Environmental Restoration Program Former Nichol Inn Site (#E851029) 14719 West Lake Road Town of Pulteney Steuben County, New York

Remedial Investigation Report

Prepared For:

Steuben County County Office Building 3 East Pulteney Square Bath, New York 14810

Prepared By:

175 Sullys Trail, Suite 202 Corporate Crossings Office Park Pittsford, New York 14534

> November 2009 (Revised July 2010)

Lu Project No.: 41101

Table of Contents

<u>Page</u>

Exec	utive St	ımmary1
1.0	Intro	duction2
	1.1	Purpose of Report
	1.2	Site Description
	1.3	Site History
	1.4	Previous Investigations
	1.5	Report Organization
2.0	Inves	tigation Activities
	2.1	Site Survey
	2.2	Building Survey and Sampling
	2.3	Geophysical Survey7
	2.4	Test Pits
	2.5	Private Well Survey
	2.6	Surface Soil Sampling
	2.7	Soil Borings and Sampling9
	2.8	Interim Remedial Measures (IRMs)10
	2.9	Monitoring Well Installation and Sampling10
		2.9.1 Well Installation10
		2.9.2 Well Development
		2.9.3 Groundwater Sampling11
	2.10	Aquifer Testing
	2.11	Soil Vapor Intrusion Sampling
3.0	Physi	cal Site Characteristics
	3.1	Surface Features
	3.2	Surface Water Hydrology13
3.0	3.3	Geology13
	3.4	Soils14
	3.5	Hydrogeology14
	3.6	Demography, Land Use, and Water Use16
4.0	Natu	re and Extent of Contamination16
	4.1	Surface Soils17
	4.2	Subsurface Soils
	4.3	Groundwater
	4.4	Soil Vapor18

Table of Contents continued

Page

 5.1 Potential Routes of Migration	.19 .20 .21 .21 .22 .23 .23 .23 .23
 5.3 Contaminant Migration	.20 .21 .21 .22 .23 .23 .23 .23 .23
 5.3.1 Factors Affecting Contaminant Migration 6.0 Exposure Assessment	.21 .21 .22 .23 .23 .23 .23 .24
 6.0 Exposure Assessment	.21 .22 .23 .23 .23 .23 .24
 6.1 Qualitative Public Exposure Assessment 6.2 Environmental Exposure Assessment 7.0 Summary and Conclusions 	.22 .23 .23 .23 .23 .24
 6.1 Qualitative Public Exposure Assessment 6.2 Environmental Exposure Assessment 7.0 Summary and Conclusions 	.22 .23 .23 .23 .23 .24
7.0 Summary and Conclusions	.23 .23 .24
	.23 .24
	.23 .24
	.24
7.2 Conclusions	
7.2.1 Data Limitations and Recommendations for Future Work	
7.2.2 Recommended Remedial Action Objectives	25
	.20
8.0 Certification	.25
Figures	
Figure 1. Site Location Map	
Figure 2. Previous Investigation Former Nichol Inn ERP Site	
Figure 3. Sample Location Plan	
Figure 4a. Geophysical Grids 1-4	
Figure 4b. Geophysical Grid 5	
Figure 5a. Soil Cross Section A-A'	
Figure 5b. Soil Cross Section B-B'	
Figure 5c. Soil Cross Section Locations	
Figure 6. Petroleum Impacted Soils	
Figure 7. Petroleum Impacted Groundwater	
Tables	
Table 1-1 Surface Soil Results - SVOCs	
Table 1-2Surface Soil Results – Metals	
Table 1-3 Surface Soil Results – PCBs/Pesticides	
Table 2-1 Sub-surface Soil Results – VOCs	
Table 2-2Sub-surface Soil Results – SVOCs	
Table 2-3 Sub-surface Soil Results – Metals	
Table 2-4Sub-surface Soil Results – PCBs/Pesticides	
Table 2-5 Tank Pit Soil Results	
Table 2-6Previous Soil Sampling Results - VOCs	

- Groundwater Results VOCs Table 3-1
- Table 3-2 Groundwater Results - SVOCs

Table 3-3	Groundwater Results – Metals
Table 3-4	Groundwater Results – PCBs/Pesticides
Table 3-5	Tank Pit Water Results – VOCs
Table 3-6	Previous Groundwater Results - VOCs

Appendices

Appendix A. Site Photog	raphs
-------------------------	-------

- Appendix B. Boring Logs, Field Forms, and Hydrogeological Data
- Appendix C. Soil & Groundwater Analytical Data
- Appendix D. Soil Vapor Intrusion Data
- Appendix E. Disposal Documentation
- Appendix F. Data Usability Summary Report
- Appendix G. FWRIA Decision Key

Executive Summary

Lu Engineers has prepared this Remedial Investigation Report, on behalf of Steuben County, to present findings of the remedial investigation at the Former Nichol Inn Site #E851029 (the "Site"), located at 14719 West Lake Road (NYS Route 54A) in the Town of Pulteney, Steuben County, New York.

The Site was historically used as a gasoline station and contained two 2,000-gallon underground gas tanks that were closed in place in 2000. Two additional 1,000-gallon tanks were discovered along the eastern edge of the Site. All structures and underground tanks were removed in December 2008 as interim remedial measures (IRMs) during this investigation. IRM Activities are summarized in the *Interim Remedial Measures Report* (Lu Engineers, November 2009). Impacted soils remain to the east and south of the tank pit excavation, and extend into the Route 54A highway right-of-way.

The investigation included a geophysical survey, surface soil sampling, soil borings, groundwater monitoring well installation and sampling, and off-site soil vapor intrusion sampling to determine the extent of petroleum-impacted soils and groundwater. Primary contaminants detected in soil and groundwater at the Site include petroleum-related volatile organic compounds (VOCs). Sample analytical results show that all compounds detected in soil are below NYSDEC Residential Use Soil Cleanup Objectives (6 NYCRR Part 375-6b).

Petroleum-related VOCs were detected above NYS Ambient Groundwater Standards (6 NYCRR Part 700) in two onsite wells and three off-site wells. The highest concentrations were found in MW-5b, located downgradient from the former 12,000gallon tanks. Groundwater flow is generally to the east, toward Keuka Lake. It is evident that groundwater contamination has migrated off-site to the east, impacting the Route 54A right-of-way. Based on the results of this investigation, groundwater impacts appear to be limited to the right-of-way, as no VOCs were detected in a nearby private well (PW-1).

The soil vapor intrusion pathway was evaluated by sampling at two adjacent, downgradient residences. Laboratory analytical results showed low levels of petroleum compounds in both sub-slab soil vapor and indoor air samples. Based on a comparison with the New York State Department of Health (NYSDOH) study of VOCs in Air of Fuel Oil Heated Homes, the levels detected in the indoor and outdoor air samples are consistent with those background levels. Based on these results, there are no complete soil vapor exposure pathways in connection with the Site.

Recommendations for future work include additional groundwater sampling to determine the effect of the soil removal IRM on groundwater quality.

1.0 Introduction

Lu Engineers has prepared this Remedial Investigation Report for Steuben County (The County) for submission to the New York State Department of Environmental Conservation (NYSDEC) Region 8 Division of Environmental Remediation (DER). This report has been prepared in accordance with the "Municipal Assistance for Environmental Restoration Projects" Procedures Handbook and DER-10 "Technical Guidance for Site Investigation and Remediation."

The County has received a State Assistance Contract (SAC) under the NYSDEC 1996 Clean Water/Clean Air Bond Act - Environmental Restoration Program (ERP) for the former Nichol Inn Site #E851029 (the "Site") located in the Town of Pulteney. The County used these funds to complete investigative work and interim remedial measures as described in the NYSDEC-approved *Remedial Investigation Work Plan, January* 2008, by Lu Engineers.

1.1 Purpose of Report

The purpose of this report is to present findings of the remedial investigation (RI) conducted by Lu Engineers at the former Nichol Inn Site and adjacent off-site properties. Results of IRM activities are provided in the *Interim Remedial Measures Report* (July 2010, Lu Engineers) provided under separate cover.

1.2 Site Description

The Site is located at 14719 (formerly #485) West Lake Road, on the corner of County Route 74 and State Route 54A, in the Town of Pulteney, Steuben County, New York (Figure 1). The property is currently vacant land and covers approximately 0.4-acre. A drainage ditch is located along the western and southern property boundaries. Surrounding parcels are a mix of seasonal and year-round residential properties on Keuka Lake. A general layout of the Site, including former buildings, is depicted in Figure 2.

1.3 Site History

Steuben County obtained the Nichol Inn property through tax foreclosure in 2000. Prior to that, the property was owned by John Nichol and operated as a family-owned bar, restaurant, grocery store, and gas station. The restaurant/grocery store building was a 1,914 square foot metal frame building constructed on a concrete slab. A 150 square foot wood frame storage building was located south of the main building. Two 2,000-gallon underground gasoline storage tanks were located partially beneath the main building.

On April 16, 1986, a neighbor across Route 54A reported to the NYSDEC (spill report #8600413) that his well water was contaminated by petroleum. In response to the call, NYSDEC collected water samples from the well at the neighboring residence and found benzene (39 ppb) and toluene (12 ppb). To further investigate, NYSDEC directed Mr. Nichol to conduct tightness testing on the two 2,000-gallon tanks at the Nichol Inn, and install a monitoring well immediately downgradient of the tanks. The underground

storage tanks (USTs) passed tightness testing; however, soil and groundwater contamination were encountered during the well installation. Additional sampling of the residential well revealed that the petroleum contamination originated from fuel oil; therefore, the source of contamination was not the Nichol Inn gasoline tanks. The source of fuel oil contamination was not determined. In October 1986, the NYSDEC funded the installation of a new lake water supply system at the adjacent residence. The spill file was closed on July 30, 1987.

Mr. Nichol was ordered to register or remove the USTs in compliance with NYSDEC Petroleum Bulk Storage (PBS) regulations and directed to conduct remedial actions. Mr. Nichol failed to comply with the directives, closed his business, and eventually declared bankruptcy. Upon foreclosure in 2000, Steuben County was required to register the two USTs and comply with PBS regulations. The tanks were subsequently registered by Steuben County under PBS ID #8-600733. The Site has remained unoccupied since foreclosure.

1.4 Previous Investigations

A series of environmental investigations and cleanup actions were conducted after the County took ownership. These activities included:

- Test Pit Excavations, Fagan Engineers, June 6, 2000.
- Tank Closure, Marcor Remediation, August 15, 2000.
- Geoprobe Investigation, Marcor Remediation, October 3, 2001.
- Soil Vapor Extraction Well Installation, Buffalo Drilling Company, 2002.
- Soil Vapor Extraction Trench Installation, Steuben County Highway Department, August 2002.
- Groundwater Monitoring, Upstate Laboratories, Inc., June 2002 July 2003.

In June 2000, the County contracted with Fagan Engineers and Phil Hamilton for the excavation of two test pits on the Site. One test pit (TP1) was reportedly located adjacent to the tanks and the other (TP2) was located approximately 17 feet southeast of the tanks. A 4-inch PVC well (former MW-5) was installed in TP2. A soil sample from each test pit and a groundwater sample from the well in TP2 were collected and analyzed using EPA Method 8021. Elevated concentrations, above NYSDEC TAGM 4046 and Part 375-6 Soil Cleanup Objectives for Unrestricted Use, of volatile organic compounds (VOCs) were detected in both soil samples. Concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX) were detected in exceedance of NYS Ambient Groundwater Standards (6 NYCRR Part 703.5) in the test pit well, MW-5.

Analytical results from previous investigations are summarized in Tables 2-6 and 3-6.

The two 2,000-gallon gasoline USTs were closed in place by Marcor Remediation, Inc. on August 15, 2000. The tanks were cleaned, fill and vent pipes removed, and flowable fill was placed in the tanks. The decision to close the tanks in place was due to the location of the tanks under the foundation of the restaurant/grocery store building. A tank closure letter was issued by Fagan Engineers on August 17, 2000.

Under the direction of Steuben County, Marcor Remediation returned to the Site in October 2001 to install seven (7) soil borings. Five (5) borings were located within the right-of-way along Route 54A and two (2) were located east of NYS Route 54A on private property. The approximate locations of the borings are shown on Figure 2-Previous Investigation Plan. The borings were advanced to a depth of 16 feet below ground surface (bgs) and soils were screened for VOCs using a photoionization detector (PID). The highest PID readings were obtained from 10-12 feet bgs in borings B-1 through B-4. Low readings (≤ 11 ppm) were observed in B-5 and no PID readings were obtained from the offsite borings B-6 and B-7.

Soil samples were collected for analysis of VOCs STARS list (EPA Method 8021) from each of the five onsite soil borings. The sample depth was not noted in the provided information. BTEX compounds were detected at concentrations above TAGM 4046 guidance values and Part 375-6 Unrestricted Use Soil Cleanup Objectives in samples B-1 through B-4. No VOCs were detected in sample B-5.

In 2002, the County hired Buffalo Drilling Company to install four (4) soil vapor extraction wells (MW-1 through MW-4, Figure 2). There are no known construction details of these soil vapor extraction wells. A soil vapor extraction trench was also reportedly installed along the eastern edge of the Site by Steuben County Highway Department. No documentation of the trench installation was available and the exact location of the trench could not be determined. According to the County's files, the proposed trench was to be two feet wide by ten feet deep, and 85 feet long with four-inch perforated drain tile in the bottom. [Note: No indication of this trench was encountered during excavation for the tank removals].

A soil vapor extraction system was installed by the County in 2002. The system consisted of the four extraction wells and the existing four-inch well installed in TP2 (MW-5). In an effort to monitor the effectiveness of the soil vapor extraction system, Steuben County arranged for Upstate Laboratories to monitor the groundwater from all five wells. One round of groundwater sampling was conducted on June 5, 2002, prior to the start up of the vapor extraction system. Two additional rounds of groundwater sampling were conducted on October 3, 2002 and July 18, 2003. Significantly elevated concentrations of petroleum compounds (i.e., BTEX) were detected in MW-1, MW-2, MW-4, and MW-5 in all three sampling rounds. The soil vapor extraction system was later shut down since it proved to be ineffective in improving groundwater quality.

1.5 Report Organization

This report is organized into sections based on the suggested RI report format provided in the *NYSDEC Municipal Assistance for Environmental Restoration Projects Procedures Handbook (July 2004)*. Sections 1.0 through 7.0 are associated with the remedial investigation portion of the project. These sections are summarized below.

- <u>Section 1.0 Introduction</u>: This section provides the purpose and objective of the RI and presents Site background information including Site history and previous investigations and remedial work.
- <u>Section 2.0 Investigation Activities:</u> This section of the report presents the investigative work conducted as part of this project, as well as any modifications made to the scope of work outlined in the approved Work Plan.
- <u>Section 3.0 Physical Site Characteristics:</u> This section describes the physical characteristics such as surficial features, geology, surface and subsurface hydrology, demography, and land/water use.
- <u>Section 4.0 Nature and Extent of Contamination:</u> This section of the report presents the sample analytical results of the various sampling activities discussed in Section 2.0. Findings from the IRM are also discussed.
- <u>Section 5.0 Contaminant Fate and Transport:</u> This section contains information on the fate and transport of contaminants detected at the Site. This includes a discussion of potential routes of migration, contaminant persistence, and contaminant migration.
- <u>Section 6.0 Exposure Assessment:</u> This section provides a qualitative public exposure assessment for the constituents of concern discussed in Section 4.0.
- <u>Section 7.0 Summary and Conclusions:</u> This section summarizes the findings of the investigative work that was conducted as a part of this project and provides recommendations for additional work, if necessary.

2.0 2.0 Investigation Activities

The remedial investigation included the following tasks:

- Site survey and base mapping;
- Asbestos and hazardous materials building survey;
- Geophysical survey;
- Four (4) test pit excavations;
- Private well survey;
- Surface soil sampling;
- 12 Geoprobe soil borings;
- Five (5) permanent and four (4) temporary monitoring well installations;
- Groundwater sampling;
- Hydraulic conductivity testing;
- Private well sampling; and
- Soil vapor intrusion sampling at two adjacent residences.

2.1 Site Survey

A Lu Engineers' NYS Licensed Surveyor conducted a Site survey to identify property boundaries, existing features, structures, and monitoring wells. This information was used to create a base map of the Site using the NAD 83 UTM Zone 18 (NYTM) coordinate system to show locations of all sample points. Elevations of the new and existing monitoring wells were also surveyed by a NYS Licensed Surveyor. All other sample locations were located using a Trimble GeoXT GPS unit, capable of achieving sub-meter accuracy, and plotted on the survey base map.

2.2 Building Survey and Sampling

An asbestos and hazardous materials survey was completed by Lu Engineers on December 19, 2007, prior to building demolition. The survey included both the main building and the wooden shed structure. Results of the asbestos survey were provided in the *Pre-Demolition Asbestos Survey* (Lu Engineers, February 2008) included in the IRM Report, under separate cover,. The survey identified asbestos-containing materials including: transite exterior walls, vinyl floor tiles in the shed, roofing materials, wall texture/drywall, and caulk.

Fluorescent light bulbs and ballasts were removed from the main building and sent for recycling by Steuben County. A certified technician drained coolant from the refrigeration units and provided for disposal. No other hazardous materials were identified in the buildings.

2.3 Geophysical Survey

On June 13, 2008, Lu Engineers utilized a GSSI Profiler EMP 400 multi-frequency conductivity meter to verify the existence and location of known and suspected USTs. The survey included four grids covering accessible areas of the property. Data generated during the survey was stored in the instrument and later downloaded to a computer for contouring using Surfer 8 by Golden Software. The resulting geophysical grids are presented in Figure 4a. Survey findings are summarized below.

<u>Grid 1</u> – located on the northeastern portion of the property. Two anomalies were identified: anomaly 1-1 is attributed to the steel well cover at MW-1; anomaly 1-2 is the east end of the USTs.

 $\underline{\text{Grid 2}}$ – located south of the main building and extending into the Route 54A right-ofway. Three anomalies were identified:

- Anomaly 2-1 was located along the eastern property line and later determined to be two 1,000-gallon unknown USTs;
- Anomaly 2-2 was located directly behind the wooden shed, where an old refrigerator was stored.
- Anomaly 2-3 appeared to be located beneath the southeast corner of the main building.

<u>Grid 3</u> – a small grid located immediately in front of the main building that was surveyed to locate the USTs partially beneath the structure. There appeared to be two separate anomalies indicated by the survey: anomaly 3-1 located at the northeast corner of the building was the two USTs; anomaly 3-2 was located at the southeast corner of the building.

<u>Grid 4</u> – located on the southern portion of the property. One anomaly was identified: anomaly 4-1 corresponded to the location of a small mound of fill material on the property.

Lu Engineers performed a second geophysical survey on May 14, 2009, using a Geonics, Inc. EM61-MK2 to scan areas beneath the former building slab. The EM61-MK2 survey grid is provided as Figure 4b. The following anomalies were detected:

- Anomaly 5-1 located near monitoring well MW-11 was later determined to be a buried, crushed steel drum; and
- Anomaly 5-2 located partially beneath the former shed was found to be an underground pipe.

2.4 Test Pits

Test pits were excavated by Steuben County municipal forces, during the IRM, to investigate anomalies identified by the geophysical survey. Test pit TP-1 was located in the mound of fill on the southern portion of the property. A one-inch galvanized pipe and black plastic piping/conduit were encountered at approximately three feet below grade. No odors or PID readings were observed in the pipes or test pit.

