

Panamerican Environmental, Inc.

2390 Clinton St. Buffalo, NY 14227

Ph: (716) 821-1650 Fax: (716) 821-1607

SITE MANAGEMENT PLAN

FORMER REMINGTON-RAND FACILITY NIAGARA COUNTY, NEW YORK

NYSDEC SITE NUMBER C932142

Prepared for:

Remington Lofts on the Canal, LLC 298 Main Street, Suite 222 Buffalo, New York 14202

Prepared by:

Panamerican Environmental, Inc. 2390 Clinton Street Buffalo, New York 14227

SEPTEMBER 2010

Former Remington-Rand facility

CITY OF NORTH TONAWANDA, NIAGARA COUNTY, NEW YORK

Site Management Plan

NYSDEC Site Number: C932142

Prepared for:

Remington Lofts on the Canal, LLC 298 Main Street, Suite 400 Buffalo, New York 14202

Prepared by:

Panamerican Environmental, Inc. 2390 Clinton Street Buffalo, New York 14227

Revisions to Final Approved Site Management Plan:

Revision #	Submitted Date	Summary of Revision	DEC Approval Date

AUGUST 2010

TABLE OF CONTENTS

TABLE OF CONTENTS II
LIST OF TABLES IV
LIST OF FIGURESIV
LIST OF APPENDICESV
SITE MANAGEMENT PLAN1
1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM
1.1 INTRODUCTION1
1.1.1 General
1.1.2 Purpose
1.2 SITE BACKGROUND
1.2.1 Site Location and Description
1.2.2 Site History
1.2.3 Geologic Conditions
1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS
1.3.1 Vapor/Air Sampling Results7
1.3.2 Exterior Soil Sampling Results
1.3.3 Interior Sub-Slab Soil Sample Results
1.3.4 Interior Floor Drain/Pit Sediment Sample Results
1.3.5 Groundwater Sample Results 12 1.3.6 Transformer Fluid sample Results 12
1.3.7 RI Conclusions/Recommendations
1.4 SUMMARY OF REMEDIAL ACTIONS14
1.4.1 Summary of IRMs 14
1.4.2 Remaining Contamination
2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN

2.1 INTRODUCTION	
2.1.1 General	
2.1.2 Tupose	
2.2 ENGINEERING CONTROLS	
2.2.1 Engineering Control Systems	20
2.2.1.1 Soil Cover	
2.2.1.2 Sub-Slab Vapor Ventilation System	
2.2.2 Criteria for Completion of Remediation/Termination of Remedial Sys	
2.2.2.1 Soil Cover System	
2.2.2.2 Sub-Slab Ventilation System	21
2.3 INSTITUTIONAL CONTROLS	21
2.3.1 Excavation Work Plan	22
2.3.2 Soil Vapor Intrusion Evaluation	
	20
2.4 INSPECTIONS AND NOTIFICATIONS	
2.4.1 Inspections	
2.4.2 Notifications	
2.5 CONTINGENCY PLAN	
2.5.1 Emergency Telephone Numbers	
3.0 SITE MONITORING PLAN	
3.1 INTRODUCTION	20
3.1.1 General	
3.1.2 Purpose and Schedule	28
3.2 SOIL COVER SYSTEM MONITORING	
3.3 MEDIA MONITORING PROGRAM	
3.3.1 Sub-Slab Vapor Monitoring	
3.3.2 Groundwater Monitoring	
3.4 SITE-WIDE INSPECTION	
3.5 MONITORING QUALITY ASSURANCE/QUALITY CONTROL	

3.6 MONITORING REPORTING REQUIREMENTS
4.0 OPERATION AND MAINTENANCE PLAN
4.1 INTRODUCTION
5. INSPECTIONS, REPORTING AND CERTIFICATIONS
5.1 SITE INSPECTIONS
5.1.1 Inspection Frequency
5.1.2 Inspection Forms, Sampling Data, and Maintenance Reports
5.1.3 Evaluation of Records and Reporting
5.2 CERTIFICATION OF ENGINEERIN/INSTITUTIONAL CONTROLS34
5.3 PERIODIC REVIEW REPORT
5.4 CORRECTIVE MEASURES PLAN
APPENDIX A EXCAVATION WORK PLAN

LIST OF TABLES

1 – Test Boring Soil sample Analytical Results
2 – Test Trench Soil Sample Analytical Results
3 – Surface Soil Sample Analytical results

- 4 Groundwater Sample Analytical results
- 5 Sub-Slab Soil and Drain Sediment Sample Analytical Results
- 6 Sub-Slab Vapor and Ambient Air Sample Analytical results
- 7 UST Confirmation Soil Sample Analytical Result
- 8 Topsoil Confirmation Soil Sample Results
- 9 Sub-grade Reference Soil Sample Results

LIST OF FIGURES

- 1 Project Area Topographic Map
- ALTA Boundary Survey map
- 2-RI Vapor Intrusion/Sub-Slab Soil/Drain Sediment sample locations
- 3 RI Boring, Test Trench and Well Locations
- 4 RI Surface Soil Sample Results
- 5 RI Exterior Subsurface Soil Sample Results

- 6 RI Sub-Slab Soil Sample Results
- 7 Round 2 Groundwater Filtered Sample Results
- 8 RI Drain/Pit Sediment sample Results
- 9 As-built Elevation Plan

LIST OF APPENDICES

- A Excavation Work Plan
- B NYSDOH Soil Vapor/Indoor Air matrices
- C Stohl Transformer Sampling Report
- D IRM Construction Drawings
- E Sample HASP
- F QA/QC Plan
- G Inspection Forms
- H Environmental Easement
- I Map to Hospital

SITE MANAGEMENT PLAN

1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM

1.1 INTRODUCTION

This document is required as an element of the remedial program at The Former Remington Rand Facility Site (Site) under the New York State (NYS) Brownfield Cleanup Program (BCP), administered by New York State Department of Environmental Conservation (NYSDEC). The site was remediated in accordance with the Brownfield Cleanup Agreement (BCA) Index # B9-0780-08-06 Site # C932142, which was executed on October 10, 2008.

1.1.1 General

Remington Lofts on the Canal, LLC (Owner) entered into a BCA with the NYSDEC to remediate a 1.8 acre property located in the City of North Tonawanda, County of Niagara, New York. This BCA required the Remedial Party, (Remington Lofts on the Canal, LLC), to investigate and remediate contaminated media at the site. The site location and boundaries of the 1.8 acre site are provided in Figure 1 and the ALTA Boundary Survey Map respectively. The boundaries of the site are more fully described in the metes and bounds site description on the ALTA Survey Map that is part of the Environmental Easement (Appendix H).

After completion of the remedial work described in the Remedial Action Work Plan, some contamination will be left in the subsurface at this site, which is hereafter referred to as "remaining contamination." This Site Management Plan (SMP) was prepared to manage remaining contamination at the site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. The Environmental Easement will restrict the future property use to Restricted Residential. All reports associated with the site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State.

This SMP was prepared by Panamerican Environmental Inc. (PEI), on behalf of Owner, in accordance with the requirements in NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, dated [November 2009], and the guidelines provided by NYSDEC. This SMP addresses the means for implementing the Institutional Controls

(ICs) and Engineering Controls (ECs) that are required by the Environmental Easement for the site.

1.1.2 Purpose

The site contains contamination left after completion of the remedial action. Engineering Controls have been incorporated into the site remedy to control exposure to remaining contamination during the use of the site to ensure protection of public health and the environment. An Environmental Easement will be granted to the NYSDEC, and recorded with the Niagara County Clerk, and will require compliance with this SMP and all ECs and ICs placed on the site. The ICs place restrictions on site use, and mandate operation, maintenance, monitoring and reporting measures for all ECs and ICs. This SMP specifies the methods necessary ensure compliance with all ECs and ICs required by the Environmental Easement for contamination that remains at the site. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

This SMP provides a detailed description of all procedures required to manage remaining contamination at the site after completion of the Remedial Action, including: (1) implementation and management of all Engineering and Institutional Controls and (2) performance of periodic inspections, certification of results, and submittal of Periodic Review Reports.

To address these needs, this SMP includes: (1) an Engineering and Institutional Control Plan for implementation and management of EC/ICs and (2) a Monitoring Plan for implementation of Site Monitoring.

This plan also includes a description of Periodic Review Reports for the periodic submittal of data, information, recommendations, and certifications to NYSDEC.

It is important to note that:

This SMP details the site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the environmental easement, which is grounds for revocation of the Certificate of Completion (COC);

Failure to comply with this SMP is also a violation of Environmental Conservation Law,

6NYCRR Part 375 and the SAC, Order on for the site, and thereby subject to applicable penalties.

1.1.3 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. In accordance with the Environmental Easement for the site, the NYSDEC will provide a notice of any approved changes to the SM P, and append these notices to the SMP that is retained in its files.

1.2 SITE BACKGROUND

1.2.1 Site Location and Description

The site is located in the City of North Tonawanda, County of Niagara, New York and is identified as Block 1 and Lot 21 on the Niagara County Tax Map (SBL # 185.09-1-21). The site is an approximately 1.8 acre area bounded by Tremont Street to the north, Sweeney Street to the south, New York Central Railroad property to the east, and Marion Street to the west. The boundaries of the site are more fully described on the ALTA Survey map. The 1.8-acre site includes a slab-on-grade four-story concrete block and brick building. Also, a one-story slab-on-grade brick building adjoins the four-story building on the south. The remainder of the property is occupied by asphalt/concrete and gravel parking areas with some green space. The building area occupies approximately 1.2 acres of the 1.8 acre property.

1.2.2 Site History

From sometime prior to 1886 to about 1900 the site was associated with the lumber industry and contained lumber storage and shingle manufacturing. During that time, a portion of the property contained a railroad trolley power house (located in the one-story portion of the building complex identified above). The lumber and wood industry in North Tonawanda, particularly in the mid to late 1800's, typically included cutting timber and pulpwood, sawmills, lath mills, shingle mills, cooperage stock mills (wooden casks or tubs), planning mills, plywood mills, etc. The J. Jackson Shingle Saw Mill was located on a portion of the property with the main mill across Sweeney Street along the Creek. Most lumber at that time was dried to specific moisture content through air or kiln drying powered by coal. Wood that was not kiln-dried was surface protected using chemicals in a dip process, spray process, or green chain process.

From 1900 to the early 1920's the site was occupied by the Herschell-Spillman Co., which manufactured carousels and other amusement park rides. During this time, two carousels were shown located in the northeastern portion of the complex. A painting shop was located along the western half of the property and a machine shop was located in the southeastern portion (in the location of the former trolley power house). Also, a tool house was located off the northeast corner of the southern portion of the building near the rail embankment.

From 1925 to the early/mid 1970's, the site was occupied by the Remington-Rand Corporation. Remington Rand was formed by the merger of the Remington Typewriter Company, Rand Kardex Company, and Powers Accounting Machine Company. Remington Rand was an early American computer manufacturer, best known as the original maker of the UNIVAC I. Remington Rand also manufactured office equipment and other equipment/supplies. The Sweeney Street location was Remington's major printing facility.

From the mid 1970's to present, the building complex was occupied by various commercial tenants including a chemical company, building contractors, warehousing, and furniture and cabinetry makers. At least one of these former tenants has a history as a large quantity generator of hazardous waste.

An active rail line has been located along the eastern border of the property since the mid 1800's. Automotive sales and service and commercial buildings have historically been located on adjacent property to the west of the facility. An automotive service facility with gasoline tanks was historically located on adjacent property northwest of the intersection of Sweeney and Marion Streets and east of the property on the east side of the railroad embankment.

A Phase I Environmental Site Assessment (ESA) was completed on the property in August 2006 ("*Phase I Environmental Assessment Report for 184 Sweeney Street, City of North Tonawanda, Niagara County, New York,*" prepared for, Niagara County Center for Economic Development, prepared by, TVGA Consultants, August 2006). The Phase I ESA was completed in accordance with ASTM Practice E 1527-05. Based on the findings and recommendations of the Phase I ESA, a limited and focused near-surface/subsurface Phase II assessment was completed by Panamerican Environmental, Inc. in December 2007 ("*Phase II Environmental Assessment Report for The Former Remington Rand Facility, 184 Sweeney Street, City of North Tonawanda, Niagara County, New York,*" prepared for, The Kissling Interests,LLC, prepared by,Panamerican Environmental, Inc.,

December 2007). The result of the Phase II assessment indicated that site soil and possibly groundwater have been impacted from past industrial use of the property.

A remedial investigation was completed by PEI in April and May of 2009. The main purpose of this RI was to expand on the information generated during the Phase I/II data and to determine the extent of contamination to allow for the design of remedial actions including IRMs.

The previous investigations identified elevated metals, PAHs and PCBs in surface/nearsurface soils exterior to the building and the potential for impacted groundwater. Data gaps included the need to examine sub-slab vapors and soil beneath the building, potential for contamination in pits and trenches in the building and to confirm the nature and extent of contamination outside the building.

To assess the above media and site conditions the following remedial investigation activities were undertaken:

- Assessment of sub-slab vapors beneath the building floor slab A total of seven borings were installed through the concrete floor slab at locations of historic industrial operations and one air/vapor sample was collected from each location. Analytical results were compared to four ambient air samples collected within the building and one outdoor air sample collected for background. All the results were compared to New York State Department of health (NYSDOH) guideline values.
- Additional assessment of surface and subsurface soil/fill materials across the site exterior of the building A total of ten test trenches were excavated in portions of the property not covered by the existing building including the courtyard and east parking area. A total of six surface soil and eight subsurface soil samples were collected for analysis. Seven geoprobe borings were installed adjacent two transformer areas and in the south loading ramp area. A total of six surface soil and five subsurface soil samples were collected for analysis. A total of six surface soil and five subsurface soil samples were collected for analysis. A total of six surface soil and five subsurface soil samples were collected for analysis. A total of six additional surface soil samples were collected in the two transformer areas.
- Assessment of sub-slab soils Geoprobe borings were installed at each of the seven sub-slab vapor sampling locations and a total of four soil samples were collected from selected cores. One additional soil sample was collected from a boring installed through a filled in area within the building.

- Assessment of building pit and drain sediments A total of two sediment samples were collected from floor drains/trenches and a total of two sediment samples were collected from two elevator pits.
- Assessment of groundwater conditions A total of five Geoprobe borings were converted into groundwater monitoring wells. These were installed at perimeter locations north, east, west and south of the site and one in the center courtyard. One groundwater sample was collected from each monitoring well during two rounds of groundwater sampling.
- Assessment of PCBs in transformer oils A total of 10 transformers and two fluid reservoirs were sampled for PCBs.

1.2.3 Geologic Conditions

Based upon RI boring and test trench logs, in general, fill material consisting of black to grey granular fill, including (C-F) coarse to fine gravel, (M-F) medium to fine sand and traces of concrete, wood, construction and demolition (C&D) debris and organic material was observed at1-3 feet below grade surface (bgs) at the north end and courtyard area of the site and up to 4 and 6 feet bgs in the south east parking area of the site. The soils below this layer consist of grey to brown, granular, loose, M-F sand and silt from 3 to 10 feet bgs. Soil borings and test trenches were terminated in reddish brown, tight, clay with M-F sand and C-F gravel lenses with traces of silt at between 8 and 17 feet bgs. Soils in some investigation boreholes/trenches were wet to saturated at between 11-16 feet

Groundwater was encountered in all 5 of the monitoring wells installed across the site. Based on the groundwater elevations recorded, the groundwater appears to flow from the southeast to the northwest across the site. This is somewhat adverse to what would be expected with the Erie Canal located to the south of the property. However, with the overburden water table being fairly close to the surface, flow may be influenced by the site fill conditions and also by buried utility runs within the Tremont Street and Marion Street right of ways to the north and west respectively.

1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS

A Remedial Investigation (RI) was performed to characterize the nature and extent of contamination at the site. The results of the RI are described in detail in a RI report (*Remedial Investigation Report, Former Remington Rand Facility Site No. C932142, prepared for: Remington Lofts on the canal, LLC, prepared by; Panamerican Environmental, Inc., June*

1.3.1 Vapor/Air Sampling Analytical Results

A total of seven sub-slab vapor samples and five ambient air samples (four indoor and one outdoor ambient location) were analyzed in accordance with the approved work plan and the NYSDEC Analytical Services Protocol (ASP), 10/95 edition (refer to Figure 2). Samples were analyzed for Target Compound list (TCL) volatile organic compounds (VOCs) by EPA method TO-15.

A number of VOC compounds were detected in both the indoor/outdoor ambient air samples and in the sub-slab vapor samples. The VOC compounds detected during the sampling program are summarized in Table 6 and discussed in detail below.

The New York State Department of Health (NYSDOH) has developed a guidance document ("NYSDOH Guidance for Evaluating Soil Vapor Intrusion in NY State, 10/06"). This guidance (NYSDOH Guidance) has been prepared by NYSDOH in consultation with the NYSDEC. It is intended as general guidance to evaluate soil vapor intrusion in New York State.

The VOCs detected in the indoor air samples collected within the Remington building were, in general, consistent with those detected in the outdoor ambient air control sample and detected at similar concentrations (refer to Table 6). The NYSDOH has developed guideline values for acceptable background levels for five specific VOCs in ambient air. Two of the five VOCs, methylene chloride and trichlorothene (TCE), were detected in indoor and/or outdoor ambient air samples at the site at values significantly below guideline values. The highest concentration of methylene chloride detected in the ambient air was 12 mcg/m3 in sample RR-AA-04 versus the guideline value of 60 mcg/m3. The highest concentration of TCE detected in the ambient air was 0.70 mcg/m3 also in sample RR-AA-04 versus the guideline value of 5.0 mcg/m3.

The goals of collecting sub-slab vapor samples were to identify potential and current (when collected concurrently with indoor and outdoor air samples) exposures associated with soil vapor intrusion and to characterize the nature and extent of subsurface vapor contamination, if any. New York State currently does not have any standards, criteria or guidance values for concentrations of compounds in sub-slab vapor. Additionally, there are no databases available of background levels of volatile chemicals in subsurface vapors. However, the NYSDOH has developed in their guidance document decision matrices as a risk management tool to provide guidance on a case-by-case basis about actions that

should be taken to address current and potential exposures related to soil vapor intrusion. The matrices are intended to be used when evaluating the results from buildings with full slab foundations such as the Remington building. The matrices encapsulate the data evaluation processes and actions recommended to address potential exposures.

The NYSDOH has developed two matrices, which are included in Appendix B for reference, to use as tools in making decisions when soil vapor may be entering buildings. The first decision matrix was originally developed for TCE and the second for PCE and later two additional chemicals were added. As summarized in the following table from the NYSDOH Guidance, four chemicals have been assigned to the two matrices to date.

Chemical	Soil Vapor/Indoor Air Matrix
Carbon tetrachloride	Matrix 1
Tetrachloroethene (PCE)	Matrix 2
1,1,1-Trichloroethane (1,1,1-TCA)	Matrix 2
Trichloroethene (TCE)	Matrix 1

Using the Matrix I and 2 models from the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in NY State, 10/06 the concentrations of the guidance selected VOCs detected at the site was evaluated as follows:

Matrix 1 - Indoor air concentrations for both trichloroethene and carbon tetrachloride are between 0.25 to <1 (refer to table 6) and sub-slab concentrations for these compounds are <5 for all samples resulting in Action 2 "Take reasonable and practical actions to identify source(s) and reduce exposure".

Matrix 2 – Indoor air concentrations for both tetrachlorothene and 1,1,1-tricloroethane are <3. Sub-slab vapor concentrations for tetrachloroethene in all samples are <100 resulting in Action 1 "No further action". Sub-slab vapor concentration from sample RR-SA-03 for 1,1,1 trichloroethane falls between 100 to <1,000 resulting in Action 5 "Monitor".

The sub-slab air analytical results (refer to Table 6) reveals that the highest concentrations of trichloroethene and carbon tetrachloride were detected in Sub-slab samples RR-SA-03 and RR-SA-04 (refer to Figure 2) both located in the central section of the building south of the south end of the courtyard. These concentration levels resulted in a Matrix 1 Action

2 "Take reasonable and practical actions to identify source(s) and reduce exposure". The highest concentration of 1,1,1- trichloroethane was detected in sample RR-SA-03 and the next highest concentration level was detected in RR-SA-04 and resulted in a Matrix 2 Action 5 "Monitor". It should be noted that during the sub-slab soil boring program in the area adjacent to RR-SA-04 elevated VOC PID readings were recorded (175 ppm). This was the only sub-slab soil boring where elevated PID readings were recorded.

The concentrations of the various compounds detected in the indoor ambient air also were compared to the OSHA (Occupational Safety and Health Administration) PEL for 8-hour time-weighted average worker inhalation exposure for each detected compound concentration. In all cases the maximum concentration detected in the ambient air for each compound was orders of magnitude lower than the OSHA (Occupational Safety and Health Administration) PEL for 8-hour time-weighted average worker inhalation exposure to each compound.

After consultation with the NYSDEC and NYSDOH it was agreed that the area of the subslab where samples RR-SA 03 and RR-SA-04 were collected would require some form of vapor mitigation to satisfy the action guidelines resulting from the Matrix assessments. It was agreed that, since the first floor area of the building will be used as a parking garage, a passive sub-slab vapor venting system should be installed under the area of the slab surrounding the two sample locations. The system would be installed as an IRM and is discussed in greater detail in Section 1.4.

1.3.2 Exterior Soil Sampling Results

The locations of test trenches and borings are provided on Figure 3. Soil samples were analyzed for TAL metals, TCL VOCs, TCL SVOCS, PCBs and pesticides. However, not all analyses were performed on all samples. Concentrations of detected compounds in the exterior soil samples are provided in Analytical Tables 1, 2 and 3 and also noted on Figures 4 and 5. Each table also provides a comparison of the analytical results with 6 NYCRR Part 375-6.8 Residential and Restricted Residential Soil Cleanup Objectives.

Surface soils - Numerous SVOCs consisting primarily of PAHs were detected in all surface soil samples analyzed for SVOCs. All surface soil samples analyzed for SVOCs had several PAH compounds that exceeded Part 375 residential and restricted residential soil cleanup objectives. In most of the samples PAH concentrations only slightly exceed cleanup objectives; however, in five samples the exceedences were in the order of magnitude range. These samples included: TP-03A and 05A in the east parking area; SS-

08A near the north transformer area and TP-08A and SS-11A near the courtyard transformer area

PAHs, as well as metals, are not, in general, very mobile in soils. PAHs have low solubility's with water and tend to adsorb to the soil grains. These compounds do not readily breakdown in the environment. PAHs deposited from the historical combustion of coal or other fuels will most likely still be present in soils today. Based on their low volatility and their association with soil, the primary concern for potential human exposure to PAHs includes inhalation, ingestion and dermal contact.

Several PCB and Pesticide compounds were detected in the surface soil samples. However, in all cases, compound concentrations were below Part 375 Residential and Restricted Residential Soil Cleanup Objectives.

Metal compounds were detected in all of the surface soil samples analyzed for metals. Six surface soil samples had between one and seven metal compound concentrations that exceeded Part 375 residential and/or restricted residential soil cleanup objectives including: BH-02A (7); SS-08A (6); SS-11A (1); TP-05A (5); TP-08A (1) and TP-10A (4).

Most metals are naturally present in soil and fill materials. Concentrations of metals in soil and fill exhibit considerable variability, both stratigraphically and spatially. This variability is related to the composition of the fill, natural soils' origin, weathering processes that chemically and physically modify soil and, groundwater interactions that modify the geochemistry.

Sub-Surface Soils - Several VOC and PCB compounds were detected in the sub- surface soil samples. However, in all cases, compound concentrations were below Part 375 Residential and Restricted Residential Soil Cleanup Objectives.

Numerous SVOCs consisting primarily of PAHs were detected in most sub-surface soil samples analyzed for SVOCs. Only two samples (TP-01B and TP-09B) detected concentrations of several PAH compounds that slightly exceeded Part 375 residential and restricted residential soil cleanup objectives.

Metal compounds were detected in all sub-surface soil samples analyzed for metals. No metal compounds exceeded Part 375 residential and restricted residential soil cleanup objectives in 10 of the 13 samples. Three samples (BH-6B, TP-2B and TP-9B) had one

metal compound each that slightly exceeded Part 375 residential and restricted residential soil cleanup objectives.

1.3.3 Interior Sub-Slab Soil Sample Results

Sub-slab soil sample locations are provided on Figure 2. Soil sample analytical results are provided on Table 5 and noted on Figure 6. A few VOCs were detected in the sub-slab soil samples at concentrations significantly below Part 375 residential and restricted residential soil cleanup objectives. One PCB compound was detected in one of the sub-slab soil samples at a concentration significantly below Part 375 residential and restricted residential soil cleanup objectives. No pesticides were detected in any of the sub-slab soil samples.

Several SVOCs consisting primarily of PAHs were detected in all five sub slab soil samples. Only one sub slab soil sample (RR-SS-SF-05) had concentrations of two PAH compounds that slightly exceeded Part 375 residential and restricted residential soil cleanup objectives.

Metal compounds were detected in all of the five sub-slab soil samples. No metal compounds exceeded Part 375 residential and restricted residential soil cleanup objectives in four of the five samples. One sample (RR-SS-SF-01) had one metal compound that slightly exceeded Part 375 residential and restricted residential soil cleanup objectives.

1.3.4 Interior Floor Drain/Pit Sediment Sample Results

Sediment sample locations are provided on Figure 2. Soil sample analytical results are provided on Table 5 and noted on Figure 8. Between one and two VOCs were detected in each of the drain/pit sediment samples at concentrations significantly below Part 375 residential and restricted residential soil cleanup objectives. Two PCB compounds were detected in one drain sediment sample at concentrations significantly below Part 375 residential and restricted residential soil cleanup objectives. Several pesticide compounds were detected in all four drain/pit sediment samples at concentrations significantly below Part 375 residential and restricted residential soil cleanup objectives.

Several SVOCs consisting primarily of PAHs were detected in all four drain/pit sediment samples. Three of the four samples (RR-SS-EN, RR-SS-DNE and RR-SS-DC) had concentrations of two PAH compounds each that slightly exceeded Part 375 residential and restricted residential soil cleanup objectives.

Metal compounds were detected in all of the four drain/pit sediment samples. Several metal compounds exceeded Part 375 residential and restricted residential soil cleanup objectives in all four samples. One sample (RR-SS-DC) had several metal compound that significantly exceeded Part 375 residential and restricted residential soil cleanup objectives.

1.3.5 Groundwater Sample Results

Monitoring well locations are provided on Figure 3. Groundwater sample results are provided on Table 4 and noted on Figure 7. Groundwater Samples from Round-1 were analyzed for TCL VOCs and SVOCs and TAL metals. As a result of high turbidity in the samples from the first round, with the exception of sample MW-03, samples MW-01, 02, 04 and 05 detected elevated concentrations of several metal compounds that exceeded groundwater regulations (NYSDEC TOGs 1.1.1 GA Groundwater).

As a result of the elevated concentrations of metal compounds a second round of sampling was conducted of both filtered and unfiltered samples from each well and analyzed for RCRA metals only. A few metal compounds were detected in each of the filtered samples at concentrations significantly below the TOGs 1.1.1 groundwater regulations. Several metal compounds were also detected in the unfiltered samples with most concentrations significantly below TOGs 1.1.1 groundwater regulations with two exceptions. Arsenic concentrations in samples RR-MW-01A (582 ug/l) and RR-MW-02A (78.6 ug/l) exceeded TOGs 1.1.1. Standard for arsenic of 25 ug/l and lead concentrations in RR-MW-01A (30.1 ug/l) and RR-MW-02A (30.2 ug/l) exceeded TOGs 1.1.1. Standard for lead of 25 ug/l.

1.3.6 Transformer Fluid Sample Results

The locations of the ten transformers are provided on Figure 3. The sampling of the ten on site transformers was performed by Stohl Environmental and a table of sample analytical results is provided on page 2 of Stohl's report provided in Appendix C.

Low concentrations of PCBs were detected in the nine northern transformer samples (T-1 through T-9). PCB concentrations ranged from 3.4 ppm to 8.1ppm in transformer samples T-1 to T-6. No PCBs were detected in Transformer samples T-7 to T-9. Also, no PCBs were detected in the two fluid reservoir samples C-1 and C-2. The single courtyard T-10 transformer had a higher PCB concentration of 240 ppm. A stained soil sample collected adjacent to the T-10 transformer detected a PCB concentration of 120 ppm. This sample

appears to be from a small isolated area directly next to the pad. Other surface soil samples collected in this area (refer to Section 4.4.1), including a stained soil sample near the pad, detected PCB concentrations of less than 1 ppm.

1.3.7 RI Conclusions/Recommendations

Sub-Slab Vapor Investigation -The sub-slab vapor assessment program resulted in a number of VOC compounds detected in both the indoor/outdoor air samples and in the sub-slab vapor samples. Utilizing the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in NY State, the sub-slab vapor concentration from sample RR-SA-03 indicated hat this area of the sub-slab should be monitored and steps should be taken to identify possible sources and reduce exposure. To mitigate the sub-slab vapors in this area a passive vapor mitigation system is recommended as an IRM and is discussed in Section 1.4.

Exterior Soils Investigation - Exterior surface and sub-surface soils exhibited elevated concentrations of PAHs and metals that exceeded Part 375 residential and restricted residential soil cleanup objectives. In order for the site to meet Part 375 restricted residential cleanup objectives the top two feet of existing soil across the site will be removed as an IRM and replaced with clean fill material. This IRM is discussed in Section 1.4.

Sub-Slab Soils Investigation - Sub-slab soils exhibited only a few PAH and metal compounds that slightly exceeded Part 375 residential and restricted residential soil cleanup objectives. Because of the very low level of contamination detected and the fact that the floor slab is to remain in place for the planned future development no further remediation is recommended for this area.

Floor Drains/Pits Sediment Investigation - The first floor drain/trench and elevator pit sediment samples exhibited in several samples significant elevated concentrations of a number of metal compounds that exceeded 375 residential and restricted residential soil cleanup objectives. It is recommended that as an IRM the sediments be removed from the drains/trenches and pits and disposed off site at an approved disposal facility. This IRM is discussed in Section 1.4.

Groundwater Investigation - Due to high sample turbidity levels in the first round of groundwater sampling the samples exhibited elevated concentrations of a number of metal

compounds above TOGs ground water standards. A second round of sampling conducted after the wells had settled and where both filtered and unfiltered samples were collected only two metal compounds were detected in two of the unfiltered samples that exceeded the TOGs groundwater standard and no metal compounds exceeded groundwater standards in the filtered samples. Since the site is served by municipal water supply, and groundwater is not planned to be used for the new development, no further action related to groundwater is recommended.

Transformer Fluids Investigation - Three of the ten transformers and both fluid reservoirs do not have PCB containing oil. The remaining seven transformers have various concentrations of PCBs with the highest being 250 ppm. It is recommended as an IRM that the PCB oils in the seven transformers be removed and the transformers cleaned in accordance with all appropriate regulations and that all fluids and transformers be removed and disposed of a at an offsite permitted facility. This IRM is further discussed in Section 1.4.

1.4 SUMMARY OF REMEDIAL ACTIONS

1.4.1 Summary of IRMs

The site was remediated in accordance with the NYSDEC-approved Interim Remedial Measure Work Plan (Work Plan for remedial Investigation/Alternatives Analysis Report and Interim Remedial Measure, Former Remington-Rand Facility,184 Sweeney Street, City of North Tonawanda, New York prepared for: Remington Lofts on the Canal, LLC, prepared by: Panamerican Environmental, Inc., March 2009 & Addendum No.1 October 2009).

Based on the findings of the RI program and discussions with regulatory stakeholders, the following IRMs were completed:

- 1. Installed a sub-slab vapor venting system beneath a portion of the ground floor slab of the structure.
- 2. Removed the top two feet of impacted soil across the site and replacement with two feet of clean fill and/or cement/asphalt paving sections.
- 3. Removed sediments and cleaned building floor drains and elevator shafts
- 4. Removed and disposed of PCB transformer fluids, transformers/enclosures and any

impacted soil/materials adjacent/below transformers.

Details of each IRM are presented on the construction bid drawings provided in Appendix D.

The following is a brief description of each IRM:

- 1) Sub-slab vapor ventilation system was accomplished by installing a passive soil vapor ventilation system in the rear northeast end of the center section of the structure, south of the courtyard area. The system was designed to allow for conversion to an active sub-slab depressurization system by installing an in-line fan. The technology is similar to that used for radon mitigation actions and follows specifications described in EPA and NYSDEC guidance. This IRM was undertaken because the vapor intrusion study indicated that low levels of vapors are entering or could enter the enclosed portion of that section of the building and may propose an environmental health risk to current or future occupants of the building. The design usage for that portion of the building includes vehicle parking in that area. As such, a passive venting system was designed and installed as a precaution for future use changes.
- 2) Removal of stained soil and/or top two feet of impacted soil was designed and implemented in accordance with standard Brownfield's guidance. In general, the top two feet of soil in property green space areas was removed and replaced with soil meeting Brownfield requirements for replacement fill (Section 5.4 (e) of NYSDEC DER-10-Technical Guidance for Site Investigations and Remediation including 6NYYCCR375 Appendix 5A Allowable Constituent Levels for Imported Fill or Soil Subdivision) and or with concrete/asphalt paving sections. The removed soil was disposed of at an offsite approved landfill. Refer to Attachment A for technical specifications and design drawings for this IRM.

During soil excavation an empty 500+/- gallon underground storage tank (UST) was uncovered near the Sweeney Street loading ramp just north of Sweeney Street at the site's southern property boundary. Some contaminated soil was also removed (220 +/- tons) from around and beneath the UST and disposed of with the UST at an approved off-site landfill. Confirmation samples were collected from the sidewalls and bottom of the excavation and the analytical results indicated that no compound concentrations exceeded Part 375 SCOs (refer to Table 7). A test pit was also excavated just south of Sweeney Street off-site and no soil contamination was observed and no elevated PID readings were recorded above background.

Soils management/handling procedures will be designed/implemented to focus on reducing or eliminating the potential for workers and the future residents to come in contact with the elevated levels of PAHs and metals in certain site soils. Based on a review of the investigation data and the proposed future use, it has been determined that the following general approach will be utilized in managing soils during the reconstruction and on-going maintenance of the site.

- All soil/debris material excavated in the project area will be managed as if they are impacted. This means that any potentially impacted soil/debris material excavated at the site will be disposed offsite at a facility permitted to accept non-hazardous soils/debris
- All soil/debris materials that remain exposed at the surface following excavation and/or re-grading will be capped with at least two feet of clean soil meeting restricted residential guidelines as specified in Section 5.4 (e) of NYSDEC DER-10-Technical Guidance for Site Investigations and Remediation including 6NYYCCR375 Appendix 5A Allowable Constituent Levels for Imported Fill or Soil Subdivision and/or covered with a minimum 12 inch thick concrete/asphalt paving section to prevent direct contact or generation of fugitive dust.
- All imported fill materials should be obtained from "virgin" sources and be tested to ensure they are suitable/acceptable with the imported soil requirements of DER-10 noted above.
- Dust control measures with air monitoring will be implemented during all intrusive activities to minimize inhalation exposures and create a public record. The requirements of the New York State Department of Health (NYSDOH) Community Air Monitoring Plan (CAMP) and the NYSDEC Fugitive Dust Suppression and Particulate Monitoring Program (TAGM 4031) will be implemented for particulates during all work activities that involve the excavation and handling of the fill material. Previous assessments on the property indicate that minimal volatile organic compounds are associated with the property. If during the course of construction, volatile organic compounds are indicated at elevated levels, monitoring for these compounds will be included.

- Construction oversight will be provided during all intrusive activities associated with the unsuitable site soil material to provide air monitoring and to document compliance with the work plan and design documents.
- Clean imported fill will be placed around all utilities (DER-10 Guidance). All utilities shall be backfilled with suitable fill to a minimum of 6 inches around the utility including 6 inches below the utility so as to prevent possible contact during future utility repairs with possible contaminated soils at depth.
- During the course of construction, if an area of fill is encountered that is materially different from the fill characterized during the previous site assessments, construction will be halted and the area/fill will be further assesses to include representative sampling and analysis.
- **3) Removed sediments and cleaned floor drains and elevator pits** by removing sediments from all drains and sumps including elevator shaft pits and transporting to an approved landfill. After sediment removal, trenches and elevator shafts washed and the wash water containerized. All materials were tested for disposal purposes and properly disposed of off-site at an approved regulated facility. Refer to Attachment A for technical specifications and design drawings for this IRM.
- 4) Removed courtyard transformers including a single transformer along the south side of the courtyard and the bank of nine transformers along the northern exit of the courtyard, adjacent to Tremont Street. Transformers containing PCB fluids were drained, containerized and disposed of at a permitted facility in accordance with all appropriate regulations. The transformer units were then cleaned and properly disposed of off-site. The Tremont Street transformer building and foundation slab were also removed and properly disposed off site. A small amount of stained Soil below/adjacent the south side transformer was excavated and removed in accordance with the requirements of the soil removal IRM. Refer to Attachment A for technical specifications and design drawings for this IRM.

Final Remedy upon completion of the IRMs will consist of:

- Execution and recording of an Environmental Easement to restrict land use to restricted residential use per NYSDEC Part 375 regulations and prevent future exposure to any contamination remaining at the site.
- Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental

1.4.2 Remaining Contamination

The RI analytical results from exterior subsurface soil samples (below the 2 feet removed during the IRM) indicated several PAH compounds and a few metal compounds with concentrations that slightly exceeded Part 375 Restricted Residential soil cleanup objectives. As noted in the IRM descriptions, two feet of clean soil or a minimum one foot of paving section was place over the entire site after the removal and offsite disposal of the top 2 feet of soil (refer to drawings IRM-101 and 102 Appendix D).

RI analytical results from sub-slab soil samples also indicated a few PAH and Metal compounds with concentrations that slightly exceeded Part 375 Restricted Residential soil cleanup objectives. These soils are presently covered with the existing building concrete floor.

Any future disturbance of the exterior subsurface or sub-slab impacted soils will be handled as discussed in Appendix A Excavation Work Plan.

The RI vapor intrusion study indicated that the impacted sub-slab soils are emitting vapors with low concentrations of a few organic compounds at the northeast end of the center section of the structure, south of the courtyard area (area of concern depicted on drawing IRM-103 in Appendix D). Minor vapors are entering or could enter the enclosed portion of this section of the building and may propose an environmental health risk to current or future occupants of the building. The design usage for this portion of the building includes vehicle parking. As such, a passive venting system was designed as a precaution for future use changes with the capability to convert to an active system (refer to drawing IRM-103 Appendix D).

Tables 1 and 2 and Figure's 3 and 5 provide the analytical results and sample locations for exterior soil samples collected below the two foot soil removal depth. Table 5 and Figure's 2 and 6 provide the analytical results and sample locations for sub-slab soil samples. Table 6 and Figure 2 provide the analytical results and sample locations for sub-slab vapor and ambient air samples. Table 9 reflects the results from four confirmation/reference samples collected (2 from the courtyard and 2 from the east parking area) after the top two feet of soil were removed under the IRM.

2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN

2.1 INTRODUCTION

2.1.1 General

Since remaining contaminated soil exists beneath the site, Engineering Controls and Institutional Controls (EC/ICs) are required to protect human health and the environment. This Engineering and Institutional Control Plan describes the procedures for the implementation and management of all EC/ICs at the site. The EC/IC Plan is one component of the SMP and is subject to revision by NYSDEC.

2.1.2 Purpose

This plan provides:

- A description of all EC/ICs on the site;
- The basic implementation and intended role of each EC/IC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the features to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of EC/ICs, such as the implementation of the Excavation Work Plan for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the site; and
- Any other provisions necessary to identify or establish methods for implementing the EC/ICs required by the site remedy, as determined by the NYSDEC.

2.2 ENGINEERING CONTROLS

2.2.1 Engineering Control Systems

2.2.1.1 Soil Cover

Exposure to remaining contamination in soil/fill at the site will be prevented by a soil cover system placed over the site. This cover system is comprised of a minimum of 24 inches of clean soil, asphalt/concrete pavement sections (12 inches minimum depth) and the existing concrete building slab. Before placement of cover material a geotextile fabric layer was placed as a demarcation between the clean fill and the existing soil. The Excavation Work Plan that appears in Appendix A outlines the procedures required to be implemented in the event the cover system is breached, penetrated or temporarily removed and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Media Monitoring Program included in Section 3 of this SMP. (refer to drawings IRM-101 and 102 with as-built elevations Appendix D).

2.2.1.2 Sub-Slab Vapor Ventilation System

A passive soil vapor ventilation system was installed in the rear northeast end of the center section of the structure, south of the courtyard area (refer to drawing IRM-103 in Appendix D). The system is designed to allow for conversion to an active sub-slab depressurization system by activating an in-line fan installed during the IRM. To evaluate the effectiveness of the vent system a sample will be collected from the vent stack sample port along with an ambient air sample within six months of installation and every six months thereafter. Samples will be analyzed for TCL VOCs by EPA Method TO-15. Prior to each sampling event the in-line fan will be turned on to exert the necessary vacuum to collect a representative sub-slab air sample. The TO-15 sample will be collected using a Summa canister through the provided sample port in the vent stack.

2.2.2 Criteria for Completion of Remediation/Termination of Remedial Systems

Generally, remedial processes are considered completed when effectiveness monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete

2.2.2.1 Soil Cover System

The soil/paved cover system is a permanent control and the quality and integrity of this system will be inspected at defined, regular intervals in perpetuity.

