

2025 Periodic Review Report

Location:

Remington Rand Building 184 Sweeney Street North Tonawanda, New York NYSDEC BCP Site #C932142

Prepared for:

Gold Wynn Residential, LLC 11 Summer Street Buffalo, New York

LaBella Project No. 2191060

September 9, 2025

Table of Contents

1.0	E	(ECUTIVE SUMMARY	1
1.1		Site Summary	1
1.2		Effectiveness of Remedial Program	2
1.3		Non-Compliance	2
1.4		Recommendations	2
2.0	SI	TE OVERVIEW	2
2.1		Nature and Extent of Contamination – RI Program	2
2.2		Remedial Program	3
3.0	EF	FFECTIVENESS/COMPLIANCE OF THE REMEDIAL PROGRAM	4
4.0	IC	/EC PLAN COMPLIANCE REPORT	4
4.1		Institutional Controls	4
4.2		Engineering Controls	4
4.2	.1	Soil Cover	5
4.2	.2	Sub-Sab Vapor Depressurization System	5
4.3		IC/EC Certification	5
5.0	M	ONITORING PLAN COMPLIANCE REPORT	5
5.1		Soil Cover System Monitoring	5
5.2		Sub-Slab Depressurization System Monitoring	6
5.3		Comparisons with Remedial Objectives	6
5.4		Monitoring Deficiencies	6
5.5		Monitoring Conclusions and Recommendations	7
6.0	Ol	PERATION & MAINTENANCE COMPLIANCE REPORT	7
7.0	C	ONCLUSIONS AND RECOMMENDATIONS	7

FIGURES, TABLES AND APPENDICES

Figures

Figure 1 – Site Location Map

Figure 2 – Site Base Map

Figure 3 – Sampling Locations

Figure 4 - SSDS As-built

Tables

Table 1 - Field Sampling Log

Table 2 - Summary of Analytical Results

Appendix

Appendix 1 – Boundary Survey

Appendix 2 – Site Wide Inspection Form

Appendix 3 – Photographs

Appendix 4 – Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form

Appendix 5 – New York State Department of Environmental Health (NYSDOH) Indoor Air Quality

Questionnaire and Building Inventory Center for Environmental Health

Appendix 6 - Laboratory Analytical Report

1.0 EXECUTIVE SUMMARY

The Remington Rand Building is located at 184 Sweeney Street, City of North Tonawanda, Niagara County, New York and is identified as Block 1 and Lot 21 on the Niagara County Tax Map (SBL # 185.09-1-21), herein after referred to as the "Site." A Site Location Map is included as Figure 1. The Site is a New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site (BCP Site #C932142) and was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index No. B9-0780-08-06. This Periodic Review Report (PRR) is a required element of the approved Site Management Plan (SMP) dated September 2010 and associated addendum dated January 31, 2020, for the Site. This PRR covers the reporting period from May 20, 2024, to May 20, 2025.

1.1 Site Summary

The Site is an approximately 1.9-acre area bounded by Tremont Street to the north, Sweeney Street to the south, New York Central Railroad property to the east, and Marion Street to the west. The boundaries of the Site are more fully described on the ALTA Survey map provided herein in Appendix 1. The 1.9-acre Site includes a slab-on-grade four-story concrete block and brick building. Also, a one-story slab-on-grade brick building adjoins the four-story building to the south. The remainder of the Site is occupied by asphalt/concrete and gravel parking areas with some green space. The Site Building area occupies approximately 1.2 acres of the 1.9-acre Site. A Site Base Map is included as Figure 2.

The following is a summary of the nature and extent of contamination from the Remedial Investigation (RI) and resulting remedial history:

Sub-Slab Vapor Investigation -The sub-slab vapor assessment program resulted in several volatile organic compounds (VOCs) detected in both the indoor/outdoor air samples and in the sub-slab vapor samples. To mitigate the sub-slab vapors in an area of elevated VOCs, a passive sub-slab depressurization system (SSDS) was installed under an Interim Remedial Measures (IRM) with provisions to make the system active (In-line fan installed). The SSDS sample port in the vent stack was sampled per the SMP and associated addendum as part of this periodic inspection and the results are discussed in Section 5.0.

Exterior Soils Investigation - Exterior surface and sub-surface soils exhibited elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and metals that exceeded NYSDEC Part 375 Residential and Restricted Residential Use soil cleanup objectives (SCOs). For the Site to meet Part 375 Restricted Residential Use SCOs, the top two feet of existing soil across the Site, exterior to the Site Building, was removed during the IRM and replaced with clean fill material. The removed soil was disposed off-site at a NYSDEC approved landfill. The majority of this open area was then covered with asphalt (driveways/parking), sidewalks, and minimal additional landscaping.

Sub-Slab Soils Investigation - Sub-slab soils exhibited only a few PAH and metal compounds that slightly exceeded Part 375 Residential and Restricted Residential Use SCOs. Based on the very low level of contamination detected and that the Site Building floor slab was to remain in place for the planned future development, no further remediation was recommended for this area.

Floor Drains/Pits Sediment Investigation – Sediment samples collected from the existing Site Building first floor drain/trench system and elevator pits exhibited concentrations of several metal and PAH compounds that exceeded Part 375 Residential and Restricted Residential Use SOCs. The sediments were removed from the drains/trenches and pits under an IRM and disposed off-site at an approved disposal facility.

Transformers - Transformer sampling conducted as part of the RI indicated that three of the ten existing transformers and both fluid reservoirs were absent of polychlorinated biphenyl (PCB) containing oil. Results from the remaining seven transformers indicated various concentrations of PCBs with the highest concentration detected at 240 parts per million (ppm). Some minor soil staining proximate specific transformers indicated elevated levels of PCBs in the surface-stained areas. Under an IRM, all transformers, contents and impacted soil were removed and disposed of properly.

Upon completion of the IRMs, remnant contamination remained in Site soil below the two-foot cover system. The final remedy for the Site included the establishment of an environmental easement that restricts future development to Restricted Residential Use and the establishment of engineering and institutional controls (IC/ECs) for the Site as stipulated in the SMP.

1.2 Effectiveness of Remedial Program

Based on a recent inspection of the Site and sub-slab air sampling conducted on May 15, 2025, the engineering and institutional controls are in place, are performing properly, and remain effective and protective of public health and the environment.

1.3 Non-Compliance

No areas of non-compliance regarding the major or minor elements of the SMP were identified at the time of the preparation of this PRR.

1.4 Recommendations

Overall, the remedial program is viewed to be effective in achieving the remedial objectives for the Site. No changes to the SMP or the frequency of PRR submissions are recommended at this time.

2.0 SITE OVERVIEW

2.1 Nature and Extent of Contamination – RI Program

Historically, the Site included a lumber yard and shingle manufacturing, including a railroad trolly powerhouse. Lumber operations included coal powered kiln dryers. Wood that was not kiln-dried was surface protected using chemicals in a dip process, spray process or green chain process. Thereafter, the Site was occupied by a carousel and amusement park ride manufacturer, including painting, machining and tooling processes. Following those operations, the Site was then utilized to manufacture computers and other equipment/office supplies. From the mid-1970s to the late 2000s, the Site was utilized by a chemical company, building contractors, warehousing and furniture and cabinetry makers, including at least one former tenant with a history of large quantity hazardous waste generation.

Following completion of Phase I and II Environmental Site Assessments in 2006/2007, sampling of the various media below was completed at the Site in April/May 2009, as part of a RI. References below to PAH and metal compound exceedances, included constituents such as, arsenic, barium, cadmium, chromium, copper, lead, mercury and manganese, and, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a)anthracene, fluoranthene and indeno(1,2,3-cd)pyrene.

The Site Building sub-slab vapor assessment program resulted in several VOC compounds detected in both the indoor/outdoor air samples and in the sub-slab vapor samples. Based on the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in New York State, only one sample had concentrations of various chlorinated solvents indicating follow-up remediation.

The Site Building exterior surface and sub-surface soils analytical results confirmed the results of prior assessments completed on the Site which indicated elevated concentrations of PAHs and metals that exceeded Part 375 Restricted Residential SCOs.

The Site Building sub-slab soils assessment indicated only a few PAH and metal compounds that slightly exceeded Part 375 Restricted Residential SCOs. As the Site Building floor slab was to remain in place for the planned future development, no further remediation was recommended for this area.

Sediment samples collected from the existing Site Building first floor drain/trench system and elevator pits exhibited concentrations of several metal and PAH compounds that exceeded Part 375 Residential and Restricted Residential Use SOCs.

Groundwater assessment indicated that only two metal compounds were detected in two of the unfiltered samples which exceeded the NYSDEC Technical and Operational Guidance Series TOGS 1.1.1 Ambient Water Quality Standards (AWQS). No metal compounds were detected at concentrations exceeding AWQS in the filtered samples.

Since the Site is served by municipal water supply, and groundwater was not planned to be used for the new development, no further action related to groundwater was recommended.

Transformer sampling indicated that three of the ten existing transformers and both fluid reservoirs did not have PCB containing oil. Results from the remaining seven transformers indicated various concentrations of PCBs with the highest being 240 ppm. Some minor soil staining proximate specific transformers indicated elevated levels of PCBs in the surface-stained areas.

2.2 Remedial Program

The Site was remediated in accordance with the remedy selected by the NYSDEC in its decision document dated November 2010. The components of the selected remedy included implementation of IRMs with an Environmental Easement and IC/EC.

<u>IRMs</u>

Based on the findings of the RI program (see above), the following IRMs were completed:

- Installed a SSDS beneath a portion of the ground floor slab of the Site Building (June and August 2010).
- Removed the top two feet of impacted soil from outside the Site Building footprint from across
 the Site and replacement with two feet of clean fill and/or cement/asphalt paving sections (April
 and August 2010).
- Removed sediments and cleaned Site Building floor drains and elevator shafts (April and June 2010).
- Removed and disposed of PCB transformer fluids, transformers/enclosures, and any impacted soil/materials adjacent/below transformers (March 2010).

ICs/ECs

The final remedy for the Site was defined as performing no additional cleanup activities at the Site beyond that which was already performed as IRMs with implementation of ICs and ECs as follows:

- Execution and recording of an Environmental Easement to restrict land use to Restricted Residential Use per NYSDEC Part 375 regulations and prevent future exposure to any contamination remaining at the Site along with restricted use of groundwater.
- Development and implementation of a SMP for long term management of remaining contamination including operation, monitoring and maintenance of the SSDS as required by the Environmental Easement, which includes plans for IC/ECs.

There have been no changes to the selected remedy since remedy selection with the exception of the change of the passive SSDS to an active system in January 2019.

3.0 EFFECTIVENESS/COMPLIANCE OF THE REMEDIAL PROGRAM

There have been no changes or modifications to the implemented remedy (IRMs), with the exception of the activation of the SSDS as discussed above, based on the Site Wide Inspection completed under this PRR. The current Site use effectively meets, and is in compliance with, the ICs/ECs for the Site as discussed in Section 2.0.