Two additional test pits, TP-3 and TP-4, were completed on June 11, 2009 to investigate anomalies identified by the EM61-MK2 geophysical survey. An open concrete septic tank was unearthed just south of MW-11. At location TP-3, a three-inch diameter PVC pipe running north/south was discovered. This pipe did not appear to be connected to the septic tank, but may have been associated with a former roof drain. No PID readings or stained soils were observed beneath the piping.

Test pit locations are shown on Figure 3- Sample Location Plan. Findings are described on Test Pit Logs, included in Appendix B.

2.5 Private Well Survey

Lu Engineers contacted neighboring residents regarding the existence of private wells in the area. Homes located along Keuka Lake, across from the Nichol Inn, historically had drilled wells as a water source. Due to the proximity of septic systems, local code required that the residences switch to lake water. Most of the drilled wells were removed or cut and capped, with the exception of a well at 14728 Boyd Cove Road (hereby referred to as PW-1) that is connected to a spigot and still used for watering the lawn. The well is approximately 28 feet deep with a 12-inch diameter steel casing. PW-1 was sampled for VOCs during this investigation. Well sampling is discussed in Section 2.9.3 and results are summarized in Table 3-1.

Recently, a municipal water line was installed along Route 54A by the Pulteney Water District. Several residences, including #14728 and 14734 Boyd Cove Road, have connected to the public water supply. No one at 14740 Boyd Cove Road was able to be reached; however, according to neighbors, the residence is also on a Keuka Lake water supply. A 6-inch diameter cut and capped well is located at 14752 West Lake Road and is no longer used. The total well depth is approximately 18 feet.

2.6 Surface Soil Sampling

A total of five (5) surface soil samples (SS-01 thru SS-05) were collected from vegetated areas of the Site on September 4, 2008. Sample locations are shown on Figure 3- Sample Location Plan. SS-05 was collected from a small mound of unknown fill material located on the southern portion of the Site. [Note: the number of surface soil samples was reduced from six to five due to minimal area of vegetated surface soil.]

Samples were collected from 0-2 inches below the vegetative cover using a pre-cleaned stainless steel spoon or hand trowel to transfer soil into glass sample jars. Surface soil

logs are included in Appendix B. Surface soil samples were stored on ice in a cooler prior for shipment to Test America, Inc., the subcontracted laboratory. All samples were analyzed for TCL SVOCs (EPA Method 8270) and TAL Metals. In addition, three samples (SS-3, SS-4, and SS-5) were analyzed for PCBs and Pesticides. Results of the sampling are discussed in Section 4.1.

2.7 Soil Borings and Sampling

Twelve (12) soil borings (designated as B-8 through B-17, MW-10, and MW-11) were completed on September 4, 2008. The borings were performed by Trec Environmental, Inc. using a track-mounted Geoprobe[®] Model 6620DT. Borings B-9 and B-17 were converted into temporary one-inch diameter mini-wells after soil sampling was completed. Locations of the test borings are shown on Figure 3.

Soil samples were collected at 4-foot intervals to a depth of 16 to 20 feet below ground surface (bgs). At location B-9, probe rods were driven to a total depth of 39 feet bgs in an effort locate bedrock, however, no bedrock was encountered. Lu Engineers screened the recovered soil samples for the presence of VOCs with a MiniRAE 2000 photoionization detector (PID) and recorded subsurface soil descriptions on boring logs (Appendix B). Soil conditions are described in Section 3.4.

The following ten (10) samples were selected for laboratory analysis based on PID readings, soil observations, and sample location relative to other samples or significant Site features:

Sample ID	Depth
B-8	12 ft.
B-9	10 ft.
B-10	10 ft.
B-11	12 ft.
B-12	12 ft.
B-14	12.5 ft.
B-15	12 ft.
B-16	12 ft.
B-17	12 ft.
WB-11	9 ft.

Soil samples were stored on ice in a cooler for shipment to Test America, Inc. A total of ten (10) subsurface soil samples were submitted for analysis of TCL VOCs (EPA Method 8260), TCL SVOCs (EPA Method 8270), and TAL Metals. In addition, four samples were analyzed for PCBs and Pesticides. The samples selected for analysis, and the specific analyses performed on each sample, are listed on Tables 2-2, 2-3, and 2-4. Results of the sampling are discussed in Section 4.2.

Laboratory test results were reported in NYSDEC Analytical Services Protocol (ASP) Category B deliverables reports. Test America's summary data sheets are provided in Appendix C. Category B deliverables are provided on disc.

2.8 Interim Remedial Measures (IRMs)

IRMs were completed during the RI to facilitate investigation below the building slab and remove potential contaminant sources associated with USTs and petroleum-impacted soil. IRM activities included:

- Asbestos abatement;
- Building demolition and slab removal;
- Removal of four USTs; and
- Excavation and disposal of 495 tons of petroleum-impacted soil.

These actions are described in the *Interim Remedial Measures Report* (Lu Engineers, July 2010), provided under separate cover.

A total of seven (7) tank closure samples were collected during the IRM: five from the excavation sidewalls (TC-01, TC-02, TC-04, TC-06, and TC-07); and two water samples from the bottom of the excavation (TC-03 and TC-05). Sample locations are shown on Figure 3. Analytical results are summarized in Tables 2-5 and 3-5. Laboratory reports are included in Appendix C, as well as the IRM Report.

2.9 Monitoring Well Installation and Sampling

Five (5) permanent and four (4) temporary groundwater monitoring wells were installed during this RI to evaluate the extent of impacted groundwater. Monitoring well locations are depicted on Figure 3 and Well Construction Diagrams are included in Appendix B for all permanent well installations.

2.9.1 Well Installation

Temporary wells MW-9, MW-10, MW-11, and MW-12 are one-inch diameter mini-wells, installed on September 5, 2008 by Trec Environmental, Inc. using a Geoprobe 6620 DT rig. MW-12 is located off-site, in the County Route 74 right-of-way, and was installed with a protective flush-mount curb box. All other mini-wells were installed with stick-up casings. MW-9 was damaged during the IRM and was unable to produce a viable groundwater sample, therefore; the well casing was removed.

Permanent monitoring wells MW-5b, MW-6, MW-7, and MW-8 were installed on December 10-11, 2008 by Trec Environmental, Inc. MW-5b was installed as a replacement well for pre-existing well MW-5 which consisted of an open 3inch diameter drainage pipe that was placed in a former test pit. MW-5 was removed during the tank excavations. MW-6 is located within the Route 54A right-of-way. MW-7 and MW-8 are downgradient off-site wells located across Route 54A, within the right-of-way. An additional well (MW-13) was installed across the street on March 31, 2009 as described in the approved Work Plan Addendum - Off-site Investigation, dated March 18, 2009.

All well borings were advanced using 4.25-inch inner diameter hollow stem augers and installed in accordance with the approved Work Plan. Total well depth ranged from 13 to 20 feet bgs, as shown on the Well Construction Diagrams (Appendix B). A 2-inch diameter Schedule 40 PVC well was placed in each boring, consisting of a 10-foot screen installed approximately five feet into groundwater. The wells were completed with locking caps and flushmount curb boxes cemented into place.

2.9.2 Well Development

Existing and newly installed monitoring wells were developed at least two weeks prior to sampling. Development consisted of gentle surging followed by purging the wells to draw sediments out of the sand pack and into the well for removal. Development continued until turbidity improved, or the well was purged dry repeatedly. Temporary mini-wells were developed using a Geopump connected to 3/8-inch diameter tubing. Permanent wells were developed with a submersible Whale pump.

Well development activities were recorded on Well Development Logs, included in Appendix B. Water generated from the development of wells MW-1, MW-2, MW-4, MW-5b, and MW-6 were containerized and later discharged at the Steuben County Landfill leachate treatment facility in Bath, New York. The water disposal receipt is included in Appendix E.

2.9.3 Groundwater Sampling

Groundwater samples were collected from each monitoring well on February 2-3, 2009. MW-13 and private well PW-1 were sampled on March 21, 2009. Private well PW-1 was sampled from the spigot, after purging approximately one well volume. All other samples were obtained using peristaltic pumps with dedicated ¼-inch polyethylene tubing, in accordance with Low Flow - Minimal Drawdown Groundwater Sampling Procedures (Puls and Barcelona, 1995). Sampling data was recorded on Low Flow Groundwater Sampling Field Records, provided in Appendix B.

Prior to sampling, the water level at each well was measured with reference to the inner casing elevation and recorded. Field parameters including pH, conductivity, dissolved oxygen, and temperature were measured periodically using a Horriba U-22 water quality meter with flow-through cell. Turbidity was measured with a LaMotte 2020e turbidity meter. Once the parameters stabilized, a sample was collected and immediately placed on ice in preparation for delivery to Test America, Inc.

Groundwater samples were analyzed for the following parameters:

- TCL Volatile Organics (EPA Method 8260)
- TCL Semi-volatile Organics (EPA Method 8270C)
- TAL Metals (EPA Method 200.7/6010B)

[Note: the SVOC sample bottle for MW-6 broke during transport, and therefore, no SVOC analysis was performed for MW-6].

Samples from MW-4 and MW-10 were also analyzed for PCBs and Pesticides. MW-13 and PW-1 were analyzed for VOCs only.

2.10 Aquifer Testing

Hydraulic conductivity testing was conducted at permanent monitoring wells MW-3, MW-5b, MW-6, MW-7, and MW-8 on March 12, 2009. This testing was conducted in accordance with the protocols outlined in the approved Work Plan. Pertinent information and data are included in Appendix B.

The hydraulic conductivity testing included the placement of a solid slug into each well and removal of the slug while monitoring the resulting rise in water level data over time. Data was collected by a Level Troll 700 pressure transducer and stored in a handheld rugged reader. The data was downloaded and used to calculate the hydraulic conductivity for each well using AQTESOLV 3.5 computer software.

The hydraulic conductivities were calculated using the "Bouwer and Rice" method for unconfined aquifers. Logarithmic graphs for the slug tests are included in Appendix B. Results of the aquifer testing are provided in Section 3.5.

Groundwater monitoring well elevation data and static water level data collected in February 2009 were used to calculate groundwater elevations for each well. The groundwater elevations were then used to develop a groundwater potentiometric map, included on Figure 7. A description of the Site hydrogeology is provided in Section 3.5.

2.11 Soil Vapor Intrusion Sampling

Soil vapor intrusion sampling was completed at two off-site houses located downgradient from the Site: 14728 Boyd Cove Road and 14734 Boyd Cove Road. Sampling was conducted in accordance with the method provided in the Work Plan Addendum, dated March 18, 2009, and the NYSDOH "*Guidance for Evaluating Soil Vapor Intrusion in the State of New York*" (October 2006).

Five (5) samples were collected over a 24-hour period from March 31, 2009 to April 1, 2009. One sub-slab soil vapor and one indoor ambient air sample were collected from each residence. An outdoor ambient air sample (OA-01) was also collected from an upwind location to evaluate background conditions. Indoor air samples were collected on the main level since neither structure had a basement.

Prior to sampling, the "NYSDOH Indoor Air Quality Questionnaire and Building Inventory" forms were completed. Copies of these forms, including sample locations, are provided in Appendix D.

Soil vapor samples were collected in SUMMA[®] canisters equipped with low-flow regulators. The canisters were pre-cleaned by Centek Laboratories, LLC, an ELAP-certified analytical laboratory. Samples were analyzed for VOCs by EPA Method TO-15. Analytical results summary sheets are provided in Appendix D.

3.0 Physical Site Characteristics

This section provides information on subsurface conditions and physical characteristics of the Site.

3.1 Surface Features

The Former Nichol Inn Site is a 0.4-acre parcel that with two structures that were demolished as IRMs during this investigation. The northern portion of the Site is covered with sand/gravel fill. The southern portion of the Site is mainly grass covered.

The topography is gently sloping from the northeast to the southwest. The topographic relief is 731 to 725 feet above mean sea level. Topography rises significantly to the west of the Site.

A timber and concrete retaining wall is present at the northwest corner of the Site. The retaining wall was constructed to divert stormwater flowing downhill from the west into the drainage ditch that runs along the western Site boundary.

3.2 Surface Water Hydrology

Keuka Lake is located approximately 200 feet east of the Site. A drainage swale runs along the western Site boundary and directs stormwater runoff around the Site and into a culvert which discharges to Keuka Lake. The existing retaining wall is deteriorated and, as a result, the Site is subject to periodic flooding from stormwater runoff and outwash from uphill lands to the west.

Surface water from the Site flows east and is captured in open drainage channels along Route 54A. Two stormwater catch basins are located along the eastern Site boundary and discharge to Keuka Lake.

3.3 Geology

The overburden consists of reworked alluvial deposits. These alluvial deposits are fan shaped features located where high gradient hillside streams enter flat valleys. The alluvial deposits include of a mixture of bedrock and soils from the hillsides. Streams laden with sediment enter the valleys depositing the bedload as the stream flow velocity decreases. Along Keuka Lake these alluvial deposits are commonly reworked by a combination of wave action and lateral migration of the stream across the fan like depositional feature. The lateral movement of the stream channel has likely left erosional scars or stream channels, which were filled by subsequent storm events. These features may influence groundwater flow directions at the site.

The depth to bedrock could not be confirmed during this investigation. Soil probe rods were driven to a depth of 39 feet bgs at location B-9 and no bedrock was encountered. Based on USGS bedrock maps, bedrock beneath this site is likely shales and sandstones of the Upper Devonian Sonyea Group.

Two geologic cross sections (A-A' and B-B') developed for the Site are included as Figures 5a and 5b, respectively. Cross section A-A' trends west to east and cross section B-B' trends south to north, as shown on Figure 5c. The cross sections illustrate the lithology identified in test borings and wells that were advanced as part of this investigation. Cross section A-A' also includes off-site subsurface features. As shown in the cross sections, the unconsolidated sediments consist of unsorted silt, gravel, and clay typical of alluvial fan type deposits. A silt and gravel layer identified in cross section B-B' (borings B-11 and B-12) may represent fill material as the soils in this area were not as well compacted as the soils throughout the remainder of Site.

3.4 Soils

The soils of the Site are classified as Chenango channery silt loam, fan (USDA, 1978). These soils are deep well drained soils that formed on gently sloping alluvial fans. As described in the boring logs (Appendix B) and shown on the cross sections (Figures 5a, 5b), the soils present at this Site consist primarily of silt and gravel with minor amounts of clay. The gravel is typically thin flat sandstone and limestone (channery) from bedrock on the adjacent hillside. The gravel deposits promote the downward percolation of water across the Site. Clay rich beds are present in the soil horizon. These clay rich beds inhibit downward percolation of the water, but do not represent confining layers as they are not found in all soil borings or at similar depths in the soil horizon at this Site.

3.5 Hydrogeology

This section describes the groundwater flow patterns and hydraulic conductivity data for the Site. The description generated is based on groundwater elevation data obtained during well sampling in February 2009, and hydraulic conductivity (K) data from slug tests completed in monitoring wells MW-3, MW-5b, MW-6, MW-7, and MW-8 on March 12, 2009.

Figure 7 illustrates groundwater elevation contours generated using measurements collected in February 2009. As shown, groundwater generally flows east toward Keuka Lake. Groundwater elevations are highest on the western portion of the property and lowest along the eastern property line, decreasing by approximately 10 feet from west to east. Off site, groundwater elevations drop an additional 5 feet across Route 54A to wells MW-7, MW-8 and MW-13.

Hydraulic gradients were calculated across two areas of the Site. Based on the February 2009 groundwater measurements, the hydraulic gradient across the Site from west to east is approximately 0.0734 ft/ft and was calculated between wells MW-3 and MW-8. The hydraulic gradient across the Site from north to south is approximately 0.0032 ft/ft and was calculated between wells MW-12 and MW-10.

Rising head slug tests were used to calculate hydraulic conductivity (K) and groundwater velocities. Hydraulic conductivity (the relative mobility of groundwater through soils) values were obtained using the Bouwer and Rice Method (1976) and AQTESOLV for Windows Standard 3.5. Hydraulic conductivity for the wells tested ranged between 1.022×10^{-6} ft/sec at MW-7 and 9.03×10^{-5} ft/sec at MW-8. Through the analysis of each rising head slug test, the average hydraulic conductivity for the Site, including the off site wells, was determined to be approximately 2.65 x 10^{-5} ft/sec. Hydraulic conductivity data is summarized in Appendix B.

Groundwater velocity, the rate at which groundwater moves across the Site, was calculated across two areas of the Site. These minimum and maximum groundwater velocity calculations were determined by using the Site average hydraulic conductivity value of 2.65×10^{-5} ft/sec.

The Site minimum groundwater velocity calculation was performed in the generally flat area between wells MW-12 and MW-10, in proximity to the contaminant source area. The topography across this central portion of the Site slopes gently from north to south, dropping 0.44 feet vertically over a horizontal distance of 136 feet (0.44 ft / 136 ft). The velocity across this portion of the Site was calculated to be approximately 8.48 x 10^{-8} ft/sec (0.007 ft/day), and is considered the minimum velocity for the Site.

The Site maximum groundwater velocity calculation was performed in the area of greatest topographic and hydrogeologic relief, between MW-3 and MW-8. The slope of the groundwater surface in this area drops to the east, with relief of nearly 6.5 feet vertically over a horizontal distance of 87 feet (6.39 ft / 87 ft). The velocity across this portion of the Site was calculated to be approximately 1.95×10^{-6} ft/sec (0.168 ft/day) and considered the maximum velocity for the Site.

Hydraulic conductivity and groundwater level data collected during the RI have indicated the following:

- Overburden material underlying the Site consists primarily of silt and gravel with minor amounts of clay.
- Hydraulic conductivity measurements for monitoring wells MW-3, MW-5b, MW-6, MW-7 and MW-8 averaged 2.65 x 10⁻⁵ ft/sec.
- Groundwater velocities on the Site vary from approximately 8.48 x 10⁻⁸ ft/sec to 1.95 x 10⁻⁶ ft/sec (0.007 ft/day to 0.168 ft/day, respectively).

The average depth to groundwater ranged between 6 and 8 feet bgs.

Slug test data, hydraulic conductivity data, hydraulic gradient and groundwater velocity calculations are provided in Appendix B.

3.6 Demography, Land Use, and Water Use

The Site is located in a residential area on the west shore of Keuka Lake, in the Town of Pulteney, New York. According to 2000 census data published by the U.S. Census Bureau, the Town of Pulteney had a population of 1,405. The local area is occupied by a combination of year-round and seasonal lakefront homes.

The Site is currently zoned for commercial use by the Town of Pulteney, and is located within Zoning District #2. The intent of Zoning District #2 is to permit establishment of low-density residential areas. Special permit uses in this district may also include: adult daycare, boat storage, churches, restaurants, and multi-family dwellings.

Public water is available at the Site and to houses along Route 54A. Most lakefront residents are still on a Keuka Lake water supply.

4.0

4.0 Nature and Extent of Contamination

In this section, laboratory analytical results are compared to the appropriate published standards, criteria, or guidance values as indicated below. Summary tables of the full analytical results are located in Appendix C.

Soil Samples. Analytical results are compared to the NYSDEC Soil Cleanup Objectives (SCOs) in 6 NYCRR Part 375-6.8(a) and (b) (effective December 14, 2006). Residential Use Cleanup Objectives are most applicable to future use of the Site, based on surrounding land uses and zoning districts. Residential Use, as defined by the regulation, "is the land use category which allows a site to be used for any use other than raising livestock or producing animal products for human consumption."

Groundwater Samples. Analytical results are compared to the NYS Class GA Groundwater Quality Standards from 6 NYCRR Parts 700-705 (NYS, 1999b), as well as to guidance values in the NYSDEC Technical and Operational Guidance Series 1.1.1 (NYSDEC, 1998).

