RECEIVED NYSDEC - REGION 9

JUN 0 3 2010

FOIL
REL ____UNREL

GM COMPONENTS
HOLDINGDS, LLC
200 UPPER MOUNTAIN ROAD
LOCKPORT, NEW YORK
BUILDING 10
2009 SVE/SSD OPERATION &
MONITORING REPORT

PREPARED FOR:

New York State Department of Environmental Conservation

PREPARED BY:

GZA GeoEnvironmental of New York Buffalo, New York

May 2010 File No. 21.0056546.00

TABLE OF CONTENTS

	ON AND BACKGROUND
2.0 SOIL VAPOR 2.1 SVE/SSD SYS	EXTRACTION SYSTEM
3.0 OPERATION	AND MONITORING
4.1 SYSTEM E	ALUATION AND CONCLUSIONS
5.0 PROPOSED 2	2010 ACTIVITIES
6.0 CERTIFICA	ΓΙΟΝ
TABLES	
TABLE 1	SVE/SSD SYSTEM MONITORING SUMMARY
TABLE 2	SUMMARY OF AIR SAMPLE REULTS
FIGURES	
FIGURE 1	SITE PLAN
FIGURE 2	SVE/SSD SYSTEM LAYOUT
FIGURE 3	SVE/SSD SYSTEM PREOCESS & INSTRUMENTATION DIAGRAM
FIGURE 4	BUILDING 10 SVE SYSTEM PERFORMANCE MARCH 2009 – APRIL 2010
APPENDICES	
APPENDIX A	PCE MASS CALCULATIONS
APPENDIX B	MONITORING FORMS (JUNE 2009 – APRIL 2010)
APPENDIX C	ANALYTICAL DATA

1.0 INTRODUCTION AND BACKGROUND

On behalf of GM Components Holdings, LLC (GMCH), GZA GeoEnvironmental of New York (GZA) has prepared this Annual Soil Vapor Extraction (SVE) and Sub-slab Depressurization (SSD) System Monitoring Report for the extraction and treatment of soil vapor from a portion of Building 10 (Figure 1). Building 10 is part of the GMCH Lockport Facility located at 200 Upper Mountain Road, Lockport, New York. GMHC purchased the facility from Delphi Automotive systems LLC (Delphi) on October 6, 2009.

The SVE/SSD System was installed by Delphi in the northern portion of Building 10 to address concerns related to soil impacts and consequent vapor intrusion concerns associated with subsurface contamination, primarily tetrachloroethene (PCE) identified in the Building 10 Focused Environmental Assessment¹ (Bldg 10 FEA) which Delphi submitted to the New York State Department of Environmental Conservation (NYSDEC) in August 2007.

The SVE/SSD System was designed and installed based on the SVE Pilot Test Summary and SVE System Design Report² (SVE Design Report), which was also submitted by Delphi to NYSDEC in November 2007.

Delphi submitted a SVE/SSD System Installation Document³ and an Operation, Maintenance & Monitoring (OM&M) Plan⁴ to NYSDEC in July 2009. Delphi initiated operation of the SVE/SSD system in March 2009. The OM&M Plan identifies that a SVE/SSD System operation report will be prepared annually and submitted in May of each calendar year. This report is intended to satisfy the reporting requirements.

This SVE/SSD System Operation Report, which will be referred to as the "2009 Operation & Monitoring Report," covers the monitoring period from March 2009 through April 2010 and provides monitoring data, SVE operational information, conclusions regarding overall system effectiveness, recommendations for modifications to the SVE/SSD system, as appropriate.

1.1 NATURE AND EXTENT OF SUBSURFACE CONTAMINATION

The subsurface investigation work completed as part of the Bldg 10 FEA and SVE Design Report identified an approximately 14,000 square foot area with detected PCE concentrations in soil above 300 ppm (the Part 375 Industrial Soil Cleanup Objective (ISCO)) as shown on Figure 2. Based on this area, the average PCE concentration in the soil (360 ppm), and the depth of the unsaturated zone (about 6.5 feet below floor

¹ "Focused Environmental Assessment, Building 10, Lockport, New York" dated August 27, 2007.

² "Soil Vapor Extraction (SVE) Pilot Test Summary and SVE System Design Report, Delphi Automotive, Northern Portion of Building 10, Lockport Complex, 200 upper Mountain Road, Lockport, New York" dated November 2007.

³ "SVE/SSD System, Installation Document, Delphi Automotive, Lockport, New York" dated July 2007.

⁴ "Operation, Maintenance & Monitoring Plan, SVE/SSD System, GM Components Holdings, LLC, Lockport, New York" dated March 2010.

grade), it has been estimated that approximately 3,600 pounds of PCE is present in the zone being treated (see Appendix A for calculations). This mass of PCE will be used when evaluating the effectiveness of the SVE/SSD System as discussed in Section 4.0.

2.0 SOIL VAPOR EXTRACTION SYSTEM

This section provides a general description of the SVE system and adjustments made during the reporting period.

2.1 SVE/SSD SYSTEM OVERVIEW

There are two subsurface components to the SVE/SSD system operating in Building 10: a vertical well SVE system and a horizontal perforated pipe SSD system (see Figure 2).

- The vertical well SVE system consists of 17, 4-inch diameter vertical extraction wells (see Figure 2). The 17 extraction wells were installed using rotary drilling methods and are constructed of 4-inch diameter flush coupled polyvinyl chloride (PVC) riser and screen. Depth of the wells ranges from about 5.5 to 7 feet below ground surface (bgs) with the screened portion of the wells ranging from about 3.5 to 5-foot in length and consisting of #10 machine slotted PVC pipe. The annulus space around the well screen was backfilled with a #00 sand pack and an approximate 2-foot thick layer of bentonite was placed above the sand filter. Three trenches were excavated to an approximate depth of 2 feet bgs through the concrete slab-on-grade, subbase and soil for installation of the piping that connects the extraction wells to the manifold located within the SVE shed. The trenches were backfilled with pea stone to approximately 6 to 8-inches below the concrete slab.
- The horizontal piping SSD piping was installed in the upper portion of the pea stone in the SVE manifold trenches. The subsurface SSD system piping consists of 2-inch diameter #10 machine slotted PVC well screen lengths, connected with PVC couplers, and covered with a fabric sleeve (see Figure 2). The three lengths, called sub-slab (SS) legs 1, 2 and 3 are connected to the manifold inside the SVE shed via 1.5-inch diameter HDPE piping.

The trenches were topped with approximately 6-inches of crushed stone, compacted and covered with concrete to meet the existing slab-on-grade. Cracks and seams in the existing concrete floor were filled using a self-leveling polyurethane caulk.

Additional SVE/SSD system construction details are provided in the Installation Document referenced above. The system is designed to operate continuously at a consistent vacuum and flow rate to remove soil vapor from the impacted area.

The SVE/SSD System's main above ground components consist of a moisture separator, air filter, positive displacement blower, heat exchanger and two vapor phase granular activated carbon vessels each containing approximately 1,800 pounds of

granular activated carbon. The entire system is skid mounted, with vacuum, temperature, pressure and flow instrumentation, and is operated through a control panel. Figure 3 shows the process and instrumentation diagram for the SVE/SSD System.

2.2 SVE SYSTEM ADJUSTMENTS

No significant SVE system adjustments were made during the reporting period. However, on April 17, 2009 and February 8, 2010 the system was balanced in an attempt to more evenly distribute the vacuum and extraction air flow between the 17 extraction wells. This was done in general accordance with Section 3.4.1 of the OM&M Plan.

The 17 SVE wells do not have similar air flow capacities (i.e., vacuum – flow relationship). These varying air flow capacities are likely due to heterogeneities in the subsurface soils and the presence of subsurface features (i.e., piping, manholes, etc.). During the two monitoring events (April 17, 2009 and February 8, 2010), the air flow of the 17 extraction wells (see Figure 2 for locations) were measured using a velocity meter and compared to each other. We have categorized the wells into the following three categories: good (highest air velocities, typically greater than 20 cfm), fair (middle air velocities, between 10 and 20 cfm) and low (lowest air velocities, less than 10 cfm). Based on the February 8, 2010 measurements, the EWs fall into the following categories.

Good: EW-4, -5, -6, -7, and -8

Fair: EW-1, -2, -12, -13, -15, -16 and -17.

Low: EW-3, -9, -10, -11 and -14.

The measurements collected from the 12 extraction wells identified as Good or Fair were used to establish an average flow. The individual extraction well flow control valves were then adjusted to more closely meet the calculated average on a well specific basis. The air flow rates in the SVE system are interrelated, therefore, adjusting the flow rate at one well location has an effect on vacuum and flow rate at other locations. The five wells identified as Low were not used in calculating the average and in making adjustments since these adjustments to the valves for these wells have little effect on the overall air flow or vacuum of the SVE system.

3.0 OPERATION AND MONITORING

This section discusses the operation and monitoring activities performed for the SVE/SSD system during the current reporting period. The system startup began under Delphi on March 2, 2009. The system has generally been running continuously since March 3, 2009. Table 1 is a breakdown of the monitoring activities completed.

A GZA operator monitored the SVE/SSD system generally on a weekly basis from March 2 through May 8, 2009; bi-weekly from May 8, 2009 through June 25, 2009; monthly in July 2009 and August 2009. After the transition associated with the sale from Delphi to GMCH, a GZA operator continued to perform monitoring from

February 2010 through April 2010. No monitoring was done in September 2009 through January 2010.

Monitoring included the collection of: 1) extracted vapor samples from the treatment system influent (Pre-Carbon), midpoint (Mid-Carbon) and effluent (Post-Carbon) to assess system performance and 2) system readings to measure the approximate system flow rates. See Table 1 for the SVE/SSD System Monitoring Summary.

Routine Monitoring Forms were developed and used to document operation and monitoring events for the SVE/SSD system from June 2009 through April 2010 (see Appendix B). Prior to June 2009, information was documented by others means (i.e., field books and note pad), and are not included in Appendix B.

The operator also monitored water accumulation in the moisture separator during the reporting period. Water accumulation generally occurred during the first month of system operation. The water was transferred via the system transfer pump from the moisture separator to 55 gallon drums. The drums were discharged by Delphi (prior to October 2009) and GMCH (after October 2009) to the City of Lockport sanitary sewer, with approval from the City of Lockport. Approximately 110 gallons of water were collected and disposed of during this reporting period.

Since the start of the system monitoring, four types of extracted vapor monitoring samples have been collected to assess the system performance, operating conditions and contaminant removal rate. They are as follows.

- 1. Tedlar bag samples for field screening (Field Screening Sample);
- 2. Summa canister air samples for TO-15 laboratory analysis (Summa);
- 3. Colorimetric Detector tubes for PCE (Detector Tube); and
- 4. Tedlar bag samples for Gas Chromatograph analysis (GC Sample).

Field Screening Samples have generally been collected (by GZA) during each monitoring event (see Table 1) and were analyzed for total VOCs using a photoionization detector (PID) equipped with a 10.6 eV lamp⁵. The PID was calibrated using 100 parts per million by volume (ppmv) of isobutylene. Based on information provided by Rae Systems (the manufacturer of the PID used to perform the field screening), isobutylene has a response factor of 1.0, while, PCE has a response factor of 0.57⁶. Since PCE is the primary compound of concern, the readings were adjusted to reflect the PCE response factor.

Summa samples were collected by GZA from the Pre-Carbon, Mid-Carbon and Post-Carbon sampling locations on two occasions, March 13, 2009 and April 9, 2009, and delivered to Con-Test Laboratory (East Longmeadow, Massachusetts) and Centek Laboratory (Syracuse, New York), respectively. Samples were analyzed for volatile

⁵ PID readings were obtained by collecting soil vapor samples in Tedlar® bags. Prior to sampling, the bags were purged with the same soil vapor as was being sampled for analysis using a dedicated Tedlar bag for the respective sampling location.

⁶ Rae Systems Inc., Technical Note TN-106 "Correction Factors, Ionization Energies and Calibration Characteristics" Revised December 2007.

organic compounds (VOCs) using Environmental Protection Agency (EPA) Method TO-15. The Summa regulators were set to collect samples over a 5 minute period from the three sampling locations. The analytical results from the two sampling events are shown on Table 1 (Total VOCs) and Table 2 (Summary of VOCs Detected). The laboratory analytical reports are included in Appendix C. Table 2 also contains the Field Screening Sample and Detector Tube readings for the corresponding monitoring events.

GC Samples were collected by GZA for screening with a gas chromatograph at the Haley & Aldrich office in Rochester, New York, for the February, March and April 2010 monitoring events. The total VOC and PCE concentrations detected for these monitoring events are included on Table 1 with a summary table of the data included in Appendix C.

Detector Tube readings were collected by Delphi prior to October 2009 and by GMCH after October 2009 during some monitoring events since startup, as shown on Table 1. Detector Tube readings were collected directly from the air stream of the three sampling locations after opening the valve at the respective locations. The Detector Tube results were also used to make field decisions regarding carbon breakthrough on the first carbon vessel.

GZA has evaluated these results to assess the mass of PCE extracted by the SVE/SSD system as well as to assess the efficiency of the carbon treatment system. In performing this evaluation, we have identified inconsistencies between the various data that was collected and have made judgments with respect to the most appropriate data to use in these calculations. The following describes our evaluation.

The Pre-Carbon Summa air sample results from two sampling events do not appear to correlate well with the Field Screening and Detector Tube readings. The total VOC concentrations detected in the two Summa Pre-Carbon samples of 2.9 ppmv (March 13, 2009) and 3.8 ppmv (April 9, 2009) are an order of magnitude lower than the Field Screening and Detector Tubes results for those days (see Table 1). There is, however, reasonably good correlation for the Mid-Carbon Summa and Post-Carbon Summa sample results as compared to the Field Screening and Detector Tube results taken on those same days. The GC Samples collected in February 2010, March 2010 and April 2010 that were analyzed using a gas chromatograph, discussed later in this section, reported total VOCs and PCE concentrations 3 times the Summa samples which were collected about 1 year earlier (See Table 1). Since it is highly unlikely that VOC concentrations would increase after one year of continuous SVE and since, as indicated below, the other data indicates an expected exponential decay in concentrations, we suspect that the Pre-Carbon Summa data collected in 2009 underestimates the actual concentrations at that time⁷. Therefore, the Pre-Carbon Summa data have not been used in the assessment of contaminant removal rates.

5

⁷ Though we are uncertain about the reasons that the Pre-Carbon Summa results are low, possible causes include the sampling methodologies used (sampling tube to Summa intake valve may not have been properly positioned in the sampling port), moisture in the system (the SVE/SSD system was generating

Because the correlation between the other three data sets (i.e., the Field Screening Samples, Detector Tubes and GC Samples) collected in 2010, is within a reasonable range of consistency, these data has been used in the assessment of contaminant removal rates.

Detector Tube readings in six of the seven monitoring events show good correlation with the Field Screening Samples and/or GC Sample results. Therefore, the Detector Tube results are considered a good indicator for assessing carbon breakthrough. The Field Screening Sample results, due to the amount of data collected, have been used to assess PCE contaminant removal mass rates.

The following rationale was used to estimate the mass removal rates. The five monitoring events for which speciation data are available (i.e., when either Summa⁸ or GC Pre-Carbon Samples were collected - 3/13/09, 4/9/09, 2/8/10, 3/16/10 and 4/23/10) were evaluated to estimate what percentage the total VOC concentrations detected was due to PCE. From these five events, PCE was determined to be 55%, 84%, 80%, 82% and 78%, respectively, of the total concentration with an average of 75%. Therefore, the Pre-Carbon Adjusted Field Screening Results were adjusted to 75% of the total as shown in 3rd last column of Table 1 to reflect the estimated concentration of PCE.

These estimated PCE concentrations (average between the monitoring event) were used along with the system average flow rates (average between the monitoring events) and the system operation time to estimate the PCE mass removal between monitoring events (2nd last column), the PCE mass removal per day (last column) and the total PCE mass removal since the startup (lower right hand corner). We estimate that approximately 1,340 pounds of PCE have been removed since March 3, 2009. This is approximately 37% of the total mass of PCE (3,600 pounds) estimated to be present in the subsurface, as discussed in Section 1.0.

Figure 4 is a graph of the Adjusted Pre-Carbon Field Screening Sample results versus run time of the SVE/SSD system operation in days. This graph depicts a typical scenario of diminishing returns for the operation of a SVE system over time.

4.0 SYSTEM EVALUATION AND CONCLUSIONS

An evaluation of, and conclusions regarding, SVE system operation during the reporting period are presented below.

water at the time of the two sampling events) and higher system flow rate relative to the flow rate of the regulator.

⁸ Note though we believe the Pre-Carbon Summa data may be biased low, our evaluation of the data indicates the relative concentrations of the detected compounds in these samples is representative.

4.1 SYSTEM EVALUATION

The SVE Design Report recommended that the SVE system be designed to be capable of extracting approximately 250 SCFM at an applied wellhead vacuum of 10" Hg. Laboratory data collected during the pilot test (total VOC concentrations of up to approximately 420 to 3,900 ppm during the pilot test) translate to an initial VOC mass flux rate for the system of approximately 9 to 85 pounds per day, assuming 250 SCFM. This VOC mass flux rate was expected to decrease rapidly during SVE system operation.

Operation and monitoring data collected, as shown on Table 1, indicates that the system has operated as designed. Initial flow rates (March 2 and 3, 2009) were 125 to 150 SCFM, which were below the design capabilities and was likely due to the soil moisture (initial moisture content of about 18 to 20% (SVE Design Report)) and elevated water table due to the high initial operating vacuum of the system. However, once the soil began to "dry out", the system operating vacuum has dropped off, system flow rate has increased, and water has not been observed in the moisture separator since April 2009. The SVE system generally operated at steady state condition with an approximate 3" Hg vacuum which yielded a SVE/SSD system average air flow rate of approximately 295 SCFM.

Field Screening Sample results from the PID were used to along with the operating hours and SVE flow rate to assess the PCE mass removal for this monitoring period. We estimate, as shown on Table 1, that approximately 1,340 pounds of PCE has been removed from the subsurface since the start of the system. The initial PCE removal rates for March 2009 ranged from about 55 pounds per day to 7 pounds per day and have decreased steadily over time. The estimated mass removal rate is currently less than 1 pound per day.

To date, four carbon vessels, each containing approximately 1,800 pounds of GAC have been sent to Siemens Water Technology Corporation (Siemens) in Rochester, Pennsylvania for reactivation. The efficiency removal rate of GAC for PCE removal from a dry air stream can about 10 to 15% by weight. Therefore, the carbon vessels used each can absorb about 180 to 270 pounds of PCE, before reaching saturation and break through begins to occur.

4.2 CONCLUSIONS

The SVE/SSD system generally operated on a continuous basis during the reporting period, and is effectively extracting soil vapor from the remedial area consistent with the design parameters established in the 2007 SVE Design Report. To date, approximately 1,340 pounds of PCE (the primary contaminant of concern), have been extracted from the subsurface. It has been estimated that approximately 3,600 pounds of PCE are present in the subsurface soil in the remedial zone. Therefore, about 37% of the PCE contamination has been removed.

The mass removal rate since the startup has decreased to less than 1 pound per day. The PCE Field Screening results versus time depicted on Figure 4 indicate that asymptotic

removal rates have been achieved under current operating conditions. Figure 4 also depicts the cumulative mass of PCE removed in pounds.

As a result, GZA is recommending changing the current operating conditions of the system by shutting down the extraction wells which do not produce significant air flow (EW-3, EW-9, EW-10 and EW-11). This will allow the system to direct the available extraction system capacity on the wells that are providing the greatest flow. If an increase in the mass removal is not observed in the first 2 months after the change is implemented, GZA recommends cycling the system on and off for a period of time (e.g., shutting the system down for one month and then turning the system on for one month). The actual cycling periods employed will be based on Field Screening Sample and GC Sample results. If, after multiple operating parameter adjustments are made to the system and an increase in PCE mass removal are not observed, GMCH will contact NYSDEC to discuss the feasibility of system operation and other potential options.

5.0 PROPOSED 2010 ACTIVITIES

The operation of the SVE/SSD system will be altered as discussed in Section 4.2 to improve removal efficiency. GZA will continue to perform monthly monitoring of the system and carbon vessel change outs will be scheduled as necessary. GZA will collect additional monitoring data when the system operation is altered (i.e., shut down of extraction wells or cycling of the system) to assess the effect of the changes.

In the Summer 2010, GMCH expects to begin the Brownfield Cleanup Program Remedial Investigation of Building 10 (Site ID #C932140). At that time, as part of the BCP investigation, two indoor air samples will be collected to assess the vapor intrusion concern identified as part of the Bldg 10 FEA. Additionally, six soil probes will be completed within the footprint of the SVE/SSD system to assess subsurface soil conditions and install vacuum monitoring points to assess vacuum distribution. This data along with monthly monitoring data will be used to further assess the system performance and make decisions on operating parameters. The next SVE/SSD Annual Monitoring Report is scheduled to be submitted in May 2011.

6.0 CERTIFICATION

I certify that the following statements are true related to the SVE/SSD system installed in the northern portion of Building 10:

- The operation and monitoring of the SVE/SSD system, to confirm the effectiveness of the SVE/SSD System, was performed under my direction;
- The operation of the SVE/SSD system has generally been consistent from the date it was put in place;
- No significant event, as monitored by GZA, has occurred that would impair the ability of the SVE/SSD System to protect the public health and environment;

- Access to the SVE/SSD system will continue to be provided to the Department (with valid Safety Protocol Program Card) to evaluate the SVE/SSD System remedy, including access to evaluate the continued maintenance of this system;
- The SVE/SSD system is performing as designed and is effective;
- To the best of my knowledge and belief, the work and conclusions described in this report are in accordance with generally accepted engineering practices; and
- The information presented in this report is accurate and complete.

I certify⁹ that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Bart A. Klettke, P.E., of GZA GeoEnvironmental of New York, am certifying as a GMCH Representative.

Printed Name

Signature

5-28-10

⁹ Certify means to state or declare a professional opinion.

TABLE 1

SVE/SSD MONITORING SUMMARY

2009 ANNUAL SVE/SSD SYSTEM MONITORING REPORT BUILDING 10 SVE/SSD SYTEM GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

DATE	RUN TIME	# OF DAYS BETWEEN READINGS	SYSTEM FLOW RATE	OPERATING VACUUM	PRECARBO	ON MONIT	ORING POINT	MID-CARE	BON MONI	TORING POINT	POST-CARI	BON MONI	ITORING POINT	Estimated PCE Concentrations from Field Screening Results	Pound of PCE Removed Since Previous Measurement	PCE Removed in pounds per days
	hours	DAYS	SCFM	in Hg	Adjusted Field Screening Results ppmv	Detector Tube ppm	Total VOCs from Lab Analysis or GC Screen Total VOC / PCE Conc. ppmv	Adjusted Field Screening Results ppmv	Detector Tube ppm	Total VOCs from Lab Analysis or GC Screen Total VOC / PCE Conc. ppmv	Adjusted Field Screening Results ppmv	Detector Tube ppm	Total VOCs from Lab Analysis or GC Screen Total VOC / PCE Conc. ppmv	See Note 1 ppm	See Note 9 pounds	pounds
3/2/2009	4		125	12.5	143									107		
3/3/2009	30	1.1	150	11	855			0.4			0.4			641	34	31.4
3/6/2009	98	2.8	280	4.5	257			0.9			0.5			192	155	54.6
3/9/2009	168	2.9	300	5	54			0.3			0.3			41	60	20.6
3/13/2009	252	3.5	325	4	48	15	2.9 / 1.6 ²	0.9		1.3 / 0.003 1	0.5		1.6 / 0.003 1	36	58	16.6
3/20/2009	432	7.5	325	3.5	39			1.1			0.6			29	49	6.5
3/27/2009	529	4.0	270	8.5	114			1.3			0.3			86	42	10.4
3/30/2009	576		300	1.5				0.0								
4/9/2009	766	9.9	320	2.75	29	19	3.8 / 3.2 3	0.6	ND	0.17 / 0.004 ²	1.1		0.12 / 0.001 2	21	100	10.1
4/17/2009	958	8.0	315	3	47			0.7			0.5			35	44	5.5
4/27/2009	1,203	10.2	330	4.5	23			0.5			0.5			17	52	5.1
5/8/2009	1440	9.9	315	5	26			0.6			0.2			20	36	3.6
5/14/2009						25		0.0	0.6							
5/29/2009	1,945	21.0	280	3	30			7.4	5.5 ³		0.4			22	80	3.8
6/12/2009	2,280	14.0	350	3	22	25 4		0.3			0.2			16	52	3.7
6/25/2009	2,594	13.1	330	3	23			0.9			0.5			18	46	3.5
7/10/2009	2,953	15.0	340	3.25	33			1.7			0.3			25	65	4.3
8/3/2009	3,528	24.0	310	3	19			10.8	15		1.1	0.5		15	93	3.9
2/8/2010	8,064	189.0	285	2.5	5	6	11.6 / 7.1	2.9	5	6 / 5.9	0.9	1.25	1.5 1.3	4	315	1.7
3/16/2010	8,928	36.0	335	4	6	7	9.8 / 8.0	2.9	7.5	6.7 / 5.6	0.3	ND	0.9 / ND	4	28	0.8
4/23/2010	9,840	38.0	310	3	5	7	9.2 / 7.2	2.4	5	6.0 / 5.4	0.3	ND	ND/ND	3	30	0.8

1337

pounds of PCE removed

1 - Estimated PCE concentrations were determined assuming 75% of total VOCs was related to PCE concentrations and using a 0.57 correction factor on the PID reading

2 - Laboratory analysis performed by Con-Test Lasboratory

- 3 Laboratory analysis performed by Centek Laboratory
- 4 Detector tube measurement collected on 5/28/2009.
- 5 Detector tube measurement collected on 6/15/2009.

TABLE 2 SUMMARY OF AIR SAMPLE RESULTS

BUILDING 10 SVE/SSD SYSTEM GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

March 13, 2009 TO-15 Data from Con-Test Laboratory & Detector Tube Readings

Compounds	PRE CARBON	MID CARBON	POST CARBON
Volatile Organic Compounds via L	JSEPA Method T0-15	(ppbv)	
Acetone	140	740	910
Benzene	1.8	1.4	1.5
2-Butanone (MEK)	1.7	1.4	1.2
Chloroform	1.7		
Cyclohexane	6.7	2.6	2.6
1,1-Dichloroethylene	13	1.3	
cis-1,2-Dichloroethylene	290	2.9	
Ethanol	340	200	220
Ethylbenzene		7	8
4-Ethyl Toluene		2.8	3.2
n-Heptane	11	3.9	4.3
Hexane	110	190	230
Isopropanol	8.4	6.9	7.5
Methylene Chloride	3.5	1.7	
Tetrachloroethylene	1,600	2.7	2.9
Tetrahydrofuran	1.3		
Toluene	38	120	140
1,1,2-Trichloroethane	1.1		
Trichloroethylene	330	7.6	
1,2,4-Trimethylbenzene		4.4	4.8
1,3,5-Trimethylbenzene		2	2.3
m/p-Xylene		22	26
o-Xylene		6.3	7.1
Total VOC (ppbv)	2,917	1,327	1,571
OVM field screening results (ppb)	85,000	1,500	800
Detector Tubes (ppm)	15	0	NM

April 9, 2009 TO-15 Data from Centek Laboratory & Detector Tube Readings

Compounds	PRE CARBON	MID CARBON	POST CARBON
Volatile Organic Compounds via U	SEPA Method T0-15	(ppbv)	
Acetone	210	68	59
Benzene	0.86	0.25	0.2
2-Butanone (MEK)		13	
Chloroform	1.3	0.11	
Cyclohexane	7.3	1.5	
1,1-Dichloroethylene	3.8	21	
cis-1,2-Dichloroethylene	100	1.1	0.12
trans-1,2-dichloroethylene	8.4	0.38	
Ethylbenzene	0.27	0.15	0.13
4-Ethyl Toluene	0.11		
n-Heptane	5.8	2	1.3
Hexane	92	17	20
Methylene Chloride	5	6.1	15
Tetrachloroethylene	3,200	3.7	0.88
Toluene		33	23
1,1,2-Trichloroethane	0.54		
Trichloroethylene	97	0.25	0.15
1,2,4-Trimethylbenzene	0.25	0.14	
1,3,5-Trimethylbenzene	0.1		
m/p-Xylene	1.6	0.41	0.29
o-Xylene	0.41	0.12	
Vinyl Chloride	0.21	0.21	0.21
Styrene	0.14		
Methyl isobutyl ketone		0.25	
Ispropyl alcohol	21	14	11
Freon 11	0.26	0.56	0.13
Freon 12	0.46	0.44	0.5
Ethyl Acetate	2.5	1.7	0.97
Chloromethane	0.4	0.33	0.43
Carbon Disulfide	0.34	0.64	0.15
1,4-Dichlorobenzene	0.39	0.3	0.28
Total VOC (ppbv)	3,803	168	120
OVM field screening results (ppb)	50,000	1,000	2,000
Detector Tubes (ppm)	19	0	NM

Notes: 1) Detector Tube readings are for tetracloroethylene concentrations.

