

GM COMPONENTS
HOLDINGDS, LLC
200 UPPER MOUNTAIN ROAD
LOCKPORT, NEW YORK
BUILDING 10
2011 – 2013 SVE/SSD
OPERATION & MONITORING
REPORT

PREPARED FOR:

New York State Department of Environmental Conservation

PREPARED BY:

GZA GeoEnvironmental of New York Buffalo, New York

April 2013 File No. 21.0056546.00

TABLE OF CONTENTS

	ION AND BACKGROUND1 ND EXTENT OF SUBSURFACE CONTAMINATION1
2.1 SVE/SSD SYS	EXTRACTION SYSTEM
3.0 OPERATION	AND MONITORING3
4.1 SYSTEM E	ALUATION AND CONCLUSIONS 5 VALUATION 6
5.0 PROPOSED 2	2014 ACTIVITIES6
6.0 CERTIFICA	ΓΙΟΝ 7
TABLES TABLE 1	SVE/SSD SYSTEM MONITORING SUMMARY
FIGURES	
FIGURE 1	SITE PLAN
FIGURE 2	SVE/SSD SYSTEM LAYOUT
FIGURE 3	SVE/SSD SYSTEM PROCESS & INSTRUMENTATION DIAGRAM
FIGURE 4	BUILDING 10 SVE SYSTEM PERFORMANCE MARCH 2009 – DECEMBER 2013
FIGURE 5	BCP INVESTIGATION LOCATIONS
APPENDICES	
APPENDIX A	PCE MASS CALCULATIONS
APPENDIX B	MONITORING FORMS (MAY 2011 – DECEMBER 2013)

1.0 INTRODUCTION AND BACKGROUND

On behalf of GM Components Holdings, LLC (GMCH), GZA GeoEnvironmental of New York (GZA) has prepared this Soil Vapor Extraction (SVE) and Sub-slab Depressurization (SSD) System Operation and Monitoring Report to summarize the extraction and treatment of soil vapor from beneath a portion of Building 10 (Figure 1). Building 10 is part of the GMCH Lockport Facility located at 200 Upper Mountain Road, Lockport, New York. Building 10 (Site ID #C932140) was accepted into the Brownfield Cleanup Program in May 2010, when NYSDEC issued and executed a Brownfield Cleanup Agreement with GMCH.

The SVE/SSD System was installed in the northern portion of Building 10 by Delphi Harrison Thermal Systems Division of Delphi Automotive Systems LLC (Delphi) to address concerns related to soil impacts and consequent vapor intrusion concerns associated with subsurface contamination, primarily tetrachloroethene (PCE) identified in the Building 10 Focused Environmental Assessment¹ (Bldg 10 FEA). This report was submitted by Delphi to the New York State Department of Environmental Conservation (NYSDEC) in August 2007.

The SVE/SSD System was designed and installed based on the SVE Pilot Test Summary and SVE System Design Report² (SVE Design Report), which was also submitted by Delphi to NYSDEC in November 2007.

Delphi initiated operation of the SVE/SSD system in March 2009 and submitted a SVE/SSD System Installation Document³ in July 2009. GMCH submitted an Operation, Maintenance & Monitoring (OM&M) Plan⁴ to NYSDEC in March 2010 which was approved by NYSDEC in a September 20, 2010 letter to Mr. James Hartnett (GMCH). This SVE/SSD System Operation Report, which will be referred to as the "2011 - 2013 Operation & Monitoring Report," covers the monitoring period from May 2011 through December 2013 and provides monitoring data, SVE operational information, conclusions regarding overall system effectiveness, and recommendations for modifications to the SVE/SSD system, as appropriate.

1.1 NATURE AND EXTENT OF SUBSURFACE CONTAMINATION

The subsurface investigation work completed as part of the Bldg. 10 FEA and SVE Design Report identified an approximately 14,000 square-foot area with detected PCE concentrations in soil above 300 ppm (the Part 375 Industrial Soil Cleanup Objective (ISCO)) as shown on Figure 2. Based on the impacted area having an average PCE concentration in the soil (360 ppm), and the depth of the unsaturated zone (about 6.5 feet below floor grade), it was estimated that approximately 3,600 pounds of PCE were present prior to system start-up in this unsaturated

¹ "Focused Environmental Assessment, Building 10, Lockport, New York" dated August 27, 2007.

² "Soil Vapor Extraction (SVE) Pilot Test Summary and SVE System Design Report, Delphi Automotive, Northern Portion of Building 10, Lockport Complex, 200 upper Mountain Road, Lockport, New York" dated November 2007.

³ "SVE/SSD System, Installation Document, Delphi Automotive, Lockport, New York" dated July 2009.

⁴ "Operation, Maintenance & Monitoring Plan, SVE/SSD System, GM Components Holdings, LLC, Lockport, New York" dated March 2010.

zone to be treated (see Appendix A for calculations). This mass determination of PCE is used in the effectiveness evaluation of the SVE/SSD System presented in Section 4.0 of this report.

We note that during the Remedial Investigation (RI) completed in December 2010, six (6) additional soil samples were collected from throughout the 14,000 square-foot area with detected PCE concentrations above soil cleanup objectives (see Figure 2). The average PCE concentration detected in these six (6) samples is approximately 300 ppm and the recalculation of the average concentration using the 23 samples collected from this area is 340 ppm (a difference of about 5%). Therefore, the initial mass (3,600 pounds) and average PCE concentration (360 ppm) in soil will be used in the effectiveness evaluation for consistency purposes.

2.0 SOIL VAPOR EXTRACTION/SUBSLAB DEPRESSURIZATION SYSTEM

This section provides a general description of the SVE/SSD system and adjustments made during the reporting period.

2.1 SVE/SSD SYSTEM OVERVIEW

There are two subsurface components to the SVE/SSD system operating in Building 10: a vertical well SVE system and a horizontal perforated pipe SSD system (see Figure 2).

- The vertical well SVE system consists of seventeen (17) 4-inch diameter vertical extraction wells (see Figure 2). The 17 extraction wells were installed using rotary drilling methods and are constructed of 4-inch diameter flush coupled polyvinyl chloride (PVC) riser and screen. Depth of the wells ranges from about 5.5 to 7 feet below ground surface (bgs) with the screened portion of the wells ranging from about 3.5 to 5 feet in length and consisting of #10 (0.010-inch wide) machine slotted PVC pipe. The annulus space around the well screen was backfilled with a #00 sand pack and an approximate 2-foot thick layer of bentonite was placed above the sand filter. Three trenches were excavated to an approximate depth of 2 feet bgs through the concrete slab-on-grade, subbase and soil for installation of the piping that connects the extraction wells to the manifold located within the SVE shed. The trenches were backfilled with pea stone to approximately 6 to 8 inches below the concrete slab.
- The horizontal SSD piping was installed in the upper portion of the pea stone in the SVE manifold trenches. The subsurface SSD system piping consists of 2-inch diameter #10 machine slotted PVC well screen lengths, connected with PVC couplers, and covered with a fabric sleeve. The three lengths, called sub-slab (SS) legs 1, 2 and 3 are connected to the manifold inside the SVE shed via 1.5-inch diameter HDPE piping, as shown on Figure 3.

The trenches were topped with approximately 6 inches of compacted crushed stone and covered with concrete to meet the existing slab-on-grade. Cracks and seams in the existing concrete floor were filled using a self-leveling polyurethane caulk.

Additional SVE/SSD system construction details are provided in the Installation Document referenced above. The system is designed to operate continuously at a consistent vacuum pressure and flow rate to remove soil vapor from the impacted area.

The SVE/SSD System's main aboveground components consist of a moisture separator, air filter, positive displacement blower, heat exchanger and two vapor-phase granular activated carbon (GAC) vessels each containing approximately 1,800 pounds of granular activated carbon. The entire system is skid mounted, with vacuum, temperature, pressure and flow instrumentation, and is operated through a control panel. Figure 3 shows the process and instrumentation diagram for the SVE/SSD System.

2.2 SVE SYSTEM ADJUSTMENTS

No significant SVE system adjustments were made during the reporting period. We note that the variable speed drive (VSD) malfunctioned on December 17, 2012 and was therefore replaced on February 1, 2013.

3.0 OPERATION AND MONITORING

This section discusses the operation and monitoring activities performed for the SVE/SSD system during the current reporting period. The system startup began under Delphi on March 2, 2009. The system has generally been running continuously since March 3, 2009. We note that during the current reporting period, the SVE/SSD system was not in operation from December 17, 2012 through February 1, 2013 when the VFD malfunctioned and subsequently replaced. Table 1 is a breakdown of the monitoring activities completed.

A GZA operator monitored the SVE/SSD system generally on a monthly basis from May 2011 through December 2013 and routine monitoring forms were used to document operation and monitoring events (see Appendix B). We note that the monthly monitoring for the months of October 2011, December 2011, February 2012, March 2012 and April 2012 occurred within the first week of the following month (e.g., October 2012 monitoring was completed on November 1, 2012).

In addition to system readings to measure the approximate system flow rates, three types of extracted vapor monitoring samples have been collected by GZA to assess the system performance, operating conditions and contaminant removal rate. The vapor monitoring sample types are as follows.

- 1. Tedlar[®] bag samples for field screening (Field Screening Sample);
- 2. Colorimetric Detector tubes for PCE (Detector Tube); and
- 3. Tedlar[®] bag samples for Gas Chromatograph analysis (GC Sample).

Tedlar® bag samples for field screening and GC screening were collected from:

- 1. Pre-Carbon influent-extracted vapor samples from the system,
- 2. Mid-Carbon vapor after the first GAC treatment vessel, and
- 3. Post-Carbon vapor after the second GAC treatment vessel and prior to discharge.

See Table 1 for the SVE/SSD System Monitoring Results Summary.

Field Screening Samples collected by GZA during each monitoring event (see Table 1) were screened for total volatile organics using an organic vapor meter (OVM, Mini Rae 3000) equipped with a photoionization detector (PID) and 10.6 eV lamp⁵. The OVM was calibrated using isobutylene gas with a concentration of 100 parts per million by volume (ppmV). Based on information provided by Rae Systems (the manufacturer of the OVM), isobutylene has a response factor of 1.0, while PCE has a response factor of 0.57⁶. Since PCE is the primary compound of concern, the field screening readings in Table 1 were adjusted to reflect the PCE response factor.

GC Samples were collected during each monitoring event by GZA for screening with a gas chromatograph by Haley & Aldrich at their office in Rochester, New York. The total VOC and PCE concentrations detected for these monitoring events are included on Table 1. The monthly GC screening results are included with the Routine Monitoring Forms in Appendix B.

Detector tube readings were also collected directly from the air stream at specific monitoring points during monthly sampling events as follows:

Pre-Carbon: January 2012, August 2012 and October 2013

Mid-Carbon: August 2011, January 2012, July 2012, August 2012, October 2013

Post-Carbon: August 2011, January 2012

Generally, detector tube readings were collected to make field decisions regarding GAC breakthrough on the first GAC vessel, (e.g., when the field screening results of the Mid-carbon monitoring point were greater than 2 ppm). The OM&M Plan indicates that if detector tube readings for PCE at the Mid-Carbon monitoring location are greater than 2 ppm, then a carbon change-out is required. GAC vessel change-outs occurred in June 2011, January 2012, September 2012 and July 2013.

GZA has evaluated these various screening results collected during the monthly monitoring events to assess the mass of PCE extracted by the SVE/SSD system, as well as the efficiency of the treatment system.

⁵ OVM readings were obtained by collecting soil vapor samples in Tedlar® bags. Prior to sampling, the bags were purged with the same soil vapor as was being sampled for analysis using a dedicated Tedlar bag for the respective sampling location.

⁶ Rae Systems Inc., Technical Note TN-106 "Correction Factors, Ionization Energies and Calibration Characteristics" Revised December 2007.

For this 2011 - 2013 Operation & Monitoring Report, 29 monitoring events were conducted between May 2011 and December 2013 for which data are available for pre-carbon samples. Generally, the correlation between the field screening samples, GC samples and the pre-carbon detector tube results in this reporting period is within a reasonable range of consistency for lower-level concentrations. There was a discrepancy between the field screening samples and GC samples for three (3) monitoring events for August, September and October 2012. The GC sample screening results for these three (3) events were 2 or 3 times higher than the associated adjusted field screening results and detector tube results. We also note that GC sample screening results generally have not been greater than 10 ppmV other than June, July, August of 2010 when assessing the data since system start-up. Therefore, the pre-carbon adjusted field screening results were used to reflect the estimated concentrations of PCE within the extracted vapor prior to treatment.

The calculated PCE concentrations (average between the monitoring events) were used along with the system average flow rates (average between the monitoring events) and the system operation time to estimate the PCE mass removal between monitoring events (2nd last column of Table 1), the PCE mass removal per day (last column of Table 1) and the total PCE mass removal since the startup (summated total in lower right hand corner of Table 1).

We estimate that approximately 716 pounds of PCE have been removed in this reporting period and a total of 2,375 pounds of PCE have been removed since March 3, 2009 (see Figure 4). This is approximately 66% of the total mass of PCE (3,600 pounds) estimated to have been initially present in the subsurface, as discussed in Section 1.0.

4.0 SYSTEM EVALUATION AND CONCLUSIONS

An evaluation of, and conclusions regarding, SVE/SSD system operation during the reporting period are presented below.

4.1 SYSTEM EVALUATION

Operation and monitoring data collected, as shown on Table 1, indicates that the system has operated as designed. The SVE/SSD system generally operated at steady state condition with an approximate 4" Hg vacuum pressure which yielded a SVE/SSD system average air flow rate of approximately 320 standard cubic feet per minute (SCFM).

Field screening sample results from the OVM were used along with the operating hours and SVE flow rate to assess the PCE mass removal for this monitoring period. We estimate, as shown on Table 1, that approximately 2,375 pounds of PCE has been removed from the subsurface since the start of the system and 716 pounds during the 2011 through 2013 reporting period. The daily PCE removal rates for May 2011 through December 2013 are estimated at less than 1 pound per day.

One GAC vessel, containing approximately 1,800 pounds of GAC, has been sent to Siemens Water Technology Corporation (Siemens) in Rochester, Pennsylvania for reactivation. The

efficiency removal rate of GAC for PCE removal from a dry air stream can be about 10 to 15% by weight. Therefore, the GAC vessels used can each adsorb about 180 to 270 pounds of PCE, before reaching saturation and break-through begins to occur.

4.2 CONCLUSIONS

The SVE/SSD system generally operated on a continuous basis during the reporting period with the exception of December 17, 2012 through February 1, 2013 when the VFD malfunctioned and was subsequently replaced. The system continues to extract soil vapor from the remedial area as a total of 2,375 pounds of PCE (the primary contaminant of concern) have been extracted from the subsurface, from system start up through December 2013. It is estimated that approximately 3,600 pounds of PCE were initially present in the subsurface soil in the remedial zone at system start-up. Therefore, about 66% of the estimated initial PCE mass has been removed.

The mass removal rate since the startup has generally decreased to less than 1 pound per day since March 2011. The cumulative mass of PCE removed versus time, depicted on Figure 4, indicate that asymptotic removal rates have been achieved. Figure 4 also depicts the cumulative mass of PCE removed in pounds for this current reporting period.

As a result, GZA is recommending that the SVE portion of the system be shut down, while continuing to operate the SSD portion of the system to mitigate the potential for vapor intrusion. Since the initial startup of the SVE system, the system was shut down during two time events (September 2010 through November 2010 and December 2012 through January 2013). Upon system restarting after each shut-down event, the influent concentrations and pounds-per-day removal returned to their pre-shut down status.

We note that since the SVE system has been in operation, the groundwater at monitoring well, Bldg 10-MW-1, has been sampled four times. The PCE concentrations detected at this location have shown a same order of magnitude increase in concentration since the monitoring well was first sampled pre-SVE system in 2007.

GMCH requests NYSDEC approve the request to shut-down of the SVE portion of the system and continue to operate the SSD portion of the system.

5.0 PROPOSED 2014 ACTIVITIES

GMCH would like to alter the operation of the SVE/SSD system to be an SSD system only. Once the alteration has occurred and the SSD portion of the system is in operation, indoor air samples will be collected from the perimeter of the system footprint, similar to the SSD systems installed in Buildings 7, 7A and 8 to determine if the system is effective to mitigate the potential for vapor intrusion.

GZA will collect additional monitoring data when the system operation is altered to assess the effect of the changes in conjunction with monitoring of the other SSD systems recently installed at the facility.

6.0 CERTIFICATION

I certify that the following statements are true related to the SVE/SSD system installed in the northern portion of Building 10:

- The operation and monitoring of the SVE/SSD system, to confirm the effectiveness of the SVE/SSD System, was performed under my direction;
- The operation of the SVE/SSD system has generally been consistent from the date of system start-up;
- No significant event, as monitored by GZA, has occurred that would impair the ability of the SVE/SSD System to protect the public health and environment;
- Access to the SVE/SSD system will continue to be provided to NYSDEC (with valid Contractor Safety Orientation Card) to evaluate the SVE/SSD System remedy, including access to evaluate the continued maintenance of this system;
- The SVE/SSD system is performing as designed and is effective;
- To the best of my knowledge and belief, the work and conclusions described in this report are in accordance with generally accepted engineering practices; and
- The information presented in this report is accurate and complete.

I certify⁷ that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Bart A. Klettke, P.E., of GZA GeoEnvironmental of New York, am certifying as a GMCH Representative.

Bart A. Klettke Printed Name

Signature

APRIL 4, 2014 Date STATE OF NEW PORPS

⁷ Certify means to state or declare a professional opinion based on knowledge and facts available to the professional making such certification at the time the certification is made.

TABLES

TABLE 1 SVE/SSD MONITORING SUMMARY 2011 - 2013 ANNUAL SVE/SSD SYSTEM MONITORING REPORT

BUILDING 10 SVE/SSD SYTEM GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

DATE	RUN TIME	# OF DAYS BETWEEN READINGS	SYSTEM FLOW RATE	OPERATING VACUUM	PRECARBO	ON MONI	FORING POINT	MID-CARE	BON MONI	TORING POINT	POST-CARI	BON MONI	TORING POINT	Estimated PCE Concentrations from Field Screening Results	Pound of PCE Removed Since Previous Measurement	PCE Removed in pounds per days
	hours	DAYS	SCFM	in Hg	Adjusted Field Screening Results ppmv	Detector Tube ppm	Total VOCs from Lab Analysis or GC Screen Total VOC / PCE Conc. ppmv	Adjusted Field Screening Results ppmv	Detector Tube ppm	Total VOCs from Lab Analysis or GC Screen Total VOC / PCE Conc. ppmv	Adjusted Field Screening Results ppmv	Detector Tube ppm	Total VOCs from Lab Analysis or GC Screen Total VOC / PCE Conc. ppmv	See Note 1 ppm	See Note 6 pounds	pounds
2009 Report D	ata															
3/2/2009	4		125	12.5	143									107		
3/3/2009	30	1.1	150	11	855			0.4			0.4			641	34	31.4
3/6/2009	98	2.8	280	4.5	257			0.9			0.5			192	155	54.6
3/9/2009	168 252	3.5	300 325	5 4	54 48	15	2.9 / 1.6 2	0.3		1.3 / 0.003 1	0.3		1.6 / 0.003 1	41 36	60 58	20.6 16.6
3/20/2009	432	7.5	325	3.5	39	13	2.57 1.0	1.1		1.57 0.003	0.6		1.07 0.003	29	49	6.5
3/27/2009	529	4.0	270	8.5	114			1.3			0.3			86	42	10.4
4/9/2009	766	9.9	320	2.75	29	19	3.8 / 3.2 3	0.6	ND	0.17 / 0.004 2	1.1		0.12 / 0.001 2	21	100	10.1
4/17/2009	958	8.0	315	3 4.5	47			0.7			0.5			35	44	5.5
4/27/2009 5/8/2009	1,203 1440	10.2 9.9	330 315	5	23 26			0.5			0.5			17 20	52 36	5.1 3.6
5/29/2009	1,945	21.0	280	3	30			7.4	5.5 ³		0.4			22	80	3.8
6/12/2009	2,280	14.0	350	3	22	25 4		0.3			0.2			16	52	3.7
6/25/2009	2,594	13.1	330	3	23			0.9			0.5			18	46	3.5
7/10/2009	2,953	15.0 24.0	340	3.25	33			1.7 10.8	15		0.3	0.5		25	65	4.3
8/3/2009 2/8/2010	3,528 8,064	189.0	310 285	2.5	19 5	6	11.6 / 7.1	2.9	15 5	6 / 5.9	1.1 0.9	0.5 1.25	1.5 1.3	15 4	93 315	3.9 1.7
3/16/2010	8,928	36.0	335	4	6	7	9.8 / 8.0	2.9	7.5	6.7 / 5.6	0.3	ND	0.9 / ND	4	28	0.8
4/23/2010	9,840	38.0	310	3	5	7	9.2 / 7.2	2.4	5	6.0 / 5.4	0.3	ND	ND / ND	3	30	0.8
2010 Reportin	g Data												Pounds of PCE Remov	ved May 2009 through April 2010:	1337	
5/14/2010	10,342	20.9	340	4	10	10	21.7 / 8.7	6.4	8	8.8 / 8.3	0.0	0	1.2 / 0	7	22	1.1
6/24/2010	11,330	41.2	320	4	10	20	14.4 / 13.9	0.1	0	1.2 / 0	0.0	0	1.2 / 0	7	60	1.5
7/19/2010	11,926	24.8	315	3.5	12	20	19.8 / 16.5	0.0	0	2 / 0.09	0.0	0	No Sample	9	38	1.5
8/26/2010	12,835	37.9	300	4	10	15	29.3 / 22.4	5.7	9	20.9 / 11.9	0.0	0	0.2 / 0	8	59	1.6
12/16/2010	12,835	112.0	315	4	37	13	25.5 / 23.6	0.0	0	0 / 0	0.0	0	0 / 0	28	(See Note 10)	0.0
12/20/2010	12,937	4.3	315	4	14	NM	NM	0.0	NM	NM	0.0	NM	NM	11	16	3.7
2/7/2011 3/17/2011	14,046 14959	50.5 38.0	315 310	4	5	9 NM	9.7 / 5 2.9 / 2.1	0.0	0 MN	0.7 / 0 6.1 / 0	0.0	NM NM	0 / 0	4	72 29	1.4 0.8
4/26/2011	15914	39.8	315	4	4	NM	3.8 / 3.4	0	NM	0.5 / 0	0.0	NM	0.5 / 0	3	26	0.6
2011 - 2013 Re	•													ved May 2010 through April 2011:	·	•
5/25/2011	16615	29.2	315	4	6	NM	4.9 / 4.2	3.078	NM	Sample broke	0.4	NM	0.09 / 0.8	6	26	0.9
6/30/2011 7/28/2011	17476 18146	35.9 27.9	315 315	4	7	NM NM	10.2 / 6 9 / 8.1	0.684	NM NM	5.4 / 1.5 0.2 / 0	0.0	NM NM	4.6 / 0 0 /0	7	44 37	1.2 1.3
8/31/2011	18956	33.8	315	4	7	NM	8.5 / 8.4	2.793	0	0.1 / 0	2.7	0	0/0	7	46	1.4
9/27/2011	19606	27.1	325	4.25	5	NM	13.1 / 8.6	0	NM	4.2 / 0.3	0.0	NM	Apr-00	5	31	1.2
11/1/2011	20441 21096	34.8 27.3	315 315	4.25	2 2	NM NM	5.4 / 5.1 11.5 / 5.6	0.342	NM NM	6.5 / 1.8 10.7 / 4.9	0.0	NM NM	0.5 / 0 5.9 / 0	2 2	24	0.7 0.4
1/5/2012	22001	37.7	325	4.25	2	5	9.1 / 4.1	1.71	5	8.7 / 3.5	0.0	0	4.9 / 0	2	13	0.3
1/31/2012	22626	26.0	325	4.25	2	NM	8.5 / 3.7	0.57	NM	4.8 / 0.17	0.5	NM	4.6 / 0	2	10	0.4
3/1/2012 4/5/2012	23351 24185	30.2 34.8	315 320	4 4	3	NM NM	8.8 / 3.58 10.3 / 4.29	0	NM NM	4.9 / 0.08 5 / 0	0.0	NM NM	5 / 0.08 4.5 / 0	2 3	13 17	0.4 0.5
5/2/2012	24831	26.9	327	4.5	2	NM	9.6 / 3.36	0.513	NM	6.1 / 0	0.3	NM	5.2 / 0	2	14	0.5
5/31/2012	25528	29.0	322	4.25	2	NM NM	8.6 / 5.35	0.114	NM 1	0.9 / 0	0.1	NM NM	3.2 / 0	2	12	0.4
7/17/2012 8/23/2012	26655 27543	47.0 37.0	322 320	4	6 4	NM 5	8.5 / 8.5 18.5 / 18.3	2.223 2.223	3	3 / 1.9 7.3 / 6.9	0.1	NM NM	0.3 / 0.22	6 4	35 33	0.8
9/18/2012	28164	25.9	320	4	5	NM	15.9 / 15.7	0	NM	0/0	0.0	NM	0/0	5	23	0.9
11/1/2012	29223	44.1	319	4	4	NM NM	15.1 / 10.7	0.057	NM NM	5.3 / 0	0.0	NM NM	0.8 / 0	4	41	0.9
11/29/2012 2/26/2013	29894 30830	28.0 39.0	322 328	4	5 4	NM NM	10.7 / 9.2 10.5 / 5.2	0.171	NM NM	5.3 / 0 5.5 / 0	0.0	NM NM	5.3 / 0 5.6 / 0	5 4	24 34	0.9
3/26/2013	31509	28.3	328	4	3	NM	8 / 4.1	0.399	NM	3.8 / 0	0.3	NM	3.6 / 0	3	20	0.7
4/24/2013	32199	28.8	328	4	4	NM NM	6.4 / 5	0.285	NM NM	0.7 / 0	0.2	NM NM	0.6 / 0	4	19	0.7
5/30/2013 6/26/2013	33066 33677	36.1 25.5	328 319	4.25	5	NM NM	4.7 / 4.7 12.3 / 8.24	1.254 2.166	NM NM	1 / 0.3 4 / 1.3	0.5	NM NM	0 / 0 4.4 / 0	<u>3</u> 5	24 21	0.7 0.8
7/29/2013	34454	32.4	329	4.5	5	NM	11.1 / 7.1	0.228	NM	0.4 / 0	0.2	NM	3.8 / 0	5	31	1.0
8/26/2013	35114	27.5	329	4.5	4	NM NM	10.7 / 6.3	0.228	NM NM	5.7 / 0	0.2	NM NM	4.6 / 0	4	25	0.9
9/16/2013 10/22/2013	35625 36488	21.3 36.0	330 330	4.5 4.5	3 5	NM 4	7.5 / 6.8 9.6 / 4.6	0.285 1.539	NM 0.5	0.6 / 0 7.2 / 0.4	0.1	NM NM	0.5 / 0 5.6 / 0	3 5	17 29	0.8 0.8
12/5/2013	37547	44.1	323	4.25	3	NM	12.3 / 5.4	0.57	NM	8.6 / .3	0.2	NM	7.8 / 7.8	3	32	0.7
12/30/2013	38074	22.0	330	5	3	NM	8.6 / 4.3	0.399	NM	5.3 / 0.3	0.0	NM	4.3 / 0	3	12	0.5

 $Notes: \ 1 - Estimated \ PCE \ concentrations \ were \ determined \ using \ the \ Adjusted \ Field \ Screening \ Results.$

es: 1 - Estimated PCE concentrations were determined using the Adjusted Field Screening Results.

2 - GC Screening performed by Haley & Aldrich, in Rocherster, New York.

3 - in Hg = inches of mercury

4 - ND = non detect

5 - ppmv = pers per million by volume

6 - See Appendix A for sample calculation.

7 - SVE/SSDS was shut down from December 17, 2012 through February 1, 2013 due to varible frequency drive malfunction.

8 - NM = not measured
9 - Valve on tedlar bag broke in transit and had arrived empty, no sample was screened.
10 - SVE/SSDS was shut down from August 26 through December 16, 2010, approximately 4 months, per NYSDEC approval.

716 Pounds of PCE Removed May 2011 through December 2013 Total pounds of PCE removed since start up

FIGURES

© 2014 GZA GeoEnvironmental of New York

LEGEND:

INDICATES BUILDING 10 FOOTPRINT

APPROXIMATE LOCATION OF SVE/SSD SYSTEM

NOTES:

- 1. BASE MAP ADAPTED FROM A 2005 AERIAL PHOTOGRAPH DOWNLOADED FROM http://www.nysgis.state.ny.us/gateway/ mg/interactive_main.html AND SITE OBSERVATIONS.
- 2. THE SIZE AND LOCATION OF EXISTING SITE FEATURES SHOULD BE CONSIDERED APPROXIMATE.

DRAWN BY:

GZA GeoEnvironmental of

New York

APPROXIMATE SCALE IN FEET

GM COMPONENTS HOLDINGS, LLC
LOCKPORT FACILITY
200 UPPER MOUNTAIN ROAD, LOCKPORT, NEW YORK
BUILDING 10 PROJECT No.

21.0056546.00

FIGURE No.

GZA GeoEnvironmental of

DRAWN BY:

TO SCALE

PROJECT No. 21.0056546.00

FIGURE No.

APPENDIX A PCE MASS CALCULATIONS

	·
	Page No. (
	GZA GeoEnvironmental
	of New York Engineers and Scientists
	Project GWHC TSIdy 10 SVE/SSD File No. 21. ODSIGS46. O
	Project GWHC TSIGNO SVE SSD Location Lockport NY Date SISIO By Clo. Subject Was of PCE in Unisaturated Soil Checked 5 6 10 By DT
	Subject Was at PCE in Unsetwated Soil Checked 5/6/10 By DJT
	Based on Revised By
1	
2	111. [] 1
3	Mass of PCE in unsaturated soil to be
4	1) I CHE C I TELL IN
5	addressed w SVE System in TSldg 10
7	,
8	· Area to be addressed is ~14,000 sq. ft.
9	
10	· Assume Uncaturaded soil thickness is 6.0 ft. (6.5 ft to untertable - 0.5 ft for concentent fill)
11	(65ft to at table - 05ft for court of fill)
12	
13	· Assume 360 ppm PCE average soil concentration.
14	
15	· Assure 10% of volume contains stilities
16	
17	01 01 01 01 013 (-111 13)
18	14,000 sqft. x 6ft = 84,000 ft3 (3.111 yds)
19	3 111 13 2000 - 7 0m 3/1 / 1 / 1 / 1/1/1
20	3.111 yd33 x 0.90 = 2,800 x (vol. West dilties)
22	3
23	Z1800 yds * 1.6 tone /yd3 = 4,480 tons of soil
24	51800 daz 1.0 15×1 da = 1, 100 1012 11 2011
25	(,
26	4,480 tons * 1,016 Kylton = 4,551,680 Kg
27	
28	710
29	360 mg/kg * 4,551,680 kg = 1,638,604,800 mg
30	3
31	,
33	1178121 800 WD x 27 MIVID - 3113 . 1.
34	1,638,604,800 mg * 2.7046×10 = 3,613 ponds
35	(convert vug to
36	1,638,604,800 mg * 2.2046×10 = 3,613 ponds (converting to pounds)
37	
38	Say 3,600 lbs.
39	
40	J OF PCE

			1
			Page No. 1 1
	GZA GeoEnvironmental		
	of New York Engineers and Scientists		
	Project GMCH Blog 10 SVE SSD System		File No. 21.0056546.0
	Location Location Da	ite Elelin	By Cb.
		necked 5/6//9	By DJT
		evised	Ву
-1	1		
2		- 0	_ ^ \
3	Points of PCE Removed by SVE	Sys tor	Time Lerical
4	4	,	
5	3/6/09 - 3/9/09.		
6	6		
7	7 2 11 2 3 3 9	(
8	Blays between Kessings. L. 1 a	days.	
9		<u></u>	. \ . ~
10	Aire System How between Leadings.	(300 setus	+ 28hitm) - Z
11	Days Coturen Readings: Z.9 a Aire System Flow between Readings.		
12		290	situ
13	3 -1 1 1 1	0 '	41
14	Estimate Drevoge PLE Conc. Delue	~ Keadings:	Al bount 1,15 bbuns
15		3	
16			2
17		((~	
18		= (((,	ppma
19			
20			
21			
22	791 * 790 - 8 * 741	1 ~	
24	21 1004.	<u>rr</u> * 60.	MIN.
25	d	lay ha	Codery
26			
27		- (,211,040 ft3
28	2401	- (1201,040 11
29	1211 040 St * 007937	74797	3 .
30	(, 200, 00 11 1 0.0 2032 -	31,211	441
31	1,211,040 ft * 0.02832 = - (convert ft3)		
32	2		
33	(17 ppmv * 6.78 = 7 (innext ppmv) to mylm3	192 100/	.3
34	4 (Cannot occur)	12 000/10	V.
35	5 (tr. sag(u.3)		
36	6		
37	7		
38	8 34 297 m3 * 793 ma/ 3	= 27,97	521 mg
39	9		,
40	34,297 m3 * 793 mg/m3	127.199	3 3 \
41			
42	27,198 g # 0.002.205 = (convert of to pounds) =	10	\
43	3 (convert to to sounds)	60 poin	ds PCE REMOVED !
44	4	-	1/

APPENDIX B ROUTINE MONITORNG FORMS (MAY 2011 – DECEMBER 2013)

OPERATION, MAINTENANCE AND MONITORING PLAN

SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chris Baron	Time On-Site: 1345 Time Off-Site: 1515
Date: 5-25-11	SVE Blower Run Time: 16,615 hours VDF: 60 hertz
SYSTEM STATUS	OVE BIOMOT MAINT TIMO.
SVE System Operating: YES NO	If no:
Alarm lights off: (YES) NO	If no:
Autodialer Alarm On: YES NO	If Yes:
Posi	tion of Swing Panel HOA Switches:
Control Power Switch ON OFF	SVE Blower Switch HAND OFF AUTO
M/S Effluent Pump Switch HAND OFF AUTO	
Heat Exchanger Operating YES NO	If no:
SVE System appear to be operating YES NO	If no:
Moisture Separator Tank Level: (Empty) 1/4 Fu	l 1/2 Full 3/4 Full Full Volume Tranfered: gals
SYSTEM MONITORING READINGS	
Vacuum Gauge Pre-Inline Filter:	in Hg System Monitoring Notes: OUM Readings were
Vacuum Gauge Post-Inline Filter: 4.5	in Hg also coilected from the gate value?
Temperature on Discharge Silencer: \20	"F for each of the Zo legs of the
Temperature after Heat Exchanger:	°F \ - (, \ \ \)
Pressure After Heat Exchanger 35	in H20 System. See back for data
Pressure Before Heat Exchanger 42	in H ₂ O Flow Rate Based on Pressure Gauge: 330 cfm
Pressure Magnehelic Gauge: 2 .4	in H ₂ O Flow Rate Based on Vacuum Gauge: 300 cfm
Vacuum Magnehelic Gauge: 72	in H ₂ O
Vacuum Gauge After Manifold:	in Hg
EXTRACTION WELL VACUUM GAUGE READINGS	
EW -1: 2 in Hg EW-11:	in Hg Vaccum Gauge Reading Notes:
EW-2: 1,2 in Hg EW-12:	in Hg
EW-3:	∠ \ in Hg
EW-4: ᠘\ in Hg EW-14:	\ , 2 in Hg
EW-5:	\ in Hg
EW-6: 💪 in Hg EW-16:	l in Hg
EW-7: C in Hg EW-17:	<
EW-8: < \ in Hg SS-1:	2_ in H2O
EW-9: In Hg SS-2:	2 in H2O
EW-10: in Hg SS-3:	Z in H2O
AIR FLOW FIELD SCREENING	
Background Outside SVE Shed: 4 ppm	Detector Tube Readings
Background Inside SVE Shed: \ 4 ppm	Pre Carbon YES NOppm
Pre Carbon Discharge: ppm	Mid Carbon YES NOppm
Mid Carbon Discharge: 5,4 ppm	Post Carbon YES NO ppm
Post Carbon Discharge: 0.7 ppm	
Additional Notes: Deplicate sample collected for Hap for GC Screen.	on Pre Carbon. Samples were sent to

GAS CHROMATOGRAPHY REPORT SHEET GC SCREENING RESULTS DIRECT INJECT

Date of Analysis: 5/27/2011 ICAL Curve Date: 1/1/2011

Client: File No:

GMCH Lockport 36795-000

Sample Type: BLDG-10 SVE/SSD

ehs

MGN

Samp	le Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Con	c.	REMARKS
		74-82-8	methane	4,500			ND	ppmV	
		75-01-4	vinyl chloride	7,300			ND	ppmV	
		75-35-4	1,1-dichloroethene	14,300			ND	ppmV	
		75-09-2	methylene chloride	14,700			ND	ppmV	
ID:	Pre-Carbon	156-60-5	trans 1,2-dichloroethene	17_000			ND	ppmV	
Date:	5/25/2011	75-34-3	1,1-dichloroelhane	17,500			ND	ppm∨	
Time:		1634-04-4	MTBE	0,000			ND	ppmV	
		78-93-3	2-butanone (MEK)	18 300			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19 100			ND	ppmV	
		67-66-3	chloroform	19,800			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	21,600			ND	ppmV	
		71-43-2	benzene	22,400			ND	ppmV	
		78-87-5	1,2-dichloropropane	0,000			ND	ppmV	
		79-01-6	trichloroethene	24,200			ND	ppmV	
		108-88-3	toluene	27,200		10	ND	ppmV	
		127-18-4	tetrachloroethene	29.200	29,010	63.2	4,15	ppmV	
		108-90-7	chlorobenzene	30_300			ND	ppmV	
		100-41-4	ethylbenzene	30,900		1 1	ND	ppmV	
		108-38-3/106-42-3		31.200		1 1	ND	ppmV	
		95-47-6	o-xylene	32,100		1	ND	ppmV	
			Unknown TPH			20.0	0,70	ppmV	
			total volatiles			83	4.9	ppmV	

