January 13, 2009 File No. 21.0056340.00

Mr. Richard Eisenman Delphi PO Box 92700 Rochester, New York 14692

Re: Revised Focused Environmental Assessments
Building 6 UST Area & Building 9
Delphi Thermal Facility

Delphi Thermal Facility Lockport, New York

Dear Mr. Eisenman:

535 Washington Street 11th Floor Buffalo, New York 14203 716-685-2300 FAX 716-685-3629

www.gza.com

GZA GeoEnvironmental of New York (GZA) revised our October 1, 2008 letter report that summarized the following work done at the Delphi Lockport, New York facility (Site, see Figure 1 in Attachment 1).

- Focused Environmental Assessment (FEA) at the Building 6 underground storage tank (UST) area (see Figure 2); and
- FEA of Building 9 (see Figure 3).

This revised letter report addresses the November 17, 2008 comments provided by the New York State Department of Environmental Conservation (NYSDEC).

BACKGROUND

In 2006, Delphi completed a site-wide Current Conditions Summary and Field Investigation Report (Study) to identify areas of soil and/or groundwater contamination at the Lockport facility. The findings of the Study regarding Building 6 and 9 included the following.

<u>Building 6 UST Area</u> - Petroleum contamination, primarily volatile organic compounds (VOCs), was detected in groundwater samples collected from two UST wells (MW-6-F-1 and MW-6-F-5, see Figure 2). Compound concentrations were detected at levels that exceeded their respective Class GA criteria as contained in the NYSDEC, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1), June 1998, amended April 2000, document.

<u>Building 9</u> - Polyaromatic hydrocarbons (PAHs) were detected in two areas within Building 9. Compounds were detected at concentrations that exceed those listed in the NYSDEC Part 375-6.8(b) Industrial Soil Cleanup Objectives table. Additionally, the summary of the Study indicated that light non-aqueous phase liquid (LNAPL) may be an issue in Building 9.

PURPOSE

The purpose of the FEAs for the Building 6 UST Area and Building 9 work was to:

Building 6 UST Area

- Assess the extent of petroleum VOC contamination identified in the vicinity of the USTs present on the west side of Building 6, as shown on Figure 2.
- Determine if LNAPL is present in the groundwater beyond the tank excavation area.
- Evaluate if remediation is warranted.

Building 9

- Assess the extent of PAHs identified in the two areas within Building 9, as shown on Figure 3.
- Determine if LNAPL is present in the groundwater.
- Evaluate if remediation is warranted.

FIELD ACTIVITIES

The following sections describe the field activities that were done as part of this work to assess the concerns identified for the Building 6 UST Area and Building 9.

MONITORING WELL INSTALLATIONS

BUILDING 6 UST AREA

Three groundwater monitoring wells (designated as MW-6-F-7, MW-6-F-8 and MW-6-F-9) were installed as part of the petroleum VOC delineation in the vicinity of the Building 6 UST Area (see Figure 2). The monitoring wells were installed into the upper bedrock to intercept the upper groundwater bearing zone in the vicinity of the overburden soil and bedrock interface.

The three test borings for the monitoring well installations were advanced in the overburden soils using a truck mounted rotary drill rig using 4½ - inch inside diameter hollow stem augers (HSA). Overburden soil samples were obtained by driving a 1 3/8-inch inside diameter by 24-inch long split spoon sampler 24-inches ahead of the lead cutting shoe of the HSA, in general accordance with ASTM D1586.

Soil samples were collected from the test borings for classification in the field by visual examination and VOC sample analysis. Each boring log identifies the approximate stratification lines, blow counts, sample identification, sample depth interval and recovery. Test boring/monitoring well logs are included in Attachment 2 of this report. Table 1 in Attachment 3 contains a list of the soil samples selected for chemical analysis.

Drilling fluids were not used during the advancement of the HSAs in the overburden. Upon advancing the HSAs to the top of apparent bedrock, indicated by auger refusal, a HQ size rock core barrel (2.75-inch diameter) was used inside the HSA to core into bedrock.

The HQ core barrel was used to core 5 feet into bedrock which was encountered around 9 feet to 11 feet bgs. After the designated depth was reached (5 feet into bedrock), the boring was converted to a 2-inch diameter groundwater monitoring well. The well was constructed of 2-inch inner diameter flush coupled PVC riser and screen. The screen was 7-foot in length and consisted of a #10 machine slotted PVC pipe (see MW-6-F-7, MW-6-F-8 and MW-6-F-9 monitoring well logs in Attachment 2 for well construction details). The soil spoils generated from each test boring were placed in 55-gallon drums for disposal by Delphi.

The three monitoring wells were purged of at least 10 well volumes using disposable polyethylene bailers to develop the filter pack and remove the fines. The water generated during development and sample purging was also drummed for disposal by Delphi.

BUILDING 9

Two monitoring wells (designated as MW-9-4 and MW-9-12) were installed as part of our PAH delineation work in Building 9 to determine if groundwater has been impacted in the vicinity of the two areas identified by the Study and to determine if LNAPL is present.

The two test borings for the monitoring well installation were advanced in the overburden soils using a truck mounted rotary drill rig using 4½ - inch inside diameter hollow stem augers (HSA). Overburden soil samples were obtained by driving a 1 3/8-inch inside diameter by 24-inch long split spoon sampler 24-inches ahead of the lead cutting shoe of the HSA, in general accordance with ASTM D1586.

Soil samples were collected from the test borings for classification in the field by visual examination and SVOC sample analysis. Each boring log identifies the approximate stratification lines, blow counts, sample identification, sample depth interval and recovery. Test boring/monitoring well logs are included in Attachment 2 of this report. Table 1 in Attachment 3 contains a list of the soil samples selected for chemical analysis.

Drilling fluids were not used during the advancement of the HSAs in the overburden. Upon advancing the HSAs to the top of apparent bedrock, indicated by auger refusal, a HQ core barrel was used inside the HSA to core approximately 5 feet into bedrock.

Bedrock was encountered at approximately 4 feet bgs at MW-9-4 and 11 feet bgs at MW-9-12. After the designated depth was reached (5 feet into bedrock), the boring was converted to a 2-inch diameter groundwater monitoring well. The well was constructed of 2-inch inner diameter flush coupled PVC riser and screen. The screen was 5-foot in length at MW-9-4 and 7-foot in length at MW-9-12 and consisted of a #10 machine slotted PVC pipe (see MW-9-4 and MW-9-12 monitoring well logs in Attachment 2 for well

Page 4

construction details). The soil spoils generated from each test boring were placed in 55gallon drums for disposal by Delphi.

The monitoring wells were purged of at least 10 well volumes using disposable polyethylene bailers to develop the filter pack and remove the fines. The water generated during development and sample purging was also drummed for disposal by Delphi.

It should be noted that LNAPL was encountered at MW-9-4 at a measured thickness that ranged from 18 to 22 inches during the investigation. NYSDEC was contacted by Delphi and Spill # 0890721 was opened.

SOIL PROBES

Seven soil probe locations (SP-9-1, SP-9-2, SP-9-3, SP-9-5, SP-9-9, SP-9-10 and SP-9-11) were completed on July 30, 2008 in the vicinity of two areas of concern in Building 9; 9-102-C and 9-108-C (see Figure 3) identified by the Study.

The soil probes were advanced into overburden soils utilizing direct push technology via a hydraulic hammer mounted on a track mounted rig equipped with 2-inch outer diameter by 48-inch long macrocore sampler. Soil probes were advanced to refusal which ranged from approximately 3.5 feet bgs (SP-9-5; east side of building) to 11 feet bgs (SP-9-9; west side of building), due to apparent bedrock.

Soil samples were collected from the soil probes for classification in the field by visual examination. SVOC sample analysis and headspace screening was also done with an organic vapor meter (OVM) for the presence of volatile organic vapors (discussed in the next section). Soil samples were collected at two-foot intervals to the bottom of the probes. Table 1 in Attachment 3 contains a list of the soil samples selected for chemical analysis.

HEADSPACE SCREENING PROCEDURE

The headspace present above the soil samples collected in sample baggies from each test boring and soil probe were screened for total organic vapors using an OVM. The OVM, a HNu PI-101, was calibrated in accordance with manufacturer's recommendations using a gas standard of isobutlyene at a concentration of 100 ppm. GZA screened a clean, unused plastic bag prior to the start of the headspace screening to establish background concentrations, which were non-detect.

The tip of the OVM probe was placed into the baggie to remove headspace air. OVM readings from the headspace screening of the soil samples ranged from non-detect (multiple monitoring well and soil probe locations) to 100 ppm (MW-6-F-7, 4 to 6 feet bgs). Headspace results were recorded on the monitoring well and soil probe logs included in Attachment 2.

ANALYTICAL TESTING

Soil and groundwater samples collected were submitted to Free-Col Laboratories for chemical analysis that included VOCs via analytical test method EPA 8260 (Building 6 UST Area samples) and SVOC via analytical test method EPA 8270 STARS¹ (Building 9 samples). A sample of the LNAPL encountered at MW-9-4 was also collected and submitted for analysis which included: VOCs via EPA 8260, PCBs via EPA 8082, SVOC Fingerprint, viscosity and specific gravity.

See Table 1 in Attachment 3 for a list of the analytical samples collected and the analysis performed.

SUBSURFACE CONDITIONS

Building 6 UST Area

Subsurface soil conditions encountered at the three monitoring well locations in the vicinity of the Building 6 USTs generally consisted of 3.5 to 4 feet of fill material (clayey silts with lesser and varying amounts of sand and gravel; potentially reworked native soils) overlying native soils which also consisted of various amounts of clayey silt with lesser and varying amounts of sand and gravel. Bedrock (Lockport Dolostone) is underlying the overburden soil at a depth of approximately 9.5 to 11 feet bgs.

Overburden groundwater was encountered at approximately 4 to 5 feet bgs. Groundwater measurements were also collected from other various monitoring locations at the Delphi facility. Figure 4 depicts the interpreted groundwater flow direction at the Delphi facility on August 13, 2008. In general, groundwater flow direction is in an easterly direction, which is consistent with the groundwater flow direction observed as part of other work completed at the facility.

It should be noted that groundwater data collected at two locations, MW-7-1 and MW-6-F-6, were not used in interpreting the groundwater flow direction shown on Figure 4. Groundwater measurements at MW-7-1 indicated that the depth to groundwater was approximately 20 feet bgs, which is not consistent with other measurements in the area. The groundwater measurement from MW-6-F-6 was approximately 2.5 feet bgs, which is around 2 feet higher than the levels measured in the three wells installed around the UST area. MW-6-F-6 is located in the current UST excavation area and is likely subject to groundwater mounding due to the porous backfill material around the USTs, and the surrounding "tight" nature of the silt and clay soils present.

¹ Spill Technology and Remediation Series (STARS) Memo #1, Petroleum-Contaminated Soil Guidance Policy, New York State Department of Environmental Conservation, August 1992.

Building 9

Subsurface soil conditions encountered at the soil probe and monitoring well locations at Building 9 generally consisted of 3.5 to 5 feet of fill material (clayey silts with lesser and varying amounts of sand and gravel - potentially reworked native soils) overlying native soils which also consisted of various amounts of clayey silt with lesser and varying amounts of sand and gravel. Bedrock (Lockport Dolostone) is underlying the overburden soil at a depth of approximately 3.5 to 12 feet bgs.

Overburden groundwater was encountered at approximately 5 to 6 feet bgs (MW-9-4) on the eastern side of Building 9 and 9 to 10 feet bgs (MW-9-12) on the western side of the building.

Groundwater measurements collected on August 13, 2008 as depicted on Figure 4 generally show an easterly groundwater flow direction. However, a "trough" or depression in the groundwater table in the southern portion of Building 9 is apparent from the measurements collected at MW-9-4, MW-9-12, MW-9-101-A and MW-8-003-B. To further assess the potential trough, additional groundwater measurements were collected on November 26, 2008 from monitoring wells located west of MW-8. The measurements are depicted on the groundwater contour map shown on Figure 5. The trough is also present in the November 26, 2008 contour (Figure 5), along with some slight mounding east of Building 10.

Figure 6 depicts a contour map of the top of bedrock elevations from monitoring wells located west of monitoring well, MW-10. A depression or low spot in the top of bedrock elevations south of Building 9 is apparent. Additionally, the bedrock elevations (606 ft) in the vicinity of Building 8 and MW-8-003-B are similar to groundwater elevations (606 ft) for that area from the groundwater data depicted in both Figures 4 and 5. This indicates that groundwater in the trough area is present at the interface of the overburden soil and bedrock interface.

The affects of the trough on the migration of groundwater contaminants present in the vicinity of Buildings 7, 9 and 10 are unknown. It is assumed that contaminant migration is generally in the eastern direction, consistent with the easterly trending groundwater flow direction. In the vicinity of the trough area, there is an apparent north and south component to groundwater flow direction inwards towards the trough, which may affect the easterly migration of contaminants across the Site. Our assumption and trough assessment can be further evaluated when additional investigation activities associated with Building 7, 8, 9 and 10 are conducted.

HYDRAULIC CONDUCTIVITY TESTING

GZA perform hydraulic conductivity testing using the rising head method². GZA calculated an effective hydraulic conductivity for each of the five newly installed wells. The following

² Bouwer, H. 1989. "The Bouwer and Rice Slug Test - An Update". Groundwater Journal, Vol. 27., No. 3. May-June 1989.

hydraulic conductivities were calculated for the wells (see calculation spreadsheets in Attachment 4).

7.3 x 10⁻⁶ centimeters per second (cm/s) MW-6-F-7:

MW-6-F-8: $1.2 \times 10^{-4} \text{ cm/s}$ $5.5 \times 10^{-5} \text{ cm/s}$ MW-6-F-9:

 $5.1 \times 10^{-5} \text{ cm/s}$ MW-9-4:

 $1.9 \times 10^{-5} \text{ cm/s}$ MW-9-12:

The monitoring point (top of riser) on each of the five newly installed wells was measured relative to the existing monitoring well elevations established during the previous investigations or from existing site features (i.e., building floor slab elevations). monitoring point elevation for the five new wells is shown on Table 2, which also contains the groundwater measurements and elevation from the monitoring wells used to develop the groundwater flow contour for the Delphi facility.

ANALYTICAL TEST RESULTS

Findings of the laboratory testing of the soil, groundwater and product samples are discussed below. The analytical laboratory reports are provided in Attachment 5.

Soil Sample Results

The soil sample results were compared to the Restricted Soil Cleanup Objectives (SCOs) listed in NYSDEC Part 375-6.8(b).