- 2) NM not measured.
- 3) Blank indicates compound was detected below method detection limits.
- 4) ppbv pars per billion by volume.
- 5) ppb parts per billion.
- 6) ppm parts per million.

FIGURES

© 2010 GZA GeoEnvironmental of New York

APPENDIX A PCE MASS CALCULATIONS

the SVE area tootprint as tollowsw PCE conc SP-1. 0.2 ft: 72 ppm SP-Z: Z-4ft: 5 ppm 2-4; 119 4-6; 177 | SP-3 Z-4ft. 770 ppm 6-8 d: 506 d SP-7: 4-6ft 297 ppm SP-4: 6-7.1ft 447 ppm SP-14: 2-4ft Z5 ppm 6-8 ft: 105 ppm SP-14: 2-4ft Z5 ppm 6-8 ft: 105 ppm SP-20 0-2ft Z8 ppm 8-9 ft: 4 ppm SP-20 0-2ft Z8 ppm 2-4 ft: 1075 ppm 4-6 ft: 1070 ppm

Ave PCE Conc: 359 ppm

Tay 36D ppm

		Page No. (\
	1 N I OZA C - Dunning managed 1	1
	GZA GeoEnvironmental of New York Engineers and Scientists	
	Project CAMAC 7512 D SVEISSD	File No. 21.0056546.0
	Location Lockboart NY L	By ilo.
	Subject Music of PiE in Universal Soil Checked 5/6/10	By DJT
	Based on Revised	Ву
1		
3	Mass of PCE in unsaturated soil	
4	TOTAL STATE OF THE SOLL	78 150
5	addressed w/ SVE System in TSId	a 1()
6	3/2/200	7 10
7		
8	· Area to be addressed is ~14,000 sq. ft.	
9	\ \	- (1
10	· Assume Unsaturated soil thickness is 6.0 (6.5 ft to intertable - 0.5 ft for concentent)) [+ .
11	(6.5 to to water table - 0.5 to the connected to	٠(١١)
12 13	" Assume 360 ppm PCE average soil con	contration
14	Assume 300 ppm of an amende soll con	der (145 cort.
15	· Assure 10°10 et velune contains utili	ties
16		
17	\sim 01 \sim 03	(, , 3
18	14,000 sqft. × 6ft = 84,000 ft3 3.111 yd33 × 0.90 = 2,800 d(w)	(3,111, Vds)
19	3/1	1) 11(.)
20	2. (11 Ag3, x 0°40 = 5'8000 cm)	· Wont utilities)
21		
23	2,800 yds * 1.6 tons/yd3 = 4,480	1:02 2000
24	21000 yas " 1.0 text 170 - 1, 100	(00/2 21 24/1
25		,
26	4,480 tons * 1,016 kg/ton = 4,55	1.680 Kg
27		
28	360 mg/kg * 4,551,680 kg = 1,638.	1 A O
29	>60 mg/c * 4,551,680 kg = 1,650,	604,800 mg
30		پ
32		
33	1.638 604 800 mg * 2.2046×10 = 3	S.613 sonds
34	I come toward	
35	1,638,604,800 mg * 2.2046×10-6 = 3 (convert mg to pounds)	7
36	· ·	
37	C . 7	1-00 11-2
30) Say (>,	000 103
40	Say 3,	

	Page No. 1
	GZA GeoEnvironmental
	of New York Engineers and Scientists
	Project GWCH Bldg 10 SVE(SSD System File No. 21.2056546.5
	Location Lockment My Date 5/5/10 By clo
	Subject PiE Reunal Rate Calc. Checked 5/6/19 By DJT Based on Revised By
1	Based on Revised By
2	
3	Pands of PCE Poursed by SIE Sys for Time David
4	Pands of PCE Removed by SVE Sys for Time Period 3/6/09 - 3/9/09.
5	3/6/09 -> 3/9/09.
6	
7	2 1 1 2 2 9 1
8	1 Days between Kendings. C. 1 days.
10	1.51 [] [] [] [] [] [] [] [] [] [
10 11	Days between Readings. Z. 9 days. Ave System Flow between Readings. (300 setut 280 infm) - Z
12	290 setu
13	
14	Esteurte Drevage PCE Conc. between Readings. 41 ppmv+ 192 ppmv
15	3
16	7_
17	
18	= Ill ppuni
19 20	
21	
22	
23	2.9 day: * 290 sofu * 24 hrs * 60 min
24	2.9 day: * 290 sofm * 24 hrs * 60 min.
25	······································
26	=1,211,040 ft3
27 28	3
29	1,211,040 ft * 0.02832 = 34,297 m³ (convert ft) to m³)
30	/ Convert fl?
31	to m3)
32	1
33	(17 ppmv * 6.78 = 793 mg/m³)
34 35	(invest ppmv)
36	(to wyw.)
37	
38	34,297 m3 * 793 mg/m3 = 27,197,521 mg
39	- J(W)
40	(27,1983)
41	
42	61,000 = 100000 = 10000000000000000000000
43	27, MB 3 * 0.002205 = 60 pounds PCE KEMONED
45	
	L

APPENDIX B MONITORNG FORMS (JUNE 2009 – APRIL 2010)

OPERATION AND MAINTENANCE GUIDANCE DOCUMENT SVE/SSD SYSTEM DELPHI LOCKPORT, NEW YORK

LICE AND ADDRESS OF THE PARTY O	JURPORI, NEW YORK					
Name (Eggs) into	Time Off-Site 1947					
Date 6/25/03	SVE Blower Run Time: 2593 19 hours VDF (30, 7) hertz					
SYSTEM STATUS						
SVE System Operating: YES NO	If no:					
Alarm lights off. (YES) NO	If no.					
Autodialer Alarm On: YES NO	If Yes:					
Postic	on of Swing Panel HOA Switches:					
Control Power Switch ON OFF	SVE Blower Switch HAND OFF AUTO					
M/S Effluent Pump Switch HAND (OFF) AUTO	Heat Exchanger Switch HAND OFF AUTO					
Heat Exchanger Operating (YES) NO	If no:					
SVE System appear to be operating yes NO properly?	If no:					
Moisture Separator Tank Level: (Empty) 1/4 Full	1/2 Full 3/4 Full Full Volume Tranfered: gals					
SYSTEM MONITORING READINGS	3-1-1					
Vacuum Gauge Pre-Inline Filter	in Hg System Monitoring Notes:					
Vacuum Gauge Post-Inline Filter 3						
Temperature on Discharge Silencer \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	°F COOLEN CONTRACTOR					
Temperature after Heat Exchanger 82	of representations to have less.					
Pressure Before Heat Exchanger 36	in H ₁ O					
Pressure Magnehelic Gauge. 2,5	in H ₁ O					
Vacuum Magnehelic Gauge: > 2	in HO been to since.					
Vacuum Gauge After Manifold	in Hg					
EXTRACTION WELL VACUUM GAUGE READINGS						
EW-1. 7 5 in Hg EW-11	Vaccum Gauge Reading Notes:					
EW-2. \ \ \ \ \ \ \ \ in Hg	\ /) in Hg					
EW-3. D . S in Hg EW-13	7.5 in Hg					
EW-4 2.5 in Hg EW-14	\ 1') in Hg					
EW-5: in Hg EW-15	\ _ ') in Hg					
EW-6. 0.5 in Hg EW-16	\ \ \frac{1}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
EW-7 \ . \ in Hg	O, S in Hg					
EW-8: () in Hg SS-1	Z, 5 in H20					
EW-9 0.5 in Hg SS-2	2.D In H2O					
EW-10: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2.0 In H20					
AIR FLOW FIELD SCREENING						
Background Outside SVE Shed: NM ppm	Detector Tube Readings					
Background Inside SVE Shed. NM ppm	Pre Carbon YES NO ppm					
Pre Carbon Discharge A ppm	Mid Carbon YES NO ppm					
Mid Carbon Discharge. \ . \ \ . ppm	Post Carbon YES NO ppm					
Post Carbon Discharge:						
Additional Notes:						
the love of Mills	The Mary of the second of the					

OPERATION AND MAINTENANCE GUIDANCE DOCUMENT SVE/SSD SYSTEM

DELPHI LOCKPORT, NEW YORK

Name: Chrus Bo	101		Time	On-Site:	5		Off-Site:	1020)	-
Date: 7/10/07			SVE 8	Blower Run Tim	e: 20	1534 hor	urs VDF:	60.	D	hertz
SYSTEM STATUS										
SVE System Operating:	(YES)) NO	If no:							
Alarm lights off:	(YES)	NO	If no:							
Autodialer Alarm On:	YES	(NO)	If Yes:							
		Postic	on of Swing P	anel HOA Swit	ches:					
Control Power Switch	(ON)	OFF	SVE Blower S	Switch	HAND	OF	= ,	AUTO		
M/S Effluent Pump Switch	HAND (OFF)	AUTO	Heat Exchang	ger Switch	HAND	OFF		AUTO		
Heat Exchanger Operating	(YES)) NO	If no:							
SVE System appear to be operati properly?	ng YES	NO NO	If no:							
Moisture Separator Tank Level:	Empty	1/4 Full	1/2 Fu	ll 3/4 Ful	1	Full	Volume Tra	infered:	Ø	gals
SYSTEM MONITORING READIN	ĞS								,	
Vacuum Gauge Pre-Inline Filter:	3.7.1	2	in Hg	System Monit	oring Not	tes:				
Vacuum Gauge Post-Inline Filter	3.2	2	in Hg							
Temperature on Discharge Silenc	er 112	-	°F							
Temperature after Heat Exchange	er 80	7	°F							
Pressure After Heat Exchanger	21		in H₂O							
Pressure Before Heat Exchanger	·3°	<u>-</u>	in H₂O							
Pressure Magnehelic Gauge:	2.3	<u>-</u> ,	in H₂O							
Vacuum Magnehelic Gauge:	>2		in H ₂ O	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -						
Vacuum Gauge After Manifold:	1		in Hg							
EXTRACTION WELL VACUUM (GAUGE READI	NGS								
EW-1: 0.5	in Hg	EW-11:	1.0	in Hg	Vaccum	Gauge Read	ing Notes:			
EW-2: 1 ()	in Hg	EW-12:	1.0	in Hg						
EW-3: 075	in Hg	EW-13:	05	in Hg						
EW-4: 675	in Hg	EW-14:	1.52	in Hg						
EW-5: (. ()	in Hg	EW-15:	1.0	in Hg						
EW-6: 0 5	in Hg	EW-16:	(.0	in Hg						
EW-7: \ \ .\bullet	in Hg	EW-17:	0.5	in Hg						
EW-8: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	in Hg	SS-1	25	in H2O						
EW-9: 075	in Hg	SS-2:	2.0	in H2O						
EW-10: (· D	in Hg	SS-3:	2.0	in H2O	1					
AIR FLOW FIELD SCREENING			Today and and a second					1000000000		-
Background Outside SVE Shed:	NW	ppm				ube Readings				
Background Inside SVE Shed:	WH	ppm -		Pre Carbon	YES	(NO)	ppm			
Pre Carbon Discharge:	58	ppm -		Mid Carbon	YES	(NO)	ppm			
Mid Carbon Discharge:		ppm -		Post Carbon	YES	(NO)	ppm		:	
Post Carbon Discharge:	0.5	ppm								
Additional Notes:										

OPERATION AND MAINTENANCE GUIDANCE DOCUMENT SVE/SSD SYSTEM

DELPHI LOCKPORT, NEW YORK

Name: Chris Baron		Time	On-Site: BLD	Time Off-Site	1030
Date: 8/3/09		SVE	Blower Run Time: 3,9	528 hours	VDF: 60 hertz
SYSTEM STATUS					
SVE System Operating:	(YES) NO) If no:			
Alarm lights off:	YES NO) If no:			
Autodialer Alarm On:	YES (NO	If Yes:			
	Po	stion of Swing f	Panel HOA Switches:		
Control Power Switch ON) OF	F SVE Blower	Switch HAND	OFF	AUTO
M/S Effluent Pump Switch HAND	OFF AUT	O Heat Exchar	nger Switch HAND	OFF	(AUTO)
Heat Exchanger Operating	YES NO) If no:			
SVE System appear to be operating properly?	YES NO	If no:			
Moisture Separator Tank Level: Empty	1/4 F	full 1/2 F	ull 3/4 Full	Full Volum	ne Tranfered: gals
SYSTEM MONITORING READINGS					
Vacuum Gauge Pre-Inline Filter:	5	in Hg	System Monitoring N		1
Vacuum Gauge Post-Inline Filter	3	in Hg	Filter need:	to be change	d.
Temperature on Discharge Silencer:	125	*F	Pre-Carlson S	Sample Ports	Ball Value Small Leak.
Temperature after Heat Exchanger:	80	• F	rendeti	be changed.	Sinall Leak.
Pressure After Heat Exchanger	21	in H ₂ O	-	9	
Pressure Before Heat Exchanger	29	in H ₂ O			
Pressure Magnehelic Gauge:	2.1	in H₂O			
Vacuum Magnehelic Gauge:	>2	in H₂O	1		
Vacuum Gauge After Manifold:	1	in Hg			
EXTRACTION WELL VACUUM GAUG	E READINGS				
EW -1: 0,5 in Hg	EW-	11. \		um Gauge Reading No	
EW-2: \ in Hg	EW-	12: (in Hg	e sterm bool	uncino
EW-3: 0.75 in Hg	EW-	13: <0.5	in Hg	mid be de	r other ens
EW-4: 0 . 5 in Hg	EW-	14: 1.25	in Hg	1 11-200	ancing one after I and age out
EW-5: (in Hg	EW-	15:	in Hg	artion veice	7 200
EW-6: 0.5 in Hg	EW-	•	in Hg F	ilter chou	nd out
EW-7: in Hg	EW-	17. 0.5	1	se coupl	101
EW-8: (in Hg	SS-1		in H2O	•	
EW-9: 0.5 in Hg	SS-2		in H2O		
EW-10: \ in Hg	SS-3		in H2O		
AIR FLOW FIELD SCREENING					
Background Outside SVE Shed:	O ppm		Detecto	r Tube Readings	
Background Inside SVE Shed:). Z ppm		Pre Carbon YES	~ <u> </u>	n (file of type of the
Pre Carbon Discharge:	<u>54</u> ppm		Mid Carbon (YE		n Parallel
Mid Carbon Discharge:	9 ppm		Post Carbon (YES	S) NO 0.5 ppi	m 注题 in the
Post Carbon Discharge:	2.0 ppm		1		
Additional Notes: Carlow	Jessel 1	FT Les	_d Vessel u	eeds to be c	changed.
Charalli	eak we	1 1	top of Fer	-uCo Fitting	a ou clear
tobing f		of Versient		y Jessel F	2
	hard b	tites, a	and tight		and and
120/11/3		<u> </u>	10.100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

OPERATION AND MAINTENANCE GUIDANCE DOCUMENT

SVE/SSD SYSTEM

DELPHI LOCKPORT, NEW YORK

Name: Chris Scross Time On-Site: 1250 Time Off-Site: 1755							
Date: Z · B - \ D SVE Blower Run Time: 6,628.72 hours VDF (61) he							
SYSTEM STATUS							
SVE System Operating: (YES) NO If no:							
Alarm lights off (YES) NO If no:							
Autodialer Alarm On: YES (NO) If Yes.							
Postion of Swing Panel HOA Switches:							
Control Power Switch (ON) OFF SVE Blower Switch HAND OFF AUTO							
M/S Effluent Pump Switch HAND (OFF) AUTO Heat Exchanger Switch HAND OFF (AUTO)							
Heat Exchanger Operating (YES) NO If no:							
SVE System appear to be operating (YES) NO If no:							
Moisture Separator Tank Level: Empty 1/4 Full 1/2 Full 3/4 Full Full Volume Tranfered: ga							
SYSTEM MONITORING READINGS							
Vacuum Gauge Pre-Inline Filter 7.5 3 in Hg System Monitoring Notes: In-Live Filter uns							
Vacuum Gauge Post-Inline Filter: 2.5 3 in Hg (Wanged due to >14 Hg Readon's Temperature on Discharge Silencer 60 50 °F between Fre and Port Fitter gauges							
Temperature on Discharge Silencer 60 50 °F between Fre and Post Fitter gangers							
Transportuse offer blood Evolvenger 171 1 =75							
Pressure After Heat Exchanger 36 42 in H ₂ O Pressure Before Heat Exchanger 35 54 in H ₂ O were received.							
Pressure Before Heat Exchanger 35 54 in H2O were received.							
Pressure Magnehelic Gauge: 1.7 2. 6 in H20 Vacuum Magnehelic Gauge: 1.7 2. 5 in H20 Satterves in the list in lister were							
iivacuuiii Maunenelle Gauge. 1, 27 1 2 2 111901							
Vacuum Gauge After Manifold.							
EXTRACTION WELL VACUUM GAUGE READINGS							
EW -1 <0.5 CO.5 in Hg EW-11. <0.5 In Hg Vaccum Gauge Reading Notes:							
EW-2. & O. 5 in Hg EW-12: < 0.5 in Hg Pre and post Filter change							
EW-2. < 0.5 in Hg EW-12: < 0.5 in Hg Pre and post Filter change EW-3: < 0.5 0.5 in Hg EW-13: < 0.5 in Hg readings were recorded							
EW-4: <0 5 < 0.5 in Hg							
EW-5: <0.5 0.75 in Hg EW-15: <0.5 1 in Hg							
EW-6: 40 5 < 0 5 in Hg							
EW-7: 20 5 0.75 in Hg EW-17: 20 5 vo 5 in Hg							
EW-8: < 0 5 < 0.5 in Hg SS-1 1 2.75 in H20							
EW-9: < 0 5 < () 5 in Hg SS-2: 1 1.5 in H20							
EW-10: 60 5 in Hg SS-3:							
AIR FLOW FIELD SCREENING							
Background Outside SVE Shed: 0.3 ppm Detector Tube Readings							
Background Inside SVE Shed: ().4 ppm Pre Carbon (YES) NO 6 ppm							
Pre Carbon Discharge: Ppm Mid Carbon (FS) NO 5 ppm							
Mid Carbon Discharge: 5 , ppm Post Carbon (YES) NO 1,25 ppm							
Post Carbon Discharge. \ \ \(\(\(\(\) \) ppm							
Additional Notes:							
I to I fetting between Copen Vossel (also midde							
Link 12/ Torriber 1							
Latex (down needed for shed. (ac sweening (See affection results)							

GM LOCKPORT BLDG 10 SVE/SSD SUMMARY OF GC SCREENING RESULTS 36795-000

	2/8/2010					
Target Compound	Pre-Carbon (mg/m³)	Pre-Carbon DUP (mg/m ³)	Mid-Carbon (mg/m³)	Post-Carbon (mg/m³)		
Methane	0 013 U	00130	0 013 U	0.013 U		
Vinyl chloride	0.504	0.016 9	0 018 U	0.500		
1,1-Dichloroethene	J 032 U	0) kj U	0 036 U	0.036 U		
Methylene chloride	9 075 U	ひりつし	0 075 U.	0 975 U		
trans 1,2-Dichloroethene	3.037 U	0.037 U	0 037 iJ	0 037 U		
1,1-Dichloroethane	0.033 ป) ()	u 333 U	0 J33 U		
MTBE	0 014 U	Ú 514 U	0 014 U	0 014 U		
2-Butanone (MEK)	0 016 U		u 016 U	0.016 U		
cis 1,2-Dichloroethene	0 047 U	0.0410		0 047 U		
Chloroform	4.69	4.51	u 130 U	0 130 U		
1,1,1-Trichloroethane	0 0450		0 043 U	1		
Benzene	0 009 U	0.609.0	0.009.0			
1,2-Dichloropropane	0.027 U	1	1 527 U	n 027 U		
Trichloroethene	0.557		0.772	0 942 U		
Toluene	0 009 U	. 00% J	9 000 U	0 009 U		
Tetrachloroethene	48.1	48.3	40.4			
Chlorobenzene	CATEU	5,712,1	,410.1			
Ethylbenzene	E-106 L		1 4 5 11	. J08 U		
m/p-Xylene	1,09%		ئى ۋالىيا			
o-Xylene	0.007 U		0.007 U	 		
Unknown TPH	6.00	6.00				
Flow Rate (SCFM)	280					
Mass Rate (lb/hr)	0.063					
Mass Rate (lb/day)	1.51	<u> </u>		0.23		
Removal Efficiency (Pre to Mid)	31.3%					
Removal Efficiency (Pre to Post)	84.5%					

GC Screening Results in ppm/1 7.4 6 15

Field Screening Results 9 ppm 5.1 ppm 1.6 ppm

Detector tibe Results

For PCE. 6 ppm 5 ppm 1.25 ppm

. 2/8/10 Flow Readings Collected from industral legs of the SVE/SSD System.

		·	ι
9 10 5 4 13 4 15 6 7 13 2 1 1 12 16 17 Had SS 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	282.9 Am 1. Flow Roder board on Eys	tem Presione Googe Pol	Pre Carbon Field Sireun Result after edg. 15.5 ppn Flow Rate witer Filter Change Det & Balance Flow bossed in Pressure Graye Pitot Tibe. 347 SIFM or 315 ACFM * How Value Wide Open
	betere F. Her Land O	T	

Well Locations

>20 cfm High Flow. 4,5,6,7,8

10-20 Am Wed Flow: 1, Z, 1Z, 15, 16, 17, 13, 18

< 10 cfm Low Flow: 3,9,10,11,14

Total System Aire : 14.1 cfm Sys Average what SSD legs: 15.2 cfm Esys Ave with Low Flow (246.6/13): 19 cfm

. Frage Rendings Peror Leaving:

Monifold 1,5" Ha
Yaccom 72" H20
Pressive 2.5" H20
Pressive 3.9" Ha

Port Heat Ex Pressure 40" H2D

OPERATION AND MAINTENANCE GUIDANCE DOCUMENT SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chars Sor	υ Λ .	Time	On-Site: 80	5	Time Off-Site	1040	_
Date: 3/10/10		SVE	Blower Run Time	6.18.23,0	hours VD	F: 60.7	hertz
SYSTEM STATUS							
SVE System Operating:	(YES) NO	If no					
Alarm lights off:	(YES) NO	If no:				* In the late of t	
Autodialer Alarm On:	YES (NO)	If Yes.				The state of the s	
	Post	ion of Swing F	Panel HOA Switch	hes:			nima di mana
Control Power Switch ON) OFF	SVE Blower	Switch	HAND	OFF	(AUTO)	
M/S Effluent Pump Switch HAND	OFF AUTO	Heat Exchan	ger Switch	HAND	OFF	(AUTO)	
Heat Exchanger Operating	(YES) NO	If no:					
SVE System appear to be operating properly?	YES NO	If no:					
Moisture Separator Tank Level: Empty	1/4 Fu	1/2 Fu	ıll 3/4 Full	Full	Volume T	ranfered: 15	gals
SYSTEM MONITORING READINGS							
Vacuum Gauge Pre-Inline Filter	4.	in Hg	System Monito	oring Notes:			
Vacuum Gauge Post-Inline Filter	45	in Hg					
Temperature on Discharge Silencer	113	°F .					
Temperature after Heat Exchanger	72	°F					
Pressure After Heat Exchanger	29	in H ₂ O					
Pressure Before Heat Exchanger	36	in H ₂ O	Flow Rate Base	ed on Pressure (Gauge: 337	cfm	
Pressure Magnehelic Gauge:	2.4	in H ₂ O	Flow Rate Base	ed on Vacuum G	auge: 290	cfm	
Vacuum Magnehelic Gauge:	72	in H ₂ O					
Vacuum Gauge After Manifold:	1.5	in Hg					
EXTRACTION WELL VACUUM GAUG	E READINGS						
EW -1. ⊃ in Hg	EW-11	1	in Hg	Vaccum Gauge	Reading Notes:		
EW-2: (, Z\(\sum_{\subset}\) in Hg	EW-12	İ	in Hg				
EW-3: In Hg	EW-13	1	in Hg				
EW-4: > \ in Hg	EW-14	1.2	in Hg				
EW-5: > in Hg	EW-15		in Hg				
EW-6: > \ in Hg	EW-16	\	in Hg				
EW-7 ⁻ > \ in Hg	EW-17		in Hg				
EW-8: > in Hg	SS-1		in H2O				
EW-9: 1 2.5 in Hg	SS-2.		in H2O	- %			
EW-10: \ \ \ \ \ \ \ \ \ \ in Hg	SS-3:		in H2O				NH24
AIR FLOW FIELD SCREENING			—				
Background Outside SVE Shed:	<u>3</u> ppm		D	etector Tube Re	adings		
11	- Z ppm		Pre Carbon	YES NO	ppm		
Pre Carbon Discharge: 10,	5 ppm		Mid Carbon	(E3 NO	7.5 ppm		
Mid Carbon Discharge: 5	ppm		Post Carbon	AEB NO	<0.2 ppm		
Post Carbon Discharge:	S ppm						
Additional Notes:	-	1 ~	\sim		!	ni.	
Additional Notes: Textur large unple r sent to	i contend	real trou	- the Cer	Loon, Whi	(arlant	Kitlan	har-
1 r sent to the	14 M 7 "	analy?	·				

GAS CHROMATOGRAPHY REPORT SHEET SCREENING RESULTS DIRECT INJECT

Date of Analysis: 17-Mar-10

Operator: TJV

Client: File No: GM Lockport

36795-000

Sample Type: BLDG-10 SVE/SSD

0.500

QA/QC: DMC

			,		Cal. Ret.	Ret.	Det.	On-Col		T			Mass	Mass	%Total	
		Sample			Time	Time	Resp.	Mass	Co	nc.	Co	nc.	Rmvd	Rmvd	Mass	REMARKS
Sample	e Identification	Volume	040011	Target	(min.)	(min.)	(Area Cts.)	(ng)	-				(lb/hr)	(lb/day)	Rmvd	
		(uL)	CASRN	Compound		(min.)	(Area cis.)	0 000	NĐ	mg/m^3	ND	ppm√	0.00	0.00	0.00	
		500	74-82-8	mathane	2.350			0.000	CIN	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-01-4	vinyl chloride	3.680			0.000	ND	mg/m^3	NO	ppmV	0 00	0.00	0 00	
		500	75-35-4	1,1-dichloroethene	8.076			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	75-09-2	methylene chloride	8.364				ND		ND	Vmqq	0.00	0.00	0.00	
ID:	Pre-Carbon	500	156-60-5	trans 1,2-dichloroethene	10.970			0 000	ND	mg/m^3	ND	ppm∨	0 00	0.00	0 00	
Date:	3/16/2010	500	75-34-3	1,1-dichtoroethane	11,526			0.000		mg/m^3	ND	ppmV	0 00	0.00	0.00	
Time:		500	1634-04-4	MTBE	11.707			0 000	ND	mg/m^3			0 00	0.00	0.00	
		500	78-93-3	2-butanone (MEK)	12.537			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0 00	
		500	156-59-2	cis 1,2-dichlornethene	13.669			0 000	ND	mg/m^3	ND	ppm∨	0.00	0.00	5 40	
Temp =	°F	500	67-66-3	chloroform	14.356	14.050	2.7	1.733	3,47	mg/m^3	0.71	ppmV		0.00	0.00	
Flow =	280 SCFM	500	71-55-6	1,1,1-trichloroethane	16.454			0.000	ND	mg/m^3	ND	∨mqq	0.00			
		500	71-43-2	benzene	17.343			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	78-87-5	1,2-dichloropropane	18.875			0.000	ND	mg/m^3	ND	ppmV	0 00	0.00	- 1	
		500	79-01-6	trichloroethene	19.316	19,045	1 2	0.261	0.52	mg/m^3	0.10	ppm∨	0 00	0.01	0.81	
		500	108-88-3	loluerie	22.496			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	127-18-4	tetrachloroethene	24.419	24.162	121.5	27.096	54,19	mg/m^3	7.99	ppm∨	0.06	1.36	84.44	
		500	108-90-7	chlorobenzene	25.574			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0 00	
		500	100-41-4	ethylbenzene	26.243			0 000	ND	mg/m^3	ND	ppm∨	0.00	0 00	0.00	
		500	108-38-3/106-42-3		26,535			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	95-47-6	o-xylene	27,385			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	33-77-0	Unknown TPH			30.0	3 000	6 00	mg/m^3	1.05	ppmV	0.01	0,15	9.35	
		300	L	total volatiles			155		64.2	mg/m^3	9.8	ppmV	0.07	1.62	100.00	

