

PHASE II ENVIRONMENTAL SITE ASSESSMENT 31 WEBSTER STREET NORTH TONAWANDA, NEW YORK

PREPARED FOR:

Mr. George Peters North Tonawanda, New York

PREPARED BY:

GZA GeoEnvironmental of New York Buffalo, New York

June 2010 File No. 21.0056584.00

Copyright © 2010 GZA GeoEnvironmental of New York

GZA GeoEnvironmental of New York

Engineers and Scientists

June 14, 2010 File No. 21.0056584.00

Mr. George Peters
581 Willow Avenue
North Tonawanda, New York
Via email: scoobymip@verizon.net

Re: Phase II Environmental Site Assessment

31 Webster Street

North Tonawanda, New York

Dear Mr. Peters:

GZA was retained to assess if the historic site usage as a gasoline station, at the above referenced property, has affected the Site soil and/or groundwater. Our work included an EM-61 geophysical survey prior to the subsurface investigation, observing soil probes at eleven locations, headspace screening of soil samples taken from the macrocore sampler at the soil probe locations, and chemical analyses of four subsurface soil samples and two groundwater samples.

Based on the results of our investigation, it is GZA's opinion that residual contamination resulting from historic site use appears to be present in the groundwater at the Site. GZA noted an odor and OVM readings at locations SP-5, SP-6, SP-10 and SP-11, generally at depths greater than 6 feet bgs, and within the groundwater. Analytical results did not identify significant soil impact, as is typical of an older, historic type release. Residual VOC and SVOC contamination was identified within the subsurface soil, and groundwater contaminant concentrations exceeded Class GA criteria.

Based on the data collected, it is GZA's opinion that the VOC and SVOC compounds identified are limited to the northern and western portions of the Site. This identified contamination is likely attributed to the historic gasoline station usage. GZA recommends consultation with your environmental attorney on reporting requirements. We recommend the information be provided to the New York State Department of Environmental Conservation (NYSDEC) for review. It is our opinion that the contamination identified at SP-5 is reportable. Our work indicates the Site groundwater has been impacted by historic Site operations.

We trust this report satisfies your present needs. Should you have any questions or require additional information following your review, please do not hesitate to contact the undersigned.

535 Washington St 11th Floor Buffalo New York 14203 716-685-2300 FAX 716-685-3629 http://www.gza.com Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

Jennifer Davide Environmental Scientist

But a. Klade

Michele Wittman, P.G. Senior Project Manager

Michele M. Watmon

Bart A. Klettke, P.E. Associate Principal

TABLE OF CONTENTS

	Page
1.00 INTRODUCTION	1
2.00 PURPOSE AND S	COPE OF WORK 1
3.00 FIELD STUDIES.	
3.20 SOIL PROBE 3.30 HEADSPACE	AGNETIC GEOPHYSICAL SURVEY 2 INSTALLATIONS 3 SCREENING PROCEDURE 3 TER COLLECTION 4
4.00 ANALYTICAL LA	ABORATORY TESTING4
5.00 SUBSURFACE CO	ONDITIONS4
6.00 ANALYTICAL TI	EST RESULTS5
6.10 SUBSURFAC	
7.00 CONCLUSIONS A	ND RECOMMENDATIONS 7
TABLES	
TABLE 1 TABLE 2 TABLE 3	ANALYTICAL TESTING PROGRAM SUMMARY SOIL ANALYTICAL TESTING RESULTS SUMMARY GROUNDWATER ANALYTICAL TESTING RESULTS SUMMARY
FIGURES	
FIGURE 1 FIGURE 2 FIGURE 3	LOCUS PLAN SITE PLAN GEOPHYSICAL SURVEY PLAN
APPENDICES	
APPENDIX A APPENDIX B APPENDIX C	LIMITATIONS GEOPHYSICAL SURVEY SOIL PROBE LOGS ANALYTICAL TEST RESULTS

1.00 INTRODUCTION

In accordance with our April 26, 2010 proposal, GZA GeoEnvironmental of New York (GZA) performed a Phase II Environmental Site Assessment (ESA) at 31 Webster Street, North Tonawanda, New York (Site) for Mr. George Peters. The Site consists of one parcel, approximately 204 by 95 feet, occupied by an approximate 2,700 square foot building. The Site is located on the southeast corner of Webster Street and Tremont Street. A Locus Plan is attached as Figure 1 and a Site Plan as Figure 2.

BACKGROUND

GZA completed a Phase I Environmental Site Assessment¹ at the Site that identified the following recognized environmental conditions (RECs).

• Based on a review of the available historic information, the Site was used as filling station from the 1940s to 1973. Although a 1973 letter indicates the tanks were removed, no analytical testing data was available to assure the historic tanks did not leak. Additionally, one 500-gallon "sludge tank" was still present in 1973. The potential exists for underground tanks to still remain at the Site. Possible historic releases from the previous filling station usage may have impacted the soil and/or groundwater at the Site.

2.00 PURPOSE AND SCOPE OF WORK

The purpose of this Phase II ESA is to assess if the historic site usage as a gasoline station has affected the Site soil and/or groundwater. To accomplish this, the following activities were done.

- Contacted our subcontractor, AMEC Geomatrix, Inc. (Geomatrix) to perform an electromagnetic (EM) geophysical survey using an EM61 at the Site.
- Observed the completion of eleven (11) soil probes done by GZA's subcontractor, Matrix Environmental Technologies, Inc. (Matrix), as shown on Figure 2.
- Collected soil samples continuously in four-foot sample intervals to depths that varied from approximately 6 feet to 20 feet below ground surface (bgs).
- Observed the installation of four (4) temporary micro-wells for groundwater sample collection.

¹ "Phase I Environmental Site Assessment, Vacant Office Building, 31 Webster Street, North Tonawanda, NY" completed for 26 Webster, LLC by GZA dated April 2010.

 Field screened soil samples, using an organic vapor meter (OVM) equipped with a photoionization detector (PID), that were collected with a macrocore sampler at each probe location.

- Selected four soil samples from the probe locations and two groundwater samples from the temporary micro-wells for chemical analysis, which included volatile organic compounds (VOCs) via EPA Method 8260 Full List and semi-volatile organic compounds (SVOCs) via EPA Method 8270 STARS list.
- Prepared this report, which summarizes the data collected during this Phase II ESA.

This report presents GZA's field observations, results, and opinions and is subject to the limitations presented in Appendix A, and modifications if subsequent information is developed by GZA or any other party.

3.00 FIELD STUDIES

This section describes the field studies done as part of GZA's EM geophysical survey and subsurface investigation. A copy of the geophysical survey report is included as Appendix B.

3.10 ELECTROMAGNETIC GEOPHYSICAL SURVEY

On May 17, 2010 GZA's subcontractor, Geomatrix, performed an EM geophysical survey, using an EM61, to assess for anomalies associated with buried metal objects that may provide further information on the possible presence and location of USTs. Readings were recorded to identify anomalies. Figure 3 provides a plan view of the geophysical EM results. The Geomatrix report is included in Appendix B.

- Results of the EM geophysical survey revealed five small anomalies in an approximate 20' x 20' area (Anomaly A) on the southeastern portion of the Site along the southern wall of the Site building. Geomatrix indicated these anomalies do not exhibit a geophysical response that strongly suggests the presence of a UST. Though unlikely, the presence of a UST cannot be ruled out in this area. Alternatively, this anomaly may be related to residual piping or UST appertunances or other miscellaneous items buried with, or without environmental significance.
- Results of the EM geophysical survey revealed an approximate 20' x 15' anomaly (Anomaly B) on the northwestern portion of the Site. Geomatrix indicated this anomaly does not exhibit a geophysical response that strongly suggests the presence of a UST. Though unlikely, the presence of a UST

cannot be ruled out in this area. Alternatively, this anomaly may be related to residual piping or UST appurtenances or other miscellaneous items buried with, or without environmental significance.

3.20 SOIL PROBE INSTALLATIONS

GZA's subcontractor, Matrix, completed eleven soil probes as part of the Phase II ESA on May 20, 2010 (SP-1 through SP-11). The soil probes were completed using a Geoprobe 54LT track mounted rig equipped with a pneumatic hammer. The probes are designated as SP-1 through SP-11 as shown on Figure 2.

- SP-1 and SP-2 was performed on the southeastern portion of the Site, in the area of Anomaly A.
- SP-3 and SP-4 was performed on the southern portion of the Site.
- SP-5, SP-6, SP-9 and SP-11 were performed centrally on the western portion of the Site in the area of the former gas station, and existing concrete pad.
- SP-7 and SP-10 was performed on the northern portion of the Site.
- SP-8 and SP-8A were performed on the northwestern corner of the property, in the area of Anomaly B.

Generally, the soil probes were advanced using a 2-inch diameter, 48-inch long macrocore sampler that was driven continuously at 48-inch intervals. A dedicated acetate sampler liner was used between sampling intervals. Representative portions of the recovered soils were placed in plastic zip-lock bags for further classification and headspace analysis. The completed soil probe holes were backfilled with the soil cuttings and/or topped with asphalt patch.

GZA prepared soil probe logs summarizing the general subsurface conditions that were observed and encountered at each probe location. These logs are based on visual observations of the recovered soils and include a summary description of the soils using color and composition. Soil probe logs are presented as Appendix C.

3.30 HEADSPACE SCREENING PROCEDURE

A representative portion of each soil sample was placed in a zip-lock bag. The headspace in the bag above each collected soil sample was screened for organic vapor compounds using an organic vapor meter (OVM) outfitted with a photoionization detector and a 10.2 eV ultraviolet lamp. The OVM used was a Mini Ray 2000 and was calibrated in accordance with manufacturer's recommendations. A gas standard of isobutlyene was used at an equivalent concentration of 100 parts per million (ppm) as benzene for calibration. Ambient air at the Site was used to establish background organic vapor concentrations. Organic vapor concentrations were generally non-detect (below 5 ppm) in the samples collected from SP-2, SP-3, SP-4 and SP-9, located in the southern portion of the Site, and at SP-7, SP-8, and SP-8A, located in the northern portion of the Site.

Headspace readings identified at the remaining probes are included on the soil probe logs in Appendix C and detections above 5 ppm are summarized below.

- o SP-1: 20 ppm at 0 to 2 feet below ground surface (bgs.)
- o SP-5: 109 to 593 ppm at 8 to 14 feet bgs.
- o SP-6: 10 to 276 ppm at 6 to 12 feet bgs.
- o SP-10: 7 to 90 ppm at 8 to 12 feet bgs.
- o SP-11: 76 ppm at 8 to 10 feet bgs.

Additionally, an odor was noted in the samples collected from SP-5, SP-6, SP-10 and SP-11

3.40 GROUNDWATER COLLECTION

Temporary 1-inch diameter polyvinyl chloride (PVC) micro-wells were installed at the completion of drilling at locations SP-1, SP-3, SP-5 and SP-7. Samples were collected using disposable polyethylene bailers and placed in laboratory supplied analytical jars from the SP-3 and SP-5 locations. Temporary micro-wells were removed and the holes backfilled after groundwater samples were collected.

4.00 ANALYTICAL LABORATORY TESTING

Four subsurface soil samples and two groundwater samples were selected and submitted for analytical testing. The selected soil and groundwater samples were packed in an ice filled cooler and sent to the GZA GeoEnvironmental Laboratory in Hopkinton, Massachusetts following typical chain-of-custody procedures. Table 1 is a summary of the samples collected and the analysis completed.

5.00 SUBSURFACE CONDITIONS

5.10 SOILS

Subsurface conditions at the soil probe locations generally consisted of:

Layer Designation	Depth	Material Encountered
Surface Layer	Generally within the upper 1.5 foot.	Asphalt and sub-base or concrete and sub-base.
Fill Layer	Encountered at locations SP-1, SP-7, SP-8A and SP-11	Granular soils generally consisted of a brown sand with lesser amounts of gravel, silt and clay, extending 3 to 6 feet bgs.

		At SP-8A, cohesive fill layer was encountered below the granular fill and included silty clay with lesser amounts of sand, gravel, wood, shingles, and brick. SP-8A was done in the area of a former building area.
Natural Soils	Below the surface layer or	, ,
	fill material at all locations,	and silt, with lesser amounts
	with the exception of SP-8A	of gravel, and occasional
		trace amounts of clay.
		Extended the full depth
		drilled at all locations, with
		the exception of SP-1, SP-2
		and SP-8, where a cohesive
		clay and silt was
		encountered.

5.20 GROUNDWATER

Groundwater was encountered at a depth of approximately 9 feet below ground surface at each probe location with the exception of SP-8A. Temporary 1 inch monitoring wells were installed at SP-1, SP-3, SP-5 and SP-7.

6.00 ANALYTICAL TEST RESULTS

Findings of the laboratory testing of the soil samples analyzed are presented below. The analytical laboratory report is provided in Appendix C. The analytical results for the soil samples are summarized on Table 2 and the groundwater sample results are on Table 3.

The analytical test results for the subsurface soil samples were compared to:

 NYSDEC Part 375 Unrestricted and Restricted Soil Cleanup Objectives (SCO) (Unrestricted Use SCO and Commercial SCO).

