Environmental Restoration Program
Former Service Station Site #E828143
8264 Ridge Road West
Town of Clarkson
Monroe County, New York

Remedial Investigation / Alternatives Analysis Report

Prepared For:

Town of Clarkson P.O. Box 858 Clarkson, New York 14430

Prepared By:

175 Sully's Trail, Suite 202 Pittsford, New York 14534

I, Susan A. Hilton, certify that I am currently a NYS registered professional engineer and that this Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Table of Contents

			<u>Page</u>
Execu	ıtive Su	ummary	1
1.0 Ir	ntroduc	ction	2
	1.1	Purpose of the Report	
	1.2	Site Description	
	1.3	Site History	3
	1.4	Previous Investigations	3
	1.5	Report Organization	4
2.0 Ir	nvestiga	ation Activities	5
	2.1	Site Survey	
	2.2	Building Survey and Sampling	5
	2.3	Surface Soil Sampling	6
	2.4	Sediment Sampling	6
	2.5	IRM Activities	
	2.6	Floor Drain and Sub-Slab Investigation	7
	2.7	Geophysical Survey	8
	2.8	Test Pits	9
	2.9	Monitoring Well Installation and Sampling	9
		2.9.1 Well installation	
		2.9.2 Monitoring Well Development	10
		2.9.3 Groundwater Sampling	10
	2.10	Soil Borings and Sampling	11
	2.11	Aquifer Testing	11
	2.12	Private Well Survey	12
	2.13	Soil Vapor Intrusion Evaluation	12
3.0 P	hysical	Characteristics of the Study Area	13
	3.1	Surface Features	13
	3.2	Surface Water Hydrology	13
	3.3	Geology	13
	3.4	Soils	14
	3.5	Hydrogeology	14
	3.6	Demography, Land Use, and Water Use	16
4.0 N	lature a	and Extent of Contamination	16
	4.1	Surface Soil	16
	4.2	Sediment	17
	4.3	Sub-surface Soils	18
	4.4	Groundwater	19
5.0 C	ontami	inate Fate and Transport	20
	5.1	Potential Routes of Migration	
	5.2	Contaminant Persistence	20

	5.3	Contami	nant Migration	23
		5.3.1	Factors Affecting Contaminant Migration	23
		_		
6.0 Ex			ent	
	6.1		ve Public Exposure Assessment	
	6.2	Environn	nental Exposure Assessment	25
7.0 Su	mmary	and Con	clusions	25
	7.1		ition Summary	
		7.1.1	Nature and Extent of Contamination	
		7.1.2	Fate and Transport	26
	7.2	Conclusi	ons	27
		7.2.1	Data Limitations and Recommendation for Future Work	
0 U Ida	ntificat	tion and	Davidonment of Alternatives	20
8.0 Ide	8.1		Development of Alternativeslial Action Objectives (RAOs)	
	0.1		· · · · · · · · · · · · · · · · · · ·	
		8.1.1	Contaminants of Concern	
	0.2	8.1.2	Development of Remediation Goals	
	8.2		al Response Actions	
		8.2.1	Groundwater	
		8.2.2	Soil	
		8.2.3	Sediments	
	8.3		pment of Alternatives	
	8.3	3.1	Commercial Use Alternatives	
		8.3.2	Unrestricted Use Alternative	34
9.0 De	tailed [Developm	nent of Alternatives	35
	9.1	Individ	ual Analysis of Alternatives	35
		9.1.1	Commercial Use Options	35
		9.1.2	Unrestricted Use Options	
	9.2	Compa	arative Analysis	40
	9.3	Recommended Remedy		

Figures

- Figure 1 Site Location Map
- Figure 2 Sample Location Plan
- Figure 3 Geophysical Grids
- Figure 4 Surface Soil and Sediment Sample Results
- Figure 5a Soil Cross Section Location Plan
- Figure 5b Soil Cross Section A-A'
- Figure 5c Soil Cross Section B-B'
- Figure 6 Sub-Surface Soil Results
- Figure 7 Groundwater Results & Contour Map

Tables

Table 1.	Surface Soil Results
Table 2.	Sediment Sample Results
Table 3-1.	Sub-Surface Soil Results – VOCs & SVOCs
Table 3-2.	Sub-Surface Soil Results – Metals, PCBs, Pesticides
Table 3-3.	IRM & Tank Closure Samples
Table 4.	Groundwater Results
Table 5.	Estimated Costs – Commercial Use Alternatives
Table 6.	Estimated Costs – Unrestricted Use Alternative

Appendices

Appendix A -	Photographs
Appendix B -	Boring Logs, Field Forms, and Hydrogeological Data
Appendix C-	Soil and Groundwater Analytical Data
Appendix D-	Data Usability Summary Report
Appendix E -	Fish and Wildlife Impact Analysis Decision Key

Executive Summary

Lu Engineers has prepared this report, on behalf of the Town of Clarkson (the "Town"), to present findings of the Remedial Investigation (RI) at the Former Service Station Site #E828143 (the "Site"), located at 8264 Ridge Road West in the Town of Clarkson, Monroe County, New York.

The Site was historically used as an automotive service and gasoline station for at least 50 years and contained four (4) abandoned underground storage tanks (USTs). All structures and USTs were removed in May 2009 as interim remedial measures (IRMs) during this investigation. IRM activities are summarized in the *Construction Completion Report* (Lu Engineers, February 2011). A total of 368 tons of petroleum-impacted soil was removed from the tank pits for off-site disposal. Clean cover material was placed over impacted surface soils and drainage ditch sediments to prevent human contact and migration of contaminants.

The RI included a geophysical survey, surface soil sampling, soil borings, test pits, installation of four (4) groundwater monitoring wells, and groundwater sampling to determine the extent of impacted soils and groundwater. Contaminants detected above applicable soil cleanup objectives (SCOs) in soil and sediment at the Site include polynuclear aromatic hydrocarbons (PAHs) and metals. The source of these contaminants appears to be from historic fill material and/or deposition of run-off from upgradient roadways and drainage areas. Areas of surface soil and sediment in exceedance of Commercial Use SCOs were covered as an IRM during the investigation.

Petroleum-related compounds (benzene, ethylbenzene, toluene, and xylene) were detected above NYS Ambient Groundwater Standards in three (3) on-Site wells (MW-1, MW-2 and MW-4), located on the southwest portion of the Site. The highest concentrations were found in MW-4, located downgradient from the former USTs. Groundwater flow is generally to the north, toward Lake Ontario. Based on the results of this investigation, groundwater impacts appear to be limited to the former tank area and have not migrated off-site.

No potential soil vapor intrusion pathways were identified during this investigation; therefore, vapor intrusion sampling was not conducted.

The planned future use of the Site is for a Veteran's Memorial Park. This would be a passive use park with a paved walking trail, benches, plantings, a memorial, and parking lot. Public water is supplied to the Site and surrounding area.

The following alternatives were evaluated to address soil, sediment, and groundwater contamination remaining at the Site:

- No Further Action
- No Further Action with Institutional Controls
- Long-Term Monitoring with Institutional Controls
- Unrestricted Use Option- Soil Removal and Disposal with Two-Phase Vacuum Extraction

No further action with institutional controls is the recommended remedial alternative, based on the selection criteria presented in Section 8.1.2. This alternative would satisfy the remedial action objectives developed for the Site and render the Site suitable for commercial use, including passive recreational uses. Additional remediation or long-term groundwater monitoring do not justify the additional costs, considering that all exposure pathways can be eliminated through institutional controls while still allowing full intended use of the Site.

1.0 Introduction

Lu Engineers has prepared this report for the Town of Clarkson (the Town) for submission to the New York State Department of Environmental Conservation (NYSDEC) Region 8 Division of Environmental Remediation (DER). This report has been prepared in accordance with the "Municipal Assistance for Environmental Restoration Projects" Procedures Handbook and DER-10 "Technical Guidance for Site Investigation and Remediation."

The Town has received a State Assistance Contract (SAC) under the NYSDEC 1996 Clean Water/Clean Air Bond Act - Environmental Restoration Program (ERP) for the former Service Station Site #E828143 (the "Site") located in Town of Clarkson. The Town used these funds to complete investigative work and interim remedial measures (IRMs) as described in the NYSDEC-approved *Remedial Investigation Work Plan* and *Interim Remedial Measures Work Plan* (Lu Engineers, January 2009), and the *IRM Work Plan Addendum* letter, dated September 2, 2010.

The IRMs completed during this investigation are detailed in the *Construction Completion Report* (Lu Engineers, January 2011) submitted under separate cover.

1.1 Purpose of Report

The purpose of this report is to present findings of the remedial investigation (RI) conducted by Lu Engineers at the Site. This report also provides an evaluation of alternatives for addressing environmental impacts.

1.2 Site Description

The Site contains a 0.71-acre parcel located at 8264 Ridge Road West (NYS Route 104) in the Town of Clarkson, Monroe County, New York ('the Site', Figure 1). The Site is located on the north side of Ridge Road West, just east of the Hamlet of Clarkson.

The southern portion of the Site contained a masonry body shop/garage, a wooden office/storage building, two (2) storage trailers, and a paved parking lot. The northern portion of the property is wooded, former agricultural land. All structures have been demolished as part of the IRM, and the Site is currently vacant.

The Site is bordered by Ridge Road West (NYS Route 104) to the south; commercial property and a drainage creek to the west; a residence to the east; and undeveloped land to the north.

1.3 Site History

The Site was used as an automotive service station for at least 50 years. Based on review of property deed records and aerial photographs, the Site was used as a retail gasoline station from approximately 1930 until the early 1970s. The masonry body shop/garage was constructed in the 1930s or 1940s and was used for vehicle maintenance operations until the late 1990s.

It was reported that Webaco Oil Company, Inc. owned the Site from 1953 to 1974. According to tax assessment records, the Site was purchased by Charles C. Thomas in 1974 and the most recent office/storage building was constructed. Mr. Thomas reportedly leased the Site to several tenants including 104 Enterprises, 104 Communications, 104 Collision, Spurr Auto Dealership; and it was used for vehicle repair and associated commercial sales until the late 1990s.

The Site was purchased by Commercial Property Holdings, LLC in 2002 and has been unoccupied since. The Town of Clarkson obtained the property through foreclosure in April 2008 and is the current owner.

1.4 Previous Investigations

A Phase I Environmental Site Assessment (ESA), dated February 2, 2007, was performed by Lu Engineers for the Town in order to assess Recognized Environmental Conditions (RECs) at the Site.

Several RECs were identified at that time, including:

- past use as a gasoline and service station for over 50 years with no records of waste disposal;
- the presence of an abandoned unregistered underground storage tank (UST) of unknown size and age (at least 30 years) containing between 1,500 and 3,000 gallons of gasoline and water near the southwest corner of the Site;
- the presence of an abandoned 275-gallon aboveground storage tank (AST) with approximately 20 gallons of residual fuel oil located on the west side of the body shop/garage;
- the presence of an abandoned 55-gallon drum containing unknown material, located adjacent to the southwest corner of the body shop/garage and other miscellaneous hazardous materials containers;
- an apparent vent pipe located on the northeast corner of the office/storage building and two vent pipes observed on the north side of the body shop/garage, which may indicate additional USTs on the property;
- the presence of an in-ground hydraulic lift system (i.e., oil reservoir, piping) that likely contained hydraulic oil and is assumed to be at least 30 years old;

- the likely presence of a septic system on the property and potential discharge of petroleum products or other vehicle fluids from the body shop/garage;
- a 4-inch polyvinyl chloride (PVC) pipe outfall in a creek, west of the property, possibly associated with the on-Site septic system; and
- old tires, scrap metal, and drums located on the northern portion of the Site.

1.5 Report Organization

This report is organized into sections based on the suggested report format provided in the NYSDEC Municipal Assistance for Environmental Restoration Projects Procedures Handbook (July 2004). Sections 1.0 through 7.0 are associated with the remedial investigation portion of the project. Sections 8.0 and 9.0 contain an evaluation of remedial alternatives for addressing environmental impacts that exist at the Site. These sections are summarized as follows.

- <u>Section 1.0 Introduction:</u> This section provides the purpose and objective of the RI and presents Site background information including Site history and previous investigations.
- <u>Section 2.0 Investigation Activities:</u> This section of the report presents the investigative work conducted as part of this project, as well as any modifications made to the scope of work outlined in the approved Work Plan.
- <u>Section 3.0 Physical Site Characteristics:</u> This section describes the physical characteristics such as surficial features, geology, surface and subsurface hydrology, demography, and land/water use.
- <u>Section 4.0 Nature and Extent of Contamination:</u> This section of the report presents the sample analytical results of the various sampling activities discussed in Section 2.0.
- <u>Section 5.0 Contaminant Fate and Transport:</u> This section contains information on the fate and transport of contaminants detected at the Site. This includes a discussion of potential routes of migration, contaminant persistence, and contaminant migration.
- <u>Section 6.0 Exposure Assessment:</u> This section provides a qualitative public exposure assessment for the constituents of concern discussed in Section 4.0.
- <u>Section 7.0 Summary and Conclusions:</u> This section summarizes the findings of the investigative work that was conducted as a part of this project and provides recommendations for additional work, if necessary.
- <u>Section 8.0 Identification and Development of Alternatives:</u> This section of the report discusses the alternatives intended to address environmental impacts at the Site. The constituents of interest and remediation goals are also identified in this section.
- <u>Section 9.0 Detailed Evaluation of Alternatives:</u> This section of the report presents a detailed evaluation of the remedial alternatives for addressing the environmental impacts at the Site. The recommended alternative is also identified.

2.0 Investigation Activities

The remedial investigation included the following tasks:

- A Site survey;
- Hazardous materials inventory and waste characterization;
- Asbestos Pre-demolition Survey;
- Private well survey;
- Collection of six (6) surface soil samples;
- Collection four (4) sediment samples;
- Geophysical survey;
- Thirteen (13) test pit excavations;
- Floor drain and sub-slab investigation;
- Installation of twenty (20) soil borings;
- Installation, development, and sampling of four (4) groundwater monitoring wells;
 and
- Aquifer testing.

Activities were performed in accordance with the approved *Remedial Investigation Work Plan* (Lu Engineers, January 2009), as described below.

2.1 Site Survey

A Lu Engineers' NYS Licensed Surveyor conducted a Site survey to identify property boundaries, existing features, and monitoring wells. This information was used to create a base map of the Site using the NAD 83 UTM Zone 18 (NYTM) coordinate system to show locations of all sample points. All other sample locations, including test pits and soil boring locations, were located using a Trimble GeoXT Global Positioning System (GPS) unit, capable of achieving sub-meter accuracy, and plotted on the survey map.

2.2 Building Survey and Sampling

An asbestos and hazardous materials survey was completed by Lu Engineers in January and February 2009, prior to building demolition. The survey included both the garage and the main building. Results of the asbestos survey were provided in the *Main Building Pre-Demolition Asbestos Survey Report* (Lu Engineers, February 2009) and the *Garage Pre-Demolition Asbestos Survey Report* (Lu Engineers, February 2009), provided in the *Construction Completion Report* (Lu Engineers, January 2011).

The survey identified asbestos-containing window glazing and roofing materials in the garage. Asbestos-containing linoleum and roof sealant was identified in the office/storage building. Asbestos abatement is described in the *Construction Completion Report* (Lu Engineers, January 2011), provided under separate cover.

An inventory of hazardous materials was conducted in February 2009 to identify and quantity suspected hazardous materials and to characterize the materials for proper disposal. One waste characterization sample (CS-WC-1) was collected from the 55-gallon drum of unknown material

located adjacent to the garage. Lab results identified the drum contents as styrene and it was sent for off-site disposal as part of the IRMs. Hazardous waste disposal documentation is included in the *Construction Completion Report* (Lu Engineers, January 2011).

2.3 Surface Soil Sampling

A total of six (6) surface soil samples (SS-01 through SS-06) were collected from fill areas on April 27, 2009. Sample SS-06 was collected in the area where rusty drums were found, at the rear of the property. Sample locations are shown of Figure 2 – Sample Location Plan.

Samples were collected from 0-2 inches below the vegetative cover using a pre-cleaned stainless steel spoon or hand trowel to transfer soil into glass sample jars. Surface Soil Sample Logs are included in Appendix B. Samples were stored on ice in a cooler prior to submittal to Paradigm Environmental Services, Inc. (Paradigm), an ELAP-approved subcontracted laboratory. The samples were analyzed for the following parameters:

- Target Compound List (TCL) Volatile Organic Compounds (VOCs) (EPA Method 8260)
- TCL Semi-Volatile Organic Compounds (SVOCs) (EPA Method 8270);
- Target Analyte List (TAL) Metals; and
- PCBs (EPA Method 8082).

In addition, samples SS-01, SS-04, and SS-06 were also analyzed for Pesticides (EPA Method 8081). Results of the sampling are discussed in Section 4.0.

2.4 Sediment Sampling

Three (3) sediment samples were collected from the drainage creek located along the western edge of the Site on April 27, 2009. One sample was collected from creek bed sediments near the outfall of the unknown PVC pipe (SD-01), one sample from down-gradient sediments (SD-02), and one sample from an up-gradient location (SD-03). A sediment sample (SD-04) was also collected from the bottom of the oil/water separator discovered during the test pit investigation. Sample locations are shown on Figure 2.

All sediment samples were submitted to Paradigm for analysis of TCL VOCs, TCL SVOCs, Metals, and PCBs. In addition, sample SD-02 was also analyzed for Pesticides.

Results of the sampling are discussed in Section 4.0.

2.5 Interim Remedial Measures (IRMs)

IRMs were completed during the RI to facilitate investigation beneath the buildings, remove potential contaminant sources associated with USTs and petroleum-impacted soil, and mitigate potential human exposures and off-site migration of contaminated surface soils and sediments. The IRM portion of this project consisted of the following:

- Hazardous material removal/disposal;
- Asbestos abatement;

- Building demolition, slab removal, and hydraulic lift removal;
- Pump island removal;
- Removal of a 250-gallon fuel oil AST;
- Removal of three (3) 2,000-gallon and one (1) 1,000-gallon gasoline USTs;
- Excavation and disposal of 368 tons of petroleum-impacted soil; and
- Placement of cover material over impacted surface soil and sediments.

These actions are described in the *Construction Completion Report* (Lu Engineers, January 2011), provided under separate cover.

A total of eight (8) tank closure samples (TC-01 through TC-08) were collected from excavation sidewalls during the IRM. Sample locations are shown on Figure 2. Analytical results are summarized in Table 3-3. Laboratory reports are included in Appendix C, as well as the *Construction Completion Report*.

2.6 Floor Drain and Sub-Slab Investigation

Prior to slab demolition, Lu Engineers conducted dye testing in an attempt to locate the source of the PVC discharge pipe identified in the drainage creek. The restroom and floor drains in the garage were not found to discharge to the unknown pipe. Sanitary waste from the restroom discharged to a septic tank located north of the garage building. All floor drains were clogged with sediment and could not be dye tested.

During slab removal, Lu Engineers observed and screened sub-slab soils with a MiniRAE 2000 photoionization detector (PID). All floor drains were traced and removed during slab demolition. A floor drain located in the center of the garage was traced to an oil/water separator pit located between the two former buildings (see Figure 2). The outfall of the oil/water separator pit could not be determined during this investigation.

A second floor drain, located in the southeast corner of the former garage, ran east and appeared to discharge just outside the building. A sample was collected from sediments in the floor drain to determine if hazardous materials may have been discharged to the drain. The "floor drain pipe" sample was submitted for analysis of VOCs, SVOCs, RCRA Metals, and PCBs. No evidence of contamination was detected in the sample. The laboratory analytical report is included in Appendix C.

A 1,000-gallon gasoline UST (Tank 004) was discovered partially beneath the former office/storage building, as shown on Figure 2. An apparent former service pit was also discovered beneath the western portion of the office/storage building (see Photo No. 4).

A test excavation was completed beneath the basement slab in the former office building to assess sub-slab soil conditions (see Photo No. 5). Two soil samples (TP-01A and TP-01B) were collected directly beneath the slab, at a depth of approximately 7-8 feet below grade. Sample locations are indicated on Figure 2. Groundwater was observed seeping into the test excavation and a slight sheen was noted on the water. The samples were submitted to Paradigm for

analysis of VOCs, SVOCs, Metals, PCBs, and Pesticides. Analytical results are summarized in Tables 3-1 and 3-2 and in Section 4.0.

2.7 Geophysical Survey

On June 9, 2009, Lu Engineers utilized a Geonics EM-61 Mark II magnetometer and a Mala Geoscience, Inc. Easy Locator ground penetrating radar (GPR) unit to survey the Site for USTs, drainage structures, and other subsurface anomalies. The survey included five grids covering accessible areas of the southern portion of the property. Data generated during the survey was stored by the instrument and later downloaded to a computer for contouring using Surfer 8 by Golden Software, Inc. The resulting geophysical maps are presented on Figure 3.

Twelve (12) significant anomalies were identified by the geophysical survey, as summarized below.

<u>Grid 1</u> – located on the southwestern portion of the property; included a portion of the footprint of the former office/storage building. Anomaly #1 was a large anomaly, including three (3) fill pipes, identified on the southwestern boundary of the Site. Anomaly #2 was associated with the catch basin grate and drainage line. Anomaly #13 was identified on the northern edge of the grid, which was later determined to be related to a fourth UST located beneath the former building.

<u>Grid 2</u> – located in the south-central portion of the Site, between the two (2) former buildings. Anomaly #3 was a strong anomaly in the right-of-way caused by metal in the concrete pump island foundation. Anomaly #4 was determined to be underground electrical conduit.

<u>Grid 3</u> – located on the southeastern portion of the Site including the footprint of the former garage building. Four (4) anomalies were identified: Anomaly #5 was caused by the water shut-off valve in the right-of-way; Anomaly #6 was associated with an underground hydraulic lift in the central portion of the former garage building; Anomaly #7 was related to a floor drain, and Anomaly #14 on the north edge of the grid was later found to be caused by an underground hydraulic oil reservoir, as indicated on Figure 3.

<u>Grid 4</u> – located north of the former buildings, in the fill area. Anomaly #8 identified the location of a septic tank; Anomaly #9 was due to interference from an aboveground drum; Anomaly #10 indicated the location of an oil/water separator pit; and Anomaly #15 was later determined to be caused by buried scrap metal.

<u>Grid 5</u> – located north of Grid 4, in the fill area. A cluster of anomalies (identified as Anomaly #11) were found along the eastern edge of the grid. Test pits later revealed that reinforced concrete debris was buried in this area. Anomaly #12 was a series of anomalies on the southwest portion of the Grid 5, and also on Grid 4. Test pits uncovered buried metal car parts in this area.

2.8 Test Pits

A total of 12 test pits (TP-1 through TP-12) were excavated by Town of Clarkson municipal forces with guidance from Lu Engineers. The purpose of the test pits was to investigate anomalies identified by the geophysical survey. Test pit locations are shown on Figure 2 – Sample Location Plan.

On June 19, 2009, nine test pits (TP-1 thru TP-9) were excavated by Town forces using a conventional backhoe. Lu Engineers screened excavated materials with a PID and recorded observations on Test Pit Logs (Appendix B). TP-1 identified three 2,000-gallon USTs on the southwest corner of the property, as depicted on Figure 2. TP-3 uncovered a septic tank, which serviced the garage restroom and appeared to be in good condition with no evidence of contamination (i.e., sheen, odors). An apparent oil/water separator pit was discovered at location TP-4 (see Photo No. 6). The pit consists of a concrete box with a PVC inlet and outlet pipe.

An additional test pit, TP-10, was completed during the tank removal IRM on July 1, 2009 to investigate soils beneath the former service pit, described in Section 2.6 above. A sample (TP-10-08) was collected from a depth of 6-8 feet below grade where strong petroleum odors and elevated PID readings were observed (see Test Pit Log – Appendix B). Analytical results are summarized in Tables 3-1 and 3-2 and discussed in Section 4.0.

On July 14, 2009, test pits TP-11 and TP-12 were excavated in the drum area at the rear of the property, as indicated on Figure 2. No buried objects or evidence of contamination was observed.

2.9 Monitoring Well Installation and Sampling

Four (4) groundwater monitoring wells (MW-1 through MW-4) were installed to evaluate the extent of impacted groundwater. Monitoring well locations are shown on Figure 2 and Well Construction Diagrams are included in Appendix B.

2.9.1 Well Installation

Groundwater monitoring wells were installed by Nothnagle Drilling, Inc., with oversight by Lu Engineers, on August 10-12, 2009. Wells MW-1, MW-2 and MW-4 were installed as two-inch diameter flush-mounted monitoring wells. MW-3, located at the north end of the property, was installed as a two-inch diameter monitoring well with an above grade protective steel casing.

All well borings were advanced using 4.25-inch inner diameter hollow-stem augers to refusal on bedrock. Upon reaching competent bedrock, boreholes were advanced using rotary techniques and coring equipment to reach the total well depth, which ranged from 16 to 23 feet. A two-inch diameter Schedule 40 PVC well screen was placed in each boring, approximately five feet below the water table. Wells were installed with screens set within the inferred range of seasonal groundwater elevation change to facilitate detection of potential floating hydrocarbons. Wells MW-1, MW-2, and MW-4 were screened across the bedrock/overburden interface. MW-3 was screened entirely

in bedrock. Specific well details are shown on the Well Construction Diagrams (Appendix B).

Sub-surface soil samples were collected from each of the well borings at four-foot intervals and screened for VOCs with a PID. Soils were classified and recorded on well boring logs, included in Appendix B. One soil sample was collected from the top of the water table at each well boring and submitted to Paradigm for analysis of VOCs (EPA Method 8260) and SVOCs (EPA Method 8270). Analytical results are summarized in Table 3-1 and in Section 4.0.

Soils brought to the surface during the drilling process were placed on the ground surface, beneath the demarcation layer and soil cover, as directed by NYSDEC.

2.9.2 Monitoring Well Development

The newly installed monitoring wells were developed using a submersible Whale pump on August 13, 2009. Development consisted of gentle surging followed by pumping the wells to draw sediments out of the sand pack and into the well for removal. Development efforts continued until turbidity improved, or the well was purged dry repeatedly. MW-2 recharged very slowly and produced little water.

Well development activities were recorded on Well Development Logs, provided in Appendix B. Water generated from the development of the wells was discharged to the ground surface in the vicinity of the monitoring wells with the permission of the NYSDEC.

2.9.3 Groundwater Sampling

Groundwater samples were collected from each of the four newly installed monitoring wells on September 14-15, 2009. All samples were obtained using peristaltic pumps with dedicated ¼-inch polyethylene tubing, in accordance with Low Flow - Minimal Drawdown Groundwater Sampling Procedures (Puls and Barcelona, 1995). Sampling data was recorded on Low Flow Groundwater Sampling Field Records, provided in Appendix B.

Prior to sampling, the water level at each well was measured with reference to the inner casing elevation and recorded. Field parameters including pH, conductivity, dissolved oxygen, and temperature were measured periodically using a Horriba, Inc. U-22 water quality meter with flow-through cell. Turbidity was measured with a LaMotte, Inc. 2020e turbidity meter. Once keyparameters stabilized, a sample was collected and immediately placed on ice in preparation for delivery to Paradigm.

Groundwater samples were analyzed for the following parameters:

- TCL VOCs (EPA Method 8260)
- TCL SVOCs (EPA Method 8270)
- TAL Metals
- PCBs (EPA Method 8082)

In addition, MW-1, MW-2 and MW-3 were also analyzed for pesticides (EPA Method 8081). Results of the sampling are discussed in Section 4.0 and summarized in Table 4.

2.10 Soil Borings and Sampling

Twenty (20) soil borings (designated as GP-01 through GP-20) were completed on February 8-9, 2010. The borings were performed by Trec Environmental, Inc. using a track-mounted Geoprobe[®] Model 54LT. Borings GP-13, GP-17, GP-18, and GP-20 were located off-site, within the Route 104 right-of-way (ROW). Boring locations are shown on Figure 2. A highway work permit was obtained from the NYSDOT for investigative work within the ROW.

Soil samples were collected at 4-foot intervals until bedrock refusal was reached, at a depth of 4.5 to 11 feet below ground surface (bgs). Shallow bedrock was encountered at 4.5 to 6 feet bgs on the northern portion of the Site. On the southern portion of the Site, refusal occurred at approximately 9 to 11 feet bgs. Lu Engineers screened soil samples for the presence of VOCs with a RAE, Inc. MiniRAE 2000 PID and recorded subsurface soil descriptions on boring logs (Appendix B). Soil conditions are described in Section 3.4.

The following ten (10) samples were selected for laboratory analysis based on PID readings, soil observations, and sample location relative to other samples or significant Site features:

Sample ID	<u>Depth</u>
GP-01	1-3 ft.
GP-04	1-2 ft.
GP-07	5-7 ft.
GP-11	8-10 ft.
GP-12	8-9.4 ft.
GP-13	8-10 ft.
GP-16	7.5-8.5 ft.
GP-18	4.5-7 ft.
GP-19	8-10 ft.
GP-20	8-9.3 ft.

Soil samples were stored on ice in a cooler for shipment to Paradigm. A total of ten (10) subsurface soil boring samples were submitted for analysis of VOCs (EPA Method 8260), SVOCs (EPA Method 8270), and Metals. In addition, six samples were analyzed for PCBs (EPA Method 8082) and four samples were analyzed for Pesticides (EPA Method 8081). Analytical results are presented in Tables 3-1, 3-2, and discussed in Section 4.2.

2.11 Aquifer Testing

Hydraulic conductivity testing was conducted at all four monitoring wells on March 26, 2010. This testing was conducted in accordance with the protocols outlined in the approved Work Plan. Pertinent information and data are included in Appendix B.

The hydraulic conductivity testing included the placement of a pressure transducer (In-Situ, Inc. Level Troll 700) and disposable bailer (1 liter slug) into each well and allowing the groundwater surface to reach static level prior to initiating the test. The bailer (slug) was then rapidly removed while the pressure transducer remained in place near the bottom of the well, monitoring the resulting rise in water level data over time. Data was collected by the Level Troll 700 pressure transducer four times per second and stored in a handheld "rugged reader" PDA. The data was later downloaded and used to calculate the hydraulic conductivity for each well using AQTESOLV, Inc. 3.5 computer software.

Once the well returned to static level the test was initiated via the Rugged Reader, logging the data transmitted from the Level Troll transducer to determine the hydraulic conductivity and transmissivity of the soils in the immediate vicinity of each well screen. The slug (bailer) was rapidly withdrawn from the well, evacuating 1 liter of water. As the water level in the well rose back to static level the transducer measured the change in water displacement to the nearest 0.001 of a foot. The rising head data was recorded until the water level returned to approximately 90% of its initial static level.

A rising head test was selected because any water displaced in the well by introducing a solid slug would favorably saturate the unsaturated portion of the sand pack, resulting in erroneous data.

Hydraulic conductivities were calculated using the Bouwer and Rice Method (1976) for unconfined aquifers. Logarithmic graphs for the slug tests are included in Appendix B. Results of the aquifer testing are provided in Section 3.5.

Groundwater monitoring well elevation data and static groundwater level data collected during groundwater sampling (September 2009) were used to calculate groundwater elevations for each well. The groundwater elevations were then used to develop a groundwater potentiometric map, included on Figure 7. A description of the Site hydrogeology is provided in Section 3.5.

2.12 Private Well Survey

As part of the groundwater investigation, a private well survey was performed to locate any private/public water supply wells within ½-mile of the Site. This was completed by contacting the local health department and Town of Clarkson for information. No private wells were identified within a ½-mile of the Site.

2.13 Soil Vapor Intrusion Evaluation

No potential soil vapor intrusion pathways were identified during this investigation; therefore, vapor intrusion sampling was not conducted. The Site is planned for future use as a Veteran's Memorial Park with no buildings.

3.0 Physical Characteristics of the Study Area

Physical characteristics of the study area based on information obtained during investigation activities at the Site are described below.

3.1 Surface Features

The Site is a 0.71-acre parcel with two buildings that were demolished as IRMs during this investigation. The Site is currently vacant with no remaining structures. The northern portion of the Site is wooded and mainly grass covered. Disturbed areas on the southern portion of the Site are covered with new topsoil and grass.

The topography slopes to the north, towards Lake Ontario. Topographic relief is approximately 429 to 412 feet above mean sea level. The local area is generally flat with the exception of a moderate northward slope immediately north of Ridge Road West (NYS Route 104). This slope is the primary topographic feature of the Site.

3.2 Surface Water Hydrogeology

A 24-inch diameter culvert pipe and drainage creek are located along the western edge of the Site. This creek is an intermittent stream that flows to the north and dissipates at the northwest property corner. Stormwater runoff from Ridge Road West flows into a catch basin located on the southwest corner of the Site (see Figure 2). This catch basin discharges to the culvert below and flows into the drainage creek. The creek also receives stormwater runoff from residential developments to the north of Ridge Road West.

Stormwater from the Site flows north/northwest into the wooded area and eventually into the drainage creek located on the western edge of the property.

3.3 Geology

The overburden generally consists of imported fill material, glacial till, and silty soil resulting from weathered shaly bedrock. Ridge Road/Route 104 was the edge of the former Lake Iroquois, a proglacial lake that formed at the end of the last ice age. Lake Iroquois was larger than the current Lake Ontario due to an ice dam in the St. Lawrence River that prevented water from flowing out of the lake. The Site is located near the former shoreline of Lake Iroquois.

The bedrock underlying the Site consists of Queenston Shale of the Upper Ordovician Queenston Shale Formation, approximately 800 feet thick (Fisher, 1970), which was deposited approximately 450 million years ago. The depth to bedrock is approximately 4.5 to 11 feet bgs. Competent rock consists of soft to medium hard red-green shale exhibiting medium to massive bedding and no apparent water-bearing zones within the upper 15 feet of the formation at the Site. The water bearing zone consists of highly weathered shale above competent bedrock.

Two geologic cross sections (A-A' and B-B') were developed for the Site and are included as Figures 5b and 5c, respectively. Cross section A-A' trends north to south and cross section B-B' trends northwest to southeast, as shown on Figure 5a. The cross sections illustrate the lithology

identified in test borings and wells that were advanced as part of this investigation. Cross section A-A' also includes off-site subsurface features within the Route 104 ROW.

3.4 Soils

The United States Department of Agriculture (USDA) Soil Conservation Service Soil Survey Geographic Database¹ (SSURGO) indicates that the soil classification at the Site is composed of Cazenovia gravelly loam on the southern portion and Lairdsville silt loam on the northern portion. Cazenovia gravelly loam soils consist of deep, well-drained and moderately well-drained soils that have a medium textured surface layer and moderately fine textured subsoil. Cazenovia soils formed along the perimeter of and within glacial lakebeds. Lairdsville silt loam soil consists of moderately deep, gently sloping, well drained to moderately well-drained soils that have a medium-textured surface layer and a fine textured to moderately fine textured subsoil. Lairdsville soil series formed primarily from the underlying red Queenston Shale. They are predominantly just north of the old Lake Iroquois beach ridge (Route 104/ Ridge Road West) and are evident at the Site.

The southern portion of the Site contains a layer of fill materials varying from one to five feet in thickness, composed of silt, sand, gravel, and some pieces of concrete and asphalt.

As described in the boring logs (Appendix B) and shown on the cross-sections (Figures 5b, 5c), the soils present at the Site consist primarily of silt with lesser amounts of gravel, sand, and clay. The dominant soil type is reddish-brown silt, formed from the shale bedrock underlying the Site.

The lowest layers of soil consist of highly weathered shale bedrock in a silty matrix. The underlying bedrock in this zone has weathered in to soft clasts ranging from medium sand to cobble-size material. This layer is the zone of highest permeability observed on the Site.

3.5 Hydrogeology

This section describes the groundwater flow patterns and hydraulic conductivity data for the Site, based on groundwater elevation data and hydraulic conductivity (K) data obtained during slug testing. Slug testing was completed in all four (4) permanent Site monitoring wells (MW-1 through MW-4) in March 2010.

Figure 7 illustrates groundwater elevation contours generated using measurements collected in September 2009 during groundwater sampling and are considered to represent a seasonal low groundwater condition. As shown, groundwater appears to generally flow to the northeast. Groundwater elevations are highest on the southwestern portion of the property near MW-1 and MW-4, and lowest at the northeast property corner, nearest MW-3.

Hydraulic gradients were calculated across two areas of the site, including the Site maximum gradient and across the southwest portion of the Site. Based on the March 2010 groundwater elevations, the maximum hydraulic gradient was calculated between wells MW-4 and MW-3

¹ United States Department of Agriculture National Resource Conservation Service Web Soil Survey http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx

from southwest to northeast across the Site and determined to be approximately 0.042 ft/ft. Due to the variability in topography across the site the hydraulic gradient in the southwest portion, where the former USTs and pump island existed, was calculated to represent the hydrogeological conditions in the area where subsurface impacts were detected. This gradient was calculated between wells MW-1 and MW-2, from south to north, and determined to be approximately 0.019 ft/ft.

Rising head slug tests were used to calculate hydraulic conductivity (K) and groundwater velocities. Hydraulic conductivity (the relative mobility of groundwater through soils) values were obtained using the Bouwer and Rice Method (1976) and AQTESOLV for Windows 3.5.

Hydraulic conductivities for the wells tested ranged between 3.88×10^{-4} ft/sec at MW-3 and 7.22×10^{-5} ft/sec at MW-2. Through the analysis of the rising head slug tests conducted on the four monitoring wells, the average hydraulic conductivity for the Site was determined to be approximately 1.37×10^{-4} ft/sec. Hydraulic conductivity data and logarithmic graphs resulting from the slug testing are summarized in Appendix B.

Groundwater velocity, the rate at which groundwater moves across the Site, was calculated from south to north across the Site using the K and hydraulic gradient values derived above. This maximum groundwater velocity calculation was determined by using the Site average hydraulic conductivity value of 1.37×10^{-4} ft/sec, multiplying by the hydraulic gradient between wells and dividing by the average porosity of the Site soils (V= K x l/n). Based on observations made during the installation of soil borings across the Site, the assumed porosity of the soils was estimated to be 0.3.

The Site maximum groundwater velocity calculation was performed between MW-4 and MW-3. This represents the maximum groundwater gradient on Site.. Based on the maximum determined groundwater gradient of 0.042 ft/ft in March 2010, the maximum groundwater velocity across this portion of the Site was calculated to be approximately 3.0×10^{-5} ft/sec (2.59 ft/day).

The groundwater velocity calculated between wells MW-1 and MW-2 in southwest portion of the Site more accurately depicts the velocity in the area in which subsurface contaminants were detected. The slope of the groundwater surface in this portion of the Site dropped gently from south to north, with relief of approximately 0.93 feet vertically over a horizontal distance of 48.4 feet (0.019 ft/ft) in March 2010. The velocity across this portion of the Site was calculated to be approximately 3.74×10^{-6} ft/sec (0.32 ft/day).

Hydraulic conductivity and groundwater level data collected during the RI have indicated the following:

- The soils present at the Site consist primarily of silt with lesser amounts of gravel, sand, and clay.
- Based on groundwater elevations collected in September 2009 the average depth to
 groundwater across the Site was approximately 12 feet bgs. Based on groundwater
 elevations collected in March 2010 the average depth to groundwater across the Site
 was approximately 6 feet bgs. It is inferred that these represent likely seasonal low
 and high groundwater levels, respectively.

- Hydraulic conductivity measurements for monitoring wells MW-1 thru MW-4 averaged 1.37 x 10⁻⁴ ft/sec.
- Maximum groundwater velocity across the Site was calculated to be approximately 3.0×10^{-5} ft/sec (2.59 ft/day).

Slug test data, hydraulic conductivity data, hydraulic gradient and groundwater velocity calculations are provided in Appendix B.

3.6 Demography, Land Use, and Water Use

The Site is located in a mainly residential area on the north side of Ridge Road West (NYS Route 104) in the Town of Clarkson, New York. According to 2000 census data published by the U.S. Census Bureau, the Town of Clarkson had a population of 6,072. The local area is occupied by a combination of residential and commercial properties along Ridge Road West. There are no listed schools, daycares, or medical facilities within a half-mile radius of the Site. The Site is currently zoned for commercial use by the Town of Clarkson and is located within the Suburban Residential, RS-10, zoning district. The intent of the RS-10 zoning district is "to permit the complete suburbanization of the central area of the Town of Clarkson at densities suitable to fully serviced areas". This allows for farm uses and single-family residences. Special permit uses in this district may also include: multi-family dwellings, office buildings, congregate housing, community and recreational use buildings, farm stands, tree nurseries and greenhouses, public buildings and grounds, animal hospital and/or kennel, day care centers, and seasonal ice cream stands.

The Town of Clarkson Comprehensive Plan indicates planned future use of the Site as a Veteran's Memorial Park. This would be a passive use park with a paved walking trail, benches, plantings, a memorial, and parking lot. The Town has stated that no buildings will be constructed on the Site.

Public water is available at the Site and to buildings along Ridge Road West.

4.0 Nature and Extent of Contamination

In this section laboratory analytical results are compared to the appropriate published standards, criteria, or guidance vaules (SCGs), as indicated below.

Soils. Analytical results are compared to the NYSDEC Soil Cleanup Objectives (SCOs) in 6 NYCRR Part 375-6.8(a) and (b) (effective December 14, 2006). Commercial Use Cleanup Objectives are most applicable to future use of the Site as a Veteran's Memorial Park. Commercial Use, as defined by the regulation, "includes passive recreational uses, which are public uses with limited potential for soil contact".

Groundwater. Analytical results are compared to the NYS Class GA Ambient Groundwater Quality Standards in 6 NYCRR Parts 700-705 (NYS, 1999b), as well as to guidance values in the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 (NYSDEC, 1998).

A summary of the validated analytical detections are included on Tables 1 through 3. Laboratory reports are included in Appendix C. All Category B data deliverables are provided on disc, and a third-party Data Usability Summary Report (DUSR) is provided in Appendix D.

4.1 Surface Soil

Surface soil samples were collected at six locations (SS-1 through SS-6), as indicated in Section 2.3. Tabulated analytical results are shown on Table 1. The following is a summary of the results:

- No VOCs were detected above Unrestricted Use SCOs.
- SVOCs were detected above Industrial Use SCOs at SS-02 and SS-04, as shown on Table 1. The SVOCs detected are polycyclic aromatic hydrocarbons (PAHs). PAHs occur from the incomplete combustion of fossil fuels such as coal or oil, and are often found in fill material containing ash, cinders, soot, or creosote. Historic fill material from an unknown source was present on much of the southern portion of the Site, including the locations SS-02 and SS-04. PAH-contaminated surface soils were covered with clean fill during the IRM.
- Barium was detected above Commercial Use SCOs in SS-01, which is located in the area
 covered with clean fill during the IRM. Barium was also detected above Residential Use
 SCOs in SS-06, located on the northern portion of the Site. The source of barium
 detected in surface soil samples is unknown, but has been documented as occurring at
 sites with historic past uses including automotive painting.
- Other metals including chromium, lead, copper, selenium, and zinc were detected in surface soils above Unrestricted Use, but below Commercial Use SCOs as shown on Table 1. Locations SS-01 through SS-05 were covered with a minimum of one foot clean cover material as an IRM during this investigation.
- No PCBs were detected in the surface soil samples.
- Pesticides 4,4'-DDT and 4,4'-DDE were detected above Unrestricted Use SCOs in sample SS-06, located on the northern portion of the Site. DDE is a breakdown component of DDT, which was once used as an insecticide, but has been banned in the U.S. since the early 1970s. The presence of these compounds in surface soils may be attributed to past agricultural use on the northern portion of the Site.

4.2 Sediment

Sediment samples were collected at four locations (SD-01 through SD-04), as indicated in Section 2.4. Tabulated analytical results are shown on Table 2. The following is a summary of the results:

Acetone was detected above the Unrestricted Use SCO in samples SD-02 and SD-03
(81.6 ppb and 71.2 ppb, respectively). Acetone is commonly used in analytical
laboratories and often detected in samples as a laboratory artifact.

- PAHs were detected above Industrial Use SCOs in all sediment samples collected. The highest concentrations were present in SD-03, the down-gradient sediment sample. As stated above, PAHs occur as a byproduct of incomplete combustion and are often found in fill material containing ash, cinders, soot, or creosote. They also occur in coal tarbased sealcoats used in parking lots and driveways. The source of PAHs in sediments may also be attributed to run-off of surface soils on the Site containing elevated levels of PAHs, run-off of deteriorated asphalt on the southern portion of the Site, or surface run-off from up-gradient off-site locations, including NYS Route 104. All impacted sediments have been covered with a minimum of one foot of stone or soil cover material as an IRM during this investigation.
- Arsenic was detected in SD-01 above the Industrial Use SCO. Elevated levels of arsenic
 were not detected in any other sediment samples. Sample location SD-01 was covered
 with stone during the IRM. Arsenic is commonly associated with historic use of
 pesticides.
- Copper, lead, and zinc were detected at levels above Unrestricted Use SCOs in sediment samples, as shown on Table 2. All sediment sample locations were covered during the IRM. Each of these contaminants are typically associated with soils and sediments in developed areas.
- No PCBs or Pesticides were detected in the sediment samples.

4.3 Sub-Surface Soils

A total of 27 sub-surface samples were collected during this investigation: three (3) test pit samples, ten (10) Geoprobe samples, four (4) well boring samples, and ten (10) closure samples collected during the IRM. Tabulated analytical results are shown on Tables 3-1, 3-2, and 3-3. The following is a summary of the results:

- Residual petroleum impacts remain to the south and west of the main tank pit (TC-01 and TC-02) and beneath the former pump island (PI-01) within the Route 104 right-of-way. Elevated PID readings were observed in soils from 7 to 9 feet below grade in the main tank pit, and 4 feet below grade beneath the pump island. Petroleum-related compounds detected above Unrestricted Use SCOs include: 1,2,4-trimethylbenzene, benzene, ethylbenzene, xylene, and naphthalene. All VOCs detected were below Commercial Use SCOs.
- Acetone and methylene chloride were detected above Unrestricted Use SCOs in several soil samples, as shown on Tables 3-1 and 3-3. These compounds are commonly used in analytical laboratories and were detected in the associated blank; therefore, the concentrations detected in the soil samples are considered to be laboratory artifacts.
- Benzo(b)fluoranthene, a PAH, was detected above the Commercial Use SCO in sample TP-01A collected from beneath the former basement slab, at a depth of approximately eight feet below grade. A nearby sample, TP-01B, showed benzo(b)fluoranthene below the Unrestricted Use SCO. The compound was not detected in any other sub-surface soil samples. The former basement was filled during the IRM and the area has been covered with clean soil.

- Several metals were detected above Commercial Use SCOs in sub-slab samples TP-01A and TP-01B, as shown on Table 3-2. Mercury was detected above Industrial Use SCOs in both samples. The metals detected in sub-slab soils may be attributed to the presence of fill material placed on-site prior to building construction.
- Barium was detected above the Commercial Use SCO in samples GP-18, TP-01A, TP-01B, and PI-01; and above the Residential Use SCO in samples GP-01 and GP-20. Elevated levels of barium were also detected in surface soil samples SS-01 and SS-06. The source of barium in Site soils is unknown, but has been documented as occurring at sites with historic past uses including automotive painting.
- No PCBs were detected above Unrestricted Use SCOs.
- The pesticide 4,4'-DDD was detected above the Unrestricted Use SCO in samples GP-18, and sub-slab samples TP-01A and TP-01B. Additional pesticides including 4,4-DDE, 4,4-DDT, dieldrin, and endrin were detected above Unrestricted Use SCOs in the basement sub-slab samples TP-01A and TP-01B. All pesticides detected were below Commercial Use SCOs.

4.4 Groundwater

Four (4) groundwater samples were collected from the Site, as previously indicated in Section 2.10. Tabulated analytical results are shown on Table 4. The following is a summary of the results:

- Benzene was detected above NYS Groundwater Standards in MW-1, MW-2 and MW-4.
 The highest levels were detected in MW-4 which is immediately down-gradient from the former USTs. Other petroleum-related VOCs were also detected above NYS Groundwater Standards in MW-4, as shown on Table 4. Petroleum impacts appear to be limited to the southern portion of the Site, in the vicinity of former USTs and associated piping. Low-level benzene (2.09 ug/L) was detected in MW-2 located downgradient from the tanks. Impacted groundwater does not appear to have migrated offsite.
- 1,1,2-Trichloroethane (1,1,2-TCA) was detected above the NYS Groundwater Standard in MW-4. It was not detected in any other groundwater samples; however, low-levels were detected in soil borings GP-07, GP-13, GP-18, and in basement sub-slab sample TP-01B. 1,1,2-TCA is used as an industrial solvent and it's presence may be attributed to previous vehicle maintenance activities at the Site.
- No SVOCs were detected above NYS Groundwater Standards.
- Metals including: barium, iron, magnesium, manganese, sodium, and thallium were
 detected above NYS Groundwater Standards, as shown on Table 4. These compounds
 are commonly found in groundwater and are most likely attributed to naturally
 occurring water hardness. The metal concentrations detected are not considered to be
 of concern to the Site at this time.
- No PCBs were detected in the groundwater samples.

- Dieldrin was detected above the NYS Groundwater Standard in both of the samples analyzed for pesticides, MW-01 and MW-03 (0.039 and 0.036 ug/L, respectfully). This may be an indication of elevated background groundwater concentrations, since it was detected at similar levels throughout the Site.
- Aldrin and endrin, pesticides chemically similar to dieldrin, were also detected above NYS Groundwater Standards in MW-01. Aldrin and dieldrin were commonly used insecticides on agricultural crops such as corn and fruit in the 1950s to early 1970s. EPA banned the use of these pesticides in 1974. Pesticide concentrations detected in groundwater are likely attributed to historical agricultural use of the Site and surrounding area.

5.0 Contaminant Fate and Transport

This Section includes an evaluation of contaminant fate and transport for the Site including identifying potential routes of migration, contaminant persistence, and contaminant migration.

5.1 Potential Routes of Migration

Potential routes of migration identified for the Site include:

- Petroleum-related VOCs migrating off-site in a dissolved groundwater plume;
- Contaminants in sub-surface soils impacting the groundwater;
- Volatilization of VOCs in sub-surface soil and groundwater;
- If impacted soils or groundwater were to be disturbed, indirect migration pathways may include: transport on construction equipment, evaporation, etc.

5.2 Contaminant Persistence

Contamination at the Site is identified as primarily consisting of petroleum-related VOCs in subsurface soil and groundwater; PAHs and metals in surface soil, sediments, and sub-slab soil; and pesticides in groundwater. Petroleum-related VOCs are degraded aerobically and anaerobically by microorganisms found naturally in the subsurface. PAHs, metals, and pesticides are more persistent in the environment and would not be expected to degrade readily in the sub-surface. The chemical characteristics and fate of contaminants detected above applicable SCGs are summarized in the following table.

Chemical of	Physical	Uses	Reaction with Water	Reaction with Air	Reaction with Soil
Concern Petroleum-related \	Properties				
Benzene ¹	Colorless liquid with a sweet odor; flammable	Natural part of gasoline and crude oil.	Highly soluble in water; does not readily adsorb to sediments. May biodegrade in water with a half-life of 103 days.	Highly volatile; half-life in air is 2- 20 days.	High mobility in soil; biodegrades in presence of microorganisms
Toluene ¹	Colorless liquid with a pungent odor.	Occurs naturally in crude oil; found in gasoline, paint thinners & lacquers.	Will not readily adsorb to sediments or solid particles. Biodegrades in water with a half-life of 100-1,386 days.	Evaporates quickly into air from soil and water. Half- life in air is 3 days.	Relatively mobile in soil. Readily broken down by microorganisms in soil with a half-life of several hours to 71 days.
Ethylbenzene ¹	Colorless liquid; flammable	Naturally occurring in petroleum. Used in paints and inks	May adsorb to sediments or suspended solids in water. Breaks down in water by reacting with other chemicals. Half-life in water is 10-16 days.	Volatilizes easily into air from soil or water. Takes approximately 55 hours to break down in air.	Moderately mobile in soil. Breaks down by aerobic bacteria in the soil.
Xylene ¹	Colorless liquid with a sweet smell; flammable	Naturally occurring in petroleum. Used as a solvent & paint thinner	Breaks down by microorganisms in groundwater.	Evaporates quickly into air; breaks down in air by sunlight with a half-life of 1-2 days.	Moderately mobile in soil and may leach to groundwater. Broken down by microorganisms in soil.
n-Propylbenzene	Colorless liquid	Found in petroleum and coal. Used as a solvent in textile dying and printing.	Biodegrades in water. Does not readily adsorb to suspended solids.	Frequently detected in the atmosphere. Half-life in air is 2 days.	Low mobility in soil. Breaks down by microorganisms in soil.
Isopropylbenzene	Colorless liquid with a sharp gasoline odor; also known as cumene	Used in the manufacture of acetone and phenol. Found in gasoline; natural component in plants.	Will biodegrade in water, but is slowed by adsorption to sediments and solid particles. Half-life in water is 107 days.	Volatile; degrades in atmosphere with a half-life of 2.5 days.	Low mobility in soil due to tendency to adsorb to soil particles. Biodegrades in soil.
1,2,4- Trimethylbenzene	Clear liquid; aromatic	Used as a solvent and paint thinner. Found in gasoline, coal tar, and vehicle emissions.	Does not adsorb to sediments or solid particles; volatilizes from water; biodegrades aerobically.	Volatilizes to air quickly. Breaks down in air with half-life of 12 hrs – 30 days.	Low mobility in soil. Breaks down in soil under aerobic conditions.
Chlorinated VOCs					
1,1,2- Trichloroethane	Clear liquid; pleasant odor	Used as a solvent for fats, oils, waxes, resins, etc. Degradation product of 1,1,2,2-tetrachloroethane	Will not readily adsorb to sediments or solids. Half-life in groundwater of 6 days-16 years. PAHs generally do not volatilize from water and are very stable.	Volatilizes to air; half-life in air is 50 days.	High-moderate mobility in soil. Aerobic degradation occurs slowly with a half- life of 6 mos – 1 year.
PAHs		I		l	
Polycyclic Aromatic Hydrocarbons (PAHs)	Colorless, white, or pale yellow-green solids.	Formed by incomplete burning of fossil fuels. Found in vehicle exhaust, creosote, and coal tar.	Do not easily dissolve in water. PAHs adsorb to suspended solids or sediments. Associated with particulate matter that has settled down into sediments	Adsorb to airborne particulates. Degraded in air by photochemical processes with a half-life of <1 day.	Low to no mobility in soil. Most PAHs are extremely stable and do not break down in soil.

Chemical of Concern	Physical Properties	Uses	Reaction with Water	Reaction with Air	Reaction with Soil
Metals					
Barium ¹	Silvery-white metal	Used by the oil and gas industries to make drilling muds. Also used to make paint, bricks, ceramics, glass and rubber.	Barium sulfate and barium carbonate, do not dissolve well in water. Barium chloride, barium nitrate, or barium hydroxide dissolve easily in water usually do not last in these forms for a long time in the environment.	Gets into the air during the mining, refining, and production of barium compounds, and from the burning of coal and oil.	Barium sulfate and barium carbonate, can last a long time in the environment. Barium chloride, barium nitrate, or barium hydroxide do not last in these forms for a long time in the environment.
Arsenic	Yellow, gray, or metallic solid. Mineral found in Earth's crust.	Used in alloys for semi-conductors, wood preservatives, herbicides/pesticides, paint, and coal burning.	Strongly sorbs to sediments. Does not volatilize. Some forms of arsenic are soluble and may travel with groundwater flow.	Adsorbs to airborne particulates.	Low mobility in clay soils; higher in sandy soils. More mobile in higher pH soils. Methylated by microorganisms in soil.
Copper	Reddish, malleable metal. Conducts electricity.	Smelting, piping, pesticides, wood preservatives, and electrical wiring. Found naturally in rock. Avg. concentration in shales is 45 ppm.	Associated with particulate matter that has settled down into sediments. Usually bonds with organic matter.	Absorbed to airborne particulates and may be removed through gravitational settling, dry deposition, incloud settling and washout.	Relatively immobile and can persist in soil for a long time. Usually bonds with organic matter.
Lead	Bluish-gray soft metal.	Used in solder, alloys, batteries, paints, and as a former gasoline additive.	Associated with particulate matter that has settled down into sediments. Generally insoluble.	Once released into the atmosphere, lead particles disperse and may be removed by wet or dry deposition	Relatively immobile and can persist in soils for long periods of time. Adsorption is based on soil pH, type, size, organic matter, and other factors.
Mercury	Silver-white heavy liquid metal	Component in electrical, medical, and lab instruments. Found in pre-1991paints.	Dissociates in water. Methylation by microorganisms can occur in sediments.	Can volatilize to air. Removed by deposition to land or water.	Dissociates in moist soil and relatively immobile once dissociated. Does not leach from soil with low pH. Binds to organic matter.
Pesticides	1	T	T.,	T =	T =
Dieldrin, Aldrin, Enrin	Colorless, odorless solid	Insecticide/ rodenticide used in agriculture prior to 1974.	Adsorbs to suspended solids and sediment. Broken down by hydrolysis with a half-life of >4 years.	Can volatilize from soil surface. Half- life in air of vapor phase is 42 hours. Particulate phase is removed by deposition.	Endrin and Aldrin break down to form Dieldrin, which is the most persistent. Half-life of dieldrin in soil is approx. 7 years.

¹ <u>Source</u>: National Library of Medicine, Hazardous Substance Data Bank (HSDB). <Toxnet.nlm.nih.gov>

In addition to biodegradation, VOC concentrations in the groundwater would presumably decrease as the distance from the source area is increased due to processes such as advection, dispersion, sorption, and diffusion.

5.3 Contaminant Migration

Contaminant migration patterns are further described in this section. Primary constituents at the Site detected above regulatory criteria are petroleum-related VOCs in groundwater; PAHs and metals in surface soil, sediments, and sub-slab soil.

The source of the VOC contamination appears to be from former USTs and associated piping located on the southern (developed) portion of the Site. It is evident that past releases of gasoline from USTs have migrated downward through the soils and impacted groundwater. Groundwater impacts are most significant in the area of MW-4, located north of the former USTs. Dissolved-phase VOCs appear to have migrated with groundwater flow to the northeast, as evidenced by low-level benzene detected in MW-2. No indication of off-site groundwater contaminant migration was found during this investigation.

Surface soil and sediment impacts were addressed during the IRM by placement of approved cover material to prevent migration of contaminants and potential human contact. PAHs and metals identified in Site soils have relatively low mobility in the subsurface and would not be expected to impact the underlying groundwater.

5.3.1 Factors Affecting Contaminant Migration

Factors affecting contaminant migration include advection, dispersion, molecular diffusion, adsorption of constituents onto soil particles, microbial and chemical degradation, and partitioning of constituents between soil, groundwater, and air.

Groundwater contamination present at the Site generally consists of petroleum-related VOCs. These compounds are typically soluble in water and do not adsorb to sediments or solid particles, therefore, they are relatively mobile in the environment. Natural breakdown and dispersion of petroleum compounds in the subsurface limits the extent of contaminant migration.

Groundwater flow at the Site is toward the north, however, it does not appear that contamination has migrated off-site since only very low levels were detected in the down-gradient well MW-2. Hydraulic conductivities calculated for the Site range between 3.88×10^{-4} ft/sec and 7.22×10^{-5} ft/sec. Groundwater velocities on the Site vary from approximately 3.74×10^{-6} ft/sec to 3.0×10^{-5} ft/sec (0.32 ft/day to 2.59 ft/day, respectively).

6.0 Exposure Assessment

The purpose of this exposure assessment is to qualitatively evaluate the contaminants of concern and the affected media with respect to potential exposure pathways and human receptors. This assessment is done to evaluate the potential for exposure routes to be present in order to facilitate the development of a remedial action plan.

The following exposure pathways were evaluated:

- Ingestion of impacted soil and/or groundwater;
- Inhalation of vapors and/or dust; and
- Direct contact with impacted soil/groundwater.

Potential human receptors in the vicinity of the Site include:

- Residents that live nearby;
- Visitors to the Site; and
- Construction workers or Town forces involved with excavation in impacted areas.

6.1 Qualitative Public Exposure Assessment

The following is an evaluation of the exposure pathways and their status with respect to the Site.

Ingestion of Contaminated Soil and/or Groundwater

Impacted soils are present at a depth of at least four feet below the surface, thus making ingestion of soils an unlikely exposure pathway. Impacted sediments in the drainage ditch have been covered with a 12-inch layer of cobbles to prevent direct contact.

There are currently no drinking water wells on the Site or within a 1/10-mile radius and a public water supply is available. Deed restrictions may be necessary to restrict future use of groundwater at the Site. Groundwater sample results do not indicate that contaminated groundwater is migrating off-site since very low levels were detected in the on-site downgradient well MW-2.

Inhalation of Vapors

The potential exists for volatilization of petroleum-related VOCs from impacted groundwater and sub-surface soil. Exposure to soil vapor could occur during excavation or disruption of soils. Onsite workers could be exposed to VOCs during future development if excavation of impacted soils (8-12 feet bgs) were to occur. Potential future exposures can be mitigated through implementation of a Site Management Plan.

Soil vapor intrusion is not a concern since there are no buildings on the Site and no plans for future structures. Soil and groundwater sample results do not indicate the potential for migration of vapors to adjacent residences.

Inhalation of vapors could be a concern for utility workers if excavation were to occur within the right-of-way in the vicinity of the former pump island, where petroleum impacts were noted. Excavation of soils in the former pump island area is not anticipated.

Direct Contact with Impacted Soils and/or Groundwater

There is currently no direct contact with impacted soil and/or groundwater at the Site because the Site is vacant and impacted surface soils and sediments were covered with a minimum of two feet clean cover material.

The potential exists for future exposures if workers come into contact with impacted media during excavation or Site development activities. A demarcation layer was placed on top of impacted surface soils prior to placement of clean fill to identify the depth of contaminated soils. If impacted soils must be disturbed, a Soils Management Plan will outline how to properly handle the soils. All work should be performed in accordance with an approved Health and Safety Plan (HASP), knowledge of Site conditions, and associated documentation. Therefore, the risk for direct contact is considered low.

Direct contact with groundwater is unlikely since groundwater is present at an average depth of 6-12 feet below the surface and public water is available.

6.2 Environmental Exposure Assessment

Information regarding rare or state-listed animals and plants, significant natural communities, and other significant habitats in the vicinity of the Site was obtained from the New York Natural Heritage Program database (Appendix E). The threatened Pawpaw, a vascular plant, was listed in the vicinity of the Site. A Lu Engineers' senior environmental scientist surveyed the Site and found no occurrence of the threatened species. Furthermore, no appropriate habitat for endangered species is present at the Site.

The Fish and Wildlife Resources Impact Analysis (FWRIA) Decision Key was completed for the Site, as outlined in DER-10, and is included as Appendix E. It was determined that no FWRIA is needed since the Site is not a habitat for endangered, threatened, or special concern species; and the investigation does not indicate that groundwater contamination has migrated off-site.

7.0 Summary and Conclusions

7.1 Investigation Summary

Investigations performed as part of this project included:

- Evaluation of surface soil conditions;
- Evaluation of sediment conditions;
- Evaluation of sub-slab soil conditions;
- Evaluation of subsurface soil conditions;
- Evaluation of groundwater conditions; and
- Evaluation of building materials for the presence of asbestos or other hazardous materials.

The investigation included laboratory analysis of six (6) surface soil, four (4) sediment, sixteen (16) subsurface soil including two sub-slab soils, and four (4) groundwater samples. Field screening with real-time instruments was used to supplement the laboratory data.

IRMs were completed during the investigation, including: asbestos abatement and demolition of all onsite structures; removal of four (4) USTs, an underground hydraulic lift, a catch basin,

septic system, former pump island, and 368 tons of petroleum-impacted soils; placement of approximately 1,000 cubic yards of clean cover material over impacted surface soils; and placement of stone cover over drainage ditch sediments.

Off-site investigation included completion of four (4) soil borings within the adjacent Route 104 right-of-way. A former concrete pump island was also removed from the right-of-way.

7.1.1 Nature and Extent of Contamination

Primary contaminants detected in groundwater at the Site include petroleum-related VOCs. The source of VOCs appears to be from former USTs and associated piping located on the southwest corner of the Site. The highest VOC concentrations in groundwater were detected in MW-4, located just north of the former USTs, as shown on Figure 6. Groundwater flow is generally toward the northeast. Low-level benzene was detected in wells MW-1 and MW-2; however, it does not appear that groundwater contamination has migrated off-site.

Petroleum-impacted soils in the source area were removed during the IRM; however, residual impacted soils remain off-site to the south and west of the main tank pit at a depth of approximately 7-9 feet bgs, and beneath the former pump island in the Route 104 right-of-way at a depth of approximately 4 feet bgs. Sample analytical results show that all VOCs detected in subsurface soils were below Residential Use SCOs.

Heavy metals and PAHs were detected at levels above Industrial Use SCOs in surface soils and drainage creek sediments. Impacted surface soil/sediments were covered with clean cover material during the IRM. Placement of cover over impacted soils/sediments was performed to limit off-site migration of contaminants and prevent human contact with impacted soils.

PAHs and heavy metals were also detected above Commercial Use SCOs beneath the basement slab of the former building (approximately 9 feet bgs). The basement was filled with concrete pieces and clean soil during the IRM. PAH compounds are commonly found in fill material and are most likely attributed to the presence of imported fill material beneath the basement slab.

Concentrations of barium were detected above Commercial Use SCOs in subsurface soils at a depth of seven feet bgs at location GP-18, at a depth of four feet bgs below the former pump island, in one surface soil sample (SS-01), and in three groundwater wells on the southern portion of the property (MW-01, MW-02, and MW-04). The source of the detected barium is not known, but may be related to former automotive painting.

7.1.2 Fate and Transport

Potential routes of migration identified for the Site include:

- Petroleum-related VOCs migrating off-site in a dissolved groundwater plume;
- Contaminants in sub-surface soils impacting the groundwater;
- Volatilization of VOCs in sub-surface soil and groundwater;

• If impacted soils or groundwater were to be disturbed, indirect migration pathways may include: transport on construction equipment, evaporation, etc.

Surface soil and sediment contaminants were addressed during the IRM by placement of approved cover material to prevent migration of contaminants and potential human contact. PAHs and metals identified in Site soils have relatively low mobility in the subsurface and would not be expected to impact underlying groundwater.

Petroleum-related VOCs are degraded aerobically and anaerobically by microorganisms and other processes in the subsurface. In addition to biodegradation, VOC concentrations in groundwater would presumably decrease as the distance from the source area is increased due to processes such as advection, dispersion, sorption, and diffusion. Groundwater flow is generally toward the northeast, as shown on Figure 6. Groundwater impacts appear to be limited to the Site, as only low-level benzene (2.09 ug/L) was detected above NYS Groundwater Standards in the on-site down-gradient well MW-2.

7.2 Conclusions

Future migration of impacted groundwater is not anticipated since the contaminant source (i.e., USTs and impacted soil) was removed as an IRM during this investigation, and existing contaminant concentrations in groundwater are expected to decrease due to natural attenuation in the subsurface.

Residual soil/sediment contamination should not impede future planned use of the Site as a Veteran's Memorial Park. Human exposures and contaminant migration are not a concern provided that the cover material placed onsite as an IRM is adequately maintained. If future Site redevelopment involves excavation or disturbance of the impacted soil, there is a potential for human exposures or contaminant migration. Potential future exposures shall be addressed by the final Site remedy. This can be controlled through implementation of a Site Management Plan, including protocols for proper handling of impacted soils.

Contaminants detected off-site were below Residential Use SCOs, with the exception of barium, and appear to be limited to the Route 104 right-of-way in the vicinity of the former pump island, at a depth of at least four feet below grade.

7.2.1 Data Limitations and Recommendations for Future Work

No significant analytical data limitations were identified during the data usability review. Analytical results are estimated for groundwater samples, TP-01A, TP-01B, TC-01, TC-02, TC-03, and well boring samples MW-1 through MW-4 since the sample cooler temperature was received out of range (i.e., >6°C). Validated results are shown on the attached Tables. Data Usability Summary Reports (DUSRs) were prepared by Vali-Data of WNY, LLC and are included as Appendix D.

8.0 Identification and Development of Alternatives

This section of the report presents the identification and development of remedial action objectives and alternative remedies to address contamination identified during the RI.

8.1 Remedial Action Objectives

Remedial Action Objectives (RAOs) are objectives for the protection of public health and the environment and are developed based on contaminant-specific standards and guidance to address contamination at the Site. Based on the RI findings, the following RAOs have been developed:

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards;
- Prevent ingestion and direct contact with impacted soils and sediments;
- Prevent contact with, or inhalation of, VOCs from petroleum-impacted groundwater at the Site; and
- Prevent migration of contamination that would result in impacts to surface water or groundwater.

8.1.1 Contaminants of Concern

A 'contaminant of concern' is a contaminant that is sufficiently present in frequency and concentration in the environment to require evaluation for remedial action. Not all contaminants identified on the property are considered contaminants of concern. The contaminants of concern identified at this Site are primarily petroleum-related VOCs in groundwater; PAHs in sediments and surface soils; and metals in sediments, surface soil, and subsurface soil. The applicable standards, criteria, and guidance values (SCGs) for the Site are listed below.

Soil- NYSDEC SCOs in 6 NYCRR Part 375-6.8(a) and (b) (effective December 14, 2006). Commercial Use Cleanup Objectives are most applicable to future use of the Site, based on planned passive recreational use as a Veteran's Memorial Park. Compounds detected above Commercial Use SCOs are listed below and summarized in the attached Tables.

PAHs	<u>Metals</u>
benzo(a)anthracene	barium
benzo(a)pyrene	arsenic
benzo(b)fluoranthene	copper
dibenzo(a,h)anthracene	lead
	mercury

Groundwater- NYS Class GA Groundwater Quality Standards listed in 6 NYCRR Parts 700-705 (NYS, 1999b) and, in the absence of a standard, guidance values in the NYSDEC Technical and Operational Guidance Series 1.1.1 (NYSDEC, 1998). These standards are based on groundwater as a drinking water source. Compounds of concern detected above applicable groundwater standards or guidance values are listed below and summarized in Table 4.

VOCs
1,2,4-trimethylbenzene
benzene
ethylbenzene
isopropylbenzene
n-propylbenzene
toluene
1,1,2-trichloroethane
xylene

A more complete presentation of analytical results is provided in Sections 4 and 5 of this report.

8.1.2 Development of Remediation Goals

The process of defining the goals of a proposed remedial action is based on an engineering analysis of the expected benefits of the remedial effort as defined in the context of various evaluation criteria. As required in 6 NYCRR Part 375, the following criteria are used to evaluate the effectiveness of remedial alternatives for the Site:

<u>Protection of Public Health and the Environment</u>. This criterion is an evaluation of the remedy's ability to eliminate or mitigate risks to human health and the environment during and after implementation of the remedy. This goal must be met in order for an alternative to be considered for selection.

Compliance with Standards, Criteria, and Guidance. This criterion addresses whether the selected remedial alternative will ultimately result in compliance with environmental laws, regulations, and other standards and criteria. In addition, this includes the consideration of guidance which the NYSDEC determine to be applicable on a case-specific basis. This criteria must be satisfied in order for an alternative to be considered for selection.

<u>Long-term Effectiveness and Permanence</u>. This criterion evaluates the long-term effectiveness of the remedy after implementation. This includes remaining risk to public health or the environment, adequacy and reliability of controls over time, and the ability to meet RAOs in the future.

<u>Reduction of Toxicity, Mobility, or Volume</u>. Preference is given to alternatives that permanently and significantly reduce the toxicity, mobility, and volume of the wastes at the Site.

<u>Short-term Impacts and Effectiveness</u>. This is an evaluation of the potential short-term adverse impacts and risks of the remedy upon the community, site workers, and the environment during implementation of the remedy. The length of time needed to achieve the remedial objectives is also estimated and compared against the other alternatives.

<u>Implementability</u>. The implementability criterion evaluates the technical and administrative feasibility of implementing a remedy. Technical feasibility includes the difficulties associated with construction and the ability to monitor the effectiveness of the remedy. Administrative feasibility relates to the availability of necessary personnel and materials, ability to obtain approvals, access, etc.

<u>Cost Effectiveness</u>. Capital costs and annual operation, maintenance, and monitoring costs are estimated for each alternative and compared on a present worth basis. This criteria is used to select a remedy where cost of the remedy is proportional to overall effectiveness. Cost is generally the last criteria to be evaluated.

<u>Land Use</u>. This criterion considers the current, intended, and reasonably anticipated future use of the Site in the selection of the soil remedy.

<u>Community Acceptance</u>. This criterion evaluates the public's comments, concerns, and overall perception of the remedy. Community acceptance will be evaluated after the public comment period, as part of the final remedy selection and approval.

8.2 General Response Actions

General response actions are media-specific procedures used to meet established RAOs for the Site. These procedures involve remediation approaches that consist of various technologies and process options. General response actions for environmental media commonly include treatment, containment, extraction and/or disposal, and institutional actions (i.e., deed restrictions).

Interim remedial actions conducted in 2010 removed the source of the groundwater contamination (i.e., USTs and petroleum-contaminated soil). In addition, soil and stone cover material was placed over contaminated surface soils and drainage ditch sediments to mitigate potential exposures and prevent migration of contaminants. These actions are detailed in the *Construction Completion Report* (February 2011) submitted under separate cover.

This analysis recognizes the completed interim remedial actions and will evaluate response actions (i.e., institutional controls) to address remaining soil and sediment contaminants exceeding Commercial Use SCOs and VOC contamination in groundwater above NYS Groundwater Standards.

As required by regulation 6 NYCRR Part 375-4.8(d)(2), this analysis will also consider an alternative to achieve the Unrestricted Use SCOs in 6 NYCRR Part 375-6.8(a), which are considered to be representative of pre-disposal conditions at the Site. This option would allow any property use including the raising of livestock; although it should be noted that current zoning and land use plans would preclude the Site from such use. Regardless, the unrestricted use option will be included as a comparison to evaluate other alternatives. The Unrestricted

Use evaluation will include response actions to address VOC contamination in groundwater above NYS Groundwater Standards, residual contamination in subsurface soil and sediments exceeding Unrestricted Use SCOs, and a small area of surface soil in the vicinity of SS-06 exceeding Unrestricted Use SCOs.

8.2.1 Groundwater

Groundwater has been impacted by VOCs from former gasoline station operations. The extent of the plume appears to be limited to the southwest portion of the Site, near the former USTs (see Figure 6). As calculated using ArcGIS Spatial Analyst, the area of petroleum-impacted groundwater at the Site exceeding NYS Groundwater Standards is estimated to be 4,613 ft². Assuming a target zone of 2.35 feet and a porosity of 30% based on RI findings, the volume of the plume is estimated at 24,327 gallons. As part of the preliminary screening process, presumptive/proven remedial technologies in DER-15 were considered, as shown in the following table.

Preliminary Screening of Groundwater Remedial Actions

Presumptive Remedy	Feasible	Rationale
Monitored Natural Attenuation	Yes	Petroleum compounds breakdown naturally over time.
Institutional Controls	Yes	Deed restrictions and implementation of a Site Management Plan can meet the RAOs for the Site.
In-Situ Chemical Oxidation/Bioremediation	No	Traditionally ineffective in fractured rock aquifers. May be feasible, but need more detailed characterization of bedrock at the Site to determine if this would be an effective remedial method.
Air Sparging	No	Largely ineffective in fractured rock aquifers due to the presence of preferential pathways.
Separate-Phase Recovery	No	No free product present.
Groundwater Extraction and Treatment	No	Water-bearing zone is too small to create capture zone for an effective pump & treat system.
Two-Phase Vacuum Extraction	Yes	Common remedial method for removing VOCs from groundwater in low yield formations.

No potential completed exposure pathways were identified in the exposure assessment. In addition, groundwater contamination does not appear to be migrating off-site. Therefore, the established RAOs can be met through implementation of institutional controls. For evaluation of the Unrestricted Use Option, additional remedial actions will be considered, as described in Section 8.3.2.

8.2.2 Soil

Surface soils impacted with PAHs and metals above Commercial Use SCOs were capped with a soil cover as an IRM, as shown on Figure 4. Contaminated soils remain beneath the clean cover material, at a depth of 2 to 3 feet below grade. The total volume of soil beneath the demarcation layer that exceeds Commercial Use SCOs is estimated to be 792 tons, assuming a removal thickness of 4.5 feet.

Mercury, lead, copper, barium, and a PAH compound were detected above Commercial Use SCOs in test pit samples collected from beneath the basement slab in the former office building, as shown on Figure 6. The basement was filled during the IRM and impacted soils occur beneath the concrete slab at a depth of approximately 8 to 11 feet below grade. The volume of sub-slab soil exceeding Commercial Use SCOs is estimated to be 35 tons.

Response actions were evaluated to ensure long-term effectiveness of the IRMs in meeting the remedial objectives for the Site. As part of the preliminary screening process, presumptive/proven remedial technologies in DER-15 were considered, as shown in the following table.

Preliminary Screening of Soil Remedial Actions

Presumptive Remedy	Feasible	Rationale
Soil Excavation and Disposal	Yes	Soils are presumed to be non-hazardous and
		acceptable for disposal as landfill cover.
In-Situ Chemical	No	Not an effective remedy for metals or PAH
Oxidation/Bioremediation		compounds.
Air Sparging/ Soil Vapor Extraction	No	Not an effective remedy for metals or PAH compounds.
Monitored Natural Attenuation	No	Heavy metals and PAHs are persistent in the
		subsurface and do not readily attenuate.
Institutional Controls	Yes	Deed restrictions and implementation of a
		Site Management Plan can meet the RAOs for
		the Site.
Stabilization	No	Contaminants too widespread across the Site
		and occurrence is inconsistent/sporadic.
Thermal Desorption	No	Not a proven remedy for metals
		contamination.

No potential completed exposure pathways were identified in the exposure assessment. In addition, contamination does not appear to be migrating off-site. Therefore, the established RAOs can be met through implementation of institutional controls.

For evaluation of the Unrestricted Use Option, additional remedial actions were considered to address impacted soils present beneath the demarcation layer, below the basement slab, residual petroleum-impacted soils in the vicinity of the former tanks and

pump island, and metals in the vicinity of GP-07, GP-01, and SS-06. Areas of impacted sub-surface soils are shown on Figure 6. As depicted on the figure, sub-surface soil impacts are present off-site within the Route 104 right-of-way. Assuming a weight of 1.5 tons/ cubic yard, the total volume of soil exceeding Unrestricted Use SCOs is estimated to be 1,483 tons.

8.2.3 Sediments

Drainage ditch sediments were capped with a stone cover as an IRM (Figure 4). Response actions (i.e., institutional control measures) were evaluated to ensure long-term effectiveness of this IRM in meeting the remedial objectives for the Site.

For evaluation of the Unrestricted Use Option, removal and disposal of impacted sediments was evaluated.

8.3 Development of Alternatives

This section describes the technology types and process options that are appropriate to conditions and the nature and extent of contamination at the Site.

After a preliminary screening, the following general response actions have been identified to address residual soil and groundwater contamination at the Site:

- No Further Action
- No Further Action with Institutional Controls
- Long-Term Monitoring with Institutional Controls
- Unrestricted Use Option- Soil Removal and Disposal with Two-Phase Vacuum Extraction

Two-Phase Vacuum Extraction (TPVE) to address dissolved-phase petroleum contamination is evaluated as the most appropriate remedial alternative for the Unrestricted Use Option.

8.3.1 Commercial Use Alternatives

The commercial use category allows for the buying, selling or trading of merchandise or services including public uses with limited potential for soil contact. Based on the Town's plan for passive recreational use of the Site as a Veteran's Memorial Park, commercial use is the most applicable land use category for the Site.

No Further Action

The No Further Action alternative is included as a baseline to evaluate other alternatives. This alternative recognizes the tank/soil removal and placement of cover material already completed as an IRM, and proposes no additional remedial work. The Site condition would remain virtually as is and future use would not be limited.

No Further Action with Institutional Controls

This alternative recognizes the completed IRMs and relies on institutional controls (i.e., environmental easement, deed restrictions) to mitigate potential impacts to human health and the environment. An institutional control in the form of an environmental

easement would restrict groundwater use at the Site, limit land use and development of the Site, and require compliance with a Site Management Plan (SMP).

Long-Term Monitoring with Institutional Controls

Under this alternative, long-term groundwater monitoring would be conducted to track contaminant migration and degradation over time. In addition, institutional controls (e.g., deed restriction to control groundwater use) and development of a Site Management Plan (SMP), including a Soil Management Plan and Health and Safety Plan (HASP), would be implemented to mitigate exposures during future development or site use.

8.3.2 Unrestricted Use Alternative

As required by regulation 6 NYCRR Part 375-4.8(d)(2), this analysis will consider an alternative to achieve the Unrestricted Use SCOs in 6 NYCRR Part 375-6.8(a), which are considered to be representative of pre-disposal conditions at the Site. This option would allow any property use including the raising of livestock; although it should be noted that current zoning would preclude the Site from such use. Regardless, the unrestricted use option will be included as a comparison to evaluate other alternatives.

The Unrestricted Use Alternative would involve additional excavation and off-site disposal of surface soil, sub-surface soil, and drainage ditch sediments with contaminant concentrations above Unrestricted Use SCOs and groundwater remediation to achieve the NYS Groundwater Standards. Preliminary screening deemed soil removal and disposal with a two-phase vacuum extraction system as the most appropriate remedy to attain the Unrestricted Use SCOs.

Soil Removal and Disposal with Two-Phase Vacuum Extraction (TPVE)

It is assumed that soil and sediment excavation work could be performed by the Town of Clarkson municipal forces. The total volume of soil exceeding Unrestricted Use SCOs is estimated to be 1,483 tons, assuming a soil weight of 1.5 tons/yd³. This includes onsite soils and off-site soil within the right-of-way, as shown on Figure 6. The total volume of drainage ditch sediments exceeding Unrestricted Use SCOs is estimated to be 56 tons, assuming a removal depth of one foot beneath the stone cover and a weight of 1.8 tons/yd³. Sediment excavation would require dewatering and/or diversion of runoff flowing into the ditch from the north.

Since the Unrestricted Use category does not allow for groundwater use restrictions on the property, groundwater treatment will be required to address residual petroleum impacts in the source area near MW-4. The area of petroleum-impacted groundwater requiring treatment is estimated to be 4,613 ft², using ESRI's Spatial Analyst software.

TPVE is evaluated to remediate contamination above NYS Groundwater Standards. TPVE technology employs a high vacuum pump to extract both groundwater and soil vapor from an extraction well. The extracted groundwater would be stored in a tank and transported off-site for disposal. Soil vapor would be discharged to the air.

An SMP including operations and maintenance activities would also need to be implemented.

9.0 Detailed Development of Alternatives

The remedial alternatives identified above are further detailed in this section, and evaluated relative to the remediation goals presented in Section 8.1.2. Tables 4 and 5 include a summary of the costs associated with each alternative.

9.1 Individual Analysis of Alternatives

Each of the alternatives identified in Section 8.3 are further evaluated in detail in this section of the report.

9.1.1 Commercial Use Options

No Further Action

Under this alternative, soil and groundwater would remain unremediated and future Site use and development would not be limited. This alternative may not be protective of human health since no institutional controls would be implemented to mitigate potential future exposures. Except for natural attenuation of VOCs, this alternative would not result in the measurable reduction of contaminant toxicity, mobility, or volume and may not attain compliance with NYS Groundwater Standards.

There would be no increased short-term risks associated with the No Action alternative since remedial activities are not implemented; however, the alternative may not be effective in the long-term and is not considered a permanent remedy.

Based on the findings of the investigation performed to date, it is anticipated that this alternative would not be acceptable to the community or appropriate in regards to potential future redevelopment of the Site.

The costs for this alternative are summarized below.

\$0
\$0
\$0

No Further Action with Institutional Controls

This alternative includes implementation of institutional controls in the form of an environmental easement, and development of a SMP (including HASP). The SMP would include procedures for properly handling and disposing of impacted soil should it be disturbed in the future.

The easement would require the following conditions:

- commercial use, which will also permit industrial use;
- maintenance of the site cover;
- compliance with an approved SMP;

- restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH; and
- the property owner to submit an annual certification of institutional controls.

This alternative would also include development of a SMP which will include:

- an Excavation Plan outlining provisions for future excavations in areas of remaining contamination;
- a HASP to protect the health and safety of site workers;
- a provision to evaluate the potential for soil vapor intrusion should any buildings be developed on the Site; and
- describe the steps necessary for periodic review and certification of the institutional controls.

This alternative would be protective of human health and the environment since it will mitigate potential future exposures to groundwater and provide guidance for ground intrusive work that may disturb impacted soils beneath the demarcation layer (2-3 feet below grade) on the Site and in the right-of-way. The only additional reduction of contaminant toxicity, mobility, or mass would be a result of natural attenuation processes. There would be no increased short-term risks associated with this alternative since remedial activities are not implemented. The institutional action alternative should be effective in the long-term; however, it may not be a permanent remedy.

Based on the investigation findings to date, it is anticipated that this alternative would meet the criteria described in Section 8.1.2. It is technically feasible and relatively easy to implement. The costs for this alternative are summarized below and detailed in Table 4.

Capital Cost \$6,000
Annual Costs (30 years) \$850 **Total Net Present Worth of Costs** \$19,067

Long-Term Monitoring with Institutional Controls

This alternative includes long-term groundwater monitoring, institutional controls (e.g., environmental easement), and development of a SMP including a groundwater monitoring plan. Groundwater monitoring would include annual sampling of all four wells using low-flow purging and sampling methods. A monitoring period of five years is used for this analysis. The actual duration of groundwater monitoring would be determined based on analytical results and approval by NYSDEC. Institutional controls described above would also be implemented.

Results of the annual groundwater sampling would be submitted to the NYSDEC and NYSDOH, along with a certification that the institutional controls are in place and able to protect public health and the environment.

This alternative would be protective of human health and the environment since it will mitigate potential future exposures to groundwater and provide guidance for ground intrusive work that may disturb impacted soils beneath the demarcation layer (2-3 feet below grade) on the Site and in the right-of-way. The only additional reduction of contaminant toxicity, mobility, or mass would be a result of natural attenuation processes. There would be no increased short-term risks associated with this alternative since remedial activities are not implemented. The monitoring and institutional action alternative should be effective in the long-term; however, it may not be a permanent remedy.

Based on the investigation findings to date, it is anticipated that this alternative would meet the criteria described in Section 8.1.2. It is technically feasible and relatively easy to implement. The costs for this alternative are summarized below and detailed in Table 4.

Capital Cost \$6,000
Annual Costs (5 years) \$3,850
Annual Costs (25 years) \$850

Total Net Present Worth of Costs \$34,648

9.1.2 Unrestricted Use Option

Soil Removal and Disposal with Two-Phase Vacuum Extraction

Under this alternative, additional excavation and off-site disposal of soils and sediments with contaminant concentrations above Unrestricted Use SCOs would be required. It is assumed that Town forces could be utilized to complete the soil/sediment removal, staging, loading, and backfill activities. Transportation and disposal would be subcontracted. For purposes of this evaluation, it is estimated that 1,483 tons of soil and 56 tons of drainage ditch sediment would require removal and disposal. Based on analytical results, the excavated material would be classified as non-hazardous waste. Excavated material would be transported off-site to a permitted disposal facility (e.g. Mill Seat Landfill). Clean backfill material would be used to bring excavated areas back to existing grade.

To facilitate removal of drainage ditch sediments, discharges from the culvert pipe would have to be temporarily diverted. This would most likely be accomplished by placement of a basin to contain any flow and then pumping the water around the area being excavated. This work would be carefully planned in segments to allow for proper drainage of run-off. Trees would also need to be removed along the ditch to allow access for excavation equipment.

Removal of sub-slab soils would require excavation of the fill material in the former basement, and demolition of the concrete slab with a hoe ram or other equipment. Soils would be removed down to bedrock.

Excavation of soils within the Route 104 right-of-way would require modification of the highway work permit. The extent of excavation is limited by Route 104 to the south, a water line to the north, and catch basin to the west. Additional soil removal west of the main tank pit would be complicated by the presence of a 24-inch diameter underground culvert and associated bedding material.

Post-removal confirmatory samples will be collected to demonstrate successful removal of impacted materials. During excavation, air monitoring would be performed as specified in the Community Air Monitoring Plan (CAMP) and HASP.

In addition to the soil removal, TPVE would be utilized to treat groundwater concentrations above NYS Groundwater Standards. TPVE involves the installation of extraction wells in the plume area and the application of a high vacuum to remove both groundwater and soil vapor. The vacuum applied to the subsurface creates vapor-phase pressure gradients toward the extraction wells. These vapor-phase pressure gradients are also transmitted directly to groundwater, and will draw vapor and water toward the vacuum well in response to the imposed gradients. The higher the applied vacuum, the larger the radial influence on both vapor and liquid phases, and thus the greater the vapor and liquid recovery rates. The vacuum induced by this method serves both to hydraulically control groundwater migration and to cause vapor phase extraction of sorbed phase contaminants from the affected zone.

As part of the remedial design, a pilot test would be performed on a newly installed extraction well using a vac truck to determine effective radial vacuum influence. Data obtained from the pilot test would be used to determine the actual number and location of extraction wells in the plume area.

Extracted groundwater would either be treated and discharged onsite or pumped into a storage tank and transported off-site for disposal. For purposes of this evaluation, off-site disposal will be used. Based on previous analytical results, it is assumed that groundwater can be disposed of as non-hazardous petroleum contaminated water. Extracted soil vapor would be discharged directly to the atmosphere, or filtered prior to discharge.

The total contaminant mass removed would be measured for both groundwater and soil vapor. Concentration of the effluent would initially be measured daily, then weekly thereafter. Vacuum levels, groundwater depths, and other system data would be collected and recorded as part of system operation and maintenance. An operations and monitoring plan would be developed to verify system performance. The duration of TPVE would be determined based on groundwater contaminant concentrations, contaminant mass removal, and approval by NYSDEC. It is estimated that the plume area can be effectively remediated in approximately 90 days.

This alternative should be protective of human health and the environment, but may not address all subsurface contamination due to constraints posed by the presence of Route 104 and underground utilities. Therefore, institutional controls may be warranted to mitigate impacts of residual soil and/or groundwater contamination.

This alternative would result in reduction of the toxicity, mobility, and mass of contaminants by physical removal of the contamination from the Site and subsequently preventing off-site migration. It should be noted that contaminants would not be destroyed, but transferred from the soil vapor phase to the atmosphere. VOCs breakdown naturally in the atmosphere.

There would be an increase in short-term risks associated with soil/sediment excavation and installation of the TPVE system. These risks could be managed through implementation of a HASP. There is also the potential for human exposure to airborne contaminants in the vicinity of the TPVE system exhaust. The system would be engineered so as to minimize these exposures. This remedy would be permanent and effective in the long-term.

Based on investigation findings to date, it is anticipated that this alternative may meet the criteria described in Section 8.1.2; however, there are technical limitations, safety considerations, and the costs are relatively high.

The costs for this alternative are summarized below and detailed in Table 5.

Capital Cost \$224,234

Annual Cost \$4,000

Future Cost \$15,000

Total Net Present Worth of Costs \$248,085

9.2 Comparative Analysis

A comparative evaluation of the remedial alternatives is presented in the form of a matrix, provided in the table below.

Comparison of Remedial Alternatives

	(Commercial Use Alternatives		Unrestricted Use Alternative
		No Further Action w/Institutional	Long Term Monitoring w/ Institutional	Soil/Sediment Removal & Two-Phase
Criteria	No Further Action	Controls	Controls	Vacuum Extraction
Protection of Public Health &	Not adequately	Potential exposures are mitigated	Potential exposures are mitigated through	Most protective of human health and the
Environment	protective of human	through use of institutional	use of institutional controls and monitored	environment.
	health or the	controls.	for off-site migration of groundwater.	
	environment.			
Compliance with SCGs	Does not comply with	Concentrations exceed SCGs, but	Concentrations exceed SCGs, but would be	Will mitigate groundwater, soil, and
	NYS groundwater	potential exposures controlled by	monitored and Site use would be	sediment contamination.
	standards or Part 375	deed restrictions and cover	restricted.	
	SCOs.	maintenance.		
Long-Term	Not an effective or	Effective in the long-term;	Effective in the long-term; however, may	This is a permanent remedy; however,
Effectiveness/Permanence	permanent long-term	however, requires annual	not be a permanent remedy. Residual	may be limited by existing site conditions
	remedy.	certification under a Site	impacted soil and groundwater would	such as soil permeability. Requires long-
		Management Plan (SMP).	need to be managed by SMP.	term O&M.
Reduction of Toxicity, Mobility,	Only natural attenuation	Only natural attenuation of	Only natural attenuation of contaminants.	Soil and groundwater contaminants will
or Volume	of contaminants.	contaminants.		be removed and off-site migration
				limited.
Short-Term	No short-term risks or	No short-term risks or adverse	No short-term risks or adverse impacts.	Increased risks during implementation
Effectiveness/Permanence	adverse impacts.	impacts.	·	need to be addressed by HASP and
•	·	·		CAMP.
Implementability	Very easy	Easy	Easy	Moderate/Difficult
Land Use	Not a suitable remedy for	Suitable remedy for intended use	Suitable remedy for intended use as a	Would allow any future land use, but
Edild 030	intended use as a park.	as a park.	park.	may still require deed restrictions to
	caca acc ac a paria	as a parm	pa	address residual contamination.
Estimated Duration of Remedy		Unlimited	Monitoring: 5 years	3 months
	0 years	(assume 30 years)	Institutional Controls: Unlimited (assume	O&M: 3 years
		(assume 30 years)	30 years)	Oxivi. 3 years
Estimated Net Present Worth of	\$ 0	\$19,067	\$34,648	\$248,085
Costs	Ţ Ű	+15,007	φ5 .,6 16	+2.3,003

As shown in the matrix, the Unrestricted Use Alternative is the most permanent remedy, but also presents the greatest short-term risks to workers, is the most difficult to implement, and has the highest cost of all the alternatives evaluated.

The No Further Action alternative is not considered adequately protective of human health because it does not limit the use of Site groundwater as a drinking water source, or prevent excavation of subsurface soils/sediments exceeding Commercial Use SCOs. Institutional controls will be necessary to limit use of the Site.

The No Further Action with Long-Term Monitoring Alternative addresses potential future exposure concerns by tracking contaminant migration over time. This alternative accounts for the soil source removal and cover completed as an IRM and relies on natural attenuation over time to decrease groundwater concentrations. Based on groundwater results obtained to date, there is no indication of off-site migration of impacted groundwater. Concentrations would be expected to decrease since the source material has been removed and petroleum compounds will naturally attenuate over time. The increased cost of long-term monitoring provides relatively no added benefit to public health or the environment.

All of the alternatives may leave residual soil and groundwater contamination on the subject Site and adjacent right-of-way. Investigation results do not indicate any current exposure concerns with soil, sediment, or groundwater.

9.3 Recommended Remedy

No further action with institutional controls is the recommended remedial alternative, based on the criteria in Section 8.1.2. This alternative would satisfy the RAOs developed for the Site and render the Site suitable for commercial use, including passive recreational uses. Additional remediation or long-term groundwater monitoring do not justify the additional costs, considering that all exposure pathways can be eliminated through institutional controls while still allowing full intended use of the Site.

Table 1 - Surface Soil Results

			Restricted-								
	Unrestricted	Residential	Residential	Commercial	Industrial						
Detected Parameters	Use ²	Use ³	Use ³	Use ³	Use ³	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06
					Sample Date:	4/27/2009	4/27/2009	4/27/2009	4/27/2009	4/27/2009	4/27/2009
EPA 8260 - Volatile Organics ¹		1	2.100							4 -0 -	
1,2-Dichloroethane	20	2,300	3,100	30,000	60,000	ND	1.18 J	2.02 J	1.20 J	1.68 J	1.58 J
m/p-Xylenes	N/A	N/A	N/A	N/A	N/A	ND	1.76 J	ND	ND 5.60 Y	ND	ND
Styrene	N/A	N/A	N/A 19,000	N/A	N/A	ND 17.1.1	ND	ND C20 I	5.63 J	2.20 J	1.81 J
Tetrachloroethene	1,300 700	5,500 100,000	100,000	150,000 500,000	300,000 1,000,000	17.1 J ND	11.6 J 3.98 J	6.28 J ND	5.35 ND	14.0 J	ND ND
Toluene Vinyl acetate	N/A	N/A	N/A	N/A	N/A	3.10 J	8.77 J	2.53 J	3.78 J	3.14 J 4.82 J	ND ND
Xylene (mixed)	260	100,000	100,000	500,000	1.000.000	ND	1.76 J	ND	ND	4.82 J ND	ND ND
EPA 8270 -Semi-Volatile Orga		100,000	100,000	300,000	1,000,000	ND	1.703	ND	ND	ND	ND
		100.000	100 000	500,000	1 000 000	ND	1 510 I	MD	106	MD	224 I
Anthracene	100,000	100,000	100,000	500,000	1,000,000	ND 234 J	1,510 J	ND 257 I	406	ND	234 J
Benzo(a)anthracene	1,000 1,000	1,000 1,000	1,000 1,000	5,600	11,000	234 J 279 J	5,140 5,450	257 J 222 J	1,500	ND ND	ND ND
Benzo(a)pyrene Benzo(b)fluoranthene	1,000	1,000	1,000	1,000 1,000	1,100 11,000	279 J 286 J	6,580	ND	1,700 1,910	ND ND	ND ND
Benzo(g,h,i)perylene	100,000	100,000	100,000	500,000	1,000,000	192 J	4,830	213 J	1,340	ND	ND ND
Benzo(k)fluoranthene	800	1,000	3,900	56,000	110,000	277 J	4,050 4,150	ND	1,340	ND	ND
Bis (2-ethylhexyl) phthalate	N/A	1,000 N/A	3,900 N/A	N/A	N/A	ND	1,510 J	357 J	260 J	ND ND	276 J
Butylbenzylphthalate	N/A	N/A	N/A	N/A	N/A	340 J	2,630	ND	853	296 J	372
Chrysene	1,000	1,000	3,900	56,000	110,000	321 J	5,980	263 J	1,730	ND	ND
Di-n-butyl phthalate	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	195 J
Dibenzo (a,h) anthracene	330	330	330	560	1,100	ND	ND	ND	411	ND	ND
Fluoranthene	100,000	100,000	100,000	500,000	1,000,000	762	ND	604	4,550	ND	386
Indeno(1,2,3-cd)pyrene	500	500	500	5,600	11,000	ND	4,470	ND	1,260	ND	ND
Phenanthrene	100,000	100,000	100,000	500,000	1,000,000	386	6,630	230 J	1,730	ND	218 J
Pyrene	100,000	100,000	100,000	500,000	1,000,000	564 M	10,600	403 J	2,850	ND	303 J
TAL Metals ⁴											
Aluminum- Total	I	1		ı		11,200	4,870	5,450	8,620	9,910	9,070
Antimony- Total	-	-	-	-	-	<7.93 M	<5.03	<7.72	<6.67	<6.87	< 0.700
Artimony- Total Arsenic- Total	13	16	16	16	16	6.62 M	2.89	3.60	4.13	6.36	7.36
Barium- Total	350	350	400	400	10,000	960	119	165	165	291	357
Beryllium- Total	7.2	14	72	590	2,700	<0.661 M	< 0.420	< 0.644	< 0.555	< 0.573	< 0.584
Cadmium- Total	2.5	2.5	4.3	9.3	60	<0.661 M	1.54	0.807	< 0.555	< 0.573	< 0.584
Calcium- Total		-	-		-	3,890	56,900	10,600	14,300	4,470	5,430
Chromium- Total	30	36	180	1,500	6,800	17.2 M	23.7	10.1	11.8	13.9	36.7
Cobalt- Total	-	-	-	-	-	7.12 M	4.28	4.39	5.44	6.68	9.12
Copper- Total	50	270	270	270	10,000	15.4 D,M	57.6	14.2	12.7	9.55	47.4
Iron- Total	-	-	-	-	-	17600 D	13,200	14,200	13,800	15,500	51,600
Lead- Total	63	400	400	1,000	3,900	606	150	117	77	69.5	121
Magnesium- Total	-	-	-	-	-	3100 D	20,300	3,710	6,110	3,480	3,360
Manganese- Total	1,600	2,000	2,000	10,000	10,000	613 M	325	356	388	47	810
Mercury- Total	0.18	0.81	0.81	2.8	5.7	0.139 D,M	0.101	0.0838	0.0651	0.071	0.104
Nickel- Total	30	140	310	310	10,000	15.5 D,M	14	13.3	12	14.9	25.2
Potassium- Total	-	-	-	-		2,080	1,010	1,430	1,550	2,000	1,820
Selenium- Total	3.9	36	180	1,500	6,800	4.63	< 0.420	< 0.644	< 0.550	< 0.573	< 0.584
Silver- Total	2	36	180	1,500	6,800	<1.32 M	< 0.840	<1.29	<1.11	<1.15	<1.17
Sodium- Total	-	-	-	-	-	138	343	204	145	<115	<117
Thallium- Total	-	-	-	-	-	<0.793 M	< 0.503	< 0.772	< 0.667	< 0.687	< 0.700
Vandium- Total	-	-	-	-	-	26.4 M	13.6	15.6	19.5	20	21.6
Zinc- Total	109	2,200	10,000	10,000	10,000	271 M	278	135	83.1	75.2	152
EPA 8082 - PCBs (none detect	ed above labora	tory detection	n limits)								
EPA 8081 - Pesticides ¹											
4,4'-DDD	3.3	2,600	13,000	92,000	180,000	<4.4			<4.1		<4.4
4,4-DDE	3.3	1,800	8,900	62,000	120,000	3 J			3 J		9.9
4'4-DDT	3.3	1,700	7,900	47,000	94,000	2 J			3 J		18
		-,.00	. 5- 00	,000	,500						

¹ - values presented in micrograms per kilogram (ug/Kg).

Value Exceeds Unrestricted SCOs
Value Exceeds Residential Use SCOs
Value Exceeds Restricted-Residential SCOs
Value Exceeds Commercial Use SCOs
Value Exceeds Industrial Use SCOs

^{2 - 6} NYCRR Part 375-6.8 - Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives

³ - 6 NYCRR Part 375-6.8 - Table 375-6.8(b): Restricted Use Soil Cleanup Objectives

^{4 -} values presented in milligrams per kilogram (mg/kg)

ND- Not detected above reporting limit

J- value is estimated

D- duplicate results outside QC limits

M- matrix spike recoveries outside QC limits; matrix bias indicated

Table 2 - Sediment Sample Results

Table 2 - Sediment Samp	ic results								
			Restricted-						
	Unrestricted	Residential	Residential	Commercial	Industrial				
Detected Parameters	Use ²	Use ³	Use ³	Use ³	Use ³	SD-01	SD-02	SD-03	SD-04
		•			Sample Date:	4/27/2009	4/27/2009	4/27/2009	4/27/2009
EPA 8260 - Volatile Organics ¹	I							•	
1,1-Dichloroethene	330	100,000	100,000	500,000	1,000,000	3.50 J	15.4	4.58 J	ND
1,2,4-Trimethylbenzene	3,600	47,000	52,000	190,000	380,000	-	-	-	2.48 J
1,2-Dichloroethane	20	2,300	3,100	30,000	60,000	1.98 J	2.89 J	2.19 J	ND
Acetone	50	100,000	100,000	500,000	1,000,000	17.9 J	81.6 J	71.2 J	ND
m/p-Xylenes	-	-	-	-	-	ND	ND	ND	2.20 J
o-Xylene	-	-	-	-	-	ND	ND	ND	2.72 J
Styrene	-	_	-	_		1.58 J	2.48 J	ND	ND
Tetrachloroethene	1,300	5,500	19,000	150,000	300,000	ND	7.35 J	ND	ND
Toluene	700	100,000	100,000	500,000	1,000,000	ND	ND	ND	1.37 J
Xylene (mixed)	260	100,000	100,000	500,000	1,000,000	-	-	-	4.92 J
EPA 8270 - Semi-Volatile Org		200,000	200,000	200,000	1,000,000				,_,
	ames	1		[1		1	601
2,6-Dinitrotoluene	20.000	100.000	100.000	500.000	1 000 000	- ND	1450 1	- ND	691
Acenaphthene	20,000	100,000	100,000	500,000	1,000,000	ND 2.000	1450 J	ND	ND 204
Anthracene	100,000	100,000	100,000	500,000	1,000,000	2,090	4,780	6,230	384
Benzo(a)anthracene	1,000	1,000	1,000	5,600	11,000	5,990	1,550	17,600	1,310
Benzo(a)pyrene	1,000	1,000	1,000	1,000	1,100	5,970	16,000	17,700	1,290
Benzo(b)fluoranthene	1,000	1,000	1,000	1,000	11,000	7,680	18,200	20,900	1,280
Benzo(g,h,i)perylene	100,000	100,000	100,000	500,000	1,000,000	4,450	11,600	12,800	944
Benzo(k)fluoranthene	800	1,000	3,900	56,000	110,000	4,140	13,600	13,700	1,270
Bis (2-ethylhexyl) phthalate	-	-	-	-	-	ND	ND	ND	241 J
Butylbenzylphthalate	-	-	-	-	-	ND	ND	ND	1,250
Chrysene	1,000	1,000	3,900	56,000	110,000	7,350	19,700	21,900	1,440
Dibenzo (a,h) anthracene	330	330	330	560	1,100	1730 J	4,000	4490 J	ND
Dimethyl phthalate	-	-	-	-		ND	ND	ND	260 J
Fluoranthene	100,000	100,000	100,000	500,000	1,000,000	20,200	51,800	61,800	3,710
Fluorene	30,000	100,000	100,000	500,000	1,000,000	ND	1950 J	2450 J	ND
Indeno(1,2,3-cd)pyrene	500	500	500	5,600	11,000	3,870	11,100	12,300	892
N-Nitroso-di-n-propylamine	-	-	-	-	-	ND	ND	ND	324 J
Phenanthrene	100,000	100,000	100,000	500,000	1,000,000	11,700	29,100	35,900	1,800
Pyrene	100,000	100,000	100,000	500,000	1,000,000	12,400	34,900	36,300	2,630
TAL Metals ⁴									
Aluminum- Total	-	-	-	-	-	3,760	5,020	3,780	-
Arsenic- Total	13	16	16	16	16	19.60	2.95	2.06	5.78
Barium- Total	350	350	400	400	10,000	245	149	104	319
Cadmium- Total	2.5	2.5	4.3	9.3	60	ND	ND	ND	0.812
Calcium- Total	-	-	-	-	-	782,000	50,000	80,800	-
Chromium- Total	30	36	180	1,500	6,800	25.9	11.3	10.6	15.2
Cobalt- Total	-	-	-	-	-	6.97	3.61	3.53	-
Copper- Total	50	270	270	270	10,000	61.5	15.8	13.7	-
Iron- Total	_	-	-	-	-	133,000	11,200	12,200	-
Lead- Total	63	400	400	1,000	3,900	141	80.5	17.3	152
Magnesium- Total	-	-	-	-	-	8,310	8,790	18,700	-
Manganese- Total	1,600	2,000	2,000	10,000	10,000	943	201	502	-
Mercury- Total	0.18	0.81	0.81	2.8	5.7	0.0181	0.043	0.0263	0.0467
Nickel- Total	30	140	310	310	10,000	25.7	8.78	7.35	-
Potassium- Total	- 30	-	-	-	-	719	1,030	868	_
Sodium- Total	-	-		-	-	270	225	217	-
Vandium- Total	_	_	<u> </u>	_	-	21.2	19.7	17.3	_
Zinc- Total	109	2,200	10,000	10,000	10,000	220	163	112	_
Line ioui	107	_,_00	10,000	10,000	10,000	220	105	114	ı -

¹ - values shown in micrograms per kilogram ($u\,\mathrm{g/kg}$).

ND- Not detected above reporting limit

J- value is estimated

Value Exceeds Unrestricted Use SCOs
Value Exceeds Residential Use SCOs
Value Exceeds Restricted-Residential Use SCOs
Value Exceeds Commercial Use SCOs
Value Exceeds Industrial Use SCOs

² - 6 NYCRR Part 375-6.8 - Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives

^{3 - 6} NYCRR Part 375-6.8 - Table 375-6.8(b): Restricted Use Soil Cleanup Objectives

^{4 -} values shown in milligrams per kilogram (mg/kg)

Table 3-1 Subsurface Soil Results - VOCs & SVOCs

		OCS & SV			I		1	1	ī	ī	I	1	1	I	ī	T	T	1	1	1		
			Restricted-																		<i>i</i> '	ĺ
	Unrestricted	Residential	Residential	Commercial	Industrial														MW-01*	MW-02*	MW-03*	MW-04*
Detected Parameters ¹	Use ²	Use ³	Use ³	Use ³	Use ³	GP-01-03	GP-04-02	GP-07-07	GP-11-10	GP-12-09	GP-13-10	GP-16-8.5	GP-18-07	GP-19-10	GP-20-09	TP-01A*	TP-01B*	TP-10-08	(8-10')	(8-9.5')	(2-4')	(8-11')
				S	Sample Date:	2/8/2010	2/8/2010	2/8/2010	2/9/2010	2/9/2010	2/9/2010	2/8/2010	2/9/2010	2/9/2010	2/9/2010	5/27/2009	5/27/2009	7/1/2009	8/10/2009	8/11/2009	8/12/2009	8/12/2009
EPA 8260 - Volatile Organics																					•	
1,1,2,2-Tetrachloroethane	-	-	-	-	-	ND	ND	20.6 J	ND	ND	54.3	ND	ND	ND	ND	ND R	18.5 B	6.91	ND	ND	ND	ND
1,1,2-Trichloroethane	-	-	-	-	-	ND	ND	3.0 J	ND	ND	27.5	ND	5.6 J	ND	ND	ND R	69.7	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	47,000	52,000	190,000	380,000	ND	ND	2.0 J	ND	ND	ND	ND	ND	ND	ND	-	-	15.5	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	47,000	52,000	190,000	380,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	9.41	ND	ND	ND	ND
2-Butanone (MEK)	120	100,000	100,000	50,000	1,000,000	ND	ND	20.1 J	ND	4.0 J	11.2 J	ND	54.5	ND	5.8 J	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	-	-	-	-	-	ND	ND	8.2 J	ND	ND	71.8	ND	8.1 J	ND	ND	ND R	5.65 J,B	71.6 B	ND	ND	ND	ND
4-Methyl-2-pentanone	-	-	-	-	-	1.3 J	ND	ND	1.1 J	ND	ND	ND	5.9 J	1.3 J	ND	ND R	ND	ND	ND	ND	ND	ND
Acetone	50	100,000	100,000	500,000	1,000,000	ND	ND	78.0 J,B	17.2 J,B	43.4 J,B	60.1 J,B	ND	177 J,B	7.1 J,B	23.1 J,B	ND	41.4 J	32.0 J	ND	ND	ND	ND
Bromodichloromethane	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	4.1 J	ND	ND	ND R	42.1	ND	ND	ND	ND	ND
Carbon disulfide	-	-	-	-	-	ND	ND	2.0 J	ND	ND	ND	ND	ND	ND	1.3 J	ND	ND	ND	ND	ND	ND	10
Chloroform	370	10,000	49,000	350,000	700,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	17.7	24.6	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	250	59,000	100,000	500,000	1,000,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.64 J	3.26 J	ND	ND	ND	ND	ND
Cyclohexane	-	-	-	-	-	ND	1.9 J	ND	1.7 J	2.0 J	7.2 J	ND	9.4 J	2.0 J	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	30,000	41,000	390,000	780,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND R	ND	1.05 J	ND	ND	ND	ND
Isopropylbenzene	-	-	-	-	-	ND	ND	5.0 J	ND	ND	ND	ND	ND	ND	ND	-	-	4.20 J	ND	ND	ND	ND
Methyl acetate	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	5.3 J	ND	1.3 J	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	-		-		-	ND	ND	ND	ND	ND	7.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	50	51,000	100,000	500,000	1,000,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20.87 J	17.8 J	ND	ND	ND	ND	ND
m/p-Xylenes	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND R	ND	3.25 J	ND	ND	ND	ND
n-Butylbenzene	12,000	100,000	100,000	500,000	1,000,000	ND	ND	4.0 J	ND	ND	18.6 J	ND	ND	ND	ND	-	-	10.8 J	ND	ND	ND	ND
n-Propylbenzene	3,900	100,000	100,000	500,000	1,000,000	ND	ND	2.76 J	ND	ND	ND	ND	ND	ND	ND	-	-	5.83	ND	ND	ND	ND
Naphthalene	12,000	100,000	100,000	500,000	1,000,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	7.09 J,B	ND	ND	ND	ND
p-Isopropyltoluene	11 000	100,000	100,000	500,000	1 000 000	ND ND	ND ND	ND 2.56 J	ND ND	ND ND	6.2 J	ND ND	ND ND	ND ND	ND ND	ND	ND	5.79 J	ND	ND ND	ND ND	ND ND
sec-Butylbenzene	11,000 700	100,000	100,000	500,000	1,000,000	ND ND	ND ND	2.36 J ND	ND ND	ND ND	18.9 J ND	ND ND	ND ND	ND ND	6.74	ND R	- ND	2.66 J ND	ND ND	ND ND	ND ND	ND ND
Toluene Xylene (mixed)	260	100,000	100,000	500,000	1,000,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	- THE	ND -	3.25	ND ND	ND ND	ND ND	ND
EPA 8270 - Semi-Volatile Org		100,000	100,000	300,000	1,000,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			3.23	ND	ND	ND	ND
2.6-Dinitrotoluene	i l										1	1				1		630				
Benzo(a)anthracene	1.000	1,000	1,000	5,600	11,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	818	602 J	ND	ND	ND	ND	ND
Benzo(a)pyrene	1,000	1,000	1,000	1,000	1.100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	894	587 J	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	1,000	1,000	1.000	1,000	11,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,160	756	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	100,000	100,000	100,000	500,000	1.000.000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	888	536 J	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	800	1.000	3,900	56,000	110,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	667 J	422 J	ND	ND	ND	ND	ND
Bis (2-ethylhexyl) phthalate	-	-	-	-	-	ND	ND	525	ND	ND	ND	ND	ND	ND	ND	2,810	577 J	ND	ND	ND	ND	ND
Butylbenzylphthalate	-	-	_	_	-	ND	ND	977	ND	ND	ND	ND	ND	ND	ND	2.030	988	ND	ND	ND	ND	ND
Chrysene	1,000	1,000	3,900	56,000	110,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	950	674	ND	ND	ND	ND	ND
Di-n-butyl phthalate	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	894	ND	ND	ND	ND	ND	ND
Dimethyl phthalate	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	234 J	ND	ND	ND	ND
Fluoranthene	100,000	100,000	100,000	500,000	1,000,000	ND	ND	241 J	ND	ND	ND	360	ND	ND	ND	2,200	1,300	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	500	500	500	5,600	11,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	727 J	468 J	ND	ND	ND	ND	ND
N-Nitroso-di-n-propylamine	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	689	274 J	ND	ND	ND	ND
Phenanthrene	100,000	100,000	100,000	500,000	1,000,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,020	452 J	ND	ND	ND	ND	ND
Pyrene	100,000	100,000	100,000	500,000	1,000,000	ND	ND	201 J	ND	ND	ND	ND	ND	ND	ND	1,510	965	ND	ND	ND	ND	ND

^{1 -} All values presented in micrograms per kilogram (ug/Kg).

ND- Not detected above laboratory detection limit

^{2 - 6} NYCRR Part 375-6.8 - Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives

^{3 - 6} NYCRR Part 375-6.8 - Table 375-6.8(b): Restricted Use Soil Cleanup Objectives

J- value is estimated

B- compound detected in an associated blank, as well as in the sample

^{* -} all values are qualified as estimated

R- result reject by data validator

Table 3-2 Subsurface Soil Results - Metals, PCBs, Pesticides

Table 3-2 Subsuita			Restricted-															
	Unrestricted	Residential		Commercial	Industrial													
Detected Denometers	Use ²	Use ³	Use ³	Use ³	Use ³	GP-01-03	CD 04 02	GP-07-07	GP-11-10	GP-12-09	GP-13-10	GP-16-8.5	GP-18-07	GP-19-10	GP-20-09	TP-01A**	TP-01B**	TP-10-08
Detected Parameters	USE	USE	USE		ample Date:	2/8/2010	2/8/2010	2/8/2010	2/9/2010	2/9/2010	2/9/2010	2/8/2010	2/9/2010	2/9/2010	2/9/2010	5/27/2009	5/27/2009	7/1/2009
TAL Metals ¹				D.	ampie Date.	2/8/2010	2/6/2010	2/0/2010	2/9/2010	2/9/2010	2/9/2010	2/8/2010	2/9/2010	2/9/2010	2/9/2010	3/21/2009	3/21/2009	7/1/2009
Aluminum- Total						14900 D	16,900	8,380	13,100	11.800	15,500	8,500	8,240	13,800	10,800	786	6,330	
Arsenic- Total	13	16	16	16	<u>-</u> 16	5.25 D.M	5.21	5.52	4.75	4.63	5.75	3.39	2.59	5.41	3.66 D,M	15.2	9.45	6.11
Barium- Total	350	350	400	400	10,000	400 D,M,N	224 N	281 N	292 N	142 N	99.7 N	217 N	936 N	121 N	368 N	1.450	1,290	229
Beryllium- Total	7.2	14	72	590	2,700	0.892 D.M	0.931	ND	0.662	0.598	0.814	0.370	ND	0.707	0.508 D.M	1.23	ND	-
Cadmium- Total	2.5	2.5	4.3	9.3	60	ND	ND	0.961 *	0.002 ND	ND	ND	ND	ND	ND	ND	ND	ND ND	0.77
Calcium- Total	2.3	2.3	-	<i>7.3</i>	-	2.460 D.*	2,390 *	21.300 *	2,490 *	17.100 *	12,100 *	17,300 *	2,230 *	17.800 *	16,900 D.*	7500	4560	-
Chromium- Total	30	36	180	1,500	6,800	21.3 D,M,*	25.7 *	15.0 *	20.6 *	20.5 *	29.0 *	13.7 *	13.2 *	22.5 *	19.1 D,M,*	46.9	35.1	25.2
Cobalt- Total	-	-	-	-	-	10.9 D,M	14.2	6.95	13.0	12.1	15.4	7.05	6.72	12.9	8.28 M	6.24	4.45	-
Copper- Total	50	270	270	270	10,000	3.24 D,M,*	4.91 *	25.9 *	3.53 *	3.44 *	3.54 *	5.20 *	6.49 *	3.86 *	5.35 D,M,*	237	454	_
Iron- Total	-	-	-	-	-	26,200 D	34,100	14,900	20,400	27,000	32,800	17,300	17,700	31,000	20,800	44,800	23,700	-
Lead- Total	63	400	400	1,000	3,900	4.00 M	5.03	123	2.93	3.54	3.47	5.05	5.82	3.98	5.22 D,M	2,040	2,070	5.12
Magnesium- Total	-	-	-	-	-	5,180 D,M	6,330	6,170	6,430	6,300	7,690	4,990	2,880	7,270	4,740 D	3,840	1,850	-
Manganese- Total	1,600	2,000	2,000	10,000	10,000	296 D,M,N	338 N	577 N	356 N	383 N	398 N	348 N	296 N	375 N	392 M,N	1,360	447	-
Mercury- Total	0.18	0.81	0.81	2.8	5.7	0.0130 D	0.0067	0.0606	0.0038 J	0.0009 J	0.0008 J	0.0205	0.0303	0.0012 J	0.0116	26.5	56.8	0.0093
Nickel- Total	30	140	310	310	10,000	26.0 D,M	31.0	18.0	31.0	28.4	36.7	16.0	14.5	29.8	19.0 D,M	20.5	17.4	-
Potassium- Total	-		-		-	2,970 D,M,N	3,970 N	1,730 N	2,900 N	2,510 N	3,730 N	1,930 N	1,330 N	3,250 N	2,310 D,M,N	2,410	1,870	-
Selenium- Total	3.9	36	180	1,500	6,800	ND	ND	1.60 *	ND	ND	ND	ND	ND	ND	ND	5.1	ND	ND
Silver- Total	2	36	180	1,500	6,800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	18	3.34	ND
Sodium- Total	-	-	-	-	-	184 D	174	311	455	665	833	421	837	976	870	2,080	1,790	-
Thallium- Total	-	-	-	-	-	ND	0.580 *	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
Vandium- Total	-	-	-	-	-	28.3 D,M	33.0	20.9	23.7	26.7	33.3	21.1	22.9	31.0	27.6 D,M	31	21	-
Zinc- Total	109	2,200	10,000	10,000	10,000	43.8 D,M,*	50.9 *	159 *	51.2 *	47.1 *	57.9 *	33.1 *	35.7 *	50.5 *	38.4 D,M,*	294	221	-
EPA 8082 - PCBs ¹																		
Aroclor-1016	0.1	1	1	1	25	0.012 J,B	0.014 J,B	0.027 J,B				0.009 J,B	0.038 B		0.015 J,B	ND	ND	ND
Aroclor-1260	0.1	1	1	1	25	ND	ND	0.094 J				ND	ND		ND	ND	ND	ND
EPA 8081 - Pesticides ¹																		
4,4'-DDD	0.0033	2.6	13	92	180	ND	ND						0.00416			0.32	0.34	
4,4-DDE	0.0033	1.8	8.9	62	120	ND	ND						ND			0.035	0.041	
4'4-DDT	0.0033	1.7	7.9	47	94	ND	ND						ND			0.14	0.12	
alpha-Chlordane	0.094	0.91	4.2	24	47	ND	ND						ND			0.012	0.029	
Dieldrin	0.005	0.039	0.2	1.4	2.8	ND	ND						ND			0.015	0.019	
Endosulfan II	2.4	4.8	24	200	920	ND	ND						0.00191 J			ND	ND	
Endrin	0.014	2.2	11	89	410	ND	ND						ND			0.017	0.018	
Endrin aldehyde	-	-	-	-	-	0.00189 J,B	,						0.00345 B			ND	ND	
gamma-Chlordane	-	-	-	-	-	ND	ND						ND			0.021	0.027	

^{1 -} all values presented in milligrams per kilogram (mg/Kg).

N- compound was "tentatively identified"

^{2 - 6} NYCRR Part 375-6.8 - Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives

^{3 - 6} NYCRR Part 375-6.8 - Table 375-6.8(b): Restricted Use Soil Cleanup Objectives

ND- not detected above lab detection limit

D- duplicate results outside QC limits.

M- matrix spike recoveries outside QC limits; matrix bias indicated

B- compound detected in an associated blank, as well as in the sample

^{*-} LCS or LCSD exceeds the control limits

^{**-} all values are qualified as estimated

Table 3-3 IRM & Tank Closure Samples

Table 3-3 TRIVI & Talik			Restricted-			Donne									
	Unrestricted	Recidential		Commercial	Industrial	Pump	Lift Pit								
	Use ²	Use ³	Use ³	Use ³	Use ³	Island PI-01		TC 01 0*	TC-02-7*	TC-03-8*					TFC 00 0
Detected Parameters	Use	Use	Use				LP-01	TC-01-8*			TC-04-8	TC-05-8	TC-06-8	TC-07-8	TC-08-8
					Sample Date:	7/2/2009	7/2/2009	7/13/2009	7/13/2009	7/13/2009	7/14/2009	7/14/2009	7/14/2009	7/14/2009	7/15/2009
EPA 8260 - Volatile Organics	1														
1,1,2,2-Tetrachloroethane	-	-	-	-	-	ND	5.85	222 B	301 B	3.54 J	6.85	122 B	11.6	ND	1.68 J
1,1,2-Trichloroethane	-	-	-	-	-	ND	6.35	1300	1960	ND	ND	99.1	8.81	ND	ND
1,2,4-Trimethylbenzene	3,600	47,000	52,000	190,000	380,000	24,100	7.7	5,080	4,440	ND	1.22 J	75.4 J	2.03 J	ND	ND
1,2-Dichlorobenzene	1,100	100,000	52,000	500,000	1,000,000	ND	ND R	ND	ND	ND	ND	ND	1.30 J	ND	1.77 J
1,2-Dichloroethane	20	2,300	3,100	30,000	60,000	ND	ND	15.5 J	ND	ND	ND	65.1	2.77 J	2.80 J	2.54 J
1,2-Dichloropropane	-	-	-	-	-	ND	ND	17.2 J	ND						
1,3-Dichlorobenzene	2,400	17,000	49,000	280,000	560,000	ND	ND R	ND	ND	ND	ND	ND	0.62 J	ND	0.73 J
1,3,5-Trimethylbenzene	8,400	47,000	52,000	190,000	380,000	4280	3.54 J	1,290	1,100	ND	1.68 J	148	10.7	ND	ND
1,4-Dichlorobenzene	1,800	9,800	13,000	130,000	250,000	ND	ND R	8.06 J	ND	ND	ND	ND	0.81 J	ND	ND
2-Butanone (MEK)	120	100,000	100,000	50,000	1,000,000	ND	ND	41.3 J	ND	ND	1.92 J	ND	3.36 J	ND	ND
2-Chloroethyl vinyl ether	-	-	-	-	-	ND	ND	64.6 J	165 J	ND	ND	ND	ND	ND	ND
2-Hexanone	-	-	-	-	-	ND	4.42 J,B	125	3670	1.72 J,B	70.9	210 J	11.3	1.46 J	ND
4-Methyl-2-pentanone	-	-	-	-	-	ND	11.9	80.7 J	71.0 J	ND	1.54 J	154 J,B	68.5 J	ND	1.06 J
Acetone	50	100,000	100,000	500,000	1,000,000	8090 J,B	27.6 J,B	250 J,B	941 J,B	590 J	12.8 J	ND	37.7 J	24.5 J,B	13.49 J
Benzene	60	2,900	4,800	44,000	89,000	ND	ND	216	699	ND	ND	ND	ND	ND	ND
Bromodichloromethane	-	-	-	-	-	ND	ND	ND	130 J	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	760	1,400	2,400	22,000	44,000	ND	ND	128	375 J	ND	ND	172 J	10.1 J	9.34 J	8.59 J
Chlorobenzene	1,100	100,000	100,000	500,000	1,000,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.01 J
Chloroform	370	10,000	49,000	350,000	700,000	ND	ND	81.7	84.7 J	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	30,000	41,000	390,000	780,000	283 J	3.03 J	1,300	1,580	ND	ND	ND	ND	ND	ND
Isopropylbenzene	-	-	-	-	-	725	ND	169 J	174 J	ND	ND	39.4 J	1.44 J	ND	ND
Methylene chloride	50	51,000	100,000	500,000	1,000,000	ND	ND	140 J,B	365 J,B	31.68 J,B	ND	ND	9.49 J	ND	ND
m/p-Xylenes	-	-	-	-	-	1060 J	5.86 J	6,670	6,680	ND	ND	ND	1.74 J	ND	ND
n-Butylbenzene	12,000	100,000	100,000	500,000	1,000,000	ND	4.00 J	209 J,B	216 J,B	ND	7.22 J	180 J,B	24.2	ND	1.92 J
n-Propylbenzene	3,900	100,000	100,000	500,000	1,000,000	1,510	ND	601 B	584 B	ND	1.64 J	62.1 J,B	2.67 J	ND	0.97 J
Naphthalene	12,000	100,000	100,000	500,000	1,000,000	9240 J,B	8.74 J,B	2010 J,B	1660 J,B	3.15 J,B	3.27 J	398 J,B	46.3 J	1.31 J	ND
o-Xylene	-	-	-	-	-	151 J	6.33 J	1,920	2,110	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	-	-	-	-	-	544 J	ND	106 J	124 J	ND	3.25 J	86.5 J	8.78 J	ND	ND
sec-Butylbenzene	11,000	100,000	100,000	500,000	1,000,000	5275	ND	62.2 B	3180 B	ND	2.07 J	48.8 J,B	3.62 J	ND	1.04 J
Styrene	-	-	-	-	-	ND	ND	82.7 J,B	97.1 J,B	ND	ND	ND	1.36 J	ND	1.17 J
tert-Butylbenzene	5,900	100,000	100,000	500,000	1,000,000	ND	ND	ND	56.5 J	ND	1.35 J	ND	ND	ND	ND
Toluene	700	100,000	100,000	500,000	1,000,000	ND	2.20 J	432	626	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	-	-	-	-	-	ND	ND	ND	ND	7.08	2.10 J	ND	5.07	ND	ND
Vinyl acetate	-	-	-	-	-	ND	ND	4540 B	4170 B	3.05 J	2.71 J	73.7 J,B	3.60 J	3.10 J,B	2.57 J
Xylene (mixed)	260	100,000	100,000	500,000	1,000,000	ND	12.19 J	8,590	8,790	ND	ND	ND	ND	ND	ND
EPA 8270 - Semi-Volatile Org	ganics ¹														
2-Methylnaphthalene	-	-	-	-	-	33,400	ND	ND	ND	ND	ND	197 J	173 J	ND	ND
4-Chloroaniline	-	-	-	-	-	5,480	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	-	-	-	-	-	8,895	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	100,000	100,000	500,000	1,000,000	20,400	ND	ND	ND	ND	ND	ND	ND	ND	ND
RCRA Metals ⁴			•		•										
Arsenic- Total	13	16	16	16	16	2.70	2.48								
Barium- Total	350	350	400	400	10,000	655	178								
Cadmium- Total	2.5	2.5	4.3	9.3	60	ND	0.503								
Chromium- Total	30	36	180	1,500	6,800	11.4	11.2								
Lead- Total	63	400	400	1,000	3,900	9.07	6.19								
Mercury- Total	0.18	0.81	0.81	2.8	5.7	0.0192	0.0369								
EPA 8082 - PCBs (none detec		ratory detecti	on limit)												
		•													

^{1 -} Values presented in micrograms per kilogram (ug/Kg).