Sample Identification		Sample Volume (uL) CASRN		Target Compound	Cal. Ret. Time (min.)	me Time in.) (min.)	Det. Resp. (Area Cts.)	On-Col Mass (ng)	Conc.		Conc.		Mass Rmvd (lb/hr)	Mass Rmvd (lb/day)	%Total Mass Rmvd	REMARKS
		500	74-82-8	methane	2.350			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0 00	
		500	75-01-4	vinyl chloride	3.680			0 000	ND	mg/m^3	ND	ppmV	0 00	0.00	0 00	
		500	75-35-4	1,1-dichloroethene	8 076			0.000	MD	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-09-2	methylene chloride	8.364			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
ID:	Mid-Carbon	500	156-60-5	trans 1,2-dichloroethene	10,970			0 000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0 00	
Date:	3/16/2010	500	75-34-3	1,1-dichloroethane	11.526			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Time:		500	1634-04-4	MTBE	11.707			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0 00	
		500	78-93-3	2-butanone (MEK)	12.537			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0 00	
		500	156-59-2	cis 1,2-dichloroethene	13.669			0 000	ND	mg/m^3	ND	ppmV	0.00	0.00	0 00	
Temp =	٩F	500	67-66-3	chloroform	14,356			0.000	ND	mg/m^3	ND	ppmV -	0.00	0.00	0 00	
Flow =	280 SCFM	500	71-55-6	1,1,1-trichloroethane	16.454			0.000	NO	mg/m^3	ND	ppm∨	0.00	0.00	0 00	
		500	71-43-2	benzene	17.343			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	78-87-5	1,2-dichloropropane	18.875			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0 00	
		500	79-01-6	trichloroethene	19,316	19.089	3.3	0.707	1.41	mg/m^3	0.26	ppm∨	0.00	0.04	3 19	
		500	108-88-3	toluene	22.496			0.000	ND	mg/m^3	ND	ppm∨	0.00	0,00	0.00	
		500	127-18-4	tetrachloroethene	24.419	24.200	85.0	18.958	37.92	mg/m^3	5,59	ppm∀	0.04	0.95	85 53	
		500	108-90-7	chlorobenzene	25.574			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	100-41-4	ethylbenzene	26.243			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	108-38-3/106-42-3	m/p-xylene	26,535			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0 00	
		500	95-47-6	p-xylene	27 385			0.000	NO	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500		Unknown TPH			25,0	2.500	5 00	mg/m^3	0.87	ppm∨	0.01	0.13	11 28	
			<u> </u>	total volatiles			113		44.3	mg/m^3	6.7	ppmV	0.05	1.12	100.00	

Sample					Cal. Ret.	Ret.	Det.	On-Col					Mass	Mass	%Total	
Sam	ple Identification	Volume	1	Target	Time	Time	Resp.	Mass	C	onc.	Ço	nc,	Rmvd	Rmvd	Mass	REMARKS
		(uL)	CASRN	Compound	(min.)	(min.)	(Area Cts.)	(ng)					(lb/hr)	(lb/day)	Rmvd	
		500	74-82-8	methane	2.350			0.000	ND	mg/m^3	ND	ppmV	0 00	0.00		
		500	75-01-4	vinyl chloride	3.680			0.000	ND	mg/m^3	ND	ppmV	0 00	0.00		
		500	75-35-4	1,1-dichloroethene	8.076			0.000	ND	mg/m^3	ND	ρρm∨	0 00	0.00		
		500	75-09-2	methylene chloride	8.364			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00		
ID:	Mid-Carbon (DUP)	500	156-60-5	trans 1,2-dichloroethene	10,970			0.000	NO	mg/m^3	ND	ppm∀	0.00	0.00		
Date:	3/16/2010	500	75-34-3	1,1-dichloroethane	11,526			0.000	ND	mg/m^3	ND	ppm∀	0 00			
Time:		500	1634-04-4	MTBE	11.707			0.000	NO	mg/m^3	NO	ppm∨	0 00			
		500	78-93-3	2-butanone (MEK)	12,537			0 000	ОN	mg/m^3	ND	ppm∨	0.00	0.00		
		500	156-59-2	cis 1,2-dichloroethene	13 669			0 000	ND	mg/m^3	ND	ppm∨	0.00	0 00		
Temp =	۳F	500	67-66-3	chloroform	14,356			0 000	ФИ	mg/m^3	NO	Vmqq	0 00	0 00		
Flow =	Se SCFM	500	71-55-6	1,1,1-trichloroethane	16 454			0.000	DM	mg/m^3	ND	Vmqq	0 00	0.00		
		500	71-43-2	benzene	17.343			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00		
		500	78-87-5	1,2-dichloropropane	18 675			0 000	ND	mg/m^3	ND	ppm∀	0 00	0.00		
		500	79-01-6	tnchloroethene	19.316	18.996	3.2	0.678	1.36	mg/m^3	0.25	ppm∀	0 00	0.03		
		500	108-88-3	toluene	22 496			0 000	ND	mg/m^3	ND	Vmqq	0.00	0.00		
		500	127-18-4	tetrachloroethene	24 419	24 107	73.3	16.346	32.69	mg/m^3	4 82	ppm∨	0.03	0.82		
		500	108-90-7	chlorobenzene	25.574			0 000	ND	mg/m^3	ND	ρρm∨	0.00	0 00		
		500	100-41-4	ethylbenzene	26.243	1		0.000	ND	mg/m^3	ND	ppmV	0.00	0.00		
		500	108-38-3/106-42-3	m/p-xylene	26.535			0.000	ND	mg/m^3	ND	ppm∀	0.00	0 00		
		500	95-47-6	o-xylene	27.385			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500		Unknown TPH			30.0	3.000	6.00	mg/m^3	1.05	ppm∀	0.01	0.15	14.98	
				total volatiles			106		40.0	mg/m^3	6.1	ppmV	0.04	1.01	100.00	

Sample Identification		Sample Volume (uL)	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	On-Col Mass (ng)	C	onc.	Co	nc.	Mass Rmvd (lb/hr)	Mass Rmvd (lb/day)	%Total Mass Rmvd	REMARKS
		500	74-82-8	methane	2.350			0.000	ND	mg/m^3	ND	ppm∀	0.00	0.00	0.00	
		500	75-01-4	vinyl chloride	3.680			0 000	ND	mg/m^3	ND	ppmV	0 00	0.00	0 00	
		500	75-35-4	1,1-dichloroethene	8.076		ļ	0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	75-09-2	methylene chloride	8.364			0.000	ND	mg/m^3	ND	ppmV	0.00	0 00	0,00	
ID:	Post-Carbon	500	156-60-5	trans 1,2-dichloroethene	10.970			0 000	ND	mg/m^3	ND	ppm∀	0 00	0.00	0.00	
Date:	3/16/2010	500	75-34-3	1,1-dichloroethane	11.526			0.000	ND	mg/m^3	ND	ppmV	0 00	0.00	0.00	
Time:		500	1634-04-4	MTBE	11.707			0.000	ND	mg/m^3	· GN	ppm∨	0.00	0.00	0.00	
		500	78-93-3	2-butanone (MEK)	12.537			0.000	ND	mg/m^3	ND	ppmV	0 00	0.00	0.00	
		500	156-59-2	cis 1,2-dichloroethene	13,669			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Temp ≖	°F	500	67-66-3	chloroform	14,356			0,000	ND	mg/m^3	ND	Vmqq	0 00	0.00	0 00	
Flow =	289 SCFM	500	71-55-6	1,1,1-trichloroethane	16,454			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0 00	
		500	71-43-2	benzene	17 343			0.000	ND	mg/m^3	ND	ppmV	0 00	0.00	0 00	
		500	78-87-5	1,2-dichloropropane	18,875			0 000	ND	mg/m^3	ND	ppm√	0.00	0.00	0 00	
		500	79-01-6	trichloroethene	19.316			0 000	ND	mg/m^3	ND	ppmV	0 00	0.00	0.00	
		500	108-88-3	toluene	22,496			0.000	ND	mg/m^3	ND	ppmV	0 00	0.00	0.00	
		500	127-18-4	tetrachloroethene	24,419			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0 00	
		500	108-90-7	chlorobenzene	25,574			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0 00	
		500	100-41-4	ethylbenzene	26 243			0 000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	108-38-3/106-42-3	m/p-xylene	26 535			0.000	ND	mg/m^3	ND	ppmV	0 00	0.00	0.00	
		500	95-47-6	o-xylene	27,385			0.000	ND	mg/m^3	ND	ppm∨	0 00	0.00	0.00	
		500		Unknown TPH			25 0	2 500	5.00	mg/m^3	0.87	ppmV	0 01	0.13	100.00	
				total volatiles	······································		25		5.0	mg/m^3	0.9	ppm∀	0.01	0.13	100.00	

OPERATION, MAINTENANCE AND MONITORING PLAN SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

					10000	
Name: UNCO Since	v^	Time C	On-Site: <u> </u>	Time C	off-Site: 190	35
Date: 4/23/10		SVE B	lower Run Time: 4	with the hou	rs VDF: _ (\wp	() hertz
SYSTEM STATUS						
SVE System Operating.	YES) NO	If no:				
Alarm lights off:	YES) NO	If no:				
Autodialer Alarm On:	YES (NO)	If Yes.				
	Postic	on of Swing Pa	nel HOA Switche	s:		
Control Power Switch ON	OFF	SVE Blower S	witch HA	ND OFF	AUTO	$\overline{)}$
M/S Effluent Pump Switch HAND	OFF AUTO	Heat Exchang	er Switch HA	ND OFF	AUTO	$\overline{)}$
Heat Exchanger Operating	YES) NO	If no:				
SVE System appear to be operating	YES NO	If no:				
properly? Moisture Separator Tank Level, Empty	1/4 Full	1/2 Ful	1 3/4 Full	Full	Volume Tranfered:	gals
SYSTEM MONITORING READINGS	Andread Anna Andread Anna Anna Anna Anna Anna Anna Anna An					
Vacuum Gauge Pre-Inline Filter		in Hg	System Monitorin	ng Notes:		
Vacuum Gauge Post-Inline Filter	0 1	in Hg				
Temperature on Discharge Silencer:	125	°F				
Temperature after Heat Exchanger	75	°F				
Pressure After Heat Exchanger	24	in H₂O				
Pressure Before Heat Exchanger	30	in H₂O	Flow Rate Based	on Pressure Gauge:	312 cfm	
Pressure Magnehelic Gauge:	2,1	in H₂O	Flow Rate Based	on Vacuum Gauge:	294 cfm	
Vacuum Magnehelic Gauge	> 2-	in H ₂ O				
Vacuum Gauge After Manifold:	1	in Hg				
EXTRACTION WELL VACUUM GAUG	E READINGS					
EW -1. c'\ in Hg	EW-11:	1	in Hg Va	accum Gauge Read	ing Notes:	
EW-2: in Hg	EW-12:	< \	in Hg			
EW-3: in Hg	EW-13:	4	in Hg			
EW-4: <\ in Hg	EW-14:	1	in Hg			
EW-5: \langle \ in Hg	EW-15:	1	in Hg			
EW-6: C in Ho	EW-16:	1	in Hg			
EW-7· ∠\ in Hg	EW-17:	< 1	in Hg			
EW-8:	SS-1:	1	in H2O			
EW-9: In He	SS-2:	1	in H2O			
EW-10: in He	SS-3:		in H2O			
AIR FLOW FIELD SCREENING						
	. 9ppm		Dete	ector Tube Readings		
7	ppm		Pre Carbon	YES NO $\frac{7}{}$	ppm	
Pre Carbon Discharge:	3. <u>)</u> ppm		Mid Carbon	YES NO \overline{S}	ppm	
Mid Carbon Discharge:	2ppm		Post Carbon	YES NO <0	7 ppm	
Post Carbon Discharge.	5 ppm				1.	
Additional Notes:	, , ,				Š	,
SVE ISLUL Kin Tro	مود با م ^{یش} نده براه کار از کار است. ا		Enc-King	inder	yoursign O	Per
EVE Block Rentro	ar R. Carl	* ·	ノ	Link	40 th 0	* *
				7	No SU VI	

GAS CHROMATOGRAPHY REPORT SHEET SCREENING RESULTS DIRECT INJECT

Date of Analysis: 28-Apr-10

Operator: TJV

File No: 36795-000

Client:

QA/QC: DMC

Sample Type: BLDG-10 SVE/SSD

GM Lockport

Sample Identification		Sample Volume (uL) CASRN		Target Compound	Cal, Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	On-Col Mass (ng)	Ce	onc.	Co	nc.	Mass Rmvd (ib/hr)	Mass Rmvd (lb/day)	%Total Mass Rmvd	REMARKS
		500	74-82-8	methane	2.350			0.000	ND	mg/m^3	ND	ppm∨	0 00	0.00	0 00	
		500	75-01-4	vinyl chloride	3.680			0.000	ND	mg/m^3	ND	Vmqq	0.00	0.00	0 00	
		500	75-35-4	1,1-dichloroethene	8.076			0 000	ND	mg/m^3	ND	ppm∀	0.00	0.00		
		500	75-09-2	methylene chlonde	8.364			0.000	ND	mg/m^3	ND	ppm∨	0 00	0.00		
ID:	Pre-Carbon	500	156-60-5	trans 1,2-dichloroethene	10.970			0.000	ND	mg/m^3	ND	Vmqq	0.00	0.00		
Date:	4/26/2010	500	75-34-3	1,1-dichloroethane	11,526			0.000	ND	աց/ար3	ND	ppmV	0 00	0.00		
Time:		500	1634-04-4	MTBE	11,707			0 000	ND	mg/m^3	ND	ppm∀	0 00	0.00	0 00	
		500	78-93-3	2-butanone (MEK)	12.537			0 000	ND	mg/m^3	ND	ppmV	0 00		0.00	
		500	156-59-2	cis 1,2-dichloroethene	13,669			0 000	ND	mg/m^3	ND	ppm∨	0 00			
Temp =	۴	500	67-66-3	chloroform	14.356	14 335	5.7	3.694	7.39	mg/m^3	1.51	ppm∨	0.01	0.19		
Flow =	DEC SCFM	500	71-55-6	1,1,1-trichloroethane	16,454			0.000	ND	mg/m^3	ND	ppm∨	0 00	0.00	0 00	
		500	71-43-2	benzene	17.343			0.000	ND	mg/m^3	ND	ppm∨	0 00	0.00		
		500	78-87-5	1,2-dichloropropane	18.875			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00		
		500	79-01-6	trichloroethene	19,316	19,250	1 3	0.278	0.56	mg/m^3	0.10	ppm∀	0 00	0.01	0.95	
		500	108-88-3	toluene	22.496			0 000	ND	mg/m^3	ND	ppmV	0 00	0.00		
		500	127-18-4	tetrachloroethene	24,419	24,292	109.5	24,407	48,81	mg/m^3	7 20	ppmV	0.05	1,23	83.08	
		500	108-90-7	chlorobenzene	25.574			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0 00	
		500	100-41-4	ethylbenzene	26.243			0.000	ND	mg/m^3	ND	ppm∨	0 00	0.00	0.00	
		500	108-38-3/106-42-3		26,535			0 000	ND	mg/m^3	NO	ppmV	0.00	0.00	0.00	
		500	95-47-6	o-xylene	27.385			0.000	ND	mg/m^3	NO	ppmV	0.00	0.00	0.00	
		500		Unknown TPH			10.0	1.000	2.00	mg/m^3	0.35	ppmV	0 00	0,05	3 40	
				total volatiles			126		58.8	mg/m^3	9.2	ppmV	0.06	1.48	100.00	

Samp	le identification	Sample Volume		Target	Cal. Ret. Time	Ret. Time	Det. Resp.	On-Col Mass	Co	onc.	Co	nc.	Mass Rmvd	Mass Rmvd	%Total Mass	REMARKS
		(uL)	CASRN	Compound	(min.)	(min.)	(Area Cts.)	(ng)					(lb/hr)	(lb/day)	Rmvd	
		500	74-82-8	methane	2.350			0.000	ND	mg/m^3	ND	ppm∨	0.00		0.00	
		500	75-01-4	vinyl chloride	3 680			0.000	ИD	mg/m^3	ND	ppm∨	0.00		0.00	
		500	75-35-4	1,1-dichloroethene	8 076			0,000	ND	mg/m^3	ND	ppm∨	0.00	0 00	0.00	
		500	75-09-2	methylene chloride	8.364			0.000	NО	mg/m^3	ND	ppm∨	0.00		0.00	
ID:	Mid-Carbon	500	156-60-5	trans 1,2-dichloroethene	10,970			0.000	ND	mg/m^3	ND	ppmV	0.00	0 00	0.00	
Date:	4/26/2010	500	75-34-3	1,1-dichloroethane	11.526			0.000	ND	mg/m^3	ND	ppm∨	0.00		0.00	
Time:		500	1634-04-4	MTBE	11,707			0.000	ND	mg/m^3	ND	ppm∀	0.00	0.00	0,00	
		500	78-93-3	2-butanone (MEK)	12.537			0.000	ND	mg/m^3	ND	ppmV	0.00		0.00	
		500	156-59-2	cis 1,2-dichloroethene	13.669			0.000	ND	mg/m^3	ND	ppmV	0,00	0 00	0 00	
Temp =	°F	500	67-66-3	chloroform	14.356			0,000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
Flow =	200 SCFM	500	71-55-6	1,1,1-trichloroethane	16 454			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	71-43-2	benzene	17.343			0.000	ND	mg/m^3	ND	ρpm∨	0 00	0 00	0,00	
		500	78-87-5	1,2-dichloropropane	18 875			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	79-01-6	trichloroethene	19.316	19.296	1.2	0,263	0.53	mg/m^3	0.10	ppm∨	0.00		1,32	
		500	108-88-3	toluene	22.496			0.000	ND	mg/m^3	ND	ppm∨	0.00		0.00	
		500	127-18-4	tetrachioroethene	24,419	24 337	81,5	18,172	36.34	mg/m^3	5.36	ppmV	0.04		91,15	
		500	108-90-7	chtorobenzene	25,574			0.000	ND	mg/m^3	ND	ppmV	0.00	0 00	0.00	
		500	100-41-4	ethylbenzene	26.243			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	108-38-3/106-42-3	m/p-xylene	26 535			0 000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	95-47-6	o-xylene	27 385			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500		Unknown TPH			15.0	1 500	3.00	mg/m^3	0.52	ppmV	0 00	0.08	7,52	
				total volatiles			98		39.9	mg/m^3	6.0	ppmV	0.04	1.00	100.00	

Samp	le Identification	Sample Volume (uL)	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret, Time (min.)	Det. Resp. (Area Cts.)	On-Col Mass (ng)	Co	nc.	Co	nc.	Mass Rmvd (lb/hr)	Mass Rmvd (lb/day)	%Total Mass Rmvd	REMARKS
		500	74-82-8	methane	2.350			0,000	ИD	mg/m^3	ND	ppm√	0.00	0.00	0.00	
		500	75-01-4	vinyl chloride	3.680			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-35-4	1,1-dichloroethene	8.076			0.000	ОN	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-09-2	methylene chloride	8,364			0.000	NO	mg/m^3	ND	ppm√	0.00	0.00	0 00	
ID:	Duplicate	500	156-60-5	trans 1,2-dichloroethene	10.970			0.000	ОИ	mg/m^3	ND	ppmV	0.00	0,00	0.00	
Date:	4/26/2010	500	75-34-3	1,1-dichlorcethane *	11.526			0.000	NO	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Time:		500	1634-04-4	MTBE	11.707			0.000	ND	mg/m^3	ND	ppin∨	0.00	0 00	0.00	
		500	78-93-3	2-butanone (MEK)	12.537			0.000	ND	mg/m^3	ND	ppm∨	0 00	0.00	0 00	
		500	156-59-2	cis 1,2-dichloroethene	13.669			0 000	ND	mg/m^3	ND	ppm∨	0 00	0.00	0.00	
Temp =	۰F	500	67-66-3	chloroform	14.356	14.368	5.8	3 786	7.57	mg/m^3	1.55	ppmV	0.01	0.19	12.46	
Flow =	ABH SCFM	500	71-55-6	1,1.1-trichloroethane	16.454			0.000	ND	mg/m^3	ND	ppm√	0.00	0.00	0.00	
		500	71-43-2	benzene	17,343			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	78-87-5	1,2-dichloropropane	18,875			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	79-01-6	trichloroethene	19,316	19.274	1.4	0 298	0.60	mg/m^3	0.11	ppm∨	0.00	Ç.01	0.98	
		500	108-88-3	toluene	22.496			0 000	ND	mg/m^3	ND	ppmV	0 00	0.00	0.00	
		500	127-18-4	tetrachioroethene	24.419	24.315	104.5	23.295	46.59	mg/m^3	6 87	ppmV	0 05	1.17	76 68	
		500	108-90-7	chlorobenzene	25.574			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0 00	
		500	100-41-4	ethylbenzene	26.243			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	108-38-3/106-42-3	m/p-xylene	26.535			0.000	ND	mg/m^3	NO	ppmV	0 00	0.00	0.00	
		500	95-47-6	o-xylene	27.385			0.000	ND	mg/m^3	NO	ppm∨	0.00	0.00	0 00	
		500		Unknown TPH			30.0	3,000	6.00	mg/m^3	1.05	ppmV	0.01	0.15	9 87	
	and the second s			total volatiles			142		60.8	mg/m^3	9.6	ppmV	0.06	1.53	100,00	

		Sample	1		Cal. Ret.	Ret.	Dot.	On-Col	T				Mass	Mass	%Total	
Sample Identification		Volume		Target	Time	Time	Resp.	Mass	Ç	onc.	Ço	nc.	Rmvd	Rmvd	Mass	REMARKS
		(uL)	CASRN	Compound	(min.)	(min.)	(Area Cts.)	(ng)					(ib/hr)	(lb/day)	Rmvd	
		500	74-82-8	methane	2.350			0,000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/01	
		500	75-01-4	vinyl chlonde	3,680			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/01	
		500	75-35-4	1,1-dichloroethene	8.076			0 000	ND	mg/m^3	ND	ppmV	0 00	0.00	#DIV/01	
		500	75-09-2	methylene chloride	8.364			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/0!	
ID:	Post-Carbon	500	156-60-5	trans 1,2-dichloroethene	10.970			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/01	
Date:	4/26/2010	500	75-34-3	1,1-dichloroethane	11,526			0.000	ND	mg/m^3	ND	Vmqq	0.00	0.00	#DIV/01	
Time:		500	1634-04-4	MTBE	11.707			0.000	ND	mg/m^3	ND	ppmV	0 00	0.00	#DIV/01	
		500	78-93-3	2-butanone (MEK)	12.537			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/0!	
		500	156-59-2	cis 1,2-dichloroethene	13,669			0.000	NO	mg/m^3	ND	ppmV	0.00	0.00	#DIV/01	
Temp =	°F	500	67-66-3	chloroform	14.356			0.000	NO	mg/m^3	ND	ppmV	0.00	0.00	#DIV/01	
Flow =	21 € SCFM	500	71-55-6	1,1 1-trichloroethane	16 454			0.000	NO	mg/m^3	ND	ppmV	0.00	0.00	#D(V/01	
		500	71-43-2	benzene	17.343			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/01	
		500	78-87-5	1,2-dichloropropane	18.875			0.000	NO	mg/m^3	ND	ppmV	0.00	0,00	#DIV/01	
		500	79-01-6	trichloroethene	19,316			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/O	
		500	108-88-3	toluene	22.496			0.000	NO	mg/m^3	ND	ppmV	0.00	0.00		
		500	127-18-4	tetrachloroethene	24.419			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/01	
		500	108-90-7	chlorobenzene	25.574			0.000	ND	mg/m^3	ND	ppm∨	0.00	0 00	#DIV/01	
		500	100-41-4	ethylbenzene	26.243			0.000	ND	mg/m^3	ND	ppmV	0.00	0 00	#DIV/0:	
		500	108-38-3/106-42-3	m/p-xylene	26,535			0.000	ND	mg/m*3	ND	ppmV	0.00	0 00		
		500	95-47-6	o-xylene	27,385			0.000	ND	mg/m^3	ND	ppmV	0.00	0 00	#DIV/O	
		500		Unknown TPH				0.000	ND	mg/m^3	ND	ppmV	0.00	0 00		
				total volatiles			٥		0.0	ma/m*3	0.0	Vmaq	0.00		#DIV/01	

APPENDIX C
ANALYTICAL DATA

REPORT DATE 3/23/2009

GZA ENVIRONMENTAL - BUFFALO 535 WASHINGTON STREET, 11TH FLOOR BUFFALO, NY 14203 ATTN: CHRIS BORON

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER: 21.0056445.0

ANALYTICAL SUMMARY

LIMS BAT#:

LIMT-23960

JOB NUMBER: 21.0056445.0

PROJECT LOCATION:

FIELD SAMPLE #	LAB ID	MATRIX	SAMPLE DESCRIPTION	TEST	Subcontract Lab (if any) Cert. Nos.
MID CARBON	09B07792	AIR	Not Specified	to-15 ppbv	
MID CARBON	09B07792	AIR	Not Specified	to-15 ug/m3	
POST CARBON	09B07793	AIR	Not Specified	to-15 ppbv	
POST CARBON	09B07793	AIR	Not Specified	to-15 ug/m3	
PRE CARBON	09B07791	AIR	Not Specified	to-15 ppbv	
PRE CARBON	09B07791	AIR	Not Specified	to-15 ug/m3	

REPORT DATE 3/23/2009

GZA ENVIRONMENTAL - BUFFALO 535 WASHINGTON STREET, 11TH FLOOR

BUFFALO, NY 14203 ATTN: CHRIS BORON

CONTRACT NUMBER:

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 21.0056445.0

ANALYTICAL SUMMARY

LIMS BAT #: LIMT-23960 JOB NUMBER: 21.0056445.0

Comments:

LIMS BATCH NO.: LIMT-23960

In method TO-15, any reported result for 1,2-dichloropropane in samples is estimated and likely to be biased on the low side based on continuing calibration bias.

In method TO-15, any reported result for benzene in sample 09B07792 - 09B07793 is estimated and likely to be biased on the low side based on continuing calibration bias.

In method TO-15, any reported result for 1,2-dichloropropane in samples is likely to be biased on the low side based on laboratory fortified blank recovery bias.

Method blank-130874 is associated with sample 09B07791.

LFBLANK-93081 is associated with sample 09B07791.

Method blank-130875 is associated with sample 09B07792 - 09B07793.

LFBLANK-93082 is associated with sample 09B07792 - 09B07793.

The results of analyses performed are based on samples as submitted to the laboratory and relate only to the items collected and tested.

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations. AIHA accreditations only apply to NIOSH methods and Environmental Lead Analyses.