4.0 IC/EC PLAN COMPLIANCE REPORT

4.1 Institutional Controls

The Site has a series of ICs in the form of Site restrictions. Adherence to these ICs is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The Site may only be used for Restricted Residential Use provided that the long-term IC/ECs included in the SMP are employed;
- The Site may not be used for a higher level of use, such as Unrestricted Residential Use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC:
- All future activities on the Site that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- The use of the groundwater underlying the Site is prohibited without testing and approval of the NYSDEC and NYSDOH; and,
- Vegetable gardens and farming on the Site are prohibited.

The current Site use meets all the IC requirements. There are no recommendations for changes to the ICs.

4.2 Engineering Controls

The following Engineering Control systems were inspected for compliance to SMP requirements:

4.2.1 Soil Cover

Exposure to remaining contamination in soil/fill at the Site is prevented by a cover system placed over the Site. This cover system is comprised of a minimum of 24 inches of clean soil, asphalt/concrete pavement sections (12 inches minimum depth) and the existing concrete Site Building slab. Before placement of cover material, a geotextile fabric layer was placed as a demarcation between the clean fill and the existing soil. The Excavation Work Plan that appears in Appendix A of the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed and any underlying remaining contamination is disturbed.

The cover system was inspected by LaBella's Abigail Beres on May 15, 2025, and is in place with no apparent disturbances since its initial placement. Additionally, no apparent cracks were observed in the Site Building slab within the area influenced by the SSDS. As such, the cover system appears to be in compliance with the requirements of the SMP. The Site Wide Inspection Form is included in Appendix 2. Photographs taken at the time of the inspection are included in Appendix 3.

4.2.2 Sub-Sab Vapor Depressurization System

A passive SSDS was installed below the first-floor slab in the rear northeast end of the center section of the Site Building, south of the courtyard area and covers the area where historical samples "RR-SA-O3 and RR-SA-O4 were collected. A copy of as-built drawing IRM-O3 from the SMP/FER is included in the Figures Appendix for reference to the locations of the SSDS and historical sampling locations. The system includes sampling port in the vent stack and was designed to allow for conversion to an active SSDS by activating an in-line fan installed during the IRM.

The SSDS was converted to an active system in January 2019 and the in-line fan was confirmed operational by LaBella on May 15, 2025, and the associated caulk seams were observed to be in good condition. To evaluate the effectiveness of the SSDS, the SMP specifies annual sample collection from the vent stack port and indoor air sampling of any unoccupied first-floor tenant space that becomes occupied (for a one-time event) along with one corresponding outdoor ambient air sample. The air samples are to be analyzed for Target Compound List (TCL) VOCs by Environmental Protection Agency (EPA) Method TO-15. Monitoring of the SSDS and associated air sampling is discussed further in Section 5.0. The NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (with updates) was adhered to during the course of this certifying period.

4.3 IC/EC Certification

The IC/EC Certification Form was completed in its entirety as all ICs/ECs are in place for the Site per the SMP. Appendix 4 includes the signed NYSDEC Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form.

5.0 MONITORING PLAN COMPLIANCE REPORT

5.1 Soil Cover System Monitoring

The soil cover was inspected and appears to be in place with no disturbances since its initial placement and is in compliance with the requirements of the SMP. Additionally, no materials were observed to have been imported to the Site during the certifying period.

5.2 Sub-Slab Depressurization System Monitoring

A passive SSDS was installed in the rear northeast end of the center section of the Site Building, south of the courtyard area. The system was made active in January 2019 by activating the in-line fan installed during the IRM. The most recent round of sampling including collection of one sub-slab port sample (SS-1) from the vent stack. According to the January 31, 2020, SMP Addendum (update to the September 2010 SMP), annual PRRs must include at least one port sample from the sub-slab venting system stack in order to confirm the effectiveness of the system, and one outdoor ambient air sample and indoor air sample from any tenant spaces which had become occupied during the applicable reporting period. During this reporting period, none of the empty tenant spaces had become occupied, therefore, no indoor or outdoor air samples were collected. Prior to sample collection, the in-line fan of the SSDS was confirmed to be active. The sample was collected over an approximately 8-hour period at an approximate flow rate of 5.3 milliliters per minute, using a 2.7-liter Summa canister and submitted for laboratory analysis for TCL VOCs by EPA Method TO-15. The parking garage was reportedly heated at the time of sampling. Sampling was conducted in accordance with the sub-slab sampling procedures as specified in the SMP and associated SMP Addendum. The sampling location from the May 2025 sampling event is depicted on Figure 3. Table 1 includes a summary of field sampling information for the most recent sample collected on May 15, 2025. Laboratory results associated with the sub-slab air sample collected during this reporting period (and historical data, dating back to January 2020) are summarized in Table 2.

Based on the laboratory results from the samples collected during this reporting period, several VOCs were detected in the sub-slab vent port sample collected from the vent stack and submitted for analysis. While indoor air samples were not collected during this certifying period, all detected VOC concentrations in the sample port air sample were below sub-slab soil vapor thresholds identified for various constituents in the NYSDOH 2017/2024 Indoor Air Matrices. Further comparison for consideration indicates that the identified VOC concentrations were also below Building Assessment and Survey Evaluation (BASE) database 90th percentile values and/or the NYSDOH Air Matrices for indoor air. A copy of the NYSDOH Indoor Air Quality questionnaire and Building Inventory can be found in Appendix 5.

The results of the May 2024 and May 2025 sampling appear to be generally similar. Based on the results from the sampling event conducted during this reporting period, the SSDS appears to be performing properly and remains effective and protective of public health and the environment. The laboratory analytical report for the May 15, 2025, sample is included in Appendix 6.

5.3 Comparisons with Remedial Objectives

The Site cover system and SSDS monitoring was performed in accordance with the SMP and associated Addendum and included the annual visual inspection of the cover system components and the SSDS, collection of a sub-slab air sample. As described in Section 4.2, the cover system was observed to be intact and functioning as intended, the SSDS is active and operating as intended, and the ECs are continuing to satisfy the remedial objectives for the Site. As summarized in Section 5.2, based on the sampling conducted during this reporting period, the air sample results do not appear to indicate any concern at this time. The SSDS appears to be successfully mitigating vapor intrusion within the Site Building at this time.

5.4 Monitoring Deficiencies

No monitoring deficiencies were noted or experienced during the completion of the PRR.

5.5 Monitoring Conclusions and Recommendations

The procedures utilized to evaluate the performance and effectiveness of the ECs were conducted in accordance with the SMP and associated Addendum and verified that the cover system and SSDS are functioning as intended. No changes to the monitoring plan are recommended.

6.0 OPERATION & MAINTENANCE COMPLIANCE REPORT

An in-line fan has been installed and activated as part of the SSDS in the vent stack near the ceiling of the first floor of the Site Building to draw a vacuum on the system. At the time of the annual inspection the fan was confirmed to be active and caulk seams were inspected and were deemed satisfactory. No operation and maintenance deficiencies were noted during the inspection.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Annual inspection of the Site, and sub-slab port air sampling, from the vent stack, was performed on May 15, 2025, by LaBella as prescribed in the SMP and associated Addendum. As a result of the inspection and sampling, LaBella has determined that the Site is in compliance with all elements of the SMP, including the Engineering & Institutional Control Plan, the Site Monitoring Plan, and the Operations & Maintenance Plan. No deficiencies or failures to satisfy the requirements of the SMP were identified.

As reflected by the signed Institutional and Engineering Controls Certification Form (Appendix 4), LaBella has concluded that:

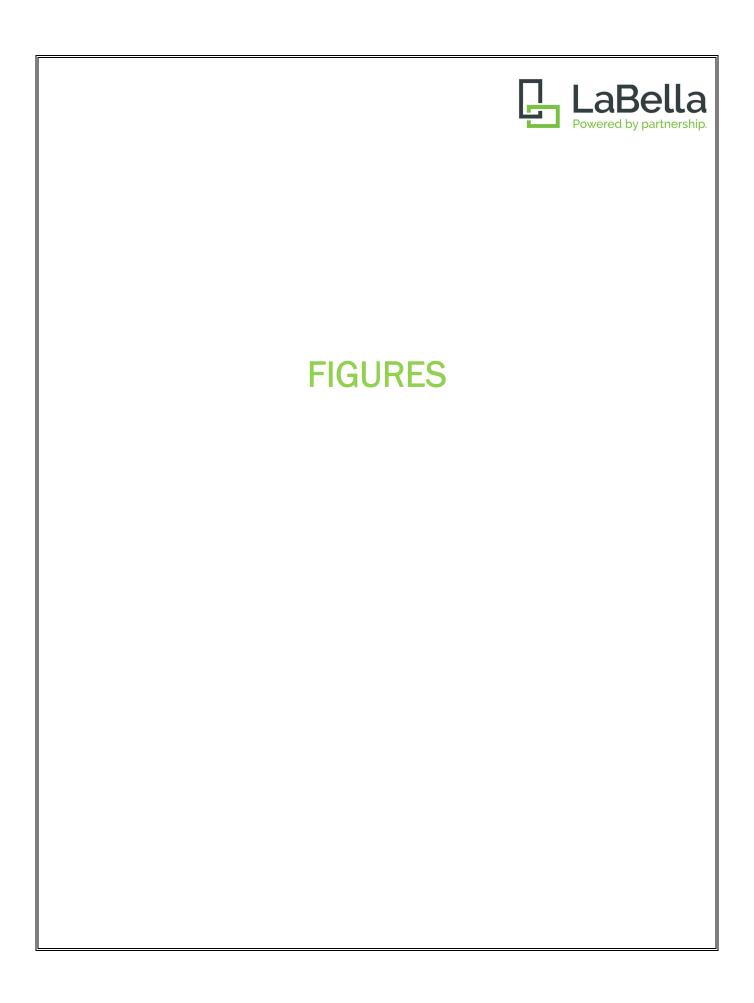
- The required EC/ICs are in place, are performing properly, and remain effective;
- The Site Monitoring Plan is being implemented;
- Operation and Maintenance activities are being conducted properly; and.
- The remedy continues to be protective of public health and the environment and is performing as specified in the FER.

