

Remedial Investigation Report

Environmental Restoration Project Clean Water/Clean Air Bond Act of 1996

> ERP Site #E-447036 Clinton South Parking Lot 314 Clinton Street City of Schenectady Schenectady County, New York

Prepared for:

Schenectady Metroplex Development Authority 433 State Street

Schenectady, New York 12305

City of Schenectady

City Hall 105 Jay Street Schenectady, New York 12305

Prepared by:

C.T. MALE ASSOCIATES, P.C. 50 Century Hill Drive P.O. Box 727 Latham, New York 12110 518.786.7400 FAX 518.786.7299

C.T. Male Project No.: 05.5551

Unauthorized alteration or addition to this Document is a violation of Section 7209 Subdivision 2 of the New York State Education Law.

© Copyright 2007 C.T. MALE ASSOCIATES, P.C.

		TABLE OF CONTENTS FOR THE PARTY OF THE PARTY	
		FEB 7 2007	<u>Page</u>
		REMEDIAL BUREAU D	4
1.0	INT	RODUCTION	
	1.1	Purpose	
	1.2	Report Organization	2
	1.3	Project Background	
		1.3.1 General	3
2.0	SITE	DESCRIPTION AND UTILIZATION	4
	2.1	Site Description	4
	2.2	Area Property Utilization	
	2.3	Utilities	4
		2.3.1 Site	4
		2.3.2 Area Utilities	5
	2.4	Site History	5
	2.5	Previous Site Investigations	5
3.0	STUI	DY AREA INVESTIGATION	6
	3.1	Site Characterization	6
	3.2	Fish and Wildlife Impact Analysis (FWIA)	6
	3.3	Survey of Public and Private Wells	
	3.4	Near-surface Soil Sampling and Analysis	
	3.5	Site Wide Subsurface/Hydrogeologic Evaluation	
		3.5.1 Subsurface Soil Sampling and Monitoring Well	
		Installation	
		3.5.2 Dust Monitoring	
	0.6	3.5.3 Well Development and Groundwater Sampling	
	3.6	Data Usability Summary Report (DUSR)	
	3.7	Investigative Derived Waste	11
4.0	PHY	SICAL CHARACTERISTICS OF THE STUDY AREA	13
	4.1	Results of Study Area Investigation	
		4.1.1 Surface Features	13

TABLE OF CONTENTS (Cont'd)

				<u>Page</u>
		4.1.2	Surface Water Bodies	13
		4.1.3	Surface Drainage Patterns	13
		4.1.4	Regional Geology	14
		4.1.5	Site Soils	
		4.1.6	Groundwater Characteristics	14
5.0	NAT	URE A	ND EXTENT OF CONTAMINATION	19
	5.1	Sourc	es	19
	5.2	Deter	mination of Project Standards, Criteria and Guidance	
			s)	19
	5.3	•	ce Soils	
	0. 6	5.3.1	General	
		5.3.2	Volatile Organic Compounds in Surface Soil	
		5.3.3	Semi-Volatile Organic Compounds in Surface Soil	
		5.3.4	Pesticides and PCBs in Surface Soil	
		5.3.5	Metals in Surface Soil	21
	5.4	Near-	Surface Soils	21
		5.4.1		
		5.4.2	Volatile Organic Compounds in Near-surface Soil	
		5.4.3	Semi-Volatile Organic Compounds in Near-surface Soils	
		5.4.4	Pesticides and PCBs in Near-surface Soils	
		5.4.5	Metals in Near-surface Soils	22
	5.5	Subsu	ırface Soils	23
		5.5.1	General	
		5.5.2	Volatile Organic Compounds in Subsurface Soils	23
		5.5.3	Semi-volatile Organic Compounds in Subsurface Soils	
		5.5.4	Pesticides and PCBs in Subsurface Soils	24
		5.5.5	Metals in Subsurface Soils	25
	5.6	Grou	ndwater	25
		5.6.1	General	25
		5.6.2	Volatile Organic Compounds in Groundwater	
		5.6.3	Semi-volatile Organic Compounds in Groundwater	
		5.6.4	Pesticides and PCBs in Groundwater	
		5.6.5	Metals in Groundwater	
	5.7	Sumr	mary of Extent of Contamination	27
		5.7.1	Surface Soils	
		5.7.2	Near-Surface Soils	

TABLE OF CONTENTS (Cont'd)

			<u> Page</u>
		5.7.3 Subsurface Soils	
	5.8	Past Site Activities Relative to Site Contaminant	ts28
	5.9	Fish and Wildlife Impact Analysis (FWIA) Resu	ılts29
	5.10	Data Usability Summary Report	
6.0	CON	TAMINANT FATE AND TRANSPORT	30
	6.1	General Overview	30
	6.2	Definition of Relevant Properties	30
	6.3	Contaminant Persistence	
	6.4	Contaminant Migration	33
		6.4.1 Groundwater Migration	
		6.4.2 Atmospheric Migration	34
7.0	EXPC	SURE ASSESSMENT	
	7.1	Qualitative Exposure Assessment	35
8.0	SUM	MARY AND CONCLUSIONS	37
	8.1	Summary	37
		8.1.1 Site Background	37
		8.1.2 Physical Characteristics of the Project Sit	
		8.1.3 Fish and Wildlife Impact Analysis (FWIA	•
		8.1.4 Survey of Public and Private Wells 8.1.5 Nature and Extent of Contamination	
		8.1.5 Nature and Extent of Contamination8.1.6 Fate and Transport	
	8.2	Conclusions	
	0.2	8.2.1 Data Limitations and Disclaimer	
FIGU	IRES		
	Figur	re 1: Site Location Map	
	Figur	re 2: Monitor Well/Sampling Location	ı Мар
	Figur	re 3: Groundwater Contour Map (6/7)	/2006)
	Figur	re 4: Groundwater Contour Map (7/7)	/2006)

TABLE OF CONTENTS (Cont'd)

Figure 5:	Groundwater Contour Map (8/2/2006)
Figure 6:	SVOCs Above SCGs in Near-Surface Soil Samples Map
Figure 7:	Metals Above SCGs in Near-Surface Soil Samples Map
Figure 8:	SVOCs Above SCGs in Subsurface Soil Samples Map
Figure 9:	VOCs Above SCGs in Groundwater Samples Map
Figure 10:	Metals Above SCGs in Groundwater Samples Map

TABLES

Within Text

	
Table 3.5.1-1:	Soil Boring and Monitoring Well Summary
Table 4.1.6-1:	Summary of Groundwater Elevation Data
Table 4.1.6-2:	Groundwater Sampling Field Observations Summary
Table 5.6.5-1:	Metals Exceeding SCGs in Groundwater
Table 6.2-1:	Physical and Chemical Properties of Site Contaminants
Following Text	
Table 1	Near-Surface Soil Results - VOCs (Detected Compounds)
Table 2	Near-Surface Soil Results - SVOCs (Detected Compounds)
Table 3	Near-Surface Soil Results-Pesticides (Detected Compounds)
Table 4	Near-Surface Soil Results – TAL Metals (Detected Metals)
Table 5	Subsurface Soil Results - VOCs (Detected Compounds)
Table 6	Subsurface Soil Results - SVOCs (Detected Compounds)
Table 7	Subsurface Soil Results - Pesticides (Detected Compounds)
Table 8	Subsurface Soil Results - TAL Metals (Detected Metals)
Table 9	Groundwater Results - VOCs (Detected Compounds)
Table 10	Groundwater Results - SVOCs (Detected Compounds)
Table 11	Groundwater Results - TAL Metals (Detected Metals)

TABLE OF CONTENTS (Cont'd)

APPENDICES

Appendix A: Subsurface Exploration Logs

Appendix B: Organic Vapor Headspace Analysis Logs

Appendix C: Monitoring Well Construction Logs

Appendix D: Waste Disposal Documentation

Appendix E: Groundwater Services Field Logs

Appendix F: CDs of Laboratory Analytical Data (Unvalidated)

EXHIBITS

Exhibit 1: NYSDEC Work Plan Approval Letter

Exhibit 2: Data Usability Summary Reports

1.0 INTRODUCTION

The Schenectady Metroplex Development Authority (Metroplex) and the City of Schenectady (City) entered a State Assistance Contract (SAC) with the New York State Department of Environmental Conservation (DEC) pursuant to the NYS Environmental Restoration Program (ERP) with regard to the investigation of the Clinton South Parking Lot, located at 314 Clinton Street (the Site). The Site is currently owned by the City of Schenectady and leased and operated by Metroplex. A Site Location Map is provided as Figure 1 in this report.

To assist Metroplex and the City in the successful completion of the project, C.T. Male Associates, P.C. (C.T. Male) was retained to complete the technical aspects of the project in accordance with the New York State Department of Environmental Conservation (NYSDEC) December 2002 "Draft DER-10 Technical Guidance for Site Investigation and Remediation". The Draft DER-10 sets forth the administrative and technical requirements for the completion of site investigation and/or site remediation.

The Remedial Investigation (RI) was completed in substantial accordance with the Remedial Investigation/Alternatives Analysis (RI/AA) Work Plan for the Site, dated April 7, 2006, as prepared by C.T. Male for Metroplex and the City of Schenectady. The RI/AA Work Plan was reviewed and subsequently approved by the NYSDEC on April 26, 2006. The NYSDEC approval letter for the Work Plan is presented as Exhibit 1. Deviations from the Work Plan consisted of the following:

- The fourth proposed deep boring/well was eliminated, based on the preliminary findings at the other three deep boring/well locations. NYSDEC concurrence with this action was documented in its June 8, 2006 correspondence, included in Exhibit 1.
- A groundwater sample was not collected from monitoring well CTM-8 due to subsurface damage to the well or an unidentified obstruction in the well. Upon discovery of the damage/obstruction, C.T. Male and NYSDEC agreed that the groundwater sampling results from the other wells would be evaluated, and if deemed necessary, well CTM-8 would be reinstalled and sampled.

presented on the Subsurface Exploration Logs in Appendix A. Recovered soil samples were screened for the presence of volatile organic compound vapors using a photoionization detector (PID). The PID screening results are presented on the Organic Vapor Headspace Analysis Logs in Appendix B. One soil sample from each test boring was retained for laboratory analysis, based in part on headspace screening results and organoleptic perception of suspect contamination. A total of 16 soil samples (including a duplicate sample collected from GP-8) were submitted to the laboratory of record for analyses for TCL volatile and semi-volatile organic compounds, PCBs and pesticides, and TAL metals. These test borings were converted to permanent 1-inch diameter PVC monitoring wells (identified as CTM-1 through CTM-15). Each monitoring well was protected with a flush-mounted curb box with bolt down cover. Monitoring well construction details are provided in Appendix C.

The three remaining test borings (CTM-16 through CTM-18) were advanced using hollow-stem auger methods. These borings were advanced through the silty-sand unit to the underlying silty-clay unit, encountered at depths ranging from 99 to 104 feet below grade. During advancement of CTM-16, soil samples were collected at continuous two-foot intervals for soil classification and PID screening. During advancement of CTM-17 and CTM-18, soil samples were collected at two-foot intervals every 5 feet. Soil samples were collected and handled in accordance with the procedures outlined in the RI/AA Work Plan. Test borings CTM-16 through CTM-18 were converted to permanent 2-inch diameter PVC monitoring wells, each with a 10-foot section of well screen, situated just above the silty-sand/silty-clay interface. Each monitoring well was protected at the surface with a flush-mounted curb box, set in concrete, with a bolt-down cover. Monitoring well construction details are provided in Appendix D.

QA/QC samples were collected during the soil boring sampling event, as follows.

- One equipment blank was collected of the split spoon sampling barrel prior to the collection of GP-11 (4-6').
- One duplicate sample was collected of GP-8 (10-12' bgs).
- MS/MSD analyses were performed on sample GP-7 (4-8').

Table 3.5.1-1 provides a summary of the boring and monitoring well identification numbers, boring depths, depths at which the monitoring wells were set, monitoring well screened interval depths, and the depth from which soil samples were collected for laboratory analysis.

TA	BLE 3.5.1-1: Soil I	Boring and M	Ionitoring V	Vell Summary	
Boring ID	Monitoring Well ID	Boring Depth (bgs)	MW Depth	MW Screened Interval	Soil Sample Depth
GP-1	CTM-1	16′	15′	5 to 15'	6 to 8'
GP-2	CTM-2	16′	15′	5 to 15'	6 to 8'
GP-3	СТМ-3	16′	15′	5 to 15'	6 to 8'
GP-4	CTM-4	16′	15′	5 to 15'	4 to 6'
GP-5	CTM-5	20′	20′	10 to 20'	10 to 12'
GP-6	CTM-6	20′	20′	10 to 20'	10 to 12
GP-7	CTM-7	16′	15′	5 to 15'	4 to 8'
GP-8	CTM-8	20′	20′	10 to 20'	10 to 12'
GP-9	CTM-9	20′	20′	10 to 20'	10 to 12'
GP-10	CTM-10	20′	20′	10 to 20'	10 to 12'
GP-11	CTM-11	16′	15′	5 to 15'	4 to 6'
GP-12	CTM-12	16′	15′	5 to 15'	4 to 8'
GP-13	CTM-13	20′	20′	10 to 20'	10 to 12'
GP-14	CTM-14	20′	20′	10 to 20'	12 to 14'
GP-15	CTM-15	20′	20′	10 to 20'	8 to 10'
CTM-16	CTM-16	104′	102′	92 to 102′	NA
CTM-17	CTM-17	104′	102′	92 to 102'	NA
CTM-18	CTM-18	99′	97′	87 to 97'	NA

Notes: bgs denotes below ground surface

NA denotes not applicable/no soil sample submitted for analysis

3.5.2 Dust Monitoring

During Geoprobe and hollow-stem auger drilling activities, C.T. Male utilized two TSI DustTRAK real-time particulate monitors, capable of continuously measuring concentrations of airborne dust, smoke, mists, haze, and fumes. These instruments are capable of detecting particles from 0.1 to 10 micrometers in size, and are capable of providing real-time data, and 15-minute time-weighted average exposure measurements. The instruments were placed on tripods located at temporary monitoring stations, selected each day based on the prevailing wind direction, one upwind and one downwind of the work area. Dust monitoring equipment was calibrated by the supplier and was zeroed in the field prior to each day's use. Based on field observations, little to no visible dust was generated during the course of Geoprobe and hollow-stem auger drilling activities, and dust monitoring data indicated that established action levels were not exceeded.

3.5.3 Well Development and Groundwater Sampling

During the week of May 22, 2006, wells CTM-1 through CTM-15 were developed, using pumping and surging methods, to restore hydraulic connection with the surrounding formation. Each well was developed until a minimum of five well volumes of water were removed or until the well was dry. During the week of June 5, 2006, wells CTM-16, CTM-17 and CTM-18 were developed using a submersible pump. Each well was developed until a minimum of five well volumes of water were removed. Well development water was pumped into 5-gallon buckets and then transferred to 55-gallon drums which were labeled and stored on site, pending proper disposal arrangements.

During the period of June 7-12, 2006, C.T. Male conducted groundwater monitoring activities on the site, including measurement of water levels and collection of groundwater samples. Also during this period, C.T. Male surveyed the monitoring well and surface soil sampling locations for placement on the site plan, and the top of well casing elevations to aid in determining groundwater gradient across the site.

On June 7, 2006 (and again on July 7, August 2 and September 1, 2006) water levels were measured at each well location from the surveyed top of well casing, following the procedures outlined in the RI/AA Work Plan.

Prior to collection of groundwater samples, each well was purged using a peristaltic pump (CTM-1 through CTM-15) or submersible pump (CTM-16 through CTM-18), in accordance with the procedures outlined in the RI/AA Work Plan. Purge water was handled in the same manner as the water generated during well development. After allowing the water level in each well to recover to at least 80 percent of its initial static level, groundwater samples were collected employing low-flow techniques, using a peristaltic pump (CTM-1 through CTM-15) or submersible pump (CTM-16 through CTM-18). With the exception of utilizing low-flow pumping methods for sample collection, groundwater samples were handled in accordance with the procedures outlined in the RI/AA Work Plan. The samples were forwarded to the laboratory of record (Chemtech) for the following analyses: TCL volatile and semi-volatile organic compounds; PCBs and pesticides; and TAL metals.

QA/QC samples were collected during the groundwater sampling event, as follows:

- One equipment blank of the peristaltic pump tubing was collected prior to collection of the groundwater sample from monitoring well CTM-11.
- One duplicate sample was collected of CTM-9.
- MS/MSD analyses were performed on CTM-7 and CTM-16.

3.6 Data Usability Summary Report (DUSR)

Data Usability Summary Reports (DUSRs) were completed of the analytical data generated during this investigation to confirm that the data is of adequate quality for subsequent decision making purposes. All of the analytical data presented in the attached summary tables have been validated in accordance with Appendix 2B (Guidance for the Development of Data Usability Summary Reports) of the *Draft DER-10 Technical Guidance for Site Investigation and Remediation* (NYSDEC, December 2002). The DUSR reports for the RI are presented as Exhibit 2.

3.7 Investigative Derived Waste

Waste derived from investigative activities consisted of soil from drilling, groundwater from well development and sampling, and plastic sheeting/tubing and personal protective equipment (i.e. sampling gloves). The waste soil and groundwater were

containerized in labeled 55-gallon drums, which were stored on site pending disposal arrangements. On September 7, 2006, C.T. Male's subcontractor, M.C. Environmental Services, Inc. mobilized personnel and equipment to the site to remove the waste for disposal, in conjunction with waste removal activities at the 312 Broadway site. Between the two sites, a total of 742 gallons of groundwater were removed from the drums using a vacuum truck, and were transported off site for disposal at Norlite Corporation in Cohoes, New York. The drums of soil were emptied, and a total of 4.59 tons of soil were loaded onto a dump truck and transported off site for disposal at Environmental Soil Management, Inc. in Fort Edward, New York. The empty drums were transported off site for disposal as scrap metal at T.A. Predel & Co., Inc. in Schenectady, New York. Plastic sheeting/tubing and PPE were bagged and discarded in Metroplex's solid waste dumpster. Pertinent waste disposal documentation is included in Appendix D.

4.0 PHYSICAL CHARACTERISTICS OF THE STUDY AREA

4.1 Results of Study Area Investigation

A number of investigative tasks were completed by C.T. Male to characterize the project site. The results of the investigative tasks are supplemented with published literature including soil, bedrock, and aquifer mapping to further assess the physical characteristics of the project site. The physical characteristics of the site are discussed in the following sections.

4.1.1 Surface Features

Presently, the site consists of an asphalt paved parking lot. Overall, the site slopes gently from the southeast (Clinton Street) towards the northwest (Broadway). Previous utilization of the site included garages, stores, warehouses and dwellings. Review of historical Sanborn Fire Insurance Maps shows that portions of the site were also occupied by a gasoline filling station, and a drycleaning facility.

4.1.2 Surface Water Bodies

Exposed surface water bodies are not located on the site. The nearest exposed surface water body is the Mohawk River, which is located approximately 0.6 mile northwest of the site. The river flows generally eastward to where it joins the Hudson River.

The Cowhorn Creek, an underground stream, enters the site along the northern portion of the eastern property boundary. It turns and continues northward, contained within a 5-foot diameter culvert, beneath the pedestrian walkway (which comprises the northeasternmost portion of the site), and exits the site at a point beneath the west side of the pedestrian walkway, where it heads in a west-southwesterly direction toward Broadway, ultimately flowing to the Mohawk River.

4.1.3 Surface Drainage Patterns

Storm water generated during the course of precipitation events flows across the site generally from the southeast to northwest, and is directed toward storm drains and catch basins located within the parking lot which are connected to the City of Schenectady municipal storm sewer system.

4.1.4 Regional Geology

Based on a review of the Surficial Geologic Map of New York, Hudson-Mohawk Sheet, the surficial geology in the vicinity of the site is mapped as recent deposits, generally confined to floodplains within a valley, consisting of oxidized, non-calcareous fine sand to gravel. As discussed herein, this is consistent with our findings.

According to the Geologic Map of New York, Hudson-Mohawk Sheet, bedrock in the vicinity of the site is mapped as the Normanskill Shale, which consists of minor mudstone and sandstone.

4.1.5 Site Soils

The site soils were explored through the advancement of fifteen soil borings that were later converted to monitoring wells. Twelve of the borings were advanced to depths of either 16 or 20 feet below grade. The remaining three borings were advanced to depths ranging from 99 to 104 feet below grade. A subsurface boring log for each test boring performed for this project was prepared, and is presented in Appendix B. The logs summarize and present the classifications of the subsurface soils, moisture content and other pertinent visual observations of the soil stratum for the site. The site soils, as visually classified using the Unified Soil Classification System at the time of test boring completion consist of the following: fill material of variable composition (sand, silt, gravel, fragments of brick and concrete) from just below the asphalt subbase material to depths up to 4 feet below grade; fine to coarse sand and silt to a depth of approximately 80 to 85 feet below grade; silt with some fine sand to a depth of approximately 100 to 105 feet below grade, where silty-clay was encountered and the deep borings were terminated. Bedrock was not encountered within the depth range explored.

4.1.6 Groundwater Characteristics

According to the map entitled "Potential Yields of Wells in Unconsolidated Aquifers in Upstate New York, Hudson-Mohawk Sheet" (Edward F. Bugliosi and Ruth A. Trudell, 1988), the subject site is located within an area designated as an unconfined aquifer with the potential to yield more than 100 gallons per minute.

Groundwater conditions on the site were assessed through the advancement of test borings and the subsequent installation of permanent monitoring wells. The installation of groundwater monitoring wells allowed for the collection of static water level data. Water level measurements were collected from the monitoring wells on June 7, July 7, August 2 and September 1, 2006. Based on the collected water level data, the water table across the site at well locations CTM-1 to CTM-15 ranged in depth from approximately 4.5 to 14 feet below existing site grades. Depth to water measurements within the deep wells, CTM-16, CTM-17 and CTM-18 (screened just above the siltysand/silty-clay interface), ranged from approximately 18.5 to 21 feet below grade. Water level data collected on June 7, July 7, August 2 and September 1, 2006 are summarized below in Table 4.1.6-1. The data were used to develop groundwater contour maps, which are presented as Figures 4, 5 and 6, respectively. The data from the three deep wells were not included in the groundwater contour mapping, as these wells are not screened within the same aquifer zone as the other wells. groundwater within the screened aquifer zone of the deep wells is under a different potentiometric head pressure than that of the shallow wells. Based on the groundwater elevations within the deep wells as compared to the shallow wells, it appears that there is a net downward vertical groundwater gradient.

Based on the water level data obtained during the RI groundwater monitoring events, the overall hydraulic gradient across the site within the shallow aquifer is generally in the range of 0.03 to 0.05 ft/ft (or 3 to 5 percent), although gradient is steepest on the western portion of the site, consistent with surface topography. Assuming hydraulic conductivity and porosity values typical of predominantly sandy soils, the groundwater flow velocity across the site is estimated to be in the range of 10⁻³ to 10⁻⁴ cm/s (or approximately 0.28 to 2.8 feet per day, or 102.2 to 1,022 feet per year). The maps depict overall shallow groundwater flow direction across the site toward the north and northwest, toward the Mohawk River.

TABLE 4.1.6-1: Summary of Groundwater Elevation Data							
Well ID	TOC Elevation (feet amsl)	Date	Depth to Water (feet)	Groundwater Elev. (feet amsl)			
CTM-1	238.80	06/07/06	9.24	229.56			
ļ		07/07/06	9.9	228.90			
		08/02/06	9.48	229.32			
		9/1/06	9.75	229.05			

Well ID	TOC Elevation (feet amsl)	Date	Depth to Water (feet)	Groundwater Elev. (feet amsl)
CTM-2	240.65	06/07/06	9.84	230.81
		07/07/06	10.0	230.65
		08/02/06	9.91	230.74
		9/1/06	10.00	230.65
CTM-3	242.99	06/07/06	12.15	230.84
		07/07/06	12.7	230.29
,		08/02/06	11.63	231.36
		9/1/06	11.91	231.08
CTM-4	241.43	06/07/06	10.65	230.78
		07/07/06	8.6	232.83
		08/02/06	9.87	231.56
		9/1/06	10.95	230.48
CTM-5	243.92	06/07/06	12.98	230.94
		07/07/06	12.9	231.02
	•	08/02/06	13.03	230.89
	_	9/1/06	13.19	230.79
CTM-6	244.71	06/07/06	13.16	231.55
		07/07/06	12.3	232.41
		08/02/06	13.55	231.16
		9/1/06	14.06	230.65
CTM-7	243.20	06/07/06	4.35	238.85
		07/07/06	6.8	236.40
		08/02/06	11.72	231.48
		9/1/06	12.71	230.49
CTM-8	242.24	06/07/06	11.68	230.56
l		07/07/06	NM	_
		08/02/06	NM	-
		9/1/06	NM	-
CTM-9	244.20	06/07/06	13.51	230.69
		07/07/06	13.8	230.40
l		08/02/06	13.81	230.39
		9/1/06	14.28	229.92
CTM-10	242.23	06/07/06	12.03	230.20
		07/07/06	10.3	231.93
		08/02/06	12.90	229.33
		9/1/06	13.04	229.19
CTM-11	231.20	06/07/06	7.30	223.90
		07/07/06	5.3	225.90
	<u> </u>	08/02/06	8.16	223.04

			oundwater Elevation		
Well ID	TOC Elevation	Date	Depth to Water	Groundwater Elev.	
	(feet amsl)		(feet)	(feet amsl)	
		9/1/06	8.18	223.02	
CTM-12	231.39	06/07/06	7.20	224.19	
l		07/07/06	5.4	225.99	
		08/02/06	8.42	222.27	
		9/1/06	8.45	222.94	
CTM-13	244.17	06/07/06	12.80	231.37	
		07/07/06	12.1	232.07	
		08/02/06	NM (inaccessible)	_	
l		9/1/06	12.68	231.49	
CTM-14	244.47	06/07/06	12.25	232.22	
		07/07/06	12.2	232.27	
		08/02/06	NM (inaccessible)	-	
		9/1/06	12.27	232.20	
CTM-15	243.25	06/07/06	12.47	230.77	
į		07/07/06	12.6	230.65	
Ì		08/02/06	13.61	229.64	
J		9/1/06	11.85	231.40	
CTM-16	244.12	06/07/06	20.05	224.07	
		07/07/06	NM	-	
		08/02/06	20.59	223.53	
CTM-17	244.63	06/07/06	20.63	224.00	
		07/07/06	NM	-	
		08/02/06	20.10	224.53	
CTM-18	242.23	06/07/06	18.29	223.94	
		07/07/06	NM	-	
		08/02/06	18.45	223.78	

NM = Not Measured

Field observations and parameters (pH, temperature, conductivity and turbidity) were recorded during groundwater sampling activities completed in June 2006. The pH values for the groundwater samples were relatively neutral with values ranging from 6.42 to 8.63 standard units. The groundwater sample temperatures ranged from 14.0 to 16.9 degrees Celsius. The conductivity for the groundwater samples ranged from 0.292 to 19.7 μ S. Turbidity values for the sampled groundwater were monitored prior to collecting the analytical samples. Turbidity values ranged from 9 to 765 NTUs. The table below lists the stabilized field parameter values for each well immediately prior to sample collection.

	TABLE 4.1.6-2: Groundwater Sampling Field Observations Summary								
Well ID	Turbidity	рН &	Specific	Well ID	Turbidity	рН &	Specific		
	(1)	Temp.	Conductance			Temp.	Conductance		
CTM-1	815 NTU	6.97 @	2.60 μs	CTM-10	139 NTU	6.65 @	2.88 μs		
		15.0°C				15.9℃			
CTM-2	256 NTU	6.91 @	3.91µs	CTM-11	9 NTU	7.17 @	1.37 μs		
		14.5°C				14.0°C			
CTM-3	135 NTU	6.80@	5.06 μs	CTM-12	580 NTU	7.34 @	0.681 μs		
		15.7°C				14.8°C			
CTM-4	12 NTU	6.42 @	19.7 μs	CTM-13	183 NTU	7.11 @	5.75 μs		
		15.3°C				15.2°C			
CTM-5	42 NTU	6.53 @	4.98 μs	CTM-14	460 NTU	7.18 @	7.95 μs		
		14.9°C	\			16.9°C			
CTM-6	765 NTU	6.9@	3.25 µs	CTM-15	196 NTU	7.26 @	9.20 μs		
		15.8°C				_16.8℃			
CTM-7	64 NTU	7.27 @	0.461 μs	CTM-16	27 NTU	8.29 @	0.292 μs		
		16.3°C				15.0°C			
CTM-8	N/S	N/S	N/S	CTM-17	363 NTU	8.25 @	0.350 μs		
						15.4°C			
CTM-9	471 NTU	6.73 @	4.13 μs	CTM-18	485 NTU	8.63 @	0.444 μs		
	1:1:1: 1:	15.0°C_	artad after munai			15.0°C			

Note: Turbidity readings were collected after purging, but before collecting laboratory samples.

Although attempts were made to obtain turbidity levels of less than 50 NTUs prior to the collection of groundwater samples, several samples exhibited turbidity levels in excess of 50 NTUs. A review of the subsurface logs and monitoring well construction logs for the wells shows that the screened interval for each well was situated within soils that had a significant silt component, suggesting that the silt continued to enter the well despite best efforts at monitoring well development, purging and sampling.

5.0 NATURE AND EXTENT OF CONTAMINATION

The nature and extent of contamination at the project site is based on subjective and quantitative analyses of samples collected during the RI. Samples collected during the RI included surface soil, subsurface soil and groundwater. The soil and groundwater samples were analyzed for TCL organics, Pesticides, PCBs and TAL metals. The analytical data for the RI are summarized in the following subsections, and are presented on Tables 1 through 11 following the report text. The tables only provide the results for compounds/analytes which were detected at one or more of the sample locations.

5.1 Sources

Historical potential sources of contamination consist of dry cleaning operations, a gasoline filling station, and fill materials of unknown origin underlying the entirety of the site to depths up to 6 feet below grade.

5.2 Determination of Project Standards, Criteria and Guidance (SCGs)

Project SCGs were established for comparison of analytical results of the different media types that were sampled. The media types were surface, near-surface and subsurface soils, and groundwater.

Soil and groundwater sampled as part of the RI were analyzed for TCL organics (which include volatile and semi-volatile organic compounds), pesticides and PCBs, and TAL metals. Analytical results for soil samples were compared to 6NYCRR Part 375 Restricted Use (Commercial) Soil Cleanup Objectives. Analytical results for groundwater samples were compared to NYSDEC Groundwater Standards and Guidance Values, promulgated in the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS).

5.3 Surface Soils

5.3.1 General

Three (3) surface soil samples, identified as SS-8, SS-11 and SS-12 on Figure 2, were collected from unpaved (grass-covered) areas of the site from the first few inches of soil beneath the root zone. Soil comprising the surface samples was similar at each of the sample locations, and consisted of a mixture of silt and fine sand. The near-surface soil samples were collected on May 1, 2006, and were forwarded to the laboratory of record for analysis for TCL volatile and semi-volatile organic compounds, pesticides and PCBs, and TAL metals.

Surface soil sampling results (detected compounds only) are presented in Tables 1 to 4 in the Tables section of the report.

5.3.2 Volatile Organic Compounds in Surface Soil

Volatile organic compounds (VOCs) were not detected in the surface soil samples at concentrations above laboratory method detection limits.

5.3.3 Semi-Volatile Organic Compounds in Surface Soil

Analytical results showed that multiple SVOCs were detected in surface soil samples SS-8 and SS-12 at concentrations above laboratory method detection limits, but *below* applicable SCGs.

Analytical results also indicated that one or more non-target SVOCs (referred to as Tentatively Identified Compounds, or TICs), were detected in each of the surface soil samples at total concentrations ranging from 5,855 to 8,190 ug/Kg.

5.3.4 Pesticides and PCBs in Surface Soil

Pesticides were not detected in surface soil samples SS-8 or SS-12. The pesticide 4,4-DDE was detected at a concentration above the laboratory method detection limit, but several orders of magnitude below its applicable SCG.

PCBs were not detected above the laboratory detection limits in surface soil samples.

5.3.5 Metals in Surface Soil

A total of nineteen (19) Target Analyte List metals were detected in the surface soil samples at concentrations above laboratory detection limits, but *below* SCGs.

5.4 Near-Surface Soils

5.4.1 General

Nine (9) near-surface soil samples, identified as SS-1 through SS-7, SS-9 and SS-10 on Figure 2, were collected from paved areas of the site from the first few inches beneath the gravel subbase underlying the asphalt. Soil comprising the near-surface samples was similar at each of the sample locations, and consisted of fine to coarse sand with minor components of silt and gravel. The near-surface soil samples were collected on May 1, 2006, and were forwarded to the laboratory of record for analysis for TCL volatile and semi-volatile organic compounds, pesticides and PCBs, and TAL metals. QA/QC samples were also collected and consisted of one equipment blank and one duplicate sample (duplicate of SS-9).

Near-surface soil sampling results (detected compounds only) are presented in Tables 1 to 4 in the Tables section of the report.

5.4.2 Volatile Organic Compounds in Near-surface Soil

The analytical results identified a total of four (4) VOCs in near-surface soil samples at concentrations exceeding laboratory detection limits, but at concentrations *below* their respective SCGs. Toluene was detected in sample SS-1, located in the vicinity of the former gasoline filling station, at an estimated concentration of 7.7 ug/kg. Tetrachloroethene was detected in sample SS-9, located in the vicinity of the former drycleaning operation, at an estimated concentration of 7.1 ug/kg. Toluene and mixed xylenes were detected in the SS-9 duplicate sample (Dup-2) at estimated concentrations of 7.1 and 6.9 ug/kg, respectively. Acetone was detected in sample SS-3, located on the easternmost portion of the site, at an estimated concentration of 57 ug/kg. No apparent relationship was noted between the historical uses of the site and the presence of acetone at the location of SS-3.

5.4.3 Semi-Volatile Organic Compounds in Near-surface Soils

Analytical results showed that multiple SVOCs were detected at concentrations above laboratory method detection limits in eight of the twelve near-surface soil samples. However, only one (1) SVOC (benzo(a)pyrene) was detected at concentrations exceeding its SCG, in samples SS-4 and SS-10 at concentrations of 3,900 and 1,700 ug/Kg, repectively. This SCG exceedence is identified in bold on Table 2 in the Tables section of the report, and is also identified on the SVOCs Above SCGs in Near-Surface Soil Samples map in Figure 6.

Near-surface soil sample locations exhibiting the highest concentrations of SVOCs were SS-3, SS-4 and SS-5 on the eastern portion of the site, and SS-10 on the western portion of the site.

Analytical results also indicated that one or more non-target SVOCs (referred to as Tentatively Identified Compounds, or TICs), were detected in each of the near-surface soil samples at total concentrations ranging from 2,704 to 21,440 ug/Kg.

5.4.4 Pesticides and PCBs in Near-surface Soils

The pesticides 4,4-DDE and 4,4-DDT were detected in the sample identified as SS-9, at estimated concentrations of 4.7 and 33 ug/kg, respectively. Similar concentrations of these pesticides were also detected in the duplicate sample of SS-9 (Dup-2). These concentrations are below the applicable SCGs. Pesticides were not detected at concentrations above laboratory detection limits in any other near-surface soil samples.

PCBs were not detected above the laboratory detection limits in near-surface soil samples.

5.4.5 Metals in Near-surface Soils

A total of nineteen (19) Target Analyte List metals were detected in near-surface soil samples at concentrations above laboratory method detection limits. One of these metals, arsenic, was detected at a concentration above its applicable SCG in near-surface soil sample SS-10. This SCG exceedence is identified in bold on Table 4 in the Tables section of the report, and is also identified on the Metals Above SCGs in Near-Surface Soil Samples map in Figure 7.

drycleaning operation (GP-5), and on the most downgradient portion of the site (GP-11, GP-12). Methylene chloride was detected at borings GP-1 and GP-3, located on the northern and eastern portions of the site, respectively. Toluene was detected at borings GP-6 and GP-12, located on the southern portion of the site.

5.5.3 Semi-volatile Organic Compounds in Subsurface Soils

SVOCs were detected at concentrations above the laboratory method detection limits in three (3) subsurface soil samples. Compounds detected in these samples included the following: acenaphthylene; acenaphthene; dibenzofuran; fluorene; phenanthrene; anthracene; carbazole; fluoranthene; pyrene; benzo(a)anthracene; chrysene; benzo(b)fluoranthene; benzo(k)fluoranthene; benzo(a)pyrene; indeno(1,2,3-cd)pyrene; and benzo(g,h,i)perylene.

One SVOC (benzo(a)pyrene) was detected above its applicable SCG. Benzo(a)pyrene was detected in sample GP-11 (4-6') at a concentration of 2,400 ug/Kg, repectively. This SCG exceedence is identified in bold on Table 6 in the Tables section of the report, and is also identified on the SVOCs Above SCGs in Subsurface Soil Samples map in Figure 8. The exceedence occurred within material sampled from the 4 to 6 foot depth interval at boring GP-11 (located on the westernmost portion of the site, within the grass-covered area adjacent to Broadway). Based on review of the Geoprobe Subsurface Exploration Logs for these borings, this sample was collected from within the depth range described as fill material.

Analytical results also indicated that one or more non-target SVOCs (referred to as Tentatively Identified Compounds, or TICs), were detected in each of the subsurface soil samples at total concentrations ranging from 2,170 to 11,360 ug/Kg.

5.5.4 Pesticides and PCBs in Subsurface Soils

Pesticides were detected at concentrations above the laboratory method detection limits in one subsurface soil sample. The following pesticides were detected in the sample from boring GP-11 at the 4 to 6 foot depth interval: Endosulfan 1; alpha-Chlordane; gamma-Chlordane; and Toxaphene. None of these was detected above its applicable SCG. Boring GP-11 was located near the western site boundary, within the grass-covered area adjacent to Broadway.

5.5 Subsurface Soils

5.5.1 General

Subsurface soil samples, identified as GP-1 through GP-15, were retained for laboratory analysis from fifteen (15) soil borings advanced using Geoprobe methods at the locations identified on Figure 2 as GP/CTM-1 to GP/CTM-15. Three additional, much deeper, soil borings were advanced on the site (CTM-16 through CTM-18) using hollow-stem auger methods; however, subsurface soil samples were not retained from these borings for analysis, based on the proximity of these borings to the shallower borings, and field observations (i.e. absence of subjective evidence of contamination) below the termination depths of the shallower borings. A total of 15 subsurface soil samples, plus one field duplicate sample were submitted for laboratory analysis. The selection of soil samples for laboratory analysis was based on PID screening results and organoleptic (i.e., sight and smell) perception. At locations where no apparent evidence of contamination was observed, the sample interval immediately above the water table was retained for analysis. The samples were analyzed for TCL organics, pesticides, PCBs and TAL metals.

Summary tables of subsurface soil sampling results (GP-1 through GP-15), which include detected compounds only, are presented as Tables 5 to 8 in the Tables section of the report.

5.5.2 Volatile Organic Compounds in Subsurface Soils

VOCs were detected at concentrations above the laboratory method detection limits in six (6) subsurface soil samples. Detected compounds included the following: acetone; methylene chloride; cis-1,2-dichloroethene; trichloroethene; tetrachloroethene and toluene. None of these compounds was detected at a concentration above its applicable SCG.

The sample from boring GP-1, located on the northern portion of the site, exhibited the highest total VOC concentration (177.9 ug/Kg). Although this boring was located in the vicinity of the former gasoline filling station, the most prevalent VOCs detected in the sample were chlorinated solvent-related compounds, which were not detected in any of the other subsurface soil samples. Acetone was detected at boring locations in the vicinity of the former gasoline filling station (GP-1), in the vicinity of the former

PCBs were not detected above laboratory method detection limits in any of the subsurface soil samples.

5.5.5 Metals in Subsurface Soils

With the exception of silver, all metals included in the TAL methodology were detected in the subsurface soil samples above the laboratory method and/or instrument detection limits. None of these metals was detected at concentrations above SCGs.

5.6 Groundwater

5.6.1 General

Eighteen (18) groundwater monitoring wells, identified on Figure 2 as GP/CTM-1 to GP/CTM-15 and CTM-16 to CTM-18, were installed as part of the sitewide subsurface/hydrogeologic investigation. Groundwater samples were collected and analyzed from all of the wells, with the exception of CTM-8, for TCL organics, pesticides, PCBs and TAL metals. (An unidentified obstruction or damage to the well material precluded the collection of a water sample from CTM-8.) The analytical results are discussed in the following subsections.

Summary tables of groundwater sampling results, which include detected compounds only, are presented as Tables 9 to 11 in the Tables section of the report.

5.6.2 Volatile Organic Compounds in Groundwater

Five (5) VOCs were detected above the laboratory method detection limits, but *below* their respective SCGs. VOCs were detected in the following samples: CTM-1 (cis-1,2-dichloroethene and tetrachloroethene); CTM-5 (tetrachloroethene); CTM-6 (methylcyclohexane); and CTM-7 (bromodichloromethane, dibromochloromethane). One (1) additional VOC (chloroform) was detected in the CTM-7 sample at a concentration of 7.2 ug/L, slightly above its SCG. This SCG exceedence is identified in bold on Table 9 in the Tables section of the report, and is also identified on the VOCs Above SCGs in Groundwater Samples map in Figure 8.