AIHA 100033
MASSACHUSETTS MA0100
CONNECTICUT PH-0567

AIHA ELLAP (LEAD) 100033 NEW HAMPSHIRE NELAP 2516 NORTH CAROLINA CERT. #652 NEW JERSEY NELAP NJ MA007 (AIR)

VERMONT DOH (LEAD) No. LL015036

FLORIDA DOH E871027 (AIR)

NEW YORK ELAP/NELAP 10899

RHODE ISLAND (LIC. No. 112)

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Edward Denson 3/23/09

Tod Kopyscinski

Michael Erickson

Air Laboratory Manager

Assistant Laboratory Director

SIGNATURE DATE

Edward Denson

Daren Damboragian

Technical Director

Organics Department Supervisor

^{*} See end of data tabulation for notes and comments pertaining to this sample

CHRIS BORON

Project Location:

Date Received:

GZA ENVIRONMENTAL - BUFFALO 535 WASHINGTON STREET, 11TH FLOOR

BUFFALO, NY 14203

Purchase Order No.:

3/23/2009

Page 1 of 13

Project Number: 21.0056445.0 LIMS-BAT #: LIMT-23960

Job Number: 21.0056445.0

Field Sample #: MID CARBON

Sample ID:

09B07792

3/14/2009

‡Sampled: 3/13/2009

Not Specified

Sample Matrix:

AIR

Sample Medium : SUMMA

	Units	Results	RL	Method	Date Analyzed	Analyst
to-15 ppbv				EPA TO-15		
Acetone	PPBv	740	1.0		03/20/09	WSD
Benzene	PPBv	1.4	1.0		03/20/09	WSD
Benzyl Chloride	PPBv	ND	1.0		03/20/09	WSD
Bromodichloromethane	PPBv	ND	1.0		03/20/09	WSD
Bromoform	PPBv	ND	1.0		03/20/09	WSD
Bromomethane	PPBv	ND	1.0		03/20/09	WSD
1,3-Butadiene	PPBv	ND	1.0		03/20/09	WSD
2-Butanone (MEK)	PPBv	1.4	1.0		03/20/09	WSD
Carbon Disulfide	PPBv	ND	1.0		03/20/09	WSD
Carbon Tetrachloride	PPBv	ND	1.0		03/20/09	WSD
Chlorobenzene	PPBv	ND	1.0		03/20/09	WSD
Chlorodibromomethane	PPBv	ND	1.0		03/20/09	WSD
Chloroethane	PPBv	ND	1.0		03/20/09	WSD
Chloroform	PPBv	ND	1.0		03/20/09	WSD
Chloromethane	PPBv	ND	1.0		03/20/09	WSD
Cyclohexane	PPBv	2.6	1.0		03/20/09	WSD
1,2-Dibromoethane	PPBv	ND	1.0		03/20/09	WSD
1,2-Dichlorobenzene	PPBv	ND	1.0		03/20/09	WSD
1,3-Dichlorobenzene	PPBv	ND	1.0		03/20/09	WSD
1,4-Dichlorobenzene	PPBv	ND	1.0		03/20/09	WSD
Dichlorodifluoromethane	PPB v	ND	1.0		03/20/09	WSD
1,1-Dichloroethane	PPBv	ND	1.0		03/20/09	WSD
1,2-Dichloroethane	PPBv	ND	1.0		03/20/09	WSD
1,1-Dichloroethylene	PPBv	1.3	1.0		03/20/09	WSD
cis-1,2-Dichloroethylene	PPB v	2.9	1.0		03/20/09	WSD
t-1,2-Dichloroethylene	PPBv	ND	1.0		03/20/09	WSD
1,2-Dichloropropane	PPBv	ND	1.0		03/20/09	WSD
cis-1,3-Dichloropropene	PPBv	ND	1.0		03/20/09	WSD
trans-1,3-Dichloropropene	PPBv	ND	1.0		03/20/09	WSD
1,2-Dichlorotetrafluoroethane (114)	PPBv	ND	1.0		03/20/09	WSD
Ethanol	PPBv	200	1.0		03/20/09	WSD
Ethyl Acetate	PPBv	ND	1.0		03/20/09	WSD
Ethylbenzene	PPBv	7.0	1.0		03/20/09	WSD
4-Ethyl Toluene	PPBv	2.8	1.0		03/20/09	WSD
n-Heptane	PPBv	3.9	1.0		03/20/09	WSD

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

^{* =} See end of report for comments and notes applying to this sample

[‡] See attached chain-of-custody record for time sampled

CHRIS BORON

GZA ENVIRONMENTAL - BUFFALO 535 WASHINGTON STREET, 11TH FLOOR

BUFFALO, NY 14203

Purchase Order No.:

3/23/2009

Page 2 of 13

Project Number: 21.0056445.0 LIMS-BAT #: LIMT-23960

Job Number: 21.0056445.0

Project Location: Date Received:

3/14/2009

Field Sample #: MID CARBON

Sample ID:

09B07792

\$Sampled: 3/13/2009

Not Specified

Sample Matrix:

AIR

Sample Medium : SUMMA

	Units	Results	RL	Method	Date Analyzed	Analyst
to-15 ppbv				EPA TO-15		
Hexachlorobutadiene	PPB v	ND	1.0		03/20/09	WSD
Hexane	PPBv	190	1.0		03/20/09	WSD
2-Hexanone	PPBv	ND	1.0		03/20/09	WSD
Isopropanol	PPBv	6.9	1.0		03/20/09	WSD
Methyl tert-Butyl Ether (MTBE)	PPBv	ND	1.0		03/20/09	WSD
Methylene Chloride	PPBv	1.7	1.0		03/20/09	WSD
4-Methyl-2-Pentanone (MIBK)	PPBv	ND	1.0		03/20/09	WSD
Propene	PPBv	ND	1.0		03/20/09	WSD
Styrene	PPBv	ND	1.0		03/20/09	WSD
1,1,2,2-Tetrachloroethane	PPBv	ND	1.0		03/20/09	WSD
Tetrachloroethylene	PPBv	2.7	1.0		03/20/09	WSD
Tetrahydrofuran	PPBv	ND	1.0		03/20/09	WSD
Toluene	PPBv	120	1.0		03/20/09	WSD
1,2,4-Trichlorobenzene	PPBv	ND	1.0		03/20/09	WSD
1,1,1-Trichloroethane	PPBv	ND	1.0		03/20/09	WSD
1,1,2-Trichloroethane	PPBv	ND	1.0		03/20/09	WSD
Trichloroethylene	PPBv	7.6	1.0		03/20/09	WSD
Trichlorofluoromethane (Freon 11)	PPBv	ND	1.0		03/20/09	WSD
1,1,2-Trichloro-1,2,2-Trifluoroethane	PPBv	ND	1.0		03/20/09	WSD
1,2,4-Trimethylbenzene	PPBv	4.4	1.0		03/20/09	WSD
1,3,5-Trimethylbenzene	PPBv	2.0	1.0		03/20/09	WSD
Vinyl Acetate	PPBv	ND	1.0		03/20/09	WSD
Vinyl Chloride	PPBv	ND	1.0		03/20/09	WSD
m/p-Xylene	PPBv	22	2.0		03/20/09	WSD
o-Xylene	PPBv	6.3	1.0		03/20/09	WSD
to-15 ug/m				EPA TO-15		
Acetone	ug/m3	1700	2.4		03/20/09	WSD
Benzene	ug/m3	4.4	3.2		03/20/09	WSD
Benzyl Chloride	ug/m3	ND	5.2		03/20/09	WSD
Bromodichloromethane	ug/m3	ND	6.7		03/20/09	WSD
Bromoform	ug/m3	ND	11		03/20/09	WSD
Bromomethane	ug/m3	ND	3.9		03/20/09	WSD
1,3-Butadiene	ug/m3	ND	2.3		03/20/09	WSD
2-Butanone (MEK)	ug/m3	4.0	3.0		03/20/09	WSD
Carbon Disulfide	ug/m3	ND	3.1		03/20/09	WSD

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

^{* =} See end of report for comments and notes applying to this sample

[‡] See attached chain-of-custody record for time sampled

CHRIS BORON

Project Location:

GZA ENVIRONMENTAL - BUFFALO

535 WASHINGTON STREET, 11TH FLOOR

BUFFALO, NY 14203

Purchase Order No.:

3/23/2009

Page 3 of 13

Project Number: 21.0056445.0

LIMS-BAT #: LIMT-23960

Job Number: 21.0056445.0

Date Received: 3/14/2009
Field Sample #: MID CARBON

Sample ID :

09B07792

\$Sampled: 3/13/2009

Not Specified

Sample Matrix: AIR

Sample Medium : SUMMA

	Units	Results	RL	Method	Date Analyzed	Analyst
to-15 ug/m				EPA TO-15		
Carbon Tetrachloride	ug/m3	ND	6.3		03/20/09	WSD
Chlorobenzene	ug/m3	ND	4.6		03/20/09	WSD
Chlorodibromomethane	ug/m3	ND	8.6		03/20/09	WSD
Chloroethane	ug/m3	ND	2.7		03/20/09	WSD
Chloroform	ug/m3	ND	4.9		03/20/09	WSD
Chloromethane	ug/m3	ND	2.1		03/20/09	WSD
Cyclohexane	ug/m3	9.0	3.5		03/20/09	WSD
1,2-Dibromoethane	ug/m3	ND	7.6		03/20/09	WSD
1,2-Dichlorobenzene	ug/m3	ND	6.0		03/20/09	WSD
1,3-Dichlorobenzene	ug/m3	ND	6.0		03/20/09	WSD
1,4-Dichlorobenzene	ug/m3	ND	6.0		03/20/09	WSD
Dichlorodifluoromethane	ug/m3	ND	4.9		03/20/09	WSD
1,1-Dichloroethane	ug/m3	ND	4.1		03/20/09	WSD
1,2-Dichloroethane	ug/m3	ND	4.0		03/20/09	WSD
1,1-Dichloroethylene	ug/m3	5.3	4.0		03/20/09	WSD
cis-1,2-Dichloroethylene	ug/m3	11	4.0		03/20/09	WSD
t-1,2-Dichloroethylene	ug/m3	ND	4.0		03/20/09	WSD
1,2-Dichloropropane	ug/m3	ND	4.6		03/20/09	WSD
cis-1,3-Dichloropropene	ug/m3	ND	4.5		03/20/09	WSD
trans-1,3-Dichloropropene	ug/m3	ND	4.5		03/20/09	WSD
1,2-Dichlorotetrafluoroethane (114)	ug/m3	ND	7.0		03/20/09	WSD
Ethanol	ug/m3	370	1.9		03/20/09	WSD
Ethyl Acetate	ug/m3	ND	3.6		03/20/09	WSD
Ethylbenzene	ug/m3	30	4.4		03/20/09	WSD
4-Ethyl Toluene	ug/m3	14	5.0		03/20/09	WSD
n-Heptane	ug/m3	16	4.1		03/20/09	WSD
Hexachlorobutadiene	ug/m3	ND	11		03/20/09	WSD
Hexane	ug/m3	660	3.6		03/20/09	WSD
2-Hexanone	ug/m3	ND	4.1		03/20/09	WSD
Isopropanol	ug/m3	17	2.5		03/20/09	WSD
Methyl tert-Butyl Ether (MTBE)	ug/m3	ND	3.6		03/20/09	WSD
Methylene Chloride	ug/m3	5.9	3.5		03/20/09	WSD
4-Methyl-2-Pentanone (MIBK)	ug/m3	ND	4.1		03/20/09	WSD
Propene	ug/m3	ND	1.8		03/20/09	WSD
Styrene	ug/m3	ND	4.3		03/20/09	WSD

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

^{* =} See end of report for comments and notes applying to this sample

[‡] See attached chain-of-custody record for time sampled

CHRIS BORON

GZA ENVIRONMENTAL - BUFFALO

535 WASHINGTON STREET, 11TH FLOOR

BUFFALO, NY 14203

Purchase Order No.:

3/23/2009

Page 4 of 13

Project Number: 21.0056445.0 LIMS-BAT #: LIMT-23960

Job Number: 21.0056445.0

Project Location: Date Received:

3/14/2009

Field Sample #: MID CARBON

Sample ID:

09B07792

‡Sampled: 3/13/2009

Not Specified

Sample Matrix: AIR Sample Medium : SUMMA

	Units	Results	RL	Method	Date Analyzed	Analyst
to-15 ug/m				EPA TO-15		
1,1,2,2-Tetrachloroethane	ug/m3	ND	6.8		03/20/09	WSD
Tetrachloroethylene	ug/m3	18	6.7		03/20/09	WSD
Tetrahydrofuran	ug/m3	ND	3.0		03/20/09	WSD
Toluene	ug/m3	430	3.8		03/20/09	WSD
1,2,4-Trichlorobenzene	ug/m3	ND	7.4		03/20/09	WSD
1,1,1-Trichloroethane	ug/m3	ND	5.4		03/20/09	WSD
1,1,2-Trichloroethane	ug/m3	ND	5.4		03/20/09	WSD
Trichloroethylene	ug/m3	41	5.4		03/20/09	WSD
Trichlorofluoromethane	ug/m3	ND	5.6		03/20/09	WSD
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	ND	7.6		03/20/09	WSD
1,2,4-Trimethylbenzene	ug/m3	22	5.0		03/20/09	WSD
1,3,5-Trimethylbenzene	ug/m3	10.0	5.0		03/20/09	WSD
Vinyl Acetate	ug/m3	ND	3.6		03/20/09	WSD
Vinyl Chloride	ug/m3	ND	2.6		03/20/09	WSD
m/p-Xylene	ug/m3	98	8.7		03/20/09	WSD
o-Xylene	ug/m3	27	4.4		03/20/09	WSD

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

^{* =} See end of report for comments and notes applying to this sample

[‡] See attached chain-of-custody record for time sampled

CHRIS BORON

GZA ENVIRONMENTAL - BUFFALO

535 WASHINGTON STREET, 11TH FLOOR

BUFFALO, NY 14203

Project Location:

Date Received:

Purchase Order No.:

3/23/2009

Page 5 of 13

Project Number: 21.0056445.0

LIMS-BAT #: LIMT-23960

Job Number: 21.0056445.0

Field Sample #: POST CARBON

Sample ID:

09B07793

3/14/2009

‡Sampled: 3/13/2009

Not Specified

Sample Matrix: AIR

Sample Medium : SUMMA

	Units	Results	RL	Method	Date Analyzed	Analyst
to-15 ppbv				EPA TO-15		
Acetone	PPBv	910	1.0		03/20/09	WSD
Benzene	PPBv	1.5	1.0		03/20/09	WSD
Benzyl Chloride	PPBv	ND	1.0		03/20/09	WSD
Bromodichloromethane	PPBv	ND	1.0		03/20/09	WSD
Bromoform	PPBv	ND	1.0		03/20/09	WSD
Bromomethane	PPBv	ND	1.0		03/20/09	WSD
1,3-Butadiene	PPBv	ND	1.0		03/20/09	WSD
2-Butanone (MEK)	PPBv	1.2	1.0		03/20/09	WSD
Carbon Disulfide	PPBv	ND	1.0		03/20/09	WSD
Carbon Tetrachloride	PPBv	ND	1.0		03/20/09	WSD
Chlorobenzene	PPBv	ND	1.0		03/20/09	WSD
Chlorodibromomethane	PPBv	ND	1.0		03/20/09	WSD
Chloroethane	PPBv	ND	1.0		03/20/09	WSD
Chloroform	PPBv	ND	1.0		03/20/09	WSD
Chloromethane	PPBv	ND	1.0		03/20/09	WSD
Cyclohexane	PPBv	2.6	1.0		03/20/09	WSD
1,2-Dibromoethane	PPBv	ND	1.0		03/20/09	WSD
1,2-Dichlorobenzene	PPBv	ND	1.0		03/20/09	WSD
1,3-Dichlorobenzene	PPBv	ND	1.0		03/20/09	WSD
1,4-Dichlorobenzene	PPBv	ND	1.0		03/20/09	WSD
Dichlorodifluoromethane	PPBv	ND	1.0		03/20/09	WSD
1,1-Dichloroethane	PPBv	ND	1.0		03/20/09	WSD
1,2-Dichloroethane	PPBv	ND	1.0		03/20/09	WSD
1,1-Dichloroethylene	PPBv	ND	1.0		03/20/09	WSD
cis-1,2-Dichloroethylene	PPBv	ND	1.0		03/20/09	WSD
t-1,2-Dichloroethylene	PPBv	ND	1.0		03/20/09	WSD
1,2-Dichloropropane	PPBv	ND	1.0		03/20/09	WSD
cis-1,3-Dichloropropene	PPBv	ND	1.0		03/20/09	WSD
trans-1,3-Dichloropropene	PPBv	ND	1.0		03/20/09	WSD
1,2-Dichlorotetrafluoroethane (114)	PPBv	ND	1.0		03/20/09	WSD
Ethanol	PPBv	220	1.0		03/20/09	WSD
Ethyl Acetate	PPBv	ND	1.0		03/20/09	WSD
Ethylbenzene	PPBv	8.0	1.0		03/20/09	WSD
4-Ethyl Toluene	PPBv	3.2	1.0		03/20/09	WSD
n-Heptane	PPBv	4.3	1.0		03/20/09	WSD

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

^{* =} See end of report for comments and notes applying to this sample

[‡] See attached chain-of-custody record for time sampled

CHRIS BORON

GZA ENVIRONMENTAL - BUFFALO 535 WASHINGTON STREET, 11TH FLOOR

BUFFALO, NY 14203

Purchase Order No.:

3/23/2009

Page 6 of 13

LIMS-BAT #: LIMT-23960

Job Number: 21.0056445.0

Project Number: 21.0056445.0

Project Location: Date Received:

3/14/2009

Field Sample #: POST CARBON

Sample ID :

09B07793

‡Sampled: 3/13/2009

Not Specified

Sample Matrix: AIR Sample Medium : SUMMA

	Units	Results	RL	Method	Date Analyzed	Analyst
to-15 ppbv				EPA TO-15		
Hexachlorobutadiene	PPBv	ND	1.0		03/20/09	WSD
Hexane	PPBv	230	1.0		03/20/09	WSD
2-Hexanone	PPBv	ND	1.0		03/20/09	WSD
Isopropanol	PPBv	7.5	1.0		03/20/09	WSD
Methyl tert-Butyl Ether (MTBE)	PPB v	ND	1.0		03/20/09	WSD
Methylene Chloride	PPBv	ND	1.0		03/20/09	WSD
4-Methyl-2-Pentanone (MIBK)	PPBv	ND	1.0		03/20/09	WSD
Propene	PPBv	ND	1.0		03/20/09	WSD
Styrene	PPBv	ND	1.0		03/20/09	WSD
1,1,2,2-Tetrachloroethane	PPBv	ND	1.0		03/20/09	WSD
Tetrachloroethylene	PPBv	2.9	1.0		03/20/09	WSD
Tetrahydrofuran	PPBv	ND	1.0		03/20/09	WSD
Toluene	PPBv	140	1.0		03/20/09	WSD
1,2,4-Trichlorobenzene	PPBv	ND	1.0		03/20/09	WSD
1,1,1-Trichloroethane	PPBv	ND	1.0		03/20/09	WSD
1,1,2-Trichloroethane	PPBv	ND	1.0		03/20/09	WSD
Trichloroethylene	PPBv	ND	1.0		03/20/09	WSD
Trichlorofluoromethane (Freon 11)	PPBv	ND	1.0		03/20/09	WSD
1,1,2-Trichloro-1,2,2-Trifluoroethane	PPBv	ND	1.0		03/20/09	WSD
1,2,4-Trimethylbenzene	PPBv	4.8	1.0		03/20/09	WSD
1,3,5-Trimethylbenzene	PPBv	2.3	1.0		03/20/09	WSD
Vinyl Acetate	PPBv	ND	1.0		03/20/09	WSD
Vinyl Chloride	PPBv	ND	1.0		03/20/09	WSD
m/p-Xylene	PPBv	26	2.0		03/20/09	WSD
o-Xylene	PPBv	7.1	1.0		03/20/09	WSD
to-15 ug/m				EPA TO-15		
Acetone	ug/m3	2200	2.4		03/20/09	WSD
Benzene	ug/m3	4.8	3.2		03/20/09	WSD
Benzyl Chloride	ug/m3	ND	5.2		03/20/09	WSD
Bromodichloromethane	ug/m3	ND	6.7		03/20/09	WSD
Bromoform	ug/m3	ND	11		03/20/09	WSD
Bromomethane	ug/m3	ND	3.9		03/20/09	WSD
1,3-Butadiene	ug/m3	ND	2.3		03/20/09	WSD
2-Butanone (MEK)	ug/m3	3.5	3.0		03/20/09	WSD
Carbon Disulfide	ug/m3	ND	3.1		03/20/09	WSD

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

^{* =} See end of report for comments and notes applying to this sample

[‡] See attached chain-of-custody record for time sampled

CHRIS BORON

GZA ENVIRONMENTAL - BUFFALO 535 WASHINGTON STREET, 11TH FLOOR

BUFFALO, NY 14203

Purchase Order No..

3/23/2009

Project Number: 21.0056445.0

Page 7 of 13

LIMS-BAT #: LIMT-23960

Job Number: 21.0056445.0

Project Location: Date Received:

3/14/2009

Field Sample #: POST CARBON

Sample ID: 09B07793 ‡Sampled: 3/13/2009

Not Specified

Sample Matrix: AIR Sample Medium : SUMMA

	Units	Results	RL	Method	Date Analyzed	Analyst
to-15 ug/m				EPA TO-15		
Carbon Tetrachloride	ug/m3	ND	6.3		03/20/09	WSD
Chlorobenzene	ug/m3	ND	4.6		03/20/09	WSD
Chlorodibromomethane	ug/m3	ND	8.6		03/20/09	WSD
Chloroethane	ug/m3	ND	2.7		03/20/09	WSD
Chloroform	ug/m3	ND	4.9		03/20/09	WSD
Chloromethane	ug/m3	ND	2.1		03/20/09	WSD
Cyclohexane	ug/m3	8.9	3.5		03/20/09	WSD
1,2-Dibromoethane	ug/m3	ND	7.6		03/20/09	WSD
1,2-Dichlorobenzene	ug/m3	ND	6.0		03/20/09	WSD
1,3-Dichlorobenzene	ug/m3	ND	6.0		03/20/09	WSD
1,4-Dichlorobenzene	ug/m3	ND	6.0		03/20/09	WSD
Dichlorodifluoromethane	ug/m3	ND	4.9		03/20/09	WSD
1,1-Dichloroethane	ug/m3	ND	4.1		03/20/09	WSD
1,2-Dichloroethane	ug/m3	ND	4.0		03/20/09	WSD
1,1-Dichloroethylene	ug/m3	ND	4.0		03/20/09	WSD
cis-1,2-Dichloroethylene	ug/m3	ND	4.0		03/20/09	WSD
t-1,2-Dichloroethylene	ug/m3	ND	4.0		03/20/09	WSD
1,2-Dichloropropane	ug/m3	ND	4.6		03/20/09	WSD
cis-1,3-Dichloropropene	ug/m3	ND	4.5		03/20/09	WSD
trans-1,3-Dichloropropene	ug/m3	ND	4.5		03/20/09	WSD
1,2-Dichlorotetrafluoroethane (114)	ug/m3	ND	7.0		03/20/09	WSD
Ethanol	ug/m3	420	1.9		03/20/09	WSD
Ethyl Acetate	ug/m3	ND	3.6		03/20/09	WSD
Ethylbenzene	ug/m3	35	4.4		03/20/09	WSD
4-Ethyl Toluene	ug/m3	16	5.0		03/20/09	WSD
n-Heptane	ug/m3	18	4.1		03/20/09	WSD
Hexachlorobutadiene	ug/m3	ND	11		03/20/09	WSD
Hexane	ug/m3	810	3.6		03/20/09	WSD
2-Hexanone	ug/m3	ND	4.1		03/20/09	WSD
Isopropanol	ug/m3	18	2.5		03/20/09	WSD
Methyl tert-Butyl Ether (MTBE)	ug/m3	ND	3.6		03/20/09	WSD
Methylene Chloride	ug/m3	ND	3.5		03/20/09	WSD
4-Methyl-2-Pentanone (MIBK)	ug/m3	ND	4.1		03/20/09	WSD
Propene	ug/m3	ND	1.8		03/20/09	WSD
Styrene	ug/m3	ND	4.3		03/20/09	WSD

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

^{* =} See end of report for comments and notes applying to this sample

[‡] See attached chain-of-custody record for time sampled

CHRIS BORON

GZA ENVIRONMENTAL - BUFFALO 535 WASHINGTON STREET, 11TH FLOOR

BUFFALO, NY 14203

Purchase Order No.:

3/23/2009

Page 8 of 13

Project Number: 21.0056445.0

LIMS-BAT #: LIMT-23960

Job Number: 21.0056445.0

Project Location: Date Received:

3/14/2009

Sample Matrix:

Field Sample #: POST CARBON

Sample ID:

09B07793

AIR

‡Sampled: 3/13/2009

Not Specified

Sample Medium : SUMMA

	Units	Results	RL	Method	Date Analyzed	Analyst
to-15 ug/m				EPA TO-15		
1,1,2,2-Tetrachloroethane	ug/m3	ND	6.8		03/20/09	WSD
Tetrachloroethylene	ug/m3	20	6.7		03/20/09	WSD
Tetrahydrofuran	ug/m3	ND	3.0		03/20/09	WSD
Toluene	ug/m3	520	3.8		03/20/09	WSD
1,2,4-Trichlorobenzene	ug/m3	ND	7.4		03/20/09	WSD
1,1,1-Trichloroethane	ug/m3	ND	5.4		03/20/09	WSD
1,1,2-Trichloroethane	ug/m3	ND	5.4		03/20/09	WSD
Trichloroethylene	ug/m3	ND	5.4		03/20/09	WSD
Trichlorofluoromethane	ug/m3	ND	5.6		03/20/09	WSD
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	ND -	7.6		03/20/09	WSD
1,2,4-Trimethylbenzene	ug/m3	24	5.0		03/20/09	WSD
1,3,5-Trimethylbenzene	ug/m3	11	5.0		03/20/09	WSD
Vinyl Acetate	ug/m3	ND	3.6		03/20/09	WSD
Vinyl Chloride	ug/m3	ND	2.6		03/20/09	WSD
m/p-Xylene	ug/m3	110	8.7		03/20/09	WSD
o-Xylene	ug/m3	31	4.4		03/20/09	WSD

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

^{* =} See end of report for comments and notes applying to this sample

[‡] See attached chain-of-custody record for time sampled

CHRIS BORON

GZA ENVIRONMENTAL - BUFFALO

535 WASHINGTON STREET, 11TH FLOOR

BUFFALO, NY 14203

Purchase Order No..