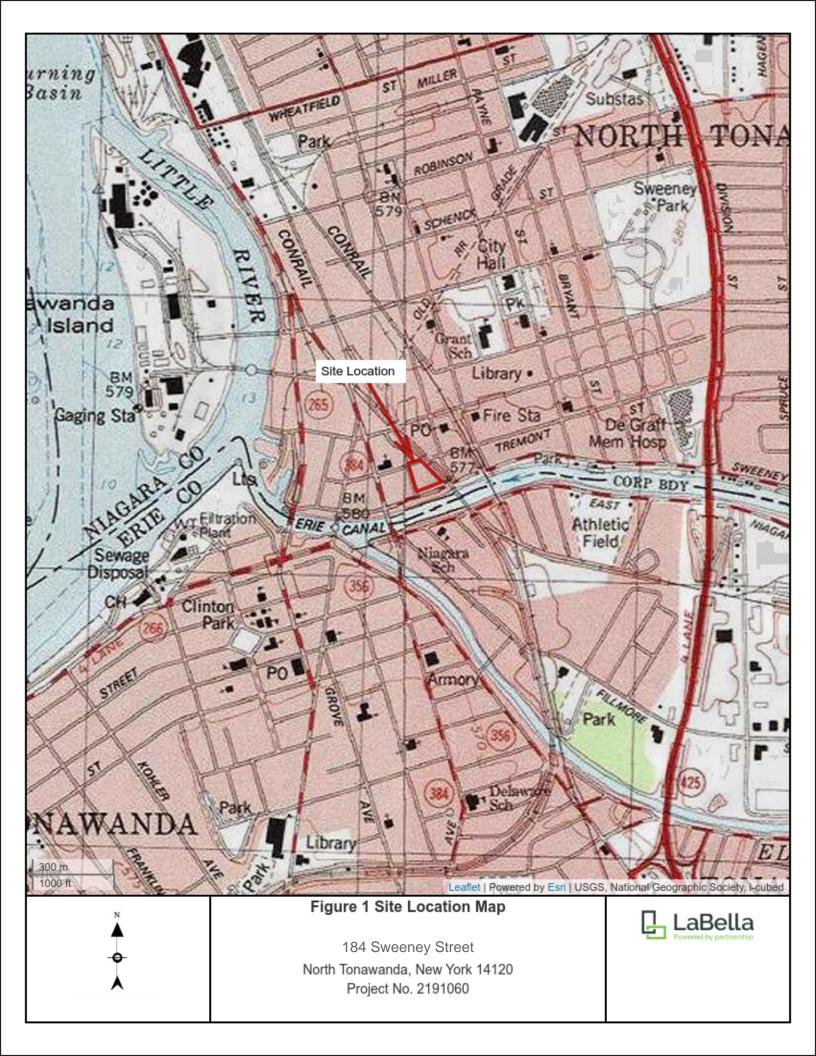
No changes to the inspection, reporting or certification frequency prescribed in the SMP are recommended.

We appreciate the opportunity to serve your professional environmental engineering needs. If you have any questions, please do not hesitate to contact me at (716) 768-4906.

Respectfully submitted,

Mi Thi

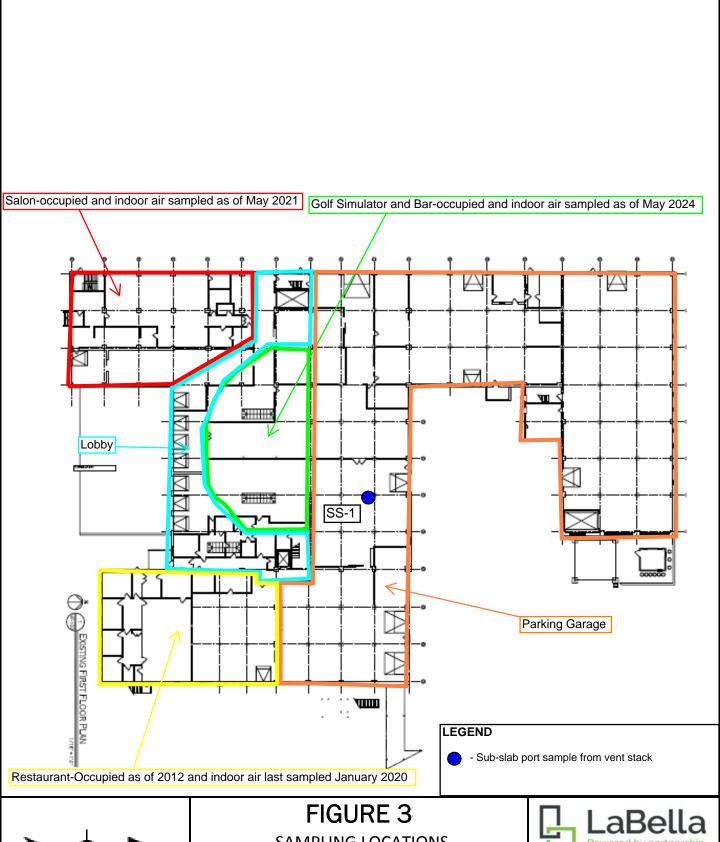

LABELLA ASSOCIATES, D.P.C.

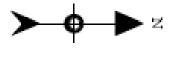

Chris Kibler
Regional Investigation and Remediation Program Manager

Environmental Professional

Privileged and Confidential

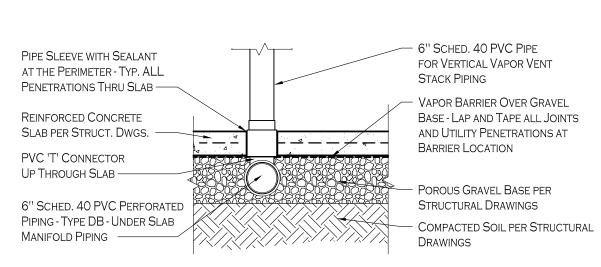
Abigail Beres Environmental Scientist



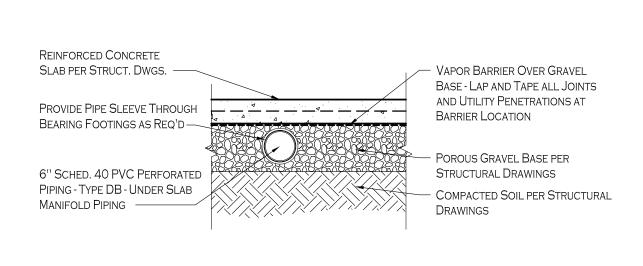

FIGURE 2 SITE BASE MAP

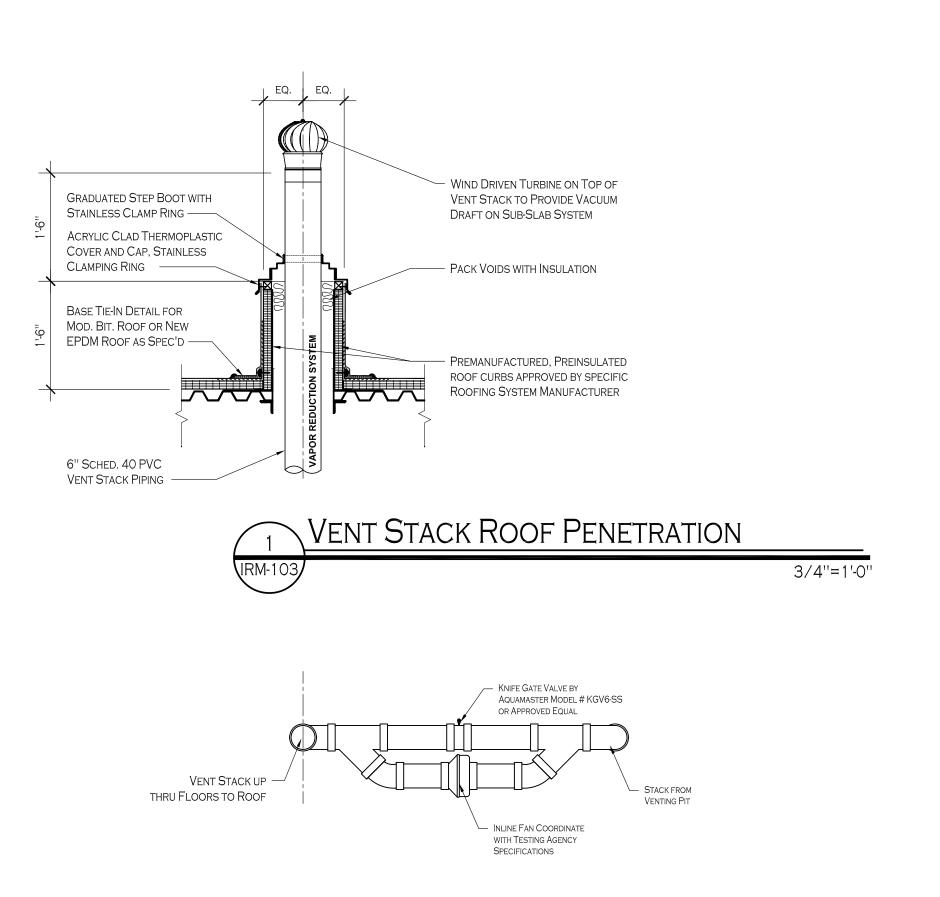
184 Sweeney Street
North Tonawanda, New York 14120