2.2.2.2 Sub-slab Ventilation System

The sub-slab venting system will not be discontinued unless prior written approval is granted by the NYSDEC. In the event that monitoring data indicates that the system is no longer required, a proposal to discontinue the system will be submitted by the property owner to the NYSDEC and NYSDOH.

2.3 INSTITUTIONAL CONTROLS

A series of Institutional Controls is required by the Decision Document to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to restricted residential uses only. Adherence to these Institutional Controls on the site is required by the Environmental Easement and will be implemented under this Site Management Plan. These Institutional Controls are:

- Compliance with the Environmental Easement and this SMP by the Grantor and the Grantor's successors and assigns;
- All Engineering Controls must be operated and maintained as specified in this SMP;
- All Engineering Controls on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP.
- Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in this SMP;

Institutional Controls identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

The site has a series of Institutional Controls in the form of site restrictions. Adherence to these Institutional Controls is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The property may only be used for restricted residential use provided that the longterm Engineering and Institutional Controls included in this SMP are employed.
- The property may not be used for a higher level of use, such as unrestricted residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- The use of the groundwater underlying the property is prohibited without testing and approval of the NYSDEC and NYSDOH;
- Vegetable gardens and farming on the property are prohibited.

The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP.

NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

2.3.1 Excavation Work Plan

The site will be remediated for restricted residential use. Any future intrusive work that will penetrate the soil cover, or encounter or disturb the remaining contamination, including any modifications or repairs to the existing cover system will be performed in compliance with the Excavation Work Plan (EWP) that is attached as Appendix A to this SMP. If any future excavation extends below the geotextile demarcation layer into the impacted soil the demarcation layer shall be replaced during backfilling. Any work conducted pursuant to the EWP must also be conducted in accordance with the procedures defined in a Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) prepared for the site. A sample HASP is attached as Appendix E to this SMP that is in current compliance with DER- 10, and 29 CFR 1910, 29 CFR 1926, and all other applicable Federal, State and local regulations. Based on future changes to State and federal health and safety requirements, and specific methods employed by future contractors, the HASP and CAMP will be updated and re-submitted with the notification

provided in Section A-1 of the EWP. Any intrusive construction work will be performed in compliance with the EWP, HASP and CAMP, and will be included in the periodic inspection and certification reports submitted under the Site Management Reporting Plan (See Section 5).

The site owner and associated parties preparing the remedial documents submitted to the State, and parties performing this work, are completely responsible for the safe performance of all intrusive work, the structural integrity of excavations, proper disposal of excavation de-water, control of runoff from open excavations into remaining contamination, and for structures, roadway sections, buried utilities, etc. that may be affected by excavations. The site owner will ensure that site development activities will not interfere with, or otherwise impair or compromise, the engineering controls described in this SMP.

2.3.2 Soil Vapor Intrusion Evaluation

Prior to the construction of any future enclosed structures located over areas that contain remaining contamination and the potential for soil vapor intrusion (SVI) has been identified an SVI evaluation will be performed to determine whether any mitigation measures are necessary to eliminate potential exposure to vapors in the proposed structure. Alternatively, an SVI mitigation system may be installed as an element of the building foundation without first conducting an investigation. This mitigation system will include a vapor barrier and passive sub-slab depressurization system that is capable of being converted to an active system.

Prior to conducting an SVI investigation or installing a mitigation system, a work plan will be developed and submitted to the NYSDEC and NYSDOH for approval. This work plan will be developed in accordance with the most recent NYSDOH "Guidance for Evaluating Vapor Intrusion in the State of New York". Measures to be employed to mitigate potential vapor intrusion will be evaluated, selected, designed, installed, and maintained based on the SVI evaluation, the NYSDOH guidance, and construction details of the proposed structure.

Preliminary (unvalidated) SVI sampling data will be forwarded to the NYSDEC and NYSDOH for initial review and interpretation. Upon validation, the final data will be transmitted to the agencies, along with a recommendation for follow-up action, such as mitigation. Validated SVI data will be transmitted to the property owner within 30 days of validation. If any indoor air test results exceed NYSDOH guidelines, relevant

NYSDOH fact sheets will be provided to all tenants and occupants of the property within 15 days of receipt of validated data.

SVI sampling results, evaluations, and follow-up actions will also be summarized in the next Periodic Review Report.

2.4 INSPECTIONS AND NOTIFICATIONS

2.4.1 Inspections

Inspections of all remedial components installed at the site will be conducted at the frequency specified in the SMP Monitoring Plan schedule. A comprehensive site- wide inspection will be conducted annually, regardless of the frequency of the Periodic Review Report. The inspections will determine and document the following:

- Whether Engineering Controls continue to perform as designed;
- If these controls continue to be protective of human health and the environment;
- Compliance with requirements of this SMP and the Environmental Easement;
- Achievement of remedial performance criteria;
- If site records are complete and up to date; and Changes, or needed changes, to the remedial or monitoring system.

Inspections will be conducted in accordance with the procedures set forth in the Monitoring Plan of this SMP (Section 3). The reporting requirements are outlined in the Periodic Review Reporting section of this plan (Section 5).

If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs, an inspection of the site will be conducted within 5 days of the event to verify the effectiveness of the EC/ICs implemented at the site by a qualified environmental professional as determined by NYSDEC.

2.4.2 Notifications

Notifications will be submitted by the property owner to the NYSDEC as needed for the following reasons:

 60-day advance notice of any proposed changes in site use are required under the State Assistance Contract (SAC), 6NYCRR Part 375, and/or Environmental Conservation Law. 15-day advance notice of any proposed ground-intrusive activities pursuant to the Excavation Work Plan.

- Notice within 48-hours of any damage or defect to the foundations structures that reduces or has the potential to reduce the effectiveness of other Engineering Controls and likewise any action to be taken to mitigate the damage or defect.
- Notice within 48-hours of any emergency, such as a fire, flood, or earthquake that reduces or has the potential to reduce the effectiveness of Engineering Controls in place at the site, including a summary of actions taken, or to be taken, and the potential impact to the environment and the public.
- Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action shall be submitted to the NYSDEC within 45 days and shall describe and document actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser has been provided with a copy of the SAC and all approved work plans and reports, including this SMP
- Within 15 days after the transfer of all or part of the site, the new owner's name, contact representative, and contact information will be confirmed in writing.

2.5 CONTINGENCY PLAN

Emergencies may include injury to personnel, fire or explosion, environmental release, or serious weather conditions. No emergencies are anticipated related to the engineering controls in place. Contaminates of concern are low level non-hazardous compounds that if exposed to the environment would not result in emergency situations as noted above. Exposure to the contaminated soils would be handled as described in the excavation work plan or through maintenance and repairs on a non-emergency basis.

2.5.1 Emergency Telephone Numbers

In the event of any environmentally related situation or unplanned occurrence requiring assistance the Owner or Owner's representative(s) should contact the appropriate party from the contact list below. For emergencies, appropriate emergency response personnel should be contacted. Prompt contact should also be made to [qualified environmental professional]. These emergency contact lists must be maintained in an easily accessible location at the site.

Medical, Fire, and Police:	911
One Call Center:	(800) 272-4480(3 day notice required for utility markout)
Poison Control Center:	(800) 222-1222
Pollution Toxic Chemical Oil Spills:	(800) 424-8802
NYSDEC Spills Hotline	(800) 457-7362

Emergency Contact Numbers

Contact Numbers

Tom Barrett (Site Contact/Owner Representative) 716-853-2787 or 2792 * Peter Gorton (Environmental professional) 716-821-1650 *

* Note: Contact numbers subject to change and should be updated as necessary

2.5.2 Map and Directions to Nearest Health Facility

HospitalDegraff Memorial Hospital445 Tremont St., North Tonawanda, NY

Directions	Mileage
Start out going East on Sweeney St toward Oliver	0.3 miles

	SMP Template: Ma
Turn left on to Payne Ave.	0.1 miles
Turn right on to Tremont St	0.3 miles
End at 445 Tremont Degraff Hospital. Estimate Travel time 2 minutes	

Map to hospital provided in Appendix I

3.0 SITE MONITORING PLAN

3.1 INTRODUCTION

3.1.1 General

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the site, the soil cover system, and all affected site media identified below. Monitoring of other Engineering Controls is described in Chapter 4, Operation, Monitoring and Maintenance Plan. This Monitoring Plan may only be revised with the approval of NYSDEC.

3.1.2 Purpose and Schedule

This Monitoring Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, indoor air, soil vapor, soils);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance;
- Assessing achievement of the remedial performance criteria;
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment; and
- Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, this Monitoring Plan provides information on:

- Sampling locations, protocol, and frequency;
- Information on all designed monitoring systems;
- Analytical sampling program requirements;
- Reporting requirements;
- Quality Assurance/Quality Control (QA/QC) requirements; and
- Annual inspection and periodic certification.

Monitoring of the performance of the sub-slab venting system will be conducted after 6

months of system installation and every 6 months thereafter. The continued frequency will be determined by NYSDEC/NYSDOH based on trends in contaminant levels in the subslab air in the affected area to determine if the remedy continues to be effective in achieving remedial goals. Monitoring will consist of collecting an air sample from the vent stack sampling port and an ambient air sample and analyzing the sample for TCL VOCs by EPA Method TO-15. Programs are summarized in detail in Sections 3.2 and 3.3 below.

This Monitoring Plan may only be revised with the approval of NYSDEC.

3.2 SOIL COVER SYSTEM MONITORING

The soil cover system will be inspected in accordance with the schedule discussed in section 5.0 Inspections, Reporting and Certifications.

3.3 MEDIA MONITORING PROGRAM

3.3.1 Sub-Slab Vapor Monitoring

As noted above, monitoring of the performance of the sub-slab venting system will be conducted after 6 months of system installation and every 6 months thereafter. For each sampling event the in-line fan will be switched on for 15 minutes to create a vacuum in the sub-slab to allow representative air sample to be collected through the sample port in the vent stack (refer to drawing IRM-103 in Appendix D). The sample will be collected in a Summa canister and sent to an accredited laboratory for analysis for TCL VOCs by EPA Method TO-15. An ambient air sample will also be collected concurrent with the sub-slab sample. The results will be compared to the results from the initial sub-slab vapor assessment sampling conducted prior to the installation of the IRM venting system to ascertain if similar concentrations of VOCs detected in the initial assessment are being adequately being vented through the installed venting system.

3.3.2 Groundwater Monitoring

Not required at this site

3.4 SITE-WIDE INSPECTION

Site-wide inspections will be performed on a regular schedule at a minimum of once a year. Site-wide inspections will also be performed after all severe weather conditions that may affect Engineering Controls or monitoring devices. During these inspections, an inspection form will be completed (Appendix G). The form will compile sufficient information to assess the following:

- Compliance with all ICs, including site usage;
- An evaluation of the condition and continued effectiveness of ECs;
- General site conditions at the time of the inspection;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection;
- Compliance with permits and schedules included in the Operation and Maintenance Plan; and
- Confirm that site records are up to date.

3.5 MONITORING QUALITY ASSURANCE/QUALITY CONTROL

Monitoring quality assurance/quality control will adhere to the PART B Quality Assurance/Quality Control (QA/QC) Plan in PEI's Work Plan for the RI/AAR and IRM. A copy of this plan is provided in Appendix F for reference.

3.6 MONITORING REPORTING REQUIREMENTS

Forms and any other information generated during regular monitoring events and inspections will be kept on file on-site. All forms, and other relevant reporting formats used during the monitoring/inspection events, will be (1) subject to approval by NYSDEC and (2) submitted at the time of the Periodic Review Report, as specified in the Reporting Plan of this SMP.

Groundwater monitoring is not required for this site.

All monitoring results will be reported to NYSDEC and NYSDOH on a periodic basis in the Periodic Review Report. A letter report will also be prepared subsequent to each sampling event and contain the following information:

- Date of event;
- Personnel conducting sampling;
- Description of the activities performed;
- Type of samples collected (e.g., sub-slab vapor, indoor air, outdoor air, etc);
- Copies of all field forms completed (e.g., daily reports, chain-of-custody documentation, etc.);
- Sampling results in comparison to appropriate standards/criteria;
- Copies of all laboratory data sheets and the required laboratory data deliverables

required for all points sampled (to be submitted electronically in the NYSDEC identified format); and

• Any observations, conclusions, or recommendations.

Data will be reported in hard copy and digital format as determined by NYSDEC.

4.0 OPERATION AND MAINTENANCE PLAN

4.1 INTRODUCTION

In general, the site remedy does not rely on any mechanical systems; however, an inline fan has been installed as part of the sub-slab venting system in the vent stack near the ceiling of the first floor of the building to draw a vacuum on the system during the six month sampling requirement for assessing the operating efficiency of the system. The in-line fan will also be used if the system is required to become an active system whereby the fan will operate continuously. A one inch sample port has been installed in the six inch PVC vertical vent pipe on the first floor. Six months after the system is operational a vapor sample will be collected through the sample port for analysis and an in-door ambient air sample will also be collected. The sub-slab sample will be collected by using a 6-liter Summa® canister equipped with a pre-calibrated/certified 2hour flow controller, and particulate filter.

The sub-slab sampling procedure will be as follows:

Remove the one inch plug from the sampling port and insert a ¹/₄ inch teflon or polyethylene tube through the port to the center of the 6 inch vent pipe. Seal the tubing at the port opening with a piece of modeling clay. Attach the sample to the end of the flow controller/particulate filter assembly of the Summa canister using a ¹/₄-inch Swagelok nut with appropriate ferrules. With the summa canister valve closed, close the knife valve in the vent line at the vent pipe by-pass and turn on the in-line fan and run for 15 minutes. Turn off the fan and turn on the valve built into the Summa canister. Sample collection will be terminated by shutting off the valve after the vacuum in the canister has reached approximately minus 3 inches of mercury.

The indoor ambient air sampling procedures is summarized below:

• Place the indoor air Summa canister/flow controller inlet at breathing height in the approximate center of the space being sampled. The breathing height is defined as four to six feet above the floor or ground. As an option, a length of Teflon tubing

will be attached to the Summa canister/flow controller inlet and raised to breathing zone height.

- Attach a pre-calibrated/certified 8-hour flow controller and particulate filter to the Summa canister.
- Open canister valve to initiate sample collection and record start time, date and gauge vacuum reading on the canister identification tag and on the Summa Canister Data Sheet.
- After 8 hours, record the gauge vacuum reading, close the Summa canister valve completely and record the end time on the Summa Canister Data Sheet.

The maintenance of the in-line fan will be minimal. The installed Fantech HP-220 fan housing is factory sealed to prevent leakage. The fan housing is caulked sealed into the six inch vent pipe. It has a water tight electrical terminal box approved for mounting in wet locations i.e. outdoors. The motor is totally enclosed for protection and has a high efficiency EBM motorized impeller with automatic reset thermal overload protection. The average life expectancy is 7-10 years under continuous load conditions and has five year full factory warrantee.

During the yearly inspection the knife value will be manually closed and the fan turned on for a minimum of 15 minutes to assure it is operational. The caulking seals will also be inspected and re-caulked as necessary.

5.0 INSPECTIONS, REPORTING AND CERTIFICATIONS

5.1 SITE INSPECTIONS

5.1.1 Inspection Frequency

All inspections will be conducted at the frequency specified in the schedules provided in Section 3 Monitoring Plan of this SMP. At a minimum, a site-wide inspection will be conducted annually. Inspections of remedial components will also be conducted when a breakdown of any treatment system component has occurred or whenever a severe condition has taken place, such as an erosion or flooding event that may affect the ECs.

5.1.2 Inspection Forms, Sampling Data, and Maintenance Reports

A general site-wide inspection form will be completed during the site-wide inspection (see Appendix G). These forms are subject to NYSDEC revision.

All applicable inspection forms and other records will be provided in electronic format in the Periodic Review Report.

5.1.3 Evaluation of Records and Reporting

The results of the inspection and site monitoring data will be evaluated as part of the EC/IC certification to confirm that the:

- EC/ICs are in place, are performing properly, and remain effective;
- The Monitoring Plan is being implemented
- The site remedy continues to be protective of public health and the environment and is performing as designed in the RAWP and FER.

5.2 CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS

After the last inspection of the reporting period, a qualified environmental professional or Professional Engineer licensed in New York State will prepare the following certification: For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program [and generally accepted engineering practices]; and
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as Owner's designated site representative for the site. The signed certification will be included in the Periodic Review Report described below.

5.3 PERIODIC REVIEW REPORT

A Periodic Review Report will be submitted to the Department every year, beginning eighteen months after the Certificate of Completion is issued. In the event that the site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the site described in the Environmental Easement. The report will be prepared in accordance with NYSDEC DER-10 and submitted within 45 days of the end of each certification period. The report will include:

- Identification, assessment and certification of all ECs/ICs required by the remedy for the site;
- Results of the required annual site inspections and severe condition inspections, if applicable;
- All applicable inspection forms and other records generated for the site during the reporting period in electronic format.
- A site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the Decision Document;

- Any new conclusions or observations regarding site contamination based on Inspections or data generated by the Monitoring Plan for the media being monitored;

- Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and

- The overall performance and effectiveness of the remedy.

The Periodic Review Report will be submitted, in hard-copy format, to the NYSDEC Central Office and Regional Office in which the site is located, and in electronic format to NYSDEC Central Office, Regional Office and the NYSDOH Bureau of Environmental Exposure Investigation.

5.4 CORRECTIVE MEASURES PLAN

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control, a corrective measures plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the corrective measures plan until it is approved by the NYSDEC.

APPENDIX A EXCAVATION WORK PLAN

A-1 NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the site owner or their representative will notify the Department. Currently, this notification will be made to:

NYSDEC Region 9 Telephone No. 716-851-7220

Regional Hazardous Waste Remediation Engineer

Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, New York 14203-2915

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent, plans for site re-grading, intrusive elements or utilities to be installed below the soil cover, estimated volumes of contaminated soil to be excavated and any work that may impact an engineering control;
- A summary of environmental conditions anticipated in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work,
- A summary of the applicable components of this EWP;
- A statement that the work will be performed in compliance with this EWP and 29 CFR1910.120;
- A copy of the contractor's health and safety plan, in electronic format, if it differs from the HASP provided in Appendix E of this document;
- Identification of disposal facilities for potential waste streams;
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

A-2 SOIL SCREENING METHODS

Visual, olfactory and instrument-based soil screening will be performed by a qualified environmental professional during all remedial and development excavations into known or potentially contaminated material (remaining contamination). Soil screening will be performed regardless of when the invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the COC.

Soils will be segregated based on previous environmental data and screening results into material that requires off-site disposal, material that requires testing, material that can be returned to the subsurface, and material that can be used as cover soil.

A-3 STOCKPILE METHODS

Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC.

A-4 MATERIALS EXCAVATION AND LOAD OUT

A qualified environmental professional or person under their supervision will oversee all invasive work and the excavation and load-out of all excavated material.

The owner of the property and its contractors are solely responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the site.

Loaded vehicles leaving the site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements).

A truck wash will be operated on-site. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the site until the activities performed under this section are complete.

Locations where vehicles enter or exit the site shall be inspected daily for evidence of off-site soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the site are clean of dirt and other materials derived from the site during intrusive excavation activities.

Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to site-derived materials.

A-5 MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

All trucks will be washed prior to leaving the site. Truck wash waters will be collected and disposed of off-site in an appropriate manner.

Truck transport routes are as follows: [describe route and provide map]. All trucks loaded with site materials will exit the vicinity of the site using only these approved truck routes. This is the most appropriate route and takes into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; (f) overall safety in transport; and (g) community input.

Trucks will be prohibited from stopping and idling in the neighborhood outside the project site.

Egress points for truck and equipment transport from the site will be kept clean of dirt and other materials during site remediation and development.

Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Off-site queuing will be prohibited.

A-6 MATERIALS DISPOSAL OFF-SITE

All soil/fill/solid waste excavated and removed from the site will be treated as contaminated and regulated material and will be transported and disposed in accordance with all local, State (including 6NYCRR Part 360) and Federal regulations. If disposal of soil/fill from this site is proposed for unregulated off-site disposal (i.e. clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC. Unregulated off-site management of materials from this site will not occur without formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the pre- excavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, i.e. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling facility, etc. Actual disposal quantities and associated documentation will be reported to the NYSDEC in the Periodic Review Report. This documentation will include: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-site will be handled, at minimum, as a Municipal Solid Waste per 6NYCRR Part 360-1.2. Material that does not meet Track 1 unrestricted SCOs is prohibited from being taken to a New York State recycling facility (6NYCRR Part 360-16 Registration Facility).

A-7 MATERIALS REUSE ON-SITE

Contaminated on-site material, including historic fill and contaminated soil, that is acceptable for re-use on-site will be placed below the demarcation layer or impervious surface, and will not be reused within a cover soil layer, within landscaping berms, or as backfill for subsurface utility lines.

Any demolition material proposed for reuse on-site will be sampled for asbestos and the results will be reported to the NYSDEC for acceptance. Concrete crushing or processing

on-site will not be performed without prior NYSDEC approval. Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the site will not be reused on-site.

A-8 FLUIDS MANAGEMENT

All liquids to be removed from the site, including excavation dewatering and groundwater monitoring well purge and development waters, will be handled, transported and disposed in accordance with applicable local, State, and Federal regulations. Dewatering, purge and development fluids will not be recharged back to the land surface or subsurface of the site, but will be managed off-site.

Discharge of water generated during large-scale construction activities to surface waters (i.e. a local pond, stream or river) will be performed under a SPDES permit.

A-9 COVER SYSTEM RESTORATION

After the completion of soil removal and any other invasive activities the cover system will be restored in a manner that complies with the decision document or Record of Decision. The demarcation layer, consisting of orange snow fencing material or equivalent material will be replaced to provide a visual reference to the top of the "Remaining Contamination Zone", the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this Site Management Plan. If the type of cover system changes from that which exists prior to the excavation (i.e., a soil cover is replaced by asphalt), this will constitute a modification of the cover element of the remedy and the upper surface of the "Remaining Contamination. A figure showing the modified surface will be included in the subsequent Periodic Review Report and in any updates to the Site Management Plan.

A-10 BACKFILL FROM OFF-SITE SOURCES

All materials proposed for import onto the site will be approved by the qualified environmental professional and will be in compliance with provisions in this SMP prior to receipt at the site.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the site.

All imported soils will meet the backfill and cover soil quality standards established in 6NYCRR 375-6.7(d) And NYSDEC DER-10 Appendix 5 Allowable Concentration Levels for Imported Soil or Fill found in subdivision 5.4(e). Soils that meet "exempt" fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this site, will not be imported onto the site without prior approval by NYSDEC. Solid waste will not be imported onto the site.

Trucks entering the site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

A-11 STORMWATER POLLUTION PREVENTION

No formal Storm water Pollution Prevention Plan will be required for this site since it is less that one acre (Open land not covered by buildings is $0.6 \pm -$ acres). However, the following erosion and sediment control measures will be required for all future site construction involving site soil excavation or movement activities:

- The transport of site soils off site shall be control/prevented **by** installing silt fencing or hay bales around the entire perimeter of the construction area.
- Barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC. All necessary repairs shall be made immediately.
- Accumulated sediments will be removed as required to keep the barrier and hay bale check functional.
- All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials.
- Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

A-12 CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be reported to the NYSDEC within 2 hours and work will be suspended until sufficient equipment is mobilized to address the condition.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to

determine the nature of the material and proper disposal method. Chemical analysis will be performed for a full list of analytes (TAL metals; TCL volatiles and semi-volatiles, TCL pesticides and PCBs), unless the site history and previous sampling results provide a sufficient justification to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC for approval prior to sampling.

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone to NYSDEC's Project Manager.

Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the periodic reports prepared pursuant to Section 5 of the SMP.

A-13 COMMUNITY AIR MONITORING PLAN

A Community Air monitoring Plan (CAMP) will be developed for all intrusive or site soil movement at the site. The CAMP shall follow the guidelines established in the latest version of NYSDEC DER-10 Appendix 1A-NYSDOH Generic Community Air Monitoring Plan.

Volatile Organic Compound (VOC) Monitoring:

Based on soil sample results from exterior site investigations and the soil removal IRM only a few VOCs were detected at very low concentrations and are not considered compounds of concern and continuous monitoring for VOCs is not required for exterior excavations. However, if, as noted in section A-12 Contingency Plan, underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities a portable photoionization detector (PID) should be available to field screen for VOCs. If VOCs are detected the VOC action levels provided in the DER-10 Appendix 1A Generic CAMP should be adhered to. The requirements of the Contingency Plan will also apply to any future excavation of the building floor slab and disturbance of subsurface soils below the slab.

Particulate Monitoring:

For exterior excavations continuous particulate monitoring will be required at the upwind and downwind perimeters of the site during all soil movement activities at the site. Particulate monitors shall conform to the following specifications:

tric analysis
st

Particulate monitoring requirements will follow the guidelines provided in the DER-10 Appendix 1A Generic CAMP and as follows:

- Continuous particulate monitoring shall be performed at the upwind and downwind perimeters of the site during all excavation and /or soil movement activities.
- If the downwind particulate level is 100 micrograms per cubic meter (ug/m³) greater than the upwind level, then dust suppression techniques will be required (refer to section A-15) Work may continue provided these techniques reduce the downwind particulate level.
- If the downwind particulate level is 150 micrograms per cubic meter (ug/m³) greater than the upwind level, all activities must stop and employ dust suppression techniques (refer to section A-15).
- Additionally, the Contractor, Engineer, and Owner shall be responsible for visually assessing fugitive dust migration from the site. If airborne dust is observed leaving the project site, the work will be stopped. Work shall not continue until dust suppression techniques are successfully employed.

Exceedances of action levels listed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers.

A-14 ODOR CONTROL PLAN

This odor control plan is capable of controlling emissions of nuisance odors off- site. If nuisance odors are identified at the site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events and of any other complaints about the project. Implementation of all odor controls, including the halt of work, is the responsibility of the property owner's Remediation Engineer, and any measures that are implemented will be discussed in the All necessary means will be employed to prevent on- and off-site nuisances. At a minimum, these measures will include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous soils. If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for off-site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods.

If nuisance odors develop during intrusive work that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

A-15 DUST CONTROL PLAN

A dust suppression plan that addresses dust management during invasive on-site work will be in compliance with DER-10 and include, at a minimum, the items listed below:

- Dust suppression will be achieved though the use of a dedicated, on-site water truck for road wetting. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-site roads will be limited in total area to minimize the area required for water truck sprinkling.

A-16 OTHER NUISANCES

A plan will be developed and utilized by the contractor for all remedial work to ensure compliance with local noise control ordinances.

				DLE I - N	emingtor	Rand Sc	il Boring Ana	alytical Result	(S	_			
Sample Number	RR-BH-01A	RR-BH-01B	RR-BH-02A	RR-BH-02B	RR-BH-03A	RR-BH-04A	RR-BH-04B	RR-BH-05A	RR-BH-06A	RR-BH-06B	RR-BH-07B	NYSDEC	NYSDEC
Sample Date	4/27/2009	4/27/2009	4/27/2009	4/27/2009	4/27/2009	4/27/2009	4/27/2009	4/27/2009	4/27/2009	4/27/2009	4/27/2009	PART 375	PART 375
Sample depth	Surface	1'-2'	Surface	4'-5'	Surface	Surface	4'-5'	Surface	Surface	2'-3'	2'-3'	Residential	Restrict-Re
Compounds	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	(a) ppm	(b) ppm
Metals													
Aluminum	N/A	8170	21500	11900	N/A	N/A	6590	6340	N/A	19200	7870	N/A	N/A
Antmony	N/A	ND	9.4 J	ND	N/A	N/A	1.0 J	1.4 J	N/A	1,2 J	ND	N/A	N/A
Arsenic	N/A	5.7	52.5 (a)(b)	6.0	N/A	N/A	5.2	6.2	N/A	20.2 (a)(b)	11.6	16	16
Barium	N/A	55	2160 D08 (a)(b)	47.1	N/A	N/A	75.5	105	N/A	164	61.4	350	400
Beryllium	N/A	0.505	2.41	0.436	N/A	N/A	0.28	0.271	N/A	1.25	0.289	14	72
Cadmium	N/A	0.98 J	4.12 J (a)	ND	N/A	N/A	ND	0.604 J	N/A	ND	ND	2.5	4.3
Calcium	N/A	7420	108000	2410	N/A	N/A	17100	17700	N/A	3620	2760	N/A	N/A
Chromium	N/A	12.6 BJ	119 B J (a)(b)	18.7 BJ	N/A	N/A	12.8 BJ	17.6 BJ	N/A	17.1 BJ	13.2 BJ	22	110
Cobalt	N/A	17	4.79	7.94	N/A	N/A	7.04	6.71	N/A	10.4	8.27	N/A	N/A
Copper	N/A	158	482 (a)(b)	22.6	N/A	N/A	57.5	70	N/A	73.2	21.9	270	270
Iron	N/A	15600	15800	21300	N/A	N/A	20100	24200	N/A	6530	19300	270 N/A	270 N/A
Lead	N/A	120	3030 MPS (a)(b)	12.5	N/A	N/A	78.1	150	N/A			N/A 400	400
Magnesium	N/A	3140	12500	2700	N/A	N/A	4950	7290	N/A	130 650	12.3		
Manganese	N/A	433	4450 D08 (a)(b)	136	N/A N/A	N/A N/A	212				2890	N/A	N/A
Mercury	N/A	433 0.216 J	0.421 J	0.0288 J	N/A	N/A N/A		471	N/A	335	517	2000	2000
Nickel	N/A	0.216 J 34.2 J	24.4 J MPS	17.3 J	N/A N/A	N/A N/A	0.0844 J	0.0805 J	N/A	0.178 J	0.0232 J	J	0.81
Selenium	N/A						18.9 J	19.3 J	N/A	27.4 J	29.2 J	140	310
		ND	0.8 J	ND	N/A	N/A	ND	ND	N/A	ND	0.7 J	36	180
Potassium	N/A	731	1210	845	N/A	N/A	1040	807	N/A	1490	1110	N/A	N/A
Silver	N/A	ND	0.813	ND	N/A	N/A	ND	ND	N/A	ND	ND	36	180
Sodium	N/A	83.8 J	556	47.2 J	N/A	N/A	77.2 J	57 J	N/A	231	172	N/A	N/A
Vanadium	N/A	17.8	14	25.9	N/A	N/A	17.6	16	N/A	25.8	16.5	N/A	N/A
Zinc	N/A	308	1610 D08	55.1	N/A	N/A	94.1	146	N/A	144	70.9	2200	10000
SVOCs	and the second						A STATE OF A STATE						
2-Methynaphthalene	N/A	ND	ND	ND	N/A	N/A	ND	0.14 D02,J	N/A	ND	ND .	N/A	N/A
Acenaphthene	N/A	0.04 J	ND	ND	N/A	N/A	0.24 D02,J	1.2 D02,J	N/A	ND	ND	100	100
Anthracene	N/A	0.085 J	0.23 D02,J	ND	N/A	N/A	0.69 D02,J	0.22 D02	N/A	ND	ND	100	100
Benzo(a)anthracene	N/A	0.43	1.2 D02,J (a)(b)	0.014 J	N/A	N/A	1.5 D02,J(a)(b)	4.8 D02 (a)(b)	N/A	0.048 J	ND	1	1
Benzo(a)pyrene	N/A	0.36	1.3 D02,J (a)(b)	0.029 J	N/A	N/A	1.3 D02,J(a)(b)	4.2 D02 (a)(b)	N/A	0.035 J	ND	1	1
Benzo(b)fluoranthene	N/A	0.4	2.3 D02,J (a)(b)	0.028 J	N/A	N/A	1.7 D02,J(a)(b)	4.5 D02 (a)(b)	N/A	0.11 J	ND	1	1
Benzo(g,h,l)perylene	N/A	0.19 J	1.4 D02,J	0.036 J	N/A	N/A	0.98 D02,J	3.0 D02	N/A	0.044 J	ND	100	100
Benzo(k)fluoranthene	N/A	0.18 J	ND	0.010 J	N/A	N/A	0.58 D02,J	2.8 D02 (a)	N/A	ND	ND	1	3.9
Carbazole	N/A	0.019 J	ND	ND	N/A	N/A	0.33 D02,J	1.6 D02,J	N/A	ND	ND	N/A	N/A
Chrysene	N/A	0.41	1.1 D02,J (a)	0.019 J	N/A	N/A	1.5 D02,J (a)	4.9 D02 (a)(b)	N/A	0.064 J	ND	1	3.9
Dibenz(a,h)anthracene	N/A	0.058 J	0.57 D02,J (a)(b)	0.018 J	N/A	N/A	0,27 D02,J	0.73 D02,J (a)(b)	N/A	0.010 J	ND	0.33	0.33
Dibenzofuran	N/A	0.0087 J	ND	ND	N/A	N/A	0.16 D02,J	0.79 D02,J	N/A	ND	ND	14	59
Fluoranthene	N/A	0.77	2.3 D02,J	0.015 J	N/A	N/A	3.5 D02	12.0 D02	N/A	0.062 J	ND	100	100
Flourene	N/A	0.017 J	ND	ND	N/A	N/A	0.25 D02,J	1.2 D02,J	N/A	ND	ND	100	100
Indeno(1,2,3-cd)pyrene	N/A	0.19 J	0.98 D02,J (a)(b)	0.022 J	N/A	N/A	0.87 D02,J (a)(b)	2.5 D02 (a)(b)	N/A	0.032 J	ND	0.5	0.5
Naphthalene	N/A	0.012 J	ND	ND	N/A	N/A	ND	0.34 D02,J	N/A	ND	ND	100	100
Phenanthrene	N/A	0.35	1,4 D02,J	0.0085 J	N/A	N/A	2.7 D02	11.0 D02	N/A	0.019 J	ND	100	100
Pyrene	N/A	0.67	1.6 D02,J	0.013 J	N/A	N/A	2.9 D02	9.7 D02	N/A	0.049 J	ND	100	100
TICs Total	N/A	0.38	0.56	0.19	N/A	N/A	ND	ND	N/A	ND	ND		and an an an and a second s
PCBs									10000				
Aroclor 1254	ND	ND	ND	ND	0.07 J	ND	ND	ND	ND	ND	ND	1	1
Aroclor 1260	ND	ND	ND	ND	ND	ND	ND	0.045 J	0.1 J	ND	ND	1	1
Pesticides						200 S. 1994	1						Second Sec.
4,4'-DDT	N/A	N/A	0.049 J	N/A	N/A	N/A	N/A	ND	N/A	N/A	N/A	1.7	7.9
Volitile Organics				and set the					174			1.7	,.3
Methylene Chloride	N/A	ND	N/A	ND	N/A	N/A	ND	N/A	N/A	ND	ND	51	100
Naphthalene	N/A	ND	N/A	ND	N/A	N/A	ND	N/A	N/A N/A				
Tetrachloroethene	N/A	ND	N/A	ND	N/A					ND 0014	ND	100	100
Acetone	N/A	ND				N/A	ND	N/A	N/A	0.0014 J	ND	5.5	19
	IWA	UVI	N/A	ND	N/A	N/A	0.012 J	N/A	N/A	ND	0.015 J	100	100

bgs - below ground surface TICs - Tentitively Identified Compounds Shading - Results above NYSDEC Restricted Residential Cleanup Objectives B - Analyte was detected in the associated Method Blank.

B - Analyte was detected in the associated Method Blank.
D02 - Dilution required due to sample matrix effects
D08 - Dilution required due to high concentration of target analyte(s)
ID4 - Benzo(b)fluoranthene coelutes with Benzo(k)fluoranthene. The reported result is a summation of the isomers and the concentration is based on the response factor of Benzo(b)fluoranthene than or equal to the Method Detection
J - Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
MPS - The post spike and/or serial dilution were outside the acceptance limits due to sample matrix interference. See Blank spike (LCS).

				TABLE	2 - Remingt	on Rand	Test Trench	Soil Analy	tical Results	- i	1 of 2	2				
Sample Number	RR-TP-01B	RR-TP-02B	RR-TP-03A	RR-TP-04B	RR-TP-05A	RR-TP-06B	RR-TP-07A	RR-TP-07B	RR-TP-08A	RR-TP-08B	RR-TP-09A	RR-TP-09B	RR-TP-10A	RR-TP-10B	NYSDEC	NYSDEC
Sample Date	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	PART 375	PART 375
Sample depth	4'-5'	3'-4'	Surface	3.5'	Surface	5.5' - 6'	Surface	6'	Surface	8'-10'	Surface	3'	Surface	2.5'-3'	Residential	Restrict-Res
Compounds	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	(a) ppm	(b) ppm
Metals			J		1000000000								STATES AND A	1.0		States and
Aluminum	8040 J	8350 J	11200 J	11600 J	5870 J	11200 J	4730 J	6990 J	6190 J	8290 J	8790 J	10200 J	5730 J	8350 J	N/A	N/A
Antmony	2.4 J	4.6 J	ND	ND	11.3 J	ND	ND	ND	2.8 J	ND	ND	2.1 J	14.4 J	0.7 J	N/A	N/A
Arsenic	4.7	6.8	4.9	3.3	27.5 (a)(b)	3.9	4.2	4.1	11.1	3.5	3.7	9.1	12.5	5.1	16	16
Barium	100	177	145	49.5	1020 (a)(b)	90.4	92.4	49.3	144	34	123	283	598 (a)(b)	75.5	350	400
Beryllium	0.383 J	0.684 J	1.79 J	0.38 J	0.855 J	0.602 J	0.366 J	0.394 J	0.52 J	0.368 J	1.01 J	0.636 J	0.708 J	0.48 J	14	72
Cadmium	0.271	0.56	1.41	ND	1.79	0.785	0.416	0.216 J	0.975	0.068 J	0.757	0.384	1.69	0.138 J	2.5	4.3
Calcium	16300 J	50800 J	386000 J D08	1600 J	19200 J	3560 J	50500 J	9970 J	55400 J	2140 J	112000 J D08	33100 J	133000 J D08	7790 J	N/A	N/A
Chromium	9.94 J	35.1 J(a)	20.8 J	12.2 J	28.4 J (a)	19.9 J	11.9 J	10.8 J	22.1 J (a)	12.2 J	18.2 J	20.4 J	49.9 J (a)	12.4 J	22	110
Cobalt	5.44	4.21	2.33	4.24	8.74	8.85	3.56	6.61	5.3	6.83	3.12	0.27	5.81	6.69	N/A	N/A
Copper	90.2	255	44.2	10.6	662 (a)(b)	57.2	62.1	20.5	82.8	14.3	178	257	695 (a)(b)	22	270	270
Iron	12500 J	18800 J	9470 J	12800 J	30600 J	23900 J	10700 J	16200 J	23500 J	15900 J	8790 J	32300 J	40800 J	15600 J	N/A	N/A
Lead	299 J	270 J	150 J	14.8 J	812 (a)(b)	50.1 J	91.1 J	33 J	215 J	7.8 J	115 J	482 J (a)(b)	872 J (a)(b)	74.9 J	400	400
Magnesium	4350 J	15000 J	18000 J	2320 J	6260 J	3090 J	8660 J	3380 J	30500 J	2640 J	24000 J	3330 J	3900 J	2660 J	N/A	N/A
Manganese	294 J	517 J	867 J	81.5 J	427 J	302 J	309 J	191 J	410 J	173 J	728 J	726 J	993 J	205 J	2000	2000
Mercurv	0,168	0.188	0.116	0.0363	0.666	0.0559	0.247	0.0413	0.181	ND	0.246	0.573	0.353	0.0929	0.81	0.81
Nickel	12.1	14.6	10.4	12.2	914	19.6	10.2	17.3	29.6	18.3	8.56	20	33.8	13.2	140	310
Selenium	2.1 J	0.6 J	ND	ND	1.4 J	ND	ND	ND	ND	ND	ND	1.1 J	ND	1.0 J	36	180
Potassium	1450	1080	750	1120	446	1180	838	1300	1040	16.4	773	1480	655	1310	N/A	N/A
Silver	ND	0.216 J.B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	36	180
Sodium	474	224	265	95.5 J	271	121 J	102	102	153 J	74.7 J	172	102 J	215	131	N/A	N/A
Vanadium	13.5 J	15.6 J	0.55 J	19.9 J	28.2 J	22.3 J	13 J	16 J	23.7 J	15.8 J	10.7 J	28.9 J	66.8 J	22 J	N/A	N/A
Zinc	141 BJ	327 BJ	494 BJ	43.7 BJ	900 BJ	186 BJ	111 BJ	76.2 BJ	267 BJ	55.2 BJ	165 BJ	300 BJ	645 BJ	99.5 BJ	2200	10000
SVOCs											100 20		0.00			
2-Methynaphthalene	0.17 J	0.034 J	ND	ND	0.71 D02.J	0.013 J	ND	0.017 J	9.0 T10,D02,J	ND	ND	ND	ND	ND	N/A	N/A
Acenaphthene	0.7	0.042 J	4.6 T10,D02,J	ND	5.6 D02	ND	0.72 D02.J	0.14 J	91.0 T10,D02	ND	1.9 T10.D02.J	0.43 D02.J	0.43 D02,J	ND	100	100
Acenaphthylene	0.11 J	0.080 J	0.83 T10,D02,J	ND	0.44 D02,J	ND	ND	ND	ND	ND	ND	ND	ND	ND	100	100
Anthracene	1.4	0.11 j	9.7 T10,D02,J	ND	10.0 D02	0.029 J	1.5 D02,J	0.27	160.0 T10,D02(a)(b)	ND	5.2 T10,D02,J	1.3 D02,J	1.4 D02,J	ND	100	100
Benzaldehyde	0.10 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A
Benzo(a)anthracene	3 (a)(b)	0.44	41.0 T10,D02(a)(b)	ND	26.0 D02(a)(b)	0.087 J	4.2 D02(a)(b)	0.7	350.0 T10,D02(a)(b)	ND	10 T10,D02,J(a)(b)			0.033 J	1	1
Benzo(a)pyrene	2.8 (a)(b)	0.45	42.0 T10,D02(a)(b)	ND	24.0 D02(a)(b)	0.007 J	4.0 D02(a)(b)	0.68	290.0 T10,D02(a)(b)	ND	8.8 T10,D02,J(a)(b)	the second se	3.9 D02,J(a)(b)	0.033 J	1	1
Benzo(b)fluoranthene	3.3 (a)(b)	0.51	50.0 T10,D02(a)(b)	ND	27.0 D02 (a)(b)	0.10 J	4.2 D02 (a)(b)	0.77	320.0 T10,D02(a)(b)	ND	11.0 T10,D02,J(a)(b)	the second se	4.8 D02 (a)(b)	0.038 J	1	1
Benzo(g,h,l)pervlene	1.5	0.33	26.0 T10,D02	ND	12.0 D02 (0)	0.056 J	2.6 D02,J	0.44	170.0 T10,D02(a)(b)	ND	5.5 T10,D02,J	0.97 D02,J	2.1 D02,J	0.020 J	100	100
Benzo(k)fluoranthene	1.1 (a)	0.28	19.0 T10.D02(a)(b)	ND	11.0 D02 (a)(b)	0.031 J	2.2 D02.J (a)	0.27	150.0 T10,D02(a)(b)	ND	3.0 T10.D02.J (a)	0.62 D02,J	1.4 D02.J (a)	0.020 J	1	3.9
Biphenyl	0.053 J	ND	ND	ND	ND	ND	2.2 D02,3 (a) ND	ND	3.2 T10.D02,J	ND	ND	ND	ND	0.020 J	N/A	N/A
Bis(2-ethylhexyl)phthalate	ND	ND	5.6 T10,D02,J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A
Carbazole	0.68	0.074 J	6.4 T10,D02,J	ND	8.5 D02	0.028 J	0.99 D02.J	0.20 J	110.0 T10,D02	ND	2.7 T10.D02.J	0.68 D02,J	0.58 D02,J	ND	N/A	N/A
Chrysene	2.9 (a)	0.47	41.0 T10,D02(a)(b)	ND	26.0 D02(a)(b)	0.028 J	4.1 D02 (a)(b)	0.66	310.0 T10,D02(a)(b)	ND	9.8 T10,D02,J(a)(b)	2.1 D02,J (a)	4.1 D02, J (a)(b)	0.036 J	1	3.9
Dibenz(a,h)anthracene	0.4 (a)(b)	0.081 J	6.5 T10,D02,J(a)(b)	ND	3.6 D02 J(a)(b)	0.039 J	0.75 D02,J(a)(b)	0.00	48.0 T10,D02(a)(b)	ND	1.6 T10,D02,J(a)(b)		0.61 D02, J(a)(b)	0.030 J	0.33	0.33
Dibenzofuran	0.43	0.031 J	1.9 T10.D02,3(a)(b)	ND	3.8 D02,J	0.0143 ND	0.41 D02,J	0.085 J	56.0 T10,D02(a)	ND	1.4 T10,D02,J	0.4 D02,J	ND	ND	14	59
Diethyl phthalate	0.036 J	0.032 J	ND	ND	0.27 D02,J	ND	0.41 D02,3 ND	0.085 J	ND	ND	ND	0.4 D02,5	ND	ND	N/A	N/A
Fluoranthene	7.7	0.95	110.0 T10,D02(a)(b)	ND	74.0 D02,3	0.22 J	9.9 D02	1.6	920.0 T10,D02(a)(b)	ND	24.0 T10,D02	4.9 D02	9.3 D02	0.074 J	100	100
Flourene	0.73	0.041 J	4.1 T10,D02,J	ND	6.2 D02	ND	0.68 D02,J	0.14 J	81.0 T10,D02(a)(b)	ND	2.2 T10,D02,J	0.68 D02,J	0.4 D02,J	ND	100	100
Indeno(1,2,3-cd)pyrene	1.5 (a)(b)	0.041 3	24.0 T10,D02(a)(b)	ND	12.0 D02 (a)(b)	0.043 J	2.4 D02, J (a)(b)	0.14 3	160.0 T10,D02(a)(b)	ND	4.8 T10,D02,J(a)(b)		2.0 D02, J (a)(b)	0.018 J	0.5	0.5
Naphthalene	0.27 J	0.033 J	ND	ND	1.5 D02.J	0.043 J ND	2.4 D02,5 (a)(b)	0.38 0.037 J	20.0 T10.D02(a)(b)	ND	4.8 110,002,3(a)(b)	ND	2.0 D02,3 (a)(b)	ND	100	100
Phenanthrene	6.1	0.033 J	60.0 T10.D02	ND	60.0 D02,3	0.19 J	8.2 D02	1.3	830.0 T10,D02(a)(b)	ND	22.0 T10,D02	5.3 D02	6.2 D02	0.054 J	100	100
Pyrene	5.5	0.56	78.0 T10,D02	ND	40.0 D02	0.19 J	8.1 D02	1.3	640.0 T10,D02(a)(b)	ND	18.0 T10,D02,J	3.7 D02	6.9 D02	0.054 J	100	100

TICs - Tentitively Identified Compounds bgs - below ground surface

Shading - Results above NYSDEC Restricted Residential Cleanup Objectives

B - Analyte was detected in the associated Method Blank.

