffalo</u>	Contract				r	IP-6/SL#2 (0.0-3.0)
Lab Code: <u>RECNY</u> Case No.:	SAS No.	:			ŝ	5DG No.: <u>F2</u>	97
Matrix (soil/water): <u>SOIL</u>		Lab Samp	ple) ID:	<u>A61</u>	F36211	
% Solids: <u>0.0</u>		Date San	ηp/	Recv:	<u>12</u>	/19/2006 12,	/20/2006
Parameter Name	Units of Measure	Result	с	Q	м	Method Number	Analyzed Date
Hexavalent Chromium - Total	UG/G	0.43	υ		A	7196A	01/06/2007

Comments:

Wet	Chemistry	Analysis
-----	-----------	----------

Client Sample No. TP-7 (0.0-3.0) Contract: Lab Name: <u>STL Buffalo</u> Lab Code: <u>RECNY</u> Case No.: ____ SAS No.: _____ SDG No.: <u>F297</u> Lab Sample ID: A6F36212 Matrix (soil/water): SOIL Date Samp/Recv: 12/19/2006 12/20/2006 % Solids: 0.0 Analyzed Units of Method C Number Date Result Q M Parameter Name Measure 01/06/2007 UG/G 7196A 156 Α Hexavalent Chromium - Total

52/767

					(Client Samp	le No.
					-	TP-8 (0.0-2	.0)
Lab Name: <u>STL Buffalo</u>	Contract			_	L		
Lab Code: <u>RECNY</u> Case No.:	SAS No.	:			2	5DG No.: <u>F2</u>	97
Matrix (soil/water): <u>SOIL</u>		Lab Sam <u>r</u>	pl∈	e ID:	<u>A6</u>	-36213	
% Solids: <u>0.0</u>		Date San	np/	'Recv:	<u>12</u>	/20/2006 <u>12</u>	/20/2006
Parameter Name	Units of Measure	Result	С	Q	м	Method Number	Analyzed Date
Hexavalent Chromium - Total	UG/G	52.7			A	7196A	01/06/2007

53/767

Client Sample No.

Lab Name: STL Buffalo	Contract:			[IP-9 (0.0-3	.0)
Lab Code: <u>RECNY</u> Case No.:	SAS No.:			:	SDG No.: <u>F2</u>	97
Matrix (soil/water): <u>SOIL</u>	Iab	Sampl	e ID:	<u>A6</u>	F36214	
% Solids:0.0 Date Samp/Recv: 1			<u>12</u>	<u>12/20/2006</u> <u>12/20/2006</u>		
Parameter Name	Units of Measure Resu	lt C	Q	M	Method Number	Analyzed Date
Hexavalent Chromium - Total	UG/G	32.7		А	7196A	01/06/2007

ANALYTICAL REPORT

Job#: <u>A06-F405</u>

SIL Project#: NY4A9217 SDG#: F405 Site Name: <u>Benchmark</u> Task: 2250 Factory Outlet Blvd.

> Mr. Mike Lesakowski Benchmark Environmental 726 Exchange St., Ste 624 Buffalo, NY 14210

> > STL Buffalo

Brian J. Fischer Project Manager

01/18/2007

SAMPLE SUMMARY

			SAMPI	ED	RECEIVE	E)
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A6F40502	BLIND DUP#1	SOIL			12/22/2006	
A6F40503	MW-1 (6-8)	SOIL			12/22/2006	
A6F40504	MW-2 (2-4)	SOIL	12/21/2006	15:07	12/22/2006	11:40
A6F40505	MW-3 (8-10)	SOIL			12/22/2006	
A6F40501	SS-1,2 COMP	SOIL			12/22/2006	
A6F40501MS	SS-1,2 COMP	SOIL			12/22/2006	
A6F40501SD	SS-1,2 COMP	SOIL	12/21/2006	08:30	12/22/2006	11:40

METHODS SUMMARY

Job#: A06-F405

STL Project#: <u>NY4A9217</u> SDG#: <u>F405</u> Site Name: <u>Benchmark</u>

PARAMETER		ALYTICAL METHOD
BENCHMARK - SOIL - ASPOO (CLP) SEMIVOLATILES	ASP00	EPA SVOA
BENCHMARK - SOIL - ASPOO (CLP) PESTICIDES/AROCLORS	ASP00	EPA P/PCB
STEELFIELDS - ASPOO 8151 - HERBICIDES - S	ASP00	8151
Aluminum - Total	ASP00	CLP-M
Antimony - Total	ASP00	CLP-M
Arsenic - Total	ASP00	CLP-M
Barium - Total	ASP00	CLP-M
Beryllium - Total	ASP00	CLP-M
Cadmium - Total	ASP00	CLP-M
Calcium - Total	ASP00	
Chromium - Total	ASP00	
Cobalt - Total	ASP00	CLP-M
Copper - Total	ASP00	
Iron - Total	ASP00	
Lead - Total	ASP00	
Magnesium - Total	ASP00	CLP-M
Manganese - Total	ASP00	
Mercury - Total	ASP00	
Nickel - Total	ASP00	
Potassium - Total	ASP00	CLP-M
Selenium - Total	ASP00	CLP-M
Silver - Total	ASP00	
Sodium - Total	ASP00	
Thallium - Total	ASP00	
Vanadium - Total	ASP00	
Zinc - Total	ASP00	CLP-M
Leachable pH	SW8463	9045

References:

- ASP00 "Analytical Services Protocol", New York State Department of Conservation, June 2000.
- SW8463 "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

NON-CONFORMANCE SUMMARY

Job#: <u>A06-F405</u>

STL Project#: <u>NY4A9217</u> SDG#: <u>F405</u> Site Name: <u>Benchmark</u>

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-F405

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC/MS Semivolatile Data

The chromatographic peaks for Benzo(b)fluoranthene and Benzo(k)fluoranthene could not be resolved for sample Matrix Spike SS-1,2 COMP due to the sample matrix. The final value is reported as Benzo(b)fluoranthene in this data package but should be considered an and/or value for both compounds.

GC Extractable Data

For Method 8151, the percent recovery (%R) of surrogate Dichlorophenyl Acetic Acid (DCBP) in sample SS-1,2 Comp Matrix Spike is outside of established quality control limits due to sample matrix interferences. The recovery of all other surrogates in the remaining samples and associated quality control samples within this extraction batch are within expected limits. No corrective action is required.

For method CLP Pesticide/PCB analysis, the recovery of surrogate Decachlorobiphenyl in several samples is outside of established quality control limits on one or both columns due to the sample matrix. The recovery of surrogate Tetrachloro-m-xylene on both columns is within quality control criteria; no corrective action is required.

For method PESTICIDE/PCBs, the recovery for 4,4'-DDT in the Matrix Spike of sample SS-1,2COMP exceeds quality control limits, though the Matrix Spike Blank recoveries are compliant. For method 8151, several compounds exhibited a percent difference (%D) of greater than 15% from the expected amount in the associated continuing calibrations. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

Metals Data

The recoveries of sample SS-1,2 COMP Matrix Spike and Matrix Spike Duplicate exhibited results above the quality control limits for Lead and Manganese(MS). The sample result is more than four times greater than the spike added. The RPD of sample SS-1,2 COMP Matrix Spike and Matrix Spike Duplicate exceeded the quality control limits for Manganese. The LCS is acceptable.

The recoveries of sample SS-1,2 COMP Matrix Spike and Matrix Spike Duplicate exhibited results above the quality control limits for Antimony (MSD), Arsenic, Copper, and Zinc (MSD) and below the quality control limits for Chromium. Sample matrix is suspect. However, the LCS was acceptable.

The recoveries of sample SS-1,2 COMP Post Spike exhibited results below the quality control limits for Iron and Manganese. However, the Serial Dilution of this sample was compliant for Iron and Manganese. Therefore, no corrective action is necessary.

The RPD of sample SS-1,2 COMP and the Matrix Duplicate exceeded the quality control limits for Calcium. However, the LCS was acceptable.

The Serial Dilution of sample SS-1,2 COMP exceeded the quality control limits for Zinc. However, the Post Spike of this sample was compliant for Zinc. Therefore, no corrective action is necessary.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

20/1220

Client No.

			BLIND DUP#1
Lab Name: <u>STL Buffalo</u> Co	ontract:		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	A6F40502
Sample wt/vol: <u>30.05</u> (g/mL) <u>G</u>		Lab File ID:	<u>V18847.RR</u>
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/21/2006 12/22/2006
% Moisture:22 decanted: (Y/N)) <u>N</u>	Date Extracted:	12/26/2006
Concentrated Extract Volume: 500(uL))	Date Analyzed:	<u>01/03/2007</u>
Injection Volume: 2.00 (uL)		Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>Y</u> pH: <u>7.4</u>			

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/KG</u>	Q
100-52-7	Benzaldehyde		840	U
108-95-2	Phenol		420	U
111-44-4	Bis(2-chloroethyl) ether		420	U
95-57-8	2-Chlorophenol		420	U
95-48-7	2-Methylphenol		420	U
108-60-1	2,2'-Oxybis(1-Chloropropane)		420	U
	Acetophenone		840	U
	4-Methylphenol		420	U
	N-Nitroso-Di-n-propylamine		420	ប
	Hexachloroethane		420	ប
98-95-3	Nitrobenzene		420	U
78-59-1	Isophorone		420	U
	2-Nitrophenol		420	U
	2,4-Dimethylphenol		420	U
	Bis(2-chloroethoxy) methane		420	U
	2,4-Dichlorophenol		420	U
91-20-3	Naphthalene		33	J
106-47-8	4-Chloroaniline		420	U
37-68-3	Hexachlorobutadiene		420	U
105-60-2	Caprolactam		840	U
	4-Chloro-3-methylphenol		420	U
	2-Methylnaphthalene		40	J
	Hexachlorocyclopentadiene		420	U
	2,4,6-Trichlorophenol		420	U
	2,4,5-Trichlorophenol		1000	U
	Biphenyl		840	U
	2-Chloronaphthalene		420	U
	2-Nitroaniline		1000	U
	Dimethyl phthalate		420	U
	2,6-Dinitrotoluene		420	U
	Acenaphthylene		75	J
	3-Nitroaniline		1000	U

21/1220

Client No.

		BLIND DUP#1
Lab Name: <u>STL Buffalo</u> Contract:		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A6F40502
Sample wt/vol: 30.05 (g/mL) G	Lab File ID:	V18847.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/21/2006 12/22/2006
% Moisture: <u>22</u> decanted: (Y/N) <u>N</u>	Date Extracted:	12/26/2006
Concentrated Extract Volume: 500(uL)	Date Analyzed:	01/03/2007
Injection Volume: 2.00 (uL)	Dilution Factor:	1.00
GPC Cleanup: $(Y/N) \underline{Y} pH: \underline{7.4}$		

CAS NO. COMPOUND

CONCENTRATION UNITS:

(ug/Lorug/Kg) <u>UG/KG</u> Q

	T	<u> </u>
83-32-9Acenaphthene	26	J
51-28-52,4-Dinitrophenol	1000	U
100-02-74-Nitrophenol	1000	U
132-64-9Dibenzofuran	28	J
121-14-22,4-Dinitrotoluene	420	U
84-66-2Diethyl phthalate	420	U
86-73-7Fluorene	29	J
7005-72-34-Chlorophenyl phenyl ether	420	U
100-01-64-Nitroaniline	1000	U
534-52-14,6-Dinitro-2-methylphenol	1000	U
86-30-6N-nitrosodiphenylamine	420	U
101-55-34-Bromphenyl phenyl ether	420	U
118-74-1Hexachlorobenzene	420	U
1912-24-9Atrazine	840	U
87-86-5Pentachlorophenol	1000	U
85-01-8Phenanthrene	360	J
120-12-7Anthracene	100	J
86-74-8Carbazole	69	J
84-74-2Di-n-butyl phthalate	29	BJ
206-44-0Fluoranthene	790	
129-00-0Pyrene	500	
85-68-7Butyl benzyl phthalate	420	U
91-94-13,3'-Dichlorobenzidine	420	υ
56-55-3Benzo(a)anthracene	480	
218-01-9Chrysene	560	
117-81-7Bis(2-ethylhexyl) phthalate	93	BJ
117-84-0Di-n-octyl phthalate	25	J
205-99-2Benzo(b)fluoranthene	940	
207-08-9Benzo(k)fluoranthene	250	J
50-32-8Benzo (a) pyrene	520	
193-39-5Indeno (1,2,3-cd) pyrene	220	J
53-70-3Dibenzo(a,h)anthracene	68	J
	1	

22/1220

Client No.

					and the second s	
		-	a		BLIND D	UP#1
Lab Name	: <u>STL Butt</u>	alo	Contract:		\ <u></u>	
Lab Code	: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.: <u>F405</u>	5	
Matrix:	(soil/wate	r) <u>SOIL</u>		Lab Sample ID:	A6F40502	
Sample w	t/vol:	<u> 30.05</u> (g/mL)	G	Lab File ID:	<u>V18847.R</u>	<u>R</u>
Level:	(low/med)	LOW		Date Samp/Recv	<i>r</i> : <u>12/21/20</u>	<u>06 12/22/2006</u>
% Moistu	re: <u>22</u>	decanted: (Y/	N) <u>N</u>	Date Extracted	d: <u>12/26/20</u>	06
Concentra	ated Extra	ct Volume: <u>500</u> (u	L)	Date Analyzed:	01/03/20	<u>07</u>
Injection	n Volume:	2.00 (uL)		Dilution Facto	or: <u>1.00</u>	
GPC Clear	nup: (Y/N)	<u>Y</u> pH: <u>7.4</u>				
				CONCENTRATION UNIT	TS:	
	CAS NO.	COMPOUND		(ug/L or ug/Kg)	<u>UG/KG</u>	Q
	191-24-2	Benzo(ghi)pe	rylene		140	J
			the second to the second second second second second second second second second second second second second se			

BENCHMARK - SOIL - ASPOO (CLP) SEMIVOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

23/1220

Client No.

BLIND DUP#1

	BLIND DOP#1
Lab Name: <u>STL Buffalo</u> Contract:	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: <u>F405</u>
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: <u>A6F40502</u>
Sample wt/vol: 30.05 (g/mL) G	Lab File ID: <u>V18847.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/21/2006</u> <u>12/22/2006</u>
% Moisture: <u>21.9</u> decanted: (Y/N) <u>N</u>	Date Extracted: <u>12/26/2006</u>
Concentrated Extract Volume: <u>500</u> (uL)	Date Analyzed: <u>01/03/2007</u>
Injection Volume:2.00 (uL)	Dilution Factor: <u>1.00</u>
GPC Cleanup: (Y/N) Y pH: 7.4	
	CONCENTRATION UNITS:

Number TICs found: <u>20</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1.	SUSPECTED ALDOL COND PRODUCT	3.33	12000	BJ
2.	UNKNOWN	3.44	150	J
3.	UNKNOWN	6.12	270	BJ
4.	UNKNOWN HYDROCARBON	12.03	160	J
5.	UNKNOWN	12.34	100	J
6.	UNKNOWN PAH DERIVATIVE	13.20	95	J
7.	UNKNOWN PAH DERIVATIVE	13.22	200	J
8.	UNKNOWN	13.27	150	J
9.	UNKNOWN HYDROCARBON	13.48	120	J
10.	UNKNOWN PAH DERIVATIVE	13.77	110	J
11.	UNKNOWN	13.81	130	J
12.	UNKNOWN	14.00	110	J
13. 57-11-4	OCTADECANOIC ACID	14.08	190	JN
14.	UNKNOWN PAH DERIVATIVE	15.01	94	J
15.	UNKNOWN HYDROCARBON	15.67	260	J
16.	UNKNOWN STEROL	17.67	270	J
17.	UNKNOWN SITOSTEROL ISOMER	17.95	560	J
18.	UNKNOWN	18.02	380	J
19.	UNKNOWN	18.64	190	J
20.	UNKNOWN PAH DERIVATIVE	19.46	510	J

24/1220

Client No.

		MW-1 (6-8)
Lab Name: <u>STL Buffalo</u> Contract:		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A6F40503
Sample wt/vol: <u>30.27</u> (g/mL) <u>G</u>	Lab File ID:	V18848.RR
Level: (low/med) LOW	Date Samp/Recv:	<u>12/21/2006</u> <u>12/22/2006</u>
% Moisture: <u>20</u> decanted: (Y/N) <u>N</u>	Date Extracted:	12/26/2006
Concentrated Extract Volume: 500 (uL)	Date Analyzed:	01/03/2007
Injection Volume: 2.00 (uL)	Dilution Factor:	1.00
GPC Cleanup: $(Y/N) \underline{Y} pH: \underline{7.3}$		

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q

CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/KG</u>	Q
100-52-7	Benzaldehyde		810	υ
108-95-2			410	υ
	Bis(2-chloroethyl) ether		410	U
	2-Chlorophenol		410	U
95-48-7	2-Methylphenol		410	υ
108-60-1	2,2'-Oxybis(1-Chloropropane)		410	ប
	Acetophenone		810	U
106-44-5	4-Methylphenol		410	U
	N-Nitroso-Di-n-propylamine		410	U
	Hexachloroethane		410	U
	Nitrobenzene		410	U
	Isophorone		410	U
	2-Nitrophenol		410	U
	2,4-Dimethylphenol		410	U
	Bis(2-chloroethoxy) methane		410	U
	2,4-Dichlorophenol		410	U
	Naphthalene		410	U
106-47-8	4-Chloroaniline		410	ע
	Hexachlorobutadiene		410	U
•. •• •	Caprolactam		810	U
59-50-7	4-Chloro-3-methylphenol		410	U
	2-Methylnaphthalene		410	U
	Hexachlorocyclopentadiene		410	U
	2,4,6-Trichlorophenol		410	U
	2,4,5-Trichlorophenol		990	U
92-52-4			810	U
	2-Chloronaphthalene		410	ប
	2-Nitroaniline		990	U
	Dimethyl phthalate		410	U
	2,6-Dinitrotoluene		410	U
	Acenaphthylene		410	U
	3-Nitroaniline		990	υ

25/1220

Client No.

		MW-1 (6-8)
Lab Name: <u>STL Buffalo</u> Contract:		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A6F40503</u>
Sample wt/vol: _ <u>30.27</u> (g/mL) <u>G</u>	Lab File ID:	V18848.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/21/2006 12/22/2006
% Moisture:20 decanted: (Y/N) \underline{N}	Date Extracted:	12/26/2006
Concentrated Extract Volume: 500 (uL)	Date Analyzed:	01/03/2007
Injection Volume: 2.00 (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>Y</u> pH: <u>7.3</u>		

CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)	UG/KG	Q
02.22.0	Acenaphthene		410	U
	2,4-Dinitrophenol		990	U
	4-Nitrophenol		990	U
	Dibenzofuran		410	U
	2,4-Dinitrotoluene		410	U
	Diethyl phthalate		410	U
86-73-7			410	U
	4-Chlorophenyl phenyl ethe		410	U
	4-Nitroaniline		990	U
	4,6-Dinitro-2-methylphenol		990	U
	N-nitrosodiphenylamine		410	U
			410	U
	Hexachlorobenzene		410	U
1912-24-9			810	U
	Pentachlorophenol		990	U
	Phenanthrene		410	U
	Anthracene		410	U
	Carbazole		410	U
84-74-2	Di-n-butyl phthalate		24	BJ
	Fluoranthene		410	U
129-00-0			410	U
85-68-7	Butyl benzyl phthalate		410	U
	3,3'-Dichlorobenzidine		410	U
	Benzo (a) anthracene		410	U
218-01 - 9			410	U
	Bis(2-ethylhexyl) phthalat	e	93	BJ
	Di-n-octyl phthalate		410	U
	Benzo (b) fluoranthene		410	U
	Benzo(k) fluoranthene		410	U
	Benzo(a)pyrene		410	ប
	Indeno (1,2,3-cd) pyrene		410	U
	Dibenzo (a, h) anthracene		410	U

FORM I - GC/MS BNA

26/1220

					-		
						MW-1 (6-8	3)
Lab Name:	: <u>STL Buffal</u>	<u>_0</u>	Contract:		i	<u></u>	
Lab Code:	: <u>RECNY</u> C	Case No.:	SAS No.:	SDG No.:	<u>F405</u>		
Matrix:	(soil/water)	SOIL		Lab Sample	e ID: <u>A</u>	46F40503	-
Sample wt	:/vol:	<u>30.27</u> (g/mL)	<u>G</u>	Lab File I	ID: <u>V</u>	718848.RR	
Level:	(low/med)	LOW		Date Samp,	/Recv: <u>1</u>	2/21/2006	6 <u>12/22/2006</u>
% Moistur	ce: <u>20</u>	decanted: (Y/)	N) <u>N</u>	Date Extra	acted: <u>1</u>	2/26/2006	<u>ó</u>
Concentra	ated Extract	Volume: 500 (ui	L)	Date Analy	yzed: <u>C</u>	01/03/2007	2
Injection	volume:	2.00 (uL)		Dilution H	Factor: _	1.00	
GPC Clear	nup: (Y/N)	<u>Y</u> pH: <u>7.3</u>					
				CONCENTRATION			
	CAS NO.	COMPOUND		(ug/L or ug/H	(g) <u>UG</u>	G/KG	Q
	191-24-2	Benzo (ghi) per	rylene		41	.0 [1	J

BENCHMARK - SOIL - ASPOO (CLP) SEMIVOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

Client No.