5.6.3 Semi-volatile Organic Compounds in Groundwater

One (1) SVOC was detected above the laboratory method detection limit, but *below* its SCG. Bis(2-ethylhexyl)phthalate, a common laboratory-introduced contaminant, was detected in the following samples: CTM-3 and CTM-4. One or more non-target compounds (TICs) were detected in each of the groundwater samples at concentrations ranging from 21 to 73.2 ug/L.

5.6.4 Pesticides and PCBs in Groundwater

Pesticides and PCBs were not detected above the method and instrument detection limits in any of the samples analyzed.

5.6.5 Metals in Groundwater

Twenty-one (21) of the twenty-three (23) metals included in the TAL methodology were detected in groundwater samples at concentrations above the laboratory method detection limits. Eleven (11) of these metals were detected at concentrations above their respective SCGs. Metals detected above SCGs are summarized below in Table 5.6.5-1, are shown in bold in Table 11 located in the Tables section of the report, and are also identified on the Metals Above SCGs in Groundwater Samples map in Figure 9.

TABLE 5.6.5-1: Metals Exceeding SCGs in Groundwater							
Metal	Metal SCG Frequence (ug/kg) Exceed SCG		Concentration Range Exceeding SCGs (ug/kg)	Sampling Location(s) Exceeding SCGs			
Aluminum	100	13 of 17	279 to 32,800	CTM-1 through CTM-4 CTM-9 and CTM-10 CTM-12 through CTM-18			
Arsenic	25	1 of 17	32.8	CTM-14			
Barium	1,000	1 of 17	1,130	CTM-4			
Chromium	50	3 of 17	66.7 to 93.4	CTM-14, CTM-16, CTM-17			
Cobalt	5	2 of 17	7.54(J) to 31.8(J)	CTM-14, CTM-17			

5.7.3 Subsurface Soils

VOCs, pesticides, PCBs and TAL metals were not detected at concentrations exceeding their applicable SCGs in the analyzed subsurface soil samples.

One (1) SVOC (benzo(a)pyrene) was detected at a concentration exceeding its SCG in one sample, GP-11(4-6'), near the western boundary of the site within the grass-covered area adjacent to Broadway.

5.7.4 Groundwater

SVOCs, pesticides and PCBs were not detected at concentrations exceeding their applicable SCGs in the analyzed groundwater samples.

One (1) VOC, chloroform, was detected in the CTM-7 sample at a concentration of 7.2 ug/L, slightly above its SCG of 7 ug/L.

Eleven (11) metals were detected at concentrations exceeding their respective SCGs. These included aluminum (13 of 17 sampling locations), arsenic (1 of 17 locations), barium (1 of 17 locations), chromium (3 of 17 locations), cobalt (2 of 17 locations), iron (15 of 17 locations), lead (1 of 17 locations), magnesium (3 of 17 locations), manganese (7 of 17 locations), sodium (16 of 17 locations), and vanadium (2 of 17 locations).

Exceedences of SCGs were not exhibited in any particular area of the site, but rather at various locations across the site. It should be noted that the exceedences of lead and arsenic were exhibited at CTM-14, which is located off site, along the south side of Clinton Street.

5.8 Past Site Activities Relative to Site Contaminants

Historic usages of the site have been both residential and commercial in nature. Commercial uses included warehouses, garages, stores, a drycleaning operation and a gasoline filling station. The site is underlain by various amounts of fill material that range up to 8 feet in thickness. The fill material consists primarily of sand, silt, gravel, and fragments of brick and concrete from just below the asphalt subbase material to depths of up to 8 feet below grade. The origin of the fill material is unknown. The following relates past site activities to contaminants identified during the RI.

- Past site activities associated with the former dry cleaning facility and former gasoline filling station are likely contributors of the VOCs detected in near-surface soil, subsurface soil and groundwater, although detections of these compounds were not above SCGs. Chlorinated VOCs identified in subsurface soil and groundwater at the location of GP/CTM-1 (on the northern portion of the site, in the vicinity of the former gasoline filling station) may be a result of the former use of solvents (i.e. parts cleaners) relating to station activities.
- Fill materials beneath the site are the likely contributor to SVOC detections within this media.
- Metals detected above SCGs may be associated with application of road salt to the parking lot surface, may be naturally occurring in the environment and/or may be constituents of the site's underlying fill material.

5.9 Fish and Wildlife Impact Analysis (FWIA) Results

Based on the site's current use as a paved parking lot, its location and lack of any observable wildlife resources, the NYSDEC Project Manager determined that a Fish and Wildlife Impact Analysis (FWIA) was not required for this investigation.

5.10 Data Usability Summary Report

All of the site investigation analytical data has been independently validated in accordance with NYSDEC DUSR requirements. The analytical results tabulated herein reflect the results of the DUSRs and have been appropriately qualified. The DUSRs are presented in Exhibit 6 of this report.

TABLE 6.2-1 - Physical and Chemical Properties of Site Contaminants								
Compound	Density	Kow ⁽¹⁾	Koc ⁽²⁾	Water Solubility ⁽³⁾	Henry's Law Constant ⁽⁴⁾			
Volatile Organic Compounds:								
Chloroform	1.485	1.97	31	Slightly Soluble	NDA			
Semi-Volatile Organic	Compounds:							
Benzo(a)pyrene	1.351	6.00	6.00	Insoluble	2.4E-06			
Metals:								
Aluminum	2.70	NA	NA	NDA	NA			
Arsenic	5.73	NA	NA	0.3	NA			
Barium	3.51	NA	NA	1.5	NA			
Chromium	7.1	NA	NA	NDA	NA			
Cobalt	8.9	NA	NA	NDA	NA			
Iron	7.86	NA	NA	NDA	NA			
Lead	11.35	NA	NA	0.001	NA			
Magnesium	1.74	NA	NA	NDA	NA			
Manganese	7.44	NA	NA	NDA	NA			
Sodium	0.97	NA	NA	Decomposes	NA			
Vanadium	6.11	NA	NA	Insoluble	NA			

References:

Superfund Public Health Evaluation Manual; EPA/540/189/002; Hawley's Condensed Chemical Dictionary, Twelfth Edition; Howard, Philip H., Fate and Exposure Data for Organic Chemicals. Vols. 1&2. 1989; and Robert C. Knox and others, Subsurface Transport and Fate Processes, 1993; Wilson & Clarke, Hazardous Waste Site Soil Remediation, Theory and Application of Innovative Technologies, 1994.

NDA denotes no data available in cited references.

NA denotes not applicable.

- (1) Log octanol/water partition coefficient.
- (2) Organic carbon partition coefficient. Often a range is available rather than a single number.
- (3) mg/L at 25 degrees C.
- (4) Henry's Law constant, atm-m³ / mole.

6.3 Contaminant Persistence

The organic carbon/water partition coefficient (Koc) indicates the tendency of an organic contaminant (VOCs and SVOCs) to sorb onto soil or sediment particles. Where the Koc is not experimentally available, it can be calculated based on the log octanol/water partition coefficient. The Koc multiplied by the organic carbon content of a given soil gives the estimated absorption partition coefficient (K_d) for that soil. Some absorption may occur between contaminants and inorganic soil or sediment particles, particularly clay. However, experimental data indicates that the absorption of

nonionic, undissociated chemicals to inorganic soil or sediment is low. Once the sorption sites in soil are used up, mobility will usually increase to some extent.

Mobility is expected to be lowest in surface soils, which tend to have some organic carbon. Below several feet in depth, the organic carbon content of soils is likely to be very low, and even a compound with a high Koc will be moderately mobile. However, fill containing organic materials such as ash, cinder or building rubble may have organic carbon levels that equal or exceed surface soils. The SVOCs have a wide range of organic carbon partition coefficient values that range from 5.0 for bis(2-Ethylhexyl)phthalate, indicating low sorption and high mobility, to 550,000 for benzo(k)fluoranthene, indicating medium to high sorption and low to medium mobility in soil.

The mobility of metals is affected by geologic conditions, and is often gauged by the environment's oxidation/reduction (redox) potential. As the pH and dissolved oxygen vary, the solubility of metals can change substantially. Generally, but not always, reductive conditions favor the solid phase of the metal, so a change toward reducing conditions can precipitate soluble metals, making them immobile.

Water solubility indicates the tendency of a compound to dissolve in and travel in water. The site contaminants (except for metals) have a wide range of solubilities, but are generally soluble. When contaminant concentrations are above approximately ten percent of the water solubility, a separate phase will tend to form. The water solubility values of the semi-volatile organic contaminants in groundwater vary, but are on the order of 0.00055 to 0.3 mg/l. Since the concentration of contaminants detected at the Site are less than their corresponding water solubility values, separate phase layers are not likely to exist within the site. The majority of the metals of concern are nearly insoluble in water, with the exception of calcium and sodium, which readily dissolve in water.

Volatility in diffuse aqueous conditions such as those that occur in groundwater at the site is quantified by Henry's constant (K_h) . The rate of volatilization increases as K_h increases. Volatility increases with decreases in atmospheric pressure, increase in temperature and when the compound vapor pressure is low relative to saturation. The contaminants of concern (with the exception of metals, which are not volatile) include semivolatile organic compounds, which will volatilize to some degree when

unsaturated vapor, such as soil gas or the open atmosphere, are present.

Due to the composition of metals, they do not typically biodegrade. Lighter petroleum hydrocarbon contaminants biodegrade readily. The heavier, semi-volatile organic compounds biodegrade at a slower rate, primarily under anaerobic conditions. Biodegradation of SVOCs in soil/groundwater has been found to occur under aerobic and to a lesser extent anaerobic conditions, such as occurs in groundwater. The presence of acclimatized microbes, which are likely to occur within the site, enhances biodegration of SVOCs. Acclimatized microbes are soil micro-organisms which have adapted themselves to the contaminants by producing enzymes to withstand toxic effects and to allow metabolism of the contaminants. Addition of nutrients and oxygen would be expected to increase the rate of biotic degradation.

6.4 Contaminant Migration

The potential routes of contaminant migration are through groundwater and the atmosphere. Depending on their solubility, contaminants could dissolve in groundwater and be transported in the direction of groundwater flow. Contaminants potentially present in the vapor phase of the unsaturated soil/fill zone could vertically migrate to the open atmosphere. The SVOC of concern (benzo(a)pyrene) in near-surface soil and subsurface soil/fill material, and the metal of concern (arsenic) in near-surface soil could be transported to the atmosphere in the form of dust particulates should the asphalt surface cover be removed and this media be disturbed.

6.4.1 Groundwater Migration

The presence of a VOC heavier than water (chloroform) suggests the potential for migration of this contaminant within lower portions of the aquifer. It is expected that this compound will migrate in the direction of groundwater flow. The majority of the detected metals (with the exception of calcium and sodium) are insoluble in water and tend to adsorb and/or absorb to surrounding soil and fill particles; indicating a low propensity to migrate in the direction of groundwater.

Groundwater beneath the site generally flows towards the Mohawk River. Physical and chemical factors affecting the migration rate of contaminants include: the historical disposition of fill materials; natural biodegradation; bio-accumulation by organic

materials; sorption onto soil and fill particles; and volatilization into the vadose zone and the unsaturated soils.

6.4.2 Atmospheric Migration

Site contaminants (SVOCs) in soil vapor will diffuse slowly upward and horizontally to unsaturated soil vapor. Although the site is almost entirely covered with asphalt pavement, it is possible that contaminants would migrate upward in the fill/nearsurface soil and diffuse to the atmosphere through cracks in the pavement and in areas were the pavement is absent. The rate of diffusion into the atmosphere depends on the differential in vapor saturation and on the atmospheric pressure. Under natural conditions, the differential is expected to be low within the soil. At the soil/atmosphere interface, the differential can change frequently, with great increases in differential causing contaminants to transport rapidly from surface soil to the atmosphere. Site contaminants which may volatilize from the site soils/fill to the atmosphere will disperse or abiotically degrade, with rates dependent on wind speed and levels of atmospheric radicals. Since the levels of contaminants are at relatively low levels, SVOC contaminants in the atmosphere are not expected to accumulate at detectable levels under existing conditions. Metals do not typically exhibit volatility and therefore would not likely enter the atmosphere unless site soils/fill were disturbed such that dust particles with metals adhered to them enter the atmosphere.

7.0 EXPOSURE ASSESSMENT

7.1 Qualitative Exposure Assessment

The purpose of the qualitative exposure assessment is to evaluate the potential for human exposure from site related contamination without any remediation. In performing the qualitative exposure assessment, the potential site related contaminants and the actual or potential exposure pathways were identified. The potentially exposed populations and the extent of actual or potential exposure were also evaluated.

The potential site related contaminants were identified as those contaminants detected in various media at the Site above SCGs. Potential exposure pathways for site contaminants are a function of the contaminant, the affected media, contaminant location and the potentially impacted population. The present potential exposure routes and pathways include the following:

- dermal contact and/or ingestion of potentially contaminated soil on-site;
- dermal contact and/or ingestion of contaminated groundwater generated from potential leaching of contaminants during storm water infiltration/percolation and then migrating with groundwater; and
- inhalation of dust and/or vapor emissions transported by wind.

The potential impacted populations at the site and vicinity include residents in the neighboring community, site workers (booth attendants), site visitors, trespassers on the site, workers engaged in subsurface excavation or other ground disturbance activity and construction workers during future site development.

Several semivolatile organic compounds and metals were detected in near-surface and subsurface soils/fill materials (although only two analytes (benzo(a)pyrene and arsenic) were above their SCGs). Disturbance of the near-surface, subsurface soils/fill materials during future construction activities could potentially create airborne contaminants that may be inhaled and/or ingested. The potential for dermal contact, inhalation and ingestion of the impacted near-surface, subsurface soil/fill material is, therefore,

anticipated to be high during construction activities but remains low at present, as the site is almost entirely covered with asphalt.

One VOC (chloroform) and several metals were detected in groundwater at concentrations exceeding SCGs. Considering that the depth to groundwater is greater than 4 feet below grade, the potential for dermal contact through exposure to groundwater and the associated impact is anticipated to be low, unless groundwater is encountered and subsequently disturbed during construction activities, where it will need to be evacuated and treated. Ingestion of the contaminated groundwater is unlikely since the area surrounding and downgradient of the site is serviced by public water and no private water supply wells are known to exist.

8.0 SUMMARY AND CONCLUSIONS

8.1 Summary

The site investigation work tasks have been completed in substantial conformance with the Remedial Investigation/Alternatives Analysis (RI/AA) Work Plan for the Site, dated April 7, 2006. Any deviations to the Work Plan have been discussed within the body of this report.

8.1.1 Site Background

The site is currently developed as a municipal parking lot along the north side of Clinton Street, east of Hamilton Street. In addition to parking areas, the site also includes landscaped areas and a pedestrian walkway (adjacent to Proctor's Theater). A review of historical sources shows that prior to its current usage as a parking lot, the site was historically occupied by commercial buildings including stores, warehouses, garages, a drycleaning facility, and a gasoline filling station.

Based on the results of a Phase I Environmental Site Assessment (ESA) conducted by others in February 2004, a limited Phase II ESA was conducted on the site by C.T. Male in April 2004. Soil and groundwater samples submitted for laboratory analysis as part of the assessment showed the presence of volatile organic compounds at concentrations exceeding regulatory limits at sampling locations in the areas of the former gasoline filling station and the former drycleaning facility.

8.1.2 Physical Characteristics of the Project Site

The project site consists of an asphalt-paved parking lot, with landscaped areas and a pedestrian walkway. The site slopes gently from the southeast toward the northwest. Subsurface lithology on the site consists of fill material of variable composition (sand, silt, gravel, fragments of brick and concrete) from just below the asphalt subbase material to depths up to 8 feet below grade; and fine to coarse sand and silt to a depth of approximately 80 to 85 feet below grade; and silt with some fine sand to a depth of approximately 100 to 105 feet below grade which is underlain by a silty-clay unit. Bedrock was not encountered within the explored depth range.

Exposed surface water bodies are not located on the site. The nearest exposed surface water body is the Mohawk River, approximately 0.6 mile northwest of the site, which flows generally eastward to where it joins the Hudson River. The Cowhorn Creek, an underground stream, enters the site along the northern portion of the eastern property boundary. It turns and continues northward, contained within a 5-foot diameter culvert, beneath the pedestrian walkway (which comprises the northeasternmost portion of the site), and exits the site at a point beneath the west side of the pedestrian walkway, where it heads in a west-southwesterly direction toward Broadway.

Storm water generated during the course of precipitation events surface flows across the parking lot following surface topography toward on-site storm drains, which are connected to the City of Schenectady municipal storm sewer system.

Groundwater was encountered on the site at depths ranging from approximately 4.5 to 14 feet bgs, and overall shallow groundwater flow direction across the site is from southeast to northwest, toward the Mohawk River.

8.1.3 Fish and Wildlife Impact Analysis (FWIA)

Based on the site's current use as a paved parking lot, its location and lack of any observable wildlife resources, the NYSDEC Project Manager determined that a Fish and Wildlife Impact Analysis (FWIA) was not required as part of this investigation.

8.1.4 Survey of Public and Private Wells

According to information from the City of Schenectady and the Schenectady County Health Department, the area of the project site is served by the City of Schenectady's municipal water supply system. Private water supply wells are reportedly not located on or in the vicinity of the project site.

8.1.5 Nature and Extent of Contamination

The primary contaminants of concern at the Site consist of one SVOC (benzo(a)pyrene) and one metal (arsenic) in near-surface soil, one SVOC (benzo(a)pyrene) in subsurface

soil/fill material, and one VOC (chloroform) and metals in groundwater. The following summarizes the nature and extent of contamination for the project site per media type.

Surface Soils

Three (3) surface soil samples were collected and submitted for laboratory analysis as part of the RI.

VOCs, SVOCs, pesticides, PCBs and TAL metals were not detected at concentrations exceeding SCGs in surface soil samples.

Near-Surface Soils

Nine (9) near-surface soil samples were collected and submitted for laboratory analysis as part of the RI.

VOCs, pesticides and PCBs were not detected at concentrations exceeding SCGs in nearsurface soil samples.

One (1) SVOC was detected above its SCG at two (2) locations (SS-4 and SS-10).

One (1) TAL metal was detected above its SCG at one (1) location (SS-10).

Subsurface Soils and Fill Material

Fifteen (15) samples of subsurface soils/fill were submitted for laboratory analyses during the RI.

VOCs, pesticides, PCBs and TAL metals were not detected at concentrations exceeding SCGs in subsurface soil samples.

One (1) SVOC was detected above its SCG at one (1) location (GP-11).

Groundwater

Eighteen (18) groundwater samples were collected and submitted for laboratory analyses during the RI.

SVOCs, pesticides and PCBs were not detected at concentrations above SCGs in groundwater samples.

One VOC was detected at a concentration slightly above its SCG at one (1) location (CTM-7).

Eleven (11) TAL metals were detected above SCGs at varying frequencies at monitoring well locations across the site. The metals included aluminum, arsenic, barium, chromium, cobalt, iron, lead, magnesium, manganese, sodium and vanadium.

8.1.6 Fate and Transport

The primary contaminants of concern at the Site consist of one SVOC in near-surface and subsurface soils/fill material in the central to western portions of the Site, one VOC in groundwater on the southernmost portion of the Site, and metals in groundwater across the site.

The SVOC in near-surface and subsurface soil/fill will tend to adhere to surrounding soil and fill particles and not migrate into underlying groundwater. This is exemplified by the presence of only one (1) of the SVOCs identified in the surface soil and subsurface soil/fill samples within the sampled groundwater. The SVOC in subsurface soils/fill material may volatilize to the atmosphere should the soils/fill be disturbed.

Metals in groundwater (except calcium and sodium, which decompose in water) are expected to adhere to surrounding soil and fill particles and will not necessarily follow groundwater flow direction nor volatilize to the vadose zone.

The transport mechanisms for the contaminants present at the site are migration within the groundwater and/or volatilization into the atmosphere. The SVOCs are confined to the soil and fill materials and would more than likely be dispersed to the atmosphere should this media be disturbed. However, should the SVOCs migrate downwards into the groundwater, they will tend to sink to the bottom of the aquifer to a less permeable soil type (silt/clay) and migrate in the direction of groundwater flow and/or the surface of the less permeable unit. Most metals are strongly held, reducing their migration and extent of contamination, with the exception of calcium and sodium, which readily dissolve in groundwater.

8.2 Conclusions

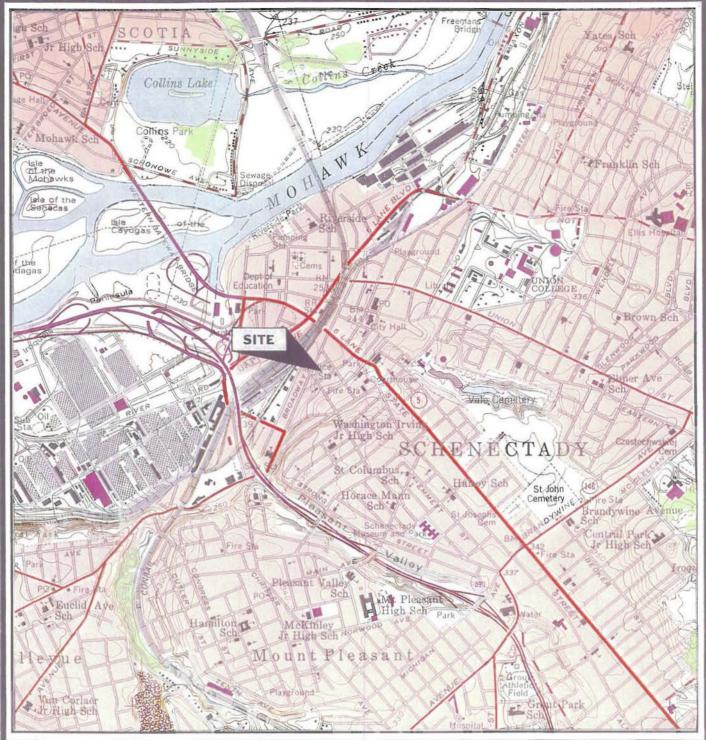
The results of soil and groundwater sampling at the locations of GP/CTM-1 and GP/CTM-2, in the area of the former gasoline filling station (in the vicinity of MW-2, installed/sampled in 2004) did not indicate the presence of petroleum-related compounds at concentrations above SCGs. It appears that the extent of the petroleum-related compounds identified at MW-2 in 2004 was/is limited to the immediate vicinity of that well. However, low levels of chlorinated solvent-related compounds were identified within the fill material at the location of GP/CTM-1.

The results of soil and groundwater sampling at the locations of GP/CTM-5, GP/CTM-6 and GP/CTM-9, in the area of the former drycleaning operation (in the vicinity of MW-5, installed/sampled in 2004) did not indicate the presence of drycleaning-related or petroleum-related compounds at concentrations above SCGs. It appears that the extent of chlorinated compounds identified at MW-5 in 2004 was/is limited to the immediate vicinity of that well. Additionally, the results of the groundwater samples collected from the three deep monitoring wells showed that chlorinated compounds have not impacted the lowest portion of the aquifer (situated just above the silt/clay unit) in these areas.

Subsurface soil analytical results indicate that detected VOCs and SVOCs, and in particular, those above SCGs, are most prevalent within the depth range of the fill material (up to 8 feet below grade) on the site. SVOCs within the subsurface soil/fill material appear to be limited to two areas on the site: the area in the vicinity of GP/CTM-7 (near the intersection of Hamilton Street and Clinton Street); and the area in the vicinity of GP/CTM-11 (adjacent to the south side of Broadway).

The groundwater analytical results show the presence of several TAL metals (including arsenic, chromium and lead) at concentrations exceeding SCGs at the location of well CTM-14. This well is located off of the site, along the south side of Clinton Street and is hydraulically upgradient of the site, suggesting that the metals identified on the site may be related to an off-site source.

Based on the findings of this site investigation as described above, the presence and extent of the contaminants of concern in the soil and groundwater have been fully characterized. Impacts to the soil due to SVOCs and metals are limited to discrete


portions of the site. Impacts to groundwater due to VOCs and metals are also limited in scope and may be attributed to high turbidity in some of the collected samples and as such, may not represent actual groundwater conditions. However, to fully address all media, and because of the presence of VOCs in isolated portions of the Site, soil gas will be collected and analyzed to determine the potential for vapor intrusion into off-site and future on-site structures. This additional investigative activity will be coordinated and performed under the guidance of the NYSDEC and NYSDOH, in accordance with the procedures previously presented in the RI Work Plan, dated April 7, 2006.

8.2.1 Data Limitations and Disclaimer

All of the site investigation analytical data has been independently validated in accordance with NYSDEC DUSR requirements. The DUSRs did not reject any of the analytical data and declared that all analytical results are considered usable with minor edits/qualifications. Modifications of analytical results pursuant to review of the DUSRs have been incorporated where necessary on the analytical summary tables. The narrative portions of the DUSRs are presented in Exhibit 2 of this report.

FIGURES

Figure 1	Site Location Map
Figure 2	Monitor Well/Sampling Locations
Figure 3	Groundwater Contour Map - June 7, 2006
Figure 4	Groundwater Contour Map – July 7, 2006
Figure 5	Groundwater Contour Map - August 2, 2006
Figure 6	SVOCs Above SCGs in Near-Surface Soil Samples Map
Figure 7	Metals Above SCGs in Near-Surface Soil Samples Map
Figure 8	SVOCs Above SCGs in Subsurface Soil Samples Map
Figure 9	VOCs Above SCGs in Groundwater Samples Map
Figure 10	Metals Above SCGs in Groundwater Samples Map

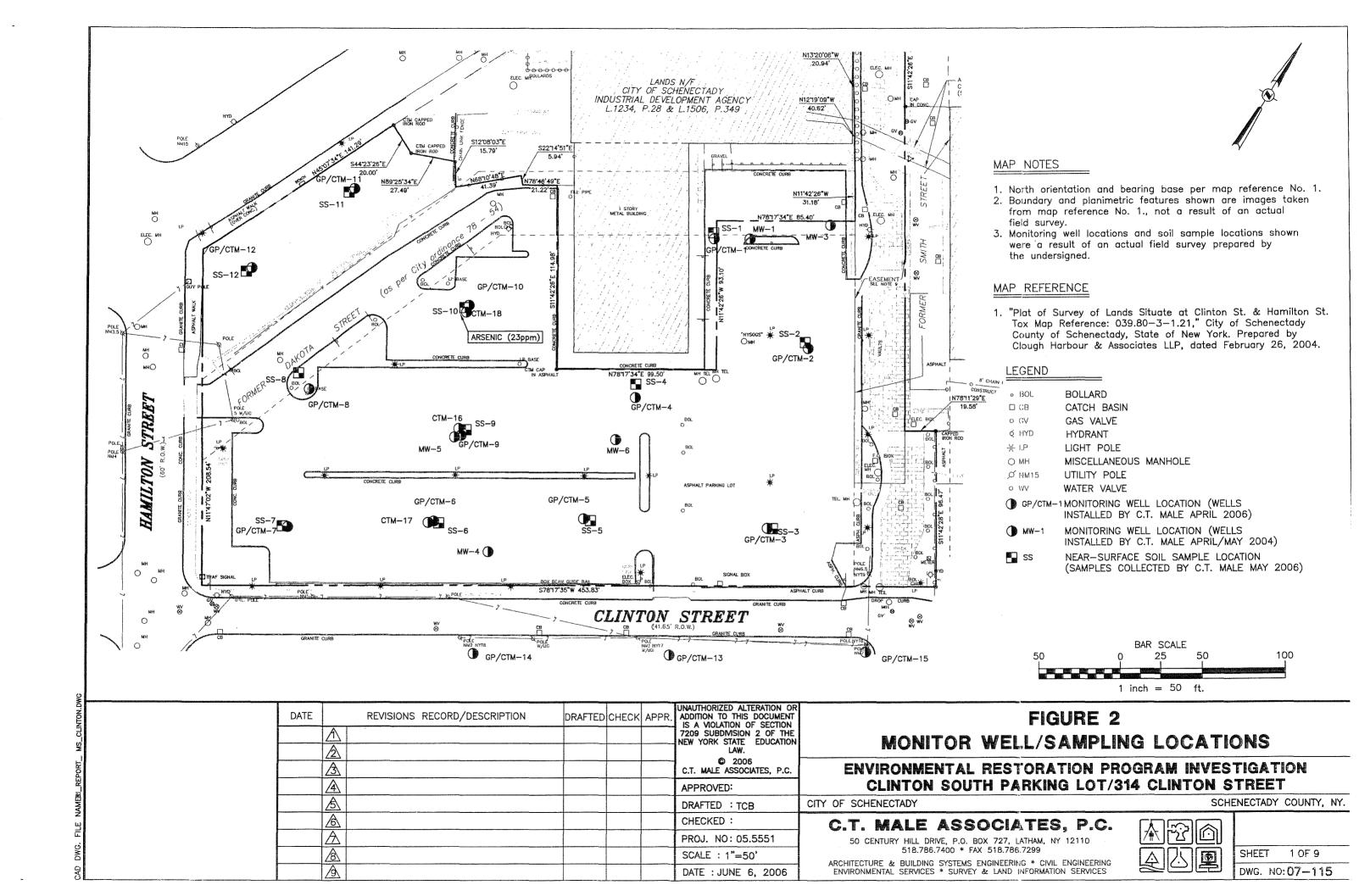
MAP REFERENCE

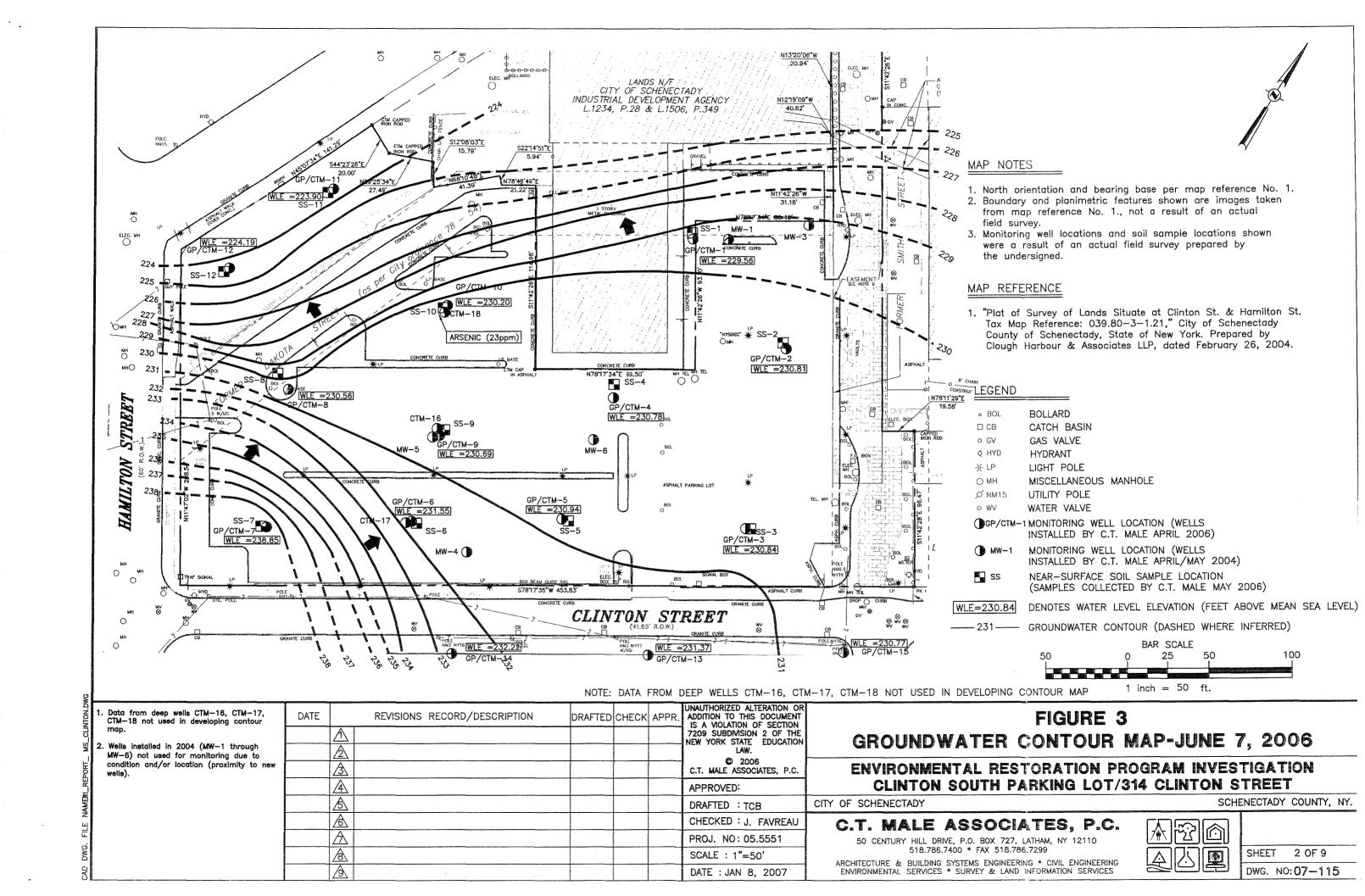
United States Geological Survey 7.5 Minute Series Topographic Map Quadrangle: Schenectady, NY

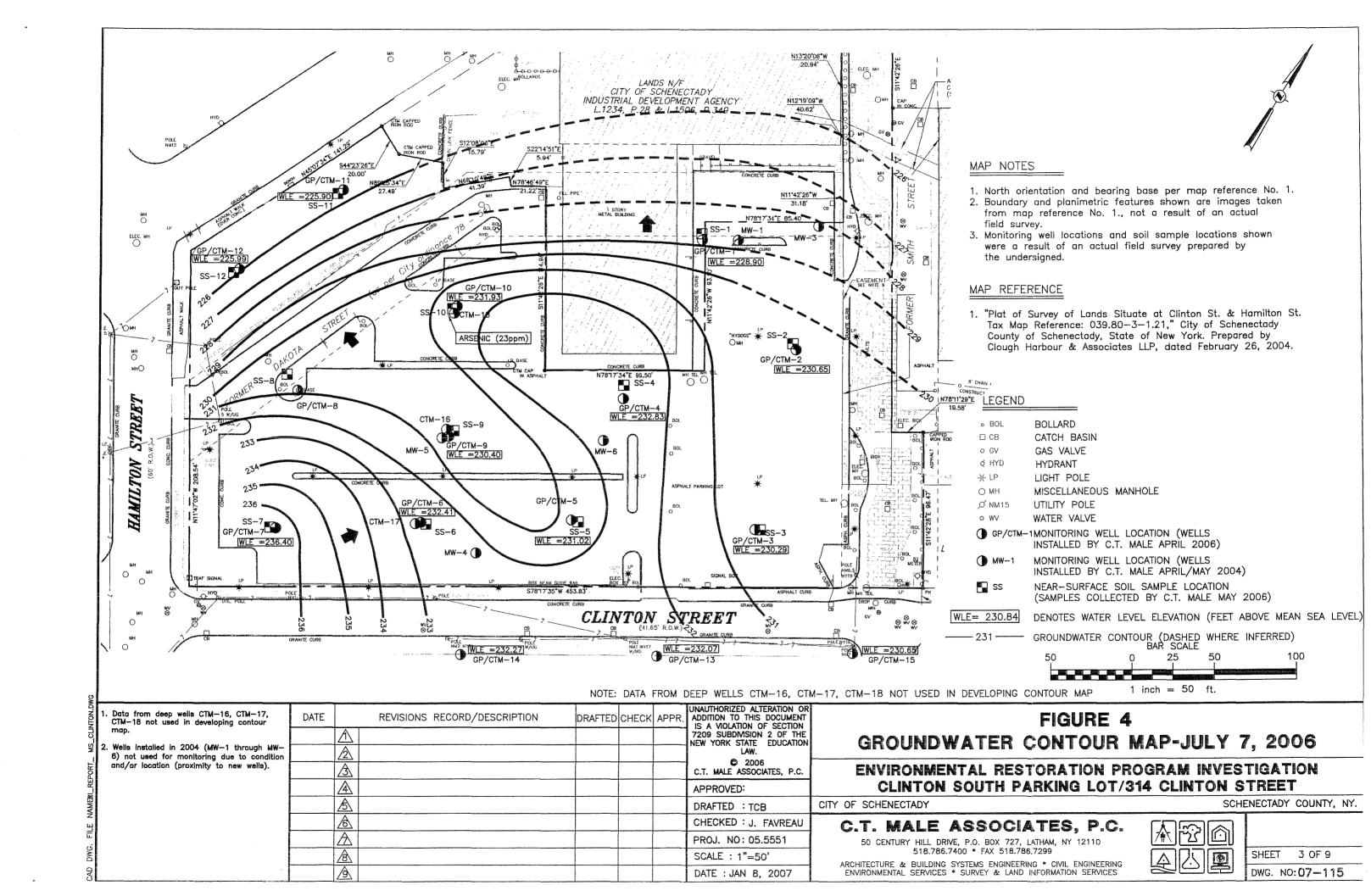
Date: 1980

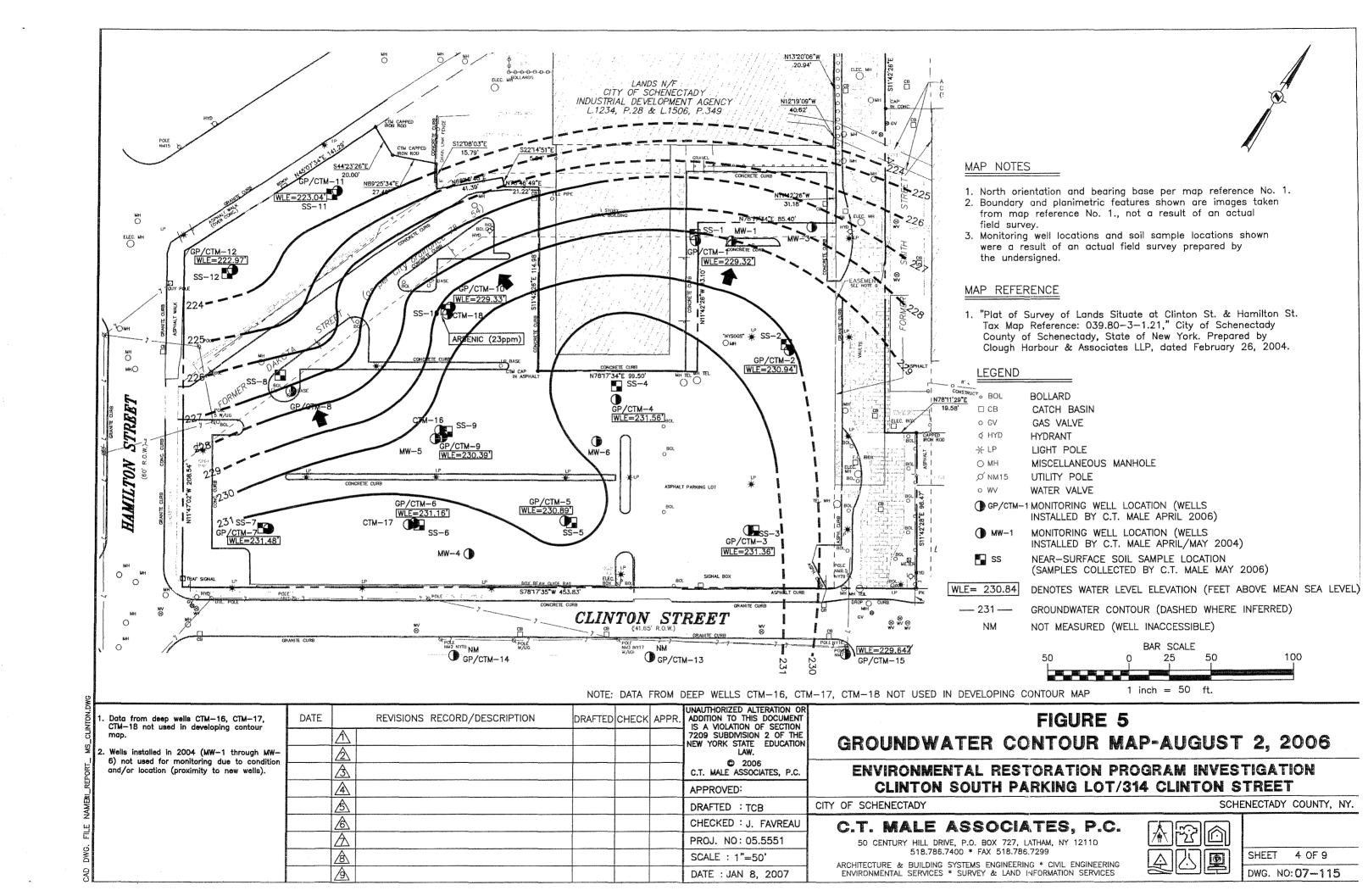
ENGINEERING ENVIRONMENTAL SERVICES SURVEYING PHONE (518)786-7400 FAX (518) 786-7299