D02 - Dilution required due to sample matrix effects

D04 - Dilution required due to high levels of non-target compounds D08 - Dilution required due to high concentration of target analyte(s)

D10 - Dilution Required due to sample color

J - Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.

T10 - Sample had an adjusted final volume during extraction due to extract mix/or viscosity

QFL - Florisil cleanup (EPA 3620) performed on extract

H - Sample analysis performed past method specified holding time

			Т	ABLE 2 (c	on't) - Rem	nington R	and Test Trei	nch Soil A	nalitical Resu	lts	2 0	of 2				
Sample Number	RR-TP-01B	RR-TP-02B	RR-TP-03A	RR-TP-04B	RR-TP-05A	RR-TP-06B	RR-TP-07A	RR-TP-07B	RR-TP-08A	RR-TP-08B	RR-TP-09A	RR-TP-09B	RR-TP-10A	RR-TP-10B	NYSDEC	NYSDEC
Sample Date	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	4/30/2009	PART 375	PART 375
Sample depth	4'-5'	3'-4'	Surface	3.5'	Surface	6'-6.5'	Surface	6'	Surface	8'-10'	Surface	3'	Surface	3'-4'	Residential	Restrict-Res
Compounds	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	(a) ppm	(b) ppm
PCBs		1.00				1.4.1.1.4.10									Sectors 20	
Aroclor 1254	N/A	N/A	ND	N/A	ND	N/A	0.56 D08	ND	0.086	N/A	0.39 D08	0.41	ND	N/A	1	1
Aroclor 1248	N/A	N/A	0.026	N/A	ND	N/A	ND	ND	ND	N/A	ND	ND	0.31 J D08	N/A	1	1
Aroclor 1260	N/A	N/A	0.063 J	N/A	ND	N/A	0.44 J D08	ND	0.07 J	N/A	0.30 J D08	0.46 J	0.69 J D08	N/A	1	1
Pesticides		a 1														
Endosulfan Sulfate	N/A	N/A	0.11 J QFL,D10	N/A	ND	N/A	0.019 D10,QFL,J	N/A	0.35 J D10,QFL	N/A	ND	N/A	ND	N/A	4.8	24
Endrin	N/A	N/A	ND	N/A	ND	N/A	0.052 J D10,QFL	N/A	ND	N/A	0.063 QFL,D10,J	N/A	0.043 QFL,D10,J	N/A	2.2	11
4,4-DDE	N/A	N/A	ND	N/A	ND	N/A	0.014 D10,QFL,J	N/A	ND	N/A	ND	N/A	ND	N/A	1.8	8.9
gamma-Chlordane	N/A	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	0.058 QFL,D10,J	N/A	ND	N/A	N/A	N/A
4.4'-DDT	N/A	N/A	ND	N/A	ND	N/A	ND	N/A	0.11 J D10,QFL	N/A	ND	N/A	ND	N/A	1.7	7.9
Volitile Organics		1.00			Part and											100
Methylene Chloride	ND	0.0081	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	0.035 H	N/A	0.0086 H	51	100
1,1Dichloroethane	ND	ND	N/A	ND	N/A	ND	N/A	0.0016 J	N/A	ND	N/A	ND	N/A	ND	19	26
Tetrachloroethene	ND	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	5.5	19
Trichloroethene	ND	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	ND	N/A	0.0013 H,J	10	21
cis-1.2-Dichloroethene	ND	ND	N/A	ND	N/A	ND	N/A	0.0023 J	N/A	ND	N/A	ND	N/A	0.0084 H	59	100
Isopropylbenzene	ND	ND	N/A	ND	N/A	ND	N/A	0.01	N/A	0.1 J	N/A	ND	N/A	ND	N/A	N/A
sec-Butvlbenzene	ND	ND	N/A	ND	N/A	ND	N/A	0.042	N/A	0.17 J	N/A	ND	N/A	ND	100	100
Carbon Disulfide	ND	ND	N/A	ND	N/A	ND	N/A	ND	N/A	0.003 J	N/A	0.0019 H,J	N/A	ND	N/A	N/A
n-Butvibenzene	ND	ND	N/A	ND	N/A	ND	N/A	ND	N/A	0.13 J	N/A	ND	N/A	ND	100	100
n-Propylbenzene	ND	ND	N/A	ND	N/A	ND	N/A	ND	N/A	0.16 J	N/A	ND	N/A	ND	100	100
1,2,4-Trimethylbenzene	ND	ND	N/A	ND	N/A	ND	N/A	ND	N/A	0.13 J	N/A	ND	N/A	ND	47	52
Acetone	ND	ND	N/A	ND	N/A	0.16 D04	N/A	0.081	N/A	0.023 J	N/A	ND	N/A	0.061 H,J	100	100
TICs Total	ND	ND	N/A	ND	N/A	ND	N/A	5.03	N/A	2.75	N/A	0.28	N/A	0.014		L.,

bgs - below ground surface TICs - Tentitively Identified Compounds

Shading - Results above NYSDEC Restricted Residential Cleanup Objectives

B - Analyte was detected in the associated Method Blank.

D02 - Dilution required due to sample matrix effects

D04 - Dilution required due to high levels of non-target compounds

D08 - Dilution required due to high concentration of target analyte(s)

D10 - Dilution Required due to sample color

J - Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection

Limit (MDL). Concentrations within this range are estimated.

T10 - Sample had an adjusted final volume during extraction due to extract mix/or viscosity

QFL - Florisil cleanup (EPA 3620) performed on extract

H - Sample analysis performed past method specified holding time

Sample Number	RR-SS-08A	RR-SS-09A	RR-SS-10A	RR-SS-11A	RR-SS-12A	RR-SS-13A	NYSDEC	NYSDEC
								PART 375
Sample Date	5/1/2009	5/1/2009 Surface	5/1/2009 Surface	5/1/2009 Surface	5/1/2009	5/1/2009	PART 375	Restrict-Residential
Sample depth Compounds	Surface ppm	Surface ppm	Surface ppm	Surface ppm	Surface ppm	Surface ppm	Residential (a) ppm	(b) ppm
Metals	ppm	Phil	ppin	ppm	ppin	ppm		
	7000	NIZA	NUA	0740	NI/A	NVA	N1/A	NIZA
Aluminum	7060 4.4 J	N/A N/A	N/A N/A	2710 ND	N/A	N/A	N/A N/A	N/A N/A
Antmony		N/A N/A	N/A N/A	4	N/A N/A	N/A N/A	16	16
Arsenic Barium	16.6 (a)(b)	N/A ·	N/A N/A	82.2	N/A N/A	contexture and the local sectors and the sectors	350	400
	558 (a)(b) 0.543	N/A ·	N/A N/A	0.165 J	N/A	N/A N/A	14	72
Beryllium Cadmium	11.4 (a)(b)	N/A N/A	N/A N/A	1.56	N/A N/A	N/A N/A	2.5	4.3
Calcium	27000	N/A	N/A	118000 D08	N/A	N/A N/A	2.5 N/A	4.5 N/A
Chromium	62.1 B (a)	N/A	N/A	14.6 B	N/A	N/A	22	110
Cobalt	8.64	N/A	N/A	2.51	N/A N/A	N/A N/A	N/A	N/A
Copper	524 (a)(b)	N/A	N/A	30.6	N/A	N/A	270	270
Iron	37700	N/A	N/A	11000	N/A	N/A	N/A	N/A
Lead	1330 (a)(b)	N/A	N/A	413 (a)(b)	N/A	N/A	400	400
Magnesium	10700	N/A N/A	N/A	9680	N/A	N/A N/A	400 N/A	N/A
Manganese	487	N/A	N/A	256	N/A	N/A	2000	2000
Mercury	0.964 (a)(b)	N/A	N/A	0.066	N/A	N/A	0.81	0.81
Nickel	58.5	N/A	N/A	11.9	N/A	N/A	140	310
Selenium	ND	N/A	N/A	ND	N/A	N/A	36	180
Potassium	726	N/A	N/A	488	N/A	N/A	N/A	N/A
Silver	1.34	N/A	N/A	ND	N/A	N/A	36	180
Sodium	228	N/A	N/A	133 J	N/A	N/A	N/A	N/A
Vanadium	23.9	N/A	N/A	12.3	N/A	N/A	N/A	N/A
Zinc	1970 D08	N/A	N/A	634	N/A	N/A	2200	10000
Semi-Volitile Organics		e sala se						
2-Methynaphthalene	ND	N/A	N/A	ND	N/A	N/A	N/A	N/A
Acenaphthene	ND	N/A	N/A	38.0 D02,T10,J	N/A	N/A	100	100
Anthracene	15.0 T10,D02,J	N/A	N/A	88.0 D02,T10	N/A	N/A	100	100
Benzo(a)anthracene	36.0 T10,D02,J(a)(b)	N/A	N/A	160.0 D02,T10(a)(b)	N/A	N/A	1	1
Benzo(a)pyrene	38.0 T10,D02,J(a)(b)	N/A	N/A	140.0 D02,T10(a)(b)	N/A	N/A	1	1
Benzo(b)fluoranthene	58.0 T10,D02,J(a)(b)	N/A	N/A	150.0 D02,T10(a)(b)	N/A	N/A	1	1
Benzo(g,h,l)perylene	27.0 T10,D02,J	N/A	N/A	85.0 D02,T10	N/A	N/A	100	100
Benzo(k)fluoranthene	14.0 T10,D02,J(a)(b)	N/A	N/A	80.0 D02,T10(a)(b)	N/A	N/A	1	3.9
Carbazole	10.0 T10,D02,J	N/A	N/A	55.0 D02,T10,J	N/A	N/A	N/A	N/A
Chrysene	38.0 T10,D02,J(a)(b)	N/A	N/A	150.0 D02,T10(a)(b)	N/A	N/A	1	3.9
Dibenz(a,h)anthracene	7.1 T10,D02,J(a)(b)	N/A	N/A	22.0 D02,T10,J(a)(b)	N/A	N/A	0.33	0.33
Dibenzofuran	ND	N/A	N/A	24.0 D02,T10,J (a)	N/A	N/A	14	59
Fluoranthene	82.0 T10,D02,J	N/A	N/A	410.0 D02,T10(a)(b)	N/A	N/A	100	100
Flourene	ND	N/A	N/A	39.0 D02,T10,J	N/A	N/A	100	100
Indeno(1,2,3-cd)pyrene	22.0 T10,D02,J(a)(b)	N/A	N/A	77.0 D02,T10,J(a)(b)	N/A	N/A	0.5	0.5
Naphthalene	ND	N/A	N/A	7.0 D02,T10,j	N/A	N/A	100	100
Phenanthrene	63.0 T10,D02,J	N/A	N/A	330.0 D02,T10(a)(b)	N/A	N/A	100	100
Pyrene	52.0 T10,D02,J	N/A	N/A	280.0 D02,T10(a)(b)	N/A	N/A	100	100
PCBs	e de la compañía de seres							
Aroclor 1254	ND	0.32 D08,QSU	ND	0.14 D08,J	0.11	0.099 J	1	11
Aroclor 1248	ND	ND	7.0 D08	ND	ND	ND	1	1
Pesticides								
Heptaclor	ND	N/A	N/A	0.17 QFL,D10,J	N/A	N/A	0.42	2.1
Methoxychlor	ND	N/A	N/A	0.16 QFL,D10,J	N/A	N/A	N/A	N/A
4,4'-DDT	0.21 D10,QFL,J	N/A	N/A	ND	N/A	N/A	1.7	7.9
Volitile Organics								
Methylene Chloride	N/A	N/A	N/A	N/A	N/A	N/A	51	100
Naphthalene	N/A	N/A	N/A	N/A	N/A	N/A	100	100
Tetrachloroethene	N/A	N/A	N/A	N/A	N/A	N/A	5.5	19
Acetone	N/A	N/A	N/A	N/A	N/A	N/A	100	100

bgs - below ground surface

Shading - Results above NYSDEC Restricted Residential Cleanup Objectives

B - Analyte was detected in the associated Method Blank. D02 - Dilution required due to sample matrix effects

D08 - Dilution required due to high concentration of target analyte(s)

D10 - Dilution required due to sample color

QFL - Florisil cleanup (EPA 3620) performed on extract J - Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection

Limit (MDL). Concentrations within this range are estimated.

QSU - Sulfur (EPA 3660) cleanup performed on extract

T10 - Sample had an adjusted final volume during extraction due to extract mix/or viscosity

					E 4 - Remin		T	and the second se	and the second							
Sample Number	RR-MW-01	RR-MW-02	RR-MW-03	RR-MW-04	RR-MW-05	RR-MW-01A	RR-MW-02A	RR-MW-03A	RR-MW-04A	RR-MW-05A	RR-MW-01A	RR-MW-02A	RR-MW-03A	RR-MW-04A	RR-MW-05A	NYSDEC
Sample Date/Round	5/1/2009 RD 1	5/1/2009 RD 1	5/1/2009 RD 1	5/1/2009 RD 1	5/1/2009 RD 1	7/2/2009 RD 2	7/2/2009 RD 2	7/2/2009 RD 2	7/2/2009 RD 2	7/2/2009 RD 2	7/2/2009 RD 2	7/2/2009 RD 2	7/2/2009 RD 2	7/2/2009 RD 2	7/2/2009 RD 2	
Status	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Lab Filtered	TOGs 1.1.1. G/				
Compounds	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
Metals																
Aluminum	353000 J	47900 J	1060	208000 J	221000 J	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Antmony	ND	6.3 J	ND	ND	ND	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3
Arsenic	150	27.5	ND	171	116	582	79.6	ND	ND	12.8	ND	ND	ND	ND	ND	25
Barium	2460 J	485 J	54.3 J	1450 J	1560 J	570	78.1	218	73.5	156	57	51.2	6.1	65.8	53.3	1000
Beryllium	15.6	2.1	ND	10	9.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3
Cadmium	7.2	1 J	ND	4.5	2.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Calcium	1660000 D08	181000	99900	1010000 D08	1140000 D08	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chromium	571	73.9 J	2.3 J	360 J	364 J	26.3	4	28.1	4.9	36	ND	ND	10.6	ND	2.2 J	50
Cobalt	255	32.4	ND	189	167	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Copper	911	161	3.7 J	653	599	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	200
Iron	1260000 D08	81900	1520	450000	385000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	300
Lead	597	396	5.6	366	446	30.1	30.2	3.2 J	3.7 J	26.8	2.9 J	ND	ND	2.2 J	2.2 J	25
Magnesium	398000	42800	12800	216000	275000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Manganese	11000	3230	266	7550	7870	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	300
Mercury	0.5 S6	1 S6	ND	0.6 S6	0.4 S6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7
Nickel	678	97.4	4.2 J	485	426	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	100
Potassium	68800	20600 J	3100 J	4080 J	5170 J	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Selenium	ND	ND	ND	ND	ND	ND	ND	ND	6.6 J	ND	ND	ND	ND	ND	ND	10
Sodium	16200	13000	14800	77100	99300	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	20000
Thallium	ND	ND	ND	ND	8.1 J	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.5
Vanadium	793	104 J	2.2 J	455 J	426 J	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Zinc	2050	442	ND	1550	1510	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Semi-Volitile Organics			1.	1940 B. C. C.												
Bis(2-ethylhexyl) phthalate	ND	ND	ND	ND	4.8 J	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5
Volitile Organics							100 C									
Chloroethane	3.6 P11	ND	ND	ND	ND	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Carbon Dsulfide	ND	ND	1.2	0.54 P11,J	ND	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Methyl tart-Butyl Ether	2.5 P11	ND	ND	ND	0.64 P11,J	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Methylcyclohexane	ND	ND	ND	ND	0.62 P11.J	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
cis-1.2-Dichloroethene	ND	0.78 J	ND	ND	ND	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5
Acetone	6.6 P11 J	ND	ND	ND	3.2 P11,J	N/A	N/A	* N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	50

TOGs 1.1.1 GA - Technical and Operational Guidance Series (1.1.1) Source of Drinking Water (Groundwater)

Shading - Results above NYSDEC Restricted Residential Cleanup Objectives

B - Analyte was detected in the associated Method Blank.

P11 - Sample was not sufficiently preserved at time of collection. Sample pH is >2

D08 - Dilution required due to high concentration of target analyte(s)

S6 - Sediment present

J - Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.

RD 2 - Analyzed for RCRA 8 metals only (Arsenic, Barium, Cadmium, Chromium, Lead, Mercury, Selenium and Silver)

	TABL	E 5 - Remi	ngton Rand	Sub-Slab	Soil Boring	and Drain Sa	mples Analyt	ical Results	1 of 2		
Sample Number	RR-SS-SF-01	RR-SS-SF-04	RR-SS-SF-05	RR-SS-SF-07	RR-SS-SF-08	RR-SS-EN	RR-SS-DNE	RR-SS-ES	RR-SS-DC	NYSDEC	NYSDEC
Sample Date	5/20/2009	5/20/2009	5/20/2009	5/20/2009	5/20/2009	5/20/2009	5/20/2009	5/20/2009	5/20/2009	PART 375	PART 375
Sample depth	3'	6.5 '-7'	2.5' -3.5'	0.5' - 2'	1' - 2.5'	Elev Pit	Floor Drain	Elev Pit	Floor Drain	Residential	Restrict-Res
Compounds	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	(a) ppm	(b) ppm
Metals											
Aluminum	4810	4138	7780	9370	2440	3620	4520	9690	9560	N/A	N/A
Antmony	4.4 J	ND	ND	ND	ND	19.4 J	2,4 J	153 J	143 J	N/A	N/A
Arsenic	9.1	1.5 J	5.1	11.5	1.4 J	5.7	5.2	13.4	54.3 (a)(b)	16	16
Barium	521 B (a)(b)	18.9 B	64 B	24.1 B	10.3 B	424 B (a)(b)	577 B (a)(b)	739 B (a)(b)	2540 B (a)(b)	350	400
Beryllium	0.635 J	0.22 J	0.402 J	0.533 J	0.138 J	0.812 J	0.295 J	0.417 J	0.528 J	14	72
Cadmium	1.96	0.173 J	0.362	0.367	0.173 J	3.7 (a)	6.67 (a)(b)	30.8 (a)(b)	16.7 (a)(b)	2.5	4.3
Calcium	20500 B	27000 B	6300 B	1180 B	77200 D08,B	17700 B	67200 D08,B	26600 B	60600 B	N/A	N/A
Chromium	9.74	7.06	13.3	14	3.55	54.7 (a)	48.8 (a)	73.5 (a)	153 (a)(b)	22	110
Cobalt	12.3	4.32	5,72	8.02	1.9	5.32	5.82	9.85	22.1	N/A	N/A
Copper	152	8.2	22.2	22.4	6.2	135	198	285 (a)(b)	147000 D08(a)(b)	270	270
Iron	23500 BJ	8650 BJ	14600 BJ	25400 BJ	5460 BJ	28500 BJ	16700 BJ	31000 BJ	257000 J D08,B	N/A	N/A
Lead	97.3 B	6.2 B	111 B	15.3 B	5.2 B	414 B (a)(b)	280 B	2110 B (a)(b)	10400 B (a)(b)	400	400
Magnesium	5240 J	7850 J	2350 J	2760 J	33300 J	4300 J	16200 J	4830 J	6390 J	N/A	N/A
Manganese	323	194	347	207	232	423	359	397	1800	2000	2000
Mercury	0.296	ND	0.358	0.0225	ND	0.509	1.97 D08 (a)(b)	0.912 (a)(b)	3.31 D08 (a)(b)	0.81	0.81
Nickel	39.8	11.1	12.7	16.4	4.06	15.7	28.1	33.5	223	140	310
Selenium	1.4 J	ND	ND	0.9 J	ND	ND	ND	1.2 J	1.2 J	36	180
Potassium	699	832	1030	759	1050	309	709	1120	1770	N/A	N/A
Silver	ND	ND	ND	ND	ND	0.698	0.999	2.39	54.8 (a)	36	180
Sodium	504	58.3 J	103 J	100 J	216	141 J	236	456	1950	N/A	N/A
Thallium	2.0 J	1.0 J	1.3 J	2.2 J	0.4 J	2.1 J	1.0 J	2.3 J	19.8	N/A	N/A
Vanadium	10.8	9.9	17.6	22.2	5.66	27.4	14.6	23.7	77.2	N/A	N/A
Zinc	459 B	38.0 B	112 B	56.4 B	44.2 B	500 B	866 B	985 B	8940 D08,B(a)	2200	10000
SVOCs											
2-Methynaphthalene	0.092 D02,J	ND	0.31 D02,J	ND	ND	ND	ND	ND	ND	N/A	N/A
Acenaphthene	ND	ND	0.99 D02,J	ND	ND	ND	0.47 D02,J	ND	ND	100	100
Anthracene	ND	ND	2.9 D02	0.0084 J	ND	0.17 D02,J	0.95 D02,J	ND	0.44 D02,J	100	100
Benzaldehyde	ND	ND	ND	ND	ND	ND	ND	0.29 D02,J	1.1 D02,J	N/A	N/A
Benzo(a)anthracene	0.084 D02.J	ND	4.5 D02 (a)(b)	0.094 J	0.014 J	1.1 D02, J(a)(b)	3.6 D02, J (a)(b)	0.17 D02,J	1.4 D02, J (a)(b)	1	1
Benzo(a)pyrene	0.074 D02,J	0.017 J	3.1 D02(a)(b)	0.058 J	0.013 J	1.0 D02, J(a)(b)	3.1 D02, J (a)(b)	0.12 D02,J	1.5 D02,J (a)(b)	1	1
Benzo(b)fluoranthene	0.12 D02,J	0.013 J	3.7 D02(a)(b)	0.095 J	0.016 J	1.5 D02, J(a)(b)	4.0 D02,J (a)(b)	ND	1.9 D02, J (a)(b)	1	1
Benzo(g,h,I)perylene	0.12 D02,J	0.016 J	1.8 D02,J	0.037 J	0.017 J	1.2 D02,J	3.0 D02,J	0.23 D02,J	1.9 D02,J	100	100
Benzo(k)fluoranthene	0.065 D02,J	0.016 J	1.8 D02, J (a)	0.029 J	0.012 J	0.44 D02,J	2.0 D02,J (a)	ND	1.1 D02,J (a)	1	3.9
Bis(2-ethylhexyl)	ND	ND	ND	ND	ND	1.8 D02,J	5.2 D02,J	2.1 D02,J	5.3 D02,J	N/A	N/A
Butyl benzyl phthalate	ND	ND	ND	ND	ND	3.7 D02,J	ND	2.0 D02,J	2.5 D02,J	N/A	N/A
Diethyl phthalate	ND	ND	ND	ND	ND	ND	ND	0.11 D02,J	ND	N/A	N/A
Di-n-butyl phthalate	ND	ND	ND	ND	ND	ND	ND	1.8 D02,J	ND	N/A	N/A
Carbazole	ND	ND	1.4 D02.J	0.015 J	ND	ND	0.68 D02,J	ND	0.41 D02,J	N/A	N/A
Chrysene	0.084 D02,J	ND	4.3 D02 (a)(b)	0.098 J	0.013 J	1.0 D02,J (a)	3.6 D02,J (a)	ND	1.7 D02,J (a)	1	3.9

bgs - below ground surface TICs - Tentitively Identified Compounds

Shading - Results above NYSDEC Restricted Residential Cleanup Objectives

B - Analyte was detected in the associated Method Blank.

D02 - Dilution required due to sample matrix effects

D08 - Dilution required due to high concentration of target analyte(s)

D10 - Dilution required due to sample color

QFL - Florisil clean-up (EPA 3620) performed on extract

QSU - Sulfur (EPA 3660) clean-up performed on extract

J - Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection

Limit (MDL). Concentrations within this range are estimated.

		TABL	.E 6 - Rem	ington Ra	and Sub S	lab Vapor	& Ambie	nt Air Ana	lytical Re	sults				
Sample Number	RR-AA-01	RR-AA-02	RR-AA-03	RR-AA-04	RR-AA-05	RR-SA-01	RR-SA-02	RR-SA-03	RR-SA-04	RR-SA-05	RR-SA-06	RR-SA-07	NYSDOH	NYSDOH
Sample Date	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009	Soil Vapor/Indoor Air	Soil Vapor/Indoor Air
Sample Location	Outdoor	Indoor	Indoor	Indoor	Indoor	SubSlab	SubSlab	SubSlab	SubSlab	SubSlab	SubSlab	SubSlab	Matrix 1 (Sub-Vapor)	Matrix 2 (Sub-Vapor)
Compounds	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
VOCs EPA T0-15														
Ethylbenzcne	ND	ND	0.38	0.44	ND	1.50.	11.0	4.4	3.7	4.7	7.2	6.0		
Trichlorofluoromethane	1.4	1.4	2.2.	1.9.	2.1.	83.0.	2.2.	2.0	2,0	8.9	5.8	2.7.		
n-Hexane	ND	0.82	ND	1.1.	ND	1.3.	14.0.	7.9	2.3	5.7	26.0	4.6.		
tert-Butyl alcohol	ND	ND	ND	ND	ND	L2	4.1.	3.8	5.0	5.6	62.0	9.7.		
Methylene chloride	9.3.	1.2.	2.2.	12.0.	2.1.	13.0.	3.4.	6.3	2.1	11.0	3.4	1.5.		
Benzene	0.6.	1.4.	1.2.	1.1.	0.7.	33.0.	84 E	2.9	1.4	3.7	5.8	1.5.		
Styrene	ND	ND	9.3.	ND	ND	ND	1.7.	0.6	1.6	470 E	5.0	1.0.		
Tetrachloroethene	ND	ND	ND	ND	ND	8.0.	6.3.	9.0	5.7	5.7	13.0	ND		100 (2)
Toluene	1.6.	2.6.	2.6.	2.5.	1.4.	1.0.	55.0.	62.0	6.0	5.5	23.0	7.9.		
I,1,1-Trichloroethane	ND	ND	ND	0.5.	ND	1.5.	8.2.	670 E	92.0	2.8	1.5	5.8		100 to < 1000 (2)
Trichloroethene	ND	0.3.	ND	0.7.	ND	2.1.	ND	4.0	3.8	0.6	0,37	ND	< 5 (1)	
1,2,4-Trimethylbenzene	ND	ND	0.6.	0.5.	ND	1.4.	15.0.	3.	2.1	3.1	4.9	2.5		
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	0.6.	9.2.	0.97	1.0	1.4	3.0	0.9		
o-Xylenc	ND	ND	0.6.	0.6.	ND	1.9.	2.4.	9.	5.7	5.0	8.7	9.6		
1,1,2-Trichlorotritluoroethanc	ND	ND	0.7.	ND	ND	0.7.	0,63	ND	0.6	0.8	0.6	0.7		
m-Xylenc & p-Xylene	0.9.	0.6.	1.5.	1.4.	0.7.	8.2.	48.0.	18	17.0	18.0	35.0	27.0		
Bromodichloromethane	ND	ND	ND	ND	ND	0.6.	ND	ND	ND	15.0	1.8	ND		
2-Butanorte (MEK)	1.6.	1.0.	1.2.	2.0.	3.7.	4.3.	16.0.	8.	8.7	7.4	12.0	13.0		
4-Methyl-2-pentanone (MIBK)	ND	ND	ND	ND	MD	ND	2.2.	ND	ND	ND	2.9	L2		
Carbon tetrachloride	0.66 J	0.67 J	0.85 J	0.82 J	0.84 J	0.75 J	0.62 J	0.84 J	0.7 J	1.5 J	0.73 J	1.4 J	< 5 (1)	
Dibromochloromethanc	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Chloroform	ND	ND	ND	ND	ND	3.2.	0.5.	2.	2.8	120.0	9.5	0.4		
Chloromethane	0.8.	0.9.	1.3.	13.0.	1.5.	ND	0.8.	4.	ND	ND	0.5	ND		
Cyclohe Mine	ND	ND	ND	ND	ND	1.0.	ND	ND	ND	ND	ND	ND		
Cyclohexane	ND	ND	ND	ND	ND	ND	17.0.	19	12.0	5.0	15.0	34.0		
Diehlorodifluoromethane	2.2.	23.0.	2.6.	2.6.	2.8.	4.0.	2.9.	3.	1.3	3.1	2.8	2.3		
1,1-Dichloroethanc	ND	ND	ND	ND	ND	ND	NO	2.	57.0	ND	ND	ND		
	1													

E - Estimated result due to exceeding calibration range

(1) - Matrix 1 (Guidance for Evaluating Soil vapor Intrusion in NY State 10/06) indoor air concentration for both Trichloroethene and Carbon Tetrachloride falls between 0.25 to <1 and sub-slab vapor concentrations are less < 5 for all samples results in Action 2 "Take reasonable and practical actions to identify source(s) and reduce exposure".

(2) - Matrix 2 (see reference above) indoor air concentrations for both Tetrachlorothene and 1,1,1-Trichloroethane are < 3. Sub-slab vapor concentrations for Tetrachloroethene in all samples are < 100 resulting in Action 1 "No further action". Sub-slab vapor concentration from sample RR-SA-03 for 1,1,1-Trichloroethane falls between 100 to <1,000 results in Action 5 "Monitor"

TABLE 7 - R	em Rand	UST Cor	firmatior	n Soil Sar	nple Anal	ytical Res	sults
Sample Number	TP-WW	TP-SW	TP-EW	TP-NW	TP-Bottom	NYSDEC	NYSDEC
Sample Date	6/10/2010	6/10/2010	6/10/2010	6/10/2010	6/10/2010	PART 375	PART 375
Sample depth	N/A	N/A	N/A	N/A	N/A	Residential	Restrict-Res
Compounds	ppm	ppm	ppm	ppm	ppm	(a) ppm	(b) ppm
SVOCs							
Acenaphthene	0.064	ND	ND	ND	ND	100	100
Anthracene	0.25	ND	ND	ND	ND	100	100
Benzo(a)anthracene	0.22	ND	ND	ND	ND	1	1
Benzo(a)pyrene	0.14	ND	ND	ND	ND	1	1
Benzo(b)fluoranthene	0.16	ND	ND	ND	ND	1	1
Benzo(g,h,l)perylene	0.082	ND	ND	ND	ND	100	100
Benzo(k)fluoranthene	0.12	ND	ND	ND	ND	1	3.9
Chrysene	0.21	ND	ND	ND	ND	1	3.9
Dibenz(a,h)anthracene	0.024	ND	ND	ND	ND	0.33	0.33
Fluoranthene	0.62	ND	ND	ND	ND	100	100
Flourene	0.12	ND	ND	ND	ND	100	100
Indeno(1,2,3-cd)pyrene	0.079	ND	ND	ND	ND	0.5	0.5
Naphthalene	0.044	ND	ND	ND	ND	100	100
Phenanthrene	0.69	ND	ND	ND	ND	100	100
Pyrene	0.41	ND	ND	ND	ND	100	100
Volitile Organics							
1,2,4-Trimethylbenzene	0.037	ND	ND	ND	ND	47	52
1,3,5-Trimethylbenzene	0.0084	ND	ND	ND	ND	47	52
Ethylbenzene	0.013	ND	ND	ND	ND	30	41
Isopropylbenzene	0.0092	ND	ND	ND	ND	N/A	N/A
n-Propylbenzene	0.0078	ND	ND	ND	ND	100	100
sec-Butylbenzene	0.0036 J	0.008	ND	ND	ND	100	100
Xylenes, total	0.015	ND	ND	ND	ND	100	100

J - Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.

TABLE 8 -	Topsoil (Confirmat	tion Samp	ole Analyt	ical Resu	lts
Sample Number	RR-SS-01	RR-TS-02	RR-TS-03	RR-TS-04	NYSDEC	NYSDEC
Sample Date	6/21/2010	6/24/2010	6/24/2010	6/24/2010	PART 375	PART 375
Sample depth	Composite	N/A	N/A	N/A	Residential	Restrict-Res
Compounds	ppm	ppm	ppm	ppm	(a) ppm	(b) ppm
SVOCs						
3 & 4 Methylphenol	0.018	N/A	N/A	N/A	N/A	N/A
Acenaphthene	0.028	N/A	N/A	N/A	100	100
Acenapthylene	0.024	N/A	N/A	N/A	100	100
Anthracene	0.12	N/A	N/A	N/A	100	100
Benzo(a)anthracene	0.44	N/A	N/A	N/A	1	1
Benzo(a)pyrene	0.43	N/A	N/A	N/A	1	1
Benzo(b)fluoranthene	0.62	N/A	N/A	N/A	1	1
Benzo(g,h,l)perylene	0.23	N/A	N/A	N/A	100	100
Benzo(k)fluoranthene	0.15	N/A	N/A	N/A	1	3.9
Chrysene	0.53	N/A	N/A	N/A	1	3.9
Dibenz(a,h)anthracene	0.049	N/A	N/A	N/A	0.33	0.33
Dibenzofuran	0.044	N/A	N/A	N/A	N/A	N/A
Fluoranthene	1.1	N/A	N/A	N/A	100	100
Flourene	0.05	N/A	N/A	N/A	100	100
Indeno(1,2,3-cd)pyrene	0.19	N/A	N/A	N/A	0.5	0.5
Naphthalene	0.04	N/A	N/A	N/A	100	100
Phenanthrene	0.68	N/A	N/A	N/A	100	100
Pyrene	0.8	N/A	N/A	N/A	100	100
Volitile Organics						
Methylene Chloride	0.004	0.0043	0.0047	0.0052	51	100
Pesticides						
4,4'-DDE	0.0014	N/A	N/A	N/A	1.8	8.9
4,4'-DDT	0.0022	N/A	N/A	N/A	1.7	7.9
Endosulfan sulfate	0.0041	N/A	N/A	N/A	4.8	24
Metals						
Arsenic	3.9	N/A	N/A	N/A	16	16
Barium	63.1	N/A	N/A	N/A	350	400
Beryllium	0.543	N/A	N/A	N/A	14	72
Cadmium	0.154	N/A	N/A	N/A	2,5	4.3
Chromium	9.57	N/A	N/A	N/A	22	110
Copper	10.4	N/A	N/A	N/A	270	270
Lead	46.9	N/A	N/A	N/A	400	400
Nickel	10.3	N/A	N/A	N/A	140	310
Zinc	71.1	N/A	N/A	N/A	2200	10000
Manganese	283	N/A	N/A	N/A	2000	2000
Mercury	0.0748	N/A	N/A	N/A	0.81	0.81

J - Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.

