

3730 California Road

Orchard Park, NY 14127-0427

www.matrixbiotech.com

P.O. Box 427

p: 716.662.0745

f: 716.662.0946

April 9, 2013

Mr. Greg Doel Crazy Jakes 26 Webster Street North Tonawanda, NY 14120

RE: Subsurface Investigation Results

Vacant Office Space 31 Webster Street North Tonawanda, NY NYSDEC Spill #1005734 METI Project #12-031

Dear Mr. Doel:

Matrix Environmental Technologies Inc., (METI) completed a Subsurface Investigation at the referenced property which included the completion of eight (8) soil borings, collection of five (5) soil samples and three (3) groundwater samples from temporary micro-wells for laboratory analysis. Attached is a copy of the report that describes the methods used in performing the subsurface investigation and a summary of the soil and groundwater analytical results.

Please contact METI if you have any questions.

Sincerely,

Matrix Environmental Technologies Inc.

D. Robert Gill, C.P.G.

Sr. Geologist

Enclosure

Michele M. Wittman, P.G. Sr. Project Manager

Muchele M. Watmor

SUBSURFACE INVESTIGATION RESULTS REPORT

Vacant Office Space 31 Webster Street North Tonawanda, NY NYSDEC Spill #1005734 METI Project #12-031

April 9, 2013

Prepared For:

Mr. Greg Doel Crazy Jakes 26 Webster Street North Tonawanda, NY 14120

Prepared By:

3730 California Road PO Box 427 Orchard Park, NY 14127 716-662-0745

D. Robert Gill, C.P.G.

Senior Geologist

Michele M. Wittman, P.G.

Micheli M. Watmer

Senior Project Manager

TABLE OF CONTENTS

1.0	INTRODU	CTION	1		
1.1	Authorizatio	on	1		
1.2					
1.3	•	nd Scope of Work			
1.4		tion			
2.0	METHODS	OF INVESTIGATION	2		
2.1	Site Prepara	tion	2		
2.2	Soil Boring	Completion and Soil Sampling	3		
2.3	Groundwate	r Sampling	3		
2.4	Laboratory A	Analysis	3		
3.0	RESULTS .		3		
3.1	Subsurface (Conditions	3		
3.2	Soil		4		
3.3	Groundwate	r	4		
4.0	DISCUSSIO	ON AND CONCLUSIONS	4		
5.0	LIMITATI	ONS	5		
<u>FIGU</u>	<u>JRES</u>				
FIGU FIGU		Site Map with Soil Boring Locations (January 21, 2013) Site Map with Groundwater Sample Locations (January 21, 2013)			
TAB	<u>LES</u>				
TABLE 1 TABLE 2		Sample Summary Table Soil Analytical Summary			
TABLE 3		Groundwater Analytical Summary			
<u>APPI</u>	ENDICES				
APPENDIX A APPENDIX B		Soil Boring Logs Laboratory Analytical Reports			

1.0 INTRODUCTION

1.1 Authorization

Matrix Environmental Technologies Inc. (METI) was authorized by Mr. Greg Doel to complete a Subsurface Investigation at the property located at 31 Webster Street, North Tonawanda, New York (Site). A Site Map is included as **Figure 1**.

1.2 Site History

A Phase I Environmental Site Assessment¹ (ESA) completed at the Site by GZA GeoEnvironmental (GZA) and identified former use of the property as a filling station and Bob and Don's Texaco from 1949 to 1968. Although a 1973 letter indicated the tanks were removed, no analytical testing data was available to assure the historic tanks did not leak. Additionally, one 500-gallon "sludge tank" was present in 1973 and no records of removal were identified.

A Phase II ESA² was completed by GZA and included a geophysical survey to assess for buried metal objects that may provide further information on the possible presence of USTs. Several anomalies were identified and a subsurface investigation was completed in these areas. A total of 11 soil borings were completed. Soil conditions were identified as brown sand with lesser amounts of gravel, silt, and clay, overlying sand and silt soils. Groundwater was encountered at most locations at a depth of approximately 9 feet below ground surface.

The investigation did not identify volatile organic compounds (VOCs) or semi-volatile organic compounds (SVOCs) at concentrations above regulatory limits in the soil samples collected for analysis. However, several VOCs were detected in one groundwater sample collected on the western portion of the Site. An odor was detected in soil samples from four borings at depths greater than 6 feet bgs. It was concluded that impacts were limited to the northern and western portions of the Site, and likely attributed to the historic gasoline station usage.

New York State Department of Environmental Conservation (NYSDEC) assigned spill #1005734 for the Site and is requiring remedial measures be taken to address the contamination on-site.

² "Phase II Environmental Site Assessment, 31 Webster Street, North Tonawanda, New York," GZA GeoEnvironmental, June 2010.

20 years dedicated to a CLEANER ENVIRONMENT

¹ "Phase I Environmental Site Assessment, 31 Webster Street, North Tonawanda, New York," GZA GeoEnvironmental of New York, April 2010.

1.3 Objectives and Scope of Work

The objective of the subsurface investigation was to further assess the petroleum impacts in the soil and groundwater at the Site. The scope of work included the following tasks:

- Prepared a site specific health and safety plan.
- Identified the location of buried utilities through the Underground Facilities Protection Organization (UFPO).
- Completed eight (8) soil borings to a maximum depth of 16 feet below ground surface (bgs) using direct-push technology. Continuous soil sampling methodology was utilized for each boring.
- Inspected the soil samples for physical indications of impact, documented the soil type, screened for volatile organic compounds (VOCs) using an organic vapor meter (OVM), and containerized for potential laboratory analysis. Five (5) biased soil samples were selected for volatile organic compounds (VOCs) via EPA Method 8260 (STARS list).
- Collected a groundwater sample from temporary micro-wells at three (3) locations for laboratory analysis for VOCs via EPA Method 8260 (STARS list).
- Prepared this report that summarizes the methods and results of the assessment.

1.4 Site Description

The subject Site is located at 31 Webster Street, North Tonawanda, New York, as shown on **Figure 1**. The vacant office building is currently located on the Site. The Site is bordered by Webster Street to the west, Tremont Street to the north, and commercial properties to the south and east. A Phase I ESA contained documentation suggesting that the Site was former used as a gasoline filling station.

2.0 METHODS OF INVESTIGATION

2.1 Site Preparation

Prior to commencing site work, METI contacted the Underground Facilities Protection Organization (UFPO) for the location of underground utilities. Additionally, METI completed a site-specific health and safety plan for protection of its workers prior to the commencement of field activities.

2.2 Soil Boring Completion and Soil Sampling

Soil samples were obtained by driving a 2.125-inch OD, 48-inch long stainless-steel MacroCore sampler with an internal acetate sleeve into the ground using a Geoprobe®. Once the sampler was driven to the desired depth, the sampler was removed, opened, and the acetate sleeve was cut open to expose the soil sample. The soil borings are designated SB1 to SB8, as shown on **Figure 1**.

The soil samples were inspected for petroleum impact (sheen, discoloration, odor, etc.) and characterized lithologically. The samples were placed in airtight containers to allow vapors to accumulate in the headspace. The headspace was then screened for VOCs, expressed in parts per million (ppm), using a Thermo Environmental 580B Organic Vapor Meter (OVM).

2.3 Groundwater Sampling

Groundwater was encountered at each location, generally 4 to 11 feet below ground surface (bgs). Temporary groundwater micro-wells were installed at borings B2, B4, and B8. The temporary micro-wells were constructed of 1-inch diameter SCH40 PVC and were installed to depths of 14-feet bgs. Micro-wells were generally constructed of 10 foot lengths of 0.01-inch slotted well screen and connected to solid riser. Grab groundwater samples were collected from each temporary well with disposable bailers. The wells were caped below grade and covered for possible future sampling. Refer to **Figure 2** for a site map indicating the groundwater sampling locations.

2.4 Laboratory Analysis

The soil and groundwater samples were collected, as listed on **Table 1**, and submitted under chain-of-custody protocol to Accutest Laboratories (NELAC #11791), Marlborough, Massachusetts, and analyzed for VOCs using EPA Method 8260 (STARS list).

3.0 RESULTS

3.1 Subsurface Conditions

On January 16, 2013, METI collected soil samples from eight (8) borings that generally extended to 12 to 16 feet bgs. Subsurface conditions generally consisted of mostly silt with varying amounts of fine-grained sand and clay. Soil exhibiting impacts from hydrocarbons such as hydrocarbon odors, and elevated OVM response were identified in 6 of 8 borings. Impacts were identified as shallow as 4 feet to as deep as 14 feet bgs.

Wet or saturated soils were encountered at 10 to 11 feet bgs with the exception of boring B2 at 4 feet bgs. Sufficient water was available in each of the soil borings, in which water samples were

obtained. Olfactory evidence of petroleum impacts, including an odor and sheen, were observed in the water collected from B4 only. Refer to Appendix A for soil boring logs.

3.2 Soil

Five (5) biased soil samples were submitted for laboratory analysis, as shown on **Table 1**. Soil sample analytical results were compared to NYSDEC CP-51 Soil Cleanup Objective (SCO) values as shown in **Table 2**. Although individual VOCs were detected in the samples submitted from borings B2, B4, and B8, only ethylbenzene in sample B4 was detected at a concentration above its SCO. Soil boring B4 was located just north of the concrete pad located along Webster Street and exhibited the greatest impacts during field screening using the OVM. No VOCs were detected above method detection limits in the samples submitted from borings B3 and B5. Refer to Figure 1 for a site map indicating soil boring locations. Analytical testing results are included in Appendix B.

3.3 Groundwater

Grab groundwater samples were collected from micro-wells at locations B2, B4, and B8. Groundwater sample analytical results were compared to:

• NYSDEC Class GA criteria presented in the Division of Water Technical and Operational Guidance Series (TOGS 1.1.), dated October 1993, revised June 1998, errata January 1999 and amended April 2000 (NYSDEC Groundwater Standards).

Multiple VOCs were detected above NYSDEC standards from samples B2 and B4 the highest total VOC concentration was detected in sample B4 at 1,060.6 μ g/L. No VOCs were detected above method detection limits in the sample from boring B8. Refer to Figure 2 for a site map indicating groundwater sampling locations.

4.0 DISCUSSION and CONCLUSIONS

METI was retained to further assess soil and groundwater petroleum impacts previously discovered by GZA in May 2012. Our work included the completion of eight (8) soil borings, and collection and analysis of select soil and groundwater samples. For purposes of discussion, the locations of the sample points from the GZA investigation were approximated and included in Figure 1 and Figure 2. Also included in the figures is the approximated location of a "pump island." The pump island was identified on a site survey figure included in the GZA Phase I ESA.