Vapor Intrusion Samples. The sub-slab vapor, and indoor air sample results are compared to the ambient air samples collected over the same time period, as well as appropriate guidelines and reference values. Indoor and outdoor air samples are compared to the background levels published in the NYSDOH "*Guidance for Evaluating Soil Vapor Intrusion in the State of New* York" Table C1- "Study of volatile organic chemicals in air of fuel oil heated homes" (NYSDOH, 2003). There are no appropriate guidance values for petroleum-related VOCs in sub-slab soil vapor.

4.1 Surface Soils

Surface soil samples were collected at five locations (SS-01 through SS-05). Tabulated analytical results are shown on Tables 1-1 through 1-3 in Appendix C. The following is a summary of the results:

- All detected compounds were below Residential Use SCOs (6 NYCRR Part 375-6b).
- No SVOCs were detected above Unrestricted Use SCOs.
- Selenium was detected at concentrations above Unrestricted Use, but below Residential Use SCOs in all five samples. Concentrations of selenium were fairly consistent (4.6 – 5.5 ppb) across the Site, therefore, they are considered to represent background soil concentrations.
- Metals were detected at levels above Unrestricted Use SCOs in SS-2 and SS-5 as shown on Table 1-2 in Appendix C. The metals detected in SS-5 are most likely attributed to the small mound of fill material present at the sampling location. The volume of impacted fill material is approximately 136 ft³.
- Pesticides 4,4'-DDE and 4,4'-DDT were detected in surface soil samples SS-3, SS-4, and SS-5 at concentrations above Unrestricted Use, but within Residential Use SCOs. 4,4'-DDD was also detected in SS-5, as shown on Table 1-3 in Appendix C. These compounds were once used as insecticides, but have been banned in the U.S. since the early 1970s. The presence of these compounds in surface soils may be attributed to runoff from up-gradient agricultural fields.
- Aroclor 1254, a polychlorinated biphenyl (PCB), was detected in sample SS-5 above Unrestricted Use, but within the Residential Use SCO (see Table 1-3, Appendix C). No PCBs were detected anywhere else on the Site. Therefore, the PCBs detected in SS-5 are most likely attributed to the small mound of fill material present at the sampling location.

4.2 Subsurface Soils

Ten (10) soil samples were collected from soil borings, as previously indicated in Section 2.7, and five (5) samples were collected from the tank pit sidewalls during the IRM. Tabulated analytical results are shown on Tables 2-1 through 2-3. The following is a summary of the findings:

- All detected compounds were below Residential Use SCOs (6 NYCRR Part 375-6b).
- Petroleum-related VOCs were detected above Unrestricted Use SCOs at nine of the 15 sampling locations, as shown on Table 2-1 in Appendix C. The highest concentrations were detected in samples B-11 and TC-07, which are located down-gradient from the former 2,000-gallon USTs. The approximate extent of subsurface soil impacted by total benzene, toluene, ethylbenzene, and xylene (BTEX) is shown on Figure 6.

- The highest PID readings were obtained from approximately 8 to 12 feet bgs.
- No evidence of petroleum impacts was observed in soils from off-site well borings MW-7, MW-8, and MW-13, located east of Route 54A.
- No SVOCs were detected above Unrestricted Use SCOs.
- Selenium was detected above Unrestricted Use, but within Residential Use SCOs in all soil samples with the exception of B-11, as shown on Table 2-3 (Appendix C). Nickel was detected above Unrestricted Use, but within Residential Use SCOs in samples B-8, B-10, B-14, B-15, B-17, and WB-11. These are considered to be background soil concentrations for the Site.
- Pesticide 4,4'-DDD was detected above Unrestricted Use SCOs (48 ppb), but below Residential Use SCOs in sample B-11. 4,4'-DDD is a breakdown component of DDT.

4.3 Groundwater

A total of 11 groundwater samples were collected from monitoring wells and two (2) water samples were collected from the tank pit excavations. Analytical results are shown on Tables 3-1 through 3-4 in Appendix C. The following is a summary of the findings:

- BTEX compounds were detected at concentrations above NYS Ambient Groundwater Standards in MW-4, MW-5b, MW-6, TC-03, and TC-05. The highest concentrations were detected in MW-5b, as indicated on Table 3-1. The extent of groundwater impacted by BTEX compounds is shown on Figure 7. Assuming a soil porosity of 35%, the volume of petroleum-impacted groundwater above NYS groundwater standards is approximately 28,823 ft³. This volume was calculated using the area obtained from ESRI Spacial Analyst GIS Software using the spline method (shown of Figure 7), and assuming the depth of impact to be nine feet (9 to 18 feet bgs), multiplied by a soil porosity of 0.35.
- Two VOCs were detected above groundwater standards in down-gradient well MW-8: Benzene (7.4 ppb) and 1,2-Dichloroethane (0.84 ppb). The NYS groundwater standards are 1 ppb and 0.6 ppb, respectively. 1,2-Dichloroethane (1,2-DCA) was detected below the laboratory quantitation limit and was not found in any of the other wells or onsite soil samples. The source of this 1,2-DCA is unknown.
- Naphthalene (130 ppb) was detected in MW-5b above the NYSDEC Guidance Value. Naphthalene is a common petroleum constituent. All other SVOCs were below applicable standards, as shown on Table 3-2 in Appendix C.
- Iron, Magnesium, Manganese, and Sodium were present at levels above applicable standards or guidance values in most of the wells (Table 3-3, Appendix C). These are naturally occurring minerals found in groundwater and are common to the Southern Tier of New York.

• No PCBs or pesticides were detected in the wells sampled.

4.4 Soil Vapor

Five (5) soil vapor intrusion samples were collected from off-site properties during this investigation. The samples were submitted to Centek Laboratories, LLC for analysis of VOCs by EPA Method TO-15. Sample locations and analytical results are provided in Appendix D. The following is a summary of the findings:

- None of the chlorinated VOC compounds listed in the NYSDOH decision matrices were detected in the samples.
- Petroleum-related VOCs were detected in all of the samples, as shown on Table 4-1 in Appendix D.
- Petroleum compounds detected in the indoor and outdoor air samples are consistent with background levels in the *NYSDOH 2003 Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes (Table C1)*, with the exception of chloromethane (2.2 mcg/m³) and m&p-xylene (6.9 mcg/m³) in sample IA-02. It should be noted that during this sampling event, the resident was smoking indoors. Chloromethane and xylene are chemicals found in cigarette smoke. These compounds were not detected in nearby wells.

5.0 Contaminant Fate and Transport

This Section includes an evaluation of contaminant fate and transport for the Site including identifying potential routes of migration, contaminant persistence, and contaminant migration.

5.1 **Potential Routes of Migration**

Potential routes of migration identified for the Site include:

- Petroleum-related VOCs migrating off-site in a dissolved groundwater plume;
- VOCs in subsurface soils impacting the groundwater;
- Volatilization of VOCs in subsurface soil and/or groundwater;
- If the impacted soils or groundwater were to be disturbed, indirect migration pathways may include: transport on construction equipment, evaporation, etc.

5.2 Contaminant Persistence

Contamination at the Site is identified as primarily consisting of petroleum-related VOCs in subsurface soil and groundwater. These types of compounds are degraded aerobically and anaerobically by microorganisms in the subsurface. The chemical characteristics and fate of VOCs detected above groundwater standards are summarized in the following table.

Chemical of Concern	Physical Properties	Uses	Reaction with Water	Reaction with Air	Reaction with Soil
Benzene ¹	Colorless liquid with a sweet odor; flammable	Natural part of gasoline and crude oil.	Highly soluble in water; does not readily adsorb to sediments. May biodegrade in water with a half-life of 103 days.	Highly volatile; half-life in air is 2- 20 days.	High mobility in soil; biodegrades in presence of microorganisms
Toluene ¹	Colorless liquid with a pungent odor.	Occurs naturally in crude oil; found in gasoline, paint thinners & lacquers.	Will not readily adsorb to sediments or solid particles. Biodegrades in water with a half-life of 100-1,386 days.	Evaporates quickly into air from soil and water. Half-life in air is 3 days.	Relatively mobile in soil. Readily broken down by microorganisms in soil with a half-life of several hours to 71 days.
Ethylbenzene ¹	Colorless liquid; flammable	Naturally occurring in petroleum. Used in paints and inks	May adsorb to sediments or suspended solids in water. Breaks down in water by reacting with other chemicals. Half-life in water is 10-16 days.	Volatilizes easily into air from soil or water. Takes approximately 55 hours to break down in air.	Moderately mobile in soil. Breaks down by aerobic bacteria in the soil.
Xylene ¹	Colorless liquid with a sweet smell; flammable	Naturally occurring in petroleum. Used as a solvent & paint thinner	Breaks down by microorganisms in groundwater.	Evaporates quickly into air; breaks down in air by sunlight with a half-life of 1-2 days.	Moderately mobile in soil and may leach to ground- water. Broken down by microorganisms in soil.
Napthalene ¹	White solid	Found in petroleum and coal. Used in mothballs and PVC manufacturing	May dissolve in water and adsorbs to sediments. Breaks down by aerobic bacteria in water with a variable half-life of 0.8-43 days.	Broken down in air by water and sunlight; half-life in air is 18-60 hours.	Medium to low mobility in soil. Adsorbs moderately to soil particles and is broken down by microorganisms with a half-life of 2- 18 days.
1-2,- Dichloroethane ¹	A chemical intermediate also known as 1,2- DCA	Used in soaps, as a solvent, and formerly used as a fumigant.	May leach from soil to groundwater. Will not adsorb to sediments or suspended solids. Does not readily biodegrade in groundwater.	Volatilizes to air; half-life in air is 63 days.	Very high mobility in soil. Does not readily break down.

¹ Source: National Library of Medicine, Hazardous Substance Data Bank (HSDB). <Toxnet.nlm.nih.gov>

In addition to biodegradation, VOC concentrations in the groundwater would presumably decrease as the distance from the source area is increased due to processes such as advection, dispersion, sorption, and diffusion.

5.3 **Contaminant Migration**

Contaminant migration patterns are further described in this section. Primary constituents at the Site detected above regulatory criteria are petroleum-related VOCs and metals in groundwater. [Note: Concentrations of iron, magnesium, manganese, and sodium were detected above NYS groundwater standards in most of the wells. These levels are attributed to water hardness commonly found in the Southern Tier of New York, and are not included in the following discussion of contaminant migration].

Petroleum-related VOCs have been detected in subsurface soil and groundwater at the Site and within the adjacent highway right-of-way. The source of the VOC contamination appears to be from former USTs and associated piping located on the

northern portion of the Site, on the east side of the former building. It is evident that past releases of gasoline from USTs have migrated downward and impacted groundwater. Groundwater impacts are most significant in the area of MW-5b, located downgradient from the former 2,000-gallon tanks. Groundwater impacts appear to be migrating off-site toward the east and were detected in monitoring wells located within the adjacent Route 54A right-of-way (MW-6) and at low levels on the east side of Route 54A (MW-8). VOCs were not detected in the downgradient off-site private well (PW-1).

Soil impacts were most significant in the source area, where 496 tons of petroleumimpacted soils were removed during the IRM. Soil impacts were also observed within the right-of-way, east of the former 1,000-gallon tanks. Impacted soils appear to be limited to the Site and western right-of-way along Route 54A. No evidence of soil contamination was detected on the east side of the highway.

5.3.1 Factors Affecting Contaminant Migration

Factors affecting contaminant migration include advection, dispersion, molecular diffusion, adsorption of constituents onto soil particles, and partitioning of constituents between soil, groundwater, and air.

The type of contamination present at the Site generally consists of petroleumrelated VOCs. These compounds are typically soluble in water and do not adsorb to sediments or solid particles, therefore, they are relatively mobile in the environment.

Groundwater flow at the Site is toward the east, which allows for off-site migration of VOCs in groundwater. Hydraulic conductivities calculated for the area range between 1.022×10^{-6} ft/sec and 9.03×10^{-5} ft/sec. Groundwater velocities on the Site vary from approximately 8.48 x 10^{-8} ft/sec to 2.69 x 10^{-6} ft/sec (0.007 ft/day to 0.232 ft/day, respectively).

6.0 Exposure Assessment

The purpose of this exposure assessment is to qualitatively evaluate the contaminants of concern and the affected media with respect to potential exposure pathways and human receptors. This assessment is done to evaluate the potential for exposure routes to be present in order to facilitate the development of a remedial action plan.

The following exposure pathways were evaluated:

- Ingestion of impacted soil and/or groundwater;
- Inhalation of vapors and/or dust; and
- Direct contact with impacted soil/groundwater.

Potential human receptors in the vicinity of the Site include:

- Residents that live nearby;
- Visitors to the Site;
- Construction workers involved with remedial activities or Site redevelopment; and
- Construction workers involved with excavation in the Route 54A right-of-way adjacent to the Site.

6.1 Qualitative Public Exposure Assessment

The following is an evaluation of the exposure pathways and their status with respect to the Site.

Ingestion of Contaminated Soil and/or Groundwater

Based upon review of the soil analytical results, all of the compounds detected were within Residential Use Soil Cleanup Objectives (6 NYCRR Part 375-6). Impacted soils are present at a depth of approximately 8 to 12 feet below ground surface, thus making ingestion of soils an unlikely exposure pathway.

Groundwater sampling during this investigation revealed VOCs above NYS Ambient Groundwater Standards (6 NYCRR Part 703.5). There are currently no drinking water wells on the Site and a public water supply is available. Deed restrictions may be necessary to restrict future use of groundwater at the Site. Private drinking water wells are present in the area, the closest being PW-1 located down-gradient of the Site at 14728 Boyd Cove Road. This residence is on a public water supply and the owner reported that the well is only used for watering the lawn. Private well PW-1 was sampled for VOCs on April 21, 2009. Laboratory analysis did not detect any VOCs in the groundwater sample, therefore, ingestion of contaminated groundwater is not considered to be a complete exposure pathway at this time. Further off-site migration of VOCs in groundwater may lead to potential exposures in the future. Long-term groundwater monitoring may be necessary to evaluate the migration of impacted groundwater.

Inhalation of Vapors

The potential exists for volatilization of petroleum-related VOCs from impacted soil and groundwater. Exposure to soil vapor could occur during excavation or disruption of soils or through soil vapor intrusion. Onsite workers could be exposed to VOCs during future development if excavation of impacted soils (8-12 feet bgs) were to occur. Potential future exposures can be mitigated by way of a Site Management Plan.

The soil vapor intrusion pathway was evaluated by sampling at two adjacent, downgradient residences. Laboratory analytical results detected petroleum compounds in both sub-slab soil vapor and indoor air samples. The contaminant levels detected in indoor and outdoor air are consistent with background levels in the NYSDOH *Study of*

VOCs in Air of Fuel Oil Heated Homes. Based on these results, there are no complete soil vapor exposure pathways in connection with the Site.

Direct Contact with Impacted Soils and/or Groundwater

There is currently no direct contact with impacted soil and/or groundwater at the Site because the Site is vacant, access to the public is somewhat limited by a chain fence, and petroleum-impacted soils are located approximately eight feet below the surface.

There is a potential for direct contact with surface soils for future Site workers and/or trespassers. Contact with surface soils is not considered to be an exposure concern since all detected compounds are below Residential Use SCOs, which are established for the protection of public health, including dermal contact with soils.

The potential exists for future exposures if workers come into contact with impacted media during excavation or Site development activities. However, all work should be performed in accordance with an approved Health and Safety Plan and knowledge of Site conditions. Therefore, the risk for direct contact is considered low.

6.2 Environmental Exposure Assessment

The Fish and Wildlife Resources Impact Analysis (FWRIA) Decision Key was completed for the Site, as outlined in DER-10, and is included as Appendix I. It was determined that no FWRIA is needed since the Site is not a habitat for endangered, threatened, or special concern species; and the investigation does not indicate that groundwater contamination has migrated to Keuka Lake or any other fish and wildlife habitat.

7.0 Summary and Conclusions

7.1 Investigation Summary

Investigations performed as part of this project included:

- Evaluation of surface soil conditions;
- Evaluation of subsurface soil conditions;
- Evaluation of groundwater conditions; and
- Evaluation of building materials for the presence of asbestos or other hazardous materials.

This work also included laboratory analysis of five (5) surface soil, 15 subsurface soil, 13 groundwater, and five (5) soil vapor intrusion samples. Building material samples were also submitted for laboratory analysis of asbestos. Field screening with real-time instruments was used to supplement the laboratory data.

All onsite structures were demolished, and four USTs and 496 tons of petroleumimpacted soils were removed as an IRM during the investigation. All tank pit sidewall samples were within Residential Use SCOs.

Off-site investigation included the installation and sampling of five (5) wells within roadway right-of-ways, including three wells on the east side of Route 54A; sampling an existing down-gradient private well (PW-1); and soil vapor intrusion sampling at two residences located east of the Site.

7.2 Conclusions

Primary contaminants detected in soil and groundwater at the Site include petroleumrelated VOCs. The area of most significant soil and groundwater contamination is located just east of the former building, down-gradient from the former 2,000-gallon USTs, as shown on Figures 6 and 7. Groundwater flow is generally to the east, toward Keuka Lake. It is evident that the contamination has migrated off-site to the east, impacting the Route 54A right-of-way.

Petroleum-related VOCs were detected above NYS groundwater standards in the following wells: MW-4, MW-5b, MW-6, and MW-8. The highest concentrations were found in MW-5b. Low level VOCs were detected in MW-8, located east of Route 54A. Based on the results of this investigation, groundwater impacts appear to be limited to the right-of-way, as no VOCs were detected in a nearby private well (PW-1).

Concentrations of metals (iron, magnesium, manganese, and sodium) detected above groundwater standards in most of the wells are naturally occurring minerals found in groundwater and are common to the Southern Tier of New York. The concentrations detected are likely attributed to water hardness and are considered to be background concentrations for the area, based on the widespread occurrence.

Results of off-site groundwater sampling and soil vapor intrusion sampling do not indicate a concern with public exposure to petroleum-impacted groundwater or soil vapor at this time.

All VOCs detected in soil were below the Residential Use SCOs (6NYCRR Part 375-6b). Residential or Restricted-Residential Use SCOs are deemed the most appropriate for future use of the Site, based on surrounding land uses and local zoning districts.

7.2.1 Data Limitations and Recommendations for Future Work

No significant analytical data limitations were identified in the *Data Usability Summary Report* (Paradigm Environmental Services, Inc., June 4, 2009), included as Attachment F.

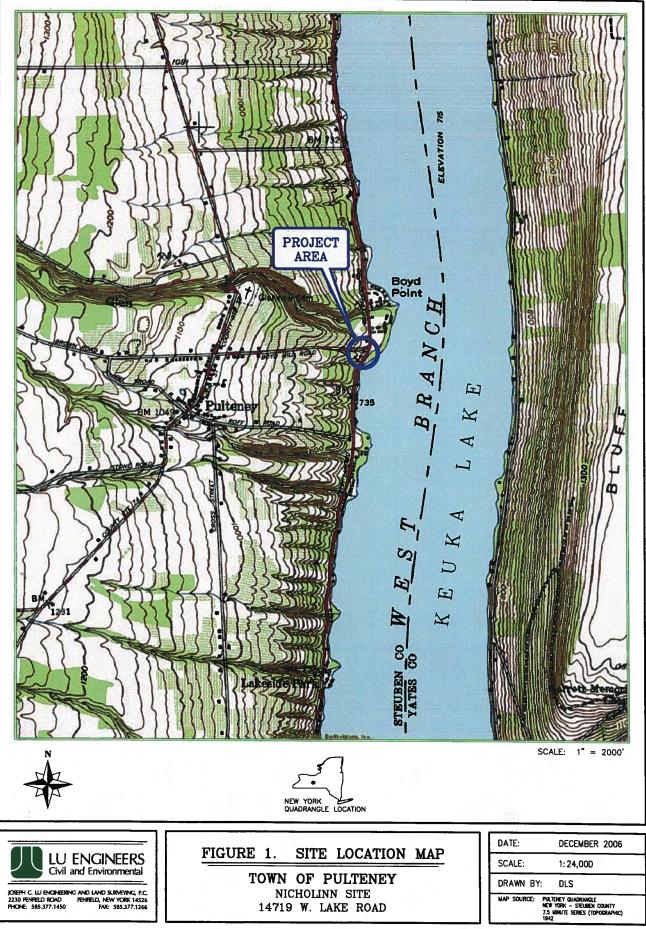
Additional groundwater sampling is recommended to determine the effect of the soil removal IRM on groundwater quality.