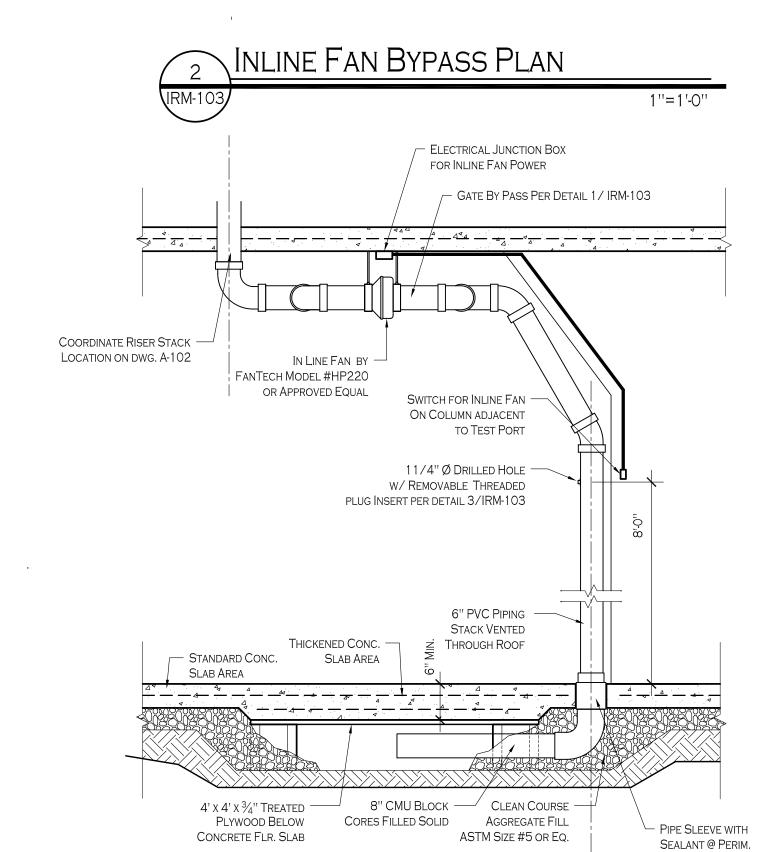
PROJECT NO. 2191060

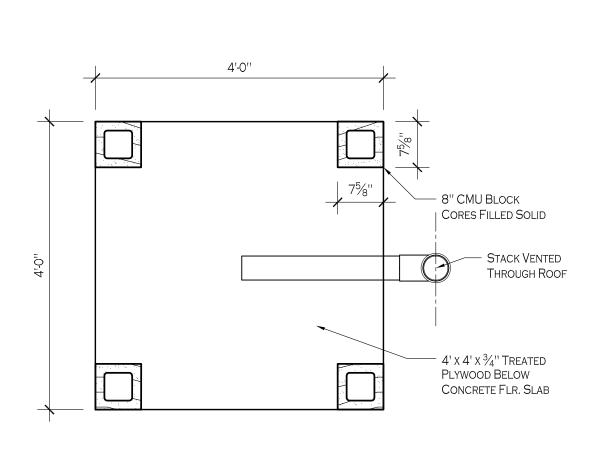

NOT TO SCALE

SAMPLING LOCATIONS


184 Sweeney Street North Tonawanda, New York 14210


PROJECT NO. 2191060





VAPOR VENTING PIT / RISER SECTION

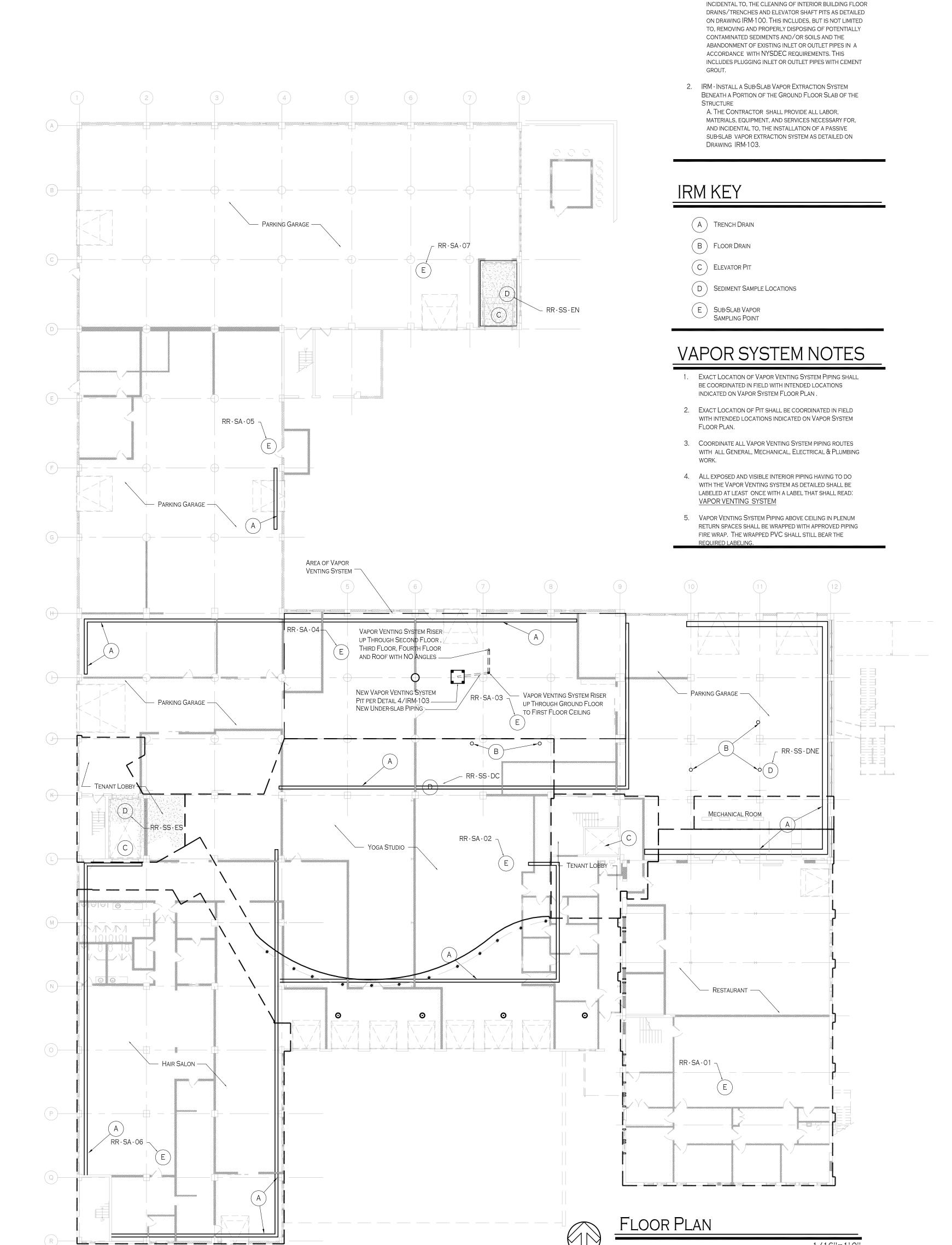
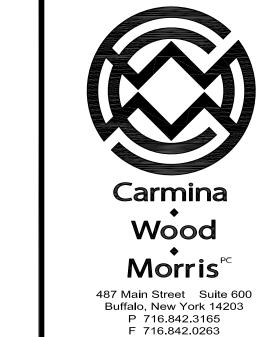



Figure 4

ASBUILT CONDITIONS

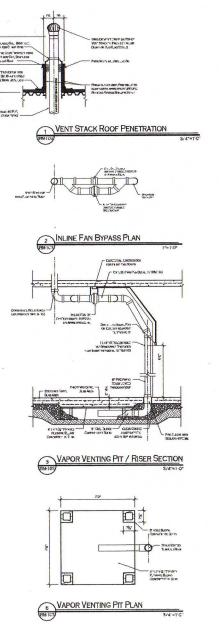
IRM GENERAL NOTES

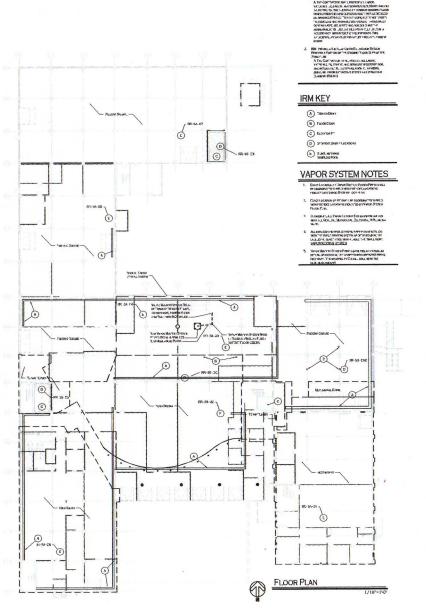
DRAINS AND ELEVATOR SHAFT PITS.

1. IRM - REMOVE SEDIMENTS AND CLEAN BUILDING FLOOR

A. THE CONTRACTOR SHALL PROVIDE ALL LABOR,

MATERIALS, EQUIPMENT, AND SERVICES NECESSARY FOR AND


Issued for Construction: Municiplity Submission: Drawn by:


DRAWING NAME: Vapor System / Drain Cleaning Plan & Details

DRAWING NO.

IRM-103 Project no.: 07.092

ASBUILT CONDITIONS

IRM GENERAL NOTES

No. Drust

Remington Lofts on the Canal

Vapor System / **Drain Cleaning** Plan & Details

DRAWING NO. **IRM-103**

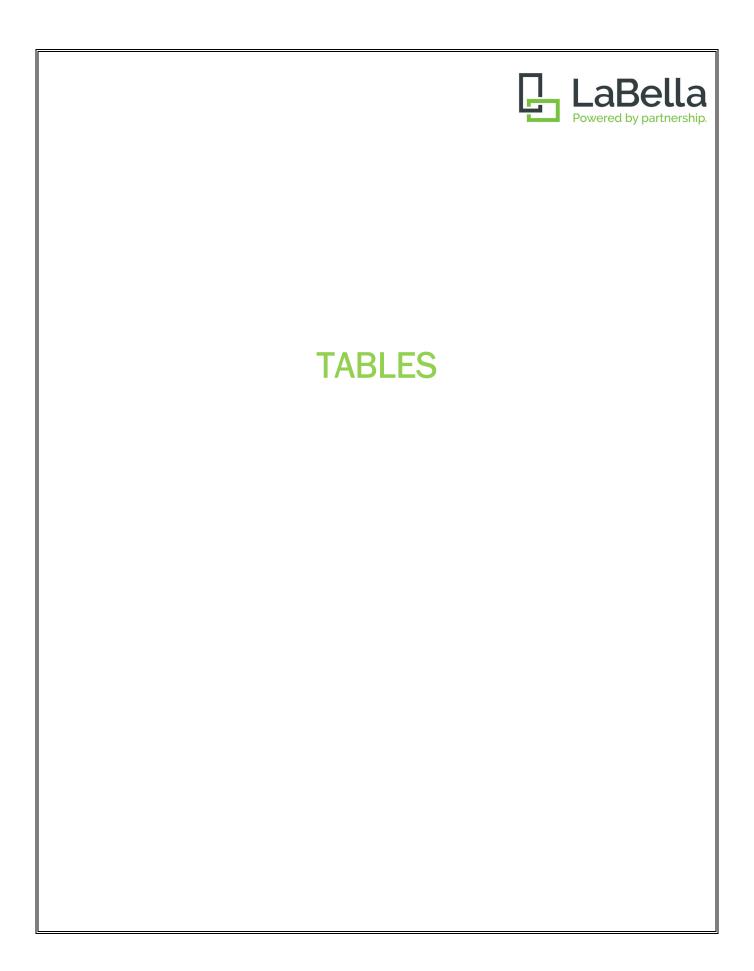


Table 1
Periodic Review Report
184 Sweeney Street, North Tonawanda, New York
Field Sampling Log

Sample ID	SS-1
Location	Parking Garage Vent Stack
Date	5/15/2025
Canister Number	347
Regulator Number	01577
Start Time	8:15
Reading (in Hg)	-29.5
End Time	15:45
Reading (in Hg)	-9.0

- Date: 5/15/2025

- Temperature: 77° F, Sunny - Barometric Pressure: 29.78 in - Wind Direction: SSW at 10 mph

