HRP associates, Inc.

Creating the Right Solutions Together

May 27, 2010

Michelle Duell Mechanicville Public Library 190 North Main Street Mechanicville. New York 12118

Mr. Anthony Sylvester Mayor City Hall 36 N. Main Street Mechanicville, NY 12118

RE: UST CLOSURE REPORT FOR MECHANICVILLE LIGHT INDUSTRIAL PARK SITE (NYSDEC ERP Site# E546050)

Dear Ms. Duell and Mayor Sylvester:

Enclosed please find an UST Closure Report for the Mechanicville Light Industrial Park site (NYSDEC ERP Site# E546050) in Mechanicville, New York. In order to satisfy the Citizen Participation Plan requirements, we are sending you a copy of the work plan and requesting you act as a repository for its storage.

Please contact me with any questions at 518.877.7101 x108.

RECEIVED

MAY 2 8 2010

NYSDEC-REGION 5 ENVIRONMENTAL QUALITY Sincerely yours,

HRP Associates, Inc.

his. Lan

Cailyn E. Dinan Senior Project Geologist

cc: Alicia Thorne/NYSDEC

CONNECTICUT

197 Scott Swamp Road Farmington, CT 06032 800-246-9021 860-674-9570 FAX 860-674-9624

501 Kings Highway East Fairfield, CT 06825 203-610-8212 FAX 203-610-8102

FLORIDA

8875 Hidden River Parkway Suite 300 Tampa, FL 33637 888-477-1877 813-975-7178 FAX 813-975-7170

INDIANA

450 East 96th Street Suite 500 Indianapolis, IN 46240 317-581-6145 FAX 317-581-6146

NEW YORK

1 Fairchild Square Suite 110 Clifton Park, NY 12065 888-823-6427 518-877-7101 FAX 518-877-8561

SOUTH CAROLINA

1327 Miller Road Suite D Greenville, SC 29607 800-752-3922 864-289-0311 FAX 864-281-9846

www.hrpassociates.com

CHANT WALLSTON TAN

HRP associates, Inc.

Creating the Right Solutions Together

May 27, 2010

Mayor Anthony Sylvester City of Mechanicville 36 North Main Street Mechanicville, New York 12118 MAY 2 8 2010

NYSDEC-REGION 5

RE: SUMMARY OF ACTIVITIES: REMOVAL OF A 275-GALLON UNDERGROUND STORAGE TANK AT THE MECHANICVILLE LIGHT INDUSTRIAL PARK, MECHANICVILLE, NEW YORK (HRP # MEC2001.P2), Spill # 09-13855, ERP # E546050

Dear Mayor Sylvester:

This letter-report provides a summary of the April 2010 activities associated with the removal of a 275-gallon No. 2 fuel oil underground storage tank (UST) and associated wastes and petroleum contaminated soils at the Mechanicville Light Industrial Park in Mechanicville, Saratoga County, New York (the site).

HRP utilized DRAFT Technical Guidance for Site Investigation and Remediation (DER-10), (date November 2009) as general guidance while executing the excavation activities and confirmatory soil sampling onsite. The remainder of this letter-report discusses the project background, field activities, analytical results, findings and conclusions.

BACKGROUND

Environmental Restoration Program

The City of Mechanicville entered into the New York State (NYS) Environmental Restoration Program (ERP) State Assistance Contract (SAC), # C303093, with the NYSDEC to investigate the 25.0± acre Mechanicville Light Industrial Park site. The SAC, ERP site number E546050, was executed on March 21, 2006.

CONNECTICUT

197 Scott Swamp Road Farmington, CT 06032 800-246-9021 860-674-9570 FAX 860-674-9624

501 Kings Highway East Fairfield, CT 06825 203-610-8212 FAX 203-610-8102

FLORIDA

8875 Hidden River Parkway Suite 300 Tampa, FL 33637 888-477-1877 813-975-7178 FAX 813-975-7170

INDIANA

450 East 96th Street Suite 500 Indianapolis, IN 46240 317-581-6145 FAX 317-581-6146

NEW YORK

1 Fairchild Square Suite 110 Clifton Park, NY 12065 888-823-6427 518-877-7101 FAX 518-877-8561

SOUTH CAROLINA

1327 Miller Road Suite D Greenville, SC 29607 800-752-3922 864-289-0311 FAX 864-281-9846

www.hrpassociates.com

RECEIVED

MAY 2 8 2013

NYSDEC-REGIONS ENVIRONMENTAL DUALITY

A Remedial Investigation (RI) was performed by HRP Associates for the City of Mechanicville under the ERP from June 2007 through May 2009 to characterize the nature and extent of contamination at the Mechanicville Light Industrial Park site. The investigation consisted of a Ground Penetrating Radar (GPR) survey, the installation of test pits, monitoring wells and soil borings; groundwater, surface and subsurface soil sampling and analysis; completion of public well survey and a professional survey of locations of the test pits, surface soil samples, subsurface soil boring samples and newly installed groundwater monitoring wells; and soil vapor collection and analysis. A Record of Decision (ROD) for the site was signed on February 19, 2010 and requires the following: a two-foot thick clean soil cover underlain by a demarcation layer in the future softball field area, a one-foot thick clean soil cover underlain by a demarcation layer in the industrial area, and 6 inch cover of concrete or paving system for all non-vegetative areas. As part of the ROD, HRP is currently preparing a Site Management Plan (SMP). The SMP is a plan intended for use in managing any remaining contamination at the site.

Current & Historic Site Usage

A 275-gallon UST was discovered in the easternmost portion of the ±25 acre Mechanicville Light Industrial Park site in March 2010. This portion of the subject site is ±2.7-acres in size and is nearly rectangular in shape. The UST discovery is described in detail below.

Historically, the easternmost (rectangular) portion of the site consisted of vacant, undeveloped land prior to circa 1921 when Boston and Maine Railroad developed the site for use as a rail yard. At that time, the subject site was part of an approximately 200-acre parcel owned by the railroad. From 1921 to the mid to late 1980s, the easternmost (rectangular) portion of the subject site was not developed with any major structures (i.e. power house, sand house, coal trestle etc); however, the land was utilized as part of the railroad yard operation. The land immediately northeast of the eastern portion of the site was historically and is currently occupied by railroad tracks.

Since 1996, the easternmost (rectangular) portion of the ±25 acre site has consisted of undeveloped land. During the winter and spring months, the Mechanicville Department of Public Works (DPW) utilizes this area for snow storage.

UST Discovery

On March 30, 2010, Mechanicville DPW personnel were working onsite attempting to locate and uncover a network of storm sewers. While excavating a small area of earthen material on the eastern portion of the subject site, the DPW encountered an UST at approximately one to two feet below the ground surface. The tank was noted to contain a water/fuel oil mixture. The DPW personnel immediately ceased operations and notified HRP of the discovery. HRP notified the NYSDEC of the UST discovery and spill # 09-13855 was assigned to the site. The NYSDEC directed the UST be removed as part of the remedial actions under the existing ERP program. The UST had not been detected during the previous GPR survey of the site due to the size of the UST and due to the undulating soils deposited by melting snow piles in

this area of the site. Provided below is a summary of the underground storage tank that was subject to closure under the scope of this report.

Summary of Underground Storage Tank

The 275-gallon fuel oil UST was located on the ±2.7 acre rectangular portion of the subject site, approximately 300 feet east of the DPW building and approximately twenty feet north of Industrial Park Road (see Figure 1 for Site Location and Figure 2 for Site Plan detailing the tank location). This area of the site consists of grassy, undeveloped land. According to the City of Mechanicville, a former building may have been present in this area of the site, which the UST may have been associated with. A general description of the UST is provided below:

The UST was 275-gallons in capacity and constructed of riveted steel. The tank was
covered with earthen material and located on the eastern portion of the site in a
manicured lawn area. Underground piping associated with this UST was not present
in the excavation. The tank was noted to contain a water/fuel oil mixture. No
information was available regarding the date of installation of the UST or the exact
use(s) of the UST.

Provided below is a summary of the field activities associated with the removal of the UST detected in the eastern portion of the subject property.

FIELD ACTIVITIES

Preliminary Activities

On March 30, 2010, HRP notified the NYSDEC of the UST discovery and spill # 09-13855 was assigned to the site. The NYSDEC directed the UST be removed as part of the remedial actions under the existing ERP program. Prior to any ground intrusive activities, HRP prepared a project-specific Health and Safety Plan (HASP), in accordance with 29 CFR 1910.120. Field activities were performed by appropriately trained and certified individuals in accordance with HRP's health and safety protocols and applicable federal, state, and local regulations. In addition, HRP contacted the local utilities via the Underground Facilities Protection Organization (UFPO) to perform a utility mark out of the site.

275-Gallon UST Removal

On April 5, 2010, HRP supervised the removal of the 275-gallon UST. HRP contracted MC Environmental Services, Inc. of Queensbury, New York (MCES) to provide labor and equipment to facilitate the UST removal. MCES utilized an excavator, vacuum truck and disposal trucks to complete the project. Prior to removing this UST, the soil present above

the UST was removed to expose the top of the UST. Approximately 107 gallons of remaining product/water was removed from the UST using a vacuum truck (manifest in Attachment #2).

Next, the soil around the perimeter of the UST was removed. HRP screened the soil for the presence of volatile organic compounds (VOCs) with a photo ionization detector (PID). Evidence of contamination (petroleum odors, staining, and PID readings >25ppm) was noted on soils from the perimeter of the UST. The impacted soils were subsequently excavated and placed on a remote staging location on 6-mil polyethylene sheeting (poly). As previously noted piping lines were not observed to be attached to the UST and were not present in the excavation area. The excavation continued until the perimeter of the UST was accessible. MCES utilized a backhoe to remove the UST from the ground and placed it on 6-mil poly sheeting. Upon removal from the excavation, the UST was inspected for corrosion, holes, cracks and pitting by an HRP representative. Holes were observed in one side (western side) of the tank and along the bottom of the tank (See Attachment #1). The removed UST was then saw cut, crushed and placed in a roll-off container for disposal.

Further excavation was halted at this time because MCES received a call indicating all utilities had not yet been marked in the field, even though a full week was given for utility clearance. As a result, the small amount of impacted soil that had already been removed from the excavation was placed at the bottom of the excavation and covered with 6-mil poly sheeting. The previously removed un-impacted soil and clean fill provided by MCES was placed in the excavation above the poly sheeting. The excavation was brought to grade and plans were made to complete the excavation of impacted soils in the UST area at a later date. The dimensions of the initial excavation were six feet east to west, three and one half feet north to south and approximately six feet deep.

On April 15, 2010, after all utilities were cleared, HRP was back onsite to supervise the removal of impacted soil in the area of the 275-gallon fuel oil UST that was removed from the site on April 5, 2010. The un-impacted soil and clean fill previously placed in the excavation above the poly sheeting was removed and placed to the side for reuse as backfill. Impacted soil previously placed back in the excavation was removed and stockpiled on separate poly sheeting. The tank grave was then reviewed for physical evidence of contamination (odor or staining) and selected soil samples were subjected to headspace screening via a photoionization detector (PID) to evaluate the presence of volatile hydrocarbons. HRP determined that the UST had historically leaked based on our review of the soils within the tank grave and the observed condition of the UST.

Fuel oil stained soil was removed from the bottom and north, west and south sidewalls of the tank grave. The soils from the eastern sidewall and bottom of the excavation did not appear to be impacted by a release. It should be noted that a concrete storm sewer pipe (approximately two feet in diameter) was encountered in the eastern end of the excavation. The excavation was extended further to the north, west and south and further below ground surface (bgs) to remove all impacted soil. Shale bedrock was encountered at approximately ten feet in the western end of the excavation. The presence of the concrete piping associated with the storm sewer in the eastern end of the excavation prohibited soil removal from the base of the excavation (greater than six feet) in this area.

The final dimensions of the excavation area were approximately twenty six feet east to west, fifteen feet north to south over the western end of the excavation, eight feet north to south over the eastern end of the excavation and ten feet deep (on bedrock) in the western end of the excavation. The depth of the excavation in the eastern end could not be completed to bedrock due to the presence of the drainage pipe in this area. A small amount of groundwater was encountered at approximately ten (10) feet bgs. A slight sheen was observed on the small amount of water entering the excavation. A total of 68.04 tons of contaminated soil was excavated and transported offsite for proper disposal (manifest in Attachment #2).

Prior to backfilling the excavation, HRP collected five soil samples from the excavation sidewalls and bottom (Sidewall – N, Sidewall – S, Sidewall – E, Sidewall – W and Bottom). It should be noted that the sample collected from the bottom of the excavation (Bottom) was collected from the western side/bottom of the excavation only, due to the presence of the drainage piping in the eastern area of the excavation bottom.

Sample ID	Sample Depth (ft bgs)	PID Reading (ppm)
Sidewall-N	5-6	5.4 – 7.1
Sidewall-S	5-6	2.3 – 4.5
Sidewall-E	5-6	3.2 - 5.4
Sidewall-W	5-6	1.7 – 4.4
Bottom	10	17 – 23

Since the amount of groundwater that entered the bottom of the excavation was very limited, a groundwater sample was not collected from the excavation. The soil samples were submitted to a New York State certified laboratory for analysis of Complete VOCs via USEPA method 8260B, STARS SVOCs via USEPA Method 8270C, and RCRA 8 metals.

Excavation Backfill

Subsequent to UST and contaminated soil removal the excavation was backfilled with both previously stockpiled, uncontaminated soil and clean fill (sand and gravel) provided by MCES. The excavation was backfilled to grade and periodically compacted with the bucket of the excavator and then with a tamper. In total, seventy (70) tons of clean fill was used to bring the excavation to grade. Grass seed was planted in the excavated area following the backfilling of the excavation.

Contaminated Soil and Water Disposal

As previously noted, during the course of the UST removal, contaminated soil was encountered and excavated. Where physical evidence of contamination was noted (odors, PID readings above 25 ppm via headspace), then the excavation area was extended to the limits of observed contamination, except in the area where the concrete piping was encountered. Any contaminated soil encountered was stockpiled on a remote polyethylene

lined staging area. A total of 68.04 tons of contaminated soil was removed during the UST removal activities. The soil was transported by MCES to ESMI of New York located in Fort Edward, New York for disposal. Copies of the disposal manifests are included in Attachment #2. Only a limited amount of groundwater was encountered in the excavation during the tank removal activities, as such no contaminated water was removed from the excavation area.

In addition, during the excavation and UST removal activities, 107 gallons of contaminated water/fuel was generated. The total 107 gallons of water/fuel was removed from the UST prior to the UST being removed from the ground. A vac-truck was utilized to remove the water/fuel mixture from the UST. The contaminated water/fuel mixture was transported to Bridgeport United Recycling in Bridgeport, Connecticut for treatment and disposal. Copies of disposal manifests are included in Attachment #2.

ANALYTICAL RESULTS

As previously noted, a total of five (5) confirmatory soil samples were collected from the excavation. The soil samples were submitted to a NYS certified laboratory for analysis of Complete VOCs via USEPA method 8260B, STARS SVOCs via USEPA method 8270C and RCRA 8 metals via USEPA method 6000/7000 Series. The locations of the soil samples are presented on Figure 2. A summary of the analytical results is presented in Table 1. The complete laboratory forms are presented in Attachment #3. HRP compared the confirmatory soil sample results to:

• <u>Subpart 375-6</u>: Remedial Program Soil Cleanup Objectives, Technical Support Document (TSD). "Technical Support Document" is also known as the "New York State Brownfield Cleanup Program Development of Soil Cleanup Objectives Technical Support Document" dated September 2006. This document presents the assumptions, rationale, algorithms and calculations utilized by the Department and the New York State Department of Health to develop the soil cleanup objectives in ECL 27-1415(6). It should be noted that Part 375 Standards are applicable to the sites in NYS Brownfields Cleanup program, Inactive Hazardous Waste Disposal Sites, or Environmental Restoration Program. Specifically, HRP compared soil sample results against Part 375 Protection of Public Health Unrestricted Use Soil Cleanup Objective (Unrestricted SCO) and the Industrial Use Soil Cleanup Objective (Industrial SCO).

North Wall of Excavation

One confirmatory soil sample (Sidewall - N) was collected from the north wall of the excavation. No VOCs or SVOCs were detected above the laboratory detection limits. Seven of the total eight metals analyzed were detected in this soil sample; however, only one metal, chromium, exceeded the SCOs. Chromium, detected at a concentration of 29.9 ppm slightly exceeded the Unrestricted SCO of 1 ppm, but was well below the Industrial SCO of 800 ppm.

South Wall of Excavation

HRP associates, Inc.

One confirmatory soil sample (Sidewall - S) was collected from the south wall of the excavation. No SVOCs were detected above laboratory detection limits. Two VOCs, acetone and 2-Butanone (MEK) were detected above laboratory detection limits; however, only acetone, at a concentration of 250 ppb, exceeded the Unrestricted SCO (50 ppb), but was well below the Industrial SCO (1,000,000 ppb). Acetone is a commonly used laboratory cleaner, the detection of which is likely attributed to laboratory contamination. Six of the eight metals analyzed for were detected in this sample; however, only one metal, chromium exceeded the SCOs. Chromium was detected at a concentration of 29.4 ppm, which slightly exceeded the Unrestricted Use SCO (1 ppm), but was well below the Industrial SCO (800 ppm).

East Wall of Excavation

One confirmatory soil sample (Sidewall - E) was submitted for analysis from the east wall of the excavation. No VOCs were detected above laboratory detection limits. Low concentrations of several SVOCs were detected in the soil sample; however, none were detected at concentrations exceeding the Unrestricted or Industrial SCOs. Of the eight metals analyzed, concentrations of seven metals were detected; however, only chromium exceeded the SCOs. Chromium was detected at a concentration 17.8 ppm, slightly exceeding the Unrestricted SCO of 1 ppm, but well below the Industrial SCO of 800 ppm.

West Wall of Excavation

One confirmatory soil sample (Sidewall - W) was submitted for analysis from the south wall of the excavation. No SVOCs were detected above laboratory detection limits. One VOC, acetone, was detected above laboratory detection limits at a concentration of 140 ppb, which slightly exceeded the Unrestricted SCO (50 ppb), but was well below the Industrial SCO (1,000,000 ppb). Of the eight metals analyzed, concentrations of seven metals were detected; however, only chromium exceeded the SCOs. Chromium was detected at a concentration 17.8 ppm, slightly exceeding the Unrestricted SCO of 1 ppm, but was well below the Industrial SCO of 800 ppm.

Bottom of Excavation

One confirmatory soil sample (Bottom) submitted for analysis was collected along the western side of the bottom of the excavation (drainage pipe blocking eastern side). Several VOCs and SVOCs were detected above laboratory detection limits; however, none were detected above Unrestricted or Industrial SCOs. Of the eight metals analyzed, concentrations of seven metals were detected; however, only chromium exceeded the SCOs. Chromium was detected at a concentration 17.8 ppm, slightly exceeding the Unrestricted Use SCO of 1 ppm, but was well below the Industrial SCO of 800 ppm.

Copies of the laboratory analytical reports are included as Attachment #3.

CONCLUSIONS

HRP associates, Inc.

Based upon the data collected to date, HRP has the following conclusions:

- In March 2010, HRP notified the NYSDEC of an UST discovery and Spill #09-13855 was assigned to the site. The NYSDEC directed the UST be removed as part of the remedial actions under the existing ERP program.
- In April 2010, HRP Associates, Inc. (HRP) removed a 275-gallon No. 2 fuel oil underground storage tank (UST) at the Mechanicville Light Industrial Park in Mechanicville, Saratoga County, New York. The tank (no associated piping) was emptied, properly cleaned and sent off-site as scrap.
- Remedial activities have been completed associated with the petroleum release detected during the removal of the former UST, including:
 - o The excavation and off-site disposal of 68.04 tons of contaminated soil; and
 - The removal and off-site treatment of 107 gallons of a water/fuel mixture from the UST
- Five confirmatory soils samples were collected from the sidewalls and bottom of the excavation and analyzed for Complete VOCs via USEPA Method 8260B, STARS SVOCs via USEPA Method 8270C and RCRA 8 Metals via USEPA Method 6000/7000 Series. Chromium was detected in all five soil samples (Sidewall-N, Sidewall-S, Sidewall-E, Sidewall-W and Bottom) at concentrations (17.8 29.4 ppm) slightly above the Unrestricted SCO (1 ppm), but well below the Industrial SCO (800 ppm). In soil samples Sidewall S and Sidewall W, the concentrations of acetone slightly exceeded the Unrestricted SCO (50 ppb) at concentrations of 250 ppb and 140 ppb, but were well below the Industrial SCO (1,000,000 ppb). Acetone is typical laboratory cleaner. The detection of acetone is likely attributed to laboratory contamination. The detection of chromium in all five soil samples is likely attributable to historic uses of the property as a railroad yard.

RECOMMENDATIONS

Based on the findings to date, HRP recommends the following:

This report be submitted to the NYSDEC and closure of Spill #09-13855 be requested.
 HRP can submit this request upon Client authorization.

If you have any questions regarding this letter-report, please do not hesitate to contact HRP Associates, Inc. at (518) 877-7101.

Sincerely,

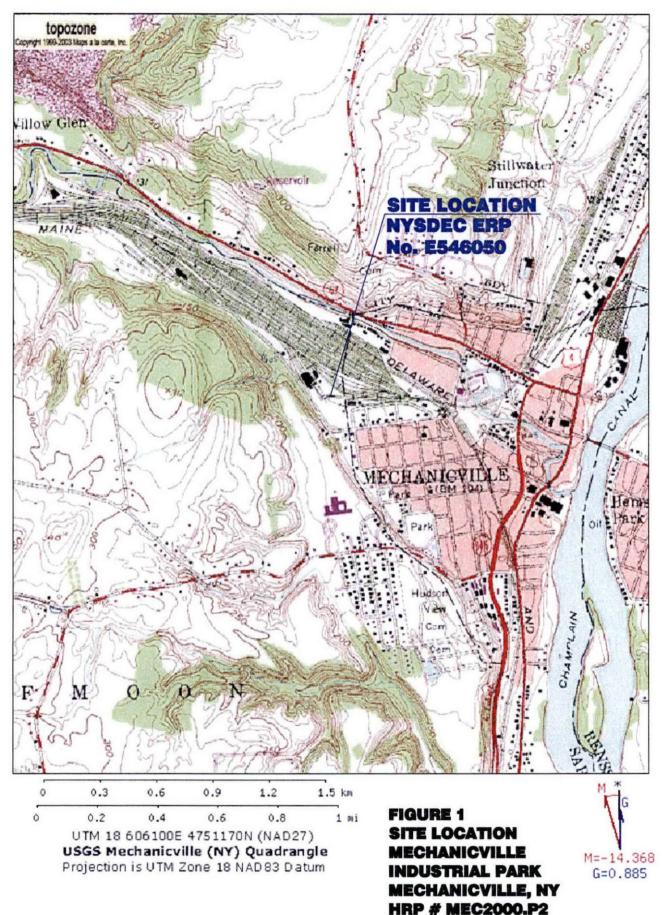
HRP ASSOCIATES, INC.

Jolene Lozewski Project Geologist

Cailyn Locci

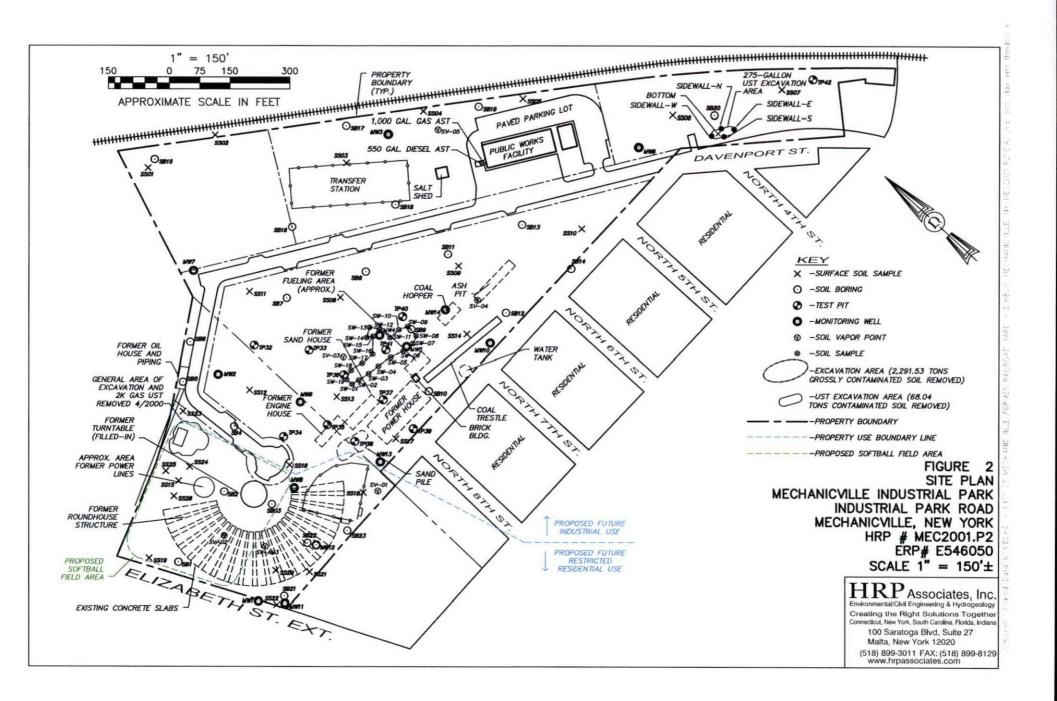
Senior Project Geologist

hi & Zai


Jeffrey R. Sotek, PE, CSP, CIH

Senior Project Manager

Jayr


cc: Ms. Alicia Thorne/NYSDEC Region 5

FIGURES

NYSDEC ERP # E546050

S:\Data\M\MECHC — CITY OF MECHANICVILLE\FORMER RAILROAD YARD — D,HB,M, MECHANICVILLE, NY\MEC2000P2\CAD\SITE LOCATION.dwg, Layout1, 1/8/2009 1:14:54 PM

TABLE

Table 1 Mechanicville Industrial Park Mechanicville, NY April 15, 2010

375-6 SCO - Protection of Public Health - Unrestricted & Industrial Use Soil Samples - Analyzed for VOCs, SVOCs and RCRA 8 Metals (Only detected constituents are listed)

Soil Sample ID	Sidewall - N	Sidewall - S	Sidewall - E	Sidewall - W	Bottom				
Sample Depth (ft bgs)	(5-6)	(5-6)	(5-6)	(5-6)	(10)	375-6 SCO - Protection of Public Health - Unrestricted Use	375-6 SCO - Protection of Public Health - Industrial Us		
Date Collected	4/15/2010	4/15/2010	4/15/2010	4/15/2010	4/15/2010				
RCRA 8 Metals (mg/kg or ppm)									
Arsenic	3.57	<1.60	9.57	3.65	10.1	13 c	16		
Barium	131	191	97	172	114	350	10,000		
Cadmium	1.10	1.1	1.18	1.26	1,36	2.5	60		
Chromium*	20.9	29.4	17.8	23.3	23.1	1	800		
Lead	13,6	9,41	25.3	13,8	40.5	63	3,900		
Mercury	0.0534	0.035	0.0798	0.0704	0.0843	0.18	5,700		
Selenium	1.10	0.886 J	0.890 J	0.930 J	1.36 J	3.9	6.800		
Silver	<1.88	<1.60	<1.56	<1.86	<1.92	2	6,800		
			STA	Rs SVOCs (ug/kg	or ppb)				
Acenaphthene	<226	<256	<265	<240	307 J	20.000	1.000.000		
Anthracene	<226	<256	<265	<240	152 J	100,000	1,000,000		
Benzo(a)anthracene	<226	<256	83.4 J	<240	<426	1,000	11,000		
Benzo(a)pyrene	<226	<256	105 J	<240	<426	1,000	1,100		
Benzo(b)fluoranthene	<226	<256	153 J	<240	<426	1.000	11.000		
Benzo(ghi)perylene	<226	<256	46.0 J	<240	<426	100.000	1,000,000		
Benzo(k)fluoranthene	<226	<256	115 J	<240	<426	800	110,000		
Chrysene	<226	<256	107 J	<240	<426	1,000	110,000		
Dibenzofuran	<452	<511	<529	<481	495 J	NE	NE NE		
Fluoranthene	<226	<256	165 J	<240	57.7 J	100,000	1,000,000		
Fluorene	<226	<256	<265	<240	911	30,000	1,000,000		
Indeno(1,2,3-cd)pyrene	<226	<256	56.6 J	<240	<426	500	11,000		
1-Methylnapthalene	<226	<256	29.4 J	<240	3,770	NE.	NE.		
Phenanthrene	<226	<256	53.4 J	<240	1,500	100,000	1.000.000		
Pyrene	<226	<256	157 J	<240	117 J	100.000	1,000,000		
				VOCs (ug/kg or p	pb)				
Acetone	(<62.5)	260	(<72.5)	140	(<1,770)	50	1,000,000		
2-Butanone (MEK)	<62.5	26.6 J	<72.5	<94.2	<1,770	NE.	NE NE		
n-Burtylbenzene	<6.3	<6.8	<7.3	<9.4	2,400	12,000	NE NE		
sec-Butylbenzene	<6.3	<6.8	<7.3	<9.4	1,420	11,000	1.000.000		
tert-Butylbenzene	<6.3	<6.8	<7.3	<9.4	241	5.900	1,000,000		
sopropylbenzene	<6.3	<6.8	<7.3	<9.4	527	NE.	NE		
n-Propylbenzene	<6.3	<6.8	<7.3	<9.4	848	3,900	1,000,000		
1,2,4-Trimethylbenzene	<6.3	<6.8	<7.3	<9.4	165 J	3,600	380,000		

Bold Sample Exceeds Unrestrictive Use Objective

Chromium DEC standards as shown are for Hexavalent Chromium.