Value Exceeds Unrestricted Use SCOs

Value Exceeds Residential Use SCOs

Value Exceeds Restricted-Residential Use SCOs

Value Exceeds Commercial Use SCOs

Value Exceeds Industrial Use SCOs

^{2 - 6} NYCRR Part 375-6.8 - Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives

^{3 - 6} NYCRR Part 375-6.8 - Table 375-6.8(b): Restricted Use Soil Cleanup Objectives

^{4 -} Values presented in milligrams per kilogram (mg/Kg).

ND- Not detected above laboratory detection limit

^{* -} all results are estimated

B- compound detected in the associated blank

R- result rejected by data validator

J- value is estimated

Table 4 - Groundwater Results

	Groundwater				
Detected Parameters ¹	Standard ²	MW-01**	MW-02**	MW-03**	MW-04**
Detected 1 arameters	Standard	9/16/2009	9/16/2009	9/16/2009	9/16/2009
ED4 9260 X 1 (2) O		9/16/2009	9/10/2009	9/10/2009	9/10/2009
EPA 8260 - Volatile Organics		II	1	1	
1,2,4-Trimethylbenzene	5	ND	ND	0.76 J	16.0 J
Acetone	50*	ND	10.0 J	ND	78.7 J
Benzene	1	15.3	2.09	ND	353
Chloroform	7	ND	2.72	ND	ND
Ethylbenzene	5	ND	ND	ND	30.2
2-Hexanone	50*	ND	ND	4.23 J,B	ND
Isopropylbenzene	5	ND	ND	ND	10.0 J
m/p-Xylenes	N/A	ND	ND	ND	25.2
4-Methyl-2-pentanone	N/A	ND	ND	3.78 J,B	ND
m/p-Xylenes	N/A	ND	ND	ND	25.2
n-Propylbenzene	5	ND	ND	ND	8.00 J
Naphthalene	10*	1.04 J,B	ND	2.24 J,B	ND
o-Xylene	N/A	ND	ND	0.53 J	ND
Tetrachloroethene	5	2.83	ND	ND	ND
Toluene	5	ND	ND	ND	20.3
1,1,2-Trichloroethane	1	ND	ND	ND	26.0
Xylenes, Total	5	ND	ND	ND	25.2
EPA 8270 - Semi-Volatile Organics	·				
Phenol	1	ND	ND	ND	7.97 J
TAL Metals					
Aluminum	N/A	ND	11.8	ND	ND
Barium	1,000	1.06	1.38	0.856	1.51
Calcium	N/A	186	198	133	155
Chromium	50	ND	0.01	ND	ND
Iron	300	ND	16.1	ND	0.366
Lead	25	ND	0.009	ND	ND
Magnesium	35,000*	46.7	38.7	23.6	27.9
Manganese	300	0.58	1.3	ND	5.45
Potassium	N/A	35 N,M	20.9 N	10.7 N	19.5 N
Sodium	20,000	465	253	262	514
Thallium	0.5*	ND	ND	0.007	0.009
Vanadium	N/A	ND	0.022	ND	ND
EPA 8082 - PCBs (none detected a	bove laboratory de	tection limits)		
EPA 8081 - Pesticides					
4,4'-DDD	0.3	0.069 J,B		ND	
4,4'-DDE	0.2	ND		0.055 J	
4,4'-DDT	0.2	0.083 J		0.072 J	
Aldrin	ND	0.053 J		ND	
alpha-Chlordane	0.1	0.041 J		ND	
Dieldrin	0.004	0.039 J		0.036 J	
Endosulfan II	N/A	ND		0.039 J,B	
Endosulfan Sulfate	N/A	0.049 J		ND	
Endrin	ND	0.034 J		ND	
Endrin aldehyde	5	0.061 J		ND	
gamma-BHC (Lindane)	N/A	0.033 J		ND	
gamma-Chlordane		0.088 J,B		0.075 J,B	
Methoxychlor	35	0.058 J,B		0.035 J,B	

 $^{1\;\;} all\; values\; shown\; in\; micrograms\; per\; liter\; (ug/L)$

N- compound was "tentatively identified"

M- matrix spike recoveries outside QC limits; matrix bias indicated

~ value detected above NYS Ambient Groundwater Standard or applicable NYSDEC Guidance Value

²⁻ NYS Ambient Groundwater Standard (6 NYCRR Part 703.5)

^{* -} NYSDEC Guidance Value (TOGS 1.1.1)

J- value is estimated

B- compound detected in associated method blank

Table 5

Town of Clarkson, 8264 Ridge Road West, ERP Site #828143 Estimated Remedial Costs Commercial Use Alternatives

	Est.						
Description	Quantity		Unit Price	Est. Total			
1. No Further Action w/ Institutional Controls							
Negotiation & Filing of Deed Restrictions	1	@	\$3,000	\$3,000			
Site Management Plan	1	@	\$3,000	\$3,000			
Annual Engineer's Certification (30 years)	30	yrs	\$850	\$25,500			
- site visit & certification letter							
			TOTAL	\$31,500			
TOTAL NET PRESENT WORTH OF COSTS (5% interest rate)							

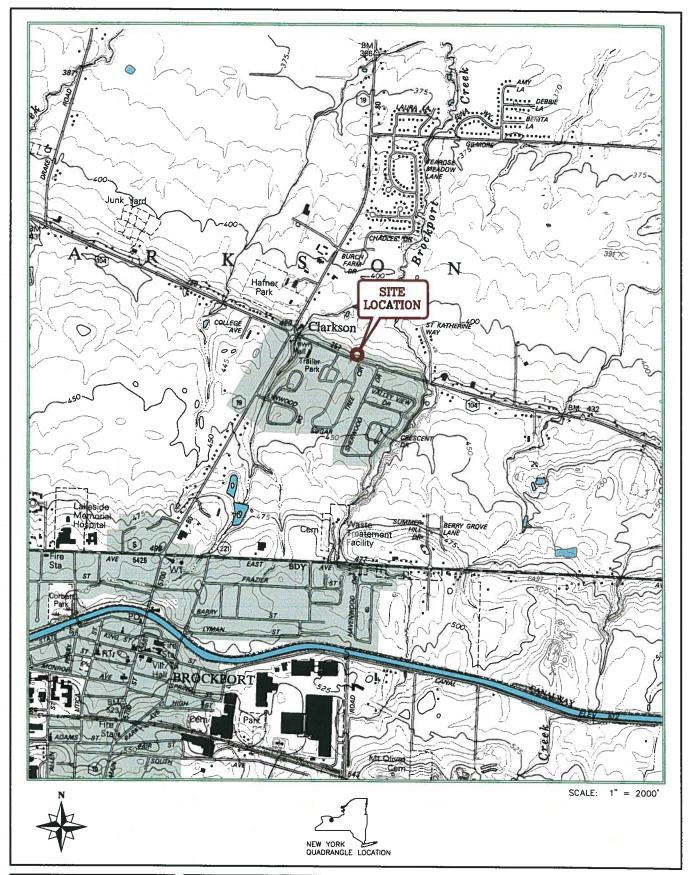
2. Long-Term Monitoring w/ Institutional Controls							
Negotiation & Filing of Deed Restrictions	1	@	\$3,000	\$3,000			
Site Management Plan	1	@	\$3,000	\$3,000			
Annual Engineer's Certification (30 years)	30	yrs	\$850	\$25,500			
- site visit & certification letter							
Annual Groundwater Monitoring (5 years)	5	yrs.	\$3,000	\$15,000			
- 4 wells + QA/QC; 8260 VOCs & TAL Metals; annual reporting							
			TOTAL	\$46,500			
TOTAL NET PRESENT WORTH OF COSTS (5% interest rate)							

Table 6

Town of Clarkson, 8264 Ridge Road West, ERP Site #828143 Estimated Remedial Costs Unrestricted Use Alternative

	Est.		Unit				
Description	Quantity	Unit	Price	Est. Total			
Soil /Sediment Removal & Disposal							
Installation of temporary construction fence	1	@	\$500	\$500			
Soil Excavation, Staging & Loading	10	days	\$1,700	\$17,000			
Transportation & Disposal	1539	tons	\$ 4 8	\$73,872			
Dewatering/Diversion of drainage ditch	1	@	\$10,000	\$10,000			
Sediment Excavation & Loading	2	days	\$1,700	\$3,400			
Confirmatory Sampling (analytical)	35	sample	\$315	\$11,025			
Air Monitoring Equipment	12	days	\$300	\$3,600			
Backfill	1000	yd ³	\$8	\$8,000			
Compaction & Site Restoration (topsoil & seed)	1	@	\$2,500	\$2,500			
Waste Characterization	4	sample	\$300	\$1,200			
Contingency (20%)	1	@	\$26,219	\$26,219			
		SUBT	<u>Γ</u> ΟΤΑL	\$157,316			
Two-Phase Vacuum Extraction							
Pilot Test (assume 1 day)	1	@	\$2,500	\$2,500			
Installation of Extraction Wells	4	wells	\$1,350	\$5,400			
Vacuum Extraction System rental (incl. generator)	3	months	\$3,200	\$9,600			
Piping & Installation	1	@	\$2,500	\$2,500			
Groundwater Storage	1	@	\$2,000	\$2,000			
Transportation & Disposal	24,327	gals	\$1	\$24,327			
Permitting (incl. sampling)	1	@	\$2,000	\$2,000			
Initial system checks (daily)	7	days	\$400	\$2,800			
Contingency (20%)	1	@	\$2,790	\$2,790			
Periodic O&M (weekly)	11	weeks	\$500	\$5,500			
Groundwater Monitoring (3 wells; biannually for 3 years)	3	years	\$4,000	\$12,000			
		SUBT	TOTAL	\$53,917			
Engineering							
Preparation of Remedial Action Work Plan	1	@	\$10,000	\$10,000			
Oversight & Coordination	1	@	\$15,000	\$15,000			
Final Engineering Report	1	@	\$15,000	\$15,000			
		0.15=5	<u> </u>	A (A = = = :			
		SUBTO		\$40,000			
			TOTAL	\$251,234			
TOTAL NET PRESENT WORTH OF COSTS (5% interest rate) \$248,0							

Notes: Soil/sediment removal and disposal costs based on use of Clarkson municipal forces


Assume 1.5 tons/yd³ for soil and 1.8 tons/yd³ for sediment

Soil/sediment disposal as non-hazardous

Estimate does not include air effluent treatment

All unit costs shown in 2011 dollars

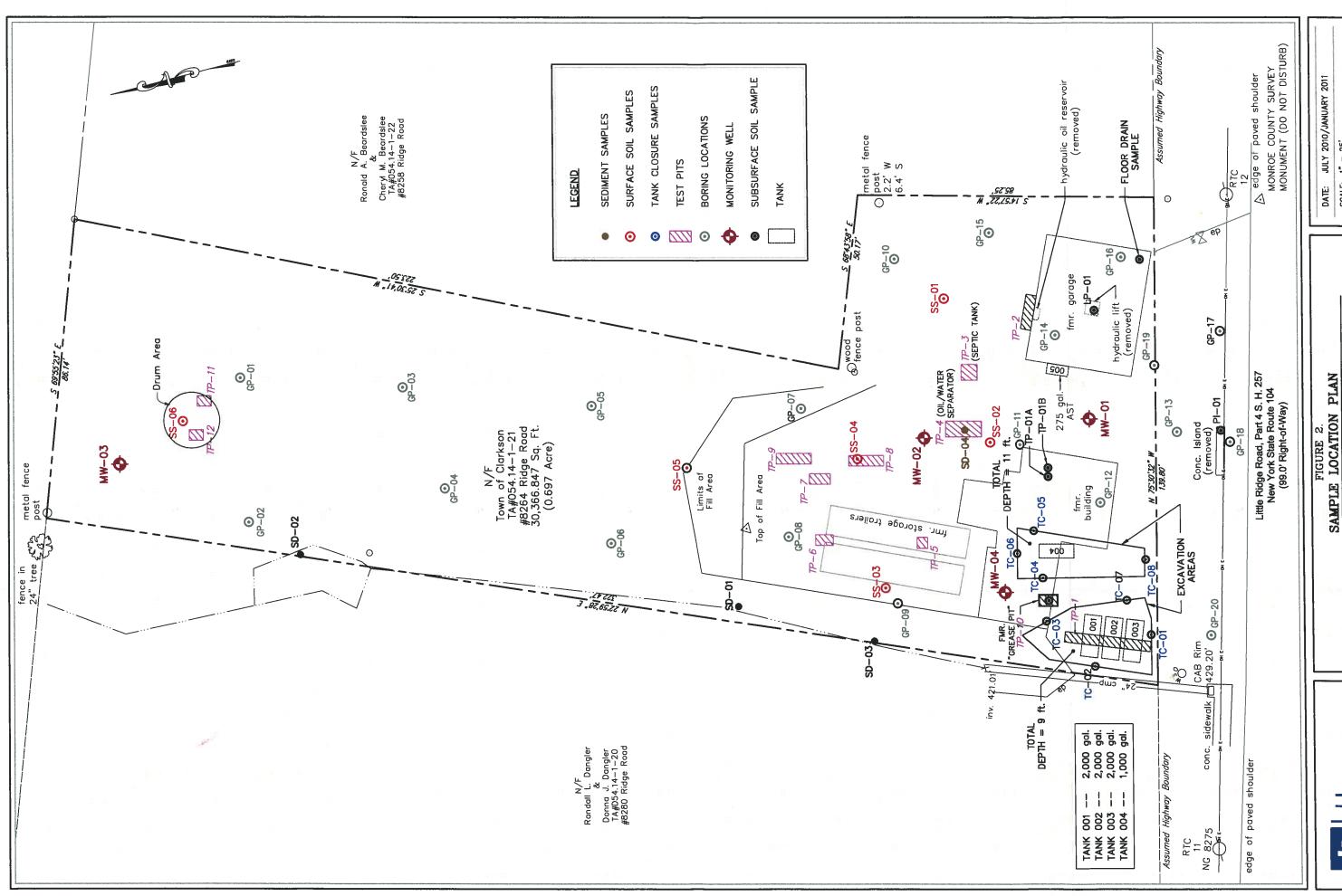
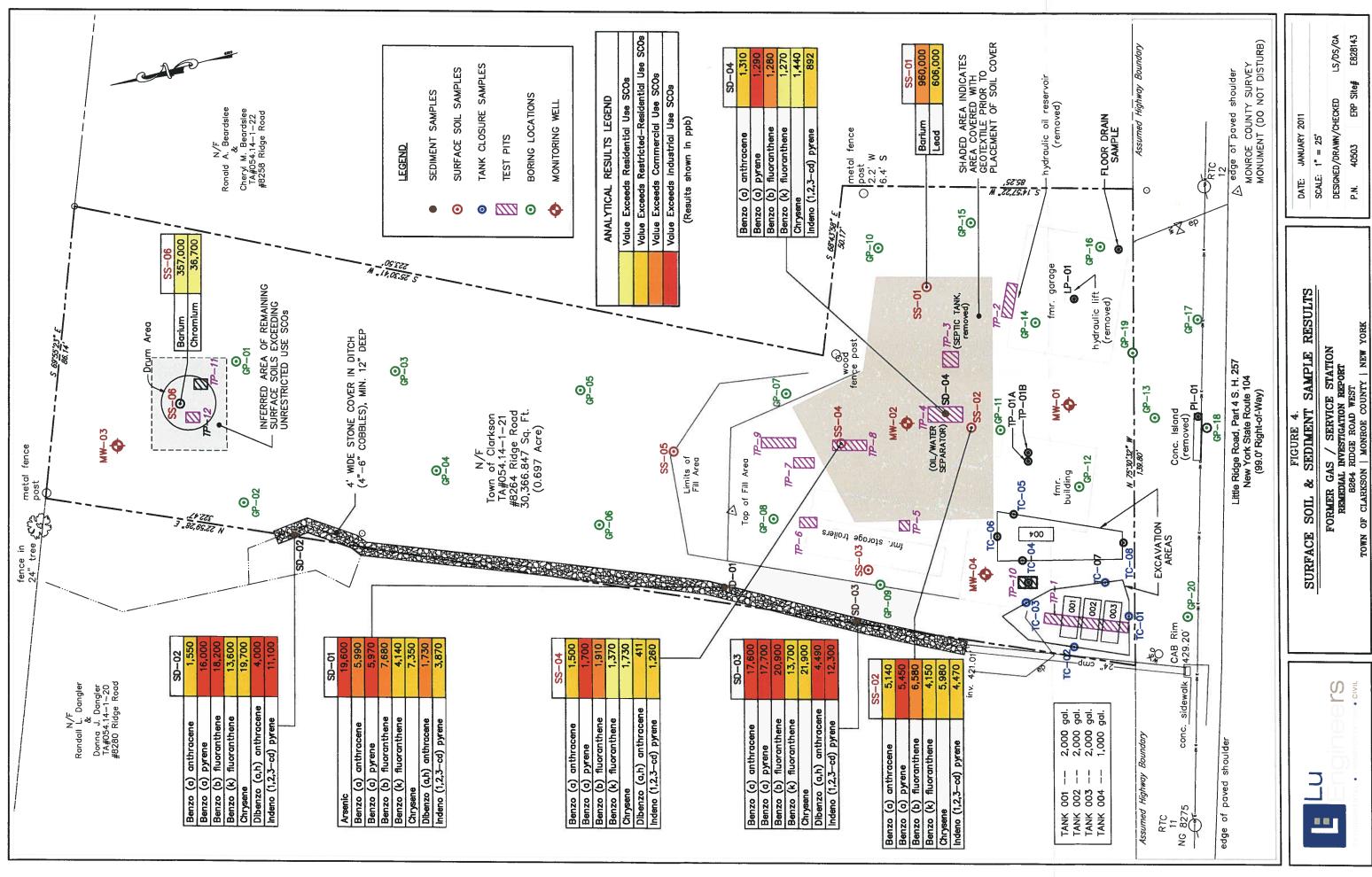


FIGURE 1. SITE LOCATION MAP

FMR. GAS STATION -- REMEDIAL INVESTIGATION
8264 RIDGE ROAD WEST
TOWN OF CLARKSON NEW YORK

DATE:	JULY 2010						
SCALE:	1: 24,000						
DRAWN BY:	DLS						
MAP SOURCE: NYS DOT RASTER QUADRANGLE BROCKPORT / MONROE COUNTY DOT EDITION DATE: 1997 / USGS CONTOUR DATA: 1971							

ERP Site# DESIGNED/DRAWN/CHECKED
P.N. 40503 ERP S SCALE: 1" = 25' DATE: FORMER GAS / SERVICE STATION REMEDIAL INVESTIGATION REPORT 8284 RIDGE ROAD WEST TOWN OF CLARKSON | MONROE COUNTY | NEW

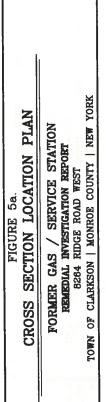

LS/DS/GA E828143

ENVIRONMENTAL . TRANSPORTATION . CIVIL

RM/DS/GA

TOWN OF CLARKSON NEW YORK

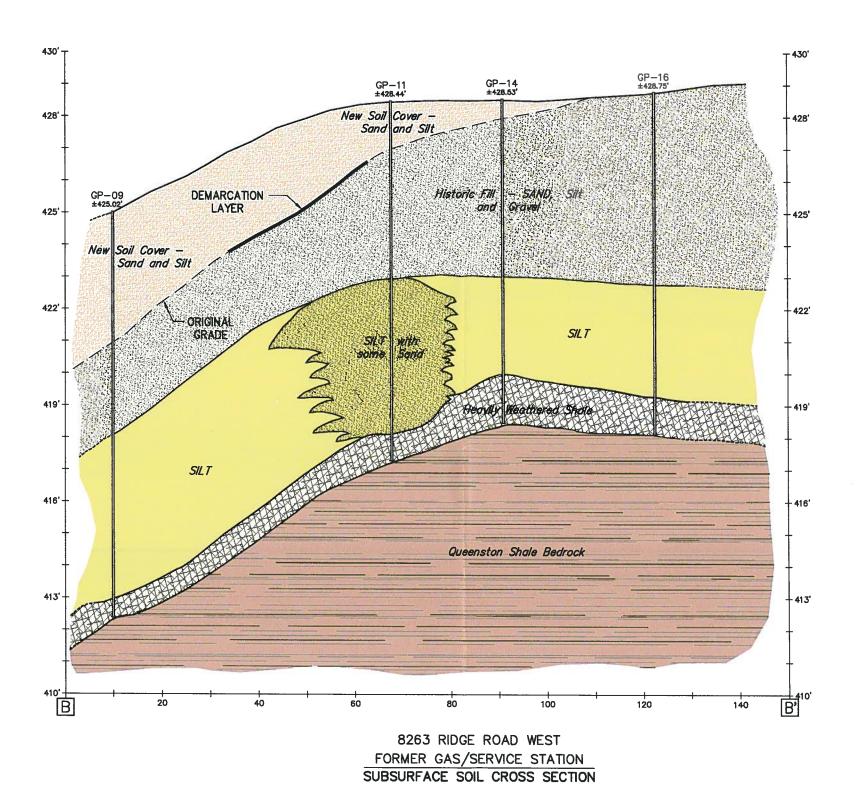
LS/DS/GA E828143


DESIGNED/DRAWN/CHECKED

 $\overline{\mathbb{S}}$

윱

P.N.

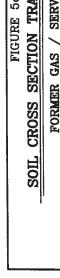


.

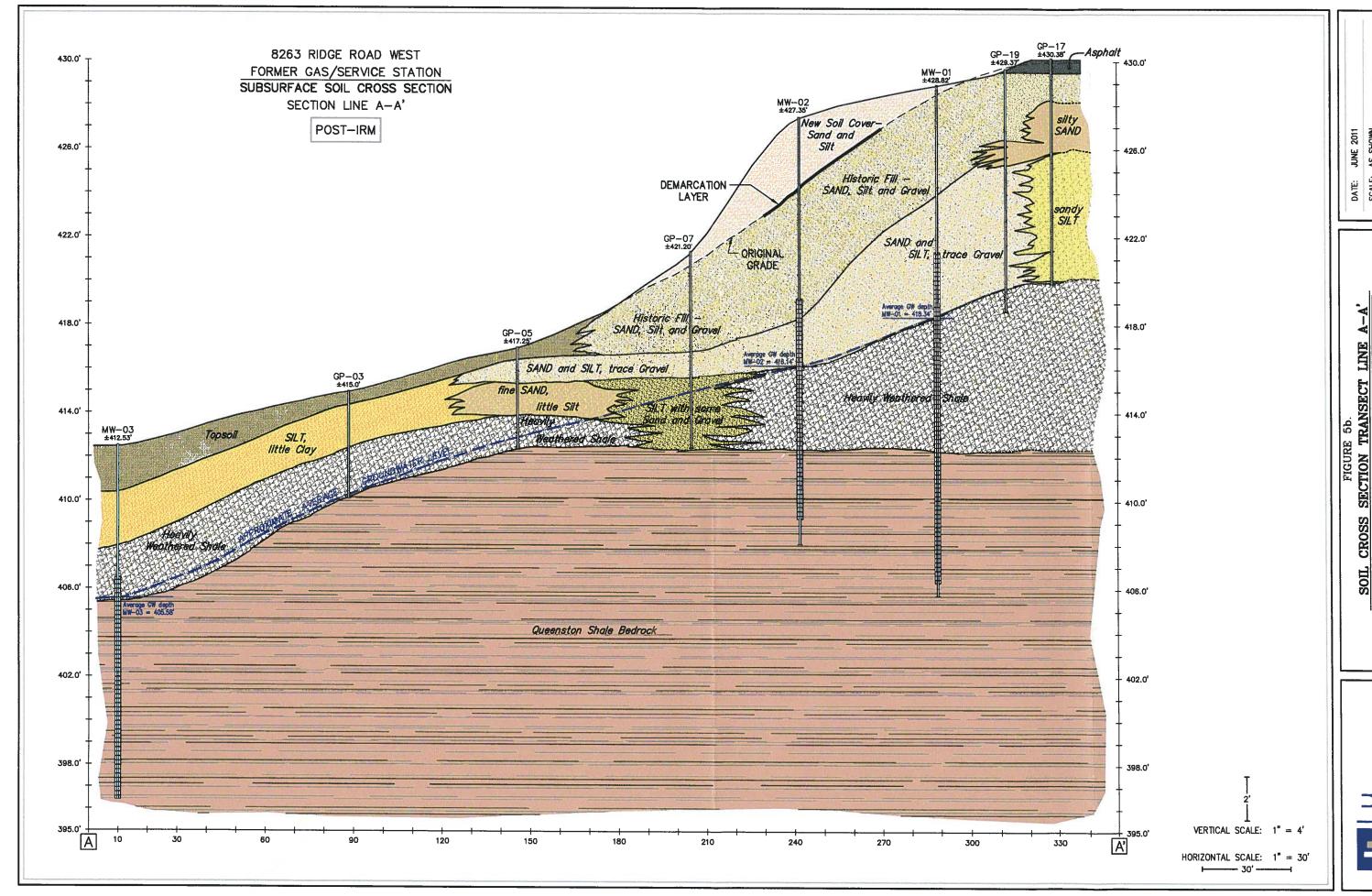
LS/DS/GA E828143

DESIGNED/DRAWN/CHECKED
P.N. 40503 ERP Site#

SCALE: $1^{\circ} = 25^{\circ}$

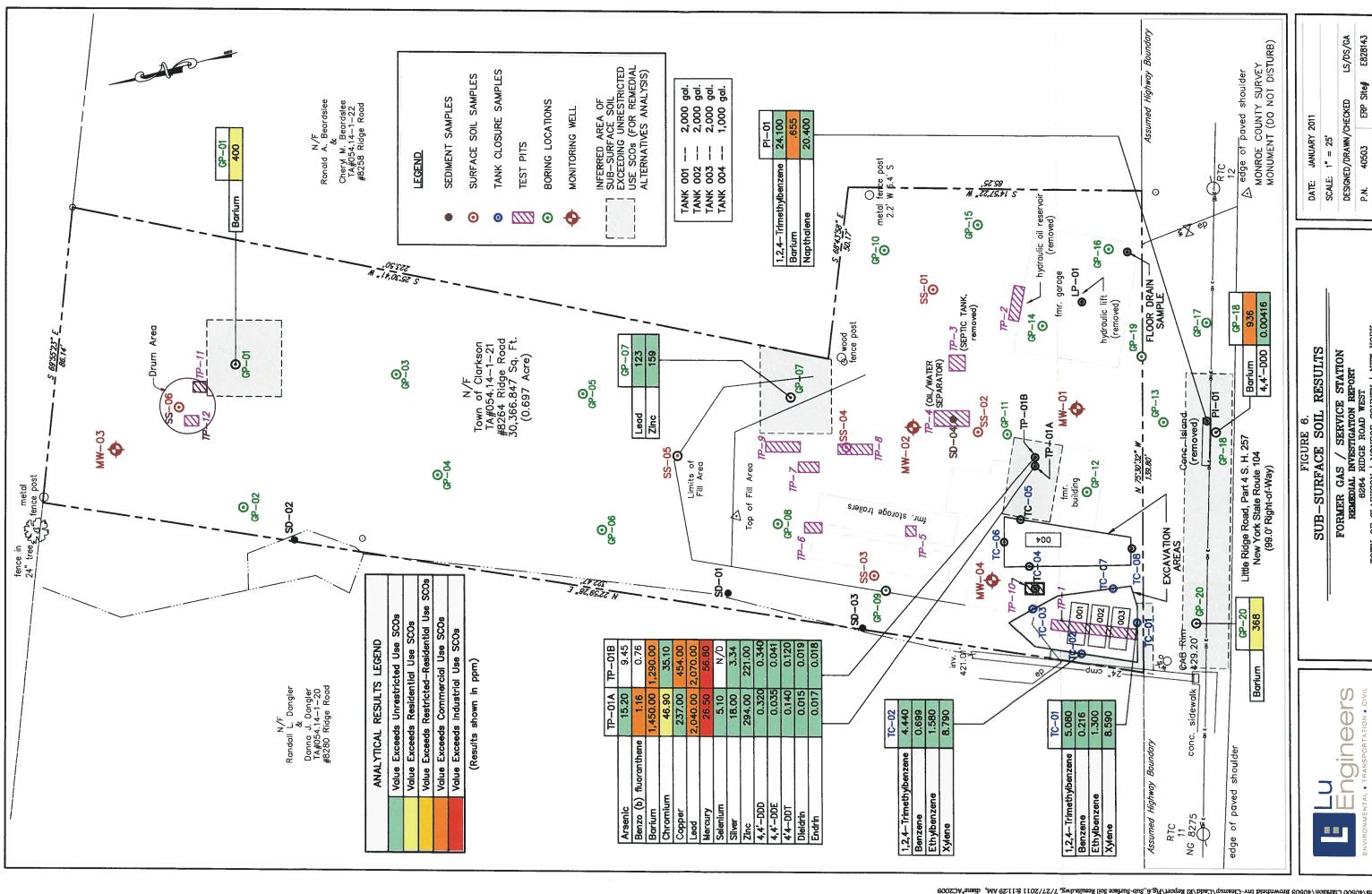

SECTION LINE B-B'

POST-IRM


DESIGNED/DRAWN/CHECKED

絽

VERTICAL SCALE: 1" = 3' HORIZONTAL SCALE: 1" = 20' 20' —

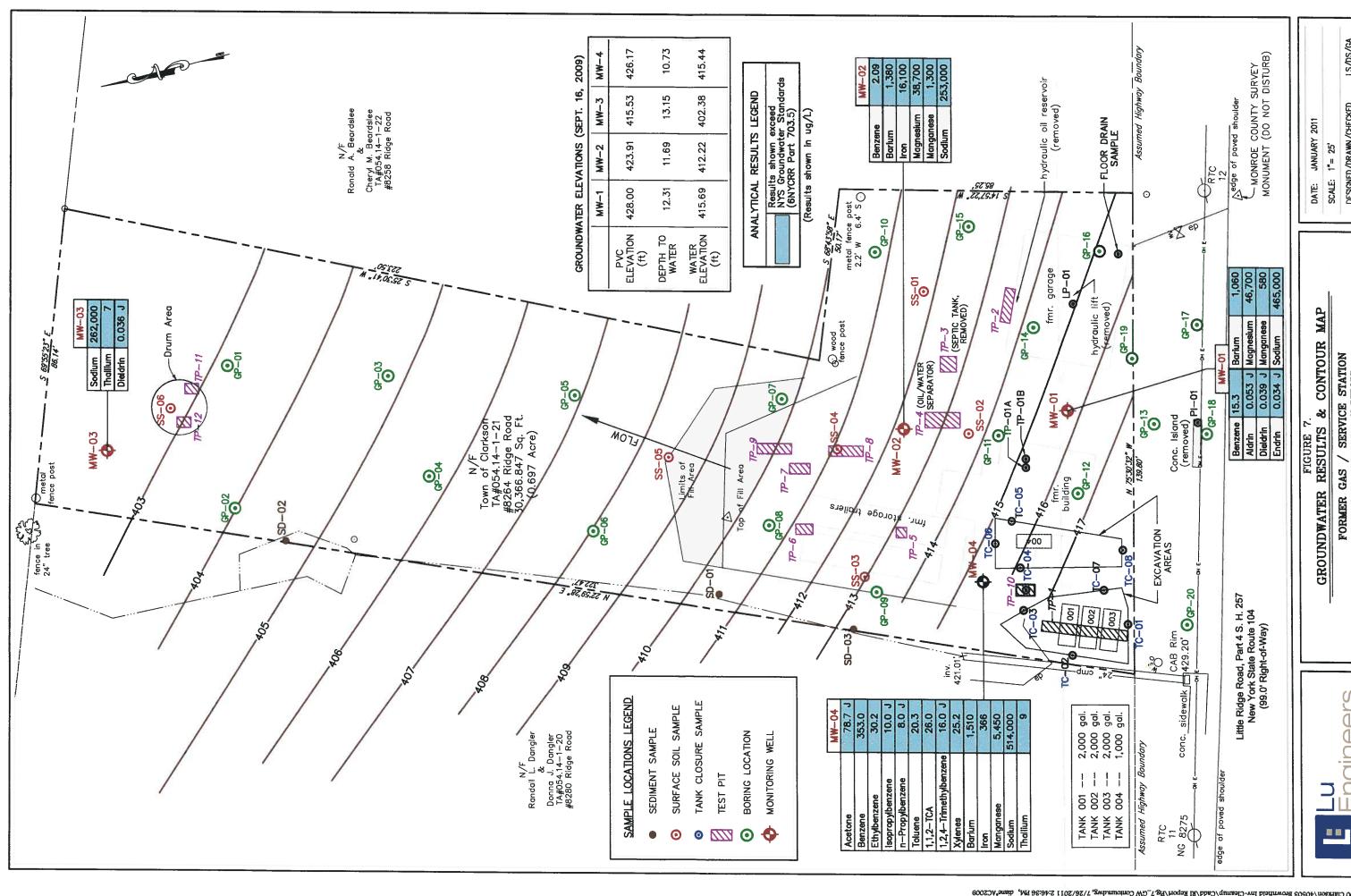

ngineers

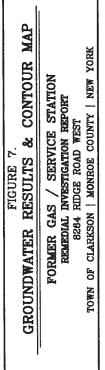
SOIL CROSS SECTION TRANSECT LINE A-A*
FORMER GAS / SERVICE STATION
REMEDIAL INVESTIGATION REPORT
8264 RIDGE ROAD WEST
TOWN OF CLARKSON | MONROE COUNTY | NEW YORK

ERP

ENVIRONMENTAL • TRANSPORTATION • CIVIL

LS/DS/GA


DESIGNED/DRAWN/CHECKED


SCALE: 1" = 25'

ERP Site#

g.

FORMER GAS / SERVICE STATION
REMEDIAL INVESTIGATION REPORT
8264 RIDGE ROAD WEST
OF CLARKSON | MONROE COUNTY | NEW Y

E828143 rs/ps/ca

ERP Site#

40503

Ą.

DESIGNED/DRAWN/CHECKED

SCALE: 1"= 25"

Photo No. 1. View of Site prior to IRMs.

Photo No. 2. View of drainage ditch on western edge of the Site, facing north, at sampling location SD-01.

Photo No. 3. EM-61 geophysical survey.

Photo No. 4. Service pit located beneath former storage building.

Photo No. 5. TP-01A/B in basement of office building.

Photo No. 6. View of oil/water separator pit.

Photo No. 7. View of Geoprobe used for soil borings.

Photo No. 8. View of Site after completion of IRMs.

Appendix B Boring Logs, Field Forms, and Hydrogeological Data

Surface Soil Sample

Project: Clarkson 6	ERP_ Lu	Project No.: _	40503	Date: <u>4-27-</u> 09				
Weather: Sunny Temp.: 70° F Field Engineer/Geologist: Lawra Smith Wark Stein								
·				www.siell				
SAMPLE ID: <u>CS-SS-OL</u> MS/MS'D								
Equipment Used: 55 5000								
Surface Cover: Sticks+ leaves								
Depth	PID Reading	Description						
0-2"	0.0	Dark broz	un topsoil; silt	y SAND w/ organics, Moist.				
Remarks: sample @ 11:30 Vocs, SVOCs, Metals, PCBs, Pesticides								
SAMPLE ID: <u>CS-SS-62</u>								
Equipment Used: SS Spoon								
Surface Cover:								
Depth	PID Reading	Description						
0-3"	0,0	Dark bro	wn silty SAND	topsoil wlorganics.				
Remarks: <u>Sample @ 11:50</u> (no pest. analysis)								

Surface Soil Sample

Project: Clarkso	n ERP Lu	Project No.: _	40503	Date: 4/27/09				
Weather: Sunny Temp.: 70° Field Engineer/Geologist: Lavra / Mark								
SAMPLE ID: (5-55-03								
Equipment Used: <u>55 5poon</u>								
Surface Cover: Sticks								
Depth	PID Reading	Description						
0.7	0.0	St DE B	roun Moist	5. Hy Sand w1 organics				
	•							
Remarks: Scrap metal, wood and other debris all around.								
SAMPLE ID: <u>C5-55-04</u> / C5-55-04D								
Equipment Used: 55 Spoon 1215								
Surface Cover: Nowl								
Depth	PID Reading	Description						
5-2	0.0		5.14y send w	organics Fill				
Remarks: Sample@ 12:15 VOCs, SVOCs, Metals, PCBs, Pesticides								

Surface Soil Sample

Project: Clarkson	ERP Lu	Project No.: 40503 Date: 4-27-09
Weather: Sunny	Temp.: _	80° F Field Engineer/Geologist: LMS/MS
3		•
SAMPLE ID: <u>CS-S</u>	8-05	
Equipment Used:		
Surface Cover:	ceds+ leaves	
Depth	PID Reading	Description
0-2"	0.0	Dark brown silty SAND topsoil worganies ; dry
Remarks:	ample E	12:40 (no pest.)
60. 9		
SAMPLE ID: $\frac{CS-S}{S}$	<u>506</u>	
Equipment Used:	trowel	
Surface Cover:	aves + snail	shells
Depth	PID Reading	Description
0-2"	0,0	bark brown silty SAND topsoil worganics; moist
Remarks: 5a	mple@ 15	2:50 VOCS, SVOCS, Metals POBS Post.
	•	rums in area.

Test Pit No.:	P-1	Project: Clarkson ERP
	•	Lu Project No.:40503_
Equipment Used:	backhoe	Date: <u>6/19/09</u>
Weather:OVer	cast	Гетр.: <u>(o</u> + °
Field Engineer/Geolo	gist: L. Sm	ith
Test Pit Dimensions:		$\frac{3}{\text{Width}}$ x $\frac{\sim 3}{\text{Depth}}$
Depth	PID Reading	Description
2.5'		Encounter pang above USTs.
3'		3 USTs identified. South tank is full of water & is seeping into test pit
=		<u>Comments</u>
No rock encounte	ered; or	
Rock encountered		eet
☐ Perch/Seepage wa	ater encountered a	tfeet
No groundwater of	-	
☐ Ground water end	countered at	feet
Remarks:		
Three 5	1,000-gal-	USTs located ~ 3 bgs.
	. 0	3

Test Pit No.: TP	<u>-</u> 2		Project: Clarkson ERP
	,		Lu Project No.:40503_
Equipment Used:\	sackhoe		Date: 6/19/09
Weather: 6 Verco	ast I	Temp.: Who	
Field Engineer/Geologis	t: L. Smr	th	
Test Pit Dimensions:		Width x 5' Depth	
Depth P.	ID Reading	Description	
0-9,	0,0ppm	Piece of scro below sur	ip medal uncovered just face.
	······································	Comments	
➢ No rock encountered	l· or		
☐ Rock encountered at		eet	
☐ Perch/Seepage water			
No groundwater ence			
☐ Ground water encount Remarks:		feet	
<u> </u>			

Test Pit No.:	TP-3		Project: Clarkson ERP	
			Lu Project No.: 40503	
Equipment Used:			Date: 6/19/09	
Weather: <u>bvercos</u>	24	Гетр.: <u>44°</u>		
Field Engineer/Geolo	gist: L. Sm	ith		
Test Pit Dimensions:	Length x	Width X Charles Depth		
Depth	PID Reading	Description		
<\'		septic tan	ik cover	

		Comment	<u>s</u>	
☐ No rock encounte	red; or			
☐ Rock encountered		eet		
☐ Perch/Seepage wa	ater encountered a	t fee	et	
□ No groundwater e	· ·			
Ground water end Remarks:	countered at	feet		<u>_</u>
Septic tan	K full of	- water. Ho	sheen, noolers obse	rved.
	·			
				-
			· · · · · · · · · · · · · · · · · · ·	

Lu Engineers

Test Pit No.:	24	Project: Clarkson ERP
		Lu Project No.: 40503
Equipment Used:	backhoe	Date: <u>6/19/09</u>
Weather:	ast	Гетр.: <u>С</u> •
Field Engineer/Geolo	gist: L.Sm	Ath
Test Pit Dimensions:	x	x
Test Pit Dimensions:	Length	Width Depth
Depth	PID Reading	Description
2	O.Oppm	PVC sewer drainage pipe runs into pit.
	60 0	Piece of broken day drainage tile. PVC piping runs diagonally across pexca
4	0.0	PVC piping runs diagonally across payor
		Comments
No rock encounte	red or	
☐ Rock encountered	- ·	eet
☐ Perch/Seepage wa		
No groundwater e	encountered; or	
☐ Ground water end	countered at	feet
Remarks:		
Test pit	TP-4 com	deted near oil water separator pit.
One PVC de	rainag L	me appears to run from four garage
bldg into pr	t. A se	and PVC sewer drain line
•		den bldg. toward chicken coop.
No metal	¥	, ,

Test Pit No.:	2-5		Project: Clarkson ERP	
			Lu Project No.: 40503	
Equipment Used:	rackhoe		Date: <u>6/19/09</u>	
Weather:	84	Гетр.: <u>(о</u> 4°		
Field Engineer/Geolo	gist: L. Smit	th_		
Test Pit Dimensions:	Length x	X 3 Width Depth		
Depth	PID Reading	Description		_
ð'	0.0ppm	Scrap metal Appears to 1	l encountered. se old truck grill.	_
				_
				_
//				
4				_
		Comments		_
No rock encounte	rade or			
Rock encountered		eet		
☐ Perch/Seepage wa				
No groundwater e				
☐ Ground water enc	ountered at	feet		
Remarks:				
		-		
	COMPANY STATE STATE OF			
	792		_	

Test Pit No.:	P-6		Project: Clarkson ERP
			Lu Project No.: 40503
Equipment Used:		1	Date: <u>6/19/09</u>
Weather: Overc	ast	Temp.: Let o	
Field Engineer/Geolo	gist: L. Smi	th	
Test Pit Dimensions:		3' x 5'	
	Length	Width Depth	
Depth	PID Reading	Description	
3-5	0.0ppm		crete w/ re-bar in fill Sand/gravel fill.
		Comments	
No rock encounte			
□ Rock encountered		eet	
Perch/Seepage wa		t feet	
No groundwater of		£4	
☐ Ground water end Remarks:	countered at		

Test Pit No.: TP	-7	Project: Clarkson ERP
		Lu Project No.: 40503
Equipment Used:	backhoe.	Date: <u>6/19/09</u>
Weather:	084	Гетр.: <u>(ф) °</u>
Field Engineer/Geolo	gist: L.Smin	th
Test Pit Dimensions:	Length x	Width Depth
Depth	PID Reading	Description
1-9,	0.0ppm	buried a gravel layer of fill.
3-4.5'	9,0	buried concrete; asphalt; plastic- coated wire; fill
	<u> </u>	Comments
No rock encounte	red: or	
☐ Rock encountered		eet
		t feet
No groundwater e	ncountered; or	
☐ Ground water enc	ountered at	feet
Remarks:		
-	- Trans-10-2-2	

Test Pit No.:T	2-8	Project: Clarkson ERP
		Lu Project No.:40503_
Equipment Used: 👤	sackhoe.	Date: <u>6/19/09</u>
Weather: OVer	cast	Temp.: <u>6</u> 4°
Field Engineer/Geolo	gist: L. Son	ith
Test Pit Dimensions:		Width X Lo
Depth	PID Reading	Description
2-3'	0.0ppm	white plastic leach field lines with gravel backfill.
46	0.0 ppm	Concrete pieces; Fill.
	-	Comments
No rock encounte	red; or	
☐ Rock encountered	l at f	eet
		t feet
No groundwater e		fact
		1eet

Test Pit No.:	P-9	Project: Clarkson ERP
		Lu Project No.:40503_
Equipment Used:	sackhoe.	Date: <u>6/19/09</u>
Weather:OVEYCO	rst .	Тетр.: <u>Le4°</u>
Field Engineer/Geolo		
Test Pit Dimensions:	Length x	$\frac{3}{\text{Width}} \times \frac{5}{\text{Depth}}$
Depth	PID Reading	Description
0-5'	D.Dppm	Sand gravel FILL. No metal objects.
(g) (g)		
		Comments
✓ No rock encounte	wade an	
☐ Rock encountered		Feet Teet
☐ Perch/Seepage wa		
No groundwater e		······································
☐ Ground water end		feet
<u></u>		
N		
7 %		

Lu Engineers

Test Pit Log

TP-01	/			DPSG Parcel B	
Equipment Used:	Badger-Rul	obstrive excuva	ter Lu Proje	ct No.:-3627	
Weather: 504m	y Humid	Гетр.: <u>70°</u>	Date:	5/27/09	
Field Engineer/Geolo	gist: BB	muro F			
Test Pit Dimensions:	$\frac{7}{\text{Length}}$ x	2.5 x 3	pth		
TD 47	DID D II				

Depth	PID Reading	Description
0-1	O.Oppm	Slight ofer -no meading on PID with gravel indusion Possible Fill.
1-3	1-3 ppn	Low PID readings on soil. Groundwater sceping into test pit. Slight sheen on water surface, offer dissipated after initial excavation & PID readings fell to 0.0 ppm.

No rock encountered; or Rock encountered at ______ feet Perch/Seepage water encountered at _____ feet No groundwater encountered; or Ground water encountered at _____ feet Remarks: Soil samples C5-TP-OIA & CSTP-OIB taken at 13:17. Matt Gillette (DEC) Present luring test pit excavation & Sampling.

Test Pit No.:	TP-10	Project: Clarkson ERP
Equipment Used:	excavator	Lu Project No.: 40503 Date: 6/19/09 7 0 0 9
Weather:	·	, 1
Field Engineer/Geolo	gist: <u>G. And</u>	rus
Test Pit Dimensions:	Length x	Width x 8 Depth
Depth	PID Reading	Description
		gasoline odor
7.0	363ppm	moist red-brown SILT and CLAY; Cobble-size (glacial till) fragments of weathered shale, strong petroleum odor.
8.0		green red weathered shale; friable
		Comments
□ No rock encountered □ Rock encountered □ Perch/Seepage was □ No groundwater encountered □ Ground water encountered □ CS-TP-10	at 8 for the following from the	

Test Pit No.:	P-11	Project: Clarkson ERP
Equipment Used:	oxcavator	Lu Project No.: 40503
Weather: Stunn		771 1/09
Field Engineer/Geolo	gist: L. Si	nith
Test Pit Dimensions:	x _Length	Width X 4' Depth
Depth	PID Reading	Description
0-4'	D.Oppm	Dark-brown silty SAND; moist; organics. No buried objects.
		Comments
☑ No rock encounte	red; or	
☐ Rock encountered	l at fo	eet
		t feet
No groundwater e Ground water enc Remarks:	ountered at	feet
3 200		
	· ·	

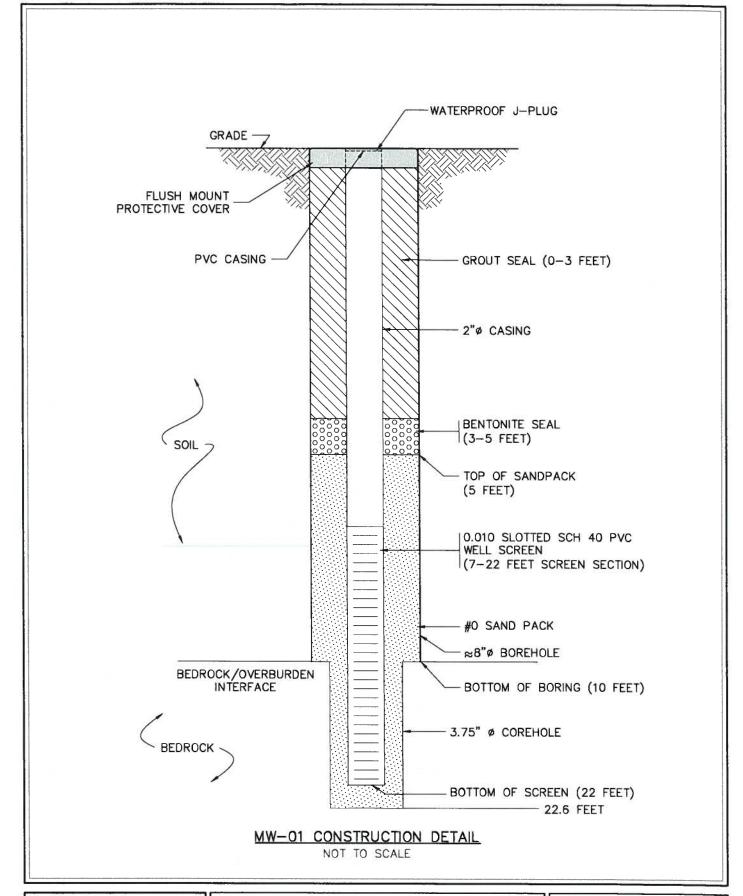
Test Pit No.:	TP-12	Project: Clarkson ERP
		Lu Project No.:40503
Equipment Used:		Date
Weather: <u>Sumu</u>	Temp.:	<u>58°</u> F
Field Engineer/Geolo	gist: L. Sm	ith
Test Pit Dimensions:	x _Length	Width Depth
Depth	PID Reading	Description
0-3'	0.0 ppm	
3-4'	0.0ppm	Reddish-brown tight SILT. No buried objects
		7.0 303.23.33
		Comments
		Comments
No rock encountedRock encountered		eet
☐ Perch/Seepage wa	ater encountered a	t feet
No groundwater e	encountered; or	
☐ Ground water end Remarks:		
Kemarks.	·	

- 10						PROJECT			BORING MW-01					
100	Lu En	ainee	rs						SHEET 1 OF 1					
		J				8264 Ridge Road West JOB #: 40503 CHKD. BY: N/A								
CONT	RACTOR	Nothn	agle Drillin	a Inc		BORING LOCATION. SEE PLAN								
	.ER: Jeff/		-9	g,			GROUND SURFACE ELEVATION: N/A DATUM: N/A							
JCL G	EOLOGIS	ST:	G. Andrus	1		START DATE: 8/10/2	009	END D	ATE: 8/10/2009					
TV0-	05 DD#	DIO:	0145.75				DATE	TU 15	WATER LEVE		DEMARKO			
	OF DRILL			hollow-stem au	ıaer		DATE	TIME	WATER	CASING	REMARKS			
				HOD: Geoprol										
	(DRILLIN	G MET	HOD: HQ	core bit										
D			CAMPI											
E P			SAMPL	EDATA			24	MDI E	DESCRIPTIO	N		PID		
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY		SAI	VIFLL	JESUNIF HOI	V		PID		
H	/6"		(FT.)	/RQD(%)	(%)									
	N/A	1	0-4		20%	0-4' FILL: brown S	SILT and c	mf SA∧	D little CLAY, n	o odor, mois	st	0.0 ppm		
1														
L														
2														
3						4								
٦						+								
4						-								
1		2	4-8		90%	4-4.5' FILL: same	as above							
5									SILT (primarily w	veathered sh	nale) cmf GRAVEL fine	0.0 ppm		
						COBBLE, s	COBBLE, shale fragments, dry, no odor							
6														
_														
7														
8														
°		3	8-10			8-10' red similar soil as above, dry, no odor								
9			0 10			o ro rea siiriiiai s	o-10 Teu Sittilat Sull as abuve, dry, no odor							
ľ														
10						soil core barrel refu	ısal @ 10'							
11						10-15.9' soft-media				n-massively	bedded,			
40							r bearing ti e RQD 75+		observed.					
12						Estimate	101 TO	-/-						
13						-								
						<u> </u>								
14														
15						4								
						45.0.00.01 "				, ,				
16						15.9-22.6' medium	nara rea-	green s	naie (same as a	above)				
17														
"						-								
18						<u> </u>								
Ī														
19														
L														
20			_											
	c	LEGEN	' <u>D</u> SPOON SOI	I CAMDIE		soil core barrel refu Augered through			e to 15 0 fect					
				L SAMPLE DIL SAMPLE		HQ Core #1 - 15.		u siidi	0 10.3 1661					
			CORE SAM			HQ Core #2 - 18.								
	GENERAL													
	,					TE BOUNDARY BETWEE								
	2)	VVA I EF	K LEVEL RE	ADINGS HAVE E	BEEN MADE AT I	TIMES AND UNDER CONL	אטוווכ אוטוווכ	ŧι⊑D, FLU	JUTUATIONS OF G	IKUUNDWATE	ĸ			

BORING # MW-01

11						PROJECT		BORING MW-02					
10	Lu En	ginee	rs						SHEET 1 OF 1				
	5701-57000					8264 Ridge Road West JOB #: 40503 CHKD. BY: N/A							
CON	TRACTOR	Nothn	agle Drillin	g, Inc.		BORING LOCATION. SEE PLAN							
DRILI	.ER: Jeff/	Tom					GROUND SURFACE ELEVATION: N/A DATUM: N/A						
JCL (SEOLOGIS	ST:	R. Freund	ushuh		START DATE: 8/11/2	2009	END DA	NTE: 8/11/2009 WATER LEVE	EL DATA			
TYPE	OF DRILL	. RIG:	CME 75				DATE	TIME	WATER	CASING	REMARKS		
				hollow-stem a									
			LING MET HOD: rolle	HOD: Geopro	be tooling								
D	CDIVILLIA	O IVIL I	TOD. TOILE	ar Dit			l						
Ε			SAMPL	E DATA									
Ρ			· · ·	· · · · · · · · · · · · · · · · · · ·			SA	MPLE I	DESCRIPTIO	Ν		PID	
T H	BLOW /6"	NO.	DEPTH (FT.)	N-VALUE /RQD(%)	RECOVERY (%)								
	N/A	1	0-4	//(QD(70)	80%	0-4' FILL: Dark b	rown cmf	SAND s	ome SILT little	GRAVEL, no	o odor, moist	0.0 ppm	
1										•	,		
2					ļ	4							
3					1	-							
٦						+							
4						1							
		2	4-8		90%	4-6' same as abo	/e						
5						4							
6						-							
6						6-8' Dark brown cmf SAND and SILT trace CLAY trace GRAVEL, no odor, moist							
7						1					, ,	0.0 ppm	
8		_	0.40			4.00							
9		3	8-10		1	8-9.5' similar soil, weathered bedrock, moist, no odor						0.0 ppm	
						soil core barrel	refusal @	9.5'					
10						9.5-16' soft-mediu			shale fragment	S			
11						-							
12						+							
						1							
13													
						4							
14						1							
15						†							
						1							
16													
						-							
17					<u> </u>	1							
18						†							
]							
19													
						1							
20		LEGEN	ID.		1	soil core barrel refu	ısal @ 9.5	,					
	S-		<u>D</u> SPOON SOI	L SAMPLE		Drilled through w			16' with rolle	r bit			
				OIL SAMPLE		Sample collected							
			CORE SAMI	PLE									
	GENERAL I			I INES REDDES	ENIT APPROYMAN	TE BOLINDARY BETWEE	N SOIL TVE	ES TRAN	ISITIONS MAY BE	GRADUAL			

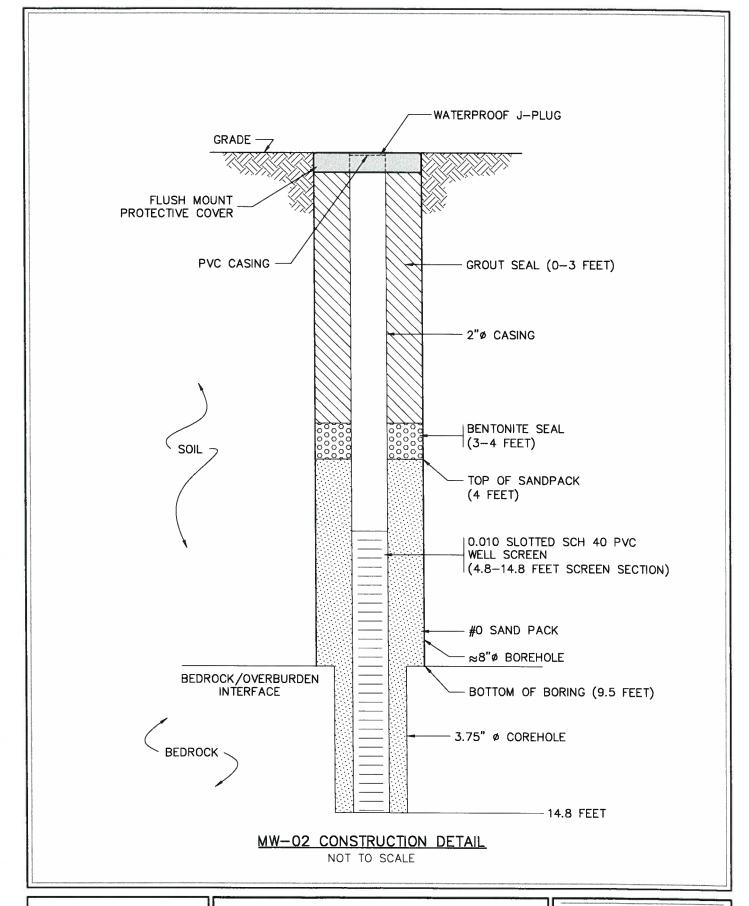
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER


BORING # MW-02

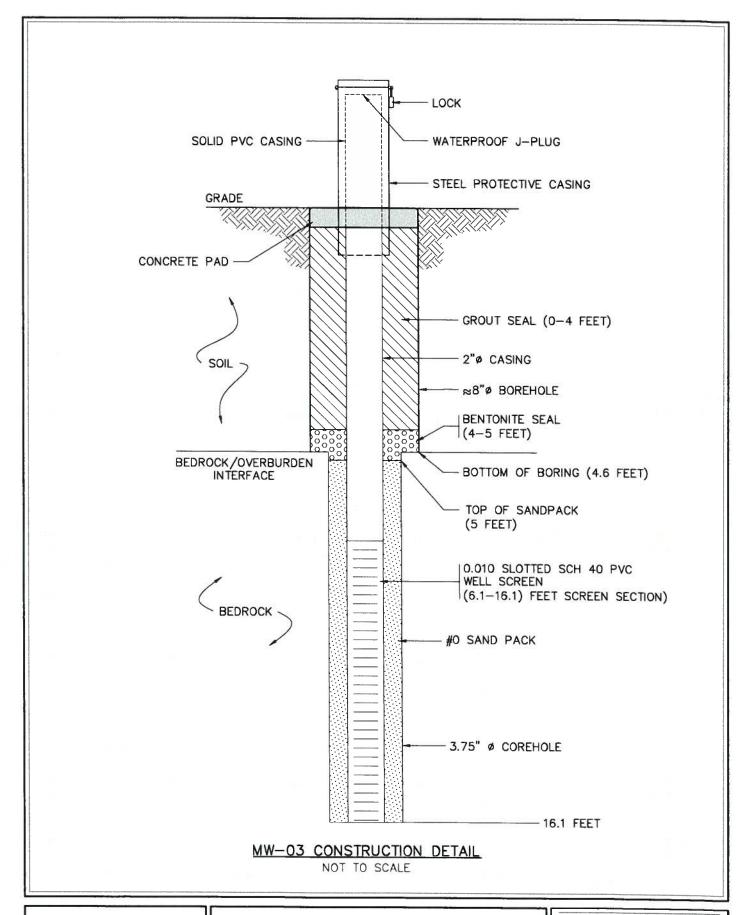
■ H						PROJECT		BORING MW-03					
10	Lu En	ainee	rs			Clarkson EPR Site #E828143			SHEET 1 OF 1				
1000	1	9				8264 Ridge Road West			JOB#: 40503				
CON	TDACTOD	Mothr	nagle Drillin	na Inc		CHKD. BY: N/A BORING LOCATION: SEE PLAN							
	.ER: Jeff/		lagie Dillill	ig, inc.		GROUND SURFACE ELEVATION: N/A DATUM: N/A							
	EOLOGIS		R. Freund	luschuh		START DATE: 8/12/2			ATE: 8/12/2009				
									WATER LEVE				
	TYPE OF DRILL RIG: CME 75						DATE	TIME	WATER	CASING	REMARKS		
				hollow-stem au HOD: Geoprol									
			HOD: HQ		Je tooling								
D									I.	1	1		
Ε			SAMPL	E DATA									
Ρ							SA	MPLE I	DESCRIPTIO	Ν		PID	
T	BLOW	NO.	DEPTH		RECOVERY								
Н	/6"	_	(FT.)	/RQD(%)	(%)	0.01 T	l. h	<i>u</i>	-li	I- OLAY		2.2	
	N/A	1	0-4		95%	U-2" Top soll: dari	k brown S	ııı, me	aium aense, iiπ	e CLAY, or	ganic material, moist	0.0 ppm	
1			1			-							
2						2-4' medium-brow	n SII T m	odium d	donsa little CL/	V trace on	of SAND moist	0.0 ppm	
						Z-4 Mediam-brow	II OILI, III	Calairi	ierise, intie OLF	ir, trace cri	ii OAND, moist	0.0 μμπ	
3						1							
4						1							
l		2	4-8			soil core barrel re	fusal @ 4.	5'					
5						4.5-6' weathered shale							
6													
ļ						6-11' soft-medium				nassively be	edded,		
7						_	no water bearing fractures observed.						
						Estimate RQD 75+/-							
8						4							
9						-							
1						-							
10						1							
						1							
11						1							
ı						11-16' medium ha	rd red-gree	en shale	e (same as abo	/e)			
12													
ļ													
13						_							
						4							
14						-							
15			1			-							
15						†							
16						1							
,0						Total Depth = 16'							
17						1							
ı						1							
18						1							
l													
19													
ļ						4							
20													
	_	LEGEN				Sample collected fi			6 food				
			SPOON SO			Augered thru wea	auriereu S	riaie to	o reer				
			TURBED SO	DIL SAMPLE DI E		Core #1 - 6-11 Core #2 - 11-16'							
	GENERAL I			r LE		0016 #2 - 11-10							
				LINES REPRESE	ENT APPROXIMA	TE BOUNDARY BETWEE	N SOIL TYP	ES, TRAI	ISITIONS MAY BE	GRADUAL.			
	2)	WATER	R LEVEL RE	ADINGS HAVE E	BEEN MADE AT T	TIMES AND UNDER CON	DITIONS STA	ATED, FL	UCTUATIONS OF G	GROUNDWATE	ER .		

BORING # MW-03

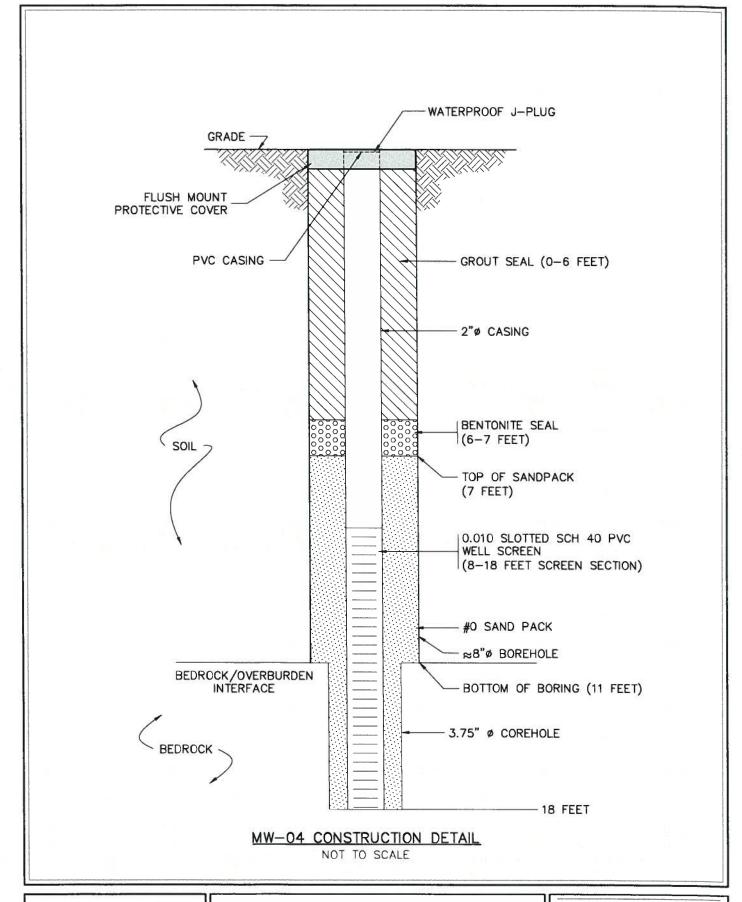
■ #								BORING MW-04						
Lu Engineers			Clarkson EPR Site #E828143			SHEET 1 OF 1 JOB #: 40503								
			r zurokali			8264 Ridge Road West			JOB #: 40503 CHKD. BY: N/A					
			agle Drillin	g, Inc.			BORING LOCATION: SEE PLAN							
	.ER: Jeff/ GEOLOGIS		R. Freund	luschuh			GROUND SURFACE ELEVATION: N/A DATUM: N/A START DATE: 8/12/2009 END DATE: 8/12/2009							
OOL C	LOLOGIC	,,,	rt. i reana	ascriari		OTAI	11 DATE: 0/12/2	.003	LIND DI	WATER LEV	'EL DATA			
	OF DRILL							DATE	TIME	WATER	CASING	REMARK	S	
	CASING SIZE AND TYPE: 4.25" hollow-stem auger OVERBURDEN SAMPLING METHOD: Geoprobe tooling													
	OCK DRILLING METHOD: HQ core bit													
D														
E P			SAMPL	EDATA			SAMPLE DESCRIPTION							PID
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	SAWIFLE DESCRIPTION						110		
Η	/6"		(FT.)	/RQD(%)	(%)									
1	N/A	1	0-4		55%	0-4'	0-4' FILL: brown SILT and cmf SAND little CLAY, moist						0.0 ppm	
,						-								
2														
3						4								
4						-								
		2	4-8		90%	4-6'	4-6' same as above							
5														
•						6.01	ma a aliuma huau	CII T 1:44	la maf C	1 N D 1:41	V maint			
6						0-0	medium-brow	/II SILT IIII	ie IIII SA	AND little CLA	1, 1110181			
7						petroleum odor @ 7-8'							276 ppm	
8		3	8-11		80	8-10' similar soil w/ petroleum odor, moist								
9		3	0-11		60									
]								
10						10-1	1' weathered	shale bedi	rock, mo	oist, petroleum	odor			1,500 ppm
44							l core barrel re	ofunal @ 1	11					
11						301	Core parrer re	iusai 🥲 i	<u> </u>					
12						11-16	6 soft-mediun	n hard red-	green s	hale. Medium	-massively l	oedded,		
								•		observed.				
13						4	Estimate	RQD 75+	- /-					
14						-								
						1								
15														
16						-								
16						16-18	B' medium ha	ard red-are	en shal	e (same as ab	ove)			
17]		J		,	,			
18						-								
19						-								
-						1								
20														
	ç	LEGEN SPLIT	I <u>D</u> SPOON SOI	II SAMDIE		colle	cted sample fr	om 8-11'						
				OIL SAMPLE		Core	e #1 - 11-16'	(0.0)	n)					
			CORE SAM			Core	#2 - 16-18'	(= - - - -	<u></u>					
	GENERAL			LINES DEDDES	TAIT ADDDOV	TE 00:	MDADY SETATE	N 60" TY		ICITIONIC MANY ST	CDADUAL			
					ENT APPROXIMA BEEN MADE AT T							ER		


BORING # MW-04

MONITORING WELL 01 -- FMR. GAS STATION ENVIRONMENTAL RESTORATION PROGRAM 8264 RIDGE ROAD WEST TOWN OF CLARKSON NEW YORK


DATE:	SEPTEMBER 2009
SCALE:	NONE
DRAWN/CHECKED	DLS/GLA
P.N.	40503

MONITORING WELL 02 -- FMR. GAS STATION ENVIRONMENTAL RESTORATION PROGRAM
8264 RIDGE ROAD WEST
TOWN OF CLARKSON NEW YORK


DATE:	SEPTEMBER 2009
SCALE:	NONE
DRAWN/CHECKED	DLS/GLA
P.N.	40503

MONITORING WELL 03 -- FMR. GAS STATION
ENVIRONMENTAL RESTORATION PROGRAM
8264 RIDGE ROAD WEST
TOWN OF CLARKSON NEW YORK

DATE:	SEPTEMBER 2009
SCALE:	NONE
DRAWN/CHECKED	DLS/GLA
P.N.	40503

MONITORING WELL 04 -- FMR. GAS STATION
ENVIRONMENTAL RESTORATION PROGRAM
8264 RIDGE ROAD WEST
TOWN OF CLARKSON NEW YORK

DATE:	SEPTEMBER 2009
SCALE:	NONE
DRAWN/CHECKED	DLS/GLA
P.N.	40503

	Project Name: Clarkson ERP Well ID:mw-01							
Initial Depth to Water: 9.85 Measurement Point: TOR Well Diameter: 0'' Final Depth to Water: Well Depth before: 01.99 Well Integrity: Screen Length: 15 ft Well Depth after: 02.01 Cap Casing Well Volume: 1.98 gals Sediment Depth Removed: 0.653 gallons per foot of depth Casing Casing Collar Col								Cap Casing Locked
		PARAMET	ERS		20			
Time	Volume Purged (gals)	Purge Rate (gals/min)	Temp. (deg. C)	pH (units)	Dissolved O2-(mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Comments
11:54	5	~ 1	170	6.8		71000		Una Talle
10:03	(0)	~,5	14.2	7.1		>1000		Vesy Tulbid
12:13	15		14.6	7.2		7/000		9
19:42	20		15.0	7.3		550		Slight petrolaumo
12:51	25		15.2	7.1		000K	***	ong periore
1:15	30		(6.5	7.1		11	7—————————————————————————————————————	
	Purge Obser Purge Wate	ter Quality Marvations:r Containeriz	ed: <u>n0</u>		bidnut OS	neler, Han	na pHer	
	mersible Pu			Approxima	ite Recharge	Rate:	·	
	C Bailer	•		S. C. C.				
☐ Sur	ge Block			Total Gallo	ns Removed	i: <u>45</u>		
☐ Oth	er							
							,	
Matag				4				
Notes:	wht on	trula inc	0-1 0	4.04 - 1	val ac	C 4		
CAR	m: cor	hose A t	odor	1011	Nater	From	SULTO	und ha
-102	1 0005	all ha		405 10	ther an	xic/Cli/		
- Fir	al turb	dity or	adina =	360 N	TU @ 1	41001		
		l and						
Signatu Checke		ul Iran	ndschul	<u></u>				

Well ID): <u>m</u> ((Kson ER J-02 LF	P	Developme Installation	nt Date: 8	art Time:	# <u>40503</u> t Time: <u>2:34</u> Time: <u>4:00</u>		
Initial Depth to Water: 4.59 Final Depth to Water: 13.81 Well Depth b Screen Length: 0 ft Well Volume: 1.66 gals (2" diameter = 0.163 gallons per foot of depth, 4" diameter = 0.653 gallons Protective casing stick-up: Casing/Well of WATER QUALITY PARAMETERS						1.75' 4.79' /ed:O4'	We	ell Integr Cap Cas	eter: 3" rity: ing ked lar
Time	Volume Purged (gals)	Purge Rate (gals/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	C	Comments
2:42	5	N. 5	18.0	7.6		>1000		Very	turbic
3:09	~7		18.8	7.7		11		11 '	1/
4:00	~7.5		23.4	7.9		1/		11	
EQUIP Sub	Purge Obser Purge Water <u>MENT DOC</u> mersible Pu	rvations:\ r Containeriz <u>r COMENTATI</u> mp		Approxima	te Recharge	Rate:			
	charge making able re: Rog	19 veri	little	down	chorging gols a	Fler 1.5	hours.	14	

		Kean ERP J-03 F		Development Date: \$ 13.09 Job # 40503 Installation Date: 8 12.09 End Time: 4:55						
Logged	. Оу	· P		mstanation	Date: 611	9/04	_ End	Time: <u>4.50</u>		
Final D Screen Well V (2" dian	epth to Wate Length: olume: neter = 0.163 gainstee casing st	ter: 9.50 er: 10.05 (0) 1.0 llons per foot of dick-up: 3.5	gals depth, 4" diamete	Well Depth Sediment D er = 0.653 gallor	after:epth Removes per foot of de	9.3' 7.4' ved:10'	Wei	Well Diameter: Well Integrity: Cap Casing Locked Collar		
Time	Volume Purged (gals)	Purge Rate (gals/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Comments		
4:10	5	NI	13.9	7.0		600				
4:16	10	11	13.5	7.1		340				
u:al	15	11	13.8	7.2	,	900				
4:31	90	l _l	13.3	7.1		130				
4:36	35	11	13.7	7.(80				
4:43	30 T CW	[[13.6	7.2	~ : .**	((
	Type of wa	ter Quality N	leter: Lomo	tte 9090	hipique	ter, Honn	c ptep			
	Purge Water	rvations: _ve r Containeriz	ry clear	0.6		1000				
	Turge water	Comamenz	.cu							
Sub PV	mersible Pu C Bailer ge Block	CUMENTATI mp		- 7	, ,	Rate:				
Notes:										
- Well producing a lat of uniter										
- Fin	al furk	1 Whibin	eading =	33 NTU						
			7			30				
	69									
						Hills.				
_	re: Zook	el Jage	wechuh)						
Checke	а ву:	- Heine	uer							

Well II): <u>m</u>	KEON ERP W-04 F		Development Date: 5/13/09 Installation Date: 8/13/09 End Time: 6:00					
Final Depth to Water: 19.20 Well Depth before: 18.91 Well Into Well Volume: 10.61 Sediment Depth Removed: 0							ell Diameter: 2' ell Integrity: Cap Casing Locked Collar		
Time	Volume Purged (gals)	Purge Rate (gals/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Comments	
5:15	~5		15.0	1.3		71000		very turbid	
5:35	~ 8		14.3	7.2		((111 //	
5:44	~(0		14.1	71		900		Petroleum Odor	
(; 00 ()	113		14.6	7.1		650			
EQUIP ☑ Sub	Purge Obser Purge Water	rvations: r Containeriz <u>CUMENTAT</u>	ed:	petroles no	oday	Motor, Ho		² P	
	ge Block			Total Gallo	ns Remove	d: Opx. 1	2	-	
Notes: -Well running dry after apx. 2.5 gals. -Strong petroleum oder - very slow recharge rate									
Signatu Checke	-	hel In	emasch	uh)				ш	

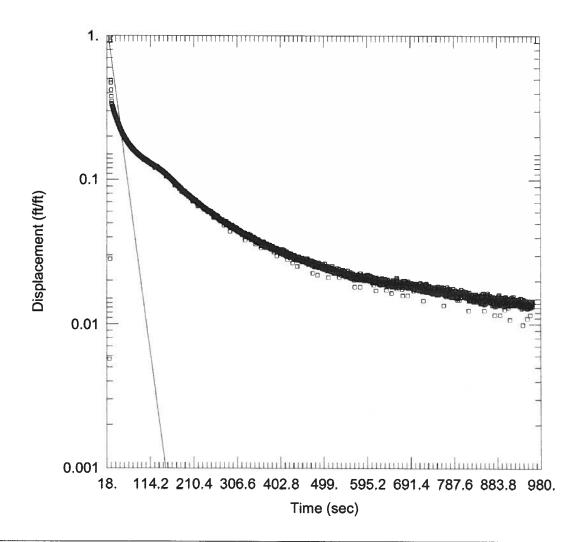
Project Name Class Location ID Activity Time	Field	Sample II le Time _	Mu MS 1 13:31	MSD_	Sa	ampling Event #0 1 ate 09 [14] 09		
SAMPLING NOTE	<u>s</u>							
Initial Depth to Wat Final Depth to Wat Screen Length	ed op x	feet feet gall gall time duration	t Well t Pump lons PID V	Well Head 0.00026 gal/m	epth 17 f	9/9M fee	W.19.1G€1	Vell Diameter 2 1 Vell Integrity: Cap New Casing New Locked New Collar New Yell
Depth to	Purge Rate	Temp.	pН	Dissolved	Turbidity	Cond.	ORP	
Time Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	(mV)	Comments
	450	18.3	7.27	2.81	12.7	7.08	2829	9
12:33 13.42	400	17.5	8.04	1.52	9.15	4.57	83	<u> </u>
12:40 13.51	- 1	18.1	8.19	. 29	4.74	5.36	72	15
12:45 13.55	2.50	17.7	8.53	.21	5.03	8.14	63	
12:51. 13.52	350	16.8	9.01	,36	1.11	8.47	54	
12:57 13.51		14.6	9.31	.10	4,45	17.4	51	
13.50		16.0	9.45	0,00	5.93	19.4	47	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
13:06 13.51		15.7	9.41		5.57	7.7	45	
13:11 13.51	II Di	15.2	9.53		,70	17.2	43	
13:16 B. 53		15.1	9.52		1.50	14.7	41	
13:32 13.54		14.9	9,46		1.83	15.9	38	
Purge Obser	runtiona: 1	14.8	9.46	ab coher	.38	15.3	36	
Purge Water			n Silgi	nt petro	eum co	<u> </u>		
Type of Pump: YEST Type of Tubing: 1/2 Type of Water Qua	CUMENTA D-Bladder 4" HDPE	ATION pump (Creopu			Calibra	ated:	
								1
VOCs 8 XXX COD SVOCs 3 TOC Metals 3	RAMETE ames 40 ml L 2 a50 ml 3 k 1 l . 3 k 1 l	RS Sample Co	ollected /		<u>LO</u>	CATION N	IOTES	
Signature:Checked By:	Neuta	uer	- Million Co.	lle plate				TMOGREGATEUR

Project Name Clo Location ID M Activity Time 12 SAMPLING NOT Initial Depth to W Final Depth to W Screen Length 17 Total Volume Pur [purge volume (millilite Volume of Water in cast PURGE DATA	ES fater 11.0 ged 1.7 rs per minute) x	9 feet 70 feet feet gallet time duration	Meas Well Pump ons PID V (minutes) x	Depth Dintake De Well Head 0.00026 gal/mi	pint TOI		Sar Da We We	mpling Event # 1 the 09 14 09 tell Diameter 2 1 tell Integrity: Cap New Casing New Locked New Collar New
Depth to Time Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	ORP (mV)	Comments
1249: 11.59 1256 12.35 13:01 12.79 13:06 13.38 13:13 13.70 13:15 X Well 9/17/09 10:50 Colle	150 150 150 150 X Dry ervations: _er Containe	14.4 14.3 14.4 14.6 niple	7.55 7.18 6.92 6.92 6.91	9.99 9.57 9.82 10.22 (0.40	(18.0 47.6 39.3 40.4	1.65 1.67 1.79 (.79	109 109 109	Commens
Type of Pump: QI Type of Tubing: _ Type of Water Qu	<u>14" HDPE</u>					Calibra	ted:	
	lumes 40 ml	RS Sample Co	llected //		L W	CATION N Jell prograter. Locationa, Lay and Locationa Locatio	Luces ve Pumped Return Collec- to fill Cient ve	ary during

Project Name (larkson ERPS le Location ID MW-03 Field Sample ID MW-3 Sample Time 15:33								Tob # 40503 Sampling Event #0 1 Date _09 16 09	
SAMPLI	SAMPLING NOTES								
Initial Depth to Water 13.15 feet Measurement Point TOR Final Depth to Water 13.44 feet Well Depth 19.32 feet Well Integrity: Screen Length 10 feet Pump Intake Depth 10.32 fl. material Cap									Well Integrity: Cap كون Casing كاون Locked كون
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp.	pH (units)	Dissolved	Turbidity	Cond.	ORP	
14:51	13. 44		(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	(mV)	Comments
	13.47	700	12.0	8.35	0.00	1.18	1.89	131	
14:56			13.8	8.70		0.18	2.30	114	
15:00			13.5	9.32		1.59	4.34	112	
15:04			13.4	9.84		0	5.47	109	
15:10		- 720	13.3	10.19			5.57	\$108	
15:15			13.4	10.67			5.03	104	
15:20			13.3	11.30			4.56	101	
15:25				11.67			3.70	97	
15:39				12.09			3.38	94	
15:32	V	V	V		V	V	3.21	92	*pH reading on
	4-1						,		Horiba-UJ22
									seems incorrect
P	urge Obse	ervations: _	very (lear no	oder.	very fo	st rect	proe 1	ate
P	urge Wate	er Containe	rized:	n	5)	
	(3)	CUMENTA							4
		D Bladder	pump 🕒	eopum	ρ				
	Tubing:								
Type of	Water Qua	ality Meter:	: <u>Horiba U</u>	-22; LaMo	otte 2020		Calibr	ated:	
ANALY	TICAL PA	RAMETE	RS			LO	CATION I	NOTES	
Paramete		umes	Sample C	ollected					
VOCs		40 ml		V,					
	SVDC 1	L	,	<u> </u>					
	<u>netals</u>	1 x 250 m		V		_			
Mangan	ese ICB	16		V			<u> </u>	ALE E	
Iron	VEST.			V	1-	7		Ш, — —	
Signatur	e:	70-10							

Location	ID	11K50n F 1W-04 3:22 - 19		Field Samp	Sample ID le Time	MW 14:2	-84	Sa	b # <u>40503</u> mpling Event # <u>6</u> 1 ate <u>09 14 09</u>
SAMPL	ING NOTI	ES							
Final De Screen I Total Vo [purge volu	epth to Watength clume Purgume (milliliter water in casin	ter 12.7 ter 12.7 (O ged / (O s per minute) > ng - 2" diamet	7 feet feet gall time duration	Well Pump ons PID V (minutes) x (). & Q pth <u> Y . 3</u> liliter]	feet all by	. W	rell Diameter 3 11 rell Integrity: Cap New Casing New Locked New Collar New
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved	Turbidity	Cond.	ORP	C
3.31	1072	(mi/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	(mV)	Comments
13:37	11.32	200	15.2	6.73	2.86	7.40	3.22	-34	
13:42	149	200	153	6.70	2.97	476	3.17	-35	Tr.
13:47	11.79	150	15.3	6.67	438	3.92	3.22	-35	
(3.53	11.95	100	15.3	6.66	3.98	3.42	3.70	-34	1 - 1
13:58	12.08	100	15.3	6.67	3.68	3.06	363	-36	
14:03	12.16	100	15.2	6.67	3.61	3.97	362	-38	
14.08	12.27	100	15.1	6.67	3.19	5.29	3.61	-41	
14:13	12.34	100	15.2	668	2.94	5.35	3,52	-44	
14:18	12.39	100	13.4	6.69	2.84	5.51	3,50	-44	
14:26	Samp	le Take	n						
	1.0				-			-	
	urge Obse								
P	urge Wate	er Containe	rized:	no_		1111			***
Type of Type of	Pump: QE Tubing:!	CUMENTA D Bladder '' HDPE ality Meter:	pump B	'	Otte 2020		Calibra	ited:	
-)	,		ZIOZIOU O	22, 241110	111		Carrore		1 1
ANALY Paramete VOCs COD TOC Mangane Iron	vol 2 B x NOC Netals	RAMETEI umes 40 ml 4 L (X2SOm	Sample Co	ollected //		Loc	CATION N	OTES	
Signatur	e:	nouto	1101			12711			

Groundwater Elevations


Former Service Station Site #E828143

September 16, 2009

	MW-I	MW-2	MW-3	MW-4
PVC Elevation (ft)			li li	
	428.00	423.91	415.53	426.17
Depth to Water (ft)	12.31	11.69	13.15	10.73
Water Elevation (ft)				
	415.69	412.22	402.38	415.44

March 26, 2010

	MW-1	MW-2	MW-3	MW-4
PVC Elevation (ft)	428.00	423.91	415.53	426.17
Depth to Water (ft)	7.01	3.85	6.75	6.60
Water Elevation (ft)	420.99	420.06	408.78	419.57

Data Set: J:\...\Clarkson MW-1.aqt

Date: 06/23/11 Time: 15:35:38

PROJECT INFORMATION

Company: <u>Lu Engineers</u> Client: Town of Clarkson

Project: 40503

Location: Clarkson Site

Test Well: <u>MW-1</u> Test Date: <u>3/26/2010</u>

AQUIFER DATA

Saturated Thickness: 20. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1)

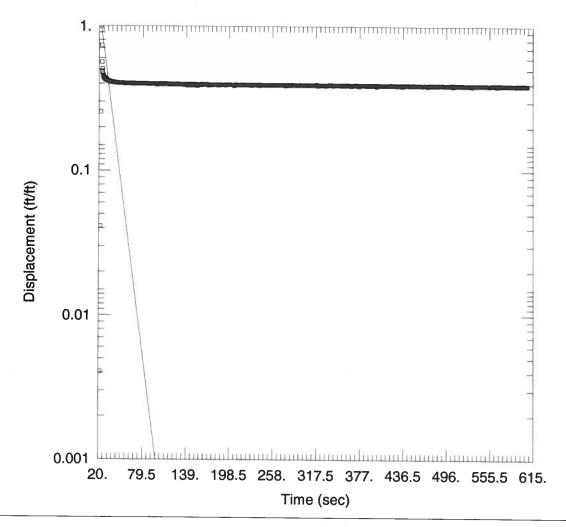
Initial Displacement: -4.744 ft

Total Well Penetration Depth: 14.94 ft

Casing Radius: 0.083 ft

Static Water Column Height: 14.94 ft

Screen Length: 10. ft Wellbore Radius: 0.33 ft


SOLUTION

Aquifer Model: Unconfined

K = 4.58E-5 ft/sec

Solution Method: Bouwer-Rice

y0 = -14.61 ft

Data Set: J:\...\Clarkson MW-2.aqt

Date: 01/25/11

Time: 11:45:50

PROJECT INFORMATION

Company: <u>Lu Engineers</u> Client: Town of Clarkson

Project: 40503

Location: Clarkson Site
Test Well: MW-2
Test Date: 3/26/2010

AQUIFER DATA

Saturated Thickness: 20. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-2)

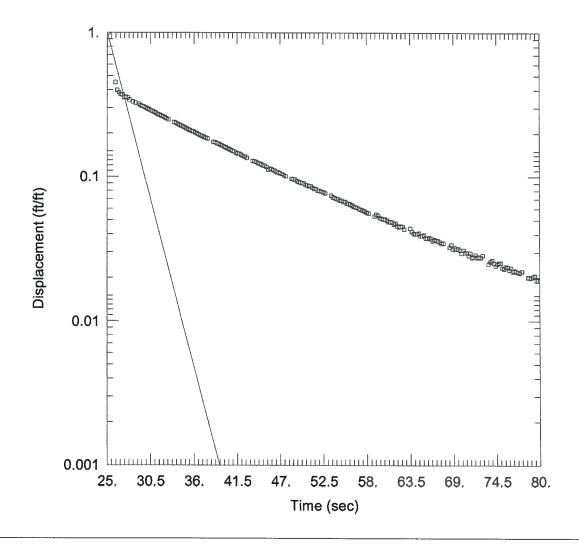
Initial Displacement: -3.44 ft

Total Well Penetration Depth: 10.9 ft

Casing Radius: 0.083 ft

Static Water Column Height: 10.9 ft

Screen Length: 10. ft Wellbore Radius: 0.33 ft


SOLUTION

Aquifer Model: Unconfined

K = 7.217E-5 ft/sec

Solution Method: Bouwer-Rice

y0 = -27.8 ft

Data Set: J:\...\Clarkson MW-3.aqt

Date: 06/23/11

Time: 15:38:03

PROJECT INFORMATION

Company: <u>Lu Engineers</u> Client: Town of Clarkson

Project: 40503

Location: Clarkson Site
Test Well: MW-3
Test Date: 3/26/2010

AQUIFER DATA

Saturated Thickness: 25. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-3)

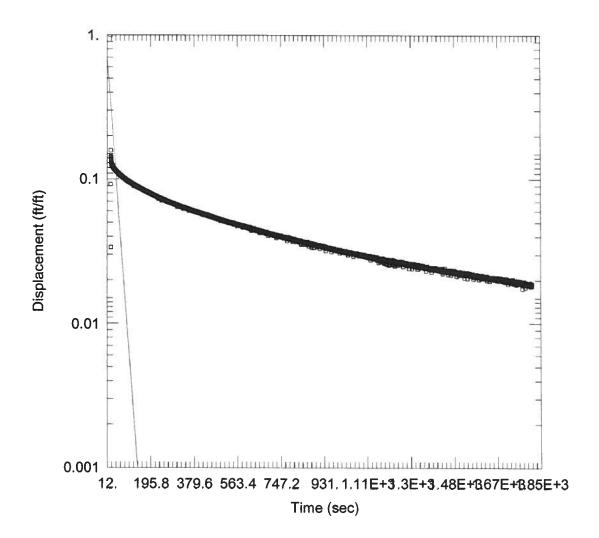
Initial Displacement: -4.03 ft

Total Well Penetration Depth: 12.65 ft

Casing Radius: 0.083 ft

Static Water Column Height: 12.65 ft

Screen Length: 10. ft Wellbore Radius: 0.33 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0003879 ft/sec

Solution Method: Bouwer-Rice

y0 = -7.419E + 5 ft

Data Set: J:\...\Clarkson MW-4.aqt

Date: <u>06/23/11</u> Time: <u>15:38:29</u>

PROJECT INFORMATION

Company: <u>Lu Engineers</u> Client: Town of Clarkson

Project: 40503

Location: Clarkson Site
Test Well: MW-4
Test Date: 3/26/2010

AQUIFER DATA

Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-4)

Initial Displacement: -11. ft

Total Well Penetration Depth: 11.3 ft

Casing Radius: 0.083 ft

Static Water Column Height: 11.3 ft

Screen Length: 10. ft Wellbore Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined

K = 4.025E-5 ft/sec

Solution Method: Bouwer-Rice

y0 = -14.19 ft

Town of Clarkson - Former Service Station Site

Remedial Investigation/Alternatives Analysis Report

NYSDEC ERP SITE#E826020

HYDROGEOLOGICAL CALCULATIONS

HYDRAULIC CONDUCTIVITY (K) VALUES*

• MW-1: 0.0000458 ft/sec

• MW-2: 0.0000722 ft/sec

• MW-3: 0.0003879 ft/sec

• MW-4: <u>0.0000403</u> ft/sec 0.0005462 ft/sec

AVERAGE K (for 4 wells tested) = 0.0005462/4 = 0.0001366 ft/sec = 1.37×10^{-4} ft/sec

HYDRAULIC GRADIENT CALCULATIONS (March 2010 data)

- MW-4 to MW-3: 419.57-408.78 = 10.79 ft / 256 ft = 0.0421 ft/ft (maximum site gradient, southwest to northeast across Site)
- MW-1 to MW-2: 420.99-420.06 = 0.93 ft / 48.44 ft = 0.019 ft/ft (former UST and pump island area gradient, south to north)

GROUNDWATER VELOCITY CALCULATIONS (V= K x l/n)

- MW-4 to MW-3: 2.14×10^{-4} ft/sec (0.0421 ft/ft / 0.30) = 3.00×10^{-5} ft/sec = 2.59 ft/day (using average K for the two wells, southwest to northeast across Site)
- MW-1 to MW-2: 5.9×10^{-5} ft/sec (0.019 ft/ft / 0.30) = 3.74×10^{-6} ft/sec = 0.32 ft/day (former UST and pump island area gradient, using average K for the two wells, south to north)

^{*} Hydraulic Conductivity (K) values were determined by using AQTESOLV for Windows Standard 3.5

- 8	Í.					PROJECT			BORING GP-01			
10	Lu En	ainee	rs			Clarkson EPR Site #E			SHEET 1 OF			
-		9				8264 Ridge Road We	est		JOB#: 40503			
CONT	RACTOR	Trec	Environmer	ntal		BORING LOCATION	SEE PLAN		CHKD. BY: N/A			
	ER: Jim					GROUND SURFACE			DATU	M: N/A		
	EOLOGIS		C. Karas			START DATE: Febru	ary 8, 2010	END D	ATE: February 8,	2010		
TVDE	OE DDII I	DIC:	CooProbo	54LT track-me	auntad		DATE	TIME	WATER LEVE WATER	CASING	REMARKS	
	VG SIZE A			54LT Track-mi	ountea		DATE	TIVIE	WATER	CASING	REMARNS	
				HOD: direct-p	ush							
	(DRILLIN	G MET	HOD: n/a			-						
D			CAMPI									
E P			SAMPLI	EDATA			CAI	MDLE	DESCRIPTIO	Λ.		PID
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	+	SAI	VIFLE	DESCRIPTION	V		PID
H	/6"	7.0.	(FT.)	/RQD(%)	(%)							
			0-4		95%				il, organics			0.0 ppm
1						0.5-3'	Reddish-b	rown tig	ght SILT some (Clay with tra	ce of Sand, moist	
ŀ												
2						1						
						3-4.7'	Doddish L	rown h:	ably woothers	chalo had	nck	00
3						3-4.1	neudisti-D	i OWII III,	ghly weathered	snale bedro	UCN	0.0 ppm
4			4-4.7		20%							
´			, ,,,		2070	Total Depth = 4	1.7'					
5						1						
6												
ļ												
7						_						
8						-						
9												
Ĭ						†						
10												
11												
ŀ												
12						1						
13						-						
13						1						
14						1						
İ						1						
15												
16												
						1						
17						-						
40												
18						1						
19						1						
Ĭ						1						
20						1						
		LEGEN	I <u>D</u>			Refusal at 4.7'				_		-
			SPOON SOI			Sample CS-GP-01	-03 + MS/I	MSD co	llected from 1-3	8' @ 11:35		
				OIL SAMPLE								
	C- GENERAL		CORE SAME	PLE		<u> </u>						
				LINES REPRESI	ENT APPROXIMA	TE BOUNDARY BETWEE	N SOIL TYP	ES, TRAN	NSITIONS MAY BE	GRADUAL.		
						IMES AND LINDER CON					D.	

BORING # GP-01

MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

- 1	ſ					PROJECT			BORING GP-02			
1	Lu Eng	ninee	rc			Clarkson EPR Site #E			-	1		
-	Lu Lii	Jinee	.5			8264 Ridge Road We	st		JOB #: 40503			
001/	FD 4 O T O D	<i>-</i> ,				DODING LOCATION	055 BL 44		CHKD. BY: N/A			
DRILL			Environmer	ital		BORING LOCATIONS GROUND SURFACE			DATUI	1. NI/A		
	.ek: GEOLOGIS	Jim Ag T:	jar L. Neubau	er		START DATE: Februa						
002 0	LOLOGIC		L. Moubau	<u> </u>		OTTATE DATE TO OCTU	ary 0, 2010	LIVE DI	WATER LEVE			
TYPE	OF DRILL	. RIG:	GeoProbe	54LT track-m	ounted		DATE	TIME	WATER	CASING	REMARKS	
	VG SIZE A											
				HOD: direct-ρι	ısh							
	(DRILLIN	3 MET	HOD: n/a									ı
D E			SAMPLI	E DATA								
P			SAIVIFLI	LDATA			SAI	MPLE	DESCRIPTIO	V		PID
΄τ	BLOW	NO.	DEPTH	N-VALUE	RECOVERY		OAI	VII LL I	DEGOINII IIOI	•		110
H	/6"		(FT.)	/RQD(%)	(%)							
			0-4	1 /	100%	0-0.5'	dark browi	n topsoi	l with organics			
1									some Clay, orga	anics, moist		0.0 ppm
ı									, ,	•		
2						1.5-3.5'	reddish-br	own tigl	ht SILT, some C	lay, trace fir	ne Sand	0.0 ppm
İ								J		-		''
3												
Ī												
4						3.5-4'	highly wea	thered	reddish-brown s	hale bedroo	ck fragments	0.0 ppm
Ī			4-5.2				same as a					
5												
						Total Depth = 5.2	2'					
6												
l												
7												
ļ												
8												
9												
ļ												
10												
11												
12												
40												
13						+						
- , ,						+						
14						•						
15						•						
15												
16												
10												
17												
"						1						
18					 	1						
,0					 	1						
19					 	1						
,,					 	1						
20					1	1						
		LEGEN	ID .			Refusal at 5.2'						•
			<u>=</u> SPOON SOL	L SAMPLE								
				IL SAMPLE								
			CORE SAME									
	GENERAL I											
	1)	STRAT	IFICATION L	INES REPRESI	ENT APPROXIMA	TE BOUNDARY BETWEE	N SOIL TYP	ES, TRAN	ISITIONS MAY BE	GRADUAL.		

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BORING # GP-02

MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

- 0	1					PROJECT			BORING GP-03	3		
i	Lu End	ainee	rs 2230 P	ENFIELD ROAD LD, NEW YORK)	Clarkson EPR Site #			SHEET 1 OF	1		
-	Lucin	gillee	PENFIEL	LD, NEW YORK	14526	8264 Ridge Road W	'est		JOB #: 40503			
CC * '	TDAOTOS	Tu '		tal.		PODING LOCATION	V. OEE DI **	,	CHKD. BY: N/A			
CON DRIL		Jim Ag	Environmer nar	ntal		BORING LOCATION GROUND SURFAC			חאדו	JM: N/A		
	SEOLOGIS		C. Karas			START DATE: Febr						
						001	L		WATER LEV			
				e 54 LT Track	Mount		DATE	TIME	WATER	CASING	REMARKS	
	NG SIZE A											
	RBURDEN K DRILLIN			HOD: direct-ρι	ısh					1		
D D	\ DKILLIN	G IVIE I	HUD: N/a									
E			SAMPLI	F DATA								
P			O) IIVII EI				SA	MPI F I	DESCRIPTIO	N		PID
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY		.					1
Н	/6"		(FT.)	/RQD(%)	(%)							
			0-4		100%	0-0.5'	dark brow	n topsoi	l with organics			
1						0.5-2.5'			nt SILT, some		cs, moist	0.0 ppm
								_				
2												
3						2.5-4.0'	highly wea	athered	reddish-brown	shale bedro	ck fragments	0.0 ppm
4							highly we	athered	green rock @	4'		
			4-4.7			4.0-4.7'	highly wea	athered	reddish-brown	bedrock; dry	,	0.0 ppm
5												
						Total Depth = 4	!.7'					
6												
7												
8												
9												
10												
11												
12												
13						1						
]						
14						_						
]						
15]						
]						
16]						
						1						
17						1						
						4						
18						1						
					ļ	4						
19						4						
					ļ	4						
20		L			<u> </u>	D-6						
		LEGEN				Refusal at 4.7'						
			SPOON SOIL									
			TURBED SO									
	U-	RUCK	CORE SAME	LE		I						

GENERAL NOTES:

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

- 0	f					PROJECT	_		BORING GP-0-	4		
i	LuEn	ainee	rc 2230 P	PENFIELD ROAD LD, NEW YORK)	Clarkson EPR Site #	E828143		SHEET 1 OF	1		
	I Lu Lii	gillee	PENFIE	LD, NEW YORK	14526	8264 Ridge Road W	'est		JOB #: 4050	3		
									CHKD. BY:			
			Environmer	ntal		BORING LOCATION						
	LER: Jim A					GROUND SURFACE				JM: N/A		
JCL (SEOLOGIS	ST: C.	Karas			START DATE: Febru	uary 8, 2010	END D				
TVDE	OF DD!!	I DIC.	Can Dunk	o F4 T Trools	Marint		DATE	TIME	WATER LEV		DEMARKS	
	NG SIZE A			e 54 LT Track	Mount		DATE	TIME	WATER	CASING	REMARKS	
				ΉOD: direct-ρι	ush					+	 	
	K DRILLIN			ПОD. unect-pt	1311					+	 	
D	CDINELIIV	O IVIL I	1100.174								<u>. </u>	
Ε			SAMPL	F DATA								
P			O,				SA	MPI F	DESCRIPTIO	M		PID
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY		0/1		DEGOTAL TIC	,,,,		1 12
H	/6"		(FT.)	/RQD(%)	(%)							
			0-4	,,	100%	0-0.5'	dark bro	vn tops	oil with organic	:S		
1			<u> </u>		10070	0.5-2.5'			ILT with Sand;		d water)	0.0 ppm
,					†	0.0 2.0	roddioir	<i>5101111</i> 0	ier wiiir oana,	wer (perene	i water)	0.0 ррт
2				 	 	1						
2					 	1						0.0 ppm
2					 	2.5-4.0'	roddich l	brown b	iahly waathara	d shala hadr	ock fragments; dry	υ.υ ρριτι
3					 	2.3-4.0	reduisti-k	JIOWII III	grily weathere	u snale beun	ock tragments, dry	
					<u> </u>							
4			4.5.01		<u> </u>	4.5.01		,				
_			4-5.9'		<u> </u>	4-5.9'	same as	above				0.0 ppm
5					ļ							
6												
						Total Depth = 5.	9'					
7												
8												
9												
10												
11												
12												
13												
.0												
14												
					†							
15					-	_						
15					 							
10					 							
16					<u> </u>							
					<u> </u>							
17						_						
				ļ		4						
18												
					<u> </u>	_						
19					<u> </u>							
20												
		LEGEN	ID			Refusal at 5.9'						
	S-	SPLIT	SPOON SOI	L SAMPLE		Sample CS-GP-	04-02 col	lected f	rom 1-2' bgs.			
	U-	UNDIS	TURBED SC	OIL SAMPLE								

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

Ė	Lu Eng	ginee	rs 2230 Pi PENFIEI	ENFIELD ROAD LD, NEW YORK) 14526	PROJEC Clarkson EPR Site 1 8264 Ridge Road W	#E828143		BORING GP-05 SHEET 1 OF JOB #: 40503 CHKD. BY: N/A	1		
DRIL	TRACTOR LER: GEOLOGIS	Jim Ag		ntal		BORING LOCATION GROUND SURFAC START DATE: Febr	E ELEVATIO	N: N/A	DATU	M: N/A		
JUL	GLOLOGIS	01.	C. Naras			START DATE. Febi	uary 6, 2010	LIND DA	WATER LEVE			
TYPI	OF DRILL	. RIG:	Geo Probe	e 54 LT Track	Mount		DATE	TIME	WATER	CASING	REMARKS	
CAS	ING SIZE A	ND TY	PE: 2"									
				HOD: direct-p	ush							
	K DRILLIN	G MET	HOD: n/a									1
D E P			SAMPLI	E DATA			SA	MDIEI	DESCRIPTIO	ıA.		PID
T H	BLOW /6"	NO.	DEPTH (FT.)	N-VALUE /RQD(%)	RECOVERY (%)	1	SAI	VIF LL I	DESCRIF ITO	71		PID
	70		0-4	//(QD(70)	90%	0-0.5'	dark browi	n tonsoi	l with organics			
1			0 1		3070	0.5-1.5'	medium-bi	rown S	ilty SAND with	trace Gravel	, wet (perched water)	0.0 ppm
2						1.5-3.0'	medium-bi	rown fin	e SAND with li	ttle Silt		0.0 ppm
3												
4						3.0-4.0'	reddish-b	rown hi	ghly weathered	l shale fragm	nents	0.0 ppm
			4-4.5		40%	4.0-4.5'	same as	above				
5						Total Depth = 4	.5'					
6						_						
7						1						
8						1						
9												
10						_						
11												
12						4						
13						1						
14						1						
15						1						
16						1						
17						1						
18												
						1						
19						<u> </u>						
20												
		LEGEN SPLIT	I <u>D</u> SPOON SOII	L SAMPLE		Refusal at 4.5'						
	U-	UNDIS	TURBED SO	IL SAMPLE								

GENERAL NOTES:

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

В	Lu End	ginee	rs2230 P	ENFIELD ROAD LD, NEW YORK)	PROJEC	#E828143			1		
					14526	8264 Ridge Road	West		JOB #: 40503 CHKD. BY: N/A			
DRIL	TRACTOR LER: GEOLOGIS	Jim Ag		ntal		BORING LOCATION GROUND SURFA START DATE: Fel	CE ELEVATIO	N: N/A		IM: N/A 2010		
OOL .	<u>JEOLOGIC</u>		O. Naras			OTANT DATE. TO	0, 2010	LIND DI	WATER LEVI			
TYPE	OF DRILL	. RIG:	Geo Probe	e 54 LT Track	Mount		DATE	TIME	WATER	CASING	REMARKS	
CAS	NG SIZE A	ND TY	PE: 2"									
				HOD: direct-ρι	ısh							
	K DRILLIN	G MET	HOD: n/a									
D E			SAMPLI	E DATA								
P	51.0111						SA	MPLE	DESCRIPTIO	N		PID
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY							
Н	/6"		(FT.)	/RQD(%)	(%)	0.0.51	5 / /					
			0-4		100%	0-0.5'			il with organics			
1						0.5-2.0'	reddish-br	own SIL	T and SAND s	some Clay, n	noist	0.0 ppm
2												
						2.0-40'	reddish-bro	own higi	hly weathered s	shale fragme	ents; dry	0.0 ppm
3												
4												
			4-5.3		70%	4.0-5.3	reddish-bro	own hig	hly weathered	shale bedroo	k with pockets of weathered	0.0 ppm
5						1	green ro	_			,	
						Total Depth = 5	5.3' bgs					
6						1	Ü					
7						1						
•												
8						-						
Ü												
9						-						
9						-						
10						-						
10						-						
11						4						
						_						
12						_						
						-						
13						-						
						4						
14					.	4						
					.	4						
15					ļ	4						
					ļ	4						
16						4						
17						4						
						1						
18												
19												
20												<u> </u>
		LEGEN	<u>ID</u>			Refusal at 5.3'						
	S-	SPLIT	SPOON SOIL	L SAMPLE								
	U-	UNDIS	TURBED SO	IL SAMPLE								
	C-	ROCK	CORE SAME	PLE								

GENERAL NOTES:

- $1) \ \ STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.$
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
 MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 BORING # GP-06

- 10	f					PROJECT			BORING GP-07			
100	Lu En	ainee	rs 2230 P	ENFIELD ROAD)	Clarkson EPR Site #I			SHEET 1 OF	1		
	I Lu Lii	gillee	PENFIE	ENFIELD ROAD LD, NEW YORK	14526	8264 Ridge Road We	est		JOB#: 40503			
00						DODUNO / 2217:5::	055 51 11		CHKD. BY: N/A			
CON' DRIL			Environmer	ntal		BORING LOCATION GROUND SURFACE			D 4 7 1 14	A: NI/A		
	LEK: GEOLOGIS	Jim Ag ST	gar L.Neubau	er		START DATE: Febru			DATUI : DATUI : ATF: February 8			
OOL C	DEOLOGIC	,,,	L.IVCubau	Ci		OTAIN DATE: TODIA	1	LIVU DI	WATER LEVE			
TYPE	OF DRILL	RIG:	Geo Probe	e 54 LT Track	Mount		DATE	TIME	WATER	CASING	REMARKS	
	NG SIZE A											
				HOD: direct-ρι	ısh							
	K DRILLIN	G MET	HOD: n/a			I						
D			SAMPL	EDATA								
E P			SAIVIFLI	LDATA			SA	MDIE	DESCRIPTIO	V		PID
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY		OA!	VII LL	DEGUINI TIOI	V		FID
Н	/6"		(FT.)	/RQD(%)	(%)							
			0-4	` ′	25%	0-4.0'	Fill: mediu	m-brow	n SAND and SI	LT, moist		0.0 ppm
1										•		
						1						
2						1						
3												
]						
4												
			4-8		40%	4.0-5.0' n	nedium-bro	wn SIL	T and fine SAN	D some Gra	vel; saturated	0.0 ppm
5												
									h more Gravel,	dark gray s	taining and a slight	0.0 ppm
6						ŀ	petroleum	odor				
						ļ						
7									011			
							concrete pi			, 0		
8			0.0.4		000/	8.0-8.4' n			T some fine Sai			0.0 ppm
			8-8.4		20%	T-1-1 D-1-11- 0.4		oleum o	dor @ 8.0'. Rod	ck retusal at	8.4	
9						Total Depth = 8.4						
10						ł						
10												
11												
' '						1						
12					 	1						
,-					 	1						
13					 	1						
						1						
14					Ī	1						
						1						
15]						
16												
]						
17]						
]						
18]						
19												
					ļ							
20					<u> </u>	Defined to the						
		LEGEN				Refusal at 8.4'		07 07				
			SPOON SOI			Collected sample	CS-GP-	07-071	rom 5-7° bgs			
	U-	UNDIS	i UKBED SC	OIL SAMPLE		I						

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
 MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 BORING # GP-07

- 0						PROJECT			BORING GP-08			
10	Lu En	ninee	rs			Clarkson EPR Site #				1		
-	Lu Lii	gillee	13			8264 Ridge Road W	est		JOB #: 40503			
									CHKD. BY: N/A			
			Environmer	ntal		BORING LOCATION			5.4714			
DRILL	.ER: EOLOGIS	Jim Aq	gar C. Karas			GROUND SURFACE START DATE: Febr			DATUM			
JUL C	EULUGIS	01.	C. Naras			START DATE. FEBR	uary 6, 2010 E	אט טאו:	WATER LEVE			
TYPF	OF DRILL	RIG:	GeoProbe	e 54 LT Track N	Nounted .		DATE	TIME	WATER	CASING	REMARKS	
	VG SIZE A			OTET TRUCK II	nountou		BALLE	, <u> </u>	VVIII EIX	0/10//10	TILIW II II II	
				HOD: direct-pu	ısh							
			HOD: n/a	<u> </u>								
D												
Ε			SAMPL	E DATA								
Ρ							SAM	PLE I	DESCRIPTIOI	V		PID
Т	BLOW	NO.	DEPTH	N-VALUE	RECOVERY							
Н	/6"		(FT.)	/RQD(%)	(%)							
ļ			0-4		85%	0-3.5'	Fill: medium	-brow	n fine SAND			0.0 ppm
1												
ļ												
2						_						
ļ						_						
3						_						
L												
4						3.5-4.0'			n SILT and SAN	ID with orga	nics; brick fragments	0.0 ppm
			4-6.8		65%	4.0-4.5'	same as ab	ove				
5						4.5-6.5'	reddish-brov	vn tigl	nt SILT, little Cla	ay, trace fine	e Sand and Gravel	0.0 ppm
6												
						6.5-6.8	reddish-brow	ın higi	hly weathered s	hale bedroo	k fragments	0.0 ppm
7												
						Total Depth = 6.8	3' bgs					
8												
9												
Ī												
10												
11												
12												
13												
14												
15												
16												
17												
18												
Ī												
19												
Ī												
20						1						
		LEGEN	<u>ID</u>			Refusal at 6.8'						-
	S-	SPLIT	SPOON SOI	L SAMPLE								
	U-	UNDIS	TURBED SC	OIL SAMPLE								
	C-	ROCK	CORE SAMI	PLE								
-	GENERAL								<u> </u>			
	1)	STRAT	TFICATION I	LINES REPRESE	ENT APPROXIMA	TE BOUNDARY BETWE	EN SOIL TYPES	S, TRAN	ISITIONS MAY BE	GRADUAL.		

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BORING # GP-08

MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

ì	Lu Eng	ginee	rs 2230 PA PENFIEL	ENFIELD ROAD LD, NEW YORK	14526	PROJEC Clarkson EPR Site 8264 Ridge Road	#E828143		JOB #: 40503	1 3			
CON DRIL	TRACTOR LER:	Trec I Jim Ag	Environmer gar			BORING LOCATION GROUND SURFA	CE ELEVATIO	N: N/A		IM: N/A			
JCL (GEOLOGIS	1:	C. Karas			START DATE: Fel	bruary 8, 2010	END DA	WATER LEVI				
TYPE	OF DRILL	. RIG:	Geo Probe	e 54 LT Track	Mount		DATE	TIME	WATER	CASING	REMARKS		_
	NG SIZE A												_
				HOD: direct-pι	ısh								
	K DRILLIN	G MET	HOD: n/a										
D E			SAMPLI	E DATA			0.4	MDLE	DECODIDA				
P T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	_	SAI	MPLE	DESCRIPTIO	N .		PID	
Н	/6"	NO.	(FT.)	/RQD(%)	(%)								
	70		0-4	//(QD(70)	75%	0.0-3.0'	Fill: mediu	m - dark	brown fine Sa	ndy SILT		0.0 ppm	<u>_</u>
1			0 7		7070	0.0-3.0	i iii. iiiedidi	II - Gain	brown fine oa	ndy OIL1		0.0 ρρπ	"
,						-							
2						-							
2					 	1							
					 	1							
3					 	2040	40 ddi-1- 1-		CUT. de				
					ļ	3.0-4.0'	reddish-bro	wn tight	SIL1; ary				
4			4.0.0		40007	1,050	•						
			4-6.8		100%	4.0-5.0'	Same as a	bove; w	et @ 4.5'			0.0 ppm	n
5						4							
						5.0-8.0'	same as a	ibove; d	ry				
6						_							
						_							
7						_							
						_							
8						<u> </u>							
			8-8.6		35%	8.0-8.6'		wn SIL i	and shale frag	gments; satu	rated	0.0 ppm	n
9						Total Depth =	8.6' bgs						
						_							
10						4							
						_							
11						_							
40						_							
12						4							
10						-							
13						-							
14					 	1							
1-					 	1							
15					 	1							
10						1							
16						-							
, 5					 	1							
17						-							
.,					 	1							
18					1	1							
						1							
19						1							
	"					1							
20					1	1							
	<u>LEGEND</u>					Refusal at 8.6'							
			 SPOON SOII	L SAMPLE									
	U-	UNDIS	TURBED SO	IL SAMPLE									
	C-	ROCK	CORE SAME	PLE									

GENERAL NOTES:

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

 MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 BORING # GP-09

1 10	E					PROJE			BORING GP-1			
100	Lu En	ainee		ENFIELD ROAD		Clarkson EPR Site			SHEET 1 OF			
100		gillee	PENFIE	LD, NEW YORK	14526	8264 Ridge Road	West		JOB#: 40503			
001	FD 4 6 T 6 T	T		-1-1		DODING LOGICE	ON 055 51 11		CHKD. BY: N/A			
			Environmer	ntal		BORING LOCATION			DATI	18.4. 81/4		
DRILL JCI G	.ER: GEOLOGIS	Jim Ag ST∙	gar L.Neubau	er		GROUND SURFA START DATE: Fe				IM: N/A 2010		
JOL G	LOLUGIO	, ı .	L.IVEUDAU	UI .		STAINT DATE. FE	Diuaiy 0, 2010	LIVU U	WATER LEV			
TYPE	OF DRILL	L RIG:	GeoProbe	54 LT Track I	Mounted		DATE	TIME	WATER	CASING	REMARKS	
	NG SIZE A											
OVEF	RBURDEN	SAMP	LING MET	HOD: direct-ρι	ısh							
_	C DRILLIN	G MET	HOD: n/a									
D			04454	E D 4 E 4								
Ε			SAMPL	E DATA			0.4		DECODIDA	NA (
P	DI OM	MO	DEPTH	N-VALUE	RECOVERY	-	SA	MPLE	DESCRIPTIC)/V		PID
T H	BLOW '6"	NO.										
п	/6"		(FT.) 0-4	/RQD(%)	(%) 95%	0.0-0.5'	med-brown	topsoil				
1			0-4		95/6	0.5-1.5'				nd c-f Sand w	vith organics; moist	0.0 ppm
· ' ·						0.5-1.5	mea-brown	SIL1, S	one Graver ar	iu c-i Sariu vi	nui organics, moisi	0.0 ppm
2						1.5-4.0'	raddish bra	un SII T	traca Clay tie	ahtly compac	ted, well sorted	0.0.00
2			-		 	1.3-4.0	r c uuistr-bf0	WII SILI	, uace Clay, II(униу сотпрас	icu, well suiteu	0.0 ppm
3					1	1						
3					1	1						
4			-		 	1						
4			4-8		90%	4.0-8.0'	raddish br	own hi~	hly weathered	chala hadraa	·k· dn/	0.0 ppm
5			4-0		9076	4.0-0.0	reduisir-bit	Jwii nig	illy weathered	snale bedroc	k, ury	υ.υ ρριτι
5						1						
6						4						
6						1						
7						1						
′						1						
						4						
8			8-8.9			0 0 0 0/						
_			0-0.9			8.0-8.9'	same as ab	ove.				
9						Total Depth = 8	0 0' has					
40						Тотаг Берті = с	5.9 bys.					
10						4						
44						4						
11						1						
40			-		 	4						
12			-		 	4						
40					-	4						
13					+	1						
11			 		 	1						
14					-	4						
4.5					+	1						
15					+	1						
16			-		 	1						
16					+	1						
ا_ر ا			-		 	4						
17					-	4						
4.					-	4						
18					 	4						
			<u> </u>			4						
19			<u> </u>			4						
					1	4						
20			<u></u>		<u> </u>	Defunct of CO	1					
		LEGEN				Refusal at 8.9'						
			SPOON SOI									
	U-	UNDIS	TURBED SC	OIL SAMPLE		1						

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

- 0						PROJECT	Γ		BORING GP-11	1				
100	Lu En	ninee	rs			Clarkson EPR Site #				1				
1	Lu Lii	Jinee	, 3			8264 Ridge Road W	'est		JOB #: 40503					
001	D4070	T	-			DODING LOCATION	V OFF 5: 4::		CHKD. BY: N/A					
DRILL			Environmer	ntal		BORING LOCATION			DATI	M: N/A				
	.ER: EOLOGIS	Jim Ag T:	gar C. Karas			GROUND SURFAC START DATE: Febr								
		-					1 2, 20.0		WATER LEVI					
				e 54 LT Track I	Mounted		DATE	TIME	WATER	CASING	REMA	RKS		
	VG SIZE A				_									
				HOD: direct-pu	ısh						-			
ROCK D	DRILLIN	∍ ME l	пОD: n/a			I			l	1	I		1	
E			SAMPLI	F DATA										
P			O) IIVII LI				SAN	∕PI F	DESCRIPTIO	N				PID
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	1	O,			• •				2
Н	/6"		(FT.)	/RQD(%)	(%)									
			0-4		40%	0.0-4.0' F	ill: reddish-	dark br	own SILT with	some Grave	e/			0.0 ppm
1														
L														
2					<u> </u>	1								
ļ			<u> </u>			4								
3			<u> </u>	<u> </u>		4								
ļ				<u> </u>		4	= -	 (
4			4.0	 	40007		vet at 3.7-4.							
_			4-8	_	100%	4.0-5.5' re	eddish-browi	n SIL I	with some c-f S	Sand; wet				0.0 ppm
5						-								
_				 		<i>E E 7 E'</i>	ama aa aha	vo: dn						
6				 	 	5.5-7.5' S	ame as abo	ve; ary						
7				 	 	1								
′						1								
8						1								
ű			8-9.8		50%	8.0-9.0'	Same as abo	nve						0.0 ppm
9			0 0.0	 	3070	0.0-9.0	dine as abc	,,,,						υ.υ ρριτι
Ĭ						9.0-9.8' r	eddish-brow	n hiahi	ly weathered st	nale bedrock				
10									,		•			
ľ						Total Depth = 9.8	8' bas							
11						1								
ľ														
12														
13														
14]								
ŀ														
15														
				<u> </u>	ļ	1								
16				ļ		1								
						-								
17				 										
18			\vdash	 	 	1								
18			\vdash	 		1								
19			 	 		1								
13				 	\vdash	1								
20					 	1								
20		LEGEN	ID.			Refusal at 9.6'								
	S-		<u></u> SPOON SOI	IL SAMPLE		Collected sample	le CS-GP-1	11-10 t	rom 8-10' bas	3				
				OIL SAMPLE		2 silvesta carripr			o 10 age	-				
			CORE SAME											
	GENERAL I													
	1)	STRAT	IFICATION I	LINES REPRESE	ENT APPROXIMA	TE BOUNDARY BETWE	EN SOIL TYPE	ES, TRAN	ISITIONS MAY BE	GRADUAL.				