MW-1 (6-8)

27/1220

Lab Name: <u>STL Buffalo</u> Contract:		MM-T (9-8)
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A6F40503
Sample wt/vol: 30.27 (g/mL) G	Lab File ID:	V18848.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/21/2006</u> <u>12/22/2006</u>
% Moisture: <u>19.7</u> decanted: (Y/N) <u>N</u>	Date Extracted:	12/26/2006
Concentrated Extract Volume: 500 (uL)	Date Analyzed:	01/03/2007
Injection Volume: <u>2.00</u> (uL)	Dilution Factor	1.00
GPC Cleanup: (Y/N) Y pH: 7.3		
	CONCENTRATION UNI	rs:

Number TICs found: <u>3</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1.	SUSPECIED ALDOL COND PRODUCT	3.34	14000	BJ
2.	UNKNOWN	6.12	280	BJ
3. 57-11-4	OCIADECANOIC ACID	14.08	100	JN

28/1220

Client No.

		MW-2 (2-4)
Lab Name: <u>STL Buffalo</u> Contract:		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A6F40504
Sample wt/vol: 30.37 (g/mL) G	Lab File ID:	<u>V18849.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/21/2006</u> <u>12/22/2006</u>
% Moisture:20 decanted: (Y/N) \underline{N}	Date Extracted:	12/26/2006
Concentrated Extract Volume: 500(uL)	Date Analyzed:	<u>01/03/2007</u>
Injection Volume: 2.00(uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>Y</u> pH: <u>7.4</u>		

		CONCENTRATION UNITS:			
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/KG</u>	Q	
100-52-7	Benzaldehyde		820	υ	
108-95-2	Phenol		410	U	
111-44-4	Bis(2-chloroethyl) ether		410	U	
95-57-8	2-Chlorophenol		410	U	
95-48-7	2-Methylphenol		410	U	
108-60-1	2,2'-Oxybis(1-Chloropropane)	410	U	
	Acetophenone		820	U	
106-44-5	4-Methylphenol		410	U	
	N-Nitroso-Di-n-propylamine_		410	U	
	Hexachloroethane		410	U	
98-95-3	Nitrobenzene		410	U	
78-59-1	Isophorone		410	U	
	2-Nitrophenol		410	U	
	2,4-Dimethylphenol		410	U	
111-91-1	Bis(2-chloroethoxy) methane		410	U	
	2,4-Dichlorophenol		410	U	
	Naphthalene		410	U	
	4-Chloroaniline		410	U	
87-68-3	Hexachlorobutadiene		410	U	
105-60-2	Caprolactam		820	U	
	4-Chloro-3-methylphenol		410	U	
91-57-6	2-Methylnaphthalene		410	U	
	Hexachlorocyclopentadiene		410	U	
88-06-2	2,4,6-Trichlorophenol		410	U	
	2,4,5-Trichlorophenol		990	U	
92-52-4			820	U	
	2-Chloronaphthalene		410	U	
	2-Nitroaniline		990	U	
	Dimethyl phthalate		410	U	
	2,6-Dinitrotoluene		410	U	
	Acenaphthylene		410	U	
	3-Nitroaniline		990	υ	

FORM I - GC/MS BNA

29/1220

Client No.

MW-2 (2-4)

	MM-2 (2-4)
Lab Name: <u>STL Buffalo</u> Contract:	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: <u>F405</u>
Matrix: (soil/water) SOIL	Lab Sample ID: <u>A6F40504</u>
Sample wt/vol: <u>30.37</u> (g/mL) <u>G</u>	Lab File ID: <u>V18849.RR</u>
Level: (low/med) LOW	Date Samp/Recv: <u>12/21/2006</u> <u>12/22/2006</u>
% Moisture:20 decanted: (Y/N) \underline{N}	Date Extracted: <u>12/26/2006</u>
Concentrated Extract Volume: 500(uL)	Date Analyzed: <u>01/03/2007</u>
Injection Volume: 2.00(uL)	Dilution Factor: <u>1.00</u>
GPC Cleanup: $(Y/N) \underline{Y} pH: \underline{7.4}$	

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q

COMPOUND	(ug/L or ug/Kg)	<u>UG/KG</u>	Q
Acenaphthene		410	U
			U
		990	U
		410	U
		990	U
		990	U
N-nitrosodiphenvlamine		410	U
		410	U
		410	U
		820	U
		990	U
		410	U
		410	U
		410	U
Di-n-butyl phthalate		21	BJ
Fluoranthene		410	U
		96	BJ
		410	U
			U
		410	U
	Acenaphthene 2,4-Dinitrophenol Uibenzofuran Dibenzofuran Diethyl phthalate Diethyl phthalate Fluorene 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 	Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethyl phthalate Fluorene 4-Chlorophenyl phenyl ether 4-Nitroaniline 4-Shitroaniline 4-Bromophenyl phenyl ether 	Control of the second secon

30/1220

	MW-2 (2-4)
	1
Lab Name: STL Buffalo Contract:	
Lab Code: <u>RECNY</u> Case No.: SAS No.: SDG No.: <u>F405</u>	
Matrix: (soil/water) <u>SOIL</u> Lab Sample ID:	A6F40504
Sample wt/vol: <u>30.37</u> (g/mL) <u>G</u> Lab File ID:	<u>V18849.RR</u>
Level: (low/med) LOW Date Samp/Recv:	12/21/2006 12/22/2006
% Moisture:20 decanted: (Y/N) N Date Extracted:	12/26/2006
Concentrated Extract Volume: 500 (uL) Date Analyzed:	01/03/2007
Injection Volume: 2.00 (uL) Dilution Factor:	1.00
GPC Cleanup: $(Y/N) \underline{Y}$ pH: <u>7.4</u>	
CONCENTRATION UNITS:	
CAS NO. COMPOUND $(ug/L \text{ or } ug/Kg) \underline{U}$	<u>G/KG</u> Q
191-24-2Benzo(ghi)perylene4	.10 U

BENCHMARK - SOIL - ASPOO (CLP) SEMIVOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

Client No.

MW-2 (2-4)

Lab Name: <u>STL Buffalo</u> Contract:	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: <u>F405</u>
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: <u>A6F40504</u>
Sample wt/vol: 30.37 (g/mL) G	Lab File ID: <u>V18849.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/21/2006</u> <u>12/22/2006</u>
% Moisture: <u>20.4</u> decanted: (Y/N) <u>N</u>	Date Extracted: <u>12/26/2006</u>
Concentrated Extract Volume: <u>500</u> (uL)	Date Analyzed: <u>01/03/2007</u>
Injection Volume:2.00 (uL)	Dilution Factor: <u>1.00</u>
GPC Cleanup: (Y/N) <u>Y</u> pH: <u>7.4</u>	
	CONCENTRATION UNITS:

Number TICs found: <u>3</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1.	SUSPECTED ALDOL COND PRODUCT	3.33	14000	BJ
2.	UNKNOWN	6.12	290	BJ
3.	UNKNOWN	13.81	300	J

32/1220

Client No.

	1		MW-3 (8-10)
Lab Name: <u>STL Buffalo</u> Contr	ract:	<u> </u>	L
Lab Code: <u>RECNY</u> Case No.: SA	AS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) SOIL		Lab Sample ID:	A6F40505
Sample wt/vol: 30.70 (g/mL) <u>G</u>		Lab File ID:	V18850.RR
Level: (low/med) LOW		Date Samp/Recv:	12/21/2006 12/22/2006
% Moisture: <u>21</u> decanted: (Y/N) \underline{N}		Date Extracted:	12/26/2006
Concentrated Extract Volume: 500(uL)		Date Analyzed:	01/03/2007
Injection Volume: 2.00(uL)		Dilution Factor:	1.00
GPC Cleanup: $(Y/N) \underline{Y}$ pH: <u>7.5</u>			

CAS NO. COMPOUND

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/KG</u>	Q
100-52-7	Benzaldehyde		820	U
108-95-2			410	U
111-44-4	Bis(2-chloroethyl) ether		410	U
95-57-8			410	U
95-48-7	2-Methylphenol		410	U
108-60-12	2,2'-Oxybis(1-Chloropropane)		410	U
98-86-2	Acetophenone		820	U
106-44-54	l-Methylphenol		410	U
	J-Nitroso-Di-n-propylamine		410	U
	Texachloroethane		410	U
98-95-3N	Jitrobenzene		410	U
78-59-11	sophorone		410	U
88-75-52	2-Nitrophenol		410	U
105-67-92	4-Dimethylphenol		410	U
	Bis (2-chloroethoxy) methane		410	U
	,4-Dichlorophenol		410	U
91-20-3N	laphthalene		410	U
106-47-84	-Chloroaniline		410	U
87-68-3H	exachlorobutadiene		410	U
105-60-2 - C	aprolactam		820	U
59-50-74	-Chloro-3-methylphenol		410	U
	-Methylnaphthalene		410	U
77-47-4H	exachlorocyclopentadiene		410	U
38-06-2 - 2	,4,6-Trichlorophenol		410	U
	,4,5-Trichlorophenol		990	U
92-52-4B			820	υ
91-58-72	-Chloronaphthalene		410	U
38-74-4 - 2	-Nitroaniline		990	U
L31-11-3D	imethyl phthalate		410	U
	6-Dinitrotoluene		410	U
208-96-8 - -Ad			410	U
9-09-23-			990	U

33/1220

Q

U

410

Client No.

			MW-3 (8-10)
Lab Name: <u>STL Buffalo</u>	Contract:		L
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	<u>A6F40505</u>
Sample wt/vol: _30.70 (g/mL)	G	Lab File ID:	<u>V18850.RR</u>
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	<u>12/21/2006</u> <u>12/22/2006</u>
% Moisture: <u>21</u> decanted: (Y/	N) <u>N</u>	Date Extracted:	<u>12/26/2006</u>
Concentrated Extract Volume: 500 (u	L)	Date Analyzed:	01/03/2007
Injection Volume: 2.00 (uL)		Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>Y</u> pH: <u>7.5</u>			

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NO. COMPOUND

53-70-3----Dibenzo (a, h) anthracene

_		
83-32-9Acenaphthene	410	υ
51-28-52,4-Dinitrophenol	990	U
100-02-74-Nitrophenol	990	U
132-64-9Dibenzofuran	410	U
121-14-22,4-Dinitrotoluene	410	U
84-66-2Diethyl phthalate	410	U
86-73-7Fluorene	410	U
7005-72-34-Chlorophenyl phenyl ether	410	U
100-01-64-Nitroaniline	990	U
534-52-14,6-Dinitro-2-methylphenol	990	U
86-30-6N-nitrosodiphenylamine	410	U
101-55-34-Bromophenyl phenyl ether	410	U
118-74-1Hexachlorobenzene	410	U
1912-24-9Atrazine	820	U
87-86-5Pentachlorophenol	990	U
85-01-8Phenanthrene	410	U
120-12-7Anthracene	410	U
86-74-8 - Carbazole	410	U
84-74-2Di-n-butyl phthalate	23	BJ
206-44-0Fluoranthene	410	U
129-00-0Pyrene	410	U
85-68-7Butyl benzyl phthalate	410	U
91-94-13,3'-Dichlorobenzidine	410	ប
56-55-3Benzo (a) anthracene	410	U
218-01-9Chrysene	410	U
117-81-7Bis(2-ethylhexyl) phthalate	84	BJ
117-84-0Di-n-octyl phthalate	410	U
205-99-2Benzo(b)fluoranthene	410	U
207-08-9Benzo(k)fluoranthene	410	U
50-32-8Benzo (a) pyrene	410	U
193-39-5Indeno(1,2,3-cd)pyrene	410	U
Dibongo (2 b) anthreadons	410	111

34/1220

					MW-3 (8-	10)
Lab Name	: <u>STL Buffa</u>	alo (Contract:		L	
Lab Code	: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.: <u>F405</u>	_	
Matrix:	(soil/water	r) <u>SOIL</u>		Lab Sample ID:	A6F40505	_
Sample w	t/vol:	<u> 30.70</u> (g/mL) (3	Lab File ID:	<u>V18850.RR</u>	
Level:	(low/med)	LOW		Date Samp/Recv:	: <u>12/21/200</u>	6 12/22/2006
% Moistu	re: <u>21</u>	decanted: (Y/1	N) <u>N</u>	Date Extracted	<u>12/26/200</u>	<u>6</u>
Concentra	ated Extrac	ct Volume: <u>500</u> (ul	L)	Date Analyzed:	01/03/200	7
Injection	n Volume:	<u>2.00</u> (uL)		Dilution Factor	c: <u>1.00</u>	
GPC Clear	nup: (Y/N)	<u>Y</u> pH: <u>7.5</u>				
	CAS NO.	COMPOUND		CONCENTRATION UNITS (ug/L or ug/Kg)		Q
	191-24-2	Benzo(ghi)per	cylene		410	υ
	l					

BENCHMARK - SOIL - ASPOO (CLP) SEMIVOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

35/1220

Client No.

MW-3 (8-10)

Lab Name: <u>STL Buffalo</u> Contract:	_	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A6F40505
Sample wt/vol: <u>30.70</u> (g/mL) <u>G</u>	Lab File ID:	V18850.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/21/2006</u> <u>12/22/2006</u>
% Moisture: <u>21.4</u> decanted: (Y/N) <u>N</u>	Date Extracted:	12/26/2006
Concentrated Extract Volume: <u>500</u> (uL)	Date Analyzed:	01/03/2007
Injection Volume: <u>2.00</u> (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) Y pH: 7.5		
	CONCENTRATION UNIT	rs:

Number TICs found: <u>5</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1.	SUSPECTED ALDOL COND PRODUCT	3.33	15000	BJ
2.	UNKNOWN	6.12	460	BJ
3. 111-06-8	BUTYL ESTER HEXADECANOIC ACI	14.16	120	BJN
4.	UNKNOWN	14.76	110	J
5. 123-95-5	BUTYL ESTER OCIADECANOIC ACI	14.80	280	BJN

36/1220

Client No.

		SS-1,2 COMP
Lab Name: <u>SIL Buffalo</u> Contract:		L
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A6F40501
Sample wt/vol: 30.54 (g/mL) <u>G</u>	Lab File ID:	V18844.RR
Level: (low/med) LOW	Date Samp/Recv:	12/21/2006 12/22/2006
% Moisture: <u>20</u> decanted: (Y/N) \underline{N}	Date Extracted:	12/26/2006
Concentrated Extract Volume: 500(uL)	Date Analyzed:	01/03/2007
Injection Volume: 2.00 (uL)	Dilution Factor:	1.00
GPC Cleanup: $(Y/N) \underline{Y}$ pH: <u>7.1</u>		

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q

CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/KG</u>	Q
100-52-7	Benzaldehyde		810	U
108-95-2			36	J
111-44-4	Bis(2-chloroethyl) ether		400	U
	2-Chlorophenol		400	U
95-48-7	2-Methylphenol		400	U
	2,2'-Oxybis(1-Chloropropane)		400	U
	Acetophenone		810	U
	4-Methylphenol		400	U
	N-Nitroso-Di-n-propylamine		400	U
	Hexachloroethane		400	U
98-95-3	Nitrobenzene		400	U
	Isophorone		400	U
	2-Nitrophenol		400	U
	2,4-Dimethylphenol		400	U
	Bis(2-chloroethoxy) methane		400	U
	2,4-Dichlorophenol		400	U
	Naphthalène		19	J
	4-Chloroaniline		400	U
87-68-3	Hexachlorobutadiene		400	U
105-60-2	Caprolactam		810	U
	4-Chloro-3-methylphenol		400	U
	2-Methylnaphthalene		16	J
	Hexachlorocyclopentadiene		400	U
	2,4,6-Trichlorophenol		400	U
	2,4,5-Trichlorophenol		980	U
	Biphenyl		810	U
	2-Chloronaphthalene		400	U
88-74-4	2-Nitroaniline		980	U
	Dimethyl phthalate		400	U
	2,6-Dinitrotoluene		400	U
	Acenaphthylene		19	J
	3-Nitroaniline		980	U

37/1220

Г

Client No. _.___

٦

		SS-1,2 COMP
Lab Name: STL Buffalo Contract:		L
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A6F40501
Sample wt/vol: 30.54 (g/mL) G	Lab File ID:	V18844.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/21/2006</u> <u>12/22/2006</u>
% Moisture:20 decanted: (Y/N) \underline{N}	Date Extracted:	12/26/2006
Concentrated Extract Volume: 500 (uL)	Date Analyzed:	01/03/2007
Injection Volume: 2.00(uL)	Dilution Factor:	1.00
GPC Cleanup: $(Y/N) \underline{Y}$ pH: <u>7.1</u>		

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q

CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/KG</u>	Q
83-32-9	Acenaphthene		30	J
			980	U
	4-Nitrophenol		37	BJ
	Dibenzofuran		14	J
	2,4-Dinitrotoluene		400	U
84-66-2	Diethyl phthalate		400	U
86-73-7	Fluorene		400	U
	4-Chlorophenyl phenyl ether		400	U
100-01-6			980	U
534-52-1	4,6-Dinitro-2-methylphenol_		980	U
96-30-6	N-nitrosodiphenylamine		400	U
101_55_3	4-Bromphenyl phenyl ether_		400	U
110 74-1	Hexachlorobenzene		400	U
	Atrazine		810	U
	Pentachlorophenol		130	BJ
	Phenanthrene		220	J
	Anthracene		53	J
	Carbazole		34	J
86-74-8	Di-n-butyl phthalate		34	BJ
84-74-2	Fluoranthene		430	
129-00-0			320	J
129-00-0	Butyl benzyl phthalate		75	J
85-68-7			400	U
			260	J
	Benzo (a) anthracene		300	J
218-01-9	Chrysene		140	BJ
117-81-7	Bis(2-ethylhexyl) phthalate		400	U
	Di-n-octyl phthalate		440	
	Benzo (b) fluoranthene		140	LΤ
	Benzo(k)fluoranthene		280	J
	Benzo (a) pyrene		160	J
	Indeno (1, 2, 3-cd) pyrene		49	J
53-70-3	Dibenzo(a,h)anthracene		+ <i>J</i>	<u> </u>

BENCHMARK - SOIL - ASPOO (CLP) SEMIVOLATILES ANALYSIS DATA SHEET

		SS-1,2 COMP
Lab Name: <u>STL Buffalo</u> Contract:		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A6F40501
Sample wt/vol: 30.54 (g/mL) G	Lab File ID:	V18844.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/21/2006 12/22/2006
% Moisture: <u>20</u> decanted: (Y/N) N	Date Extracted:	12/26/2006
Concentrated Extract Volume: 500(uL)	Date Analyzed:	01/03/2007
Injection Volume: 2.00(uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>Y</u> pH: <u>7.1</u>		
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>U</u>	<u>G/KG</u> Q
191-24-2Benzo(ghi)perylene	1	20 J

BENCHMARK - SOIL - ASPOO (CLP) SEMIVOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

39/1220

Client No.