NE Not Established

mg/kg or ppm milligrams per kilogram or parts per million ug/kg or ppm micrograms per kilogram or parts per million

() Indicates the stated minimum detectable level exceeds an SCO criteria

STARs SVOCs NYSDEC Spill Technology and Remediation Series Volatile Organic Compounds - Samples analyzed via United States Environmental Protection Agency Method 8270C

VOCs Volatile Organic Compounds - Samples analyzed via United States Environmental Protection Agency Method 8260B

RCRA Resource Conservation and Recovery Act

J Detected above the Method Detection Limit but below the Reporting Limit, therefore, result is an estimated concentration

ft bgs feet below ground surface

ATTACHMENT #1

PHOTOGRAPHS

Uncovering the UST

Removing the water/fuel oil mixture from the UST

UST being removed. Note: Holes in side of tank – April 5, 2010

Impacted (stained) soil observed in excavation

Groundwater collected in excavation

Completion of excavation

ATTACHMENT #2
WASTE MANIFESTS

This Memo	randum	DIM OF EXAMPLE UPLATED	t that a Bill of Lading has bee py or duplicate, covering the pr	n issued and is not Orig	inal .	Şhipper No		
·	VA.	intended solely for till	ng or record,			And beaution =	54	-175
Page	of	_	NO ENVIRONME	ytal servic	es, inc.	Carrier No	111	-/-
			(Name of carrier)	i a	(SCAC)	Date _	4/-	5/10
	ents, the latters CCD	must appear before consigned's name	or as othorwise provided in Item 430, Sec. 1.	FROM:	11	, ,	7	
TO: Consignee	plile	Corporatio	A	4	y of Men		æ	
Street 624	2 Const	la Capaton	i din	Street DAL	renport.	Syrrat		<u> </u>
Sileet 10 LT		UI JARAGIOG.	A AVE	city Mech.	Anicville	State M.	Zip Co	de ·
City Colin	<i>PS</i> St	ate VY	Zip Code /2047	24 hr. Emergency Conf	tact Tel. No. ·	(800) 451-8	984	
Route BÉS7			· · · · · · · · · · · · · · · · · · ·	,	<u> </u>	Vehicle Number	0	34
No. of Units & Container Type	НМ	Proper Shipping Name, Haza UN or NA Number, Packing	BASIC DESCRIPTION and Class OF UN or NA Number, I Group Hazard Class	roper Shipping Name, , Packing Group	TOTAL QUANTITY (Weight, Volume, Galions, etc.)	WEIGHT (Subject to Correction)	RATE	CHARGES (For Carrier Use Only)
						-		
155	,	#2 Fuel 6	Dil & Water	Mix	107	91/100		
		3	 			1		
		3 v. 1	14 1993 P	6 TIT	{	9 (1)		
_ \		. *			Marie	N Let 1		
_		SANT	0402100091		100	450	<u> </u>	
,						-11:51		
PLACAR	DS TENDER	ED: YES 🔁 NO 🗆		REMIT			1	
Note — (1) Where the mic pecifically in writing the agre great or declared value of the	is dependent on valued or declared value.	alue, shippers and required to state to of the property, as follows: The specifically stated by the shipper to	Thereby declare that the contents of this consignment are fully and accurately described above by the proper shipping	C.O.D. TO: ADDRESS		-		
e not exceeding i) Where the applicable tartif p release or a value declara	rovisions specify a li	nitation of the carrier's flability absent	name and are classified, packuged, marked and labelled/placarded, and are in all respects in proper condition for	COD	Amt: \$	C.O.D. FEE PREPAID COLLECT	;]] s	
re carrier's liability or declare roylded by such provisions. Se i) Commodities requiring spe-	a value, the carrier's se NMFC flam 172, clai or additional car	liability shall be limited to the extent	transport according to applicable international and national governmental regulations.	Subject to Section 7 of the cond consignes without recourse on t lobowing statement. The carrior shall not make de freight and all other lawful charges	filens, if this shipment is to be defi the consignor, the consignor sh	versed to the TOTAL CHARGES	 \$	
eist be so marked and packages of Lading, Freig e Contract Terms and Condit	ged as to ensure safe and Stateme ions for a fist of such	milation of the center's flability absent and the chipper does not release liability shall be limited to the extent or attention; in handling or stowing to transportation. See Section 2(e) of white of Charges and Section 1(a) of serticles.	Signature			except when how		ES kbox il charges ners to be
RECEIV	ED, subject to the clast ty described above in	silications and tariffs in effect on the data apparent good order, except as noted	of the Issue of this Bill of Laction	tination and as to each part	water of Consignor) y at any timo interested in all or o	telephone and the street the street	ndaa la be	coffeet
tents or ps (the word possession nation, if o	ickages unimown), m carrier being underst i of the property under in its route, otherwise	arked, consigned, and destined as Ind ood throughout this contract as meaning the contract) agrees to carry to its usual to defiver to another carrier on the rout all or any of, said property over all or a	icated above which said carder of any parson or corporation in d place of delivery at said desti- e to said destination. It is mother	Shipper hereby certif	ives that he is termiliar with all of the said terms and conditions:	the larting towns and search		
-IPPER	ere jezo	O (HRPASSOCI	13	CARRIER MC	ENVIRONM	ENTAL SERI	VICE	0,20.
ER Mecho	unicyille	Industrial Pa	uh (City	PER /L	1. (Sel			- 3
<u> </u>	Mecha	micuille)		DATE /	15/18			_ 🗡
manent post-office at	idress of shippe	PROTEED ON RECTELED PAPER UCHO GOVERNE FOR	SOY INK	STYLE F360-3 © 2003	3 LABEL MASTER @ (800),621-5808 www.labelr	naster.cor	m

NON-HAZARDOUS WASTE

NON-HAZARDOUS WASTE MANIFEST

Plea	se print or type (Form designed for use on elite (12 pitch) typewriter)				
	NON-HAZARDOUS 1. Generator's US EPA 10 No. WASTE MANIFEST		Manifest Document No.	040510-1	2. Page 1
	3. Generator's Name and Malling Address City of Mechanicus 3. Worth Main Str. 4. Generator's Phone (5/8) /664-9884 Mechanicus 5. Transporter 1 Company Name 6. US EPA	ille	City	of Mechanic	ville
	4 Generator's Phona (SIR)/-III - GOO! Meel As is in	ام 14 اع ام ع الم 14 اع ام	DAV210	at RI Made	لله دالان غار
	5. Transporter 1 Company Name 6. US EPA	ID Number	A. State Trans	porter's ID 5 A - 17:	5
	5. Transporter 1 Company Name 6. US EPA MC FNU I'LO NMEN TA Services Tad NYR OC 7. Transporter 2 Company Name 8. US EPA	10021071	B. Transporter C. State Trans	1 Phone 5/8-6(5	-0349
1	7. Hansburg Zonthany Kanie 6. 33 27A	ID Rainba	D. Transporter	·	
	Designated Facility Name and Site Address 10. US EPA	ID Number	E. State Facility	y's ID	
	9. Designated Facility Name and Site Address Bridgefort United Recycling So Choss Street			<u>. – </u>	
	So chost street Bridgeport CT. 06610 CTD00	2593887	F. Facility's Ph	-404-44c	ව
	11. WASTE DESCRIPTION	12. C No.	ontainers Type	13. Total Quantity	14. Unit Wt./Vol.
7	a Consolition Reculated	WASte			
	2 Connecution Regulated	are 1	Du	400	\mathcal{P}
GEZ	b.			•	
ΝE					
E R A	c.				
A T O					<u>. </u>
O R	d.				·
8			<u> </u>		
	G. Additional Descriptions for Materials Listed Above		H. Handling Co	des for Wastes Listed Above	
					·
	15. Special Handling instructions and Additional Information				
	CR 05				}
源					
		AY AN AN	<u>v may d</u>		
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this shipment are fully and in proper condition for transport. The materials described on this manifest are not subject to federal	l hazardous weste regulations.	ali respects		
1000	As Agent OF				Date
N N	Michael 6. Cass	ul /	(→ Month 0 4	Day Year
_	17. Transporter 1 Acknowledgement of Receipt of Materials		7		Date
NA NA	Printed Typed Name Michael G. CAST Significant Signifi	ed by t	and the second	Month	Day Year
P O	18. Transporter 2 Acknowledgement of Receipt of Materials				Date
TRANSPORTUR	Printed/Typed Name Signature		•	Month	Day Year
F	19. Discrepancy Indication Space				
AC					ļ
ĭ	20. Facility Owner or Operator, Certification of receipt of the waste materials covered by this manifest,	except as noted in item 19.			
 	Printed/Typed Name Signature			Month	Date Day Year
ļΫ			,		

DOT 479096 FAC # 3460383

JOHNSON'S AUTO CRUSHER

A 17530

DATE .		BALLARD I WILTON, N	ROAD :	•	
SOLE OWNER	16 ES		YEAR		
ADDRESS		· .	MAKE		
СОМР	INC	TITLE NO		CAS TANK - □YES	
LICENSE & PLATE #_			TIRES		
DATE	TIME			14.500	
IN .					
OUT WEIGHER <u>/////</u>	v Patri	u Sougel	REMARĶS	13,200	
WITNESS	Wax			1300	
1- 27	5 gal. TK-	City of Mechiville		19]
1-50	7 a. 1 TV	77. 7			

ESMI OF NEW YORK 304 TOWPATH ROAD FORT EDWARD, NEW YORK (518)747-5500 TICKET No : 2045547 DATE : 4/15/2010 12828 MAX. ACCEPTABLE SOIL: 3,000.00 CUSTOMER: MCE10 MC ENVIRONMENTAL SERVICES 526 QUEENSBURY AVE. JOB NO :8351 MECHANICVILLE INDUSTRIAL INDUSTRIAL PARK RD MECHANICVILLE NY RUNNING TONNAGE: 1,489.61 QUEENSBURY, NY 12804 TRUCKER: MC-001 MC ENVIRONMENTAL 66780 Scale 1 In 9:30:35AM 30640 STORED OUT GROSS : TARE : 36140 18.070 NET : MX01 02 MIX GAS & DIESEL WEIGH MASTER: MATERIAL \$ 30102 DELIVERY \$ MISC \$
TAX \$ DRIVER: REMARKS: TOTAL \$

ESMI OF NEW YORK 304 TOWPATH ROAD FORT EDWARD, NEW YORK TICKET NO: 2045568 DATE: 4/15/2010 (518)747-5500 12828 MAX. ACCEPTABLE SOIL: 3,000.00 CUSTOMER: MCE10 MC ENVIRONMENTAL SERVICES 526 QUEENSBURY AVE. JOB NO :8351 MECHANICVILLE INDUSTRIAL INDUSTRIAL PARK RD MECHANICVILLE NY RUNNING TONNAGE: 1,539.58 QUEENSBURY, NY 12804 TRUCKER: MC-001 MC ENVIRONMENTAL 57940 SCALE 1 IN 12:49:23PM 30640 STORED OUT GROSS : TARE : 27300 13.650 NET: LB 02 MIX &A9 & DIESEL MX01 THE ISON #530022 WEIGH MASTER MATERIAL \$ DELIVERY \$ MISC \$ TAX \$ DRIVER: REMARKS: TOTAL \$

ESMI OF NEW YORK TICKET No : 2045561 DATE : 4/15/2010 (518)747-5500 304 TOWPATH ROAD FORT EDWARD, NEW YORK MAX. ACCEPTABLE SOIL: 3,000.00 JOB NO :8351
MECHANICVILLE INDUSTRIAL
INDUSTRIAL PARK RD
MECHANICVILLE NY
RUNNING TONNAGE: 1,525.93 CUSTOMER: MCE10 MC ENVIRONMENTAL SERVICES 526 QUEENSBURY AVE. QUEENSBURY, NY 12804 TRUCKER: CEDAR HILL TRUCKING GROSS: 107600 SCALE 1 IN 11:52:16AM TARE: 34960 STORED OUT NE# : ∙72640 * LB 36.320 02 MIX GAS & DIESEL MX01 WEIGH MASTER #530022 MATERIAL DELIVERY MISC \$ DRIVER: Tax REMARKS: TOTAL \$

ATTACHMENT #3

LABORATORY ANALYTICAL REPORT

Report Date: 05-May-10 16:55

Laboratory Report

☑ Final Report☐ Re-Issued Report

□ Revised Report

HRP Associates, Inc.

Project: Mechanicville Industrial Park - NY

Project #: MEC2001.P2

One Fairchild Square, Suite 110 Clifton Park, NY 12065 Attn: Cailyn Locci

Laboratory ID	Client Sample ID	Matrix	Date Sampled	Date Received
SB10892-01	Sidewall-E	Soil	15-Apr-10 09:00	19-Apr-10 10:20
SB10892-02	Sidewall-N	Soil	15-Apr-10 10:00	19-Apr-10 10:20
SB10892-03	Sidewall-W	Soil	15-Apr-10 11:00	19-Apr-10 10:20
SB10892-04	Sidewall-S	Soil	15-Apr-10 12:00	19-Apr-10 10:20
SB10892-05	Bottom	Soil	15-Apr-10 13:00	19-Apr-10 10:20

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

M

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 45 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York. New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

The samples were received 6.0 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 2.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Additional dilution factors may be required to keep analyte concentration within instrument calibration.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260B

Calibration:

1004005

Analyte quantified by quadratic equation type calibration.

4-Methyl-2-pentanone (MIBK)

Dibromochloromethane

Naphthalene

n-Butylbenzene

trans-1,3-Dichloropropene

This affected the following samples:

1008482-BLK1

1008482-BS1

1008482-BSD1

Bottom

S003519-CCV1

S002943-ICV1

Analyte percent recovery is outside individual acceptance criteria.

Vinyl chloride (135%)

This affected the following samples:

1008482-BLK1

1008482-BS1

1008482-BSD1

Bottom

S003519-CCV1

Laboratory Control Samples:

1008482 BS/BSD

2-Hexanone (MBK) percent recoveries (66/70) are outside individual acceptance criteria, but within overall method allowances.

All reported results of the following samples are considered to have a potentially low bias:

Bottom

Dichlorodifluoromethane (Freon12) percent recoveries (148/141) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

Bottom

Samples:

SW846 8260B

Samples:

S003519-CCV1

```
Analyte percent difference is outside individual acceptance criteria, but within overall method allowances.
```

1,3-Dichlorobenzene (22.5%)

1,4-Dioxane (-28.7%)

2-Chlorotoluene (34.0%)

Bromoform (24.8%)

Carbon tetrachloride (24.0%)

Isopropylbenzene (27.1%)

Tert-Butanol / butyl alcohol (-27.0%)

Tetrahydrofuran (-22.6%)

trans-1,4-Dichloro-2-butene (21.9%)

Vinyl chloride (36.4%)

Analyte percent drift is outside individual acceptance criteria, but within overall method allowances.

2-Hexanone (MBK) (-25.1%)

4-Methyl-2-pentanone (MIBK) (-27.6%)

This affected the following samples:

1008482-BLK1

1008482-BS1

1008482-BSD1

Bottom

S003670-CCV1

Analyte percent difference is outside individual acceptance criteria, but within overall method allowances.

Ethanol (-27.3%)

Analyte percent drift is outside individual acceptance criteria, but within overall method allowances.

1,4-Dioxane (-21.9%)

This affected the following samples:

1008809-BLK1

1008809-BS1

1008809-BSD1

Sidewall-E

Sidewall-N

Sidewall-S

Sidewall-W

SB10892-05

Bottom

Elevated Reporting Limits due to the presence of high levels of non-target analytes.

SW846 8270C

Calibration:

S000337-SCV1

Analyte percent recovery is outside individual acceptance criteria.

Atrazine (136%)

SW846 8270C

Calibration:

S000337-SCV1

This affected the following samples:

1008454-BLK1

1008454-BS1

Bottom

S003514-CCV1

S003533-CCV1

Sidewall-E

Sidewall-N

Sidewall-S

Sidewall-W

Laboratory Control Samples:

1008454 BS

Pentachlorophenol percent recovery 38 (40-130) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

Bottom

Sidewall-E

Sidewall-N

Sidewall-S

Sidewall-W

Samples:

S003514-CCV1

Analyte percent difference is outside individual acceptance criteria, but within overall method allowances.

4-Nitrophenol (-23.0%)

Aniline (-22.3%)

Atrazine (-48.2%)

Bis(2-chloroisopropyl)ether (32.0%)

This affected the following samples:

1008454-BLK1

1008454-BS1

S003533-CCV1

Analyte percent difference is outside individual acceptance criteria, but within overall method allowances.

Aniline (-26.4%)

Atrazine (-50.8%)

Benzidine (-31.4%)

Bis(2-chloroisopropyl)ether (36.9%)

This affected the following samples:

Bottom

Sidewall-E

Sidewall-N

Sidewall-S

Sidewall-W

Sample Id Sidewall- SB10892					Project # 2001,P2		<u>Matrix</u> Soil		ection Date -Apr-10 09		Received 19-Apr-10		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	VOC Extraction	Lab extracte	ed	N/A			1	VOC Soil Extraction	21-Apr-10	21-Apr-10	BD	1008442	
	rganic Compounds by method SW846 5035A	Soil flow lo	ual\			loit	tial weight:	7 75 a					
	sis of <u>Vol</u> ati <u>le Organic Con</u>		<u>vei)</u>			<u>11 111</u>	nar weight.	4.7.3 <u>4</u>					
	by method SW846 5035A		vel)										
76-13-1	1,1,2-Trichlorotrifluoroeth ane (Freon 113)	BDL	U	µg/kg dry	7.3	4.4	1	SW846 8260B	27-Apr-10	27-Apr-10	JRO	1008809	X
67-64-1	Acetone	BDL	U	µg/kg dry	72.5	67.7	1	a	н		н		X
107-13-1	Acrylonitrile	BDL	U	µg/kg dry	7.3	7.0	1	e	н	v	ıı	*	X
71-43-2	Benzene	BDL	U	µg/kg dry	7.3	4.2	1	41	III	ч	n	n	Х
108-86-1	Bromobenzene	BDL	U	µg/kg dry	7.3	4.3	1	п	10	н	ti	11	Х
74-97-5	Bromochloromethane	BDL	U	µg/kg dry	7.3	4.9	1	0	n	41	P	11	Х
75-27-4	Bromodichloromethane	BDL	U	µg/kg dry	7.3	4.1	1	n	n	Ħ	n	*	Х
75-25-2	Bromoform	BDL	U	µg/kg dry	7.3	7.1	1	ri	Ħ	Ħ	Ħ	н	Х
74-83-9	Bromomethane	BDL	U	μg/kg dry	14.5	13.3	1	u	*	н	•	n	Х
78-93-3	2-Butanone (MEK)	BDL	U	µg/kg dry	72.5	27.5	1	н	•	¥1	n	u	Х
104-51-8	n-Butylbenzene	BDL	U	µg/kg dry	7.3	5.9	1	D		H	•	•	X
135-98-8	sec-Butylbenzene	BDL	U	µg/kg dry	7.3	5.0	1	n	*	ti	"		X
98-06-6	tert-Butylbenzene	BDL	U	µg/kg dry	7.3	6;9	1		H*	U	ır	**	Х
75-15-0	Carbon disulfide	BDL	U	µg/kg dry	14.5	14.5	1	u	п	n	11	п	X
56-23-5	Carbon tetrachloride	8DL	U	μg/kg dry	7.3	6.0	1	п	#1	"	11	11	Х
108-90-7	Chlorobenzene	8DL	U	μg/kg dry	7.3	6.9	1	n	π	M	**	Ħ	X
75-00-3	Chloroethane	BDL	U	μg/kg dry	14.5	12.0	1	н	•		•	Ħ	Х
67-66-3	Chloroform	BDL	υ	μg/kg dry	7.3	6.7	1	R	-	P	•	H	Х
74-87-3	Chloromethane	BDL	U	µg/kg dry	14.5	8.8	1		н	"	•	н	X
95-49-8	2-Chlorotoluene	BDL	U	µg/kg dry	7.3	5.0	1	п	н	17	tı	0	X
106-43-4	4-Chlorotoluene	BDL	U	µg/kg dry	7.3	6.0	1	R	"1	10	ч	17	Х
96-12-8	1,2-Dibromo-3-chloroprop ane	8DL	U	μg/kg dry	14.5	1 1.6	1	Iŧ	'n	н	"	"	Х
124-48-1	Dibromochloromethane	BDL	U	μg/kg dry	7.3	5.3	1	н	M		Ħ	н	Х
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	µg/kg dry	7.3	4.6	1	Ħ	n	ij	đ	•	Х
74-95-3	Dibromomethane	BDL	υ	µg/kg dry	7.3	4.7	1	•			tı	N	×
95-50-1	1,2-Dichlorobenzene	BDL	υ	μg/kg dry	7.3	6.4	1		4	11	*	n	X
541-73-1	1,3-Dichlorobenzene	BDL	υ	µg/kg dry	7,3	3,3	1	n	"	TP	н	10	Х
106-46-7	1,4-Dichlorobenzene	BDL	U	µg/kg dry	7.3	5.9	1	R	11	.,	11	10	X
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	µg/kg dry	14.5	13.9	1		41	*	•	**	Х
75-34-3	1,1-Dichloroethane	BDL	U	µg/kg dry	7.3	5.4	1	*	n 	n	4		X
107-06-2	1,2-Dichloroethane	BDL	U	µg/kg dry	7.3	7.0	1	•	u	ю	7	•	Х
75-35-4	1,1-Dichloroethene	BDL	U	µg/kg dry	7.3	6,9	1	•	**	NO.	•	n	X
156-59-2	cis-1,2-Dichloroethene	BDL	U	µg/kg dry	7.3	6.2	1	n)	п	n	*1		X
156-60-5	trans-1,2-Dichloroethene	BOL	U	µg/kg dry	7.3	6.8	1	Iŧ	11	n	**	"	Х
78-87-5	1,2-Dichloropropane	BDL	U	µg/kg dry	7.3	5.1	1	II	†I		n	11	Х
142-28-9	1,3-Dichloropropane	BDL	U	µg/kg dry	7.3	5.0	1	н	"	n	n	"	Х
594-20-7	2,2-Dichloropropane	BDL	υ	µg/kg dry	7.3	7.2	1	π	и	ь	Ħ		Х
563-58-6	1,1-Dichloropropene	BDL	U	µg/kg dry	7.3	7.1	1	#	H		n	n	Х
10061-01-5	cis-1,3-Dichloropropene	BDL	U	µg/kg dry	7.3	3.7	1		u	*	н		Χ

Sample Identification Sidewall-E SB10892-01

Client Project # MEC2001.P2

Matrix Soil Collection Date/Time 15-Apr-10 09:00 Received 19-Apr-10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
	rganic Compounds	N O-11 (1 1-						. 70 -					
	by method SW846 5035/		<u>evel)</u>			init	ial weight:	<u>4./5 Q</u>					
	sis of Volatile Organic Cor by method SW846 5035/		vel)										
0061-02-6	trans-1,3-Dichloropropen	BDL	U	µg/kg dry	7.3	4.0	1	SW846 8260B	27-Apr-10	27-Apr-10	JRO	1008809	x
00-41-4	Ethylbenzene	BDL	U	μg/kg dry	7.3	6.7	1	ti	B	u	и		х
7-68-3	Hexachlorobutadiene	BDL	U	μg/kg dry	7.3	5,5	1	п	н	**	ti	**	х
91-78-6	2-Hexanone (MBK)	BDL	U	μg/kg dry	72.5	24.8	1	п	и	a	н	•	х
8-82-8	Isopropylbenzene	BDL	U	µg/kg dry	7.3	4.6	1	n	m	н	н		х
9-87-6	4-Isopropyltoluene	BDL	U	μg/kg dry	7.3	5.9	1	ø	n	11		п	х
634-04-4	Methyl tert-butyl ether	BDL	U	μg/kg dry	7.3	5.8	1	10	u	tt		**	х
08-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	µg/kg dīy	72.5	16.6	1	и	n	н		**	X
5-09-2	Methylene chloride	BDL	U	µg/kg dry	14.5	14.5	1	n	•	Ħ	4		х
1-20-3	Naphthalene	BDL	U	μg/kg dry	7.3	5.9	1	н	-	19	•	n	х
03-65-1	n-Propylbenzene	BDL	U	μg/kg dry	7.3	5.3	1		w	n		н	х
00-42-5	Styrene	BDL	U	μg/kg dry	7.3	3,6	1	n	41	rr ·	47	W	х
30-20-6	1,1,1,2-Tetrachioroethan	BDL	U	µg/kg dry	7.3	6,6	1	n	я	n	•	11	X
9-34-5	1,1,2,2-Tetrachloroethan	BDL	U	μg/kg dry	7.3	5.2	1	н	11	n	41	"	Х
27-18-4	Tetrachloroethene	BDL	U	μg/kg dry	7.3	6.3	1	ħ	н	n	n	п	х
08-88-3	Toluene	BDL	U	µg/kg dry	7.3	6.5	1	Ħ	н		н	u	Х
7-61-6	1,2,3-Trichlorobenzene	BDL	U	µg/kg dry	7.3	5.7	1		n	-			
20-82-1	1,2,4-Trichlorobenzene	BDL	U	µg/kg dry	7.3	6.7	1	tr	ш	*	н	п	Х
08-70-3	1,3,5-Trichlorobenzene	BDL	U	µg/kg dry	7.3	5.5	1	n	n	•	#	•	
1-55-6	1,1,1-Trichloroethane	BDL	U	µg/kg dry	7.3	6.7	1	11	п	D	11	17	Х
9-00-5	1,1,2-Trichloroethane	BDL	U	µg/kg dry	7.3	4,6	1	*1	11	ц	n	n	Х
9-01-6	Trichloroethene	BDL	U	µg/kg dry	7.3	7.1	1	n	п	п	n	IF	Х
5-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	µg/kg dry	7.3	5.8	1	8	Ħ	•	"		X
6-18-4	1,2,3-Trichloropropane	BDL	υ	µg/kg dry	7.3	6.2	1	n	R	•	п		Х
5-63-6	1,2,4-Trimethylbenzene	BDL	บ	µġ/kg dry	7.3	5.7	1		#	**		•	X
08-67-8	1,3,5-Trimethylbenzene	BDL	บ	μg/kg dry	7.3	6.9	1	a	n	#	ы		Х
5-01-4	Vinyl chloride	BDL	บ	µg/kg dry	7.3	5.8	1	#1	н	ü	U	IF.	X
79601-23-1	m,p-Xylene	BDL	U	µg/kg dry	14.5	11.6	1	•1	14	4		11	Х
5-47-6	o-Xylene	BDL	υ	µg/kg dry	7.3	4.6	1	et .	19	Ţ	U	n	X
09-99-9	Tetrahydrofuran	BDL	U	µg/kg dry	14.5	14.5	1	t1	•	•			
0-29-7	Ethyl ether	BDL	U	µg/kg dry	7.3	5.4	1	8 1	н	н	н	ø	
94-05-8	Tert-amyl methyl ether	BDL	U	µg/kg dry	7.3	6.6	1	Ħ	n	41	н	-	
37-92-3	Ethyl tert-butyl ether	BOL	U	µg/kg dry	7.3	7.2	1	u	n	4	н	*	
08-20-3	Di-isopropyl ether	BDL	υ	µg/kg dry	7.3	4.4	1	Ħ	н	u	D	n	
5-65-0	Tert-Butanol / butyl alcohol	BDL	U	μ g /kg dry	72.5	65.9	1	61	17	*1	n	#	X
23-91-1	1,4-Dioxane	BOL	U	µg/kg dry	145	120	1	ij	n	11	ıı	н	X
10-57-6	trans-1,4-Dichloro-2-bute ne	BDL	U	µg/kg dry	36.3	7.1	1	σ	n	#1	и	μ	
4-17-5	Ethanol	BDL	U	μg/kg dry	2900	452	1		n	N .	н	•	