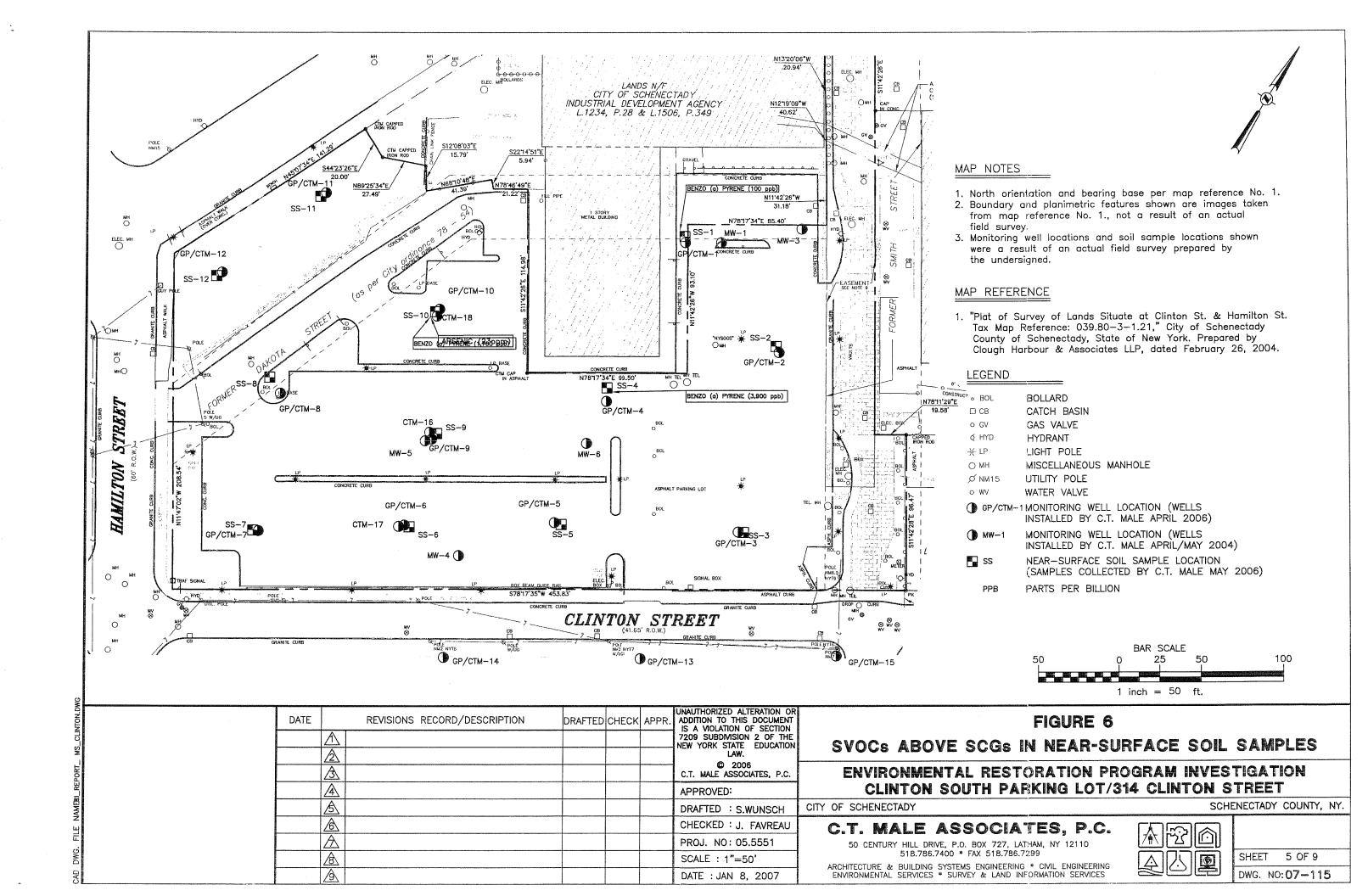
C.T.MALE ASSOCIATES, P.C. 50 CENTURY HILL DRIVE, PO BOX 727, LATHAM, NY 12110

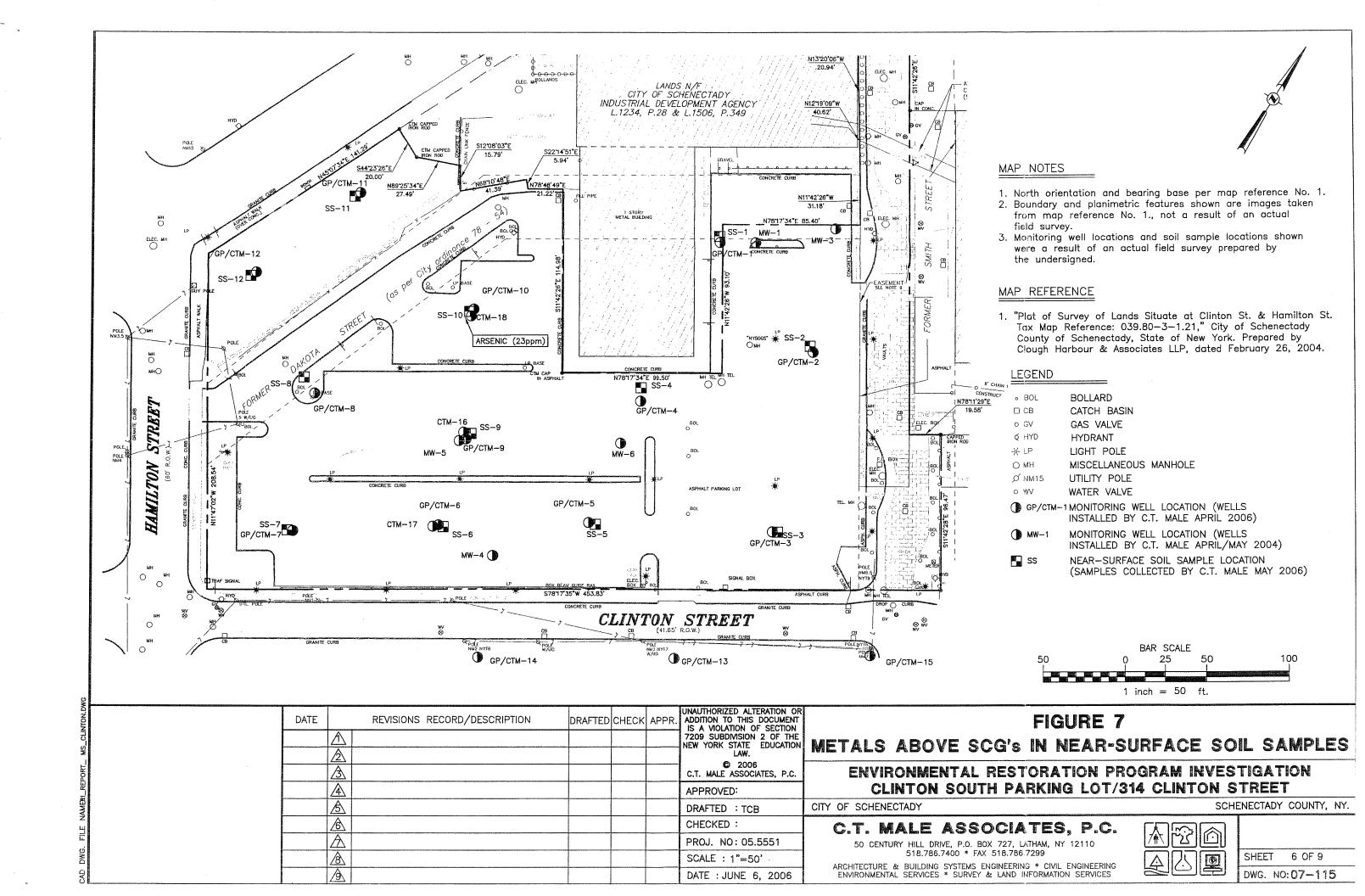

FIGURE 1 - SITE LOCATION MAP CLINTON SOUTH PARKING LOT

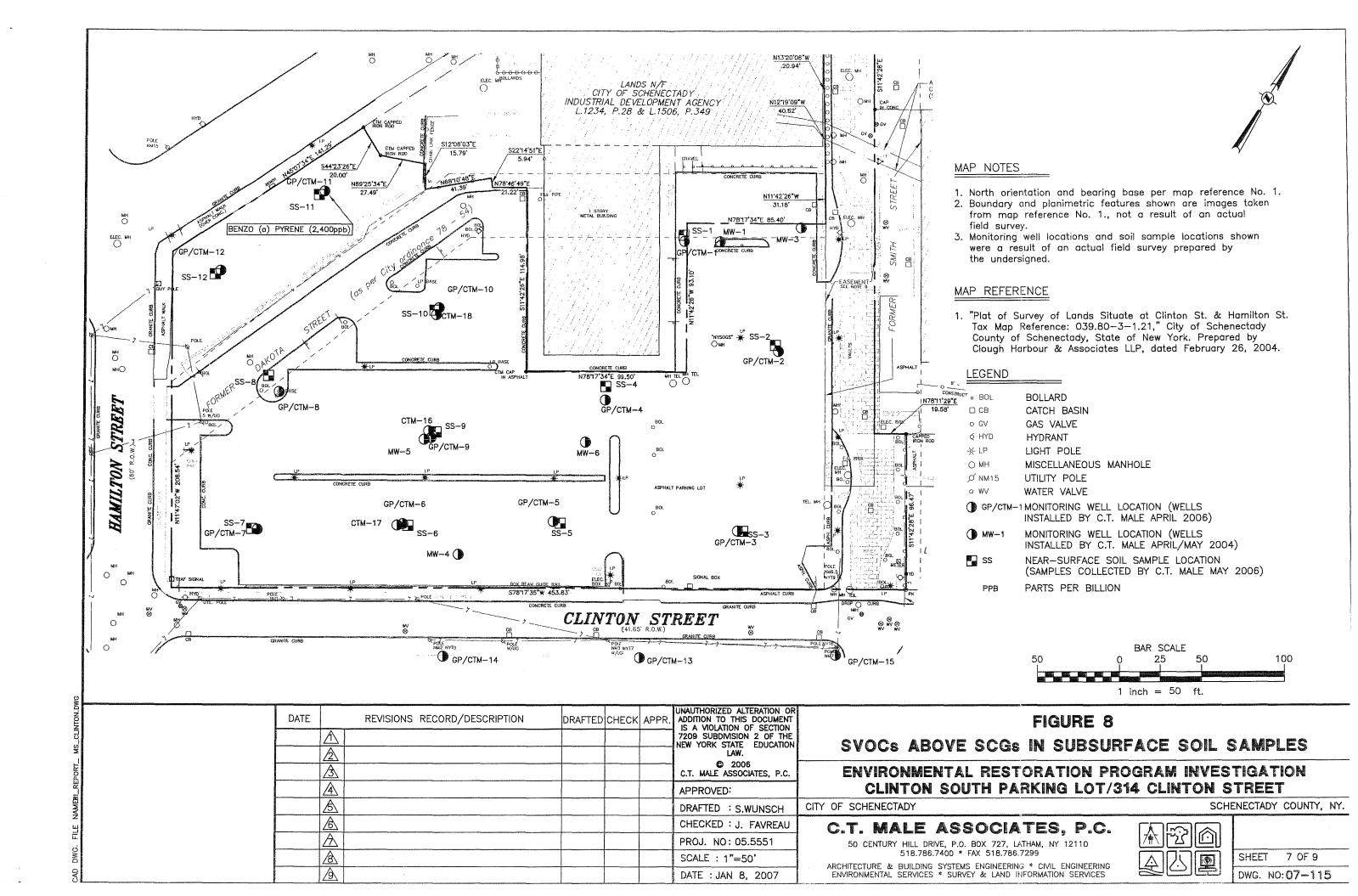

CITY OF SCHENECTADY

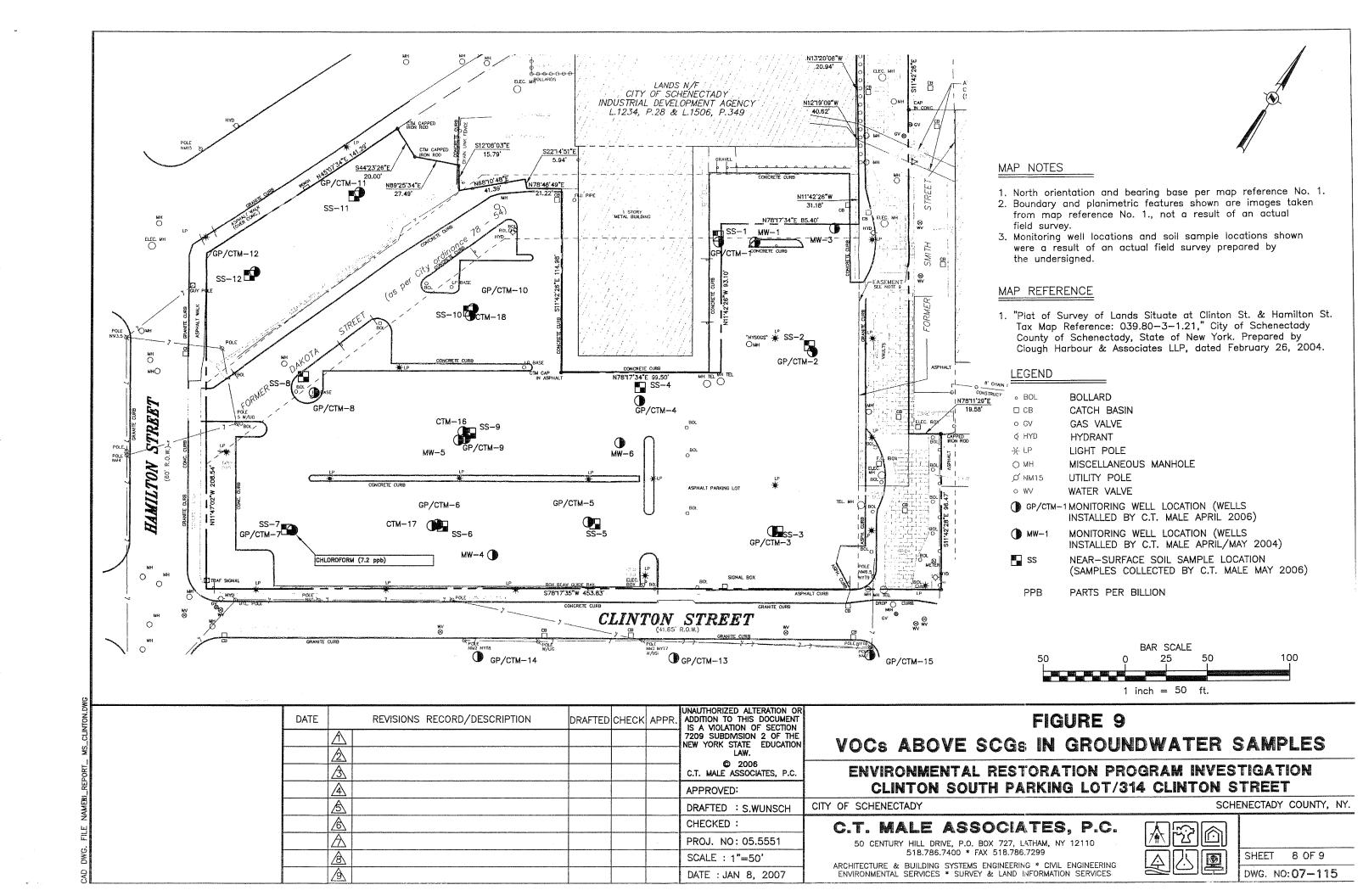

SCHENECTADY COUNTY, NY

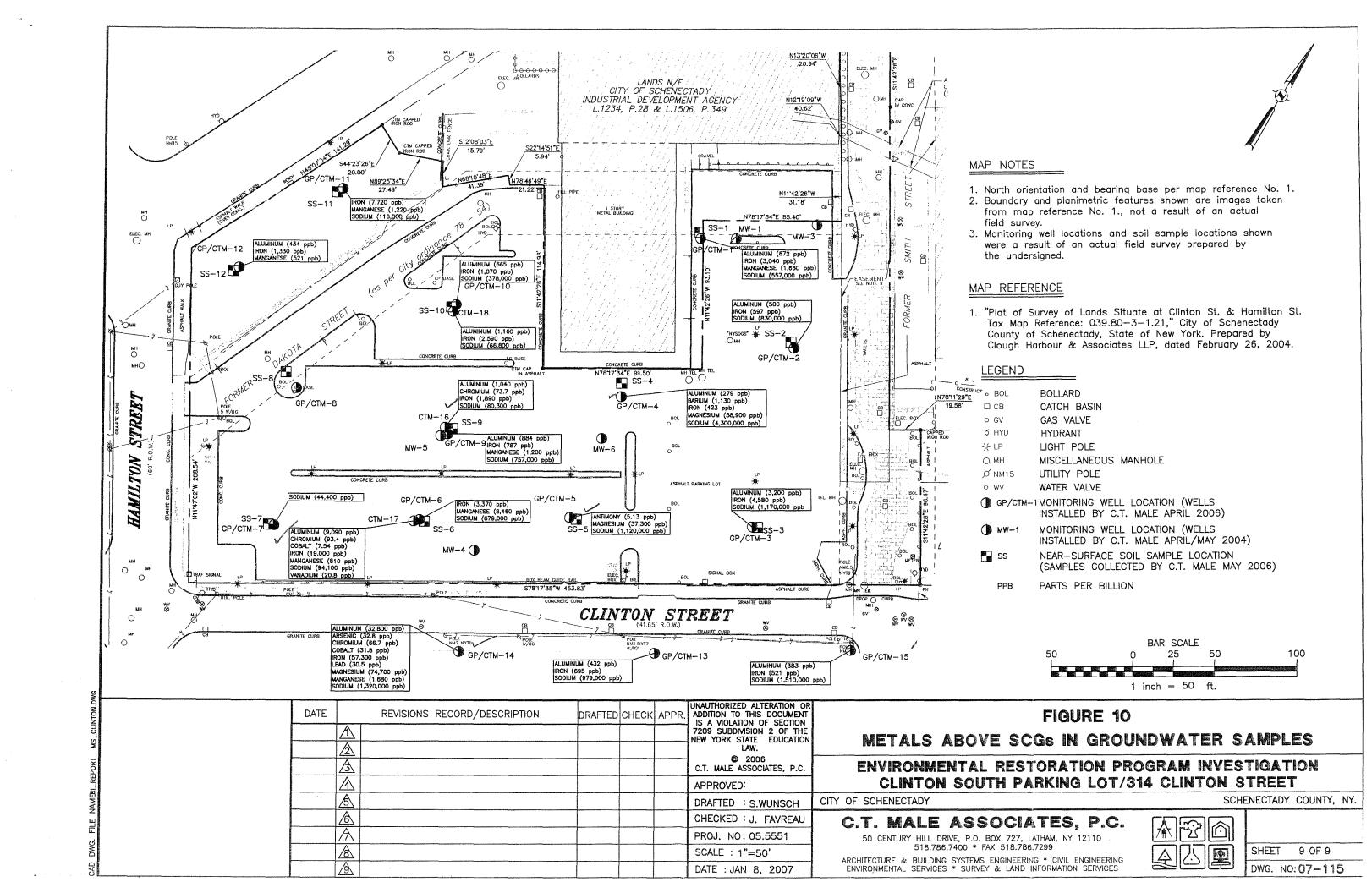

SCALE: 1"=2,000'
DRAFTER: ASG

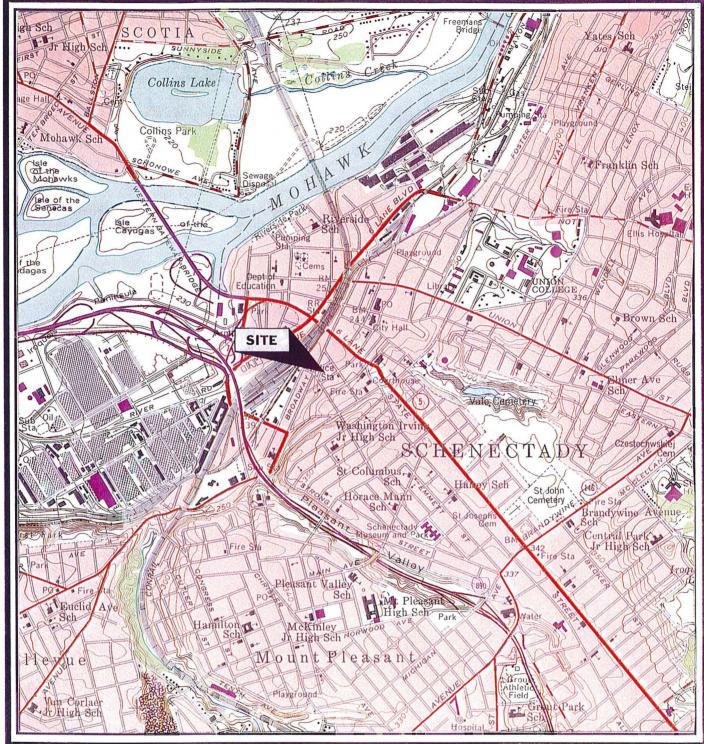

PROJECT No. 04.9227











MAP REFERENCE

United States Geological Survey 7.5 Minute Series Topographic Map Quadrangle: Schenectady, NY

Date: 1980

ENGINEERING ENVIRONMENTAL SERVICES SURVEYING PHONE (518)786-7400 FAX (518) 786-7299

C.T.MALE ASSOCIATES, P.C.

50 CENTURY HILL DRIVE, PO BOX 727, LATHAM, NY 12110

FIGURE 1 - SITE LOCATION MAP

CLINTON SOUTH PARKING LOT

CITY OF SCHENECTADY SCHENECTADY COUNTY, NY

SCALE: 1"=2,000'
DRAFTER: ASG

PROJECT No. 04.9227

TABLES

Table 1	Near-Surface Soil Results - VOCs (Detected Compounds)
Table 2	Near-Surface Soil Results - SVOCs (Detected Compounds)
Table 3	Near-Surface Soil Results-Pesticides (Detected Compounds)
Table 4	Near-Surface Soil Results - TAL Metals (Detected Metals)
Table 5	Subsurface Soil Results - VOCs (Detected Compounds)
Table 6	Subsurface Soil Results - SVOCs (Detected Compounds)
Table 7	Subsurface Soil Results - Pesticides (Detected Compounds)
Table 8	Subsurface Soil Results - TAL Metals (Detected Metals)
Table 9	Groundwater Results - VOCs (Detected Compounds)
Table 10	Groundwater Results - SVOCs (Detected Compounds)
Table 11	Groundwater Results - TAL Metals (Detected Metals)

TABLE 1 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION SURFACE AND NEAR-SURFACE SOIL ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS (DETECTED COMPOUNDS ONLY)

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor Units	Part 375	SS-1 X2608-01 05/01/06 SOIL 1.0 ug/Kg	SS-2 X2608-02 05/01/06 SOIL 1.0 ug/Kg	SS-3 X2608-03 05/01/06 SOIL 1.0 ug/Kg	SS-4 X2608-04 05/01/06 SOIL 1.0 ug/Kg	SS-5 X2608-06 05/01/06 SOIL 1.0 ug/Kg	SS-6 X2608-07 05/01/06 SOIL 1.0 ug/Kg	SS-7 X2608-08 05/01/06 SOIL 1.0 ug/Kg	SS-8 X2608-09 05/01/06 SOIL 1.0 ug/Kg	SS-9 X2608-12 05/01/06 SOIL 1.0 ug/Kg	DUP-2 X2608-13 05/01/06 SOIL 1.0 ug/Kg	SS-10 X2608-14 05/01/06 SOIL 1.0 ug/Kg	SS-11 X2608-15 05/01/06 SOIL 1.0 ug/Kg	\$\$-12 X2608-16 05/01/06 \$OIL 1.0 ug/Kg
COMPOUND	SCG (ug/Kg)													
Acetone	500,000	18 U	19 U	57 J	19 U	19 U	18 U	20 U	20 UJ	19 U	19 U	18 U	22 U	20 U
Toluene	500,000	7.7 J	2.3 U	2.2 U	2.3 U	2.3 U	2.2 U	2.4 U	2.4 U	2.3 U.	7.1 J	2.2 U	2.6 U	2.4 U
Tetrachloroethene	500,000	3.9 U	4.1 U	4.0 U	4.2 U	4.2 U	3.9 U	4.4 U	4.4 U	7.1 J	4.1 UJ	4.0 U	4.7 U	4.2 U
m/p-Xylenes	500,000	4.6 U	4.8 U	4.7 U	5.0 U	4.9 U	4.7 U	5.2 U	5.2 U	5.0 Uc	6.9 J	4.8 U	5.5 U	5.0 U
Total Confident Conc. VOC Total TICs		7.7 0	0 0	57 0	0	0 0	0	0	0 0	7.1 0	14 0	0 0	0 0	0 0

Quali	fiers and Notes
U -	The compound was not detected at or above the indicated concentration.
J -	Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
	The concentration given is an approximate value.
В -	The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

^{* -} For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

SCG - Standards, Criteria & Guidance levels (Reference: 6NYCRR Part 375 Restricted Use (Commercial) Soil Cleanup Objectives)

ug/kg - Micrograms per Kilogram

TABLE 2 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION SURFACE AND NEAR-SURFACE SOIL ANALYTICAL RESULTS - SEMIVOLATILE ORGANIC COMPOUNDS (DETECTED COMPOUNDS ONLY)

Sample ID			SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-7	SS-8	SS-9	DUP-2
Lab Sample Number			X2608-01	X2608-02	X2608-03	X2608-04	X2608-06	X2608-07	X2608-08	X2608-09	X2608-12	X2608-13
Sampling Date			05/01/06	05/01/06	05/01/06	05/01/06	05/01/06	05/01/06	05/01/06	05/01/06	05/01/06	05/01/06
, -									SOIL	SOIL	SOIL	SOIL
Matrix			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL			10.0	10.0
Dilution Factor	()		1.0	1.0	1.0	5.0	2.0	10.0	1.0	1.0		
Units	Res Res	#	ug/Kg									
	•	Part 375										
COMPOUND	100	SCG (ug/Kg)										
Acenaphthene	100 000	500,000	64 U	66 U	65 U	900 J	130 U	640 U	71 U	71 U	660 U	670 U
Phenanthrene	ISO CHAS	500,000	76 J	300 J	460	8900	840	580 U	63 U	260 J	590 U	600 U
Anthracene	1(500,000	55 U	99 J	95 J	2000	200 J	550 U	60 U	60 U	560 U	560 U
Carbazole		n/a	55 U	57 U	57 J	1000 J	120 U	550 U	60 U	61 U	560 U	570 U
Fluoranthene	4 +	500,000	220 J	120 J	1000	9900	1600	540 U	59 U	630	550 U	560 U
Pyrene	pi	500,000	230 J	210 J	1300	11000	1700	640 U	70 U	790 UJ	650 U	660 U
Benzo(a)anthracene	1000	5,600	120 J	76 J	590	(5400)	850	510 U	55 U	330 J	520 U	520 U
Chrysene	ಇಂದರ	n/a	150 J	80 J	670	5900	900	650 U	71 U	400 J	660 U	670 U
bis(2-Ethylhexyl)phthalat	e 🧻	n/a	69 U	71 U	70 U	360 U	150 U	690 U	76 U	150 J	710 U	720 U
Benzo(b)fluoranthene	1000	5,600	160 J	41 U	840 J	5500	920	400 UJ	44 U	460 J	410 UJ	410 UJ
Benzo(k)fluoranthene	3900	5,600	81 J	82 U	380 J	2600	420 J	800 UJ	87 U	240 J	810 UJ	820 UJ
Benzo(a)pyrene	1000	1,000	100 J	59 U	500 J	(3900)	660 J	580 UJ	63 U	290 J	590 UJ	600 UJ
Indeno(1,2,3-cd)pyrene	500	5,600	46 U	47 U	46 U	820 J	130 J	460 UJ	50 U	51 UJ	470 UJ	470 UJ
Benzo(g,h,i)perylene	100000	500,000	60 U	61 U	140 J	960 J	170 J	600 UJ	65 U	77 J	610 UJ	620 UJ
Total Confident Conc. SVC	C		1137	985	6032	60240	8390	0	0	3627	0	0
Total TICs			2704	3575	3687	21440	3970	4450	2890	8190	6200	3800

Dualifi	ers a	nd No	otes

U - The compound was not detected at the indicated concentration.

⁻ Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

^{* -} For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

SCG - Standards, Criteria & Guidance levels (Reference: 6NYCRR Part 375 Restricted Use (Commercial) Soil Cleanup Objectives)

Values in **bold** print denote exceedence of SCG.

n/a - Not Applicable (no established standard)

ug/kg - Micrograms per kilogram

TABLE 3 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION SURFACE AND NEAR-SURFACE SOIL ANALYTICAL RESULTS - PESTICIDES (DETECTED PESTICIDES ONLY)

Sample ID Lab Sample Number Sampling Date		SS-1 X2608-01 05/01/06	SS-2 X2608-02 05/01/06	SS-3 X2608-03 05/01/06	SS-4 X2608-04 05/01/06	SS-5 X2608-06 05/01/06	SS-6 X2608-07 05/01/06	SS-7 X2608-08 05/01/06	SS-8 X2608-09 05/01/06	SS-9 X2608-12 05/01/06	DUP-2 X2608-13 05/01/06
Matrix		SOIL									
Dilution Factor		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units		ug/Kg									
	Part 375										
COMPOUND	SCG (ug/Kg)										
4,4-DDE	62,000	0.86 U	0.88 U	0.87 U	0.89 U	0.90 U	0.86 U	0.94 U	0.95 U	4.7 J	5.8
4,4-DDT	47,000	0.78 U	0.81 U	0.80 U	0.82 U	0.82 U	0.78 UJ	0.86 U	0.87 U	33 J	27

Sample ID		SS-10	SS-11	SS-12	EQUIPBLANK-2
Lab Sample Number		X2608-14	X2608-15	X2608-16	X2608-05
Sampling Date		05/01/06	05/01/06	05/01/06	05/01/06
Matrix		SOIL	SOIL	SOIL	WATER
Dilution Factor		1.0	1.0	1.0	1.0
Units		ug/Kg	ug/Kg	ug/Kg	ug/L
	Part 375				
COMPOUND	SCG (ug/Kg)				
4,4-DDE	62,000	0.87 U	1.8 JP	0.91 U	0.0074 U
4,4-DDT	47,000	0.79 UJ	0.91 U	0.83 U	0.0066 U

Qualifiers and Notes

U - The compound was not detected at the indicated concentration.

Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

3 - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

- For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

SCG - Standards, Criteria & Guidance levels (Reference: 6NYCRR Part 375 Restricted Use (Commercial) Soil Cleanup Objectives)

ug/Kg - Micrograms per kilogram

TABLE 4 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION SURFACE AND NEAR-SURFACE SOIL ANALYTICAL RESULTS - TAL METALS (DETECTED METALS ONLY)

Sample ID Lab Sample N Sampling Dat Matrix Dilution Facto Units	e	Part 375	SS-1 X2608-01 05/01/06 SOIL 1.0 mg/Kg	SS-2 X2608-02 05/01/06 SOIL 1.0 mg/Kg	SS-3 X2608-03 05/01/06 SOIL 1.0 mg/Kg	SS-4 X2608-04 05/01/06 SOIL 1.0 mg/Kg	SS-5 X2608-06 05/01/06 SOIL 1.0 mg/Kg	SS-6 X2608-07 05/01/06 SOIL 1.0 mg/Kg	SS-7 X2608-08 05/01/06 SOIL 1.0 mg/Kg	SS-8 X2608-09 05/01/06 SOIL 1.0 mg/Kg	SS-9 X2608-12 05/01/06 SOIL 1.0 mg/Kg	DUP-2 X2608-13 05/01/06 SOIL 1.0 mg/Kg	SS-10 X2608-14 05/01/06 SOIL 1.0 mg/Kg	SS-11 X2608-15 05/01/06 SOIL 1.0 mg/Kg	SS-12 EQU X2608-16 05/01/06 SOIL 1.0 mg/Kg	JIPBLANK-2 X2608-05 05/01/06 WATER 1.0 ug/L
COMPOUND		SCG (mg/Kg)													1000	C4 0 1
Aluminum		n/a	9170	5760	5370	6490	8260	6340	7600	8050	5110	5580	6880	5170	4380	64.8 J 3.170 U
Antimony	. 260	n/a	10.9	0.363 U	3.850 U	3.020 U	13.6	0.353 U	12.7	4.840 UJ	0.369 U	2.640 U	7.050	1.580 U	1.040 U	
Arsenic	16	16	5.580	4.090	4.150	4.340	6.460	4.190	4.340	4.230	5.890	6.970	(23.0)	3.170	3.100	3.690 J 1.240 J
Barium	400	400	56.6	72.1	95.3	159	142	46.8	52.3	70.8	106	108	134	36.2	20.9 J	
Beryllium	72	590	0.392 J	0.261 J	0.205 J	0.291 J	0.405 J	0.260 J	0.354 J	0.386 J	0.279 J	0.292 J	0.302 J	0.234 J	0.208 J	0.660 J
Cadmium	4.8	9.3	0.245 J	0.123 J	0.196 J	0.333 J	0.314 J	0.119 J	0.190 J	0.236 J	0.320 J	0.408 J	0.242 J	0.166 J	0.068 J	0.327 U
Calcium	``	n/a	27300	40000	51200	5320	2840	10700	29900	4820	25100 J	19500 J	23800	8880	10500	1.170 U
Chromium	180	1,900	13.1	7.450	8.130	9.180	14.5	10.4	25.9	14.2	8.670	10.3	10.5	26.3	6.640	0.343 U
Cobalt	?	n/a	8.220	3.550 J	3.620 J	4.320 J	5.830	4.380 J	7.270	7.820	4.550 J	4.670 J	4.790 J	4.230 J	3.220 J	0.370 U
Copper	270	200	25.2	10.4	29.4	21.0	35.2	12.6	18.4	18.5	69.1 J	35.6 J	20.2	17.7	12.4	3.640 U
Iron		n/a	19500	8750	9050	10200	12300	8070	14900	17100	9700	9700	11000	10200	8890	27.0 U
Lead	400	1,000	22.6	245	239	237	306	98.9	13.4	27.2	(402)	(459)	327	34.3	13.8	2.180 U
Magnesium		n/a	8390	3090	7580	1640	2300	4420	6380	3200	11000	7620	6510	3070	2270	8.300 U
Manganese	2000	10,000	495	195	213	204	175	159	351	463	210	220	208	254	224	0.106 U
Mercury	.81	2.8	0.047	0.683	0.428	0.547	0.435 J	0.221 J	0.056 J	0.053 J	0.453 J	0.542 J	0.508 J	0.08 J	0.09 J	0.03 U
Nickel	210	310	20.1	8.350	14.4	9.680	14.6	10.6	18.4	19.5	11.7	12.3	11.4	15.1	7.930	1.560 U
Potassium	100	n/a	1180	893	906	602	1270	767	1120	1380 J	747	889	880	811	576 J	61.8 U
Sodium		n/a	340 U	807 J	1600 J	1470 J	3270 J	534 J	1300 J	817 J	305 U	319 U	801 J	170 U	199 U	332 UJ
Vanadium		n/a	18.6	12.7	16.3	12.2	18.0	13.3	18.0	19.4	14.6	16.5	16.3	12.6	10.9	0.701 U
Zinc	10000	10,000	77.1	108	89.2	175	190	49.8	55.2	74.2	135	149	112	69.3	42.4	0.611 U

Qualifiers and Notes

U - The compound was not detected at the indicated concentration.