7.2.2 Recommended Remedial Action Objectives

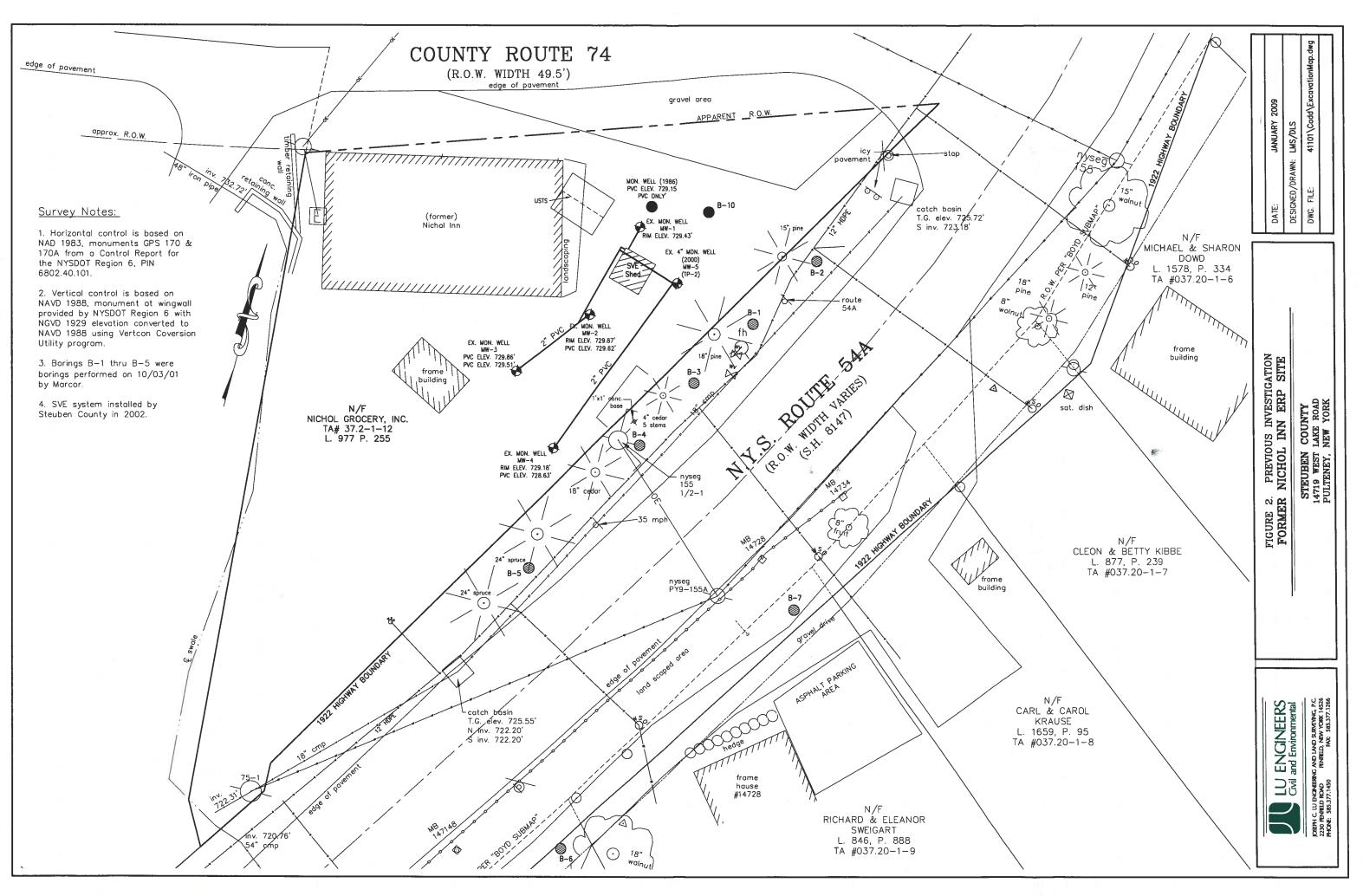
Based on the findings of this investigation, the following Remedial Action Objectives (RAOs) are recommended:

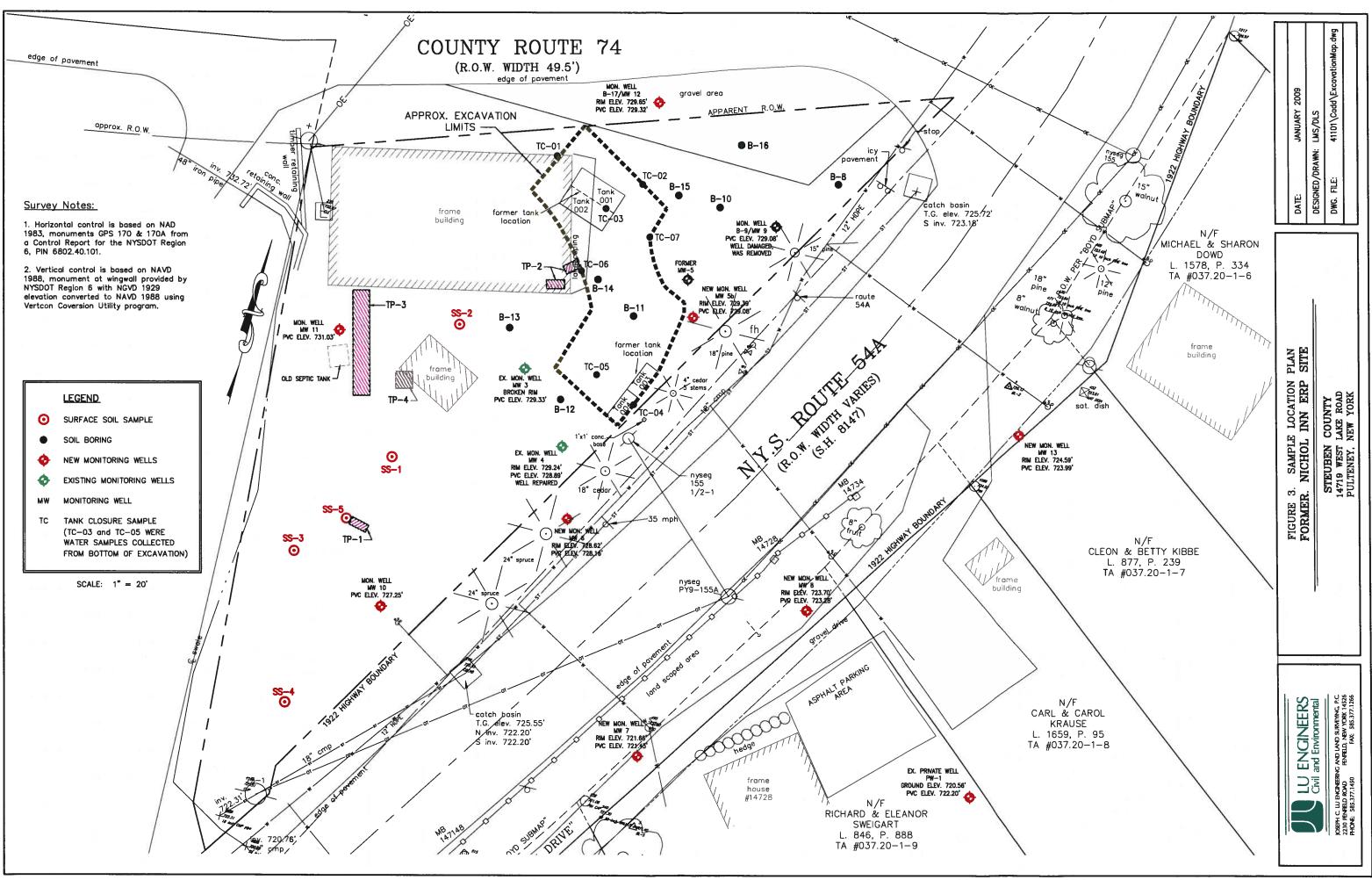
- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards;
- Prevent ingestion and direct contact with petroleum-impacted subsurface soils;
- Prevent contact with, or inhalation of, VOCs from petroleum-impacted subsurface soil and groundwater at the Site; and
- Prevent migration of contamination that would result in impacts to surface water or groundwater.

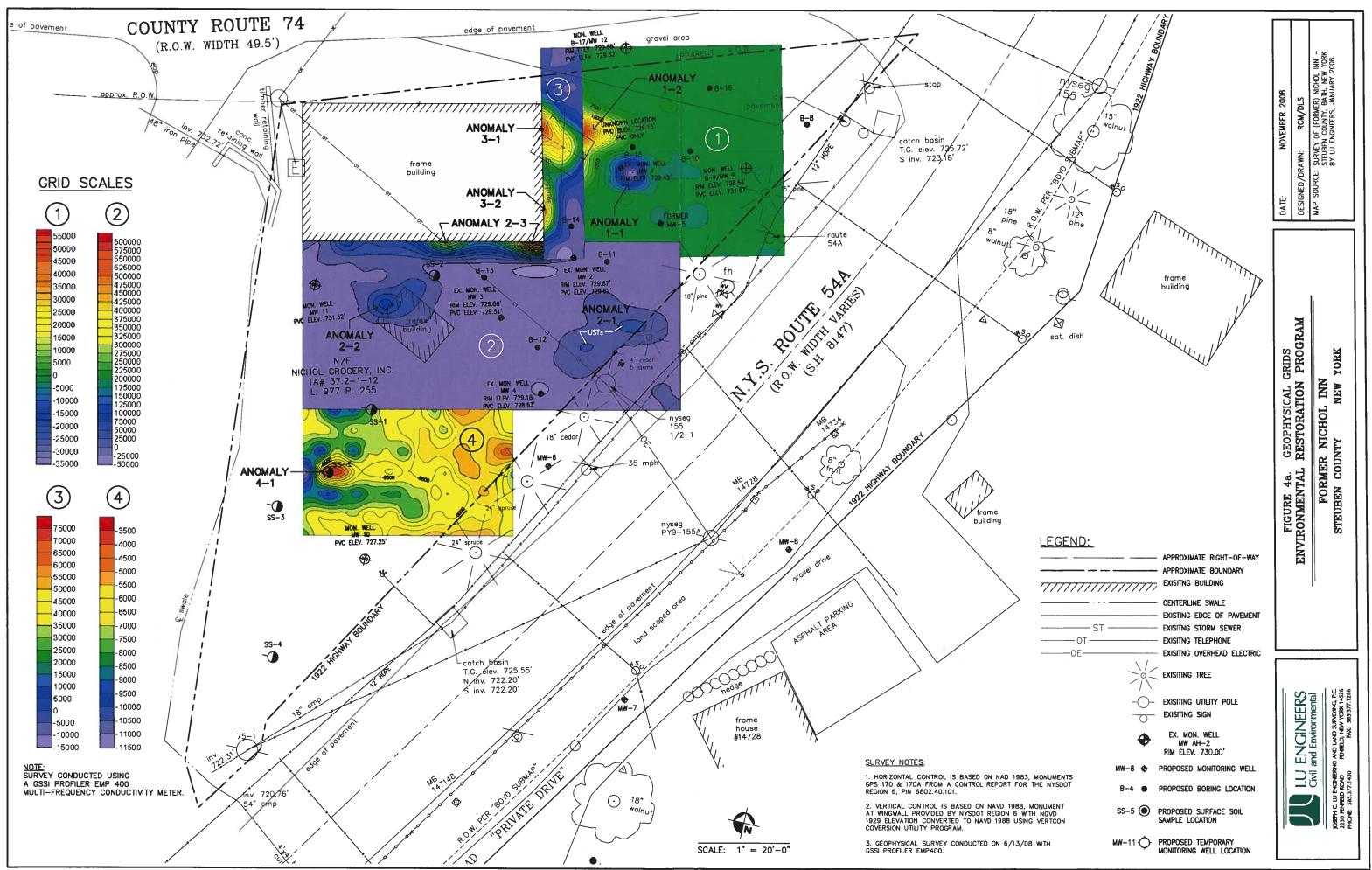
8.0 Certification

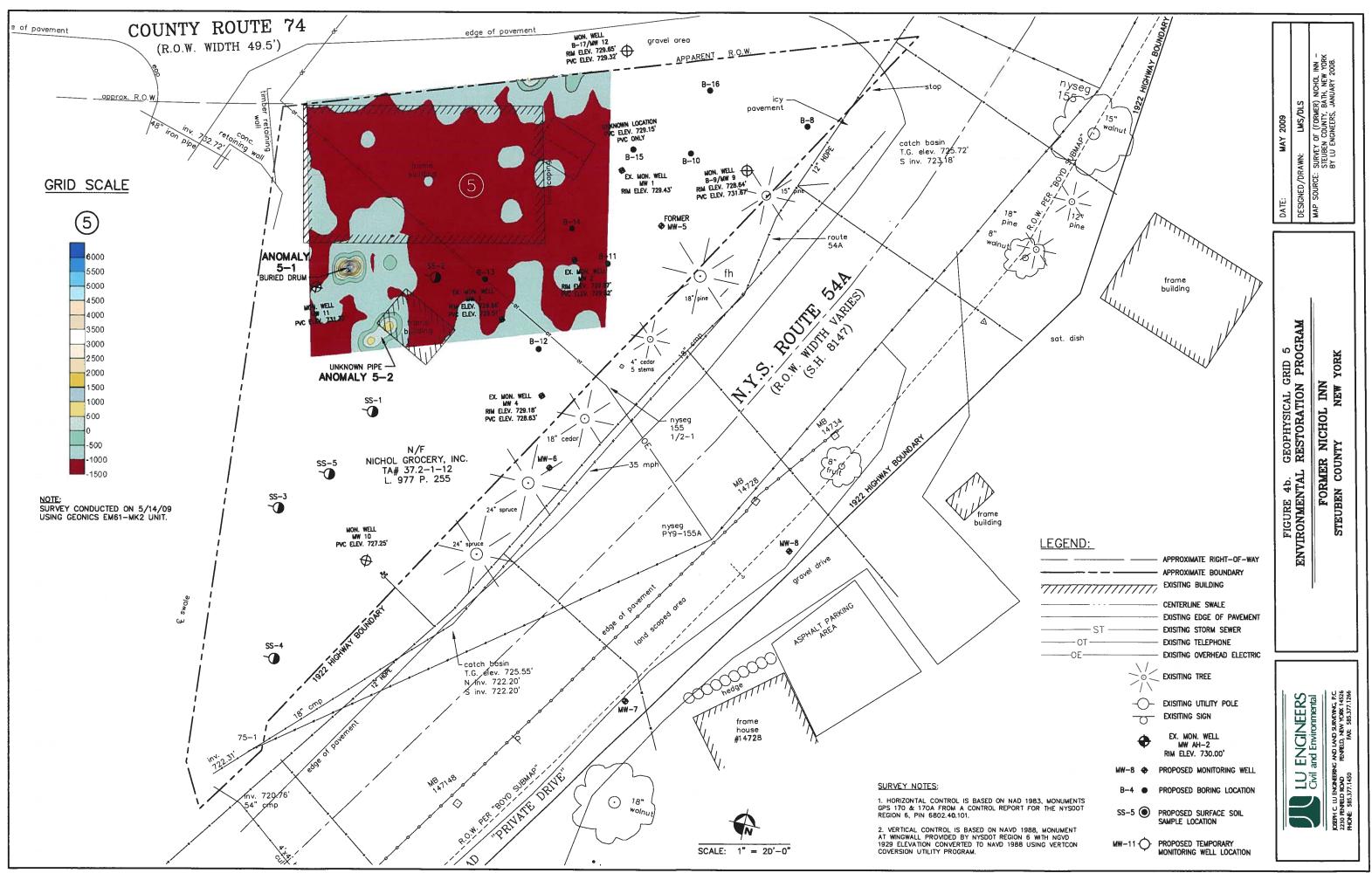

We certify that this Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER10) and that all activities were performed in full accordance with the DER approved work plan and any DER approved modifications.