Surficial soils consist of mostly silt with lesser amounts of fine-grained sand and/or clay. An evaluation of the METI and GZA data sets indicates that hydrocarbon impacts in soil appear to be limited to the areas beneath the concrete pad directly west of the vacant building and north of the concrete pad. Although concentrations in soil did not exceed NYSDEC soil cleanup

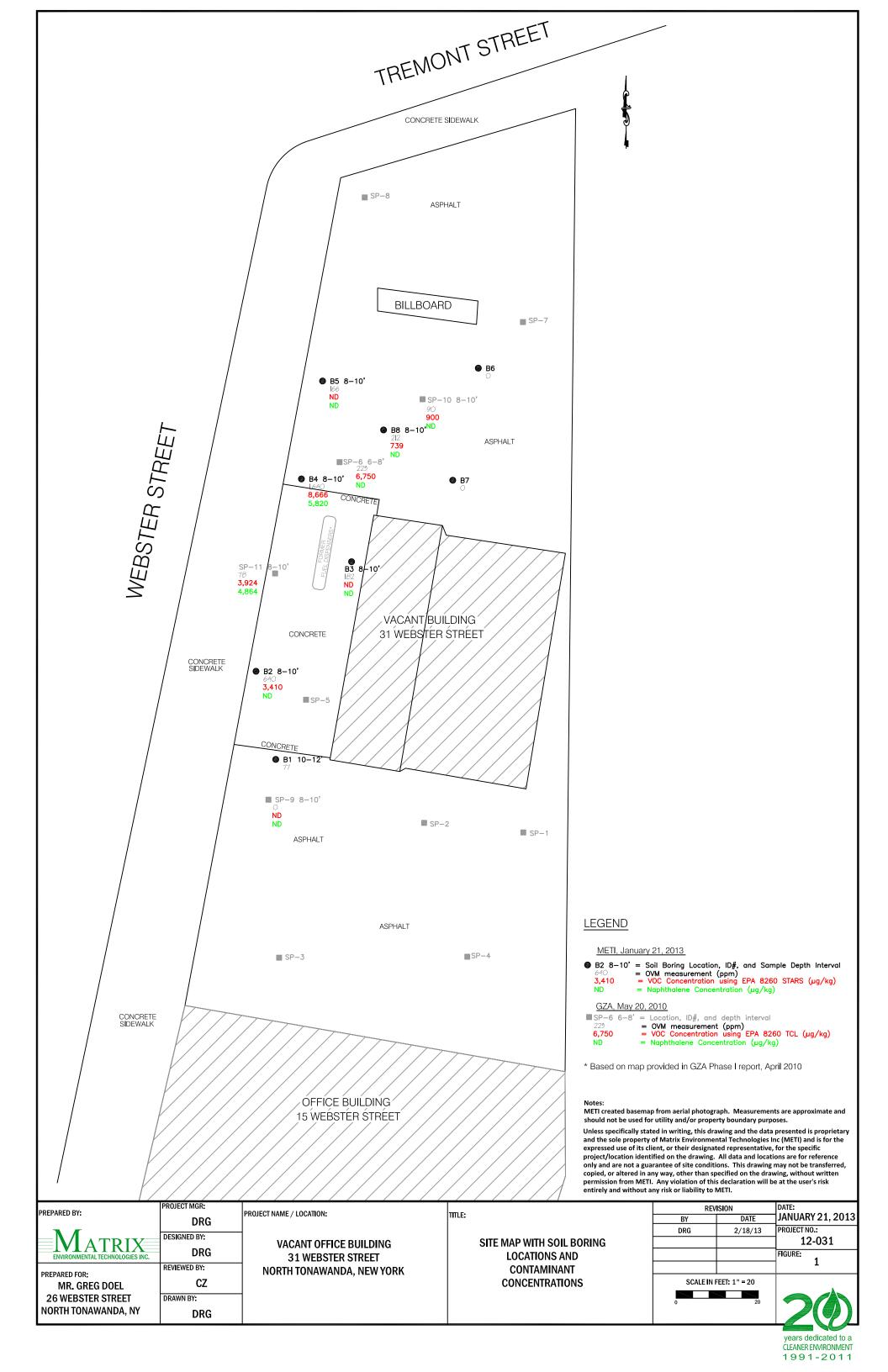
objective values for VOCs in 8 of 9 samples (the exception being ethylbenzene in sample B4), nuisance odors were detected at depths ranging from 4 to 14 feet bgs. Impacts were not encountered below 14 feet bgs.

In contrast, 3 of the 5 water samples contained multiple individual VOCs in exceedence of their respective NYSDEC Groundwater Standard value. Impacts were in the vicinity of the concrete pad and were greatest in sample B4 at $1,060.6~\mu g/L$. The water table was generally encountered at 10~to~11~feet~bgs.

The existence of hydrocarbon impacts in soil and groundwater support the evidence of a release associated with the historic petroleum filling station use. Impacts are limited, located directly west of the vacant building, near a former dispenser island, beneath a concrete pad and are more significant in groundwater than soil. Lesser impacts were identified north of the concrete pad and vacant building. Given the age of the release, that the tanks have been removed over 30 years ago, depth of impacts and low concentrations in the soil and groundwater, no further remediation is recommended at this time.

5.0 LIMITATIONS


This report is based on a limited number of soil samples and chemical analyses. The conclusions presented in this report are based only on the observations made during this investigation and data provided by others. The report presents a description of the subsurface conditions observed at each sample location during this investigation. Subsurface conditions may vary significantly with time, particularly with respect to groundwater elevations and groundwater quality. Conclusions and recommendations set forth are applicable only to the facts and conditions at the time of this investigation.


In performing professional services, METI uses the degree of care and skill exercised under similar circumstances by members of the environmental profession practicing in the same or similar locality under similar conditions.

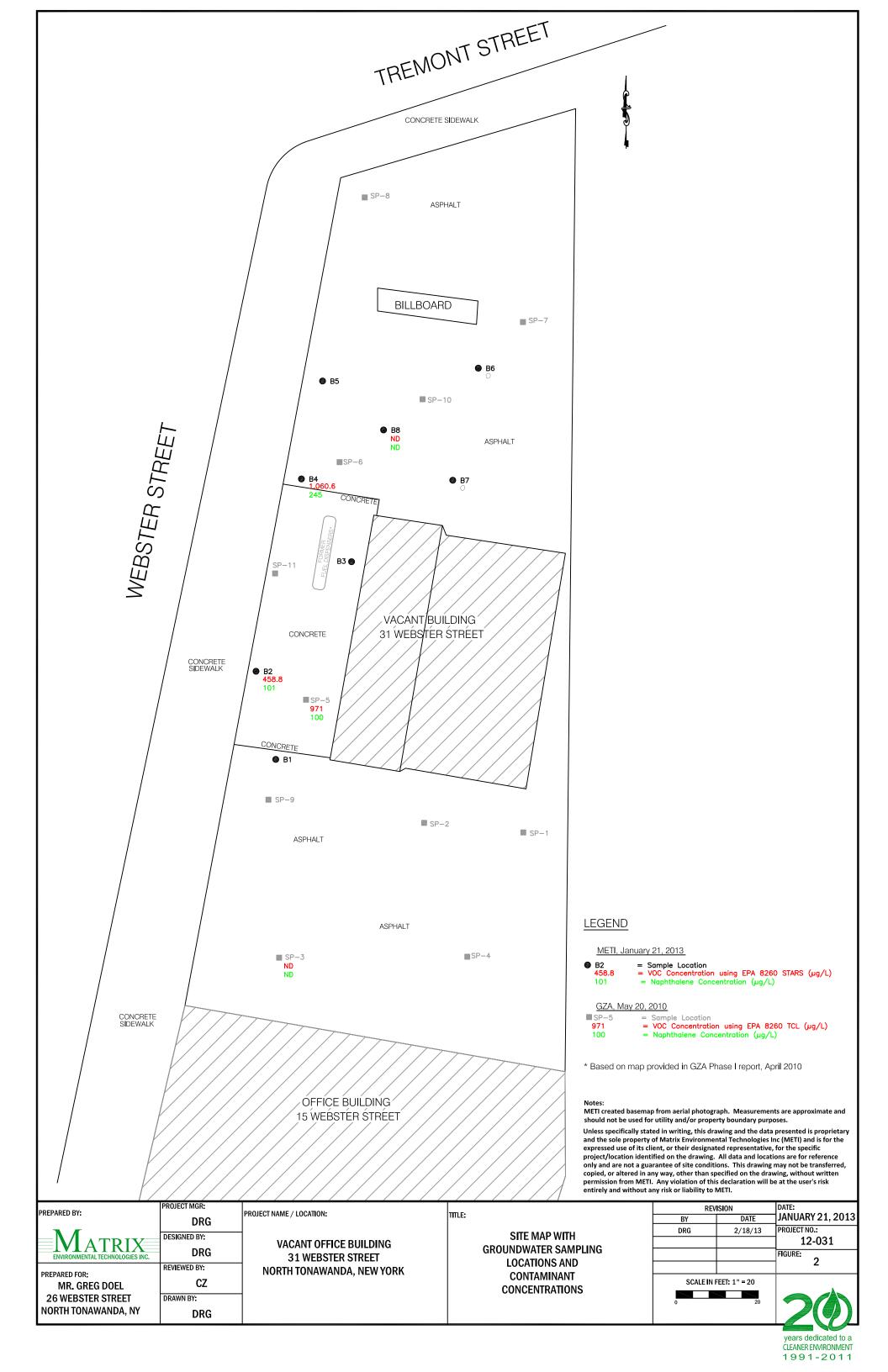

The standard of care shall be judged exclusively as of the time these services are rendered and not according to later standards. METI makes no express or implied warranty beyond its conformance to this standard. METI shall not be responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed for this report. METI believes that all information contained in this report is factual; however, no guarantee is made or implied.



Table 1Sample Matrix Summary

Vacant Office 31 Webster Road North Tonawanda, NY

	Soil Samples									
Location	Date Sampled	Sample Depth Interval (ft bgs ¹)	VOCs ² using EPA Method 8260							
B2	1/21/2013	8-10	Х							
В3	1/21/2013	8-10	Х							
B4	1/21/2013	8-10	Х							
B5	1/21/2013	8-10	Х							
B8	1/21/2013	8-10	X							
	Groundwat	er Samples								
B2	1/21/2013	na	Х							
B4	1/21/2013	na	Х							
B8	1/21/2013	na	X							

Notes:

- 1. ft bgs = feet below ground surface
- 2. VOCs = Volatile Organic Compounds

Table 2

Soil Analytical Summary VOCs Using EPA MEthod 8260 STARS (µg/kg)

Vacant Office 31 Webster Road North Tonawanda, NY

January 21, 2013

Compound	CP-51*	B2 8-10'	B3 8-10'	B4 8-10'	B5 8-10'	B8 8-10'
Compound	OVM (ppm)	640	182	1,640	166	212
Benzene	60	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	2,030	ND	2,290	ND	ND
sec-Butylbenzene	11,000	ND	ND	429	ND	739
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	1,540	ND	ND
Isopropylbenzene	2,300	ND	ND	587	ND	ND
p-Isopropyltoluene	10,000	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	1,380	ND	3,820	ND	ND
Toluene	700	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene 8,400		ND	ND	ND	ND	ND
Xylene (total) 260		ND	ND	ND	ND	ND
Total STARS VOCs	NA	3,410	ND	8,666	ND	739

MTBE	930	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	5,820	ND	ND

^{*} NYSDEC Soil Cleanup Objective (SCO) values.

^{1.} Concentrations in bold font were detected above detection limits

^{2.} ND indicates compound not detected

^{3.} Shading indicates compound detection exceeds NYSDEC CP51 Soil Cleanup Objective (SCO) values.

Table 3

Groundwater Analytical Summary VOCs using EPA MEthod 8260 STARS ($\mu g/L$)

Vacant Office 31 Webster Road North Tonawanda, NY

January 21, 2013

Compound	NSDEC Standard*	B2	B4	B8
Benzene	1	2.6	5.8	ND
n-Butylbenzene	5	ND	ND	ND
sec-Butylbenzene	5	ND	12.5	ND
tert-Butylbenzene	5	ND	ND	ND
Ethylbenzene	5	136	355	ND
Isopropylbenzene	5	62.9	107	ND
p-Isopropyltoluene	5	ND	ND	ND
n-Propylbenzene	5	153	349	ND
Toluene	5	2.3	5	ND
1,2,4-Trimethylbenzene	5	ND	78.3	ND
1,3,5-Trimethylbenzene	5	14.5	69.4	ND
Xylene (total)	5	87.5	78.6	ND
Total STARS VOCs	NA	458.8	1,060.6	ND

MTBE	10	ND	ND	ND
Naphthalene	10	101	245	ND

^{*} NYSDEC Groundwater Standard.

- 1. Concentrations in bold font were detected above detection limits
- 2. ND indicates compound not detected
- 3. Shading indicates compound detection exceeds NYSDEC Groundwater Standard.