The analytical test results for the groundwater samples were compared to:

 NYSDEC Class GA criteria presented in the Division of Water Technical and Operational Guidance Series (TOGS 1.1.), dated October 1993, revised June 1998, errata January 1999 and amended April 2000 (Class GA Criteria).

6.10 SOIL

Volatile Organic Compounds:

No VOCs were detected at concentrations above method detection limits in the soil sample selected from SP-9 (8 to 10 feet), located south of the concrete pad, in the western portion of the Site.

Several VOCs were detected at concentrations above method detection limits in the soil sample selected from SP-6 (6 to 8 feet), SP-10 (8 to 10 feet), and SP-11 (8 to 10 feet), including isopropylbenzene; n-propylbenzene; sec-butylbenzene and n-butylbenzene. In addition, ethylbenzene; p-isopropyltoluene; and naphthalene were also detected in the sample from SP-11. However, none of these compounds were detected at concentrations above their respective Unrestricted Use SCOs.

Semi-Volatile Organic Compounds:

No SVOCs were detected above method detection limits in the soil samples from SP-9 (8 to 10 feet) and SP-10 (8 to 10 feet).

2-Methylnaphthalene was detected in the soil samples collected from SP-6 (6 to 8 feet) and SP-11 (8 to 10 feet). Additionally, naphthalene was also detected in the sample from SP-11. However, these compounds were not detected above their respective Unrestricted Use SCOs.

6.20 GROUNDWATER

Volatile Organic Compounds:

No VOCs were detected above method detection limits in the groundwater sample selected from SP-3.

Eleven (11) VOCs were detected above method detection limits in the groundwater sample collected from SP-5. Of the 11 detected compounds, nine VOCs were detected at concentrations above their Class GA criteria including ethylbenzene; m&p-xylene; o-xylene; isopropylbenzene; n-propylbenzene; 1,3,5-trimethylbenzene; 1,2,4-trimethylbenzene; n-butylbenzene and naphthalene. The total detected VOCs at this location was 1,071 ppb.

Semi-Volatile Organic Compounds:

No SVOCs were detected above method detection limits in the groundwater sample selected from SP-3.

Naphthalene and 2-methylnaphthalene were both detected above Class GA criteria limits at the groundwater sample collected from SP-5. The total SVOCs detected at this location is 89 ppb.

7.00 CONCLUSIONS AND RECOMMENDATIONS

GZA was retained to assess if the historic site usage as a gasoline station has affected the Site soil and/or groundwater. Our work included an EM-61 geophysical survey prior to the subsurface investigation, observing soil probes at eleven locations, headspace screening of soil samples taken from the macrocore sampler at the soil probe locations, chemical analyses of four subsurface soil samples and two groundwater samples.

A summary of our findings and our opinion based upon the work conducted as part of this study follows.

- GZA retained Geomatrix to perform an EM geophysical survey, using an EM61 at the Site, to map the distribution of buried metals in an attempt to locate anomalies indicative of USTs at the Site.
 - Results of the EM geophysical survey revealed five small anomalies in an approximate 20' x 20' area (Anomaly A) on the southeastern portion of the Site along the southern wall of the Site building. Geomatrix indicated these anomalies do not exhibit a geophysical response that strongly suggests the presence of a UST. Though unlikely, the presence of a UST cannot be ruled out in this area. Alternatively this anomaly may be related to residual piping or UST appurtenances or other miscellaneous items buried with, or without environmental significance.
 - Results of the EM geophysical survey revealed an approximate 20' x 15' anomaly (Anomaly B) on the northwestern portion of the Site. Geomatrix indicated this anomaly does not exhibit a geophysical response that strongly suggests the presence of a UST. Though unlikely, the presence of a UST cannot be ruled out in this area. Alternatively this anomaly may be related to residual piping or UST appurtenances or other miscellaneous items buried with, or without environmental significance.
- Subsurface conditions at the soil probe locations below the asphalt/concrete and subbase cover generally consisting of a sand fill material at four locations. Fill materials were encountered the full depth drilled at SP-8A, which appeared to be within a former building area. Native soils generally included a sand and silt soil with lesser amounts of gravel and trace amounts of clay. The sand and silt extended the full depth drilled at most locations. However, a cohesive silt and clay was encountered below the sand at SP-1, SP-2, and SP-8.

- No VOCs or SVOCs were detected at concentrations above method detection limits in the soil sample selected from SP-9 (8 to 10 feet). No SVOCs were encountered in the soil sample from SP-10 (8 to 10 feet).
- Several VOCs were detected at concentrations above method detection limits in the soil sample selected from SP-6 (6 to 8 feet), SP-10 (8 to 10 feet), and SP-11 (8 to 10 feet), including isopropylbenzene; n-propylbenzene; sec-butylbenzene and nbutylbenzene. In addition, ethylbenzene; p-isopropyltoluene; and naphthalene wee also detected in the sample from SP-11. However, none of these compounds were detected at concentrations above their respective Unrestricted Use SCOs.
- 2-Methylnaphthalene was detected in the soil samples collected from SP-6 (6 to 8 feet) and SP-11 (8 to 10 feet). Additionally, naphthalene was also detected in the sample from SP-11. However, these compounds were not detected above their respective Unrestricted Use SCOs.
- No VOCs or SVOCs were detected above method detection limits in the groundwater sample selected from SP-3.
- Eleven (11) VOCs were detected above method detection limits in the groundwater sample collected from SP-5. Of the 11 detected compounds, nine VOCs were detected at concentrations above their Class GA criteria including ethylbenzene; m&p-xylene; o-xylene; isopropylbenzene; n-propylbenzene; 1,3,5-trimethylbenzene; 1,2,4-trimethylbenzene; n-butylbenzene and naphthalene. The total detected VOCs at this location was 1,071 ppb.
- Naphthalene and 2-methylnaphthalene were both detected above Class GA criteria limits at the groundwater sample collected from SP-5. The total SVOCs detected at this location is 89 ppb.

Based on the results of our investigation, it is GZA's opinion that residual contamination resulting from historic site use appears to be present in the groundwater at the Site. GZA noted an odor and OVM readings at locations SP-5, SP-6, SP-10 and SP-11, generally at depths greater than 6 feet bgs, and within the groundwater. Analytical results did not identify significant soil impact, as is typical of an older, historic type release. Residual VOC and SVOC contamination was identified within the subsurface soil, and groundwater concentrations exceeded Class GA criteria.

Based on the data collected, it is GZA's opinion that the VOC and SVOC compounds identified are limited to the northern and western portions of the Site. This identified

contamination is likely attributed to the historic gasoline station usage. GZA recommends consultation with your environmental attorney on reporting requirements. We recommend the information be provided to the New York State Department of Environmental Conservation (NYSDEC) for review. It is our opinion that the contamination identified at SP-5 is reportable. Our work indicates the Site groundwater has been impacted by historic Site operations.

Table 1
Analytical Sample Summary Table
31 Webster Street
North Tonawanda, New York

		Depth/	VOCs	SVOCs
Location	Date Collected	Interval	EPA Method	EPA Method
		(ft bgs)	8260-Full list	8270 STARS
Soil Probe Sampl	eş			
SP-6	5/20/2010	6 to 8	X	X
SP-9	5/20/2010	8 to 10	X	X
SP-10	5/20/2010	8 to 10	X	X
SP11	5/20/2010	8 to 10	X	X
Groundwater Sa	mples			
SP-3	5/20/2010	NA	X	X
SP-5	5/20/2010	NA	X	X

- 1. NA = not applicable.
- 2. ft bgs = feet below ground surface
- 3. VOCs = Volatile Organic Compounds
- 4. SVOCs = Semi-Volatile Organic Compounds
- 5. TCL = Target Compound List

Table 2
Soil Analytical Testing Results Summary
31 Webster Street
North Tonawanda, New York

	Unrestricted Use	Restricted Com	SP-6 6-8 feet	SP-9 8-10 feet	SP-10 8-10 feet	SP-11 8-10 feet
Parameter	Soil Cleanup	Soil Cleanup	05/20/2010	05/20/2010	05/20/2010	05/20/2010
	Objectives	Objectives	Result	Result	Result	Result
Volatile Organic Compounds	EPA Method 8260	TCL (ug/kg)				
Ethylbenzene	1,000	390,000	<	<	<	99
Isopropylbenzene	NV	NV	420	<	130	330
n-Propylbenzene	3,900	500,000	2500	<	110	2,300
sec-Butylbenzene	11,000	500,000	930	<	470	240
p-Isopropyltoluene	NV	NV	<	<	<	75
n-Butylbenzene	12,000	NV	2900	<	190	880
Naphthalene	12,000	500,000	<	<	<	940
Total VOCs			6,750		900	4,864
Semi-Volatile Örganic Compo	unds - EPA Method	8270 (ug/kg)				
Naphthalene	12,000	500,000	<	<	<	1,300
2-Methylnaphthalene	NV	NV	970	<	<	2,100
Total SVOCs			970	_		3,400

- 1. Compounds detected in one or more samples are presented on this table. Refer to Attachment C for list of all compounds included in analysis.
- 2. Analytical testing completed by GZA GeoEnvironmental Laboratory.
- 3. ug/kg = part per billion; mg/kg = parts per million
- 4. < indicates compound was not detected.
- 5. NT = not tested, SB = Site Background, MDL = method detection limit, NA = not applicable.
- 6. Shading indicates value exceeds Unrestricted Use Soil Cleanup Objectives.
- 7. Bold indicates value exceeds the Resticted Commercial Soil Cleanup Objectives.

Table 3
Groundwater Analytical Testing Results Summary
31 Webster Street
North Tonawanda, New York

Parameter	Class GA Criteria	SP-3 05/20/2010 Result	SP-5 05/20/2010 Result
Volatile Organic Compounds	- EPA Method 8260 TCL (ug/L)	
Ethylbenzene	5	<	91
m&p-xylene	5	<	280
o-Xylene	5	<	9.2
Isopropylbenzene	5	<	36
n-propylbenzene	5	· <	90
1,3,5-Trimethylbenzene	5	<	120
1,2,4-Trimethylbenzene	5	<	310
sec-butylbenzene	5	<	4.6
p-Isopropyltoluene	5	<	4.6
n-butylbenzene	5	<	26
Naphthalene	10	<	100
Total VOCs			1,071
Semi-Volatile Organic Compo	unds - EPA Method 8270 Base	Neutrals (ug/L)	
Naphthalene	10	<	67
2-Methylnaphthalene	5	<	22
Total SVOCs			89

- 1. Compounds detected in one or more samples are presented on this table. Refer to Appendix C for list of all compounds included in analysis.
- 2. Analytical testing completed by GZA GeoEnvironmental Laboratories
- 3. NYSDEC Class GA criteria obtained from Division of Water Technical and Operational Guidance Series (TOGS 1.1.1), June 1998.
- 4. ug/L = part per billion (ppb).
- 5. < indicates compound was not detected.
- 6. Shading indicates exceedence of Class GA Criteria.

APPENDIX A
LIMITATIONS

LIMITATIONS

- 1. The observations described in this report were made under the conditions stated herein. The conclusions presented in the report were based solely upon the services described therein, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by Client. The work described in this report was carried out in accordance with the Terms and Conditions of our Agreement.
- 2. In preparing this report, GZA GeoEnvironmental of New York (GZA) has relied on certain information provided by state and local officials and other parties referenced therein, and on information contained in the files of state and/or local agencies available to GZA at the time of the site assessment. Although there may have been some degree of overlap in the information provided by these various sources, GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this site assessment.
- 3. In the event that bank counsel or title examiner for Client obtains information on environmental or hazardous waste issues at the site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.
- 4. Observations were made of the site and of structures on the site as indicated within the report. Where access to portions of the site or to structures on the site was unavailable or limited, GZA renders no opinion as to the presence of hazardous material or oil, or to the presence of indirect evidence relating to hazardous material or oil, in that portion of the site or structure. In addition, GZA renders no opinion as to the presence of hazardous material or oil, or to the presence of indirect evidence relating to hazardous material or oil, where direct observation of the interior walls, floor, or ceiling of a structure on a site was obstructed by objects or coverings on or over these surfaces.
- 5. Unless otherwise specified in the report, GZA did not perform testing or analyses to determine the presence or concentration of asbestos or polychlorinated biphenyls (PCB's) at the site or in the environment at the site.
- 6. The purpose of this report was to assess the physical characteristics of the subject site with respect to the presence in the environment of hazardous material or oil. No specific attempt was made to check on the compliance of present or past owners or operators of the site with federal, state, or local laws and regulations, environmental or otherwise.
- 7. The conclusions and recommendations contained in this report are based in part upon the data obtained from a limited number of soil and/or groundwater samples obtained from widely spaced subsurface explorations. The nature and extent of variations between these explorations may not become evident until further exploration. If variations or other latent conditions then appear evident, it will be necessary to reevaluate the conclusions and

recommendations of this report.