	SS-1,2 COMP
Lab Name: <u>STL Buffalo</u> Contract:	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: <u>F405</u>
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: <u>A6F40501</u>
Sample wt/vol: 30.54 (g/mL) G	Lab File ID: <u>V18844.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/21/2006</u> <u>12/22/2006</u>
% Moisture: <u>20.2</u> decanted: (Y/N) <u>N</u>	Date Extracted: <u>12/26/2006</u>
Concentrated Extract Volume: <u>500</u> (uL)	Date Analyzed: <u>01/03/2007</u>
Injection Volume:2.00 (uL)	Dilution Factor: <u>1.00</u>
GPC Cleanup: (Y/N) Y pH: 7.1	
	CONCENTRATION UNITS:

Number TICs found: <u>17</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1.	SUSPECTED ALDOL COND PRODUCT	3.33	13000	BJ
2.	UNKNOWN	6.12	410	BJ
3. 65-85-0	BENZOIC ACID	7.69	1300	JN
4.	UNKNOWN PAH DERIVATIVE	13.22	120	J
5. 112-79-8	(E)-9-OCTADECENOIC ACID	14.01	300	JN
6, 123-95-5	BUTYL ESTER OCTADECANOIC ACI	14.80	460	BJN
7.	UNKNOWN HYDROCARBON	15.67	130	J
8.	UNKNOWN HYDROCARBON	16.22	420	J
9.	UNKNOWN STEROL	17.14	1600	J
10. 83-48-7	STIGMASTEROL	17.67	450	JN
11. 83-47-6	.GAMMASITOSTEROL	17.95	1100	JN
12.	UNKNOWN	18.18	240	J
13.	UNKNOWN	18.50	200	J
14.	UNKNOWN STEROL	18.64	360	J
15.	UNKNOWN	19.33	230	J
16.	UNKNOWN	19.46	460	J
17.	UNKNOWN	19.95	440	J

STEELFIELDS - ASPOO 8151 - HERBICIDES - S ANALYSIS DATA SHEET

			BLIND DU	P#1
Lab Name: <u>STL Buffalo</u> C	Contract:		. <u> </u>	
Lab Code: <u>RECNY</u> Case No.: SA	AS No.: SI	DG No.: <u>F405</u>		
Matrix: (soil/water) <u>SOIL</u>	I	Lab Sample ID:	<u>A6F40502</u>	
Sample wt/vol: <u>30.06</u> (g/mL) \underline{G}	I	Lab File ID:	<u>13A42103</u>	.TX0
% Moisture: 22 decanted: (Y/N) \underline{N}	I	Date Samp/Recv:	<u>12/21/20</u>	<u>06</u> <u>12/22/2006</u>
Extraction: $(SepF/Cont/Sonc/Soxh)$: <u>SONC</u>	I	Date Extracted:	<u>12/26/20</u>	<u>06</u>
Concentrated Extract Volume: <u>10000</u> (uL)	I	Date Analyzed:	<u>01/05/20</u>	07
Injection Volume: <u>1.00</u> (uL)	I	Dilution Factor:	1.00	
GPC Cleanup: (Y/N) <u>N</u> pH:	2	Sulfur Cleanup:	(Y/N) <u>N</u>	
	CONCENTRATIO		-	
CAS NO. COMPOUND	(ug/L or u	g/Kg) <u>UG/KG</u>	Q	
93-76-5 - 2,4,5-T		22	U	
93-72-12,4,5-TP (Silvex) 94-75-72,4-D	· · · · · · · · · · · · · · · · · · ·	22 12	U J	
	·····			

41/1220

	MW-1 (6-8)
Lab Name: <u>STL Buffalo</u> Contrac	st:
Lab Code: <u>RECNY</u> Case No.: SAS No.	SDG No.: <u>F405</u>
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: <u>A6F40503</u>
Sample wt/vol:30.71 (g/mL) \underline{G}	Lab File ID: <u>13A42105.TX0</u> _
% Moisture: 20 decanted: (Y/N) \underline{N}	Date Samp/Recv: <u>12/21/2006</u> <u>12/22/2006</u>
Extraction: (SepF/Cont/Sonc/Soxh): <u>SONC</u>	Date Extracted: <u>12/26/2006</u>
Concentrated Extract Volume: <u>10000</u> (uL)	Date Analyzed: <u>01/05/2007</u>
Injection Volume: <u>1.00</u> (uL)	Dilution Factor: <u>1.00</u>
GPC Cleanup: (Y/N) <u>N</u> pH:_	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
93-76-52,4,5-T 93-72-12,4,5-TP (Silvex) 94-75-72,4-D	21 U 21 U 21 U 21 U

42/1220

		MW-2 (2-4)
Lab Name: <u>STL Buffalo</u> Contra	ct:	
Lab Code: <u>RECNY</u> Case No.: SAS No.	: SDG No.: <u>F405</u>	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A6F40504
Sample wt/vol: <u>30.75</u> (g/mL) <u>G</u>	Lab File ID:	13A42106.TX0
% Moisture:20 decanted: (Y/N) \underline{N}	Date Samp/Recv:	12/21/2006 12/22/2006
Extraction: (SepF/Cont/Sonc/Soxh): <u>SONC</u>	Date Extracted:	<u>12/26/2006</u>
Concentrated Extract Volume: <u>10000</u> (uL)	Date Analyzed:	01/05/2007
Injection Volume: <u>1.00</u> (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup:	(Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>	Q
93-76-52,4,5-T 93-72-12,4,5-TP (Silvex) 94-75-72,4-D	21 21 21 21 21	บ บ บ

43/1220

F

Client No.

	MW-3 (8-10)
Lab Name: <u>STL Buffalo</u> Contra	ct:
Lab Code: <u>RECNY</u> Case No.: SAS No.	: SDG No.: <u>F405</u>
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: <u>A6F40505</u>
Sample wt/vol: <u>30.78</u> (g/mL) <u>G</u>	Lab File ID: <u>13A42107.TX0</u>
% Moisture: 21 decanted: (Y/N) \underline{N}	Date Samp/Recv: <u>12/21/2006</u> <u>12/22/2006</u>
Extraction: (SepF/Cont/Sonc/Soxh): <u>SONC</u>	Date Extracted: <u>12/26/2006</u>
Concentrated Extract Volume: <u>10000</u> (uL)	Date Analyzed: <u>01/05/2007</u>
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
93-76-52,4,5-T 93-72-12,4,5-TP (Silvex) 94-75-72,4-D	O1 IT

44/1220

	SS-1,2 COMP
Lab Name: <u>STL Buffalo</u> Contract	:
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: <u>F405</u>
Matrix: (soil/water) SOIL	Lab Sample ID: <u>A6F40501</u>
Sample wt/vol: <u>30.11</u> (g/mL) <u>G</u>	Lab File ID: <u>13A42100.TX0</u>
% Moisture: 20 decanted: (Y/N) \underline{N}	Date Samp/Recv: <u>12/21/2006</u> <u>12/22/2006</u>
Extraction: (SepF/Cont/Sonc/Soxh): <u>SONC</u>	Date Extracted: <u>12/26/2006</u>
Concentrated Extract Volume: <u>10000</u> (uL)	Date Analyzed: 01/05/2007
Injection Volume: <u>1.00</u> (uL)	Dilution Factor: <u>1.00</u>
GPC Cleanup: (Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
93-76-52,4,5-T 93-72-12,4,5-TP (Silvex) 94-75-72,4-D	21 U 21 U 16 J

BENCHMARK - SOIL - ASPOO (CLP) PESTICIDES/AROCLORS ANALYSIS DATA SHEET

45/1220

Client No.

			BLIND DUP#1
Lab Name: <u>STL Buffalo</u>	Contract:		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	<u>A6F40502</u>
Sample wt/vol: <u>30.70</u> (g/mL) \underline{G}		Lab File ID:	
% Moisture: 22 decanted: (Y/N)	N	Date Samp/Recv:	<u>12/21/2006</u> <u>12/22/2006</u>
Extraction: (SepF/Cont/Sonc/Soxh): SON	<u>ic</u>	Date Extracted:	12/26/2006
Concentrated Extract Volume: <u>10000</u> (uL	.)	Date Analyzed:	01/09/2007
Injection Volume: <u>1.00</u> (uL)		Dilution Factor:	10.00
GPC Cleanup: $(Y/N) \underline{Y} pH: \underline{7.40}$		Sulfur Cleanup:	(Y/N) <u>N</u>

CONCENTRATION UNITS: (ua/L or ua/Ka) UG/KG

CAS NO.	COMPOUND	(ug/L or ug/Kg		Q
319-84-6	alpha-BHC		21	υ
319-85-7	beta-BHC		21	ប
319-86-8	delta-BHC		21	ប
58-89-9	gamma-BHC (Lindane)		21	ប
76-44-8	Heptachlor		21	U
309-00-2	Aldrin		21	ប
1024-57-3	Heptachlor epoxide		21	ប
959-98-8	Endosulfan I		21	ט
60-57-1	Dieldrin		41	ប
72-55-9	4,4'-DDE		41	U
72-20-8	Endrin		41	U
33213-65-9-	Endosulfan II		41	υ
72-54-8			41	U
1031-07-8	Endosulfan Sulfate		41	U
50-29-3			11	JP
72-43-5	Methoxychlor		210	U
53494-70-5-	Endrin ketone		41	U
7421-93-4	Endrin aldehyde		41	U
	alpha-Chlordane		21	U
5103-74-2	gamma-Chlordane		21	U
8001-35-2	Toxaphene		2100	U
12674-11-2-	Aroclor 1016		410	U
11104-28-2	Aroclor 1221		840	U
	Aroclor 1232		410	U
53469-21-9	Aroclor 1242		410	U
	Aroclor 1248		410	U
11097-69-1	Aroclor 1254		410	U
11096-82-5	Aroclor 1260	· · · · · · · · · · · · · · · · · · ·	410	U

BENCHMARK - SOIL - ASPOO (CLP) PESTICIDES/AROCLORS ANALYSIS DATA SHEET

Client No.

			MW-1 (6-8)
Lab Name: <u>SIL Buffalo</u>	Contract:		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) SOIL		Lab Sample ID:	A6F40503
Sample wt/vol:		Lab File ID:	
% Moisture: 20 decanted: (Y/N)	N	Date Samp/Recv:	<u>12/21/2006</u> <u>12/22/2006</u>
Extraction: (SepF/Cont/Sonc/Soxh): SON	IC	Date Extracted:	12/26/2006
Concentrated Extract Volume: 10000(ul	(r	Date Analyzed:	01/10/2007
Injection Volume: <u>1.00</u> (uL)		Dilution Factor:	1.00
GPC Cleanup: $(Y/N) \underline{Y} pH: \underline{7.30}$		Sulfur Cleanup:	(Y/N) <u>N</u>
	CONCENTRA	FION UNITS:	

CAS NO. COMPOUND (ug/L or ug/K		or ug/Kg) <u>UG/KG</u>	Q	
319-84-6alpha-BHC		2.1	U	
319-85-7beta-BHC		2.1	U	
319-86-8delta-BHC		2.1	U	
58-89-9garma-BHC (Lindane)	2.1	U	
76-44-8Heptachlor		2.1	U	
309-00-2Aldrin		2.1	U	
1024-57-3Heptachlor	epoxide	2.1	U	
959-98-8Endosulfan		2.1	U	
60-57-1Dieldrin		4.1	U	
72-55-94,4'-DDE		4.1	U	
72-20-8Endrin		4.1	U	
33213-65-9Endosulfan	[]	4.1	U	
72-54-84,4'-DDD		4.1	U	
1031-07-8Endosulfan	Julfate	4.1	U	
50-29-34,4'-DDT		4.1	U	
72-43-5Methoxychlo	~	21	U	
53494-70-5Endrin keto		4.1	U	
7421-93-4Endrin alde		4.1	U	
5103-71-9alpha-Chlor		2.1	ប	
5103-74-2gamma-Chlor	lane	2.1	U	
8001-35-2Toxaphene		210	ប	
12674 - 11 - 2 Aroclor 101		41	U	
11104-28-2Aroclor 122		82	U	
11104-28-2Arcclor 122 11141-16-5Arcclor 123		41	U	
53469-21-9Aroclor 124		41	Ũ	
12672-29-6Aroclor 124		41	U	
11097-69-1Aroclor 125		41	U	
11096-82-5Aroclor 126		41	U	

11096-82-5---Aroclor 1260

BENCHMARK - SOIL - ASPOO (CLP) PESTICIDES/AROCLORS ANALYSIS DATA SHEET

Client No.

			MW-2 (2-4)
Lab Name: <u>STL Buffalo</u>	Contract:		
Lab Code: <u>RECINY</u> Case No.:	SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) SOIL		Lab Sample ID:	<u>A6F40504</u>
Sample wt/vol: <u>30.40</u> (g/mL) <u>G</u>		Lab File ID:	
% Moisture: 20 decanted: (Y/N)	N	Date Samp/Recv:	<u>12/21/2006</u> <u>12/22/2006</u>
Extraction: (SepF/Cont/Sonc/Soxh): SON	IC	Date Extracted:	12/26/2006
Concentrated Extract Volume: 10000 (uL		Date Analyzed:	01/10/2007
Injection Volume: <u>1.00</u> (uL)		Dilution Factor:	1.00
GPC Cleanup: $(Y/N) \underline{Y}$ pH: <u>7.40</u>		Sulfur Cleanup:	(Y/N) <u>N</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	COMPOUND	(ug/L or ug/Kg		Q
319-84-6	alpha-BHC		2.1	U
	beta-BHC		2.1	U
	delta-BHC		2.1	υ
58-89-9	gamma-BHC (Lindane)		2.1	U
76-44-8	Heptachlor		2.1	υ
309-00-2			2.1	U
1024-57-3-	Heptachlor epoxide		2.1	υ
959-98-8	Endosulfan I		2.1	υ
	Dieldrin		4.1	U
			4.1	U
72-20-8			4.1	U
33213-65-9	Endosulfan II		4.1	U
			4.1	U
1031-07-8	Endosulfan Sulfate		4.1	U
			4.1	U
	Methoxychlor		21	U
53494-70-5-	Endrin ketone		0.96	\mathbf{JP}
	Endrin aldehyde		4.1	U
5103-71-9			2.1	U
5103-74-2	gama-Chlordane		2.1	υ
8001-35-2	Toxaphene		210	U
12674-11-2-	Aroclor 1016		41	U
11104_28_2	Aroclor 1221		83	U
	Aroclor 1232		41	U
	Aroclor 1242		41	U
12672-29-6-	Aroclor 1248		41	U
11007-69-1-	Aroclor 1254		41	U
11096-82-5-	Aroclor 1260		41	υ

BENCHMARK - SOIL - ASPOO (CLP) PESTICIDES/AROCLORS ANALYSIS DATA SHEET

			MW-3 (8-10)
Lab Name: <u>STL Buffalo</u>	Contract:		L
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	<u>A6F40505</u>
Sample wt/vol:30.20 (g/mL) \underline{G}		Lab File ID:	
% Moisture: 21 decanted: (Y/N)	N	Date Samp/Recv:	12/21/2006 12/22/2006
Extraction: (SepF/Cont/Sonc/Soxh): SON	<u>IC</u>	Date Extracted:	12/26/2006
Concentrated Extract Volume: 10000 (uL	, (Date Analyzed:	01/10/2007
Injection Volume: <u>1.00</u> (uL)		Dilution Factor:	1.00
GPC Cleanup: $(Y/N) \underline{Y} pH: \underline{7.50}$		Sulfur Cleanup:	(Y/N) <u>N</u>
	CONCENTRAT	ION UNITS:	

CAS NO.	COMPOUND	(ug/L or ug/Kg)		Q
319-84-6	alpha-BHC		2.1	U
	beta-BHC		2.1	U
	delta-BHC		2.1	U
58-89-9	gamma-BHC (Lindane)		2.1	ט
	Heptachlor		2.1	U
309-00-2			2.1	U
	Heptachlor epoxide		2.1	U
	Endosulfan I		2.1	U
	Dieldrin		4.1	U
			4.1	U
72-20-8			4.1	U
	Endosulfan II		4.1	U
	4,4'-DDD		4.1	U
1031-07-8	Endosulfan Sulfate		4.1	U
	4,4'-DDT		4.1	U
	Methoxychlor		21	U
	Endrin ketone		0.62	JP
	Endrin aldehyde		4.1	U
	alpha-Chlordane		2.1	U
	gama-Chlordane		2.1	U
	Toxaphene		210	U
	Aroclor 1016		41	U
	Aroclor 1221		84	U
	Aroclor 1232		41	U
	Aroclor 1232		41	U
	Aroclor 1242		41	U
	Aroclor 1248		41	U
	Aroclor 1254		41	U

BENCHMARK - SOIL - ASPOO (CLP) PESTICIDES/AROCLORS ANALYSIS DATA SHEET

			SS-1,2 COMP
Lab Name: <u>STL_Buffalo</u>	Contract:		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.: <u>F405</u>	
Matrix: (soil/water) SOIL		Lab Sample ID:	<u>A6F40501</u>
Sample wt/vol:		Lab File ID:	
% Moisture: 20 decanted: (Y/N)	N	Date Samp/Recv:	<u>12/21/2006</u> <u>12/22/2006</u>
Extraction: (SepF/Cont/Sonc/Soxh): SON	<u>IC</u>	Date Extracted:	12/26/2006
Concentrated Extract Volume: 10000 (uL	(1	Date Analyzed:	01/09/2007
Injection Volume: <u>1.00</u> (uL)		Dilution Factor:	2.00
GPC Cleanup: $(Y/N) \underline{Y} pH: \underline{7.10}$		Sulfur Cleanup:	(Y/N) <u>N</u>
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ידראז וואדידים.	

CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>	Q
319-84-6alpha-BHC         319-85-7beta-BHC         319-86-8delta-BHC         58-89-9garma-BHC (Lindane)         76-44-8Heptachlor         309-00-2Aldrin         1024-57-3Heptachlor epoxide         959-98-8Betachlor epoxide         959-98-8Heptachlor epoxide         959-98-8	CONCENTRATION UNITS:         (ug/L or ug/Kg)         UG/KG         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1         8.1	Q UJUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
12672-29-6Aroclor 1248 11097-69-1Aroclor 1254 11096-82-5Aroclor 1260	81 81 81	บ บ

. BUFFALO

# Benchmark Environmental & Engineering Science

-1-

INORGANIC ANALYSIS DATA SHEET

		INOKGANIC	INORGANIC ANALYSIS DATA SHEET		NO.
				BLIND	DUP#1
Contract:	NY04-133				
Lab Code:	STLBLFO Cas	se No.:	SAS No.:	SDG NO.:	A06-F405
Matrix (soi	l/water): SOIL		Lab Sample ID:	AD680289	
Level (low/	/med): LOW		Date Received:	12/22/2006	
* Solids	78				

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	C	Q	м
7429-90-5	Aluminum	7690	T	ĺ	P
7440-36-0	Antimony	9.7	Ι	N	P
7440-38-2	Arsenic	15.8	1	N	P
7440-39-3	Barium	100	Ι		P
7440-41-7	Beryllium	0.81	U		P
7440-43-9	Cadmium	0.95	1	1	P
7440-70-2	Calcium	13900	1	*	P
7440-47-3	Chromium	15.8	1	N	] P
7440-48-4	Cobalt	6.7		1	P
7440-50-8	Copper	68.8	1	N	Р
7439-89-6	Iron	22400			P
7439-92-1	Lead	219			P
7439-95-4	Magnesium	3960			P
7439-96-5	Manganese	819		*	P
7440-02-0	Nickel	20.5			P
7440-09-7	Potassium	911			Р
7782-49-2	Selenium	2.3	в		P
7440-22-4	Silver	0.14	в		P
7439-97-6	Mercury	0.174		1	CV
7440-23-5	Sodium	71.8	в		P
7440-28-0	Thallium	1.1	в		P
7440-62-2	Vanadium	17.7	1	N	P
7440-66-6	Zinc	167	1	NE	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	COARSE
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					

----

# 50/1220

-

-

# STL BUFFALO

# Benchmark Environmental & Engineering Science -1-

INORGANIC ANALYSIS DATA SHEET

		INORGANIC ANALYSIS DATA SHEET		SAMPLE NO.			
						MW-1 ((	6-8)
Contract:	NY04-133						
Lab Code:	STLBLFO	Case No.:	SAS No.:		SI	OG NO.:	A06-F405
Matrix (so:	il/water):	SOIL	Lab	Sample ID:	AD68	0290	
Level (low,	/med): LO	W	Date	Received:	12/2	2/2006	
<pre>% Solids:</pre>	80						

Concentration Units (ug/L or mg/kg dry weight): MG/KG

· · · · · · · · · · · · · · · · · · ·				1	I
CAS No.	Analyte	Concentration	C	Q	м
7429-90-5	Aluminum	13800	T		P
7440-36-0	Antimony	0.57	υ	N	P
7440-38-2	Arsenic	1.9	1	N	P
7440-39-3	Barium	186			P
7440-41-7	Beryllium	0.83	U		P
7440-43-9	Cadmium	0.25	В		Р
7440-70-2	Calcium	84400		*	P
7440-47-3	Chromium	18.8	1	N	P
7440-48-4	Cobalt	9.0			P
7440-50-8	Copper	13.9	Ĩ	N	P
7439-89-6	Iron	22000			P
7439-92-1	Lead	4.9		1	P
7439-95-4	Magnesium	9250			P
7439-96-5	Manganese	455		*	P
7440-02-0	Nickel	23.1			P
7440-09-7	Potassium	2080			P
7782-49-2	Selenium	1.3	В		P
7440-22-4	Silver	0.08	Π		P
7439-97-6	Mercury	0.030	U	1	cv
7440-23-5	Sodium	125	В		P
7440-28-0	Thallium	0.93	В		P
7440-62-2	Vanadium	22.2		N	P
7440-66-6	Zinc	51.7		NE	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	COARSE
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:				<u> </u>	

# Benchmark Environmental & Engineering Science

-1-

INORGANIC ANALYSIS DATA SHEET	SAMPLE	NO.
	l	

Contract:	NY04-133		MW-2 (	2-4)	
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.:	A06-F405
Matrix (so	il/water):	SOIL	Lab Sample ID:	AD680291	
Level (low	/med): L	WO	Date Received:	12/22/2006	
% Solids:	80				

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	c	Q	м
	-				
7429-90-5	Aluminum	23200			P
7440-36-0	Antimony	0.61	ט	N	P
7440-38-2	Arsenic	3.1	Ι	N	P
7440-39-3	Barium	149			P
7440-41-7	Beryllium	1.1	T		P
7440-43-9	Cadmium	0.24	в	1	P
7440-70-2	Calcium	10900	1	*	P
7440-47-3	Chromium	28.5	1	N	P
7440-48-4	Cobalt	13.3			P
7440-50-8	Copper	19.8	Τ	N	P
7439-89-6	Iron	31300	1		P
7439-92-1	Lead	9.9	Ι		P
7439-95-4	Magnesium	12200	Ι		P
7439-96-5	Manganese	341	Ι	*	P
7440-02-0	Nickel	34.4			P
7440-09-7	Potassium	2040			P
7782-49-2	Selenium	2.3	в		Р
7440-22-4	Silver	0.09	ען	1	P
7439-97-6	Mercury	0.030	U		CV
7440-23-5	Sodium	102	в		Р
7440-28-0	Thallium	1.1	В		P
7440-62-2	Vanadium	33.7		N	P
7440-66-6	Zinc	75.1		NE	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	COARSE
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:	and the second second second second second second second second second second second second second second second			·· •• ••	
	·		·····		

_ - - -

# 52/1220

.

SAMPLE NO.

.

# STL BUFFALO

#### Benchmark Environmental & Engineering Science

-1-

INORGANIC ANALYSIS DATA SHEE	T
------------------------------	---

			MW-3 (8-10)		
Contract:	NY04-133			<b></b>	
Lab Code:	STLBLFO	Case No.:	SAS No.:	SDG NO.:	A06-F405
Matrix (so	il/water):	SOIL	Lab Sample ID:	AD680292	
Level (low,	/med): L	OW	Date Received:	12/22/2006	
<pre>% Solids:</pre>	79				

#### Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	C	Q	м
7429-90-5	Aluminum	14400	1	1	Р
7440-36-0	Antimony	0.60	ע	N	P
7440-38-2	Arsenic	3.5	Ι	N	P
7440-39-3	Barium	125			P
7440-41-7	Beryllium	0.88	ט		P
7440-43-9	Cadmium	0.20	В		P
7440-70-2	Calcium	36900	1	*	P
7440-47-3	Chromium	20.5		N	P
7440-48-4	Cobalt	9.6			P
7440-50-8	Copper	19.3		N	P
7439-89-6	Iron	24500			P
7439-92-1	Lead	7.2			Р
7439-95-4	Magnesium	11100			P
7439-96-5	Manganese	406		*	P
7440-02-0	Nickel	25.3			P
7440-09-7	Potassium	2250		1	P
7782-49-2	Selenium	1.5	В		P
7440-22-4	Silver	0.09	U	1	P
7439-97-6	Mercury	0.040	U		CV
7440-23-5	Sodium	126	В	1	P
7440-28-0	Thallium	1.1	В		P
7440-62-2	Vanadium	25.4		N	P
7440-66-6	Zinc	61.5		NE	P

Color Before:	BROWN	Clarity Before:	CLOUDY	Texture:	COARSE
Color After:	YELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					
	·····				

# **STL BUFFALO**

## Benchmark Environmental & Engineering Science

-1-

INORGANIC ANALYSIS DATA SHEET
-------------------------------

			INORGANIC ANALYSIS DATA SP	ILLI	SAMPLE NO.			
					SS-1,2	COMP		
Contract:	NY04-133							
Lab Code:	STLBLFO	Case No.:	SAS No.:		SDG NO.:	A06-F405		
Matrix (so:	il/water):	SOIL	Lab Sample	ID: A	D680285			
Level (low,	/med): L(	W	Date Recei	ved: 1	2/22/2006			
<pre>% Solids:</pre>	80			_				

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	C	Q	м
7429-90-5	Aluminum	18000	1		P
7440-36-0	Antimony	1.2	В	N	P
7440-38-2	Arsenic	7.6	1	N	P
7440-39-3	Barium	135		1	P
7440-41-7	Beryllium	0.98			P
7440-43-9	Cadmium	0.96			P
7440-70-2	Calcium	17500		*	P
7440-47-3	Chromium	45.5		N	Р
7440-48-4	Cobalt	13.0	1	1	P
7440-50-8	Copper	33.5		N	P
7439-89-6	Iron	26900	[		P
7439-92-1	Lead	87.6			P
7439-95-4	Magnesium	8540			P
7439-96-5	Manganese	478	1	*	P
7440-02-0	Nickel	27.4		1	P
7440-09-7	Potassium	1900		1	P
7782-49-2	Selenium	2.0	в		P
7440-22-4	Silver	0.09	U	1	P
7439-97-6	Mercury	0.143		1	CV
7440-23-5	Sodium	64.0	в	I	P
7440-28-0	Thallium	1.5	В		Р
7440-62-2	Vanadium	33.1		N	Р
7440-66-6	Zinc	134		NE	P

Color Before: B	BROWN	Clarity Before:	CLOUDY	Texture:	COARSE
Color After: Y	TELLOW	Clarity After:	CLR/FIL	Artifacts:	
Comments:					

----

-----

# 54/1220

.

#### 55/1220

12/23/2006

9045

Client Sample No. BLIND DUP#1 Contract: Lab Name: <u>STL Buffalo</u> 
 Lab Code:
 RECNY
 Case No.:
 SAS No.:
 SDG No.: F405 Lab Sample ID: <u>A6F40502</u> Matrix (soil/water): SOIL Date Samp/Recv: <u>12/21/2006</u> <u>12/22/2006</u> % Solids: 0.0 Analyzed Method Units of C Number Date Q М Measure Result Parameter Name

S.U.

7.35

#### Comments:

Leachable pH

יייזאז ד זארדריריד

# 56/1220

Client Sample No.

 $MW_{-1}$  (6-8)

							MM-T (0-8)	
Lab Name: <u>STL Buffalc</u>	Contract:			L				
Lab Code: <u>RECNY</u>	Case No.:	SAS NO.	. <u> </u>			2	5DG No.: <u>F4</u>	05
Matrix (soil/water):	SOIL		Lab Samp	ple	e ID:	<u>A61</u>	F40503	
% Solids:	Date Samp/Recv: <u>12/21/2006</u> <u>12/22/2006</u>							
Paran	neter Name	Units of Measure	Result	С	Q	М	Method Number	Analyzed Date
[eachable pH		S.U.	7,28				9045	12/23/2006

#### Comments:

Leachable pH_____

-----------_____ ____

# 57/1220

Client Sample No.

_____

----

____

MW-2 (2-4)

Lab Name: <u>STL Buffalo</u>	Contract:									
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:					SDG No.: <u>F405</u>			
Matrix (soil/water): SC			Lab Sam	ple	ID:	<u>A6</u> F	40504			
% Solids:	0.0	Date Samp/Recv: <u>12/21/2006</u> <u>12/22/2006</u>								
D		Units of	Pogult		0	M	Method	Analyzed		

Parameter Name	Units of Measure		С	Q	М	Method Number	Analyzed Date
Leachable pH	S.U.	7.38				9045	12/23/2006

_____

#### Comments:

# 58/1220

_____

12/23/2006

____

Client Sample No.

MW-3 (8-10)

9045

Lab Name: STL Buffalo	Contract:					MW-3 (8-10)			
Lab Code: <u>RECNY</u> Case No.:	SAS NO.	:			ç	5DG No.: <u>F4</u> (	05		
Matrix (soil/water): <u>SOIL</u>		Lab Sam	ple	e ID:	<u>A61</u>	740505			
Solids:0.0 Date Samp/Recv: 1						12/21/2006 12/22/2006			
Parameter Name	Units of Measure	Result	С	Q	M	Method Number	Analyzed Date		

7.47

s.u.

#### Commerits:

Leachable pH_____

יאמרים ד אמרים

#### 59/1220

12/23/2006

9045

Client Sample No. SS-1,2 COMP Lab Name: <u>STL Buffalo</u> Contract: SAS No.: _____ SDG No.: <u>F405</u> Lab Code: <u>RECNY</u> Case No.: Lab Sample ID: <u>A6F40501</u> Matrix (soil/water): SOIL Date Samp/Recv: <u>12/21/2006</u> <u>12/22/2006</u> % Solids: 0.0 Analyzed Units of Method C Q М Number Date Result Parameter Name Measure

S.U.

#### Comments:

Leachable pH

7.10

# Date: 01/24/2007 Time: 14:14:35

# Benchmark 2250 Factory Outlet Blvd. EPA ASP 2000 - VOLATILES

Rept: AN0326

Client ID Job No Lab ID Sample Date		BLIND DUP A07-0157 01/05/2007	A7015702	MW-1 A07-0157 01/05/2007	A7015701	MW-2 A07-0157 01/05/2007	A7015703	MW-3 A07-0157 01/05/2007	A7015704
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Chloromethane	UG/L	ND	10	ND	10	ND	10	ND	10
Bromomethane	UG/L	ND	10	ND	10	ND	10	ND	10
Vinyl chloride	UG/L	ND	10	ND	10	ND	10	ND	10
Chloroethane	UG/L	ND	10	ND	10	ND	10	ND	10
Methylene chloride	UG/L	ND	10	ND	10	ND	10	ND	10
Acetone	UG/L	ND	10	ND	10	ND	10	ND	10
Carbon Disulfide	UG/L	ND	10	ND	10	ND	10	ND	10
1,1-Dichloroethene	UG/L	ND	10	ND	10	ND	10	ND	10
1,1-Dichloroethane	UG/L	ND	10	ND	10	ND	10	ND	10
Chloroform	UG/L	ND	10	ND	10	ND	10	ND	10
1,2-Dichloroethane	UG/L	ND	10	ND	10	ND	10	ND	10
Butanone	UG/L	ND	10	ND	10	ND	10	ND	10
1,1,1-Trichloroethane	UG/L	ND	10	ND	10	ND	10	ND	10
Carbon Tetrachloride	UG/L	ND	10	ND	10	ND	10	ND	10
Bromodichloromethane	UG/L	ND	10	ND	10	ND	10	ND	10
,2-Dichloropropane	UG/L	ND	10	ND	10	ND	10	ND	10
is-1,3-Dichloropropene	UG/L	ND	10	ND	10	ND	10	ND	10
Trichloroethene	UG/L	ND	10	ND	10	ND	10	ND	10
Dibromochloromethane	UG/L	ND	10	ND	10	ND	10	ND	10
1,1,2-Trichloroethane	UG/L	ND	10	ND	10	ND	10	ND	10
Benzene	UG/L	ND	10	ND	10	ND	10	ND	10
trans-1,3-Dichloropropene	UG/L	ND	10	ND	10	ND	10	ND	10
Bromoform	UG/L	ND	10	ND	10	ND	10	ND	10
4-Methyl-2-pentanone	UG/L	ND	10	ND	10	ND	10	ND	10
2-Hexanone	UG/L	ND	10	ND	10	ND	10	ND	10
[etrachloroethene	UG/L	ND	10	1 J	10	ND	10	ND	10
Toluene	UG/L	ND	10	ND	10	ND	10	ND	10
1,1,2,2-Tetrachloroethane	UG/L	ND	10	ND	10	ND	10	ND	10
Chlorobenzene	UG/L	ND	10	ND	10	ND	10	ND	10
thylbenzene	UG/L	ND	10	ND	10	ND	10	ND	10
	UG/L	ND	10	ND	10	ND	10	ND	10
Styrene	UG/L UG/L	ND	10	ND	10	ND	10	ND	10
Total Xylenes Dichlorodifluoromethane	UG/L UG/L	ND	10	ND	10	ND	10	ND	10
	UG/L UG/L	ND	10	ND	10	ND	10	ND	10
richlorofluoromethane			10		10	ND	10	ND	10
1,1,2-Trichloro-1,2,2-trifluor		ND		ND			10	ND	10
trans-1,2-Dichloroethene	UG/L	ND	10	ND ND	10 10	ND ND	10	ND	10
Methyl-t-Butyl Ether (MTBE)	UG/L	ND	10		10	ND	10	ND	10
cis-1,2-Dichloroethene	UG/L	ND ND	10	ND ND	10	ND	10	ND	10
Cyclohexane	UG/L				10	ND	10	ND	10
Methylcyclohexane	UG/L	ND	10	ND			10	ND	10
,2-Dibromoethane	UG/L	ND	10	ND	10	ND	1		10
sopropylbenzene	UG/L	ND	10	ND	10	ND	10	ND	10
,3-Dichlorobenzene	UG/L	ND	10	ND	10	ND	10	ND	10

#### Benchmark 2250 Factory Outlet Blvd. EPA ASP 2000 - VOLATILES

Client ID Job No Lab ID Sample Date		BLIND DUP A07-0157 01/05/2007	A7015702	MW-1 A07-0157 01/05/2007	A7015701	MW-2 A07-0157 01/05/2007	A7015703	MW-3 A07-0157 01/05/2007	A7015704
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Límit	Sample Value	Reporting Limit
1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene Methyl acetate IS/SURROGATE(S)	UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND	10 10 10 10 10 10	ND ND ND ND ND	10 10 10 10 10 10	ND ND ND ND ND	10 10 10 10 10 10	ND ND ND ND ND	10 10 10 10 10 10
Bromochloromethane 1,4-Difluorobenzene Chlorobenzene-D5 p-Bromofluorobenzene 1,2-Dichloroethane-D4 Toluene-D8	% % % %	181 175 176 98 102 98	50-200 50-200 50-200 86-115 76-114 88-110	181 176 177 98 102 97	50-200 50-200 50-200 86-115 76-114 88-110	195 194 191 97 102 101	50-200 50-200 50-200 86-115 76-114 88-110	195 193 192 98 100 100	50-200 50-200 50-200 86-115 76-114 88-110

### Benchmark actory Outlet Blvd. 2250 Fa

Rept: AN0326

2200	racto	Эr	y outlet Blvd.
ASP	2000	-	SEMIVOLATILES

Client ID Job No Lab ID Sample Date		BLIND DUP A07-0157 01/05/2007	A7015702	BLIND DUP A07-0157 01/05/2007	A7015702RE	MW-1 A07-0157 01/05/2007	A7015701	MW-1 A07-0157 01/05/2007	A7015701RE
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Benzal dehyde	UG/L	ND	10	ND	11	ND	10	ND	10
Phenol	UG/L	ND	10	ND	11	ND	10	ND	10
Bis(2-chloroethyl) ether	UG/L	ND	10	ND	11	ND	10	ND	10
2-Chlorophenol	UG/L	ND	10	ND	11	ND	10	ND	10
2-Methylphenol	UG/L	ND	10	ND	11	ND	10	ND	10
2,2'-Oxybis(1-Chloropropane)	UG/L	ND	10	ND	11	ND	10	ND	10
Acetophenone	UG/L	ND	10	ND	11	ND	10	ND	10
4-Methylphenol	UG/L	ND	10	ND	11	ND	10	ND	10
Nitroso-Di-n-propylamine	UG/L	ND	10	ND	11	ND	10	ND	10
lexachloroethane	UG/L	ND	10	ND	11	ND	10	ND	10
litrobenzene	UG/L	ND	10	ND	11	ND	10	ND	10
Isophorone	UG/L	ND	10	ND	11	ND	10	ND	10
2-Nitrophenol	UG/L	ND	10	ND	11	ND	10	ND	10
2,4-Dimethylphenol	UG/L	ND	10	ND	11	ND	10	ND	10
Bis(2-chloroethoxy) methane	UG/L	ND	10	ND	11	ND	10	ND	10
2,4-Dichlorophenol	UG/L	ND	10	ND	11	ND	10	ND	10
laphthalene	UG/L	ND	10	ND	11	ND	10	ND	10
-Chloroaniline	UG/L	ND	10	ND	11	ND	10	ND	10
lexachlorobutadiene	UG/L	ND	10	ND	11	ND	10	ND	10
Caprolactam	UG/L	ND	10	ND	11	ND	10	ND	10
4-Chloro-3-methylphenol	UG/L	ND	10	ND	11	ND	10	ND	10
2-Methylnaphthalene	UG/L	ND	10	ND	11	ND	10	ND	10
lexachlorocyclopentadiene	UG/L	ND	10	ND	11	ND	10	ND	10
2,4,6-Trichlorophenol	UG/L	ND	10	ND	11	ND	10	ND	10
2,4,5-Trichlorophenol	UG/L	ND	25	ND	26	ND	24	ND	26
Biphenyl	UG/L	ND	10	ND	11	ND	10	ND	10
2-Chloronaphthalene	UG/L	ND	10	ND	11	ND	10	ND	10
2-Nitroaniline	UG/L	ND	25	ND	26	ND	24	ND	26
Dimethyl phthalate	UG/L	ND	10	ND	11	ND	10	ND	10
2,6-Dinitrotoluene	UG/L	ND	10	ND	11	ND	10	ND	10
Acenaphthylene	UG/L	ND	10	ND	11	ND	10	ND	10
3-Nitroaniline	UG/L	ND	25	ND	26	ND	24	ND	26
Acenaphthene	UG/L	ND	10	ND	11	ND	10	ND	10
2,4-Dinitrophenol	UG/L	ND	25	ND	26	ND	24	ND	26
4-Nitrophenol	UG/L	ND	25	ND	26	ND	24	ND	26
Dibenzofuran	UG/L	ND	10	ND	11	ND	10	ND	10
2.4-Dinitrotoluene	UG/L	ND	10	ND	11	ND	10	ND	10
Diethyl phthalate	UG/L	ND	10	ND	11	ND	10	ND	10
Fluorene	UG/L	ND	10	ND	11	ND	10	ND	10
4-Chlorophenyl phenyl ether	UG/L	ND	10	ND	11	ND	10	ND	10
4-Nitroaniline	UG/L	ND	25	ND	26	ND	24	ND	26
4,6-Dinitro-2-methylphenol	UG/L	ND	25	ND	26	ND	24	ND	26
N-nitrosodiphenylamine	UG/L	ND	10	ND	11	ND	10	ND	10