Sidewall- SB10892-	_			'	Project # :001.P2		<u>Matrix</u> Soil	·	ection <u>Date</u> 5-Apr-10 09			ceived Apr-10	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds					Ē							
	rganic Compounds												
	by method SW846 5035/		evel)			<u>Init</u>	ial weight:	<u>4.75 q</u>					
	is of Volatile Organic Cor by method SW846 5035/		avol\										
		WUI) IIOC F	ever)										
Surrogate r		••			74.4								
460-00-4	4-Bromofluorobenzene	86			70-13			SW846 8260B	27-Apr-10	27-Apr-10	JRO	1008809	1
2037-26-5	Toluene-d8	98			70-13			u 	-	-	•		
17060-07-0	1,2-Dichloroethane-d4	117			70-13					ra		п	
1868-53-7	Dibromofluoromethane	105			70-13	80 %		Þ	el	m.	•	п	
	le Organic Compounds by												
	<u>ile Organic Compounds b by method SW846 3545</u>		<u>270</u>										
83-32-9	Acenaphthene	BOL	U	μg/kg dry	265	12.8	1	SW846 8270C	22-Apr-10	23-Apr-10	MSL	1008454	X
208-96-8	Acenaphthylene	BDL	U	µg/kg dry	265	16.0	1	n	н	Ħ	н	a	Х
62-53-3	Aniline	BDL	U	µg/kg dry	529	40.7	1	н	•	"	"		Х
120-12-7	Anthracene	BDL	U	µg/kg dry	265	16.0	1	H	•	11		п	Х
1912-24-9	Atrazine	BDL	U	µg/kg dry	529	13,9	1	н	•	•	•	"	
103-33-3	Azobenzene/Diphenyldia zine	BDL	U	µg/kg dry	529	13.9	1	n	14	τι	ø	n	
92-87-5	Benzidine	BDL	U	µg/kg dry	529	60.0	1	#	*1	II.	**	n	Х
56-55-3	Benzo (a) anthracene	83.4	J	µg/kg dry	265	34.1	1	ti	61		*1	n	Х
50-32-8	Benzo (a) pyrene	105	J	µg/kg dry	265	18.1	1	e	п	**	Ħ	*	Χ
205-99-2	Benzo (b) fluoranthene	153	J	µg/kg dry	265	70.5	1	e	н	•	Ħ	•	Х
191-24-2	Benzo (g,h,i) perylene	46.0	J	µg/kg dry	265	14.9	1	n	Ħ	•	п	•	Х
207-08-9	Benzo (k) fluoranthene	115	J	µg/kg dry	265	21.3	1	**	H	•	н		Х
65-85-0	Benzoic acid	BDL	U	µg/kg dry	529	9.62	1	Ħ	n	a	н	ч	Х
100-51-6	Benzyl alcohol	BDL	U	µg/kg dry	529	17.2	1	Ħ	n	**	*	н	Х
111-91-1	Bis(2-chloroethoxy)metha ne	BDL	U	μg/kg dry	52 9	10.7	1	n	IF	ti	P	41	Х
111-44-4	Bis(2-chloroethyl)ether	BDL	U	µg/kg dry	529	7.49	1	to to	n	н	"	н	Х
108-60-1	Bis(2-chloroisopropyl)eth er	BDL	U	µg/kg dry	529	9.62	1	ы	ď	и	19	н	X
117-81-7	Bis(2-ethylhexyl)phthalat e	BDL	บ	µg/kg dry	529	102	1			н		n	Х
101-55-3	4-Bromophenyl phenyl ether	BDL	U	µg/kg dry	529	24.5	1	n	**	r#	a	u	X
85-68-7	Butyl benzyl phthalate	BDL	U	μġ/kg dry	529	60.9	1	ıı	n	**	a	'n	Х
86-74-8	Carbazole	BDL	U	µg/kg dry	529	19.2	1	п	n	u		R	Х
59-50-7	4-Chloro-3-methylphenol	BDL	U	µg/kg dry	529	19.2	1	4	"	*1	u	,	Х
106-47-8	4-Chloroaniline	BDL	U	µg/kg_dry	529	51.3	1	•	п	Ħ	н		Х
91-58-7	2-Chloronaphthalene	BDL	U	µg/kg dry	529	7.54	1	"	•			•	Х
95-57-8	2-Chlorophenol	BDL	U	µg/kg dry	529	10.7	1	н	*	tı	p	a	Х
7005-72-3	4-Chlorophenyl phenyl ether	BDL	U	µg/kg dry	529	6.41	1	*1	Ħ	н	"	u	X
218-01-9	Chrysene	107	J	µg/kg dry	265	7.54	1	ti .	11	o	IF	e	Х
53-70-3	Dibenzo (a,h) anthracene	BDL	U	µg/kg dry	265	8.50	1	14	11	10	и	a	X
132-64-9	Dibenzofuran	BDL	U	µg/kg dry	529	6.41	1	p	n	pt	#1	11	Х
95-50-1	1,2-Dichlorobenzene	BDL	U	µg/kg dry	529	0.257	1		•		h	н	Х
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/kg dry	529	22.4	1		n	44		н	Х

Client Project # MEC2001.P2 Matrix Soil Collection Date/Time 15-Apr-10 09:00 Received 19-Apr-10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Semivolati	ile Organic Compounds by	GCMS											
	tile Organic Compounds b		<u>270</u>										
	by method SW846 3545/	-			500	20.0		C18/040 00700	00 Am 40	22 4 42	MCI	4000454	v
106-46-7	1,4-Dichlorobenzene	BDL	U	µg/kg dry	529	23.6	1	SW846 8270C	22-Apr-10	23-Apr-10	MSL "	1008454	
91-94-1	3,3'-Dichlorobenzidine	BDL	U	µg/kg dry	529	38.5	1		er er		 H		X
120-83-2	2,4-Dichlorophenol	BDL	U 	µg/kg dry	529	13.9	1		"		н		X
84-66-2	Diethyl phthalate	BDL	U	µg/kg dry	529	17.2	1		"	и			X
131-11-3	Dimethyl phthalate	BDL	U	µg/kg dry	529	14.9	1					,	X
105-67-9	2,4-Dimethylphenol	BDL	U	µg/kg dry	529	24.5	1						X
B4-74-2	Di-n-butyl phthalate	BDL	U	µg/kg dry	529	13.9	1		n 				X
534-52-1	4,6-Dinitro-2-methylphen ol	BDL	U	µg/kg dry	529	12.8	1	п	н	"	н	19	Х
51-28-5	2,4-Dinitrophenol	BDL	U	μg/kg dry	529	33.2	1	U	H	н	"	н	х
121-14-2	2,4-Dinitrotoluene	BDL	U	µg/kg dry	529	22.4	1	u	n	#1		u	X
506-20-2	2,6-Dinitrotoluene	BDL	U	µg/kg·dry	529	12.8	1	N	m		•		X
117-84-0	Di-n-octyl phthalate	BDL	U	µg/kg dry	529	25.7	1	н	•	н		H	X
206-44-0	Fluoranthene	165	ı	μg/kg dry	265	12.8	1	te			n	e	X
86-73-7	Fluorene	BDL	Ü	µg/kg dry	265	12.8	1	н	n)	el		e	X
118-74-1	Hexachlorobenzene	BDL	U	pg/kg dry	529	39.6	1				n	•	X
B7-68-3	Hexachlorobutadiene	BDL	U	µg/kg dry	529	60.0	1	u	ır	81	n	п	X
77-47-4		BDL BDL	U		529	39.6	1	u	ú	tı	,	*1	X
11-11-1	Hexachlorocyclopentadie ne	BUL	U	µg/kg dry	329	39.0	ı	•					^
67-72-1	Hexachloroethane	BDL	U	μg/kg dry	529	54.5	1	н	#	п	n	н	Х
193-39-5	Indeno (1,2,3-cd) pyrene	56.6	J	μg/kg dry	265	24.5	1	B	n	11	•	n	Х
90-12-0	1-Methylnaphthalene	29.4	J	μg/kg dry	265	0.176	1		•	17		а	
78-59-1	Isophorone	BDL	U	µg/kg dīy	529	32.1	1	•	e	м	a	н	Х
91-57-6	2-Methylnaphthalene	BDL	U	μg/kg dry	265	11.7	1	D	п	н	4	н	Х
95-48-7	2-Methylphenol	BDL	U	µg/kg dry	529	22.4	1	n	п	U	11	U	Х
108-39-4,	3 & 4-Methylphenol	BDL	U	μg/kg dry	529	12.8	1	и	41	"	н	U	Х
106-44-5								_	π	п		u	
91-20-3	Naphthalene	BDL	U	µg/kg dry	265	20.4	1		_	_			X
88-74-4	2-Nitroaniline	BDL	U	µg/kg dry	529	6.41	1	•		•			Х
99-09-2	3-Nitroaniline	BDL	U	µg/kg dry	529	18.1	1	•	P	R	"	N	Х
100-01-6	4-Nitroaniline	BDL	U	μg/kg dry	2120	20.4	1	₩		н	-		X
98-95-3	Nitrobenzene	BDL	υ	μg/kg dry	529	19.2	1			11 14		n	X
88-75-5	2-Nitrophenol	BDL	U	µg/kg dry	529	24.5	1						X
100-02-7	4-Nitrophenol	BDL	U	µg/kg dry	2120	27.7	1	•			•		X
62-75-9	N-Nitrosodimethylamine	BDL	U	µg/kg dry	529	11.8	1	. -	**	11	"	n	X
621-64-7	N-Nitrosodi-n-propylamin e	BDL	U	µg/kg dry	529	64.1	1	я	W	,	"	и	Х
86-30-6	N-Nitrosodiphenylamine	BDL	U	µg/kg dry	529	20.4	1	11	ч	-	4	M	Х
87-86-5	Pentachlorophenol	BDL	U	μg/kg dry	529	34.1	1	#	п		et	Ħ	Х
85-01-8	Phenanthrene	53.4	J	µg/kg dry	265	24.5	1	π	•		а	"	Х
108-95-2	Phenol	BDL	U	µg/kg dry	529	10.7	1	ų	n	н	n	n	Х
129-00-0	Pyrene	157	J	µg/kg dry	265	37.5	1		u	10	*	U	Х
110-86-1	Pyridine	BOL	U	μg/kg dry	529	10.7	1	n	n	D	*1	"	Х
120-82-1	1,2,4-Trichlorobenzene	BDL	υ	μg/kg dry	529	7,49	1	#	"	"	"	и	Х
95-95-4	2,4,5-Trichlorophenol	BDL	U	μg/kg dry	529	10.7	1	e		P	n	н	х
88-06-2	2,4,6-Trichlorophenol	BDL	U	μg/kg dry	529	10.7	1		n	n	н	н	х

Sample Identification Sidewall-E SB10892-01	Client Project #	<u>Matrix</u>	Collection Date/Time
	MEC2001.P2	Soil	15-Apr-10 09:00

Sidewall- SB10892					:001.P2		Soil		-Apr-10 09			Apr-10	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by	GCMS											
	tile Organic Compounds b		<u> 270</u>										
	by method SW846 3545/	_											
82-68-8	Pentachloronitrobenzene	BDL	U	µg/kg dry	529	265	1	SW846 8270C	22-Apr-10	23-Apr-10	MSL	1008454	
95-94-3	1,2,4,5-Tetrachlorobenze ne	BDL	U	µg/kg dry	529	265	1		11	u	U	10	Х
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	58			30-13	0 %		•	#		Ħ		
367-12-4	2-Fluorophenol	60			15-11	0 %		•	Ħ	*	n		
4165-60-0	Nitrobenzene-d5	62			30-13	0 %		и		to		•	
4165-62-2	Phenol-d5	67			15-11	0%		स	n	n	n	Ħ	
1718-51-0	Terphenyl-dl4	59			30-13	0 %		π	n	II .	IF	**	
118-79-6	2,4,6-Tribromophenol	59			15-11	0%			u	ti	16	**	
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-22-4	Silver	BDL	U	mg/kg dry	1.56	0.220	1	SW846 6010B	01-May-1 0	04-May-1 0	KNJ	1008823	Х
7440-38-2	Arsenic	9.57		mg/kg dry	1.56	0.313	1		•	н		н	Х
7440-39-3	Barium	97.0		mg/kg dry	1.04	0.198	1	n	•	05-May-1 0	w	u	X
7440-43-9	Cadmiu m	1.18		mg/kg dry	0,521	0.109	1	19	41	04-May-1 0	н	0	X
7440-47-3	Chromium	17.8		mg/kg dry	1.04	0.240	1		•	10	*1	10	Х
7439-97-6	Mercury	0.0798		mg/kg dry	0.0332	0.0052	1	SW846 7471A	Ħ	03-May-1 0	KNJ	1008824	Х
7439-92-1	Lead	25.3		mg/kg dry	1.56	0.673	1	SW846 6010B	**	04-May-1 0	KNJ	1008823	X
7782-49-2	Selenium	0.890	J	mg/kg dry	1.56	0.270	1	n	81	05-May-1 0	•	н	X
General C	Chemistry Parameters												
	% Solids	83.8		%			1	SM2540 G Mod.	23-Apr-10	23-Apr-10	VK	1008552	

Received

Sidewall- SB10892-					<u>Project #</u> 001.P2		<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date -Apr-10 10			ceived Apr-10	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	VOC Extraction	Lab extracted		N/A			1	VOC Soil Extraction	21-Apr-10	21-Apr-10	BD	1008442	
	rganic Compounds												
•	by method SW846 5035A		<u>eD</u>			<u>Init</u>	ial weight: (6.74 <u>g</u>					
	sis of Volatile Organic Con by method SW846 5035A		si\										
76-13-1	1,1,2-Trichlorotrifluoroeth	BDL BDL	n T	µg/kg dry	6.3	3.8	1	SW846 8260B	27-Apr-10	27-Apr-10	JRO	1008809	Х
67-64-1	ane (Freon 113) Acetone	BDL	U	µg/kg dry	62.5	58.4	1	n	Ħ		r	•	х
107-13-1	Acrylonitrile	BDL	U	pg/kg dry	6.3	6.1	1	а	и	h		19	X
71-43-2	Benzene	BDL	U	µg/kg dry	6.3	3.6	1		10	n	u	n	Х
108-86-1	Bromobenzene	BDL	U	µg/kg dry	6,3	3.7	1	n			.,		X
74-97-5	Bromochloromethane	BDL	U	µg/kg dry	6.3	4.2	1	t#	11	11		#1	Х
75-27-4	Bromodichloromethane	BDL	U	µg/kg dry	6.3	3.6	1	u		п	n		X
75-25-2	Bromoform	BDL	U	µg/kg dry	6.3	6.1	1			n		Ħ	X
74-83-9	Bromomethane	BDL	υ		12.5	11.4	1		н	н			X
78-93-3	2-Butanone (MEK)	BDL	บ	µg/kg dry	62.5	23.7	1	H	**	н			X
104-51-8	n-Butylbenzene	BDL	U	µg/kg dry µg/kg dry	6.3	5.1	1			n		•	X
135-98-8	-	BDL	U		6.3	4.3	1	**	n	U	н		X
98-06-6	sec-Butylbenzene	BDL		µg/kg dry	6.3	5,9	1	o	n	u	R	-	X
75-15-0	tert-Butylbenzene Carbon disulfide	BDL	U U	µg/kg dry	12.5	12.5	1	п	n	u	п	n n	X
56-23-5	Carbon distillide	BDL		µg/kg dry	6.3	5.2	1	н	п	11		ø	X
108-90-7	Chlorobenzene	BDL	υ υ	µg/kg dry	6.3	5.2 5.9	1		•	п	19	н	x
75-00-3	Chloroethane	BDL		µg/kg dry		10.3	1		4	ы		u	x
67-66-3		BDL	U	µg/kg dry	12.5			9	u		q	n	X
07-00-3 74-87-3	Chloroform	-	υ 	µg/kg dry	6.3	5.8	1	,,	"	н	e	0	X
	Chloromethane	BDL	U	μg/kg dry	12.5	7.6	1	н	n	10	n	ø	
95-49-8	2-Chlorotoluene	BDL	U 	µg/kg dry	6.3	4.3	1		91	н		19	×
106-43-4	4-Chlorotoluene	BDL	U	µg/kg dry	6.3	5.2	1			it.		19	
96-12-8	1,2-Dibromo-3-chloroprop ane	BDL	U	µg/kġ dry	12.5	10.0	1						Х
124-48-1	Dibromochloromethane	BDL	U	μg/kg dry	6.3	4.6	1	**	и	n	#	u	х
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	µg/kg dry	6.3	3.9	1	•	u		•	•	X
74-95-3	Dibromomethane	BDL	U	µg/kg dry	6.3	4.1	1		N	n	4	м	x
95-50-1	1,2-Dichlorobenzene	BDL	υ	μg/kg dry	6.3	5.5	1	Ħ	ч	н	*	u	x
541-73-1	1,3-Dichlorobenzene	BDL	υ	μg/kg dry	6.3	2.9	1	н	ŧı	u	**	r	х
106-46-7	1,4-Dichlorobenzene	BDL	υ	μg/kg dry	6.3	5.1	1	н	Ħ	u	*1	u	х
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	υ	µg/kg dry	12.5	11.9	1	**	п	n	0	11	Х
75-34-3	1,1-Dichloroethane	BDL	υ	μg/kg dry	6.3	4.6	1	u	п	•		н	х
107-06-2	1,2-Dichloroethane	BDL	υ	μg/kg dry	6.3	6.0	1		n		n	M	Х
75-35-4	1,1-Dichloroethene	BDL	U	μg/kg dry	6.3	5.9	1	e	a	•		to	Х
156-59-2	cis-1,2-Dichloroethene	BDL	υ	µg/kg dry	6.3	5.3	1	11	ก	n	#	m	Х
156-60-5	trans-1,2-Dichloroethene	8DL	υ	µg/kg dry	6.3	5.9	1	n	ø	n	**		Х
78-87-5	1,2-Dichloropropane	BDL	U	μg/kg dry	6.3	4.4	1	11	19	и	41	10	Х
142-28-9	1,3-Dichloropropane	BDL	U	μg/kg dry	6.3	4.3	1	а	u	17	ø	11	Х
594-20-7	2,2-Dichloropropane	BDL	U	µg/kg dry	6.3	6.2	1	n	ń	n	н	n	Х
563-58-6	1,1-Dichloropropene	BDL	U	μg/kg dry	6.3	6.1	1	n	17	,	n		Х
		BDL	U	µg/kg dry	6.3	3.2	1	_	_	_	n	_	X

Sidewall- SB10892					Project # 001.P2		<u>Matrix</u> Soil	-	ection Date 6-Apr-10 10			Apr-10	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	Organic Compounds by method SW846 5035	A Soil (low le	evel)			1nit	ial weight:	6.74 a					
Re-analys	sis of Volatile Organic Co	mpounds				<u></u>	ior resignati	<u> </u>					
	by method SW846 5035/		<u>evel)</u>										
10061-02-6	trans-1,3-Dichloropropen e	BDL	U	µg/kg dry	6.3	3.4	1	SW846 8260B	27-Apr-10	27-Apr-10	JRO	1008809	X
100-41-4	Ethylbenzene	BDL	U	µg/kg dry	6.3	5.8	1	*	e	н	•	н	Х
87-68-3	Hexachlorobutadiene	BDL	U	µg/kg dıy	6.3	4.8	1	u		=	•	п	Х
591-78-6	2-Hexanone (MBK)	BDL	U	µg/kg diy	62.5	21.4	1	7		n	*	n	Х
98-82-8	Isopropylbenzene	BDL	U	µg/kg dry	6.3	4.0	1	a	•	п		U	X
99-87-6	4-Isopropyltoluene	BDL	U	µg/kg dry	6.3	5.1	1	4	п	H	11	н	Х
1634-04-4	Methyl tert-butyl ether	BDL	U	µg/kg dry	6.3	5.0	1	11	*1	"	п	n	X
108-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/kg dry	62.5	14.3	1	*1	#1	н	11	n	Х
75-09-2	Methylene chloride	BDL	υ	µg/kg dry	12.5	12.5	1	н	н		**	p	X
91-20-3	Naphthalene	BDL	ט	µg/kg dry	6.3	5.1	1	п		-	a	н	Х
103-65-1	n-Propylbenzene	BDL	U	µg/kg dry	6.3	4.6	1	ų	н	b		н	Х
100-42-5	Styrene	BDL	U	µg/kg dry	6.3	3.1	1	tı	41		4	U	Х
630-20-6	1,1,1,2-Tetrachloroethan e	BDL	U	μg/kg dry	6.3	5.7	1	я	"	n	•	0	Х
79-34-5	1,1,2,2-Tetrachloroethan e	BDL	U	µg/kg dry	6.3	4.5	1	ч	**	10	41	11	Х
127-18-4	Tetrachloroethene	BDL	U	µg/kg dry	6.3	5.4	1	Ħ	U	п	*1	н	Х
108-88-3	Toluene	BDL	U	µg/kg dry	6.3	5.6	1	•	а	н			Х
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/kg dry	6.3	4.9	1		es	п			
120-82-1	1,2,4-Trichlorobenzene	BDL	U	µg/kg dry	6.3	5.8	1	4	n	•	•	Ħ	Х
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/kg dry	6.3	4.8	1	đ	*1	•	•	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	µg/kg dry	6.3	5.8	1	-				u	X
79-00-5	1,1,2-Trichloroethane	BDL	Ü	µg/kg dry	6,3	3.9	1	11		P P		"	X
79-01-6	Trichloroethene	BDL	U	µg/kg dry	6.3	6.1	1	"	0 H		"		X
75-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	µg/kg dry	6.3	5.0	1	n					Х
96-18-4	1,2,3-Trichloropropane	BDL	U	µg/kg dry	6.3	5.3	1	*	et	н	"		Х
95-63-6	1,2,4-Trimethylbenzene	BDL	U	µg/kg dry	6.3	4.9	1	-					X
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/kg dry	6.3	5.9	1		,,		11	H	X
75-01-4 470004-00-4	Vinyl chloride	BDL	U	µg/kg dry	6.3	5.0	1		11	,	*1	,	X
179601-23-1 05 47 6	" *	BDL	U	µg/kg dry	12.5	10.0	1	" n	" fi		" ¶		X X
95-47-6 109-99-9	o-Xylene Totrahydrafuran	BDL	U	µg/kg dry	6,3 13.5	3.9 12.5	1 1	 n	H		4		^
10 9- 99-9 60-29-7	Tetrahydrofuran Ethyl ether	BDL BDL	U U	µg/kg dry	12.5 6.3	12.5 4.7	1	•	•	el .	**	н	
00-20-1	Latyl ether	DDL	J	µg/kg dry	0.3	4.7	,		_	_	_		

U

U

U

U

U

υ

υ

µg/kg dry

µg/kg dry

µg/kg đry

µg/kg dry

µg/kg dry

µg/kg dry

µg/kg dry

6.3

6.3

6,3

62.5

125

31.3

2500

5.7

6.2

3.8

56.8

104

6.1

390

1

BDL

BDL

BDL

BDL

BDL

BDL

BDL

994-05-8

637-92-3

108-20-3

75-65-0

123-91-1

110-57-6

64-17-5

Tert-amyl methyl ether

Ethyl tert-butyl ether

Di-isopropyl ether

Tert-Butanol / butyl

trans-1,4-Dichloro-2-bute

alcohol

Ethanol

ne

1,4-Dioxane

Х

Х

Sample Id Sidewall-I SB10892-				·	<u>Project #</u> 001.P2		<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 5-Apr-10 10			ceived Apr-10	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by method SW846 5035/	Soil (low leve	<u>el)</u>			<u>Init</u>	tial weight:	<u>6.74 q</u>					
	is of Volatile Organic Cor by method SW846 5035A		el)										
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	100			70-13	0 %		SW846 8260B	27-Apr-10	27-Apr-10	JRO	1008809	,
2037-26-5	Toluene-d8	101			70-13	0 %		11	ö	н	н	R	
17060-07-0	1,2-Dichloroethane-d4	1 17			70-13	0 %		н	0	и	U	ıı	
1868-53-7	Dibromofluoromethane	102			70-13	0 %		41	U	п	H	u	
Semivolati	le Organic Compounds by	GCMS ,											
	ile Organic Compounds b by method SW846 3545A		<u>'0</u>										
83-32-9	Acenaphthene	BDL	U	µg/kg dry	226	10.9	1	SW846 8270C	22-Apr-10	23-Apr-10	MSL	1008454	· X
208-96-8,	Acenaphthylene	BDL	U	µg/kg dry	226	13.7	1	, ri	D	11	II	et .	X
62-53-3	Aniline	BDL	U	µg/kg dry	452	34.8	1	n	II	10	п	17	X
120-12-7	Anthracene	BDL	U	µg/kg dry	226	13.7	1	IP.	п	TP.	"	"	X
1912-24-9	Atrazine	BDL	U:	μg/kg dry	452	11.9	1	[*] n	11	n	#	It	
103-33-3	Azobenzene/Diphenyldia zine	BDL	υ	μg/kg dry	452	11.9	1	18	**	IF	"	•	
92-87-5	Benzidine	BDL	U	µg/kg dry	452	51.2	1	tı	\$1	11	rt .	P	Х
56-55-3	Benzo (a) anthracene	BDL	U	µg/kg dry	226	29.1	1	н	**	11	U		Х
50-32-8	Benzo (a) pyrene	BDL	U'	µg/kg dry	226.	15.5	1	11	U	u	11	IF	X
205-99-2	Benzo (b) fluoranthene	BDL	U	µg/kg dry	226	60.2	1	*1	11	u	*	u	Х
191-24-2	Benzo (g,h,i) perylene	BDL	U	µg/kg dry	226	12.7	1	**	U	n	0	и	Х
207-08-9	Benzo (k) fluoranthene	BDL	U	µg/kg dry	226	18.2	1	41	н	*1	u	•	х
65-85-0	Benzoic acid	BDL	U	µg/kg dry	452	8.21	1	п	ti.	**	u	"	X
100-51-6	Benzyl alcohol	BDL	U	µg/kg dry	452	14.6	1	ä	u	11	u	#1	X
111-91-1	Bis(2-chloroethoxy)metha	BDL	U	µg/kġ dry	452	9.13	1	II	III	п		**	X
111-44-4	Bis(2-chloroethyl)ether	BDL	U	µg/kg dry	452	6.39	1	U	H	u	ıt	n	Х
108-60-1	Bis(2-chloroisopropyl)eth er	BDL	U	μg/kg dry	452	8.21	1	и	u u	n		n	Х
117-81-7	Bis(2-ethylhexyl)phthalat e	BDL	U	µg/kg dry	452	86,8	·1	Iŧ	if	U	И	t†	Х
101-55-3	4-Bromophenyl phenyl ether	BDL	U	µg/kg dry	452	20.9	1	ti	П	11	п	u	Х
85-68-7	Butyl benzyl phthalate	BDL	U	µg/kg dry	452	52.0	1	•	"	".	**	1*	Х
86-74-8	Carbazole	BDL.	Ü	µg/kg dry	452	16.4	1	н	41	IF	*1		Х
59-50-7	4-Chloro-3-methylphenol	BDL	U	µg/kg dry	452	16.4	1	•	**		*1	rŧ	Х
106-47-8	4-Chloroaniline	BDL	U	µg/kg dry	452	43.8	1	IP	41	ır	a		Х
91-58-7	2-Chloronaphthalene	BDL	U	µg/kg dry	452	6.43	1	,,	*1	n-	41	"	Х
95-57-8 7005-72-3	2-Chlorophenol 4-Chlorophenyl phenyl	BDL BDL	U [:] U	μg/kg dry μg/kg dry	452 452	9.13 5.47	1 1	"	u	: N	,,	ir ir	X X
	ether	552	J	HAUA MIT	-752	0.77	•						^
218-01-9	Chrysene	BDL	U	µg/kg dry	226	6.43	1	11	н	**	o	D	Х
53-70-3	Dibenzo (a,h) anthracene	BDL	ប	µg/kg dry	226	7.25	1	11		*1	н	н	Х
132-64-9	Dibenzofuran	BDL	U	µg/kg dry	452	5.47	4	**	*	*1		н	Х
95-50-1	1,2-Dichlorobenzene	8DL	U	μg/kg dry	452	0.219	1	ti	10	n	n	11	X
541-73-1	1,3-Dichlorobenzene	BDL	U	µg/kg dry	452	19.2	1	n	It	0	P	n	X