Values in bold print denote exceedence of SCG.

n/a - Not Applicable (no established standard)

mg/Kg - Milligrams per kilogram (or parts per million)

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

SCG - Standards, Criteria & Guidance levels (Reference: 6NYCRR Part 375 Restricted Use (Commercial) Soil Cleanup Objectives)

TABLE 5 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION SUBSURFACE SOIL ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS (DETECTED COMPOUNDS ONLY)

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor Units		GP-1(6-8) X2527-01 04/25/06 SOIL 1.0 ug/Kg	GP-2(6-8) X2527-02 04/25/06 SOIL 1.0 ug/Kg	GP-3(6-8) X2527-03 04/25/06 SOIL 1.0 ug/Kg	GP-4(4-6) X2527-04 04/25/06 SOIL 1.0 ug/Kg	GP-5(10-12) X2527-05 04/25/06 SOIL 1.0 ug/Kg	GP-6(10-12) X2594-01 04/27/06 SOIL 1.0 ug/Kg	GP-7(4-8) X2594-02 04/27/06 SOIL 1.0 ug/Kg
	Part 375	ugntg	uging	agntg	aging	ugntg	ugirtg	29.19
COMPOUND	SCG (ug/Kg)							
Acetone	500,000	81 J	19 U	20 U	20 UJ	50 J	20 U	20 U
Methylene Chloride	500,000	34 J	10 UJ	14 J	11 UJ	9.7 UJ	11 UJ	11 UJ
cis-1,2-Dichloroethene	n/a	45	1.8 U	1.9 U	1.9 U	1.7 UJ	1.9 U	2.0 UJ
Trichloroethene	200,000	6.9 J	1.8 U	1.8 U	1.8 U	1.6 U	1.8 U	1.9 U
Toluene	500,000	2.5 U	2.3 U	2.4 U	2.4 U	2.2 U	4.0 J	2.5 U
Tetrachloroethene	150,000	11 J	4.1 U	4.3 U	4.3 U	3.9 U	4.3 U	4.5 U
Total Confident Conc. VOC Total TICs		177.9 0	0	14 0	0 0	50 0	4 0	0 0

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor Units	Part 375	GP-8(10-12) X2594-05 04/27/06 SOIL 1.0 ug/Kg	DUP-1 X2594-06 04/27/06 SOIL 1.0 ug/Kg	GP-9(10-12) X2594-07 04/27/06 SOIL 1.0 ug/Kg	GP-10(10-12) X2594-08 04/27/06 SOIL 1.0 ug/Kg	GP-11(4-6) X2594-11 04/28/06 SOIL 1.0 ug/Kg	GP-12(4-8) X2594-12 04/28/06 SOIL 1.0 ug/Kg	EQUIPBLANK-1 X2594-09 04/28/06 WATER 1.0 ug/L	GP-13(10-12) X2621-01 05/02/06 SOIL 1.0 ug/Kg	GP-14(12-14) X2621-02 05/02/06 SOIL 1.0 ug/Kg	GP-15(8-10) X2621-03 05/02/06 SOIL 1.0 ug/Kg
COMPOUND	SCG (ug/Kg)										
Acetone	500,000	19 U	20 U	19 U	20 U	100 J	75 J	2.3 L	J 22 U	21 U	20 U
Methylene Chloride	500,000	11 UJ	11 UJ	10 UJ	11 UJ	10 UJ	11 UJ	1.4 J	12 U.	11 UJ	11 UJ
cis-1,2-Dichloroethene	n/a	1.9 U	1.9 U	1.9 U	1.9 U	1.8 U	2.0 U	0.29 L	2.1 U	2.0 U	2.0 U
Trichloroethene	200,000	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.9 U	0.46 L	2.0 U	1.9 U	1.9 U
Toluene	500,000	2.3 U	2.4 U	2.3 U	2.4 U	2.3 U	3.6 J	0.36 L	2.7 U	2.5 U	2.4 U
Tetrachloroethene	150,000	4.2 U	4.3 U	4.2 U	4.4 U	4.2 U	4.4 U	0.48 L	4.8 U	4.5 U	4.4 U
Total Confident Conc. VOC		0	0	0	0	100	78.6	1.4	0	0	0
Total TiCs		0	0	0	0	0	0	0	0	0	0

Qual	ifiers and Notes
U -	The compound was not detected at the indicated concentration.
J -	Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
	The concentration given is an approximate value.
В -	The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
Ρ-	For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
* -	For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
n/a -	Not Applicable (no established standard)
SCG	- Standards, Criteria & Guidance levels (Reference: 6NYCRR Parl 375 Restricted Use (Commercial) Soil Cleanup Objectives)
ug/kg	g - Micrograms per Kilogram

TABLE 6 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION SUBSURFACE SOIL ANALYTICAL RESULTS - SEMIVOLATILE ORGANIC COMPOUNDS (DETECTED COMPOUNDS ONLY)

Sample ID		GP-1(6-8)	GP-2(6-8)	GP-3(6-8)	GP-4(4-6)	GP-5(10-12)	GP-6(10-12)	GP-7(4-8)			
Lab Sample Number		X2527-01	X2527-02	X2527-03	X2527-04	X2527-05	X2594-01	X2594-02			
Sampling Date		04/25/06	04/25/06	04/25/06	04/25/06	04/25/06	04/27/06	04/27/06			
Matrix		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL			
Dilution Factor		1.0	1.0	1.0	1.0	1.0	1.0	1.0			
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg			
	Part 375										
COMPOUND	SCG (ug/Kg)										
Acenaphthylene	500,000	67 U	61 U	63 U	63 U	57 U	64 U	84 J			
Acenaphthene	500,000	73 U	66 U	69 U	69 U	63 U	70 U	71 U			
Dibenzofuran	n/a	68 U	62 U	64 U	64 U	59 U	65 U	66 U			
Fluorene	500,000	69 U	63 U	65 U	65 U	60 U	66 U	130 J			
Phenanthrene	500,000	66 U	59 U	62 U	62 U	56 U	62 U	2400 J			
Anthracene	500,000	62 U	56 U	59 U	58 U	53 U	59 U	390 J			
Carbazole	n/a	63 U	57 U	59 U	59 U	54 U	60 U	270 J			
Fluoranthene	500,000	61 U	56 U	58 U	57 U	53 U	58 U	3200 J			
Pyrene	500,000	73 U	66 U	69 U	68 U	63 U	69 U	2200 J			
Benzo(a)anthracene	5,600	58 U	52 U	54 U	54 U	50 ป	55 U	1100 J			
Chrysene	n/a	74 U	67 U	70 U	69 U	64 U	70 U	970 J			
Benzo(b)fluoranthene	5,600	45 UJ	41 UJ	43 UJ	42 UJ	39 UJ	43 UJ	1100 J			
Benzo(k)fluoranthene	56,000	90 U	82 UJ	85 UJ	85 UJ	78 UJ	86 U	430 J			
Benzo(a)pyrene	1,000	66 U	60 U	62 U	62 U	57 U	63 U	860 J			
Indeno(1,2,3-cd)pyrene	5,600	52 UJ	47 UJ	49 UJ	49 UJ	45 UJ	50 UJ	320 J			
Benzo(g,h,i)perylene	500,000	68 UJ	62 UJ	64 UJ	64 UJ	59 UJ	65 UJ	300 J			
Talai Caalidaa Caar 0100							0	13754			
Total Confident Conc. SVOC Total TICs		0 2170	0 4300	0 3400	0 2420	0 2700	2850	5306			
10101 1103		2170	4300	3400	2420	2100	2000	5500			
Sample ID		GP-8(10-12)	DUP-1	GP-9(10-12)	GP-10(10-12)	GP-11(4-6)	GP-12(4-8)	EQUIPBLANK-1	GP-13(10-12)	GP-14(12-14)	GP-15(8-10)
Sample ID Lab Sample Number		GP-8(10-12) X2594-05	DUP-1 X2594-06	GP-9(10-12) X2594-07	GP-10(10-12) X2594-08	X2594-11	X2594-12	X2594-09	X2621-01	X2621-02	X2621-03
Lab Sample Number Sampling Date		X2594-05 04/27/06	X2594-06 04/27/06		X2594-08 04/27/06	X2594-11 04/28/06	X2594-12 04/28/06	X2594-09 04/28/06	X2621-01 05/02/06	X2621-02 05/02/06	X2621-03 05/02/06
Lab Sample Number Sampling Date Matrix		X2594-05	X2594-06	X2594-07	X2594-08	X2594-11	X2594-12 04/28/06 SOIL	X2594-09 04/28/06 WATER	X2621-01 05/02/06 SOIL	X2621-02 05/02/06 SOIL	X2621-03 05/02/06 SOIL
Lab Sample Number Sampling Date Matrix Dilution Factor		X2594-05 04/27/06 SOIL 1.0	X2594-06 04/27/06 SOIL 1.0	X2594-07 04/27/06	X2594-08 04/27/06	X2594-11 04/28/06 SOIL 10.0	X2594-12 04/28/06 SOIL 1.0	X2594-09 04/28/06 WATER 1.0	X2621-01 05/02/06 SOIL 1.0	X2621-02 05/02/06 SOIL 1.0	X2621-03 05/02/06 SOIL 1.0
Lab Sample Number Sampling Date Matrix		X2594-05 04/27/06 SOIL	X2594-06 04/27/06 SOIL	X2594-07 04/27/06 SOIL	X2594-08 04/27/06 SOIL	X2594-11 04/28/06 SOIL	X2594-12 04/28/06 SOIL	X2594-09 04/28/06 WATER	X2621-01 05/02/06 SOIL	X2621-02 05/02/06 SOIL	X2621-03 05/02/06 SOIL
Lab Sample Number Sampling Date Matrix Dilution Factor Units	Part 375	X2594-05 04/27/06 SOIL 1.0	X2594-06 04/27/06 SOIL 1.0	X2594-07 04/27/06 SOIL 1.0	X2594-08 04/27/06 SOIL 1.0	X2594-11 04/28/06 SOIL 10.0	X2594-12 04/28/06 SOIL 1.0	X2594-09 04/28/06 WATER 1.0	X2621-01 05/02/06 SOIL 1.0	X2621-02 05/02/06 SOIL 1.0	X2621-03 05/02/06 SOIL 1.0
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND	SCG (ug/Kg)	X2594-05 04/27/06 SOIL 1.0 ug/Kg	X2594-06 04/27/06 SOIL 1.0 ug/Kg	X2594-07 04/27/06 SOIL 1.0 ug/Kg	X2594-08 04/27/06 SOIL 1.0 ug/Kg	X2594-11 04/28/06 SOIL 10.0 ug/Kg	X2594-12 04/28/06 SOIL 1.0 ug/Kg	X2594-09 04/28/06 WATER 1.0 ug/L	X2621-01 05/02/06 SOIL 1.0 ug/Kg	X2621-02 05/02/06 SOIL 1.0 ug/Kg	X2621-03 05/02/06 SOIL 1.0 ug/Kg
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND Acenaphthylene	SCG (ug/Kg) 500,000	X2594-05 04/27/06 SOIL 1.0 ug/Kg	X2594-06 04/27/06 SOIL 1.0 ug/Kg	X2594-07 04/27/06 SOIL 1.0 ug/Kg	X2594-08 04/27/06 SOIL 1.0 ug/Kg	X2594-11 04/28/06 SOIL 10.0 ug/Kg	X2594-12 04/28/06 SOIL 1.0 ug/Kg	X2594-09 04/28/06 WATER 1.0 ug/L	X2621-01 05/02/06 SOIL 1.0 ug/Kg	X2621-02 05/02/06 SOIL 1.0 ug/Kg	X2621-03 05/02/06 SOIL 1.0 ug/Kg
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND Acenaphthylene Acenaphthene	SCG (ug/Kg) 500,000 500,000	X2594-05 04/27/06 SOIL 1.0 ug/Kg	X2594-06 04/27/06 SOIL 1.0 ug/Kg	X2594-07 04/27/06 SOIL 1.0 ug/Kg	X2594-08 04/27/06 SOIL 1.0 ug/Kg	X2594-11 04/28/06 SOIL 10.0 ug/Kg	X2594-12 04/28/06 SOIL 1.0 ug/Kg	X2594-09 04/28/06 WATER 1.0 ug/L	X2621-01 05/02/06 SOIL 1.0 ug/Kg	X2621-02 05/02/06 SOIL 1.0 ug/Kg	X2621-03 05/02/06 SOIL 1.0 ug/Kg
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND Acenaphthylene Acenaphthene Dibenzofuran	SCG (ug/Kg) 500,000 500,000 n/a	X2594-05 04/27/06 SOIL 1.0 ug/Kg 62 U 66 U 63 U	X2594-06 04/27/06 SOIL 1.0 ug/Kg 64 U 71 U 66 U	X2594-07 04/27/06 SOIL 1.0 ug/Kg	X2594-08 04/27/06 SOIL 1.0 ug/Kg	X2594-11 04/28/06 SOIL 10.0 ug/Kg 620 U 1100 J 740 J	X2594-12 04/28/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U	X2594-09 04/28/06 WATER 1.0 ug/L 2.7 U 2.8 U 2.7 U	X2621-01 05/02/06 SOIL 1.0 ug/Kg	X2621-02 05/02/06 SOIL 1.0 ug/Kg	X2621-03 05/02/06 SOIL 1.0 ug/Kg
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND Acenaphthylene Acenaphthene Dibenzofuran Fluorene	SCG (ug/Kg) 500,000 500,000 n/a 500,000	X2594-05 04/27/06 SOIL 1.0 ug/Kg 62 U 68 U 63 U 65 U	X2594-06 04/27/06 SOIL 1.0 ug/Kg 64 U 71 U 66 U	X2594-07 04/27/06 SOIL 1.0 ug/Kg 60 U 66 U 61 U	X2594-08 04/27/06 SOIL 1.0 ug/Kg 65 U 71 U 66 U 68 U	X2594-11 04/28/06 SOIL 10.0 ug/Kg 620 U 1100 J 740 J 950 J	X2594-12 04/28/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U	X2594-09 04/28/06 WATER 1.0 ug/L 2.7 U 2.8 U 2.7 U 2.9 U	X2621-01 05/02/06 SOIL 1.0 ug/Kg 70 U 77 U 71 U 73 U	X2621-02 05/02/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U	X2621-03 05/02/06 SOIL 1.0 ug/Kg
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene	SCG (ug/Kg) 500,000 500,000 n/a 500,000 500,000	X2594-05 04/27/06 SOIL 1.0 ug/Kg 62 U 68 U 63 U 65 U 61 U	X2594-06 04/27/06 SOIL 1.0 ug/Kg 64 U 71 U 66 U 67 U	X2594-07 04/27/06 SOIL 1.0 ug/Kg 60 U 66 U 61 U 62 U 59 U	X2594-08 04/27/06 SOIL 1.0 ug/Kg 65 U 71 U 66 U 68 U	X2594-11 04/28/06 SOIL 10.0 ug/Kg 620 U 1100 J 740 J 950 J	X2594-12 04/28/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U	X2594-09 04/28/06 WATER 1.0 ug/L 2.7 U 2.8 U 2.7 U 2.9 U 3.0 U	X2621-01 05/02/06 SOIL 1.0 ug/Kg 70 U 77 U 71 U 73 U 69 U	X2621-02 05/02/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U	X2621-03 05/02/06 SOIL 1.0 ug/Kg 64 U 70 U 65 U 67 U
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene	SCG (ug/Kg) 500,000 500,000 n/a 500,000 500,000 500,000	X2594-05 04/27/06 SOIL 1.0 ug/Kg 62 U 68 U 63 U 65 U 61 U 58 U	X2594-06 04/27/06 SOIL 1.0 ug/Kg 64 U 71 U 66 U 67 U 63 U 60 U	X2594-07 04/27/06 SOIL 1.0 ug/Kg 60 U 66 U 61 U 62 U 59 U	X2594-08 04/27/06 SOIL 1.0 ug/Kg 65 U 71 U 66 U 68 U 64 U	X2594-11 04/28/06 SOIL 10.0 ug/Kg 620 U 1100 J 740 J 950 J 10000	X2594-12 04/28/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U	X2594-09 04/28/06 WATER 1.0 ug/L 2.7 U 2.8 U 2.7 U 2.9 U 3.0 U 2.9 U	X2621-01 05/02/06 SOIL 1.0 ug/Kg 70 U 77 U 71 U 73 U 69 U	X2621-02 05/02/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U	X2621-03 05/02/06 SOIL 1.0 ug/Kg 64 U 70 U 65 U 67 U 63 U
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Carbazole	SCG (ug/Kg) 500,000 500,000 n/a 500,000 500,000 500,000 n/a	\$2594-05 04/27/06 \$OIL 1.0 ug/Kg 62 U 68 U 63 U 65 U 61 U 58 U	X2594-06 04/27/06 SOIL 1.0 ug/Kg 64 U 71 U 66 U 67 U 63 U 60 U	X2594-07 04/27/06 SOIL 1.0 ug/Kg 60 U 66 U 61 U 62 U 59 U 56 U	X2594-08 04/27/06 SOIL 1.0 ug/Kg 65 U 71 U 66 U 68 U 64 U 60 U	X2594-11 04/28/06 SOIL 10.0 ug/Kg 620 U 1100 J 740 J 950 J 10000 1900 J 880 J	X2594-12 04/28/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U	X2594-09 04/28/06 WATER 1.0 ug/L 2.7 U 2.8 U 2.7 U 2.9 U 3.0 U 2.9 U 2.7 U	X2621-01 05/02/06 SOIL 1.0 ug/Kg 70 U 77 U 71 U 73 U 69 U 65 U	X2621-02 05/02/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 62 U	X2621-03 05/02/06 SOILL 1.0 ug/Kg 64 U 70 U 65 U 67 U 63 U 60 U
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Carbazole Fluoranthene	SCG (ug/Kg) 500,000 500,000 n/a 500,000 500,000 500,000 n/a 500,000 500,000	X2594-05 04/27/06 SOIL 1.0 ug/Kg 62 U 68 U 63 U 65 U 61 U 58 U 58 U	X2594-06 04/27/06 SOIL 1.0 ug/Kg 64 U 71 U 66 U 67 U 63 U 60 U 61 U	X2594-07 04/27/06 SOIL 1.0 ug/Kg 60 U 66 U 61 U 62 U 59 U 56 U 56 U	X2594-08 04/27/06 SOIL 1.0 ug/Kg 65 U 71 U 66 U 68 U 64 U 60 U 61 U 60 U	X2594-11 04/28/06 SOIL 10.0 ug/Kg 620 U 1100 J 740 J 950 J 10000 1900 J 880 J 9700	X2594-12 04/28/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U	X2594-09 04/28/06 WATER 1.0 ug/L 2.7 U 2.8 U 2.7 U 2.9 U 3.0 U 2.9 U 2.7 U	X2621-01 05/02/06 SOIL 1.0 ug/Kg 70 U 77 U 71 U 73 U 69 U 65 U 66 U	X2621-02 05/02/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 61 U	X2621-03 05/02/06 SOIL 1.0 ug/Kg 64 U 70 U 65 U 67 U 63 U 60 U 59 U
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Carbazole Fluoranthene Pyrene	SCG (ug/Kg) 500,000 500,000 n/a 500,000 500,000 500,000 n/a 500,000 500,000 500,000	\$2594-05 04/27/06 \$OIL 1.0 ug/Kg 62 U 68 U 63 U 65 U 61 U 58 U 58 U 57 U 68 U	X2594-06 04/27/06 SOIL 1.0 ug/Kg 64 U 71 U 66 U 67 U 63 U 60 U 61 U 59 U	X2594-07 04/27/06 SOIL 1.0 ug/Kg 60 U 66 U 61 U 62 U 59 U 56 U 55 U	X2594-08 04/27/06 SOIL 1.0 ug/Kg 65 U 71 U 66 U 68 U 64 U 60 U 61 U 60 U 71 U	X2594-11 04/28/06 SOIL 10.0 ug/Kg 620 U 1100 J 740 J 950 J 10000 1900 J 880 J 9700	X2594-12 04/28/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 62 U 61 U 72 U	X2594-09 04/28/06 WATER 1.0 ug/L 2.7 U 2.8 U 2.7 U 2.9 U 3.0 U 2.9 U 2.7 U 2.5 U	X2621-01 05/02/06 SOIL 1.0 ug/Kg 70 U 77 U 71 U 73 U 69 U 65 U 66 U 64 U 76 U	X2621-02 05/02/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 62 U 61 U 72 U	X2621-03 05/02/06 SOIL 1.0 ug/Kg 64 U 70 U 65 U 67 U 63 U 60 U 59 U
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Carbazole Fluoranthene Pyrene Benzo(a)anthracene	SCG (ug/Kg) 500,000 500,000 n/a 500,000 500,000 500,000 n/a 500,000 500,000 500,000 500,000	X2594-05 04/27/06 SOIL 1.0 ug/Kg 62 U 66 U 63 U 65 U 61 U 58 U 58 U 58 U 57 U 68 U	X2594-06 04/27/06 SOIL 1.0 ug/Kg 64 U 71 U 66 U 67 U 63 U 60 U 61 U 59 U 70 U	X2594-07 04/27/06 SOIL 1.0 ug/Kg 60 U 66 U 61 U 62 U 59 U 56 U 55 U 55 U	X2594-08 04/27/06 SOIL 1.0 ug/Kg 65 U 71 U 66 U 68 U 60 U 61 U 60 U 71 U 56 U	X2594-11 04/28/06 SOIL 10.0 ug/Kg 620 U 1100 J 740 J 950 J 10000 1900 J 880 J 9700 9700	X2594-12 04/28/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 62 U 61 U 72 U	X2594-09 04/28/06 WATER 1.0 ug/L 2.7 U 2.8 U 2.7 U 2.9 U 3.0 U 2.9 U 2.7 U 2.5 U 3.0 U 2.9 U	X2621-01 05/02/06 SOIL 1.0 ug/Kg 70 U 77 U 71 U 73 U 69 U 65 U 66 U 64 U 76 U	X2621-02 05/02/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 62 U 61 U 72 U	X2621-03 05/02/06 SOIL 1.0 ug/Kg 64 U 70 U 65 U 67 U 63 U 60 U 59 U
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Carbazole Fluoranthene Pyrene Benzo(a)anthracene Chrysene	SCG (ug/Kg) 500,000 500,000 n/a 500,000 500,000 500,000 n/a 500,000 500,000 500,000 n/a 500,000 n/a	\$2594-05 04/27/06 \$OIL 1.0 ug/Kg 62 U 68 U 63 U 65 U 61 U 58 U 58 U 57 U 68 U 59 U 69 U	X2594-06 04/27/06 SOIL 1.0 ug/Kg 64 U 71 U 66 U 67 U 63 U 60 U 61 U 59 U 70 U	X2594-07 04/27/06 SOIL 1.0 ug/Kg 60 U 66 U 61 U 62 U 59 U 56 U 55 U 65 U	X2594-08 04/27/06 SOIL 1.0 ug/Kg 65 U 71 U 66 U 68 U 64 U 60 U 61 U 60 U 71 U 56 U	X2594-11 04/28/06 SOIL 10.0 ug/Kg 620 U 1100 J 740 J 950 J 10000 1900 J 880 J 9700 9700 3300	X2594-12 04/28/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 72 U 57 U	X2594-09 04/28/06 WATER 1.0 ug/L 2.7 U 2.8 U 2.7 U 2.9 U 3.0 U 2.7 U 2.5 U 3.0 U 2.3 U 3.5 U	X2621-01 05/02/06 SOIL 1.0 ug/Kg 70 U 77 U 71 U 73 U 69 U 65 U 66 U 64 U 76 U 77 U	X2621-02 05/02/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 72 U 73 U 74 U 75 U 77 U	X2621-03 05/02/06 SOILL 1.0 ug/Kg 64 U 70 U 65 U 67 U 63 U 60 U 59 U 70 U
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Carbazole Fluoranthene Pyrene Benzo(a)anthracene Cchrysene Benzo(b)fluoranthene	SCG (ug/Kg) 500,000 500,000 n/a 500,000 500,000 500,000 n/a 500,000 500,000 500,000 500,000 500,000 500,000 500,000 5,600	\$2594-05 04/27/06 \$OIL 1.0 ug/Kg 62 U 68 U 63 U 65 U 61 U 58 U 58 U 57 U 68 U 54 U 69 U	X2594-06 04/27/06 SOIL 1.0 ug/Kg 64 U 71 U 66 U 67 U 63 U 60 U 61 U 59 U 70 U 555 U 71 U 44 U	X2594-07 04/27/06 SOIL 1.0 ug/Kg 60 U 66 U 61 U 62 U 59 U 56 U 55 U 65 U 65 U 41 U	X2594-08 04/27/06 SOIL 1.0 ug/Kg 65 U 71 U 66 U 68 U 60 U 61 U 60 U 71 U 56 U 71 U 44 U	X2594-11 04/28/06 SOIL 10.0 ug/Kg 620 U 1100 J 740 J 950 J 10000 1900 J 880 J 9700 9700 3300	X2594-12 04/28/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 62 U 61 U 72 U 57 U 73 U	X2594-09 04/28/06 WATER 1.0 ug/L 2.7 U 2.8 U 2.7 U 2.9 U 3.0 U 2.9 U 2.7 U 2.5 U 3.0 U 4.3 U 4.5 U 4.6 U 4.7 U	X2621-01 05/02/06 SOIL 1.0 ug/Kg 70 U 77 U 71 U 73 U 69 U 65 U 66 U 64 U 76 U 61 U 78 U 69 U	X2621-02 05/02/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 72 U 61 U 72 U 57 U	X2621-03 05/02/06 SOIL 1.0 ug/Kg 64 U 70 U 65 U 67 U 63 U 60 U 59 U 70 U 55 U 71 U
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Carbazole Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	SCG (ug/Kg) 500,000 500,000 n/a 500,000 500,000 500,000 n/a 500,000 500,000 500,000 10	X2594-05 04/27/06 SOIL 1.0 ug/Kg 62 U 68 U 63 U 65 U 61 U 58 U 58 U 57 U 68 U 69 U 42 U 84 U	X2594-06 04/27/06 SOIL 1.0 ug/Kg 64 U 71 U 66 U 67 U 63 U 60 U 61 U 59 U 70 U 555 U 71 U 44 U 87 U	X2594-07 04/27/06 SOIL 1.0 ug/Kg 60 U 66 U 61 U 62 U 59 U 56 U 55 U 65 U 65 U 65 U 65 U 65 U	X2594-08 04/27/06 SOIL 1.0 ug/Kg 65 U 71 U 66 U 68 U 64 U 60 U 61 U 60 U 71 U 56 U 71 U	X2594-11 04/28/06 SOIL 10.0 ug/Kg 620 U 1100 J 740 J 950 J 10000 1900 J 880 J 9700 9700 3300	X2594-12 04/28/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 72 U 57 U 73 U 45 UJ	X2594-09 04/28/06 WATER 1.0 ug/L 2.7 U 2.8 U 2.7 U 2.9 U 3.0 U 2.9 U 2.7 U 2.5 U 3.0 U 2.3 U 3.5 U 1.6 UJ 3.9 U	X2621-01 05/02/06 SOIL 1.0 ug/Kg 70 U 77 U 71 U 73 U 69 U 65 U 66 U 64 U 76 U 61 U 78 U 95 U	X2621-02 05/02/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 62 U 61 U 72 U 57 U 57 U 73 U 57 U 90 U	X2621-03 05/02/06 SOIL 1.0 ug/Kg 64 U 70 U 65 U 67 U 63 U 60 U 59 U 70 U 55 U 71 U 44 U
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Carbazole Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	SCG (ug/Kg) 500,000 500,000 n/a 500,000 500,000 500,000 n/a 500,000 500,000 500,000 5,600 n/a 5,600 56,000	X2594-05 04/27/06 SOIL 1.0 ug/Kg 62 U 68 U 68 U 65 U 61 U 58 U 57 U 68 U 54 U 69 U 42 U 84 U 61 U	X2594-06 04/27/06 SOIL 1.0 ug/Kg 64 U 71 U 66 U 67 U 63 U 60 U 61 U 59 U 70 U 55 U 71 U 44 U 87 U 63 U	X2594-07 04/27/06 SOIL 1.0 ug/Kg 60 U 66 U 61 U 62 U 59 U 56 U 55 U 65 U 65 U 41 U 81 U	X2594-08 04/27/06 SOIL 1.0 ug/Kg 65 U 71 U 66 U 68 U 64 U 60 U 61 U 60 U 71 U 56 U 72 U 44 U 88 U 64 U	X2594-11 04/28/06 SOIL 10.0 ug/Kg 620 U 1100 J 740 J 950 J 10000 1900 J 880 J 9700 3300 9700 3300 990 J 3300 990 J	X2594-12 04/28/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 72 U 57 U 73 U 45 UJ 90 U	X2594-09 04/28/06 WATER 1.0 ug/L 2.7 U 2.8 U 2.7 U 2.9 U 3.0 U 2.7 U 2.5 U 3.0 U 2.5 U 3.0 U 2.5 U 3.0 U 2.4 U 3.9 U	X2621-01 05/02/06 SOIL 1.0 ug/Kg 70 U 77 U 71 U 73 U 69 U 66 U 66 U 61 U 78 U 61 U 78 U 69 U 69 U 69 U	X2621-02 05/02/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 62 U 61 U 72 U 57 U 57 U 57 U 69 U 65 U	X2621-03 05/02/06 SOIL 1.0 ug/Kg 64 U 70 U 65 U 67 U 63 U 60 U 59 U 70 U 55 U 71 U
Lab Sample Number Sampling Date Matrix Dilution Factor Units COMPOUND Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Carbazole Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	SCG (ug/Kg) 500,000 500,000 n/a 500,000 500,000 500,000 n/a 500,000 500,000 500,000 10	X2594-05 04/27/06 SOIL 1.0 ug/Kg 62 U 68 U 63 U 65 U 61 U 58 U 58 U 57 U 68 U 69 U 42 U 84 U	X2594-06 04/27/06 SOIL 1.0 ug/Kg 64 U 71 U 66 U 67 U 63 U 60 U 61 U 59 U 70 U 555 U 71 U 44 U 87 U	X2594-07 04/27/06 SOIL 1.0 ug/Kg 60 U 66 U 61 U 62 U 59 U 56 U 55 U 65 U 65 U 65 U 65 U 65 U	X2594-08 04/27/06 SOIL 1.0 ug/Kg 65 U 71 U 66 U 68 U 64 U 60 U 61 U 60 U 71 U 56 U 71 U	X2594-11 04/28/06 SOIL 10.0 ug/Kg 620 U 1100 J 740 J 950 J 10000 1900 J 880 J 9700 9700 3300	X2594-12 04/28/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 72 U 57 U 73 U 45 UJ	X2594-09 04/28/06 WATER 1.0 ug/L 2.7 U 2.8 U 2.7 U 2.9 U 3.0 U 2.9 U 2.7 U 2.5 U 3.0 U 2.3 U 3.5 U 1.6 UJ 3.9 U	X2621-01 05/02/06 SOIL 1.0 ug/Kg 70 U 77 U 71 U 73 U 69 U 65 U 66 U 64 U 76 U 61 U 78 U 95 U	X2621-02 05/02/06 SOIL 1.0 ug/Kg 66 U 72 U 67 U 69 U 65 U 61 U 62 U 61 U 72 U 57 U 57 U 73 U 57 U 90 U	X2621-03 05/02/06 SOIL 1.0 ug/Kg 64 U 70 U 65 U 67 U 63 U 60 U 59 U 70 U 55 U 71 U 44 U 87 U

Qualific	ers and Notes
U -	The compound was not detected at the indicated concentration.
J-	Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
	The concentration given is an approximate value.
В -	The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
P -	For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
• -	For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
SCG -	Standards, Criteria & Guidance levels (Reference: 6NYCRR Part 375 Restricted Use (Commercial) Soil Cleanup Objectives)
Values	in bold print denote exceedence of SCG.
n/a -	Not Applicable (no established standard)
wolk'n	Museocope por kilogram

Total Confident Conc. SVOC

Total TICs

49370

11360

0 4280

TABLE 8 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION SUBSURFACE SOIL ANALYTICAL RESULTS - TAL METALS (DETECTED METALS ONLY)

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor Units		GP-1(6-8) X2527-01 04/25/06 SOIL 1.0 mg/Kg	GP-2(6-8) X2527-02 04/25/06 SOIL 1.0 mg/Kg	GP-3(6-8) X2527-03 04/25/06 SOIL 1.0 mg/Kg	GP-4(4-6) X2527-04 04/25/06 SOIL 1.0 mg/Kg	GP-5(10-12) X2527-05 04/25/06 SOIL 1.0 mg/Kg	GP-6(10-12) X2594-01 04/27/06 SOIL 1.0 mg/Kg	GP-7(4-8) X2594-02 04/27/06 SOIL 1.0 mg/Kg
COMPOUND	Part 375 SCG (mg/Kg)							
Aluminum	n/a	4180	4040	9660	4180	3770	4620	8490 J
Antimony	n/a	21.9	5.1 J	11.6	0.38 U	0.52 U	0.391 U	1.550 U
Arsenic	16	3.7 U	0.44 U	4.1 U	0.46 U	2.3	1.520	2.790
Barium	400	11.8 J	12.9 J	184	9.6 J	14,1 J	16.1 J	54.6 J
Beryllium	590	0.36 J	0.20 J	0.90	0.14 J	0.21 U	0.200 J	0.388 J
Cadmium	9.3	0.04 U	0.039 U	0.166 J				
Calcium	n/a	1500	1120	1900	786	935	1360	4070
Chromium	1900	12.2	6.8	16.0	4.3	5.8	10.8	10.9
Cobalt	n/a	6.5	3.3 J	6.2	1.6 J	3.2 J	4.200 J	5.900 J
Copper	270	9.3	4.8	20.9	3.8	6.0	7,800	23.1 J
Iron	n/a	5240	7510	15600	4800	6490	14900	14100
Lead	1000	4.3	3.4	11.1	3.3	3.4	4.820	228
Magnesium	n/a	1390	1100	2540	962	1180	1470	2770
Manganese	10000	39.5	49.3	79.2	43.3	68.1	88.8	193
Mercury	2.8	0.007 U	0.007 U	0.027	0.011 J	0.006 U	0.008 J	0.136 J
Nickel	310	6.8	4.9	12.8	4.9	5.1	9.040	13.4 J
Potassium	n/a	628	493 J	673	413 J	550	489 J	812
Selenium	1500	0.75 J	0.39 U	0.39 U	0.40 U	0.37 U	0.407 U	0.418 U
Sodium	n/a	916 J	350 J	808 J	408 J	122 J	227 U	269 U
Thallium	n/a	1.1 J	2.0	1.6	1.1 J	0.57 U	0.629 U	0.647 U
Vanadium	n/a	13.5	14.2	36.6	6.4	13.7	31.4	19.8
Zinc	10000	20.5	19.2	46.9	31.9	18.5	29.5	201

Qualifiers and Notes

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

SCG - Standards, Criteria & Guidance levels (Reference: 6NYCRR Part 375 Restricted Use (Commercial) Soil Cleanup Objectives)

n/a - Not Applicable (no established Eastern USA Background)

mg/Kg - Milligrams per kilogram (or parts per million)

TABLE 9 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS (DETECTED COMPOUNDS ONLY)

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor Units		CTM-13 X3247-05 06/12/06 WATER 1.0 ug/L	CTM-14 X3247-07 06/12/06 WATER 1.0 ug/L	CTM-15 X3247-06 06/12/06 WATER 1.0 ug/L	CTM-16 X3164-02 06/07/06 WATER 1.0 ug/L	CTM-17 X3164-01 06/07/06 WATER 1.0 ug/L	CTM-18 (X3164-05 06/07/06 WATER 1.0 ug/L	GW-EQUIP.BLANK X3247-01 06/12/06 WATER 1.0 ug/L
COMPOUND	SCG (ug/L)							
Acetone	50	2.3 U	25 J					
Methylene Chloride	5	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ	0.43 U	0.43 U	3.6 J
cis-1,2-Dichloroethene	5	0.29 U	0.29 U					
Chloroform	7	0.33 U	0.33 U					
Methylcyclohexane	n/a	0.34 UJ	0.34 U	J 0.34 U				
Bromodichloromethane	50	0.33 U	0.33 U	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 UJ
Dibromochloromethane	50	0.26 U	0.26 U	0.26 U	0.26 UJ	0.26 UJ	0.26 U	J 0.26 U
Tetrachloroethene	5	0.48 UJ	0.48 U	J 0.48 U				
Total Confident Conc. VOC		0	0	0	0	0	0	28.6
Total TICs		0	0	0	0	0	0	0

Qualifiers and Notes

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

 The concentration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- SCG Standards, Criteria & Guidance level (Reference: NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998)

Values in **bold** print denote exceedence of SCG.

- n/a Not Applicable (no established standard)
- ug/L Micrograms per Liter

TABLE 10 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - SEMIVOLATILE ORGANIC COMPOUNDS (DETECTED COMPOUNDS ONLY)

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor Units		CTM-1 X3205-01 06/08/06 WATER 1.0 ug/L	CTM-2 X3205-02 06/08/06 WATER 1.0 ug/L	CTM-3 X3205-03 06/08/06 WATER 1.0 ug/L	CTM-4 X3205-04 06/08/06 WATER 1.0 ug/L	CTM-5 X3205-05 06/08/06 WATER 1.0 ug/L	CTM-6 X3235-01 06/09/06 WATER 1.0 ug/L	CTM-7 X3235-02 06/09/06 WATER 1.0 ug/L	CTM-9 X3235-05 06/09/06 WATER 1.0 ug/L	GW-DUP X3235-08 06/09/06 WATER 1.0 ug/L	CTM-10 X3235-06 06/09/06 WATER 1.0 ug/L	CTM-11 X3247-03 06/12/06 WATER 1.0 ug/L	CTM-12 X3247-04 06/12/06 WATER 1.0 ug/L
COMPOUND	SCG (ug/L)												
bis(2-Ethylhexyl)phthalate	5	1.9 U	1.9 U	2.1 J	1.9 J	1.7 U	1.6 U	1.6 U	1.9 U	1.9 U	1.9 U	1.6 U	1.9 U
Total Confident Conc. SVOC Total TICs		0 67.6	0 26.3	2.1 49.5	1.9 38	0 25	0 73.2	0 29.5	0 41.9	0 68.7	0 70.8	0 45.8	0 44.2
Sample ID Lab Sample Number		CTM-13 X3247-05	CTM-14 X3247-07	CTM-15 X3247-06	CTM-16 X3164-02	CTM-17 X3164-01	CTM-18 X3164-05	GW-EQUIP.BLANK X3247-01					
Sampling Date		06/12/06	06/12/06	06/12/06	06/07/06	06/07/06	06/07/06	06/12/06					

Lab Sample Number		X3247-05	X3247-07	X3247-06	X3164-02	X3164-01	X3164-05	X3247-01
Sampling Date		06/12/06	06/12/06	06/12/06	06/07/06	06/07/06	06/07/06	06/12/06
Matrix		WATER	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor		1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
COMPOUND	SCG (ug/L)			_				
bis(2-Ethylhexyl)phthalate	- 5	1.9 U	1.8 U	1.9 U	1.6 U	1.6 U	1.6 U	1.6 U
Total Confident Conc. SVOC		0	0	0	0	0	0	0
Total TICs		44.4	64.7	. 46.9	32	21	25	26.5
		0 44.4	0 64.7	. 46.9	0 32	0 21	•	0 26.5

Qualifiers and Notes

U - The compound was not detected at the indicated concentration.

Values in **bold** print denote exceedence of SCG.

ug/L - Micrograms per Liter

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 The concentration given is an approximate value.

⁻ The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

SCG - Standards, Criteria & Guidance level (Reference: NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998)

TABLE 11 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - TAL METALS (DETECTED METALS ONLY)

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor Units		CTM-12 X3247-04 06/12/06 WATER 1.0 ug/L	CTM-13 X3247-05 06/12/06 WATER 1.0 ug/L	CTM-14 X3247-07 06/12/06 WATER 1.0 ug/L	CTM-15 X3247-06 06/12/06 WATER 1.0 ug/L	CTM-16 X3164-02 06/07/06 WATER 1.0 ug/L	CTM-17 X3164-01 06/07/06 WATER 1.0 ug/L	CTM-18 GW- X3164-05 06/07/06 WATER 1.0 ug/L	EQUIP.BLANK X3247-01 06/12/06 WATER 1.0 ug/L
COMPOUND	SCG (ug/L)								
Aluminum	100	434	432	32800	383	1040	9090	1160	36.6 J
Antimony	3	3.170 U	3.170 U						
Arsenic	25	3.320 U	5.060 J	32.8	3.320 U	3.320 U	3.320 U	3.320 U	3.320 U
Barium	1,000	74.3 J	430	476	539	26.3 J	120 J	67.3 J	0.723 U
Beryllium	3	0.090 U	0.090 U	1.760 J	0.090 U	0.090 U	0.400 J	0.090 U	0.090 U
Calcium	n/a	135000	273000	379000	328000	16600	95900	55900	54.8 J
Chromium	50	1.120 U	0.560 U	66.7	1.690 U	73.7	93.4	23.9	0.500 J
Cobalt	5	0.370 U	0.370 U	31.8 J	4.700 J	0.370 U	7.540 J	0.370 U	0.370 U
Copper	200	4.590 J	3.830 J	97.5	3.640 U	10.7 J	39.5	9.920 J	3.640 U
Iron	300	1330	695	57300	521	1890	19000	2590	27.0 U
Lead	25	2.180 U	2.180 U	30.5	2.180 U	2.180 U	8.690	2.180 U	2.180 U
Magnesium	35,000	14900	30100	74700	25700	4420 J	20900	16300	46.5 J
Manganese	300	521	41.0	1680	37.3	144	810	208	0.106 U
Mercury	0.7	0.05 U	0.03 U	0.26	0.06 U	0.03 U	0.03U	0.03 U	0.05 J
Nickel	100	1.560 U	1.560 U	68.6	4.440 J	34.3 J	53.3	8.520 J	1.560 U
Potassium	n/a	12800	24100	61200	20900	2180 J	5420	6180	467 J
Selenium	10	3.040 U	3.860 J	6.740 J	3.040 U	3.040 U	3.040 U	3.040 U	3.040 U
Sodium	20,000	14700	979000	1320000	1510000	80300 J	94100	66800	2840 J
Thallium	0.5	3.050 U	3.050 U						
Vanadium	14	3.420 U	2.110 U	128	4.310 U	0.701 U	20.8 J	1.100 J	1.230 J
Zinc	2,000	29.6 U	26.4 U	271	24.5 U	22.4	81.9	22.1	20.1

Qualifiers and Notes

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

⁻ For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

SCG - Standards, Criteria & Guidance level (Reference: NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998) Values in **bold** print denote exceedence of SCG.

n/a - Not Applicable (no established standard)

ug/kg - Micrograms per kilogram

TABLE 2 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION SURFACE AND NEAR-SURFACE SOIL ANALYTICAL RESULTS - SEMIVOLATILE ORGANIC COMPOUNDS (DETECTED COMPOUNDS ONLY)

Sample ID		SS-10	SS-11	SS-12	EQUIPBLANK-2
Lab Sample Number		X2608-14	X2608-15	X2608-16	X2608-05
Sampling Date		05/01/06	05/01/06	05/01/06	05/01/06
Matrix		SOIL	SOIL	SOIL	WATER
Dilution Factor		10.0	10.0	1.0	1.0
Units		ug/Kg	ug/Kg	ug/Kg	ug/L
	Part 375				
COMPOUND	SCG (ug/Kg)				
Acenaphthene	500,000	650 U	750 U	68 U	1.4 U
Phenanthrene	500,000	770 J	670 U	270 J	1.5 U
Anthracene	500,000	550 U	640 U	58 U	1.4 U
Carbazole	n/a	560 U	640 U	58 U	1.3 U
Fluoranthene	500,000	2800 J	630 U	590	1.2 U
Pyrene	500,000	5200	750 U	900	1.5 U
Benzo(a)anthracene	5,600	(1900)J	590 U	380 J	1.1 U
Chrysene	n/a	1700 J	760 U	410	1.7 U
bis(2-Ethylhexyl)phthalate	n/a	700 U	810 U	230 J	1.6 U
Benzo(b)fluoranthene	5,600	(2600) J	460 UJ	590 J	0.770 UJ
Benzo(k)fluoranthene	5,600	1000 J	930 UJ	270 J	1.9 U
Benzo(a)pyrene	1,000	(1700 J)	670 UJ	360 J	1.2 U
Indeno(1,2,3-cd)pyrene	5,600	460 Ú	540 UJ	49 U	0.850 UJ
Benzo(g,h,i)perylene	500,000	610 UJ	700 UJ	110 J	1.1 UJ
Total Confident Conc. SVOC		17670	0	4110	0
Total TICs		5860	6900	5855	197.8
Ouglifiers and Notes					·

Qualifiers and Notes

Values in **bold** print denote exceedence of SCG.