#### Benchmark 2250 Factory Outlet Blvd. ASP 2000 - SEMIVOLATILES

Client ID Job No Lab ID Sample Date		BLIND DUP A07-0157 01/05/2007	A7015702	BLIND DUP A07-0157 01/05/2007	A7015702RE	MW-1 A07-0157 01/05/2007	A7015701	MW-1 A07-0157 01/05/2007	A7015701RE
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
<pre>4-Bromophenyl phenyl ether Hexachlorobenzene Atrazine Pentachlorophenol Phenanthrene Anthracene Carbazole Di-n-butyl phthalate fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene Bis(2-ethylhexyl) phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene</pre>	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND ND ND ND ND ND ND ND N	10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	ND ND ND ND ND ND ND ND ND ND ND ND ND N	11 11 26 11 11 11 11 11 11 11 11 11 11 11 11 11	ND ND ND ND ND ND ND ND ND ND ND ND ND N	10 10 24 10 10 10 10 10 10 10 10 10 10 10 10 10	ND ND ND ND ND ND ND ND ND ND ND ND ND N	10 10 26 10 10 10 10 10 10 10 10 10 10 10 10 10
IS/SURROGATE(S) 1,4-Dichlorobenzene-D4 Naphthalene-D8 Acenaphthene-D10 Phenanthrene-D10 Chrysene-D12 Perylene-D12 Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol 2-Chlorophenol-d4 1,2-Dichlorobenzene-d4	% % % % % % % % % % %	82 84 87 92 90 66 69 45 67 60 81 65 62	50-200 50-200 50-200 50-200 50-200 35-114 43-116 33-141 10-110 21-110 10-123 33-110 16-110	89 93 94 87 97 63 64 41 61 61 60 74 64 61	50-200 50-200 50-200 50-200 50-200 35-114 43-116 33-141 10-110 21-110 21-110 10-123 33-110 16-110	83 81 84 91 88 63 65 52 60 54 77 59 56	50-200 50-200 50-200 50-200 50-200 35-114 43-116 33-141 10-110 21-110 21-110 10-123 33-110 16-110	93 97 100 99 94 104 60 62 50 57 58 70 62 55	50-200 50-200 50-200 50-200 35-114 43-116 33-141 10-110 21-110 10-123 33-110 16-110

Client ID

Acenaphthylene

3-Nitroaniline

2,4-Dinitrophenol

2,4-Dinitrotoluene

4-Chiorophenyl phenyl ether

Diethyl phthalate

Acenaphthene

4-Nitrophenol

Dibenzofuran

Fluorene

#### Benchmark 2250 Factory Outlet Blvd. ASP 2000 - SEMIVOLATILES

MW-3

Rept: AN0326

A7015704RE

Reporting Limit

11

11

11

11

11

11

11

11

11

11

11

11

11

11 11

11

11

11

11

11

11

11

11

11 28 11

11 28 11

11 11

28

11

28

28

11

11

11

11

11

28

28

11

MW-3

Job No Lab ID Sample Date		A07-0157 01/05/2007	A7015703	MW-2 A07-0157 01/05/2007	A7015703RE	MW-3 A07-0157 01/05/2007	A7015704	MW-3 A07-0157 01/05/2007
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value
Benzaldehyde	UG/L	ND	10	ND	10	ND	10	ND
Phenol	UG/L	ND	10.	ND	10	ND	10	ND
Bis(2-chloroethyl) ether	UG/L	ND	10	ND	10	ND	10	ND
2-Chlorophenol	UG/L	ND	10	ND	10	ND	10	ND
2-Methylphenol	UG/L	ND	10	ND	10	ND	10	ND
2,2'-Oxybis(1-Chloropropane)	UG/L	ND	10	ND	10	ND	10	ND
Acetophenone	UG/L	ND	10	ND	10	ND	10	ND
4-Methylphenol	UG/L	ND	10	ND	10	ND	10	ND
N-Nitroso-Di-n-propylamine	UG/L	ND	10	ND	10	ND	10	ND
Hexachloroethane	UG/L	ND	10	ND	10	ND	10	ND
Nitrobenzene	UG/L	ND	10	ND	10	ND	10	ND
Isophorone	UG/L	ND	10	ND	10	ND	10	ND
2-Nitrophenol	UG/L	ND	10	ND	10	ND	10	ND
2,4-Dimethylphenol	UG/L	ND	10	ND	10	ND	10	ND
Bis(2-chloroethoxy) methane	UG/L	ND	10	ND	10	ND	10	ND
2,4-Dichlorophenol	UG/L	ND	10	ND	10	ND	10	ND
Naphthalene	UG/L	ND	10	ND	10	ND	10	ND
4-Chloroaniline	UG/L	ND	10	ND	10	ND	10	ND
Hexachlorobutadiene	UG/L	ND	10	ND	10	ND	10	ND
Caprolactam	UG/L	ND	10	ND	10	ND	10	ND
4-Chloro-3-methylphenol	UG/L	ND	10	ND	10	ND	10	ND
2-Methylnaphthalene	UG/L	ND	10	ND	10	ND	10	ND
Hexachlorocyclopentadiene	UG/L	ND	10	ND	10	ND	10	ND
2,4,6-Trichlorophenol	UG/L	ND	10	ND	10	ND	10	ND
2,4,5-Trichlorophenol	UG/L	ND	24	ND	26	ND	25	ND
Biphenyl	UG/L	ND	10	ND	10	ND	10	ND
2-Chloronaphthalene	UG/L	ND	10	ND	10	ND	10	ND
2-Nitroaniline	UG/L	ND	24	ND	26	ND	25	ND
Dimethyl phthalate	UG/L	ND	10	ND	10	ND	10	ND
2,6-Dinitrotoluene	UG/L	ND	10	ND	10	ND	10	ND
	1			1	40	1	1 10	1 10

ND

10

26

10

26

26

10

10

10

10

10

26

26

10

ND

ND

ND

ND

ND

ND

ND

ND

ND

NĐ

ND

ND

ND

10

25

10

25

25

10

10

10

10

10

25

25

10

10

24

10

24

24

10

10

10

10

10

MW-2

ND

UG/L

MW-2

ND

#### Benchmark 2250 Factory Outlet Blvd. ASP 2000 - SEMIVOLATILES

Rept: AN0326

Client ID Job No Lab ID Sample Date		MW-2 A07-0157 01/05/2007	A7015703	MW-2 A07-0157 01/05/2007	A7015703RE	MW-3 A07-0157 01/05/2007	A7015704	MW-3 A07-0157 01/05/2007	A7015704RE
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
4-Bromophenyl phenyl ether Hexachlorobenzene Atrazine Pentachlorophenol Phenanthrene Anthracene Carbazole Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene Bis(2-ethylhexyl) phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND ND ND ND ND ND ND ND N	10 10 24 10 10 10 10 10 10 10 10 10 10 10 10 10	ND ND ND ND ND ND ND ND ND ND ND ND ND N	10 10 26 10 10 10 10 10 10 10 10 10 10 10 10 10	ND ND ND ND ND ND ND ND ND ND ND ND ND N	10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	ND ND ND ND ND ND ND ND ND ND ND ND ND N	11 11 11 28 11 11 11 11 11 11 11 11 11 11 11 11 11
1,4-Dichlorobenzene-D4 Naphthalene-D8 Acenaphthene-D10 Phenanthrene-D10 Chrysene-D12 Perylene-D12 Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol 2,4,6-Tribromophenol 2-Chlorophenol-d4 1,2-Dichlorobenzene-d4	% % % % % % % % %	86 88 91 88 96 108 71 74 30 * 69 60 84 68 66	50-200 50-200 50-200 50-200 50-200 35-114 43-116 33-141 10-110 21-110 10-123 33-110 16-110	88 94 92 91 86 95 54 59 24 * 51 61 56 52	50-200 50-200 50-200 50-200 50-200 35-114 43-116 33-141 10-110 21-110 10-123 33-110 16-110	86 87 87 96 104 66 68 35 64 58 84 64 59	50-200 50-200 50-200 50-200 50-200 35-114 43-116 33-141 10-110 21-110 10-123 33-110 16-110	80 86 82 85 79 87 57 63 46 58 57 67 59 57	50-200 50-200 50-200 50-200 50-200 35-114 43-116 33-141 10-110 21-110 10-123 33-110 16-110

Date:	01/24/2007
Time:	14:14:35

#### Benchmark 2250 Factory Outlet Blvd. ASPOC METHOD 8082 - POLYCHLORINATED BIPHENYLS

Rept: AN0326

Client ID Job No Lab ID Sample Date		BLIND DUP A07-0157 01/05/2007	A7015702	MW-1 A07-0157 01/05/2007	A7015701	MW-2 A07-0157 01/05/2007	A7015703	MW-3 A07-0157 01/05/2007	A7015704
Analyte	Unîts	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1250 SURROGATE(S)	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND ND	0.50 0.50 0.60 0.51 0.50 0.50 0.50	ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50	ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50
Tetrachloro-m-xylene Decachlorobiphenyl	% %	92 110	36-132 28-132	92 112	36-132 28-132	94 84	36-132 28-132	91 94	36-132 28-132

#### Benchmark 2250 Factory Outlet Blvd. WET CHEMISTRY ANALYSIS

Client ID Job No Lab ID Sample Date		BLIND DUP A07-0157 01/05/2007	A7015702	MW-1 A07-0157 01/05/2007	A7015701	MW-2 A07-0157 01/05/2007	A7015703	MW-3 A07-0157 01/05/2007	A7015704
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Hexavalent Chromium - Total	MG/L	ND	0.010	ND	0.010	ND	0.010	ND	0.010

Sample Date	o ID		MW-4 A07-0157 01/05/2007	A7015705					<b></b>	
Analyte		Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Hexavalent Chromium - To	otal	MG/L	ND	0.020	NA		NA		NA	

Date: 01/24/2007 Time: 11:21:12

Lab 1D

Units

BLIND DUP

01/05/2007

Sample

Value

A07-0157

Client ID

Sample Date

Analyte

Job No

#### Benchmark 2250 Factory Outlet Blvd. BENCKMARK ASPOD - AQUEOUS TAL METALS

A7015701

Reporting

Limit

NH-Z

A07-0157

01/05/2007

Sample

Value

MW-1

A07-0157

01/05/2007

Sample

Value

A7015702

Reporting Limit

Rept:	AN0326

A7015704

Reporting

Limit

NW-3

A7015703

Reporting

Limit

A07-0157

01/05/2007

Sample

Value

01/24/2007	
12:38	
FAX	
7166917991	

.

2002

Hercury - Total	UG/L	ND	0,120	ND	0.120	ND	0.120	ND	0.120
Aluminum - Soluble	UG/L	492 N*	33.0	1080 N*	33.0	945 N*	33.0	151 BN*	33.0
Antimony - Total	UG/L	ND	6.4	ND	6.4	NÐ	6.4	ND	6.4
Arsenic - Total	UG/L	DK	4-8	ND	4.8	ND	4.8	MD	4.B
Barium - Total	UG/L	29.7 B	0.24	34.3 B	0.24	36.8 B	0.24	26.4 B	D.24
Beryllium - Total	UG/L	ND	0.16	0.42 B	0.16	ND	0.16	0.32 B	D.16
Cadmium - Yotal	UG/L	ND	0.39	ND	0.39	ND	0.39	ND	0.39
Calcium - Total	UG/L	355000	31.0	359000	31.0	148000	31.0	397000	31.0
Chromium - Total	UG/L	2.2 B	0.74	2.9 B	0.74	1.4 B	0.74	ND	0.74
Cobalt - Total	UG/L	2.1 B	0.85	2.4 B	0.85	1.1 B	0.85	ND	0,85
Copper - Total	UG/L	2.2 B	1.3	2.9 B	1.3	1.9 B	1.3	ND	1.3
Iron - Total	UG/L	891 N*	16.0	1710 N*	16.0	712 N*	16.0	315 N*	16.0
Lead - Total	UG/L	ND N*	1.9	ND NT 1	1.9	ND N ^A	1.9		1.0
Magnesium - Iotal	UG/L	259000	27.0	261000	27.0	209000	27.0	244000	27.0
Manganese - Total	UG/L	446 H	0.22	455 N	0.22	48.2 N	0.22	136 N	0.22
Nickel - Total	UG/L	2.4 B	1.4	3.4 B	1.4	2.9 B	1.4	3.0 B	1.4
Potassium - Total	UG/L	3490 B	34_0	3650 B	34.0	2940 B	34.0	3470 B	34.0
Selenium - Total	UG/L	ND	6.8	ND	6.8	ND	6.8	ND	6.8
Silver - Total	UG/L	ND	1.3	ND	1.3	ND	1.3	ND	1.3
Sodium - Total	UG/L	53600	270	53900	270	40600	270	61000	270
Thallium - Total	UG/L	ND	B_2	ND	8.2	ND	8.2	ND	8.2
Vanadium - Total	UG/L	ND	0.71	1,4 B	0.71	1.6 B	0.71	ND	0.71
Zinc - Total	UG/L	7.1 B	0.71 0.92	10.7 B	0.92	7.7 B	0.92	4.0 B	0.92

#### Benchmark 2250 Factory Dutlet Blvd. BENCHMARK ASPOO - AQUEOUS TAL METALS

Client ID Job No L Sample Date	.ab ID	MN-4 A07-0157 01/05/2007	A7015705						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Mercury - Total	UG/L	ND	D.120	NA		NA		NA	
Aluminum - Soluble	UG/L	18000 H*	33.0	NA		NA		NA	
Antimony - Total	UG/L	ND	6.4	NA		NA		NA	
Arsenic - Total	UG/L	7.4 B	4.8	NA		NA		NA	
Barium - Yotal	UG/L	111 B	0.24	NA		NA		NA	
Beryllium - Total	UG/L	0.71 B	0.16	NA		NA		NA	
Cadmium - Total	UG/L	0.65 B	0.39	NA		NA		NA	
Calcium - Total	UG/L	245000	31.0	NA		NA		NA	
Chromium - Total	UG/L	75.9	0.74	NA		NA		NA	
Cobalt - Total	UG/L	13.0 B	0.85	NA		NA		NA	
Copper - Total	UG/L	34.6	1.3	NA		NA		NA	
Iron - Total	UG/L	24700 N*	16.0	NA		NA		NA	
Lead - Total	UG/L	29.5 N*	1.9	ŇÁ		NA		NA	
Magnesium - Total	UG/L	124000	27.0	NA		NA		NA	
Manganese - Total	UG/L	1340 N	0.22	NA		NA		NA	
Nickel - Total	UG/L	30.7 B	1.4	NA		NA		AN	
Potassium - Total	UG/L	6340	34.0	NA		NA		NA	
Selenium - Total	UG/L	ND	6.8	NA		NA		NA	
Silver - Total	UG/L	ND	1.3	NA		NA		NA	
Sodium - Total	UG/L	77500	270	NA	1	NA		NA	
Thallium - Total	UG/L	ND	8.2	NA		NA		NA	
Vanadium - To <b>ta</b> l	UG/L	35.9 B	0.71	NA		NA		NA	
Zinc - Total	UG/L	170	0.92	NA		NA	1	NA	

Rept: AN0326.

Date: 01/24/2007 Time: 11:21:12

#### Benchmark 2250 Factory Outlet Blvd. BENCH-SOLUBLE TAL METALS (23) -W

Client ID Job No I Sample Date	Lab ID	BLIND DUP A07-0157 01/05/2007	A7015702	MN-1 A07-0157 01/05/2007	A7015701	MW-2 A07-0157 01/05/2007	A7015703	MW-3 A07-0157 01/05/2007	A7015704
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Mercury - Soluble	UG/L	ND	0.120	ND	0.120	ND	0.120	ND	0.120
Aluminum - Soluble	UG/L	ND	33.0	NÐ	33.0	ND	33.0	ND	33.0
Antimony - Soluble	UG/L	ND	6.4	ND	6.4	ND	6.4	ND	6.4
Arsenic - Soluble	UG/L	ND	4.8	ND	4.8	ND	4-8	ND	4.8
Barium - Soluble	UG/L	27.2 B	0,24	26.4 B	0.24	33.1 B	0.24	27.1 B	0.24
Beryllium - Soluble	UG/L	0.26 B	0.16	0.30 B	0.16	ND	0.16	0.27 B	0.16
Cadmium - Soluble	UG/L	ND	0.39	ND	0.39	ND	0.39	ND	0.39
Calcium - Soluble	UG/L	385000	31.0	369000	31.0	153000	31.0	412000	31.D
Chromium - Soluble	UG/L	ND	0.74	ND	0.74	ND	0.74	DN D	0,74
Cobalt - Soluble	UG/L	1.48	0.85	1.8 B	0.85	1 ND	0.85	1.2 B	0.85
Copper - Soluble	UG/L	ND	1.3	1.3 B	1.3	ND	1.3	ND	1.3
Iran - Soluble	UG/L	NÐ	16.0	ND -	16.0	ND	16.0	ND	16.0
Lead - Soluble	ÚG/L	ÂŬ	i.9	ND	1.7	LID.	1_ <u>p</u>	<u>N</u> n	1.9
Mannesium - Soluble	UG/L	269000	27.0	262000	27.0	215000	27.0	254000	27.0
Manganese - Soluble	UG/L	330	0,22	410	0.22	49.1	0.22	144	0.22
Nickel - Soluble	UG/L	2.5 B	1.4	1.7 B	1.4	2.1 B	1.4	2.3 B	1.4
Potassium - Soluble	UG/L	4540 BE	34.0	3980 BE	34.0	3580 BE	34.0	3950 BE	34.0
Selenium - Soluble	UG/L	8.2 B	6.8	ND	6.8	ND	6.8	ND	6.8
Silver - Soluble	UG/L	ND	1.3	ND	1.3	ND	1.3	ND	1.3
Sadium - Soluble	UG/L	56500	270	54900	270	44900	270	64200	270
Thallium - Soluble	UG/L	ND	8.2	ND	8.2	ND	8.2	ND	8.2
Vanadium - Soluble	UG/L	ND	0.71	ND	0.71	ND	0.71	ND	0.71
Zinc - Soluble	UG/L	4.7 в	0.92	5.4 B	0.92	2.8 B	0.92	2.8 B	0.92

Date: 01/24/2007 Time: 11:21:12

Client ID Jab No

Sample Date

Aluminum - Soluble Antimony - Soluble Arsenic - Soluble Barium - Soluble Beryllium - Soluble Cadmium - Soluble Calcium - Soluble Chromium - Soluble Cobait - Soluble Capper - Soluble Iran - Soluble Lead - Soluble Magnesium - Soluble Manganese - Soluble Nickel - Soluble

Potassium - Soluble Selenium - Soluble Silver - Soluble Sodium - Soluble Thallium - Soluble Vanadium - Soluble Zinc - Soluble

Mercury - Soluble

Analyte

>	Rept: AN0326		Benchmark 2250 Factory Outlet Blvd. BENCH-SOLUBLE TAL METALS (23) -W								
							A7015705	MV-4 A07-0157 01/05/2007		Lab (	
	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Units		
-	1	NA		NA		NA	33.0 6.4	ND ND	UG/L UG/L		
		NA		NA		NA NA	4.8	7.2 B	UG/L		
		NA		NA NA		NA	0.24	13.4 B	UG/L		
		NA		NA		NA	0.16	ND	UG/L		
		NA NA		NA		NA	0.39	ND	UG/L		
		NA NA	1	NA		NA	31.0	105000	UG/L		
		NA		NA		NA	0.74	0.95 B	UG/L		
		NA		NA		NA	0.85	1_0 B	UG/L		
		NA		NA		NA	1.3	4_4 B	UG/L		
		NA		NA		NA	16.0	36.7 B	UG/L		
[		NA		NA		NA	1.9	ND	UG/L		
ļ	ł	ND		NД		Na	27 በ	75900	11674		
		NA		NA		NA	0.22	171	UG/L		
		NA		NA		NA	1.4	5.6 B	UG/L		
		NA		NA		NA	34.0	1990 BE	UG/L UG/L		
		NA		NA		NA	6.8	ND ND	UG/L		
		NA		NA		NA	1.3	9430D	UG/L		
		NA		NA		NA NA	8.2	ND	UG/L		
		NA		NA		NA	0.71	3.4 B	UG/L		
	[	NA		NA NA		NA	0.92	16.1 B	UG/L		
		NA NA		NA NA		NA	0,120	ND	UG/L		

### ANALYTICAL REPORT

### Job#: <u>A07-0431</u>

STL Project#: NY4A9217 Site Name: <u>Benchmark</u> Task: 2250 Factory Outlet Blvd.