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BORING # GP-11

MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

- 10	l .					PROJEC			BORING GP-1	2		
10	Lu En	ainee	rs 2230 P	ENFIELD ROAL		Clarkson EPR Site				1		
	1	9	PENFIE	LD, NEW YORK	(14526	8264 Ridge Road	West		JOB #: 4050			
COM	TDACTOR	Tunn		ata l		BORING LOCATION	ON SEE DLAN	,	CHKD. BY: N/A	1		
DRIL		Jim Ag	Environmer nar	ıtaı		GROUND SURFA			DATI	JM: N/A		
	EOLOGIS	ST:	L.Neubau	er		START DATE: Feb						
							1		WATER LEV			
				e 54 LT Track	Mount		DATE	TIME	WATER	CASING	REMARKS	
	NG SIZE A							ļ				
			'LING MET 'HOD: n/a	HOD: direct-p	ush							
D	VURILLIN	G IVIE I	пор. па									
E			SAMPL	E DATA								
P							SA	MPLE .	DESCRIPTIO	N		PID
Т	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	1						
Н	/6"		(FT.)	/RQD(%)	(%)							
			0-4		70%	0.0-1.0'	Fill: reddish	-brown S	SILT and SAN	D		1.2 ppm
1												
							Fill w/ concr					
2						1.7-4.0'				lay and Grav	el, trace Sand	0.0 ppm
						-	1" rock i	ragmen	t at 3.5'			
3						-						
						-						
4			4-8		60%	4.0-8.0'	raddiah hr	oun tiah	t CII T with tro	oo Croval		0.0 ====
5			4-0		00%	4.0-0.0	reduisti-bri	own ugr	nt SILT with tra	ce Graver		0.0 ppm
5						1						
6						1	wet @ 5 F	5-7 0' (ne	erched water)			
Ü						1	WOI @ 0.0	, ,.o (p.	oronea water)			
7						†						
						1						
8												
			8-9.4			8.0-9.4	reddish-bro	wn tight	SILT: dry			0.0 ppm
9						1		ŭ				1
							wet @ 9' bo	gs				
10						Total Depth = 9	9.4' bgs					
11												
12												
						-						
13						-						
						4						
14		1	 		+	1						1
15						1						
10		1	1		1	1						1
16					1	1						
		1			1	1						
17						1						1
					1	1						
18						1						
]						
19]						1
]						1
20												
		<u>LEGEN</u>				Refusal at 9.4'		40.00				
	S-	SPLIT	SPOON SOI	L SAMPLE		Collected samp	bie CS-GP-	12-09 1	rom 8.0-9.4'	pgs		

U- UNDISTURBED SOIL SAMPLE

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

- 0						PROJECT			BORING GP-13	3		
i	Lu Eng	ainee	rs			Clarkson EPR Site #E			-	1		
-		,				8264 Ridge Road We	st		JOB #: 40503 CHKD. BY: N/A			
CON	TRACTOR	Trec E	Environmer	ntal		BORING LOCATION:	SEE PLAN	I	CHIND. BT. IVA			
DRIL		Jim Ag				GROUND SURFACE	ELEVATIO	N: N/A		M: N/A		
JCL (GEOLOGIS	T:	L.Neubau	er		START DATE: Febru	ary 9, 2010	END DA				
TYPE	OF DRILL	RIG:	Geo Probe	e 54 LT Track	Mount		DATE	TIME	WATER LEVI WATER	CASING	REMARKS	
	NG SIZE A			O TET TIOCK	Wount		DATE	THVIL	WATER	OHOING	KEWATTO	
				HOD: direct-ρι	ısh							
ROC. D	K DRILLIN	G MET	HOD: n/a			I				1		ı
E			SAMPLI	F DATA								
P			O) IIVII EI	L D/II/I			SA	MPLE I	DESCRIPTIO	N		PID
Τ	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	1						
Η	/6"		(FT.)	/RQD(%)	(%)							
			0-4		80%	0.0-1.0' As	sphalt					0.0 ppm
1					-	1.0-3.5' re	ddish brou	un SII T	with some Sar	ad and Gray	N	
2						1.0-3.5	uuisii-bioi	WII SIL I	with some Sai	iu anu Grave	7 1	
2						†						
3						1						
						3	of black	SAND @	② 3.2′			3.5 ppm
4						3.5-4.0' re	ddish-brov	vn Sand	ly SILT, moist			
			4-8		90%	4.0-7.5' sa	me as ab	ove				
5							(@ 5 0 :	7.51 /			!	
6					-	· w	et @ 5.0-	7.5 (pe	rched water); s	siigrit petroiet	urii odor	0.0 ppm
U						†						
7												
						7.5-8.0' r	eddish-bro	own tigh	t SILT;moist			
8												
			8-10		90%	8.0-10.2' re	eddish-bro	wn tight	SILT; dry			176 ppm
9						1						
10					<u> </u>	-	efusal on	hadrock	@ 10.2'			
10						Total Depth = 10.2		Dearock	€ 10.Z			
11							- 290					
12												
						1						
13						-						
14						1						
14												
15						1						
16												
17						1						
10						-						
18						1						
19					†	1						
						1						
20												
		LEGEN	_			Refusal at 10.2'						
			SPOON SOI			Collected sample	CS-GP-	13-10 f	rom 8-10' bgs	3		
			TURBED SC CORE SAMI	OIL SAMPLE PLE								
	9	0		_		1						

- GENERAL NOTES:

 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
 - 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE. BORING # GP-13

1	Lu Eng	ginee	rs 2230 P PENFIE	ENFIELD ROAD LD, NEW YORK	14526	Clarkson EPR Site #1 8264 Ridge Road We			SHEET 1 OF JOB #: 40503	1		
CON DRILL	RACTOR ER:	Trec E Jim Ag	Environmer gar			BORING LOCATION GROUND SURFACE	ELEVATIO	N DN: N/A	CHKD. BY: N/A DATU	M: N/A		
JCL (SEOLOGIS	1:	C. Karas			START DATE: 2/8/20	110 	END DA	ATE: 2/8/2010 WATER LEVE	EL DATA		
				54 LT Track N	<i>Nount</i>		DATE	TIME	WATER	CASING	REMARKS	
	NG SIZE A											
	KBURDEN KDRILLIN			HOD: direct-pu	ISN							
D												
Ε			SAMPL	E DATA								
P	DI OW	NO	DEDTU	N-VALUE	DECOVEDY	_	SA	MPLE I	DESCRIPTIO	N		PID
T H	BLOW /6"	NO.	DEPTH (FT.)	/RQD(%)	RECOVERY (%)							
			0-4		60%	0-4' H	-ill: mediu	ım-brow	n Silty SAND, d	dry		0.0 ppm
1												
2						-						
2												
3												
			4.0		OF9/	4						
4			4-8		95%	4.0-5.0' s	same as a	hove				0.0 ppm
5						4.0 0.0	arrio do di	0010				0.0 ppm
l						5.0-8.0' r	eddish-bro	own SIL	Τ			0.0 ppm
6						_						
7						_						
						_	perched w	ater at	7.5-8.0'			
8			8-9.6						dish-brown sha	ale bedrock		0.0 ppm
9						8.5-9.6' s	ame as ab	ove, dry	<i>'</i> .			
9						۱ ,	Refusal @	9.6'				
10												
44						_						
11												
12												
13						_						
14						=						
15						4						
16						1						
,0						1						
17												
18						_						
19						1						
,						1						
20												
		LEGEN	_			Refusal at 9.6']
			SPOON SOI									
			TURBED SC CORE SAM	OIL SAMPLE PLE								
	GENERAL I	VOTES:										
	,					TE BOUNDARY BETWEE TIMES AND UNDER CON					- D	
	,					OSE PRESENT AT THE T				JI VOOINDVVA I E		

ì	Lu En	ginee	rs 2230 Pi PENFIEI	ENFIELD ROAD LD, NEW YORK) 14526	PROJECT Clarkson EPR Site #L 8264 Ridge Road We			BORING GP-18 SHEET 1 OF JOB #: 40503 CHKD. BY: N/A	1 3		
DRIL	TRACTOR LER: GEOLOGIS	Jim Ag	Environmer gar L.Neubaue			BORING LOCATION GROUND SURFACE START DATE: Febru	ELEVATIO	N: N/A	DATU	IM: N/A		
002	<u>JE OE O O I C</u>	•	L. I VOUDUU	<i>31</i>		OTTILL DITTE. TODIA	dry 0,2010	LIVE DI	WATER LEVI			
				54 LT Track N	Mount		DATE	TIME	WATER	CASING	REMARKS	
	NG SIZE A											
	RBURDEN K DRILLIN			HOD: direct-p	ush							
D	N DNILLIN	J IVIL I	ITOD. II/a				ļ			l		
Ε			SAMPLI	E DATA								
Р							SAI	MPLE I	DESCRIPTIO	N		PID
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY							
Н	/6"		(FT.)	/RQD(%)	(%)							
		1	0-4		75%				oil with organic			
1						0.5-1.5 Fi	ill: red to m	nedium-l	brown SILT, G	RAVEL, and	cmf SAND; moist	0.0 ppm
2						1.5-3.5' Re	eddish-bro	wn SIL	Γ, trace Clay, ti	ghtly compa	cted, well sorted	0.0 ppm
_												
3						-						
						2540	2066122					
4		2	4-6		100%		cobbles	rown his	this woothered	abala day		0.0 ====
5			4-0		100%	4.0-0.0	Reduisii-bi	OWIT TIIG	hly weathered	Stiale, dry		0.0 ppm
3						1						
6						†						
·						1 ,	Refusal at	6.0'				
7												
8												
9												
10												
						4						
11												
12						4						
12												
13					1	1						
13					†	1						
14					1	1						
						1						
15						1						
16												
						1						
17												
					1	4						
18					1	4						
40					 	-						
19					 	1						
20					 	1						
20		LEGEN	ID	1	1	Refusal at 6.0'						
			<u>ib</u> SPOON SOII	L SAMPLE								
			TURBED SO									
			CORE SAME									

GENERAL NOTES:

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

I	í.						JECT		BORING GP-1			
10	Lu En	ainee	rs 2230 P	PENFIELD ROAD		Clarkson EPR S			SHEET 1 OF			
-		9	PENFIE	LD, NEW YORK	14526	8264 Ridge Roa	ad West		JOB #: 40503			
CON	TRACTOR	Troc	Environmer	ntal		BOBING LOCA	TION: SEE PLAN	ı	CHKD. BY: N/A			
DRIL		Jim Ag		ııaı			FACE ELEVATION		DATI	JM: N/A		
	SEOLOGIS		C. Karas				February 8, 2010					
									WATER LEV			
				e 54 LT Track I	Mount		DATE	TIME	WATER	CASING	REMARKS	
	NG SIZE A RRI IRDEN			HOD: direct-pu	ich			ł		+		
	K DRILLIN			rrob. anoot pt	3011					1		
D								•	•	•	•	
Ε			SAMPL	E DATA								
P	D/ 014/	140	DEDTU	1 111/11/15	RECOVERY		SA	MPLE	DESCRIPTIC	DN .		PID
T H	BLOW /6"	NO.	DEPTH (FT.)	N-VALUE /RQD(%)	(%)							
	70	1	0-4	//(QD(70)	30%	0.0-4.0	Fill: medium	-brown	Silty SAND so	ome Gravel	trace brick and concrete	0.0 ppm
1		<u> </u>	· ·		3070	0.0 7.0	i iii. iiiodidiii	, promi	Omy 07 11 12, 00	onio Oravoi, i	ado brion ana conorcio	0.0 pp.m
						1						
2												
3						_						
						<u> </u>						
4		_	4.0		400/	4000						
_		2	4-8		40%	4.0-6.0'	same as ab	ove				0.0 ppm
5						1						
6						1						
Ŭ						6.0-8.0'	Medium-br	own SII	LT			0.0 ppm
7												
8							perched wa	ater @	7.5'			0.0 ppm
		3	8-10.7			8.0-8.5'	same as ab					
9						8.5-9.5	Reddish-bro	own SIL	Τ			0.0 ppm
40						0.5.40.7	Doddiob buo		thought abole b	- duo al :		_
10						9.5-10.7	Redaisri-bro	wn wea	thered shale b	еагоск		
11						Total Depth	- 10 7'					-
						rotar Bopan	- 10.7					
12												
13												
						_						
14						<u> </u>						
						4						
15						4						
16						-						
10						-						
17			1			1						
18												
						1						
19						4						
			ļ	<u> </u>		4						
20		LECT	<u> </u>	<u> </u>		Refusal at 1	0.7'					
	0	LEGEN SPLIT	<u>ID</u> SPOON SOI	I SAMPLE		i Telusal at 1	0.7					
				DIL SAMPLE		sample CS-0	GP-16-8.5 col	lected	from 7.5-8.5'	bgs for VOC	C, SVOC, and Metals	
	-	_										

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

- 10	E					PROJ				BORING GP-1			
10	Lu En	ainee		PENFIELD ROAD		Clarkson EPR S				SHEET 1 OF	1		
10		3	PENFIE	LD, NEW YORK	14526	8264 Ridge Roa	ad We	est		JOB #: 4050 CHKD. BY: N/A			
CON	TRACTOR	Treci	Environme	ntal		BORING LOCA	TION	SEE PLAN	ı	CHND. BT. IV/F	1		
DRILL		Jim Ag		, ita		GROUND SURI				DATU	JM: N/A		
JCL C	SEOLOGIS	ST:	C. Karas			START DATE: I	Febru	ary 9, 2010	END D				
										WATER LEV		I 551 11 51/0	
	: OF DRILL NG SIZE A			e 54 LT Track I	Mount			DATE	TIME	WATER	CASING	REMARKS	
				HOD: direct-pu	ush			-					
	K DRILLIN												
D													
E			SAMPL	E DATA									
P	D/ O//	N/O	DEDTU	A1.)/A1.1/5	DECOVERY	4		SA	MPLE	DESCRIPTIO	ON		PID
T H	BLOW /6"	NO.	DEPTH (FT.)	N-VALUE /RQD(%)	RECOVERY (%)								
''	70	1	0-4	/KQD(76)	100%	0.0-0.5	Δς	phalt					
1		,	0 1		70070	0.5-1.5'			wn Siltv	SAND, little G	ravel		0.0 ppm
ĺ						0.0 7.0	, , ,	adion bro	Only	O, 11 12, maio O	, avoi		0.0 ppm
2						1.5-3.0'	Re	ddish-bro	wn Silty	SAND			0.0 ppm
ı						1			,				''
3													
						3.0-3.5	Re	eddish-bro	wn SAN	ID			
4						3.5-4.0'	Re	eddish-bro	wn tight	SILT, trace Sa	and		
ļ		2	4-8		100%	4.0-6.0'	sa	me as abo	ve				0.0 ppm
5													
ļ						_							
6						4							
_						_	1'	' diameter	rock tra	gment @ 6.0'			
7						1							
8						4							
°		3	8-9.7		70%	8.0-8.5	R	addish_hro	wn tiaht	SILT, wet			0.0 ppm
9		<u> </u>	0 0.7		7070	8.5-9.7		me as abo					υ.υ ρριτι
Ĭ						0.0 0.7	ou	mo do doc	ovo, ary				
10						Total Depth	= 9.7	7'					
ı						1 ′							
11													
12													
ļ						4							
13						4							
				ļ		4							
14		-				-							
15				-		1							
15						1							
16						1							
,,						1							
17		1				1							
·		Ì				1							
18						1							
19													
20													
		<u>LEGEN</u>	 '			Refusal at 9.	7'						
			SPOON SOI										
	U-	UNDIS	TURBED SC	OIL SAMPLE									

- $1) \ \ STRATIFICATION LINES \ REPRESENT \ APPROXIMATE \ BOUNDARY \ BETWEEN \ SOIL \ TYPES, \ TRANSITIONS \ MAY \ BE \ GRADUAL.$
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
 MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 BORING # GP-17

1 10	E						OJECT			BORING GP-1			
100	Lu En	ainee		ENFIELD ROAL		Clarkson EPF				SHEET 1 OF			
1	1	9	PENFIE	LD, NEW YORK	14526	8264 Ridge R	Road We	est		JOB #: 4050			
CON	TD ACTOR	Tunn	Environmer	ata l		BORING LOC	SATION	OFF DLAN	,	CHKD. BY: N/A	4		
DRILL		Jim A		ıtaı		GROUND SU				DATI	JM: N/A		
	EOLOGIS		C. Karas							ATE: February 9			
								Ī		WATER LEV			
				54 LT Track	Mount			DATE	TIME	WATER	CASING	REMARKS	
	VG SIZE A												
	RBURDEN K DRILLIN			HOD: direct-p	oush								
D	DRILLIN	G IVIE I	пор. па						<u> </u>			<u> </u>	
Ε			SAMPLI	E DATA									
P								SA	MPLE I	DESCRIPTION	ON		PID
Т	BLOW	NO.	DEPTH	N-VALUE	RECOVERY								
Н	/6"		(FT.)	/RQD(%)	(%)								
ļ		1	0-4		75%	0.0-0.5'		phalt					
1						0.5-4.0'	Fill	l: Reddish	i-brown	Sillty SAND, t	race Gravel,	dry	0.0 ppm
ļ						1							
2													
						4							
3						4							
						4							
4			4.0		000/	40.70		,					
۔ ا		2	4-6		90%	4.0-7.0'	san	ne as abo	/e				0.0 ppm
5						4	-1	:			. @ F F 7 0!		0.0
6						4	SII	igrit petroi	eum oad	or and staining	1 @ 5.5-7.0		0.0 ppm
6						1							
7													
ſ,						7.0-8.0'	rec	ddish-brov	n tiaht :	SILT trace Gr	avel and gree	en limestone fragments	0.0 ppm
8						7.0 0.0	700	adion brow	ii agiic (SILT, trace Cr	aver and gree	in ilinestone nagmente	0.0 ppm
Ĭ		3	8-10.7		100%	8.0-9.0'	sa	me as abo	ve				
9						1							
ı						9.0-10.7	rea	ldish-brow	n tight S	SILT and highl	y weathered	shale bedrock	0.0 ppm
10						1			-				
11						Total Dept	th = 10.	.7'					
l													
12						1							
13						4							
						4							
14													
4.5						4							
15						1							
16													
,,						1							
17						1							
· · ·						1							
18					İ	1							
						1							
19						1							
İ					Î]							
20													
		<u>LEGEN</u>	VD.			Refusal at							
	S-	SPLIT	SPOON SOI	L SAMPLE		Sampled C	S-GP	-18-07 ar	d CS-0	GP-18-07D c	ollected fror	n 4.5-7.0'	

U- UNDISTURBED SOIL SAMPLE

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

 MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 BORING # GP-18

1 10	Í.					PROJE			BORING GP-1			
10	Lu Eng	ainee	rs 2230 P	ENFIELD ROAD		Clarkson EPR Si			SHEET 1 OF			
		9	PENFIEL	LD, NEW YORK	14526	8264 Ridge Road	d West		JOB #: 40503			
CON	TDACTOD	Troc	Environmen	nto l		BORING LOCAT	TIONI SEE DI AN	1	CHKD. BY: N/A			
DRIL		Jim Ag		itai		GROUND SURF			DATI	JM: N/A		
	EOLOGIS		C. Karas			START DATE: F			ATE: February 9	, 2010		
									WATER LEV			
				54 LT Track I	Mount		DATE	TIME	WATER	CASING	REMARKS	
	NG SIZE A			HOD: direct-pu	ıch							
	K DRILLIN			TOD. direct-pt	1311					+		
D									II.		I	
Ε			SAMPLI	E DATA								
Ρ						<u> </u>	SA	MPLE.	DESCRIPTIC	DN		PID
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY							
Н	/6"	1	(FT.) 0-4	/RQD(%)	(%) 70%	0.0.0.01	Annhalt					
1		-	0-4		70%	0.0-0.3' 0.3-3.0'	Asphalt	rk brou	in SAND some	o Graval par	phalt pieces, moist	0.0 ppm
,						0.3-3.0	riii. Teu to ua	ii K-Di Ov	III SAND, SUITE	e Graver, asp	man pieces, moisi	υ.υ ρριτι
2												
_						1						
3						1						
_						3.0-4.0'	red to mediu	m-brow	n SAND			
4						1						
		2	4-8		95%	4.0-7.5'	medium-brov	vn SAN	D and SILT, tra	ace Gravel, v	vet (perched water)	0.0 ppm
5												
6						<u> </u>						
7												
_						7.5-8.0'	same as abo	ve; dry	and tightly con	npacted		0.0 ppm
8		3	8-10.8		1000/	0.0.40.0/						
9		3	0-10.0		100%	8.0-10.8'	same as abo	ve				
9						1						
10						1						
					1							
11						Total Depth =	= 10.8'					
						,						
12												
13						1						
						4						
14					1	4						
						1						
15						4						
16						1						
10						1						
17					1	1						
''						1						
18						1						
						1						
19]						
]						
20												
		<u>LEGEN</u>				Refusal at 10.						
			SPOON SOIL			Sample CS-G	6P-19-10 coll	ected t	rom 8-10'			
l	U-	UNDIS	TURBED SO	IL SAMPLE								

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
 MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 BORING # GP-19

						T .			T			
	f					PROJECT			BORING GP-20			
1 6	1	-:	2230 P	ENFIELD ROAD)	Clarkson EPR Site #	E828143		SHEET 1 OF	1		
-	Lu En	ginee	rs PENFIE	ENFIELD ROAD LD, NEW YORK	14526	8264 Ridge Road W			JOB #: 40503			
						ozo / / wago / waa //	001		CHKD. BY: N/A			
CON	TRACTOR	Trock	Environme	ntal		BORING LOCATION	I SEE DI AN	J	OTTION BT. TOTA			-
				ııaı		GROUND SURFACE			DATU	M. NI/A		
DRILL		Jim Ag										
JCL (SEOLOGIS	51:	C. Karas			START DATE: Febr	ary 9, 2010	END D				
					_				WATER LEVE		T	
				54 LT Track N	Лount		DATE	TIME	WATER	CASING	REMARKS	
	NG SIZE A											
OVEF	RBURDEN	SAMP	LING MET	HOD: direct-p	ush							
ROCK	K DRILLIN	IG MET	HOD: n/a									
D								-	•			
Ε			SAMPL	E DATA								
			OAWI L	LDAIA			C 4	MDLE	DECODIDA	N.I		D/D
Ρ					T		SA	IVIPLE	DESCRIPTIO	IV		PID
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY							
Н	/6"		(FT.)	/RQD(%)	(%)							
		1	0-4		70%	0.0-0.5' A	sphalt					
1								ark-bro	wn Silty SAND			0.0 ppm
'H						0.0 0.0	m. rou to u	an Dio	in only or a D			0.0 ppiii
		1										
2												
						1	" gravel lay	rer @ 2	.3'			
3						1	,					
Ĭ						3.0-3.5' Fi	II: medium	brown	fino CAND			1 00 nnm
		-										0.0 ppm
4							ddish-brov	vn tight	SILT, wet (perci	hed water)		
		2	4-8		100%	4.0-6.0' sa	ame as abo	ve				0.0 ppm
5												
`												
_		<u> </u>										
6												
						6.0-7.0' Sa	ame as abo	ove, dry	,			
7												0.0 ppm
												0.0 /2/2
8												_
		3	8-9.3			8.0-9.3' re	ddish-brov	ın tight	SILT, some Gra	ivel; wet		0.0 ppm
9												
40						Total Depth = 9.	21					-
10						10tai Deptii = 9.	3					
11												
l												
12		1			ŀ	1						Ī
12		1				1						
		1				4						
13		<u></u>		<u></u>								Ī
						1						
14		1				1						
17		1		}	 	1						
						4						
15		<u> </u>				1						
						1						
16					Ì	1						
,,,		1				1						
		1				4						
17						ĺ						
	·				1	1						
18					1	1						
,,,		1				1						
		1				4						
19						ĺ						
						1						
20						1						
		LEGEN	ID	1	1	Refusal at 9.3'						
							0.00 "	-1- 15	0 0 0 0'			
	S-	SPLIT :	SPOON SOI	L SAMPLE		Sampl CS-GP-2	u-uy colle	cted fr	om 8.0-9.3'			

U- UNDISTURBED SOIL SAMPLE

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
 MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 BORING # GP-20

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511 Lab Sample Number: 5180

Client Job Number: Field Location:

40503 CS-SS-01

Field ID Number: Sample Type: N/A Soil Date Sampled:

04/27/2009

Date Received: Date Analyzed:

04/28/2009 05/07/2009

Date Reissued:

05/20/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 4.82 4.5
Bromomethane	ND< 4.82 4.5
Bromoform	ND< 12.0 R
Carbon Tetrachloride	ND< 12.0 65
Chloroethane	ND< 4.82
Chloromethane	ND< 4.82
2-Chioroethyl vinyl Ether	ND< 24.1
Chloroform	ND< 4.82
Dibromochloromethane	ND< 4.82 4.5
1,1-Dichloroethane	ND< 4.82
1,2-Dichloroethane	ND< 4.82
1,1-Dichloroethene	ND< 4.82
cis-1,2-Dichloroethene	ND< 4.82
trans-1,2-Dichloroethene	ND< 4.82
1,2-Dichloropropane	ND< 4.82 5
cis-1,3-Dichloropropene	ND< 4.82 💆
trans-1,3-Dichloropropene	ND< 4.8243
Methylene chloride	ND< 12.0 45
1,1,2,2-Tetrachloroethane	ND< 4.82 WS
Tetrachloroethene	17.1 🍑
1,1,1-Trichloroethane	ND< 4.82
1,1,2-Trichloroethane	ND< 4.82 4.5
Trichloroethene	ND< 4.82 🗸
Trichlorofluoromethane	ND< 4.82

Aromatics	Results in ug / Kg
Benzene	ND< 4.82 U.S
Chlorobenzene	ND< 4.82 WS
Ethylbenzene	ND< 4.82 4.5
Toluene	M ND< 4.82 65
m,p-Xylene	ND< 4.82
o-Xylene	ND< 4.82
Styrene	ND< 12.0 65
1,2-Dichlorobenzene	ND< 12: 0 €
1,3-Dichlorobenzene	ND< 12.0 R
1,4-Dichlorobenzene	ND<-4:82 R

Ketones	Results in ug / Kg
Acetone	ND< 24.1 45
2-Butanone	ND< 24.1 45
2-Hexanone	ND< 12.0 45
4-Methyl-2-pentanone	ND< 12.0

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 4.82
Vinyl acetate	ND< 12.0 3.10
•	

ELAP Number 10958

Vinyl chloride

Method: EPA 8260B

ND< 4.82

Data File: V65513.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

O91511V1.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5180

Client Job Number: 40503 Field Location:

Date Sampled:

04/27/2009

Field ID Number:

CS-SS-01 N/A

Date Received:

04/28/2009

Sample Type:

Soil

Date Analyzed:

05/07/2009

Date Reissued:

05/20/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 4.82	N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V65513.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511 Lab Sample Number: 5181

Client Job Number:

40503

Date Sampled:

04/27/2009

Field Location: Field ID Number:

CS-SS-02 N/A

Date Received:

04/28/2009

Sample Type: Soil Date Analyzed:

05/07/2009

Date Reissued:

08/23/2010

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 4.67 4.5
Bromomethane	ND< 4.67 45
Bromoform	ND< 11.7 R
Carbon Tetrachloride	ND< 11.7 US
Chloroethane	ND< 4.67
Chloromethane	ND< 4.67
2-Chloroethyl vinyl Ether	ND< 23.3
Chloroform	ND< 4.67
Dibromochloromethane	ND< 4.67 45
1,1-Dichloroethane	ND< 4.67
1,2-Dichloroethane	ND< 4.67 1.18
1,1-Dichloroethene	ND< 4.67
cis-1,2-Dichloroethene	ND< 4.67
trans-1,2-Dichloroethene	ND< 4.67
1,2-Dichloropropane	ND< 4.67 4.5
cis-1,3-Dichloropropene	ND< 4.67 4
trans-1,3-Dichloropropene	ND< 4.67
Methylene chloride	J 11.4
1,1,2,2-Tetrachloroethane	ND< 4.67 🛂
Tetrachioroethene	11.6 🍑
1,1,1-Trichloroethane	ND< 4.67 🗸
1,1,2-Trichloroethane	ND< 4.67 45
Trichloroethene	ND< 4.67いる
Trichlorofluoromethane	ND< 4.67
I	

Aromatics	Results in ug / Kg	
Benzene	ND< 4.67 4.5	
Chlorobenzene	ND< 4.67 WS	
Ethylbenzene	ND< 4.67 W	_
Toluene	ND< 4.67 3.98	7
m,p-Xylene	ND< 4.87 1.74	. 7.
o-Xylene	ND< 4.67 US	
Styrene	ND< 11.7 UT	
1,2-Dichlorobenzene	ND< 11.7 €	
1,3-Dichlorobenzene	ND< 11.7 R	
1,4-Dichlorobenzene	ND< 4.87 R	

Ketones	Results in ug / Kg
Acetone	ND< 23.3 w3
2-Butanone	ND< 23.3 W 3
2-Hexanone	ND< 11.7 65
4-Methyl-2-pentanone	ND< 11.7

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 4.67
Vinyl acetate	ND< 11.7 8.77
	55594600 - CRRV 15 1 1 1 1 1 1

Vinyl chloride ELAP Number 10958

Method: EPA 8260B

ND< 4.67

Data File: V65514.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 091511V2.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5181

Client Job Number: Field Location:

40503 CS-SS-02

Date Sampled:

04/27/2009

Field ID Number: Sample Type: N/A Soil Date Received:

04/28/2009

Date Analyzed:

05/07/2009

ELAP Number 10958

Method: EPA 8260B

Data File: V65514.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional Information, including compliance with sample condition requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511 Lab Sample Number: 5182

Client Job Number: Field Location:

40503 CS-SS-03

Date Sampled: Date Received: 04/27/2009

Field ID Number: Sample Type:

N/A Soil

Date Received:

04/28/2009 05/05/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 5.72 WS
Bromomethane	ND< 5.72 45
Bromoform	ND< 14.3 R
Carbon Tetrachloride	ND< 14.3 ムブ
Chloroethane	ND< 5.72
Chloromethane	ND< 5.72
2-Chloroethyl vinyl Ether	ND< 28.6
Chloroform	ND< 5.72
Dibromochloromethane	ND< 5.72 🕶
1,1-Dichloroethane	ND< 5.72
1,2-Dichloroethane	ND< 5.72 2.02
1,1-Dichloroethene	ND< 5.72
cis-1,2-Dichloroethene	ND< 5.72
trans-1,2-Dichloroethene	ND< 5.72
1.2-Dichloropropane	ND< 5.72 🛂

Aromatics	Results in ug / Kg
Benzene	ND< 5.72 45
Chlorobenzene	ND< 5.72 🛂
Ethylbenzene	ND< 5.72 Ч [→]
Toluene	ND< 5.72 🗸 🕽
m,p-Xylene	ND< 5.72 🛂
o-Xylene	ND< 5.72 45
Styrene	ND< 14.3 🗸 🍑
1,2-Dichlorobenzene	ND< 14.3 2
1,3-Dichlorobenzene	ND< 14.3 1
1,4-Dichlorobenzene	ND< 5.72 €

Ketones	Results in ug / Kg
Acetone	ND< 28.6 us
2-Butanone	ND< 28.6 🛰 🌣
2-Hexanone	ND< 14.3 🗥
4-Methyl-2-pentanone	ND< 14.3

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 5.72
Vinyl acetate	ND< 14.3 2.53
•	

ELAP Number 10958

cis-1,3-Dichloropropene

Methylene chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

1,1,1-Trichloroethane 1,1,2-Trichloroethane

Trichlorofluoromethane

trans-1,3-Dichloropropene

1,1,2,2-Tetrachloroethane

Method: EPA 8260B

7

ND< 5.72 45

ND< 5.72 43

ND< 14.3 US

ND< 5.72

6.28

ND< 5.72 45

ND< 5.72 US

ND< 5.72 45

ND< 5.72

ND< 5.72

Data File: V65451.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

091511V3.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511 Lab Sample Number: 5182

Client Job Number:

Field Location:

40503 CS-SS-03

Date Sampled:

04/27/2009

Field ID Number:

N/A

Date Received:

04/28/2009

Sample Type:

Soil

Date Analyzed:

05/05/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 5.72	N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V65451.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger. Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 091511V3,XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site: Clarkso

Clarkson ERP Site Lab Project Number: 09-1511 Lab Sample Number: 5183

Client Job Number: 40503
Field Location: CS-SS-04
Field ID Number: N/A

Sample Type: Soil

Date Sampled:

04/27/2009

Date Received:

Date Analyzed:

04/28/2009 05/05/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 4.37
Bromomethane	ND< 4.37
Bromoform	ND< 10.9 R
Carbon Tetrachloride	ND< 10.9
Chloroethane	ND< 4.37
Chloromethane	ND< 4.37
2-Chloroethyl vinyl Ether	ND< 21.9
Chloroform	ND< 4.37
Dibromochloromethane	ND< 4.37
1,1-Dichloroethane	ND< 4.37
1,2-Dichloroethane	ND< 4.37 1,20
1,1-Dichloroethene	ND< 4.37
cis-1,2-Dichloroethene	ND< 4.37

Aromatics	Results in ug / Kg	
Benzene	ND< 4.37	
Chlorobenzene	ND< 4.37	
Ethylbenzene	ND< 4.37	
Toluene	ND< 4.37	
m,p-Xylene	ND< 4.37	
o-Xylene	ND< 4.37	
Styrene	ND< 10.9 5.63	
1,2-Dichlorobenzene	ND< 10.9 1	
1,3-Dichlorobenzene	NÐ< 10:9 🤽	
1,4-Dichlorobenzene	ND< 4.37 R	

Ketones	Results in ug / Kg	
Acetone	ND< 21.9 4 5	
2-Butanone	ND< 21.9 😘	
2-Hexanone	ND< 10.9	
4-Methyl-2-pentanone	ND< 10.9	

Results in ug / Kg
ND< 4.37
ND< 10.9 3.78
NAME: 0.000A

ELAP Number 10958

trans-1,2-Dichloroethene

cis-1,3-Dichloropropene trans-1,3-Dichloropropene

1,2-Dichloropropane

Methylene chloride
1.1.2.2-Tetrachloroethane

Tetrachloroethene

Trichloroethene

Vinyl chloride

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Method: EPA 8260B

7

ND< 4.37 ND< 4.37

ND< 4.37

ND< 4.37 ND< 10.9

ND< 4.37

ND< 4.37

ND< 4.37

ND< 4.37

ND< 4.37

ND< 4.37

5.35

Data File: V65452.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

091511V4.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5183

Client Job Number: Field Location:

40503 CS-SS-04

Date Sampled:

04/27/2009

Field ID Number: Sample Type:

N/A Soil

Date Received:

04/28/2009

Date Analyzed:

05/05/2009

entatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
lone Found	N/A	N/A	ND< 4.37	N/A
AD Number 10059		EDA 8260B		Data File: V654

ELAP Number 10958

Method: EPA 8260B

Data File: V65452.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Client Job Number:

40503

Lab Sample Number: 5184

Field Location:

CS-SS-04D

Date Sampled:

04/27/2009

Field ID Number:

N/A

Date Received:

04/28/2009

Sample Type: Soil

Date Analyzed:

lyzed: 05/05/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 4.13 UTS
Bromomethane	ND< 4.13 🖙
Bromoform	-ND< 10.3 R
Carbon Tetrachloride	ND< 10.3 45
Chloroethane	ND< 4.13
Chloromethane	ND< 4.13
2-Chloroethyl vinyl Ether	ND< 20.7
Chloroform	ND< 4.13
Dibromochloromethane	ND< 4.13 いて
1,1-Dichloroethane	ND< 4.13
1,2-Dichloroethane	ND< 4.13 1.26
1,1-Dichloroethene	ND< 4.13
cis-1,2-Dichloroethene	ND< 4.13
trans-1,2-Dichloroethene	ND< 4.13
1,2-Dichloropropane	ND< 4.13 43
cis-1,3-Dichloropropene	ND< 4.13 4.5
trans-1,3-Dichloropropene	ND< 4.13 45
Methylene chloride	ND< 10.3 🗸 📉
1,1,2,2-Tetrachloroethane	ND< 4.13 ^{↓ →}
Tetrachloroethene	5.36 🍮
1,1,1-Trichloroethane	ND< 4.13
1,1,2-Trichloroethane	ND< 4.13 🛂
Trichloroethene	ND< 4.13
Trichlorofluoromethane	ND< 4.13
Vinyl chloride	ND< 4.13

Aromatics	Results in ug / Kg
Benzene	ND< 4.13 W
Chlorobenzene	ND< 4.13 W.5
Ethylbenzene	ND< 4.13 ^从 5
Toluene	ND< 4.13 △ 丁
m,p-Xylene	ND< 4.13 に丁
o-Xylene	ND< 4.13 4.3
Styrene	ND< 10.3 3.24
1,2-Dichlorobenzene	ND< 10.3 P
1,3-Dichlorobenzene	ND< 10.3 ≥
1,4-Dichlorobenzene	ND< 4.13 R

Ketones	Results in ug / Kg
Acetone	ND< 20.7 45
2-Butanone	ND< 20.7 WT
2-Hexanone	ND< 10.3 🛂
4-Methyl-2-pentanone	ND< 10.3

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 4.13
Vinyl acetate	ND< 10.3 3.24
•	

ELAP Number 10958

Method: EPA 8260B

Data File: V65453.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

To

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5184

Client Job Number: Field Location:

40503 CS-SS-04D

Date Sampled:

04/27/2009

Field ID Number:

N/A

Date Received:

04/28/2009

Sample Type:

Soil

Date Analyzed:

05/05/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 4.13	N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V65453.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 091511V5.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5185

Client Job Number: 40503 Field Location: Field ID Number:

Sample Type:

CS-SS-05

N/A Soil Date Sampled:

04/27/2009

Date Received:

04/28/2009

Date Analyzed:

05/05/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 4.42 W S
Bromomethane	ND< 4.42 WT
Bromoform	ND< 11.0 R
Carbon Tetrachloride	ND< 11.0 W
Chloroethane	ND< 4.42
Chloromethane	ND< 4.42
2-Chloroethyl vinyl Ether	ND< 22.1
Chloroform	ND< 4.42
Dibromochloromethane	ND< 4.42 W 5
1,1-Dichloroethane	ND< 4.42
1,2-Dichloroethane	ND< 4.42 1. VB
1,1-Dichloroethene	ND< 4.42
cis-1,2-Dichloroethene	ND< 4.42
trans-1,2-Dichloroethene	ND< 4.42
1,2-Dichloropropane	ND< 4.42
cis-1,3-Dichloropropene	ND< 4.42
trans-1,3-Dichloropropene	ND< 4.42
Methylene chloride	ND< 11.0 🗸 👅
1,1,2,2-Tetrachloroethane	ND< 4.42 🗸 🕏
Tetrachloroethene	14.0 🍮
1,1,1-Trichloroethane	ND< 4.42 🔨
1,1,2-Trichloroethane	ND< 4.42 🛰
Trichloroethene	ND< 4.42 45
Trichlorofluoromethane	ND< 4.42
Vinyl chloride	ND< 4.42
51 A D March - 40000	A 1 - 11 1 - F

Aromatics	Results in ug / Kg
Benzene	ND< 4.42 🗸 🗸
Chlorobenzene	ND< 4.42 🗸 🤻
Ethylbenzene	ND< 4.42 ~~
Toluene	ND< 4.42 3.14
m,p-Xylene	ND< 4.42 ~~ T
o-Xylene	ND< 4.42 LT
Styrene	ND< 11.0 2.20
1,2-Dichiorobenzene	ND< 11.0 R
1,3-Dichlorobenzene	ND< 11.0 R
1,4-Dichlorobenzene	ND< 4.42 R

Ketones	Results in ug / Kg
Acetone	ND< 22.1 44
2-Butanone	ND< 22.1 V3
2-Hexanone	ND< 11.0 🗸
4-Methyl-2-pentanone	ND< 11.0

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 4.42
Vinyl acetate	ND< 11: 0 4,82
•	
	}

Method: EPA 8260B Data File: V65454.D ELAP Number 10958

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 091511V6.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Client Job Number:

40503

Lab Sample Number: 5185

Field Location:

CS-SS-05

Date Sampled: **Date Received:** 04/27/2009

Field ID Number:

N/A

04/28/2009

Sample Type:

Soil

Date Analyzed:

05/05/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 4.42	N/A
2				
**				

ELAP Number 10958

Method: EPA 8260B

Data File: V65454.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compilance with sample condition requirements upon receipt. 091511V6.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5186

Client Job Number: Field Location:

40503 CS-SS-06 N/A

Date Sampled: **Date Received:** 04/27/2009

04/28/2009

Field ID Number: Sample Type: Soil

Date Analyzed: 05/05/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 4.37 LS
Bromomethane	ND< 4.37
Bromoform	ND< 10.9 2
Carbon Tetrachloride	ND< 10.9 LJ
Chloroethane	ND< 4.37
Chloromethane	ND< 4.37
2-Chloroethyl vinyl Ether	ND< 21.8
Chloroform	ND< 4.37
Dibromochloromethane	ND< 4.37 U.S
1,1-Dichloroethane	ND< 4.37
1,2-Dichloroethane	ND< 4.37 1.58
1,1-Dichloroethene	ND< 4.37
cis-1,2-Dichloroethene	ND< 4.37
trans-1,2-Dichloroethene	ND< 4.37
1,2-Dichloropropane	ND< 4.37
cis-1,3-Dichloropropene	ND< 4.37 4.5
trans-1,3-Dichloropropene	ND< 4.37 45
Methylene chloride	ND< 10.9 45
1,1,2,2-Tetrachloroethane	ND< 4.37 🕶
Tetrachloroethene	ND< 4.37 45
1,1,1-Trichloroethane	ND< 4.37 US
1,1,2-Trichloroethane	ND< 4.37 4.3
Trichloroethene	ND< 4.37 VJ
Trichlorofluoromethane	ND< 4.37
Vinyl chloride	ND< 4.37

Aromatics	Results in ug / Kg	
Benzene	ND< 4.37 🛂	
Chlorobenzene	ND< 4.37 🗸 🛪	
Ethylbenzene	ND< 4.37 🏎 🤝	
Toluene	ND< 4.37 🕶	
m,p-Xylene	ND< 4.37 ^{↓ →}	
o-Xylene	ND< 4.37 🗸 🏅	
Styrene	ND< 10.0 1.81	
1,2-Dichlorobenzene	ND< 10.9 ℃	
1,3-Dichlorobenzene	ND< 10.9 R	
1,4-Dichlorobenzene	ND< 4.37 ℃	

Ketones	Results in ug / Kg
Acetone	ND< 21.8 🛂 🕏
2-Butanone	ND< 21.8 45
2-Hexanone	ND< 10.9 45
4-Methyl-2-pentanone	ND< 10.9

Results in ug / Kg
ND< 4.37
ND< 10.9

ELAP Number 10958 Data File: V65455.D Method: EPA 8260B

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix Interference

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5186

Client Job Number: Field Location:

40503 CS-SS-06

Date Sampled:

04/27/2009

Field ID Number: Sample Type:

N/A Soil Date Received:

04/28/2009

Date Analyzed:

05/05/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 4.37	N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V65455.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

O91511V7.XLS

5

ENVIRONMENTAL SERVICES. INC. 179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Sample Type:

Clarkson ERP Site

Lab Project Number: 09-1511 Lab Sample Number: 5187

Client Job Number: Field Location:

40503 CS-SD-01

Field ID Number:

N/A Soil Date Sampled:

04/27/2009

Date Received:

04/28/2009

Date Analyzed:

05/05/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 4.57 ~ 3
Bromomethane	ND< 4.57 🕶
Bromoform	ND< 11.4 45
Carbon Tetrachloride	ND< 11.4 U.J
Chloroethane	ND< 4.57
Chloromethane	ND< 4.57
2-Chloroethyl vinyl Ether	ND< 22.8
Chloroform	ND< 4.57
Dibromochloromethane	ND< 4.57 4.5
1,1-Dichloroethane	ND< 4.57
1,2-Dichloroethane	ND< 4.57 1.98 3
1,1-Dichloroethene	ND< 4.57 3.50 J
cis-1,2-Dichloroethene	ND< 4.57
trans-1,2-Dichloroethene	ND< 4.57
1,2-Dichloropropane	ND< 4.57 4.57
cis-1,3-Dichloropropene	ND< 4.57
trans-1,3-Dichloropropene	ND< 4.57
Methylene chloride	ND< 11.4 45
1,1,2,2-Tetrachloroethane	ND< 4.57 45
Tetrachloroethene	ND< 4.57 UJ
1,1,1-Trichloroethane	ND< 4.57 W
1,1,2-Trichloroethane	ND< 4.57 W.T
Trichloroethene	ND< 4.57

Aromatics	Results in ug / Kg
Benzene	ND< 4.57 🗸 🕏
Chlorobenzene	ND< 4.57 🕶
Ethylbenzene	ND< 4.57 🗸 🎖
Toluene	ND< 4.57 🛂
m,p-Xylene	ND< 4.57 🗸 🏲
o-Xylene	ND< 4.57 u T
Styrene	ND< 11.41.58
1,2-Dichlorobenzene	ND< 11.4
1,3-Dichlorobenzene	ND< 11.4
1,4-Dichlorobenzene	ND< 4.57

Ketones	Results in ug / Kg
Acetone	ND< 22.8 17.9
2-Butanone	ND< 22.8 🛂
2-Hexanone	ND< 11.4 🗸
4-Methyl-2-pentanone	ND< 11.4

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 4.57
Vinyl acetate	ND< 11.4
•	

ELAP Number 10958

Vinyl chloride

Trichlorofluoromethane

Method: EPA 8260B

ND< 4.57

ND< 4.57

Data File: V65456.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 091511V8.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5187

Client Job Number: Field Location:

40503 CS-SD-01

Date Sampled:

04/27/2009

Field ID Number: Sample Type: N/A Soil Date Received:

04/28/2009

Date Analyzed:

05/05/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Complex Hydrocarbon	N/A	9.092	27.0	N/A
Complex Hydrocarbon	N/A	9.82	78.0	N/A
		20		

ELAP Number 10958

Method: EPA 8260B

Data File: V65456.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

091511V8.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site Lab Project Number: 09-1511 Lab Sample Number: 5188

40503 Client Job Number: CS-SD-02 Field Location: Field ID Number: N/A

Date Analyzed: Sample Type: Soil

Date Sampled: Date Received: 04/28/2009 05/05/2009

Results in ug / Kg Halocarbons Bromodichloromethane ND< 7.84 Bromomethane ND< 7.84 WT Bromoform ND< 19.6 Carbon Tetrachloride ND< 19.6 Chloroethane ND< 7.84 Chloromethane ND< 7.84 2-Chloroethyl vinyl Ether ND< 39.2 ND< 7.84 Chloroform Dibromochloromethane ND< 7.84 1,1-Dichloroethane ND< 7.84 ND< 7.84 2.89 1,2-Dichloroethane ND< 7.84 15. 4 1,1-Dichloroethene cis-1,2-Dichloroethene ND< 7.84 trans-1,2-Dichloroethene ND< 7.84 1,2-Dichloropropane ND< 7.84 cis-1,3-Dichloropropene ND< 7.84

Aromatics	Results in ug / Kg
Benzene	ND< 7.84
Chlorobenzene	ND< 7.84
Ethylbenzene	ND< 7.84
Toluene	ND< 7.84
m,p-Xylene	ND< 7.84
o-Xylene	ND< 7.84
Styrene	ND< 19.6 2.48
1,2-Dichlorobenzene	ND< 19.6 ℃
1,3-Dichlorobenzene	ND< 19.6 €
1,4-Dichlorobenzene	ND< 7.84 P

04/27/2009

Ketones	Results in ug / Kg
Acetone	81.6
2-Butanone	ND< 39.2
2-Hexanone	ND< 19.6
4-Methyl-2-pentanone	ND< 19.6

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 7.84
Vinyl acetate	ND< 19.6
	·

Data File: V65457.D

ELAP Number 10958 Method: EPA 8260B

ND< 7.84

ND< 7.84 ND< 7.84 7.35

ND< 7.84

ND< 7.84 ND< 7.84

ND< 7.84

ND< 7.84

ND< 19.6 5

Comments: ND denotes Non Detect

trans-1,3-Dichloropropene

1,1,2,2-Tetrachloroethane

Methylene chloride

Tetrachloroethene 1,1,1-Trichloroethane

Trichloroethene Trichlorofluoromethane

Vinyl chloride

1,1,2-Trichloroethane

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 091511V9.XLS

ENVIRONMENTAL SERVICES. INC. 179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5188

Client Job Number: Field Location:

40503 CS-SD-02

Date Sampled:

04/27/2009

Field ID Number:

N/A

Date Received:

04/28/2009

Sample Type: Soil Date Analyzed:

05/05/2009

entatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Complex Hydrocarbon	N/A	2.665	78.4	N/A
Complex Hydrocarbon	N/A	2.96	20.0	N/A
Complex Hydrocarbon	N/A	6.37	36.5	N/A
g.				

ELAP Number 10958

Method: EPA 8260B

Data File: V65457.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 091511V9.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

ND< 5.90

ND< 5.90

ND< 5.90

ND< 5.90

ND< 5.90 ND< 5.90

ND< 5.90

ND< 14.7 W ND< 5.90

Lab Project Number: 09-1511

Lab Sample Number: 5189

Client Job Number: Field Location:

40503 CS-SD-0

Date Sampled:

04/27/2009

Field ID Number:

CS-SD-03 N/A

Date Received:

04/28/2009

Sample Type:

Soil

Date Analyzed:

05/05/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 5.90
Bromomethane	ND< 5.90 45
Bromoform	ND< 14.7 P
Carbon Tetrachloride	ND< 14.7
Chloroethane	ND< 5.90
Chloromethane	ND< 5.90
2-Chloroethyl vinyl Ether	ND< 29.5
Chloroform	ND< 5.90
Dibromochloromethane	ND< 5.90
1,1-Dichloroethane	ND< 5.90
1,2-Dichloroethane	ND< 5.90 2.19 3
1,1-Dichloroethene	ND< 5.90 4,58]
cis-1,2-Dichloroethene	ND< 5.90
trans-1,2-Dichloroethene	ND< 5.90
1,2-Dichloropropane	ND< 5.90
cis-1,3-Dichloropropene	ND< 5.90

Aromatics	Results in ug / Kg
Benzene	ND< 5.90
Chlorobenzene	ND< 5.90
Ethylbenzene	ND< 5.90
Toluene	ND< 5.90
m,p-Xylene	ND< 5.90
o-Xylene	ND< 5.90
Styrene	ND< 14.7
1,2-Dichlorobenzene	ND< 14: 7 ₽
1.3-Dichlorobenzene	ND< 14:7 R
1,4-Dichlorobenzene	ND< 5.90 <

Ketones	Results in ug / Kg		
Acetone	71.2 丁		
2-Butanone	ND< 29.5 🛂		
2-Hexanone	ND< 14.7		
4-Methyl-2-pentanone	ND< 14.7		

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 5.90
Vinyl acetate	ND< 14.7

ELAP Number 10958

Trichloroethene

Vinyl chloride

trans-1,3-Dichloropropene Methylene chloride

1,1,2,2-Tetrachloroethane Tetrachloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Method: EPA 8260B

Data File: V65458.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

091511W1.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5189

Client Job Number: Field Location:

40503 CS-SD-03

Date Sampled:

04/27/2009

Field ID Number:

N/A

Date Received:

04/28/2009

Sample Type:

Soil

Date Analyzed:

05/05/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/a	ND< 5.90	N/A
15				

ELAP Number 10958

Method: EPA 8260B

Data File: V65458.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional Information, including compliance with sample condition requirements upon receipt.

691511W1.XLS

Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Sample Type:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5190

Client Job Number: Field Location: Field ID Number:

40503 CS-SS-EB

N/A

Date Received: Water

04/27/2009

Date Sampled: Date Analyzed:

04/28/2009 05/05/2009

Date Reissued:

05/15/2009

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2.00
Bromoform	ND< 5.00
Carbon Tetrachloride	ND< 2.00
Chloroethane	ND< 2.00
Chloromethane	ND< 2.00
2-Chloroethyl vinyl Ether	ND< 10.0
Chloroform	ND< 2.00
Dibromochloromethane	ND< 2.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00
trans-1,2-Dichloroethene	ND< 2.00
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Methylene chloride	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichlorofluoromethane	ND< 2.00

Aromatics	Results in ug / L
Benzene	ND< 0.700
Chlorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00
Styrene	ND< 5.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10.0
2-Butanone	ND< 10.0
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 5.00
·	
1	
1	

all target analytes are unusable (8)

ELAP Number 10958

Vinyl chloride

Method: EPA 8260B

ND< 2.00

Data File: V65459.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 091511x2.XLS requirements upon receipt.

ENVIRONMENTAL SERVICES. INC. 179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5190

Client Job Number: Field Location:

40503 CS-SS-EB

Date Sampled:

04/27/2009

Field ID Number: Sample Type: N/A Water

Date Received: Date Analyzed:

04/28/2009 05/05/2009

Date Relssued:

05/15/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
None Found	N/A	N/a	ND< 2.00	N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V65459.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

091511x2.XLS

Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5191

Client Job Number:

Field Location:

CS-SS-EB Field Blank

Date Sampled:

04/27/2009

Field ID Number: Sample Type: N/A Water

40503

Date Received: Date Analyzed: 04/28/2009 05/05/2009

Date Reissued:

05/15/2009

Halocarbons	Results in ug / L	
Bromodichloromethane	ND< 2.00	
Bromomethane	ND< 2.00 VJ	
Bromoform	ND< 5.00 VT	
Carbon Tetrachloride	ND< 2.00	
Chloroethane	ND< 2.00	
Chloromethane	ND< 2.00 , 807	7
2-Chloroethyl vinyl Ether	ND< 10.0	
Chloroform	ND< 2.00	
Dibromochloromethane	ND< 2.00	
1,1-Dichloroethane	ND< 2.00	T
1,2-Dichloroethane	ND< 2.00 . 777	-
1,1-Dichloroethene	ND< 2.00	
cis-1,2-Dichloroethene	ND< 2.00	
trans-1,2-Dichloroethene	ND< 2.00	
1,2-Dichloropropane	ND< 2.00	
cis-1,3-Dichloropropene	ND< 2.00	
trans-1,3-Dichloropropene	ND< 2.00	
Methylene chloride	ND< 5.00 💢	
1,1,2,2-Tetrachloroethane	ND< 2.00	
Tetrachloroethene	ND< 2.00	
1,1,1-Trichloroethane	ND< 2.00	
1,1,2-Trichloroethane	ND< 2.00	
Trichloroethene	ND< 2.00	
Trichlorofluoromethane	ND< 2.00	

Results in ug / L
ND< 0.700
ND< 2.00
ND< 5.00
ND< 2.00
ND< 2.00
ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10.0 U.S
2-Butanone	ND< 10.0 W
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Results in ug / L
ND< 5.00
ND< 5.00 , 610

ELAP Number 10958

Vinyl chloride

Method: EPA 8260B

ND< 2.00

Data File: V65460.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

091511x3.xls

ENVIRONMENTAL SERVICES. INC. 179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5191

Client Job Number: 40503

Field Location:

CS-SS-EB Field Blank

Date Sampled:

04/27/2009

Field ID Number: Sample Type:

N/A

Date Received:

04/28/2009 05/05/2009

Water

Date Analyzed: Date Reissued:

05/15/2009

ELAP Number 10958 Method: EPA 8260B Data File: V65460.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

O91511x3.xls

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: LRB

Client Job Number: Field Location:

40503 N/A

Date Sampled: Date Received: N/A N/A

Field ID Number: Sample Type:

N/A Soil

05/05/2009

Date Analyzed:

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 5.00
Bromomethane	ND< 5.00
Bromoform	ND< 12.5
Carbon Tetrachloride	ND< 12.5
Chloroethane	ND< 5.00
Chloromethane	ND< 5.00
2-Chloroethyl vinyl Ether	ND< 25.0
Chloroform	ND< 5.00
Dibromochloromethane	ND< 5.00
1,1-Dichloroethane	ND< 5.00
1,2-Dichloroethane	ND< 5.00
1,1-Dichloroethene	ND< 5.00
cis-1,2-Dichloroethene	ND< 5.00
trans-1,2-Dichloroethene	ND< 5.00
1,2-Dichloropropane	ND< 5.00
cis-1,3-Dichloropropene	ND< 5.00
trans-1,3-Dichloropropene	ND< 5.00
Methylene chloride	ND< 12.5
1,1,2,2-Tetrachloroethane	ND< 5.00
Tetrachloroethene	ND< 5.00
1,1,1-Trichloroethane	ND< 5.00
1,1,2-Trichloroethane	ND< 5.00
Trichloroethene	ND< 5.00
Trichlorofluoromethane	ND< 5.00
Vinyl chloride	ND< 5.00

Aromatics	Results in ug / Kg
Benzene	ND< 5.00
Chlorobenzene	ND< 5.00
Ethylbenzene	ND< 5.00
Toluene	ND< 5.00
m,p-Xylene	ND< 5.00
o-Xylene	ND< 5.00
Styrene	ND< 12.5
1,2-Dichlorobenzene	ND< 12.5
1,3-Dichlorobenzene	ND< 12.5
1,4-Dichlorobenzene	ND< 5.00

Ketones	Results in ug / Kg
Acetone	ND< 25.0 45
2-Butanone	ND< 25.0 🗸 🥆
2-Hexanone	ND< 12.5
4-Methyl-2-pentanone	ND< 12.5 2.10

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 12.5
•	

ELAP Number 10958

Method: EPA 8260B

Data File: V65445.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 091511B1.XLS requirements upon receipt.

Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511 Lab Sample Number: LRB

Client Job Number:

40503

Field Location:

N/A

Date Sampled: N/A N/A

Field iD Number:

N/A

Date Received: Date Analyzed:

05/07/2009

Sample Type:

Water

Date Reissued:

05/20/2009

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2.00 W
Bromoform	ND< 5.00 W.3
Carbon Tetrachloride	ND< 2.00
Chloroethane	ND< 2.00
Chloromethane	ND< 2.00
2-Chloroethyl vinyl Ether	ND< 10.0
Chloroform	ND< 2.00
Dibromochloromethane	ND< 2.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00
trans-1,2-Dichloroethene	ND< 2.00
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Methylene chloride	ND< 5.00 W.
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
1	

Aromatics	Results in ug / L
Benzene	ND< 0.700
Chiorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00
Styrene	ND< 5.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10.0 5
2-Butanone	ND< 10.0 W.T
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 5.00
•	

ELAP Number 10958

Vinyl chloride

Trichlorofluoromethane

Method: EPA 8260B

ND< 2.00

ND< 2.00

Data File: V65467.D

Comments: ND denotes Non Detect ug / L = mlcrogram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 091511B3.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511 Lab Sample Number: LRB

Client Job Number: Field Location:

40503 N/A

Date Sampled: Date Received:

N/A N/A

Field ID Number: Sample Type: N/A Soil

Date Analyzed:

05/07/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 5.00
Bromomethane	ND< 5.00 5
Bromoform	ND< 12.5 W
Carbon Tetrachloride	ND< 12.5
Chloroethane	ND< 5.00
Chloromethane	ND< 5.00
2-Chloroethyl vinyl Ether	ND< 25.0
Chloroform	ND< 5.00
Dibromochloromethane	ND< 5.00
1.1-Dichloroethane	ND< 5.00
1,2-Dichloroethane	ND< 5.00
1,1-Dichloroethene	ND< 5.00
cis-1,2-Dichloroethene	ND< 5.00
1	ND< 5.00
trans-1,2-Dichloroethene	ND< 5.00
1,2-Dichloropropane	ND< 5.00
cis-1,3-Dichloropropene	ND< 5.00
trans-1,3-Dichloropropene	ND< 12.5 W
Methylene chloride	
1,1,2,2-Tetrachloroethane	ND< 5.00
Tetrachloroethene	ND< 5.00
1,1,1-Trichloroethane	ND< 5.00
1,1,2-Trichloroethane	ND< 5.00
Trichloroethene	ND< 5.00

Aromatics	Results in ug / Kg
Benzene	ND< 5.00
Chlorobenzene	ND< 5.00
Ethylbenzene	ND< 5.00
Toluene	ND< 5.00
m,p-Xylene	ND< 5.00
o-Xylene	ND< 5.00
Styrene	ND< 12.5
1,2-Dichlorobenzene	ND< 12.5
1,3-Dichlorobenzene	ND< 12.5
1,4-Dichlorobenzene	ND< 5.00

Ketones	Results in ug / Kg
Acetone	ND< 25.0 U.S
2-Butanone	ND< 25.0
2-Hexanone	ND< 12.5 4.97
4-Methyl-2-pentanone	ND< 12.5 2, 78

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 12.5
•	

ELAP Number 10958

Vinyl chloride

Trichlorofluoromethane

Method: EPA 8260B

ND< 5.00

ND< 5.00

Data File: V65512.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

ruce Hoogesteger: Technycal Directo

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compilance with sample condition requirements upon receipt.

09151182.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: Solid M/L LRB

Cilent Job Number: Field Location:

40503 N/A

Date Sampled: **Date Received:**

N/A N/A

Field ID Number:

N/A

05/08/2009

Sample Type: Solid Date Analyzed:

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 1,000
Bromomethane	ND< 1,000 45
Bromoform	ND< 2,500 🕶
Carbon Tetrachloride	ND< 2,500
Chloroethane	ND< 1,000
Chloromethane	ND< 1,000
2-Chloroethyl vinyl Ether	ND< 5,000
Chloroform	ND< 1,000
Dibromochloromethane	ND< 1,000
1,1-Dichloroethane	ND< 1,000
1,2-Dichloroethane	ND< 1,000
1,1-Dichloroethene	ND< 1,000
cis-1,2-Dichloroethene	ND< 1,000
trans-1,2-Dichloroethene	ND< 1,000
1,2-Dichloropropane	ND< 1,000
cis-1,3-Dichloropropene	ND< 1,000
trans-1,3-Dichloropropene	ND< 1,000
Methylene chloride	ND< 2,500
1,1,2,2-Tetrachloroethane	ND< 1,000
Tetrachloroethene	ND< 1,000
1,1,1-Trichloroethane	ND< 1,000
1,1,2-Trichloroethane	ND< 1,000
Trichloroethene	ND< 1,000
Trichlorofluoromethane	ND< 1,000
Vinyl chloride	ND< 1,000

Aromatics	Results in ug / Kg
Benzene	ND< 1,000
Chlorobenzene	ND< 1,000
Ethylbenzene	ND< 1,000
Toluene	ND< 1,000
m,p-Xylene	ND< 1,000
o-Xylene	ND< 1,000
Styrene	ND< 2,500 432 5
1,2-Dichlorobenzene	ND< 2,500
1,3-Dichlorobenzene	ND< 2,500
1,4-Dichlorobenzene	ND< 1,000
·	

Ketones	Results in ug / Kg
Acetone	ND< 5,000 🗸 🕏
2-Butanone	ND< 5,000 VT
2-Hexanone	2,650
4-Methyl-2-pentanone	ND< 2,500

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 1,000
Vinyl acetate	ND< 2,500
- 45	

ELAP Number 10958

Method: EPA 8260B

Data File: V65575.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 091511B4.XLS requirements upon receipt.

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Clarkson ERP Site Client Job Site:

Lab Project Number: 09-1511 Lab Sample Number: 5180

Ϋ́

SDG Group:

40503 CS-SS-01 N/A Soil Client Job Number: Field Location: Field ID Number: Sample Type:

Date Sampled: Date Received: Date Analyzed:

04/27/2009 04/28/2009 05/06/2009

Spiked Compound	Sample Results	MS Spiked	MS Results	MS Percent	MSD Spiked	MSD Spiked MSD Results	MSD Percent	MS / MSD
	in ug / Kg	in ug / Kg	in ug / Kg	Recovery	in ug / Kg	in ug / Kg	Recovery	% RPD
2-Chlorophenol	ND< 381	2,860	1,880	65.7	2,840	1,980	69.7	5.91
N-Nitroso-di-n-propylamine	ND< 381	1,910	1,150	60.2	1,900	1,240	65.3	8.13
Phenol	ND< 381	2,860	1,860	65.0	2,840	2,090	73.6	12.41
4-Chloro-3-methylphenol	ND< 381	2,860	1,940	67.8	2,840	2,130	75.0	10.08
Acenaphthene	ND< 381	1,910	1,260	99	1,900	1,370	72.1	8.83
2,4-Dinitrotoluene	ND< 381	1,910	1,220	63.9	1,900	1,310	689	7.53
4-Nitrophenol	ND< 954	2,860	1,750	61.2	2,840	2,040	71.8	15.94
Pentachlorophenol	ND< 954	2,860	2,250	78.7	2,840	2,540	89.4	12.73
Pyrene*	564	1,910	1,580	53.4 🛊	1,900	1,790	64.2	18.37
phenonthisens flevanthene Chuysene Remple) anthracere Rutybennyspitchalate Remple) flevanthene Gennels) gyane Gennels) gyane	the state of the s		330 650 241 341 263			3000 2000 2000 240 240 240		
ELAP Number 10958	Data File: S45184.D		Data File: S45185.D		Date	Data File: S45186.D	Me	Method: EPA 8270C

* = Outside QC Limits

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-15110 Lab Sample Number: 518086

Client Job Number: Field Location:

40503 **CS-SS-01**

Date Sampled: Date Received:

04/27/2009 1:04/28/2009

Field ID Number: Sample Type:

N/A Soil

alyzed:

-	
Date	Ana

05/06/2009

Base / Neutrals	Results in ug: / Kg	Base / Neutrals		Results in ug /	Kg
Acenaphthene	ND< 381	Dibenz (a,h) anthracene	1	ND< 381	
Anthracene	ND< 381	Fluoranthene		762	
Benzo (a) anthracene	ND< 381: 234	Fluorene	4.7	ND< 381	
Benzo (a) pyrene	ND<-384 ≥79 €	Indeno (1,2,3-cd) pyrene	2.4	ND< 381	
Benzo (b) fluoranthene	ND< 3811 ≥ 86	Naphthalene		ND< 381	
Benzo (g,h,i) perylene	ND< 381 192	FUEDADIDIEDE :		386	
Benzo (k) fluoranthene	ND< 381 277			.564	М
Chrysene	ND< 381, 3 ≥ (Z	Acenaphthylene	14 TE	ND< 381	
Diethyl phthalate	ND< 381	1.2-Dichlorobenzene	14.5	ND< 381	
Dimethyl phthalate	ND< 954	1,3-Dichlorobenzene	4	ND< 381	
Butylbenzylphthalate	ND< 381 340 J	1,4-Dichlorobenzene	a 4	ND< 381	
Di-n-butyl phthalate	ND< 381	1,2,4-Trichlorobenzene		ND< 381	
Di-n-octylphthalate	ND< 381	Nitrobenzene	a - 6	ND< 381	
Bis (2-ethylhexyl) phthalate	ND< 381	2,4-Dinitrotoluene	<u>s</u> . •	ND< 381	
2-Chloronaphthalene	ND< 381	2,6-Dinitrotoluene	ž e	ND< 381	
Hexachlorobenzene	ND< 381	Bis (2-chloroethyl) ether	136	ND< 381	
-lexachloroethane	ND< 381	Bis (2-chloroisopropyl) eth	er :	ND< 381	
-lexachlorocyclopentadiene	ND< 381	Bis (2-chloroethoxy) metha		ND< 381	
-lexachiorobutadiene	ND< 381	4-Bromophenyl phenyl eth		ND< 381	
N-Nitroso-di-n-propylamine	ND< 381	4-Chlorophenyl phenyl eth-	er:	ND< 381	
N-Nitrosodiphenylamine	ND< 381	Benzidine	:	ND< 954	
N-Nitrosodimethylamine	ND< 381	3,3'-Dichlorobenzidine		ND< 381	
sophorone	ND< 381	4-Chloroaniline		ND< 381	
Benzyl alcohol	ND< 954	2-Nitroaniline	0*	ND< 954	
Dibenzofuran	ND< 381	3-Nitroaniline		ND< 954	
2-Methylnapthalene	. ND< 381	4-Nitroaniline	:	ND< 954	

Acids	Results in ug / Kg	Acids		Results in ug / Kg
Phenol	ND< 381	2-Methylphenol		ND< 381
2-Chlorophenol	ND< 381	3&4-Methylphenol		ND< 381
2,4-Dichlorophenol	ND< 381	2,4-Dimethylphenol	:	ND< 381
2,6-Dichlorophenol	ND< 381	2-Nitrophenol	150	ND< 381
2,4,5-Trichlorophenol	ND< 954	4-Nitrophenol		ND< 954
2,4,6-Trichlorophenol	ND< 381	2,4-Dinitrophenol		ND< 381
Pentachlorophenol	ND< 954	4,6-Dinitro-2-methylphenol	3	ND< 954
4-Chloro-3-methylphenoi	ND< 381	Benzoic acid		ND< 954
ELAP Number 10958	Method:	EPA 8270C	. 1	Data File: \$45184.

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Jechinical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compilance with sample condition 091511S1 XLS

Client: Lu Engineers

Client Job Site:

Sample Type:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5180

Client Job Number: Field Location:

40503

CS-SS-01 N/A

Soil

Date Sampled:

04/27/2009

Field ID Number:

Date Received:

04/28/2009 05/06/2009

Date Analyzed:

05/19/2009

Date Reissued:

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Unknown Hydrocarbon	N/A	19.71	513	N/A
Unknown Hydrocarbon	N/A	19.85	389	N/A
Unknown Hydrocarbon	N/A	20.48	985	N/A
Unknown Hydrocarbon	N/A	20.90	974	N/A
Unknown Hydrocarbon	N/A	21.21	1,060	N/A
Unknown Hydrocarbon	N/A	21.98	700	N/A
			70.00	

ELAP Number 10958

Method: EPA 8270C

Data File: S45184.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indigate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

091511u1.xls requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5181

Client Job Number:

40503 Field Location:

Date Sampled:

04/27/2009

Field ID Number: Sample Type:

CS-SS-02 N/A Soil

Date Received:

04/28/2009

Date Analyzed:

05/07/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 1,950	Dibenz (a,h) anthracene	ND< 1,950
Anthracene	ND< 1,950 1510 3	Fluoranthene	16,200
Benzo (a) anthracene	5,140	Fluorene	ND< 1,950
Benzo (a) pyrene	5,450	Indeno (1,2,3-cd) pyrene	4,470
Benzo (b) fluoranthene	6,580	Naphthalene	ND< 1,950
Benzo (g,h,i) perylene	4,830	Phenanthrene	6,630
Benzo (k) fluoranthene	4,150	Pyrene	10,600
Chrysene	5,980	Acenaphthylene	ND< 1,950
Diethyl phthalate	ND< 1,950	1,2-Dichlorobenzene	ND< 1,950
Dimethyl phthalate	ND< 4,890	1,3-Dichlorobenzene	ND< 1,950
Butylbenzylphthalate	2,630	1,4-Dichlorobenzene	ND< 1,950
Di-n-butyl phthalate	ND< 1,950	1,2,4-Trichlorobenzene	ND< 1,950
Di-n-octylphthalate	ND< 1,950	Nitrobenzene	ND< 1,950
Bis (2-ethylhexyl) phthalate	ND< 1,950 1510 7	2,4-Dinitrotoluene	ND< 1,950
2-Chloronaphthalene	ND< 1,950	2,6-Dinitrotoluene	ND< 1,950
Hexachlorobenzene	ND< 1,950	Bis (2-chloroethyl) ether	ND< 1,950
Hexachloroethane	ND< 1,950	Bis (2-chloroisopropyl) ether	ND< 1,950
Hexachlorocyclopentadiene	ND< 1,950	Bis (2-chloroethoxy) methan	ND< 1,950
Hexachlorobutadiene	ND< 1,950	4-Bromophenyl phenyl ether	ND< 1,950
N-Nitroso-di-n-propylamine	ND< 1,950	4-Chlorophenyl phenyl ether	ND< 1,950
N-Nitrosodiphenylamine	ND< 1,950	Benzidine	ND< 4,890
N-Nitrosodimethylamine	ND< 1,950	3,3'-Dichlorobenzidine	ND< 1,950
Isophorone	ND< 1,950	4-Chloroaniline	ND< 1,950
Benzyl alcohol	ND< 4,890	2-Nitroaniline	ND< 4,890
Dibenzofuran	ND< 1,950	3-Nitroaniline	ND< 4,890
2-Methylnapthalene	ND< 1,950	4-Nitroaniline	ND< 4,890

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 1,950	2-Methylphenol	ND< 1,950
2-Chlorophenol	ND< 1,950	3&4-Methylphenol	ND< 1,950
2,4-Dichlorophenol	ND< 1,950	2,4-Dimethylphenol	ND< 1,950
2,6-Dichlorophenol	ND< 1,950	2-Nitrophenol	ND< 1,950
2,4,5-Trichlorophenol	ND< 4,890	4-Nitrophenol	ND< 4,890
2,4,6-Trichlorophenol	ND< 1,950	2,4-Dinitrophenol	ND< 1,950
Pentachlorophenol	ND< 4,890	4,6-Dinitro-2-methylphenol	ND< 4,890
4-Chloro-3-methylphenol	ND< 1,950	Benzoic acid	ND< 4,890
ELAP Number 10958	Method:	Data File: S45211.D	

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

ENVIRIGNMENTAL SERVICES. INC. 179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5181

Client Job Number: Field Location:

40503 CS-SS-02

Date Sampled:

04/27/2009

Field ID Number: Sample Type:

N/A Soil

Date Received: Date Analyzed: 04/28/2009 05/07/2009

Date Reissued:

05/19/2009

entatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Poly Aromatic Hydrocarbon	N/A	18.76	4,770	N/A
Jnknown Hydrocarbon	N/A	19.80	3,770	N/A
Jnknown Hydrocarbon	N/A	19.87	2,420	N/A
Jnknown Hydrocarbon	N/A	21.13	3,030	N/A
Inknown Hydrocarbon	N/A	21.53	3,110	N/A

ELAP Number 10958

Method: EPA 8270C

Data File: S45211.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 091511u4.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5182

Client Job Number:

40503

Date Sampled:

04/27/2009

Field Location: Field ID Number: CS-SS-03 N/A

Date Received:

04/28/2009

Sample Type:

Soil

Date Analyzed:

05/08/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 424	Dibenz (a,h) anthracene	ND< 424
Anthracene	ND< 424	Fluoranthene	604
Benzo (a) anthracene	ND< 424 2575	Fluorene	ND< 424
Benzo (a) pyrene	ND< 424 222 7	Indeno (1,2,3-cd) pyrene	ND< 424
Benzo (b) fluoranthene	ND< 424	Naphthalene	ND< 424
Benzo (g,h,i) perylene	ND< 424 2135	Phenanthrene	ND< 424 2 30
Benzo (k) fluoranthene	ND< 424	Pyrene	ND< 424 403
Chrysene	ND< 424 263 7	Acenaphthylene	ND< 424
Diethyl phthalate	ND< 424	1,2-Dichlorobenzene	ND< 424
Dimethyl phthalate	ND< 1,060	1,3-Dichlorobenzene	ND< 424
Butylbenzylphthalate	ND< 424	1,4-Dichlorobenzene	ND< 424
Di-n-butyl phthalate	ND< 424	1,2,4-Trichlorobenzene	ND< 424
Di-n-octylphthalate	ND< 424	Nitrobenzene	ND< 424
Bis (2-ethylhexyl) phthalate	ND<424 357 J	2,4-Dinitrotoluene	ND< 424
2-Chloronaphthalene	ND< 424	2,6-Dinitrotoluene	ND< 424
Hexachlorobenzene	ND< 424	Bis (2-chloroethyl) ether	ND< 424
Hexachloroethane	ND< 424	Bis (2-chloroisopropyl) ether	ND< 424
Hexachlorocyclopentadiene	ND< 424	Bis (2-chloroethoxy) methan	ND< 424
Hexachlorobutadiene	ND< 424	4-Bromophenyl phenyl ether	ND< 424
N-Nitroso-di-n-propylamine	ND< 424	4-Chlorophenyl phenyl ether	ND< 424
N-Nitrosodiphenylamine	ND< 424	Benzidine	ND< 1,060
N-Nitrosodimethylamine	ND< 424	3,3'-Dichlorobenzidine	ND< 424
Isophorone	ND< 424	4-Chloroaniline	ND< 424
Benzyl alcohol	ND< 1,060	2-Nitroaniline	ND< 1,060
Dibenzofuran	ND< 424	3-Nitroaniline	ND< 1,060
2-Methylnapthalene	ND< 424	4-Nitroaniline	ND< 1,060

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 424	2-Methylphenol	ND< 424
2-Chlorophenol	ND< 424	3&4-Methylphenol	ND< 424
2,4-Dichlorophenol	ND< 424	2,4-Dimethylphenol	ND< 424
2,6-Dichlorophenol	ND< 424	2-Nitrophenol	ND< 424
2,4,5-Trichlorophenol	ND< 1,060	4-Nitrophenol	ND< 1,060
2,4,6-Trichlorophenol	ND< 424	2,4-Dinitrophenol	ND< 424 45
Pentachlorophenol	ND< 1,060	4,6-Dinitro-2-methylphenol	ND< 1,060 💢
4-Chloro-3-methylphenol	ND< 424	Benzoic acid	ND< 1,060
ELAP Number 10958	Method:	EPA 8270C	Data File: S45229.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

091511S5.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5182

Client Job Number: Field Location:

40503 CS-SS-03

Date Sampled:

04/27/2009

Field ID Number: Sample Type:

N/A

Date Received:

04/28/2009

Date Analyzed: Soil

05/08/2009

Date Reissued:

05/19/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Unknown Organic Acid	N/A	13.87	466	N/A
Unknown Hydrocarbon	N/A	19.59	903	N/A
Unknown Hydrocarbon	N/A	19.64	1,300	N/A
Unknown Hydrocarbon	N/A	19.89	534	N/A
Unknown Hydrocarbon	N/A	20.42	1,380	N/A
Unknown Hydrocarbon	N/A	20.61	780	N/A
Unknown Hydrocarbon	N/A	20.68	471	N/A
Unknown Hydrocarbon	N/A	20.83	827	N/A
Unknown Hydrocarbon	N/A	21.88	835	N/A

ELAP Number 10958

Method: EPA 8270C

Data File: S45229.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kliogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 091511u5.xls requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511 Lab Sample Number: 5183

Client Job Number: 40503 FleId Location:

CS-SS-04

Date Sampled: **Date Received:** 04/27/2009

Field ID Number: Sample Type:

N/A Soil

Date Analyzed:

04/28/2009 05/06/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 343	Dibenz (a,h) anthracene	411
Anthracene	406	Fluoranthene	4,550
Benzo (a) anthracene	1,500	Fluorene	ND< 343
Benzo (a) pyrene	1,700	Indeno (1,2,3-cd) pyrene	1,260
Benzo (b) fluoranthene	1,910	Naphthalene	ND< 343
Benzo (g,h,i) perylene	1,340	Phenanthrene	1,730
Benzo (k) fluoranthene	1,370	Pyrene	2,850
Chrysene	1,730	Acenaphthylene	ND< 343
Diethyl phthalate	ND< 343	1,2-Dichlorobenzene	ND< 343
Dimethyl phthalate	ND< 859	1,3-Dichlorobenzene	ND< 343
Butylbenzylphthalate	833	1,4-Dichlorobenzene	ND< 343
Di-n-butyl phthalate	ND< 343	1,2,4-Trichlorobenzene	ND< 343
Di-n-octylphthalate	ND< 343	Nitrobenzene	ND< 343
Bis (2-ethylhexyl) phthalate	ND< 343 2 40 3	2,4-Dinitrotoluene	ND< 343
2-Chloronaphthalene	ND< 343	2,6-Dinitrotoluene	ND< 343
Hexachlorobenzene	ND< 343	Bis (2-chloroethyl) ether	ND< 343
Hexachloroethane	ND< 343	Bis (2-chloroisopropyl) ether	ND< 343
Hexachlorocyclopentadiene	ND< 343	Bls (2-chloroethoxy) methan	ND< 343
Hexachlorobutadiene	ND< 343	4-Bromophenyl phenyl ether	ND< 343
N-Nitroso-di-n-propylamine	ND< 343	4-Chlorophenyl phenyl ether	ND< 343
N-Nitrosodiphenylamine	ND< 343	Benzidine	ND< 859
N-Nitrosodimethylamlne	ND< 343	3,3'-Dichlorobenzidine	ND< 343
Isophorone	ND< 343	4-Chloroanillne	ND< 343
Benzyi alcohol	ND< 859	2-Nitroaniline	ND< 859
Dibenzofuran	ND< 343	3-Nitroaniline	ND< 859
2-Methylnapthalene	ND< 343	4-Nitroanlline	ND< 859

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 343	2-Methylphenol	ND< 343
2-Chlorophenol	ND< 343	3&4-Methylphenol	ND< 343
2,4-Dichlorophenol	ND< 343	2,4-Dimethylphenol	ND< 343
2.6-Dichlorophenol	ND< 343	2-Nitrophenol	ND< 343
2.4.5-Trichlorophenol	ND< 859	4-Nitrophenol	ND< 859
2,4,6-Trichlorophenol	ND< 343	2.4-Dinitrophenol	ND< 343
Pentachiorophenol	ND< 859	4,6-Dinitro-2-methylphenol	ND< 859
4-Chloro-3-methylphenol	ND< 343	Benzoic acid	ND< 859
	8.0.45 - 4	ED4 00700	Data File: C45190

ELAP Number 10958

Method: EPA 8270C

Data File: S45189.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5183

Client Job Number:

40503

Field Location: Field ID Number:

Sample Type:

CS-SS-04

N/A Soil Date Sampled:

04/27/2009

Date Received: Date Analyzed:

04/28/2009 05/06/2009

Date Reissued:

05/19/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Jnknown Hydrocarbon	N/A	13.77	354	N/A
Jnknown Hydrocarbon	N/A	14.10	429	N/A
Jnknown Hydrocarbon	N/A	15.22	429	N/A
Jnknown Hydrocarbon	N/A	15.55	745	N/A
Jnknown Hydrocarbon	N/A	15.65	405	N/A
Jnknown Hydrocarbon	N/A	16.50	367	N/A
Jnknown Hydrocarbon	N/A	16.56	519	N/A
Jnknown Hydrocarbon	N/A	17.05	464	N/A
Jnknown Hydrocarbon	N/A	17.55	347	N/A
Unknown Hydrocarbon	N/A	17.71	398	N/A
Jnknown Hydrocarbon	N/A	18.01	361	N/A
Poly Aromatic Hydrocarbon	N/A	18.62	453	N/A
Jnknown Hydrocarbon	N/A	18.78	378	N/A
Poly Aromatic Hydrocarbon	N/A	18.84	1,160	N/A
Jnknown Hydrocarbon	N/A	19.69	680	N/A
Jnknown Hydrocarbon	N/A	19.86	367	N/A
Jnknown Hydrocarbon	N/A	20.00	598	N/A
Jnknown Hydrocarbon	N/A	20.39	354	N/A
Jnknown Hydrocarbon	N/A	20.46	436	N/A
Jnknown Hydrocarbon	N/A	20.59	405	N/A
Unknown Hydrocarbon	N/A	20.88	525	N/A
Poly Aromatic Hydrocarbon	N/A	21.19	1,060	N/A
n,n': n",n""Dibenzopyrene	N/A	21.26	385	N/A
Unknown Hydrocarbon	N/A	21.61	855	N/A

ELAP Number 10958

Method: EPA 8270C

Data File: S45189.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

091511u6.xls

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511 Lab Sample Number: 5184

Client Job Number: Field Location:

40503 CS-SS-04D

Date Sampled:

04/27/2009

Field ID Number: Sample Type:

N/A Soil Date Received:

04/28/2009

Date Analyzed:

05/06/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 347	Dibenz (a,h) anthracene	ND< 347
Anthracene	ND< 347 226 5	Fluoranthene	2,470
Benzo (a) anthracene	861	Fluorene	ND< 347
Benzo (a) pyrene	1,010	Indeno (1,2,3-cd) pyrene	760
Benzo (b) fluoranthene	1,220	Naphthalene	ND< 347
Benzo (g,h,i) perylene	893	Phenanthrene	900
Benzo (k) fluoranthene	716	Pyrene	1,590
Chrysene	995	Acenaphthylene	ND< 347
Diethyl phthalate	ND< 347	1,2-Dichlorobenzene	ND< 347
Dimethyl phthalate	ND< 868	1,3-Dichlorobenzene	ND< 347
Butylbenzylphthalate	442	1,4-Dichlorobenzene	ND< 347
Di-n-butyl phthalate	ND< 347	1,2,4-Trichlorobenzene	ND< 347
Di-n-octylphthalate	ND< 347	Nitrobenzene	ND< 347
Bis (2-ethylhexyl) phthalate	ND< 347 177 3	2,4-Dinitrotoluene	ND< 347
2-Chloronaphthalene	ND< 347	2,6-Dinitrotoluene	ND< 347
Hexachlorobenzene	ND< 347	Bis (2-chloroethyl) ether	ND< 347
Hexachloroethane	ND< 347	Bis (2-chloroisopropyl) ether	ND< 347
Hexachlorocyclopentadiene	ND< 347	Bis (2-chloroethoxy) methan	ND< 347
Hexachlorobutadiene	ND< 347	4-Bromophenyl phenyl ether	ND< 347
N-Nitroso-di-n-propylamine	ND< 347	4-Chlorophenyl phenyl ether	ND< 347
N-Nitrosodiphenylamine	ND< 347	Benzidine	ND< 868
N-Nitrosodimethylamine	ND< 347	3,3'-Dichlorobenzidine	ND< 347
Isophorone	ND< 347	4-Chloroaniline	ND< 347
Benzyl alcohol	ND< 868	2-Nitroaniline	ND< 868
Dibenzofuran	ND< 347	3-Nitroaniline	ND< 868
2-Methylnapthalene	ND< 347	4-Nitroaniline	ND< 868

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 347	2-Methylphenol	ND< 347
2-Chlorophenol	ND< 347	3&4-Methylphenol	ND< 347
2,4-Dichiorophenol	ND< 347	2,4-Dimethylphenol	ND< 347
2,6-Dichiorophenoi	ND< 347	2-Nitrophenol	ND< 347
2,4,5-Trichlorophenol	ND< 868	4-Nitrophenol	ND< 868
2,4,6-Trichlorophenol	ND< 347	2,4-Dinitrophenol	ND< 347
Pentachlorophenol	ND< 868	4,6-Dinitro-2-methylphenol	ND< 868
4-Chloro-3-methylphenol	ND< 347	Benzoic acid	ND< 868
ELAP Number 10958	Method:	EPA 8270C	Data File: S45190.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5184

Client Job Number:

40503

Date Sampled:

04/27/2009

Field Location: Field ID Number: Sample Type:

CS-SS-04D N/A

Date Received:

04/28/2009

Date Analyzed:

05/06/2009

Soil

Date Reissued:

05/19/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Unknown Hydrocarbon	N/A	18.01	517	N/A
Poly Aromatic Hydrocarbon	N/A	18.62	559	N/A
Unknown Hydrocarbon	N/A	18.78	535	N/A
Poly Aromatic Hydrocarbon	N/A	18.84	1,120	N/A
Unknown Hydrocarbon	N/A	19.34	493	N/A
Unknown Hydrocarbon	N/A	19.69	1,210	N/A
Unknown Hydrocarbon	N/A	19.85	847	N/A
Unknown Hydrocarbon	N/A	19.94	424	N/A
Poly Aromatic Hydrocarbon	N/A	20.00	670	N/A
Poly Aromatic Hydrocarbon	N/A	20.38	861	N/A
Unknown Hydrocarbon	N/A	20.45	861	N/A
Poly Aromatic Hydrocarbon	N/A	20.51	500	N/A
Unknown Hydrocarbon	N/A	20.58	972	N/A
Unknown Hydrocarbon	N/A	20.88	788	N/A
Unknown Hydrocarbon	N/A	21.19	1,310	N/A
n,n': n",n"'-Dibenzopyrene	N/A	21.27	441	N/A
Unknown Hydrocarbon	N/A	21.30	385	N/A
Unknown Hydrocarbon	N/A	21.61	934	N/A
				D. J. ET. 045400 5

ELAP Number 10958

Method: EPA 8270C

Data File: S45190.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511 **Lab Sample Number:** 5185

Client Job Number: Field Location:

40503

•

Field Location: Field ID Number:

Sample Type:

CS-SS-05 N/A Soil Date Sampled: Date Received:

04/27/2009 04/28/2009

Date Analyzed:

05/06/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 370	Dibenz (a,h) anthracene	ND< 370
Anthracene	ND< 370	Fluoranthene	ND< 370
Benzo (a) anthracene	ND< 370	Fluorene	ND< 370
Benzo (a) pyrene	ND< 370	Indeno (1,2,3-cd) pyrene	ND< 370
Benzo (b) fluoranthene	ND< 370	Naphthalene	ND< 370
Benzo (g,h,i) perylene	ND< 370	Phenanthrene	ND< 370
Benzo (k) fluoranthene	ND< 370	Pyrene	ND< 370
Chrysene	ND< 370	Acenaphthylene	ND< 370
Diethyl phthalate	ND< 370	1,2-Dichlorobenzene	ND< 370
Dimethyl phthalate	ND< 925	1,3-Dichlorobenzene	ND< 370
Butylbenzylphthalate	ND < 370 2963	1,4-Dichlorobenzene	ND< 370
Di-n-butyl phthalate	ND< 370	1,2,4-Trichlorobenzene	ND< 370
Di-n-octylphthalate	ND< 370	Nitrobenzene	ND< 370
Bis (2-ethylhexyl) phthalate	ND< 370	2,4-Dinitrotoluene	ND< 370
2-Chloronaphthalene	ND< 370	2,6-Dinitrotoluene	ND< 370
Hexachlorobenzene	ND< 370	Bis (2-chloroethyl) ether	ND< 370
Hexachloroethane	ND< 370	Bis (2-chloroisopropyl) ether	ND< 370
Hexachlorocyclopentadiene	ND< 370	Bis (2-chloroethoxy) methan	ND< 370
Hexachlorobutadiene	ND< 370	4-Bromophenyl phenyl ether	ND< 370
N-Nitroso-di-n-propylamine	ND< 370	4-Chlorophenyi phenyi ether	ND< 370
N-Nitrosodiphenylamine	ND< 370	Benzidine	ND< 925
N-Nitrosodimethylamine	ND< 370	3,3'-Dichlorobenzidine	ND< 370
Isophorone	ND< 370	4-Chloroaniline	ND< 370
Benzyl alcohol	ND< 925	2-Nitroaniline	ND< 925
Dibenzofuran	ND< 370	3-Nitroaniline	ND< 925
2-Methylnapthalene	ND< 370	4-Nitroaniline	ND< 925

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 370	2-Methylphenol	ND< 370
2-Chlorophenoi	ND< 370	3&4-Methylphenol	ND< 370
2,4-Dichlorophenol	ND< 370	2,4-Dimethylphenoi	ND< 370
2,6-Dichlorophenol	ND< 370	2-Nitrophenol	ND< 370
2,4,5-Trichlorophenol	ND< 925	4-Nitrophenol	ND< 925
2,4,6-Trichlorophenol	ND< 370	2,4-Dinitrophenol	ND< 370
Pentachlorophenol	ND< 925	4,6-Dinitro-2-methylphenol	ND< 925
4-Chioro-3-methylphenol	ND< 370	Benzoic acid	ND< 925
ELAP Number 10958	Method:	EPA 8270C	Data File: S45191.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: *echnical Director

091511S8.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511 Lab Sample Number: 5185

Client Job Number: Field Location:

40503 CS-SS-05

Date Sampled:

04/27/2009

Field ID Number: Sample Type:

N/A Soil Date Received:

04/28/2009

Date Analyzed:

05/06/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Unknown Hydrocarbon	N/A	19.69	433	N/A
		(i s		
				•

Method: EPA 8270C

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

ELAP Number 10958

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

091511s8.ds

Data File: S45191.D

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511 Lab Sample Number: 5186

Client Job Number: 40503

CS-SS-06

Date Sampled:

04/27/2009

Field Location: Field ID Number: Sample Type:

N/A Soil

Date Received:

04/28/2009

Date Analyzed:

05/06/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 366	Dibenz (a,h) anthracene	ND< 366
Anthracene	VD< 366 ≥34 ⊃	Fluoranthene	386
Benzo (a) anthracene	ND< 366	Fluorene	ND< 366
Benzo (a) pyrene	ND< 366	Indeno (1,2,3-cd) pyrene	ND< 366
Benzo (b) fluoranthene	ND< 366	Naphthalene	ND< 366
Benzo (g,h,i) perylene	ND< 366	Phenanthrene	ND<-366 ⊇ \8
Benzo (k) fluoranthene	ND< 366	Pyrene	ND< 366 303
Chrysene	ND< 366	Acenaphthylene	ND< 366
Diethyl phthalate	ND< 366	1,2-Dichlorobenzene	ND< 366
Dimethyl phthalate	ND< 915	1,3-Dichlorobenzene	ND< 366
Butylbenzylphthalate	372	1,4-Dichlorobenzene	ND< 366
Di-n-butyl phthalate	ND < 360 195 T	1,2,4-Trichlorobenzene	ND< 366
Di-n-octylphthalate	ND< 366	Nitrobenzene	ND< 366
Bis (2-ethylhexyl) phthalate	ND < 366 2767	2,4-Dinitrotoluene	ND< 366
2-Chloronaphthalene	ND< 366	2,6-Dinitrotoluene	ND< 366
Hexachlorobenzene	ND< 366	Bis (2-chloroethyl) ether	ND< 366
Hexachloroethane	ND< 366	Bis (2-chloroisopropyl) ether	ND< 366
Hexachlorocyclopentadiene	ND< 366	Bis (2-chloroethoxy) methan	ND< 366
Hexachlorobutadiene	ND< 366	4-Bromophenyl phenyl ether	ND< 366
N-Nitroso-di-n-propylamine	ND< 366	4-Chlorophenyl phenyl ether	ND< 366
N-Nitrosodiphenylamine	ND< 366	Benzidine	ND< 915
N-Nitrosodimethylamine	ND< 366	3,3'-Dichlorobenzidine	ND< 366
Isophorone	ND< 366	4-Chloroaniline	ND< 366
Benzyl alcohol	ND< 915	2-Nitroaniline	ND< 915
Dibenzofuran	ND< 366	3-Nitroaniline	ND< 915
2-Methylnapthalene	ND< 366	4-Nitroaniline	ND< 915

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 366	2-Methylphenol	ND< 366
2-Chlorophenol	ND< 366	3&4-Methylphenol	ND< 366
2,4-Dichlorophenol	ND< 366	2,4-Dimethylphenol	ND< 366
2,6-Dichlorophenol	ND< 366	2-Nitrophenol	ND< 366
2,4,5-Trichlorophenol	ND< 915	4-Nitrophenol	ND< 915
2,4,6-Trichlorophenol	ND< 366	2,4-Dinitrophenol	ND< 366
Pentachlorophenol	ND< 915	4,6-Dinitro-2-methylphenol	ND< 915
4-Chloro-3-methylphenol	ND< 366	Benzoic acid	ND< 915
ELAP Number 10958	Method:	EPA 8270C	Data File: S45192.6

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 091511S9.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5186

Client Job Number: 40503 Field Location:

CS-SS-06

Date Sampled:

04/27/2009

Field ID Number: Sample Type:

N/A Soil **Date Received:**

04/28/2009

Date Analyzed:

05/06/2009

entatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
one Found	N/A	N/A	ND< 366	N/A
AP Number 10958		EPA 8270C		Data File: S4519

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 09151159.xis requirements upon receipt.

Client: Lu Engineers

Cilent Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511 Lab Sample Number: 5187

Client Job Number:

40503

Date Sampled:

04/27/2009

Fleld Location: Field ID Number: CS-SD-01

Date Received:

04/28/2009

Sample Type:

N/A Soil

Date Analyzed:

05/06/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 1,920	Dibenz (a,h) anthracene	ND< 1,920 1734
Anthracene	2,090	Fluoranthene	20,200
Benzo (a) anthracene	5,990	Fluorene	ND< 1,920
Benzo (a) pyrene	5,970	Indeno (1,2,3-cd) pyrene	3,870
Benzo (b) fluoranthene	7,680	Naphthalene	ND< 1,920
Benzo (g,h,i) perylene	4,450	Phenanthrene	11,700
Benzo (k) fluoranthene	4,140	Pyrene	12,400
Chrysene	7,350	Acenaphthylene	ND< 1,920
Diethyl phthalate	ND< 1,920	1,2-Dichlorobenzene	ND< 1,920
Dimethyl phthalate	ND< 4,800	1,3-Dichlorobenzene	ND< 1,920
Butylbenzylphthalate	ND< 1,920	1,4-Dichlorobenzene	ND< 1,920
Di-n-butyl phthalate	ND< 1,920	1,2,4-Trichlorobenzene	ND< 1,920
Di-n-octylphthalate	ND< 1,920	Nitrobenzene	ND< 1,920
Bis (2-ethylhexyl) phthalate	ND< 1,920	2,4-Dinitrotoluene	ND< 1,920
2-Chloronaphthalene	ND< 1,920	2,6-Dinitrotoluene	ND< 1,920
Hexachlorobenzene	ND< 1,920	Bis (2-chloroethyl) ether	ND< 1,920
Hexachloroethane	ND< 1,920	Bis (2-chlorolsopropyl) ether	ND< 1,920
Hexachlorocyclopentadiene	ND< 1,920	Bis (2-chloroethoxy) methan	ND< 1,920
Hexachiorobutadiene	ND< 1,920	4-Bromophenyl phenyl ether	ND< 1,920
N-Nitroso-di-n-propylamine	ND< 1,920	4-Chlorophenyl phenyl ether	ND< 1,920
N-Nitrosodiphenylamine	ND< 1,920	Benzidlne	ND< 4,800
N-Nitrosodimethylamine	ND< 1,920	3,3'-Dichlorobenzidine	ND< 1,920
Isophorone	ND< 1,920	4-Chloroaniline	ND< 1,920
Benzyl alcohol	ND< 4,800	2-Nitroaniline	ND< 4,800
Dibenzofuran	ND< 1,920	3-Nitroaniline	ND< 4,800
2-Methylnapthalene	ND< 1,920	4-Nitroaniline	ND< 4,800

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 1,920	2-Methylphenol	ND< 1,920
2-Chlorophenol	ND< 1,920	3&4-Methylphenol	ND< 1,920
2,4-Dichlorophenol	ND< 1.920	2,4-Dimethylphenol	ND< 1,920
2,6-Dichlorophenol	ND< 1.920	2-Nitrophenol	ND< 1,920
2,4,5-Trichlorophenol	ND< 4.800	4-Nitrophenol	ND< 4,800
2,4,6-Trichlorophenol	ND< 1.920	2.4-Dinitrophenol	ND< 1,920
Pentachlorophenol	ND< 4.800	4,6-Dinitro-2-methylphenol	ND< 4,800
4-Chloro-3-methylphenol	ND< 1,920	Benzoic acid	ND< 4,800
ELAP Number 10958	Method	: EPA 8270C	Data File: S45193.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: 7467

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional Information, including compliance with sample condition 091511T1.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5187

Client Job Number: Field Location:

40503

Date Sampled:

04/27/2009

Field ID Number: Sample Type:

CS-SD-01 N/A Soil

Date Received:

04/28/2009

Date Analyzed:

05/06/2009

entatively identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Anthracenedione	000084-65-1	14.1	2,170	93
Poly Aromatic Hydrocarbon	N/A	18.84	4,990	N/A
Jnknown Hydrocarbon	N/A	19.85	2,510	N/A
Jnknown Hydrocarbon	N/A	20.00	1,980	N/A
n,n' : n",n"-Dibenzopyrene	N/A	21.19	1,940	N/A
Unknown Hydrocarbon	N/A	21.60	2,250	N/A

ELAP Number 10958

Method: EPA 8270C

Data File: S45193.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 09151111.ds requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5188

Client Job Number: Field Location:

40503 CS-SD-02

Date Sampled: **Date Received:** 04/27/2009 04/28/2009

Field ID Number: Sample Type:

N/A Soii

Date A

09

Analyzed:	05/06/200

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	-ND< 2,850 1450	Dibenz (a,h) anthracene	4,000
Anthracene	4,780	Fluoranthene	51,800
Benzo (a) anthracene	15,500	Fluorene	ND < 2,850 1950
Benzo (a) pyrene	16,000	Indeno (1,2,3-cd) pyrene	11,100
Benzo (b) fluoranthene	18,200	Naphthalene	ND< 2,850
Benzo (g,h,i) perylene	11,600	Phenanthrene	29,100
Benzo (k) fluoranthene	13,600	Pyrene	34,900
Chrysene	19,700	Acenaphthylene	ND< 2,850
Diethyl phthalate	ND< 2,850	1,2-Dichlorobenzene	ND< 2,850
Dimethyl phthalate	ND< 7,130	1,3-Dichlorobenzene	ND< 2,850
Butylbenzylphthalate	ND< 2,850	1,4-Dichlorobenzene	ND< 2,850
Di-n-butyl phthalate	ND< 2,850	1,2,4-Trichlorobenzene	ND< 2,850
Di-n-octylphthalate	ND< 2,850	Nitrobenzene	ND< 2,850
Bis (2-ethylhexyl) phthalate	ND< 2,850	2,4-Dinitrotoluene	ND< 2,850
2-Chloronaphthalene	ND< 2,850	2,6-Dinitrotoluene	ND< 2,850
Hexachlorobenzene	ND< 2,850	Bis (2-chloroethyl) ether	ND< 2,850
Hexachloroethane	ND< 2,850	Bis (2-chloroisopropyl) ether	ND< 2,850
Hexachlorocyclopentadiene	ND< 2,850	Bis (2-chloroethoxy) methan	ND< 2,850
Hexachlorobutadiene	ND< 2,850	4-Bromophenyl phenyl ether	ND< 2,850
N-Nitroso-di-n-propylamine	ND< 2,850	4-Chlorophenyl phenyl ether	ND< 2,850
N-Nitrosodiphenylamine	ND< 2,850	Benzidine	ND< 7,130
N-Nitrosodimethylamine	ND< 2,850	3,3'-Dichlorobenzidine	ND< 2,850
Isophorone	ND< 2,850	4-Chloroaniline	ND< 2,850
Benzyl alcohol	ND< 7,130	2-Nitroanillne	ND< 7,130
Dibenzofuran	ND< 2,850	3-Nitroaniline	ND< 7,130
2-Methylnapthalene	ND< 2,850	4-Nitroaniline	ND< 7,130

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 2,850	2-Methylphenol	ND< 2,850
2-Chlorophenol	ND< 2.850	3&4-Methylphenol	ND< 2,850
2,4-Dichlorophenol	ND< 2.850	2,4-Dimethylphenol	ND< 2,850
2,6-Dichlorophenol	ND< 2.850	2-Nitrophenol	ND< 2,850
2,4,5-Trichlorophenol	ND< 7,130	4-Nitrophenol	ND< 7,130
2,4,6-Trichlorophenol	ND< 2.850	2.4-Dinitrophenol	ND< 2,850
Pentachlorophenol	ND< 7.130	4,6-Dinitro-2-methylphenol	ND< 7,130
•	ND< 2,850	Benzoic acid	ND< 7,130
I-Chloro-3-methylphenol	ND< 2,850	Benzoic acld	

ELAP Number 10958

Method: EPA 8270C

Data File: S45194.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger. Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chein of Custody provides additional information, including compliance with sample condition 091511T2.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Client Job Number:

40503

Lab Sample Number: 5188

Field Location: Field ID Number:

CS-SD-02 N/A

Date Sampled: **Date Received:** 04/27/2009 04/28/2009

Sample Type:

Soil

Date Analyzed:

05/06/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Unknown Hydrocarbon	N/A	13.23	2,970	N/A
Unknown Hydrocarbon	N/A	13.76	4,170	99
9.10-Anthracenedione	000084-65-1	14.10	6,310	N/A
Poly Aromatic Hydrocarbon	N/A	18.62	3,820	N/A
Poly Aromatic Hydrocarbon	N/A	18.84	13,000	N/A
Unknown Hydrocarbon	N/A	20.00	4,220	N/A
Unknown Hydrocarbon	N/A	20.38	3,400	N/A
n,n': n",n"'-Dibenzopyrene	N/A	21.19	6,110	N/A
n,n': n",n"'-Dibenzopyrene	N/A	21.26	3,370	N/A
Unknown Hydrocarbon	N/A	21.59	6,960	N/A

ELAP Number 10958

Method: EPA 8270C

Data File: S45194.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

I

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5189

Client Job Number: Field Location:

40503

Date Sampled:

04/27/2009

Field ID Number:

CS-SD-03 N/A

Date Received:

04/28/2009

Sample Type:

Soil

Date Analyzed:

05/08/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 4,490	Dibenz (a,h) anthracene	ND< 4,490 - 449
Anthracene	6,230	Fluoranthene	61,800
Benzo (a) anthracene	17,600	Fluorene	ND<-4,490 2454
Benzo (a) pyrene	17,700	Indeno (1,2,3-cd) pyrene	12,300
Benzo (b) fluoranthene	20,900	Naphthalene	ND< 4,490
Benzo (g,h,i) perylene	12,800	Phenanthrene	35,900
Benzo (k) fluoranthene	13,700	Pyrene	36,300
Chrysene	21,900	Acenaphthylene	ND< 4,490
Diethyl phthalate	ND< 4,490	1,2-Dichlorobenzene	ND< 4,490
Dimethyl phthalate	ND< 11,200	1,3-Dichlorobenzene	ND< 4,490
Butylbenzylphthalate	ND< 4,490	1,4-Dichlorobenzene	ND< 4,490
Di-n-butyl phthalate	ND< 4,490	1,2,4-Trichlorobenzene	ND< 4,490
Di-n-octylphthalate	ND< 4,490	Nitrobenzene	ND< 4,490
Bis (2-ethylhexyl) phthalate	ND< 4,490	2,4-Dinitrotoluene	ND< 4,490
2-Chloronaphthalene	ND< 4,490	2,6-Dinitrotoluene	ND< 4,490
Hexachlorobenzene	ND< 4,490	Bis (2-chloroethyl) ether	ND< 4,490
Hexachloroethane	ND< 4,490	Bis (2-chloroisopropyl) ether	ND< 4,490
Hexachlorocyclopentadiene	ND< 4,490 W	Bis (2-chloroethoxy) methan	ND< 4,490
Hexachlorobutadiene	ND< 4,490	4-Bromophenyl phenyl ether	ND< 4,490
N-Nitroso-di-n-propylamine	ND< 4,490	4-Chlorophenyl phenyl ether	ND< 4,490
N-Nitrosodiphenylamine	ND< 4,490	Benzidine	ND< 11,200
N-Nitrosodimethylamine	ND< 4,490	3,3'-Dichlorobenzidine	ND< 4,490
Isophorone	ND< 4,490	4-Chloroaniline	ND< 4,490
Benzyl alcohol	ND< 11,200	2-Nitroaniline	ND< 11,200
Dibenzofuran	ND< 4,490	3-Nitroaniline	ND< 11,200
2-Methylnapthalene	ND< 4.490	4-Nitroaniline	ND< 11,200

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 4,490	2-Methylphenol	ND< 4,490
2-Chlorophenol	ND< 4,490	3&4-Methylphenol	ND< 4,490
2,4-Dichlorophenol	ND< 4,490	2,4-Dimethylphenol	ND< 4,490
2.6-Dichlorophenol	ND< 4,490	2-Nitrophenol	ND< 4,490
2,4,5-Trichlorophenol	ND< 11,200	4-Nitrophenol	ND< 11,200
2,4,6-Trichlorophenol	ND< 4,490	2,4-Dinitrophenol	ND< 4,490 VS
Pentachlorophenol	ND< 11,200	4,6-Dinitro-2-methylphenol	ND< 11,200 🛂
4-Chloro-3-methylphenol	ND< 4,490	Benzoic acid	ND< 11,200
ELAP Number 10958	Method: EPA 8270C		Data File: S45230.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 091511T3.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511 Lab Sample Number: 5189

Client Job Number: Field Location:

40503 CS-SD-03

Date Sampled:

04/27/2009

Field ID Number: Sample Type:

N/A Soil

Date Received:

04/28/2009

Date Analyzed:

05/08/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Unknown Hydrocarbon	N/A	13.69	5,520	N/A
9,10-Anthracenedione	000084-65-1	14.03	7,810	99
Poly Aromatic Hydrocarbon	N/A	15.48	6,820	N/A
Poly Aromatic Hydrocarbon	N/A	15.58	4,890	N/A
Benzo[b]naptho[n,n'-d]thiopene	N/A	16.42	4,800	N/A
Unknown Hydrocarbon	N/A	16.48	4,760	N/A
Unknown Hydrocarbon	N/A	16.97	5,070	N/A
Poly Aromatic Hydrocarbon	N/A	18.76	13,600	NA
Poly Aromatic Hydrocarbon	N/A	19.94	4,580	N/A
n.n': n".n"-Dibenzopyrene	N/A	21.15	6,060	N/A
Unknown Hydrocarbon	N/A	21.54	7,220	N/A

ELAP Number 10958

Method: EPA 8270C

Data File: S45230.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 09151113.xis requirements upon receipt.

Semi -Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511 Lab Sample Number: 5190

Client Job Number: Field Location:

40503 CS-SS-EB

Date Sampled:

04/27/2009

Field ID Number: Sample Type: N/A Water Date Received: Date Analyzed: 04/28/2009 05/01/2009

Base / Neutrals	Results in ug / L	Base / Neutrals	Results in ug / L
Acenaphthene	ND<-10.0 R	Dibenz (a,h) anthracene	ND< 10.0
Anthracene	ND< 10.0 R	Fluoranthene	ND< 10.0 €
Benzo (a) anthracene	ND< 10.0	Fluorene	ND< 10.0 €
Benzo (a) pyrene	ND< 10.0	Indeno (1,2,3-cd) pyrene	ND< 10.0
Benzo (b) fluoranthene	ND< 10.0	Naphthalene	ND< 10.0 R
Benzo (g,h,i) perylene	ND< 10.0	Phenanthrene	ND< 10.0 <<
Benzo (k) fluoranthene	ND< 10.0	Pyrene	ND< 10.0
Chrysene	ND< 10.0	Acenaphthylene	ND< 10.0
Diethyl phthalate	ND< 10.0 R	1,2-Dichlorobenzene	ND< 10.0
Dimethyl phthalate	ND< 25.0	1,3-Dichlorobenzene	ND< 10.0
Butylbenzylphthalate	ND< 10.0	1,4-Dichlorobenzene	ND< 10.0
Di-n-butyl phthalate	ND< 10.0 €	1,2,4-Trichlorobenzene	ND< 10.0
Di-n-octylphthalate	ND< 10.0	Nitrobenzene	ND< 10.0 R
Bis (2-ethylhexyl) phthalate	ND< 10.0	2,4-Dinitrotoluene	-ND< 10.0
2-Chloronaphthalene	ND< 10.0	2,6-Dinitrotoluene	ND< 10.0
Hexachlorobenzene	- ND< 10:0 €	Bis (2-chloroethyl) ether	ND< 10.0
Hexachloroethane	ND< 10.0	Bis (2-chloroisopropyl) ether	ND< 10.0
Hexachlorocyclopentadiene	ND< 10.0 R	Bis (2-chloroethoxy) methan	ND< 10.0 P
Hexachlorobutadiene	ND< 10.0 R	4-Bromophenyl phenyl ether	ND< 10.0 P
N-Nitroso-di-n-propylamine	ND< 10.0	4-Chlorophenyl phenyl ether	ND< 10.0
N-Nitrosodiphenylamine	ND< 10.0 R	Benzidine	ND< 25.0
N-Nitrosodimethylamine	ND< 10.0	3,3'-Dichlorobenzidine	ND< 10.0
Isophorone	ND< 10.0	4-Chloroaniline	ND< 10.0 €
Benzyl alcohol	ND< 25.0	2-Nitroaniline	ND< 25.0
Dibenzofuran	ND< 10.0 €	3-Nitroanlline	ND< 25.0
2-Methylnapthalene	ND< 10.0 R	4-Nitroaniline	ND< 25.0 ≥

Acids	Results in ug / L	Acids	Results in ug / L
Phenol	ND< 10.0	2-Methylphenol	ND< 10.0
2-Chlorophenol	ND< 10.0	3&4-Methylphenol	ND< 10.0
2,4-Dichlorophenol	ND< 10.0 R	2,4-Dimethylphenol	ND< 10.0 R
2.6-Dichlorophenol	ND< 10.0	2-Nitrophenol	ND< 10.0 R
2,4,5-Trichlorophenol	ND< 25.0 R	4-Nitrophenol	ND< 25.0 ~
2,4,6-Trichlorophenol	ND< 10.0 R	2,4-Dinitrophenol	ND< 10.0 %
Pentachlorophenol	ND< 25.0	4,6-Dinitro-2-methylphenol	ND< 25.0 R
· ·	ND< 10.0 R	Benzoic acid	ND< 25.0
			Data File: S45124.D
4-Chloro-3-methylphenol ELAP Number 10958		: EPA 8270C	

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Pechnical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional Information, including compliance with sample condition requirements upon receipt.

Semi -Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5190

Client Job Number: Field Location:

40503 CS-SS-EB

Date Sampled:

04/27/2009

Field ID Number: Sample Type: N/A Water

Date Received:

04/28/2009

Date Analyzed:

05/01/2009

Tentatively Identified Compounds
Unknown Hydrocarbon

CAS Number N/A Retention Time 11.61 Results in ug / L 14.5 Percent Fit

1.5 N/A

ELAP Number 10958

Method: EPA 8270C

Data File: \$45124.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Pechnical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

091511T4.XLS

Semi -Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: PB

Client Job Number: Fleid Location:

40503 N/A N/A

Date Sampled: Date Received:

N/A N/A

Field ID Number: Sample Type:

Water

Date Analyzed:

05/01/2009

Base / Neutrals	Results in ug / L	Base / Neutrals	Results in ug / L
Acenaphthene	ND< 10.0	Dibenz (a,h) anthracene	ND< 10.0
Anthracene	ND< 10.0	Fluoranthene	ND< 10.0
Benzo (a) anthracene	ND< 10.0	Fluorene	ND< 10.0
Benzo (a) pyrene	ND< 10.0	Indeno (1,2,3-cd) pyrene	ND< 10.0
Benzo (b) fluoranthene	ND< 10.0	Naphthalene	ND< 10.0
Benzo (g,h,i) perylene	ND< 10.0	Phenanthrene	ND< 10.0
Benzo (k) fluoranthene	ND< 10.0	Pyrene	ND< 10.0
Chrysene	ND< 10.0	Acenaphthylene	ND< 10.0
Diethyl phthalate	ND< 10.0	1,2-Dichlorobenzene	ND< 10.0
Dimethyl phthalate	ND< 25.0	1,3-Dichlorobenzene	ND< 10.0
Butylbenzylphthalate	ND< 10.0	1,4-Dichiorobenzene	ND< 10.0
Di-n-butyl phthalate	ND< 10.0	1,2,4-Trichlorobenzene	ND< 10.0
Di-n-octylphthalate	ND< 10.0	Nitrobenzene	ND< 10.0
Bis (2-ethylhexyl) phthalate	ND< 10.0	2,4-Dinitrotoluene	ND< 10.0
2-Chloronaphthalene	ND< 10.0	2,6-Dinitrotoluene	ND< 10.0
Hexachlorobenzene	ND< 10.0	Bis (2-chloroethyl) ether	ND< 10.0
Hexachloroethane	ND< 10.0	Bis (2-chloroisopropyl) ether	ND< 10.0
Hexachlorocyclopentadiene	ND< 10.0	Bis (2-chloroethoxy) methan	ND< 10.0
Hexachlorobutadiene	ND< 10.0	4-Bromophenyl phenyl ether	ND< 10.0
N-Nitroso-di-n-propylamine	ND< 10.0	4-Chlorophenyl phenyl ether	ND< 10.0
N-Nitrosodiphenylamine	ND< 10.0	Benzidine	ND< 25.0
N-Nitrosodimethylamine	ND< 10.0	3,3'-Dichlorobenzidine	ND< 10.0
Isophorone	ND< 10.0	4-Chloroaniline	ND< 10.0
Benzyl alcohol	ND< 25.0	2-Nitroaniline	ND< 25.0
Dibenzofuran	ND< 10.0	3-Nitroaniline	ND< 25.0
2-Methylnapthalene	ND< 10.0	4-Nitroaniline	ND< 25.0

Acids	Results in ug / L	Acids	Results in ug / L
Phenol	ND< 10.0	2-Methylphenol	ND< 10.0
2-Chlorophenol	ND< 10.0	3&4-Methylphenol	ND< 10.0
2,4-Dichlorophenol	ND< 10.0	2,4-Dimethylphenol	ND< 10.0
2.6-Dichlorophenol	ND< 10.0	2-Nitrophenol	ND< 10.0
2,4,5-Trichlorophenol	ND< 25.0	4-Nitrophenol	ND< 25.0
2,4,6-Trichlorophenol	ND< 10.0	2,4-Dinitrophenol	ND< 10.0
Pentachlorophenol	ND< 25.0	4,6-Dinitro-2-methylphenol	ND< 25.0
4-Chloro-3-methylphenol	ND< 10.0	Benzoic acid	ND< 25.0

ELAP Number 10958

Method: EPA 8270C

Data File: S45122.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

all target anolytes are unusable (R).

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: PB

Client Job Number: Field Location:

40503 N/A

Date Sampled:

N/A

Field ID Number:

N/A

Date Received:

N/A

Sample Type: Soii Date Analyzed:

05/06/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 286	Dibenz (a,h) anthracene	ND< 286
Anthracene	ND< 286	Fluoranthene	ND< 286
Benzo (a) anthracene	ND< 286	Fluorene	ND< 286
Benzo (a) pyrene	ND< 286	Indeno (1,2,3-cd) pyrene	ND< 286
Benzo (b) fluoranthene	ND< 286	Naphthalene	ND< 286
Benzo (g,h,i) perylene	ND< 286	Phenanthrene	ND< 286
Benzo (k) fluoranthene	ND< 286	Pyrene	ND< 286
Chrysene	ND< 286	Acenaphthylene	ND< 286
Diethyl phthalate	ND< 286	1,2-Dichlorobenzene	ND< 286
Dimethyl phthalate	ND< 714	1,3-Dichlorobenzene	ND< 286
Butylbenzylphthalate	ND< 286	1,4-Dichlorobenzene	ND< 286
Di-n-butyl phthalate	ND< 286	1,2,4-Trichlorobenzene	ND< 286
Di-n-octylphthalate	ND< 286	Nitrobenzene	ND< 286
Bis (2-ethylhexyl) phthalate	ND< 286	2,4-Dinitrotoluene	ND< 286
2-Chloronaphthalene	ND< 286	2,6-Dinitrotoluene	ND< 286
Hexachlorobenzene	ND< 286	Bis (2-chloroethyl) ether	ND< 286
Hexachloroethane	ND< 286	Bis (2-chloroisopropyl) ether	ND< 286
Hexachlorocyclopentadiene	ND< 286	Bis (2-chloroethoxy) methan	ND< 286
Hexachlorobutadiene	ND< 286	4-Bromophenyl phenyl ether	ND< 286
N-Nitroso-di-n-propylamine	ND< 286	4-Chlorophenyl phenyl ether	ND< 286
N-Nitrosodiphenylamine	ND< 286	Benzidine	ND< 714
N-Nitrosodimethylamine	ND< 286	3,3'-Dichlorobenzidine	ND< 286
Isophorone	ND< 286	4-Chloroanillne	ND< 286
Benzyl alcohol	ND< 714	2-Nitroaniline	ND< 714
Dibenzofuran	ND< 286	3-Nitroaniline	ND< 714
2-Methylnapthalene	ND< 286	4-Nitroaniline	ND< 714

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 286	2-Methylphenol	ND< 286
2-Chlorophenol	ND< 286	3&4-Methylphenol	ND< 286
2,4-Dichlorophenol	ND< 286	2,4-Dimethylphenol	ND< 286
2,6-Dichlorophenol	ND< 286	2-Nitrophenol	ND< 286
2,4,5-Trichlorophenol	ND< 714	4-Nitrophenol	ND< 714
2,4,6-Trichlorophenol	ND< 286	2,4-Dinitrophenol	ND< 286
Pentachlorophenol	ND< 714	4,6-Dinitro-2-methylphenol	ND< 714
4-Chloro-3-methylphenol	ND< 286	Benzoic acid	ND< 714
ELAP Number 10958	Method: EPA 8270C		Data File: S45182.D

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5180

Client Job Number:

40503

Date Sampled:

04/27/2009 04/28/2009

Field Location: Field ID Number: CS-SS-01 N/A

Date Received:

Sample Type:

Soil

Date Analyzed:

05/07/2009

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.405
Aroclor 1221	ND< 0.405
Aroclor 1232	ND< 0.405
Aroclor 1242	ND< 0.405
Aroclor 1248	ND< 0.405
Aroclor 1254	.ND< 0.405
Aroclor 1260	ND< 0.405

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect

mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5181

Client Job Number: Field Location:

40503 CS-SS-02

Date Sampled:

04/27/2009

Field ID Number: Sample Type: N/A Soil Date Received:

04/28/2009

Date Analyzed:

05/07/2009

 PCB Identification
 Results in mg / Kg

 Aroclor 1016
 ND< 0.398</td>

 Aroclor 1221
 ND< 0.398</td>

 Aroclor 1232
 ND< 0.398</td>

 Aroclor 1242
 ND< 0.398</td>

 Aroclor 1248
 ND< 0.398</td>

 Aroclor 1254
 ND< 0.398</td>

ELAP Number 10958

Aroclor 1260

Method: EPA 8082

ND< 0.398

Comments: ND denotes Non Detect

mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger. Yechnical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5182

Client Job Number:

40503

Date Sampled:

04/27/2009

Field Location:

CS-SS-03 N/A

Date Received:

Field ID Number: Sample Type:

Soil

04/28/2009

Date Analyzed:

05/07/2009

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.448
Aroclor 1221	ND< 0.448
Aroclor 1232	ND< 0.448
Aroclor 1242	ND< 0.448
Aroclor 1248	ND< 0.448
Aroclor 1254	ND< 0.448
Aroclor 1260	ND< 0.448

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect

mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Fechnical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5183

Client Job Number: Field Location:

40503

Date Sampled:

04/27/2009

Field ID Number:

CS-SS-04

Date Received:

Sample Type:

N/A Soil

04/28/2009

Date Analyzed:

05/07/2009

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.361
Aroclor 1221	ND< 0.361
Aroclor 1232	ND< 0.361
Aroclor 1242	ND< 0.361
Aroclor 1248	ND< 0.361
Aroclor 1254	ND< 0.361

ELAP Number 10958

Aroclor 1260

Method: EPA 8082

ND< 0.361

Comments: ND denotes Non Detect

mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Client Job Number:

40503

Lab Sample Number: 5184

Field Location:

CS-SS-04D

Date Sampled: **Date Received:** 04/27/2009 04/28/2009

Field ID Number: Sample Type:

N/A Soil

Date Analyzed:

05/07/2009

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.355
Aroclor 1221	ND< 0.355
Aroclor 1232	ND< 0.355
Aroclor 1242	ND< 0.355
Aroclor 1248	ND< 0.355
Aroclor 1254	ND< 0.355
Aroclor 1260	ND< 0.355

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Urrector

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5185

Client Job Number: 40503

Field Location: Field ID Number:

Sample Type:

CS-SS-05

N/A Soil

Date Sampled:

04/27/2009

Date Received:

04/28/2009

Date Analyzed:

05/07/2009

Results in mg / Kg PCB Identification Aroclor 1016 ND< 0.392 ND< 0.392 Aroclor 1221 Aroclor 1232 ND< 0.392 Aroclor 1242 ND< 0.392 ND< 0.392 Aroclor 1248 Aroclor 1254 ND< 0.392

ELAP Number 10958

Aroclor 1260

Method: EPA 8082

ND< 0.392

Comments: ND denotes Non Detect

mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5186

Client Job Number: Field Location:

40503 CS-SS-06

Date Sampled: **Date Received:** 04/27/2009 04/28/2009

Field ID Number: Sample Type:

N/A Soil

Date Analyzed:

05/07/2009

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.386
Aroclor 1221	ND< 0.386
Aroclor 1232	ND< 0.386
Aroclor 1242	ND< 0.386
Aroclor 1248	ND< 0.386
Aroclor 1254	ND< 0.386
Aroclor 1260	ND< 0.386

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5187

Client Job Number: 40503

Field Location:

CS-SD-01

Date Sampled:

04/27/2009

Field ID Number: Sample Type:

N/A Soil

Date Received:

04/28/2009

Date Analyzed:

05/07/2009

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.406
Aroclor 1221	ND< 0.406
Aroclor 1232	ND< 0.406
Aroclor 1242	ND< 0.406
Aroclor 1248	ND< 0.406
Aroclor 1254	ND< 0.406
Aroclor 1260	ND< 0.406

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5188

Client Job Number:

40503 CS-SD-02

Date Sampled:

04/27/2009

Field Location: Field ID Number:

N/A

Date Received:

04/28/2009

Sample Type:

Soil

Date Analyzed:

05/07/2009

PCB Id	entification	Results in mg / Kg
	Aroclor 1016	ND< 0.605
	Aroclor 1221	ND< 0.605
	Aroclor 1232	ND< 0.605
	Aroclor 1242	ND< 0.605
	Aroclor 1248	ND< 0.605
	Aroclor 1254	ND< 0.605
	Aroclor 1260	ND< 0.605

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect

mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5189

Client Job Number: 40503

Field Location:

CS-SD-03 Date Sampled: 04/27/2009

Field ID Number:

N/A

Date Received:

04/28/2009

Sample Type:

Soil

05/07/2009 Date Analyzed:

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.467
Aroclor 1221	ND< 0.467
Aroclor 1232	ND< 0.467
Aroclor 1242	ND< 0.467
Aroclor 1248	ND< 0.467
Aroclor 1254	ND< 0.467
Aroclor 1260	ND< 0.467
Aroclor 1260	ND< 0.467

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect

mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

PCB Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: 5190

Client Job Number:

Field Location:

40503 CS-SS-EB

Date Sampled:

04/27/1990

Field ID Number: Sample Type:

N/A Water **Date Received:**

04/28/2009

Date Analyzed:

05/04/2009

PCB Identification	Results in ug / L
Aroclor 1016	ND< 1.00
Aroclor 1221	ND< 1.00
Aroclor 1232	ND< 1.00
Aroclor 1242	ND< 1.00
Aroclor 1248	ND< 1.00
Aroclor 1254	ND< 1.00
Aroclor 1260	ND< 1.00

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

PCB Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Client Job Number:

40503 N/A

Date Sampled:

N/A

Field Location: Field ID Number:

N/A

Date Received:

N/A

Lab Sample Number: Method Blank

Sample Type:

Water

Date Analyzed:

05/04/2009

PCB Identification	Results in ug / L
Aroclor 1016	ND< 1.00
Aroclor 1221	ND< 1.00
Aroclor 1232	ND< 1.00
Aroclor 1242	ND< 1.00
Aroclor 1248	ND< 1.00
Aroclor 1254	ND< 1.00
Aroclor 1260	ND< 1.00

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1511

Lab Sample Number: Method Blank

Client Job Number: Field Location:

40503 N/A

Date Sampled:

N/A

Field ID Number:

N/A

Date Received:

N/A

Sample Type:

Soil

Date Analyzed:

05/07/2009

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.300
Aroclor 1221	ND< 0.300
Aroclor 1232	ND< 0.300
Aroclor 1242	ND< 0.300
Aroclor 1248	ND< 0.300
Aroclor 1254	ND< 0.300
Aroclor 1260	ND< 0.300

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect

mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Client:

Lu Engineers

Lab Project No.:

09-1511

Client Job Site:

Clarkson ERP Site

Lab Sample No.:

5180

Client Job No.:

40503

Sample Type:

Soil

Field Location:

CS-SS-01

Date Sampled:

04/27/2009

Field ID No.:

N/A

Date Received:

04/28/2009

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical	Result (mg	ı/kg)
		Method	<u> </u>	
Aluminum	05/05/2009	SW846 6010	11200	
Antimony	05/05/2009	SW846 6010	<7.93	М
Arsenic	05/05/2009	SW846 6010	6.62	М
Barium	05/05/2009	SW846 6010	960	
Beryllium	05/05/2009	SW846 6010	<0.661	М
Cadmium	05/05/2009	SW846 6010	<0.661	М
Calcium	05/05/2009	SW846 6010	3890	
Chromium	05/05/2009	SW846 6010	17.2	M
Cobalt	05/05/2009	SW846 6010	7.12	М
Copper	05/05/2009	SW846 6010	15.4	D,M
Iron	05/05/2009	SW846 6010	17600	D
Lead	05/05/2009	SW846 6010	606	
Magnesium	05/05/2009	SW846 6010	3100	D
Manganese	05/05/2009	SW846 6010	613	M
Mercury	04/30/2009	SW846 7471	0.139	D,M
Nickel	05/05/2009	SW846 6010	15.5	D,M
Potassium	05/05/2009	SW846 6010	2080	
Selenium	05/05/2009	SW846 6010	4.63	
Silver	05/05/2009	SW846 6010	<1.32	М
Sodium	05/05/2009	SW846 6010	138	
Thallium	05/05/2009	SW846 6010	<0.793	М
Vanadium	05/05/2009	SW846 6010	26.4	М
Zinc	05/05/2009	SW846 6010	271	M.