Sample Identification		CASRN	Target Compound	Cal. Ret Time (min.)	Ret. Time (min.)	Det. Resp. (Aras Cts.)	Conc.	REMARKS
		74-82-8	methane	4,500				pmV
		75-01-4	vinyl chloride	7,300			ND p	pmV Vmq
		75-35-4	1,1-dichloroethene	14_300			ND p	pmV Vmq
		75-09-2	methylene chloride	14,700			ND p	pmV
ID:	Pre-Carbon (DUP)	156-60-5	trans 1,2-dichloroethene	17,000			ND p	pmV
Date:	5/25/2011	75-34-3	1,1-dichtoroethane	17,500			ND p	pmV
Tlme:		1634-04-4	MTBE	0.000			ND pj	pmV
		78-93-3	2-butanone (MEK)	18,300			ND p	vm∨
		156-59-2	cis 1,2-dichloroethene	19_100			ND p	pmV Vmq
Temp =	٩F	67-66-3	chloroform	19,800			ND p	Vmq
Flow =	280 SCFM	71-55-6	1,1,1-trichloroethane	21,600			ND p	pmV
		71-43-2	benzene	22,400			ND p	pmV
		78-87-5	1,2-dichloropropane	0,000			ND p	Vmq
		79-01-6	trichtoroethene	24,200	D		ND p	∨mq
		108-88-3	loluene	27.200			ND p	Vmq
		127-18-4	tetrachloroethene	29,200	29,076	62.2	4.09 pj	pmV Vmq
		108-90-7	chlorobenzene	30,300	- 2		ND p	pmV Vmq
		100-41-4	ethylbenzene	30,900	11 4		NO p	pmV Vmq
		108-38-3/106-42-3	m/p-xylene	31,200	11	1 1	ND p	pmV
		95-47-6	o-xylene	32,100			ND p	pmV
			Unknown TPH			20.0	0.70 0	omV
			total volatiles			82	4.8 pg	Vmq

Sample Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
	74-82-8 75-01-4 75-35-4	methane vinyl chloride 1,1-dichloroethene	4.500 7,300 14,300			ND ppmV ND ppmV ND ppmV	
ID: Mid-Carbon	75-09-2 156-60-5	rnethylene chloride Irans 1,2-dichloroethene				ND ppmV ND ppmV	
Date: 5/25/2011 Time:	75-34-3 1634-04-4 78-93-3	1,1-dichloroethane MTBE 2-butanone (MEK)	17.500 0,000 18.300			ND ppmV ND ppmV ND ppmV	
	156-59-2 67-66-3	cis 1,2-dichloroethene chloroform	19.100 19.800			ND ppmV ND ppmV	
	71-55-6 71-43-2	1,1,1-trichloroethane benzene	21.600 22.400			ND ppmV ND ppmV	
	78-87-5 79-01-6	1,2-dichloropropane trichloroathene	0,000 24,200			ND ppmV	
	108-88-3 127-18-4	loluene tetrachloroethene	27,200 29,200			ND ppmV ND ppmV	
Valve on Bag Broken	108-90-7 100-41-4 108-38-3/106-42-3	chlorobenzene ethylbenzene rn/p-xylene	30,300 30,900 31,200			ND ppmV ND ppmV ND ppmV	
Bag Arrived Empty	95-47-6	o-xylene Unknown TPH	32 100			ND ppmV ND ppmV	
		total volatiles			0	Vmqq 0.0	

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (mln.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.		REMARKS
		74-82-8	methane	4,500			ND	ppmiV	
		75-01-4	vinyl chloride	7,300			ND	ppmV	
		75-35-4	1,1-dichloroethene	14,300			ND	Vmqq	
		75-09-2	methylene chloride	14.700		1 1	ND	ppmV	
ID:	Post-Carbon	156-60-5	trans 1,2-dichloroethene	17.000			ND	ppmV	
Date:	5/25/2011	75-34-3	1,1-dichloroethane	17.500			ND	ppmV	
Time:		1634-04-4	MTBE	0,000			ND	ppm∨	
		78-93-3	2-bulanone (MEK)	18.300			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19.100			ND	Vmqq	
		67-66-3	chloroform	19.800			ND	ppmV	
		71-55-6	1,1,1-frichloroethane	21,600			ND	ppmV	
		71-43-2	benzene	22.400		l I	ND	ppmV	
		78-87-5	1,2-dichloropropane	0,000			ND	ppmV	
		79-01-6	trichloroethene	24.200			ND	ppmV	
		108-88-3	loluene	27.200			ND	ppmV	
		127-18-4	letrachloroethene	29.200	29,318	1,3	0.09	ppmV	
		108-90-7	chlorobenzene	30.300			ND	ppmV	
		100-41-4	elhylbenzene	30.900		ı I	ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31_200		ı I	ND	ppmV	
		95-47-6	o-xylene	32 100		ı I	ND	ppmV	
			Unknown TPH			20.0	0.70	ppmV	
			total volatiles			21	0.8	Vmqq	

OPERATION, MAINTENANCE AND MONITORING PLAN

SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Time On-Site: L430 Time Off-Site: L530 Date: L30/201 SVE Blower Run Time: T410 hours VDF: L00 her SYSTEM STATUS SVE System Operating: (YES) NO If no: Autodialer Alarm On: YES (NO) If Yes: Postion of Swing Panel HOA Switches: Control Power Switch ON OFF SVE Blower Switch HAND OFF AUTO Heat Exchanger Operating (YES) NO If no: SVE System appear to be operating (YES) NO If no: SVE System appear to be operating (YES) NO If no: SVE System appear to be operating (YES) NO If no: SVE System Appear to be operating (YES) NO If no: SVE System Appear to be operating (YES) NO If no: SVE System Appear to Be operating (YES) NO If no: SVE System Appear to Be operating (YES) NO If no: SVE System Appear to Be operating (YES) NO If no: SVE System Appear to Be operating (YES) NO If no: SVE System Appear to Be operating (YES) NO If no: SVE Blower Switch HAND OFF AUTO AUTO Heat Exchanger Switch HAND OFF AUTO Fino: SVE Blower Switch HAND OFF AUTO OFF AUTO Fino: SVE Blower Switch HAND OFF AUTO OFF AUTO Fino: SVE Blower Switch HAND OFF AUTO OFF AUTO Fino: SVE System Appear to Be operating (YES) NO If no: SVE System Switch HAND OFF AUTO OFF AUTO OFF ON IT no: SVE System Switch HAND OFF AUTO OFF ON IT no: SVE System Switch HAND OFF AUTO OFF ON IT no: SVE System Switch HAND OFF AUTO OFF ON IT no: SVE System Monitoring Notes: System Monitoring Notes: System Monitoring Notes: Flow Rate Based on Pressure Gauge: 350 cfm Flow Rate Based on Vacuum Gauge: 350 cfm Fl
SYSTEM STATUS SVE System Operating: (YES) NO If no: Alarm lights off: (YES) NO If no: Autodialer Alarm On: YES NO If no: Postion of Swing Panel HOA Switches: Control Power Switch (ON) OFF SVE Blower Switch HAND OFF AUTO M/S Effluent Pump Switch HAND OFF AUTO Heat Exchanger Switch HAND OFF AUTO Heat Exchanger Operating (YES) NO If no: SVE System appear to be operating (YES) NO If no: SVE System appear to be operating (YES) NO If no: SVE System Appear to be operating (YES) NO If no: SYSTEM MONITORING READINGS Vacuum Gauge Pre-Inline Filter: 4.5 in Hg Temperature after Heat Exchanger: (10) °F Pressure Before Heat Exchanger: (10) °F Flow Rate Based on Vacuum Gauge: 330 cfm Flow Rate Based on Vacuum Gauge: 350 cfm Flow Ra
Alarm lights off: Autodialer Alarm On: YES NO If Yes: Postion of Swing Panel HOA Switches: Control Power Switch ON OFF SVE Blower Switch HAND OFF AUTO M/S Effluent Pump Switch HAND OFF AUTO Heat Exchanger Operating YES NO If no: SVE System appear to be operating YES NO If no: SVE System appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SYSTEM MONITORING READINGS System Monitoring Notes:
Alarm lights off: Autodialer Alarm On: YES NO If Yes: Postion of Swing Panel HOA Switches: Control Power Switch ON OFF SVE Blower Switch HAND OFF AUTO M/S Effluent Pump Switch HAND OFF AUTO Heat Exchanger Operating YES NO If no: SVE System appear to be operating YES NO If no: SVE System appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SYSTEM MONITORING READINGS System Monitoring Notes:
Autodialer Alarm On: Postion of Swing Panel HOA Switches: Control Power Switch ON OFF SVE Blower Switch HAND OFF AUTO Heat Exchanger Switch HAND OFF AUTO OFF AUTO OFF AUTO Heat Exchanger Switch HAND OFF AUTO OFF AUTO OFF AUTO OFF AUTO If no: SVE System appear to be operating YES NO If no: SVE System appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: SVE System Appear to be operating YES NO If no: System Monitoring Notes: System Monitoring Notes: System Monitoring Notes: Flow Rate Based on Pressure Gauge: SS Ofm Flow Rate Based on Pressure Gauge: SS Ofm Flow Rate Based on Vacuum Gauge: SO Ofm Flow Rate Based on Vacuum Gauge: Offm Flow Rate Based o
Postion of Swing Panel HOA Switches: Control Power Switch ON OFF SVE Blower Switch HAND OFF AUTO M/S Effluent Pump Switch HAND OFF AUTO Heat Exchanger Switch HAND OFF AUTO Heat Exchanger Operating YES NO If no: SVE System appear to be operating or
Control Power Switch ON OFF SVE Blower Switch HAND OFF AUTO M/S Effluent Pump Switch Heat Exchanger Operating YES NO If no: SVE System appear to be operating or operly? Moisture Separator Tank Level: Empty 1/4 Full 1/2 Full 3/4 Full Full Volume Tranfered: gate SYSTEM MONITORING READINGS Vacuum Gauge Pre-Inline Filter: 4.5 in Hg Temperature on Discharge Silencer: Temperature after Heat Exchanger Pressure After Heat Exchanger 7.0 in H ₂ O Pressure Magnehelic Gauge: 7.1 in H ₂ O Vacuum Magnehelic Gauge: 7.2 in H ₂ O Vacuum Gauge After Manifold: NO NO NO NO NO NO NO NO NO N
M/S Effluent Pump Switch HAND OFF AUTO Heat Exchanger Switch HAND OFF AUTO Heat Exchanger Operating YES NO If no: SVE System appear to be operating or YES NO If no: SVE System appear to be operating or YES NO If no: Moisture Separator Tank Level: (Empty) 1/4 Full 1/2 Full 3/4 Full Full Volume Tranfered: gale SYSTEM MONITORING READINGS Vacuum Gauge Pre-Inline Filter: 4 in Hg Vacuum Gauge Post-Inline Filter: 4 in Hg Temperature on Discharge Silencer: 1(9 ° F Temperature after Heat Exchanger: 88 ° F Pressure After Heat Exchanger 7 in Hg Pressure Magnehelic Gauge: 7 in Hg Vacuum Magnehelic Gauge: 7 in Hg Vacuum Gauge After Manifold; 1 in Hg EXTRACTION WELL VACUUM GAUGE READINGS EW-1: 1 in Hg EW-11: 1 in Hg EW-12: 1.2. in Hg Vaccum Gauge Reading Notes:
Heat Exchanger Operating SVE System appear to be operating properly? Moisture Separator Tank Level: Empty 1/4 Full 1/2 Full 3/4 Full Full Volume Transfered: gale SYSTEM MONITORING READINGS Vacuum Gauge Pre-Inline Filter: 4.0 in Hg Temperature on Discharge Silencer: 1(9 °F Temperature after Heat Exchanger 2.0 in H ₂ 0 Pressure After Heat Exchanger 2.5 in H ₂ 0 Pressure Magnehelic Gauge: 2.5 in H ₂ 0 Vacuum Magnehelic Gauge: 72 in H ₂ 0 Vacuum Gauge After Manifold: 1.0 in Hg EXTRACTION WELL VACUUM GAUGE READINGS EW-1: 1 in Hg EW-2: 1.25 in Hg VYES NO If no: 1/4 Full 1/2 Full 3/4 Full Full Volume Transfered: gale System Monitoring Notes: System Monitoring Notes: Flow Rate Based on Pressure Gauge: 33.0 cfm Flow Rate Based on Vacuum Gauge: 35.0 cfm Flow Rate Based on Vacu
Moisture Separator Tank Level: Empty 1/4 Full 1/2 Full 3/4 Full Full Volume Tranfered: gals SYSTEM MONITORING READINGS Vacuum Gauge Pre-Inline Filter: 4.0 in Hg Vacuum Gauge Post-Inline Filter: 4.5 in Hg Temperature on Discharge Silencer: (1/9 ° F Temperature after Heat Exchanger: 88 ° F Pressure After Heat Exchanger 7.0 in Hg Pressure Magnehelic Gauge: 7.5 in Hg Vacuum Magnehelic Gauge: 7.5 in Hg EXTRACTION WELL VACUUM GAUGE READINGS EW-1: 4 in Hg EW-11: 6 in Hg EW-12: 6 in Hg Vaccum Gauge Reading Notes:
Moisture Separator Tank Level: Empty 1/4 Full 1/2 Full 3/4 Full Full Volume Tranfered: gale SYSTEM MONITORING READINGS Vacuum Gauge Pre-Inline Filter: 4.0 in Hg Vacuum Gauge Post-Inline Filter: 4.5 in Hg Temperature on Discharge Silencer: (1/9 ° F Temperature after Heat Exchanger: 88 ° F Pressure After Heat Exchanger 2.0 in H ₂ O Pressure Before Heat Exchanger 2.5 in H ₂ O Vacuum Magnehelic Gauge: 7.5 in H ₂ O Vacuum Gauge After Manifold; 1.0 in Hg EXTRACTION WELL VACUUM GAUGE READINGS EW-1: 4 in Hg EW-11: 6 in Hg EW-12: 4 in Hg EW-12: 4 in Hg
Vacuum Gauge Pre-Inline Filter: Vacuum Gauge Post-Inline Filter: Vacuum Gauge Silencer: Vacuum Gauge Silencer: Vacuum Gauge Heat Exchanger Vacuum Gauge: Vacuum Magnehelic Gauge: Vacuum Gauge After Manifold: Vacuum Gauge After Manifold: Vacuum Gauge After Manifold: Vacuum Gauge After Manifold: Vacuum Gauge Reading Notes: EW-1: Vaccum Gauge Reading Notes: EW-1: Vaccum Gauge Reading Notes:
Vacuum Gauge Post-Inline Filter: 4.5 in Hg Temperature on Discharge Silencer: 1(9 ° F Temperature after Heat Exchanger: 88 ° F Pressure After Heat Exchanger 2 in H ₂ O Pressure Magnehelic Gauge: 7 in H ₂ O Vacuum Magnehelic Gauge: 7 in H ₂ O Vacuum Gauge After Manifold: 1 in Hg EW-1: 1 in Hg EW-1: 1 in Hg EW-12: 1 in Hg
Vacuum Gauge Post-Inline Filter: 4.5 in Hg Temperature on Discharge Silencer: 1(9 ° F Temperature after Heat Exchanger: 88 ° F Pressure After Heat Exchanger 2 in H ₂ O Pressure Magnehelic Gauge: 7 in H ₂ O Vacuum Magnehelic Gauge: 7 in H ₂ O Vacuum Gauge After Manifold: 1 in Hg EW-1: 1 in Hg EW-1: 1 in Hg EW-12: 1 in Hg
Temperature on Discharge Silencer: 1(9 ° F) Temperature after Heat Exchanger: 88 ° F Pressure After Heat Exchanger 720 in H2O Pressure Before Heat Exchanger 720 in H2O Pressure Magnehelic Gauge: 720 in H2O Vacuum Magnehelic Gauge: 720 in H2O Vacuum Gauge After Manifold: 720 in H2 EXTRACTION WELL VACUUM GAUGE READINGS EW-1: 720 in H2 EW-11: 730 in H2 EW-12: 730 in H2 Vaccum Gauge Reading Notes:
Temperature after Heat Exchanger: 88 °F Pressure After Heat Exchanger 70 in H ₂ O Pressure Before Heat Exchanger 78 in H ₂ O Pressure Magnehelic Gauge: 72 in H ₂ O Vacuum Magnehelic Gauge: 72 in H ₂ O Vacuum Gauge After Manifold: 70 in Hg EXTRACTION WELL VACUUM GAUGE READINGS EW-1: 4 in Hg EW-11: 5 in Hg EW-12: 5 in Hg Waccum Gauge Reading Notes:
Pressure After Heat Exchanger Pressure Before Heat Exchanger Pressure Magnehelic Gauge: Vacuum Magnehelic Gauge: Vacuum Gauge After Manifold: EXTRACTION WELL VACUUM GAUGE READINGS EW-1: () in Hg EW-1: () in Hg EW-1: () in Hg EW-12: () in Hg EW-12: () in Hg Flow Rate Based on Pressure Gauge: Flow Rate Based on Vacuum Gauge:
Pressure Magnehelic Gauge: 2.5 in H ₂ O Vacuum Magnehelic Gauge: > 2 in H ₂ O Vacuum Magnehelic Gauge: > 1 in H ₂ O Vacuum Gauge After Manifold: 1 in Hg EXTRACTION WELL VACUUM GAUGE READINGS EW -1:
Pressure Magnehelic Gauge: 2.5 in H ₂ O Vacuum Magnehelic Gauge: > Z in H ₂ O Vacuum Magnehelic Gauge: > Z in H ₂ O Vacuum Gauge After Manifold: 1.0 in Hg EXTRACTION WELL VACUUM GAUGE READINGS EW-1: 1 in Hg EW-11: 1 in Hg EW-12: 1 in Hg EW-12: 1 in Hg
Vacuum Gauge After Manifold: \(\) in Hg EXTRACTION WELL VACUUM GAUGE READINGS EW -1: \(\) in Hg EW-11: \(\) in Hg EW-12: \(\) in Hg Vaccum Gauge Reading Notes: EW-12: \(\) in Hg
EXTRACTION WELL VACUUM GAUGE READINGS EW -1:
EW-1: (in Hg EW-11: (in Hg Vaccum Gauge Reading Notes: EW-2: (in Hg
EW-2: (.25 in Hg EW-12: <\ in Hg
EW-3: (in Hg EW-13: (in Hg
EW-4: < (in Hg EW-14: 25 in Hg
EW-5: (in Hg
EW-6; < \ in Hg EW-16; \ in Hg
EW-7: <\ in Hg EW-17: <\ in Hg
EW-8: 4 in Hg SS-1: 2 in H2O
EW-9: In Hg SS-2: 2.5 in H2O
EW-10: \.25 in Hg SS-3: 2.25 in H20
AIR FLOW FIELD SCREENING
Background Outside SVE Shed: ppm Detector Tube Readings
Background Inside SVE Shed: ppm Pre Carbon YES NO ppm
Pre Carbon Discharge: IL.S ppm Mid Carbon YES NO ppm
Mid Carbon Discharge: ppm Post Carbon YES NO ppm
Post Carbon Discharge: ppm
Additional Notes:
Deplicate air sample was collected from the Carlow sample location.
Deplesete air sample was collected from Pre-Carbon sample Coration. Samples sent to H+A for GC Screen.
No.

GAS CHROMATOGRAPHY REPORT SHEET GC SCREENING RESULTS DIRECT INJECT

Date of Analysis: 7/5/2011 ICAL Curve Date: 1/1/2011

Client: File No: GMCH Lockport 36795-000

Sample Type: BLDG-10 SVE/SSD

ehs

MGN

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret Time (mln.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	methane	4,500	4,401	15,0	3,07	ppmv	
		75-01-4	vinyl chloride	7_300			ND	ppmV	
		75-35-4	1,1-dichloroethene	14,300			ND	ppmV	
		75-09-2	melhylene chloride	14,700			ND	ppmV	
ID:	Pre-Carbon	156-60-5	trans 1,2-dichloroethene	17,000			ND	ppm∨	
Date:	6/30/2011	75-34-3	1,1-dichloroethane	17,500			ND	ppmV	
Time:		1634-04-4	MTBE	0.000			ND	Vmqq	
		78-93-3	2-butanone (MEK)	18_300			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,100			ND	ppm∨	
		67-66-3	chloroform	19_800			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	21,600			ND	ppmV	
		71-43-2	benzene	22 400			ND	ppmV	
		78-87-5	1,2-dichloropropane	0,000			ND	ppmV	
		79-01-6	trichtoroethene	24,200		11	ND	opm∨	
		108-88-3	toluene	27,200			ND	ppmV	
		127-18-4	letrachforoethene	29 200	28,990	91_0	5.99	ppmV	
		10B-90-7	chlorobenzene	30,300			ND	ppmV	
		100-41-4	ethylbenzene	30,900			ND	ppmV	
		108-38-3/106-42-3	m/p-xytene	31,200			ND	ppmV	
		95-47-6	o-xylene	32,100		I I	ND	ppmV	
			Unknown TPH			33.7	1.18	∨mqq	
			total volatiles			140	10.2	ppmV	

Sample identification	CASRN	Target Compound	Cai, Ret. Time (min.)	Ret. Time (mln.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
	74-82-8	melhane	4,500	4,360	15.5	3,16 ppm/v	
	75-01-4	vinyl chloride	7.300			ND ppm\	1
	75-35-4	1,1-dichloroelhene	14,300			ND ppm\	1
	75-09-2	methylene chloride	14_700	11		ND ppm\	1
ID: Pre-Carbon (DUP)	156-60-5	trans 1,2-dichtoroethene	17,000			ND ppm\	1
Date: 6/30/2011	75-34-3	1,1-dichloroethane	17,500			ND ppm\	1
Time:	1634-04-4	MTBE	0,000			ND ppm\	
	78-93-3	2-butanone (MEK)	18 300	b 11		ND ppmV	
	156-59-2	cis 1,2-dichloroethene	19_100			ND ppm\	
	67-66-3	chloroform	19.800			ND ppmV	1
	71-55-6	1,1,1-trichtoroethane	21,600		1	ND ppm\/	
	71-43-2	benzene	22,400	1	1	ND ppmV	
	78-87-5	1,2-dichloropropane	0.000	0		ND ppmV	1
	79-01-6	trichloroethene	24,200			ND ppmV	
	108-88-3	loluene	27.200		i 1	ND ppm\/	
	127-18-4	tetrachloroethene	29.200	28,952	72:1	4,74 ppm\/	
	108-90-7	chlorobenzene	30_300			ND ppmV	
	100-41-4	elhylbenzene	30.900			ND ppmV	
	108-38-3/106-42-3	m/p-xylene	31,200			ND ppmV	
	95-47-6	o-xylene	32 100			ND ppmV	
		Unknown TPH			38.9	1.36 ppmV	
		total volatiles			126	9.3 ppmV	

Sample	identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	methane	4,500	4,359	15.6	3,18	ppmV	
		75-01-4	vinyl chloride	7,300			ND	ppmV	
		75-35-4	1,1-dichloroe(hene	14,300			ND	ppmV	
		75-09-2	melhylene chloride	14,700		1 1	ND	ppm∨	
ID:	Mid-Carbon	156-60-5	Irans 1,2-dichloroethene	17,000			ND	ppmV	
Date:	6/30/2011	75-34-3	1,1-dichloroethane	17,500			ND	ppmV	
Time:		1634-04-4	MTBE	0.000			ND	ppmV	
		78-93-3	2-butanone (MEK)	18,300			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19.100			ND	ppmV	
		67-66-3	chloroform	19,800			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	21,600		1 1	ND	ppmV	
		71-43-2	benzene	22,400			ND	ppmV	
		78-87-5	1,2-dichloropropane	0,000			ND	ppm∨	
		79-01-6	lrichloroelhene	24,200			ND	ρpmV	
		108-88-3	toluene	27,200			ND	ppmV	
		127-18-4	letrachloroethene	29,200	29.076	22.3	1.47	ppmV	
		108-90-7	chlorobenzene	30,300			ND	ppmV	
		100-41-4	elhylbenzene	30,900		 	ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31,200			ND	ppmV	
		95-47-6	o-xylene	32,100			ND	ppmV	
			Unknown TPH			20,3	0.71	ppmV	
			total volatiles			58	5,4	Vmqq	

Sample Identification	Cai. Ret. Target Time CASRN Compound (min.)		Time	Ret. Time (mln.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
ID: Post-Carbon Date: 6/30/2011 Time:	74-82-8 75-01-4 75-35-4 75-09-2 156-60-5 75-34-3 163-40-4-4 78-93-3 156-59-2 67-66-3 71-55-6 71-43-2 78-87-5 79-01-8 108-88-3 127-18-4 108-90-7 100-41-4 108-83-3/106-42-3 9-34-7-6	methane vinyl chloride 1,1-dichloroethene methylene chloride trans 1,2-dichloroethene 1,1-dichloroethene 1,1-dichloroethene 2-butanone (MEK) cis 1,2-dichloroethene chloroform 1,1,1-trichloroethene benzene 1,2-dichloropropane tichloroethene toluene letrachtoroethene chlorobenzene ethylobenzene ethylobenzene	4.500 7.300 14.300 14.700 17.000 17.000 17.500 0.000 18.300 21.600 0.000 22.400 0.000 24.200 27.200 29.200 30.300 30.900 31.200 32.100	4,425	15.3	3.13 ppm ND ppm	
		Unknown TPH total volatiles			40.8 56	1.43 ppm\ 4.6 ppm\	

OPERATION, MAINTENANCE AND MONITORING PLAN SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Jennser	Dow	ide		Ti	ime Or	n-Site:	124	40		Time Off-S	ite:	1350	
Date: 7/28/11						-		18.1		hours	VDF:	(00)	— hert:
SYSTEM STATUS					V L L.	7461	III inic	. 10 11	1-	Hours	V D1 .		- Hen.
SVE System Operating:		YES	NO	If no:									
Alarm lights off:		YES	NO	If no:									=
Autodialer Alarm On		YES	(NO)	If Yes:									
			Posti	ion of Swin	ng Pan	el HOA		:hes:					
Control Power Switch	ON	>_	OFF	SVE Blow				HAND		OFF	(AUTO	
M/S Effluent Pump Switch	HAND	OFF) AUTO	Heat Exch	——— hangeı	r Switch	1	HAND		OFF	/	AUTO)	
Heat Exchanger Operating		YES) NO	If no:									
SVE System appear to be operat	ting	YES	NO	If no:									
properly? Moisture Separator Tank Level	Empty	7	1/4 Full	1/2	2 Full	3.	3/4 Full		Full	Volr	ume Tran	nfered:	gals
SYSTEM MONITORING READIN											JIIIC 7.2	4	94,0
Vacuum Gauge Pre-Inline Filter:		4	· D	in Hg	s	vstem I	 Monito	ring Note	===== es:				
Vacuum Gauge Post-Inline Filter			.5	in Hg		•							
Temperature on Discharge Silen		12	- 10	°F									
Temperature after Heat Exchang	jer:	9		°F									
Pressure After Heat Exchanger			9	in H₂O									
Pressure Before Heat Exchanger	r	2	ما	in H ₂ O	FI	low Rate	e Base	ed on Pres	ssure G	auge 3	30	cfm	
Pressure Magnehelic Gauge:		2	.5	in H ₂ O				ed on Vac			500	cfm	
Vacuum Magnehelic Gauge:		77	2_	in H₂O									
Vacuum Gauge After Manifold:		1	.0	in Hg									
EXTRACTION WELL VACUUM	GAUGE				Salara A.								
EW-1: <-\	in Hg		EW-11:	1	in	Hg		Vaccum (==== Gauge	Reading N	otes:		
EW-2: \.25	in Hg		EW-12:	-1	in	Hg							
EW-3:	in Hg		EW-13:	۵.۱	in	Hg							
EW-4:	in Hg		EW-14:	1.25	in	Hg							
EW-5:	in Hg		EW-15	1	in	Hg							
EW-6: ∠ (în Hg		EW-16:	\	in	Hg							
EW-7:	in Hg		EW-17:	د (in	Нд							
EW-8: <	in Hg		SS-1:	2	in	H2O							
EW-9:	in Hg		SS-2: *	2.5	in	H2O							
EW-10: \.25	in Hg		SS-3: '	2.5	in	H2O							
AIR FLOW FIELD SCREENING													
Background Outside SVE Shed:	\$)	ppm				De	etector Tu	be Rea	dings			
Background Inside SVE Shed:	0.5	5	ppm		Pr	re Carb	on	YES (pr	om		
Pre Carbon Discharge:	12.7		ppm		М	lid Carb	on	YES (PF.	om		
Mid Carbon Discharge:	1,2		ppm		Pr	ost Carl	bon	YES (CON	pr	om		
Post Carbon Discharge:	Ф		ppm										
Additional Notes: Deplicate sarple of Saughts sent	مالدنا	ted!	from	Pre-C	al	oon	San	ple (o	أحصار	PN .			
Saughes sent	to h	1+14	ter	GCS	Sch	LEW.	•						

GAS CHROMATOGRAPHY REPORT SHEET GC SCREENING RESULTS DIRECT INJECT

Date of Analysis: 7/29/2011 ICAL Curve Date: 1/1/2011

Client: GMCH Lockport File No: 36795-000

Sample Type: BLDG-10 SVE/SSD

ehs

MGN

Sample	s Identification	CASRN	Target Compound	Cal, Ret Time (min.)	ReL Time (min.)	Det Resp (Area Cir.)	Co	nc	REMARKS
		74-62-8	memane	4,500			NO	ppmV	
		75-01-4	vinyl chloride	7,300			ND	ppm∀	
		75-35-4	1,1-dichloroethene	14 300		10 11	ND	ppmV	
		75-09-2	methylene chloride	14,700			ND	ppmV	
ID:	Pre-Carbon	156-60-5	trans 1,2-dichloroethene	17,000			ND	ppmV	
Date:	7/28/2011	75-34-3	1,1-dichloroethane	17.500			ND	ppmV	
Time:		1634-04-4	MTBE	0,000			ND	ppmV	
		78-93-3	2-butanone (MEK)	18,300			NO	ppmV	
		156-59-2	cis 1,2-dichlaroethene	19,100			NĐ	ppmV	
		67-66-3	chloroform	19.800		1	ND	ppmV	
		71-55-6	1,1,1-trichtoroethane	21.600			ND	ppmV	
		71-43-2	benzene	22,400			ND	ppmV	
		78-87-5	1,2-dichloropropane	0.000			ND	ppmV	
		79-01-6	trichloroethene	24 200	24,004	1.5	0.12	ppmV	
		108-88-3	toluene	27 200	27,010	1.2	0.03	ppmV	
		127-18-4	letrachloroethene	29 200	28 894	135,3	8.90	ppmV	
		108-90-7	chlorobenzene	30.300			ND	ppmV	
		100-41-4	elhylbenzene	30.900			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31_200			ND	ppmV	
		95-47-6	o-xylene	32 100			NO	ppmV	
			Unknown TPH	71			ND	ppmV	
			total volatiles			138	9.0	Vingg	

Sample Identification	CASRN	Targel N Compound		ReL Time (min.)	DeL Resp. (Ares Cis.)	Conc.		REMARKS
	74-82-8	methane	4,500 7,300	4 360	15.5	3 10 ND	ppmV	
	75-01-4	vinyl chloride					ppmV	
	75-35-4	1,1-dichloroethene	14 300			ND	Vmqq	
G	75-09-2	methylene chloride	14,700			ND	ppmV	
ID: Pre-Carbon (DUP)	156-60-5	trans 1,2-dichloroethene	17,000		1	ND	ppmV	
Date: 7/28/2011	75-34-3	1,1-dichtoroethane	17,500			ND	ppmV	
Time:	1634-04-4	MTBE	0,000			ND	ppmV	
	78-93-3	2-bulanone (MEK)	18.300			ND	ppmV	
	156-59-2	cis 1,2-dichloroethene	19 100			ND	ppmV	
	67-66-3	chloroform	19.600		11 11	ND	ppmV	
	71-55-6	1,1,1-trichtoroethane	21,600			ND	ppmV	
	71-43-2	benzene	22,400			ND	ppmV	
	78-87-5	1,2-dichloropropane	0.000			ND	ppmV	
	79-01-6	Irichloroethene	24 200	23.998	1.4	0.11	ppmV	
	108-88-3	loluene	27.200	27.010	1.2	0.03	ppmV	
	127-18-4	tetrachloroethene	29 200	28.894	122.9	8.08	ppmV	
	108-90-7	chlorobenzene	30.300		,.	ND	ppmV	
	100-41-4	elhylbenzene	30 900			ND	ppmV	
	108-38-3/106-42-3	m/p-xylene	31.200		1	ND	ppmV	
	95 47-6	o-xvlene	32 100			ND	ppmV	
	00 47.0	Unknown TPH	J. 100		1 1	ND	ppmV	
		total volatiles			141	11.4	Vmqq	

		(min.)	Time (min.)	Resp. (Area Cts.)	Co	nc.	REMARKS
	metiane	4,500			ND	ppmV	
	vinyl chloride	7_300			ND	ppmV	
	1,1-dichloroethene	14 300			ND	ppmV	
	methylene chloride	14,700			ND	ppmV	
	trans 1,2-dicheoroethene	17,000			ND	ppmV	
	1,1-dichloroethane	17,500			ND	ppmV	
	MTBE	0,000			ND	ppmV	
	2-bulanone (MEK)	18 300			ND	ppmV	
	cis 1,2-dichloroethene	19,100	19,015	2,7	0.25	ppmV	
	chloreform	19 600			ND	ppmV	
	1,1,1-trichtgroethans	21,600			ND	ppmV	
	benzene	22,400			ND	ppmV	
	1,2-dichloropropane	0.000			ND	ppmV	
	Irichlaroethene	24.200			ND	ppmV	
	foluene	27 200			ND	ppmV	
	tetrachloroethene	29 200		0 1	ND	ppmV	
	chlorobenzene	30.300			ND	ppmV	
	ethylbenzene	30 900			ND	ppmV	
3	m/p-xylene				ND	ppmV	
	o-xylene	32,100			ND		
	Unknown TPH					ppmV	
3	m/p-xylene o-xylene	31 200 32 100			ND		ppmV ppmV ppmV

Sample identification	CABRN	Target Compound	Cal. Ret. Time (min.)	Ret Time (min.)	Det Resp. (Area Cts.)	Conc	REMARKS
ID: Post-Carbon Data: 7/28/2911 Time:	74-82-8 75-01-4 75-35-4 75-09-2 156-60-5 75-34-3 1634-04-4 78-93-3 156-59-2 67-66-3 71-55-6 71-43-2 78-87-5 79-01-6	militaria vinyi chloride in dichicali di	4,500 7,300 14,300 14,700 17,000 17,500 0,000 18,300 19,100 19,800 21,600 22,400 0,000 24,200	ţ.	(Marca)	NO	
	79-01-6 108-88-3 127-18-4 108-90-7 100-41-4 108-38-3/106-42-3 95-47-6	Inichiproethene tofuene telrachloroethene chlorobenzene ethylbenzene m/p-xylene o-xylene Unknown TPH	24 200 27 200 29 200 30 300 30 900 31 200 32 100		0	ND ppmV ND ppmV NO ppmV NO ppmV ND ppmV ND ppmV ND ppmV ND ppmV	

Sample Identification	CASRN	Target Compound	Time (min.)	Ret Time (min.)	Det. Resp (Area Cts.)	Conc	REMARKS
	74-82-8	methane	4,500			NO ppmV	
	75-01-4	vinyl chloride	7,300			ND ppmV	
	75-35-4	1,1-dichtoroethene	14 300			ND ppmV	
	75-09-2	methylene chloride	14,700			NO ppmV	
ID: Post-Carbon - DUP	156-60-5	frans 1,2-dichloroethene	17,000			NO ppmV	
Date: 7/28/2011	75-34-3	1,1-dichloroethane	17 500			NO ppmV	
Time:	1634-04-4	MTBE	0.000			ND ppmV	
	78-93-3	2-bulanone (MEK)	18.300			ND ppmV	
	156-59-2	cis 1,2-dichloroothene	19,100			ND ppmV	
	67-66-3	chloroform	19 800			NO ppmV	
	71-55-6	1,1,1-trichloroethane	21.600			NO ppmV	
	71-43-2	benzene	22.400			NO ppmV	
	78-87-5	1,2-dichloropropana	0.000			NO ppmV	
	79-01-6	trichloroethene	24 200			ND ppmV	
	108-88-3	lohiene	27 200			ND ppmV	
	127-18-4	tetrachleroethene	29.200			NO ppmV	
	108-90-7	chlorobenzene	30.300			NO ppmV	
	100-41-4	ethylbenzene	30.900		1 1	NO ppmV	
	108-38-3/106-42-3	m/p-xylene	31.200			NO ppmV	
	95-47-6	o-xy ene	32,100			ND ppmV	
		Unknown TPH				Vongo, CM	
		total volatiles			0	Vmqq 0.0	

OPERATION, MAINTENANCE AND MONITORING PLAN SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chris Boron Time On-Site: 0800 Time Off-Site: 1080
Date: 831111 SVE Blower Run Time: 18956 hours VDF: 60 her
SYSTEM STATUS
SVE System Operating: YES NO If no:
Alarm lights off: (YES) NO If no:
Autodialer Alarm On: YES (NO) If Yes:
Postion of Swing Panel HOA Switches:
Control Power Switch ON OFF SVE Blower Switch HAND OFF
M/S Effluent Pump Switch HAND OFF AUTO Heat Exchanger Switch HAND OFF AUTO
Heat Exchanger Operating (YES) NO If no:
SVE System appear to be operating YES NO If no:
Moisture Separator Tank Level: Empty 1/4 Full 1/2 Full 3/4 Full Full Volume Tranfered: gale
SYSTEM MONITORING READINGS
Vacuum Gauge Pre-Inline Filter: 4.0 in Hg System Monitoring Notes: Change air filter. Vacuum Gauge Post-Inline Filter: 5 i) in Hg
Vacuum Gauge Post-Inline Filter: S, O in Hg
Temperature on Discharge Silencer: 120 ° F
Temperature after Heat Exchanger: %F
Pressure After Heat Exchanger (A in H ₂ O
Pressure Before Heat Exchanger 26 in H ₂ O Flow Rate Based on Pressure Gauge: 330 cfm
Pressure Magnehelic Gauge: Z, S in H ₂ O Flow Rate Based on Vacuum Gauge: School cfm
Vacuum Magnehelic Gauge: >2 in H ₂ O
Vacuum Gauge After Manifold: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
EXTRACTION WELL VACUUM GAUGE READINGS
EW -1: (in Hg
EW-2: (,25 in Hg EW-12: in Hg
EW-3: in Hg EW-13: (in Hg
EW-4:
EW-5:
EW-6: in Hg EW-16: (in Hg
EW-7: C in Hg EW-17: C in Hg
EW-8: 4\ in Hg SS-1: 2 in H2O
EW-9: In Hg SS-2: Z In H2O
EW-10: (.25 in Hg SS-3: 2,5 in H20
AIR FLOW FIELD SCREENING
Background Outside SVE Shed: ppm Detector Tube Readings
Background Inside SVE Shed: 0,9 ppm Pre Carbon YES (NO) NIM ppm
Pre Carbon Discharge: 21.1 ppm Mid Carbon (YES) NO ppm
Mid Carbon Discharge: 4.9 ppm Post Carbon (YES) NO ppm
Post Carbon Discharge: 4,8 ppm Additional Notes:
Additional Notes.
Delicate sample collected from Mid-Carbon sample location. Samples sent to HA for GC Screen.
Saples sent to HA for GC Screen.
`