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

^{* -} For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

SCG - Standards, Criteria & Guidance levels (Reference: 6NYCRR Part 375 Restricted Use (Commercial) Soil Cleanup Objectives)

n/a - Not Applicable (no established standard)

ug/kg - Micrograms per kilogram

TABLE 3 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION SURFACE AND NEAR-SURFACE SOIL ANALYTICAL RESULTS - PESTICIDES (DETECTED PESTICIDES ONLY)

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor		SS-1 X2608-01 05/01/06 SOIL 1.0	SS-2 X2608-02 05/01/06 SOIL 1.0	SS-3 X2608-03 05/01/06 SOIL 1.0	SS-4 X2608-04 05/01/06 SOIL 1.0	SS-5 X2608-06 05/01/06 SOIL 1.0	SS-6 X2608-07 05/01/06 SOIL 1.0	SS-7 X2608-08 05/01/06 SOIL 1.0	SS-8 X2608-09 05/01/06 SOIL 1.0	SS-9 X2608-12 05/01/06 SOIL 1.0	DUP-2 X2608-13 05/01/06 SOIL 1.0
Units	D (075	ug/Kg									
COMPOUND	Part 375 SCG (ug/Kg)										
4,4-DDE	62,000	0.86 U	0.88 U	0.87 U	0.89 U	0.90 U	0.86 U	0.94 U	0.95 U	4.7°J	5.8
4,4-DDT	47,000	0.78 U	0.81 U	0.80 U	0.82 U	0.82 U	0.78 UJ	0.86 U	0.87 U	33 J	27

Sample ID		SS-10	SS-11	SS-12	EQUIPBLANK-2
Lab Sample Number		X2608-14	X2608-15	X2608-16	X2608-05
Sampling Date		05/01/06	05/01/06	05/01/06	05/01/06
Matrix		SOIL	SOIL	SOIL	WATER
Dilution Factor		1.0	1.0	1.0	1.0
Units		ug/Kg	ug/Kg	ug/Kg	ug/L
	Part 375				
COMPOUND	SCG (ug/Kg)				
4,4-DDE	62,000	0.87 U	1.8 JP	0.91 U	0.0074 U
4,4-DDT	47,000	0.79 UJ	0.91 U	0.83 U	0.0066 U

Qualifiers and Notes

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

 The concentration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- SCG Standards, Criteria & Guidance levels (Reference: 6NYCRR Part 375 Restricted Use (Commercial) Soil Cleanup Objectives)
- ug/Kg Micrograms per kilogram

TABLE 5 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION SUBSURFACE SOIL ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS (DETECTED COMPOUNDS ONLY)

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor		GP-1(6-8) X2527-01 04/25/06 SOIL 1.0	GP-2(6-8) X2527-02 04/25/06 SOIL 1.0	GP-3(6-8) X2527-03 04/25/06 SOIL 1.0	GP-4(4-6) X2527-04 04/25/06 SOIL 1.0	GP-5(10-12) X2527-05 04/25/06 SOIL 1.0	GP-6(10-12) X2594-01 04/27/06 SOIL 1.0	GP-7(4-8) X2594-02 04/27/06 SOIL 1.0
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	Part 375							
COMPOUND	SCG (ug/Kg)							
Acetone	500,000	81 J	19 U	20 U	20 UJ	50 J	20 U	20 U
Methylene Chloride	500,000	34 J	10 UJ	14 J	11 UJ	9.7 UJ	11 UJ	11 UJ
cis-1,2-Dichloroethene	n/a	45	1.8 U	1.9 U	1.9 U	1.7 UJ	1.9 U	2.0 UJ
Trichloroethene	200,000	6.9 J	1.8 U	1.8 U	1.8 U	1.6 U	1.8 U	1.9 U
Toluene	500,000	2.5 U	2.3 U	2.4 U	2.4 U	2.2 U	4.0 J	2.5 U
Tetrachloroethene	150,000	11 J	4.1 U	4.3 U	4.3 U	3.9 U	4.3 U	4.5 U
Total Confident Conc. VOC		177.9	0	14	0	50	4	0
Total TICs		0	0	0	0	0	0	0

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor Units	Part 375	GP-8(10-12) X2594-05 04/27/06 SOIL 1.0 ug/Kg	DUP-1 X2594-06 04/27/06 SOIL 1.0 ug/Kg	GP-9(10-12) X2594-07 04/27/06 SOIL 1.0 ug/Kg	GP-10(10-12) X2594-08 04/27/06 SOIL 1.0 ug/Kg	GP-11(4-6) X2594-11 04/28/06 SOIL 1.0 ug/Kg	GP-12(4-8) X2594-12 04/28/06 SOIL 1.0 ug/Kg	EQUIPBLANK-1 X2594-09 04/28/06 WATER 1.0 ug/L	GP-13(10-12) X2621-01 05/02/06 SOIL 1.0 ug/Kg	GP-14(12-14) X2621-02 05/02/06 SOIL 1.0 ug/Kg	GP-15(8-10) X2621-03 05/02/06 SOIL 1.0 ug/Kg
COMPOUND	SCG (ug/Kg)										
Acetone	500,000	19 U	20 U	19 U	20 U	100 J	75 J	2.3 U	22 U	21 U	20 U
Methylene Chloride	500,000	11 UJ	11 UJ	10 UJ	11 UJ	10 UJ	11 UJ	1.4 J	12 U.	J 11 UJ	11 UJ
cis-1,2-Dichloroethene	n/a	1.9 U	1.9 U	1.9 U	1.9 U	1.8 U	2.0 U	0.29 U	2.1 U	2.0 U	2.0 U
Trichloroethene	200,000	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.9 U	0.46 U	2.0 U	1.9 U	1.9 U
Toluene	500,000	2.3 U	2.4 U	2.3 U	2.4 U	2.3 U	3.6 J	0.36 U	2.7 U	2.5 U	2.4 U
Tetrachloroethene	150,000	4.2 U	4.3 U	4.2 U	4.4 U	4.2 U	4.4 U	0.48 U	4.8 U	4.5 U	4.4 U
Total Confident Conc. VOC		0	0	0	0	100	78.6	1.4	0	0	0
Total TICs		0	0	0	0	0	0	0	0	0	0

Qual	ifiers and Notes
U -	The compound was not detected at the indicated concentration.
J -	Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
	The concentration given is an approximate value.
В -	The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
P -	For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
* -	For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
n/a -	Not Applicable (no established standard)
SCG	- Standards, Criteria & Guidance levels (Reference: 6NYCRR Part 375 Restricted Use (Commercial) Soil Cleanup Objectives)
ug/kg	- Micrograms per Kilogram

TABLE 6 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION SUBSURFACE SOIL ANALYTICAL RESULTS - SEMIVOLATILE ORGANIC COMPOUNDS (DETECTED COMPOUNDS ONLY)

n/a 5,600 56,000 1,000 5,600 500,000	45 UJ 90 U 66 U 52 UJ 68 UJ 0 2170	41 UJ 62 UJ 60 U 47 UJ 62 UJ 0 4300	43 UJ 85 UJ 62 U 49 UJ 64 UJ 0 3400	62 U 62 U 49 UJ 64 UJ 0 2420	78 UJ 57 U 45 UJ 59 UJ 0 2700	66 U 63 U 50 UJ 65 UJ 0 2850	430 J 860 J 320 J 300 J 13754 5306
5,600 56,000 1,000 5,600	45 UJ 90 U 66 U 52 UJ 68 UJ	62 UJ 60 U 47 UJ 62 UJ	85 UJ 62 U 49 UJ 64 UJ	85 UJ 62 U 49 UJ 64 UJ	78 UJ 57 U 45 UJ 59 UJ	86 U 63 U 50 UJ 65 UJ	430 J 860 J 320 J 300 J
5,600 56,000 1,000 5,600	45 UJ 90 U 66 U 52 UJ	82 UJ 60 U 47 UJ	85 UJ 62 U 49 UJ	85 UJ 62 U 49 UJ	78 UJ 57 U 45 UJ	86 U 63 U 50 UJ	430 J 860 J 320 J
5,600 56,000 1,000 5,600	45 UJ 90 U 66 U 52 UJ	82 UJ 60 U 47 UJ	85 UJ 62 U 49 UJ	85 UJ 62 U 49 UJ	78 UJ 57 U 45 UJ	86 U 63 U 50 UJ	430 J 860 J 320 J
5,600 56,000 1,000	45 UJ 90 U 66 U	82 UJ 60 U	85 UJ 62 U	85 UJ 62 U	78 UJ 57 U	86 U 63 U	430 J 860 J
5,600 56,000	45 UJ 90 U	82 UJ	85 UJ	85 UJ	78 UJ	86 U	430 J
5,600		41 UJ	43 ÚJ	42 UJ			
n/a	74 0			40.111	30 111	43 UJ	1100 J
	74.11	67 U	70 U	69 U	64 U	70 U	970 J
5,600	58 U	52 U	54 U	54 U	50 U	55 U	1100 J
500,000	73 U	66 U	69 U	68 U	63 U	69 U	2200 J
500,000	61 U	56 U	58 U	57 U	53 U	58 U	3200 J
n/a	63 U	57 U	59 U	59 U	54 U	60 U	270 J
500,000	62 U	56 U	59 U	58 U	53 U	59 U	390 J
500,000	66 U	59 U	62 U	62 U	56 U	62 U	2400 J
500,000	69 U	63 U	65 U	65 U	60 U	66 U	130 J
n/a	68 U	62 U	64 U	64 U	59 U	65 U	66 U
500,000	73 U	66 U	69 U	69 U	63 U	70 U	71 U
500,000	67 U	61 U	63 U	63 U	57 U	64 U	84 J
Part 375	49.719	ug/ng	dgirtg	ugirty	ugnig	09.119	-99
							ug/Kg
							1:0
							SOIL
		_					04/27/06
		, ,				, ,	GP-7(4-8) X2594-02
	500,000 n/a 500,000 500,000 500,000 n/a 500,000 500,000 5,600	G (ug/Kg) 500,000 67 U 500,000 73 U n/a 68 U 500,000 69 U 500,000 62 U n/a 63 U 500,000 61 U 500,000 61 U 500,000 73 U	X2527-01 X2527-02 04/25/06	X2527-01	X2527-01	X2527-01	X2527-01 X2527-02 X2527-03 X2527-04 X2527-05 X2594-01 04/25/06

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor Units	Part 375	GP-8(10-12) X2594-05 04/27/06 SOIL 1.0 ug/Kg	DUP-1 X2594-06 04/27/06 SOIL 1.0 ug/Kg	GP-9(10-12) X2594-07 04/27/06 SOIL 1.0 ug/Kg	GP-10(10-12) X2594-08 04/27/06 SOIL 1.0 ug/Kg	GP-11(4-6) X2594-11 04/28/06 SOIL 10.0 ug/Kg	GP-12(4-8) X2594-12 04/28/06 SOIL 1.0 ug/Kg	EQUIPBLANK-1 X2594-09 04/28/06 WATER 1.0 ug/L	GP-13(10-12) X2621-01 05/02/06 SOIL 1.0 ug/Kg	GP-14(12-14) X2621-02 05/02/06 SOIL 1.0 ug/Kg	GP-15(8-10) X2621-03 05/02/06 SOIL 1.0 ug/Kg
COMPOUND	SCG (ug/Kg)										
Acenaphthylene	500,000	62 U	64 U	60 U	65 U	620 U	66 U	2.7 U	70 U	66 U	64 U
Acenaphthene	500,000	68 U	71 U	66 U	71 U	1100 J	72 U	2.8 U	77 U	72 U	70 U_
Dibenzofuran	n/a	63 U	66 U	61 U	66 U	740 J	67 U	2.7 U	71 U	67 U	65 U
Fluorene	500,000	65 U	67 U	62 U	68 U	950 J	69 U	2.9 U	73 U	69 U	67 U
Phenanthrene	500,000	61 U	63 U	59 U	64 U	10000	65 U	3.0 U	69 U	65 U	63 U
Anthracene	500,000	58 U	60 U	56 U	60 U	1900 J	61 U	2.9 U	65 U	61 U	60 U
Carbazole	n/a	58 U	61 U	56 U	61 U	880 J	62 U	2.7 U	66 U	62 U	60 U
Fluoranthene	500,000	57 U	59 U	55 U	60 U	9700	61 U	2.5 U	64 U	61 U	59 U
Pyrene	500,000	68 U	70 U	65 U	71 U	9700	72 U	3.0 U	76 U	72 U	70 U
Benzo(a)anthracene	5,600	54 U	55 U	52 U	56 U	3300	57 U	2.3 U	61 U	57 U	55 U
Chrysene Second	n/a	69 U	71 U	66 U	72 U	290 0 J	73 U	3.5 U	78 U	73 U	71 U
Benzo(b)fluoranthene	5,600	42 U	44 U	41 U	44 U	(3900)J	45 UJ	1.6 UJ	48 U	57 J	44 U
Benzo(k)fluoranthene	56,000	84 U	87 U	81 U	88 U	7500-4	90 U	3.9 U	95 U	90 U	87 U
Benzo(a)pyrene	1,000	61 U	63 U	59 U	64 U	2400	65 U	2.4 U	69 U	65 U	63 U
Indeno(1,2,3-cd)pyrene	5,600	49 U	50 U	47 U	51 U	48 0 U	52 UJ	1.7 U	55 U	52 U	50 U
Benzo(g,h,i)perylene	500,000	63 U	66 U	61 U	66 U	630 UJ	67 UJ	2.3 U	71 U	67 U	65 U
Total Confident Conc. SVOC Total TiCs		0 4340	0 3420	0 4280	0 3400	49370 11360	0 2670	0 256	0 3810	57 2990	0 3550

Qualifie	ers and Notes
U -	The compound was not detected at the indicated concentration.
J -	Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
	The concentration given is an approximate value.
В -	The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
P -	For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
• -	For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
SCG -	Standards, Criteria & Guidance levels (Reference: 6NYCRR Part 375 Restricted Use (Commercial) Soil Cleanup Objectives)
Values	in bold print denote exceedence of SCG.
-1- 1	No. 4. d. d. a. i. P. i. d. a. s.

n/a - Not Applicable (no established standard)
ug/Kg - Micrograms per kilogram

TABLE 8 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION SUBSURFACE SOIL ANALYTICAL RESULTS - TAL METALS (DETECTED METALS ONLY)

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor Units		GP-1(6-8) X2527-01 04/25/06 SOIL 1.0 mg/Kg	GP-2(6-8) X2527-02 04/25/06 SOIL 1.0 mg/Kg	GP-3(6-8) X2527-03 04/25/06 SOIL 1.0 mg/Kg	GP-4(4-6) X2527-04 04/25/06 SOIL 1.0 mg/Kg	GP-5(10-12) X2527-05 04/25/06 SOIL 1.0 mg/Kg	GP-6(10-12) X2594-01 04/27/06 SOIL 1.0 mg/Kg	GP-7(4-8) X2594-02 04/27/06 SOIL 1.0 mg/Kg
COMPOUND	Part 375 SCG (mg/Kg)							
Aluminum	B	4180	4040	9660	4180	3770	4620	8490 J
Antimony	n/a	21.9	5.1 J	11.6	0.38 U	0.52 U	0.391 U	1.550 U
Arsenic	n/a 16	3.7 U	0.44 U	4.1 U	0.38 U 0.46 U	2.3	1.520	2.790
		11.8 J	12.9 J	184	9.6 J	2.3 14.1 J	16.1 J	54.6 J
Barium	400				9.6 J 0.14 J	0.21 U	0.200 J	0.388 J
Beryllium	590	0.36 J	0.20 J	0.90			0.200 J 0.039 U	0.166 J
Cadmium	9.3	0.04 U	1360	4070				
Calcium	n/a	1500	1120	1900	786	935		10.9
Chromium	1900	12.2	6.8	16.0	4.3	5.8	10.8	
Cobalt	n/a	6.5	3.3 J	6.2	1.6 J	3.2 J	4.200 J	5.900 J
Copper	270	9.3	4.8	20.9	3.8	6.0	7.800	23.1 J
Iron	n/a	5240	7510	15600	4800	6490	14900	14100
Lead	1000	4.3	3.4	11.1	3.3	3.4	4.820	228
Magnesium	n/a	1390	1100	2540	962	1180	1470	2770
Manganese	10000	39.5	49.3	79.2	43.3	68.1	88.8	193
Mercury	2.8	0.007 U	0.007 U	0.027	0.011 J	0.006 U	0.008 J	0.136 J
Nickel	310	6.8	4.9	12.8	4.9	5.1	9.040	13.4 J
Potassium	n/a	628	493 J	673	413 J	550	489 J	812
Selenium	1500	0.75 J	0.39 U	0.39 U	0.40 U	0.37 U	0.407 U	0.418 U
Sodium	n/a	916 J	350 J	808 J	408 J	122 J	227 U	269 U
Thallium	n/a	1,1 J	2.0	1.6	1.1 J	0.57 U	0.629 U	0.647 U
Vanadium	n/a	13.5	14.2	36.6	6.4	13.7	31.4	19.8
Zinc	10000	20.5	19.2	46.9	31.9	18.5	29.5	201

Qualifiers and Notes

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.
 The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

SCG - Standards, Criteria & Guidance levels (Reference: 6NYCRR Part 375 Restricted Use (Commercial) Soil Cleanup Objectives)

n/a - Not Applicable (no established Eastern USA Background)

mg/Kg - Milligrams per kilogram (or parts per million)

TABLE 9 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS (DETECTED COMPOUNDS ONLY)

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor Units		CTM-13 X3247-05 06/12/06 WATER 1.0 ug/L	CTM-14 X3247-07 06/12/06 WATER 1.0 ug/L	CTM-15 X3247-06 06/12/06 WATER 1.0 ug/L	CTM-16 X3164-02 06/07/06 WATER 1.0 ug/L	CTM-17 X3164-01 06/07/06 WATER 1.0 ug/L	CTM-18 GV X3164-05 06/07/06 WATER 1.0 ug/L	N-EQUIP.BLANK X3247-01 06/12/06 WATER 1.0 ug/L
COMPOUND	SCG (ug/L)							
Acetone	50	2.3 U	25 J					
Methylene Chloride	5	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ	0.43 U	0.43 U	3.6 J
cis-1,2-Dichloroethene	5	0.29 U	0.29 U					
Chloroform	7	0.33 U	0.33 U					
Methylcyclohexane	n/a	0.34 UJ	0.34 U					
Bromodichloromethane	50	0.33 U	0.33 U	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 UJ
Dibromochloromethane	50	0.26 U	0.26 U	0.26 U	0.26 UJ	0.26 UJ	0.26 UJ	0.26 U
Tetrachloroethene	5	0.48 UJ	0.48 U					
Total Confident Conc. VOC		0	0	0	0	0	0	28.6
Total TICs		0	0	0	0	0	0	0

Qualifiers and Notes

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

SCG - Standards, Criteria & Guidance level (Reference: NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998)

Values in **bold** print denote exceedence of SCG.

n/a - Not Applicable (no established standard)

ug/L - Micrograms per Liter

TABLE 10 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - SEMIVOLATILE ORGANIC COMPOUNDS (DETECTED COMPOUNDS ONLY)

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor Units		CTM-1 X3205-01 06/08/06 WATER 1.0 ug/L	CTM-2 X3205-02 06/08/06 WATER 1.0 ug/L	CTM-3 X3205-03 06/08/06 WATER 1.0 ug/L	CTM-4 X3205-04 06/08/06 WATER 1.0 ug/L	CTM-5 X3205-05 06/08/06 WATER 1.0 ug/L	CTM-6 X3235-01 06/09/06 WATER 1.0 ug/L	CTM-7 X3235-02 06/09/06 WATER 1.0 ug/L	CTM-9 X3235-05 06/09/06 WATER 1.0 ug/L	GW-DUP X3235-08 06/09/06 WATER 1.0 ug/L	CTM-10 X3235-06 06/09/06 WATER 1.0 ug/L	CTM-11 X3247-03 06/12/06 WATER 1.0 ug/L	CTM-12 X3247-04 06/12/06 WATER 1.0 ug/L
COMPOUND	SCG (ug/L)												
bis(2-Ethylhexyl)phthalate	5	1.9 U	1.9 U	2.1 J	1.9 J	1.7 U	1.6 U	1.6 U	1.9 U	1.9 U	1.9 U	1.6 U	1.9 U
Total Confident Conc. SVOC		0	0	2.1	1.9	0	0	0	0 41.9	0 68.7	0 70.8	0 45.8	0 44.2
Total TICs		67.6	26.3	49.5	38	25	73.2	29.5	41.9	00.7	70.0		

Sample ID		CTM-13	CTM-14	CTM-15	CTM-16	CTM-17	CTM-18	GW-EQUIP.BLANK
Lab Sample Number		X3247-05	X3247-07	X3247-06	X3164-02	X3164-01	X3164-05	X3247-01
Sampling Date		06/12/06	06/12/06	06/12/06	06/07/06	06/07/06	06/07/06	06/12/06
Matrix		WATER	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor		1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
COMPOUND	SCG (ug/L)							
bis(2-Ethylhexyl)phthalate	. 5	1.9 U	1.8 U	1.9 U	1.6 U	1.6 ∪	1.6 U	1.6 U
Total Confident Conc. SVOC Total TICs		0 44.4	0 64.7	0 46.9	0 32	0 21	0 25	0 26.5

Qualif	iers	ar	ıd	Ν	otes	3
			_	_		

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

SCG - Standards, Criteria & Guidance level (Reference: NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998)

Values in **bold** print denote exceedence of SCG.

ug/L - Micrograms per Liter

TABLE 11 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - TAL METALS (DETECTED METALS ONLY)

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor Units		CTM-1 X3205-01 06/08/06 WATER 1.0 ug/L	CTM-2 X3205-02 06/08/06 WATER 1.0 ug/L	CTM-3 X3205-03 06/08/06 WATER 1.0 ug/L	CTM-4 X3205-04 06/08/06 WATER 1.0 ug/L	CTM-5 X3205-05 06/08/06 WATER 1.0 ug/L	CTM-6 X3235-01 06/09/06 WATER 1.0 ug/L	CTM-7 X3235-02 06/09/06 WATER 1.0 ug/L	CTM-9 X3235-05 06/09/06 WATER 1.0 ug/L	GW-DUP X3235-08 06/09/06 WATER 1.0 ug/L	CTM-10 X3235-06 06/09/06 WATER 1.0 ug/L	CTM-11 X3247-03 06/12/06 WATER 1.0 ug/L
COMPOUND	SCG (ug/L)											
Aluminum	100	672	500	3200	279	70.9 J	70.5 J	15.9 U	884 J	3090 J	665	30.4 U
Antimony	3	3.170 U	3.170 U	3.170 U	3.170 U	5.130 J	8.670 U	3.170 U	3.170 U	19.5 U	14.2 U	3.170 U
Arsenic	25	3.320 U	13.6 U	3.320 U	3.320 U	3.320 U	3.320 U	4.700 J				
Barium	1,000	106 J	134 J	77.2 J	1130	68.9 J	118 J	33.4 U	159 J	189 J	47.8 U	57.0 J
Beryllium	3	0.090 U	0.090 U	0.090 J	0.090 U	0.090 U	0.300 U	0.090 U	0.430 U	0.540 U	0.300 U	0.090 U
Calcium	n/a	136000	174000	162000	420000	238000	143000	56700	169000	200000	170000	111000 J
Chromium	50	1.230 J	2.790 J	5.830 J	2.600 J	2.380 J	1.490 U	0.343 U	5.010 U	7.360 U	3.130 U	0.810 U
Cobalt	5	0.370 U	0.370 U	0.410 J	0.370 U	0.370 U	3.170 U	0.370 U	3.680 U	6.150 U	2.400 U	0.460 J
Copper	200	11.5 J	8.880 J	11.6 J	7.980 J	3.640 U	3.640 U	3.640 U	8.120 J	11.0 J	4.590 J	3.640 U
Iron	300	3040	597	4580	423	108	3370	27.0 U	787 J	4320 J	1070	7720
Lead	25	2.180 U	2.180 U	11.2	2.180 U	2.180 U	2.180 U					
Magnesium	35,000	19200	20100	26500	58900	37300	21900	9040	34800	42300	31700	18000 J
Manganese	300	1660	12.7 J	220	31.0	67.8	8460	7.400 U	1200 J	1490 J	117	1220
Mercury	0.7	0.03 U	0.03 U	0.06 U								
Nickel	100	1.560 U	1.560 U	5.180 J	1.560 U	1.560 U	1.560 U	1.560 U	4.620 U	9.110 U	2.960 U	1.560 U
Potassium	n/a	12200 J	33700 J	27200 J	39600 J	21400 J	12200	2140 U	14800 J	18700 J	15600	11700 J
Selenium	10	3.040 U	3.040 U	3.040 U	3.040 U	6.190 J	3.040 U	3.040 U	3.040 U	3.040 U	6.740 J	3.600 J
Sodium	20,000	557000	830000	1170000	4300000	1120000	679000	44400 J	757000	923000	378000	116000
Thallium	0.5	3.050 U	7.780 J	3.050 U	3.050 U	3.050 U	3.050 U	3.050 U				
Vanadium	14	0.701 U	0.701 U	5.010 J	0.701 U	0.701 U	4.880 U	0.701 U	9.600 U	18.5 U	5.590 U	1.950 U
Zinc	2,000	32.5	13.8 J	41.8	32.1	17.1 J	18.0 J	28.6	24.1 J	43.7 J	21.7	25.1 U

Qualifiers and Notes

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

SCG - Standards, Criteria & Guldance level (Reference: NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998) Values in **bold** print denote exceedence of SCG.

n/a - Not Applicable (no established standard)

ug/L - Micrograms per Liter

TABLE 11 CLINTON SOUTH PARKING LOT / 314 CLINTON STREET SCHENECTADY, NEW YORK

REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - TAL METALS (DETECTED METALS ONLY)

Sample ID Lab Sample Number Sampling Date Matrix Dilution Factor Units		CTM-12 X3247-04 06/12/06 WATER 1.0 ug/L	CTM-13 X3247-05 06/12/06 WATER 1.0 ug/L	CTM-14 X3247-07 06/12/06 WATER 1.0 ug/L	CTM-15 X3247-06 06/12/06 WATER 1.0 ug/L	CTM-16 X3164-02 06/07/06 WATER 1.0 ug/L	CTM-17 X3164-01 06/07/06 WATER 1.0 ug/L	CTM-18 GW-E X3164-05 06/07/06 WATER 1.0 ug/L	EQUIP.BLANK X3247-01 06/12/06 WATER 1.0 ug/L
COMPOUND	SCG (ug/L)								
Aluminum	100	434	432	32800	383	1040	9090	1160	36.6 J
Antimony	3	3.170 U	3.170 U						
Arsenic	25	3.320 U	5.060 J	32.8	3.320 U	3.320 U	3.320 U	3.320 U	3.320 U
Barium	1,000	74.3 J	430	476	539	26.3 J	120 J	67.3 J	0.723 U
Beryllium	3	0.090 U	0.090 U	1.760 J	0.090 U	0.090 U	0.400 J	0.090 U	0.090 U
Calcium	n/a	135000	273000	379000	328000	16600	95900	55900	54.8 J
Chromium	50	1.120 U	0.560 U	66.7	1.690 U	73.7	93.4	23.9	0.500 J
Cobalt	5	0.370 U	0.370 U	31.8 J	4.700 J	0.370 U	7.540 J	0.370 U	0.370 U
Copper	200	4.590 J	3.830 J	97.5	3.640 U	10.7 J	39.5	9.920 J	3.640 U
iron	300	1330	695	57300	521	1890	19000	2590	27.0 U
Lead	25	2.180 U	2.180 U	30.5	2.180 U	2.180 U	8.690	2.180 U	2.180 U
Magnesium	35,000	14900	30100	74700	25700	4420 J	20900	16300	46.5 J
Manganese	300	521	41.0	1680	37.3	144	810	208	0.106 U
Mercury	0.7	0.05 U	0.03 U	0.26	0.06 U	0.03 U	0.03U	0.03 U	0.05 J
Nickel	100	1.560 U	1.560 U	68.6	4.440 J	34.3 J	53.3	8.520 J	1.560 U
Potassium	n/a	12800	24100	61200	20900	2180 J	5420	6180	467 J
Selenium	10	3.040 U	3.860 J	6.740 J	3.040 U	3.040 U	3.040 U	3.040 U	3.040 U
Sodium	20,000	14700	979000	1320000	1510000	80300 J	94100	66800	2840 J
Thallium	0.5	3.050 U	3.050 U						
Vanadium	14	3.420 U	2.110 U	128	4.310 U	0.701 U	20.8 J	1.100 J	1.230 J
Zinc	2,000	29.6 U	26.4 U	271	24.5 U	22.4	81.9	22.1	20.1

Qualifiers and Notes

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

⁻ For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

SCG - Standards, Criteria & Guidance level (Reference: NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998)
Values in **bold** print denote exceedence of SCG.

n/a - Not Applicable (no established standard)

ug/kg - Micrograms per kilogram

GEOPROBE SUBSURFACE EXPLORATION LOG

BORING NO.: GP-1

ELEV.:

DATUM:

START DATE: 4/25/06 FINISH DATE: 4/25/06

Ĺ				<u>Landaria</u>							
PRO	JECT:	314 C	linton	05.55	551						
LOC.	ATION:	Scher	ectad	y, NY CTM OBSERVER:	N.Fre	een	nan				
<u> </u>											
ĺ	SA	MPLE			ľ						
ОЕРТН (FT.)	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFICATION			NOTES				
	7	1	3.8	4" ASPHALT							
				10" SUB-BASE (Crushed Gravel)	Moist	Ī					
l	/			Brown fine to medium SAND, Some Silt							
4	<u>/</u>										
ļ '	/	2	3.4	Brown fine SAND, Some Silt, trace gravel	1						
					Wet @	app	orox. 7'				
8	<u>Г</u>	3	4.0	Cress CH T and Sing CANID, transportation	14704						
		3	4.0	Gray SILT and fine SAND, trace organics	Wet						
12	<u>/</u>										
	/	4	4.0	Gray fine SAND, Some Silt	Wet						
16											
10				Boring Terminated at 16'	1						
				boiling remainated at 10							
20											
[_											
24					Ì						
					J						
28					1						
<u> </u>											
DDUI	INC CONT	DACTO	ь.	SJB Services Inc. GEOPROBE TYPE: 5400 Truck-Mounted	GROU	UNDI	WATER LEVEL READINGS				
DRILLING CONTRACTOR: SJB Services Inc. GEOPROBE TYPE: 5400 Truck-Mounted METHOD OF SAMPLING: 2" by 4" Macrocore Sampler DATE LEVEL REFERENCE MEASURING POINT											
L] ——						
THE S	SUBSURF	ACE INI	ORMA	TION SHOWN HEREON WAS OBTAINED FOR C.T. MALE							
ASSE	SSMENT	PURPO	SES. I	T IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY							
				SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN	I		LASSIFICATION BY:				
				'ENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION THORIZED USERS.	N. Fre	eenta	ın				

GEOPROBE SUBSURFACE EXPLORATION LOG

BORING NO.: GP2

ELEV.:

DATUM:

START DATE: 4/25/06 FINISH DATE: 4/25/06

PRO	JECT:	314 C	linton	Street CTM PROJECT NO.:	CT NO.: 05.5551					
LOC	ATION:	Scher	nectad	y, NY CTM OBSERVER:	N. Free	eman				
	Si	AMPLE								
ОЕРТН (FT.)	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFICATION	NOTES					
	7	1	3.3	10" ASPHALT and SUB-BASE						
4				Light Brown fine SAND and SILT	Moist					
		2	3.7							
8				7' becomes Brown fine to coarse SAND, trace silt	Wet @ 7	71				
		3	3.5	Gray fine SAND, Some Silt	Wet					
<u>12</u>	<u> </u>	4	3.8	Brown fine to coarse SAND, trace silt						
<u>16</u>				14' to 14.5' , Course SAND seam becomes Gray fine SAND, Some Silt Boring Terminated at 16'	Wet					
<u>20</u>				boring Ternimated at 16						
24										
28										
20										
DDII I	INIC CONT	DAGTO	Б.	SJB Services Inc. GEOPROBE TYPE: 5400 Truck-Mounted	GROUN	IDWATER LEVEL READINGS				
	ING CONT OD OF SA			DATE LEVI	EL REFERENCE MEASURING POINT					
		1110								
THE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE										
	SSMENT									
GOO	D FAITH, E	BUT IS N	TOI TO	SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN ENDED AS A SUBSTITUTE FOR INVESTIGATIONS, IENT OF SLICH AUTHORIZED USERS	SAMPLE CLASSIFICATION BY: N. Freeman					
THE PROPERTY OF	The second secon	and the same of the same of	THE RESERVE OF THE PARTY OF THE		CONTRACTOR OF THE PARTY OF THE					

GEOPROBE SUBSURFACE EXPLORATION LOG

BORING NO.: GP3

ELEV.:

DATUM:

START DATE: 4/25/06 FINISH DATE: 4/25/06

PRO.	JECT:	314 C	linton	05.5	5551							
LOCA	ATION:	Scher	ectad	y, NY CTM OBSERVER:	<u>N. 1</u>	Freen	nan					
		AMDLE										
ОЕРТН (FT.)	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFICATION	SIFICATION NOTES							
	/	1	3.2	10" ASPHALT and SUB-BASE (Coarse gravel and sand)								
_4				Brown fine to coarse SAND, trace silt	moi	st						
o		2	4.0	Brown SILT and fine SAND	TAYOU	at 8¹						
_8	/	3	3.8	Gray fine to coarse SAND, trace silt	Wet							
12				becomes Brown fine to coarse SAND, trace silt	Moi	st						
		4	4.0		TAY							
<u>16</u>					Wet							
				Boring Terminated at 16'								
20		<u> </u>										
			·									
24												
28												
DRILLI	NG CONT	RACTO	 R:	SJB Services Inc GEOPROBE TYPE: 5400 Truck-Mounted			WATER LEVEL READINGS					
	DD OF SA			DATE	LEVEL	REFERENCE MEASURING POINT						
						 						
THE S	SUBSURF	ACE IN	FORMA	TION SHOWN HEREON WAS OBTAINED FOR C.T. MALE								
				T IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN								
GOOD	HAVE AC D FAITH, I JDGMEN	BUT IS I	1 OAMI LE CENSON IOANON DI.									

GEOPROBE SUBSURFACE EXPLORATION LOG

BORING NO.: GP4

ELEV.:

DATUM:

START DATE: 4/25/06 FINISH DATE: 4/25/06

PRO	JECT:	314 C	linton	05.5551						
LOC	ATION:	Scher	nectad	y, NY CTM OBSERVER:	N. Freeman					
	SA	MPLE	Т							
ОЕРТН (FT.)	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFICATION	NOTES					
		1	2.8	3" ASPHALT, 4"Sub-BASE (crushed gravel)						
_4		2	3.5	Brown fine to medium SAND, Some Silt	Wet					
		2	3.5	Gray fine to coarse SAND, trace silt	yyet					
				7' to 7.5' Gray SILT						
-8	/	3	4.0	becomes Gray fine SAND, Some Silt Gray fine to coarse SAND, trace silt, little fine gravel	Moist Wet					
			1.0							
12				becomes Brown fine SAND, Some Silt						
		4	4.0	Gray fine to coarse SAND, trace silt	Wet					
16										
				Boring Terminated at 16'						
<u>20</u>										
24			ļ							
28										
	<u> </u>	<u></u>	1							
י ווסח	INIC CONT	PACTO	D.	SJB Services Inc GEOPROBE TYPE: 5400 Truck-Mounted	GROUNDWATER LEVEL READINGS					
DRILLING CONTRACTOR: SJB Services Inc GEOPROBE TYPE: 5400 Truck-Mounted METHOD OF SAMPLING: 2" by 4' Macrocore Sampler DATE LEVEL REFERENCE MEASURING POINT										
1				TION SHOWN HEREON WAS OBTAINED FOR C.T. MALE						
				FIS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN	SAMPLE CLASSIFICATION BY:					
GOO	D FAITH, E	BUT IS I	SAMPLE CLASSIFICATION BY: N. Freeman							

GEOPROBE SUBSURFACE EXPLORATION LOG

BORING NO.: GP-13

ELEV.:

DATUM:

START DATE: 5/2/06 FINISH DATE: 5/2/06

PRO	JECT:	314 C	lintor	n Street CTM PROJECT NO.:	: 05.5551
LOC	ATION:	Scher	nectad	ly, NY CTM OBSERVER:	: N.Freeman
	S/	AMPLE		4	
ОЕРТН (FT.)	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFICATION	NOTES
		1	3.0	7" ASPHALT, trace red brick	
4				Brown fine to coarse SAND, Some Silt	Moist
8		2	3.8	Brown SILT and fine SAND	Moist
12		3	3.6	Brown fine to coarse SAND, Some Silt	Moist
		4	4.0		Wet
16, 20		5	4.0	becomes Gray SILT and fine SAND	Wet
24					
	: : :				
28	:				
 					GROUNDWATER LEVEL READINGS
ì	ING CONT OD OF SA			SJB Services Inc GEOPROBE TYPE: 5400 Truck-Mounted 2" by 4' Macrocore Sampler	DATE LEVEL REFERENCE MEASURING POINT
ASSES MAY F GOOD	SSMENT HAVE ACC D FAITH, E	PURPC CESS T BUT IS I	OSES. I TO THE NOT IN	ATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN ITENDED AS A SUBSTITUTE FOR INVESTIGATIONS, MENT OF SUICH AUTHORIZED USERS	SAMPLE CLASSIFICATION BY: N. Freeman

INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED USERS

GEOPROBE SUBSURFACE EXPLORATION LOG

BORING NO.: GP-14

DATUM:

ELEV.:

START DATE: 5/2/06

SHEET 1 OF 1

FINISH DATE:5/2/06

PRO	JECT:	314 C	lintor	n Street CTM PROJECT NO.:	05.5551							
LOC.	ATION:	Scher	nectad	.y, NY CTM OBSERVER:	TM OBSERVER: N.Freeman							
	<u>-</u>	AMPLE		Т	T							
		ANIT LL		1								
рертн (ғт.)	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFICATION	NOTES							
		1		6" CONCRETE (sidwalk)								
4					Moist							
		2	4.0	1	Moist							
8												
		3	4.0	1	1							
12				Grades Brown fine to coarse SAND, trace silt	Moist							
		4	3.0	Brown fine SAND and SILT	Wet							
16				DIOWITING DIAND MINORES	Wet							
		5	4.0	becomes Gray SILTY CLAY	Wet							
20	V'	1!	1′		4							
				Boring Terminated at 20'								
<u>24</u>		<u></u> '	<u> </u>	!								
28		1 1	1 '	!								
=												
	- 2015				GROUNDWATER LEVEL READINGS							
	ING CONT IOD OF SA			SJB Services Inc GEOPROBE TYPE: 5400 Truck-Mounted 2" by 4' Macrocore Sampler	DATE LEVEL REFERENCE MEASURING POINT							
lVI⊏												
TUE 5	CLIBGLIBE	-VCE IV.	IEORM/	ATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE								
	ASSESSMENT PURPOSES. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY											
MAY I	HAVE ACC	CESS T	O THE	SAME INFORMATION AVAILABLE TO C.T.MALE, IT IS PRESENTED IN	SAMPLE CLASSIFICATION BY:							
				ITENDED AS A SUBSTITUTE FOR INVESTIGATIONS,	N. Freeman							

GEOPROBE SUBSURFACE EXPLORATION LOG

BORING NO.: GP-15

ELEV.:

DATUM:

START DATE: 5/2/06

FINISH DATE: 5/2/06

PRO	JECT:	314 C	linton	Street CTM PROJECT NO.:	O.: 05.5551				
LOC	ATION:	Scher	ıectad	y, NY CTM OBSERVER:	OBSERVER: N.Freeman				
	SA	AMPLE	T						
ОЕРТН (FT.)	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFICATION	NOTES				
		1	2.0	8" ASPHALT and CONCRETE					
4				Brown fine to coarse SAND, Some Silt	Moist				
8		2	3.4		Moist				
		3	3.6	Brown fine to medium SAND, Some Silt, trace gravel	Wet				
12		4	4.0	Brown fine to coarse SAND, trace silt					
16				Grades Brown fine SAND and SILT	Wet				
		5	4.0	Grades Gray SILT, Some fine Sand	Wet				
<u>20</u>	<u> </u>			Boring Terminated at 20'					
				bornig fernunated at 20					
24									
28									
				SJB Services Inc GEOPROBE TYPE: 5400 Truck-Mounted	GROUNDWATER LEVEL READINGS				
1	ING CONT IOD OF SA			DATE LEVEL REFERENCE MEASURING POINT					
<u> </u>									
	SUBSURF								
MAY	ESSMENT HAVE AC D FAITH, I	CESS T	O THE	SAMPLE CLASSIFICATION BY: N. Freeman					

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-16

ELEV.:

DATUM:

START DATE: 5/16/06 FINISH DATE: 5/19/06

PROJ	JECT	:	314 (.: 05.5551										
LOCA	1OITA	N:	Sche	necta	idy, N	ίΥ			CTM INSPECTOR:	.: N. Freeman				
	SAM	MPLE	В	<u>_ows</u>	ONS	SAMPL	.ER	<u> </u>						
ОЕРТН (FT.)	TYPE	NO.				3 18/24		RECOVERY	SAMPLE CLASSIFICATION	NOTES				
	-		+	<u> </u>	-			+-						
	ſ		_						Direct Auger to 20' bgs					
1									1					
	, ,	<u> </u>					<u> </u>							
5	. 1					<u> </u>	<u> </u>	<u> </u>	١ .					
		<u> </u>		Ĺ'	<u></u> '	Ĺ'	Ĺ'	<u> </u>						
	, ,		<u></u> '	<u> </u>	<u> </u>	<u> </u>	<u> </u>		-					
.				1	<u></u>	<u> </u>	 '	4	1	1				
10	. 1	<u> </u>	 			 '	1-		١,					
10	. ,		 	 	 	 	 	+	4					
<i>i</i>	. 1		 	 		 	 '		4					
	J		 	1	 			+	4					
i		-	+		 	 		+	4					
15			+	 	+	 	1	+'	4					
=	}		+	 	+-	 	+	+	4					
.	•	—	 	 	+		_	+	1					
	. •		+-	1-	+	-		+	1					
<i>i</i>	t		+		 			+	1					
20	, ,		 	 	 	 	\vdash	 	1					
	1	1	2	1	1	1	2	1.7	Gray SILT, trace fine sand	Wet				
	/_	<u> </u>			<u> </u>				,	,,,,,				
, [7	2	10	3	3	6	6	1.5	Gray fine SAND, Some Silt	1				
	/_!		_						(Brown fine to coarse SAND at tip)					
25	1	3	11	2	2	1	4	1.4	,					
1														
.	/	4	6	1	2	4	3	1.0						
ı K			<u></u> '	<u>'</u>	<u></u> '	'ـــــــــــــــــــــــــــــــــــــ	/ــــــــــــــــــــــــــــــــــــ	<u>'</u>	1					
20	/1	5	7	2	1	2	3			6" Collapse				
30				Щ'	<u>'</u>	<u> </u>	<u> </u>	'ـــــــــــــــــــــــــــــــــــــ	little coarse gravel	Sheen noted on sample water				
N = NO	OFP	NO IS	TO DE	211/F 2"	'SAMP'	FR 12	- WITH	A 140	LB. WT. FALLING 30" PER BLOW	GROUNDWATER LEVEL				
DRILLIN						ervices Ir		A	DRILL RIG TYPE: CME 75	READINGS				
METHO								ilow Ste	em Augers with 2"x2' Split Spoon Sampler	DATE LEVEL CASING STABILIZATION TIM				
										<u></u>				
									AS OBTAINED FOR C.T. MALE DESIGN					
									SERS ONLY THAT THEY MAY HAVE ACCESS TO IS PRESENTED IN GOOD FAITH, BUT IS NOT					
									· · · · · · · · · · · · · · · · · · ·	SAMPLE CLASSIFICATION BY:				
	NTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH N. Freeman													