- 8. Water level readings have been made in the test pits, borings, and/or observation wells at the times and under the conditions stated on the test pit or boring logs. However, it must be noted that fluctuations in the level of groundwater may occur due to variations in rainfall and other factors different from those prevailing at the time measurements were made.
- 9. Except as noted within the text of the report, no quantitative laboratory testing was performed as part of the site assessment. Where such analyses have been conducted by an outside laboratory, GZA has relied upon the data provided, and has not conducted an independent evaluation of the reliability of these data.
- 10. The conclusions and recommendations contained in this report are based in part upon various types of chemical data and are contingent upon their validity. These data have been reviewed and interpretations made in the report. As indicated within the report, some of these data are preliminary "screening" level data, and should be confirmed with quantitative analyses if more specific information is necessary. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time, and other factors. Should additional chemical data become available in the future, these data should be reviewed by GZA and the conclusions and recommendations presented herein modified accordingly.
- 11. Chemical analyses have been performed for specific parameters during the course of this site assessment, as described in the text. However, it should be noted that additional chemical constituents not searched for during the current study may be present in soil and/or groundwater at the site.
- 12. It is recommended that GZA be retained to provide further engineering services during construction and/or implementation of any remedial measures recommended in this report. This is to allow GZA to observe compliance with the concepts and recommendations contained herein, and to allow the development of design changes in the event that subsurface conditions differ from those anticipated.

APPENDIX B GEOPHYSICAL SURVEY

90 B John Muir Drive Amherst, New York 14228 (716) 565-0624 • Fax (716) 565-0625

May 19, 2010

Michele M. Wittman, P.G. Senior Project Manager GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203

Transmitted via email to: Michele Wittman [michele.wittman@gza.com]

Dear Ms. Wittman:

Subject: Geophysical Survey Results, 31 Webster St, North Tonawanda, NY

1.0 INTRODUCTION

This letter report presents the results of the geophysical investigation performed for GZA GeoEnvironmental of NY (GZA) in support of their environmental investigation of a property located at 31 Webster Street in North Tonawanda, NY. We understand that a portion of the property has a history of use as an automotive fuel station.

The geophysical investigation was designed to geophysically characterize the subsurface and focus a follow-up intrusive investigation. The information provided herein is intended to assist GZA with their assessment of potential environmental concerns at the Site. The objective for the geophysical survey was to explore for anomalies indicative of underground storage tanks (USTs). AMEC Geomatrix, Inc. performed data acquisition on May 17, 2010. There were no vehicles present in the survey area.

2.0 METHODOLOGY

A reference grid was installed at the site to facilitate data acquisition along lines spaced three feet apart. The grid was marked with orange and white spray paint with select coordinates labeled to allow subsequent work if necessary.

The site was geophysically surveyed using the Geonics EM61. The EM61 unit is a high sensitivity, high resolution time domain electromagnetic (TDEM) metal detector that can detect both ferrous and nonferrous metallic objects. It has an approximate investigation depth of 10 feet. The processing console is contained in a backpack worn by the operator which is

Michele M. Wittman, P.G. GZA GeoEnvironmental of NY May 19, 2010 Page 2

interfaced to a digital data logger. The transmitter and two receiver coils are located on a twowheeled cart that is pulled by the operator.

The device's transmitter coil generates a pulsed primary EM field at a rate of 150 pulses per second, inducing eddy currents into the subsurface. The decay rates of these eddy currents are measured by two, 3.28 foot by 1.64 foot (1 meter by ½ meter) rectangular receiver coils. By taking the measurements at a relatively long time frame after termination of the primary pulse, the response is practically independent of the survey area's terrain conductivity. Specifically, the decay rates of the eddy currents are much longer for metals than for normal soils allowing the discrimination of the two.

EM61 in use (photo not from this site)

Data are collected from the EM61's two receiver coils. One of the receiver coils is located coincident to the transmitter coil. The other receiver coil is located 1.31 feet (0.4 meters) above the transmitter coil. Data from the top receiver coil are stored on Channel 1 of a digital data logger. Data from the bottom receiver coil are stored on Channel 2 of the data logger. Channel 1 and Channel 2 data are simultaneously recorded at each station location. The

instrument responses are

recorded in units of milliVolts (mV). Data were recorded digitally by a data logger at a rate of approximately 2 measurements per foot along the survey lines which were spaced 3 feet apart.

3.0 RESULTS

The EM61 data for the site are shown in Figure 1. The color bar to the right of the map indicates the colors associated with the respective measured values. Areas suspected to be free of buried metals are shown as color shades of blue. All areas exhibiting a response greater than background (0 to 30 mVolts) likely contain buried metals. These areas are depicted in shades of dark blue through yellow on the figure.

Michele M. Wittman, P.G. GZA GeoEnvironmental of NY May 19, 2010 Page 3

Two anomalous areas were identified and are labeled A and B on the figure. Neither of these anomalous areas exhibits a geophysical response that strongly suggests the presence of a UST. Though unlikely, the presence of a UST cannot be ruled out in these areas. Alternatively these anomalies may be related to residual piping or UST appertunances or other miscellaneous buried with, or without, environmental significance.

Any of the additional above background responses may be significant from an environmental perspective however they are more likely associated with miscellaneous buried metals.

4.0 LIMITATIONS

The geophysical methods used during this survey are established, indirect techniques for non-destructive subsurface reconnaissance exploration. As these instruments utilize indirect methods, they are subject to inherent limitations and ambiguities. Metallic surface features (reinforced concrete pads, electrical wires, scrap metal, etc.) preclude reliable non-invasive data/results beneath, and in the immediate vicinity of, the surface features. Targets such as buried drums, buried tanks, conduits, etc. are detectable only if they produce recognizable anomalies or patterns against the background geophysical data collected. As with any remote sensing technique, the anomalies identified during a geophysical survey should be further investigated by other techniques such as historical aerial photography, test pit excavation and/or test boring, if warranted.

Please do not hesitate to contact us if you have any questions or require additional information.

Sincerely yours,

AMEC GEOMATRIX, INC.

John Lattinga

John Luttinger

Senior Geophysicist

APPENDIX C SOIL PROBE LOGS

Soil Probe SP- 1 SHEET 1 OF 12 FILE No. 21.0056584.00 CHECKED BY: MMW

CONTRACTOR TREC Environ DRILLER Jim Agar		onmental Service	ces, Inc .	BORING LOCATION See Location Plan			
	RT DATE			FND DATE	5/20/2010	GROUND SURFACE ELEVATION NA DATUM NA GZA GEOENVIRONMENTAL REPRESENTATIVE D. Wulf	
_	ATER LEV	EL DA		2,72 0,77	07.2010	TYPE OF DRILL RIG Geoprobe 6620 DT track mounted rig	
l "		TIME		CA	SING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
	5/20/10		9'	_	Microwell	OVERBURDEN SAMPLING METHOL Direct push	
						ROCK DRILLING METHOD NA	
D							
Е			SAMPLE INF	ORMATION		SAMPLE DESCRIPTION NOTES	0
Р							V
T	Sample N	umber	DEPTH	RECOV	'ERY (%)		М
Н	0.4		(FT)	+	-		(bbss)
L	S-1		0-2		50	Brown SAND and Gravel, trace Silt, moist. (FILL)	20.1
1				+		-	
2				 			
ľ	S-2		2-4		50	-	4.8
3						1	4.0
į						1 1	
4							
	S-3		4-6	6	0]	4.2
5						_	
6	S-4		6-8		-	Discourse and the second secon	
,	- 5-4		0-0	-	50	Brown SAND and Silt, trace Gravel, moist.	0.1
'		-		+			
8	8 S-5 8-10		+				
			10	00			
9						1 1	0.3
						Grades to:wet	
10							
	S-6		10-12	10	00		0.4
11				-			
4.0		-				Brown CLAY and Silt, trace Sand, trace Gravel, wet.	
12	S-7	-	12-14	7	5		
13			12-14	 			0.2
, ,		\neg		 		1	
14				1			
	S-8		14-16	7	5		0.2
15							
16		\longrightarrow	40.40				
	S-9		16-18			End of probe at 16 feet bgs.	
17		-		 			
18				+			
, ,	S-10		18-20	1			ľ
19							
20							J
	Split Spoo			NOTES:	1) MiniRae	2000 organic vapor meter used to field screen and headspace soil samples.	
	Rock Cor			<u> </u>	-1]
Gen Note	eral	1) SII 2) 187	aurication l	ines represe	nt approxir	mate boundary between soil types, transitions may be gradual. de at times and under conditions stated, fluctuations of groundwater	
		mav	occur due	to other fac	tors than th	hose present at the time measurements were made.	

General

Notes:

31 Webster Street North Tonawanda, New York

Soil Probe SP- 2 SHEET 2 OF 12 FILE No. 21.0056584 00 CHECKED BY MMW

			es, Inc.	BORING LOCATION See Location Plan			
	LER		Jim Agar			GROUND SURFACE ELEVATION NA DATUM NA	
	RT DATE	51.5 1	5/20/2010	END DATE	5/20/2010	GZA GEOENVIRONMENTAL REPRESENTATIVE D. Wulf	
VV	ATER LEV	TIME		CAS	INC	TYPE OF DRILL RIG Geoprobe 6620 DT track mounted rig CASING SIZE AND DIAMETER 2" diameter by 48" long	
	5/20/10	IIIVIE	9'	Open		OVERBURDEN SAMPLING METHOI Direct push	_
	3/20/10		Ť	Орсп	TIOIE	ROCK DRILLING METHOD NA	_
						TWO THE THE STATE OF THE	_
D				•			
E			SAMPLE INFO	RMATION		SAMPLE DESCRIPTION NOTES	0
Р							V
Ţ	Sample N	umber		RECOV	ERY (%)		М
Н.			(FT)		_		(press)
	S-1		0-2	2	0	Asphalt and Subbase	0.2
1						David CAND and City have County and	
2						Brown SAND and Sill, trace Gravel, moist.	
	S-2		2-4	2	0	-	0.2
3				_		1	0.2
						1	
4]	
	S-3		4-6	5	0		0.3
5							1 1
						-	
6				5	^	-	
_	S-4		6-8	5	U	-	0.1
7		$\overline{}$				-	
8						1	
	S-5	-	8-10	8	0	1	0.1
9						1	
						Grades to:wet	
10							
	S-6		10-12	81	0		0.1
11							1 1
12						-	1 1
12	S-7		12-14	50	0	-	0.2
13			72.17			1	0.2
, ,		\neg				1	
14						1	
	S-8		14-16	50	0	Brown CLAY and Silt, trace Sand, trace Gravel, wet.	0.2
15						1	
ا م							
16	\$-9	\dashv	16-18			End of probe at 16 feet has	
17	9-9	-	10-10			End of probe at 16 feet bgs.	1
11						1	
18		\neg				1	
	S-10		18-20			1	
19]	
20						1	
Щ							
S-S	Split Spo Rock Co	on Sa	ample	NOTES:	1) MiniRae	e 2000 organic vapor meter used to field screen and headspace soil samples	

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

1) Stratification lines represent approximate boundary between soil types, transitions may be gradual.