APPENDIX A

Soil Boring Logs

Mat	rix E	inviro	onmer	ntal Te	echnologies Inc. SUBSURFACE LOG
PROJECT	& LOCATI	ON:	31 WEBSTE	R STREET, NO	RTH TONANWANDA, NEW YORK PROJECT No. 12-031
CLIENT:			GREG DOEL		WELL/BORING ID: B1
START DA			1/21/2013	COMPLE	TION DATE: 1/21/2013 RECORDED BY: D. R. GILL
		PTH WHIL	E DRILLING:	DDII	~11' GROUNDWATER DEPTH AFTER COMPLETION: NA
WEATHER DRILL RIG			MC 20° F GEOPROBE	DRIL	LING CONTRACTOR/DRILLERS: MATRIX ENVIRONNMENTAL TECHNOLOGIES INC DRILL SIZE & TYPE: 5410 DIRECT PUSH HAMMER Type: HYDRAULIC
					Sampler Type: MACROCORE (MC)
					Material Classification
Sample	Sample	Sample Interval	OVM Reading	Recovery	trace - 1-10% little - 11-20% some - 21-35% and - 36-50%
Depth (ft)	No.	(feet)	(ppm)	(inches)	11.00 T 10/0 IIII0 T 1 20/0 COMO 21 00/0 CIMA CO 00/0
					f-fine m-medium c-coarse
-	1	0-4	7	33	Asphalt and c GRAVEL.
1					Tan SILT trace CLAY
-					-
2					
-					Black SILT and f SAND little f GRAVEL. Dry. Impacts.
3					Diack Cief and Control into Fortive E. Bry. Impacto.
4					
4	2	4-8	4	36	Gray SILT little CLAY. Moist. No impacts.
5					
3					
6					
7					-
-					
8	3	8-10	4	17	SIMILAR MATERIAL.
		0 10	7	.,,	ONVIEW WENT ETWINE.
9					
10					
10	4	10-12	77	17	Black f SAND and SILT. Hydrocarbon odor detected.
11					
					Wet.
12	5	12-14	62	22	Crowledge & CAND and CILT trace CLAY West Thidresorker adar detected
-	3	12-14	02	22	Gray/black f SAND and SILT trace CLAY. Wet. Hydrocarbon odor detected.
13					
14					
14	6	14-16	0	22	SIMILAR MATERIAL. Wet. No impacts.
15					
16					Boring completed at 16.0 feet.
-					Borning Completed at 10.0 feet.
-					
•					
-					
-					-
-					
•					
•					
-		1			
-		-			4
-		1			-
		I			1
MC	C - Geopr	obe Macro	ocore	SS - Split	Spoon SH - Shelby Tube C - Bedrock Core ND - Non-detect
				-	

Mat	rix E	nviro	onmer	ntal Te	echnologies Inc. SUBSURFACE LOG
	& LOCATI	ON:	31 WEBSTER	R STREET, NO	DRTH TONANWANDA, NEW YORK PROJECT No. 12-031
CLIENT:			GREG DOEL		WELL/BORING ID: B2
START DA		PTH WHII I	1/21/2013 E DRILLING:	COMPLE	ETION DATE: 1/21/2013 RECORDED BY: D. R. GILL ~4' GROUNDWATER DEPTH AFTER COMPLETION: NA
WEATHER			MC 20° F	DRIL	LLING CONTRACTOR/DRILLERS: MATRIX ENVIRONNMENTAL TECHNOLOGIES INC
DRILL RIC	∋ :		GEOPROBE		DRILL SIZE & TYPE: 5410 DIRECT PUSH HAMMER Type: HYDRAULIC
I		1			Sampler Type: MACROCORE (MC) Material Classification
Sample	Sample	Sample	OVM	Recovery	
Depth (ft)	No.	Interval (feet)	Reading (ppm)	(inches)	trace – 1-10% little – 11-20% some – 21-35% and – 36-50%
		(ieet)	(ррііі)		f-fine m-medium c-coarse
	1	0-4	0	30	Cored through concrete. Gray SILT. Dry. No impacts.
1					
2					Tan SILT and f SAND trace f GRAVEL. Dry. No impacts.
					-
3					-
					-
4	2	4-8	54	24	Olive SILT some f SAND trace CLAY with black staining. Wet. Hydrocarbon odor detected.
5					
ĭ					
6					
					-
7					-
					-
8	3	8-10*	640	16	Gray SILT little f SAND trace CLAY. Wet. Hydrocarbon sheen and odor.
	-			-	
9					
10					
ŀ	4	10-12	293	16	SIMILAR MATERIAL. Wet. Hydrocarbon odor.
11					_
					-
12	5	12-14	8	15	Gray f SAND and SILT. Wet. No impacts.
13					
13					
14					
ŀ	6	14-16	24	15	SIMILAR MATERIALS. Wet. No impacts.
15					-
40					
16					Boring completed at 16.0 feet.
ŀ					4
					_
					-
					-
ļ					
ļ					
ŀ					4
					-
ŀ					-
					1
ŀ					
					ory analysis for VOCs using EPA Method 8260 STARS. 1-inch ID PVC well installed in completed borehole. Water sampled a PPA Method 8260 STARS.
oonooldu d	Subiliille	101 IdDUI	atory arranyono i	o. voos using	
N/C	Goopr	ohe Macro	ocoro	SS - Snlit	it Spoon SH - Shellby Tube C - Bedrock Core ND - Non-detect

Matrix Environmental Te					echnologies Inc. SUBSURFACE LOG
	& LOCATI	ON:			PRTH TONANWANDA, NEW YORK PROJECT No. 12-031
CLIENT: START D	ATE:		1/21/2013		WELL/BORING ID: B3
GROUND	WATER DE		DRILLING:		~11' GROUNDWATER DEPTH AFTER COMPLETION: NA
WEATHEI DRILL RIC			MC 20° F GEOPROBE		LING CONTRACTOR/DRILLERS: MATRIX ENVIRONNMENTAL TECHNOLOGIES INC DRILL SIZE & TYPE: 5410 DIRECT PUSH HAMMER Type: HYDRAULIC
DIVILE IVIC	J.		OLOI ROBE	•	Sampler Type: MACROCORE (MC)
		Sample	OVM		Material Classification
Sample Depth (ft)	Sample No.	Interval (feet)	Reading (ppm)	Recovery (inches)	trace - 1-10% little - 11-20% some - 21-35% and - 36-50%
					f-fine m-medium c-coarse
	1	0-4	0	20	Cored through concrete. c GRAVEL. Dry.
1					Tan SILT and CLAY. Dry. No impacts.
2					
_					-
3					-
4					
4	2	4-8	4	22	Brown f SAND trace SILT. Dry. No impacts.
5					_
					-
6					
7					
					-
8	3	8-10*	225	15	Tan SILT and f SAND
9					
					Gray SILT trace SAND trace CLAY with black staining. Moist. Hydrocarbon odor detected.
10	4	10-12	182	15	Black SILT little f SAND trace CLAY. Hydrocarbon odor.
11					
					Wet.
12	5	12-14	40	20	Black SILT trace CLAY. Saturated. Hydrocarbon odor.
13					<u></u>
					-
14	6	14-16	7	20	Gray SILT some CLAY. Wet. No impacts.
15			-		
10					-
16					Boring completed at 16.0 feet.
					<u> </u>
					-
					_
					_
					-
					_
					-
					_
A sample	from the 8-	10 foot interv	/al was submi	tted for laborate	ory analysis for VOCs using EPA Method 8260 STARS.
			300.111		, ,
M	C - Geopr	obe Macro	ocore	SS - Split	t Spoon SH - Shelby Tube C - Bedrock Core ND - Non-detect

Mat	rix E	nviro	onmer	ntal Te	echnologies Inc	:. S	SUBSUF	RFACE LO	OG
	& LOCATI				RTH TONANWANDA, NEW YORK			PROJECT No.	12-031
CLIENT:			GREG DOEL					WELL/BORING ID:	B4
START DA		DTH WHII I	1/21/2013 E DRILLING:	COMPLE	TION DATE: 1/21/2013 ~10'	GROUN	IDWATER DEPTH A	RECORDED BY: FTER COMPLETION:	D. R. GILL NA
WEATHE		vv	MC 20° F	DRIL	LING CONTRACTOR/DRILLERS: M				14/1
DRILL RIC	3:		GEOPROBE		DRILL SIZE & TYPE: 5410 D	DIRECT PUSH	HAMMER Type		DRAULIC
		<u> </u>	T 1		-	Material C	Sampler Type: Classification	MACROCOR	E (MC)
Camania	Commis	Sample	OVM	Danassams					
Sample Depth (ft)	Sample No.	Interval	Reading	Recovery (inches)	trace – 1-	10% little – 11-20%	some – 21-35%	and – 36-50%	
,		(feet)	(ppm)			f-fine m-m	nedium c-coarse		
	1	0-4	0	15	Asphalt and c GRAVEL.	11110 11111	iodiaiii o oodioo		
4					SLAG and SILT				
1					Tan SILT. Dry. No impacts.				
2					1				
_									
3					4				
					4				
4		4.0	770	27	Crox CILT little & CAND little CI	AV with block stainin	a Maiat Iludra	aarbaa adar	
	2	4-8	770	21	Gray SILT little f SAND little CL	AY WITH DIACK STAIRIN	ig. Moist. Hydrot	carbon odor.	
5					1				
0					=				
6					7				
7									
,					_				
8					1				
	3	8-10*	1,640	12	SIMILAR MATERIAL. No stain	ning. Wet. Hydrocarb	oon odor.		
9					-				
					-				
10	4	10-12	278	12	Olive SILT little f SAND little CL	AY Wet Hydrocarl	hon odor		
		10-12	210	12	Onve one indictionable indictor	ZAT. Wet. Hydrocan	bon odor.		
11					1				
12									
12	5	12-14	20	17	Gray SILT and f SAND trace C	LAY. Saturated. No	impacts.		
13					4				
					4				
14	6	14-16	36	17	Gray f SAND and SILT. Wet. I	No importo			
	0	14-10	30	17	Gray I SAND and SILT. Wet. 1	No impacts.			
15					1				
16]				
10					Boring completed at 16.0 feet	t.			
					4				
					-				
					1				
					†				
					1				
					1				
					_				
					4				
					4				
					-				
					+				
					-				
					ry analysis for VOCs using EPA Metho	od 8260 STARS. 1-inch II	D PVC well installed	in completed borehole. V	Vater sampled
collected a	and submitte	ed for labora	atory analysis f	or VOCs using	EPA Method 8260 STARS.				
NAC	George	ohe Macro	ocore	SS - Split	Snoon SH - Shelby Tu	he C-Ber	drock Core	ND - Non-detec	