3/23/2009

Page 9 of 13

Project Number: 21.0056445.0 LIMS-BAT #: LIMT-23960

Job Number: 21.0056445.0

Project Location: Date Received:

3/14/2009

Field Sample #: PRE CARBON

Sample ID:

09B07791

‡Sampled: 3/13/2009

Not Specified

Sample Matrix: AIR Sample Medium : SUMMA

	Units	Results	RL	Method	Date Analyzed	Analyst
to-15 ppbv				EPA TO-15		
Acetone	PPBv	140	1.0		03/18/09	WSD
Benzene	PPBv	1.8	1.0		03/18/09	WSD
Benzyl Chloride	PPBv	ND	1.0		03/18/09	WSD
Bromodichloromethane	PPBv	ND	1.0		03/18/09	WSD
Bromoform	PPBv	ND	1.0		03/18/09	WSD
Bromomethane	PPBv	ND	1.0		03/18/09	WSD
1,3-Butadiene	PPBv	ND	1.0		03/18/09	WSD
2-Butanone (MEK)	PPBv	1.7	1.0		03/18/09	WSD
Carbon Disulfide	PPBv	ND	1.0		03/18/09	WSD
Carbon Tetrachloride	PPBv	ND	1.0		03/18/09	WSD
Chlorobenzene	PPBv	ND	1.0		03/18/09	WSD
Chlorodibromomethane	PPBv	ND	1.0		03/18/09	WSD
Chloroethane	PPBv	ND	1.0		03/18/09	WSD
Chloroform	PPBv	1.7	1.0		03/18/09	WSD
Chloromethane	PPBv	ND	1.0		03/18/09	WSD
Cyclohexane	PPBv	6.7	1.0		03/18/09	WSD
1,2-Dibromoethane	PPBv	ND	1.0		03/18/09	WSD
1,2-Dichlorobenzene	PPBv	ND	1.0		03/18/09	WSD
1,3-Dichlorobenzene	PPBv	ND	1.0		03/18/09	WSD
1,4-Dichlorobenzene	PPBv	ND	1.0		03/18/09	WSD
Dichlorodifluoromethane	PPBv	ND	1.0		03/18/09	WSD
1,1-Dichloroethane	PPBv	ND	1.0		03/18/09	WSD
1,2-Dichloroethane	PPB v	ND	1.0		03/18/09	WSD
1,1-Dichloroethylene	PPBv	13	1.0		03/18/09	WSD
cis-1,2-Dichloroethylene	PPBv	290	1.0		03/18/09	WSD
t-1,2-Dichloroethylene	PPBv	19	1.0		03/18/09	WSD
1,2-Dichloropropane	PPBv	ND	1.0		03/18/09	WSD
cis-1,3-Dichloropropene	PPBv	ND	1.0		03/18/09	WSD
trans-1,3-Dichloropropene	PPBv	ND	1.0		03/18/09	WSD
1,2-Dichlorotetrafluoroethane (114)	PPBv	ND	1.0		03/18/09	WSD
Ethanol	PPBv	340	1.0		03/18/09	WSD
Ethyl Acetate	PPBv	ND	1.0		03/18/09	WSD
Ethylbenzene	PPBv	ND	1.0		03/18/09	WSD
4-Ethyl Toluene	PPBv	ND	1.0		03/18/09	WSD
n-Heptane	PPBv	11	1.0		03/18/09	WSD
•						

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

^{* =} See end of report for comments and notes applying to this sample

[‡] See attached chain-of-custody record for time sampled

CHRIS BORON

GZA ENVIRONMENTAL - BUFFALO 535 WASHINGTON STREET, 11TH FLOOR

BUFFALO, NY 14203

Purchase Order No.:

3/23/2009

Page 10 of 13 Project Number: 21.0056445.0

LIMS-BAT #: LIMT-23960

Project Location:

Date Received: 3/14/2009

Job Number: 21.0056445.0

Field Sample #: PRE CARBON

Sample ID:

09B07791

‡Sampled: 3/13/2009

Not Specified

Sample Matrix:

AIR

Sample Medium : SUMMA

	Units	Results	RL	Method	Date Analyzed	Analyst
to-15 ppbv				EPA TO-15		
Hexachlorobutadiene	PPBv	ND	1.0		03/18/09	WSD
Hexane	PPBv	110	1.0		03/18/09	WSD
2-Hexanone	PPBv	ND	1.0		03/18/09	WSD
Isopropanol	PPBv	8.4	1.0		03/18/09	WSD
Methyl tert-Butyl Ether (MTBE)	PPBv	ND	1.0		03/18/09	WSD
Methylene Chloride	PPBv	3.5	1.0		03/18/09	WSD
4-Methyl-2-Pentanone (MIBK)	PPBv	ND	1.0		03/18/09	WSD
Propene	PPBv	ND	1.0		03/18/09	WSD
Styrene	PPBv	ND	1.0		03/18/09	WSD
1,1,2,2-Tetrachloroethane	PPBv	ND	1.0		03/18/09	WSD
Tetrachloroethylene	PPBv	1600	1.0		03/18/09	WSD
Tetrahydrofuran	PPBv	1.3	1.0		03/18/09	WSD
Toluene	PPBv	38	1.0		03/18/09	WSD
1,2,4-Trichlorobenzene	PPBv	ND	1.0		03/18/09	WSD
1,1,1-Trichloroethane	PPBv	ND	1.0		03/18/09	WSD
1,1,2-Trichloroethane	PPBv	1.1	1.0		03/18/09	WSD
Trichloroethylene	PPBv	330	1.0		03/18/09	WSD
Trichlorofluoromethane (Freon 11)	PPBv	ND	1.0		03/18/09	WSD
1,1,2-Trichloro-1,2,2-Trifluoroethane	PPBv	ND	1.0		03/18/09	WSD
1,2,4-Trimethylbenzene	PPBv	ND	1.0		03/18/09	WSD
1,3,5-Trimethylbenzene	PPBv	ND	1.0		03/18/09	WSD
Vinyl Acetate	PPBv	ND	1.0		03/18/09	WSD
Vinyl Chloride	PPBv	ND	1.0		03/18/09	WSD
m/p-Xylene	PPBv	ND	2.0		03/18/09	WSD
o-Xylene	PPBv	ND	1.0		03/18/09	WSD
to-15 ug/m				EPA TO-15		
Acetone	ug/m3	340	2.4		03/18/09	WSD
Benzene	ug/m3	5.7	3.2		03/18/09	WSD
Benzyl Chloride	ug/m3	ND	5.2		03/18/09	WSD
Bromodichloromethane	ug/m3	ND	6.7		03/18/09	WSD
Bromoform	ug/m3	ND	11		03/18/09	WSD
Bromomethane	ug/m3	ND	3.9		03/18/09	WSD
1,3-Butadiene	ug/m3	ND	2.3		03/18/09	WSD
2-Butanone (MEK)	ug/m3	4.9	3.0		03/18/09	WSD
Carbon Disulfide	ug/m3	ND	3.1		03/18/09	WSD

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

^{* =} See end of report for comments and notes applying to this sample

[‡] See attached chain-of-custody record for time sampled

CHRIS BORON

GZA ENVIRONMENTAL - BUFFALO

535 WASHINGTON STREET, 11TH FLOOR

BUFFALO, NY 14203 Project Location:

Purchase Order No.:

3/23/2009

Page 11 of 13

Project Number: 21.0056445.0 LIMS-BAT #: LIMT-23960

Job Number: 21.0056445.0

Field Sample #: PRE CARBON

Sample ID:

Date Received:

09B07791

3/14/2009

‡Sampled: 3/13/2009

Not Specified

Sample Matrix: AIR Sample Medium : SUMMA

	Units	Results	RL	Method	Date Analyzed	Analyst
to-15 ug/m				EPA TO-15		
Carbon Tetrachloride	ug/m3	ND	6.3		03/18/09	WSD
Chlorobenzene	ug/m3	ND	4.6		03/18/09	WSD
Chlorodibromomethane	ug/m3	ND	8.6		03/18/09	WSD
Chloroethane	ug/m3	ND	2.7		03/18/09	WSD
Chloroform	ug/m3	8.1	4.9		03/18/09	WSD
Chloromethane	ug/m3	ND	2.1		03/18/09	WSD
Cyclohexane	ug/m3	23	3.5		03/18/09	WSD
1,2-Dibromoethane	ug/m3	ND	7.6		03/18/09	WSD
1,2-Dichlorobenzene	ug/m3	ND	6.0		03/18/09	WSD
1,3-Dichlorobenzene	ug/m3	ND	6.0		03/18/09	WSD
1,4-Dichlorobenzene	ug/m3	ND	6.0		03/18/09	WSD
Dichlorodifluoromethane	ug/m3	ND	4.9		03/18/09	WSD
1,1-Dichloroethane	ug/m3	ND	4.1		03/18/09	WSD
1,2-Dichloroethane	ug/m3	ND	4.0		03/18/09	WSD
1,1-Dichloroethylene	ug/m3	51	4.0		03/18/09	WSD
cis-1,2-Dichloroethylene	ug/m3	1200	4.0		03/18/09	WSD
t-1,2-Dichloroethylene	ug/m3	76	4.0		03/18/09	WSD
1,2-Dichloropropane	ug/m3	ND	4.6		03/18/09	WSD
cis-1,3-Dichloropropene	ug/m3	ND	4.5		03/18/09	WSD
trans-1,3-Dichloropropene	ug/m3	ND	4.5		03/18/09	WSD
1,2-Dichlorotetrafluoroethane (114)	ug/m3	ND	7.0		03/18/09	WSD
Ethanol	ug/m3	650	1.9		03/18/09	WSD
Ethyl Acetate	ug/m3	ND	3.6		03/18/09	WSD
Ethylbenzene	ug/m3	ND	4.4		03/18/09	WSD
4-Ethyl Toluene	ug/m3	ND	5.0		03/18/09	WSD
n-Heptane	ug/m3	43	4.1		03/18/09	WSD
Hexachlorobutadiene	ug/m3	ND	11		03/18/09	WSD
Hexane	ug/m3	400	3.6		03/18/09	WSD
2-Hexanone	ug/m3	ND	4.1		03/18/09	WSD
Isopropanol	ug/m3	21	2.5		03/18/09	WSD
Methyl tert-Butyl Ether (MTBE)	ug/m3	ND	3.6		03/18/09	WSD
Methylene Chloride	ug/m3	12	3.5		03/18/09	WSD
4-Methyl-2-Pentanone (MIBK)	ug/m3	ND	4.1		03/18/09	WSD
Propene	ug/m3	ND	1.8		03/18/09	WSD
Styrene	ug/m3	ND	4.3		03/18/09	WSD

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

^{* =} See end of report for comments and notes applying to this sample

[‡] See attached chain-of-custody record for time sampled

CHRIS BORON

GZA ENVIRONMENTAL - BUFFALO 535 WASHINGTON STREET, 11TH FLOOR

BUFFALO, NY 14203

Purchase Order No.:

3/23/2009

Project Number: 21.0056445.0

Page 12 of 13

LIMS-BAT #: LIMT-23960

Project Location:

Date Received: 3/14/2009

Job Number: 21.0056445.0

Field Sample #: PRE CARBON

Sample ID:

09B07791

‡Sampled: 3/13/2009

Not Specified

Sample Matrix: AIR Sample Medium : SUMMA

	Units	Results	RL	Method	Date Analyzed	Analyst
to-15 ug/m				EPA TO-15		
1,1,2,2-Tetrachloroethane	ug/m3	ND	6.8		03/18/09	WSD
Tetrachloroethylene	ug/m3	11000	6.7		03/18/09	WSD
Tetrahydrofuran	ug/m3	3.7	3.0		03/18/09	WSD
Toluene	ug/m3	140	3.8		03/18/09	WSD
1,2,4-Trichlorobenzene	ug/m3	ND	7.4		03/18/09	WSD
1,1,1-Trichloroethane	ug/m3	ND	5.4		03/18/09	WSD
1,1,2-Trichloroethane	ug/m3	6.0	5.4		03/18/09	WSD
Trichloroethylene	ug/m3	1800	5.4		03/18/09	WSD
Trichlorofluoromethane	ug/m3	ND	5.6		03/18/09	WSD
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	ND	7.6		03/18/09	WSD
1,2,4-Trimethylbenzene	ug/m3	ND	5.0		03/18/09	WSD
1,3,5-Trimethylbenzene	ug/m3	ND	5.0		03/18/09	WSD
Vinyl Acetate	ug/m3	ND	3.6		03/18/09	WSD
Vinyl Chloride	ug/m3	ND	2.6		03/18/09	WSD
m/p-Xylene	ug/m3	ND	8.7		03/18/09	WSD
o-Xylene	ug/m3	ND	4.4		03/18/09	WSD

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

- * = See end of report for comments and notes applying to this sample
- ‡ See attached chain-of-custody record for time sampled

CHRIS BORON

GZA ENVIRONMENTAL - BUFFALO 535 WASHINGTON STREET, 11TH FLOOR

3/14/2009

BUFFALO, NY 14203

Project Location:

Date Received:

Purchase Order No.:

3/23/2009

Page 13 of 13

Project Number: 21.0056445.0 LIMS-BAT #: LIMT-23960 Job Number: 21.0056445.0

** END OF REPORT **

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

* = See end of report for comments and notes applying to this sample

‡ See attached chain-of-custody record for time sampled

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

trans-1,3-Dichloropropene

Standard Reference Materials and Duplicates Method Blanks

LIMT-23960 3/23/2009 Lims Bat #: Page 1 of 14 Report Date: QC Batch Number: BATCH-16276 Sample Id Analysis QC Analysis Values Units Limits 09B07791 83.37 4-Bromofluorobenzene Surrogate Recovery % 70-130 09B07792 4-Bromofluorobenzene Surrogate Recovery 94.87 70-130 09B07793 4-Bromofluorobenzene Surrogate Recovery 87.12 % 70-130 BLANK-130874 Acetone Blank < 0.60 ug/m3 Benzene Blank <0.80 ug/m3 Carbon Tetrachloride Blank <1.6 ug/m3 Chloroform Blank <1.3 ug/m3 1.2-Dichloroethane Blank <1.0 ug/m3 ug/m3 1,4-Dichlorobenzene Blank <1.5 Ethyl Acetate Blank <0.90 ug/m3 Ethylbenzene Blank <1.1 ug/m3 Hexane Blank <0.88 ug/m3 Isopropanol Blank <0.62 ug/m3 2-Butanone (MEK) Blank < 0.74 ug/m3 4-Methyl-2-Pentanone (MIBK) Blank <1.1 ug/m3 Styrene Blank <1.1 ug/m3 Tetrachloroethylene Blank <1.7 ug/m3 Toluene Blank < 0.94 ug/m3 1,1,1-Trichloroethane Blank <1.4 ug/m3 Trichloroethylene Blank <1.4 ug/m3 1,1,2-Trichloro-1,2,2-Trifluoroethane Blank <1.9 ug/m3 Trichlorofluoromethane Blank <1.4 ug/m3 o-Xylene Blank ug/m3 <1.1 m/p-Xylene Blank <2.2 ug/m3 1,2-Dichlorobenzene Blank <1.5 ug/m3 1,3-Dichlorobenzene Blank <1.5 ug/m3 Blank 1.1-Dichloroethane <1.1 ug/m3 1,1-Dichloroethylene Blank < 0.98 ug/m3 Ethanol Blank < 0.47 ug/m3 4-Ethyl Toluene Blank <1.3 ug/m3 Methyl tert-Butyl Ether (MTBE) Blank <0.90 ug/m3 t-1,2-Dichloroethylene Blank <0.98 ug/m3 Vinyl Chloride Blank < 0.64 ug/m3 Methylene Chloride Blank <0.86 ug/m3 Chlorobenzene Blank <1.2 ug/m3 Chloromethane Blank < 0.51 ug/m3 Bromomethane Blank < 0.96 ug/m3 Chloroethane Blank < 0.66 ug/m3 cis-1,3-Dichloropropene Blank <1.2 ug/m3

Blank

<1.2

ug/m3

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	3/23/2009 Lims E	Bat # : LIMT-23960	Page 2 of 14		
C Batch Number		OC Applyaia	Malana	11-20	
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LANK-130874	Chlaradibramamathana	Disale			
	Chlorodibromomethane	Blank	<2.2	ug/m3	
	1,1,2-Trichloroethane	Blank	<1.4	ug/m3	
	Bromoform	Blank	<2.6	ug/m3	
	1,1,2,2-Tetrachloroethane	Blank	<1.7	ug/m3	
	Hexachlorobutadiene	Blank	<2.7	ug/m3	
	1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	Blank	<1.9	ug/m3	
		Blank	<1.3	ug/m3	
	1,3,5-Trimethylbenzene	Blank	<1.3	ug/m3	
	Cyclohexane	Blank	<0.86	ug/m3	
	cis-1,2-Dichloroethylene	Blank	<0.98	ug/m3	
	1,2-Dichloropropane	Blank	<1.2	ug/m3	
	Dichlorodifluoromethane	Blank	<1.3	ug/m3	
	Benzyl Chloride Carbon Disulfide	Blank	<1.3	ug/m3	
		Blank	<0.78	ug/m3	
	Vinyl Acetate	Blank	<0.88	ug/m3	
	2-Hexanone	Blank	<1.1	ug/m3	
	Bromodichloromethane	Blank	<1.7	ug/m3	
	1,2-Dibromoethane	Blank	<1.9	ug/m3	
	n-Heptane	Blank	<1.1	ug/m3	
	1,2-Dichlorotetrafluoroethane (114)	Blank	<1.8	ug/m3	
	Tetrahydrofuran	Blank	<0.74	ug/m3	
	Propene	Blank	<0.43	ug/m3	
LANK-130875	1,3-Butadiene	Blank	<0.56	ug/m3	
LAINK-1300/5	Acetone	Blank	-0.00		
	Benzene	Blank	<0.60	ug/m3	
	Carbon Tetrachloride	Blank	<0.80	ug/m3	
	Chloroform	Blank	<1.6 <1.3	ug/m3	
	1,2-Dichloroethane	Blank	<1.0	ug/m3	
	1,4-Dichlorobenzene	Blank	<1.5	ug/m3 ug/m3	
	Ethyl Acetate	Blank	<0.90	ug/m3 ug/m3	
	Ethylbenzene	Blank	<1.1	ug/m3	
	Hexane	Blank	<0.88	ug/m3	
	Isopropanol	Blank	<0.62	-	
	2-Butanone (MEK)	Blank	<0.74	ug/m3 ug/m3	
	4-Methyl-2-Pentanone (MIBK)	Blank	<1.1	ug/m3	
	Styrene	Blank	<1.1	Ü	
	Tetrachloroethylene	Blank	<1.7	ug/m3 ug/m3	
	Toluene	Blank	<0.94	_	
	1,1,1-Trichloroethane	Blank		ug/m3	
	Trichloroethylene	Blank	<1.4	ug/m3	
	1,1,2-Trichloro-1,2,2-Trifluoroethane	Blank	<1.4	ug/m3	
	Trichlorofluoromethane	Blank	<1.9 <1.4	ug/m3 ug/m3	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:		s Bat #: LIMT-23960		Page 3	of 14
QC Batch Number	BATCH-16276				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
BLANK-130875					
	o-Xylene	Blank	<1.1	ug/m3	
	m/p-Xylene	Blank	<2.2	ug/m3	
	1,2-Dichlorobenzene	Blank	<1.5	ug/m3	
	1,3-Dichlorobenzene	Blank	<1.5	ug/m3	
	1,1-Dichloroethane	Blank	<1.1	ug/m3	
	1,1-Dichloroethylene	Blank	<0.98	ug/m3	
	Ethanol	Blank	< 0.47	ug/m3	
	4-Ethyl Toluene	Blank	<1.3	ug/m3	
	Methyl tert-Butyl Ether (MTBE)	Blank	<0.90	ug/m3	
	t-1,2-Dichloroethylene	Blank	<0.98	ug/m3	
	Vinyl Chloride	Blank	<0.64	ug/m3	
	Methylene Chloride	Blank	<0.86	ug/m3	
	Chlorobenzene	Blank	<1.2	ug/m3	
	Chloromethane	Blank	<0.51	ug/m3	
	Bromomethane	Blank	< 0.96	ug/m3	
	Chloroethane	Blank	< 0.66	ug/m3	
	cis-1,3-Dichloropropene	Blank	<1.2	ug/m3	
	trans-1,3-Dichloropropene	Blank	<1.2	ug/m3	
	Chlorodibromomethane	Blank	<2.2	ug/m3	
	1,1,2-Trichloroethane	Blank	<1.4	ug/m3	
	Bromoform	Blank	<2.6	ug/m3	
	1,1,2,2-Tetrachloroethane	Blank	<1.7	ug/m3	
	Hexachlorobutadiene	Blank	<2.7	ug/m3	
	1,2,4-Trichlorobenzene	Blank	<1.9	ug/m3	
	1,2,4-Trimethylbenzene	Blank	<1.3	ug/m3	
	1,3,5-Trimethylbenzene	Blank	<1.3	ug/m3	
	Cyclohexane	Blank	<0.86	ug/m3	
	cis-1,2-Dichloroethylene	Blank	<0.98	ug/m3	
	1,2-Dichloropropane	Blank	<1.2	ug/m3	
	Dichlorodifluoromethane	Blank	<1.3	ug/m3	
	Benzyl Chloride	Blank	<1.3	ug/m3	
	Carbon Disulfide	Blank	<0.78	ug/m3	
	Vinyl Acetate	Blank	<0.88	ug/m3	
	2-Hexanone	Blank	<1.1	ug/m3	
	Bromodichloromethane	Blank	<1.7	ug/m3	
	1,2-Dibromoethane	Blank	<1.9	ug/m3	
	n-Heptane	Blank	<1.1	ug/m3	
	1,2-Dichlorotetrafluoroethane (114)	Blank	<1.8	ug/m3	
	Tetrahydrofuran	Blank	< 0.74	ug/m3	
	Propene	Blank	< 0.43	ug/m3	
	1,3-Butadiene	Blank	< 0.56	ug/m3	
LFBLANK-93081				-	
	Acetone	Lab Fort Blank Amt.	11.87	ug/m3	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	3/23/2009	Lims Bat # : LIMT-23960	Page 4 of 14		
QC Batch Number		00.4			
Sample Id	Analysis	QC Analysis	Values	Units	Limits
FBLANK-93081		Lab Ford Dilla Face of			
	Acetone	Lab Fort Blk. Found	12.34	ug/m3	
	Denmana	Lab Fort Blank Aret	103.94	%	50-150
	Benzene	Lab Fort Blank Amt.	15.95	ug/m3	
		Lab Fort Blk. Found	11.19	ug/m3	
	Cashan Tatraahlarida	Lab Fort Black Acet	70.19	%	70-130
	Carbon Tetrachloride	Lab Fort Blank Amt. Lab Fort Blk. Found	31.45	ug/m3	
			35.37	ug/m3	70.400
	Chloroform	Lab Fort Blk. % Rec. Lab Fort Blank Amt.	112.48	%	70-130
	Chlorolom		24.33	ug/m3	
		Lab Fort Blk. Found Lab Fort Blk. % Rec.	23.14	ug/m3	70.400
	1,2-Dichloroethane		95.11	% .ua/m2	70-130
	1,2-DIGNIOI DECHANE	Lab Fort Blank Amt. Lab Fort Blk, Found	20.24	ug/m3	
			20.63	ug/m3	70.400
	1,4-Dichlorobenzene	Lab Fort Blk. % Rec. Lab Fort Blank Amt.	101.94	% ua/m2	70-130
	1,4-Dictiloroberizerie	Lab Fort Blk. Found	30.06	ug/m3	
		Lab Fort Blk. % Rec.	34.78	ug/m3	70.400
	Ethyl Acatata		115.72	%	70-130
	Ethyl Acetate	Lab Fort Blank Amt. Lab Fort Blk. Found	18.01	ug/m3	
		Lab Fort Blk. % Rec.	17.92	ug/m3	50.450
	Ethylhonzono	Lab Fort Blank Amt.	99.48	%	50-150
	Ethylbenzene	Lab Fort Blk. Found	21.67	ug/m3	
		Lab Fort Blk. % Rec.	18.19	ug/m3	70.400
	Hexane	Lab Fort Blank Amt.	83.92 17.62	% ug/m2	70-130
	Tiexarie	Lab Fort Blk. Found	19.02	ug/m3 ug/m3	
		Lab Fort Blk. % Rec.	107.98	ug/1113 %	70-130
	Isopropanol	Lab Fort Blank Amt.	12.28	ug/m3	70-130
	(copi oparior	Lab Fort Blk. Found	15.44	ug/m3	
		Lab Fort Blk. % Rec.	125.66	ug/m3 %	50-150
	2-Butanone (MEK)	Lab Fort Blank Amt.	14.74	ug/m3	30-130
		Lab Fort Blk. Found	14.43	ug/m3	
		Lab Fort Blk. % Rec.	97.90	%	70-130
	4-Methyl-2-Pentanone (MIBK)	Lab Fort Blank Amt.	20.48	ug/m3	75-100
	men, 2 · smanene (men)	Lab Fort Blk. Found	20.06	ug/m3	
		Lab Fort Blk. % Rec.	97.93	%	70-130
	Styrene	Lab Fort Blank Amt.	21.26	ug/m3	70-130
	2.3. 55	Lab Fort Blk. Found	19.13	ug/m3	
		Lab Fort Blk. % Rec.	89.95	%	70-130
	Tetrachloroethylene	Lab Fort Blank Amt.	33.90	ug/m3	70-130
	. Strading courty lend	Lab Fort Blk. Found	34.23	ug/m3	
		Lab Fort Blk. % Rec.	100.98	wymis %	70-130
	Toluene	Lab Fort Blank Amt.	18.81	ug/m3	70-130
	Jouene	Lab Fort Blk. Found	14.57	ug/m3	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	3/23/2009 Lims Ba	Page 5 of 14			
QC Batch Number:	BATCH-16276				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
_FBLANK-93081					
	Toluene	Lab Fort Blk. % Rec.	77.48	%	70-130
	1,1,1-Trichloroethane	Lab Fort Blank Amt.	27.28	ug/m3	
		Lab Fort Blk. Found	26.43	ug/m3	
		Lab Fort Blk. % Rec.	96.92	%	70-130
	Trichloroethylene	Lab Fort Blank Amt.	26.87	ug/m3	
	•	Lab Fort Blk. Found	23.05	ug/m3	
		Lab Fort Blk. % Rec.	85.78	%	70-130
	1,1,2-Trichloro-1,2,2-Trifluoroethane	Lab Fort Blank Amt.	38.31	ug/m3	
		Lab Fort Blk. Found	42.21	ug/m3	
		Lab Fort Blk. % Rec.	110.16	%	70-130
	Trichlorofluoromethane	Lab Fort Blank Amt.	28.09	ug/m3	
		Lab Fort Blk. Found	34.31	ug/m3	
		Lab Fort Blk. % Rec.	122.14	%	70-130
	o-Xylene	Lab Fort Blank Amt.	21.71	ug/m3	
		Lab Fort Blk. Found	19.55	ug/m3	
		Lab Fort Blk. % Rec.	90.02	%	70-130
	m/p-Xylene	Lab Fort Blank Amt.	43.43	ug/m3	
		Lab Fort Blk. Found	36.51	ug/m3	
		Lab Fort Blk. % Rec.	84.06	%	70-130
	1,2-Dichlorobenzene	Lab Fort Blank Amt.	30.06	ug/m3	
		Lab Fort Blk. Found	35.61	ug/m3	
		Lab Fort Blk. % Rec.	118.46	%	70-130
	1,3-Dichlorobenzene	Lab Fort Blank Amt.	30.06	ug/m3	
		Lab Fort Blk. Found	35.69	ug/m3	
		Lab Fort Blk. % Rec.	118.74	%	70-130
	1,1-Dichloroethane	Lab Fort Blank Amt.	20.24	ug/m3	
		Lab Fort Blk. Found	15.87	ug/m3	
		Lab Fort Blk. % Rec.	78.42	%	70-130
	1,1-Dichloroethylene	Lab Fort Blank Amt.	19.83	ug/m3	
		Lab Fort Blk. Found	20.31	ug/m3	
		Lab Fort Blk. % Rec.	102.40	%	70-130
	Ethanol	Lab Fort Blank Amt.	9.42	ug/m3	
		Lab Fort Blk. Found	11.13	ug/m3	
		Lab Fort Blk. % Rec.	118.19	%	50-150
	4-Ethyl Toluene	Lab Fort Blank Amt.	24.58	ug/m3	
		Lab Fort Blk. Found	24.98	ug/m3	
		Lab Fort Blk. % Rec.	101.66	%	50-150
	Methyl tert-Butyl Ether (MTBE)	Lab Fort Blank Amt.	18.02	ug/m3	
		Lab Fort Blk. Found	16.46	ug/m3	
		Lab Fort Blk. % Rec.	91.31	%	70-130
	t-1,2-Dichloroethylene	Lab Fort Blank Amt.	19.82	ug/m3	
	-	Lab Fort Blk. Found	16.66	ug/m3	
		Lab Fort Blk. % Rec.	84.05	%	70-130

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	3/23/2009	Lims Bat #: LIMT-23960	_	Page 6	0 01 14
QC Batch Number	r: BATCH-16276				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
FBLANK-93081					
	Vinyl Chloride	Lab Fort Blank Amt.	12.78	ug/m3	
		Lab Fort Blk. Found	11.26	ug/m3	
		Lab Fort Blk. % Rec.	88.12	%	70-130
	Methylene Chloride	Lab Fort Blank Amt.	17.36	ug/m3	
		Lab Fort Blk. Found	19.42	ug/m3	
		Lab Fort Blk. % Rec.	111.86	%	70-130
	Chlorobenzene	Lab Fort Blank Amt.	23.02	ug/m3	
		Lab Fort Blk. Found	20.82	ug/m3	
		Lab Fort Blk. % Rec.	90.41	%	70-130
	Chloromethane	Lab Fort Blank Amt.	10.32	ug/m3	
		Lab Fort Blk. Found	9.49	ug/m3	
		Lab Fort Blk. % Rec.	91.92	%	70-130
	Bromomethane	Lab Fort Blank Amt.	19.40	ug/m3	
		Lab Fort Blk. Found	19.77	ug/m3	
		Lab Fort Blk. % Rec.	101.90	%	70-130
	Chloroethane	Lab Fort Blank Amt.	13.19	ug/m3	. 5 100
		Lab Fort Blk. Found	12.00	ug/m3	
		Lab Fort Blk. % Rec.	91.03	%	70-130
	cis-1,3-Dichloropropene	Lab Fort Blank Amt.	22.69	ug/m3	.0 100
	.,	Lab Fort Blk. Found	18.46	ug/m3	
		Lab Fort Blk. % Rec.	81.34	%	70-130
	trans-1,3-Dichloropropene	Lab Fort Blank Amt.	22.69	ug/m3	70-100
		Lab Fort Blk. Found	20.52	ug/m3	
		Lab Fort Blk. % Rec.	90.40	%	70-130
	Chlorodibromomethane	Lab Fort Blank Amt.	42.59	ug/m3	. 5 , 55
		Lab Fort Blk. Found	49.72	ug/m3	
		Lab Fort Blk. % Rec.	116.74	%	70-130
	1,1,2-Trichloroethane	Lab Fort Blank Amt.	27.28	ug/m3	. 5 . 5 5
		Lab Fort Blk. Found	21.66	ug/m3	
		Lab Fort Blk. % Rec.	79.41	%	70-130
	Bromoform	Lab Fort Blank Amt.	51.69	ug/m3	
		Lab Fort Blk. Found	71.52	ug/m3	
		Lab Fort Blk. % Rec.	138.36	%	70-130
	1,1,2,2-Tetrachloroethane	Lab Fort Blank Amt.	34.33	ug/m3	
		Lab Fort Blk. Found	29.59	ug/m3	
		Lab Fort Blk. % Rec.	86.19	%	70-130
	Hexachlorobutadiene	Lab Fort Blank Amt.	53.33	ug/m3	
		Lab Fort Blk. Found	65.95	ug/m3	
		Lab Fort Blk. % Rec.	123.66	%	70-130
	1,2,4-Trichlorobenzene	Lab Fort Blank Amt.	37.10	ug/m3	. 5 . 30
	, -,	Lab Fort Blk. Found	43.74	ug/m3	
		Lab Fort Blk. % Rec.	117.90	%	70-130
	1,2,4-Trimethylbenzene	Lab Fort Blank Amt.	24.58	ug/m3	. 0 100