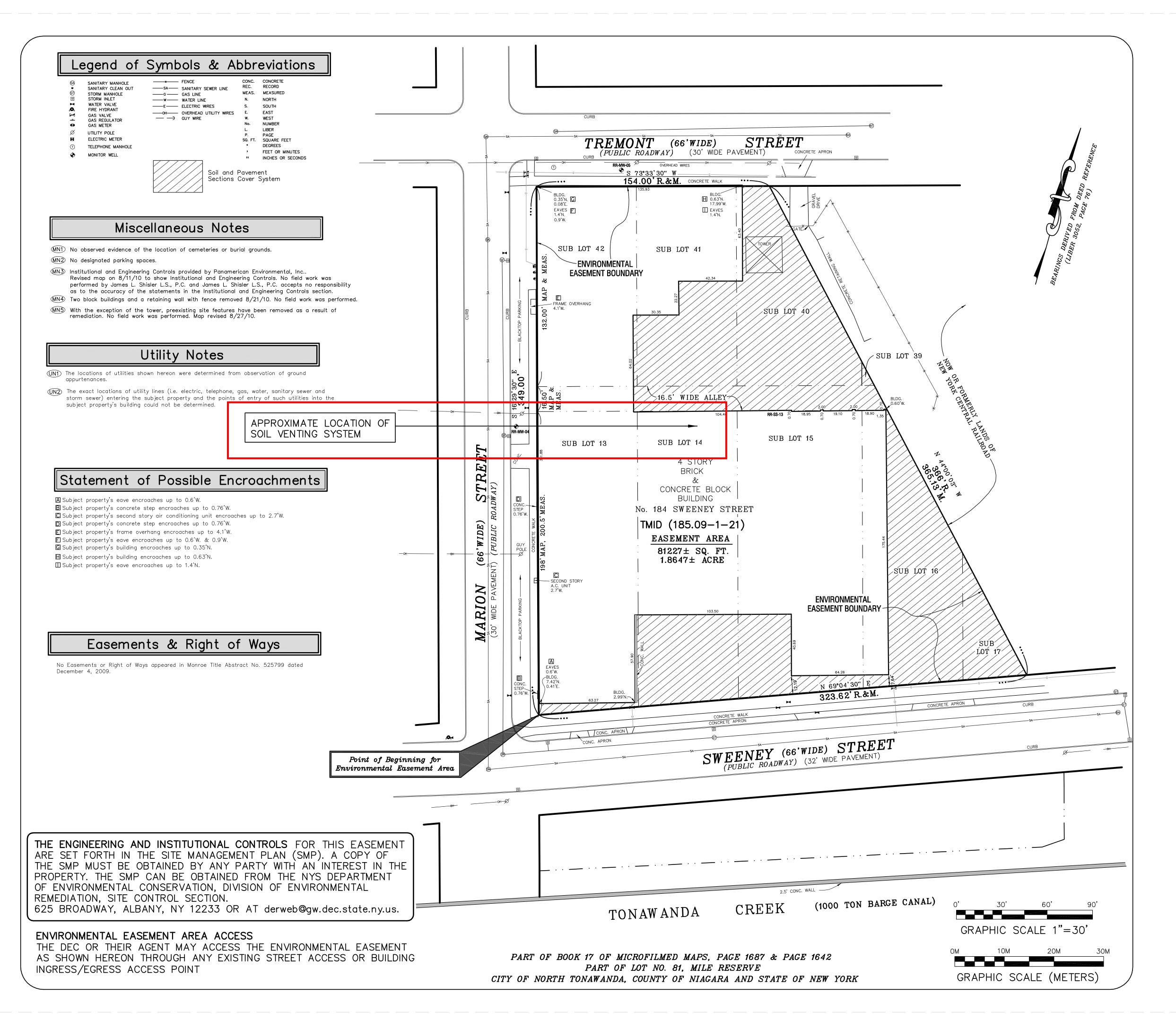
Table 2 Remington Lofts 184 Sweeney Street North Tonawanda, New York Summary of Analytical Results

Communication of the state of t	15.4	ID F	ID C	CC Vant Dark 1	00.3	10.7		y Of Allalyti	_	0D 4	CC Vant Dart 2	CC Vant 01	CC Dowt	10.1	0.0.1	CC 1	
Sample Number	ID-4	ID-5	ID-6	SS Vent Port-1	OD-2	ID-7	0D-3	ID-8	SS Vent Port-2	0D-4	SS Vent Port-3	SS-Vent-01	SS-Port	IA-1	OA-1	SS-1	-
Sample Date	1/24/2020	1/24/2020	1/24/2020	1/24/2020	1/24/2020	4/21/2020	4/21/2020	5/7/2021	5/7/2021	5/7/2021	5/20/2022	5/19/2023	5/2/2024	5/2/2024	5/2/2024	5/15/2025	BASE Indoor
Sample Location	Indoor	Indoor μg/m³	Indoor	Vent Port	Outdoor	Indoor µg/m³	Outdoor μg/m³	Indoor μg/m³	Vent Port μg/m³	Outdoor	Vent Port	Vent Port μg/m³	Vent Port	Indoor µg/m³	Outdoor	Vent Port	
Compounds	μg/m³	μg/m²	μg/m³	μg/m³	μg/m³	μg/пі	μg/m	μg/m	μg/m	μg/m³	μg/m³	μβ/ш	μg/m³	μg/m²	μg/m³	μg/m³	
VOCs EPA T0-15						1									ı		
Ethylbenzene	ND	ND	ND	2.25	ND	ND	ND	ND	1.01	ND	1.9	ND	ND	ND	ND	0.96	5.7
Trichlorofluoromethane	1.15	1.15	1.15	1.15	1.12	1.64	1.28	ND	ND	ND	ND	ND	1.26	1.32	1.3	1.62	18.1
n-Hexane	0.775	0.878	ND	3.23	ND	2.88	1.61	0.733	ND	ND	ND	ND	ND	ND	1.95	4.12	10.2
tert-Butyl alcohol	ND	ND	ND	ND	ND	ND	ND	1.89	ND	ND	ND	ND	2.12	ND	ND	ND	NL
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.28	ND	ND	3.68	ND	10
Benzene	1.57	1.80	1.27	6.55	ND	1.65	ND	1.63	2.55	ND	ND	1.38	1.51	ND	0.792	3.35	9.4
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.27 J	ND	ND	ND	ND	ND	1.9
Tetrachloroethylene	0.298	0.644	0.298	ND	ND	ND	ND	0.163	ND	0.746	0.21 J	ND	ND	N0.38	0.71	ND	15.9
Toluene	2.60	2.97	1.96	14.4	0.889	4.41	1.80	4.56	6.93	ND	12	3.81	4.41	1.67	4.33	8.1	43
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20.6
Trichloroethene	ND	ND	0.129	ND	ND	ND	ND	ND	ND	0.226	0.18 J	ND	ND	0.253	ND	1.27	4.2
1,2,4-Trimethylbenzene	ND	ND	ND	3.01	ND	ND	ND	ND	1.03	ND	1.9	ND	1.5	ND	ND	1.03	9.5
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.59 J	ND	ND	ND	ND	ND	3.7
o-Xylene	ND	ND	ND	3.04	ND	ND	ND	ND	1.23	ND	2.3	ND	2.08	ND	ND	1.57	7.9
p/m-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.64	ND	ND	3.59	22.2
1,1,2-Trichlorotrifluoroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
2,2,4-Trimethylpentane	ND	1.01	ND	6.59	ND	1.35	ND	47.6	2.34	ND	3.8	1.41	11.3	ND	ND	8.17	NL
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.02	ND	NL
2-Butanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	2.04	ND	ND	6.9	ND	12
Methyl Isobutyl Ketone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
4-Methyl-2-pentanone (MIBK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.83 J	ND	ND	ND	ND	ND	6.0
Carbon tetrachloride	0.484	0.604	0.491	ND	0.522	0.579	0.554	0.39	ND	0.371	0.33	ND	ND	0.478	1.72	ND	<1.3
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.36	NL
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14.2	ND	1.1
Chloromethane	0.927	0.896	0.962	0.861	0.938	1.30	1.14	0.989	0.964	0.975	0.83 J	0.541	0.725	1.06	2.48	1.21	3.7
Cyclohexylamine	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Cyclohexane	ND	ND	ND	ND	ND	0.926	ND	ND	ND	ND	1.9	ND	0.991	ND	ND	1.94	NL
) Dichlorodifluoromethane	2.32	2.31	2.31	2.28	2.33	2.73	2.62	1.97	1.96	2.03	4	2.34	2.46	2.27	2.41	ND	16.5
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.7
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.9
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.55	ND	5.5
4-Ethyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.6
Acetone	5.87	3.40	4.44	4.94	4.16	7.27	2.92	12.6	6.2	4.66	12	14.7	31.8	7.17	28.5	22.7	98.9
Carbon disulfide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.2
Ethyl acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.76	ND	ND	2.31	ND	5.4
Freon 11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1 J	ND	ND	ND	ND	ND	18.1
Heptane	ND	ND	ND	1.76	ND	1.38	ND	0.82	1	ND	1.8	ND	1.76	ND	ND	2.21	NL NL
Isopropyl alcohol	22.0	3.42	7.92	7.23	ND	10.1	ND	600	38.1	2.33	7.4 J	19	1.46	1.36	21.2	13	NL
Methyl tert-butyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11.5
Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.83	ND	ND	NL NL
Ethanol	57.7	29.6	203	174	ND ND	936	18.0	1,480	275	12.3	ND	122	24.5	11.6	266.0	44.5	210
Hexane	ND	ND	ND	ND	ND ND	ND	ND	0.733	ND	ND	2.5	ND	ND	ND	ND	ND	NL
cis-1,2-Dichloroethene	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	0.733 ND	ND ND	0.202	ND	ND ND	ND ND	ND ND	ND ND	ND ND	<1.9
1,3-Butadiene	ND ND	ND ND	ND ND	0.790	ND ND	ND ND	ND ND	ND ND	ND ND	0.202 ND	0.30 J	ND ND	ND ND	ND ND	ND ND	0.5	<3.0
										ND ND							
Propylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	טא	ND	ND	ND	ND	ND	ND	NL

ND - Non-detect

NL - Not Listed

Building assessment and survey evaluation (BASE) database, SUMMA canister method for indoor air 90th percentile Concentrations in grey exceed BASE Indoor


J - Result is less than the Reporting Limit but greater than or eual to the Method Detection Limit and the concentration is an approxiamte value BASE Indoor = Table C2. Environmental Protection Agency (EPA):

APPENDIX 1

Boundary Survey

Legal Description

ENVIRONMENTAL EASEMENT AREA

All that tract or parcel of land, situate in the City of North Tonawanda, County of Niagara and State of New York, being part of Lot No. 81 of the Mile Reserve as shown on a map made by Peter Emslie and filed in the Niagara County Clerk's Office on February 10, 1849, now in Book 17 of Microfilmed Maps at page 1642 and also on a map made by B.F. Betts and filed in the Niagara County Clerk's Office on March 31, 1888, now in Book 17 of Microfilmed Maps at page 1687, bounded and described as follows:

Beginning at the point of intersection of the northerly line of Sweeney Street with the easterly line of Marion Street;
Thence N 69° 04' 30" E along the northerly line of Sweeney Street and along the southerly lines of Subdivision Lot Nos. 13, 14, 15, 16 and 17, a distance of 323.62 feet to the southwesterly line of

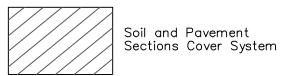
lands now or formerly owned by the New York Central Railroad;
Thence N 44° 00' 03" W and through Subdivision Lot Nos. 17 and 16, a 16.5 foot alleyway and Subdivision Lot No. 40, a distance of 365.13 feet to the southerly line of Tremont Street;
Thence S 73° 33' 30" W along the southerly line of Tremont Street 154.00 feet to the easterly

Thence S 16° 29' 30" E along the easterly line of Marion Street 349.00 feet to the point or place of beginning, containing 1.8647 acres (81,227 square feet) of land more or less.

The above described is the same land as described in Monroe Title Abstract No. 525799, Parcel "A", dated December 4, 2009.

INSTITUTIONAL/ENGINEERING CONTROLS

INSTITUTIONAL CONTROLS


- The property may only be used for restricted residential use provided that the long—term
- Engineering and Institutional Controls included in this SMP are employed.

 The property may not be used for a higher level of use, such as unrestricted or residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC.
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with this SMP.
- conducted in accordance with this SMP.
 The use of the groundwater underlying the property is prohibited without testing and approval of the NYSDEC and NYSDOH.
- Vegetable gardens and farming on the property are prohibited.