Soil Probe SP- 3 SHEET 3 OF 12 FILE No. 21.0056584.00 CHECKED BY MMW

DRILLER	CON	NTRACTOR	R	TREC Environ	nmental Servic	res Inc.	BORING LOCATION	See Location Plan		
SIART DATE					mona	.Co, n.e.	•		NA .	_
MATERIE LOATA Type OF DRILL RIG Cleaprobe 860 Df Wask mounted rg CASING Fize AND PUMPETER CASING CASIN					END DATE	5/20/201 0	-			_
Date Time WaTer CASING SZ0070 9" Temp Morowell Temp Morowell OVERBURDEN SAMPLE INFO Direct push NOTES OVERBURDEN SAMPLE DESCRIPTION OVERBURDEN SAMPLE DESCRIPTION NOTES OVERBURDEN SAMPLE DESCRIPTION OVERBURDEN	W.						TYPE OF DRILL RIG	Geoprobe 6620 DT to	rack mounted rig	
			TIME		+		4	2" diameter by 48" lo		_
SAMPLE INFORMATION SAMPLE DESCRIPTION NOTES O		5/20/10		9'	Temp M	/licrowell	OVERBURDEN SAMPLING METH	Ol Direct push		_
SAMPLE INFORMATION SAMPLE DESCRIPTION NOTES O V M M M M M M M M M				 	 		ROCK DRILLING METHOD	NA		_
SAMPLE INFORMATION SAMPLE DESCRIPTION NOTES O V M M	Ļ									
Sample Number DEPTH RECOVERY (%) Memory				2 4 4 4 5 1 E 1 N E /						
Sample Number DEPTH RECOVERY (%)		1		SAMPLE INFO	RMATION		SAMPLE DES	SCRIPTION	NOTES	
No.		Sample N	lumber	T DEPTH	T RECOV	ERY (%)				
S-1		Garripio	umoo.		ILOU.	LIXT (19)				
S-2 2-4 60 60 60 60 60 60 60 6	H	S-1			E	30	Asphall and Subbase			
2 S-2 2-4 60 3							Marian, and Gasages			0.6
2 S-2 2-4 60 3							Brown SAND and Silt, trace Clay, tr	race Gravel, moist.		
S-3 4-5 80 S-4 5-8 80 S-5 8-10 100 S-6 10-12 100 S-7 12-14 75 S-7 12-14 75 S-8 14-16 75 S-9 16-18 End of probe at 16 feet bgs. S-9 16-18 End of probe at 16 feet bgs. S-9 Split Spoon Sample NOTES: 1) MiniRae 2000 organic vapor meter used to field screen and headspace soil samples. C-Rock Core Sample	2									
3		S-2		2-4	6	i0				0.2
\$\\$\ \\$\ \\$\ \\$\ \\$\ \\$\ \\$\ \\$\ \\$\ \\$\	3									
\$\\$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										1
S - Split Spoon Sample NOTES: 1) MiniRae 2000 organic vapor meter used to field screen and headspace soil samples. C- Rock Core Sample Stratification lines represent approximate boundary between soil types, transitions may be gradual.	4									
6 S-4 6-8 80 7 8 S-5 8-10 100 9 S-6 10-12 100 11 S-7 12-14 75 13 S-7 12-14 75 15 S-9 18-18 End of probe at 16 feet bgs 17 18 S-9 18-18 19 S-10 18-20 19 S- Split Spoon Sample NOTES: 1) MiniRae 2000 organic vapor meter used to field screen and headspace soil samples. C - Rock Core Sample C - Rock Core Sample C - Rock Core Sample (S - Split Spoon Sample NOTES: 1) MiniRae 2000 organic vapor meter used to field screen and headspace soil samples. C - Rock Core Sample (S - Split Spoon Sample NOTES: 1) MiniRae 2000 organic vapor meter used to field screen and headspace soil samples. C - Rock Core Sample (S - Split Spoon Sample NOTES: 1) MiniRae 2000 organic vapor meter used to field screen and headspace soil samples. C - Rock Core Sample			<u> </u>	4-6	8	0				0.2
S-4	5	<u> </u>		 	 					
S-4	ا	—			 					
S-5 S-10 100 S-6 10-12 100 S-7 12-14 75 13 S-8 14-16 75 15 15 S-9 16-18 End of probe at 16 feet bgs 17 S-10 18-20 19 20 S - Split Spoon Sample NOTES: 1) MiniRae 2000 organic vapor meter used to field screen and headspace soil samples. C - Rock Core Sample C - Rock Core Sample NOTES: 1) MiniRae 2000 organic vapor meter used to field screen and headspace soil samples. C - Rock Core Sample Rock Core Sample Rock Core Sample Rock Core Sample Note Statement Note Stat	6			5.8	+	-				
S-5 8-10 100 02 S-6 10-12 100 0.2 S-7 12-14 75 0.2 S-8 14-16 75 0.2 S-9 16-18 End of probe at 16 feet bgs 17 0.2 S-9 10 18-20 19 0.2 S- Split Spoon Sample NOTES: 1) MiniRae 2000 organic vapor meter used to field screen and headspace soil samples. C-Rock Core Sample Rock Core Sample	7	0-4		0-0		0				0.2
S-5 8-10 100	'		-		 					1
S-5 8-10 100	8		-		 					
S-6 10-12 100 11 12 100 12 12 130 14 15 15 16 16 18 16 18 18 18 18	ا ا			8-10	11	00				1 02
Grades to wet 10	9		\neg		\vdash					0.2
10							Grades to wet			
11	10				<u> </u>					
11		S-6		10-12	10	00				0.2
S-7 12-14 75	11									
S-7 12-14 75					<u> </u>					
13	12		\longrightarrow		<u> </u>					
S-8 14-16 75 15			\longrightarrow	12-14	7:	5				0.2
S-8 14-16 75 15	13	——	\dashv		 					
S-8 14-16 75 15			\longrightarrow		 					
15	14	S-8	\rightarrow	14-16		£				
S - Split Spoon Sample C - Rock Core Sample General 1) Stratification lines represent approximate boundary between soil types, transitions may be gradual.	15		$\overline{}$	14-10	 '`	3				0.2
S-9 16-18 End of probe at 16 feet bgs 17	'`		$\overline{}$		 					
S-9 16-18 End of probe at 16 feet bgs 17	16		\neg							
17 18 S-10 18-20 19 20 S - Split Spoon Sample C - Rock Core Sample General 1) Stratification lines represent approximate boundary between soil types, transitions may be gradual.		S-9	\neg	16-18			End of probe at 16 feet bgs]
S-10 18-20 19 20 S - Split Spoon Sample C - Rock Core Sample General 1) Stratification lines represent approximate boundary between soil types, transitions may be gradual.	17		\neg							
S-10 18-20 19 20 S - Split Spoon Sample C - Rock Core Sample General 1) Stratification lines represent approximate boundary between soil types, transitions may be gradual.										
S - Split Spoon Sample C - Rock Core Sample General 1) Stratification lines represent approximate boundary between soil types, transitions may be gradual.	18									
S - Split Spoon Sample C - Rock Core Sample General 1) Stratification lines represent approximate boundary between soil types, transitions may be gradual.		S-10		18-20					1	
S - Split Spoon Sample C - Rock Core Sample General 1) Stratification lines represent approximate boundary between soil types, transitions may be gradual.	19		\longrightarrow							
S - Split Spoon Sample C - Rock Core Sample General 1) Stratification lines represent approximate boundary between soil types, transitions may be gradual.			\longrightarrow		 					
C - Rock Core Sample General 1) Stratification lines represent approximate boundary between soil types, transitions may be gradual.	20									
C - Rock Core Sample General 1) Stratification lines represent approximate boundary between soil types, transitions may be gradual.										
General 1) Stratification lines represent approximate boundary between soil types, transitions may be gradual.					NOTES:	1) MiniRae	2000 organic vapor meter used	d to field screen and	headspace soil samples.	
Motor: 2) Woter level readings have been made at times and under conditions stated fluctuations of gradual.					TOO FORFORD	-t approvir	note boundary between gold type			
	l .	erai	2) 100	alor lovel re	nes represe	ur abbioxii	nate boundary between son type	es, transitions may i	oe gradual.	

may occur due to other factors than those present at the time measurements were made.

Soil Probe SP- 4 SHEET 1 OF 1 FILE No. 21.0056584.00 CHECKED BY: MMW

	NTRACTOR	R		onmental Service	ces, Inc.	BORING LOCATION See Location Plan	
	LLER ART DATE		Jim Agar 5/20/2010	TAID DATE		GROUND SURFACE ELEVATION NA DATUM NA NA	_
	ART DATE /ATER LEV			END DATE	5/20/2010	GZA GEOENVIRONMENTAL REPRESENTATIVE D. Wulf TYPE OF DRILL RIG Geoprobe 6620 DT track mounted rig	
117				CA ^r	SING	TYPE OF DRILL RIG Geoprobe 6620 DT track mounted rig CASING SIZE AND DIAMETER 2" diameter by 46" long	_
'	5/20/10	_	9,		n Hole	OVERBURDEN SAMPLING METHOL Direct push	_
'		—				ROCK DRILLING METHOD NA	_
D							$\overline{}$
E			SAMPLE INF	ORMATION		SAMPLE DESCRIPTION NOTES	0
Р			,			_	v
	Sample N	lumber	1	RECOV	VERY (%)		М
Н	S-1	1	(FT) 0-2	+	50	Asphalt and Subbase	0.2
1	———	_		+		Asphalt and Gubbase	0.2
						Brown SAND and Silt, trace Gravel, moist.	
2	S-2		24	-		_]	
3		-	2-4		50	-	0.1
			<u> </u>	+		1	
4]	
,	S-3		4-6	8	80	_	02
5	—		+	+		-	
6				+		1	
1 1	S-4	i	6-8	8	80	1	02
7			-	+		-	
8				+		Grades to:trace Clay	
	S-5	,	8-10	8	90	1	0.2
9]	
10	<u> </u>				'	Grades to:wet	
101	S-6		10-12	÷ ę	90	4	0.2
11				† <u> </u>		1	0.2,
]	
12	Ş-7	.—.'	12-14	+			
13		—	12-1-4	+		End of probe at 12 feet bgs.	
				+		1	
14						1	
15	S-8		14-16	+		4	
15				+			1
16				†		1	
	S-9		16-18				
17				+		- '	
18		\rightarrow		+	$\overline{}$	1 '	
	S-10	<u></u>	18-20			<u> </u>	
19						1 '	
20		\longrightarrow				1 '	
<u> </u>		-		+	$\overline{}$	1	
	Split Spo			NOTES:	1) MiniRae	e 2000 organic vapor meter used to field screen and headspace soil samples.	
C - F	Rock Cor	re Sa	mple				
Gen Note	neral	1) Str	ratification (ines represe	ant approxim	imate boundary between soil types, transitions may be gradual. de at times and under conditions stated, fluctuations of groundwater	
I	<i>i</i> 5.	me	v occur dur	adings have a to other fac	ctors than t	those present at the time measurements were made.	

Soil Probe SP- 5 SHEET 1 OF 1 FILE No 21.0056584.00 CHECKED BY: MMW

CON	ITRACTOR		TDEC Environ		DODING LOCATION BOLL Location Plan		
	LER	<	Jim Agar	nmental Services, Inc.	BORING LOCATION See Location Plan GROUND SURFACE ELEVATION NA DATUM	NA .	_
	RT DATE		5/20/2010	END DATE 5/20/2010	GZA GEOENVIRONMENTAL REPRESENTATIVE D. Wulf	NA	-
W	ATER LEV	EL DA	-		TYPE OF DRILL RIG Geoprobe 6620 DT track mo	unted rio	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long		-
	5/20/10		9'	Temp Microwell	OVERBURDEN SAMPLING METHOL Direct push		_
					ROCK DRILLING METHOD NA		_
<u> </u>				_		-	,
D E			SAMPLE INFO	NDMATION!	CAMPLE DESCRIPTION		
P			SAME LE 1141 O	ACIAIN LIOIA	SAMPLE DESCRIPTION	NOTES	0 V
T	Sample N	umber	DEPTH	RECOVERY (%)	1	1	M
Н			(FT)				(Ppm)
	S-1		0-2	60	Concrete and Subbase		02
1							l
2	S-2	_	2-4	60	Brown SAND and Sill, trace Clay, trace Gravel, moist		
3							0.2
4							
	S-3		4-6	80			02
5		-					1
6							
0	S-4	-	6-8	80		Odor	0.9
7		\neg				Odor	0.9
8							Į
	<u>Ş-5</u>	\Box	8-10	100	Grades to:black staining	Odor	593
9		\dashv			O-tttt		
10	_				Grades lo:wet		
"	S-6		10-12	100		Odor	109
11							100
]					
12			45.44				
13	S-7	\longrightarrow	12-14	100		Odor	425
13		\rightarrow	_		End of Black staining		
14					Life of black staining		
	S-8		14-16	100		Odor	2.8
15							
		\rightarrow					
16	S-9	-	16-18	60			
17	0-9	\rightarrow					0.4
· "		\dashv		-			
18							
	S-10		18-20	60			0.3
19							
20	_	\rightarrow				1	
20	_	\rightarrow			End of arche at 70 feet has		
S - 9	Split Spoo	on Se	mple	NOTES: 1) MiniRae	End of probe at 20 feet bgs. 2000 organic vapor meter used to field screen and head	enggo goil complet	
C - F	Rock Cor	e Sar	nple	THO I EO. 17 WIII II KAE	2000 organic vapor meter used to field screen and nead	space son samples.	
Gen	eral	1) Str	atification lin	nes represent approxin	nate boundary between soil types, transitions may be gra	dual.	-
Note	es:	Wa	ater level rea	adings have been mad	e at times and under conditions stated, fluctuations of gro	oundwater	
		may	occur due	to other factors than th	nose present at the time measurements were made.		