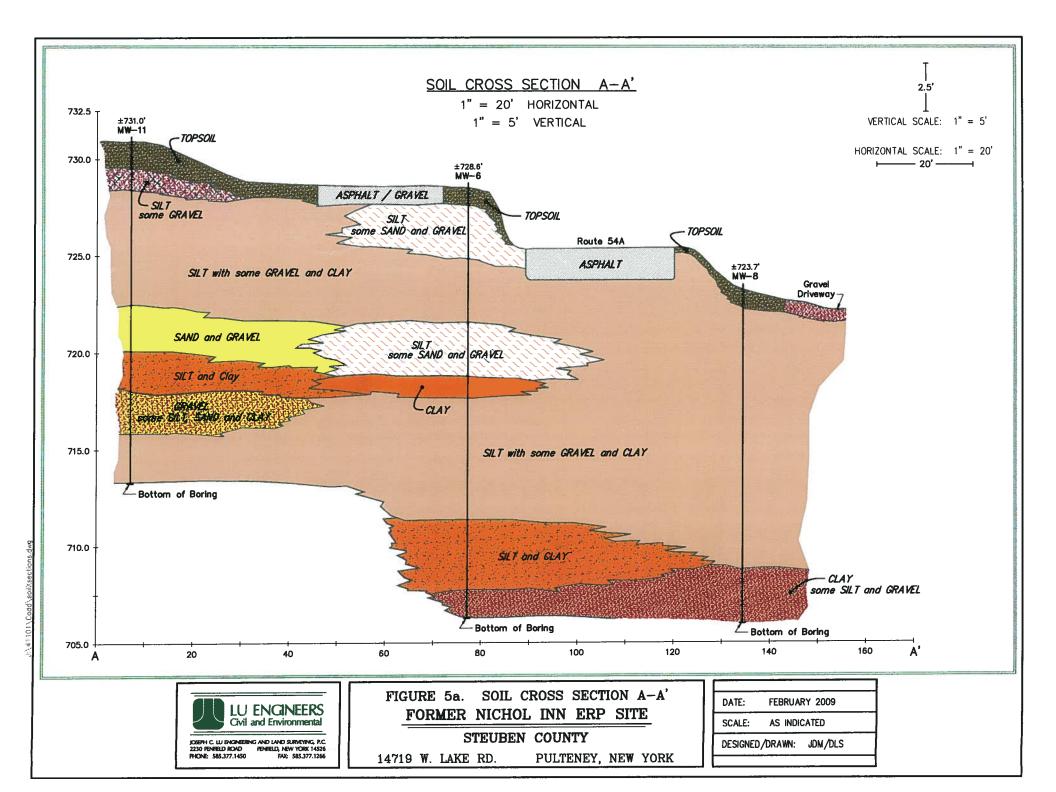
aura Neubauer

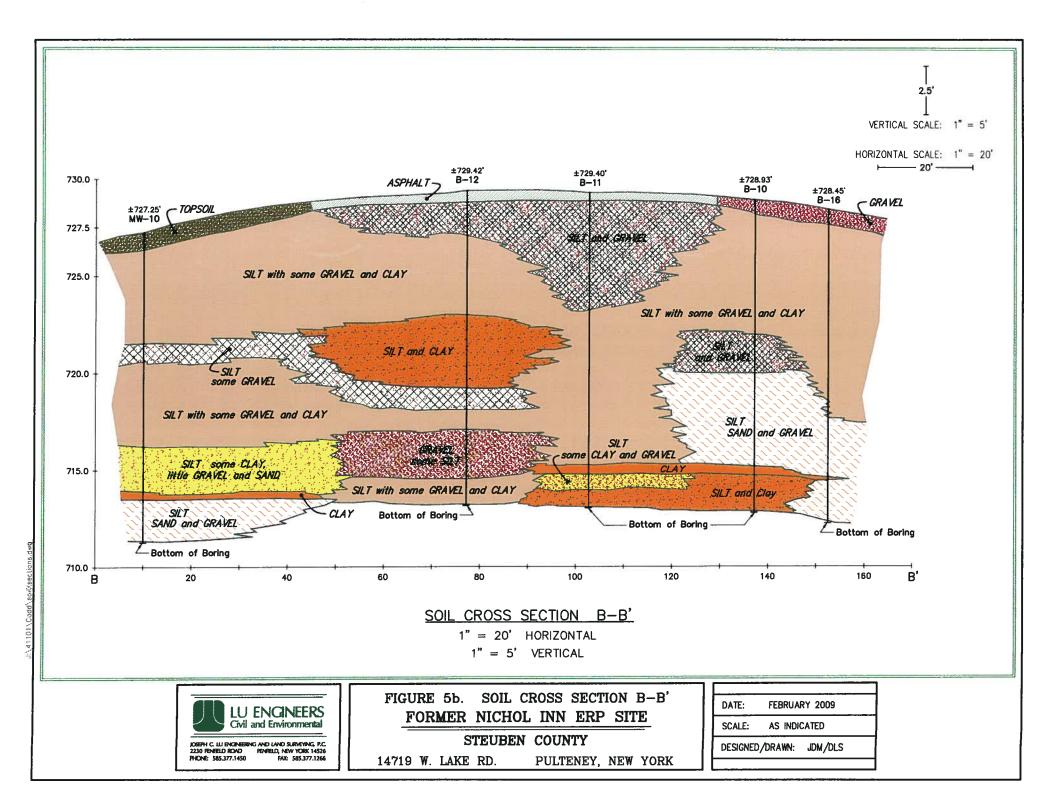

Laura (Smith) Neubauer Environmental Specialist

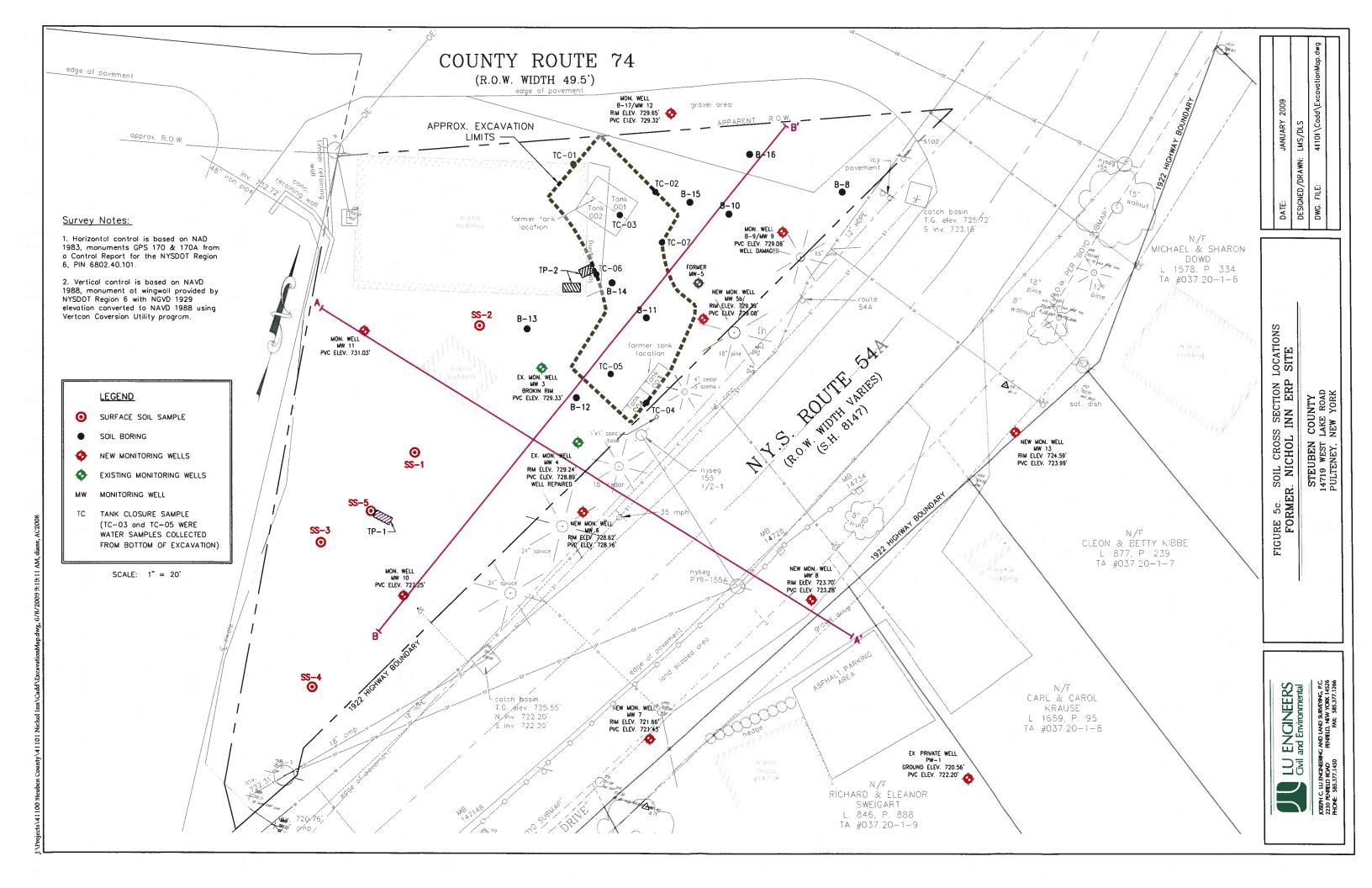

Steven A. Campbell, CHMM Environmental Division Leader

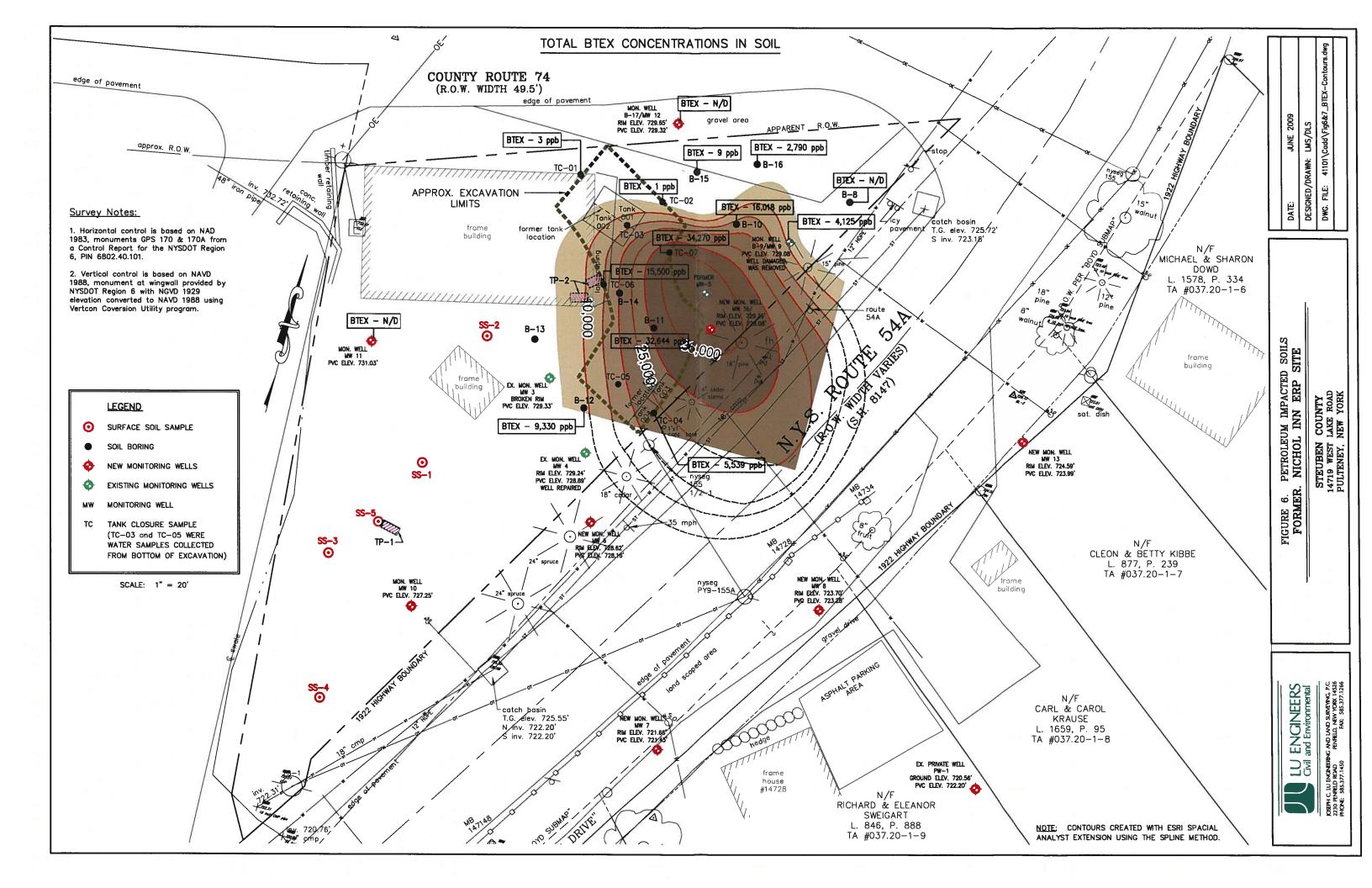


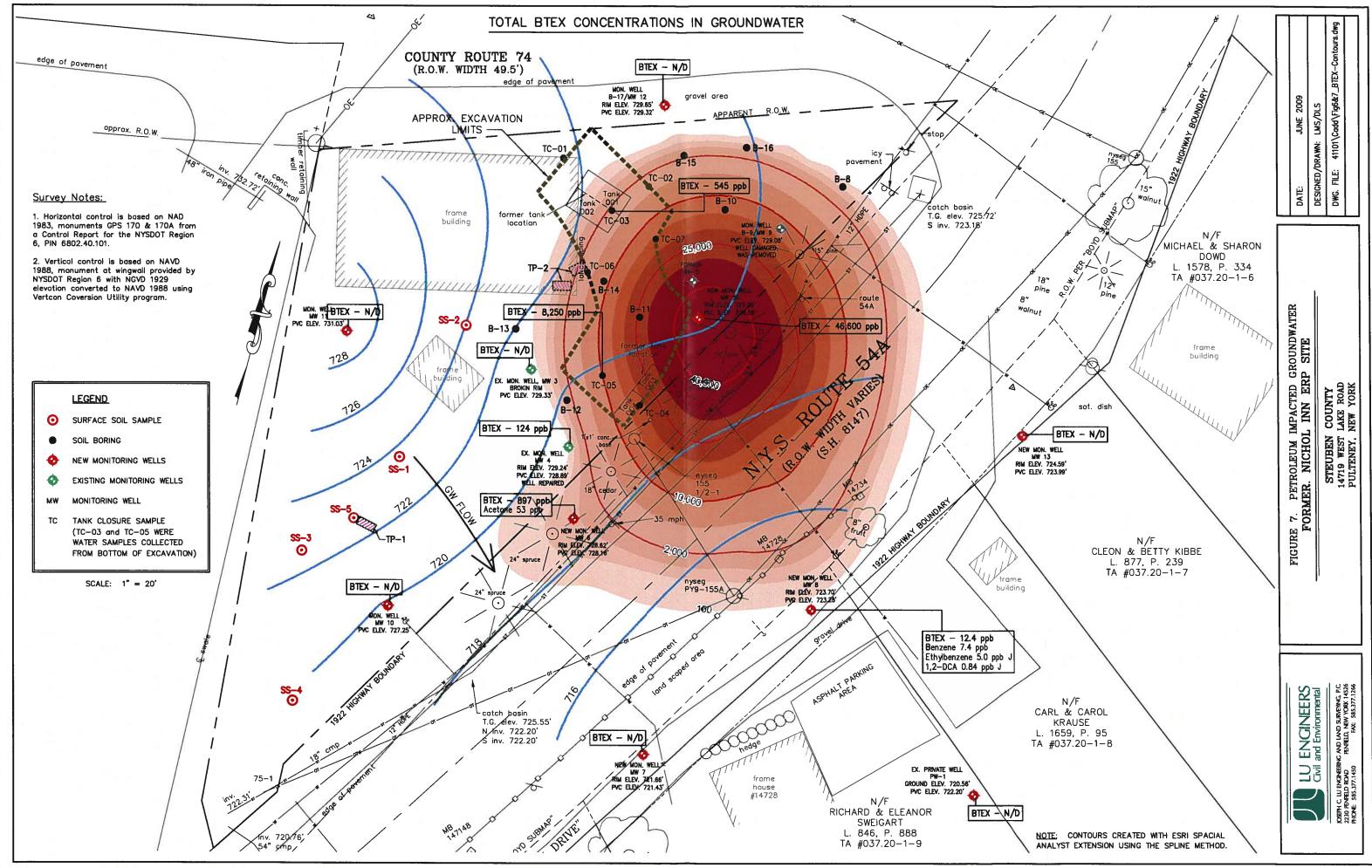



J:\PROJECTS\4|100 STEUBEN COUNTY\4|101 NICHOL INN\CADD\REPORT MAPS.DWG, 7/12/2007 10:55:04 AM, DIANE









	Unrestricted						
Parameters	Use ²	Residential Use ³	SS-1	SS-2	SS-3	SS-4	SS-5
2,2'-Oxybis(1-Chloropropane)	N/A	N/A	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	N/A	N/A	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	N/A	N/A	ND	ND	ND	ND	ND
2,4-Dichlorophenol	N/A	N/A	ND	ND	ND	ND	ND
2,4-Dimethylphenol	N/A	N/A	ND	ND	ND	ND	ND
2,4-Dinitrophenol	N/A N/A	N/A	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	N/A N/A	N/A N/A	ND ND	ND ND	ND	ND	ND
2-Chloronaphthalene	N/A N/A	N/A N/A	ND ND	ND ND	ND	ND	ND
2-Chlorophenol	N/A N/A	N/A N/A	ND ND	ND	ND ND	ND ND	ND ND
2-Methylnaphthalene	N/A N/A	N/A N/A	ND ND	ND	ND ND	ND ND	ND ND
2-Methylphenol (o-Cresol)	330	100,000	ND ND	ND	ND	ND	ND ND
2-Nitroaniline	N/A	N/A	ND	ND	ND	ND	ND
2-Nitrophenol	N/A	N/A	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	N/A	N/A	ND	ND	ND	ND	ND
3-Nitroaniline	N/A	N/A	ND	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	N/A	N/A	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	N/A	N/A	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	N/A	N/A	ND	ND	ND	ND	ND
4-Chloroaniline	N/A	N/A	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	N/A	N/A	ND	ND	ND	ND	ND
4-Methylphenol (p-Cresol)	330	34,000	ND	ND	ND	ND	ND
4-Nitroaniline	N/A	N/A	ND	ND	ND	ND	ND
4-Nitrophenol	N/A	N/A	ND	ND	ND	ND	ND
Acenaphthene	20,000	100,000	ND	ND	ND	ND	ND
Acenaphthylene	100,000	100,000	ND	ND	ND	ND	ND
Acetophenone	N/A	N/A	ND	ND	ND	ND	ND
Anthracene	100,000	100,000	ND	ND	ND	ND	ND
Atrazine	N/A	N/A	ND	ND	ND	ND	ND
Benzaldehyde Benzo(a)anthracene	N/A 1,000	N/A 1,000	ND 190 J	ND 1601	ND 170 J	ND	ND
Benzo(a)pyrene	1,000	1,000	190 J	160 J 100 J	170 J 100 J	160 J ND	360 J
Benzo(b)fluoranthene	1,000	1,000	140 J	100 J	120 J	ND ND	310 J 300 J
Benzo(ghi)perylene	100,000	1,000	130 J	ND	66 J	ND ND	200 J
Benzo(k)fluoranthene	800	1,000	ND	ND	60 J	ND	200 J 220 J
Biphenyl	N/A	N/A	ND	ND	ND	ND	ND
Bis(2-chloroethoxy) methane	N/A	N/A	ND	ND	ND	ND	ND
Bis(2-chloroethyl) ether	N/A	N/A	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	N/A	N/A	ND	ND	ND	ND	ND
Butyl benzyl phthalate	N/A	N/A	ND	ND	ND	ND	ND
Caprolactam	N/A	N/A	ND	ND	ND	ND	ND
Carbazole	N/A	N/A	ND	ND	ND	ND	ND
Chrysene	1,000	1,000	120 J	100 J	120 J	ND	410 J
Di-n-butyl phthalate	N/A	N/A	ND	ND	ND	ND	ND
Di-n-octyl phthalate	N/A	N/A	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	330	330	ND	ND	ND	ND	ND
Dibenzofuran	7,000	14,000	ND	ND	ND	ND	ND
Diethyl phthalate Dimethyl phthalate	N/A N/A	N/A N/A	ND ND	ND	ND	ND	ND
Fluoranthene	100,000	100,000	190 J	ND 160 J	ND 350 J	ND ND	ND 540 I
Fluorene	30,000	100,000	ND	ND	330 J ND	ND ND	540 J
Hexachlorobenzene	N/A	N/A	ND	ND	ND	ND ND	ND ND
Hexachlorobutadiene	N/A	N/A N/A	ND	ND	ND	ND ND	ND ND
Hexachlorocyclopentadiene	N/A	N/A	ND	ND	ND	ND	ND ND
Hexachloroethane	N/A	N/A	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	500	500	88 J	80 J	62 J	ND	180 J
Isophorone	N/A	N/A	ND	ND	ND	ND	ND
N-Nitroso-Di-n-propylamine	N/A	N/A	ND	ND	ND	ND	ND
N-nitrosodiphenylamine	N/A	N/A	ND	ND	ND	ND	ND
Naphthalene	12,000	100,000	ND	ND	ND	ND	ND
Nitrobenzene	N/A	N/A	ND	ND	ND	ND	ND
Pentachlorophenol	800	2400	ND	ND	ND	ND	ND
Phenanthrene	100,000	100,000	ND	ND	290 J	ND	290 J
Phenol	330	100,000	ND	ND	ND	ND	ND
Pyrene	100,000	100,000 rts per billion (ppb)	180 J	170 J	260 J	ND	450 J