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-16

ELEV.:

DATUM:

START DATE: 5/16/06 FINISH DATE: 5/19/06 SHEET 2 OF 4

	.,													
PRO	PROJECT: 314 Clinton Street CTM PROJECT No.													
LOC	ATIOI	N:	Sche	necta	dy, N	Y			CTM INSPECTOR:	N. Fr	reen	nan	·	
													_	
	SAM	1PLE	BL	.ows	ON S	AMPL	ER							
БЕРТН (FT.)	гүре	NO.	0/6	6/12	12/18	18/24	SAMPLE CLASSIFICATION	NOTES						
	7	6	1	1	2	4	3	FECOVERY	Brown fine to coarse SAND, trace silt	Wet Running San				
			-										Ü	
ĺ	7	7	2	1	2	4	3	1.0						
1														
35	7	8	WR	2	3	3	5	0.8						
 	7	9	2	2	3	5	5	1.4						
1										-				
		10	3	2	2	3	4	1.4	grading to brown fine to medium SAND,	Wet				
40									Some Silt					
		11	3	1	1	1	2	2.0	Brown fine SAND, Some Silt	Wet				
•	\Box	12	WR	2	3	3	5	1.8	Gray fine SAND, Some Silt	Wet				
45														
45		13	2	3	3	4	6	1.8	grading to Brown fine to medium SAND,					
									trace silt	1				
		14	WR	1	2	4	3	2.0	Brown fine to coarse SAND, trace silt	Wet				
		15	WR	1	3	4	4	1.6		1	_		rillers wash	
50	<u>/</u>									out be	oring	3		
ł		_16	WR	WR	2	3		2.0						
	<u> </u>		<u> </u>	ļ				<u> </u>						
		17	1	1	2	5	3	1.9						
l	<u>/_</u> ,			<u></u>										
55		18	1	1	2	5	3	2.0						
	K		1477.7	7177				1.0		-				
		_19	WH	WH	1	4		1.8						
		20	<u> </u>			17	0	2.0	grades to Brown fine SAND, Some Silt	Wet				
60		20	2	2	6	17	8	2.0	grades to brown time SAND, Some Sitt	IVVEL				
00	/		<u> </u>	<u> </u>	<u></u>	<u> </u>		L		<u> </u>				
N = N0), OF B	LOWS	TO DR	IVE 2"	SAMPL	ER 12"	WITH	A 140	LB. WT. FALLING 30" PER BLOW		GROU	JNDWA	TER LEVEL	
N = NO. OF BLOWS TO DRIVE 2" SAMPLER 12" WITH A 140 LB. WT. FALLING 30" PER BLOW DRILLING CONTRACTOR: SJB Services Inc. DRILL RIG TYPE: CME 75											EVEL	READI		
METHOD OF INVESTIGATION: 4.25-Inch Hollow Stem Augers with 2"x2' Split Spoon Sampler											EVEL	CASING	\$TABILIZATION TIME	
										1-				
									S OBTAINED FOR C.T. MALE DESIGN					
8									SERS ONLY THAT THEY MAY HAVE ACCESS TO					
									S PRESENTED IN GOOD FAITH, BUT IS NOT FERPRETATION OR JUDGMENT OF SUCH	1			ICATION BY:	
1	ITENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH UTHORIZED USERS.										N. Freeman			

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-16

ELEV.:

DATUM:

START DATE: 5/16/06 FINISH DATE: 5/19/06

SHEET 3 OF 4

<u></u>											
PRO	JECT	:	314 (Clinto	: 05.5551						
LOC	IOITA	N:	Sche	necta	dy, N	Y			CTM INSPECTOR:	N. Freeman	
<u></u>											
	SAM	/PLE	BL	OWS	ON S.	AMPL	ER	<u> </u>		,	
ОЕРТН (FT.)	ΥPE	100	0/6	6/42	42/40	SAMPLE CLASSIFICATION	NOTES				
ــقــ	لرشا	NO.			12/18			RECOVERY	C I CAND trace cilt	Irry	
	1/1	21	2	4	8	12	12	2.0	Brown fine to medium SAND, trace silt	Wet, running sand drillers	
,	\leftarrow	1 22	5	5	6	9	11	+	Come Canal Canal Cilt	wash out boring	
!	/	22	13	5	Ь	9	11	2.0	Gray fine SAND, Some Silt	Wet	
65	\vdash	23	6	8	7	13	15	2.0	-	Wash out boring	
	/	40	+ -	-	 ´	15	10	2.0	4	Wash out bornig	
!	\vdash	24	4	5	9	17	14	2.0	-		
'	/	24	+ +	+-	-	17	14	2.0	-		
!	\vdash	25	7	8	9	9	17	2.0	-		
70	/		+-	-	"	-	1/	2.0	-	Wash out boring	
70	 	26	5	7	8	10	15	2.0	4	Wash out borning	
•	/	20	+	 	-	10	10	2.0	-		
•	\vdash	27	6	6	7	9	13	1.7	-		
	/	-21	+ -	+-	+	 	10	1.,	1		
<i>7</i> 5	\vdash	28	2	1 2	3	7	5	2.0	Gray fine to coarse SAND, trace silt,	Wet	
-	//	<u> </u>	+-	 -	+	 	 	 	little fine gravel	1	
1	\vdash	29	5	9	16	21	25	1.5	Gray fine to coarse SAND, trace silt,		
	/		 	 ´	1		-	+	little fine to coarse gravel		
1	\vdash	30	1	3	6	17	9	1.0	fittie inie to coarse graver	Wash out boring	
80	/ '	- 50	+-	ا ٽ	╁┷		 	1.0	1	Wash out borning	
	\vdash	31	6	13	25	18	38	2.0		4	
•	//	- 	 	 		 		+	1		
ļ	\vdash	32	2	4	6	17	10	2.0	Gray fine SAND and SILT	Wet	
			+-	+	ٺ	1	10	12.0	Gray The Orn vD and Orbi	, vvet	
85	\vdash	33	6	7	9	11	16	2.0	1		
l —	/		+	 	+	<u> </u>	—	-			
1	$\overline{}$	34	6	4	7	10	11	2.0	becomes Gray SILT, Some Clay at sample tip	†	
'	/ '		-	 	 	 		 	1		
•		35	7	9	13	15	22	2.0	Gray SILT, Some fine Sand		
90			1	 		 		†	1		
							<u> </u>				
N = NO). OF B	LOWS	TO DF	RIVE 2"	SAMPI	ER 12'	'WITH	A 140	LB. WT. FALLING 30" PER BLOW	GROUNDWATER LEVEL	
1			ACTOR:		SJB Ser	rvices It			DRILL RIG TYPE: CME 75	READINGS DATE LEVEL CASING STABILIZATION TIME	
METHOD OF INVESTIGATION: 4.25-Inch Hollow Stem Augers with 2"x2' Split Spoon Sampler											
	-								S OBTAINED FOR C.T. MALE DESIGN		
									SERS ONLY THAT THEY MAY HAVE ACCESS TO IS PRESENTED IN GOOD FAITH, BUT IS NOT	SAMPLE CLASSIFICATION BY:	
INTE	NDED A	AS A S	SUBSTI							1	
AUTH	INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED USERS. N. Freeman										

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-16

ELEV.:

DATUM:

START DATE: 5/16/06 FINISH DATE: 5/19/06

SHEET 4 OF 4

								CTM PROJECT NO.:	O.: <u>05.5551</u>					
LOC	ATIO	N:	Sche	necta [,]	dy, N	<u>Y</u>			CTM INSPECTOR:	N. Fre	eem	an		
	SAN	MPLE	Тві	OWS	ON S	SAMPLI	ER	T				wines and the second		
DЕРТН (FT.)	ГУРЕ							RECOVERY	SAMPLE CLASSIFICATION			NOT	ES	
٦	F	NO. 36	0/6 9	6/12 9	12/18 12	18/24 16	N 21	2.0	Gray SILT, Some fine Sand	Wet	human	Marian Landon		
	4] ^					ā
	/	37	9	12	13	16	25	2.0	Gray SILT and fine SAND	Wet				
95 —		38	14	12	11	25	23	2.0		Wash	out l	boring		
'		39	7	8	13	15	21	1.8	-					
	40 6 8 10 10 18 2.0													
100	/	40	0		10	10			-					
		41	5	7	8	16	15	2.0						
1		42	5	5	8	10	13	2.0	Gray SILT, Some Clay, little fine sand	1				
105	\vdash	 	 	├—		 '		├—	Boring Terminated at 104'	-				
									Ĭ					
!		-	 	 	 			 	-					
110														
110		-	 	 	 			 		1				
'					<u></u>			<u> </u>						
115														
		<u> </u>						F						
120														
N = NC	D. OF B	3LOWS	TO DF		SAMPI	 ∟ER 12'	" WITH	A 140	LB. WT. FALLING 30" PER BLOW	G	ROU	NDWA	TER LEV	/EL
1	ING CO					rvices Ir		" Gb	DRILL RIG TYPE: CME 75	DATE LE		READII CASING	NGS \$TABILIZAT	ION TIME
METHOD OF INVESTIGATION: 4.25-Inch Hollow Stem Augers with 2"x2' Split Spoon Sampler										\Box				
									S OBTAINED FOR C.T. MALE DESIGN SERS ONLY THAT THEY MAY HAVE ACCESS TO		\exists		 	
THE S	PURPOSES. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED USERS.									SAMPL N. Fre			ICATION	BY:

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-17

ELEV.:

DATUM:

START DATE: 5/22/06 FINISH DATE: 5/25/06

PRO.	JECT	:	314 Clinton Street CTM PROJECT N).: <u>05.5551</u>				
LOCA	ATIOI	N:	Sche	necta	dy, N	Y			CTM INSPECTOR:	<u>N. F</u>	reem	nan			
 	T 241		T DI	2140	~110	••••		Т	T	1					
	SAIV	APLE	BL	LOWS	ON S	AMPL	ER T	 	4						
ОЕРТН (FT.)	гүрЕ	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION			NOT	ES		
	<u> </u>	110.		- O,	, 2.,	10,2	<u> </u>	<u> </u>		-		haman surveyarensis	E		
									Direct Auger to 20' bgs						
اِ		<u> </u>	ļ	<u> </u>	ļ'	<u> </u>	<u> </u>	↓	1						
5 —			 	 	-	 -		 	4	l					
			 	├—		 	 	├	4						
		 	┼──	├	\vdash	 	 	├─	4						
		 	+	 	-	\vdash	 	 	1						
10	1		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1						
	1 1	_		<u> </u>	T			T	1						
'	'								1						
	'				<u> </u>]						
	1		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	1						
15 —	1	<u> </u>	<u> </u>	—	<u> </u>	<u> </u>	<u> </u>	↓	4	1					
'	'	<u> </u>	—	 	—	 	├	├—	-1	į.					
	'	<u> </u>	┼─	├	┼	 	 	├—	4						
'		 	-	┼─	 	 	-	 	1						
20	'		+	 	 	 	 	+-	1						
	1	1	3	1	1	2	2	1.4	Gray SILT, Some fine Sand, trace clay	Wet					
'	V_		<u> </u>	<u> </u>	<u> </u>			T	1						
]						
_!]						
25	 	ــِــا				 '	 			┦					
1	//	2	8	4	1	2	5	1.6	Brown fine SAND and SILT	Wet					
	<u> </u>	 	+	 	 	 		┼—	4						
	'		+	 	-	+	 	+	4						
30			 	+	-	\vdash	 	 	1						
1								A 140	LB. WT. FALLING 30" PER BLOW		GROL	UNDWA	TER LEVEL		
			ACTOR:		SJB Se	4 25 In		* - GL	DRILL RIG TYPE: CME 75	DATE	LEVEL		NGS STABILIZATION TIME		
METHOD OF INVESTIGATION: 4.25-Inch Hollow Stem Augers with 2"x2' Split Spoon Sampler															
THE	ei irst		'E INFC		ION SE		uere(N WA	AS OBTAINED FOR C.T. MALE DESIGN	 	 	 	 		
PURP	OSES	. IT IS	MADE	AVAIL	ABLE	TO AUT	THORIZ	ZED US	SERS ONLY THAT THEY MAY HAVE ACCESS TO		<u> </u>				
THE SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH											CATION BY:				
INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED USERS.										N. Freeman					

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-17

ELEV.:

DATUM:

START DATE: 5/22/06 FINISH DATE: 5/25/06

SHEET 2 OF 4

										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
PRO	JECT	:	314 (linto	n Stre	et			CTM PROJECT NO.:	05.5551		
LOC	OITA	۷:	Sche	necta	dy, N	<u>Y</u>			CTM INSPECTOR:	N. Free	eman	
$\overline{}$	SAM	PLE	BL	.OWS	ON S	AMPLI	ER	<u> </u>				
ОЕРТН (FT.)	TYPE	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION		ТОИ	ES
		3	WR	WR	WR	WR		0.4	Brown fine to coarse SAND, little silt	Wet		
35		4	7	5	4	6	9	2.0	Brown fine to coarse SAND, little silt and fine to	COarse	ravol	
					1		,	2.0	grading Brown fine SAND, Some Silt	Wet	,ravci	
40						_						
		5	WR	2	3	4	5	2.0		ł		
	\angle											
45							•					
		6	1	4	5	6	9	2.0				
	-											
50		7	3	3	5	6	8	2.0	Brown fine to coarse SAND, trace silt	Wash or Wet	ut boring	
			-	<u> </u>	J	-	0	2.0	brown file to coarse SAND, trace sit	IVVEL		
55												
_	7	8	5	5	6	12	11	2.0				
60												
N = NC), OF B	LOWS	TO DR	IVE 2"	SAMPI	ER 12"	WITH	A 140	LB. WT. FALLING 30" PER BLOW	GR	OUNDWA:	TER LEVEL
DRILLING CONTRACTOR: SJB Services Inc. DRILL RIG TYPE: CME 75								DATE LEVE	READI			
METH	OD OF	INVES	TIGATI	ON:		4,25-In	ch Holl	ow Ste	m Augers with 2"x2' Split Spoon Sampler		5,3110	TOTAL TIME
THE S	SUBSU	RFACI	E INFO	RMATI	ON SH	OWN H	HEREC	N WAS	S OBTAINED FOR C.T. MALE DESIGN			
PURP	JRPOSES. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT TENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH							SERS ONLY THAT THEY MAY HAVE ACCESS TO	O SAMPLE CLASSIFICATION BY:			
INTEN		SAS	UBSTI						•	N. Free		CATION BY:

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-17

ELEV.:

DATUM:

START DATE: 5/22/06 FINISH DATE: 5/25/06

SHEET 3 OF 4

PRO.	JECT	:	314 (Clinto	on Stre	eet			CTM PROJECT NO.	: 05.55	551		
LOC/	1OITA	N:	Scher	necta	dy, N	<u>Y</u>			CTM INSPECTOR	: <u>N. Fr</u>	reem	an	
	SAN	MPLE	T BI	OWS	ON S	SAMPLI	FR	T	T	T			
DEPTH (FT.)	ZAINI ZAINI	NO.	0/6		12/18			RECOVERY	SAMPLE CLASSIFICATION			NOTI	ES
<u> </u>		9	5	9	10	16	19		Brown fine to medium SAND, Some Silt			sh out b and roll	boring with ller bit
<u>65</u>		10	WR	3	7	10	9	2.0	Brown and Gray fine SAND, Some Silt	Wet			
<u>70</u>		11	7	15	23	31	38	2.0	Brown fine to medium SAND, trace silt (light to dark brown layering noticed)			sh out b and roll	boring with ller bit
<u>75</u>		12	WḤ	WH	2	3		0.9	Gray fine to medium SAND, trace silt becomes Gray fine to coarse SAND, trace fine to coarse gravel	Wet			
80		13	7	10	30	52	40	2.0	Gray fine to coarse SAND, Some fine to medium Gravel	Wet			
<u>85</u>		14	WH	10	30	40	40	2.0	Gray SILT, Some Clay becomes gray SILT and fine SAND				
90									1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
DRILLI METH(ING CO OD OF	ONTRA INVES	ACTOR: STIGATI	ION:	SJB Sei	ervices Ir 4.25-In	Inc. nch Hol	llow Ste	D LB. WT. FALLING 30" PER BLOW DRILL RIG TYPE: CME 75 em Augers with 2"x2' Split Spoon Sampler			READIN	TER LEVEL NGS \$TABILIZATION TIME
PURP THE S INTEN	POSES. SAME II NDED A	. IT IS INFOR	S MADE RMATION SUBSTIT	AVAIL N AVAI	LABLE 1	TO AUT E TO C.	THORIZ .T.MAL	ZED US .E. IT IS	AS OBTAINED FOR C.T. MALE DESIGN ISERS ONLY THAT THEY MAY HAVE ACCESS TO IS PRESENTED IN GOOD FAITH, BUT IS NOT ITERPRETATION OR JUDGMENT OF SUCH	1	PLE CL		CATION BY:

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-17

ELEV.:

DATUM:

START DATE: 5/22/06 FINISH DATE: 5/25/06

SHEET 4 OF 4

PRO	JECT	Γ:	314 (Clinto	on Stre	eet			CTM PROJECT NO.:	: 05.5	5551		
LOC.	IOITA	N:	Sche	necta	dy, N	Y			CTM INSPECTOR:	: <u>N. F</u>	?reen	nan	
<u> </u>													
	SAM	MPLE	BL	<u>.ows</u>	ON S	AMPL!	.ER	<u> </u>	4				
DEPTH (FT.)	ГҮРЕ	NO.	0/6	6/12	12/18	19/24	1 N	RECOVERY	SAMPLE CLASSIFICATION			NOT	ES
	المسلم	NO. 15	4	6/12	12/18	18/24	12		Gray SILT and fine SAND	Drill	lor fli	-ab out	boring with
05		IU	3	£-	10	10	1-	1.0	Gray SIL1 and time SAIVE		Rods	ush out t s and rol	-
95 —	<u> </u>	ــِـــل	厂		ٰ لِيَا	'ــِــــــــــــــــــــــــــــــــــ	جِــَــ	ل ِــِــ	」	1			
	4	16	8	17	19	23	36	1.8	Gray SILT, Some fine Sand	Wet			
100													
	/	17	5	11	13	15	24	1.7					
	$\vdash \vdash$	18	WR	4	6	2	10	1.5		1			
	/		H	 	 			<u> </u>	becomes Gray SILT and CLAY				
1 <u>05</u>									Boring Terminated at 104'				
110									- -				
115									-	- Control of the Cont			
									- - -				
	1 1	-	+	 -		\vdash		 	1				
120	'								1	<u> </u>			
N = NC	OFF	21 01/15	- TO DE	71\/E 2"	CAMPI	FD 12	"\^//TH	140	LB. WT. FALLING 30" PER BLOW	Т	<u> </u>	ΙΝΙΟΝΛΙΔ΄	TER LEVEL
			S TO DR ACTOR:			rvices Ir	DRILL RIG TYPE: CME 75			READIN	NGS		
			STIGATI					em Augers with 2"x2' Split Spoon Sampler	DATE	LEVEL	CASING S	STABILIZATION TIME	
									AS OBTAINED FOR C.T. MALE DESIGN				
THE S	SAME II	INFORI AS A S	RMATION SUBSTIT	N AVAI	ILABLE	E TO C.	T.MALI	E. IT 18	SERS ONLY THAT THEY MAY HAVE ACCESS TO S PRESENTED IN GOOD FAITH, BUT IS NOT TERPRETATION OR JUDGMENT OF SUCH	ı	PLE CI Freem		CATION BY:

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-18

ELEV.:

DATUM:

START DATE: 5/30/06 FINISH DATE: 6/1/06

PRO	JECT	:	314 (Clinto	n Stre	et			CTM PROJECT NO.:	05.5	551		
LOC	10ITA	N:	Sche	nectac	dy, N	Y			CTM INSPECTOR:	<u>N. F</u>	reem	ıan	
								===					
	SAM	/PLE	BL	_OWS	ON S	AMPLE	ER '	'	<u></u>				
ОЕРТН (FT.)	ТҮРЕ	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION			NOT	ES
									70112		***************************************	***************************************	C
		 '	 	├ ──′	\vdash		 '	 '	Direct Auger to 20' bgs				İ
	1			-		\vdash		 	1				
5	1					<u> </u>		<u> </u>	1				
-	[[1				1
	1			<u>'</u>									
'		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 '	1				
10	1 1	<u>'</u>	<u> </u>	 '	 	₩	<u> </u>	 					
10	1		 	-	 '	 '	 	 	١ '				
'	1		 	 				-	· · · · · · · · · · · · · · · · · · ·				
'		 		 	 	 		 	1				
'	1			+-		 	 	+	1				
15	1	Г	 	\vdash		<u> </u>		+-	1				
-	'							<u> </u>	1				
']				
!	1	<u> </u>]				
20	'		<u> </u>	<u> </u>	Ĺ'		<u> </u>	<u> </u>]				
20	 	 _	 	 '	 	لــِـــا	 '	ļ'		<u> </u>			
	1/1	1	4	2	1	2	3	1.1	Gray SILT and fine SAND, trace clay	Wet			
	\vdash		 	 	 '		 	 	1				
'	'		 	 '	 '	┼──'	 	 	١ '				
25	, !	-		-	 	+	\vdash	 	1				
-		2	2	1	1	4	2	1.0	1				
'	V_'		<u> </u>	<u> </u>					becomes Brown fine to coarse SAND,	1			
l '	'								trace silt	Wet			
]				
30	<u> </u>	<u> </u>		<u> </u>	<u> </u>	'	<u></u> '	<u></u>					
N = N	OF F	- OWS	TO DE	2IVE 2"	CAMP	CR 12	" WITH	Δ 140	LID MIT EALLING 30" PER RI OW	T	GROL	INDWA'	TER LEVEL
1	= NO. OF BLOWS TO DRIVE 2" SAMPLER 12" WITH A 140 LB. WT. FALLING 30" PER BLOW RILLING CONTRACTOR: SJB Services Inc. DRILL RIG TYPE: CME 75								DRILL RIG TYPE: CME 75	L		READI	NGS
	IOD OF							low Ste	em Augers with 2"x2' Split Spoon Sampler	DATE	LEVEL	CASING S	\$TABILIZATION TIME
L										 		 	<u> </u>
									S OBTAINED FOR C.T. MALE DESIGN				
									SERS ONLY THAT THEY MAY HAVE ACCESS TO IS PRESENTED IN GOOD FAITH, BUT IS NOT	I SAMI	DIEC	, vediti	ICATION BY:
INTE	NDED A	AS A S	SUBSTI						TERPRETATION OR JUDGMENT OF SUCH		Freem		CATION 51.
AUTH	HORIZE	∠D USF	-RS.						, , , , , , , , , , , , , , , , , , ,				

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-18

ELEV.:

DATUM:

START DATE: 5/30/06 FINISH DATE: 6/1/06

SHEET 2 OF 4

											=		
PROJE	ECT:		314 (linto	n Stre	et			CTM PROJECT NO.:	: 05.5	5551		
LOCAT	fion:	:	Scher	necta	dy, N`	<u>Y</u>			CTM INSPECTOR:	: <u>N. F</u>	reen	nan	
	SAMP	LE	BL	.ows	ON S	AMPLE	ER			Ī	_		
DEPTH (FT.)	ΓΥΡΕ	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION			NOT	ES
	-	3	1	3	4	3	7		Brown fine to coarse SAND, trace silt	Wet		ger and the second second	
35	1	4	1	1	1	1	2	1.5	little coarse gravel	YVec			
40	1	-					-	1.0	inthe coarse grave.				
45	7-	5	WR	WR	1	4		1.2	Brown fine to coarse SAND, trace silt	Wet			
	4	6	4	1	4	6	5	2.0	• • •		sh out den ho	t boring ose	with
50	1	7	3	4	3	5	7	1.0	† • • •		sh out den ho	t boring ose	with
55	1	8	1	1	4	8	5	1.7	grades Brown fine SAND, Some Silt		den ho	boring	with
601			<u> </u>	<u></u>	Щ	'	Щ_		<u> </u>	Щ			
N = NO. C DRILLING						LER 12" ervices Ir		A 140	DEB. WT. FALLING 30" PER BLOW DRILL RIG TYPE: CME 75	DATE 1		READII	TER LEVEL
METHOD) OF IN	IVES	TIGATI	ON:		4.25-In	ch Hol	low Ste	em Augers with 2"x2" Split Spoon Sampler		LEVEL	LASING	STABILIZATION T
PURPOS THE SAM	SES. I ME INF DED AS	IT IS IFORI S A SI	MADE MATION SUBSTIT	AVAIL	ABLE T	TO AUT E TO C.	THORIZ .T.MALI	ZED US .E. IT IS	AS OBTAINED FOR C.T. MALE DESIGN SERS ONLY THAT THEY MAY HAVE ACCESS TO IS PRESENTED IN GOOD FAITH, BUT IS NOT TERPRETATION OR JUDGMENT OF SUCH	1	IPLE C		CICATION BY:

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-18

ELEV.:

DATUM:

START DATE: 5/30/06 FINISH DATE: 6/1/06

SHEET 3 OF 4

PRO	JECT	:	314 (Clinto	n Stre	et			CTM PROJECT NO.	: 05.5	551		
LOC	OITA	N:	Sche	enectac	dy, N	Y			CTM INSPECTOR	.: <u>N. F</u>	reem	ian	
	SAN	/PLE	ВІ	LOWS	ON S	AMPL	ER	T	T	T			
ОЕРТН (FT.)	ГҮРЕ	NO.	0/6		12/18			RECOVERY	SAMPLE CLASSIFICATION	***************************************		NOT	ES
		9	2	4	5	11	9	1.8	Brown/Gray fine SAND, Some Silt	Wet	· · · · · · · · · · · · · · · · · · ·	50-000-000-000-000-000-000-000-000-000-	
<u>65</u>										a de la companya de l			
		10	2	4	8	17	12	2.0]				
70													
70	$\vdash \vdash$	11	2	2	6	13	8	2.0	Gray fine to coarse SAND, trace fine gravel	Wet			
					<u> </u>				only and to				
		<u> </u>		 	<u> </u>		<u> </u>						
75	!												
		12	18	10	12	24	22	1.4	Gray fine to coarse SAND, little fine to coarse gravel		len ho	boring se	with
				上 上						1,			
80	 	13	3	3	5	8	8	2.0					
	/	15	-		<u> </u>	- -	-	4.0	grading Gray fine SAND and SILT				
85	.] !	 		 	 		 	├					
		14	3	4	13	17	17	2.0	Gray SILT, Some fine Sand	Wet			
	\vdash			-			 		-				
									1				
90	لــــــا	<u> </u>		<u> </u>				<u> </u>					·
								A 140	LB. WT. FALLING 30" PER BLOW	7	GROL	JNDWA'	TER LEVEL
ı			RACTOR: SJB Services Inc. 'ESTIGATION: 4.25-Inch Hollow St						DRILL RIG TYPE: CME 75 em Augers with 2"x2' Split Spoon Sampler	DATE	LEVEL		STABILIZATION TIME
IVICITI	JD 01	IIIVEO	HIGATI	OIN.		4.25-110	CHTION	10W Ste	m Augers with 2-x2-5pht 5poort 5ampler	_			
									S OBTAINED FOR C.T. MALE DESIGN				
THE S	SAME II	INFORI AS A S	RMATIOI SUBSTI	IAVA NO	ILABLE	TO C.	T.MALI	E. IT IS	SERS ONLY THAT THEY MAY HAVE ACCESS TO S PRESENTED IN GOOD FAITH, BUT IS NOT TERPRETATION OR JUDGMENT OF SUCH	1	PLE CI Freem		L ICATION BY:

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-18

ELEV.:

DATUM:

START DATE: 5/30/06 FINISH DATE: 6/1/06

SHEET 4 OF 4

PRO	JECT	:	314 (Ilinto	n Stre	et			CTM PROJECT NO.:	: 05.5	551		
LOC	OITA	N:	Sche	necta	dy, N	<u>Y</u>			CTM INSPECTOR:	: <u>N. F</u>	reem	nan	
<u> </u>													
	SAM	/IPLE	Bl	ows	ON S	AMPL	.ER			Ī			
ОЕРТН (FT.)	ГУРЕ	NO.	0/6	6/12		18/24		RECOVERY	SAMPLE CLASSIFICATION			NOT	ES
<u> </u>	رك	15	8	6	9	16	15	1.2	Gray SILT, Some fine Sand	Wet	*************	***************************************	A
<u>95</u>		16	WR	WH		7		1.8	Glay oib1, some mic same	710-			
	1/1	10	VYX.	VVII	 	+-	 	1.0	becomes Gray SILT, little fine sand				
	\leftarrow	17	DR	DR	DR	2		2.0	Gray SILT, trace clay and fine sand				
•	1/1	- <u>1,</u>	Dr.	DI	Dr.		 	4.0	Gray Sill, trace cray and this outer				
100	\leftarrow	_	 	 	 	 	 	\vdash	Boring Terminated at 99'	4			
100 105 110 115									Boring Terminated at 99				
													-
1	= NO. OF BLOWS TO DRIVE 2" SAMPLER 12" WITH A 140 LB. WT. FALLING 30" PER BLOW									'	GROL	TAWDNU	TER LEVEL NGS
1	LING CONTRACTOR: SJB Services Inc. DRILL RIG TYPE; CME 75 HOD OF INVESTIGATION: 4.25 Inch Hollow Stop August with 2"x2" Split Spoon Sampler								DATE	LEVEL		\$TABILIZATION TIME	
MEIN	DD Or	D OF INVESTIGATION: 4.25-Inch Hollow Stem Augers with 2"x2' Split Spoon Sample							m Augers with 2"x2" Split Spoon Sampier				
===		===		AT					TOTAL	=	<u> </u>	<u> </u>	
PURP THE S	POSES. SAME II NDED A	. IT IS INFOR AS A S	S MADE RMATIO SUBSTI	AVAIL N AVAI	ABLE 1	TO AUT	THORIZ .T.MAL	IZED US .E. IT IS	AS OBTAINED FOR C.T. MALE DESIGN SERS ONLY THAT THEY MAY HAVE ACCESS TO IS PRESENTED IN GOOD FAITH, BUT IS NOT ITERPRETATION OR JUDGMENT OF SUCH	1	PLE CI Freem		ICATION BY:

PROJECT:	314 Clinton			PROJECT #:	05.5551	PAGE 1 OF 2
CLIENT:			Development			DATE
LOCATION:	Schenectac					COLLECTED: 5/2/06
INSTRUMENT USED		Photovac	LAMP	10.6 BY:	eV	DATE
DATE INSTRUMENT			5/2/2006 Ambient	В1:		ANALYZED: 5/2/06 ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	ANALISI. N. Heeliluli
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
GP-13		0-2	Soil	0.8	0.3	No odors or Staining
GP-13		2-4	Soil	1.0	0.3	No odors or Staining
GP-13		4-6	Soil	1.5	0.4	No odors or Staining
GP-13		6-8	Soil	1.5	0.4	No odors or Staining
GP-13		8-10	Soil	1.3	0.4	No odors or Staining
GP-13		10-12	Soil	1.3	0.4	No odors or Staining
GP-13		12-14	Soil	1.4	0.3	No odors or Staining
GP-13		14-16	Soil	0.9	0.3	No odors or Staining
GP-13		16-18	Soil	1.0	0.3	No odors or Staining
GP-13		18-20	Soil	0.8	0.3	No odors or Staining
GP-14		0-2	Soil	1.3	0.5	No odors or Staining
GP-14		2-4	Soil	1.4	0.5	No odors or Staining
GP-14		4-6	Soil	1.8	0.5	No odors or Staining
GP-14		6-8	Soil	1.8	0.4	No odors or Staining
GP-14		8-10	Soil	1.7	0.5	No odors or Staining
GP-14		10-12	Soil	1.8	0.5	No odors or Staining
GP-14		12-14	Soil	1.7	0.5	No odors or Staining
GP-14		14-16	Soil	1.8	0.5	No odors or Staining
GP-14		16-18	Soil	1.8	0.5	No odors or Staining
GP-14		18-20	Soil	1.9	0.5	No odors or Staining

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.
**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

PROJECT:	314 Clinton	Street		PROJECT #:	05.5551	PAGE 1 OF 1
CLIENT:	Schenectac	dy Metroplex	Development			DATE
LOCATION:	Schenectac					COLLECTED: 5/16/06
INSTRUMENT USED		Photovac	LAMP	1000000	eV	DATE
DATE INSTRUMENT			5/16/2006	BY:	N. Freeman	ANALYZED: 5/16/06
TEMPERATURE OF	SOIL:		Ambient	SAMPLE	BA CKCDOUND	ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
SB-16		20-22	Soil	1.8	0.7	No odor or Staining
SB-16		22-24	Soil	1.7	0.7	No odor or Staining
SB-16		24-26	Soil	3.0	0.7	No odor or Staining
SB-16		26-28	Soil	2.4	0.8	No odor or Staining
SB-16		28-30	Soil	3.3	0.7	Sheen on water in spoon
SB-16		30-32	Soil	3.1	0.8	No odor or Staining
SB-16		32-34	Soil	2.6	0.8	No odor or Staining
SB-16		34-36	Soil	3.8	0.9	No odor or Staining
SB-16		36-38	Soil	2.7	1.0	No odor or Staining
SB-16		38-40	Soil	3.2	1.0	No odor or Staining
SB-16		40-42	Soil	2.6	0.9	No odor or Staining
SB-16		42-44	Soil	3.4	1.0	No odor or Staining
SB-16		44-46	Soil	2.9	1.0	No odor or Staining

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.
**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

CT	AAAIC	10000	TATE	DC
C.I.	MALE	ASSOC	INIES.	, r.C.

APPENDIX B ORGANIC VAPOR HEADSPACE ANALYSIS LOGS

PROJECT:	314 Clinton	Street		PROJECT #:	05.5551	PAGE 1 OF 3
CLIENT:	Schenectac	dy Metroplex I	Development			DATE
LOCATION:	Schenectad	35 V 2 V 2 V 2 V 3 V 3 V 3 V 3 V 3 V 3 V 3				COLLECTED: 4/25/06
INSTRUMENT USED		Photovac	LAMP	10.6	eV	DATE
DATE INSTRUMENT		:	4/25/2006	BY:		ANALYZED: 4/25/06
TEMPERATURE OF	SOIL:		Ambient	SAMPLE	BACKGROUND	ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
GP-1		0-2	Soil	0.5	0.4	No odor or Staining
GP-1		2-4	Soil	0.5	0.4	No odor or Staining
GP-1		4-6	Soil	0.5	0.3	No odor or Staining
GP-1		6-8	Soil	0.8	0.4	No odor or Staining
GP-1		8-10	Soil	1.0	0.4	No odor or Staining
GP-1		10-12	Soil	0.6	0.4	No odor or Staining
GP-1		12-14	Soil	0.4	0.3	No odor or Staining
GP-1		14-16	Soil	0.5	0.4	No odor or Staining
GP-2		0-2	Soil	0.8	0.5	No odor or Staining
GP-2		2-4	Soil	0.9	0.6	No odor or Staining
GP-2		4-6	Soil	1.0	0.6	No odor or Staining
GP-2		6-8	Soil	0.9	0.5	No odor or Staining
GP-2		8-10	Soil	0.9	0.6	No odor or Staining
GP-2		10-12	Soil	0.8	0.5	No odor or Staining
GP-2		12-14	Soil	0.8	0.6	No odor or Staining
GP-2		14-16	Soil	0.7	0.6	No odor or Staining
				<i>y</i>		
	-					
*Instrument was calibra	ted in accordance y	with manufacturer's	s recommended pro	cedure using a cal	ibration gas supplied by	the manufacturer

^{*}Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.
**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

PROJECT:	314 Clinton	Street		PROJECT #:	05.5551	PAGE 2 OF 3
CLIENT:			Development			DATE
LOCATION:	Schenectac					COLLECTED: 4/25/06
INSTRUMENT USED	No.	Photovac	LAMP	10.6	eV	DATE
DATE INSTRUMENT			4/25/2006	BY:		ANALYZED: 4/25/06
TEMPERATURE OF	SOIL:	Т	Ambient	SAMPLE	BACKGROUND	ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
GP-3		0-2	Soil	1.1	0.7	No odor or Staining
GP-3		2-4	Soil	1.2	0.6	No odor or Staining
GP-3		4-6	Soil	1.0	0.6	No odor or Staining
GP-3		6-8	Soil	0.9	0.6	No odor or Staining
GP-3		8-10	Soil	0.8	0.7	No odor or Staining
GP-3		10-12	Soil	1.1	0.5	No odor or Staining
GP-3		12-14	Soil	0.8	0.6	No odor or Staining
GP-3		14-16	Soil	0.8	0.5	No odor or Staining
GP-4		0-2	Soil	7.2	0.7	Solvent Odor, No Staining
GP-4		2-4	Soil	1.0	0.7	No odor or Staining
GP-4		4-6	Soil	1.2	0.7	No odor or Staining
GP-4		6-8	Soil	1.0	0.7	No odor or Staining
GP-4		8-10	Soil	2.4	0.7	No odor or Staining
GP-4		10-12	Soil	1.6	0.7	No odor or Staining
GP-4		12-14	Soil	1.9	0.7	No odor or Staining
GP-4		14-16	Soil	1.8	0.7	No odor or Staining
Ale and a second						

*Instrument was calibra	tod in accordance	with manufacturar	le recommended pr	codure using a ca	libration gas supplied by	the manufacturer

^{*}Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

PROJECT:	314 Clinton	Street		PROJECT #:	05.5551	PAGE 3 OF 3
CLIENT:	Schenectac	dy Metroplex	Development			DATE
LOCATION:	Schenectac	ly, NY				COLLECTED: 4/25/06
INSTRUMENT USED		Photovac	LAMP		eV	DATE
DATE INSTRUMENT		T ₂	4/25/2006	BY:		ANALYZED: 4/25/06
TEMPERATURE OF	SOIL:		Ambient	1		ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
GP-5		0-2	Soil	1.4	0.6	No odor or Staining
GP-5		2-4	Soil	1.7	0.6	No odor or Staining
GP-5		4-6	Soil	1.8	0.6	No odor or Staining
GP-5		6-8	Soil	1.6	0.6	No odor or Staining
GP-5		8-10	Soil	1.7	0.6	No odor or Staining
GP-5		10-12	Soil	1.8	0.6	No odor or Staining
GP-5		12-14	Soil	1.6	0.7	No odor or Staining
GP-5		14-16	Soil	1.8	0.6	No odor or Staining
GP-5		16-18	Soil	1.8	0.6	No odor or Staining
GP-5	-	18-20	Soil	1.7	0.6	No odor or Staining
	-					
	1				libration gas supplied by	

^{*}Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.
**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

PROJECT:	314 Clinton	Street		PROJECT #:	05.5551	PAGE 1 OF 3
CLIENT:	Schenectac	y Metroplex	Developmen	it		DATE
LOCATION:	Schenectac	ly, NY				COLLECTED: 4/27/06
INSTRUMENT USED	C-	Photovac	LAM		eV	DATE
DATE INSTRUMENT			4/27/2006	BY:		ANALYZED: 4/27/06
TEMPERATURE OF	SOIL:	nical profession	Ambient	SAMPLE	BACKCBOUND	ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
GP-6		0-2	Soil	3.8	0.4	Asphalt odor, No Staining
GP-6		2-4	Soil	1.3	0.4	No odor or Staining
GP-6		4-6	Soil	1.6	0.4	No odor or Staining
GP-6		6-8	Soil	1.8	0.4	No odor or Staining
GP-6		8-10	Soil	2.0	0.4	No odor or Staining
GP-6		10-12	Soil	2.0	0.4	No odor or Staining
GP-6		12-14	Soil	1.4	0.4	No odor or Staining
GP-6		14-16	Soil	2.2	0.4	No odor or Staining
GP-6		16-18	Soil	1.4	0.4	No odor or Staining
GP-6		18-20	Soil	12.2	0.4	Slight Petro odor, No Staining
GP-7		0-4	Soil	1.6	0.5	No odor or Staining
GP-7		4-8	Soil	2.2	0.5	No odor or Staining
GP-7		8-12	Soil	3,2	0.5	No odor or Staining
GP-7		12-14	Soil	2.2	0.5	No odor or Staining
GP-7		14-16	Soil	2.0	0.6	No odor or Staining
*Instrument was calibra						

^{*}Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.
**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