ENGINEERING CONTROLS

Soil and Pavement Sections Cover System — Removed the top two feet of existing site soil from all open green areas and a minimum of one foot of soil from areas to be covered with paving sections (roads, sidewalks, etc.). A minimum of two feet of approved clean fill was placed over all green space and a minimum of a one foot thick paving section (stone, concrete/asphalt) placed for roadways, sidewalks, etc. (see cross hatched area).

Sub—Slab Vapor Ventilation System — Venting system to be tested and a vapor and ambient air sample collected at 6 month intervals and results reviewed by NYSDEC.

ALTA/ACSM Land Title Survey

Remington Rand Site #C932142
184 Sweeney Street, North Tonawanda, N.Y.

JAMES L. SHISLER, L.S., P.C. PROFESSIONAL LAND SURVEYORS

P.O. BOX 516 EAST AURORA, NEW YORK 14052-0516 Phone: 716-655-1058 Fax: 716-655-1964

Date of Survey: May 15, 2009 Date of Last Revision: August 27, 2010

Job No. 09177 Sheet No. E-2018

Email: shisurv@gmail.com

Sheet 1 of 1

APPENDIX 2

Site Wide Inspection Form

LaBella Associates, D.P.C. 300 Pearl Street, Suite 130 Buffalo, New York 14202

SITE WIDE INSPECTION FORM

Date: May 15, 2025

Site Name: Remington Lofts - NYSDEC Site # C932142

Location:

184 Sweeney Street, North Tonawanda, New York

General Site Conditions:

Facilities and grounds are well-maintained

Weather Conditions: Sunny, 77° F

Compliance/Evaluation ICs and ECs :

The property is in compliance with the ICs/ECs. The cover system is in-tact and well-maintained. No excavations into the cover system were observed. The vapor system is on and functioning.

Site management Activities (sampling, H & S Inspection, etc.):

Vapor system was on and functioning. The in-line fan in the vent stack near the ceiling of the first floor of the Site Building was observed to be active and drawing vacuum. Caulked seams were also inspected and deemed satisfactory.

Compliance with Permits and O & M Plan:

Site appears to be in compliance with O&M Plan

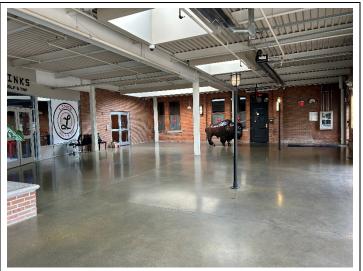
Records Compliance:

During this reporting period sub-slab air sampling has occurred at the request of the NYSDEC and NYSDOH due to elevated concentrations detected in sub-slab and indoor air in 2018. Summary reports were previously submitted to the NYSDEC and NYSDOH. Additionally, as the SSDS was changed from a passive system to an active system the an addendum to the SMP was generated and submitted.

General Comments:

Property and compliance systems appear to be well maintained and functioning. No additional comments – refer to attached photographs

INSPECTOR'S NAME: Abigail Beres



APPENDIX 3

Photographs

Main Entrance

East end of Lobby

Lobby facing South

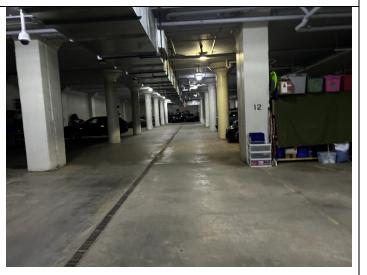
Dining area in Restuarant

Door to patio in Restaurant

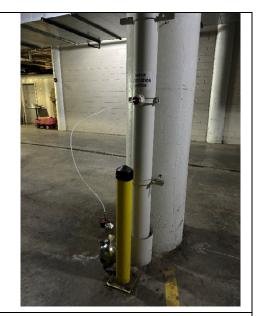
Golf simulator Bar

Golf Simulation Area

Lobby in Salon


Work Area in Salon

Hair Products in Salon


Janitor's Closet

Western portion of Parking Garage

SSDS Port in Vent Stack

Eastern portion of Parking Garage

Active SSDS Fan

Western portion of Building Exterior

Sidewalk on Eastern portion of the southside of Building

Eastern portion of Building Exterior

APPENDIX 4

Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice

Date

Institutional and Engineering Controls Certification Form Site Details Box 1 Site No. C932142 Site Name Remington Rand Building Site Address: 184 Sweeney Street Zip Code: 14120 City/Town: North Tonawanda County: Niagara Site Acreage: 1.800 Reporting Period: May 20, 2024 to May 20, 2025 NO 1. Is the information above correct? If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 NO 6. Is the current site use consistent with the use(s) listed below? Restricted-Residential, Commercial, and Industrial 7. Are all ICs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Box 2A

YES NO

8. Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?

If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.

9. Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)

If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.

SITE NO. C932142

Box 3

Description of Institutional Controls

Parcel

Owner

Institutional Control

185.09-1-21

Gold Wynn Remington Lofts, LLC

Monitoring Plan

O&M Plan

Ground Water Use Restriction

Landuse Restriction Site Management Plan

IC/EC Plan

Environmental Easement; September 1,2010 - BCA Index No: B9-0780-08-06 as property control for Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv).

Box 4

Description of Engineering Controls

Parcel

Engineering Control

185.09-1-21

Vapor Mitigation Cover System

Soil cover and/or pavement placed over residual soil contamination. Sub-Slab passive depressurization system placed in a portion of the building to control potential vapor intrusion. Easement requires compliance with the Site Management Plan. Future intrusive activities and soil handling at the facility must be in accordance with the Excavation Work Plan found in the SMP.

Periodic Review Report (PRR) Certification Statements

- 1. I certify by checking "YES" below that:
 - a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
 - b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

NO

YES

2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:

- (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
- (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
- (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
- (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
- (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this for	m to address these issues.
Signature of Owner, Remedial Party or Designated Representative	Date

IC CERTIFICATIONS SITE NO. C932142

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Jeffrey Weinzweig		11 Summer Street,	Buffalo NY 14209
print nan	ne at _	print business add	ress
am certifying as	Owner		(Owner or Remedial Party)
for the Site named in	the Site Details Section	of this form.	June 2, 2025
Signature of Owner, Rendering Certification	Remedial Party, or Desiç	gnated Representative	Date

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

İ	print name at Loßelb	Associates, 300 to business address	ofear St. Bull
	·	0 1	101
а	m certifying as a Qualified Environmental Professional f		al Postzy
		(Owner or Remo	edial Party) 🏃
	1. 6		
	1/5/		(-1)205
-	Signature of Qualified Environmental Professional for	Stomp	Date
	Signature of Qualified Environmental Professional, for he Owner or Remedial Party, Rendering Certification	Stamp (Required for PE)	Dale
L	ne Owner of Remedial Faity, Rendering Certification	(1 (cquired for 1 L)	

APPENDIX 5

NYSDOH Indoor Air Quality Questionnaire and Building Inventory Center for Environmental Health

NEW YORK STATE DEPÄRTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name AbiOO	1 Beres	Date/Time Prepared 5115	900
Preparer's Affiliation 🚻		Phone No	
Purpose of Investigation 2	DZS PRR		
1. OCCUPANT:			
Interviewed: Y/(N)			
		First Name:	
Address:			
County:	_		
Home Phone:	Offi	ce Phone:	
Number of Occupants/perso	ons at this location	on Age of Occupants	
2. OWNER OR LANDLO	RD: (Check if s	same as occupant)	
Interviewed: Y/N		j .	
Last Name:		First Name:	
Address:			
County:	_		
Home Phone:	Off	ice Phone:	
3. BUILDING CHARACT	CERISTICS		2
Type of Building: (Circle a	ppropriate respo	onse)	
Residential Industrial	School Church	Commercial/Multi-use Other:	

If the property is residenti	al, type? (Circle appropriat	e response)
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:
If multiple units, how man	y? UNKNOW N	
If the property is commercial	cial, type?	
Business Type(s) SON	in, restaurond, au	if bar
Does it include residence	ces (i.e., multi-use)? 🔗 / N	If yes, how many? VNUNUWN
Other characteristics:		
Number of floors 4		ng age 1890
Is the building insulated	P(Y)/N How a	ir tight? Tight / verage / Not Tight
4. AIRFLOW		
Use air current tubes or tr	acer smoke to evaluate air	flow patterns and qualitatively describe:
Airflow between floors		
-	_	
Airflow near source		
7		
Outdoor air infiltration		
Infiltration into air ducts		

5 .	BASEMENT	AND	CONSTRUCTION	CHARACTERISTICS	(Circle all that a	pply
------------	----------	-----	--------------	------------------------	--------------------	------

a. Above grade construction	on: wood frame	concrete	stone	brick
b. Basement type: NA	full	crawlspace	slab	other
c. Basement floor: N4	concrete	dirt	stone	other
d. Basement floor: NA	uncovered	covered	covered with_	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	goured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is: N	wet	damp	dry	moldy
i. The basement is: NA	finished	unfinished	partially finish	ned
j. Sump present?	Y /(N)			
k. Water in sump?	Y/N/not applicable			
Basement/Lowest level depth l	pelow grade:	_(feet)		
Identify potential soil vapor er	ntry points and appro	ximate size (e.	g., cracks, utility	ports, drains)
brains in the	arking gara	ge		
	J 0	U		
·				
6. HEATING, VENTING an	d AIR CONDITIONI	NG (Circle all	that apply)	
6. HEATING, VENTING an Type of heating system(s) used				y)
		cle all that app Hote on Radi		y) Other
Type of heating system(s) used Hot air circulation Space Heaters	I in this building: (circ Heat pump Stream radiati Wood stove	cle all that app Hote on Radi	oly – note primar water baseboard ant floor	
Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard	I in this building: (circ Heat pump Stream radiati Wood stove	cle all that app Hote on Radi	oly – note primar, water baseboard ant floor loor wood boiler	
Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard The primary type of fuel used Matural Gas Electric	Heat pump Stream radiati Wood stove is: Fuel Oil Propane Coal	cle all that app Hoty on Radi Outd	oly – note primar, water baseboard ant floor loor wood boiler	
Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard The primary type of fuel used Matural Gas Electric Wood	Heat pump Stream radiati Wood stove is: Fuel Oil Propane Coal	ele all that app Hot on Radi Outd Kero Solar	oly – note primar, water baseboard ant floor loor wood boiler	

Are there air distribution ducts present?