2- NYSDEC Unrestricted Use Soil Cleanup Objective

3- NYSDEC Residential Use Soil Cleanup Objectives

	Unrestricted	Residential					
Parameters	Use ²	Use ³	SS-1	SS-2	SS-3	SS-4	SS-5
Aluminum - Total	-	-	6430 EN	10600 EN	8160 EN	9270 EN	7530 EN
Antimony - Total		-	19.3 NU	18 NU	20.6 NU	17.9 NU	17.1 NU
Arsenic - Total	13	16	5 N	8.8 N	10.2 N	9.9 N	9.9 N
Barium - Total	350	350	38.2 EN	64.5 EN	55 EN	58.1 EN	168 EN
Beryllium - Total	7.2	14	0.31 N	0.59 N	0.37 N	0.45 N	0.56 N
Cadmium - Total	2.5	2.5	0.39 N	0.59 N	0.47 N	0.43 N	2 N
Calcium - Total	*	-	21800 EN*	6190 EN*	10700 EN*	13000 EN*	13100 EN*
Chromium - Total	30	36	13.3 EN	19.6 EN	13.7 EN	15.7 EN	18.8 EN
Cobalt - Total	-	-	7.1 EN	12.6 EN	8.3 EN	11.8 EN	6.9 EN
Copper - Total	50	270	39 EN	32.1 EN	27.6 EN	27.9 EN	51.9 EN
Iron - Total	-	-	17100 E	28000 E	22100 E	24300 E	15800 E
Lead - Total	63	400	40 EN	77.3 EN	40.1 EN	35.3 EN	351 EN
Magnesium - Total	-	-	7430 EN*	4940 EN*	4970 EN*	6370 EN*	4270 EN*
Manganese - Total	1600	2000	374 E*	599 E*	362 E*	465 E*	355 E*
Mercury - Total	0.18	0.81	ND	0.042	0.049	0.045	0.574
Nickel - Total	30	140	17 EN	28.7 EN	20.9 EN	23.8 EN	20.1 EN
Potassium - Total	-	-	738 EN	1280 EN	1020 EN	1160 EN	1340 EN
Selenium - Total	3.9	36	5.1 NU	4.8 NU	5.5 NU	4.8 NU	4.6 NU
Silver - Total	2	36	0.64 NU	0.6 NU	0.69 NU	0.6 NU	0.57 NU
Sodium - Total	*	-	180 NU	168 NU	192 NU	167 NU	159 NU
Thallium - Total	-	-	7.7 NU	7.2 NU	8.2 NU	7.2 NU	6.8 NU
Vanadium - Total		-	11.9 EN	19 EN	13.7 EN	16.9 EN	19.8 EN
Zinc - Total	109	2200	95.9 EN	144 EN	99.4 EN	97.8 EN	367 EN

2- NYSDEC Unrestricted Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(a)]

3- NYSDEC Residential Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(b)]

	Unrestricted				
	Use Soil	Residential Use			
	Cleanup	Soil Cleanup			
Parameters	Objectives ²	Objectives ³	SS-3	SS-4	SS-5
Aroclor 1016	100	1,000	ND	ND	ND
Aroclor 1221	100	1,000	ND	ND	ND
Aroclor 1232	100	1,000	ND	ND	ND
Aroclor 1242	100	1,000	ND	ND	ND
Aroclor 1248	100	1,000	ND	ND	ND
Aroclor 1254	100	1,000	ND	ND	510
Aroclor 1260	100	1,000	11 J	ND	76
4,4'-DDD	3	2,600	ND	ND	68 J
4,4'-DDE	3	1,800	5.5 J	6.6 J	100
4,4'-DDT	3	1,700	14 J	14 J	110
Aldrin	5	19	ND	ND	ND
alpha-BHC	20	97	ND	ND	ND
beta-BHC	36	72	ND	ND	ND
Chlordane	94	910	ND	ND	ND
delta-BHC	40	100,000	ND	ND	ND
Dieldrin	5	39	ND	ND	ND
Endosulfan I	2,400	4,800	ND	ND	ND
Endosulfan II	2,400	4,800	ND	ND	ND
Endosulfan Sulfate	2,400	4,800	ND	ND	ND
Endrin	14	2,200	ND	ND	ND
Endrin aldehyde	N/A	N/A	ND	ND	ND
gamma-BHC (Lindane)	100	280	ND	ND	ND
Heptachlor	42	420	ND	ND	ND
Heptachlor epoxide	N/A	N/A	ND	ND	ND
Methoxychlor	N/A	N/A	ND	ND	ND
Toxaphene	N/A	N/A	ND	ND	ND

2- NYSDEC Unrestricted Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(a)]

3- NYSDEC Residential Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(b)]

Table 2-1 Subsurface Soil Results - VOCs

Parameters	Unrestricted Use ²	Residential Use ³	B-8-12	B-9-10	B-10-10	B-11-12	B-12-12	B-14-12.5	B-15-12	B-16-12	B-17-12	WB-11-9
1,1,1-Trichloroethane	680 ¹	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	270	19,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	330	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	1,100	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloroethane	20	2.300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	17,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.4-Dichlorobenzene	1,800	9.800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	120	100.000	ND	ND	ND	ND	ND	ND	5 J	ND	ND	ND
2-Hexanone	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	100.000	9 J	ND	200	380	ND	ND	42	ND	ND	ND
Benzene	60	2,900	ND	ND	18 J	44	ND	8 J	ND	ND	ND	ND
Bromodichloromethane	N/A	2,500 N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	N/A N/A	N/A N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	N/A	N/A N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	N/A N/A	N/A	ND	91	6 J	6 J	ND	6 J	IJ	ND	ND	ND
Carbon Tetrachloride	760	1.400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	1100	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	370	10.000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1.2-Dichloroethene	250	59,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloropropene	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	N/A N/A	N/A N/A	ND	1900 D	700 D	2200 D	2800	2400 D	5	1100	ND	ND
Dibromochloromethane	N/A N/A	N/A N/A	ND	ND	ND	ND	2000 ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	N/A N/A	N/A N/A	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	30,000	ND	1000 D	2200 D	4600 D	1500	1300 D	3 J	690	ND	ND
	3,900	100.000	ND	290	250	580	550	290	3 J	290	ND	ND
Isopropylbenzene Methyl acetate	3,900 N/A	N/A	ND	ND		ND	ND	ND ND	ND	ND	ND	ND
Methyl-t-Butyl Ether (MTBE)	930	62,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	930 N/A	N/A	ND	3600 D	1300 D	4400 D	8000	8700 D	8	2200	ND	ND
Methylcyclohexane	50	51,000	8 B	ND	92 B	ND ND	ND	ND	6 B	ND	6 B	7 B
Methylene chloride	N/A		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	N/A 1300	5,500	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND
Tetrachloroethene	700	<u> </u>	ND	25 BJ	800 D	2000 D	130	210 B	2 BJ	ND	ND	ND
Toluene	120	100,000	ND	3100 D	13000 D	2000 D 26000 D	7700	6100 D	4 J	2100	ND	ND
Total Xylenes	<u>120</u> 190	100,000	ND ND	ND	13000 D ND	20000 D ND	ND	ND	- 4J ND	2100 ND	ND	ND
trans-1,2-Dichloroethene			ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	N/A	N/A 10,000	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	470		ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	N/A 20	<u>N/A</u> 210	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND
Vinyl chloride	20	210	ND	שמ	ND	עא	עא					<u></u>

1- Results presented in parts per billion (ppb)

2- NYSDEC Unrestricted Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(a)]

3- NYSDEC Residential Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(b)]

Table 2-2 Sub-Surface Soil Results - SVOCs

	Unrestricted						
Parameters	Use ²	Residential Use ³	B-8-12	B-9-10	B-10-10	B-11-12	B-12-12
2,2'-Oxybis(1-Chloropropane)	N/A	N/A	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	N/A	N/A	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	N/A	N/A	ND	ND	ND	ND	ND
2,4-Dichlorophenol	N/A	N/A	ND	ND	ND	ND	ND
2,4-Dimethylphenol	N/A	N/A	ND	ND	86 J	ND	ND
2,4-Dinitrophenol 2,4-Dinitrotoluene	N/A N/A	N/A	ND	ND	ND	ND	ND
2.6-Dinitrotoluene	N/A N/A	N/A N/A	ND ND	ND ND	ND	ND	ND
2-Chloronaphthalene	N/A N/A	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND
2-Chlorophenol	N/A N/A	N/A N/A	ND	ND ND	ND ND	ND	ND ND
2-Methylnaphthalene	N/A	N/A	17 J	110 J	240	190 J	780
2-Methylphenol (o-Cresol)	330	100,000	ND	ND	ND	16 J	ND
2-Nitroaniline	N/A	N/A	ND	ND	ND	ND	ND
2-Nitrophenol	N/A	N/A	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	N/A	N/A	ND	ND	ND	ND	ND
3-Nitroaniline	N/A	N/A	ND	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	N/A	N/A	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether	N/A	N/A	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol 4-Chloroaniline	N/A	N/A	ND	ND	ND	ND	ND
4-Chloroaniline 4-Chlorophenyl phenyl ether	N/A N/A	N/A N/A	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether 4-Methylphenol (p-Cresol)	<u>N/A</u> 330	N/A 34,000	ND ND	ND ND	ND ND	ND	ND
4-Nitroaniline	N/A	N/A	ND ND	ND	ND ND	11 J ND	ND
4-Nitrophenol	N/A	N/A N/A	ND ND	ND	ND	ND ND	ND ND
Acenaphthene	20,000	100,000	ND	ND	ND	ND	8 J
Acenaphthylene	100,000	100,000	ND	ND	ND	ND	ND
Acetophenone	N/A	N/A	ND	ND	ND	ND	ND
Anthracene	100,000	100,000	ND	ND	ND	ND	ND
Atrazine	N/A	N/A	ND	ND	ND	ND	ND
Benzaldehyde	N/A	N/A	ND	ND	ND	ND	ND
Benzo(a)anthracene	1,000	1,000	ND	ND	ND	ND	ND
Benzo(a)pyrene	1,000	1,000	ND	ND	ND	ND	ND
Benzo(b)fluoranthene Benzo(ghi)perylene	1,000 100,000	1,000 100,000	ND ND	ND	ND	ND	ND
Benzo(k)fluoranthene	800	1,000	ND ND	ND ND	ND ND	ND	ND
Biphenyl		N/A	ND ND	ND	ND ND	ND ND	ND 74 J
Bis(2-chloroethoxy) methane	N/A N/A	N/A N/A	ND ND	ND	ND ND	ND ND	ND
Bis(2-chloroethyl) ether	N/A	N/A	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	N/A	N/A	200 J	83 J	61 J	65 J	77 J
Butyl benzyl phthalate	N/A	N/A	ND	ND	ND	ND	ND
Caprolactam	N/A	N/A	ND	ND	ND	ND	ND
Carbazole	N/A	N/A	ND	ND	ND	ND	ND
Chrysene	1,000	1,000	ND	ND	ND	ND	ND
Di-n-butyl phthalate	N/A	N/A	ND	ND	ND	ND	ND
Di-n-octyl phthalate	<u>N/A</u>	N/A	<u>ND</u>	ND ND	ND	ND	ND
Dibenzo(a,h)anthracene Dibenzofuran	<u>330</u> 7,000	330	ND	ND ND	ND	ND	ND
Diethyl phthalate		14,000 N/A	ND ND	ND ND	ND	ND	20 J
Dimethyl phthalate	N/A N/A	N/A N/A	ND	ND ND	ND ND	ND ND	ND ND
Fluoranthene	100,000	100,000	ND	ND ND	ND	ND ND	ND ND
Fluorene	30,000	100,000	ND	ND	ND	ND	24 J
Hexachlorobenzene	N/A	N/A	ND	ND	ND	ND	ND
Hexachlorobutadiene	N/A	N/A	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	N/A	N/A	ND	ND	ND	ND	ND
Hexachloroethane	N/A	N/A	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	500	500	ND	ND	ND	ND	ND
Isophorone	N/A	N/A	ND	ND	ND	ND	ND
N-Nitroso-Di-n-propylamine	N/A	N/A	ND	ND	ND	ND	ND
N-nitrosodiphenylamine	N/A	N/A	ND	ND	ND	ND	ND
Naphthalene Nitrobenzene	12,000 N/A	100,000 N/A	13 J	51 J	280	150 J	450
Pentachlorophenol	800	N/A 2400	ND ND	ND ND	ND	ND	ND
Phenanthrene	100,000	100,000	<u> </u>	10 J	ND 10 J	ND 11 J	ND 14 J
Phenol	330	100,000	9J ND	ND	ND	ND	14 J ND
Pyrene	100,000	100,000	ND ND	ND ND	ND	ND	ND ND
	Results presented in par	·					

1- Results presented in parts per billion (ppb)

2- NYSDEC Unrestricted Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(a)]

3- NYSDEC Residential Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(b)]

	Unrestricted						
Parameters	Use ²	Residential Use ³	B-14-12.5	B-15-12	B-16-12	B-17 -12	WB-11-9
2,2'-Oxybis(1-Chloropropane)	N/A	N/A	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	N/A	N/A	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	N/A	N/A	ND	ND	ND	ND	ND
2,4-Dichlorophenol	N/A	N/A	ND	ND	ND	ND	ND
2,4-Dimethylphenol	N/A	N/A	ND	ND	ND	ND	ND
2,4-Dinitrophenol	N/A	N/A	ND	ND	ND	ND	ND
2,4-Dinitrotoluene 2.6-Dinitrotoluene	N/A	N/A	ND	ND	ND	ND	ND
2,6-Dintrotoituene 2-Chloronaphthalene	N/A N/A	N/A	ND	ND	ND	ND	ND
2-Chlorophenol	N/A N/A	N/A	ND	ND	ND	ND	ND
2-Methylnaphthalene	N/A N/A	N/A	ND	ND	ND	ND	ND
2-Methylphenol (o-Cresol)	<u> </u>	N/A 100,000	170 J ND	ND	36 J	ND	ND
2-Nitroaniline	N/A	N/A	ND	ND ND	ND	ND	ND
2-Nitrophenol	N/A N/A	N/A N/A	ND ND	ND ND	ND ND	ND	ND
3,3'-Dichlorobenzidine	N/A N/A	N/A N/A	ND	ND ND		ND	ND
3-Nitroaniline	N/A N/A	N/A N/A	ND	ND ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	N/A N/A	N/A N/A	ND	ND ND	ND ND	ND ND	ND
4-Bromophenyl phenyl ether	N/A	N/A	ND	ND	ND	ND ND	ND
4-Chloro-3-methylphenol	N/A N/A	N/A N/A	ND ND	ND	ND ND	ND ND	ND ND
4-Chloroaniline	N/A N/A	N/A N/A	ND	ND	ND ND	ND ND	ND ND
4-Chlorophenyl phenyl ether	N/A N/A	N/A N/A	ND	ND	ND	ND ND	ND ND
4-Methylphenol (p-Cresol)	330	34,000	ND	ND	ND	ND ND	ND ND
4-Nitroaniline	N/A	N/A	ND	ND	ND	ND	ND ND
4-Nitrophenol	N/A	N/A	ND	ND	ND	ND	ND
Acenaphthene	20,000	100,000	ND	ND	12 J	ND	ND
Acenaphthylene	100,000	100,000	ND	ND	ND	ND	ND
Acetophenone	N/A	N/A	ND	ND	ND	ND	ND
Anthracene	100,000	100,000	ND	ND	25 J	ND	ND
Atrazine	N/A	N/A	ND	ND	ND	ND	ND
Benzaldehyde	N/A	N/A	ND	ND	ND	ND	ND
Benzo(a)anthracene	1,000	1,000	ND	ND	62 J	ND	13 J
Benzo(a)pyrene	1,000	1,000	ND	ND	38 J	ND	ND
Benzo(b)fluoranthene	1,000	1,000	ND	ND	42 J	ND	81
Benzo(ghi)perylene	100,000	100,000	ND	ND	28 J	ND	ND
Benzo(k)fluoranthene	800	1,000	ND	ND	19 J	ND	ND
Biphenyl	N/A	N/A	ND	ND	ND	ND	ND
Bis(2-chloroethoxy) methane	N/A	N/A	ND	ND	ND	ND	ND
Bis(2-chloroethyl) ether	N/A	N/A	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	N/A	N/A	90 J	180	120 J	ND	230
Butyl benzyl phthalate	N/A	N/A	ND	ND	ND	ND	ND
Caprolactam	N/A	N/A	ND	ND	ND	ND	ND
Carbazole	N/A	N/A	ND	ND	ND	ND	ND
Chrysene	1,000	1,000	ND	ND	51 J	ND	ND
Di-n-butyl phthalate	N/A	N/A	ND	ND	ND	ND	ND
Di-n-octyl phthalate	N/A	N/A	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	330	330	ND	ND	<u>8J</u>	ND	ND
Dibenzofuran Diethyl phthalate	7,000	14,000	ND	ND	ND	ND	ND
Diethyl phthalate Dimethyl phthalate	N/A N/A	N/A	ND	ND	ND	ND	ND
Fluoranthene	<u>N/A</u> 100,000	N/A 100,000	ND ND	ND	ND	ND	ND
Fluorene	30,000	100,000	ND ND	ND ND	150 J	ND ND	21 J
Hexachlorobenzene	N/A	100,000 N/A		ND ND	12 J	ND	ND
Hexachlorobutadiene	N/A N/A	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND
Hexachlorocyclopentadiene	N/A N/A	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachloroethane	N/A N/A	N/A N/A	ND ND	ND	ND ND	ND ND	ND ND
Indeno(1,2,3-cd)pyrene	500	500	ND	ND ND	24 J	ND ND	ND ND
Isophorone	N/A		ND ND	ND ND	ND	ND ND	ND ND
N-Nitroso-Di-n-propylamine	N/A	N/A N/A	ND ND	ND	ND ND	ND ND	ND ND
N-nitrosodiphenylamine	N/A N/A	N/A N/A	ND	ND ND	ND ND	ND ND	ND ND
Naphthalene	12,000	100,000	150 J	ND	24 J	ND ND	ND ND
Nitrobenzene	N/A	N/A	ND	ND	ND	ND ND	ND ND
				ND	ND		ND ND
	800	1 2400	ND				
Pentachlorophenol	800	2400	ND 8 I			ND ND	
	800 100,000 330	2400 100,000 100,000	ND 8 J ND	ND ND ND	II0 J ND	ND ND ND	17 J ND