Building 6 UST Area

VOCs were detected at concentrations above method detection limits (MDLs) in one of the three soil samples sent for laboratory analysis from the monitoring wells installed at the Building 6 UST Area. Toluene (1.8 ppm), ethylbenzene (0.4 ppm), isopropylbenzene (0.3 ppm), m,p-xylene (1.1 ppm) and o-xylene (0.4 ppm) were the five compounds detected above MDLs in sample MW-6-F-7, 4 to 6 feet bgs. Of the five compounds detected, none were detected at concentrations above their respective Residential SCOs and one compound, toluene, exceeded its respective protection of groundwater SCO of 0.7 ppm.

No VOCs were detected above MDLs in the soil samples submitted for chemical analysis from the other two monitoring well borings.

Building 9

SVOCs were detected at concentrations above MDLs in one of the nine soil samples sent for laboratory analysis from the test borings for monitoring well installations and soil probes done in association with the work at Building 9. Acenaphthene (0.27 ppm), fluoranthene (0.3 ppm), fluorene (0.75 ppm), phenanthrene (1.3 ppm) and pyrene (0.31

ppm) were the five compounds detected above MDLs in sample SP-9-5, 1 to 3.5 feet bgs. Of the five compounds detected, none were detected at concentrations above their respective Residential SCOs.

No SVOCs were detected above MDLs in the soil samples submitted for chemical analysis from the other eight locations.

Groundwater Sample Results

The analytical test results for the groundwater samples were compared to NYSDEC Class GA criteria obtained from NYSDEC Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1), dated October 1993, revised June 1998, January 1999 errata sheet and April 2000 addendum.

Building 6 UST Area

No VOCs were detected at concentrations above MDLs in the three groundwater samples sent for laboratory analysis from the three new monitoring wells installed around the Building 6 UST Area.

Building 9

SVOCs were detected at concentrations above MDLs in one of the two groundwater samples sent for laboratory analysis from the two monitoring wells installed in association with the work at Building 9. Fluoranthene (7.99 ppm) and phenanthrene (7.97 ppm) were the two compounds detected above MDLs in the groundwater sample from MW-9-4. Both compounds were detected at concentrations above their respective Class GA groundwater criteria of 50 parts per billion (0.050 ppm).

No SVOCs were detected in the groundwater sample submitted for analysis from MW-9-12.

Additionally, LNAPL (free product) was detected in the monitoring well at MW-9-4. PCB, VOC, SVOC fingerprint, specific gravity and viscosity analysis were also performed on the product sample collected. No PCBs or VOCs were detected above method detection limits. The SVOC fingerprint scan analysis was consistent with the SVOC fingerprint scan Delphi had done on free product encountered during an excavation for the installation of a foundation for a piece of equipment that was installed within 10 feet of MW-9-4 in 2003. The free product encountered in 2003 was reported to the NYSDEC and documented as Spill #0375398, which is listed as closed on July 14, 2004. NYSDEC was informed of the LNAPL encountered and Spill #0890721 was assigned.

The specific gravity and viscosity data was collected for use in assessing the cleanup of the LNAPL encountered. The results are included in Attachment 5.

CONCLUSIONS AND RECOMMENDATIONS

Building 6 UST Area

VOCs were detected at concentrations above method detection limits (MDLs) in the soil sample sent for analysis from monitoring well MW-6-F-7, 4 to 6 feet bgs. One compound, toluene, exceeded its respective protection of groundwater SCO of 0.7 ppm. No VOCs were detected above MDLs in the other two samples submitted for chemical analysis.

No VOCs were detected at concentrations above MDLs in the three groundwater samples sent for laboratory analysis from the three new monitoring wells installed around the Building 6 UST Area.

It is GZA's opinion that petroleum groundwater contamination is present in the immediate vicinity of the USTs located west of Building 6, based on the groundwater analytical results from MW-6-F-1 and MW-6-F-5 collected as part of the Study. The petroleum groundwater contamination does not appear to be migrating, as the three monitoring wells installed around the UST did not indicate the presence of VOC contamination. GZA collected groundwater and monitoring point measurements in May 2007 from the six wells installed around the USTs. The elevation of the water table was found to be about 610.92 (4 wells) or 610.93 (2 wells), indicating no groundwater gradient in the vicinity of the USTs.

The Building 6 Tank Area consists of 6 underground storage tanks used to store automotive fuels. The total capacity of the USTs is approximately 29,500-gallons. It is our understanding that Delphi is planning on removing the USTs in this area and replacing them with above ground storage tanks (ASTs) in the general vicinity. GZA recommends that a UST Removal Work Plan be submitted to NYSDEC to include protocols to be followed during the removal process. Impacted soil and/or groundwater encountered during the USTs removal should be removed from the excavation, characterized and properly disposed of.

Building 9

SVOCs were detected at concentrations above MDLs in one (SP-9-5, 1 to 3.5 feet bgs) of the nine soil samples sent for laboratory analysis from the monitoring wells and soil probes done in association with the work at Building 9. Of the five compounds detected, none were detected at concentrations above their respective Residential SCOs. No SVOCs were detected above MDLs in the other eight samples submitted for chemical analysis.

SVOCs were detected at concentrations above MDLs in one (MW-9-4) of the two groundwater samples sent for laboratory analysis from the two monitoring wells installed in association with the work at Building 9. Two compounds, fluoranthene (7.99 ppm) and phenanthrene (7.97 ppm) were detected at concentrations above their respective Class GA groundwater criteria of 50 parts per billion (ppb). No SVOCs were detected in the groundwater sample submitted for analysis from MW-9-12.

LNAPL was detected in monitoring well, MW-9-4. The measured thicknesses ranged from 18 to 22 inches during the investigation. The SVOC fingerprint scan analysis that was completed was consistent with the SVOC fingerprint scan Delphi had done on free product encountered in an excavation in the vicinity of MW-9-4 in 2003. The LNAPL is likely hydraulic fluid previously used within Building 9. Additionally, no PCBs or VOCs were detected above MDLs in the LNAPL.

It is GZA's opinion that the LNAPL encountered in MW-9-4 will require further delineation. We recommend that three additional monitoring wells be installed approximately 50 to 100 feet, northeast, east and southeast of MW-9-4. An assessment of LNAPL recovery, using field testing and available modeling software (e.g., American Petroleum Institute (API) Interactive LNAPL Guide) should also be completed.

We appreciate the opportunity to continue to work with you on this project. Should you have any questions or require additional information following your review, please do not hesitate to contact the undersigned.

Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

Christopher Boron

Project Manager

Ernest R. Hanna, P

Principal

Bart A. Klettke, P.E. Consultant Reviewer

Attachments: 1 – Figures

2 – Soil Probe and Monitoring Well Logs

3 – Tables

4 – Hydraulic Conductivity Data5 – Analytical Laboratory Report

ATTACHMENT 1 FIGURES

LEGEND:

MW-6-F-9

APPROXIMATE LOCATION AND DESIGNATION OF MONITORING WELLS INSTALLED JULY 2008

APPROXIMATE LOCATION AND DESIGNATION OF EXISTING MONITORING WELLS AROUND UST'S

APPROXIMATE LOCATION AND DESIGNATION OF SOIL BORINGS DONE PREVIOUSLY BY OTHERS

NOTES:

- 1. BASE MAP ADAPTED FROM A SITE PLAN OF BUILDING 6 PROVIDED BY THE CLIENT.
- 2. THE SIZE AND LOCATION OF EXISTING SITE FEATURES SHOULD BE CONSIDERED APPROXIMATE.

DATE: SEPTEMBER 2008 DEW DRAWN BY:

GZA GeoEnvironmental of New York

300 SCALE IN FEET 150

75 0

BUILDING 6 UST AREA MONITORING WELL LOCATIONS FOCUSED ENVIRONMENTAL ASSESSMENTS **BUILDING 6 UST AREA AND BUILDING 9** DELPHI LOCKPORT FACILITY 200 UPPER MOUNTAIN ROAD LOCKPORT, NEW YORK

PROJECT No.

DELPHI AUTOMOTIVE SYSTEMS

21.0056340.00

FIGURE No.

2

(C) 2008 GZA GeoEnvironmental of New York

ATTACHMENT 2 TEST BORING/MONITORING WELL & SOIL PROBE LOGS

CO	NTRACTOR		Earth	Dimensions	s, Inc.	BORING LOCATION Se	ee Location Plan		
	LLER			Morris			NA DATUM		_
STA	RT DATE			END DATE	7/22/2008	GZA GEOENVIRONMENTAL REPRESE			
			WATER LEVE			TYPE OF DRILL RIG	Diedrich D-120		_
	DATE	TIME	WATER	CASING	NOTES	CASING SIZE AND DIAMETER	4-1/4" HSA	an Managa	-
	8/13/2008		4.81	2"		OVERBURDEN SAMPLING METHOD ROCK DRILLING METHOD		spirispoon	-
						ROCK DRILLING METHOD	HQ Size Rock Core		-
D									
E			SAMPLE	=		SAMPLE DESCRIPTION	WELL	WELL	0
P			O/ 11111 2.1	-			INSTALLATION	INSTALLATION	V
, T	BLOWS	NO.	DEPTH	N-VALUE	RECOVERY	1 i	DIAGRAM	DESCRIPTION	м
н	(/6")		(FT)	/RQD %	(%)				(ppm)
		S-1	0 - 2	8	80	ASPHALT (8 inches)	T T	Top of Riser Elev. = 613.42 feet	ND
1						FILL - Brown Clayey SILT, little		Concrete and Road box	
	8					Gravel, trace Sand, moist.		Cement/bentonite grout	
2	9							from 1 to 5 feet.	
	8	S-2	2 - 4	>100	30				3
3	100/.4						- 1	10" Nominal diameter	
						Grades: to some Gravel.		borehole to 11.3'	
4	_	0.5	4 -		100	Reddish Brown Clayey SILT, little	160		400
	7	S-3	4 - 6	21	100	Gravel, trace Sand, moist.			100
_5	8					(NATIVE)			1 1
	13 16				_	1	XXX XXX	Bentonite Pellets	
6	10	S-4	6 - 8	31	100	1	**** ****	from 5 to 8 ft.	60
7	13	3-4	0 - 0	 "	100	1	 	mom o to o it.	00
<u> </u>	18	_				1	I ‱ 1‱ ⊢	2-inch PVC flush coupled	
8	17	 				1 1	 	riser pipe to 9 feet.	1 1
۴	12	S-5	8.0 - 10.0	19	50	1 1			30
9	9					Grades to: little Sand, trace			1 1
Г	10					Gravel.			1 1
10	13								
	7	S-6	10.0 - 11.0	9	30	Reddish Brown SILT and Sand,		2-inch PVC Screen	40
11	9					some Gravel, trace Clay, moist		SCH. 40, 10 slot,	
	100/0					to wet. Splitspoon refusal at 11 ft.		from 9 to 16.3 feet.	
12		C-1	11.3 - 16.3	92	96	Auger Refusal at 11.3 ft. bgs.			1 1
ı						BEDROCK			
13						Lockport Dolomite Formation			
I		<u> </u>				Gray, hard, very slight to		Conditions from	1
14		-				slight weathering, fine grained,		Sand pack from 8 to 16.3 feet.	
15						horizontal and low angle fractures.		0 to 10.0 leet.	
13						1			
16								Nominal 3" diameter	
								rock hole 11.3 to 16.3 feet	_
17						End of Boring at 16.3 feet bgs.			7 J
									
18									
19									
			L						
	Split Spoon S			NOTES:		01 organic vapor meter (OVM) used to scr	•		
C -	C - Rock Core Sample Meter was calibrated to the equivalent of 100 ppm isobutylene in air.								
<u></u>	eral	4) 04-	Alfinedian line			ng from headspace screening of soil samp			
Ger Note		,				indary between soil types; transitions may es and under conditions stated; fluctuation	•		
,,,,,,,,				_		sent at the time measurements were made	-		
_						and the same of th			_

CO	NTRACTOR		Earth	Dimensions	s, Inc.	BORING LOCATION S	ee Location Plan	_	
	LLER			Morris		·	NA DATUM	NGVD	_
STA	RT DATE			END DATE	7/22/2008	GZA GEOENVIRONMENTAL REPRESI			
	DATE	TIME	WATER LEVE WATER	CASING	NOTES	TYPE OF DRILL RIG	Diedrich D-120		_
	8/13/2008	TIME	3.38	2"	NOTES	CASING SIZE AND DIAMETER OVERBURDEN SAMPLING METHOR	4-1/4" HSA	an litana an	_
	0/13/2000		3.30	-		ROCK DRILLING METHOD	D 2" diameter x 24" long HQ Size Rock Core	зрікзроо п	_
						NOON BINIELING INETHOS	TIQ OLEC TOOK COTE		-
D									T =
Е			SAMPLI	E		SAMPLE DESCRIPTION	WELL	WELL	0
Р							INSTALLATION	INSTALLATION	V
Τ	BLOWS	NO.	DEPTH	1	RECOVERY		DIAGRAM	DESCRIPTION	М
Н	(/6")	0.4	(FT)	/RQD %	(%)	40011117777	19996-1192× 9500-110295		(ppm)
1		S-1	0 - 2	7	75	ASPHALT (1 foot)		Top of Riser Elev. = 613.22 feet	ND
<u> </u>	7					FILL - Brown Clayey SILT, little		Concrete and Road box Cement/bentonite grout	1 1
2	6					Gravel, trace Sand, moist.		from 1 to 4 feet.	
广	11	S-2	2 - 4	12	90	a. a.o., a.do od.im, most.		110 T 1661.	ND
3	5					Grades to: trace Gravel.		10" Nominal diameter	"
	7							borehole to 10.4'	
4	10					Reddish Brown Clayey SILT, little			
	11	S-3	4 - 6	24	10	Gravel, trace Sand, moist.			ND
5	10					(NATIVE)	I 1888 1888 I		1 1
	14						I 📟 🔛		
6	17						I 📟 跚 -	Bentonite Pellets	
_	11	S-4	6 - 8	22	100		I 📟 📖	from 4 to 7 ft.	ND
7	14							a in a pure di uni	1 1
8	12			<u> </u>				2-inch PVC flush coupled	1 1
ů	16	S-5	8.0 - 10.0	19	100			riser pipe to 8 feet.	ND
9	8	0-3	0.0 - 10.0	13	100	Grades to: some Sand, little			ND
Ť	11		1			Gravel, moist to wet.			1 1
10	22					Severly weathered Lockport	 		
	100/.1	S-6	10.0 - 10.1		5	Dolomite.		2-inch PVC Screen	ND
11		C-1	10.4 - 15.4	92	96	Splitspoon Refusal at 10.1 ft. bgs.		SCH. 40, 10 slot,	
						Auger Refusal at 10.4 ft. bgs.		from 8 to 15.4 feet.	
12						BEDROCK			
						Lockport Dolomite Formation			
13						Gray, hard, very slight to		0-4	
4.4						slight weathering, fine grained,		Sand pack from	
14						horizontal and low angle fractures.		7 to 15.4 feet.	
15								Nominal 3" diameter	
								rock hole 10.4 to 15.4 feet	
16						End of boring at 15.4 feet bgs.	The state of the s		
17									
18									
19									
S -	Split Spoon	Samnle		NOTES:	1) HNu PI - 1	I 01 organic vapor meter (OVM) used to sc	reen soil samples		
	Rock Core S					librated to the equivalent of 100 ppm isob			
ا ا						ng from headspace screening of soil sam	•		
Ger	eral	1) Stra	tification lines r	represent ap	-	ndary between soil types; transitions may	<u></u>		
Not	es:	2) Wat	er level reading	gs have bee	n made at time	es and under conditions stated; fluctuation	ns of groundwater		
		may	occur due to o	ther factors	than those pre	sent at the time measurements were mad	le.		