RR-TS-02 through 04 tested for VOCs only per Table 5.2(e)10 of DER-10 for 300 cy of material

TABLE 9 - Exi	sting Subo	grade Ref	erence S	oil Sample A	nalytical l	Results
Sample Number	RR-SS-CW	RR-SS-CE	RR-SS-EN	RR-SS-ES	NYSDEC	NYSDEC
Sample Date	5/20/2010	5/20/2010	5/20/2010	5/20/2010	PART 375	PART 375
Sample depth	Subgrade	Subgrade	Subgrade	Subgrade	Residential	Restrict-Res
Compounds	ppm	ppm	ppm	ppm	(a) ppm	(b) ppm
SVOCs						
Acenaphthene	ND	ND	ND	0.54 D12,J	100	100
Acenapthylene	ND	ND	ND	0.27 D12,J	100	100
Anthracene	0.018 J	ND	ND	1.3 D12,J	100	100
Benzo(a)anthracene	0.07 J	ND	0.22 D12,J	3.0 D12 (a)(b)	1	1
Benzo(a)pyrene	0.064 J	ND	0.21 D12,J	3.0 D12 (a)(b)	1	1
Benzo(b)fluoranthene	0.004 0	ND	0.26 D12,J	3.3 D12 (a)(b)	1	1
Benzo(g,h,I)perylene	0.047 J	ND	0.19 D12,J	2.3 D12	100	100
Benzo(k)fluoranthene	0.039 J	ND	0.083 D12,J	1.5 D12,J (a)	1	3.9
Carbazole	0.033 J	ND	ND	0.58 D12,J	N/A	0.5 N/A
Chrysene	0.013 J	ND	0.22 D12,J	3.1 D12 (a)	1	3.9
Dibenz(a,h)anthracene	0.008 J 0.013 J	ND	0.22 D12,3		0.33	0.33
Dibenz(a,n)antinacene	0.013 J	ND	ND	0.39 D12,J (a)(b)	0.33 N/A	0.33 N/A
Fluoranthene	0.13 J	ND	0.41 D12,J	7.3 D12,5	100	100
Fluorene	ND	ND	0.41 D12,3			
				0.69 D12,J	100	100
Indeno(1,2,3-cd)pyrene	0.04 J	ND	0.14 D12,J	1.8 D12 (a)(b)	0.5	0.5
Phenanthrene	0.099 J	ND	0.27 D12,J	5.7 D12	100	100
Pyrene	0.11 J	ND	0.34 D12,J	5.6 D12	100	100
PCBs						
Aroclor 1242	ND	ND	ND	0.015 J	1	1
Pesticides						
Endrin	ND	ND	ND	0.0007 QFL,J	2.2	11
4,4'-DDT	ND	ND	ND	0.0009 QFL,J	1.7	7.9
Metals						
Aluminum	7050	8100	6010	7640	N/A	N/A
Antimony	ND	ND	ND	3.6 J	N/A	N/A
Arsenic	4.3	3.8	4.1	6.8	16	16
Barium	117 B	67.9 B	60.4 B	162 B	350	400
Beryllium	0.335	0.423	0.34	0.665	14	72
Cadmium	ND	ND	0.06 J	0.467	2.5	4.3
Calcium	2020 B	3870 B	36700 B	60700 B	N/A	N/A
Chromium	10.6	9.86	8.15	12.1	22	110
Cobalt	5.89	6.8	4.28	4.5	N/A	N/A
Copper	17.8 B	12.5 B	25.1 B	211 B	270	270
Iron	14100 B	14900 B	10800 B	16500 B	N/A	N/A
Lead	452 (a)(b)	19	167	297	400	400
Magnesium	1980	2120	16200	13500	N/A	N/A
Manganese	220 B	727 B	367 B	658 B	2000	2000
Nickel	13.7	11.9	9.36	30.5	140	310
Potassium	830	1050	1090	911	N/A	N/A
Silver	0.103 J	ND	ND	0.111 J	36	80
Sodium	79.5 J,B	57.3 J,B	180 B	238 B	N/A	N/A
Thallium	1.0 J	ND	0.3 J	ND	N/A	N/A
Vanadium	15.2	16.6	13.2	13.8	N/A	N/A
Zinc	86.8 B	68 B	78.2 B	378 B	2200	10000
Mercury	0.188	0.0526	1.02 D08	0.66	0.81	0.81

N/A - Not Applicable ND - Non-detect J - Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated. Ş

B - Analyte was detected in the associated Method Blank. D08-Dilution required due to high concentration of target analyte(s) D12 Dilution required due to sample viscosity QFL - Florisil cleanup (EPA 3620) performed on extract

<u>Sample</u>	Location
RR-SS-CW	West-end Courtyard
RR-SS-CE	East-end Courtyard
RR-SS-EN	North-end East Parking Area
RR-SS-ES	South-end East Parking Area

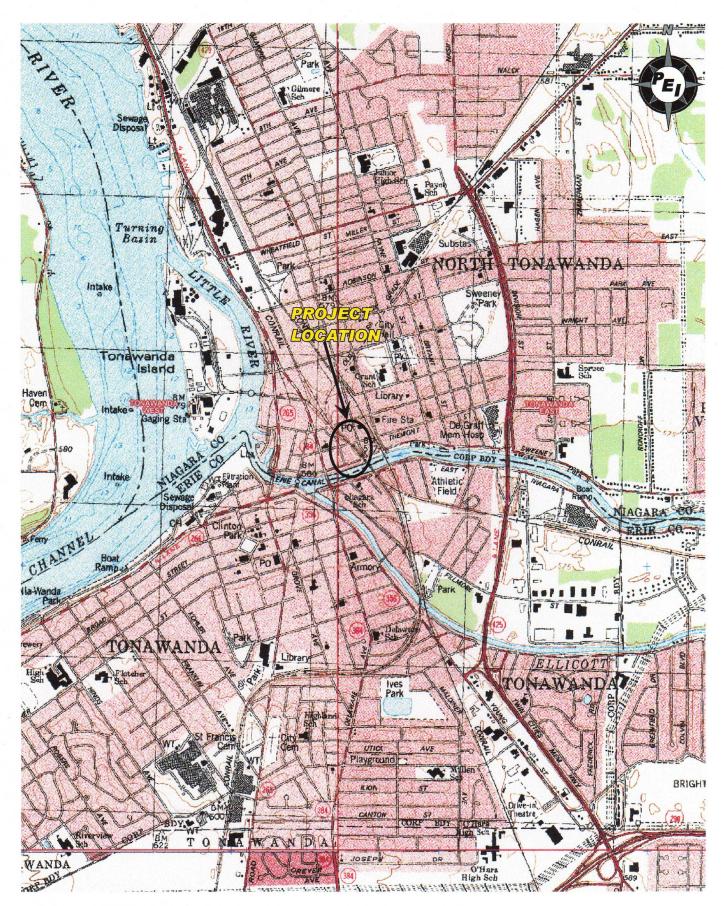
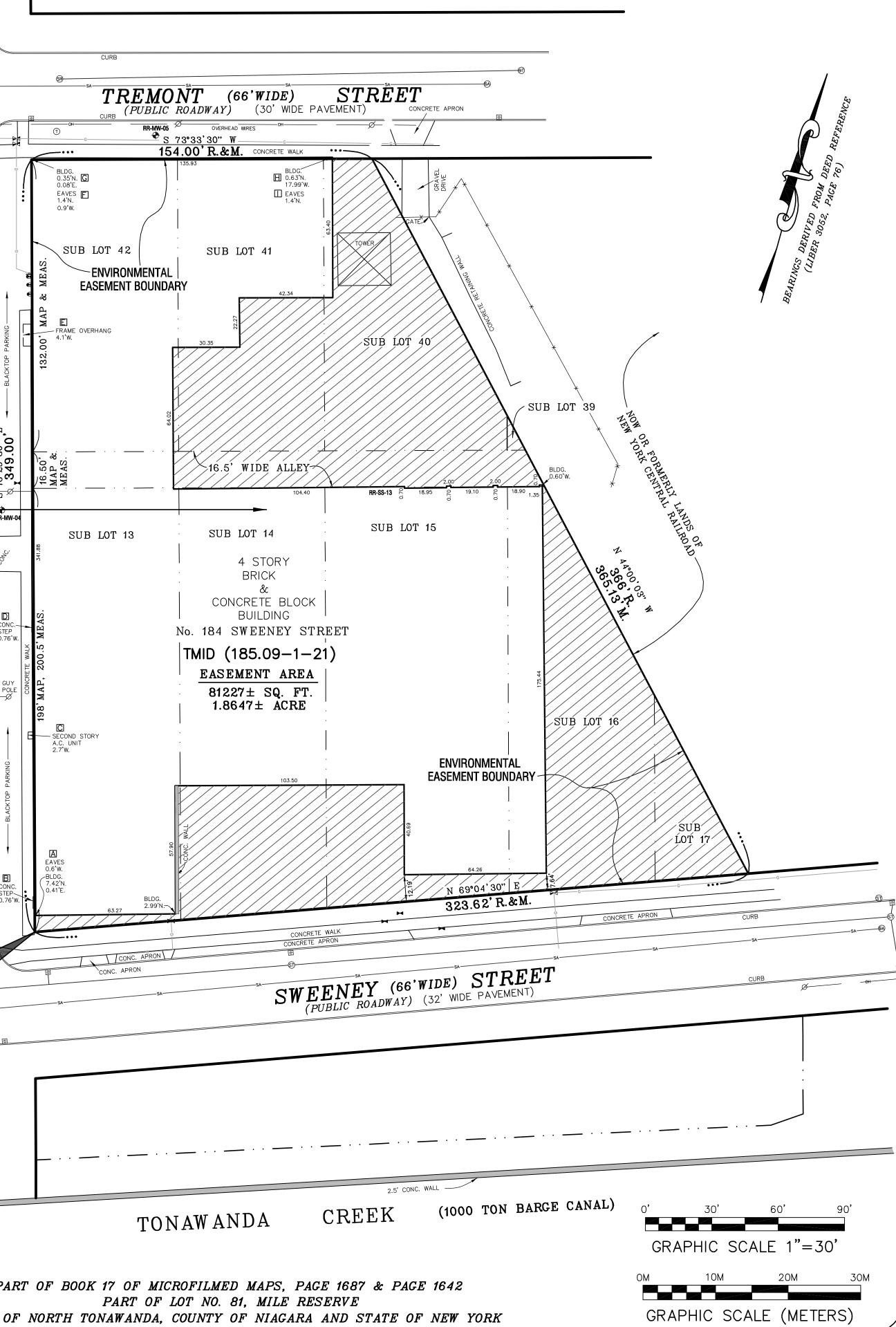
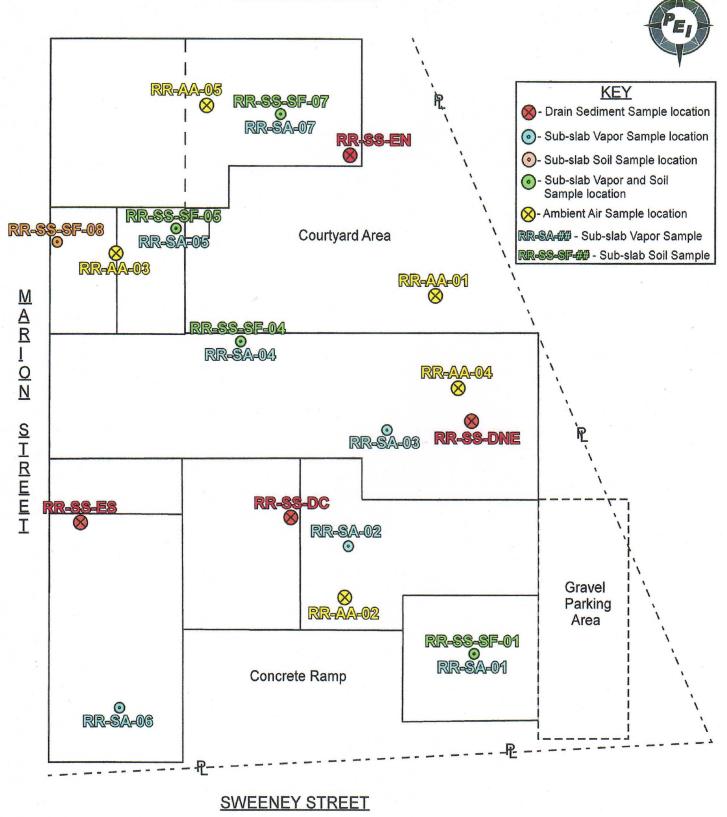
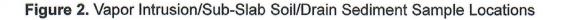
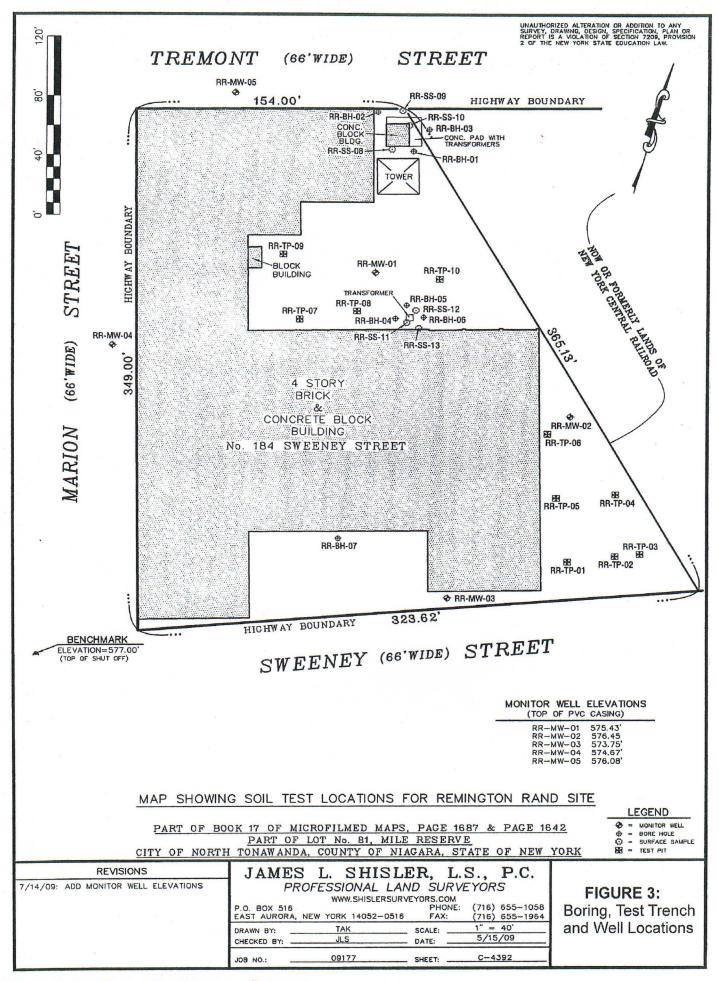



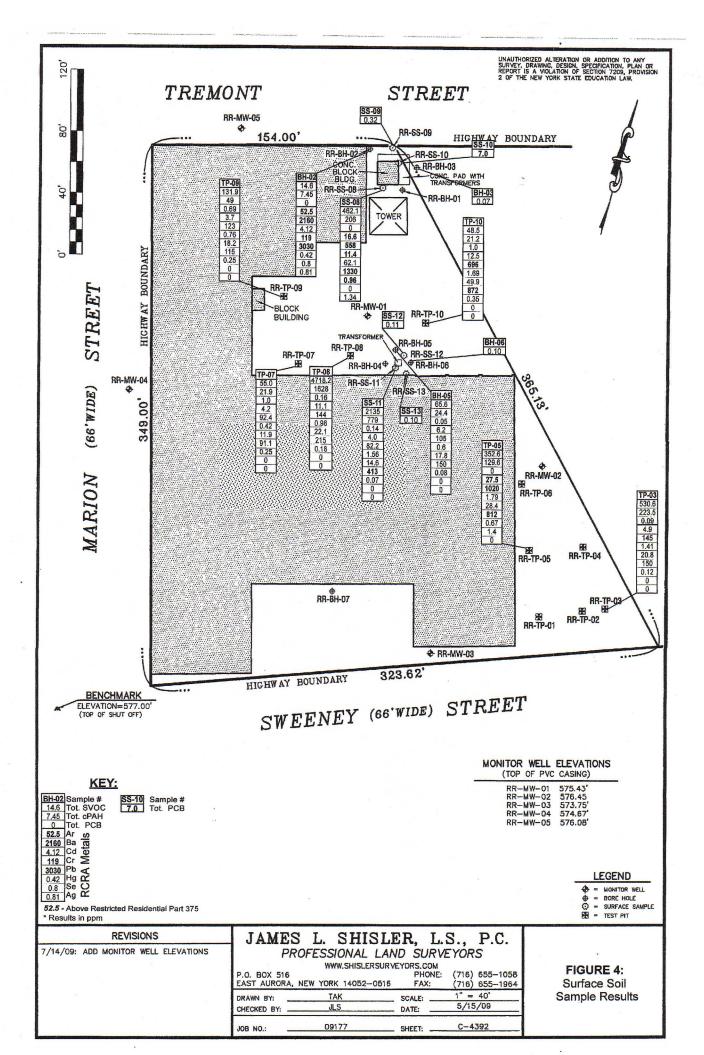
Figure 1. Project area on a topographic map. (USGS 7.5' Quadrangle, Tonawanda, NY, 1989 [1965]).

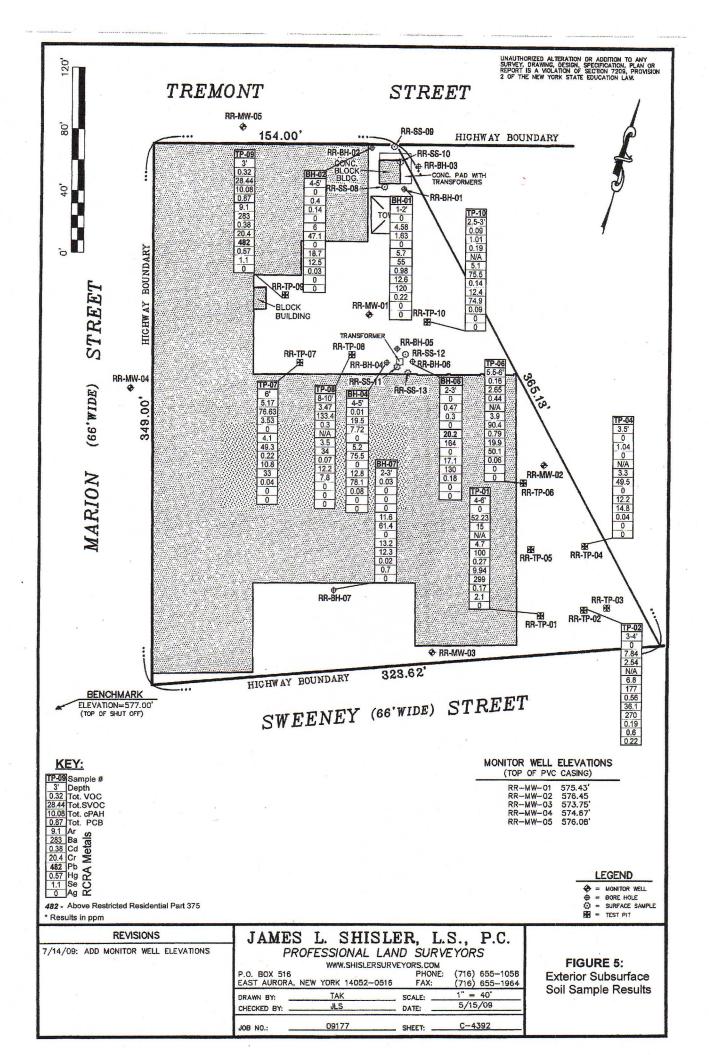

SANITARY CLEAN OUTSA SANITARY SEWER LINE NEC. NECORD STORM MANHOLEGGAS LINE MEAS. MEASURED STORM INLETW WATER LINE N. NORTH WATER VALVEE ELECTRIC WIRES S. SOUTH GAS VALVEOH OVERHEAD UTILITY WIRES E. EAST GAS REGULATORGUY WIRE W. WEST GAS METER GAS METER L LIBER			
Ø UTILITY POLE P. PAGE ■ ELECTRIC METER SQ. FT. SQUARE FEET ① TELEPHONE MANHOLE • DEGREES ♦ MONITOR WELL * INCHES OR SECONDS			-se
Soil and Pavement Sections Cover System		OH	
Miscellaneous Notes			SA
 MN1 No observed evidence of the location of cemeteries or burial grounds. MN2 No designated parking spaces. MN3 Institutional and Engineering Controls provided by Panamerican Environmental, Inc Revised map on 8/11/10 to show Institutional and Engineering Controls. No field work was performed by James L. Shisler L.S., P.C. and James L. Shisler L.S., P.C. accepts no responsibility as to the accuracy of the statements in the Institutional and Engineering Controls section. MN4 Two block buildings and a retaining wall with fence removed 8/21/10. No field work was performed. MN5 With the exception of the tower, preexisting site features have been removed as a result of remediation. No field work was performed. Map revised 8/27/10. 			SA-
Utility Notes			
(IN1) The locations of utilities shown hereon were determined from observation of ground appurtenances.			-SA-
(UN2) The exact locations of utility lines (i.e. electric, telephone, gas, water, sanitary sewer and storm sewer) entering the subject property and the points of entry of such utilities into the subject property's building could not be determined.			
APPROXIMATE LOCATI SOIL VENTING SYSTEM		он	
SOIE VENTING STOTEN			L
			EI
Statement of Possible Encroachments			
Subject property's eave encroaches up to 0.6'W.			STREET
 Subject property's eave encroaches up to 0.6'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's second story air conditioning unit encroaches up to 2.7'W. Subject property's concrete step encroaches up to 0.76'W. 			
 Subject property's eave encroaches up to 0.6'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's second story air conditioning unit encroaches up to 2.7'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's frame overhang encroaches up to 4.1'W. Subject property's eave encroaches up to 0.6'W. & 0.9'W. Subject property's building encroaches up to 0.35'N. 			WIDE)
 Subject property's eave encroaches up to 0.6'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's second story air conditioning unit encroaches up to 2.7'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's frame overhang encroaches up to 4.1'W. Subject property's eave encroaches up to 0.6'W. & 0.9'W. 	0H		(66'WIDE)
 Subject property's eave encroaches up to 0.6'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's second story air conditioning unit encroaches up to 2.7'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's frame overhang encroaches up to 4.1'W. Subject property's eave encroaches up to 0.6'W. & 0.9'W. Subject property's building encroaches up to 0.35'N. Subject property's building encroaches up to 0.63'N. 	— OH————		N (66'WIDE)
 Subject property's eave encroaches up to 0.6'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's second story air conditioning unit encroaches up to 2.7'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's frame overhang encroaches up to 4.1'W. Subject property's eave encroaches up to 0.6'W. & 0.9'W. Subject property's building encroaches up to 0.35'N. Subject property's building encroaches up to 0.63'N. 	—0H———		
 Subject property's eave encroaches up to 0.6'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's second story air conditioning unit encroaches up to 2.7'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's frame overhang encroaches up to 4.1'W. Subject property's eave encroaches up to 0.6'W. & 0.9'W. Subject property's building encroaches up to 0.35'N. Subject property's eave encroaches up to 0.63'N. Subject property's eave encroaches up to 1.4'N. 	—0H		
 Subject property's eave encroaches up to 0.6'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's frame overhang encroaches up to 0.76'W. Subject property's eave encroaches up to 0.6'W. & 0.9'W. Subject property's building encroaches up to 0.63'N. Subject property's eave encroaches up to 0.63'N. Subject property's eave encroaches up to 1.4'N. 	— OH		
 Subject property's eave encroaches up to 0.6'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's second story air conditioning unit encroaches up to 2.7'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's frame overhang encroaches up to 0.76'W. Subject property's eave encroaches up to 0.6'W. & 0.9'W. Subject property's building encroaches up to 0.35'N. Subject property's building encroaches up to 0.63'N. Subject property's eave encroaches up to 1.4'N. 	0H		
 Subject property's eave encroaches up to 0.6'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's frame overhang encroaches up to 0.76'W. Subject property's eave encroaches up to 0.6'W. & 0.9'W. Subject property's building encroaches up to 0.63'N. Subject property's eave encroaches up to 0.63'N. Subject property's eave encroaches up to 1.4'N. 	0H	01	
 Subject property's eave encroaches up to 0.6'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's concrete step encroaches up to 0.76'W. Subject property's frame overhang encroaches up to 0.76'W. Subject property's eave encroaches up to 0.6'W. & 0.9'W. Subject property's building encroaches up to 0.63'N. Subject property's eave encroaches up to 0.63'N. Subject property's eave encroaches up to 1.4'N. 		OH	
 A subject property's eave encroaches up to 0.6'W. A ubject property's concrete step encroaches up to 0.76'W. A ubject property's concrete step encroaches up to 0.76'W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 0.6'W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's building encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 1.4'W. A ubject property's eave encroaches	-ot	for	
 A subject property's eave encroaches up to 0.6'W. A ubject property's concrete step encroaches up to 0.76'W. A ubject property's concrete step encroaches up to 0.76'W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 0.6'W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's building encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 0.6'W & 0.9W. A ubject property's eave encroaches up to 1.4'W. A ubject property's eave encroaches	int of Beginning onmental Easemer	for	
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>		for	
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>		for	
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>	ASEMENT PY OF ST IN THE RTMENT AL	for	

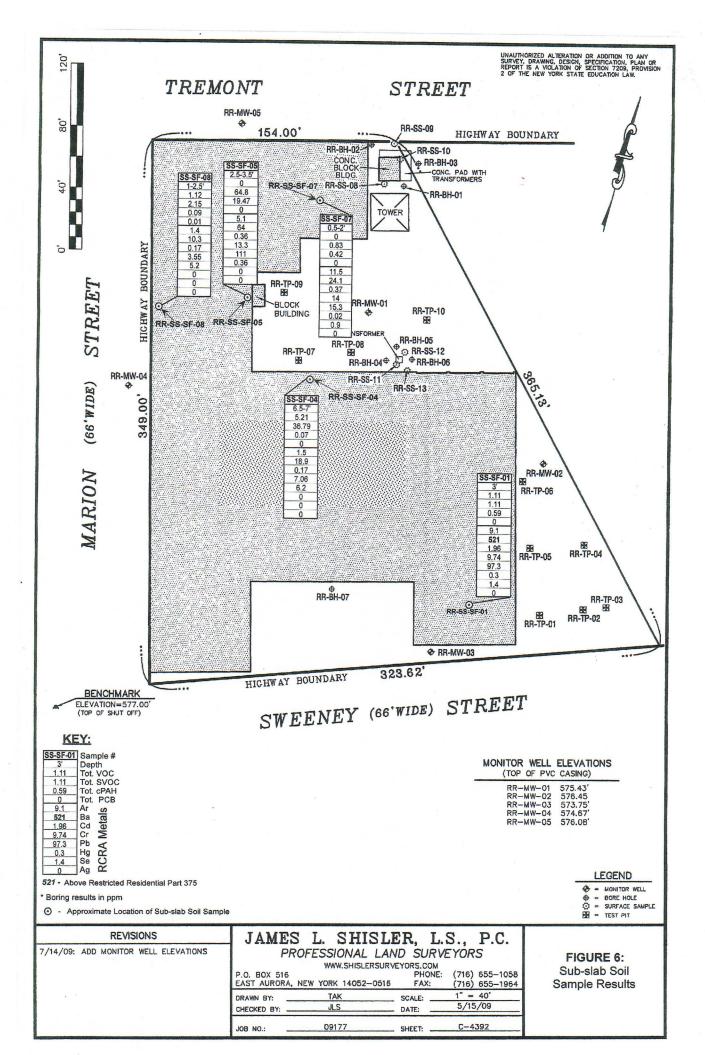


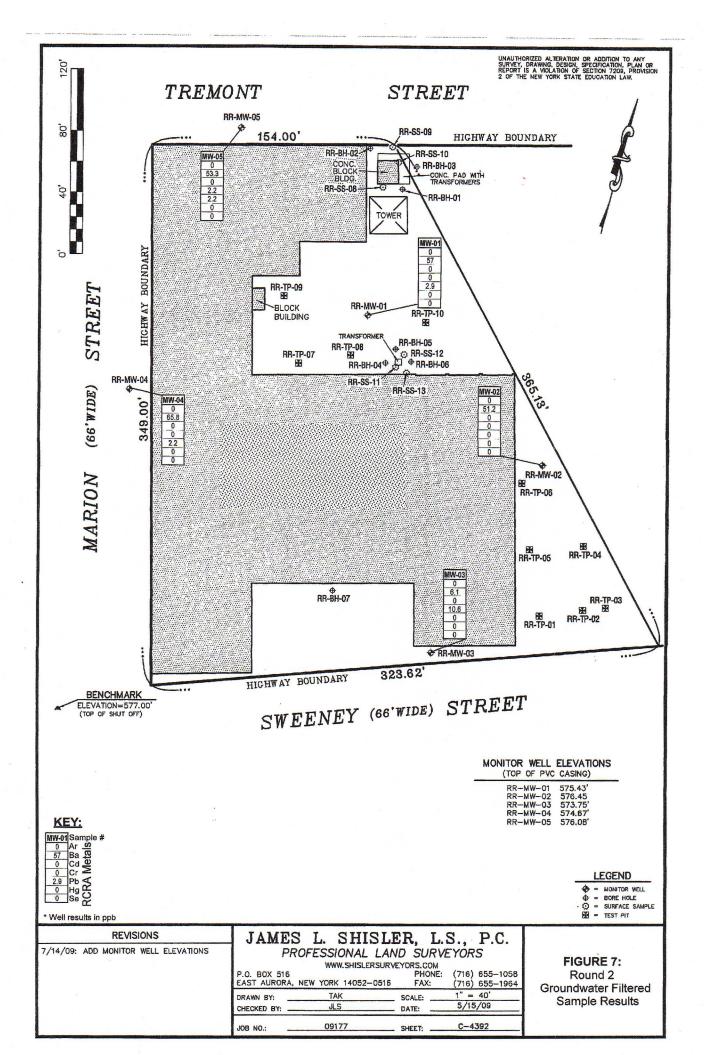

Emails and filed in the Niagara County Clerk's Office on February 10, 1849, now in Book 17 of Microfilmed Maps at page 1687, bounded and described as follows: Beginning at the point of intersection of the northerly line of Sweeney Street with the easterly line of Marion Street; Thence N 69' 04' 30" E along the northerly line of Sweeney Street and along the southerly lines of Subdivision Lat Nos. 13, 14, 15, 16 and 17, a distance of 323.62 feet to the southwesterly line of lands now or formerly owned by the New York Central Rairoad; Thence N 69' 04' 30" E along the northerly line of Sweeney Street and along the southerly lines of Subdivision Lat Nos. 13, 14, 15, 16 and 17, a distance of 323.62 feet to the southwesterly line of lands now or formerly owned by the New York Central Rairoad; Thence N 73' 33' 30" W along the southerly line of Tremont Street; Thence S 73' 33' 30" E along the southerly line of Tremont Street; Thence S 16' 29' 30" E along the easterly line of Marion Street 134.00 feet to the easterly line of baginning, containing 1.8647 acres (81,227 square feet) of land more or less. The above described is the same land as described in Monroe Title Abstract No. 525799, Parcel "A", dated December 4, 2009. INSTITUTIONAL CONTROLS • The property may only be used for restricted residential use provided that the long-term Engineering and Institutional Controls included in this SW are employed. • The property may only be used for a bigher level use, such as unstricted or residential use without additional remediation and omendment of the Environmental Easement, as approved by the NYSDEC. • All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with this SMP. • The use of the groundwater underlying the property is prohibited without testing and approval of the NYSDEC and NYSDOH. • Vegetable gardens and farming on the property ore prohibited.	\mathbf{N}	
<text><text><text><text><text><text><text><text><text><text><list-item><section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header></list-item></text></text></text></text></text></text></text></text></text></text>		Legal Description
<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><section-header><section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header></section-header></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header></section-header></section-header>		All that tract or parcel of land, situate in the City of North Tonawanda, County of Niagara and State of New York, being part of Lot No. 81 of the Mile Reserve as shown on a map made by Peter Emslie and filed in the Niagara County Clerk's Office on February 10, 1849, now in Book 17 of Microfilmed Maps at page 1642 and also on a map made by B.F. Betts and filed in the Niagara County Clerk's Office on March 31, 1888, now in Book 17 of Microfilmed Maps at page 1687, bounded and described as follows: Beginning at the point of intersection of the northerly line of Sweeney Street with the easterly line of Marion Street; Thence N 69° 04' 30" E along the northerly line of Sweeney Street and along the southerly lines of Subdivision Lot Nos. 13, 14, 15, 16 and 17, a distance of 323.62 feet to the southwesterly line of lands now or formerly owned by the New York Central Railroad; Thence N 44° 00' 03" W and through Subdivision Lot Nos. 17 and 16, a 16.5 foot alleyway and Subdivision Lot No. 40, a distance of 365.13 feet to the southerly line of Tremont Street; Thence S 73° 33' 30" W along the southerly line of Tremont Street 154.00 feet to the easterly line of Marion Street; Thence S 16° 29' 30" E along the easterly line of Marion Street 349.00 feet to the point or place of beginning, containing 1.8647 acres (81,227 square feet) of land more or less.
<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><text></text></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></text>		INSTITUTIONAL/ENGINEERING CONTROLS
ALTA/ACSM Land Title Survey Sections Cover System ALTA/ACSM Land Title Survey Remington Rand Site #C932142 184 Sweeney Street, North Tonawanda, N.Y. B4 Sweeney Street, North Tonawanda, N.Y.		 The property may only be used for restricted residential use provided that the long-term Engineering and Institutional Controls included in this SMP are employed. The property may not be used for a higher level of use, such as unrestricted or residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC. All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with this SMP. The use of the groundwater underlying the property is prohibited without testing and approval of the NYSDEC and NYSDOH. Vegetable gardens and farming on the property are prohibited. Soil and Pavement Sections Cover System – Removed the top two feet of existing site soil from all open green areas and a minimum of one foot of soil from areas to be covered with paving sections (roads, sidewalks, etc.). A minimum of two feet of approved clean fill was placed over all green space and a minimum of a one foot thick paving section (stone, concrete/asphalt) placed for roadways, sidewalks, etc. (see cross hatched area).
Remington Rand Site #C932142 184 Sweeney Street, North Tonawanda, N.Y. SAMES L. SHISLER, L.S., P.C. PORESSIONAL LAND SURVEYORS PORESSIONAL LAND SURVEYORS PORESSIONAL LAND SURVEYORS PORE 716-653-1056 For 716-056 For 716 For 716-056 For 716 For 716 For 716 For 716 For 716 For 716 For 716 Fo		sample collected at 6 month intervals and results reviewed by NYSDEC.
Remington Rand Site #C932142 184 Sweeney Street, North Tonawanda, N.Y. JAMES L. SHISLER, L.S., P.C. PARESSIONAL LAND SURVEYORS PARENT NUMBER, NEW YORK 14052-0516 Phone: 716-653-1086 Exit AURORA, NEW YORK 14052-0516 Phone: 716-653-1086 End: sitilar/Wgmal.com Date of Survey May 15, 2009 End: sitilar/Wgmal.com		
Remington Rand Site #C932142 184 Sweeney Street, North Tonawanda, N.Y. SAMES L. SHISLER, L.S., P.C. PORESSIONAL LAND SURVEYORS PORESSIONAL LAND SURVEYORS PORESSIONAL LAND SURVEYORS PORE 716-653-1056 For 716-056 For 716 For 716-056 For 716 For 716 For 716 For 716 For 716 For 716 For 716 Fo		
184 Sweeney Street, North Tonawanda, N.Y. JAMES L. SHISLER, L.S., P.C. <i>POFESSIONAL LAND SURVEYORS</i> P. BOX 516 EAST AUROPA, NEW YORK 14052-0516 Phome: 716-655-1058 For: 716-655-1054 Ernol: situar/@gmail.com Dote of Survey: May 15, 2009 Dote of Last Revision: August 27, 2010 Job No. 09177		ALTA/ACSM Land Title Survey
PROFESSIONAL LAND SURVEYORS P.O. BOX 516 EAST AURORA, NEW YORK 14052-0516 Phone: 716-655-1058 Fax: 716-655-1964 Email: shisurv@gmail.com Date of Survey: May 15, 2009 Date of Last Revision: August 27, 2010 Job No. 09177		
Fax: 716-655-1964 Email: shisurv@gmail.com Date of Survey: May 15, 2009 Date of Last Revision: August 27, 2010 Job No. 09177		PROFESSIONAL LAND SURVEYORS P.O. BOX 516 EAST AURORA, NEW YORK 14052-0516
		Fax: 716-655-1964 Email: shisurv@gmail.com Date of Survey: May 15, 2009 Date of Last Revision: August 27, 2010 Job No. 09177

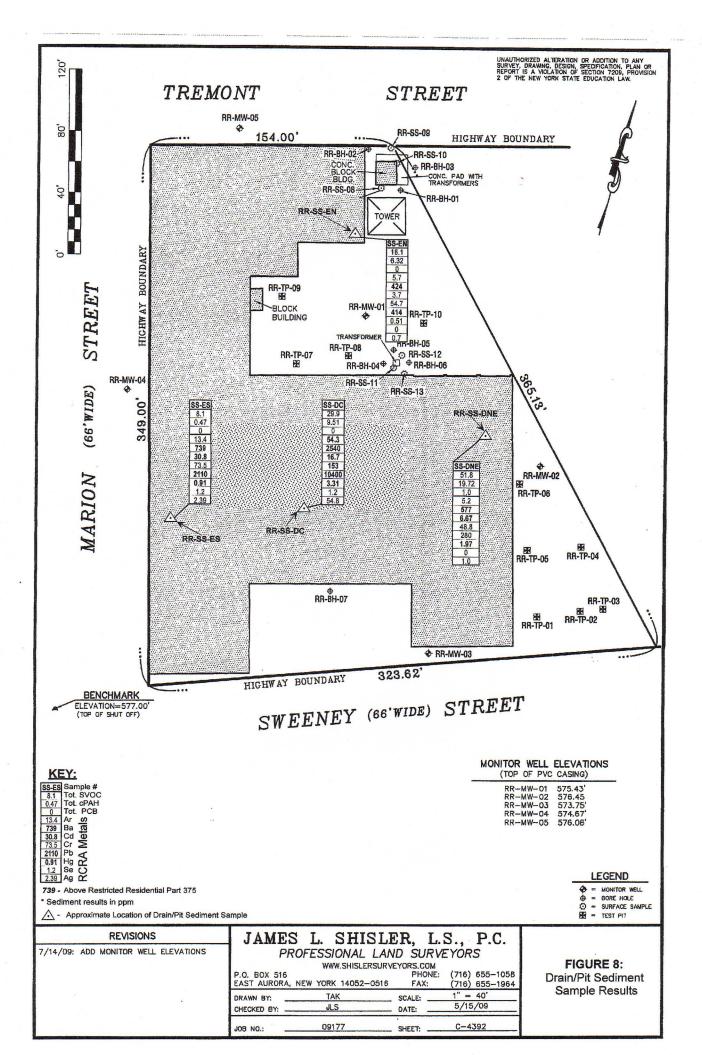
TREMONT STREET

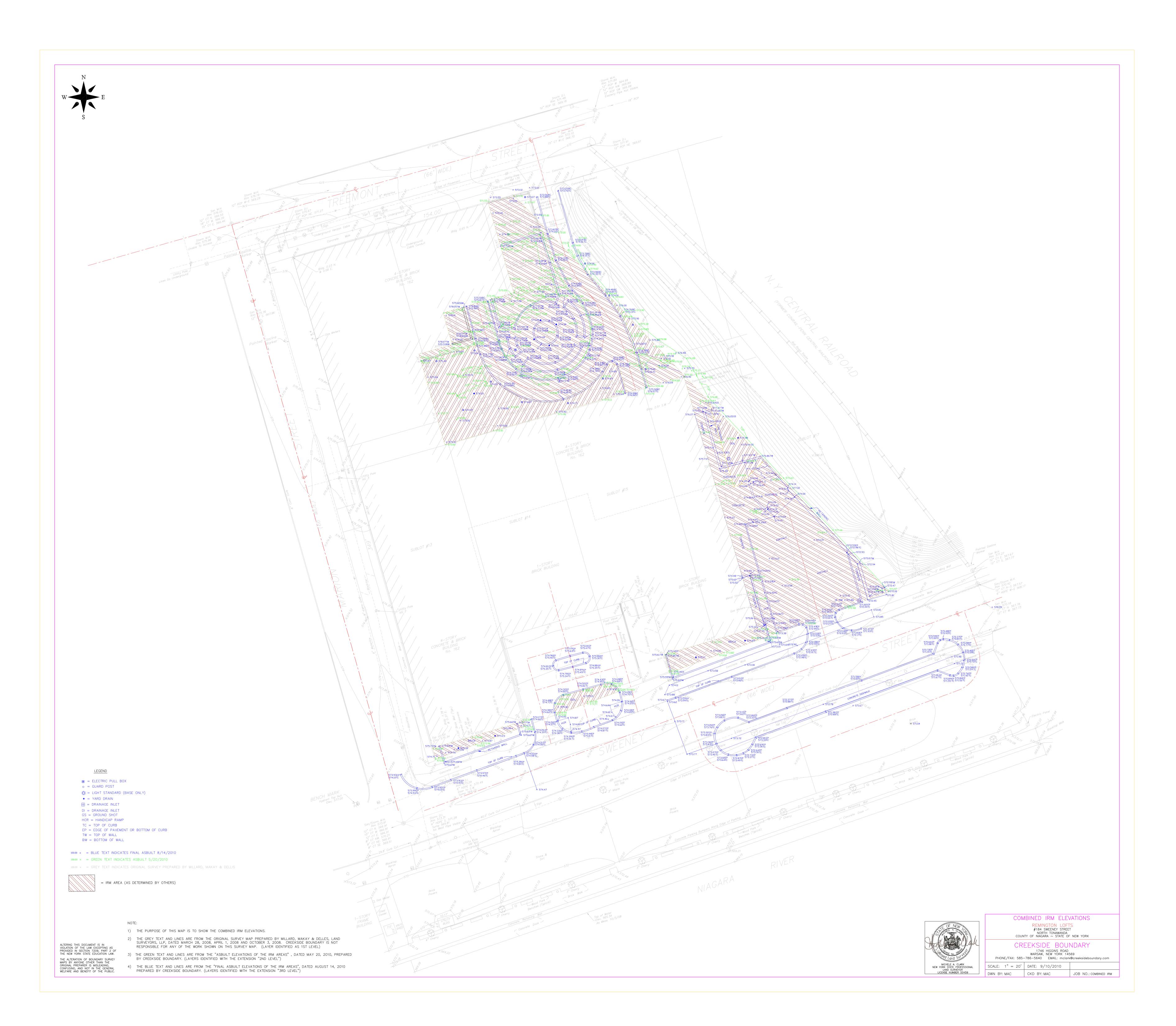

N








PDF created with pdfFactory trial version www.pdffactory.com



APPENDIX B

NYSDEC SOIL VAPOR/INDOOR AIR MATRICES

Soil Vapor/Indoor Air Matrix 1 October 2006

	II	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³)								
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ₃)	< 0.25	0.25 to < 1	1 to < 5.0	5.0 and above						
< 5	1 No further action	 Take reasonable and practical actions to identify source(s) and reduce exposures 	3. Take reasonable and practical actions to identify source(s) and reduce exposures	4. Take reasonable and practical actions to identify source(s) and reduce exposures						
5 to < 50	5 No further action	6. MONITOR	7. MONITOR	8. MITIGATE						
50 to < 250	9. MONITOR	10. MONITOR / MITIGATE	11. MITIGATE	12. MITIGATE						
250 and above	13. MITIGATE	14. MITIGATE	15. MITIGATE	16. MITIGATE						

No further action:

Given that the compound was not detected in the indoor air sample and that the concentration detected in the sub-slab vapor sample is not expected to significantly affect indoor air guality, no additional actions are needed to address human exposures.