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	3/23/2009 L	ims Bat #: LIMT-23960		Page 7	7 of 14
QC Batch Number:	BATCH-16276				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
FBLANK-93081			_		
	1,2,4-Trimethylbenzene	Lab Fort Blk. Found	24.04	ug/m3	
		Lab Fort Blk. % Rec.	97.81	%	70-130
	1,3,5-Trimethylbenzene	Lab Fort Blank Amt.	24.58	ug/m3	
		Lab Fort Blk. Found	23.87	ug/m3	
		Lab Fort Blk. % Rec.	97.12	%	70-130
	Cyclohexane	Lab Fort Blank Amt.	17.21	ug/m3	
		Lab Fort Blk. Found	16.30	ug/m3	
		Lab Fort Blk. % Rec.	94.73	%	50-150
	cis-1,2-Dichloroethylene	Lab Fort Blank Amt.	19.82	ug/m3	
		Lab Fort Blk. Found	16.95	ug/m3	
		Lab Fort Blk. % Rec.	85.51	%	70-130
	1,2-Dichloropropane	Lab Fort Blank Amt.	23.10	ug/m3	
		Lab Fort Blk. Found	15.07	ug/m3	
		Lab Fort Blk. % Rec.	65.25	%	70-130
	Dichlorodifluoromethane	Lab Fort Blank Amt.	24.72	ug/m3	
		Lab Fort Blk. Found	27.32	ug/m3	
		Lab Fort Blk. % Rec.	110.50	%	70-130
	Benzyl Chloride	Lab Fort Blank Amt.	25.88	ug/m3	
		Lab Fort Blk. Found	28.51	ug/m3	
		Lab Fort Blk. % Rec.	110.16	%	70-130
	Carbon Disulfide	Lab Fort Blank Amt.	15.57	ug/m3	
		Lab Fort Blk. Found	14.26	ug/m3	
		Lab Fort Blk. % Rec.	91.64	%	70-130
	Vinyl Acetate	Lab Fort Blank Amt.	17.60	ug/m3	
		Lab Fort Blk. Found	18.36	ug/m3	
		Lab Fort Blk. % Rec.	104.30	%	70-130
	2-Hexanone	Lab Fort Blank Amt.	20.48	ug/m3	
		Lab Fort Blk. Found	19.87	ug/m3	
		Lab Fort Blk. % Rec.	97.01	%	50-150
	Bromodichloromethane	Lab Fort Blank Amt.	33.50	ug/m3	
		Lab Fort Blk. Found	32.24	ug/m3	
		Lab Fort Blk. % Rec.	96.24	%	70-130
	1,2-Dibromoethane	Lab Fort Blank Amt.	38.42	ug/m3	
		Lab Fort Blk. Found	34.64	ug/m3	
		Lab Fort Blk. % Rec.	90.16	%	70-130
	n-Heptane	Lab Fort Blank Amt.	20.49	ug/m3	
		Lab Fort Blk. Found	15.49	ug/m3	
		Lab Fort Blk. % Rec.	75.62	%	50-150
	1,2-Dichlorotetrafluoroethane (11	4) Lab Fort Blank Amt.	34.95	ug/m3	
		Lab Fort Blk. Found	36.12	ug/m3	
		Lab Fort Blk. % Rec.	103.34	%	70-130
	Tetrahydrofuran	Lab Fort Blank Amt.	14.74	ug/m3	
		Lab Fort Blk. Found	14.77	ug/m3	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	3/23/2009	Lims Bat #: LIMT-23960	Page 8 of 14		
QC Batch Numbe	er: BATCH-16276				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
FBLANK-93081	1				
	Tetrahydrofuran	Lab Fort Blk. % Rec.	100.18	%	50-150
	Propene	Lab Fort Blank Amt.	8.60	ug/m3	
		Lab Fort Blk. Found	7.96	ug/m3	
		Lab Fort Blk. % Rec.	92.54	%	50-150
	1,3-Butadiene	Lab Fort Blank Amt.	11.06	ug/m3	
		Lab Fort Blk. Found	12.72	ug/m3	
		Lab Fort Blk. % Rec.	115.02	%	70-130
FBLANK-93082	2				
	Acetone	Lab Fort Blank Amt.	11.87	ug/m3	
		Lab Fort Blk. Found	12.34	ug/m3	
		Lab Fort Blk. % Rec.	103.94	%	50-150
	Benzene	Lab Fort Blank Amt.	15.95	ug/m3	
		Lab Fort Blk. Found	11.19	ug/m3	
		Lab Fort Blk. % Rec.	70.19	%	70-130
	Carbon Tetrachloride	Lab Fort Blank Amt.	31.45	ug/m3	
		Lab Fort Blk. Found	35.37	ug/m3	
		Lab Fort Blk. % Rec.	112.48	%	70-130
	Chloroform	Lab Fort Blank Amt.	24.33	ug/m3	
		Lab Fort Blk. Found	23.14	ug/m3	
		Lab Fort Blk. % Rec.	95.11	%	70-130
	1,2-Dichloroethane	Lab Fort Blank Amt.	20.24	ug/m3	
		Lab Fort Blk. Found	20.63	ug/m3	
		Lab Fort Blk. % Rec.	101.94	%	70-130
	1,4-Dichlorobenzene	Lab Fort Blank Amt.	30.06	ug/m3	
		Lab Fort Blk. Found	34.78	ug/m3	
		Lab Fort Blk. % Rec.	115.72	%	70-130
	Ethyl Acetate	Lab Fort Blank Amt.	18.01	ug/m3	
		Lab Fort Blk. Found	17.92	ug/m3	
		Lab Fort Blk. % Rec.	99.48	%	50-150
	Ethylbenzene	Lab Fort Blank Amt.	21.67	ug/m3	
		Lab Fort Blk. Found	18.19	ug/m3	
		Lab Fort Blk. % Rec.	83.92	%	70-130
	Hexane	Lab Fort Blank Amt.	17.62	ug/m3	
		Lab Fort Blk. Found	19.02	ug/m3	
		Lab Fort Blk. % Rec.	107.98	%	70-130
	Isopropanol	Lab Fort Blank Amt.	12.28	ug/m3	
		Lab Fort Blk. Found	15.44	ug/m3	
		Lab Fort Blk. % Rec.	125.66	%	50-150
	2-Butanone (MEK)	Lab Fort Blank Amt.	14.74	ug/m3	
		Lab Fort Blk. Found	14.43	ug/m3	
		Lab Fort Blk. % Rec.	97.90	%	70-130
	4-Methyl-2-Pentanone (MIBK)	Lab Fort Blank Amt.	20.48	ug/m3	
	-	Lab Fort Blk. Found	20.06	ug/m3	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	3/23/2009 Lims B	at #: LIMT-23960	Page 9 of 14		
QC Batch Numbe	r: BATCH-16276				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
FBLANK-93082					
	4-Methyl-2-Pentanone (MIBK)	Lab Fort Blk. % Rec.	97.93	%	70-130
	Styrene	Lab Fort Blank Amt.	21.26	ug/m3	
		Lab Fort Blk. Found	19.13	ug/m3	
		Lab Fort Blk. % Rec.	89.95	%	70-130
	Tetrachloroethylene	Lab Fort Blank Amt.	33.90	ug/m3	
		Lab Fort Blk. Found	34.23	ug/m3	
		Lab Fort Blk. % Rec.	100.98	%	70-130
	Toluene	Lab Fort Blank Amt.	18.81	ug/m3	
		Lab Fort Blk. Found	14.57	ug/m3	
		Lab Fort Blk. % Rec.	77.48	%	70-130
	1,1,1-Trichloroethane	Lab Fort Blank Amt.	27.28	ug/m3	
		Lab Fort Blk. Found	26.43	ug/m3	
		Lab Fort Blk. % Rec.	96.92	%	70-130
	Trichloroethylene	Lab Fort Blank Amt.	26.87	ug/m3	
		Lab Fort Blk. Found	23.05	ug/m3	
		Lab Fort Blk. % Rec.	85.78	%	70-130
	1,1,2-Trichloro-1,2,2-Trifluoroethane	Lab Fort Blank Amt.	38.31	ug/m3	
		Lab Fort Blk. Found	42.21	ug/m3	
		Lab Fort Blk. % Rec.	110.16	%	70-130
	Trichlorofluoromethane	Lab Fort Blank Amt.	28.09	ug/m3	
		Lab Fort Blk. Found	34.31	ug/m3	
		Lab Fort Blk. % Rec.	122.14	%	70-130
	o-Xylene	Lab Fort Blank Amt.	21.71	ug/m3	
		Lab Fort Blk. Found	19.55	ug/m3	
		Lab Fort Blk. % Rec.	90.02	%	70-130
	m/p-Xylene	Lab Fort Blank Amt.	43.43	ug/m3	
		Lab Fort Blk. Found	36.51	ug/m3	
		Lab Fort Blk. % Rec.	84.06	%	70-130
	1,2-Dichlorobenzene	Lab Fort Blank Amt.	30.06	ug/m3	
		Lab Fort Blk. Found	35.61	ug/m3	
		Lab Fort Blk. % Rec.	118.46	%	70-130
	1,3-Dichlorobenzene	Lab Fort Blank Amt.	30.06	ug/m3	
		Lab Fort Blk. Found	35.69	ug/m3	
		Lab Fort Blk. % Rec.	118.74	%	70-130
	1,1-Dichloroethane	Lab Fort Blank Amt.	20.24	ug/m3	
		Lab Fort Blk. Found	15.87	ug/m3	
		Lab Fort Blk. % Rec.	78.42	%	70-130
	1,1-Dichloroethylene	Lab Fort Blank Amt.	19.83	ug/m3	
		Lab Fort Blk. Found	20.31	ug/m3	
		Lab Fort Blk. % Rec.	102.40	%	70-130
	Ethanol	Lab Fort Blank Amt.	9.42	ug/m3	
		Lab Fort Blk. Found	11.13	ug/m3	
		Lab Fort Blk. % Rec.	118.19	%	50-150

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Standard Reference Materials and Duplicates

Report Date:	3/23/2009	Lims Bat #: LIMT-23960	Page 10 of 14		
QC Batch Number	BATCH-16276				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
FBLANK-93082					
	4-Ethyl Toluene	Lab Fort Blank Amt.	24.58	ug/m3	
		Lab Fort Blk. Found	24.98	ug/m3	
		Lab Fort Blk. % Rec.	101.66	%	50-150
	Methyl tert-Butyl Ether (MTBE)	Lab Fort Blank Amt.	18.02	ug/m3	
		Lab Fort Blk. Found	16.46	ug/m3	
		Lab Fort Blk. % Rec.	91.31	%	70-130
	t-1,2-Dichloroethylene	Lab Fort Blank Amt.	19.82	ug/m3	
		Lab Fort Blk. Found	16.66	ug/m3	
		Lab Fort Blk. % Rec.	84.05	%	70-130
	Vinyl Chloride	Lab Fort Blank Amt.	12.78	ug/m3	
		Lab Fort Blk. Found	11.26	ug/m3	
		Lab Fort Blk. % Rec.	88.12	%	70-130
	Methylene Chloride	Lab Fort Blank Amt.	17.36	ug/m3	
		Lab Fort Blk. Found	19.42	ug/m3	
		Lab Fort Blk. % Rec.	111.86	%	70-130
	Chlorobenzene	Lab Fort Blank Amt.	23.02	ug/m3	
		Lab Fort Blk. Found	20.82	ug/m3	
		Lab Fort Blk. % Rec.	90.41	%	70-130
	Chloromethane	Lab Fort Blank Amt.	10.32	ug/m3	
		Lab Fort Blk. Found	9.49	ug/m3	
		Lab Fort Blk. % Rec.	91.92	%	70-130
	Bromomethane	Lab Fort Blank Amt.	19.40	ug/m3	
		Lab Fort Blk. Found	19.77	ug/m3	
		Lab Fort Blk. % Rec.	101.90	%	70-130
	Chloroethane	Lab Fort Blank Amt.	13.19	ug/m3	
		Lab Fort Blk. Found	12.00	ug/m3	
		Lab Fort Blk. % Rec.	91.03	%	70-130
	cis-1,3-Dichloropropene	Lab Fort Blank Amt.	22.69	ug/m3	
		Lab Fort Blk. Found	18.46	ug/m3	
		Lab Fort Blk. % Rec.	81. 34	%	70-130
	trans-1,3-Dichloropropene	Lab Fort Blank Amt.	22.69	ug/m3	
		Lab Fort Blk. Found	20.52	ug/m3	
		Lab Fort Blk. % Rec.	90.40	%	70-130
	Chlorodibromomethane	Lab Fort Blank Amt.	42.59	ug/m3	
		Lab Fort Blk. Found	49.72	ug/m3	
		Lab Fort Blk. % Rec.	116.74	%	70-130
	1,1,2-Trichloroethane	Lab Fort Blank Amt.	27.28	ug/m3	
		Lab Fort Blk. Found	21.66	ug/m3	
		Lab Fort Blk. % Rec.	79.41	%	70-130
	Bromoform	Lab Fort Blank Amt.	51.69	ug/m3	
		Lab Fort Blk. Found	71.52	ug/m3	
		Lab Fort Blk. % Rec.	138.36	%	70-130
	1,1,2,2-Tetrachloroethane	Lab Fort Blank Amt.	34.33	ug/m3	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	3/23/2009	Lims Bat #: LIMT-23960	Page 11 of 14		
QC Batch Numbe	r: BATCH-16276				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-93082					
	1,1,2,2-Tetrachloroethane	Lab Fort Blk. Found	29.59	ug/m3	
		Lab Fort Blk. % Rec.	86.19	%	70-130
	Hexachlorobutadiene	Lab Fort Blank Amt.	53.33	ug/m3	
		Lab Fort Blk. Found	65.95	ug/m3	
		Lab Fort Blk. % Rec.	123.66	%	70-130
	1,2,4-Trichlorobenzene	Lab Fort Blank Amt.	37.10	ug/m3	
		Lab Fort Blk. Found	43.74	ug/m3	
		Lab Fort Blk. % Rec.	117.90	%	70-130
	1,2,4-Trimethylbenzene	Lab Fort Blank Amt.	24.58	ug/m3	
		Lab Fort Blk. Found	24.04	ug/m3	
		Lab Fort Blk. % Rec.	97.81	%	70-130
	1,3,5-Trimethylbenzene	Lab Fort Blank Amt.	24.58	ug/m3	
		Lab Fort Blk. Found	23.87	ug/m3	
		Lab Fort Blk. % Rec.	97.12	%	70-130
	Cyclohexane	Lab Fort Blank Amt.	17.21	ug/m3	
		Lab Fort Blk. Found	16.30	ug/m3	
		Lab Fort Blk. % Rec.	94.73	%	50-150
	cis-1,2-Dichloroethylene	Lab Fort Blank Amt.	19.82	ug/m3	
		Lab Fort Blk. Found	16.95	ug/m3	
		Lab Fort Blk. % Rec.	85.51	%	70-130
	1,2-Dichloropropane	Lab Fort Blank Amt.	23.10	ug/m3	
		Lab Fort Blk. Found	15.07	ug/m3	
		Lab Fort Blk. % Rec.	65.25	%	70-130
	Dichlorodifluoromethane	Lab Fort Blank Amt.	24.72	ug/m3	
		Lab Fort Blk. Found	27.32	ug/m3	
		Lab Fort Blk. % Rec.	110.50	%	70-130
	Benzyl Chloride	Lab Fort Blank Amt.	25.88	ug/m3	
		Lab Fort Blk. Found	28.51	ug/m3	
		Lab Fort Blk. % Rec.	110.16	%	70-130
	Carbon Disulfide	Lab Fort Blank Amt.	15.57	ug/m3	
		Lab Fort Blk. Found	14.26	ug/m3	
		Lab Fort Blk. % Rec.	91.64	%	70-130
	Vinyl Acetate	Lab Fort Blank Amt.	17.60	ug/m3	
		Lab Fort Blk. Found	18.36	ug/m3	
		Lab Fort Blk. % Rec.	104.30	%	70-130
	2-Hexanone	Lab Fort Blank Amt.	20.48	ug/m3	
		Lab Fort Blk. Found	19.87	ug/m3	
		Lab Fort Blk. % Rec.	97.01	%	50-150
	Bromodichloromethane	Lab Fort Blank Amt.	33.50	ug/m3	
		Lab Fort Blk. Found	32.24	ug/m3	
		Lab Fort Blk. % Rec.	96.24	%	70-130
	1,2-Dibromoethane	Lab Fort Blank Amt.	38.42	ug/m3	
		Lab Fort Blk. Found	34.64	ug/m3	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	3/23/2009 Lims	Bat #: LIMT-23960		Page 1	2 of 14
QC Batch Number:	BATCH-16276				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-93082					
	1,2-Dibromoethane	Lab Fort Blk. % Rec.	90.16	%	70-130
	n-Heptane	Lab Fort Blank Amt.	20.49	ug/m3	
		Lab Fort Blk. Found	15.49	ug/m3	
		Lab Fort Blk. % Rec.	75.62	%	50-150
	1,2-Dichlorotetrafluoroethane (114)	Lab Fort Blank Amt.	34.95	ug/m3	
		Lab Fort Blk. Found	36.12	ug/m3	
		Lab Fort Blk. % Rec.	103.34	%	70-130
	Tetrahydrofuran	Lab Fort Blank Amt.	14.74	ug/m3	
		Lab Fort Blk. Found	14.77	ug/m3	
		Lab Fort Blk. % Rec.	100.18	%	50-150
	Propene	Lab Fort Blank Amt.	8.60	ug/m3	
		Lab Fort Blk. Found	7.96	ug/m3	
		Lab Fort Blk. % Rec.	92.54	%	50-150
	1,3-Butadiene	Lab Fort Blank Amt.	11.06	ug/m3	
		Lab Fort Blk. Found	12.72	ug/m3	
		Lab Fort Blk. % Rec.	115.02	%	70-130

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Method Blanks

Report Date:

3/23/2009

Lims Bat #: L

LIMT-23960

Page 13 of 14

NOTES:

QC Batch No. : Sample ID :

BATCH-16276 LFBLANK-93081

Analysis

1,2-Dichloropropane

LABORATORY FORTIFIED BLANK RECOVERY OUTSIDE OF CONTROL LIMITS. ANY REPORTED RESULT FOR THIS COMPOUND IN THIS BATCH IS LIKELY TO BE BIASED ON THE LOW SIDE.

QC Batch No. :

BATCH-16276

Sample ID :

LFBLANK-93081

Analysis

Bromoform

LABORATORY FORTIFIED BLANK RECOVERY OUTSIDE OF CONTROL LIMITS. DATA VALIDATION IS NOT AFFECTED SINCE ALL RESULTS ARE "NOT DETECTED" FOR ALL SAMPLES IN THIS BATCH FOR THIS COMPOUND AND BIAS IS ON THE HIGH SIDE.

QC Batch No.:

BATCH-16276

Sample ID : Analysis :

LFBLANK-93082 1,2-Dichloropropane

LABORATORY FORTIFIED BLANK RECOVERY OUTSIDE OF CONTROL LIMITS. ANY REPORTED RESULT FOR THIS COMPOUND IN THIS BATCH IS LIKELY TO BE BIASED ON THE LOW SIDE.

QC Batch No.:

BATCH-16276

Sample ID :

LFBLANK-93082

Analysis

Bromoform

LABORATORY FORTIFIED BLANK RECOVERY OUTSIDE OF CONTROL LIMITS. DATA VALIDATION IS NOT AFFECTED SINCE ALL RESULTS ARE "NOT DETECTED" FOR ALL SAMPLES IN THIS BATCH FOR THIS COMPOUND AND BIAS IS ON THE HIGH SIDE.

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Method Blanks

Report Date:

3/23/2009

Lims Bat #: LIMT-23960

Page 14 of 14

QUALITY CONTROL DEFINITIONS AND ABBREVIATIONS

QC BATCH NUMBER

This is the number assigned to all samples analyzed together that would be subject to comparison with a particular set of Quality Control Data.

LIMITS

Upper and Lower Control Limits for the QC ANALYSIS Reported. All values normally would fall within these statistically determined limits, unless there is an unusual circumstance that would be documented in a NOTE appearing on the last page of the QC SUMMARY REPORT. Not all QC results will have Limits defined.

Sample Amount

Amount of analyte found in a sample.

Blank

Method Blank that has been taken though all the steps of the

analysis.

LFBLANK

Laboratory Fortified Blank (a control sample)

STDADD

Standard Added (a laboratory control sample)

Matrix Spk Amt Added MS Amt Measured Matrix Spike % Rec. Amount of analyte spiked into a sample Amount of analyte found including amount that was spiked

% Recovery of spiked amount in sample.

Duplicate Value Duplicate RPD

The result from the Duplicate analysis of the sample.

The Relative Percent Difference between two Duplicate Analyses.

Surrogate Recovery

The % Recovery for non-environmental compounds (surrogates) spiked into samples to determine the performance of the analytical methods.

Sur. Recovery (ELCD)

Surrogate Recovery on the Electrolytic Conductivity Detector. Surrogate Recovery on the Photoionization Detector.

Standard Measured Standard Amt Added Standard % Recovery

Sur. Recovery (PID)

Amount measured for a laboratory control sample Known value for a laboratory control sample

% recovered for a laboratory control sample with a known value.

Lab Fort Blank Amt Lab Fort Blk. Found Lab Fort Blk % Rec Laboratory Fortified Blank Amount Added Laboratory Fortified Blank Amount Found Laboratory Fortified Blank % Recovered

Laboratory Fortified Blank & Recovered

Dup Lab Fort Bl Amt

Duplicate Laboratory Fortified Blank Amount Added

Dup Lab Fort Bl Fnd

Duplicate Laboratory Fortified Blank Amount Found

Dup Lab Fort Bl & Rec

Duplicate Laboratory Fortified Blank & Recovery

Laboratory Fortified Blank Range (Absolute value)

Laboratory Fortified Blank Range (Absolute value of difference between recoveries for Lab Fortified Blank and Lab Fortified Blank Duplicate).

Lab Fort Bl. Av. Rec.

Laboratory Fortified Blank Average Recovery

Duplicate Sample Amt MSD Amount Added MSD Amt Measured MSD % Recovery MSD Range Sample Value for Duplicate used with Matrix Spike Duplicate

Matrix Spike Duplicate Amount Added (Spiked) Matrix Spike Duplicate Amount Measured

Matrix Spike Duplicate % Recovery

Absolute difference between Matrix Spike and Matrix Spike

Duplicate Recoveries

Con-Kst. ANALYTICAL LABORATORY

Phone: 413-525-2332 AIR SAMPLE CHAIN OF CUSTODY

RECORD

Fax: 413-525-6405 Email: info@contestlabs.com

EAST LONGMEADOW, MA 01028 39 SPRUCE ST

õ

Page

Summa canisters will be flow controllers must be Reg 4003 + 4010 serphing was compaste in less than 10 seconds returned within 14 days of receipt or rental fees retained for a minimum Controller sampling date prior to 4000 4010 400A completely, sign, date Summa canisters and and retain the yellow Flow Ω of 14 days after Please fill out CLIENT COMMENTS: Regulations were to be sent for & wein offer (1370 **Media Codes: will apply. (K) cleaning. Surnma Canister S=summa can TB=tedlar bag 15 C=cassette 0 = Other P-PUF T=tube F= filter 0 0 0 한 = IA= INDOOR AIR SS = SUB SLAB 22 AMB=AMBIENT SG= SOIL GAS K *Matrix Code: BL = BLANK D = DUP REQUESTED **ANALYSIS** 51-01 メ × × Special Requirements Matrix Code* 0 0 Data Enhancement/RCP? OY MIN 0 Enhanced Data Package DY XN ONLY USE WHEN USING PUMPS Liters or Volume (Surchage Applies) Required Detection Limits:_ Email: Charthe bacon Cara ton DATA DELIVERY (check one): DFAX YEMAIL CIWEBSITE CLIENT Flow Rate Minutes M³/Min. or L/Min. Project # 74 - 0056445. 0 Regulations:_ Telephone: (716) 844-7046 Sampled Other:_ Totai 2/13/09 Date Sampled Stop Turnaround ** 20% □ *72-Hr □ *4-Day 0 *24-Hr 0 *48-Hr 10-Day Other 7-Day *Approval Required Date Time Client PO# स्टिश् इ अस्तिक 3/12/10/2 Fax # : Start ررمه Date Time 2 S S 109/00/19 Company Name: GZA CICOENVIVONNOCATOR ड्राड्राक Date/Time: Date/Time: Date/Time: Date/Time: Media Lab # 535 Washington St À Joseph Stran Proposal Provided? (For Billing purposes) 1 th Floor proposal date Sample Description Relinquished by: (signature) ed by (signature) くるくして Solva eceived by: Astgnature) Received by: (signature) Laboratory Comments: Project Location: Sampled By: Field ID Attention. WW. Address: to

TURNAROUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT.

AIHA, NELAC & WBE/DBE Certified

United States

My UPS Shipping Tracking

Freight

Locations

Support

Bu:

Tracking

Track Shipments

Track by Reference Track by E-mail Signature Tracking Import Tracking Numbers

Wireless Tracking Track with Quantum View Access Flex Global View Integrate Tracking Tools Void a Shipment &

Search Support

Enter a keyword:

Track Shipments

Track Packages & Freight Quantum View Flex Global View

Tracking Summary

Printer Friendi

1Z 75R 4V2 22 1002 338 1 Tracking Number:

→ View package progress

Type: Package Status: Delivered 13 Delivered On: 03/14/2009

9:57 A.M.

Delivered To: ELONGMEADOW, MA, US

Signed By: **COLLINS** Service: **NEXT DAY AIR**

Tracking results provided by UPS: 03/16/2009 9:56 A.M. ET

Printer Friendly D

NOTICE: UPS authorizes you to use UPS tracking systems solely to track shipme tendered by or for you to UPS for delivery and for no other purpose. Any other ustracking systems and information is strictly prohibited.

Getting Started

How To Register for My UPS

How To Open a UPS

Account

How To Ship How To Track

Deliveries and the UPS

InfoNotice

Subscribe to E-mail

Modify E-mail Preferences

View Examples

ups.com Register Log In A Shipping Tracking Freight

Locations Support

Business Solutions Site Guide

About UPS

UPS Global

UPS Careers

Support

E-mail UPS

Contact UPS

Privacy Policy

Trademarks

of Service

Web Site Terms of

UPS Tariff/Terms.

Copyright © 1994-2009 United Parcel Service of America, Inc. All rights reserved.

www.contestlabs.com

East Longmeadow, MA Phone: 1-413-525-2332 Fax: 1-413-525-6405

AIR ONLY RECEIPT CHECKLIST

JENT NAME:	GCA		
CEIVED BY:	KM	DATE	03/14/09
Was chain of custody relinque Does Chain agree with samp		YES	NO NO
If not, explain:		The second secon	
All Samples in good condition	n?	XES	NO
If not, explain:			
Are there any on hold sample	es?YES NO STO	ORED WHERE:	
ARE THERE ANY RUSH OF NOTIFIED? DA	ATETIME	Permission to sub-co	ontract samples? Yes No (circle)
CONTAINERS SENT TO CON- Summa cans Tedlar Bags Regulators Restrictors Tubes Other	TEST # of containers		v) if not already approved
Was all media (used & unu Were all returned summa o AIR Lab Outbound excel sl Vere the Lab ID's documen	cans, restrictors, & reg heet? nted in the Air Lab O	gulators docun	nented as returned in the sheet?
Vas the job documented in	the Air Lab Log-In A	ceess butubus	· ·
Vas the job documented in boratory comments:	the Air Lab Log-In A		

CENTEK LABORATORIES, LLC

www.CentekLabs.com

143 Midler Park Drive * Syracuse, NY 13206 Phone (315) 431-9750 * Emergency 24/7 (315) 416-2752

Analytical Report

NYSDOH ELAP Certificate No. 11890

Mr. Chris Boron GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203

TEL: 716-685-2300 FAX: 716-685-3629 RE: Delphi Bldg/D

Dear Mr. Chris Boron:

Thursday, April 16, 2009 Order No.: C0904016

Centek Laboratories, LLC received 3 sample(s) on 4/13/2009 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Centek Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service.