GAS CHROMATOGRAPHY REPORT SHEET GC SCREENING RESULTS DIRECT INJECT

Date of Analysis: 9/2/2011 ICAL Curve Date: 1/1/2011

Cllent: File No:

Sample Type: BLDG-10 SVE/SSD

GMCH Lockport 36795-010

ehs MGN

Sampl	e Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8 75-01-4	metnane vinyl chloride	4.500 7.300			ND ND	ppmV	
		75-35-4		14.300			ND	ppmV	
		75-09-2	1,1-dichloroelhene	14,300			ND	ppmV	
ID:	Pre-Carbon	156-60-5	methylene chloride trans 1,2-dichloroethene	17,000			ND	ppmV ppmV	
Dale:	8/31/2011	75-34-3	1.1-dichloroethane	17.500		1 1	ND	ppmV	
Time:	0/3 1/2011	1634-04-4	MTRF	0.000			ND	ppmV	
TIME:		78-93-3		18.300			ND		
			2-butanone (MEK)	19,100			ND	ppmV	
		156-59-2 67-66-3	cis 1,2-dichloroethene chloroform	19,100			ND	ppmV	
		71-55-6	1.1.1-trichloroethane	21.600		1 1	ND	ppmV	
		71-55-6	1,1,1-trichioroethane benzene	22,400			ND	ppmV	
		71-43-2 78-87-5		0.000)		ND	ppmV	
		78-87-5 79-01-6	1,2-dichloropropane Irichloroethene	24.200	24.254	I 40 I	0.13	ppmV	
		108-88-3	toluene	27,200	27,249	1,6 1,2	0.13	ppm∨	
		127-18-4		29,200	29,129		8.36	ppmV	
			letrachloroethene	30.300	29,129	127,1	ND	ppmV	
		108-90-7	chlorobenzene					ppmV	
		100-41-4	ethylbenzene	30,900			ND ND	ppmV	
		108-38-3/106-42-3		31,200				ppmV	
		95-47-6	o-xylene	32,100			ND	Vmqq	
			Unknown TPH			788	ND	opmV	
			total volatiles			130	8.5	Vmqq	

Sampl	le identification	CASRN	Target Compound	Cai. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8 75-01-4	methane vinyl chloride	4,500 7,300			ND ND	ppmV Vmqq	
		75-35-4	1,1-dichloroethene	14.300			ND	ppmV	
		75-09-2	methylene chloride	14.700			ND	ppmV	
ID:	Mid-Carbon	156-60-5	trans 1,2-dichloroethene	17.000		1 1	ND	Vmqq	
Date:	8/31/2011	75-34-3	1,1-dichloroethane	17,500			ND	ppmV	
Time:		1634-04-4	MTBE	0.000			ND	ppmV	
		78-93-3	2-butenone (MEK)	18,300			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,100	19.322	1,3	0.12	ppm∨	
		67-66-3	chloroform	19,800			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	21,600			ND	ppmV	
		71-43-2	benzene	22,400			ND	ppmV	
		78-87-5	1,2-dichloropropane	0.000			ND	ppmV	
		79-01-6	trichloroethene	24,200			ND	ppmV	
		108-88-3	loluene	27.200			ND	Vmqq	
		127-18-4	tetrachloroethene	29,200			ND	ppmV	
		108-90-7	chlorobenzene	30,300			ND	ppmV	
		100-41-4	ethylbenzene	30,900			ND	ppmV	
		108-38-3/106-42-3		31,200			ND	Vmqq	
		95-47-6	o-xylene	32,100			ND	ppm∨	
			Unknown TPH				ND	Vmaa	
			total volatiles			1	0.1	Vmqq	

Sample identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (mln.)	Resp. (Area Cts.)	Conc.	REMARKS
ID: Post-Carbon Date: 6/31/2011 Time:	74-82-8 75-01-4 75-35-4 75-09-2 166-80-5 76-34-3 1634-04-4 78-93-3 156-59-2 67-68-3 71-55-6 71-43-2 78-87-5 79-01-6 108-88-3 127-18-4 108-90-7 100-41-4	methans vinyl chloride 1,1-dichloroethans mishylene chloride Irans 1,2-dichloroethans 1,1-dichloroethans 1,1-dichloroethans MTBE 2-bulanons (MEK) cis 1,2-dichloroethans chloroform 1,1,1-trichloroethans 1,2-dichloroethans trichloroethans tolloroethans tol	4.500 7.300 14.300 14.700 17.000 0.000 18.300 0.000 19.100 22.400 0.000 24.200 27.200 29.200 30.300 30.900 31.200			NO	
		Unknown TPH total volatiles			0	ND ppmV 0.0 ppmV	

Sample Identification	CASRN	Target Compound	Cai. Ret. Time (min.)	Ret Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
	74-82-8	methene	4.500			Vmqq DN	
	75-01-4	vinyl chloride	7,300			ND ppmV	
	75-35-4	1,1-dichloroethene	14,300			ND ppmV	
CONTRACTOR CONTRACT	75-09-2	methytene chloride	14,700		ı I	ND ppmV	
ID: Post-Carbon - DUP	156-60-5	trans 1,2-dichtoroethene	17,000			ND ppmV	
Date: 8/31/2011	75-34-3	1,1-dichloroelhane	17,500		I I	ND ppmV	
lime:	1634-04-4	MTBE	0,000			ND ppmV	
	78-93-3	2-bulanone (MEK)	18,300			ND ppmV	
	156-59-2	cis 1,2-dichloroelhene	19,100			ND ppmV	
	67-66-3	chloroform	19.800			ND ppmV	
	71-55-6	1,1,1-trichforcethane	21,600			ND ppmV	
	71-43-2	benzene	22,400			ND ppmV	
	78-87-5	1,2-díchloropropane	0.000			ND ppmV	
	79-01-6	trichloroethene	24.200			ND ppmV	
	108-88-3	toluene	27,200			ND ppmV	
	127-18-4	letrachloroethene	29.200			ND ppmV	
	108-90-7	chlorobenzene	30.300			ND ppmV	
	100-41-4	ethylbenzene	30,900		ı I	ND ppmV	
	108-38-3/106-42-3		31,200		ı I	ND ppmV	
	95-47-6	o-xylene	32,100		ı I	ND ppmV	
		Unknown TPH				ND ppmV	
		total volatiles			0	0.0 ppmV	

OPERATION, MAINTENANCE AND MONITORING PLAN SVE/SSD SYSTEM GM COMPONENTS HOLDINGS LLC

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chris Baron	Time On-Site: 145 Time Off-Site: 250
Date: 9/27/2011	SVE Blower Run Time: 19,606 hours VDF: 60 hertz
SYSTEM STATUS	
SVE System Operating: YES NO	If no:
Alarm lights off: YES NO	If no:
Autodialer Alarm On: YES NO	If Yes:
Postio	on of Swing Panel HOA Switches:
Control Power Switch ON OFF	SVE Blower Switch HAND OFF AUTO
M/S Effluent Pump Switch HAND OFF AUTO	Heat Exchanger Switch HAND OFF AUTO
Heat Exchanger Operating YES NO	If no:
SVE System appear to be operating PES NO properly?	If no:
Moisture Separator Tank Level: (Empty) 1/4 Full	1/2 Full 3/4 Full Full Volume Tranfered: D gals
SYSTEM MONITORING READINGS	
Vacuum Gauge Pre-Inline Filter: 4.25	in Hg System Monitoring Notes:
Vacuum Gauge Post-Inline Filter: 4.25	in Hg
Temperature on Discharge Silencer:	°F
Temperature after Heat Exchanger:	°F
Pressure After Heat Exchanger 2.0	in H ₂ O
Pressure Before Heat Exchanger 28	in H ₂ O Flow Rate Based on Pressure Gauge: 340 cfm
Pressure Magnehelic Gauge: 2.6	in H ₂ O Flow Rate Based on Vacuum Gauge: 3\O cfm
Vacuum Magnehelic Gauge: >2	in H ₂ O
Vacuum Gauge After Manifold: 25	in Hg
EXTRACTION WELL VACUUM GAUGE READINGS	V Westerstein
EW -1: < (in Hg EW-11:	(in Hg Vaccum Gauge Reading Notes:
EW-2: 1,25 in Hg EW-12:	(in Hg
EW-3: in Hg EW-13:	∠ (in Hg
EW-4: ८ (in Hg EW-14:	1,25 in Hg
EW-5:	(in Hg
EW-6: <u>(in Hg</u> EW-16:	lin Hg
EW-7:	∠ (in Hg
EW-8:	2 in H2O
	7 - 5 in H2O
EW-10: \ . \ 5 in Hg SS-3:	2,5 in H2O
AIR FLOW FIELD SCREENING	E0000000001 [00000000000
Background Outside SVE Shed: \ ppm	Detector Tube Readings
Background Inside SVE Shed: ppm	Pre Carbon YES NO ppm
Pre Carbon Discharge: ppm	Mid Carbon YES NO ppm
Mid Carbon Discharge: ppm	Post Carbon YES (NO)ppm
Post Carbon Discharge: Additional Notes: ppm	
Additional Notes:	IC Deci 11
aspicate mi sample consecue	of from Pre-Corbon sample location. GL screen.
Samples sent to H+H tor	Cal screen.
,	

GAS CHROMATOGRAPHY REPORT SHEET GC SCREENING RESULTS DIRECT INJECT

Client: File No:

GMCH Lockport 36795-010

Sample Type: BLDG-10 SVE/SSD

Date of Analysis: 10/2/2011 ICAL Curve Date: 1/1/2011

ehs

MGN

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret Time (mln.)	Det. Resp. (Area Cts.)	Con	ıc.	REMARKS
		74-82-8	melhane	4,500	4.441	19.0	3,87	ppmV	
		75-01-4	vinyl chloride	7,300			ND	ppmV	
		75-35-4	1,1-dichloroethene	14_300			ND	ppmV	
		75-09-2	methylene chloride	14,700			ND	ppmV	
ID:	Pre-Carbon	156-60-5	trans 1,2-dichloroethene	17,000			ND	ppmV	
Date:	9/29/2011	75-34-3	1,1-dichloroethane	17,500			ND	ppmV	
Time:		1634-04-4	MTBE	0_000		1 1	ND	ppmV	
		78-93-3	2-bulanone (MÉK)	18,300		M .	ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,100		1	ND	ppmV	
		67-66-3	chloroform	19,800			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	21,600		1 1	ND	ppmV	
		71-43-2	benzene	22,400			ND	ppmV	
		78-87-5	1,2-dichloropropane	0.000			ND	ppmV	
		79-01-6	trichloroethene	24,200	24.175	1,6	0,13	ppmV	
		108-88-3	loluene	27,200	27,159	1.4	0.03	ppmV	
		127-18-4	tetrachtoroethene	29 200	29 031	133,0	8,75	ppmV	
		108-90-7	chtorobenzene	30 300			ND	ppmV	
		100-41-4	elhylbenzene	30,900			ND	ppmV	
		108-38-3/106-42-3	m/p-xytene	31,200		1 I	ND	ppmV	
		95-47-6	o-xylene	32 100			ND	ppmV	
			Unknown TPH				ND	Vmqq	
			total volatiles			155	12.8	ppmV	

Sample Identification				Det. Resp. (Area Cts.)	Conc.	REMARKS	
	74-82-8	methane	4,500	4,443	21.3	4,35 ppmV	
	75-01-4	vinyl chloride	7,300			ND ppmV	1
	75-35-4	1,1-dichloroelhene	14,300		I I	ND ppmV	
	75-09-2	methylene chloride	14,700			ND ppmV	1
ID: Pre-Carbon (DUP)	156-60-5	trans 1,2-dichloroethene	17,000			ND ppmV	1
Date: 9/29/2011	75-34-3	1,1-dichloroethane	17,500			ND ppmV	1
Time:	1634-04-4	MTBE	0,000			ND ppmV	
	78-93-3	2-butanone (MEK)	18,300		10 1	ND ppmV	
	156-59-2	cis 1,2-dichloroelhene	19,100			ND ppmV	
	67-66-3	chloroform	19,800			ND ppmV	1
	71-55-6	1,1,1-trichloroethane	21_600			ND ppmV	1
	71-43-2	benzene	22,400		i I	ND ppmV	1
	78-87-5	1,2-dichtoropropane	0.000			ND ppmV	l .
	79-01-6	trichloroethene	24.200	24,250	1,7	0.13 ppmV	1
	108-88-3	toluene	27,200	27.250	1.3	0.03 ppmV	1
	127-18-4	letrachioroethene	29 200	29,120	130,7	8.60 ppmV	1
	108-90-7	chlorobenzene	30.300			ND ppmV	1
	100-41-4	ethylbenzene	30,900		l I	ND ppmV	
	108-38-3/106-42-3	π/p-xylene	31.200			ND ppmV	I .
	95-47-6	o-xylene	32,100			ND ppmV	I
		Unknown TPH				ND ppmV	
		total volatiles			155	13.1 ppmV	

Sample Identification		CASRN	Target Compound	Cai, Ret. Time (min.)	Ret. Time (min.)	Det Resp. (Area Cts.)	Co	nc.	REMARKS	
		74-82-8	methane	4,500	00 4,312	19,1	19,1 3,		ppmv	
		75-01-4	vinyl chloride	7,300		4.00	ND	ppmV		
		75-35-4	1,1-dichloroethene	14,300			ND	ppmV		
		75-09-2	methylene chloride	14_700			ND	ppmV		
ID:	Mid-Carbon	156-60-5	Irans 1,2-dichloroelhene	17.000			ND	ppmV		
Date:	9/29/2011	75-34-3	1,1-dichloroethane	17,500			ND	ppmV		
Time:		1634-04-4	мтве	0,000		1	ND	ppmV		
		78-93-3	2-bulanone (MEK)	18,300			ND	ppmV		
		156-59-2	cis 1,2-dichloroethene	19 100			ND	ppm∨		
		67-66-3	chloroform	19,800			ND	ppmV		
		71-55-6	1,1,1-trichloroethane	21,600		1 1	ND	ppm∨		
		71-43-2	benzene	22,400			ND	ppmV		
		78-87-5	1,2-dichloropropane	0,000			ND	ppmV		
		79-01-6	lrichloroelhene	24,200			ND	ppm∨		
		108-88-3	loluene	27,200			ND	ppmV		
		127-18-4	tetrachloroethene	29.200	28,872	5,2	0.34	ppmV		
		108-90-7	chlorobenzene	30,300			ND	ppmV		
		100-41-4	ethylbenzene	30,900			ND	ppmV		
		108-38-3/106-42-3	m/p-xylene	31 200		I I	ND	ppm∨		
		95-47-6	o-xylene	32,100			ND	ppmV		
			Unknown TPH	281			ND	Vmqq		
			total volatiles			24	4.2	Vmqq		

Sample Identification	CASRN	Target Compound	Cal. Ret. Time (mln.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Con	c.	REMARKS
	74-82-8	methane	4.500	4,222	19.5	3.98	ppmV	
	75-01-4	vinyl chloride	7,300			ND	ppmV	
	75-35-4	1,1-dichloroethene	14.300			ND	ppmV	
	75-09-2	melhylene chloride	14,700			ND	ppmV	
D: Post-Carbon	156-60-5	trans 1,2-dichloroethene	17,000		1 1	ND	ppmV	
Date: 9/29/2011	75-34-3	1,1-dichloroethane	17,500			ND	ppmV	
Time:	1634-04-4	MTBE	0,000		1 1	ND	ppmV	
	78-93-3	2-butanone (MEK)	18,300		1 1	ND	ppmV	
	156-59-2	cis 1,2-dichloroethene	19,100		I I	ND	ppmV	
	67-66-3	chloroform	19,800		I I	ND	ppm∨	
	71-55-6	1,1,1-trichloroethene	21,600			ND	ppmV	
	71-43-2	benzene	22 400		I I	ND	ppmV	
	78-87-5	1,2-dichloropropane	0,000		1 1	ND	ppmV	
	79-01-6	trichloroethene	24.200		1 1	ND	ppmV	
	108-88-3	loluene	27 200		1 1	ND	ppmV	
	127-18-4	tefrachloroethene	29.200		I I	ND	ppmV	
	108-90-7	chlorobenzene	30,300		1 1	ND	ppmV	
	100-41-4	elhylbenzene	30,900		1 1	ND	ppmV	
	108-38-3/106-42-3		31,200		1 1	ND	ppmV	
	95-47-6	o-xyfene	32,100		1 1	ND	ppmV	
		Unknown TPH				ND	Vmqq	
		total volatiles			19	4.0	ppmV	

OPERATION, MAINTENANCE AND MONITORING PLAN SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Shris B	5000		_ Time	e On-Site: 7	₹ <u>७</u>	Time	Off-Site:	830	
Date: [] \ \ \ \ \			SVE	Blower Run Ti	me: 20	441 ho	urs VDF	: 600	hertz
SYSTEM STATUS						12 1			
SVE System Operating:	YES) NO	If no:						
Alarm lights off:	YES) NO	If no:						
Autodialer Alarm On:	YES	(NO)	If Yes:					=======================================	
		Posti	on of Swing	Panel HOA Sw	itches:			\sim	
Control Power Switch	(ON)	OFF	SVE Blower	Switch	HAND	OFF	=	(AUTO)	
M/S Effluent Pump Switch	HAND OFF	AUTO	Heat Exchai	nger Switch	HAND	OFF	3	AUTO	
Heat Exchanger Operating	YES) NO	If no:						
SVE System appear to be operat properly?	ing YES) NO	If no:						
Moisture Separator Tank Level:	Empty	1/4 Full	1/2 F	ull 3/4 F	ull	Full	Volume Tra	anfered:	gals
SYSTEM MONITORING READIN	igs								
Vacuum Gauge Pre-Inline Filter:	4.2		in Hg	System Mon	itoring Not	es:			
Vacuum Gauge Post-Inline Filter	4.7	2	in Hg						
Temperature on Discharge Silen	cer: \\t	>	°F	0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6					
Temperature after Heat Exchang	er: 7	8	°F_						
Pressure After Heat Exchanger	10	Ì	in H₂O						
Pressure Before Heat Exchanger	2	7	in H ₂ O	Flow Rate Ba	sed on Pre	ssure Gauge:	330	cfm	
Pressure Magnehelic Gauge:	2.	6	in H ₂ O	Flow Rate Ba	ised on Vac	cuum Gauge:	300	cfm	
Vacuum Magnehelic Gauge:	77	2_	in H₂O						
Vacuum Gauge After Manifold:	1		in Hg						
EXTRACTION WELL VACUUM	GAUGE READI	NGS		V 1000000000000000000000000000000000000					
EW-1: 4	in Hg	EW-11:	١	in Hg	Vaccum	Gauge Read	ing Notes:		
EW-2:	in Hg	EW-12:		in Hg					
EW-3:	in Hg	EW-13:	21	in Hg					
EW-4: 4	in Hg	EW-14:	1.25	in Hg					
EW-5: <- (in Hg	EW-15:	<u> </u>	in Hg					
EW-6: 4 (in Hg	EW-16:		in Hg					
EW-7: 4	in Hg	EW-17:	21	in Hg					
EW-8: < \	in Hg	SS-1:	2	in H2O					
EW-9: \	in Hg	SS-2:	2	in H2O					
EW-10: \ \.2.5	in Hg	SS-3:	2	in H2O					
AIR FLOW FIELD SCREENING	- A			1				Till III III III III III III III III III	
Background Outside SVE Shed:	$-\varphi$	ppm				ube Readings	-		
Background Inside SVE Shed:	<u> </u>	ppm		Pre Carbon	YES	(NO)	ppm		
Control	3.5	ppm		Mid Carbon	YES	2	ppm —		
Mid Carbon Discharge:	V	ppm		Post Carbon	YES	(NO)	— ppm		
Post Carbon Discharge: (Additional Notes:	<u> </u>	ppm							
Additional Notes: Dipherate sample of Samples sent to H Noted ware silv	Costudios	from	, Mrg C	arben					
Sopristoro 22 f	10 P	*. e C	o. aa						
Surples sent to H	IN H FOR C	スしゞ	CHEEN						
Noed more sil	ion tob	ins.							

GAS CHROMATOGRAPHY REPORT SHEET GC SCREENING RESULTS DIRECT INJECT

Date of Analysis: 11/2/2011 ICAL Curve Date: 1/1/2011

Client: File No:

GM Lockport 36795-010

ehs MGN

Sample Type: BLDG-10 SVE/SSD

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Con	c.	REMARKS
		74-82-8	methane	4,500	4,650	1.7	0.34	ppmV	
		75-01-4	vinyl chloride	7,300		l I	ND	ppmV	
		75-35-4	1,1-dichloroelhene	14,300		1	ND	ppmV	
		75-09-2	melhylene chloride	14,700			ND	ppmV	
ID:	Pre-Carbon	156-60-5	trans 1,2-dichloroethene	17,000		l I	ND	ppmV	
Date:	11/1/2011	75-34-3	1,1-dichloroethane	17,500			ND	ppmV	
Time:		1634-04-4	MTBE	0.000			ND	ppmV	
		78-93-3	2-butanone (MEK)	18,300			ND	ppmV	
		156-59-2	cis 1,2-dichloroelhene	19,100		0	ND	ppmV	
		67-66-3	chloroform	19.800		1	ND	ppmV	
		71-55-6	1,1,1-trichloroethane	21,600			ND	ppmV	
		71-43-2	benzene	22.400			ND	ppmV	
		78-87-5	1,2-dichtoropropane	0,000			ND	ppmV	
		79-01-6	lrichtoroethene	24.200		1 1	ND	ppmV	
		108-88-3	loluene	27,200		F-270	ND	ppmV	
		127-18-4	letrachloroethene	29 200	29 415	77,5	5,10	ppm∨	
		108-90-7	chlorobenzene	30,300			ND	ppmV	
		100-41-4	ethylbenzene	30,900		ı I	ND	ppm∨	
		108-38-3/106-42-3	m/p-xylene	31,200			ND	ppmV	
		95-47-6	o-xylene	32,100		r I	ND	ppmV	
			Unknown TPH				ND .	Vmqq	
			total volatiles			79	5.4	ppmV	

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cls.)	Conc.	REMARKS
		74-82-8	melhane	4.500	4,730	2.3	0.47 ppmV	
		75-01-4	vinyl chloride	7,300			ND ppmV	l .
		75-35-4	1,1-dichtoroethene	14,300		ı I	ND ppmV	
		75-09-2	methylene chloride	14,700			ND ppmV	l .
ID:	Mid-Carbon	156-60-5	trans 1,2-dichloroethene	17.000		I I	ND ppmV	
Date:	11/1/2011	75-34-3	1,1-dichloroethane	17,500			ND ppmV	
Time:		1634-04-4	MTBE	0.000			ND ppmV	l
		78-93-3	2-bulanone (MEK)	18,300		1 1	ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19.100		1 1	ND ppmV	
		67-66-3	chloroform	19,800			ND ppmV	
		71-55-6	1,1,1-trichloroethane	21,600			ND ppmV	
		71-43-2	benzene	22,400			ND ppmV	l .
		78-87-5	1,2-dichloropropane	0.000			ND ppmV	l
		79-01-6	trichloroethene	24,200	1)		ND ppmV	l
		108-88-3	loluene	27,200			ND ppmV	
		127-18-4	letrachloroethene	29 200	29 609	27.6	1.82 ppmV	
		108-90-7	chtorobenzene	30,300			ND ppmV	
		100-41-4	elhylbenzene	30.900		1	ND ppmV	l
		108-38-3/106-42-3	m/p-xylene	31,200			ND ppmV	
		95-47-6	o-xylene	32 100		1 I	ND ppmV	l .
			Unknown TPH				ND ppmV	
			total volatiles		-	30	2.3 ppmV	

Sample identification	CASRN	Target CASRN Compound		Ret Time (min.)	Det. Resp. (Area Cts.)	Con	c.	REMARKS
	74-82-8	methane	4.500	4,690	1.9	0.39	ppmv	
	75-01-4	vinyl chloride	7,300			ND	ppmV	
	75-35-4	1,1-dichloraethene	14,300			ND	ppm∨	
	75-09-2	methylene chloride	14.700		1 1	ND	ppmV	
ID: Mid-Carbon (DUP)	156-60-5	trans 1,2-dichloroethene	17,000		1 1	ND	ppmV	
Date: 11/1/2011	75-34-3	1,1-dichloroethane	17.500			ND	ppmV	
Time:	1634-04-4	MTBE	0.000			ND	ppmV	
	78-93-3	2-bulanone (MEK)	18.300		1 1	ND	ppmV	
	156-59-2	cis 1,2-dichloroelhene	19 100		h	ND	ppmV	
	67-66-3	chloroform	19.800		1 1	ND	ppmV	
	71-55-6	1,1,1-trichloroethane	21.600			ND	ppmV	
	71-43-2	benzene	22 400		1 1	ND	ppmV	
	78-87-5	1,2-dichloropropane	0.000			ND	ppmV	
	79-01-6	lrichloroalhene	24.200		1 1	ND	ppmV	
	108-88-3	loluene	27,200			ND	ppmV	
	127-18-4	teirachtoroethene	29 200	29 475	28.7	1.89	ppmV	
	108-90-7	chlorobenzene	30,300			ND	ppmV	
	100-41-4	elhylbenzene	30,900			ND	ppmV	
	108-38-3/106-42-3	m/p-xylene	31,200			ND	ppmV	
	95-47-6	o-xylene	32 100			ND	ppmV	
		Unknown TPH				ND	Vmaa	
		total volatiles			31	2.3	Vmqq	

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret Time (min.)	Det. Resp. (Area Cls.)	Co	nc.	REMARKS
		74-82-8	methane	4.500	4.721	2.2	0.45	ppm∨	
		75-01-4	vinyl chloride	7,300			ND	ppm∨	
		75-35-4	1,1-dichloroelhene	14,300			ND	ppmV	
		75-09-2	melhylene chloride	14.700		1 1	NO	ppmV	
ID:	Post-Carbon	156-60-5	trans 1,2-dichtoroethene	17-000			ND	ppm∨	
Date:	11/1/2011	75-34-3	1,1-dichloroelhane	17.500		1 1	ND	ppmV	
Time:		1634-04-4	MTBE	0,000		l 1	ND	ppmV	
		78-93-3	2-butanone (MEK)	1B 300		1 1	ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19.100		I I	ND	ppmV	
		67-66-3	chloroform	19.800		l 1	ND	ppmV	
		71-55-6	1,1,1-trichtoroethane	21.600		l 1	ND	ppm∨	
		71-43-2	benzene	22 400		1 1	ND	ppmV	
		78-87-5	1,2-dichloropropane	0.000		l 1	ND	ppm∨	
		79-01-6	trichloroethene	24 200			ND	ppmV	
		108-88-3	toluene	27-200		l 1	ND	ppmV	
		127-18-4	letrachloroethene	29 200			ND	ppmV	
		108-90-7	chlorobenzene	30.300			ND	ppmV	
		100-41-4	ethylbenzene	30.900		1 I	ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31 200		1 I	ND	ppmV	
		95-47-6	o-xylene	32,100		1 I	ND	ppm∨	
			Unknown TPH	~~			ND	Vmqq	
			total volatiles			2	0.5	Vmqq	

OPERATION, MAINTENANCE AND MONITORING PLAN SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chris Boran	Time On-Site: 1400 Time Off-Site: \S20
Date: 11/28/11	SVE Blower Run Time: 21096 hours VDF: 60 hertz
SYSTEM STATUS	•
SVE System Operating: YES NO	If no:
Alarm lights off: YES NO	if no:
Autodialer Alarm On: YES (NO)	If Yes:
Postic	on of Swing Panel HOA Switches;
Control Power Switch ON OFF	SVE Blower Switch HAND OFF AUTO
M/S Effluent Pump Switch HAND OFF AUTO	Heat Exchanger Switch HAND OFF AUTO
Heat Exchanger Operating (YES) NO	If no:
SVE System appear to be operating YES NO	If no:
Properly? Moisture Separator Tank Level: Empty 1/4 Full	1/2 Full 3/4 Full Full Volume Tranfered: gals
SYSTEM MONITORING READINGS	3
Vacuum Gauge Pre-Inline Filter:	in Hg System Monitoring Notes: () () ()
Vacuum Gauge Post-Inline Filter:	in Hg in Hg System Monitoring Notes: Change In-line fitter
Temperature on Discharge Silencer:	°F
Temperature after Heat Exchanger: 79	*F
Pressure After Heat Exchanger	in H ₂ O
Pressure Before Heat Exchanger 7 6	in H ₂ O Flow Rate Based on Pressure Gauge: 3 cfm
Pressure Magnehelic Gauge; Z.S	in H ₂ O Flow Rate Based on Vacuum Gauge: 30 cfm
Vacuum Magnehelic Gauge: > 2	in H ₂ O
Vacuum Gauge After Manifold:	in Hg
EXTRACTION WELL VACUUM GAUGE READINGS	
EW -1: 6 in Hg EW-11:	in Hg Vaccum Gauge Reading Notes:
EW-2: \ in Hg EW-12:	\ in Hg
EW-3:	د \ in Hg
EW-4:	1.25 in Hg
EW-5: < \ in Hg EW-15:	in Hg
EW-6: < (in Hg EW-16:	lin Hg
EW-7:	د ا in Hg
EW-8:	7in H2O
EW-9: \ in Hg SS-2:	2in H2O
EW-10: \.25 in Hg SS-3:	Z in H2O
AIR FLOW FIELD SCREENING	And the state of t
Background Outside SVE Shed: ppm	Detector Tube Readings
Background Inside SVE Shed: ppm	Pre Carbon YES NOppm
Pre Carbon Discharge: 7 ppm	Mid Carbon YES DD ppm
Mid Carbon Discharge: (). ppm	Post Carbon YES (Nb)ppm
Post Carbon Discharge: ppm	
Additional Notes:	1.0
Deplicate sample collected	I from Mid Certain. to 11+ A for GC Screening
1	11.100
tedlar bag sample; sent &	to 14 H for GC Screening

GAS CHROMATOGRAPHY REPORT SHEET GC SCREENING RESULTS DIRECT INJECT

Date of Analysis: 11/29/2011 ICAL Curve Date: 1/1/2011

ehs MGN

Client: File No:

GMCH Lockport 36795-010

Sample Type: BLDG-10 SVE/SSD

Sample identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8 75-01-4 75-35-4 75-09-2	methane vinyl chloride 1,1-dichloroelhene methylene chloride	4,500 7,300 14,300 14,700	4,154	28,5	5.82 ppmV ND ppmV ND ppmV ND ppmV	
ID: Date: Time:	Pre-Carbon 11/28/2011	156-60-5 75-34-3 1634-04-4	trans 1,2-dichloroethene 1,1-dichloroethane MTBE	17,000 17,500 0,000			ND ppmV ND ppmV ND ppmV	
		76-93-3 156-59-2 67-66-3 71-55-6	2-butanone (MEK) cis 1,2-dichtoroethene chloroform 1,1,1-trichtoroethane	18.300 19.100 19.800 21.600			ND ppmV ND ppmV ND ppmV ND ppmV	
		71-43-2 78-87-5 79-01-6	benzene 1,2-dichloropropane trichloroethene	22,400 0,000 24,200			ND ppmV ND ppmV ND ppmV	
		108-88-3 127-18-4 108-90-7	loluene letrachloroethene chlorobenzene	27 200 29 200 30 300	28,595	86,0	ND ppmV 5.66 ppmV ND ppmV	
		100-41-4 108-38-3/106-42-3 95-47-6	elhylbenzene m/p-xylene o-xylene	30 900 31 200 32 100			ND pprnV ND pprnV ND pprnV ND pprnV	
			Unknown TPH total volatiles			114	ND ppmV	

Sample identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	methane	4,500	4,140	28.3	5,79 ppm\/	
		75-01-4	vinyl chloride	7,300			ND ppm\	
		75-35-4	1,1-dichloroethene	14,300			ND ppm\	
		75-09-2	methylene chloride	14,700			ND ppm\	
ID:	Mid-Carbon	156-60-5	trans 1,2-dichloroethene	17,000			ND ppm\	
Date:	11/28/2011	75-34-3	1,1-dichloroethane	17,500			ND ppm\	
Time:		1634-04-4	MTBE	0.000			ND ppm\/	
		78-93-3	2-bulanone (MEK)	18,300			ND ppm\	
		156-59-2	cis 1,2-dichloroethene	19.100			ND ppm\	
		67-66-3	chloroform	19,800			ND ppm\	
		71-55-6	1,1,1-trichloroethane	21,600			ND ppm\	
		71-43-2	benzene	22,400			ND ppm\	1
		78-87-5	1,2-dichloropropana	0,000			ND ppm\	
		79-01-6	trichloroethene	24,200			ND ppm\	
		108-88-3	lotuene	27,200			ND ppm\	
		127-18-4	letrachforoethene	29,200	28.549	74.6	4,90 ppm\	
		108-90-7	chlorobenzene	30,300			ND ppm\	
		100-41-4	athylbenzene	30,900		I I	ND ppm\	1
		108-38-3/106-42-3	m/p-xylene	31,200			ND ppm\	
		95-47-6	o-xylene	32.100			ND ppm\	'
			Unknown TPH	- 64			ND ppm\	
			total volatiles			103	10.7 ppm/v	

Sample identification	CASRN C 74-52-5	Target Compound methane	Cal. Ret. Time (min.) 4,500	Ret. Time (min.) 4.190	Det. Resp. (Area Cts.) 26.4	Conc.		REMARKS
						5.40	ppmV	
	75-01-4	vinyl chloride	7,300			ND	ppmV	
	75-35-4	1,1-dichloroethene	14,300			ND	ppmV	
	75-09-2	methylene chloride	14,700			ND	ppmV	
(D: Mid-Carbon (DUP)	156-60-5	lrans 1,2-dichloroethene	17,000			ND	ppmV	
Date: 11/28/2011	75-34-3	1,1-dichloroethane	17,500			ND	ppmV	
Time:	1634-04-4	MTBE	0,000		11	ND	ppmV	
	78-93-3	2-butenone (MEK)	18,300			ND	ppmV	
	156-59-2	cis 1,2-dichloroethene	19,100			ND	ppmV	
	67-66-3	chloroform	19.800			ND	ppmV	
	71-55-6	1,1,1-trichloroethane	21,600			ND	ppmV	
	71-43-2	benzene	22.400			ND	ppm∨	
	78-87-5	1,2-dichloropropane	0.000			ND	ppmV	
	79-01-6	lrichloroethene	24.200		10	ND	ppmV	
	108-88-3	toluene	27,200			ND	ppmV	
	127-18-4	letrachloroethene	29,200	28.630	46,4	3.05	ppmV	
	108-90-7	chlorobenzene	30,300		ki U	ND	ppmV	
	100-41-4	elhylbenzene	30,900		1	ND	ppmV	
	108-38-3/106-42-3	m/p-xylene	31,200			ND	ppmV	
	95-47-6	o-xylene	32 100			ND	ppmV	
		Unknown TPH		U.		. ND	Vmqq	
		total volatiles			73	8,4	Vmqq	

Sample Identification	CASRN	Target Compound methane	Gal. Ret Time (min.) 4 500	Ret. Time (min.) 4.237	Det Resp. (Area Cts.) 28.9	Conc.		REMARKS
	74-82-8					5,90	ppmV	
	75-01-4	vinyl chloride	7.300			ND	ppmV	
	75-35-4	1,1-dichloroethene	14,300			ND	ppmV	
	75-09-2	methylene chloride	14.700			ND	ppmV	
ID: Post-Carbon	156-60-5	trans 1,2-dichloroethene	17,000			ND	ppm∨	
Date: 11/28/2011	75-34-3	1,1-dichloroethane	17,500			ND	ppmV	
Tíme:	1634-04-4	MTBE	0.000			ND	ppmV	
	78-93-3	2-butanone (MEK)	18.300		1 1	ND	ppmV	
	156-59-2	cis 1,2-dichloroelhene	19,100			ND	ppmV	
	67-66-3	chloroform	19.800			ND	ppmV	
	71-55-6	1,1,1-Irichloroethane	21,600			ND	ppmV	
	71-43-2	benzene	22,400			ND	ppmV	
	78-87-5	1,2-dichloropropane	0.000			ND	ppmV	
	79-01-6	trichloroethene	24.200			ND	ppmV	
	108-88-3	loluene	27.200			ND	Vmqq	
	127-18-4	teirachloroethene	29 200		l' I	ND	Vmqq	
	108-90-7	chlorobenzene	30,300			ND	ppmV	
	100-41-4	elhylbenzene	30.900			ND	ppmV	
	108-38-3/106-42-3	m/p-xylene	31-200			ND	ppm∀	
	95-47-6	o-xylene	32,100			ND	Vmqq	
		Unknown TPH				ND	Vmqq	
		total volatiles			29	5.9	ppmV	