Take reasonable and practical actions to identify source(s) and reduce exposures:

The concentration detected in the indoor air sample is likely due to indoor and/or outdoor sources rather than soil vapor intrusion given the concentration detected in the sub-slab vapor sample. Therefore, steps should be taken to identify potential source(s) and to reduce exposures accordingly (e.g., by keeping containers tightly capped or by storing volatile organic compound-containing products in places where people do not spend much time, such as a garage or outdoor shed). Resampling may be recommended to demonstrate the effectiveness of actions taken to reduce exposures.

MONITOR:

Monitoring, including sub-slab vapor, basement air, lowest occupied living space air, and outdoor air sampling, is needed to determine whether concentrations in the indoor air or sub-slab vapor have changed. Monitoring may also be needed to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined on a site-specific and building-specific basis, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

MITIGATE:

Mitigation is needed to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system, and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

MONITOR / MITIGATE:

Monitoring or mitigation may be recommended after considering the magnitude of sub-slab vapor and indoor air concentrations along with building- and site- specific conditions.

Soil Vapor/Indoor Air Matrix 2

October 2006

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³)								
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³)	< 3	3 to < 30	30 to < 100	100 and above					
< 100	1 No further action	2. Take reasonable and practical actions to identify source(s) and reduce exposures	3. Take reasonable and practical actions to identify source(s) and reduce exposures	4. Take reasonable and practical actions to identify source(s) and reduce exposures					
100 to < 1,000	5. MONITOR	6. MONITOR / MITIGATE	7. MITIGATE	8. MITIGATE					
1,000 and above	9. MITIGATE	10. MITIGATE	11. MITIGATE	12. MITIGATE					

No further action:

Given that the compound was not detected in the indoor air sample and that the concentration detected in the sub-slab vapor sample is not expected to significantly affect indoor air quality, no additional actions are needed to address human exposures.

Take reasonable and practical actions to identify source(s) and reduce exposures:

The concentration detected in the indoor air sample is likely due to indoor and/or outdoor sources rather than soil vapor intrusion given the concentration detected in the sub-slab vapor sample. Therefore, steps should be taken to identify potential source(s) and to reduce exposures accordingly (e.g., by keeping containers tightly capped or by storing volatile organic compound-containing products in places where people do not spend much time, such as a garage or outdoor shed). Resampling may be recommended to demonstrate the effectiveness of actions taken to reduce exposures.

MONITOR:

Monitoring, including sub-slab vapor, basement air, lowest occupied living space air, and outdoor air sampling, is needed to determine whether concentrations in the indoor air or sub-slab vapor have changed. Monitoring may also be needed to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined on a site-specific and building-specific basis, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

MITIGATE:

Mitigation is needed to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system, and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

MONITOR / MITIGATE:

Monitoring or mitigation may be recommended after considering the magnitude of sub-slab vapor and indoor air concentrations along with building- and site- specific conditions.

APPENDIX C

STOHL TRANSFORMER SAMPLING REPORT

Environmental – Asbestos, Lead and Mold Consultants

4169 Allendale Pkwy., Suite 100 Blasdell New York 14219 **2** (716) 312-0070 **3** (716) 312-8092

September 17, 2009

Mr. Jonathan H. Morris, AIA Carmina Wood Morris PC 487 Main Street, Suite 600 Buffalo, NY 14203

RE: Transformer Sampling Results Former Remington Rand Facility 184 Sweeney Street North Tonawanda, New York 14120 Project No. 2009-260/09MS123

Dear Mr. Morris:

In accordance with the approved proposal for environmental services at the above-reference site (the Site), Stohl Environmental, LLC (Stohl), collected samples from ten pad-mounted transformers, two circuit breaker fluid reservoirs and stained soil/concrete (located proximate to one of the transformer units) on August 14, 2009. Prior to the sampling event, Edward A. Simoncelli (licensed electrician) of Simoncelli Electric (SE), completed an inspection of the transformer units and confirmed that they were not energized. A copy of the letter associated with this inspection is attached. The following summarizes the sampling event and analytical data.

Nine of the transformers are located on the northern portion of the Site (along Tremont Street) and are located on concrete slabs within a chain-link enclosure. Two fluid reservoirs, apparently associated with two circuit breakers, are located within a historic power house proximate the transformer pad. Oil from each transformer (identified as T-1 through T-9) and the fluid reservoirs (identified as C-1 and C-2) was collected using dedicated tubing. [Note that as fluid reservoir C-1 had three separate oil storage compartments, a composite sample was collected.] The samples were transferred into laboratory-supplied containers and placed into an iced cooler for transport to the laboratory.

The remaining transformer (T-10) is located on a single concrete slab south of the other transformers. An oil sample was collected for laboratory analysis via a stopcock near the base of this transformer. In addition, black staining (likely oil) was noted proximate to this transformer. Two samples, one soil (S-T10) and one concrete SC-T10), were also collected for analysis. The samples were transferred into laboratory-supplied containers and placed into an iced cooler for transport to the laboratory.

A site map depicting transformer sampling locations is attached. All samples were submitted under chain-ofcustody to TestAmerica of Amherst, New York (TestAmerica) for polychlorinated biphenyl (PCB) analysis. The laboratory analytical data report is attached and a summary of results is provided on the following page.

Sample ID	PCB Concentration (mg/kg)
T-1	6.9
T-2	5.6
T-3	6.9
T-4	3.9
T-5	3.4
T-6	8.1
T-7	ND <1.8
T-8	ND <1.5
T-9	ND <1.5
T-10	240
C-1	ND<1.5
C-2	ND<1.3
S-T10	120
SC-T10	13

Notes:

mg/kg = milligrams per kilogram or parts per million, ppm ND – no PCBs detected below detection limit shown

We trust that this report satisfies your current needs. Should you have any questions, please do not hesitate to contact the undersigned.

Sincerely,

Stohl Environmental, LLC

KAN

Robert J. Szustakowski Sr. Vice President

Attachments

Electrician's letter Site Map Analytical results ELECTRICIAN'S LETTER

Commercial / Residential

Simoncelli Electric, Inc.

3740 California Road • Orchard Park, New York 14127 • 716 / 662-2780 FAX 716 / 662-3747

August 10, 2009

Via Fax (716) 592-9373 and Regular Mail

Mr. Eric Warren Russo Development, Inc. 535 West Main Street Springville, New York 14141

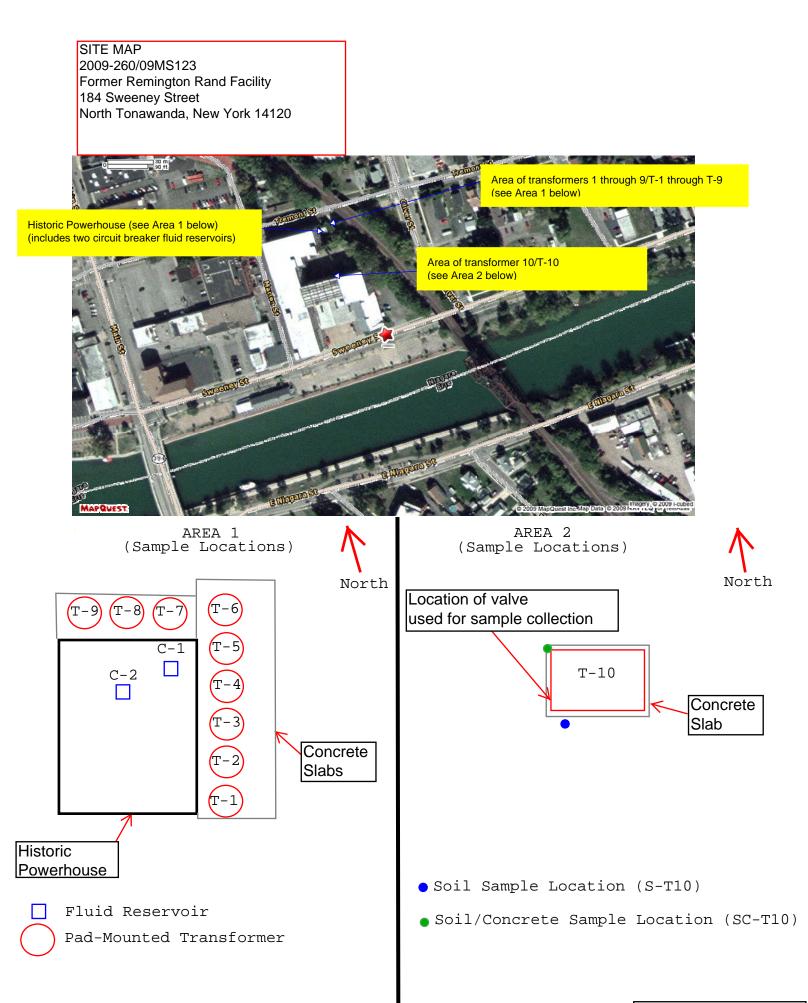
Re: 184 Sweeney Street, North Tonawanda

Dear Eric,

I have made a visual inspection of 184 Sweeney Street, North Tonawanda and have found the following:

- A. The nine (9) transformers located in the rear substation are disconnected and therefore are totally de-energized.
- B. The rear pad mount transformer is fed from the substation and that feed has been removed so therefore the transformer is de-energized also.
- C. The primary feed from National Grid Pole #135 on Tremont Street has had the fuses removed but National Grid should be notified to come out and cut or remove the feeder from the fuse holder.
- D. The substation still has National Grid meters and metering transformers which are de-energized but should be removed.
- E. The substation has two (2) primary type oil circuit breakers which are de-energized but should be removed.

If you should have any other questions please feel free to contact my office.


Sincerely,

SIMONCELLI ELECTRIC INC.

Edward A. Simoncelli President

City of North Tonawanda License #322-09

SITE MAP

Drawings Not To Scale

ANALYTICAL RESULTS

Analytical Report

SDG Number: RSH0425

Project Description(s) Remington Rand Transformers PCB Analysis Remington Rand Transformers PCB Analysis

For:

Bryan Mayback

MS Analytical 4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

Paul Morrow

Project Manager Paul.Morrow@testamericainc.com

Monday, August 24, 2009

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical 4169 Allendale Parkway, Suite 200 Blasdale, NY 14219 SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

Project: Remington Rand Transformers PCB Analysis Project Number: Remington Rand Transformers PCB Analysis

TestAmerica Buffalo Current Certifications

As of 1/27/2009

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP C WA, R CRA	E87672
Georgia*	SDWA, NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana *	NELAP C WA, R CRA	2031
Maine	SDWA, CWA	N Y0044
Maryland	SDWA	294
Massachusetts	SD WA, C WA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP, SD WA, C WA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA, CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas *	NELAP C WA, R CRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SD WA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accre ditation is required or available. Any exceptions to NELAP requirements are noted in this report.

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical 4169 Allendale Parkway, Suite 200 Blasdale, NY 14219 SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

Project: Remington Rand Transformers PCB Analysis Project Number: Remington Rand Transformers PCB Analysis

Case Narrative

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

There are pertinent documents appended to this report, 2 pages, are included and are an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219 SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

Project: Remington Rand Transformers PCB Analysis Project Number: Remington Rand Transformers PCB Analysis

DATA QUALIFIERS AND DEFINITIONS

- **D08** Dilution required due to high concentration of target analyte(s)
- **QSU** Sulfur (EPA 3660) clean-up performed on extract.
- **Z3** The sample required a dilution due to the nature of the sample matrix. Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.
- **Z5** Due to sample matrix effects, the surrogate recovery was outside acceptance limits. Secondary surrogate recovery was within the acceptance limits.
- **NR** Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219 SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

		I	Executive	Summai	ry - Detecti	ons				
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: SC-T10 (RSH042	5-01 - Solio	(k			Samp	led: 08/	14/09 12:00	Rec	vd: 08/14/0	9 17:10
Polychlorinated Biphenyls	s by EPA N	lethod 8082								
Aroclor 1248	13		1.1	0.22	mg/kg dry	50.0	08/19/09 14:28	SCH	9H17035	8082
General Chemistry Param	<u>eters</u>									
Percent Solids	75		0.010	NR	%	1.00	08/16/09 12:14	KMB	9H15011	Dry Weight
Client ID: S-T10 (RSH0425-	-02 - Solid)				Samp	led: 08/	14/09 12:10	Rec	vd: 08/14/0	9 17:10
Polychlorinated Biphenyls	s by EPA N	lethod 8082								
Aroclor 1242	120		17	3.8	mg/kg dry	500	08/19/09 14:43	SCH	9H17035	8082
General Chemistry Param	<u>eters</u>									
Percent Solids	48		0.010	NR	%	1.00	08/16/09 12:16	KMB	9H15011	Dry Weight
Client ID: T-10 (RSH0449-1	0 - Waste)				Samp	led: 08/	14/09 12:15	Rec	vd: 08/14/0	9 13:20
Polychlorinated Biphenyls	s by EPA N	lethod 8082								
Aroclor 1242	240	D08	8.3	8.3	mg/kg	5.00	08/17/09 15:26	JxM	9H16001	8082
Client ID: T-1 (RSH0449-01	- Waste)				Samp	led: 08/	14/09 10:10	Rec	vd: 08/14/0	9 13:20
Polychlorinated Biphenyls	s by EPA N	lethod 8082								
Aroclor 1260	6.9		1.6	1.6	mg/kg	1.00	08/17/09 12:43	JxM	9H16001	8082
Client ID: T-2 (RSH0449-02	- Waste)				Samp	led: 08/	14/09 10:20	Rec	vd: 08/14/0	9 13:20
Polychlorinated Biphenyls	s by EPA N	lethod 8082								
Aroclor 1260	5.6		1.9	1.9	mg/kg	1.00	08/17/09 12:58	JxM	9H16001	8082
Client ID: T-3 (RSH0449-03	- Waste)				Samp	led: 08/	14/09 10:30	Rec	vd: 08/14/0	9 13:20
Polychlorinated Biphenyls	s by EPA N	lethod 8082								
Aroclor 1260	6.9		1.7	1.7	mg/kg	1.00	08/17/09 13:13	JxM	9H16001	8082
Client ID: T-4 (RSH0449-04	- Waste)				Samp	led: 08/	14/09 10:40	Rec	vd: 08/14/0	9 13:20
Polychlorinated Biphenyls	s hv FPΔ N	lethod 8082								
Aroclor 1260	3.9		1.7	1.7	mg/kg	1.00	08/17/09 13:28	JxM	9H16001	8082
Client ID: T-5 (RSH0449-05	- Waste)				Samp	led: 08/	14/09 10:50	Rec	vd: 08/14/0	9 13:20
Polychlorinated Biphenyls	s by EPA M	lethod 8082								
Aroclor 1260	3.4		1.6	1.6	mg/kg	1.00	08/17/09 14:12	JxM	9H16001	8082
Client ID: T-6 (RSH0449-06	- Waste)					led: 08/	14/09 11:00	Rec	vd: 08/14/0	9 13:20
Polychlorinated Biphenyls		lethod 8082								
Aroclor 1260	8.1		1.7	1.7	mg/kg	1.00	08/17/09 14:27	JxM	9H16001	8082
					5 5					

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

Project: Remington Rand Transformers PCB Analysis Project Number: Remington Rand Transformers PCB Analysis

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
C-1 COMP	RSH0449-11	Waste	08/14/09 12:00	08/14/09 13:20	
C-2	RSH0449-12	Waste	08/14/09 11:50	08/14/09 13:20	
SC-T10	RSH0425-01	Solid	08/14/09 12:00	08/14/09 17:10	
S-T10	RSH0425-02	Solid	08/14/09 12:10	08/14/09 17:10	
T-10	RSH0449-10	Waste	08/14/09 12:15	08/14/09 13:20	
T-1	RSH0449-01	Waste	08/14/09 10:10	08/14/09 13:20	
T-2	RSH0449-02	Waste	08/14/09 10:20	08/14/09 13:20	
Т-3	RSH0449-03	Waste	08/14/09 10:30	08/14/09 13:20	
T-4	RSH0449-04	Waste	08/14/09 10:40	08/14/09 13:20	
T-5	RSH0449-05	Waste	08/14/09 10:50	08/14/09 13:20	
T-6	RSH0449-06	Waste	08/14/09 11:00	08/14/09 13:20	
T-7	RSH0449-07	Waste	08/14/09 11:20	08/14/09 13:20	
Т-8	RSH0449-08	Waste	08/14/09 11:30	08/14/09 13:20	
Т-9	RSH0449-09	Waste	08/14/09 11:40	08/14/09 13:20	

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

			A	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: C-1 COMP (R	SH0449-11 - W	/aste)			Samj	oled: 08/	14/09 12:00	Recv	vd: 08/14/0	9 13:20
Polychlorinated Bipher	nyls by EPA N	lethod 8082								
Aroclor 1016	ND		1.5	1.5	mg/kg	1.00	08/17/09 15:41	JxM	9H16001	8082
Aroclor 1221	ND		1.5	1.5	mg/kg	1.00	08/17/09 15:41	JxM	9H16001	8082
Aroclor 1232	ND		1.5	1.5	mg/kg	1.00	08/17/09 15:41	JxM	9H16001	8082
Aroclor 1242	ND		1.5	1.5	mg/kg	1.00	08/17/09 15:41	JxM	9H16001	8082
Aroclor 1248	ND		1.5	1.5	mg/kg	1.00	08/17/09 15:41	JxM	9H16001	8082
Aroclor 1254	ND		1.5	1.5	mg/kg	1.00	08/17/09 15:41	JxM	9H16001	8082
Aroclor 1260	ND		1.5	1.5	mg/kg	1.00	08/17/09 15:41	JxM	9H16001	8082
Aroclor 1262	ND		1.5	1.5	mg/kg	1.00	08/17/09 15:41	JxM	9H16001	8082
Aroclor 1268	ND		1.5	1.5	mg/kg	1.00	08/17/09 15:41	JxM	9H16001	8082
Decachlorobiphenyl	99 %		Surr Limits:	(34-148%)			08/17/09 15:41	JxM	9H16001	8082
Tetrachloro-m-xylene	78 %		Surr Limits:	(35-134%)			08/17/09 15:41	JxM	9H16001	8082

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

			A	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: C-2 (RSH0449	-12 - Waste)				Sam	pled: 08/	14/09 11:50	Recv	/d: 08/14/0	9 13:20
Polychlorinated Bipher	nyls by EPA N	lethod 8082								
Aroclor 1016	ND		1.3	1.3	mg/kg	1.00	08/17/09 15:56	JxM	9H16001	8082
Aroclor 1221	ND		1.3	1.3	mg/kg	1.00	08/17/09 15:56	JxM	9H16001	8082
Aroclor 1232	ND		1.3	1.3	mg/kg	1.00	08/17/09 15:56	JxM	9H16001	8082
Aroclor 1242	ND		1.3	1.3	mg/kg	1.00	08/17/09 15:56	JxM	9H16001	8082
Aroclor 1248	ND		1.3	1.3	mg/kg	1.00	08/17/09 15:56	JxM	9H16001	8082
Aroclor 1254	ND		1.3	1.3	mg/kg	1.00	08/17/09 15:56	JxM	9H16001	8082
Aroclor 1260	ND		1.3	1.3	mg/kg	1.00	08/17/09 15:56	JxM	9H16001	8082
Aroclor 1262	ND		1.3	1.3	mg/kg	1.00	08/17/09 15:56	JxM	9H16001	8082
Aroclor 1268	ND		1.3	1.3	mg/kg	1.00	08/17/09 15:56	JxM	9H16001	8082
Decachlorobiphenyl	105 %		Surr Limits:	(34-148%)			08/17/09 15:56	JxM	9H16001	8082
Tetrachloro-m-xylene	78 %		Surr Limits:	(35-134%)			08/17/09 15:56	JxM	9H16001	8082

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

			A	nalytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: SC-T10 (RSH	0425-01 - Solic	d)			Samp	led: 08/	14/09 12:00	Recv	/d: 08/14/0	9 17:10
Polychlorinated Bipher	nyls by EPA M	lethod 8082								
Aroclor 1016	ND		1.1	0.22	mg/kg dry	50.0	08/19/09 14:28	SCH	9H17035	8082
Aroclor 1221	ND		1.1	0.22	mg/kg dry	50.0	08/19/09 14:28	SCH	9H17035	8082
Aroclor 1232	ND		1.1	0.22	mg/kg dry	50.0	08/19/09 14:28	SCH	9H17035	8082
Aroclor 1242	ND		1.1	0.24	mg/kg dry	50.0	08/19/09 14:28	SCH	9H17035	8082
Aroclor 1248	13		1.1	0.22	mg/kg dry	50.0	08/19/09 14:28	SCH	9H17035	8082
Aroclor 1254	ND		1.1	0.23	mg/kg dry	50.0	08/19/09 14:28	SCH	9H17035	8082
Aroclor 1260	ND		1.1	0.23	mg/kg dry	50.0	08/19/09 14:28	SCH	9H17035	8082
Aroclor 1262	ND		1.1	0.23	mg/kg dry	50.0	08/19/09 14:28	SCH	9H17035	8082
Aroclor 1268	ND		1.1	0.23	mg/kg dry	50.0	08/19/09 14:28	SCH	9H17035	8082
Decachlorobiphenyl	*	Z3	Surr Limits:	(34-148%)			08/19/09 14:28	SCH	9H17035	8082
Tetrachloro-m-xylene	*	Z3	Surr Limits:	(35-134%)			08/19/09 14:28	SCH	9H17035	8082
General Chemistry Par	ameters									
Percent Solids	75		0.010	NR	%	1.00	08/16/09 12:14	KMB	9H15011	Dry Weight

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

			Δ	nalytical	Report					
	Sample	Data		MDI		Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: S-T10 (RSH04	425-02 - Solid)				Samp	led: 08/	14/09 12:10	Recv	/d: 08/14/0	9 17:10
Polychlorinated Bipher	nyls by EPA M	lethod 8082								
Aroclor 1016	ND		17	3.4	mg/kg dry	500	08/19/09 14:43	SCH	9H17035	8082
Aroclor 1221	ND		17	3.4	mg/kg dry	500	08/19/09 14:43	SCH	9H17035	8082
Aroclor 1232	ND		17	3.4	mg/kg dry	500	08/19/09 14:43	SCH	9H17035	8082
Aroclor 1242	120		17	3.8	mg/kg dry	500	08/19/09 14:43	SCH	9H17035	8082
Aroclor 1248	ND		17	3.4	mg/kg dry	500	08/19/09 14:43	SCH	9H17035	8082
Aroclor 1254	ND		17	3.7	mg/kg dry	500	08/19/09 14:43	SCH	9H17035	8082
Aroclor 1260	ND		17	3.7	mg/kg dry	500	08/19/09 14:43	SCH	9H17035	8082
Aroclor 1262	ND		17	3.7	mg/kg dry	500	08/19/09 14:43	SCH	9H17035	8082
Aroclor 1268	ND		17	3.7	mg/kg dry	500	08/19/09 14:43	SCH	9H17035	8082
Decachlorobiphenyl	*	Z3	Surr Limits:	(34-148%)			08/19/09 14:43	SCH	9H17035	8082
Tetrachloro-m-xylene	*	Z3	Surr Limits:	(35-134%)			08/19/09 14:43	SCH	9H17035	8082
General Chemistry Par	ameters									
Percent Solids	48		0.010	NR	%	1.00	08/16/09 12:16	KMB	9H15011	Dry Weight

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

			Ana	lytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: T-10 (RSH044	9-10 - Waste)				Sam	oled: 08/	14/09 12:15	Recv	/d: 08/14/0	9 13:20
Polychlorinated Bipher	nyls by EPA N	lethod 8082								
Aroclor 1016	ND	D08	8.3	8.3	mg/kg	5.00	08/17/09 15:26	JxM	9H16001	8082
Aroclor 1221	ND	D08	8.3	8.3	mg/kg	5.00	08/17/09 15:26	JxM	9H16001	8082
Aroclor 1232	ND	D08	8.3	8.3	mg/kg	5.00	08/17/09 15:26	JxM	9H16001	8082
Aroclor 1242	240	D08	8.3	8.3	mg/kg	5.00	08/17/09 15:26	JxM	9H16001	8082
Aroclor 1248	ND	D08	8.3	8.3	mg/kg	5.00	08/17/09 15:26	JxM	9H16001	8082
Aroclor 1254	ND	D08	8.3	8.3	mg/kg	5.00	08/17/09 15:26	JxM	9H16001	8082
Aroclor 1260	ND	D08	8.3	8.3	mg/kg	5.00	08/17/09 15:26	JxM	9H16001	8082
Aroclor 1262	ND	D08	8.3	8.3	mg/kg	5.00	08/17/09 15:26	JxM	9H16001	8082
Aroclor 1268	ND	D08	8.3	8.3	mg/kg	5.00	08/17/09 15:26	JxM	9H16001	8082
Decachlorobiphenyl	139 %	D08	Surr Limits: (34	-148%)			08/17/09 15:26	JxM	9H16001	8082
Tetrachloro-m-xylene	130 %	D08	Surr Limits: (35	-134%)			08/17/09 15:26	JxM	9H16001	8082

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

			A	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: T-1 (RSH0449	-01 - Waste)				Sam	pled: 08/	14/09 10:10	Recv	/d: 08/14/0	9 13:20
Polychlorinated Bipher	yls by EPA N	lethod 8082								
Aroclor 1016	ND		1.6	1.6	mg/kg	1.00	08/17/09 12:43	JxM	9H16001	8082
Aroclor 1221	ND		1.6	1.6	mg/kg	1.00	08/17/09 12:43	JxM	9H16001	8082
Aroclor 1232	ND		1.6	1.6	mg/kg	1.00	08/17/09 12:43	JxM	9H16001	8082
Aroclor 1242	ND		1.6	1.6	mg/kg	1.00	08/17/09 12:43	JxM	9H16001	8082
Aroclor 1248	ND		1.6	1.6	mg/kg	1.00	08/17/09 12:43	JxM	9H16001	8082
Aroclor 1254	ND		1.6	1.6	mg/kg	1.00	08/17/09 12:43	JxM	9H16001	8082
Aroclor 1260	6.9		1.6	1.6	mg/kg	1.00	08/17/09 12:43	JxM	9H16001	8082
Aroclor 1262	ND		1.6	1.6	mg/kg	1.00	08/17/09 12:43	JxM	9H16001	8082
Aroclor 1268	ND		1.6	1.6	mg/kg	1.00	08/17/09 12:43	JxM	9H16001	8082
Decachlorobiphenyl	118 %		Surr Limits:	(34-148%)			08/17/09 12:43	JxM	9H16001	8082
Tetrachloro-m-xylene	79 %		Surr Limits:	(35-134%)			08/17/09 12:43	JxM	9H16001	8082

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

			A	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: T-2 (RSH0449	-02 - Waste)				Sam	pled: 08/	14/09 10:20	Recv	/d: 08/14/0	9 13:20
Polychlorinated Bipher	nyls by EPA N	lethod 8082								
Aroclor 1016	ND		1.9	1.9	mg/kg	1.00	08/17/09 12:58	JxM	9H16001	8082
Aroclor 1221	ND		1.9	1.9	mg/kg	1.00	08/17/09 12:58	JxM	9H16001	8082
Aroclor 1232	ND		1.9	1.9	mg/kg	1.00	08/17/09 12:58	JxM	9H16001	8082
Aroclor 1242	ND		1.9	1.9	mg/kg	1.00	08/17/09 12:58	JxM	9H16001	8082
Aroclor 1248	ND		1.9	1.9	mg/kg	1.00	08/17/09 12:58	JxM	9H16001	8082
Aroclor 1254	ND		1.9	1.9	mg/kg	1.00	08/17/09 12:58	JxM	9H16001	8082
Aroclor 1260	5.6		1.9	1.9	mg/kg	1.00	08/17/09 12:58	JxM	9H16001	8082
Aroclor 1262	ND		1.9	1.9	mg/kg	1.00	08/17/09 12:58	JxM	9H16001	8082
Aroclor 1268	ND		1.9	1.9	mg/kg	1.00	08/17/09 12:58	JxM	9H16001	8082
Decachlorobiphenyl	111 %		Surr Limits:	(34-148%)			08/17/09 12:58	JxM	9H16001	8082
Tetrachloro-m-xylene	79 %		Surr Limits:	(35-134%)			08/17/09 12:58	JxM	9H16001	8082

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

			A	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: T-3 (RSH0449	-03 - Waste)				Sam	oled: 08/	14/09 10:30	Recv	/d: 08/14/0	9 13:20
Polychlorinated Bipher	nyls by EPA N	lethod 8082								
Aroclor 1016	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:13	JxM	9H16001	8082
Aroclor 1221	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:13	JxM	9H16001	8082
Aroclor 1232	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:13	JxM	9H16001	8082
Aroclor 1242	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:13	JxM	9H16001	8082
Aroclor 1248	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:13	JxM	9H16001	8082
Aroclor 1254	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:13	JxM	9H16001	8082
Aroclor 1260	6.9		1.7	1.7	mg/kg	1.00	08/17/09 13:13	JxM	9H16001	8082
Aroclor 1262	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:13	JxM	9H16001	8082
Aroclor 1268	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:13	JxM	9H16001	8082
Decachlorobiphenyl	109 %		Surr Limits:	(34-148%)			08/17/09 13:13	JxM	9H16001	8082
Tetrachloro-m-xylene	78 %		Surr Limits:	(35-134%)			08/17/09 13:13	JxM	9H16001	8082

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

			A	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: T-4 (RSH0449	-04 - Waste)				Sam	pled: 08/	14/09 10:40	Recv	/d: 08/14/0	9 13:20
Polychlorinated Bipher	nyls by EPA N	lethod 8082								
Aroclor 1016	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:28	JxM	9H16001	8082
Aroclor 1221	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:28	JxM	9H16001	8082
Aroclor 1232	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:28	JxM	9H16001	8082
Aroclor 1242	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:28	JxM	9H16001	8082
Aroclor 1248	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:28	JxM	9H16001	8082
Aroclor 1254	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:28	JxM	9H16001	8082
Aroclor 1260	3.9		1.7	1.7	mg/kg	1.00	08/17/09 13:28	JxM	9H16001	8082
Aroclor 1262	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:28	JxM	9H16001	8082
Aroclor 1268	ND		1.7	1.7	mg/kg	1.00	08/17/09 13:28	JxM	9H16001	8082
Decachlorobiphenyl	105 %		Surr Limits:	(34-148%)			08/17/09 13:28	JxM	9H16001	8082
Tetrachloro-m-xylene	78 %		Surr Limits:	(35-134%)			08/17/09 13:28	JxM	9H16001	8082

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

			ŀ	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: T-5 (RSH0449	-05 - Waste)				Sam	oled: 08/	14/09 10:50	Recv	/d: 08/14/0	9 13:20
Polychlorinated Bipher	nyls by EPA N	lethod 8082								
Aroclor 1016	ND		1.6	1.6	mg/kg	1.00	08/17/09 14:12	JxM	9H16001	8082
Aroclor 1221	ND		1.6	1.6	mg/kg	1.00	08/17/09 14:12	JxM	9H16001	8082
Aroclor 1232	ND		1.6	1.6	mg/kg	1.00	08/17/09 14:12	JxM	9H16001	8082
Aroclor 1242	ND		1.6	1.6	mg/kg	1.00	08/17/09 14:12	JxM	9H16001	8082
Aroclor 1248	ND		1.6	1.6	mg/kg	1.00	08/17/09 14:12	JxM	9H16001	8082
Aroclor 1254	ND		1.6	1.6	mg/kg	1.00	08/17/09 14:12	JxM	9H16001	8082
Aroclor 1260	3.4		1.6	1.6	mg/kg	1.00	08/17/09 14:12	JxM	9H16001	8082
Aroclor 1262	ND		1.6	1.6	mg/kg	1.00	08/17/09 14:12	JxM	9H16001	8082
Aroclor 1268	ND		1.6	1.6	mg/kg	1.00	08/17/09 14:12	JxM	9H16001	8082
Decachlorobiphenyl	106 %		Surr Limits:	(34-148%)			08/17/09 14:12	JxM	9H16001	8082
Tetrachloro-m-xylene	78 %		Surr Limits:	(35-134%)			08/17/09 14:12	JxM	9H16001	8082

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

			ŀ	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: T-6 (RSH0449	-06 - Waste)				Sam	pled: 08	14/09 11:00	Recv	/d: 08/14/0	9 13:20
Polychlorinated Bipher	nyls by EPA N	lethod 8082								
Aroclor 1016	ND		1.7	1.7	mg/kg	1.00	08/17/09 14:27	JxM	9H16001	8082
Aroclor 1221	ND		1.7	1.7	mg/kg	1.00	08/17/09 14:27	JxM	9H16001	8082
Aroclor 1232	ND		1.7	1.7	mg/kg	1.00	08/17/09 14:27	JxM	9H16001	8082
Aroclor 1242	ND		1.7	1.7	mg/kg	1.00	08/17/09 14:27	JxM	9H16001	8082
Aroclor 1248	ND		1.7	1.7	mg/kg	1.00	08/17/09 14:27	JxM	9H16001	8082
Aroclor 1254	ND		1.7	1.7	mg/kg	1.00	08/17/09 14:27	JxM	9H16001	8082
Aroclor 1260	8.1		1.7	1.7	mg/kg	1.00	08/17/09 14:27	JxM	9H16001	8082
Aroclor 1262	ND		1.7	1.7	mg/kg	1.00	08/17/09 14:27	JxM	9H16001	8082
Aroclor 1268	ND		1.7	1.7	mg/kg	1.00	08/17/09 14:27	JxM	9H16001	8082
Decachlorobiphenyl	108 %		Surr Limits:	(34-148%)			08/17/09 14:27	JxM	9H16001	8082
Tetrachloro-m-xylene	79 %		Surr Limits:	(35-134%)			08/17/09 14:27	JxM	9H16001	8082

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

			A	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: T-7 (RSH0449	-07 - Waste)				Sam	oled: 08/	14/09 11:20	Recv	vd: 08/14/0	9 13:20
Polychlorinated Bipher	nyls by EPA N	lethod 8082								
Aroclor 1016	ND		1.8	1.8	mg/kg	1.00	08/17/09 14:42	JxM	9H16001	8082
Aroclor 1221	ND		1.8	1.8	mg/kg	1.00	08/17/09 14:42	JxM	9H16001	8082
Aroclor 1232	ND		1.8	1.8	mg/kg	1.00	08/17/09 14:42	JxM	9H16001	8082
Aroclor 1242	ND		1.8	1.8	mg/kg	1.00	08/17/09 14:42	JxM	9H16001	8082
Aroclor 1248	ND		1.8	1.8	mg/kg	1.00	08/17/09 14:42	JxM	9H16001	8082
Aroclor 1254	ND		1.8	1.8	mg/kg	1.00	08/17/09 14:42	JxM	9H16001	8082
Aroclor 1260	ND		1.8	1.8	mg/kg	1.00	08/17/09 14:42	JxM	9H16001	8082
Aroclor 1262	ND		1.8	1.8	mg/kg	1.00	08/17/09 14:42	JxM	9H16001	8082
Aroclor 1268	ND		1.8	1.8	mg/kg	1.00	08/17/09 14:42	JxM	9H16001	8082
Decachlorobiphenyl	114 %		Surr Limits:	(34-148%)			08/17/09 14:42	JxM	9H16001	8082
Tetrachloro-m-xylene	78 %		Surr Limits:	(35-134%)			08/17/09 14:42	JxM	9H16001	8082

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

			A	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: T-8 (RSH0449	-08 - Waste)				Sam	oled: 08/	14/09 11:30	Recv	vd: 08/14/0	9 13:20
Polychlorinated Bipher	nyls by EPA N	lethod 8082								
Aroclor 1016	ND		1.5	1.5	mg/kg	1.00	08/17/09 14:57	JxM	9H16001	8082
Aroclor 1221	ND		1.5	1.5	mg/kg	1.00	08/17/09 14:57	JxM	9H16001	8082
Aroclor 1232	ND		1.5	1.5	mg/kg	1.00	08/17/09 14:57	JxM	9H16001	8082
Aroclor 1242	ND		1.5	1.5	mg/kg	1.00	08/17/09 14:57	JxM	9H16001	8082
Aroclor 1248	ND		1.5	1.5	mg/kg	1.00	08/17/09 14:57	JxM	9H16001	8082
Aroclor 1254	ND		1.5	1.5	mg/kg	1.00	08/17/09 14:57	JxM	9H16001	8082
Aroclor 1260	ND		1.5	1.5	mg/kg	1.00	08/17/09 14:57	JxM	9H16001	8082
Aroclor 1262	ND		1.5	1.5	mg/kg	1.00	08/17/09 14:57	JxM	9H16001	8082
Aroclor 1268	ND		1.5	1.5	mg/kg	1.00	08/17/09 14:57	JxM	9H16001	8082
Decachlorobiphenyl	96 %		Surr Limits:	(34-148%)			08/17/09 14:57	JxM	9H16001	8082
Tetrachloro-m-xylene	76 %		Surr Limits:	(35-134%)			08/17/09 14:57	JxM	9H16001	8082

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

			Α	nalytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: T-9 (RSH0449	-09 - Waste)				Samj	oled: 08/	14/09 11:40	Recv	/d: 08/14/0	9 13:20
Polychlorinated Bipher	iyls by EPA N	lethod 8082								
Aroclor 1016	ND	D08	1.5	1.5	mg/kg	1.00	08/17/09 15:12	JxM	9H16001	8082
Aroclor 1221	ND	D08	1.5	1.5	mg/kg	1.00	08/17/09 15:12	JxM	9H16001	8082
Aroclor 1232	ND	D08	1.5	1.5	mg/kg	1.00	08/17/09 15:12	JxM	9H16001	8082
Aroclor 1242	ND	D08	1.5	1.5	mg/kg	1.00	08/17/09 15:12	JxM	9H16001	8082
Aroclor 1248	ND	D08	1.5	1.5	mg/kg	1.00	08/17/09 15:12	JxM	9H16001	8082
Aroclor 1254	ND	D08	1.5	1.5	mg/kg	1.00	08/17/09 15:12	JxM	9H16001	8082
Aroclor 1260	ND	D08	1.5	1.5	mg/kg	1.00	08/17/09 15:12	JxM	9H16001	8082
Aroclor 1262	ND	D08	1.5	1.5	mg/kg	1.00	08/17/09 15:12	JxM	9H16001	8082
Aroclor 1268	ND	D08	1.5	1.5	mg/kg	1.00	08/17/09 15:12	JxM	9H16001	8082
Decachlorobiphenyl	104 %	D08	Surr Limits:	(34-148%)			08/17/09 15:12	JxM	9H16001	8082
Tetrachloro-m-xylene	77 %	D08	Surr Limits:	(35-134%)			08/17/09 15:12	JxM	9H16001	8082

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

Project: Remington Rand Transformers PCB Analysis

Project Number: Remington Rand Transformers PCB Analysis

		SAMPLE	EXTR	ACTION	DATA			
Batch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
9H15011	RSH0425-01	10.00	g	10.00	g	08/15/09 11:00	CJM	Dry Weight
9H15011	RSH0425-02	10.00	g	10.00	g	08/15/09 11:00	CJM	Dry Weight
A Method 80	82							
9H17035	RSH0425-02	30.14	g	10.00	mL	08/18/09 08:00	BML	3550B GC
9H17035	RSH0425-01	30.18	g	10.00	mL	08/18/09 08:00	BML	3550B GC
	9H15011 9H15011 A Method 80 9H17035	9H15011 RSH0425-01 9H15011 RSH0425-02 A Method 8082 9H17035 RSH0425-02	Wt/Vol Batch Lab Number Extracte 9H15011 RSH0425-01 10.00 9H15011 RSH0425-02 10.00 A Method 8082 9H17035 RSH0425-02 30.14	Batch Lab Number Wt/Vol Extracte Units 9H15011 RSH0425-01 10.00 g 9H15011 RSH0425-02 10.00 g A Method 8082 9H17035 RSH0425-02 30.14 g 9H17035 RSH0425-01 30.18 g	Batch Lab Number Wt/Vol Extracte Extract Units Extract Volume 9H15011 RSH0425-01 10.00 g 10.00 9H15011 RSH0425-02 10.00 g 10.00 9H15013 RSH0425-02 30.14 g 10.00 9H17035 RSH0425-02 30.14 g 10.00 9H17035 RSH0425-01 30.18 g 10.00	Batch Lab Number Extracte Units Volume Units 9H15011 RSH0425-01 10.00 g 10.00 g 9H15011 RSH0425-02 10.00 g 10.00 g A Method 8082 9H17035 RSH0425-02 30.14 g 10.00 mL	Batch Lab Number Wt/Vol Extracte Extract Units Extract Volume Units Date Prepared 9H15011 RSH0425-01 10.00 g 10.00 g 08/15/09 11:00 9H15011 RSH0425-02 10.00 g 10.00 g 08/15/09 11:00 9H15011 RSH0425-02 30.14 g 10.00 g 08/18/09 08:00 9H17035 RSH0425-01 30.18 g 10.00 mL 08/18/09 08:00	Batch Lab Number Wt/Vol Extracte Extract Units Units Date Prepared Lab Tech 9H15011 RSH0425-01 10.00 g 10.00 g 08/15/09 11:00 CJM 9H15011 RSH0425-02 10.00 g 10.00 g 08/15/09 11:00 CJM 9H15011 RSH0425-02 30.10 g 10.00 g 08/15/09 11:00 CJM A Method 8082