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Lab Project No.:

09-1511

Client Job Site:

Clarkson ERP Site

Lab Sample No.:

5181 Soil

Client Job No.:

40503

Sample Type:

04/27/2009

Field Location:

CS-SS-02

Date Sampled: Date Received:

04/28/2009

Field ID No.:

N/A

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical	Result (mg/kg)
		<u>Method</u>	
Aluminum	05/05/2009	SW846 6010	4870
Antimony	05/05/2009	SW846 6010	<5.03
Arsenic	05/05/2009	SW846 6010	2.89
Barium	05/05/2009	SW846 6010	119
Beryllium	05/05/2009	SW846 6010	<0.420
Cadmium	05/05/2009	SW846 6010	1.54
Calcium	05/05/2009	SW846 6010	56900
Chromium	05/05/2009	SW846 6010	23.7
Cobalt	05/05/2009	SW846 6010	4.28
Copper	05/05/2009	SW846 6010	57.6
Iron	05/05/2009	SW846 6010	13200
Lead	05/05/2009	SW846 6010	150
Magnesium	05/05/2009	SW846 6010	20300
Manganese	05/05/2009	SW846 6010	325
Mercury	04/30/2009	SW846 7471	0.101
Nickel	05/05/2009	SW846 6010	14.0
Potassium	05/05/2009	SW846 6010	1010
Selenium	05/05/2009	SW846 6010	<0.420
Silver	05/05/2009	SW846 6010	<0.840
Sodium	05/05/2009	SW846 6010	343
Thallium	05/05/2009	SW846 6010	<0.503
Vanadium	05/05/2009	SW846 6010	13.6
Zinc	05/05/2009	SW846 6010	278

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Lab Project No.: Lab Sample No.: 09-1511 5182

Client Job Site:

Clarkson ERP Site

Sample Type:

Soil

Client Job No.:

40503

Date Sampled:

04/27/2009

Field Location:

Field ID No.:

CS-SS-03

N/A

Date Received:

04/28/2009

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Aluminum	05/05/2009	SW846 6010	5450
Antimony	05/05/2009	SW846 6010	<7.72
Arsenic	05/05/2009	SW846 6010	3.60
Barium	05/05/2009	SW846 6010	165
Beryllium	05/05/2009	SW846 6010	<0.644
Cadmium	05/05/2009	SW846 6010	0.807
Calcium	05/05/2009	SW846 6010	10600
Chromium	05/05/2009	SW846 6010	10.1
Cobalt	05/05/2009	SW846 6010	4.39
Copper	05/05/2009	SW846 6010	. 14.2
Iron	05/05/2009	SW846 6010	14200
Lead	05/05/2009	SW846 6010	117
Magnesium	05/05/2009	SW846 6010	3710
Manganese	05/05/2009	SW846 6010	356
Mercury	04/30/2009	SW846 7471	0.0838
Nickel	05/05/2009	SW846 6010	13.3
Potassium	05/05/2009	SW846 6010	1430
Selenium	05/05/2009	SW846 6010	<0.644
Silver	05/05/2009	SW846 6010	<1.29
Sodium	05/05/2009	SW846 6010	204
Thallium	05/05/2009	SW846 6010	<0.772
Vanadium	05/05/2009	SW846 6010	15.6
Zinc	05/05/2009	SW846 6010	135 ELAP ID No.:1095

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Lab Project No.: Lab Sample No.: 09-1511 5183

Client Job Site:

Clarkson ERP Site

Sample Type:

Soil

Client Job No.:

40503

Date Sampled:

04/27/2009

Field Location:

CS-SS-04

Field ID No.: N/A

Date Received:

04/28/2009

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Aluminum	05/05/2009	SW846 6010	8620
Antimony	05/05/2009	SW846 6010	<6.67
Arsenic	05/05/2009	SW846 6010	4.13
Barium	05/05/2009	SW846 6010	165
Beryllium	05/05/2009	SW846 6010	<0.555
Cadmium	05/05/2009	SW846 6010	<0.555
Calcium	05/05/2009	SW846 6010	14300
Chromium	05/05/2009	SW846 6010	11.8
Cobalt	05/05/2009	SW846 6010	5.44
Copper	05/05/2009	SW846 6010	12.7
Iron	05/05/2009	SW846 6010	13800
Lead	05/05/2009	SW846 6010	77.0
Magnesium	05/05/2009	SW846 6010	6110
Manganese	05/05/2009	SW846 6010	388
Mercury	04/30/2009	SW846 7471	0.0651
Nickel	05/05/2009	SW846 6010	12.0
Potassium	05/05/2009	SW846 6010	1550
Selenium	05/05/2009	SW846 6010	<0.555
Silver	05/05/2009	SW846 6010	<1.11
Sodium	05/05/2009	SW846 6010	145
Thallium	05/05/2009	SW846 6010	<0.667
Vanadium	05/05/2009	SW846 6010	19.5
Zinc	05/05/2009	SW846 6010	83.1

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Lab Project No.:

09-1511

Client Job Site:

Clarkson ERP Site

Lab Sample No.: 5

5184 Soil

Client Job No.:

40503

Sample Type:

Date Sampled:

04/27/2009

Field Location:

CS-SS-04D

Date Received:

04/28/2009

Field ID No.:

N/A

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical	Result (mg/kg)
		Method	
Aluminum	05/05/2009	SW846 6010	7060
Antimony	05/05/2009	SW846 6010	<6.11
Arsenic	05/05/2009	SW846 6010	4.16
Barium	05/05/2009	SW846 6010	217
Beryllium	05/05/2009	SW846 6010	<0.509
Cadmium	05/05/2009	SW846 6010	<0.509
Calcium	05/05/2009	SW846 6010	15700
Chromium	05/05/2009	SW846 6010	11.1
Cobalt	05/05/2009	SW846 6010	5.05
Copper	05/05/2009	SW846 6010	12.1
Iron	05/05/2009	SW846 6010	13500
Lead	05/05/2009	SW846 6010	74.7
Magnesium	05/05/2009	SW846 6010	6590
Manganese	05/05/2009	SW846 6010	375
Mercury	04/30/2009	SW846 7471	0.0634
Nickel	05/05/2009	SW846 6010	11.1
Potassium	05/05/2009	SW846 6010	1430
Selenium	05/05/2009	SW846 6010	<0.509
Silver	05/05/2009	SW846 6010	<1.02
Sodium	05/05/2009	SW846 6010	135
Thallium	05/05/2009	SW846 6010	<0.611
Vanadium	05/05/2009	SW846 6010	17.7
Zinc	05/05/2009	SW846 6010	77.9
			FLAP ID No.:10958

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Lab Project No.:

09-1511

Client Job Site:

Clarkson ERP Site

Lab Sample No.: 5

5185

Client Job No.:

40503

Sample Type:

Soil

Field Location:

CS-SS-05

Date Sampled:

04/27/2009

Field ID No.:

N/A

Date Received:

04/28/2009

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Aluminum	05/05/2009	SW846 6010	9910
Antimony	05/05/2009	SW846 6010	<6.87
Arsenic	05/05/2009	SW846 6010	6.36
Barium	05/05/2009	SW846 6010	291
Beryllium	05/05/2009	SW846 6010	<0.573
Cadmium	05/05/2009	SW846 6010	<0.573
Calcium	05/05/2009	SW846 6010	4470
Chromium	05/05/2009	SW846 6010	13.9
Cobalt	05/05/2009	SW846 6010	6.68
Copper	05/05/2009	SW846 6010	9.55
Iron	05/05/2009	SW846 6010	15500
Lead	05/05/2009	SW846 6010	69.5
Magnesium	05/05/2009	SW846 6010	3480
Manganese	05/05/2009	SW846 6010	417
Mercury	04/30/2009	SW846 7471	0.0710
Nickel	05/05/2009	SW846 6010	14.9
Potassium	05/05/2009	SW846 6010	2000
Selenium	05/05/2009	SW846 6010	<0.573
Silver	05/05/2009	SW846 6010	<1.15
Sodium	05/05/2009	SW846 6010	<115
Thallium	05/05/2009	SW846 6010	<0.687
Vanadium	05/05/2009	SW846 6010	20.0
Zinc	05/05/2009	SW846 6010	75.2

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Lab Project No.:

09-1511

Client Job Site:

Clarkson ERP Site

Lab Sample No.:

5186 Soil

Client Job No.:

40503

Date Sampled:

04/27/2009

Field Location: Field ID No.:

CS-SS-06 N/A Date Received:

Sample Type:

04/28/2009

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical	Result (mg/kg)
		Method	
Aluminum	05/05/2009	SW846 6010	9070
Antimony	05/05/2009	SW846 6010	<7.00
Arsenic	05/05/2009	SW846 6010	7.36
Barium	05/05/2009	SW846 6010	357
Beryllium	05/05/2009	SW846 6010	<0.584
Cadmium	05/05/2009	SW846 6010	<0.584
Calcium	05/05/2009	SW846 6010	5430
Chromium	05/05/2009	SW846 6010	36.7
Cobalt	05/05/2009	SW846 6010	9.12
Copper	05/05/2009	SW846 6010	47.4
Iron	05/05/2009	SW846 6010	51600
Lead	05/05/2009	SW846 6010	121
Magnesium	05/05/2009	SW846 6010	3360
Manganese	05/05/2009	SW846 6010	810
Mercury	04/30/2009	SW846 7471	0.104
Nickel	05/05/2009	SW846 6010	25.2
Potassium	05/05/2009	SW846 6010	1820
Selenium	05/05/2009	SW846 6010	<0.584
Silver	05/05/2009	SW846 6010	<1.17
Sodium	05/05/2009	SW846 6010	<117
Thallium	05/05/2009	SW846 6010	<0.700
Vanadium	05/05/2009	SW846 6010	21.6
Zinc	05/05/2009	SW846 6010	152
F			ELAP ID No :10058

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Lab Project No.:

09-1511

Client Job Site:

Clarkson ERP Site

Lab Sample No.:

5187

Client Job No.:

40503

Sample Type:

Soil

Field Location:

CS-SD-01

Date Sampled:

04/27/2009

Field ID No.:

N/A

Date Received: 04/28/2009

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical	Result (mg/kg)
		Method	
Aluminum	05/05/2009	SW846 6010	3760
Antimony	05/05/2009	SW846 6010	<7.66
Arsenic	05/05/2009	SW846 6010	19.6
Barium	05/05/2009	SW846 6010	245
Beryllium	05/05/2009	SW846 6010	<0.639
Cadmium	05/05/2009	SW846 6010	<0.639
Calcium	05/05/2009	SW846 6010	78200
Chromium	05/05/2009	SW846 6010	25.9
Cobalt	05/05/2009	SW846 6010	6.97
Copper	05/05/2009	SW846 6010	61.5
Iron	05/05/2009	SW846 6010	133000
Lead	05/05/2009	SW846 6010	141
Magnesium	05/05/2009	SW846 6010	8310
Manganese	05/05/2009	SW846 6010	943
Mercury	04/30/2009	SW846 7471	0.0181
Nickel	05/05/2009	SW846 6010	25.7
Potassium	05/05/2009	SW846 6010	719
Selenium	05/05/2009	SW846 6010	<0.639
Silver	05/05/2009	SW846 6010	<1.28
Sodium	05/05/2009	SW846 6010	270
Thallium	05/05/2009	SW846 6010	<0.766
Vanadium	05/05/2009	SW846 6010	21.2
Zinc	05/05/2009	SW846 6010	220

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Lab Project No.:

09-1511

Client Job Site:

Clarkson ERP Site

Lab Sample No.: 5188

Client Job No.:

40503

Sample Type:

Soil

CS-SD-02

Date Sampled:

04/27/2009

Field Location: Field ID No.:

N/A

Date Received:

04/28/2009

Laboratory Report for TAL Metals Analysis in Solid

Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	05/05/2009 05/05/2009 05/05/2009 05/05/2009 05/05/2009 05/05/2009	Method SW846 6010 SW846 6010 SW846 6010 SW846 6010	5020 <8.78 2.95 149 <0.733
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	05/05/2009 05/05/2009 05/05/2009 05/05/2009 05/05/2009	SW846 6010 SW846 6010 SW846 6010 SW846 6010	<8.78 2.95 149
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	05/05/2009 05/05/2009 05/05/2009 05/05/2009	SW846 6010 SW846 6010 SW846 6010	2.95 149
Barium Beryllium Cadmium Calcium Chromium Cobalt	05/05/2009 05/05/2009 05/05/2009	SW846 6010 SW846 6010	149
Beryllium Cadmium Calcium Chromium Cobalt	05/05/2009 05/05/2009	SW846 6010	
Cadmium Calcium Chromium Cobalt	05/05/2009		<0.733
Calcium Chromium Cobalt		014040 0040	
Chromium Cobalt	05/05/2009	SW846 6010	<0.733
Cobalt	03/03/2009	SW846 6010	50000
	05/05/2009	SW846 6010	11.3
Copper	05/05/2009	SW846 6010	3.61
	05/05/2009	SW846 6010	15.8
Iron	05/05/2009	SW846 6010	11200
Lead	05/05/2009	SW846 6010	80.5
Magnesium	05/05/2009	SW846 6010	8790
Manganese	05/05/2009	SW846 6010	201
Mercury	04/30/2009	SW846 7471	0.0430
Nickel	05/05/2009	SW846 6010	8.78
Potassium	05/05/2009	SW846 6010	1030
Selenium	05/05/2009	SW846 6010	<0.733
Silver	05/05/2009	SW846 6010	<1.46
Sodium	05/05/2009	SW846 6010	225
Thallium	05/05/2009	SW846 6010	<0.878
Vanadium		SW846 6010	19.7
Zinc	05/05/2009		

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogestager, Technical Director

Client:

Lu Engineers

Lab Project No.:

09-1511

Client Job Site:

Clarkson ERP Site

Lab Sample No.:

5189

Client Job No.:

40503

Sample Type:

Soil

Field Location:

CS-SD-03

Date Sampled: Date Received:

04/27/2009 04/28/2009

Field ID No.:

N/A

Laboratory Report for TAL Metals Analysis in Solld

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Aluminum	05/05/2009	SW846 6010	3780
Antimony	05/05/2009	SW846 6010	<8.14
Arsenic	05/05/2009	SW846 6010	2.06
Barium	05/05/2009	SW846 6010	104
Beryllium	05/05/2009	SW846 6010	<0.679
Cadmium	05/05/2009	SW846 6010	<0.679
Calcium	05/05/2009	SW846 6010	80800
Chromium	05/05/2009	SW846 6010	10.6
Cobalt	05/05/2009	SW846 6010	3.53
Copper	05/05/2009	SW846 6010	13.7
Iron	05/05/2009	SW846 6010	12200
Lead	05/05/2009	SW846 6010	17.3
Magnesium	05/05/2009	SW846 6010	18700
Manganese	05/05/2009	SW846 6010	502
Mercury	04/30/2009	SW846 7471	0.0263
Nickel	05/05/2009	SW846 6010	7.35
Potassium	05/05/2009	SW846 6010	868
Selenium	05/05/2009	SW846 6010	<0.679
Silver	05/05/2009	SW846 6010	<1.36
Sodium	05/05/2009	SW846 6010	217
Thallium	05/05/2009	SW846 6010	<0.814
Vanadium	05/05/2009	SW846 6010	17.3
Zinc	05/05/2009	SW846 6010	112
		····	ELAP ID No :10058

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Lab Project No.:

09-1511

Client Job Site:

Clarkson ERP Site

Lab Sample No.:

5190

Client Job No.:

40503

Sample Type:

Water

Field Location:

CS-SS-EB Field Blank

Date Sampled: Date Received:

04/27/2009 04/28/2009

Field ID No.:

N/A

Laboratory Report for TAL Metals Analysis in Water

Parameter	Date Analyzed	Analytical Method	Result (mg/L)
Aluminum	05/07/2009	SW846 6010	<0.200
Antimony	05/07/2009	SW846 6010	<0.060
Arsenic	05/07/2009	SW846 6010	<0.005
Barium	05/07/2009	SW846 6010	<0.020
Beryllium	05/07/2009	SW846 6010	<0.005
Cadmium	05/07/2009	SW846 6010	<0.005
Calcium	05/07/2009	SW846 6010	0.503
Chromium	05/07/2009	SW846 6010	<0.010
Cobalt	05/07/2009	SW846 6010	<0.010
Copper	05/07/2009	SW846 6010	<0.010
Iron	05/07/2009	SW846 6010	<0.100
Lead	05/07/2009	SW846 6010	<0.005
Magnesium	05/07/2009	SW846 6010	<0.050
Manganese	05/07/2009	SW846 6010	<0.010
Mercury	04/30/2009	SW846 7470	<0.0002
Nickel	05/07/2009	SW846 6010	<0.040
Potassium	05/07/2009	SW846 6010	<0.500
Selenium	05/07/2009	SW846 6010	<0.005
Silver	05/07/2009	SW846 6010	<0.010
Sodium	05/07/2009	SW846 6010	<1.00
Thallium	05/07/2009	SW846 6010	<0.006
Vanadium	05/07/2009	SW846 6010	<0.010
Zinc	05/07/2009	SW846 6010	0.020

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

EPA SAMPLE NO. CS-SS-01

ab Code: AES	Case No.: PA0901 SAS No.:	SDG No.: CS-SS-01	·	
atrix (soil/wate	r): SOIL	Lab Sample ID:	090429019-	-001A
ample wt/vol:	10.0 (g/mL) g	Lab File ID:	A1315	
Moisture: 25	.5	Date Received:	4/29/09)
xtraction: (Type)	PFEX	Date Extracted:	4/30/200	9
oncentrated Extr	act Volume: 10000 (uL)	Dahai Baalamada		
njection Volume:		Date Analyzed: Dilution Factor:	4/30/09	'
•			1.0	
PC Cleanup: (Y/N)	N pH: 6.4	Sulfur Cleanup: (Y	/N) <u>N</u>	
		CONCENTRATION UNITS		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	ug/Kg	Q
319-84-6	alpha-BHC	(-3/	2.28	U
319-85-7	beta-BHC		2.28	U
319-86-8	delta-BHC		2.28	TI U
58-89-9	gamma-BHC (Lindane)		2.28	U
76-44-8	Heptachlor		2,28	U
309-00-2	Aldrin		2.28	U
1024-57-3	Heptachlor epoxide		2.28	U
959-98-8	Endosulfan I		2.28	ט
60-57-1	Dieldrin		4.83	U
72-55-9	4,4'-DDE		3.5	J
72-20-8	Endrin		4.83	n
33213-65-9	Endosulfan II		4.83	U
72-54-8	4,4'-DDD		4.83	U
1031-07-8	Endosulfan sulfate		4.83	Ū
50-29-3	4,4'-DDT		2.4	JΡ
72-43-5	Methoxychlor		22.8	U
53494-70-5	Endrin ketone		4.83	Ū
7421-93-4	Endrin aldehyde		4.83	Ū
5103-71-9	alpha-Chlordane		2.28	ט
5103-74-2	gamma-Chlordane		2.28	U
8001-35-2	Toxaphene		44.3	U

All target analytes should be "J" or "UJ"

EPA SAMPLE NO. CS-SS-04

ab Code: <u>AES</u> atrix (soil/water)	Case No.: PA0901 SAS No.:	SDG No.: CS-SS-01		
atríx (soil/water)			· · · · · · · · · · · · · · · · · · ·	
	: SOIL	Lab Sample ID:	090429019	-002A
ample wt/vol:	10.0 (g/mL) g	Lab File ID:	A1316	
Moisture: 20.3	3	Date Received:	4/29/0	9
xtraction: (Type)	PFEX	Date Extracted:	4/30/20	09
oncentrated Extrac	et Volume: 10000 (uL)	Date Analyzed:	4/30/0	9
njection Volume:	1.0 (uL)	Dilution Factor:	1.0	
PC Cleanup: (Y/N)	N pH: 7.27	Sulfur Cleanup: (Y	(/N) N	_
		• •		
	COMPOUND	CONCENTRATION UNITS	3:	
CAS NO.	00000 00000	(ug/L or ug/Kg)	ug/Kg	Q
319-84-6	alpha-BHC		2.13	Ü
319-85-7	beta-BHC		2.13	Ū
319-86-8	delta-BHC		2.13	U
58-89-9	gamma-BHC (Lindane)		2.13	U
76-44-8	Heptachlor		2.13	U
309-00-2	Aldrin		2,13	U
1024-57-3	Heptachlor epoxide		2.13	U
959-98-8	Endosulfan I		2.13	U
60-57-1	Dieldrin		4.52	U
72-55-9	4,4'-DDE		2.9	TE O
72-20-8	Endrin		4.52	Ü
33213-65-9	Endosulfan II		4.52	U
72-54-8	4,4'-DDD		4.52	
1031-07-8	Endosulfan sulfate			Ū
50-29-3	4,4'-DDT		4.52	U
72-43-5	Methoxychlor		2.6	JP
53494-70-5	Endrin ketone		21.3	<u>U</u>
7421-93-4	Endrin aldehyde		4.52	<u> </u>
5103-71-9	alpha-Chlordane		4.52	Ū
5103-74-2	gamma-Chlordane		2.13	Ū
8001-35-2	Toxaphene		2.13	<u>ט</u>

All target analytes should be "J" or "UJ"

EPA SAMPLE NO. CS-SS-04D

Lab Name: AES, I	nc. Contract:	Paradigm		
Lab Code: AES	Case No.: PA0901 SAS No.:	SDG No.: CS-SS-01		
Matrix (soil/water Sample wt/vol:): <u>SOIL</u> 10.0 (g/mL) g	Lab Sample ID:	090429019	-003A
% Moisture: 16.			A1317	
P	<u>3</u>	Date Received:	4/29/0	9
Extraction: (Type)	PFEX	Date Extracted:	4/30/20	09
Concentrated Extra	ct Volume: 10000 (uL)	Date Analyzed:	4/30/0	9
Injection Volume:	1.0 (uL)	Dilution Factor:	1.0	1
GPC Cleanup: (Y/N)	N pH: 7.87	Sulfur Cleanup: (Y	/n) n	
	COMPOUND	CONCENTRATION UNITS	3:	
CAS NO.		(ug/L or ug/Kg)	ug/Kg	Q
319-84-6	alpha-BHC		2.03	U
319-85-7	beta-BHC		2.03	U
319-86-8	delta-BHC		2.03	υ
58-89-9	gamma-BHC (Lindane)		2.03	Ū
76-44-8	Heptachlor		2.03	ט
309-00-2	Aldrin		2.03	U
1024-57-3	Heptachlor epoxide		2,03	U
959-98-8	Endosulfan I		2.03	U
60-57-1	Dieldrin		4.30	U
72-55-9	4,4'-DDE		2.2	JP
72-20-8	Endrin		4.30	U
33213-65-9	Endosulfan II		4.30	<u>ם</u>
72-54-8	4,4'-DDD		4.30	- U
1031-07-8	Endosulfan sulfate		4.30	
50-29-3	4,4'-DDT		3.6	U T
72-43-5	Methoxychlor		20.3	J
53494-70-5	Endrin ketone			<u>u</u>
7421-93-4	Endrin aldehyde		4.30	U
5103-71-9	alpha-Chlordane		4.30	Ū
5103-74-2	gamma-Chlordane		2.03	U
8001-35-2	Toxaphene		2.03	Ū
	1		39.4	ָ ט

All target analytes should be "J" or "UJ"

EPA SAMPLE NO. CS-SS-06

Lab Mame: AES, Inc. Contract: Paradigm	7 -1 1 1			
Matrix (soil/water): SOIL Soll Lab Sample ID: 090429019-004A	Lab Name: AES, Inc	c. Contr	eact: Paradigm	
Sample wt/vol: 10.0 (g/EL) g	Lab Code: AES	Case No.: PA0901 SAS No.:	SDG No.: CS-SS-	01
Sample wt/vol: 10.0 (g/EL) g		_		
# Moisture: 25.6 Date Received: 4/29/09 Extraction: (Type) PFEX Date Extracted: 4/30/2009 Extraction: (Type) PFEX Date Extracted: 4/30/09 Extraction: (Type) PFEX Date Extracted: 4/30/09 Extraction: (Type) Date Analyzed: 4/30/09 Extraction: (Type) Date Analyzed: 4/30/09 Dat	Matrix (soil/water)	: SOIL	Lab Sample ID:	090429019-004A
Extraction: (Type) PFEX	Sample wt/vol: 1	.0.0 (g/mL) g	Lab File ID:	A1318
Extraction: (Type) PFEX Date Extracted: 4/30/2009 Concentrated Extract Volume: 1.00 (uL) Date Analyzed: 1.0 (uL) Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: 7.33 Sulfur Cleanup: (Y/N) N PH: 7.33 CONCENTRATION UNITS: (ug/L or ug/Rg) ug/Rg Q S19-84-6 alpha-BHC 2.28 U 319-85-7 beta-BHC 2.28 U 319-86-8 delta-BHC 2.28 U 58-89-9 gamma-BHC (Lindane) 2.28 U 76-44-8 Reptachlor 2.28 U 309-00-2 Aldrin 2.28 U 1024-57-3 Heptachlor epoxide 2.28 U 959-98-8 Endosulfan I 2.28 U 60-57-1 Dieldrin 4.84 U 72-55-9 4,4'-DDE 9.5 72-20-8 Endrin 4.84 U 72-55-9 Endosulfan II 4.84 U 1031-07-8 Endosulfan sulfate 4.84 U 1031-07-8 Endosulfan sulfate 4.84 U 53213-65-9 Endosulfan sulfate 4.84 U 72-54-8 4,4'-DDD 4.84 U 53213-65-9 Endosulfan sulfate 4.84 U 53213-65-9 Endosulfan sulfate 4.84 U 72-54-8 4,4'-DDD 6.84 U 53494-70-5 Endrin ketone 4.84 U 53494-70-5 Endrin ketone 4.84 U 5319-74-2 gamma-Chlordane 2.28 U 5303-74-2 gamma-Chlordane 2.28 U	% Moisture: 25.6	<u>5</u>	Date Received:	4/29/09
Concentrated Extract Volume: 1.0 (uL) Date Analyzed: 4/30/09	Extraction: (Type)	PFEX	Date Extracted:	
Injection Volume: 1.0 (uI)	Concentrated Button of			4/30/2009
GPC Cleanup: (Y/N) N pH: 7.33 Sulfur Cleanup: (Y/N) N COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg Q 319-84-6 alpha-BHC 2.28 U 319-86-8 delta-BHC 2.28 U 58-89-9 gamma-BHC (Lindane) 2.28 U 58-89-9 gamma-BHC 2.28 U 309-00-2 Aldrin 2.28 U 1024-57-3 Heptachlor epoxide 2.28 U 959-98-8 Endosulfan I 2.28 U 72-55-9 4,4'-DDE 9.5 72-20-8 Endrin 4.84 U 3213-65-9 Endosulfan II 4.84 U 72-54-8 4,4'-DDD 4.84 U 1031-07-8 Endosulfan sulfate 4.84 U 1031-07-8 Endosulfan sulfate 50-29-3 4,4'-DDT 18 72-43-5 Methoxychlor 5103-74-2 gamma-Chlordane 2.28 U 500-71-9 alpha-Chlordane 2.28 U			Date Analyzed:	4/30/09
CAS NO. COMPOUND CONCENTRATION UNITS: 19-84-6 alpha-BHC 2.28 U		1.0 (uL)	Dilution Factor	1.0
CAS NO. Compound Compound Compound Cas No. Compound Cas No.	GPC Cleanup: (Y/N)	N pH: 7.33	Sulfur Cleanup:	(Y/N) N
CAS NO. Compound Compound Compound Cas No. Compound Cas No.				
Signature Sign	CAS NO	COMPOUND		TS:
319-85-7 beta-BHC 2.28 U 319-86-8 delta-BHC 2.28 U 58-89-9 gamma-BHC (Lindane) 2.28 U 76-44-8 Heptachlor 2.28 U 309-00-2 Aldrin 2.28 U 1024-57-3 Heptachlor epoxide 2.28 U 959-98-8 Endosulfan I 2.28 U 60-57-1 Dieldrin 4.84 U 72-55-9 4.4'-DDE 9.5 72-20-8 Endrin 4.84 U 33213-65-9 Endosulfan II 4.84 U 72-54-8 4.4'-DDD 4.84 U 1031-07-8 Endosulfan sulfate 4.84 U 50-29-3 4.4'-DDT 18 72-43-5 Methoxychlor 22.8 U 53494-70-5 Endrin ladehyde 4.84 U 5103-71-9 alpha-Chlordane 2.28 U 5103-74-2 gamma-Chlordane 2.28 U 5003-74-2 3003-74-2			(ug/L or ug/Kg)	ug/Kg Q
319-86-8 delta-BHC 2.28 U 58-89-9 gamma-BHC (Lindane) 2.28 U 76-44-8 Heptachlor 2.28 U 309-00-2 Aldrin 2.28 U 1024-57-3 Heptachlor epoxide 2.28 U 1024-57-1 Dieldrin 2.28 U 106-57-1 3213-65-9 Endosulfan II 2.28 U 107-55-9 4,4'-DDE 9.5 107-54-8 4,4'-DDD 4.84 U 1031-07-8 Endosulfan sulfate 4.84 U 1031-07-8 Endosulfan sulfate 4.84 U 1031-07-8 Endosulfan sulfate 4.84 U 1031-07-5 Endrin ketone 4.84 U 1031-07-5 Endrin aldehyde 4.84 U 1031-07-9 2.28 U 103-71-9 alpha-Chlordane 2.28 U 103-74-2 gamma-Chlordane 2.28 U 1031-35-2 Townborn 2.28 U 100-74-2 100-74				2.28 U
58-89-9 gamma-BHC (Lindane) 2.28 U 76-44-8 Heptachlor 2.28 U 309-00-2 Aldrin 2.28 U 1024-57-3 Heptachlor epoxide 2.28 U 959-98-8 Endosulfan I 2.28 U 60-57-1 Dieldrin 4.84 U 72-55-9 4,4'-DDE 9.5 72-20-8 Endrin 4.84 U 33213-65-9 Endosulfan II 4.84 U 72-54-8 4,4'-DDD 4.84 U 1031-07-8 Endosulfan sulfate 4.84 U 50-29-3 4,4'-DDT 18 72-43-5 Methoxychlor 22.8 U 53494-70-5 Endrin ketone 4.84 U 7421-93-4 Endrin aldehyde 4.84 U 5103-74-2 gamma-Chlordane 2.28 U 5103-74-2 gamma-Chlordane 2.28 U				2.28 U
76-44-8 Heptachlor 2.28 U 309-00-2 Aldrin 2.28 U 1024-57-3 Heptachlor epoxide 2.28 U 959-98-8 Endosulfan I 2.28 U 60-57-1 Dieldrin 4.84 U 72-55-9 4,4'-DDE 9.5 72-20-8 Endrin 4.84 U 33213-65-9 Endosulfan II 4.84 U 72-54-8 4,4'-DDD 4.84 U 1031-07-8 Endosulfan sulfate 4.84 U 50-29-3 4,4'-DDT 18 72-43-5 Methoxychlor 22.8 U 53494-70-5 Endrin ketone 4.84 U 7421-93-4 Endrin aldehyde 4.84 U 5103-71-9 alpha-Chlordane 2.28 U 5103-74-2 gamma-Chlordane 2.28 U 5103-74-2 gamma-Chlordane 2.28 U				2.28 U
309-00-2 Aldrin 2.28 U				2.28 U
1024-57-3 Heptachlor epoxide 2.28 U 959-98-8 Endosulfan I 2.28 U 60-57-1 Dieldrin 4.84 U 72-55-9 4,4'-DDE 9.5 72-20-8 Endrin 4.84 U 33213-65-9 Endosulfan II 4.84 U 72-54-8 4,4'-DDD 4.84 U 1031-07-8 Endosulfan sulfate 4.84 U 50-29-3 4,4'-DDT 18 72-43-5 Methoxychlor 22.8 U 53494-70-5 Endrin ketone 4.84 U 5103-71-9 alpha-Chlordane 2.28 U 5103-74-2 gamma-Chlordane 2.28 U 5103-74-2				2.28 U
959-98-8 Endosulfan I 2.28 U 60-57-1 Dieldrin 4.84 U 72-55-9 4,4'-DDE 9.5 72-20-8 Endrin 4.84 U 33213-65-9 Endosulfan II 4.84 U 72-54-8 4,4'-DDD 4.84 U 1031-07-8 Endosulfan sulfate 4.84 U 50-29-3 4,4'-DDT 18 72-43-5 Methoxychlor 22.8 U 53494-70-5 Endrin ketone 4.84 U 5103-71-9 alpha-Chlordane 2.28 U 5103-74-2 gamma-Chlordane 2.28 U 8001-35-2 Toxaphone				2.28 U
10-57-1 Dieldrin				2.28 U
72-55-9 4,4'-DDE 9.5 72-20-8 Endrin 4.84 U 33213-65-9 Endosulfan II 4.84 U 72-54-8 4,4'-DDD 4.84 U 1031-07-8 Endosulfan sulfate 4.84 U 50-29-3 4,4'-DDT 18 U 72-43-5 Methoxychlor 22.8 U 53494-70-5 Endrin ketone 4.84 U 7421-93-4 Endrin aldehyde 4.84 U 5103-71-9 alpha-Chlordane 2.28 U 5103-74-2 gamma-Chlordane 2.28 U 8001-35-2 Townshore 2.28 U				2.28 U
72-20-8 Endrin 4.84 U 33213-65-9 Endosulfan II 4.84 U 72-54-8 4,4'-DDD 4.84 U 1031-07-8 Endosulfan sulfate 4.84 U 50-29-3 4,4'-DDT 18 72-43-5 Methoxychlor 22.8 U 53494-70-5 Endrin ketone 4.84 U 7421-93-4 Endrin aldehyde 4.84 U 5103-71-9 alpha-Chlordane 2.28 U 5103-74-2 gamma-Chlordane 2.28 U 8001-35-2 Townshere				4.84 U
33213-65-9 Endosulfan II 4.84 U		4,4'-DDE		9.5
33213-65-9 Endosulfan II 4.84 U 72-54-8 4,4'-DDD 4.84 U 1031-07-8 Endosulfan sulfate 4.84 U 50-29-3 4,4'-DDT 18 72-43-5 Methoxychlor 22.8 U 53494-70-5 Endrin ketone 4.84 U 7421-93-4 Endrin aldehyde 4.84 U 5103-71-9 alpha-Chlordane 2.28 U 5103-74-2 gamma-Chlordane 2.28 U 8001-35-2 Toxyphone	72-20-8	Endrin		4.84 11
72-54-8 4,4'-DDD 4.84 U 1031-07-8 Endosulfan sulfate 4.84 U 50-29-3 4,4'-DDT 18 72-43-5 Methoxychlor 22.8 U 53494-70-5 Endrin ketone 4.84 U 7421-93-4 Endrin aldehyde 4.84 U 5103-71-9 alpha-Chlordane 2.28 U 8001-35-2 Towarhene 2.28 U	33213-65-9	Endosulfan II		
1031-07-8 Endosulfan sulfate 4.84 U 50-29-3 4,4'-DDT 18 72-43-5 Methoxychlor 22.8 U 53494-70-5 Endrin ketone 4.84 U 7421-93-4 Endrin aldehyde 4.84 U 5103-71-9 alpha-Chlordane 2.28 U 5103-74-2 gamma-Chlordane 2.28 U 8001-35-2 Towarhere 2.28 U	72-54-8	4,4'-DDD		
50-29-3 4,4'-DDT 18 72-43-5 Methoxychlor 22.8 U 53494-70-5 Endrin ketone 4.84 U 7421-93-4 Endrin aldehyde 4.84 U 5103-71-9 alpha-Chlordane 2.28 U 5103-74-2 gamma-Chlordane 2.28 U 8001-35-2 Towarhore	1031-07-8	Endosulfan sulfate		
72-43-5 Methoxychlor 22.8 U 53494-70-5 Endrin ketone 4.84 U 7421-93-4 Endrin aldehyde 4.84 U 5103-71-9 alpha-Chlordane 2.28 U 5103-74-2 gamma-Chlordane 2.28 U 8001-35-2 Towarhere 2.28 U	50-29-3	4,4'-DDT		
53494-70-5 Endrin ketone 4.84 U 7421-93-4 Endrin aldehyde 4.84 U 5103-71-9 alpha-Chlordane 2.28 U 5103-74-2 gamma-Chlordane 2.28 U 8001-35-2 Townberg	72-43-5	Methoxychlor		
7421-93-4 Endrin aldehyde 4.84 U 5103-71-9 alpha-Chlordane 2.28 U 5103-74-2 gamma-Chlordane 2.28 U 8001-35-2 Townbore	53494-70-5	Endrin ketone		
5103-71-9 alpha-Chlordane 2.28 U 5103-74-2 gamma-Chlordane 2.28 U 8001-35-2 Toyanhore 2.28 U				
5103-74-2 gamma-Chlordane 2.28 U				
8001-35-2 Toyanhana				
		Toxaphene		2.28 U

All target analytes should be "J" or "UJ"

EPA SAMPLE NO. CS-SD-02

Lab Name: AES, Inc.	Contract:	Paradigm		
Lab Code: AES Cas	se No.: PA0901 SAS No.:	SDG No.: CS-SS-01		
Matrix (soil/water):	SOIL	Lab Sample ID:	090429019-00)5A
Sample wt/vol: 10.0	0 (g/mL) g	Lab File ID:	A1319	
% Moisture: 39.5		Date Received:	4/29/09	
Extraction: (Type) PF	EX	Date Extracted:	4/30/2009	•
			4/30/2003	-
Concentrated Extract Vo		Date Analyzed:	4/30/09	_
Injection Volume:	1.0 (uL)	Dilution Factor:	1.0	
GPC Cleanup: (Y/N) N	pH: 7.79	Sulfur Cleanup: (Y	/N) N	
				- 15
CON	MPOUND	CONCENTRATION UNITS	:	
CAS NO.		(ug/L or ug/Kg)	ug/Kg	Q
319-84-6 alg	pha-BHC		2.81	U
319-85-7 bet	ta-BHC		2.81	U
319-86-8 del	lta-BHC		2.81	U
58-89-9 gar	mma-BHC (Lindane)		2.81	U
76-44-8 Her	ptachlor		2.81	U
309-00-2 Alc	drin		2.81	U U
1024-57-3 Her	ptachlor epoxide		2.81	U
959-98-8 End	dosulfan I		2.81	U
60-57-1 Die	eldrin		5.95 t	U I
72-55-9 4,4	4'-DDE		5.95 t	U
72-20-8 End	drin	***************************************	5.95	,
33213-65-9 End	dosulfan II		5.95	U I
72-54-8 4,4	4'-DDD		5.95 t	U
1031-07-8 End	dosulfan sulfate		5.95	,
50-29-3 4,4	4'-DDT			<u>-</u>
72-43-5 Met	thoxychlor			<u> </u>
53494-70-5 End	drin ketone			
7421-93-4 End	drin aldehyde			<u>, </u>
	pha-Chlordane			
5103-74-2 gar	mma-Chlordane			, –
8001-35-2 Tox	xaphene			, ,

All target analytes should be "J" or "UJ"

FORM I PEST

:00003

EPA SAMPLE NO. CS-SS-EB

Lab Name: AES,	Inc. Contrac	ct: Paradigm	
Lab Code: AES	Case No.: PA0901 SAS No.:	SDG No.: CS-SS-01	
Matrix (soil/wate:		Lab Sample ID:	090429019-006A
-	960.0 (g/mL) mL	Lab File ID:	A1324
% Moisture:		Date Received:	4/29/09
Extraction: (Type)	SPE	Date Extracted:	4/30/2009
Concentrated Extra	act Volume: 10000 (uL)	Date Analyzed:	4/30/09
Injection Volume:	1.0 (uL)	Dilution Factor:	1.0
GPC Cleanup: (Y/N)	И рн:	Sulfur Cleanup: (Y/	
***	COMPOUND	CONCENTRATION UNITS:	
CAS NO.		(ug/L or ug/Kg)	ug/L Q
319-84-6	alpha-BHC		0.052 U
319-85-7	beta-BHC		0.052 U
319-86-8	delta-BHC		0.052 U
58-89-9	gamma-BHC (Lindane)		0.052 U
76-44-8	Heptachlor		0.052 U
309-00-2	Aldrin		0.052 U
1024-57-3	Heptachlor epoxide		0.052 U
959-98-8	Endosulfan I		0.052 U
60-57-1	Dieldrin		0.104 U
72-55-9	4,4'-DDE		0.104 U
72-20-8	Endrin		0.104 U
33213-65-9	Endosulfan II		0.104 U
72-54-8	4,4'-DDD		0.104 U
1031-07-8	Endosulfan sulfate		0.104 U
50-29-3	4,4'-DDT		
72-43-5	Methoxychlor		
53494-70-5	Endrin ketone		
7421-93-4	Endrin aldehyde		
5103-71-9	alpha-Chlordane		0.104 U
5103-74-2	gamma-Chlordane		0.052 U
8001-35-2	Toxaphene		0.052 U
	<u> </u>		1 11/1 17

All target analytes should be "J" or "UJ"

1.04

U

EPA SAMPLE NO.
PBLK01

Lab Name: AES, I	nc. Contra	act: Paradigm	
Lab Code: AES	Case No.: PA0901 SAS No.:	SDG No.: CS-SS-01	
Matrix (soil/water		Lab Sample ID:	MB-20884
_	10.0 (g/mL) g	Lab File ID:	A1313
Moisture:		Date Received:	
Extraction: (Type)	PFEX	Date Extracted:	4/30/2009
Concentrated Extra	ct Volume: 10000 (uL)	Date Analyzed:	4/30/09
Injection Volume:	1.0 (uL)	Dilution Factor:	
GPC Cleanup: (Y/N)	N pH:		1.0
		Sulfur Cleanup: (Y/	N) <u>N</u>
	COMPOUND	CONCENTRATION UNITS:	
CAS NO.	COMPOUND		ug/Kg Q
319-84-6	alpha-BHC		1.70 U
319-85-7	beta-BHC		
319-86-8	delta-BHC		
58-89-9	gamma-BHC (Lindane)		1.70 U
76-44-8	Heptachlor		1.70 U
309-00-2	Aldrin		1.70 U
1024-57-3	Heptachlor epoxide		1.70 U
959-98-8	Endosulfan I		1.70 U
60-57-1	Dieldrin		1.70 ປ
72-55-9	4,4'-DDE		3.60 U
72-20-8	Endrin		3.60 U
33213-65-9	Endosulfan II		3.60 U
72-54-8	4,4'-DDD		3.60 U
1031-07-8	Endosulfan sulfate		3.60 U
50-29-3	4,4'-DDT		3.60 U
72-43-5	Methoxychlor		3.60 U
53494-70-5	Endrin ketone		17.0 U
7421-93-4			3.60 U
5103-71-9	Endrin aldehyde		3.60 U
5103-71-9	alpha-Chlordane		1.70 U
8001-35-2	gamma-Chlordane		1.70 U
0001-35-2	Toxaphene		33.0 U

PBLK02

Lab Name: AES, I	nc. Contra	act: Paradigm		
Lab Code: AES	Case No.: PA0901 SAS No.:	SDG No.: CS-SS-01	L	
Matrix (soil/water		Lab Sample ID:	MB-20895	
Sample wt/vol: 1	000.0 (g/mL) mL	Lab File ID:	A1323	
% Moisture:		Date Received:		
Extraction: (Type)	SPE			
		Date Extracted:	4/30/2009	
Concentrated Extra	ct Volume: 10000 (uL)	Date Analyzed:	4/30/09	
Injection Volume:	1.0 (uL)	Dilution Factor:	1.0	
GPC Cleanup: (Y/N)	N pH:	Sulfur Cleanup: (Y		
	COMPOUND	CONCENTRATION UNITS	3:	
CAS NO.		(ug/L or ug/Kg)	ug/L Q	
319-84-6	alpha-BHC		0.050 U	
319-85-7	beta-BHC		0.050 U	
319-86-8	delta-BHC		0.050 U	
58-89-9	gamma-BHC (Lindane)		0.050 U	Ĉ.
76-44-8	Heptachlor			
309-00-2	Aldrin			
1024-57-3	Heptachlor epoxide		0.050 U	i i
959-98-8	Endosulfan I		0.050 U	
60-57-1	Dieldrin		0.050 U	
72-55-9	4,4'-DDE		0.100 U	
72-20-8	Endrin		0.100 U	
33213-65-9	Endosulfan II		0.100 U	
72-54-8	4,4'-DDD		0.100 U	
1031-07-8	Endosulfan sulfate		0.100 υ	
50-29-3	4,4'-DDT		0.100 U	
72-43-5	Methoxychlor		0.100 U	
53494-70-5	Endrin ketone		0.500 ປ	
7421-93-4	Endrin aldehyde		0.100 U	
5103-71-9	alpha-Chlordane		0.100 U	
5103-74-2	gamma-Chlordane		0.050 U	
8001-35-2	Toxaphene		0.050 U	
	TOVEDHEUG		1.00 U	

EPA SAMPLE NO.

CS-SS-01MS

Lab Name: AES, Inc.	Contract: Paradigm	
Lab Code: AES Case No.: PA0901 SAS No	SDG No.: CS-SS-01	
Matrix (soil/water): SOIL	Lab Sample ID:	090429019-001AMS
Sample wt/vol: 10.0 (g/mL) g	Lab File ID:	A1320
% Moisture: 25.5	Date Received:	4/29/09
Extraction: (Type) PFEX	Date Extracted:	4/30/2009
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	4/30/09
Injection Volume: 1.0 (uL)	Dilution Factor:	1.0
GPC Cleanup: (Y/N) N pH: 6.4	Sulfur Cleanup: (Y/N	n <u>n</u>

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or	ug/Kg) ug/Kg	Q
319-84-6	alpha-BHC	2.28	U
319-85-7	beta-BHC	2.28	U
319-86-8	delta-BHC	2.28	U
58-89-9	gamma-BHC (Lindane)	57	
76-44-8	Heptachlor	52	
309-00-2	Aldrin	60	
1024-57-3	Heptachlor epoxide	2.28	U
959-98-8	Endosulfan I	2.28	U
60-57-1	Dieldrin	110	
72-55-9	4,4'-DDE	4.0	J
72-20-8	Endrin	120	
33213-65-9	Endosulfan II	4.83	U
72-54-8	4,4'-DDD	4.83	tī
1031-07-8	Endosulfan sulfate	4.83	U
50-29-3	4,4'-DDT	100	
72-43-5	Methoxychlor	22.8	U
53494-70-5	Endrin ketone	4.83	U
7421-93-4	Endrin aldehyde	4.83	TI TI
5103-71-9	alpha-Chlordane	2.28	U
5103-74-2	gamma-Chlordane	2.28	U
8001-35-2	Toxaphene	44.3	บ

EPA SAMPLE NO. CS-SS-01MSD

Lab Name: AES,]	Inc. Contract	: Paradigm		
ab Code: AES	Case No.: PA0901 SAS No.:	SDG No.: CS-SS-01		
Matrix (soil/water		Lab Sample ID:	090429019-001A	MSD
Sample wt/vol: 10.0 (g/mL) g		Lab File ID:	A1321	
Moisture: 25.5		Date Received:	4/29/09	
xtraction: (Type)	PFEX	Date Extracted:	4/30/2009	
oncentrated Extra	oct Volume.		47 307 2009	
njection Volume:		Date Analyzed:	4/30/09	
		Dilution Factor:	1.0	
SPC Cleanup: (Y/N)	N pH: 6.4	Sulfur Cleanup: ()	(/N) N	
			 	
CAS NO.	COMPOUND	CONCENTRATION UNIT	3:	
319-84-6		(ug/L or ug/Kg)	ug/Kg Q	
319-85-7	alpha-BHC		2.28 U	
319-86-8	beta-BHC		2.28 U	7
58-89-9	delta-BHC		2.28 U	7
76-44-8	gamma-BHC (Lindane)		67	
309-00-2	Heptachlor		61	7
	Aldrin		73	7
1024-57-3	Heptachlor epoxide	,	2.28 ប	7
959-98-8	Endosulfan I		2.28 U	7
60-57-1	Dieldrin		120	7
72-55-9	4,4'-DDE		4.3 ј	7
72-20-8	Endrin		130	7
33213-65-9	Endosulfan II		4.83 U	1
72-54-8	4,4'-DDD		4.83 U	1
1031-07-8	Endosulfan sulfate		4.83 U	1
50-29-3	4,4'-DDT		130	7
72-43-5	Methoxychlor		22.8 U	1
53494-70-5	Endrin ketone		4.83 U	1
7421-93-4	Endrin aldehyde		4.83 U	1
5103-71-9	alpha-Chlordane		2.28 U	-
5103-74-2	gamma-Chlordane		2.28 U	-
8001-35-2	Toxaphene		44.3 U	-

EPA SAMPLE NO. PMSB01

Lab Code: AES		: Paradigm		
ALS ALS	Case No.: PA0901 SAS No.:	SDG No.: CS-SS-01		
Matrix (soil/wate	r): SOIL	Lab Sample ID:	LCS-20884	
Sample wt/vol:	10.0 (g/mL) g	Lab File ID:	A1322	
% Moisture:		Date Received:		
Extraction: (Type)	PFEX	Date Extracted:	4 /20 /00	
		pace Extracted:	4/30/20	9
Concentrated Extra	act Volume: 10000 (uL)	Date Analyzed:	4/30/0	9
Injection Volume:	1.0 (uL)	Dilution Factor:	1.0	
GPC Cleanup: (Y/N)	N pH:	Sulfur Cleanup: (Y	/N) N	
			···	_
*	COMPOUND	CONCENTRATION UNITS	:	
CAS NO.		(ug/L or ug/Kg)	ug/Kg	Q
319-84-6	alpha-BHC		1.70	U
319-85-7	beta-BHC		1.70	U
319-86-8	delta-BHC		1.70	U
58-89-9	gamma-BHC (Lindane)		42	
76-44-8	Heptachlor		41	
309-00-2	Aldrin		50	
1024-57-3	Heptachlor epoxide		1.70	U
959-98-8	Endosulfan I		1.70	U
60-57-1	Dieldrin		90	
72-55-9	4,4'-DDE		3,60	U
72-20-8	Endrin		96	
33213-65-9	Endosulfan II		3.60	U
72-54-8	4,4'-DDD		3.60	Ū
1031-07-8	Endosulfan sulfate		3.60	ט
50-29-3	4,4'-DDT		87	
72-43-5	Methoxychlor		17.0	U
53494-70-5	Endrin ketone		3.60	<u> </u>
7421-93-4	Endrin aldehyde		3.60	ש
5103-71-9	alpha-Chlordane		1.70	<u>ט</u>
5103-74-2	gamma-Chlordane		1.70	U
8001-35-2	Toxaphene		33.0	

CHAIN OF CUSTODY

1062

	Date/Time	Received @ Lab By	` {		Comments: 7
	4/0	Clifabeth a. Honch	Tamp Y X N	Temperature:	
	Date/Time P.I.F.	Received By	 	Holding Time:	Comments:
	Date/Jime	Rejinquished by	 	Preservation:	Comments:
		Sampled By	z	Consumor Theor	Comments:
above	WIND PAINS	Sound of the state	NEEDO COmpilation	Container Type:	
for all	-	•	NEI AC Compliance	Receipt Parameter NEI AC Co	Beceir
4/18			VVG/EVG/CVG/ LVG/	Der NEI AC/EI AD 310	Sample Condition:
HGE SOH			EZE*	ONLY BELOW THIS	**LAB USE OI
5001886		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CS-SS-06	18:50 1X	10
5 / 8 X 5		× × ×	CS-SS-05	12:40 X	9 12
5184	Seals intact EAH 4/28	3 X X X X X	CS-SS-04D	2:15	8
51843	1-2	x x x	CS-SS-D4	12:15 X	7 12
51842		₩ ₩ ₩ ₩ ₩	Cs-SS-03	12:05 X	6
5 1 8 3 1		3 × × ×	(S-SS-02	11:50 ×	5
5 1 8 × MSD		\(X\times X\times	C8-SS-01-MSD	X 54:11	4
5 1 8 0 MS		× × ×	CS-SS-01-MS	1. 1. 5	3
5 1 8 0		Sā1 3 XXXXXX	US-58-DI	11:30 X	2
5179	waste characterization	* · · · · · · · · · · · · · · · · · · ·	CS-WC-1	10:25 X	14/27/09 10
Ce SAMPLE NUMBER	PARADIGM LAB FOCIL SAMPLES (SS-01 -> SCEB) excession LAB POET J. DOLOGOS PER G. Andrus 4/28 EAH 4/28	8260 TCL 8270 TCL 7AL Me PCBs Pesticion Sturene	SAMPLE LOCATION/FIELD ID	TIME O	DATE
Inhouse data: 10 day TAT ASP Package: 15 day TAT EDIT 4/128	Add Voa, ASP Package	VOCX SVOCX HOUS		⊽ ≅ ○ ∩	
	Pe	9 REQUESTED	10# 088410 X H		
X5 45042409/A	QUOTE#: ALO te M	on and solitors had so	ENTS: ANDVUS	RPSIE COMM	Clarkson ERP Site
STD]	PHONE:	377-1	PHON	FAX: (585) 647-3311
(ING DAYS)	STAPE: ZIP: TURNAROUND TIME: (WORKING DAYS)	ADDRESS:	CITY: DOINT OIL OIL STATE IN		179 Lake Avenue Rochester, NY 14608 (585) 647-2530 • (800) 724-1997
CLIENT PROJECT #:	<u></u>	COMPANY:	Lu Engineers	•	SERVICES, INC
0.00		INVOICE IO.	HEPOHI IO:		

NS AS

CHAIN OF CUSTODY

2 of 2

SERVICES, INC. TO JULIAN ANNUAL PROPERSITY MACRAMINE PROCESSION IN JULIAN ANNUAL PROPERSITY MACRAMINE PROCESSION (1930) 724-1997 FAX: (585) 647-3531 (1900) 7	4/28
ADDRESS: ADDRESCATOR ADDRESS: ADDRESCATOR ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRES	
ADDRESS: 2330 Penfield Rd. ADDRESS: 3230 Penfield Rd. OTT: Penfield, NY 145266 PHONE: 377-1450 3777-1266 PHONE: 20 ATTN: CYULL AMOUNTS ON B B B COMMENTS: ON B B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON B COMMENTS: ON COM	.**
ADDRESS: 2330 Penfield Rd. OTT: Penfield, NY 145266 ATTIN: 277.1450 PANCHUS COMMENTS: ON A SAMPLE LOCATION FIELD ID A LOC SO SO EB FIELD BLANCH NA NA COC FOR VOC analysis CAS PERSONAL AND NA A LOC SO Andrus 4/28. All info Pelovation 1728 Andrus 1/28. All info Pelovation 1728 Andru	
ADDRESS: 2330 Panfield Rd. OTTY: Panfield, NY 14526 ZIF: OTTY: PHONE: 377-1450 F377-1266 ATTY: COMMENTS: DSWHID XAST OTT BOLIVER ON MAN G B B SAMPLE LOCATION/FIELD ID B COMMENTS: DSWHID S A SAMPLE LOCATION/FIELD ID B COMMENTS: DSWHID S A SAMPLE LOCATION/FIELD ID B COMMENTS: DSWHID S A SAMPLE LOCATION/FIELD ID B COMMENTS: DSWHID S A SAMPLE LOCATION/FIELD ID B COMMENTS: DSWHID S COMMENTS S COMMENTS S COMMENTS S COMMENTS S COMMENTS S COMMENTS S COMMENTS S COMMENTS S COMMENTS S COMMENTS S COMMENTS S COMMENTS S COMENTS S COMMENTS S COMENTS S COMENTS S COMENTS S COMENTS S COMENTS	
ADDRESS: 2330 PENFIELD ID ADDRESS: 2330 PENFIELD Rd. CITY: PENFELD, NY 145226 PHONE: 377-1450 ATTH: JAVEL AMOUNTS COMMISSITE: ONE THOSE COMMISSITES COMMISSITE: ONE THOSE COMMISSITES R AND RESS. ATTH: JAVEL AMOUNTS COMMISSITE: ONE THOSE PENFIELD ID ATTH: JAVEL AMOUNTS COMMISSITE: ONE THOSE PENFIELD ID ATTH: JAVEL AMOUNTS COMMISSITE: ONE THOSE PENFIELD ID ATTH: JAVEL AMOUNTS COMMISSITE: ONE JAVEL ON J	
COMMENTS: 2330 PENFIELD ID ADDRESS: 2330 PENFIELD ID ANDRESS: 2330 PENFIELD ID ATTIN: CAPPED SAMPLE LOCATION/FIELD ID ATTIN: CAPPED SAMPLE LOCATION/FIELD ID A CS-SS-EB FIELD BLANK W COMMENTS COMMEN	
ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: COMMENTS: COMENTS: COMMENTS: COM	
ADDRESS: 2230 Panfield Rd. ADDRESS: 2230 Panfield Rd. OTTY: Panfield, NY 144526 ZIP: OTTY: PHONE: 377-1450 377-1266 PHONE: SAMPLE LOCATION/FIELD ID ATTN: CAVEL AMOUNTS COMMENTS: ON A SAMPLE LOCATION/FIELD ID A N N N N N N N N N N N N N N N N N N	
COMMENTS: 2230 Partiald Rd. ADDRESS: ADDRESS: 2230 Partiald Rd. ADDRESS: ADDRESS: 2230 Partiald Rd. ADDRESS: APPROXIMENTS: 377-1266 PHONE: 20 ATTN: PHONE: 377-1450 377-1266 PHONE: 20 ATTN: PHONE: 377-1450 377-1266 PHONE: 20 ATTN: POTE DRAWLING AND ART B CONTINUE COMMENTS: 4 DRAWLING ATTN: PARTIAL ANDRESS: PARTIAL ANDRESS: PARTIAL ANDRESS: PARTIAL ANDRESS: PARTIAL ANDRESS: PARTIAL ANDRESS: PARTIAL ANDRESS: PARTIAL ANDRESS: PARTIAL ANDRESS: PARTIAL ANDRESS: PHONE: 377-1266 PARTIAL ANDRESS: PARTIAL ANDRESS: PHONE: 377-1266 PARTIAL ANDRESS: PARTIAL ANDRESS: PARTIAL ANDRESS: PHONE: 377-1266 PARTIAL ANDRESS: PHONE: 377-1266 PARTIAL ANDRESS: PHONE: 377-1266 PARTIAL ANDRESS: PHONE: 377-1266 PARTIAL ANDRESS: PHONE: 377-1266 PARTIAL ANDRESS: PHONE: 377-1266 PARTIAL ANDRESS: PHONE: 377-1266 PHONE: 377-1266 PHONE: 377-1266 PARTIAL ANDRESS: PHONE: 377-1266 PHONE: 37	
ADDRESS: 2230 Panfield Rd. ADDRESS: 2230 Panfield Rd. CITY: Panfield, NY 145266 PHONE: 377.1450 FAX: 77-1266 ATTN: CLYPR AMOVUS COMMINISTS: D88410 AFST. Oat & Cliv: PHONE: 20 ATTN: PHONE: 20 ATTN:	
ADDRESS: 2330 Penfield Rd. ADDRESS: 2330 Penfield Rd. OITY: Penfield, NY 14536 ZIP: OITY: PHONE: 377-1450 377-1266 PHONE: SAMPLE LOCATION/FIELD ID ATTN: CAVEL AMOUNTS COMMENTS: OMMENTS: OMN G ATTN: CAVEL AMOUNTS COMMENTS: ON A UT MA UT MA UT MA A	
ADDRESS: 2230 Panfield Rd. ADDRESS: 2330 Panfield Rd. CITY: Panfield, NY 14526 ZIP: CITY: Panfield, NY 14526 ZIP: CITY: WHONE: 377-1450 377-1266 PHONE: ZON ATTN: CAVEL ANCLYUS COMMENTS: PORT D88410 AAST. Oct B CONVERS COMMENTS: PHONE: 377-1266 PHONE: ZON ATTN: CAVEL ANCLYUS COMMENTS: PHONE: 377-1266 PHONE: ZON ATTN: ZON ATTN: CAVEL ATTN: ABE CONTINUES COMMENTS: PHONE: ZON ATTN: ZON ATTN: ATTN: ZON ATTN: ATTN: ZON ATTN:	
ADDRESS: 2230 Penfield Rd. OITT: Penfield, NY 14526 ZIP: CITY: PHONE: 377-1450 FAX: COMMENTS: COMMENTS: COMMENTS: OR R SAMPLE LOCATION/FIELD ID R SAMPLE	
ADDRESS: 2230 Partield Rd. OTT: Pantield, NY 14526 ZIP: OTT: PHONE: 377-1450 FAX: 77-1266 PHONE: COMMENTS: COMMENTS: OF A SAMPLE LOCATION/FIELD ID B SAMPLE LOCATION/FIELD ID A N N N N N N N N N N N N N N N N N N	
ADDRESS: 2230 PENFIELD Rd. OITT: Penfield, NY 14526 ZIP: OITT: PHONE: 377-1450 FAX: 77-1266 PHONE: SOME OCCUMMENTS: DESCRIPTION APPROXISTICS REQUES COMMENTS: DESCRIPTION APPROXISTICS REQUES OCCUMMENTS: DESCRIPTION APPROXISTICS REQUES OCCUMMENTS: DESCRIPTION APPROXISTICS REQUES OCCUMMENTS: DESCRIPTION APPROXISTICS REQUES OCCUMMENTS: DESCRIPTION APPROXISTICS REQUES OCCUMPANY: LANGUAGE OFFICIAL PROPERTY: DESCRIPTION APPROXISTICS REQUES OCCUMPANY: LANGUAGE OFFICIAL PROPERTY: DESCRIPTION APPROXISTICS REQUES OCCUMPANY: LANGUAGE OUTV. OUTV. OUTV. PHONE: 377-1266 OUTV. OUTV	1031.000
ADDRESS: 2230 Penfield Rd. OITT: Penfield, NY 14526 ZIP: OITT: PHONE: 377-1450 FAX: 77-1266 PHONE: SOME COMMENTS: DESCRIPTION TO # 088410 AASP. Out & Question REQUES	
ADDRESS: 2230 Perfield Rd. CITY: Penfield, NY 14526 ZIP: CITY: PHONE: 377-1450 377-1266 PHONE: 2011	S SIANALY S
ADDRESS: 2230 Penfield Rd. OITY: Penfield, NY 14526 PHONE: 377-1450 FAX: 77-1266	
ADDRESS: 2230 Penfield Rd.	FAX:
ADDRESS: UK EMPLYSEUS	STATE

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson

Lab Project Number: 09-2377

Lab Sample Number: 7644

Client Job Number:

40503

Field Location: Field ID Number:

Sample Type:

CS-SD-04 N/A Soil

Date Sampled: Date Received: 07/02/2009 07/06/2009

Date Analyzed:

07/09/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 4.98 🗻
Bromomethane	ND< 4.98 🛰 🎽
Bromoform	ND< 12.5 45
Carbon Tetrachloride	ND< 12.5
Chloroethane	ND< 4.98
Chloromethane	ND< 4.98
2-Chloroethyl vinyl Ether	ND< 24.9
Chloroform	ND< 4.98
Dibromochloromethane	ND< 4.98
1,1-Dichloroethane	ND< 4.98
1,2-Dichloroethane	ND< 4.98
1,1-Dichloroethene	ND< 4.98
cis-1,2-Dichloroethene	ND< 4.98
trans-1,2-Dichloroethene	ND< 4.98
1,2-Dichloropropane	ND< 4.98
cis-1,3-Dichloropropene	ND< 4.98 4.7
trans-1,3-Dichloropropene	ND< 4.98 W. 3
Methylene chloride	ND< 12.5 LLT
1,1,2,2-Tetrachloroethane	ND< 4.98 45
Tetrachloroethene	ND< 4.98 🛂
1,1,1-Trichloroethane	ND< 4.98
1,1,2-Trichloroethane	ND< 4.98
Trichloroethene	ND< 4.98
Trichlorofluoromethane	ND< 4.98
Vinyl chloride	ND< 4.98

Aromatics	Results in ug / Kg
Benzene	ND< 4.98 🜙 🍑
Chlorobenzene	ND< 4.98 🛂 🛣
Ethylbenzene	ND< 4.98 🕶
Toluene	ND< 4.98 1,37
m,p-Xylene	ND< 4.98 ⊇, @å
o-Xylene	J 2.72
Styrene	ND< 12.5 💆
1,2-Dichlorobenzene	ND< 12.5
1,3-Dichlorobenzene	ND< 12.5
1,4-Dichlorobenzene	ND< 4.98

Ketones	Results in ug / Kg
Acetone	ND< 24.9 45
2-Butanone	ND< 24.9
2-Hexanone	ND< 12.5 🛰
4-Methyl-2-pentanone	ND< 12.5 🔽

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 4.98
Vinyl acetate	ND< 12.5
• 	
ı.	
1	

ELAP Number 10958

Method: EPA 8260B

Data File: V67013.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

092377V2.XLS

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson

Lab Project Number: 09-2377

Lab Sample Number: 7644

40503 Client Job Number:

Date Sampled:

07/02/2009

Field Location: Field ID Number: CS-SD-04 N/A

Date Received:

07/06/2009

Sample Type:

Soil

Date Analyzed:

07/09/2009

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 24.9	1,2,4-Trimethylbenzene	J 2.48
sec-Butylbenzene	ND< 4.98	1,3,5-Trimethylbenzene	ND< 4.98
tert-Butylbenzene	ND< 12.5		
n-Propylbenzene	ND< 4.98	Miscellaneous	200
Isopropylbenzene	ND< 24.9	Methyl tert-butyl Ether	ND< 4.98
p-Isopropyltoluene	ND< 24.9	-	
Naphthalene	ND< 12.5 45		

ELAP Number 10958

Method: EPA 8260B

Data File: V67013.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 092377V2.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson

Lab Project Number: 09-2377

Lab Sample Number: 7644

Client Job Number: 40503

CS-SD-04

Date Sampled:

07/02/2009

Field Location: Field ID Number:

N/A

Date Received:

07/06/2009

Sample Type:

Soil

Date Analyzed:

07/09/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 4.98	N/A
<u> </u>				
ELAP Number 10958	Method:	EPA 8260B		Data File: V67013.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson

Lab Project Number: 09-2377

Lab Sample Number: 7644

Client Job Number:

40503 CS-SD-04

Date Sampled:

07/02/2009

Field Location: Field ID Number

N/A

Date Received: Date Analyzed: 07/06/2009 07/07/2009

I IGIO IF	Hallisel.	141
Sample	Type:	S

oil

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 383	Dibenz (a,h) anthracene	ND< 383
Anthracene	384	Fluoranthene	3,710
Benzo (a) anthracene	1,310	Fluorene	ND< 383
Benzo (a) pyrene	1,290	Indeno (1,2,3-cd) pyrene	892
Benzo (b) fluoranthene	1,280	Naphthalene	ND< 383
Benzo (g,h,i) perylene	944	Phenanthrene	1,800
Benzo (k) fluoranthene	1,270	Pyrene	2,630
Chrysene	1,440	Acenaphthylene	ND< 383
Diethyl phthalate	ND< 383	1,2-Dichlorobenzene	ND< 383
Dimethyl phthalate	ND< 956 2 60	1,3-Dichlorobenzene	ND< 383
Butylbenzylphthalate	1,250	1,4-Dichlorobenzene	ND< 383
Di-n-butyl phthalate	ND< 383	1,2,4-Trichlorobenzene	ND< 383
Di-n-octylphthalate	ND< 383	Nitrobenzene	ND< 383
Bis (2-ethylhexyl) phthalate	ND< 383 241 7	2,4-Dinitrotoluene	ND< 383
2-Chloronaphthalene	ND< 383	2,6-Dinitrotoluene	-ND< 383 691
Hexachlorobenzene	ND< 383	Bis (2-chloroethyl) ether	ND< 383
Hexachloroethane	ND< 383	Bis (2-chloroisopropyl) ether	ND< 383
Hexachlorocyclopentadiene	ND< 383	Bis (2-chloroethoxy) methan	ND< 383
Hexachlorobutadiene	ND< 383	4-Bromophenyl phenyl ether	ND< 383
N-Nitroso-di-n-propylamine	ND< 383 324	4-Chlorophenyl phenyl ether	ND< 383
N-Nitrosodiphenylamine	ND< 383	Benzidine	ND< 956
N-Nitrosodimethylamine	ND< 383	3,3'-Dichlorobenzidine	ND< 383
Isophorone	ND< 383	4-Chloroaniline	ND< 383
Benzyl alcohol	ND< 956	2-Nitroaniline	ND< 956
Dibenzofuran	ND< 383	3-Nitroaniline	ND< 956

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 383	2-Methylphenol	ND< 383
2-Chlorophenol	ND< 383	3&4-Methylphenol	ND< 383
2.4-Dichlorophenol	ND< 383	2,4-Dimethylphenol	ND< 383
2.6-Dichlorophenol	ND< 383	2-Nitrophenol	ND< 383
2,4,5-Trichlorophenol	ND< 956	4-Nitrophenol	ND< 956
2,4,6-Trichlorophenoi	ND< 383	2,4-Dinitrophenol	ND< 956
Pentachiorophenol	ND< 956	4,6-Dinitro-2-methylphenol	ND< 956
4-Chloro-3-methylphenol	ND< 383	Benzoic acid	ND< 956
ELAP Number 10958	Method: EPA 8270C		Data File: S46036.D

ND< 383

4-Nitroaniline

Comments: ND denotes Non Detect

2-Methylnapthalene

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger Technical Director

092377S2.XLS

ND< 956

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson

Lab Project Number: 09-2377

Lab Sample Number: 7644

Client Job Number: 40503

Date Sampled:

07/02/2009

Field Location: Field ID Number: CS-SD-04 N/A

Date Received:

07/06/2009

Sample Type:

Soil

Date Analyzed:

07/07/2009

CAS Number	Retention Time	Results in ug / Kg	Percent Fit
N/A	15.17	386	N/A
N/A	16.67	532	N/A
N/A	19.88	868	N/A
	N/A N/A	N/A 15.17 N/A 16.67	N/A 15.17 386 N/A 16.67 532

ELAP Number 10958

Method: EPA 8270C

Data File: S46036.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirely. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson

Lab Project Number: 09-2377

Cilent Job Number:

40503

Lab Sample Number: 7644

Field Location:

CS-SD-04

Date Sampled:

07/02/2009 07/06/2009

Field ID Number:

N/A

Date Received:

Sample Type:

Soil

Date Analyzed:

07/07/2009

Results in mg / Kg
ND< 0.0380
ND< 0.0380
ND< 0.0380
ND< 0.0380
ND< 0.0380
ND< 0.0380
ND< 0.0380

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect

mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

Client:

Lu Engineers

Lab Project No.:

09-2377

Client Job Site: Clarkson

Lab Sample No.:

7644

Client Job No.: 40503

Sample Type:

Soil

Field Location: CS-SD-04

Date Sampled:

07/02/2009

Field ID No.:

N/A

Date Received:

07/06/2009

Laboratory Report for Solid Waste Analysis

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Arsenic	07/10/2009	EPA 6010	5.78
Barium	07/10/2009	EPA 6010	319
Cadmium	07/10/2009	EPA 6010	0.812
Chromium	07/10/2009	EPA 6010	15.2
Lead	07/10/2009	EPA 6010	152
Mercury	07/08/2009	EPA 7471	0.0467
Selenium	07/10/2009	EPA 6010	<0.574
Silver	07/10/2009	EPA 6010	<1.15

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1916

Lab Sample Number: 6337

Client Job Number: Field Location:

40503 CS-TP-01A

Date Sampled:

05/27/2009

Field ID Number:

N/A

Date Received:

05/29/2009

Sample Type:

Soil

Date Analyzed:

06/06/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 8.92 R
Bromomethane	ND< 8.92 45
Bromoform	ND< -22.3 R
Carbon Tetrachloride	N D< 22.3 ≥
Chloroethane	ND< 8.92
Chloromethane	ND< 8.92
2-Chloroethyl vinyl Ether	ND< 44.6
Chloroform	ND< 8.92
Dibromochloromethane	ND< 8 .92 🦳
1,1-Dichloroethane	ND< 8.92
1,2-Dichloroethane	ND< 8.92 5,66
1,1-Dichloroethene	ND< 8.92
cis-1,2-Dichloroethene	ND<-8:92 3. ₩
trans-1,2-Dichloroethene	ND< 8.92
1,2-Dichloropropane	ND<-8 :92- 🦜
cis-1,3-Dichloropropene	ND< 8.92 €
trans-1,3-Dichloropropene	ND< 8.92 [©]
Methylene chloride	ND< 22.3 23.83 3
1,1,2,2-Tetrachloroethane	-ND< 8:92- ℃
Tetrachloroethene	ND<-8:92 C
1,1,1-Trichloroethane	ND<- 8.9 2 <
1,1,2-Trichloroethane	ND<-8 :92 🤼
Trichloroethene	ND< 8:92 <
Trichlorofluoromethane	ND< 8.92
Vinyl chloride	ND< 8.92

Aromatics	Results in ug / Kg
Benzene	ND< 8.92 尺
Chlorobenzene	ND< 8.92 C
Ethylbenzene	ND<-8.92- 2
Toluene	ND<-8 :92 🔍
m,p-Xylene	ND<-8.92 (_
o-Xylene	ND<-8:92 🐫
Styrene	ND< 22 :3 🖳
1,2-Dichlorobenzene	ND< 22.3 R
1,3-Dichlorobenzene	ND<-22.3 }
1,4-Dichlorobenzene	ND< 8.92 €

Ketones	Results in ug / Kg
Acetone	ND< 44.6 W. S
2-Butanone	ND< 44.6
2-Hexanone	ND<-22-3 R
4-Methyl-2-pentanone	ND<-22.3 (C

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 8.92
Vinyl acetate	ND< 22.3

ELAP Number 10958

Method: EPA 8260B

Data File: V66096.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference Internal Standard outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1916

Lab Sample Number: 6337

Client Job Number: Field Location:

40503 CS-TP-01A

Date Sampled:

05/27/2009

Field iD Number:

N/A

Date Received:

05/29/2009

Sample Type:

Soil

Date Analyzed:

06/06/2009

CAS Number	Retention Time	Results in ug / Kg	Percent Fit
N/A	2.588	57.1	N/A
N/A	3.99	66.9	N/A
N/A	4.32	33.0	N/A
N/A	4.59	33.0	N/A
N/A	4.91	33.9	N/A
N/A	5.18	87.8	N/A
N/A	5.98	40.6	N/A
N/A	6.42	88.3	N/A
	N/A N/A N/A N/A N/A N/A N/A	N/A 2.588 N/A 3.99 N/A 4.32 N/A 4.59 N/A 4.91 N/A 5.18 N/A 5.98	N/A 2.588 57.1 N/A 3.99 66.9 N/A 4.32 33.0 N/A 4.59 33.0 N/A 4.91 33.9 N/A 5.18 87.8 N/A 5.98 40.6

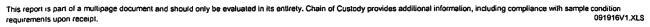
ELAP Number 10958

Method: EPA 8260B

Data File: V66096.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram


Surrogate outliers indicate probable matrix interference

Internal Standard outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1916

Lab Sample Number: 6338

Glient Job Number: Fleid Location:

40503

CS-TP-01B

Date Sampled:

05/27/2009

Field ID Number:

N/A

Date Received:

05/29/2009

Sample Type:

Soil

Date Analyzed:

06/06/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 8.73 42.1
Bromomethane	ND< 8.73 ^{✓ ▼}
Bromoform	ND< 21.8
Carbon Tetrachloride	ND< 21.8
Chloroethane	ND< 8.73
Chloromethane	ND< 8.73
2-Chloroethyl vinyl Ether	ND< 43.6
Chloroform	ND< 8.73 24.4
Dibromochloromethane	ND< 8.73
1,1-Dichloroethane	ND< 8.73
1,2-Dichloroethane	ND< 8.73 5.58
1,1-Dichloroethene	ND< 8.73
cis-1,2-Dichloroethene	ND<-8.73 3.26 5
trans-1,2-Dichloroethene	ND< 8.73
1,2-Dichloropropane	ND< 8.73
cis-1,3-Dichloropropene	ND< 8.73
trans-1,3-Dichloropropene	ND< 8.73
Methylene chloride	ND< 21.8 17.8 5
1,1,2,2-Tetrachloroethane	ND< 8.73 18.5 B
Tetrachloroethene	ND< 8.73
1,1,1-Trichloroethane	ND< 8.73
1,1,2-Trichloroethane	ND< 8.73 69.7
Trichloroethene	ND< 8.73
Trichlorofluoromethane	ND< 8.73
1	

Aromatics	Results in ug / K	
Benzene	ND< 8.73	
Chlorobenzene	ND< 8.73	
Ethylbenzene	ND< 8.73	
Toluene	ND< 8.73	
m,p-Xylene	ND< 8.73	
o-Xylene	ND< 8.73	
Styrene	ND< 21.8	
1,2-Dichlorobenzene	ND< 21.8	
1,3-Dichlorobenzene	ND< 21.8	
1,4-Dichlorobenzene	ND< 8.73	

Ketones	Results In ug / Kg	
Acetone	ND< 43.6 41.4	1
2-Butanone	ND< 43.6	_
2-Hexanone	-ND<-21.85.65	2
4-Methyl-2-pentanone	ND< 21.8	

Results in ug / Kg Miscellaneous Carbon disulfide ND< 8.73 Vinyl acetate ND< 21.8

ELAP Number 10958

Vinyl chloride

Method: EPA 8260B

ND< 8.73

Data File: V66097.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

All target analytes should be

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirely. Chain of Custody provides additional information, including compilance with sample condition requirements upon receipt. 091916V2.XL\$

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1916

Lab Sample Number: 6338

Client Job Number:

Field Location:

40503

CS-TP-01B

Date Sampled:

05/27/2009

Field ID Number:

N/A

Date Received:

05/29/2009

Sample Type:

Soil

Date Analyzed:

06/06/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Alkyl Hydrocarbon	N/A	2.588	72.0	N/A
Alkylene Hydrocarbon	N/A	4.31	56.3	N/A
Alkyl Hydrocarbon	N/A	4.56	103	N/A
Alkyl Hydrocarbon	N/A	4.71	78.1	N/A
Complex Hydrocarbon	N/A	4.86	87.3	N/A
Complex Hydrocarbon	N/A	4.91	79.4	N/A
Alkyl Hydrocarbon	N/A	4.96	81.6	N/A
Alkylene Hydrocarbon	N/A	5.18	116	N/A
Complex Hydrocarbon	N/A	5.41	64.6	N/A
Complex Hydrocarbon	N/A	5.54	89.5	N/A
Complex Hydrocarbon	N/A	5.76	49.3	N/A
Alkyl Hydrocarbon	N/A	5.82	61.1	N/A
Alkylene Hydrocarbon	N/A	5.90	61.1	N/A
Complex Hydrocarbon	N/A	5.97	117	N/A
Complex Hydrocarbon	N/A	6.27	65.5	N/A
Alkylene Hydrocarbon	N/A	6.42	88.6	N/A
Alkylene Hydrocarbon	N/A	6.49	193	N/A
Complex Hydrocarbon	N/A	6.72	46.7	N/A
Alkyl Hydrocarbon	N/A	6.87	112	N/A
Complex Hydrocarbon	N/A	7.01	144	N/A
Complex Hydrocarbon	N/A	7.37	58.0	N/A
Alkyl Hydrocarbon	N/A	7.51	50.2	N/A
Complex Hydrocarbon	N/A	7.67	59.3	N/A
Complex Hydrocarbon	N/A	8.30	50.6	N/A
Alkyl Benzene	N/A	10.77	50.2	N/A
Alkyl Benzene	N/A	10.87	47.1	N/A
Complex Hydrocarbon	N/A	11.52	71.6	N/A
Complex Hydrocarbon	N/A	11.68	58.0	N/A
Alkyl Hydrocarbon	N/A	12.51	79.0	N/A
Alkyl Hydrocarbon	N/A	13.13	52.4	N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V66097.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirely. Chain of Custody provides additional information, including compliance with sample condition 091916V2.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1916 Lab Sample Number: LRB

Client Job Number: Field Location:

40503 N/A

Date Sampled:

N/A N/A

Field ID Number: Sample Type:

N/A Soil Date Received: Date Analyzed:

06/05/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 4.00
Bromomethane	ND< 4.00 65
Bromoform	ND< 10.0
Carbon Tetrachloride	ND< 10.0 4.50
Chloroethane	ND< 4.00
Chloromethane	ND< 4.00
2-Chloroethyl vinyl Ether	ND< 20.0
Chloroform	ND< 4.00
Dibromochloromethane	ND< 4.00
1,1-Dichloroethane	ND< 4.00
1,2-Dichloroethane	ND< 4.00 608
1,1-Dichloroethene	ND< 4.00
cis-1,2-Dichloroethene	ND< 4.00
trans-1,2-Dichloroethene	ND< 4.00
1,2-Dichloropropane	ND< 4.00
cis-1,3-Dichloropropene	ND< 4.00
trans-1,3-Dichloropropene	ND< 4.00
Methylene chloride	ND< 10.0 45
1,1,2,2-Tetrachloroethane	ND< 4.00 63
Tetrachloroethene	ND< 4.00
1,1,1-Trichloroethane	ND< 4.00
1,1,2-Trichloroethane	ND< 4.00
Trichloroethene	ND< 4.00
Trichlorofluoromethane	ND< 4.00
1	

Aromatics	Results in ug / Kg
Benzene	ND< 4.00
Chlorobenzene	ND< 4.00
Ethylbenzene	ND< 4.00
Toluene	ND< 4.00
m,p-Xylene	ND< 4.00
o-Xylene	ND< 4.00
Styrene	ND< 10.0
1,2-Dichlorobenzene	ND< 10.0
1,3-Dichlorobenzene	ND< 10.0
1,4-Dichlorobenzene	ND< 4.00

Ketones	Results in ug / Kg
Acetone	ND< 20.0
2-Butanone	ND< 20.0
2-Hexanone	ND< 10.0 7.32
4-Methyl-2-pentanone	ND<-10.0 2 .99

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 4.00
Vinyl acetate	ND< 10.0
·	

Vinyl chloride ELAP Number 10958

Method: EPA 8260B

ND< 4.00

Data File: V66076.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

091916V3.XLS

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1916

Lab Sample Number: 6337

Client Job Number: Field Location:

40503 CS-TP-01A

Field ID Number: N/A Sample Type: Soil Date Sampled:

05/27/2009

Date Received: Date Analyzed:

05/29/2009 06/08/2009

Date Reissued: 06/18/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 738	Dibenz (a,h) anthracene	ND< 738
Anthracene	ND< 738	Fluoranthene	2,200
Benzo (a) anthracene	818	Fluorene	ND< 738
Benzo (a) pyrene	894	Indeno (1,2,3-cd) pyrene	J 727
Benzo (b) fluoranthene	1,160	Naphthalene	ND< 738
Benzo (g,h,i) perylene	888	Phenanthrene	1,020
Benzo (k) fluoranthene	J 667	Pyrene	1,510
Chrysene	950	Acenaphthylene	ND< 738
Diethyl phthalate	ND< 738	1,2-Dichlorobenzene	ND< 738
Dimethyl phthalate	ND< 1,850	1,3-Dichlorobenzene	ND< 738
Butylbenzylphthalate	2,030	1,4-Dichlorobenzene	ND< 738
Di-n-butyl phthalate	894	1,2,4-Trichlorobenzene	ND< 738
Di-n-octylphthalate	ND< 738	Nitrobenzene	ND< 738
Bis (2-ethylhexyl) phthalate	2,810	2,4-Dinitrotoluene	ND< 738
2-Chloronaphthalene	ND< 738	2,6-Dinitrotoluene	ND< 738
Hexachlorobenzene	ND< 738	Bis (2-chloroethyl) ether	ND< 738
Hexachloroethane	ND< 738	Bis (2-chloroisopropyl) ether	ND< 738
Hexachlorocyclopentadiene	ND< 738	Bis (2-chloroethoxy) methan	ND< 738
Hexachlorobutadiene	ND< 738	4-Bromophenyl phenyl ether	ND< 738
N-Nitroso-di-n-propylamine	ND< 738	4-Chlorophenyl phenyl ether	ND< 738
N-Nitrosodiphenylamine	ND< 738	Benzidine	ND< 1,850
N-Nitrosodimethylamine	ND< 738	3,3'-Dichlorobenzidine	ND< 738
Isophorone	ND< 738	4-Chloroanlline	ND< 738
Benzyl alcohol	ND< 1,850	2-Nitroaniline	ND< 1,850
Dibenzofuran	ND< 738	3-Nitroaniline	ND< 1,850
2-Methylnapthalene	ND< 738	4-Nitroaniline	ND< 1,850

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 738	2-Methylphenol	ND< 738
2-Chiorophenol	ND< 738	3&4-Methylphenol	ND< 738
2,4-Dichlorophenol	ND< 738	2,4-Dimethylphenol	ND< 738
2,6-Dichlorophenol	ND< 738	2-Nitrophenol	ND< 738
2,4,5-Trichlorophenol	ND< 1,850	4-Nitrophenol	ND< 1,850
2,4,6-Trichlorophenol	ND< 738	2,4-Dinitrophenol	ND< 1,850
Pentachiorophenol	ND< 1,850	4,6-Dinitro-2-methylphenol	ND< 1,850
4-Chloro-3-methylphenol	ND< 738	Benzoic acid	ND< 1,850

ELAP Number 10958 Method: EPA 8270C Data File: S45503,D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kllogram

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Semi -Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1916

Lab Sample Number: 6337

Client Job Number:

40503 CS-TP-01A

Date Sampled:

05/27/2009

Field Location: Field iD Number:

N/A

Date Received:

05/29/2009

Sample Type:

Water

Date Analyzed:

06/08/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
Complex Hydrocarbon	N/A	17.4	28.6	N/A
Complex Hydrocarbon	N/A	17.85	11.8	N/A
Complex Hydrocarbon	N/A	18.37	33.2	N/A
NA 100-TH STATE OF 13				

ELAP Number 10958

Method: EPA 8270C

Data File: S45503.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 091916S1.XLS

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1916

Client Job Number:

40503

Lab Sample Number: 6338

Field Location:

CS-TP-01B

Date Sampled: Date Received:

05/27/2009

Field ID Number: Sample Type:

N/A Soil

Date Received: Date Analyzed:

05/29/2009 06/08/2009

Date Reissued:

10/07/2010

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 660	Dibenz (a,h) anthracene	ND< 660
Anthracene	ND< 660	Fluoranthene	1,300
Benzo (a) anthracene	J 602	Fluorene	ND< 660
Benzo (a) pyrene	J 587	Indeno (1,2,3-cd) pyrene	J 468
Benzo (b) fluoranthene	756	Naphthalene	ND< 660
Benzo (g,h,i) perylene	J 536	Phenanthrene	J 452
Benzo (k) fluoranthene	J 422	Pyrene	965
Chrysene	674	Acenaphthylene	ND< 660
Diethyl phthalate	ND< 660	1,2-Dichlorobenzene	ND< 660
Dimethyl phthalate	ND< 1,650	1,3-Dichlorobenzene	ND< 660
Butylbenzylphthalate	988	1.4-Dichlorobenzene	ND< 660
Di-n-butyl phthalate	ND< 660	1,2,4-Trichlorobenzene	ND< 660
Di-n-octylphthalate	ND< 660	Nitrobenzene	ND< 660
Bis (2-ethylhexyl) phthalate	J 577	2,4-Dinitrotoluene	ND< 660
2-Chloronaphthalene	ND< 660	2,6-Dinitrotoluene	ND< 660
Hexachlorobenzene	ND< 660	Bis (2-chloroethyl) ether	ND< 660
Hexachloroethane	ND< 660	Bis (2-chloroisopropyl) ether	ND< 660
Hexachlorocyclopentadiene	ND< 660	Bis (2-chloroethoxy) methan	ND< 660
Hexachlorobutadiene	ND< 660	4-Bromophenyl phenyl ether	ND< 660
N-Nitroso-di-n-propylamine	ND< 660	4-Chlorophenyl phenyl ether	ND< 660
N-Nitrosodiphenylamine	ND< 660	Benzidine	ND< 1,650
N-Nitrosodimethylamine	ND< 660	3,3'-Dichlorobenzidine	ND< 660
Isophorone	ND< 660	4-Chloroaniline	ND< 660
Benzyl alcohol	ND< 1,650	2-Nitroaniline	ND< 1,650
Dibenzofuran	ND< 660	3-Nitroaniline	ND< 1,650

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 660	2-Methylphenol	ND< 660
2-Chlorophenol	ND< 660	3&4-Methylphenol	ND< 660
2,4-Dichlorophenol	ND< 660	2,4-Dimethylphenol	ND< 660
2,6-Dichlorophenol	ND< 660	2-Nitrophenol	ND< 660
2,4,5-Trichlorophenol	ND< 1,650	4-Nitrophenol	ND< 1.650
2,4,6-Trichlorophenol	ND< 660	2,4-Dinitrophenol	ND< 1.650
Pentachlorophenol	ND< 1,650	4,6-Dinitro-2-methylphenol	ND< 1,650
4-Chloro-3-methylphenol	ND< 660	Benzoic acid	ND< 1.650
ELAD Number 10059		ED1 00000	0

4-Nitroaniline

ND< 660

ELAP Number 10958

2-Methylnapthalene

Method: EPA 8270C

Data File: \$45504.D

ND< 1,650

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Semi -Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1916

Lab Sample Number: 6338

Client Job Number:

Field Location:

40503

CS-TP-01B Date Sampled: 05/27/2009

Field ID Number: Sample Type:

N/A Water **Date Received:**

05/29/2009

Date Analyzed:

06/08/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
Complex Hydrocarbon	N/A	4.46	10.7	N/A
Complex Hydrocarbon	N/A	14.90	19.2	N/A
Complex Hydrocarbon	N/A	17.05	12.6	N/A
Complex Hydrocarbon	N/A	17.40	53.9	N/A
Complex Hydrocarbon	N/A	17.99	21.3	N/A
Complex Hydrocarbon	N/A	18.37	69.7	N/A

ELAP Number 10958

Method: EPA 8270C

Data File: S45504.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 091916S2.XLS requirements upon receipt.

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1916

Lab Sample Number: Soil PB 6/4 ABN

Client Job Number: Field Location:

40503 N/A

Date Sampled:

N/A

Field ID Number: Sample Type:

N/A Soil

Date Received:

N/A

Date Anaivzed:

06/08/2009 06/18/2009

Date	Reissued

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 286	Dibenz (a,h) anthracene	ND< 286
Anthracene	ND< 286	Fluoranthene	ND< 286
Benzo (a) anthracene	ND< 286	Fluorene	ND< 286
Benzo (a) pyrene	ND< 286	indeno (1,2,3-cd) pyrene	ND< 286
Benzo (b) fluoranthene	ND< 286	Naphthalene	ND< 286
Benzo (g,h,i) perylene	ND< 286	Phenanthrene	ND< 286
Benzo (k) fluoranthene	ND< 286	Pyrene	ND< 286
Chrysene	ND< 286	Acenaphthylene	ND< 286
Diethyl phthalate	ND< 286	1,2-Dichlorobenzene	ND< 286
Dimethÿl phthalate	ND< 714	1,3-Dichlorobenzene	ND< 286
Butylbenzylphthalate	ND< 286	1,4-Dichlorobenzene	ND< 286
Di-n-butyl phthalate	ND< 286	1,2,4-Trichlorobenzene	ND< 286
Di-n-octylphthalate	ND< 286	Nitrobenzene	··· ND< 286
Bis (2-ethylhexyl) phthalate	ND< 286	2,4-Dinitrotoluene	ND< 286
2-Chloronaphthalene	ND< 286	2,6-Dinitrotoluene	ND< 286
Hexachlorobenzene	ND< 286	Bis (2-chloroethyl) ether	ND< 286
Hexachloroethane	ND< 286	Bis (2-chloroisopropyl) ether	ND< 286
Hexachlorocyclopentadiene	ND< 286	Bis (2-chloroethoxy) methan	ND< 286
Hexachlorobutadiene	ND< 286	4-Bromophenyl phenyl ether	ND< 286
N-Nitroso-di-n-propylamine	ND< 286	4-Chlorophenyl phenyl ether	ND< 286
N-Nitrosodiphenylamine	ND< 286	Benzidine	ND< 714
N-Nitrosodimethylamine	ND< 286	3,3'-Dichlorobenzidine	ND< 286
Isophorone	ND< 286	4-Chloroaniline	ND< 286
Benzyl alcohol	ND< 714	2-Nitroaniline	ND< 714
Dibenzofuran	ND< 286	3-Nitroanlline	ND< 714
2-Methylnapthalene	ND< 286	4-Nitroaniline	ND< 714

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 286	2-Methylphenol	ND< 286
2-Chlorophenol	ND< 286	3&4-Methylphenol	ND< 286
2,4-Dichlorophenol	ND< 286	2,4-Dimethylphenol	ND< 286
2,6-Dichlorophenol	ND< 286	2-Nitrophenol	ND< 286
2,4,5-Trichlorophenol	ND< 714	4-Nitrophenol	ND< 714
2,4,6-Trichlorophenol	ND< 286	2,4-Dinitrophenol	ND< 714
Pentachlorophenol	ND< 714	4,6-Dinitro-2-methylphenoi	ND< 714
4-Chloro-3-methylphenol	ND< 286	Benzoic acid	ND< 714
CLAD North and 40000	8.4-454	EDA 00700	Data Ella: CASEOO D

ELAP Number 10958

Method: EPA 8270C

Data File: S45500.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 091916i3.xis requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1916

Lab Sample Number: 6337

Client Job Number: Field Location:

40503 CS-TP-01A

Date Sampled:

05/27/2009

Field ID Number:

N/A

Date Received:

05/29/2009

Sample Type:

Soil

Date Analyzed:

06/08/2009

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.0732
Aroclor 1221	ND< 0.0732
Aroclor 1232	ND< 0.0732
Aroclor 1242	ND< 0.0732
Arocior 1248	ND< 0.0732
Arocior 1254	ND< 0.0732
Aroclor 1260	ND< 0.0732

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect

mg / Kg = milligram per Kilogram

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 091916P1.XLS

Client: Lu Engineers

Client Job Site: Clarkson ERP Site Lab Project Number: 09-1916

Lab Sample Number: 6338

Client Job Number: 40503 Field Location:

CS-TP-01B

Date Sampled:

05/27/2009

Field ID Number:

N/A

Date Received:

05/29/2009

Sample Type: Soil

Date Analyzed:

06/08/2009

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.0655
Aroclor 1221	ND< 0.0655
Aroclor 1232	ND< 0.0655
Aroclor 1242	ND< 0.0655
Aroclor 1248	ND< 0.0655
Aroclor 1254	ND< 0.0655
Aroclor 1260	ND< 0.0655

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect mg / Kg = milligram per Kilogram

Signature:

requirements upon receipt.

Bruce Hoogesteger: Technical Director

All target analytes should be

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-1916

Lab Sample Number: Soil PB LL 6/8

Client Job Number: Field Location:

40503 N/A N/A

Date Sampled:

N/A N/A

Field ID Number:

Date Received: Date Analyzed:

Sample Type: Soil 06/08/2009

PCB Identification	Results in mg / Kg
Arocior 1016	ND< 0.0286
Aroclor 1221	ND< 0.0286
Aroclor 1232	ND< 0.0286
Arocior 1242	ND< 0.0286
Aroclor 1248	ND< 0.0286
Aroclor 1254	ND< 0.0286
Aroclor 1260	ND< 0.0286

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect

mg / Kg = milligram per Kilogram

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional Information, including compliance with sample condition requirements upon receipt.

O31916P3

179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

Client:

Lu Engineers

Lab Project No.:

09-1916

Client Job Site:

Clarkson ERP Site

Lab Sample No.:

6337 Soil

Client Job No.:

40503

Sample Type:

Field Location:

CS-TP-01A

Date Sampled: Date Received:

05/27/2009 05/29/2009

Field ID No.:

N/A

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical	Result (mg/kg)
		Method	
Aluminum	06/09/2009	SW846 6010	7860
Antimony	06/09/2009	SW846 6010	<14.8
Arsenic	06/09/2009	SW846 6010	15.2
Barium	06/09/2009	SW846 6010	1450
Beryllium	06/09/2009	SW846 6010	<1.23
Cadmium	06/09/2009	SW846 6010	<1.23
Calcium	06/09/2009	SW846 6010	7500
Chromium	06/09/2009	SW846 6010	46.9
Cobalt	06/09/2009	SW846 6010	6.24
Copper	06/09/2009	SW846 6010	237
Iron	06/09/2009	SW846 6010	44800
Lead	06/09/2009	SW846 6010	2040
Magnesium	06/09/2009	SW846 6010	3840
Manganese	06/09/2009	SW846 6010	1360
Mercury	06/10/2009	SW846 7471	26.5
Nickel	06/09/2009	SW846 6010	20.5
Potassium	06/09/2009	SW846 6010	2410
Selenium	06/09/2009	SW846 6010	5.10
Silver	06/09/2009	SW846 6010	18.0
Sodium	06/09/2009	SW846 6010	2080
Thallium	06/09/2009	SW846 6010	<1.48
Vanadium	06/09/2009	SW846 6010	30.7
Zinc	06/09/2009	SW846 6010	294

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

All target analytes should be "J" or "UJ"

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional sample information, including compliance with sample condition requirements upon receipt.

179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

Client:

Lu Engineers

Lab Project No.:

09-1916

Client Job Site:

Clarkson ERP Site

Lab Sample No.:

Sample Type:

Soil

6338

Client Job No.:

40503

Date Sampled: Date Received:

05/27/2009 05/29/2009

Field Location:

CS-TP-01B

Fleid ID No.: N

N/A

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical	Result (mg/kg)
		Method	
Aluminum	06/09/2009	SW846 6010	6330
Antimony	06/09/2009	SW846 6010	<8.41
Arsenic	06/09/2009	SW846 6010	9.54
Barium	06/09/2009	SW846 6010	1290
Beryllium	06/09/2009	SW846 6010	<0.700
Cadmium	06/09/2009	SW846 6010	<0.700
Calcium	06/09/2009	SW846 6010	4560
Chromium	06/09/2009	SW846 6010	35.3
Cobalt	06/09/2009	SW846 6010	4.45
Copper	06/09/2009	SW846 6010	454
Iron	06/09/2009	SW846 6010	23700
Lead	06/09/2009	SW846 6010	2070
Magnesium	06/09/2009	SW846 6010	1850
Manganese	06/09/2009	SW846 6010	447
Mercury	06/10/2009	SW846 7471	56.8
Nickel	06/09/2009	SW846 6010	17.4
Potassium	06/09/2009	SW846 6010	1870
Selenium	06/09/2009	SW846 6010	<0.700
Silver	06/09/2009	SW846 6010	3.34
Sodium	06/09/2009	SW846 6010	1790
Thallium	06/09/2009	SW846 6010	<0.841
Vanadium	06/09/2009	SW846 6010	20.7
Zinc	06/09/2009	SW846 6010	221

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

All target analytes should be "J" or "UJ"

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional sample information, including compliance with sample condition requirements upon receipt.

EPA SAMPLE NO.

CS-TP-01A

Lab Name: AES, I	nc. Contract:	Paradigm		
Lab Code: AES	Case No.: PA0902 SAS No.:	SDG No.: CS-TP-012	L	
Matrix (soil/wate	:): SOIL	Lab Sample ID:	090602006-	001A
Sample wt/vol:	10.0 (g/mL) g	Lab File ID:	A1708	
% Moisture: 60	.7	Date Received:	6/2/09	
Extraction: (Type)	PFEX	Date Extracted:	6/2/2009	9
Concentrated Extra	act Volume: 10000 (uL)	Date Analyzed:	6/4/09	
Injection Volume:	1.0 (uL)	Dilution Factor:	1.0	
GPC Cleanup: (Y/N)	N pH: 7.5	Sulfur Cleanup: (Y	/N) <u>Y</u>	
		CONCENTRATION UNITS	•	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	ug/Kg	Q
319-84-6	alpha-BHC		4.3	บ
319-85-7	beta-BHC		4.3	U
319-86-8	delta-BHC		4.3	U
58-89-9	gamma-BHC (Lindane)		4.3	U
76-44-8	Heptachlor		4.3	U
309-00-2	Aldrin		4.3	U
1024-57-3	Heptachlor epoxide		4.3	U
959-98-8	Endosulfan I		4.3	Ū
60-57-1	Dieldrin		15	
72-55-9	4,4'-DDE		35	P
72-20-8	Endrin		17	P
33213-65-9	Endosulfan II		8.4	<u>-</u>
72-54-8	4,4'-DDD		320	 -
1031-07-8	Endosulfan sulfate		8.4	uТ
50-29-3	4,4'-DDT		140	
72-43-5	Methoxychlor		43	U
53494-70-5	Endrin ketone		8.4	Ū
7421-93-4	Endrin aldehyde		8.4	U
5103-71-9	alpha-Chlordane		12.1 4.3	-8-
5103-74-2	gamma-Chlordane		21	

All target analytes should be "J" or "UJ"

83.97

8001-35-2

Toxaphene

EPA SAMPLE NO.

CS-TP-01B

Lab Name: AES, I	ne.	Contract:	Paradigm		
Lab Code: AES	Case No.: PA0902 SA	8 No.:	SDG No.: CS-TP-01A		
Matrix (soil/water): SOIL		Lab Sample ID:	090602006-	002A
Sample wt/vol:	10.0 (g/mL) g		Lab File ID:	A1725	
% Moisture: 63.	7		Date Received:	6/2/09	
Extraction: (Type)	PFEX		Date Extracted:	6/2/2009	
Concentrated Extra	ct Volume: 10000	(uL)	Date Analyzed:	6/5/09	
Injection Volume:	1.0 (uL)		Dilution Factor:	2.0	
GPC Cleanup: (Y/N)	N pH: 7.58		Sulfur Cleanup: (Y/)	A) Ā	
	COM TRAINING		CONCENTRATION UNITS:		
CAS NO.	COMPOUND		(ug/L or ug/Kg)	ıg/Kg	Q
319-84-6	alpha-BHC			9.4	U
319-85-7	beta-BHC			9.4	U
319-86-8	delta-BHC			9.4	U
58-89-9	gamma-BHC (Lindane)			9.4	TT

		1	-
319-85-7	beta-BHC	9.4	U
319-86-8	delta-BHC	9.4	U
58-89-9	gamma-BHC (Lindane)	9.4	U
76-44-8	Heptachlor	9.4	U
309-00-2	Aldrin	9.4	U
1024-57-3	Heptachlor epoxide	9.4	U
959-98-8	Endosulfan I	9.4	U
60-57-1	Dieldrin	19	J
72-55-9	4,4'-DDE	41	
72-20-8	Endrin	18	JP
33213-65-9	Endosulfan II	18	U
72-54-8	4,4'-DDD	340	
1031-07-8	Endosulfan sulfate	18	υŢ
50-29-3	4,4'-DDT	120	
72-43-5	Methoxychlor	94	U
53494-70-5	Endrin ketone	18	U
7421-93-4	Endrin aldehyde	18	U
5103-71-9	alpha-Chlordane	29.3 9.4	Ū
5103-74-2	gamma-Chlordane	27	
8001-35-2	Toxaphene	181.8	U

All target analytes should be "J" or "UJ"

EPA SAMPLE NO.

 DDT VA1	
PBLK01	

Lab Name: AES, In	Contract:	Paradigm		
Lab Code: AES	Case No.: PA0902 SAS No.:	SDG No.: CS-TP-0	1A	
Matrix (soil/water)	: SOIL	Lab Sample ID:	MB-21258	
Sample wt/vol:	10.0 (g/mL) g	Lab File ID:	A1706	
% Moisture:		Date Received:		
Extraction: (Type)	PFEX	Date Extracted:	6/2/200	09
Concentrated Extrac	et Volume: 10000 (uL)	Date Analyzed:	6/4/0	
Injection Volume:	1.0 (uL)	_	6/4/09	
_		Dilution Factor:	1.0	
GPC Cleanup: (Y/N)	<u>N</u> рн:	Sulfur Cleanup: (Y/N) Y	
CAS NO.	COMPOUND	CONCENTRATION UNIT		•
319-84-6	alpha-BHC	(ug/L or ug/Kg)	ug/Kg	Ω
319-85-7	beta-BHC		1.7	U
319-86-8	delta-BHC		1.7	U
58-89-9	gamma-BHC (Lindane)		1.7	TI I
76-44-8	Heptachlor		1.7	U
309-00-2	Aldrin		1.7	U
1024-57-3	Heptachlor epoxide		1.7	U
959-98-8	Endosulfan I		1.7	U
60-57-1	Dieldrin		3.3	U
72-55-9	4,4'-DDE		3.3	U
72-20-8	Endrin		3.3	U
33213-65-9	Endosulfan II		3.3	U
72-54-8	4,4'-DDD		3.3	U
1031-07-8	Endosulfan sulfate		3.3	<u>07</u>
50-29-3	4,4'-DDT		3.3	U
72-43-5	Methoxychlor		17	ซ
53494-70-5	Endrin ketone		3.3	U
7421-93-4	Endrin aldehyde		3.3	Ū
5103-71-9	alpha-Chlordane		1.7	Ū
5103-74-2	gamma-Chlordane		1.7	U
8001-35-2	Toxaphene		33.00	U

EPA SAMPLE NO.

CS-TP-01BMS

Lab Name: AES, Inc	Contract: I	Paradigm		
Lab Code: AES	Case No.: PA0902 SAS No.:	SDG No.: CS-TP-01	A	
Matrix (soil/water):	: SOIL	Lab Sample ID:	090602006-	002 AMS
Sample wt/vol: 1	0.0 (g/mL) g	Lab File ID:	A1726	
% Moisture: 63.7		Date Received:	6/2/09	
Extraction: (Type)	PFEX	Date Extracted:	6/2/2009	_
Extraction: (Type)	PEEA	Date Extracted.	6/2/2003	
Concentrated Extract	t Volume: 10000 (uL)	Date Analyzed:	6/5/09	
Injection Volume:	1.0 (uL)	Dilution Factor:	2.0	
GPC Cleanup: (Y/N)	N pH: 7.58	Sulfur Cleanup: (Y	/N) Y	
•			-	
	COMPOUND	CONCENTRATION UNITS	3:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	ug/Kg	Q
319-84-6	alpha-BHC		9.4	υ
319-85-7	beta-BHC		9.4	U
319-86-8	delta-BHC		9.4	U
58-89-9	gamma-BHC (Lindane)		83	
76-44-8	Heptachlor		96	
309-00-2	Aldrin		100	
1024-57-3	Heptachlor epoxide		9.4	U
959-98-8	Endosulfan I		9.4	ט
60-57-1	Dieldrin		200	
72-55-9	4,4'-DDE		86	P
72-20-8	Endrin		180	
33213-65-9	Endosulfan II		18	U
72-54-8	4,4'-DDD		820	
1031-07-8	Endosulfan sulfate		18	ע ש
50-29-3	4,4'-DDT		290	
72-43-5	Methoxychlor		94	U
53494-70-5	Endrin ketone		18	U
7421-93-4	Endrin aldehyde		18	U
5103-71-9	alpha-Chlordane		9.4	U
5103-74-2	gamma-Chlordane		48	
8001-35-2	Toxaphene		181.8	U

All target
analytes should be
"J" or "UJ"

EPA SAMPLE NO.

CS-TP-01BMSD

Lab Name: AES, Inc	C. Contract: I	Paradigm		
Lab Code: AES	Case No.: PA0902 SAS No.:	SDG No.: CS-TP-01	A	
Matrix (soil/water)	: SOIL	Lab Sample ID:	090602006-	002AMSD
Sample wt/vol: 1	.0.0 (g/mL) g	Lab File ID:	A1727	
% Moisture: 63.7		Date Received:	6/2/09	
Extraction: (Type)	PFEX	Date Extracted:	6/2/200	
arciacton. (11pe/	FEBR	Date Extracted.	0/2/200	
Concentrated Extrac	t Volume: 10000 (uL)	Date Analyzed:	6/5/09	
Injection Volume:	1.0 (uL)	Dilution Factor:	2.0	
GPC Cleanup: (Y/N)	N pH: 7.58	Sulfur Cleanup: (Y	/и) ч	_
	<u> </u>			
	COMPOUND	CONCENTRATION UNITS	3:	
CAS NO.		(ug/L or ug/Kg)	ug/Kg	Ω
319-84-6	alpha-BHC		9.4	ט
319-85-7	beta-BHC		9.4	ט
319-86-8	delta-BHC		9.4	ט
58-89-9	gamma-BHC (Lindane)		89	
76-44-8	Heptachlor		89	
309-00-2	Aldrin		110	
1024-57-3	Heptachlor epoxide		9.4	U
959-98-8	Endosulfan I		9.4	U
60-57-1	Dieldrin		190	
72-55-9	4,4'-DDE		93	
72-20-8	Endrin		200	
33213-65-9	Endosulfan II		18	U
72-54-8	4,4'-DDD		610	
1031-07-8	Endosulfan sulfate		18	ע ד
50-29-3	4,4'-DDT		320	
72-43-5	Methoxychlor		94	U
53494-70-5	Endrin ketone		18	U
7421-93-4	Endrin aldehyde		18	U
5103-71-9	alpha-Chlordane		9.4	U
5103-74-2	gamma-Chlordane		44	
8001-35-2	Toxaphene		181.8	U

. in target analytes should be "J" or "UJ"

EPA SAMPLE NO.

PMSB01	

Lab Code: AES Case No.: PA0902 SAS No.: SDG No.: CS-TP-01A Matrix (soil/water): SOIL Lab Sample ID: LCS-21258 Sample wt/vol: 10.0 (g/mL) g Lab File ID: A1707 % Moisture: Date Received: Date Received: Extraction: (Type) PFEX Date Extracted: 6/2/2009 Concentrated Extract Volume: 10000 (uL) Date Analyzed: 6/4/09 6/4/09 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 Sulfur Cleanup: (Y/N) Y GPC Cleanup: (Y/N) N pH: Sulfur Cleanup: (Y/N) y CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg Q CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg Q 319-84-6 alpha-BHC 1.7 U 319-85-7 beta-BHC 1.7 U
Sample wt/vol: 10.0 (g/mL) g Lab File ID: A1707 % Moisture: Date Received:
Moisture: Extraction: (Type) PFEX Date Extracted: 6/2/2009 Concentrated Extract Volume: 10000 (uL) Injection Volume: 1.0 (uL) Date Analyzed: 6/4/09 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: Sulfur Cleanup: (Y/N) Y CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg Q 319-84-6 alpha-BHC 319-85-7 beta-BHC 1.7 U
Extraction: (Type) PFEX Date Extracted: 6/2/2009 Concentrated Extract Volume: 10000 (uL) Date Analyzed: 6/4/09 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: Sulfur Cleanup: (Y/N) Y CAS NO. CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg Q 319-84-6 alpha-BHC 1.7 U U 319-85-7 beta-BHC 1.7 U
Concentrated Extract Volume: 10000 (uL) Date Analyzed: 6/4/09 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: Sulfur Cleanup: (Y/N) Y CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg Q 319-84-6 alpha-BHC 1.7 U 319-85-7 beta-BHC 1.7 U
Concentrated Extract Volume: 10000 (uL) Date Analyzed: 6/4/09 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: Sulfur Cleanup: (Y/N) Y CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg Q 319-84-6 alpha-BHC 1.7 U 319-85-7 beta-BHC 1.7 U
Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: Sulfur Cleanup: (Y/N) Y CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) ug/Kg Q 319-84-6 alpha-BHC 1.7 U 319-85-7 beta-BHC 1.7 U
Sulfur Cleanup: (Y/N) N pH: Sulfur Cleanup: (Y/N) Y
CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg Q 319-84-6 alpha-BHC 1.7 U 319-85-7 beta-BHC 1.7 U
CAS NO. (ug/L or ug/Kg) ug/Kg Q 319-84-6 alpha-BHC 1.7 U 319-85-7 beta-BHC 1.7 U
CAS NO. (ug/L or ug/Kg) ug/Kg Q 319-84-6 alpha-BHC 1.7 U 319-85-7 beta-BHC 1.7 U
CAS NO. (ug/L or ug/Kg) ug/Kg Q 319-84-6 alpha-BHC 1.7 U 319-85-7 beta-BHC 1.7 U
319-85-7 beta-BHC 1.7 U
319-86-8 delta-BHC 1.7 U
58-89-9 gamma-BHC (Lindane) 53
76-44-8 Heptachlor 49
309-00-2 Aldrin 56
1024-57-3 Heptachlor epoxide 1.7 U
959-98-8 Endosulfan I 1.7 U
60-57-1 Dieldrin 120
72-55-9 4,4'-DDE 3.3 U
72-20-8 Endrin 110
33213-65-9 Endosulfan II 3.3 U
72-54-8 4,4'-DDD 3.3 U
1031-07-8 Endosulfan sulfate 3.3 U
50-29-3 4,4'-DDT 110
72-43-5 Methoxychlor 17 U
53494-70-5 Endrin ketone 3.3 U
7421-93-4 Endrin aldehyde 3.3 U
5103-71-9 alpha-Chlordane 1.7 U
5103-74-2 gamma-Chlordane 1.7 U
8001-35-2 Toxaphene 33.00 U

FORM I PEST

Toxaphene

33.00

PARADIGM

(7
	ľ
1	Þ
3	⋛
	_
2	೭
L	Π
5	\mathbf{C}
5	Ξ
1	Ų
	マ
ŀ	₹
1	¥
•	•

	INVOICE TO:		
Engi			CLIENT PROJECT #:
0 <	ESS:	1	£0504
	ASSMUSTATE:		NG DAYS)
377-1450 FAX: 377	PHONE:		STD OTHER
Andres	ATTN:	1 2 3	5 ×
#	ASP Cat B. Deliverables w/EDD	QUOTE#:)9A
	REQUESTED ANALYSIS		1
<u>-</u>	⊂ z ⊣ z o o VOC 5/0C		Ą.
R SAMPLE LOCATION/FIELD ID	tch tch	REMARKS	PARADIGM LAB SAMPLE NUMBER
α.	ба 6260 6270 ТАС (
X C5-TP-01A		CRE priGA 5/29/09	6337
X C5-TP-01B	← × × × ×	1640 Jaisen all	6338
		`	
		NOA VSUOA, CONDENSION	
		on vox, sox, res, res.	
		"30 TICS asperclient	
		HISTORY EAH 6/1	
LAB USE ONLY BELOW THIS LINE			
Sample Condition: Per NELAC/ELAP 210/241/242/243/244 Receint Parameter NELAC Compliance			
v N	THE STATE OF THE S	11. 61. 10.	
ν/Α γ [] ν []		13:34	
z [John C		
Temperature: O°Ciced = temp	lizalete a. Honce 5/29, eived @ Lab By	1_	
	PLE LOCATION/FIELD ID INCOMPLE DIB P-01A P-01B N	INCOCETO: INCOCETO: INCOCETO: INCOCETO: INCOCETO: INCOCETO: INCOCETO: INCOCETO: INCOCETO: INCOCETO: INCOCETO: INCOMPANIC INCOCETO:	MEDORITO INCLES INCLES DANCES 2

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP

Lab Project Number: 09-2352 Lab Sample Number: 7578

Client Job Number:

40503 CS-TP-10-08

Date Sampled:

07/01/2009

Field Location: Field ID Number:

N/A

Date Received:

07/02/2009

Sample Type:

Soil

Date Analyzed:

07/08/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 4.20
Bromomethane	ND< 4.20 4.3
Bromoform	ND< 10.5 🗸
Carbon Tetrachloride	ND< 10.5
Chloroethane	ND< 4.20
Chloromethane	ND< 4.20
2-Chloroethyl vinyl Ether	ND< 21.0
Chloroform	ND< 4.20
Dibromochloromethane	ND< 4.20
1,1-Dichloroethane	ND< 4.20
1,2-Dichloroethane	ND< 4.20
1,1-Dichloroethene	ND< 4.20
cis-1,2-Dichloroethene	ND< 4.20
trans-1,2-Dichloroethene	ND< 4.20
1,2-Dichloropropane	ND< 4.20
cis-1,3-Dichloropropene	ND< 4.20
trans-1,3-Dichloropropene	ND< 4.20
Methylene chloride	ND< 10.5 45
1	

Aromatics	Results in ug / Kg
Benzene	ND< 4.20
Chlorobenzene	ND< 4.20
Ethylbenzene	ND< 4:20 1.05
Toluene	ND< 4.20
m,p-Xylene	J 3.25
o-Xylene	ND< 4.20 U.S
Styrene	ND< 10.5
1,2-Dichlorobenzene	ND< 10.5
1,3-Dichlorobenzene	ND< 10.5
1,4-Dichlorobenzene	ND< 4.20

Ketones	Results in ug / Kg
Acetone	32.0 3
2-Butanone	ND< 21.0
2-Hexanone	-ND<-10.5 7 1.6
4-Methyl-2-pentanone	ND< 10.5

ND< 4.20 ND< 10.5
ND< 10.5
1
1

ELAP Number 10958

Vinyl chloride

Tetrachloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane Trichloroethene

Trichlorofluoromethane

1,1,2,2-Tetrachloroethane

Method: EPA 8260B

-ND<-4.20 6 4 1

ND< 4.20

ND< 4.20 ND< 4:20 14.5

ND< 4.20

ND< 4.20

ND< 4.20

Data File: V67012.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson ERP

Lab Project Number: 09-2352

Lab Sample Number: 7578

Client Job Number: Field Location:

40503 CS-TP-10-08

Date Sampled:

07/01/2009

Field ID Number:

N/A

Date Received:

07/02/2009

Sample Type:

Soil

Date Analyzed:

07/08/2009

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Ko
n-Butylbenzene	ND< 21.0 10 · 8 3	1,2,4-Trimethylbenzene	15.5
sec-Butylbenzene	J 2.66	1,3,5-Trimethylbenzene	9.41
tert-Butylbenzene	ND< 10.5		
n-Propylbenzene	5.83	Miscellaneous	
Isopropylbenzene	ND< 21.0 4.20 3 ND< 21.0 5.79 3	Methyl tert-butyl Ether	ND< 4.20
p-Isopropyltoluene	ND< 21.0 5.79	2	

ELAP Number 10958

Naphthalene

Method: EPA 8260B

J 7.09 😘

Data File: V67012.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 092352V2.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP

Lab Project Number: 09-2352 Lab Sample Number: 7578

Client Job Number:

40503 Field Location: CS-TP-10-08

Date Sampled:

07/01/2009

Field ID Number:

N/A

Date Received:

07/02/2009

Sample Type:

Soil

Date Analyzed:

07/08/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Alkyi Hydrocarbon	N/A	6.158	37.1	N/A
Alkyl Hydrocarbon	N/A	6.30	27.5	N/A
Alkyl Hydrocarbon	N/A	6.73	90.9	N/A
Alkyl Hydrocarbon	N/A	6.87	21.0	N/A
Alkyl Hydrocarbon	N/A	7.20	27.5	N/A
Alkyl Hydrocarbon	N/A	7.51	36.5	N/A
Alkyi Hydrocarbon	N/A	7.78	63.4	N/A
Alkyl Hydrocarbon	N/A	7.90	46.4	N/A
Alkyi Hydrocarbon	N/A	8.63	47.8	N/A
Alkyi Hydrocarbon	N/A	8.85	52.0	N/A
Alkyl Hydrocarbon	N/A	8.98	40.3	N/A
Complex Hydrocarbon	N/A	9.18	33.4	N/A
Alkyi Hydrocarbon	N/A	9.39	19.1	N/A
Alkyl Benzene	N/A	9.99	36.5	N/A
Alkyi Hydrocarbon	N/A	10.11	21.0	N/A
Alkyl Hydrocarbon	N/A	10.44	32.9	N/A
Alkyl Benzene	N/A	10.47	21.4	N/A
Alkyl Benzene	N/A	10.87	38.6	N/A
Alkyl Benzene	N/A	10.97	83.5	N/A
Alkyl Hydrocarbon	N/A	11.13	78.7	N/A
Alkyi Benzene	N/A	11.19	27.9	N/A
Alkyi Benzene	N/A	11.29	19.7	N/A
Alkyi Benzene	N/A	11.32	18.7	N/A
Alkyl Benzene	N/A	11.40	27.5	N/A
Complex Hydrocarbon	N/A	11.52	40.5	N/A
Complex Hydrocarbon	N/A	11.68	29.2	N/A
Alkyl Hydrocarbon	N/A	11.80	19.7	N/A
Aikyl Benzene	N/A	11.91	48.3	N/A
Alkyl Benzene	N/A	12.00	25.4	N/A
Complex Hydrocarbon	N/A	12.37	101	N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V67012.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 092352V2.XLS

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson - ERP

Lab Project Number: 09-2352 Lab Sample Number: 7578

Client Job Number:

Field Location:

40503

CS-TP-10-08

Field ID Number: Sample Type: N/A Soil Date Sampled:

07/01/2009

Date Received: Date Analyzed:

07/02/2009

07/07/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 332	Dibenz (a,h) anthracene	ND< 332
Anthracene	ND< 332	Fluoranthene	ND< 332
Benzo (a) anthracene	ND< 332	Fluorene	ND< 332
Benzo (a) pyrene	ND< 332	Indeno (1,2,3-cd) pyrene	ND< 332
Benzo (b) fluoranthene	ND< 332	Naphthalene	ND< 332
Benzo (g,h,i) perylene	ND< 332	Phenanthrene	ND< 332
Benzo (k) fluoranthene	ND< 332	Pyrene	ND< 332
Chrysene	ND< 332	Acenaphthylene	ND< 332
Diethyl phthalate	ND< 332	1,2-Dichlorobenzene	ND< 332
Dimethyl phthalate	ND< 831 234 J	1,3-Dichlorobenzene	ND< 332
Butylbenzylphthalate	ND< 332	1,4-Dichlorobenzene	ND< 332
Di-n-butyl phthalate	ND< 332	1,2,4-Trichlorobenzene	ND< 332
Di-n-octylphthalate	ND< 332	Nitrobenzene	ND< 332
Bis (2-ethylhexyl) phthalate	ND< 332	2,4-Dinitrotoluene	ND< 332
2-Chloronaphthalene	ND< 332	2,6-Dinitrotoluene	ND< 332 (≥ 30)
Hexachlorobenzene	ND< 332	Bis (2-chloroethyl) ether	ND< 332
Hexachloroethane	ND< 332	Bis (2-chloroisopropyl) ether	ND< 332
Hexachlorocyclopentadiene	ND< 332	Bis (2-chloroethoxy) methan	ND< 332
Hexachlorobutadiene	ND< 332	4-Bromophenyl phenyl ether	ND< 332
N-Nitroso-di-n-propylamine	ND< 332 2747	4-Chlorophenyl phenyl ether	ND< 332
N-Nitrosodiphenylamine	ND< 332	Benzidine	ND< 831
N-Nitrosodimethylamine	ND< 332	3,3'-Dichlorobenzidine	ND< 332
Isophorone	ND< 332	4-Chloroaniline	ND< 332
Benzyl alcohol	ND< 831	2-Nitroaniline	ND< 831
Dibenzofuran	ND< 332	3-Nitroaniline	ND< 831
2-Methylnapthalene	ND< 332	4-Nitroaniline	ND< 831

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 332	2-Methylphenol	ND< 332
2-Chlorophenol	ND< 332	3&4-Methylphenol	ND< 332
2,4-Dichlorophenol	ND< 332	2,4-Dimethylphenol	ND< 332
2,6-Dichlorophenol	ND< 332	2-Nitrophenol	ND< 332
2,4,5-Trichlorophenol	ND< 831	4-Nitrophenol	ND< 831
2,4,6-Trichlorophenol	ND< 332	2,4-Dinitrophenol	ND< 831
Pentachlorophenol	ND< 831	4,6-Dinitro-2-methylphenol	ND< 831
4-Chloro-3-methylphenol	ND< 332	Benzoic acid	ND< 831
ELAP Number 10958	Method: EPA 8270C		Data File: \$46035.0

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: 1

chnical Director

092352S2.XLS

Semi -Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson - ERP

Lab Project Number: 09-2352 Lab Sample Number: 7578

Client Job Number: 40503

Date Sampled:

Field Location: Field ID Number:

CS-TP-10-08 N/A

Date Received:

07/01/2009 07/02/2009

Sample Type:

-Water- Soil

Date Analyzed:

07/07/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
None Found	N/A	N/A	ND< 10.0	N/A
51 A G A I 10050				
ELAP Number 10958	Method: F	PA 8270C		Data File: SA6035 D

Method: EPA 8270C

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Yechnical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 092352\$2.XLS

Data File: S46035.D

PCB Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP

Lab Project Number: 09-2352

Client Job Number:

40503

Lab Sample Number: 7578

Field Location: Field ID Number: CS-TP-10-08

Date Sampled: **Date Received:** 07/01/2009 07/02/2009

Sample Type:

N/A Soil

Date Analyzed:

07/07/2009

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.0333
Aroclor 1221	ND< 0.0333
Aroclor 1232	ND< 0.0333
Aroclor 1242	ND< 0.0333
Aroclor 1248	ND< 0.0333
Aroclor 1254	ND< 0.0333
Aroclor 1260	ND< 0.0333

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional Information, including compliance with sample condition requirements upon receipt. 092352P2.XLS

179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

Client:

Lu Engineers

Lab Project No.:

09-2352

Client Job Site: Clarkson ERP

Lab Sample No.:

7578

Client Job No.: 40503

Sample Type:

Soil

Field Location: CS-TP-10-08

Date Sampled:

07/01/2009

Field ID No.:

N/A

Date Received:

07/02/2009

Laboratory Report for Solid Waste Analysis

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Arsenic	07/10/2009	EPA 6010	6.11
Barium	07/10/2009	EPA 6010	229
Cadmium	07/10/2009	EPA 6010	0.770
Chromium	07/10/2009	EPA 6010	25.2
Lead	07/10/2009	EPA 6010	5.12
Mercury	07/10/2009	EPA 7471	0.0093
Selenium	07/10/2009	EPA 6010	<0.399
Silver	07/10/2009	EPA 6010	<0.798

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

		CHAIN OF CUSTODY	ras
	REPORT TO:		INVOICE TO: LAL 7/2
PARADIGM	COMPANY: LU ENDINEES		7/A LAB PROJECT # CLIENT PROJECT #
	0 C	ADDRESS:	09-2352 40500
	nfield	JA 216:14526 CITY:	TURNAROUND TIME: (WORKING DAYS)
	377-1450 FAX: 3.	PHONE:	M ON OTHER
PROJECT NAME/SITE NAME:	uura Sp	ATTN:	Q 2
Clarkson ERP	comments: Category 6	needed 🗧	abi Pe
	For sample	REQUESTE	
X O O	712 asper G.A.	: z	6.A. 712 EAL
DATE TIME O	R SAMPLE LOCATION/FIELD ID	R T A	REMARKS PARADIGM LAB SAMPLE NUMBER
m ⊣ - α	æ		TAL PCB
17/100 17/70	× south tank o	計 5 3 VVVVV	By-hr 7AT 7 See 09-234
2 / 15100	_		34-hr TAT) tompie
3 V 10/15	<u></u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VV Std. turnaround 757
4			
σ (Per Gres Andrus.
7		Info	for 1 promues a
8	Samples hand delivered	vered Gob Of	-2340
9	to lab so custody seals		EAHTIZH RUSH is X8h-dud Mon. 7/6
10	not necessary. Er	EAH 7/1	Stars
☐ LABIUSE ONLY BELOW THIS LINE:: ■ Sample Condition: Per NELAC/ELAP 210/24/1/242/243/244	LINE: \$43 0/241/242/243/244		THUM WITH ECHERN
Receipt Parameter	NELAC Compliance		i constant
Container Type:	× × × × × × × × × × × × × × × × × × ×	Sampled By	Date/Time Total Cost:
Preservation:	M/W	Remajuished/By Muth 70	11/09 (0:15)
Holding Time:	× × ×	Some 1	ate/Time P.I.F.
Temperature:	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	a.40nch 71	3/09 //40
Sample Sample	samples on 7/1	Venetaen (% resp p)	
pres.bec	pres.begun in tield	i	

04.2340

Client: Lu Engineers

Client Job Site:

Clarkson

Lab Project Number: 09-2377 Lab Sample Number: 7645

Client Job Number: Field Location:

40503

Soil

Field ID Number: Sample Type:

CS-PI-01 N/A

Date Sampled:

07/02/2009

Date Received:

07/06/2009

Date	Analyzed	1:

07/09/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 50.2 45
Bromomethane	ND< 50.2 WY
Bromoform	ND< 126
Carbon Tetrachloride	ND< 126
Chloroethane	ND< 50.2
Chloromethane	ND< 50.2
2-Chloroethyl vinyl Ether	ND< 251
Chloroform	ND< 50.2
Dibromochloromethane	ND< 50.2 🛂
1,1-Dichloroethane	ND< 50.2
1,2-Dichloroethane	ND< 50.2
1,1-Dichloroethene	ND< 50.2
cis-1,2-Dichloroethene	ND< 50.2
trans-1,2-Dichloroethene	ND< 50.2
1,2-Dichloropropane	ND< 50.2 45
cis-1,3-Dichloropropene	ND< 50.2 🗸
trans-1,3-Dichloropropene	ND< 50.2
Methylene chloride	ND< 126 45
1,1,2,2-Tetrachloroethane	ND< 50.2 5
Tetrachloroethene	ND< 50.2 🛰 🏲
1,1,1-Trichloroethane	ND< 50.2 45
1,1,2-Trichloroethane	ND< 50.2 🗸 🗸
Trichloroethene	ND< 50.2 🛰 🍑
Trichlorofluoromethane	ND< 50.2
Vinyl chloride	ND< 50.2

Aromatics	Results in ug / Kg
Benzene	ND< 50.2 W
Chlorobenzene	ND< 50.2 🗸 🕏
Ethylbenzene	283 🤝
Toluene	ND< 50.2 4 3
m,p-Xylene	1,060 🏲
o-Xylene	151 🌫
Styrene	ND< 126 🕶
1,2-Dichlorobenzene	ND< 126
1,3-Dichlorobenzene	ND< 126
1,4-Dichlorobenzene	ND< 50.2

Ketones	Results in ug / Kg
Acetone	ND< 251 W.S
2-Butanone	ND< 251
2-Hexanone	ND< 126 🕶
4-Methyl-2-pentanone	ND< 126 WS

Miscelianeous	Results in ug / Kg
Carbon disulfide	ND< 50.2
Vinyl acetate	ND< 126

ELAP Number 10958

Method: EPA 8260B

Data File: V67014.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outilers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson

Lab Project Number: 09-2377

Lab Sample Number: 7645

Client Job Number: Field Location:

40503 CS-PI-01

Date Sampled:

07/02/2009

Field ID Number:

N/A

Date Received:

07/06/2009

Sample Type:

Soil

Date Analyzed:

07/09/2009

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 251	1,2,4-Trimethylbenzene	E 33,100
sec-Butylbenzene	1,720	1,3,5-Trimethylbenzene	E 12,700
tert-Butylbenzene	ND< 126	, , , , , , , , , , , , , , , , , , , ,	<u> </u>
n-Propylbenzene	4,100	Miscellaneous	
Isopropyibenzene	725	Methyl tert-butyl Ether	ND< 50.2
p-Isopropyltoluene	ND< 251		
Naphthalene	E 12,700 R 3		

ELAP Number 10958

Method: EPA 8260B

Data File: V67014.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 092377V9_XLS

Client: Lu Engineers

Client Job Site:

Clarkson

40503

Lab Project Number: 09-2377

Client Job Number:

Lab Sample Number: 7645

Field Location:

CS-PI-01 Date Sampled:

Field ID Number:

Date Received: Date Analyzed: 07/02/2009 07/06/2009 07/09/2009

Sample Type:

N/A Soil

Date	Reissued:

07/23/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 1,270
Bromomethane	ND< 1,270 5
Bromoform	ND< 3,180 45
Carbon Tetrachloride	ND< 3,180
Chloroethane	ND< 1,270
Chloromethane	ND< 1,270
2-Chloroethyl vinyl Ether	ND< 6,360
Chloroform	ND< 1,270
Dibromochloromethane	ND< 1,270
1,1-Dichloroethane	ND< 1,270
1,2-Dichloroethane	ND< 1,270
1,1-Dichloroethene	ND< 1,270
cis-1,2-Dichloroethene	ND< 1,270
trans-1,2-Dichloroethene	ND< 1,270
1,2-Dichloropropane	ND< 1,270
cis-1,3-Dichloropropene	ND< 1,270
trans-1,3-Dichloropropene	ND< 1,270
Methylene chloride	ND< 3,180 45
1,1,2,2-Tetrachloroethane	ND< 1,270
Tetrachloroethene	ND< 1,270
1,1,1-Trichloroethane	ND< 1,270
1,1,2-Trichloroethane	ND< 1,270
Trichloroethene	ND< 1,270
Trichlorofluoromethane	ND< 1,270
Vinyl chloride	ND< 1,270

Aromatics	Results in ug / Kg
Benzene	ND< 1,270
Chlorobenzene	ND< 1,270
Ethylbenzene	ND< 636
Toluene	ND< 636
m,p-Xylene	ND< 1,270 45
o-Xylene	ND< 1,270 U.5
Styrene	ND< 3,180 🗥 🖰
1,2-Dichlorobenzene	ND< 3,180
1,3-Dichlorobenzene	ND< 3,180
1,4-Dichlorobenzene	ND< 1,270

Ketones	Results In ug / Kg
Acetone	B 8,090 🌫
2-Butanone	ND< 6,360
2-Hexanone	ND< 3,180
4-Methyl-2-pentanone	ND< 3,180

ND< 1,270 ND< 3,180
ND< 3,180

ELAP Number 10958

Method: EPA 8260B

Data File: V67027.D

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 092377w5 requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: <u>Lu Engineers</u>

Client Job Site:

Clarkson

Lab Project Number: 09-2377

Lab Sample Number: 7645

Client Job Number: Field Location:

40503 CS-PI-01

Date Sampled:

07/02/2009

Field ID Number:

N/A

Date Received:

07/06/2009

Sample Type: Date Analyzed: Soil

07/09/2009 07/23/2009

Date Reissued:

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 6,360	1,2,4-Trimethylbenzene	24,100
sec-Butylbenzene	N D< 1,270	7 5 1,3,5-Trimethylbenzene	4,280
tert-Butylbenzene	ND< 3,180		
n-Propylbenzene	1,510	Miscellaneous	
Isopropylbenzene	ND< 6,360	Methyl tert-butyl Ether	ND< 1,270
p-Isopropyltoluene	ND< 8,360 544	2	
Naphthalene	9,240 B T		
EL AD March on 40050	Madhad	- FDA 0000D	D-4- Eil \ (0700)

ELAP Number 10958 Data File: V67027.D Method: EPA 8260B

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 092377w5 requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Ciarkson

Lab Project Number: 09-2377

Lab Sample Number: 7645

Client Job Number: Field Location:

40503 CS-PI-01

Date Sampled:

07/02/2009

Field ID Number: Sample Type:

N/A Soil **Date Received:** Date Analyzed: 07/06/2009 07/09/2009

Date Re	eissued:
---------	----------

07/23/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Alkyl Benzene	N/A	9.659	5,350	N/A
Alkyl Benzene	N/A	9.98	5,980	N/A
Alkyi Benzene	N/A	10.65	7,760	N/A
Alkyl Benzene	N/A	10.87	8,460	N/A
Alkyl Benzene	N/A	10.90	9,070	N/A
Alkyl Benzene	N/A	10.98	22,600	N/A
Alkyl Hydrocarbon	N/A	11.12	5,660	N/A
Alkyl Benzene	N/A	11.18	5,060	N/A
Alkyl Benzene	N/A	11.28	9,800	N/A
Alkyl Benzene	N/A	11.32	6,680	N/A
Alkyl Benzene	N/A	11.40	17,700	N/A
Complex Hydrocarbon	N/A	11.52	11,800	N/A
Alkyl Benzene	N/A	11.74	3,630	N/A
Alkyl Benzene	N/A	11.85	10,100	N/A
Alkyl Benzene	N/A	11.91	16,000	N/A
Alkyl Benzene	N/A	12.00	6,680	N/A
Alkyl Benzene	N/A	12.07	4,710	N/A
Complex Hydrocarbon	N/A	12.19	14,300	N/A
Alkyl Benzene	N/A	12.26	5,220	N/A
Alkyl Benzene	N/A	12.32	5,890	N/A
Complex Hydrocarbon	N/A	12.37	17,600	N/A
Alkyl Benzene	N/A	12.48	5,730	N/A
Complex Hydrocarbon	N/A	12.66	6,490	N/A
Complex Hydrocarbon	N/A	12.72	8,720	N/A
Complex Hydrocarbon	N/A	12.77	13,500	N/A
Complex Hydrocarbon	N/A	12.88	4,580	N/A
Complex Hydrocarbon	N/A	13.22	6,270	N/A
Complex Hydrocarbon	N/A	13.42	5,950	N/A
Complex Hydrocarbon	N/A	13.60	7,320	N/A
Complex Hydrocarbon	N/A	13.80	3,400	N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V67027.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 092377w5 requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson

Lab Project Number: 09-2377

Lab Sample Number: 7645

Client Job Number: Fleld Location:

40503 CS-PI-01

Date Sampled:

07/02/2009

Field ID Number: Sample Type:

N/A Soil **Date Received:** Date Analyzed: 07/06/2009 07/09/2009

Date Reissued:

07/21/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 3,110	Dibenz (a,h) anthracene	ND< 3,110
Anthracene	ND< 3,110	Fluoranthene	ND< 3,110
Benzo (a) anthracene	ND< 3,110	Fluorene	ND< 3,110
Benzo (a) pyrene	ND< 3,110	Indeno (1,2,3-cd) pyrene	ND< 3,110
Benzo (b) fluoranthene	ND< 3,110	Naphthalene	20,400
Benzo (g,h,i) perylene	ND< 3,110	Phenanthrene	ND< 3,110
Benzo (k) fluoranthene	ND< 3,110	Pyrene	ND< 3,110
Chrysene	ND< 3,110	Acenaphthylene	ND< 3,110
Diethyl phthalate	ND< 3,110	1,2-Dichlorobenzene	ND< 3,110
Dimethyl phthalate	ND< 7,770	1,3-Dichlorobenzene	ND< 3,110
Butylbenzylphthalate	ND< 3,110	1,4-Dichlorobenzene	ND< 3,110
Di-n-butyl phthalate	ND< 3,110	1,2,4-Trichlorobenzene	ND< 3,110
Di-n-octylphthalate	ND< 3,110	Nitrobenzene	ND< 3,110
Bis (2-ethylhexyl) phthalate	ND< 3,110	2,4-Dinitrotoluene	ND< 3,110
2-Chloronaphthalene	ND< 3,110	2,6-Dinitrotoluene	ND< 3,110
Hexachlorobenzene	ND< 3,110	Bis (2-chloroethyl) ether	ND< 3,110
Hexachloroethane	ND< 3,110 8895	Bis (2-chlorolsopropyl) ether	ND< 3,110
Hexachlorocyclopentadiene	ND< 3,110	Bis (2-chloroethoxy) methan	ND< 3,110
Hexachlorobutadiene	ND< 3,110	4-Bromophenyl phenyl ether	ND< 3,110
N-Nitroso-di-n-propylamine	ND< 3,110	4-Chlorophenyl phenyl ether	ND< 3,110
N-Nitrosodiphenylamine	ND< 3,110	Benzidine	ND< 7,770
N-Nitrosodimethylamine	ND< 3,110	3,3'-Dichlorobenzidine	ND< 3,110
Isophorone	ND< 3,110	4-Chloroaniline	ND< 3.110 548
Benzyl alcohol	ND< 7,770	2-Nitroaniline	ND< 7,770
Dibenzofuran	ND< 3,110	3-Nitroaniline	ND< 7,770
2-Methylnapthalene	33,400	4-Nitroaniline	ND< 7,770

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 3,110	2-Methylphenol	ND< 3,110
2-Chlorophenoi	ND< 3,110	3&4-Methylphenol	ND< 3,110
2,4-Dichlorophenol	ND< 3,110	2,4-Dimethylphenol	ND< 3,110
2,6-Dichlorophenol	ND< 3,110	2-Nitrophenol	ND< 3,110
2,4,5-Trichlorophenol	ND< 7,770	4-Nitrophenol	ND< 7,770
2,4,6-Trichlorophenol	ND< 3,110	2,4-Dinitrophenol	ND< 7,770
Pentachlorophenol	ND< 7,770	4,6-Dinitro-2-methylphenol	ND< 7,770
4-Chloro-3-methylphenol	ND< 3,110	Benzoic acid	ND< 7,770

ELAP Number 10958

Method: EPA 8270C

Data File: S46076.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

09237713.XLS

Client: Lu Engineers

Client Job Site:

Clarkson

Lab Project Number: 09-2377 Lab Sample Number: 7645

Client Job Number:

40503 CS-PI-01

Soil

Date Sampled:

07/02/2009

Field Location: Field ID Number: Sample Type:

CS-PI-0 N/A

Date Received: Date Analyzed:

07/06/2009 07/09/2009

Date Reissued:

07/21/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Alkyl Benzene	N/A	6.49	23,900	N/A
Alkyl Hydrocarbon	N/A	6.51	9,450	N/A
Alkyl Benzene	N/A	6.58	13,600	N/A
Alkył Benzene	N/A	6.89	44,100	N/A
Alkyl Hydrocarbon	N/A	6.96	14,500	N/A
Alkyl Benzene	N/A	7.25	22,300	N/A
Alkyl Hydrocarbon	N/A	7.37	10,000	N/A
Alkyl Hydrocarbon	N/A	7.41	13,600	N/A
Alkyl Benzene	N/A	7.58	36,200	N/A
Alkyl Benzene	N/A	7.62	27,600	N/A
Alkyl Benzene	N/A	7.66	39,300	N/A
Alkyl Hydrocarbon	N/A	7.70	13,500	N/A
Alkyl Benzene	N/A	7.76	17,400	N/A
Alkyl Benzene	N/A	7.87	31,700	N/A
Alkyl Benzene	N/A	7.89	15,900	N/A
Alkyl Hydrocarbon	N/A	8.08	9,670	N/A
Alkyl Benzene	N/A	8.29	14,600	N/A
Alkyl Benzene	N/A	8.33	15,300	N/A
Complex Hydrocarbon	N/A	8.53	13,800	N/A
Complex Hydrocarbon	N/A	8.57	10,300	N/A
Complex Hydrocarbon	N/A	8.65	31,400	N/A
Complex Hydrocarbon	N/A	8.70	8,120	N/A
Complex Hydrocarbon	N/A	8.79	8,860	N/A
Complex Hydrocarbon	N/A	9.08	15,700	N/A
Alkyl Hydrocarbon	N/A	9.11	8,830	N/A
Alkyl Hydrocarbon	N/A	9.13	9,760	N/A
Alkyl Hydrocarbon	N/A	9.46	13,700	N/A
Alkyl Hydrocarbon	N/A	9.61	10,900	N/A
Alkyl Hydrocarbon	N/A	9.74	10,900	N/A
Alkyl Hydrocarbon	N/A	10.20	8,890	N/A

ELAP Number 10958

Method: EPA 8270C

Data File: S46076.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

179 Lake Avenue, Rochester, NY 14608 (585) 647-2530 FAX (585) 647-3311

Client:

Lu Engineers

Lab Project No.: Lab Sample No.: 09-2377

Client Job Site: Clarkson

Sample Type:

7645 Soil

Client Job No.: 40503

Field Location: CS-PI-01

Date Sampled:

07/02/2009

Field ID No.:

N/A

Date Received:

07/06/2009

Laboratory Report for Solid Waste Analysis

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Arsenic	07/10/2009	EPA 6010	2.70
Barium	07/10/2009	EPA 6010	655
Cadmium	07/10/2009	EPA 6010	<0.459
Chromium	07/10/2009	EPA 6010	11.4
Lead	07/10/2009	EPA 6010	9.07
Mercury	07/08/2009	EPA 7471	0.0192
Selenium	07/10/2009	EPA 6010	<0.459
Silver	07/10/2009	EPA 6010	<0.918

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: 9359

Client Job Number:

Field Location:

40503

MW-01, 8-10'

Field ID Number: Sample Type:

N/A Soil

Date Sampled:

08/10/2009

Date Received:

08/12/2009

Date Analyzed:

08/21/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 4.46
Bromomethane	ND< 4.46
Bromoform	ND< 11.2
Carbon Tetrachloride	ND< 11.2
Chloroethane	ND< 4.46
Chloromethane	ND< 4.46
2-Chloroethyl vinyl Ether	ND< 22.3
Chloroform	ND< 4.46
Dibromochloromethane	ND< 4.46
1,1-Dichloroethane	ND< 4.46
1,2-Dichloroethane	ND< 4.46
1,1-Dichloroethene	ND< 4.46
cis-1,2-Dichloroethene	ND< 4.46
trans-1,2-Dichloroethene	ND< 4.46
1,2-Dichloropropane	ND< 4.46
cis-1,3-Dichloropropene	ND< 4.46
trans-1,3-Dichioropropene	ND< 4.46
Methylene chloride	ND< 11.2
1,1,2,2-Tetrachloroethane	ND< 4.46
Tetrachloroethene	ND< 4.46
1,1,1-Trichloroethane	ND< 4.46
1,1,2-Trichloroethane	ND< 4.46
Trichloroethene	ND< 4.46
Trichlorofluoromethane	ND< 4.46

Aromatics	Results in ug / Kg
Benzene	ND< 4.46
Chlorobenzene	ND< 4.46
Ethylbenzene	ND< 4.46
Toluene	ND< 4.46
m,p-Xylene	ND< 4.46
o-Xylene	ND< 4.46
Styrene	ND< 11.2
1,2-Dichlorobenzene	ND< 11.2
1,3-Dichlorobenzene	ND< 11.2
1,4-Dichlorobenzene	ND< 4.46

Ketones	Results in ug / Kg
Acetone	ND< 22.3 U-3
2-Butanone	ND< 22.3
2-Hexanone	ND< 11.2
4-Methyl-2-pentanone	ND< 11.2

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 4.46
Vinyl acetate	ND< 11.2

ELAP Number 10958

Vinyl chloride

Method: EPA 8260B

ND< 4.46

Data File: V68214.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be "J" or "UJ"

Volatile Analysis Report for Solls/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950 Lab Sample Number: 9359

Client Job Number: 40503 Fleid Location:

MW-01, 8-10'

Date Sampled:

08/10/2009

Field ID Number:

N/A

Date Received:

08/12/2009

Sample Type:

Soil

Date Analyzed:

08/21/2009

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 22.3	1,2,4-Trimethylbenzene	ND< 4.46
sec-Butylbenzene	ND< 4.46	1,3,5-Trimethylbenzene	ND< 4.46
tert-Butylbenzene	ND< 11.2		
n-Propylbenzene	ND< 4.46	Miscellaneous	
Isopropylbenzene	ND< 22.3	Methyl tert-butyl Ether	ND< 4.46
p-Isopropyltoluene	ND< 22.3		
Naphthalene	ND< 11.2 45		

Data File: V68214.D Method: EPA 8260B ELAP Number 10958

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

requirements upon receipt.