Y/N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

_buct w	bork on cieling [wall		
7. OCCUP	ANCY		
Is basement	lowest level occupied? Full-time Occa	asionally	Seldom Almost Never
Level	General Use of Each Floor (e.g., familyro	om, bedro	oom, laundry, workshop, storage)
Basement	NA		
1 st Floor	Restaurant, Gill Bar, Jollan,	Lobby	Parking Garage
2 nd Floor	Apartments	-	
3 rd Floor	Apartments		
4 th Floor	Apartments		
8. FACTOR	RS THAT MAY INFLUENCE INDOOR AIR (QUALITY	Y
a. Is there	an attached garage?		(Y)/ N
b. Does the	e garage have a separate heating unit?		W/N/NA
_	roleum-powered machines or vehicles n the garage (e.g., lawnmower, atv, car)		V/N/NA Please specify VIMICUS
d. Has the	building ever had a fire?		Y / When?
e. Is a ker	osene or unvented gas space heater present?		Y / Where?
f. Is there	a workshop or hobby/craft area?	N\	Where & Type?
g. Is there	smoking in the building?	YN	How frequently?
h. Have cl	eaning products been used recently?	W/N	When & Type? Mainkna Dain
i. Have cos	smetic products been used recently?	N/K	When & Type? (Q)

j. Has painting/stair	ning been done in the last 6 mor	iths? (Y)/N	Where & Wher	ı?
k. Is there new carp	et, drapes or other textiles?	Y/0		n?
I. Have air freshene	rs been used recently?	MIN	When & Type?	ented?
m. Is there a kitche	n exhaust fan?	∅ /N	If yes, where ve	ented?
n. Is there a bathro	oom exhaust fan?			ented?
o. Is there a clothes	dryer?	W/N	If yes, is it vent	red outside? 🕖/ N
p. Has there been a	pesticide application?	Y / 📢	When & Type?	
Are there odors in t	he building?	Y / \		
(e.g., chemical manufaction boiler mechanic, pestic	g occupants use solvents at work eturing or laboratory, auto mechanide application, cosmetologist	nic or auto body		
If yes, what types of	solvents are used?			
If yes, are their cloth	es washed at work?	Y/N		
Do any of the building response)	g occupants regularly use or wo	rk at a dry-clea	ning service? ((Circle appropriate
Yes, use dry-cl	eaning regularly (weekly) eaning infrequently (monthly or l dry-cleaning service	less) <	No Unknown	
Is there a radon mitig Is the system active or	ation system for the building/st passive? Active Passive	ructure? 🕢/ N	Date of Installa	tion:
9. WATER AND SEV	VAGE			
Water Supply:	Public Water Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal:	Public Sewer Septic Tank	Leach Field	Dry Well	Other:
10. RELOCATION IN	NFORMATION (for oil spill res	sidential emerge	ency)	
a. Provide reasons	why relocation is recommende	ed: NA		
b. Residents choos	se to: remain in home relocat	e to friends/fami	ly relocate	e to hotel/motel
c. Responsibility f	or costs associated with reimbu	rsement explain	ed? Y/N	
d. Relocation pack	kage provided and explained to	residents?	Y/N	

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:				
NIA	-			
First Floor:				
000 -10110				
see Figure				
				3

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

sel rigure	

13	PRC	DHCT	INVENTORY	FORM
1.7.	1 1//	/ I / U / U / U		1, 4 / 12 41

Make & Model of field instrument used: _	miniRAE 3000
List specific products found in the residen	ce that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
MOIN TOIL	once paint		V			
	General supplies		V			
Salin	once paint General supplies Colmetics I right trud		V			

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APPENDIX 6

Laboratory Analytical Report

ANALYTICAL REPORT

Lab Number: L2530689

Client: LaBella Associates, P.C.

300 Pearl Street

Suite 130

Buffalo, NY 14202

ATTN: Christopher Kibler Phone: (716) 551-6281

Project Name: REMINGTON LOFTS

Project Number: 2191060 Report Date: 05/29/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NH ELAP (2249).

Project Name: REMINGTON LOFTS

Project Number: 2191060 Lab Number:

L2530689

Report Date:

05/29/25

Receive Date

Lab Sample ID Sample Location Collection Date/Time **Client ID** Matrix L2530689-01 SS-1 SOIL_VAPOR

TONAWANDA, NY 05/15/25 15:45 05/15/25

L2530689

Lab Number:

Project Name: REMINGTON LOFTS

Project Number: 2191060 Report Date: 05/29/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: REMINGTON LOFTS Lab Number: L2530689

Project Number: 2191060 Report Date: 05/29/25

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on May 12, 2025. The canister certification data is provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

hulphan Jennifer Jerome

Authorized Signature:

Title: Technical Director/Representative Date: 05/29/25

Pace

AIR

Project Name: REMINGTON LOFTS

Project Number: 2191060

Lab Number:

L2530689

Report Date:

05/29/25

SAMPLE RESULTS

Lab ID: L2530689-01

Client ID: SS-1

Sample Location: TONAWANDA, NY

Date Collected: 05/15/25 15:45
Date Received: 05/15/25
Field Prep: Not Specified

Sample Depth:

Matrix: Anaytical Method:

Soil_Vapor 48,TO-15 05/28/25 03:32

Analytical Date: Analyst:

RAY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Air Lab							
Dichlorodifluoromethane	0.477	0.200		2.36	0.989			1
Chloromethane	0.588	0.200		1.21	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	0.226	0.200		0.500	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	23.6	5.00		44.5	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	9.55	1.00		22.7	2.38			1
Trichlorofluoromethane	0.288	0.200		1.62	1.12			1
Isopropanol	5.30	1.00		13.0	2.46			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1

ND

0.200

ND

0.793

1

cis-1,2-Dichloroethene

Project Name: **REMINGTON LOFTS**

Project Number: 2191060 Lab Number:

L2530689

Report Date:

05/29/25

SAMPLE RESULTS

Lab ID: L2530689-01

Client ID: SS-1

Sample Location: TONAWANDA, NY Date Collected:

05/15/25 15:45 05/15/25

Date Received: Field Prep:

Not Specified

Sample Depth:		ppbV		ug/m3				5
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mans								
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	1.17	0.200		4.12	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	1.05	0.200		3.35	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	0.564	0.200		1.94	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	0.237	0.200		1.27	1.07			1
2,2,4-Trimethylpentane	1.75	0.200		8.17	0.934			1
Heptane	0.539	0.200		2.21	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	2.15	0.200		8.10	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.221	0.200		0.960	0.869			1

Project Name: REMINGTON LOFTS

Project Number: 2191060

Lab Number:

L2530689

Report Date:

05/29/25

SAMPLE RESULTS

Lab ID: L2530689-01

Client ID: SS-1

Sample Location: TONAWANDA, NY

Date Collected: 05/

05/15/25 15:45

Date Received: Field Prep:

05/15/25 Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Air Lab							
p/m-Xylene	0.827	0.400		3.59	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.361	0.200		1.57	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	0.209	0.200		1.03	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.190		ND	0.996			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	86		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	90		60-140

Project Name: REMINGTON LOFTS Lab Number: L2530689

Project Number: 2191060 Report Date: 05/29/25

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/27/25 14:41

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield A	ir Lab for sa	ample(s):	01 Batch:	WG20716	92-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	1.00		ND	2.46			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: REMINGTON LOFTS Lab Number: L2530689

Project Number: 2191060 Report Date: 05/29/25

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/27/25 14:41

		ppbV			ug/m3		_	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Air	r Lab for sa	mple(s):	01 Batch	: WG20716	92-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: REMINGTON LOFTS Lab Number: L2530689

Project Number: 2191060 Report Date: 05/29/25

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/27/25 14:41

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Air Lab for sa	ample(s):	01 Batch	: WG20716	92-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.190		ND	0.996			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Lab Control Sample Analysis Batch Quality Control

Project Name: REMINGTON LOFTS

Project Number: 2191060

Lab Number:

L2530689

Report Date:

05/29/25

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Air Lab	Associated sa	ample(s): 0	1 Batch: WG2	2071692-3				
Dichlorodifluoromethane	112		-		70-130	-		
Chloromethane	102		-		70-130	-		
Freon-114	122		-		70-130	-		
Vinyl chloride	96		-		70-130	-		
1,3-Butadiene	97		-		70-130	-		
Bromomethane	104		-		70-130	-		
Chloroethane	102		-		70-130	-		
Ethanol	70		-		40-160	-		
Vinyl bromide	120		-		70-130	-		
Acetone	139		-		40-160	-		
Trichlorofluoromethane	115		-		70-130	-		
Isopropanol	134		-		40-160	-		
1,1-Dichloroethene	115		-		70-130	-		
Tertiary butyl Alcohol	107		-		70-130	-		
Methylene chloride	100		-		70-130	-		
3-Chloropropene	119		-		70-130	-		
Carbon disulfide	110		-		70-130	-		
Freon-113	117		-		70-130	-		
trans-1,2-Dichloroethene	113		-		70-130	-		
1,1-Dichloroethane	116		-		70-130	-		
Methyl tert butyl ether	117		-		70-130	-		
2-Butanone	112		-		70-130	-		
cis-1,2-Dichloroethene	111		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: REMINGTON LOFTS

Project Number: 2191060

Lab Number: L2530689

Report Date: 05/29/25

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Air Lab	Associated s	ample(s): 0°	1 Batch: WG2	071692-3				
Ethyl Acetate	122		-		70-130	-		
Chloroform	106		-		70-130	-		
Tetrahydrofuran	128		-		70-130	-		
1,2-Dichloroethane	117		-		70-130	-		
n-Hexane	102		-		70-130	-		
1,1,1-Trichloroethane	120		-		70-130	-		
Benzene	92		-		70-130	-		
Carbon tetrachloride	106		-		70-130	-		
Cyclohexane	99		-		70-130	-		
1,2-Dichloropropane	105		-		70-130	-		
Bromodichloromethane	106		-		70-130	-		
1,4-Dioxane	109		-		70-130	-		
Trichloroethene	105		-		70-130	-		
2,2,4-Trimethylpentane	105		-		70-130	-		
Heptane	108		-		70-130	-		
cis-1,3-Dichloropropene	106		-		70-130	-		
4-Methyl-2-pentanone	110		-		70-130	-		
trans-1,3-Dichloropropene	116		-		70-130	-		
1,1,2-Trichloroethane	106		-		70-130	-		
Toluene	107		-		70-130	-		
2-Hexanone	113		-		70-130	-		
Dibromochloromethane	126		-		70-130	-		
1,2-Dibromoethane	110		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: REMINGTON LOFTS

Project Number: 2191060

Lab Number:

L2530689

Report Date:

05/29/25

Parameter	LCS %Recovery	Qual		LCSE %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Air Lab	Associated sa	ample(s):	01	Batch:	WG20	71692-3				
Tetrachloroethene	104			-			70-130	-		
Chlorobenzene	102			-			70-130	-		
Ethylbenzene	109			-			70-130	-		
p/m-Xylene	114			-			70-130	-		
Bromoform	130			-			70-130	-		
Styrene	108			-			70-130	-		
1,1,2,2-Tetrachloroethane	106			-			70-130	-		
o-Xylene	117			-			70-130	-		
4-Ethyltoluene	118			-			70-130	-		
1,3,5-Trimethylbenzene	109			-			70-130	-		
1,2,4-Trimethylbenzene	119			-			70-130	-		
Benzyl chloride	109			-			70-130	-		
1,3-Dichlorobenzene	115			-			70-130	-		
1,4-Dichlorobenzene	118			-			70-130	-		
1,2-Dichlorobenzene	74			-			70-130	-		
1,2,4-Trichlorobenzene	103			-			70-130	-		
Naphthalene	95			-			70-130	-		
Hexachlorobutadiene	118			-			70-130	-		

REMINGTON LOFTS L2530689

Project Number: 2191060 Report Date: 05/29/25

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt	Flow Controler Leak Chk			% RPD
L2530689-01	SS-1	01577	Flow 4	05/12/25	519710		-	-	-	Pass	4.5	5.3	16
L2530689-01	SS-1	347	2.7L Can	05/12/25	519710 L	2525122-07	Pass	-29.5	-9.0	-	-	-	-