SAMPLE EXTRACTION DATA

			Wt/Vol		Extract			Lab	
Parameter	Batch	Lab Number	Extracte	Units	Volume	Units	Date Prepared	Tech	Extraction Method
Polychlorinated Biphenyls by EF	PA Method 80	82							
8082	9H16001	RSH0449-02	0.13	g	10.00	mL	08/17/09 09:00	CXM	3580A
8082	9H16001	RSH0449-07	0.14	g	10.00	mL	08/17/09 09:00	CXM	3580A
8082	9H16001	RSH0449-03	0.15	g	10.00	mL	08/17/09 09:00	CXM	3580A
8082	9H16001	RSH0449-04	0.15	g	10.00	mL	08/17/09 09:00	CXM	3580A
8082	9H16001	RSH0449-06	0.15	g	10.00	mL	08/17/09 09:00	CXM	3580A
8082	9H16001	RSH0449-10	0.15	g	10.00	mL	08/17/09 09:00	CXM	3580A
8082	9H16001	RSH0449-01	0.16	g	10.00	mL	08/17/09 09:00	CXM	3580A
8082	9H16001	RSH0449-05	0.16	g	10.00	mL	08/17/09 09:00	CXM	3580A
8082	9H16001	RSH0449-08	0.17	g	10.00	mL	08/17/09 09:00	CXM	3580A
8082	9H16001	RSH0449-09	0.17	g	10.00	mL	08/17/09 09:00	CXM	3580A
8082	9H16001	RSH0449-11	0.17	g	10.00	mL	08/17/09 09:00	CXM	3580A
8082	9H16001	RSH0449-12	0.19	g	10.00	mL	08/17/09 09:00	CXM	3580A

THE LEADER IN ENVIRONMENTAL TESTING

MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

Project: Remington Rand Transformers PCB Analysis Project Number: Remington Rand Transformers PCB Analysis

Tetrachloro-m-xylene LCS Analyzed: 08/17/09 (Lab Number:9H16001-BS1, Batch: 9H16001) Araclor 1260 50 2.5 ng/kg 60.0 120 59-154 4 Araclor 1260 50 2.5 2.5 ng/kg 74.2 148 51-179 5 Surrogate: mg/kg 142 34-148 5 5 26 26 </th <th></th> <th></th> <th></th> <th>L</th> <th>ABORATORY</th> <th>QC DATA</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				L	ABORATORY	QC DATA						
Polychlorinated Biphenyls by EPA Method 8082 Blank Analyzed: 08/17/09 (Lab Number:9H16001-BLK1, Batch: 9H16001) Arodor 1231 2.5 2.5 mg/kg ND Arodor 1232 2.5 2.5 mg/kg ND Arodor 1242 2.5 2.5 mg/kg ND Arodor 1242 2.5 2.5 mg/kg ND Arodor 1244 2.5 2.5 mg/kg ND Arodor 1254 2.5 2.5 mg/kg ND Arodor 1268 2.5 2.5 mg/kg ND Arodor 1288 2.5 2.5 mg/kg ND Surrogate: mg/kg 108 35-134 Decenhrobiphenyl mg/kg 108 51-179 Surrogate: mg/kg 142 34-148 Decenhrobiphenyl mg/kg 142 34-148 Decenhrobiphenyl mg/kg 135 35-154 Surrogate: mg/kg 120 59-154 Deceachrobiphenyl mg/kg 128	Analvte		•	RL	MDL	Units	Result					
Anodor 1016 2.5 2.5 mg/kg ND Anodor 1221 2.6 2.5 mg/kg ND Anodor 1221 2.6 2.5 mg/kg ND Anodor 1242 2.5 2.5 mg/kg ND Anodor 1242 2.5 2.5 mg/kg ND Anodor 1248 2.5 2.5 mg/kg ND Anodor 1260 2.5 2.5 mg/kg ND Anodor 1280 2.5 2.5 mg/kg ND Anodor 1280 2.5 2.5 mg/kg ND Sumogate: mg/kg 108 35-134 V Decasionobjentny! sumogate: mg/kg 74.2 148 51-17 Sumogate: mg/kg 7.9 142 34-148 Z Z Sumogate: mg/kg 7.60 135 35-134 Z Z Sumogate: mg/kg 7.9 142 34.4 50 Sumogate:		s by EPA	Method 808	2								
Anodor 1016 2.5 2.5 mg/kg ND Anodor 1221 2.6 2.5 mg/kg ND Anodor 1221 2.6 2.5 mg/kg ND Anodor 1242 2.5 2.5 mg/kg ND Anodor 1242 2.5 2.5 mg/kg ND Anodor 1248 2.5 2.5 mg/kg ND Anodor 1260 2.5 2.5 mg/kg ND Anodor 1280 2.5 2.5 mg/kg ND Anodor 1280 2.5 2.5 mg/kg ND Sumogate: mg/kg 108 35-134 V Decasionobjentny! sumogate: mg/kg 74.2 148 51-17 Sumogate: mg/kg 7.9 142 34-148 Z Z Sumogate: mg/kg 7.60 135 35-134 Z Z Sumogate: mg/kg 7.9 142 34.4 50 Sumogate:	Plank Analyzadi 09/17/00	(Lob Num			Bataby 0416001	N						
Anador 1221 2.5 2.5 mg/kg ND Arador 1232 2.5 2.5 mg/kg ND Arador 1242 2.5 2.5 mg/kg ND Arador 1242 2.5 2.5 mg/kg ND Arador 1243 2.5 2.5 mg/kg ND Arador 1243 2.5 2.5 mg/kg ND Arador 1280 2.5 2.5 mg/kg ND Arador 1280 2.5 2.5 mg/kg ND Arador 1280 2.5 2.5 mg/kg ND Surrogate: 2.5 2.5 mg/kg ND Surrogate: 2.5 2.5 mg/kg ND Surrogate: 2.5 2.5 mg/kg ND - Surrogate: 2.5 2.5 mg/kg 60.0 120 59.15 Surrogate: 50 2.5 2.5 mg/kg 7.0 140 51.15 Surrogate: mg/kg </td <td>-</td> <td></td> <td>IDer:911000</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-		IDer:911000			-						
Anackor 1232 2.5 2.5 mg/kg ND Arackor 1242 2.5 2.5 mg/kg ND Arackor 1242 2.5 2.5 mg/kg ND Arackor 1254 2.5 2.5 mg/kg ND Arackor 1260 2.5 2.5 mg/kg ND Arackor 1262 2.5 2.5 mg/kg ND Surrogate: 2.5 2.5 mg/kg ND Surrogate: 2.5 2.5 mg/kg ND ND Surrogate: mg/kg 108 35-13 V V CS Analyzet: 08/1709 (Lab Number:9H16001-BSL Batch: 9H16001) ND V V Surrogate: mg/kg 142 34-14 V String transmosing Surrogate: mg/kg 135 35-15 V String transmosing Surrogate: String transmosing mg/kg 7.2 146 51-7 Surrogate: String trashtoro-mxy/ene mg/kg 7.2												
Arecder 1242 2.5 2.5 mg/kg ND Arecder 1248 2.5 2.5 mg/kg ND Arecder 1264 2.5 2.5 mg/kg ND Arecder 1260 2.5 2.5 mg/kg ND Arecder 1288 2.5 2.5 mg/kg ND Sumogate: 2.5 2.5 mg/kg ND Sumogate: mg/kg 108 35-134 5 Sumogate: mg/kg 60.0 120 59-154 5 Sumogate: mg/kg 60.0 120 59-154 5 Sumogate: mg/kg 60.0 120 59-154 5 Sumogate: mg/kg 74.2 148 51-74 5 Sumogate: mg/kg 73.5 35-134 25 75 Sumogate: mg/kg 73.9 116 59-154 4 50 Sumogate: mg/kg 7.9 116 59-154 4 50 Sumogate: mg/kg 7.9 148 51-179 3												
Aracdor 1248 2.5 2.5 mg/kg ND Aracdor 1254 2.5 2.5 mg/kg ND Aracdor 1280 2.5 2.5 mg/kg ND Aracdor 1280 2.5 2.5 mg/kg ND Aracdor 1288 2.5 2.5 mg/kg ND Surrogate: mg/kg ND 35-134 5 Deceshforobiphenyl mg/kg 60.0 120 59-154 5 Surrogate: mg/kg 74.2 148 51-179 5 Surrogate: mg/kg 74.2 148 51-179 7 Surrogate: mg/kg 74.2 148 51-179 7 Surrogate: mg/kg 74.2 148 51-179 7 7 Surrogate: mg/kg 7.9 116 59-154 4 50 Surrogate: mg/kg 7.9 144 51-179 3 50 Surrogate: mg/kg 7.9												
Aroclor 1254 2.5 2.5 mg/kg ND Aroclor 1280 2.5 2.5 mg/kg ND Aroclor 1280 2.5 2.5 mg/kg ND Aroclor 1280 2.5 2.5 mg/kg ND Surrogate: mg/kg 126 34-148 Surrogate: Surrogate: mg/kg 108 35-134 Surrogate: CS Analyzed: 08/17/09 (Lab Number: 9H16001-BS, Batch: 9H16001) mg/kg 60.0 120 59-154 CS Analyzed: 08/17/09 (Lab Number: 9H16001-BS, Batch: 9H16001) mg/kg 135 35-134 Z5 Surrogate: mg/kg 135 35-134 Z5 Z5 mg/kg 135 35-134 Z5 Surrogate: mg/kg 135 35-134 Z5 Z5 mg/kg 138 35-134 Z5 Surrogate: mg/kg 130 35-134 S5 S5 S2 mg/kg 130 35-134 S5 Surrogate: mg/kg 130 35-												
Arackor 1280 2.5 2.5 2.5 mg/kg ND Arackor 1282 2.5 2.5 mg/kg ND ND Surrogate: 2.5 2.5 mg/kg ND ND Surrogate: mg/kg 125 34:148 ND Surrogate: mg/kg 108 35:134 Testachior-ms/kg/enc LCS Analyzed: 08/17/09 (Lab Number:9H16001-BS1, Batch: 9H16001) mg/kg 142 34:148 51:179 Surrogate: mg/kg 142 34:148 51:179 Testachior-ms/kg/enc Surrogate: mg/kg 135 35:134 Z5 25 mg/kg 142 34:148 Surrogate: mg/kg 135 35:134 Z5 25 mg/kg 135 35:134 Z5 Surrogate: mg/kg 139 34:148 50 25 25 mg/kg 139 34:148 50 Surrogate: mg/kg 139 35:134 50 50 50 50 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
Aradior 1282 2.5 2.5 1.5 mg/kg ND Aradior 1288 2.5 2.5 mg/kg ND ND Surrogate: mg/kg 108 35-134 Surrogate: mg/kg 108 35-134 Bacacharobiphenyl mg/kg 108 35-134 Surrogate: mg/kg 108 35-134 Surrogate: Surrogate: mg/kg 142 34-148 Surrogate: Surrogate: mg/kg 142 34-148 Surrogate: Surrogate: mg/kg 135 35-134 Z5 Surrogate: mg/kg 135 35-134 Z5 Z5 Mg/kg 135 35-134 Z5 Surrogate: mg/kg 135 35-134 Z5 Z5 Mg/kg 130 34-148 S0 Surrogate: mg/kg 130 35-134 S0												
Aroclor 1288 2.5 mg/kg ND Surrogete: Decechiorobio/hory/ Surrogete: Tetrachioro-m-xylene mg/kg 108 35-134 LCS Analyzed: 08/17/09 (Lab Number:9H16001-BS1, Batch: 9H16001) mg/kg 60.0 120 59-154 Aroclor 1016 50 2.5 2.5 mg/kg 142 34-148 Vacolor 1016 50 2.5 2.5 mg/kg 142 34-148 Surrogete: Decentionobiohenyl Surrogete: mg/kg 135 35-134 Z5 Decentionobiohenyl Surrogete: mg/kg 135 35-134 Z5 Decentionobiohenyl Surrogete: mg/kg 135 35-134 Z5 Decentionobiohenyl Surrogete: mg/kg 135 35-134 50 LCS Dup Analyzed: 08/17/09 (Lab Number:9H16001-BSD1, Batch: 9H16001 4 50 50 Surrogete: mg/kg 130 35-134 50 Percentiorobiohenyl Surrogete: mg/kg 130 35-134 50 Percentiorobiohenyl Surrogete: mg/kg wet ND 50												
mg/kg 125 34-148 Decachlorobiphenyl Surrogate: mg/kg 108 35-134 Petrachloro-m-xylene mg/kg 108 35-134 LCS Analyzed: 08/17/09 (Lab Number:9H16001-BS1, Batch: 9H16001) Xrocolor 50 2.5 2.5 mg/kg 60.0 120 59-154 Aroclor 1260 50 2.5 2.5 mg/kg 74.2 148 51-179 Surrogate: mg/kg 142 34-148 Decachlorobiphenyl Surrogate: mg/kg 135 35-134 Z5 Surrogate: mg/kg 135 35-134 Z5 25 2.5 mg/kg 72.0 144 50 Aroclor 1260 50 2.5 2.5 mg/kg 72.0 144 51-179 3 50 Surrogate: mg/kg 130 35-134 25 50 25 2.5 mg/kg 130 35-134 50 Surrogate: mg/kg 130 35-134 50 50 50												
mg/kg 108 35-134 Sarragate: mg/kg 108 35-134 LCS Analyzed: 08/17/09 (Lab Number:9H16001-BS1, Batch: 9H16001) Arrodor 1016 50 2.5 mg/kg 60.0 108 55 Surragate: mg/kg 142 34-148 Surragate: mg/kg 7.9 116 59-154 Surragate: mg/kg 7.9 142 34-148 CSD Analyzed: 08/17/09 (Lab Number:9H16001-BSD1, Batch: 9H16001 CSD mg/kg 57.9 116 59.5 Mg/kg 59.7 116 50 Surragate: mg/kg 7.9 116 50 Surragate: mg/kg 7.9 144 50 Surragate												
Surrogate: mg/kg 108 35:134 Tetrachioro-m-xylene LCS Analyzed: 08/17/09 (Lab Number:9H16001-BS1, Batch: 9H16001) Xaroclor 1016 50 2.5 2.5 mg/kg 60.0 120 59:154 Aroclor 1016 50 2.5 2.5 mg/kg 74.2 148 51:179 Surrogate: mg/kg 135 35:134 Z5 Decachiorobiphenyl Surrogate: mg/kg 136 50 Surrogate: mg/kg 139 34:148 50 Surrogate: mg/kg 130 35:134 S0 Surrogate: mg/kg 130 35:134 S0 S0 Surrogate: mg/kg 130 35:134 S0 S0 <						mg/kg		125	34-148			
Arcolor 108 (17/09 (Lab Number:9H16001-BS1, Batch: 9H16001) Arcolor 1260 50 2.5 2.5 mg/kg 74.2 148 51-179 Surrogate: Decechlorobliphenyl Surrogate: Tetrachloro-m-xylene mg/kg 135 35-134 Z5 LCS Dup Analyzed: 08/17/09 (Lab Number:9H16001-BSD1, Batch: 9H16001) mg/kg 57.9 116 59-154 4 50 Arcolor 1260 50 2.5 2.5 mg/kg 72.0 144 51-179 3 50 Arcolor 1260 50 2.5 2.5 mg/kg 72.0 144 51-179 3 50 Surrogate: Decechlorobliphenyl Surrogate: mg/kg 139 34-148 50 <td>Surrogate:</td> <td></td> <td></td> <td></td> <td></td> <td>mg/kg</td> <td></td> <td>108</td> <td>35-134</td> <td></td> <td></td> <td></td>	Surrogate:					mg/kg		108	35-134			
Araclar 1016 50 2.5 2.5 mg/kg 60.0 120 59-154 Araclar 1260 50 2.5 2.5 mg/kg 74.2 148 51-179 Surragate: mg/kg 135 35-134 Z5 Decachiorobiphenyl mg/kg 135 35-134 Z5 Surragate: mg/kg 135 35-134 Z5 Decachiorobiphenyl Surragate: mg/kg 136 59-154 4 50 Araclor 1016 50 2.5 2.5 mg/kg 72.0 144 51-179 3 50 Surragate: mg/kg 72.0 144 51-179 3 50 Surragate: mg/kg 130 35-134 50 <td>Tetrachloro-m-xylene</td> <td></td>	Tetrachloro-m-xylene											
Arcolor 1260 50 2.5 2.5 mg/kg 74.2 148 51.179 Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-m-xylene mg/kg 142 34-148 51.179 LCS Dup Analyzed: 08/17/09 (Lab Number:9H16001-BSD1, Batch: 9H16001) mg/kg 57.9 116 59-154 4 50 Arcolor 1260 50 2.5 2.5 mg/kg 72.0 144 51.179 3 50 Surrogate: Surrogate: Surrogate: Surrogate: Tetrachloro-m-xylene mg/kg 130 35-134 50 50 50 2.5 2.5 mg/kg 130 35-134 50 Surrogate: Surrogate: Tetrachloro-m-xylene mg/kg 130 35-134 50	LCS Analyzed: 08/17/09 (Lab Numb	oer:9H16001	-BS1, B	atch: 9H16001)							
mg/kg 142 34-148 Decachlorobiphenyl Surrogate: mg/kg 135 35-134 Z5 Tetrachloro-m-xylene mg/kg 135 35-134 Z5 LCS Dup Analyzed: 08/17/09 (Lab Number:9H16001-BSD1, Batch: 9H16001) Aroclor 1016 50 2.5 2.5 mg/kg 72.0 146 50 50 Aroclor 1016 50 2.5 2.5 mg/kg 72.0 144 51-179 3 50 Surrogate: mg/kg 139 34-148 50	Aroclor 1016		50	2.5	2.5	mg/kg	60.0	120	59-154			
Decachlorobiphenyl Surrogate: mg/kg 135 35-134 Z5 Tetrachloro-m-xylene LCS Dup Analyzed: 08/17/09 (Lab Number:9H16001-BSD1, Batch: 9H16001) Arcolor 1016 50 2.5 2.5 mg/kg 7.9 116 59-154 4 50 Arcolor 1016 50 2.5 2.5 mg/kg 72.0 144 51-179 3 50 Surrogate: mg/kg 139 34-148 50	Aroclor 1260		50	2.5	2.5	mg/kg	74.2	148	51-179			
Surrogate: mg/kg 135 35-134 Z5 Tetrachloro-m-xylene LCS Dup Analyzed: 08/17/09 (Lab Number:9H16001-BSD1, Batch: 9H16001) Jacobi Solution	Surrogate:					mg/kg		142	34-148			
Tetrachloro-m-xylene LCS Dup Analyzed: 08/17/09 (Lab Number:9H16001-BSD1, Batch: 9H16001) Aroclor 1016 50 2.5 2.5 mg/kg 72.0 144 50 Aroclor 1260 50 2.5 2.5 mg/kg 72.0 144 51-179 3 50 Surrogate: mg/kg 139 34-148 50	Decachlorobiphenyl					ma/ka		135	35-134			75
Aroclor 1016 50 2.5 2.5 mg/kg 57.9 116 59-154 4 50 Aroclor 1260 50 2.5 2.5 ng/kg 72.0 144 51-179 3 50 Surogate: mg/kg 139 34-148 50	Tetrachloro-m-xylene					ing/kg		100	50-754			20
Aroclor 1016 50 2.5 2.5 mg/kg 57.9 116 59-154 4 50 Aroclor 1260 50 2.5 2.5 ng/kg 72.0 144 51-179 3 50 Surogate: mg/kg 139 34-148 50	LCS Dup Analyzed: 08/17	/09 (Lab N	umber:9H1	6001-BS	SD1. Batch: 9H16	001)						
Aroclor 1260 50 2.5 2.5 mg/kg 72.0 144 51-179 3 50 Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-m-xylene mg/kg 139 34-148 35-134 35-1	Aroclor 1016	(-	57.9	116	59-154	4	50	
Surrogate: mg/kg 139 34-148 Decachlorobiphenyl Surrogate: mg/kg 130 35-134 Tetrachloro-m-xylene 730 35-134 Polychlorinated Biphenyls by EPA Method 8082 Blank Analyzed: 08/19/09 (Lab Number:9H17035-BLK1, Batch: 9H17035) V QSU Aroclor 1016 0.016 0.0032 mg/kg wet ND QSU Aroclor 1221 0.016 0.0032 mg/kg wet ND QSU Aroclor 1232 0.016 0.0032 mg/kg wet ND QSU Aroclor 1248 0.016 0.0032 mg/kg wet ND QSU Aroclor 1254 0.016 0.0032 mg/kg wet ND QSU Aroclor 1260 0.016 0.0034 mg/kg wet ND QSU Aroclor 1260 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU	Aroclor 1260		50									
Decaphilorobiphenyl mg/kg 130 35-134 Surrogate: mg/kg 130 35-134 Tetrachloro-m-xylene Polychlorinated Biphenyls by EPA Method 8082 Surrogate: ND QSU Blank Analyzed: 08/19/09 (Lab Number:9H17035-BLK1, Batch: 9H17035) Model of the second s	Surrogate:							139	34-148			
Tetrachloro-m-xylene Polychlorinated Biphenyls by EPA Method 8082 Blank Analyzed: 08/19/09 (Lab Number:9H17035-BLK1, Batx: 9H17035) Aroclor 1016 0.016 0.0032 mg/kg wet ND QSU Aroclor 1221 0.016 0.0032 mg/kg wet ND QSU Aroclor 1232 0.016 0.0032 mg/kg wet ND QSU Aroclor 1242 0.016 0.0035 mg/kg wet ND QSU Aroclor 1248 0.016 0.0032 mg/kg wet ND QSU Aroclor 1254 0.016 0.0034 mg/kg wet ND QSU Aroclor 1260 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU	Decachlorobiphenyl											
Polychlorinated Biphenyls by EPA Method 8082 Blank Analyzed: 08/19/09 (Lab Number:9H17035-BLK1, Batt: 9H17035) Aroclor 1016 0.016 0.0032 mg/kg wet ND QSU Aroclor 1221 0.016 0.0032 mg/kg wet ND QSU Aroclor 1232 0.016 0.0032 mg/kg wet ND QSU Aroclor 1242 0.016 0.0032 mg/kg wet ND QSU Aroclor 1248 0.016 0.0032 mg/kg wet ND QSU Aroclor 1254 0.016 0.0032 mg/kg wet ND QSU Aroclor 1260 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU Aroclor 1260 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU						mg/kg		130	35-134			
Blank Analyzed: 08/19/09 (Lab Number:9H17035-BLK1, Batch: 9H17035) Marcolor 1016 0.016 0.0032 mg/kg wet ND QSU Aroclor 1221 0.016 0.0032 mg/kg wet ND QSU Aroclor 1232 0.016 0.0032 mg/kg wet ND QSU Aroclor 1242 0.016 0.0035 mg/kg wet ND QSU Aroclor 1248 0.016 0.0032 mg/kg wet ND QSU Aroclor 1254 0.016 0.0034 mg/kg wet ND QSU Aroclor 1260 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU	i etrachioro-m-xylene											
Aroclor 1016 0.016 0.0032 mg/kg wet ND QSU Aroclor 1221 0.016 0.0032 mg/kg wet ND QSU Aroclor 1232 0.016 0.0032 mg/kg wet ND QSU Aroclor 1232 0.016 0.0032 mg/kg wet ND QSU Aroclor 1242 0.016 0.0035 mg/kg wet ND QSU Aroclor 1248 0.016 0.0032 mg/kg wet ND QSU Aroclor 1254 0.016 0.0034 mg/kg wet ND QSU Aroclor 1260 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU	Polychlorinated Biphenyl	s by EPA	Method 8082	<u>2</u>								
Aroclor 1016 0.016 0.0032 mg/kg wet ND QSU Aroclor 1221 0.016 0.0032 mg/kg wet ND QSU Aroclor 1232 0.016 0.0032 mg/kg wet ND QSU Aroclor 1232 0.016 0.0032 mg/kg wet ND QSU Aroclor 1242 0.016 0.0035 mg/kg wet ND QSU Aroclor 1248 0.016 0.0032 mg/kg wet ND QSU Aroclor 1254 0.016 0.0034 mg/kg wet ND QSU Aroclor 1260 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU	Blank Analyzed: 08/19/09	(Lab Nun	nber:9H1703	5-BI K1	Batch: 9H17035)						
Aroclor 1221 0.016 0.0032 mg/kg wet ND QSU Aroclor 1232 0.016 0.0032 mg/kg wet ND QSU Aroclor 1242 0.016 0.0035 mg/kg wet ND QSU Aroclor 1242 0.016 0.0035 mg/kg wet ND QSU Aroclor 1248 0.016 0.0032 mg/kg wet ND QSU Aroclor 1254 0.016 0.0034 mg/kg wet ND QSU Aroclor 1260 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU	-	(=45 Hull				-	ND					QSU
Aroclor 1232 0.016 0.0032 mg/kg wet ND QSU Aroclor 1242 0.016 0.0035 mg/kg wet ND QSU Aroclor 1248 0.016 0.0032 mg/kg wet ND QSU Aroclor 1254 0.016 0.0034 mg/kg wet ND QSU Aroclor 1260 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU												
Aroclor 1242 0.016 0.0035 mg/kg wet ND QSU Aroclor 1248 0.016 0.0032 mg/kg wet ND QSU Aroclor 1254 0.016 0.0034 mg/kg wet ND QSU Aroclor 1260 0.016 0.0034 mg/kg wet ND QSU Aroclor 1260 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU	Aroclor 1232											
Aroclor 1248 0.016 0.0032 mg/kg wet ND QSU Aroclor 1254 0.016 0.0034 mg/kg wet ND QSU Aroclor 1260 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU												
Aroclor 1254 0.016 0.0034 mg/kg wet ND QSU Aroclor 1260 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU	Aroclor 1248											
Aroclor 1260 0.016 0.0034 mg/kg wet ND QSU Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU	Aroclor 1254											
Aroclor 1262 0.016 0.0034 mg/kg wet ND QSU	Aroclor 1260											
	Aroclor 1262											
TestAmerica Buffalo												200
	TestAmerica Buffalo											

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

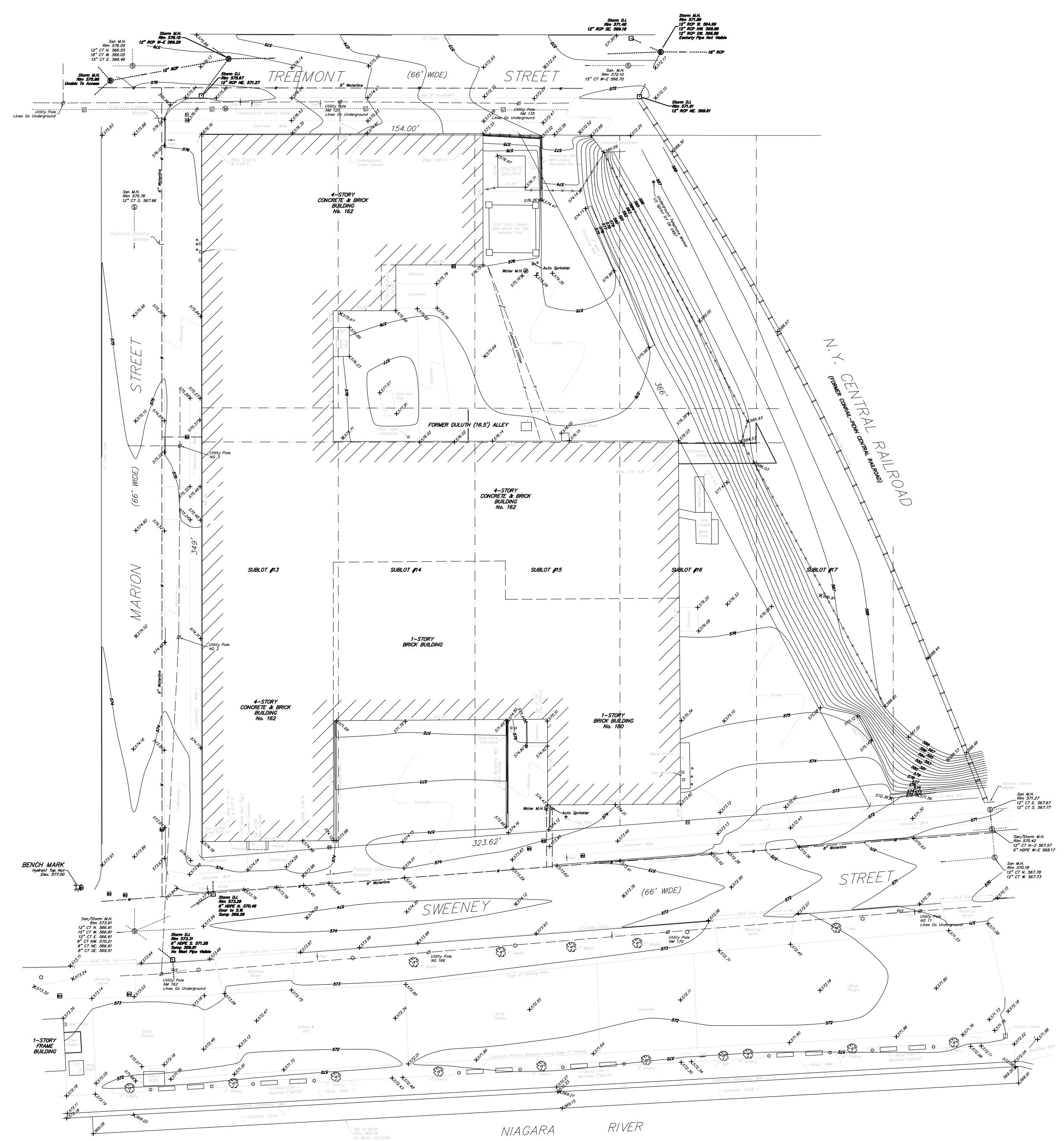
MS Analytical

4169 Allendale Parkway, Suite 200 Blasdale, NY 14219

SDG Number: RSH0425

Received: 08/14/09 Reported: 08/24/09 16:49

			LA	BORATOR	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Polychlorinated Bipher	nyls by EPA I	Method 8	<u>8082</u>								
Blank Analyzed: 08/19/	09 (Lab Num	nber:9H1	7035-BLK1,	Batch: 9H1703	5)						
Aroclor 1268			0.016	0.0034	mg/kg wet	ND					QSU
Surrogate: Decachlorobiphenyl					mg/kg wet		106	34-148			QSU
Surrogate: Tetrachloro-m-xylene					mg/kg wet		82	35-134			QSU
LCS Analyzed: 08/19/09) (Lab Numb	er:9H17	035-BS1, Bat	ch: 9H17035)							
Aroclor 1016		0.16	0.016	0.0032	mg/kg wet	0.125	77	59-154			QSU
Aroclor 1221			0.016	0.0032	mg/kg wet	ND		0-200			QSU
Aroclor 1232			0.016	0.0032	mg/kg wet	ND		0-200			QSU
Aroclor 1242			0.016	0.0035	mg/kg wet	ND		0-200			QSU
Aroclor 1248			0.016	0.0032	mg/kg wet	ND		0-200			QSU
Aroclor 1254			0.016	0.0034	mg/kg wet	ND		0-200			QSU
Aroclor 1260		0.16	0.016	0.0034	mg/kg wet	0.164	101	51-179			QSU
Aroclor 1262			0.016	0.0035	mg/kg wet	ND		0-200			QSU
Aroclor 1268			0.016	0.0034	mg/kg wet	ND		0-200			QSU
Surrogate:					mg/kg wet		100	34-148			QSU
Decachlorobiphenyl Surrogate: Tetrachloro-m-xylene					mg/kg wet		78	35-134			QSU
LCS Dup Analyzed: 08/	19/09 (Lab N	lumber:9	H17035-BSE	01, Batch: 9H17	7035)						
Aroclor 1016		0.17	0.017	0.0032	mg/kg wet	0.150	91	59-154	18	50	QSU
Aroclor 1221			0.017	0.0032	mg/kg wet	ND		0-200		200	QSU
Aroclor 1232			0.017	0.0032	mg/kg wet	ND		0-200		200	QSU
Aroclor 1242			0.017	0.0036	mg/kg wet	ND		0-200		200	QSU
Aroclor 1248			0.017	0.0032	mg/kg wet	ND		0-200		200	QSU
Aroclor 1254			0.017	0.0035	mg/kg wet	ND		0-200		200	QSU
Aroclor 1260		0.17	0.017	0.0035	mg/kg wet	0.187	113	51-179	13	50	QSU
Aroclor 1262			0.017	0.0035	mg/kg wet	ND		0-200		200	QSU
Aroclor 1268			0.017	0.0035	mg/kg wet	ND		0-200		200	QSU
Surrogate:					mg/kg wet		106	34-148			QSU
Decachlorobiphenyl Surrogate: Tetrachloro-m-xylene					mg/kg wet		90	35-134			QSU


Chain of		Temperature on Receipt	ceiol	TestAr	[estAmerica	
Lustody Hecord		Drinking Water?	Dev Dest	THE LEADER IN ENV	THE LEADER IN ENVIRONMENTAL TESTING	
MS ANAINTICALICC		Project Manager	Bryan Mayback		14/109	Chain of Custody Number 160746
endele Parkus		Telephone Number (Area Code) Fax Number	e Codel/Fax Number		Lab Number	Page of
Blickell 112218	80	Sile Contact	Lab Contact		Analysis (Attach list if more space is needed)	
Historic Rerengen Read Facility North Toxand, NY	erey 5t 4. mar, NY	Carrier/Maybill Number				Special Instructions/
Connactmentase Octanicuote No PTo-SECF # 09M5/23		Atatria	Containers & Preservatives	р. 		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one time)	Date	#05 2855 #09827 #17 #17	IOH SOWH NOSZH Sevoun	HOWN THOWN THOWN		
	50/4/8	020				
56-72	_	1 2201	X			
5C-£3		1 0201				
SC-74		X 0011	' X; ;			
<u>8-15</u>	~	$\frac{1}{1}$				
\$C-76		11 0211	 X			
<u>}-</u> [1/30	X			
56-78		1401			-	
56-79	, 	A 1051				
56-510		1200	XU			
S-710	`	1210 1		- >		
Dreather the search fut-with a stress the						
matale 🔲 Sida present	🗌 Atisan B 📋	Califyer Lingues Lingues	ore Crient 🔲 Disposel By Lab	Leb 🗌 Arane For	seb of year solution in the mark in the second seco	(A tee may be assessed it <u>semples</u> are retained korper man 1 morm)
Tum Answar Firme Required	□ 21 DR	1 6	OC Regiurements (Specify)	ns (Specify)		
Frenchiston By Carl (Hayback)		En b	250 1. Received	5	<	1010 100 1000 1000 Dave
E. Halingwood By /		1 20- 4 8	10 2 RECENTER	ROH	Run	1940 Tome
hed By		Date	3. Received By		7	Date Time
Please Analyze scalo + S-7	-110,8	NO, Place the rest on	0/4/V0		25.1 10 20	9.5
DISTRIBUTION: WHITE - Renumed to Clear with Report, CAVARY - States with the Semples, PNNK - Frend Copy	WARY Stafe wi	h the Sentole, Pivit' - Free	Capy			

Chain of		Temperature on Receipt	n Receipt -		<u>a</u>	<u>st</u> Ar	estAmerico	
Custody Record		Drinking Water?	? Yes 🗆	□ <i>0</i> V	THE LE	ADER IN ENV	THE LEADER IN ENVIRONMENTAL TESTING	• (7
ANALYTICAL	51C	Project Manager	2				Date 8-14-09	Chan of Charles Number
ĺ		Telephone Number (Area Code)/Fax Number	- (Araa Coole)	iFax Number			190 Number	Page / of 3
CAMERDA STAN	Zip Cade	She Contact	<u> </u>	Lab Contact		×ε 	Analysis (Affach list if more space is needed)	
	6	Camer Wayou Number	11081					Convind Incomment
Contract/Purchase Dident Duote No		- Wei	Adamte	Conta Prese	Containers & Preservatives	Ø		Conditions of Receipt
Sampte I.D. Mo. and Description [Containers for each sample mey be combined on one line)	alara la	Time & K	710 105 105	000000 1005004 39441017	HORN ONUZ HORN	78		
7-1	8-14-09/010	1010		×	-			
7-2		0201						
7-3		1030						
4-4		1040			_			
2-2		1050				~		
7-6		0011				·		
7-7		1120 1				-		
7-8		1130			-	-		
7-9		1140	-	-				
01-1		1215		-				
C-1 COND	-	1200		-				
10 10	>	1150	>			/		
Possible Hazant Identification Non-Hazant 📋 Farmaçole 🗌 Skin Imiant	🗌 Pason B	Campte Campte	Sample Disposel 🔲 Newm To Client	🔲 Disposal By Lab		🗍 Active Kit 📒	(A fee may to a Manfre tran 1 m	(A fee may be assessed if semples are relained kinger than 1 month)
n Raquitad		s Ditter		- OC Requi	OC Requirements (Specify)	1		
8			$\Omega \mathcal{U}$	I. Receivery BY	10/2000	N		Structure 1220
2. Hallinguished by		Date	Time	2 Received By	ed By			Imme
3. Aeinaurished By		Date	ame T	3. Received By	ed By			Dete
Contractives							751.5	Nº 146

ŝ DISTRIBUTION: WHITE - Relumed to Client with Report, CANARY - Slays with the Sempley PINK

APPENDIX D

IRM CONSTRUCTION DRAWINGS

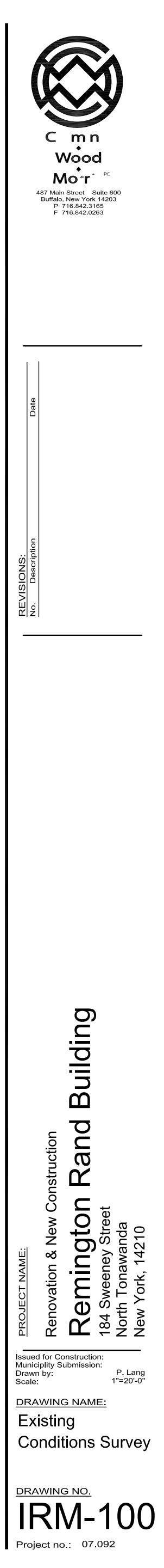
LEGEND

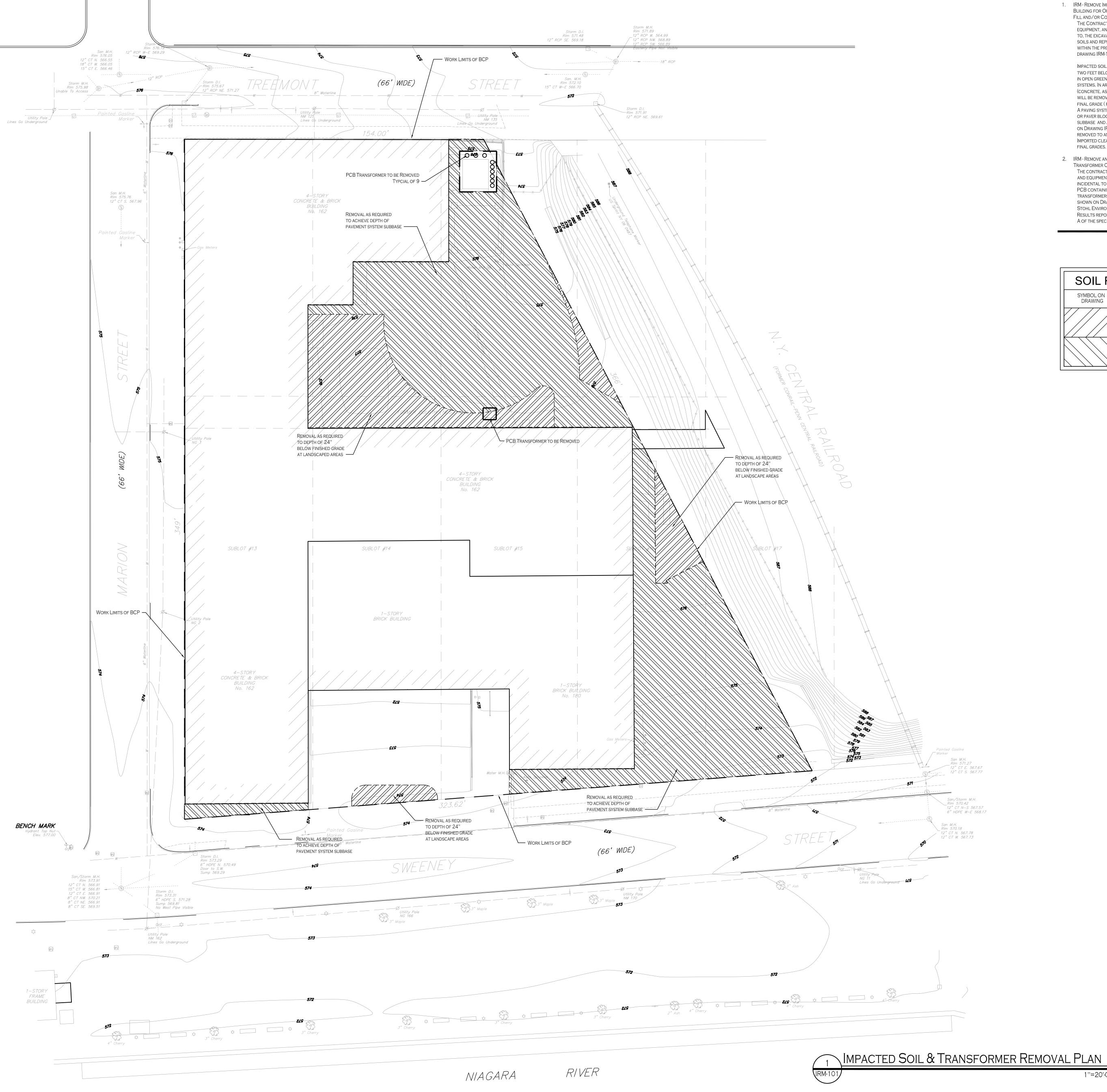
Ø	UTILITY / SERVICE POLE	R.O.W.	RIGHT OF WAY
\mathbf{M}	WATER LINE VALVE	CONC.	CONCRETE
Д,	FIRE HYDRANT	INV.	INVERT
	D.I. (DROP INLET - STORM)	M.H.	MANHOLE
D	MANHOLE (STORM)	o	GAS LINE
Ē	MANHOLE (ELECTRIC)		WATER LINE
\bigcirc	MANHOLE (TRAFFIC)	—T—	TELEPHONE LINE
S	MANHOLE (SANITARY)	—£—	ELECTRIC LINE
0	LDR (LIGHT DUTY RECEIVER - STORM)	—P—	UTILITY LINES
0	BYD (BACKYARD DRAIN INLET - STORM)	C	CABLE LINES
Ø	GAS LINE VALVE	D.	DEED
α	LIGHT STANDARD	М.	MEASURED
	SIGN	L.	LIBER
H.C.	HANDICAP	<i>P</i> .	PAGE

<u>UTILITIES</u>

The underground utilities shown have been located from field survey information & existing drawings. The surveyor makes no guarantee that the underground utilities shown comprise all such utilities in the area, either in service or abandoned. The surveyor further does not warrant that the underground utilities shown are in the exact location indicated although he does certify that they are located as accurately as possible from the information available. This surveyor has not physically located the underground utilities.