Bruce Hoogesteger: Technical Director

All target analytes should be "J" or "UJ"

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: 9359

Client Job Number:

Field Location: Field ID Number:

Sample Type:

MW-01, 8-10'

40503

N/A

Soil

Date Sampled:

08/10/2009

Date Received:

08/12/2009

Date Analyzed:

08/21/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 4.46	N/A
<u></u>				
ELAP Number 10958	Method: E	PA 8260B		Data File: V68214.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be "J" or "UJ"

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: 9360

Client Job Number:

40503 MW-02, 8-9.5'

Date Sampled:

08/11/2009

Field Location: Field ID Number:

N/A

Date Received:

08/12/2009

Sample Type:

Soil

Date Analyzed:

08/21/2009

Results in ug / Kg
ND< 4.31
ND< 4.31
ND< 10.8
ND< 10.8
ND< 4.31
ND< 4.31
ND< 21.5
ND< 4.31
ND< 10.8
ND< 4.31

Aromatics	Results in ug / Kg
Benzene	ND< 4.31
Chlorobenzene	ND< 4.31
Ethylbenzene	ND< 4.31
Toluene	ND< 4.31
m,p-Xylene	ND< 4.31
o-Xylene	ND< 4.31
Styrene	ND< 10.8
1,2-Dichlorobenzene	ND< 10.8
1,3-Dichlorobenzene	ND< 10.8
1,4-Dichlorobenzene	ND< 4.31

Ketones	Results in ug / Kg
Acetone	ND< 21.5 43
2-Butanone	ND< 21.5
2-Hexanone	ND< 10.8
4-Methyl-2-pentanone	ND< 10.8

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 4.31
Vinyl acetate	ND< 10.8
	'
ŀ	

ELAP Number 10958

Vinyl chloride

Trichlorofluoromethane

Method: EPA 82608

ND< 4.31

ND< 4.31

Data File: V68215.D

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be "J" or "UJ"

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 092950V2.XLS

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: 9360

Client Job Number:

40503 MW-02, 8-9.5'

Date Sampled:

08/11/2009

Field Location: Field ID Number:

N/A

Date Received:

08/12/2009

Sample Type:

Soil

Date Analyzed:

08/21/2009

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 21.5	1,2,4-Trimethylbenzene	ND< 4.31
sec-Butylbenzene	ND< 4.31	1,3,5-Trimethylbenzene	ND< 4.31
tert-Butylbenzene	ND< 10.8		
n-Propylbenzene	ND< 4.31	Miscellaneous	
Isopropylbenzene	ND< 21.5	Methyl tert-butyl Ether	ND< 4.31
p-Isopropyltoluene	ND< 21.5		
Naphthalene	ND< 10.8 45		

ELAP Number 10958

Method: EPA 8260B

Data File: V68215.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

All target analytes should be

Signature:

Bruce Hoogesteger: Technical Director

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: 9360

Client Job Number: Field Location:

40503 MW-02, 8-9.5'

Date Sampled:

08/11/2009

Field ID Number:

N/A

Date Received:

08/12/2009

Sample Type:

Soil

Date Analyzed:

08/21/2009

CAS Number	Retention Time	Results in ug / Kg	Percent Fit
N/A	N/A	ND< 4.31	N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V68215.D

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

All target analytes should be

Signature:

Bruce Hoogestegel: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 092950V2.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: 9361

Client Job Number:

40503

Date Sampled:

08/12/2009

Fleld Location: Field ID Number: MW-03, 2-4'

Date Received:

08/12/2009

Sample Type:

N/A Soll

Date Analyzed:

08/21/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 4.46
Bromomethane	ND< 4.46
Bromoform	ND< 11.1
Carbon Tetrachloride	ND< 11.1
Chloroethane	ND< 4.46
Chloromethane	ND< 4.46
2-Chloroethyl vinyl Ether	ND< 22.3
Chloroform	ND< 4.46
Dibromochloromethane	ND< 4.46
1,1-Dichloroethane	ND< 4.46
1,2-Dichloroethane	ND< 4.46
1,1-Dichloroethene	ND< 4.46
cis-1,2-Dichloroethene	ND< 4.46
trans-1,2-Dichloroethene	ND< 4.46
1,2-Dichloropropane	ND< 4.46
cis-1,3-Dichloropropene	ND< 4.46
trans-1,3-Dichloropropene	ND< 4.46
Methylene chloride	ND< 11.1
1,1,2,2-Tetrachloroethane	ND< 4.46
Tetrachloroethene	ND< 4.46
1,1,1-Trichloroethane	ND< 4.46
1,1,2-Trichloroethane	ND< 4.46
Trichloroethene	ND< 4.46
Trichlorofluoromethane	ND< 4.46

Aromatics	Results in ug / Kg
Benzene	ND< 4.46
Chlorobenzene	ND< 4.46
Ethylbenzene	ND< 4.46
Toluene	ND< 4.46
m,p-Xylene	ND< 4.46
o-Xylene	ND< 4.46
Styrene	ND< 11.1
1,2-Dichlorobenzene	ND< 11.1
1,3-Dichlorobenzene	ND< 11.1
1,4-Dichlorobenzene	ND< 4.46

Ketones	Results in ug / Kg
Acetone	ND< 22.3 🗸 🗸
2-Butanone	ND< 22.3
2-Hexanone	ND< 11.1
4-Methyl-2-pentanone	ND< 11.1

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 4.46
Vinyl acetate	ND< 11.1

ELAP Number 10958

Vinyl chloride

Method: EPA 8260B

ND< 4.46

Data File: V68216.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

All target analytes should be

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 192950V3.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: 9361

Client Job Number: Field Location:

40503 MW-03, 2-4'

Date Sampled:

08/12/2009

Field ID Number:

N/A

Date Received:

08/12/2009

Sample Type:

Soil

Date Analyzed:

08/21/2009

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 22.3	1,2,4-Trimethylbenzene	ND< 4.46
sec-Butylbenzene	ND< 4.46	1,3,5-Trimethylbenzene	ND< 4.46
tert-Butylbenzene	ND< 11.1	•	
n-Propylbenzene	ND< 4.46	Miscellaneous	
Isopropylbenzene	ND< 22.3	Methyl tert-butyl Ether	ND< 4.46
p-Isopropyltoluene	ND< 22.3		
Naphthalene	ND< 11.1 WT		

ELAP Number 10958

Method: EPA 8260B

Data File: V68216.D

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: 9361

Client Job Number: Field Location:

MW-03, 2-4' Date Sampled: 08/12/2009

Field ID Number:

N/A

40503

Date Received:

08/12/2009

Sample Type:

Soil

Date Analyzed:

08/21/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 4.46	N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V68216.D

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

All target analytes should be

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

092950V3.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: 9362

Client Job Number:

40503 MW-04, 8-11'

Date Sampled:

08/12/2009

Field Location: Field ID Number:

N/A

Date Received:

08/12/2009

Sample Type:

Soil

Date Analyzed:

08/21/2009

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 4.56
Bromomethane	ND< 4.56
Bromoform	ND< 11.4
1	

Bromomethane	ND< 4.56
Bromoform	ND< 11.4
Carbon Tetrachloride	ND< 11.4
Chloroethane	ND< 4.56
Chloromethane	ND< 4.56
2-Chloroethyl vlnyl Ether	ND< 22.8
Chloroform	ND< 4.56
Dibromochloromethane	ND< 4.56
1,1-Dichloroethane	ND< 4.56
1.2-Dichlomethane	ND< 4.56

Dibromochloromethane	ND< 4.56
1,1-Dichloroethane	ND< 4.56
1,2-Dichloroethane	ND< 4.56
1,1-Dichloroethene	ND< 4.56
cis-1,2-Dichloroethene	ND< 4.56

010-1,2-010110100110110	110 1 7.00
trans-1,2-Dichloroethene	ND< 4.56
1,2-Dichloropropane	ND< 4.56
cis-1,3-Dichloropropene	ND< 4.56
trans-1,3-Dichloropropene	ND< 4.56
Methylene chloride	ND< 11.4
1,1,2,2-Tetrachloroethane	ND< 4.56
Tetrachloroethene	ND< 4.56 🕶
1,1,1-Trichloroethane	ND< 4.56

Trichlorofluoromethane
Vinyl chloride
ELAP Number 10958

Trichloroethene

1,1,2-Trichloroethane

Aromatics	Results in ug / Kg
Benzene	ND< 4.56
Chlorobenzene	ND< 4.56
Ethylbenzene	ND< 4.56
Toluene	ND< 4.56 45
m,p-Xylene	ND< 4.56
o-Xylene	ND< 4.56 4
Styrene	ND< 11.4 4 5
1,2-Dichlorobenzene	ND< 11.4
1,3-Dichlorobenzene	ND< 11.4
1,4-Dichlorobenzene	ND< 4.56

Ketones	Results in ug / Kg	
Acetone	ND< 22.8 🗸 🔾	
2-Butanone	ND< 22.8	
2-Hexanone	ND< 11.4	
4-Methyl-2-pentanone	ND< 11.4	

Miscellaneous	Results in ug / Kg
Carbon disulfide	10.0
Vinyl acetate	ND< 11.4

Method: EPA 8260B

ND< 4.56 ND< 4.56 4.5

ND< 4.56

ND< 4.56

Data File: V68217.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

All target analytes should be

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: 9362

Client Job Number:

40503 MW-04, 8-11'

Date Sampled:

08/12/2009

Field Location: Field ID Number:

N/A

Date Received:

08/12/2009

Sample Type:

Soil

Date Analyzed:

08/21/2009

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 22.8	1,2,4-Trimethylbenzene	ND< 4.56
sec-Butylbenzene	ND< 4.56	1,3,5-Trimethylbenzene	ND< 4.56
tert-Butylbenzene	ND< 11.4	•	
n-Propylbenzene	ND< 4.56	Miscellaneous	
Isopropylbenzene	ND< 22.8 45	Methyl tert-butyl Ether	ND< 4.56
p-Isopropyltoluene	ND< 22.8	•	
Naphthalene	ND< 11.4 U.J		
	N. J. Alexandre	EDA 0000D	Data Ellas V0004

ELAP Number 10958

Method: EPA 8260B

Data File: V68217.D

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 092950V4.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950 Lab Sample Number: 9362

Client Job Number:

Fleld Location:

MW-04, 8-11'

Date Sampled:

08/12/2009

Fleid ID Number:

N/A

40503

Date Received:

08/12/2009

Sample Type:

Soil

Date Analyzed:

08/21/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Unknown Hydrocarbon	N/A	5. 544	48.4	N/A
Alkyl Hydrocarbon	N/A	5. 95	87.9	N/A
Alkyl Hydrocarbon	N/A	6.27	43.4	N/A
n,n'-Dimethylcyclohexane	N/A	6.87	178	N/A
Alkyl Hydrocarbon	N/A	7.21	140	N/A
Alkyl Hydrocarbon	N/A	7.33	47.5	N/A
n,n'-Dimethylcyclohexane	N/A	7.52	353	N/A
n,n',n"-Trimethylcyclohexane	N/A	7. 7 5	213	N/A
n,n',n"-Trimethylcyclohexane	N/A	7.92	46.8	N/A
n,n',n"-Trimethylcyclohexane	N/A	8.16	120	N/A
Alkyl Cyclohexane	N/A	8.26	83.1	N/A
Alkyl Hydrocarbon	N/A	8.30	102	N/A
Alkyl Hydrocarbon	N/A	8.35	114	N/A
Alkyl Hydrocarbon	N/A	8.37	335	N/A
Alkyl Hydrocarbon	N/A	8.85	283	N/A
Unknown Hydrocarbon	N/A	8.89	98.6	N/A
Unknown Hydrocarbon	N/A	9.00	141	N/A
Unknown Hydrocarbon	N/A	9.34	43.4	N/A
Alkyl Hydrocarbon	N/A	9.41	63.4	N/A
Unknown Hydrocarbon	N/A	9.47	195	N/A
Unknown Hydrocarbon	N/A	9.87	62.5	N/A
Unknown Hydrocarbon	N/A	10.00	48.6	N/A
Unknown Hydrocarbon	N/A	10.16	42.2	N/A
n,n'-Diethylbenzene	N/A	10.87	45.4	N/A
Decahydro-naphthalene	N/A	10.96	191	N/A
Unknown Hydrocarbon	N/A	11.68	133	N/A
Unknown Hydrocarbon	N/A	11.84	46.1	N/A
Unknown Hydrocarbon	N/A	11.93	54.1	N/A
Unknown Hydrocarbon	N/A	12.00	40.2	N/A
Unknown Hydrocarbon	N/A	12.51	46.3	N/A

ELAP Number 10958

Method: EPA 8260B

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

hal target analytes should be

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 092950V4.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: Method Blank

Client Job Number: Field Location:

40503 N/A

Date Sampled:

N/A

Field ID Number: Sample Type:

N/A Soil

Date Received: Date Analyzed: N/A 08/21/2009

Date Reissued:

08/25/2010

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 4.00
Bromomethane	ND< 4.00
Bromoform	ND< 10.0
Carbon Tetrachloride	ND< 10.0
Chloroethane	ND< 4.00
Chloromethane	ND< 4.00
2-Chloroethyl vinyl Ether	ND< 20.0

Chloroform ND< 4.00 Dibromochloromethane

ND< 4.00 1,1-Dichloroethane ND< 4.00 1,2-Dichloroethane ND< 4.00 1,1-Dichloroethene

ND< 4.00 cis-1,2-Dichloroethene ND< 4.00 trans-1,2-Dichloroethene ND< 4.00 1,2-Dichloropropane ND< 4.00 cis-1,3-Dichloropropene ND< 4.00

ND< 4.00

ND< 4.00

Methylene chloride ND< 10.0 ND< 4.00 1.08 1,1,2,2-Tetrachloroethane Tetrachloroethene ND< 4.00 1,1,1-Trichloroethane ND< 4.00 1,1,2-Trichloroethane ND< 4.00 Trichloroethene ND< 4.00 Trichlorofluoromethane ND< 4.00

ELAP Number 10958

Vinyl chloride

trans-1,3-Dichloropropene

Aromatics	Results in ug / Kg	
Benzene	ND< 4.00	
Chiorobenzene	ND< 4.00	
Ethylbenzene	ND< 4.00	
Toluene	ND< 4.00	
m,p-Xylene	ND< 4.00	
o-Xylene	ND< 4.00	
Styrene	ND< 10.0	_
1,2-Dichlorobenzene	ND< 10.0 1.17	J
1,3-Dichlorobenzene	ND< 10.0	
1,4-Dichlorobenzene	ND< 4.00 .47	7

Ketones	Results in ug / Kg	
Acetone	ND< 20.0	
2-Butanone	ND< 20.0	
2-Hexanone	J 5.74	
4-Methyl-2-pentanone	ND< 10.0 4.33	

sults in ug / Kg	iscellaneous	
ND< 4.00	Carbon disulfide	
ND< 10.0	nyl acetate	
	.,,	

Method: EPA 8260B Data File: V68211.D

2

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

092950VB XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Client Job Number:

40503

Lab Sample Number: Method Blank

Field Location:

N/A

Date Sampled:

N/A N/A

Field ID Number: Sample Type:

N/A Soil

Date Received: Date Analyzed:

08/21/2009

Date Reissued:

08/25/2010

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 20.0	1,2,4-Trimethylbenzene	ND< 4.00
sec-Butylbenzene	ND< 4.00	1,3,5-Trimethylbenzene	ND< 4.00
tert-Butylbenzene	ND< 10.0	•	
n-Propylbenzene	ND< 4.00	Miscellaneous	
Isopropylbenzene	ND< 20.0	Methyl tert-butyl Ether	ND< 4.00
p-Isopropyltoluene	ND< 20.0	•	
Naphthalene	J 5.06		

ELAP Number 10958

Method: EPA 8260B

Data File: V68211.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 092950VB.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: 9359

Client Job Number:

Field Location:

MW-01, 8-10'

Date Sampled: Date Received: 08/10/2009 08/12/2009

Field iD Number: Sample Type:

N/A Soil

40503

Date Analyzed:

08/25/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 331	Dibenz (a,h) anthracene	ND< 331
Anthracene	ND< 331	Fluoranthene	ND< 331
Benzo (a) anthracene	ND< 331	Fluorene	ND< 331
Benzo (a) pyrene	ND< 331	Indeno (1,2,3-cd) pyrene	ND< 331
Benzo (b) fluoranthene	ND< 331	Naphthalene	ND< 331
Benzo (g,h,i) perylene	ND< 331	Phenanthrene	ND< 331
Benzo (k) fluoranthene	ND< 331	Pyrene	ND< 331
Chrysene	ND< 331	Acenaphthylene	ND< 331
Diethyl phthalate	ND< 331	1,2-Dichlorobenzene	ND< 331
Dimethyl phthalate	ND< 829	1,3-Dichlorobenzene	ND< 331
Butylbenzylphthalate	ND< 331	1,4-Dichlorobenzene	ND< 331
Di-n-butyl phthalate	ND< 331	1,2,4-Trichlorobenzene	ND< 331
Di-n-octylphthalate	ND< 331	Nitrobenzene	ND< 331
Bis (2-ethylhexyl) phthalate	ND< 331	2,4-Dinitrotoluene	ND< 331
2-Chloronaphthalene	ND< 331	2,6-Dinitrotoluene	ND< 331
Hexachlorobenzene	ND< 331	Bis (2-chloroethyl) ether	ND< 331
Hexachloroethane	ND< 331	Bis (2-chlorolsopropyi) ether	ND< 331
Hexachlorocyclopentadiene	ND< 331	Bis (2-chloroethoxy) methan	ND< 331
Hexachlorobutadiene	ND< 331	4-Bromophenyl phenyl ether	ND< 331
N-Nitroso-di-n-propylamine	ND< 331	4-Chlorophenyl phenyl ether	ND< 331
N-Nitrosodlphenylamine	ND< 331	Benzidine	ND< 829
N-Nitrosodimethylamine	ND< 331	3,3'-Dichlorobenzidine	ND< 331
Isophorone	ND< 331	4-Chloroaniline	ND< 331
Benzyl alcohol	ND< 829	2-Nitroaniline	ND< 829
Dibenzofuran	ND< 331	3-Nitroaniline	ND< 829
2-Methylnapthalene	ND< 331	4-Nitroanillne	ND< 829

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 331	2-Methylphenol	ND< 331
2-Chiorophenol	ND< 331	3&4-Methylphenol	ND< 331
2,4-Dichlorophenol	ND< 331	2,4-Dimethylphenol	ND< 331
2,6-Dichiorophenol	ND< 331	2-Nitrophenol	ND< 331
2,4,5-Trichlorophenol	ND< 829	4-Nitrophenol	ND< 829
2,4,6-Trichlorophenol	ND< 331	2,4-Dinitrophenol	ND< 829
Pentachlorophenol	ND< 829	4,6-Dinitro-2-methylphenol	ND< 829
4-Chloro-3-methylphenol	ND< 331	Benzolc acid	ND< 829

ELAP Number 10958

Method: EPA 8270C

Data File: S46734.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

requirements upon receipt.

Bruce Hoogesteger: Technical Director

All target analytes should be

Semi -Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950 Lab Sample Number: 9359

Client Job Number:

Field Location:

40503 MW-01, 8-10'

Date Sampled:

08/10/2009

Field ID Number: Sample Type:

N/A Water **Date Received:**

08/12/2009

Date Analyzed:

08/25/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
None Found	N/A	N/A	ND< 10.0	N/A

ELAP Number 10958

Method: EPA 8270C

Data File: S46734.D

Comments: ND denotes Non Detect

ug / L = microgram per Liter

Surrogate outliers indicate probable matrix interference

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 092950S1.XLS

J

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950 Lab Sample Number: 9360

Client Job Number:

Field Location:

40503 MW-02, 8-9.5'

Date Sampled:

08/11/2009

Field ID Number:

N/A

Date Received:

08/12/2009

Sample Type:

Soil

Date Analyzed:

08/25/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 333	Dibenz (a,h) anthracene	ND< 333
Anthracene	ND< 333	Fluoranthene	170
Benzo (a) anthracene	ND< 333	Fluorene	ND< 333
Benzo (a) pyrene	ND< 333	Indeno (1,2,3-cd) pyrene	ND< 333
Benzo (b) fluoranthene	ND< 333	Naphthalene	ND< 333
Benzo (g,h,i) perylene	ND< 333	Phenanthrene	ND< 333
Benzo (k) fluoranthene	ND< 333	Pyrene	ND< 333
Chrysene	ND< 333	Acenaphthylene	ND< 333
District about	ND = 222	4.0 Dichlorobearano	ND < 222

Diethyl phthalate ND< 333 1,2-Dichlorobenzene ND< 333 ND< 333 Dimethyl phthalate ND< 832 1,3-Dichlorobenzene ND< 333 ND< 333 1.4-Dichlorobenzene Butylbenzylphthalate 1,2,4-Trichlorobenzene ND< 333 Di-n-butyl phthalate ND< 333 ND< 333 Nitrobenzene ND< 333 Di-n-octylphthalate ND< 333 2,4-Dinitrotoluene ND< 333 Bis (2-ethylhexyl) phthalate ND< 333 ND< 333 2,6-Dinitrotoluene 2-Chloronaphthalene ND< 333 Hexachiorobenzene ND< 333 Bis (2-chloroethyl) ether Bis (2-chloroisopropyl) ether ND< 333 Hexachloroethane ND< 333 ND< 333 Bis (2-chloroethoxy) methan ND< 333 Hexachlorocyclopentadiene 4-Bromophenyl phenyl ether ND< 333 Hexachlorobutadiene ND< 333 ND< 333 ND< 333 4-Chlorophenyl phenyl ether N-Nitroso-di-n-propylamine Benzidine ND< 832 ND< 333 N-Nitrosodiphenylamine 3.3'-Dichlorobenzidine ND< 333 N-Nitrosodimethylamine ND< 333 ND< 333 4-Chloroaniline Isophorone ND< 333

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 333	2-Methyiphenol	ND< 333
2-Chlorophenol	ND< 333	3&4-Methylphenol	ND< 333
2.4-Dichlorophenol	ND< 333	2,4-Dimethylphenol	ND< 333
2,6-Dichlorophenol	ND< 333	2-Nitrophenol	ND< 333
2.4.5-Trichlorophenol	ND< 832	4-Nitrophenol	ND< 832
2.4.6-Trichlorophenol	ND< 333	2,4-Dinitrophenol	ND< 832
Pentachiorophenol	ND< 832	4,6-Dinitro-2-methylphenol	ND< 832
4-Chioro-3-methylphenol	ND< 333	Benzoic acid	ND< 832
		ED4 00700	D-4- Fil-, 04072F D

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

ND< 832

ND< 333

ND< 333

ELAP Number 10958

Benzyl alcohol

2-Methylnapthalene

Dibenzofuran

Method: EPA 8270C

Data File: S46735.D

ND< 832

ND< 832

ND< 832

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

All target analytes should be "J" or "UJ"

Signature:

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 092950S2.XLS requirements upon receipt.

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Semi -Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: 9360

Client Job Number: Field Location:

40503 MW-02, 8-9.5'

Date Sampled:

08/11/2009

Field ID Number:

N/A

Date Received:

08/12/2009

Sample Type:

N/A Water

Date Analyzed:

08/25/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
None Found	N/A	N/A	ND< 10.0	N/A

ELAP Number 10958

Method: EPA 8270C

Data File: S46735.D

Comments: ND denotes Non Detect ug / L = microgram per Liter All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Temnical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: 9361

Client Job Number:

Field Location:

MW-03, 2-4'

Date Sampled:

08/12/2009

Field ID Number: Sample Type:

N/A Soil

40503

Date Received: Date Analyzed: 08/12/2009 08/25/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 326	Dibenz (a,h) anthracene	ND< 326
Anthracene	ND< 326	Fluoranthene	ND< 163
Benzo (a) anthracene	ND< 326	Fluorene	ND< 326
Benzo (a) pyrene	ND< 326	Indeno (1,2,3-cd) pyrene	ND< 326
Benzo (b) fluoranthene	ND< 326	Naphthalene	ND< 326
Benzo (g,h,i) perylene	ND< 326	Phenanthrene	ND< 326
Benzo (k) fluoranthene	ND< 326	Pyrene	ND< 326
Chrysene	ND< 326	Acenaphthylene	ND< 326
Diethyl phthalate	ND< 326	1,2-Dichlorobenzene	ND< 326
Dimethyl phthalate	ND< 816	1,3-Dichlorobenzene	ND< 326
Butylbenzylphthalate	ND< 326	1,4-Dichlorobenzene	ND< 326
Di-n-butyl phthalate	ND< 326	1,2,4-Trichlorobenzene	ND< 326
Di-n-octylphthalate	ND< 326	Nitrobenzene	ND< 326
Bis (2-ethylhexyl) phthalate	ND< 326	2,4-Dinitrotoluene	ND< 326
2-Chloronaphthalene	ND< 326	2,6-Dinitrotoluene	ND< 326
Hexachlorobenzene	ND< 326	Bis (2-chloroethyl) ether	ND< 326
Hexachloroethane	ND< 326	Bis (2-chloroisopropyl) ether	ND< 326
Hexachlorocyclopentadiene	ND< 326	Bis (2-chloroethoxy) methan	ND< 326
Hexachlorobutadiene	ND< 326	4-Bromophenyl phenyl ether	ND< 326
N-Nitroso-di-n-propylamine	ND< 326	4-Chlorophenyl phenyl ether	ND< 326
N-Nitrosodiphenylamine	ND< 326	Benzidine	ND< 816
N-Nitrosodimethylamine	ND< 326	3,3'-Dichlorobenzidine	ND< 326
Isophorone	ND< 326	4-Chloroaniline	ND< 326
Benzyl alcohol	ND< 816	2-Nitroaniline	ND< 816
Dibenzofuran	ND< 326	3-Nitroaniline	ND< 816
2-Methylnapthalene	ND< 326	4-Nitroaniline	ND< 816

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 326	2-Methylphenol	ND< 326
2-Chlorophenol	ND< 326	3&4-Methylphenol	ND< 326
2,4-Dichlorophenol	ND< 326	2,4-Dimethylphenol	ND< 326
2,6-Dichlorophenol	ND< 326	2-Nitrophenol	ND< 326
2,4,5-Trichlorophenol	ND< 816	4-Nitrophenol	ND< 816
2,4,6-Trichlorophenol	ND< 326	2,4-Dinitrophenol	ND< 816
Pentachlorophenol	ND< 816	4,6-Dinitro-2-methylphenol	ND< 816
4-Chloro-3-methylphenol	ND< 326	Benzoic acid	ND< 816
TI 40 NI - 1- 40000	1.4 - 11	EDA 00700	Date City, 040700 D

ELAP Number 10958

Method: EPA 8270C

Data File: S46736.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Techpical Director

All larget analytes should be "J" or "UJ"

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

092950S3.XLS requirements upon receipt.

Semi -Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: 9361

Client Job Number:

Field Location:

40503 MW-03, 2-4'

Date Sampled:

08/12/2009

Field ID Number:

N/A

Date Received:

08/12/2009

Sample Type:

Water

Date Analyzed:

08/25/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
None Found	N/A	N/A	ND< 10.0	N/A
1				
1				

Method: EPA 8270C

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Data File: S46736.D

Signature:

ELAP Number 10958

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 092950S3.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: 9362

Client Job Number:

Field Location:

40503 MW-04, 8-11'

Date Sampled:

08/12/2009

Fleid ID Number:

N/A

Date Received:

08/12/2009

Sample Type: Soil

Date Analyzed:

08/25/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 331	Dibenz (a,h) anthracene	ND< 331
Anthracene	ND< 331	Fluoranthene	ND< 165
Benzo (a) anthracene	ND< 331	Fluorene	ND< 331
Benzo (a) pyrene	ND< 331	Indeno (1,2,3-cd) pyrene	ND< 331
Benzo (b) fluoranthene	ND< 331	Naphthalene	ND< 331
Benzo (g,h,i) perylene	ND< 331	Phenanthrene	ND< 331
Benzo (k) fluoranthene	ND< 331	Pyrene	ND< 331
Chrysene	ND< 331	Acenaphthylene	ND< 331
Diethyl phthalate	ND< 331	1,2-Dichlorobenzene	ND< 331
Dimethyl phthalate	ND< 827	1,3-Dichlorobenzene	ND< 331
Butylbenzylphthalate	ND< 331	1,4-Dichlorobenzene	ND< 331
Di-n-butyl phthalate	ND< 331	1,2,4-Trichlorobenzene	ND< 331
Di-n-octylphthalate	ND< 331	Nitrobenzene	ND< 331
Bis (2-ethylhexyl) phthalate	ND< 331	2,4-Dinitrotoluene	ND< 331
2-Chloronaphthalene	ND< 331	2,6-Dinitrotoluene	ND< 331
Hexachlorobenzene	ND< 331	Bis (2-chloroethyl) ether	ND< 331
Hexachloroethane	ND< 331	Bis (2-chlorolsopropyl) ether	ND< 331
Hexachlorocyclopentadiene	ND< 331	Bis (2-chloroethoxy) methan	ND< 331
Hexachlorobutadiene	ND< 331	4-Bromophenyl phenyl ether	ND< 331
N-Nitroso-di-n-propylamine	ND< 331	4-Chlorophenyl phenyl ether	ND< 331
N-Nitrosodiphenylamine	ND< 331	Benzidine	ND< 827
N-Nitrosodimethylamine	ND< 331	3,3'-Dichlorobenzidine	ND< 331
Isophorone	ND< 331	4-Chloroaniline	ND< 331
Benzyl alcohol	ND< 827	2-Nitroaniline	ND< 827
Dibenzofuran	ND< 331	3-Nitroaniline	ND< 827
2-Methylnapthalene_	ND< 331	4-Nitroaniline	ND< 827

Acids	Results in ug / Kg	Acids	Results in ug / Kg
Phenol	ND< 331	2-Methylphenol	ND< 331
2-Chlorophenol	ND< 331	3&4-Methylphenol	ND< 331
2.4-Dichlorophenol	ND< 331	2,4-Dimethylphenol	ND< 331
2.6-Dichlorophenol	ND< 331	2-Nitrophenol	ND< 331
2,4,5-Trichlorophenol	ND< 827	4-Nitrophenol	ND< 827
2,4,6-Trichlorophenol	ND< 331	2,4-Dinitrophenol	ND< 827
Pentachlorophenol	ND< 827	4,6-Dinitro-2-methylphenol	ND< 827
4-Chloro-3-methylphenol	ND< 331	Benzoic acid	ND< 827

ELAP Number 10958

Method: EPA 8270C

Data File: S46737.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

Semi -Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950 Lab Sample Number: 9362

Client Job Number: 40503

Field Location:

MW-04, 8-11'

Date Sampled:

08/12/2009

Field ID Number:

N/A

Date Received:

08/12/2009

Sample Type:

Water

Date Analyzed:

08/25/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
None Found	N/A	N/A	ND< 10.0	N/A

Method: EPA 8270C

Comments: ND denotes Non Detect

ELAP Number 10958

ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be

Data File: S46737.D

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 092950S4.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-2950

Lab Sample Number: Method Blank

Client Job Number: Field Location:

40503 N/A

Date Sampled:

N/A N/A

Field iD Number: Sample Type:

N/A Soil

Date Received:

Date Analyzed:

08/25/2009

Base / Neutrals	Results in ug / Kg	Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 286	Dibenz (a,h) anthracene	ND< 286
Anthracene	ND< 286	Fluoranthene	ND< 286
Benzo (a) anthracene	ND< 286	Fluorene	ND< 286
Benzo (a) pyrene	ND< 286	Indeno (1,2,3-cd) pyrene	ND< 286
Benzo (b) fluoranthene	ND< 286	Naphthalene	ND< 286
Benzo (g,h,i) perylene	ND< 286	Phenanthrene	ND< 286
Benzo (k) fluoranthene	ND< 286	Pyrene	ND< 286
Chrysene	ND< 286	Acenaphthylene	ND< 286
Diethyl phthalate	ND< 286	1,2-Dichlorobenzene	ND< 286
Dimethyl phthalate	ND< 714	1,3-Dichlorobenzene	ND< 286
Butylbenzylphthalate	ND< 286	1,4-Dichlorobenzene	ND< 286
Di-n-butyl phthalate	ND< 286	1,2,4-Trichlorobenzene	ND< 286
Di-n-octylphthalate	ND< 286	Nitrobenzene	ND< 286
Bis (2-ethylhexyl) phthalate	ND< 286	2,4-Dinitrotoluene	ND< 286
2-Chloronaphthalene	ND< 286	2,6-Dinitrotoluene	ND< 286
Hexachlorobenzene	ND< 286	Bis (2-chloroethyl) ether	ND< 286
Hexachloroethane	ND< 286	Bis (2-chloroisopropyl) ether	ND< 286
Hexachlorocyclopentadiene	ND< 286	Bis (2-chloroethoxy) methan	ND< 286
Hexachlorobutadiene	ND< 286	4-Bromophenyl phenyl ether	ND< 286
N-Nitroso-di-n-propylamine	ND< 286	4-Chlorophenyl phenyl ether	ND< 286
N-Nitrosodiphenylamine	ND< 286	Benzidine	ND< 714
N-Nitrosodimethylamine	ND< 286	3,3'-Dichlorobenzidine	ND< 286
Isophorone	ND< 286	4-Chloroaniline	ND< 286
Benzyl alcohol	ND< 714	2-Nitroaniline	ND< 714
Dibenzofuran	ND< 286	3-Nitroaniline	ND< 714
2-Methylnapthalene	ND< 286	4-Nitroaniline	ND< 714

Results in ug / Kg	Acids	Results in ug / Kg
ND< 286	2-Methylphenol	ND< 286
ND< 286	3&4-Methylphenol	ND< 286
ND< 286	2,4-Dimethylphenol	ND< 286
ND< 286	2-Nitrophenol	ND< 286
ND< 714	4-Nitrophenol	ND< 714
ND< 286	2,4-Dinitrophenol	ND< 714
ND< 714	4,6-Dinitro-2-methylphenol	ND< 714
ND< 286	Benzoic acid	ND< 714
	ND< 286 ND< 286 ND< 286 ND< 286 ND< 714 ND< 286 ND< 714	ND 286 2-Methylphenol ND 3&4-Methylphenol ND 286 2,4-Dimethylphenol ND 286 2-Nitrophenol ND 714 4-Nitrophenol ND 286 2,4-Dinitrophenol ND 714 4,6-Dinitro-2-methylphenol

ELAP Number 10958

Method: EPA 8270C

Data File: S46732.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 092950SB.XLS

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

CHAIN OF CUSTODY

\ \ \ \	טוע עם		Althorna City	Acres & the Sand Stranger	REPORT TO:		The state of the s	MAN WASH	DIOANI	E TO:	1.30		A Contraction		8	
[tion.	COMPANY:	ATI CO F	Same		COMPAN	ټ	Same			LAB PROJECT #: CLIENT PROJECT #:	CLIENT PRO	JECT #:		
			ADDRES	3250 P	ADDRESS 2230 Pextuld Rd.		ADDRESS					09.2950	15.9h	ũ		
	1		спу:	CITY: Pentiol	STATE: N. V	SIP: (U.Salo	CITY:			STATE:		ZIP: TURNAROUND TIME: (WORKING DAYS)	RKING DAY) [
			13%	1377 - (450	FAX: 377 -1366	2	PHONE:			FAX:			STD	/	OTHER STREET	
PROJECT NAME/SITE NAME:	E NAME:		ATTN: Sign	PLY ANDRUS			ATTN:						Ķ		Γ	~
Clarkson EAP Site	ERP S	Section of the sectio	COMMEN	COMMENTS PI PC SE	call Grag	A. Wany Bushing S ANALYSIS	2 Tro	Uest General	ionS WESTED	NALYSI:	v)	Quotation # 10c	Per Clie	clienthist	at a	9,9
DATE	THAE	00 5 600	o∝∢∞	SAM		≅∢⊢ ⋭−×	202F4-2m	ZNATSTANSA ZNASTANSA	354	See remore forchanges tests.	34	REMARKS	B www	PARADIGM LAB SAMPLE NUMBER	8 - 8 H	8,7
Pololo	0:02	ш	×	101 X	- 0		۳ (× EP	HQ II	4	+	Per G. Adrus as Per J. Daloia 8/12	0	7	To	
8/11/09	11:01		×	C0-171W	84.51	-	, -	X			1 43		1	0 10	-10	
8 9/13/09	8:37		×	mm -0,	-60			×					0	_		
8/12/09	13.37		×	10-10M	7	7	7	X					0	n	1	
					-							EAH 8/12				
											Ĭ	Coolerhand				
												delivered to lab		_		
												Socustody Seals	5		П	
						1		1			1			1	\Box	
0			1			_										
ample Condition: Per NELAC/ELAP 210/241/242/243/244 Receint Parameter	on: Per NELAC/ELA	AC/ELAP 210/2	41/242/	243/244 NEI AC C	244 NEI AC Compliance										Section 200	
omments:	Container Type:	Гуре:		⊠ ≻		Sochu ampled By	7	ermo	rachus	Date/Tim	Po/ei	Sampled By JALLANNA Charle State 1500 RF Total Cost.				
omments:	Preservation:		N/A	☐ ≻		Cachul	Ages 9	Morry	Mondo	8/6 Date/Tin	60/0	1500 lei RF				
omments:	Holding Time:	me:		⊠ ≻] æ	Received By	ne	2	Local	Date/Tin	2000	Received By Dates The Dates Time P.I.F.		_		
onments:	Temperati	Temperature:	000	☐ ≻		Elizaluth	Ath	9	Yone	L 8//a	270	0.4000 8/12/09 1725 Date/Time				
						20										

- **s** -

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2964

Client Job Number:

40503

Field Location:

CS-GP-01-03

Date Sampled:

02/08/2010 02/11/2010

Field ID Number:

N/A

Date Received:

Sample Type:

Soil

Date Analyzed:

02/16/2010

Compound	Results in ug / Kg
Acetone	ND< 21.4 WS
Benzene	ND< 4.27
Bromochloromethane	ND< 10.7
Bromodichloromethane	ND< 4.27
Bromoform	ND< 10.7
Bromomethane	ND< 4.27
2-Butanone	ND< 21.4
Carbon disulfide	ND< 4.27
Carbon Tetrachloride	ND< 10.7
Chlorobenzene	ND< 4.27
Chloroethane	ND< 4.27
Chloroform	ND< 4.27
Chloromethane	ND< 4.27
Cyclohexane	ND< 21.4
Dibromochloromethane	ND< 4.27
1,2-Dibromo-3-Chloropropane	ND< 21.4
1,2-Dibromoethane	ND< 10.7
1,2-Dichlorobenzene	ND< 10.7
1,3-Dichlorobenzene	ND< 10.7
1,4-Dichlorobenzene	ND< 4.27
Dichlorodifluoromethane	ND< 4.27
•	

Compound	Results in ug / Kg	
1,2-Dichloropropane	ND< 4.27	
cis-1,3-Dichloropropene	ND< 4.27	
trans-1,3-Dichloropropene	ND< 4.27	
Ethylbenzene	ND< 4.27	
2-Hexanone	ND< 10.7	
Isopropylbenzene	ND< 21.4	
Methyl acetate	ND< 10.7	
Methyl tert-butyl Ether	ND< 4.27	
Methylcyclohexane	ND< 4.27	
Methylene chloride	ND< 10.7 45	
4-Methyl-2-pentanone	ND< 10.7 (.3	7
Styrene	ND< 10.7	
1,1,2,2-Tetrachloroethane	ND< 4.27	
Tetrachloroethene	ND< 4.27	
Toluene	ND< 4.27	
Freon 113	ND< 4.27	
1,2,3-Trichlorobenzene	ND< 10.7	1
1,2,4-Trichlorobenzene	ND< 10.7	ĺ
1,1,1-Trichloroethane	ND< 4.27	
1,1,2-Trichloroethane	ND< 4.27	
Trichloroethene	ND< 4.27	
Trichlorofluoromethane	ND< 4.27	
Vinyl chloride	ND< 4.27	
m,p-Xylene	ND< 4.27	
o-Xylene	ND< 4.27	

ELAP Number 10958

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Method: EPA 8260B

ND< 4.27

ND< 4.27

ND< 4.27

ND< 4.27

ND< 4.27

Data File: V73073.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Matrix Spike Outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 00655V1.XLS

ENTAL SERVICES. INC. 179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2964

Client Job Number: 40503 Field Location:

CS-GP-01-03

Date Sampled:

02/08/2010

Field ID Number:

N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/16/2010

Compound	Results in ug / Kg	Compound	Results in ug / Kg
n-Butylbenzene	ND< 21.4	n-Propyibenzene	ND< 4.27
sec-Butylbenzene	ND< 4.27	1,2,4-Trimethylbenzene	ND< 4.27
tert-Butylbenzene	ND< 10.7	1,3,5-Trimethylbenzene	ND< 4.27
p-Isopropyltoluene	ND< 21.4	•	
Naphthalene	ND< 10.7		
ELAP Number 10958	Method	- EDA 8260B	Data Ella: \/7207

Method: EPA 8260B

Data File: V73073.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. . 00655V1.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2964

Client Job Number: Field Location: Field ID Number:

Sample Type:

40503

CS-GP-01-03

N/A Soil **Date Sampled:**

02/08/2010

Date Received:

02/11/2010

Date Analyzed:

02/16/2010

Date Reissued:

03/16/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 10.7	N/A
				1 12 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1
				P.)
84				
1				
ii a				
2				es go le p
				25 15
				-4- File 1 (70070 D

ELAP Number 10958

Method: EPA 8260B

Data File: V73073.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Client Job Number:

40503

Lab Sample Number: 2965

Field Location:

CS-GP-07-07

Date Sampled:

02/08/2010

Field ID Number: Sample Type:

N/A Soil

Date Received: Date Analyzed:

02/11/2010 02/16/2010

Date Reissued:

03/16/2010

		(4))
	Compound	Results in ug / Kg
	Acetone	78.0 TB
	Benzene	ND< 5.08
	Bromochloromethane	ND< 12.7
	Bromodichloromethane	ND< 5.08
	Bromoform	ND< 12,7
	Bromomethane	ND< 5.08
	2-Butanone	J 20.1
	Carbon disulfide	ND< 5.08 2 ○
	Carbon Tetrachloride	ND< 12.7
	Chlorobenzene	ND< 5.08
	Chloroethane	ND< 5.08
	Chloroform	ND< 5.08
	Chloromethane	ND< 5.08
	Cyclohexane	ND< 25.4
	Dibromochloromethane	ND< 5.08
	1,2-Dibromo-3-Chloropropane	ND< 25.4
	1,2-Dibromoethane	ND< 12.7
	1,2-Dichlorobenzene	ND< 12.7
ı	1,3-Dichlorobenzene	ND< 12.7
l	1,4-Dichlorobenzene	ND< 5.08
Ì	Dichlorodifluoromethane	ND< 5.08
Į	1,1-Dichloroethane	ND< 5.08
I	1,2-Dichloroethane	ND< 5.08
İ	1,1-Dichloroethene	ND< 5.08
ı	cis-1,2-Dichloroethene	ND< 5.08
ı	America 4.0 DU-11	112

Compound	Results in ug / Kg	l
1,2-Dichloropropane	ND< 5.08	
cis-1,3-Dichloropropene	ND< 5.08	
trans-1,3-Dichloropropene	ND< 5.08	
Ethylbenzene	ND< 5.08	
2-Hexanone	ND< 12.7 8 2	2
isopropyibenzene	ND< 25.4 5 ()	2
Methyl acetate	ND< 12.7	(ii)
Methyl tert-butyl Ether	ND< 5.08	
Methylcyclohexane	ND< 5.08	
Methylene chloride	ND< 12.7 45	
4-Methyl-2-pentanone	ND< 12.7	
Styrene	ND< 12.7	
1,1,2,2-Tetrachloroethane	ND< 5.08 20.6	2
Tetrachloroethene	ND< 5.08	
Toluene	ND< 5.08	
Freon 113	ND< 5.08	
1,2,3-Trichlorobenzene	ND< 12.7	
1,2,4-Trichlorobenzene	ND< 12.7	
1,1,1-Trichloroethane	ND< 5.08	
1,1,2-Trichloroethane	ND< 5.08 3.○	7
Trichloroethene	ND< 5.08	
Trichlorofluoromethane	ND< 5.08	
Vinyl chloride	ND< 5.08	
m,p-Xylene	ND< 5.08	
o-Xylene	ND< 5.08	

ELAP Number 10958

trans-1,2-Dichloroethene

Method: EPA 8260B

ND< 5.08

7

Data File: V73074.D

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 00655V2.XLS

ENVIRONMENTAL SERVICES. INC. 179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Solls/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2965

Client Job Number:

40503 CS-GP-07-07

Date Sampled:

02/08/2010

Field Location: Field ID Number:

N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/16/2010

Compound	Results in ug / Kg	Compound	Results in ug / Kg
n-Butylbenzene	-ND< 25.4 4.0 5	n-Propylbenzene	J 2.76
sec-Butylbenzene	J 2.56	1,2,4-Trimethylbenzene	ND< 5.08 ⊋ ○
tert-Butylbenzene	ND< 12.7	1,3,5-Trimethylbenzene	ND< 5.08
p-Isopropyitoluene	ND< 25.4		1
Naphthalene	ND< 12.7		
ELAP Number 10958	Method: E	PA 8260B	Data File: V73074.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

3

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2965

Client Job Number: 40503

Field Location:

CS-GP-07-07

Field ID Number: Sample Type:

N/A Soil

Date Sampled:

02/08/2010

Date Received:

02/11/2010

Date Analyzed:

02/16/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent F
Unknown Alkane	N/A	7.752	36.6	N/A
Unknown Alkane	N/A	8.26	30.5	N/A
Unknown Alkane	N/A	8.61	39.1	N/A
Unknown Alkane	N/A	9.01	86.2	N/A
Unknown Alkane	N/A	9.18	73.7	N/A
Jnknown Alkane	N/A	9.46	55.9	
Unknown Alkane	N/A	9.67	29.7	N/A
Unknown Alkane	N/A	9.73	33.0	N/A
Jnknown Alkane	N/A	9.80		N/A
Jnknown Alkane	N/A	9.87	60.7	N/A
Jnknown Alkane	N/A	9.99	25.9	N/A
Jnknown Alkane	N/A		57.2	N/A
Jnknown Alkane	N/A	10.07	33.5	N/A
Jnknown Alkane	N/A	10.11	52.9	N/A
Jnknown Alkane		10.28	29.5	N/A
Jnknown Aikane	N/A	10.44	36.1	N/A
Jnknown Alkane	N/A	10.48	37.9	N/A
Jnknown	N/A	10.88	58.2	N/A
Jnknown Alkane	N/A	11.18	46.5	N/A
	N/A	11.69	51.6	· N/A
Inknown Aromatic	N/A	12.37	29.2	N/A
LAP Number 10958	Method: E	PA 8260B		Data File: V7307

Comments: ND denotes Non Detect ug / Kg = mlcrogram per Kilogram

Signature:

Bruce Hoogesteger: Teamical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 00655V2.XLS

Client: <u>Lu Engineers</u>

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2966

Client Job Number: Field Location:

40503 CS-GP-04-02

Date Sampled:

02/08/2010

Field iD Number:

N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/16/2010

Compound	Results in ug / Kg
Acetone	ND< 22.5 W-3
Benzene	ND< 4.50
Bromochloromethane	ND< 11.2
Bromodichloromethane	ND< 4.50
Bromoform	ND< 11.2
Bromomethane	ND< 4.50
2-Butanone	ND< 22.5
Carbon disulfide	ND< 4.50
Carbon Tetrachloride	ND< 11.2
Chlorobenzene	ND< 4.50
Chloroethane	ND< 4.50
Chloroform	ND< 4.50
Chloromethane	ND< 4.50
Cyclohexane	ND< 22.5 1.9
Dibromochloromethane	ND< 4.50
1,2-Dibromo-3-Chloropropane	ND< 22.5
1,2-Dibromoethane	ND< 11.2
1,2-Dichlorobenzene	ND< 11.2
1,3-Dichlorobenzene	ND< 11.2
1,4-Dichlorobenzene	ND< 4.50
Dichlorodifluoromethane	ND< 4.50
1,1-Dichloroethane	ND< 4.50
1,2-Dichloroethane	ND< 4.50
1,1-Dichloroethene	ND< 4.50
cis-1,2-Dichloroethene	ND< 4.50
1	ND - 4 CO

Compound	Results in ug / Kg
1,2-Dichloropropane	ND< 4.50
cis-1,3-Dichloropropene	ND< 4.50
trans-1,3-Dichloropropene	ND< 4.50
Ethylbenzene	ND< 4.50
2-Hexanone	ND< 11.2
Isopropylbenzene	ND< 22.5
Methyl acetate	ND< 11.2
Methyl tert-butyl Ether	ND< 4.50
Methylcyclohexane	ND< 4.50
Methylene chloride	ND< 11.2 W.J
4-Methyl-2-pentanone	ND< 11.2
Styrene	ND< 11.2
1,1,2,2-Tetrachloroethane	ND< 4.50
Tetrachloroethene	ND< 4.50
Toluene	ND< 4.50
Freon 113	ND< 4.50
1,2,3-Trichlorobenzene	ND< 11.2
1,2,4-Trichlorobenzene	ND< 11.2
1,1,1-Trichloroethane	ND< 4.50
1,1,2-Trichloroethane	ND< 4.50
Trichloroethene	ND< 4.50
Trichlorofluoromethane	ND< 4.50
VIriyl chloride	ND< 4.50
m,p-Xylene	ND< 4.50
o-Xylene	ND< 4.50

ELAP Number 10958

trans-1,2-Dichloroethene

Method: EPA 8260B

ND< 4.50

2

Data File: V73075.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compilance with sample condition 00855V3.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2966

Client Job Number: Field Location:

40503 CS-GP-04-02

Date Sampled:

02/08/2010

Field ID Number:

N/A

Date Received:

02/11/2010

Sample Type:

Soll

Date Analyzed:

02/16/2010

Results in ug / Kg	Compound	Results in ug / Kg
ND< 22.5	n-Propylbenzene	ND< 4.50
ND< 4.50	• •	ND< 4.50
ND< 11.2	· · · · · · · · · · · · · · · · · · ·	ND< 4.50
ND< 22.5	, , , , , , , , , , , , , , , , , , , ,	
ND< 11.2		
	ND< 22.5 ND< 4.50 ND< 11.2 ND< 22.5	ND< 22.5 n-Propylbenzene ND< 4.50 1,2,4-Trimethylbenzene ND< 11.2 1,3,5-Trimethylbenzene ND< 22.5

ELAP Number 10958

Method: EPA 8260B

Data File: V73075.D

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 00655V3.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2966

Client Job Number: Field Location:

40503 CS-GP-04-02

Date Sampled:

02/08/2010

Field ID Number:

N/A

Date Received:

Sample Type: Soil Date Analyzed:

02/11/2010 02/16/2010

Date Reissued:

03/16/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 11.2	N/A
			• 15	
LAP Number 10958	Method: E	PA 8260B		Data File: V73075.

Comments: ND denotes Non Detect

ug / Kg = microgram per Kildgram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 00655V3.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655 Lab Sample Number: 2967

Client Job Number:

: 40503

o campio italia

02/08/2010

Field Location:

CS-GP-16-8.5

Date Sampled: Date Received:

02/11/2010

Field ID Number:

N/A

Date Analyzed:

02/16/2010

Sample Type:

Soil

Compound	Results in ug / Kg
Acetone	ND< 23.8 W S
Benzene	ND< 4.76
Bromochloromethane	ND< 11.9
Bromodichloromethane	ND< 4.76
Bromoform	ND< 11.9
Bromomethane	ND< 4.76
2-Butanone	ND< 23.8
Carbon disulfide	ND< 4.76
Carbon Tetrachloride	ND< 11.9
Chlorobenzene	ND< 4.76
Chloroethane	ND< 4.76
Chloroform	ND< 4.76
Chloromethane	ND< 4.76
Cyclohexane	ND< 23.8
Dibromochloromethane	ND< 4.76
1,2-Dibromo-3-Chloropropane	ND< 23.8
1,2-Dibromoethane	ND< 11.9
1,2-Dichlorobenzene	ND< 11.9
1,3-Dichlorobenzene	ND< 11.9
1,4-Dichlorobenzene	ND< 4.76
Dichlorodifluoromethane	ND< 4.76
1,1-Dichloroethane	ND< 4.76

Compound	Results in ug / Kg
1,2-Dichloropropane	ND< 4.76
cis-1,3-Dichloropropene	ND< 4.76
trans-1,3-Dichloropropene	ND< 4.76
Ethylbenzene	ND< 4.76
2-Hexanone	ND< 11.9
Isopropylbenzene	ND< 23.8
Methyl acetate	ND< 11.9
Methyl tert-butyl Ether	ND< 4.76
Methylcyclohexane	ND< 4.76
Methylene chloride	ND< 11.9
4-Methyl-2-pentanone	ND< 11.9
Styrene	ND< 11.9
1,1,2,2-Tetrachloroethane	ND< 4.76
Tetrachloroethene	ND< 4.76
Toluene	ND< 4.76
Freon 113	ND< 4.76
1,2,3-Trichlorobenzene	ND< 11.9
1,2,4-Trichlorobenzene	ND< 11.9
1,1,1-Trichloroethane	ND< 4.76
1,1,2-Trichloroethane	ND< 4.76
Trichloroethene	ND< 4.76
Trichlorofluoromethane	ND< 4.76
Vinyl chloride	ND< 4.76
m,p-Xylene	ND< 4.76
o-Xylene	ND< 4.76
1	

ELAP Number 10958

1.2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Method: EPA 8260B

ND< 4.76

ND< 4.76

ND< 4.76

ND< 4.76

Data File: V73076.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

00855V4.XLS

BENTAL SERVICES. INE. 179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Solis/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2967

40503

Client Job Number: Field Location: CS-GP-16-8.5

Date Sampled:

02/08/2010

Fleid ID Number:

N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/16/2010

Compound	Results in ug / Kg	Compound	Results in ug / Kg
n-Butylbenzene	ND< 23.8	n-Propylbenzene	ND< 4.76
sec-Butylbenzene	ND< 4.76	1,2,4-Trimethylbenzene	ND< 4.76
tert-Butylbenzene	ND< 11.9	1,3,5-Trimethylbenzene	ND< 4.76
p-isopropyitoluene	ND< 23.8		
Naphthalene	ND< 11.9		,

ELAP Number 10958

Method: EPA 8260B

Data File: V73076.D

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 0066544.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655 Lab Sample Number: 2967

Client Job Number: 40503

Field Location:

CS-GP-16-8.5

Date Sampled:

02/08/2010

Field ID Number: Sample Type:

N/A Soil

Date Received:

02/11/2010

Date Analyzed:

02/16/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 11.9	N/A
			•	
17				
				\$0 -
		N N		х -
ELAP Number 10958	A4-454			
	Method: E	PA 8260B		Data File: V73076.I

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 00655V4.XLS

Client: Lu Englneers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655 Lab Sample Number: 2968

Client Job Number:

40503

Date Sampled:

02/09/2010

Field Location:

CS-GP-11-10

Field ID Number:

N/A

Date Received:

02/11/2010

Sample Type: Soil Date Analyzed:

02/16/2010

Compound	Results in ug / Kg
Acetone	J 17.2 🕃
Benzene	ND< 3.83
Bromochloromethane	ND< 9.57
Bromodichloromethane	ND< 3.83
Bromoform	ND< 9.57
Bromomethane	ND< 3.83
2-Butanone	ND< 19.1
Carbon disulfide	ND< 3.83
Carbon Tetrachloride	ND< 9.57
Chlorobenzene	ND< 3.83
Chloroethane	ND< 3.83
Chloroform	ND< 3.83
Chloromethane	ND< 3.83
Cyclohexane	ND< 19.1
Dibromochloromethane	ND< 3.83
1,2-Dibromo-3-Chloropropane	ND< 19.1
1,2-Dibromoethane	ND< 9.57
1,2-Dichlorobenzene	ND< 9.57
1,3-Dichlorobenzene	ND< 9.57
1,4-Dichlorobenzene	ND< 3.83
Dichlorodifluoromethane	ND< 3.83
1,1-Dichloroethane	ND< 3.83
1,2-Dichloroethane	ND< 3.83
1,1-Dichloroethene	ND< 3.83
cis-1,2-Dichloroethene	ND< 3.83
trans-1,2-Dichloroethene	ND< 3.83

Compound	Results in ug / Kg
1,2-Dichloropropane	ND< 3.83
cis-1,3-Dichloropropene	ND< 3.83
trans-1,3-Dichloropropene	ND< 3.83
Ethylbenzene	ND< 3.83
2-Hexanone	ND< 9.57
Isopropylbenzene	ND< 19.1
Methyl acetate	ND< 9.57
Methyl tert-butyl Ether	ND< 3.83
Methylcyclohexane	ND< 3.83
Methylene chloride	ND< 9.57 45
4-Methyl-2-pentanone	ND< 9.57
Styrene	ND< 9.57
1,1,2,2-Tetrachloroethane	ND< 3.83
Tetrachloroethene	ND< 3.83
Toluene	ND< 3.83
Freon 113	ND< 3.83
1,2,3-Trichlorobenzene	ND< 9.57
1,2,4-Trichlorobenzene	ND< 9.57
1,1,1-Trichloroethane	ND< 3.83
1,1,2-Trichloroethane	ND< 3.83
Trichloroethene	ND< 3.83
Trichlorofluoromethane	ND< 3.83
Vinyl chloride	ND< 3.83
m,p-Xylene	ND< 3.83
o-Xylene	ND< 3.83

ELAP Number 10958

Method: EPA 8260B

Data File: V73077.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Vechnical Director

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2968

Client Job Number: Field Location:

40503 CS-GP-11-10

Date Sampled:

02/09/2010

Fleid ID Number:

N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/16/2010

Compound	Results in ug / Kg	Compound	Results in ug / Kg
n-Butylbenzene	ND< 19.1	n-Propylbenzene	ND< 3.83
sec-Butylbenzene	ND< 3.83	1,2,4-Trimethylbenzene	ND< 3.83
tert-Butylbenzene	ND< 9.57	1,3,5-Trimethylbenzene	ND< 3.83
p-Isopropyltoluene	ND< 19.1		
Naphthalene	ND< 9.57		
FLAP Number 10958	Method	: EPA 8260B	Data File: V73077.D

ELAP Number 10958

Method: EPA 8260B

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 00655V5.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2968

Client Job Number: Field Location:

40503 CS-GP-11-10

Date Sampled:

02/09/2010

Field ID Number:

N/A

Date Received:

02/11/2010

Sample Type:

Tentatively identified Compounds

Soil

Date Analyzed:

02/16/2010

Retention Time

Results in ug / Kg

Percent Fit

None Found

CAS Number N/A

N/A

ND< 9.57

N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V73077.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 00655V5.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2969

02/09/2010

Field Location: Field ID Number:

Client Job Number:

CS-GP-12-09 N/A

40503

Date Sampled: **Date Received:**

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/16/2010

<u> </u>	
Compound	Results in ug / Kg
Acetone	J 43.4 B
Benzene	ND< 4.44
Bromochloromethane	ND< 11.1
Bromodichioromethane	ND< 4.44
Bromoform	ND< 11.1
Bromomethane	ND< 4.44
2-Butanone	ND< 22.2 4.0
Carbon disulfide	ND< 4.44
Carbon Tetrachloride	ND< 11.1
Chlorobenzene	ND< 4.44
Chloroethane	ND< 4.44
Chloroform	ND< 4.44
Chloromethane	ND< 4.44
Cyclohexane	ND< 22.2 2.0
Dibromochloromethane	ND< 4.44
1,2-Dibromo-3-Chloropropane	ND< 22.2
1,2-Dibromoethane	ND< 11.1
1,2-Dichlorobenzene	ND< 11.1
1,3-Dichlorobenzene	ND< 11.1
1,4-Dichlorobenzene	ND< 4.44
Dichlorodifluoromethane	ND< 4.44
1,1-Dichloroethane	ND< 4.44
1,2-Dichloroethane	ND< 4.44
1,1-Dichloroethene	ND< 4.44
cis-1,2-Dichloroethene	ND< 4.44
trans-1,2-Dichloroethene	ND< 4.44

Compound	Results in ug / Kg
1,2-Dichloropropane	ND< 4.44
cis-1,3-Dichloropropene	ND< 4.44
trans-1,3-Dichloropropene	ND< 4.44
Ethylbenzene	ND< 4.44
2-Hexanone	a ND< 11.1
Isopropylbenzene	ND< 22.2
Methyl acetate	ND< 11.1
Methyl tert-butyl Ether	ND< 4.44
Methylcyclohexane	ND< 4.44
Methylene chloride	ND< 11.1 UT
4-Methyl-2-pentanone	ND< 11.1
Styrene	ND< 11.1
1,1,2,2-Tetrachloroethane	ND< 4.44
Tetrachloroethene	ND< 4.44
Toluene	ND< 4.44
Freon 113	ND< 4.44
1,2,3-Trichlorobenzene	ND< 11.1
1,2,4-Trichlorobenzene	ND< 11.1
1,1,1-Trichloroethane	ND< 4.44
1,1,2-Trichloroethane	ND< 4.44
Trichloroethene	ND< 4.44
Trichlorofluoromethane	ND< 4.44
Vinyl chloride	ND< 4.44
m,p-Xylene	ND< 4.44
o-Xylene	ND< 4.44

ELAP Number 10958

Method: EPA 8260B

Data File: V73078.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional Information, including compliance with sample condition requirements upon receipt. 00855V6.XLS

MENTAL SERVICES. INC. 179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: <u>Lu Engineers</u>

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2969

Client Job Number: Field Location:

40503

Date Sampled:

02/09/2010

Field ID Number:

CS-GP-12-09 N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/16/2010

Compound	Results in ug / Kg	Compound	Results in ug / Kg
n-Butylbenzene	ND< 22.2	n-Propylbenzene	ND< 4.44
sec-Butylbenzene	ND< 4.44	1,2,4-Trimethylbenzene	ND< 4.44
tert-Butylbenzene	ND< 11.1	1,3,5-Trimethylbenzene	ND< 4.44
p-Isopropyltoluene	ND< 22.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110 - 1.11
Naphthalene	ND< 11.1		

ELAP Number 10958

Method: EPA 8260B

Data File: V73078.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 00665V6.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2969

Client Job Number: Fleid Location:

40503 CS-GP-12-09

Date Sampled:

02/09/2010

Field ID Number:

N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/16/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 11.1	N/A
		.5	22	
ELAP Number 10958	Method: (EPA 8260B		Data File: V73078.0

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 00655V6.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site: Town of Clarkson Lab Project Number: 10-0655 Lab Sample Number: 2970

Client Job Number: 40503

N/A

Soil

FleId Location: Field ID Number: CS-GP-13-10 Date Sampled: Date Received: 02/09/2010

Sample Type:

Date Analyzed:

02/11/2010 02/16/2010

Results in ug / Kg
J 60.1 🔼
ND< 19.8
ND< 49.5
ND< 19.8
ND< 49.5
ND< 19.8
ND< 08.9 11.2
ND< 19.8
ND< 49.5
ND< 19.8
ND< 19.8
ND< 19.8
ND< 19.8
ND< 98.9 7.2
ND< 19.8
ND< 98.9
ND< 49.5
ND< 49.5
ND< 49.5
ND< 19.8

Compound	Results in ug / Kg
Compound	
1,2-Dichloropropane	ND< 19.8
cis-1,3-Dichloropropene	ND< 19.8
trans-1,3-Dichloropropene	ND< 19.8
Ethylbenzene	ND< 19.8
2-Hexanone	ND< 49.5 71-8
isopropylbenzene	ND< 98.9
Methyl acetate	ND< 49.5
Methyl tert-butyl Ether	ND< 19.8
Methylcyclohexane	ND< 19.8 7.3
Methylene chloride	ND< 49.5 🕶
4-Methyl-2-pentanone	ND< 49.5
Styrene	ND< 49.5
1,1,2,2-Tetrachloroethane	ND< 19.8 54.3
Tetrachloroethene	ND< 19.8
Toluene	ND< 19.8
Freon 113	ND< 19.8
1,2,3-Trichlorobenzene	ND< 49.5
1,2,4-Trichlorobenzene	ND< 49.5
1,1,1-Trichloroethane	ND< 19.8
1,1,2-Trichloroethane	ND< 19.8 27.5
Trichloroethene	ND< 19.8
Trichlorofluoromethane	ND< 19.8
Vinyl chloride	ND< 19.8
m,p-Xylene	ND< 19.8
o-Xylene	ND< 19.8

ELAP Number 10958

trans-1,2-Dichloroethene

Method: EPA 8260B

ND< 19.8

3

Data File: V73079.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kiiogram

Signature:

Bruce Hoogesteger. Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 00655V7.XLS

ENTAL SERVICES. INC. 179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Solls/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2970

Cilent Job Number:

40503

Date Sampled:

02/09/2010

Field Location: Field iD Number: CS-GP-13-10 N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/16/2010

		11. 11.
Results in ug / Kg	Compound	Results in ug / Kg
-ND<-08.0 18.C		ND< 19.8
J 18.9	1,2,4-Trimethylbenzene	ND< 19.8
ND< 49.5	1,3,5-Trimethylbenzene	ND< 19.8
ND< 98.9 6.3	2	
ND< 49.5		D . EU. 170070 D
	ND< 08.0 18.0 J 18.9 ND< 49.5 ND< 98.9 6.3	ND<-08.0 18.6 Th-Propylbenzene J 18.9 1,2,4-Trimethylbenzene ND< 49.5 1,3,5-Trimethylbenzene ND<-08.9 1,3,5-Trimethylbenzene

ELAP Number 10958

Method: EPA 8260B

Data File: V73079.D

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 00655V7.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2970

Client Job Number: 40503

CS-GP-13-10

Date Sampled:

02/09/2010

Field Location: Field ID Number:

N/A

Date Received:

02/11/2010

Date Analyzed:

02/16/2010

Sample Type:

Soii

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Unknown Alkane	N/A	7.21	93.0	N/A
Unknown Alkane	N/A	7.75	. 113	N/A
Unknown Alkane	N/A	8.35	87.1	N/A
Unknown Alkane	N/A	8.64	209	N/A
Unknown Alkane	N/A	8.85	225	N/A
Unknown Alkane	N/A	8.89	124	N/A
Unknown Alkane	N/A	9.00	245	N/A
Unknown	N/A	9.17	146	N/A
Unknown Alkane	N/A	9.46	111	N/A
Unknown Alkane	N/A	9.61	85.1	N/A
Unknown Alkane	N/A	9.72	95.0	N/A
Unknown Alkane	N/A	9.79	85.1	N/A
Unknown Alkane	N/A	10.11	86.1	N/A
Unknown Aromatic	N/A	10.87	106	N/A
Unknown Aromatic	N/A	11.56	110	N/A
Unknown Aromatic	N/A	11.68	96.0	N/A
Unknown Aromatic	N/A	12.00	160	N/A
Unknown Aromatic	N/A	12.38	101	= 11 N/A .
Unknown Aromatic	N/A	12.77	78.2	N/A
Unknown Aromatic	N/A	12.87	88.1	N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V73079.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 00655V7.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

40503

Lab Sample Number: 2971

Client Job Number: Field Location:

CS-GP-18-07

Date Sampled: Date Received:

02/09/2010 02/11/2010

Field ID Number: Nample Type:

N/A Soil

Date Received:

Date Analyzed:

02/16/2010

Compound	Results in ug / Kg
Acetone	177 JB
Benzene	ND< 10.2
Bromochloromethane	ND< 25.4
Bromodichloromethane	ND< 10.2 4 1
Bromoform	ND< 25.4
Bromomethane	ND< 10.2
2-Butanone	54.5
Carbon disulfide	ND< 10.2
Carbon Tetrachloride	ND< 25.4
Chlorobenzene	ND< 10.2
Chloroethane	ND< 10.2
Chloroform	ND< 10.2
Chloromethane	ND< 10.2
Cyclohexane	ND< 50.9 9 4
Dibromochloromethane	ND< 10.2
1,2-Dibromo-3-Chioropropane	ND< 50.9
1,2-Dibromoethane	ND< 25.4
1,2-Dichlorobenzene	ND< 25.4
1,3-Dichlorobenzene	ND< 25.4
1,4-Dichlorobenzene	ND< 10.2
Dichlorodifluoromethane	ND< 10.2
1,1-Dichloroethane	ND< 10.2
1,2-Dichloroethane	ND< 10.2
1,1-Dichloroethene	ND< 10.2
cis-1,2-Dichloroethene	ND< 10.2

Compound	Results in ug / Kg
1,2-Dichloropropane	ND< 10.2
cis-1,3-Dichloropropene	ND< 10.2
trans-1,3-Dichloropropene	ND< 10.2
Ethylbenzene	ND< 10.2
2-Hexanone	- ND<-25.4 8\
Isopropylbenzene	ND< 50.9
Methyl acetate	ND< 25:4 5 3
Methyl tert-butyl Ether	ND< 10.2
Methylcyclohexane	ND< 10.2
Methylene chloride	ND< 25.4 W
4-Methyl-2-pentanone	ND< 25.4 5.9
Styrene	ND< 25.4
1,1,2,2-Tetrachioroethane	ND< 10.2
Tetrachloroethene	ND< 10.2
Toluene	ND< 10.2
Freon 113	ND< 10.2
1,2,3-Trichlorobenzene	ND< 25.4
1,2,4-Trichiorobenzene	ND< 25.4
1,1,1-Trichloroethane	ND< 10.2
1,1,2-Trichloroethane	ND< 10.2 5 4
Trichloroethene	ND< 10.2
Trichlorofluoromethane	ND< 10.2
Vinyl chloride	ND< 10.2
m,p-Xylene	ND< 10.2
o-Xylene	ND< 10.2

ELAP Number 10958

trans-1,2-Dichloroethene

Method: EPA 8260B

ND< 10.2

Data File: V73080.D

Comments: ND denotes Non Detect
ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

00655V8.XLS

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2971

Client Job Number:

40503 CS-GP-18-07

Date Sampled:

02/09/2010

Field Location: Field ID Number:

N/A

Date Received:

Sample Type:

Soil

02/11/2010

Date Analyzed:

02/16/2010

Compound	Results in ug / Kg	Compound	Results in ug / Kg
n-Butylbenzene	ND< 50.9	n-Propylbenzene	ND< 10.2
sec-Butylbenzene	ND< 10.2	1,2,4-Trimethylbenzene	ND< 10.2
tert-Butylbenzene	ND< 25.4	1,3,5-Trimethylbenzene	ND< 10.2
p-Isopropyltoluene	ND< 50.9	•	
Naphthalene	ND< 25.4		

ELAP Number 10958

Method: EPA 8260B

Data File: V73080.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 00655V8.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2971

Client Job Number:

40503 CS-GP-18-07

Date Sampled:

02/09/2010

Field Location: Field ID Number:

N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/16/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	7.21	ND< 25.4	N/A
			3	

Method: EPA 8260B

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

ELAP Number 10958

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Cusiody provides additional information, including compliance with sample condition requirements upon receipt.

00655V8.XLS

Data File: V73080.D

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2972

Client Job Number:

40503

Date Sampled:

02/09/2010

Field Location: Field ID Number:

CS-GP-18-07D N/A

Date Received:

02/11/2010

Sample Type:

Soll

Date Analyzed:

02/16/2010

Compound	Results in ug / Kg
Acetone	88.0 JB
Benzene	ND< 4.37
Bromochloromethane	ND< 10.9
Bromodichloromethane	ND< 4.37 2.8
Bromoform	ND< 10.9
Bromomethane	ND< 4.37
2-Butanone	28.9
Carbon disulfide	J 3.08
Carbon Tetrachloride	ND< 10.9
Chlorobenzene	ND< 4.37
Chloroethane	ND< 4.37
Chloroform	ND< 4.37
Chloromethane	ND< 4.37
Cyclohexane	ND< 21.9 5. 4
Dibromochloromethane	ND< 4.37
1,2-Dibromo-3-Chloropropane	ND< 21.9
1,2-Dibromoethane	ND< 10.9 1.3
1,2-Dichlorobenzene	ND< 10.9
1,3-Dichlorobenzene	ND< 10.9
1,4-Dichlorobenzene	ND< 4.37
Dichlorodifluoromethane	ND< 4.37
1,1-Dichloroethane	ND< 4.37
1,2-Dichloroethane	ND< 4.37
1,1-Dichloroethene	ND< 4.37
cls-1,2-Dichloroethene	ND< 4.37
trans-1,2-Dichloroethene	ND< 4.37

Compound	Results in ug / Kg
1,2-Dichloropropane	ND< 4.37
cis-1,3-Dichloropropene	ND< 4.37
trans-1,3-Dichloropropene	ND< 4.37
Ethylbenzene	ND< 4.37
2-Hexanone	ND< 10.9 4.2
isopropylbenzene	ND< 21.9
Methyl acetate	ND< 10.9 3 °
Methyl tert-butyl Ether	ND< 4.37
Methylcyclohexane	ND< 4.37 \ 3
Methylene chloride	ND< 10.9 65
4-Methyl-2-pentanone	ND< 10.9 3 °
Styrene	ND< 10.9
1,1,2,2-Tetrachloroethane	ND< 4.37 ^{2.(} €
Tetrachloroethene	ND< 4.37
Toluene	ND< 4.37
Freon 113	ND< 4.37
1,2,3-Trichlorobenzene	ND< 10.9
1,2,4-Trichlorobenzene	ND< 10.9
1,1,1-Trichloroethane	ND< 4.37
1,1,2-Trichloroethane	ND< 4.37 3.5
Trichloroethene	ND< 4.37
Trichlorofluoromethane	ND< 4.37
Vinyl chloride	ND< 4.37
m,p-Xylene	ND< 4.37
o-Xylene	ND< 4.37

ELAP Number 10958

Method: EPA 8260B

Data File: V73081.D

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 00655v9.XLS requirements upon receipt.

ENVIRORMENTAL SERVICES. INC. 179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Solls/Solids/Sludges (Additional STARS Compounds)

Client: <u>Lu Engineers</u>

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2972

Client Job Number: Field Location:

er: 40503 CS-GP-18-07D

Date Sampled:

02/09/2010

Field ID Number:

N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/16/2010

Compound	Results in ug / Kg	Compound	Results in ug / Kg
n-Butylbenzene	ND< 21.9	n-Propylbenzene	ND< 4.37
sec-Butylbenzene	ND< 4.37	1,2,4-Trimethylbenzene	ND< 4.37
tert-Butylbenzene	ND< 10.9	1,3,5-Trimethylbenzene	ND< 4.37
p-isopropyltoluene	ND< 21.9	· · ·	
Naphthalene	ND< 10.9		70.

ELAP Number 10958

Method: EPA 8260B

Data File: V73081.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

00655V9.XLS

3

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2972

Client Job Number:

40503 CS-GP-18-07D

Date Sampled:

02/09/2010

Fleld Location: Field ID Number:

N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/16/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Unknown Alkane	N/A	6.09	11.0	N/A
Unknown Alkane	N/A	7.02	26.0	N/A
Unknown Alkane	N/A	7.65	10.9	N/A
Unknown Alkane	N/A	7.75	13.8	N/A
Unknown	N/A	8.62	14.7	N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V73081.D

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogestegen Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 00655V9.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655 Lab Sample Number: 2973

Client Job Number:

40503

Date Sampled:

02/09/2010

Field Location: Field ID Number: CS-GP-19-10 N/A

Date Received:

02/11/2010

Soil Sample Type:

Date Analyzed:

02/16/2010

Compound	Results in ug / Kg		Compound	Results in ug / Kg
Acetone	ND< 21.4 7 1	17E	1,2-Dichloropropane	ND< 4.29
Benzene	ND< 4.29		cis-1,3-Dichloropropene	ND< 4.29
Bromochloromethane	ND< 10.7		trans-1,3-Dichloropropene	ND< 4.29
Bromodichloromethane	ND< 4.29		Ethylbenzene	ND< 4.29
Bromoform	ND< 10.7	1	2-Hexanone	ND< 10.7
Bromomethane	ND< 4.29	1	Isopropylbenzene	ND< 21.4
2-Butanone	ND< 21.4		Methyi acetate	ND< 10.7
Carbon disulfide	ND< 4.29		Methyl tert-butyl Ether	ND< 4.29
Carbon Tetrachloride	ND< 10.7	1	Methylcyclohexane	ND< 4.29
Chlorobenzene	ND< 4.29	1	Methylene chloride	ND< 10.7 45
Chloroethane	ND< 4.29	ĺ	4-Methyl-2-pentanone	ND< 10.7 1.3
Chloroform	ND< 4.29		Styrene	ND< 10.7
Chloromethane	ND< 4.29		1,1,2,2-Tetrachloroethane	ND< 4.29
Cyclohexane	ND< 21.4 2 .0	2	Tetrachloroethene	ND< 4.29
Dibromochloromethane	ND< 4.29		Toluene	ND< 4.29
1,2-Dibromo-3-Chloropropane	ND< 21.4		Freon 113	ND< 4.29
1,2-Dibromoethane	ND< 10.7		1,2,3-Trichlorobenzene	ND< 10.7
1,2-Dichlorobenzene	ND< 10.7		1,2,4-Trichiorobenzene	ND< 10.7
1,3-Dichlorobenzene	ND< 10.7		1,1,1-Trichloroethane	ND< 4.29
1,4-Dichlorobenzene	ND< 4.29		1,1,2-Trichloroethane	ND< 4.29
Dichlorodifluoromethane	ND< 4.29		Trichloroethene	ND< 4.29
1,1-Dichloroethane	ND< 4.29		Trichlorofluoromethane	ND< 4.29
1,2-Dichloroethane	ND< 4.29		Vinyl chloride	ND< 4.29
1,1-Dichloroethene	ND< 4.29		m,p-Xylene	ND< 4.29
cis-1,2-Dichloroethene	ND< 4.29	1	o-Xylene	ND< 4.29
trans-1,2-Dichloroethene	ND< 4.29	1		

ELAP Number 10958

Method: EPA 8260B

Data File: V73082.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger. Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 00655W1.XLS requirements upon receipt.

TRAL SERVICES, INC. 179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2973

02/09/2010

Fleld Location:

Client Job Number:

40503 CS-GP-19-10

Date Sampled: Date Received:

02/11/2010

Field ID Number:

N/A

Sample Type:

Soil

Date Analyzed:

02/16/2010

Compound	Results in ug / Kg	Compound	Results in ug / Kg
n-Butylbenzene	ND< 21.4	n-Propyibenzene	ND< 4.29
sec-Butylbenzene	ND< 4.29	1,2,4-Trimethylbenzene	ND< 4.29
tert-Butylbenzene	ND< 10.7	1,3,5-Trimethylbenzene	ND< 4.29
p-Isopropyltoluene	ND< 21.4		
Naphthalene	ND< 10.7		

ELAP Number 10958

Method: EPA 8260B

Data File: V73082.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2973

Client Job Number: Field Location:

40503

CS-GP-19-10

Date Sampled:

02/09/2010

Field ID Number: Sample Type:

N/A Soil **Date Received:**

02/11/2010

Date Analyzed:

02/16/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 10.7	N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V73082.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger / Technical Director

This report is pert of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 00655W1.XLS requirements upon receipt.

ENVIRONMENTAL SERVICES. INC. 179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2974

Client Job Number:

40503

02/09

Field Location:

CS-GP-20-09

Date Sampled: Date Received: 02/09/2010 02/11/2010

Field ID Number: Sample Type: N/A Soil Date Received: Date Analyzed:

02/16/2010

23.1 JB	
ND< 3.94	
ND< 9.86	
ND< 3.94	
ND< 9.86	
ND< 3.94	2
ND< 19.7 5 0	7
ND< 3.94 1 · 3	7
ND< 9.86	
ND< 3.94	
11	
110 1101	
ND< 3.94	
	ND< 9.86 ND< 3.94 ND< 9.86 ND< 3.94 ND< 19.7 5 8 ND< 3.94 1 3 ND< 9.86

Compound	Results in ug / Kg
1,2-Dichloropropane	ND< 3.94
cis-1,3-Dichloropropene	ND< 3.94
trans-1,3-Dichloropropene	ND< 3.94
Ethylbenzene	ND< 3.94
2-Hexanone	ND< 9.86
Isopropylbenzene	ND< 19.7
Methyl acetate	ND< 9.86 1 3
Methyl tert-butyl Ether	ND< 3.94
Methylcyclohexane	ND< 3.94
Methylene chloride	ND< 9.86 🗸 🗸
4-Methyl-2-pentanone	ND< 9.86
Styrene	ND< 9.86
1,1,2,2-Tetrachloroethane	ND< 3.94
Tetrachloroethene	ND< 3.94
Toluene	6.74
Freon 113	ND< 3.94
1,2,3-Trichlorobenzene	ND< 9.86
1,2,4-Trichlorobenzene	ND< 9.86
1,1,1-Trichloroethane	ND< 3.94
1,1,2-Trichioroethane	ND< 3.94
Trichloroethene	ND< 3.94
Trichlorofluoromethane	ND< 3.94
Vinyl chloride	ND< 3.94
m,p-Xylene	ND< 3.94
o-Xylene	ND< 3.94

ELAP Number 10958

cis-1,2-Dichloroethene trans-1,2-Dichloroethene

1,2-Dichloroethane 1,1-Dichloroethene

Method: EPA 8260B

ND< 3.94

ND< 3.94 ND< 3.94

ND< 3.94

Data File: V73083.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2974

Client Job Number:

40503

Date Sampled:

02/09/2010

Field Location: Field ID Number:

CS-GP-20-09 N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/16/2010

		Results in ug / Kg
Results in ug / Kg	Compound	
ND< 19.7	n-Propylbenzene	ND< 3.94
ND< 3.94	1,2,4-Trimethylbenzene	ND< 3.94
ND< 9.86	1,3,5-Trimethylbenzene	ND< 3.94
ND< 19.7		
ND< 9.86		
	ND< 3.94 ND< 9.86 ND< 19.7	ND< 19.7 n-Propylbenzene ND< 3.94 1,2,4-Trimethylbenzene ND< 9.86 1,3,5-Trimethylbenzene ND< 19.7

ELAP Number 10958

Method: EPA 8260B

Data File: V73083.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger. Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 00655W2.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

CS-GP-20-09

Lab Project Number: 10-0655 Lab Sample Number: 2974

Client Job Number:

40503

Date Sampled:

02/09/2010

Field Location: Field ID Number:

N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/16/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 9.86	N/A
-				
			9	
				ě
	2			
=				

ELAP Number 10958

Method: EPA 8260B

Data File: V73083.D

,Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 00855W2.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: Soil LRB 02/16

Client Job Number: Field Location:

40503 N/A

Date Sampled:

N/A N/A

Field ID Number: Sample Type:

N/A Soil

Date Received:

02/16/2010

Date Analyzed:

Compound	Results in ug / Kg	Compound
Acetone	ND< 20.0 3.3	3. 1,2-Dichloropropane
Benzene	ND< 4.00	cis-1,3-Dichloroproper
Bromochloromethane	ND< 10.0	trans-1,3-Dichloroprop
Bromodichloromethane	ND< 4.00	Ethylbenzene
Bromoform	ND< 10.0	2-Hexanone
Bromomethane	ND< 4.00	Isopropylbenzene
2-Butanone	ND< 20.0	Methyl acetate
Carbon disulfide	ND< 4.00	Methyl tert-butyl Ether
Carbon Tetrachloride	ND< 10.0	Methylcyclohexane
Chlorobenzene	ND< 4.00	Methylene chloride
Chloroethane	ND< 4.00	4-Methyl-2-pentanone
Chloroform	ND< 4.00	Styrene
Chloromethane	ND< 4.00	1,1,2,2-Tetrachloroeth
Cyclohexane	ND< 20.0	Tetrachloroethene
Dibromochloromethane	ND< 4.00	Toluene
1,2-Dibromo-3-Chloropropane	ND< 20.0	Freon 113
1,2-Dibromoethane	ND< 10.0	1,2,3-Trichlorobenzen
1,2-Dichlorobenzene	ND< 10.0	1,2,4-Trichlorobenzen
1,3-Dichlorobenzene	ND< 10.0	1,1,1-Trichloroethane
1,4-Dichlorobenzene	ND< 4.00	1,1,2-Trichloroethane
Dichlorodifluoromethane	ND< 4.00	Trichloroethene
1,1-Dichloroethane	ND< 4.00	Trichlorofluoromethan
1,2-Dichloroethane	ND< 4.00	Vinyl chloride
1,1-Dichloroethene	ND< 4.00	m,p-Xylene
cis-1,2-Dichloroethene	ND< 4.00	o-Xylene
trans-1,2-Dichloroethene	ND< 4.00	1 1

Compound	Results in ug / Kg
1,2-Dichloropropane	ND< 4.00
cis-1,3-Dichloropropene	ND< 4.00
trans-1,3-Dichloropropene	ND< 4.00
Ethylbenzene	ND< 4.00
2-Hexanone	ND< 10.0
Isopropylbenzene	ND< 20.0
Methyl acetate	ND< 10.0
Methyl tert-butyl Ether	ND< 4.00
Methylcyclohexane	ND< 4.00
Methylene chloride	ND< 10.0
4-Methyl-2-pentanone	ND< 10.0
Styrene	ND< 10.0
1,1,2,2-Tetrachloroethane	ND< 4.00
Tetrachloroethene	ND< 4.00
Toluene	ND< 4.00
Freon 113	ND< 4.00
1,2,3-Trichlorobenzene	ND< 10.0 41
1,2,4-Trichlorobenzene	ND< 10.0
1,1,1-Trichloroethane	ND< 4.00
1,1,2-Trichloroethane	ND< 4.00
Trichloroethene	ND< 4.00
Trichlorofluoromethane	ND< 4.00
Vinyl chloride	ND< 4.00
m,p-Xylene	ND< 4.00
o-Xylene	ND< 4.00

ELAP Number 10958

Method: EPA 8260B

Data File: V73062.D

Z

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Matrix Spike Qutiliers indidate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 100655B4.XLS requirements upon receipt.

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: Soil LRB 02/16

Client Job Number: Field Location:

40503 N/A

Date Sampled:

N/A

Field ID Number:

N/A

Date Received:

N/A

Sample Type:

Soil

Date Analyzed:

02/16/2010

Compound	Results in ug / Kg	Compound	Results in ug / Kg
n-Butylbenzene	ND< 20.0	n-Propylbenzene	ND< 4.00
sec-Butylbenzene	ND< 4.00	1,2,4-Trimethylbenzene	ND< 4.00
tert-Butylbenzene	ND< 10.0	1,3,5-Trimethylbenzene	ND< 4.00
p-Isopropyltoluene	ND< 20.0		
Naphthalene	ND< 10:0 → T	2	

ELAP Number 10958

Method: EPA 8260B

Data File: V73062.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogestege irector

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compilance with sample condition requirements upon receipt. 100655B4.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

40503 **Client Job Number:**

Field Location:

N/A

Date Sampled:

N/A

Lab Sample Number: Soil LRB 02/16

Field ID Number:

N/A

Date Received:

N/A

Sample Type:

Soil

Date Analyzed:

02/16/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 8.00	N/A
			*	
ELAP Number 10958	Method	EPA 8260B		Data File: V73062.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: ical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 100655B4,XLS

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site: Town of Clarkson

Client Job Number: Field Location: Field ID Number: Sample Type:

40503 N/A N/A Soil

Lab Project Number: Lab Sample Number:

SDG Group:

2964

10-0655 : Soil LCS 02/19

02/20/2010

Date Sampled: Date Received: Date Analyzed: N N

Method: EPA 8270C	Met				Data File: S49734.D	D	Data File: \$49733.D	ELAP Number 10958
					1707 1735 1298 1933 1903		aray and a sound	2, 4- dichlero phenol 2, 4- dimethylphenol 3- mitro phenol 3,4- dinitrophenol 3,4- in-Truchlerophenol 3,4- Truchlerophenol 3,4- Tuthochlerophenol 2,3,4,6- Tuthochlerophenol
NA A	Z X	N/A	NA	89.5	1,280	1,430	ND< 286	Pyrene
N/A	N/A	NA	N/A	87.4	1,870	2,140	ND< 714	Pentachlorophenol
N/A	NA	N/A	N/A	101	2,170	2,140	ND< 714	4-Nitrophenol
N/A	NA	NA	N/A	87.4	1,250	1,430	ND< 286	2,4-Dinitrotoluene
N/A	NA	NA	N/A	86.7	1,240	1,430	ND< 286	Acenaphthene
×	N/A	N/A	N/A	73.4	1,050	1,430	ND< 286	1,2,4-Trichlorobenzene
N/A	NA A	N/A	Z.	86.0	1,840	2,140	ND< 286	4-Chloro-3-methylphenol
N N	NA	NA	N/A	80.4	1,720	2,140	ND< 286	Phenol
×	NA	N/A	N/A	83.9	1,200	1,430	ND< 286	N-Nitroso-dl-n-propylamine
×	NA	NA	N/A	75.5	1,080	1,430	ND< 286	1,4-Dichlorobenzene
**	N/A	NA	N/A	79.9	1,710	2,140	ND< 286	2-Chlorophenol
% RPD	Recovery	in ug / Kg	in ug / Kg	Recovery	in ug / Kg	in ug / Kg	in ug / Kg	
MS / MSD	MSD Percent	MSD Results	MSD Spiked MSD Results	LCS Percent	LCS Results	LCS Spiked	Sample Results	Spiked Compound

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site: Town of Clarkson

Client Job Number: Field Location: Field ID Number: Sample Type: 40503 CS-GP-01-03

Lab Project Number: Lab Sample Number: 10-0655 2964

SDG Group:

2964

Date Sampled:
Date Received: 02/08/2010 02/11/2010 02/20/2010

		SOE
Lac Called		Date.
Mc Double	Đ	Date Analyzed:
MS Demont		02/20/2010
MSD Sniked		
MSD Results		
MSD Percent		
MS/		

							exaple a	2,3,4,6-Tetracheropheral
		8,08			2169		٥-	6
)			-		etange more	I I I I I I I I I I I I I I I I I I I
		916			140			2,4,6-1/WC/2000
		7			2101			H
					1443		Dan	24- dinitroplemal
		1350)		- (LI TURNET EN
		808			2006		5	4
		, (,		Jewa L	2,4- demothyloural
		2004			1900		,	((
		440			1936		de	2,4- displayed the
) 						
61	77.8	1,300	1,670	82.7	1,390	1,680	ND< 334	Pyrene
5.22	76.5	1,920	2,510	80.6	2,030	2,520	ND< 834	Pentachlorophenol
6.24	86.9	2,180	2,510	92.5	2,330	2,520	ND< 834	4-Nitrophenol
6.33	74.9	1,250	1,670	79.8	1,340	1,680	ND< 334	2,4-Dinitrotoluene
3.36	76.0	1,270	1,670	78.6	1,320	1,680	ND< 334	Acenaphthene
5.46	65.9	1,100	1,670	69.6	1,170	1,680	ND< 334	1,2,4-Trichlorobenzene
8.45	73.7	1,850	2,510	80.2	2,020	2,520	ND< 334	4-Chloro-3-methylphenol
2.32	72.5	1,820	2,510	74.2	1,870	2,520	ND< 334	Phenol
7.89	74.3	1,240	1,670	80.4	1,350	1,680	ND< 334	N-Nitroso-di-n-propylamine
2.74	68.3	1,140	1,670	70.2	1,180	1,680	ND< 334	1,4-Dichlorobenzene
4.5/	70.5	1,770	2,510	73.8	1,860	2,520	ND< 334	2-Chiorophenol
* X-70	Recovery	in ug / Kg	in ug / Kg	Recovery	in ug / Kg	in ug / Kg	in ug / Kg	
NO / MOD	MOD Percent	MSD Spiked MSD Results	MSD Spiked	MS Percent	MS Results	MS Spiked	Sample Results	Spiked Compound

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: Lab Sample Number: 10-0655

2964

Client Job Number:

40503

02/08/2010

Field Location: Field ID Number:

CS-GP-01-03 N/A Date Sampled: Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/20/2010

1-11			
Compound		Results in ug	
Acenaphthene		ND< 334	
Acenaphthylene		ND< 334	
Acetophenone		ND< 334	
Anthracene		ND< 334	
Atrazine		ND< 334	
Benzaldehyde		ND< 334	u3
Benzo (a) anthra	cene	ND< 334	
Benzo (a) pyrene	€	ND< 334	
Benzo (b) fluorar	nthene	ND< 334	
Benzo (g,h,i) per	ylene	ND< 334	
Benzo (k) fluorar	nthene	ND< 334	
Biphenyl		ND< 334	
Bis (2-chloroethy	i) ether	ND< 334	
Bis (2-chloroetho	xy) methane	ND< 334	
Bis (2-ethylhexyl) phthalate	ND< 334	
Bis (2-chloroisop	ropyl) ether	ND< 334	
4-Bromophenyl p	henyl ether	ND< 334	
Butylbenzylphtha	alate	ND< 334	
Caprolactam		ND< 334	
Carbazole		ND< 334	
4-Chloroaniline		ND< 334	
4-Chloro-3-meth	ylphenol	ND< 334	
2-Chloronaphtha	lene	ND< 334	
2-Chlorophenol		ND< 334	
4-Chlorophenyl p	ohenyl ether	ND< 334	
Chrysene		ND< 334	
1,3-Dichlorobenz	ene	ND< 334	
1,4-Dichlorobenz	ene	ND< 334	
1,2-Dichlorobenz	ene	ND< 334	
Dibenz (a,h) anti	rracene	ND< 334	
Dibenzofuran		ND< 334	
3,3'-Dichloroben	zidine	ND< 334	
2,4-Dichloropher	noi	ND< 334	
Diethyl phthalate	•	ND< 334	
2,4-Dimethylphe	not	ND< 334	
Dimethyl phthala	te	ND< 834	

Compound	Results in ug / Kg
Di-n-butyl phthalate	ND< 334
4,6-Dinitro-2-methylphenol	ND< 834
2,4-Dinitrophenol	ND< 834
2,4-Dinitrotoluene	ND< 334
2,6-Dinitrotoluene	ND< 334
Di-n-octylphthalate	ND< 334
Fluoranthene	ND< 334
Fluorene	ND< 334
Hexachiorobenzene	ND< 334
Hexachlorobutadiene	ND< 334
Hexachlorocyclopentadiene	ND< 334
Hexachloroethane	ND< 334
Indeno (1,2,3-cd) pyrene	ND< 334
Isophorone	ND< 334
2-Methylnapthalene	ND< 334
2-Methylphenol	ND< 334
3&4-Methylphenol	ND< 334
Naphthalene	ND< 334
2-Nitroaniline	ND< 834
3-Nitroaniline	ND< 834
4-Nitroaniline	ND< 834
Nitrobenzene	ND< 334
2-Nitrophenol	ND< 334
4-Nitrophenol	ND< 834
N-Nitroso-di-n-propylamine	ND< 334
N-Nitrosodiphenylamine	ND< 334
Pentachlorophenol	ND< 834
Phenanthrene	ND< 334
Phenol	ND< 334
Pyrene	ND< 334
1,2,4-Trichlorobenzene	ND< 334
2,4,5-Trichlorophenol	ND< 834
2,4,6-Trichlorophenol	ND< 334
1,2,4,5-Tetrachlorobenzene	ND< 334
2,3,4,6-Tetrachlorophenol	ND< 334
	G GORDAN (* * 1919)

ELAP Number 10958

Method: EPA 8270C

Data File: S49735.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kliogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compilance with sample condition requirements upon receipt.

100655S1.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2964

Cilent Job Number:

40503 CS-GP-01-03

Date Sampled:

02/08/2010

Field Location: Field ID Number:

N/A

Date Received:

Sample Type:

Soil

Date Analyzed:

02/11/2010

02/20/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Unknown	N/A	12.29	237	N/A
			≅ \$	
				,
			<i>i</i>	
			# • 41	. · · · · · · · · · · · · · · · · · · ·
ELAP Number 10958	Method:	EPA 8270C		Data File: S49735.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger. Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. requirements upon receipt.

Client: Lu Engineers

Client Job Site: Town of Clarkson **Lab Project Number:** 2965 Lab Sample Number:

10-0655

Client Job Number: Field Location:

40503 CS-GP-07-07

Date Sampled:

02/08/2010

Field ID Number:

N/A

Date Received: Date Analyzed: 02/11/2010 02/20/2010

Sample Type:

Soil

Date Reissued:

03/16/2010

Compound	Results in ug / Kg
Acenaphthene	ND< 400
Acenaphthylene	ND< 400
Acetophenone	ND< 400
Anthracene	ND< 400
Atrazine	ND< 400
Benzaldehyde	ND< 400 W.Z
Benzo (a) anthracene	ND< 400
Benzo (a) pyrene	ND< 400
Benzo (b) fluoranthene	ND< 400
Benzo (g,h,i) perylene	ND< 400
Benzo (k) fluoranthene	ND< 400
Biphenyl	ND< 400
Bis (2-chloroethyl) ether	ND< 400
Bis (2-chloroethoxy) methane	ND< 400
Bis (2-ethylhexyl) phthalate	52 5
Bis (2-chloroisopropyl) ether	ND< 400
4-Bromophenyl phenyl ether	ND< 400
Butylbenzylphthalate	977
Caprolactam	ND< 400
Carbazole .	ND< 400
4-Chloroaniline	ND< 400
4-Chloro-3-methylphenol	ND< 400
2-Chloronaphthalene	ND< 400
2-Chlorophenol	ND< 400
4-Chlorophenyl phenyl ether	ND< 400
Chrysene	ND< 400
1,3-Dichlorobenzene	ND< 400
1,4-Dichlorobenzene	ND< 400
1,2-Dichlorobenzene	ND< 400
Dibenz (a,h) anthracene	ND< 400
Dibenzofuran	ND< 400

Compound	Results in ug / Kg
Di-n-butyl phthalate	ND< 400
4,6-Dinitro-2-methylphenol	ND< 1,000
2,4-Dinitrophenol	ND< 1,000
2,4-Dinitrotoluene	ND< 400
2,6-Dinitrotoluene	ND< 400
Di-n-octylphthalate	ND< 400
Fluoranthene	J 241
Fluorene	ND< 400
Hexachlorobenzene	ND< 400
Hexachlorobutadiene	ND< 400
Hexachlorocyclopentadiene	ND< 400
Hexachloroethane	ND< 400
Indeno (1,2,3-cd) pyrene	ND< 400
Isophorone	ND< 400
2-Methylnapthalene	J 256
2-Methylphenol	ND< 400
3&4-Methylphenol	ND< 400
Naphthalene	ND< 400
2-Nitroaniline	ND< 1,000
3-Nitroaniline	ND< 1,000
4-Nitroaniline	ND< 1,000
Nitrobenzene	ND< 400
2-Nitrophenol	ND< 400
4-Nitrophenol	ND< 1,000
N-Nitroso-di-n-propylamine	ND< 400
N-Nitrosodiphenylamine	ND< 400
Pentachlorophenol	ND< 1,000
Phenanthrene	ND< 400
Phenol	ND< 400
Pyrene	J 201
1,2,4-Trichlorobenzene	ND< 400
2,4,5-Trichlorophenol	ND< 1,000
2,4,6-Trichlorophenol	ND< 400
1,2,4,5-Tetrachlorobenzene	ND< 400
2,3,4,6-Tetrachlorophenol	ND< 400

Dimethyl phthalate ELAP Number 10958

3,3'-Dichlorobenzidine

2,4-Dichlorophenol

2,4-Dimethylphenol

Diethyl phthalate

Method: EPA 8270C

ND< 400

ND< 400

ND< 400

ND< 400

ND< 1,000

Data File: S49738.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger:

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 100655\$\text{S2.XLS}\$ requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2965

Client Job Number:

40503 CS-GP-07-07

Date Sampled:

02/08/2010

Field Location: Field ID Number: Sample Type:

N/A Soil **Date Received:**

02/11/2010

Date Analyzed:

02/20/2010

Date Reissued:

03/16/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Limonene	N/A	7.21	755	N/A
Unknown	N/A	9.98	364	N/A
Unknown PAH	N/A	10.85	395	N/A
Unknown	N/A	12.29	475	N/A
Unknown Alkane	N/A	13.02	387	N/A
Cyclic octaatomic sulfur	10544-50-0	15.43	2,560	90
Unknown	N/A	15.71	530	N/A
Unknown	N/A	20.25	2,520	N/A
Unknown	N/A	20.43	36,400	N/A
Vitamin E	10191-41-0	20.49	341	99
Unknown	N/A	20.55	24,500	N/A
Unknown	N/A	20.69	1,560	N/A
Unknown	N/A	20.76	2,970	N/A
Unknown	N/A	20.91	29,700	N/A
Unknown	N/A	21.07	12,300	N/A
Unknown	N/A	21.14	1,790	N/A
Unknown	N/A	21.22	3,090	N/A
Unknown	N/A	21.29	2,300	N/A
Unknown	N/A	21.41	1,330	N/A
Unknown	N/A	21.65	4,450	N/A

ELAP Number 10958

Method: EPA 8270C

Data File: S49738.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogestege

ctor

ated in its entirety. Chain of Custody provides additional information, including compliance with sample condition
100655S2.XLS This report is part of a multipage document and should only be eva requirements upon receipt.

Client: Lu Engineers

Cilent Job Site:

Town of Clarkson

Lab Project Number:

10-0655

Client Job Number:

40503

Lab Sample Number:

2966

Field Location:

CS-GP-04-02

Date Sampled:

02/08/2010

Field ID Number:

N/A

Date Received: Date Analyzed: 02/11/2010 02/20/2010

Sample Type:

Soil

Compound	Results in ug / Kg
Acenaphthene	ND< 329
Acenaphthylene	ND< 329
Acetophenone	ND< 329
Anthracene	ND< 329
Atrazine	ND< 329
Benzaldehyde	ND< 329 U. 5
Benzo (a) anthracene	ND< 329
Benzo (a) pyrene	ND< 329
Benzo (b) fluoranthene	ND< 329
Benzo (g,h,i) perylene	ND< 329
Benzo (k) fluoranthene	ND< 329
Biphenyl	ND< 329
Bis (2-chloroethyl) ether	ND< 329
Bis (2-chloroethoxy) methane	ND< 329
Bis (2-ethylhexyl) phthalate	ND< 329
Bis (2-chloroisopropyl) ether	ND< 329
4-Bromophenyl phenyl ether	ND< 329
Butylbenzylphthalate	ND< 329
Caprolactam	ND< 329
Carbazole	ND< 329
4-Chloroaniline	ND< 329
4-Chloro-3-methylphenol	ND< 329

ND< 329

ND< 329 ND< 329

ND< 329

ND< 329

ND< 329

ND< 329

ND< 329

ND< 329 ND< 329

ND< 329

ND< 329

ND< 329

ND< 821

Compound	Results in ug / Kg
Di-n-butyl phthalate	ND< 329
4,6-Dinitro-2-methylphenol	ND< 821
2,4-Dinitrophenol	ND< 821
2,4-Dinitrotoluene	ND< 329
2,6-Dinitrotoluene	ND< 329
Di-n-octylphthalate	ND< 329
Fluoranthene	ND< 329
Fluorene	ND< 329
Hexachlorobenzene	ND< 329
Hexachlorobutadiene	ND< 329
Hexachlorocyclopentadiene	ND< 329
Hexachloroethane	ND< 329
Indeno (1,2,3-cd) pyrene	ND< 329
Isophorone	ND< 329
2-Methylnapthalene	ND< 329
2-Methylphenol	ND< 329
3&4-Methylphenol	ND< 329
Naphthalene	ND< 329
2-Nitroaniline	ND< 821
3-Nitroaniline	ND< 821
4-Nitroanillne	ND< 821
Nitrobenzene	ND< 329
2-Nitrophenol	ND< 329
4-Nitrophenol	ND< 821
N-Nitroso-di-n-propylamine	ND< 329
N-Nitrosodiphenylamine	ND< 329
Pentachlorophenol	ND< 821
Phenanthrene	ND< 329
Phenol	ND< 329
Pyrene	ND< 329
1,2,4-Trichlorobenzene	ND< 329
2,4,5-Trichlorophenol	ND< 821
2,4,6-Trichlorophenol	ND< 329
1,2,4,5-Tetrachlorobenzene	ND< 329
2,3,4,6-Tetrachlorophenol	ND< 329
1	

2,4-Dimethylphenol Dimethyl phthalate ELAP Number 10958

2-Chloronaphthalene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Dibenz (a,h) anthracene

3,3'-Dichlorobenzidine

2,4-Dichlorophenoi

Diethyl phthalate

4-Chlorophenyl phenyl ether

2-Chlorophenol

Chrysene

Dibenzofuran

Method: EPA 8270C

Data File: S49739.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2966

Client Job Number:

40503

CS-GP-04-02

Date Sampled:

02/08/2010

Field Location: Field iD Number:

N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/20/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Unknown	N/A	12.29	269	N/A
Unknown	N/A	19.36	186	N/A
Unknown	N/A	20.86	1,580	N/A
Unknown	N/A	21.62	184	N/A
		46		

ELAP Number 10958

Method: EPA 8270C

Data File: S49739.D

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 10065583.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: Lab Sample Number: 10-0655 2967

Client Job Number:

r: 40503 CS-GP-16-8.5

Date Sampled:

02/08/2010

Field Location: Field ID Number:

N/A

Date Received: Date Analyzed: 02/11/2010 02/20/2010

Lield in	Mumber:
Sample	Type:

JUII

Compound	Results in ug / Kg
Acenaphthene	ND< 343
Acenaphthylene	ND< 343
Acetophenone	ND< 343
Anthracene	ND< 343
Atrazine	ND< 343
Benzaldehyde	ND< 343 W. 3
Benzo (a) anthracene	ND< 343
Benzo (a) pyrene	ND< 343
Benzo (b) fluoranthene	ND< 343
Benzo (g,h,l) perylene	ND< 343
Benzo (k) fluoranthene	ND< 343
Blphenyl	ND< 343
Bis (2-chloroethyl) ether	ND< 343
Bls (2-chloroethoxy) methane	ND< 343
Bls (2-ethylhexyl) phthalate	ND< 343
Bis (2-chloroisopropyl) ether	ND< 343
4-Bromophenyl phenyl ether	ND< 343
Butylbenzylphthalate	ND< 343
Caprolactam	ND< 343
Carbazole	ND< 343
4-Chloroaniline	ND< 343
4-Chloro-3-methylphenol	ND< 343
2-Chloronaphthalene	ND< 343
2-Chlorophenol	ND< 343
4-Chlorophenyl phenyl ether	ND< 343
Chrysene	ND< 343
1,3-Dichlorobenzene	ND< 343
1,4-Dichlorobenzene	ND< 343
1,2-Dichlorobenzene	ND< 343
Dibenz (a,h) anthracene	ND< 343
Dibenzofuran	ND< 343
3,3'-Dichlorobenzidine	ND< 343
2,4-Dichlorophenol	ND< 343
Diethyl phthalate	ND< 343
2,4-Dimethylphenol	ND< 343
Dimethyl phthalate	ND< 857
ELAP Number 10958	Meth

Compound	Results in ug / Kg
Di-n-butyl phthalate	ND< 343
4,6-Dinitro-2-methylphenol	ND< 857
2,4-Dinitrophenol	ND< 857
2,4-Dinitrotoluene	ND< 343
2,6-Dinitrotoluene	ND< 343
Di-n-octylphthalate	ND< 343
Fluoranthene	ND<-343- 3 €O
Fluorene	ND< 343
Hexachlorobenzene	ND< 343
Hexachlorobutadiene	ND< 343
Hexachlorocyclopentadiene	ND< 343
Hexachloroethane	ND< 343
Indeno (1,2,3-cd) pyrene	ND< 343
Isophorone	ND< 343
2-Methylnapthalene	ND< 343
2-Methylphenol	ND< 343
3&4-Methylphenol	ND< 343
Naphthalene	ND< 343
2-Nitroaniline	ND< 857
3-Nitroaniline	ND< 857
4-Nitroaniline	ND< 857
Nitrobenzene	ND< 343
2-Nitrophenol	ND< 343
4-Nitrophenol	ND< 857
N-Nitroso-di-n-propylamine	ND< 343
N-Nitrosodiphenylamine	ND< 343
Pentachlorophenol	ND< 857
Phenanthrene	ND< 343
Phenol	ND< 343
Pyrene	ND< 343
1,2,4-Trichlorobenzene	ND< 343
2,4,5-Trichlorophenol	ND< 857
2,4,6-Trichlorophenol	ND< 343
1,2,4,5-Tetrachlorobenzene	ND< 343
2,3,4,6-Tetrachlorophenol	ND< 343
1	

ELAP Number 10958 Method: EPA 8270C Data File: S49740.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Offector

100655S4.XLS

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Town of Ciarkson

Lab Project Number: 10-0655

Lab Sample Number: 2967

Client Job Number:

or: 40503 CS-GP-16-8.5

Date Sampled:

02/08/2010

Field Location: Field ID Number:

N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/20/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Unknown	N/A	12.29	141	N/A
Unknown	N/A	14.84	172	N/A
Unknown	N/A	17.09	163	N/A
				N/A

ELAP Number 10958

Method: EPA 8270C

Data File: S49740.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

100655S4.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number:

10-0655

Client Job Number:

: 40503

Lab Sample Number:

2968

Field Location: Field ID Number:

CS-GP-11-10

Date Sampled: Date Received:

02/09/2010 02/11/2010

Sample Type:

N/A Soil

Date Analyzed:

02/20/2010

	Compound	Results in ug / Kg	-
	Acenaphthene	ND< 326	
	Acenaphthylene	ND< 326	
	Acetophenone	ND< 326	
	Anthracene	ND< 326	
	Atrazine	ND< 326	
	Benzaldehyde	ND< 326 🗸	2
	Benzo (a) anthracene	ND< 326	
	Benzo (a) pyrene	ND< 326	
	Benzo (b) fluoranthene	ND< 326	
	Benzo (g,h,i) perylene	ND< 326	
	Benzo (k) fluoranthene	ND< 326	
	Biphenyl	ND< 326	
	Bis (2-chloroethyl) ether	ND< 326	
	Bis (2-chloroethoxy) methane	ND< 326	
	Bis (2-ethylhexyl) phthalate	ND< 326	
	Bis (2-chloroisopropyl) ether	ND< 326	
	4-Bromophenyl phenyl ether	ND< 326	٠
	Butylbenzylphthalate	ND< 326	
	Caprolactam	ND< 326	
	Carbazole	ND< 326	
	4-Chloroaniline	ND< 326	
	4-Chloro-3-methylphenol	ND< 326	
	2-Chloronaphthalene	ND< 326	
	2-Chlorophenol	ND< 326	
	4-Chlorophenyl phenyl ether	ND< 326	
	Chrysene	ND< 326	
	1,3-Dichlorobenzene	ND< 326	
i	1,4-Dichlorobenzene	ND< 326	
	1,2-Dichlorobenzene	ND< 326	
	Dibenz (a,h) anthracene	ND< 326	
	Dibenzofuran	ND< 326	
	3,3'-Dichlorobenzidine	ND< 326	
	2,4-Dichlorophenol	ND< 326	
	Diethyl phthalate	ND< 326	
į	2,4-Dimethylphenol	ND< 326	
į	Dimethyl phthalate	ND< 814	
	ELAP Number 10958	Met	he

Compound	Results in ug / Kg
Di-n-butyl phthalate	ND< 326
4,6-Dinitro-2-methylphenoi	ND< 814
2,4-Dinitrophenol	ND< 814
2,4-Dinitrotoluene	ND< 326
2,6-Dinitrotoluene	ND< 326
Di-n-octylphthalate	ND< 326
Fluoranthene	ND< 326
Fluorene	ND< 326
Hexachlorobenzene	ND< 326
Hexachlorobutadiene	ND< 326
Hexachlorocyclopentadiene	ND< 326
Hexachloroethane	ND< 326
Indeno (1,2,3-cd) pyrene	ND< 326
Isophorone	ND< 326
2-Methylnapthalene	ND< 326
2-Methylphenol	ND< 326
3&4-Methylphenol	ND< 326
Naphthalene	ND< 326
2-Nitroaniline	ND< 814
3-Nitroaniline	ND< 814
4-Nitroaniline	ND< 814
Nitrobenzene	ND< 326
2-Nitrophenol	ND< 326
4-Nitrophenol	ND< 814
N-Nitroso-dl-n-propylamine	ND< 326
N-Nitrosodiphenylamine	ND< 326
Pentachlorophenol	ND< 814
Phenanthrene	ND< 326
Phenol	ND< 326
Pyrene	ND< 326
1,2,4-Trichlorobenzene	ND< 326
2,4,5-Trichlorophenol	ND< 814
2,4,6-Trichlorophenol	ND< 326
1,2,4,5-Tetrachlorobenzene	ND< 326
2,3,4,6-Tetrachlorophenol	ND< 326
	we we

ELAP Number 10958

Method: EPA 8270C

Data File: S49741.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Directo

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655 **Lab Sample Number:** 2968

Client Job Number:

r: 40503 CS-GP-11-10

Date Sampled:

02/09/2010

Field Location: Field ID Number: Sample Type:

N/A Soil Date Received:

02/11/2010

Date Analyzed:

02/20/2010

Tentatively Identified Compounds
None Found

CAS Number N/A Retention Time N/A Results in ug / Kg

Percent Fit

ND< 130 N/A

ELAP Number 10958

Method: EPA 8270C

Data File: S49741.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogestege . 4 echnical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

10065595.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number:

10-0655

Client Job Number:

40503

Lab Sample Number:

2969

Field Location:

CS-GP-12-09

Date Sampled: **Date Received:** 02/09/2010 02/11/2010

Field ID Number: Sample Type:

N/A Soil

Date Analyzed:

02/20/2010

Compound	Results in ug /	Kg
Acenaphthene	ND< 325	
Acenaphthylene	ND< 325	
Acetophenone	ND< 325	
Anthracene	ND< 325	
Atrazine	ND< 325	
Benzaldehyde	ND< 325	W.2
Benzo (a) anthracene	ND< 325	
Benzo (a) pyrene	ND< 325	
Benzo (b) fluoranthene	ND< 325	
Benzo (g,h,i) perylene	ND< 325	
Benzo (k) fluoranthene	ND< 325	
Biphenyl	ND< 325	
Bis (2-chloroethyl) ether	ND< 325	
Bis (2-chloroethoxy) methane	ND< 325	
Bis (2-ethylhexyl) phthalate	ND< 325	
Bis (2-chloroisopropyl) ether	ND< 325	
4-Bromophenyl phenyl ether	ND< 325	
Butylbenzylphthalate	ND< 325	
Caprolactam	ND< 325	
Carbazole	ND< 325	
4-Chloroaniline	ND< 325	
4-Chloro-3-methylphenol	ND< 325	
2-Chloronaphthalene	ND< 325	
2-Chlorophenol	ND< 325	
4-Chlorophenyl phenyl ether	ND< 325	
Chrysene	ND< 325	
1,3-Dichlorobenzene	ND< 325	
1,4-Dichlorobenzene	ND< 325	
1,2-Dichlorobenzene	ND< 325	
Dibenz (a,h) anthracene	ND< 325	
Dibenzofuran	ND< 325	
3,3'-Dichlorobenzidine	ND< 325	
2,4-Dichlorophenol	ND< 325	
Diethyl phthalate	ND< 325	
2,4-Dimethylphenol	ND< 325	
Dimethyl phthalate	ND< 814	
ELAP Number 10958		Meth

Compound	Results in ug / Kg
Di-n-butyl phthalate	ND< 325
4,6-Dinitro-2-methylphenol	ND< 814
2,4-Dinitrophenol	ND< 814
2,4-Dinitrotoluene .	ND< 325
2,6-Dinitrotoluene	ND< 325
Di-n-octylphthalate	ND< 325
Fluoranthene	ND< 325
Fluorene	ND< 325
Hexachlorobenzene	ND< 325
Hexachlorobutadlene	ND< 325
Hexachlorocyclopentadiene	ND< 325
Hexachloroethane	ND< 325
Indeno (1,2,3-cd) pyrene	ND< 325
Isophorone	ND< 325
2-Methylnapthalene	ND< 325
2-Methylphenol	ND< 325
3&4-Methylphenol	ND< 325
Naphthalene	ND< 325
2-Nitroaniline	ND< 814
3-Nitroanlline	ND< 814
4-Nitroaniline	ND< 814
Nitrobenzene	ND< 325
2-Nitrophenol	ND< 325
4-Nitrophenol	ND< 814
N-Nitroso-di-n-propylamine	ND< 325
N-Nitrosodiphenylamine	ND< 325
Pentachlorophenol	ND< 814
Phenanthrene	ND< 325
Phenol	ND< 325
Pyrene	ND< 325
1,2,4-Trichlorobenzene	ND< 325
2,4,5-Trichlorophenol	ND< 814
2,4,6-Trichlorophenol	ND< 325
1,2,4,5-Tetrachiorobenzene	ND< 325
2,3,4,6-Tetrachlorophenol	ND< 325

thod: EPA 8270C

Data File: S49742.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 100655\$6.XLS requirements upon receipt.