> Mr. Mike Lesakowski Benchmark Environmental 726 Exchange St., Ste 624 Buffalo, NY 14210

> > STL Buffalo

Brian J)Fischer Project Manager

01/24/2007

1/527

# STL Buffalo Current Certifications

# As of 9/28/2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA, NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA, ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

•

-

Sample Data Summary Package

### SAMPLE SUMMARY

			SAMPLED	RECEIVED
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE TIME	DATE TIME
A7043109	BLIND DUP	SOIL	01/12/2007	01/12/2007 17:50
A7043110	TP-11	SOIL	01/12/2007	01/12/2007 17:50
A7043111	TP-11 0.5%	SOIL	01/12/2007	01/12/2007 17:50
A7043112	TP-11 2%	SOIL	01/12/2007	01/12/2007 17:50
A7043113	TP-11 5%	SOIL	01/12/2007	01/12/2007 17:50
A7043113MS	TP-11 5%	SOIL	01/12/2007	01/12/2007 17:50
A7043113SD	TP-11 5%	SOIL	01/12/2007	01/12/2007 17:50
A7043101	TP-2	SOIL	01/12/2007	01/12/2007 17:50
A7043102	TP-2 0.5%	SOIL	01/12/2007	01/12/2007 17:50
A7043103	TP-2 2%	SOIL	01/12/2007	01/12/2007 17:50
A7043104	TP-2 5%	SOIL	01/12/2007	01/12/2007 17:50
A7043105	TP-6	SOIL	01/12/2007	01/12/2007 17:50
A7043106	TP-6 0.5%	SOIL	01/12/2007	01/12/2007 17:50
A7043107	TP-6 2%	SOIL	01/12/2007	01/12/2007 17:50
A7043108	TP-6 5%	SOIL	01/12/2007	01/12/2007 17:50

### METHODS SUMMARY

### Job#: <u>A07-0431</u>

### STL Project#: <u>NY4A9217</u> Site Name: <u>Benchmark</u>

	ANALYTICAL
PARAMETER	METHOD
Chromium - Total	SW8463 6010
Toxicity Characteristic Leaching Procedure	SW8463 1311

### References:

SW8463 "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

#### NON-CONFORMANCE SUMMARY

#### Job#: <u>A07-0431</u>

### STL Project#: NY4A9217 Site Name: Benchmark

### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

#### Sample Receipt Comments

#### A07-0431

Sample Cooler(s) were received at the following temperature(s); AMBIENT °C All samples were received in good condition.

### <u>Metals</u> Data

The recovery of sample TP-6 5% Matrix Spike exhibited a result below the quality control limits for Chromium. The recovery of sample TP-6 5% Matrix Spike Duplicate exhibited a result above the quality control limits for Chromium. The sample result is more than four times greater than the spike added. The LFB was acceptable.

The recoveries of sample TP-11 5% Matrix Spike and Matrix Spike Duplicate exhibited results below the quality control limits for Chromium. The sample result is more than four times greater than the spike added. The LFB was acceptable.

### Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

#### *******

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

### SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

## LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID			ANALY	TICAL REQ	UIREMENT	S	
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
BLIND DUP	A7043109	-	-	-	-	SW8463	-	SW8463
TP-11	A7043110	_	-	-	-	SW8463	-	SW8463
TP-11 0.5%	A7043111	-	-	-	-	SW8463	-	SW8463
TP-11 2%	A7043112	-	-	-	-	SW8463	-	SW8463
TP-11 5%	A7043113	-	-		-	SW8463	-	SW8463
TP-2	A7043101	-	-	-	-	SW8463	-	SW8463
TP-2 0.5%	A7043102	-	-	-	-	SW8463	-	SW8463
TP-2 2%	A7043103		-	-	-	SW8463	-	SW8463
TP-2 5%	A7043104	-	-	-	-	SW8463	-	SW8463
 TP-6	A7043105	-	-	-	-	SW8463	-	SW8463
TP-6 0.5%	A7043106	-	-	-		SW8463		SW8463
TP-6 2%	A7043107	_	-	-	-	SW8463		SW8463
TP-6 5%	A7043108	-	-	-	-	SW8463	-	SW8463

NYSDEC-1

### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

# SAMPLE PREPARATION AND ANALYTICAL SUMMARY INORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

LAB NAME: SEVERN I	KENT EADO	INTOIGLS, INC.			
SAMPLE IDENTIFICATION	MATRIX	METALS REQUESTED	DATE RECEIVED AT LAB	DATE DIGESTED	DATE ANALYZED
BLIND DUP	SOIL	TC T CR	01/12/2007	01/16/2007	01/17/2007
TP-11	SOIL	TC T CR	01/12/2007	01/16/2007	01/17/2007
TP-11 0.5%	SOIL	TC T CR	01/12/2007	01/16/2007	01/17/2007
TP-11 2%	SOIL	TC T CR	01/12/2007	01/16/2007	01/17/2007
TP-11 5%	SOIL	TC T CR	01/12/2007	01/16/2007	01/17/2007
TP-2	SOIL	TC T CR	01/12/2007	01/22/2007	01/22/2007
TP-2 0.5%	SOIL	TC T CR	01/12/2007	01/22/2007	01/22/2007
TP-2 2%	SOIL	TC T CR	01/12/2007	01/22/2007	01/22/2007
TP-2 5%	SOIL	TC T CR	01/12/2007	01/22/2007	01/22/2007
TP-6	SOIL	TC T CR	01/12/2007	01/22/2007	01/22/2007
TP-6 0.5%	SOIL	TC T CR	01/12/2007	01/22/2007	01/22/2007
TP-6 2%	SOIL	TC T CR	01/12/2007	01/16/2007	01/17/2007
TP-6 5%	SOIL	TC T CR	01/12/2007	01/16/2007	01/17/2007

NYSDEC-5

### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

### SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

LAB NAME: SEVERN TRE LABORATORY SAMPLE CODE	MATRIX	ANALYTICAL PROTOCOL	DIGESTION PROCEDURE	MATRIX MODIFIER	DIL/CONC FACTOR
BLIND DUP	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-11	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-11 0.5%	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-11 2%	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-11 5%	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-2	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-2 0.5%	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-2 2%	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-2 5%	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-6	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-6 0.5%	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-6 2%	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-6 5%	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED

NYSDEC-7



# DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

### ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample guantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- ¹ Indicates coelution.
- * Indicates analysis is not within the quality control limits.

#### INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Matrix:         WATER         Date Received:         1/12/2007         Date Collected:         1/12/2007         Level:         LOW           % Solids:         Sample Wt/Vol:         50.0         Final Vol:         50.0           Prep Batch ID:         A7B00686         Prep Date:         1/16/2007	Analyte Concentration	Units C Q	ual	RL	RL	Dil	Ana Date	lytical Time	Instrument	Run	N
Matrix: WATER Date Received: 1/12/2007 Date Collected: 1/12/2007 Level: LOW		Sample Wt/	•				/2007				
Sample ID: A7043109 Client ID: BLIND DUP	•	Date Receive	1/12/	/2007				Level:	LOW		

- 1 -INORGANIC ANALYSIS DATA PACKAGE

nalyte	Concentration	Units	С	Qual	RL	RL	Dil	An: Date	alytical Time	Instrument	Run	]
Prep Batch ID:	A7B00650					p Date:	1/16/	/2007				
Matrix: WAT % Solids:	ER			ceived: Wt/Vol:	1/12 50.(	/2007	Date ( Final	Collected: Vol:	1/12/2007 50.0	Level:	LOW	
Sample ID: A70	43110	Sample ID: A7043110					Client I					

•

- 1 -

# INORGANIC ANALYSIS DATA PACKAGE

Client: Benchn	ark Environment	al & Er	igine	SDG	No.:	A07-04	31	Met	thod Type:			
Sample ID: A7	043111						Client I	<b>D:</b> TP-11 0.	5%			
Matrix: WA	TER	Dat	e Rec	eived:	1/12	/2007	Date	Collected:	1/12/2007	Level:	LOW	
% Solids:		San	nple V	Vt/Vol:	50.0	)	Final	Vol:	50.0			
Prep Batch ID:	A7B00686				Pre	p Date:	1/ <b>16</b> /	/2007				
								An	alytical			
Analyte	Concentration	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
Chromium	4030	ug/L			4.0	4.0	1	1/17/2001	7 15:08	SUPERTRACE	1011707	F

.

.

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Sample ID: A7043	3112						Client I	<b>D:</b> TP-11 2%	6			
Matrix: WATE	R	Da	te Rec	eived:	1/12	/2007	Date (	Collected:	1/12/2007	Level:	LOW	
% Solids:		Sa	mple	Wt/Vol:	50.0	)	Final	Vol:	50.0			
Prep Batch ID:	A7B00686				Pre	p Date:	1/16/	2007				
<u></u>								Апа	lytical			
Analyte (	Concentration	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
Chromium	3900	ug/L			4.0	4.0	1	1/17/2007	15:27	SUPERTRACE	1011707	F

- 1 -

# INORGANIC ANALYSIS DATA PACKAGE

Client: Benchm	ark Environmer	ntal & E	ngine	SDG	No.:	A07-04	31	Met	hod Type:			
Sample ID: A7	043113						Client I	D: TP-11 5%	6			
Matrix: WA	TER.	Da	te Re	eived:	1/12	/2007	Date (	Collected:	1/12/2007	Level:	LOW	
% Solids:		Sa	mple	Wt/Vol:	50.0	)	Final	Vol:	50.0			
Prep Batch ID:	A7B00686				Pre	p Date:	1/16/	/2007				
								Ana	lytical		·	
Analyte	Concentration	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
Chromium	4200	ug/L			4.0	4.0	1	1/17/2007	15:32	SUPERTRACE	1011707	P

.

# Benchmark Environmental & Engineering Science

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchmark Env	ironment	al & Ei	ngine	SDG	No.:	A07-04	31	Met	hod Type:			
Sample ID: A7043101							Client I	<b>D:</b> TP-2				
Matrix: WATER		Dat	e Rec	eived:	1/12	/2007	Date (	Collected:	1/12/200	7 Level:	LOW	
% Solids:		Sai	nple V	Wt/Vol:	50.0	)	Final	Vol:	50.0			
Prep Batch ID: A7I	300898				Pre	p Date:	1/22/	/2007				
<u></u>								An	alytical			
Analyte Conce	ntration <b>I</b>	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
Chromium	7850 1	ıg/L			4.0	4.0	1	1/22/200	7 17:19	SUPERTRACE2	B012207	F

•

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchm	ark Environmer	ntal & E	Ingine	SDG	No.:	A07-04	31	Met	hod Type:			
Sample ID: A7	043102						Client I	D: TP-2 0.5	%			
Matrix: WA	FER	Da	te Rec	ceived:	1/12	/2007	Date (	Collected:	1/12/2007	7 Level:	LOW	
% Solids:		Sa	mple	Wt/Vol:	50.0	<b>D</b> .	Final	Vol:	50.0			
Prep Batch ID:	Prep Batch ID: A7B00898				Pre	p Date:	1/22/	/2007				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								An	lytical			
Analyte	Concentration	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
Chromium	7520	ug/L			4.0	4.0	1	1/22/2007	7 17:55	SUPERTRACE2	B012207	F

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchma	rk Environmer		siigiiie		No.:	A07-04	-51	Met	hod Type:			
Sample ID: A704	43103						Client I	D: TP-2 2%	1			
Matrix: WAT	ER	D	ate Re	ceived:	1/12	/2007	Date (Collected:	1/12/2007	Level:	LOW	
% Solids:		Sa	ample	Wt/Vol:	50.0)	Final	Vol:	50.0			
Prep Batch ID:	Prep Batch ID: A7B00898				Prep Date:		1/22/2007					
<u> </u>								Ana	lytical			
Analyte	Concentration	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
Chromium	7450	ug/L			4.0	4.0	1	1/22/2007	/ 18:00	SUPERTRACE2	B012207	P

•

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Inalyte	Concentration 5690	+	С	Qual	RL	RL	Dil	Ana Date	lytical Time	Instrument	Run	l
% Solids: Prep Batch ID:	A7B00898	Sai	nple \	Wt/Vol:	50.0 Pre) p Date:	Final ' 1/22/	2007	50.0			
Matrix: WAT		Dat	æ Rec	eived:	1/12	/2007		Collected:	1/12/2007	7 Level:	LOW	
Sample ID: A7(43104						Client I	D: TP-2 5%				

.

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchmark Environmenta	al & Eng	gine	SDG	No.:	A07-04	31	Met	thod Type:			
Sample ID: A7043105		-				Client I	D: TP-6				
Matrix: WATER	Date	Recei	ved:	1/12	/2007	Date	Collected:	1/12/200	7 Level:	LOW	
% Solids:	Samp	ple W	t/Vol:	50.0)	Final	Vol:	50.0			
Prep Batch ID: A7B00898				Pre	p Date:	1/22/	2007				
		•					An	alytical			
Analyte Concentration U	J nits	C (Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
Chromium 6440 u	ıg/L			4.0	4.0	1	1/22/2001	7 18:10	SUPERTRACE2	B012207	Р

.

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchmark Environment	al & Engine	SDG	No.:	A07-04	31	Met	hod Type:			
Sample ID: A7043106					Client I	D: TP-6 0.5	%			
Matrix: WATER	Date Rec	eived:	1/12	/2007	Date (Collected:	1/12/2007	7 Level:	LOW	
% Solids:	Sample	Wt/Vol:	50.0)	Final	Vol:	50.0			
Prep Batch ID: A7B00898			Pre	p Date:	1/22/	2007				
······································	1 62 10 60 600					Ana	alytical			
Analyte Concentration	Units C	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
Chromium 6790	ug/L		4.0	4.0	1	1/22/2007	7 18:15	SUPERTRACE2	B012207	F

•

- 1 -INORGANIC ANALYSIS DATA PACKAGE

nalyte	Concentration	Units	С	Qual	RL	RL	Dil	Ana Date	lytical Time	Instrument SUPERTRACE	Run 1011707]
Prep Batch ID:	A7B00650		^		Prej	p Date:	1/16/	/2007	·····			
Matrix: WATI % Solids:	ER			eived: Wt/Vol:	1/12/ 50.0	/2007)	Date (Final)	Collected: Vol:	1/12/2007 50.0	Level:	LOW	
Sample ID: A704	3107						Client I	D: TP-6 2%				

.

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchmar	k Environmer	ntal & E	ngine	SDG	No.:	A07-04	31	Met	hod Type:	<u>.</u>		
Sample ID: A704	3108						Client I	D: TP - 6 5%				
Matrix: WATE	CR	Da	te Rec	eived:	1/12	/2007	Date (Collected:	1/12/2007	Level:	LOW	
% Solids:		Sa	mple '	Wt/Vol:	50.0	0	Final	Vol:	50.0			
Prep Batch ID:	A7B00650				Pre	p Date:	1/16/	2007				
							<u> </u>		alytical			
Analyte	Concentration	Units	C	Qual	RL	RL	Dil	Date	Time	Instrument	Run	M
Chromium	12700	ug/L			4.0	4.0	1	1/17/2007	7 17:51	SUPERTRACE	1011707	Р

ANALYTICAL REPORT

Job#: <u>A07-0961</u>

STL Project#: NY4A9217 Site Name: <u>Benchmark</u> Task: 2250 Factory Outlet Blvd.

> Mr. Mike Lesakowski Benchmark Environmental 726 Exchange St., Ste 624 Buffalo, NY 14210

> > STL Buffalo

Brian J Fischer Project Manager

02/09/2007

STL Buffalo Current Certifications

As of 9/28/2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA, NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA, ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

.

-

Sample Data Summary Package

SAMPLE SUMMARY

			SAMPI	ED	RECEIVE	ED .
LAB SAMPLE II	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A7096111	BLIND DUPE	SOIL	01/30/2007		01/30/2007	15:30
A7096101	TP-2 (2)	SOIL	01/30/2007		01/30/2007	15:30
A7096101MS	TP-2 (2)	SOIL	01/30/2007		01/30/2007	15:30
A7096101SD	TP-2 (2)	SOIL	01/30/2007		01/30/2007	15:30
A7096102	TP-2 10% PC	SOIL	01/30/2007		01/30/2007	15:30
A7096103	TP-2 15% LIME	SOIL	01/30/2007		01/30/2007	15:30
A7096104	TP-2 2% FESO4	SOIL	01/30/2007		01/30/2007	15:30
A7096105	TP-2 5% FESO4	SOIL	01/30/2007		01/30/2007	15:30
A7096106	TP-6 (2)	SOIL	01/30/2007		01/30/2007	15:30
A7096107	TP-6 10% PC	SOIL	01/30/2007		01/30/2007	15:30
A7096108	TP-6 15% LIME	SOIL	01/30/2007		01/30/2007	15:30
A7096109	TP-6 2% FESO4	SOIL	01/30/2007		01/30/2007	15:30
A7096110	TP-6 5% FESO4	SOIL	01/30/2007		01/30/2007	15:30

METHODS SUMMARY

Job#: <u>A07-0961</u>

STL Project#: <u>NY4A9217</u> Site Name: <u>Benchmark</u>

PARAMETER	ANALYTICAL METHOD
Chromium - Total	SW8463 6010
Toxicity Characteristic Leaching Procedure	SW8463 1311

References:

SW8463 "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

NON-CONFORMANCE SUMMARY

Job#: A07-0961

STL Project#: <u>NY4A9217</u> Site Name: <u>Benchmark</u>

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-0961

Sample Cooler(s) were received at the following temperature(s); 17.2 °C Samples were received at a temperature of 17.2°C. As the samples were collected the same day, it was not possible for the samples to cool to 4°C prior to receipt. There is no impact on the data.

Metals Data

The recovery of sample TP-2 (2) Matrix Spike Duplicate exhibited a result above the quality control limits for Chromium. The recoveries of sample TP-6 10% PC Matrix Spike and Matrix Spike Duplicate exhibited results below the quality control limits for Chromium. The samples results are more than four times greater than the spike added. The LFB's were acceptable.