Note: Underground Utility information has been ordered from the respective utility companies. As the information is received, this map will be amended to reflect said information.

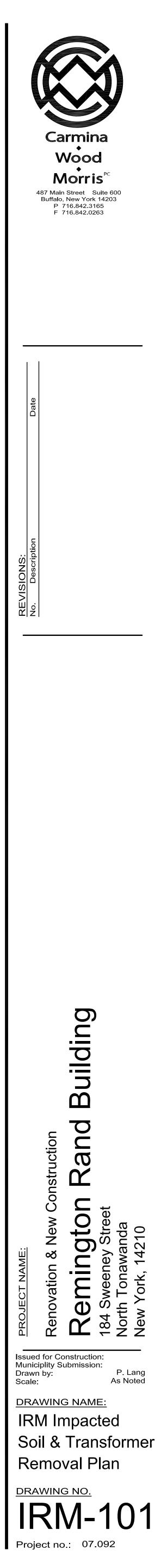

National Fuel	Time Warner	Verizon
Attn: Gerald Scott	Attn: Thomas Trigilio	Attn: Anne Baglio
(716) 857–7000	(716) 558–8615	(716) 840–8748
City of N. Tonawanda Water Dept.	National Grid	City of N. Tonawanda Public Works
585 Erie Avenue	Attn: Lawrence Bernas	758 Erie Avenue
(716) 695–8537	(716) 857–4220	(716) 695–8585

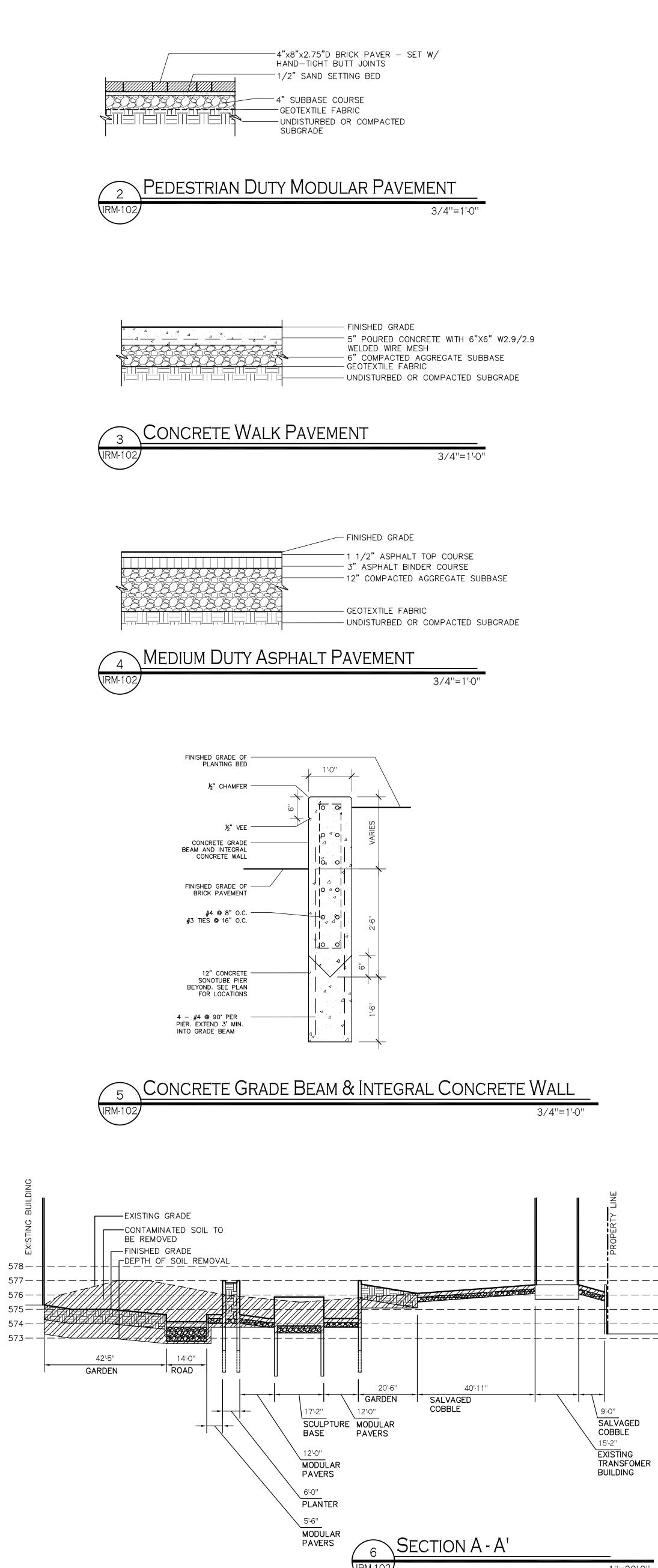

NOTE: TOPOGRAPHIC SURVEY WORK FROM THE CENTERLINE OF SWEENEY STREET SOUTHERLY TO THE CONCRETE DOCK ALONG THE NIAGARA RIVER WAS PERFORMED ON OCTOBER 3, 2008.

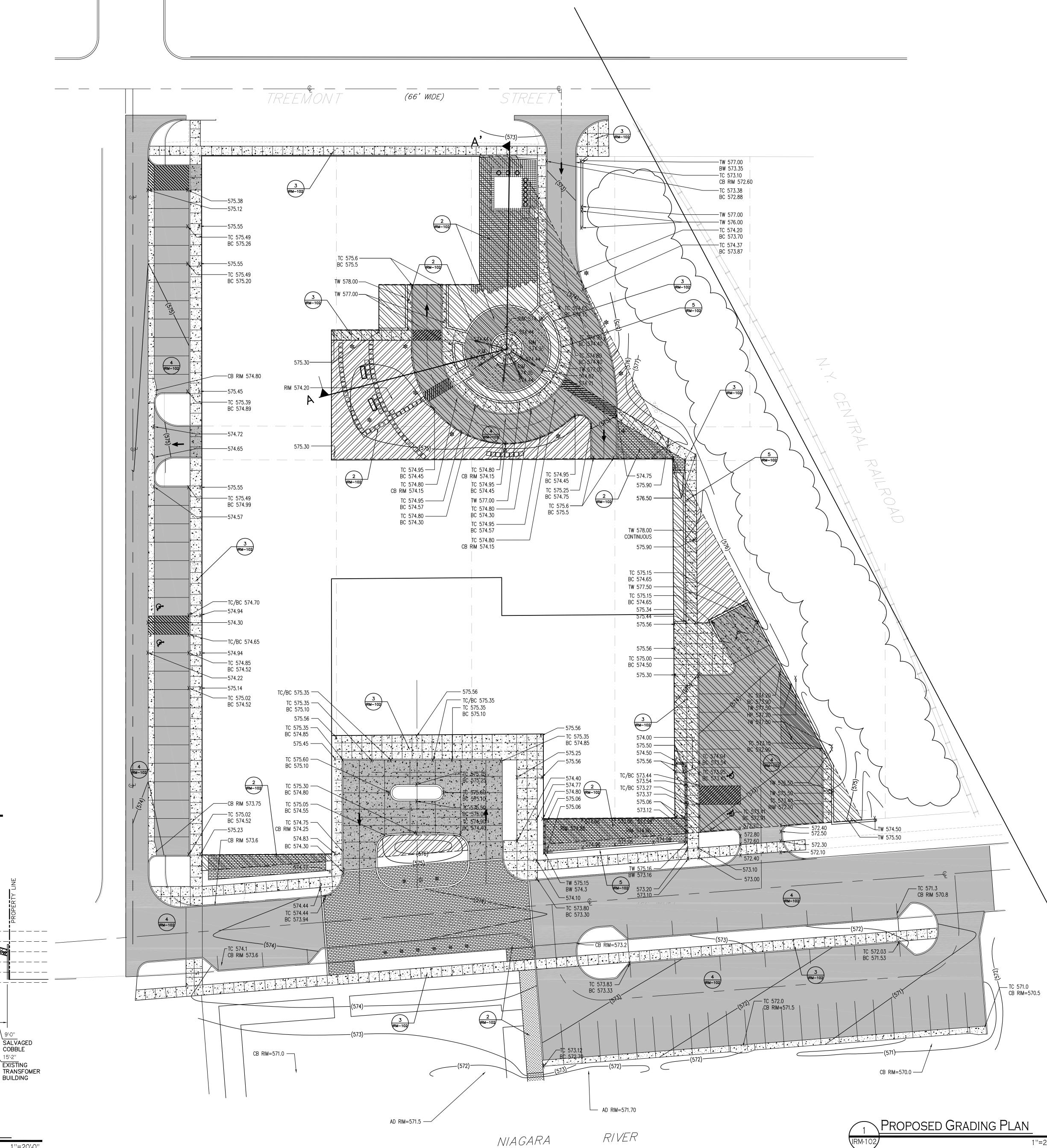
INSTRUMENT(S) UTILIZED IN DETERMINING LOCATION OF BOUNDARY LINES: LIBER 3421 PAGE 2 THIS SURVEY WAS PREPARED WITHOUT THE BENEFIT OF A CURRENT ABSTRACT OF TITLE AND IS SUBJECT TO ANY STATE OF FACTS THAT MAY BE REVEALED IN SAID ABSTRACT.

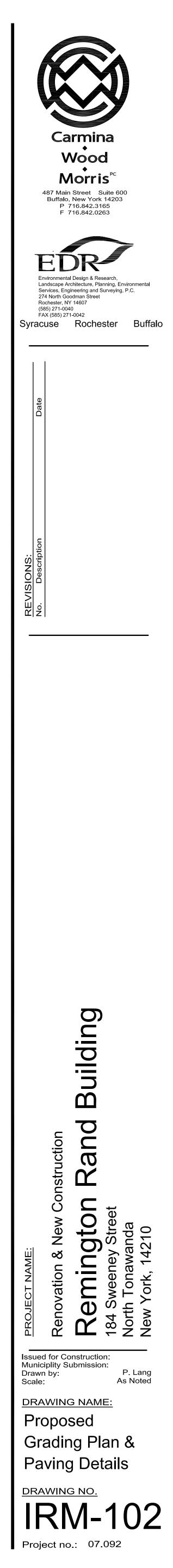
THIS SURVEY MAP WAS PREPARED IN ACCORDANCE WITH THE	©COPYRIGHT_2008_BY:	AMEND:	
CURRENT STANDARDS FOR LAND SURVEYS ADOPTED BY THE BAR ASSOCIATION OF ERIE COUNTY AT THE REQUEST OF Carmina & Wood P.C.	Millard, MacKay & Delles	SURVEY DATE: 3-28-08	
	LAND SURVEYORS, LLP	© DRAWING DATE: <i>4–1–08</i>	
Fa CAller	150 AERO DRIVE	SCALE: 1" = 2'	
FRANCIS C. DELLES NYSPLS No. 050477	BUFFALO, NEW YORK 14225 PHONE (716) 631–5140 ~ FAX 631–3811	"ALL RIGHTS RESERVED"	
PART OF SUBLOTS AS FILED IN MAPS AT PAGES 164			
PART OF LOT <u>81</u> SECTION TO <u>Mile Reserve</u> SURVE	WNSHIP RANGE OF THE: (<i>Niagara</i> COUNTY, N.Y.		
SURVEY OF: 184 Sweeney Street, City of	of North Tonawanda	SBL No. 185.09-1-21	

NOTE: PROPERTY CORNER MONUMENTS WERE NOT PLACED AS PART OF THIS SURVEY. NOTE: THIS SURVEY WAS PERFORMED UNDER SEVERE SNOW AND ICE CONDITIONS.

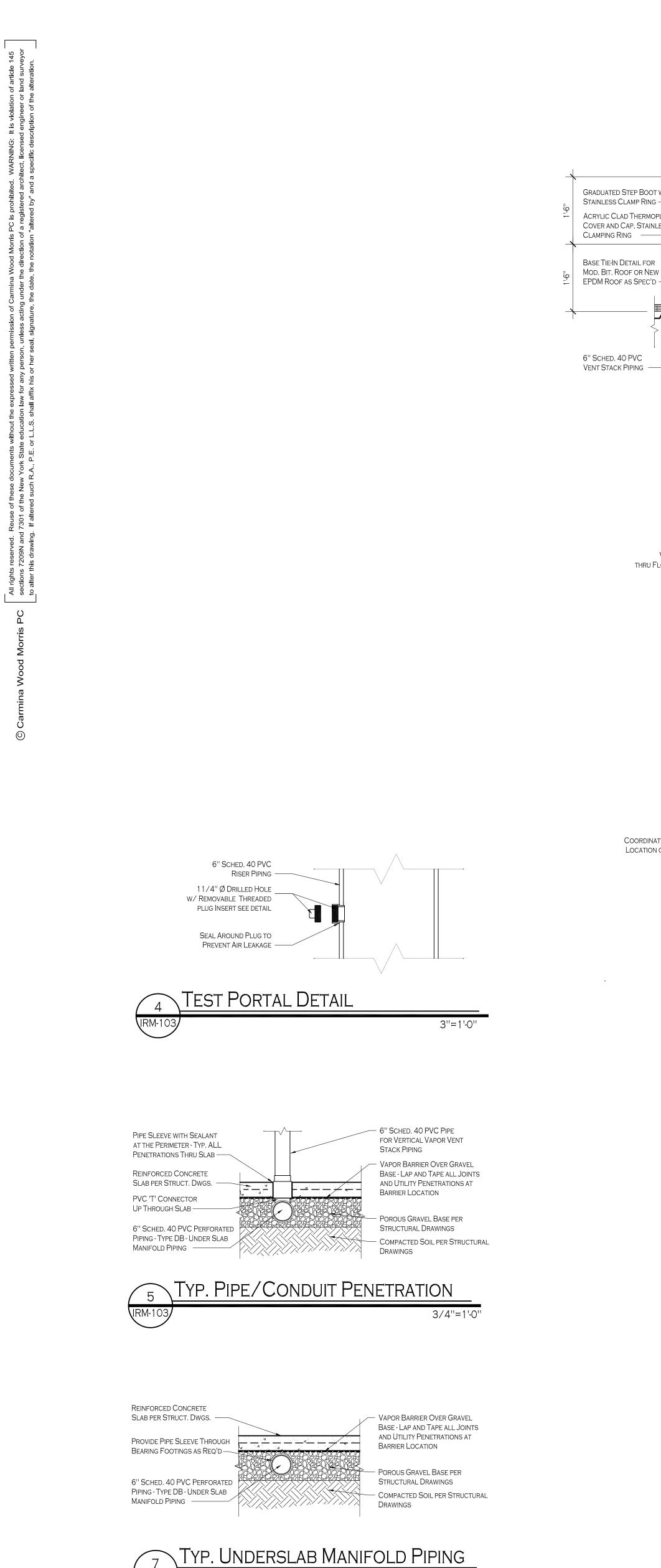

IRM GENERAL NOTES

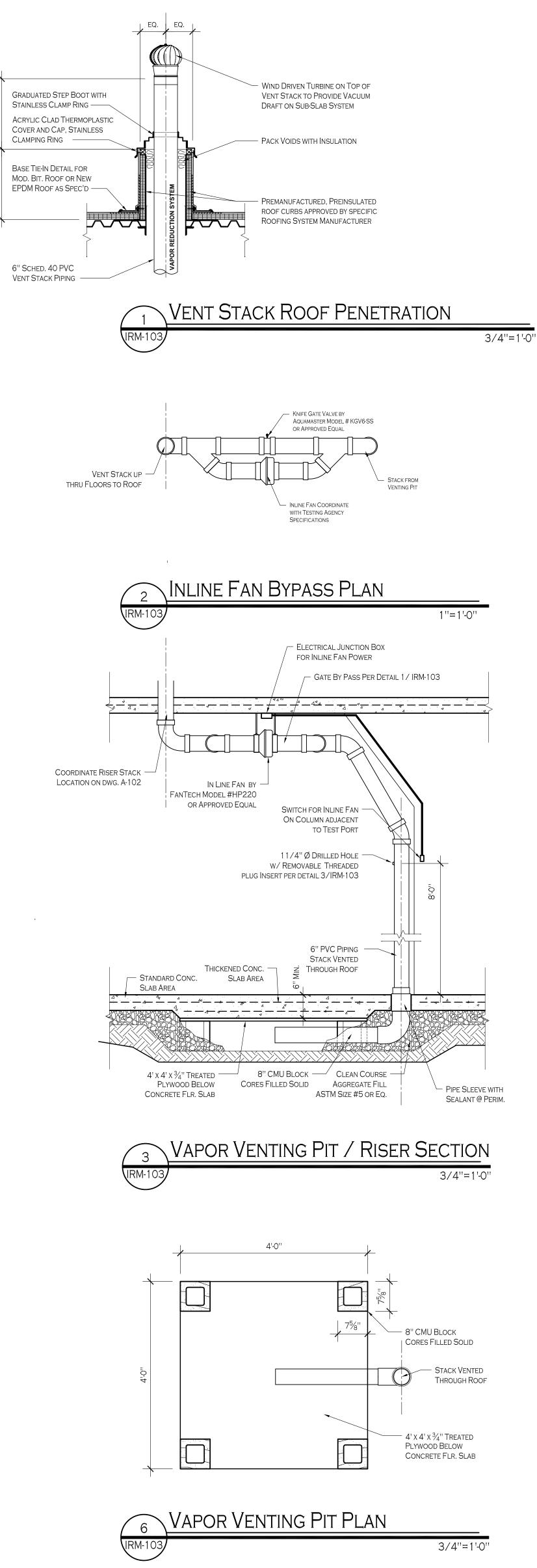

- 1. IRM REMOVE IMPACTED SURFACE SOIL EXTERIOR TO Building for Off-site Disposal and Replace with Clean FILL AND/OR CONCRETE / ASPHALT PAVING SECTIONS. THE CONTRACTOR SHALL PROVIDE ALL LABOR, MATERIALS, EQUIPMENT, AND SERVICES NECESSARY FOR AND INCIDENTAL TO, THE EXCAVATION AND DISPOSAL OF IMPACTED SURFACE SOILS AND REPLACEMENT WITH CLEAN FILL MATERIAL FROM WITHIN THE PROPERTY LINES OF THE SITE AS INDICATED ON DRAWING IRM-101.
- IMPACTED SOIL SHALL BE REMOVED TO A MINIMUM DEPTH OF TWO FEET BELOW FINAL GRADES (AS SHOWN ON DRAWINGS) IN OPEN GREEN SPACE AREAS NOT COVERED BY PAVING SYSTEMS. IN AREAS COVERED BY PAVING SYSTEMS (CONCRETE, ASPHALT OR PAVER BLOCKS) IMPACTED SOIL WILL BE REMOVED TO THE DEPTH OF PAVING SYSTEM BELOW FINAL GRADE (REFER TO DRAWINGS IRM-101, & IRM-102). A PAVING SYSTEM SHALL CONSIST OF CONCRETE, ASPHALT OR PAVER BLOCK SURFACE, CLEAN STONE / GRAVEL SUBBASE AND A GEOTEXTILE FABRIC BARRIER AS DETAILED ON DRAWING IRM-102. ALL IMPACTED SOIL SHALL BE REMOVED TO AN APPROVED PERMITTED LANDFILL FACILITY. IMPORTED CLEAN FILL MATERIAL SHALL BE USED TO MEET
- 2. IRM REMOVE AND PROPERLY DISPOSE OF PCB TRANSFORMER OILS AND TRANSFORMERS. THE CONTRACTOR SHALL PROVIDE ALL LABOR, MATERIALS AND EQUIPMENT AND SERVICE NECESSARY FOR, AND INCIDENTAL TO THE REMOVAL AND PROPER DISPOSAL OF ALL PCB CONTAINING TRANSFORMERS, NON-PCB CONTAINING TRANSFORMERS AND ASSOCIATED FLUID RESERVOIRS AS SHOWN ON DRAWINGS IRM-101 AND AS DESCRIBED IN STOHL ENVIRONMENTAL'S TRANSFORMER SAMPLING RESULTS REPORT (STOHL REPORT) PROVIDED IN APPENDIX A OF THE SPECIFICATIONS.

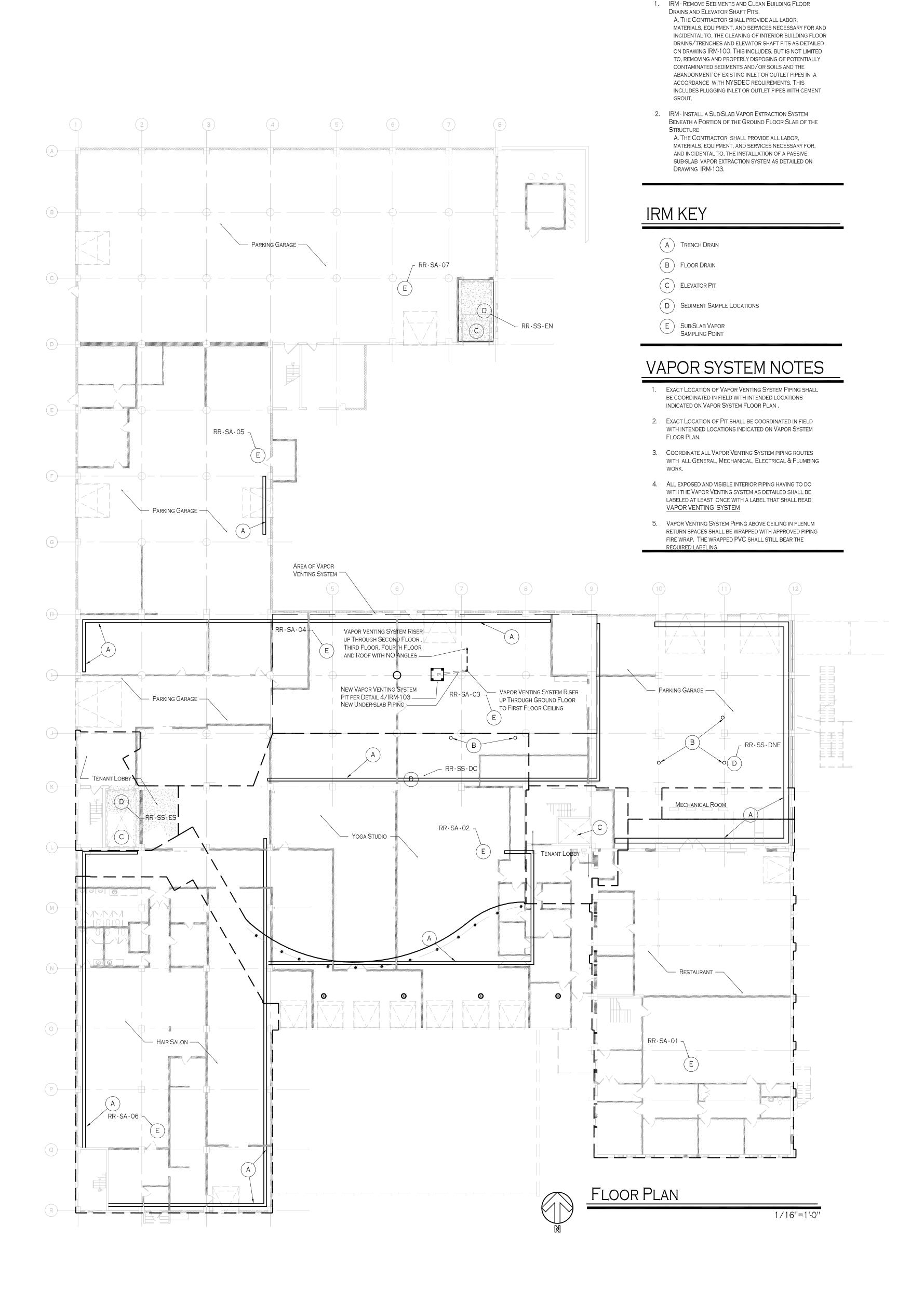

FINAL GRADES.


1''=20'-0''

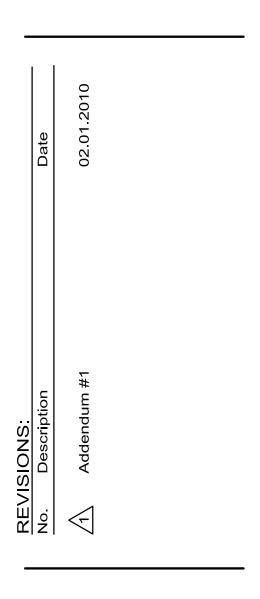
SOIL REMOVAL KEY		
SYMBOL ON DRAWING	Action to Take Place	
	REMOVAL AS REQUIRED TO DEPTH OF 24'' BELOW FINISHED GRADE AT LANDSCAPE AREAS.	
	REMOVAL AS REQUIRED TO ACHIEVE DEPTH OF PAVEMENT SYSTEM SUBBASE.	

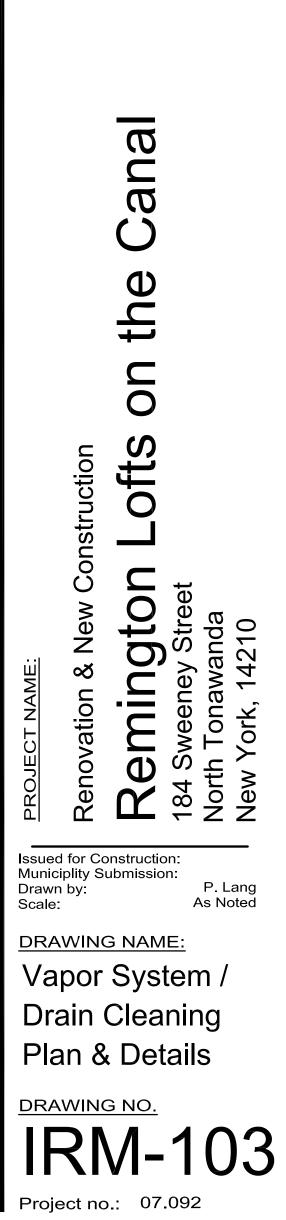





1''=20'-0''

(IRM-103)




3/4"=1'-0"

IRM GENERAL NOTES

APPENDIX E

SAMPLE HASP

HEALTH AND SAFETY PLAN

1.0 INTRODUCTION

The following health and safety procedures will be followed by PEI personnel performing field investigation and construction monitoring activities described in the Work Plan.

1.1 Purpose

Directed at protecting the health and safety of the field crew during field activities, the following site-specific Health and Safety Plan (HSP) was prepared to provide safe procedures and practices for personnel engaged in conducting the field activities associated with this plan. The plan has been developed using the Occupational Safety and Health Administration (OSHA) 1910 regulations as guidance. The purpose of this HSP is to establish personnel protection standards and mandatory safety practices and procedures for this task specific effort. This plan assigns responsibilities, establishes standard operating procedures, and provides for contingencies that may arise during the field efforts.

1.2 Applicability

The provisions of the plan are mandatory for all personnel engaged in field activities. All personnel who engage in these activities must be familiar with this plan and comply with its requirements. The plan is based on available information concerning the project area and planned tasks. If more data concerning the project area becomes available which constitute safety concerns, the plan will be modified accordingly. One crew member will be designated Field Safety Officer and will be responsible for in-field safety. Any necessary modifications to the plan will be made by the Field Safety Officer after discussion with the PEI Project Manager and Safety Manager. All modifications will be documented in the HSP plan and field book and provided to the Project Manager and the Health and Safety Manager for approval. A copy of this plan will be available for review by all on-site personnel. In addition, a copy of the plan will be provided to all subcontractors prior to their initial entry onto the site.

Before field activities begin, all personnel will be required to read the plan. All personnel must agree to comply with the minimum requirements of the site-specific plan, be responsible for health and safety, and sign the Statement of Compliance for all on-site

employees before site work begins.

1.3 Field Activities

The tasks associated with the performance of the field work include:

- 1. Remedial investigation field activities
- 2. Construction monitoring of IRM activities

1.4 Personnel Requirements

Key personnel are as follows:

Project Manager:	Mr. Peter J. Gorton
Project Engineer:	Mr. John B. Berry, P.E.
Resident Project representative:	Justin J. Ryszkiewicz
Safety Manager:	Mr. Peter J. Gorton

Site personnel and their duties are outlined below.

The Project Manager will be responsible for all personnel and subcontractors on-site and designates duties to on-site personnel. The Project Manager has the primary responsibility for:

- 1. Assuring that personnel are aware of the provisions of the HSP plan and are instructed in the work practices necessary to ensure safety for planned procedures and in emergencies;
- 2. Verifying that the provisions of this plan are implemented;
- 3. Assuring that appropriate personnel protective equipment (PPE), if necessary, is available for and properly utilized by all personnel;
- 4. Assuring that personnel are aware of the potential hazards associated with site operations;
- 5. Supervising the monitoring of safety performances by all personnel to ensure that required work practices are employed; and,
- 6. Maintaining sign-off forms and safety briefing forms.

Field Safety Manager:

- 1. Monitor safety hazards to determine if potential hazards are present;
- 2. Determine changes to work efforts or equipment needed to ensure the safety of personnel;
- 3. Evaluate on-site conditions and recommend to the Field Manager modifications to work plans needed to maintain personnel safety;

- 4. Determine that appropriate safety equipment is available on-site and monitor its proper use;
- 5. Monitor field personnel and potential for exposure to physical hazards, such as heat/cold stress, safety rules near heavy equipment and borings;
- 6. Halt site operations if unsafe conditions occur or if work is not being performed in compliance with this plan;
- 7. Monitor performance of all personnel to ensure that the required safety procedures are followed. If established safety rules and practices are violated, a report of the incident will be filed and sent to the Project Manager within 48 hours of the incident; and,
- 8. Conduct daily safety meetings as necessary.

Field Personnel: The responsibility of each field crew member is to follow the safe work practices of this HSP and in general to:

- 1. Be aware of the procedures outlined in this plan;
- 2. Take reasonable precautions to prevent injury to him/herself and to his/her co-workers;
- 3. Perform only those tasks that he/she believes can be done safely and
- 4. Immediately report any accidents or unsafe conditions to the safety personnel and Project Manager;
- 5. Notify the safety personnel and Project Manager of any special medical problems (i.e., allergies or medical restrictions) and make certain that on-site personnel are aware of any such problems;
- 6. Think Safety First prior to and while conducting field work; and,
- 7. Do not eat, drink or smoke in work areas.

Each crew member has the authority to halt work should he deem conditions to be unsafe. Visitors will be required to report to the Field Manager or designee and follow the requirements of this plan.

2.0 SITE DESCRIPTION AND SAFETY CONCERNS

The subject property located at 184 Sweeney Street in the City of North Tonawanda, Niagara County, New York has been associated with commercial/industrial use since at least 1886. The subject property is bound to the north by Tremont Street, to the west by Marion Street, to the south by Sweeney Street, and to the east by an active CSX railroad line. Tonawanda Creek/Erie Canal is located just over 150 feet south across Sweeney Street.

The property consists of a 1.8-acre parcel and includes an approximately 37,570 square foot slab-on-grade four-story concrete block and brick building. Also, a one-story slab-on-grade brick building that occupies approximately 14,100 square feet adjoins the four-story building

on the south. The remainder of the subject property is occupied by asphalt/concrete and gravel parking areas with some green space. The use and configuration of buildings on this property has varied over time resulting in portions of the current buildings being located over former manufacturing areas.

For a more in-depth background of the uses of the property, refer to PART A-Section A1.1 –Site History and Description.

The following summarizes the potential chemical, physical and biological hazards.

2.2 Hazard Evaluation

Based on the nature of the potential project hazards and tasks, the hazard potential is deemed low. Specific health and safety concerns particular to the project tasks include an awareness of potential low levels of petroleum hydrocarbons, PCBs, PAHs and metal contamination, underground utilities, and manual/mechanical operation of field equipment. During field investigations and IRMs, extreme care must be taken so as not to damage an underground utility. The location of utilities will be marked by the utility company prior to construction.

2.2.1 Chemical Hazards

The Phase 2 site investigation conducted at the site indicates that the area is composed of fill material around the buildings as an extension of the industrial nature of the site. Potential chemicals of concern could include petroleum compounds, PCBs, metals and various chemical solvents that maybe present as an extension of the industrial nature of the site.

Potential routes of exposure include:

- 1. Skin contact;
- 2. Inhalation of vapors or particles;
- 3. Ingestion; and,
- 4. Entry of contaminants through cuts, abrasions or punctures.

The anticipated levels of personnel protection will include Level D personal protective equipment:

- 1. Long sleeve shirt and long pants (recommended),
- 2. Work boots,
- 3. Hard hats, if work is conducted around heavy equipment or overhead hazards,
- 4. Safety Glasses
- 5. Gloves to include work gloves and chemical resistant gloves when sampling

potentially contaminated materials.

Modifications may include chemically resistant gloves, boots/booties, and overalls. If monitoring levels indicate levels requiring respiratory protection (sustained readings at or above 5 ppm above a daily established background), work will be halted pending discussions with field and office management. If any readings are recorded above background, work will proceed with caution and breathing zone monitoring will be conducted.

2.2.2 Physical Hazards

Depending on the time of year, weather conditions or work activity, some of the following potential physical hazards could result from project activities:

- 1. Noise;
- 2. Heat Stress;
- 3. Cold Stress;
- 4. Slips, trips, and falls;
- 5. Exposure to moving machinery or stored energy;
- 6. Physical eye hazards;
- 7. Lacerations and skin punctures;
- 8. Back strain from lifting equipment;
- 9. Electrical storms and high winds;
- 10. Contact with overhead or underground utilities.

Slips, Trips, and Falls. Field personnel shall become familiar with the general terrain and potential physical hazards which would be associated with accidental risk of slips, trips, and/or falls. Special care shall be taken along the steep embankment and when performing sediment sampling requiring wading into the creek. Workers will observe all pedestrian and vehicle rules and regulations. Extra caution will be observed while working near roadways and while driving in reverse to ensure safety.

Noise. All personnel shall wear hearing protection devices, such as ear muffs or ear plugs, if work conditions warrant. These conditions would include difficulty hearing while speaking to one another at a normal tone within three feet. If normal speech is interfered with due to work noise, the field safety officer will initiate the mandatory use of hearing protection around the backhoe, or other noise-producing equipment or events.

Heat/Cold Stress. Heat stress work modification may be necessary during ambient temperatures of greater than 29° C (85° F) while wearing normal clothing or exceeding 21° C (70° F) while wearing personnel protective clothing. Because heat stress is one of the most common and potentially serious illnesses at work sites, regular monitoring and preventive measures will be utilized should conditions warrant. This may include PEI

additional rest periods, supplemental fluids, restricted consumption of drinks containing caffeine or alcohol, use of cooling vests, or modification of work practices.

Most of the work to be conducted during the investigations is expected to consist of light manual labor and visual observation. Given the nature of the work and probable temperatures, heat stress hazards are not anticipated.

If work is to be conducted during winter conditions, cold stress may be a concern to the health and safety of personnel. Wet clothes combined with cold temperatures can lead to hypothermia. If air temperature is less than 40° F (4° C) and an employee perspires, the employee must change to dry clothes. The following summary of the signs and symptoms of cold stress are provided as a guide for field and safety personnel.

Incipient frostbite is a mild form of cold stress characterized by sudden blanching or whitening of the skin.

Chilblain is an inflammation of the hands and feet caused by exposure to cold moisture. It is characterized by a recurrent localized itching, swelling, and painful inflammation of the fingers, toes, or ears. Such a sequence produces severe spasms, accompanied by pain.

Second-degree frostbite is manifested by skin with a white, waxy appearance and the skin is firm to the touch. Individuals with this condition are generally not aware of its seriousness because the underlying nerves are frozen and unable to transmit signals to warn the body. Immediate first aid and medical treatment are required.

Third-degree frostbite will appear as blue blotchy skin. The tissue is cold, pale, and solid. Immediate medical attention is required.

Hypothermia develops when body temperature falls below a critical level. In extreme cases, cardiac failure and death may occur. Immediate medical attention is warranted when the following symptoms are observed:

- 1. Involuntary shivering
- 2. Irrational behavior
- 3. Slurred speech
- 4. Sluggishness

Fire and Explosion. These hazards will be minimal for activities associated with this project. All heavy equipment will be equipped with a fire extinguisher..

Trenching and Excavations. There are a variety of potential health and safety hazards associated with excavations. These include:

• Surface encumbrances, such as structures, fencing, stored materials, etc., may interfere with safe excavations;

- Below- and above-ground utilities, such as water and sewer lines, gas lines, power lines, telephones, and optical cable lines, etc.;
- Overhead power lines and other utilities which may be contacted by the excavation equipment;
- Vehicle and heavy equipment traffic around the excavations;
- Falling loads from lifting or digging equipment;
- Water accumulation within excavations;
- Hazardous atmospheres, such as oxygen deficiency, flammable gases or vapors, and toxic gases which may occur in excavations,
- Falling into or driving equipment or vehicles into unprotected or unmarked excavations; and,
- Cave-in of loose rocks and soil at the excavation face.

OSHA requirements for trenching and excavations are contained in 29 CFR, subpart P, 1926:650 thru 1926.652.

Basic minimum excavation requirements should include:

- Personnel entry into excavations should be minimized, whenever possible and no entry will occur in pits below 4 feet in depth.
- Sloping, shoring or some other equivalent means should be utilized, as required.
- Surface encumbrances such as structures, fencing, piping, stored material etc. which may interfere with safe excavations should be avoided, removed or adequately supported prior to the start of excavations. Support systems should be inspected daily.
- Underground utility locations should be checked and determined and permits as necessary should be in place prior to initiating excavations. Local utility companies will be contacted at least two days in advance, advised of proposed work, and requested to locate underground installations. When excavations approach the estimated location of utilities, the exact location should be determined by careful probing or hand digging and when it is uncovered, proper supports should be provided.
- A minimum safe distance of 15 feet should be maintained when working around overhead high-voltage lines or the line should be de-energized following appropriate lock-out and tag-out procedures by qualified utility personnel.
- Excavations five feet or more deep if entered will require an adequate means of exit, such as a ladder, ramp, or steps and located so as to require no more than 25 feet of lateral travel. Under no circumstances should personnel be raised using heavy equipment.
- Personnel working around heavy equipment, or who may be exposed to public vehicular traffic should wear a traffic warning vest. At night, fluorescent or other reflective material is recommended to be worn.
- Heavy equipment or other vehicles operating next to or approaching the edge of an excavation will require that the operator have a clear view of the edge of the

excavation, or that warning systems such as barricades, hand or mechanical signals, or stop logs be used. If possible the surface grade should slope away from the excavation.

- Personnel should be safely located in and around the trench and should not work underneath loads handled by lifting or digging equipment.
- Hazardous atmospheres, such as oxygen deficiency (atmospheres containing less than 19.5% oxygen), flammable gases or vapors (airborne concentrations greater than 20% of the lower explosive limit), and toxic gases or vapors (airborne concentrations above the OSHA Permissible Exposure Limit or other exposure limits) may occur in excavations. Monitoring should be conducted for hazardous atmospheres prior to entry and at regular intervals. Ventilation or respiratory protection may be provided to prevent personnel exposures to oxygen deficient or toxic atmospheres. Periodic retesting (at least each shift) of the excavation will be conducted to verify that the atmosphere is acceptable. A log or field book records should be maintained.
- Personnel should not work in excavations that have accumulated water or where water is accumulating unless adequate precautions have been taken. These precautions can include special support or shield systems, water removal systems such as pumps, or safety harnesses and lifelines. Groundwater entering the excavation should be properly directed away and down gradient from the excavation.
- Safety harnesses and lifelines should be worn by personnel entering excavations that qualify as confined spaces.
- Excavations near structures should include support systems such as shoring, bracing, or underpinning to maintain the stability of adjoining buildings, walls, sidewalks, or other structures endangered by the excavation operations.
- Loose rock, excavated or other material, and spoils should be effectively stored and retained at least two and preferably 5 feet or more from the edge of the excavation. Barriers or other effective retaining devices may be used in order to prevent spoils or other materials from falling into the excavation.
- Walkways or bridges with standard guardrails that meet OSHA specifications will be provided where employees, the public, or equipment are required to cross over excavations.
- Adequate barrier physical protection should be provided and excavations should be barricaded or covered when not in use or left unattended. Excavations should be backfilled as soon as possible when completed.
- Safety personnel should conduct inspections prior to the start of work and as needed throughout the work shift and after occurrence that increases the hazard of collapse (i.e., heavy rain, vibration from heavy equipment, freezing and thawing, etc.).
- Personnel working in excavations should be protected from cave-ins by sloping and/or benching of excavation walls, a shoring system or some other equivalent means in accordance with OSHA regulations. Soil type is important in the

determination of the angle of repose for sloping and benching, and the design of shoring systems.