Delphi Automotive Building 6 UST Area Lockport Complex Lockport, NY

	NTRACTOR				Dimensions	s, Inc.	-	ee Location Plan	NOVE	
	LLER ART DATE		7/23/		Morris END DATE	7/23/2008	GROUND SURFACE ELEVATION GZA GEOENVIRONMENTAL REPRESE	NA DATUM ENTATIVE J. Davide	NGVD	_
317	KIDAIE		WATER			1123/2000	TYPE OF DRILL RIG	Diedrich D-120		
	2475					NOTES				_
	DATE	TIME	WA		CASING	NOTES	CASING SIZE AND DIAMETER	4-1/4" HSA		_
	8/13/2008		6.7	71	2"		OVERBURDEN SAMPLING METHOD		g splitspoon	_
			├				ROCK DRILLING METHOD	HQ Size Rock Core		
ᆫ						<u> </u>				
D										
E			S	AMPLI	E		SAMPLE DESCRIPTION	WELL	WELL	0
Р								INSTALLATION	INSTALLATION	V
Т	BLOWS	NO.	DEF	PTH	N-VALUE	RECOVERY		DIAGRAM	DESCRIPTION	М
н	(/6")		(F	T)	/RQD %	(%)				(ppm
Г		S-1	0 -	- 2	14	75	ASPHALT (6 inches)	×	Top of Riser Elev. = ??? feet	ND
1							FILL - Brown Clayey SILT, little		Concrete and Road box	
Г	14						Gravel, trace Sand, moist.	4	Cement/bentonite grout	
2	19								from 1 to 3.5 feet.	
	19	S-2	2 -	4	16	100				ND
3	8						Grades to: trace Gravel.		10" Nominal diameter	
H	8								borehole to 9.5'	
4	6							 		
H	7	S-3	4 -	6	14	100	Reddish Brown Clayey SILT, little	1888 1888		ND
5	6	اٽٽ					Gravel, trace Sand, moist.	 		
H	8		\vdash				(NATIVE)	 		
6	9		 			-	(141112)		Bentonite Pellets	
H	11	S-4	6 -	. 8	18	100		 	from 3.5 to 6.5 ft.	ND
٦,	9	3-4	 ° '		10	100			11011 3.3 to 0.3 tt.	ND
7	9	-				-			2 inch BVC flush sounled	
_	11	_	├──						2-inch PVC flush coupled	
8	17	S-5	8.0 -	0.1	>100	5			riser pipe to 7.5 feet.	,,,,
		3-5	8.0 -	9.1	>100	3	Condendary come Cond Fills			ND
9	17	_	_				Grades to: some Sand, little			
	100/1	-	105			400	Gravel, moist to wet.			
10		C-1	9.5 -	14.4	54	100	Splitspoon refusal at 9.1 feet		0 1-1-1-10-10-1	
		 	-		-		Auger refusal at 9.5 feet		2-inch PVC Screen	- 1
11		_	-				BEDROCK		SCH. 40, 10 slot,	- [
		_	_				Lockport Dolomite Formation		from 7.5 to 14.5 feet.	
12							Gray, hard, very slight to			
		 					slight weathering, fine grained,		1	1
13		 	-				horizontal and low angle fractures.		la	
									Sand pack from	
14		-							6.5 to 14.5 feet.	
15		_			-				Nominal 3" diameter	
13			-				End of having at 14 5 fact has	1888 B	rock hole 9.5 to 14.5 feet	-
40		-					End of boring at 14.5 feet bgs.			
16			-		-					
4.7			-							
17			-							
10										
18			 		-					
19										
19										
,	Split Spoon S	ample			NOTES:	1) LINI: DI 40	11 organia vanor mater (OVAN) weed to	ann nail namalan		
	Spirt Spoon S Rock Core Sa				INUTES:		of organic vapor meter (OVM) used to scr			
U - 1	TOCK Core Sa	inple					ibrated to the equivalent of 100 ppm isobu			
Gen	eral	1) Stra	tification	lines	enresent co		ng from headspace screening of soil samp			
Note							ndary between soil types; transitions may s and under conditions stated; fluctuation:	-		
14016							s and under conditions stated; fluctuations sent at the time measurements were made	•		
			ui ut			pica	wie time measurements were mau	v.		,

COI	NTRACTOR			Earth	Dimensions	, Inc.	BORING LOCATION Se	e Location Plan		
	LLER				Morris			15.5 DATUM	NGVD	_
STA	RT DATE				END DATE	7/25/2008	GZA GEOENVIRONMENTAL REPRESE			
				LEVEL			TYPE OF DRILL RIG	Diedrich D-120		_
	DATE	TIME		TER	CASING	NOTES	CASING SIZE AND DIAMETER	4-1/4" HSA		_
	8/13/2008		6.	.41	2"		OVERBURDEN SAMPLING METHOD		splitspoon	_
							ROCK DRILLING METHOD	HQ Size Rock Core		_
Ļ										_
D E				AMPLE			SAMPLE DESCRIPTION	WELL	WELL	0
P			3	MINIFEE	•		SAMPLE DESCRIPTION	INSTALLATION	INSTALLATION	l v
т	BLOWS	NO.	DE	PTH	N-VALUE	RECOVERY		DIAGRAM	DESCRIPTION	ĺм́
н	(/6")	140.		T)	/RQD %	(%)		DIAGNAM	DESCRIPTION	(ppm)
H	(/	S-1		- 2	5	75	CONCRETE (6 inches)		Top of Riser Elev. = 615.04 feet	ND
1	4	-					FILL - Brown Clayey SILT, little		Concrete and Road box	"
H	4						Gravel, trace Sand, moist.		Cement/bentonite grout	
2	9						·		from 1 to 3.5 feet.	
	8	S-2	2	- 4	17	95		****	10" Nominal diameter	ND
3	8							**** ****	borehole to 4.4'	
	9							****	Bentonite Pellets	
4	15						Splitspoon refusal at 4 feet bgs.		from 1.5 to 3.5 ft.	
	100/0	S-3	4	- 4.4	0	0	Auger refusal at 4.4 feet bgs.		2-inch PVC flush coupled	1
5		C-1	4.4	- 5.7	0	69	BEDROCK		riser pipe to 5 feet.	
							Lockport Dolomite Formation			
6		C-2	5.7	- 8.5	0	82	Gray, hard, very slight to			
							slight weathering, fine grained,			
7							horizontal and low angle fractures.			
									2-inch PVC Screen	
8			<u> </u>						SCH. 40, 10 slot,	
		-			<u> </u>				from 5 to 10 feet.	1
9		C-3	8.5	- 10.0	70	100			Sand pack from	
10		-	-						3.5 to 10 feet.	1
-10		-	_		-		End of boring at 10 feet bgs.	1999 9999	rock hole 4.4 to 10 feet	┥
11		_	_	-	 		End of borning at 10 feet bgs.			
Ë										
12										
<u> </u>										1
13										
14										
15										
1		_								
16										
4.7			-							
17			-							
18		 								
۳		_								
19		-								
۳										
s-	Split Spoon S	Sample	_		NOTES:	1) HNu PI - 1	01 organic vapor meter (OVM) used to scr	reen soil samples.		
	Rock Core S	-				•	librated to the equivalent of 100 ppm isobu			
							ing from headspace screening of soil samp			
Gei	neral	1) Stra	tificatio	n lines	represent ap		indary between soil types; transitions may			
Not	es:	2) Wa	ter leve	el readin	gs have bee	n made at time	es and under conditions stated; fluctuation	s of groundwater		
$ld_{}$		may	occur	due to c	ther factors	than those pre	sent at the time measurements were mad	e		

Delphi Automotive Building 9 Lockport Complex Lockport, NY BORING No. MW-9-12 SHEET 1 OF 1 FILE No. 21.0056340.00 CHECKED BY: CZB

СО	NTRACTOR		Earth	Dimensions	s, Inc.	BORING LOCATION Sec	e Location Plan		
	ILLER			Morris	710 A 15		DATUM		_
ST	ART DATE		7/24/2008		7/24/2008	GZA GEOENVIRONMENTAL REPRESE			
			WATER LEVE		1	TYPE OF DRILL RIG	Diedrich D-120		_
	DATE	TIME	WATER	CASING	NOTES	CASING SIZE AND DIAMETER	4-1/4" HSA		_
	8/13/2008		9.26	2"		OVERBURDEN SAMPLING METHOD		splitspoon	_
		_				ROCK DRILLING METHOD	HQ Size Rock Core		_
D								1	
E			SAMPLI	•		SAMPLE DESCRIPTION	WELL	WELL	10
Ρ					T		INSTALLATION	INSTALLATION	V
Т	BLOWS	NO.	DEPTH		RECOVERY		DIAGRAM	DESCRIPTION	N
Н	(/6")		(FT)	/RQD %	(%)		Security and Secur		(pp
		S-1	0 - 2	5	25	CONCRETE (8 inches)		Top of Riser Elev. = 614.92 feet	NI
1						Brown SAND and Gravel, some	State Augusta	Concrete and Road box	
	5					Silt, little Clay, moist (FILL).		Cement/bentonite grout	
2								from 1 to 5.6 feet.	
	4	S-2	2 - 4	5	40				NI
3	2					Grades to: trace Gravel.		10" Nominal diameter	
	3						47.3	borehole to 11.6'	
4	2								
	3	S-3	4 - 6	5	40	Reddish Brown Clayey SILT, little			N
5	2					Gravel, trace Sand, moist.			
	3					(NATIVE)			1
6	6					1	- XXX XXX	Bentonite Pellets	1
	3	S-4	6 - 8	14	25	1	888 888	from 5.6 to 8.6 ft.	N
7	5					1	**** ****		1
	9					1	1888	2-inch PVC flush coupled	1
8	13					1	**** ****	riser pipe to 9.6 feet.	
	13	S-5	8.0 - 10.0	36	20	1	888 888	l ''	NE
9	16					1			
	20					1 1			1
10						1		l	1
	34	S-6	10.0 - 12.0	129	60	Grades to: some Sand, little		2-inch PVC Screen	NE
11		-				Gravel, moist to wet.		SCH. 40, 10 slot,	
	61					Splitspoon and Auger refusal at		from 9.6 to 16.6 feet.	1
12						11.6 feet bgs.			
	10017	C-1	11.6 - 16.6	83	94	BEDROCK		l	1
13		<u> </u>	7.1.0		1	Lockport Dolomite Formation			
-			<u> </u>			Gray, hard, very slight to		Sand pack from	1
14		 				slight weathering, fine grained,		8.6 to 16.6 feet.	
,						horizontal and low angle fractures.			
15						angle nations.		Nominal 3" diameter	
								rock hole 11.6 to 16.6 feet	
16		 				1		10.0100	
17						End of boring at 16.6 feet bgs.	192234 192331		7
.,									
18									
19									
` -	Snlit Spoon 9	Sample		NOTES:	1) HNn DI - 1	01 organic vanor meter (OVM) used to corr	een soil samples		_
S - Split Spoon Sample NOTES: 1) HNu PI - 101 organic vapor meter (OVM) used to screen soil samples. C - Rock Core Sample Meter was calibrated to the equivalent of 100 ppm isobutylene in air.									
							•		
20-	noral	1) 04	tification lines			ng from headspace screening of soil samp			
						ndary between soil types; transitions may b	-		
.ut	es:					es and under conditions stated; fluctuations	•		
		may	occur due to o	mer ractors	man mose pre	sent at the time measurements were made	i.		

Delphi Thermal Facility Building 9 Lockport, New York

Probe No. SP-9-1 SHEET 1 OF 1 FILE No. 21.0056340.0 CHECKED BY: ERH

CON	TRACTOR	₹	Matrix Environ	mental Technologies	BORING LOCATION See Location Plan	
	LLER		Mark Janus	moment years and a	GROUND SURFACE ELEVATION DATUM	-
	RT DATE			END DATE 7/30/2007	GZA GEOENVIRONMENTAL REPRESENTATIVE C. Boron	
W	ATER LEV	EL DA	TΑ		TYPE OF DRILL RIG Geoprobe 540 U track mounted rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	_
	NA				OVERBURDEN SAMPLING METHOD Direct push	_
					ROCK DRILLING METHOD NA	_
D E P			SAMPLE INFO	DRMATION	SAMPLE DESCRIPTION NOTES	0 V
н н	Sample N	umber	DEPTH (FT)	RECOVERY (%)		M (ppm)
			0 - 2	60	Concrete slab. Approximately 8" thick.	ND
1						
					FILL - Red brown Clayey SILT, some Sand, little Gravel, moist.	1
2			•			
			2 - 4	60	FILL - Red brown SILT & CLAY, trace Sand, moist.	ND
3					FILL - Red brown Clayey SILT, little Sand, trace Gravel, moist.	
4					Gray Lockport Dolomite BEDROCK.	
'					Refusal at 4 feet below ground surface (bgs).	1
5						İ
6						1
7						
					_	
8					_	
Ι.					-	1
9	<u> </u>				-	1
10					-	
ľ					-	
11						1
						1
12						1
					_	1
13					-	
					-	
14					-	
15						
l '`						
16	,					
17	'					
18	·					
	ļ					
19	·				-	
20					-	
20	Split Spo	200	ample	NOTES: Hau DI 101	organic vapor meter was used to field screen and headspace soil samples.	
	Rock Co				calibrated to 100 ppm of isobutylene.	
	neral	1) St	ratification I	ines represent approx	ximate boundary between soil types, transitions may be gradual.	_

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

may occur due to other factors than those present at the time measurements were made.