Please contact your client service representative at (315) 431-9730, if you would like any additional information regarding this report.

Thank you for using Centek Laboratories. This report can not be reproduced except in its entirety, without prior written authorization.

Sincerely.

19/x

Russell J. Pellegrino Technical Director

Page 1 of 17

Date: 05-May-10

CASE NARRATIVE

CLIENT:

GZA GeoEnvironmental of NY

Project:

~Delphi Bldg/D

Lab Order:

C0904016

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Page 2 of 17

Centek I aboratories, I.I.C.		Chain of Custody	vbo	Sile Name: Not 1. 18(1), 17	1,17	Detection Limit	Report Level
				Drojoot 21 Past 40		Frankte	
143 Midler Park Drive Syracuse, NY 13206				Project: 77: 05 50 4.1.	0):0	oppoor 1ug/w3	Level II
Phone: 315-431-9730 Fax: 315-431-9731		Emergency: 315-416-2751 / 416-2752	116-2752	Other:		===	
Shrinaround Time: One	AT le %	Company:	A GASTAN	GZA GEO EMITTANMENTEL FIN	Company	,	
	0% 4	Report: 5'35	SS Washington	ster St.	Invoice:		
⊉ Business Days ☐	35%.		II	7			
9-Business Days	20%	M	とうらく とうきょう	147.63		DIAMPA A	
Z Business Days Next Day by 5pm	100%		116-1894-70410	212	Phone:		
Next Day by Noon	150%		ai*		Fax:		
Same Day	200%	Email: church	Grander. Longer	1920. Low	Email:		
Sample ID	Date Sampled	Canister Number	Regulator Analysis Number	Analysis Request		Comments	Vacuum Start/Stop
P. Calar	4/9/19	4/8	173	5)-01	935 ght	945 JA	0 80%
1 3	4/2/09	431	277	70-15	434 "	945 "	20 - 22
Post Carbon	4/9/09	120	451	10-15	934 "	945 "	0 / 62
			-				-
	-						
				•			

	•						
Chain of Custody	Print Name		Signafure,		Date/Time Courier:	Courier:	
Sampled by:			TAX	Suar		UPS	
Relinquished by:	M)				Jel CIL		. www.CentekLabs.com
Received at Lab by:	Van 500 1	1	The state of the s		*		

j

Centek Laboratories, LLC

Date: 05-May-10

CLIENT:

GZA GeoEnvironmental of NY

Project:

Delphi Bldg/D

Lab Order:

C0904016

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
C0904016-001A	Pre Carbon	418,173	4/9/2009	4/13/2009
C0904016-002A	Mid Carbon	431,277	4/9/2009	4/13/2009
C0904016-003A	Post Carbon	159,451	4/9/2009	4/13/2009

Centek La	Centek Laboratories, LLC				05-May-10	
Lab Order: Client: Project:	C0904016 GZA GeoEnvironmental of NY Delphi Bldg/D	ntal of NY			DATES REPORT	${f T}$
Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date Prep Date	Analysis Date
C0904016-001A	Pre Carbon	4/9/2009	Air	1ug/M3 by Method TO15		4/15/2009
				lug/M3 by Method TO15		4/15/2009
				Iug/M3 by Methad TO15		4/15/2009
				lug/M3 by Method TO15		4/15/2009
C0904016-002A	Mid Carbon			lug/M3 by Method TO15		4/16/2009
				1ug/M3 by Method TO15		4/15/2009
				1ug/M3 by Method TO15		4/15/2009
C0904016-003A	Post Carbon			lug/M3 by Method TO15		4/16/2009
				1ug/M3 by Method TO15		4/15/2009
				1ug/M3 by Method TO15		4/15/2009

Analytical Report

Date: 05-May-10

CLIENT: Lab Order: GZA GeoEnvironmental of NY

C0904016

Project:

Delphi Bldg/D

Lab ID:

C0904016-001A

Client Sample ID: Pre Carbon

Tag Number: 418,173

ang itumber. 410,175

Collection Date: 4/9/2009

Matrix: AIR

Analyses	Result	**Limit Qua	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab's Vacuum Reading	-3		"Hg		4/13/2009
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
1,1,2-Trichloroethane	0.54	0.15	ppbV	1	4/15/2009 8:38:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
1,1-Dichloroethene	3.8	1.5	ppbV	10	4/15/2009 12:18:00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
1,2,4-Trimethylbenzene	0.25	0.15	ppbV	1	4/15/2009 8:38:00 AM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
1,3,5-Trimethylbenzene	0.10	0.15	J ppbV	1	4/15/2009 8:38:00 AM
1,3-butadiene	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
1,4-Dichlorobenzene	0.39	0.15	ppbV	1	4/15/2009 8:38:00 AM
1.4-Dioxane	< 0.30	0.30	ppbV	1	4/15/2009 8:38:00 AM
2,2,4-trimethylpentane	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
4-ethyltoluene	0.11		J ppbV	1	4/15/2009 8:38:00 AM
Acetone	210	73	ppbV	243	4/15/2009 8:35:00 PM
Allyl chloride	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Benzene	0.86	0.15	ppbV	1	4/15/2009 8:38:00 AM
Benzyl chloride	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Bromodichloromethane	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Bromoform	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Bromomethane	< 0.15	0.15	ppbV	i	4/15/2009 8:38:00 AM
Carbon disulfide	0.34	0.15	ppbV	1	4/15/2009 8:38:00 AM
Carbon tetrachloride	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Chlorobenzene	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Chloroform	1.3	0.15	ppbV	1	4/15/2009 8:38:00 AM
Chloromethane	0.40	0.15	ppbV	1	4/15/2009 8:38:00 AM
cis-1,2-Dichloroethene	100	36	ppbV	243	4/15/2009 8:35:00 PM
•	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
cis-1,3-Dichloropropene	7.3	1.5	Vdqq	10	
Cyclohexane	< 0.15	0,15	Vdqq	10	4/15/2009 12:18:00 AM
Dibromochloromethane	2.5	2.5		•	4/15/2009 8:38:00 AM
Ethyl acetate	2.5	2.5	ppbV	10	4/15/2009 12:18:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- Pages 6 Non-Toutine analyte. Quantitation estimated. Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 05-May-10

Client Sample ID: Pre Carbon

Tag Number: 418,173

CLIENT: GZA GeoEnvironmental of NY

Lab Order: C0904016

Project: Delphi Bldg/D Collection Date: 4/9/2009

Lab ID: C0904016-001A Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-18	5		Analyst: RJP
Ethylbenzene	0.27	0.15	ppbV	1	4/15/2009 8:38:00 AM
Freon 11	0.26	0.15	ppbV	1	4/15/2009 8:38:00 AM
Freon 113	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Freon 114	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Freon 12	0.46	0.15	ppbV	1	4/15/2009 8:38:00 AM
Heptane	5.8	1.5	ppbV	10	4/15/2009 12:18:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Hexane	92	36	ppbV	243	4/15/2009 8:35:00 PM
Isopropyl alcohol	21	1.5	ppbV	10	4/15/2009 12:18:00 AM
m&p-Xylene	1.6	0.30	ppbV	1	4/15/2009 8:38:00 AM
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	4/15/2009 8:38:00 AM
Methyl Ethyl Ketone	< 0.30	0.30	ppbV	1	4/15/2009 8:38:00 AM
Methyl Isobutyl Ketone	< 0.30	0.30	ppbV	1	4/15/2009 8:38:00 AM
Methyl tert-butyl ether	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Methylene chloride	5.0	1.5	ppbV	10	4/15/2009 12:18:00 AM
o-Xylene	0.41	0.15	ppbV	1	4/15/2009 8:38:00 AM
Propylene	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Styrene	0.14	0.15	J ppbV	1	4/15/2009 8:38:00 AM
Tetrachloroethylene	3200	360	ppbV	2430	4/15/2009 8:01:00 PM
Tetrahydrofuran	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Toluene	68	36	ppbV	243	4/15/2009 8:35:00 PM
trans-1,2-Dichloroethene	8.4	1.5	ppbV	10	4/15/2009 12:18:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Trichloroethene	97	36	ppbV	243	4/15/2009 8:35:00 PM
Vinyl acetate	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Vinyl Bromide	< 0.15	0.15	ppbV	1	4/15/2009 8:38:00 AM
Vinyl chloride	0.21	0.15	ppbV	1	4/15/2009 8:38:00 AM
Surr: Bromofluorobenzene	124	70-130	%REC	1	4/15/2009 8:38:00 AM

Qualifiers:

Page 7 Spik Recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

^{*} Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

Date: 05-May-10

CLIENT: GZA GeoEnvironmental of NY

Lab Order: C0904016

Project: Delphi Bldg/D

Lab ID: C0904016-002A

Client Sample ID: Mid Carbon

Tag Number: 431,277

Collection Date: 4/9/2009

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab's Vacuum Reading	-3		"Hg		4/13/2009
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
1,1-Dichloroethene	21	1.5	ppbV	10	4/15/2009 12:51:00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
1,2,4-Trimethylbenzene	0.14	0.15 J	ppb∨	1	4/15/2009 7:30:00 AM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	ppb∨	1	4/15/2009 7:30:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
1.3-butadiene	< 0.15	0.15	Vdqq	1	4/15/2009 7:30:00 AM
1,3-Dichlorobenzene	< 0.15	0.15	Vdqq	1	4/15/2009 7:30:00 AM
1,4-Dichlorobenzene	0.30	0.15	ppbV	1	4/15/2009 7:30:00 AM
1,4-Dioxane	< 0.30	0.30	ppbV	1	4/15/2009 7:30:00 AM
2,2,4-trimethylpentane	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
4-ethyltoluene	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Acetone	68	27	ppbV	90	4/16/2009 9:17:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Benzene	0.25	0.15	ppbV	1	4/15/2009 7:30:00 AM
Benzyl chloride	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Bromodichloromethane	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Bromoform	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Bromomethane	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Carbon disulfide	0.64	0.15	ppbV	1	4/15/2009 7:30:00 AM
Carbon tetrachloride	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Chlorobenzene	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Ghloroform	0.11	0.15 J	ppbV	1	4/15/2009 7:30:00 AM
Chloromethane	0.33	0.15	ppbV	1	4/15/2009 7:30:00 AM
cis-1,2-Dichloroethene	1.1	0.15	ppbV	1	4/15/2009 7:30:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Cyclohexane	1.5	0.15	ppbV	1	4/15/2009 7:30:00 AM
Dibromochloromethane	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Ethyl acetate	1.7	0.25	ppbV	1	4/15/2009 7:30:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- Pages 8 Non-routine analyte. Quantitation estimated.
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 05-May-10

CLIENT: GZA GeoEnvironmental of NY

Lab Order: C0904016

Project: Delphi Bldg/D

Lab ID: C0904016-002A

Client Sample ID: Mid Carbon

Tag Number: 431,277

Collection Date: 4/9/2009

Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-	15		Analyst: RJP
Ethylbenzene	0.15	0.15	ppb∨	1	4/15/2009 7:30:00 AM
Freon 11	0.56	0.15	₽₽bV	1	4/15/2009 7:30:00 AM
Freon 113	< 0.15	0.15	ppb∨	1	4/15/2009 7:30:00 AM
Freon 114	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Freon 12	0.44	0.15	ppbV	1	4/15/2009 7:30:00 AM
Heptane	2.0	0.15	₽₽bV	1	4/15/2009 7:30:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15	₽₽bV	1	4/15/2009 7:30:00 AM
Hexane	17	14	ppbV	90	4/16/2009 9:17:00 AM
Isopropyl alcohol	14	1.5	ppbV	10	4/15/2009 12:51:00 AM
m&p-Xylene	0.41	0.30	ppbV	1	4/15/2009 7:30:00 AM
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	4/15/2009 7:30:00 AM
Methyl Ethyl Ketone	13	3.0	ppbV	10	4/15/2009 12:51:00 AM
Methyl Isobutyl Ketone	0.25	0.30	J ppbV	1	4/15/2009 7:30:00 AM
Methyl tert-butyl ether	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Methylene chloride	6.1	1.5	ppbV	10	4/15/2009 12:51:00 AM
o-Xylene	0.12	0.15	J ppbV	1	4/15/2009 7:30:00 AM
Propylene	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Styrene	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Tetrachloroethylene	3.7	1.5	ppbV	10	4/15/2009 12:51:00 AM
Tetrahydrofuran	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Toluene	33	14	ppbV	90	4/16/2009 9:17:00 AM
trans-1,2-Dichloroethene	0.38	0.15	ppbV	1	4/15/2009 7:30:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Trichloroethene	0.25	0.15	ppbV	1	4/15/2009 7:30:00 AM
Vinyl acetate	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Vinyl Bromide	< 0.15	0.15	ppbV	1	4/15/2009 7:30:00 AM
Vinyl chloride	0.21	0.15	ppbV	1	4/15/2009 7:30:00 AM
Surr: Bromofluorobenzene	89.0	70-130	%REC	1	4/15/2009 7:30:00 AM

Qualifiers:

^{**} Reporting Limit

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Pages 9 Non-routine analyte. Quantitation estimated. Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

Analytical Report

Date: 05-May-10

CLIENT:

GZA GeoEnvironmental of NY

Lab Order:

C0904016

Project:

Delphi Bldg/D

Lab ID:

C0904016-003A

Client Sample ID: Post Carbon

Tag Number: 159,451

rag Number: 139,43

Collection Date: 4/9/2009

Matrix: AIR

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab's Vacuum Reading	-3		"Hg		4/13/2009
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
1,2,4-Trimethylbenzene	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
1.3-butadiene	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
1,4-Dichlorobenzene	0.28	0.15	ppbV	1	4/15/2009 8:04:00 AM
1,4-Dioxane	< 0.30	0.30	ppb∨	1	4/15/2009 8:04:00 AM
2,2,4-trimethylpentane	< 0.15	0,15	ppb∨	1	4/15/2009 8:04:00 AM
4-ethyltoluene	< 0.15	0.15	∨dqq	1	4/15/2009 8:04:00 AM
Acetone	59	27	ppbV	90	4/16/2009 9:50:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
Benzene	0.20	0.15	ppbV	1	4/15/2009 8:04:00 AM
Benzyl chloride	< 0.15	0.15	ppb∨	1	4/15/2009 8:04:00 AM
Bromodichloromethane	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
Bromoform	< 0.15	0.15	ррЬ∨	1	4/15/2009 8:04:00 AM
Bromomethane	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
Carbon disulfide	0.15	0.15	₽₽bV	1	4/15/2009 8:04:00 AM
Carbon tetrachloride	< 0.15	0.15	ppb∨	1	4/15/2009 8:04:00 AM
Chlorobenzene	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
Chloroethane	< 0.15	0.15	₽₽₽V	1	4/15/2009 8:04:00 AM
Chloroform	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
Chloromethane	0.43	0.15	ppbV	1	4/15/2009 8:04:00 AM
cis-1,2-Dichloroethene	0.12	0.15	J ppbV	1	4/15/2009 8:04:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15	ppb∨	1	4/15/2009 8:04:00 AM
Cyclohexane	< 0.15	0.15	ppb∨	1	4/15/2009 8:04:00 AM
Dibromochloromethane	< 0.15	0.15	ppbV	1	4/15/2009 8:04:00 AM
Ethyl acetate	D.97	0.25	ppb∨	1	4/15/2009 8:04:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 10 Non-routine analyte. Quantitation estimated.

- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 5 of 6

Date: 05-May-10

Client Sample ID: Post Carbon

Tag Number: 159,451

CLIENT: GZA GeoEnvironmental of NY

Lab Order: C0904016

Project: Delphi Bldg/D Collection Date: 4/9/2009

Lab ID: C0904016-003A Matrix: AIR

Dan ID.				17166	ti iv. i titi	
Analyses	Result	**Limit Q	ual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	15			Analyst: RJP
Ethylbenzene	0.13	0.15	J	ppbV	1	4/15/2009 8:04:00 AM
Freon 11	0.13	0.15	J	ppbV	1	4/15/2009 8:04:00 AM
Freon 113	< 0.15	0.15		ppbV	1	4/15/2009 8:04:00 AM
Freon 114	< 0.15	0.15		ppbV	1	4/15/2009 8:04:00 AM
Freon 12	0.50	0.15		ppbV	1	4/15/2009 8:04:00 AM
Heptane	1.3	0.15		ppbV	1	4/15/2009 8:04;00 AM.
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	4/15/2009 8:04:00 AM
Hexane	20	14		ppbV	90	4/16/2009 9:50:00 AM
Isopropyl alcohol	11	1.5		ppbV	10	4/15/2009 1:24:00 AM
m&p-Xylene	0.29	0.30	J	ppbV	1	4/15/2009 8:04:00 AM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	4/15/2009 8:04:00 AM
Methyl Ethyl Ketone	< 0.30	0.30		ppbV	1	4/15/2009 8:04:00 AM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	4/15/2009 8:04:00 AM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	4/15/2009 8:04:00 AM
Methylene chloride	15	1.5		ppbV	10	4/15/2009 1:24:00 AM
o-Xylene	< 0.15	0.15		ppbV	1	4/15/2009 8:04:00 AM
Propylene	< 0.15	0.15		ppbV	1	4/15/2009 8:04:00 AM
Styrene	< 0.15	0.15		ppbV	1	4/15/2009 8:04:00 AM
Tetrachloroethylene	0.88	0.15		ppbV	1	4/15/2009 8:04:00 AM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	4/15/2009 8:04:00 AM
Toluene	23	14		ppbV	90	4/16/2009 9:50:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/15/2009 8:04:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	4/15/2009 8:04:00 AM
Trichloroethene	0.15	0.15		ppbV	1	4/15/2009 8:04:00 AM
Vinyl acetate	< 0.15	0.15		ppbV	1	4/15/2009 8:04:00 AM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/15/2009 8:04:00 AM
Vinyl chloride	0.21	0.15		ppbV	1	4/15/2009 8:04:00 AM
Surr: Bromofluorobenzene	94.0	70-130		%REC	1	4/15/2009 8:04:00 AM

Qualifiers:

Pages 1 Spike Recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

^{*} Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

Analytical Report

Date: 05-May-10

CLIENT: GZA GeoEr

GZA GeoEnvironmental of NY

Client Sample ID: Pre Carbon

Lab Order:

C0904016

Tag Number: 418,173

Project:

Delphi Bldg/D

Collection Date: 4/9/2009

Lab ID: C0904016-001A

Matrix: AIR

C070-010-0017			IVI	IIIX: AIK	
Analyses	Result	**Limit Qua	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83	ug/m3	1	4/15/2009 8:38:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/15/2009 8:38:00 AM
1,1,2-Trichloroethane	3.0	0.83	ug/m3	1	4/15/2009 8:38:00 AM
1,1-Dichloroethane	< 0.62	0.62	ug/m3	1	4/15/2009 8:38:00 AM
1,1-Dichloroethene	15	6.0	ug/m3	10	4/15/2009 12:18:00 AM
1,2,4-Trichlorobenzene	< 1 .1	1.1	ug/m3	1	4/15/2009 8:38:00 AM
1,2,4-Trimethylbenzene	1.2	0.75	ug/m3	1	4/15/2009 8:38:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/15/2009 8:38:00 AM
1,2-Dichlorobenzene	< 0.92	0.92	ug/m3	1	4/15/2009 8:38:00 AM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	4/15/2009 8:38:00 AM
1,2-Dichloropropane	< 0.70	0.70	ug/m3	1	4/15/2009 8:38:00 AM
1,3,5-Trimethylbenzene	0.50	0.75 J	ug/m3	1	4/15/2009 8:38:00 AM
1,3-butadiene	< 0.34	0.34	ug/m3	1	4/15/2009 8:38:00 AM
1,3-Dichlorobenzene	< 0.92	0.92	ug/m3	1	4/15/2009 8:38:00 AM
1,4-Dichlorobenzene	2.4	0.92	ug/m3	1	4/15/2009 8:38:00 AM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/15/2009 8:38:00 AM
2,2,4-trimethylpentane	< 0.71	0.71	ug/m3	1	4/15/2009 8:38:00 AM
4-ethyltoluene	0.55	0.75 J	ug/m3	1	4/15/2009 8:38:00 AM
Acetone	500	180	ug/m3	243	4/15/2009 8:35:00 PM
Allyl chloride	< 0.48	0.48	ug/m3	1	4/15/2009 8:38:00 AM
Benzene	2.8	0.49	ug/m3	1	4/15/2009 8:38:00 AM
Benzyl chloride	< 0.88	0.88	ug/m3	1	4/15/2009 8:38:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/15/2009 8:38:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	4/15/2009 8:38:00 AM
Bromomethane	< 0.59	0.59	ug/m3	1	4/15/2009 8:38:00 AM
Carbon disulfide	1.1	0.47	ug/m3	1	4/15/2009 8:38:00 AM
Carbon tetrachloride	< 0.96	0.96	ug/m3	1	4/15/2009 8:38:00 AM
Chlorobenzene	< 0.70	0.70	ug/m3	1	4/15/2009 8:38:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/15/2009 8:38:00 AM
Chloroform	6.3	0.74	ug/m3	1	4/15/2009 8:38:00 AM
Chloromethane	0.84	0.31	ug/m3	1	4/15/2009 8:38:00 AM
cis-1,2-Dichloroethene	410	150	ug/m3	243	4/15/2009 8:35:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	4/15/2009 8:38:00 AM
Cyclohexane	26	5.2	ug/m3	10	4/15/2009 12:18:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/15/2009 8:38:00 AM
Ethyl acetate	9.2	9.2	ug/m3	10	4/15/2009 12:18:00 AM
Ethylbenzene	1.2	0.66	ug/m3	1	4/15/2009 8:38:00 AM
Freon 11	1.5	0.86	ug/m3	1	4/15/2009 8:38:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded

Page 12 Non-routine analyte. Quantitation estimated. Spike Recovery outside accepted recovery limits

- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 1 of 6

Date: 05-May-10

CLIENT:

GZA GeoEnvironmental of NY

Lab Order:

C0904016

Project:

Delphi Bldg/D

Lab ID:

C0904016-001A

Client Sample ID: Pre Carbon

ment Sample ID. The Carb

Tag Number: 418,173

Collection Date: 4/9/2009

Matrix: AlR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15	5		Analyst: RJP
Freon 113	< 1.2	1.2	ug/m3	1	4/15/2009 8:38:00 AM
Freon 114	< 1.1	1.1	ug/m3	1	4/15/2009 8:38:00 AM
Freon 12	2.3	0.75	ug/m3	1	4/15/2009 8:38:00 AM
Heptane	24	6.2	ug/m3	10	4/15/2009 12:18:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	4/15/2009 8:38:00 AM
Hexane	330	130	ug/m3	243	4/15/2009 8:35:00 PM
Isopropyl alcohol	52	3.7	ug/m3	10	4/15/2009 12:18:00 AM
m&p-Xylene	6.9	1.3	ug/m3	1	4/15/2009 8:38:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	4/15/2009 8:38:00 AM
Methyl Ethyl Ketone	< 0.90	0.90	ug/m3	1	4/15/2009 8:38:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	4/15/2009 8:38:00 AM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	4/15/2009 8:38:00 AM
Methylene chloride	18	5.3	ug/m3	10	4/15/2009 12:18:00 AM
o-Xylene	1.8	0.66	ug/m3	1	4/15/2009 8:38:00 AM
Propylene	< 0.26	0.26	ug/m3	1	4/15/2009 8:38:00 AM
Styrene	0.61	0.65	J ug/m3	1	4/15/2009 8:38:00 AM
Tetrachloroethylene	22000	2500	ug/m3	2430	4/15/2009 8:01:00 PM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	4/15/2009 8:38:00 AM
Toluene	260	140	ug/m3	243	4/15/2009 8:35:00 PM
trans-1,2-Dichloroethene	34	6.0	ug/m3	10	4/15/2009 12:18:00 AM
trans-1,3-Dichloropropena	< 0.69	0.69	ug/m3	1	4/15/2009 8:38:00 AM
Trichloroethene	530	200	ug/m3	243	4/15/2009 8:35:00 PM
Vinyl acetate	< 0.54	0.54	ug/m3	1	4/15/2009 8:38:00 AM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	4/15/2009 8:38:00 AM
Vinyl chloride	0.55	0.39	ug/m3	1	4/15/2009 8:38:00 AM

Qualifiers:

Page 13 Non-routine analyte. Quantitation estimated.

ND Not Detected at the Reporting Limit

Page 2 of 6

^{*} Reporting Limit

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

Date: 05-May-10

CLIENT:

GZA GeoEnvironmental of NY

Lab Order:

C0904016

Project:

Delphi Bldg/D

Lab ID:

C0904016-002A

Client Sample ID: Mid Carbon

Tag Number: 431,277

Collection Date: 4/9/2009

Matrix: AIR

Analyses	Result	**Limit Qua	I Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83	ug/m3	1	4/15/2009 7:30:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/15/2009 7:30:00 AM
1,1,2-Trichloroethane	< 0.83	0.83	ug/m3	1	4/15/2009 7:30:00 AM
1,1-Dichloroethane	< 0.62	0.62	ug/m3	1	4/15/2009 7:30:00 AM
1.1-Dichloroethene	85	6.0	ug/m3	10	4/15/2009 12:51:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/15/2009 7:30:00 AM
1,2,4-Trimethylbenzene	0.70	0.75 J	ug/m3	1	4/15/2009 7:30:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/15/2009 7:30:00 AM
1,2-Dichlorobenzene	< D.92	0.92	ug/m3	1	4/15/2009 7:30:00 AM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	4/15/2009 7:30:00 AM
1,2-Dichloropropane	< 0.70	0.70	ug/m3	1	4/15/2009 7:30:00 AM
1,3,5-Trimethylbenzene	< 0.75	0.75	ug/m3	1	4/15/2009 7:30:00 AM
1,3-butadiene	< 0.34	0.34	ug/m3	1	4/15/2009 7:30:00 AM
1.3-Dichlorobenzene	< 0.92	0.92	ug/m3	1	4/15/2009 7:30:00 AM
1,4-Dichlorobenzene	1.8	0.92	ug/m3	1	4/15/2009 7:30:00 AM
1,4-Dioxane	< 1.1	1,1	ug/m3	1	4/15/2009 7:30:00 AM
2,2,4-trimethylpentane	< 0.71	0.71	ug/m3	1	4/15/2009 7:30:00 AM
4-ethyltoluene	< 0.75	0.75	ug/m3	1	4/15/2009 7:30:00 AM
Acetone	160	65	ug/m3	90	4/16/2009 9:17:00 AM
Allyl chloride	< 0.48	0.48	ug/m3	1	4/15/2009 7:30:00 AM
Benzene	0.81	0.49	ug/m3	1	4/15/2009 7:30:00 AM
Benzyl chloride	< 0.88	0.88	ug/m3	1	4/15/2009 7:30:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/15/2009 7:30:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	4/15/2009 7:30:00 AM
Bromomethane	< 0.59	0.59	ug/m3	1	4/15/2009 7:30:00 AM
Carbon disulfide	2.0	0.47	ug/m3	1	4/15/2009 7:30:00 AM
Carbon tetrachloride	< 0.96	0.96	ug/m3	1	4/15/2009 7:30:00 AM
Chlorobenzene	< 0.70	0.70	ug/m3	1	4/15/2009 7:30:00 AM
Chloroethane	< 0.40	0,40	ug/m3	1	4/15/2009 7:30:00 AM
Chloroform	0.55	0.74 J	ug/m3	1	4/15/2009 7:30:00 AM
Chloromethane	0,69	0.31	ug/m3	1	4/15/2009 7:30:00 AM
cis-1,2-Dichloroethene	4.6	0.60	ug/m3	1	4/15/2009 7:30:00 AM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	4/15/2009 7:30:00 AM
Cyclohexane	5.3	0.52	ug/m3	1	4/15/2009 7:30:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/15/2009 7:30:00 AM
Ethyl acetale	6.2	0.92	ug/m3	1	4/15/2009 7:30:00 AM
Ethylbenzene	0.66	0.66	ug/m3	1	4/15/2009 7:30:00 AM
Freon 11	3.2	0.86	ug/m3	1	4/15/2009 7:30:00 AM

Qualifiers:

- Reporting Limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated. Page 14 of 17 recovery outside accepted recovery limits
- Results reported are not blank corrected
- Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 6

Date: 05-May-10

CLIENT: GZA GeoEnvironmental of NY

Lab Order: C0904016

Project: Delphi Bldg/D

Lab ID: C0904016-002A

Client Sample ID: Mid Carbon

Tag Number: 431,277

Collection Date: 4/9/2009

Matrix: AIR

....