2- NYSDEC Unrestricted Use Soil Cleanup Objective

3- NYSDEC Residential Use Soil Cleanup Objectives

	Unrestricted	Residential										[
Parameters	Use ²	Use ³	B-8-12	B-9-10	B-10-10	B-11-12	B-12-12	B-14-12.5	B-15-12	B-16-12	B-17-12	WB-11-9
Aluminum - Total	-	-	14000 EN	13000 EN	13400 EN	135	12800 EN	13600 EN	12500 EN	8370 EN	13300 EN	12100 EN
Antimony - Total	-	-	17.6 NU	18.3 NU	16.2 NU	ND	18 NU	18.1 NU	17.6 NU	16.2 NU	16.6 NU	16.9 NU
Arsenic - Total	13	16	8.2 N	5.2 N	8 N	0.07	4 N	7.1 N	7.2 N	3.4 N	7.2 N	8.8 N
Barium - Total	350	350	73.8 EN	51.5 EN	58.7 EN	0.62	62.4 EN	59.4 EN	59.6 EN	34.8 EN	60.8 EN	74.3 EN
Beryllium - Total	7.2	14	0.59 N	0.52 N	0.62 N	0.01	0.47 N	0.57 N	0.57 N	0.33 N	0.59 N	0.69 N
Cadmium - Total	2.5	2.5	0.24 NU	0.24 NU	0.22 NU	ND	0.24 NU	0.24 NU	0.24 NU	0.22 NU	0.24 N	0.24 N
Calcium - Total	-	-	2170 EN*	3680 EN*	1620 EN*	72	1490 EN*	3050 EN*	4810 EN*	5060 EN*	5900 EN*	9500 EN*
Chromium - Total	30	36	19.9 EN	18.4 EN	20 EN	0.2	16 EN	19.5 EN	18.4 EN	12.2 EN	20.3 EN	17.9 EN
Cobalt - Total	-	-	11.2 EN	10.3 EN	12 EN	0.12	10 EN	11.1 EN	11 EN	6.9 EN	11.2 EN	15.6 EN
Copper - Total	50	270	26.4 EN	26.7 EN	24.6 EN	0.23	16.1 EN	23.6 EN	16.2 EN	16.4 EN	25.2 EN	24.7 EN
Iron - Total	-	-	28900 E	28500 E	31400 E	292	29700 E	30300 E	28400 E	17900 E	29100 E	26800 E
Lead - Total	63	400	12.8 EN	10.2 EN	20.4 EN	0.19	11.1 EN	10.6 EN	12.8 EN	7.8 EN	13 EN	16.5 EN
Magnesium - Total	-	-	4660 EN*	5500 EN*	5120 EN*	60.7	4530 EN*	5270 EN*	5020 EN*	3340 EN*	5080 EN*	4430 EN*
Manganese - Total	1600	2000	555 E*	371 E*	415 E*	4.8	486 E*	559 E*	387 E*	264 E*	572 E*	707 E*
Mercury - Total	0.18	0.81	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.028
Nickel - Total	30	140	32.3 EN	29.4 EN	34.1 EN	0.33	27.7 EN	34.8 EN	32 EN	20 EN	33.1 EN	34.5 EN
Potassium - Total	-	-	1850 EN	1320 EN	1300 EN	15.5	1390 EN	1470 EN	1450 EN	967 EN	1570 EN	1470 EN
Selenium - Total	3.9	36	4.7 NU	4.9 NU	4.3 NU	ND	4.8 NU	4.8 NU	4.7 NU	4.3 NU	4.4 NU	4.5 NU
Silver - Total	2	36	0.59 NU	0.61 NU	0.54 NU	ND	0.6 NU	0.6 NU	0.59 NU	0.54 NU	0.55 NU	0.56 NU
Sodium - Total	-		296 N	171 NU	160 N	ND	168 NU	169 NU	186 N	152 NU	227 N	165 N
Thallium - Total	-	-	7.1 NU	7.3 NU	6.5 NU	ND	7.2 NU	7.3 NU	7.1 NU	6.5 NU	6.6 NU	6.8 NU
Vanadium - Total	-	-	22.3 EN	18.5 EN	20.6 EN	0.23	18.2 EN	20.3 EN	19.4 EN	12.8 EN	21.5 EN	20 EN
Zinc - Total	109	2200	77 EN	77.9 EN	71.6 EN	0.77	63.6 EN	84.7 EN	68.9 EN	59.7 EN	77.3 EN	80.7 EN

2- NYSDEC Unrestricted Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(a)]

3- NYSDEC Residential Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(b)]

Table 2-4.	SubSurface	Soil Results	- PCBs Pesticides
------------	------------	--------------	-------------------

	Unrestricted				[
	Use Soil	Residential Use				
	Cleanup	Soil Cleanup				
Parameters	Objectives ²	Objectives ³	B-11-12	B-12-12	B-14-12.5	B-17-12
Aroclor 1016	100	1,000	ND	ND	ND	ND
Aroclor 1221	100	1,000	ND	ND	ND	ND
Aroclor 1232	100	1,000	ND	ND	ND	ND
Aroclor 1242	100	1,000	ND	ND	ND	ND
Aroclor 1248	100	1,000	ND	ND	ND	ND
Aroclor 1254	100	1,000	ND	ND	ND	ND
Aroclor 1260	100	1,000	ND	ND	ND	ND
4,4'-DDD	3	2,600	48	ND	ND	ND
4,4'-DDE	3	1,800	ND	ND	2.7 J	ND
4,4'-DDT	3	1,700	ND	ND	ND	ND
Aldrin	5	19	ND	1.8 J	ND	ND
alpha-BHC	20	97	ND	ND	ND	ND
beta-BHC	36	72	ND	4.9	ND	ND
Chlordane	94	910	ND	ND	ND	ND
delta-BHC	40	100,000	ND	ND	ND	ND
Dieldrin	5	39	ND	ND	ND	ND
Endosulfan I	2,400	4,800	ND	ND	ND	ND
Endosulfan II	2,400	4,800	ND	ND	ND	ND
Endosulfan Sulfate	2,400	4,800	ND	ND	ND	ND
Endrin	14	2,200	ND	ND	ND	ND
Endrin aldehyde	N/A	N/A	ND	ND	ND	ND
gamma-BHC (Lindane)	100	280	5.7 J	5.9	ND	ND
Heptachlor	42	420	ND	ND	ND	ND
Heptachlor epoxide	N/A	N/A	ND	ND	ND	ND
Methoxychlor	N/A	N/A	ND	2.3 J	ND	ND
Toxaphene	N/A	N/A	ND	ND	ND	ND

2- NYSDEC Unrestricted Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(a)]

3- NYSDEC Residential Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(b)]

Parameters	Unrestricted Use ²	Residential Use ³	TC-01	TC-02	TC-04	TC-06	TC-07
STARS VOCs- 8260							
1,2,4-Trimethylbenzene	-		6	ND	2100 D	15000 D	33000 D
1,3,5-Trimethylbenzene	-	•	1 J	ND	690 D	4900	9800
Benzene	60	2,900	ND	ND	39	ND	ND
Ethylbenzene	1,000	30,000	ND	ND	870 D	1500	5800
Isopropylbenzene	-	-	ND	ND	84	470	1300
m/p-Xylenes		-	3 J	ND	3400 D	10000	21000
Methyl-t-Butyl Ether (MTBE)	930	62,000	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	100,000	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	100,000	ND	ND	240	1500	4300
Naphthalene	12,000	100,000	5 J	2 J	4200 D	2000	2700
o-Xylene	-	-	ND	ND	890 D	3500	6800
p-Cymene	-	-	ND	ND	19	450	ND
sec-Butylbenzene	11,000	100,000	ND	ND	29	370	680
tert-Butylbenzene	5,900	100,000	ND	ND	ND	ND	ND
Toluene	700	100,000	ND	1 BJ	330 D	ND	470
Total Xylenes	260	100,000	3 J	ND	4300 D	14000	28000
STARS SVOCs- 8270							
Acenaphthene	20,000	100,000	ND	ND	ND	24 J	ND
Acenaphthylene	100,000	100,000	ND	22 J	ND	ND	ND
Anthracene	100,000	100,000	ND	17 J	ND	9.4 J	ND
Benzo(a)anthracene	1,000	1,000	ND	87 J	ND	13 J	ND
Benzo(a)pyrene	1,000	1,000	ND	86 J	ND	ND	ND
Benzo(b)fluoranthene	1,000	1,000	ND	100 J	ND	8.3 J	ND
Benzo(ghi)perylene	100,000	100,000	ND	68 J	ND	ND	ND
Benzo(k)fluoranthene	800	1,000	ND	58 J	ND	ND	ND
Chrysene	1,000	1,000	ND	86 J	ND	10 J	ND
Dibenzo(a,h)anthracene	330	330	ND	20 J	ND	ND	ND
Fluoranthene	100,000	100,000	ND	160 J	ND	16 J	ND
Fluorene	30,000	100,000	ND	ND	ND	64 J	ND
Indeno(1,2,3-cd)pyrene	500	500	ND	58 J	ND	ND	ND
Naphthalene	12,000	100,000	ND	ND	910	800	220
Phenanthrene	100,000	100,000	8.1 J	30 J	25 J	40 J	9.1 J
Pyrene	100,000	100,000	ND	130 J	ND	17 J	ND
							10.000
Lead	63,000	400,000	18,100 E	24,300 E	16,300 E	21,500 E	18,000 E

Table 2-5 Tank Pit Soil Results

1- Results presented in parts per billion (ppb)

2- NYSDEC Unrestricted Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(a)]

3- NYSDEC Residential Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(b)]

	Unrestricted	Residential	TP1 (Adjacent to	TP2					
Parameters	Use ²	Use ³	Tanks)	(Near MW-5)	B -1	B-2	B- 3	B-4	B-5
		Date Sampled:	6/6/2000	6/6/2000	10/3/2001	10/3/2001	10/3/2001	10/3/2001	10/3/2001
VOCs- STARS List									
1,2,4-Trimethylbenzene	-	- ²²	21555.3	ND	13900	1540	2900	31900	ND
1,3,5-Trimethylbenzene	-	- (50)	637.7	51569.6	4620	455	980	10200	ND
Benzene	60	2,900	ND	2045.8	1020	ND	ND	ND	ND
Ethylbenzene	1,000	30,000	3305.7	44842.5	9379	717	2670	13600	ND
Isopropylbenzene	-	-	1258.3	12804.5	874	ND	ND	1950	ND
Isopropyltoluene			ND	7375.8	ND	ND	ND	ND	ND
m/p-Xylenes	-	-	9013.4	ND	37900	1570	8210	49100	ND
Methyl-t-Butyl Ether (MTBE)	930	62,000	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	100,000	6469.9	24952.9	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	100,000	1842.1	46020.3	2560	ND	ND	5910	ND
Naphthalene	12,000	100,000	3117	22191.6	ND	ND	ND	ND	ND
o-Xylene	-	-	4013.5	61771.4	11700	ND	2080	5500	ND
sec-Butylbenzene	11,000	100,000	2332.8	16616.5	ND	ND	ND	644	ND
tert-Butylbenzene	5,900	100,000	ND	ND	ND	ND	ND	ND	ND
Toluene	700	100,000	ND	24338.6	8660	ND	ND	2660	ND
Total Xylenes	260	100,000	13026.9	61771.4	49600	ND	ND	ND	ND

2- NYSDEC Unrestricted Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(a)]

3- NYSDEC Residential Use Soil Cleanup Objectives [6 NYCRR Part 375-6.8(b)]

~value exceeds Unrestricted Use Cleanup Objectives, but is within Residential Use Cleanup Objectives

~value exceeds Residential Use Cleanup Objectives, but is within Restricted-Residential Use Cleanup Objectives

Table 3-1 Groundwater Results - VOCs

	NYS								[
	Groundwater											
Parameters	Standard ²	MW-3-14	MW-4-14	MW-5b-11	MW-6-15	MW-7-11	MW-8-12	MW-10-11	MW-11-10	MW-12-12	MW-13-13	PW-1
Acetone	50*	ND	5.8 J	ND	53	ND	ND	ND	ND	ND	3.7 J	ND
Benzene	1	ND	16	4,300	34	ND	7.4	ND	ND	ND	ND	ND
Bromodichloromethane	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Ethyl Ketone (2-butanone)	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.70 J
Carbon tetrachloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	0.84 J	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropene (total)	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	100	2,300	280	ND	5.0 J	ND	ND	ND	ND	ND
2-Hexanone	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
methyl Isobutyl Ketone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	2.6 J	20,000	33	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	5	ND	14	20,000	550	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

1- Results presented in parts per billion (ppb)

2- NYS Ambient Groundwater Standards (6 NYCRR Part 703.5)

*- NYSDEC Guidance Value (TOGS 1.1.1)

~ value detected above NYS Ambient Groundwater Standard or applicable NYSDEC Guidance Value

Table 3-2 Groundwater Results - SVOCs

	Groundwater								
Parameters	Standards ²	MW-3-14	MW-4-14	MW-5b-11	MW-7-11	MW-8-12	MW-10-11	MW-11-10	MW-12-12
Phenol	1	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	1	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol	N/A	ND ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3-	ND ND	ND ND	ND	ND	ND	ND	ND	ND
Benzyl alcohol		ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
1,2-Dichlorobenzene	3-	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND
2,2'-oxybis[1-chloropropane]	N/A	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND
2-Methylphenol	N/A	ND	ND	14 J	ND	ND	ND	ND	ND ND
Hexachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodi-n-propylamine	N/A	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	N/A	ND	ND	81	ND	ND	ND	ND	ND
Nitrobenzene	0.4	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	50*	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	N/A	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50*	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	5	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol	5	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene Naphthalene	<u> </u>	ND ND	ND 2.2 J	ND 130	ND ND	ND	ND ND	ND	ND
4-Chloroaniline	5	ND ND	2.2 J ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachlorobutadiene	0.5	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-Chloro-3-methylphenol	N/A	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND
2-Methylnaphthalene	N/A	ND	ND	27	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	5	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	N/A	ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	N/A	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	10*	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Dimethyl phthalate 2,6-Dinitrotoluene	<u>50*</u> 5	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND
Acenaphthene	20*	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3-Nitroaniline	5	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND
2,4-Dinitrophenol	10*	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	N/A	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	5	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	50*	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	50*	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline 4,6-Dinitro-2-methylphenol	5 N/A	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	50*	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-Bromophenyl phenyl ether	N/A	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachlorobenzene	0.4	ND	ND	ND	ND	ND	ND	ND	ND ND
Pentachlorophenol	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50*	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	50*	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50*	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene Butul benzyl obtholete	<u>50*</u> 50*	ND ND	ND	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate 3,3'-Dichlorobenzidine	<u> </u>	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Benzo[a]anthracene	0.002*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chrysene	0.002*	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bis(2-ethylhexyl) phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND ND
Di-n-octyl phthalate	N/A	ND	ND	ND	ND ND	ND	ND	ND	ND ND
Benzo[b]fluoranthene	0.002*	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[k]fluoranthene	0.002*	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[a]pyrene	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Indeno[1,2,3-cd]pyrene	0.002*	ND	ND	ND	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[g,h,i]perylene	N/A	ND	ND	ND	ND	ND ND	ND	ND	ND

1- Results presented in parts per billion (ppb)

2- NYS Ambient Groundwater Standards (6 NYCRR Part 703.5)

	Groundwater									
Parameters	Standards ²	MW-3-14	MW-4-14	MW-5b-11	MW-6-15	MW-7-11	MW-8-12	MW-10-11	MW-11-10	MW-12-12
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aluminum	N/A	290 J	ND	140 J	ND	ND	ND	240 J	130 J	130 J
Arsenic	25	ND	ND	23	ND	ND	ND	ND	ND	ND
Barium	1,000	39	87	210	100	86	420	56	110	150
Beryllium	3*	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium	N/A	118,000	112,000	199,000	105,000	102,000	320,000	67,100	139,000	136,000
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cobalt	N/A	ND	ND	ND	ND	1.9 J	4.0 J	ND	2.2 J	ND
Chromium	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	820	4,200	35,400	7,900	140 J	5,300	1,200	140 J	1,300
Potassium	N/A	4,600	5,900	5,100	6,700	7,500	20,600	3,600	8,200	7,000
Magnesium	35,000*	55,300	47,100	70,600	36,300	37,100	77,500	34,400	44,000	50,000
Manganese	300	1,600	13,000	31,100	11,300	1,500	18,300	440	2,600	1,500
Sodium	20,000	54,200	81,400	296,000	87,000	183,000	1,140,000	62,400	266,000	258,000
Nickel	100	1.5 J	ND	ND	ND	3.0 J	2.9 J	31	ND	3.6 J
Lead	25	ND	ND	9.0 J	ND	ND	ND	ND	ND	ND
Antimony	3	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium	0.5*	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	N/A	ND	ND	1.5 J	1.2 J	ND	ND	ND	ND	ND
Zinc	2,000*	ND	ND	ND	ND	ND	ND	45 J	ND	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND

2- NYS Ambient Groundwater Standards (6 NYCRR Part 703.5)

*- NYSDEC Guidance Value (TOGS 1.1.1)

~ value detected above NYS Ambient Groundwater Standard or applicable NYSDEC Guidance Value

Table 3-4 Groundwater Results - PCB/Pesticides

	Groundwater		
Parameters	Standards ²	MW-4-14	MW-10-11
Aroclor 1016	0.09	ND	ND
Aroclor 1221	0.09	ND	ND
Aroclor 1232	0.09	ND	ND
Aroclor 1242	0.09	ND	ND
Aroclor 1248	0.09	ND	ND
Aroclor 1254	0.09	ND	ND
Aroclor 1260	0.09	ND	ND
4,4'-DDD	0.3	ND	ND
4,4'-DDE	0.2	ND	ND
4,4'-DDT	0.2	ND	ND
Aldrin	ND	ND	ND
alpha-BHC	N/A	ND	ND
beta-BHC	N/A	ND	ND
Chlordane	0.05	ND	ND
delta-BHC	N/A	ND	ND
Dieldrin	0.004	ND	ND
Endosulfan I	N/A	ND	ND
Endosulfan II	N/A	ND	ND
Endosulfan Sulfate	N/A	ND	ND
Endrin	ND	ND	ND
Endrin aldehyde	5	ND	ND
gamma-BHC (Lindane)	N/A	ND	ND
Heptachlor	0.04	ND	ND
Heptachlor epoxide	0.03	ND	ND
Methoxychlor	35	ND	ND
Toxaphene	0.06	ND	ND

1- Results presented in parts per billion (ppb)

2- NYS Groundwater Standards (6 NYCRR Part 703.5)

Table 3-5 Tank Pit Water Results- STARS List

	NYS		
	Groundwater		
Parameters ¹	Standard ²	TC-03	TC-05
STARS VOCs- 8260			
1,2,4-Trimethylbenzene	-	350 D	2000 D
1,3,5-Trimethylbenzene		72	620 D
Benzene	1	5	120 D
Ethylbenzene	5	120 D	820 D
Isopropylbenzene	5	19	63
m/p-Xylenes	-	340 D	4800 D
Methyl-t-Butyl Ether (MTBE)	-	ND	ND
n-Butylbenzene	5	ND	ND
n-Propylbenzene	5	44	140 D
Naphthalene	10*	26	380 D
o-Xylene	-	56	1900 D
p-Cymene	-	6	10
sec-Butylbenzene	5	8	ND
tert-Butylbenzene	5	ND	ND
Toluene	5	19	610 D
Total Xylenes	5	400 D	6700 D

I- Results presented in parts per billion (ppb)

2- NYS Ambient Groundwater Standards (6 NYCRR Part 703.5)

*- NYSDEC Guidance Value (TOGS 1.1.1)

~ value detected above NYS Ambient Groundwater Standard or applicable NYSDEC Guidance Value

	NYS																
	Groundwater												-				
Parameters ¹	Standard ²		MW-1			MW-2		2	MW-3			MW-4			MV	N-5	
Ĩ	Date Sampled:	6/5/02	10/3/02	7/18/03	6/5/02	10/3/02	7/18/03	6/5/02	10/3/02	7/18/03	6/5/02	10/3/02	7/18/03	6/6/00	6/5/02	10/3/02	7/18/03
STARS VOCs- 8021				-				1									
1,2,4-Trimethylbenzene	-	960	930	1100	410	360	390	ND	ND	1	31	160	130	1486.5	9300	2700	2300
1,3,5-Trimethylbenzene	-	270	-250	370	140	95	120	ND	ND	1	6	20	ND	436	3400	870	920
Benzene	1	260	210	230	200	100	110	ND	ND	ND	5	85	34	1840.4	1700	920	1400
Ethylbenzene	5	2000	1400	1700	670	560	530	1	ND	ND	37	230	150	1996.9	6900	2300	2600
Isopropylbenzene	5	<100	<100	140	36	32	51	ND	ND	ND	7	28	29	140	730	<250	280
Isopropyltoluene	-	<100	<100	ND	<25	<25	26	1	ND	ND	ND	ND	ND	25.5	<250	<250	<250
m/p-Xylenes	-	6900	3800	4900	1800	1000	610	ND	ND	ND	40	150	ND	7079.4	25000	13,000	12000
Methyl-t-Butyl Ether (MTBE)	-	<1000	<1000	<1000	<250	<250	<250	ND	ND	ND	<10	<50	51	42.9	<2500	<2500	<2500
n-Butylbenzene	5	<100	300	420	41	140	160	4	2	1	3	88	71	93.7	3200	960	930
n-Propylbenzene	5	140	110	150	57	55	67	1	ND	ND	7	43	41	287.3	1900	<250	<250
Naphthalene	10*	100	270	230	87	90	69	ND	2	ND	5	35	14	278	2000	1300	480
o-Xylene	-	1800	<100	890	240	150	41	ND	ND	1	8	10	16	2915.4	11000	7100	5800
sec-Butylbenzene	5	<100	<100	ND	<25	<25	ND	ND	1	ND	2	6	ND	72.8	<250	<250	<250
tert-Butylbenzene	5	<100	<100	ND	<25	<25	ND	ND	ND	ND	ND	ND	ND	ND	<250	<250	<250
Toluene	5	1800	130	580	800	350	170	ND	ND	1	9	53	23	8416.1	15000	6600	6900
Total Xylenes	5	8700	3800	5790	2040	1150	651	ND	0	1	48	160	16	9994.8	36000	20100	17800

2- NYS Ambient Groundwater Standards (6 NYCRR Part 703.5)

*- NYSDEC Guidance Value (TOGS 1.1.1)

~ value detected above NYS Ambient Groundwater Standard or applicable NYSDEC Guidance Value

Appendix A Site Photographs

Photo No. 1. View of Site prior to building demolition.