ROUTINE MONITORING FORM

OPERATION, MAINTENANCE AND MONITORING PLAN

SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chris Boson		Time	On-Site: 730	_ Time Off-S	Site: 906	an
Date: 1/5/2012		SVE	Blower Run Time: 22	-DO(hours	VDF: 60	hertz
SYSTEM STATUS				7,0470		110112
SVE System Operating:	(YES) NO	If no:				
Alarm lights off:	YES NO	If no:				
Autodialer Alarm On:	YES (NO)	If Yes:				
	Posti	on of Swing F	Panel HOA Switches:			
Control Power Switch	OFF	SVE Blower		OFF	AUTO	
M/S Effluent Pump Switch HAND	OFF AUTO	Heat Exchan	ger Switch HAND	OFF	AUTO	
Heat Exchanger Operating	(YES) NO	If no:				
SVE System appear to be operating properly?	YES NO	If no:				
Moisture Separator Tank Level: Empty	1/4 Full	1/2 Fu	ıll 3/4 Full	Full Vol	lume Tranfered	Ø gals
SYSTEM MONITORING READINGS						
Vacuum Gauge Pre-Inline Filter:	4.25	in Hg	System Monitoring No	otes:		
Vacuum Gauge Post-Inline Filter:	4.50	in Hg				
Temperature on Discharge Silencer:	ND	°F				
Temperature after Heat Exchanger:	78	°F				
Pressure After Heat Exchanger	19	in H₂O				
Pressure Before Heat Exchanger	27	in H ₂ O	Flow Rate Based on Pro	essure Gauge: 🍞	35 cfm	
Pressure Magnehelic Gauge:	2 .اه	in H ₂ O	Flow Rate Based on Va	icuum Gauge: 🤾	∑ cfm	
Vacuum Magnehelic Gauge:	>'Z	in H ₂ O				
Vacuum Gauge After Manifold;		in Hg				*
EXTRACTION WELL VACUUM GAUGE	READINGS		55,55,66			
EW -1: in Hg	EW-11:	1	in Hg Vaccun	n Gauge Reading N	Notes:	
EW-2: in Hg	EW-12:	1	in Hg			
EW-3: in Hg	EW-13:	د ا	in Hg			
EW-4: 4 in Hg	EW-14:	1.25	in Hg			
EW-5: 4 in Hg	EW-15:		in Hg			
EW-6: < \ in Hg	EW-16:	(in Hg			
EW-7: C\ in Hg	EW-17:	41	in Hg			
EW-8: 🚣 (in Hg	SS-1:	2	in H2O			
EW-9: in Hg	SS-2:	2	in H2O			
EW-10: 1.25 in Hg	SS-3:	2	in H2O			
AIR FLOW FIELD SCREENING	/					
Background Outside SVE Shed: (⊅ ppm		Detector T	ube Readings		
Background Inside SVE Shed:	ppm		Pre Carbon (YES)	NO 5 p	pm	
Pre Carbon Discharge: 3	ppm		Mid Carbon (ES)	NO 5 P	pm	
Mid Carbon Discharge: 3	ppm		Post Carbon (YES)) NO (D) p	pm	
Post Carbon Discharge:	ppm					
Additional Notes:	10 1	1 0		1 1 1.		
Depleste sample cellect Samples sout to H+	real trem t	rue tre	. Carbon Saux	sling locati	ov -	
Sander sout to HA	Afor G	L Scu	Lanne)		
			\supset			

Date of Analysis: 1/7/2012 ICAL Curve Date: 1/1/2011

Client: File No: GMCH Lockport 36795-010

Sample Type: BLDG-10 SVE/SSD

ehs

DMC

Sampl	le Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	methane	4,500	2.119	24.5	5,00 ppmV	
		75-01-4	vinyl chloride	7,300			ND ppmV	
		75-35-4	1,1-dichloroelhene	14,300		1 1	ND ppmV	
		75-09-2	methylene chloride	14,700			ND ppmV	
ID:	Pre-Carbon	156-60-5	trans 1,2-dichloroethene	17,000	1		ND ppmV	
Date:	1/5/2012	75-34-3	1,1-dichloroethane	17_500	l	l I	ND ppmV	
Time:		1634-04-4	MTBE	0,000	l		ND ppmV	
		78-93-3	2-butanone (MEK)	18,300	l .		ND ppmV	
		158-59-2	cis 1,2-dichloroethene	19_100			ND ppmV	
		67-66-3	chloroform	19,800		1 1	ND ppmV	
		71-55-6	1,1,1-trichloroethane	21.600	1	1 1	ND ppmV	
		71-43-2	benzene	22,400			ND ppmV	
		78-87-5	1,2-dichloropropane	0,000		1 1	ND ppmV	
		79-01-6	trichloroethene	24.200			ND ppmV	
		108-88-3	loluene	27.200		t 1	ND ppmV	
		127-18-4	letrachloroethene	29.200	23.852	59.1	3,89 ppmV	
		108-90-7	chlorobenzene	30.300	1 12	100	ND ppmV	
		100-41-4	elhylbenzene	30.900		1 1	ND ppmV	
		108-38-3/108-42-3	m/p-xylene	31,200			ND ppmV	
		95-47-6	o-xylene	32 100		ı I	ND ppmV	
			Unknown TPH			I	ND ppmV	
			total volatiles	1		84	8.9 ppmV	

Sample Identification	CASRN	Target Compound	Cal, Ret. Time (min.)	Ret. Time (min.)	Det. Resp (Area Cts.)	Conc.	REMARKS
	74-82-8	methane	4,500	2.130	24.5	5.01 ppmV	
	75-01-4	vinyl chloride	7,300			ND ppmV	
	75-35-4	1,1-dichloroelhene	14,300	1		ND ppmV	
	75-09-2	methylene chloride	14.700			ND ppmV	
ID: Pre-Carbon (DUP)	156-60-5	trans 1,2-dichloroethene	17.000	n .		ND ppmV	
Date: 1/5/2012	75-34-3	1,1-dichloroethane	17.500	ľ		ND ppmV	
Time:	1634-04-4	MTBE	0,000			ND ppmV	
	78-93-3	2-butanone (MEK)	18,300		1 1	ND ppmV	
	156-59-2	cis 1,2-dichloroethene	19.100			ND ppmV	
	67-66-3	chloroform	19,800			ND ppmV	
	71-55-6	1,1,1-trichloroethane	21.800	M.		ND ppmV	
	71-43-2	benzene	22,400			ND ppmV	
	78-87-5	1,2-dichloropropane	0,000		10	ND ppmV	
	79-01-6	trichloroethene	24.200			ND ppmV	
	108-88-3	loluene	27.200			ND ppmV	
	127-18-4	tetrachloroethene	29.200	23.886	62.1	4.09 ppmV	
	108-90-7	chlorobenzene	30,300	157	- 20	ND ppmV	
	100-41-4	ethylbenzene	30.900	ľ	1	ND ppmV	
	108-38-3/108-42-3	m/p-xylene	31.200			ND ppmV	
	95-47-6	p-xvlene	32 100	ľ		ND ppmV	
		Unknown TPH				ND ppmV	
		total volatiles			87	9.1 ppmV	

Sampl	le identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	no.	REMARKS
		74-82-8	methane	4,500	2,129	25.1	5.12	ppmV	
		75-01-4	vinyl chloride	7,300			ND	Vmqq	
		75-35-4	1,1-dichloroethene	14.300			ND	Vmqq	
		75-09-2	methylene chloride	14.700			ND	ppmV	
ID:	Mid-Carbon	158-60-5	trans 1,2-dichloroethene	17.000			ND	ppmV	
Date:	1/5/2012	75-34-3	1,1-dichloroethane	17.500			ND	ppmV	
Time:		1634-04-4	MTBE	0.000			ND	ppmV	
		78-93-3	2-butanone (MEK)	18,300			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19 100		1 1	ND	ppmV	
		67-88-3	chloroform	19 800			ND	ppmV	
		71-55-8	1,1,1-trichloroethane	21.600			ND	ppmV	
		71-43-2	benzene	22 400		1 1	ND	ppmV	
		78-87-5	1,2-dichloropropane	0,000			ND	ppmV	
		79-01-6	trichloroethene	24.200			ND	ppmV	
		108-88-3	toluene	27.200			ND	ppmV	
		127-18-4	letrachtoroethene	29 200	23,892	53,7	3,53	ppmV	
		108-90-7	chlorobenzene	30.300			ND	ppmV	
		100-41-4	ethylbenzene	30,900		1 1	ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31 200		1 1	ND	ppmV	
		95-47-6	o-xylene	32-100		I I	ND	ppmV	
			Unknown TPH				ND	Vmqq	
			total volatiles			79	8.7	Vmqq	

Sample Identification	Target CASRN Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Cono.	REMARKS
	74-82-8 methane	4,500	2.113	24.2	4.94 ppmV	
	75-01-4 vinyl chloride	7,300			ND ppmV	
	75-35-4 1,1-dichloroethene	14.300		l I	ND ppmV	
	75-09-2 methylene chloride	14.700		11 1	ND ppmV	
D: Post-Carbon	156-60-5 Irans 1,2-dichloroethene	17 000		1 1	ND ppmV	
te: 1/5/2012	75-34-3 1,1-dichloroethane	17,500		1 1	ND ppmV	
19:	1634-04-4 MTBE	0.000		1 1	ND ppmV	
	78-93-3 2-butanone (MEK)	18.300		I I	ND ppmV	
	156-59-2 cis 1,2-dichloroethene	19 100		1 1	ND ppmV	
	67-66-3 chloroform	19.800		l I	ND ppmV	
	71-55-6 1,1,1-trichloroethane	21.600		l I	ND ppmV	
	71-43-2 benzene	22.400			ND ppmV	
	78-87-5 1,2-dichloropropane	0,000		l I	ND ppmV	
	79-01-6 trichloroethene	24 200		I I	ND ppmV	
	108-88-3 toluene	27-200		l I	ND ppmV	
	127-18-4 tetrachloroethene	29 200		l 1	ND ppmV	
	108-90-7 chlorobenzene	30 300	1	l 1	ND ppmV	
	100-41-4 elhylbenzene	30 900		1 I	ND ppmV	
	108-38-3/106-42-3 m/p-xylene	31,200		I I	ND ppmV	
	95-47-6 o-xylene	32 100		1 1	ND ppmV	
	Unknown TPH total volatiles	02 100		24	ND ppmV	

ROUTINE MONITORING FORM

OPERATION, MAINTENANCE AND MONITORING PLAN

SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chris Boron	Time On-Site: 825 am Time Off-Site: 1000 am
Date: 1/31/2012	SVE Blower Run Time: 27676 hours VDF: 60 hertz
SYSTEM STATUS	OVE DISTORTION CO.
SVE System Operating: YES NO	If no:
Alarm lights off: (YES) NO	If no:
Autodialer Alarm On: YES (NO)	If Yes;
Posti	on of Swing Panel HOA Switches:
Control Power Switch ON OFF	SVE Blower Switch HAND OFF AUTO
M/S Effluent Pump Switch HAND OFF AUTO	Heat Exchanger Switch HAND OFF AUTO
Heat Exchanger Operating (YES) NO	If no:
SVE System appear to be operating PES NO properly?	If no:
Moisture Separator Tank Level: Empty 1/4 Full	1/2 Full 3/4 Full Full Volume Tranfered: 🏚 gals
SYSTEM MONITORING READINGS	1
Vacuum Gauge Pre-Inline Filter: 4.25	in Hg System Monitoring Notes;
Vacuum Gauge Post-Inline Filter: 4,50	in Hg
Temperature on Discharge Silencer: \0 5	°F
Temperature after Heat Exchanger: 78	°F
Pressure After Heat Exchanger (4	in H ₂ O
Pressure Before Heat Exchanger 25	in H ₂ O Flow Rate Based on Pressure Gauge: 335 cfm
Pressure Magnehelic Gauge: 2.6	in H ₂ O Flow Rate Based on Vacuum Gauge: 3(5 cfm
Vacuum Magnehelic Gauge: > 2	in H ₂ O
Vacuum Gauge After Manifold:	in Hg
EXTRACTION WELL VACUUM GAUGE READINGS	
EW -1:	in Hg Vaccum Gauge Reading Notes:
EW-2: (in Hg EW-12:	l in Hg
EW-3: (in Hg EW-13:	∠ \ in Hg
EW-4:	1,25 in Hg
EW-5: < (in Hg EW-15:	(in Hg
EW-6:	(in Hg
EW-7; < (in Hg EW-17:	∠ (in Hg
EW-8: ८ in Hg	2 in H2O
EW-9: \ in Hg SS-2:	2 in H2O
EW-10: 25 in Hg SS-3:	2 in H2O
AIR FLOW FIELD SCREENING	
Background Outside SVE Shed: (.4 ppm	Detector Tube Readings
Background Inside SVE Shed: \ . \ . ppm	Pre Carbon YES NOppm
Pre Carbon Discharge: 4 ppm	Mid Carbon YES NOppm
Mid Carbon Discharge: L . O ppm	Post Carbon YES (NO)ppm
Post Carbon Discharge: 0.8 ppm	
Additional Notes:	11. MA de Rich servale brotion.
Deplicate sample collected to	on the Mid-Point sample location. Screening.
Samples sent to HAM ton CIC	screaming.

Date of Analysis: 2/1/2012 ICAL Curve Date: 1/1/2011

Client: GMCH Lockport File No: 36795-010

Sample Type: BLDG-10 SVE/SSD

ehs

MGN

Sample	Identification						Det. Resp. (Area Cts.)	Conc.		REMARKS
		74-82-8	methane	4,500	4 244	23,8	4.86	ppmV		
		75-01-4	vinyl chloride	7,300		~ 1	ND	ppmV		
		75-35-4	1,1-dichloroethene	14,300		1 1	ND	ppm∨		
		75-09-2	methylene chloride	14,700			ND	ppm∨		
ID:	Pre-Carbon	158-80-5	trans 1,2-dichloroothene	17,000		1 1	ND	ppmV		
Date:	1/31/2012	75-34-3	1,1-dichloroethane	17,500			ND	ppmV		
Time:		1834-04-4	MTBE	0.000			ND	ppmV		
		78-93-3	2-bulanone (MEK)	18,300		1 1	ND	ppmV		
		156-59-2	cis 1,2-dichloroethene	19,100			ND	Vmqq		
		67-66-3	chloroform	19,800			ND	ppmV		
		71-55-6	1,1,1-trichloroethane	21,600			ND	ppmV		
		71-43-2	benzane	22,400		1 1	ND	ppmV		
		78-87-5	1,2-dichtoropropane	0.000		1 1	ND	ppmV		
		79-01-8	trichloroethene	24.200			ND	ppm∀		
		108-88-3	loluene	27.200		1 1	ND	ppmV		
		127-18-4	tetrachloroethene	29.200	28.645	56,1	3.69	ppmV		
		108-90-7	chlorobenzene	30,300		-655	ND	Vmqq		
		100-41-4	ethylbenzene	30,900		1 1	ND	ppmV		
		108-38-3/108-42-3	m/p-xylene	31,200		ı I	ND	Vmqq		
		95-47-6	o-xylene	32,100		1 1	ND	ppmV		
		25 41 5	Unknown TPH	32,100			ND	Vmqq		
			total volatiles			80	8.5	ppmV		

Sampl	imple identification CASRN				Ret Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	methana	4.500	4 274	44,6	9.12	ppmV	
		75-01-4	vinyl chloride	7,300		1 1	ND	ppmV	
		75-35-4	1,1-dichloroethene	14,300		1 1	ND	ppmV	
		75-09-2	methylene chloride	14,700		1 1	ND	ppmV	
ID:	Mid-Carbon	158-80-5	trans 1,2-dichloroethene	17,000			ND	ppmV	
Date:	1/31/2012	75-34-3	1,1-dichloroethane	17,500		1 1	ND	ppmV	
Time:		1834-04-4	MTBE	0.000		1 1	ND	ppmV	
		78-93-3	2-butanone (MEK)	18,300		1 1	ND	ppmV	
		158-59-2	cis 1,2-dichloroethene	19,100		1 1	ND	ppmV	
		67-66-3	chloroform	19,800		1 1	ND	ppmV	
		71-55-6	1,1,1-trichforoethane	21,600			ND	ppmV	
		71-43-2	benzene	22,400			ND	ppmV	
		78-87-5	1,2-dichloropropane	0,000		1 1	ND	ppmV	
		79-01-8	trichlaroethene	24,200		1 1	ND	ppmV	
		108-88-3	toluene	27,200			ND	ppmV	
		127-18-4	tetrachloroethene	29,200			ND	ppmV	
		108-90-7	chlorobenzene	30,300		1 1	ND	ppmV	
		100-41-4	elhylbenzene	30,900		1 1	ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31,200		1 1	ND	ppmV	
		95-47-8	o-xyfene	32,100		1 1	ND	ppmV	
			Unknown TPH				ND	ppmV	
			total volatiles			45	9.1	ppmV.	

Sample Identification	CASRN Compound 74-82-8 methane	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Сон	10.	REMARKS	
			4.500	4,216	22,8	4.66	ppmV	
	75-01-4	vinyl chloride	7,300			ND	ppm∨	
	75-35-4	1,1-dichloroethene	14,300		1 1	ND	ppmV	
	75-09-2	mathylene chloride	14,700		1 1	ND	Vmqq	
ID: Mid-Carbon (DUP)	156-80-5	trans 1,2-dichloroethene	17,000			ND	ppmV	
Date: 1/31/2012	75-34-3	1,1-dichloroethane	17,500		1 1	ND	ppmV	
Time:	1634-04-4	MTBE	0.000		1 1	ND	ppmV	
	78-93-3	2-butanone (MEK)	18,300		1 1	ND	ppmV	
	156-59-2	cis 1,2-dichloroethene	19,100	1	1 1	ND	Vmqq	
	67-66-3	chloroform	19,800			ND	ppmV	
	71-55-6	1,1,1-trichloroethane	21.600		1 1	ND	ppmV	
	71-43-2	benzene	22.400		1 1	ND	Vmqq	
	78-87-5	1,2-dichloropropane	0.000	1	1 1	ND	ppmV	
	79-01-6	trichloroethene	24 200		1 1	ND	ppmV	
	108-88-3	toluene	27.200		1 1	ND	Vmqq	
	127-18-4	letrachforoethene	29 200	28.836	2.5	0.17	ppmV	
	108-90-7	chlorobenzene	30.300		1 " 1	ND	ppmV	
	100-41-4	ethylbenzene	30,900			ND	ppmV	
	108-38-3/106-42-3	m/p-xylene	31,200		1 1	ND	ppmV	
	95-47-6	o-xvlene	32,100		1 1	ND	ppmV	
		Unknown TPH				ND	Vmqq	
		total volatiles			25	4.8	ppmV	

Sample Identification	dentification Target CASRN Compound		Cal. Ret. Time (mln.)	Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
ID: Post-Carbon Date: 1/31/2012 Tirme:	74-82-8 75-01-4 75-35-4 75-09-2 158-80-5 75-34-3 1634-04-4 78-93-3 155-59-2 87-88-3 71-55-6 71-43-2 78-87-5 79-01-8 108-88-3 127-18-4 108-90-7 100-41-4 108-83-7106-42-3 95-47-6	methane vinyt chloride 1,1-dichloroethane methylane chloride trans 1,2-dichloroethane 1,1-dichloroethane 1,1-dichloroethane is 1,2-dichloroethane chloroform chloroform transpare trichloroethane tenzene 1,2-dichloroethane tenzene toluene tetrachloroethene chlorobenzene ethylbenzene m/p-xylene o-xylene Unknown TPH	4.500 7.300 14.300 14.700 14.700 17.000 17.500 0.000 18.300 19.100 19.800 22.400 0.000 24.200 27.200 29.200 30.300 30.900 31.200 32.100	4.210	22.4	4.57 ppmV ND ppmV	

OPERATION, MAINTENANCE AND MONITORING PLAN SVE/SSD SYSTEM GM COMPONENTS HOLDINGS, LLC

LOCKPORT, NEW YORK

Name: Chris Boron		Time	On-Site: 1340	Time	Off-Site:	1440		
Date: 3/1/12		SVE	Blower Run Time: 2	3351 ho	urs VD	F: 60		hertz
SYSTEM STATUS								
SVE System Operating:	(YES) NO	If no:						
Alarm lights off:	(YES) NO	If no:						1
Autodialer Alarm On:	YES (NO)	If Yes:						
	Posti	on of Swing P	anel HOA Switches:			^		
Control Power Switch ON	OFF	SVE Blower S	Switch HANI	O OF		(AUTO		
M/S Effluent Pump Switch HAND	OFF AUTO	Heat Exchang	ger Switch HANI	OFF		(AUTO)		
Heat Exchanger Operating	YES NO	If no:						
SVE System appear to be operating properly?	(YES) NO	If no:					,	
Moisture Separator Tank Level: Empty) 1/4 Full	1/2 Fu	ll 3/4 Full	Full	Volume T	ranfered:	φ	gals
SYSTEM MONITORING READINGS								
Vacuum Gauge Pre-Inline Filter:	4	in Hg	System Monitoring	Notes:				
Vacuum Gauge Post-Inline Filter:	4.5	in Hg						
Temperature on Discharge Silencer:	ND	°F						
Temperature after Heat Exchanger:	79	°F						
Pressure After Heat Exchanger	13	in H₂O						
Pressure Before Heat Exchanger	20	in H₂O	Flow Rate Based on	Pressure Gauge:	330	cfm		
Pressure Magnehelic Gauge:	2.5	in H₂O	Flow Rate Based on	Vacuum Gauge:	310	cfm		
Vacuum Magnehelic Gauge:	>2	in H₂O						
Vacuum Gauge After Manifold:	1.0	in Hg						
EXTRACTION WELL VACUUM GAUGE	READINGS		W-141					
EW -1: C in Hg	EW-11:	l	in Hg Vacc	um Gauge Read	ing Notes:			
EW-2: (in Hg	EW-12:	1	in Hg					
EW-3: \ in Hg	EW-13:	(in Hg					
EW-4: ∠ (in Hg	EW-14:	1.25	in Hg					
EW-5: < (in Hg	EW-15:	l	in Hg					
EW-6: <\ in Hg	EW-16:	l	in Hg					
EW-7: < \ in Hg	EW-17:	۷(in Hg					
EW-8: ∠ (in Hg	SS-1:	2	in H2O					
EW-9: (in Hg	SS-2:	2	in H2O					
EW-10: L.S in Hg	SS-3:	2	in H2O					
AIR FLOW FIELD SCREENING						7		
Background Outside SVE Shed: 0.	b ppm		Detecto	r Tube Readings				
Background Inside SVE Shed: O	ppm		Pre Carbon YES	~	ppm			
Pre Carbon Discharge: 3	ppm		Mid Carbon YES	(NO)	ppm			
Mid Carbon Discharge:	ppm		Post Carbon YES	(NO)	ppm			
Post Carbon Discharge:								
Additional Notes: Deplicate sample coll Samples sent to HTR	ected from	n Pre-	-Corbon local	Nort				
Samples sent to HA	d for U.	Theen	•					

Date of Analysis: 3/2/2012 ICAL Curve Date: 1/1/2011

Client: File No:

GMCH Lockport 36795-010

Sample Type: BLDG-10 SVE/SSD

dmc

Sample Identification			Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	inc.	REMARKS
		74-82-8 75-01-4	methane	4,500	4.185	25,5	5,21	ppmV	
			vinyl chloride	7,300			ND	ppmV	
		75-35-4	1,1-dichloraelhene	14,300			ND	ppmV	
		75-09-2	melhylene chloride	14.700		l I	ND	ppmV	
ID:	Pre-Carbon	156-60-5	trans 1,2-dichloroethene	17,000			ND	ppm∨	
Date:	3/1/2012	75-34-3	1,1-dichloroelhane	17.500		l I	ND	ppmV	
Time:		1634-04-4	MTBE	0,000		l I	ND	ppmV	
		78-93-3	2-bulanone (MEK)	18,300			ND	ppm∨	
		156-59-2	cis 1,2-dichloroethene	19,100			ND	ppmV	
		67-66-3	chloroform	19,800			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	21,600		l I	ND	ppmV	
		71-43-2	benzene	22,400			ND	ppmV	
		78-87-5	1,2-dichloropropane	0,000			ND	ppmV	
		79-01-6	lrichloroethene	24,200		l I	ND	ppmV	
		108-88-3	toluene	27,200			ND	ppmV	
		127-18-4	tetrachloroethene	29 200	28.576	54.4	3,58	ppmV	
		108-90-7	chlorobenzene	30,300			ND	ppmV	
		100-41-4	ethylbenzene	30,900			ND	ppmV	
		108-38-3/106-42-3	π√p-xylene	31.200		I I	ND	ppmV	
		95-47-6	o-xylene	32 100		I I	ND	ppmV	
			Unknown TPH				ND	Vmqq	
			total volatiles			80	8.8	ppmV	

Sample Identificati	on CASRN	Target Compound	Cai. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.		REMARKS
	74-82-8	methane	4,500	4.270	22,9	4,67	ppmV	
	75-01-4	vinyl chloride	7,300			ND	ppmV	
	75-35-4	1,1-dichloroethene	14,300			ND	ppmV	
	75-09-2	methylene chloride	14,700			ND	ppmV	
ID: Pre-Carbon	(dup) 156-60-5	Irans 1,2-dichtoroethene	17,000			ND	ppmV	
Date: 3/1/201	2 75-34-3	1,1-dichloroethene	17,500			ND	ppmV	
Time:	1634-04-4	MTBE	0,000			ND	ppmV	
	78-93-3	2-bulanone (MEK)	18,300			ND	ppmV	
	156-59-2	cis 1,2-dichloroethene	19,100			ND	ppmV	
	67-66-3	chloroform	19 800		i I	ND	ppmV	
	71-55-6	1,1,1-trichloroethane	21,600			ND	Vmqq	
	71-43-2	benzene	22.400			ND	ppmV	
	78-87-5	1,2-dichloropropane	0,000			ND	ppmV	
	79-01-6	trichloroethene	24 200			ND	ppmV	
	108-88-3	toluene	27,200			ND	ppmV	
	127-18-4	tetrachforoethene	29 200	28.788	42.4	2.79	ppmV	
	108-90-7	chlorobenzene	30,300			ND	ppmV	
	100-41-4	elhylbenzene	30,900			ND	ppmV	
	108-38-3/106-	42-3 m/p-xylene	31.200			ND	ppmV	
	95-47-6	o-xylene	32,100			ND	ppmV	
		Unknown TPH				ND	Vmqq	
		total volatiles			65	7.5	Vmqq	

Sampl	le identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	LEL	nc.	REMARKS
		74-82-8	methane	4,500	4 252	23,4	4.78	ppmV	
		75-01-4	vinyl chloride	7,300			ND	ppmV	
		75-35-4	1,1-dichloroethene	14,300			ND	ppmV	
		75-09-2	methylene chloride	14,700			ND	ppmV	
ID:	Mid-Carbon	156-60-5	trans 1,2-dichloroethene	17,000			ND	ppmV	
Date:	3/1/2012	75-34-3	1,1-dichloroelhane	17,500			ND	ppmV	
Time:		1634-04-4	MTBE	0,000			ND	ppmV	
		78-93-3	2-butanone (MEK)	18,300			ND	ppmV	
		156-59-2	cis 1,2-dichtoroethene	19,100			ND	ppm∨	
		67-66-3	chloroform	19.800			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	21,600			ND	ppmV	
		71-43-2	benzene	22,400		l I	ND	ppmV	
		78-87-5	1,2-dichloropropane	0.000			ND	ppmV	
		79-01-6	lrichtoroelhene	24 200			ND	ppm∀	
		108-88-3	toluene	27 200			ND	ppmV	
		127-18-4	tetrachloroethene	29 200	28,966	1,2	0.08	ppmV	
		108-90-7	chlorobenzene	30 300			ND	ppmV	
		100-41-4	ethylbenzene	30.900		I I	ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31.200			ND	ppmV	
		95-47-6	o-xylene	32 100			ND	ppmV	
			Unknown TPH				ND	Vmqq	
			total volatiles			26	4.9	Vmqq	

Samp	le Identification	CASRN	Target Compound	Cal Ret. Time (min.)	Ret. Time (mln.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	rnethane	4,500	4.259	23,9	4,88 pp	
		75-01-4	vinyl chloride	7,300			ND ppi	
		75-35-4	1,1-dichloroethene	14,300			ND ppi	
		75-09-2	methylene chloride	14,700			ND pp	
ID:	Post-Carbon	156-60-5	trans 1.2-dichloroethene	17,000				mV
Date:	3/1/2012	75-34-3	1,1-dichloroethane	17,500				mV
Time:		1634-04-4	MTBE	0,000				mV
		78-93-3	2-bulanona (MEK)	18.300				mV
		156-59-2	cis 1,2-dichloroethene	19.100				mV
		67-66-3	chloroform	19.800				mV
		71-55-6	1,1,1-trichloroethane	21,600			ND pp	
		71-43-2	benzene	22,400				mV
		78-87-5	1,2-dichloropropane	0,000			ND pp	
		79-01-6	trichloroethene	24.200			ND pp	mV
		108-88-3	loluene	27.200			ND pp	
		127-18-4	tetrachloroethene	29 200	28,807	1,2		mV
		108-90-7	chlorobenzene	30,300				mV
		100-41-4	elhylbenzene	30,900		I I		mV
		108-38-3/106-42-3	m/p-xylene	31,200		I I		mV
		95-47-6	o-xylene	32,100			ND ppi	mV Vm
			Unknown TPH				ND ppi	
			total volatiles		7	25	5.0 pp	Van

ROUTINE MONITORING FORM

OPERATION AND MAINTENANCE GUIDANCE DOCUMENT SVE/SSD SYSTEM DELPHI

LOCKPORT, NEW YORK

Name: Chris Boron	Time On-Site: 900 Time Off-Site: 1015
Date: 4-5-2012	SVE Blower Run Time: 24185 hours VDF: 60 hertz
SYSTEM STATUS	
SVE System Operating: YES NO	If no:
Alarm lights off: (YES) NO	If no:
Autodialer Alarm On; YES (NO)	If Yes:
Posti	on of Swing Panel HOA Switches:
Control Power Switch ON OFF	SVE Blower Switch HAND OFF AUTO
M/S Effluent Pump Switch HAND OFF AUTO	Heat Exchanger Switch HAND OFF AUTO
Heat Exchanger Operating YES NO	If no:
SVE System appear to be operating YES NO	If no:
Moisture Separator Tank Level: Empty 1/4 Full	1/2 Full 3/4 Full Full Volume Tranfered; gals
SYSTEM MONITORING READINGS	
Vacuum Gauge Pre-Inline Filter:	in Hg System Monitoring Notes:
Vacuum Gauge Post-Inline Filter: 4.5	in Hg
Temperature on Discharge Silencer: 105	°F
Temperature after Heat Exchanger: 78	<u>°</u> F
Pressure After Heat Exchanger	in H ₂ O Flow Pressure: 330 in H ₂ O in H ₂ O Flow Vacuum: 309
Pressure Before Heat Exchanger 20	in H ₂ O
Pressure Magnehelic Gauge: 2,5	in H ₂ O
Vacuum Magnehelic Gauge:	in H ₂ O
Vacuum Gauge After Manifold: 1.25	in Hg
EXTRACTION WELL VACUUM GAUGE READINGS	
EW -1: in Hg EW-11:	in Hg Vaccum Gauge Reading Notes:
EW-2: 1,25 in Hg EW-12:	lin Hg
EW-3: In Hg EW-13:	∫ in Hg
EW-4: c in Hg EW-14:	1,25 in Hg
EW-5:	in Hg
EW-6: 4 (in Hg EW-16:	in Hg
EW-7: 4 in Hg EW-17:	€ In Hg
EW-8: < (in Hg SS-1:	2_ in H2O
EW-9: In Hg SS-2:	2_ in H2O
EW-10: (,5 in Hg SS-3:	Z in H2O
AIR FLOW FIELD SCREENING	
Background Outside SVE Shed: 0.5 ppm	Detector Tube Readings
Background Inside SVE Shed: 0,5 ppm	Pre Carbon YES No ppm
Pre Carbon Discharge: S1 ppm	Mid Carbon YES NOppm
Mid Carbon Discharge: ppm	Post Carbon YES NO ppm
Post Carbon Discharge: ppm	<u> </u>
Additional Notes:	March 1 cost & Ham
Teplar Tag semple	collected and sent to HAIA phate sample collected from Re Combon.
for Gil Screen. Du	cheate sample collected from the combon.

Client: File No:

GMCH Lockport 36795-010

Date of Analysis: 4/6/2012 ICAL Curve Date: 1/1/2011

DAS MGN

Sample Type: BLDG-10 SVE/SSD

Sampl	e Identification	CASRN	Target Compound	Cal, Ret. Time (min.)	Ret. Time (mln.)	Det. Resp. (Area Cts.)	Cor	ng.	REMARKS
		74-82-8		1,800	1,830	29,5	6,03	ppm∀	
		75-01-4	vinyl chloride				ND	ppmV	
		75-35-4	1,1-dichloroethene	5,500			ND	ppmV	
		75-09-2	methylene chloride				ND	ppm∨	
ID:	Pre-Carbon	156-60-5	trans 1,2-dichloroethene	7,500			ND	ppmV	
Date:	4/5/2012	75-34-3	1,1-dichloroelhane	9,000			ND	ppmV	
Time:		1634-04-4	MTBE	1			ND	ppm∨	
		78-93-3	2-butanone (MEK)				ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	11,300			ND	ppmV	
		67-66-3	chloroform	13,000			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	13,500			ND	ppm∨	
		71-43-2	benzene	14,500			ND	ppm∨	
		78 - 87-5	1,2-dichloropropane				ND	ppmV	
		79-01-6	trichloroethene	16,800			ND	ppmV	
		108-88-3	toluene	21,500			ND	ppmV	
		127-18-4	tetrachloroethene	23.200	23,177	65.2	4.29	ppmV	
		108-90-7	chlorobenzene				ND	ppmV	
		100-41-4	elhylbenzene	26.500			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	25,900			ND	ppmV	
		95-47-6	o-xylene	28.200			ND	ppmV	
			Unknown TPH				ND	Vmqq	
			total volatiles	_		95	10.3	Vmqq	

Sample	e identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Cor	nc.	REMARKS
		74-82-8	methane	1.800	00 1,840	24.6	5,03	ppmv	
		75-01-4	vinyl chloride				ND	ppmV	
		75-35-4	1,1-dichloroethene	5,500			ND	ppm∨	
		75-09-2	methylene chloride			1 1	ND	ppmV	
ID:	Mid-Carbon	156-60-5	trens 1,2-dichlorcethene	7,500			ND	ppmV	
Date:	4/5/2012	75-34-3	1,1-dichloroethane	9,000			ND	ppmV	
Time:		1634-04-4	MTBE				ND	ppmV	
		78-93-3	2-bulanone (MEK)				ND	ppm∨	
		156-59-2	cis 1,2-dichloroethene	11,300			ND	ppmV	
		67-66-3	chloroform	13,000			ND	ppmV	
		71-55-8	1,1,1-trichloroethane	13,500			ND	ppmV	
		71-43-2	benzene	14,500			ND	ppmV	
		78-87-5	1,2-dichloropropane				ND	ppm∨	
		79-01-8	trichloroethene	16,800			ND	ppm∨	
		108-88-3	toluene	21,500			ND	ppmV	
		127-18-4	letrachloroethene	23,200			ND	ppmV	
		108-90-7	chlorobenzene	1.00			ND	ppm∀	
		100-41-4	ethylbenzene	26,500		1 1	ND	ppmV	
		108-38-3/108-42-3	m/p-xylene	26,900			ND	ppmV	
		95-47-8	o-xylene	28 200			ND	ppmV	
			Unknown TPH			1	ND	ppmV	
			total volatiles			25	5.0	PpmV	

Cal. Ret. Time (min.)	Rei Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
1.800	1,823	24.8	5,07 ppmV	
			ND ppmV	
5.500			ND ppmV	
			ND ppmV	1
e 7,500			ND ppmV	l .
9.000			ND ppmV	
		1	ND ppmV	
1		1 1	ND ppmV	
11,300		11 1	ND ppmV	
13,000			ND ppmV	
13,500		1 1	ND ppmV	
14,500		11 1	ND ppmV	
		1	ND ppmV	
16,800			ND ppmV	
21.500			ND ppmV	
23,200	23,150	62,8	4.13 ppmV	
1			ND ppmV	
28,500			ND ppmV	
26,900		1	ND ppmV	
28,200		10 0	ND ppmV	
			ND ppmV	
			88	

Sampl	le identification	CABRN	Target Compound	Cal. Ret. Time (min.)	Ret Time (min.)	Det, Resp. (Area Cis.)	Co	inc.	REMARKS
		74-82-8	methane	1.800	1,800	22.3	4,55	ppmV	
		75-01-4	vinyl chloride				ND	ppm∨	
		75-35-4	1,1-dichloroethene	5 500		1 1	ND	ppmV	
		75-09-2	methylene chloride			1 1	ND	ppmV	
ID:	Post-Carbon	156-60-5	trans 1,2-dichloroethene	7.500		1 1	ND	ppmV	
Date:	4/5/2012	75-34-3	1,1-dichloroelhane	9.000			ND	ppmV	
Time:		1634-04-4	MTBE				ND	ppmV	
		78-93-3	2-bulanone (MEK)			1 1	ND	ppmV	
		158-59-2	cis 1,2-dichloroethene	11.300		10 1	ND	ppmV	
		67-66-3	chloroform	13,000			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	13,500		1 1	ND	ppmV	
		71-43-2	benzene	14.500			ND	ppm∨	
		78-87-5	1,2-dichloropropane			1	ND	ppmV	
		79-01-8	trichloroethene	16,800		1 1	ND	ppmV	
		108-88-3	toluene	21,500		1 1	ND	ppmV	
		127-18-4	letrachioroethene	23,200		1 1	ND	ppmV	
		108-90-7	chlorobenzene			1	ND	ppmV	
		100-41-4	ethylbenzene	26,500			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	26,900		10 11	ND	ppmV	
		95-47-8	o-xylene	28,200		1 1	ND	ppmV	
			Unknown TPH				ND	Vmqq	
			total volatiles			22	4.5	Vmag	

ROUTINE MONITORING FORM

OPERATION, MAINTENANCE AND MONITORING PLAN SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chris Born	Time On-Site: 935 Time Off-Site: 935
Date: 5 2 12	SVE Blower Run Time: 24 831 hours VDF: 60 hertz
SYSTEM STATUS	
SVE System Operating: YES NO	If no:
Alarm lights off: YES NO	If no:
Autodialer Alarm On: YES (NO)	If Yes:
Posti	on of Swing Panel HOA Switches:
Control Power Switch ON OFF	SVE Blower Switch HAND OFF AUTO
M/S Effluent Pump Switch HAND (055) AUTO	Heat Exchanger Switch HAND OFF AUTO
Heat Exchanger Operating YES NO	If no:
SVE System appear to be operating YES NO properly?	If no:
Moisture Separator Tank Level Empty 1/4 Full	1/2 Full 3/4 Full Full Volume Tranfered: gals
SYSTEM MONITORING READINGS	J
Vacuum Gauge Pre-Inline Filter: 4.5	in Hg System Monitoring Notes:
Vacuum Gauge Post-Inline Filter: 4.0	in Hg
Temperature on Discharge Silencer:	® F
Temperature after Heat Exchanger: 72	°F
Pressure After Heat Exchanger \3	in H ₂ O
Pressure Before Heat Exchanger 20	in H ₂ O Flow Rate Based on Pressure Gauge: 345 cfm
Pressure Magnehelic Gauge: 2,7	in H ₂ O Flow Rate Based on Vacuum Gauge: 3 () cfm
Vacuum Magnehelic Gauge: >2	in H ₂ O
Vacuum Gauge After Manifold: \ 25	in Hg
EXTRACTION WELL VACUUM GAUGE READINGS	* *************************************
EW -1:	\ in Hg Vaccum Gauge Reading Notes:
EW-2: in Hg EW-12:	n Hg
EW-3: in Hg EW-13:	in Hg
EW-4:	1. S in Hg
EW-15: EW-15:	in Hg
EW-6:	in Hg
EW-7:	in Hg
EW-8:	2 in H2O 2 · 5 in H2O
EW-9: in Hg SS-2:	
EW-10: \S in Hg SS-3;	2 in H2O
Background Outside SVE Shed: 7 ppm	Detector Tube Readings
Background Inside SVE Shed: 7 ppm Pre Carbon Discharge: ppm	
Mid Carbon Discharge: 0,9 ppm	Mid Carbon YES NO ppm Post Carbon YES NO ppm
Post Carbon Discharge: ppm	
	Essesses I
Deplicate sample collected from Tedlar long samples sent to 1	n Pre-Carbon location
Tedlar bay samples sent to	dtH for GL Steening.