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
Freon 113	< 1.2	1.2	ug/m3	1	4/15/2009 7:30:00 AM
Freon 114	< 1.1	1.1	ug/m3	1	4/15/2009 7:30:00 AM
Freon 12	2.2	0.75	ug/m3	1	4/15/2009 7:30:00 AM
Heptane	8.1	0.62	ug/m3	1	4/15/2009 7:30:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ц д/m3	1	4/15/2009 7:30:00 AM
Hexane	61	50	ug/m3	90	4/16/2009 9:17:00 AM
Isopropyl alcohol	35	3.7	ug/m3	10	4/15/2009 12:51:00 AM
m&p-Xylene	1.8	1.3	ug/m3	1	4/15/2009 7:30:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	4/15/2009 7:30:00 AM
Methyl Ethyl Ketone	40	9.0	ug/m3	10	4/15/2009 12:51:00 AM
Methyl Isobutyl Ketone	1.0	1.2	J ug/m3	1	4/15/2009 7:30:00 AM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	4/15/2009 7:30:00 AM
Methylene chloride	22	5.3	ug/m3	10	4/15/2009 12:51:00 AM
o-Xylene	0.53	0.66	J ug/m3	1	4/15/2009 7:30:00 AM
Propylene	< 0.26	0.26	ug/m3	1	4/15/2009 7:30:00 AM
Styrene	< 0.65	0.65	ug/m3	1	4/15/2009 7:30:00 AM
Tetrachloroethylene	26	10	ug/ m 3	10	4/15/2009 12:51:00 AM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	4/15/2009 7:30:00 AM
Toluene	130	54	ug/m3	90	4/16/2009 9:17:00 AM
trans-1,2-Dichloroethene	1.5	0.60	ug/m3	1	4/15/2009 7:30:00 AM
trans-1,3-Dichloropropene	< 0.69	0,69	ug/m3	1	4/15/2009 7:30:00 AM
Trichloroethene	1.4	0.82	ug/m3	1	4/15/2009 7:30:00 AM
Vinyl acetate	< 0.54	0.54	ug/m3	1	4/15/2009 7:30:00 AM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	4/15/2009 7:30:00 AM
Vinyl chloride	0.55	0.39	ug/m3	1	4/15/2009 7:30:00 AM

Qualifiers:

Page 115 Out out in analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

Page 4 of 6

Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

Analytical Report

Date: 05-May-10

CLIENT:

GZA GeoEnvironmental of NY

Lab Order:

C0904016

Project:

Delphi Bldg/D

Lab ID:

C0904016-003A

Client Sample ID: Post Carbon

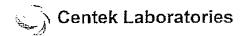
Tag Number: 159,451

14g 11dmber: 159,45

Collection Date: 4/9/2009

Matrix: AIR

2070-1010 00371			1712	mix: Aix	
Analyses	Result	**Limit Qı	ial Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83	ug/m3	1	4/15/2009 8:04:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/15/2009 8:04:00 AM
1,1,2-Trichloroethane	< 0.83	0.83	ug/m3	1	4/15/2009 8:04:00 AM
1,1-Dichloroethane	< 0.62	0.62	ug/m3	1	4/15/2009 8:04:00 AM
1,1-Dichloroethene	< 0.60	0.60	ug/m3	1	4/15/2009 8:04:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/15/2009 8:04:00 AM
1,2,4-Trimethylbenzene	< 0.75	0.75	ug/m3	1	4/15/2009 8:04:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/15/2009 8:04:00 AM
1,2-Dichlorobenzene	< 0.92	0.92	ug/m3	1	4/15/2009 8:04:00 AM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	4/15/2009 8:04:00 AM
1,2-Dichloropropane	< 0.70	0.70	ug/m3	1	4/15/2009 8:04:00 AM
1,3,5-Trimethylbenzene	< 0.75	0.75	ug/m3	1	4/15/2009 8:04:00 AM
1,3-butadiene	< 0.34	0.34	ug/m3	1	4/15/2009 8:04:00 AM
1,3-Dichlorobenzene	< 0.92	0.92	ug/m3	1	4/15/2009 8:04:00 AM
1,4-Dichlorobenzene	1.7	0.92	ug/m3	1	4/15/2009 8:04:00 AM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/15/2009 8:04:00 AM
2,2,4-trimethylpentane	< 0.71	0.71	ug/m3	1	4/15/2009 8:04:00 AM
4-ethyltoluene	< 0.75	0.75	ug/m3	1	4/15/2009 8:04:00 AM
Acetone	140	65	ug/m3	90	4/16/2009 9:50:00 AM
Allyl chloride	< 0.48	0.48	ug/m3	1	4/15/2009 8:04:00 AM
Велгеле	0.65	0.49	ug/m3	1	4/15/2009 8:04:00 AM
Benzyl chloride	< 0.88	0.88	ug/m3	1	4/15/2009 8:04:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/15/2009 8:04:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	4/15/2009 8:04:00 AM
Bromomethane	< 0.59	0.59	ug/m3	1	4/15/2009 8:04:00 AM
Carbon disulfide	0.47	0.47	ug/m3	1	4/15/2009 8:04:00 AM
Carbon tetrachloride	< 0.96	0.96	ug/m3	1	4/15/2009 8:04:00 AM
Chlorobenzene	< 0.70	0.70	ug/m3	1	4/15/2009 8:04:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/15/2009 8:04:00 AM
Chloroform	< 0.74	0.74	ug/m3	1	4/15/2009 8:04:00 AM
Chloromethane	0.90	0.31	ug/m3	1	4/15/2009 8:04:00 AM
cis-1,2-Dichloroethene	0.48	0.60	J ug/m3	1	4/15/2009 8:04:00 AM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	4/15/2009 8:04:00 AM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/15/2009 8:04:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/15/2009 8:04:00 AM
Ethyl acetate	3.6	0.92	ug/m3	1	4/15/2009 8:04:00 AM
Ethylbenzene	0.57	0.66	J ug/m3	1	4/15/2009 8:04:00 AM
Freon 11	0.74	0.86	J ug/m3	1	4/15/2009 8:04:00 AM


Qualifiers:

- ** Reporting Limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Pages 16 Non-routine analyte. Quantitation estimated.

- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 5 of 6

Date: 05-May-10

CLIENT:

GZA GeoEnvironmental of NY

Client Sample ID: Post Carbon

Lab Order:

C0904016

Tag Number: 159,451

Project:

Delphi Bldg/D

Collection Date: 4/9/2009

Lab ID:

C0904016-003A

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
Freon 113	< 1.2	1.2	ug/m3	1	4/15/2009 8:04:00 AM
Freon 114	< 1.1	1.1	ug/m3	1	4/15/2009 8:04:00 AM
Freon 12	2.5	0.75	ug/m3	1	4/15/2009 8:04:00 AM
Heptane	5.3	0.62	ug/m3	1	4/15/2009 8:04:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	4/15/2009 8:04:00 AM
Hexane	71	50	ug/m3	90	4/16/2009 9:50:00 AM
Isopropyi alcohol	28	3.7	ug/m3	10	4/15/2009 1:24:00 AM
m&p-Xylene	1.3	1.3 J	ug/m3	1	4/15/2009 8:04:00 AM
Methyl Butyl Ketone	< 1.2	1,2	ug/m3	1	4/15/2009 8:04:00 AM
Methyl Ethyl Ketone	< 0.90	0.90	ug/m3	1	4/15/2009 8:04:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	4/15/2009 8:04:00 AM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	4/15/2009 8:04:00 AM
Methylene chloride	54	5.3	ug/m3	10	4/15/2009 1:24:00 AM
o-Xylene	< 0.66	0.66	ug/m3	1	4/15/2009 8:04:00 AM
Propylene	< 0.26	0.26	ug/m3	1	4/15/2009 8:04:00 AM
Styrene	< 0.65	0.65	ug/m3	1	4/15/2009 8:04:00 AM
Tetrachloroethylene	6.1	1.0	ug/m3	1	4/15/2009 8:04:00 AM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	4/15/2009 8:04:00 AM
Toluene	90	54	ug/m3	90	4/16/2009 9:50:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	4/15/2009 8:04:00 AM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	4/15/2009 8:04:00 AM
Trichloroethene	0.82	0.82	ug/m3	1	4/15/2009 8:04:00 AM
Vinyl acetate	< 0.54	0.54	ug/m3	1	4/15/2009 8:04:00 AM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	4/15/2009 8:04:00 AM
Vinyl chloride	0.55	0.39	ug/m3	1	4/15/2009 8:04:00 AM

Qualifiers:

Non-routine analyte. Quantitation estimated.
Spike Recovery outside accepted recovery limits

Reporting Limit

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

Not Detected at the Reporting Limit

GM LOCKPORT BLDG 10 SVE/SSD SUMMARY OF GC SCREENING RESULTS 36795-000

		2/8/	2010	
Target Compound	Pre-Carbon (mg/m³)	Pre-Carbon DUP (mg/m³)	Mid-Carbon (mg/m³)	Post-Carbon (mg/m³)
Methane	0.013 U		0.013 U	0.013 U
Vinyl chloride	0.504	0.013 U		0.500
1,1-Dichloroethene	0.036 U	0.036 U	0.036 U	0.036 U
Methylene chloride	0.075 U	0.075 U	0.075 U	0.075 U
trans 1,2-Dichloroethene	0.037 U	0.037 U	0.037 U	0.037 U
1,1-Dichloroethane	0.033 U	0.033 U	0.033 U	0.033 U
MTBE	0.014 U	0.014 U	0.014 U	0.014 U
2-Butanone (MEK)	0.016 U	0.016 U	0.016 U	0.016 U
cis 1,2-Dichloroethene	0.047 U	0.047 U	0.047 U	0.047 U
Chloroform	4.69	4.51	0.130 U	0.130 U
1,1,1-Trichloroethane	0.043 U	0.043 U	0.043 U	0.043 U
Benzene	0.009 U	0.009 U	0.009 U	0.009 U
1,2-Dichloropropane	0.027 U	0.027 U	0.027 U	0.027 U
Trichloroethene	0.557	0.564	0.772	0.042 U
Toluene	0.009 U	0.009 U	0.009 U	0.009 U
Tetrachloroethene	48.1	48.3	40.4	8.80
Chlorobenzene	0.012 U	0.012 U	0.012 U	0.012 U
Ethylbenzene	0.008 U	U 800.0	0.008 U	0.008 U
m/p-Xylene	0.009 U	0.009 U	0.009 U	0.009 U
o-Xylene	0.007 U	0.007 U	0.007 U	0.007 U
Unknown TPH	6.00	6.00	0.020 U	0.020 U
Flow Rate (SCFM)	280	280	280	280
Mass Rate (lb/hr)	0.063	0.062	0.043	0.010
Mass Rate (lb/day)	1.51	1.49	1.04	0.23
Removal Efficiency (Pre to Mid)			.3%	
Removal Efficiency (Pre to Post)		84	.5%	

GAS CHROMATOGRAPHY REPORT SHEET SCREENING RESULTS DIRECT INJECT

Date of Analysis: 17-Mar-10

Operator: TJV

Client: File No: GM Lockport

36795-000 Sample Type: BLDG-10 SVE/SSD

0.500

QA/QC: DMC

		Sample		,	Cal. Ret.	Ret.	Det,	On-Col					Mass	Mass	%Total	
Sample	e Identification	Volume		Target	Time	Time	Resp.	Mass	Co	onc.	Co	nc.	Rmvd	Rmvd	Mass	REMARKS
04	c jucilianounon	(uL)	CASRN	Compound	(min.)	(min.)	(Area Cts.)	(ng)					(lb/hr)	(lb/day)	Rmvd	
		500	74-82-8	methane	2.350			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-01-4	vinyl chloride	3.680			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	75-35-4	1,1-dichloroethene	8.076			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-09-2	methylene chloride	8.364			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
iD:	Pre-Carbon	500	156-60-5	trans 1,2-dichloroethene	10.970			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Date:	3/16/2010	500	75-34-3	1,1-dichloroethane	11.526			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Time:		500	1634-04-4	MTBE	11.707			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	78-93-3	2-butanone (MEK)	12.537			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	156-59-2	cis 1,2-dichloroethene	13.669			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Temp =	°F	500	67-66-3	chloroform	14.356	14.050	2.7	1.733	3.47	mg/m^3	0.71	ppmV	0.00	0.09	5.40	
Flow =	280 SCFM	500	71-55-6	1,1,1-trichloroethane	16.454			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	71-43-2	benzene	17.343			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
1		500	78-87-5	1,2-dichloropropane	18.875			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	79-01-6	trichloroethene	19.316	19.045	1.2	0.261	0.52	mg/m^3	0.10	ppm∨	0.00	0.01	0.81	
		500	108-88-3	toluene	22.496			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	127-18-4	tetrachloroethene	24.419	24.162	121.5	27.096	54,19	mg/m^3	7.99	ppmV	0.06	1.36	84.44	
1		500	108-90-7	chlorobenzene	25.574			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	100-41-4	ethylbenzene	26.243			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	108-38-3/106-42-3	m/p-xylene	26.535			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
1		500	95-47-6	o-xylene	27.385			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500		Unknown TPH			30.0	3.000	6.00	mg/m^3	1.05	ppmV	0.01	0.15	9.35	
	500			total volatiles			155		64.2	mg/m^3	9.8	ppmV	0.07	1.62	100.00	

Sampl	le Identification	Sample		Target	Cal. Ret. Time	Ret. Time	Det. Resp.	On-Col Mass	Co	onc.	Co	nc,	Mass Rmvd	Mass Rmvd	%Total Mass	REMARKS
		(uL)	CASRN	Compound	(min.)	(min.)	(Area Cts.)	(ng)					(lb/hr)	(lb/day)	Rmvd	
		500	74-82-8	methane	2.350			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-01-4	vinyl chloride	3.680			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	75-35-4	1,1-dichloroethene	8.076			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-09-2	methylene chloride	8.364			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
ID:	Mid-Carbon	500	156-60-5	trans 1,2-dichloroethene	10.970			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
Date:	3/16/2010	500	75-34-3	1,1-dichloroethane	11.526			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Time:		500	1634-04-4	MTBE	11.707			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	78-93-3	2-butanone (MEK)	12.537		1	0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	156-59-2	cis 1,2-dichloroethene	13.669			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Temp =	°F	500	67-66-3	chloroform	14.356			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Flow =	280 SCFM	500	71-55-6	1,1,1-trichloroethane	16.454			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	71-43-2	benzene	17.343			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	78-87-5	1,2-dichloropropane	18.875		ľ	0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	79-01-6	trichloroethene	19,316	19.089	3.3	0,707	1.41	mg/m^3	0.26	ppmV	0.00	0.04	3,19	
		500	108-88-3	toluene	22.496			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	127-18-4	tetrachloroethene	24.419	24.200	85.0	18.958	37.92	mg/m^3	5.59	ppm∨	0.04	0.95	85.53	
		500	108-90-7	chlorobenzene	25.574			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	100-41-4	ethylbenzene	26.243			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	108-38-3/106-42-3	m/p-xylene	26.535			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00		
	500 95-47-6			o-xylene	27.385			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500		Unknown TPH			25.0	2.500	5.00	mg/m^3	0.87	ppmV	0.01	0.13		
				total volatiles			113		44.3	mg/m^3	6.7	ppmV	0.05	1.12	100.00	

		Sample		Service .	Cal. Ret.	Ret.	Det.	On-Col					Mass	Mass	%Total	
Sam	ple Identification	Volume		Target	Time	Time	Resp.	Mass	Çc	nc.	Co	nc,	Rmvd	Rmvd	Mass	REMARKS
		(uL)	CASRN	Compound	(min.)	(min.)	(Area Cts.)	(ng)					(lb/hr)	(lb/day)	Rmvd	
		500	74-82-8	methane	2.350			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-01-4	vinyl chloride	3.680			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-35-4	1,1-dichloroethene	8.076		1	0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-09-2	methylene chloride	8.364			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
ID:	Mid-Carbon (DUP)	500	156-60-5	trans 1,2-dichloroethene	10.970			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
Date:	3/16/2010	500	75-34-3	1,1-dichloroethane	11.526			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Time:		500	1634-04-4	MTBE	11.707			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	78-93-3	2-butanone (MEK)	12.537			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	156-59-2	cis 1,2-dichloroethene	13.669			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Temp =	۰F	500	67-66-3	chloroform	14.356			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Flow =	280 SCFM	500	71-55-6	1,1,1-trichloroethane	16.454			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	71-43-2	benzene	17.343			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	78-87-5	1,2-dichloropropane	18.875			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	79-01-6	trichloroethene	19.316	18.996	3.2	0.678	1.36	mg/m^3	0.25	ppmV	0.00	0.03	3.38	
		500	108-88-3	toluene	22.496			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	127-18-4	tetrachloroethene	24.419	24.107	73.3	16.346	32.69	mg/m^3	4.82	ppmV	0.03	0.82	81.63	
		500	108-90-7	chlorobenzene	25.574			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	100-41-4	ethylbenzene	26.243			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	108-38-3/106-42-3	m/p-xylene	26.535			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	95-47-6	o-xylene	27.385			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500		Unknown TPH			30.0	3.000	6.00	mg/m^3	1.05	ppmV	0.01	0.15	14.98	
				total volatiles			106		40.0	mg/m^3	6.1	ppmV	0.04	1.01	100.00	

		Sample		- 743545- 0	Cal. Ret.	Ret.	Det.	On-Col	/				Mass	Mass	%Total	
Samp	le Identification	Volume		Target	Time	Time	Resp.	Mass	C	onc.	Co	nc.	Rmvd	Rmvd	Mass	REMARKS
		(uL)	CASRN	Compound	(min.)	(min.)	(Area Cts.)	(ng)					(lb/hr)	(lb/day)	Rmvd	
		500	74-82-8	methane	2.350			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-01-4	vinyl chloride	3.680			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-35-4	1.1-dichloroethene	8.076			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-09-2	methylene chloride	8.364			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
ID:	Post-Carbon	500	156-60-5	trans 1,2-dichloroethene	10.970			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Date:	3/16/2010	500	75-34-3	1,1-dichloroethane	11.526			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Time:		500	1634-04-4	MTBE	11.707			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	78-93-3	2-butanone (MEK)	12.537			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
_		500	156-59-2	cis 1,2-dichloroethene	13.669			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Temp =	°F	500	67-66-3	chloroform	14.356			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
Flow =	280 SCFM	500	71-55-6	1,1,1-trichloroethane	16.454			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	71-43-2	benzene	17.343			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	78-87-5	1,2-dichloropropane	18.875			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	79-01-6	trichloroethene	19.316			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	108-88-3	toluene	22.496			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	127-18-4	tetrachloroethene	24.419			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	108-90-7	chlorobenzene	25.574			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	100-41-4	ethylbenzene	26.243			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	108-38-3/106-42-3	m/p-xylene	26.535	•		0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	95-47-6	o-xylene	27.385			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500		Unknown TPH			25.0	2.500	5.00	mg/m^3	0.87	ppmV	0.01	0.13	100.00	
				total volatiles	•		25		5,0	mg/m^3	0.9	ppmV	0.01	0.13	100.00	

GAS CHROMATOGRAPHY REPORT SHEET SCREENING RESULTS DIRECT INJECT

Date of Analysis: 28-Apr-10

Operator: TJV

Client: File No: GM Lockport 36795-000

Sample Type: BLDG-10 SVE/SSD

QA/QC: DMC

Sampl	e Identification	Sample Volume		Target	Cal, Ret, Time	Ret, Time	Det. Resp.	On-Col Mass	Co	onc.	Co	nc.	Mass Rmvd	Mass Rmvd	%Total Mass	REMARKS
		(uL)	CASRN	Compound	(mln.)	(min.)	(Area Cts.)	(ng)					(lb/hr)	(lb/day)	Rmvd	
		500	74-82-8	methane	2.350			0.000	ND	mg/m^3	ND	ppmV	0.00		0.00	
		500	75-01-4	vinyl chloride	3.680			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-35-4	1,1-dichloroethene	8.076			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-09-2	methylene chloride	8.364			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
ID:	Pre-Carbon	500	156-60-5	trans 1,2-dichloroethene	10.970			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Date:	4/26/2010	500	75-34-3	1,1-dichloroethane	11.526			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Time:		500	1634-04-4	MTBE	11.707			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	78-93-3	2-butanone (MEK)	12.537			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	156-59-2	cis 1,2-dichloroethene	13.669			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
Temp =	°F	500	67-66-3	chloroform	14.356	14.335	5.7	3.694	7.39	mg/m^3	1.51	ppmV	0.01	0.19	12.57	
Flow =	280 SCFM	500	71-55-6	1,1,1-trichloroethane	16.454			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	71-43-2	benzene	17.343			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	78-87-5	1,2-dichloropropane	18.875			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	79-01 - 6	trichloroethene	19.316	19.250	1.3	0.278	0.56	mg/m^3	0.10	ppmV	0.00	0.01	0.95	
		500	108-88-3	toluene	22.496			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	127-18-4	tetrachloroethene	24.419	24.292	109.5	24.407	48.81	mg/m^3	7.20	ppmV	0.05	1.23	83.08	
		500	108-90-7	chlorobenzene	25.574			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	100-41-4	ethylbenzene	26.243			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	108-38-3/106-42-3	m/p-xylene	26.535			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	95-47-6	o-xylene	27.385			0.000	ND	mg/m^3	ND	ppm∨	0.00	0 00	0.00	
		500		Unknown TPH			10.0	1.000	2.00	mg/m^3	0.35	ppmV	0.00	0.05	3.40	
				total volatiles			126		58.8	mg/m^3	9.2	ppmV	0.06	1.48	100,00	

		Sample		198	Cal. Ret.	Ret.	Det.	On-Col					Mass	Mass	%Total	
Samn	le Identification	Volume	, ,	Target	Time	Time	Resp.	Mass	e.	onc.	Co	nc.	Rmvd	Rmvd	Mass	REMARKS
Samp	le idendification	(uL)	CASRN	Compound	(min.)	(min.)	(Area Cts.)	(ng)	•		•		(lb/hr)	(lb/day)	Rmvd	
					2.350	/mins/	(Mied Oral)	0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	74-82-8	methane				0.000	ND		ND	ppm∨	0.00		0.00	
		500	75-01-4	vinyl chloride	3.680					mg/m^3	ND		0.00	0.00	0.00	
		500	75-35-4	1,1-dichloroethene	8.076			0.000	ND	mg/m^3		ppmV				
		500	75-09-2	methylene chloride	8.364			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
ID:	Mid-Carbon	500	156-60-5	trans 1,2-dichloroethene	10.970			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Date:	4/26/2010	500	75-34-3	1,1-dichloroethane	11.526			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Time:		500	1634-04-4	MTBE	11.707			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	78-93-3	2-butanone (MEK)	12.537			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	156-59-2	cis 1,2-dichloroethene	13.669			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Temp =	°F	500	67-66-3	chloroform	14.356			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Flow =	280 SCFM	500	71-55-6	1,1,1-trichloroethane	16.454			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	71-43-2	benzene	17.343			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	78-87-5	1,2-dichloropropane	18.875			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	79-01-6	trichloroethene	19.316	19.296	1.2	0.263	0.53	mg/m^3	0.10	ppmV	0.00	0.01	1.32	
		500	108-88-3	toluene	22.496			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	127-18-4	tetrachloroethene	24.419	24.337	81.5	18,172	36.34	mg/m^3	5.36	ppmV	0.04	0.91	91.15	
		500	108-90-7	chlorobenzene	25,574			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	100-41-4	ethylbenzene	26.243			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	108-38-3/106-42-3	m/p-xylene	26,535			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	95-47-6	o-xylene	27.385			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00		
		500	33-47-0	Unknown TPH	27.500		15.0	1.500	3.00	mg/m ³	0.52	ppmV	0.00		7.52	
	500			total volatiles			98	1.500	39.9	mg/m^3	6.0	ppmV	0.04	1.00	100.00	

		Sample			Cal. Ret.	Ret.	Det.	On-Col					Mass	Mass	%Total	
Sampl	e Identification	Volume	,	Target	Time	Time	Resp.	Mass	Co	onc.	Co	onc.	Rmvd	Rmvd	Mass	REMARKS
		(uL)	CASRN	Compound	(min.)	(min.)	(Area Cts.)	(ng)					(lb/hr)	(lb/day)	Rmvd	
		500	74-82-8	methane	2.350			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-01-4	vinyl chloride	3.680			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-35-4	1,1-dichloroethene	8.076			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	75-09-2	methylene chloride	8.364			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00		
ID:	Duplicate	500	156-60-5	trans 1,2-dichloroethene	10.970			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Date:	4/26/2010	500	75-34-3	1,1-dichloroethane	11.526			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
Time:		500	1634-04-4	MTBE	11.707			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	78-93-3	2-butanone (MEK)	12.537			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00		
		500	156-59-2	cis 1,2-dichloroethene	13.669			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00		
Temp =	°F	500	67-66-3	chloroform	14.356	14.368	5.8	3.786	7.57	mg/m^3	1,55	ppm∨	0.01	0.19	12.46	
Flow =	280 SCFM	500	71-55-6	1,1,1-trichloroethane	16.454			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	71-43-2	benzene	17.343			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	0.00	
		500	78-87-5	1,2-dichloropropane	18.875			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	79-01-6	trichloroethene	19.316	19.274	1.4	0.298	0.60	mg/m^3	0.11	ppmV	0.00	0.01	0.98	
		500	108-88-3	toluene	22.496			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	127-18-4	tetrachloroethene	24.419	24.315	104.5	23.296	46.59	mg/m^3	6.87	ppmV	0.05	1.17	76.68	
		500	108-90-7	chlorobenzene	25.574			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	100-41-4	ethylbenzene	26.243			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	108-38-3/106-42-3	m/p-xylene	26.535			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500	95-47-6	o-xylene	27.385			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	0.00	
		500		Unknown TPH			30.0	3.000	6.00	mg/m^3	1.05	ppmV	0.01	0.15	9.87	
				total volatiles			142		60.8	mg/m^3	9.6	ppmV	0.06	1,53	100,00	

	I- I-I	Sample		70 A 120 C	Cal. Ret.	Ret.	Det.	On-Col			_		Mass	Mass	%Total	
Samp	le Identification	Volume		Target	Time	Time	Resp.	Mass	C	onc.	Cor	ıc.	Rmvd	Rmvd	Mass	REMARKS
		(uL)	CASRN	Compound	(min.)	(min.)	(Area Cts.)	(ng)					(lb/hr)	(lb/day)	Rmyd	
		500	74-82-8	methane	2.350			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00		
		500	75-01-4	vinyl chloride	3.680	l		0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00		
		500	75-35-4	1,1-dichloroethene	8.076	1		0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	#DIV/0!	
		500	75-09-2	methylene chloride	8.364	l		0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/0!	
ID:	Post-Carbon	500	156-60-5	trans 1,2-dichloroethene	10.970	l		0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/0!	
Date:	4/26/2010	500	75-34-3	1,1-dichloroethane	11.526			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/0!	
Time:		500	1634-04-4	MTBE	11.707			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/0!	
		500	78-93-3	2-butanone (MEK)	12.537			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/0!	
		500	156-59-2	cis 1,2-dichloroethene	13.669			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/0!	
Temp =	°F	500	67-66-3	chloroform	14.356			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/0!	
Flow ≈	280 SCFM	500	71-55-6	1,1,1-trichloroethane	16.454			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	#DIV/0!	
		500	71-43-2	benzene	17.343			0.000	ND	mg/m^3	ND	ppm∨	0.00	0.00	#DIV/0!	
		500	78-87-5	1,2-dichloropropane	18.875			0,000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/0!	
		500	79-01-6	trichloroethene	19.316			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00		
		500	108-88-3	toluene	22,496			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/0!	
		500	127-18-4	tetrachloroethene	24,419			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/0!	
		500	108-90-7	chlorobenzene	25.574			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/0!	
		500	100-41-4	ethylbenzene	26.243			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00	#DIV/0!	
		500	108-38-3/106-42-3	m/p-xylene	26,535			0.000	ND	mg/m^3	ND	ppmV	0.00	0.00		
		500	95-47-6	o-xylene	27.385			0.000	ND	mg/m ³	ND	ppmV	0.00	0.00	#DIV/0!	
	500			Unknown TPH	27,300			0.000	ND	mg/m ³	ND	ppmV	0.00	0.00		
				total volatiles			0	0.000	0.0	mg/m^3	0.0	ppmV	0.00		#DIV/0!	