Notes:

D---- N- OD 0.4

Delphi Thermal Facility Building 9 Lockport, New York

Probe No. SP-9-2 SHEET 1 OF 1 FILE No. 21.0056340.0 CHECKED BY: ERH

CON	TRACTOR		Matrix Environ	imental Technologies	BORING LOCATION See Location Plan	
	LER		Mark Janus	inental recinologies	GROUND SURFACE ELEVATION DATUM	-
	RT DATE			END DATE 7/30/2007	GZA GEOENVIRONMENTAL REPRESENTATIVE C. Boron	•
W	ATER LEV	EL DA	ГА		TYPE OF DRILL RIG Geoprobe 540 U track mounted rig	
	DATE		WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
l					OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA	
D						
Ε			SAMPLE INFO	DRMATION	SAMPLE DESCRIPTION NOTES	0
P	Sample N	umbor	DEPTH	RECOVERY (%)	-	\ \ \
T H	Sample N	uilibei	(FT)	RECOVERT (%)		M
屵			0 - 2	75	Concrete slab. Approximately 8" thick.	(ppm)
1			0 - 2	1 ,,	FILL - Red brown Clayey SILT, little Sand, little Gravel, moist.	"
•					The Treat Bown Glayby Glet, male Garlet, male Graves, moist.	
2					Grades to:some Sand.	
			2 - 4	75		ND
3					Grades to:trace Sand, trace Gravel.	
4					Gray Lockport Dolomite BEDROCK.	
					Refusal at 4 feet bgs.	
5					-	
_					-	
6					-	
7					-	
I '						
8					-	
			_			
9						
10					」	
					_	
11					-	
12					-	
12						
13					1	
14						
15						
					-	
16					-	
17					-	
"		\neg				
18						
					1	
19						
20						
S-	Split Spo	on Sc	mnle	NOTES: Hnu PL101	organic vapor meter was used to field screen and headspace soil samples.	_

C - Rock Core Sample

Meter was calibrated to 100 ppm of isobutylene.

General Notes:

Stratification lines represent approximate boundary between soil types, transitions may be gradual.
 Water level readings have been made at times and under conditions stated, fluctuations of groundwater

may occur due to other factors than those present at the time measurements were made.

CON	ITRACTOF			mental Technologies	BORING LOCATION See Location Plan	
	RT DATE		Mark Janus 2008	END DATE 7/30/2007	GROUND SURFACE ELEVATION DATUM GZA GEOENVIRONMENTAL REPRESENTATIVE C. Boron	
	ATER LEV				TYPE OF DRILL RIG Geoprobe 540 U track mounted rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
					OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA NA	
_						
D E			SAMPLE INFO	RMATION	SAMPLE DESCRIPTION NOTES	0
Р						V
T H	Sample N	umber	DEPTH (FT)	RECOVERY (%)		M (ppm)
	_		0 - 2	95	Concrete slab. Approximately 8" thick.	ND
1					FILL - Red brown SILT & CLAY, trace Sand, trace Gravel, moist.	
2			2.4	95	Beauty Clause Cliff trans Cond trans Const.	,,,,
3			2 - 4	95	Brown Clayey SILT, trace Sand, trace Gravel, moist.	ND
		-			Grades to:Red brown.	
4						
l			4 - 4.5	100	Gray Lockport Dolomite BEDROCK.	ND
5				_	Refusal at 4.5 feet bgs.	
6					-	
ľ					-	
7						
8					_	
9					-	
"					-	
10						
11					_	
12					-	
'-		_			-	
13						
					-	
14					-	
15					1	
16						
17						
18						
19						
					-	
20		on C	ample	NOTES: Hair DI 101	I organic vapor meter was used to field screen and headspace soil samples.	
	Split Spo Rock Co				calibrated to 100 ppm of isobutylene.	,
	neral	1) S	tratification I		ximate boundary between soil types, transitions may be gradual.	

Notes:

1) Stratification lines represent approximate boundary between soil types, transitions may be gradual.

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

	TRACTOR	2	Matrix Environ	mental Technologies	BORING LOCATION See Location Plan	
DRIL			Mark Janus		GROUND SURFACE ELEVATION DATUM	
	RT DATE			END DATE 7/30/2007	GZA GEOENVIRONMENTAL REPRESENTATIVE C. Boron	
W	ATER LEV			T	TYPE OF DRILL RIG Geoprobe 540 U track mounted rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
					OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA	
D				l.		
E			SAMPLE INFO	RMATION	SAMPLE DESCRIPTION NOTES	0
P			0/11/11 22 1/11 0		Notes	v
Т	Sample N	umber	DEPTH	RECOVERY (%)		М
н	•		(FT)			(ppm)
			0 - 2	100	ASPHALT. Approximately 3" thick.	ND
1					FILL - Brown SAND, some Gravel, moist.	
					Brown SILT & CLAY, trace Gravel, moist.	
2					_	
			2 - 3.5		Grades to: Dark brown.	ND
3					Grades to:Red brown.	
					Refused at 2.5 feet has	
4					Refusal at 3.5 feet bgs.	
5					-	
					-	
6					-	
					1	
7						
8					_	
					_	
9					-	
10		_			-	
10					-	
11		$\overline{}$			-	
					-	
12						
13						
ا					-	
14					-	
15					-	
'						
16						
17						
18	_					
				-	-	
19					-	
20		-			-	
	Split Spo	on Sc	mnlo	NOTES: Unit DI 101	organic vanor meter was used to field screen and headspace soil samples	_

S - Split Spoon Sample
C - Rock Core Sample

NOTES: Hnu Pl-101 organ
Meter was calibra

NOTES: Hnu PI-101 organic vapor meter was used to field screen and headspace soil samples. Meter was calibrated to 100 ppm of isobutylene.

General 1) Stratifica

1) Stratification lines represent approximate boundary between soil types, transitions may be gradual.

Notes:

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Delphi Thermal Facility Building 9 Lockport, New York

Probe No. SP-9-9 SHEET 1 OF 1 FILE No. 21.0056340.0 CHECKED BY: ERH

CON	TRACTOR	?	Matrix Environ	mental Technologies	BORING LOCATION See Location Plan	_
	LER		Mark Janus		GROUND SURFACE ELEVATION DATUM	
	RT DATE			END DATE 7/30/2007	GZA GEOENVIRONMENTAL REPRESENTATIVE C. Boron	
W.	ATER LEV			1 0.000	TYPE OF DRILL RIG Geoprobe 540 U track mounted rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
		\vdash			OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA	
D				<u> </u>		_
E			SAMPLE INFO	RMATION	SAMPLE DESCRIPTION NOTES	0
Р						V
Т	Sample N	umber	DEPTH	RECOVERY (%)	7	М
Н			(FT)			(ppm)
			0 - 2	30	Concrete slab. Approximately 8" thick.	ND
1					FILL - Red brown SILT & CLAY, little Gravel, trace Sand, moist.	
2					FILL - Brown SAND, trace Silt, trace Gravel, moist.	
			2 - 4	30	-	ND
3					-	
4					-	
٦			4 - 6	30	┥	ND
5					Brown SILT & CLAY, little Sand, trace Gravel, moist. (Native)	110
Ĭ						
6					1	
			6 - 8	30]	ND
7						
ı						
8						
l			8 - 10	40	Brown SAND, some Gravel, little Silt, trace clay, moist.	ND
9					_	
		-			-	
10			10 - 11	40	Crow Looknoot Dolomito BEDDOCK west	ND.
11			10 - 11	40	Gray Lockport Dolomite BEDROCK, wet.	ND
l ''					Refusal at 11 feet bgs.	
12						
~						
13						
14						
15					_	
					-	
16					-	
17						
l ''						
18						
"						
19						
20						
	Split Spo				organic vapor meter was used to field screen and headspace soil samples.	
	Rock Co				calibrated to 100 ppm of isobutylene.	
Gei	neral	1) St	ratification I	ines represent approx	ximate boundary between soil types, transitions may be gradual.	

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

may occur due to other factors than those present at the time measurements were made.

Notes:

Delphi Thermal Facility Building 9 Lockport, New York

Probe No. SP-9-10 SHEET 1 OF 1 FILE No. 21.0056340.0 CHECKED BY: ERH

CON	NTRACTOR	R .	Matrix Environ	nmental Technologies	BORING LOCATION See Location Plan	
	LLER		Mark Janus		GROUND SURFACE ELEVATION DATUM	_
_	RT DATE			END DATE 7/30/2007	GZA GEOENVIRONMENTAL REPRESENTATIVE C. Boron	
W	ATER LEV	т т		T	TYPE OF DRILL RIG Geoprobe 540 U track mounted rig	_
4 '	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	-
		+	i	+	OVERBURDEN SAMPLING METHOD Direct push ROCK DRILLING METHOD NA	-
'	<u> </u>	┼	i	+	NOCK DRILLING METHOD INA	-
D	 					\top
E			SAMPLE INFO	ORMATION	SAMPLE DESCRIPTION NOTES	0
P			5/ W	711111111111111111111111111111111111111		v
Т	Sample N	lumber	DEPTH	RECOVERY (%)	1	м
Н			(FT)			(ppm)
			0 - 2	60	TOPSOIL	ND
1					FILL - Brown SAND, little Gravel, moist.	
'						
2					FILL - Red brown SILT & CLAY, little sand, trace Gravel, moist.	
'		لــــــــــــــــــــــــــــــــــــــ	2 - 4	60]	ND
3						
	<u></u>					
4	<u> </u>				Red brown SAND, little gravel, moist.	
ٰ ٍ ا	<u> </u>		4 - 6	50	Red brown SILT & CLAY, little Sand, trace Gravel, moist. (Native)	ND
5	<u></u>				-	
ٰ ٰ	<u> </u>	\longrightarrow			-	
6	<u> </u>	\longrightarrow	6 - 8	50	Red brown, Clayey SILT, trace Sand, trace Gravel, wet.	"
,			0-0	- 30	Red brown, Clayey Sill I, trace Sand, trace Stavel, wet.	ND
7		\longrightarrow		+	-	-
8	 	\longrightarrow		+	Brown GRAVEL, some Sand, little Silt, wet.	
Ĭ			8 - 8.5		Blown Gravel, some Sand, nine Sin, wel.	ND
9		\longrightarrow		+	Refusal at 8.5 feet bgs.	"-
<u> </u>				+	Netusal at 0.0 leet bys.	
10		\longrightarrow	i	+	1	
•		$\overline{}$	i		1	
11	<u> </u>		i	†	1	
					1	
12					1	
1					1	
13]	
•						
14	<u> </u>					
<u> </u>			 		-	
15	<u> </u>	\longrightarrow		<u> </u>	-	
16	<u> </u>	\longrightarrow	<u> </u>	+	-	
10	<u> </u>	\longrightarrow			-	
17				+	-	
<u> </u>		\rightarrow		+	1	
18		\rightarrow		+	1	
1					†	
19				+	1	
			·		†	İ
20				†	†	1
s -	Split Spo	on Sa	ample	NOTES: Hnu PI-101	organic vapor meter was used to field screen and headspace soil samples.	
	Rock Co				calibrated to 100 ppm of isobutylene.	
	neral				rimate boundary between soil types, transitions may be gradual.	

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

may occur due to other factors than those present at the time measurements were made.

GZN

Notes:

D 1 N 00 0 40

Probe No. SP-9-11 SHEET 1 OF 1 FILE No. 21.0056340.0 CHECKED BY: ERH

	NTRACTOF	-	Matrix Environs Mark Janus	nmental Technologies	BORING LOCATION See Location Plan GROUND SURFACE ELEVATION DATUM	
	RT DATE	_		END DATE 7/30/2007	GZA GEOENVIRONMENTAL REPRESENTATIVE C. Boron	
_	ATER LEV				TYPE OF DRILL RIG Geoprobe 540 U track mounted rig	_
ſ		TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
					OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA	
D E P			SAMPLE INFO	ORMATION	SAMPLE DESCRIPTION NOTES	0 V
Т	Sample N	lumber	DEPTH (FT)	RECOVERY (%)	1	M
			0 - 2		Concrete slab. Approximately 14" thick.	(ppm)
1		$\overline{}$			- Control of the Cont	
		$\overline{}$			FILL - Brown SAND, some Gravel, moist.	
2					FILL - Dark brown SILT & CLAY, trace Sand, trace Gravel, moist.	
1			2 - 4			ND
3]	
,						J
4						
			4 - 6			ND
5						
_		\longrightarrow	-		Red brown Clayey SILT, little Sand, trace Gravel, moist. (Native)	
6		\longrightarrow	6 - 8		-	ND
7		\longrightarrow	6-0		-	Νυ
7		\longrightarrow			Grades to:moist to wet	ı
8	,				- Grades tomoist to wet	i
J		\longrightarrow	8 - 9		-	ND
9	,	\longrightarrow			Gray Lockport Dolomite BEDROCK, wet.	
					Refusal at 9 feet bgs.	
10	,					
					1	1
11					7	
12	2					
ı						
13	, 					
				1	_	
14	' <u> </u>				-	
15	.——				-	
15		$\overline{}$			-	
16	<u> </u>			+	-	
, ,					-	
17	,				-	
		$\overline{}$				
18	3				1	
					7	
19	,				7	
					7	
20	,					
S-	Split Sp	oon S	ample	NOTES: Hnu PI-101	organic vapor meter was used to field screen and headspace soil samples.	
	Rock Co	ore Sa	ample	Meter was	calibrated to 100 ppm of isobutylene.	
	neral	1) S'	ratification !	ines represent approx	ximate boundary between soil types, transitions may be gradual.	

Notes:

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

may occur due to other factors than those present at the time measurements were made.