Date of Analysis: 5/3/2012 ICAL Curve Date: 4/12/2012

Client: File No:

GM Lockport 36795-010

EHS

Sample Type: BLDG-10 SVE/SSD

MGN

Bampi	e identification	CASRN	Target Compound	Cat Ret. Timo (min.)	Ret. Time (min.)	Det. Reap. (Area Cts.)	Conc.	REMARKS
		74-82-8	melhane	1,800	1,800 1,930	30,4	6.20 ppmV	
		75-01-4	vinyl chloride			1 1	ND ppmV	
		75-35-4	1,1-dichloroethene	5,500		1 1	ND ppmV	
		75-09-2	methylene chloride				ND ppmV ND ppmV	
ID:	Pre-Carbon	158-60-5	trans 1,2-dichloroethene	7,500				
Date:	5/2/2012	75-34-3	1,1-dichloroethane	9,000		1 1	ND ppmV	
Time:		1634-04-4	MTBE				NO ppmV	
		78-93-3	2-bulanone (MEK)				NO ppmV	
		156-59-2	cis 1,2-dichloroethene	11,300			ND ppmV	
		67-68-3	chloroform	13.000		1 1	NO ppmV	
		71-55-6	1,1,1-trichloroethane	13,500			NO ppmV	
		71-43-2	benzene	14,500			NO ppmV	
		78-87-5	1,2-dichloropropane			1 1	ND ppmV	
		79-01-6	trichloroethene	16,800			ND ppmV	
		108-88-3	loluene	21,500		1 1	ND ppmV	
		127-18-4	tetrachloroethene	23,200	23,490	51.1	3.36 ppmV	
		108-90-7	chlorobenzene	F 8		~	ND ppmV	
		100-41-4	elhylbenzene	26,500		1 1	ND ppmV	
		108-38-3/106-42-3	m/p-xyleлe	26.900			ND ppmV	
		95-47-6	o-xylene	28.200			ND ppmV	
			Unknown TPH				ND pomV	
			total volatiles			Bi	9.6 ppmV	

Sampl	e identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8 75-01-4	melhane vinyl chloride	1,800	1.935	29.7	6.06 ppmV ND ppmV	
		75-35-4	1,1-dichloroethene	5,500			ND ppmV	
		75-09-2	methylene chloride			1 1	ND ppmV	
ID:	Mid-Carbon	158-80-5	trans 1,2-dichloroethene	7,500			ND ppmV	
Date:	5/2/2012	75-34-3	1,1-dichloroethane	9,000			ND ppmV	
Time:		1634-04-4	MTBE				ND ppmV	
		78-93-3	2-butanone (MEK)			1 1	ND ppmV	
		156-59-2	cis 1,2-dichloroethene	11,300		1 1	ND ppmV	
		67-66-3	chloroform	13,000		1 1	ND ppmV	
		71-55-8	1,1,1-trichforoethane	13,500		t I	ND ppmV	
		71-43-2	benzene	14,500		1 1	ND ppmV	
		78-87-5	1,2-dichloropropane				ND ppmV	
		79-01-8	trichloroethene	16,800		1 1	ND ppmV	
		108-88-3	toluene	21,500			ND ppmV	
		127-18-4	letrachloroethene	23.200		I I	ND ppmV	
		108-90-7	chlorobenzene			1 1	ND ppmV	
		100-41-4	ethylbenzene	26,500		1 1	ND ppmV	
		108-38-3/106-42-3	m/p-xylene	26,900		ı I	ND ppmV	
		95-47-8	o-xylene	28,200		1	ND ppmV	
			Unknown TPH				ND ppmV	
			total volatiles			30	6.1 ppmV	

Samp	le identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret Time (mln.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		/4-82-8	methane	1,800	1.915	25.6	5,23 ppmV	
		75-01-4	vinyl chloride				ND ppmV	
		75-35-4	1,1-dichloroethene	5.500			ND ppmV	
		75-09-2	methylene chloride			1 1	ND ppmV	
ID:	Post-Carbon	156-60-5	trans 1,2-dichloroethene	7.500			ND ppmV	
Date:	5/2/2012	75-34-3	1,1-dichloroethane	9,000		1 1	ND ppmV	
Time:		1634-04-4	MTBE			1 1	ND ppmV	
		78-93-3	2-bulanone (MEK)			1 1	ND ppmV	
		156-59-2	cis 1,2-dichloroethene	11,300			ND ppmV	
		67-66-3	chtoroform	13,000		1 1	ND ppmV	
		71-55-6	1,1,1-trichloroethane	13,500		1 1	ND ppmV	
		71-43-2	benzene	14,500		1 1	ND ppmV	
		78-87-5	1,2-dichloropropane			1 1	ND ppmV	
		79-01-6	trichforoethene	16,800		1 1	ND ppmV	
		108-88-3	toluene	21.500			ND ppmV	
		127-18-4	tetrachforoethene	23.200		1 1	ND ppmV	
		108-90-7	chlorobenzene			1 1	ND ppmV	
		100-41-4	ethylbenzene	26.500			ND ppmV	
		108-38-3/106-42-3	m/p-xylene	28,900		1 1	ND ppmV	
		95-47-6	o-xylene	28,200		1 1	ND ppmV	
			Unknown TPH				ND ppmV	
			total volatiles			26	5.2 ppmV	

Sample identification		CABRN	Target Compound	Cal. Ret. Time (mln.)	Ret Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	methane	1,800	1.907	35.2	7.19	ppmV	
		75-01-4	vinyl chtoride				ND	ppmV	
		75-35-4	1,1-dichloroethene	5.500			ND	ppmV	
		75-09-2	methylene chloride				ND	ppmV	
ID:	Duplicate	158-60-5	trans 1,2-dichloroothene	7,500			ND	ppmV	
Date:	5/2/2012	75-34-3	1,1-dichloroethane	9.000			ND	ppmV	
lme:		1634-04-4	MTBE			l 1	ND	ppmV	
		78-93-3	2-bulanone (MEK)				ND	ppmV	
		156-59-2	cis 1,2-dichloroetheле	11,300		l 1	ND	ppmV	
		67-66-3	chloroform	13.000			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	13,500		l	ND	ppmV	
		71-43-2	benzene	14.500		l 1	ND	ppmV	
		78-87-5	1,2-dichloropropane			l 1	ND	ppmV	
		79-01-6	trichloroelhene	16.800		l 1	ND	ppmV	
		108-88-3	loluene	21 500			ND	ppmV	
		127-18-4	tetrachloroethene	23.200	23.369	62.0	4.13	ppmV	
		108-90-7	chlorobenzene			1 I	ND	ppmV	
		100-41-4	ethylbenzene	26 500		1 I	ND	ppm∨	
		108-38-3/106-42-3	m/p-xylene	26.900		l 1	ND	ppmV	
		95-47-6	о-хујеле	28 200			ND	ppmV	
			Unknown TPH				ND	ppmV	
			total volatiles			98	11.3	ppmV :	

OPERATION, MAINTENANCE AND MONITORING PLAN SVE/SSD SYSTEM GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

uris Boson 1110 Time On-Site: \000 Time Off-Site: Name: SVE Blower Run Time: 25528 60 Date: hours VDF: hertz SYSTEM STATUS YES NO If no: SVE System Operating: Alarm lights off: YES NO If no: YES NO) If Yes: Autodialer Alarm On: Postion of Swing Panel HOA Switches: ON OFF SVE Blower Switch OFF Control Power Switch **HAND** OFF OFF HAND **AUTO** Heat Exchanger Switch HAND M/S Effluent Pump Switch YES) Heat Exchanger Operating NO If no: SVE System appear to be operating YES NO If no: properly? Moisture Separator Tank Level: Empty gals 1/4 Full 1/2 Full 3/4 Full Full Volume Tranfered: SYSTEM MONITORING READINGS 4.25 Vacuum Gauge Pre-Inline Filter: in Hg System Monitoring Notes: Vacuum Gauge Post-Inline Filter: 4.50 in Hg ۰F Temperature on Discharge Silencer: ILD ۰F Temperature after Heat Exchanger: 81 Pressure After Heat Exchanger in H₂O 12 20 332 in H₂O Flow Rate Based on Pressure Gauge: Pressure Before Heat Exchanger cfm 7.6 310 in H₂O Flow Rate Based on Vacuum Gauge: cfm Pressure Magnehelic Gauge: 72 in H₂O Vacuum Magnehelic Gauge: 1.5 in Hg Vacuum Gauge After Manifold: EXTRACTION WELL VACUUM GAUGE READINGS EW-11: 1.25 Vaccum Gauge Reading Notes: EW -1: 41 in Hg in Hg 1.25 EW-2: in Hg EW-12: in Hg EW-3: in Hg EW-13: in Hg ۷(1.5 EW-4: in Hg EW-14: in Hg EW-15: EW-5: 4 in Hg in Hg EW-16: EW-6: اے in Hg ١ in Hg <1 EW-17: EW-7: in Hg 41 in Hg EW-8: < 1 in Hg SS-1: in H2O EW-9: SS-2: 2.5 in H2O 1.25 in Hg 1.5 2.5 EW-10: in Hg SS-3: in H2C AIR FLOW FIELD SCREENING Background Outside SVE Shed: ppm **Detector Tube Readings** YES NO 0.3 Pre Carbon Background Inside SVE Shed: ppm ppm 3.5 YES Mid Carbon Pre Carbon Discharge: ppm ppm 0.2 Post Carbon YES Mid Carbon Discharge: ppm ppm 0.1 Post Carbon Discharge: ppm Additional Notes: Deplicate saughe collected from Mid-Carbon location. Souples sent to H+A for GC Screen.

Date of Analysis: 6/1/2012 ICAL Curve Date: 4/12/2012

Client: File No:

GMCH Lockport 36795-010

Sample Type: BLDG-10 SVE/SSD

DAS

MGN

Sample Identification		Sample Identification		GASRN	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Resp. (Area Cts.)	Co	no.	REMARKS
		74-82-8	methane	5.024	4.784	14.8	3,03	ppmV				
		75-01-4	vinyl chloride	8_072			ND	ppmV				
		75-35-4	1,1-dichloroethene	15_150			ND	ppmV				
		75-09-2	methylene chloride	15,444		1 1	ND	ppmV				
ID:	Pre-Carbon	156-60-5	trans 1,2-dichloroethene	17,746		1 1	ND	ppmV				
Date:	5/31/2012	75-34-3	1,1-dichloroelhane	18,185		1 1	ND	ppmV				
Time:		1634-04-4	MTBE	70		1 1	ND	ppmV				
		78-93-3	2-butanone (MEK)			1 1	ND	ppmV				
		156-59-2	cis 1,2-dichloroethene	19,883			ND	ppmV				
		67-66-3	chloroform	20,437		1 1	ND	Vmqq				
		71-55-6	1,1,1-trichforoethane	22,281		1 1	ND	ppmV				
		71-43-2	benzene	23,071		1 1	ND	Vmqq				
		78-87-5	1,2-dichloropropane			1 1	ND	ppmV				
		79-01-6	lrichloroelhene	24,775			ND	ppmV				
		108-88-3	toluene	27,755	27,211	1.4	0.03	ppmV				
		127-18-4	tetrachloroethene	29,631	29,580	81.4	5.35	ppmV				
		108-90-7	chlorobenzene			1	ND	ppmV				
		100-41-4	elhybenzene	31,355		1 1	ND	ppmV				
		108-38-3/106-42-3	m/p-xylene	31.622		1 1	ND	ppmV				
		95-47-6	o-xylene	32,497		1	ND	Vmqq				
			Unknown TPH			5.0	0_17	ppmV				
			total voletiles			103	8.6	Vmnn				

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8 75-01-4 75-35-4	vinyl chloride 8.072	4.841	3.5	0.72 ppmV ND ppmV		
		75-35-4	1,1-dichloroelhene	15.150		1 1	ND ppmV	1
		75-09-2	methylene chloride	15,444		1 1	ND ppmV	1
ID:	Mid-Carbon	158-80-5	trans 1,2-dichloroethene	17,746			ND ppmV	ı
Date:	5/31/2012	75-34-3	1,1-dichloroelhane	18,185		1	ND ppmV	ı
Time:		1634-04-4	MTBE			1: 1	ND ppmV	I
		78-93-3	2-bulanone (MEK)			1 1	ND ppmV	1
		156-59-2	cis 1,2-dichloroethene	19,883		1 1	ND ppmV	ı
		67-66-3	chloroform	20,437		1 1	ND ppmV	ı
		71-55-6	1,1,1-trichloroethane	22,281		1 1	ND ppmV	I
		71-43-2	benzene	23,071			ND ppmV	ı
		78-87-5	1,2-dichlaropropane			i I	ND ppm∨	ı
		79-01-6	trichbroethene	24,775		1 1	ND ppmV	ı
		108-88-3	loluene	27,755		1 1	ND ppmV	ı
		127-18-4	letrachforcethene	29 631		1 1	ND ppmV	I
		108-90-7	chlorobenzene				ND ppmV	1
		100-41-4	elhylbenzene	31,355			ND ppmV	1
		108-38-3/106-42-3	m/p-xylene	31,622			ND ppmV	ı
		95-47-8	o-xylene	32,497		25/2	ND ppmV	1
			Unknown TPH			5.0	0.17 ppmV	
			total volatiles			0	0.0 ppmV	

Sample Identification		CASRN	CASRN	CASRN	Target Compound	Cal Ret Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Cor	na.	REMARKS
		74-62-0	mainane	1.800	4.828	15.4	3.15	ppmV			
		75-01-4	vinyl chloride				ND	ppmV			
		75-35-4	1,1-dichloraethene	5.500		1 1	ND	ppmV			
		75-09-2	methylene chloride			1 1	ND	ppmV			
ID:	Post-Carbon	156-60-5	trans 1,2-dichloroethene	7,500			ND	ppmV			
Date:	5/31/2012	75-34-3	1,1-dichloroethane	9,000		1 1	ND	ppmV			
Tima:		1634-04-4	MTBE			1 1	ND	Vmqq			
		78-93-3	2-butanone (MEK)			1 1	ND	ppmV			
		156-59-2	cis 1,2-dichloroelhene	11:300		1 1	ND	ppmV			
		67-66-3	chloroform	13.000		1 1	ND	ppmV			
		71-55-8	1,1,1-trichloroethane	13,500		1 1	ND	ppmV			
		71-43-2	benzene	14,500		1 1	ND	ppmV			
		78-87-5	1,2-dichloropropane			1 1	ND	ppm∨			
		79-01-6	trichloroethene	16,800		1 1	ND	ppmV			
		108-88-3	loluene	21,500		1 1	ND	ppm∨			
		127-18-4	letrachloroethene	23,200			ND	ppm∨			
		108-90-7	chlorobenzene			1 1	ND	ppmV			
		100-41-4	ethylbenzene	28 500			ND	ppmV			
		108-38-3/106-42-3	m/p-xylene	26,900			ND	ppmV			
		95-47-6	o-xylene	28,200		1 1	ND	ppmV			
			Unknown TPH			15	ND 3.2	Vmqq			

Bampk	dentification	ication CASRN		Target Compound	Cai. Ret. Time (min.)	Ret Time (min.)	Resp. (Area Cts.)	Co	no	REMARKS
		74-62-6	meinane	1,800	4.836	2.9	0.59	ppmV		
		75-01-4	vinyl chloride				ND	ppmV		
		75-35-4	1,1-dichloroethene	5.500		1 1	ND	ppmV		
		75-09-2	methylene chloride	ı I			ND	ppmV		
ID:	Duplicate	156-60-5	trans 1,2-dichloroethene	7,500			ND	ppmV		
Date:	5/31/2012	75-34-3	1,1-dichloroelhane	9.000			ND	ppmV		
Time:		1634-04-4	MTBE			1 1	ND	ppmV		
		78-93-3	2-bulanone (MEK)			1 1	ND	ppmV		
		156-59-2	cis 1,2-dichloroethene	11,300			ND	ppmV		
		67-66-3	chloroform	13 000			ND	ppmV		
		71-55-6	1,1,1-irichforoethane	13.500			ND	ppmV		
		71-43-2	benzene	14.500			ND	ppmV		
		78-87-5	1,2-dichloropropane				ND	ppmV		
		79-01-6	trichtoroethene	16.800			ND	ppmV		
		108-88-3	loluene	21.500			ND	ppmV		
		127-18-4	tetrachtoroethene	23 200			ND	ppmV		
		108-90-7	chlorobenzene			1 1	ND	ppmV		
		100-41-4	elhylbenzene	26,500		1 1	ND	ppm∨		
		108-38-3/106-42-3	m/p-xylene	28 900		1 1	ND	ppmV		
		95-47-6	o-xylene	28 200		1 1	ND	ppmV		
			Unknown TPH				ND	ppmV pomV		

OPERATION, MAINTENANCE AND MONITORING PLAN SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chris Baron		Time	On-Site: (130	Tin	ne Off-Site:	1235	
Date: 7\11\12		SVE	Blower Run Time:	26655	hours VE	OF: 60	hertz
SYSTEM STATUS							
SVE System Operating:	(YES) NO	If no:					
Alarm lights off:	(YES) NO	If no:					T
Autodialer Alarm On:	YES (NO)	If Yes:					
	Posti	on of Swing F	Panel HOA Switches	:		0	
Control Power Switch ON	OFF	SVE Blower	Switch HAN	ND (OFF	(AUTO)	
M/S Effluent Pump Switch HANI	OFF AUTO	Heat Exchan	ger Switch HAN	ND OF	F	(AUTO)	
Heat Exchanger Operating	(YES) NO	If no:					
SVE System appear to be operating properly?	YES NO	If no:				1	
Moisture Separator Tank Level: Empt	1/4 Full	1/2 Fu	ıll 3/4 Full	Full	Volume T	ranfered:	gals
SYSTEM MONITORING READINGS							
Vacuum Gauge Pre-Inline Filter:	4,0	in Hg	System Monitoring	Notes:			
Vacuum Gauge Post-Inline Filter:	4.5	in Hg					
Temperature on Discharge Silencer:	120	°F					
Temperature after Heat Exchanger:	95	°F					
Pressure After Heat Exchanger	12	in H ₂ O			_		
Pressure Before Heat Exchanger	20	in H ₂ O	Flow Rate Based or	n Pressure Gaug	ge: "335"	cfm	
Pressure Magnehelic Gauge:	2.6	in H ₂ O	Flow Rate Based or	n Vacuum Gaug	e: 310	cfm	
Vacuum Magnehelic Gauge:	72	in H₂O					
Vacuum Gauge After Manifold:	1.25	in Hg					
EXTRACTION WELL VACUUM GAUG	E READINGS						
EW -1:	EW-11:	ĺ	in Hg Vac	cum Gauge Re	ading Notes:		
EW-2: (in Hg	EW-12:	1	in Hg				
EW-3: \ in Hg	EW-13:	(in Hg				
EW-4: \angle in Hg	EW-14:	1.25	in Hg				
EW-5: < \ in Hg	EW-15:	i .	in Hg				
EW-6: ∠ \ in Hg	EW-16:	(in Hg				
EW-7: < \ in Hg	EW-17:	د/	in Hg				
EW-8: ム\ in Hg	SS-1:	2	in H2O				
EW-9: \.75 in Hg	SS-2:	3	in H2O				
EW-10: \SO in Hg	SS-3:	3	in H2O				
AIR FLOW FIELD SCREENING							
Background Outside SVE Shed: 🐧	4 ppm		Detect	or Tube Readin	gs		
Background Inside SVE Shed:	A ppm		Pre Carbon YE	s (NO)_	ppm		
Pre Carbon Discharge:	ppm		Mid Carbon YE	S NO	ppm		
Mid Carbon Discharge: 3	9 ppm		Post Carbon YE	s (NO)	ppm		
Post Carbon Discharge: O	ppm						
Additional Notes:	WA 1 C	1	- 1.				
Orphicade sample to	in Mila-C	arbon	sauple.				
Additional Notes: Deplicate sample for Sangles Sent to Hr	A for G	C Sche	ening.				
							- 1

Date of Analysis: 7/18/2012 ICAL Curve Date: 4/12/2012

Client: File No:

Sample Type:

GMCH Lockport 36795-010 BLDG-10 SVE/SSD

MGN

DMC

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	methane	5,024			ND	ppmV	
		75-01-4	vinyl chloride	8.072			ND	ppmV	
		75-35-4	1,1-dichloroethene	15_150		1 1	ND	ppmV	
ID:	Pre-Carbon	75-09-2	methylene chloride	15_444		1 1	ND	ppmV	
Date:	7/17/2012	156-60-5	trans 1,2-dichloroethene	17.746		1 1	ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18_185		1 1	ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883		1 1	ND	ppmV	
		67-66-3	chloroform	20_437		1 1	ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22,281		1 1	ND	ppmV	
		71-43-2	benzene	23.071		1 1	ND	ppmV	
		79-01-6	trichloroelhene	24_775		1 1	ND	ppmV	
		108-88-3	toluene	27.755		1 1	ND	ppmV	
		127-18-4	tetrachloroethene	29,631	29_652	53,3827	8,53	ppmV	
		100-41-4	elhylbenzene	31,355		1 1	ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31,622		1 1	ND	ppmV	
		95-47-6	o-xylene	32 497		1 1	ND	ppmV	
			Unknown TPH	8 4			ND	ppmV	
			total volatiles			53	8.5	Vmaa	

Sample Identification			Target CASRN Compound		Ret. Time (mln.)	Det. Resp. (Area Cts.)	Conc.		REMARKS
		74-82-8	melhane	5.024			ND	ppmV	
		75-01-4	vinyl chloride	8.072			ND	ppmV	
		75-35-4	1,1-dichloroethene	15.150			ND	ppmV	
ID:	Mid-Carbon	75-09-2	methylene chloride	15,444			ND	ppmV	
Date:	7/17/2012	156-60-5	trans 1,2-dichloroethene	17.746		1 1	ND	₽pmV	
Time:		75-34-3	1,1-dichloroethane	18_185		1 1	ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883		1 1	ND	ppmV	
		67-66-3	chloroform	20_437			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22 281		1 1	ND	ppmV	
		71-43-2	benzene	23.071		1 1	ND	ppmV	
		79-01-6	trichloroethene	24.775	24,715	7,7601	1.10	ppmV	
		108-88-3	toluene	27.755			ND	ppmV	
		127-18-4	tetrachloroethene	29_631	29,575	12,1185	1,94	ppmV	
		100-41-4	elhylbenzene	31,355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31_622		1 1	ND	ppmV	
		95-47-6	o-xylene	32.497		ı I	ND	ppmV	
			Unknown TPH				ND	ppmV	
			total volatiles			20	3.0	ppmV	

Sample Identification		Sample Identification		tification CASRN	Target Compound	Cal. Ret Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Con	IC.	REMARKS
		74-82-8	melhane	5.024			ND	ppmV			
		75-01-4	vinyl chloride	8,072			ND	ppmV			
		75-35-4	1,1-dichloroethene	15_150			ND	ppmV			
ID:	Post-Carbon	75-09-2	methylene chloride	15.444		1 1	ND	ppmV			
Date:	7/17/2012	156-60-5	trans 1,2-dichloroethene	17.746		1 1	ND	ppmV			
Time:		75-34-3	1,1-dichloroethane	18_185		1 1	ND	ppmV			
		156-59-2	cis 1,2-dichloroethene	19,883		1 1	ND	ppmV			
		67-66-3	chloroform	20 437		1 1	ND	ppmV			
		71-55-6	1,1,1-trichtoroethane	22,281			ND	ppmV			
		71-43-2	benzene	23,071		1	ND	ppmV			
		79-01-6	trichloroethene	24.775		1	ND	ppmV			
		108-88-3	toluene	27.755		1 1	ND	ppmV			
		127-18-4	tetrachloroethene	29.631		1 1	ND	ppmV			
		100-41-4	elhyibenzene	31.355		I I	ND	ppmV			
		108-38-3/106-42-3	m/p-xylene	31.622			ND	ppmV			
		95-47-6	o-xylene	32.497		l I	ND	ppmV			
			Unknown TPH				ND	ppmV			
			total volatiles			0	0.0	Vmqq			

Sample	e identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	Conc.	
		74-82-8		5.024			ND	ppmV	
		75-01-4	vinyl chlaride	8,072		1 1	ND	ppmV	
		75-35-4	1,1-dichloroethene	15.150		l 1	ND	ppmV	
ID:	Duplicate	75-09-2	methylene chloride	15,444		1 1	ND	ppmV	
Date:	7/17/2012	156-60-5	trans 1,2-dichloroethene	17.746		l 1	ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18.185		l 1	ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883		l 1	ND	ppmV	
		67-66-3	chloroform	20.437		1 1	ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22,281		l 1	ND	ppmV	
		71-43-2	benzene	23.071		l 1	ND	Vmqq	
		79-01-6	trichloroethene	24.775	24,736	0.8932	0.13	ppmV	
		108-88-3	toluene	27.755		l 1	ND	ppmV	
		127-18-4	tetrachloroethene	29.631	29.604	1.3900	0.22	ppmV	
		100-41-4	ethylbenzene	31.355	~		ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31.622		1 1	ND	ppm∨	
		95-47-6	o-xylene	32,497			ND	ppmV	
			Unknown TPH	U			ND	Vmqq	
			total volatiles			2	0.3	ppmV	

OPERATION, MAINTENANCE AND MONITORING PLAN SVE/SSD SYSTEM GM COMPONENTS HOLDINGS, LLC

LOCKPORT, NEW YORK

Name: Chris Boron	Time On-Site: USD Time Off-Site:
Date: 8(23/12	SVE Blower Run Time: 27543 hours VDF: 60 hertz
SYSTEM STATUS	
SVE System Operating: YES NO	If no:
Alarm lights off: YES NO	If no:
Autodialer Alarm On: YES (NO	If Yes:
Po	stion of Swing Panel HOA Switches:
Control Power Switch ON OF	F SVE Blower Switch HAND OFF
M/S Effluent Pump Switch HAND OFF AUT	O Heat Exchanger Switch HAND OFF AUTO
Heat Exchanger Operating (ES) NC	If no:
SVE System appear to be operating NO properly?	If no:
Moisture Separator Tank Level: Empty 1/4 F	ull 1/2 Full 3/4 Full Full Volume Tranfered: 🌘 gals
SYSTEM MONITORING READINGS	
Vacuum Gauge Pre-Inline Filter:	in Hg System Monitoring Notes:
Vacuum Gauge Post-Inline Filter: 4,5	in Hg
Temperature on Discharge Silencer: (20)	°F
Temperature after Heat Exchanger: 90	*F
Pressure After Heat Exchanger 1	in H ₂ O
Pressure Before Heat Exchanger 25	in H ₂ O Flow Rate Based on Pressure Gauge: 333 cfm
Pressure Magnehelic Gauge: 2.6	in H₂O Flow Rate Based on Vacuum Gauge: 3 t O cfm
Vacuum Magnehelic Gauge: > 2	in H ₂ O
Vacuum Gauge After Manifold: \(\bar{\chi}\), \(\bar{\chi}\)	in Hg
EXTRACTION WELL VACUUM GAUGE READINGS	Juliana
EW-1: C\ in Hg EW-1	1: Notes:
EW-2: (in Hg EW-12	2: 🚶 in Hg
EW-3: (,25 in Hg EW-13	
EW-4: منه in Hg	4: 1.25 in Hg
EW-5:	5: \ in Hg
EW-6:	6: \ in Hg
EW-7: in Hg EW-1:	
EW-8: < (in Hg SS-1:	2 in H2O
EW-9: in Hg SS-2:	
EW-10: (.5 in Hg SS-3:	3 in H2O
AIR FLOW FIELD SCREENING	
Background Outside SVE Shed: 0,5 ppm	Detector Tube Readings
Background Inside SVE Shed: 6 ppm	Pre Carbon (YES) NO S ppm
Pre Carbon Discharge: 6.2 ppm	Mid Carbon (YES) NO 3 ppm
Mid Carbon Discharge: 3.9 ppm	Post Carbon YES (NO)ppm
Post Carbon Discharge: ppm	
Additional Notes:	
Deplicate sample collected for Somples sent to H+A for G	on Wid-Larbor location.
Sorples sent to H+A for G	al Screening.

Date of Analysis: 8/24/2012 ICAL Curve Date: 4/12/2012

Client: File No: GMCH Lockport 36795-010

Sample Type: BLDG-10 SVE/SSD EHS

MGN

Samp	le Identification	CASRN	Target Compound	Cal. Ret, Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	melhane	5,024			ND	ppmV	
		75-01-4	vinyl chloride	8,072			ND	ppmV	
		75-35-4	1,1-dichloroethene	15.150			ND	ppmV	
ID:	Pre-Carbon	75-09-2	methylene chloride	15,444			ND	Vmqq	
Date:	8/23/2012	156-60-5	trans 1,2-dichloroethene	17,746			ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18.185			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND	ppm∀	
Temp =	°F	67-66-3	chloroform	20,437			ND	ppmV	
Flow =	280 SCFM	71-55-6	1,1,1-trichloroethane	22.281			ND	ppmV	
		71-43-2	benzene	23.071			ND	ppmV	
		79-01-6	trichloroethene	24,775	24.794	1,2447	0,18	ppmV	
		108-88-3	toluene	27.755	27,785	1,5189	0.04	ppmV	
		127-18-4	tetrachloroethene	29.631	29,667	114,6447	18.32	ppmV	
		100-41-4	ethylbenzene	31,355			ND	ppm∨	
		108-38-3/106-42-3	m/p-xylene	31,622			ND	ppmV	
		95-47-6	o-xylene	32,497			ND	ppmV	
			Unknown TPH	29			ND	ppmV	
			total volatiles			117	18.5	Vmag	

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.		REMARKS
		74-82-8	melhane	5,024			ND	ppmV	
		75-01-4	vinyl chloride	8.072			ND	ppmV	
		75-35-4	1,1-dichloroethene	15.150			ND	ppmV	
ID:	Mid-Carbon	75-09-2	methylene chloride	15,444			ND	Vmqq	
Date:	8/23/2012	156-60-5	trans 1,2-dichloroethene	17.746			ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18.185			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND	ppmV	
		67-66-3	chloroform	20_437			ND	Vmqq	
		71-55-6	1,1,1-trichloroelhane	22 281			ND	ppmV	
		71-43-2	benzene	23.071			ND	Vmqq	
		79-01-6	trichloroethene	24,775	24.797	2,6547	0.38	ppmV	
		108-88-3	toluene	27-755			ND	ppmV	
		127-18-4	tetrachloroethene	29,631	29,655	40,8321	6.52	ppmV	
		100-41-4	elhylbenzene	31.355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31_622			ND	ppmV	
		95-47-6	o-xylene	32.497			ND	ppmV	
			Unknown TPH				ND	Vmqq	
			total volatiles			43	6.9	ppmV	

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	melhane	5.024			ND	ppmV	
		75-01-4	vinyl chloride	8,072			ND	ppmV	
		75-35-4	1,1-dichloroethene	15.150			ND	ppmV	
ID:	Mid-Carbon Dup	75-09-2	melhylene chloride	15,444			ND	ppmV	
Date:	8/23/2012	156-60-5	trans 1,2-dichloroethene	17.746			ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND	ppm∨	
		156-59-2	cis 1,2-dichloroethene	19,883			ND	ppmV	
		67-66-3	chloroform	20.437			ND	ppm∨	
		71-55-6	1,1,1-trichloroethane	22.281		1	ND	Vmqq	
		71-43-2	benzene	23.071			ND	ppmV	
		79-01-6	trichloroethene	24.775	24.819	2,7704	0.39	ppmV	
		108-88-3	toluene	27.755			ND	ppmV	
		127-18-4	tetrachloroethene	29.631	29.685	43,4097	6.94	ppmV	
		100-41-4	ethylbenzene	31,355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31.622			ND	ppmV	
		95-47-6	o-xylene	32,497			ND	ppmV	
			Unknown TPH				ND	Vmqq	
			total volatiles			46	7.3	Vmqq	

Sample Identification		CASRN	CASRN	Target Compound	Cai. Ret. Time (min.)	Ret. Time (min.)	Pet. Resp. (Area Cts.)	Con	c.	REMARKS
		74-82-8	melhane	5.024			ND	ppmV		
		75-01-4	vinyl chloride	8.072		l I	ND	ppmV		
		75-35-4	1,1-dichloroethene	15.150		l I	ND	ppmV		
ID:	Post-Carbon	75-09-2	methylene chloride	15.444		l I	ND	ppmV		
Date:	8/23/2012	156-60-5	trans 1,2-dichloroethene	17,746		1 1	ND	ppmV		
Time:		75-34-3	1,1-dichloroethane	18 185		1 1	ND	ppmV		
		156-59-2	cis 1,2-dichloroethene	19.883		l I	ND	ppmV		
		67-66-3	chloroform	20.437		1 1	ND	ppmV		
		71-55-6	1,1,1-trichtoroethane	22.281		1 1	ND	ppmV		
		71-43-2	benzene	23.071		1 1	ND	ppmV		
		79-01-6	trichloroethene	24.775			ND	ppmV		
		108-88-3	toluene	27-755		l I	ND	ppmV		
		127-18-4	tetrachloroethene	29 631		1 1	ND	ppmV		
		100-41-4	ethylbenzene	31 355		1 1	ND	ppmV		
		108-38-3/106-42-3	m/p-xylene	31.622		1 1	ND	ppmV		
		95-47-6	o-xylene	32-497		1 1	ND	ppmV		
			Unknown TPH				ND	Vmqq		
			total volatiles			0	0.0	ppmV		

SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chris Bown		Time	On-Site: \OOD	Time	Off-Site:	(100	
Date: 9/18/12		- 51	Blower Run Time: 25		ours VDF	1 ~	hert
SYSTEM STATUS					415	<u> </u>	1707
SVE System Operating:	YÉS) NO	If no:					
Alarm lights off:	(YES) NO	If no:					
Autodialer Alarm On:	YES (NO)	If Yes:					
	Posti	on of Swing P	anel HOA Switches:			$\overline{}$	
Control Power Switch		SVE Blower S		OF.	F	AUTO	
M/S Effluent Pump Switch HAND	~	Heat Exchang	ger Switch HAND	OFF		(AUTO)	
Heat Exchanger Operating	YES NO	If no:					
SVE System appear to be operating properly?	YES NO	If no:					
Moisture Separator Tank Level: Empty) 1/4 Full	1/2 Ful	ll 3/4 Full	Full	Volume Tra	anfered:) gals
SYSTEM MONITORING READINGS							
Vacuum Gauge Pre-Inline Filter:	4	in Hg	System Monitoring N	lotes:			
Vacuum Gauge Post-Inline Filter:	5	in Hg					
Temperature on Discharge Silencer:	120	°F					
Temperature after Heat Exchanger:	90	°F					
Pressure After Heat Exchanger	18	in H₂O					
Pressure Before Heat Exchanger	24	in H₂O	Flow Rate Based on P	ressure Gauge:	333	cfm	
Pressure Magnehelic Gauge:	2.5	in H₂O	Flow Rate Based on V	/acuum Gauge:	308	cfm	
Vacuum Magnehelic Gauge:	>2	in H₂O					
Vacuum Gauge After Manifold:	1	in Hg					
EXTRACTION WELL VACUUM GAUGE	READINGS						
EW -1: ∠\ in Hg	EW-11:	ì	in Hg Vaccu	m Gauge Read	ing Notes:		
EW-2: \ in Hg	EW-12:	1	in Hg				
EW-3: in Hg	EW-13:		in Hg				
EW-4: ᠘ in Hg	EW-14:	1.25	in Hg				
EW-5: C in Hg	EW-15:	1	in Hg				
EW-6: ∠(in Hg	EW-16:	1	in Hg				
EW-7: ∠\ in Hg	EW-17:		in Hg				
EW-8: 🚄 in Hg	SS-1:		in H2O				
EW-9: (in Hg	SS-2:		in H2O				
EW-10: (.25 in Hg	SS-3:	2.5	in H2O				
AIR FLOW FIELD SCREENING		V-manifestation of the control					
Background Outside SVE Shed: 0.3				Tube Readings	_		
Background Inside SVE Shed: 0.5			Pre Carbon YES	(NO)	ppm		
Pre Carbon Discharge:	ppm		Mid Carbon YES	(NO)	ppm		
Mid Carbon Discharge:	ppm		Post Carbon YES	(NO)	ppm		
Post Carbon Discharge:	ppm			Us Ex			
Additional Notes:	Pre-(1 med-	water				
Deplicate sample on	~ 100		013-101-1				
Additional Notes: Deplicate sample for Soundes sent to t	14 A for	GLS	ereen.				