Sample Identification Sidewall-N SB10892-02

Client Project # MEC2001.P2 <u>Matrix</u> Soil Collection Date/Time 15-Apr-10 10:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Anályst	Batch	Ce
Semivolat	ile Organic Compounds by	GCMS											
	tile Organic Compounds t		<u> 270</u>										
	by method SW846 3545/	-			150	00.4		014040.00700	00.140	00.440	MOI	4000454	
106-46-7	1,4-Dichlorobenzene	BDL	U	µg/kg dry	452	20.1	1	SW846 8270C	22-Apr-10	23-Apr-10	MSL "	1008454	
91-94-1	3,3'-Dichlorobenzidine	BDL	U	µg/kg dry	452	32.8	1	n.	 H				,
120-83-2	2,4-Dichlorophenol	BDL	U 	µg/kg dry	452	11.9	1	r o				"	,
34-66-2	Diethyl phthalate	BDL	U 	µg/kg dry	452	14.6	1	ч	"	н	e	14	,
131-11-3	Dimethyl phthalate	BDL	U	µg/kg dry	452	12.7	1	7	"	n	"	n	,
105-67-9	2,4-Dimethylphenol	BDL	U	µg/kg dry	452	20.9	1	_		 n		 H	,
34-74-2	Di-n-butyl phthalate	BDL	U	µg/kg dry	452	11.9	1	-)
534-52-1	4,6-Dinitro-2-methylphen ol	BDL	U	µg/kg dry	452	10.9	1		n	n)
51-28-5	2,4-Dinitrophenol	BDL	υ	µg/kg dry	452	28.3	1	-	Ħ	•		-)
121-14-2	2,4-Dinitrotoluene	BDL	U	µg/kg dry	452	19.2	1	Ħ	н	•	Ħ	-)
506-20-2	2,6-Dinitrotoluene	BDL	U	µg/kg dry	452	10.9	1	Ħ	m		n	19)
117-84-0	Di-n-octyl phthalate	BDL	U	µg/kg dry	452	21.9·	1	n	н	*1	н)
206-44-0	Fluoranthene	BDL	U	µg/kg dry	226	10.9	1	п	19	**	н	•)
36-73-7	Fluorene	BDL	U	µg/kg đry	226	10.9	1	0	u	W.	n		,
118-74-1	Hexachlorobenzene	BDL	U	µg/kg dry	452	33.8	1	17	**	•		n	,
37-68-3	Hexachlorobutadiene	BDL	U	µg/kg dry	452	51.2	1	n	it	H	14	Л	:
7-47-4	Hexachlorocyclopentadie ле	BDL	U	µg/kg dry	452	33.8	1	n	n	U	"	"	:
67-72-1	Hexachloroethane	BDL	υ	μg/kg dry	452	46.5	1	n	Ħ	U	Ħ	-	2
193-39-5	Indeno (1,2,3-cd) pyrene	BDL	บ	µg/kg dry	226	20.9	1	7	*	n	II.	•	:
90-12-0	1-Methylnaphthalene	BDL	U	µg/kg dry	226	0.151	1	a	n	н		+	
8-59-1	Isophorone	BDL	U	μg/kg dry	452	27.4	1	•	Ħ	u	R		:
91-57-6	2-Methylnaphthalene	BDL	U	µg/kg dry	226	9.99	1	10	47	н		11	
5-48-7	2-Methylphenol	BDL	U	μg/kg dry	452	19.2	1	•					:
108-39-4, 106-44-5	3 & 4-Methylphenol	BDL	U	µg/kg dry	452	10.9	İ	•	*	н	•	u	;
91-20-3	Naphthalene	BDL	U	µg/kg dry	226	17.4	1	ė	4	н		n	,
88-74-4	2-Nitroaniline	BDL	U	μg/kg dry	452	5.47	1	**	4	W	#	n	2
9-09-2	3-Nitroaniline	BDL	υ	µg/kg dry	452	15.5	1	**	#	n	п	ø	
100-01-6	4-Nitroaniline	BDL	U	µg/kg dry	1810	17.4	1	Ħ	n	н	n	H	2
98-95-3	Nitrobenzene	BDL	U	µg/kg dry	452	16.4	1	п	#1	M	"	n	
88-75-5	2-Nitrophenol	BDL	U	µg/kg dry	452	20.9	1	D.	4	II.	. 61	17	2
100-02-7	4-Nitrophenol	BDL	U	µg/kg dry	1810	23.7	1	Ħ	*1	It	"	n	:
52-75-9	N-Nitrosodimethylamine	BDL	U	µg/kg dry	452	10.0	1	tı	n	n	"	H	;
521-64-7	N-Nitrosodi-n-propylamin e	BDL	U	μg/kg dry	452	54.7	1	n	Ħ	II.	**		
86-30-6	N-Nitrosodiphenylamine	BDL	U	μg/kg dry	452	17.4	1	•	Ħ	n	н		
37-86-5	Pentachlorophenol	BDL	U	µg/kg dry	452	29,1	1	Ħ	Ŋ	•	n	н	;
35-01-8	Phenanthrene	BDL	U	µg/kg dry	226	20.9	1	•		19	ы	H	2
108-95-2	Phenol	BDL	U	µg/kg dry	452	9.13	1	•	n		н		;
29-00-0	Pyrene	BDL	U	µg/kg dry	226	32.0	1	•	u	•	•		
110-86-1	Pyridine	BDL	U	µg/kg dry	452	9.13	1	ú	Ħ		н		2
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/kg dry	452	6.39	1		*	•	"		;
95-95-4	2,4,5-Trichlorophenol	BDL	U	µg/kg dry	452	9.13	1	•	H		n	n	>
88-06-2	2,4,6-Trichlorophenol	BDL	U	µg/kg đry	452	9.13	1	,	n	•	n)

Sample I Sidewall SB10892	••			•	<u>Project #</u> 001.P2		<u>Matrix</u> Soil		ection Date -Apr-10 10		•	ceived Apr-10	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by	GCMS											
Semivola	tile Organic Compounds by tile Organic Compounds b by method SW846 3545A	y SW846 8	<u>3270</u>										
Semivola	tile Organic Compounds b	y SW846 8	3 <u>270</u> U	µg/kg dry	452	226	1	SW846 8270C	22- Apr-10	23-Apr-10	MSL	1008454	x

CAS No.	Analyte(s)	Resuu	Fiag	Units	-KDL	MDL	Duunon	метоа кез.	- Preparea	Anatyzea	Anatyst	Baten	Cen.
Semivolat	ile Organic Compounds by	GCMS											
Semivola	<u>tile Organic Compounds b</u>	y SW846 8	<u>270</u>										
<u>Prepared</u>	by method SW846 3545A	Ā											
82-68-8	Pentachloronitrobenzene	BDL	U	µg/kg dry	452	226	1	SW846 8270C	22-Apr-10	23-Apr-10	MSL	1008454	Х
95-94-3	1,2,4,5-Tetrachlorobenze ne	BDL	U	µg/kg dry	452	226	1	n 	O	II.	0	И	X
Surrogate	recoveries:					-							
321-60-8	2-Fluorobiphenyl	68			30-13	0 %			н	**	19	•	
367-12-4	2-Fluorophenol	74			15-11	0 %		•	13	•		*	
4165-60-0	Nitrobenzene-d5	72			30-13	0 %		ч	Ħ	•	tt	41	
4165-62-2	Phenol-d5	80			15-11	0 %		n	u	#	ø	ų.	
1718-51-0	Terphenyl-dl4	66			30-13	0 %		w	0	u	19	41	
118-79-6	2,4,6-Tribromophenol	69			15-11	0 %		n	19	Ħ	14	"	
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-22-4	Silver	BDL	U	mg/kg dry	1.88	0.265	1	SW846 6010B	01-May-1 0	04-May-1 0	KNJ	1008823	X
7440-38-2	Arsenic	3.57		mg/kg dry	1.88	0.377	1	Ħ	а	u	н	•	Х
7440-39-3	Barium	131		mg/kg dry	1.25	0.238	1	и	a	05-May-1 0		'n	X
7440-43-9	Cadmium	1.10		mg/kg dry	0.627	0.131	1	O.	и	04-May-1 0	n	**	Х
7440-47-3	Chromium	20.9		mg/kg dry	1.25	0.289	1	n	"	*1	n	U	Х
7439- 97- 6	Mercury	0,0534		mg/kg dry	0.0341	0.0053	1	SW846 7471A	n	03-May-1 0	KNJ	1008824	X
7439-92-1	Lead	13.6		mg/kg dry	1.88	0.811	1	SW846 6010B	u	04-May-1 0	KNJ	1008823	X
7782-49-2	Selenium	1.10	J	mg/kg dry	1.88	0.325	1	н	n	05-May-1 0			Х
General C	Chemistry Parameters												
	% Solids	77.4		%			1	SM2540 G Mod.	23-Apr-10	23-Apr-10	VK	1008552	

Sidewall- SB10892				•	Project # 001.P2		<u>Matrix</u> Soil	·	ection Date i-Apr-10 11			ceived Apr-10	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile C	Organic Compounds VOC Extraction	Lab extracte	ed	N/A			1	VOC Soil Extraction	21-Apr-10	21-Apr-10	BD	1008442	<u>?</u>
	<u> Drganic Compounds</u> by method SW846 5035/	Soil (low le	vel)			<u>, Init</u>	tial weight:	5.24 g					
	sis of Volatile Organic Cor		vel)										
76-13-1	1,1,2-Trichlorotrifluoroeth ane (Freon 113)	BDL	U U	µg/kg dry	9.4	5.7	1	SW846 8260B	27-Apr-10	27-Apr-10	JRO	1008809	×
67-64-1	Acetone	140		µg/kg dry	94.2	87.9	1	•	10	п	11		х
107-13-1	Acrylonitrile	BDL	U	µg/kg dry	9.4	9.1	1	U	IF.	n	n	и	Х
71-43-2	Benzene	BDL	υ	µg/kg dry	9.4	5.5	1	n	H	n	w	п	Х
108-86-1	Bromobenzene	BDL	υ	μg/kg dry	9.4	5.6	1	19		"	10	11	х
74-97-5	Bromochloromethane	BDL	υ	μg/kg dry	9.4	6.3	1	t)	.,	"	19	#	х
75-27-4	Bromodichloromethane	BDL	.U	μg/kg dry	9.4	5.4	1			ti	10	41	х
75-25-2	Bromoform	BDL	υ	μg/kg dry	9.4	9.2	1	10		a	п	**	х
74-83-9	Bromomethane	BDL	υ	µg/kg dry	18.8	17.2	1 ·	D.	ш	u u	4	,,	х
78-93-3	2-Butanone (MEK)	BDL	U	μg/kg dry	94.2	35.7	1	D	н	19	И	ŧi	х
104-51-8	n-Butylbenzene	BDL	U	µg/kg dry	9.4	7.7	1		**	17			х
135-98-8	sec-Butylbenzene	BDL.	U	µg/kg.dry	9.4	6.5	1	11	**	19	u	ч	Х
98-06-6	tert-Butylbenzene	BDL	U	µg/kg dry	9.4	9.0	1	н	11	n	и		Х
75-15-0	Carbon disulfide	BDL	U	µg/kg dry	18.8	18.8	1		91	19	11	п	X
56-23-5	Carbon tetrachloride	BDL	U	ug/kg dry	9.4	7.8	1	н	41	ı	11	n	Х
108-90-7	Chlorobenzene	BDL	Ü	µg/kg dry	9.4	9.0	1	н	**		11	n	Х
75-00-3	Chloroethane	BOL	U	μg/kg dry	18.8	15.6	1	,,	n	10	11	U	X
67-66-3	Chloroform	BDL	U	µg/kg dry	9.4	8.7	1	*1	**		я	n	X
74-87-3	Chloromethane	BDL	U	µg/kg dry	18.8	11.4	1	11			н		X
95-49-8	2-Chlorotoluene	BDL	U	µg/kg dry	9.4	6.5	1	11	U		ų	"	X
106-43-4	4-Chlorotoluene	BDL	U	µg/kg diy	9.4	7.8	1	u	U	H	н		X
96-12-8		BDL	U		18.8	15.1	1	n	•	ij	"	.,	X
30-12-0	1,2-Dibromo-3-chloroprop ane	BUL	U	µg/kg dry	10.0	13, 1	•						^
124-48-1	Dibromochloromethane	BDL	U	µg/kg dry	9.4	6.9	1	п ,	n	n	Ħ	II.	X
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	µg/kg dry	9.4	5.9	1	n	O	110	11	ır	Х
74-95-3	Dibromomethane	BDL	U	µg/kg dry	9.4	6.1	1	**	ч	iŧ	*1		X
95-50-1	1,2-Dichlorobenzene	BDL	U	µg/kg dry	9.4	8.3	1	**	н	п	n	H	Х
541-73-1	1,3-Dichlorobenzene	BDL	U	µg/kg dry	9.4	4.3	1	11	tt	п	U	19	Х
106-46-7	1,4-Dichlorobenzene	BDL	U	µg/kg dry	9.4	7.6	1	ti.	11	a	ø	It	Х
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	µg/kg diy	18.8	18.0	1	· ·	п	и	0	n	Х
75-34-3	1,1-Dichloroethane	BDL	U	μg/kg dry	9.4	7.0	1	o o	19	11	ti	IP	Х
107-06-2	1,2-Dichloroethane	BDL	U	µg/kg dry	9.4	9.0	1	et et	19	п	ti	10	Х
75-35-4	1,1-Dichloroethene	BDÜ	U	µg/kg dry	9.4	9.0	1	н	11	п	n	II.	Х
156-59-2	cis-1,2-Dichloroethene	BDL	U	µg/kg dry	9.4	8.0	1	u u	**	п	ø	II.	Х
156-60-5	trans-1,2-Dichloroethene	BDL	U	µg/kg dry	9.4	8.9	1	п	u-	:41	t)	n	X
78-87-5	1,2-Dichloropropane	BDL	U	µg/kg dry	9.4	6.6	1	u	11	+1	n	н	Х
142-28-9	1,3-Dichloropropane	BDL	U	µg/kg dry	9.4	6.5	1	n	o)	**	ti.	*	X
							_					м	

9,3

9.2

Ú

υ

µg/kg đry

µg/kg điy

µg/kg dry

BDL

BDL

BDL

594-20-7

563-58-6

10061-01-5

2,2-Dichloropropane

1,1-Dichloropropene

cis-1,3-Dichloropropene

9.4

Х

Х

Х

Client Project # MEC2001.P2

Matrix Soil Collection Date/Time 15-Apr-10 11:00

AS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Preparea	Analyzed	Anaiysi	Daten	<u>Ce</u>
/olatile Or	rganic Compounds												
	rganic Compounds	\ O-''.'	- D										
	by method SW846 5035/		<u>/el)</u>			<u>Init</u>	ial weight:	<u>5.24 q</u>					
	is of Volatile Organic Cor by method SW846-5035/		vel)										
0061-02-6	trans-1,3-Dichloropropen	BDĽ	U	μg/kg dry	9.4	5.2	1	SW846 8260B	27-Apr-10	27-Apr-10	JRO	1008809) ;
	е			,									
00-41-4	Ethylbenzene	BDL	U	µg/kg dry	9.4	8.7	1	10	п	tt	11	Ħ.	
7-68-3	Hexachlorobutadiene	BDL	U	µg/kg dry	9.4	7.2	1	II.		11	rt	"	
91-78-6	2-Hexanone (MBK)	BDL	U	µg/kg dry	94.2	32.2	1	11	'n	(1	If	**	
8-82-8	Isopropylbenzene	BDL	U	ug/kg dry	9.4	6.0	1	11*	đ	19	R	H	
9-87-6	4-Isopropyltoluene	BDL	υ	µg/kg dry	9.4	7.7	1	н	41	II.	ur .	ę,	
634-04-4	Methyl tert-butyl ether	BDL	U	µg/kg dry	9.4	7.5	1	41	**	u.	"	п	
08-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	µg/kg dry	94.2	21.6	1	н	41	"	11	H	
5-09-2	Methylene chloride	BDL	U	µg/kg dry	18.8	18.8	1	Ħ	41	W	#1	U	
1-20-3	Naphthalene	BDL	U	µg/kg dry	9.4	7.7	1		11	"	**	n.	
03-65-1	n-Propylbenzene	BDL	U	µg/kg dry	9.4	6.9	1	**	u	II.	*1	,o	
00-42-5	Styrene	BDL	U	µg/kg dry	9.4	4.7	1		н	**	*1	"	
30-20-6	1,1,1,2-Tetrachloroethan e	BDL	U	µg/kg dry	9.4	8.6	1	11	. "	IF	*1	n	
-34-5	1,1,2,2-Tetrachloroethan e	BDL	.U	µg/kg dry	9.4	6.8	1	u	11	ı	4	H	
7-18-4	Tetrachloroethene	BDL	U	µg/kg dry	9.4	8.2	1	tt	u	n	**	"	
18-88-3	Toluene	BDL	U	μg/kg dry	9.4	8.5	1	11	u	n	u	u	
7-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/kg dry	9.4	7.4	1	iu.	n	14	**		
20-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/kg dry	9.4	8.7	1	n	11	IF	#1	11	
08-70-3	1,3,5-Trichlorobenzene	BDL	U	µg/kg dry	9.4	7.2	1		17	**	41	•	
1-55-6	1,1,1-Trichloroethane	.BDL	U	μg/kg dry	9.4	8.8	1	u	n	II	Ħ	IP	
9-00-5	1,1,2-Trichloroethane	BDL	U	µg/kg dry	9.4	5.9	1	п	o	It	**		
9-01-6	Trichloroethene	BDL	U	µg/kg dry	9.4	9.2	1	o	п	ii.	u	10	
5-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	µg/kg dry	9.4	7:5	1	u	n	п	а	10	
3-18-4	1,2,3-Trichloropropane	BDL	U	µg/kg dry	9.4	8.0	1	tt	v	ıŧ	u	n	
5-63-6	1,2,4-Trimethylbenzene	8DL	U	μg/kg dry	9,4	7.4	1	n .	u	ıt	N		
08-67-8	1,3,5-Trimethylbenzene	BDL	·U	µg/kg dry	9.4	9.0	1	11	U	ır	"		
5-01-4	Vinyl chloride	BDL	U	µg/kg dry	9.4	7.5	1	0	ø	ú	u		
79601-23-1	m,p-Xylene	BDL	U	µg/kg dry	18.8	15.1	1	đ	0	н	"	10	
5-47-6	o-Xylene	BDL	υ	µg/kg dry	9,4	5,9	1	O	11	и	u	u	
19-99-9	Tetrahydrofuran	BÒL	Ū	µg/kg dry	18.8	18.8	1	n	п	п	"	n	
0-29-7	Ethyl ether	BDL.	υ	µg/kg dry	9,4	7,1	1	0	n	и	U	ıt	
94-05-8	Tert-amyl methyl ether	BDL	υ	µg/kg dry	9.4	8.6	1	II.	и .	н	ti	u,	
37-92-3	Ethyl tert-butyl ether	BDL	υ	µg/kg dry	9.4	9.3	1	п		Ħ	н	n	
8-20-3	Di-isopropyl ether	BDL	U	µg/kg dry	9,4	5.7	1	U	17	n	71	ri	
i-65 - 0	Tert-Butanol / butyl	BDL	υ	μg/kg dry	94.2	85.6	1	o	•	11	U	IF	
3-91-1	1,4-Dioxane	BDL	U	µg/kg dry	188	156	1	U	u	TI .	9	IP	
10-57-6	trans-1,4-Dichloro-2-bute	8DL	U	μg/kg dry	47.1	9.2	1	ā	10	*1	u	n	
1-17-5	Ethanol	BDL	U	μg/kg dry	3770	587	1	a	D D	*1	и	ij.	

Sample Id Sidewall- SB10892-					<u>Project #</u> 001.P2	•	<u>Matrix</u> Soil		ection Date -Apr-10 11			eceived Apr-10	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds				-								_
	rganic Compounds	N: O=:1: (!!-	is			1-1	مغطما والمناسات	5 04 m					
	by method SW846 5035/ sis of Volatile Organic Cor		evei)			<u>inn</u>	tial weight:	5.24 <u>q</u>					
	by method SW846 5035/		evel)										
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	96			70-13	0 %		SW846 8260B	27-Apr-10	27-Apr-10	JRO	1008809	
2037-26-5	Toluene-d8	101			70-13	0 %		U		н	P	*1	
17060-07-0	1,2-Dichloroethane-d4	113			70-13	0 %		17	10	u	"	11	
1868-53-7	Dibromofluoromethane	102			70-13	0%		(f -	ït	U		"	
Semivolati	ile Organic Compounds by	GCMS											
	tile Organic Compounds by method SW846 3545/		<u>270</u>										
83-32-9	Acenaphthene	BDL	υ	µg/kg dry	240	11.7	1	SW846 8270C	22-Apr-10	23-Apr-10	MSL	1008454	Х
208-96-8	Acenaphthylene	BDL	U.	μg/kg dry	240	14.6	1	ıı	п		#1		X
62-53-3	Aniline	BDL	υ	μg/kg dry	481	37.0	1	n	ч	u u	11	H	Х
120-12-7	Anthracene	BDL	υ	µg/kg dry	240	14.6	1	и	и	n	41	10	Х
1912-24-9	Atrazine	BDL	υ	µg/kg dry	481	12.7	1	н	ħ	P	41	II.	
103-33-3	Azobenzene/Diphenyldia zine	BDL	U	μg/kg dry	481	12.7	1	11	11	H.	11	u	
92-87-5	Benzidine	BDL	U	µg/kg dry	481	54.5	1	ħ	n	IF	н	p	Х
56-55-3	Benzo (a) anthracene	BDL	υ	μg/kg dry	240	31.0	1	п	11	II .	**		X
50-32-8	Benzo (a) pyrene	BDL	υ	µg/kg dry	240	16,5	1	11	*1	Д	n	н	X
205-99-2	Benzo (b) fluoranthene	BDL	υ	µg/kg dry	240	64.1	1	#	(1	и	"	ır	Х
191-24-2	Benzo (g,h,i) perylene	BDL	U	µg/kg dry	240	13.5	1	"	п	H	a	н	Х
207-08-9	Benzo (k) fluoranthene	BDL	U	µg/kg dry	240	19.4	· 1	•	ti .	"	а	"	Х
65-85-0	Benzoic acid	BDL	U	µg/kg dry	481	8.74	1	H	III	11	0	11	Х
100-51-6	Benzyl alcohol	BDL	U	µg/kg dry	481	15.6	1	••	0	"	17	"	Х
111-91-1	Bis(2-chloroethoxy)metha	BDL	υ	μg/kg dry	481	9.72	1	*	U	И	u		Х
111-44-4	Bis(2-chloroethyl)ether	BDL	U	µg/kg dry	481	6.80	1	п	io.	ц	tt	41	Χ
108-60-1	Bis(2-chloroisopropyl)eth er	BDL	U	µg/kg dry	481	8.74	1	н	19	μ	п	п	Х
117-81-7	Bis(2-ethylhexyl)phthalat e	BDL	U	μg/kg dry	481	92.4	1	"	п	II	U	4	X
101-55-3	4-Bromophenyl phenyl ether	BDL	U	µg/kg dry	481	22,3	1	ħ	Ħ	п	u	n	Х
85-68-7	Butyl benzyl phthalate	BDL	U	µg/kg dry	481	55.4	1	11	U	μ	11	ıı	х
86-74-8	Carbazole	BDL	Ü	µg/kg dry	481	17.5	1	11	ti	п	U	It	Х

U

U

59-50-7

106-47-8

91-58-7

95-57-8

7005-72-3

218-01-9

53-70-3

132-64-9

95-50-1

541-73-1

4-Chloro-3-methylphenol

4-Chloroaniline

2-Chlorophenol

ether

Chrysene

Dibenzofuran

2-Chloronaphthalene

4-Chlorophenyl phenyl

Dibenzo (a,h) anthracene

1,2-Dichlorobenzene

1;3-Dichlorobenzene

BDL

481

481

481

481

481

240

240

481

481

481

µg/kg dry

µg/kg-dry

17.5

46.6

6.85

9.72

5.83

6,85

7.72

5.83

0.233

20.4

1

Х

Х

Χ

Х

Х

Х

Х

Х

Х

Х

Sample Identification Sidewall-W SB10892-03

Client Project # MEC2001.P2

Matrix Soil Collection Date/Time 15-Apr-10 11:00

CAS No:	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Semivolat	ile Organic Compounds by	GCMS					•						
	tile Organic Compounds to by method SW846 3545/		<u>270</u>										
106-46-7	1,4-Dichlorobenzene	BDL	U	µg/kg dry	481	21.4	1	SW846 8270C	22-Apr-10	23-Apr-10	MSL	1008454	×
91-94-1	3,3'-Dichlorobenzidine	BDL	υ	µg/kg dry	481	35.0	1	n	•	m	11	n	Х
120-83-2	2,4-Dichlorophenol	BDL	U	μg/kg dry	481	12.7	1	ı	n	n	41	n	Х
34-66-2	Diethyl phthalate	B DL	U	µg/kg dry	481	15.6	1	п	0	n	4	н	Х
131-11-3	Dimethyl phthalate	BDL	U	µg/kg dry	481	13.5	-1	. 4	U	IF	11		Х
105-67-9	2,4-Dimethylphenol	BDL	U	µg/kg dry	481	22.3	1	11	U	п	н	17	Х
34-74-2	Di-n-butyl phthalate	BDL	υ	µg/kg dry	481	12.7	1		u.	u			х
534-52-1	4,6-Dinitro-2-methylphen	BDL	U	µg/kg dry	481	11.7	1	tl	ij	u	n	п	X
1-28-5	2,4-Dinitrophenol	BDL	U	µg/kg dry	481	30.2	1	;H	10	**	u		Х
121-14-2	2,4-Dinitrotoluene	BDL	U	µg/kg dry	481	20.4	1	D	u	11		"	Х
606-20-2	2,6-Dinitrotoluene	BDL	U	µg/kg dry	481	11.7	1	"	IF.	п		*	Х
117-84-0	Di-n-octyl phthalate	BDL	υ	μg/kg dry	481	23.3	1	II.	**	í9	ıt	*1	Х
206-44-0	Fluoranthene	BDL	υ	μg/kg dry	240	11.7	1			n		**	х
86-73-7	Fluorene	BDL	U	μg/kg dry	240	11.7	1	10	ii	Ð,	11	q	x
18-74-1	Hexachlorobenzene	BDL	υ	μg/kg dry	481	36.0	1		11	1*	n	o	х
7-68-3	Hexachlorobutadiene	BDL	U	μg/kg dry	481	54.5	1	10.7	n	10	*1	н	Х
7-47-4	Hexachlorocyclopentadie ne	BDL	U	µg/kg dry	481	36.0	1	u	#1	19	*	II.	Х
7-72-1	Hexachloroethane	BDL	U	μg/kg dry	481	49.5	1	п	*1		11	1+	Х
93-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	μg/kg dry	240	22.3	1	41	11	P	11		Х
0-12-0	1-Methylnaphthalene	BDL	U	μg/kg dry	240	0.160	1	п	N.		fi		
8-59-1	Isophorone	BDL	U	µg/kg dry	481	29.1	1	ч	H	n	0	n	Х
1-57-6	2-Methylnaphthalene	BOL	U	μg/kg dry	240	10.6	1		n	п	41	P	Х
5-48-7	2-Methylphenol	BDL	U	μg/kg dry	481	20.4	1	#1	u	и	п		Х
08-39-4, 06-44-5	3 & 4-Methylphenol	BDL	U	µg/kg dry	481	11.7	1	**	17	11	,,	n	Х
1-20-3	Naphthalene	BDL	U	µg/kg dry	240	18.5	1	11	11	"		41	Х
8-74-4	2-Nitroaniline	BDL	U	µg/kg dry,	481	5.83	1	.9	U	91		п	Х
9-09-2	3-Nitroaniline	BDL	U	µg/kg dry	481	16.5	1		н	11		"	Х
00-01-6	4-Nitroaniline	BDL	U	µg/kg dṛy	1920	18.5	1	0	n	11	P	11	Х
8-95-3	Nitrobenzene	BDL	U	µg/kg dry	481	17.5	1	**	u ·	*1		**	Х
8-75-5	2-Nitrophenol	BDĹ	U	µg/kg dry	481	22.3	1	ंस	n	v	*	**	Х
00-02-7	4-Nitrophenol	BDL	U	µg/kg dry	1920	25.2	1	11	Ħ	u	*	Ħ	Х
2-75-9	N-Nitrosodimethylamine	BDL	U	µg/kg đry	481	10.7	1	et .	n	11		"	×
21-64-7	N-Nitrosodi-n-propylamin e	BDL	U	µg/kg đry	481	58.3	1	n	W	н	"	41	X
6-30-6	N-Nitrosodiphenylamine	BDL	U	µg/kg dry	481	18.5	1	ti .	IF	n n	•	**	Х
7-86-5	Pentachlorophenol	BDL	U	µg/kg đry	481	31.0	1	tf.	IL	u	IF	41	X
5-01-8	Phenanthrene	BDL	U	µg/kg điy	240	22.3	1	n	n	Ħ	R	**	X
08-95-2	Phenol	BDL	U	µg/kg dry	481	9.72	1	h	н	n	u	n	Х
29-00-0	Pyrene	BDL	U	µg/kg dry	240	34.1	1	ti .	н	"		**	×
10-86-1	Pyridine	BDL:	U	µg/kg dry	481	9.72	1	U	11	P	н	ęı	X
20-82-1	1,2,4-Trichlorobenzene	BDL	U	µg/kg dry	481	6.80	1	u	u	n		n	Х
5-95-4	2,4,5-Trichlorophenol	BDL	U	μġ/kg dry	481	9.72	1		**		и	n	Х
8-06-2	2,4,6-Trichlorophenol	BDL	υ	μg/kg dry	481	9.72	1	10	ŢI	,m	#1	**	Х