2.2.3 Biological Hazards

Biological hazards can result from encounters with mammals, insects, snakes, spiders, ticks, plants, parasites, and pathogens. Mammals can bite or scratch when cornered or surprised. The bite or scratch can result in local infection with systemic pathogens or parasites. Insect and spider bites can result in severe allergic reactions in sensitive individuals. Exposure to poison ivy, poison oak or poison sumac results in skin rash. Ticks are a vector for a number of serious diseases. Dead animals, organic wastes, and contaminated soil and water can harbor parasites and pathogens. These hazards will be reduced to non-existent if work is conducted during late fall and winter months. The following are highlighted because they represent more likely concerns for the site-specific tasks and location:

Bees, Ants, Wasps and Hornets. Sensitization by the victim to the venom from repeated stings can result in anaphylactic reactions. If a stinger remains in the skin, it should be removed by teasing or scraping, rather than pulling. An ice cube placed over the sting will reduce pain. An analgesic-corticosteroid lotion is often useful. People with known hypersensitivity to such stings should consult with their doctor about carrying a kit containing an antihistamine and aqueous epinephrine in a pre-filled syringe when in endemic areas. Nests and hives for bees, wasps, hornets and yellow jackets often occur in the ground, trees and brush. Before any nests or hives are disturbed, an alternate sampling location should be selected. If the sample location cannot be relocated, site personnel who may have allergic reactions shall not work in these areas.

Storm Conditions. When lightening is within 10 miles of the work site, all personnel should evacuate to a safe area.

Sun. When working in the sun, personnel should apply appropriate sun screening lotions (30 sun screen or above), and/or wear long sleeve clothing and hats.

Field personnel should refrain from handling any foreign objects such as hypodermic needles, glass, etc.

3.0 SAFE WORKING PRACTICES

3.1 General Practices

The following general safe work practices apply:

• Eating, drinking, chewing gum or tobacco and smoking are prohibited within the work area as part of safe work practices.

- Contact with potentially contaminated substances should be avoided. Puddles, pools, mud, etc. should not be walked through if possible. Kneeling, leaning, or sitting on equipment or on the ground should be avoided whenever possible.
- Upon leaving the work area, hands, face and other exposed skin surfaces should be thoroughly washed.
- Unusual site conditions shall be promptly conveyed to the site manager and safety personnel as well as the project management for resolution.
- A first-aid kit shall be available at the site.
- Field personnel should use all their senses to alert themselves to potentially dangerous situations (i.e., presence of strong, irritating, or nauseating odors).
- Personal hygiene practices such as no eating, drinking or smoking will be followed.
- If severe dusty conditions hazardous to the crew are present, soils will be dampened to mitigate dust. All equipment will be cleaned before leaving the work area.
- Field personnel must attend safety briefings and should be familiar with the physical characteristics of the investigation, including:
 - Accessibility to associates, equipment, and vehicles.
 - Areas of known or suspected contamination.
 - Site access.
 - Routes and procedures to be used during emergencies.
 - Personnel will perform all investigation activities with a buddy who is able to:
 - Provide his or her partner with assistance.
 - Notify management / emergency personnel if emergency help is needed.
- Excavation activities shall be terminated immediately in event of thunder and/or electrical storm.
- The use of alcohol or drugs at the site is strictly prohibited.

4.0 PERSONAL SAFETY EQUIPMENT

As required by OSHA in 29 CFR 1920.132, this plan constitutes a workplace hazard assessment to select personal protective equipment (PPE) to perform the site investigation.

The PPE to be donned by on-site personnel during this investigation are those associated with the industry standard of level D. Protective clothing and equipment to initiate the project will include:

- Work clothes
- Work boots
- Work gloves as necessary
- Hard hat if work is conducted in areas with overhead danger
- Hearing protection as necessary

Modifications may include chemically resistant gloves, boots/booties, and overalls. If monitoring levels indicate levels requiring respiratory protection (sustained readings at or above 5 ppm above a daily established background), work will be halted pending discussions with field and office management.

5.0 SITE CONTROL

Site control will be established near each work zone (drilling or excavation locations). The purpose is to control access to the immediate excavation/trenches from individuals not associated with the project. Site control will be established within ten feet of the drilling unit or other heavy equipment. The work area will be appropriately designated as an exclusion area.

5.1 Work Zones (For excavations/drilling using heavy equipment or deeper than 3 feet)

Each excavation will be set up in work zones to include an exclusion area and support zone. Exact configuration of each zone is dependent upon location, weather conditions, wind direction and topography. The safety manager will establish the control areas daily at each excavation.

An area of 10 feet (as practical) around each excavation will be designated as the exclusion area. This is the area where potential physical hazards are most likely to be encountered by field personnel. The size of the exclusion area may be altered to accommodate site conditions and the drilling/excavation location. A personal decontamination area will be established at the perimeter of the work zone consisting primarily of a boot wash.

A support area will be defined for each field activity. Support equipment will be located in this clean area. Normal work clothes are appropriate within this area. The location of this area depends on factors such as accessibility, wind direction (upwind of the operation.), and resources (i.e., roads, shelter, utilities). The location of this zone will be established daily.

Upon completion of each test pit all excavation, the excavation will be filled (no pit will be left open unattended) and support equipment will be steam cleaned before leaving the site.

6.0 EMERGENCY INFORMATION

In the event of an emergency, the field team members or the site safety manager will employ emergency procedures. A copy of emergency information will be kept in the field vehicle and will be reviewed during the initial site briefing. Copies of emergency telephone numbers and directions to the nearest hospital will be prominently posted in the field vehicle.

6.1 Emergency Medical Treatment and First Aid

A first aid kit large enough to accommodate anticipated emergencies will be kept in the field vehicle. If any injury should require advanced medical assistance, emergency personnel will be notified and the victim will be transported to the hospital.

In the event of an injury or illness, work will cease until the safety manager and field manager have examined the cause of the incident and have taken appropriate corrective action. Any injury or illness, regardless of extent, is to be reported to the project manager.

6.2 Emergency Telephone Numbers and Hospital

Emergency telephone numbers for medical and chemical emergencies will be posted in the field vehicle are listed below:

Ambulance	911
Fire	911
Police - NYS Troopers	911
Poison Control Center	1-800-888-7655
PEI Health & Safety Manager:	
Mr. Peter J. Gorton: Wor	·k - 821-1650
	Cellular - 308-8220
NYSDEC Spills Hotline-1-800-45	57-7362
NYSDEC Project Manager – Mic	chael Hinton-716-851-7220
NYSDOH Project Manager – Ma	atthew Forcucci-716-847-4385
Remington lofts on the Canal – 7	Fom Barrett
-	

HospitalDegraff Memorial Hospital445 Tremont St., North Tonawanda, NY

Directions	Mileage
Start out going East on Sweeney St toward Oliver	0.3 miles

Turn left on to Payne Ave.	0.1 miles
Turn right on to Tremont St	0.3 miles
End at 445 Tremont Degraff Hospital. Estimate Travel time 2 minutes	

See attached map for route to the Hospital Facility

Verbal communications between workers or use of a site vehicle horn repeated at intervals of three short beeps shall be used to signal all on-site personnel to immediately evacuate the area and report to the vehicle parking area.

6.3 Emergency Standard Operating Procedures

The following standard operating procedures are to be implemented by on-site personnel in the event of an emergency. The field managers shall manage response actions.

- Upon notification of injury to personnel, the designated <u>emergency signal shall</u> <u>be sounded</u>, if necessary. All personnel are to terminate their work activities and assemble in a safe location. The emergency medical service and hospital emergency room shall be notified of the situation. If the injury is minor, but requires medical attention, the field safety manager shall accompany the victim to the hospital and provide assistance in describing the circumstances of the accident to the attending physician.
- Upon notification of an equipment failure or accident, the field safety manager

shall determine the effect of the failure or accident on site operations. If the failure or accident affects the safety of personnel or prevents completion of the scheduled operations, all personnel are to leave the area until the situation is evaluated and appropriate actions taken.

• Upon notification of a natural disaster, such as tornado, high winds, flood, thunderstorm or earthquake, on-site work activities are to be terminated and all personnel are to evacuate the area.

6.4 Emergency Response Follow-Up Actions

Following activation of the Emergency Response Plan, the field safety manager shall notify the project manager and other PEI managers. The field safety manager shall submit a written report documenting the incident within two working days.

6.5 Medical Treatment for Site Accidents/Incidents

The field safety manager shall be informed of any site-related injury, exposure or medical condition resulting from work activities. All personnel are entitled to medical evaluation and treatment in the event of a site accident or incident.

6.6 Site Medical Supplies and Services

The field safety manager or a trained first aid crew member shall evaluate all injuries at the site and render emergency first-aid treatment as appropriate. If an injury is minor but requires professional medical evaluation, the field safety manager shall escort the employee to the appropriate emergency room. For major injuries occurring at the site, emergency services shall be requested.

A first-aid kit shall be available, readily accessible and fully stocked. The first-aid kit shall be located within specified vehicles used for on-site operations.

6.7 Universal Precautions

Universal precautions shall be followed on-site at all times. This consists of treating all human blood and certain body fluids as being infected with Human Immune Deficiency Virus (HIV), Hepatitis B virus (HBV), and other blood borne pathogens. Clothing and first-aid materials visibly contaminated with blood or other body fluids will be collected and placed into a biohazard bag. Individuals providing first aid or cleanup of blood- or body-fluid contaminated items should wear latex gloves. If providing CPR, a one-way valve CPR device should be used. Biohazard bags, latex gloves, and CPR devices will be included in the site first-aid kits.

Work areas visibly contaminated with blood or body fluids shall be cleaned using a 1:10

dilution of household bleach. If equipment becomes contaminated with blood or body fluids, and can not be sufficiently cleaned, the equipment shall be placed in a plastic bag and sealed.

Any personnel servicing the equipment shall be made aware of the contamination, so that proper precautions can be taken.

7.0 RECORD KEEPING

The Field Manager and safety manager are responsible for site record keeping. Prior to the start of work, they will review this Plan.

A Site Safety Briefing will be completed prior to the initiation of investigation activities. This shall be recorded in the field log book An Accident Report should be completed by the Field Manager in the event that an accident occurs and forwarded to the office administrative manager.

8.0 PERSONNEL TRAINING REQUIREMENTS

8.1 Initial Site Entry Briefing

Prior to initial site entry, the field safety manager shall provide all personnel (including site visitors) with site-specific health and safety training. A record of this training shall be maintained. This training shall consist of the following:

- Discussion of the elements contained within this plan
- Discussion of responsibilities and duties of key site personnel
- Discussion of physical, biological and chemical hazards present at the site
- Discussion of work assignments and responsibilities
- Discussion of the correct use and limitations of the required PPE
- Discussion of the emergency procedures to be followed at the site
- Safe work practices to minimize risk
- Communication procedures and equipment
- Emergency notification procedures

8.2 Daily Safety Briefings

The field safety manager will determine if a daily safety briefing with all site personnel is needed. The briefing shall discuss the specific tasks scheduled for that day and the following topics:

- Specific work plans
- Physical, chemical or biological hazards anticipated
- Fire or explosion hazards
- PPE required

- Emergency procedures, including emergency escape routes, emergency medical treatment, and medical evacuation from the site
- Weather forecast for the day
- Buddy system
- Communication requirements
- Site control requirements
- Material handling requirements

APPENDIX F

QA/QC PLAN

QUALITY ASSURANCE/ QUALITY CONTROL PLAN

Page No.

1.0	INTRODUCTION	1
2.0	DATA QUALITY OBJECTIVES	3
	2.1 Background	
	2.2 QA Objectives for Chemical Data Measurement	
	2.2.1 Precision	
	2.2.2 Accuracy	
	2.2.3 Representativeness	
	2.2.4 Comparability	
	2.2.5 Completeness	
3.0	SAMPLING LOCATIONS, CUSTODY, HOLDING TIMES, & ANALYSIS	
0.0		
4.0	CALIBRATION PROCEDURES AND FREQUENCY	5
	4.1 Analytical Support Areas	
	4.2 Laboratory Instruments	
5.0	INTERNAL QUALITY CONTROL CHECKS	
	5.1 Batch QC	
	5.2 Matrix-Specific QC	
6.0	CALCULATION OF DATA QUALITY INDICATORS	8
	6.1 Precision	
	6.2 Accuracy	8
	6.3 Completeness	8
	•	
7.0	CORRECTIVE ACTIONS	9
	7.1 Incoming Samples	9
	7.2 Sample Holding Times	9
	7.3 Instrument Calibration	9
	7.4 Reporting Limits	9
	7.5 Method QC	10
	7.6 Calculation Errors	10
8.0	DATA REDUCTION, VALIDATION, AND USABILITY	10
	8.1 Data Reduction	
	8.2 Data Validation	
9.0	REFERENCES	11

QUALITY ASSURANCE/QUALITY CONTROL PLAN

1.0 INTRODUCTION

This Quality Assurance/Quality Control Plan is designed to provide an overview of QA/QC procedures. It will give specific methods and QA/QC procedures for chemical testing of environmental samples obtained from the site. In addition, it will ensure the quality of the data produced.

The organizational structure for this project is presented in the Work Plan. It identifies the names of key project personnel. The project manager will be responsible for verifying that QA procedures are followed in the field. This will provide for the valid collection of representative samples. The Project Manger will be in direct contact with the analytical laboratory to monitor laboratory activities so that holding times and other QA/QC requirements are met. The numbers of soil/water samples that may be collected and analytical parameters/methods are provided in Table-1 below.

The Project Field Inspector will be responsible for coordinating the activities of all personnel involved with implementing the project in the field, and will be in daily communication with the Project Manager. This person will verify that all field investigation sampling work is carried out in accordance with the approved project Field Sampling Plan.

In addition to overall project coordination, the Project Manager will be responsible for overseeing both the analytical and field QA/QC activities. The ultimate responsibility for maintaining quality throughout the project rests with the Project Manager.

TABLE-1 ANALYTICAL SUMMARY TABLE – SOIL/WATER

PARAMETER EPA METHOD (1) SOIL (2) GW (3)

The analytical laboratory proposed for use for the analysis of samples will be a certified NYSDOH ELAP laboratory for the appropriate categories. The QA Manager of the laboratory will be responsible for performing project-specific audits and for overseeing the quality control data generated.

2.0 DATA QUALITY OBJECTIVES

2.1 Background

Data quality objectives (DQOs) are qualitative and quantitative statements, which specify the quality of data required supporting the investigation for the site. DQOs focus on the identification of the end use of the data to be collected. The project DQOs will be achieved utilizing the definitive data category, as outlined in *Guidance for the Data Quality Objectives Process*, EPA QA/G-4 (September 1994). All sample analyses will provide definitive data, which are generated using rigorous analytical methods, such as reference methods approved by the United States Environmental Protection Agency (USEPA). The purpose of this investigation is to determine the nature and extent of contamination at the site.

Within the context of the purpose stated above, the project DQOs for data collected during this investigation are:

- To assess the nature/extent of contamination in surface and subsurface soil, and groundwater.
- To maintain the highest possible scientific/professional standards for each procedure.
- To develop enough information to assess if the levels of contaminates identified in the media sampled exceed regulatory guidelines.

2.2 QA Objectives for Chemical Data Measurement

Sample analytical methodology for the media sampled and data deliverables will meet the requirements in NYSDEC Analytical Services Protocol, October 2000 edition. Laboratories will be instructed that completed **Sample Preparation and Analysis Summary forms** are to be submitted with the analytical data packages. The laboratory also will be instructed that matrix interferences must be cleaned up, to the extent practicable. Data usability summary reports (DUSRs) will be generated. In order to achieve the definitive data category described above, the data quality indicators of precision, accuracy, representativeness, comparability, and completeness will be measured during offsite chemical analysis.

2.2.1 Precision

Precision examines the distribution of the reported values about their mean. The distribution of reported values refers to how different the individual reported values are from the average reported value. Precision may be affected by the natural variation of the matrix or contamination within that matrix, as well as by errors made in field and/or laboratory handling procedures. Precision is evaluated using analyses of a laboratory matrix spike/matrix spike duplicate (for organics) and matrix duplicates (for inorganics), which not only exhibit sampling and analytical precision, but indicate analytical precision through the reproducibility of the analytical results. Relative Percent Difference (RPD) is used to evaluate precision. RPD criteria must meet the method requirements identified in the attached table.

2.2.2 Accuracy

Accuracy measures the analytical bias in a measurement system. Sources of error are the sampling process, field contamination, preservation, handling, sample matrix, sample preparation, and analysis techniques. These data help to assess the potential concentration contribution from various outside sources. The laboratory objective for accuracy is to equal or exceeds the accuracy demonstrated for the applied analytical methods on samples of the same matrix. The percent recovery criterion is used to estimate accuracy based on recovery in the matrix spike/matrix spike duplicate and matrix spike blank samples. The spike and spike duplicate, which will give an indication of matrix effects that may be affecting target compounds is also a good gauge of method efficiency.

2.2.3 Representativeness

Representativeness expresses the degree to which the sample data accurately and precisely represent the characteristics of a population of samples, parameter variations at a sampling point, or environmental conditions. Representativeness is a qualitative parameter, which is most concerned with the proper design of the sampling program or sub-sampling of a given sample. Objectives for representativeness are defined for sampling and analysis tasks and are a function of the investigative objectives. The sampling procedures, as described in the Field Sampling Plan (Appendix D), have been selected with the goal of obtaining representative samples for the media of concern.

2.2.4 Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. A DQO for this program is to produce data with the greatest possible degree of comparability. This goal is achieved through using standard techniques to collect and analyze representative samples and reporting analytical results in appropriate units. Complete field documentation will support the assessment of comparability. Comparability is limited by the other parameters (e.g., precision, accuracy, representative-ness, completeness, comparability), because only when precision and accuracy are known can data sets be compared with confidence. In order for data sets may be comparable, it is imperative that contract-required methods and procedures be explicitly followed.

2.2.5 Completeness

Completeness is defined as a measure of the amount of valid data obtainable from a measurement system compared to the amount that was expected to be obtained under normal conditions. It is important that appropriate QA procedures be maintained to verify that valid data are obtained in order to meet project needs. For the data generated, a goal of 90% is required for completeness (or usability) of the analytical data. If this goal is not met, then NYSDEC and PEI project personnel will determine whether the deviations might cause the data to be rejected.

3.0 SAMPLING LOCATIONS, CUSTODY, HOLDING TIMES, & ANALYSIS

Sampling locations and procedures are discussed in Work Plan. Procedures addressing field and laboratory sample chain-of-custody and holding times are presented in the Appendix D - Field Sampling Plan. All holding times begin with validated time of sample receipt (VTSR) at the laboratory. The laboratory must meet the method required detection limits which are referenced within the methods.

4.0 CALIBRATION PROCEDURES AND FREQUENCY

In order to obtain a high level of precision and accuracy during sample processing procedures, laboratory instruments must be calibrated properly. Several analytical support areas must be considered so the integrity of standards and reagents is upheld prior to instrument calibration. The following sections describe the analytical support areas and laboratory instrument calibration procedures.

4.1 Analytical Support Areas

Prior to generating quality data, several analytical support areas must be considered; these are detailed in the following paragraphs.

<u>Standard/Reagent Preparation</u> - Primary reference standards and secondary standard solutions shall be obtained from National Institute of Standards and Technology (NIST), or other reliable commercial sources to verify the highest purity possible. The preparation and maintenance of standards and reagents will be accomplished according to the methods referenced. All standards and standard solutions are to be formally documented (i.e., in a logbook) and should identify the supplier, lot number, purity/concentration, receipt/preparation date, preparers name, method of preparation, expiration date, and any other pertinent information. All standard solutions shall be validated prior to use. Care shall be exercised in the proper storage and handling of standard solutions (e.g., separating volatile standards from nonvolatile standards). The laboratory shall continually monitor the quality of the standards and reagents through well documented procedures.

<u>Balances</u> - The analytical balances shall be calibrated and maintained in accordance with manufacturer specifications. Calibration is conducted with two Class AS" weights that bracket the expected balance use range. The laboratory shall check the accuracy of the balances daily and they must be properly documented in permanently bound logbooks.

<u>Refrigerators/Freezers</u> - The temperature of the refrigerators and freezers within the laboratory shall be monitored and recorded daily. This will verify that the quality of the standards and reagents is not compromised and the integrity of the analytical samples is upheld. Appropriate acceptance ranges (2 to 6° C for refrigerators) shall be clearly posted on each unit in service.

<u>Water Supply System</u> - The laboratory must maintain a sufficient water supply for all project needs. The grade of the water must be of the highest quality (analyte-free) in order to eliminate false-positives from the analytical results. Ultraviolet cartridges or carbon absorption treatments

are recommended for organic analyses and ion-exchange treatment is recommended for inorganic tests. Appropriate documentation of the quality of the water supply system(s) will be performed on a regular basis.

4.2 Laboratory Instruments

Calibration of instruments is required to verify that the analytical system is operating properly and at the sensitivity necessary to meet established quantitation limits. Each instrument for organic and inorganic analyses shall be calibrated with standards appropriate to the type of instrument and linear range established within the analytical method(s). Calibration of laboratory instruments will be performed according to specified methods.

In addition to the requirements stated within the analytical methods, the contract laboratory will be required to analyze an additional low level standard at or near the detection limits. In general, standards will be used that bracket the expected concentration of the samples. This will require the use of different concentration levels, which are used to demonstrate the instrument's linear range of calibration.

Calibration of an instrument must be performed prior to the analysis of any samples and then at periodic intervals (continuing calibration) during the sample analysis to verify that the instrument is still calibrated. If the contract laboratory cannot meet the method required calibration requirements, corrective action shall be taken as discussed in Section 7.0. All corrective action procedures taken by the contract laboratory are to be documented, summarized within the case narrative, and submitted with the analytical results.

5.0 INTERNAL QUALITY CONTROL CHECKS

Internal QC checks are used to determine if analytical operations at the laboratory are in control, as well as determining the effect sample matrix may have on data being generated. Two types of internal checks are performed and are described as batch QC and matrix-specific QC procedures. The type and frequency of specific QC samples performed by the contract laboratory will be according to the specified analytical method and project specific requirements. Acceptable criteria and/or target ranges for these QC samples are presented within the referenced analytical methods.

QC results which vary from acceptable ranges shall result in the implementation of appropriate corrective measures, potential application of qualifiers, and/or an assessment of the impact these corrective measures have on the established data quality objectives. Quality control samples including any project-specific QC will be analyzed are discussed below.

5.1 Batch QC

<u>Method Blanks</u> - A method blank is defined as laboratory-distilled or deionized water that is carried through the entire analytical procedure. The method blank is used to determine the level of laboratory background contamination. Method blanks are analyzed at a frequency of one per analytical batch.

<u>Matrix Spike Blank Samples</u> - A matrix spike blank (MSB) sample is an aliquot of water spiked (fortified) with all the elements being analyzed for calculation of precision and accuracy to verify that the analysis that is being performed is in control. A MSB will be performed for each matrix and organic parameter only.

5.2 Matrix-Specific QC

<u>Matrix Spike Samples</u> - An aliquot of a matrix is spiked with known concentrations of specific compounds as stipulated by the methodology. The matrix spike (MS) and matrix spike duplicate (MSD) are subjected to the entire analytical procedure in order to assess both accuracy and precision of the method for the matrix by measuring the percent recovery and relative percent difference of the two spiked samples. The samples are used to assess matrix interference effects on the method, as well as to evaluate instrument performance. MS/MSDs are analyzed at a frequency of one each per 20 samples per matrix.

<u>Matrix Duplicates</u> - The matrix duplicate (MD) is two representative aliquots of the same sample which are prepared and analyzed identically. Collection of duplicate samples provides for the evaluation of precision both in the field and at the laboratory by comparing the analytical results of two samples taken from the same location. Obtaining duplicate samples from a soil matrix requires homogenization (except for volatile organic compounds) of the sample aliquot prior to filling sample containers, in order to best achieve representative samples. Every effort will be made to obtain replicate samples; however, due to interferences, lack of homogeneity, and the nature of the soil samples, the analytical results are not always reproducible.

<u>Rinsate (Equipment) Blanks</u> - A rinsate blank is a sample of laboratory demonstrated analyte-free water passed through and over the cleaned sampling equipment. A rinsate blank is used to indicate potential contamination from ambient air and from sample instruments used to collect and transfer samples. This water must originate from one common source within the laboratory and must be the same water used by the laboratory performing the analysis. The rinsate blank should be collected, transported, and analyzed in the same manner as the samples acquired that day. Rinsate blanks for nonaqueous matrices should be performed at a rate of 10 percent of the total number of samples collected throughout the sampling event. Rinse blanks will not be performed on samples (i.e., groundwater) where dedicated disposable equipment is used.

<u>Trip Blanks</u> - Trip blanks are not required for nonaqueous matrices. Trip blanks are required for aqueous sampling events. They consist of a set of sample bottles filled at the laboratory with laboratory demonstrated analyte free water. These samples then accompany the bottles that are prepared at the lab into the field and back to the laboratory, along with the collected samples for analysis. These bottles are never opened in the field. Trip blanks must return to the lab with the

same set of bottles they accompanied to the field. Trip blanks will be analyzed for volatile organic parameters. Trip blanks must be included at a rate of one per volatile sample shipment.

6.0 CALCULATION OF DATA QUALITY INDICATORS

6.1 Precision

Precision is evaluated using analyses of a field duplicate and/or a laboratory MS/MSD which not only exhibit sampling and analytical precision, but indicate analytical precision through the reproducibility of the analytical results. RPD is used to evaluate precision by the following formula:

$$RPD = \underbrace{(X_1 - X_2)}_{[(X_1 + X_2)/2]} x \ 100\%$$

where:

 X_1 = Measured value of sample or matrix spike X_2 = Measured value of duplicate or matrix spike duplicate

Precision will be determined through the use of MS/MSD (for organics) and matrix duplicates (for inorganics) analyses.

6.2 Accuracy

Accuracy is defined as the degree of difference between the measured or calculated value and the true value. The closer the numerical value of the measurement comes to the true value or actual concentration, the more accurate the measurement is. Analytical accuracy is expressed as the percent recovery of a compound or element that has been added to the environmental sample at known concentrations before analysis. Analytical accuracy may be assessed through the use of known and unknown QC samples and spiked samples. It is presented as percent recovery. Accuracy will be determined from matrix spike, matrix spike duplicate, and matrix spike blank samples, as well as from surrogate compounds added to organic fractions (i.e., volatiles, semivolatiles, PCB), and is calculated as follows:

Accuracy (%R) =
$$(X_s - X_u) = x 100\%$$

K

where:

X_s - Measured value of the spike sample

X_u - Measured value of the unspiked sample

K - Known amount of spike in the sample

6.3 Completeness

Completeness is calculated on a per matrix basis for the project and is calculated as follows:

Completeness (%C) = $\frac{(X_v - X_n)}{N} x 100\%$

where:

 X_v - Number of valid measurements

X_n - Number of invalid measurements

N - Number of valid measurements expected to be obtained

7.0 CORRECTIVE ACTIONS

Laboratory corrective actions shall be implemented to resolve problems and restore proper functioning to the analytical system when errors, deficiencies, or out-of-control situations exist at the laboratory. Full documentation of the corrective action procedure needed to resolve the problem shall be filed in the project records, and the information summarized in the case narrative. A discussion of the corrective actions to be taken is presented in the following sections.

7.1 Incoming Samples

Problems noted during sample receipt shall be documented by the laboratory. The PEI Project Manager shall be contacted immediately for problem resolution. All corrective actions shall be documented thoroughly.

7.2 Sample Holding Times

If any sample extraction and/or analyses exceed method holding time requirements, the PEI Project Manager shall be notified immediately for problem resolution. All corrective actions shall be documented thoroughly.

7.3 Instrument Calibration

Sample analysis shall not be allowed until all initial calibrations meet the appropriate requirements. All laboratory instrumentation must be calibrated in accordance with method requirements. If any initial/continuing calibration standards exceed method QC limits, recalibration must be performed and, if necessary, reanalysis of all samples affected back to the previous acceptable calibration check.

7.4 **Reporting Limits**

The laboratory must meet the method required detection limits listed in NYSDEC ASP, 10/95 criteria. If difficulties arise in achieving these limits due to a particular sample matrix, the laboratory must notify PEI project personnel for problem resolution. In order to achieve those detection limits, the laboratory must utilize all appropriate cleanup procedures in an attempt to retain the project required detection limits. When any sample requires a secondary dilution due to high levels of target analytes, the laboratory must document all initial analyses and secondary dilution results. Secondary dilution will be permitted only to bring target analytes within the linear range of calibration. If samples are analyzed at a secondary dilution with no target analytes

detected, the PEI Project Manager will be immediately notified so that appropriate corrective actions can be initiated.

7.5 Method QC

All QC method-specified QC samples, shall meet the method requirements referenced in the analytical methods. Failure of method-required QC will result in the review and possible qualification of all affected data. If the laboratory cannot find any errors, the affected sample(s) shall be reanalyzed and/or re-extracted/redigested, then reanalyzed within method-required holding times to verify the presence or absence of matrix effects. If matrix effect is confirmed, the corresponding data shall be flagged accordingly using the flagging symbols and criteria. If matrix effect is not confirmed, then the entire batch of samples may have to be reanalyzed and/or re-extracted/redigested, then reanalyzed at no cost to the PEI. PEI shall be notified as soon as possible to discuss possible corrective actions should unusually difficult sample matrices be encountered.

7.6 Calculation Errors

All analytical results must be reviewed systematically for accuracy prior to submittal. If upon data review calculation and/or reporting errors exist, the laboratory will be required to reissue the analytical data report with the corrective actions appropriately documented in the case narrative.

8.0 DATA REDUCTION, VALIDATION, AND USABILITY

8.1 Data Reduction

Laboratory analytical data are first generated in raw form at the instrument. These data may be either in a graphic or printed tabular format. Specific data generation procedures and calculations are found in each of the referenced methods. Analytical results must be reported consistently. Identification of all analytes must be accomplished with an authentic standard of the analyte traceable to NIST or USEPA sources. Individuals experienced with a particular analysis and knowledgeable of requirements will perform data reduction.

8.2 Data Validation

Data validation is a systematic procedure of reviewing a body of data against a set of established criteria to provide a specified level of assurance of validity prior to its intended use. All analytical samples collected will receive a limited data review. The data validation will be limited to a review of holding times, completeness of all required deliverables, review of QC results (surrogates, spikes, duplicates) and a 10% check of all samples analyzed to ensure they were analyzed properly. The methods as well as the general guidelines presented in the following documents will be used during the data review USEPA *Contract Laboratory Program* (*CLP*) *Organic Data Review, SOP Nos. HW-6, Revision #11* and USEPA *Evaluation of Metals Data for the Contract Laboratory Program* based on 3/90, SOW, Revision XI. These documents will be used with the following exceptions:

- Technical holding times will be in accordance with NYSDEC ASP, 10/95 edition.
- Organic calibration and QC criteria will be in accordance with NYSDEC ASP, 10/95 edition. Data will be qualified if it does not meet NYSDEC ASP, 10/95 criteria.

Where possible, discrepancies will be resolved by the PEI project manager (i.e., no letters will be written to laboratories). A complete analytical data validation is not anticipated. However, if the initial limited data audit reveals significant deviations and problems with the analytical data, project personnel may recommend a complete variation of the data.

9.0 **REFERENCES**

Comprehensive Environmental Response Compensation and Liability Act (CERCLA) Quality Assurance Manual, Final Copy, Revision I, October 1989.

National Enforcement Investigations Center of USEPA Office of Enforcement. *NEIC Policies and Procedures*. Washington: USEPA.

New York State Department of Environmental Conservation (NYSDEC). 1995. *Analytical Services Protocol*, (ASP) 10/95 Edition. Albany: NYSDEC

APPENDIX G

INSPECTION FORMS

Panamerican Environmental. Inc
2390 Clinton Street Buffalo, New York
SITE WIDE INSPECTION FORM
Date:
Site Name:
Location:
General Site Conditions:
Weather Conditions:
Compliance/Evaluation ICs and ECs :
Site management Activities (sampling, H & S Inspection, etc.):
Compliance With Permits and O & M Plan:
Records Compliance:
General Comments:
INSPECTOR'S NAME:

APPENDIX H

ENVIRONMENTAL EASEMENT

Clerk:

Instr #:

Doc Grp:

Descrip:

Num Pgs:

NIAGARA COUNTY - STATE OF NEW YORK WAYNE F. JAGOW - NIAGARA COUNTY CLERK P.O. BOX 461, LOCKPORT, NEW YORK 14095-0461

COUNTY CLERK'S RECORDING PAGE ***THIS PAGE IS PART OF THE DOCUMENT - DO NOT DETACH***

RECEIPT NO. : 201056660

TH

10

DEED

2010-14851 Rec Date: 09/14/2010 10:59:33 AM

EASEMENT

Recording:

Cover Page Recording Fee Cultural Ed Records Management - Coun Records Management - Stat TP584	8.00 32.00 14.25 1.00 4.75 5.00
Sub Total:	65.00
Transfer Tax Transfer Tax	0.00
Sub Total:	0.00

REMINGTON LOFTS ON THE CANAL LLC Total: 65.00 Party1: 65.00 Party2: NORTH TONAWANDA Town:

***** Transfer Tax *****

Transfer Tax# : 599

Consideration:	1.00
Transfer Tax:	0.00

Record and Return To:

HARRIS BEACH PLLC JOSEPH AMICONE ESQ 677 BROADWAY STE 1101 ALBANY NY 12207

County: Niagara

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this 15 day of September , 20/0, between Owner(s) Remington Lofts on the Canal, LLC, having an office at 298 Main Street, Suite 400, Buffalo, New York 14202, County of Niagara, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233.

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 184 - 185 Sweeney Street, in the City of North Tonawanda, County of Niagara and State of New York. known and designated on the tax map of the County Clerk of Niagara as tax map parcel numbers: Section 185.09 Block 1 Lot 21, being the same as that property conveyed to Grantor by deed dated November 19, 2007 and recorded in the Niagara County Clerk's Office in Book 3421 at Page 1, comprising approximately 1.8647 ± acres, and hereinafter more fully described in the Land Title Survey dated May 15, 2009 prepared by James L. Shisler, L.S., P.C. Professional Land Surveyors, which will be attached to the Site Management Plan. The property description (the "Controlled Property") is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of human health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

Environmental Easement Page 1

201056550

2010-14851 09/14/2010 10:59:33 AM 10 Pages EASEMENT

Wayne F. Jagow, Niagara County Clerk

Clerk: TH

BCA Index No.: B9-0780-08-06

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of BCA Index No. B9-0780-08-06, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement")

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.

A. (1) The Controlled Property may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

(2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);

(3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP.

(4) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

(5) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

(6) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

(7) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP.

(8) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP.

(9) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

B. The Controlled Property shall not be used for raising livestock or producing animal products for human consumption, and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Regional Remediation Engineer NYSDEC – Region 9 Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2915, Phone: (716) 851 - 7220

or

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.

E Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL. Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law. County: Niagara

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

G. Grantor covenants and agrees that it shall annually, or such time as NYSDEC may allow, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:

(1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).

(2) the institutional controls and/or engineering controls employed at such site:

(i) are in-place;

(ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved b the NYSDEC and that all controls are in the Department-approved format; and

(iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;

(3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;

(4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;

(5 the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

(6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and

(7) the information presented is accurate and complete.

3. <u>Right to Enter and Inspect.</u> Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. Enforcement

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an

County: Niagara

ra Site No: C932142

interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.

6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: C932142 Office of General Counsel NYSDEC 625 Broadway Albany New York 12233-5500

With a copy to:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law,

recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

9. <u>Extinguishment</u>. This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

REMINGTON LOFTS ON THE CANAL, LLC:

tolu lb

Print Name: Anthony M. Kissling, Manager

Title: UGUBER Date: 8-YS-10

Grantor=s Acknowledgment

STATE OF NEW YORK) COUNTY OF NEW YORK) ss:

COUNTY OF NEW 960On the 15^{4} day of 1000, in the year 20/0, before me, the undersigned, personally appeared 10000 10000, 10000, in the year 20/0, before me, the undersigned, personally appeared 10000 10000 10000, 10000 10000, 10000 10000, 10000 10000, 100000, 10000, 10000, 10000, 100000,

Notary Public - State of New York

EDYTA KOSTKA-MAKOWSKA Notary Public, State of New York No. 01KO5067389 Qualified in Bichmond County Commission Expires Oct. 15

Sep.20. 2010 2:39PM County: Niagara

BCA Index No.: B9-0780-08-06

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Dale A. Desnovers, Director

Division of Remediation

Grantee's Acknowledgment

STATE OF NEW YORK) COUNTY OF Albany) ss:

On the <u>187</u> day of <u>Sectembre</u> in the year 2010, before me, the undersigned, personally appeared <u>Delectore</u>, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that/by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Ű۴ Public - State of New York

David J. Chiuseno Notary Fublic, State of New York No. 01CH5032146 Qualified in Schenectady County, Commission Expires August 22, 2014. Sep.20. 2010 2:39PM County: Niagara

BCA Index No.: B9-0780-08-06

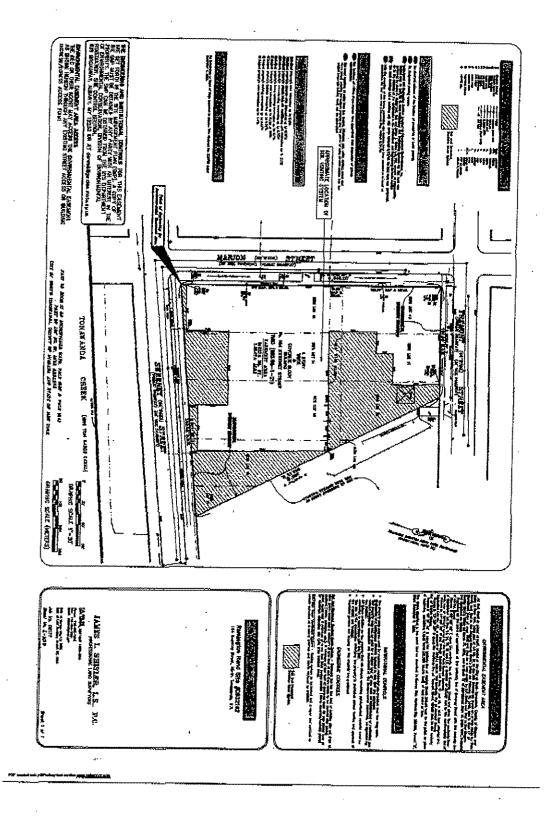
SCHEDULE "A" PROPERTY DESCRIPTION

Remington Rand Site # C932142 184 Sweeney Street, North Tonawanda, N.Y. Section 185.09 Block 1 Lot 21

ENVIRONMENTAL EASEMENT AREA

All that trace or parcel of land, struging in the City of North Tonawanda, County of Ningare and State of New York, being part of Lot No. 81 of the Mile Reserve as a map made by Peter Emsile and filed in the Ningara County Clark's Office an February 10, 1849, now in Rock 17 of Microfilmed Maps of page 1642 and also on a map made by B.F. Betts and filed in the Ningara County Clark's Office or March 31, 1888, now in Rock 17 of Microfilmed Maps at page 1687, baurded and described as follows:

Beginning at the point of intersection of the northerly line of Sweeney Street with the easterly line of Marion Street; Thence N 59° 04 S0° E along the northerly line of Sweeney Street and along the antiherly lines of Subdivision Let Nos. 13, 14, 15, 15 and 17, a distance of 323.62 feet to the contributive line of lands now or formerly owned by the New York Central Redinad; Thence N 44° 00° 03° W and through Subdivision Lor Nos. 17 and 16, a 16.5 feet alterary and Subdivision Let No. 40, at distance of 365.13 Sect to the southerly line of Themont Street; Thence S 73° 33° 30° W along the southerly line of Thement Street; Theoree to the casterly line of Marion Street; Thence S 16° 29° 30° E along the casterly line of Marion Street; 349,00 feet to the point or plane of beginning, containing 1,8647 acres (81,227 square feet) of land more or licet.


The above described is the same land as described in Monroe Title Abstract No. 525799, Parcel "A", dated December 4, 2009.

Sep.20, 2010 2:39PM . STEWART TITLE INS CO County: Niagara

BCA Index No.: B9-0780-08-06

No.6058 P. 11.

SURVEY

APPENDIX I

MAP TO HOSPITAL

All rights reserved. Use subject to License/Copyright Map Legend

Directions and maps are informational only. We make no warranties on the accuracy of their content, road conditions or route usability or expeditiousness. You assume all risk of use. MapQuest and its suppliers shall not be liable to you for any loss or delay resulting from your use of MapQuest. Your use of MapQuest means you agree to our Terms of Use