Date of Analysis: 9/19/2012 ICAL Curve Date: 4/12/2012

Client: File No: GMCH Lockport 36795-010

Sample Type: BLDG-10 SVE/SSD

MGN

DMC

Sampi	le identification	CASRN	Target Compound	Cal. Ret. Time (min.) 5,024	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.		REMARKS
		74-82-8	melhane				ND	ppmV	
		75-01-4	vinyl chloride	8,072		1 1	ND	ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND	ppmV	
ID:	Pre-Carbon	75-09-2	methylene chloride	15,444		l 1	ND	ppm∀	
Date:	9/18/2012	156-60-5	trans 1,2-dichloroethene	17,746			ND	ppm∀	
Time:		75-34-3	1,1-dichloroethane	18,185		1 1	ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND	Vmqq	
		67-66-3	chloroform	20,437			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22 281			ND	ppmV	
		71-43-2	benzene	23,071			ND	ppmV	
		79-01-6	trichloroethene	24,775	24_890	1,2002	0.17	ppmV	
		108-88-3	toluene	27.755	27.866	1.4338	0.04	ppmV	
		127-18-4	telrachloroethene	29,631	29,734	98,2259	15.69	ppmV	
		100-41-4	elhylbenzene	31,355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31,622		ı I	ND	ppmV	
		95-47-6	o-xylene	32 497		(I	ND	ppmV	
			Unknown TPH				ND	ppmV	
,			total volatiles			101	15.9	ppmV	Ť

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.		REMARKS							
		74-82-8	74-82-8	74-82-8	74-82-8	74-82-8			74-82-8	methane	5.024		- X	ND	ppmV	
		75-01-4	vinyl chloride	8,072			ND	ppmV								
		75-35-4	1,1-dichloroethene	15,150			ND	ppmV								
ID:	Pre-Carbon DUP	75-09-2	methylene chloride	15,444			ND	ppm∨								
Date:	9/18/2012	156-60-5	trans 1,2-dichloroethene	17,746			ND	ppmV								
Time:		75-34-3	1,1-dichloroethane	18,185			ND	ppmV								
		156-59-2	cis 1,2-dichloroethene	19,883			ND	ppmV								
		67-66-3	chloroform	20.437			ND	ppmV								
		71-55-6	1,1,1-trichloroethane	22 281		1 1	ND	ppmV								
		71-43-2	benzene	23,071			ND	ppmV								
		79-01-6	trichloroelhene	24.775	24,827	0.9546	0.14	ppmV								
		108-88-3	toluene	27.755	27,806	1.3439	0.04	ppmV								
		127-18-4	tetrachloroethene	29.631	29,682	94,6595	15,12	Vmqq								
		100-41-4	ethylbenzene	31,355			ND	ppmV								
		108-38-3/106-42-3	m/p-xylene	31.622			ND	ppmV								
		95-47-6	o-xylene	32,497			ND	ppmV								
			Unknown TPH				ND	ppm∀								
			total volatiles			97	15.3	ppmV								

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	methane	5.024			ND ppmV	
		75-01-4	vinyl chloride	8,072		1	ND ppmV	
		75-35-4	1,1-dichloroelhene	15,150			ND ppmV	
ID:	Mid-Carbon	75-09-2	methylene chloride	15,444		1 1	ND ppmV	
Date:	9/18/2012	156-60-5	trans 1,2-dichloroethene	17.746			ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18.185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883		1	ND ppmV	
		67-66-3	chloroform	20,437			ND ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND ppmV	
		71-43-2	benzene	23.071			ND ppmV	
		79-01-6	trichloroethene	24,775			ND ppmV	
		108-88-3	toluene	27.755			ND ppmV	
		127-18-4	tetrachloroethene	29,631			ND ppmV	
		100-41-4	ethylbenzene	31.355			ND ppmV	
		108-38-3/106-42-3	m/p-xylene	31,622		1 1	ND ppmV	
		95-47-6	o-xylene	32,497			ND ppmV	
			Unknown TPH				ND ppmV	
			total volatiles			Ō	0.0 ppmV	

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (mln.)	Det. Resp. (Area Cts.)	Con	10.	REMARKS
		74-82-8	methane	5.024			ND	ppmV	
		75-01-4	vinyl chloride	8.072		1 1	ND	ppmV	
		75-35-4	1,1-dichloroethene	15,150		i I	ND	ppmV	
ID:	Post-Carbon	75-09-2	methylene chloride	15,444		1 1	ND	ppmV	
Date:	9/18/2012	156-60-5	trans 1,2-dichloroethene	17.746		l 1	ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185		1 1	ND	Vmqq	
		156-59-2	cis 1,2-dichloroethene	19,883		I I	ND	ppmV	
		67-66-3	chloroform	20.437		I I	ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22,281		1 1	ND	ppmV	
		71-43-2	benzene	23.071		1 1	ND	ppmV	
		79-01-6	trichloroethene	24.775		I I	ND	ppmV	
		108-88-3	toluene	27.755		l I	ND	ppmV	
		127-18-4	tetrachloroethene	29,631		1 1	ND	ppmV	
		100-41-4	ethylbenzene	31,355		ı I	ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31.622		I I	ND	ppmV	
		95-47-6	o-xylene	32.497		ı I	ND	ppmV	
			Unknown TPH				ND	ppmV	
			total volatiles			0	0.0	ppmV	

O) EIGHTON, MAINTENANCE AND MONTONINO I EAN

SVE/SSD SYSTEM GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chris Boron		Time On-Site: 1320 Time Off-Site: 1420	
21.1.0		79.003	
SYSTEM STATUS		SVE Blower Run Time: 21,225 hours VDF: 60	hertz
SVE System Operating:	YES NO	If no:	
Alarm lights off:	YES NO	If no:	
	YES (NO)	If Yes:	
Autodialer Alarm On.			
Control Power Switch	OFF	ion of Swing Panel HOA Switches: SVE Blower Switch HAND OFF AUTO	
	\sim		
	OFF AUTO	Heat Exchanger Switch HAND OFF AUTO	
Heat Exchanger Operating SVE System appear to be operating (YES NO	If no:	
properly?	YES) NO	If no:	4
Moisture Separator Tank Level: Empty	1/4 Full	1/2 Full 3/4 Full Full Volume Tranfered: (p gals
SYSTEM MONITORING READINGS		(0.886a	
Vacuum Gauge Pre-Inline Filter:	4	in Hg System Monitoring Notes:	
Vacuum Gauge Post-Inline Filter:	2	in Hg	
Temperature on Discharge Silencer:	116	<u>°F</u>	
Temperature after Heat Exchanger:	80	<u>°F</u>	
Pressure After Heat Exchanger	18	in H ₂ O	
Pressure Before Heat Exchanger	22	in H₂O Flow Rate Based on Pressure Gauge: "℥℥℧ cfm	
Pressure Magnehelic Gauge:	2.5	in H₂O Flow Rate Based on Vacuum Gauge: 30% cfm	
Vacuum Magnehelic Gauge:	22	in H ₂ O	
Vacuum Gauge After Manifold:	ı	in Hg	
EXTRACTION WELL VACUUM GAUGE R	EADINGS		
EW -1:	EW-11:	(in Hg Vaccum Gauge Reading Notes:	
EW-2: \ in Hg	EW-12:	∖ in Hg	
EW-3: 🕻 in Hg	EW-13:	دا in Hg	
EW-4: ८∖ in Hg	EW-14:	1.25 in Hg	
EW-5: ८(in Hg	EW-15:	in Hg	
EW-6: ᠘ in Hg	EW-16:	\ in Hg	
EW-7: ᠘\ in Hg	EW-17:	← \ in Hg	
EW-8: 👛 (in Hg	SS-1:	2 in H2O	
EW-9: \ in Hg	SS-2:	2.5 in H20	
EW-10: \.25 in Hg	SS-3:	2 in H20	
AIR FLOW FIELD SCREENING			
Background Outside SVE Shed: 💍 🕻 🗘	ppm	Detector Tube Readings	
Background Inside SVE Shed: O.4	ppm	Pre Carbon YES NO ppm	
Pre Carbon Discharge: 7.2	ppm	Mid Carbon YES (NO) ppm	
Mid Carbon Discharge:	ppm	Post Carbon YES (NO) ppm	
Post Carbon Discharge:	ppm		
Additional Notes:	~		
Dephuse soughe from	_ Pre-	Carbon location. For GC Screen.	
Saugeles sent to	H+H t	for GL Screen.	

Date of Analysis: 11/4/2012 ICAL Curve Date: 4/12/2012

Client: File No:

GMCH Lockport 36795-010

DAS

Sample Type: BLDG-10 SVE/SSD

MGN

Sampl	e Identification	CASRN	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (mln.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8		5,024	4,752	16,1655	3,89	ppmV		
		75-01-4	vinyl chloride	8,072			ND	ppmV		
		75-35-4	1,1-dichloroethene	15,150			ND	ppmV		
ID:	Pre-Carbon	75-09-2	methylene chloride	15,444			ND	ppmV		
Date:	11/1/2012	156-60-5	Irans 1,2-dichloroethene	17 746			ND	ppmV		
Time:		75-34-3	1,1-dichloroethane	18_185			ND	ppmV		
		156-59-2	cis 1,2-dichloroethene	19,883			ND	ppmV		
		67-66-3	chloroform	20_437			ND	ppmV		
		71-55-6	1,1,1-trichloroethane	22,281			ND	ppmV		
		71-43-2	benzene	23,071			ND	ppmV		
		79-01-6	trichloroethene	24,775			ND	ppmV		
		108-88-3	loluene	27.755			ND	ppmV		
		127-18-4	tetrachloroethene	29,631	29,676	50,3843	8.05	ppmV		
		100-41-4	ethylbenzene	31,355			ND	ppmV		
		108-38-3/106-42-3	m/p-xylene	31,622			ND	ppmV		
		95-47-6	o-xylene	32,497			ND	ppmV		
			Unknown TPH			17.0000	0.59	ppmV		
			total volatiles			84	12.5	ppmV		

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Cor	nc.	REMARKS
		74-82-8 75-01-4	methane	5.024	4.797	17.1423	4_12	ppmV	
		75-01-4	vinyl chloride	8,072			ND	ppmV	
		75-35-4	1,1-dichloroelhene	15,150			ND	ppmV	
ID:	Pre-Carbon DUP	75-09-2	methylene chloride	15,444			ND	ppmV	
Date:	11/1/2012	156-60-5	trans 1,2-dichloroethene	17.746		0	ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883			ND	ppmV	
		67-66-3	chloroform	20.437			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND	ppmV	
		71-43-2	benzene	23,071			ND	ppmV	
		79-01-6	Irichloroethene	24,775			ND	ppmV	
		108-88-3	toluene	27,755	27.839	2,0635	0.06	ppmV	
		127-18-4	tetrachloroethene	29.631	29,710	67,0151	10,71	ppmV	
		100-41-4	elhylbenzene	31,355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31.622			ND	ppmV	
		95-47-6	o-xylene	32,497			ND	Vmqq	
			Unknown TPH			5.0000	0.17	Vmqq	
			total volatiles			91	15.1	Vmqq	

Sample identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cta.)	Co	nc.	REMARKS
		74-82-8		5.024	4.825	17,3389	4.17	ppmV	
		75-01-4	vinyl chloride	8,072			ND	ppm∀	
		75-35-4	1,1-dichloroethene	15.150			ND	ppmV	
ID:	Mid-Carbon	75-09-2	methylene chloride	15.444			ND	ppmV	
Date:	11/1/2012	156-60-5	trans 1,2-dichloroethene	17.746			ND	ppmV	
Time:		75-34-3	1,1-dichloroelhane	18.185			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883			ND	ppmV	
		67-66-3	chloroform	20,437			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22 281			ND	ppmV	
		71-43-2	benzene	23.071			ND	ppmV	
		79-01-6	trichloroethene	24,775			ND	ppmV	
		108-88-3	toluene	27.755			ND	ppmV	
		127-18-4	tetrachloroethene	29,631			ND	ppmV	
		100-41-4	elhylbenzene	31.355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31.622			ND	ppmV	
		95-47-6	o-xylene	32,497			ND	ppmV	
			Unknown TPH			32.0000	1.12	ppm∀	
			total volatiles			49	5.3	Vmqq	

Samp	le identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	methane	5,024	4.850	0.6398	0.15	ppmV	
		75-01-4	vinyl chloride	8,072		17.	ND	ppmV	
		75-35-4	1,1-dichloroethene	15.150			ND	ppmV	
ID:	Post-Carbon	75-09-2	methylene chloride	15.444			ND	ppmV	
Date:	11/2/2012	156-60-5	trans 1,2-dichloroethene	17-746			ND	ppmV	
Time:		75-34-3	1,1-dichloroelhane	18.185		1 1	ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND	ppmV	
		67-66-3	chloroform	20_437		1	ND	ppmV	
		71-55-6	1,1,1-trichtoroethane	22.281			ND	ppmV	
		71-43-2	benzene	23.071			ND	ppmV	
		79-01-6	trichloroethene	24.775		1	ND	ppmV	
		108-88-3	toluene	27-755			ND	ppmV	
		127-18-4	tetrachioroethene	29,631		l I	ND	ppmV	
		100-41-4	ethylbenzene	31.355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31.622			ND	ppm∨	
		95-47-6	o-xylene	32.497			ND	ppmV	
			Unknown TPH			19.0000	0.66	Vmqq	
			total volatiles			20	8.0	ppmV	

SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name:	Chris	30000			Time	On-Site	(33	32	Time	Off-Site:	(630	>
Date:	11/29/1	2						e: 2918	394 hou	urs VD	F: 60	hertz
SYSTEM S	TATUS											
SVE Syster	m Operating:		YES	NO	If no:							
Alarm lights	s off:		(YES)	NO	If no:							
Autodialer	Alarm On:		YES	(pu)	If Yes:							
	=======================================			Posti	on of Swing P	anel HC	A Swite	ches:				
Control Pov	ver Switch	(ON)	0	OFF	SVE Blower	Switch		HAND	OFF		AUTO	
M/S Effluen	t Pump Switch	HAND	(P	AUTO	Heat Exchan	ger Swite	ch	HAND	OFF		(AUTO)	<u> </u>
1,700	nger Operating		YES	NO	If no:							
SVE Systen properly?	n appear to be ope	rating	(YES)	NO	If no:							-
15-1055-201011123-	eparator Tank Leve	el: (Empty)	1/4 Full	1/2 Fu	FI	3/4 Full		Full	Volume T	ranfered:	d gals
SYSTEM M	ONITORING REAL	DINGS										-
Vacuum Ga	uge Pre-Inline Filte	er:	4		in Hg	System	Monito	oring Note	es:			
Vacuum Ga	uge Post-Inline Filt	er:	5	•	in Hg							
Temperatur	e on Discharge Sile	encer:	IJ	D	°F							
Temperatur	e after Heat Excha	nger:	8	0	°F							
Pressure Af	ter Heat Exchange	г	10	3	in H₂O							
Pressure Be	efore Heat Exchang	јег	2	0	in H₂O	Flow Ra	ate Base	ed on Pres	sure Gauge:	336	cfm	
Pressure Ma	agnehelic Gauge:			طر	in H ₂ O	Flow Ra	ite Base	ed on Vacı	uum Gauge:	308	cfm	
Vacuum Ma	gnehelic Gauge:		フ′	7	in H ₂ O							
Vacuum Ga	uge After Manifold:	:	<u> </u>		in Hg							
EXTRACTION	ON WELL VACUU	M GAUGE	READIN	IGS								
EW -1:	۷١	in Hg		EW-11:	_\	in Hg		Vaccum (Gauge Readi	ng Notes:		
EW-2:		in Hg	-	EW-12:	۷ (in Hg						
EW-3:		in Hg		EW-13:	۵١	in Hg						
EW-4:	< 1	in Hg	-	EW-14:		in Hg						
EW-5:	دا	in Hg		EW-15:		in Hg						
EW-6:	د ا	in Hg	-	EW-16:		in Hg						
EW-7:	۵\	in Hg	-	EW-17:	=	in Hg						
EW-8:	e1	in Hg	-	SS-1:	1.5	in H2O						
EW-9:		in Hg	-	SS-2:	2	in H2O						e e
EW-10:		in Hg		SS-3:	7.5	in H2O						
	FIELD SCREENING										Terrena	
	Outside SVE Shed			opm				,	be Readings	_		
	Inside SVE Shed:			opm		Pre Car				— ppm		
Pre Carbon		8,3		opm		Mid Car				— ppm		
Mid Carbon		Ø,		opm		Post Ca	rbon	YES (— ppm		
Post Carbon Additional N		Φ	, , , , , , , , , , , , , , , , , , ,	opm								
Chas	oe lu-Li	t alg	ilte	Pre-	Carlson or Gil							
-saur	ous sent	40	MA	H 7	ar lac	Dea	reen	Λ.				- 1

Date of Analysis: 12/4/2012 ICAL Curve Date: 4/12/2012

GMCH Lockport 36795-010

Client: File No:

Sample Type: BLDG-10 SVE/SSD

TRB MGN

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	melhane	5.024	4.827	1,8134	0.44	ppmV	
		75-01-4	vinyl chloride	8,072		- 22	ND	ppmV	
		75-35-4	1,1-dichloroethene	15_150			ND	ppmV	
ID:	Pre-Carbon	75-09-2	methylene chloride	15,444			ND	ppmV	
Date:	11/29/2012	156-60-5	trans 1,2-dichloroethene	17.746			ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185		l I	ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND	ppmV	
		67-66-3	chloroform	20_437	20,461	2,8696	0.97	ppmV	
		71-55-6	1,1,1-trichloroethane	22 281			ND	ppmV	
		71-43-2	benzene	23,071		1	ND	ppmV	
		79-01-6	trichloroethene	24,775		1	ND	ppmV	
		108-88-3	toluene	27.755	27.920	2,9844	0.09	ppmV	
		127-18-4	letrachloroethene	29,631	29.789	57,5706	9,20	ppmV	
		100-41-4	elhylbenzene	31,355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31_622		1 1	ND	ppmV	
		95-47-6	o-xylene	32.497			ND	ppmV	
			Unknown TPH				ND	ppmV	
			total volatiles			65	10.7	Vmon	

Sampl	e Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	methane	5.024	4.804	21.7717	5,24	ppmV	
		75-01-4	vinyl chloride	8.072			ND	ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND	ppmV	
ID:	DUP	75-09-2	methylene chloride	15,444			ND	ppmV	
Date:	11/29/2012	156-60-5	trans 1,2-dichloroethene	17.746			ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND	ppmV	
		67-66-3	chloroform	20.437	20.385	2,5443	0,86	ppm∀	
		71-55-6	1,1,1-trichloroethane	22,281			ND	ppmV	
		71-43-2	benzene	23,071			ND	ppm∀	
		79-01-6	trichloroethene	24,775			ND	ppmV	
		108-88-3	loluene	27.755	27.869	2,9444	0.09	ppmV	
		127-18-4	letrachloroethene	29,631	30,623	4,0697	0,65	ppmV	
		100-41-4	elhylbenzene	31,355			ND	ppm∀	
		108-38-3/106-42-3	m/p-xylene	31,622			ND	ppm∨	
		95-47-6	o-xylene	32,497			ND	ppmV	
			Unknown TPH				ND	Vmqq	
			total volatiles			31	6.8	ppmV	

Sampl	e Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det, Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	melhane	5,024	4,795	21,8279	5,25	ppmV	
		75-01-4	vinyl chloride	8,072			ND	ppmV	
		75-35-4	1,1-dichloroethene	15.150			ND	ppmV	
ID:	Mid-Carbon	75-09-2	methylene chloride	15,444			ND	ppmV	
Date:	11/29/2012	156-60-5	trans 1,2-dichloroethene	17,746			ND	ppmV	
Time:		75-34-3	1,1-dichloroelhane	18,185			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883		1 1	ND	ppmV	
		67-66-3	chloroform	20,437			ND	ppm∨	
		71-55-6	1,1,1-trichloroethane	22,281			ND	ppmV	
		71-43-2	benzene	23_071			ND	ppmV	
		79-01-6	trichloroethene	24.775			ND	ppm∨	
		108-88-3	toluene	27,755			ND	ppmV	
		127-18-4	tetrachloroethene	29.631			ND	ppmV	
		100-41-4	ethylbenzene	31.355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31,622			ND	ppmV	
		95-47-6	o-xylene	32,497			ND	ppmV	
			Unknown TPH				ND	ppmV	
			total volatiles			22	5.3	ppmV	

Samp	le identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Coi	nc.	REMARKS
		74-82-8	methane	5.024	4.815	21.5497	5.18	ppmV	
		75-01-4	vinyl chloride	8.072			ND	ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND	ppm∨	
ID:	Post-Carbon	75-09-2	methylene chloride	15.444			ND	ppmV	
Date:	11/29/2012	156-60-5	trans 1,2-dichloroelhene	17.746		l 1	ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185		l I	ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND	ppm∨	
		67-66-3	chloroform	20 437		l I	ND	ppm∨	
		71-55-6	1,1,1-trichloroethane	22.281			ND	ppmV	
		71-43-2	benzene	23,071			ND	ppmV	
		79-01-6	trichloroethene	24,775			ND	ppmV	
		108-88-3	toluene	27.755	27.895	2.6536	0.08	ppmV	
		127-18-4	letrachloroelhene	29.631			ND	ppmV	
		100-41-4	ethylbenzene	31,355		l	ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31.622		I I	ND	ppmV	
		95-47-6	o-xylene	32,497		l I	ND	ppmV	
			Unknown TPH				ND	ppmV	
			total volatiles			24	5.3	ppmV	

NON ROUTINE MAINTENANCE FORM

OPERATION, MAINTENANCE AND MONITORING PLAN SVE/SSD SYSTEM GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

NAME: GLYLS BOYON TIM	IE ON SITE: 1400
DATE: 2 1/1.3 TIM	IE OFF SITE: \\DO
SYSTEM STATUS A	LARM CONDITION: YES NO
Date and time alarm received: Variable Frequency	Drive (UFO) was replaced 21/13
Description of alarm condition:	
SVE system sho	A down due to faulty UFD
on December 17,	,2012
Date and time system restarted:	
DESCRIPTION OF ACTIVITIES	
VFD needed to be programmed and	SVE System turned backon.
, 9, 1, 1	, ()
SUE System was restorted at	1500 on 2/1/13
Previous SVE blower Run Time	
	+ 10172 Premas Timer
	2 8221
	3 0236.b
1 1 201	111111111
System operating at 30 Hz a	of startup through 2/4/13
7.11	1 2/4/12
Operating parameter to be asses	seed on 2/4/13
SUBCONTRACTORS	TIME ON SITE TIME OFF SITE
CIER Electrical Contractor	1420 1515
Comments:	
Commence.	

OPERATION, MAINTENANCE AND MONITORING PLAN

SVE/SSD SYSTEM GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chris Beron	Time On-Site: 800 Time Off-Site: 100
Date: 2/1/13	SVE Blower Run Time: 30277 \ hours \ \ VDF: \ 30 \ hertz
SYSTEM STATUS	
SVE System Operating: YES NO If no	ю:
Alarm lights off: YES NO If no	ю:
Autodialer Alarm On; YES (NO) If Y	res:
Postion of	f Swing Panel HOA Switches:
Control Power Switch ON OFF SVE	E Blower Switch HAND OFF AUTO
M/S Effluent Pump Switch HAND OFF AUTO Hea	at Exchanger Switch HAND OFF AUTO
Heat Exchanger Operating (YES) NO If no	0:
SVE System appear to be operating YES NO If no properly?	
Moisture Separator Tank Level: Empty 1/4 Full	1/2 Full 3/4 Full Full Volume Tranfered; 🖒 gals
SYSTEM MONITORING READINGS	
Vacuum Gauge Pre-Inline Filter: in H	System Monitoring Notes:
Vacuum Gauge Post-Inline Filter: \ in H	9
Temperature on Discharge Silencer: 75 °F	
Temperature after Heat Exchanger: 70°F	
Pressure After Heat Exchanger	20
Pressure Before Heat Exchanger \ \ \ \ \ in H	
Pressure Magnehelic Gauge: 6 9 in H	Flow Rate Based on Vacuum Gauge: cfm
Vacuum Magnehelic Gauge; O, 🤈 in H	20
Vacuum Gauge After Manifold: < \ in H	g
EXTRACTION WELL VACUUM GAUGE READINGS	
EW-1:	in Hg Vaccum Gauge Reading Notes:
EW-2: <	in Hg
EW-3: <\ in Hg EW-13: <	
EW-4; < (in Hg EW-14: &	in Hg
EW-5; < \ in Hg EW-15: 4	
EW-6: 4 in Hg EW-16: 4	√ in Hg
EW-7; ∠ (in Hg EW-17; ∠	in Hg
EW-8;	in H2O
EW-9: ∠ \ in Hg SS-2: ∠ \	in H2O
EW-10:	in H2O
AIR FLOW FIELD SCREENING	
Background Outside SVE Shed: 0.2 ppm	Detector Tube Readings
Background Inside SVE Shed: ppm ppm	Pre Carbon YES NO ppm
Pre Carbon Discharge: 20 ppm	Mid Carbon YES NO ppm
Mid Carbon Discharge: NM ppm	Post Carbon YES (NO ppm
Post Carbon Discharge: DW ppm	
Additional Notes: System restorted after replo- Tedlar beg screen of Pre-C	eing the VFO and programing ortson only.

OF LIGHTON, MAINTENANCE AND MONTOKING FLAN

SVE/SSD SYSTEM GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chris Boron	Time (On-Site: 800	Time Off-Site:	820
Date: 2/216/13	SVE E	Blower Run Time: 30,	829.B hours VDF	e: 60 hertz
SYSTEM STATUS				
SVE System Operating: YES N	NO If no:			
Alarm lights off:	NO If no:			
Autodialer Alarm On: YES	NO If Yes:			
	Postion of Swing Pa	anel HOA Switches:		
Control Power Switch ON O	OFF SVE Blower Sv	witch HAND	OFF	AUFO
	UTO Heat Exchange	er Switch HAND	OFF	AUTO
	NO If no:			
SVE System appear to be operating properly?	NO If no:			,
	4 Full 1/2 Full	l 3/4 Full	Full Volume Tra	anfered: Ø gals
SYSTEM MONITORING READINGS				
Vacuum Gauge Pre-Inline Filter:	in Hg	System Monitoring Note	es:	
Vacuum Gauge Post-Inline Filter: 4.5	in Hg	Autodialen la	etterus are lo shed is out.	w.
Temperature on Discharge Silencer: (00	°F	Light bulbin	shed is out.	
Temperature after Heat Exchanger:	°F	\mathcal{O}		
Pressure After Heat Exchanger 2.0				
Pressure Before Heat Exchanger ZLo		Flow Rate Based on Pres	ssure Gauge: 342	cfm
Pressure Magnehelic Gauge: 2.7		Flow Rate Based on Vac	uum Gauge: 315	cfm
Vacuum Magnehelic Gauge: 72	in H₂O			
Vacuum Gauge After Manifold:	in Hg			
EXTRACTION WELL VACUUM GAUGE READINGS	,			
EW-1: 4 in Hg EW-	/-11: \ i	in Hg Vaccum	Gauge Reading Notes:	
		in Hg		
		in Hg		
		in Hg		
	/-15: \ i	in Hg		
		in Hg		
		in Hg		J
EW-8:		in H2O		1
EW-9: \ in Hg SS-2		in H2O		*
EW-10: \ in Hg SS-3	-3: Z i	in H2O		
AIR FLOW FIELD SCREENING		21.00		100000000000000000000000000000000000000
Background Outside SVE Shed: \(\sum_{\text{NM}}\) ppm			be Readings	
Background Inside SVE Shed: UM ppm		Pre Carbon YES	NO ppm	
Pre Carbon Discharge: ppm		Mid Carbon YES	NO ppm	
Mid Carbon Discharge: 0.3 ppm		Post Carbon YES	NO ppm	
Post Carbon Discharge: O ppm Additional Notes:	Eiddiddiddiddiddiddidd			
Additional Notes: Tedlar bag OVM Screening do Deplicate from Pre-Carthor Samples sent for GL Scree	one at effice			
Deplicate from Poe-Carton		. 1		
Sangles sent for GL Scree	ming by H.	441		
\	J .			

Date of Analysis: 2/28/2013 ICAL Curve Date: 1/12/2013

Client: File No: GM Lockport 36795-010

НН

Sample Type:

BLDG-10 SVE/SSD

MGN

Sampl	le Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	пс.	REMARKS
		74-82-8	methane	5.024	4.783	16.0105	3.85	ppmV	
		75-01-4	vinyl chloride	8.072			ND	ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND	ppmV	
ID:	Pre-Carbon	75-09-2	methylene chloride	15,444			ND	ppmV	
Date:	2/26/2013	156-60-5	trans 1,2-dichloroelhene	17,746			ND	ppm∨	
Time:		75-34-3	1,1-dichloroethane	18.185			ND	ppmV	
		156-59-2	cis 1,2-dichtoroethene	19.883			ND	ppm∨	
		67-66-3	chloroform	20,437		1 1	ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22,281		1 1	ND	ppmV	
		71-43-2	benzene	23.071			ND	ppmV	
		79-01-6	Irichloroethene	24,775		1 1	ND	ppmV	
		108-88-3	toluene	27.755			ND	ppmV	
		127-18-4	tetrachloroethene	29,631	29.644	19,1869	3.07	ppmV	
		100-41-4	ethylbenzene	31,355			ND	ppmV	
		108-38-3/106-42-3	m/p-xytene	31,622		1	ND	ppmV	
		95-47-6	o-xylene	32,497		1	ND	ppmV	
			Unknown TPH				ND	ppmV	
			total volatiles			35	6.9	ppmV	

Sample	e Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	methane	5.024	4.716	21.7197	5.22	ppmV	
		75-01-4	vinyl chloride	8,072			ND	Vmqq	
		75-35-4	1,1-dichloroethene	15,150			ND	Vmqq	
ID:	DUP	75-09-2	methylene chloride	15.444			ND	ppmV	
Date:	2/26/2013	156-60-5	trans 1,2-dichloroethene	17,746			ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND	ppm∨	
		156-59-2	cis 1,2-dichloroethene	19.883			ND	ppmV	
		67-66-3	chloroform	20.437			ND	ppmV	
		71-55-6	1,1,1-trichloroelhane	22,281			ND	ppm∨	
		71-43-2	benzene	23.071			ND	ppmV	
		79-01-6	trichloroethene	24.775			ND	ppmV	
		108-88-3	loluene	27.755	27,775	1.4903	0.04	ppmV	
		127-18-4	tetrachloroethene	29,631	29,652	32,6623	5.22	Vmqq	
		100-41-4	elhylbenzene	31,355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31.622		1 1	ND	ppmV	
		95-47-6	o-xylene	32,497			ND	ppmV	
			Unknown TPH				ND	ppmV	
			total volatiles			56	10.5	ppmV	

Sampl	le Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	methane	5.024	4.723	22,7336	5,47	ppmV	
		75-01-4	vinyl chloride	8,072		1 1	ND	ppmV	
		75-35-4	1,1-dichloroelhene	15,150			ND	ppmV	
ID:	Mid-Carbon	75-09-2	methylene chloride	15.444			ND	ppmV	
Date:	2/26/2013	156-60-5	trans 1,2-dichloroethene	17,746		1	ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18.185			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883			ND	ppmV	
		67-66-3	chloroform	20,437			ND	Vmqq	
		71-55-6	1,1,1-trichloroethane	22,281		1	ND	ppmV	
		71-43-2	benzene	23.071		1	ND	ppmV	
		79-01-6	trichloroethene	24.775			ND	ppmV	
		108-88-3	toluene	27,755			ND	ppmV	
		127-18-4	letrachloroethene	29,631		1 1	ND	ppm∨	
		100-41-4	ethylbenzene	31.355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31,622		1	ND	ppmV	
		95-47-6	o-xylene	32,497			ND	ppmV	
			Unknown TPH				ND	ppm∀	
			lotal volatiles			23	5.5	Vmqq	

Sample Identification		CASRN	Target Compound	Cai. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
ID: Date: Time:	Post-Carbon 2/26/2013	74-82-8 75-01-4 75-35-4 75-09-2 156-60-5 75-34-3 156-59-2 67-66-3 71-55-6 71-43-2 79-01-6 108-88-3 127-18-4 100-41-4	methane vinyl chloride 1,1-dichloroethene methylene chloride Irans 1,2-dichloroethene 1,1-dichloroethene cis 1,2-dichloroethene chloroform 1,1,1-trichloroethene thorzene trichloroethene toluene telrachloroethene ethylbenzene m/p-xylene	5.024 8.072 15.150 15.444 17.746 18.185 19.883 20.437 22.281 23.071 24.775 27.755 29.631 31.355 31.622	4,667	23,1855	5.58 ppmV ND ppmV	
		95-47-6	o-xylene Unknown TPH total volatiles	32:497		23	ND ppmV ND ppmV 5.6 ppmV	

SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chris Boron	Time On-Site: 1600 Time Off-Site: 1700
Date: 3/26/13	SVE Blower Run Time: 31,509 hours VDF: 60 hert
SYSTEM STATUS	
SVE System Operating:	NO If no:
Alarm lights off: (YES) N	NO If no:
Autodialer Alarm On: YES (N	NO If Yes:
P	Postion of Swing Panel HOA Switches:
Control Power Switch ON O	OFF SVE Blower Switch HAND OFF
M/S Effluent Pump Switch HAND OFF AU	JTO Heat Exchanger Switch HAND OFF AUTO
	NO If no:
SVE System appear to be operating YES N	NO If no:
	Full 1/2 Full 3/4 Full Full Volume Tranfered: gals
SYSTEM MONITORING READINGS	• • • • • • • • • • • • • • • • • • •
Vacuum Gauge Pre-Inline Filter:	in Hg System Monitoring Notes:
Vacuum Gauge Post-Inline Filter: 4 . 5	in Hg
Temperature on Discharge Silencer: \03	°F
Temperature after Heat Exchanger:) °F
Pressure After Heat Exchanger ্রি	in H ₂ O
Pressure Before Heat Exchanger 26	
Pressure Magnehelic Gauge: 2.7	7 in H ₂ O Flow Rate Based on Vacuum Gauge: ろじち cfm
Vacuum Magnehelic Gauge: >2	in H ₂ O
Vacuum Gauge After Manifold:	in Hg
EXTRACTION WELL VACUUM GAUGE READINGS	
EW-1: 🛋 in Hg EW-	-11: In Hg Vaccum Gauge Reading Notes:
EW-2: \\ in Hg EW-	-12: C\ in Hg
EW-3: \ in Hg EW-	13: <\ in Hg
EW-4: in Hg EW-	-14: \ in Hg
EW-5: C in Hg EW-	15: \ in Hg
EW-6; C in Hg EW-	-16: \ in Hg
EW-7: < \ in Hg EW-	-17: <\ in Hg
EW-8: <	
EW-9: in Hg SS-2	
EW-10: in Hg SS-3	3: Z in H2O
AIR FLOW FIELD SCREENING	
Background Outside SVE Shed: ppm	
Background Inside SVE Shed: () . Ppm	— — — — — — — — — — — — — — — — — — —
Pre Carbon Discharge: 5,7 ppm	Mid Carbon YES (NO)ppm
Mid Carbon Discharge: 0,7 ppm	Post Carbon YES (NO)ppm
Post Carbon Discharge: O . 😕 ppm	
Additional Notes:	from Mid-Carbon
- All ilian C	(m/ Sanana)
Additional Notes: Deplicate sample collected Souples sent to HAA for	r GC screening.