Sidewall- SB10892					<u>Project #</u> 001.P2		<u>Matrix</u> Soil		ection Date -Apr-10 11			<u>ceived</u> Apr-10	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by	GCMS											
Semivola	tile Organic Compounds b	y SW846 82	70										
Prepared	by method SW846 3545A	Ž											
82-68-8	Pentachloronitrobenzene	BDL	U	µg/kg dry	481	240	1	SW846 8270C	22-Apr-10	23-Apr-10	MSL	1008454	X
95-94-3	1,2,4,5-Tetrachlorobenze ne	BDL	U	µg/kg diy	481	240	1	u	10	п	P	11	Х
Surrogate	recoveries:									_			
321-60-8	2-Fluorobiphenyl	62			30-13	0%		ь	R	н	*	ıs	
367-12-4	2-Fluorophenol	67			15-11	0%			•	н	-	n	
4165-60-0	Nitrobenzene-d5	67			30-13	0%				Ħ	•		
4165-62-2	Phenol-d5	74			15-11	0%		IT	n	u	a	u	
1718-51-0	Terphenyl-dl4	61			30-13	0 %		п	*1	"	**	17	
118-79-6	2,4,6-Tribromophenol	64			15-11	0%		u	#1	II.	**		
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-22-4	Silver	BDL	U	mg/kg dry	1.86	0.261	1	SW846 6010B	01-May-1 0	04-May-1 0	KNJ	1008823	X
7440-38-2	Arsenic	3.65		mg/kg dry	1.86	0.373	1	**	**	4	,,	•	Х
7440-39-3.	Barium	172		mg/kg dry	1,24	0.235	1	a	н	05-May-1 0	n		X
7440-43-9	Cadmium	1.26		mg/kg dry	0.620	0.130	1	н	ti	04-May-1 0	n	n	X
7440-47-3	Chromium	23.3		mg/kg dry	1.24	0.286	1	•	•	11	"		Х
7439-97-6	Mercury	0.0704		mg/kg dry	0.0399	0.0062	1	SW846 7471A	Iđ	03-May-1 0	KNJ	1008824	Х
7439-92-1	Lead	13.8		mg/kg dry	1.86	0.801	1	SW846 6010B	10	04-May-1 0	KNJ	1008823	X
7782-49-2	Selenium	0.930	J	mg/kg dry	1.86	0.321	1	n	и	05-May-1 0			Х
General C	Chemistry Parameters												
	% Solids	67.7		%			1	SM2540 G Mod.	23-Apr-10	23-Apr-10	VK	1008552	

Sample I Sidewall SB10892	-			-	Project # 001.P2		<u>Matrix</u> Soil		ection Date -Apr-10 12			eceived Apr-10	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile C	Organic Compounds							-					
	VOC Extraction	Lab extracted	i	N/A			1	VOC Soil Extraction	21-Apr-10	21-Apr-10	BD	1008442	!
	Organic Compounds I by method SW846 5035A	Soil (low leve	<u>el)</u>			<u>Init</u>	ial weight:	5.64 g					
	sis of Volatile Organic Cor by method SW846 5035A		el)										
76-13-1	1,1,2-Trichlorotrifluoroeth ane (Freon 113)	BDL	U	µg/kg dry	6.8	4.1	1	SW846 8260B	27-Apr-10	27-Apr-10	JRO	1008809	Х
67-64-1	Acetone	250		µg/kg dry	68.2	63.6	1	•	•	Ħ	•		Х
107-13-1	Acrylonitrile	BDL	U	μg/kg dry	6.8	6.6	1	44			a	-	Х
71-43-2	Benzene	BDL	U	µg/kg dry	6.8	4.0	1	Ħ	n	n	11	U	Х
108-86-1	Bromobenzene	BDL	U	µg/kg dry	6.8	4.0	1	•	•	n	4	u.	X
74-97-5	Bromochloromethane	BDL	U	µg/kg dry	6.8	4.6	1	•1	u	R	11		Х
75-27-4	Bromodichloromethane	BDL	U	µg/kg dry	6.8	3.9	1	н	19	π	u		X
75-25-2	Bromoform	BDL	U	µg/kg đry	6.8	6.7	Ï	н	Ħ	**	n	ы	X
74-83-9	Bromomethane	BDL	U	µg/kg dry	13.6	12.5	1	n	n	tr	tt.		X
78-93-3	2-Butanone (MEK)	26.6	J	µg/kg dry	68.2	25.9	1	п	H	e	ti		Х
104-51-8	n-Butylbenzene	BDL	U	µg/kg dry	6.8	5.6	1	o	11	*1	U	H	Х
135-98-8	sec-Butylbenzene	BDL	U	µg/kg dry	6.8	4.7	1	ti	w	п	Ħ		х
98-06-6	tert-Butylbenzene	BDL	U	µg/kg dry	6.8	6.5	1	**		u	10	**	Х
75-15-0	Carbon disulfide	BDL	U	μg/kg dry	13.6	13.6	1	n	11	U	10	**	Х
56-23-5	Carbon tetrachloride	BDL	U	μg/kg dry	6.8	5.7	1	10		11	n		Х
108-90-7	Chlorobenzene	BDL	U	μg/kg dry	6.8	6.5	1	н	**	а		п	Х
75-00-3	Chloroethane	BDL	U	µg/kg dry	13.6	11.3	1	•	41	и	•	Ħ	х
67-66-3	Chloroform	BDL	U	µg/kg dry	6.8	6.3	1	и	#1	и	•		х
74-87-3	Chloromethane	BDL	U	μg/kg dry	13.6	8.3	1	•	u	•	•	v	х
95-49-8	2-Chlorotoluene	BDL	U	µg/kg dry	6.8	4.7	1	п	"	re	*	0	Х
106-43-4	4-Chlorotoluene	BDL	U	µg/kg dry	6.8	5.7	1	u	# 1		•	ŧŧ	х
96-12-8	1,2-Dibromo-3-chloroprop	BDL	U	µg/kg dry	13.6	10.9	1	**	U	**	n	10	Х
124-48-1	Dibromochloromethane	BDL	U	µg/kg dry	6.8	5.0	1	ŧı	н	п			Х
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	µg/kg dry	6.8	4.3	1	**	н	•	•	M	X
74-95-3	Dibromomethane	BDL	U	μg/kg dry	6,8	4,4	1	я	н		•		x
95-50-1	1,2-Dichlorobenzene	BDL	U	µg/kg dry	6.8	6.0	1	•	Ħ	41	н		Х
541-73-1	1,3-Dichlorobenzene	BDL	U	µg/kg dry	6.8	3,1	1		n	u	0		х
106-46-7	1,4-Dichlorobenzene	BDL	U	µg/kg đry	6,8	5 .5	1	u	D	Ħ		11-	Х
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	µg/kg dry	13.6	13.0	1	n	O	*1	"	,	x
75-34-3	1,1-Dichloroethane	BDL	U	µg/kg dry	6.8	5.0	1	и	n		н		X
107-06-2	1,2-Dichloroethane	BDL	U	μg/kg dry	6.8	6.5	1				n		х
75-35-4	1,1-Dichloroethene	BDL	U	μg/kg dry	6.8	6.5	1	u	n	41	•		X
156-59-2	cis-1,2-Dichloroethene	BDL	U	μg/kg dry	6.8	5,8	1	o	n		19	п	X
156-60-5	trans-1,2-Dichloroethene	BDL	U	µg/kg dry	6.8	6.4	1	u	п	**		11	X
78-87-5	1,2-Dichloropropane	BDL	υ	µg/kg dry	6,8	4.8	1	n	11	n	н	11	X
142-28-9	1,3-Dichloropropane	BDL	U	µg/kg dry	6.8	4.7	1	n	n	11		11	X
594-20-7	2,2-Dichloropropane	BDL	U	μg/kg dry	6.8	6.8	1	н	u	п	ıt	Ħ	Х
563-58-6	1,1-Dichloropropene	BDL	U	µg/kg dry	6.8	6.7	1	н	n		47	**	X
	., . Diamoroproporto		-	נים פיייפין	5.5	٠.,	•						• •

3.5

10061-01-5 cis-1,3-Dichloropropene

6.8

µg/kg dry

Client Project #, MEC2001.P2

Matrix Soil Collection Date/Time 15-Apr-10 12:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
	rganic Compounds												
	by method SW846 5035/		vel)			<u>[nit</u>	ial weight:	5.64 g					
	sis of Volatile Organic Cor by method SW846 5035/		vel)										
10061-02-6	trans-1,3-Dichloropropen	BDL	U	μg/kg dry	6.8	3.8	1	SW846 8260B	27-Apr-10	27-Apr-10	JRO	1008809	×
	e		_	F33,			•		•				
100-41-4	Ethylbenzene	BDL	U	µg/kg đry	6,8	6.3	1	II.	#1	.,	н	14	Х
37-68-3	Hexachlorobutadiene	BDL	U	µg/kg dry	6.8	5.2	1		11		**	"	X
91-78-6	2-Hexanone (MBK)	BDL	U	µg/kg dry	68.2	23.3	1	ir .	41	IF	11	"	Х
8-82-8	Isopropylbenzene	8DL	U	µg/kg đry	6.8	4.4	1	m	*1	11*	4	"	Х
99-87-6	4-Isopropyltoluene	BDL	U	µg/kg đry	6.8	5,6	1	rt	*1		fi	IF	Х
1634-04-4	Methyl tert-butyl ether	BDL	U	µg/kg đry	6.8	5.5	1	IP	71	Ħ	#	II.	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	µg/kg dry	68,2	15.6	1	н	*1	ıı	sı	II.	Х
5-09-2	Methylene chloride	BDL	U	µg/kg đry	13,6	13.6	1	II-	m	II	ti ti	ņ	Х
1-20-3	Naphthalene	BDL	U	µg/kg dry	6.8	5.6	1	п	#1	H	"	"	Х
103-65-1	n-Propylbenzene	BDL	U	µg/kg dry	6.8	√5.0	1		Ħ	н	H	ıt	Х
100-42-5	Styrene	BDL	U	µg/kg dry	6.8	3.4	1	tı	ti	п	"	*	Х
30-20-6	1,1,1,2-Tetrachloroethan e	BDL	U	µĝ/kg dry	6.8	6.2	1	п	ú	11	u	IF	Х
9-34-5	1,1,2,2-Tetrachloroethan e	BDL	U	µg/kg-dīy	6.8	4.9	1	n	и	п	n	И	X
27-18-4	Tetrachloroethene	BDL	U	µg/kg dry	6.8	5.9	1	11	19	n	0	n	Х
08-88-3	Toluene	BDL	U	µg/kg dry	6.8	6.1	1	și.	H	91	U	п	X
7-61-6	1,2,3-Trichlorobenzene	BDL	.U	µg/kg dry	6.8	5.3	1	11	"	**	u	п	
20-82-1	1,2,4-Trichlorobenzene	BDL	U	µg/kg dry	6.8	6.3	1	n	19	n	a	II	X
08-70-3	1,3,5-Trichlorobenzene	BDL	υ	µg/kg dry	6.8	5.2	1	#	19	11	u	11	
1-55-6	1,1,1-Trichloroethane	BDL	U	µg/kg dry	6.8	6.3	1	Ħ	u	71	IJ	и	Х
9-00-5	1,1,2-Trichloroethane	BDL	U	µg/kg dry	6.8	4.3	1	"	н	11	0	H	X
9-01-6	Trichloroethene	BDL	U	µg/kg dry	6.8	6.7	1	ų	.n	Ħ	19	п	X
5-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	µg/kg dry	6.8	5.5	1	**	11	11	0	IF	Х
6-18-4	1,2,3-Trichloropropane	BDL	U	µg/kg dry	6.8	5.8	1	11	if	и	11	H,	X
5-63-6	1,2,4-Trimethylbenzene	BDL	U	µg/kg đry	6.8	5.3	1	п	ø	п	n	II.	Х
08-67-8	1,3,5-Trimethylbenzene	BDL	U	µg/kg dry	6.8	6.5	1	#	9	u	41	I	Х
5-01-4	Vinyl chloride	BDL.	U	µg/kg dry	6.8	5.5	1	н	H 6.	TI	U	n	Х
79601-23-1	m,p-Xylene	BDL	U	µg/kg dry	13.6	10.9	1	ņ	"	u	U	"	Х
5-47-6	o-Xylene	BDL	U	µg/kg dry	6.8	4.3	1	н	п	и	n	ų	Х
09-99-9	Tetrahydrofuran	BDL	U	µg/kg dry	13,6	13.6	1	11	a	u	tt	"	
0-29-7	Ethyl ether	BDL	U	µg/kg dry	6.8	5.1	1	н	п	ıı	*1	II.	
94-05-8	Tert-amyl methyl ether	BDL	U	µg/kg dry	6.8	6.2	1	п	0,		"	n	
37-92-3	Ethyl tert-butyl ether	BDL	U	µg/kg dry	6.8	6.8	1	u	0	n	*1		
08-20-3	Di-isopropyl ether	BDL	U	µg/kg diy	6.8	4.2	1	11	U	10	"	n	
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	µg/kg đry	68.2	61.9	1	II.	Ü	н	**	*	Х
123-91-1	1,4-Dioxane	BDL	U	µg/kg đry	136	113	1	IP	U	ш	11	υ,	Х
110-57-6	trans-1,4-Dichloro-2-bute ne	BDL	U	µg/kg đry	34.1	6.7	1	"	o	17	'n	**	
64-17-5	Ethanol	BDL	U	µg/kg dry	2730	425	1	u	et	#	11	n	

,	Sample Ide Sidewall-S SB10892-					Project # 001.P2		<u>Matrix</u> Soil	· ·	ection Date -Apr-10 12			ceived Apr-10	
	CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
•	Volatile Or	ganic Compounds							-				_	
		ganic Compounds												
		y method SW846 5035A	Soil (low leve	<u>1)</u>			<u>Init</u>	ial weight:	<u>5.64 q</u>					
		is of Volatile Organic Con by method SW846 5035A		ın.										
•			CON TIOW IEVE	<u></u>										
	Surrogate re 460-00-4	ecoveries: 4-Bromofluorobenzene	91			70-13	n %		SW846 8260B	27-Anr-10	27-Apr-10	JRO	1008809	•
	2037-26-5	Toluene-d8	100			70-13			#	# #	0	#	"	
	17060-07-0	1,2-Dichloroethane-d4	112			70-13			п	11	U	ıı	n	
	1868-53-7	Dibromofluoromethane	103			70-13			R	41	17	,	0	
	-	e Organic Compounds by												
3	<u>Semivolati</u>	le Organic Compounds boy method SW846 3545A	y SW846 8270	<u>0</u>										
_	33-32-9	Acenaphthene	BDL	υ	μg/kg dry	256	12.4	1	SW846 8270C	22-Apr-10	23-Apr-10	MSL	1008454	х
	208-96-8	Acenaphthylene	BDL	U	μg/kg dry	256	15.5	1	4	п		н	н	X
	62-53-3	Aniline	BDL	U	μg/kg dry	511	39.3	1	u)	Ħ	u,	11	n	Х
	120-12-7	Anthracene	BDL	U	μg/kg dry	256	15,5	1	ir	R	и		n,	X
	1912-24-9	Atrazine	BDL	Ū	μg/kg dry	511	13.5	1	п	д		н	11	
	103-33-3	Azobenzene/Diphenyldia zine	BDL	U	μg/kg dry	511	13.5	1	II.	18	n	11	н	
1	92-87-5	Benzidine	BDL	U	µg/kg dry	511	57.9	1	u.	И	17	11	'н	X
	56-55-3	Benzo (a) anthracene	BDL	U	µg/kg dry	256	33.0	1	IF.	11	17	11	n	Х
:	50-32-8	Benzo (a) pyrene	BDL	U	µg/kg đry	256	17.5	1	и	ц	ø	il	11	Х
:	205-99-2	Benzo (b) fluoranthene	BDL	U	µg/kg dry	256	68.1	1	IF	п	-0	n	"	X
٠.	191-24-2	Benzo (g,h,i) perylene	BDL	Ų	µg/kg dry	256	14.4	1	n	и	ø		n	Х
:	207-08-9	Benzo (k) fluoranthene	BDL	U	µg/kg dry	256	20.6	1	II.	ıt		п	**	Х
,0	55-85-0	Benzoic acid	8DL	U	µg/kg dry	511	9.29	1	0	н	U	n	n	X
	100-51-6	Benzyl alcohol	BDL	U	µg/kg dry	511	16.6	1	II.	n,	n	It	u	Χ
•	111-91-1	Bis(2-chloroethoxy)metha ne	BDL	U	µg/kg đrý	511	10.3	1	u	11	n .	"	u	X
	111-44-4	Bis(2-chloroethyl)ether	BDL	U	µg/kg dry	511	7.23	1	u	if	Ħ	n	*1	X
	108-60-1	Bis(2-chloroisopropyl)eth er	BDL	บั	µg/kg dry	511	9.29	1	u	**	*1	"	"	Х
	117-81-7	Bis(2-ethylhexyl)phthalat e	BDL	U	µg/kg dry	511	98.2	1	n	II.	*1	rŧ	41	Х
	101-55-3	4-Bromophenyl phenyl ether	BDL	U	µg/kg dry	511	23.7	1	o	•	u	n	п	X
i	85-68-7	Butyl benzyl phthalate	BDL	U	µg/kg dry	511	58:8	1	U		*1	"		X
i	86-74-8	Carbazole	BDL	U	µg/kg dry	511	18.6	1	n	n	11	U	п	Х
	59-50-7	4-Chloro-3-methylphenol	BDL	U	µg/kg dry	511	18.6	1	o o		**	"		X
	106-47-8	4-Chloroaniline	BDL	U	μg/kg dry	511	49.6	1	11	ri	*1	u.	ч	Х
1	91-58-7	2-Chloronaphthalene	BDL	U	µg/kg dry	511	7.28	1	n	17	11	*	п	Х
	95-57-8	2-Chlorophenol	BĎL	U	µg/kg dry	511	10.3	1	41	17.	11	"	"	X
	7005-72-3	4-Chiorophenyl phenyl ether	BDL	ប	pg/kg dry	:511	6.19	1	41	n	н	н		X
	218-01-9	Chrysene	BDL	U	µg/kg dry	256	7.28	1		'n	"			X
	53-70-3	Dibenzo (a,h) anthracene	BDL	U	µg/kg dry	256	8.21	1	**	n.	п -			X
	132-64-9	Dibenzofuran	BDL	U	µg/kg dry	51 .1	6.19	1		ų.	n 	"		X
	95-50-1	1,2-Dichlorobenzene	BDL	Ú	µg/kg dry	511	0.248	1	ч	U	11			X
	541-73-1	1,3-Dichlorobenzene	BDL	U	µg/kg dry	511	21.7	1	41	U	n n	"	"	Х

Client Project # MEC2001.P2

Matrix Soil Collection Date/Time 15-Apr-10 12:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Preparea	Analyzed	Anatyst	Batch	Cert
Semivolati	ile Organic Compounds by	GCMS											
	tile Organic Compounds b		<u>70</u>										
	by method SW846 3545/	_						_					
106-46-7	1,4-Dichlorobenzene	BDL	U	µg/kg dry	511	22.8	1	SW846 8270C	22-Apr-10		MSL	1008454	
91-94-1	3,3'-Dichlorobenzidine	BDL	U	µg/kg dry	511	37.2	1	"	u	ır	n.	II	Х
120-83-2	2,4-Dichlorophenol	BDL	U	µg/kg dry	511	13.5	1	Ħ	U	n n	19	H	Х
84-66-2	Diethyl phthalate	BDL	U	µg/kg dry	511	16.6	1	"	i,	n	(1	II.	Х
131-11-3	Dimethyl phthalate	BDL	U	µg/kg dry	511	14.4	1	#1	U	п		11	Х
105-67-9	2,4-Dimethylphenol	BDL	U	·µg/kg dry	511	23.7	1	**	"	П	19	*1	Х
84-74-2	Di-n-butyl phthalate	BDL	U	µg/kg dry	.511	13.5	1	u	H	11	14	И	Х
534-52-1	4,6-Dinitro-2-methylphen ol	BDL	Ú	µg/kg dry	511	12.4	1	"	H	41	"	"	Х
51-28-5	2,4-Dinitrophenol	BDL	U	µg/kg dry	511	32.1	1	**	n	*1	P	11	Х
121-14-2	2,4-Dinitrotoluene	BDL	U	µg/kg dry	511	21.7	1	11	II.	n	R	Ħ	Х
606-20-2	2,6-Dinitrotoluene	BDL	U	µg/kg dry	511	12.4	1	"	II.	*1		п	Х
117-84-0	Di-n-octyl phthalate	BDL	U	µg/kg dry	511	24.8	1	u	ıı.	tī	ıı	U	X
206-44-0	Fluoranthene	BDL	U	µg/kg dry	256	12.4	1		it.	u	н	"	Χ
36-73-7	Fluorene	BDL	U	µg/kg dry	256	12.4	1	te	D	n	И	u	X
118-74-1	Hexachlorobenzene	BDL	U	µg/kg dry	511	38.3	1	"		19	"	O	Χ
87-68-3	Hexach!orobutadiene	BDL	U	µg/kg dry	511	57.9	1		II	II.	и	n	Х
77-47-4	Hexachlorocyclopentadie ne	BDL	U	µg/kg dry	511	38.3	1		11	17	•	"	Х
67-72-1	Hexachloroethane	BDL	U	µg/kg dry	511	52.7	1		п	H	"	n	Х
193-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	µg/kg dry	256	23.7	1	II .	'n	n	п	19	X
90-12-0	1-Methylnaphthalene	BDL	U	µg/kg dry	256	0.170	1	ņ.	и	"	"	**	
78-59-1	Isophorone	BDL	U	µg/kg dry	511	31.0	1	10	ii	H	п	H	Х
91-57-6	2-Methylnaphthalene	BDL	U	jug/kg dry	256	11.3	1	H.	n		и	17	Χ
95-48-7	2-Methylphenol	BDL	U	µg/kg đry	511	21.7	1	n	н	u	ŧı	ø	Х
108-39-4, 106-44-5	3 & 4-Methylphenol	BDL	U	µg/kg đry	511	12.4	1	u	11	n	**	"	X
91-20-3	Naphthalene	BDL	U	µg/kg dry	256	19.7	1	ïr	11	14	и	"	Х
88-74-4	2-Nitroaniline	BOL	U	µg/kg đry	511	6.19	1	ır	-11	II.	н	н	Χ
99-09-2	3-Nitroaniline	BDL	U	µg/kg dry	511	17.5	1	"	11	"	"	19	Х
100-01-6	4-Nitroaniline	BDL	U	µg/kg đry	2040	19.7	1	119	ii	n	11	11	Х
98-95-3	Nitrobenzene	BDL	U	µg/kg dry	511	18.6	1		n	и	n	19	X
88-75-5	2-Nitrophenol	BDL	U	µg/kg dry	511	23.7	1	u	'n	n	11	u	Х
100-02-7	4-Nitrophenol	BDL	U	µg/kg dry	2040	26.8	1	10	ıı	H	11	н	Χ
62-75-9	N-Nitrosodimethylamine	BDL	U	µg/kg dry	511	11.4	1	**	"	10	u	ıı.	Х
621-64-7	N-Nitrosodi-n-propylamin e	BDL	υ	µg/kg dry	511	61.9	1	10	п	u	a	IJ	Х
86-30-6	N-Nitrosodiphenylamine	BDL	U	µg/kg dry	51 1	19.7	1	•	n		и	U	Χ
87-86-5	Pentachlorophenol	BDL	U	µg/kg dry	511	33.0	1	it	*1	n	ıı	Ħ	Χ
85-01-8	Phenanthrene	BDL	U	µg/kg dry	256	23.7	1	10	"		P	u	Х
108-95-2	Phenol	BDL	U	µg/kg đrý	511	10.3	1	B	u	II.	и	a	Х
129-00-0	Pyrene	BDL	Ü	μg/kg dry	256	36.2	1	ıı	**	ıı	н	n	Х
110-86-1	Pyridine	BDL	U	µg/kg dry	511	10.3	1	n	a	ų		n	Х
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/kg,dry	511	7.23	1	D	**	"	и	u	X
95-95-4	2,4,5-Trichlorophenol	BDĻ	U	μg/kg·dry	511	10.3	4	ıŧ	11		и	*1	Х
88-06-2	2,4,6-Trichlorophenol	BDL	Ú	µg/kg dry	511	10.3	1	lı	ø	11		0	Х

Sidewall- SB10892					Project # :001.P2		<u>Matrix</u> Soil		ection Date 5-Apr-10 12			eceived -Apr-10	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	ile Organic Compounds by	GCMS											
	tile Organic Compounds b by method SW846 3545A		<u> 270</u> -										
82-68-8	Pentachloronitrobenzene	BDL	U	µg/kg dry	511	256	1	SW846 8270C	22-Apr-10	23-Apr-10	MSL	1008454	Х
95-94-3	1,2,4,5-Tetrachlorobenze ne	BDL	U	µg/kg dry	511	256	1	u	11	17 4	и	U	X
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	68			30-13	0 %		п	н	4	tj	я	
367-12-4	2-Fluorophenol	75			15-11	0 %		H	п	*		11	
4165-60-0	Nitrobenzene-d5	75			30-13	0 %		н	п	*		•	
4165-62-2	Phenol-d5	83			15-11	0%		н	n	н	n	н	
1718-51-0	Terphenyl-dl4	68			30-13	0 %		"	*	"	10	•	
118-79-6	2,4,6-Tribromophenoi	71			15-11	0 %		18	ıt.	ri	I)	Ħ	
Total Met	als by EPA 6000/7000 Serie	s Methods											
7440-22-4	Silver	BDL	U	mg/kg dry	1.60	0.225	1	SW846 6010B	01-May-1 0	04-May-1 0	KNJ	1008823	Х
7440-38-2	Arsenic	BDL	U	mg/kg dry	1.60	0.321	1	•				Ħ	Х
7440-39-3	Barium	191		mg/kg dry	1.07	0.203	1	u	**	05-May-1 0		17	X
7440-43-9	Cadmium	1.10		mg/kġ đry	0.534	0.112	1	el	и	04-May-1 0	ti	II	X
7440-47-3	Chromium	29.4		mg/kg dry	1.07	0.246	1	u	U	н	11		Х
7439-97-6	Mercury	0.0350		mg/kg dry	0.0333	0.0052	1	SW846 7471A	и	03-May-1	KNJ	1008824	X

0.690

0.277

1.60

1,60

mg/kg dry

mg/kg dry

%

SW846 6010B

SM2540 G Mod. 23-Apr-10 23-Apr-10

1008823 X

1008552

Х

04-May-1 0

05-May-1

0

9.41

0.886

79.8

7439-92-1

7782-49-2

Lead

Selenium

General Chemistry Parameters % Solids Sample Identification
Bottom
SB10892-05

Client Project # MEC2001.P2 Matrix Soil Collection Date/Time 15-Apr-10 13:00

AS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Ce
olatile O	rganic Compounds				<u> </u>								
	VOC Extraction	Lab extracted	ľ	N/A			1	VOC Soil Extraction	21-Apr-10	21-Apr-10	BD	1008442	
	rganic Compounds by method SW846 5030 8	Soil (high leve	R05:			Init	ial weight:	14:97 a					
6-13-1	1,1,2-Trichlorotrifluoroeth ane (Freon 113)	BDL	U	µg/kg dry	177	106	100	SW846 8260B	22-Apr-10	22-Apr-10	ađu	1008482	: ×
7-64-1	Acetone	BDL	U	µg/kg dry	1770	1650	100	H	H.	ø	IP	19	X
07-13-1	Acrylonitrile	BDL	U	µg/kg dry	177	172	100	п	н	n	ji	19	3
1-43-2	Benzene	BDL	U	µg/kg dry	17 7	103	100	n	11		•	14	
08-86-1	Bromobenzene	BDL	Ú	µg/kg đry	177	104	100	H	Ħ	10	н	n	
1-97-5	Bromochloromethane	BDL	U	μg/kg đry	17.7	119	100	п	ø	II.	Ħ	17	
5-27-4	Bromodichloromethane	BDL	U	µg/kg dry	177	101	100	11	ti ti	11	11	п	
5-25-2	Bromoform	BDL	U	µg/kg dry	177	173	100	t 1	U	n		"	
1-83-9	Bromomethane	BDL	U	μg/kg dry	354	324	100	o o	U	*1	u	11	
3-93-3	2-Butanone (MEK)	BDL	U	μg/kg dry	1770	671	100	U	.,	n		41	
04-51-8	n-Butylbenzene	2,400		μg/kg dry	177	145	100	197	ú	n-		n	
35-98-8	sec-Butylbenzene	1,420		μg/kg dry	177	122	100	H _i	ır	n	и	n	
3-06-6	tert-Butylbenzene	241		μg/kg dry	177	168	100	u	п	"		19	
5-15-0	Carbon disulfide	BDL	U	μg/kg dry	354	354	100	и	п	"	•	"	
-23-5	Carbon tetrachloride	BDL	U	µg/kg đry	177	147	100	II .	•		*1		
8-90-7	Chlorobenzene	BDL	U	µg/kg dry	177	168	100	п	11	**	н		
-00-3	Chloroethane	BDL	U	µg/kg dry	354	292	100	u	n	ır	tt		
-66-3	Chloroform	BDL	U	µg/kg dry	177	163	100	п	Ħ	п	ų	ц	
-87-3	Chloromethane	BDL	U	μg/kg dry	354	214	100	,,		11	н	п	
-49-8	2-Chlorotoluene	BDL	U	µg/kg dry	177	122	100	п	ø	*1	į.	Ħ	
6-43-4	4-Chlorotoluene	BDL	U	µg/kg dry	177	147	100	n	n	"	ı	*1	
-12-8	1,2-Dibromo-3-chiloroprop	BDL	U	µg/kg dry	354	283	100	ti.	n	**	ı,	*1	
	ane			µg/kg diy									
4-48-1	Dibromochloromethane	BDL	U	ug/kg dry	177	129	100	*	11	O	н	U	
6-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/kg dry	177	111	100	н	п	u	iŧ	U	
-95-3	Dibromomethane	BDL	U	ug/kg dry	177	115	100	TT.	II	19		19	
-50-1	1,2-Dichlorobenzene	BDL	U	µg/kg dry	177	156	100	m	11	IV.	**	•	
1-73-1	1,3-Dichlorobenzene	BDL	U	µg/kg dry	177	81.4	100	II	"	IF	**	11	
6-46-7	1,4-Dichlorobenzene	BDL	Ü	µg/kg dry	177	143	100	и	н	н	(I		
-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	µg/kg dry	354	338	100	H	U	11	Ø	R	
-34-3	1,1-Dichloroethane	BDL	Ų	µg/kg dry	177	131	100	n	II.	**	u	P	
7-06-2	1,2-Dichloroethane	BDL	U	µg/kg dry	177	170	100		u	**	"	"	
-35-4	1,1-Dichloroethene	BDL	Ű	µg/kg dry	177.	168	100	u	IF	ч	1,	u	
6-5 9- 2	cis-1,2-Dichloroethene	BDL	U	µg/kg dry	177	150	100	u		*	19	**	
6-60-5	trans-1,2-Dichloroethene	BDL	U	µg/kg dry	177	166	100	Ü	D	Ħ	IP		
-87-5	1,2-Dichloropropane	BDL	U	µg/kg dry	177	124	100	H	н	Ħ	It	*1	
2-28-9	1,3-Dichloropropane	BDL	U	µg/kg dry	177	122	100	U	41	n	п	п	
4-20-7	2,2-Dichloropropane	BDL	U	µg/kg dry	177	175	100,	n	11	19	11	*1	
3-58-6	1,1-Dichloropropene	BDL	U	µg/kg dry.	177	173	100	10	п	н	п	u	
061-01-5	cis-1,3-Dichloropropene	BDL	U	µg/kg dry	177	90.2	100	10	n	n			
	trans-1,3-Dichloropropen	BDL	U	µg/kg dry	177	97.3	100		u	10	_		