Client: <u>Lu Engineers</u>

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2969

Client Job Number:

40503 CS-GP-12-09

Date Sampled:

02/09/2010

Field Location: Field ID Number: Sample Type:

N/A Soil **Date Received:**

02/11/2010

Date Analyzed:

02/20/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Unknown	N/A	19.36	133	N/A
	8			
# 5				
	•			
			Eq.	

ELAP Number 10958

Method: EPA 8270C

Data File: S49742.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 100655S8.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: Lab Sampie Number: 10-0655 2970

Client Job Number:

40503 CS-GP-13-10

Date Sampled:

Field Location: Field ID Number:

N/A

Date Received:

02/09/2010 02/11/2010

Sample Type:

Soii

Date Analyzed:

02/20/2010

Compound	Results in ug / Kg
Acenaphthene	ND< 322
Acenaphthylene	ND< 322
Acetophenone	ND< 322
Anthracene	ND< 322
Atrazine	ND< 322
Benzaidehyde	ND< 322 U. 3
Benzo (a) anthracene	ND< 322
Benzo (a) pyrene	ND< 322
Benzo (b) fluoranthene	ND< 322
Benzo (g,h,i) perylene	ND< 322
Benzo (k) fluoranthene	ND< 322
Biphenyl	ND< 322
Bis (2-chloroethyl) ether	ND< 322
Bis (2-chloroethoxy) methane	ND< 322
Bls (2-ethylhexyl) phthalate	ND< 322
Bis (2-chioroisopropyl) ether	ND< 322
4-Bromophenyl phenyl ether	ND< 322
Butylbenzylphthalate	ND< 322
Caprolactam	ND< 322
Carbazole	ND< 322
4-Chloroaniline	ND< 322
4-Chloro-3-methylphenoi	ND< 322
2-Chloronaphthalene	ND< 322
2-Chlorophenol	ND< 322
4-Chlorophenyi phenyi ether	ND< 322
Chrysene	ND< 322
1,3-Dichlorobenzene	ND< 322

Compound	Results in ug / Kg
Di-n-butyl phthalate	ND< 322
4,6-Dinitro-2-methylphenol	ND< 805
2,4-Dinitrophenol	ND< 805
2,4-Dinitrotoluene	ND< 322
2,6-Dinitrotoluene	ND< 322
Di-n-octylphthalate	ND< 322
Fluoranthene	ND< 322
Fluorene	ND< 322
Hexachlorobenzene	ND< 322
Hexachiorobutadiene	ND< 322
Hexachlorocyclopentadiene	ND< 322
Hexachloroethane	ND< 322
Indeno (1,2,3-cd) pyrene	ND< 322
Isophorone	ND< 322
2-Methylnapthalene	ND< 322
2-Methylphenol	ND< 322
3&4-Methylphenoi	ND< 322
Naphthalene	ND< 322
2-Nitroaniline	ND< 805
3-Nitroaniiine	ND< 805
4-Nitroaniline	ND< 805
Nitrobenzene	ND< 322
2-Nitrophenol	ND< 322
4-Nitrophenol	ND< 805
N-Nitroso-di-n-propylamine	ND< 322
N-Nitrosodlphenylamine	ND< 322
Pentachlorophenoi	ND< 805
Phenanthrene	ND< 322
Phenoi	ND< 322
Pyrene	ND< 322
1,2,4-Trichlorobenzene	ND< 322
2,4,5-Trichlorophenol	ND< 805
2,4,6-Trichiorophenoi	ND< 322
1,2,4,5-Tetrachlorobenzene	ND< 322
2,3,4,6-Tetrachlorophenol	ND< 322
2,3,4,6-Tetrachlorophenol	ND< 322 ND< 322

Dimethyl phthalate ELAP Number 10958

2,4-Dimethylphenol

Diethyl phthalate

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Dibenzofuran

Dibenz (a,h) anthracene

3,3'-Dichlorobenzidine 2,4-Dichlorophenol

Method: EPA 8270C

ND< 322

ND< 322

ND< 322

ND< 322

ND< 322

ND< 322

ND< 322

ND< 322 ND< 805

Data File: S49743.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger. Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655 Lab Sample Number: 2970

Client Job Number:

40503 CS-GP-13-10

Date Sampled:

02/09/2010

Field Location: Field ID Number: Sample Type:

N/A Soil Date Received:

02/11/2010

Date Analyzed:

02/20/2010

Retention Time Results in ug / Kg Tentatively Identified Compounds CAS Number ND< 129 N/A N/A None Found

ELAP Number 10958

Method: EPA 8270C

Data File: S49743.D

Percent Fit

N/A

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesterer: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 10065557.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: Lab Sample Number: 10-0655 2971

Client Job Number:

: 40503 CS-GP-18-07

Date Sampled:

02/09/2010

Fleid Location: Fleid ID Number: Sample Type:

N/A Soil Date Received:

02/11/2010

Date Analyzed:

02/20/2010

Compound	Results in ug / Kg	Compound
Acenaphthene	ND< 337	Di-n-butyl ph
Acenaphthylene	ND< 337	4,6-Dinitro-2
Acetophenone	ND< 337	2,4-Dinitroph
Anthracene	ND< 337	2,4-Dinitroto
Atrazine	ND< 337	2,6-Dinitroto
Benzaldehyde	ND< 337 45	Di-n-octylph
Benzo (a) anthracene	ND< 337	Fluoranthen
Benzo (a) pyrene	ND< 337	Fluorene
Benzo (b) fluoranthene	ND< 337	Hexachlorob
Benzo (g,h,i) perylene	ND< 337	Hexachlorob
Benzo (k) fluoranthene	ND< 337	Hexachlorod
Biphenyl	ND< 337	Hexachloroe
Bis (2-chloroethyl) ether	ND< 337	Indeno (1,2,
Bis (2-chloroethoxy) methane	ND< 337	Isophorone
Bis (2-ethylhexyl) phthalate	ND< 337	2-Methylnap
Bis (2-chloroisopropyl) ether	ND< 337	2-Methylphe
4-Bromophenyl phenyl ether	ND< 337	3&4-Methylp
Butylbenzylphthalate	ND< 337	Naphthalen
Caprolactam	ND< 337	2-Nitroanilin
Carbazole	ND< 337	3-Nitroanilin
4-Chloroaniline	ND< 337	4-Nitroanilln
4-Chloro-3-methylphenol	ND< 337	Nitrobenzen
2-Chloronaphthalene	ND< 337	2-Nitrophen
2-Chlorophenol	ND< 337	4-Nitrophen
4-Chlorophenyl phenyl ether	ND< 337	N-Nitroso-di
Chrysene	ND< 337	N-Nitrosodi
1,3-Dichlorobenzene	ND< 337	Pentachloro
1,4-Dichlorobenzene	ND< 337	Phenanthre
1,2-Dichlorobenzene	ND< 337	Phenol
Dibenz (a,h) anthracene	ND< 337	Pyrene
Dibenzofuran	ND< 337	1.2.4-Trichle
3,3'-Dichlorobenzidine	ND< 337	2,4,5-Trichle
2,4-Dichlorophenol	ND< 337	2,4,6-Trichle
Diethyl phthalate	ND< 337	1,2,4,5-Tetr
2,4-Dimethylphenol	ND< 337	2,3,4,6-Tetr
Dimethyl phthalate	ND< 843	
ELAP Number 10958		od: EPA 8270C

Compound	Results in ug / Kg
Di-n-butyl phthalate	ND< 337
4,6-Dinitro-2-methylphenol	ND< 843
2,4-Dinitrophenol	ND< 843
2,4-Dinitrotoluene	ND< 337
2,6-Dinitrotoluene	ND< 337
Di-n-octylphthalate	ND< 337
Fluoranthene	ND< 337
Fluorene	ND< 337
Hexachlorobenzene	ND< 337
Hexachlorobutadiene	ND< 337
Hexachlorocyclopentadiene	ND< 337
Hexachloroethane	ND< 337
Indeno (1,2,3-cd) pyrene	ND< 337
Isophorone	ND< 337
2-Methylnapthalene	ND< 337
2-Methylphenol	ND< 337
3&4-Methylphenol	ND< 337
Naphthalene	ND< 337
2-Nitroaniline	ND< 843
3-Nitroaniline	ND< 843
4-Nitroanillne	ND< 843
Nitrobenzene	ND< 337
2-Nitrophenol	ND< 337
4-Nitrophenol	ND< 843
N-Nitroso-di-n-propylamine	ND< 337
N-Nitrosodiphenylamine	ND< 337
Pentachlorophenol	ND< 843
Phenanthrene	ND< 337
Phenol	ND< 337
Pyrene	ND< 337
1,2,4-Trichlorobenzene	ND< 337
2,4,5-Trichlorophenol	ND< 843
2,4,6-Trichlorophenol	ND< 337
1,2,4,5-Tetrachlorobenzene	ND< 337
2,3,4,6-Tetrachiorophenol	ND< 337
1	

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Data File: S49744.D

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2971

Client Job Number:

r: 40503 CS-GP-18-07

Date Sampled:

02/09/2010

Field Location: Field ID Number:

N/A

Date Received:

02/03/2010

Sample Type:

Soil

Date Analyzed:

02/20/2010

•

CAS Number	Retention Time	Results in ug / Kg	Percent Fit
N/A	14.25	140	N/A
10544-50-0	15.41	497	95
			İ
		94 A	
			2
		*	l
	N/A	N/A 14.25	N/A 14.25 140

ELAP Number 10958

Method: EPA 8270C

Data File: S49744.D

Comments: ND denotes Non Detect
ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: Lab Sample Number: 10-0655

2972

Client Job Number:

40503

-

02/09/2010

Field Location: Field ID Number:

CS-GP-18-07D N/A Date Sampled: Date Received:

02/11/2010

Sample Type:

Soll

Date Analyzed:

02/20/2010

C	ompound	Results in ug /	Kg
A	cenaphthene	ND< 336	
Α	cenaphthylene	ND< 336	
Α	cetophenone	ND< 336	
Α	nthracene	ND< 336	
A	trazine	ND< 336	
В	enzaldehyde	ND< 336	VZ
В	enzo (a) anthracene	ND< 336	
В	enzo (a) pyrene	ND< 336	
В	enzo (b) fluoranthene	ND< 336	
В	enzo (g,h,i) perylene	ND< 336	
	enzo (k) fluoranthene	ND< 336	
В	iphenyl	ND< 336	
	is (2-chloroethyl) ether	ND< 336	
lв	is (2-chloroethoxy) methane	ND< 336	
	is (2-ethylhexyl) phthalate	J 261	
lв	is (2-chloroisopropyl) ether	ND< 336	
	-Bromophenyl phenyl ether	ND< 336	
	utylbenzylphthalate	ND< 336	
	Caprolactam	ND< 336	
	Carbazole	ND< 336	
4	-Chloroaniline	ND< 336	
4	-Chloro-3-methylphenol	ND< 336	
	-Chloronaphthalene	ND< 336	
	-Chlorophenol	ND< 336	
	-Chlorophenyl phenyl ether	ND< 336	
	Chrysene	ND< 336	
	,3-Dichlorobenzene	ND< 336	
	,4-Dichlorobenzene	ND< 336	
	,2-Dichlorobenzene	ND< 336	
	Dibenz (a,h) anthracene	ND< 336	
- 1	Dibenzofuran	ND< 336	
- 1	3,3'-Dichlorobenzidine	ND< 336	
	2,4-Dichlorophenol	ND< 336	
	Diethyl phthalate	ND< 336	
	2,4-Dimethylphenol	ND< 336	
	Dimethyl phthalate	ND< 840	
-	LAP Number 10958	7,75 - 0,70	Meth

Compound	Results in ug / Kg
Di-n-butyl phthalate	ND< 336
4,6-Dinitro-2-methylphenol	ND< 840
2,4-Dinitrophenol	ND< 840
2,4-Dinitrotoluene	ND< 336
2,6-Dinitrotoluene	ND< 336
Di-n-octylphthalate	ND< 336
Fluoranthene	ND< 336
Fluorene	ND< 336
Hexachiorobenzene	ND< 336
Hexachlorobutadiene	ND< 336
Hexachlorocyclopentadiene	ND< 336
Hexachloroethane	ND< 336
Indeno (1,2,3-cd) pyrene	ND< 336
Isophorone	ND< 336
2-Methylnapthalene	ND< 336
2-Methylphenol	ND< 336
3&4-Methylphenol	ND< 336
Naphthalene	ND< 336
2-Nitroaniline	ND< 840
3-Nitroaniline	ND< 840
4-Nitroanillne	ND< 840
Nitrobenzene	ND< 336
2-Nitrophenol	ND< 336
4-Nitrophenol	ND< 840
N-Nitroso-di-n-propylamine	ND< 336
N-Nitrosodiphenylamine	ND< 336
Pentachlorophenol	ND< 840
Phenanthrene	ND< 336
Phenol	ND< 336
Pyrene	ND< 336
1,2,4-Trichlorobenzene	ND< 336
2,4,5-Trichlorophenol	ND< 840
2,4,6-Trichlorophenol	ND< 336
1,2,4,5-Tetrachlorobenzene	ND< 336
2,3,4,6-Tetrachlorophenol	ND< 336

ELAP Number 10958

Method: EPA 8270C

Data File: \$49745.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2972

Client Job Number:

Field Location:

40503 CS-GP-18-07D

Date Sampled:

02/09/2010

Field ID Number: Sample Type: N/A Soil Date Received:

02/11/2010

Date Analyzed:

02/20/2010

Tentatively Identified Compounds CAS Number Retention Time Results
Cyclic octaatomic sulfur 10544-50-0 15.41

Results in ug / Kg Percent Fit

ELAP Number 10958

Method: EPA 8270C

Data File: S49745.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Birector

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

10065589.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number:

10-0655

Client Job Number:

40503

Lab Sample Number:

2973

Fleid Location:

CS-GP-19-10

Date Sampled:

02/09/2010

Field ID Number:

N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/20/2010

Compound	Results in ug / Kg
Acenaphthene	ND< 321
Acenaphthylene	ND< 321
Acetophenone	ND< 321
Anthracene	ND< 321
Atrazine	ND< 321
Benzaldehyde	ND< 321 WS
Benzo (a) anthracene	ND< 321
Benzo (a) pyrene	ND< 321
Benzo (b) fluoranthene	ND< 321
Benzo (g,h,i) perylene	ND< 321
Benzo (k) fluoranthene	ND< 321
Biphenyl	ND< 321
Bis (2-chloroethyl) ether	ND< 321
Bis (2-chloroethoxy) methane	ND< 321
Bis (2-ethylhexyl) phthalate	ND< 321
Bis (2-chloroisopropyl) ether	ND< 321
4-Bromophenyl phenyl ether	ND< 321
Butylbenzylphthalate	ND< 321
Caprolactam	ND< 321
Carbazole	ND< 321
4-Chloroaniline	ND< 321
4-Chloro-3-methylphenol	ND< 321
2-Chloronaphthalene	ND< 321
2-Chlorophenol	ND< 321
4-Chlorophenyl phenyl ether	ND< 321
Chrysene	ND< 321
1,3-Dichlorobenzene	ND< 321
1,4-Dichlorobenzene	ND< 321
1,2-Dichlorobenzene	ND< 321
Dibenz (a,h) anthracene	ND< 321
Dibenzofuran	ND< 321
3,3'-Dichlorobenzidine	ND< 321
2,4-Dichlorophenol	ND< 321
Diethyl phthalate	ND< 321
2,4-Dimethylphenol	ND< 321
Dimethyl phthalate	ND< 803
FLAP Number 10958	Method

Compound	Results in ug / Kg
Di-n-butyl phthalate	ND< 321
4,6-Dinitro-2-methylphenol	ND< 803
2,4-Dinitrophenol	ND< 803
2,4-Dinitrotoiuene	ND< 321
2,6-Dinitrotoluene	ND< 321
Di-n-octylphthalate	ND< 321
Fluoranthene	ND< 321
Fluorene	ND< 321
Hexachlorobenzene	ND< 321
Hexachlorobutadiene	ND< 321
Hexachlorocyclopentadiene	ND< 321
Hexachloroethane	ND< 321
Indeno (1,2,3-cd) pyrene	ND< 321
Isophorone	ND< 321
2-Methyinapthalene	ND< 321
2-Methylphenol	ND< 321
3&4-Methylphenol	ND< 321
Naphthalene	ND< 321
2-Nitroaniline	ND< 803
3-Nitroaniline	ND< 803
4-Nitroanlline	ND< 803
Nitrobenzene	ND< 321
2-Nitrophenol	ND< 321
4-Nitrophenol	ND< 803
N-Nitroso-di-n-propylamine	ND< 321
N-Nitrosodiphenylamine	ND< 321
Pentachiorophenoi	ND< 803
Phenanthrene	ND< 321
Phenol	ND< 321
Pyrene	ND< 321
1,2,4-Trichlorobenzene	ND< 321
2,4,5-Trichlorophenol	ND< 803
2,4,6-Trichlorophenol	ND< 321
1,2,4,5-Tetrachlorobenzene	ND< 321
2,3,4,6-Tetrachiorophenol	ND< 321

ELAP Number 10958

Method: EPA 8270C

Data File: S49746.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

echnical Director Bruce Hoogesteger: 1

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. requirements upon receipt.

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Semi-Volatile Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2973

Client Job Number: 40503

Date Sampled:

02/09/2010

Field Location: Field ID Number: CS-GP-19-10 N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/20/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 128	N/A
				ce B
8				
1				5a &

ELAP Number 10958

Method: EPA 8270C

Data File: S49746.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 100655T1.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number:

10-0655

Client Job Number:

r: 40503

Lab Sample Number:

2974

Field Location:

CS-GP-20-09

Date Sampled: Date Received: 02/09/2010 02/11/2010

Field ID Number: Sample Type: N/A Soil

Date Analyzed:

02/20/2010

Compound Results in a	ug / Ka
Acenaphthene ND< 33	
Acenaphthylene ND< 33	
Acetophenone ND< 33	38
Anthracene ND< 33	38
Atrazine ND< 33	
Benzaldehyde ND< 33	38 WJ
Benzo (a) anthracene ND< 33	38
Benzo (a) pyrene ND< 33	38
Benzo (b) fluoranthene ND< 33	38
Benzo (g,h,i) perylene ND< 33	38
Benzo (k) fluoranthene ND< 33	38
Biphenyl ND< 33	38
Bis (2-chloroethyl) ether ND< 33	38
Bis (2-chloroethoxy) methane ND< 33	38
Bis (2-ethylhexyl) phthalate ND< 33	38
Bis (2-chloroisopropyl) ether ND< 33	38
4-Bromophenyl phenyl ether ND< 33	38
Butylbenzylphthalate ND< 33	38
Caprolactam ND< 33	38
Carbazole ND< 33	38
4-Chloroaniline ND< 33	38
4-Chloro-3-methylphenol ND< 33	38
2-Chioronaphthaiene ND< 33	38
2-Chlorophenoi ND< 33	38
4-Chiorophenyl phenyl ether ND< 33	38
Chrysene ND< 33	38
1,3-Dichlorobenzene ND< 33	38
1,4-Dichlorobenzene ND< 33	
1,2-Dichlorobenzene ND< 33	38
Dibenz (a,h) anthracene ND< 33	38
Dibenzofuran ND< 33	38
3,3'-Dichlorobenzidine ND< 3	38
2,4-Dichlorophenol ND< 3	38
Diethyl phthalate ND< 33	38
2,4-Dimethylphenol ND< 33	38
Dimethyl phthalate ND< 8	45

	**
Compound	Results in ug / Kg
Di-n-butyl phthalate	ND< 338
4,6-Dinitro-2-methylphenol	ND< 845
2,4-Dinitrophenol	ND< 845
2,4-Dinitrotoluene	ND< 338
2,6-Dinitrotoluene	ND< 338
Di-n-octylphthalate	ND< 338
Fluoranthene	ND< 338
Fluorene	ND< 338
Hexachlorobenzene	ND< 338
Hexachiorobutadiene	ND< 338
Hexachlorocyclopentadiene	ND< 338
Hexachloroethane	ND< 338
Indeno (1,2,3-cd) pyrene	ND< 338
isophorone	ND< 338
2-Methylnapthalene	ND< 338
2-Methylphenoi	ND< 338
3&4-Methylphenol	ND< 338
Naphthalene	ND< 338
2-Nitroaniline	ND< 845
3-Nitroaniline	ND< 845
4-Nitroaniline	ND< 845
Nitrobenzene	ND< 338
2-Nitrophenol	ND< 338
4-Nitrophenol	ND< 845
N-Nitroso-di-n-propylamine	ND< 338
N-Nitrosodiphenylamine	ND< 338
Pentachiorophenol	ND< 845
Phenanthrene	ND< 338
Phenol	ND< 338
Pyrene	ND< 338
1,2,4-Trichiorobenzene	ND< 338
2,4,5-Trichlorophenol	ND< 845
2,4,6-Trichlorophenol	ND< 338
1,2,4,5-Tetrachlorobenzene	ND< 338
2,3,4,6-Tetrachiorophenoi	ND< 338
	•

ELAP Number 10958 Method: EPA 8270C Data File: S49747.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical pirector

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

100655T2.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655 Lab Sample Number: 2974

40503

Client Job Number: Field Location:

CS-GP-20-09

Date Sampled:

02/09/2010

Field ID Number: Sample Type:

N/A Soil **Date Received:**

02/11/2010

Date Analyzed:

02/20/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
Unknown	N/A	12.29	208	N/A
160				
(a)				
	154			
	19	*))		

ELAP Number 10958

Method: EPA 8270C

Data File: S49747.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 100655T2.XL\$

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number:

10-0655

Client Job Number:

40503 N/A Lab Sample Number:

Soil PB 02/19

Field Location:

N/A N/A Date Sampled:

N/A N/A

Fleid ID Number: Sample Type: N/A Soil

Date Received: Date Analyzed:

02/20/2010

Compound	Results in ug / Kg
Acenaphthene	ND< 286
Acenaphthylene	ND< 286
Acetophenone	ND< 286
Anthracene	ND< 286
Atrazine	ND< 286
Benzaldehyde	ND< 286 < √ ∑
Benzo (a) anthracene	ND< 286
Benzo (a) pyrene	ND< 286
Benzo (b) fluoranthene	ND< 286
Benzo (g,h,i) perylene	ND< 286
Benzo (k) fluoranthene	ND< 286
Biphenyl	ND< 286
Bis (2-chloroethyl) ether	ND< 286
Bis (2-chloroethoxy) methane	ND< 286
Bis (2-ethylhexyl) phthalate	ND< 286
Bis (2-chloroisopropyl) ether	ND< 286
4-Bromophenyl phenyl ether	ND< 286
Butylbenzylphthalate	ND< 286
Caprolactam	ND< 286
Carbazole	ND< 286
4-Chloroaniline	ND< 286
4-Chloro-3-methylphenol	ND< 286
2-Chloronaphthalene	ND< 286
2-Chlorophenol	ND< 286
4-Chlorophenyl phenyl ether	ND< 286
Chrysene	ND< 286
1,3-Dichiorobenzene	ND< 286
1,4-Dichlorobenzene	ND< 286
1,2-Dichlorobenzene	ND< 286
Dibenz (a,h) anthracene	ND< 286
Dibenzofuran	ND< 286
3,3'-Dichlorobenzidine	ND< 286
2,4-Dichlorophenol	ND< 286
Diethyl phthalate	ND< 286
IO A Div. III TARK A A	

Compound	Results in ug / Kg
Di-n-butyl phthalate	ND< 286
4,6-Dinitro-2-methylphenol	ND< 714
2,4-Dinitrophenol	ND< 714
2,4-Dinitrotoluene	ND< 286
2,6-Dinitrotoiuene	ND< 286
Di-n-octylphthalate	ND< 286
Fluoranthene	ND< 286
Fluorene	ND< 286
Hexachiorobenzene	ND< 286
Hexachlorobutadiene	ND< 286
Hexachlorocyclopentadiene	ND< 286
Hexachloroethane	ND< 286
Indeno (1,2,3-cd) pyrene	ND< 286
isophorone	ND< 286
2-Methylnapthalene	ND< 286
2-Methylphenol	ND< 286
3&4-Methylphenoi	ND< 286
Naphthalene	ND< 286
2-Nitroaniline	ND< 714
3-Nitroaniline	ND< 714
4-Nitroaniline	ND< 714
Nitrobenzene	ND< 286
2-Nitrophenol	ND< 286
4-Nitrophenol	ND< 714
N-Nitroso-di-n-propylamine	ND< 286
N-Nitrosodiphenylamine	ND< 286
Pentachiorophenoi	ND< 714
Phenanthrene	ND< 286
Phenol	ND< 286
Pyrene	ND< 286
1,2,4-Trichlorobenzene	ND< 286
2,4,5-Trichlorophenol	ND< 714
2,4,6-Trichlorophenol	ND< 286
1,2,4,5-Tetrachiorobenzene	ND< 286
2,3,4,6-Tetrachiorophenoi	ND< 286

Dimethyl phthalate ELAP Number 10958

2,4-Dimethylphenol

Method: EPA 8270C

ND< 286

ND< 714

Data File: S49733.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: <u>Lu Engineers</u>

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: Soil PB 02/19

Client Job Number:

40503 N/A

Date Sampled:

N/A

Field Location: Field iD Number:

N/A

Date Received:

N/A

Sample Type:

Soil

Date Analyzed:

02/20/2010

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / Kg	Percent Fit
None Found	N/A	N/A	ND< 114	N/A

Method: EPA 8270C

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

ELAP Number 10958

Bruce Hoogesteger: 1 ical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. requirements upon receipt.

Data File: S49733.D

Client: Lu Engineers

Client Job Site: To

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2964

Client Job Number: 40503

Field Location:

CS-GP-01-03

Date Sampled:

02/08/2010

Field ID Number: Sample Type: N/A Soil Date Received:

02/11/2010

Date Analyzed:

02/22/2010

Pesticide Identification	Results in ug / Kg
Aldrin	ND< 3.34
alpha-BHC	ND< 3.34
beta-BHC	ND< 3.34
delta-BHC	ND< 3.34
gamma-BHC	ND< 3.34
alpha-Chlordane	ND< 3.34
gamma-Chlordane	ND< 3.34
4,4'-DDD	ND< 3.34
4,4'-DDE	ND< 3.34
4,4'-DDT	ND< 3.34
Dieldrin	ND< 3.34
Endosulfan I	ND< 3.34
Endosulfan II	ND< 3.34
Endosulfan Sulfate	ND< 3.34
Endrin	ND< 3.34
Endrin Aldehyde	J 1.89 B
Heptachlor	ND< 3.34
Heptachlor Epoxide	ND< 3.34
Methoxychlor	ND< 1.67
Toxaphene	ND< 167

ELAP Number 10958

Method: EPA 8081

Comments: ND denotes Non Detect

ug / Kg = mlcrogram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

100655C1.XLS

Client: <u>Lu Engineers</u>

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2966

Client Job Number:

Field Location:

40503 CS-GP-04-02

Date Sampled:

02/08/2010

Field ID Number: Sample Type:

N/A Soil **Date Received:**

02/11/2010

Date Analyzed:

02/22/2010

Pesticide Identification	Results in ug / Kg
Aldrin	ND< 3.27
alpha-BHC	ND< 3.27
beta-BHC	ND< 3.27
delta-BHC	ND< 3.27
gamma-BHC	ND< 3.27
alpha-Chlordane	ND< 3.27
gamma-Chlordane	ND< 3.27
4,4'-DDD	ND< 3.27
4,4'-DDE	ND< 3.27
4,4'-DDT	ND< 3.27
Dieldrin	ND< 3.27
Endosulfan I	ND< 3.27
Endosulfan II	ND< 3.27
Endosulfan Sulfate	ND< 3.27
Endrin	ND< 3.27
Endrin Aldehyde	J 2.07 B
Heptachlor	ND< 3.27
Heptachlor Epoxide	ND< 3.27
Methoxychlor	ND< 3.27
Toxaphene	ND< 163

ELAP Number 10958

Method: EPA 8081

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 100665C2.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2971

Client Job Number: 40503

Field Location:

CS-GP-18-07

Field ID Number:

Date Sampled: **Date Received:** 02/09/2010

Sample Type:

N/A Soil

02/11/2010

Date Analyzed:

02/22/2010

Pesticide Identification	Results in ug / Kg
Aldrin	ND< 3.38
alpha-BHC	ND< 3.38
beta-BHC	ND< 3.38
delta-BHC	ND< 3.38
gamma-BHC	ND< 3.38
alpha-Chlordane	ND< 3.38
gamma-Chlordane	ND< 3.38
4,4'-DDD	4.16
4,4'-DDE	ND< 3.38
4,4'-DDT	ND< 3.38
Dieldrin	ND< 3.38
Endosulfan I	ND< 3.38
Endosulfan II	J 1.91
Endosulfan Sulfate	ND< 3.38
Endrin	ND< 3.38
Endrin Aldehyde	3.45 B
Heptachlor	ND< 3.38
Heptachlor Epoxide	ND< 3.38
Methoxychlor	ND< 3.38
Toxaphene	ND< 169

ELAP Number 10958

Method: EPA 8081

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 100655C3.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2972

Client Job Number: Field Location:

mber: 40503

CS-GP-18-07D Date Sampled:

02/09/2010

Field ID Number: Sample Type:

N/A Soil Date Received:

02/09/2010

Date Analyzed:

02/11/2010 02/22/2010

Pesticide Identification	Results in ug / Kg
Aldrin	ND< 3.36
alpha-BHC	ND< 3.36
beta-BHC	ND< 3.36
deita-BHC	ND< 3.36
gamma-BHC	ND< 3.36
alpha-Chlordane	ND< 3.36
gamma-Chlordane	ND< 3.36
4,4'-DDD	ND< 3.36
4,4'-DDE	J 3.25
4,4'-DDT	ND< 3.36
Dieldrin	ND< 3.36
Endosulfan I	ND< 3.36
Endosulfan li	ND< 3.36
Endosulfan Sulfate	ND< 3.36
Endrin	ND< 3.36
Endrin Aldehyde	J 2.92 B
Heptachlor	ND< 3.36
Heptachlor Epoxide	ND< 3.36
Methoxychlor	ND< 3.36
Toxaphene	ND< 168

ELAP Number 10958

Method: EPA 8081

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

100655C4.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: Soil PB 02/18

Client Job Number:

40503 N/A

Date Sampled:

N/A

Field Location: Field ID Number:

N/A

Date Received:

N/A

Sample Type: Soil

Date Analyzed:

02/22/2010

Pesticide Identification	Results in ug / Kg
Aldrin	ND< 2.86
alpha-BHC	ND< 2.86
beta-BHC	ND< 2.86
delta-BHC	ND< 2.86
gamma-BHC	ND< 2.86
alpha-Chlordane	ND< 2.86
gamma-Chlordane	ND< 2.86
4,4'-DDD	ND< 2.86
4,4'-DDE	ND< 2.86
4,4'-DDT	ND< 2.86
Dieldrin	ND< 2.86
Endosulfan I	ND< 2.86
Endosulfan II	ND< 2.86
Endosulfan Sulfate	ND< 2.86
Endrin	ND< 2.86
Endrin Aldehyde	ND< 2.86 1.12 3
Heptachlor	ND< 2.86
Heptachlor Epoxide	ND< 2.86
Methoxychlor	ND< 2.86
Toxaphene	ND< 143

ELAP Number 10958

Method: EPA 8081

Comments: ND denotes Non Detect

ug / Kg = microgram per Kiljogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Sample Type:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2964

Client Job Number: Field Location:

40503

Soil

Date Sampled:

02/08/2010

Field ID Number:

CS-GP-01-03 N/A

Date Received:

02/11/2010

Date Analyzed:

02/19/2010

Date Reissued:

03/16/2010

PCB Identification	Results in mg / Kg	
Aroclor 1016	ND< 0.0334 4012	7 B
Aroclor 1221	ND< 0.0334	
Aroclor 1232	ND< 0.0334	
Aroclor 1242	ND< 0.0334	
Arodor 1248	ND< 0.0334	
Aroclor 1254	ND< 0.0334	
Aroclor 1260	ND< 0.0334	
1/2		l

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect

mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

100655P1.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Lab Sample Number: 2965

Client Job Number:

40503 CS-GP-07-07

Date Sampled:

02/08/2010

Field Location: Field ID Number:

N/A

Date Received: Date Analyzed:

02/11/2010 02/19/2010

Sample Type: Soil

PCB Identification Results in mg / Kg 1027 Aroclor 1016 ND< 0.0397 Aroclor 1221 ND< 0.0397 Aroclor 1232 ND< 0.0397 Aroclor 1242 ND< 0.0397 Aroclor 1248 ND< 0.0397 Aroclor 1254 ND< 0.0397 -ND< 0:0307 .094 Aroclor 1260

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect

mg / Kg = milligram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

100655P2.3

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Client Job Number:

40503

Lab Sample Number: 2966

Field Location:

CS-GP-04-02

Date Sampled:

02/08/2010

Field ID Number: Sample Type:

N/A Soil

Date Received: Date Analyzed:

02/11/2010

02/19/2010

Date Reissued:

03/16/2010

PCB Identification	Results in mg / Kg	
Arocior 1016	ND< 0.0327 1014	2B
Aroclor 1221	ND< 0.0327	
Aroclor 1232	ND< 0.0327	
Arocior 1242	ND< 0.0327	
Aroclor 1248	ND< 0.0327	
Aroclor 1254	ND< 0.0327	
Aroclor 1260	ND< 0.0327	

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect

mg / Kg = milligram per Kijogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Client Job Number:

40503

Lab Sample Number: 2967

Field Location:

CS-GP-16-8.5

Date Sampled:

02/08/2010

Field ID Number:

N/A

Date Received:

02/11/2010

Sample Type:

Soil

Date Analyzed:

02/19/2010

Date Reissued:

03/16/2010

PCB Identification	Results in mg / Kg	
Aroclor 1016	ND< 0.0344 . OO 9	-26
Aroclor 1221	ND< 0.0344	
Aroclor 1232	ND< 0.0344	
Aroclor 1242	ND< 0.0344	
Aroclor 1248	ND< 0.0344	
Aroclor 1254	ND< 0.0344	
Arocior 1260	ND< 0.0344	
1		

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect

mg / Kg = milligram per/Kliogram

Signature:

Bruce Hoogeste nical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 100655P4.XLS

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Client Job Number:

40503

Lab Sample Number: 2971

Field Location:

CS-GP-18-07

Date Sampled:

02/09/2010

Field ID Number: Sample Type:

N/A Soil

Date Received:

02/11/2010

Date Analyzed:

02/19/2010

Date Reissued:

03/16/2010

 \mathcal{B}

	•
PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.0228

Aroclor 1221

Aroclor 1232

Aroclor 1242

Aroclor 1248

Aroclor 1254

Aroclor 1260

ELAP Number 10958

ND<-0.0338-

ND< 0.0338

ND< 0.0338

ND< 0.0338

ND< 0.0338 ND< 0.0338

ND< 0.0338

Method: EPA 8082

Comments: ND denotes Non Detect

mg / Kg = milligram per Ķilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compilance with sample condition 100655P5.XLS

PCB Analysis Report for Solls/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655 Lab Sample Number: 2972

Client Job Number:

40503

Field Location:

CS-GP-18-07D

Date Sampled: **Date Received:** 02/09/2010

Field ID Number: Sample Type:

N/A Soil

Date Analyzed:

02/11/2010 02/19/2010

Date Reissued:

03/16/2010

ND<-0.0336 , 0 2 3
ND< 0.0336
ND< 0.0336
ND< 0.0336
ND< 0.0336
ND< 0.0336
ND< 0.0336

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect

mg / Kg = milligram per Kilogram

Signature:

Bruce Hoogesteder: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 100655P6.XLS

PCB Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Client Job Number:

40503

Lab Sample Number: 2974

Field Location:

CS-GP-20-09

Aroclor 1248

Aroclor 1254

Aroclor 1260

Date Sampled:

02/09/2010

Field ID Number: Sample Type:

N/A Soil

Date Received: Date Analyzed:

02/11/2010

02/19/2010

Date Reissued:

03/16/2010

Results in mg / Kg
ND < 0.0338 .015 J €
ND< 0.0338
ND< 0.0338
ND< 0.0338

ELAP Number 10958

Method: EPA 8082

ND< 0.0338

ND< 0.0338

ND< 0.0338

Comments: ND denotes Non Detect

mg / Kg = milligram per Kliogram

Signature:

Bruce Hoogesteder: Techni

PCB Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Town of Clarkson

Lab Project Number: 10-0655

Client Job Number:

40503

Lab Sample Number: Soil PB 2/18

Field Location: Field ID Number:

N/A

Date Sampled: Date Received: N/A N/A

Sample Type:

N/A Soil

Date Analyzed:

02/19/2010

2

PCB Identification	Results in mg / Kg
Aroclor 1016	ND< 0.0286 .00 7
Aroclor 1221	ND< 0.0286
Aroclor 1232	ND< 0.0286
Aroclor 1242	ND< 0.0286
Aroclor 1248	ND< 0.0286
Aroclor 1254	ND< 0.0286
Aroclor 1260	ND< 0.0286

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect

mg / Kg = milligram per Kildgram

Surrogate outijers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

Client:

Lu Engineers

Lab Project No.:

10-0655

Client Job Site:

Town of Clarkson

Lab Sample No.:

2964

Client Job No.:

40503

Sample Type:

Soil

Field Location:

CS-GP-01-03

Date Sampled:

02/08/2010

Field ID No.:

N/A

Date Received: 02

02/11/2010

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical Method	Result (m	g/kg)
Aluminum	02/24/2010	SW846 6010	14900	D
Antimony	02/24/2010	SW846 6010	<4.45	м
Arsenic	02/24/2010	SW846 6010	5.25	D,M
Barium	02/24/2010	SW846 6010	400	D,M
Beryllium	02/24/2010	SW846 6010	0.892	D,M
Cadmium	02/24/2010	SW846 6010	<0.371	М
Calcium	02/24/2010	SW846 6010	2460	D
Chromium	02/24/2010	SW846 6010	21.3	D,M
Cobalt	02/24/2010	SW846 6010	10.9	D,M
Copper	02/24/2010	SW846 6010	3.24	D,M
Iron	02/24/2010	SW846 6010	26200	D
Lead	02/24/2010	SW846 6010	4.00	М
Magnesium	02/24/2010	SW846 6010	5180	D,M
Manganese	02/24/2010	SW846 6010	296	D,M
Mercury	02/18/2010	SW846 7471	0.0130	D
Nickel	02/24/2010	SW846 6010	26.0	D,M
Potassium	02/24/2010	SW846 6010	2970	D,M
Selenium	02/24/2010	SW846 6010	<0.371	M
Silver	02/24/2010	SW846 6010	<0.742	M
Sodium	02/24/2010	" SW846 6010	184	D
Thallium	02/24/2010	SW846 6010	<0.445	- M
Vanadium	02/24/2010	SW846 6010	28.3	D,M
Zinc	02/24/2010	SW846 6010	43.8	D,M

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Client Job Site:

Town of Clarkson

Client Job No.:

40503

Field Location: Field ID No.:

CS-GP-07-07

N/A

Lab Project No.:

10-0655

Lab Sample No.:

2965

Sample Type:

Soil

Date Sampled: Date Received:

02/08/2010

02/11/2010

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Aluminum	02/24/2010	SW846 6010	8380
Antimony	02/24/2010	SW846 6010	<6.14
Arsenic	02/24/2010	SW846 6010	5.52
Barium	02/24/2010	SW846 6010	281
Beryllium	02/24/2010	SW846 6010	<0.511
Cadmium	02/24/2010	SW846 6010	0.961
Calcium	02/24/2010	SW846 6010	21300
Chromium	02/24/2010	SW846 6010	15.0
Cobalt	02/24/2010	SW846 6010	6.95
Copper	02/24/2010	SW846 6010	25.9
Iron	02/24/2010	SW846 6010	14900
Lead	02/24/2010	SW846 6010	123
Magnesium	02/24/2010	SW846 6010	6170
Manganese	02/24/2010	SW846 6010	577
Mercury	02/18/2010	SW846 7471	0.0606
Nickel	02/24/2010	SW846 6010	18.0
Potassium	02/24/2010	SW846 6010	1730
Selenium	02/24/2010	SW846 6010	1.60
Silver	02/24/2010	SW846 6010	<1.02
Sodium	02/24/2010	SW846 6010	311
Thallium	02/24/2010 i	SW846 6010	<0.614
Vanadium	02/24/2010	SW846 6010	20.9
Zinc	02/24/2010	SW846 6010	159

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Lab Project No.:

10-0655

Client Job Site:

Town of Clarkson

Lab Sample No.:

2966

Client Job No.:

40503

Sample Type:

Soil

Field Location:

CS-GP-04-02

Date Sampled:

02/08/2010

Field ID No.:

N/A

Date Received:

02/11/2010

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Aluminum	02/24/2010	SW846 6010	16900
Antimony	02/24/2010	SW846 6010	<5.80
Arsenic	02/24/2010	SW846 6010	5.21
Barium	02/24/2010	. SW846 6010	224
Beryllium	02/24/2010	SW846 6010	0.931
Cadmium	02/24/2010	SW846 6010	<0.484
Calcium	02/24/2010	SW846 6010	2390
Chromium	02/24/2010	SW846 6010	25.7
Cobalt	02/24/2010	SW846 6010	14.2
Copper	02/24/2010	SW846 6010	4.91
Iron	02/24/2010	SW846 6010	34100
Lead	02/24/2010	SW846 6010	5.03
Magnesium	02/24/2010	SW846 6010	6330
Manganese	02/24/2010	SW846 6010	338
Mercury	02/18/2010	SW846 7471	-0.006006-
Nickel	02/24/2010	SW846 6010	31.0
Potassium	02/24/2010	SW846 6010	3970
Selenium	02/24/2010	SW846 6010	<0.484
Silver	02/24/2010	SW846 6010	<0.967
Sodium	02/24/2010	\$W846 6010	174
Thallium	02/24/2010	SW846 6010	0.580
Vanadium	02/24/2010	SW846 6010	33.0
Zinc	02/24/2010	SW846 6010	50.9
	14年1	is.	FI AP ID No :10059

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Lab Project No.:

10-0655

Client Job Site:

Town of Clarkson

Lab Sample No.:

2967

Client Job No.:

40503

Sample Type:

Soil

Field Location:

CS-GP-16-8.5

Date Sampled: Date Received:

02/08/2010

Field ID No.:

N/A

02/11/2010

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Aluminum	02/24/2010	SW846 6010	8500
Antimony	02/24/2010	SW846 6010	<4.43
Arsenic	02/24/2010	SW846 6010	3.39
Barium	02/24/2010	SW846 6010	217
Beryllium	02/24/2010	SW846 6010	0.370
Cadmium	02/24/2010	SW846 6010	<0.369
Calcium	02/24/2010	SW846 6010	17300
Chromium	02/24/2010	SW846 6010	13.7
Cobalt	02/24/2010	SW846 6010	7.05
Copper	02/24/2010	SW846 6010	5.20
Iron	02/24/2010	* SW846 6010	17300
Lead	02/24/2010	SW846 6010	5.05
Magnesium	02/24/2010	SW846 6010	4990
Manganese	02/24/2010	SW846 6010	348
Mercury	02/18/2010	SW846 7471	0.0205
Nickel	02/24/2010	SW846 6010	16.0
Potassium	02/24/2010	SW846 6010	1930
Selenium	02/24/2010	SW846 6010	<0.369
Silver	02/24/2010	SW846 6010	<0.737
Sodium	02/24/2010	SW846 6010	421
Thallium	02/24/2010	SW846 6010	<0.443
Vanadium	02/24/2010	SW846 6010	21.1
Zinc	02/24/2010	SW846 6010	33.1

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogespeger, Technical Director

Client:

Lu Engineers

Lab Project No.:

10-0655

Client Job Site:

Town of Clarkson

Lab Sample No.:

2968

Client Job No.:

40503

Sample Type:

Soil

Field Location:

CS-GP-11-10

Date Sampled:

02/09/2010

Field ID No.:

N/A

Date Received: 02

02/11/2010

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical	Result (mg/kg)
		Method	
Aluminum	.02/24/2010	SW846 6010	13100
Antimony	02/24/2010	SW846 6010	<5.41
Arsenic	02/24/2010	SW846 6010	4.75
Barium	02/24/2010	SW846 6010	292
Beryllium	02/24/2010	SW846 6010	0.662
Cadmium	02/24/2010	SW846 6010	<0.450
Calcium	02/24/2010	SW846 6010	2490
Chromium	02/24/2010	SW846 6010	20.6
Cobait	02/24/2010	SW846 6010	13.0
Copper	02/24/2010	SW846 6010	3.53
Iron	02/24/2010	SW846 6010	20400
Lead	02/24/2010	2 SW846 6010	2.93
Magnesium	02/24/2010	SW846 6010	6430
Manganese	02/24/2010	SW846 6010	356
Mercury	02/18/2010	SW846 7471	<0.0074 ,∞38
Nickel	02/24/2010	SW846 6010	31.0
Potassium	02/24/2010	SW846 6010	2900
Selenium	02/24/2010	SW846 6010	<0.450
Silver	02/24/2010	SW846 6010	<0.901
Sodium	02/24/2010	SW846 6010	455
Thallium	02/24/2010	SW846 6010	<0.540
Vanadium	02/24/2010	SW846 6010	23.7
Zinc	02/24/2010	SW846 6010	51.2

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional sample information, including compliance with sample condition requirements upon receipt.

8

Client:

Lu Engineers

Client Job Site:

Town of Clarkson

Client Job No.:

40503

Field Location:

CS-GP-12-09

Field ID No.:

N/A

Lab Project No.: Lab Sample No.:

10-0655 2969

Sample Type:

Soil

Date Sampled:

02/09/2010

Date Received: 02/11/2010

Laboratory Report for TAL Metals Analysis in Solid

Date Analyzed	W	Result (mg/kg)
02/24/2010		11800
02/24/2010		<5.54
02/24/2010	1.0	4.63
02/24/2010		142
02/24/2010		0.598
02/24/2010		<0.462
02/24/2010		17100
02/24/2010		20.5
02/24/2010		12.1
02/24/2010		3.44
02/24/2010		27000
02/24/2010		3.54
02/24/2010		6300
02/24/2010		383
02/18/2010		< 0.007 5 .∞69
02/24/2010		28.4
02/24/2010		2510
02/24/2010		<0.462
02/24/2010		<0.924
02/24/2010		665
02/24/2010		<0.554
02/24/2010		26.7
02/24/2010	SW846 6010	47.1
	02/24/2010 02/24/2010	Method 02/24/2010 SW846 6010

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Client Job Site:

Town of Clarkson

Client Job No.:

40503

Field Location: Field ID No.:

CS-GP-13-10

N/A

Lab Project No.:

10-0655 2970

Lab Sample No.:

Soil

Sample Type:
Date Sampled:

02/09/2010

Date Received: 0

02/11/2010

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical	Result (mg/kg)
		Method	(3/1.8)
Aluminum	02/24/2010	SW846 6010	15500
Antimony	02/24/2010	SW846 6010	<5.52
Arsenic	02/24/2010	SW846 6010	5.75
Barium	02/24/2010	SW846 6010	99.7
Beryllium	02/24/2010 10	a SW846 6010	0.814
Cadmium	02/24/2010	SW846 6010	<0.460
Calcium	02/24/2010	SW846 6010	12100
Chromium	02/24/2010	SW846 6010	29.0
Cobalt	02/24/2010	SW846 6010	15.4
Copper	02/24/2010	SW846 6010	3.54
Iron	02/24/2010	SW846 6010	32800
Lead	02/24/2010	SW846 6010	3.47
Magnesium	02/24/2010	SW846 6010	7690
Manganese	02/24/2010	SW846 6010	398
Mercury	02/18/2010	SW846 7471	8000, 0000.0 >
Nickel	02/24/2010	SW846 6010	36.7
Potassium	02/24/2010	SW846 6010	3730
Selenium	02/24/2010	SW846 6010	<0.460
Silver	02/24/2010	SW846 6010	<0.921
Sodium	02/24/2010	SW846 6010	833
Thallium	02/24/2010	SW846 6010	<0.552
Vanadium	02/24/2010	SW846 6010	33.3
Zinc	02/24/2010	SW846 6010	57.9
	(19 - 201	Por	ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Client Job Site:

Town of Clarkson

Client Job No.:

40503

Field Location:

CS-GP-18-07

Field ID No.:

N/A

Lab Project No.:

10-0655

Lab Sample No.:

2971

Sample Type:

Soil

Date Sampled:

02/09/2010

Date Received: 02/11/2010

Laboratory Report for TAL Metals Analysis In Solid

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Aluminum	02/24/2010	SW846 6010	8240
Antimony	02/24/2010	SW846 6010	<6.64
Arsenic	02/24/2010	SW846 6010	2.59
Barium	02/24/2010	SW846 6010	936
Beryllium	02/24/2010	SW846 6010	<0.553
Cadmium	02/24/2010	SW846 6010	<0.553
Calcium	02/24/2010	SW846 6010	2230
Chromium	02/24/2010	SW846 6010	13.2
Cobalt	02/24/2010	SW846 6010	6.72
Copper	02/24/2010	SW846 6010	6.49
Iron	02/24/2010	SW846 6010	17700
Lead	02/24/2010	SW846 6010	5.82
Magnesium	02/24/2010	SW846 6010	2880
Manganese	02/24/2010	SW846 6010	296
Mercury	02/18/2010	SW846 7471	0.0303
Nickel	02/24/2010	SW846 6010	14.5
Potassium	02/24/2010	SW846 6010	1330
Selenium	02/24/2010	SW846 6010	<0.553
Silver	02/24/2010	SW846 6010	<1.11
Sodium	02/24/2010	SW846 6010	837
Thallium	02/24/2010	SW846 6010	<0.664
Vanadium	02/24/2010	SW846 6010	22.9
Zinc	02/24/2010	SW846 6010	35.7

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogestever, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional sample information, including compliance with sample condition requirements upon receipt.

3

Client:

Lu Engineers

Lab Project No.: Lab Sample No.: 10-0655

Client Job Site:

Town of Clarkson

Sample Type:

2972 Soil

Client Job No.:

40503

Date Sampled:

02/09/2010

Field Location:

CS-GP-18-07D

Date Received:

02/09/2010

Field ID No.:

N/A

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Aluminum	02/24/2010	34 SW846 6010	7250
Antimony	02/24/2010	SW846 6010	<5.40
Arsenic	02/24/2010	SW846 6010	2.88
Barium	02/24/2010	SW846 6010	873
Beryllium	02/24/2010	SW846 6010	<0.449
Cadmium	02/24/2010	SW846 6010	<0.449
Calcium	02/24/2010	SW846 6010	8860
Chromium	02/24/2010	SW846 6010	11.9
Cobalt	02/24/2010	SW846 6010	5.76
Copper	02/24/2010	SW846 6010	7.29
Iron	02/24/2010	SW846 6010	17800
Lead	02/24/2010	SW846 6010	5.74
Magnesium	02/24/2010	SW846 6010	3110
Manganese	02/24/2010	SW846 6010	621
Mercury	02/18/2010	SW846 7471	0.0332
Nickel	02/24/2010	SW846 6010	13.1
Potassium	02/24/2010	SW846 6010	1030
Selenium	02/24/2010	SW846 6010	<0.449
Silver	02/24/2010	SW846 6010	<0.449
Sodium	02/24/2010	SW846 6010	
Thallium	02/24/2010	SW846 6010	919
Vanadium	02/24/2010	SW846 6010	<0.540
Zinc	02/24/2010	SW846 6010	23.2
			29.9

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Lab Project No.:

10-0655

Client Job Site:

Town of Clarkson

Lab Sample No.:

2973

Client Job No.:

40503

Sample Type:

Soil

Field Location:

CS-GP-19-10

Date Sampled: Date Received:

02/09/2010

Field ID No.:

N/A

02/11/2010

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Aluminum	02/24/2010	SW846 6010	13800
Antimony	02/24/2010	SW846 6010	<6.07
Arsenic	02/24/2010	SW846 6010	5.41
Barium	02/24/2010	. SW846 6010	121
Beryllium	02/24/2010	L SW846 6010	0.707
Cadmium	02/24/2010	SW846 6010	<0.505
Calcium	02/24/2010	SW846 6010	17800
Chromium	02/24/2010	SW846 6010	22.5
Cobalt	02/24/2010	SW846 6010	12.9
Copper	02/24/2010	SW846 6010	3.86
Iron	02/24/2010	SW846 6010	31000
Lead	02/24/2010	SW846 6010	3.98
Magnesium	02/24/2010	SW846 6010	7270
Manganese	02/24/2010	SW846 6010	375
Mercury	02/18/2010	SW846 7471	<0.0077 . ∞1⊇
Nickel	02/24/2010	SW846 6010	29.8
Potassium	02/24/2010	÷ SW846 6010	3250
Selenium	02/24/2010	SW846 6010	<0.505
Silver	02/24/2010	SW846 6010	<1.01
Sodium	02/24/2010	SW846 6010	976
Thallium	02/24/2010	SW846 6010	<0.607
Vanadium	02/24/2010	SW846 6010	31.0
Zinc	02/24/2010	~~SW846 6010	50.5
	Link the it		ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

Client:

Lu Engineers

Lab Project No.:

10-0655

Client Job Site:

Town of Clarkson

Lab Sample No.:

2974

Client Job No.:

40503

Sample Type:

Soil

Field Location:

CS-GP-20-09

Date Sampled: Date Received:

02/09/2010

Field ID No.:

N/A

02/11/2010

Laboratory Report for TAL Metals Analysis in Solid

Parameter	Date Analyzed	Analytical	Result (mg	ı/ka)
		Method		,
Aluminum	02/24/2010	SW846 6010	10800	
Antimony	02/24/2010	SW846 6010	<5.44	М
Arsenic	02/24/2010	SW846 6010	3.66	D,M
Barium	02/24/2010	SW846 6010	368	
Beryllium	02/24/2010	SW846 6010	0.508	D,M
Cadmium	02/24/2010	SW846 6010	<0.453	М
Calcium	02/24/2010	SW846 6010	16900	D
Chromium	02/24/2010	SW846 6010	19.1	D,M
Cobalt	02/24/2010	SW846 6010	8.28	M
Copper	02/24/2010	- SW846 6010	5.35	D,M
Iron	02/24/2010	SW846 6010	20800	
Lead	02/24/2010	SW846 6010	5.22	D,M
Magnesium	02/24/2010	SW846 6010	4740	D
Manganese	02/24/2010	SW846 6010	392	М
Mercury	02/18/2010	SW846 7471	0.0116	100
Nickel	02/24/2010	SW846 6010	19.0	D,M
Potassium	02/24/2010	. SW846 6010	2310	D,M
Selenium	02/24/2010	SW846 6010	<0.453	М
Silver	02/24/2010	SW846 6010	<0.906	M
Sodium	02/24/2010	SW846 6010	870	
Thallium	02/24/2010	SW846 6010	<0.544	М
Vanadium	02/24/2010	SW846 6010	27.6	D,M
Zinc	02/24/2010 "			D,M
Zinc	02/24/2010	SW846 6010	38.4	_

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

			Mar.
	TAKA		Section 1
<i> </i>			
a de la companya della companya dell			
7			
7			
		A 100 (100 (100 (100 (100 (100 (100 (100	18 SEC. 18
	ساللتا		X210529
			535000 - 3
	្ច		
A		The state of the s	
	8648. TP		
A			
	633		
			BEST .
	****	2000 C	

CHAIN OF CUSTODY

	COMPANY: I		COMPANY:		l AR D	AB PROJECT #: CLIE	CLIENT PROJECT #:
	-	会のので		Same	7	0	ANI FINOSEC. II.
	ADDRESS: 793	Property Co.	ADDRESS:	A STATE OF THE PARTY OF THE PAR	01	10-0655	40500
	CITY: PANGALA	MN :BIVIS	²¹ [1452/ ₂ спт;	STATE:	ZIP: TURNJ	TURNAROUND TIME: (WORKING DAYS)	NG DAYS)
11111 To have been a second to the second to	PHONE: 377-1450	D FAX: 377-12	(o PHONE:	FAX:			STD OTHER
PROJECT NAME/SITE NAME:	ATTN: L. N. P. J. J. DO.	er @	S. COLATTN:			2 3	3 X 5
Town of Clarkson	comments: PO#		TIC	X ASP Cat. BX		Quotation #MS 042409AGE	MAPOH GH
O C			N 0 C		S VOC =	SVOC = 8270 ABN +TTCS	Thes
DATE TIME O	G R SAM	SAMPLE LOCATION/FIELD ID	တ	s S	F (7)	EAH Z/10 PARADIGM LAB REMARKS SAMPLE NUMBER	PARADIGM LAB SAMPLE NUMBER
m → - v	w		ят z - 8260 Т	TALA PCB Pesti			
12/8/10 11:35	V 05-6P-	15-6P-01-03	Soir 1 X	メ メ メ メ	* Note	* Note: 1865 +	2964
22/8/10 11:35	1 CS-GF	3-6P-01-03MS	- - X	ア メ メ メ	lestic	resticides to	2964
32/8/10 11:35	V CS-66	GP-01-03MSD		X	be pe	performed	2964
42/8/10 13:22	V CS-G	GP-07-07	<i>⊗</i>	XXX	on select	lect sandes	\$ 2965
52/8/10 10:40	1 CS-GF	GP-04-02	e X	×××	mly) is	2966
62/8/10 14:45	V CS-GP-	2-16-8.5	i X	XXX		6	2967
7 2/8/10 ID:08	V CS-GP	P-11-10		× ×			2968
8 2/9/10 10:32	V CS-C	GP-12-09		X	Sample	Samples hand	2969
929/10 12:27		GP-13-10	×	×.	delivere	delivered to lab	2970
10.5/9/10 11: 40	V CS-6	GP-18-07			N/A.		1 297/
Condition: Per NELAC/ELAP	242/243/244					•	
Receipt Parameter	၂ဂ	Compliance	·		•		
Container Type:	 X	N Samu	Sampled By	$\frac{3}{9} \frac{10}{10} \frac{16}{10}$	6,00	Total Cost:	
Preservation:	N/0 Y	z []	Laure Neubourer	ľ	13/18	7	
Holding Time:	_ }	Z Rece	Received By	2/10/10 Date/Time	/3/5	P.1.F.	
Temperature:	→ →		1	a. Honch aliolio	0 /835	-	
l k	Onalio	100 m		Hanch 2/11/10	1020		

OSE

		End.
y	250	
7		
7	* />	1
	2	
	PARAI	
	DIG	- #
	- അ	
\mathbf{A}	Z	
	₹<	
	1	

CHAIN OF CUSTODY

	Comments:	Comments:	Comments:	Comments:		**LAB USE ONLY BELOW THIS LINE** Sample Condition: Per NELAC/ELAP 210/241/242/243/244	9	8	7	6	5	4	2/9/	22/9/10	12/9/10	DATE	Jows	PROJECT NAME/SITE NAME:	1		Logicato	٥
	Temperature:	Holding Time	Preservation:	Container Type:	Receipt Parameter	ONLY BELOW THIS LINE** tion: Per NELAC/ELAP 210/241/24							11:00	75:15	135	TIME	of Clo					
	2 1 4 18	<u> </u>		/pe:	meter	W THIS LII										m ⊣ − w ○ ⊃ ≤ ○ C	Clarkson				-	
	sam		N/A			VE** 41/242/2							٧	<	<	w≻¤G	COMMENTS:	ATTN:	PHONE: 2	CITY:	COMPANY:	
	fomsamples	∀	≺	× ×	IA S	243/244							1_ 1	CS-GP-	CS-GP-	SAMPI	s. 70#-	ATTIN'L Newborner @ Lucraincers.com	PHONE: 277-1010	"	740	
	z [z			Compliance				-		- ANNO ANTO ANTO ANTO ANTO ANTO ANTO ANTO		1 1	1-19-10	18-070	SAMPLE LOCATION/FIELD ID	P0#733151	er@Lucr	FAX:	Penticla STATE:	Engineers	REPORT TO:
	Receive	Received By	Relinquished By	Sampled By	<u> </u>								09)	0	. 0		Vincers.c	7 2	5 6		
	Elizabeth Received @ Lab By		ijshed B	bled By									5	5	Ş	× − ਸ਼ ⊣ Þ ≦			9			
	b By		712	Them	•								_		Ų	ЯМВ≦СИ ЯМИ-> ЧИОС О		ATTN:	PHONE:	СПТҮ:	ADDRESS:	
į	7 C 7 H	4	eubaue	tempaner									×	<u>×</u> ×	XX	82160 TCL+Stars+ 8270+Stars+TK	TREOUN X				••	
(Honch		les										X	×	メ	TAL Metals PCBs	NES X				Same	
(3 /2														×	Pesticides	XXP Cat I				e	Voic
7	8 8	P	g g	00	_											•	ANA		FAX:	ST		ĬĬ
	2/10/10 Date/Time	Date/Time	a/10/10 bate/fime	Date/Time													ALYSIS ALYSIS			STATE:		The second of th
(me C	90	ne -			-						1				لل أ					
	100		13,15	6.00													*			ZIP:		September 1
	1020	13:10	2	Ö													<u></u>			T I	 	INVOICE TO:
		0														REMARKS	Jotati	E		NAROU	10-06:	10 Car
		P.I.F.		Tot												[on #]2		ND TIME	10-0655	4#
		,TII		Total Cost:													Quotation #MS 042409A (nev	L 3		TURNAROUND TIME: (WORKING DAYS)		2
																۶	ich.	3 X 5	STD	ING DA	4	CHENT PROJECT#:
								_					83	29	29	PARADIGM LAB SAMPLE NUMBER	159	5		YS)	40003	O IFCT
							T	+	 	-		_	97	7	7 7	GM LAI	76		OTHER		ψ·	¢.
													4	W	10]	CK.	Ш	剪			

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Client Job Number:

40503

Lab Sample Number: 10419

Field Location:

MW-1

Date Sampled: 09/17/2009

09/16/2009

Field iD Number:

N/A

Date Received:

09/29/2009

Sample Type:

Water

Date Analyzed:

	Halocarbons	Results in ug / L
Ī	Bromodichloromethane	ND< 2.00
I	Bromomethane	ND< 2.00
I	Bromoform	ND< 5.00
d	Carbon Tetrachloride	ND< 2.00
- (Chloroethane	ND< 2.00
	Chloromethane	ND< 2.00
12	2-Chloroethyl vinyl Ether	ND< 10.0 JU
d	Chloroform	ND< 2.00
ļ	Dibromochloromethane	ND< 2.00
ŀ	1,1-Dichloroethane	ND< 2.00
ŀ	1,2-Dichloroethane	ND< 2.00
ľ	1,1-Dichloroethene	ND< 2.00
k	cis-1,2-Dichloroethene	ND< 2.00
Įŧ	trans-1,2-Dichloroethene	ND< 2.00
ŀ	1,2-Dichloropropane	ND< 2.00
k	cis-1,3-Dichloropropene	ND< 2.00
Įŧ	trans-1,3-Dichloropropene	ND< 2.00
ı	Methylene chloride	ND< 5.00 🝑
ŀ	1,1,2,2-Tetrachloroethane	ND< 2.00
ŀ	Tetrachloroethene	2.83
ŀ	1,1,1-Trichloroethane	ND< 2.00
ŀ	1,1,2-Trichloroethane	ND< 2.00
	Trichloroethene	ND< 2.00
	Trichlorofluoromethane	ND< 2.00

Aromatics	Results in ug / L
Benzene	15.3
Chlorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00
Styrene	ND< 5.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichiorobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10.0 5 W
2-Butanone	ND< 10.0
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 5.00

ELAP Number 10958

Vinyl chloride

Method: EPA 8260B

ND< 2.00

Data File: V68935.D

Comments: ND denotes Non Detect

ug / L = microgram per Liter

All target analytes should be

Signature:

eginical Director Bruce Hoogestege

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10419

Client Job Number:

40503 MW-1

Date Sampled:

09/16/2009

Field Location: Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/29/2009

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 5.00	1,2,4-Trimethylbenzene	ND< 5.00
sec-Butylbenzene	ND< 5.00	1,3,5-Trimethylbenzene	ND< 5.00
tert-Butylbenzene	ND< 5.00	•	
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 5.00	Methyl tert-butyl Ether	ND< 2.00
n-Isopropyltoluene	ND< 5.00		

Naphthalene ELAP Number 10958

Method: EPA 8260B

ND< 5.00 1.04 JB

Data File: V68935.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10419

Client Job Number: Field Location:

40503 MW-1

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/29/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
Alkyl Hydrocarbon	N/A	2.019	6.45	N/A
Cyclic Alkyl Hydrocarbon	N/A	3.956	5.68	N/A
G.				

ELAP Number 10958

Method: EPA 8260B

Data File: V68935.D

Comments: ND denotes Non Detect

ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

7

Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10420

Client Job Number: Field Location:

40503 **MW-3**

Date Sampled:

09/16/2009

ND< 2.00

ND< 2.00

ND< 2.00

ND< 2.00

ND< 2.00

ND< 2.00

Date Received:

09/17/2009

Field ID Number: Sample Type:

N/A Water

Date Analyzed:

09/29/2009

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2.00
Bromoform	ND< 5.00
Carbon Tetrachloride	ND< 2.00

Chloroethane ND< 2.00 ND< 2.00 Chloromethane ND< 10.0 WJ 2-Chloroethyl vinyl Ether

Chloroform Dibromochloromethane

1.1-Dichloroethane 1,2-Dichloroethane

trans-1,3-Dichloropropene

1,1-Dichloroethene cis-1,2-Dichloroethene

ND< 2.00 trans-1,2-Dichloroethene ND< 2.00 ND< 2.00 1,2-Dichloropropane cis-1.3-Dichloropropene ND< 2.00

ND< 5.00 🛂 Methylene chloride ND< 2.00 1,1,2,2-Tetrachloroethane ND< 2.00 Tetrachloroethene 1,1,1-Trichloroethane ND< 2.00

1,1,2-Trichloroethane ND< 2.00 Trichloroethene ND< 2.00 Trichlorofluoromethane ND< 2.00 ND< 2.00 Vinyl chloride

ELAP Number 10958

Aromatics	Results in ug / L
Benzene	ND< 0.700
Chlorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2:00 ,53
Styrene	ND< 5.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10.0 LLT
2-Butanone	ND< 10.0
2-Hexanone	JB 4.23
4-Methyl-2-pentanone	JB 3.87

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 5.00
	-

Method: EPA 8260B

Data File: V68938.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger:

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10420

Client Job Number: Field Location:

40503 MW-3

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type: Water

Date Analyzed:

09/29/2009

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 5.00	1,2,4-Trimethylbenzene	ND< 5.00 . ₹ 4
sec-Butylbenzene	ND< 5.00	1,3,5-Trimethylbenzene	ND< 5.00
tert-Butylbenzene	ND< 5.00	-	
n-Propyibenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 5.00	Methyl tert-butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 5.00	•	
Naphthalene	-ND< 5.00 ≥	JY JB	

ELAP Number 10958

Method: EPA 8260B

Data File: V68938.D

Comments: ND denotes Non Detect ug / L = microgram per Liter All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10420

Client Job Number:

40503 MW-3

09/16/2009

Field Location: **Field ID Number:**

N/A

Date Sampled: **Date Received:**

09/17/2009

Sample Type:

Water

Date Analyzed:

09/29/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
None Found	N/A	N/A	ND< 2.00	N/A
				•
				j
				l
		*		1
				'

ELAP Number 10958

Method: EPA 8260B

Data File: V68938.D

Comments: ND denotes Non Detect

ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10421

Client Job Number: Field Location:

40503 MW-3 Field Duplicate

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/29/2009

990	
Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2.00
Bromoform	ND< 5.00
Carbon Tetrachloride	ND< 2.00
Chioroethane	ND< 2.00
Chloromethane	ND< 2.00
2-Chloroethyi vinyi Ether	ND< 10.0 45
Chloroform	ND< 2.00
Dibromochloromethane	ND< 2.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00
trans-1,2-Dichloroethene	ND< 2.00
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichioropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Methylene chloride	ND< 5.00 45
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachioroethene	ND< 2.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
•	LID . A AA

Aromatics	Results in ug / L
Benzene	ND< 0.700
Chlorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xyiene	ND< 2.00
Styrene	ND< 5.00
1,2-Dichlorobenzene	ND< 2.00
1.3-Dichlorobenzene	ND< 2.00
1.4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L		
Acetone	J 5.48	Ĩ	
2-Butanone	ND< 10.0	-	
2-Hexanone	ND< 5.00 . 77	١ ٠	
4-Methyl-2-pentanone	ND< 5.00		

Results in ug / L.
ND< 5.00
ND< 5.00
Deta Ella: V69030 D

ELAP Number 10958

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Method: EPA 8260B

ND< 2.00

ND< 2.00

ND< 2.00

Data File: V68939.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be "J" or "UJ"

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10421

Client Job Number:

Field Location:

40503 MW-3 Field Duplicate

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/29/2009

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 5.00	1,2,4-Trimethylbenzene	ND< 5.00
sec-Butylbenzene	ND< 5.00	1,3,5-Trimethylbenzene	ND< 5.00
tert-Butylbenzene	ND< 5.00		
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 5.00	Methyl tert-butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 5.00	•	
Naphthalene	ND< 5.00 1.14	<u> 7</u> B	

ELAP Number 10958

Method: EPA 8260B

Data File: V68939.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be "J" or "UJ"

0

Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10421

Client Job Number:

Field Location:

40503 MW-3 Field Duplicate

Date Sampled:

09/16/2009

Field iD Number:

N/A

Date Received:

09/17/2009

Sample Type: Water

Date Analyzed:

09/29/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
None Found	N/A	N/A	ND< 2.00	N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V68939.D

Comments: ND denotes Non Detect ug / L = microgram per Liter All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381 Lab Sample Number: 10422

40503

Client Job Number: Field Location:

Date Sampled: MW-4

09/16/2009

Field ID Number: Sample Type:

N/A Water **Date Received:**

09/17/2009

Date Analyzed:

09/29/2009

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 20.0
Bromomethane	ND< 20.0
Bromoform	ND< 50.0
Carbon Tetrachloride	ND< 20.0
Chloroethane	ND< 20.0
Chloromethane	ND< 20.0
2-Chloroethyl vinyl Ether	ND< 100 WS
Chloroform	ND< 20.0
Dibromochloromethane	ND< 20.0
1,1-Dichloroethane	ND< 20.0
1,2-Dichloroethane	ND< 20.0
1,1-Dichloroethene	ND< 20.0
cis-1,2-Dichloroethene	ND< 20.0
trans-1,2-Dichloroethene	ND< 20.0
1,2-Dichloropropane	ND< 20.0
cis-1,3-Dichloropropene	ND< 20.0
trans-1,3-Dichloropropene	ND< 20.0
Methylene chloride	ND< 50.0 🕶
1,1,2,2-Tetrachloroethane	ND< 20.0
Tetrachloroethene	ND< 20.0
1,1,1-Trichloroethane	ND< 20.0
1,1,2-Trichloroethane	ND< 20:0 24.0
Trichloroethene	ND< 20.0
Trichlorofluoromethane	ND< 20.0

Aromatics	Results in ug / L
Benzene	353
Chlorobenzene	ND< 20.0
Ethylbenzene	30.2
Toluene	20.3
m,p-Xylene	25.2
o-Xylene	ND< 20.0
Styrene	ND< 50.0
1,2-Dichlorobenzene	ND< 20.0
1,3-Dichlorobenzene	ND< 20.0
1,4-Dichlorobenzene	ND< 20.0

Ketones	Results in ug / L	
Acetone	ND< 100 →8.	
2-Butanone	ND< 100	
2-Hexanone	ND< 50.0	
4-Methyl-2-pentanone	ND< 50.0	

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 50.0
Vinyl acetate	ND< 50.0

ELAP Number 10958

Vinyl chloride

Method: EPA 8260B

ND< 20.0

Data File: V68940.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical/Director

All target analytes should be "J" or "UJ"

ENVIRONMENTAL SERVICES. INC. 179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10422

Client Job Number: 40503 Field Location:

MW-4

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/29/2009

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 50.0	1,2,4-Trimethylbenzene	ND< 50.0 14.0
sec-Butylbenzene	ND< 50.0	1,3,5-Trimethylbenzene	ND< 50.0
tert-Butylbenzene	ND< 50.0		
n-Propyibenzene	ND< 20.0 8.00	Miscellaneous	
Isopropylbenzene	ND< 50.0 10.0	Methyl tert-butyl Ether	ND< 20.0
p-Isopropyltoluene	ND< 50.0	-	
Naphthalene	ND< 50.0 LT		

ELAP Number 10958

Method: EPA 8260B

Data File: V68940.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Bruce Hoogesteger: Technical Director

All target analytes should be

Signature:

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10422

Client Job Number: Field Location:

40503 MW-4

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/29/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
Alkyl Hydrocarbon	N/A	1.511	88.2	N/A
Complex Hydrocarbon	N/A	1.62	117	N/A
Complex Hydrocarbon	N/A	2.02	274	N/A
Alkyl Hydrocarbon	N/A	2.23	143	N/A
Alkyl Hydrocarbon	N/A	2.98	117	N/A
Alkyl Hydrocarbon	N/A	3.04	82.1	N/A
Cyclic Alkyl Hydrocarbon	N/A	3.95	234	N/A
Cyclic Alkyl Hydrocarbon	N/A	4.96	61.8	N/A
Complex Hydrocarbon	N/A	10.87	55.6	N/A
Complex Hydrocarbon	N/A	11.52	62.2	N/A

ELAP Number 10958

Method: EPA 8260B

Data File: V68940.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10423

Client Job Number: Field Location:

40503 Field Blank

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/29/2009

Results in ug / L
ND< 2.00
ND< 2.00
ND< 5.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 10.0 45
ND< 2.00
ND< 5.00 🕶
ND< 2.00

Aromatics	Results in ug / L
Benzene	ND< 0.700
Chlorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00
Styrene	ND< 5.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	J 9.24
2-Butanone	ND< 10.0
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Results in ug / L
ND< 5.00
ND< 5.00

Vinyl chloride ELAP Number 10958

Trichlorofluoromethane

Method: EPA 8260B

ND< 2.00 ND< 2.00

Data File: V68941.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10423

Client Job Number: Field Location:

40503 Field Blank

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/29/2009

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 5.00	1,2,4-Trimethylbenzene	ND< 5.00
sec-Butylbenzene	ND< 5.00	1,3,5-Trimethylbenzene	ND< 5.00
tert-Butylbenzene	ND< 5.00		
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 5.00	Methyl tert-butyl Ether	ND< 2.00
p-Isopropyitoluene	ND< 5.00		
Naphthalene	ND< 5.00 45		

ELAP Number 10958

Method: EPA 8260B

Data File: V68941.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Teghnical Director

All target analytes should be "J" or "UJ" Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10423

Client Job Number: Field Location:

40503 Field Blank

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/29/2009

Retention Time Percent Fit **Tentatively Identified Compounds CAS Number** Results in ug / L ND< 2.00 N/A N/A N/A None Found

ELAP Number 10958

Method: EPA 8260B

Data File: V68941.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

requirements upon receipt.

Bruce Hoogesteger: Technical Director

All target analytes should be

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Client Job Number:

40503

Lab Sample Number: 10424

Field Location:

Trip Blank

09/16/2009

Field ID Number:

Date Sampled: Date Received:

09/17/2009

Sample Type:

N/A Water

Date Analyzed:

09/29/2009

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2.00
Bromoform	ND< 5.00
Carbon Tetrachloride	ND< 2.00
Chloroethane	ND< 2.00
Chloromethane	ND< 2.00
2-Chloroethyl vinyl Ether	ND< 10.0 💢
Chloroform	ND< 2.00
Dibromochloromethane	ND< 2.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00
trans-1,2-Dichloroethene	ND< 2.00
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Methylene chloride	ND< 5.00 🝑
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichlorofluoromethane	ND< 2.00

Aromatics	Results in ug / L
Benzene	ND< 0.700
Chlorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00
Styrene	ND< 5.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L.	
Acetone	ND< 10.0 🕶	
2-Butanone	ND< 10.0	
2-Hexanone	ND< 5.00	
4-Methyl-2-pentanone	ND< 5.00	

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 5.00
•	
	€

ELAP Number 10958

Vinyl chloride

Method: EPA 8260B

ND< 2.00

Data File: V68942.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be "J" or "UJ"

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10424

Client Job Number: 40503 Field Location:

Date Sampled:

09/16/2009

Field ID Number:

Trip Blank N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/29/2009

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 5.00	1,2,4-Trimethylbenzene	ND< 5.00
sec-Butylbenzene	ND< 5.00	1,3,5-Trimethylbenzene	ND< 5.00
tert-Butylbenzene	ND< 5.00		
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 5.00	Methyl tert-butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 5.00	-	
Naphthalene	ND< 5.00 65		

ELAP Number 10958 Method; EPA 8260B Data File: V68942.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Bruce Hoogesteger: Technical Director

All target analytes should be

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10424

Client Job Number: Field Location:

40503 Trip Blank

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/29/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
None Found	N/A	N/A	ND< 2.00	N/A
		<u>*</u> 5		
				!

ELAP Number 10958

Method: EPA 8260B

Data File: V68942.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Client Job Number:

40503

Lab Sample Number: 10425

Field Location:

MW-2

09/17/2009

Field ID Number:

N/A

09/17/2009

Sample Type:

Water

Date Sampled: Date Received:

Date Analyzed:

09/29/2009

Results in ug / L
ND< 2.00
ND< 2.00
ND< 5.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 10.0 🕶
2.72
ND< 2.00
ND< 5.00
ND< 2.00

Aromatics	Results in ug / L
Benzene	2.09
Chiorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00
Styrene	ND< 5.00
1.2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	J 10.0
2-Butanone	ND< 10.0
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 5.00

Vinyl chloride ELAP Number 10958

Method: EPA 8260B

ND< 2.00

Data File: V68943.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be "J" or "UJ"

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10425

Client Job Number: Fleld Location:

40503 MW-2

Date Sampled:

09/17/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/29/2009

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 5.00	1,2,4-Trimethylbenzene	ND< 5.00
sec-Butylbenzene	ND< 5.00	1,3,5-Trimethylbenzene	ND< 5.00
tert-Butylbenzene	ND< 5.00	·	
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 5.00	Methyl tert-butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 5.00		
Naphthalene	ND< 5.00 WT		

ELAP Number 10958

Method: EPA 8260B

Data File: V68943.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10425

Client Job Number: Field Location:

40503 MW-2

Date Sampled:

09/17/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/29/2009

CAS Number	Retention Time	Results in ug / L	Percent Fit
N/A	2.017	7.66	N/A
N/A	3.95	5.13	N/A
	N/A	N/A 2.017	N/A 2.017 7.66

ELAP Number 10958

Method: EPA 8260B

Data File: V68943.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Client Job Number:

40503

Lab Sample Number: Water LRB

Field Location:

N/A N/A N/A

Field ID Number:

Date Received:

N/A

Sample Type:

Water

Date Sampled: Date Analyzed:

09/29/2009

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2.00
Bromoform	ND< 5.00
Carbon Tetrachloride	ND< 2.00
Chloroethane	ND< 2.00
Chloromethane	ND< 2.00
2-Chloroethyl vinyi Ether	ND< 10.0
Chloroform	ND< 2.00
Dibromochloromethane	ND< 2.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00
trans-1,2-Dichloroethene	ND< 2.00
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Methylene chloride	ND< 5.00 ~~~
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00

Results in ug / L
ND< 0.700
ND< 2.00
ND< 5.00
ND< 2.00
ND< 2.00
ND< 2.00

Ketones	Results in ug / L	
Acetone	ND< 10.0 🕔	_
2-Butanone	ND< 10.0 1.49	-
2-Hexanone	J 4.35	
4-Methyl-2-pentanone	J 3.85	

Miscellaneous	Results In ug / L		
Carbon disulfide	ND< 5.00		
Vinyl acetate	ND< 5.00		
•			

Vinyl chloride ELAP Number 10958

Trichlorofluoromethane

Method: EPA 8260B

ND< 2.00

ND< 2.00

Data File: V68923.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

requirements upon receipt.

Bruce Hoogesteger: Technical Director

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Client Job Number:

40503

Lab Sample Number: Water LRB

Field Location:

N/A N/A **Date Sampled: Date Received:** N/A N/A

Field ID Number: Sample Type:

Water

Date Analyzed:

09/29/2009

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 5.00	1,2,4-Trimethylbenzene	ND< 5.00
sec-Butylbenzene	ND< 5.00	1,3,5-Trimethylbenzene	ND< 5.00
tert-Butylbenzene	ND< 5.00	-	
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 5.00	Methyl tert-butyl Ether	ND< 2.00
p-isopropyltoluene	ND< 5.00	-	
Naphthalene	ND< 5.00 Q. 14	12	

ELAP Number 10958

Method: EPA 8260B

Data File: V68923.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger. Terhnical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10419

Client Job Number: Field Location:

40503 MW-1

Date Sampled:

09/16/2009

Field ID Number: Sample Type:

N/A Water

Date Received: Date Analyzed:

09/17/2009 09/23/2009

Date Reissued:

10/05/2009

Base / Neutrals	Results in ug / L	Base / Neutrals	Results in ug / L
Acenaphthene	M ND< 10.0	Dibenz (a,h) anthracene	ND< 10.0
Anthracene	ND< 10.0	Fluoranthene	ND< 10.0
Benzo (a) anthracene	ND< 10.0	Fluorene	ND< 10.0
Benzo (a) pyrene	ND< 10.0	Indeno (1,2,3-cd) pyrene	ND< 10.0
Benzo (b) fluoranthene	ND< 10.0	Naphthalene	ND< 10.0
Benzo (g,h,i) perylene	ND< 10.0	Phenanthrene	ND< 10.0
Benzo (k) fluoranthene	ND< 10.0	Pyrene	ND< 10.0
Chrysene	ND< 10.0	Acenaphthylene	ND< 10.0
Diethyl phthalate	ND< 10.0	1,2-Dichlorobenzene	ND< 10.0
Dimethyl phthalate	ND< 25.0	1,3-Dichlorobenzene	ND< 10.0
Butylbenzylphthalate	ND< 10.0	1,4-Dichlorobenzene	ND< 10.0
Di-n-butyl phthalate	ND< 10.0	1,2,4-Trichiorobenzene	ND< 10.0
Di-n-octylphthalate	ND< 10.0	Nitrobenzene	ND< 10.0
Bis (2-ethylhexyl) phthalate	ND< 10.0	2,4-Dinitrotoluene	ND< 10.0
2-Chloronaphthalene	ND< 10.0	2,6-DinItrotoluene	ND< 10.0
Hexachlorobenzene	ND< 10.0	Bis (2-chloroethyl) ether	ND< 10.0
Hexachloroethane	ND< 10.0	Bis (2-chloroisopropyl) ether	ND< 10.0
Hexachlorocyclopentadiene	ND< 10.0	Bis (2-chioroethoxy) methan	ND< 10.0
Hexachiorobutadiene	ND< 10.0	4-Bromophenyl phenyl ether	ND< 10.0
N-Nitroso-di-n-propylamine	M ND< 10.0	4-Chlorophenyl phenyl ether	ND< 10.0
N-Nitrosodiphenylamine	ND< 10.0	Benzidine	ND< 25.0
N-Nitrosodimethylamine	ND< 10.0	3,3'-Dichlorobenzidine	ND< 10.0
Isophorone	ND< 10.0	4-Chioroaniline	ND< 10.0
Benzyl alcohol	ND< 25.0	2-Nitroaniline	ND< 25.0
Dibenzofuran	ND< 10.0	3-Nitroaniline	ND< 25.0
2-Methylnapthalene	ND< 10.0	4-Nitroaniline	ND< 25.0

Acids	Results in ug / L	Acids	Results in ug / L
Phenol	ND< 10.0	2-Methylphenol	ND< 10.0
2-Chlorophenol	ND< 10.0	3&4-Methylphenol	ND< 10.0
2,4-Dichlorophenol	M ND< 10.0	2,4-Dimethylphenol	M ND< 10.0
2,6-Dichlorophenol	ND< 10.0	2-Nitrophenol	ND< 10.0
2,4,5-Trichlorophenol	ND< 25.0	4-Nitrophenol	ND< 25.0
2,4,6-Trichlorophenol	ND< 10.0	2,4-Dinitrophenol	ND< 25.0
Pentachlorophenol	ND< 25.0	4,6-Dinitro-2-methylphenol	ND< 25.0
4-Chloro-3-methylphenol	ND< 10.0	Benzoic acid	ND< 25.0

ELAP Number 10958

Method: EPA 8270C

Data File: S47003.D

Comments: ND denotes Non Detect ug / L = microgram per Liter All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10419

Client Job Number: Field Location:

40503 MW-1

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/23/2009

Tentatively identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
None Found	N/A	N/A	ND< 10.0	N/A
		8		

Method: EPA 8270C

Comments: ND denotes Non Detect

ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Data File: S47003.D

Signature:

ELAP Number 10958

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 093381SC.XLS

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10420

Client Job Number: Field Location:

40503 MW-3

Date Sampled:

09/16/2009

Field iD Number:

N/A

Date Received:

09/17/2009

Water Sample Type:

Date Analyzed:

09/23/2009

Base / Neutrals	Results in ug / L	Base / Neutrals	Results in ug / L
Acenaphthene	ND< 10.0	Dibenz (a,h) anthracene	ND< 10.0
Anthracene	ND< 10.0	Fluoranthene	ND< 10.0
Benzo (a) anthracene	ND< 10.0	Fluorene	ND< 10.0
Benzo (a) pyrene	ND< 10.0	Indeno (1,2,3-cd) pyrene	ND< 10.0
Benzo (b) fluoranthene	ND< 10.0	Naphthalene	ND< 10.0
Benzo (g,h,i) perylene	ND< 10.0	Phenanthrene	ND< 10.0
Benzo (k) fluoranthene	ND< 10.0	Pyrene	ND< 10.0
Chrysene	ND< 10.0	Acenaphthylene	ND< 10.0
Diethyl phthalate	ND< 10.0	1,2-Dichlorobenzene	ND< 10.0
Dimethyl phthalate	ND< 25.0	1,3-Dichlorobenzene	ND< 10.0
Butylbenzylphthalate	ND< 10.0	1,4-Dichlorobenzene	ND< 10.0
Di-n-butyl phthaiate	ND< 10.0	1,2,4-Trichlorobenzene	ND< 10.0
Di-n-octylphthalate	ND< 10.0	Nitrobenzene	ND< 10.0
Bis (2-ethylhexyl) phthalate	ND< 10.0	2,4-Dinitrotoluene	ND< 10.0
2-Chloronaphthalene	ND< 10.0	2,6-Dinitrotoluene	ND< 10.0
Hexachlorobenzene	ND< 10.0	Bis (2-chloroethyl) ether	ND< 10.0
Hexachloroethane	ND< 10.0	Bls (2-chloroisopropyl) ether	ND< 10.0
Hexachlorocyclopentadiene	ND< 10.0	Bis (2-chloroethoxy) methan	ND< 10.0
Hexachlorobutadiene	ND< 10.0	4-Bromophenyl phenyl ether	ND< 10.0
N-Nitroso-di-n-propylamine	ND< 10.0	4-Chlorophenyl phenyl ether	ND< 10.0
N-Nitrosodiphenylamine	ND< 10.0	Benzidine	ND< 25.0
N-Nitrosodimethylamine	ND< 10.0	3,3'-Dichlorobenzidine	ND< 10.0
isophorone	ND< 10.0	4-Chioroaniline	ND< 10.0
Benzyl alcohol	ND< 25.0	2-Nitroaniline	ND< 25.0
Dibenzofuran	ND< 10.0	3-Nitroaniline	ND< 25.0
2-Methylnapthalene	ND< 10.0	4-Nitroaniline	ND< 25.0

Acids	Results in ug / L	Acids	Results in ug / L
Phenol	ND< 10.0	2-Methylphenol	ND< 10.0
2-Chlorophenol	ND< 10.0	3&4-Methylphenol	ND< 10.0
2,4-Dichlorophenol	ND< 10.0	2,4-Dimethylphenol	ND< 10.0
2,6-Dichlorophenol	ND< 10.0	2-Nitrophenol	ND< 10.0
2,4,5-Trichlorophenoi	ND< 25.0	4-Nitrophenol	ND< 25.0
2,4,6-Trichlorophenol	ND< 10.0	2,4-Dinitrophenol	ND< 25.0
Pentachlorophenol	ND< 25.0	4,6-Dinitro-2-methylphenol	ND< 25.0
4-Chloro-3-methylphenol	ND< 10.0	Benzoic acld	ND< 25.0

ELAP Number 10958

Method: EPA 8270C

Data File: S47006.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10420

Client Job Number: Field Location:

40503 MW-3

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/23/2009

entatively identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
one Detected	N/A	N/A	ND< 10.0	N/A
•				

ELAP Number 10958

Method: EPA 8270C

Data File: S47006.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10421

Client Job Number:

Field Location:

MW-3/Field Duplicate

Date Sampled: Date Received: 09/16/2009

09/17/2009

Field ID Number: Sample Type:

N/A Water

40503

Date Analyzed:

09/23/2009

Base / Neutrals	Results in ug / L	Base / Neutrals	Results in ug / L
Acenaphthene	ND< 10.0	Dibenz (a,h) anthracene	ND< 10.0
Anthracene	ND< 10.0	Fluoranthene	ND< 10.0
Benzo (a) anthracene	ND< 10.0	Fluorene	ND< 10.0
Benzo (a) pyrene	ND< 10.0	Indeno (1,2,3-cd) pyrene	ND< 10.0
Benzo (b) fluoranthene	ND< 10.0	Naphthalene	ND< 10.0
Benzo (g,h,l) perylene	ND< 10.0	Phenanthrene	ND< 10.0
Benzo (k) fluoranthene	ND< 10.0	Pyrene	ND< 10.0
Chrysene	ND< 10.0	Acenaphthylene	ND< 10.0
Diethyl phthalate	ND< 10.0	1,2-Dichlorobenzene	ND< 10.0
Dimethyl phthalate	ND< 25.0	1,3-Dichlorobenzene	ND< 10.0
Butylbenzylphthalate	ND< 10.0	1,4-Dichlorobenzene	ND< 10.0
Di-n-butyl phthalate	ND< 10.0	1,2,4-Trichiorobenzene	ND< 10.0
Di-n-octylphthalate	ND< 10.0	Nitrobenzene	ND< 10.0
Bis (2-ethylhexyl) phthalate	ND< 10.0	2,4-Dinitrotoluene	ND< 10.0
2-Chloronaphthalene	ND< 10.0	2,6-Dinitrotoluene	ND< 10.0
Hexachlorobenzene	ND< 10.0	Bis (2-chloroethyl) ether	ND< 10.0
Hexachloroethane	ND< 10.0	Bls (2-chloroisopropyl) ether	ND< 10.0
Hexachlorocyclopentadiene	ND< 10.0	Bis (2-chloroethoxy) methan	ND< 10.0
Hexachlorobutadiene	ND< 10.0	4-Bromophenyl phenyl ether	ND< 10.0
N-Nitroso-dl-n-propylamlne	ND< 10.0	4-Chlorophenyl phenyl ether	ND< 10.0
N-Nitrosodiphenylamine	ND< 10.0	Benzidine	ND< 25.0
N-Nitrosodimethylamine	ND< 10.0	3,3'-Dichlorobenzidine	ND< 10.0
Isophorone	ND< 10.0	4-Chloroaniline	ND< 10.0
Benzyl alcohol	ND< 25.0	2-Nitroaniline	ND< 25.0
Dibenzofuran	ND< 10.0	3-Nitroaniline	ND< 25.0
2-Methylnapthalene	ND< 10.0	4-Nitroaniline	ND< 25.0

Acids	Results in ug / L	Acids	Results in ug / L
Phenol	ND< 10.0	2-Methylphenol	ND< 10.0
2-Chlorophenol	ND< 10.0	3&4-Methylphenol	ND< 10.0
2,4-Dichlorophenol	ND< 10.0	2,4-Dimethylphenol	ND< 10.0
2,6-Dichlorophenol	ND< 10.0	2-Nitrophenol	ND< 10.0
2,4,5-Trichlorophenol	ND< 25.0	4-Nitrophenol	ND< 25.0
2,4,6-Trichlorophenol	ND< 10.0	2,4-Dinitrophenol	ND< 25.0
Pentachiorophenoi	ND< 25.0	4,6-Dinitro-2-methylphenol	ND< 25.0
4-Chloro-3-methylphenol	ND< 10.0	Benzoic acid	ND< 25.0
ELAD Number 10050	Mathe	L EDA 9270C	Data File: C47007 D

ELAP Number 10958

Method: EPA 8270C

Data File: S47007.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be "J" or "UJ"

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381 Lab Sample Number: 10421

Client Job Number: 40503

Field Location:

MW-3 Field Duplicate

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/23/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
Complex Hydrocarbon	N/A	11.62	37.8	N/A

Method: EPA 8270C

Comments: ND denotes Non Detect

ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Data File: \$47007.D

Signature:

ELAP Number 10958

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Client Job Number:

40503 MW-4

Lab Sample Number: 10422 Date Sampled:

09/16/2009

Field Location: Field iD Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/23/2009

Base / Neutrals	Results in ug / L	Base / Neutrals	Results in ug / L
Acenaphthene	ND< 10.0	Dibenz (a,h) anthracene	ND< 10.0
Anthracene	ND< 10.0	Fluoranthene	ND< 10.0
Benzo (a) anthracene	ND< 10.0	Fluorene	ND< 10.0
Benzo (a) pyrene	ND< 10.0	Indeno (1,2,3-cd) pyrene	ND< 10.0
Benzo (b) fluoranthene	ND< 10.0	Naphthalene	ND< 10.0
Benzo (g,h,i) perylene	ND< 10.0	Phenanthrene	ND< 10.0
Benzo (k) fluoranthene	ND< 10.0	Pyrene	ND< 10.0
Chrysene	ND< 10.0	Acenaphthylene	ND< 10.0
Diethyl phthalate	ND< 10.0	1,2-Dichlorobenzene	ND< 10.0
Dimethyl phthalate	ND< 25.0	1,3-Dichlorobenzene	ND< 10.0
Butyibenzylphthalate	ND< 10.0	1,4-Dichlorobenzene	ND< 10.0
Di-n-butyl phthalate	ND< 10.0	1,2,4-Trichlorobenzene	ND< 10.0
Di-n-octylphthalate	ND< 10.0	Nitrobenzene	ND< 10.0
Bis (2-ethylhexyl) phthalate	ND< 10.0	2,4-Dinitrotoluene	ND< 10.0
2-Chloronaphthalene	ND< 10.0	2,6-Dinitrotoluene	ND< 10.0
Hexachlorobenzene	ND< 10.0	Bis (2-chloroethyl) ether	ND< 10.0
Hexachloroethane	ND< 10.0	Bis (2-chloroisopropyl) ether	ND< 10.0
Hexachlorocyclopentadiene	ND< 10.0	Bis (2-chloroethoxy) methan	ND< 10.0
Hexachlorobutadiene	ND< 10.0	4-Bromophenyl phenyl ether	ND< 10.0
N-Nitroso-di-n-propylamine	ND< 10.0	4-Chlorophenyl phenyl ether	ND< 10.0
N-Nitrosodiphenylamine	ND< 10.0	Benzidine	ND< 25.0
N-Nitrosodimethylamine	ND< 10.0	3,3'-Dichlorobenzidine	ND< 10.0
Isophorone	ND< 10.0	4-Chloroaniline	ND< 10.0
Benzyl alcohol	ND< 25.0	2-Nitroaniline	ND< 25.0
Dibenzofuran	ND< 10.0	3-Nitroaniline	ND< 25.0
2-Methylnapthalene	ND< 10.0	4-Nitroaniline	ND< 25.0

Acids	Results in ug / L	Acids	Results in ug / L
Phenol	J 7.97	2-Methylphenol	ND< 10.0
2-Chlorophenol	ND< 10.0	3&4-Methylphenol	ND< 10.0
2,4-Dichlorophenol	ND< 10.0	2,4-Dimethylphenol	ND< 10.0
2,6-Dichlorophenol	ND< 10.0	2-Nitrophenol	ND< 10.0
2,4,5-Trichlorophenol	ND< 25.0	4-Nitrophenol	ND< 25.0
2,4,6-Trichlorophenol	ND< 10.0	2,4-Dinitrophenol	ND< 25.0
Pentachlorophenol	ND< 25.0	4,6-Dinitro-2-methylphenol	ND< 25.0
4-Chloro-3-methylphenol	ND< 10.0	Benzoic acid	ND< 25.0
		<u> </u>	

ELAP Number 10958 Method: EPA 8270C Data File: S47008.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

Semi -Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10422

Client Job Number: Field Location:

40503 MW-4

Date Sampled:

09/16/2009

Field ID Number: Sample Type:

N/A Water

Date Received:

09/17/2009

Date Analyzed:

09/23/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
Alkyl Benzene	N/A	4.39	10.7	N/A
Alkyl Benzene	N/A	6.04	12.3	N/A
Alkyl Benzene	N/A	6.72	12.0	N/A
Alkyl Benzene	N/A	6.89	10.2	N/A
Complex Hydrocarbon	N/A	7.97	12.8	N/A

ELAP Number 10958

Method: EPA 8270C

Data File: S47008.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10423

Client Job Number: Field Location:

40503

09/16/2009

Fleid ID Number:

Field Blank N/A Date Sampled: Date Received:

09/17/2009

Sample Type:

N/A Water

Date Analyzed:

09/23/2009

Base / Neutrals	Results in ug / L	Base / Neutrals	Results in ug / L
Acenaphthene	ND< 10.0	Dibenz (a,h) anthracene	ND< 10.0
Anthracene	ND< 10.0	Fluoranthene	ND< 10.0
Benzo (a) anthracene	ND< 10.0	Fluorene	ND< 10.0
Benzo (a) pyrene	ND< 10.0	Indeno (1,2,3-cd) pyrene	ND< 10.0
Benzo (b) fluoranthene	ND< 10.0	Naphthalene	ND< 10.0
Benzo (g,h,l) perylene	ND< 10.0	Phenanthrene	ND< 10.0
Benzo (k) fluoranthene	ND< 10.0	Pyrene	ND< 10.0
Chrysene	ND< 10.0	Acenaphthylene	ND< 10.0
Diethyl phthalate	ND< 10.0	1,2-Dichlorobenzene	ND< 10.0
Dimethyl phthalate	ND< 25.0	1,3-Dichlorobenzene	ND< 10.0
Butylbenzylphthalate	ND< 10.0	1,4-Dichlorobenzene	ND< 10.0
Di-n-butyl phthalate	ND< 10.0	1,2,4-Trichlorobenzene	ND< 10.0
Di-n-octylphthalate	ND< 10.0	Nitrobenzene	ND< 10.0
Bls (2-ethylhexyl) phthalate	ND< 10.0	2,4-Dinitrotoluene	ND< 10.0
2-Chloronaphthalene	ND< 10.0	2,6-Dinitrotoluene	ND< 10.0
Hexachlorobenzene	ND< 10.0	Bis (2-chloroethyl) ether	ND< 10.0
Hexachloroethane	ND< 10.0	Bis (2-chloroisopropyl) ether	ND< 10.0
Hexachlorocyclopentadiene	ND< 10.0	Bis (2-chloroethoxy) methan	ND< 10.0
Hexachlorobutadiene	ND< 10.0	4-Bromophenyl phenyl ether	ND< 10.0
N-Nitroso-di-n-propylamine	ND< 10.0	4-Chlorophenyl phenyl ether	ND< 10.0
N-Nitrosodiphenylamine	ND< 10.0	Benzidine	ND< 25.0
N-Nitrosodimethylamine	ND< 10.0	3,3'-Dichlorobenzidine	ND< 10.0
Isophorone	ND< 10.0	4-Chloroanillne	ND< 10.0
Benzyl alcohol	ND< 25.0	2-Nitroaniline	ND< 25.0
Dibenzofuran	ND< 10.0	3-Nitroanlline	ND< 25.0
2-Methylnapthalene	ND< 10.0	4-Nitroaniline	ND< 25.0

Acids	Results in ug / L	Acids	Results in ug / L
Phenol	ND< 10.0	2-Methylphenol	ND< 10.0
2-Chlorophenol	ND< 10.0	3&4-Methylphenol	ND< 10.0
2,4-Dichlorophenol	ND< 10.0	2,4-Dimethylphenol	ND< 10.0
2,6-Dichlorophenol	ND< 10.0	2-Nitrophenol	ND< 10.0
2,4,5-Trichlorophenol	ND< 25.0	4-Nitrophenol	ND< 25.0
2,4,6-Trichlorophenol	ND< 10.0	2,4-Dinitrophenol	ND< 25.0
Pentachlorophenol	ND< 25.0	4,6-Dinitro-2-methylphenol	ND< 25.0
4-Chloro-3-methylphenol	ND< 10.0	Benzoic acld	ND< 25.0
ELAD Musshan 400ED	Made	- FDA 00700	D-4- Ell 047000 E

ELAP Number 10958

Method: EPA 8270C

Data File: S47009.D

Comments: ND denotes Non Detect

ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

ENTRONNENTAL SERVICES. INC. 179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Semi -Volatile Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10423

Client Job Number: Fleid Location:

40503 Field Blank

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/23/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
None Found	N/A	N/A	ND< 10.0	N/A
I AP Number 10958	Mothod: 5	PA 8270C		Data File: S47009

ELAP Number 10958

Method: EPA 8270C

Data File: S47009.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition contrictions are continuous contrictions. O93381SG.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10425

Client Job Number: Field Location:

40503 MW-2

Date Sampled:

09/17/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/23/2009

Base / Neutrals	Results in ug / L	Base / Neutrals	Results in ug / L
Acenaphthene	ND< 10.0	Dibenz (a,h) anthracene	ND< 10.0
Anthracene	ND< 10.0	Fluoranthene	ND< 10.0
Benzo (a) anthracene	ND< 10.0	Fluorene	ND< 10.0
Benzo (a) pyrene	ND< 10.0	Indeno (1,2,3-cd) pyrene	ND< 10.0
Benzo (b) fluoranthene	ND< 10.0	Naphthalene	ND< 10.0
Benzo (g,h,i) perylene	ND< 10.0	Phenanthrene	ND< 10.0
Benzo (k) fluoranthene	ND< 10.0	Pyrene	ND< 10.0
Chrysene	ND< 10.0	Acenaphthylene	ND< 10.0
Diethyl phthalate	ND< 10.0	1,2-Dichlorobenzene	ND< 10.0
Dimethyl phthalate	ND< 25.0	1,3-Dichlorobenzene	ND< 10.0
Butylbenzylphthalate	ND< 10.0	1,4-Dichlorobenzene	ND< 10.0
Di-n-butyl phthalate	ND< 10.0	1,2,4-Trichlorobenzene	ND< 10.0
Di-n-octylphthalate	ND< 10.0	Nitrobenzene	ND< 10.0
Bis (2-ethylhexyl) phthalate	ND< 10.0	2,4-Dinitrotoluene	ND< 10.0
2-Chloronaphthalene	ND< 10.0	2,6-Dinitrotoluene	ND< 10.0
Hexachlorobenzene	ND< 10.0	Bis (2-chloroethyl) ether	ND< 10.0
Hexachloroethane	ND< 10.0	Bls (2-chloroisopropyl) ether	ND< 10.0
Hexachlorocyclopentadiene	ND< 10.0	Bis (2-chloroethoxy) methan	ND< 10.0
Hexachlorobutadiene	ND< 10.0	4-Bromophenyl phenyl ether	ND< 10.0
N-Nitroso-di-n-propylamine	ND< 10.0	4-Chlorophenyl phenyl ether	ND< 10.0
N-Nitrosodiphenylamine	ND< 10.0	Benzidine	ND< 25.0
N-Nitrosodimethylamine	ND< 10.0	3,3'-Dichlorobenzidine	ND< 10.0
Isophorone	ND< 10.0	4-Chloroaniline	ND< 10.0
Benzyl alcohol	ND< 25.0	2-Nitroaniline	ND< 25.0
Dibenzofuran	ND< 10.0	3-Nitroaniline	ND< 25.0
2-Methylnapthalene	ND< 10.0	4-Nitroaniline	ND< 25.0

Acids	Results in ug / L	Acids	Results in ug / L
Phenol	ND< 10.0	2-Methylphenol	ND< 10.0
2-Chlorophenol	ND< 10.0	3&4-Methylphenol	ND< 10.0
2.4-Dichlorophenol	ND< 10.0	2,4-Dimethylphenol	ND< 10.0
2.6-Dichlorophenol	ND< 10.0	2-Nitrophenol	ND< 10.0
2,4,5-Trichlorophenol	ND< 25.0	4-Nitrophenol	ND< 25.0
2,4,6-Trichlorophenol	ND< 10.0	2.4-Dinitrophenol	ND< 25.0
Pentachlorophenol	ND< 25.0	4.6-Dinitro-2-methylphenol	ND< 25.0
4-Chloro-3-methylphenol	ND< 10.0	Benzoic acid	ND< 25.0
1000	3.4.4b.a.	- EDA 00700	Data File: \$47010 D

ELAP Number 10958

Method: EPA 8270C

Data File: S47010.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

All target analytes should be "J" or "UJ"

Bruce Hoogesteger: Technical Director This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 093381S6.XLS requirements upon receipt.

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10425

Client Job Number: Field Location:

40503 MW-2

Date Sampled:

09/17/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Date Analyzed:

09/23/2009

Sample Type: Water

Tentatively Identified Compounds CAS Number Retention Time Results in ug / L Percent Fit ND< 10.0 N/A N/A N/A None Found

ELAP Number 10958

Method: EPA 8270C

Data File: S47010.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be "J" or "UJ"

Client: <u>Lu Englneers</u>

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: Water PB 9/22

Client Job Number: Field Location:

40503 N/A

Date Sampled: **Date Received:** N/A N/A

Field ID Number: Sample Type:

N/A Water

Date Analyzed:

09/23/2009

Base / Neutrals	Results in ug / L	Base / Neutrals	Results in ug / L
Acenaphthene	ND< 10.0	Dibenz (a,h) anthracene	ND< 10.0
Anthracene	ND< 10.0	Fluoranthene	ND< 10.0
Benzo (a) anthracene	ND< 10.0	Fluorene	ND< 10.0
Benzo (a) pyrene	ND< 10.0	Indeno (1,2,3-cd) pyrene	ND< 10.0
Benzo (b) fluoranthene	ND< 10.0	Naphthalene	ND< 10.0
Benzo (g,h,i) perylene	ND< 10.0	Phenanthrene	ND< 10.0
Benzo (k) fluoranthene	ND< 10.0	Pyrene	ND< 10.0
Chrysene	ND< 10.0	Acenaphthylene	ND< 10.0
Diethyl phthalate	ND< 10.0	1,2-Dichlorobenzene	ND< 10.0
Dimethyl phthalate	ND< 25.0	1,3-Dichlorobenzene	ND< 10.0
Butylbenzylphthalate	ND< 10.0	1,4-Dichlorobenzene	ND< 10.0
Di-n-butyl phthalate	ND< 10.0	1,2,4-Trichlorobenzene	ND< 10.0
Di-n-octylphthalate	ND< 10.0	Nitrobenzene	ND< 10.0
Bis (2-ethylhexyl) phthalate	ND< 10.0	2,4-Dinitrototuene	ND< 10.0
2-Chloronaphthalene	ND< 10.0	2,6-Dinitrotoluene	ND< 10.0
Hexachlorobenzene	ND< 10.0	Bis (2-chloroethyl) ether	ND< 10.0
Hexachloroethane	ND< 10.0	Bis (2-chloroisopropyl) ether	ND< 10.0
Hexachlorocyclopentadiene	ND< 10.0	Bis (2-chloroethoxy) methan	ND< 10.0
Hexachlorobutadiene	ND< 10.0	4-Bromophenyl phenyl ether	ND< 10.0
N-Nitroso-di-n-propylamine	ND< 10.0	4-Chlorophenyl phenyl ether	ND< 10.0
N-Nitrosodiphenylamine	ND< 10.0	Benzidine	ND< 25.0
N-Nitrosodimethylamine	ND< 10.0	3,3'-Dichlorobenzidine	ND< 10.0
Isophorone	ND< 10.0	4-Chioroaniline	ND< 10.0
Benzyl alcohol	ND< 25.0	2-NitroanIlIne	ND< 25.0
Dibenzofuran	ND< 10.0	3-Nitroaniline	ND< 25.0
2-Methylnapthalene	ND< 10.0	4-Nitroaniline	ND< 25.0

Acids	Results in ug / L	Acids	Results in ug / L
Phenol	ND< 10.0	2-Methylphenol	ND< 10.0
2-Chlorophenol	ND< 10.0	3&4-Methylphenol	ND< 10.0
2,4-Dichlorophenol	ND< 10.0	2,4-Dimethylphenol	ND< 10.0
2,6-Dichlorophenoi	ND< 10.0	2-Nitrophenol	ND< 10.0
2,4,5-Trichlorophenol	ND< 25.0	4-Nitrophenol	ND< 25.0
2,4,6-Trichlorophenol	ND< 10.0	2,4-Dinitrophenol	ND< 25.0
Pentachlorophenol	ND< 25.0	4,6-Dinitro-2-methylphenol	ND< 25.0
4-Chloro-3-methylphenol	ND< 10.0	Benzoic acid	ND< 25.0
ELAP Number 10958	Method	i: EPA 8270C	Data File: S47001.0

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: Water PB 9/22

Client Job Number:

40503 N/A

N/A

Field Location: Field ID Number:

N/A

Date Sampled: Date Received:

N/A

Sample Type: Water Date Analyzed:

09/23/2009

Tentatively Identified Compounds	CAS Number	Retention Time	Results in ug / L	Percent Fit
None Found	N/A	N/A	ND< 10.0	N/A
ELAP Number 10958	Method:	EPA 8270C		Data File: S47001.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381 Lab Sample Number: 10419

Client Job Number:

40503 MW-1

Date Sampled: Date Received: 09/16/2009

Field Location: Field ID Number:

N/A

09/17/2009

Sample Type:

Water

Date Analyzed:

09/22/2009

Pesticide Identification	Results in ug / L	
Aldrin	ND< 0.100053	2
alpha-BHC	M ND< 0.100	Ì
beta-BHC	ND< 0.100	
delta-BHC	M ND< 0.100	2
gamma-BHC	M ND< 0:100 . ○ 33	7
alpha-Chlordane	M ND < 0.100 . 041	JB
gamma-Chlordane	ND< 0.100 (연원 <mark>원</mark>	JB
4,4'-DDD	ND< 0.100 , 069	170
4,4'-DDE	ND< 0.100	-
4,4'-DDT	₹80, 0 01.0 >UN	2
Dieldrin	ND< 0:100 , 039	2
Endosulfan I	ND< 0.100	
Endosulfan II	ND< 0.100	
Endosulfan Sulfate	. ND< 0.100 . ℃ Ч ९	2
Endrin	ND< 0.100 , ♥3 ¾	2
Endrin Aldehyde	ND< 0.100 → C V V	7
Heptachlor	ND< 0.100	
Heptachlor Epoxide	ND< 0.100	- 5
Methoxychlor	ND< 0.100 1058	7 B
Toxaphene	ND< 5.00]

ELAP Number 10958

Method: EPA 8081

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Sample Type:

Client Job Number:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10420

Date Sampled:

09/16/2009

Field Location: MW-3 Field ID Number: N/A

N/A Water

40503

Date Received:

09/17/2009

Date Analyzed:

09/22/2009

Pesticide Identification	Results in ug / L	1
	ND< 0.100	1
Aldrin		
alpha-BHC	ND< 0.100	
beta-BHC	ND< 0.100	
delta-BHC	ND< 0.100	
gamma-BHC	ND< 0.100	
alpha-Chlordane	ND< 0.100	20
gamma-Chlordane	ND< 0.100- 075	3
4,4'-DDD	ND< 0.100	7
4,4'-DDE	ND< 0.100	7
4,4'-DDT	ND< 0.100	3
Dieldrin	ND< 0.100 . 034)
Endosulfan I	ND< 0.100	JB
Endosulfan II	ND< 0.100 10 39	3 1
Endosulfan Sulfate	ND< 0.100	1
Endrin	ND< 0.100	
Endrin Aldehyde	ND< 0.100	1
Heptachlor	ND< 0.100	1
Heptachlor Epoxide	ND< 0.100	7B
Methoxychlor	ND< 0.100 1035	7 6
Toxaphene	ND< 5.00	
ELAP Number 10958	Method: EPA 8081	

Comments: ND denotes Non Detect ug / L = microgram per Liter analytes should be

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381 Lab Sample Number: 10421

Client Job Number:

40503 MW-3 / Field Duplicate

Date Sampled:

09/16/2009

Field Location: Fleld ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/22/2009

		7
Pesticide Identification	Results in ug / L	
Aldrin	ND< 0.100	
alpha-BHC	ND< 0.100 1055	2
beta-BHC	0.338 🔞	7
delta-BHC	ND< 0.100	2
gamma-BHC	ND< 0.100 1.037	7
alpha-Chiordane	ND< 0.100	JB
gamma-Chlordane	ND< 0.100 1074	1B
4,4'-DDD	ND< 0.100 106 5	120
4,4'-DDE	ND< 0.100]
4,4'-DDT	ND< 0:100 082	3 B
Dieldrin	ND< 0.100 . 044	20
Endosulfan I	ND< 0.100	
Endosulfan II	ND< 0:100 . ∪39	7 B
Endosulfan Sulfate	ND< 0:100	7
Endrin	ND< 0.100	2
Endrin Aldehyde	ND< 0:100 , 041	3
Heptachlor	ND< 0.100	[
Heptachlor Epoxide	ND< 0.100	1
Methoxychlor	ND<-0:100 1045	2 B
Toxaphene	ND< 5.00]

ELAP Number 10958

Method: EPA 8081

Comments: ND denotes Non Detect ug / L = microgram per,Liter

Signature:

Bruce Hoogesteger: Technical Director

All target analytes should be "J" or "UJ"

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10423

Client Job Number: Field Location:

40503 Field Blank

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/22/2009

		1
Pesticide Identification	Results in ug / L	ļ
Aldrin	ND< 0.100	-
alpha-BHC	ND< 0.100 , ○85	2
beta-BHC	ND< 0:100 → ○9○ 1	2B
delta-BHC	ND< 0.100	
gamma-BHC	ND< 0.100	
alpha-Chiordane	ND< 0.100	
gamma-Chlordane	ND < 0.100 126 B	D
4,4'-DDD	ND< 0.100 , ○9 %	2B
4,4'-DDE	ND< 0.100	
4,4'-DDT	ND< 0.100	
Dieldrin	ND< 0.100 080	7
Endosulfan I	ND< 0.100	T D
Endosulfan II	ND<-0:100	2 B
Endosulfan Sulfate	ND< 0.100 . ○53	T
Endrin	ND< 0.100	
Endrin Aldehyde	ND< 0:106 ・267	
Heptachlor	ND< 0.100	
Heptachlor Epoxide	ND< 0.100	
Methoxychlor	ND< 0.100 . 057	JB
Toxaphene	ND< 5.00	

ELAP Number 10958

Method: EPA 8081

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be "J" or "UJ"

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: Water PB 9/21

Client Job Number: Field Location:

40503 N/A

Date Sampled:

N/A

Field ID Number:

N/A

Date Received:

N/A

Sample Type:

Water

Date Analyzed:

09/22/2009

Pesticide Identification	Results in ug / L
Aldrin	ND< 0.100
alpha-BHC	ND< 0.100
beta-BHC	ND< 0:100 .054
delta-BHC	ND< 0.100
gamma-BHC	ND< 0.100
alpha-Chlordane	ND< 0.100
gamma-Chlordane	ND< 0.100 074
4,4'-DDD	ND< 0.100 .055
4,4'-DDE	ND< 0.100
4,4'-DDT	ND< 0.100
Dieldrin	ND< 0.100 , ©35
Endosulfan I	ND< 0.100
Endosulfan II	ND< 0.100 1034
Endosulfan Sulfate	ND< 0.100
Endrin	ND< 0.100
Endrin Aldehyde	ND< 0.100
Heptachlor	ND< 0.100
Heptachlor Epoxide	ND< 0.100
Methoxychlor	ND< 0.100 ,047
Toxaphene	ND< 5.00

ELAP Number 10958

Method: EPA 8081

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381 Lab Sample Number: 10419

Client Job Number:

40503

09/16/2009

Field Location:

MW-1

Date Sampled: **Date Received:**

Field ID Number:

N/A

09/17/2009

Sample Type:

Water

Date Analyzed:

09/24/2009

PCB Identification	Results in ug / L
Aroclor 1016	ND< 1.00
Aroclor 1221	ND< 1.00
Aroclor 1232	ND< 1.00
Aroclor 1242	ND< 1.00
Aroclor 1248	ND< 1.00
Aroclor 1254	ND< 1.00
Aroclor 1260	ND< 1.00
\$	

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10420

Client Job Number:

40503 MW-3

Field Location: Field ID Number:

N/A

Date Sampled: Date Received: 09/16/2009 09/17/2009

Sample Type:

Water

Date Analyzed:

09/24/2009

PCB identification	Results in ug / L
Aroclor 1016	ND< 1.00
Aroclor 1221	ND< 1.00
Aroclor 1232	ND< 1.00
Aroclor 1242	ND< 1.00
Aroclor 1248	ND< 1.00
Aroclor 1254	ND< 1.00
Aroclor 1260	ND< 1.00

ELAP Number 10958

Method: EPA 8082

All target

Comments: ND denotes Non Detect ug / L = microgram per Liter

Bruce Hoogesteger: Technical Director

analytes should be

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10421

Client Job Number:

40503 MW-3 / Field Duplicate

Date Sampled:

09/16/2009

Field Location: Field ID Number:

N/A

Aroclor 1242

Aroclor 1248

Aroclor 1254

Aroclor 1260

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/24/2009

PCB Identification Results in ug / L Aroclor 1016 ND< 1.00 Aroclor 1221 ND< 1.00 ND< 1.00 Aroclor 1232

ELAP Number 10958

Method: EPA 8082

ND< 1.00

ND< 1.00

ND< 1.00

ND< 1.00

Comments: ND denotes Non Detect ug / L = microgram per Liter

All target analytes should be

Signature:

Bruce Hoogesteger: Technical Director

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: 10422

Client Job Number: Field Location:

40503 MW-4

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/24/2009

PCB Identification	Results in ug / L
Aroclor 1016	ND< 1.00
Aroclor 1221	. ND< 1.00
Aroclor 1232	ND< 1.00
Aroclor 1242	ND< 1.00
Aroclor 1248	ND< 1.00
Aroclor 1254	ND< 1.00
Aroclor 1260	ND< 1.00

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

requirements upon receipt.

Bruce Hoogesteger: Technical Director

All target analytes should be

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Client Job Number:

40503

Lab Sample Number: 10423

Field Location:

Field Blank

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/24/2009

PCB Identification	Results in ug / L
Aroclor 1016	ND< 1.00
Aroclor 1221	ND< 1.00
Aroclor 1232	ND< 1.00
Aroclor 1242	ND< 1.00
Aroclor 1248	ND< 1.00
Aroclor 1254	ND< 1.00
Aroclor 1260	ND< 1.00

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger echnical Director All target
analytes should be
"J" or "UJ"

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Client Job Number: 40503

Lab Sample Number: 10425

Field Location:

MW-2

Date Sampled:

09/16/2009

Field ID Number:

N/A

Date Received:

09/17/2009

Sample Type:

Water

Date Analyzed:

09/24/2009

PCB Identification	Results in ug / L
Aroclor 1016	ND< 1.00
Aroclor 1221	ND< 1.00
Aroclor 1232	ND< 1.00
Aroclor 1242	ND< 1.00
Aroclor 1248	ND< 1.00
Aroclor 1254	ND< 1.00
Aroclor 1260	ND< 1.00

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger. Technical Director

All target analytes should be

Client: Lu Engineers

Client Job Site:

Clarkson ERP Site

Lab Project Number: 09-3381

Lab Sample Number: Water PB 9/23

Client Job Number: Field Location:

40503 N/A

Date Sampled:

N/A

Field ID Number:

N/A

Date Received:

N/A

Sample Type:

Water

Date Analyzed:

09/24/2009

PCB Identification	Results in ug / L
Aroclor 1016	ND< 1.00
Aroclor 1221	ND< 1.00
Aroclor 1232	ND< 1.00
Aroclor 1242	ND< 1.00
Aroclor 1248	ND< 1.00
Aroclor 1254	ND< 1.00
Aroclor 1260	ND< 1.00
1	

ELAP Number 10958

Method: EPA 8082

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

Client:

Lu Engineers

Lab Project No.: Lab Sample No.:

09-3381 10419

Client Job Site:

Clarkson ERP Site

Sample Type:

Water

Client Job No.:

40503

Date Sampled:

09/16/2009

Field Location: Field ID No.:

MW-1 N/A Date Received:

09/17/2009

Laboratory Report for TAL Metals Analysis in Water

Parameter	Date Analyzed	Analytical Method	Result (mg/L)
Aluminum	09/29/2009	SW846 6010	<0.200
Antimony	09/29/2009	SW846 6010	<0.060 WZ
Arsenic	09/29/2009	SW846 6010	<0.005
Barium	09/29/2009	SW846 6010	, 1,06
Beryllium	09/29/2009	SW846 6010	<0.005
Cadmium	09/29/2009	SW846 6010	<0.005
Calcium	09/29/2009	SW846 6010	186
Chromium	09/29/2009	SW846 6010	<0.010
Cobalt	09/29/2009	SW846 6010	<0.010
Copper	09/29/2009	SW846 6010	<0.010
Iron	09/29/2009	SW846 6010	<0.100
Lead	10/01/2009	SW846 6010	<0.005
Magnesium	09/29/2009	SW846 6010	46.7
Manganese	09/29/2009	SW846 6010	0.580
Mercury	09/22/2009	SW846 7470	<0.0002 45
Nickel	09/29/2009	SW846 6010	<0.040
Potassium	10/01/2009	SW846 6010	35.0
Selenium	10/01/2009	SW846 6010	<0.005 us
Silver	09/29/2009	SW846 6010	<0.010
Sodium	09/30/2009	- SW846 6010	465
Thallium	09/29/2009	SW846 6010	<0.006
Vanadium	09/29/2009	SW846 6010	<0.010
Zinc	09/29/2009	SW846 6010	<0.020

ELAP ID No.:10958

Comments:

Approved By:

Bruce Aoogesteger, Technical Director

All target analytes should be "J" or "UJ"

Client:

Lu Engineers

Lab Project No.:

09-3381

Client Job Site:

Clarkson ERP Site

Lab Sample No.: Sample Type:

Water

10420

Client Job No.:

40503

Date Sampled:

09/16/2009

Field Location:

MW-3

Date Received:

09/16/2009

Field ID No.:

N/A

Laboratory Report for TAL Metals Analysis in Water

Nickel 09/29/2009 SW846 6010 <0.04	(mg/L)
Antimony 09/29/2009 SW848 6010 <0.06	
Arsenic 09/29/2009 SW846 6010 <0.00 Barium 09/29/2009 SW846 6010 0.856 Beryllium 09/29/2009 SW846 6010 <0.00)
Barium 09/29/2009 SW846 6010 0.856 Beryllium 09/29/2009 SW846 6010 <0.00	us
Beryllium 09/29/2009 SW846 6010 <0.00 Cadmium 09/29/2009 SW846 6010 <0.00	5
Cadmium 09/29/2009 SW846 6010 <0.00 Calcium 09/29/2009 SW846 6010 133 Chromium 09/29/2009 SW846 6010 <0.01	
Calcium 09/29/2009 SW846 6010 133 Chromium 09/29/2009 SW846 6010 <0.01	5
Chromium 09/29/2009 SW846 6010 <0.01 Cobalt 09/29/2009 SW846 6010 <0.01	5
Cobalt 09/29/2009 SW846 6010 <0.01 Copper 09/29/2009 SW846 6010 <0.01	
Copper 09/29/2009 SW846 6010 <0.01 Iron 09/29/2009 SW846 6010 <0.10)
Iron 09/29/2009 SW846 6010 <0.10 Lead 10/01/2009 SW846 6010 <0.00	
Lead 10/01/2009 SW846 6010 <0.00 Magnesium 09/29/2009 SW846 6010 23.6 Manganese 09/29/2009 SW846 6010 <0.01)
Magnesium 09/29/2009 SW846 6010 23.6 Manganese 09/29/2009 SW846 6010 <0.01)
Manganese 09/29/2009 SW846 6010 <0.01 Mercury 09/22/2009 SW846 7470 <0.000	5
Mercury 09/22/2009 SW846 7470 <0.000 Nickel 09/29/2009 SW846 6010 <0.04	
Nickel 09/29/2009 SW846 6010 <0.04 Potassium 10/01/2009 SW846 6010 10.7 Selenium 10/01/2009 SW846 6010 <0.00)
Potassium 10/01/2009 SW846 6010 10.7 Selenium 10/01/2009 SW846 6010 <0.00	2 UJ
Selenium 10/01/2009 SW846 6010 <0.00 Silver 09/29/2009 SW846 6010 <0.01)
Silver 09/29/2009 SW846 6010 <0.01	N
	<u> </u>
0-1:)
Sodium 09/30/2009 SW846 6010 262	
Thallium 09/29/2009 SW846 6010 0.007	
Vanadium 09/29/2009 SW846 6010 <0.01)
Zinc 09/29/2009 - SW846 6010 <0.02)

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

All target analytes should be "J" or "UJ"

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional sample information, including compliance with sample condition requirements upon receipt. information, including compliance with sample condition requirements upon receipt.