Soil Probe SP- 6 SHEET 6 OF 12 FILE No. 21.0056584.00 CHECKED BY MMW

CO	NTRACTOR		TREC Enviro	nmental Servic	es. Inc.	BORING LOCATION	See Location Plan		
	LLER	-	Jim Agar			GROUND SURFACE ELEVATION	NA DATUM	NA	
STA	RT DATE		5/20/2010	END DATE	5/20/2010	GZA GEOENVIRONMENTAL REPRI	ESENTATIVE D. W		
W	ATER LEV			1		TYPE OF DRILL RIG	Geoprobe 6620 DT In	ack mounted rig	
	DATE	TIME			SING	CASING SIZE AND DIAMETER	2" diameter by 48" lon	<u>ıg</u>	
	5/20/10		9,	Oper	n Hole	OVERBURDEN SAMPLING METH			
	-					ROCK DRILLING METHOD	NA		
D				1			· ·		
Е]		SAMPLE INFO	ORMATION		SAMPLE DE	SCRIPTION	NOTES	0
Р]	V
T	Sample N	umber		RECOV	ERY (%)				М
Н	0.4		(FT)	1					(priprint)
1	S-1		0-2	<u> </u>	60	Asphalt and Subbase			0.2
'				+		Brown SAND and Sill, trace Grave	l moiet		
2						brown on Ab and one, have orave	i, moiat.		
	S-2		2-4	6	60				0.2
3									ļ
			*						
4	S-3		4-6		10				
5	3-3		4-0	-		1		Odor	0.2
ľ		$\overline{}$				1			
6	_					Grades to:black staining			
	S-4		6-8	6	0			Odor	223
7									
		_							
8	S-5		8-10		0	•		04	070
9	5-5	-	0-10	-				Odor	276
						Grades to:wet			
10									
	S-6		10-12	9	0			Odor	10
11						End of Black staining			
12									
	S-7		12-14		-	End of probe at 12 feet bgs.			ľ
13						,			
14	0.0	\dashv	44.40						
15.	S-8	-	14-16						
13		\dashv		 					1 1
16								1	
	S-9		16-18						
17									1
18	S-10		18-20	-					
19		$\overline{}$	10-20						
20									1 1
\square									
	Split Spo			NOTES:	1) MiniRae	2000 organic vapor meter use	d to field screen and	headspace soil sample	S.
	Rock Cor eral			200 502555	nt anne-de	note hounders between 1911			
Note	es. esai	1) OII	alliicalion II ater level re	nes represe adinos bava	iii approxir	nate boundary between soil typ le at times and under conditions	es, transitions may b	e gradual.	
		may	occur due	to other fac	tors than th	nose present at the time measu	rements were made.	or groundwater	

31 Webster Street North Tonawanda, New York

CONTRACTOR TREC Enviro			TREC Enviror	onmental Services, Inc.		BORING LOCATION See Location Plan		
	DRILLER Jim Agar			TAID DATE ENGROLE		GROUND SURFACE ELEVATION NA DATUM NA		
					5/20/2010	GZA GEOENVIRONMENTAL REPRESENTATIVE D. Wulf		
W	ATER LEVEL DATA DATE TIME WATER CASING			CAS	SING	TYPE OF DRILL RIG CASING SIZE AND DIAMETER Geoprobe 6620 DT track mounted rig 2" diameter by 48" long		
ı	5/20/10			 	/licrowell	OVERBURDEN SAMPLING METHOL Direct push		
						ROCK DRILLING METHOD NA		
D								
E	SAMPLE INFORMATION			RMATION		SAMPLE DESCRIPTION	NOTES	0
P	Sample N	Sample Number DEPTH		RECOVERY (%)				V M
H	Campion	(FT)		(1.7)				(bim)
	S-1	S-1 0-2		5	50	Asphalt and Subbase		0.5
1					1			
						Dark Brown SAND and Silt, trace Gravel, moist. (FILL)		
2			2.4	ļ <u>.</u>				
3	S-2		2,-4	2-4 50				0.5
۱			-					
4								
	S-3	S-3 4-6 60		60	Brown SAND and Silt, trace Gravel, moist.		0.3	
5								
١,	_			-		{		
6	S-4		6-8		i0			0.3
7					<u> </u>			0.5
8	<u> </u>							
	Ş-5		8-10	8	0	ļ		0.3
9						Crades to such		
10						Grades to:wet		
ľ	S-6		10-12	8	0			0.3
11								
12		\longrightarrow	40.44					
13	S-7		12-14			End of probe at 12 feet bgs.	1	
13								
14								
	S-8		14-16				1	
15								
45		-						
16	Ş-9	$\overline{}$	16-18					
17								
18								
	S-10		18-20					
19	_						1	
20		-		<u> </u>				
۲۷								
S - Split Spoon Sample NOTES: 1) MiniRae					1) MiniRae	2000 organic vapor meter used to field screen and headspace so	oil samples.	\neg
C -	Rock Co	re Sa	mple	ľ				
	eral	1) Sti	ratification li	nes represe	ent approxim	mate boundary between soil types, transitions may be gradual.		
Notes: 2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater								

may occur due to other factors than those present at the time measurements were made.

Soil Probe SP- 8 SHEET 8 OF 12 FILE No. 21.0056584.00 CHECKED BY: MMW

CON	ITRACTOR	₹	TREC Environ	mental Service	es, Inc.	BORING LOCATION See Location Plan						
DRII	LER		Jim Agar			GROUND SURFACE ELEVATION NA DATUM NA						
	RT DATE		5/20/2010	END DATE	5/20/2010	GZA GEOENVIRONMENTAL REPRESENTATIVE D. Wulf						
W.	ATER LEV			T		TYPE OF DRILL RIG Geoprobe 6620 DT Irack mounted rig						
	DATE 5/20/10	TIME	WATER 9'	CAS Open		CASING SIZE AND DIAMETER 2" diameter by 48" long						
	5/20/10			Open	noie	OVERBURDEN SAMPLING METHOL Direct push ROCK DRILLING METHOD NA						
						NOON DIVIDENTO METHOD						
D			·									
Ε			SAMPLE INFO	RMATION		SAMPLE DESCRIPTION NOTES	0					
P	0 1 11						V					
T H	Sample N	umber	DEPTH (FT)	RECOVI	±RY (%)		М					
	S-1		0-2	5	0	Asphalt and Subbase	(ppm) 0.2					
1							· -					
						Brown SAND and Silt, trace Gravel, trace Clay, moist.						
2				_								
3	\$-2		2-4	5	D .		0.2					
٦												
4												
	S-3		4-6	7(0		0.2					
5												
6												
0	S-4		6-8	7(0		0.2					
• 7							0.2					
8	0.5		0.40									
9	S-5		8-10	50)	Brown Clayey SILT, trace Sand, trace Gravel, wet.	0.2					
9		-				Grades to:wet						
10						,						
	S-6		10-12	50)		0.2					
11												
12				<u> </u>								
14	S-7	\dashv	12-14			End of probe at 12 feet bgs.						
13							ı					
							- 1					
14		-	11.10									
15	S-8	\dashv	14-16				- 1					
12												
16												
	S-9		16-18									
17		\longrightarrow					- 1					
18												
'	S-10		18-20				l l					
19												
		\Box										
20												
9 0	Split Spa	OD Sa	mple	NOTES:	1) MiniDec	2000 organia vanor motor used to field earner and headeness and	—[
	S - Split Spoon Sample C - Rock Core Sample NOTES: 1) MiniRae				i) wiinikae	2000 organic vapor meter used to field screen and headspace soil samples.						
				nes represe	nt approxir	mate boundary between soil types, transitions may be gradual.	\dashv					
Note	es:	2) Wa	ater level rea	adings have	been mad	le at times and under conditions stated, fluctuations of groundwater						
		may	y occur due	may occur due to other factors than those present at the time measurements were made.								

Soil Probe SP- 8A SHEET 9 OF 12 FILE No. 21.0056584 00 CHECKED BY: MMW

	NTRACTOR	₹	TREC Enviror	nmental Servic	es, Inc.	BORING LOCATION See Location Plan	
	LLER		Jim Agar	EUD DATE		GROUND SURFACE ELEVATION NA DATUM NA	_
	RT DATE	EL DA		END DATE	5/20/2010	GZA GEOENVIRONMENTAL REPRESENTATIVE D. Wulf TYPE OF DRILL RIG Geoprobe 6620 DT track mounted rig	
, vv	DATE			CAS	SING	TYPE OF DRILL RIG Geoprobe 6620 DT track mounted rig CASING SIZE AND DIAMETER 2" diameter by 48" long	_
			NWAC			OVERBURDEN SAMPLING METHOI Direct push	_
į						ROCK DRILLING METHOD NA	_
D							_
E P			SAMPLE INFO	RMATION		SAMPLE DESCRIPTION NOTES	0 V
T H	Sample N		(FT)		ERY (%)		M (ppm)
	S-1		0-2	5	50	Asphalt and Subbase	0.3
1				 	· · · · · · · · · · · · · · · · · · ·	Brown SAND and Silt, trace Gravel, moist. (FILL)	
2						Blown GAND and One, wace Graver, moist. (TICE)	
	S-2		2-4	5	50		0.3
3							
4				 		Brown Silty CLAY, trace Sand, trace Gravel, moist. (FILL)	
	S-3		4-6	5	i0		0.3
5							
6						Wood, Shingles, Brick, Moist (FILL)	
ľ	S-4		6-8			Refusal at 6 feet bgs.	
7							
							1
8	S-5		8-10			-	
9						1	
]	
10	S-6		10-12			-	
11			10-12			-	
]	
12			40.44				
13	S-7		12-14			-	
١				1		1	
14							
A.F	S-8		14-16	-		-	
15						1	
16]	
	\$-9		16-18				
17						1	
18						j	
	S-10		18-20				
19		-			_		
20						1	
	Split Spo			NOTES:	1) MiniRa	e 2000 organic vapor meter used to field screen and headspace soil samples.	
<u>C -</u>	Rock Co	re Sa	mple				

1) Stratification lines represent approximate boundary between soil types, transitions may be gradual. General Notes:

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Soil Probe SP- 9 SHEET 10 OF 12 FILE No. 21.0056584.00 CHECKED BY MMW

COL	TRACTOR	₹	TREC Enviror	nmental Service	es, Inc.	BORING LOCATION See Location Plan	
DRI	LLER		Jim Agar			GROUND SURFACE ELEVATION NA DATUM NA	
_	RT DATE		· · · · · · · · · · · · · · · · · · ·	END DATE	5/20/2010	GZA GEOENVIRONMENTAL REPRESENTATIVE D. Wulf	
W	ATER LEV	$\overline{}$				TYPE OF DRILL RIG Geoprobe 6620 DT track mounted rig	
		TIME	-	CAS		CASING SIZE AND DIAMETER 2" diameter by 48" long	
	5/20/10	\vdash	9'	Open	Hole	OVERBURDEN SAMPLING METHOL Direct push	
						ROCK DRILLING METHOD NA	
D							
Ε			SAMPLE INFO	RMATION		SAMPLE DESCRIPTION NOTES	0
Р							V
Т	Sample N	umber	1	RECOVE	ERY (%)		М
H			(FT)	_			(paper)
Ι.	S-1		0-2	5		Asphalt and Subbase	0.3
1						Brown SAND and Silt, trace Gravel, moist.	i
2						Blown SAND and Silt, trace Graver, moist.	
-	S-2		2-4	5	0	, ا ا	0.3
3							
:							
4	0.2		4.6			-	
5	S-3		4-6	60		-	0.2
٦						-	
6						1	
	S-4		6-8	60)).2
7							
8	S-5		8-10	0/			
9	3-3		6-10	90		-{).2
,						Grades to:wet	
10							
	S-6		10-12	90)		.2
11							
	_					ļ ()	
12	S-7		12-14			End of probe at 12 feet bgs.	
13		-	12-14		<u>-</u>	End of probe at 12 feet bgs.	
"							
14							
	S-8	\Box	14-16				
15		-					
16	_						
10	S-9		16-18				
17							
18							ı
	S-10	\longrightarrow	18-20				-1
19		-		<u> </u>			
20		\dashv					
~						1	
S - S	Split Spor	on Sa	mple	NOTES:	1) MiniRae	a 2000 organic vapor meter used to field screen and headspace soil samples.	7
C - <u>I</u>	Rock Cor	e Sai	mple				
	eral	1) Str	atification lin	nes represei	nt approxir	mate boundary between soil types, transitions may be gradual.	7
Note	es:	2) Wa	ater level rea	adings have	been mad	de at times and under conditions stated, fluctuations of groundwater	
		ma	y occur aue	to other tact	ors man tr	hose present at the time measurements were made.	

Soil Probe SP- 10 SHEET 11 OF 12 FILE No. 21.0056584 00 CHECKED BY: MMW

CON	ITRACTOR	₹	TREC Enviror	mental Service	es, Inc .	BORING LOCATION See Location Plan	_
	LLER		Jim Agar			GROUND SURFACE ELEVATION NA DATUM NA	
STA	RT DATE		5/20/2010	END DATE	5/20/20 10	GZA GEOENVIRONMENTAL REPRESENTATIVE D. Wulf	
W	ATER LEV		1			TYPE OF DRILL RIG Geoprobe 6620 DT track mounted rig	П
	DATE 5/20/10	TIME		CAS		CASING SIZE AND DIAMETER 2" diameter by 48" long	
	5/20/10	1	9'	Open	Hole	OVERBURDEN SAMPLING METHOL Direct push ROCK DRILLING METHOD NA	
		\vdash				NOOK DIGELING WETTOD	
D				•			
Е			SAMPLE INFO	RMATION		SAMPLE DESCRIPTION NOTES (5
Р						_	/
Ţ	Sample N	umber	ı	RECOVE	ERY (%)		4
Н	S-1		(FT) 0-2	20	n		-0
l			- 0~				.3
						Brown SAND and Silt, trace Clay, trace Gravel, moist.	
2							
	S-2		2-4	20	0	0.	3
3						-	
4						-	
	S-3		4-6	50	0	-	3
5]	
6	S-4		6-8	50	<u> </u>	- Condendate Management Condendate Condendat	
7	0-4		0-0	- 30		Grades to:black staining Odor 2.	5
						1	
8					<u> </u>		
	S-5		8-10	80)	Odor 90)
9		$\overline{}$		<u> </u>			
10						Grades to:wet	
ľ	S-6		10-12	80)	- _{7.1}	٥
11						End of Black staining	
						_	
12	S-7	-	12-14			Fold Forth and Official and	ı
13	3-7		12-14			End of probe at 12 feet bgs.	
						1	ı
14							1
	S-B		14-16				ı
15							ı
16	_					-	
	S-9		16-18			1	
17							ı
			-				
18	S-10		18-20				J
19	<u> </u>		.0 20			1	
						1	
20							ŀ
	2 171 0		,	LIOTE :	43 6 6 1 100		4
	Split Spo- Rock Co			NOTES:	1) MiniRae	e 2000 organic vapor meter used to field screen and headspace soil samples.	
				nes represer	nt approxir	mate boundary between soil types, transitions may be gradual.	4
Note		2) Wa	ater level rea	adings have	been mad	de at times and under conditions stated, fluctuations of groundwater	
		may	occur due	to other fact	ors than th	those present at the time measurements were made.	