Sample Identification
Bottom
SB10892-05

¥ ... |

Client Project # MEC2001.P2 Matrix Soil Collection Date/Time 15-Apr-10 13:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Volatile O	rganic Compounds												
Volatile O	rganic Compounds		R05										
	by method SW846 5030		<u>/el)</u>				ial weight:						
100-41-4	Ethylbenzene	BDL	U	µg/kg dry	177	163	100	SW846 8260B	22-Apr-10	22-Apr-10	adu	1008482	Х
37-68-3	Hexachlorobutadiene	BDL	U	µg/kg dry	177	134	100	ù	"	#	"	u	Х
591-78-6	2-Hexanone (MBK)	BDL	U	µg/kg dry	1770	605	100	a	H	ti	H	a	X
98-82-8	Isopropylbenzene	527		µg/kg dry	177	113	100	**	**	н	"	4	Х
99-87-6	4-Isopropyltoluene	BDL	U	µg/kg dry	177	145	100	**	ta	п		**	Х
1634-04-4	Methyl tert-butyl ether	BDL	υ	µg/kg dry	177	142	100	•	el	н		n	X
108-10-1	4-Methyl-2-pentanone (MIBK)	BDL .	U	µg/kg dry	1770	405	100	e	н	n	•	u	X
75-09-2	Methylene chloride	BDL	U	µg/kg dry	354	354	100	0	n	н	н	n	Х
91-20-3	Naphthalene	BDL	U	µg/kg dry	177	145	100	U	u u	ų	"	"	Х
103-65-1	n-Propylbenzene	848		µg/kg dry	177	129	100	u	19	#1		ı,	Х
100-42-5	Styrene	BDL	υ	µg/kg dry	177	88.5	100	н	н	Ħ	19	4	Х
330-20-6	1,1,1,2-Tetrachloroethan e	BDL	U	µg/kg dry	177	161	100	и	п		н	u	Х
79-34-5	1,1,2,2-Tetrachloroethan e	BDL	U	µg/kg dry	177	127	100	*	**	13	*	bj	Х
27-18-4	Tetrachloroethene	BDL	U	µg/kg dry	177	154	100	**			ŧı	**	Х
08-88-3	Toluene	BDL	U	µg/kg dry	177	159	100	ti .	n	n	н	19	Х
7-61-6	1,2,3-Trichlorobenzene	BDL	U	µg/kg dry	177	138	100	41	*1	IF.	*1	"	
20-82-1	1,2,4-Trichlorobenzene	BDL	U	µg/kg dry	177	163	100	91	Ħ	IF		n	X
08-70-3	1,3,5-Trichlorobenzene	BDL	U	µg/kg dry	177	134	100	•	n	•		•	
71-55-6	1,1,1-Trichloroethane	BDL	U	µg/kg dry	177	165	100		n	•	•	•	Х
9-00-5	1,1,2-Trichloroethane	BDL	U	µg/kg dry	177	111	100	a		4)	•	•	Х
9-01-6	Trichloroethene	BDL	U	μg/kg dry	177	173	100	н	H	Ħ	H	n	Х
'5-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	µg/kg dry	177	142	100	н	H	U		*	Х
96-18-4	1,2,3-Trichloropropane	BDL	U	µg/kg dry	177	150	100	n	и	11		a	Х
95-63-6	1,2,4-Trimethylbenzene	165	J	µg/kg dry	177	138	100	14	4	п	•	n	X
108-67-8	1,3,5-Trimethylbenzene	BDL	υ	μg/kg dry	177	168	100			n	ø	n	Х
′5 - 01 - 4	Vinyl chloride	BDL	U	µg/kg dry	177	142	100	*	•			n	Х
179601-23-1	m,p-Xylene	BDL	U	µg/kg dry	354	283	100		•	-	•	14	Х
5-47-6	o-Xylene	BDL	U	µg/kg dry	177	111	100	•	77		•		Х
109-99-9	Tetrahydrofuran	BDL	U	µg/kg dry	354	354	100	•	**	ч	e	n	
0-29-7	Ethyl ether	BDL	U	µg/kg dry	177	133	100	П	lf .	н	н		
94-05-8	Tert-amyl methyl ether	BDL	U	µg/kg dry	177	161	100	**	11		n		
37-92-3	Ethyl tert-butyl ether	BDL	U	µg/kg dry	177	175	100	er .	U	и	H	ч	
108-20-3	Di-isopropyl ether	BDL	U	µg/kg dry	177	108	100	4	H	ч	8		
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	µg/kg dry	1770	1610	100	n	н	•	и	•	Х
23-91-1	1,4-Dioxane	BDL	U	µg/kg dry	3540	2930	100	u	н	n	п		Х
110-57-6	trans-1,4-Dichloro-2-bute ne	BOL	U	µg/kg đry	885	173	100	н	IF	17	u	4	
34-17-5	Ethanol	BDL	U	µg/kg dry	70800	11000	100	14	н	ø	n		
Surrogate i	recoveries:												
160-00-4	4-Bromofluorobenzene	111			70-13	0 %		n	n	tt		#	
2037-26-5	Toluene-d8	98			70-13	0 %		н	a	п	11		
7060-07-0	1,2-Dichloroethane-d4	106			70-13	0%			*	u			

Sample Identification
Bottom
SB10892-05

Client Project # MEC2001.P2 Matrix Soil Collection Date/Time 15-Apr-10 13:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	
Volatile O	rganic Compounds												
	rganic Compounds		R05					44.07					
	by method SW846 5030 S		<u>(el)</u>		70.40		ial weight:	_	00.140	00.140		4000400	
1868-53-7	Dibromofluoromethane	91			70-13	0%		SW846 8260B	22-Apr-10	22-Apr-10	adu	1008482	
	ile Organic Compounds by												
	ile Organic Compounds b by method SW846 3545A		<u>:70</u>										
33-32-9	Acenaphthene	307	J	μg/kg dry	426	20.7	1	SW846 8270C	22-Anr-10	23-Apr-10	MSL	1008454	
208-96-8	Acenaphthylene	BDL	U	μg/kg dry	426	25.8	1	*		и			
32-53-3	Aniline	BDL	U	µg/kg dry	852	65.6	1		*	н			
120-12-7	Anthracene	152	J	µg/kg dry	426	25.8	1	n		n		n	
1912-24-9	Atrazine	BDL	U	µg/kg dry	852	22.5	1	n,	*1				
03-33-3	Azobenzene/Diphenyldia	BDL	U	µg/kg dry	852	22.5	1	11	**	It	u	*	
02-87-5	zine Benzidine	BDL	υ	µg/kg dry	852	96.6	1	e	n	IT	Ħ	н	
6-55-3	Benzo (a) anthracene	BDL	U	µg/kg dry	426	55.0	1	а	н	•			
60-32-8	Benzo (a) pyrene	BDL BDL	U	µg/kg dry	426	29.2	1	Ħ	4	•	н		
05-99-2	Benzo (b) fluoranthene	BDL	U	µg/kg dry	426	114	1			•	11	*	
91-24-2	Benzo (g,h,i) perylene	BDL	U	µg/kg dry	426	24.0	1	н	n	•	н	n	
07-08-9	Benzo (k) fluoranthene	BDL	U	µg/kg dry	426	34.3	1	D		*1		"	
5-85-0	Benzoic acid	BDL	U	µg/kg dry	852	15,5	1	U	n	a a	II.	u	
00-51-6	Benzyl alcohol	BDL	U	µg/kg dry	852	27.6	1	tt		u	D	n	
11-91-1	Bis(2-chloroethoxy)metha	BDL	U	µg/kg dry	852	17.2	1	19	rt	н	в	**	
11-44-4	ne Bis(2-chloroethyl)ether	BDL	U	µg/kg đry	852	12.1	1			M	9	н	
08-60-1	Bis(2-chloroisopropyl)eth	BDL	U	µg/kg dry	852	15.5	1	•		н		n	
47.04.7	er	PDI.			050	454	4	п	н	ы	#	N	
17-81-7	Bis(2-ethylhexyl)phthalat e	BDL	U	µg/kg dry	852	164	1						
01-55-3	4-Bromophenyl phenyl ether	BDL	U	μg/kg dry	852	39.5	1	n	*1		**	,,	
5-68-7	Butyl benzyl phthalate	BDL	U	µg/kg đry	852	98.1	1	10	u	n		n	
6-74-8	Carbazole	BDL	U	µg/kg dry	852	31.0	1	,,	н	m	4		
9-50-7	4-Chloro-3-methylphenol	BDL	U	μg/kg dry	852	31.0	1	æ		н			
06-47-8	4-Chloroanitine	BDL	บ	μg/kg dry	852	82.6	1	•	n	•			
1-58-7	2-Chloronaphthalene	BDL	U	μg/kg dry	852	12.1	1	**	n	n	**		
5-57-8	2-Chlorophenol	BDL	U	µg/kg dry	852	17.2	1	н	u	u	σ	n	
005-72-3	4-Chlorophenyl phenyl ether	BDL	U	μg/kg dry	852	10,3	1	11	19	11,	11	10	
18-01-9	Chrysene	BDL	U	μg/kg dry	426	12.1	1	u	u		н		
3-70-3	Dibenzo (a,h) anthracene	BDL	U	μg/kg dry	426	13.7	1	e	n				
32-64-9	Dibenzofuran	495	J	μg/kg dry	852	10.3	1			u	n		
5-50-1	1,2-Dichlorobenzene	BDL	U	µg/kg dry	852	0.413	1	п	н	•	o		
41-73-1	1,3-Dichlorobenzene	BDL	U	μg/kg dry	852	36.2	1	n	u	•	u	tr	
06-46-7	1,4-Dichlorobenzene	BDL	U	μg/kg dry	852	38.0	1	O	n	\$1		ıŧ	
1-94-1	3,3'-Dichlorobenzidine	BDL	U	μg/kg dry	852	62.0	1	o o	п	"	,		
20-83-2	2,4-Dichlorophenol	BDL	υ	μg/kg dry	852	22.5	1	tt	IF		"	н	
4-66-2	Diethyl phthalate	BDL	U	µg/kg dry	852	27.6	1	u	n	••	Ħ		
31-11-3	Dimethyl phthalate	BDL	U	µg/kg dry	852	24.0	1	M	н	n	•		
05-67-9	2,4-Dimethylphenol	BDL	U	µg/kg dry	852	39,5	1	es .	e e	12		**	

Sample R Bottom SB10892	dentification			' <u>'</u>	Project # 2001.P2		<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection <u>Date</u> i-Apr-10 13	•		ceived Apr-10	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	ile Organic Compounds by	GCMS											
Semivola:	tile Organic Compounds t	oy SW846 8	<u>270</u>										
84-74-2	Di-n-butyl phthalate	BDL	U	μg/kg dry	852	22.5	1	SW846 8270C	22-Apr-10	23-Apr-10	MSL	1008454	Х
534-52-1	4,6-Dinitro-2-methylphen	BDL	U	µg/kg dry	852	20.7	1	P	11	и	и	п	X
1-28-5	2,4-Dinitrophenol	BDL	U	µg/kg dry	852	53.5	1	Ħ	al .	n		н	Х
21-14-2	2,4-Dinitrotoluene	BDL	U	μg/kg dry	852	36.2	1			н		п	Х
306-20-2	2,6-Dinitrotoluene	BDL	U	μg/kg dry	852	20.7	1	ut.	m		н		Х
117-84-0	Di-n-octyl phthalate	BDL	U	µg/kg dry	852	41.3	1	et	ы		н		Х
206-44-0	Fluoranthene	57.7	J	µg/kg dry	426	20.7	1	u	u	11		ø	Х
36-73-7	Fluorene	911		μg/kg dry	426	20.7	1	п	17	н	ø	11	Х
118-74-1	Hexachlorobenzene	BDL	U	µg/kg dry	852	63.8	1	U	"	41	11	11	X
37-68-3	Hexachlorobutadiene	BDL	U	μg/kg dry	852	96.6	1	e	н	u	n	11	X
77-47-4	Hexachlorocyclopentadie ne	BDL	U	µg/kg dry	852	63.8	1	n	n	n	u	"	Х
7-72-1	Hexachloroethane	BDL	U	µg/kg dry	852	87.8	1	ti	н	n	•		X
93-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	µg/kg dry	426	39.5	1	и	•	•		n	Х
0-12-0	1-Methylnaphthalene	3,770		µg/kg dry	426	0.284	1	н	н	n		п	
8-59-1	Isophorone	BDL	U	µg/kg dry	852	51.7	1	•	ır	•	11	n	X
91-57-6	2-Methylnaphthalene	BDL	U	µg/kg dry	426	18,9	1	n	tt .	U	н	U	Х
5-48-7	2-Methylphenol	BDL	U	µg/kg dry	852	36.2	1	n	11	U	"	ų	Х
08-39-4, 06-44-5	3 & 4-Methylphenol	BDL	U	μg/kg dry	852	20.7	1	D.	*	N		ч	X
1-20-3	Naphthalene	BDL	υ	μg/kg dry	426	32.8	1	•	•	м	•	tr	X
38-74-4	2-Nitroaniline	BDL	υ	µg/kg dry	852	10.3	1	77		*	n	n	X
9-09-2	3-Nitroanilíne	BDL	υ	µg/kg dry	852	29.2	1	*	Ħ	n	Ħ	в	X
00-01-6	4-Nitroaniline	BDL	U	µg/kg dry	3410	32.8	1	**	H	н	u		Х
8-95-3	Nitrobenzene	BDL	U	µg/kg dry	852	31.0	1	я		IF.	ŧ1	n	X
8-75-5	2-Nitrophenol	BDL	U	µg/kg dry	852	39.5	1	4	*1		41	N	X
00-02-7	4-Nitrophenol	BDL	υ	μg/kg dry	3410	44.7	1	si	n	n	41	11	Х
2-75-9	N-Nitrosodimethylamine	BDL	U	µg/kg dry	852	19.0	1	н	n	n	н	Ħ	Х
621-64-7	N-Nitrosodi-n-propylamin e	BDL	U	µg/kg dry	852	103	1	•	н	•	u	*	X
6-30-6	N-Nitrosodiphenylamine	BDL	U	µg/kg dry	852	32.8	1		Ħ	r	н		Χ
7-86-5	Pentachlorophenol	BDL	U	µg/kg dry	852	55.0	1	**	п	n	н	,,	Х
5-01-8	Phenanthrene	1,500		µg/kg dry	426	39.5	1	u	II.	n	"	n	Х
08-95-2	Phenol	BDL	U	µg/kg dry	852	17.2	1	•	U	п	b	н	Х
29-00-0	Pyrene	117	J	µg/kg dry	426	60.4	1	**	n	n	a	H	Х
10-86-1	Pyridine	BDL	υ	µg/kg dry	852	17.2	1	•	n	п	н	Ħ	χ.
20-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/kg dry	852	12.1	1	•	•	**	*	•	Х
5-95-4	2,4,5-Trichlorophenol	BDL	U	µg/kg dry	852	17.2	1	n	н	•	н	•	Х
8-06-2	2,4,6-Trichlorophenol	BDL	U	µg/kg dry	852	17.2	1	ti .	n	•	*	11	Х
					_								

U

U

µg/kg dry

µg/kg dry

BDL

BDL

70

75

82-68-8

95-94-3

321-60-8

367-12-4

Surrogate recoveries:

Pentachloronitrobenzene

1,2,4,5-Tetrachlorobenze

2-Fluorobiphenyl

2-Fluorophenol

30-130 %

15-110 %

852

852

426

426

1

1

Х

Х

Sample	Identification
Bottom	

Client Project # MEC2001.P2 Matrix Soil Collection Date/Time 15-Apr-10 13:00

SB10892	-05			MEC2	:001.P2		Soil	15	-Apr-10 13	3:00	19-	Apr-10	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds b	y GCMS							-				
	tile Organic Compounds by method SW846 3545		<u>270</u>										
4165-60-0	Nitrobenzene-d5	78			30-13	0%		SW846 8270C	22-Apr-10	23-Apr-10	MSL	1008454	
4165-62-2	Phenol-d5	82			15-11	0%		ø	n	4	"	н	
1718-51-0	Terphenyl-dl4	72			30-13	0%		o	u	W	n	н	
118-79-6	2,4,6-Tribromophenol	72			15-11	0 %			*	n	*	п	
Total Met	als by EPA 6000/7000 Ser	ies Methods											
7440-22-4	Silver	BDL	U	mg/kg dry	1.92	0.270	1	SW846 6010B	01-May-1 0	04-May-1 0	KNJ	1008823	х
7440-38-2	Arsenic	10.1		mg/kg dry	1.92	0.384	1	•	41	н	н	n	Х
7440-39-3	Barium	114		mg/kg dry	1.28	0.243	1	11	n	05-May-1 0	n		X
7440-43-9	Cadmium	1.36		mg/kg dry	0.639	0.134	1	u	u	04-May-1 0	"	"	X
7440-47-3	Chromium	23.1		mg/kg dry	1.28	0.295	1	н	11	ti	Ħ	п	Х
7439-97-6	Mercury	0.0843		mg/kg dry	0.0371	0.0058	1	SW846 7471A	H	03-May-1 0	KNJ	1008824	х
7439-92-1	Lead	40.5		mg/kg dry	1.92	0.826	1	SW846 6010B		04-May-1 0	KNJ	1008823	X
7782-49-2	Selenium	1.36	J	mg/kg dry	1.92	0.331	1	IF	n	05-May-1 0	11	o	X
General C	Chemistry Parameters												
	% Solids	72.3		%			1	SM2540 G Mod.	23-Apr-10	23-Apr-10	VK	1008552	

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1008482 - SW846 5030 Soil (high level)						<u>-</u>	,			
Blank (1008482-BLK1)					Pre	epared & Ar	nalyzed: 22-	Apr-10		
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL	U	μg/kg wet	30.0						
Acetone	BRL	U	μg/kg wet	466						
Acrylonitrile	BRL	U	μg/kg wet	48.5						
Benzene	BRL	U	μg/kg wet	29.0						
Bromobenzene	BRL	υ	μg/kg wet	29.5						
Bromochloromethane	BRL	υ	μg/kg wet	33,5						
Bromodichloromethane	BRL	U	μg/kg wet	28.5						
Bromoform	BRL	U	µg/kg wet	49.0						
Bromomethane	BRL	U	μg/kg wet	91.5						
2-Butanone (MEK)	BRL	U	μg/kg wet	190						
n-Butylbenzene	BRL	U	μg/kg wet	41.0						
sec-Butylbenzene	BRL	U	µg/kg wet	34.5						
tert-Butylbenzene	BRL	Ü	μg/kg wet	47.5						
Carbon disulfide	BRL	Ü	μg/kg wet	100						
Carbon tetrachloride	BRL	U	µg/kg wet	41.5						
Chlorobenzene	BRL	Ü	µg/kg wet	47.5						
Chloroethane	BRL	U	µg/kg wet	82.5						
Chloroform	BRL	U	μg/kg wet μg/kg wet	46.0						
Chloromethane	BRL	υ		60.5						
		v	μg/kg wet							
2-Chlorotoluene	BRL		µg/kg wet	34.5						
4-Chlorotoluene	BRL	υ	µg/kg wet	41.5						
1,2-Dibromo-3-chloropropane	BRL	U 	μg/kg wet	80.0						
Dibromochloromethane	BRL	U 	µg/kg wet	36.5						
1,2-Dibromoethane (EDB)	BRL	U	μg/kg wet	31.5						
Dibromomethane	BRL	U	µg/kg wet	32.5						
1,2-Dichlorobenzene	BRL	U 	μg/kg wet	44.0						
1,3-Dichlorobenzene	BRL	U	µg/kg wet	23.0						
1,4-Dichlorobenzene	BRL	U	µg/kg wet	40,5						
Dichlorodifluoromethane (Freon12)	BRL	U	µg/kg wet	95.5						
1,1-Dichloroethane	BRL	U	µg/kg wet	37.0						
1,2-Dichloroethane	BRL	U	µg/kg wet	48.0						
1,1-Dichloroethene	BRL	U	µg/kg wet	47.5						
cis-1,2-Dichloroethene	BRL	U	µg/kg wet	42.5						
trans-1,2-Dichloroethene	BRL	U	µg/kg wet	47.0						
1,2-Dichloropropane	BRL	U	µg/kg wet	35.0						
1,3-Dichloropropane	BRL	U	µg/kg wet	34.5						
2,2-Dichloropropane	BRL	U	μg/kg wet	49.5						
1,1-Dichloropropene	BRL	U	μg/kg wet	49.0						
cis-1,3-Dichloropropene	BRL	U	µg/kg wet	25.5						
trans-1,3-Dichloropropene	BRL	U.	µg/kg wet	27.5						
Ethylbenzene	BRL	U	μg/kg wet	46.0						
Hexachlorobutadiene	BRL	U	µg/kg wet	38.0						
2-Hexanone (MBK)	BRL	υ	µg/kg wet	171						
Isopropylbenzene	BRL	U	µg/kg wet	32.0						
4-Isopropyltoluene	BRL	U	µg/kg wet	41.0						
Methyl tert-butyl ether	BRL	U	µg/kg wet	40.0						
4-Methyl-2-pentanone (MIBK)	BRL	U	µg/kg wet	114						
Methylene chloride	BRL	U	μg/kg wet	100						
Naphthalene	BRL	U	μg/kg wet	41.0						
n-Propylbenzene	BRL	U.	μg/kg wet	36.5						
Styrene	BRL	U	μg/kg wet	25.0						
1,1,1,2-Tetrachioroethane	BRL	U	μg/kg wet	45.5						

Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
				Pre	epared & Ai	nalyzed: 22-	Арт-10		
BRL	U	ua/ka wet	36.0						
	U								
	U	:							
	U								
	U								
				•					
			0120	20.0			70.420	-	
				-					
28.5		µg/kg wet							
					epared & Ar				
20.2		μg/kg wet		20,0		101	/0-130		
24.2		μg/kg wet		20.0		121	70-130		
	BRL	BRL UBRL UBRL UBRL UBRL UBRL UBRL UBRL U	BRL U µg/kg wet BRL U µg/kg we	BRL U µg/kg wet 43.5 BRL U µg/kg wet 43.5 BRL U µg/kg wet 45.0 BRL U µg/kg wet 39.0 BRL U µg/kg wet 46.0 BRL U µg/kg wet 33.0 BRL U µg/kg wet 46.5 BRL U µg/kg wet 49.0 BRL U µg/kg wet 49.0 BRL U µg/kg wet 42.5 BRL U µg/kg wet 40.0 BRL U µg/kg wet 39.0 BRL U µg/kg wet 40.0 BRL U µg/kg wet 31.5 BRL U µg/kg wet 31.5 BRL U µg/kg wet 31.5 BRL U µg/kg wet 30.5 BRL U µg/kg wet 45.5 BRL U µg/kg wet 45.5 BRL U µg/kg wet 49.5 BRL U µg/kg wet 49.5 BRL U µg/kg wet 49.5 BRL U µg/kg wet 49.0 BRL U µg/kg wet 30.5 BRL U µg/kg wet 45.4 BRL U µg/kg wet 31.20 24.5 µg/kg wet 49.0 BRL U µg	Result Flag Units *RDL Level	Result Flag Units *RDL Level Result	Result Flag Units *RDL Level Result %REC	Result Elag Units RDL Level Result Y4REC Limits	Result Flag Units *RDL Level Result %REC Limits RPD