The recovery of sample TP-2 (2) Post Spike exhibited a result below the quality control limits for Chromium. However, the Serial Dilution of this sample was compliant. Therefore, no corrective action was necessary.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID			ANALY	TICAL REQ	UIREMENTS	5	
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
BLIND DUPE	A7096111	-	-	-	-	SW8463	-	SW8463
TP-2 (2)	A7096101	-	-	-	-	SW8463	-	SW8463
TP-2 10% PC	A7096102	-	-	÷	-	SW8463	-	SW8463
TP-2 15% LIME	A7096103	-	-	-	-	SW8463		SW8463
TP-2 2% FESO4	A7096104		-	-	-	SW8463	-	SW8463
TP-2 5% FESO4	A7096105	-	-	-	-	SW8463	-	SW8463
TP-6 (2)	A7096106	~	-	-	-	SW8463	-	SW8463
TP-6 10% PC	A7096107	-	-	-	-	SW8463	-	SW8463
TP-6 15% LIME	A7096108	-	-	-	-	SW8463	-	SW8463
TP-6 2% FESO4	A7096109	-	-	-	-	SW8463	-	SW8463
TP-6 5% FESO4	A7096110	-	-	_	_	SW8463	-	SW8463

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYTICAL SUMMARY INORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	METALS REQUESTED	DATE RECEIVED AT LAB	DATE DIGESTED	DATE ANALYZED
BLIND DUPE	SOIL	TC T CR	01/30/2007	02/02/2007	02/02/2007
TP-2 (2)	SOIL	TC T CR	01/30/2007	02/01/2007	02/01/2007
TP-2 10% PC	SOIL	TC T CR	01/30/2007	02/01/2007	02/01/2007
TP-2 15% LIME	SOIL	TC T CR	01/30/2007	02/01/2007	02/01/2007
TP-2 2% FESO4	SOIL	TC T CR	01/30/2007	02/01/2007	02/01/2007
TP-2 5% FESO4	SOIL	TC T CR	01/30/2007	02/01/2007	02/01/2007
TP-6 (2)	SOIL	TC T CR	01/30/2007	02/01/2007	02/01/2007
TP-6 10% PC	SOIL	TC T CR	01/30/2007	02/02/2007	02/02/2007
TP-6 15% LIME	SOIL	TC T CR	01/30/2007	02/02/2007	02/02/2007
TP-6 2% FESO4	SOIL	TC T CR	01/30/2007	02/02/2007	02/02/2007
TP-6 5% FESO4	SOIL	TC T CR	01/30/2007	02/02/2007	02/02/2007

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

LAD MAINE, OF A FRIATINE	I'I DILDOIGU	<u>orneo, n.o</u>		and the second second second second second second second second second second second second second second secon	
LABORATORY SAMPLE CODE	MATRIX	ANALYTICAL PROTOCOL	DIGESTION PROCEDURE	MATRIX MODIFIER	DIL/CONC FACTOR
BLIND DUPE	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-2 (2)	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-2 10% PC	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-2 15% LIME	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-2 2% FESO4	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-2 5% FESO4	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-6 (2)	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-6 10% PC	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-6 15% LIME	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-6 2% FESO4	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED
TP-6 5% FESO4	SOIL	SW8463	SW8463	AS REQUIRED	AS REQUIRED

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchman	k Environmer	ntal & E	ngine	SDG	No.:	A07-09	61	Met	hod Type:																										
Sample ID: A709	6111						Client I	D: BLIND I	DUPE																										
Matrix: WATH	ER	Da	Date Received: 1/30/2007 Date Collected: 1/30/200							Level:	LOW																								
% Solids:		Sa	Sample Wt/Vol:		Sample Wt/Vol:			Sample Wt/Vol:			Sample Wt/Vol:			Sample Wt/Vol:			Sample Wt/Vol:			Sample Wt/Vol:			Sample Wt/Vol:			Sample Wt/Vol:			0	Final '	Vol:	50.0			
Prep Batch ID:	A7B01601				Pre	p Date:	2/2/2	007																											
		··						Ana	lytical		<u></u>																								
Analyte	Concentration	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N																							
Chromium	14400	ug/L			4.0	4.0	1	2/2/2007	15:28	SUPERTRACE	1020207	P																							

•

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Inalyte	Concentration	Units ug/L	С	Qual	RL 4.0	RL	Dil 1	Ana Date 2/1/2007	alytical Time 22:39	Instrument SUPERTRACE	Run 1020107	N					
Prep Batch ID:	A7B01511				Pre	p Date:	2/1/2		lutical			<u> </u>					
% Solids:		Sa	Sample Wt/Vol:		Sample Wt/Vol:			Sample Wt/Vol:)	Final	Vol:	50.0			
Matrix: WAT		Da	te Rec	eived:	1/30	/2007		Collected:	1/30/2007	Level:	LOW						
Sample ID: A70	96101						Client I	D: TP-2 (2)									

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchma	rk Environmen	tal & E	ngine	SDG	No.:	A07-09	61	Met	hod Type:			
Sample ID: A70	96102						Client II	D: TP-2 109	% PC			
Matrix: WAT	ER	Da	te Rec	eived:	1/30	/2007	Date (Collected:	1/30/2007	Level:	LOW	
% Solids:		Sa	mple '	Wt/Vol:	50.0)	Final '	Vol:	50.0			
Prep Batch ID:	A7B01511				Pre	p Date:	2/1/2	007				
								An	alytical			
Analyte	Concentration	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
Chromium	12300	ug/L			4.0	4.0	1	2/1/2007	23:18	SUPERTRACE	1020107	P

•

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchmark E	nvironmen	tal & Er	igine	SDG	No.:	A07-09	61	Met	hod Type:			
Sample ID: A709610	3						Client II	D: TP-2 15%	% LIME			
Matrix: WATER		Dat	e Rec	eived:	1/30	/2007	Date (Collected:	1/30/2007	Level:	LOW	
% Solids:		Sar	nple V	Wt/Vol:	50.0)	Final '	Vol:	50.0			
Prep Batch ID:	A7B01511				Pre	p Date:	2/1/2	007				
			·	<u>.</u>	w			Ana	lytical			•
nalyte Cor	ncentration	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	1
hromium	5910	ug/L			4.0	4.0	1	2/1/2007	23:23	SUPERTRACE	1020107	

٠

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchmark E	nvironmenta	l & En	igine	SDG	No.:	A07-09	61	Met	hod Type:			
Sample ID: A7096104	1						Client II	D: TP-2 2%	FESO4			
Matrix: WATER		Date	e Rec	eived:	1/30/	/2007	Date C	Collected:	1/30/2007	Level:	LOW	
% Solids:		San	nple V	Wt/Vol:	50.0)	Final	Vol:	50.0			
Prep Batch ID: A	7B01511				Pre	p Date:	2/1/2	007				
<u> </u>								Ana	lytical			
Analyte Con	centration U	nits	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
Chromium	2850 u	g/L			4.0	4.0	1	2/1/2007	23:28	SUPERTRACE	1020107	Р

•

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchm	ark Environmer	ntal & E	ngine	SDG	No.:	A07-09	61	Met	hod Type:														
Sample ID: A7	096105						Client I	D: TP-2 5%	FESO4														
Matrix: WA	FER	Da	Date Received: 1/30/2007 Date Collected: 1/30/200							Level:	LOW												
% Solids:		Sa	Sample Wt/Vol:		Sample Wt/Vol:			Sample Wt/Vol:			Sample Wt/Vol:			Sample Wt/Vol:)	Final '	Vol:	50.0			
Prep Batch ID:	A7B01511				Pre	p Date:	2/1/2	007															
								An	alytical														
Analyte	Concentration	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N											
Chromium	4320	ug/L			4.0	4.0	1	2/1/2007	23:33	SUPERTRACE	1020107	P											

•

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchmar	k Environmen	tal & E	ngine	SDG	No.:	A07-09	61	Met	hod Type:			
Sample ID: A709	6106						Client I	D: TP-6 (2)				
Matrix: WATE	R	Dat	te Rec	eived:	1/30	/2007	Date (Collected:	1/30/2007	Level:	LOW	
% Solids:		Sa	mple '	Wt/Vol:	50.0)	Final '	Vol:	50.0			
Prep Batch ID:	A7B01511				Pre	p Date:	2/1/2	007				
· · · · · · · · · · · · · · · · · · ·								Ana	lytical			
Analyte	Concentration	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
Chromium	6040	ug/L			4.0	4.0	1	2/1/2007	23:38	SUPERTRACE	1020107	I

•

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Prep Batch ID: A7B01601		Prep Date: 2/2/2007								
% Solids:	Sample Wt/Vol:	50.0	Final Vol:	50.0		20.1				
Sample ID: A7096107 Matrix: WATER	Date Received:	Client ID: TP-6 10% PC Date Received: 1/30/2007 Date Collected: 1/30/2007 Level: LOW								

•

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchmark Environmen	tal & Engine	e SDG	No.:	A07-09	61	Met	hod Type:			
Sample ID: A7096108					Client II	D: TP-6 159	% LIME			
Matrix: WATER	Date Re	ceived:	1/30	1/30/2007 Date Collected:		1/30/2007	Level:	LOW		
% Solids:	Sample	Wt/Vol:	50.0)	Final Vol:		50.0			
Prep Batch ID: A7B01601			Pre	p Date:	2/2/2	007				
<u> </u>						Ana	alytical			
Analyte Concentration	Units C	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
Chromium 5490	ug/L		4.0	4.0	1	2/2/2007	14:48	SUPERTRACE	1020207	F

-

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchmark Environ	imental & En	ngine	SDG	No.:	A07-09	61	Met	hod Type:			
Sample ID: A7096109						Client IJ	D: TP-6 2%	FESO4			
Matrix: WATER	Date	e Receiv	ed:	1/30/2007 Date Collected:		1/30/2007	Level:	LOW			
% Solids:	San	nple Wt	/Vol:	50.0)	Final Vol:		50.0			
Prep Batch ID: A7B01	601			Pre	p Date:	2/2/2	007				
· · · · · · · · · · · · · · · · · · ·				·			Ana	alytical			
Analyte Concentra	tion Units	C Q	ual	RL	RL	Dil	Date	Time	Instrument	Run	M
Chromium 26	590 ug/L			4.0	4.0	1	2/2/2007	14:53	SUPERTRACE	1020207	P

-

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Benchma	ark Environmen	ital & E	ngine	SDG	No.:	A07-09	61	Met	hod Type:			
Sample ID: A70	96110						Client II	D: TP-6 5%	FESO4			
Matrix: WAT	ER	Da	te Rec	eived:	1/30/2007 Date Collected: 1/30/200		1/30/2007	Level:	LOW			
% Solids:		Sa	mple '	Wt/Vol:	50.0)	Final Vol:		50.0			
Prep Batch ID:	A7B01601				Pre	p Date:	2/2/2	007				
								An	alytical			
Analyte	Concentration	Units	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	N
Chromium	2570	ug/L			4.0	4.0	1	2/2/2007	14:58	SUPERTRACE	1020207	Р

•

APPENDIX D

DATA USABILITY SUMMARY REPORT (DUSR)

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, N. Y. 12853 Phone 518-251-4429 Facsimile 518-251-4428

September 15, 2007

Mike Lesakowski Benchmark Env. Engineers 726 Exchange St. Suite 624 Buffalo, NY 14210

RE: Data Usability Summary Report for the 2250 Factory Outlet Boulevard site STL-Buffalo SDG Nos. A06-F190, A06-F297, A06-405, and A07-157 STL-Pittsburg SDG Nos. C6L200300, C6L220251, and C6L220255

Dear Mr. Lesakowski:

Review has been completed for the data packages generated by Severn Trent Laboratories (STL) that pertain to samples collected 12/18/06 through 1/05/07 at the 2250 Factory Outlet site. Thirty-five soil samples and two field duplicates were processed for total chromium. Eleven of those soil samples were also analyzed for TCLP chromium, and sixteen of those soils and two field duplicates were also processed for hexavalent chromium. Four soil samples and a field duplicate were processed for TCL semivolatiles (BNA), TCL pesticides/PCBs, three herbicides, and TAL metals. Three aqueous samples and a field duplicate were processed for TCL Volatiles, TCL Semivolatiles, TCL PCBs, total and dissolved TAL metals, and hexavalent chromium. The methodologies utilized are those of the 2000 NYSDEC ASP CLP, USEPA SW846, and EPA 7196. The analyses for hexavalent chromium in the soil samples were subcontracted too STL-Pittsburgh.

The data packages submitted contain full deliverables for validation, but this usability report is generated from review of the summary form information, with review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, using guidance from the USEPA Region 2 validation SOPs, the USEPA National Functional Guidelines for Data Review, the specific laboratory methodologies, and professional judgment, as affects the usability of the data. The following items were reviewed:

- Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards

- * ICP Serial Dilution
- * CRI/CRA Standards
- * Instrument IDLs
- * Method Compliance
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review.

In summary, data were primarily processed in compliance with protocol requirements, and sample results are usable, with no data rejected. However, most of the total chromium results and all of the hexavalent chromium (and consequently trivalent chromium) results are qualified as being estimated in value due to matrix effects, and the filtered metals results are qualified as estimated due to delayed laboratory preservation.

Copies of laboratory sample identification summary forms that list the samples included in this report are attached to this text. Included with this submission are red-ink edited client tables that reflect final sample results with edits and qualifications recommended within this report.

The following text discusses quality issues of concern.

Chain-of-Custody

No entry for time of release was present on two of the field custody forms for samples reported in SDG A06-F297. The entry for release time was also not present on the custody for the subcontract transfer of these samples to STL-Pittsburg. Signatures and dates were present. A down-arrow was also missing on the collection date for samples collected 12/20/06 and reported in that same SDG. These items do not impact the integrity of the sample reported values.

Data Package Completeness

Although required, the client ID is not provided on the raw sample data. Metals raw data and sample forms do not reflect the laboratory ID number; they show a unique digestate number.

The laboratory case narratives do not include the required "verbatim" statement, and some were not signed by the laboratory.

Raw metals digestion logs do not show entries to reflect the addition of spiking compounds to the matrix spikes.

Although required of the protocol, individual solids determinations were not performed for the parent samples and their matrix spikes/laboratory duplicates. Therefore, the spike and duplicate accuracy and precision results may not accurately reflect dry weight determinations, and may vary from those reported.

pg. 2/6

pg. 3/6

TCL Volatiles by NYSDEC ASP OLM4.3

Matrix spikes (MS and MSD) of MW-3 show acceptable accuracy and precision. Blind field duplicate correlations for MW-1 are also within guidelines.

Calibrations standards showed acceptable responses. Sample holding time requirements were met, and surrogate and internal standard responses meet protocol requirements. Blanks show no contamination.

Tentatively Identified Compounds (TICs) that are flagged as "B" are considered external contamination, as shown by presence in the associated blanks.

TCL Semivolatiles by NYSDEC ASP OLM4.3

The aqueous samples were re-extracted beyond holding time, due to outlying internal standard response in the associated method blank. The initial sample analysis results can be used without additional qualification.

Matrix spikes (MS and MSD) for SS-1,2 COMP and MW-3 show acceptable accuracy and precision. Blind field duplicate correlations for MW-1 and SS-1,2-COMP are also within guidelines.

Calibration standards showed responses within laboratory requirements and validation guidelines, with the exception of those for caprolactum, 2,4-dinitrophenol, and 4-nitrophenol (26%D to 30%D) in the calibration associated with the aqueous samples. Results for those analytes in the aqueous samples are to be qualified as estimated ("UJ").

The method blank of 12/26/06 showS low level detections of 4-nitrophenol, pentachlorophenol, di-n-butylphthalate, and bis(2-ethylhexyl)phthalate. The detections of these compounds in the associated samples are considered external contamination, and are edited to reflect non-detection.

Detected results for bis(2-ethylhexyl)phthalate in the samples reported in the aqueous samples are considered external contamination, and edited to reflect non-detection ("U" or "ND") due to presence in the associated method blank.

Tentatively Identified Compounds (TICs) that are flagged as "B" and/or "A" are considered external contamination, as shown by presence in the associated blanks.

TCL PCB/Pesticides/Herbicide Analyses by NYSDEC ASP OLM4.3

Some of the pesticide reported detections may reflect responses from the matrix. They show elevated dual column correlations, with resulting qualifications as either estimated in value ("J"), tentative in identification and estimated in value ("NJ"), or edited to nondetection ("U"; sometimes at elevated reporting limits). They are as follows:

- o endrin ketone is edited to reflect nondetection in MW-2 2-4 and MW-3 8-10
- methoxychlor is edited to reflect nondetection, and endosulfan II and 4,4'-DDT are qualified "NJ", in SS-1,2-COMP
- \circ 4,4'-DDT is edited to reflect nondetection in Blind Dup (12/21/06)

pg. 4/6

Surrogate standard DCB produced elevated recoveries in Blind Dup. There are no detected values, and therefore no qualification is required.

Calibration standards meet protocol requirements, with the exceptions of outlying responses on the confirmation column of samples reporting no initial detections; results are unaffected.

Matrix spikes of pesticides in MW-3 and SS-1,2-COMP are acceptable, with the exception of a single elevated recovery. Matrix spikes of herbicides in SS-1,2-COMP are also within recommended limits.

The reporting limits for Aroclors in Blind Dup that were provided in the data package (SDG A07-157) are not consistent or correct. The reporting limits should be 0.82 ug/L.

Blind field duplicate correlations for MW-1 and SS-1,2-COMP are acceptable.

The pesticide fraction of the soil Blind Duplicate was processed at tenfold dilution; the reason is not evident. This results in elevated reporting limits. The parent sample was analyzed undiluted, and therefore there is no impact on the project data quality.

Holding times were met and blanks showed no contamination.

TAL Metals, Total Chromium, or TCLP Chromium by NYSDEC ASP CLP-M

Although the custody requested lab preservation of the filtered fractions of the aqueous samples (the samples were forwarded to the laboratory within two hours of collection), the preservation was not performed until ten days after receipt. Results for all soluble fractions are therefore to be qualified as estimated ("J"/"UJ"), and may have a low bias.

Matrix spike/duplicate evaluations of TAL metals were performed on the total and soluble fractions of MW-3 and on soil sample SS-1,2-COMP. The following recoveries exceed validation guidelines, and the results of those elements are qualified as estimated in the indicated samples:

Parent Sample	Analyte	% Recoveries	Associated Samples
SS-1,2-COMP	arsenic	182 and 212	A06-405
	copper	157 and 159	**
	chromium	40 and 37	**
MW-3 (Unfiltered)	aluminum	132 and 290	A07-157 (unfiltered)
	iron	231 and 894	*1

Matrix spike (MS and MSD) recoveries of total chromium TP-1/SL#1(0.0-2.0) and TP-2(0.0-2.5), and in the TCLP leachate of TP-2(0.0-2.5) could not be evaluated due to high parent sample concentrations. Duplicate correlations are within validation guidelines.

Blind field duplicate correlations for TAL metals in MW-1 show acceptable results for the soluble fraction, but outlying values for iron and aluminum in the total fraction. Those values have been qualified as estimated.

pg. 5/6

Blind field duplicate correlations for total chromium in TP-1/SL#1(0-2) and TP-2(0-2.5) are acceptable.

The ICP serial dilution evaluations of chromium in the following soil samples show elevated correlations (>10%D), and the indicated associated detections are qualified as estimated:

Parent Sample	Correlation, %D	Associated Samples
TP-1/SL1)0.0-2.0)	15	A06-F190
TP-2(0.0-2.5)	15	A06-F297
MW-3-Soluble	14	A07-157-Filtered

Zinc showed an elevated serial dilution correlation (12%D) in SS-1,2-COMP. Detected results for that element in the samples reported in SDG A06-F405 are therefore qualified as estimated.

The ICP serial dilution evaluation of chromium in the TCLP leachate of TP-2(0.0-2.5) is acceptable.