Client:

Lu Engineers

Lab Project No.:

09-3381

Client Job Site:

Clarkson ERP Site

Lab Sample No.:

Sample Type:

Water

10421

Client Job No.:

MW-3/Field Duplicate

Date Sampled: Date Received:

09/16/2009 09/16/2009

Field Location:

N/A

40503

Laboratory Report for TAL Metals Analysis in Water

Parameter	Date Analyzed	Analytical Method	Result (mg/L)
Aluminum	09/29/2009	SW846 6010	<0.200
Antimony	09/29/2009	SW846 6010	<0.060 ws
Arsenic	09/29/2009	SW846 6010	<0.005
Barium	09/29/2009	SW846 6010	0.866
Beryllium	09/29/2009	SW846 6010	<0.005
Cadmium	09/29/2009	SW846 6010	<0.005
Calcium	09/29/2009	SW846 6010	134
Chromium	09/29/2009	SW846 6010	<0.010
Cobalt	09/29/2009	SW846 6010	<0.010
Copper	09/29/2009	SW846 6010	<0.010
Iron	09/29/2009	SW846 6010	<0.100
Lead	10/01/2009	SW846 6010	<0.005
Magnesium	09/29/2009	SW846 6010	23.8
Manganese	09/29/2009	SW846 6010	<0.010
Mercury	09/22/2009	SW846 7470	<0.0002 UJ
Nickel	09/29/2009	SW846 6010	<0.040
Potassium	10/01/2009	SW846 6010	10.5 📈
Selenium	10/01/2009	SW846 6010	<0.005 ~~
Silver	09/29/2009	SW846 6010	<0.010
Sodium	09/30/2009	SW846 6010	267
Thallium	09/29/2009	SW846 6010	<0.006
Vanadium	09/29/2009	SW846 6010	<0.010
Zinc	09/29/2009	SW846 6010	<0.020

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

All target analytes should be "J" or "UJ"

Client:

Lu Engineers

Lab Project No.:

09-3381 10422

Client Job Site:

Clarkson ERP Site

Lab Sample No.: Sample Type:

Water

Client Job No.:

40503

Date Sampled:

09/16/2009

Field Location: Field ID No.:

MW-4 N/A Date Received:

09/16/2009

Laboratory Report for TAL Metals Analysis in Water

Parameter	Date Analyzed	Analytical	Result (mg/L)
		Method	
Aluminum	09/29/2009	SW846 6010	<0.200
Antimony	09/29/2009	SW846 6010	<0.060 WJ
Arsenic	09/29/2009	SW846 6010	<0.005
Barium	09/29/2009	SW846 6010	1.51
Beryllium	09/29/2009	SW846 6010	<0.005
Cadmium	09/29/2009	SW846 6010	<0.005
Calcium	09/29/2009	SW846 6010	155
Chromium	09/29/2009	SW846 6010	<0.010
Cobalt	09/29/2009	SW846 6010	<0.010
Copper	09/29/2009	SW846 6010	<0.010
Iron	09/29/2009	SW846 6010	0.366
Lead	10/01/2009	SW846 6010	<0.005
Magnesium	09/29/2009	SW846 6010	27.9
Manganese	09/29/2009	SW846 6010	5.45
Mercury	09/22/2009	SW846 7470	<0.0002 UJ
Nickel	09/29/2009	SW846 6010	<0.040
Potassium	10/01/2009	SW846 6010	19.5 人
Selenium	10/01/2009	SW846 6010	<0.005 VJ
Silver	09/29/2009	SW846 6010	<0.010
Sodium	09/30/2009	SW846 6010	514
Thallium	09/29/2009	SW846 6010	0.009
Vanadium	09/29/2009	SW846 6010	<0.010
Zinc	09/29/2009	SW846 6010	<0.020
			ELAR ID No :10059

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

All target analytes should be "J" or "UJ"

Client:

Lu Engineers

Lab Project No.:

09-3381

Client Job Site:

Clarkson ERP Site

Lab Sample No.: 10423

Client Job No.:

40503

Sample Type: Water

Field Location:

Field Blank

Date Sampled: Date Received:

09/16/2009 09/16/2009

Field ID No.:

N/A

Laboratory Report for TAL Metals Analysis in Water

Parameter	Date Analyzed	Analytical	Result (mg/L)
		Method	
Aluminum	09/29/2009	SW846 6010	<0.200
Antimony	09/29/2009	SW846 6010	<0.060 UJ
Arsenic	09/29/2009	SW846 6010	<0.005
Barium	09/29/2009	SW846 6010	<0.020
Beryllium	09/29/2009	SW846 6010	<0.005
Cadmium	09/29/2009	SW846 6010	<0.005
Calcium	09/29/2009	SW846 6010	<0.500
Chromium	09/29/2009	SW846 6010	<0.010
Cobalt	09/29/2009	SW846 6010	<0.010
Copper	09/29/2009	SW846 6010	<0.010
Iron	09/29/2009	SW846 6010	<0.100
Lead	10/01/2009	SW846 6010	<0.005
Magnesium	09/29/2009	SW846 6010	<0.050
Manganese	09/29/2009	SW846 6010	<0.010.0046
Mercury	09/22/2009	SW846 7470	<0.0002 us
Nickel	09/29/2009	SW846 6010	<0.040
Potassium	10/01/2009	SW846 6010	<1.00 N , 99 3
Selenium	10/01/2009	SW846 6010	<0.006- ,0044
Silver	09/29/2009	SW846 6010	<0.010
Sodium	09/30/2009	SW846 6010	<1.00 , 25
Thallium	09/29/2009	SW846 6010	<0.006
Vanadium	09/29/2009	· SW846 6010	<0.010
Zinc	09/29/2009	SW846 6010	<0.020
			ELAB ID No :10059

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

All target analytes should be

Client:

Lu Engineers

Lab Project No.:

09-3381

Client Job Site:

Clarkson ERP Site

Lab Sample No.: 1

10425

Client Job No.:

40503

Sample Type:

Water

Field Location:

MW-2

Date Sampled: Date Received:

09/17/2009 09/17/2009

Field ID No.:

N/A

Laboratory Report for TAL Metals Analysis in Water

Parameter	Date Analyzed	Analytical	Resuit (mg/L)
<u> </u>		Method	
Aluminum	09/29/2009	SW846 6010	11.8
Antimony	09/29/2009	SW846 6010	<0.060 🕶
Arsenic	09/29/2009	SW846 6010	<0.005
Barium	09/29/2009	SW846 6010	1.38
Beryllium	09/29/2009	SW846 6010	<0.005
Cadmium	09/29/2009	SW846 6010	<0.005
Calcium	09/29/2009	SW846 6010	198
Chromium	09/29/2009	SW846 6010	0.010
Cobalt	09/29/2009	SW846 6010	<0.010
Copper	09/29/2009	SW846 6010	<0.010
lron	09/29/2009	SW846 6010	16.1
Lead	10/01/2009	SW846 6010	0.009
Magnesium	09/29/2009	SW846 6010	38.7
Manganese	09/29/2009	SW846 6010	1.30
Mercury	09/22/2009	SW846 7470	<0.0002 ~~~
Nickel	09/29/2009	SW846 6010	<0.040
Potassium	10/01/2009	SW846 6010	20.9 N
Selenium	10/01/2009	SW846 6010	<0.005 V.T
Silver	09/29/2009	SW846 6010	<0.010
Sodium	09/30/2009	SW846 6010	253
Thallium	09/29/2009	SW846 6010	<0.006
Vanadium	09/29/2009	SW846 6010	0.022
Zinc	09/29/2009	SW846 6010	<0.020
			ELAD ID No :10059

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

All target analytes should be

Client:

Lu Engineers

Lab Project No.: Lab Sample No.: 09-3381

Method Blank

Client Job Site:

Clarkson ERP Site

Sample Type:

Water

Client Job No.:

40503

Date Sampled:

N/A

Field Location: Field ID No.: N/A N/A Date Received:

N/A

Laboratory Report for TAL Metals Analysis in Water

Parameter	Date Analyzed	Analytical Method	Result (mg/L)
Aluminum	09/29/2009	SW846 6010	<0.200
Antimony	09/29/2009	SW846 6010	<0.060 UJ
Arsenic	09/29/2009	SW846 6010	<0.005
Barium	09/29/2009	SW846 6010	<0.020
Beryllium	09/29/2009	SW846 6010	<0.005
Cadmium	09/29/2009	SW846 6010	<0.005
Calcium	09/29/2009	SW846 6010	<0.500
Chromium	09/29/2009	SW846 6010	<0.010
Cobalt	09/29/2009	SW846 6010	<0.010
Copper	09/29/2009	SW846 6010	<0.010
Iron	09/29/2009	SW846 6010	<0.100
Lead	10/01/2009	SW846 6010	<0.005
Magnesium	09/29/2009	SW846 6010	<0.050
Manganese	09/29/2009	SW846 6010	<0.010
Mercury	09/22/2009	SW846 7470	<0.0002 US
Nickel	09/29/2009	SW846 6010	<0.040
Potassium	10/01/2009	SW846 6010	<1.00
Selenium	10/01/2009	SW846 6010	<0.005 UT
Silver	09/29/2009	SW846 6010	<0.010
Sodium	09/30/2009	SW846 6010	<1.00
Thallium	09/29/2009	SW846 6010	<0.006
Vanadium	09/29/2009	SW846 6010	<0.010
Zinc	09/29/2009	SW846 6010	<0.020

ELAP ID No.:10958

Comments:

Approved By:

Bruce Hoogesteger, Technical Director

CHAIN OF CUSTODY

												eleah 9/17			
			/335	9/17/09 Date/Time		a Honch	ab By	Cliz a Uth	N X C	,° ≺ M	ced = temp	ature:	Temperature: 9 ぬぐこ	Comments:	
		10:06	00	9/17/09 bate/Time	MOD	2 Miles		Relinquished By		. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2: HNO3	Preservation: Metals Sample: at 1ab. Holding Time:	1 7-y-1	Comments: M(b-Z added	
		16:34 EHH 7/17		C/ [le/ 09]	who	newalch) Joe	Sampled By		× ×		r Type:	Container Type:	Comments:	_
Miller Miller	as per v.1	Std. Dr. per J. Dal Dia as per V. Miller	51d. (9/				>	3	ompliance	243/244 NELAC Compliance	0/241/242/	n: Per NELAC/ELAP 21 Receipt Parameter	tion: Per NEL/ Receipt Par	Sample Condition: Per NELAC/ELAP 210/241/242/243/244 Receipt Parameter NE	—
		delivered to lab	deliv												a
		Sampleshand	San							-				6	
4	10424					×	_	J	Blank		₩			8	
W	1042				×	× × X	6	luctor	Blank	Field E	×			79/16/09	
(2	10422				×	× × ×	n	<		MW-4	<u>_</u>		اط: عر ہ	6	
	10421	EAH9117			×	У Х ×	6	<u>भूज</u>	5/Field Dwalicate	mw-3			15:33	5	142
0	10420	Metals = TAL	Meta		X	×	૯			Mw - 3			15:33	4	1 .
9MSD	10419	SVOC= 8270 ABN+ /	SVOC		Х	X X X	6		MSD	mw.			13:31	3	14.
SNB	10410	+3071CS			×	×	e		/M5	m W - 1			(3:3)	2	1
12	10419	7 + X	νας -		×	× ×	6	Wicher		mw-	X		13:31	19/16/09	T .
	r. Daloja	PerG. Andrus asper5. Daloia	Par G.		Meta PCB Pest	VOC+ Svoc+ Meta	70 r 70 m 2	× -			C	m → -			T
	PARADIGM LAB SAMPLE NUMBER	REMARKS)	30	n ໝ ≤ ->-	- 🌣 ⊣	SAMPLE LOCATION/FIELD ID	SAMPL		σοτ	TIME	DATE	
9/17	history for site.	history f				tics Tics	C Z 1 Z O O	> ≊			ဓ	3 ≤ 0 ∩			
Mage.	3 week TAT package	300		ESTED ANALYSIS	STED A	REQUE		-			<u>-</u>				O20- 11
+ -	2 week TOT data.	Quotation # 2 wes								L	COMMENTS:	Sito	n ERR	Clarkson CRP	_
] X	$\square_1 \square_2 \square_3 $					ATTN:		Andrus	Greu An	ATTN:		TE NAME:	PROJECT NAME/SITE NAME:	
20	TD, pe OTHE	HY		×	FAX:		PHONE:		FAX:		PHONE:			į	
11	3 DAYS)	اڌ	ZIP:	STATE:			CITY:	୭୧୨ ନା	- 1	CITY: Ponfield	ζζ: (ITY)				
	40503	09.3381 Ho				***************************************	ADDRESS:		Penfield Rd	2230	ADDRESS:				
	CLIENT PROJECT #:	LAB PROJECT #: CLIENT			ame	s	COMPANY:		Stoom		COMPANY:	:G - ≤	TARADIGM		
				10:	INVOICE TO:				REPORT TO:) \$		J	

CHAIN OF CUSTODY

							_		_														
	Comments:	Comments:	Comments: M(1) - 7	Comments:	Receipt Parameter NE	Sample Condition: Ber NEI AC/EI AB 240/24124	10	9	8	7	6	5	4	3	2 ,	19/17/09	DATE		Clarkson ERPS, te	TROSECT NAME/STE NAME:			
<i>of</i>	Temperati			Container Type:	Receipt Parameter	NLY BEL										10:50	TIME) EKP	NAME:	The state of the s		TAKAUIGM
of samples	Temperature:	datiab	ion:	Гуре:	rameter	OW THIS LII		To the state of th									m → − ω O	7 3 0 0	Site				Z
2 770.	5		- 120		4112421	######################################										×	∞ > 7	" "	COMMENTS:	ATTN:	PHONE:	CITY:D	COMPANY:
	v N		Y Malee N X		NELAC Compliance	S 04	Page 1+2 of CC		Υ,	tested from it	7	some unpres sai	metals given recidat lab	For MW-2, no	\	mu-2	SAMPLE LOCATION/FIELD ID			Gred Andrus	PHONE: FAX:	"aago Penfield state	10 E
Received (0) Lab By	Chi	Received By	Rocal	Sampled By	} }	Wex 9/17	of cocare same Job, same sof	EDH 9/17	J. Daloia 9/17,	L of sample	#	Sample from	recidatiabl	nobofile for	CaHali7		ON/FIELD ID				Į V	1000 P	75
(@) Lab t	jabeth a. Honch			۶۲- ک	EAH 9/17	-	ob, 50		,,		io					wher	× - z -	> <u>\$</u>		Aī		ZIP: /UC) 2 CI	2 0
Ϋ́	k a	d.	ne	hermosomily			25.5									7	Я П Z − Ъ σ	- z o o		ATTN:	PHONE:	CITY:	COMPANY:
	1/0	1	medella	de			308									X	SUDC+30	TICS TICS	REQU				
	nch	,		Mund) Del									×	TAL Me	itals	JESTE				Same
ō	1/16	000	9	9			per J. Dalaia										TAMENTO OF THE PHONE OF THE PHO		ESTED ANALYSIS		FAX:	SI	me
Date/Time	9/17/09	Date/Time	1/2/	17/02			o ia										10 0 0 3 10 3		SISAT			STATE:	
		100	77				S		5	<i>to</i>	ري دي		2	S	_	2 4	Sper 1//7					ZIP:	
	1335	09 1240	D10	10150		9/17.	HD DL,		eals	0 /26)/Om/		etals	SVOC	+ 0	J. baloia	J.O.F						
		06				4	per J.	FUH 9117	notn	SO CL	s har	m	Metals = TAL	- 8270	+ 77CS	11a 91	REMARKS		uotatio		多	TURNAROUND TIME:	LAB PROJECT #:
		P.I.F		Total Cost:		70 H G	Std Or per J. Natoria a	7119	seals notnecessai	lab so custody	Samolos hand doliva	EAHA 117	, <u>†</u>	= 8270 ABN+	+ 7/C3 1 CC+ X	9/17:	sas	perquote/client history for sitc. EAH9	Quotation # 2 week data	2	TO STD	D TIME: (W	100 m
				ost T		77	aas		100	2	1300	7		+		,	per	12 to	mee wee	3	STD	ORKING YOU	CLIENT
							per				100					,0,	PARAD SAMPLE	6/cli	aweek data 3 week package	5	l	HOSO 3	CLIENT PROJECT #:
							ج ک									42:	PARADIGM LAB SAMPLE NUMBER	EDH9117	ta		OTHER		T#:
							<u>;</u>									5	~	17	je		Ę		

Data Usability Summary Report

Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

Town of Clarkson
Paradigm Environmental Services Inc. SDG#5179
July 29, 2010
Sampling date: 04/27/09

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Lu Engineers, project located in the Town of Clarkson, SDG#5179, Paradigm # 09-1511, submitted to Vali-Data of WNY, LLC on May 17, 2010. The laboratory performed the analyses using USEPA methods, 8260B (Volatile Organics), 8270C (Semi-Volatile Organics), 8081 (Pesticides), 8082 (PCBs), 6010B (Inorganics) and 7471A (Mercury).

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times, Internal Standard, Surrogate Spike Recoveries, Method Blank, Compound Quantitation, Initial Calibration and Continuing Calibration.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met except Methylene Chloride was detected in sample CS-SS-02 but not recorded on the Form 1. An updated page is attached.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met except sample CS-SS-EB was not recorded as having a pH<2 and was analyzed after 7 days. All detected target analytes in this sample should be qualified as estimated and all nondetects should be qualified as unusable.

INTERNAL STANDARD (IS)

The IS met criteria except the 1,4-Dichlorobenzene- d_4 was outside QC limits, low , in all soil samples except CS-SS-01MS/SD and CS-SD-01. These samples were rerun with similar results. All associated detects in these samples should be qualified as estimated and all non-detects should be qualified as unusable per National Functional Guidelines.

SURROGATE SPIKE RECOVERIES

All criteria were met except most surrogate recoveries were outside laboratory QC limits, low, possibly due to matrix interference. All surrogates outside laboratory QC limits were also outside ASP QC limits, low, except Toluene-d₈ in Soil LCS 5/7 and 4-Bromofluorobenzene in CS-SS-01MS, CS-SS-04D, CS-SS-05, CS-SD-01, -02 and CS-SD-03. Associated target analytes should be qualified as estimated. All surrogates were outside QC limits in CS-WC-01 due to dilution.

METHOD BLANK

All criteria were met except 4-Methyl-2-pentanone was detected above the MDL, below the MRL in Soil LRB 5/5 and should be qualified as estimated in the blank, associated samples and spikes.

2-Hexanone and 4-Methyl-2-pentanone were detected above the MDL, below the MRL in Soil LRB 5/7 and should be qualified as estimated in the blank, associated samples and spikes.

Styrene was detected in Solid M/L LRB 5/8 above the MDL, below the MRL but due to the high concentration in the sample, no qualification is required.

Paradigm has reviewed the data and does not believe these target analytes to be present or they are detected outside the laboratories range for qualification (see Overall evaluation above). No supporting data has been included in the package.

Styrene, 2-Hexanone and 4-Methyl-2-pentanone were detected above the MDL, below the MRL in Water LRB 5/5. These target analytes were not detected in the samples, so no further action is required.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met. The %Rec were within ASP QC limits, however, Toluene was outside laboratory QC limits in CS-SS-01MSD.

COMPOUND QUANTITATION

All criteria were met except several target analytes were detected in the samples but not recorded. Paradigm has reviewed the data and does not believe these target analytes to be present or they are detected outside the laboratories range for qualification (see Overall evaluation above). No supporting data has been included in the package.

INITIAL CALIBRATION

All criteria were met except the %RSD of Acetone and Methylene Chloride were outside ASP outer QC limits. These target analytes should be qualified as estimated in all samples, blanks and spikes. The %RSD of Bromomethane, 2-Butanone and Bromoform were outside ASP QC limits. ASP allows for up to two target analytes to be outside QC limits without further action. National Functional Guidelines states that target analytes which fell outside QC limits should be qualified as estimated in all blanks, spikes and samples. Paradigm did not indicate the use of alternate regression.

CONTINUING CALIBRATION

All criteria were met except the %RSD of Acetone was outside ASP outer QC limits in the Continuing Calibrations performed on 5/7/10 and 5/8/10. This target analyte should be qualified as estimated in all samples, blanks and spikes. The %D of Tetrachloroethene was outside ASP QC limits in the Continuing Calibration performed on 5/7/10. ASP allows up to two target analytes to fall outside of QC limits, so no further action is required. Paradigm did not indicate the use of alternate regression.

GC/MS PERFORMANCE CHECK

All criteria were met.

SEMIVOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Internal Standard, MS/MSD, Compound Quatitation and Continuing Calibration.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

INTERNAL STANDARD (IS)

All criteria were met except all internal standards were outside QC limits in Water PB 5/1 and all internal standards except 1,4-Dichlorobenzene- d_4 in Water LCS 5/1. Naphthalene- d_8 , Acenaphthene- d_{10} and Phenanthrene- d_{10} were outside QC limits in CS-SS-EB. All detected associated target analytes should be qualified as estimated, all non-detects should be qualified as unusable, per National Functional Guidelines.

SURROGATE SPIKE RECOVERIES

All criteria were met. The %Rec's were within ASP QC limits.

METHOD BLANK

All criteria were met. (see Internal Standard, above)

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met except the %Rec of Pyrene was outside laboratory QC limits in CS-SS-01MS, but within ASP QC limits. Several target analytes were detected but not recorded.

COMPOUND QUANTITATION

All criteria were met except several target analytes and TIC's were detected but not recorded. Paradigm has reviewed the data and does not believe these target analytes and TIC's to be present or they are detected outside the laboratories range for qualification (see Overall evaluation above). No supporting data has been included in the package.

INITIAL CALIBRATION

All criteria were met.

CONTINUING CALIBRATION

All criteria were met except the %D of 2,4-Dinitrophenol, Hexachlorocyclopentadiene and 4,6-Dinitro-2methylphenol were outside ASP outer QC limits in Continuing Calibration performed on 5/8/10 at 9:38. These target analytes should be qualified as estimated in the associated blank, samples and spikes.

GC/MS PERFORMANCE CHECK

All criteria were met.

PESTICIDES

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times and MS/MSD.

Adirondack Environmental Services, Inc. reported the lesser of the concentrations off the two columns.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met. The samples were received with a temperature of 13.0°C which is outside the acceptance window (4 ± 2 Degrees °C), thus all target analytes in the samples should be qualified as estimated.

SURROGATE SPIKE RECOVERIES

All criteria were met except the %Rec of DCBP off column 1 was outside QC limits in sample CS-SS-EB. No target analytes were detected in this sample off either column, so no further action is required.

METHOD BLANK

All the criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met except 4,4'-DDE was detected in CS-SS-01MS/SD and qualified as estimated in CS-

COMPOUND QUANTITATION

All criteria were met except the %D between the columns was outside QC limits for 4,4'DDT in samples CS-SS-01 and CS-SS-04 and 4,4'-DDE in samples CS-SS-04 and CS-SS-04D.

INITIAL CALIBRATION

All criteria were met except the %resolution of delta-BHC and Heptachlor were outside ASP QC limits off column 2 in the Individual Standard Mixture C performed on 4/30/10 and 5/1/10. These target analytes were not detected in any of the samples off either column.

CONTINUING CALIBRATION

All criteria were met.

POLYCHLORINATED BIPHENYLS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures

outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use. The data do not completely fulfill ASP category B deliverable guidelines, see Initial Calibration, below.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met except no lab limits were provided for the LCS or MS/SD. This page is attached. The raw data for the Initial Calibration standards were not included in the original package. The injection logs are labeled as 'GC/ECD Pest System 5890/ Dual ECD'pesticide'. Paradigm confirmed that these injection logs were used for PCB analysis. This does not affect the data.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

SURROGATE SPIKE RECOVERIES

All criteria were met within ASP QC limits.

METHOD BLANK

All the criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met except no raw data were provided for the initial calibrations. Calibration Curves and Calibration tables were sent.

Paradigm used linear regression on all target analytes and surrogates.

CONTINUING CALIBRATION

All criteria were met.

METALS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Method Blank
- -Laboratory Control Sample
- -MS/MSD
- -Duplicate
- -Field Duplicate
- -Serial Dilution
- -Compound Quantitation
- -Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use.

Paradigm Environmental only records target analytes detected at a level $\frac{1}{2}$ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as

DATA COMPLETENESS

All criteria were met.

NARATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

METHOD BLANK

All criteria were met except the target analyte Mg was detected in the Preparation blank, Blk 4/29 s. The concentration of Mg in the samples was > 10x blank concentration, so no further action is required.

LABORATORY CONTROL SAMPLE

All criteria were met.

MS/MSD

All criteria were met except the %Rec of Al, Ca and Fe were outside ASP QC limits in CS-SS-01MS. The sample concentrations were > 4X spike amount, therefore no further action is required. Several target analytes were outside laboratory QC limits and are qualified with an 'M'.

DUPLICATE

All criteria were met within ASP QC limits.

Several target analytes were qualified with a 'D', due to the %D being outside lab QC limits.

FIELD DUPLICATE

All criteria were met.

SERIAL DILUTION

No serial dilution was performed.

COMPOUND QUANITATION

All criteria were met.

CALIBRATION

All criteria were met.

MERCURY

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Method Blank
- -Laboratory Control Samples
- -MS/MSD
- -Duplicate
- -Field Duplicate
- -Compound Quantitation
- -Calibration

The items listed above were technically in compliance with the method and SOP criteria with any exceptions discussed in the text below. The data have been reviewed according to the procedures

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met except no results were recorded for Blk s on the summary tables. After review of the raw data, Blk s was analyzed in accordance with the analysis run log and contained no Hg.

CHAIN OF CUSTODY

All criteria were met.

HOLDING TIMES

All holding times were met.

METHOD BLANK

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met except the %Rec was outside ASP QC limits, high, and is qualified with an 'M' in sample CS-SS-01.

DUPLICATE

All criteria were met.

Hg was qualified with a 'D' due to the %D being outside lab QC limits.

FIELD DUPLICATE

All criteria were met.

COMPOUND QUANTITATION

All criteria were met.

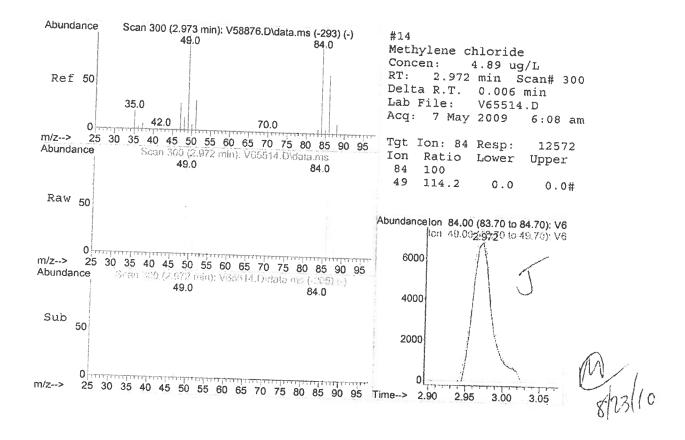
CALIBRATION

All criteria were met.

GENERAL CHEMISTY

The following items/criteria were reviewed for this analytical suite:

- Percent Moisture
- pH


The items listed above were technically in compliance with the method and SOP criteria with any exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

Percent Moisture

The percent moisture was recorded on a prep log but no Form 1's were submitted.

pН

The pH was recorded on a prep log but no Form 1's were submitted.

Method: EPA 8082

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

PCB Analysis Report for Soils/Solids/Sludges

Client: Lu Engineers

Client Job Site:

Client Job Number: 40503

Clarkson ERP Site

Lab Project Number: 09-1511 Lab Sample Number: N/A

5179 SDG Group:

oil Spike Limits Soil % RPD Limits Water Spike Limits Water % RPD L	187 0 noon 187 187 1981 1881 1881 1881 1881 1881 1	187 0 98.0 10.0 142 0		
Spiked Compound	Aroclor			

VOA Water Master MDL 1/2009-4/2009 Due 1/2010

	Sp	Spike		-							
Compound	Le	Level MDL1	1 MDL2	MDL3	MDIA	Z Z	0				Reporting
2 Dichlorodifluoromethane			1.556	╀	+	1 100	MULO	MDL7	SD	MDL	Limit
3 Unloromethane	2	_		-	+	1.102	1.911	1.449	0.265	0.832	2
	2	1.869	ŀ	1 201	1	1.211	1.749	1.474	0.223	0.700	2
5 Bromomethane	2	\vdash	+	2 857	+	1.316	1.788	1.555	0.223	0.701	0
6 Chloroethane	2	F	+	4 643	+	2.708	3.529	2.671	0.317	0.996	-
7 Trichlorofluoromethane	2	\vdash	╀	1.013	+	1.294	1.861	1.524	0.313	0.983	200
8 Ethyl ether	2	+	+	1.333	+	1.213	1.912	1.784	0.289	0.906	2
9 Freon 113	16	+	+	1.762	\dashv	1.625	2.263	1.664	0.272	0.000	7 6
10 1,1-Dichloroethene	10	1 866	+	1.476	+	1.51	2.303	1.774	0.307	0.004	7 0
11 Acetone	1 10	+	+	1.369	1.785	1.359	2.008	1.511	0.250	0.30	7 6
12 Carbon disulfide	0	+	+	3.665	3.775	3.561	3.986	3.36	0.305	0.707	7 4
13 Methyl acetate	10	+	+	1.363	1.755	1.349	2.085	1.642	0.281	0 800	
14 Methylene chloride	7 15	2.130	2.073	1.781	2.121	1.91	2.257	1.893	0.175	0.002	7 6
15 Acrylonitrile	1	+	+	3.133	3.467	4.076	4.616	4.136	0.818	2 568	7 4
16 tert-Butyl alcohol	2 2	+	+	1.902	1.647	2.056	1.997	1.653	0.168	0.530	0
17 Methyl tert-butyl ether	100	\	4	2/1.78	253.957	325.094	187.712	258.768	44.064	138 362	2000
18 trans-1.2-Dichloroethene	10	2.317	\perp	2.015	2.322	2.025	2.552	2.1	0 222	0.002	200
19 1,1-Dichloroethane	10	2/1/2	1.951	1.549	1.877	1.44	2.142	1.756	0.279	0.030	200
20 Vinyl Acetate	10	1 704	+	1.485	1.771	1.538	1.981	1.66	0.210	0.658	100
21 2,2-Dichloropropane	10	2 140	\bot	1.358	1.34	1.333	1.423	1.197	0.168	0.528	7 4
22 2-Butanone	100	4 606	1.913	1.55	1.952	1.521	2.254	1.73	0 281	0.020	0
23 cis-1,2-Dichloroethene	10	2 000	0.981	1.104	0.549	0.788	1.564	1.512	0.430	1 351	7 2
24 Bromochloromethana	1 0	2.011	/18:1	1.565	1.794	1.583	2.218	1.845	0.231	707.0	
25 Chloroform	y c	7777	1.779	1.745	1.969	1.55	2.302	1.877	0.268	0.127	7 6
28 1.1.1-Trichloroethana	100	2.401	1.994	1.723	1.991	1.569	2.249	1.853	0.245	0.771	7 0
30 Carbon tetrachloride	7 0	2.124	1.968	1.58	2.148	1.563	2.359	1,853	0.298	0.07	7 0
31 Benzene	1	477.7	1.979	1.556	1.974	1.477	2.216	1.734	0300	0.930	7
32/1.2-Dichloroethana	- 0	1.028	0.821	0.75	0.821	0.75	0.816	0.912	0.00	0.34	70
33 Trichloroethene	7 0	4 077	2.076	1.719	1.94	1.886	2.341	1.764	0.227	0.203	0.5
34 Methylcyclohexane	10	2 104	1.07	1.42/	1.646	1.422	2.055	1.619	0.255	0.802	2
36 1,2-Dichloropropane	2	1.851	1777	1,430	1.866	1.472	2.255	1.852	0.301	0.944	2
38 Dibromomethane	2	2 073	1 784	1 745	1.72	1.44	2.084	1.644	0.237	0.743	2
39 Bromodichloromethane	2	1946	1684	1 5/6	1.917	1.806	2.185	1.798	0.167	0.526	2
40 2-Chloroethyl vinyl ether	2	4 93	7.83	F 843	1.718	1.599	1.842	1.727	0.137	0.429	2
42 1,1-Dichloropropene	2	211	1 874	2.012	0.478	1	5.937	5.679	0.432	1.356	5
43 cis-1,3-Dichloropropene	2	1 899	1 73	1 200	2.004	+	2.252	1.801	0.339	1.063	2
44 4-Methyl-2-pentanone	2	2 278	2003	1.302	1.589	+	1.909	1.418	0.217	0.680	2
46 Toluene	2	2.188	2 198	1.013	30.00		2.267	1.821	0.190	0.595	2
47 trans-1,3-Dichloropropene	2	2.123	1 7771	1 445	4 724	+	2.202	1.866	0.252	0.791	2
48 1,1,2-Trichloroethane	2	2.201	2 103	1 677	1.734	+	+	1.63	0.230	0.723	2
And the state of t			1 22 1	7.70.	1.90	1.667	2.157	1.685	0.242	0.759	2

VOA Water Master MDL 1/2009-4/2009 Due 1/2010

						1					
49 1,3-Dichloropropane	2	2.057	1.918	1.695	2 032	1 734	0 0 0				
30 letrachloroethene	2	2.423	2.253	-	\vdash	100.1	242.2	+	0.217	0.681	2
51 2-Hexanone	2	2.16	187	+	+	1.00.1	2.542		0.303	0.951	2
52 Dibromochloromethane	2	1 93	1 82	1 50	1,70	1.69	1.95	1.57	0.196	0.615	5
53 1,2-Dibromoethane	0	1 06	1 73	1.30	1.72	1.5	1.84	1.44	0.189	0.592	2
55 Chlorobenzene	10	500	1.73	0/-	1.9	1.78	1.96	1.58	0.139	0.436	2
56 1.1.1.2-Tetrachloroethane	100	7.0	2.07	1.92	1.87	1.83	2.08	1.9	0.099	0.311	2
57 Ethylbenzene	4 0	2000	2.07	1.76	1.71	1.77	1.97	1.98	0.143	0.440	7 0
58 m.p-Xylene	1 =	20.7	2.17	1.75	1.94	1.76	2.01	2.02	0.158	0.495	עע
59 o-Xvlene	+	4.21	4.32	3.45	3.96	3.49	3.88	4.31	0.365	1 147	
60 Styrene	7 0	2.03	2.08	1.73	1.91	1.8	2.06	2.01	0.144	0.452	2
61 Bromoform	7	2.79	2.09	1.79	1.91	1.81	2.06	2.17	0.160	0.504	4 0
62 Isopropylbonzono	7	6.7	1.99	1.67	1.81	1,68	1.67	1.98	0 145	0.00	7 6
63 1.2.3-Trichloropropage	7 0	1.96	2.07	1.72	1.95	1.82	1.96	2.24	0.167	0.525	7 4
64 4-Bromoffinorohenzone	7 (2.18	2.3	1.89	1.75	1.75	2.18	1.94	0 222	0.697	0
65 Bromobenzene	70	2.23	2.21	1.79	1.83	1.86	1.85	2.16	0.199	0.624	2
66 1.1.2.2-Tetrachloroethane	100	20.03	2.13	/8.	1.92	1.79	2.08	2.43	0.212	0.666	0
67 n-Propylbenzene	40	2.01	7.7	3.96	1.89	2	2.05	2.24	0.127	0.398	2
68 2-Chlorotoluene	10	200	6.3	20.5	2.04	1.79	2.15	2.31	0.205	0.643	2
69 4-Chlorotoluene	200	20.00	2.12	1.72	1.95	1.84	1.97	2.16	0.153	0.481	2
70 1.3.5-Trimethylhenzene	,,	2 43	6.13	1.76	1.87	1.82	2	2.18	0.167	0.525	2
71 tert-Butylhenzene	10	2.75	17.7	1.76	1.91	1.81	2.08	2.11	0.187	0.587	1 45
72 1.2.4-Trimethylbenzene	4 0	20.10	07.7	1.68	1.95	1.69	2.01	2.23	0.241	0.755	2
73 sec-Butylbenzene	10	2.23	20.2	28.	2.13	1.89	1.97	2.32	0.197	0.619	5
74 p-Isopropyltoluene	10	2.2	2.40	27.7	2.02	1.74	2.06	2.05	0.200	0.628	5
76 1,3-Dichlorobenzene	10	2.60	1 86	1.00	28.	9/1	2.11	2.27	0.218	0.686	5
77 1,4-Dichlorobenzene	2	2.17	201	1.70	1.94	1.77	1.71	2.12	0.151	0.476	2
78 n-Butylbenzene	2	2 07	207	70.	4.00	1.94	1.99	2.07	0.114	0.359	2
79 1,2-Dichlorobenzene	1	224	2.07	0.0	288	1.6	1.8	1.87	0.192	0.602	5
81 1,2-Dibromo-3-Chloropropane	10	1 53	1 40	1 24	88.	1.94	1.98	2.09	0.112	0.352	2
82 1,2,4-Trichlorobenzene	5	1 48	1 85	2.47	7.43	7.1	1.34	1.44	0.122	0.382	5
83 1,2,3-Trichlorobenzene	2	1.17	155	1 40	1 13	2.18	2.3	2.35	0.303	0.952	5
84 Hexachlorobutadiene	C	235	2 100	70.4	54.	8.	1.81	1.78	0.238	0.748	5
85 Naphthalene	1 4	0.50	0 40	40.1	2.02	1.88	1.92	2.25	0.243	0.763	2
86 Cyclohexane	,	1 05	4 70	7.07	0.32	0.39	0.39	0.38	0.095	0.299	5
	1	20:-	0/:1	200	7	1.42	1.97	2.04	0.233	0.733	2
Data File Ids per level:		V62986	V62987	V62988	V62989	V62990	V62991	7/62992			
		V62742	V62743	V62744	V62745	V62747	V62748	V62749			
	200	V64078	V64079	V64080	V64081	V64082	V64083	V64084			
		V64990	V64991	V64992	V64993	V64994	V64995	V64996			
	,	V64982	V64983	V64984	V64985	V64986	V64987	V64988			

Data Usability Summary Report

Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

Town of Clarkson
Paradigm Environmental Services Inc. SDG#6337
August 6, 2010
Sampling date: 05/27/09

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Lu Engineers, project located in the Town of Clarkson, SDG#6337, Paradigm # 09-1916, submitted to Vali-Data of WNY, LLC on May 17, 2010. The laboratory performed the analyses using USEPA methods, 8260B (Volatile Organics), 8270C (Semi-Volatile Organics), 8081 (Pesticides), 8082 (PCBs), 6010B (Inorganics) and 7471A (Mercury).

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times, Internal Standard, Surrogate Spike Recoveries, Method Blank, Compound Quantitation and Initial Calibration.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met. The samples were received at a temperature of 10°C which is outside the acceptance window (4 \pm 2 Degrees °C), thus all target analytes in the samples should be qualified as estimated.

INTERNAL STANDARD (IS)

The IS met criteria except the 1,4-Dichlorobenzene- d_4 was outside QC limits, low , in sample CS-TP-01A. All associated detects in this sample should be qualified as estimated and all non-detects should be qualified as unusable per National Functional Guidelines.

SURROGATE SPIKE RECOVERIES

All criteria were met except Toluene-d8 and 4-Bromofluorobenzene were outside QC limits in sample CS-TP-01A and CS-TP-01B possibly due to matrix interference. Pentafluorobenzene was outside QC limits in sample CS-TP-01B. All associated target analytes should be qualified as estimated or undetected estimated except for those associated with Toluene-d $_8$ in sample CS-TP-01A, per National Functional Guidelines (NFG). NFG requires all non detected target analytes associated with Toluene-d $_8$ in sample CS-TP-01A to be qualified as unusable since the %Rec of Toluene-d $_8$ was <20%.

METHOD BLANK

All criteria were met except several target analytes were detected but not recorded. Paradigm has reviewed the data and does not believe these target analytes to be present or they are detected outside the laboratories range for qualification (see Overall evaluation above). No supporting data has been included in the package.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate sample was obtained.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

No MS/MSD were performed on these samples.

COMPOUND QUANTITATION

All criteria were met except several target analytes were detected in the samples but not recorded. Paradigm has reviewed the data and does not believe these target analytes to be present or they are detected outside the laboratories range for qualification (see Overall evaluation above). No supporting data has been included in the package.

INITIAL CALIBRATION

All criteria were met except the %RSD of Acetone and Methylene Chloride were outside ASP outer QC limits. These target analytes should be qualified as estimated in all samples, blanks and spikes. The %RSD of Bromomethane and Bromoform were outside ASP QC limits. ASP allows for up to two target analytes to be outside QC limits without further action. Alternate forms of regression were used on target analytes whose %RSD >15%. The r-squared value for Bromomethane remained outside QC limits, so it should be qualified as estimated in all samples, blanks and spikes.

CONTINUING CALIBRATION

No continuing calibration was run because samples were run after the initial calibration.

GC/MS PERFORMANCE CHECK

All criteria were met.

SEMIVOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times and Compound Quantitation.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met. The samples were received at a temperature of 10°C which is outside the

acceptance window (4 \pm 2 Degrees °C), thus all target analytes in the samples should be qualified as estimated.

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate sample was obtained.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

No MS/MSD were performed.

COMPOUND QUANTITATION

All criteria were met except several TIC's were detected but not recorded. Paradigm has reviewed the data and does not believe these target analytes to be present or they are detected outside the laboratories range for qualification (see Overall evaluation above). No supporting data has been included in the package.

INITIAL CALIBRATION

All criteria were met.

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

PESTICIDES

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples

- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times and Continuing Calibration.

Adirondack Environmental Services, Inc. reported the lesser of the concentrations off the two columns. Sulfur clean up was used.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met. The samples were received at a temperature of 11° C which is outside the acceptance window (4 ± 2 Degrees °C), thus all target analytes in the samples should be qualified as estimated.

SURROGATE SPIKE RECOVERIES

All criteria were met.

METHOD BLANK

All the criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate sample was obtained.

LABORATORY CONTROL SAMPLES

All criteria were met except the %Rec of Dieldrin was outside laboratory QC limits but within ASP limits.

MS/MSD

All criteria were met.

COMPOUND QUANTITATION

All criteria were met except alpha-Chlordane was detected in the samples but not recorded. The %D between the columns was outside QC limits for 4,4'DDE and Endrin in sample CS-TP-01A, Endrin in sample CS-TP-01B and 4,4'-DDE in sample CS-TP-01BMS. Adirondack Environmental Services, Inc.

reported the lesser of the concentrations off the two columns.

INITIAL CALIBRATION

All criteria were met except the %resolution of delta-BHC and Heptachlor were outside ASP QC limits off column 2 in the Resolution Check Mixture and Individual Standard Mixture C performed. These target analytes were not detected in any of the samples off either column.

CONTINUING CALIBRATION

All criteria were met except the %RPD was outside QC limits for Endosulfan Sulfate and DCBP in IND MID C off column 1. These target analytes should be qualified as estimated. Adirondack Environmental Services recorded %RPD not %D.

POLYCHLORINATED BIPHENYLS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met except no raw data for the initial calibration was included in the original data package.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met. The samples were received at a temperature of 10°C which is outside the acceptance window (4 \pm 2 Degrees °C), thus all target analytes in the samples should be qualified as estimated.

SURROGATE SPIKE RECOVERIES

All criteria were met within ASP QC limits.

METHOD BLANK

All the criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate sample was obtained.

LABORATORY CONTROL SAMPLES

All criteria were met except the incorrect spiked compound was recorded on the 'PCB Analysis Report for Soils/Solids/Sludges'. An updated page is attached.

MS/MSD

No MS/MSD were performed on these samples.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met except no raw data were provided for the initial calibrations. Calibration Curves and Calibration tables were sent.

Paradigm used linear regression on all target analytes and surrogates.

CONTINUING CALIBRATION

All criteria were met except the %D was recorded incorrectly on Form 7. Paradigm recorded '% Agreement' as '%D'. This does not affect the usability of the data.

METALS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Method Blank
- -Laboratory Control Sample
- -MS/MSD

- -Duplicate
- -Field Duplicate
- -Serial Dilution
- -Compound Quantitation
- -Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but the package did not conform to an ASP category B deliverable, as described in MS/MSD/Duplicate, below, and are qualified in Holding Times.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met. The samples were received at a temperature of 10° C which is outside the acceptance window (4 ± 2 Degrees °C), thus all target analytes in the samples should be qualified as estimated.

METHOD BLANK

All criteria were met.

LABORATORY CONTROL SAMPLE

All criteria were met.

MS/MSD

No MS/MSD was performed.

DUPLICATE

No Duplicate was performed.

FIELD DUPLICATE

No field duplicate sample was obtained.

SERIAL DILUTION

No serial dilution was performed.

COMPOUND QUANITATION

All criteria were met.

CALIBRATION

All criteria were met.

MERCURY

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Method Blank
- -Laboratory Control Samples
- -MS/MSD
- -Duplicate
- -Field Duplicate
- -Compound Quantitation
- -Calibration

The items listed above were technically in compliance with the method and SOP criteria with any exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY

All criteria were met.

HOLDING TIMES

All holding times were met. The samples were received at a temperature of 10° C which is outside the acceptance window (4 ± 2 Degrees °C), thus all target analytes in the samples should be qualified as estimated.

METHOD BLANK

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

No MS/MSD were performed on these samples.

DUPLICATE

No Duplicate was performed on these samples.

FIELD DUPLICATE

No field duplicate sample was obtained.

COMPOUND QUANTITATION

All criteria were met.

CALIBRATION

All criteria were met.

GENERAL CHEMISTY

The following items/criteria were reviewed for this analytical suite:

- Percent Moisture

The item listed above was technically in compliance with the method and SOP criteria with any exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

Percent Moisture

The percent moisture was recorded on a prep log but no Form 1's were submitted.

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

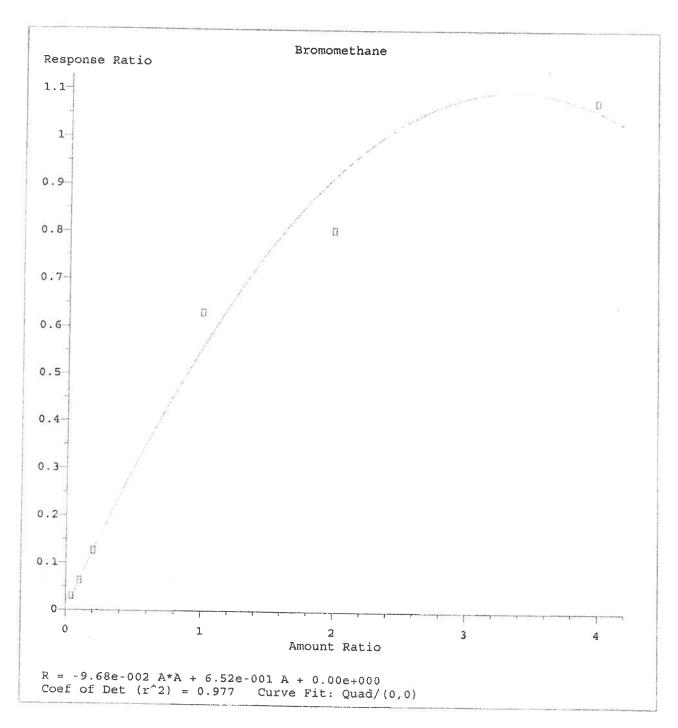
PCB Analysis Report for Soils/Solids/Sludges

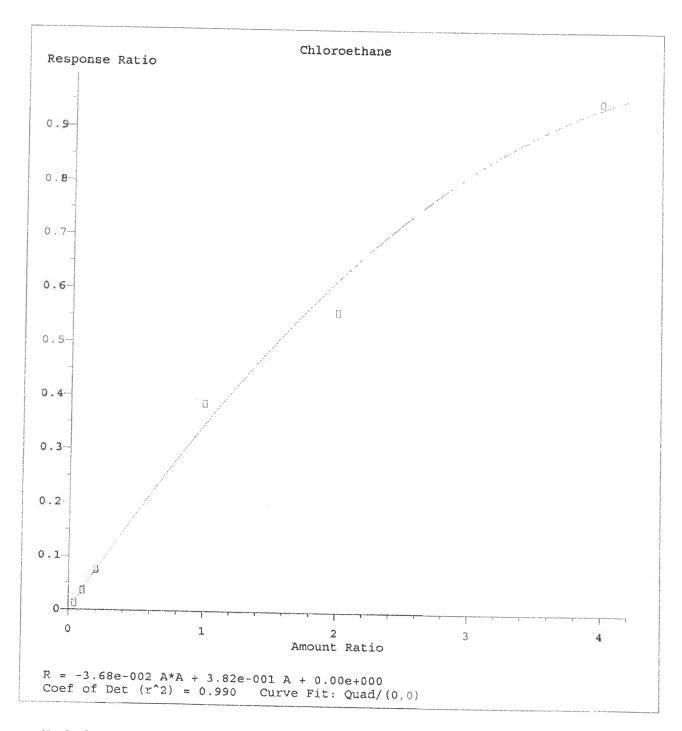
Client: Lu Engineers

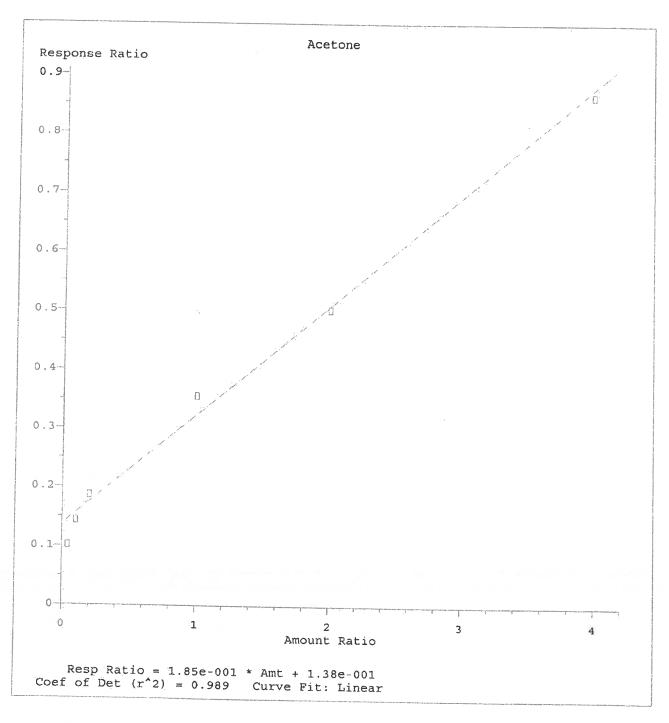
Client Job Site: Clarkson ERP Site

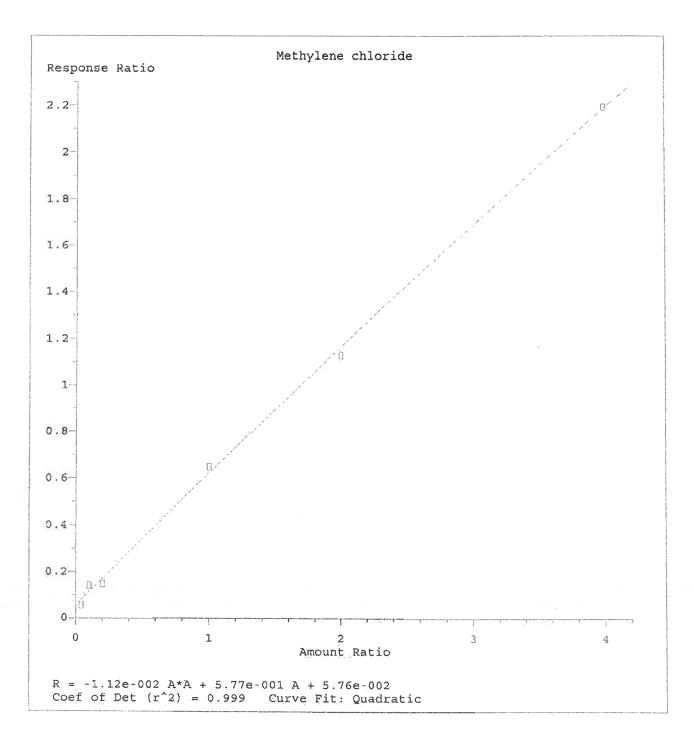
Client Job Number: Field Location: Field ID Number: Sample Type: 40503 N/A N/A Soil

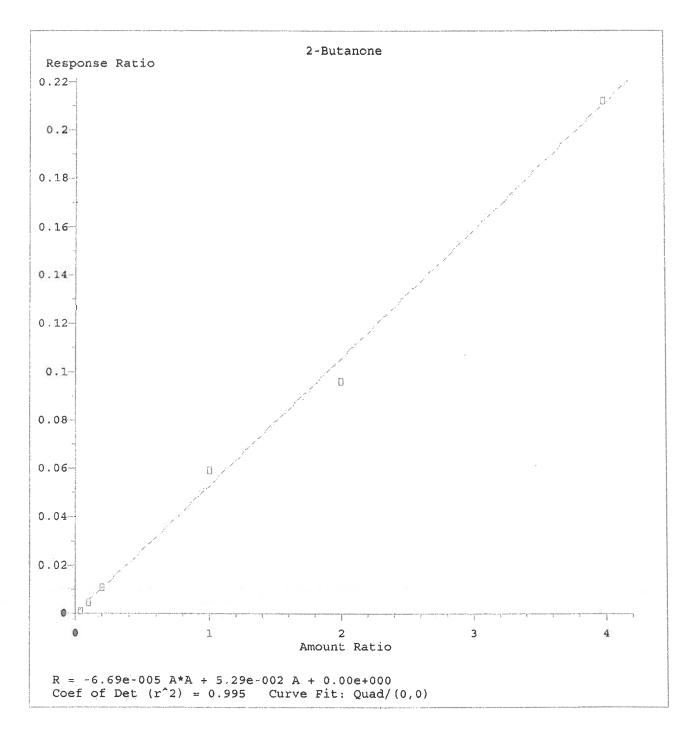
Lab Project Number: 09-1916
Lab Sample Number: LCS

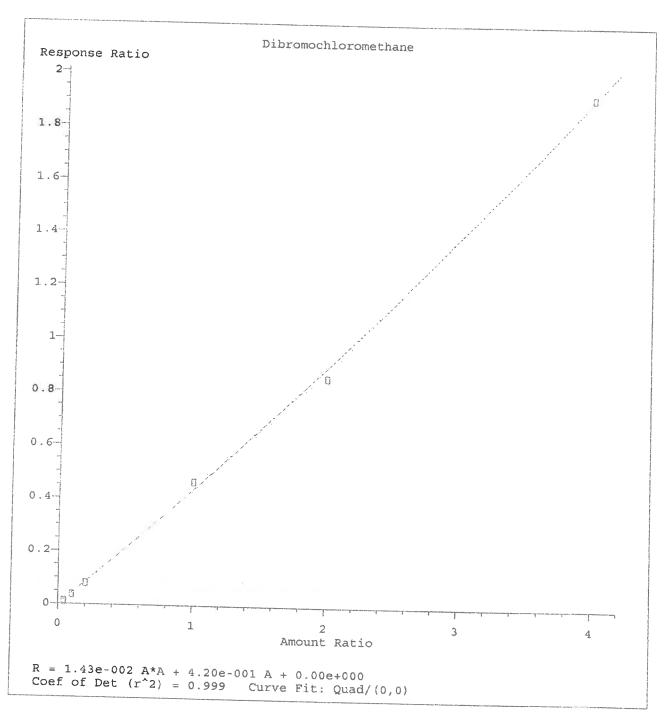

SDG Group:

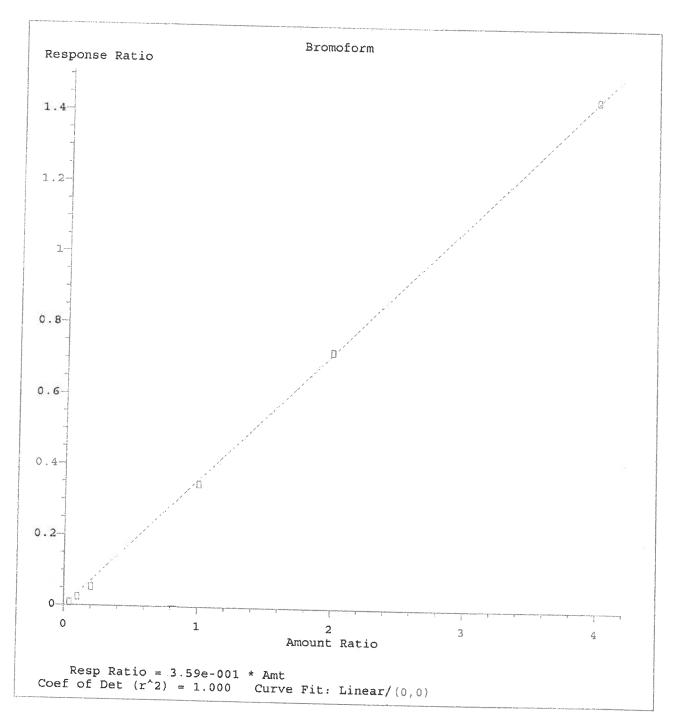

N/A

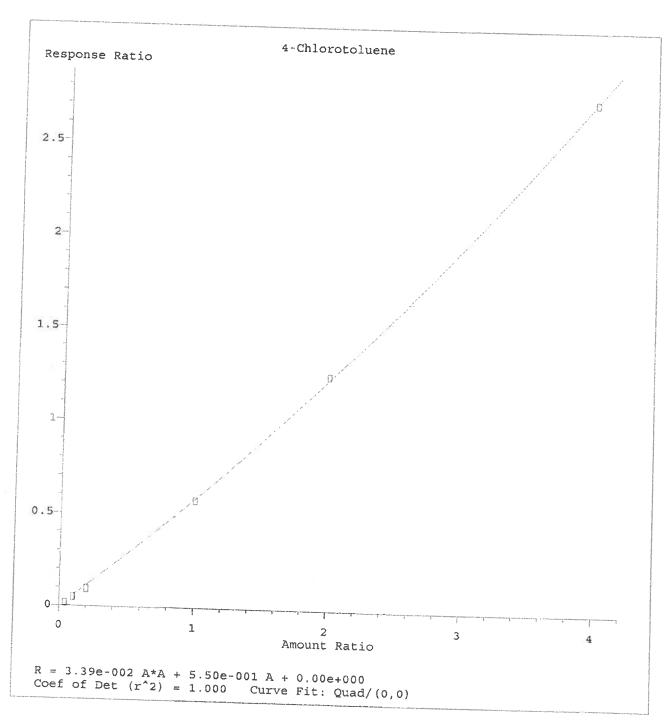

Date Sampled:
Date Received:
Date Analyzed:
Date Reissued: N N

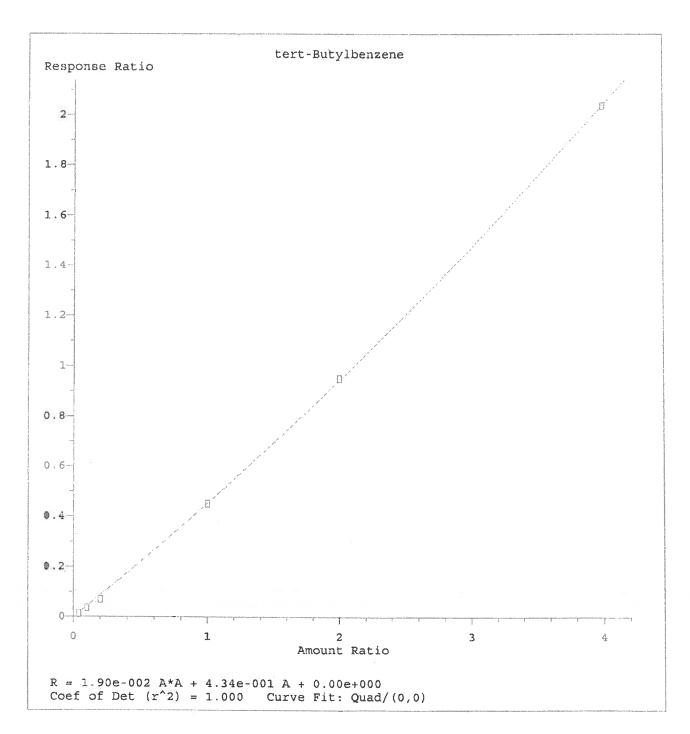

06/08/2009 10/07/2010

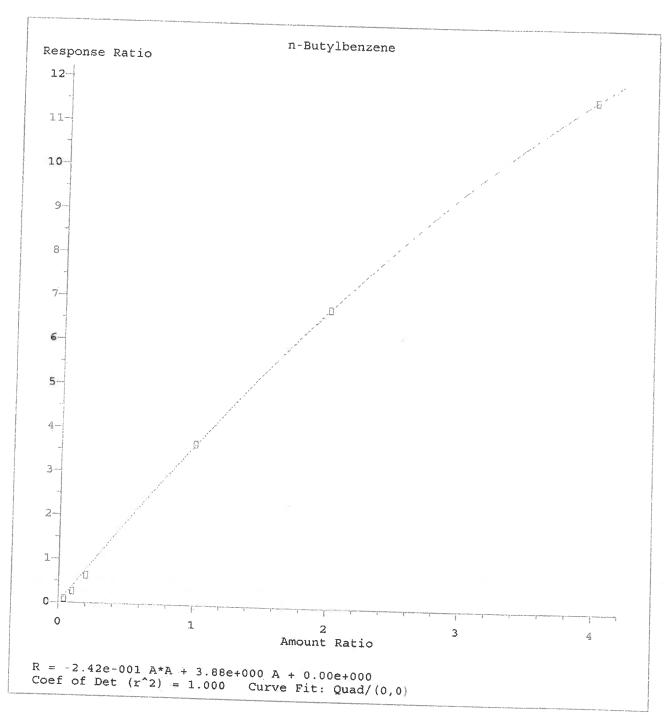

	EI AP Nimber 1998	VIOGO: 1010/1200	Acceler 1016/1960	Spiked Compound
		ND< 0.00286	The second secon	Blank Results
		0.0143	By / Sn III	LCS Spiked
		0.00989	in ug / Kg	LCS Results
		69.2	Recovery	LCS Percent
		A/N	in ug / Kg	MSD Spiked
		N/A	in ug / Kg	MSD Spiked MSD Results
Mo		N/A	Recovery	MSD Percent
Method: EBA 9000		N/A	% RPD	MS / MSD

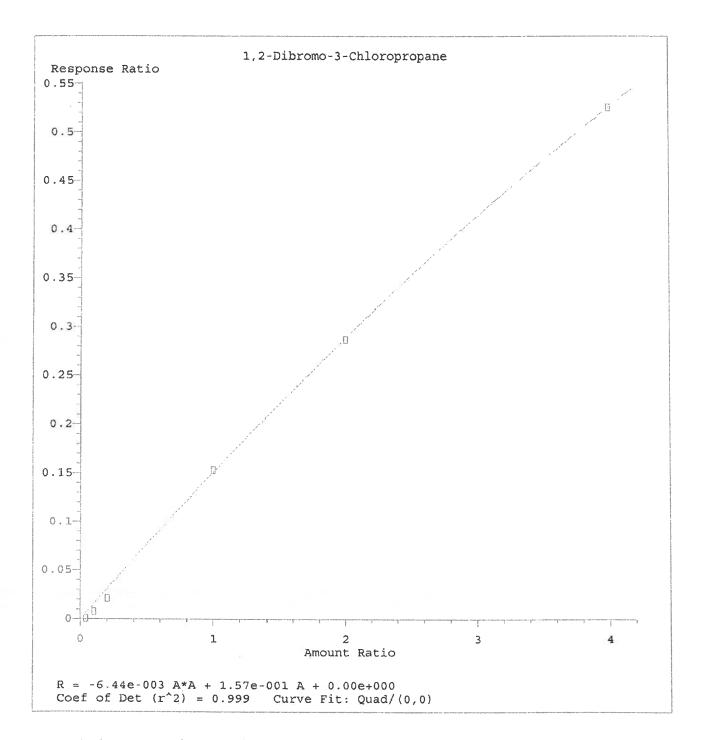


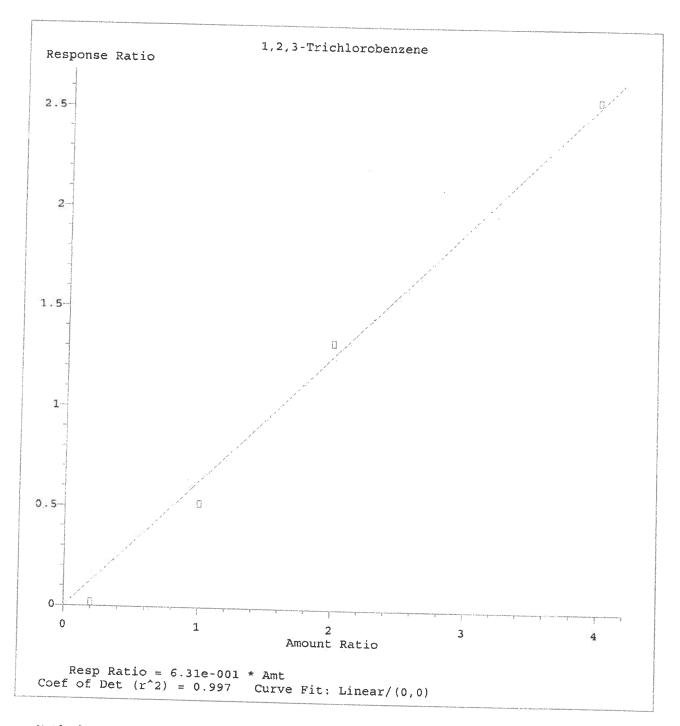


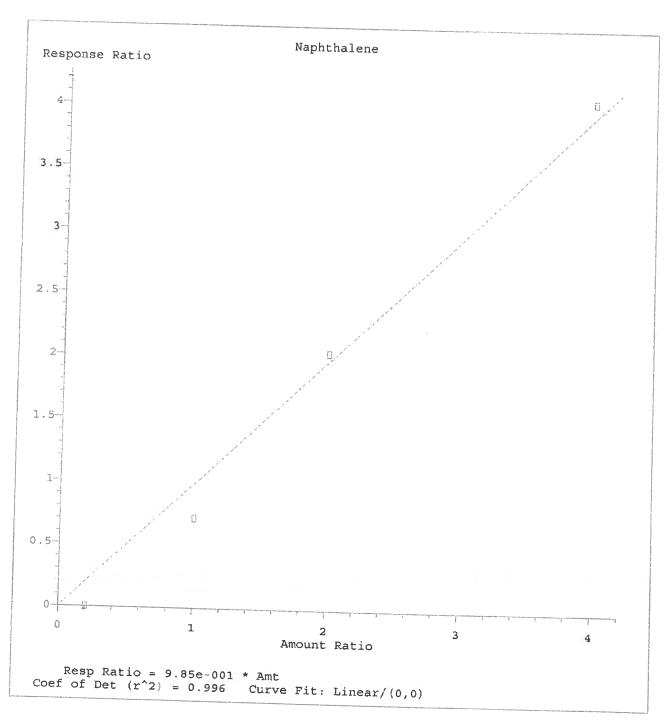


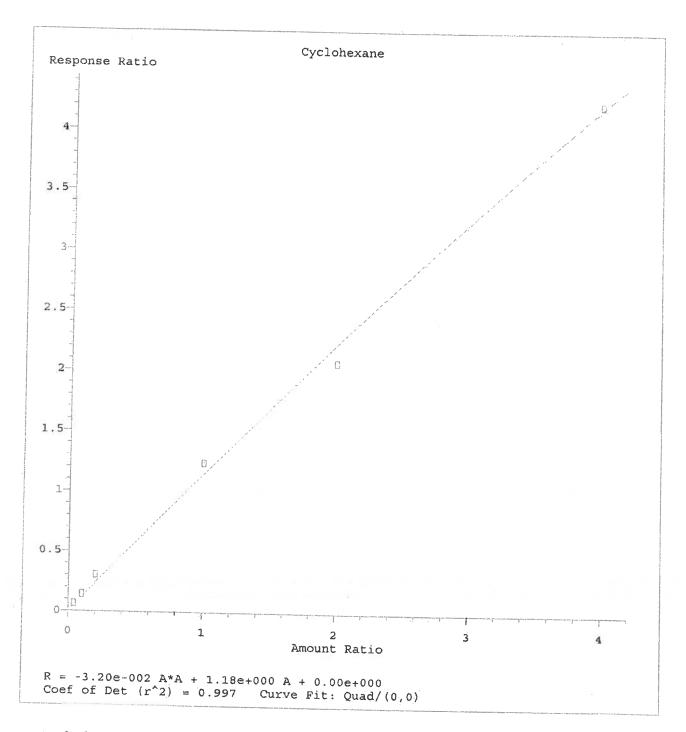












Data Usability Summary Report

Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

Town of Clarkson
Paradigm Environmental Services Inc. SDG#7480
August 10, 2010
Sampling date: 06/30/09- 7/2/09

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

> Town of Clarkson SDG# 7480

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Lu Engineers, project located in the Town of Clarkson, SDG#7480, Paradigm # 09-2320, 09-2352, 09-2377, submitted to Vali-Data of WNY, LLC on May 17, 2010. The laboratory performed the analyses using USEPA methods, 8260B (Volatile Organics), 8270C (Semi-Volatile Organics), 8082 (PCBs), 6010B (Inorganics) and 7471A (Mercury).

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times, Internal Standard, Surrogate Spike Recoveries, Method Blank, Compound Quantitation, Initial Calibration and Continuing Calibration.

Medium level analysis was performed on sample CS-PI-01 due to results exceeding the linear range of several target analytes.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

Town of Clarkson SDG# 7480

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met except sample, Floor Drain Pipe, was received at a temperature of 24° C which is outside the acceptance window (4 ± 2 Degrees °C) and was not put on ice, thus all target analytes in this sample should be qualified as estimated.

The remaining samples were received at a temperature outside the acceptance window but were put on ice and had cooled below the ambient temperature for the respective days of sampling.

INTERNAL STANDARD (IS)

The IS met criteria except the 1,4-Dichlorobenzene- d_4 was outside QC limits, low, in sample CS-LP-01. All associated detects in this sample should be qualified as estimated and all non-detects should be qualified as unusable per National Functional Guidelines.

SURROGATE SPIKE RECOVERIES

All criteria were met except Toluene-d8 was outside QC limits, low, in sample, Floor Drain Pipe possibly due to matrix interference. 4-Bromofluorobenzene was outside QC limits in samples CS-SD-04 and SC-PI-01(initial run). All associated target analytes should be qualified as estimated or undetected estimated.

METHOD BLANK

All criteria were met except several target analytes were detected but not recorded in the blanks. Those target analytes should be qualified as estimated in the blank and where detected in the associated samples and spikes. Paradigm has reviewed the data and does not believe these target analytes to be present or they are detected outside the laboratories range for qualification (see Overall evaluation above). No supporting data has been included in the package.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate sample was obtained.

LABORATORY CONTROL SAMPLES

All criteria were met except the %Rec of all surrogates but 1,1-Dichloroethene were outside QC limits, high, in LCS M/L. The associated target analytes would be considered biased high.

MS/MSD

No MS/MSD were performed on these samples.

COMPOUND QUANTITATION

All criteria were met except several target analytes were detected in the samples but not recorded. Paradigm has reviewed the data and does not believe these target analytes to be present or they are detected outside the laboratories range for qualification (see Overall evaluation above). No supporting data has been included in the package.

INITIAL CALIBRATION

All criteria were met except the %RSD of Acetone, Naphthalene and Methylene Chloride were outside ASP outer QC limits. These target analytes should be qualified as estimated in all samples, blanks and spikes. The %RSD of Bromomethane, m&p Xylene, o-Xylene, Styrene and

Town of Clarkson SDG# 7480

Bromoform were outside ASP QC limits. ASP allows for up to two target analytes to be outside QC limits without further action. National Functional Guidelines states that target analytes which fell outside QC limits should be qualified as estimated in all blanks, spikes and samples.

CONTINUING CALIBRATION

All criteria were met except the %D of Acetone was outside ASP outer in CCV performed on 7/8 and 7/9. This target analyte should be qualified as estimated in all samples, blanks and spikes.

GC/MS PERFORMANCE CHECK

All criteria were met.

SEMIVOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times and Compound Quantitation.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

Town of Clarkson SDG# 7480

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met. (See VOC, above)

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met except the %Rec of Nitrobenzene- d_5 was outside QC limits in CS-PI-01. ASP allows one surrogate spike from each group to be outside QC limits without further action.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate sample was obtained.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

No MS/MSD were performed on these samples.

COMPOUND QUANTITATION

All criteria were met except several target analytes were detected but not recorded. In samples, Floor Drain Pipe, CS-TP-10-08 and CS-SD-04 there were detected TIC's that were not recorded. Paradigm has reviewed the data and does not believe these target analytes to be present or they are detected outside the laboratories range for qualification (see Overall evaluation above). No supporting data has been included in the package.

INITIAL CALIBRATION

All criteria were met except the RF value of several target analytes did not correlate between the 'Response Factor Report' and the calculated values from the 'Quantitation Reports'. The differences observed would not affect the calculated concentrations significantly, so no further action is required.

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

POLYCHLORINATED BIPHENYLS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times. The data do not completely fulfill ASP category B deliverable guidelines, see Initial Calibration, below.

Alterations to some of the Forms are described below in Narrative and Data Reporting Forms, Surrogate Spike Recoveries and Continuing Calibration.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met except the LCS summary page recorded the PCB being monitored as Aroclor 1248 but should have recorded it as Aroclor 1221.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met. (See VOC, above)

SURROGATE SPIKE RECOVERIES

All criteria were met, within ASP QC limits, except the surrogate spike recoveries on Form 2F were recorded incorrectly due to a calculation error. The surrogate spike recoveries were within QC limits when the correct concentration was used.

> **Town of Clarkson** SDG# 7480

METHOD BLANK

All the criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate sample was obtained.

LABORATORY CONTROL SAMPLES

All criteria were met. (See Narrative and Data Reporting Forms, above)

MS/MSD

No MS/MSD were performed on these samples.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met except no raw data were provided for the initial calibrations. Calibration Curves and Calibration tables were sent.

Paradigm used linear regression on all target analytes and surrogates.

CONTINUING CALIBRATION

All criteria were met except the %D was recorded incorrectly on Form 7. The correct %D's fell with QC limits.

METALS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Method Blank
- -Laboratory Control Sample
- -MS/MSD
- -Duplicate
- -Field Duplicate
- -Serial Dilution
- -Compound Quantitation
- -Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

Town of Clarkson SDG# 7480

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met. (See VOC, above)

METHOD BLANK

All criteria were met.

LABORATORY CONTROL SAMPLE

All criteria were met.

MS/MSD

All criteria were met except the %Rec of all target analytes were outside laboratory QC limits and are qualified with an 'M' in sample, Floor Drain Pipe. The %Rec was within ASP QC limits.

DUPLICATE

All criteria were met except the %D of Cr and Pb were outside laboratory QC limits and are qualified with a 'D' in sample, Floor Drain Pipe. The %D was within ASP QC limits.

FIELD DUPLICATE

No field duplicate sample was obtained.

SERIAL DILUTION

No serial dilution was performed.

COMPOUND QUANITATION

All criteria were met.

CALIBRATION

All criteria were met.

MERCURY

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Method Blank
- -Laboratory Control Samples
- -MS/MSD
- -Duplicate
- -Field Duplicate
- -Compound Quantitation
- -Calibration

The items listed above were technically in compliance with the method and SOP criteria with any exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times and Duplicate.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY

All criteria were met.

HOLDING TIMES

All holding times were met. (See VOC, above)

METHOD BLANK

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met except the %Rec was outside QC limits. Since the concentration of Hg in the sample is >4x the spike added, no further action is required.

Town of Clarkson SDG# 7480

DUPLICATE

All criteria were met except the %Rec was outside QC limits. Sample, Floor Drain Pipe, should be qualified with an '*'.

FIELD DUPLICATE

No field duplicate sample was obtained.

COMPOUND QUANTITATION

All criteria were met.

CALIBRATION

All criteria were met.

GENERAL CHEMISTY

The following items/criteria were reviewed for this analytical suite:

- Percent Moisture

The item listed above was technically in compliance with the method and SOP criteria with any exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

Percent Moisture

The percent moisture was recorded on a prep log but no Form 1's were submitted. The internal chain of custody was not complete because it is missing the transfer for the %moisture analysis.

Data Usability Summary Report

Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

Town of Clarkson
Paradigm Environmental Services Inc. SDG#9359
August 12, 2010
Sampling date: 08/10/09-08/12/09

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

Town of Clarkson SDG# 9359

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Lu Engineers, project located in the Town of Clarkson, SDG#9359, Paradigm # 09-2950, submitted to Vali-Data of WNY, LLC on May 17, 2010. The laboratory performed the analyses using USEPA methods, 8260B (Volatile Organics) and 8270C (Semi-Volatile Organics).

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times, Surrogate Spike Recoveries, Method Blank and Initial Calibration.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met except the MDL of 2-Chloroethylvinyl ether was not recorded on the MDL pages. Updated pages are attached.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

Town of Clarkson SDG# 9359

HOLDING TIMES

All holding times were met. The samples were received at a temperature of 17°C which is outside the acceptance window (4 ± 2 Degrees °C), thus all target analytes in these samples should be qualified as estimated.

INTERNAL STANDARD (IS)

The IS met criteria.

SURROGATE SPIKE RECOVERIES

All criteria were met except the %Rec of Toluene-d8 was outside ASP QC limits in sample, MW-04,8-11' possibly due to matrix interference. All associated target analytes should be qualified as estimated or undetected estimated.

METHOD BLANK

All criteria were met except several target analytes were detected above the MDL, below the MRL and should be qualified as estimated in LRB 8/21 and samples in which they were detected. Paradigm qualified Naphthalene and 2-Hexanone as estimated on the raw data but not the Form 1's. Updated Form 1's are attached.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate was obtained.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

No MS/MSD were performed.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met except the %RSD of Acetone and Naphthalene were outside ASP outer QC limits. These target analytes should be qualified as estimated in all samples, blanks and spikes. The %RSD of Bromomethane was outside ASP QC limits. ASP allows for up to two target analytes to be outside QC limits without further action.

Paradigm used alternate forms of regression for some of the target analytes.

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

SEMIVOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met. The samples were received at a temperature of 17°C which is outside the acceptance window (4 \pm 2 Degrees °C), thus all target analytes in these samples should be qualified as estimated.

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All ASP criteria were met.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate sample was obtained.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

No MS/MSD were performed.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met.

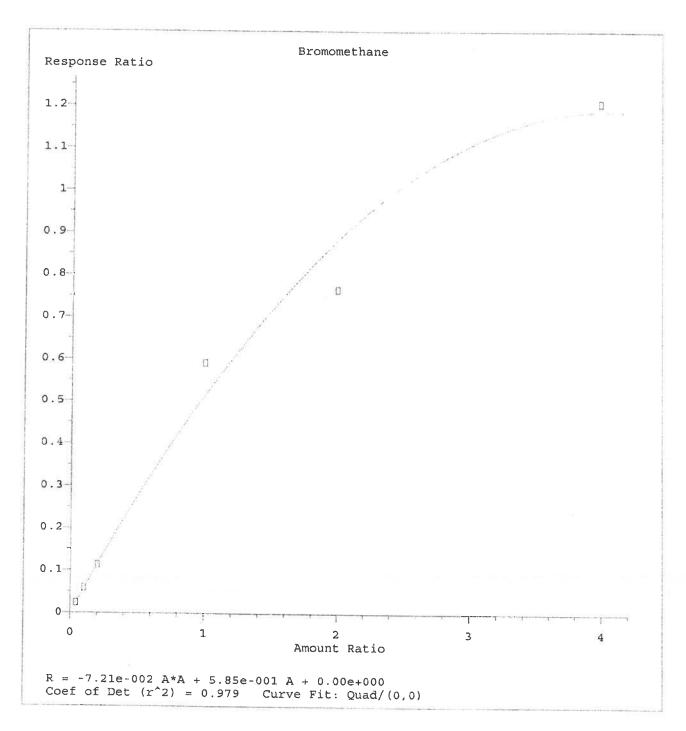
CONTINUING CALIBRATION

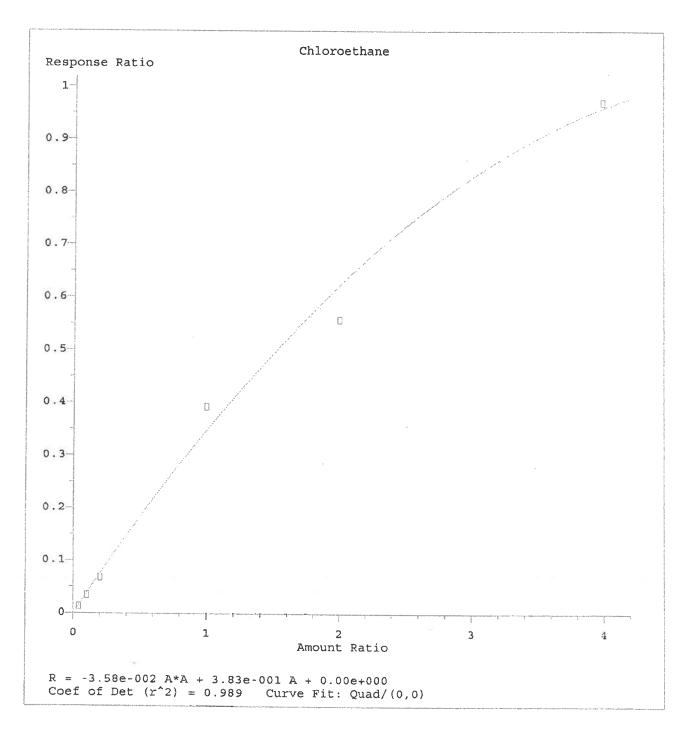
All criteria were met.

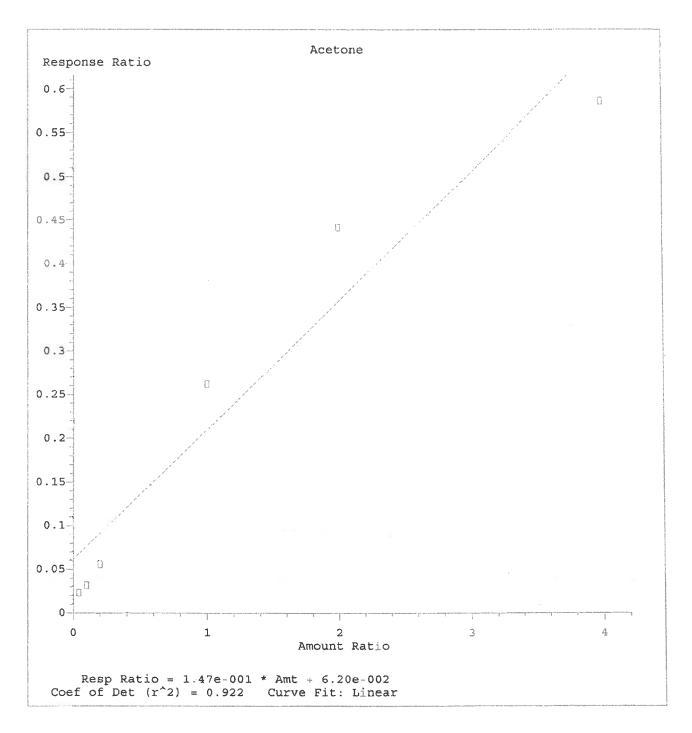
GC/MS PERFORMANCE CHECK

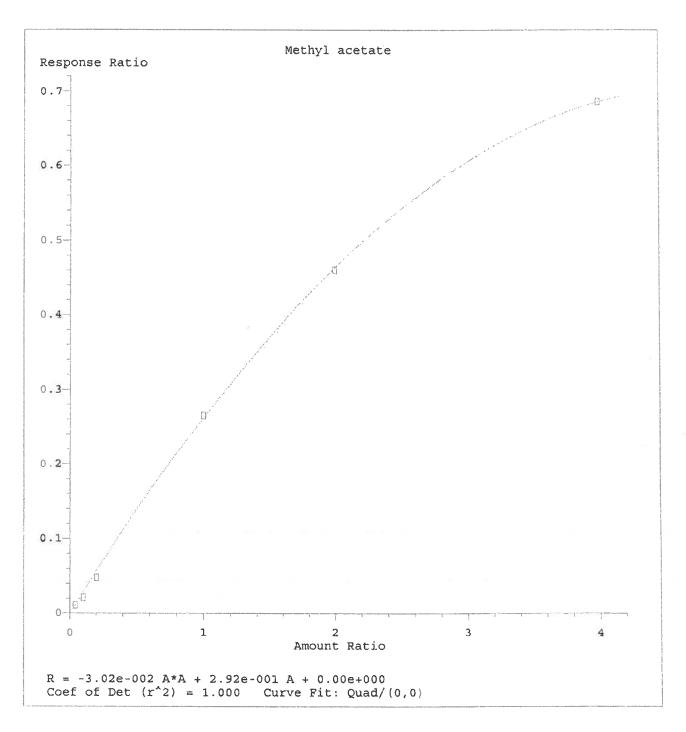
All criteria were met.

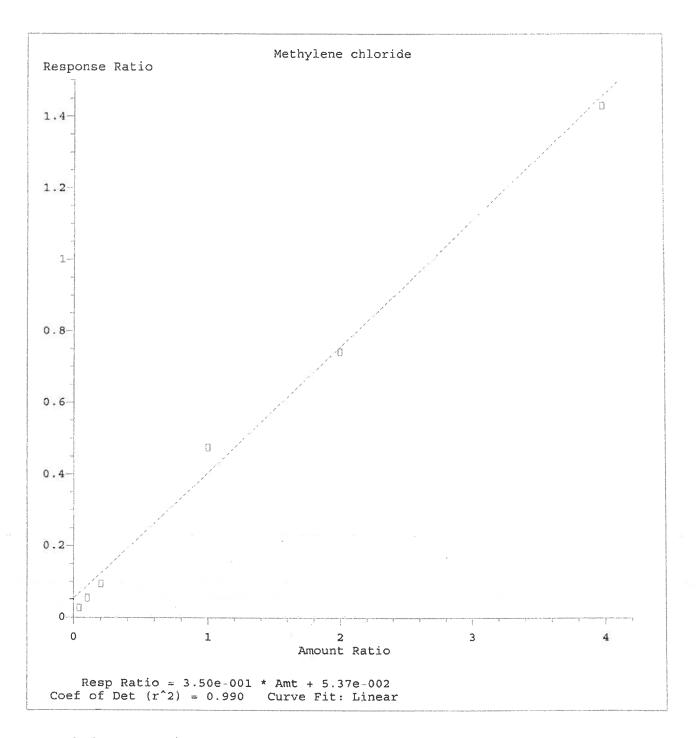
GENERAL CHEMISTY

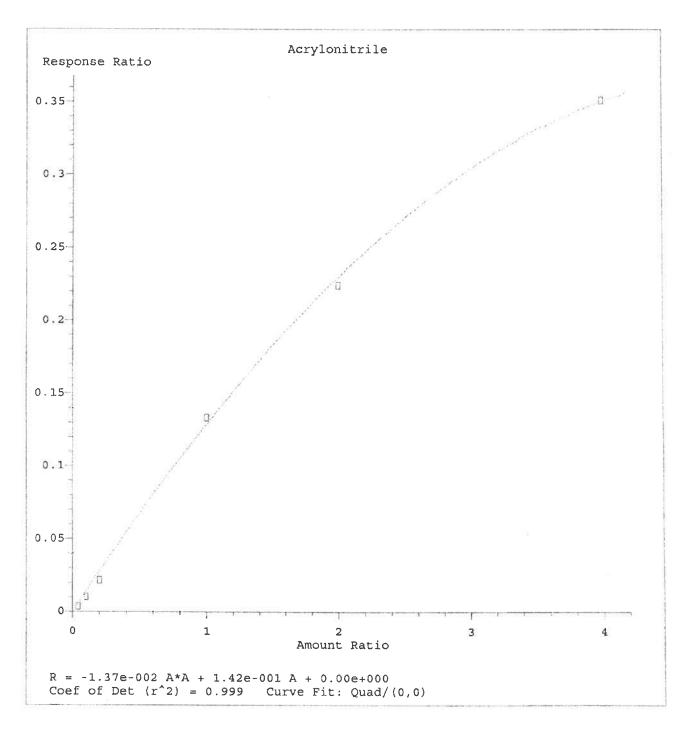

The following items/criteria were reviewed for this analytical suite:

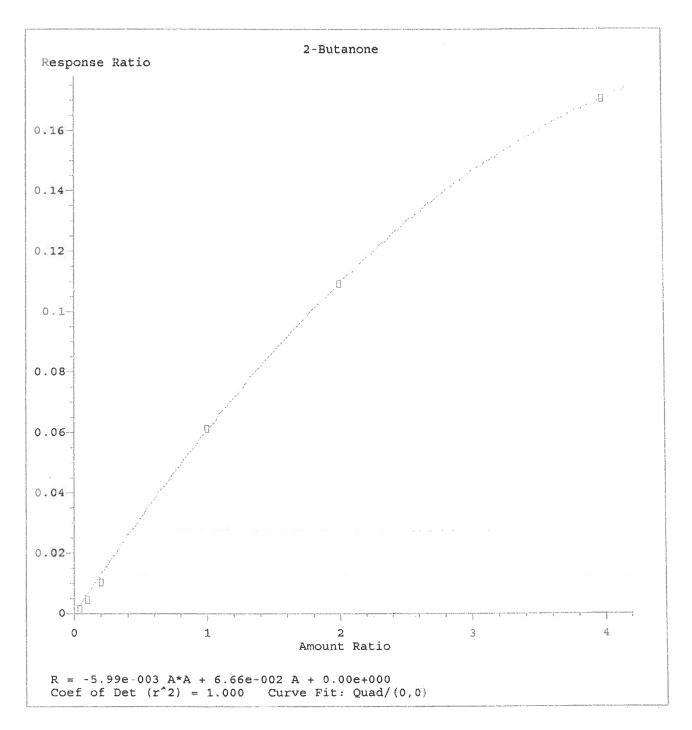

- Percent Moisture

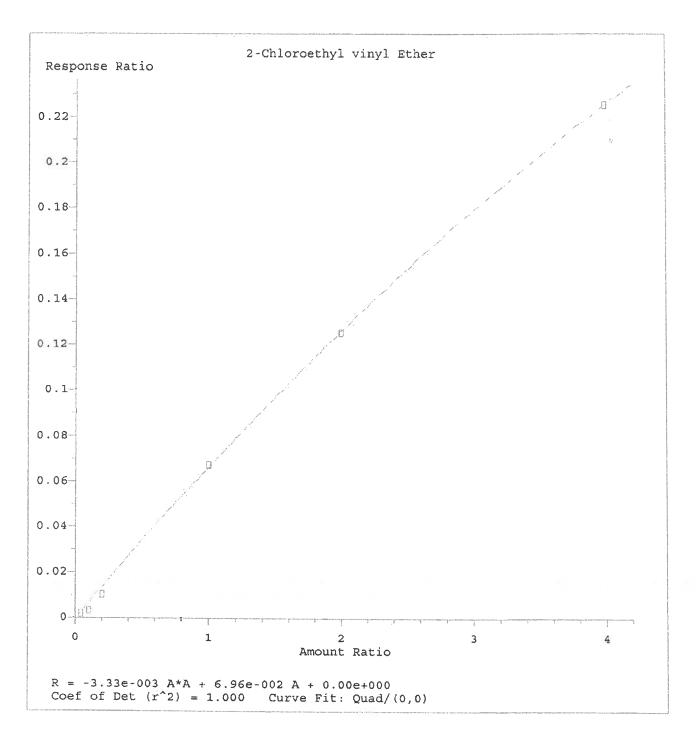

The item listed above was technically in compliance with the method and SOP criteria with any exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

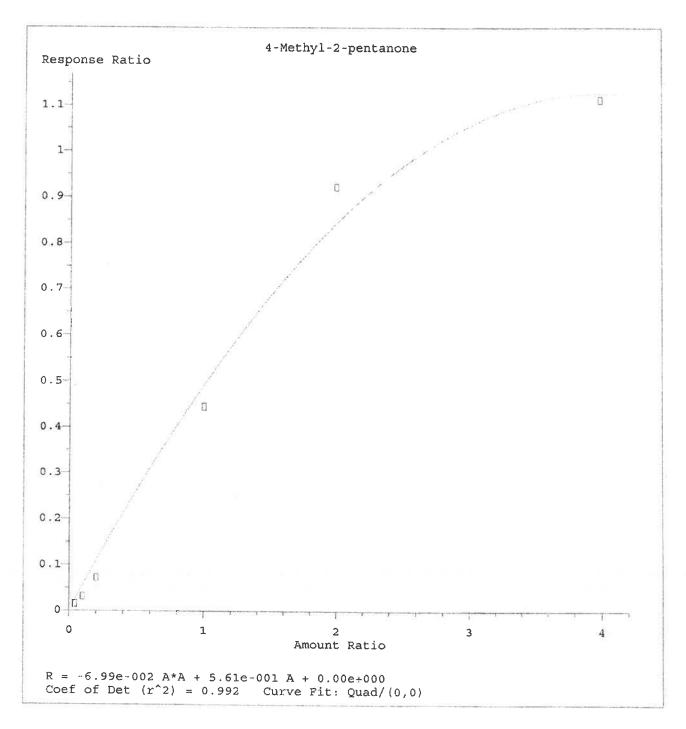

Percent Moisture

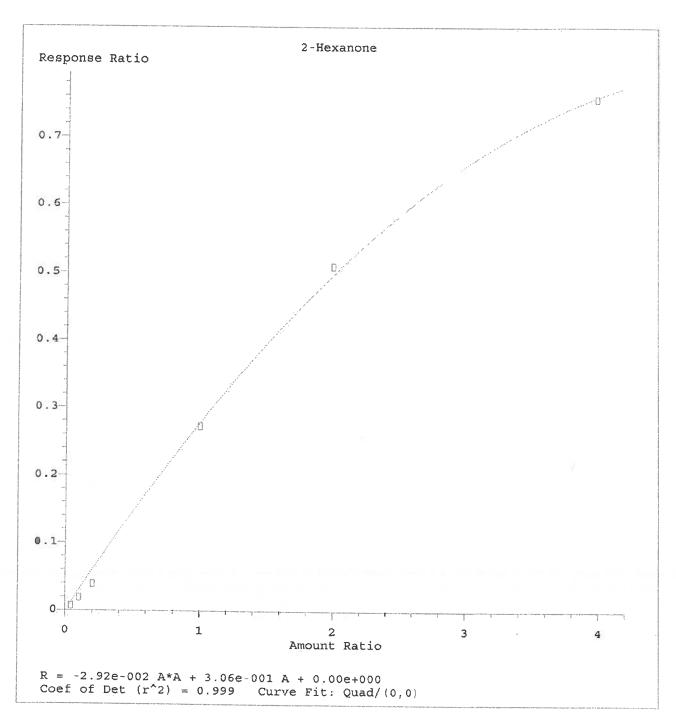

The percent moisture was recorded on a prep log but no Form 1's were submitted. The internal chain of custody was not complete because it is missing the transfer for the %moisture analysis.

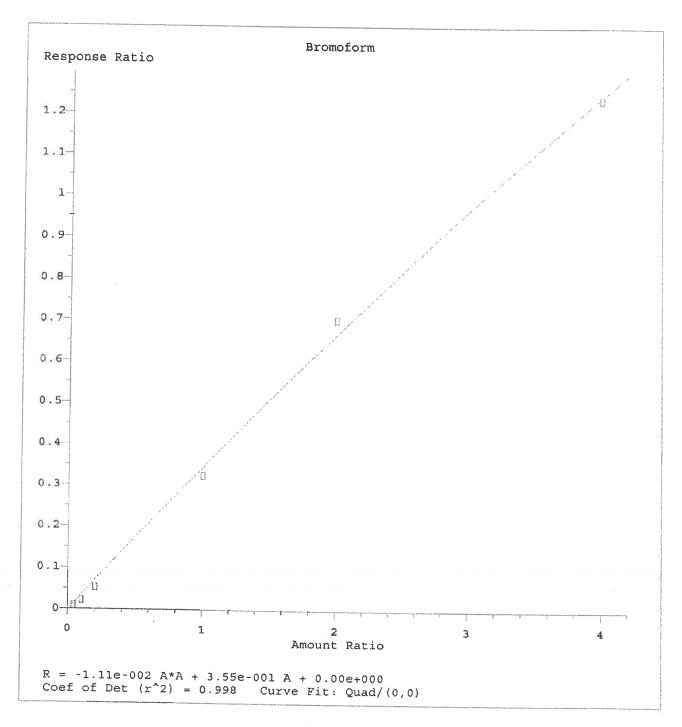


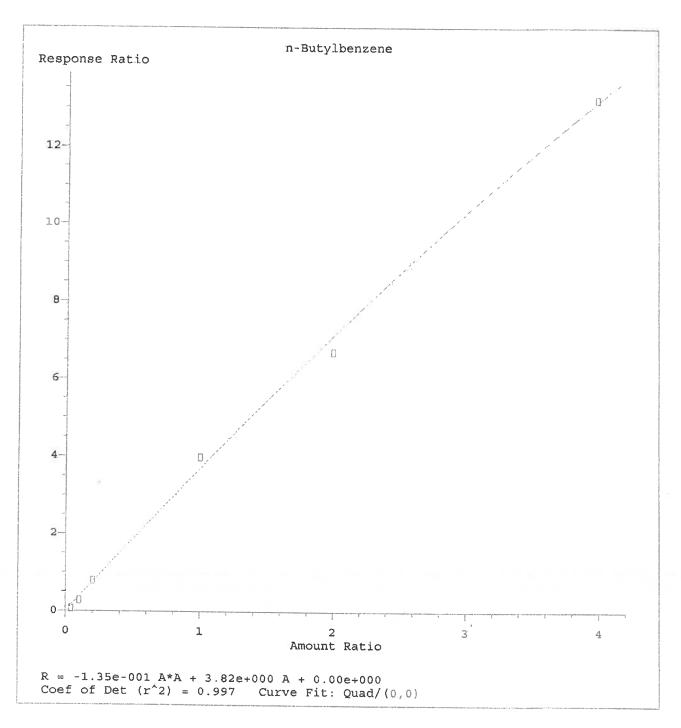


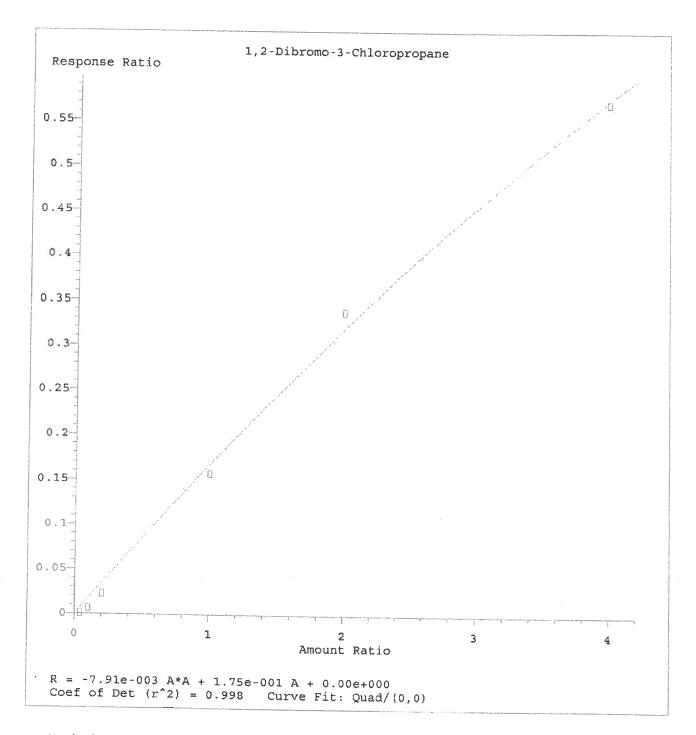


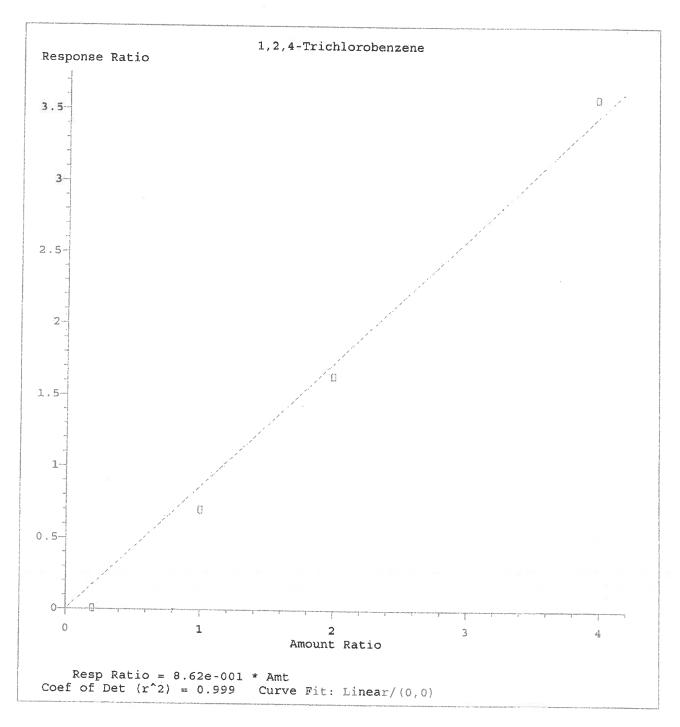


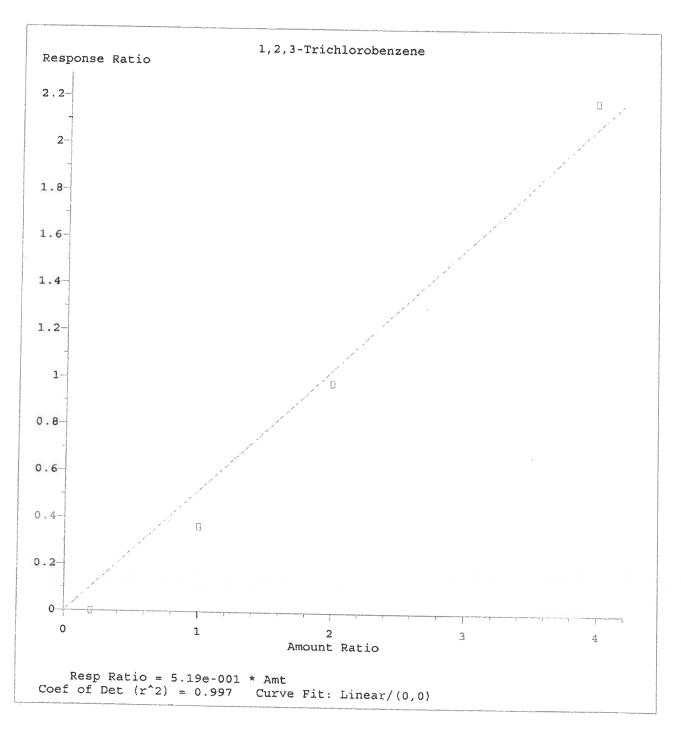


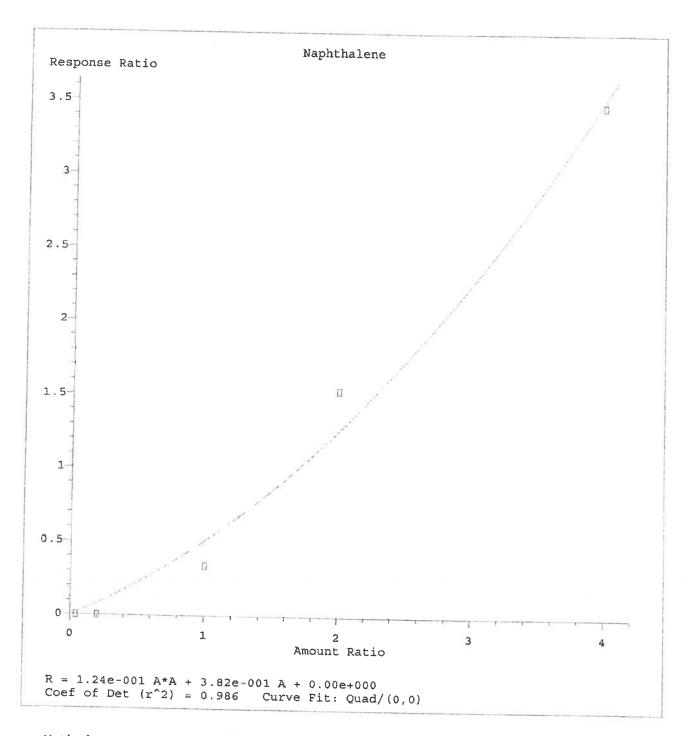


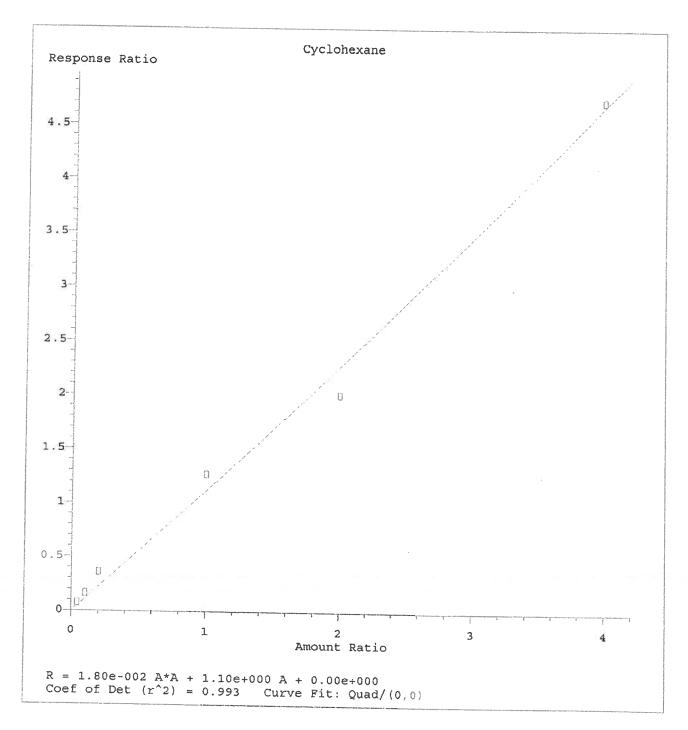












VOA Soil MDL Master Started 1/2009 Due 1/2010

the control of the co	Compound	Spike		2	2	Due 1/2010		!			Philip Control	Reporting
2 1,522 1,134 1,364 1,269 1,257 0,178 2 1,523 1,412 1,534 1,364 1,208 1,254 1,262 2 1,233 1,112 1,531 1,597 1,422 1,272 1,242 2 1,606 1,574 1,694 1,694 1,471 1,33 0,675 2 1,603 1,271 1,664 1,698 1,471 1,33 0,623 2 1,503 1,271 1,664 1,698 1,471 1,33 0,625 2 1,476 1,318 1,621 1,751 1,446 1,446 0,149 2 1,476 1,318 1,621 1,751 1,446 1,446 0,146 2 1,474 1,416 1,752 1,446 1,446 0,146 3 1,474 1,416 1,752 1,446 1,446 0,146 4 1,474 1,446 1,471 1,466	ane	3	_	MULZ	MDL3	MDL4	MDL5	MDL6	MDL7	SD	MDL	Limit
2 1.52 1.44 1.55 1.62 1.52 1.62 1.	2	4 0	1 552	401.1 477 4	1.09	1.364	1.208	1.251	1.257	0.178	0.560	2
2 1,600 1,574 1,975 1,144 1,174 1,174 0,176 2 1,600 1,574 1,975 1,144 1,476 1,142 1,476 1,142 0,143 0,075 2 1,503 1,271 1,664 1,684 1,684 1,684 1,684 1,684 1,684 1,684 1,684 1,684 1,645 1,476 1,474 1,476 1,474 1,495 1,495 1,495 1,496 1,446 1,496 1,446 1,496 1,474 1,496 1,446 1,496 1,446		~	1.243	1112	1.733	1.041	1.5/9	1.622	1.524	0.142	0.447	7
2 0.974 1.041 0.993 1.011 1.020 0.471 1.33 0.0253 2 1.503 1.271 1.664 1.684 1.644 0.0253 0.0149 2 1.476 1.318 1.621 1.755 1.815 1.485 1.444 0.146 0.146 5 6.824 5.841 6.412 7.059 7.194 6.926 7.738 0.167 5 1.724 1.725 1.815 1.445 1.446 1.441 0.146 5 1.724 1.725 1.815 1.442 1.462 1.464 0.149 6 1.724 1.725 1.818 1.944 2.456 2.807 0.458 6		2	1.606	1.574	1 975	1.037	1.442	7/77	1.242	0.176	0.551	S)
2 1.533 1.271 0.395 1.01 1.027 0.833 0.871 0.075 2 1.302 1.404 1.742 1.716 1.406 1.463 0.049 2 1.472 1.404 1.742 1.716 1.466 1.463 0.141 2 1.472 1.318 1.664 1.725 1.815 1.466 1.464 0.141 2 1.474 1.416 1.725 1.815 1.426 1.406 1.452 0.167 2 1.474 1.416 1.725 1.815 1.426 1.406 1.452 0.141 2 2.246 2.841 6.412 7.055 1.406 1.467 0.141 2 2.246 3.218 2.22 1.404 2.452 1.406 1.452 0.147 3 2.246 3.218 2.472 2.148 2.462 2.041 0.142 4 2.246 3.218 3.472 2.148 2.462 <td></td> <td>2</td> <td>0.974</td> <td></td> <td>0.000</td> <td>0.7</td> <td>1.400</td> <td>1.47</td> <td>1.33</td> <td>0.253</td> <td>0.794</td> <td>8</td>		2	0.974		0.000	0.7	1.400	1.47	1.33	0.253	0.794	8
2 1,302 1,471 1,004 1,096 1,466 1,468 1,469 1,049 2 1,472 1,349 1,664 1,725 1,369 1,464 0,141 2 1,472 1,349 1,664 1,725 1,464 1,464 0,141 2 1,476 1,378 1,621 1,751 1,495 1,667 1,474 0,141 2 1,474 1,416 1,725 1,815 1,495 1,667 1,495 0,601 2 1,474 1,416 1,725 1,816 1,495 1,617 1,486 0,172 2 1,474 1,416 1,725 1,817 1,667 1,671 1,788 0,601 2 1,444 1,416 1,725 1,814 2,456 2,807 0,489 6,224 5,23 1,944 2,456 2,807 0,489 0,017 2 2,246 2,587 2,472 2,118 2,208 1,7	e	١٥	1 503	1 274	0.883	1.0.1	1.027	0.853	0.871	0.075	0.236	Q
2 1.302 1.404 1.742 1.716 1.164 1.513 1.224 0.229 2 1.476 1.318 1.624 1.751 1.417 1.456 1.411 0.146 5 1.476 1.318 1.621 7.751 1.417 1.456 1.411 0.167 5 1.476 1.725 1.815 1.426 1.441 0.167 2 1.747 1.456 1.411 1.738 0.167 2 1.747 1.456 1.441 1.456 1.441 0.167 2 1.747 1.456 1.441 1.456 1.441 0.167 2 1.747 1.456 1.441 1.456 1.441 0.167 2 1.747 1.476 1.426 2.807 0.167 0.167 2 2.246 2.807 1.442 2.466 2.807 0.167 3 1.817 1.818 1.831 1.844 2.466 2.807)	1 0	200.	1.27	1.004	1.698	1.406	1.426	1.463	0.149	0.468	N
2 1.472 1.349 1.654 1.725 1.363 1.464 1.464 0.141 5 6.824 5.841 6.412 1.755 1.415 1.456 1.472 0.145 2 1.474 1.416 1.725 1.815 1.425 1.406 1.452 0.172 2 1.474 1.416 1.725 1.815 1.425 1.406 1.452 0.172 2 2.246 3.218 2 2.234 2.83 0.867 0.416 0.486 6.281 6.281 6.283 6.83 2.472 2.496 0.417 0.289 2.216 2.098 2.679 2.472 2.118 1.520 0.417 2 2.216 2.047 1.985 1.831 1.644 1.65 1.525 0.417 2 2.281 2.679 2.472 2.118 6.200 0.175 0.175 2 2.281 1.677 1.832 1.832 1.842		4 (205.1	1.404	1.742	1.716	1.164	1.513	1.224	0.229	0.720	
2 1.4.76 1.318 1.621 1.751 1.447 1.456 1.441 0.146 2 1.4.76 1.318 1.621 1.755 1.444 6.926 7.738 0.601 2 1.474 1.446 1.475 1.675 1.667 1.611 1.789 0.102 2 1.754 1.574 2.016 1.975 1.667 1.611 1.789 0.162 5 6.234 5.218 2.223 1.944 2.456 2.807 0.458 6.234 5.216 2.098 2.679 2.472 2.118 2.208 0.175 2 2.216 2.098 2.679 2.472 2.118 1.621 0.050 2 1.067 1.170 2.08 1.831 1.654 1.65 1.552 0.175 2 1.064 1.075 1.067 1.778 1.852 1.751 0.101 2 2.064 1.78 2.064 1.78 1.65		٧ (1.472	1.349	1.654	1.725	1.363	1.464	1.464	0.141	0 443	10
5 6.824 5.841 6.412 7.059 7.194 6.926 7.738 0.601 2 1.474 1.416 1.725 1.815 1.425 1.406 1.452 0.601 5 2.246 3.218 2.016 1.975 1.667 1.671 0.607 6 2.246 3.218 2.016 1.975 1.667 1.671 0.728 1 6.281 6.4 5.879 6.314 6.571 6.492 0.729 2 2.246 5.879 6.314 6.571 6.492 0.728 2 2.246 5.879 6.314 6.571 6.492 0.059 2 1.246 5.879 6.314 6.571 6.492 0.059 2 1.247 1.096 1.872 1.684 2.094 0.059 2 1.087 1.784 1.785 1.773 1.784 0.175 2 1.608 1.662 1.882 1.944		N	1.476	1.318	1.621	1.751	1.417	1.456	1.411	0.146	0.458	10
2 1.474 1.416 1.725 1.815 1.425 1.406 1.452 0.106 0.175 0.167 0.175 0.1		ဂ	6.824	5.841	6.412	7.059	7.194	6.926	7.738	0.601	1 887	4 (
2 1,754 1,574 2,016 1,975 1,617 1,611 1,798 0,172 5 2,246 3,218 2 2,23 1,944 2,456 2,807 0,458 6,281 6,481 6,871 6,482 0,289 0,173 0,289 2 2,216 2,096 2,679 2,472 2,118 2,289 0,173 0,175 2 2,216 2,096 2,679 2,472 2,118 2,289 0,173 0,175 2 2,064 1,79 2,245 2,145 1,654 1,652 1,783 0,173 2 2,064 1,79 2,245 2,145 1,652 1,783 1,784 0,175 2 2,064 1,78 1,592 1,783 1,784 1,784 0,185 2 1,662 1,882 1,944 1,504 1,504 1,784 0,185 2 1,668 1,662 1,882 1,504 1,784		7	1.474	1.416	1.725	1.815	1.425	1.406	1.452	0.167	0.525	200
5 2.246 3.218 2 2.23 1.944 2.456 2.807 0.488 6.281 6.481 5.879 6.311 6.571 6.492 0.289 2.216 2.068 2.679 2.472 2.118 2.208 2.041 0.231 2.216 2.084 1.81 2.047 1.995 1.839 1.773 1.751 0.173 2.064 1.78 2.259 2.155 1.652 1.773 1.751 0.173 2.064 1.79 2.259 2.155 1.652 1.753 1.781 0.232 2.064 1.79 2.259 2.155 1.652 1.753 1.791 0.232 2.064 1.876 1.896 1.894 1.504 1.756 1.753 1.781 2.105 1.689 1.894 1.504 1.762 1.782 0.163 2.106 1.689 1.894 1.504 1.784 0.163 2.107 1.822 1.844<		7	1.754	1.574	2.016	1.975	1.667	1.611	1 798	0.172	0.541	ν υ
5 6.281 6.4 5.879 6.311 6.571 6.492 0.289 2.216 2.098 2.679 2.472 2.118 2.208 2.041 0.231 2.216 2.094 2.879 2.472 2.118 2.208 1.654 1.654 1.654 1.654 1.654 1.654 1.654 1.654 1.654 1.771 0.173 0.175		တ	2.246	3.218	2	2.23	1.944	2.456	2807	0.458	4 437	ין כ
2 2.216 2.086 2.679 2.472 2.118 2.208 2.041 0.231 1.654 1.65 1.532 0.175 0.175 1.881 1.81 2.208 2.472 2.118 2.208 2.041 0.231 0.102 2.064 1.702 2.08 1.831 1.654 1.65 1.532 0.175 0.112 2.064 1.79 2.259 2.155 1.652 1.753 1.781 0.232 1.725 1.876 2.004 2.087 1.718 1.592 1.786 0.173 0.173 1.516 1.652 1.882 1.942 1.509 1.559 1.654 0.163 1.742 1.732 1.896 1.984 1.501 1.596 1.777 0.130 1.504 1.626 1.918 2.066 1.675 1.757 1.787 0.130 1.605 1.605 1.904 1.704 1.632 1.804 1.919 1.646 1.561 1.707 0.130 1.904 1.904 2.157 1.704 1.652 1.804 1.919 1.646 1.561 1.707 0.130 1.904 1.904 2.157 1.708 1.919 1.646 1.561 1.707 0.130 1.904 1.904 1.904 2.157 1.708 1.904 1.904 1.904 1.904 1.904 1.904 1.904 1.904 1.904 1.904 1.905 1.905 1.707 1.708 0.130 1.905 1.909 1.904 1.905 1.909 1.522 1.703 0.131 1.707 1.818 1.707 1.809 1.502 1.708 0.089 1.501 1.707 1.818 1.707 1.501 1.707 1.708 1.707 1.707 1.708 1.707 1.707 1.707 1.708 1.707 1.7		2	6.281	6.4	5.83	5.879	6.311	6.571	6 492	0.400	755	ი
2 2.216 2.098 2.679 2.472 2.118 2.208 2.004 0.0175 2 1.77 1.702 2.08 1.831 1.654 1.65 1.532 0.175 2 1.784 1.71 1.654 1.65 1.532 0.175 2 2.064 1.79 2.259 2.155 1.652 1.783 1.791 0.112 2 1.725 1.876 2.044 2.087 1.718 1.592 1.786 0.173 2 1.608 1.662 1.886 1.984 1.501 1.596 1.745 0.163 2 1.608 1.662 1.986 1.984 1.501 1.596 1.745 0.163 2 1.608 1.662 1.986 1.984 1.501 1.757 1.787 0.163 2 1.685 1.626 1.984 1.501 1.767 1.787 0.163 2 1.774 1.626 1.918 2.066												VIV
2 1,77 1,702 2.08 1,831 1,654 1,65 1,532 0,775 2 1,881 1,81 2.047 1,995 1,839 1,773 1,751 0,112 2 2,064 1,71 2,259 2,155 1,652 1,753 1,771 0,173 5 1,725 1,876 2,004 2,087 1,718 1,592 1,759 0,173 2 1,608 1,662 1,889 1,741 1,596 1,767 0,176 2 1,608 1,662 1,884 1,504 1,759 1,767 0,163 2 1,608 1,662 1,984 1,504 1,596 1,694 1,767 0,163 2 1,685 1,626 1,984 1,594 1,694 1,747 0,169 2 1,685 1,626 1,918 2,066 1,675 1,774 1,784 0,169 2 1,694 1,652 1,874 1,646		2	2.216	2.098	2.679	2.472	2.118	2.208	2.041	0.231	207.0	5
2 1.881 1.81 2.047 1.995 1.839 1.773 1.751 0.112 2 2.064 1.79 2.259 2.155 1.652 1.753 1.791 0.232 2 1.725 1.876 2.004 2.087 1.718 1.592 1.786 0.173 2 1.608 1.662 1.882 1.942 1.509 1.559 1.745 0.163 2 1.508 1.662 1.882 1.942 1.509 1.745 0.163 2 1.608 1.662 1.984 1.501 1.596 1.745 0.163 2 1.742 1.732 2.184 2.195 1.871 1.691 1.767 0.163 2 1.742 1.732 2.187 1.91 1.767 1.787 0.165 2 1.704 1.632 1.873 1.904 1.744 1.626 1.591 1.777 1.777 1.777 1.784 1.626 1.591 1	eue	7	1.77	1.702	2.08	1.831	1.654	1.65	1.532	0.175	0.551	10
2 2.064 1.79 2.259 2.155 1.652 1.753 1.791 0.232 2 1.725 1.876 2.004 2.087 1.718 1.592 1.786 0.173 2 1.608 1.662 1.794 7.502 7.752 0.450 2 1.608 1.662 1.894 1.509 1.596 1.745 0.163 2 1.508 1.612 1.896 1.984 1.501 1.596 1.745 0.160 2 1.742 1.732 2.184 2.195 1.871 1.691 1.767 0.163 2 1.685 1.626 1.918 2.066 1.675 1.767 1.787 0.163 2 1.685 1.626 1.918 2.066 1.646 1.567 1.787 0.163 2 1.685 1.527 2.188 1.91 1.744 1.626 1.597 0.130 2 1.694 1.563 1.914 1.951 <td></td> <td>7</td> <td>1.881</td> <td>1.81</td> <td>2.047</td> <td>1.995</td> <td>1.839</td> <td>1.773</td> <td>1.751</td> <td>0 112</td> <td>0.352</td> <td></td>		7	1.881	1.81	2.047	1.995	1.839	1.773	1.751	0 112	0.352	
2 1.725 1.876 2.004 2.087 1.718 1.592 1.786 0.752 5 7.013 7.27 6.589 7.41 7.924 7.502 7.752 0.450 2 1.608 1.662 1.882 1.942 1.509 1.559 1.654 0.163 2 1.56 1.612 1.896 1.984 1.501 1.596 1.775 0.182 2 1.742 1.732 2.184 2.196 1.871 1.691 1.767 0.216 2 1.742 1.732 2.184 2.196 1.871 1.691 1.767 0.182 2 1.704 1.626 1.918 2.066 1.675 1.757 1.787 0.130 2 1.607 1.55 1.823 1.904 1.744 1.626 1.597 0.149 2 1.607 1.547 1.745 1.78 1.745 1.78 0.149 2 1.628 1.547		7	2.064	1.79	2.259	2.155	1.652	1.753	1.791	0.232	0.730	0 0
5 7.013 7.27 6.589 7.41 7.924 7.502 7.752 0.450 2 1.608 1.662 1.882 1.942 1.509 1.559 1.654 0.163 2 1.56 1.612 1.896 1.984 1.501 1.596 1.745 0.182 2 1.742 1.732 2.184 2.195 1.871 1.691 1.767 0.216 2 1.685 1.626 1.918 2.066 1.675 1.787 0.182 2 1.704 1.632 1.873 1.919 1.646 1.561 1.777 0.130 2 1.704 1.652 1.873 1.919 1.646 1.561 1.777 0.130 2 1.704 1.662 1.873 1.914 1.951 1.745 1.776 0.149 2 1.628 1.563 1.914 1.951 1.745 1.785 1.745 1.786 2 1.572 1.517 <td></td> <td>2</td> <td>1.725</td> <td>1.876</td> <td>2.004</td> <td>2.087</td> <td>1.718</td> <td>1.592</td> <td>1.786</td> <td>0.173</td> <td>0.545</td> <td>4 0</td>		2	1.725	1.876	2.004	2.087	1.718	1.592	1.786	0.173	0.545	4 0
2 1.608 1.662 1.882 1.942 1.509 1.559 1.664 0.163 2 1.56 1.612 1.896 1.984 1.501 1.596 1.745 0.182 2 1.742 1.732 2.184 2.195 1.871 1.691 1.767 0.185 2 1.685 1.626 1.918 2.066 1.675 1.757 1.787 0.186 2 1.704 1.632 1.873 1.919 1.646 1.561 1.777 0.156 2 1.507 1.55 1.823 1.904 1.714 1.626 1.597 0.130 2 1.607 1.55 1.823 1.904 1.714 1.626 1.597 0.130 2 1.507 1.777 1.547 1.365 1.476 0.134 2 1.628 1.563 1.914 1.951 1.775 1.57 1.745 1.78 0.149 2 1.628 1.517		2	7.013	7.27	6.589	7.41	7.924	7.502	7 752	0.450	1 414	4 ¢
2 1.56 1.612 1.896 1.984 1.501 1.596 1.745 0.182 2 1.742 1.732 2.184 2.195 1.871 1.691 1.767 0.216 2 1.685 1.626 1.918 2.066 1.675 1.757 1.787 0.156 2 1.704 1.632 1.873 1.919 1.646 1.561 1.777 0.130 2 1.607 1.55 1.823 1.904 1.714 1.626 1.597 0.131 2 1.949 1.964 2.157 2.138 1.91 1.753 1.831 0.149 2 1.628 1.374 1.717 1.547 1.365 1.476 0.134 2 1.628 1.563 1.914 1.951 1.745 1.78 0.134 2 1.628 1.563 1.715 1.57 1.745 1.78 0.134 2 1.628 1.631 1.78 1.55	je	7	1.608	1.662	1.882	1.942	1.509	1.559	1.654	0.163	0.511	2 √
2 1.742 1.732 2.184 2.195 1.871 1.691 1.767 0.216 2 1.685 1.626 1.918 2.066 1.675 1.757 1.787 0.155 2 1.685 1.626 1.918 2.066 1.675 1.777 0.156 2 1.704 1.626 1.873 1.919 1.646 1.561 1.777 0.150 2 1.607 1.55 1.823 1.904 1.774 1.626 1.597 0.130 2 1.628 1.364 2.157 2.138 1.91 1.775 1.831 0.131 2 1.628 1.563 1.914 1.951 1.776 1.745 1.776 0.134 2 1.628 1.563 1.914 1.951 1.745 1.776 0.134 2 1.628 1.563 1.914 1.951 1.745 1.776 0.134 2 1.628 1.663 1.776 1.557 1.752 1.773 0.135 2 1.548 1.669 1.	a	7	1.56	1.612	1.896	1.984	1.501	1.596	1.745	0.182	0.572	ı ıc
2 1.685 1.626 1.918 2.066 1.675 1.757 1.787 0.155 2 1.704 1.632 1.873 1.919 1.646 1.561 1.777 0.130 2 1.607 1.55 1.823 1.904 1.714 1.626 1.597 0.130 2 1.949 1.964 2.157 2.138 1.91 1.762 1.597 0.131 2 1.949 1.964 2.157 2.138 1.91 1.745 1.763 1.831 0.134 2 1.628 1.563 1.914 1.951 1.708 1.745 1.78 0.134 2 1.628 1.676 1.715 1.557 1.753 1.703 0.134 2 1.572 1.572 1.775 1.557 1.557 1.703 0.135 2 1.572 1.783 1.789 1.552 1.483 1.716 0.135 2 1.548 1.669 1.701		7	1.742	1.732	2.184	2.195	1.871	1.691	1.767	0.216	0.680) (
2 1.704 1.632 1.873 1.919 1.646 1.561 1.777 0.130 2 1.607 1.55 1.823 1.904 1.714 1.626 1.597 0.131 2 1.949 1.964 2.157 2.138 1.91 1.753 1.831 0.149 2 1.38 1.374 1.717 1.547 1.365 1.476 0.131 2 1.628 1.563 1.914 1.951 1.708 1.745 1.78 0.141 2 1.395 1.428 1.676 1.715 1.557 1.78 1.793 0.131 2 1.572 1.517 1.818 1.78 1.546 1.55 1.793 0.135 2 1.548 1.62 1.783 1.789 1.552 1.483 1.716 0.122 2 1.548 1.62 1.783 1.701 1.521 1.497 0.152 2 1.549 1.539 1.792 1.868 1.515 1.497 0.158 2 1.501 1.539 <td></td> <td>2</td> <td>1.685</td> <td>1.626</td> <td>1.918</td> <td>2.066</td> <td>1.675</td> <td>1.757</td> <td>1.787</td> <td>0.155</td> <td>0.488</td> <td>10</td>		2	1.685	1.626	1.918	2.066	1.675	1.757	1.787	0.155	0.488	10
2 1.607 1.55 1.823 1.904 1.714 1.626 1.597 0.131 2 1.949 1.964 2.157 2.138 1.91 1.753 1.831 0.149 2 1.38 1.374 1.717 1.547 1.365 1.352 1.476 0.134 2 1.628 1.563 1.914 1.951 1.708 1.745 1.78 0.141 2 1.628 1.563 1.914 1.951 1.708 1.745 1.78 0.131 2 1.572 1.517 1.818 1.78 1.557 1.793 0.131 2 1.572 1.517 1.818 1.78 1.552 1.483 1.716 0.122 2 1.548 1.62 1.789 1.521 1.497 1.508 0.089 2 1.513 1.485 1.669 1.701 1.521 1.497 0.152 2 1.501 1.539 1.792 1.868		7	1.704	1.632	1.873	1.919	1.646	1.561	1.717	0.130	0.409	ועמ
2 1.949 1.964 2.157 2.138 1.91 1.753 1.831 0.149 2 1.38 1.374 1.717 1.547 1.365 1.352 1.476 0.134 2 1.628 1.563 1.914 1.951 1.708 1.745 1.78 0.134 2 1.628 1.563 1.914 1.951 1.715 1.57 1.78 0.135 2 1.572 1.517 1.818 1.78 1.557 1.52 1.793 0.135 2 1.548 1.62 1.783 1.789 1.552 1.483 1.716 0.122 5 12.69 1.3.25 1.3.79 1.3.1 13.29 12.35 12.71 0.479 2 1.513 1.485 1.669 1.701 1.521 1.497 0.152 2 1.513 1.792 1.868 1.515 1.497 0.162 2 2.277 2.265 2.381 2.306 1.996 2.126 2.516 0.100 2 1.762 1.724<		2 (1.607	1,55	1.823	1.904	1.714	1.626	1.597	0.131	0.412	۰ ۸
2 1.38 1.374 1.717 1.547 1.365 1.352 1.476 0.134 2 1.628 1.563 1.914 1.951 1.708 1.745 1.78 0.141 2 1.572 1.517 1.818 1.715 1.557 1.52 1.703 0.135 2 1.572 1.517 1.818 1.789 1.552 1.483 1.716 0.122 2 1.548 1.62 1.783 1.789 1.532 1.483 1.716 0.122 2 1.513 1.485 1.669 1.701 1.521 1.497 1.508 0.089 2 1.501 1.539 1.792 1.868 1.515 1.497 0.152 2 2.277 2.265 2.381 2.306 1.996 2.126 2.516 0.168 2 1.762 1.782 1.869 1.799 1.791 1.736 0.100 2 2.277 2.265 2.381 2.306 1.996 2.126 2.516 0.100 2 1.76		7	1.949	1.964	2.157	2.138	1.91	1.753	1.831	0.149	0.467	۱ ۸
2 1.628 1.563 1.914 1.951 1.708 1.745 1.78 0.141 2 1.395 1.428 1.676 1.715 1.557 1.52 1.703 0.131 2 1.572 1.517 1.818 1.78 1.546 1.55 1.793 0.135 2 1.548 1.62 1.783 1.789 1.552 1.483 1.716 0.122 2 1.513 1.485 1.669 1.701 1.521 1.497 1.508 0.089 2 1.501 1.539 1.792 1.868 1.515 1.497 0.162 2 2.277 2.265 2.381 2.306 1.996 2.126 2.516 0.168 2 1.762 1.724 1.985 1.869 1.709 1.701 1.736 0.100 2 1.762 1.574 1.689 1.709 1.701 1.736 0.100 2 1.762 1.581 1.869		N (1.38	1.374	1.717	1.547	1.365	1.352	1.476	0.134	0.422	1 8
2 1.395 1.428 1.676 1.715 1.557 1.52 1.703 0.135 2 1.572 1.517 1.818 1.78 1.546 1.55 1.793 0.135 2 1.548 1.62 1.783 1.789 1.552 1.483 1.716 0.122 5 12.69 13.25 13.79 13.1 13.29 12.35 12.71 0.479 2 1.513 1.485 1.669 1.701 1.521 1.497 1.508 0.089 2 1.501 1.539 1.792 1.868 1.515 1.579 1.497 0.162 2 2.277 2.265 2.381 2.306 1.996 2.126 2.516 0.168 2 1.762 1.724 1.985 1.869 1.799 1.701 1.736 0.100 2 1.61 1.591 1.82 1.717 1.639 1.731 0.080		7 (1.628	1.563	1.914	1.951	1.708	1.745	1.78	0.141	0.443	8
2 1.572 1.517 1.818 1.78 1.546 1.55 1.793 0.135 2 1.548 1.62 1.783 1.789 1.552 1.483 1.716 0.122 5 12.69 13.25 13.79 13.1 13.29 12.35 12.71 0.479 2 1.513 1.485 1.669 1.701 1.521 1.497 1.508 0.089 2 1.501 1.539 1.792 1.868 1.515 1.497 0.152 2 2.277 2.265 2.381 2.306 1.996 2.126 2.516 0.168 2 1.762 1.724 1.985 1.869 1.799 1.701 1.736 0.100 2 1.61 1.591 1.82 1.869 1.777 1.639 1.731 0.080		-1	1.395	1.428	1.676	1.715	1.557	1.52	1.703	0.131	0.412	2
2 1.548 1.62 1.783 1.789 1.552 1.483 1.716 0.122 5 12.69 13.25 13.79 13.1 13.29 12.35 12.71 0.479 2 1.513 1.485 1.669 1.701 1.521 1.497 1.508 0.089 2 1.501 1.539 1.792 1.868 1.515 1.497 0.152 2 2.277 2.265 2.381 2.306 1.996 2.126 2.516 0.168 2 1.762 1.724 1.985 1.869 1.779 1.731 0.080 2 1.61 1.591 1.82 1.717 1.639 1.731 0.080		2	1.572	1.517	1.818	1.78	1.546	1.55	1.793	0.135	0.425	2
5 12.69 13.25 13.79 13.1 13.29 12.35 12.71 0.479 2 1.513 1.485 1.669 1.701 1.521 1.497 1.508 0.089 2 1.501 1.539 1.792 1.868 1.515 1.579 1.497 0.152 2 2.277 2.265 2.381 2.306 1.996 2.126 2.516 0.168 2 1.762 1.724 1.985 1.869 1.799 1.701 1.736 0.100 2 1.61 1.591 1.82 1.688 1.717 1.639 1.731 0.080	e e	2	1.548	1.62	1.783	1.789	1.552	1.483	1.716	0.122	0.384) IC
2 1.513 1.485 1.669 1.701 1.521 1.497 1.508 0.089 2 1.501 1.539 1.792 1.868 1.515 1.579 1.497 0.152 2 2.277 2.265 2.381 2.306 1.996 2.126 2.516 0.168 2 1.762 1.724 1.985 1.869 1.799 1.701 1.736 0.100 2 1.61 1.591 1.82 Page 1 012 1.717 1.639 1.731 0.080	er	2	12.69	13.25	13.79	13.1	13.29	12.35	12.71	0.479	1.505)
2 1.501 1.539 1.792 1.868 1.515 1.579 1.497 0.152 2 2.277 2.265 2.381 2.306 1.996 2.126 2.516 0.168 2 1.762 1.724 1.985 1.869 1.799 1.701 1.736 0.100 2 1.61 1.591 1.82 Page 1 of 2 1.717 1.639 1.731 0.080		2	1.513	1.485	1.669	1.701	1.521	1.497	1.508	0.089	0.280	c
2 2.277 2.265 2.381 2.306 1.996 2.126 2.516 0.168 2 1.762 1.724 1.985 1.869 1.799 1.701 1.736 0.100 2 1.61 1.591 1.82 Page 1 0.717 1.639 1.731 0.080	e.	7	1.501	1.539	1.792	1.868	1,515	1.579	1 497	0.152	0.478	1 C
2 1.762 1.724 1.985 1.869 1.799 1.701 1.736 0.100 2 1.61 1.591 1.82 Page 1 of 2 1.717 1.639 1.731 0.080		2	2.277	2.265	2.381	2.306	1.996	2.126	2.516	0.168	0.508	1 U
2 1.61 1.591 1.82 1.688 1.717 1.639 1.731 0.080		2	1.762	1.724	1.985	1.869	1,799	1 701	1736	0.00	0.320	n c
Page 1 of 2	ene	2	1.61	1.591		1.688	1.717	1.639	1 731	0800	0.00	ч с
		,			g.	age 1 of 2	•	>	-	200.0	0.22.0	٧

VOA Soil MDL Master Started 1/2009

					Due 1/2010	, ,					
1,1,2-Trichloroethane	7	1.328	1.409	1.768	1.841		1,515	1 489	0.185	0 500	(
I,3-Uichloropropane	~	1.567	1.671	1.942	1.832	1.586	1.744	1 643	0.136	0.307	7 (
letrachloroethene	2	1.568	1.497	1.807	1.791	1.578	1.66	1 878	0.130	0.420	7
Z-Hexanone	7	1.84	1.98	2.66	2.83	1 97	, t	20.0	0.5	0.304	7 1
Dibromochloromethane	7	1.41	1.41	1.7	1.66	143	 	1 57	0.417	1.294	ۍ د
1,2-Dibromoethane	7	1.57	1.62	171	1 08		5 4		0.133	0.416	7
Chlorobenzene	2	172	167			† † †	0.	95. I	0.168	0.528	S.
1.1.2-Tetrachloroethane	10	1 8	2.0	· · ·	1.74	1.73	1.83	1.71	0.050	0.157	2
Ethylpenzene	4 0	40.6		2.5	1.76	1.72	1.76	1.8	0.084	0.263	2
m n-Yadono	V (1.87	 	1.91	2	1.94	1.92	1.89	0.062	0.194	10
	N (3.87	3.82	3.83	4.02	3.74	3.77	4.06	0.122	0.384	10
Shroon	N (1.89	1.65	1.97	1.84	1.78	1.76	2.02	0.128	0.401	10
Stomoform	7 0	1.95	1.75	1.98	1.95	1.87	1.81	2.02	0.098	0.307	l ro
	N (1.34	1.19	1.43	1.34	1.28	1.29	1.49	0.099	0.312	ĸ
1 2 Trioblogomen	7 1	1.95	1.83	1.99	7	2.03	1.91	2.01	0.070	0.220	, 2
1,2,3=11ICHIOFOPANE	ဂ (5.86	6.43	6.65	6.44	5.9	6.37	6.72	0.338	1.060	, rc
Promotion and a series	N (2.19	<u>0</u>	1.96	2.05	1.86	1.75	2	0.142	0.445	0
Diolitopenzene	7	1.99	J.9	2.11	2.04	2.04	2.04	2.09	0.069	0.218	ועמ
1,1,2,2-1 etrachloroethane	7	2.16	5.09	2.31	2.22	2.1	2.05	2.38	0.122	0.384	0
n-Propylbenzene	~	1.95	1.81	2.11	2.03	1.93	1.97	2.06	0.098	0.30	40
Z-Chlorotoluene	7	1.79	1.77	2.04	1.9	9:	1.97	1.96	0.097	0.306	1 K
4-Chlorotoluene	7	2.06	1.75	2.12	2.07	1.96	1.92	2.07	0.128	0.401	ט ער
1,3,5-1 rimethylbenzene	7	1.97	1.79	2.1	2.08	2.05	1.95	8	0.105	0.329	טע
tert-Butylbenzene	7	1.67	1.71	2.07	1.89	1.89	1.82	1.95	0.138	0.023	ט גנ
1,2,4-1 rimethylbenzene	~	1.97	1.84	2.11	2.03	2.02	1.95	2.04	0.085	0.268	0 0
sec-Butylbenzene	CI.	1.92	1.86	2.18	2.05	1.85	2.04	1.98	0.000	0.200	N 0
p-isopropyitoluene	Ģ	1.81	1.76	2.01	1.97	1.95	1.84	196	0.095	0000	4 5
1,3-Dichlorobenzene	7	1.7	1.68	1.87	1.72	1.69	1.83	8 8	0.00	0.347	2 ₪
1,4-Uichlorobenzene	7	. 80.	1.74	1.87	8.	1.74	1.81	6.	0 000	0.189	0 0
n-Butylbenzene	7	1.62	1.56	1.63	1.58	1.63	1.68	1.72	0.055	0.172	1 5
1,2-Dichlorobenzene	7	1.74	1.74	1.98	1.84	1.79	1.99	1.97	0.114	0.357	פֿי עני
1,2-Dibromo-3-Chloropropane	2	5.12	5.64	5.8	5.31	5.45	5.21	5.25	0.247	0.775	, 5
1,2,4-1 richlorobenzene	လ	2.09	2.59	2.54	2.34	2.28	2.01	2.33	0.213	0 668) 'u
1,2,3-1 richlorobenzene	7	1.07	0.83	1.05	0.78	0.94	0.89	1.04	0.115	0.361	o ko
Hexachlorobutadiene	7	1.69	1.7	1.8	1.79	1.66	1.8	1.88	0.079	0 247	2
Naphthalene	2	0.61	0.88	0.76	0.71	0.64	0.53	9.0	0.117	0.368	, C
Cyclohexane	7	1.76	1.72	1.57	1.51	1.53	1.69	1.65	0.097	0.306	2 2
	,										
Data rile las per level:	S N	V64070 V62750	V64071 V62751	V64072 V62752	V64073 V62753	V64074 V62754	V64075	V64076			
	•				***	E 0 140 A	V 021 00	00/200	-	_	

Data Usability Summary Report

Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

Town of Clarkson
Paradigm Environmental Services Inc. SDG#10419
August 17, 2010
Sampling date: 09/16-17/09

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Lu Engineers, project located in the Town of Clarkson, SDG#10419, Paradigm # 09-3381, submitted to Vali-Data of WNY, LLC on May 17, 2010. The laboratory performed the analyses using USEPA methods, 8260 (Volatile Organics), 8270 (Semi-Volatile Organics), 8081 (Pesticides), 8082 (PCBs), 6010 (Inorganics) and 7470 (Mercury).