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	1100011	- '	- Cinu		23,01	Livbuit		2		211111
Batch 1008482 - SW846 5030 Soil (high level)					-		aabeest oo	Ans 40		
LCS (1008482-BS1)						epared & Al	nalyzed: 22			
1,2-Dibromo-3-chloropropane	16.7		μg/kg wet		20.0		84	70-130		
Dibromochloromethane	17.3		μg/kg wet		20.Ò		86	49-138		
1,2-Dibromoethane (EDB)	17.0		μg/kg wet		20.0		85	70-130		
Dibromomethane	17.7		μg/kg wet		20.0		88	70-130		
1,2-Dichlorobenzene	21.0		μg/kg wet		20.0		105	70-130		
1,3-Dichlorobenzene	24.0		μg/kg wet		20.0		120	70-130		
1,4-Dichlorobenzene	20.4		μg/kg wet		20.0		102	70-130		
Dichlorodifluoromethane (Freon12)	29.5	QM9	μg/kg wet		20.0		148	50.8-145		
1,1-Dichloroethane	18.9		μg/kg wet		20.0		95	70-130		
1,2-Dichloroethane	18.1		µg/kg wet		20.0		90:	70-130		
1,1-Dichloroethene	20.0		µg/kg wet		20.0		100	70-130		
cis-1,2-Dichloroethene	17.5		µg/kg wet		20.0		88	70-130		
trans-1,2-Dichloroethene	18.6		μg/kg wet		20.0		93	70-130		
1,2-Dichloropropane	17.5		μg/kg wet		20.0		87	70-130		
1,3-Dichloropropane	17.6		μg/kg wet		20.0		88	70-130 _		
2,2-Dichloropropane	20,8		μg/kg wet		20.0		104	70-130		
1,1-Dichloropropene	20,4		μg/kg wet		20.0		102	70-130		
cis-1,3-Dichloropropene	17.8		µg/kg wet		20.0		89	70-130		
trans-1,3-Dichloropropene	16.8		µg/kg wet		20,0		84	70-130		
Ethylbenzene	19,1		μg/kg wet		20.0		96	70-130		
Hexachlorobutadiene	24.7		μg/kg wet		20.0		124	70-135		
2-Hexanone (MBK)	13.2	QM9	µg/kg wet		20.0		66	70-130		
Isopropylbenzene	24.2		μg/kg wet		20.0		121	70-130		
4-Isopropyltoluene	19.4		µg/kg wet		20.0		97	70-130		
Methyl tert-butyl ether	16.5		µg/kg wet		20.0		83	70-130		
4-Methyl-2-pentanone (MIBK)	14.0		µg/kg wet		20.0		70	64,2-130		
Methylene chloride	16.3		µg/kg wet		20.0		82	70-130		
Naphthalene	18.0		µg/kg wet		20.0		90	70-130		
n-Propylbenzene	19.5		µg/kg wet		20.0	,	98	70-130		
Styrene	17.8		µg/kg wet		20.0		89	70-130		
1,1,1,2-Tetrachloroethane	21.0		µg/kg wet		20.0		105	70-130		
1,1,2,2-Tetrachloroethane	20.6		µg/kg wet		20.0		103	70-130		
Tetrachloroethene	19.4		μg/kg wet		20.0		97	70-130		
Toluene	18.4		µg/kg wet		20.0		92	70-130		
1,2,3-Trichlorobenzene	22.3		µg/kg wet		20.0		111	70-130		
1,2,4-Trichlorobenzene	19.2		µg/kg wet		20.0		96	70-130		
1,3,5-Trichlorobenzerie	Ž1.5		µg/kg wet		20.0		108	70-130		
1,1,1-Trichloroethane	20.9		µg/kg wet		20.0		104	70-130		
1,1,2-Trichloroethane	17.0		μg/kg wet		20.0		85	70-130		
Trichloroethene	18.6		µg/kg wet		20.0		93	70-130		
Trichlorofluoromethane (Freon 11)	24.1		μg/kg wet		20,0		120	55.3-174		
1,2,3-Trichloropropane	20.1		µg/kg wet		20.0		101	70-130		
1,2,4-Trimethylbenzene	19.7		μg/kg wet		20.0		98	70-130		
1,3,5-Trimethylbenzene	19.5		μg/kg wet		20.0		98	70-130		
Vinyl chloride	21.5		μg/kg wet		20.0		107	70-130		
m,p-Xylene	40.8		µg/kg wet		40.0		102	70-130		
o-Xylene	20.9		µg/kg wet		20.0		104	70-130		
Tetrahydrofuran	14.8		µg/kg wet		20.0		74	70-130		
Ethyl ether	16,7		µg/kg wet		20.0		83	70-130		
Tert-amyl methyl ether	15.7		µg/kg wet		20.0		79	70-130		
Ethyl tert-butyl ether	16.9		μg/kg wet		20.0		85	70-130		
Di-isopropyl ether	17.0		μg/kg wet		20.0		85	70-130		

alyte(s)	Result	Flag	Units	•RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
tch 1008482 - SW846 5030 Soil (high level)										
LCS (1008482-BS1)					Pre	epared & Ar	nalyzed: 22	-Apr-10		
Tert-Butanol / butyl alcohol	141		μg/kg wet		200	_	71	70-130		
1,4-Dioxane	147		μg/kg wet		200		73	44.2-151		
trans-1,4-Dichloro-2-butene	20.8		µg/kg wet		20.0		104	70-130		
Ethanol	338		μg/kg wet		400		85	70-130		
Surrogate: 4-Bromofluorobenzene	31.2		μg/kg wet		30.0		104	70-130		
Surrogate: Toluene-d8	28.3		μg/kg wet		30.0		94	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.0		μg/kg wet		30.0		100	70-130		
Surrogate: Dibromofluoromethane	28.6		μg/kg wet		30.0		95	70-130		
LCS Dup (1008482-BSD1)					Pre	epared & Ar	nalyzed: 22	-Apr-10		
1,1,2-Trichlorotrifluoroethane (Freon 113)	24.3		μg/kg wet		20.0		122	70-130	5	25
Acetone	16.8		μg/kg wet		20.0		84	40-144	3	50
Acrylonitrile	15,8		μg/kg wet		20.0		79	70-130	2	25
Benzene	17.7		μg/kg wet		20.0		89	70-130	0.4	25
Bromobenzene	21.2		μg/kg wet		20.0		106	70-130	1	25
Bromochloromethane	17.4		μg/kg wet		20.0		87	70-130	1	25
Bromodichloromethane	18.5		μg/kg wet		20.0		92	70-130	1	25
Bromoform	21.0		μg/kg wet		20.0		105	70-130	3	25
Bromomethane	19,0		μg/kg wet		20.0		95	54.4-131	0.6	50
2-Butanone (MEK)	14.9		μg/kg wet		20.0		75	62.1-141	5	50
n-Butylbenzene	21.8		μg/kg wet		20.0		109	70-130	0	25
sec-Butylbenzene	21.3		µg/kg wet		20.0		106	70-130	2	25
tert-Butylbenzene	20.3		µg/kg wet		20.0		101	70-130	1	25
Carbon disulfide	17.0		µg/kg wet		20.0		85	70-130	4	25
Carbon tetrachloride	22.4		µg/kg wet		20.0		112	70-130	2	25
Chlorobenzene	19.6		μg/kg wet		20.0		98	70-130	2	25
Chloroethane	20.8		μg/kg wet		20.0		104	56.7-131	3	50
Chloroform	18.2		μg/kg wet		20.0		91	70-130	2	25
Chloromethane	19.8		µg/kg wet		20.0		99	70-130	2	25
2-Chlorotoluene	24.0		μg/kg wet		20.0		120	70-130	0.8	25
4-Chlorotoluene	20.5		μg/kg wet		20.0		103	70-130	2	25
1,2-Dibromo-3-chloropropane	17.3		μg/kg wet		20.0		87	70-130	4	25
Dibromochloromethane	17.2		µg/kg wet		20.0		86	49-138	0.1	50
1,2-Dibromoethane (EDB)	17.6		µg/kg wet		20.0		88	70-130	3	25
Dibromomethane	17.8		μg/kg wet		20.0		89	70-130	0.6	25
1,2-Dichlorobenzene	21.0		µg/kg wet		20.0		105	70-130	0.3	25
1,3-Dichlorobenzene	23.7		µg/kg wet		20.0		119	70-130	1	25
1,4-Dichlorobenzene	20,5		μg/kg wet		20.0		103	70-130	0.5	25
Dichlorodifluoromethane (Freon12)	28,1		μg/kg wet		20.0		141	50.8-145	5	50
1,1-Dichloroethane	18.5		μg/kg wet		20.0		92	70-130	2	25
1,2-Dichloroethane	17.8		µg/kg wet		20.0		89	70-130	1	25
1,1-Dichloroethene	19.7		µg/kg wet		20.0		98	70-130	2	25
cis-1,2-Dichloroethene	17.2		μg/kg wet		20.0		86	70-130	2	25
trans-1,2-Dichloroethene	18.3		μg/kg wet		20.0		91	70-130	2	25
1,2-Dichloropropane	17.0		μg/kg wet		20.0		85	70-130	3	25
1,3-Dichloropropane	17.6		μg/kg wet		20.0		88	70-130	0.4	25
2,2-Dichloropropane	20.3		μg/kg wet		20.0		101	70-130	2	25
1,1-Dichloropropene	19.8		μg/kg wet		20.0		99	70-130	3	25
cis-1,3-Dichloropropene	17.9		µg/kg wet		20.0		90	70-130	0.7	25
trans-1,3-Dichloropropene	17.1		μg/kg wet		20.0		85	70-130	2	25
Ethylbenzene	19.0		μg/kg wet		20.0		95	70-130	0.5	25

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
stch 1008482 - SW846 5030 Soil (high level)										
LCS Dup (1008482-BSD1)					<u>Pre</u>	epared & A	nalyzed: 22	-Apr-10		
2-Hexanone (MBK)	14.0		μg/kg wet		20.0		70	70-130	6	25
Isopropylbenzene	23.6		μg/kg wet		20.0		118	70-130	2	25
4-Isopropyltoluene	19.4		μg/kg wet		20.0		97	70-130	0.05	25
Methyl tert-butyl ether	16.7		μg/kg wet		20.0		84	70-130	1	25
4-Methyl-2-pentanone (MIBK)	16.1		μg/kg wet		20.0		80	64.2-130	14	50
Methylene chloride	16.1		μg/kg wet		20.0		81	70-130	1	25
Naphthalene	19.1		μg/kg wet		20.0		96	70-130	6	25
n-Propylbenzene	19.3		µg/kg wet		20.0		96	70-130	1	25
Styrene	17.6		μg/kg wet		20.0		88	70-130	1	25
1,1,1,2-Tetrachloroethane	20.4		μg/kg wet		20.0		102	70-130	3	25
1,1,2,2-Tetrachloroethane	20.8		μg/kg wet		20.0		104	70-130	1	25
Tetrachloroethene	19.5		μg/kg wet		20.0		97	70-130	0.4	25
Toluene	18.1		μg/kg wet		20.0		90	70-130 ·	2	25
1,2,3-Trichlorobenzene	22.8		μg/kg wet		20.0		114	70-130	2	25
1,2,4-Trichlorobenzene	19.4		μg/kg wet		20.0		97	70-130	0.9	25
1,3,5-Trichlorobenzene	21.8		μg/kg wet		20.0		109	70-130	1	25
1,1,1-Trichloroethane	20.0		μg/kg wet		20.0		100	70-130	4	25
1,1,2-Trichloroethane	17.1		μg/kg wet		20.0		85	70-130	0.4	25
Trichloroethene	18.6		μg/kg wet		20.0		93	70-130	0.05	25
Trichlorofluoromethane (Freon 11)	23.2		µg/kg wet		20.0		116	55.3-174	4	50
1,2,3-Trichloropropane	20.5		μg/kg wet		20.0		102	70-130	2	25
1,2,4-Trimethylbenzene	19.9		µg/kg wet		20.0		99	70-130	1	25
1,3,5-Trimethylbenzene	19.2		µg/kg wet		20.0		96	70-130	1	25
Vinyl chloride	18,0		μg/kg wet		20.0		90	70-130	18	25
m,p-Xylene	40,3		μg/kg wet		40.0		101	70-130	1	25
o-Xylene	20,7		μg/kg wet		20,0		103	70-130	1	25
Tetrahydrofuran	14.8		μg/kg wet		20.0		74	70-130	0.3	25
Ethyl ether	16.7		µg/kg wet		20.0		84	70-130	0.5	50
Tert-amyl methyl ether	15.9		μg/kg wet		20.0		79	70-130	0.9	25
Ethyl tert-butyl ether	17.0		μg/kg wet		20.0		85	70-130	0.7	25
Di-isopropyl ether	17.0		μg/kg wet		20.0		85	70-130	0.3	25
Tert-Butanol / butyl alcohol	159		μg/kg wet		200		79	70-130	12	25
1,4-Dioxane	159		μg/kg wet		200		80	44.2-151	8	25
trans-1,4-Dichloro-2-butene	21.2		μg/kg wet		20.0		106	70-130	2	25
Ethanol	359		μg/kg wet		400		90	70-130	6	30
Surrogate: 4-Bromofluorobenzene	31.7		μg/kg wet		30.0		106	70-130		
Surrogate: Toluene-d8	28.7		μg/kg wet		30.0		96	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.1		µg/kg wet		30.0		100	70-130		
Surrogate: Dibromofluoromethane	29.0		μg/kg wet		30.0		97	70-130		
tch 1008809 - SW846 5035A Soil (low level)			Fa 6							
Blank (1008809-BLK1)					Pre	epared & A	nalyzed; 27-	-Apr-10		
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL	U	μg/kg wet	3.0		paroa a r	iany Lou, Li	7 (p. 10		
Acetone	BRL	U	µg/kg wet	46.6						
Acrylonitrile	BRL	ŭ	µg/kg wet	4.8						
Benzene	BRL	U	µg/kg wet	2.9						
Bromobenzene	BRL	U	µg/kg wet	3.0						
Bromochloromethane	BRL	U	µg/kg wet	3.4						
Bromodichloromethane	BRL	U	µg/kg wet µg/kg wet	2,8						
Bromoform	BRL	U	μg/kg wet μg/kg wet	4.9						
Bromomethane	BRL	U	µg/kg wet µg/kg wet	9.2						
2-Butanone (MEK)	BRL	U	µg/kg wet µg/kg wet	19.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1008809 - SW846 5035A Soil (low level)					-	<u>-</u>		-	_	
Blank (1008809-BLK1)					Po	epared & Ar	nalyzed: 27-	Apr-10		
n-Butylbenzene	BRL	U	μg/kg wet	4.1						
sec-Butylbenzene	BRL	U	μg/kg wet	3,4						
tert-Butylbenzene	BRL	U	μg/kg wet	4.8						
Carbon disulfide	BRL	U	μg/kg wet	10.0						
Carbon tetrachloride	BRL	U	μg/kg wet	4.2						
Chlorobenzene	BRL	U	μg/kg wet	4.8						
Chloroethane	BRL	U	µg/kg wet	8.2						
Chloroform	BRL	υ	μg/kg wet	4,6						
Chloromethane	BRL	U	µg/kg wet	6.0						
2-Chlorotoluene	BRL	υ	μg/kg wet	3.4						
4-Chlorotoluene	BRL	U	µg/kg wet	4.2						
1,2-Dibromo-3-chloropropane	BRL	U	µg/kg wet	8.0						
Dibromochloromethane	BRL	U	µg/kg wet	3.6						
1,2-Dibromoethane (EDB)	BRL	U	μg/kg wet	3.2						
Dibromomethane	BRL	U	µg/kg wet	3.2						
1,2-Dichlorobenzene	BRL	U	µg/kg wet	4.4						
1,3-Dichlorobenzene	BRL	U	µg/kg wet	2.3						
1,4-Dichlorobenzene	BRL	U	µg/kg wet	4.0						
Dichlorodifluoromethane (Freon12)	BRL	Ų	µg/kg wet	9.6						
1,1-Dichloroethane	BRL	υ	µg/kg wet	3.7						
1,2-Dichloroethane	BRL	U		3.7 4.8						
1,1-Dichloroethene	BRL	U	µg/kg wet	4.8						
cis-1,2-Dichloroethene	BRL	U	µg/kg wet	4.2						
·	BRL	U	μg/kg wet							
trans-1,2-Dichloroethene	BRL	Ų	μg/kg wet	4.7						
1;2-Dichloropropane		U	μg/kg wet	3.5						
1,3-Dichloropropane	BRL	U	μg/kg wet	3.4						
2,2-Dichloropropane	BRL	U	μg/kg wet	5.0						
1,1-Dichloropropene	BRL	U	μg/kg wet	4.9						
cis-1,3-Dichloropropene	BRL	U	μg/kg wet	2.6						
trans-1,3-Dichloropropene	BRL	U	μg/kg wet	2.8						
Ethylbenzene	BRL		μg/kg wet	4.6						
Hexachlorobutadiene	BRL	.U	μg/kg wet	3.8						
2-Hexanone (MBK)	BRL	U	μg/kg wet	17.1						
Isopropylbenzene	BRL	U 	µg/kg wet	3.2						
4-Isopropyltoluene	BRL	U U	µg/kg wet	4.1						
Methyl tert-butyl ether	BRL	U	μg/kg wet	4.0						
4-Methyl-2-pentanone (MIBK) Methylene chloride	BRL	U	µg/kg wet	11.4						
•	BRL BRL	U	µg/kg wet	10.0						
Naphthalene n-Propylbenzene	BRL	U	μg/kg wet μg/kg wet	4.1 3.6						
Styrene	BRL	U	pg/kg wet	2.5						
1,1,1,2-Tetrachloroethane	BRL	U	µg/kg wet	2.5 4.6						
1,1,2,2-Tetrachloroethane	BRL	U		4.6 3.6						
Tetrachloroethene	BRL	υ	µg/kg wet µg/kg wet	3.6 4.4						
Toluene	BRL	U	µg/kg wet	4.4						
	BRL	υ								
1,2,3-Trichlorobenzene		U	μg/kg wet	3.9						
1,2,4-Trichlorobenzene	BRL	U	µg/kg wet	4.6 3.8						
1,3,5-Trichlorobenzene 1,1,1-Trichloroethane	BRL BRL	U	µg/kg wet	3.8 4.6						
1,1,2-Trichloroethane	BRL	U	µg/kg wet	4.6 3.2						
		U	µg/kg wet							
Trichloroethene Trichlorofluoromethane (Freon 11)	BRL BRL	U	μg/kg wet μg/kg wet	4.9 4.0						

nalyte(s)	Result	Flag	Units	•RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1008809 - SW846 5035A Soil (low level)										
Blank (1008809-BLK1)					Pre	epared & Ai	nalyzed: 27-	-Apr-10		
1,2,3-Trichloropropane	BRL	U	μg/kg wet	4.2		- paio a - 1	1017200,27	1,01,10		
1,2,4-Trimethylbenzene	BRL	U	µg/kg wet	3.9						
1,3,5-Trimethylbenzene	BRL	Ü	µg/kg wet	4.8						
Vinyl chloride	BRL	U	μg/kg wet	4.0						
m,p-Xylene	BRL	U	μg/kg wet	8.0						
o-Xylene	BRL	U	μg/kg wet	3.2						
Tetrahydrofuran	BRL	U	µg/kg wet	10,0						
Ethyl ether	BRL	Ū	µg/kg wet	3.8						
Tert-amyl methyl ether	BRL	U	µg/kg wet	4.6						
Ethyl tert-butyl ether	BRL	υ U	μg/kg wet	5.0						
Di-isopropyl ether	BRL	Ú	µg/kg wet	3.0						
Tert-Butanol / butyl alcohol	BRL	U	µg/kg wet µg/kg wet	45.4						
1,4-Dioxane	BRL	U								
trans-1,4-Dioxane	BRL	U	μg/kg wet	82.9 4.9						
Ethanol	BRL	U	μg/kg wet μg/kg wet	4.9 312						
Surrogale: 4-Bromofluorobenzene	50.1		μg/kg wet		50.0		100	70-130		
•	50.7 50.7				50.0 50.0		101	70-130 70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4			µg/kg wet		50.0 50.0		101 122	70-130 70-130		
· ·	61.2		μg/kg wet							
Surrogate: Dibromofluoromethane	53.5		µg/kg wet		50.0		107	70-130		
LCS (1008809-BS1)					_	epared & Ar	nalyzed: 27-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	16.5		µg/kg wet		20.0		82	70-130		
Acetone	17.8		µg/kg wet		20.0		89	40-144		
Acrylonitrile	20.0		μg/kg wet		20.0		100	70-130		
Benzene	17.2		µg/kg wet		20.0		86	70-130		
Bromobenzene	18.2		µg/kg wet		20.0		91	70-130		
Bromochloromethane	19.5		μg/kg wet		20.0		98	70-130		
Bromodichloromethane	18.1		µg/kg wet		20.0		90	70-130		
Bromoform	18.7		µg/kg wet		20.0		93	70-130		
Bromomethane	16,9		µg/kg wet		20.0		84	54.4-131		
2-Butanone (MEK)	17.2		µg/kg wet		20.0		86	62.1-141		
n-Butylbenzene	16.2		µg/kg wet		20.0		81	70-130		
sec-Butylbenzene	17.5		µg/kg wet		20.0		88	70-130		
tert-Butylbenzene	18.0		µg/kg wet		20.0		90	70-130		
Carbon disulfide	16.7		µg/kg wet		20.0		84	70-130		
Carbon tetrachloride	16.9		μg/kg wet		20.0		85	70-130		
Chlorobenzene	17.4		μg/kg wet		20.0		87	70-130		
Chloroethane	17.4		µg/kg wet		20.0		87	56.7-131		
Chloroform	17.3		µg/kg wet		20.0		87	70-130		
Chloromethane	16.9		μg/kg wet		20.0		85	70-130		
2-Chlorotoluene	16,5		μg/kg wet		20.0		82	70-130		
4-Chlorotoluene	17,3		µg/kg wet		20.0		87	70-130		
1,2-Dibromo-3-chloropropane	18.4		μg/kg wet		20.0		92	70-130		
Dibromochloromethane	19.1		μg/kg wet		20.0		95	49-138		
1,2-Dibromoethane (EDB)	19.1		μg/kg wet		20.0		95	70-130		
Dibromomethane	18.9		µg/kg wet		20.0		95	70-130		
1,2-Dichlorobenzene	17.5		μg/kg wet		20.0		87	70-130		
1,3-Dichlorobenzene	17.7		µg/kg wet		20.0		89	70-130		
1,4-Dichlorobenzene	17.0		µg/kg wet		20.0		85	70-130		
Dichlorodifluoromethane (Freon12)	17.4		μg/kg wet		20.0		87	50.8-145		
1,1-Dichloroethane	17.0		µg/kg wet		20.0		85	70-130		
1,2-Dichloroethane	18.1		ug/kg wet		20.0		90	70-130		

nalyte(s)	Result [*]	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
tch 1008809 - SW846 5035A Soil (low level)										
LCS (1008809-BS1)					Pre	enared & Ai	nalyzed: 27-	-Anr-10		
1,1-Dichloroethene	16.8		μg/kg wet		20.0	parca a r	84	70-130		
cis-1,2-Dichloroethene	17.8		μg/kg wet μg/kg wet		20.0		89	70-130		
trans-1,2-Dichloroethene	17.4		μg/kg wet		20.0		87	70-130		
1,2-Dichloropropane	17.5		μg/kg wet		20.0		88	70-130		
1,3-Dichloropropane	19.0		μg/kg wet		20.0		95	70-130		
2,2-Dichloropropane	14.8		μg/kg wet		20.0		74	70-130		
1,1-Díchloropropene	16.6		µg/kg wet		20.0		83	70-130		
cis-1,3-Dichloropropene	17.4		µg/kg wet		20.0		87	70-130		
trans-1,3-Dichloropropene	17.6		µg/kg wet		20.0		88	70-130		
Ethylbenzene	17.1		µg/kg wet		20.0		86	70-130		
Hexachlorobutadiene	15.5		µg/kg wet		20.0		77	70-135		
2-Hexanone (MBK)	21.0		μg/kg wet		20.0		105	70-130		
Isopropylbenzene	17.6		μg/kg wet		20.0		88	70-130		
4-Isopropyltoluene	16.4		μg/kg wet		20.0		82	70-130		
Methyl tert-butyl ether	18.7		µg/kg wet		20.0		94	70-130		
4-Methyl-2-pentanone (MiBK)	19,6		μg/kg wet		20.0		98	64.2-130		
Methylene chloride	17.5				20.0		88	70-130		
Naphthalene	17.5		μg/kg wet		20.0		99	70-130		
•	17,1		µg/kg wet		20.0		86 86	70-130		
n-Propylbenzene			μg/kg wet				92	70-130		
Styrene	18.5 17.5		μg/kg wet		20.0		92 88	70-130		
1,1,1,2-Tetrachloroethane	17.5		µg/kg wet		20.0			70-130 70-130		
1,1,2,2-Tetrachloroethane	19.9		µg/kg wet		20.0		99			
Tetrachlöroethene	16.4		µg/kg wet		20.0		82	70-130 70-130		
Toluene	17.0		µg/kg wet		20.0		85			
1,2,3-Trichlorobenzene	20.9		µg/kg wet		20.0		105	70-130		
1,2,4-Trichlorobenzene	18.6		µg/kg wet		20.0		93	70-130		
1,3,5-Trichlorobenzene	17.2		μg/kg wet		20.0		.86	70-130		
1,1,1-Trichloroethane	17.0		µg/kg wet		20.0		85	70-130		
1,1,2-Trichloroethane	18.9		μg/kg wet		20.0		95	70-130		
Trichloroethene	17.2		µg/kg wet		20.0		86	70-130		
Trichlorofluoromethane (Freon 11)	17.2		µg/kg.wet		20.0		86	55.3-174		
1,2,3-Trichloropropane	19.4		µg/kg wet		20.0		97	70-130		
1,2,4-Trimethylbenzene	17.8		μg/kg wet		20.0		89	70-130		
1,3,5-Trimethylbenzene	17:7		μg/kg wet		20.0		89	70-130		
Vinyl chloride	16.8		μg/kg wet		20.0		84	70-130		
m,p-Xylene	35.2 17.7		µg/kg wet		40.0		88	70-130		
o-Xylene Tetrahydrafuran	17.7		μg/kg wet		20.0		88 100	70-130		
Tetrahydrofuran Ethyl other	21.9		μg/kg wet		20.0		109 97	70-130 70-130		
Ethyl ether Test-amyl methyl ether	19.4 18.1		μg/kg wet		20.0 20.0		90	70-130 70-130		
Tert-amyl methyl ether Ethyl tert-butyl ether	18.5		μg/kg wet μg/kg wet		20.0		93	70-130		
Di-isopropyl ether	18.2				20.0		91	70-130		
Tert-Butanol / butyl alcohol	196		µg/kg wet		200		98	70-130		
•	189		µg/kg wet		200		95	44,2-151		
1,4-Dioxane			µg/kg wet					70-130		
trans-1,4-Dichloro-2-butene	18.6		µg/kg wet		20.0 400		93 72			
Ethanol	289		μg/kg wet		400		72	70-130		
Surrogate: 4-Bromofluorobenzene	51.8		μg/kg wet		50.0		104	70-130		
Surrogate: Toluene-d8	50.7		μg/kg wet		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.4		μg/kg wet		50.0		103	70-130		
- '					50.0		103	70-130		

unalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source. Result	%REC	%REC Limits	RPD	RPD Limit
Satch 1008809 - SW846 5035A Soil (low level)		5								
, ,					Des	P A-		A 40		
LCS Dup (1008809-BSD1)	40.0					epared & Ar				
1,1,2-Trichlorotrifluoroethane (Freon 113)	16.0		μg/kg wet		20.0		80	70-130	3	25
Acetone	24.0		μg/kg wet		20.0		120:	40-144	30	50
Acrylonitrile	20.4		µg/kg wet		20.0		102	70-130	2	25
Benzene	16.6		μg/kg wet		20.0		83	70-130	4	25 25
Bromobenzene Bromochloromethane	17.9		µg/kg wet		20.0		89 96	70-130	2 1	25 25
	19.2		µg/kg wet		20.0		96 88	70-130 70-130	3	25 25
Bromodichloromethane	17.6		μg/kg wet		20.0		98	70-130	5	25 25
Bromoform Bromomethane	19.6 16.4		µg/kg wet		20.0 20.0		95 82	70-130 54.4-131	3	50
			μg/kg wet				93		8	50
2-Butanone (MEK)	18,6		μg/kg wet		20.0			62.1-141		
n-Butylbenzene	15.4		μg/kg wet		20.0		77	70-130	5	25 25
sec-Butylbenzene	17.0		µg/kg wet		20.0		85 07	70-130	3	25 25
tert-Butylbenzene Carbon disulfide	17.4 15.9		µg/kg wet		20.0		87 80	70-130 70-130	3 5	25 25
Carbon disultide			µg/kg wet		20,0 20.0		80 82	70-130 70-130	5 4	∠5 25
Chlorobenzene	16.3 17.3		µg/kg wet		20.0		87	70-130 70-130	0.5	∠5 25
	16.2		µg/kg wet				81	56.7-131	7	∠3 50
Chloroethane Chloroform	17.1		µg/kg wet		20.0		86	70-130	1	25
Chloromethane	16.3		µg/kg wet		20.0		81	70-130 70-130	4	25 25
2-Chlorotoluene			µg/kg wet		20.0		81		2	25 25
	16.1		µg/kg wet		20.0		86	70-130 70-130	0.5	25 25
4-Chlorotoluene	17:2		µg/kg wet		20.0		101		9	25 25
1,2-Dibromo-3-chloropropane	20.2		μg/kg wet		20.0			70-130		∠5 50
Dibromochloromethane	18.6		μg/kg wet		20.0		93 97	49-138 70-130	3 2	25
1,2-Dibromoethane (EDB)	19.4		μg/kg wet		20.0		97 95	70-130 70-130	0.2	25 25
Dibromomethane	18.9		μg/kg wet		20.0		95 86	70-130 70-130	2	25
1,2-Dichlorobenzene	17.2 17.6		μg/kg wet		20.0 20.0		88	70-130	1	25 25
1,3-Dichlorobenzene	16.6		μg/kg wet		20.0		83	70-130	2	25
1,4-Dichlorobenzene Dichlorodifluoromethane (Freon12)	16.3		μg/kg wet		20.0		82	50.8-145	7	50
			μg/kg wet		20.0		82	70-130	, 4	25
1,1-Dichloroethane	16.4		μg/kg wet				91	70-130		25
1,2-Dichloroethane 1,1-Dichloroethene	18.2		μg/kg wet		20.0		81	70-130	0.7 4	25
•	16.1		µg/kg wet		20.0			70-130		
cis-1,2-Dichloroethene	16.7		µg/kg wet		20.0		84 82		6	25 25
trans-1,2-Dichloroethene	16.3		μg/kg wet		20.0 20.0		82 85	70-130 70-130	6 3	25 25
1,2-Dichloropropane 1,3-Dichloropropane	17.0 19.1		μg/kg wet μg/kg wet		20.0		96	70-130 70-130	ა 0,8	∠5 25
2,2-Dichloropropane	14.1		μg/kg wet μg/kg wet		20.0		90 71	70-130	4	25 25
1,1-Dichloropropene	16.1		μg/kg wet		20.0		80	70-130	3	25
cis-1,3-Dichloropropene	17.0		µg/kg wet		20.0		85	70-130	3	25
trans-1,3-Dichloropropene	17.6		µg/kg wet		20.0		88	70-130	0.3	25
Ethylbenzene	17.0		µg/kg wet		20.0		85	70-130	0.9	25
Hexachlorobutadiene	14.4		μg/kg wet		20.0		72	70-135	7	50
2-Hexanone (MBK)	20.7		µg/kg wet		20.0		103	70-130	1	25
Isopropylbenzene	17.0		µg/kg wet		20.0		85	70-130	4	25
4-Isopropyltoluene	16.0		µg/kg wet		20.0		80	70-130	3	25
Methyl tert-butyl ether	19.6		µg/kg wet		20.0		98	70-130	5	25
4-Methyl-2-pentanone (MIBK)	18.3		µg/kg wet		20.0		92	64,2-130	7	50
Methylene chloride	17.6		µg/kg wet		20.0		88	70-130	0.5	25
Naphthalene	19.8		µg/kg wet		20.0		99	70-130	0.2	25
n-Propylbenzene	16.7		μg/kg wet		20.0		83	70-130	3	25
Styrene	18.2		μg/kg wet		20.0		91	70-130	2	25
1,1,1,2-Tetrachloroethane	17.9		μg/kg wet		20.0		90	70-130	2	25

.nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Satch 1008809 - SW846 5035A Soil (low level)										
LCS Dup (1008809-BSD1)					De	epared & Ar	aaluzad: 27	Apr. 10		
1.1.2.2-Tetrachioroethane	20.4		ug/kg wet		20.0	spajeu o A	102	70-130	3	25
Tetrachloroethene	15.6		µg/kg wet µg/kg wet		20.0		78	70-130	6	25
Toluene	16.3		µg/kg wet		20.0		82	70-130	4	25
	20.0		µg/kg wet µg/kg wet		20.0		100	70-130	4	25
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	18.2				20.0		91	70-130	2	25
• •	16.8		μg/kg wet μg/kg wet		20.0		84	70-130	2	25
1,3,5-Trichlorobenzene	16.2				20.0		81	70-130 70-130	5	25
1,1,1-Trichloroethane			μg/kg wet		20.0		94	70-130	0.3	25
1,1,2-Trichloroethane	18.9 16.6		μg/kg wet		20.0		83	70-130	4	25 25
Trichloroethene			μg/kg wet				84	70-130 55.3-174	3	50
Trichlorofluoromethane (Freon 11)	16.7		μg/kg wet		20.0		98	70-130	1	25
1,2,3-Trichloropropane	19.7		μg/kg wet		20.0					25 25
1,2,4-Trimethylbenzene	17.5		μg/kg wet		20.0		88	70-130	2	25 25
1,3,5-Trimethylbenzene	17.2		μg/kg wet		20.0		86	70-130	3	
Vinyl chloride	16.0		μg/kg wet		20.0		80	70-130	5	25 25
m,p-Xylene	35.0		μg/kg wet		40.0		87	70-130	0.5	
o-Xylene	17.6		μg/kg wet		20.0		88	70-130	0.06	25
Tetrahydrofuran	22.2		μg/kg wet		20,0		111	70-130	1	25
Ethyl ether	19.7		µg/kg wet		20.0		98	70-130	1	50
Tert-amyl methyl ether	18.4		µg/kg wet		20.0		92	70-130	2	25
Ethyl tert-butyl ether	18.5		µg/kg wet		20.0		92	70-130	0.2	25
Di-isopropyl ether	18.0		μg/kg wet		20.0		90	70-130	0.9	25
Tert-Butanol / butyl alcohol	198		µg/kg wet		200		99	70-130	0.7	25
1,4-Dioxane	187		µg/kg wet		200		94	44.2-151	0.9	25
trans-1,4-Dichloro-2-butene	18,2		μg/kg wet		20.0		91	70-130	2	25
Ethanol	316		μg/kg wet		400		79	70-130	9	30
Surrogate: 4-Bromofluorobenzene	52.1		μg/kg wet		50.0		104	70-130		
Surrogate: Toluene-d8	50,6		μg/kg wet		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.9		μg/kg wet		50.0		104	70-130		
Surrogate: Dibromofluoromethane	51.6		μg/kg wet		50.0		103	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1008454 - SW846 3545A										
Blank (1008454-BLK1)					<u>Pr</u>	epared_& A	nalyzed: 22-	Apr-10		
Acenaphthene	BRL	U	μg/kg wet	8.00						
Acenaphthylene	BRL	U	μg/kg wet	10.0						
Antline	BRL	U	μg/kg wet	25.4						
Anthracene	BRL	ΰ	μg/kg wet	10.0						
Atrazine	BRL	U	μg/kg wet	8.70						
Azobenzene/Diphenyldiazine	BRL	U	μg/kg wet	8.70						
Benzidine	BRL	υ	μg/kg wet	37.4						
Benzo (a) anthracene	BRL	υ	μg/kg wet	21.3						
Benzo (a) pyrene	BRL	ប	μg/kg wet	11.3						
Benzo (b) fluoranthene	BRL	U	μg/kg wet	44.0						
Benzo (g,h,i) perylene	BRL	U	µg/kg wet	9.30						
Benzo (k) fluoranthene	BRL	U	μg/kg wet	13.3						
Benzoic acid	·BRL	U	μg/kg wet	6.00						
Benzyl alcohol	BRL	U	μg/kg wet	10.7						
Bis(2-chloroethoxy)methane	BRL	υ	μg/kġ wet	6.67						
Bis(2-chloroethyl)ether	BRL	U	μg/kg wet	4.67						
Bis(2-chloroisopropyl)ether	BRL	U	μg/kg wet	6.00						
Bis(2-ethylhexyl)phthalate	BRL	U	μg/kg wét	63.4						
4-Bromophenyl phenyl ether	BRL	U	μg/kg wet	15.3						
Butyl benzyl phthalate	BRL	Ų	μg/kg wet	38.0						
Carbazole	BRL	ŭ	μg/kg wet	12.0						
4-Chloro-3-methylphenol	BRL	U	µg/kg wet	12.0						
4-Chloroaniline	BRL	U	µg/kg wet	32.0						
2-Chloronaphthalene	BRL	U	μg/kg wet	4.70						
2-Chlorophenol	BRL	U	μg/kg wet	6.67						
4-Chlorophenyl phenyl ether	BRL	U	μg/kg wet	4.00						
Chrysene	BRL	U	μg/kg wet	4.70						
Dibenzo (a,h) anthracene	BRL	U	μg/kg wet	5,30						
Dibenzofuran	BRL	U	μg/kg wet	4,00						
1,2-Dichlorobenzene	BRL	Ū	μg/kg wet	0.160						
1,3-Dichlorobenzene	BRL	.U	μg/kg wet	14.0						
1,4-Dichlorobenzene	BRL	U	μg/kg wet	14.7						
3,3'-Dichlorobenzidine	BRL	U	µg/kg wet	24.0						
2,4-Dichlorophenol	BRL	U	µg/kg wet	8.70						
Diethyl phthalate	BRL	U	µg/kg wet	10.7						
Dimethyl phthalate	BRL	υ	μg/kg wet	9.30						
2,4-Dimethylphenol	BRL	Ū	μg/kg wet	15.3						
Di-n-butyl phthalate	BRL	U	μg/kg wet	8.70						
4,6-Dinitro-2-methylphenol	BRL	U	µg/kg wet	8.00						
2,4-Dinitrophenol	BRL	υ	µg/kg wet	20.7						
2,4-Dinitrotoluene	BRL	U	μg/kg wet	14.0						
2,6-Dinitrotoluene	BRL	ΰ	µg/kg wet	8.00						
Di-n-octyl phthalate	BRL	U	µg/kg wet	16.0						
Fluoranthene	BRL	U	µg/kg wet	8.00						
Fluorene	BRL	U	µg/kg wet	8.00						
Hexachlorobenzene	BRL	U	μg/kg wet	24.7						
Hexachlorobutadiene	BRL	U	μg/kg wet	37.4						
Hexachlorocyclopentadiene	BRL	U	µg/kg wet	24.7						
Hexachloroethane	BRL	U	µg/kg wet	34.0						
Indeno (1,2,3-cd) pyrene	BRL	U	µg/kg wet	15.3						
Isophorone	BRL	U	μg/kg wet	20.0						
1-Methylnaphthalene	BRL	U	µg/kg wet	0.110						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1008454 - SW846 3545A										
Blank (1008454-BLK1)					<u>Pre</u>	epared & A	nalyzed: 22-	Apr-10		
2-Methylnaphthalene	BRL	U	μg/kg wet	7.30						
2-Methylphenol	BRL	U	μg/kg wet	14.0						
3 & 4-Methylphenol	BRL	U	μg/kg wet	8.00						
Naphthalene	BRL	U	μg/kg wet	12.7						
2-Nitroaniline	BRL	U	µg/kg wet	4.00						
3-Nitroaniline -	BRL	υ	μg/kg wet	11.3						
4-Nitroaniline	BRL	U	µg/kg wet	12,7						
Nitrobenzene	BRL	U	μg/kg wet	12.0						
2-Nitrophenol	BRL	υ	µg/kg wet	15,3						
4-Nitrophenol	BRL	U	μg/kg wet	17.3						
N-Nitrosodimethylamine	BRL	U	µg/kg wet	7,34						
N-Nitrosodi-n-propylamine	BRL	U	µg/kg wet	40,0						
N-Nitrosodiphenylamine	BRL	U	μg/kg wet	12.7						
Pentachlorophenol	BRL	Ų	μg/kg wet	21,3						
Phenanthrene	BRL	U	μg/kg wet	15.3						
Phenol	BRL	U	μg/kg wet	6.67						
Pyrene	BRL	U	μg/kg wet	23.4						
Pyridine	BRL	U	µg/kg wet	6.67						
1,2,4-Trichlorobenzene	BRL	U	μg/kg wet	4.67						
2,4,5-Trichlorophenol	BRL	U	µg/kg wet	6.67						
2,4,6-Trichlorophenol	BRL	U	μg/kg wet	6.67						
Pentachloronitrobenzene	BRL	U	μg/kg wet	165						
1,2,4,5-Tetrachlorobenzene	BRL	U	μg/kg wet	165						
Surrogate: 2-Fluorobiphenyl	1150		μg/kg wet		1670		69	30-130		
Surrogate: 2-Fluorophenol	1210		µg/kg wet		1670		73	15-110		
Surrogate: Nitrobenzene-d5	1220		μg/kg wet		1670		73	30-130		
Surrogate: Phenol-d5	1340		μg/kg wet		1670		80	15-110		
Surrogate: Terphenyl-di4	1130		µg/kg wet		1670		68	30-130		
Surrogate: 2,4,6-Tribromophenol	1100		µg/kg wet		1670		66	15-110		
LCS (1008454-BS1)	1,00		pg///g #rot			nared & Ar	nalyzed: 22-			
Acenaphthene	1130		ua/ka wat	8.00	1670	pared & Al	68	40-130		
Acenaphthylene	1160		µg/kg wet	10.0	1670		69	40-130		
Aniline	1020		µg/kg wet µg/kg wet	25.4	1670		61	40-130		
Anthracene	1160			10.0	1670		69	40-130		
Atrazine	1790		μg/kg wet	8.70	1670		107	40-130		
Azobenzene/Diphenyldiazine	1220		µg/kg wet µg/kg wet	8.70 8.70	1670		73	40-130		
Benzidine	214	J	µg/kg wet	37.4	1670		13	0-161		
Benzo (a) anthracene	1090	•	µg/kg wet	21.3	1670		65	40-130		
Benzo (a) pyrene	1140		µg/kg wet	11.3	1670		69	40-130		
Benzo (b) fluoranthene	1030		µg/kg wet	44.0	1670		62	40-130		
Benzo (g,h,i) perylene	1100		µg/kg wet	9.30	1670		66	40-130		
Benzo (k) fluoranthene	1180		µg/kg wet	13.3	1670		71	40-130		
Benzoic acid	1260		µg/kg wet	6.00	1670		76	16.5-130		
Benzyl alcohol	1120		µg/kg wet	10.7	1670		67	40-130		
Bis(2-chloroethoxy)methane	1050		µg/kg wet	6.67	1670		63	40-130		
Bis(2-chloroethyl)ether	1230		µg/kg wet	4.67	1670		74	40-130		
Bis(2-chloroisopropyl)ether	1560		µg/kg wet	6.00	1670		93	40-130		
Bis(2-ethylhexyl)phthalate	1090		µg/kg wet µg/kg wet	63.4	1670		65	40-130		
4-Bromophenyl phenyl ether	1280		µg/kg wet µg/kg wet	15.3	1670		77	40-130		
	1050				1670		63	40-130		
Butyl benzyl phthalate Carbazole	1340		µg/kg wet µg/kg wet	38.0 12.0	1670		80	40-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1008454 - SW846 3545A										
LCS (1008454-BS1)					Pre	ebared & Ar	nalyzed: 22	-Apr-10		
4-Chloro-3-methylphenol	1110		μg/kg wet	12.0	1670	spared wyt	67	40-130		
4-Chloroaniline	704		μg/kg wet	32.0	1670		42	40-130		
2-Chloronaphthalene	1070		μg/kg wet	4.70	1670		64	40-130		
2-Chlorophenol	1070		µg/kg wet	6.67	1670		64	40-130		
4-Chlorophenyl phenyl ether	1130		μg/kg wet	4.00	1670		68	40-130		
Chrysene	1030		μg/kg wet	4.70	1670		62:	40-130		
Dibenzo (a,h) anthracene	1180	•	μg/kg wet	5.30	1670		71	40-130		
Dibenzofuran	1140		μg/kg wet	4.00	1670		68	40-130		
1,2-Dichlorobenzene	1110		μg/kg wet	0.160	1670		66	40-130		
1,3-Dichlorobenzene	1080		μg/kg wet	14.0	1670		64	40-130		
1,4-Dichlorobenzene	1130		µg/kg wet	14.7	1670		68	40-130		
3,3'-Dichlorobenzidine	1040		μg/kg wet	24.0	1670		62	40-130		
2,4-Dichlorophenol	1070		µg/kg wet	8.70	1670		64	40-130		
Diethyl phthalate	1190		µg/kg wet	10.7	1670		72	40-130		
Dimethyl phthalate	1120		µg/kg wet	9:30	1670		67	40-130		
2,4-Dimethylphenol	1040		µg/kg wet	15.3	1670		62	40-130		
Di-n-butyl phthalate	1260		µg/kg wet	8.70	1670		75	40-130		
4,6-Dinitro-2-methylphenol	1240		μg/kg wet	8.00	1670		75	40-130		
2,4-Dinitrophenol	1200		μg/kg wet	20.7	1670		72	40-130		
2,4-Dinitrotoluene	1170		μg/kg wet	14.0	1670		70	40-130		
2,6-Dinitrotoluene	1110		μg/kg wet	8,00	1670		67	40-130		
Di-n-octyl phthalate	1260		μg/kg wet	16.0	1670		75	40-130		
Fluoranthene	1220		μg/kg wet	8.00	1670		73	40-130		
Fluorene	1340		µg/kg wet	8.00	1670		80	40-130		
Hexachlorobenzene	1130		µg/kg wet	24.7	1670		68	40-130		
Hexachlorobutadiene	1020		µg/kg wet	37.4	1670		61	40-130		
Hexachlorocyclopentadiene	1410		µg/kg wet	24.7	1670		84	40-130		
Hexachloroethane	1190		µg/kg wet	34.0	1670		71	40-130		
Indeno (1,2,3-cd) pyrene	1140		µg/kg wet	15:3	1670		68.	40-130		
1-Methylnaphthalene	1160		µg/kg wet	0.110	1670		70	40-140		
Isophorone	1050		µg/kg wet	20.0	1670		63	40-130		
2-Methylnaphthalene	1200		μg/kg wet	7.30	1670		72	40-130		
• •	1070			14.0	1670		64	40-130		
2-Methylphenol 3 & 4-Methylphenol	1170		µg/kg wet µg/kg wet	8.00	1670		70	40-130		
Naphthalene	1130		µg/kg wet µg/kg wet	12.7	1670		68	40-130 40-130		
2-Nitroaniline	1140		µg/kg wet µg/kg wet	4.00	1670		68	40-130		
3-Nitroaniline	701		μg/kg wet μg/kg wet	11.3	1670		42	40-130		
4-Nitroanitine	1150	J	µg/kg wet µg/kg wet	12.7	1670		69	40-130		
Nitrobenzene	1190	•	µg/kg wet µg/kg wet	12.0	1670		71	40-130		
2-Nitrophenol	1140		µg/kg wet	15.3	1670		68	40-130		
4-Nitrophenol	847	J	µg/kg wet	17.3	1670		51	40-130		
N-Nitrosodimethylamine	1270		µg/kg wet	7.34	1670		76	40-130		
N-Nitrosodi-n-propylamine	1210		µg/kg wet	40.0	1670		72	40-130		
N-Nitrosodiphenylamine	1360		µg/kg wet	12.7	1670		82	40-130		
Pentachlorophenol	642	QC2	μg/kg wet	21.3	1670		38	40-130		
Phenanthrene	1180		μg/kg wet	15.3	1670		71	40-130		
Phenoi	1100		µg/kg wet	6.67	1670		66	40-130		
Pyrene	1080		µg/kg wet µg/kg wet	23.4	1670		65	40-130		
Pyridine	918		μg/kg wet μg/kg wet	6.67	1670		55	10-140		
1,2,4-Trichlorobenzene	1090		µg/kg wet µg/kg wet	4.67	1670		65	40-130		
2,4,5-Trichlorophenol	1040		µg/kg wet µg/kg wet	4.67 6.67	1670		62	40-130		
2,4,5-1 richlorophenol	1040		µg/kg wet µg/kg wet	6.67	1670		62	40-130 40-130		

This laboratory report is not valid without an authorized signature on the cover page.

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	•RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1008454 - SW846 3545A										
LCS (1008454-BS1)					Pre	epared & A	nalyzed: 22-	-Apr-10		
Pentachloronitrobenzene	1210	μο	/kg wet	165	1670		73	40-140		
1,2,4,5-Tetrachlorobenzene	1140	μ	/kg wet	165	1670		69	40-140		
Surrogate: 2-Fluorobiphenyl	1060	μg	/kg wet	•	1670		63	30-130		
Surrogate: 2-Fluorophenol	1080	μ	/kg wet		1670		65	15-110		
Surrogate: Nitrobenzene-d5	1190	μg	/kg wet		1670		72	30-130		
Surrogate: Phenol-d5	1230	μ	/kg wet		1670		74	15-110		
Surrogate: Terphenyl-dl4	1010	μg	/kg wet		1670		61	30-130		
Surrogate: 2,4,6-Tribromophenol	1120	րջ	/kg wet		1670		67	15-110		

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch 1008823 - SW846 3050B										
Blank (1008823-BLK1)					Pre	epared: 01-	May-10 Ar	nalyzed: 04-M	/lay-10	
Lead	BRL	U	mg/kg wet	0.628						
Selenium	BRL	U	mg/kg wet	0.252						
Cadmium	BRL	U	mg/kg wet	0,102						
Arsenic	BRL	U	mg/kg wet	0.292						
Silver	BRL	U	mg/kg wet	0.205						
Chromium	BRL	υ	mg/kg wet	0.224						
Barium	BRL	U	mg/kg wet	0.185						
Reference (1008823-SRM1)					Pre	epared: 01-l	May-10 An	nalyzed: 04-N	May-10	
Lead	72.4		mg/kg wet	0.646	74.2			81.3-118.8	_ 	
Selenium	104		mg/kg wet	0.259	103		101	80-120		
Silver	23.8		mg/kg wet	0.211	23.2		102	66.3-133.7		
Arsenic	68.8		mg/kg wet	0.301	71.1		97	82.6-117.4		
Cadmium	36,7		mg/kg wet	0.104	36.6		100	83-116.9		
Chromium	56.1		mg/kg wet	0.230	54.1		104	80.3-119		
Barium	141		mg/kg wet	0.190	139		102	79.2-120.8		
Reference (1008823-SRM2)					Pre	pared: 01-l	May-10 An	alyzed: 04-N	/ay-10	
Selenium	99.5		mg/kg wet	0.259	101		99	80-120		
Lead	71,6		mg/kg wet	0,646	72.4		99	81.3-118.8		
Cadmium	35.1		mg/kg wet	0.104	35.7		98	83-116.9		
Silver	22.5		mg/kg wet	0.211	22.7		99	66.3-133.7		
Arsenic	67.1		mg/kg wet	0.301	69.4		97	82.6-117.4		
Chromium	53.6		mg/kg wet	0.230	52.8		102	80.3-119		
Barium	140		mg/kg wet	0.190	135		104	79.2-120.8		
atch 1008824 - EPA200/SW7000 Series										
Blank (1008824-BLK1)					<u>P</u> re	epared: 01-l	May-10 An	alyzed: 03-N	<u>//ay-10</u>	
Mercury	BRL	υ	mg/kg wet	0.0041						
Reference (1008824-SRM1)					Pre	pared: 01-l	May-10 An	nalyzed: 03-N	lay-10	
Mercury	6.22		mg/kg wet	0.0469	6.55			71.5-128.1		

Notes and Definitions

J	Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration
	(CLP J-Flag).

QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

R05 Elevated Reporting Limits due to the presence of high levels of non-target analytes.

U Analyte included in the analysis, but not detected

BDL Below Detection Limit - Analyte NOT DETECTED at or above the minimum detection limit

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Continuing Calibration Verification: The calibration relationship established during the initial calibration must be verified at periodic

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Leja

SP	ECTRON ANALYTICAL INC.
	fr

CHAIN OF CUSTODY RECORD

,	obeciai i	ranunng.	
Standard TAT - 71	o 10 business days		
Fi Ruch TA	T - Date N	Joeded:	

- All TAT's subject to laboratory approval.
 Min, 24-hour notification needed for rushes.

ASSESSED CANAL CANAL	local@hop	Page 1	or 1/								posed of after 60 days unless istructed.	
Report To: CAHLYN LOCAL					Desi	ect No.:	M	7:	כנני	> 1 .	61	
HER ASSOCIATES INC.	i	٠,٠	, -	-								
IFAIRCHILD SER SVITE 10	< SAME					Site Name: MEMICULE IND. IHEK						
CLIFTON PACK MY 12020	i	5		1	Loca	tion: M	EU	(An	ر مات ال	/[U	E State: NY	
Telephone #: 518-817 1107	P.O. No.;		5224	•]							cca	
Project Aigr. — Livil		•	,									
I™Na ₂ S2O ₃ 2=I Cl. 3≃H ₂ SO ₄ 4=HNO ₁ : 8=NaHSO ₄ 9* (Cl. 10=	5=NaOH - 6≒Asco <u>√</u>	orbic Acid = 5	7=CH ₃ OH		List	neserva G	tive co	de be	low:		QA/QC Reporting Notes: (check as needed)	
DW=Drinking Water GW=Groundwater WW=Wa	istewater		Containers:			iQ An	alyses				II Provide MAIDEP MCP CAM Report	
O#Oil SW# Surface Water SO#Soil SL#Sludge						18					I Provide CT-DPH RCP Report	
X1= X2= X3=		Vials	# of Plustic	8260	82.A	SECRY HER					O.VQC Reporting Level InStandard D.No.QC	
G=Grab C=Composite.		၂၂ 👌	lasti lasti	8	Ŋ	न्]					
Lab Id: Sample Id: Date:	Time:	Matrix # of VC	# of C # of P	Vac.	80.75	26					State specific reporting standards:	
	9:00 6	So		Х	¥	X					15	
Y	vius G		12	У		Х						
	1.00 6		: 2	Y	ع				-	2.	, .	
	2:00 G.	90	12.	×	X	$\sqrt{}$	-					
	1:00 G	SD		χ		/ <u>-</u>	1		nie C			
22 200				~	^	-	+-	<u> </u>		-		
						<u> </u>		-	·			
					— 			-	-	┢		
		4 6 7					3 3		_	├		
							1			├		
Relinquished by: Receive	ed hử:					 -				L_	<u> </u>	
			Ten	,	Libb i offiacy							
Fee CX PC	X		6				10 Carlyn. locci Chrpasociates &					
fes ex ge		4/19/10: 10:20		60	7							
		e de la companya de l				J Ambém	يستعار	□ Ref	meante	d D F	indestrup_C Processinp_C	

11 Almgren Drive - Agawam, MA 01001 - 413-789-9018 - FAX 413-789-4076 - www.spectrum-analytical.com

From: Origin ID: DSVA (518) 877-7101 Lauren Kelley HRP ASSOCIATES INC 1 FARCHILD SQ STE 110

Ship Date: 16APR10 Act/Vgt: 15.0 LB CAD: 8738270/INET3010

CLIFTON PARK, NY 12065

SHP TO: (413) 789-9018 BILL THIRD PARTY

Sample Receiving, Spectrum Spectrum Analytical 11 ALMGREN DR

AGAWAM, MA 01001

Delivery Address Bar Code

Ref# MEC2001.P2 Invoice # PO #

Dept #



TRK# 7934 5639 7972

MON - 19 APR A2 STANDARD OVERNIGHT

> 01001 MA-US

KM EHTA

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning. Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be Use of this system constitutes your agreement to the service conditions in the current Fedex Service Guide, available on fedex.com.Fedex will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss Maximum for items of extraordinary value is \$500, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide. ATTACHMENT #4
GENERAL LIMITATIONS

LIMITATIONS ON WORK PRODUCT

All work product and reports provided by HRP in connection with the performance of any phase of Environmental Site Assessments, and any services related to remedial and post-remedial action, including all work performed under HRP's Terms & Conditions and any follow-up work is subject to the following limitations.

- A. The observations described in the Project Report(s) are made under the stated conditions. The conclusions presented in the Report(s) are based solely upon the indicated services, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by the Client.
- B. In preparing Project Reports, HRP relies on certain representations made and in-formation provided by federal, state and local officials, the Client and other parties referenced in the Project Reports, and on information contained in the files of federal, state and/or local agencies made available to HRP, at the time of the Project. To the extent that such information and files are missing, incomplete or not provided to HRP, HRP is not responsible. Although there may be some degree of overlap in the information provided by these various sources, HRP does not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of the Project. If the Client determines that information provided or made available to HRP from any source is incorrect or inaccurate, the Client should promptly notify HRP, whereupon HRP will issue a corrected Project Report.
- C. Observations are made of the site and of structures on the site as indicated within the Project Report(s). Where access to portions of the site or to structures on the site is unavailable or limited, HRP renders no opinion as to the presence of potential contamination by hazardous substances, wastes or petroleum and chemical products and wastes. In addition, HRP renders no opinion as to the presence of indirect evidence relating to potential contamination by hazardous substances, wastes or petroleum and chemical products or wastes where direct observation of the interior walls, floors, or ceilings of a structure on a site is obstructed by objects or coverings on or over these surfaces.
- D. Unless otherwise specified in the Project Report(s), HRP does not perform testing or analyses to determine the presence or concentration of asbestos or poly-chlorinated biphenyls (PCBs), lead paint, urea formaldehyde foam insulation (UFFI), wetlands, regulatory compliance, cultural and historical risks, industrial hygiene, health & safety, ecological resources, endangered species, indoor air quality, high voltage power lines, or radon at the site or in the environment of the site. When HRP is contracted to perform asbestos or lead paint testing, planning or related services, HRP assumes no responsibility for the implementation or enforcement of the procedures, work practices, or other control methods recommended, required, or mentioned in the Project Report(s), unless HRP has been specifically contracted to implement or supervise such actions, in which case the associated contractual documents will define our scope and responsibilities.

- E. The purpose of the Project Report(s) is to assess the physical characteristics of the subject site with respect to the potential presence in the site soil, ground water or surface water environment of contamination by hazardous substances, hazardous waste or petroleum and chemical products and wastes. HRP has not confirmed the compliance of present or past owners or operators of the site with federal, state, or local laws and regulations, environmental or otherwise.
- F. If sampling is included in the scope of the Project, the conclusions and recommendations contained in the Project Report(s) are based in part upon the data obtained from a limited number of soil, ground water, or surface water samples obtained from widely spaced surface or subsurface explorations. The nature and extent of variations between these locations may not become evident until further exploration. If variations or other latent conditions then appear evident, it will be necessary to re-evaluate the conclusions and recommendations of the Project Report(s).
- G. If water level readings are made in test pits, borings, and/or observation wells; these observations are made at the times and under the conditions stated on the test pit or boring logs or in the Project Report(s). However, it must be noted that fluctuations in the level of ground water may occur due to variations in rainfall, passage of time and other factors. Should additional data become available in the future, these data may alter the basis of conclusions and recommendations presented in the Project Report(s).
- H. If the conclusions and recommendations contained in the Project Report(s) are based, in part, upon various types of chemical analyses, then the conclusions and recommendations are contingent upon the validity of such data. The analyses are performed for specific parameters and additional chemical constituents not searched for during the current study may be present in soil, ground water, or surface water at the site. Where such analyses have been conducted by an out-side laboratory, HRP has relied upon the data provided, and has not conducted an independent evaluation of the reliability of these tests. The data (if obtained) are reviewed and interpretations made in the Project Report(s). If indicated within the Project Report(s), some of these data may be preliminary "screening" level data and should be confirmed with quantitative analyses if more specific in-formation is necessary. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time, and other factors. Should additional chemical data become available in the future, these data may alter the basis of the conclusions and recommendations presented in the Project Report(s).
- It is recommended that HRP be retained to provide further hydrogeologic and engineering services during the conduct of further exploration or the construction and/or implementation of any remedial measures recommended in HRP's Project Report(s). This is to allow HRP and the Client to observe consistency with the concepts and recommendations contained therein, and to allow the development of changes to the remedial program in the event that subsurface conditions or other conditions differ from those anticipated.
- J. The services provided by HRP do not include legal advice. Legal counsel should be consulted regarding interpretation of relevant federal, state and local laws.