Soil Probe SP- 11 SHEET 12 OF 12 FILE No. 21.0056584.00 CHECKED BY: MMW

COI	NTRACTOR	R	TREC Envi	ironmental Servic	ces, Inc.	BORING LOCATION	See Location Plan		
	ILLER		Jim Agar			GROUND SURFACE ELEVATION	NA DATUM	NA	_
	ART DATE		5/20/2010	0 END DATE	5/20/201 0	GZA GEOENVIRONMENTAL REPRE			
Vv.	DATE	~		CA CA	SING	TYPE OF DRILL RIG CASING SIZE AND DIAMETER	Geoprobe 6620 DT track n	mounted rig	
	5/20/10	-	9'		n Hole	OVERBURDEN SAMPLING METH	2" diarneter by 48" long HOI Direct push		_
1						ROCK DRILLING METHOD	NA NA		_
_									_
D E	1		2 ** *** E IN			CAMPI E DE			
P	1		SAMPLE III	IFORMATION	ı	SAMPLE DES	SCRIPTION	NOTES	0 V
	Sample N	lumber	DEPTH	RECOV	/ERY (%)	1			М
Н	<u></u>	'	(FT)						(ppm)
1	S-1		0-2	6	60	Concrete and Subbase			0.3
''		—				1			
2						Brown SAND and Silt, trace Clay, tr	race Gravel, moist. (FILL)		
	S-2		2-4	6	60]			0.3
3	<u> </u>			+		Brown SAND and Silt, trace Gravel,	·:_L		
4				+		Brown SAND and Silt, trace Graver,	, moist		
	S-3		4-6	7	70				0.3
5	Ĺ		<u> </u>			1			
6	—			+		1			
	S-4		6-8	7	70			Odor	0.3
7								July 1	
	<u> </u>			<u> </u>					
8	S-5		8-10	+	90	Grades to:black staining		Odor	75
9				+	<u> </u>	1		Udor	76
						Grades to:wet			
10	S-6		10-12		90	End of Black staining			
11		\longrightarrow	10-14		0	1			0.3
						1			
12				T					
13	S-7		12-14			End of probe at 12 feet bgs.			
'		\longrightarrow		+		ĺ			
14									
	S-8		14-16	T					
15		\longrightarrow		+					
16				+					
	S-9	\Box	16-18						
17									
18		-		+		i			
1	S-10	,	18-20	+		i			
19		\Box				i			
20		-							
1 ²		-		+					
	Split Spoo			NOTES:	1) MiniRae	2000 organic vapor meter used	d to field screen and hea	Adspace soil samples.	-
C - <u>F</u>	Rock Cor	re San	mple						
Gen Note	neral :	1) Str	alification	lines represer	nt approxim	nate boundary between soil type le at times and under conditions	es, transitions may be gr	radual.	
Now	.s	ma'	v occur du	e to other fac	tors than th	ie at times and under conditions nose present at the time measur	 stated, fluctuations of greatering rements were made. 	roundwater	

APPENDIX D ANALYTICAL TEST RESULTS

Laboratory Identification Numbers:
MA and ME: MA092 NH: 2028
CT: PH0579 RI: LA000236
NELAC - NYS DOH: 11063

ANALYTICAL REPORT

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203-1415 Michele Wittman

 Project No.:
 21.0056584.00

 Work Order No.:
 1005-00145

 Date Received:
 05/21/2010

 Date Reported:
 06/02/2010

SAMPLE INFORMATION

Date Sampled	Matrix	Laboratory ID	Sample ID
05/20/2010	Solid	1005-00145 001	SP-6, 6-8
05/20/2010	Solid	1005-00145 002	SP-9, 8-10
05/20/2010	Solid	1005-00145 003	SP-10, 8-10
05/20/2010	Solid	1005-00145 004	SP-11, 8-10

ANALYTICAL REPORT

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203-1415 Michele Wittman

Project Name.:

31 Webster Street

Project No.:

21.0056584.00

Date Received:

Date Reported:

05/21/2010

orted: 06/02/2010

Work Order No.:

1005-00145

Digitally signed by Andrew Yaroshefski Date: 2010.06.02 17:23:17 -04'00'

Data Authorized By:

NELAC certification, as indicated by the NELAC Lab ID Number, is per analyte. For a complete list of NELAC validated analytes, please contact the laboratory.

Abbreviations:

% R = % Recovery

DF = Dilution Factor

DFS = Dilution Factor Solids

CF = Calculation Factor

DO = Diluted Out

Method Key:

Method 8260: The current version of the method is 8260B. Method 8270: The current version of the method is 8270D. Method 6010: The current version of the method is 6010B.

Please note that the laboratory signed copy of the chain of custody record is an integral part of the data report.

The laboratory report shall not be reproduced except in full without the written consent of the laboratory.

Soil data is reported on a dry weight basis unless otherwise specified.

Matrix Spike / Matrix Spike Duplicate sets are performed as per method and are reported at the end of the analytical report if assigned on the Chain of Custody.

ANALYTICAL REPORT

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203-1415 Michele Wittman

Project Name.:

31 Webster Street

Project No.:

21.0056584.00

Date Received: Date Reported: 05/21/2010

eported: 06/02/2010

Work Order No.:

1005-00145

Sample ID:

SP-6, 6-8

Sa

Sample No.: 001

Sample Date:

Test Performed	Method	Results	Reporting Limit	Units	Tech	Analysis Date
2-Hexanone	EPA 8260	<4600	4600	ug/kg	MQS	05/29/2010
1,3-Dichloropropane	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
Tetrachloroethene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
Dibromochloromethane	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
1,2-Dibromoethane (EDB)	EPA 8260	<350	350	ug/kg	MQS	05/29/2010
Chlorobenzene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
1,1,1,2-Tetrachloroethane	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
Ethylbenzene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
m&p-Xylene	EPA 8260	<350	350	ug/kg	MQS	05/29/2010
o-Xylene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
Styrene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
Bromoform	EPA 8260	<350	350	ug/kg	MQS	05/29/2010
Isopropylbenzene	EPA 8260	420	180	ug/kg	MQS	05/29/2010
1,1,2,2-Tetrachloroethane	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
1,2,3-Trichloropropane	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
Bromobenzene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
n-Propylbenzene	EPA 8260	2500	180	ug/kg	MQS	05/29/2010
2-Chlorotoluene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
1,3,5-Trimethylbenzene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
4-Chlorotoluene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
tert-Butylbenzene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
1,2,4-Trimethylbenzene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
sec-Butylbenzene	EPA 8260	930	180	ug/kg	MQS	05/29/2010
p-Isopropyltoluene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
1,3-Dichlorobenzene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
1,4-Dichlorobenzene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
n-Butylbenzene	EPA 8260	2900	180	ug/kg	MQS	05/29/2010
1,2-Dichlorobenzene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
1,2-Dibromo-3-Chloropropane	EPA 8260	<350	350	ug/kg	MQS	05/29/2010
1,2,4-Trichlorobenzene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
Hexachlorobutadiene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
Naphthalene	EPA 8260	<350	350	ug/kg	MQS	05/29/2010
1,2,3-Trichlorobenzene	EPA 8260	<180	180	ug/kg	MQS	05/29/2010
Surrogates:	EPA 8260					
***1,2-Dichloroethane-D4	EPA 8260	90.1	70-130	% R	MQS	05/29/2010

ANALYTICAL REPORT

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203-1415 Michele Wittman

Project Name.:

31 Webster Street

Project No.:

21.0056584.00

Date Received: Date Reported:

05/21/2010 06/02/2010

Work Order No.:

1005-00145

Sample ID:

SP-9, 8-10

Sample No.: 002

Sample Date:

Test Performed	Method	Results	Reporting Limit	Units	Tech	Analysis Date
PERCENT SOLID		80.6		%	TAJ	05/25/2010
VOLATILE ORGANICS	EPA 8260				MQS	05/29/2010
Dichlorodifluoromethane	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
Chloromethane	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
Vinyl Chloride	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Bromomethane	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
Chloroethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Trichlorofluoromethane	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
Diethylether	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
Acetone	EPA 8260	<1300	1300	ug/kg	MQS	05/29/2010
1,1-Dichloroethene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Dichloromethane	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
Methyl tert-butyl ether	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
trans-1,2-Dichloroethene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,1-Dichloroethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
2-Butanone (MEK)	EPA 8260	<1300	1300	ug/kg	MQS	05/29/2010
2,2-Dichloropropane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
cis-1,2-Dichloroethene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Chloroform	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Bromochloromethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Tetrahydrofuran	EPA 8260	<500	500	ug/kg	MQS	05/29/2010
1,1,1-Trichloroethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,1-Dichloropropene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Carbon Tetrachloride	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,2-Dichloroethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Benzene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Trichloroethene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,2-Dichloropropane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Bromodichloromethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Dibromomethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
4-Methyl-2-Pentanone (MIBK)	EPA 8260	<1300	1300	ug/kg	MQS	05/29/2010
cis-1,3-Dichloropropene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Toluene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
trans-1,3-Dichloropropene	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
1,1,2-Trichloroethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010

ANALYTICAL REPORT

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203-1415 Michele Wittman

Project Name.:

31 Webster Street

Project No.:

21.0056584.00

Date Received: Date Reported: 05/21/2010

06/02/2010

Work Order No.: 1005-00145

Sample ID:

SP-9, 8-10

Sample No.: 002

Sample Date:

Test Performed	Method	Results	Reporting Limit	Units	Tech	Analysis Date
***Toluene-D8	EPA 8260	98.4	70-130	% R	MQS	05/29/2010
***4-Bromofluorobenzene	EPA 8260	88.4	70-130	% R	MQS	05/29/2010
Preparation	EPA 5035	10		CF	MQS	05/29/2010
PAHS BY GCMS	EPA 8270				CMG	05/26/2010
Naphthalene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
2-Methylnaphthalene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Acenaphthylene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Acenaphthene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Fluorene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Phenanthrene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Anthracene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Fluoranthene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Pyrene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Benzo [a] Anthracene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Chrysene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Benzo [b] Fluoranthene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Benzo [k] Fluoranthene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Benzo [a] Pyrene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Indeno [1,2,3-cd] Pyrene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Dibenzo [a,h] Anthracene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Benzo [g,h,i] Perylene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Surrogates:	EPA 8270					
***Nitrobenzene-D5	EPA 8270	51.4	30-130	% R	CMG	05/26/2010
***2-Fluorobiphenyl	EPA 8270	46.3	30-130	% R	CMG	05/26/2010
***P-Terphenyl-D14	EPA 8270	73.5	30-130	% R	CMG	05/26/2010
Extraction	EPA 3545	1.0		DF	KMM	05/25/2010

ANALYTICAL REPORT

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203-1415 Michele Wittman

Project Name.:

31 Webster Street

Project No.:

21.0056584.00

Date Received: Date Reported: 05/21/2010 06/02/2010

Work Order No.:

1005-00145

Sample ID:

SP-10, 8-10

Sample No.: 003

Sample Date:

Test Performed	Method	Results	Reporting Limit	Units	Tech	Analysis Date
2-Hexanone	EPA 8260	<1300	1300	ug/kg	MQS	05/29/2010
1,3-Dichloropropane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Tetrachloroethene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Dibromochloromethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,2-Dibromoethane (EDB)	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
Chlorobenzene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,1,1,2-Tetrachloroethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Ethylbenzene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
m&p-Xylene	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
o-Xylene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Styrene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Bromoform	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
Isopropylbenzene	EPA 8260	130	50	ug/kg	MQS	05/29/2010
1,1,2,2-Tetrachloroethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,2,3-Trichloropropane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Bromobenzene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
n-Propylbenzene	EPA 8260	110	50	ug/kg	MQS	05/29/2010
2-Chlorotoluene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,3,5-Trimethylbenzene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
4-Chlorotoluene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
tert-Butylbenzene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,2,4-Trimethylbenzene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
sec-Butylbenzene	EPA 8260	470	50	ug/kg	MQS	05/29/2010
p-Isopropyitoluene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,3-Dichlorobenzene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,4-Dichlorobenzene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
n-Butylbenzene	EPA 8260	190	50	ug/kg	MQS	05/29/2010
1,2-Dichlorobenzene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,2-Dibromo-3-Chloropropane	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
1,2,4-Trichlorobenzene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Hexachlorobutadiene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Naphthalene	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
1,2,3-Trichlorobenzene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Surrogates:	EPA 8260					
***1,2-Dichloroethane-D4	EPA 8260	88.9	70-130	% R	MQS	05/29/2010

ANALYTICAL REPORT

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203-1415 Michele Wittman

Project Name.:

31 Webster Street

Project No.:

21.0056584.00

Date Received:
Date Reported:

05/21/2010

Reported: 06/02/2010

Work Order No.:

1005-00145

Sample ID:

SP-11, 8-10

Sample No.:

004

Sample Date:

Test Performed	Method	Results	Reporting Limit	Units	Tech	Analysis Date
PERCENT SOLID		78.5		%	TAJ	05/25/2010
VOLATILE ORGANICS	EPA 8260				MQS	05/29/2010
Dichlorodifluoromethane	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
Chloromethane	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
Vinyl Chloride	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Bromomethane	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
Chloroethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Trichlorofluoromethane	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
Diethylether	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
Acetone	EPA 8260	<1300	1300	ug/kg	MQS	05/29/2010
1,1-Dichloroethene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Dichloromethane	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
Methyl tert-butyl ether	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
trans-1,2-Dichloroethene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,1-Dichloroethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
2-Butanone (MEK)	EPA 8260	<1300	1300	ug/kg	MQS	05/29/2010
2,2-Dichloropropane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
cis-1,2-Dichloroethene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Chloroform	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Bromochloromethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Tetrahydrofuran	EPA 8260	<500	500	ug/kg	MQS	05/29/2010
1,1,1-Trichloroethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,1-Dichloropropene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Carbon Tetrachloride	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,2-Dichloroethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Benzene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Trichloroethene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
1,2-Dichloropropane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Bromodichloromethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Dibromomethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
4-Methyl-2-Pentanone (MIBK)	EPA 8260	<1300	1300	ug/kg	MQS	05/29/2010
cis-1,3-Dichloropropene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
Toluene	EPA 8260	<50	50	ug/kg	MQS	05/29/2010
trans-1,3-Dichloropropene	EPA 8260	<100	100	ug/kg	MQS	05/29/2010
1,1,2-Trichloroethane	EPA 8260	<50	50	ug/kg	MQS	05/29/2010

ANALYTICAL REPORT

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203-1415 Michele Wittman

Project Name.:

31 Webster Street

Project No.:

21.0056584.00

Date Received:

05/21/2010

Date Reported:

06/02/2010

Work Order No.:

1005-00145

Sample ID:

SP-11, 8-10

Sample No.: 004

Sample Date:

Test Performed	Method	Results	Reporting Limit	Units	Tech	Analysis Date
***Toluene-D8	EPA 8260	94.6	70-130	% R	MQS	05/29/2010
***4-Bromofluorobenzene	EPA 8260	90.1	70-130	% R	MQS	05/29/2010
Preparation	EPA 5035	10		CF	MQS	05/29/2010
PAHS BY GCMS	EPA 8270				CMG	05/26/2010
Naphthalene	EPA 8270	1300	330	ug/kg	CMG	05/26/2010
2-Methylnaphthalene	EPA 8270	2100	330	ug/kg	CMG	05/26/2010
Acenaphthylene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Acenaphthene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Fluorene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Phenanthrene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Anthracene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Fluoranthene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Pyrene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Benzo [a] Anthracene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Chrysene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Benzo [b] Fluoranthene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Benzo [k] Fluoranthene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Benzo [a] Pyrene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Indeno [1,2,3-cd] Pyrene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Dibenzo [a,h] Anthracene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Benzo [g,h,i] Perylene	EPA 8270	<330	330	ug/kg	CMG	05/26/2010
Surrogates:	EPA 8270					
***Nitrobenzene-D5	EPA 8270	54.5	30-130	% R	CMG	05/26/2010
***2-Fluorobiphenyl	EPA 8270	49.0	30-130	% R	CMG	05/26/2010
***P-Terphenyl-D14	EPA 8270	73.5	30-130	% R	CMG	05/26/2010
Extraction	EPA 3545	1.0		DF	KMM	05/25/2010

GZA GeoEnvironmental, Inc. 106 South Street Hopkinton, MA 01748

EPA Method 8270 Solid Method Blank (MB) and Laboratory Control Sample (LCS) Data

Laboratory Control Sample

Date Extracted:	05/25/10		
Date Analyzed:	5/26/2010		
File Name:	M5352		
Spike Concentration = 20u	% Recovery	Acceptance Limits	Verdict
naphthalene	65,0	40-140	ok
2-methylnaphthalene	64.4	40-140	ok
acenaphthylene	76.7	40-140	ok
acenaphthene	67.3	40-140	ok
fluorene	71.9	40-140	ok
phenanthrene	84.4	40-140	ok
anthracene	85.4	40-140	ok
fluoranthene	90.7	40-140	ok
ругеле	88.8	40-140	ok
benz [a] anthracene	84.4	40-140	ok
chrysene	84.4	40-140	ok
benzo (b) fluoranthene	81.3	40-140	ok
benzo [k] fluoranthene	87.3	40-140	ok
benzo [a] pyrene	83.1	40-140	ok
indeno (1,2,3-cd) pyrene	84.5	40-140	ok
dibenz [a,h] anthracene	84.8	40-140	ok
benzo [ghi] perylene	82.1	40-140	ok

CAM criteria allows 15% of analytes to exceed criteria.

Surrogates:	Recovery (%)	Acceptance Limits	Verdict
NITROBENZENE-D5	63,3	30-130	ok
2-FLUOROBIPHENYL	70,5	30-130	ok
p-TERPHENYL-D14	93.0	30-130	ok

Quantitation keport

Data File : C:\HPCHEM\1\DATA\MAY-10\C1989.D

Acq On : 29 May 2010 15:08

Vial: 9 Operator: KAC Inst : Albert

Sample Misc

: 05/29/10

: 1005-00145-001 50ul 8260 #10

Multiplr: 1.00

MS Integration Params: LSCINTKW.P

Quant Time: Jun 1 17:41 2010

Quant Results File: 826035.RES

Method : C:\HPCHEM\1\METHODS\826035.M (RTE Integrator)
Title : EPA 8260 VOLATILE ORGANICS- April 25, 2010

Last Update : Thu May 27 09:20:23 2010

16.15 - 00.45 (for lah use only)

W.O.#

CHAIN-OF-CUSTODY RECORD

Note # held per 0 will (Temp Blank Cooler Air Total No ပူ Ŋ 9 55 D 60 D D D 000 V45 LAB USE TEMP. OF COOLER REVICEL PLP - Specify Below ICLP - Specify Below PO NO. WHOLD FOR PM APPROUNCE Actals (List Below) ** SHEET HEND TAL LIZ W/ CN HORTH TOWNWANDS NY niJ JAT C tlab! ह-प्र 🗆 शबार 31 WEBSTEN STREET CI-M44 🖸 elembr DHI-CC MEING Days, Approved by (DOTS POW) DD-Hd. #54-[808 A4 GZA FILE NO: 210056584, 00 TASK NO DAY WOLL EV 932 MM 2AOCT NB D V D OLZB VdB 又 (PHA4) ZRATZ OTS8 A93 RA E270 SVOCE - Pull List TURNAROUND TIME: Standard Rush 903 MM AOC® 109 EDV RIM MOC? EBY 234 3 DM AOC! EPA 8021- STARS List RELI (Ind -1208 A93 COLLECTOR(S) HLJ 28ATZ -0658 A9: LOCATION REL Huff - 0058 AN 3C Methane, Ethane, Ethene Cond □ Hq A=Aur S=Soil GW=Ground W SW=Surface W. WW=Waze W. DW=Drinking W. 5/201/2 154C (speculy) 33 3 NN W RECEIVED BY PRESERVATIVE (CI-HCI, M-Methand, N-HNO3, S-H2SO4, Ne-NaOH, O-Osher) * Project Manager MICHESLE WITHMAN GZA GEOENVIRONMENTAL OF NEW YORK 535 Washington Street, 11th Floor Buffalo, NY 14203 (716) 865-2300 FAX (716) 685-3629 CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, T-Tellen, O-Other)* RELINQUISHED BY, 1516 5/20/10 19:30 1513 1554 200 1545 150 547 Date/Time Sampled 2/50/10 DATE/TIME -J _ 21-01 8-10 Ç. Sample 1.D. RELINQUISHED BY RELINQUISHED BY 5P-3 5P-5 50-1 1 1

Laboratory Identification Numbers:
MA and ME: MA092 NH: 2028
CT: PH0579 RI: LAO00236
NELAC - NYS DOH: 11063

ANALYTICAL REPORT

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203-1415 Michele Wittman Project No.: 21.0056584.00
Work Order No.: 1005-00144
Date Received: 05/21/2010
Date Reported: 06/02/2010

SAMPLE INFORMATION

 Date Sampled
 Matrix
 Laboratory ID
 Sample ID

 05/20/2010
 Aqueous
 1005-00144 001
 SP-3

 05/20/2010
 Aqueous
 1005-00144 002
 SP-5

ANALYTICAL REPORT

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203-1415 Michele Wittman

Project Name.:

31 Webster Street

Project No.:

21.0056584.00

Date Received:

05/21/2010

Date Reported:

06/02/2010

Work Order No.:

1005-00144

Data Authorized By:

NELAC certification, as indicated by the NELAC Lab ID Number, is per analyte. For a complete list of NELAC validated analytes, please contact the laboratory.

Abbreviations:

%R = %Recovery

DF = Dilution Factor

DFS = Dilution Factor Solids

CF = Calculation Factor

DO = Diluted Out

Method Key:

Method 8260: The current version of the method is 8260B. Method 8270: The current version of the method is 8270D. Method 6010: The current version of the method is 6010B.

Please note that the laboratory signed copy of the chain of custody record is an integral part of the data report.

The laboratory report shall not be reproduced except in full without the written consent of the laboratory.

Soil data is reported on a dry weight basis unless otherwise specified.

Matrix Spike / Matrix Spike Duplicate sets are performed as per method and are reported at the end of the analytical report if assigned on the Chain of Custody.

ANALYTICAL REPORT

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203-1415 Michele Wittman

Project Name.:

31 Webster Street

Project No.:

21.0056584.00

Date Received:

05/21/2010

Date Reported:

06/02/2010

Work Order No.:

1005-00144

Sample ID:

SP-3

Sample No.: 001

Sample Date:

Test Performed	Method	Results	Reporting Limit	Units	Tech	Analysis Date
1,3-Dichloropropane	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
Tetrachloroethene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
Dibromochloromethane	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
1,2-Dibromoethane (EDB)	EPA 8260	<2.0	2.0	ug/L	MQS	05/27/2010
Chlorobenzene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
1,1,1,2-Tetrachloroethane	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
Ethylbenzene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
m&p-Xylene	EPA 8260	<2.0	2.0	ug/L	MQS	05/27/2010
o-Xylene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
Styrene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
Bromoform	EPA 8260	<2.0	2.0	ug/L	MQS	05/27/2010
Isopropylbenzene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
1,1,2,2-Tetrachloroethane	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
1,2,3-Trichloropropane	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
Bromobenzene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
N-Propylbenzene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
2-Chlorotoluene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
1,3,5-Trimethylbenzene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
4-Chlorotoluene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
tert-Butylbenzene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
1,2,4-Trimethylbenzene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
sec-Butylbenzene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
p-lsopropyltoluene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
1,3-Dichlorobenzene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
1,4-Dichlorobenzene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
n-Butylbenzene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
1,2-Dichlorobenzene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
1,2-Dibromo-3-Chloropropane	EPA 8260	<2.0	2.0	ug/L	MQS	05/27/2010
1,2,4-Trichlorobenzene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
Hexachlorobutadiene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
Naphthalene	EPA 8260	<2.0	2.0	ug/L	MQS	05/27/2010
1,2,3-Trichlorobenzene	EPA 8260	<1.0	1.0	ug/L	MQS	05/27/2010
Surrogates:	EPA 8260					
***1,2-Dichloroethane-D4	EPA 8260	101	70-130	% R	MQS	05/27/2010
***Toluene-D8	EPA 8260	96.9	70-130	% R	MQS	05/27/2010

ANALYTICAL REPORT

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203-1415 Michele Wittman

Project Name.:

31 Webster Street

Project No.:

21.0056584.00

Date Received: Date Reported:

05/21/2010 06/02/2010

Work Order No.:

1005-00144

Sample ID:

SP-5

Sample No.: 002

Sample Date:

Test Performed	Method	Results	Reporting Limit	Units	Tech	Analysis Date
VOLATILE ORGANICS	EPA 8260				MQS	05/27/2010
Dichlorodifluoromethane	EPA 8260	<5.0	5.0	ug/L	MQS	05/27/2010
Chloromethane	EPA 8260	<5.0	5.0	ug/L	MQS	05/27/2010
Vinyl Chloride	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
Bromomethane	EPA 8260	<5.0	5.0	ug/L	MQS	05/27/2010
Chloroethane	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
Trichlorofluoromethane	EPA 8260	<5.0	5.0	ug/L	MQS	05/27/2010
Diethylether	EPA 8260	<5.0	5.0	ug/L	MQS	05/27/2010
Acetone	EPA 8260	<63	63	ug/L	MQS	05/27/2010
1,1-Dichloroethene	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
Dichloromethane	EPA 8260	<5.0	5.0	ug/L	MQS	05/27/2010
Methyl tert-butyl ether	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
trans-1,2-Dichloroethene	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
1,1-Dichloroethane	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
2-Butanone (MEK)	EPA 8260	<63	63	ug/L	MQS	05/27/2010
2,2-Dichloropropane	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
cis-1,2-Dichloroethene	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
Chloroform	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
Bromochloromethane	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
Tetrahydrofuran	EPA 8260	<25	25	ug/L	MQS	05/27/2010
1,1,1-Trichloroethane	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
1,1-Dichloropropene	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
Carbon Tetrachloride	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
1,2-Dichloroethane	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
Benzene	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
Trichloroethene	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
1,2-Dichloropropane	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
Bromodichloromethane	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
Dibromomethane	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
4-Methyl-2-Pentanone (MIBK)	EPA 8260	<63	63	ug/L	MQS	05/27/2010
cis-1,3-Dichloropropene	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
Toluene	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
trans-1,3-Dichloropropene	EPA 8260	<5.0	5.0	ug/L	MQS	05/27/2010
1,1,2-Trichloroethane	EPA 8260	<2.5	2.5	ug/L	MQS	05/27/2010
2-Hexanone	EPA 8260	<63	63	ug/L	MQS	05/27/2010