PROJECT:	314 Clinton	Street		PROJECT #:	05.5551	PAGE 2 OF 3
CLIENT:	Schenectac	dy Metroplex	Developmen	t		DATE
LOCATION:	Schenectac					COLLECTED: 4/27/06
INSTRUMENT USED		Photovac	LAM	Commence of the commence of th	eV	DATE
DATE INSTRUMENT		:	4/27/2006	BY:		ANALYZED: 4/27/06
TEMPERATURE OF	SOIL:		Ambient	CAMPIE	DA OKOBOUND	ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
GP-8		0-2	Soil	5.2	0.5	No odor or Staining
GP-8		2-4	Soil	4.6	0.5	No odor or Staining
GP-8		4-6	Soil	3.2	0.8	No odor or Staining
GP-8		6-8	Soil	2.4	0.8	No odor or Staining
GP-8		8-10	Soil	3.1	0.8	No odor or Staining
GP-8		10-12	Soil	2.9	0.7	No odor or Staining
GP-8		12-14	Soil	2.3	0.8	No odor or Staining
GP-8		14-16	Soil	2.3	0.8	No odor or Staining
GP-8		16-18	Soil	2.4	0.7	No odor or Staining
GP-8		18-20	Soil	3.0	0.8	No odor or Staining
GP-9		0-2	Soil	1.8	0.6	No odor or Staining
GP-9		2-4	Soil	1.6	0.7	No odor or Staining
GP-9		4-6	Soil	1.5	0.6	No odor or Staining
GP-9		6-8	Soil	1.8	0.6	No odor or Staining
GP-9		8-10	Soil	2.2	0.5	No odor or Staining
GP-9		10-12	Soil	2.1	0.6	No odor or Staining
GP-9		12-14	Soil	2.0	0.5	No odor or Staining
GP-9		14-16	Soil	2.2	0.6	No odor or Staining
GP-9		16-18	Soil	1.9	0.6	No odor or Staining
GP-9		18-20	Soil	1.8	0.6	No odor or Staining

^{*}Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

^{**}PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

PROJECT:	314 Clinton	Street		PROJECT #:	05.5551	PAGE 3 OF 3
CLIENT:	Schenectac	ly Metroplex	Developmen	t		DATE
LOCATION:	Schenectac	ly, NY				COLLECTED: 4/27/06
NSTRUMENT USED		Photovac	LAM		eV	DATE
DATE INSTRUMENT			4/27/2006	BY:		ANALYZED: 4/27/06
TEMPERATURE OF S	SOIL:		Ambient			ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
GP-10		0-4	Soil	2.8	0.5	No odor or Staining
GP-10		4-6	Soil	2.6	0.5	No odor or Staining
GP-10		6-8	Soil	2.7	0.5	No odor or Staining
GP-10		8-10	Soil	3.5	0.6	No odor or Staining
GP-10		10-12	Soil	3.8	0.5	No odor or Staining
GP-10		12-14	Soil	2.5	0.5	No odor or Staining
GP-10		14-16	Soil	3.3	0.5	No odor or Staining
GP-10		16-18	Soil	2.4	0.5	No odor or Staining
GP-10		18-20	Soil	2.6	0.5	No odor or Staining
				*		

		177 - 1 8V-17-0	10.25			
VIII - VI						
- III					100000000000000000000000000000000000000	
*Instrument was calibrat	l dia sanadana	aith manifeature	ele seconomondod s	Tanadura usina a sa	libration are supplied by	the manufacturer

^{*}Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

PROJECT:	314 Clinton	Street	**	PROJECT #:	05.5551	PAGE 1 OF 1
CLIENT:	Schenectac	dy Metroplex	Development			DATE
LOCATION:	Schenectad	***				COLLECTED: 4/28/06
INSTRUMENT USED		Photovac	LAMP		eV	DATE
DATE INSTRUMENT			4/28/2006	BY:		ANALYZED: 4/28/06
TEMPERATURE OF	SOIL:		Ambient	CASADIE	DA CKC DOUND	ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
GP-11		0-2	Soil	1.0	0.1	No odor or Staining
GP-11		2-4	Soil	1.2	0.1	No odor or Staining
GP-11		4-6	Soil	1.7	0.1	No odor or Staining
GP-11		6-8	Soil	0.8	0.1	No odor or Staining
GP-11		8-10	Soil	1.0	0.1	No odor or Staining
GP-11		10-12	Soil	1.2	0.1	No odor or Staining
GP-11		12-16	Soil	1.2	0.1	No odor or Staining
GP-12		0-2	Soil	1.4	0.4	No odor or Staining
GP-12		2-4	Soil	1.5	0.3	No odor or Staining
GP-12		4-8	Soil	1.8	0.3	No odor or Staining
GP-12		8-10	Soil	1.6	0.3	No odor or Staining
GP-12		10-12	Soil	1.8	0.4	No odor or Staining
GP-12		12-14	Soil	1.7	0.3	No odor or Staining
GP-12		14-16	Soil	1.5	0.4	No odor or Staining
Instrument was calibra	tod in accordance	with manufactured	s recommended as	ocadura using - as	libration one cumplied by	the menufactures

^{*}Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-17

ELEV.:

DATUM:

START DATE: 5/22/06 FINISH DATE: 5/25/06

PROJECT: 314 Clinton Street									CTM PROJECT NO.	CTM PROJECT NO.: 05.5551				
LOC	ATIOI	N:	Sche:	necta	dy, N	Y			CTM INSPECTOR	: N. F	reem	an		
											- 10.12/21/2	THE PROPERTY.	SON SON STATE	
	SAN	IPLE	BL	.ows	ON S	AMPLI	ER			T				
БЕРТН (FT.)	TYPE	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION			NOTI	ES	
									Direct Auger to 20' bgs					
	î	$\overline{}$	-				-							
5														
			-		-		_							
				_	-		-			1				
10										1				
			_											
			-	-			_			1				
		LI LIVES	-	\vdash	-				1					
15									1					
			_	_										
		_	-	-	-			_	1					
20			+	144.0										
-	7	1	3	1	1	2	2	1.4	Gray SILT, Some fine Sand, trace clay	Wet				
			<u> </u>											
25		_	-					_	-					
-	7	2	8	4	1	2	5	1.6	Brown fine SAND and SILT	Wet				
	\vee									3.546.356				
00			_											
30		_							L					_
N = N	O. OF E	BLOW:	S TO DE	RIVE 2"	SAMP	LER 12	" WITH	A 140	LB. WT. FALLING 30" PER BLOW		GROL		ER LEVEL	_
			ACTOR:		SJB Se	rvices I			DRILL RIG TYPE: CME 75	DATE	LEVEL	READING S	TABILIZATION TIM	ΛE
METH	OD OF	INVE	STIGAT	ION:		4.25-Ir	ich Hol	low Ste	em Augers with 2"x2' Split Spoon Sampler			(4.0		
THE	CLIDEL	IDEAC	'E INIEC	DAAAT	ION SI	IOWA:	UEDE	281 187 A	S OBTAINED FOR C.T. MALE DESIGN		Terromer's			
PUR	POSES	. IT IS	MADE	AVAIL	ABLE	TO AU	THORI	ZED U	SERS ONLY THAT THEY MAY HAVE ACCESS TO					
									S PRESENTED IN GOOD FAITH, BUT IS NOT TERPRETATION OR JUDGMENT OF SUCH	100000000000000000000000000000000000000			CATION BY:	
M-902-97-12-20	HORIZE			TOIL	, Ort in	, LOT	JA110	. 10, 114	TELL TELLIFICATION ON TOO SHEET OF GOOD	N. I	reem	an		

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-17

ELEV.:

DATUM:

START DATE: 5/22/06 FINISH DATE: 5/25/06

SHEET 2 OF 4

PRO	JECT		314 (Clinto	n Stre	et			CTM PROJECT NO.	: 05.5	551		
LOC	OITA	1:	Sche	necta	dy, N	Y			CTM INSPECTOR	: N. F	reem	an	
-													
	SAM	PLE	BL	ows	ON S	AMPLE	ER						
ОЕРТН (FT.)	LYPE	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION			NOT	ES
		3	WR	WR	WR	WR		0.4	Brown fine to coarse SAND, little silt	Wet			
35	/	4	7	5	4	6	9	2.0	Brown fine to coarse SAND, little silt and fine t	0.002	eo orra	wel	
		4	-		7	-	,	2.0	grading Brown fine SAND, Some Silt	Wet	77	vei	
40	/	5	WR	2	3	4	5	2.0					
45	/	6	1	4	5	6	9	2.0					
50	/	7	3	3	5	6	8	2.0	Brown fine to coarse SAND, trace silt	Wasi Wet		boring	
55	/	8	5	5	6	12	11	2.0					
60			-	-	_	-		-					
- 00		-		_			_						
								A 140	LB. WT. FALLING 30" PER BLOW	T	GROU	JNDWA'	TER LEVEL
All Control			CTOR:	A	SJB Se	rvices Ir		low Ste	DRILL RIG TYPE: CME 75 m Augers with 2"x2' Split Spoon Sampler	DATE	LEVEL.		STABILIZATION TIME
			- TION	J. 1.		J. E. O'-111		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mingers min 2 Az opinopourosimpier	_			
PURF THE S INTER	OSES.	IT IS NFOR AS A S	MADE MATIO SUBSTI	AVAIL N AVA	ABLE T	TO AUT	HORIZ T.MAL	ZED US E. IT I	S OBTAINED FOR C.T. MALE DESIGN BERS ONLY THAT THEY MAY HAVE ACCESS TO S PRESENTED IN GOOD FAITH, BUT IS NOT TERPRETATION OR JUDGMENT OF SUCH		PLE C		CATION BY:

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-17

ELEV.:

DATUM:

START DATE: 5/22/06 FINISH DATE: 5/25/06

SHEET 3 OF 4

PROJECT: 314 Clinton Street									CTM PROJECT NO.	: 05.5	551		
LOC	ATIO	N:	Sche	necta	dy, N	Y			CTM INSPECTOR	: <u>N. F</u>	reem	an	
H	SAM	IPLE	BL	.ows	ON S	AMPLI	ER				_		
ОЕРТН (FT.)	rype	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION			NOT	ES
65	Z	9	5	9	10	16	19	1.8	Brown fine to medium SAND, Some Silt	1000000		sh out l	ooring with ller bit
65	Z	10	WR	3	7	10	9	2.0	Brown and Gray fine SAND, Some Silt	Wet			
<u>70</u>	Z	11	7	15	23	31	38	2.0	Brown fine to medium SAND, trace silt (light to dark brown layering noticed)		Rods	sh out l	poring with ller bit
<u>75</u>	Z	12	WH	WH	2	3		0.9	Gray fine to medium SAND, trace silt becomes Gray fine to coarse SAND, trace fine to coarse gravel	Wet			
80	Z	13	7	10	30	52	40	2.0	Gray fine to coarse SAND, Some fine to medium Gravel	Wet			
85	Z	14	WH	10	30	40	40	2.0	Gray SILT, Some Clay becomes gray SILT and fine SAND				
N = N DRILL	90 N = NO. OF BLOWS TO DRIVE 2" SAMPLER 12" WITH A DRILLING CONTRACTOR: SJB Services Inc. METHOD OF INVESTIGATION: 4.25-Inch Hollow								LB. WT. FALLING 30" PER BLOW DRILL RIG TYPE: CME 75 em Augers with 2"x2' Split Spoon Sampler	DATE		READ	TER LEVEL NGS \$TABILIZATION TIME
PURI THE INTE	POSES SAME	INFOR	S MADE RMATIO SUBSTI	AVAIL N AVA	ABLE	TO AU	THORI.	ZED U .E. IT I	S OBTAINED FOR C.T. MALE DESIGN SERS ONLY THAT THEY MAY HAVE ACCESS TO S PRESENTED IN GOOD FAITH, BUT IS NOT TERPRETATION OR JUDGMENT OF SUCH		PLE C Freen		ICATION BY:

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-17

ELEV.:

DATUM:

START DATE: 5/22/06 FINISH DATE: 5/25/06

SHEET 4 OF 4

PROJE	CT:	_	314 (linto	n Stre	et			CTM PROJECT NO	.: 05.5	551	-			
LOCAT	ΓΙΟΝ	:	Sche	necta	dy, N	Y			With the same of t	CTM INSPECTOR: N. Freeman					
- 1	SAMF	DI F	BI	OWS	ONS	AMPLI	ER	_		_	-	-			
1 (FT.)	PE	NO.	0/6		12/18		N	RECOVERY	SAMPLE CLASSIFICATION			NOT	ES		
/	4	15	4	2	10	15	12	1.8	Gray SILT and fine SAND	the second	Rods		boring with ller bit		
95	1	16	8	17	19	23	36	1.8	Gray SILT, Some fine Sand	Wet					
100		17	5	11	13	15	24	1.7							
105	1	18	WR	4	6	2	10	1.5	becomes Gray SILT and CLAY Boring Terminated at 104'						
110															
115															
120	-			-											
								A 140	LB. WT. FALLING 30" PER BLOW		GRO	UNDWA	TER LEVEL		
DRILLING METHOD				-	SJB Se	rvices Ir 4.25-In	100000	low Ste	DRILL RIG TYPE: CME 75 m Augers with 2"x2" Split Spoon Sampler	DATE	LEVEL		\$TABILIZATION TIME		
PURPO	SES. ME IN ED AS	FOR FOR	MADE MATIO UBSTI	AVAIL N AVA	ABLE T	TO AUT	HORIZ T.MAL	ZED U E. IT I	S OBTAINED FOR C.T. MALE DESIGN SERS ONLY THAT THEY MAY HAVE ACCESS TO S PRESENTED IN GOOD FAITH, BUT IS NOT TERPRETATION OR JUDGMENT OF SUCH	100000	PLE C		ICATION BY:		

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-18

ELEV.:

DATUM:

START DATE: 5/30/06 FINISH DATE: 6/1/06

SAMPLE BLOWS ON SAMPLER SAMPLE SAMPLE CLASSIFICATION NOTES	
SAMPLE CLASSIFICATION NOTES H	
SAMPLE CLASSIFICATION NOTES H	
Direct Auger to 20' bgs	
5	
5	
10	
15	
20	
1 4 2 1 2 3 1.1 Gray SILT and fine SAND, trace clay Wet	
25	
2 2 1 1 4 2 1.0	
trace silt Wet	
lauce she	
30	
N = NO. OF BLOWS TO DRIVE 2" SAMPLER 12" WITH A 140 LB. WT. FALLING 30" PER BLOW GROUNDWATER LEV	EL
DRILLING CONTRACTOR: SJB Services Inc. DRILL RIG TYPE: CME 75 DATE LEVEL DASING \$TABILIZAT	ION TIME
METHOD OF INVESTIGATION: 4.25-Inch Hollow Stem Augers with 2"x2' Split Spoon Sampler	
THE SUBSTIDEACE INFORMATION SHOWN HEREON WAS ORTAINED FOR CIT MALE DESIGN	
THE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE DESIGN PURPOSES. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO	
THE SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT SAMPLE CLASSIFICATION	BY:
INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED USERS. N. Freeman	

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-18

ELEV.:

DATUM:

START DATE: 5/30/06 FINISH DATE: 6/1/06

SHEET 2 OF 4

										_			
PRO	JECT	:	314 (Clinto	n Stre	et			CTM PROJECT NO	.: 05.5	5551		
LOC	ATIO	N:	Sche	necta	dy, N	Y			CTM INSPECTOR	8: N. I	reen	nan	
_	_		_					_		_			
	SAN	IPLE	BL	.ows	ON S	AMPL	ER	-					
БЕРТН (FT.)	TYPE	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION			NOT	TES
	1	3	1	3	4	3	7	1.5	Brown fine to coarse SAND, trace silt	Wet			
	\angle		-		_			_		1			
		_	-	_	_								
35			-	_	_			-					
_	\vdash	4	1	1	1	1	2	1.6	little coarse gravel				
										1			
40	—		7470	TATES	_		_	1.0					
		5	WR	WR	1	4	_	1.2	Brown fine to coarse SAND, trace silt	Wet			
	\vdash		-		-		_	-					
		_	-	-			_						
45													
	7	6	4	1	4	6	5	2.0		Was	h out	boring	with
										gard	len ho	se	
F0													
50	-	7	3	4	3	5	7	1.0		Mar	h aut	boring	
		<u> </u>	3	**	3	3		1.0			den ho		with
			1	-	_					Bure	ich hic	,oc	
		_	1										
55													
	\Box	8	1	1	4	8	5	1.7	grades Brown fine SAND, Some Silt			boring	with
										27.0	len ho	se	
				_				-		Wet			
60		_	-	_	-		-	-					
-00				_	_		-						
N = N	O. OF B	LOWS	TO DE	RIVE 2"	SAMPI	ER 12"	WITH	A 140	LB. WT. FALLING 30" PER BLOW	T	GROI		TER LEVEL
			CTOR:		SJB Se	rvices Ir			DRILL RIG TYPE: CME 75	DATE	LEVEL	CASING	\$TABILIZATION TIME
METH	OD OF	INVES	STIGATI	ON:		4.25-In	ch Hol	low Ste	m Augers with 2"x2' Split Spoon Sampler	-			
THE	SUBSU	REAC	E INFO	RMAT	ION SL	IOWN I	1EBE	ON MA	S OBTAINED FOR C.T. MALE DESIGN	-	-		
									SERS ONLY THAT THEY MAY HAVE ACCESS TO				
E 10 10 Com 10									S PRESENTED IN GOOD FAITH, BUT IS NOT TERPRETATION OR JUDGMENT OF SUCH				ICATION BY:
120777 CEL	ORIZE				21111			,		N.	Freen	nan	

SUBSURFACE EXPLORATION LOG

BORING NO.: SB-18

ELEV.:

DATUM:

START DATE: 5/30/06 FINISH DATE: 6/1/06

SHEET 3 OF 4

PRO	JECT	1	314 (Clinto	n Stre	et			CTM PROJECT NO.: 05.5551						
LOC	ATIO	N:	Sche	necta	dy, N	Y			CTM INSPECTOR	: <u>N. F</u>	reem	an			
	SAN	IPLE	BL	OWS	ON S	AMPLI	ER			T	_				
БЕРТН (FT.)	TYPE	NO.	0/6		12/18			RECOVERY	SAMPLE CLASSIFICATION			ES			
	/	9	2	4	5	11	9	1.8	Brown/Gray fine SAND, Some Silt	Wet					
65		10	2	4	8	17	12	2.0							
70	Z	11	2	2	6	13	8	2.0	Gray fine to coarse SAND, trace fine gravel	Wet					
75	Z	12	18	10	12	24	22	1.4	Gray fine to coarse SAND, little fine to coarse gravel	Was gard Wet	with				
80	Z	13	3	3	5	8	8	2.0	grading Gray fine SAND and SILT						
85	Z	14	3	4	13	17	17	2.0	Gray SILT, Some fine Sand	Wet					
	0. OF E							A 140	LB. WT. FALLING 30" PER BLOW	<u> </u>	GROU	JNDWA READI	TER LEVEL		
1000000			ACTOR: STIGAT		ojb Se	rvices In 4.25-In		low Ste	DRILL RIG TYPE: CME 75 m Augers with 2"x2' Split Spoon Sampler	DATE	I,EVEL		STABILIZATION TIME		
PURE THE :	POSES SAME	IT IS INFOR AS A S	MADE RMATIO SUBSTI	AVAIL N AVA	ABLE T	TO AU	THORI T.MAL	ZED U: E. IT I	S OBTAINED FOR C.T. MALE DESIGN SERS ONLY THAT THEY MAY HAVE ACCESS TO S PRESENTED IN GOOD FAITH, BUT IS NOT TERPRETATION OR JUDGMENT OF SUCH	-	PLE C		ICATION BY:		

C.T. MALE ASSOCIATES, P.C.

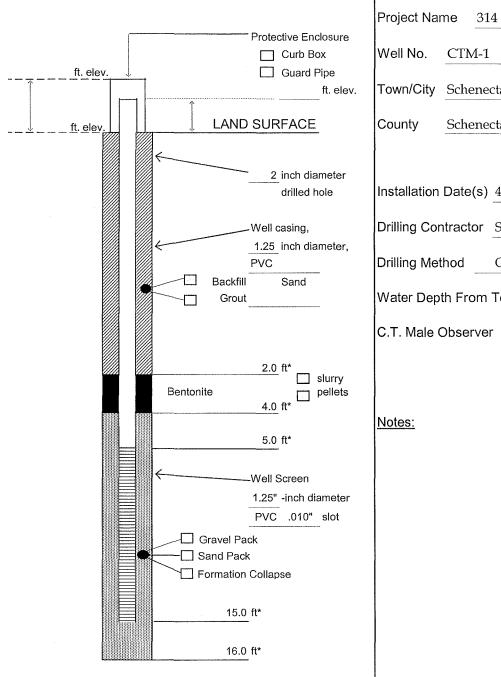
SUBSURFACE EXPLORATION LOG

BORING NO.: SB-18

ELEV .:

DATUM:

START DATE: 5/30/06 FINISH DATE: 6/1/06


SHEET 4 OF 4

A7.50								34					
PROJECT: 314 Clinton Street				CTM PROJECT NO.	.: 05.5	551							
LOC	IOITA	۷:	Schei	necta	dy, N	Y			CTM INSPECTOR	t: N. F	reem	an	
_		_						_					
	SAM	PLE	BL	.ows	ON S	AMPLI	ER	_					
БЕРТН (FT.)	TYPE	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION			NOT	ES
		15	8	6	9	16	15	1.2	Gray SILT, Some fine Sand	Wet		-	
-					_			_					
		_						_					
95													
	/	16	WR	WH	3	7		1.8					
7.	\angle		-		-	_		-	becomes Gray SILT, little fine sand				
		17	DR	DR	DR	2	_	2.0	Gray SILT, trace clay and fine sand				
100		_							Boring Terminated at 99'	-			
=									1.37				
		_	-	_	_		_	_					
105		_	1	_	-		-						
-			-				_						
										1.			
110			-		<u> </u>								
110		_	ļ —	_	-				-				
		_			-								
115			-	_	-	_		_					
	8		-	-				_	1				
			1						1				
120													
N = NO	O. OF B	LOWS	S TO DE	RIVE 2"	SAMPI	ER 12'	WITH	A 140	LB. WT. FALLING 30" PER BLOW	_	GROU	JNDWA	TER LEVEL
DRILL	ING CC	NTRA	CTOR:		SJB Se	rvices I	nc.		DRILL RIG TYPE: CME 75	DATE		READI	
METH	OD OF	INVES	STIGAT	ION:		4.25-In	ch Hol	low Ste	m Augers with 2"x2' Split Spoon Sampler	_	-	J. Comito	The second secon
THE	SLIDELL	DEAC	E INIEO	DMAT	ION SI	IOWN:	HEDE	ON IAZA	S OBTAINED FOR C.T. MALE DESIGN	=			
PURF	OSES	IT IS	MADE	AVAIL	ABLE	TO AUT	HORE	ZED U	SERS ONLY THAT THEY MAY HAVE ACCESS TO				
									S PRESENTED IN GOOD FAITH, BUT IS NOT TERPRETATION OR JUDGMENT OF SUCH				ICATION BY:
10,000,000,000	IORIZE								The state of the s	N	Freem	an	

APPENDIX C MONITORING WELL CONSTRUCTION LOGS

C.T. MALE ASSOCIATES, P.C.

Project Number 05.5551

Project Name 314 Clinton St.

Well No. CTM-1 Boring No. GP-1

Town/City Schenectady, NY

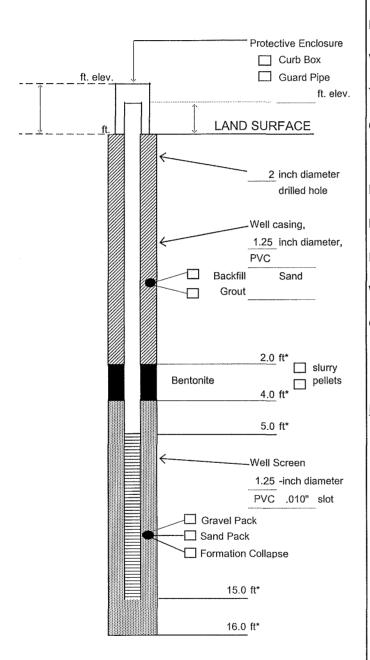
County Schenectady State NY

Installation Date(s) 4.25.06

Drilling Contractor SJB

Drilling Method Geoprobe

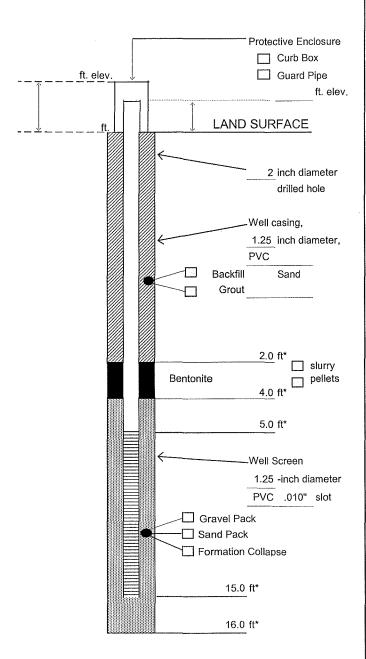
Water Depth From Top of Riser ft


Date

C.T. Male Observer N. Freeman

^{*} Depth below land surface.

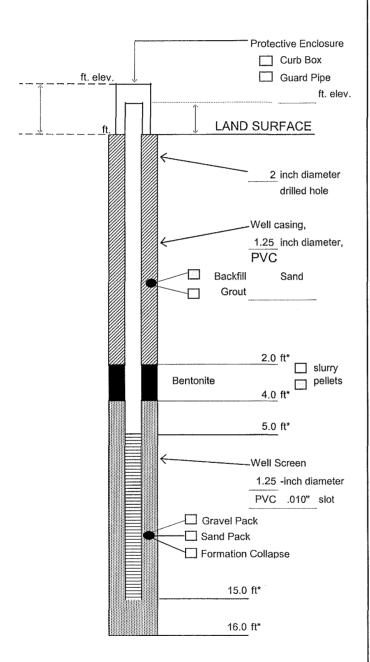
C.T. MALE ASSOCIATES, P.C.



^{*} Depth below land surface.

Project Nur	nber <u>05</u> .	5551				
Project Name 314 Clinton St.						
Well No.	CTM-2		Boring No	. GP-2		
Town/City	Scheneo	tady, N	Y			
County	Schenec	tady	State	NY		
Installation	Date(s)	4.25.06				
Drilling Cor	ntractor	SJB				
Drilling Method Geoprobe						
Water Depth From Top of Riserft						
Date C.T. Male Observer N. Freeman						

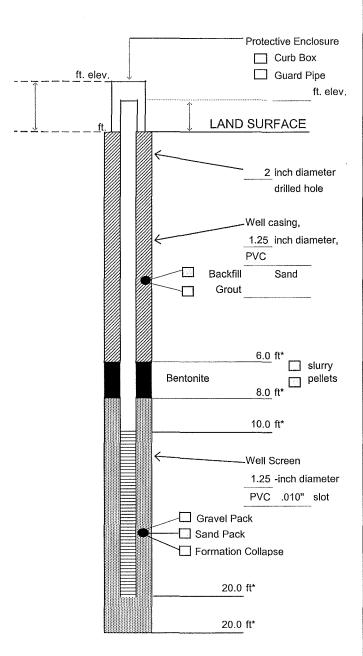
C.T. MALE ASSOCIATES, P.C.



Project Number 05.5551 Project Name 314 Clinton St. Well No. CTM-3 Boring No. GP-3 Town/City Schenectady, NY County Schenectady State NY Installation Date(s) 4.25.06 Drilling Contractor SJB **Drilling Method** Geoprobe Water Depth From Top of Riser Date C.T. Male Observer N. Freeman

^{*} Depth below land surface.

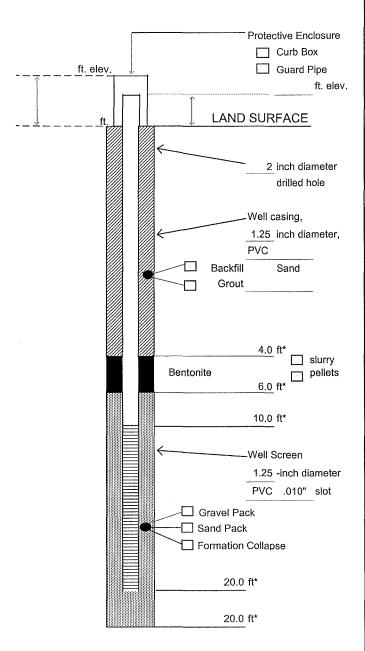
C.T. MALE ASSOCIATES, P.C.



^{*} Depth below land surface.

Project Nur	nber	05.5551				
Project Name 314 Clinton St.						
Well No.	CTM-4		Boring N	o. <u>GP-4</u>	Principle Control Cont	
Town/City	Sche	nectady, N	Y		- Alexander	
County	Sche	nectady	Sta	te <u>NY</u>		
Installation	Date(s) <u>4.25.06</u>				
Drilling Cor	ntracto	or SJB				
Drilling Method Geoprobe						
Nater Depth From Top of Riserft						
Date C.T. Male Observer N. Freeman						

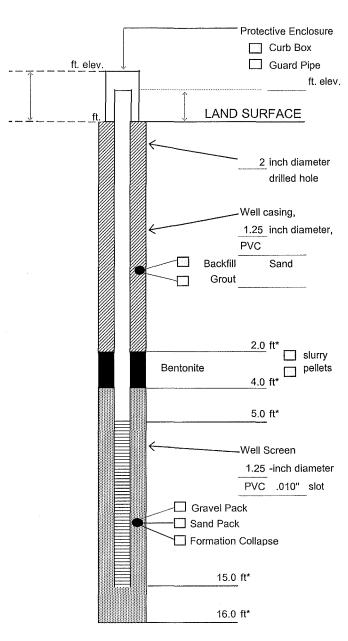
C.T. MALE ASSOCIATES, P.C.



* Depth below land surface.

Project Number 05.5551 Project Name 314 Clinton St. Well No. CTM-5 Boring No. GP-5 Town/City Schenectady, NY County Schenectady State NY Installation Date(s) 4.25.06 Drilling Contractor SJB **Drilling Method** Geoprobe Water Depth From Top of Riser Date C.T. Male Observer N. Freeman

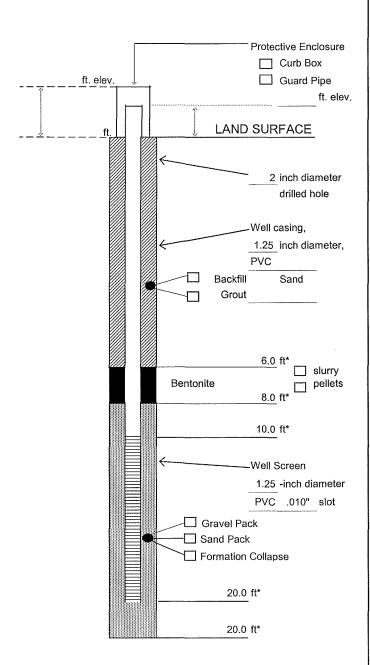
C.T. MALE ASSOCIATES, P.C.


^{*} Depth below land surface.

Project Nun	nber 0	5.5551			
Project Nan	ne <u>3</u>	14 Clinton	St.		
Well No.	СТМ-6)	Boring No.	GP-6	
Town/City	Schene	ectady, NY			
County	Schene	ectady	State	NY	
Installation	Date(s)	4.27.06			
Drilling Con	tractor	SJB			
Drilling Met	hod	Geoprob	e		
Water Dept	h From	Top of Ris	ser	_ft	Doto
Date C.T. Male Observer N. Freeman					

Project Number 05.5551

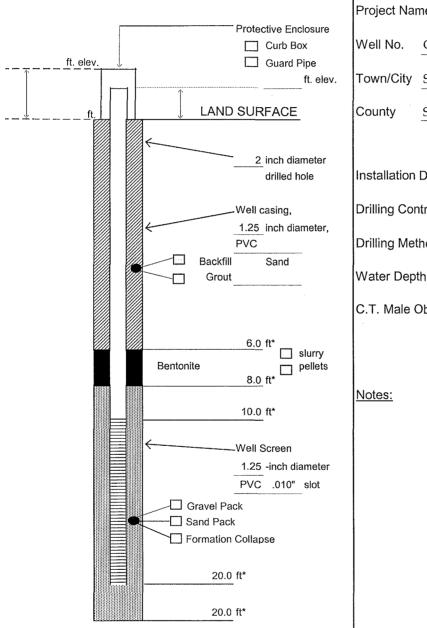
C.T. MALE ASSOCIATES, P.C.



Project Name 314 Clinton St. Well No. CTM-7 Boring No. GP-7 Town/City Schenectady, NY County Schenectady State NY Installation Date(s) 4.27.06 Drilling Contractor SJB **Drilling Method** Geoprobe Water Depth From Top of Riser Date C.T. Male Observer N. Freeman Notes:

^{*} Depth below land surface.

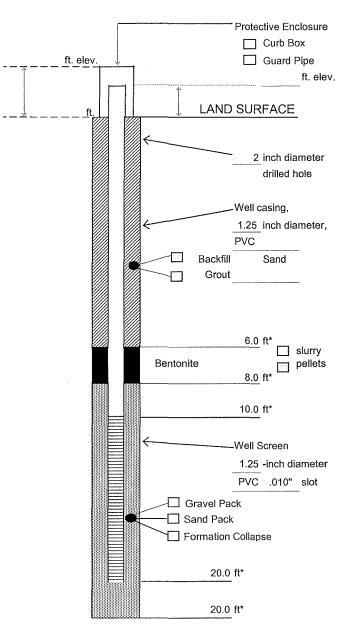
C.T. MALE ASSOCIATES, P.C.



^{*} Depth below land surface.

Project Nur	nber	05.5551			
Project Name		314 Clinto	n St.		
Well No.	CTM-8		Boring	No. GP-8	
Town/City	Sche	nectady, N	ſΥ		
County	Sche	nectady		State NY	
Installation	Date(s) <u>4.27.06</u>			
Drilling Cor	ntracto	or SJB			
Drilling Method Geopre			be		
Water Depth From Top of Riserft					
C.T. Male (Obser	ver	N. Freen	nan	Date

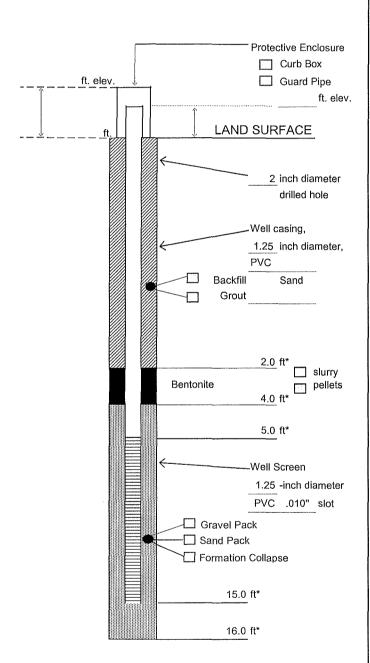
C.T. MALE ASSOCIATES, P.C.



^{*} Depth below land surface.

Project Nun	nber	05.5551				
Project Nan	ne	314 Clinton	n St.			
Well No.	CTM-9		Boring	g No.	GP-9	
Town/City	Sche	nectady, N	Y			
County	Sche	nectady		State	NY	
Installation	Date(s) <u>4.27.06</u>				
Drilling Con	tracto	or SJB				
Drilling Method Geoprobe						
Water Dept	h Fro	m Top of R	liser		ft	
C.T. Male Observer N. Freeman					Date 	

C.T. MALE ASSOCIATES, P.C.



^{*} Depth below land surface.

Project Nur	nber	05.5551				
Project Name		314 Clinto	n St.			
Well No.	CTM-10		Bori	ng No. GP-	·10	
Town/City	Sche	nectady, N	Y			
County	Schenectady			State NY		
Installation	Date	(s) <u>4.27.06</u>				
Drilling Con	itracto	or SJB				
Drilling Met	Geopro	be				
Water Depth From Top of Riserft						
C.T. Male (Obser	ver	N. Fre	eman	Date 	

C.T. MALE ASSOCIATES, P.C.

^{*} Depth below land surface.

Project Number		05.5551			
Project Name		314 Clinto	n St.		
Well No.	CTM-11		Borin	g No. <u>GP-11</u>	[
Town/City	Sche	enectady, N	ΙΥ		
County	Sche	enectady		State NY	
Installation	Date	(s) 4.28.06			
Drilling Con	itracto	or SJB			
Drilling Method Geopro			be		
Water Depth From Top of Riserft					
C.T. Male 0	Obser	ver	N. Free	man	Date

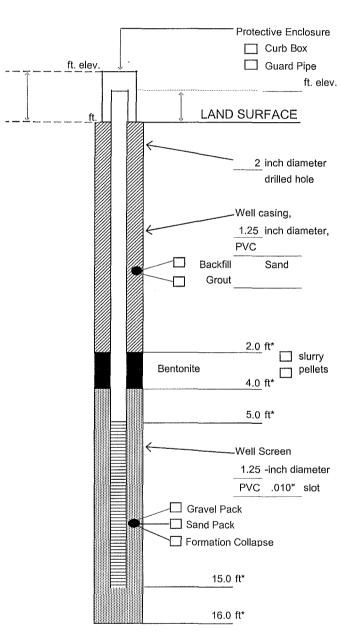
Boring No. GP-12

MONITORING WELL CONSTRUCTION LOG

Project Name

Well No.

Town/City


Project Number 05.5551

CTM-12

Schenectady, NY

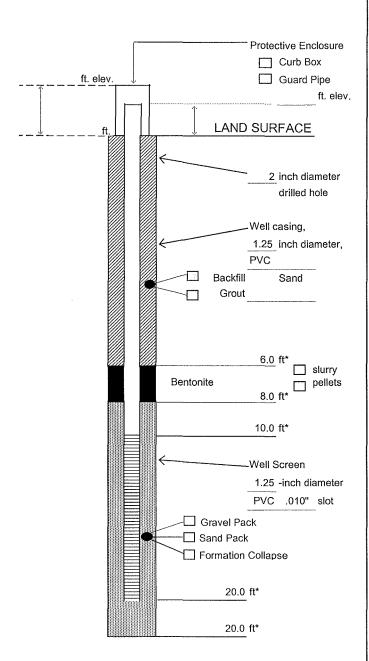
314 Clinton St.

C.T. MALE ASSOCIATES, P.C.

Installation Date(s) 4.28.06

Drilling Contractor SJB

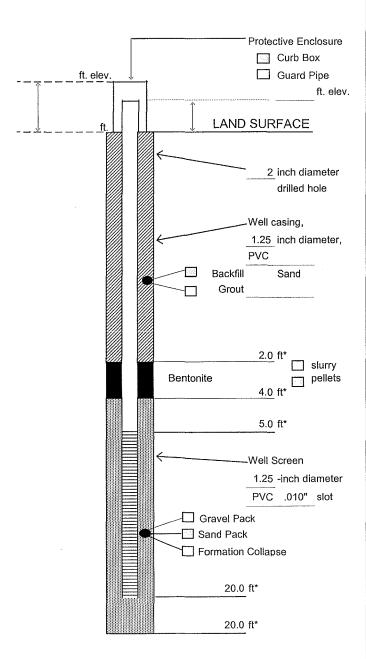
Drilling Method Geoprobe


Water Depth From Top of Riser ft
Date

C.T. Male Observer N. Freeman

^{*} Depth below land surface.

C.T. MALE ASSOCIATES, P.C.



^{*} Depth below land surface.

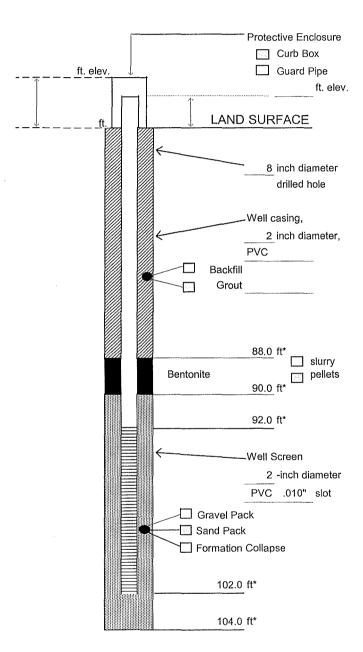
Project Nur	nber	05.5551				
Project Nar	ne	314 Clinto	n St.			
Well No.	CTM-13		Borin	g No. <u>GP-1</u> 3	3	
Town/City	Schenectady, N		Υ			
County	Sche	nectady		State NY		
Installation	Date((s) <u>5.2.06</u>				
Drilling Con	itracto	or SJB				
Drilling Method Geoprobe						
Water Depth From Top of Riserftft						
Date C.T. Male Observer N. Freeman						

C.T. MALE ASSOCIATES, P.C.

Project Number 05.5551 Project Name 314 Clinton St. Well No. CTM-14 Boring No. GP-14 Town/City Schenectady, NY County Schenectady State NY Installation Date(s) 5.2.06 Drilling Contractor SJB **Drilling Method** Geoprobe Water Depth From Top of Riser Date C.T. Male Observer N. Freeman

^{*} Depth below land surface.