Date of Analysis: 3/29/2013 ICAL Curve Date: 1/12/2013

Client: File No:

GMCH Lockport 36795-010

MGN

Sample Type:

BLDG-10 SVE/SSD

DMC

Sampl	le Identification	on Target Time Time CASRN Compound (min.) (min.)		Det. Resp. (Area Cts.)	Солс.		REMARKS		
		74-82-8	methane	5.024	4.870	15,7158	3,78	ppmV	
		75-01-4	vinyl chloride	8.072			ND	ppm∨	
		75-35-4	1,1-dichloroethene	15,150	1	1 1	ND	ppmV	
ID:	Pre-Carbon	75-09-2	methylene chloride	15,444			ND	ppmV	
Date:	3/26/2013	156-60-5	trans 1,2-dichloroethene	17,746			ND	₽PmV	
Time:		75-34-3	1,1-dichloroethane	18.185			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND	ppm∀	
		67-66-3	chloroform	20.437	li I		ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22,281		1 1	ND	ppmV	
		71-43-2	benzene	23,071			ND	ppmV	
		79-01-6	trichloroethene	24,775			ND	ppmV	
		108-88-3	toluene	27,755	27_915	2,0861	0.06	ppmV	
		127-18-4	tetrachloroethene	29,631	29.790	25,8705	4.13	ppmV	
		100-41-4	ethylbenzene	31,355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31,622			ND	ppmV	
		95-47-6	o-xylene	32,497	li li		ND	ppmV	
			Unknown TPH				ND	ppmV	
			total volatiles			44	8.0	ppmV	

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	methane	5.024	4.830	14,7754	3,55	ppmV	
		75-01-4	vinyl chloride	8,072		2017	ND	ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND	ppmV	
ID:	Mid-Carbon	75-09-2	methylene chloride	15,444			ND	ppmV	
Date:	3/26/2013	156-60-5	trans 1,2-dichloroethene	17,746		1	ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND	ppmV	
		156-59-2	cis 1,2-dichloroelhene	19.883		1 1	ND	ppmV	
		67-66-3	chloroform	20.437			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22,281		1	ND	ppmV	
		71-43-2	benzene	23,071			ND	ppmV	
		79-01-6	trichloroethene	24,775			ND	Vmqq	
		108-88-3	toluene	27,755			ND	Vmqq	
		127-18-4	telrachloroethene	29,631			ND	Vmqq	
		100-41-4	ethylbenzene	31,355			ND	ppm∨	
		108-38-3/106-42-3	m/p-xylene	31.622		1 1	ND	ppm∨	
		95-47-6	o-xylene	32 497			ND	ppmV	
			Unknown TPH				ND	ppmV	
			total volatiles			15	3.6	ppmV	

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	melhane	5,024	4,793	15,1057	3,63 ppmV	
		75-01-4	vinyl chloride	8.072			ND ppmV	
		75-35-4	1,1-dichloroethene	15.150			ND ppmV	
ID:	Post-Carbon	75-09-2	methylene chloride	15,444		1 1	ND ppmV	
Date:	3/26/2013	156-60-5	trans 1,2-dichloroethene	17,746			ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18.185		l 1	ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883		l 1	ND ppmV	
		67-66-3	chloroform	20.437		l 1	ND ppmV	
		71-55-6	1,1,1-trichloroethane	22 281		l 1	ND ppmV	
		71-43-2	benzene	23.071		l 1	ND ppmV	
		79-01-6	trichloroethene	24,775		1 1	ND ppmV	
		108-88-3	toluene	27,755		l 1	ND ppmV	
		127-18-4	tetrachloroethene	29.631		l 1	ND ppmV	
		100-41-4	ethylbenzene	31,355		1 I	ND ppmV	
		108-38-3/106-42-3	m/p-xylene	31.622		1 1	ND ppmV	
		95-47-6	o-xylene	32 497		1 I	ND ppmV	
			Unknown TPH			1 1	ND ppmV	
			total volatiles			15	3.6 ppmV	

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	methane	5.024	4.795	15,7009	3,78	ppmV	
		75-01-4	vinyl chloride	8.072			ND	ppmV	
		75-35-4	1,1-dichloroethene	15,150		l 1	ND	ppm∨	
ID:	DUP	75-09-2	methylene chloride	15.444			ND	ppmV	
Date:	3/26/2013	156-60-5	trans 1,2-dichloroethene	17 746		1 I	ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18 185		l 1	ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883		l 1	ND	ppmV	
		67-66-3	chloroform	20.437		l 1	ND	ppmV	
		71-55-6	1,1,1-trichtoroethane	22.281		1 1	ND	ppmV	
		71-43-2	benzene	23,071		l 1	ND	ppmV	
	54	79-01-6	trichloroethene	24,775		l 1	ND	ppmV	
		108-88-3	loluene	27,755		1 1	ND	ppm∨	
		127-18-4	letrachloroethene	29.631			ND	ppm∨	
		100-41-4	ethylbenzene	31,355		l 1	ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31.622		ı I	ND	ppmV	
		95-47-6	o-xylene	32 497		1 1	ND	ppmV	
			Unknown TPH				ND	ppmV	
			total volatiles			16	3.8	ppmV	

OF LIKATION, MAINTENANCE AND MONTORING FLAN

SVE/SSD SYSTEM GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

(
Name: Chris Boron	8	Time (On-Site: 1030		Time Off-Site:	1130	
Date: 4/24/13			Blower Run Time:		hours VD	F: 60	hertz
SYSTEM STATUS							
SVE System Operating:	YES NO	If no:					
Alarm lights off:	(YES) NO	If no:					
Autodialer Alarm On:	YES (NO)	If Yes:					
8	Postic	on of Swing Pa	anel HOA Switche	es:		<u></u>	
Control Power Switch (ON)	OFF	SVE Blower S	witch HA	AND	OFF	AUTO	
M/S Effluent Pump Switch HAND	OFF AUTO	Heat Exchange	er Switch HA	AND C	OFF	AUTO	
Heat Exchanger Operating	(YES) NO	If no:					
SVE System appear to be operating properly?	YES NO	If no:					,
Moisture Separator Tank Level: Empty) 1/4 Full	1/2 Full	3/4 Full	Full	Volume Tr	ranfered:	gals
SYSTEM MONITORING READINGS							
Vacuum Gauge Pre-Inline Filter:	4	in Hg	System Monitorir	ng Notes:			
Vacuum Gauge Post-Inline Filter:	4.5	in Hg					
Temperature on Discharge Silencer:	110	*F					
Temperature after Heat Exchanger:	80	°F					
Pressure After Heat Exchanger	20	in H ₂ O					
Pressure Before Heat Exchanger	24	in H ₂ O	Flow Rate Based o	on Pressure Ga	auge: 342	cfm	
Pressure Magnehelic Gauge:	2.7	in H ₂ O	Flow Rate Based o	on Vacuum Gar	uge: 315	cfm	
Vacuum Magnehelic Gauge:	>2	in H ₂ O					
Vacuum Gauge After Manifold:	1.0	in Hg					
EXTRACTION WELL VACUUM GAUGE I	READINGS						
EW-1: △\ in Hg	EW-11:	\ i	in Hg Va	ccum Gauge F	Reading Notes:		
EW-2: \ in Hg	EW-12:	١ ا	in Hg				
EW-3: \ in Hg	EW-13:	l	in Hg				
EW-4: ∠\ in Hg	EW-14:	1.25	in Hg				
EW-5: <\ in Hg	EW-15:	\i	in Hg				
EW-6: <\ in Hg	EW-16:	, i	in Hg				
EW-7: <\ in Hg	EW-17:	د <i>ا</i> ا	in Hg				
EW-8: 亡 in Hg	SS-1:		in H2O				
EW-9: \ in Hg	SS-2:		n H2O				
EW-10: \.25 in Hg	SS-3:	2	n H2O				× .
AIR FLOW FIELD SCREENING		117-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1					
Background Outside SVE Shed: (). (ppm		Deter	ctor Tube Read	lings		
Background Inside SVE Shed:	ppm	F	Pre Carbon Y	res (NO)	ppm		
Pre Carbon Discharge: 💪 🦪	ppm	P	Mid Carbon Y	res (No)_	ppm		
Mid Carbon Discharge:		F	Post Carbon Y	res (NO)_	ppm		
Post Carbon Discharge:	S ppm						
Additional Notes: Dyphiade Sangle co' Songles sent to H	ilected a	et Pre-C	reen.				

Date of Analysis: 4/25/2013 ICAL Curve Date: 1/12/2013

Client:

GMCH Lockport 36795-010 File No:

BLDG-10 SVE/SSD Sample Type:

MGN DMC

Sample Identification		Target CASRN Compound		Cal. Ret Time (min.)	Time	me Resp.	Conc.		REMARKS
		74-82-8	methane	5,024	4,806	1,0921	0,26	Vmqq	
		75-01-4	vinyl chloride	8,072		2	ND	ppmV	
		75-35-4	1,1-dichloraethene	15,150			ND	ppmV	
ID:	Pre-Carbon	75-09-2	methylene chloride	15,444			ND	ρpmV	
Date:	4/24/2013	156-60-5	trans 1,2-dichloroethene	17.746			ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND	ppmV	
		67-66-3	chloroform	20_437			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22 281			ND	ppmV	
		71-43-2	benzene	23,071			ND	ppmV	
		79-01-6	trichloroethene	24,775			ND	ppmV	
		108-88-3	toluene	27.755			ND	ppmV	
		127-18-4	tetrachloroethene	29,631	29.789	31,4437	5.02	ppmV	
		100-41-4	elhylbenzene	31,355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31.622			ND	ppmV	
		95-47-6	o-xylene	32 497			ND	ppmV	
			Unknown TPH		32.200	32.4895	1.13	Vmqq	
			total volatiles			65	6.4	Vmaq	

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Con	c.	REMARKS
		74-82-8	melhane	5.024	4.732	1.0362	0.25	ppmV	
		75-01-4	vinyl chloride	8,072			ND	ppmV	
		75-35-4	1,1-dichloroethene	15_150			ND	ppmV	
ID:	MId-Carbon	75-09-2	methylene chloride	15_444			ND	ppmV	
Date:	4/24/2013	156-60-5	trans 1,2-dichloroethene	17,746			ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18_185			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND	ppmV	
		67-66-3	chloroform	20.437			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22 281			ND	Vmqq	
		71-43-2	benzene	23.071			ND	ppmV	
		79-01-6	trichloroethene	24 775		1	ND	ppm∀	
		108-88-3	toluene	27.755			ND	Vmqq	
		127-18-4	tetrachloroethene	29.631			ND	Vmqq	
		100-41-4	ethylbenzene	31,355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31.622			ND	ppmV	
		95-47-6	o-xylene	32.497			ND	ppmV	
			Unknown TPH		34.200	32.4895	1.13	ppmV	
			total volatiles			34	1.4	ppmV	

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8	melhane	5.024	4,721	1.1722	0,28	ppmV	
		75-01-4	vinyl chloride	8.072			ND	ppmV	
		75-35-4	1,1-dichloroethene	15.150			ND	ppmV	
ID:	Post-Carbon	75-09-2	methylene chloride	15,444			ND	ppmV	
Date:	4/24/2013	156-60-5	trans 1,2-dichloroethene	17.746			ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18.185			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883			ND	Vmqq	
		67-66-3	chloroform	20.437		1	ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22.281			ND	Vmqq	
		71-43-2	benzene	23.071			ND	Vmqq	
		79-01-6	lrichloroelhene	24,775			ND	ppmV	
		108-88-3	toluene	27.755			ND	Vmqq	
		127-18-4	tetrachloroethene	29.631			ND	ppmV	
		100-41-4	ethylbenzene	31.355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31.622			ND	ppmV	
		95-47-6	o-xylene	32.497			ND	ppmV	
			Unknown TPH		30,500	10,3700	0.36	ppmV	
			total volatiles			12	0.6	ppmV	

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-82-8 methane	methane	5.024		2.2500	0.54	ppmV	
		75-01-4	vinyl chloride	8.072			ND	ppmV	
		75-35-4	1,1-dichloroethene	15.150			ND	ppmV	
ID:	DUP	75-09-2	methylene chloride	15.444			ND	ppmV	
Date:	4/24/2013	156-60-5	trans 1,2-dichloroethene	17-746		1	ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18.185			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883			ND	Vmqq	
		67-66-3	chloroform	20.437			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22.281			ND	ppmV	
		71-43-2	benzene	23,071			ND	ppm∨	
		79-01-6	trichtoraethene	24,775		l I	ND	ppmV	
		108-88-3	toluene	27.755			ND	ppmV	
		127-18-4	tetrachloroethene	29.631	29.638	32.8310	5.25	ppmV	
		100-41-4	elhylbenzene	31,355			ND	ppmV	
		108-38-3/106-42-3	m/p-xylene	31,622		I I	ND	ppmV	
		95-47-6	o-xylene	32.497		l	ND	ppmV	
			Unknown TPH		38.307	1,7000	0.06	ppmV	
			total volatiles			37	5.8	Vmqq	

OF ENATION, MAINTENANCE AND MONTORING FLAN

SVE/SSD SYSTEM GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: C. Boron		Time On-Site: 1320 Time Off-Site: 1420
Date: 5/30/13		SVE Blower Run Time: 33,066 hours VDF: 60 her
SYSTEM STATUS		
SVE System Operating:	YES NO	If no:
Alarm lights off:	(YES) NO	If no:
Autodialer Alarm On:	YES (NO)) If Yes:
	Postic	tion of Swing Panel HOA Switches:
Control Power Switch ON	OFF	SVE Blower Switch HAND OFF AUTO
M/S Effluent Pump Switch HAND	OFF AUTO	Heat Exchanger Switch HAND OFF AUTO
Heat Exchanger Operating	(ES) NO	If no:
SVE System appear to be operating properly?	(YES) NO	If no:
Moisture Separator Tank Level: Empty	1/4 Full	II 1/2 Full 3/4 Full Full Volume Tranfered: gals
SYSTEM MONITORING READINGS		
Vacuum Gauge Pre-Inline Filter:	4.25	in Hg System Monitoring Notes:
Vacuum Gauge Post-Inline Filter:	5	in Hg
Temperature on Discharge Silencer:	112	°F
Temperature after Heat Exchanger:	90	°F
Pressure After Heat Exchanger	D. 1645	in H₂O
Pressure Before Heat Exchanger	24	in H₂O Flow Rate Based on Pressure Gauge: 340 cfm
Pressure Magnehelic Gauge:		in H₂O Flow Rate Based on Vacuum Gauge: 315 cfm
Vacuum Magnehelic Gauge:	>2	in H ₂ O
Vacuum Gauge After Manifold:	-	in Hg
EXTRACTION WELL VACUUM GAUGE	READINGS	
EW -1! < (in Hg	EW-11:	in Hg Vaccum Gauge Reading Notes:
EW-2:	EW-12:	\ in Hg
EW-3: in Hg	EW-13:	\ in Hg
EW-4: <\ in Hg	EW-14:	\.Z∑ in Hg
EW-5: <\ in Hg	EW-15:	\ in Hg
EW-6: ∠\ in Hg	EW-16:	\ in Hg
EW-7: ∠\ in Hg	EW-17:	こ\ in Hg
EW-8: ∠\ in Hg	SS-1:	2. in H2O
EW-9: \ in Hg	SS-2:	3 in H2O
EW-10: \ . 2.5 in Hg	SS-3:	3 in H20
AIR FLOW FIELD SCREENING		
Background Outside SVE Shed: 6,4	4 ppm	Detector Tube Readings
Background Inside SVE Shed: O . 3		Pre Carbon YES NO ppm
Pre Carbon Discharge: 5.3	S ppm	Mid Carbon YES ppm
Mid Carbon Discharge: 2.1	2 ppm	Post Carbon YES NO ppm
Post Carbon Discharge: O.		
Additional Notes: Deplicate sample coil Samples sent to Hit A	exted two., for GC	Screen.

Client: File No: Sample Type:

GMCH Lockport 38785-010 BLDG-10 SVE/SSD

Date of Analysis: 6/2/2013 ICAL, Curve Date: 1/12/2013

HAH

DMC

Sample Identification	CASRN	Target Compound	Cal. Ret. Time (mln.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
ID: Pre-Carbon Date: 5/30/2013 Time:	74-82-8 75-01-4 75-35-4 75-09-2 158-60-5 75-34-3 158-59-2 67-66-3 71-55-6 71-43-2 79-01-6 108-88-3 127-18-4 100-41-4 18-38-3/108-44 95-47-6	meihane vinyl chloride 1,1-dichloroelhene melhylene chloride trans 1,2-dichloroelhene 1,1-dichloroelhene chloroform 1,1-frichloroelhene telsepene trichloroelhene toluene teltrachloroelhene eltrachloroelhene eltrachloroelhene eltrachloroelhene othylenezene m/p-xylene o-xylene	5,024 8,072 15,150 15,444 17,746 18,185 19,883 20,437 22,281 23,071 24,775 27,755 29,831 31,355 31,622 32,407	29,619	29,1919	ND ppmV ND	

Sam	ple identification		Target	Cal. Ret. Time	Ret Time	Det. Resp.	Conc.	REMARKS
D-S-CL		CASRN	Compound	(min.)	(mln.)	(Area Cts.)		
		74-82-8	methane	5,024	12 - 12		ND ppmV	
		75-01-4	vinyl chloride	8,072			ND ppmV	
		75-35-4	1,1-dichloroethene	15,150	1		ND ppmV	
ID:	Mid-Carbon	75-09-2	methylene chloride	15,444	1		ND ppmV	
Date:	5/30/2013	156-60-5	trans 1,2-dichloroethene	17,746	l .		ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883	0		ND ppmV	
		67-66-3	chloroform	20,437	1		ND ppmV	
		71-55-6	1,1,1-trichforoethane	22.281			ND ppmV	
		71-43-2	benzene	23,071	1		ND ppmV	
		79-01-6	trichloroethene	24.775	24,677	5,1281	0.73 ppmV	
		108-88-3	toluene	27.755			ND ppmV	
		127-18-4	tetrachloroethene	29,631	29,533	1,8251	0.29 ppmV	
		100-41-4	ethylbenzene	31.355	8	8.7	ND ppmV	
		8-38-3/106-42	m/p-xylene	31.622			ND ppmV	
		95-47-6	o-xylene	32,497			ND ppmV	
			Unknown TPH				ND ppmV	
			total volatiles			7	1.0 ppmV	

Samp	ple identification		Target	Cal. Ret. Time	Ret. Time	Det. Resp.	Cono.	REMARKS
		CASRN	Compound	(min.) 5.024	(mln.)	(Area Cts.)		
		74-82-8	methane	5,024		V 1.11	ND ppmV	
		75-01-4	vinyl chloride	8.072			ND ppmV	
		75-35-4	1,1-dichloroelhene	15,150			ND ppmV	
ID:	Post-Carbon	75-09-2	methylene chloride	15,444			ND ppmV	
Date:	5/30/2013	156-60-5	trans 1,2-dichloroethene	17,746		1	ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185		l.	ND ppmV	
		150-59-2	cis 1,2-dichloroethene	19,883			ND ppmV	
		67-66-3	chloroform	20.437			ND ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND ppmV	
		71-43-2	benzene	23.071			ND ppmV	
		79-01-6	trichloroethene	24,775			ND ppmV	
		108-88-3	toluene	27.755			ND ppmV	
		127-18-4	tetrachloroethene	29.631			ND ppmV	
		100-41-4	ethylbenzene	31,355			ND ppmV	
		18-38-3/106-42	rn/p-xylene	31,622			ND ppmV	
		95-47-6	o-xylene	32,497			ND ppmV	
			Unknown TPH				ND ppmV	
			total volatiles			0	0.0 ppmV	

Samp	ele identification		Target	Cal. Ret. Time	Ret. Time	Det, Resp.	Conc.	REMARKS
		CASRN	Compound	(min.)	(min.)	(Area Cts.)		
		74-82-8	monano	5 024		7.02	ND ppmv	
		75-01-4	vinyl chloride	8.072	I		ND ppmV	
		75-35-4	1,1-dichloroethene	15,150	I		ND ppmV	
ID:	DUP	75-09-2	methylene chloride	15 444			ND ppmV	
Date:	5/30/2013	156-60-5	trans 1,2-dichloroethene	17,746	1		ND ppmV	
lme:		75-34-3	1,1-dichloroelhane	18 185	1		ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND ppmV	
		67-66-3	chloroform	20 437	1		ND ppmV	
		71-55-6	1,1,1-trichloroethane	22 281			ND ppmV	
		71-43-2	benzene	23.071			ND ppmV	
		79-01-6	trichloroethene	24-775	24.629	5.3444	0.76 ppmV	
		108-88-3	toluene	27,755	1		ND ppmV	
		127-18-4	tetrachioroethene	29 631	29.494	1,6370	0.26 ppmV	
		100-41-4	ethylbenzene	31.355			ND ppmV	
		18-38-3/106-47		31,622	l		ND ppmV	
		95-47-6	o-xylene	32.497	1		ND ppmV	
			Unknown TPH				ND ppmV	
			total volatiles			7	1.0 ppmV	

SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chris Boron		Time On-Site: 1455 Time Off-Site: 1600
Date: 6/26/13		SVE Blower Run Time: 33677 hours VDF: 60 herts
SYSTEM STATUS		
SVE System Operating:	YES NO	If no:
Alarm lights off:	YES NO	If no:
Autodialer Alarm On:	YES (NO)) If Yes:
	Postic	ion of Swing Panel HOA Switches;
Control Power Switch (ON)	OFF	SVE Blower Switch HAND OFF AUTO
M/S Effluent Pump Switch HAND	OFF AUTO	Heat Exchanger Switch HAND OFF AUTO
Heat Exchanger Operating	YES NO	If no:
SVE System appear to be operating properly?	YES NO	If no:
Moisture Separator Tank Level; Empty	1/4 Full	1/2 Full 3/4 Full Full Volume Tranfered: gals
SYSTEM MONITORING READINGS		
Vacuum Gauge Pre-Inline Filter:	4	in Hg System Monitoring Notes:
Vacuum Gauge Post-Inline Filter:	2	in Hg
Temperature on Discharge Silencer:	ILD	°F
Temperature after Heat Exchanger:	90	°F
Pressure After Heat Exchanger	18	in H ₂ O
Pressure Before Heat Exchanger	22	in H ₂ O Flow Rate Based on Pressure Gauge: 330 cfm
Pressure Magnehelic Gauge:	2.6	in H ₂ O Flow Rate Based on Vacuum Gauge: 308 cfm
Vacuum Magnehelic Gauge:	>2	in H ₂ O
Vacuum Gauge After Manifold:	١	in Hg
EXTRACTION WELL VACUUM GAUGE R	EADINGS	
EW -1:	EW-11:	In Hg Vaccum Gauge Reading Notes:
EW-2: (in Hg	EW-12:	in Hg
EW-3: In Hg	EW-13:	∠ \ in Hg
EW-4: ←\ in Hg	EW-14:	(.2.5 in Hg
EW-5: <\ in Hg	EW-15:	1.25 in Hg
EW-6: < \ in Hg	EW-16:	in Hg
EW-7: ∠\ in Hg	EW-17:	ے in Hg
EW-8:	SS-1:	2. in H2O
EW-9: In Hg	SS-2:	3 in H2O
EW-10; \. \. \. \. \. \. in Hg	SS-3:	2.5 in H2O
AIR FLOW FIELD SCREENING		TELEGORIERSE) (PROGRAMMANIANA)
Background Outside SVE Shed: NW		Detector Tube Readings
Background Inside SVE Shed: NY		Pre Carbon YES NO ppm
Pre Carbon Discharge: 9,7		Mid Carbon YES (NO)ppm
Mid Carbon Discharge: 3.8		Post Carbon YES (NO)ppm
Post Carbon Discharge:	ppm	
Additional Notes: Duplicate Saughe from In-Live Filter change Saugher screened ul	Pire Coule	son location Samples to WHA for GC.
In-Live tetter change	7 (can co.
Sangles screened ul	to muo	+ CALH OFFICE

Date of Analysis:6/28/2013 ICAL Curve Date:1/12/2013

Client: File No: GMCH Lockport 36795-010

Sample Type: BLDG-10 SVE/SSD

HAH DMC

Co	Conc.	REMARKS
0,35 ND ND ND	ppmV ppmV ppmV	

		5	Target	Time	Time	Resp.			
		CASRN	Compound	(min.)	(min.)	(Area Cts.)			
		74-82-8	methane	5.024	4,680	1,4539	0.35	ppmv	
		75-01-4	vinyl chloride	8.072			ND	ppmV	
		75-35-4	1,1-dichloroethene	15,150	l		ND	ppmV	
ID:	Pre-Carbon	75-09-2	methylene chloride	15.444			ND	ppmV	
Date:	6/26/2013	156-60-5	trans 1,2-dichloroethene	17,746	[ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18_185			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883	ľ		ND	ppmV	
		67-66-3	chloroform	20 437	l		ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22,281		l.	ND	ppmV	
		71-43-2	benzene	23.071	l		ND	ppmV	
		79-01-6	trichloroethene	24,775			ND	ppmV	
		108-88-3	tofuene	27,755			ND	ppmV	
		127-18-4	letrachloroethene	29,631	29.581	47.5626	7.60	ppmV	
		100-41-4	elhyibenzene	31,355			ND	ppmV	
		18-38-3/106-42	m/p-xylene	31,622			ND	ppmV	
		95-47-8	o-xylene	32.497	l		ND	ppmV	
			Unknown TPH				ND	Vmqq	
			total volatiles			49	7.9	ppmV	
							F		
		F BB N		Cal Pat	Pat	Det	100	W 14	

Cal. Ret.

Sampl	le identification		Target	Cal. Ret. Time	Ret. Time	Det. Resp.	Conc.	REMARKS
		CASRN	Compound	(min.)	(min.)	(Area Cts.)		
		74-82-8	methane	5 024	4.608	1,8971	0.46 ppmV	
		75-01-4	vinyl chloride	8_072			ND ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND ppmV	
ID:	Mid-Carbon	75-09-2	methylene chloride	15,444			ND ppmV	
Date:	6/26/2013	156-60-5	Irans 1,2-dichloroethene	17,746			ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883	20,107	5.0436	0,71 ppmV	
		67-66-3	chloroform	20,437	5000	1.2	ND ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND ppmV	
		71-43-2	benzene	23.071			ND ppmV	
		79-01-6	trichloroethene	24,775	24,599	11,4386	1,62 ppmV	
		108-88-3	toluene	27,755			ND ppmV	
		127-18-4	letrachloroethene	29.631	29.465	7.8951	1.26 ppmV	
		100-41-4	ethylbenzene	31,355		0.00	ND ppmV	
		18-38-3/106-42	m/p-xylene	31.622			ND ppmV	
		95-47-6	o-xylene	32.497			ND ppmV	
			Unknown TPH				ND ppmV	
			total volatiles			26	4.0 ppmV	

Sample	e identification		Target	Cal. Ret. Time	Ret. Time	Det. Resp.	Co	onc.	REMARKS
		CASRN	Compound	(mln.)	(min.)	(Area Cts.)		-	
		74-82-8	methane	5,024	4.560	18,4134	4.43	ppmV	
		75-01-4	vinyl chloride	8,072			ND	ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND	ppmV	
ID:	Post-Carbon	75-09-2	methylene chloride	15,444			ND	ppmV	
Date:	6/26/2013	156-80-5	trans 1,2-dichloroethene	17,746			ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883		1	ND	ppmV	
		67-66-3	chloroform	20,437			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND	ppmV	
		71-43-2	benzene	23,071			ND	ppmV	
		79-01-6	trichloroethene	24,775			ND	ppmV	
		108-88-3 127-18-4	toluene letrachloroethene	27,755 29,631			ND UN	ppmV ppmV	
		100-41-4	ethylbenzene	31,355			ND	Vmqq	
		8-38-3/106-42	m/p-xylene	31,622			ND	ppmV	
		95-47-6	o-xylene	32,497			ND	ppmV	
			Unknown TPH		1.5		ND	Vmqq	
		10	total volatiles			18	4.4	Vmqq	

Sample	e Identification		Target	Cal. Ret. Time	Ret. Time	Det. Resp.	Conc	REMARKS
		CASRN	Compound	(min.)	(min.)	(Area Cts.)		
		74-82-8	methane	5 024	4.576	16,9644	4.08 ppmV	
		75-01-4	vinyl chloride	8,072			ND ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND ppmV	
ID:	DUP	75-09-2	methylene chloride	15,444			ND ppmV	
Date:	6/26/2013	158-60-5	trans 1,2-dichloroethene	17,746			ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND ppmV	
		67-66-3	chloroform	20,437			ND ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND ppmV	
		71-43-2	benzene	23,071			ND ppmV	
		79-01-6	trichloroethene	24,775			ND ppmV	
		108-88-3	toluene	27.755			ND ppmV	
		127-18-4	letrachioroethene	29.631	29.435	51,5535	8.24 ppmV	
		100-41-4	ethylbenzene	31,355	160	1075	ND ppmV	
		18-38-3/106-42	m/p-xylene	31.622	i'		ND ppmV	
		95-47-6	o-xylene	32,497			ND ppmV	
			Unknown TPH				ND ppmV	
			total volatiles		*	69	12.3 ppmV	

OPERATION, MAINTENANCE AND MONTORING PLAN

SVE/SSD SYSTEM GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Chris Boron		Time	On-Site: \32	2	Time Off-Site:	1430	<u> </u>
Date: 7/29/13			Blower Run Time		hours VD	OF: 60	hertz
SYSTEM STATUS							
SVE System Operating:	(YES) NO	If no:					
Alarm lights off:	(YES) NO	If no:					
Autodialer Alarm On:	YES (NO)	If Yes:					
	Posti	on of Swing P	anel HOA Switc	hes:		0	
Control Power Switch ON	OFF	SVE Blower S	Switch	HAND	OFF	(AUTO)	
M/S Effluent Pump Switch HAND	OFF AUTO	Heat Exchang	ger Switch	HAND	OFF	(AUTO)	
Heat Exchanger Operating	YES NO	If no:					
SVE System appear to be operating properly?	YES NO	If no:				,	150
Moisture Separator Tank Level: (Empty)	1/4 Full	1/2 Fu	ll 3/4 Full	Full	Volume T	ranfered:	gals
SYSTEM MONITORING READINGS						, , , , , , , , , , , , , , , , , , ,	
Vacuum Gauge Pre-Inline Filter:	4.5	in Hg	System Monito	ring Notes:			
Vacuum Gauge Post-Inline Filter:	4.5	in Hg					
Temperature on Discharge Silencer:	110	°F					
Temperature after Heat Exchanger:	90	°F					
Pressure After Heat Exchanger	18	in H ₂ O					
Pressure Before Heat Exchanger	24	in H ₂ O	Flow Rate Base	d on Pressure G	Sauge: 342	cfm	
Pressure Magnehelic Gauge:	2.75	in H₂O	Flow Rate Base	d on Vacuum Ga	auge: 316	cfm	
Vacuum Magnehelic Gauge:	>2_	in H ₂ O					
Vacuum Gauge After Manifold:	1.25	in Hg					
EXTRACTION WELL VACUUM GAUGE F	READINGS						
EW -1: \ in Hg	EW-11:		in Hg	Vaccum Gauge	Reading Notes:		
EW-2: _S in Hg	EW-12:		in Hg				
EW-3: (in Hg	EW-13:	1	in Hg				
EW-4: ሬ\ in Hg	EW-14:	1.5	in Hg				
EW-5: 🚄 in Hg	EW-15:	1.25	in Hg				
EW-6: $ extstyle igg(extstyle igg)$ in Hg	EW-16:	1	in Hg				
EW-7: In Hg	EW-17:		in Hg				
EW-8: < \ in Hg	SS-1:	2	in H2O				
EW-9: \.25 in Hg	SS-2:	2	in H2O				
EW-10: \.S in Hg	SS-3:	3	in H2O				
AIR FLOW FIELD SCREENING		r:=:=:=:=:=:=					
Background Outside SVE Shed: (. C			De	etector Tube Rea	dings		
Background Inside SVE Shed: 1.5	ppm		Pre Carbon	YES NO	ppm		
Pre Carbon Discharge: 8.	D ppm		Mid Carbon	YES (NO	ppm		
Mid Carbon Discharge: 0.4	₹ ppm		Post Carbon	YES (NO)	ppm		
Post Carbon Discharge:	† ppm						
Additional Notes: Deplicate from Re Co Sangles sent to H+ K	dan boio 1 Sin G	dim (Sura	ten.				

Date of Analysis:7/30/2013 ICAL Curve Date:1/12/2013

MGN

DMC

Client: File No: Sample Type: GM Lockport 36795-033 BLDG-10 SVE/SSD

Cal. Ret. Time (min.) 5.024 Sample Identification Ret. Time (min.) 4.800 REMARKS Det. Resp. (Area Cts.) 2,0763 Conc. Target 74-82-6 75-01-4 75-35-4 75-08-2 156-60-5 75-34-3 156-59-2 67-66-3 71-43-2 79-01-6 108-88-3 127-18-4 100-41-4 18-38-3/106-42 95-3/106-42 Compound ppm vinyl chloride
1,1-dichloroethene
methylene chloride
trans 1,2-dichloroethene
1,1-dichloroethene
cis 1,2-dichloroethene 8.072 15,150 15,444 17,746 18,185 19,883 20,437 22,281 23,071 24,775 27,755 29,631 31,355 31,622 32,497 ID: Date: Time: Pre-Carbon 7/29/2013 chloroform 1,1,1-trichloroethane benzene benzene
trichloroethene
toluene
tetrachloroethene
elhylbenzene
m/p-xylene
o-xylene
Unknown TPH
total volatiles 29,657 42,2090 ppmV Vmqq

Sample Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (mln.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
ID: Mid-Carbon Date: 7/29/2013 Tirme:	74-82-8 75-01-4 75-35-4 75-09-2 156-60-5 75-34-3 156-59-2 67-66-3 71-45-2 79-01-6 108-88-3 127-18-4 100-41-4 18-38-3/106-42	methane vinyl chloride 1,1-dichloroeihene methylene chloride trans 1,2-dichloroeihene 1,1-dichloroeihene cis 1,2-dichloroeihene chloroform 1,1,1-trichloroeihane benzene trichloroeihene tolueno tetrachloroeihene ethylbenzene m/p-xylene	5,024 8,072 15,150 15,444 17,746 18,185 19,883 20,437 22,281 23,071 24,775 27,755 29,631 31,355 31,622	4,748	1.7304	0.42 ppmV ND ppmV	

Sampl	e Identification	Target CASRN Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS	
		74-82-8	methane	5.024	4.770	15.9923	3,85 ppmV	
		75-01-4	vinyl chloride	8,072			ND ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND ppmV	
ID:	Post-Carbon	75-09-2	methylene chloride	15,444			ND ppmV	
Date:	7/29/2013	156-60-5	trans 1,2-dichloroethene	17,746			ND ppmV	
Time:		75-34-3	1,1-dichforoethane	18,185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND ppmV	
		67-66-3	chloroform	20,437			ND ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND ppmV	
		71-43-2	benzene	23,071			ND ppmV	
		79-01-6	trichloroethene	24,775			ND ppmV	
		108-88-3 12/-18-4	loluene tetrachloroethene	27,755 29,631			ND ppmV ND ppmV	
		100-41-4	ethylbenzene	31.355			ND ppmV	
)8-38-3/106-42	m/p-xylene	31,622			ND ppmV	
		95-47-6	o-xylene	32,497			ND ppmV	
			Unknown TPH				ND ppmV	
			total volatiles			16	3.8 ppmV	

Sample Identification		Target CASRN Compound	Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	methane	5.024	4.740	16,5177	3,97 ppmV	
		75-01-4	vinyl chloride	8.072			ND ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND ppmV	
ID:	DUP	75-09-2	methylene chloride	15.444			ND ppmV	
Date:	7/29/2013	156-60-5	trans 1,2-dichloroethene	17.746			ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND ppmV	
		67-66-3	chloroform	20 437	l i	1	ND ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND ppmV	
		71-43-2	benzeпе	23,071			ND ppmV	
		79-01-6	trichloroethene	24,775			ND ppmV	
		108-88-3	loluene	27,755			NO ppmV	
		127-18-4	tetrachloroethene	29.631	29.604	44,3197	7.08 ppmV	
		100-41-4	elhylbenzene	31,355			ND ppmV	
		18-38-3/106-42	m/p-xylene	31,622			ND ppmV	
		95-47-6	o-xylene	32,497			ND ppmV	
			Unknown TPH				ND ppmV	
			total volatiles			61	11.1 ppmV	

OF LIVATION, MAINTENANCE AND MONITORING FLAN

SVE/SSD SYSTEM GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: C. Borron	Time On-Site: 750 Time Off-Site: 850
Date: 8/25/13	SVE Blower Run Time: 35114 hours VDF: 60 hertz
SYSTEM STATUS	OVE BIOWOTHAIN FIRMS. 4 VY THOUGH VBT. CO. HEIZ
SVE System Operating: YES NO	If no:
Alarm lights off: (YES) NO	If no:
Autodialer Alarm On: YES (NO)	If Yes:
Posti	ion of Swing Panel HOA Switches:
Control Power Switch ON OFF	SVE Blower Switch HAND OFF AUTO
M/S Effluent Pump Switch HAND OFF AUTO	Heat Exchanger Switch HAND OFF AUTO
Heat Exchanger Operating (YES) NO	If no:
SVE System appear to be operating (YES) NO property?	If no:
Moisture Separator Tank Level: (Empty) 1/4 Full	1/2 Full 3/4 Full Full Volume Tranfered: Ogals
SYSTEM MONITORING READINGS	
Vacuum Gauge Pre-Inline Filter: 4,5	in Hg System Monitoring Notes:
Vacuum Gauge Post-Inline Filter: 4.5	in Hg
Temperature on Discharge Silencer:	°F
Temperature after Heat Exchanger: 82	°F
Pressure After Heat Exchanger	in H ₂ O
Pressure Before Heat Exchanger 22	in H ₂ O Flow Rate Based on Pressure Gauge: "342. cfm
Pressure Magnehelic Gauge: 2.7	in H ₂ O Flow Rate Based on Vacuum Gauge: 3\ cfm
Vacuum Magnehelic Gauge: > 2	in H ₂ O
Vacuum Gauge After Manifold: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	in Hg
EXTRACTION WELL VACUUM GAUGE READINGS	
EW -1:	in Hg Vaccum Gauge Reading Notes:
EW-2: in Hg EW-12:	(in Hg
EW-3: \ in Hg EW-13:	in Hg
EW-4:	1.25 in Hg
EW-5: ८(in Hg EW-15:	∖ in Hg
EW-6: in Hg EW-16:	(in Hg
EW-7: (in Hg EW-17:	in Hg
EW-8: \angle in Hg SS-1:	2 in H2O
EW-9: \ in Hg SS-2;	3 in H2O
EW-10: \ . \ S in Hg SS-3:	3 In H2O
AIR FLOW FIELD SCREENING	
Background Outside SVE Shed: 0.3 ppm	Detector Tube Readings
Background Inside SVE Shed: 0.3 ppm	Pre Carbon YES NO ppm
Pre Carbon Discharge: 7.7 ppm	Mid Carbon YES NO ppm
Mid Carbon Discharge: 0 4 ppm	Post Carbon YES NO ppm
Post Carbon Discharge: 0.3 ppm	
Additional Notes:	1 Host Exchanger cooling fins have
Diplicate Sangle From Mid-Co	doon been deared.
Saughes sent to HAA for (Heat Exchanger cooling Fins have been cleaned. Serverning.