### ALCATION 23 Westers Street - Notice 12 Street 12 Street	Mat	rix E	nviro	nmer	ntal Te	echnologies Inc. SUBSURFACE LOG
### START AND IT. 12 (2013) ### ST	PROJECT			31 WEBSTEI	R STREET, NO	RTH TONANWANDA, NEW YORK PROJECT No. 12-031
MEATHER MARKE CORES DRILL SUPER MATERIA ENVIRONMENTAL TEST MATERIA CORES INC MACROCORES INC MA		ATE:				
DRILL SIZE & TYPE DRILL SIZE & TYPE SATO DRIECT PUSH MAMMER Type MAMMER TYPE TYPE TYPE TYPE TYPE TYPE TYPE TYPE						
Sample S						
Sample Surgice (1990) (DIVILL IVIC	J.		GLOI ROBL		
1						Material Classification
1	Sample	Sample			Recovery	trace = 1-10% little = 11-20% some = 21-35% and = 36-50%
1 0-4 0 20 Asphalt and c GRAVEL. SLAG and SILT Tan SILT. Dry. No impacts. 3	Depth (ft)	No.		_	(inches)	trace = 1-10% little = 11-20% Soffie = 21-35% and = 30-30%
SLAG and SILT Tan SILT. Dry. No impacts. Tan SILT. Dry. No impacts. Gray SILT trace CLAY with black staining. Moist. Hydrocarbon odor. Substituting the substituting trace of the substitution of the subs						f-fine m-medium c-coarse
Tan Sil.T. Dry. No impacts. Tan Sil.T. Dry. No impacts. Gray Sil.T trace CLAY with black staining. Moist. Hydrocarbon odor. Gray Sil.T trace CLAY with black staining. Moist. Hydrocarbon odor. Wet. Olive Sil.T little f SAND trace CLAY. Hydrocarbon odor. Boring completed at 12.0 feet. A sample from the 8-10 feet interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	-	1	0-4	0	20	
A sample from the 8-10 feet internal was submitted for laboratory analysis for VOCs using EPA Method \$260 STARS.	1					SLAG and SILT
A sample from the 8-10 feet internal was submitted for laboratory analysis for VOCs using EPA Method \$260 STARS.						
A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	2					Tan SILT. Dry. No impacts.
A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	-					
2 4-8 13 20 Gray SILT Itrace CLAY with black staining. Moist. Hydrocarbon odor. 6	3					
2 4-8 13 20 Gray SILT Itrace CLAY with black staining. Moist. Hydrocarbon odor. 6	-					
Sample from the 8-10 foot insureal was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	4	2	4-8	13	20	Gray SILT trace CLAY with black staining. Moist, Hydrocarbon odor.
8 3 8-10* 166 18 Gray SILT little f SAND trace CLAY. Hydrocarbon odor. Wet. Olive SILT little f SAND trace CLAY. Wet. No impacts. Boring completed at 12.0 feet. Boring completed at 12.0 feet.	E					
8 3 8-10* 166 18 Gray SILT little f SAND trace CLAY. Hydrocarbon odor. Wet. Olive SILT little f SAND trace CLAY. Wet. No impacts. Boring completed at 12.0 feet. Boring completed at 12.0 feet. A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	5					
8 3 8-10* 166 18 Gray SILT little f SAND trace CLAY. Hydrocarbon odor. Wet. Olive SILT little f SAND trace CLAY. Wet. No impacts. Boring completed at 12.0 feet. Boring completed at 12.0 feet. A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	6					
8 3 8-10* 166 18 Wet. Wet. 10 4 10-12 4 18 Olive SILT little f SAND trace CLAY. Hydrocarbon odor. 11	3					
3 8-10* 166 18 Gray SILT little f SAND trace CLAY. Hydrocarbon odor. 9 Wet. 4 10-12 4 18 Olive SILT little f SAND trace CLAY. Wet. No impacts. 11 Boring completed at 12.0 feet. 13 Boring completed at 12.0 feet. 16 Boring completed at 12.0 feet.	7					
3 8-10* 166 18 Gray SILT little f SAND trace CLAY. Hydrocarbon odor. 9 Wet. 4 10-12 4 18 Olive SILT little f SAND trace CLAY. Wet. No impacts. 11 Boring completed at 12.0 feet. 13 Boring completed at 12.0 feet. 16 Boring completed at 12.0 feet.	-					
Wet. 10	8	2	9.10*	166	10	Cray SILT little f SAND trace CLAY. Hydrocarbon oder
Wet. Olive SILT little f SAND trace CLAY. Wet. No impacts. Boring completed at 12.0 feet. Boring completed at 12.0 feet. A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	-	<u> </u>	8-10	100	10	Gray SILT little I SAND trace CLAT. Trychocarbon odol.
A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	9					
A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	10					Wet.
Boring completed at 12.0 feet. 13 14 15 16 A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	10	4	10-12	4	18	Olive SILT little f SAND trace CLAY. Wet. No impacts.
Boring completed at 12.0 feet. 13 14 15 16 A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	11					
Boring completed at 12.0 feet. 13 14 15 16 16 A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.						
13	12					Paring completed at 42.0 feet
A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	-					Boring completed at 12.0 feet.
A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	13					
A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	4.4					
A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	14					
A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.	15					
A sample from the 8-10 foot interval was submitted for laboratory analysis for VOCs using EPA Method 8260 STARS.						
	16					
						-
						1
						1
						-
						-
						1
	•					1
	•					
					-	
						-
						-
	A sample t	from the 8-1	0 foot interv	/al was submit	ted for laborato	L ry analysis for VOCs using EPA Method 8260 STARS.
MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube C - Bedrock Core ND - Non-detect						· · · · · · · · · · · · · · · · · · ·
MC - Geoprobe Macrocore SS - Split Spoon SH - Shelby Tube C - Bedrock Core ND - Non-detect						
	MC	C - Geopre	obe Macro	ocore	SS - Split	Spoon SH - Shelby Tube C - Bedrock Core ND - Non-detect

Mat	rix E	nviro	onmer	ntal Te	echnologies Inc. SUBSURFACE LOG
	& LOCATI				PROJECT No. 12-031
CLIENT:			GREG DOEL	-	WELL/BORING ID: B6
START DA			1/21/2013	COMPLE	TION DATE: 1/21/2013 RECORDED BY: D. R. GILL
			E DRILLING:	- DDII	~10' GROUNDWATER DEPTH AFTER COMPLETION: NA
WEATHER DRILL RIG			MC 20° F GEOPROBE		LING CONTRACTOR/DRILLERS: MATRIX ENVIRONNMENTAL TECHNOLOGIES INC DRILL SIZE & TYPE: 5410 DIRECT PUSH HAMMER Type: HYDRAULIC
DIVILLE IVIC			OLO: NODE		Sampler Type: MACROCORE (MC)
					Material Classification
Sample	Sample	Sample	OVM	Recovery	trace - 1-10% little - 11-20% some - 21-35% and - 36-50%
Depth (ft)	No.	Interval (feet)	Reading (ppm)	(inches)	trace = 1-10% little = 11-20% Soffie = 21-35% and = 30-50%
		, ,	" '		f-fine m-medium c-coarse
_	1	0-4	0	14	Asphalt and c GRAVEL.
1					SLAG and SILT
•					
2					Brown SILT. Dry. No impacts.
-					-
3					-
-					-
4	2	4-6	0	20	Tan SILT little f SAND little CLAY. Moist. No impacts.
-		4-0			Train Old Finale Form Bindle Old Fr. Worst. No impacts.
5					1
6					
6	3	6-8	0	20	SAME MATERIAL. Moist. No impacts.
7					
,					
8					
-	4	8-12	0	33	Olive/gray SILT little CLAY trace f SAND. No impacts
9					-
-					- 1
10					Wet. No impacts.
-					1
11					†
					-
12					Boring completed at 12.0 feet.
13					
13					
14					
-					4
15					-
-					-
16					1
-					1
					1
					1
•					
					 -
					4
					-
-					-
-					1
-					†
-					1
					1
-					1
					<u> </u>
MC	: - Geopr	obe Macro	ocore	SS - Split	t Spoon SH - Shelby Tube C - Bedrock Core ND - Non-detect

Mat	rix E	nviro	onmei	ntal Te	echnologies Inc.	SUBSUR	FACE LOG
	& LOCATI	ON:			RTH TONANWANDA, NEW YORK		PROJECT No. 12-031
CLIENT:			GREG DOEI				WELL/BORING ID: B7
START D		DTU WUU I	1/21/2013 E DRILLING:		TION DATE: 1/21/2013 ~10'	GROUNDWATER DEPTH AF	RECORDED BY: D. R. GILL TER COMPLETION: NA
WEATHE			MC 20° F		~10 LING CONTRACTOR/DRILLERS: <u>MATRIX</u>	GROUNDWATER DEPTH AF FNVIRONNMENTAL TECHNOLOGIES	SINC
DRILL RIC			GEOPROBE		DRILL SIZE & TYPE: 5410 DIREC		
		,	T	ı		Sampler Type:	MACROCORE (MC)
		Commis	OVM			Material Classification	
Sample Depth (ft)	Sample	Sample Interval	Reading	Recovery	trace - 1-10%	little - 11-20% some - 21-35%	and – 36-50%
Deptii (it)	No.	(feet)	(ppm)	(inches)			
		0.4	•	0.4	A 1 1	f-fine m-medium c-coarse	
	1	0-4	0	24	Asphalt and c GRAVEL.		
1					-		
					Brown SILT. Dry. No impacts.		
2							
2					1		
3]		
4					_		
	2	4-8	0	26	Brown/gray SILT some CLAY. Mois	t. No impacts.	
5					-		
					-		
6		1			-		
					-		
7					-		
					1		
8	3	8-10	0	20	Gray SILT little CLAY trace f SAND		
0	-		-	-			
9							
10					Wet. No impacts.		
	4	10-12	0	20	SIMILAR MATERIALS. No impacts.		
11					_		
					-		
12					Boring completed at 12.0 feet.		
					Boring completed at 12.0 leet.		
13							
14							
15					_		
					-		
16					-		
					1		
					1		
					1		
					-		
		-			-		
					-		
		1			1		
					1		
					1		
]		
					_		
		1			-		
		<u> </u>					
М	C - Geopr	obe Macro	ocore	SS - Split	Spoon SH - Shelby Tube	C - Bedrock Core	ND - Non-detect

Mat	rix E	nviro	onmer	ntal Te	echnologies Inc.	SUBS	URF	ACE LO	G
	& LOCATI				RTH TONANWANDA, NEW YORK		ı	PROJECT No.	12-031
CLIENT:			GREG DOEL				WEL	L/BORING ID:	B8
START D			1/21/2013	COMPLE	TION DATE: 1/21/2013			CORDED BY:	D. R. GILL
		PTH WHILE	E DRILLING:		~10'	GROUNDWATER DEF		OMPLETION:	NA
WEATHE			MC 20° F	DRIL	LING CONTRACTOR/DRILLERS: MA			LIVE	241110
DRILL RIC	ɔ :		GEOPROBE		DRILL SIZE & TYPE: 5410 DII	RECT PUSH HAMMEI Sampler T		MACROCORE	RAULIC (MC)
						Material Classification		WWW.COCCAC	(WO)
Comple	Comple	Sample	OVM	Recovery					
Sample Depth (ft)	Sample No.	Interval	Reading	(inches)	trace - 1-10	0% little – 11-20% some – 21	-35% and	– 36-50%	
,		(feet)	(ppm)	,		f-fine m-medium c-coa	2*22		
		0.4	0	20	Application of a CDAVEL	1-IIIIe III-IIIediuiii C-Coa	arse		
	1	0-4	0	30	Asphalt and c GRAVEL.				
1					4				
					Brown SILT Dry No imposts				
2					Brown SILT. Dry. No impacts.				
					1				
3					1				
					-				
4	2	4-8	0	15	Brown SILT little CLAY. Moist.	No impacts			
		4-0	0	10	BIOWIT SILT IIIIIE CLAT. WOISI.	No impacts.			
5					-				
					1				
6					1				
					1				
7					1				
					1				
8	3	8-10*	212	18	Tan/gray SILT little CLAY. Mois	t Hydrocarbon odor			
		0-10	212	10	Taningray OIET little OEAT. Wors	i. Trydrodarborr odor.			
9					1				
					1				
10	4	10-12	98	18	Gray SILT little f SAND little CLA	Y Wet Hydrocarbon odor det	tected		
		10-12	30	10	Gray GIET IIIIIC TOATAD IIIIIC GEA	Vic. Trydrocarbon odor dei	iccica.		
11					1				
					1				
12	5	12-16	0	30	Gray SILT and f SAND trace CL	AY. Wet. No impacts.			
40	-	-]	, , , , ,			
13					1				
4.4					1				
14					1				
4.5					1				
15									
16									
16					Boring completed at 16.0 feet.				
					1				
					1				
					ry analysis for VOCs using EPA Method EPA Method 8260 STARS.	8260 STARS. 1-inch ID PVC well ins	stalled in comp	leted borehole. Wa	ater sampled
conected a	มแน ธนมแแน	ou ioi iadora	atory arranysis i	or vocs using	LI A IVICUIUU 0200 STARS.				
M	C - Geopr	obe Macro	ocore	SS - Split	Spoon SH - Shelby Tub	e C - Bedrock Core	1	ND - Non-detect	

APPENDIX B

Laboratory Analytical Reports

02/06/13

Technical Report for

Matrix Environmetal Tech.