ATTACHMENT 3 TABLES

Table 1

Analytical Testing Program Summary Focused Environmental Assessment Delphi Building 6 UST Area & Building 9 Lockport, New York

Building	Location	Date Collected	Depth/ Interval feet bgs	VOCs EPA Method 8260 TCL	SVOCs EPA Method 8270 STARS	PCBs EPA Method 8082	SVOC Fingerprint	Specific Gravity ASTM D4052	Viscosity ASTM D-445
Soil Samples	Karana and Allanda			E CONTRACTOR OF THE CONTRACTOR				2000	
Building 6 UST Area	MW-6-7	7/21/2008	4 to 6	X					
Building 6 UST Area	MW-6-8	7/22/2008	8 to 10	X					
Building 6 UST Area	MW-6-9	7/23/2008	6 to 9	X					
Building 9	SP-9-1	7/30/2008	2 to 4		X				
Building 9	SP-9-2	7/30/2008	2 to 4		X				
Building 9	SP-9-3	7/30/2008	3 to 4.5		X				
Building 9	SP-9-4	7/25/2008	2 to 4	- 1200000	X				
Building 9	SP-9-5	7/30/2008	1 to 3.5		X				
Building 9	SP-9-9	7/30/2008	8 to 10		X				
Building 9	SP-9-10	7/30/2008	6 to 8		X				
Building 9	SP-9-11	7/30/2008	7 to 9		X				
Building 9	SP-9-12	7/24/2008	8 to 11.5		X				
Groundwater Samples			8.2			1000	(a) (3) (b)		
Building 6 UST Area	MW-6-7	8/13/2008	NA	X					
Building 6 UST Area	MW-6-8	8/13/2008	NA	X					
Building 6 UST Area	MW-6-9	8/13/2008	NA	X					
Building 9	MW-9-4	8/13/2008	NA	1	X				
Building 9	MW-9-12	8/14/2008	NA		X				
NAPL Samples						4		East	25
Building 9	MW-9-4	8/13/2008	NA	X		X	X	X	X

Notes:

- Notes:

 1. NA = not applicable.

 2. ft bgs = feet below ground surface

 3. VOCs = Volatile Organic Compounds

 4. SVOCs = Semi-Volatile Organic Compounds

 5. TPH = Total Petroleum Hydrocarbons
- 6. TCL = total compound list.
- 7. STARS = Spills Technology and Remediation Series

Table 2

Groundwater Monitoring Well Monitoring Point & Groundwater Elevation Data Focused Environmental Assessment Delphi Building 6 UST Area & Building 9 Lockport, New York

	Monitoring	August 13, 2008	August 13, 2008		
	Point	Groundwater	Groundwater Elevation (feet)		
Monitoring Point	Elevation	Measurement			
	(feet)	(feet)			
			PACHE CONTRACTOR OF THE PACHET		
MW-4	613.07	7.38	605.69		
MW-7	613.86	6.94	606.92		
MW-8	608.97	6.04	602.93		
MW-9	604.90	9.26	595.64		
MW-10	604.70	15.32	589.38		
MW-11	590.10	5.68	584.42		
MW-12	590.71	6.02	584.69		
MW-13	589.02	5.18	583.84		
MW-14	592.77	6.57	586.20		
MW-15	594.04	8.10	585.94		
TK-3	619.95	8.98	610.97		
TK-6	621.69	10.08	611.61		
Bldg 10-MW-1	615.05	6.02	609.03		
MW-7-A-6	612.13	2.46	609.67		
MW-7-P-1	615.09	9.49	605.60		
MW-9-101-A	615.00	6.13	608.87		
MW-9-4	615.04	6.41	608.63		
MW-9-12	614.92	9.26	605.66		
MW-8-003-B	610.94	5.45	605.49		
MW-6-F-6	613.45	2.56	610,89		
MW-6-F-7	613.42	4.81	608.61		
MW-6-F-8	613.22	3.38	609.84		
MW-6-F-9	613.13	6.71	606.42		
MW-6-1	598.23	5.15	593.08		
MW-6-2	609.33	5.3	604.03		
MW-7-1	597.98	19.79	578.19		
MW-7-2	592.57	7.15	585.42		
MW-7-3	594.04	3.18	590.86		
MW-7-4	594.04	12.31	581.73		

NOTES:

- 1) NM = not measured
- 2) Shaded water levels were not used in the development of 8/13/08 Groundwater contour map.

ATTACHMENT 4 HYDRAULIC CONDUCTIVITY CALCULATION SPREADSHEETS

Bouer & Rice Slug Test Method Hydraulic Conductivity Calculation Worksheet

Project	2	21.0056340	0.0	Date	9/3/2008	
Site _	Building 6 UST Area			Well No MW-6-F-7		
H = _	50.0	feet	(aquifer thickness =>assu	med)		
Le = _	8.3	feet	(wetted screen length)			
Lw =	11.6	feet	(length from bottom of we	II to static water table)		
rw =	0.250	feet	(borehole radius)			
rc =	0.083	feet	(well radius)	if $d = 2$ inch, $m = 0.163$		
n =	0.30		(porosity of gravel pack)	if $d = 4$ inch, $m = 0.653$		
yo =	10.6	feet	(start water level)	if $d = 6$ inch, $m = 1.469$		
yt =	10.00	feet	(end water level)	m = 0.653		(multiplier)
t =	5.43	min	(change in time)	Q = 0.072	gpm	(flowrate)
Le/rw=_	33.2		(calculated ratio)	Q = 9.65E-03	ft³/min	(flowrate)
A = _	2.5		(from plot)			
B = _	0.75		(from plot)			
C = _	2.20		(from plot)			
rc' =	0.154		(effective radius)	K = 1.43E-05	ft/min	(hydraulic conductivity)
In Re =	1.832		(for Lw <h)< td=""><td>K = 7.28E-06</td><td>cm/sec</td><td>(hydraulic conductivity)</td></h)<>	K = 7.28E-06	cm/sec	(hydraulic conductivity)
Re =	6.246	feet	(for Lw <h)< td=""><td>T = 1.19E-05</td><td>ft²/sec</td><td>(transmissivity)</td></h)<>	T = 1.19E-05	ft²/sec	(transmissivity)
In Re =	1.447		(for Lw=H)	T = 7.72	gpd/ft	(transmissivity)
Re =	4.251	feet	(for Lw=H)			

Bouer & Rice Slug Test Method Hydraulic Conductivity Calculation Worksheet

Project	21.0056340.0			Date 9/3/2008						
Site _	Bui	Building 6 UST Area			Well No			MW-6-F-8		
				IN		-		ALEXANDER DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONT		
H = _	50.0	feet	(aquifer thickness =>assu	mea)						
Le = _	8.4	feet	(wetted screen length)							
Lw =	11.8	feet	(length from bottom of well to static water table)							
rw = _	0.250	feet	(borehole radius)							
rc =	0.083	feet	(well radius)	if $d = 2$ inc	ch, m	= 0.163				
n =	0.30		(porosity of gravel pack)	if d = 4 inc	ch, m	= 0.653				
yo =	5.3	feet	(start water level)	if $d = 6$ inc	ch, m	= 1.469				
yt =	4.70	feet	(end water level)	m	n = _	0.653		(multiplier)		
t =	0.68	min	(change in time)	Q) = _	0.576	gpm	(flowrate)		
Le/rw=	33.6		(calculated ratio)	Q) = _	7.70E-02	ft³/min	(flowrate)		
A = _	2.5		(from plot)							
B = _	0.75		(from plot)							
C =	2.20		(from plot)							
rc' =	0.154		(effective radius)	K	(= _	2.33E-04	ft/min	(hydraulic conductivity)		
In Re =	1.832		(for Lw <h)< td=""><td>К</td><td>(=</td><td>1.18E-04</td><td>cm/sec</td><td>(hydraulic conductivity)</td></h)<>	К	(=	1.18E-04	cm/sec	(hydraulic conductivity)		
Re =	6.246	feet	(for Lw <h)< td=""><td>7</td><td> [</td><td>1.94E-04</td><td>ft²/sec</td><td>(transmissivity)</td></h)<>	7	[1.94E-04	ft²/sec	(transmissivity)		
In Re =	1.464		(for Lw=H)	7	- <u> </u>	125.56	gpd/ft	(transmissivity)		
Re =	4 322	feet	(for I w≡H)							

Bouer & Rice Slug Test Method Hydraulic Conductivity Calculation Worksheet

Project		21.0056340	0.0		Date		9/3/2008
Site _	Bui	lding 6 UST	Area		Well No _		MW-6-F-9
Н=	50.0	feet	(aquifer thickness =>assu	med)			
Le =	8.0	feet	(wetted screen length)				
Lw =	9.1	feet	(length from bottom of we	Il to static water ta	able)		
rw =	0.250	feet	(borehole radius)				
rc =	0.083	feet	(well radius)	if $d = 2$ inch, m	= 0.163		
n =	0.30		(porosity of gravel pack)	if $d = 4$ inch, m	= 0.653		
yo =	12.35	feet	(start water level)	if $d = 6$ inch, m	= 1.469		*
yt =	10.70	feet	(end water level)	m = _	0.653		(multiplier)
t =	1.83	min	(change in time)	Q =	0.589	gpm	(flowrate)
Le/rw=	32.0		(calculated ratio)	Q = _	7.87E-02	ft³/min	(flowrate)
A =	2.5		(from plot)				
B = _	0.75		(from plot)				
C =	1.60		(from plot)				
rc' =	0.154		(effective radius)	K = _	1.09E-04	ft/min	(hydraulic conductivity)
In Re = _	1.832		(for Lw <h)< td=""><td>K = _</td><td>5.52E-05</td><td>cm/sec</td><td>(hydraulic conductivity)</td></h)<>	K = _	5.52E-05	cm/sec	(hydraulic conductivity)
Re =	6.246	feet	(for Lw <h)< td=""><td>$T =$ _</td><td>9.05E-05</td><td>ft²/sec</td><td>(transmissivity)</td></h)<>	$T = $ _	9.05E-05	ft²/sec	(transmissivity)
In Re = _	1.423		(for Lw=H)	T = _	58.48	gpd/ft	(transmissivity)
Re =	4 148	feet	(for Lw=H)				

Bouer & Rice Slug Test Method Hydraulic Conductivity Calculation Worksheet

Project		21.0056340	0.0	Date		9/3/2008
Site _		Building 9 F	EA	Well No		MW-9-4
H = _	50.0	feet	(aquifer thickness =>assu	med)		
Le =	4.9	feet	(wetted screen length)			
Lw = _	4.9	feet	(length from bottom of we	Il to static water table)		
rw =	0.250	feet	(borehole radius)			
rc =	0.083	feet	(well radius)	if $d = 2$ inch, $m = 0.163$		
n =	0.30	T.ii ■0	(porosity of gravel pack)	if $d = 4$ inch, $m = 0.653$		
yo =	6.85	feet	(start water level)	if $d = 6$ inch, $m = 1.469$		
yt =	6.10	feet	(end water level)	m = 0.653		(multiplier)
t =	2.63	min	(change in time)	Q = 0.186	gpm	(flowrate)
Le/rw=	19.6	<u>-</u> 0	(calculated ratio)	Q = 2.49E-02	ft³/min	(flowrate)
A = _	2.75	25	(from plot)			
B =	0.49	_	(from plot)			
C = _	1.00	<u>-</u>	(from plot)			
rc' =	0.154	<u>.</u>	(effective radius)	K = 9.97E-05	ft/min	(hydraulic conductivity)
In Re =	1.832	_	(for Lw <h)< td=""><td>K = 5.07E-05</td><td>cm/sec</td><td>(hydraulic conductivity)</td></h)<>	K = 5.07E-05	cm/sec	(hydraulic conductivity)
Re =	6.246	feet	(for Lw <h)< td=""><td>T = 8.31E-05</td><td>ft²/sec</td><td>(transmissivity)</td></h)<>	T = 8.31E-05	ft²/sec	(transmissivity)
In Re = _	0.991		(for Lw=H)	T = 53.71	gpd/ft	(transmissivity)
Re =	2.693	feet	(for Lw=H)			

Bouer & Rice Slug Test Method Hydraulic Conductivity Calculation Worksheet

Project _ Site		21.0056340 Building 9		Date _ Well No _		9/3/2008 MW-9-12
		The street street street street		Section of the second section of the section of the second section of the s		
H = _	50.0	feet	(aquifer thickness =>assu	med)		
Le = _	7.5	feet	(wetted screen length)			
Lw = _	7.5	feet	(length from bottom of we	Il to static water table)		
rw =	0.250	feet	(borehole radius)			
rc =	0.083	feet	(well radius)	if $d = 2$ inch, $m = 0.163$		
n = _	0.30	56 <u>0</u> 6	(porosity of gravel pack)	if $d = 4$ inch, $m = 0.653$		
yo =	10.7	feet	(start water level)	if $d = 6$ inch, $m = 1.469$		
yt =	10.00	feet	(end water level)	m = 0.653		(multiplier)
t =	2.68	min	(change in time)	Q = <u>0.171</u>	gpm	(flowrate)
Le/rw=	30.0		(calculated ratio)	Q = 2.28E-02	ft ³ /min	(flowrate)
A =	2.85	-	(from plot)			
B =	0.5		(from plot)			
C =	1.75	-	(from plot)			
rc' =	0.154		(effective radius)	K = 3.73E-05	ft/min	(hydraulic conductivity)
In Re =	1.832	10 10	(for Lw <h)< td=""><td>K = 1.90E-05</td><td>cm/sec</td><td>(hydraulic conductivity)</td></h)<>	K = 1.90E-05	cm/sec	(hydraulic conductivity)
Re =	6.246	feet	(for Lw <h)< td=""><td>T = 3.11E-05</td><td>ft²/sec</td><td>(transmissivity)</td></h)<>	T = 3.11E-05	ft²/sec	(transmissivity)
In Re =	1.233		(for Lw=H)	T = 20.09	gpd/ft	(transmissivity)
Re = _	3.432	feet	(for Lw=H)			

ATTACHMENT 5 ANALYTICAL LABORATORY REPORT

a Division of Modern Industries, Inc. 11618 Cotton Road Meadville, PA 16335 Phone: (814) 724-6242

FAX: (814) 333-1466 www.free-col.com

ENVIRONMENTAL INDUSTRIAL HYGIENE MATERIALS RESEARCH FOOD SCIENCE SAMPLING/FIELD SERVICES

STATE CERTIFIED AIHA CERTIFIED

Delphi Energy & Engine

SAMPLE DATE(S)

08/13/08

P.O. 460016825

Report Reviewed and approved by:

Mane Mane

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD **MEADVILLE, PENNSYLVANIA 16335** PHONE: (814 724-6242) FAX: (814) 333-1466

EMAIL: service@freecol.com

Certificate Of Analysis

09/09/2008

Delivery Group ID:

2008:0008518

10 Sample(s) are included in this Delivery Group.

Company Name:

Delphi Energy & Engine

Contact Name:

Mr. Rick Eisenman

Date Received 8/15/2008 Time Received: 09:00 Delivered By: UPS

100 Lexington Ave. Rochester, NY 14606-2810

Sample 1D: 2008:0008518-2	Client's Sample ID:		MW-6-F-7			
Date Sampled: 8/13/2008	Time Sampled: 11:15		Date Ro	eccived:	8/15/2008	
Analyte	Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Chloromethane	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Bromomethane	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Vinyl Chloride	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Chloroethane	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Methylene chloride	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Acetone	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Carbon Disulfide	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
1,1-Dichloroethene	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
1,1-Dichloroethane	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
1,2-Dichloroethenes (Total)	< 0.002	ing/L	08/27/08	10:11	Lindquist	SW-846 8260B
Chloroform	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
1,2-Dichloroethane	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
2-Butanone	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
1,1,1-Trichloroethane	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Carbon Tetrachloride	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Vinyl Acetate	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Bromodichloromethane	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
1,1,2,2-Tetrachloroethane	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
1,2-Dichloropropane	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
trans-1,3-Dichloropropene	< 0.002	mg/L	08/27/08	10:14	Lindquist	SW-846 8260B
Trichloroethene	<0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Dibromochloromethane	<0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
1,1,2-Trichloroethane	<0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Benzene	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
cis-1,3-Dichloropropene	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
2-Chloroethylvinylether	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

09/09/2008

Delivery Group ID:

2008:0008518

10 Sample(s) are included in this Delivery Group.

Company Name: Contact Name:

Delphi Energy & Engine Mr. Rick Eisenman

Date Received 8/15/2008

100 Lexington Ave.

Rochester, NY 14606-2810

Time Received: 09:00 Delivered By: UPS

Sample ID: 2008:0	0008518-2	Client's Sample ID:		MW-6-F-7			
Date Sampled: 8/13/2008	8/13/2008	Time Sampled: 11:15		Date Re	eceived:	8/15/2008	
Analyte		Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Bromoform		< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
2-Hexanone		< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
4-Methyl-2-Pentanone	(MIBK)	< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Tetrachloroethene		< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Toluene		< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Chlorobenzene		< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Ethylbenzene		< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Styrene		< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
Xylenes (total)		< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
cis-1,2-Dichloroethene		< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B
trans-1,2-Dichloroether		< 0.002	mg/L	08/27/08	10:11	Lindquist	SW-846 8260B

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

09/09/2008

Delivery Group ID:

2008:0008518

10 Sample(s) are included in this Delivery Group.

Company Name: Contact Name: Delphi Energy & Engine Mr. Rick Eisenman Date Received 8/15/2008 Time Received: 09:00 Delivered By: UPS

100 Lexington Ave.

Sample ID: 2008:0008518-3	Client's Sample ID:		MW-6-F-9			
Date Sampled: 8/13/2008	Time Sampled: 12:00		Date Re	eceived:	8/15/2008	
Analyte	Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Chloromethane	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Bromomethane	<0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Vinyl Chloride	<0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Chloroethane	<0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Methylene chloride	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Acetone	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Carbon Disulfide	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
1,1-Dichlomethene	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
1,1-Dichloroethane	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
1,2-Dichloroethenes (Total)	<0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Chloroform	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
1,2-Dichloroethane	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
2-Butanone	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
1,1,1-Trichloroethane	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Carbon Tetrachloride	<0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Vinyl Acetate	<0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Bromodichloromethane	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
1,1,2,2-Tetrachloroethane	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
1,2-Dichloropropane	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
trans-1,3-Dichloropropene	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Trichloroethene	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Dibromochloromethane	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
1,1,2-Trichloroethane	<0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Benzene	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
cis-1,3-Dichloropropene	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
2-Chloroethylvinylether	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAX: (814) 333-1466 EMAIL: service@freecol.com Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

09/09/2008

Certificate Of Analysis

Delivery Group ID:

2008:0008518

10 Sample(s) are included in this Delivery Group.

Company Name: Contact Name: Delphi Energy & Engine Mr. Rick Eisenman Date Received 8/15/2008 Time Received: 09:00

Delivered By: UPS

100 Lexington Ave.

Sample ID:	2008:0008518-3	Client's Sample 1D:		MW-6-F-9			
Date Sampled:	8/13/2008	Time Sampled: 12:00		Date Re	eccived:	8/15/2008	
Analyte		Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Bromoform		< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
2-Hexanone		< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
4-Methyl-2-Pent	tanone (MIBK)	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Tetrachloroether		< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Toluene		< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Chlorobenzene		< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Ethylbenzene		< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Styrene		< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
Xylenes (total)		< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
cis-1,2-Dichlore	ethene	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B
trans-1,2-Dichle	roethene	< 0.002	mg/L	08/27/08	10:42	Lindquist	SW-846 8260B

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

09/09/2008

Delivery Group ID:

2008:0008518

10 Sample(s) are included in this Delivery Group.

Company Name: Contact Name: Delphi Energy & Engine Mr. Rick Eisenman Date Received 8/15/2008 Time Received: 09:00

Delivered By: UPS

100 Lexington Ave.

Sample fD:	2008:0008518-4	Client's Sample ID:		MW-6-F-8			
Date Sampled:	8/13/2008	Time Sampled: 13:00		Date Re	eceived:	8/15/2008	
Analyte		Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Chloromethane		< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Bromomethane		< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Vinyl Chloride		< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Chloroethane		< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Methylene chlor	ride	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Acetone		< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Carbon Disultid	e	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
1.1-Dichloroethe		< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
1.1-Dichloroetha	ane	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
1.2-Dichloroeth	enes (Total)	< 0.002	mg/L	08/27/08	11:13	Lindquist	5W-846 8260B
Chloroform		< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
1,2-Dichloroeth	ane	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
2-Butanone		< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
1,1,1-Trichloroe	ethane	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Carbon Tetrachl	loride	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Vinyl Acetate		< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Bromodichloror	methane	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
1,1,2,2-Tetrachl	loroethane	<0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
1,2-Dichloropro	pane	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
trans-1,3-Dichle	oropropene	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 \$260B
Trichloroethene	:	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Dibromochloro	methane	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
1,1,2-Trichloroe	ethane	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Benzene		< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
cis-1,3-Dichlore	opropene	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
2-Chloroethylvi	inylether	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

09/09/2008

Delivery Group ID:

2008:0008518

10 Sample(s) are included in this Delivery Group.

Company Name:

Delphi Energy & Engine Mr. Rick Eisenman Date Received 8/15/2008 Time Received: 09:00

Delivered By: UPS

Contact Name:

100 Lexington Ave.

Sample ID: 2008:0008518-4	Client's Sample ID:		MW-6-F-8			
Date Sampled: 8/13/2008	Time Sampled: 13:00		Date Re	eceived:	8/15/2008	
Analyte	Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Bromoform	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
2-Hexanone	<0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
4-Methyl-2-Pentanone (MIBK)	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Tetrachloroethene	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Toluene	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Chlorobenzene	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Ethylbenzene	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Styrene	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
Xylenes (total)	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
cis-1,2-Dichloroethene	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B
trans-1,2-Dichloroethene	< 0.002	mg/L	08/27/08	11:13	Lindquist	SW-846 8260B

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242)

FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

09/09/2008

Delivery Group ID:

2008:0008518

10 Sample(s) are included in this Delivery Group.

Company Name: Contact Name: Delphi Energy & Engine Mr. Rick Eisenman Date Received 8/15/2008 Time Received: 09:00 Delivered By: UPS

100 Lexington Ave.

Sample ID: 2008:0008518-8	Client's Sample ID:		MW-9-12			
Date Sampled: 8/14/2008	Time Sampled: 14:00		Date Re	eceived:	8/15/2008	
Analyte	Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Acenaphthene	< 0.002	mg/L	08/26/08	24:30	Bilich	SW-846 8270C
Anthracene	< 0.002	mg/L	08/26/08	24:30	Bilich	SW-846 8270C
Benzo(a)anthracene	< 0.002	mg/L	08/26/08	24:30	Bilich	SW-846 8270C
Benzo(a)pyrene	< 0.002	mg/L	08/26/08	24:30	Bilich	SW-846 8270C
Benzo(b)fluoranthene	< 0.002	mg/L	08/26/08	24:30	Bilich	SW-846 8270C
Benzo(g,h,i)perylene	< 0.002	mg/L	08/26/08	24:30	Bilich	SW-846 8270C
Benzo(k)fluoranthene	< 0.002	mg/L	08/26/08	24:30	Bilich	SW-846 8270C
Chrysene	< 0.002	mg/L	08/26/08	24:30	Bilich	SW-846 8270C
Dibenzo(a,h)anthracene	< 0.005	mg/L	08/26/08	24:30	Bilich	SW-846 8270C
Fluoranthene	< 0.002	mg/L	08/26/08	24:30	Bilich	SW-846 8270C
Fluorene	< 0.002	mg/L	08/26/08	24:30	Bilich	SW-846 8270C
Indeno(1,2,3-cd)pyrene	< 0.002	mg/L	08/26/08	24:30	Bilich	SW-846 8270C
Naphthalene	< 0.002	mg/L	08/26/08	24:30	Bilich	SW-846 8270C
Phenanthrene	< 0.002	mg/L	08/26/08	24:30	Bilich	SW-846 8270C
Pyrene	< 0.002	mg/L	08/26/08	24:30	Bilich	SW-846 8270C
Prep: Semi-Volatile Extraction			08/22/08	11:10	Hindle	SW-846 3510C

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAX: (814) 333-1466

EMAIL: service@freecol.com

Certificate Of Analysis

09/09/2008

Delivery Group ID:

2008:0008518

10 Sample(s) are included in this Delivery Group.

Company Name:

Delphi Energy & Engine Mr. Rick Eisenman Date Received 8/15/2008 Time Received: 09:00

Delivered By: UPS

Contact Name:

Mr. Rick Eisenman

100 Lexington Ave.

Rochester, NY 14606-2810

Sample ID: 2008:0008518-9	Client's Sample ID:		MW-9-4			
Date Sampled: 8/14/2008	Time Sampled: 13:00		Date Re	ceived:	8/15/2008	
Analyte	Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Acenaphthene	< 0.073	mg/L	08/26/08	24:31	Bilich	SW-846 8270C
Anthracene	< 0.073	mg/L	08/26/08	24:31	Bilich	SW-846 8270C
Benzo(a)anthracene	< 0.073	mg/L	08/26/08	24:31	Bilich	SW-846 8270C
Benzo(a)pyrene	< 0.073	mg/L	08/26/08	24:31	Bilich	SW-846 8270C
Benzo(b)fluoranthene	< 0.073	mg/L	08/26/08	24:31	Bilich	SW-846 8270C
Benzo(g,h,i)perylene	< 0.073	mg/L	08/26/08	24:31	Bilich	SW-846 8270C
Benzo(k)fluoranthene	< 0.073	mg/L	08/26/08	24:31	Bilich	SW-846 8270C
Chrysene	< 0.073	mg/L	08/26/08	24:31	Bilich	SW-846 8270C
Dibenzo(a,h)anthracene	< 0.073	mg/L	08/26/08	24:31	Bilich	SW-846 8270C
Fluoranthene	7.99	mg/L	08/26/08	24:31	Bilich	SW-846 8270C
Fluorene	< 0.073	mg/L	. 08/26/08	24:31	Bilich	SW-846 8270C
Indeno(1,2,3-cd)pyrene	< 0.073	mg/L	08/26/08	24:31	Bilich	SW-846 8270C
Naphthalene	< 0.073	mg/L	08/26/08	24:31	Bilich	SW-846 8270C
Phenanthrene	7.97	mg/L	08/26/08	24:31	Bilich	SW-846 8270C
Pyrene	< 0.073	mg/L	08/26/08	24:31	Bilich	SW-846 8270C
Prep: Semi-Volatile Extraction			08/22/08	11:10	Hindle	SW-846 3510C

Semi-Volatile Compounds with a less than sign (<) have a detection limit change due to a dilution.

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD **MEADVILLE, PENNSYLVANIA 16335** PHONE: (814 724-6242)

FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

09/09/2008

Delivery Group ID:

2008:0008518

10 Sample(s) are included in this Delivery Group.

Company Name:

Delphi Energy & Engine

Contact Name:

Mr. Rick Eisenman

Date Received 8/15/2008 Time Received: 09:00

Delivered By: UPS

100 Lexington Ave.

Sample ID:	2008:0008518-10	Client's Sample 1D:		MW-9-4 Produ	uct		
Date Sampled:	8/13/2008	Time Sampled: 12:00		Date Received:		8/15/2008	
Analyte		Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
PCB-1242		<2	mg/kg	08/22/08	07:19	Williams	SW-846 8082
PCB-1254		<2	mg/kg	08/22/08	07:19	Williams	SW-846 8082
PCB-1221		<2	mg/kg	08/22/08	07:19	Williams	SW-846 8082
PCB-1232		<2	mg/kg	08/22/08	07:19	Williams	SW-846 8082
PCB-1248		<2	mg/kg	08/22/08	07:19	Williams	SW-846 8082
PCB-1260		<2	mg/kg	08/22/08	07:19	Williams	SW-846 8082
PCB-1016		<2	mg/kg	08/22/08	07:19	Williams	SW-846 8082
Chloromethane		< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Bromomethane		< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Vinyl Chloride		< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Chloroethane		<0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Methylene chlor	ride	<0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Acetone		<0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Carbon Disulfid	e	< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
1,1-Dichloroeth	ene	<0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
1,1-Dichloroeth	ane	<0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
1,2-Dichloroeth	enes (Total)	<0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Chloroform		<0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
1,2-Dichloroeth	anc	< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
2-Butanone		< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
1,1,1-Trichloroe	ethane	< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Carbon Tetrachl	loride	< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Vinyl Acetate		< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Bromodichloron	nethane	<0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
1,1,2,2-Tetrachl	oroethane	< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
1,2-Dichloropro	pane	< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD **MEADVILLE, PENNSYLVANIA 16335** PHONE: (814 724-6242)

FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

09/09/2008

Delivery Group ID:

2008:0008518

10 Sample(s) are included in this Delivery Group.

Company Name: Contact Name:

Delphi Energy & Engine

Date Received 8/15/2008 Time Received: 09:00

Mr. Rick Eisenman

100 Lexington Ave.

Delivered By: UPS

Sample ID:	2008:0008518-10	Client's Sample I	D:	MW-9-4 Prode	uct		
Date Sampled:	8/13/2008	Time Sampled: 12:00		Date R	eceived:	8/15/2008	
Analyte		Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
trans-1,3-Dichlo	ropropene	< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Trichloroethene		< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Dibromochloron	nethane	< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
1,1,2-Trichloroe	thane	< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Benzene		< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
cis-1,3-Dichloro	propene	< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
2-Chloroethylvir	nylether	< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Bromoform		< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
2-Hexanone		< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
4-Methyl-2-Pent	anone (MIBK)	< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Tetrachloroether	ne	< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Toluene		< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Chlorobenzene		< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Ethylbenzene		< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Styrene		< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Xylenes (total)		< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
cis-1,2-Dichloro	ethene	< 0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
trans-1,2-Dichlo	roethene	<0.20	mg/kg	08/27/08	09:09	Lindquist	SW-846 8260B
Semi-Volatile Fi	ingerprint Scan	Attachment		08/26/08	24:31	Bilich	SW-846 8270C
Viscosity		See Note 2					ASTM D-445
Specific Gravity		See Note 1					SM 2710 F

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

09/09/2008

Delivery Group ID:

2008:0008518

10 Sample(s) are included in this Delivery Group.

Company Name: Contact Name: Delphi Energy & Engine Mr. Rick Eisenman Date Received 8/15/2008 Time Received: 09:00 Delivered By: UPS

100 Lexington Ave.

Rochester, NY 14606-2810

PCB NOTE: All reported values with a less than sign (<) have detection limit changes due to a dilution. Results expressed as mg/kg are calculated on a received weight basis.

Note 1: Viscosity analysis was performed by Engineered Lubricants Company at 100 Degrees F or 40 Degrees C by ASTM D-445.

SSU Viscosity Result @ 100 F is 258.2 cSt Viscosity Result @ 40 C is 49.978

Note 2: Specific Gravity analysis was performed by Engineered Lubricants Company by ASTM D4052.