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times, Method Blank, Field Duplicate Precision Sample, Compound Quantitation, Initial Calibration and Continuing Calibration.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met except a receipt page recorded the incorrect sampling date for MW-2. The MDL list was not complete. Updated pages are attached.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met except the pH was only recorded as <2 for the trip blank. Correspondence with Paradigm confirmed that the pH was within acceptable limits. That correspondence is attached. The samples were received at a temperature of 9° C which is outside the acceptance window (4 ± 2 Degrees °C), thus all target analytes in the samples should be qualified as estimated.

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met.

METHOD BLANK

All criteria were met except 2-Hexanone and 4-Methyl-2-pentanone were detected above the MDL, below the MRL and are qualified as estimated. Naphthalene and 2-Butanone were detected but not recorded. Paradigm has reviewed the data and does not believe these target analytes to be present or they are detected outside the laboratories range for qualification (see Overall evaluation above). No supporting data has been included in the package.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met except Acetone was detected in MW-3/Field Duplicate but not in MW-3. 4-Methyl-2-Pentanone, o-Xylene and 1,2,4-Trimethylbenzene were detected in MW-3 but not in MW-3/Field Duplicate. Paradigm has reviewed the data and does not believe all of these target analytes to be present in MW-3 or they are detected outside the laboratories range for qualification (see Overall evaluation above). No supporting data has been included in the package.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met.

COMPOUND QUANTITATION

All criteria were met except several target analytes and TIC's were detected in the samples but not recorded. Paradigm has reviewed the data and does not believe these target analytes to be present or they are detected outside the laboratories range for qualification (see Overall evaluation above). No supporting data has been included in the package.

INITIAL CALIBRATION

All criteria were met except the %RSD of Acetone, Naphthalene, 2-Chloroethylvinyl ether and Methylene Chloride were outside ASP outer QC limits. These target analytes should be qualified as estimated in all samples, blanks and spikes. The %RSD of Bromomethane and Bromoform were outside ASP QC limits. ASP allows for up to two target analytes to be outside QC limits without further action.

Alternate forms of regression were used for target analytes whose %RSD >15%. Those pages

are attached.

CONTINUING CALIBRATION

All criteria were met except the %D of Methylene Chloride was outside the ASP QC outer limits. This target analyte should be qualified as estimated in all blanks, samples and spikes.

GC/MS PERFORMANCE CHECK

All criteria were met.

SEMIVOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times and Compound Quantitation.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met. (see VOC, above)

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met except the samples were received at a temperature of 9° C which is outside the acceptance window (4 ± 2 Degrees °C), thus all target analytes in the samples should be qualified as estimated.

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate sample was obtained.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met except the %Rec of Acetone and N-Nitroso-di-n-propylamine were outside laboratory QC limits but within ASP limits. No further action is required.

2-Methylmaphthalene was detected in MW-1MS/MSD.

COMPOUND QUANTITATION

All criteria were met except several TIC's were detected in the samples but not recorded. Paradigm has reviewed the data and does not believe these target analytes to be present or they are detected outside the laboratories range for qualification (see Overall evaluation above). No supporting data has been included in the package.

INITIAL CALIBRATION

All criteria were met.

CONTINUING CALIBRATION

All criteria were met.

GC/MS PERFORMANCE CHECK

All criteria were met.

PESTICIDES

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports

- -Holding Times
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times, Method Blank, Compound Quantitation and Continuing Calibration.

Adirondack Environmental Services, Inc. reported the lesser of the concentrations off the two columns. Sulfur clean up was used.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met. (see VOC, above)

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met except the samples were received at a temperature of 9° C which is outside the acceptance window (4 ± 2 Degrees °C), thus all target analytes in the samples should be qualified as estimated.

SURROGATE SPIKE RECOVERIES

All criteria were met except the %Rec of DCBP was outside laboratory QC limits in Water PB 9/21 but within ASP limits. No further action is required.

METHOD BLANK

All the criteria were met except several target analytes were detected above the MDL, below the MRL and should be qualified as estimated.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met except a-BHC, g-BHC, b-BHC, d-BHC, Endrin and Endosulfan Sulphate were detected n MW-3/Field Duplicate but not in MW-3.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met except the %Rec of g-BHC in MW-1MS/MSD was outside ASP QC limits, low, and should be qualified as estimated in MW-1. The %Rec of Dieldrin was outside ASP QC limits in MW-1MS. The results for MW-1MSD on the summary page were recorded incorrectly. An updated page is attached.

COMPOUND QUANTITATION

All criteria were met except several target analytes were detected in the samples but not recorded. The %D between the columns was outside QC limits for b-BHC in sampleMW-3/Field Duplicate. The result off the primary column, the larger concentration, was recorded.

INITIAL CALIBRATION

All criteria were met.

Paradigm used linear regression on all target analytes and surrogates.

CONTINUING CALIBRATION

All criteria were met except the %D was outside laboratory QC limits for Endrin and DCBP, but outside ASP QC limits for DCBP only, off column A. The %D was outside laboratory QC limits for Endrin, Methoxychlor, Endosulfan sulfate, a-Chlordane and DCBP, but outside ASP QC limits for Methoxychlor and DCBP, off column B. Per National Functional Guidelines DCBP off both columns and Methoxychlor off column B should be qualified as estimated.

POLYCHLORINATED BIPHENYLS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met except no raw data for the initial calibration was included in the original data package. (see VOC, above)

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met except the samples were received at a temperature of 9° C which is outside the acceptance window (4 ± 2 Degrees °C), thus all target analytes in the samples should be qualified as estimated.

SURROGATE SPIKE RECOVERIES

All criteria were met.

METHOD BLANK

All the criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met except no raw data were provided for the initial calibrations. Calibration Curves and Calibration tables were sent.

Paradigm used linear regression on all target analytes and surrogates.

CONTINUING CALIBRATION

All criteria were met.

METALS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Method Blank
- -Laboratory Control Sample
- -MS/MSD
- -Duplicate
- -Field Duplicate
- -Serial Dilution
- -Compound Quantitation
- -Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times, MS/MSD, Compound Quantitation and Calibration.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARATIVE AND DATA REPORTING FORMS

All criteria were met. (see VOC, above)

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met except the samples were received at a temperature of 9° C which is outside the acceptance window (4 ± 2 Degrees °C), thus all target analytes in the samples should be qualified as estimated. The pH was only recorded as <2 for the trip blank. Correspondence with Paradigm confirmed that the pH was within acceptable limits. That correspondence is attached. Sample, MW-2 was not preserved for metals upon sampling. HNO₃ was added upon receipt by laboratory.

METHOD BLANK

All criteria were met.

LABORATORY CONTROL SAMPLE

All criteria were met.

MS/MSD

All criteria were met except the %Rec of As, Cu, K and Na were outside laboratory QC limits. The %Rec of K and Na were outside ASP QC limits. The sample concentration of Na was >4x spike added, so no further action is required.

A post digest spike should have been performed. Since no post digest spike was performed K should be qualified with an 'N' in all samples.

DUPLICATE

All criteria were met.

FIELD DUPLICATE

All criteria were met.

SERIAL DILUTION

No serial dilution was performed.

COMPOUND QUANITATION

All criteria were met except K, Na, Mn and Se were detected above the MDL, below the MRL and should be qualified as estimated in Field Blank.

CALIBRATION

All criteria were met except Sb and Na were not spiked in ICP, so should be qualified as estimated in the samples.

MERCURY

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Method Blank
- -Laboratory Control Samples
- -MS/MSD
- -Duplicate
- -Field Duplicate
- -Compound Quantitation
- -Calibration

The items listed above were technically in compliance with the method and SOP criteria with any exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Holding Times and Calibration.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met. (see VOC, above)

CHAIN OF CUSTODY

All criteria were met.

HOLDING TIMES

All holding times were met except the samples were received at a temperature of 9° C which is outside the acceptance window (4 ± 2 Degrees °C), thus all target analytes in the samples should be qualified as estimated. The pH was only recorded as <2 for the trip blank. Correspondence with Paradigm confirmed that the pH was within acceptable limits. That correspondence is attached.

Sample, MW-2 was not preserved for metals upon sampling. HNO_3 was added upon receipt by laboratory.

METHOD BLANK

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met.

DUPLICATE

All criteria were met.

FIELD DUPLICATE

All criteria were met.

COMPOUND QUANTITATION

All criteria were met.

CALIBRATION

All criteria were met except Hg was not spiked in the ICP, so should be qualified as estimated in the samples.

2 Dichlorodiffluoromethane 2 1.624 1.556 1.137 3 Chloromethane 2 1.762 1.762 1.793 4 Vinyl chloride 2 1.856 2.867 1.295 4 Vinyl chloride 2 1.856 2.868 2.857 1.691 1.295 1.691 1.295 1.691 1.295 1.691 1.295 1.691 1.295 1.691 1.295 1.691 1.295 1.691 1.295 1.691 1.295 1.691 1.691 1.692 1.693
me 2 1.624 1.566 2 1.762 1.72 2 1.869 1.691 2 1.866 2.071 2 1.856 2.071 2 1.856 2.071 2 2.194 1.636 2 2.194 1.636 2 2.198 1.627 2 2.198 2.073 5 3.234 4.055 2 2.198 2.073 5 5.609 4.612 2 2.198 2.073 5 5.609 4.612 2 2.197 1.629 2 2.172 1.951 2 2.172 1.951 2 2.172 1.951 3 2 2.186 0.981 3 2 2.195 2.076 2 2.195 2.076 2 2.195 2.076 2 2.195 2.076 2 2.195 2.076 3 2 1.851 1.777 2 2.195 2.076 2 2.195 2.076 3 1.884 9 2 2.189 1.874 1 1.893 1.874 1 1.874 1 1.893 1.874 2 2.278 2.093 2 2.278 2.093 2 2.278 2.093 2 2.278 2.093 2 2.278 2.093
me 2 1.624 1.556 2 1.762 1.72 2 1.869 1.691 2 2 3.15 2.66 2 3.15 2.66 2 1.856 2.071 2 1.856 2.071 2 2.194 1.636 2 2.194 1.636 2 2.198 1.627 2 2.198 2.073 5 3.234 4.055 2 2.198 2.073 5 5.609 4.612 2 2.198 2.073 5 5.609 4.612 2 2.197 1.629 2 2.172 1.951 2 2.172 1.951 2 2.172 1.951 2 2.124 1.994 2 2.127 1.979 1 1.028 0.821 2 2.195 2.076 2 2.196 0.821 2 1.977 1.871 2 2.195 2.076 2 2.104 1.994 2 2.195 2.076 2 2.104 1.805 2 1.977 1.871 2 2.104 1.805 2 1.977 1.871 2 2.104 1.805 2 1.977 1.871 2 2.104 1.805 2 2.104 1.805 2 2.104 1.805 2 2.104 1.805 2 2.104 1.805 2 2.104 1.805 2 2.103 1.874 1 1.874 1 1.874 1 1.874 1 1.874 1 1.874 1 1.874 1 1.874 1 1.874 1 1.874 1 1.874 1 1.874 1 1.874 1 1.874 1 1.874 1 1.874 1 1.874 1 1.874 1 1.874
e 2 1.624 1.556 2 1.762 1.72 2 1.869 1.691 2 1.869 2.071 2 1.856 2.071 2 2.194 1.636 2 2.194 1.636 2 2.194 1.629 2 2.196 2.073 5 5.609 4.612 2 2.196 2.073 5 5.609 4.612 2 2.197 1.874 200 214.401 271.269 2 2.172 1.951 2 2.1026 1.855 2 1.701 1.572 2 1.186 0.981 2 2.124 1.913 2 2.127 1.779 2 2.227 1.779 2 2.124 1.968 2 2.124 1.968 2 2.227 1.779 2 2.195 2.076 2 1.946 1.874 2 1.946 1.884 2 1.946 1.884 2 1.946 1.884 2 1.944 1.885 2 1.946 1.884 2 1.944 1.895 2 1.946 1.884 2 1.944 1.895 2 1.946 1.884 2 2.171 1.874
e 2 1.624 1.556 2 1.762 1.72 2 1.869 1.691 2 1.856 2.071 2 1.856 2.071 2 2.016 1.677 2 2.148 1.835 2 2.148 1.835 2 2.148 1.835 2 2.148 1.835 2 2.1979 1.629 2 2.198 2.073 3 5 5.609 4.612 2 2.018 1.874 2 2 2.018 1.874 2 2 2.172 1.951 2 2 2.172 1.951 2 2 2.142 1.913 2 2 1.866 0.981 2 2 2.124 1.968 2 2 2.227 1.779 2 2 2.224 1.979 1 1.028 0.821 2 2.195 2.076 2 1.977 1.871 2 2.195 2.076 2 1.946 1.884 7 5 4.93 5.83
e 2 1.624 1.556 2 1.762 1.72 2 1.869 1.691 2 1.869 2.66 2 2 1.856 2.071 2 1.856 2.071 2 2.016 1.677 2 2.148 1.835 2 2.148 1.835 2 2.148 1.835 2 2.148 1.835 2 2.1979 1.629 2 2.1979 1.629 2 2.018 1.874 2 2.018 1.874 2 2.017 2.729 3 2 2.172 1.951 3 2 2.142 1.913 2 2.142 1.913 2 2.124 1.968 2 2.227 1.779 2 2.227 1.779 2 2.224 1.979 1 1.028 0.821 2 1.851 1.777 2 2.104 1.805 2 1.851 1.777 2 2.1073 1.844 2 2.1073 1.784 2 2.1073 1.784
nethane 2 1.624 1.556 2 1.762 1.72 2 1.869 1.691 2 1.869 1.691 2 1.869 1.691 2 1.866 2.071 2 2.194 1.636 2 2.148 1.835 2 2.148 1.835 1e 2 2.148 1.835 2 2.1979 1.627 3 2 2.1979 1.627 2 2.196 2.073 3 2 2.1979 1.629 2 2.1979 1.629 2 2.198 2.073 3 2 2.198 2.073 4 2 2.018 1.874 2 2.172 1.951 3 2 2.172 1.951 4 2 2.172 1.951 5 2.227 1.779 1
name 2 1.624 1.556 2 1.762 1.72 2 1.762 1.72 2 1.869 1.691 2 1.869 1.691 2 1.856 2.071 2 1.856 2.071 2 2.194 1.636 2 2.148 1.835 2 2.148 1.835 2 2.1979 1.627 3.234 4.055 1.627 2 2.198 2.073 3 2 1.979 1.629 2 2.198 2.073 4.612 2 2.018 1.874 2 2.018 1.874 2 2.017 2.1269 3r 2 2.172 1.951 2 2.172 1.951 3 2 2.1440 2.1729 3 2 2.142 1.913 4 1.572 1.951
methane 2 1.624 1.556 methane 2 1.762 1.72 2 1.869 1.691 2 1.869 1.691 2 1.869 1.691 2 1.869 1.691 2 3.15 2.66 2 2.148 1.874 2 2.148 1.835 2 2.148 1.835 3 2 2.1979 1.629 2 2.1979 1.629 3 2 2.1979 1.629 4.612 2 2.196 2.073 3 2 2.1979 1.629 4.612 2 2.198 2.073 3 2 2.018 1.874 3 2 2.172 1.929 4 chene 2 2.172 1.951 ane 2 2.142 1.913 2 2.142 1.917 4 chene
methane 2 1.624 1.556 1.72 1.762 1.772 1.869 1.691 1.6
uoromethane 2 1.624 1.556 lane 2 1.762 1.72 de 2 1.869 1.691 lane 2 1.869 1.691 lane 2 1.856 2.071 correction 2 2.194 1.636 2 2.148 1.835 2 2.148 1.835 2 2.148 1.835 2 2.148 1.835 2 2.148 1.835 3.234 4.055 1.627 3.234 4.055 1.627 3.246 2 2.196 2.073 3.16de 2 2.198 2.073 3.16de 2 2.198 2.073 3.16de 2 2.198 2.073 3.16de 2 2.172 1.912 4.612 2 2.172 1.951 2.16doroethene 2 2.172 1.913 3.17doroethene
uoromethane 2 1.624 1.556 lane 2 1.762 1.72 de 2 1.869 1.691 lane 2 1.869 1.691 lane 2 1.866 2.071 coromethane 2 2.194 1.636 2 2.148 1.835 2 2.148 1.835 2 2.148 1.835 2 2.148 1.835 2 2.1979 1.627 3.234 4.055 1.627 2 2.1986 2.073 3.16de 2 2.1986 2.073 2 2.1986 2.073 3.16de 2 2.1986 2.073 3.16de 2 2.1986 2.073 4.612 2 2.018 1.874 cohol 2 2.172 1.951 1.44de 2 2.172 1.951 2 2.142 1.913<
uoromethane 2 1.624 1.556 lane 2 1.762 1.72 de 2 1.869 1.691 de 2 1.869 1.691 de 2 1.869 1.691 de 2 1.866 2.071 coromethane 2 2.194 1.636 2 2.148 1.835 2 2.148 1.835 2 2.148 1.835 2 2.148 1.835 3.234 4.055 1.627 2 2.196 2.073 alte 2 2.198 2.073 alte 2 2.018 1.874 cohol 2 2.172 1.951 butyl ether 2 2.2172 1.951 bethane 2 2.142 1.933 3 2 2.142 1.913 4 1.947 1.947 5 2.227 <
uoromethane 2 1.624 1.556 lane 2 1.762 1.72 de 2 1.869 1.691 lane 2 1.869 1.691 lane 2 1.869 1.691 lane 2 1.856 2.071 commethane 2 2.194 1.636 2 2.148 1.835 2 2.148 1.835 2 2.148 1.835 2 2.1979 1.627 2 2.1986 2.073 site 2 2.1986 2.073 libroide 2 2.1986 2.073 sity 2 2.1986 2.073 cohol 2 2.172 1.951 chioroethene 2 2.172 1.951 propane 2 2.142 1.913 propane 2 2.214 1.917 comethane 2 2.227 1.779 <
uoromethane 2 1.624 1.556 lane 2 1.762 1.72 de 2 1.869 1.691 lane 2 1.869 1.691 lane 2 1.856 2.071 coromethane 2 2.194 1.636 coromethane 2 2.148 1.835 cother 2 2.148 1.835 cethene 2 1.979 1.629 late 2 2.196 2.073 sate 2 2.198 2.073 cohol 2 2.14401 271.269 butyl ether 2 2.172 1.951 cethane 2 2.026 1.855 late 2 2.172 1.951 propane 2 2.142 1.913 loroethene 2 2.142 1.913 loroethene 2 2.227 1.779 comethane 2 2.201
nne 2 1.624 1.566 2 1.762 1.72 2 1.869 1.691 2 2 3.15 2.66 2 3.15 2.66 2 1.856 2.071 2 1.856 2.071 2 2.194 1.636 2 2.148 1.835 2 2.148 1.835 2 1.979 1.629 2 2.196 2.073 5 5.609 4.612 2 2.018 1.874 2 2.018 1.874 2 2.017 2.279 3ne 2 2.172 1.951 3 2 1.686 0.981 3 2 2.011 1.917 3 2 2.011 1.917
ne 2 1.624 1.556 1.72 1.762 1.72 2 1.869 1.691 2 1.856 2.071 2 1.856 2.071 3 2 2.194 1.636 2 2.148 1.835 2 2.148 1.835 2 2.148 1.827 5 3.234 4.055 2 1.979 1.629 2 2.196 2.073 5 5.609 4.612 2 2.018 1.874 2 2.018 1.874 2 2.017 1.951 ne 2 2.172 1.951 ne 2 2.142 1.913 2 1.686 0.981 2 1.761 1.917
2 1.624 1.556 2 1.762 1.72 2 1.869 1.691 2 1.869 2.06 2 3.15 2.66 2 1.856 2.071 2 2.016 1.677 2 2.194 1.636 2 2.148 1.835 2 2.148 1.835 2 1.866 1.627 2 1.979 1.629 2 1.979 1.629 2 2.196 2.073 5 5.609 4.612 2 2.018 1.874 2 2.018 1.874 2 2.017 2.279 2 2.172 1.951 2 2.026 1.855 2 1.701 1.572 2 1.686 0.981
2 1.624 1.556 2 1.762 1.72 2 1.869 1.691 2 1.869 2.06 2 3.15 2.66 2 1.856 2.071 2 2.016 1.677 2 2.194 1.636 2 2.148 1.835 2 2.148 1.835 2 1.866 1.627 2 1.979 1.629 2 1.979 1.629 2 2.196 2.073 5 5.609 4.612 2 2.018 1.874 2 2.018 1.874 2 2.172 1.951 2 2.172 1.951 2 2.026 1.855 2 1.701 1.572 2 2.142 1.913
2 1.624 1.556 2 1.762 1.72 2 1.869 1.691 2 1.869 2.06 2 3.15 2.66 2 1.856 2.071 2 2.016 1.677 2 2.194 1.636 2 2.148 1.835 2 2.148 1.835 2 1.866 1.627 2 1.979 1.629 2 1.979 1.629 2 2.196 2.073 5 5.609 4.612 2 2.018 1.874 2 2.018 1.874 2 2.517 2.279 2 2.172 1.951 2 2.026 1.855 2 1.701 1.572
2 1.624 1.556 2 1.762 1.72 2 1.869 1.691 2 1.856 2.071 2 1.856 2.071 2 2.194 1.636 2 2.148 1.835 2 2.148 1.827 2 2.148 1.627 2 2.196 1.627 2 1.979 1.629 2 2.196 2.073 5 5.609 4.612 2 2.018 1.874 2 2.14401 271.269 2 2.172 1.951 2 2.172 1.951 2 2.026 1.855
2 1.624 1.556 2 1.762 1.72 2 1.869 1.691 2 1.856 2.071 2 1.856 2.071 2 2.016 1.677 2 2.194 1.636 2 2.148 1.835 2 2.148 1.835 2 1.866 1.627 2 1.866 1.627 2 1.979 1.629 2 1.979 1.629 2 2.196 2.073 5 5.609 4.612 2 2.018 1.874 2 2.14401 271.269 2 2.517 2.279 2 2.172 1.951
methane 2 1.624 1.556 2 1.762 1.72 2 1.869 1.691 2 1.856 2.071 2 1.856 2.071 2 1.856 2.071 2 2.194 1.636 2 2.148 1.835 3 2 2.148 1.835 3 2 1.866 1.627 3 2 1.866 1.627 4 2 1.979 1.629 3 2 1.979 1.629 4 2 2.196 2.073 3 2 2.196 2.073 4 2 2.018 1.874 4 200 214.401 271.269 9ther 2 2.517 2.279
methane 2 1.624 1.556 2 1.762 1.72 2 1.869 1.691 2 1.856 2.071 2 1.856 2.071 2 1.856 2.071 2 2.194 1.636 2 2.148 1.835 3 2 1.866 1.627 3 2 1.866 1.627 3 3.234 4.055 4 2 1.979 1.629 2 2.196 2.073 3 2 2.196 2.073 4 2 2.018 1.874 4 200 214,401 271,269
methane 2 1.624 1.556 methane 2 1.762 1.72 2 1.869 1.691 2 1.856 2.071 2 1.856 2.071 2 2.194 1.636 2 2.148 1.835 3 2 2.148 1.835 3 3.234 4.055 4 1.629 1.629 2 2.196 2.073 3 2 2.196 2.073 4 5 5.609 4.612 4 2 2.018 1.874
methane 2 1.624 1.556 2 1.762 1.72 2 1.899 1.691 2 1.856 2.071 2 1.856 2.071 2 2.194 1.636 2 2.148 1.835 3 2 2.148 1.835 3 2 1.866 1.627 4 1.629 1.629 5 3.234 4.055 6 2.196 2.073 1 2 2.196 2.073 2 3.609 4.612
methane 2 1.624 1.556 methane 2 1.762 1.72 2 1.869 1.691 2 1.856 2.071 2 1.856 2.071 2 2.194 1.636 2 2.148 1.835 3 2.148 1.827 3 3.234 4.055 4 1.629 2.073 2 2.196 2.073
methane 2 1.624 1.556 methane 2 1.762 1.72 2 1.869 1.691 2 1.856 2.071 2 1.856 2.071 2 2.194 1.636 2 2.148 1.835 3 2.148 1.835 3 2.334 4.055 4 1.629 1.629
luoromethane 2 1.624 1.556 hane 2 1.762 1.72 ide 2 1.869 1.691 hane 2 3.15 2.68 ine 2 1.856 2.071 loromethane 2 2.016 1.677 2 2.194 1.636 2 2.148 1.835 vethene 2 1.866 1.627 5 3.234 4.055
luoromethane 2 1.624 1.556 hane 2 1.762 1.72 ide 2 1.869 1.691 hane 2 3.15 2.68 ina 2 1.856 2.071 loromethane 2 2.016 1.677 costhene 2 2.148 1.835 vethene 2 1.866 1.627
luoromethane 2 1.624 1.556 hane 2 1.762 1.72 ide 2 1.869 1.691 hane 2 3.15 2.66 ine 2 1.856 2.071 loromethane 2 2.016 1.677 2 2.194 1.636 2 2.148 1.835
luoromethane 2 1.624 1.556 hane 2 1.762 1.72 ide 2 1.869 1.691 hane 2 3.15 2.66 ine 2 1.856 2.071 ioromethane 2 2.016 1.677 2 2.194 1.636
methane 2 1.624 1.556 2 1.762 1.72 2 1.869 1.691 2 3.15 2.66 2 1.856 2.071 2 2.016 1.677
methane 2 1.624 1.556 1.762 1.772 1.869 1.691 2 3.15 2.66 2.071
methane 2 1.624 1.556 2 1.762 1.72 2 1.869 1.691 2 3.15 2.66
methane 2 1.624 1.556 2 1.762 1.72 2 1.869 1.691
methane 2 1.624 1.556 2 1.762 1.72
2 1.624 1.556
Compound Level MDL1 MDL2 MDL3

_	86	85	84	83	82	81	79	78	77	76	74	73	72	71	70	69	68	67		65	2	63	62	61	8	59	58	57	56	55	<u>გ</u>		51	8	40
Data File Ids per level:	86 Cyclohexane	85 Naphthalene	84 Hexachlorobutadiene	83 1,2,3-Trichiorobenzene	1,2,4-Trichlorobenzene	1,2-Dibromo-3-Chloropropane	1,2-Dichlorobenzene	78 n-Butylbenzene	1,4-Dichlorobenzene	1,3-Dichlorobenzene	p-Isopropyttoluene	sec-Butylbenzene	1,2,4-Trimethylbenzene	tert-Butylbenzene	1,3,5-Trimethylbenzene	4-Chlorotoluene	2-Chlorotoluene	n-Propyibenzene	1,1,2,2-Tetrachloroethane	Bromobenzene	4-Bromofluorobenzene	1,2,3-Trichloropropane	Isopropylbenzene	Bromoform	60 Styrene	o-Xylene	m,p-Xylene	Ethylbenzene	56 1,1,1,2-Tetrachloroethane	Chlorobenzene	1,2-Dibromoethane	Dibromochloromethane	2-Hexanone	50 Tetrachloroethene	1,3-Dichloropropane
200 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	5	2	5	5	2	2	2	2	2	N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	4	2	2	2	2	2	2	2	2
V62986 V62742 V64078 V64990 V64982	1.85	0.59	2.35	1.17	1.48	1.51	2.21	2.07	2.17	2.04	2.23	2.2	2.25	2.16	2.13	2.09	2.02	2.19	2.01	2.09	2.23	2.18	1.96	1.9	2.16	2.09	4.21	2.08	2	2.01 .	1.96	1.93	2.16	2.423	2.057
V62987 V62743 V64079 V64991 V64983	1.73	0.49	2.16	1.55	1.85	1.49	2.21	2.07	2.01	1.86	2.28	2.23	2.33	2.26	2.27	2.15	2.12	2.3	2.2	2.13	2.21	2.3	2.07	1.99	2.09	2.08	4.32	2.17	2.07	2.07	1.73	1.82	1.87	2.253	1.918
V62988 V62744 V64080 V64992 V64984	1.58	0.52	1.64	1.49	2.17	1.24	2	1.61	1.82	1.78	1.86	1.73	1.88	1.68	1.76	1.76	1.72	1.86	1.96	1.87	1.79	1.89	1.72	1.67	1.79	1.73	3.45	1.75	1.76	1.92	1.76	1.56	1.71	1.776	1.695
V62989 V62745 V64081 V64993 V64985	2	0.32	2.02	1.43	2	1.43	1.99	1.88	2.1	1.94	1.88	2.02	2.13	1.95	1.91	1.87	1.95	2.04	1.89	1.92	1.83	1.75	1.95	1.81	1.91	1.91	3.96	1.94	1.71	1.87	1.9	1.72	1.76	2.381	2.032
V62990 V62747 V64082 V64994 V64986	1.42	0.39	1.88	1.8	2.18	1.2	1.94	1.6	1.94	1.77	1.76	1.74	1.89	1.69	1.81	1.82	1.84	1.79	2	1.79	1.86	1.75	1.82	1.68	1.81	1.8	3.49	1.76	1.77	1.83	1.78	1.5	1.69	1.851	1.731
V62991 V62748 V64083 V64995 V64987	1.97	0.39	1.82	1.81	2.3	1.34	1.98	1.8	1.99	1.71	2.11	2.06	1.97	2.01	2.08	2	1.97	2.15	2.05	2.08	1.85	2.18	1.96	1.67	2.06	2.06	3.88	2.01	1.97	2.08	1.96	1.84	1.95	2.542	2.242
V62992 V62749 V64084 V64996 V64988	2.04	0.38	2.25	1.78	2.35	1.44	2.09	1.87	2.07	2.12	2.27	2.05	2.32	2.23	2.11	2.18	2.16	2.31	2.24	2.43	2.16	1.92	2.24	1.98	2.17	2.01	4.31	2.02	1.98	1.9	1.58	1.44	1.57	1.97	1.67
2	0.233	0.095	0.243	0.238	0.303	0.122	0.112	0.192	0.114	0.151	0.218	0.200	0.197	0.241	0.187	0.167	0.153	0.205	0.127	0.212	0.199	0.222	0.167	0.145	0.160	0.144	0.365	0.158	0.143	0.099	0.139	0.189	0.196	0.303	0.217
	0.733	0.299	0.763	0.748	0.952	0.382	0.352	0.602	0.359	0.476	0.686	0.628	0.619	0.755	0.587	0.525	0.481	0.643	0.398	0.666	0.624	0.697	0.525	0.454	0.504	0.452	1.147	0.495	0.449	0.311	0.436	0.592	0.615	0.951	0.681
	2	O	2	СЛ	S	O1	2	Ŋ	2	N	ڻ ت	5	5	N	O1	2	2	5	2	2	2	2	5	2	2	2	2	Ö	2	2	2	2	5	2	2

SDG#:

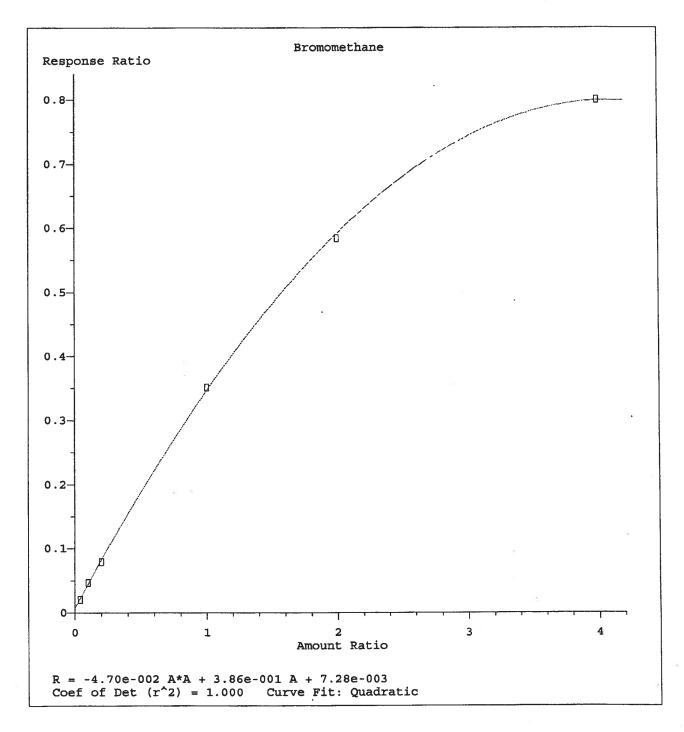
10419

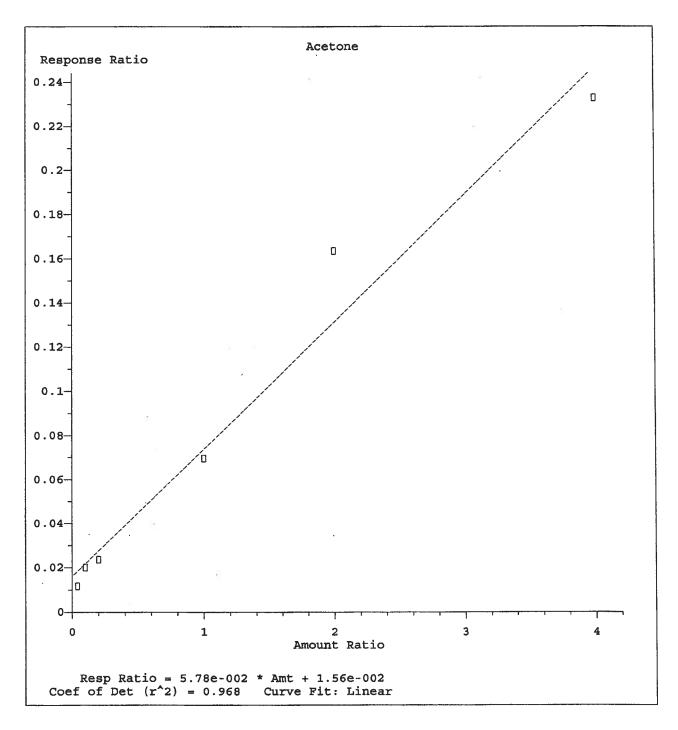
LAB PROJECT #: 09-3381

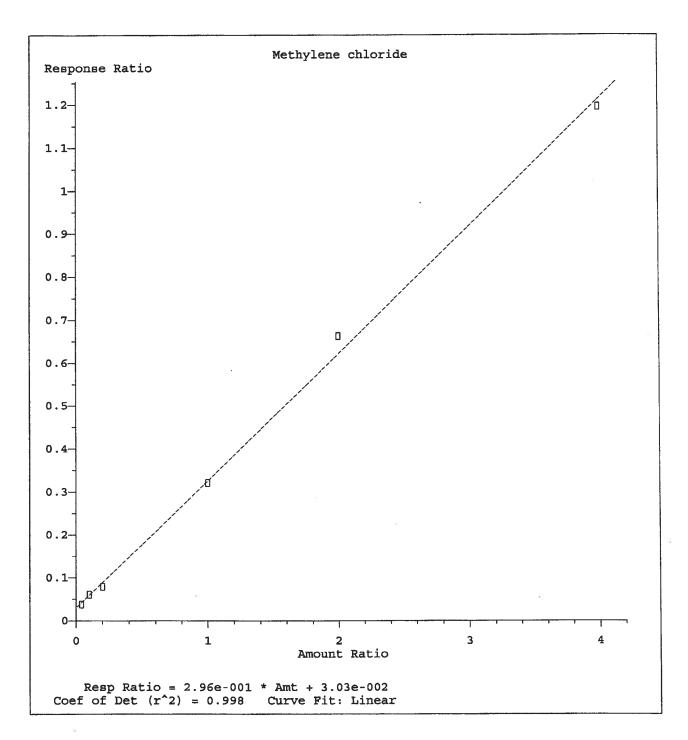
CLIENT: Lu Engineers

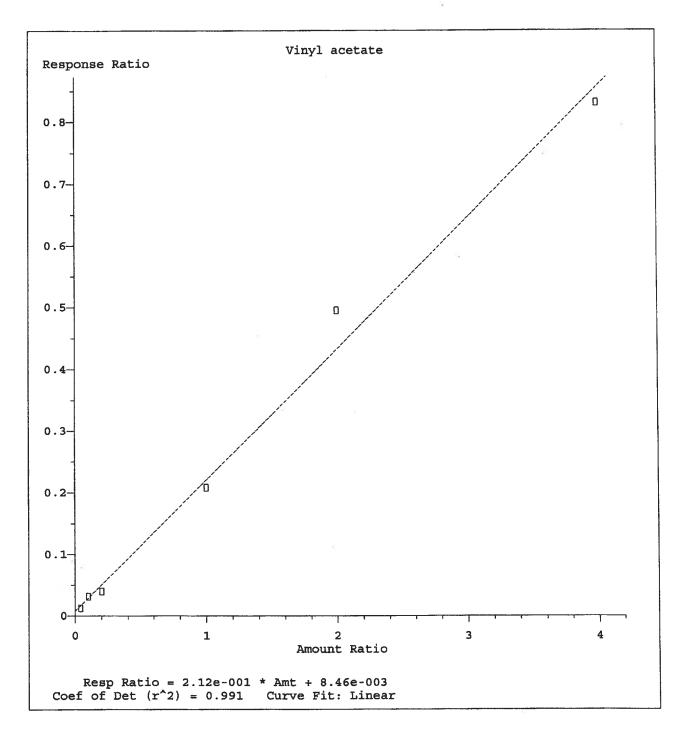
PROJECT NAME: Clarkson ERP Site

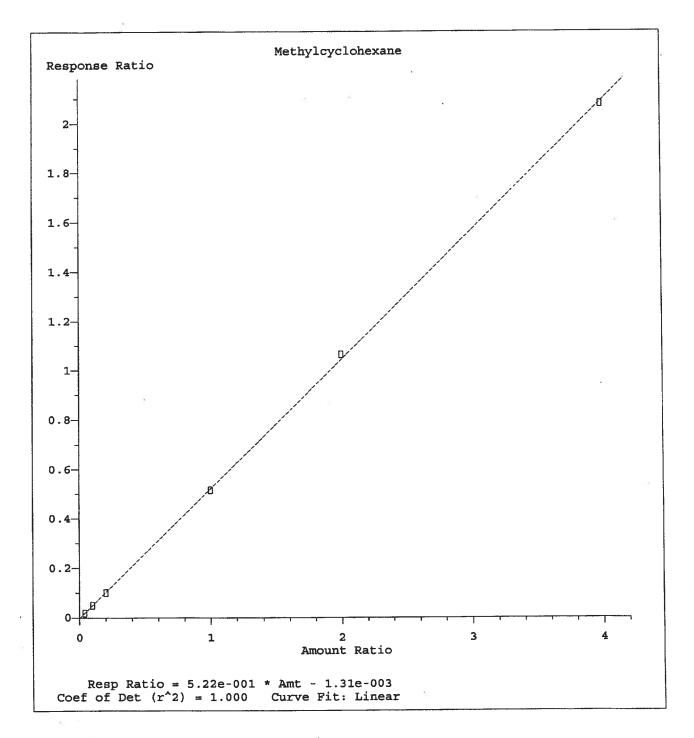
BATCH COMPLETE:

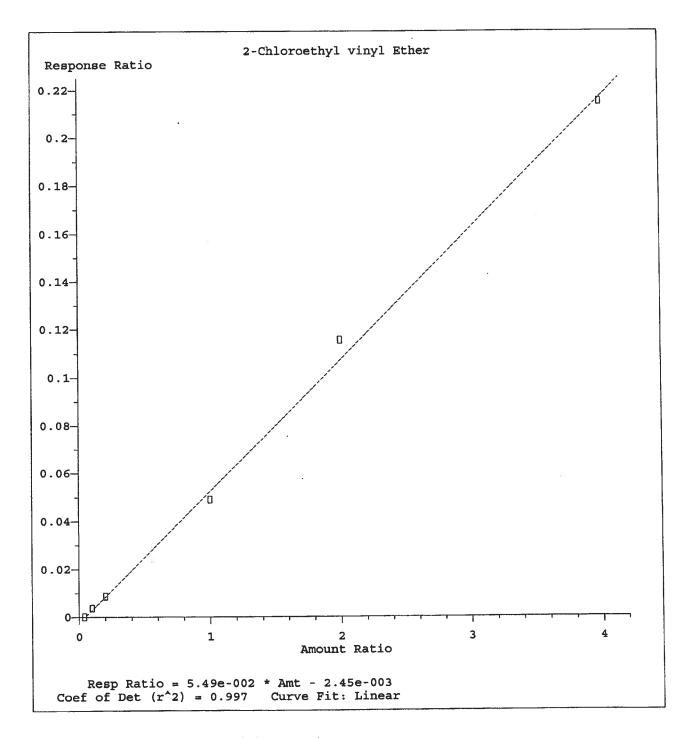

DATE: 9/24/2009

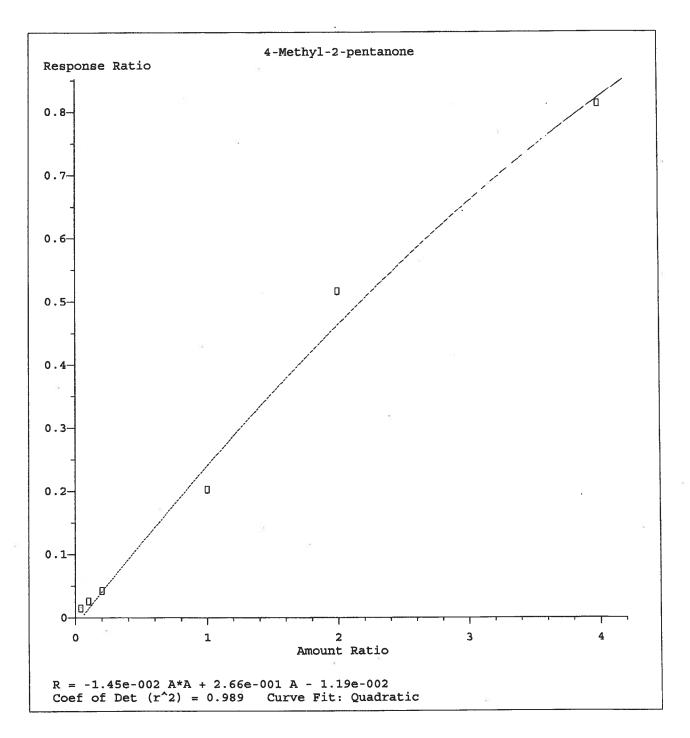

DATE DUE: Cat-B due 10/08/09


9/17/2009

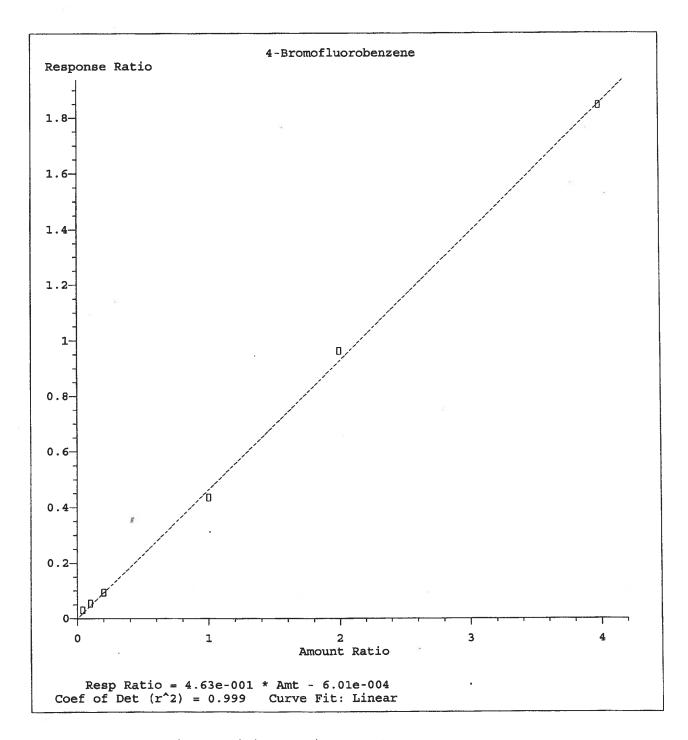

PROTOCOL: SW846

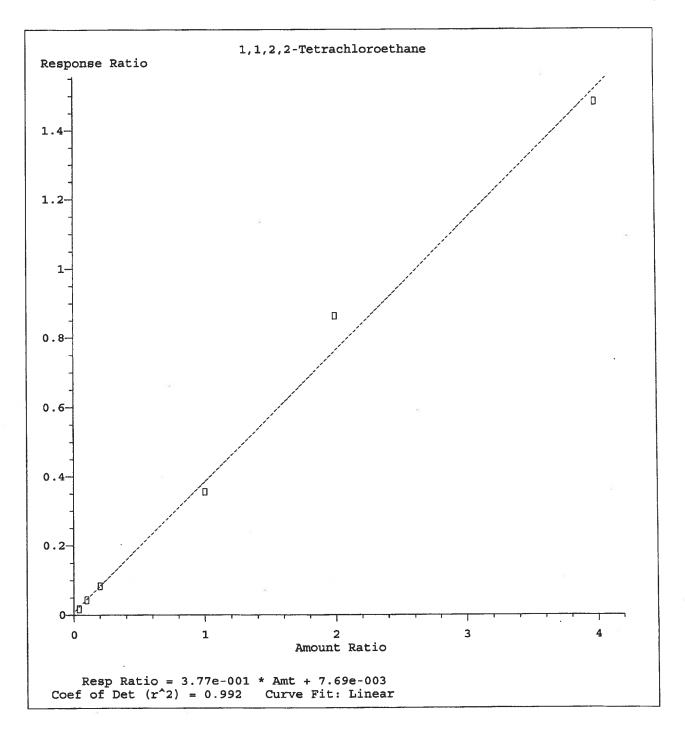

LAB.SAMPLE#	FIELD ID	MATRIX	REQUESTED ANALYSIS	DATE SAMPLED	DATE REC'D
10419 QC	MW-1	Water	8260,8270,8081,8082,TAL Metals		9/17/2009
10420	MW-3	Water	8260,8270,8081,8082,TAL Metals	9/16/2009	
	MW-3 Field		1000000		0,2.,2000
10421	Duplicate	Water	8260,8270,8081,8082,TAL Metals	9/16/2009	9/17/2009
10422	MW-4	Water	8260,8270,8082,TAL Metals	9/16/2009	
10423	Field Blank	Water	8260,8270,8081,8082,TAL Metals		9/17/2009
10424	Trip Blank	Water	8260	9/16/2009	
10425	MW-2	Water	8260,8270,8082,TAL Metals	9/17/2009	
		17			
			8260=TCL+STARs+TICs		
(3			8270=TCL+TICs		
7.17					

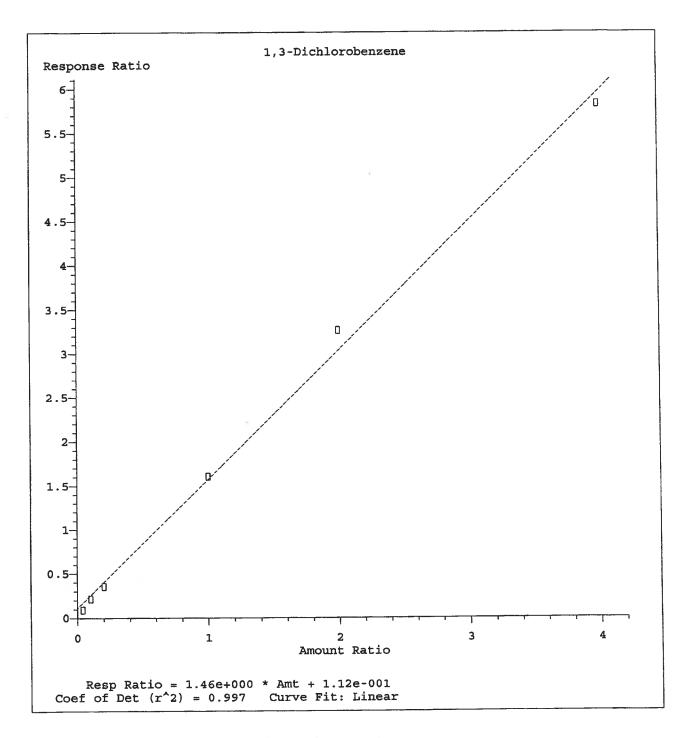


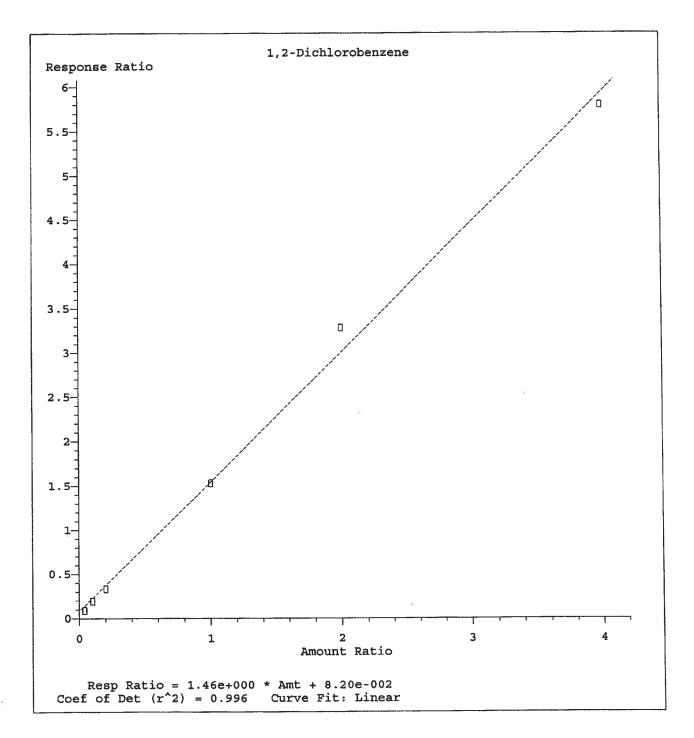


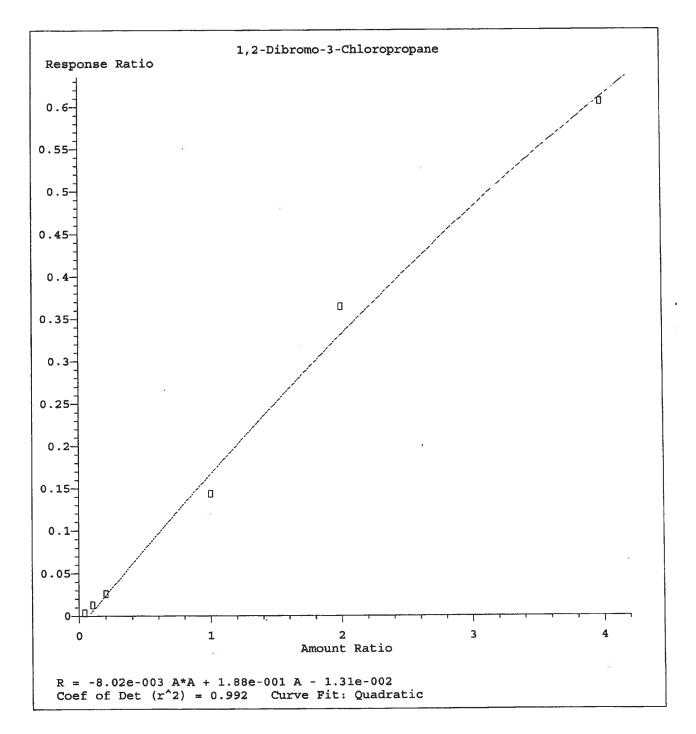


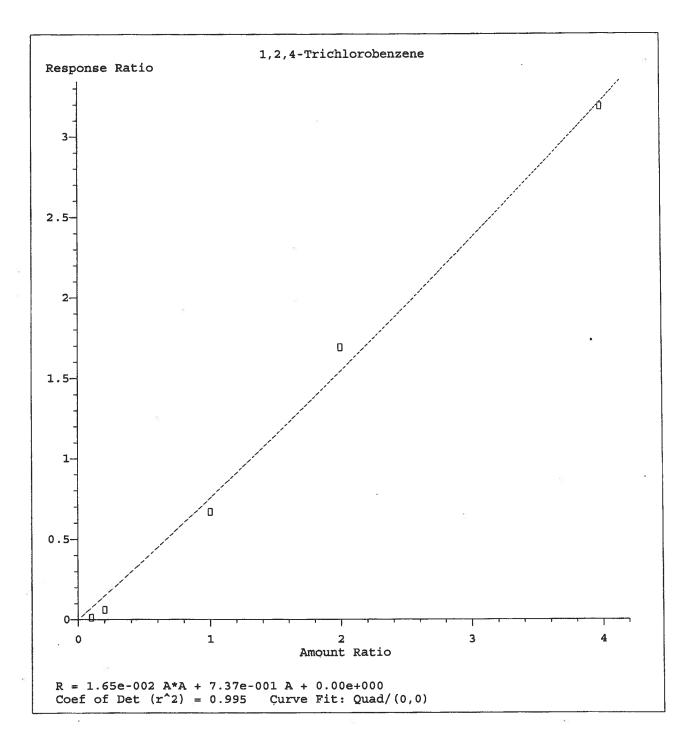


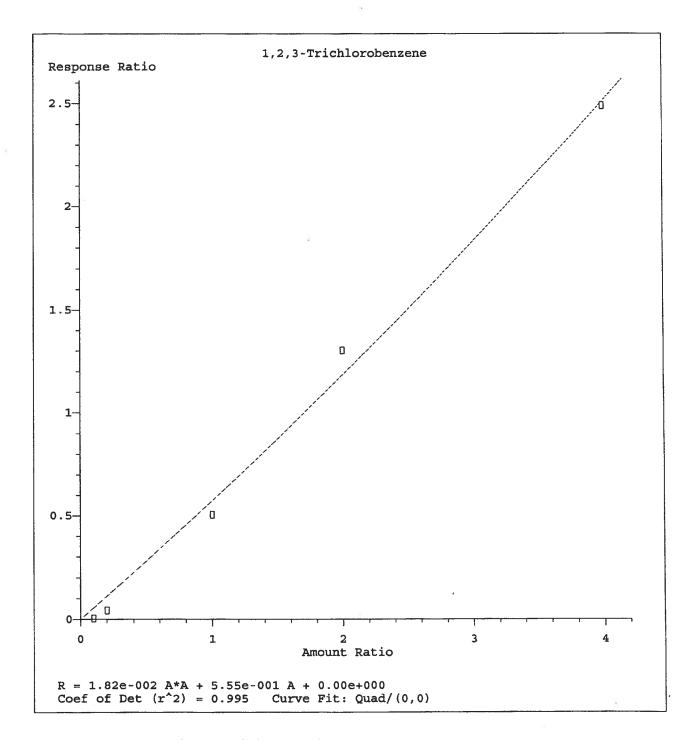


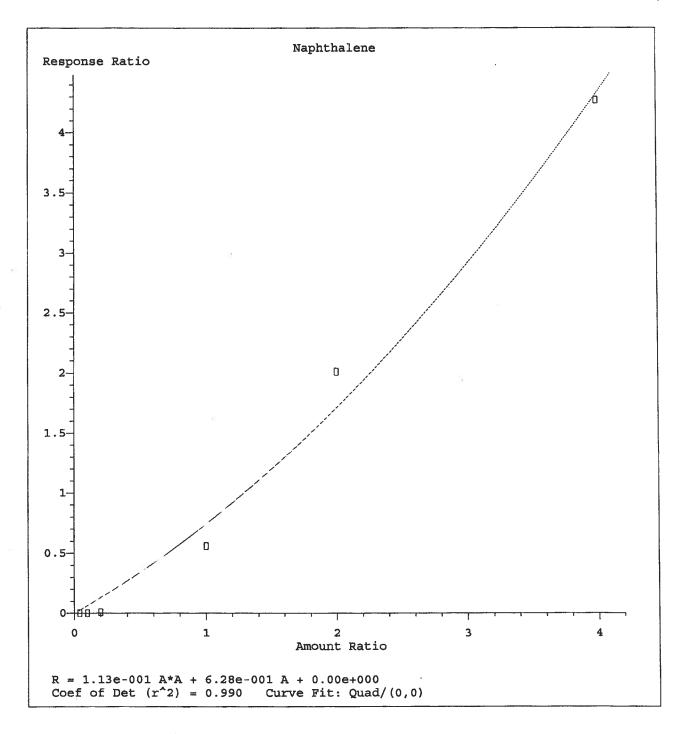












Method Name: C:\msdchem\1\METHODS\092409.M Calibration Table Last Updated: Sat Oct 03 08:04:31 2009

Method Name: C:\msdchem\1\METHODS\092409.M Calibration Table Last Updated: Sat Oct 03 08:04:31 2009

Method Name: C:\msdchem\1\METHODS\092409.M Calibration Table Last Updated: Sat Oct 03 08:04:31 2009

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Pesticides Analysis Report for Non-potable Water

Client: Lu Engineers

Client Job Site: Clarkson ERP

Field Location: Field ID Number: Client Job Number: 40503 MW-1

Sample Type: Water

SDG Group:

10419

Lab Project Number: 09-3381 Lab Sample Number: 10419

Date Sampled:
Date Received:
Date Analyzed: Date Reissued: 09/16/2009 09/17/2009 09/22/2009 09/20/2010

0.500 0.219 43.8 0.500 0.353 0.500 0.225 45.0 0.500 0.353 0.500 0.247 49.4 0.500 0.361 0.500 0.286 57.2 0.500 0.412 0.500 0.293 58.6 0.500 0.387	in ug/L	<u>8</u>	in ug / L	Recovery	in ug / L	in ug / L	MSD Percent Recovery
ND< 1.00 ND< 1.00 0.500 0.219 43.8 0.500 0.353 ND< 1.00 0.500 0.225 45.0 0.500 0.351 ND< 1.00 0.500 0.247 49.4 0.500 0.361 ND< 1.00 0.500 0.286 57.2 0.500 0.412 ND< 1.00 0.500 0.293 58.6 0.500 0.387	ND< 1.00	\dashv	0.198	39.6	0.500	0.324	64.7
ND< 1.00 0.500 0.225 45.0 0.500 0.351 ND< 1.00 0.500 0.247 49.4 0.500 0.361 ND< 1.00 0.500 0.286 57.2 0.500 0.412 ND< 1.00 0.500 0.293 58.6 0.500 0.387	nlor ND< 1.00		0.219	43.8	0.500	0.353	70.6
ND< 1.00 0.500 0.247 49.4 0.500 0.361 ND< 1.00 0.500 0.286 57.2 0.500 0.412 ND< 1.00 0.500 0.293 58.6 0.500 0.387	ND~ 1.00	_	0.225	45.0	0.500	0.351	70.1
ND< 1.00 0.500 0.286 57.2 0.500 0.412 ND< 1.00 0.500 0.293 58.6 0.500 0.387	ND< 1.00		0.247	49.4	0.500	0.361	72.3
ND< 1.00 0.500 0.293 58.6 0.500 0.387	ND< 1.00		0.286	57.2	0.500	0.412	82.5
	ND< 1.00		0.293	58.6	0.500	0.387	77.3
					s		

ELAP Number 10958

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Method: EPA 8082

^{*} Outside QC Limits for MS Percent Recovery.

4C PCB METHOD BLANK SUMMARY

SAMPLE NO.

narrow bore

Water PB 9/23

Lab Name:	Paradigm Environmental Services	Client Name: Lu Engineer	rs e
Lab Project #:	<u>09-3381</u> Client Project #: 4	10503 SDG No	.: 10419
(e)	Client Project Name: Clar	kson ERP Site	
Lab File ID:	092309B\016F1901.D	Date Analyzed:	9/24/2009
	Extraction(type): MeCl2->Hexane	Time Analyzed:	5:29
-Matrix: (soil/w	ater) <u>water</u>	Instrument ID:	Instrument 1
	Date Extracted: 9/23/2009	GC Column: ECD1 A	ID(mm): 0.32

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

Sulfur Cleanup(Y/N):

Ν

CLIENT	LAB	DATE
SAMPLE NO.	SAMPLE ID	ANALYZED
01 N/A	Water LCS 9/23	9/24/2009
02 MW-1	10419	9/24/2009
03 MW-1MS	10419MS	9/24/2009
04 MW-1MSD	10419MSD	9/24/2009
05 MW-3	10420	9/24/2009
9		
06 MW-3/Field Duplicate	10421	9/24/2009
07 MW-4	10422	9/24/2009
08 Field Blank	10423	9/24/2009
09 MW-2	10425	9/24/2009
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		

COMMENTS:		
		· · · · · · · · · · · · · · · · · · ·

Jodi Zimmerman

From:

"Val Miller" <vmiller@paradigmenv.com>

Date:

Tuesday, October 05, 2010 4:07 PM "Jodi Zimmerman" <ezimmer976@msn.com>

Subject:

RE: SDG#10419, 09-3381-response and reissued/additional pages attached

Hi Jodi, you are correct. We do not record the preservation check other than if it is found to be non-compliant (i.e. pH>2 for a metals sample). Then a note will be made on the chain of custody in the lower left hand box that the sample was preserved to compliance at the lab. (i.e. HNO3 added to metals bottle at Lab.). Hope this helps you out. Have a nice evening, Val

Valentina M. Miller

Environmental Data Manager

179 Lake Avenue Rochester, NY 14608

OFFICE: 585.647.2530 FAX: 585.647.3311

vmiller@paradigmenv.com www.paradigmenv.com

CONFIDENTIALITY NOTICE

This e-mail transmission may contain confidential or legally privileged information which is intended only for the use of the individual or entity named on this e-mail. If you are not the intended recipient you are hereby notified that any disclosure, copying, distribution or reliance upon contents of this e-mail is strictly prohibited. If you have received this e-mail in error, please notify us immediately by telephone, (585) 647-2530.

From: Jodi Zimmerman [mailto:ezimmer976@msn.com]

Sent: Tuesday, October 05, 2010 10:32 AM

To: Val Miller

Subject: Re: SDG#10419, 09-3381-response and reissued/additional pages attached

Hi Val,

Thank you for getting back to me and answering my questions so thoroughly. I do want to be very clear on one point however; your responses have led me to the conclusion that as far a pH is concerned, you do not record the pH of the water samples but at what pH do you 'note to the contrary'?

Regards,

Jodi Zimmerman Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170 (716) 655-6530

Data Usability Summary Report

Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

Town of Clarkson
Paradigm Environmental Services Inc. SDG#2964
July 22, 2010
Sampling date: 02/8/10

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 1514 Davis Rd. West Falls, NY 14170

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Lu Engineers, project located in the Town of Clarkson, SDG#2964, Paradigm # 10-0655, submitted to Vali-Data of WNY, LLC on May 17, 2010. The laboratory performed the analyses using USEPA methods, 8260B (Volatile Organics), 8270C (Semi-Volatile Organics), 8081 (Pesticides), 8082 (PCBs), 6010B (Inorganics) and 7471A (Mercury).

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Method Blank, Field Duplicate Sample Precision, Compound Quantitation, Initial Calibration and Continuing Calibration.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met except the 'Volatile Analysis-Spike Recovery Limits' did not contain the target analytes spiked in the Laboratory Control Samples or Matrix Spikes. An updated page is attached.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

INTERNAL STANDARD (IS)

The IS met criteria.

SURROGATE SPIKE RECOVERIES

Surrogate recoveries were acceptable.

METHOD BLANK

All criteria were met except Acetone, Naphthalene and 1,2,3-Trichlorobenzene were detected above the MRL and should be recorded as detected in Soil LRB 02/16 and qualified as estimated in the associated samples and spikes where detected.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met except Carbon disulfide, Methylcyclohexane, 1,2-Dibromoethane and 1,1,2,2-Tetrachloroethane were detected in CS-GP-18-07D and not CS-GP-18-07.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met.

COMPOUND QUANTITATION

All criteria were met except several target analytes were detected in the samples but not recorded.

INITIAL CALIBRATION

All criteria were met except the %RSD of Acetone and Methylene Chloride were outside ASP outer QC limits. These target analytes should be qualified as estimated in all samples, blanks and spikes. Alternate forms of regression were used on these target analytes (see attached pages).

CONTINUING CALIBRATION

All criteria were met except the %RSD of Acetone and Methylene Chloride were outside ASP outer QC limits. These target analytes should be qualified as estimated in all samples, blanks and spikes. Alternate forms of regression were used on these target analytes (see attached pages).

GC/MS PERFORMANCE CHECK

All criteria were met.

SEMIVOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Field Duplicate Sample Precision, Laboratory Control Samples, MS/MSD, Compound Quantitation and Initial Calibration.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met except Bis(2-ethylhexyl) phthalate was detected in CS-GP-18-07D and not CS-GP-18-07.

LABORATORY CONTROL SAMPLES

All criteria were met except several target analytes were detected but not recorded.

MS/MSD

All criteria were met except several target analytes were detected but not recorded.

COMPOUND QUANTITATION

All criteria were met except Fluoranthene was detected in sample CS-GP-16-8.5 as a TIC and should have been recorded as detected on the Form 1.

INITIAL CALIBRATION

All criteria were met except the %RSD of Benzaldehyde was outside ASP outer QC limits and should be qualified as estimated in all samples, blanks and spikes.

The %RSD was outside QC limits for Pentachlorophenol. The RRF of Indeno(1,2,3-cd)pyrene was outside QC limits. ASP allows for up to 4 target analytes to be outside QC limits as long as they are within the outer limits. No further action is required.

Paradigm used alternate forms of regression on all target analytes whose %RSD was >15%. Paradigm used the internal standard, Perylene- d_{12} , as reference for Atrazine, Benzaldehyde, Caprolactum, Acetophenone and Biphenyl. ASP does not associate these target analytes with Perylene- d_{12} .

CONTINUING CALIBRATION

All criteria were met except the RRF of Indeno(1,2,3-cd)pyrene was outside QC limits. ASP allows for up to 4 target analytes to be outside QC limits without further action.

GC/MS PERFORMANCE CHECK

All criteria were met.

PESTICIDES

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD

- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Method Blank and Field Duplicate Sample Precision.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met

HOLDING TIMES

All holding times were met.

SURROGATE SPIKE RECOVERIES

All criteria were met within ASP QC limits.

METHOD BLANK

All the criteria were met except Endrin Aldehyde was detected above the MDL, below the reporting limit and should be qualified as estimated in the blank and samples with detects.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met except 4,4'-DDD and Endosulfan II were detected in CS-GP-18-07 and not in CS-GP-18-07D. 4,4'-DDE was detected in CS-GP-18-07D but not in CS-GP-18-07.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met.

Paradigm used linear regression on all target analytes and surrogates.

CONTINUING CALIBRATION

All criteria were met except the %D for Endrin in Pest CCV 0.100 was outside ASP QC limits off ECD2 B. Since ECD2 B was used for confirmation purposes only, no further action is required. All other target analytes fell within ASP QC limits.

POLYCHLORINATED BIPHENYLS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Method Blank and Compound Quantitation.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

SURROGATE SPIKE RECOVERIES

All criteria were met within ASP QC limits.

METHOD BLANK

All the criteria were met except Aroclor 1016 was detected above the MDL, below the reporting limit and should be qualified as estimated in the blank and samples in which it was detected.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met.

COMPOUND QUANTITATION

All criteria were met except Aroclor 1016 was detected in the samples above the MDL, below the MRL and should be qualified as estimated. Aroclor 1260 was detected above the MDL, below the MRL in sample CS-GP-07-07 and should be qualified as estimated.

INITIAL CALIBRATION

All criteria were met.

Paradigm used linear regression on all target analytes and surrogates.

CONTINUING CALIBRATION

All criteria were met.

METALS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Method Blank
- -Laboratory Control Sample
- -MS/MSD
- -Duplicate
- -Field Duplicate
- -Serial Dilution
- -Compound Quantitation
- -Calibration

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Method Blank, MS/MSD and Duplicate.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

METHOD BLANK

All criteria were met except target analytes Al, Fe and Mg were detected above the MRL in the Preparation blank, Blk 2/16 s. The concentration of these target analytes were >10x blank result so no further action is required. The target analytes Fe and Mg were detected above the MRL in the Preparation blank, Blk 2/16 s #2. The concentration of these target analytes were >10x blank result so no further action is required.

LABORATORY CONTROL SAMPLE

All criteria were met.

MS/MSD

All criteria were met except the %Rec of Al, Sb, Ba, Fe, Mn and K were outside ASP QC limits in CS-GP-01-03MS. The sample concentrations were > 4X spike amount for Al and Fe, therefore no further action is required for these target analytes.

No post digestion spike was performed thus the remaining target analytes should be qualified with an 'N'.

The %Rec of AI, Ca, Sb, Fe, Mg, Mn and K were outside ASP QC limits in CS-GP-20-09MS. The sample concentrations were > 4X spike amount for AI, Ca, Mg, Mn and Fe therefore no further action is required for these target analytes.

No post digestion spike was performed thus the remaining target analytes should be qualified with an ${\rm 'N'}$.

Several target analytes were qualified with an 'M' due to the %Rec being outside lab QC limits.

DUPLICATE

All criteria were met except the %D was outside ASP QC limits for all target analytes except Sb, Cd, Cr, Se, Ag, Tl and Zn in CS-GP-01-03dup. The target analytes which fell outside QC limits should be qualified with a '*'.

The %D was outside ASP QC limits for Ca, Cr and Cu in CS-GP-20-09dup. These target analytes should be qualified with a '*'.

Several target analytes were qualified with a 'D', due to the %D being outside lab QC limits.

FIELD DUPLICATE

All criteria were met.

SERIAL DILUTION

No serial dilution was performed.

COMPOUND QUANITATION

All criteria were met.

CALIBRATION

All criteria were met.

MERCURY

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Method Blank
- -Laboratory Control Samples
- -MS/MSD
- -Duplicate
- -Field Duplicate
- -Compound Quantitation
- -Calibration

The items listed above were technically in compliance with the method and SOP criteria with any exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use but are qualified below in Compound Quantitation.

Paradigm Environmental only records target analytes detected at a level ½ MRL or greater. Some target analytes may have been detected above the MDL, below ½ MRL and should be qualified as estimated.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY

All criteria were met.

HOLDING TIMES

All holding times were met.

METHOD BLANK

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met.

DUPLICATE

All criteria were met. Hg was qualified with a 'D' due to the %D being outside lab QC limits.

FIELD DUPLICATE

All criteria were met.

COMPOUND QUANTITATION

All criteria were met except Hg was detected in all the samples above the MDL, below the MRL and should be qualified as estimated.

CALIBRATION

All criteria were met.

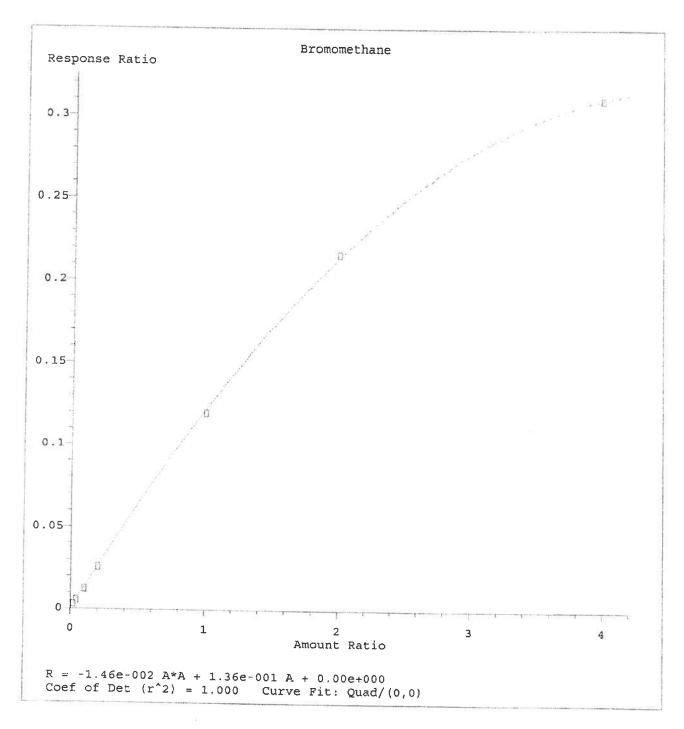
GENERAL CHEMISTY

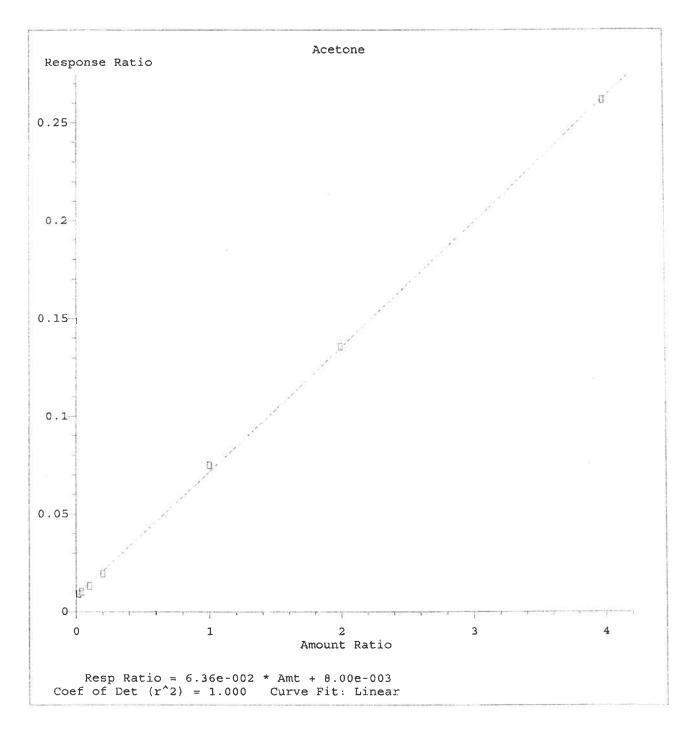
The following items/criteria were reviewed for this analytical suite:

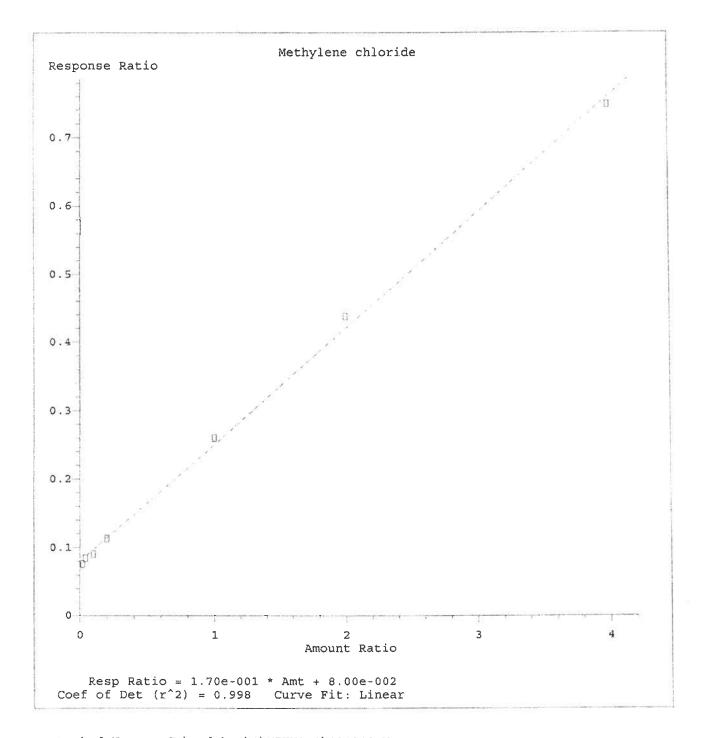
- Percent Moisture

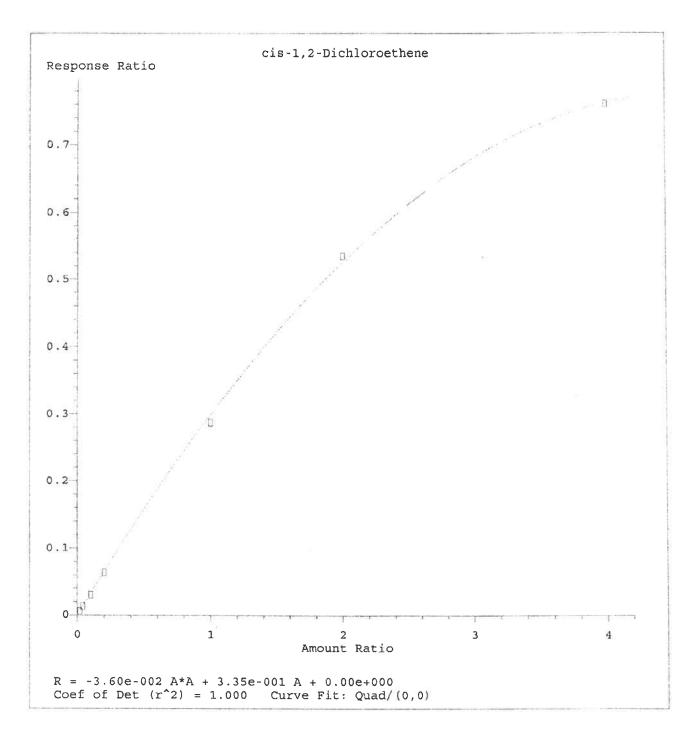
The items listed above were technically in compliance with the method and SOP criteria with any exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above.

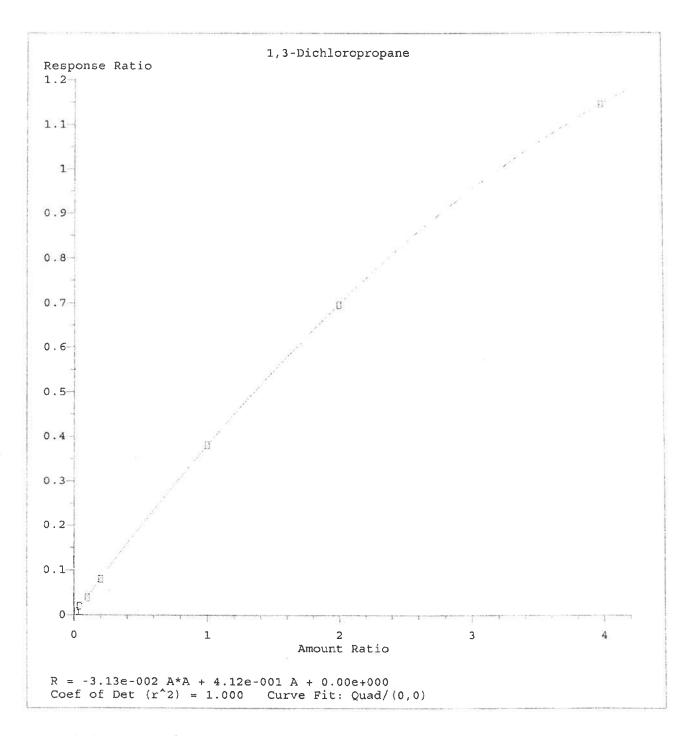
Percent Moisture

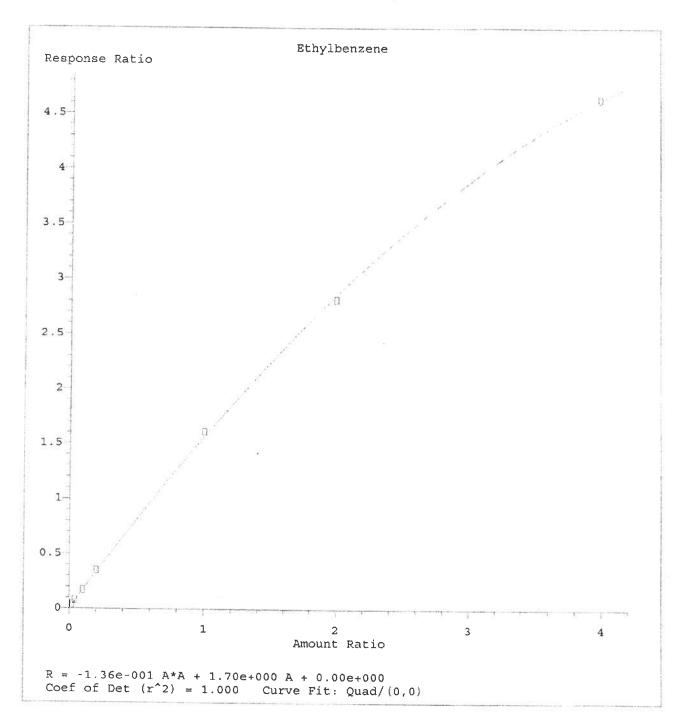

The percent moisture was recorded on a prep log but no Form 1's were submitted.

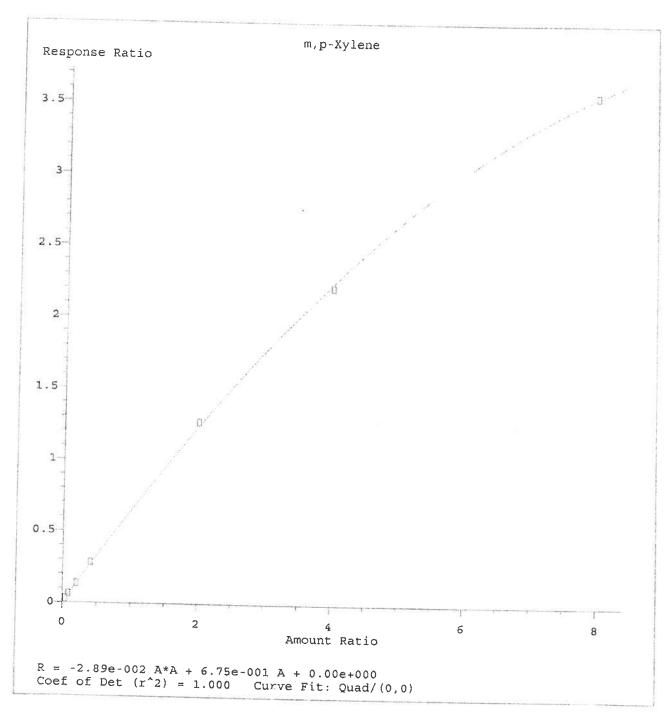


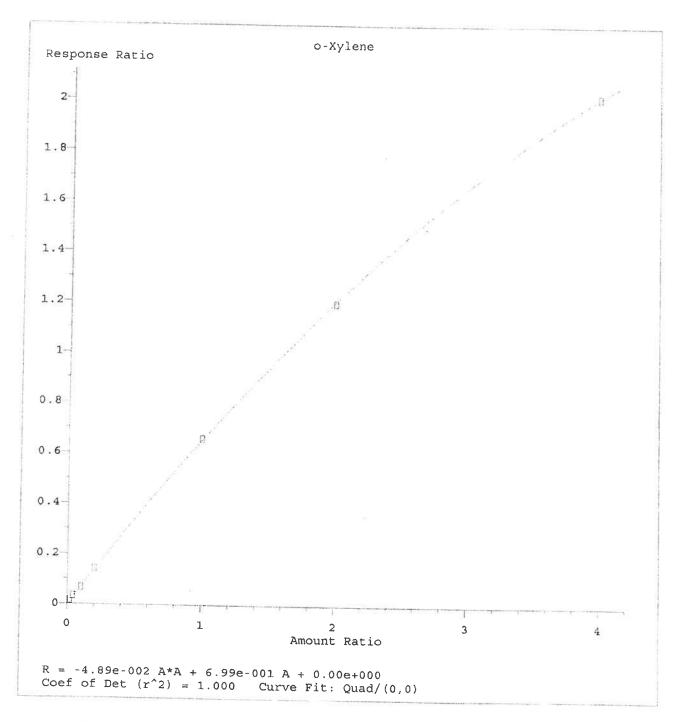

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

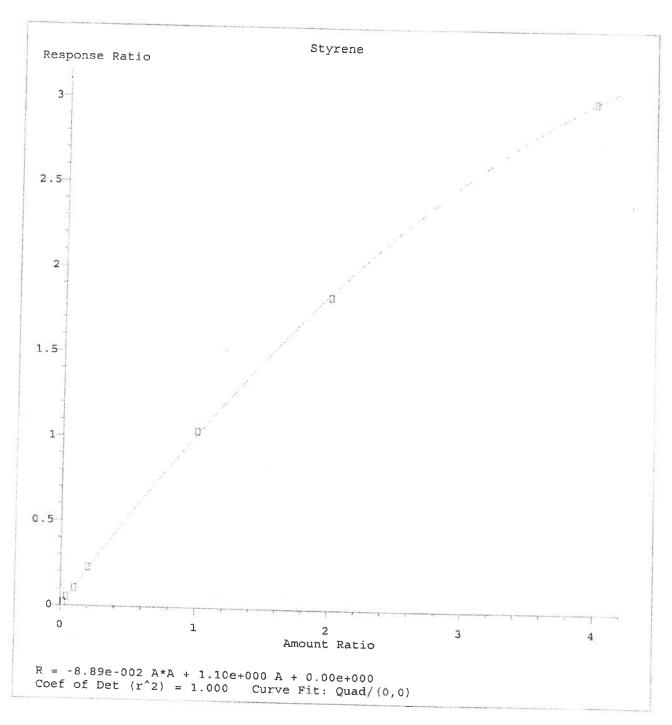

Volatile Analysis - Spike Recovery Limits

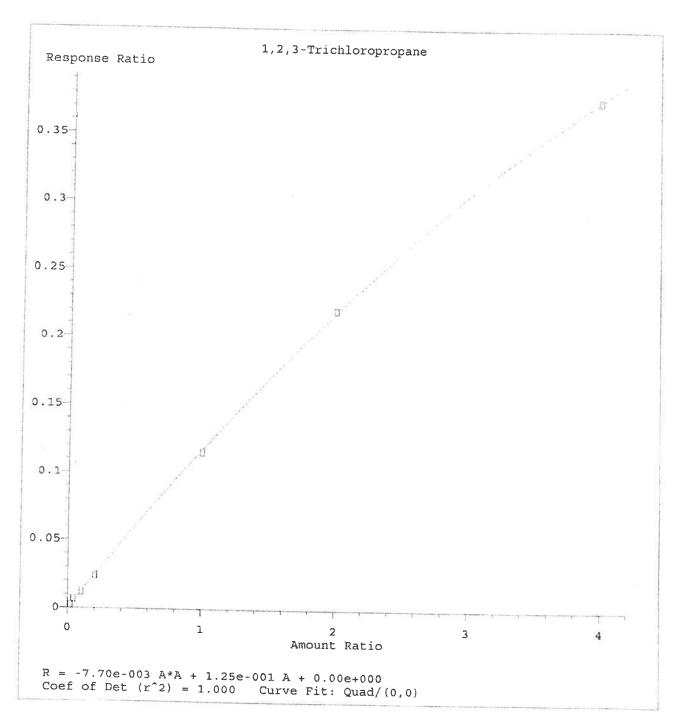

ELAP Number 10958	Chlorobenzene	Toluene	Trichloroethene	Benzene	1,1-Dichloroethene		Spiked Compound
	82.5	84.3	88.2	88.5	78.6	Lower %	Soil Sp
Limi	109	116	115	117	130	Upper %	Soil Spike Limits
Limits Effective 01/01/10-03/31/10	0	0	0	0	0	Lower %	Soil %
/10-03/31/10	16.3	20.4	19.0	18.6	29.5	Upper %	Soil % RPD Limits
	84.8	81.6	86.6	0.38	84.5	Lower %	Water Spike
	113	123	120	124	128	Upper %	ike Limits
Mei	0	0	0	0	0	Lower %	Water % RPD Limits
Method: EPA 8260B	17.7	16.9	15.7	17.7	24,4	Upper %	D Limits

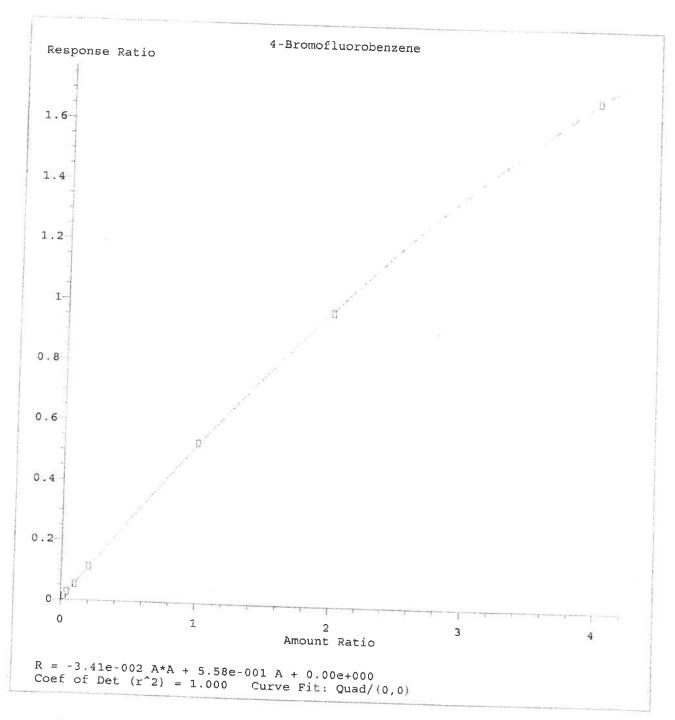


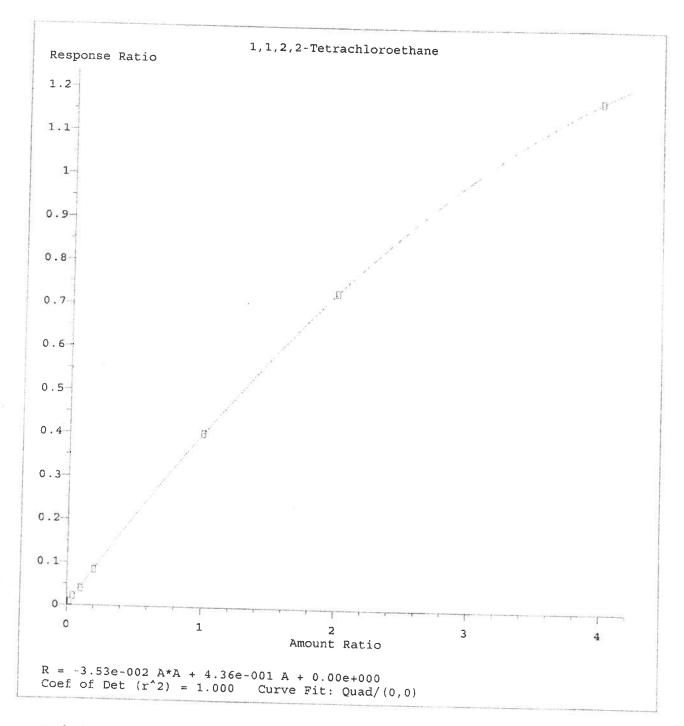


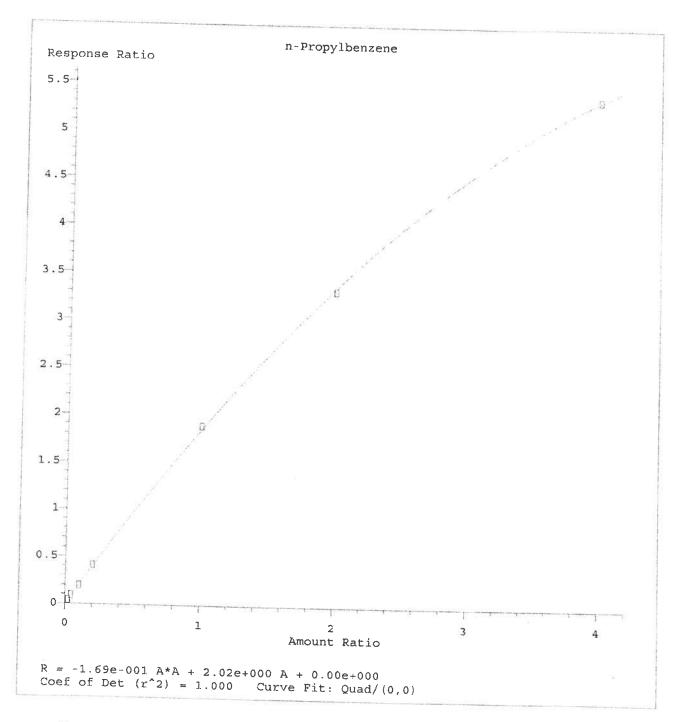


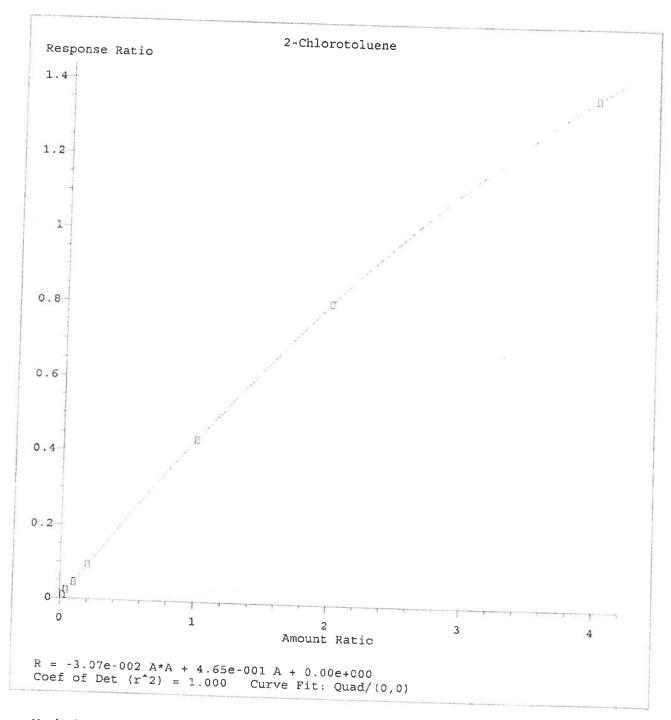


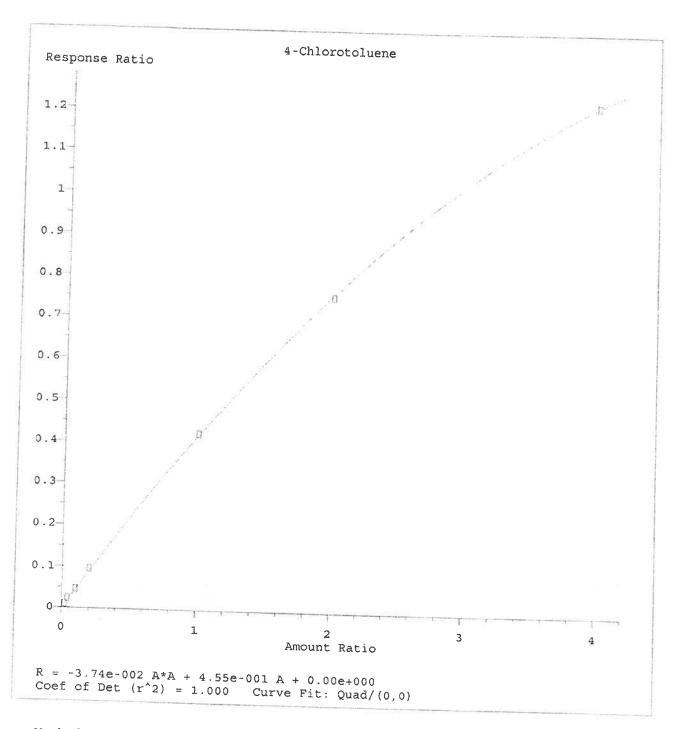


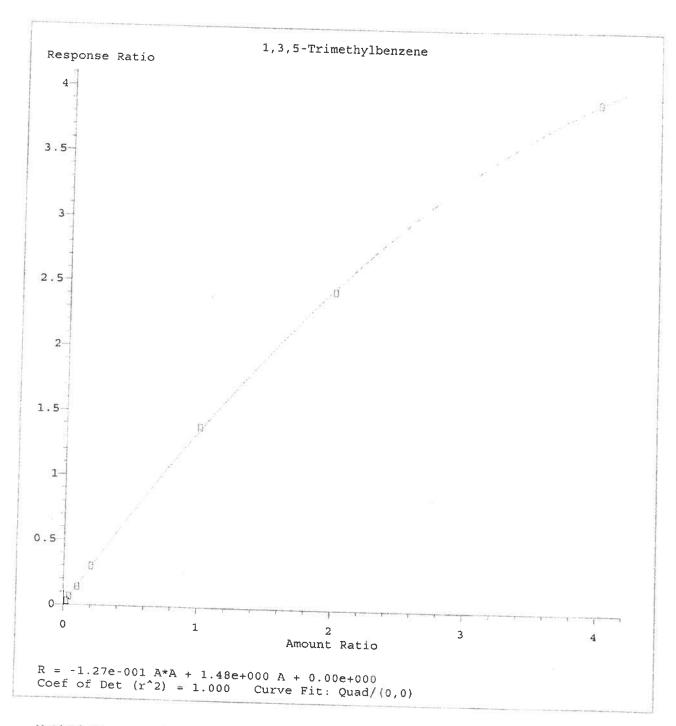


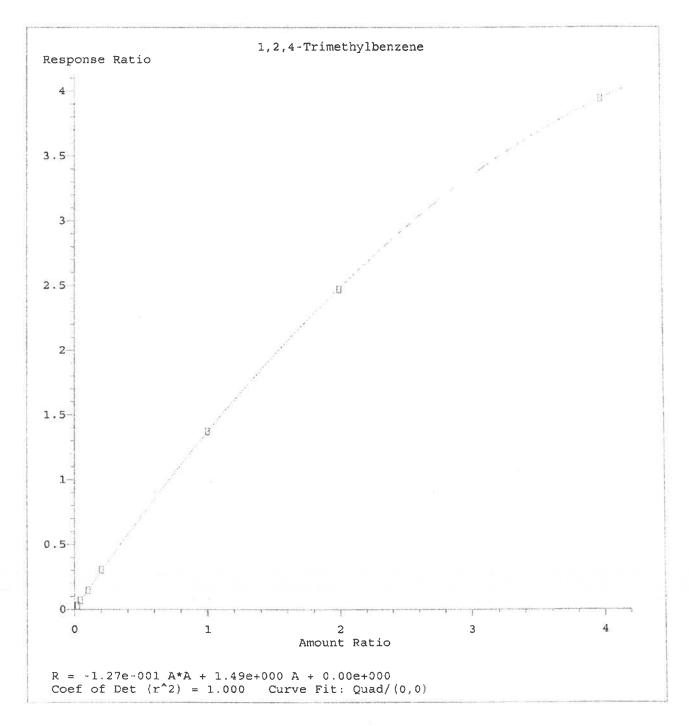


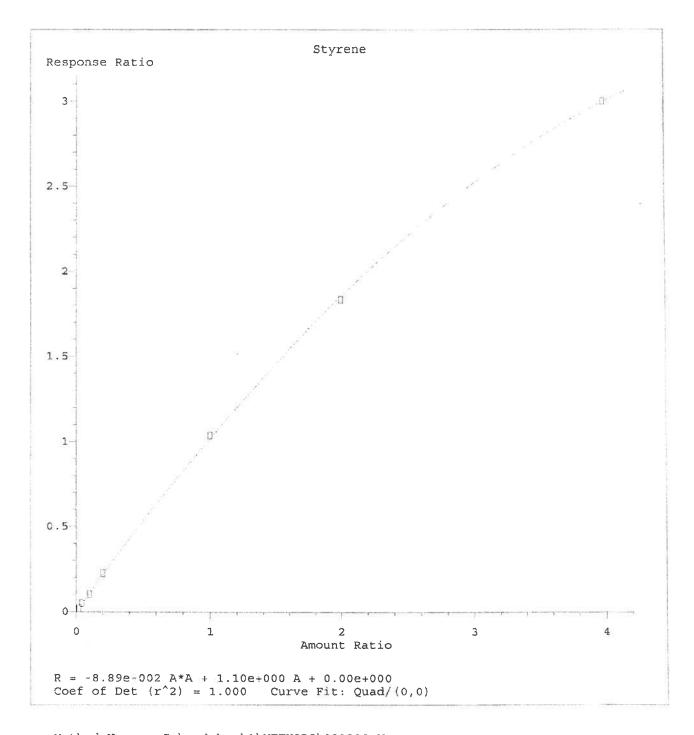


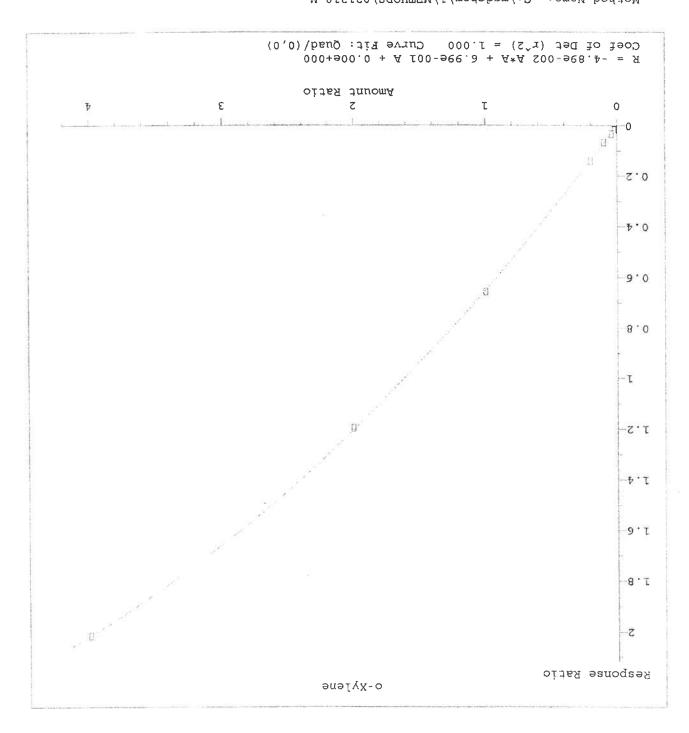












Method Name: C:/msdchem/1/METHODS/021210.M Calibration Table Last Updated: Mon Feb 15 15:42:26 2010

July 28, 2010

New York State Department of Environmental Conservation 6274 E. Avon-Lima Road Avon, NY 14414-9519

Attn: Endangered Species Coordinator

Re: Request for Information on NYS Threatened & Endangered Species

Environmental Restoration Program Site No. E828143

8264 Ridge Road West

Town of Clarkson, Monroe County

Lu Project No. 40503

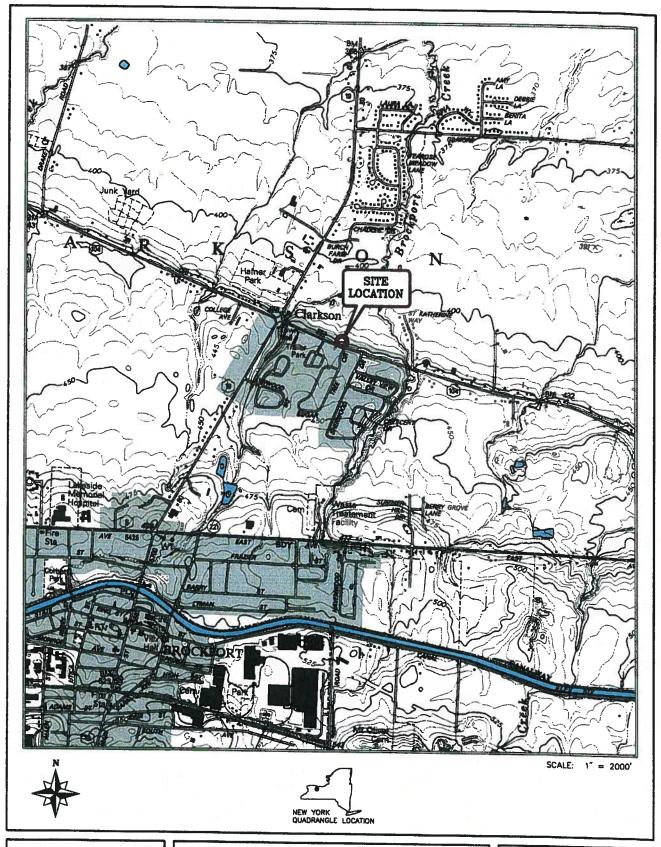
Dear Sir:

Lu Engineers has been retained as a consultant to the New York State Department of Environmental Conservation to complete a remedial investigation report for the referenced Environmental Restoration Site. The site is located in a semi-rural area of the Town of Clarkson, Monroe County, New York. The Site was formerly used as a gasoline station and auto repair facility. It is adjacent to residential development. While the site is mostly paved or buildings, it backs up to a forested area on the north side of the property.

Brockport Creek is located approximately one-half mile northeast of the affected area. A U.S.G.S. topographic map of the project location is attached for your reference.

The latitude and longitude of the project site is as follows:

- 43°13'54" North
- 77°55'18" West


This information is needed to complete the Fish and Wildlife Resource Impact Analysis for the Remedial Investigation Report. Thank you for your assistance. Please e-mail your response to me at fa-reese@luengineers.com or contact me at (585) 385-7417 ext. 246 if you have questions.

Sincerely,

Frances Reese Environmental Scientist

Enclosure (1)

FIGURE 1. SITE LOCATION MAP

TOWN OF CLARKSON (FORMER SERVICE STATION)
8264 RIDGE ROAD WEST
BROCKPORT, NEW YORK 14420

DATE:	JULY 2010
SCALE:	1:24,000
DRAWN BY:	DLS
RECCIOPORT / MOMEN	DOT RASTER QUADRANGLE DE COUNTY 997 / USGS CONTOUR DATA: 1871

July 28, 2010

NYS DEC Information Services 625 Broadway, 5th Floor Albany, New York 12233-4757

Attn: Ms. Jean Petrusiak, Information Specialist

Re: Request for Information on NYS Threatened & Endangered Species

Environmental Restoration Program Site No. E828143

8264 Ridge Road West

Town of Clarkson, Monroe County

Lu Project No. 40503

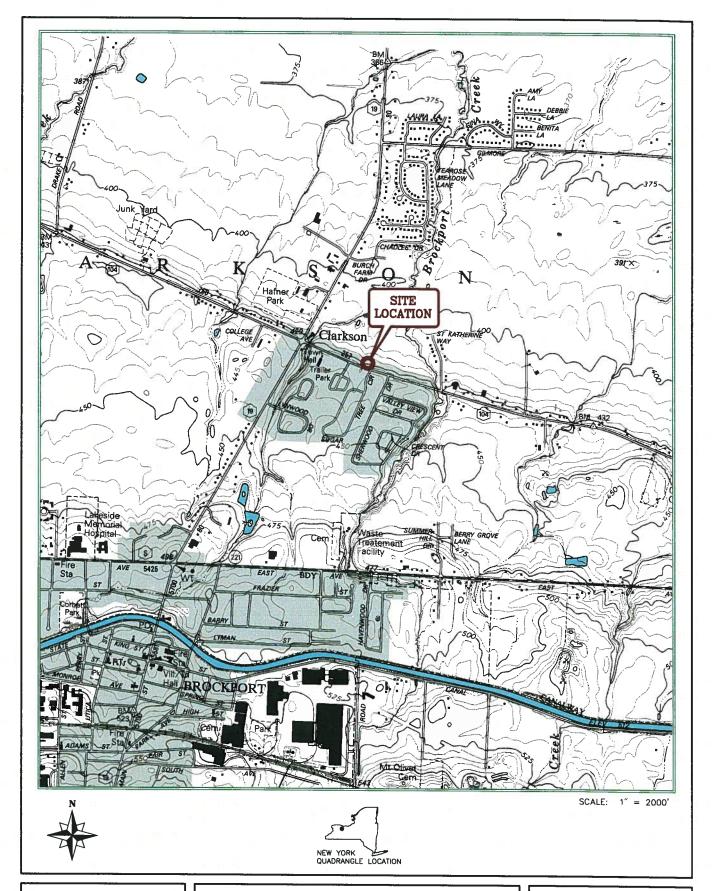
Dear Ms. Petrusiak:

Lu Engineers has been retained as a consultant to the New York State Department of Environmental Conservation to complete a remedial investigation report for the referenced Environmental Restoration Site. The site is located in a semi-rural area of the Town of Clarkson, Monroe County, New York. The Site was formerly used as a gasoline station and auto repair facility. It is adjacent to residential development. While the site is mostly paved or buildings, it backs up to a forested area on the north side of the property.

Brockport Creek is located approximately one-half mile northeast of the affected area. A U.S.G.S. topographic map of the project location is attached for your reference.

The latitude and longitude of the project site is as follows:

- 43°13′54″ North
- 77°55'18" West


This information is needed to complete the Fish and Wildlife Resource Impact Analysis for the Remedial Investigation Report. Thank you for your assistance. Please e-mail your response to me at <a href="mailto:fase-mailto:f

Sincerely,

Frances Reese Environmental Scientist

Enclosure (1)

FIGURE 1. SITE LOCATION MAP

TOWN OF CLARKSON (FORMER SERVICE STATION)
8264 RIDGE ROAD WEST
BROCKPORT, NEW YORK 14420

DATE:	JULY 2010
SCALE:	1: 24,000
DRAWN BY:	DLS
BROCKPORT / MONRO	DOT RASTER QUADRANGLE DE COUNTY 997 / USGS CONTOUR DATA: 1971

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Division of Fish, Wildlife & Marine Resources New York Natural Heritage Program

625 Broadway, 5th Floor, Albany, New York 12233-4757

Phone: (518) 402-8935 • Fax: (518) 402-8925

Website: www.dec.ny.gov

Alexander B. Grannis Commissioner

August 13, 2010

Frances Reese LU Engineers 175 Sullys Trail, Suite 202 Pittsford, NY 14534

AUG 1 6 2010 LU ENGINEERS

Dear Ms. Reese:

In response to your recent request, we have reviewed the New York Natural Heritage Program database with respect to an Environmental Assessment for the proposed Remedial Investigation of Site # E 828 143, area as indicated on the map you provided, including a ½ mile radius, located at 8264 Ridge Road West, Town of Clarkson, Monroe County.

Enclosed is a report of rare or state-listed animals and plants, significant natural communities, and other significant habitats, which our databases indicate occur, or may occur, on your site or in the immediate vicinity of your site. For most sites, comprehensive field surveys have not been conducted; the enclosed report only includes records from our databases. We cannot provide a definitive statement as to the presence or absence of all rare or state-listed species or natural communities. This information should not be substituted for on-site surveys that may be required for environmental impact assessment.

The enclosed report may be included in documents that will be available to the public. However, any enclosed maps displaying locations of rare species are considered sensitive information, and are intended only for the internal use of the recipient; they should not be included in any document that will be made available to the public, without permission from the New York Natural Heritage Program.

The presence of the plants and animals identified in the enclosed report may result in this project requiring additional review or permit conditions. For further guidance, and for information regarding other permits that may be required under state law for regulated areas or activities (e.g. regulated wetlands), please contact the appropriate NYS DEC Regional Office, Division of Environmental Permits, as listed at www.dec.ny.gov/about/39381.html.

Our databases are continually growing as records are added and updated. If this proposed project is still under development one year from now, we recommend that you contact us again so that we may update this response with the most current information.

aras

Tara Salerno, Information Services

New York Natural Heritage Program

857

Enc.

cc: Region 8

Natural Heritage Report on Rare Species and Ecological Communities

A Charles

NY Natural Heritage Program, NYS DEC, 625 Broadway, 5th Floor, Albany, NY 12233-4757 (518) 402-8935

HISTORICAL RECORDS

The following plants and animals were documented in the vicinity of the project site at one time, but have not been documented there since 1979 or earlier.

There is no recent information on these plants and animals in the vicinity of the project site and their current status there is unknown. In most cases the precise location of the plant or animal in this vicinity at the time it was last documented is also unknown and therefore location maps are generally not provided.

15 1 1

If appropriate habitat for these plants or animals is present in the vicinity of the project site, it is possible that they may still occur there.

Natural Heritage Report on Rare Species and Ecological Communities

VASCULAR PLANTS

Asimina triloba

Pawpaw

NY Legal Status: Threatened

Federal Listing:

Last Report:

1946-08-30

County: Town:

Monroe Clarkson

Location:

Clarkson Northeast Woods

Directions:

General Quality

and Habitat:

Office Use 12724

S2 - Imperiled

Global Rank: G5 - Secure

NYS Rank:

EO Rank:

Historical, no recent

information

Specimen label: Woods about 2 miles northeast of Brockport.

Specimen label: Woods.

Records Processed

More detailed information about many of the rare and listed animals and plants in New York, including biology, identification, habitat. conservation, and management, are available online in Natural Heritage's Conservation Guides at www.acris.nynhp.org, from NatureServe Explorer at http://www.natureserve.org/explorer, from NYSDEC at http://www.dec.ny.gov/animals/7494.html (for animals), and from USDA's Plants Database at http://plants.usda.gov/index.html (for plants).