DOEL, 31 Webster, North Tonawanda, NY

12-031 PO#16

Accutest Job Number: MC17739

Sampling Date: 01/21/13

Report to:

Matrix 3730 California Road Orchard Park, NY 14127 rgill@matrixbiotech.com

ATTN: Rob Gill

Total number of pages in report: 32

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Jeremy Vienneau 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) WI (399080220) ISO 17025:2005 (L2235)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	
Section 3: Sample Results	
3.1: MC17739-1: B2 8-10	7
3.2: MC17739-2: B3 8-10	8
3.3: MC17739-3: B4 8-10	9
3.4: MC17739-4: B5 8-10	10
3.5: MC17739-5: B8 8-10	11
3.6: MC17739-6: B2	12
3.7: MC17739-7: B4	13
3.8: MC17739-8: B8	14
Section 4: Misc. Forms	15
4.1: Chain of Custody	
Section 5: GC/MS Volatiles - QC Data Summaries	
5.1: Method Blank Summary	19
5.2: Blank Spike Summary	
5.3: Blank Spike/Blank Spike Duplicate Summary	
5.4: Matrix Spike/Matrix Spike Duplicate Summary	
	31

Sample Summary

Job No:

MC17739

Matrix Environmetal Tech.

DOEL, 31 Webster, North Tonawanda, NY Project No: 12-031 PO#16

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
MC17739-1	01/21/13	00:00 DRG	01/24/13	SO	Soil	B2 8-10
MC17739-2	01/21/13	00:00 DRG	01/24/13	SO	Soil	B3 8-10
MC17739-3	01/21/13	00:00 DRG	01/24/13	SO	Soil	B4 8-10
MC17739-4	01/21/13	00:00 DRG	01/24/13	SO	Soil	B5 8-10
MC17739-5	01/21/13	00:00 DRG	01/24/13	SO	Soil	B8 8-10
MC17739-6	01/21/13	00:00 DRG	01/24/13	AQ	Ground Water	B2
MC17739-7	01/21/13	00:00 DRG	01/24/13	AQ	Ground Water	B4
MC17739-8	01/21/13	00:00 DRG	01/24/13	AO	Ground Water	B8

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Summary of Hits Job Number: MC17739

Account: Matrix Environmetal Tech.

Project: DOEL, 31 Webster, North Tonawanda, NY

Collected: 01/21/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
MC17739-1	B2 8-10					
n-Butylbenzene n-Propylbenzene		2030 1380	390 390		ug/kg ug/kg	SW846 8260B SW846 8260B
MC17739-2	B3 8-10					
No hits reported	in this sample.					
MC17739-3	B4 8-10					
n-Butylbenzene sec-Butylbenzene Ethylbenzene Isopropylbenzene Naphthalene n-Propylbenzene		2290 429 1540 587 5820 3820	390 390 160 390 390 390		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B
MC17739-4	B5 8-10					
No hits reported	in this sample.					
MC17739-5	B8 8-10					
sec-Butylbenzene	;	739	340		ug/kg	SW846 8260B
MC17739-6	B2					
Benzene ^a Ethylbenzene ^a Isopropylbenzene Naphthalene ^a n-Propylbenzene Toluene ^a 1,3,5-Trimethylb m,p-Xylene ^a o-Xylene ^a Xylene (total) ^a	a	2.6 136 62.9 101 153 2.3 14.5 86.3 1.2 87.5	0.50 1.0 5.0 5.0 5.0 1.0 5.0 1.0 1.0		ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B
MC17739-7	B4					
Benzene sec-Butylbenzene Ethylbenzene Isopropylbenzene		5.8 12.5 355 107	0.50 5.0 10 5.0		ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B

Summary of Hits Job Number: MC17739

Account: Matrix Environmetal Tech.

Project: DOEL, 31 Webster, North Tonawanda, NY

Collected: 01/21/13

Lab Sample ID Client Sample II Analyte	Result/ Qual	RL	MDL	Units	Method
Naphthalene	245	5.0		ug/l	SW846 8260B
n-Propylbenzene	349	5.0		ug/l	SW846 8260B
Toluene	5.0	1.0		ug/l	SW846 8260B
1,2,4-Trimethylbenzene	78.3	5.0		ug/l	SW846 8260B
1,3,5-Trimethylbenzene	69.4	5.0		ug/l	SW846 8260B
m,p-Xylene	66.7	1.0		ug/l	SW846 8260B
o-Xylene	11.9	1.0		ug/l	SW846 8260B
Xylene (total)	78.6	1.0		ug/l	SW846 8260B

MC17739-8 B8

No hits reported in this sample.

(a) The pH of the sample aliquot for VOA analysis was > 2 at time of analysis.

Sample Results	
Report of Analysis	

Client Sample ID: B2 8-10 Lab Sample ID: MC17739-1 Matrix: SO - Soil Method:

SW846 8260B

DOEL, 31 Webster, North Tonawanda, NY **Project:**

Date Sampled: 01/21/13 **Date Received:** 01/24/13 Percent Solids: 80.1

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By MSG4919 Run #1 G123955.D 1 01/25/13 JM n/an/a Run #2

Initial Weight Final Volume Methanol Aliquot Run #1 9.61 g 10.0 ml 100 ul

Run #2

VOA STARS List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	39	ug/kg
104-51-8	n-Butylbenzene	2030	390	ug/kg
135-98-8	sec-Butylbenzene	ND	390	ug/kg
98-06-6	tert-Butylbenzene	ND	390	ug/kg
100-41-4	Ethylbenzene	ND	150	ug/kg
98-82-8	Isopropylbenzene	ND	390	ug/kg
99-87-6	p-Isopropyltoluene	ND	390	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	150	ug/kg
91-20-3	Naphthalene	ND	390	ug/kg
103-65-1	n-Propylbenzene	1380	390	ug/kg
108-88-3	Toluene	ND	390	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	390	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	390	ug/kg
	m,p-Xylene	ND	150	ug/kg
95-47-6	o-Xylene	ND	150	ug/kg
1330-20-7	Xylene (total)	ND	150	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	85%		70-130%
2037-26-5	Toluene-D8	84%		70-130%
460-00-4	4-Bromofluorobenzene	81%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: B3 8-10

Lab Sample ID: MC17739-2 **Date Sampled:** 01/21/13 Matrix: SO - Soil **Date Received:** 01/24/13 SW846 8260B Method: Percent Solids: 82.0

DOEL, 31 Webster, North Tonawanda, NY **Project:**

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By MSG4919 Run #1 G123956.D 1 01/25/13 JM n/a n/a Run #2

Report of Analysis

Initial Weight Final Volume Methanol Aliquot Run #1 10.4 g 10.0 ml 100 ul Run #2

VOA STARS List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	35	ug/kg
104-51-8	n-Butylbenzene	ND	350	ug/kg
135-98-8	sec-Butylbenzene	ND	350	ug/kg
98-06-6	tert-Butylbenzene	ND	350	ug/kg
100-41-4	Ethylbenzene	ND	140	ug/kg
98-82-8	Isopropylbenzene	ND	350	ug/kg
99-87-6	p-Isopropyltoluene	ND	350	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	140	ug/kg
91-20-3	Naphthalene	ND	350	ug/kg
103-65-1	n-Propylbenzene	ND	350	ug/kg
108-88-3	Toluene	ND	350	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	350	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	350	ug/kg
	m,p-Xylene	ND	140	ug/kg
95-47-6	o-Xylene	ND	140	ug/kg
1330-20-7	Xylene (total)	ND	140	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	84%		70-130%
2037-26-5	Toluene-D8	83%		70-130%
460-00-4	4-Bromofluorobenzene	79%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: B4 8-10 Lab Sample ID: MC17739-3 Matrix: SO - Soil

Method: SW846 8260B

Project: DOEL, 31 Webster, North Tonawanda, NY

Date Sampled: 01/21/13 Date Received: 01/24/13 Percent Solids: 82.7

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By MSG4919 Run #1 G123957.D 1 01/25/13 JM n/a n/a Run #2

Run #1 9.01 g Final Volume Methanol Aliquot

Run #2

VOA STARS List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	39	ug/kg
104-51-8	n-Butylbenzene	2290	390	ug/kg
135-98-8	sec-Butylbenzene	429	390	ug/kg
98-06-6	tert-Butylbenzene	ND	390	ug/kg
100-41-4	Ethylbenzene	1540	160	ug/kg
98-82-8	Isopropylbenzene	587	390	ug/kg
99-87-6	p-Isopropyltoluene	ND	390	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	160	ug/kg
91-20-3	Naphthalene	5820	390	ug/kg
103-65-1	n-Propylbenzene	3820	390	ug/kg
108-88-3	Toluene	ND	390	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	390	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	390	ug/kg
	m,p-Xylene	ND	160	ug/kg
95-47-6	o-Xylene	ND	160	ug/kg
1330-20-7	Xylene (total)	ND	160	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	84%		70-130%
2037-26-5	Toluene-D8	84%		70-130%
460-00-4	4-Bromofluorobenzene	89%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ىن

Client Sample ID: B5 8-10 Lab Sample ID: MC17739-4

Matrix: SO - Soil Method: SW846 8260B

Project: DOEL, 31 Webster, North Tonawanda, NY

Date Sampled: 01/21/13 **Date Received:** 01/24/13

Percent Solids: 80.7

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** MSG4919 Run #1 G123958.D 1 01/25/13 JM n/a n/a Run #2

Initial Weight Final Volume Methanol Aliquot
Run #1 10.7 g 10.0 ml 100 ul
Run #2

VOA STARS List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	35	ug/kg
104-51-8	n-Butylbenzene	ND	350	ug/kg
135-98-8	sec-Butylbenzene	ND	350	ug/kg
98-06-6	tert-Butylbenzene	ND	350	ug/kg
100-41-4	Ethylbenzene	ND	140	ug/kg
98-82-8	Isopropylbenzene	ND	350	ug/kg
99-87-6	p-Isopropyltoluene	ND	350	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	140	ug/kg
91-20-3	Naphthalene	ND	350	ug/kg
103-65-1	n-Propylbenzene	ND	350	ug/kg
108-88-3	Toluene	ND	350	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	350	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	350	ug/kg
	m, p-Xylene	ND	140	ug/kg
95-47-6	o-Xylene	ND	140	ug/kg
1330-20-7	Xylene (total)	ND	140	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	84%		70-130%
2037-26-5	Toluene-D8	83%		70-130%
460-00-4	4-Bromofluorobenzene	79%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: B8 8-10 Lab Sample ID: MC17739-5 Matrix: SO - Soil

Method: SW846 8260B

DOEL, 31 Webster, North Tonawanda, NY **Project:**

Date Sampled: 01/21/13 **Date Received:** 01/24/13 Percent Solids: 80.2

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By MSG4919 Run #1 G123959.D 1 01/25/13 JM n/a n/a

Run #2

Initial Weight Final Volume Methanol Aliquot Run #1 10.0 ml 100 ul 11.1 g

Run #2

VOA STARS List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	34	ug/kg
104-51-8	n-Butylbenzene	ND	340	ug/kg
135-98-8	sec-Butylbenzene	739	340	ug/kg
98-06-6	tert-Butylbenzene	ND	340	ug/kg
100-41-4	Ethylbenzene	ND	140	ug/kg
98-82-8	Isopropylbenzene	ND	340	ug/kg
99-87-6	p-Isopropyltoluene	ND	340	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	140	ug/kg
91-20-3	Naphthalene	ND	340	ug/kg
103-65-1	n-Propylbenzene	ND	340	ug/kg
108-88-3	Toluene	ND	340	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	340	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	340	ug/kg
	m,p-Xylene	ND	140	ug/kg
95-47-6	o-Xylene	ND	140	ug/kg
1330-20-7	Xylene (total)	ND	140	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	84%		70-130%
2037-26-5	Toluene-D8	85%		70-130%
460-00-4	4-Bromofluorobenzene	91%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: B2

 Lab Sample ID:
 MC17739-6
 Date Sampled:
 01/21/13

 Matrix:
 AQ - Ground Water
 Date Received:
 01/24/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: DOEL, 31 Webster, North Tonawanda, NY

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1 a	N72405.D	1	01/28/13	KD	n/a	n/a	MSN2720
Run #2							