Specific Gravity Result @ 60 F is 0.880 API Gravity Result @ 60 F is 29.30 Pounds/Gallon Result is 7.327

Attachment

CC: GZA

have filling

a Division of Modern Industries, Inc. P.O. Box 557, 11618 Cotton Road Meadville, Pennsylvania 16335-0557 Phone: (814) 724-6242 FAX: (814) 333-1466 www.free-col.com

ENVIRONMENTAL INDUSTRIAL HYGIENE MATERIALS RESEARCH FOOD SCIENCE SAMPLING/FIELD SERVICES

STATE CERTIFIED
AIHA ACCREDITED

The following sample was submitted to Free-Col Laboratories for analysis:

1. Mw-9-4 Product/Free-Col I.D. 2008:0008518-10

The sample, Free-Col I.D. 2008:0008518-10 was an oil sample. The oil was diluted with methylene chloride and analyzed on the HP 5970 GC/MS system.

A fingerprint chromatogram was generated for the sample. The chromatogram was compared to a previous oil sample analyzed on November 11, 2003 and identified as Free-Col I.D. 2003:0012684-1.

It was determined that the oil sample, Free-Col I.D. 2008-0008518-10 contained one hydrocarbon region and was the same as the oil sample that was analyzed in 2003, Free-Col I.D. 2003-0012684-1.

```
File : 0: MPCHEMY1VEATAVAUMSVES_00_U0.008010 10.00
Operator :
Acquired : 05 Aug 108 1:11 pm using AcqMethod 8070
Instrument : 5870 - 10
Semple Masse: 01L 1 0 INTO 10 ML MSCLU 10% DID
Misc Inio :
```


dah	AMALYSIS RECOURTS AMALYSIS RECOURTS AND STATE STATE AND STATE		91		XXXX XXXX	32	Something the state of the stat	W / W		1 M	×	×			NOTES: (Unless otherwise noted, all samples have been refrigorated to 4°C) Specify "Other" preservatives and containers types in this spage O HOLD For analysis of SVOC AE/BN FOR P.H. The Contact Leb.	0/46/	ND TIME: Standard Rush Days, Approved by TEMP, OF COOLER °C Cooler Air	2): 21.0056340 TASK NO:	Delphi Lectoport, NY (S) Jen Dewicke SHEET OF 1
CHAIN-OF-CUSTODY RECORD	Sample Date/Time Sw.Surlace W F Sw.S	1 MW-7-2 8/4/8 10:00 GNU 1	MD-6-F-7	4	<u>S</u>	1 MW-5-F-8 -7-8-18:00 6:03	TO THE TOTAL STATE TO THE STATE OF THE STATE	5 MW-7-4 8 M/8 9:30 GD	6 MW-6-1 1:15 GNU X	M3-6-3-4M	8 Mis-9-D 14:00 Cho	9 MW-9-4 13-00 CAN	PRESERVATIVE (CI - HCI, M=Methanol, N - HNO3, S - H2SO4, Na - NaOH, O - Other)*	CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, F-Teflon, O-Other)*	AD DOUS INTO DOS DECEIVED BY: WFFLUNTON ATOM DATE/TIME RECEIVED BY: WFFLUNTON DATE/TIME RECEIVED BY	RELINDUISHED BY MELATION DATE/TIME RECEIVED BY: MFFILLATION 2) PRESENT	PROJECT MANAGER: TURNAROUND TIME:	GZA GEOENVIRONMENTAL, INC. GZA FILE NO. AL Labaratory Division	106 South Street Hopkinton, MA 01748 (781) 278-4700 FAX (508) 435-9912 COLLECTOR(S)

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAX: (814) 333-1466 EMAIL: service@freecol.com Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

Certificate Of Analysis

08/11/2008

Delivery Group ID:

2008:0007899

7 Sample(s) are included in this Delivery Group.

Company Name: Contact Name: Delphi Energy & Engine Mr. Rick Eisenman Date Received 8/ 1/2008 Time Received: 09:00 Delivered By: UPS

100 Lexington Ave.

Rochester, NY 14606-2810

ample ID: 2008:0007899-1	Client's Sample 1D:		SP-9-1;2-4 ft b	gs		
Pate Sampled: 7/30/2008	Time Sampled:		Date Received:		8/ 1/2008	
nalyte	Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Acenaphthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Acenaphthylene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Anthracene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(a)anthracene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(a)pyrene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(b)fluoranthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(ghi)perylene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(k)fluoranthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Chrysene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Dibenz(a,h)anthracene	< 0.50	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Fluoranthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Fluorene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Indeno(1,2,3-cd)pyrene	<0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Naphthalene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Phenanthrene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Pyrene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Prep: Semi-Volatile Soxhlet Extraction			08/04/08	16:30	Hindle	SW-846 3540C

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

08/11/2008

Delivery Group ID:

2008:0007899

7 Sample(s) are included in this Delivery Group.

Company Name: Contact Name: Delphi Energy & Engine Mr. Rick Eisenman Date Received 8/ 1/2008 Time Received: 09:00 Delivered By: UPS

100 Lexington Ave.

Rochester, NY 14606-2810

	****			7/2-11		
Sample ID: 2008:0007899-2	Client's Sample ID:		SP-9-2;2-4 ft b	gs		
Date Sampled: 7/30/2008	Time Sampled:		Date Re	eceived:	8/ 1/2008	
Analyte	Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Acenaphthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Acenaphthylene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Anthracene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(a)anthracene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(a)pyrene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(b)fluoranthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(ghi)perylene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(k)fluoranthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Chrysene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Dibenz(a.h)anthracene	< 0.50	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Fluoranthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Fluorene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Indeno(1,2,3-cd)pyrene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Naphthalene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Phenanthrene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Pyrene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Prep: Semi-Volatile Soxhlet Ext	raction		08/04/08	16:30	Hindle	SW-846 3540C

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAY: (814) 333 1466

FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

08/11/2008

Delivery Group ID:

2008:0007899

7 Sample(s) are included in this Delivery Group.

Company Name: Contact Name: Delphi Energy & Engine Mr. Rick Eisenman Date Received 8/ 1/2008 Time Received: 09:00 Delivered By: UPS

100 Lexington Ave.

Rochester, NY 14606-2810

Sample ID: 2008:0007899-3	Client's Sample ID:		SP-9-3;3-4.5 ft	bgs		
Date Sampled: 7/30/2008	Time Sampled:		Date R	eceived:	8/ 1/2008	
Analyte	Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Acenaphthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Acenaphthylene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Anthracene	<0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(a)anthracene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(a)pyrene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(b)fluoranthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(ghi)perylene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(k)fluoranthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Chrysene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Dibenz(a,h)anthracene	< 0.50	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Fluoranthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Fluorene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Indeno(1.2,3-cd)pyrene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Naphthalene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Phenanthrene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Pyrene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Prep: Semi-Volatile Soxhlet Extraction			08/04/08	16:30	Hindle	SW-846 3540C

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAX: (814) 333-1466

EMAIL: service@freecol.com

Certificate Of Analysis

08/11/2008

Delivery Group ID:

2008:0007899

7 Sample(s) are included in this Delivery Group.

Company Name: Contact Name: Delphi Energy & Engine

Mr. Rick Eisenman

100 Lexington Ave.

Rochester, NY 14606-2810

Date Received 8/ 1/2008 Time Received: 09:00

Delivered By: UPS

Sample 1D: 2008:0007899-4 Client's Sample 1D: SP-9-5;1-3.5 ft bgs 7/30/2008 Time Sampled: Date Sampled: Date Received: 8/1/2008 Date Time Analyte Result Units Analyzed Analyzed Analyst Method Source Acenaphthene 0.27 mg/kg 08/06/08 16:11 SW-846 8270C Davis Acenaphthylene < 0.20 mg/kg 08/06/08 16:11 SW-846 8270C Davis Anthracene < 0.20 mg/kg 08/06/08 16:11 Davis SW-846 8270C Benzo(a)anthracene < 0.20 mg/kg 08/06/08 16:11 Davis SW-846 8270C Benzo(a)pyrene < 0.20 mg/kg 08/06/08 16:11 Davis SW-846 8270C Benzo(b)fluoranthene < 0.20 mg/kg 08/06/08 16:11 Davis SW-846 8270C Benzo(ghi)perylene < 0.20 mg/kg 08/06/08 16:11 Davis SW-846 8270C Benzo(k)fluoranthene < 0.20 mg/kg 08/06/08 16:11 Davis SW-846 8270C Chrysene < 0.20 mg/kg 08/06/08 16:11 SW-846 8270C Davis Dibenz(a,h)anthracene < 0.50 08/06/08 16:11 Davis SW-846 8270C mg/kg Fluoranthene 0.30 08/06/08 16:11 mg/kg Davis SW-846 8270C Fluorene 0.75 08/06/08 mg/kg 16:11 Davis SW-846 8270C Indeno(1,2,3-cd)pyrene < 0.20 mg/kg 08/06/08 16:11 Davis SW-846 8270C Naphthalene < 0.20 mg/kg 08/06/08 16:11 Davis SW-846 8270C Phenanthrene 1.3 mg/kg 08/06/08 16:11 Davis SW-846 8270C Pyrene 0.31 mg/kg 08/06/08 16:11 Davis SW-846 8270C Prep: Semi-Volatile Soxhlet Extraction 08/04/08 16:30 Hindle SW-846 3540C

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAX: (814) 333-1466

FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

08/11/2008

Delivery Group ID:

2008:0007899

7 Sample(s) are included in this Delivery Group.

Company Name:

Delphi Energy & Engine Mr. Rick Eisenman Date Received 8/ 1/2008

Contact Name:

......

100 Lexington Ave.

Rochester, NY 14606-2810

Time Received: 09:00
Delivered By: UPS

Sample ID: 2008:0007899-5	Client's Sample ID:		SP-9-9;8-10 ft l	ogs		
Date Sampled: 7/30/2008	Time Sampled:		Date Re	ceived:	8/ 1/2008	
Analyte	Result (Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Acenaphthene	<0.20 n	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Acenaphthylene	<0.20 n	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Anthracene	<0.20 n	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(a)anthracene	<0.20 n	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(a)pyrene	<0.20 n	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(b)fluoranthene	<0.20 n	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(ghi)perylene	<0.20 n	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(k)fluoranthene	<0.20 n	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Chrysene	<0.20 n	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Dibenz(a,h)anthracene	<0.50	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Fluoranthene	<0.20	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Fluorene	<0.20	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Indeno(1,2,3-cd)pyrene	<0.20 n	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Naphthalene	<0.20	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Phenanthrene	<0.20 n	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Pyrene	<0.20	ng/kg	08/06/08	16:11	Davis	SW-846 8270C
Prep: Semi-Volatile Soxhlet Extraction			08/04/08	16:30	Hindle	SW-846 3540C

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD **MEADVILLE, PENNSYLVANIA 16335** PHONE: (814 724-6242)

FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

08/11/2008

Delivery Group ID:

2008:0007899

7 Sample(s) are included in this Delivery Group.

Company Name:

Delphi Energy & Engine

Date Received 8/1/2008

Contact Name:

Mr. Rick Eisenman

Time Received: 09:00 Delivered By: UPS

100 Lexington Ave.

Rochester, NY 14606-2810

ample ID: 2008:0007899-6	Client's Sample ID:		SP-9-10;6-8 ft	bgs		
ate Sampled: 7/30/2008	Time Sampled:		Date Re	eceived:	8/ 1/2008	
nalyte	Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Acenaphthene	<0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Acenaphthylene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Anthracene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(a)anthracene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(a)pyrene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(b)fluoranthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(ghi)perylene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(k)fluoranthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Chrysene	<0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Dibenz(a,h)anthracene	< 0.50	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
luoranthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
luorene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
ndeno(1,2,3-cd)pyrene	<0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
aphthalene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
henanthrene	<0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
'yrene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Prep: Semi-Volatile Soxhlet Extracti	on		08/04/08	16:30	Hindle	SW-846 3540C

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD **MEADVILLE, PENNSYLVANIA 16335** PHONE: (814 724-6242) FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

08/11/2008

Delivery Group ID:

2008:0007899

7 Sample(s) are included in this Delivery Group.

Company Name: Contact Name:

Delphi Energy & Engine Mr. Rick Eisenman

Date Received 8/1/2008 Time Received: 09:00 Delivered By: UPS

100 Lexington Ave.

Rochester, NY 14606-2810

Sample ID:	2008:0007899-7	Client's Sample ID:		SP-9-11;7-9 ft	hgs		
Date Sampled:	7/30/2008	Time Sampled:		Date Re	eceived:	8/ 1/2008	
Analyte		Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Acenaphthene		< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Acenaphthylen	e	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Anthracene		< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(a)anthra	cene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(a)pyrene	:	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(b)fluora	nthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(ghi)pery	lene	<0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Benzo(k)fluora	nthene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Chrysene		< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Dibenz(a,h)antl	hracene	< 0.50	mg/kg	08/06:08	16:11	Davis	SW-846 8270C
Fluoranthene		<0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Fluorene		<0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Indeno(1,2,3-co	i)pyrene	< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Naphthalene		< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Phenanthrene		< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Pyrene		< 0.20	mg/kg	08/06/08	16:11	Davis	SW-846 8270C
Prep: Semi-V	olatile Soxhlet Extraction			08/04/08	16:30	Hindle	SW-846 3540C

Results expressed as mg/kg are calculated on a received weight basis.

CC: GZA

Page 7 of 7 Bane (Many)

Note # Total No. Temp Blank Cooler Air (for lab use only) EPA 300 EL CLI EL NOS EL SO4 TEMP, OF COOLER SBLP - Specify Below CLP - Specify Below LAB USE Merals (List Below) ... Metals D TAT List w/ CN Metals D TAL List Metals D R-8 44315 🖸 PPM-13 DH-OC MEING NOTES: (Unless otherwise noted, all samples have been refrigerated to 4+/-2-C)
*Specify "Other" preservatives and container types in this space. TPH-GC (Mod 8100) Days, Approved by: EPA 8081-Pest Please Bill Delphr: Richard Eisenman directly.
Please provide electronic copy of the results to christopher boronizingza.com EBV 8087-BCB² Eby 625 mm 200Cs NB CIA CI 0728 AG EPA 8270 STARS (PAHs) × × × × EPA 8270 SVOCs - Full List 901 @ 905 MM AOC 2 EBY 954 MM AOC? Eby 254 5 DM AOC? PA 8021- STARS List TURNAROUND TIME 1213 Hud - 1208 Agg EPA 8260- STARS List isi:1 (in4 - 0928 A 43 M. Methane, Ethane, Ethene D Hd D Orher A*Atr S Soil GW*Ground W SW*Surface W WW*Waste W DW*Drinking W あって (specify) Matrix RECEIVED BY RECEIVED BY P-Product PRESERVATIVE (CLHCI, M-Methano), N-HNO3, S-H2SO4, Na-NaOH, O-Othor) GZA GEOENVIRONMENTAL, INC. 80/21-1/8 G-Glass, V-Vial, T-Teflon, O-Othery
DATE/fIME
7/31/08 1600 UPS pickup Date/Time Sampled 7/30/2008 7:30/2008 7/30/2008 7/30/2008 7/30/2008 7.30/2008 CHAIN-OF-CUSTODY RECORD 7/30/2008 C. Boron DATE/TIME DATE/TIME Project Manager: CONTAINER TYPE (P-Plestic, SP-9-3; 3-4.5 ft bys SP-9-5, 1-3.5 ft bgs SP-9-9; 8-10 ft bgs SP-9-10, 6-8 ft bgs SP-9-11; 7.9 ft bgs SP-9-1; 2-4 ft bgs SP-9-2, 2-4 ft bgs Sample 1.D. RELINGUISHED BY RELINQUISHED BY Boron

NUSNEC

W.O.#

OF

SHEET

C. Boron

COLLECTOR(S)

LOCATION

PROJECT

535 Washington Street Buffalo, NY 14203 (716) 685-2300 FAX (716) 685-3629

P.O. NO.