ANALYTICAL REPORT

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203-1415 Michele Wittman

Project Name.:

31 Webster Street

Project No.:

21.0056584.00

Date Received: Date Reported: 05/21/2010 06/02/2010

Work Order No.:

1005-00144

Sample ID:

SP-5

Sample No.: 002

Sample Date:

Test Performed	Method	Results	Reporting Limit	Units	Tech	Analysis Date
***4-Bromofluorobenzene	EPA 8260	91.0	70-130	% R	MQS	05/27/2010
Preparation	EPA 5030B	2.5		CF	MQS	05/27/2010
PAHS BY GCMS	EPA 8270				CMG	05/28/2010
Naphthalene	EPA 8270	67	2.0	ug/L	CMG	05/28/2010
2-Methylnaphthalene	EPA 8270	22	2.0	ug/L	CMG	05/28/2010
Acenaphthylene	EPA 8270	<2.0	2.0	ug/L	CMG	05/28/2010
Acenaphthene	EPA 8270	<2.0	2.0	ug/L	CMG	05/28/2010
Fluorene	EPA 8270	<2.0	2.0	ug/L	CMG	05/28/2010
Phenanthrene	EPA 8270	<2.0	2.0	ug/L	CMG	05/28/2010
Anthracene	EPA 8270	<2.0	2.0	ug/L	CMG	05/28/2010
Fluoranthene	EPA 8270	<2.0	2.0	ug/L	CMG	05/28/2010
Pyrene	EPA 8270	<2.0	2.0	ug/L	CMG	05/28/2010
Benzo [a] Anthracene	EPA 8270	<2.0	2.0	ug/L	CMG	05/28/2010
Chrysene	EPA 8270	<2.0	2.0	ug/L	CMG	05/28/2010
Benzo [b] Fluoranthene	EPA 8270	<2.0	2.0	ug/L	CMG	05/28/2010
Benzo [k] Fluoranthene	EPA 8270	<2.0	2.0	′ ug/L	CMG	05/28/2010
Benzo [a] Pyrene	EPA 8270	<2.0	2.0	ug/L	CMG	05/28/2010
Indeno [1,2,3-cd] Pyrene	EPA 8270	<2.0	2.0	ug/L	CMG	05/28/2010
Dibenzo [a,h] Anthracene	EPA 8270	<2.0	2.0	ug/L	CMG	05/28/2010
Benzo [g,h,i] Perylene	EPA 8270	<2.0	2.0	ug/L	CMG	05/28/2010
Surrogates:	EPA 8270			_		
***Nitrobenzene-D5	EPA 8270	46.6	30-130	% R	CMG	05/28/2010
***2-Fluorobiphenyl	EPA 8270	57.7	30-130	% R	CMG	05/28/2010
***P-Terphenyl-D14	EPA 8270	66.7	30-130	% R	CMG	05/28/2010
Extraction	EPA 3510C	1.0		DF	JKC	05/27/2010

GZA GeoEnvironmental, Inc 108 South Street Hopkinton, MA 01748 MA092

EPA Method 8270/625 Aqueous Method Blank (M8) and Laboratory Control Sample (LCS) Data

Method Blank

Data Extracted:	05/27/10	
Date Analyzed:	5/28/2010	
File Name;	M5388	
		Reporting Limit
Semi-Volatije Organica	Result	(ug/L)
naphthalens	ND	2.0
2-methylnaphthalene	ND	2.0
aconsphilitylene	ND	2.0
acenaphthene	ND	2.0
fluorene	ND	2.0
phenanthrene	ND	2.0
anthracene	ND	2.0
fluoranthene	ND	2.0
pyrane	ND	2.0
benz [n] anthracene	ND	2.0
chrysene	ND	20
benzo [b] fluoranthene	ND	2.0
benzo (k) fluomnthene	ND	2.0
benzo [a] pyrene	ND	2.0
mdeno [1,2,3-cd] pyrene	ND	2.0
dibenz [a,h] anthracene	ND	2.0
banzo (ghi) perylene	ND	2.0

Surrogates:	Recovery (%)	Acceptance Limits
MITROBENZENE-D5	78.3	30-130
2-FLUOROBIPHENYL	76.2	30-130
p-TERPHENYL-D14	82.7	30-130

W.O.#

Charlet and antis

Note # 9 Total No of Cont Temp Blank Cooler Air 17/17 NW N OF. EBY 300 CL CL NO3 CL 204 LAB USE: TEMP OF COOLER SPLP - Specify Below TCLP - Specify Delow PO NO Hernis (List Below) ... Seals D TAL List w/ CN SHEET Rid LAT Calabi 1-H 🗆 s(ma): NOTES (Unless otherwise noted, all samples have been retrigerated to 4 +/- 2°C) "Specify "Other" preservatives and contamer types in this space. NOTE TO AWADO AN FI-NAM D zlas). NAL YSIS REQUIRED TPH-GC WIFING 31 WOTSSIGK STRUCT 1407 1 Holl Days. Approved by PH-GC (516d 8100) HOT mad-1808 A43 GZA FILENO 21 COTON & CO TASK NO. EPA 30\$2-PCB1 SHY RIV MAY SAOCE HOLD SAMPLES FOR POSSIBLE TESTING NE DV D 0229 VAS IND WOLF (HA9) ZAATZ 0128 A93 EBV 8510 SAOC1 - Enll Fist TURNAROUND TIME (Standard) Rush D 602 WW VOC5 109 [] EBY 624 WW VOCS EBY 254 S DW. AOC? PELL SALATS - 1208 A 93 Hard Had -1508 A 93 COLLECTURGS EP4 8260- STARS LIST LOCATION PROJECT Rt I [lind - 0928 7-43 OC Methane Ethane Ethene pro 🖸 Hq DW-Drahing W Product Other PRESERVATIVE (CI-HCL M-Methanol M-HNO) S-H2304, Na-NaOH, O-Other) • M H. A"Air S"Sail GW-Ground W SW"Surface W WW-Waste W (Njipadr) Materia RECEIVED BY RECEIVED BY RECEIVED BY Project Manager 1741C 1865 W. [Myh GZA GEOENVIRONMENTAL OF NEW YORK 443 C231 5 65 81 CONTAINER TYPE (I'-Pibruc, G-Glass V-Vial, T-Teflon, O-Other)* RELINQUISHED BY
DATE TIME 535 Washington Street 11th Floor Buffalo NY :4203 (715) 685-2300 FAX (716) 685-3629 2 **6**1.03 (2) ひな 元 4 ひろ ₹. C 2 _--Date:Time Sampled CHAIN-OF-CUSTODY RECORD 5/20/0 5/3c/n DATE TIME ----23 0:00 200 رة 5 4-5 4-6 4 Q. - C SF16,5710 Sample 1D RELINQUISHED BY RELINQUISHED BY 2 1 7 P 4 555 500 4

W.Q. #

CHAIN-OF-CUSTODY RECORD	DY RECORD																- 1	_							tip	ther lab was miles	14.31	141				
4 -1-1-3				ŀ	-	-		İ	ŀ	ŀ	ŀ	1	7	ANALYSIS REQUIRED	9	¥.			ı	ŀ	ŀ	-	ł	ŀ	ŀ	ŀ	ŀ	Ì			_	
Sample 1D	Sampled	Marry																														
		A Air 5-Soil (f.W. Growin) W SW. Surface W WW-Waste W DW-Drinking M P-Product (specify)	D pH D Como	121 B260 - Full List 31 J RAATS 0058 A93	EPA 8021 - Full List	Red 2821-51485 List	EPA 524 2 DW YOCs	EPA 624 WW VOCs	€ 001 / 100	EPA 8270 SV OC4 - Full List	AB C A C 0718 A93	1 P 1 625 WW 55 OC 4	98.24.25.8 V.B.2	FPA 8081-Per	1PH-GC (Mod. 8100)	DMF-GC wFING	FI-1744 © aleast	1-8 C simply	kill JAT C dash	Metals D TAL List w. CM	Metaly (List Below) **	TCLP - Specify Below	PLP - Specify Bolow	FOS E LON E 10 E 000 E 443					<u> </u>	Total No of Cont		e e)(r,
50.11.95	5121.0 1307	M		\vdash	-	-	_			1	-	-	_		├—	-				 	+	-	-		\vdash	1			-	17		<u></u>
300	5/12	>		* ·						1	X	-	_	_	_							\vdash	-	-	\vdash			I^-	-	N	1	Γ
21-21	3151	Λ			_	_	L				-	_	-		L		<u> </u>			-	-	├	├	-	-	\vdash	\vdash	-	┞	N		-\
G	(1246)	J. 15			-	L	_				-	-	_	<u> </u>	_	╙				-	┢		╁	-	-	\vdash			\vdash	4		
5P-3	1543	SU		×	-						V	⊢		\sqcup	\sqcup	Н	1		-	\vdash	-	├		-		\vdash	╁	\vdash		4	-	Γ-
55.5	1554	\cdot		X	۱ _		_			A.	X	_	200	The state of	7	6			,-	\vdash		┝	\vdash	┢	-		-		├	7	-	T
C 24'S	000	SE									-	_		/	1/		17				-	-	\vdash	-	-	-	-		-	4		
				+	_	_			_	-			_							_		+	-					-				
				-	+	1			+	╁	+	-	-	-	\perp	\perp			1	+-	+	+	+-	+	+	-	+-	+-	-		1	T
				H						H	H		H	\vdash		Ш			\Box			Н	\vdash	Н	\vdash	\vdash	\vdash	1				
			-	+	-+	_	4		+	+	+	\dashv		_		_			\top	+	+	+	+	+	\dashv	\dashv	\dashv	+	+			
PRESERVATIVE (CI-HCI, M-M	PRESERVATIVE (CI-HCI, M-Methano; N-HNO) S-102504 Na NaOH, O-Other)	R. O-Other)	-	+-	-	\perp	_		+	+	+	+	+	+	+				\top	+	+	+	+	+	+	+		+	+			-
CONTAINER TYPE IP-Papie, (CONTAINER TYPE IP-Pasie, G-Glass V-Visi T-Teilun O-Chiery			Н	H	Ц	Ц	Ħ	Н	Н	Н	H	Н	\vdash	Н	Ш	Ц	П	\sqcap	H	H	\mathbb{H}	╀┤	H	\dashv	Н	╂┥	$\dagger \dagger$	\mathbb{H}		-	П
TO THE STATE OF TH	5/20/0 113.	KECEIVED BY	NOTES (Unless otherwise noted, all samples have been refingerated to 4 ++- 2"C) "Specify "Other" preservatives and container types in this space.	질칠	SS Off	Berva	a not	ad ol	sam	ples	have	in the	E 50	nger	para B	5	+2	<u>o</u>														
RELENQUISIED BY	DATEAIME	RECEIVED BY:	!	7	1	Ţ.		्प्	*		17	15	5		7	X.	A		13	1		4										-
RELINOUISHED BY	DATE TIME	RECEIVED BY	- (-										•	**) b.														
			5	FO (2)		SUMPCES	2	ď	ঠ	∙∿		3	1					Ψ	1)		Ψ.	4	Þ									
			ď	PUSSIBCE	B	3	- 1	アセンティン 公	17	2	300																					
Project Manager	Project Manager 11 C + (2) (2) 170	TIME.	TUR	TURNAROUND TIME (Sundard) Rush	IT QN	ME	(spung	1 =	ųs,	- 1		ã,	NS. A	Days. Approved by	ved b	4	1			LAB USE TEMP OF COOLER	SE	9	LER				٦	- L	្ន	Temp Blank Cooler Air	4	
	SOE Markette State of New	2	(7.7.4	GZA FILE NO	ſ	71000000000000000000000000000000000000	\ \times \ \ \times \ \ \times \ \ \ \times \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		[33	نان	ไจ้	Ę	3	9						0	ON OA	ŀ										
	Buffalo NY 14203 (716) 685-2300		PROJECT	L)		~		WCBSTON	çç	1	1,5			STRUE	12	5	1	1				1									I	
	FAX (716) 685-3629		LOCATION	TION		NUKTH .	7	1	_		3	Township	3	4	5	Ĉ		<	\bigcirc	_											1 1	
			COLL	COLLECTORIS,	(3)		0	74	γ	_	3	2)	11	·		~		SHEET	-	1 4	N		Ş			N	8.1			1	
										II	H	li	H		11		H			1	$\ $		ı			1		1				7