Purge Volume
Run #1 5.0 ml
Run #2

VOA STARS List

CAS No.	Compound	Result	RL	Units Q				
71-43-2	Benzene	2.6	0.50	ug/l				
104-51-8	n-Butylbenzene	ND	5.0	ug/l				
135-98-8	sec-Butylbenzene	ND	5.0	ug/l				
98-06-6	tert-Butylbenzene	ND	5.0	ug/l				
100-41-4	Ethylbenzene	136	1.0	ug/l				
98-82-8	Isopropylbenzene	62.9	5.0	ug/l				
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l				
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l				
91-20-3	Naphthalene	101	5.0	ug/l				
103-65-1	n-Propylbenzene	153	5.0	ug/l				
108-88-3	Toluene	2.3	1.0	ug/l				
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	ug/l				
108-67-8	1,3,5-Trimethylbenzene	14.5	5.0	ug/l				
	m,p-Xylene	86.3	1.0	ug/l				
95-47-6	o-Xylene	1.2	1.0	ug/l				
1330-20-7	Xylene (total)	87.5	1.0	ug/l				
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits				
1868-53-7	Dibromofluoromethane	105%		70-130%				
2037-26-5	Toluene-D8	108%		70-130%				
460-00-4	4-Bromofluorobenzene	113%		70-130%				

(a) The pH of the sample aliquot for VOA analysis was > 2 at time of analysis.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ယ

Report of Analysis

Client Sample ID: B4

 Lab Sample ID:
 MC17739-7
 Date Sampled:
 01/21/13

 Matrix:
 AQ - Ground Water
 Date Received:
 01/24/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: DOEL, 31 Webster, North Tonawanda, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	L70539.D	1	01/26/13	TT	n/a	n/a	MSL3327
Run #2	N72402.D	10	01/28/13	KD	n/a	n/a	MSN2720

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

VOA STARS List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	5.8	0.50	ug/l
104-51-8	n-Butylbenzene	ND	5.0	ug/l
135-98-8	sec-Butylbenzene	12.5	5.0	ug/l
98-06-6	tert-Butylbenzene	ND	5.0	ug/l
100-41-4	Ethylbenzene	355 a	10	ug/l
98-82-8	Isopropylbenzene	107	5.0	ug/l
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
91-20-3	Naphthalene	245	5.0	ug/l
103-65-1	n-Propylbenzene	349	5.0	ug/l
108-88-3	Toluene	5.0	1.0	ug/l
95-63-6	1,2,4-Trimethylbenzene	78.3	5.0	ug/l
108-67-8	1,3,5-Trimethylbenzene	69.4	5.0	ug/l
	m,p-Xylene	66.7	1.0	ug/l
95-47-6	o-Xylene	11.9	1.0	ug/l
1330-20-7	Xylene (total)	78.6	1.0	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	130%	104%	70-130%
2037-26-5	Toluene-D8	126%	111%	70-130%
460-00-4	4-Bromofluorobenzene	126%	112%	70-130%

(a) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ω

Report of Analysis

Client Sample ID: B8

 Lab Sample ID:
 MC17739-8
 Date Sampled:
 01/21/13

 Matrix:
 AQ - Ground Water
 Date Received:
 01/24/13

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: DOEL, 31 Webster, North Tonawanda, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	N72444.D	1	01/29/13	KD	n/a	n/a	MSN2722
Run #2							

Run #1 5.0 ml Run #2

VOA STARS List

CAS No.	Compound	Result	RL	Units Q			
71-43-2	Benzene	ND	0.50	ug/l			
104-51-8	n-Butylbenzene	ND	5.0 ug/l				
135-98-8	sec-Butylbenzene	ND	5.0	ug/l			
98-06-6	tert-Butylbenzene	ND	5.0 ug/l				
100-41-4	Ethylbenzene	ND	1.0 ug/l				
98-82-8	Isopropylbenzene	ND	5.0	ug/l			
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l			
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l			
91-20-3	Naphthalene	ND	5.0	ug/l			
103-65-1	n-Propylbenzene	ND	5.0	ug/l			
108-88-3	Toluene	ND	1.0	ug/l			
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	ug/l			
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	ug/l			
	m,p-Xylene	ND	1.0	ug/l			
95-47-6	o-Xylene	ND	1.0	ug/l			
1330-20-7	Xylene (total)	ND	1.0	ug/l			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits			
1868-53-7	Dibromofluoromethane	105%		70-130%			
2037-26-5	Toluene-D8	111%		70-130%			
460-00-4	4-Bromofluorobenzene	114%		70-130%			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

L

B 4.	-	
Misc	. Forms	2

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

63N ·	
	CUTEST
	LABORATORIES

CHAIN OF CUSTODY

		,	Accutest L	aborate	ories of	New E	notar	d										2 246	~ <u> </u>		· II-
LABORATORIES	-	493	rechnoic	gy Cer	gy Center West, Building One 1-6200 FAX: 508-481-7753					FED-	X Tracking	#			Bottle Order Control #						
		11	3L. 3U8-48	1-6200	FAX	: 508-4	81-7	753				Accul	ast Quote #				Accutes	I loh #			
Client / Reporting Information	T				formati													n	101	773	39
Company Name	Project Name		1-11	nject in	·	on							Requ	ested Ar	alysis	(see	TEST	ODE sh	eet)	<u> </u>	Matrix Codes
Street Address	4	SOEL	21 6	300	S 9728?								1 . 1				7			15	1
Street Address	Street:			Ť								-		- 1		İ			ĺ	200	DW - Drinking Water
5/30 (ALIFORNIA PD)	1310	JEBS1E	e.		Billing Ir	formatic	n (lf e	lifford		0		7	1 1		1					10	GW - Ground Water WW - Water
City State Zip	City:	Con	pany Nam	e	20110	miere	111111111	m Ke	port to)	┥、			1.					1-	SW - Surface Water SO - Soil		
Project Contact	N. To	N. Tenamanda			Noi	V-	S	ر د	6.00			1 3		1	1				j	6.7	SL- Sludge
D. mail	Project#	Billing Information (If different from Report to) Company Name New-Survey Street Address City State Zip				٦ <u>۲</u>								1	SED-Sediment OI - Oil						
Phone # Fax #	Chart DON	-031										I V		-	1	-				1 3	LIQ - Other Liquid
	1	(0)		City			S	tate		2	Zip	7	1 1			1	1 1			125	AIR - Air SOL - Other Solid
Sampler(s) Name(s) Phone #	Project Manager			Atte								_ ՙ		ı					Ì	\$	WP - Wipe FB-Field Blank
Pob Cic	Rus C			l'alia	1001.				PO#			7 3								2/6	EB- Equipment Blank
		T .	Collection			Г	т—					- 40		- 1				.		1-	RB- Rinse Blank TB-Trip Blank
	1		Conection	Т	-		-	Numbe	r of pres	erved B	ionles			- 1				ı		1 7	
Accutest Sample # Field ID / Point of Collection	MEOH/DI Vial #	Date		Sample	s	# of bottle	- 18	8	ğ y	Mater	F 80	4				1				12	
1 0	W.Correct Visity	1 1	Time	by	Matrix	# of bottle	9 일	Ξ	HZSO NONE	DI War		لك الله								30	LAB USE ONLY
		1/21/3		1006	Sore	t			X			X								640	
-2 B3 E-10		i]			i	П	\Box	Ϋ́		\top	1		_	+	-	-		+	+	
-384 8.10			1	+	\vdash	1	+	+	×	++	++	1x			+	├	\vdash			22.5	
-4 B5 8.10		1	 	+	+	 _	++	+		1+	++	X	\vdash		↓	<u> </u>				1,64	1
-5 BE 8-10	 	- -	 	+	++-	1	\sqcup	$\perp \downarrow$	¥	Ц	Ш.	K								164	
	ļ	>4	ļ	1	~ykr	1			1			X						"		ZIZ	
-6 82					Gu	2	14		Т	П		X			—			-+	+-		
7 64	1			П	1	2	У	$\top \dagger$	\top	\vdash	+	10	\vdash		+	_	\vdash			+	
-8 62.		*		1	1		1-1-	+	+	\vdash	++	ا	-				$\vdash \dashv$				
	<u> </u>		-	17	74	2-	X	++	+	$\vdash \vdash$		K									
			<u> </u>	—				\perp	\perp								1 1				21,254
																			_	\dagger	211,22
					ĺ		П	П			\top				1		\vdash			╁─┤	
				1				11	\top	+	++	+				-	-		-		
		I				Data	Delive	rable	Inform	natio	<u> </u>				ليسل		لمبل				
Turnaround Time (Business days)	Approved By (Acce	utest PM): / Date:			Commerc						SP Cate	DOEV A				omme	nts / S	pecial In	structio	ns	
Std. 10 Business Days Std. 5 Business Days (By Contract only)					Commerc						SP Cate										
5 Day RUSH					FULLT1 (Level 3+4	1)				Forms		Г								
3 Day EMERGENCY					CT RCP						Format		_ _								Í
2 Day EMERGENCY					MA MCP	Commerci	ai "A" ~	Dae:		Othe	r										
1 Day EMERGENCY						Commerci				STIFF	DBO.		-								
Emergency & Rush T/A data available VIA Lablink				<u> </u>	\				/			_									
Relinquished by Sampler: Date Time:	Sam	ple Custody me	st he docum	ented b	elow each	time sa	mples	chan	ge po	Ssess	ion, Inc	luding	courier d								
10013+400 1/22/12	1272		7	=	1/32	7.2	Relinqu	Shed B	y:		_	_		Date Z	me: 17		Received				
Relinquished by Sample: Date Time:		Received By:	15	\neq	110	412	-		_			4		1/2	1/3		2 F-C	36X			

MC17739: Chain of Custody Page 1 of 2

V:508.481.6200

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: MC17739 Client: MATRIX Immediate Client Services Action Required: Client Service Action Required at Login: Date / Time Received: 1/24/2013 **Delivery Method:** Nο Project: DOEL 31 WEBSTER No. Coolers: Airbill #'s: Y or N Sample Integrity - Documentation **Cooler Security** Y or N Y or N П 3. COC Present: **✓** 1. Custody Seals Present: ✓ 1. Sample labels present on bottles: ✓ 4. Smpl Dates/Time OK **√** 2. Custody Seals Intact: ✓ 2. Container labeling complete: 3. Sample container label / COC agree: ✓ Cooler Temperature Y or N 1. Temp criteria achieved: Υ Ν or Sample Integrity - Condition 2. Cooler temp verification: Infared gun 1 1. Sample recvd within HT: 3. Cooler media: Ice (bag) 2. All containers accounted for: 1 **Quality Control Preservatio** Y or N N/A 3. Condition of sample: Intact 1. Trip Blank present / cooler: **√** Sample Integrity - Instructions or N N/A **✓** 2. Trip Blank listed on COC: 1 1. Analysis requested is clear: 3. Samples preserved properly: ✓ 2. Bottles received for unspecified tests ✓ 4. VOCs headspace free: 3. Sufficient volume recvd for analysis: **✓ ✓** 4. Compositing instructions clear: ✓ 5. Filtering instructions clear: ✓ Comments 495 Technology Center West, Bldg One Accutest Laboratories Marlborough, MA

F: 508.481.7753

MC17739: Chain of Custody

Page 2 of 2

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries

Method Blank Summary

1868-53-7 Dibromofluoromethane

4-Bromofluorobenzene

2037-26-5 Toluene-D8

460-00-4

Job Number: MC17739

Account: MATNYOP Matrix Environmetal Tech.