TASK NO

GZA FILE NO:

Delphi Lockport, Bldg 9

Lockport NY

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

08/08/2008

Delivery Group ID:

2008:0007519

3 Sample(s) are included in this Delivery Group.

Company Name: Contact Name: Delphi Energy & Engine Mr. Rick Eisenman Date Received 7/24/2008 Time Received: 09:00

100 Lexington Ave.

Rochester, NY 14606-2810

Time Received: 09:00
Delivered By: UPS

Sample ID:	2008:0007519-1	Client's Samp	le ID:	MW-6-F-7 (4-	6')		
Date Sampled:	7/21/2008	Time Sampled: 15:00		Date R	eceived:	7/24/2008	
Analyte		Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Chloromethane		<0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Bromomethane		< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Vinyl Chloride		< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Chloroethane		< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Methylene chlori	de	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Acetone		<1.0	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Carbon Disulfide	12	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,1-Dichloroethe	ne	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,1-Dichloroetha	ne	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,2-Dichloroethe	nes (Total)	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Chloroform		< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,2-Dichloroetha	ne	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
2-Butanone		<1.0	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,1,1-Trichloroet	hane	<0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Carbon Tetrachle	oride	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Vinyl Acetate		<0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Bromodichlorom	ethane	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,1,2,2-Tetrachlo	proethane	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,2-Dichloroprop	oane	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
trans-1,3-Dichlor	ropropene	< 0.20	mg/kg	07/24/08	23:32	Pernine	SW-846 8260B
Trichloroethene		< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Dibromochlorom	nethane	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,1,2-Trichloroet	hane	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Benzene		< 0.20	mg/kg	07/24/08	23:32	Pernine	SW-846 8260B
cis-1,3-Dichlorop	propene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
2-Chloroethylvin	ylether	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242)

FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

08/08/2008

Delivery Group ID:

2008:0007519

3 Sample(s) are included in this Delivery Group.

Company Name: Contact Name: Delphi Energy & Engine Mr. Rick Eisenman Date Received 7/24/2008 Time Received: 09:00

Delivered By: UPS

100 Lexington Ave.

imple ID:	2008:0007519-1	Client's Sample	ID:	MW-6-F-7 (4-4	6')		
ate Sampled:	7/21/2008	Time Sampled: 15:00		Date R	eceived:	7/24/2008	
nalyte		Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Bromoform		<0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
-Hexanone		<1.0	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
-Methyl-2-Pent	anone (MIBK)	<1.0	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
etrachloroether	ne	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
oluene		1.8	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
hlorobenzene		<0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
thylbenzene		0.40	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
tyrene		< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
ylenes (total)		1.5	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
s-1,2-Dichloro	ethene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
ns-1,2-Dichlo	roethene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
enzene		< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
hylbenzene		< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
oluene		1.8	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Xylene		0.40	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
,p-Xylene		1.1	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
otal Xylenes		1.5	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
opropylbenzen	e	0.30	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
propylbenzene	•	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
-Isopropyltolue	me	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
2,4-Trimethylb	oenzene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
3,5-Trimethylb	penzene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Butyl Benzene	•	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
c-Butyl Benze	ne	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
aphthalene		< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
lethy tert-butyl	ether	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD **MEADVILLE, PENNSYLVANIA 16335** PHONE: (814 724-6242) FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

08/08/2008

Delivery Group ID:

2008:0007519

3 Sample(s) are included in this Delivery Group.

Company Name:

Delphi Energy & Engine Mr. Rick Eisenman

Contact Name:

Rochester, NY 14606-2810

100 Lexington Ave.

Date Received 7/24/2008 Time Received: 09:00 Delivered By: UPS

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

08/08/2008

Delivery Group ID:

2008:0007519

3 Sample(s) are included in this Delivery Group.

Company Name:

Delphi Energy & Engine

Date Received 7/24/2008

Contact Name:

Mr. Rick Eisenman

Time Received: 09:00 Delivered By: UPS

100 Lexington Ave.

Sample ID:	2008:0007519-2	Client	s Sample ID:	MW-6-F-8 (8-	-10')		
Date Sampled:	7/22/2008	Time Sampled:	13:00	Date R	teceived:	7/24/2008	
Analyte		Resu	lt Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Chloromethane		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Bromomethane		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Vinyl Chloride		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Chloroethane		<0.	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Methylene chlori	ide	<0	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Acetone		<	1.0 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Carbon Disulfide	2	<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,1-Dichloroethe	ene	<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,1-Dichloroetha	ine	<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,2-Dichloroethe	enes (Total)	<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Chloroform		<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,2-Dichloroetha	ine	<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
2-Butanone		<	1.0 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,1,1-Trichloroet	thane	<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Carbon Tetrachle	oride	<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Vinyl Acetate		<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Bromodichloron	nethane	<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,1,2,2-Tetrachle	oroethane	<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,2-Dichloroprop	pane	<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
trans-1,3-Dichlo	горгореле	<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Trichloroethene		<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Dibromochloron	nethane	<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,1,2-Trichloroe	thane	<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Benzene		<0	.20 mg/kg	07/24/08	23:32	Pernine	SW-846 8260B
cis-1,3-Dichloro	propene	<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
2-Chloroethylvir	nylether	<0	.20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD **MEADVILLE, PENNSYLVANIA 16335** PHONE: (814 724-6242) FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

08/08/2008

Delivery Group ID:

2008:0007519

3 Sample(s) are included in this Delivery Group.

Company Name: Contact Name:

Delphi Energy & Engine Mr. Rick Eisenman

Date Received 7/24/2008

100 Lexington Ave.

Rochester, NY 14606-2810

Time Received: 09:00 Delivered By: UPS

Sample ID:	2008:0007519-2	Client	's Sample ID:	MW-6-F-8 (8-	10')		
Date Sampled:	7/22/2008	Time Sampled:	13:00	Date R	eceived:	7/24/2008	
Analyte		Resu	lt Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Bromoform		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
2-Hexanone		<	1.0 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
4-Methyl-2-Penta	anone (MIBK)	<	1.0 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Tetrachloroethen	ie	<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Toluene		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Chlorobenzene		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Ethylbenzene		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Styrene		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
(ylenes (total)		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
is-1,2-Dichloroe	ethene	<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
rans-1,2-Dichlor	roethene	<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Benzene		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
thylbenzene		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
oluene		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
-Xylene		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
n,p-Xylene		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
otal Xylenes		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
sopropylbenzene	•	<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
-propylbenzene		<0,	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
-Isopropyltoluer	ne	<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
.2,4-Trimethylb	enzene	<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
,3.5-Trimethylb	enzene	<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
-Butyl Benzene		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
ec-Butyl Benzen	ne	<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Naphthalene		<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Methy tert-butyl	ether	<0.	20 mg/kg	07/24/08	23:32	Perrine	SW-846 8260B

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

08/08/2008

Delivery Group ID:

2008:0007519

3 Sample(s) are included in this Delivery Group.

Company Name: Contact Name: Delphi Energy & Engine

Mr. Rick Eisenman

100

Date Received 7/24/2008 Time Received: 09:00

Delivered By: UPS

100 Lexington Ave.

Rochester, NY 14606-2810

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD MEADVILLE, PENNSYLVANIA 16335 PHONE: (814 724-6242) FAX: (814) 333-1466

EMAIL: service@freecol.com

Certificate Of Analysis

08/08/2008

Delivery Group ID:

2008:0007519

3 Sample(s) are included in this Delivery Group.

Company Name:

Delphi Energy & Engine Mr. Rick Eisenman

Contact Name:

100 Lexington Ave.

Rochester, NY 14606-2810

Date Received 7/24/2008 Time Received: 09:00 Delivered By: UPS

Sample ID:	2008:0007519-3	Client	's Sample ID;		MW-6-F-9 (6-9	9')		
Date Sampled:	7/23/2008	Time Sampled:	12:00		Date R	eceived:	7/24/2008	
Analyte		Resu	lt	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Chloromethane		<0	.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Bromomethane		<0	.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Vinyl Chloride		<0	.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Chloroethane		<0	.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Methylene chlori	ide	<0	.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Acetone		<	1.0	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Carbon Disulfide		<0	.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
I,1-Dichloroethe	ene	<0	.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,1-Dichloroetha	ine	<0	.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,2-Dichloroethe	enes (Total)	<0	.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Chloroform		<0	.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,2-Dichloroetha	ne	<0	.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
2-Butanone		<	1.0	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,1,1-Trichloroet	hane	<0.	.20	ng/kg	07/24/08	23:32	Perrine	SW-846 8260B
Carbon Tetrachlo	oride	<0.	.20	ng/kg	07/24/08	23:32	Perrine	SW-846 8260B
Vinyl Acetate		<0.	.20	ng/kg	07/24/08	23:32	Perrine	SW-846 8260B
Bromodichlorom	ethane	<0.	.20	ng/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,1,2,2-Tetrachlo	oroethane	<0.	.20	ng/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,2-Dichloroprop	oane	<0.	.20	ng/kg	07/24/08	23:32	Perrine	SW-846 8260B
trans-1,3-Dichlor	ropropene	<0.	.20	ng/kg	07/24/08	23:32	Perrine	SW-846 8260B
Trichloroethene		<0.	20	ng/kg	07/24/08	23:32	Perrine	SW-846 8260B
Dibromochlorom	ethane	<0.	20	ng/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,1,2-Trichloroet	hane	<0.	20	ng/kg	07/24/08	23:32	Perrine	SW-846 8260B
Benzene		<0.	20 1	ng/kg	07/24/08	23:32	Perrine	SW-846 8260B
cis-1,3-Dichlorop	propene	<0.	20 1	ng/kg	07/24/08	23:32	Perrine	SW-846 8260B
2-Chloroethylvin	ylether	<0.	20 1	ng/kg	07/24/08	23:32	Perrine	SW-846 8260B

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD **MEADVILLE, PENNSYLVANIA 16335** PHONE: (814 724-6242) FAX: (814) 333-1466

EMAIL: service@freecol.com

Certificate Of Analysis

08/08/2008

Delivery Group ID:

2008:0007519

3 Sample(s) are included in this Delivery Group.

Company Name:

Delphi Energy & Engine Mr. Rick Eisenman

Contact Name:

100 Lexington Ave.

Rochester, NY 14606-2810

Date Received 7/24/2008 Time Received: 09:00 Delivered By: UPS

Sample ID: 2008:0007519-3	Client's Sample ID:		MW-6-F-9 (6-9	('')		
Date Sampled: 7/23/2008	Time Sampled: 12:00		Date Re	ceived:	7/24/2008	
Analyte	Result	Units	Date Analyzed	Time Analyzed	Analyst	Method Source
Bromoform	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
2-Hexanone	<1.0	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
4-Methyl-2-Pentanone (MIBK)	<1.0	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Tetrachloroethene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Toluene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Chlorobenzene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Ethylbenzene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Styrene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Xylenes (total)	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
cis-1,2-Dichloroethene	<0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
trans-1,2-Dichloroethene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Benzene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Ethylbenzene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Toluene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
o-Xylene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
m,p-Xylene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Total Xylenes	<0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Isopropylbenzene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
n-propylbenzene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
p-Isopropyltoluene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1,2,4-Trimethylbenzene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
1.3.5-Trimethylbenzene	<0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
n-Butyl Benzene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
sec-Butyl Benzene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Naphthalene	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B
Methy tert-butyl ether	< 0.20	mg/kg	07/24/08	23:32	Perrine	SW-846 8260B

Accredited Lab ID# Free-Col: 20-00073 Modern Erie: 25-03459

11618 COTTON ROAD **MEADVILLE, PENNSYLVANIA 16335** PHONE: (814 724-6242)

FAX: (814) 333-1466 EMAIL: service@freecol.com

Certificate Of Analysis

08/08/2008

Delivery Group ID:

2008:0007519

3 Sample(s) are included in this Delivery Group.

Company Name: Contact Name:

Delphi Energy & Engine

Mr. Rick Eisenman

100 Lexington Ave.

Rochester, NY 14606-2810

Date Received 7/24/2008 Time Received: 09:00

Delivered By: UPS

Results expressed as mg/kg are calculated on a received weight basis.

Supplemental Report Revision with Addition of Volatile Tests and Results on 08/08/08 to Report 2008:0007519-1,2 and 3 original print date of 7/31/08.

Game Many

CHAIN-OF-CUSTODY RECORD

W.O. #

Matrix	X	
Sample Date/Time SweSond w CW=Sond w SweSurface w Www.wasae w Www.wasae w Pa-Producing w Pa-Producing w Other (specify)	Hard WW Help Commence C	FON L SON L GOE AGE (AM) detekt 9: 90% AGE (AM) dete
74-6) 7/21/08 1500	×	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 (800) 7 12 08 13.0	*	- 2
1. (6-9) 1 pages 1200	X	2
PRESERVATIVE (CI - HCI, M=Methanol, N - HNO3, S - HZSO4, Na - NaOH, O - Other) CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, T-Teflon, O-Other) RELINQUISHED BY: AFFILIATION DATE/TIME RECEIVED BY: (AFFILIATION) RELINQUISHED BY: TAFFILIATION DATE/TIME RECEIVED BY: (AFFILIATION) ACA GEOENVIRONMENTAL, INC. Labaratory Division	TURNAROUND TIME: Standard Rush Days, Approved by GZA FILE NO: ALASK NO:	LAB USE: TEMP. OF COOLER P.O. NO.
106 South Street Hopkinton, MA 01748 (781) 278-4700 FAX (508) 435-9912	PROJECT DELPHI THEIMS TO LOCATION LOCKPOIL+ DY COLLECTOR(S) Jen. Devich	SACINITY SHEET 1 OF 1