Filtered metals results correlate well with the unfiltered fractions, with the following exceptions, results of which are higher in the filtered, and are qualified as estimated in both fractions of the given samples:

Element	Element	%D Increase
MW-2	sodium	11
MW-4	sodium	22

Holding times were met. Blanks associated with sample analyses show no contamination above the reporting limit.

Hexavalent Chromium

Review was conducted for method compliance, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to the procedure. All were found acceptable unless noted specifically within this text.

Matrix spike and duplicate evaluations performed on TP-1/SL#1(0.0-2.0) show low recoveries (56% and 23%, below the advisory limit of 75%). Therefore, hexavalent chromium results in all of the samples are qualified as being estimated in value.

The blind field duplicate correlation for TP-2(0-2.5) is acceptable. That for TP-1/SL#1(0-2) shows a large variance (4.7 mg/kg and 129 mg/kg). The results for hexachrome in the parent sample and its duplicate are therefore considered additionally estimated.

The reporting limit for MW-4 was elevated (twofold) due to interferences.

pg. 6/6

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

Judy Harry

VALIDATION QUALIFIER DEFINITIONS

DATA QUALIFIER DEFINITIONS

The following definitions provide brief explanations of the national qualifiers assigned to results in the data review process. If the Regions choose to use additional qualifiers, a complete explanation of those qualifiers should accompany the data review.

The analyte was analyzed for, but was not detected above the reported sample U quantitation limit. The analyte was positively identified; the associated numerical value is the approximate J concentration of the analyte in the sample. The analysis indicates the present of an analyte for which there is presumptive evidence Ν to make a "tentative identification". The analysis indicates the presence of an analyte that has been "tentatively identified" NJ and the associated numerical value represents its approximate concentration. The analyte was not detected above the reported sample quantitation limit. However, the UJ reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. The sample results are rejected due to serious deficiencies in the ability to analyze the R sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

LABORATORY SAMPLE IDs AND CASE NARRATIVES

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

CUSTOMER SAMPLE ID	NT LABORATORIE LABORATORY SAMPLE ID			ANALY	TICAL REC	UIREMENTS		
SAMPLE ID		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALIT
BLIND DUP #1	A6F36102	-	~	-	-	ASP00		SW8461
SB-12 (1-2)	A6F19001	-	-	-	-	ASP00	-	-
SB-13 (2-3)	A6F19002	-		-	-	ASP00	-	
	A6F19003			-	-	ASP00	-	· · ·
SB-14 (1.5-2.5)	A6F19004			_	-	ASP00	-	-
SB-15 (1-2)	A6F19005			_	-	ASP00	-	-
SB-16 (1-2)			_		-	ASP00	-	SW846
SB-17 (1-2)	A6F19101		-			ASP00	-	~
SB-17 (4-5)	A6F19007	-				ASP00	_	
SB-18 (1-2)	A6F19008	-				ASP00	-	-
SB-19 (1-2)	A6F19009					ASP00	-	-
SB-20 (1-2)	A6F19010			-		ASPOO	-	
SB-21 (0.5-1.5)	A6F19011					ASP00	-	
SB-22 (1-2)	A6F19012					ASPOO	-	
SB-23 (1-2)	A6F19013		·					
TP-1/ SL#1 (2-2.5	A6F28803					ASPOO		
TP-1/ SL#2 (0-2.0	A6F28804					ASPOO	-	SW84
TP-1/SL#1 (0.0-2.	A6F36101		<u></u>			ASP00		
TP-1/SL#2 (0.0-2.	A6F36104	-						SW84
TP-2 (2.5-3.0)	A6F28808	-				ASP00		
TP-3 SL#1 (0-2)	A6F28809	-	-			ASPOO	-	SW84
TP-3 SL#1 (2-3)	A6F28810					ASP00		
TP-3/SL#1 (0-2)	A6F36106	-	-	-	-		-	SW84

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

AB NAME: SEVERN TREE	LABORATORY SAMPLE ID	<u>, 110</u>		ANALY	FICAL REQ	UIREMENTS	5	
SAMPLE ID	SAMPLE ID	VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
BLIND DUP #2	A6F36202	-	-	-	-	-	-	SW8463
	A6F29702		-	-	-	ASP00	-	SW8463
BLIND DUP#2	A6F29715	-	_		-	ASP00	-	SW8463
TP-10 (0.0-1.5)	A6F36215		-	-	-	_	-	SW8463
TP-10(0.0-1.5)	A6F29716		~	_	-	ASP00	-	SW8463
TP-11 (0.0-2.0)	A6F36216		_	-	-	-	-	SW8463
TP-11(0.0-2.0)				-		ASP00	-	SW8463
TP-12 (1.5-2.5)	A6F29717				_		-	SW8463
TP-12(1.5-2.5)	A6F36217	<u> </u>			-	ASP00	-	SW8463
TP-2 (0.0-2.5)	A6F36201		· · · · · · · · · · · · · · · · · · ·			ASP00		SW8463
TP-3/SL#2 (0-2)	A6F36203	-				ASP00	-	SW8463
TP-4 (0.0-2.5)	A6F36204		-			ASP00		
TP-4 (2.5-3.0)	A6F29705	-				ASPOO		SW8463
TP-5/SL#1 (2.0-2.	A6F36207				-	ASP00		
TP-5/SL#1 (2.5-3.	A6F29706			-				SW8463
TP-5/SL#2 (2.0-2.	A6F36208	-			-	ASPOO		
TP-6/SL#1 (0.0-3.	A6F36209	-				ASP00		SW8463
TP-6/SL#1 (3.0-3.	A6F29710					ASP00	-	
TP-6/SL#2 (0.0-3.	A6F36211	-	-			ASP00		SW8463
TP-7 (0.0-3.0)	A6F36212		-		-	ASP00	-	SW8463
TP-8 (0.0-2.0)	A6F36213			-		ASP00		SW8463
TP-9 (0.0-3.0)	A6F36214		-			ASP00		SW8463

9/767

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER	LABORATORY		ANALYTICAL REQUIREMENTS									
SAMPLE ID	SAMPLE ID	VOA GC/MS	BNA GC'MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY				
BLIND DUP#1	A6F40502	-	ASP00		ASP00	ASP00	-	SW/8463				
MW-1 (6-8)	A6F40503	-	ASP00	-	ASP00	ASP00	-	SW8463				
	A6F40504	_	ASP00	-	ASP00	ASP00	-	SW/8463				
MW-2 (2-4)	A6F40505		ASP00	_	ASP00	ASP00	-	SW8463				
MW-3 (8-10) SS-1.2 COMP	A6F40501		ASP00	-	ASP00	ASP00	-	SW8463				

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER	LABORATORY SAMPLE ID		ANALYTICAL REQUIREMENTS							
SAMPLE ID		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY		
BLIND DUP	A7015702	ASP00	ASP00	-	SW8463	ASP00	-	SW8463		
MW-1	A7015701	ASP00	ASP00	-	SW8463	ASP00		SW8463		
	A7015703	ASP00	ASP00	-	SW8463	ASP00	-	SW8463		
	A7015704	ASP00	ASP00	-	SW8463	ASP00	-	SW8463		
<u>MW-3</u> MW-4	A7015705	-	-	-	-	ASP00	-	SW8463		

NON-CONFORMANCE SUMMARY

Job#: A06-F297, A06-F362

STL Project#: NY4A9217 SDG#: <u>F297</u> Site Name: Benchmark

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-F297

Sample Cooler(s) were received at the following temperature(s); 3.0 °C All samples were received in good condition. A06-F362 Sample Cooler(s) were received at the following temperature(s); 3.0 °C All samples were received in good condition.

Metals Data

The recoveries of sample TP-2 (0.0-2.5) Matrix Spike and Matrix Spike Duplicate exhibited results below the quality control limits for Chromium. The recoveries of TCLP sample TP-2 (0.0-2.5) exhibited results above the quality control limits for Chromium. The sample result is more than four times greater than the spike added. The RPD of sample TP-2 (0.0-2.5) Matrix Spike and Matrix Spike Duplicate exceeded the quality control limits for Chromium. The LCS's were acceptable.

The recovery of sample TP-2 (0.0-2.5) Post Spike exhibited a result below the quality control limits for Chromium. However, the LCS was acceptable.

The RPD of sample TP-2 (0.0-2.5) and the Matrix Duplicate exceeded the quality control limits for Chromium. However, the LCS was acceptable.

The Serial Dilution of sample TP-2 (0.0-2.5) exceeded the quality control limits for Chromium. However, the LCS was acceptable.

6/767

٠

Wet Chemistry Data

Hexavalent Chromium was subcontracted to STL Pittsburgh. The complete subcontract report is included in this report as Appendix A. Comments pertaining to Hexavalent Chromium may be found within the comment summary of the subcontract report.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

.

NON-CONFORMANCE SUMMARY

Job#: A06-F405

STL Project#: <u>NY4A9217</u> SDG#: F405 Site Name: Benchmark

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-F405

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC/MS Semivolatile Data

The chromatographic peaks for Benzo(b)fluoranthene and Benzo(k)fluoranthene could not be resolved for sample Matrix Spike SS-1,2 COMP due to the sample matrix. The final value is reported as Benzo (b) fluoranthene in this data package but should be considered an and/or value for both compounds.

GC Extractable Data

For Method 8151, the percent recovery (%R) of surrogate Dichlorophenyl Acetic Acid (DC3P) in sample SS-1,2 Comp Matrix Spike is outside of established quality control limits due to sample matrix interferences. The recovery of all other surrogates in the remaining samples and associated quality control samples within this extraction batch are within expected limits. No corrective action is required.

For method CLP Pesticide/PCB analysis, the recovery of surrogate Decachlorobiphenyl in several samples is outside of established quality control limits on one or both columns due to the sample matrix. The recovery of surrogate Tetrachloro-m-xylene on both columns is within quality control criteria; no corrective action is required.

For method PESTICIDE/PCBs, the recovery for 4,4'-DDT in the Matrix Spike of sample SS-1,200MP exceeds quality control limits, though the Matrix Spike Blank recoveries are compliant.

For method 8151, several compounds exhibited a percent difference (%D) of greater than 15% from the expected amount in the associated continuing calibrations. The average of all analytes is within 15% and the associated laboratory quality control recoveries are compliant. No corrective action was required.

Metals Data

The recoveries of sample SS-1,2 COMP Matrix Spike and Matrix Spike Duplicate exhibited results above the quality control limits for Lead and Manganese(MS). result is more than four times greater than the spike added. The RPD of sample SS-1,2 COMP Matrix Spike and Matrix Spike Duplicate exceeded the quality control limits for Manganese. The LCS is acceptable.

The recoveries of sample SS-1,2 COMP Matrix Spike and Matrix Spike Duplicate exhibited results above the quality control limits for Antimony (MSD), Arsenic, Copper, and Zinc (MSD) and below the quality control limits for Chromium. suspect. However, the LCS was acceptable.

The recoveries of sample SS-1,2 COMP Post Spike exhibited results below the quality control limits for Iron and Manganese. However, the Serial Dilution of this sample was compliant for Iron and Manganese. Therefore, no corrective action is necessary.

The RPD of sample SS-1,2 COMP and the Matrix Duplicate exceeded the quality control limits for Calcium. However, the LCS was acceptable.

The Serial Dilution of sample SS-1,2 COMP exceeded the quality control limits for Zinc. However, the Post Spike of this sample was compliant for Zinc. Therefore, no corrective action is necessary.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

NON-CONFORMANCE SUMMARY

Job#: <u>A07-0157</u>

STL Project#: <u>NY4A9217</u> Site Name: Benchmark

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A07-0157

Sample Cooler(s) were received at the following temperature(s); 2 @ 5.0 °C ME: Lab to filter and preserve Dissolved Metals volume.

Sample volume for S METALS was received in 11 glass amber glass (unpreserved). This volume was poured off into a 11 plastic bottles, ESS Lot Number 110806.

GC/MS Volatile Data

All samples were preserved to a pH less than 2.

GC/MS Semivolatile Data

The spike recoveriy for 4-Nitrophenol was above the method defined quality control limits in the Matrix Spike Blank SBLK99 (A7B0028001), the Matrix Spike MW-3 and the The analyte was not detected in the samples, no Matrix Spike Duplicate MW-3. corrective action was performed.

The internal standard recovey for Perylene-D12 was below method defined quality control limits in the Method Blank SBLK99 (A7B0028002) due to Nitric acid contamination. All samples were re-extracted outside of holding time and re-analyzed with complaint results. Both sets of data have been reported.

The spike recovery for 4-Nitrophenol was above the method defined quality control limits in the Matrix Spike MW-3 RE. Since the Matrix Spike Blank SBLK04 (A70071401) recovery was compliant, no corrective action was required.

<u>GC Extractable Data</u>

For method 8082, the associated calibration verifications demonstrated an increased instrument response, >15% difference, for the surrogate Decachlorobiphenyl. The associated sample surrogate recoveries are well within the quality control limits. In the technical judgment of the laboratory, the sample data has not been impacted and no corrective action is required.

Metals Data

The recoveries of sample MW-3 Matrix Spike exhibited results above the quality control The recoveries of sample MW-3 Matrix Spike limits for Total Aluminum and Iron. Duplicate exhibited results above the quality control limits for Total Aluminum, Iron, Lead, and Manganese. Sample matrix is suspect. The RPD between sample MW-3 Matrix Spike and Matrix Spike Duplicate exceeded the quality control criteria for Total Aluminum, Iron and Lead. The LFB was acceptable.

All volumes for Dissolved Metals were filtered and preserved in the STL Metals Digestion Laboratory on 01/15/2007. Each sample was filtered using a 0.45 micron filter, Pall Life Sciences lot #62302. Each sample was then preserved to a pH <2 with 3.0 mL of Nitric Acid, J.T. Baker lot #C38065.

The recoveries of sample MW-3 Post Spike exhibited results below the quality control limits for Total and Soluble Calcium and Magnesium. However, the Serial Dilutions of Therefore, no corrective action was these samples and elements were compliant. necessary.

The Serial Dilution of sample MW-3 exceeded the quality control limits for Soluble However, the Post Spike of this sample and element was compliant. Potassium. Therefore, no corrective action was necessary.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

APPENDIX E

LAND USE EVALUATION

APPENDIX E LAND USE EVALUATION

The current, intended, and reasonably anticipated future land use of the Site and is commercial. The reasonably anticipated future land use of its immediate surroundings is commercial. Per regulations contained in 6NYCRR Part 375, the reasonably anticipated future use of the Site and its surroundings is based on the following factors:

- Current use and historical and/or recent development patterns: The Site is amently owned by NF-3nd Associates, LLC. The subject property was formerly occupied by Grossman's Lumber since the early 1970s. The property is presently uscant (under redevelopment). A concrete block (slab-on-grade) building formerly located on the western portion of the property was demolished in January 2007. The remainder of the Site was covered with asphalt or grass/landscaping. A Niagara Frontier Transportation Authority (NFTA) bus terminal with associated drives and surface lot parking is planned for the subject property.
- Applicable zoning laws and maps: The Site is located in an area of the City zoned commercial.
- Brownfield opportunity areas as designated set forth in GML 970-r. The Brownfield Opportunity A rea (BOA) Program provides municipalities and community based organizations with assistance to complete reutalization plans and implementation strategies for areas or communities affected by the presence of brownfield sites, and site assessments for strategic sites. The City of Niagara Falls has two BOAs; however, the subject property does not lie within either BOA.
- Applicable comprehensive community master plans, local waterfront revitalization plans as provided for in EL article 42, or any other applicable land use plan formally adopted by a municipality: The City of Niagara Falls has developed a Strategic Master Plan; however, the subject property is outside the study area.
- Proximity to real property currently used for residential use, and to urban, commercial, industrial, agricultural, and recreational areas: Land uses immediately surrounding the Site include an automobile dealership and Military Road to the north; an automobile oil and lube facility and Factory Outlet Bouleuard to the south and east; and Interstate 190 to the west. Beyond the adjacent properties, various commercial properties and some vacant properties surround the Site. The BFI/CE COS landfill is located west of Interstate 190. Nearby residential areas are primarily east of the Site approximately 0.25 miles.
- Any written and oral comments submitted by members of the public on the proposed use as part of the activities performed pursuant to the citizen participation plan: No comments have been received from the public.

APPENDIX E LAND USE EVALUATION

- Environmental justice concerns, which for purposes of this subpart, include the extent to which the proposed use may reasonably be expected to cause or increase a disproportionate burden on the community in which the site is located, including low-income minority communities, or to result in a disproportionate concentration of commercial or industrial uses in what has historically been a mixed use or residential community: None identified.
- Federal or State land use designations: There are no State or Federal wetlands or floodplains on the site. The U.S. Department of A griculture Soil Conservation Service soil survey map of Niagara County describes the general soil type at the site as an association of Darien-Cazenouia-Nunda types and Urban Land. However, based upon field characterization, the soil type at the site more dosely resembles the Odessa type due in part to mottling and also an Urban Soil due to the presence of fill.
- Population growth patterns and projections: The Town of Niagara, encompassing 9.4 square miles, has a population of approximately 8,649 (2005 estimate, U.S. Census Bureau), a decrease of 329 from the 2000 U.S. Census. The population density in the Town is approximately 1,074 people per square mile. This relatively insignificant population decline indicates population stability, which in turn supports commercial redevelopment.
- Accessibility to existing infrastructure: The main local roadways that provide access to the Site are the I-190 (Niagara Expressway), Military Road (Rt. 265), and Factory Outlet Boulevard. Existing sanitary sever, supplied water, electrical, natural gas and communications utilities are present along Factory Outlet Blvd., immediately adjacent to the Site, and are of sufficient capacity for commercial redevelopment.
- Proximity of the site to important cultural resources, including federal or State historic or heritage sites or Native American religious sites: *None*.
- Natural resources, including proximity of the site to important federal, State or local natural resources, including waterways, wildlife refuges, wetlands, or critical habitats of endangered or threatened species: The Site is located within the Erie-Niagara River basin. Viable aquatic habitats in the vicinity of the Site include the Niagara River (approximately 2 miles south) and Cayuga Creek (approximately 0.75 miles east). There are no State or Federal wetlands on the subject property; however, Federal wetlands are located approximately 0.1miles west of the Site. The Site is not adjacent to a Significant Coastal Fish and Wildlife Habitat. There are no known threatened or endangered species, nor important plant habitats listed at the Site.
- Potential vulnerability of groundwater to contamination that might emanate from the site, including proximity to wellhead protection and groundwater recharge areas and other areas identified by the Department and the State's comprehensive groundwater remediation and protection program established

APPENDIX E LAND USE EVALUATION

set forth in ECL article 15 title 31: Recharge to the Site water table is primarily from rainfall and snownelt. Precipitation either infiltrates into the soil or moves to the storm drains present within the Site or in the adjacent roadways. Regionally, groundwater in the area has not been developed for industrial, agriculture, or public supply purposes. Municipal potable water service is provided offsite and onsite by the Niagana County Water District. There does not appear to be any groundwater unnerability potentially related to environmental impacts from onsite areas as chromium was detected in downgradient monitoring well MW-1 at a concentration significantly below its Class GA groundwater quality standard.

- Proximity to flood plains: A 100-year flood plain is located approximately 0.1 miles to the usst of the Site.
- Geography and geology: Land use surrounding the Site includes light and heavy commercial properties, one large public use area (BFI/CE COS landfill to the uest), and some vacant properties. Nearby residential areas are primarily east of the Site approximately 0.25 miles away. The Site is located in the E rie-Ontario Lake Plain Physiographic Province of Western New York. Boring logs indicate that the subsurface soil at the site consists of three distinct horizons: (1) asphalt, concrete or topsoil at grade to approximately 0.3 feet below ground surface (fbgs); (2) a soil/fill layer consisting of mostly sand and gravel with some topsoil, concrete, and asphalt ranging in thickness from 1-foot to approximately 4.0 feet; and (3) a native reddish brown silty day.
- Current institutional controls applicable to the site: No institutional controls currently exist for the Site.