Project: DOEL, 31 Webster, North Tonawanda, NY

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSG4919-MB	G123945.D	1	01/25/13	JM	n/a	n/a	MSG4919

The QC reported here applies to the following samples:

MC17739-1, MC17739-2, MC17739-3, MC17739-4, MC17739-5

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	25	ug/kg
104-51-8	n-Butylbenzene	ND	250	ug/kg
135-98-8	sec-Butylbenzene	ND	250	ug/kg
98-06-6	tert-Butylbenzene	ND	250	ug/kg
100-41-4	Ethylbenzene	ND	100	ug/kg
98-82-8	Isopropylbenzene	ND	250	ug/kg
99-87-6	p-Isopropyltoluene	ND	250	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	100	ug/kg
91-20-3	Naphthalene	ND	250	ug/kg
103-65-1	n-Propylbenzene	ND	250	ug/kg
108-88-3	Toluene	ND	250	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	250	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	250	ug/kg
	m,p-Xylene	ND	100	ug/kg
95-47-6	o-Xylene	ND	100	ug/kg
1330-20-7	Xylene (total)	ND	100	ug/kg
CAS No.	Surrogate Recoveries		Limits	s

95%

93%

86%

70-130%

70-130%

70-130%

Method Blank Summary

Job Number: MC17739

Account: MATNYOP Matrix Environmetal Tech. **Project:** DOEL, 31 Webster, North Tonawanda, NY

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSL3327-MB	L70530.D	1	01/26/13	TT	n/a	n/a	MSL3327

The QC reported here applies to the following samples:

MC17739-7

460-00-4

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
104-51-8	n-Butylbenzene	ND	5.0	ug/l
135-98-8	sec-Butylbenzene	ND	5.0	ug/l
98-06-6	tert-Butylbenzene	ND	5.0	ug/l
98-82-8	Isopropylbenzene	ND	5.0	ug/l
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
91-20-3	Naphthalene	ND	5.0	ug/l
103-65-1	n-Propylbenzene	ND	5.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	1.0	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l

CAS No. **Surrogate Recoveries** Limits Dibromofluoromethane 127% 1868-53-7 70-130% 2037-26-5 Toluene-D8 120% 70-130%

122%

70-130%

4-Bromofluorobenzene

Method Blank Summary

Job Number: MC17739

Account: MATNYOP Matrix Environmetal Tech. **Project:** DOEL, 31 Webster, North Tonawanda, NY

Sample	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
MSN2720-MB	N72389.D	1	01/28/13	KD	n/a	n/a	MSN2720

The QC reported here applies to the following samples:

MC17739-6, MC17739-7

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
104-51-8	n-Butylbenzene	ND	5.0	ug/l
135-98-8	sec-Butylbenzene	ND	5.0	ug/l
98-06-6	tert-Butylbenzene	ND	5.0	ug/l
100-41-4	Ethylbenzene	ND	1.0	ug/l
98-82-8	Isopropylbenzene	ND	5.0	ug/l
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
91-20-3	Naphthalene	ND	5.0	ug/l
103-65-1	n-Propylbenzene	ND	5.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	1.0	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l

CAS No. **Surrogate Recoveries** Limits

1868-53-7	Dibromofluoromethane	106%	70-130%
2037-26-5	Toluene-D8	109%	70-130%
460-00-4	4-Bromofluorobenzene	114%	70-130%

Method Blank Summary

Job Number: MC17739

Account: MATNYOP Matrix Environmetal Tech. **Project:** DOEL, 31 Webster, North Tonawanda, NY

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSN2722-MB	N72440.D	1	01/29/13	KD	n/a	n/a	MSN2722

The QC reported here applies to the following samples:

MC17739-8

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	0.50	ug/l
104-51-8	n-Butylbenzene	ND	5.0	ug/l
135-98-8	sec-Butylbenzene	ND	5.0	ug/l
98-06-6	tert-Butylbenzene	ND	5.0	ug/l
100-41-4	Ethylbenzene	ND	1.0	ug/l
98-82-8	Isopropylbenzene	ND	5.0	ug/l
99-87-6	p-Isopropyltoluene	ND	5.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
91-20-3	Naphthalene	ND	5.0	ug/l
103-65-1	n-Propylbenzene	ND	5.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	1.0	ug/l
	m,p-Xylene	ND	1.0	ug/l
95-47-6	o-Xylene	ND	1.0	ug/l
1330-20-7	Xylene (total)	ND	1.0	ug/l

CAS No.	Surrogate Recoveries		Limits
2037-26-5	Dibromofluoromethane	103%	70-130%
	Toluene-D8	109%	70-130%
	4-Bromofluorobenzene	113%	70-130%

Method: SW846 8260B

Blank Spike Summary Job Number: MC17739

Account: MATNYOP Matrix Environmetal Tech. **Project:** DOEL, 31 Webster, North Tonawanda, NY

Sample MSL3327-BS	File ID L70528.D	DF 1	Analyzed 01/26/13	By TT	Prep Date n/a	Prep Batch n/a	Analytical Batch MSL3327

The QC reported here applies to the following samples:

MC17739-7

G L G M	<i>a</i>	Spike	BSP	BSP	Ŧ
CAS No.	Compound	ug/l	ug/l	%	Limits
71-43-2	Benzene	50	52.5	105	70-130
104-51-8	n-Butylbenzene	50	50.4	101	70-130
135-98-8	sec-Butylbenzene	50	50.3	101	70-130
98-06-6	tert-Butylbenzene	50	48.5	97	70-130
98-82-8	Isopropylbenzene	50	51.0	102	70-130
99-87-6	p-Isopropyltoluene	50	53.7	107	70-130
1634-04-4	Methyl Tert Butyl Ether	50	57.8	116	70-130
91-20-3	Naphthalene	50	55.0	110	70-130
103-65-1	n-Propylbenzene	50	51.2	102	70-130
108-88-3	Toluene	50	51.4	103	70-130
95-63-6	1,2,4-Trimethylbenzene	50	47.6	95	70-130
108-67-8	1,3,5-Trimethylbenzene	50	47.7	95	70-130
	m,p-Xylene	100	101	101	70-130
95-47-6	o-Xylene	50	52.0	104	70-130
1330-20-7	Xylene (total)	150	153	102	70-130

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	121%	70-130%
2037-26-5	Toluene-D8	114%	70-130%
460-00-4	4-Bromofluorobenzene	112%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC17739

Account: MATNYOP Matrix Environmetal Tech.

Project: DOEL, 31 Webster, North Tonawanda, NY

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSG4919-BS	G123942.D	1	01/25/13	JM	n/a	n/a	MSG4919
MSG4919-BSD	G123943.D	1	01/25/13	JM	n/a	n/a	MSG4919

The QC reported here applies to the following samples:

MC17739-1, MC17739-2, MC17739-3, MC17739-4, MC17739-5

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	BSD ug/kg	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	2500	2440	98	2420	97	1	70-130/25
104-51-8	n-Butylbenzene	2500	2390	96	2380	95	0	70-130/25
135-98-8	sec-Butylbenzene	2500	2280	91	2300	92	1	70-130/25
98-06-6	tert-Butylbenzene	2500	2190	88	2210	88	1	70-130/25
100-41-4	Ethylbenzene	2500	2450	98	2480	99	1	70-130/25
98-82-8	Isopropylbenzene	2500	2310	92	2320	93	0	70-130/25
99-87-6	p-Isopropyltoluene	2500	2530	101	2510	100	1	70-130/25
1634-04-4	Methyl Tert Butyl Ether	2500	2710	108	2690	108	1	70-130/25
91-20-3	Naphthalene	2500	2670	107	2540	102	5	70-130/25
103-65-1	n-Propylbenzene	2500	2290	92	2300	92	0	70-130/25
108-88-3	Toluene	2500	2480	99	2450	98	1	70-130/25
95-63-6	1,2,4-Trimethylbenzene	2500	2340	94	2360	94	1	70-130/25
108-67-8	1,3,5-Trimethylbenzene	2500	2350	94	2370	95	1	70-130/25
	m,p-Xylene	5000	4870	97	4950	99	2	70-130/25
95-47-6	o-Xylene	2500	2390	96	2430	97	2	70-130/25
1330-20-7	Xylene (total)	7500	7260	97	7370	98	2	70-130/25

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	93%	92%	70-130%
2037-26-5	Toluene-D8	91%	91%	70-130%
460-00-4	4-Bromofluorobenzene	86%	85%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC17739

Account: MATNYOP Matrix Environmetal Tech.

Project: DOEL, 31 Webster, North Tonawanda, NY

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSN2720-BS	N72386.D	1	01/28/13	KD	n/a	n/a	MSN2720
MSN2720-BSD	N72387.D	1	01/28/13	KD	n/a	n/a	MSN2720

The QC reported here applies to the following samples:

MC17739-6, MC17739-7

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	50	46.5	93	47.1	94	1	70-130/25
104-51-8	n-Butylbenzene	50	50.2	100	50.4	101	0	70-130/25
135-98-8	sec-Butylbenzene	50	48.0	96	48.5	97	1	70-130/25
98-06-6	tert-Butylbenzene	50	46.5	93	46.8	94	1	70-130/25
100-41-4	Ethylbenzene	50	47.1	94	47.4	95	1	70-130/25
98-82-8	Isopropylbenzene	50	46.9	94	47.7	95	2	70-130/25
99-87-6	p-Isopropyltoluene	50	52.3	105	52.4	105	0	70-130/25
1634-04-4	Methyl Tert Butyl Ether	50	39.6	79	37.3	75	6	70-130/25
91-20-3	Naphthalene	50	49.2	98	49.0	98	0	70-130/25
103-65-1	n-Propylbenzene	50	46.8	94	47.7	95	2	70-130/25
108-88-3	Toluene	50	47.5	95	47.9	96	1	70-130/25
95-63-6	1,2,4-Trimethylbenzene	50	47.9	96	48.0	96	0	70-130/25
108-67-8	1,3,5-Trimethylbenzene	50	48.2	96	48.7	97	1	70-130/25
	m,p-Xylene	100	89.1	89	88.9	89	0	70-130/25
95-47-6	o-Xylene	50	43.8	88	43.9	88	0	70-130/25
1330-20-7	Xylene (total)	150	133	89	133	89	0	70-130/25

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	111%	112%	70-130%
2037-26-5	Toluene-D8	112%	111%	70-130%
460-00-4	4-Bromofluorobenzene	105%	105%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC17739

Account: MATNYOP Matrix Environmetal Tech.

Project: DOEL, 31 Webster, North Tonawanda, NY

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSN2722-BS	N72437.D	1	01/29/13	KD	n/a	n/a	MSN2722
MSN2722-BSD	N72438.D	1	01/29/13	KD	n/a	n/a	MSN2722

The QC reported here applies to the following samples:

MC17739-8

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	50	48.5	97	47.3	95	3	70-130/25
104-51-8	n-Butylbenzene	50	51.6	103	50.5	101	2	70-130/25
135-98-8	sec-Butylbenzene	50	49.7	99	48.6	97	2	70-130/25
98-06-6	tert-Butylbenzene	50	47.6	95	46.9	94	1	70-130/25
100-41-4	Ethylbenzene	50	49.7	99	48.7	97	2	70-130/25
98-82-8	Isopropylbenzene	50	49.4	99	47.7	95	4	70-130/25
99-87-6	p-Isopropyltoluene	50	53.8	108	52.8	106	2	70-130/25
1634-04-4	Methyl Tert Butyl Ether	50	38.5	77	37.3	75	3	70-130/25
91-20-3	Naphthalene	50	49.5	99	48.3	97	2	70-130/25
103-65-1	n-Propylbenzene	50	48.9	98	47.5	95	3	70-130/25
108-88-3	Toluene	50	49.1	98	48.8	98	1	70-130/25
95-63-6	1,2,4-Trimethylbenzene	50	49.6	99	48.4	97	2	70-130/25
108-67-8	1,3,5-Trimethylbenzene	50	49.6	99	48.7	97	2	70-130/25
	m,p-Xylene	100	92.7	93	91.0	91	2	70-130/25
95-47-6	o-Xylene	50	46.2	92	44.4	89	4	70-130/25
1330-20-7	Xylene (total)	150	139	93	135	90	3	70-130/25

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	111%	109%	70-130%
2037-26-5	Toluene-D8	111%	110%	70-130%
460-00-4	4-Bromofluorobenzene	106%	105%	70-130%

^{* =} Outside of Control Limits.