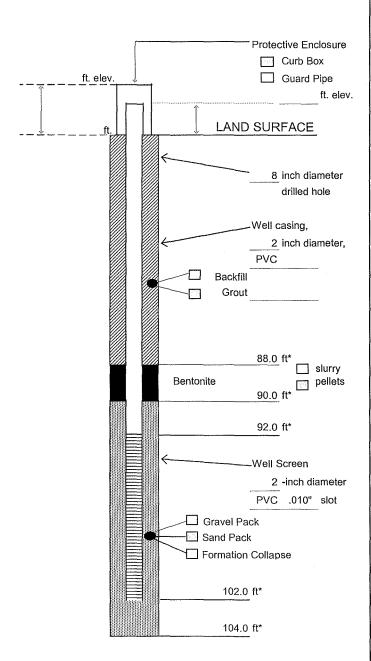
C.T. MALE ASSOCIATES, P.C.



* Depth below land surface.

Project Number 05.5551 Project Name 314 Clinton St. Well No. CTM-15 Boring No. GP-15 Town/City Schenectady, NY County Schenectady State NY Installation Date(s) 5.2.06 Drilling Contractor SJB **Drilling Method** Geoprobe Water Depth From Top of Riser Date C.T. Male Observer N. Freeman

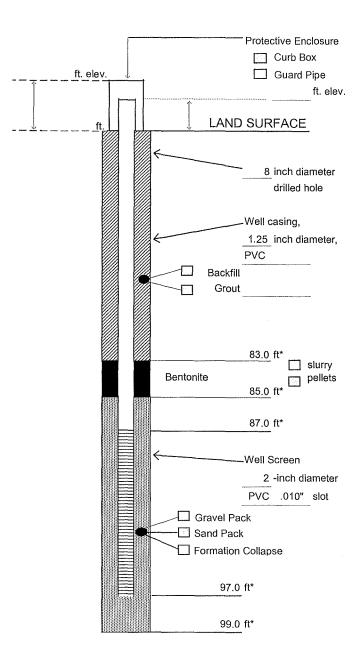
C.T. MALE ASSOCIATES, P.C.



^{*} Depth below land surface.

Project Nun	nber 05	.5551				
Project Nan	ne <u>31</u>	4 Clinton	St.	····		
Well No.	CTM-16		Boring No	o. <u>GP-16</u>	- MANAGES	
Town/City	Schene	ctady, NY				
County	Schene	ctady	State	e NY		
Installation	Date(s)	5.19.06 th	rough 5.23	.06		
Drilling Con	tractor	SJB				
Drilling Method 4.25" I.D. Hollow-Stem Auger					er	
Water Depth From Top of Riser ft						
Date C.T. Male Observer N. Freeman						

C.T. MALE ASSOCIATES, P.C.



^{*} Depth below land surface.

Project Number		05.5551				
Project Name		314 Clinto	n St.			
Well No.	CTN	1-17	Bor	ing No.	GP-17	
Town/City	Schenectady, NY		ſΥ			
County	Schenectady			State	NY	
Installation	Date	(s) <u>5.25.06</u>	throug	gh 5.30.0	06	
Drilling Con	tracto	or SJB				
Drilling Method 4.25" I.D. Hollow-Stem Auger						
Water Depth From Top of Riserft						
C.T. Male Observer N. Freeman					Date 	

C.T. MALE ASSOCIATES, P.C.

Project Number 05.5551 Project Name 314 Clinton St. Well No. CTM-18 Boring No. GP-18 Town/City Schenectady, NY County Schenectady State NY Installation Date(s) 6.1.06 and 6.2.06 Drilling Contractor **Drilling Method** 4.25 H.S.A Water Depth From Top of Riser Date C.T. Male Observer N. Freeman Notes:

^{*} Depth below land surface.

APPENDIX D WASTE DISPOSAL DOCUMENTATION

526 Queensbury Avenue Queensbury, NY 12804

518-615-0349 Fax: 615-0355

Fax Transmittal	
Date: 9-7-06	# of Pages: 5 (including cover sheet)
To: Brian Baulsin CT male Associats, PC	•
From: Dee Dee Dicarco-Craft	
Re: BOL, weight Tickets	
Message:	
Per your request, I'm faxing cop	las of:
i) BOL for Gasoline/Water	
a) weight Ticket + Non Haz Wast	k Monifest for Soil
3) weight ticket for drome	
Scrap vretal dealer,	
,	
Please let us Know if you need a	enothing else.
We appreciate the opportunity to	be of sema!
J. T.	

ESMI OF NEW YORK 304 TOWPATH ROAD TICKET NO : DATE : 2025257 9/7/2006 (518)747-5500 FORT EDWARD, NEW YORK 12828 MAX. ACCEPTABLE SOIL: 150.00 JOB NO :7720
MULTIPLEX
314 CLINTON ST
SCHENECTADY NY
RUNNING TONNAGE: 4.59 Customer: MCE10 MC ENVIRONMENTAL SERVICES 526 QUEENSBURY AVE. QUEENSBURY, NY ...12804 39820 SCALE 1 IN 3:01:53PM 30640 STORED OUT TRUCKER: GROSS : MC-001 MC ENVIRONMENTAL TARE : NET: 9180 LB 4.590 MX01 02 MIX GAS & DIESEL WEIGH MASTER IM MAINTENN #530022 MATERIAL \$ DELIVERY \$ MISC \$ TAX \$ DRIVER: TOTAL \$ REMARKS:

NON-HAZARDOUS WASTE

NON-HAZARDOUS WASTE MANIFEST

5186150355

Please print or type	(Form designed for use on el			·· ······			
	IAZARDOUS E MANIFEST	1. Generator's US EPA Metro Plan 312 Bruna	ID No.		Manifest Document No		2. Page 1
O Consentado Ma	me and Malling Address	Mart Silv			- 		
3, Generator s Na		217 Zasa	11.541 8				
1 7		DIC DIM					
4. Generator's Ph. 5. Transporter 1 C		سن مو به در اسکس ح	TACY NI				
7 1	• •		o. OS EPA ID Mumbai		A. State Trans		
	WICONMENTAL S		MYRC00021071		B. Transporter		
7. Transporter 2 C	ompany Name		8. US EPA ID Number		C. State Trens	······································	5-0349
O. Doolegated For	ility Name and Site Address		10. US EPA ID Number		D. Transporter	·	·····
			TO. US EPA ID NUMBER		E. State Facili	iy's iD	•
L ESMI O	F NEW YORK				F. Facility's Ph	1000	
	WPATH ROAD DWARD, NY 121	229			1 r dointy 3 ! 1	(518) 747	-5500
11. WASTE DESC		JG. U		12. Co	ontainers	18:	
				No.	Туре	Total Quantity	14. Unit Wt./Vol,
a.		· · · · · · · · · · · · · · · · · · ·	<u> </u>	1		1 .1	····
PETROL	EUM CONTAMIN	ATED SOIL		XX1	ד ס ס	4.59	7
G b.				}	No. 1		
G b. E N E c.					}		}
Ē		 		 			
R c.							
T)			N.				1
A T O d.			<u> </u>	 			
, s					1		
G. Additional Desc	riptions for Materials Listed At	oove			H, Handling Co	odes for Wastes Listed Abov	е
				3	Ì		3
				•			•
15. Special Handlin	g Instructions and Additional	Information		v			
18 GENERATOR	S CERTIFICATION: I hereby	certify that the contents of this	shipment are fully and accurately described	and are in	all respects	Anna Property (Inches of the Control	Assessment Assessment
in proper condi	ion for transport, 'The material	s described on this manifest a	re not subject to federal hazardous waste re	gulations.	γ		
				L	,		Date
Printed/Typed-Nam	θ ,	······································	Signature and (र प्र	allow	. Mon	
J 4-1	ME 15 LAH	f • '1	Jun me 1.) <u>'</u>	- - 1	9	1 7/06
T 17. Transporter 1 A	eknowledgement of Aecelpt o	f Materials		4			Date
T 17. Transporter 1 A Printed/Typed Nam Printed/Typed Nam Printed/Typed Nam Printed/Typed Nam E R	9,714		Signature (MAC	N		Мол	
5 1/1	14.24		1 1/1			/	1216
18. Transporter 2 A	cknowledgement of Receipt o	Materials				,	Date
Printed/Typed Nam	0		Signature			Mon	Ih Day Year
	Planting Overe						
F 19. Discrepancy Inc	ication Space						
A							
20. Facility Owners	or Operator: Certification of re-	celpt of the waste materials on	vered by this manifest, except as noted in it	em 19.			
	WIT		of mis marmont enough to noted if it	191		<u> </u>	Date
Printed/Typed Nam	8 /		Signature	11 -		Mon	h Day Yaar
Y Loth 16	to -cx) ή	Signature	L. Vinto	Í.	(-)	

Phone: 518-346-3445 Fax: 518-346-5393

T. A. PREDEL & CO., INC. DEALERS IN WASTE MATERIALS PAPER - HYGRADES - IRON - METALS

RECYCLING CENTER

201 Edison Ave.

300 }

117

8.2 ° y

41. Och

 $\Omega_{M} \cdot Y^{p}$

1. 1.1

Schenectady, N. Y. 12301

ID# 7002768

Customer's		_Date	270	150
	Mices			
Name Address	Drums-comate-n	Witro	olex J	ල්ල
	CASH C.O.D. CHARGE ONACCT.	MOSE. RETO	PAID OUT	
QUAN.	DESCRIPTION	PRICE	AM0	TNU TNU
780	linn			1
7	4		7	1
	. 4 1		1	
		MA	, &	
	MAW			
1. 11.71		/	1	
		Tax		·
	7	Total	Sale of the	e white

NATIONAL ABBOGIATION SUPPLY GOOP, INC. NEW PHILADELPHIA, OH 189501-98

APPENDIX E GROUNDWATER SERVICES FIELD LOGS

DATE:	6/7/06	PROJECT N	AME: 314 Club Street
ROJECT NO.:	05,5551	PROJECT L	OCATION: Sherety NY
SAMPLING PERSONN	IEL: No Freeman		
MONITORING WELL	ID#:	NOTES TAI	CEN BY: N. Freemon
EPTH TO WATER:	70.63 FROM: 7	PR BAILER ID:	M
DEPTH TO BOTTOM:	<u>\02.00</u> FROM:	PVC BAILER:	LAB CLEANED / FIELD CLEANED
. JATER COLUMN HE	IGHT: 81.37	BAILER:	STAINLESS STEEL
	<i>₩</i>		OTHER
VELL CASING DIAM WELL VOLUME:	13.02 GALL	1'' = 0.041 Gz	GALLONS 4" = 0.66 GALLONS
VOLUMES PURGED:	<u>40.0</u> GALL	ONS PURGE ME	THOD: minitxphoon
IME STARTED:	920	; TIME FINIS	SHED: 1033
OBSERVATIONS:	COLOR H gray 5/1+ >	Gray SIL; ODOR	None
	OTHER	TURBIDIT	363 NTU
WATER RECOVERY H	IEIGHT: 28.40°	; RECOVER	Y TIME IN MINUTES: 57
JIELD PARAMETERS	pH \(\sigma_1,25\)		TURE 15,4°C
		50 insknumho/cm, (OTHER
SAMPLE COLLECTIO	N TIME: 1130		
_	Temp. Cond. PH.	Turbidity	W. L
940	15.9°C .366 7,50	>800	
	5,8°L .351 8,20	7800	
	10 15,6°C ,371 7,03	7800	. •
032	5.8°C : 349 7.59	>800	

DATE: 6 7 06	PROJECT NAME: 314 Clinton Street
OJECT NO.: 05,5551	PROJECT LOCATION: Sherechi.
MPLING PERSONNEL: NI Freema	
MONITORING WELL ID#: CTM - 16	NOTES TAKEN BY: NF
PTH TO WATER: 20.05 FROM: TAVE	BAILER ID: NA
DEPTH TO BOTTOM: 07.0 FROM: TPV	BAILER: LAB CLEANED / FIELD CLEANED
ATER COLUMN HEIGHT: SL95'	BAILER: STAINLESS STEEL
	OTHER
ELL CASING DIAMETER **ELL VOLUME: \(\frac{3}{3}, \frac{1}{3} \) GALLONS	CONVERSION FACTORS LINEAR FEET TO GALLONS $1'' = 0.041 \text{ GALLONS} \qquad 3" = 0.38 \text{ GALLONS}$ $1.25" = 0.064 \text{ GALLONS} \qquad 4" = 0.66 \text{ GALLONS}$ $2" = 0.16 \text{ GALLONS} \qquad 6" = 1.47 \text{ GALLONS}$
OLUMES PURGED: 40.0 GALLONS	PURGEMETHOD: Mini typhon
ME STARTED: 1212 ;	TIME FINISHED: 13 15
DBSERVATIONS: COLOR wy Jowy : Clear; SHEEN None; OTHER	ODOR TURBIDITY /3 UTU
VATER RECOVERY HEIGHT: 28,40';	RECOVERY TIME IN MINUTES: 45
IELD PARAMETERS: pH 8.29 5.0, CONDUCTIVITY .292 US CONDUCTIVITY	TEMPERATURE 15°C C
	SMSD
JOTES: Time Temp. PH Good, Turb. 1220 IS.4 8,21 0,342 5 800.	
1240 15.9 8.40 0.314 319	
1254 IS.2 8,31 0,296 182 1310 15.3 8.34 0,301 186	2
heet 1 of	en de la companya de La companya de la co

)ATE: 6/7/06	PROJECT NAME: 314 Clinto Street
) DJECT NO.: 05,555\	PROJECT LOCATION: Shere by
MPLING PERSONNEL: N. Freema	
MONITORING WELL ID#: CTM - 18	NOTES TAKEN BY:
PTH TO WATER: 18,29 FROM: TPVC	BAILER ID: MA
DEPTH TO BOTTOM: 92.80' FROM: TPVC	BAILER: LAB CLEANED / FIELD CLEANED
VATER COLUMN HEIGHT: 74.51	BAILER: STAINLESS STEEL
	OTHER
ELL CASING DIAMETER "ELL VOLUME:	CONVERSION FACTORS LINEAR FEET TO GALLONS 1" = 0.041 GALLONS 3" = 0.38 GALLONS 1.25" = 0.064 GALLONS 4" = 0.66 GALLONS 6" = 1.47 GALLONS
/OLUMES PURGED: 36.0 GALLONS	PURGE METHOD: mihil typhion
ME STARTED: 1440 ;	TIME FINISHED: 1535
DBSERVATIONS: COLOR Tany 511 - Louis;	ODOR None
SHEEN None;	TURBIDITY 6.0 NTU
OTHER	
VATER RECOVERY HEIGHT: 29.40;	recovery time in minutes: 40
TELD PARAMETERS: pH 8.63 S.U.	TEMPERATURE 15.0 %
	JMHO/CM, OTHER
AMPLE COLLECTION TIME: 1615	ϵ^{2}
10TES: Time Temp. Co. S PH Turb. 1445 15,22 0,446 865 625 1458 15,1°C 0.457 8,79 518 1515 15,2 0.450 8,54 762	
1535 15,2 0,446 8,46 485	

heet 1 of __

1 1	
DATE: 6/8/06	PROJECT NAME: 314 Clinton
ROJECT NO.: 05,5551	PROJECT LOCATION: Schenitady N
SAMPLING PERSONNEL: BRULSIR, N. F.	eeman
MONITORING WELL ID#:	NOTES TAKEN BY: 33
DEPTH TO WATER: 9,23 FROM: TPUL	BAILER ID:
DEPTH TO BOTTOM: 15.00 FROM: Touc	BAILER: LAB CLEANED / FIELD CLEANED
VATER COLUMN HEIGHT: 5.77	BAILER: STAINLESS STEEL
	OTHER
WELL CASING DIAMETER WELL VOLUME: 37 GALLONS VOLUMES PURGED: 3 75/Dey GALLONS TIME STARTED: 38.43; OBSERVATIONS: COLOR L. Gray S.14 SHEEN None OTHER	CONVERSION FACTORS LINEAR FEET TO GALLONS 1" = 0.041 GALLONS 1.25" = 0.064 GALLONS 4" = 0.66 GALLONS 6" = 1.47 GALLONS PURGE METHOD: Perulalic Pump TIME FINISHED: \$ '50 am ; ODOR ; TURBIDITY 71
WATER RECOVERY HEIGHT: 0.25 FIELD PARAMETERS: pH (0.97	; RECOVERY TIME IN MINUTES: 100 mm
CONDUCTIVITY 2.60	MHO/CM, OTHER
SAMPLE COLLECTION TIME: 10.30 AM	
NOTES:	
	H Turb
	9 su 303 ntu
8:50 14.9° \ 1.93 "Em 6.5	565u 815 ntu
Sheet 1 of	=

DATE: 6/8/04	PROJECT NAME: 314 Clinton
'ROJECT NO.: OS 55 S	PROJECT LOCATION: Schemetaly
SAMPLING PERSONNEL: B. Brusin N. Fri	ミアン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
MONITORING WELL ID#: CTM-Z	NOTES TAKEN BY: 1315
DEPTH TO WATER: 9,76 FROM: TPUC	BAILER ID:
DEPTH TO BOTTOM: 14.9 FROM: TRV	BAILER: LAB CLEANED / FIELD CLEANED
WATER COLUMN HEIGHT: 5.12	BAILER: STAINLESS STEEL
	OTHER
WELL CASING DIAMETER WELL VOLUME:, 3.3 GALLONS	CONVERSION FACTORS LINEAR FEET TO GALLONS 1" = 0.041 GALLONS 3" = 0.38 GALLONS 1.25" = 0.064 GALLONS 4" = 0.66 GALLONS 2" = 0.16 GALLONS 6" = 1.47 GALLONS
VOLUMES PURGED: 1.7 GALLONS	PURGE METHOD:
TIME STARTED: $09:17$;	TIME FINISHED: 09:30 9:50 am
OBSERVATIONS: COLOR Li Gray Brown S.1+;	ODOR Now
SHEEN Now;	TURBIDITY 200 NTU
OTHER	
WATER RECOVERY HEIGHT: 9.8;	RECOVERY TIME IN MINUTES:
FIELD PARAMETERS: pH 6,91 s.u ,	TEMPERATURE 14.5°C
CONDUCTIVITY 3,91 ms cm +	MHO/CM, OTHER
SAMPLE COLLECTION TIME: 10:05	
NOTES: Time temp (only 9:19 15.2° 4.28 m/cm 9:28 14.7° 3.82 m/cm 9:28 14.7° 3.82 m/cm	6.79 5n 424 ndu 6.79 5n 220 ndu 6.88 273
Sheet 1 of _ 4:48 (4.3°C 3.88	6.86 756

DATE: 6/8/06	PROJECT NAME: 314 Chutan St
'ROJECT NO.: 05.5351	PROJECT LOCATION: Schine charly NY
SAMPLING PERSONNEL: 3. BAULSIR	
MONITORING WELL ID#: LTM-5	NOTES TAKEN BY: 1513
DEPTH TO WATER: 1295 FROM: Told	BAILER ID: NA
DEPTH TO BOTTOM: 19.94 FROM: TOLE	BAILER: LAB CLEANED / FIELD CLEANED
WATER COLUMN HEIGHT: (, 4)	BAILER: STAINLESS STEEL
	OTHER
WELL CASING DIAMETER	CONVERSION FACTORS LINEAR FEET TO GALLONS 1" = 0.041 GALLONS 3" = 0.38 GALLONS (1.25") = 0.064 GALLONS 4" = 0.66 GALLONS
WELL VOLUME: ,45 GALLONS	2" = 0.16 GALLONS $6" = 1.47 GALLONS$
VOLUMES PURGED: 3.5 GALLONS	PURGE METHOD: Perista ltic Pump
TIME STARTED: 14.20;	TIME FINISHED: 15:15
OBSERVATIONS: COLOR L.G. J. LIEW; SHEEN Non; OTHER N/A	ODOR Nove
WATER RECOVERY HEIGHT: 13.06	; RECOVERY TIME IN MINUTES: 19min
FIELD PARAMETERS: pH	TEMPERATURE 14.5°
CONDUCTIVITY 4.98 :	umilo /cm, other <i>NA</i>
SAMPLE COLLECTION TIME: 3:00 pm	
NOTES: Time Turb Temp plt 276 24 17.4" G.72	Cond 475
	4.81
2:41 *(-3) 15:7 6.4	
Sheet 1 of_ # Recallbrated after rugo	tive twisidily reading

N. Freeman - off@ 11:45

DATE: (0/8/06	PROJECT NAME: 314 Chinton St
PROJECT NO.: 05,555	PROJECT LOCATION: Schenedady
SAMPLING PERSONNEL: 13. BAUSIR	
MONITORING WELL ID#: CTW-4	NOTES TAKEN BY:
DEPTH TO WATER: 10.6 FROM: TOUC	BAILER ID: NA
DEPTH TO BOTTOM: 14.85 FROM: Touc	BAILER: LAB CLEANED / FIELD CLEANED
WATER COLUMN HEIGHT: 4,25'	BAILER: STAINLESS STEEL NA
	OTHER WA
WELL CASING DIAMETER	CONVERSION FACTORS LINEAR FEET TO GALLONS $1'' = 0.041 \text{ GALLONS} \qquad 3" = 0.38 \text{ GALLONS}$ $1.25" \neq 0.064 \text{ GALLONS} \qquad 4" = 0.66 \text{ GALLONS}$
WELL VOLUME: ,27 GALLONS	2" = 0.16 GALLONS 6" = 1.47 GALLONS
VOLUMES PURGED: GALLONS	PURGE METHOD: Peristaltic Pump
TIME STARTED: 12.24 pm;	TIME FINISHED: 12:53
OBSERVATIONS: COLOR L. grey; SHEEN None; OTHER NA	ODOR None TURBIDITY 12 note
WATER RECOVERY HEIGHT: 10, 4	RECOVERY TIME IN MINUTES: 1) num
FIELD PARAMETERS: pH 6.42 , CONDUCTIVITY 19.7	TEMPERATURE 15.3°C MHO/CM, OTHER N/A
SAMPLE COLLECTION TIME: 13:10	
NOTES: True Tub Temp 1225 41 Atu 15,4°C 12:29 179 Atu 15.2°C 12:34 262 Atu 15.0°C 12:46 9 Notu 15.4°C Sheet 1 of	6.63 Su 21.6 us/cm (e.54 Su 21.2 us/cm 6.45 Su 15.5 hc Ccm 6.53 su 21.3 ns/cm
Sheet 1 of 12:51 12 ndn 15.4	

DATE: 6/8/06	PROJECT NAME: 314 Charton St
'ROJECT NO.: "05.5551	PROJECT LOCATION: Schmichady
SAMPLING PERSONNEL: B. BAUCSIR N.	Freeman
MONITORING WELL ID#: CTW- 3	NOTES TAKEN BY:
DEPTH TO WATER: 12.08 FROM: TPVC	BAILER ID: NA
DEPTH TO BOTTOM: 14.4 FROM: TPVC	BAILER: LAB CLEANED / FIELD CLEANED
VATER COLUMN HEIGHT: 2.37	BAILER: STAINLESS STEEL
	OTHER
WELL CASING DIAMETER WELL VOLUME: 15 Dry GALLONS VOLUMES PURGED: 5 and GALLONS	CONVERSION FACTORS LINEAR FEET TO GALLONS 1" = 0.041 GALLONS 1.25" + 0.064 GALLONS 2" = 0.16 GALLONS 6" = 1.47 GALLONS PURGE METHOD: Persstaltac Tumo
TIME STARTED: 11 0 4 ;	TIME FINISHED: (1:13
OBSERVATIONS: COLOR Light Brown Silt Feler SHEEN None OTHER	; ODOR None ; TURBIDITY 28 NTU
WATER RECOVERY HEIGHT: 12.12 FIELD PARAMETERS: pH (0.80 s.u.) CONDUCTIVITY 5.06 SAM	; RECOVERY TIME IN MINUTES: 17 , TEMPERATURE 15.7°C
SAMPLE COLLECTION TIME: 130	
NOTES: Time Temp	Turb PH (and.
11:06 15.506	39 mm 7.15 su 4.49 us/cn
	65 nh 6.9 sn 4.79 4/cu
11:12 14.6 00 13	5 ntu 6.93 su 4.88 us/co

DATE: 6804	PROJECT NAME: 314 Clinton
ROJECT NO.: 05,5551	PROJECT LOCATION: Schun Lady
CAMPLING PERSONNEL: B. BAWERZ	Freeman
MONITORING WELL ID#: 2TM- 10	NOTES TAKEN BY: 31
DEPTH TO WATER: 1199 FROM: Tol	BAILER ID:
DEPTH TO BOTTOM: 18.77 FROM: Tol	BAILER: LAB CLEANED / FIELD CLEANED
WATER COLUMN HEIGHT: 6.78'	BAILER: STAINLESS STEEL
	OTHER
WELL CASING DIAMETER WELL VOLUME: 47 (Dry @ 146 ALLONS VOLUMES PURGED: 1.0 gal / Dev GALLONS FIME STARTED: 2:15 pm (14:15); OBSERVATIONS: COLOR 4:13 row, S.14;	CONVERSION FACTORS LINEAR FEET TO GALLONS 1"-0.041 GALLONS 1.25" = 0.064 GALLONS 4" = 0.66 GALLONS 2" = 0.16 GALLONS 6" = 1.47 GALLONS PURGE METHOD: Verishalter Pump TIME FINISHED: (14:28) 2.28 ODOR
SHEEN ;	TURBIDITY 199 htm
OTHER WA	
WATER RECOVERY HEIGHT: 12.6; FIELD PARAMETERS: pH (65 sh , CONDUCTIVITY 2.8)	RECOVERY TIME IN MINUTES: $22 m$. TEMPERATURE 15.9 °C MHO/CM, OTHER V/H
SAMPLE COLLECTION TIME: 14.50	
NOTES: Two Town Temp 7.6 218 105 atu 16.2 of 7.6 2:23 244 atu 15.9 cc 6. 12.26 139 atu 15.00 16.	2.92 us/cm 6250 2.89 ws/cm 5750 2.89 wcm
Sheet 1 of _ KALLO WIN 10 RS 6	MY

DATE: 10/8/04				JECTNAME: 3/4 (Intorn	
				JECT LOCATION: Schang fad	C,
CAMPLING PERSO	NNEL: B. D.	uli			1
MONITORING WE	LL ID#: (TV)	1-9	NO.	TES TAKEN BY: 33	
EPTH TO WATER	: 13.36	FROM: Told	bail Bail	LER ID: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
DEPTH TO BOTTO	M: 19.43	FROM: TA	C BAI	LER: LABCLIANED / FILID CLEAN	ED
WATER COLUMN	<u> </u>	.07	BAI	LER: STAINUESS STEEL	
			······································	OTHER	
WELL CASING DIA	_		1" =	VERSION FACTORS LINEAR FEET TO GALLON 0.041 GALLONS 3" = 0.38 GALLO 1 = 0.66 GALLO 0.16 GALLONS 6" = 1.47 GALLO	NS NS
	39	GALLO			GNE
VOLUMES PURGE	170 100	7 GALLC		RGE METHOD: Jerstoltic tay	<u>, </u>
IME STARTED:	12:38		; TIM.	E FINISHED: 1310	
OBSERVATIONS:	COLOR H.G	vey Brown	511 ; OD		
	SHEEN	None	; TUI	RBIDITY 381 NTU	
	OTHER		·	1	
WATER RECOVER	Y HEIGHT: V	3.6'	; REC	COVERY TIME IN MINUTES: 19	w
FIELD PARAMETE	RS: pH /	,73	ر ان, TEN	MPERATURE 15.0 °C	,
	CONDUCTI			CM, OTHER	
FAMPLE COLLECT		1335	, , , , , , , , , , , , , , , , , , ,	GW-DUP.	
NOTES: time			*		
1241	999 nfn	15.6	6.64	13.18	
1244	999	115,4	6.64	7.37	
1249	999	15.0	6.64	13.51	
1753	999 1	14.7		3.46	
1258	757	14.8	(e. 68)	3.75	
Sheet 1 of 130%	524	ILLU	645	3.80	
1308	.918 'I	14.6	la Corrent	3.5.2	

DATE: 6/9/06	PROJECT NAME: 314 Clinton St
'ROJECT NO.: <u>OS. S S S I</u>	PROJECT LOCATION: Schweital, NY
SAMPLING PERSONNEL: B. BAUCIJZ	
MONITORING WELL ID#: CTW-7	NOTES TAKEN BY:
EPTH TO WATER: 4.3 from: 7.2	BAILER ID:
DEPTH TO BOTTOM: 14.6 FROM: 100L	BAILER: LABCLEANED/FIEL CLEANED
VATER COLUMN HEIGHT: 10.3	BAILER: STAINUESS STEEL
	OTHER
WELL CASING DIAMETER	CONVERSION FACTORS LINEAR FEET TO GALLONS $1'' = 0.041 \text{ GALLONS} \qquad 3" = 0.38 \text{ GALLONS}$ $1.25" = 0.064 \text{ GALLONS} \qquad 4" = 0.66 \text{ GALLONS}$
WELL VOLUME: 6 7 GALLONS	2" = 0.16 GALLONS 6" = 1.47 GALLONS
VOLUMES PURGED: GALLONS	PURGE METHOD: feistalte fump
CIME STARTED: 11, 5;	TIME FINISHED: 11:49
OBSERVATIONS: COLOR L. Brown > Clear ; SHEEN Nove ; OTHER	ODOR Now- TURBIDITY 7 Ma
WATER RECOVERY HEIGHT: 4.3	RECOVERY TIME IN MINUTES: 13 m
FIELD PARAMETERS: pH 7.77	TEMPERATURE 16.3°C
	MS UMHO/CM, OTHER NA
SAMPLE COLLECTION TIME: 12 noon	Used For Ms/Msd
NOTES: Time Turb Temp	PH (and
11:17 64 16.1	7.45 .405
17.23 NA Real 16.0	7.37 1.413
11:32	6.80 ,434
11:36 0 16:1	7.04 / 1444
Sheet 1 of T1:43	7.24 .448
11:43 0 15.9	7.28 451

DATE: 6/9/06	PROJECT NAME: 314 Clinton St			
'ROJECT NO.: 05.5551	PROJECT LOCATION: Schene tady NY			
CAMPLING PERSONNEL: B. BALLSIR				
MONITORING WELL ID#: CTM-6	NOTES TAKEN BY: BB			
DEPTH TO WATER: 13.1 FROM: Tare	BAILER ID: //			
DEPTH TO BOTTOM: 19.39 FROM: Tol	BAILER: LAB CLEANED / FIELD CLEANED			
WATER COLUMN HEIGHT: 6. 29	BAILER: STAINLESS STREEL			
	OTHER			
WELL CASING DIAMETER WELL VOLUME: GALLONS	CONVERSION FACTORS LINEAR FEET TO GALLONS 1" = 0.041 GALLONS 3" = 0.38 GALLONS 1.25" = 0.064 GALLONS 4" = 0.66 GALLONS 2" = 0.16 GALLONS 6" = 1.47 GALLONS			
volumes purged: 25 gallons	PURGE METHOD: Perstaltic Pamp			
TIME STARTED: 0900;	TIME FINISHED: 10:44			
OBSERVATIONS: COLOR# Brown SIJ -> (lev	; ODOR Nove			
SHEEN Non	; TURBIDITY 765 atm			
OTHER NA				
WATER RECOVERY HEIGHT: 13.	; RECOVERY TIME IN MINUTES: 30th			
FIELD PARAMETERS: pH (2.972 su	, TEMPERATURE 15.8°C			
CONDUCTIVITY 3.25	WHO/CM, OTHER NA			
SAMPLE COLLECTION TIME: 10:15				
NOTES: Time Turb Temp PH	Conclusion .			
9:13 999 nh 15.9 °L 4.59				
9:19 179 mm 15.5 00 (0.87;	50 297 ms/cm			
9:18 999 ntn 15.4 0 6.93.	· · · · · · · · · · · · · · · · · · ·			
9:37 959 mtu 15.70 16.93	3.12 ms/cm			
Sheet 1 of _ 10 10 7	EPA Medited			

ATE: 6 12/00	PROJECT NAME: 314 Llinter Street
1 DJECT NO.: 05, 5551	PROJECT LOCATION: Sherestry
MPLING PERSONNEL: N. Freem	<i>'</i>
40NITORING WELL ID#: CTM-11	NOTES TAKEN BY: NF
PTH TO WATER: 7.21 FROM: TPVC	BAILER ID: NA
PPTH TO BOTTOM: 14.70' FROM: TPVL	BAILER: LAB CLEANED / FIELD CLEANED
VATER COLUMN HEIGHT: 7.49'	BAILER: STAINLESS STEEL
	OTHER
ELL CASING DIAMETER	CONVERSION FACTORS LINEAR FEET TO GALLONS 1" = 0.041 GALLONS 3" = 0.38 GALLONS 4" = 0.66 GALLONS
ELL VOLUME: 0,48 GALLONS	2" = 0.16 GALLONS 6" = 1.47 GALLONS
/OLUMES PURGED: 2.0 GALLONS	PURGE METHOD: peristrilli- pump
ME STARTED: \$40 ;	TIME FINISHED: 855
DBSERVATIONS: COLOR;	ODOR None
SHEEN None ;	TURBIDITY \(\sqrt{\sq}}}}}}}}}}}}} \sqrt{\sq}}}}}}}}}}}}}}} \sqit}\sqite\sqite\sintitex{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}} \end{\sqitex{\sqit{\sq}\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \end{\sqitex{\sqit{\sq}
"ATER RECOVERY HEIGHT: 7.21";	RECOVERY TIME IN MINUTES: 1005
IELD PARAMETERS: pH 7.17 S.U.	TEMPERATURE 14.0 °C
CONDUCTIVITY 1.37 mk/cm	JMHO/CM, OTHER
SAMPLE COLLECTION TIME: 900	
JOTES: Time Tempic Cond, PHSIN TUI	b. NTO
842 13.0 1.36 6.78 23	
<u>845</u> 13.7 1.35 6.99 13	
848 13,4 1,19 10 7.05 10 851 13,4 1,35 7,05 11	
851 13.7 1.37 1.05 1. 854 13.4 1.36 7.09 9	

ATE: 6/12/06		PROJECT NAME:	314 Clinton Street
OS,6551		PROJECT LOCATION	V: Schenectaly
MPLING PERSONNEL: N.Fm.	2man		
10NITORING WELL ID#: CT	M-12	NOTES TAKEN BY:	NF
PTH TO WATER: 7,14' FE	ROM: TPIC	BAILER ID:	W
FPTH TO BOTTOM: 14,80' FI	ROM: TPVL	BAILER: LAB CLE	ANED / FIELD CLEANED
VATER COLUMN HEIGHT: 7	,66	BAILER: STAINLI	ESS STEEL
		OTHER	
ELL CASING DIAMETER 'ELL VOLUME: \mathcal{O} , 49	GALLONS	CONVERSION FACTORS I $1'' = 0.041 \text{ GALLONS}$ $1.25'' = 0.064 \text{ GALLONS}$ $2'' = 0.16 \text{ GALLONS}$	INEAR FEET TO GALLONS 3" = 0.38 GALLONS 4" = 0.66 GALLONS 6" = 1.47 GALLONS
/OLUMES PURGED: 1.0 Or.		PURGE METHOD:	penshithe pump
ME STARTED: 923		; TIME FINISHED:	932
(17) TITLE T	-(Biam) -> clear	; ODOR; TURBIDITY	None 2143 NTO
ATER RECOVERY HEIGHT:	7.82'	: RECOVERY TIME I	N MINI ITES
IELD PARAMETERS: pH	7. 34 s.u. Y O, 681	TEMPERATURE UMFO/CM, OTHER	14.8 %
AMPLE COLLECTION TIME:	1000		
925 13.7	PH COND. 7.12 0.648 7.26 0.668 7.24 0.676	Torb. 145 670 580	

DATE:	6/12/06				PROJECT N	AME: 3	14 Clinton	Sheet
OJECT NO.:	05,555	51			PROJECT L			
' ^.MPLING PERSON	VEL: N.	Freen	د م					
MONITORING WELL	TT-, 11	TM-1			notes tai	ŒN BY:	NF	
PTH TO WATER:	12,82)	FROM:	TPUL		BAILER ID:	W	A	
DEPTH TO BOTTOM:	19.40	FROM:	TPVL		BAILER:	LAB CLEA	aned / fieli) CLEANED
, ATER COLUMN HI	EIGHT:	6.58	<u> </u>		BAILER:	STAINLES	SS STEEL .	
						OTHER _		
ELL CASING DIAM	IETER				CONVERSION 1" = 0.041 G.	ALLONS	3" = 0.3	GALLONS
VELL VOLUME:	0,42	C	SALLONS	. ($\frac{1.25^{\circ} = 0.064}{2^{\circ} = 0.16 \text{ GA}}$			6 GALLONS 7 GALLONS
OLUMES PURGED:	1.0 Or	<i>*</i>	GALLONS		PURGE ME	ETHOD:	penstalhe	ρυλρ
ME STARTED:	1030			;	TIME FINIS	_	039	
DBSERVATIONS:		Siban S	:14	;	ODOR		None	
	SHEEN	Nove		; 	TURBIDIT	Y	198	WTO
VATER RECOVERY I	HEIGHT:	-+3-4	13.42'	;	RECOVER'	y time in	MINUTES	
.ELD PARAMETERS	 : pH	7.11	S.U.		TEMPERA	TURE	15,2	°C
	CONDUCTIV	TTY	5,75	' U A	√ ≤ '	OTHER		
AMPLE COLLECTIC	N TIME:	1100						
IOTES: Time	Temp,	PH	Cond.	Turk	>,		•	
1032	15.8	7,38	5.76	73				
1035	1 0	7,11	5.71	185				
1041	16,3	7.13	5.75	183	\$			

)ATE: 6 12 06	PROJECT NAME: 314 Clinton Street			
OJECT NO.: 05,5551	PROJECT LOCATION: Shere they			
MPLING PERSONNEL: N. Freeman	· · · · · · · · · · · · · · · · · · ·			
MONITORING WELL ID#: CTM- 15	NOTES TAKEN BY: 1 F			
PTH TO WATER: 12.27 FROM: TPUL	BAILER ID: MA			
FPTH TO BOTTOM: 19,40' FROM: TPIC	BAILER: LAB CLEANED / FIELD CLEANED			
VATER COLUMN HEIGHT: 7.13	BAILER: STAINLESS STEEL			
	OTHER			
ELL CASING DIAMETER 'ELL VOLUME: 0,45 GALLONS	CONVERSION FACTORS LINEAR FEET TO GALLONS $1'' = 0.041 \text{ GALLONS}$ $3'' = 0.38 \text{ GALLONS}$ $4'' = 0.66 \text{ GALLONS}$ $2'' = 0.16 \text{ GALLONS}$ $6'' = 1.47 \text{ GALLONS}$			
/OLUMES PURGED: 1,0 Or x GALLONS	PURGE METHOD: pentaltiz none			
ME STARTED: 1/27	TIME FINISHED: 1/38			
DBSERVATIONS: COLOR L.S. NY (Brown) - June	; ODOR None			
SHEEN None OTHER	; TURBIDITY 196 NTU			
VATER RECOVERY HEIGHT: 12, 91	: RECOVERY TIME IN MINUTES:			
IELD PARAMETERS: pH 7, 26 S.U.	, TEMPERATURE 16.8 %			
CONDUCTIVITY 1,20	ms UMHO/CM, OTHER			
AMPLE COLLECTION TIME: 1205				
IOTEC. T	- - -, D,			
	10			
1131 16.4 7.19 8.20 6	130			
1137 16,0 7,11 8,62 5	142 346			

)ATE: 6/12/06	PROJECT NAME: 314 Clinton Street			
OJECT NO.: 05,5551	PROJECT LOCATION: Schener truly			
MPLING PERSONNEL: N. Freeman	,			
MONITORING WELL ID#: CTM-14	NOTES TAKEN BY: WF			
PTH TO WATER: 12.03' FROM: TPVL	BAILER ID: NA			
PEPTH TO BOTTOM: 20,0 FROM: TPVL	BAILER: LAB CLEANED / FIELD CLEANED			
vATER COLUMN HEIGHT:),97'	BAILER: STAINLESS STEEL			
	OTHER			
ELL CASING DIAMETER	CONVERSION FACTORS LINEAR FEET TO GALLONS $1'' = 0.041 \text{ GALLONS} \qquad 3'' = 0.38 \text{ GALLONS}$ $4'' = 0.66 \text{ GALLONS}$			
FELL VOLUME: 0,51 GALLONS	$2^{\text{n}} = 0.16 \text{ GALLONS}$ $6^{\text{n}} = 1.47 \text{ GALLONS}$			
/OLUMES PURGED: 1,2 pry GALLONS	PURGE METHOD: penstalha pump			
ME STARTED: 1233 ;	TIME FINISHED: 1246			
DBSERVATIONS: COLOR H.Brow 5/1+ ;	ODOR None			
SHEEN None;	TURBIDITY NTU			
VATER RECOVERY HEIGHT: 7,	RECOVERY TIME IN MINUTES:			
IELD PARAMETERS: pH 7,18 5.0	TEMPERATURE 16.9 °C			
CONDUCTIVITY 7, 95	MINIO/CM, OTHER			
SAMPLE COLLECTION TIME: 1315				
JOTES: * Blockage @ 12,30' cm+ get WL	P dom - but can get tuby by			
Time Temp PH Condi Tui				
1235 17,8 7,03 7,92 46 1238 16,0 7,02 7,45 E9				
1238 16,0 7,02 7,45 E9				

APPENDIX F

CDs of LABORATORY ANALYTICAL DATA (UNVALIDATED)