Project Name:

L2525122

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 05/29/25

Air Canister Certification Results

Lab ID: L2525122-07

Date Collected: 04/24/25 10:00 Client ID: **CAN 4408 SHELF 73** Date Received: 04/24/25

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 04/27/25 22:12

Analyst: JFI

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Air Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	1.00		ND	2.46			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2525122

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 05/29/25

Air Canister Certification Results

Lab ID: L2525122-07

Date Collected: 04/24/25 10:00 Client ID: CAN 4408 SHELF 73 Date Received: 04/24/25

Sample Location: Field Prep: Not Specified

Запріє Беріп.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Air Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1

L2525122

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 05/29/25

Air Canister Certification Results

Lab ID: L2525122-07

Date Collected: 04/24/25 10:00 Client ID: CAN 4408 SHELF 73 Date Received: 04/24/25

Sample Location: Field Prep: Not Specified

Запре Берп.		ppbV		ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Air Lab							
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1

L2525122

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 05/29/25

Air Canister Certification Results

Lab ID: L2525122-07

Date Collected: 04/24/25 10:00 Client ID: CAN 4408 SHELF 73 Date Received: 04/24/25

Sample Location:

Field Prep: Not Specified

Sample Depth:		ppbV				ug/m3					
Parameter	Results	RL	MDL	Results	RL	RL MDL		Dilution Factor			
Volatile Organics in Air - Mansfield Air Lab											
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1			
Nonane	ND	0.200		ND	1.05			1			
Isopropylbenzene	ND	0.200		ND	0.983			1			
Bromobenzene	ND	0.200		ND	0.793			1			
2-Chlorotoluene	ND	0.200		ND	1.04			1			
n-Propylbenzene	ND	0.200		ND	0.983			1			
4-Chlorotoluene	ND	0.200		ND	1.04			1			
4-Ethyltoluene	ND	0.200		ND	0.983			1			
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1			
ert-Butylbenzene	ND	0.200		ND	1.10			1			
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1			
Decane	ND	0.200		ND	1.16			1			
Benzyl chloride	ND	0.200		ND	1.04			1			
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1			
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1			
sec-Butylbenzene	ND	0.200		ND	1.10			1			
o-Isopropyltoluene	ND	0.200		ND	1.10			1			
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1			
n-Butylbenzene	ND	0.200		ND	1.10			1			
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1			
Jndecane	ND	0.200		ND	1.28			1			
Dodecane	ND	0.200		ND	1.39			1			
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1			
Naphthalene	ND	0.200		ND	0.996			1			
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1			
Hexachlorobutadiene	ND	0.200		ND	2.13			1			

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2525122

Project Number: CANISTER QC BAT **Report Date:** 05/29/25

Air Canister Certification Results

Lab ID: L2525122-07

Client ID: **CAN 4408 SHELF 73**

Sample Location:

Date Collected: Date Received: 04/24/25 10:00

04/24/25

Field Prep:

Not Specified

Sample Depth:

ppbV ug/m3 Dilution Factor RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Air Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	100		60-140
Bromochloromethane	102		60-140
chlorobenzene-d5	102		60-140

L2525122

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 05/29/25

Air Canister Certification Results

Lab ID: L2525122-07

Date Collected: 04/24/25 10:00 Client ID: **CAN 4408 SHELF 73** 04/24/25 Date Received:

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 04/27/25 22:12

Analyst: JFI

	ppbV		ug/m3		Dilution						
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor				
Volatile Organics in Air by SIM - Mansfield Air Lab											
ND	0.200		ND	0.989			1				
ND	0.200		ND	0.413			1				
ND	0.050		ND	0.349			1				
ND	0.020		ND	0.051			1				
ND	0.020		ND	0.044			1				
ND	0.020		ND	0.078			1				
ND	0.100		ND	0.264			1				
ND	0.050		ND	0.115			1				
ND	1.00		ND	2.38			1				
ND	0.050		ND	0.281			1				
ND	0.500		ND	1.09			1				
0.062	0.020		0.246	0.079			1				
ND	0.500		ND	1.74			1				
ND	0.050		ND	0.383			1				
ND	0.020		ND	0.079			1				
ND	0.020		ND	0.081			1				
ND	0.200		ND	0.721			1				
ND	0.500		ND	1.47			1				
ND	0.020		ND	0.079			1				
ND	0.020		ND	0.098			1				
ND	0.020		ND	0.081			1				
ND	0.020		ND	0.109			1				
ND	0.100		ND	0.319			1				
ND	0.020		ND	0.126			1				
	Mansfield Air La ND	Results RL Mansfield Air Lab ND 0.200 ND 0.200 0.050 ND 0.020 0.020 ND 0.020 0.020 ND 0.020 0.020 ND 0.100 0.050 ND 1.00 0.050 ND 0.500 0.050 ND 0.500 0.050 ND 0.050 0.050 ND 0.020 0.020 ND 0.020 0.020 ND 0.500 0.020 ND 0.020 0.020	Results RL MDL ND 0.200 ND 0.200 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.100 ND 0.050 ND 0.050 ND 0.500 ND 0.500 ND 0.500 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020	Results RL MDL Results Mansfield Air Lab ND 0.200 ND ND 0.200 ND ND 0.020 ND ND 0.100 ND ND 0.050 ND ND 0.050 ND ND 0.500 ND ND 0.500 ND ND 0.500 ND ND 0.050 ND ND 0.050 ND ND 0.050 ND ND 0.020 ND ND 0.020 ND ND 0.02	Results RL MDL Results RL Mansfield Air Lab ND 0.200 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.050 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.020 ND 0.078 ND 0.050 ND 0.264 ND 0.050 ND 0.264 ND 0.050 ND 0.281 ND 0.050 ND 0.281 ND 0.500 ND 1.09 ND 0.500 ND 0.383 ND 0.050 ND 0.079 ND 0.020 ND 0.0721	Results RL MDL Results RL MDL Mansfield Air Lab ND 0.200 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.050 ND 0.051 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.020 ND 0.078 ND 0.020 ND 0.078 ND 0.050 ND 0.078 ND 0.050 ND 0.115 ND 0.500 ND 0.281 ND 0.500 ND 0.383	Results RL MDL Results RL MDL Qualifier Mansfield Air Lab ND 0.200 ND 0.989 </td				

L2525122

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 05/29/25

Air Canister Certification Results

Lab ID: L2525122-07

Date Collected: 04/24/25 10:00 Client ID: CAN 4408 SHELF 73 Date Received: 04/24/25

Sample Location:

Field Prep: Not Specified

		ppbV		ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Air La	ab						
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.100		ND	0.518			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

04/24/25 10:00

Date Collected:

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2525122

Project Number: CANISTER QC BAT **Report Date:** 05/29/25

Air Canister Certification Results

Lab ID: L2525122-07

Client ID: CAN 4408 SHELF 73 Date Received:

04/24/25 Sample Location: Field Prep: Not Specified

		ppbV		ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIN	M - Mansfield Air L	ab						
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria		
1,4-difluorobenzene	98		60-140		
bromochloromethane	102		60-140		
chlorobenzene-d5	98		60-140		

Lab Number: L2530689

Report Date: 05/29/25

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

REMINGTON LOFTS

Cooler Information

Project Name:

Project Number: 2191060

Custody Seal Cooler

NA Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2530689-01A	Canister - 2.7L (Batch Certified)	NA	NA			Υ	Absent		TO15-LL(30)

Project Name: Lab Number: REMINGTON LOFTS L2530689 **Report Date: Project Number:** 2191060 05/29/25

GLOSSARY

Acronyms

EDL

EMPC

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:REMINGTON LOFTSLab Number:L2530689Project Number:2191060Report Date:05/29/25

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \hbox{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Name:REMINGTON LOFTSLab Number:L2530689Project Number:2191060Report Date:05/29/25

Data Qualifiers

- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name: REMINGTON LOFTS Lab Number: L2530689

Project Number: 2191060 Report Date: 05/29/25

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 27

Published Date: 01/24/2025

Page 1 of 2

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270E:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

MADEP-APH.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

Document Type: Form Pre-Qualtrax Document ID: 08-113

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 27

Published Date: 01/24/2025

Page 2 of 2

Certification IDs:

Westborough Facility – 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANAB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

1.	AIR	ANALY	SIS	PAGE \ OF \	Date R	ec'd in La	b: 5/	16%	25	4.8			0:05292517:51 #:L2530689
ALPHA	CHAIN OF CUSTO	Project	Information	AND SHOUSE AND		t Inform	ALC: NAME OF TAXABLE PARTY.	WHEN PERSON NAMED IN	THE REAL PROPERTY.	oles	English Street	g Inform	and the same of th
320 Forbes Blvd, Mar	nsfield, MA 02048 FAX: 508-822-3288	11.00 Market (10.00)	SHAPE BUZINE	aron Lotts	□ FAX	S. III S. II						e as Clie	
Client Information				rwanda, NY	□AD	Ex	n alone						
Client: LABONO	λ		2191040			Criteria Che (Default base	ed on Regu	ilalory Crit	ena Indicate	1)			
Address: 500 PC				s kibler	0.5	Other Form AIL (stand		report)			Regu	latory F	Requirements/Report Limi
BURAIDIN	Y 14202.	. ALPHA C		, ,,,,,,	□ Add	litional Del	liverable	s;			State/l	Fed	Program Res / Comr
Phone: 7\4		Turn-A	round Time		Repor	to: ar differen	t than Projec	t Manager)					
Fax:		N/Standa	nd D.P.II	SH (only confirmed if pre-approved!)									
Email: CKIDWY	plabellapc.com	Statida	id J KO	OFF (only commissed if pre-approved)							4	ANALY	rsis
☐ These samples have	been previously analyzed by A		e:	Time:							///	0	20/ /
	ecific Requirements/0									1	//	1 / / / / / / / / / / / / / / / / / / /	
Project-Specific	Target Compound Lis									_/	of Hones	Preaptar	
			The second second	Below Mus	Name and Address of the Owner, or other Persons of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the	Filled	10	ut	A STATE	12/2	APH Summer	Sulfides & Mercap	//
ALPHA Lab ID (Lab Use Only)	Sample ID	End Date	COLLE Start Time En	CTION Initial Final Vacuum Vacuum	Sample Matrix*	Sampler's Initials	Size	I D Can	I D - Flow Controller	50	APH Summer	Sunides & Mercap	Sample Comments (i.e. PI
30689-01	55-1	5115	815	-29.92	■ SV	AB	2.7	311	Mayo				
THE PILL													
0-1													
*SAMPLE	MATRIX CODES		nt Air (Indoor/Ou por/Landfill Gas/ e Specify	0.752.75060		0	Containe	er Type					Please print clearly, legibly and completely. Samples can not b logged in and turnaround time
Page 31 of 31 (255	MD)	Relingu Mil Bere Lur es C	ished By:	Date/Time 51/51/51/ 5-16-25-76-3	05/ 0	Rece Nav Les La Fred	ived By	Par	9/15	S-15	23	16:0	clock will not start until any ami