Method: SW846 8260B

70-130%

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC17739

Account: MATNYOP Matrix Environmetal Tech. **Project:** DOEL, 31 Webster, North Tonawanda, NY

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MC17731-1MS	G123953.D	1	01/25/13	JM	n/a	n/a	MSG4919
MC17731-1MSD	G123954.D	1	01/25/13	JM	n/a	n/a	MSG4919
MC17731-1	G123946.D	1	01/25/13	JM	n/a	n/a	MSG4919

The QC reported here applies to the following samples:

MC17739-1, MC17739-2, MC17739-3, MC17739-4, MC17739-5

CAS No. Compound ug/kg Q ug/kg ug/kg % ug/kg % RPD Rec/l	
71-43-2 Benzene ND 2210 2130 96 2130 96 0 70-13	30/30
104-51-8 n-Butylbenzene ND 2210 2120 96 2170 98 2 70-13	30/30
135-98-8 sec-Butylbenzene ND 2210 2010 91 2060 93 2 70-13	30/30
98-06-6 tert-Butylbenzene ND 2210 1930 87 1960 89 2 70-13	30/30
100-41-4 Ethylbenzene ND 2210 2160 98 2200 99 2 70-13	30/30
98-82-8 Isopropylbenzene ND 2210 2000 90 2040 92 2 70-13	30/30
99-87-6 p-Isopropyltoluene ND 2210 2220 100 2250 102 1 70-13	30/30
1634-04-4 Methyl Tert Butyl Ether ND 2210 2380 108 2360 107 1 70-13	30/30
91-20-3 Naphthalene ND 2210 2500 113 2520 114 1 70-13	30/30
103-65-1 n-Propylbenzene ND 2210 2020 91 2060 93 2 70-13	30/30
108-88-3 Toluene ND 2210 2190 99 2170 98 1 70-13	30/30
95-63-6 1,2,4-Trimethylbenzene 85.2 2210 2140 93 2190 95 2 70-13	30/30
108-67-8 1,3,5-Trimethylbenzene ND 2210 2070 94 2100 95 1 70-13	30/30
m,p-Xylene ND 4420 4280 97 4360 99 2 70-13	30/30
95-47-6 o-Xylene ND 2210 2110 95 2170 98 3 70-13	30/30
1330-20-7 Xylene (total) ND 6640 6390 96 6520 98 2 70-13	30/30
CAS No. Surrogate Recoveries MS MSD MC17731-1 Limits	
1868-53-7 Dibromofluoromethane 83% 81% 81% 70-130%	
1868-53-7 Dibromofluoromethane 83% 81% 70-130% 2037-26-5 Toluene-D8 86% 85% 83% 70-130%	

80%

78%

460-00-4 4-Bromofluorobenzene

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC17739

Account: MATNYOP Matrix Environmetal Tech.

Project: DOEL, 31 Webster, North Tonawanda, NY

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MC17737-1MS	L70548.D	5	01/26/13	TT	n/a	n/a	MSL3327
MC17737-1MSD	L70549.D	5	01/26/13	TT	n/a	n/a	MSL3327
MC17737-1	L70531.D	1	01/26/13	TT	n/a	n/a	MSL3327

The QC reported here applies to the following samples:

MC17739-7

CAS No.	Compound	MC17737-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	1.1	250	296	118	313	125	6	70-130/30
104-51-8	n-Butylbenzene	ND	250	271	108	297	119	9	70-130/30
135-98-8	sec-Butylbenzene	ND	250	275	110	296	118	7	70-130/30
98-06-6	tert-Butylbenzene	ND	250	267	107	287	115	7	70-130/30
98-82-8	Isopropylbenzene	ND	250	279	112	296	118	6	70-130/30
99-87-6	p-Isopropyltoluene	ND	250	290	116	316	126	9	70-130/30
1634-04-4	Methyl Tert Butyl Ether	ND	250	328	131* a	346	138* a	5	70-130/30
91-20-3	Naphthalene	ND	250	318	127	351	140* a	10	70-130/30
103-65-1	n-Propylbenzene	ND	250	278	111	301	120	8	70-130/30
108-88-3	Toluene	ND	250	285	114	307	123	7	70-130/30
95-63-6	1,2,4-Trimethylbenzene	ND	250	268	107	283	113	5	70-130/30
108-67-8	1,3,5-Trimethylbenzene	ND	250	265	106	285	114	7	70-130/30
	m,p-Xylene	1.6	500	573	114	615	123	7	70-130/30
95-47-6	o-Xylene	ND	250	286	114	306	122	7	70-130/30
1330-20-7	Xylene (total)	1.6	750	859	114	920	122	7	70-130/30

CAS No.	Surrogate Recoveries	MS	MSD	MC17737-1	Limits
1868-53-7	Dibromofluoromethane	130%	136% * b	129%	70-130%
2037-26-5	Toluene-D8	125%	130%	122%	70-130%
460-00-4	4-Bromofluorobenzene	122%	126%	122%	70-130%

⁽a) Outside control limits due to possible matrix interference. Refer to Blank Spike.

⁽b) Outside control limits due to possible matrix interference.

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC17739

Account: MATNYOP Matrix Environmetal Tech.
Project: DOEL, 31 Webster, North Tonawanda, NY

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MC17745-4MS	N72395.D	100	01/28/13	KD	n/a	n/a	MSN2720
MC17745-4MSD	N72396.D	100	01/28/13	KD	n/a	n/a	MSN2720
MC17745-4	N72400.D	100	01/28/13	KD	n/a	n/a	MSN2720

The QC reported here applies to the following samples:

MC17739-6, MC17739-7

CAS No.	Compound	MC17745-4 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	17500	5000	21100	72	21100	72	0	70-130/30
104-51-8	n-Butylbenzene	ND	5000	4800	96	4840	97	1	70-130/30
135-98-8	sec-Butylbenzene	ND	5000	4550	91	4630	93	2	70-130/30
98-06-6	tert-Butylbenzene	ND	5000	4390	88	4470	89	2	70-130/30
100-41-4	Ethylbenzene	ND	5000	4600	92	4630	93	1	70-130/30
98-82-8	Isopropylbenzene	ND	5000	4500	90	4590	92	2	70-130/30
99-87-6	p-Isopropyltoluene	ND	5000	4960	99	5040	101	2	70-130/30
1634-04-4	Methyl Tert Butyl Ether	ND	5000	3980	80	3830	77	4	70-130/30
91-20-3	Naphthalene	ND	5000	4590	92	4940	99	7	70-130/30
103-65-1	n-Propylbenzene	ND	5000	4420	88	4520	90	2	70-130/30
108-88-3	Toluene	ND	5000	4540	91	4600	92	1	70-130/30
95-63-6	1,2,4-Trimethylbenzene	ND	5000	4570	91	4650	93	2	70-130/30
108-67-8	1,3,5-Trimethylbenzene	ND	5000	4550	91	4650	93	2	70-130/30
	m,p-Xylene	ND	10000	8700	87	8680	87	0	70-130/30
95-47-6	o-Xylene	ND	5000	4300	86	4340	87	1	70-130/30
1330-20-7	Xylene (total)	ND	15000	13000	87	13000	87	0	70-130/30
CAS No.	Surrogate Recoveries	MS	MSD	MO	C17745-4	Limits			
1868-53-7	Dibromofluoromethane	111%	111%	105	5%	70-130%	ó		
2037-26-5	Toluene-D8	110%	111%	109	9%	70-130%	ó		
460-00-4	4-Bromofluorobenzene	105%	106%	114	1%	70-130%	ó		

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC17739

Account: MATNYOP Matrix Environmetal Tech.
Project: DOEL, 31 Webster, North Tonawanda, NY

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MC17824-1MS	N72460.D	5	01/29/13	KD	n/a	n/a	MSN2722
MC17824-1MSD	N72461.D	5	01/29/13	KD	n/a	n/a	MSN2722
MC17824-1	N72446.D	1	01/29/13	KD	n/a	n/a	MSN2722

The QC reported here applies to the following samples:

MC17739-8

460-00-4

CAS No.	Compound	MC17824-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
0120 1100	c ompound	g \	·		, •		, 0		1100, 111 2
71-43-2	Benzene	ND	250	227	91	222	89	2	70-130/30
104-51-8	n-Butylbenzene	ND	250	220	88	227	91	3	70-130/30
135-98-8	sec-Butylbenzene	ND	250	221	88	223	89	1	70-130/30
98-06-6	tert-Butylbenzene	ND	250	219	88	218	87	0	70-130/30
100-41-4	Ethylbenzene	ND	250	229	92	224	90	2	70-130/30
98-82-8	Isopropylbenzene	ND	250	223	89	221	88	1	70-130/30
99-87-6	p-Isopropyltoluene	ND	250	240	96	243	97	1	70-130/30
1634-04-4	Methyl Tert Butyl Ether	ND	250	182	73	180	72	1	70-130/30
91-20-3	Naphthalene	ND	250	207	83	227	91	9	70-130/30
103-65-1	n-Propylbenzene	ND	250	218	87	218	87	0	70-130/30
108-88-3	Toluene	ND	250	231	92	225	90	3	70-130/30
95-63-6	1,2,4-Trimethylbenzene	ND	250	224	90	225	90	0	70-130/30
108-67-8	1,3,5-Trimethylbenzene	ND	250	223	89	227	91	2	70-130/30
	m,p-Xylene	ND	500	428	86	424	85	1	70-130/30
95-47-6	o-Xylene	ND	250	215	86	211	84	2	70-130/30
1330-20-7	Xylene (total)	ND	750	643	86	635	85	1	70-130/30
a.a				_					
CAS No.	Surrogate Recoveries	MS	MSD	1	MC17824-1	Limits			
1868-53-7	Dibromofluoromethane	113%	111%	1	107%	70-130%	, 0		
2037-26-5	Toluene-D8	111%	111%		110%	70-130%			

106%

105%

115%

70-130%

4-Bromofluorobenzene

^{* =} Outside of Control Limits.

Volatile Surrogate Recovery Summary

Job Number: MC17739

Account: MATNYOP Matrix Environmetal Tech.
Project: DOEL, 31 Webster, North Tonawanda, NY

Method: SW846 8260B Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab			
Sample ID	File ID	S1	S2	S3
MC17739-6	N72405.D	105.0	108.0	113.0
MC17739-7	N72402.D	104.0	111.0	112.0
MC17739-7	L70539.D	130.0	126.0	126.0
MC17739-8	N72444.D	105.0	111.0	114.0
MC17737-1MS	L70548.D	130.0	125.0	122.0
MC17737-1MSD	L70549.D	136.0* a	130.0	126.0
MC17745-4MS	N72395.D	111.0	110.0	105.0
MC17745-4MSD	N72396.D	111.0	111.0	106.0
MC17824-1MS	N72460.D	113.0	111.0	105.0
MC17824-1MSD	N72461.D	111.0	111.0	106.0
MSL3327-BS	L70528.D	121.0	114.0	112.0
MSL3327-MB	L70530.D	127.0	120.0	122.0
MSN2720-BS	N72386.D	111.0	112.0	105.0
MSN2720-BSD	N72387.D	112.0	111.0	105.0
MSN2720-MB	N72389.D	106.0	109.0	114.0
MSN2722-BS	N72437.D	111.0	111.0	106.0
MSN2722-BSD	N72438.D	109.0	110.0	105.0
MSN2722-MB	N72440.D	103.0	109.0	113.0

Surrogate Recovery Compounds Limits

S1 = Dibromofluoromethane	70-130%
S2 = Toluene-D8	70-130%
S3 = 4-Bromofluorobenzene	70-130%

(a) Outside control limits due to possible matrix interference.

Volatile Surrogate Recovery Summary

Job Number: MC17739

Account: MATNYOP Matrix Environmetal Tech.
Project: DOEL, 31 Webster, North Tonawanda, NY

Method: SW846 8260B Matrix: SO

Samples and QC shown here apply to the above method

Lab	Lab			
Sample ID	File ID	S1	S2	S3
MC17739-1	G123955.D	85.0	84.0	81.0
MC17739-2	G123956.D	84.0	83.0	79.0
MC17739-3	G123957.D	84.0	84.0	89.0
MC17739-4	G123958.D	84.0	83.0	79.0
MC17739-5	G123959.D	84.0	85.0	91.0
MC17731-1MS	G123953.D	83.0	86.0	78.0
MC17731-1MSD	G123954.D	81.0	85.0	80.0
MSG4919-BS	G123942.D	93.0	91.0	86.0
MSG4919-BSD	G123943.D	92.0	91.0	85.0
MSG4919-MB	G123945.D	95.0	93.0	86.0

Surrogate Recovery Compounds Limits

 S1 = Dibromofluoromethane
 70-130%

 S2 = Toluene-D8
 70-130%

 S3 = 4-Bromofluorobenzene
 70-130%