Date of Analysis: 8/27/2013 ICAL Curve Date: 1/12/2013

Client: File No:

Sample Type:

GMCH Lockport 36795-033

BLDG-10 SVE/SSD

HAH

DMC

Sampl	e Identification	CASRN	Target Compound	Cal. Ret. Time (mln.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	methane	5.024	4.712	18,1000	4.35 ppmV	
		75-01-4	vinyl chloride	8,072			ND ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND ppmV	
ID:	Pre-Carbon	75-09-2	methylene chloride	15,444			ND ppmV	
Date:	8/26/2013	156-60-5	trans 1,2-dichloroethene	17,746			ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18_185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND ppmV	
		67-66-3	chloroform	20,437			ND ppmV	
		71-55-6	1,1,1-trichloroethane	22.281			ND ppmV	
		71-43-2	benzene	23,071			ND ppmV	
		79-01-6	trichloroethene	24,775			ND ppmV	
		108-88-3	loluene	27,755			ND ppmV	
		127-18-4	letrachloroethene	29,631	29,595	39,4653	6,31 ppmV	
		100-41-4	ethylbenzene	31.355			ND ppmV	
		18-38-3/106-42	m/p-xylene	31.622			ND ppmV	
		95-47-6	o-xylene	32,497			ND ppmV	
			Unknown TPH				ND ppmV	
			total volatiles			58	10.7 ppmV	

Sample Identification		Target CASRN Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS	
		74-82-8 75-01-4	methane	5.024 8.072	4.625	20.4000	4.91 ppmV ND ppmV	
		75-35-4	vinyl chloride 1,1-dichloroethene	15,150				
ID:	Mid-Carbon	75-09-2	methylene chloride	15,150			1 to 1 p p 1 to 1 to 1	
Date:	8/26/2013	156-60-5	trans 1,2-dichloroethene	17,746				
Time:	6/20/2013	75-34-3	1,1-dichloroethane	18.185			The Process	
i iii iio.		156-59-2	cis 1,2-dichloroethene	19.883				
			chloroform					
		67-66-3	1.1.1-trichloroethane	20,437			The Process	
		71-55-6	.,.,.	22,281			ND ppmV	
		71-43-2	benzene	23,071			ND ppmV	
		79-01-6	trichloroethene	24,775			ND ppmV	
		108-88-3	loluene	27,755			ND ppmV	
		127-18-4	tetrachloroethene	29,631			ND ppmV	
		100-41-4	ethylbenzene	31.355			ND ppmV	
		18-38-3/106-42	m/p-xylene	31,622			ND ppmV	
		95-47-6	o-xylene	32,497			ND ppmV	
			Unknown TPH total volatiles			20	ND ppmV	

Sampl	e Identification	CASRN	Target Compound	Cal. Ret. Time (mln.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	methane	5.024	4,649	19.1500	4.61 ppmV	
		75-01-4	vinyl chloride	8 072			ND ppmV	
		75-35-4	1,1-dichloroelhene	15.150			ND ppmV	
ID:	Post-Carbon	75-09-2	methylene chloride	15.444			ND ppmV	
Date:	8/26/2013	156-60-5	trans 1,2-dichloroethene	17,746			ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND ppmV	
		67-66-3	chloroform	20,437			ND ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND ppmV	
		71-43-2	benzene	23,071			ND ppmV	
		79-01-6	trichloroethene	24.775			ND ppmV	
		108-88-3 12/-18-4	toluene Letrachioroethene	27,755 29,631			ND ppmV ND ppmV	
		100-41-4	ethylbenzene	31,355			ND ppmV	
		18-38-3/106-47	т/р-хуІеле	31,622			ND ppmV	
		95-47-6	o-xylene	32.497			ND ppmV	
			Unknown TPH			-	ND ppmV	
			total volatiles			19	4.6 ppmV	

Sample Identification		Target CASRN Compound	Cal. Ret. Time (mln.)	Ret. Time (min.)	Det, Resp. (Area Cts.)	Conc.	REMARKS	
		74-82-8	methane	5.024	4.594	23,1400	557 ppmv	
		75-01-4	vinyl chloride	8-072			ND ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND ppmV	
ID;	DUP	75-09-2	methylene chloride	15,444			ND ppmV	
Date:	8/26/2013	156-60-5	trans 1,2-dichloroethene	17.746			ND ppmV	
ľlme:		75-34-3	1,1-dichloroethane	18,185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883			ND ppmV	
		67-66-3	chloroform	20.437			ND ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND ppmV	
		71-43-2	benzene	23.071	23.154	2.5050	0.11 ppmV	
		79-01-6	trichloroethene	24,775			ND ppmV	
		108-88-3	toluene	27,755			ND ppmV	
		127-18-4	tetrachloroethene	29.631			ND ppmV	
		100-41-4	ethylbenzene	31,355			ND ppmV	
		18-38-3/106-42	m/p-xylene	31_622			ND ppmV	
		95-47-6	o-xylene	32.497			ND ppmV	
			Unknown TPH				ND ppmV	

ROUTINE MONITORING FORM

OPERATION, MAINTENANCE AND MONITORING PLAN SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

, ,						
Name: Aris TSaran	-	Time	On-Site: 1405	Time	Off-Site:	1202
Date: 9/1/2/17		SVE	Blower Run Time: 30	1625 ho	urs VDF:	60 hert
SYSTEM STATUS			order (tall) little.	110		1010
SVE System Operating:	ES NO	If no:				
	ES) NO	If no:				
``	ES (NO)	If Yes:				
0-	Postic	on of Swing P	anel HOA Switches:			
Control Power Switch ON	OFF	SVE Blower S		OFI	- (AUTO
M/S Effluent Pump Switch HAND	FF AUTO	Heat Exchan	ger Switch HAND	OFF	$\overline{}$	AUTO
Heat Exchanger Operating (Y	ES NO	If no:				
SVE System appear to be operating properly?	ES NO	If no:				
Moisture Separator Tank Level Empty	1/4 Full	1/2 Fu	ll 3/4 Full	Full	Volume Tran	fered: 🌘 gals
SYSTEM MONITORING READINGS						
Vacuum Gauge Pre-Inline Filter:	4.5	in Hg	System Monitoring N	lotes:		
Vacuum Gauge Post-Inline Filter:	4.5	in Hg				
Temperature on Discharge Silencer:	(ID	°F				
Temperature after Heat Exchanger:	75	°F				
Pressure After Heat Exchanger	18	in H₂O				
Pressure Before Heat Exchanger	24	in H₂O	Flow Rate Based on F	ressure Gauge:	344	cfm
Pressure Magnehelic Gauge:	スウ	in H ₂ O	Flow Rate Based on V	/acuum Gauge:	316	cfm
Vacuum Magnehelic Gauge:	72	in H₂O				
Vacuum Gauge After Manifold:	1.5	in Hg				
EXTRACTION WELL VACUUM GAUGE RE	ADINGS					
EW -1: (in Hg	EW-11:	ŀ	in Hg Vaccu	m Gauge Read	ing Notes:	
EW-2: 🚄 in Hg	EW-12:	1	in Hg			
EW-3: in Hg	EW-13:	(in Hg			
EW-4:	EW-14:	1.5	in Hg			
EW-5: こし in Hg	EW-15;	(in Hg			
EW-6: 6- in Hg	EW-16:	<u> </u>	in Hg			
EW-7: C\ in Hg	EW-17:	1	in Hg			
EW-8: C(in Hg	SS-1:	2	in H2O			
EW-9: in Hg	SS-2:	3	in H2O			
EW-10: (, 5 in Hg	SS-3:	2.5	in H2O			
AIR FLOW FIELD SCREENING						
Background Outside SVE Shed: 0.3	ppm		Detector	Tube Readings		
Background Inside SVE Shed: 0	ppm		Pre Carbon YES	NO	ppm	
Pre Carbon Discharge: 6 . L	ppm		Mid Carbon YES	(NO)	ppm	
Mid Carbon Discharge: O e S	ppm		Post Carbon YES	NO	ppm	
Post Carbon Discharge:	ppm					
Additional Notes:	^	_				
Deplicate sample Samples sent to His	fun	Pre L	euloon			
Samples sent to Hi	th for	GL S	creming.			

Date of Analysis: 9/16/2013 ICAL Curve Date: 1/12/2013

Client: File No: Sample Type: BLDG-10 SVE/SSD

GMCH Lockport 36795-010

HAH

DMC

Sampl	e identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Co	nc.	REMARKS
		74-62-6	methane	5,024	4,720	3,0400	0,73	ppmV	
		75-01-4	vinyl chloride	8,072			ND	ppm∨	
		75-35-4	1,1-dichloroethene	15,150			ND	ppmV	
ID:	Pre-Carbon	75-09-2	methylene chloride	15,444			ND	ppmV	
Date:	9/18/2013	156-60-5	trans 1,2-dichloroethene	17,746			ND	ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND	ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND	ppmV	
		67-66-3	chloroform	20,437			ND	ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND	ppmV	
		71-43-2	benzene	23,071			ND	ppmV	
		79-01-6	trichloroelhene	24,775			ND	ppm∨	
		108-88-3	toluene	27,755	27,710	1,4438	0,04	ppmV	
		127-18-4	tetrachloroethene	29,631	29.576	42,3038	6.76	ppmV	
		100-41-4	ethylbenzene	31,355			ND	ppmV	
		18-38-3/106-42	m/p-xylene	31,622			ND	ppmV	
		95-47-6	o-xylene	32,497		V.	ND	ppmV	
			Unknown TPH				ND	Vmqq	
			total volatiles			47	7.5	ppmV	

Sample Identification		Target CASRN Compound	Cal. Ret. Time (min.)	Time Re (min.) (Area	Det. Resp. (Area Cts.)	Conc.	REMARKS	
		74-82-8	methane	5,024	4,673	2,6900	0,65 ppmV	
		75-01-4	vinyl chloride	8.072			ND ppmV	
		75-35-4	1,1-dichloroelhene	15,150			ND ppmV	
ID:	Mid-Carbon	75-09-2	methylene chloride	15,444			ND ppmV	
Date:	9/16/2013	156-60-5	trans 1,2-dichloroethene	17,746			ND ppmV	
Time:		75-34-3	1,1-dichloroelhane	18,185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883			ND ppmV	
		67-66-3	chloroform	20,437			ND ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND ppmV	
		71-43-2	benzene	23,071			ND ppmV	
		79-01-6	trichloroethene	24,775			ND ppmV	
		108-88-3	toluene	27.755			ND ppmV	
		127-18-4	tetrachloroethene	29.631			ND ppmV	
		100-41-4	ethylbenzene	31,355			ND ppmV	
)8-38-3/106-42	m/p-xylene	31.622			ND ppmV	
		95-47-6	o-xylene	32,497			ND ppmV	
			Unknown TPH	52,701			ND ppmV	

Sampi	le identification	CASRN	Target Compound	Cal. Ret. Time (mln.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
ID: Date: Time:	Post-Carbon 9/16/2013	74-82-8 75-01-4 75-35-4 75-09-2 156-60-5 75-34-3 156-59-2 67-66-3 71-55-6 71-43-2 79-01-6 108-88-3 12/-18-4	methane vinyl chloride 1,1-dichloroethene methylene chloride trans 1,2-dichloroethene 1,1-dichloroethane cis 1,2-dichloroethene chloroform 1,1,1-trichloroethane benzene tichloroethene toluene tetrachloroethene ethylbenzene	5.024 6.072 15.150 15.444 17.746 18.185 19.883 20.437 22.281 23.071 24.775 27.755 29.631 31.355	4,685	1.9400	0.47 ppmV ND ppmV	
)8-38-3/106-42 95-47-6	m/p-xylene o-xylene Unknown TPH	31,622 32,497			ND ppmV ND ppmV ND ppmV	

Sample	e Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	methane	5.024	4.673	2,2200	0.53 ppmV	
		75-01-4	vinyl chloride	8.072			ND ppmV	
		75-35-4	1,1-dichloroethene	15.150			ND ppmV	
ID:	DUP	75-09-2	methylene chloride	15,444			ND ppmV	
Date:	9/16/2013	156-60-5	trans 1,2-dichloroethene	17-746	l .		ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18 185	l .		ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883	l .		ND ppmV	
		67-66-3	chloroform	20.437	l .		ND ppmV	
		71-55-6	1,1,1-trichforoethane	22 281	l .		ND ppmV	
		71-43-2	benzene	23.071	l .		ND ppmV	
		79-01-6	trichloroethene	24.775	l .		ND ppmV	
		108-88-3	toluene	27,755	l .		ND ppmV	
		127-18-4	tetrachloroethene	29 631	29.550	39.6268	6,33 ppmV	
		100-41-4	ethylbenzene	31.355	- W	1.00	ND ppmV	
		18-38-3/106-42	m/p-xylene	31.622	1		ND ppmV	
		95-47-6	o-xylene	32.497	I		ND ppmV	
			Unknown TPH				ND ppmV	
			total volatiles			42	6.9 ppmV	

OPERATION, MAINTENANCE AND MONITORING PLAN SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: C. Bovon		Time On-Site: 🐧	300	Time Off-Sit	te: 1430	
Date: 10/22/13		SVE Blower Run		HOOR hours	VDF: 6D	 hertz
SYSTEM STATUS		OVE BIOWEI I (all	Time.	TO THOUS	VDI.	Heriz
SVE System Operating:	(YES) NO	f no:				
Alarm lights off:	(YES) NO	f no:				
Autodialer Alarm On:	YES (NO)	f Yes:				
	Postic	of Swing Panel HOA S	Switches:			
Control Power Switch	OFF	VE Blower Switch	HAND	OFF	(AUTO)	
M/S Effluent Pump Switch HAND	OFF AUTO	leat Exchanger Switch	HAND	OFF	(AUTO)	
Heat Exchanger Operating	(YES) NO	f no:				
SVE System appear to be operating properly?	YES NO	no:				
Moisture Separator Tank Level: Empty	1/4 Full	1/2 Full 3/4	Full	Full Volu	ıme Tranfered:	gals
SYSTEM MONITORING READINGS						
Vacuum Gauge Pre-Inline Filter:	4.5	Hg System Me	onitoring Note	s:		
Vacuum Gauge Post-Inline Filter:	5.0	ı Hg				
Temperature on Discharge Silencer:	(00)	F				
Temperature after Heat Exchanger:	70	F				
Pressure After Heat Exchanger	18	1 H ₂ O				
Pressure Before Heat Exchanger	23	ı H₂O Flow Rate	Based on Press	sure Gauge: 34	₹ S cfm	
Pressure Magnehelic Gauge:	2.7	ı H₂O Flow Rate	Based on Vacu	um Gauge: 🌂	(L cfm	
Vacuum Magnehelic Gauge:	72	1 H ₂ O				
Vacuum Gauge After Manifold:	1.5	ı Hg				
EXTRACTION WELL VACUUM GAUGE I	READINGS					
EW -1:	EW-11:	(in Hg	Vaccum G	Sauge Reading No	otes:	
EW-2; \ in Hg	EW-12:	(in Hg				
EW-3: In Hg	EW-13:	\ in Hg				
EW-4:	EW-14:	l.5 in Hg				
EW-5: と\ in Hg	EW-15:	in Hg				
EW-6: ム(in Hg	EW-16:	t in Hg				
EW-7: د (in Hg	EW-17:	\ in Hg				
EW-8: ム(in Hg	SS-1:	2 in H2O				
EW-9: \ in Hg	SS-2:	2.5 in H20				
EW-10: L-S in Hg	SS-3:	2 in H2O				
AIR FLOW FIELD SCREENING						
Background Outside SVE Shed: 🚶 , 🦞	ppm		Detector Tub	e Readings		
Background Inside SVE Shed: 2.7	ppm	Pre Carbor	YES	NO 4 ppi	m	
Pre Carbon Discharge: 영고		Mid Carbor	1 (YES)	NO 0.5 ppi	m	
Mid Carbon Discharge: 2.5		Post Carbo	n YES (NO ppi	m	
Post Carbon Discharge: \.7						
Additional Notes: Deplicate sample from Samples sent to H+	~ Mrg (arbon locati	ion.			
Samples sent to HA	A for G	-Screen.				

Date of Analysis:10/28/2013 ICAL Curve Date:1/12/2013 GMCH Lockport 36795-010

Client: File No: BLDG-10 SVE/SSD Sample Type:

DMC

HAH

Sampl	e Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	methane	5 024	4,841	20,8000	5,00 ppmV	
		75-01-4	vinyl chloride	8.072			ND ppmV	
		75-35-4	1,1-dichloroethene	15,150		16	ND ppmV	
ID:	Pre-Carbon	75-09-2	methylene chloride	15,444			ND ppmV	
Date:	10/22/2013	156-60-5	trans 1,2-dichloroethene	17,746			ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND ppmV	
		67-66-3	chloroform	20,437		1	ND ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND ppmV	
		71-43-2	benzene	23.071			ND ppmV	
		79-01-6	trichloroethene	24,775			ND ppmV	
		108-88-3	toluene	27,755			ND ppmV	
		127-18-4	tetrachloroethene	29,631	29,745	29_0253	4.64 ppmV	
		100-41-4	ethylbenzene	31,355			ND ppmV	
		18-38-3/106-42	m/p-xylene	31.622			ND ppmV	
		95-47-6	o-xylene	32,497		l l	ND ppmV	
			Unknown TPH				ND ppmV	
			total volatiles			50	9.6 ppmV	

	74-82-8		(mln.)	Time (min.)	Resp. (Area Cts.)	REDVEN I	3.45,33
		methane	5 024	4,792	21,7196	5.22 ppmV	
	75-01-4	vinyl chloride	8,072			ND ppmV	
	75-35-4	1,1-dichloroethene	15,150			ND ppmV	
Mid-Carbon	75-09-2	methylene chloride	15,444			ND ppmV	
10/22/2013	156-60-5	trans 1,2-dichloroethene	17.746			ND ppmV	
	75-34-3	1,1-dichloroethane	18,185			ND ppmV	
	156-59-2	cis 1,2-dichloroethene	19.883	19.425	2.3555	0.33 ppmV	
	67-66-3	chloroform	20,437	20,318	1,3546	0.46 ppmV	
	71-55-6	1,1,1-trichloroethane	22,281			ND ppmV	
	71-43-2	benzene	23 071			ND ppmV	
	79-01-6	trichloroethene	24,775	24.807	4,9051	0.69 ppmV	
	108-68-3	toluene	27.755				
	127-18-4	Letrachloroethene	29.631				
	100-41-4	ethylbenzene	31.355	13			
)8-38-3/106-42						
	•	Unknown TPH					
		67-66-3 71-55-6 71-43-2 79-01-6 108-88-3 127-18-4 100-41-4	67-68-3 chloroform 71-55-6 71-43-2 benzene 79-01-6 triohloroelhene 108-88-3 127-18-4 terzenboroelhene 100-41-4 18-38-3/106-42 m/p-xylene 95-47-6 o-xylene	67-68-3 chloroform 20,437 71-55-6 1,1,1-tichloroethane 22,281 71-43-2 benzene 23,071 79-01-6 tichloroethane 24,775 108-88-3 toluene 27,755 127-18-4 tetrachloroethane 29,831 100-41-4 ethylbenzene 31,355 18-38-31/106-42 m/p-xylene 31,622	67-68-3 chloroform 20,437 20,318 71-55-6 1,1,1-trichloroethane 22,281 22,011 74-43-2 benzene 23,071 79-01-6 trichloroethene 24,775 24,807 108-86-3 toluene 27,755 127-18-4 tetrachloroethene 29,631 100-41-4 ethylbenzene 31,355 38-38-3106-42 m/p-xylene 31,622	67-68-3 chloroform 20,437 20,318 1,3546 71-55-6 1,1,1-1-tichloroethene 22,281 71-43-2 benzene 23,071 79-01-6 trichloroethene 24,775 24,807 4,6051 108-88-3 toluene 27,755 127-18-4 tetrachloroethene 29,631 100-41-4 ethylbenzene 31,355 16,22	67-68-3 chloroform 20,437 20,318 1,3546 0,46 ppmV 71-55-6 1,1,1-tichloroetlane 22,281 ND ppmV 71-43-2 benzene 23,071 ND ppmV 79-01-6 trichloroetlene 24,775 24,807 4,9051 0,69 ppmV 108-68-3 toluene 27,755 ND ppmV 127-18-4 tetrachloroethene 29,631 ND ppmV 100-41-4 ethylbenzene 31,355 ND ppmV 18-36-31/106-42 m/p-xylene 31,822 ND ppmV N

Sampl	e identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8 75-01-4	methane vinyl chloride	5 024 8 072	4.765	21,7376	5,23 ppmV ND ppmV	
		75-35-4	1,1-dichloroethene	15.150			ND ppmV	
ID:	Post-Carbon	75-09-2	methylene chloride	15_444			ND ppmV	
Date:	10/22/2013	156-60-5	Irans 1,2-dichloroethene	17,746			ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18.185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883			ND ppmV	
		67-66-3	chloroform	20.437	20 294	0,9957	0,34 ppmV	
		71-55-6	1,1,1-trichloroethane	22 281			ND ppmV	
		71-43-2	benzene	23.071			ND ppmV	
		79-01-6	trichloroethene	24,775			ND ppmV	
		108-88-3 127-18-4	toluene tetrachloroethene	27.755 29.631			ND ppmV ND ppmV	
		100-41-4	elhylbenzene	31.355			ND ppmV	
		18-38-3/106-42	m/p-xylene	31,622			ND ppmV	
		95-47-6	o-xylene	32.497			ND ppmV	
			Unknown TPH	- 20			ND ppmV	
			total volatiles			23	5.6 ppmV	

Sample	e Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	methane	5.024	4.757	22,2566	5,35 ppmV	
		75-01-4	vinyl chloride	8,072			ND ppmV	
		75-35-4	1,1-dichloroelhene	15.150			ND ppmV	
ID:	DUP	75-09-2	methylene chloride	15.444			ND ppmV	
Date:	10/22/2013	156-60-5	trans 1,2-dichloroethene	17.746			ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18 185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883			ND ppmV	
		67-66-3	chloroform	20.437	20,265	1 4402	0.49 ppmV	
		71-55-6	1,1,1-trichloroethane	22 281		24	ND ppmV	
		71-43-2	benzene	23.071			ND ppmV	
		79-01-6	trichloroethene	24.775	24.745	6.7374	0.95 ppmV	
		108-88-3	toluene	27.755			ND ppmV	
		127-18-4	letrachloroethene	29.631	30,508	2,3215	0,37 ppmV	
		100-41-4	ethylbenzene	31.355		5,5	ND ppmV	
)8-38-3/106-42	m/p-xylene	31.622			ND ppmV	
		95-47-6	o-xylene	32.497			ND ppmV	
			Unknown TPH	-78.4			ND ppmV	
			total volatiles			33	7.2 ppmV	

OPERATION, MAINTENANCE AND MONITORING PLAN

SVE/SSD SYSTEM GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Tona Bot	alen	Tin	ne On-Site: \S	15 1	ime Off-Site:	1615	
Date:				me: 37547	hours VD	F: 60	horts
SYSTEM STATUS			_ Diowei Ruii III	ile. 3 7 2 7 7	Hours VD	1. 00	hertz
SVE System Operating:	(YES) NO) If no:					
Alarm lights off:	(YES) NO) If no:				· ·	
Autodialer Alarm On:	YES (N	If Yes:					
	P.	stion of Swing	Panel HOA Swi	tches:			
Control Power Switch	ON OF	F SVE Blowe	r Switch	HAND	OFF	(AUTO)	
M/S Effluent Pump Switch	HAND (OFF) AU	O Heat Excha	anger Switch	HAND O	FF	(AUTO)	
Heat Exchanger Operating	(YES) NO) If no:					
SVE System appear to be operating properly?	g YES NO) If no:					
Moisture Separator Tank Level: (E	Empty 1/4 I	- - ull 1/2 l	Full 3/4 Fu	ll Full	Volume Ti	ranfered:	gals
SYSTEM MONITORING READING	SS						
Vacuum Gauge Pre-Inline Filter:	4.25	in Hg	System Moni	toring Notes:			
Vacuum Gauge Post-Inline Filter:	5	in Hg					
Temperature on Discharge Silence	er: [[]	°F					
Temperature after Heat Exchanger	73	°F					
Pressure After Heat Exchanger	(8	in H₂O					
Pressure Before Heat Exchanger	22	in H₂O	Flow Rate Bas	sed on Pressure Gar	uge: 338	cfm	
Pressure Magnehelic Gauge:	2.6	in H₂O	Flow Rate Bas	sed on Vacuum Gau	ige: 308	cfm	
Vacuum Magnehelic Gauge:	>2	in H₂O					
Vacuum Gauge After Manifold:	1	in Hg					
EXTRACTION WELL VACUUM GA	AUGE READINGS						
EW -1: 👛 (in	n Hg EW-1	1: (in Hg	Vaccum Gauge R	teading Notes:		
EW-2: \ , \ in	n Hg EW-1	2: ∠∖	in Hg				
EW-3: ∠\ in	n Hg EW-1	3: ८(in Hg				
EW-4: <= (in	n Hg EW-1	4: (-(in Hg				
EW-5: 🚄 (in	n Hg EW-1	5: (in Hg				
EW-6: <√ in	n Hg EW-1	6: (in Hg				
EW-7: ८(in	n Hg EW-1	7: ८(in Hg				
EW-8: ∠\ in	n Hg SS-1:	1.5	in H2O				
EW-9: \ in	n Hg SS-2:	2.5	in H2O				
EW-10: \.2 in	n Hg SS-3:	2	in H2O				i
AIR FLOW FIELD SCREENING							
Background Outside SVE Shed:	0.7 ppm		[Detector Tube Readi	ings		
Background Inside SVE Shed:	O.B ppm		Pre Carbon	YES NO_	ppm		
Pre Carbon Discharge:	4.4 ppm		Mid Carbon	YES NO_	ppm		
Mid Carbon Discharge:	(D ppm		Post Carbon	YES (NO)_	ppm		
HOSTON.	0.4 ppm						
Additional Notes: Deplicate sample co Samples sent to 1	Maded from	~ M.d~	Carton				
soular soul to	HILL IN		w.				

Client: File No:

GMCH Lockport 36795-010

Sample Type: BLDG-10 SVE/SSD Date of Analysis: 12/6/2013 ICAL Curve Date:1/12/2013

НАН

DMC

Sampl	e Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	methane	5.024	4,740	28,4156	6,83 ppmV	
		75-01-4	vinyl chloride	8.072			ND ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND ppmV	
ID:	Pre-Carbon	75-09-2	melhylene chloride	15.444			ND ppmV	
Date:	12/5/2013	156-60-5	trans 1,2-dichloroethene	17,746			ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND ppmV	
		67-66-3	chloroform	20,437			ND ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND ppmV	
		71-43-2	benzene	23,071			ND ppmV	
		79-01-6	trichloroethene	24,775			ND ppmV	
		108-88-3	toluene	27.755	27,780	1,6730	0.05 ppmV	
		127-18-4	tetrachloroethene	29,631	29,655	33,6662	5,38 ppmV	
		100-41-4	ethylbenzene	31,355			ND ppmV	
		18-38-3/106-42	m/p-xylene	31,622			ND ppmV	
		95-47-6	o-xylene	32,497			ND ppmV	
			Unknown TPH		1		ND ppmV	
			total volatiles			64	12.3 ppmV	

Sampl	e Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	methane	5,024	4,725	31,0800	7.48 ppmV	
		75-01-4	vinyl chloride	8,072			ND ppmV	
		75-35-4	1,1-dichloroelhene	15 150			ND ppm∨	
ID:	Mid-Carbon	75-09-2	methylene chloride	15,444			ND ppmV	
Date:	12/5/2013	156-60-5	trans 1,2-dichloroethene	17,746			ND ppmV	
Time:		75-34-3	1,1-dichloroelhane	18,185			ND ppmV	
		156-59-2	cis 1,2-dichloroelhene	19,883	19,387	0,5952	0,08 ppmV	
		67-66-3	chloroform	20,437	20,280	1,0975	0,37 ppmV	
		71-55-6	1,1,1-trichloroethane	22.281	1.1		ND ppmV	
		71-43-2	benzene	23,071			ND ppmV	
		79-01-6	trichloroethene	24,775	24,775	3,0407	0,43 ppmV	
		108-88-3	toluene	27.755			ND ppmV	
		127-18-4	letrachloroethene	29,631	29,651	1,3847	0,22 ppmV	
		100-41-4	ethylbenzene	31,355			ND ppmV	
		18-38-3/106-42		31,622			ND ppmV	
		95-47-6	o-xylene	32,497		ll,	ND ppmV	
			Unknown TPH	- 00			ND ppmV	
			total volatiles			37	8.6 ppmV	

ost-Carbon 12/5/2013	74-82-8 75-01-4 75-35-4 75-09-2	methane vinyl chloride 1,1-dichloroethene methylene chloride	5,024 8,072 15,150	4,746	32.5800	7.84 ppmV ND ppmV	
	75-35-4 75-09-2	1,1-dichloroethene	15,150				
	75-09-2						
		methylene chloride			1	ND ppmV	
12/5/2013	450.00.5	mentylene chionae	15,444		1	ND ppmV	
	156-60-5	trans 1,2-dichloroethene	17,746			ND ppmV	
	75-34-3	1,1-dichloroethane	18,185			ND ppmV	
	156-59-2	cis 1,2-dichloroethene	19,883		1	ND ppmV	
	67-66-3	chloroform	20,437			ND ppmV	
	71-55-6	1,1,1-trichloroethane	22.281			ND ppmV	
	71-43-2	benzene	23,071			ND ppmV	
	79-01-6	trichloroethene	24.775			ND ppmV	
	108-88-3 127-18-4	tofuene tetrachioroethene	27,755 29,631			ND ppmV ND ppmV	
	100-41-4	ethylbenzene	31,355	1	1	ND ppmV	
	18-38-3/106-42	m/p-xylene	31,622			ND ppmV	
	95-47-6	o-xylene	32,497		1	ND ppmV	
		Unknown TPH			l	ND ppmV	
		79-01-6 108-88-3 127-18-4 100-41-4)8-38-3/106-42	79-01-6 trichloroethene 108-88-3 toluene 12/-18-4 letrachloroethene 100-41-4 eitrylbenzene 18-38-3/106-42 m/p-xylene 95-47-6 o-xylene	79-01-6 trichloroethene 24,775 108-88-3 toluene 27,755 12/-18-4 letrachloroethene 29,931 100-41-4 elhylbenzene 31,355 18-38-3/106-42 m/p-xylene 31,622 95-47-6 o-xylene 32,497 Unknown TPH	79-01-6 trichloroethene 24,775 108-88-3 12/-18-4 toluene 27,755 112/-18-4 teltrachioroethene 100-41-4 elhylbenzene 31,355 18-38-3/106-42 m/p-xylene 31,622 05-47-6 o-xylene 32,497 Unknown TPH	79-01-6 trichloroethene 24,775 108-88-3 12/-18-4 teltrachloroethene 29,831 100-41-4 elhylbenzene 31,355 18-38-3/106-42 m/p-xylene 31,622 95-47-6 o-xylene 32,497 Unknown TPH	79-01-6 trichloroethene 24,775 ND ppmV 108-88-3 toluene 27,755 ND ppmV 12/-18-4 tetrachioroethene 29,831 ND ppmV 100-41-4 ethyloene 31,355 ND ppmV 10-41-4 ethyloene 31,355 ND ppmV 18-38-3/106-42 m/p-xylene 31,622 ND ppmV 95-47-6 0-xylene 32,497 ND ppmV ND ppmV ND ppmV ND ppmV ND ppmV ND ppmV

Sample	e Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	methane	5,024	4,732	28,7000	6.90 ppmV	
		75-01-4	vinyl chloride	8_072			ND ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND ppmV	
ID:	DUP	75-09-2	methylene chloride	15,444			ND ppmV	
Date:	12/5/2013	156-60-5	trans 1,2-dichloroethene	17.746			ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883	W 2577		ND ppmV	
		67-66-3	chloroform	20,437	20,288	1,0297	0.35 ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND ppmV	
		71-43-2	benzene	23.071			ND ppmV	
		79-01-6	trichloroethene	24.775	24,767	3,4100	0.48 ppmV	
		108-88-3	loluene	27,755			ND ppmV	
		127-18-4	tetrachloroethene	29 631	29.632	1,7500	0.28 ppmV	
		100-41-4	ethylbenzene	31.355	150	100	ND ppmV	
		18-38-3/106-42		31,622		li i	ND ppmV	
		95-47-6	o-xylene	32,497			ND ppmV	
			Unknown TPH				ND ppmV	
			total volatiles			35	Vmnn 0.8	

SVE/SSD SYSTEM

GM COMPONENTS HOLDINGS, LLC LOCKPORT, NEW YORK

Name: Tom Bohlen		Time On-Site: 930 Time Off-Site: 030
Date: 12/30/13		SVE Blower Run Time: \$8,074 hours VDF: 60 hel
SYSTEM STATUS		SVE DIOWEI RUIT TIME. SOLVET TIOUIS VOI TIOUIS
	ES) NO	If no:
<u> </u>	ES NO	If no:
	ES (NO)	If Yes:
-		tion of Swing Panel HOA Switches:
Control Power Switch (ON)	OFF	
	FF) AUTO	Y A
	S) NO	If no:
	NO	If no:
Moisture Separator Tank Level: Empty)	1/4 Full	ıll 1/2 Full 3/4 Full Full Volume Tranfered: 🗘 gal
SYSTEM MONITORING READINGS		· · · · · · · · · · · · · · · · · · ·
Vacuum Gauge Pre-Inline Filter:	2	in Hg System Monitoring Notes:
Vacuum Gauge Post-Inline Filter:	4.3	in Hg
Temperature on Discharge Silencer:	109	°F
Temperature after Heat Exchanger:	74	°F
Pressure After Heat Exchanger	17	in H ₂ O
Pressure Before Heat Exchanger	21	in H ₂ O Flow Rate Based on Pressure Gauge: "\$44 cfm
Pressure Magnehelic Gauge:	2.7	in H ₂ O Flow Rate Based on Vacuum Gauge: "3\
Vacuum Magnehelic Gauge:	12	in H ₂ O
Vacuum Gauge After Manifold:	l	in Hg
EXTRACTION WELL VACUUM GAUGE REA	ADINGS	
EW -1:	EW-11:	in Hg Vaccum Gauge Reading Notes:
EW-2: (,\ in Hg	EW-12;	: (in Hg
EW-3: l in Hg	EW-13:	: حـ(in Hg
EW-4: د ا in Hg	EW-14:	: \.\ in Hg
EW-5: د in Hg	EW-15:	: (in Hg
EW-6: 💪 in Hg	EW-16:	: \ in Hg
EW-7: ᠘ in Hg	EW-17:	: 스\ in Hg
EW-8: 4 in Hg	SS-1:	1.5 in H2O
EW-9: \ in Hg	SS-2:	2_ in H2O
EW-10: \.7_ in Hg	SS-3:	2 in H20
AIR FLOW FIELD SCREENING		PRODUCTION
Background Outside SVE Shed: 0.7	ppm	Detector Tube Readings
Background Inside SVE Shed: 0.7	ppm	Pre Carbon YES (NO)ppm
Pre Carbon Discharge: 4.9	ppm	Mid Carbon YES NOppm
Mid Carbon Discharge: 0.7	ppm	Post Carbon YES (NO)ppm
Post Carbon Discharge:	ppm	
Additional Notes: Diphrate sayple collect	now bu	n Pre-Carbon Location. GC Screening
Samples sent to H+1	4 for	GC Screening

Client: File No: GM Lockport 38795-010

Sample Type:

BLDG-10 SVE/SSD

Date of Analysis:12/31/2013 ICAL Curve Date:1/12/2013

нан

DMC

Sample	e Identification	CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Солс.	REMARKS
_		74-82-8 75-01-4 75-35-4	methane vinyl chloride 1,1-dichloroelhene	5.024 8.072 15.150	4,842	19,4700	ND ppmV ND ppmV ND ppmV	
ID: Date:	Pre-Carbon 12/30/2013	75-09-2 156-60-5	methylene chloride trans 1,2-dichloroethene	15.444 17.746			ND ppmV ND ppmV	
lime:		75-34-3 156-59-2	1,1-dichloroethane cis 1,2-dichloroethene	18,185 19,883			ND ppmV ND ppmV	
		67-66-3 71-55-6	chloroform 1,1,1-trichloroethane	20,437 22,281			ND ppmV ND ppmV	
		71-43-2 79-01-6	benzene trichloroethene	23,071 24,775			ND ppmV ND ppmV	
		108-88-3 127-18-4	loluene letrachloroethene	27.755 29.631	29,768	18,4864	ND ppmV 2,95 ppmV	
		100-41-4 08-38-3/106-42-	ethylbenzene	31_355	20,,00	10,1007	ND ppmV	
		95-47-6	m/p-xylene o-xylene Unknown TPH	31,622 32,497			ND ppmV ND ppmV ND ppmV	

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	methane	5.024	4,814	18,7900	4.52 ppmV	
		75-01-4	vinyl chloride	8,072			ND ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND ppmV	
ID:	Mid-Carbon	75-09-2	methylene chloride	15,444			ND ppmV	
Date:	12/30/2013	156-60-5	trans 1,2-dichloroethene	17,746			ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18_185			ND ppm∨	
		156-59-2	cis 1,2-dichloroethene	19.883			ND ppmV	
		67-66-3	chloroform	20,437	20,364	0,7581	0,26 ppmV	
		71-55-6	1,1,1-trichloroethane	22.281			ND ppmV	
		71-43-2	benzene	23,071			ND ppmV	
		79-01-6	trichloroethene	24.775	24,840	1,5227	0.22 ppmV	
		108-88-3	loluene	27_755			ND ppmV	
		127-18-4	letrachloroethene	29.631	29,699	2.0198	0.32 ppmV	
		100-41-4	ethylbenzene	31_355			ND ppmV	
		08-38-3/106-42-	m/p-xylene	31,622			ND ppmV	
		95-47-6	o-xylene	32,497			ND ppmV	
			Unknown TPH	1.5			ND ppmV	
			total volatiles			23	5.3 ppmV	

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (mln.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	methane	5.024	4.795	17.9700	4.32 ppmV	
		75-01-4	vinyl chloride	8,072			ND ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND ppmV	
ID:	Post-Carbon	75-09-2	methylene chloride	15 444		1	ND ppmV	
Date:	12/30/2013	156-60-5	trans 1,2-dichloroethene	17.746			ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19,883			ND ppmV	
		67-66-3	chloroform	20,437			ND ppmV	
		71-55-6	1,1,1-trichloroethane	22.281			ND ppmV	
		71-43-2	benzene	23,071			ND ppmV	
		79-01-6	trichloroethene	24,775			ND ppmV	
		108-88-3 12/-18-4	loluene tetrachloroethene	27.755 29.631			ND ppmV	
		100-41-4	ethylbenzene	31 355			ND ppmV	
		08-38-3/106-42-	m/p-xylene	31,622			ND ppmV	
		95-47-6	o-xylene	32 497			ND ppmV	
			Unknown TPH				ND ppmV	

Sample Identification		CASRN	Target Compound	Cal. Ret. Time (min.)	Ret. Time (min.)	Det. Resp. (Area Cts.)	Conc.	REMARKS
		74-82-8	methane	5,024	4,821	18,1300	4.36 ppmV	
		75-01-4	vinyl chloride	8,072			ND ppmV	
		75-35-4	1,1-dichloroethene	15,150			ND ppmV	
ID:	DUP	75-09-2	methylene chloride	15 444			ND ppmV	
Date:	12/30/2013	156-60-5	trans 1,2-dichloroethene	17_746			ND ppmV	
Time:		75-34-3	1,1-dichloroethane	18,185			ND ppmV	
		156-59-2	cis 1,2-dichloroethene	19.883			ND ppmV	
		67-66-3	chloroform	20 437			ND ppmV	
		71-55-6	1,1,1-trichloroethane	22,281			ND ppmV	
		71-43-2	benzene	23_071			ND ppmV	
		79-01-6	trichloroethene	24.775			ND ppmV	
		108-88-3	toluene	27.755			ND ppmV	
		127-18-4	tetrachloroethene	29.631	29,703	26,5912	4.25 ppmV	
		100-41-4	ethylbenzene	31,355		- 22	ND ppmV	
		08-38-3/106-42-	m/p-xylene	31,622			ND ppmV	
		95-47-6	o-xylene	32,497			ND ppmV	
			Unknown TPH				ND ppmV	
			total volatiles			45	8.6 ppmV	