Photo No. 2. View of Site after completion of IRMs.

Photo No. 3. Installation of MW-6 in the right-of-way.

Photo No. 4. Low-flow groundwater sampling at MW-10

Photo No. 5. View of off-site well MW-13, facing east.

Photo No. 6. Off-site sub-slab soil vapor sample SV-02.

Site Photographs Nichol Inn ERP Site #E851029

Photo No. 7. Current view of Site from Route 54A.

Photo No. 8. Current view of Site from County Route 74.

Appendix B Boring Logs, Field Forms, and Hydrogeological Data

LU ENG	INEERS ironmental		Sur	face Soil Sample
Project: Fmr. Nicho	IIm Lu	Project No.: _	41101	Date: <u>9-4-08</u>
Weather: <u>Summ</u>	Temp.:	80 °	Field Engine	er/Geologist:
SAMPLE ID: <u>NJ-S</u>	55-2			
Equipment Used:	is spoon			
Surface Cover:	ass			
Depth	PID Reading	Description		
0-2"		0		
Remarks:		·		
		97987-868		
SAMPLE ID: <u>NJ -</u>	<u>SS-1/1D</u>			
Equipment Used: _	s spoor			
Surface Cover:	iss/weeds			
Depth	PID Reading	Description	· · · · · · · · · · · · · · · · · · ·	
0-7"		FILL! Med brown few piece	n cmf Sand es of coal Al	and gravel; organice; ag.
Remarks:				

LU ENG Civil and Env			Surf	ace Soil	Sample
Project: Nichol In	nERP Lu	Project No.: _	41101	_ Date:	9-4-08
Weather: <u>Sunny</u>	<u>/</u> Temp.:	° 08	Field Enginee	er/Geologist: _	LS
SAMPLE ID: <u>NT</u> Equipment Used: _S Surface Cover:	is spoon				
Depth	PID Reading	Description	1 1 1		
0-2"		Layer of j Med. brown	heat below a n-grey cmf	sand + gr	navel.
Remarks:					
SAMPLE ID: NJ-	55-L				
Equipment Used:	•	•			\$
Depth	PID Reading	Description			
0-7"		Med. brow organi	on cmf San CS	d and g	avel;
Remarks:	· · · · · · · · · · · · · · · · · · ·		······································	15	

Lu	Eng	ine	ers
----	-----	-----	-----

Location: <u>TP-1</u>	
-----------------------	--

Project:	Nichol Inn ERP
Lu Proj	ect No.: <u>41101</u>
Date:	12/15/08

Equipment Used: _____excavator

Weather: <u>cloudy</u> Temp.: <u>20°</u>

Field Engineer/Geologist: <u>L. Smith</u>

Test Pit Dimensions: $5' \times 4' \times 4'$ Length Width Depth

Depth	PID Reading	Description
0.3'	0.0 ppm	1" galvanized steel pipe encountered. Water in piping.
3'	0.0 ppm	1" black plastic pipe/conduit encountered. Water in piping.
4'	0.0 ppm	Native soils: Med. Brown silty SAND, some gravel. No odors.
		=

Comments

 $\square No rock encountered; or$

□ Rock encountered at _____ feet

□ Perch/Seepage water encountered at ______ feet

 \Box No groundwater encountered; or

Ground water encountered at ______ feet

Remarks:

J:\Projects\41100 Steuben County\41101 Nichol Inn\Env\Test Pit Logs.doc

Project: Nichol Inn ERP

Location: <u>TP-2</u>		Lu Project No.: <u>41101</u>						
Equipment Used:	excavator	Date: <u>12/18/08</u>						
Weather:partly	cloudy	Temp.:28°						
Field Engineer/Geolo	gist: <u>L. Smith</u>							
Test Pit Dimensions:	<u> </u>	<u>4'</u> x <u>6'</u> Width Depth						
Depth	PID Reading	Description						
0-6'	0.0 ppm	Med. Brown gravelly SILT; wet. No odors or staining observed.						
	1							
Comments								
No rock encounte	red; or							
□ Rock encountered		eet						
		t feet						
□ No groundwater e								
Ground water enc Remarks:	ountered at	teet						

Two test pits excavated near former SE building corner. No tanks or other metallic objects found.

Lu Engineers

Location: ____TP-3

Project: Nichol Inn ERP Lu Project No.: <u>41101</u> Date: <u>6/11/09</u> Equipment Used: Gradall

Weather: _____ Temp.: ____ 65°

Field Engineer/Geologist: <u>L. Smith</u>

Test Pit Dimensions: 25' x 4' x -4'Length Width Depth

Depth	PID Reading	Description						
0-3'	0.0 ppm	Rusty, crushed 55-gallon drum found beneath surface. No odors or soil staining observed.						
3'	0.0 ppm	3" PVC pipe encountered; runs north/south the length of the test pit. Water in piping. No odors or stained soil observed.						
4'	0.0 ppm	Another 3" PVC pipe encountered. Pipe appears to run to the adjacent septic tank. Water in piping. No odors or stained soil observed.						

Comments

□ No rock encountered; or

□ Rock encountered at _____ feet

□ Perch/Seepage water encountered at ______ feet

□ No groundwater encountered; or

Ground water encountered at feet

Remarks:

Concrete septic tank uncovered just west of TP-3. Tank is approximately 3' bgs and filled with

water. Bottom and sides of tank are concrete (~4' x 4'). Top of tank is open; covered with railroad ties

and poly sheeting. Tank filled with water. No sheen or odors observed on water.

J:\Projects\41100 Steuben County\41101 Nichol Inn\Env\Test Pit Logs.doc
J. Projects 41100 Steuben County 41101 Nichol Inn Env lest Pit Logs. dc

	Project: Nichol Inn
Location: <u>TP-4</u>	Lu Project No.: 411
Equipment Used: <u>Gradall</u>	Date: <u>6/11/09</u>

Weather: _____ partly cloudy _____ Temp.: ____65°

Field Engineer/Geologist: ____L. Smith_____

Test Pit Dimensions: 4' x 4' x -3.5'Length Width Depth

Depth	PID Reading	Description
0.3'	0.0 ppm	1" galvanized steel pipe encountered. Piping was empty. (similar to pipe encountered in TP-1)
2.5'	0.0 ppm	3" black iron pipe encountered. Pipe is decayed and broken. Runs east from septic tank towards road. No stained soils or odors observed.

Comments

□ No rock encountered; or

□ Rock encountered at _____ feet

□ Perch/Seepage water encountered at ______ feet

□ No groundwater encountered; or

Ground water encountered at ______ feet

Remarks:

ERP 101

						PROJECT			BORING B-8				
				ENFIELD ROAD					SHEET 1 OF 1				
Ľ.	Civil and E	nvironmen	tal PENFIE	LD, NEW YORK	14526	Remedial investigation			JOB #: 41101				
						CHKD. BY: N/A							
CONTRACTOR: TREC Environmental, Inc. DRILLER: Jim Agar						BORING LOCATION: SEE PLAN							
JCL GEOLOGIST: Jim MacKecknie						GROUND SURFACE START DATE: Sept.			=	UM: N/A			
						START DATE. Sept.	4, 2008 T	END	ATE: Sept. 4, 2	EVEL DATA			
TYPE OF DRILL RIG: Geoprobe™ Model 6620DT						DATE	TIME	WATER	CASING	REMARKS			
	NG SIZE A												
				HOD: continuo	us/direct push								
	< DRILLIN	G MET	hod: N/A			· · · · · · · · · · · · · · · · · · ·							
D			SAMPL										
E			SAIVIPL	EDATA			SAMPLE DESCRIPTION						
T	BLOW	NQ.	DEPTH	N-VALUE	RECOVERY	4	34	MPLE	DESCRIPT	IUN			PID
н	/6"		(FT.)	/RQD(%)	(%)								
	N/A	1	1-4	N/A	53%	0-1' medium browr	(10YR5/4	4). drv. 3	SILT and gra	vet (ton soil)	1		ppm
1						1	. (·),,,	eler and gra		, 1'	ľ	ppm
						1					•		
2]1 - 7' dark brown (*	10YR3/3).	drv to n	noist. SILT s	ome clav an	d gravel		
						1 `	.,,				- 3		
3						7							
4						1							
	N/A	2	4-8	N/A	45%	same						0	ppm
5]							PP
]							
6				_									
]							
7						7'							
						7-9' medium grayish brown (10YR5/2) moist, SILT some clay and gravel							
8]				-	U		
	N/A	3	8-12	N/A	38%]same						0	ppm
9]						ľ	
]							
10]							
]							
11					<u> </u>]							
12						becomes wet at 12'						ľ	
	N/A	4	12-16	N/A	60%							0	ppm
13						1							
14			ļ			4 inch CLAY silt se	inch CLAY silt seam at 14' 4-16 dark gravish brown (7.5YR5/1) moist, SILT some sand little gravel						
	-					14-16 dark gravish	brown (7	.5YR5/1	I) moist, SIL	T some sand	little gravel		
15						4							
						4							
16						D					16'		
						Boring terminated							
17						Soil from 12' bgs w	as retaine	ed for th	e tollowing la	aboratory an	alysis:		
						-8260 TCL VOCs							
18					<u> </u>	-8270 TCL SVOC							
19						-TAL Metals							
19					h	4							
20						4							
		LEGEN	D			Soil colors described us	ing the Muse		svetern				
	S-			L SAMPLE		Son colors described as	ing the munic		system.				
S- SPLIT SPOON SOIL SAMPLE U- UNDISTURBED SOIL SAMPLE													
			CORE SAM										
GENERAL NOTES:													
	1)	STRAT	IFICATION L	INES REPRES	ENT APPROXIMA	TE BOUNDARY BETWE	EN SOIL TY	PES, TR/	ANSITIONS MA	Y BE GRADUA	L.		
	2)					TIMES AND UNDER COM					WATER		
		MAYO	COUR DUE	IO OTHER FAC	TORS THAN THE	OSE PRESENT AT THE	TIME MEAS	UREMEN	ITS WERE MAD				
										BORING #	10-10		

LU ENGINEERS 2230 PENFIELD ROAD					PROJECT BORING: B-9/ MW-9 Former Nichol ERP Site #E851029 SHEET 1 OF 1								
Civil and Environmental PENFIELD, NEW YORK 14526						Remedial investigation JOB #: 41101							
NTRACTOR: TREC Environmental, Inc.					CHKD. BY: N/A BORING LOCATION: SEE PLAN								
					GROUND SURFACE	ELEVATIO	DN: N/A		UM: N/A				
. G	EOLOGIS	ST: JDN	1		·	START DATE: Sept.	4, 2008	END D	ATE: Sept. 5,				
PE OF DRILL RIG: Geoprobe™ Model 6620DT							DATE	TIME	WATER	EVEL DATA CASING	REMARKS		
SING SIZE AND TYPE: 1" PVC							DATE		WAILIN	CASING	REWARKS		
				HOD: continuo	us/direct push								
<u>ck</u> T	DRILLIN	G MET	HOD: N/A			T							
			SAMPLE	- DATA									
							SA	MPLE	DESCRIP	TION		PID	
Γ	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	1							
+	/6"		(FT.)	/RQD(%)	(%)								
┦	N/A	1	1-4	N/A	35%	0-1' medium brown	(10YR5/4	I), dry, :	SILT and gra	avel (top soil)	0 ppm	
¹┝						1 - 5.5' dark brown	(10)/[00/0)			_1'		
2						1 - 5.5 Uark brown	(101H3/3), ary to	moist, SIL I	some grav	(6)		
℉						1							
зГ						1							
L						1							
ŧĽ]							
	N/A	2	4-8	N/A	55%	same						0 ppm	
۶L						1							
╞											_5.5'		
6						5.5 - 6' light grayish							
┢						6 - 9' medium grayi	sn brown	(104H	5/2) SILT SOI	me gravel lit	tle clay		
Έ						-							
₀┝						-							
Ť	N/A	3	8-12	N/A	48%	1						1200 p	
٩Ľ						1					9'	1200 p	
						9 - 11' medium bro	wnish gra	y (10YF	R5/1) moist (CLAY and si	It little gravel		
니						weathered petroleu	ım odor						
┦						-						i	
¹┝						11 - 12' medium gr					_11'		
2						sand and gravel litt	•	•	,	I SILI Some	12'		
	N/A	4	12-16	N/A	33%	12 - 15 ' medium g				SAND and s		12 ppr	
3						some gravel.						12 ppn	
]							
ŧĽ													
L						4							
۶Ļ					<u> </u>	4 inch CLAY silt se		D			_ 15'		
╞						15 - 17' medium br	own (10Y	H5/3) S	ILI and grav	vel little sand			
Ή	N/A	5	16-20	N/A	80%	1							
╞		- J		1 1// 1	0070	1					17'	10 ppn	
F		1			1	17 - 20' medium gr	ay (N6/) v	vith vell	owish brown	(2.5Y5/6) n		1	
۶Ľ						moist SILT and cla							
]			Soil from 10	bgs was reta	ined for the following laborator	y analysis:	
൭						4			-8260 TCL V		-	Ì	
╞						4			-8270 TCL S				
ו						Complete COL		4	-TAL Metals		20'		
	S-	LEGEN SPLIT S	D SPOON SOIL	SAMPLE		Sampled to 20' bgs. Bo A temporary well was se					countered. bgs and a riser to 2 feet above gra	do Acordan	
			URBED SO			was installed to 6 feet by					295 and a noti to ∠ 1991 above gra	ue. A sand pac	
			CORE SAMP	PLE		Soil colors described us	-		-				
0	ENERAL												
	1) 21	WATER		ADINGS HAVE F	SEEN MADE AT	TE BOUNDARY BETWE	EN SUIL TY	PES, TRA	ANSITIONS MA				
	-/												
		MATO	JOUR DUE	10 OTHER FAC	TORS THAN TH	OSE PRESENT AT THE	IIME MEAS	UREMEN	IIS WERE MAD	DE.			

						PROJECT			BORING B-1	0				
	LU ENG	INEER	S 2230 P	ENFIELD ROAD)	Former Nichol ERP Site #E851029 SHEET 1 OF 1								
12				LD, NEW YORK		Remedial investigation JOB #: 41101								
					CHKD. BY: N/A									
CONTRACTOR: TREC Environmental, Inc.					BORING LOCATION									
DRILLER: Jim Agar JCL GEOLOGIST: JDM					GROUND SURFACE				UM: N/A					
						START DATE: Sept.	4,2008	ENDD	ATE: Sept. 4, 2	2008 EVEL DATA				
TYPE OF DRILL RIG: Geoprobe™ Model 6620DT						DATE	TIME	WATER	CASING	REMARKS				
CASI	NG SIZE A	ND TY	PE: N/A							o/ toll to				
				HOD: continuc	ous/direct push									
	K DRILLIN	G MET	HOD: N/A											
DE			SAMPL											
P			SAIVIF LI	EDATA										
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	-	SAMPLE DESCRIPTION							
H H	/6*		(FT.)	/RQD(%)	(%)									
	N/A	1	1-4	N/A	55%	0-1' medium grayis	h brown (10YR4/	2) dry GRAV	EL and silt			0 ppm	
1											1'		o ppin	
						1 - 7' dark brown (1	10YR 3/4)	dry to r	noist SILT so	ome gravel li	ittle clay			
2											•			
						-								
3						_								
						-								
4			4.0	N//A	500/	-								
	N/A	2	4-8	N/A	53%	Isame	same							
5														
6						4								
						4								
7					1	7'								
'						7 - 9' medium gray	ish brown	(10YB)	5/2) moist SI	T and grav			1.0	
8		-						(1011)		LT and grav	er some clay		1.3 ppm	
	N/A	3	8-12	N/A	50%								1632 ppm	
9						1					9'		1032 ppm	
						9 - 14' medium bro	wnish gra	y (10YF	R5/1) moist S	SILT sand ar				
10							-		-		Ū			
11														
						-								
12	N/A	4	12-16	N/A										
13		4	12-10		53%	same							0 ppm	
13						-								
14						4 inch CLAV silt se	am at 1/l'				1.41		1	
''						4 inch CLAY silt seam at 14' 14 - 16' light brown (10YR5/6) SILT and clay some gravel								
15					1				unu uay 501	no giavei		1	1	
						1							1	
16		r				1					16'	8		
						Boring terminated	at 16' bgs							
17						Soil from 10' bgs w			ne following la	aboratory ar	alysis:	ſ		
		- ×.			0	-8260 TCL VOCs			•				1	
18						-8270 TCL SVOC						ſ		
						-TAL Metals								
19						4						ſ		
						4								
20	l	LEGEN								<u> </u>				
	S-		E SPOON SOI			Sampled retained for lat Soil colors described us	-	-	-					
				DIL SAMPLE			ing the munic		system.					
L			CORE SAMI											
	GENERAL	NOTES:									· · · · · · · · · · · · · · · · · · ·			
	1)	STRAT	IFICATION L	INES REPRES		TE BOUNDARY BETWE	EN SOIL TY	PES, TR	ANSITIONS MA	Y BE GRADUA	ıL.			
	2)					TIMES AND UNDER CON OSE PRESENT AT THE					WATER			
			CONDUC			OUE FREDENI AL IME	INC MEAS	UNEMEN	I S WERE MAL	BORING #	B-10			
_														

						PROJECT			BORING B-1	1			
			S 2230 P	ENFIELD ROAD)	Former Nichol ERP S		029	SHEET 1 OF				
יקו				LD, NEW YORK		Remedial investigation		OLU	JOB #: 41101	-			
L					-		-		CHKD. BY: N				
CON.	TRACTOR	I: TREC	Environm	ental, Inc.		BORING LOCATION	SEE PLÄ	N					
	LER: Jim A					GROUND SURFACE				UM: N/A			
JCL (GEOLOGIS	ST: JDN	/		· · · · · · ·	START DATE: Sept.	4, 2008	END D	ATE: Sept. 4, 2				
			O a a march a T		*					VEL DATA			
	NG SIZE A			* Model 6620E	ונ		DATE	TIME	WATER	CASING	REMARKS		
				HOD: continue	ous/direct push				l				
	K DRILLIN			HOD. Continue	uardirect push								
D						T			L				
E			SAMPL	E DATA									
Р							SA		DESCRIPT	TION			PID
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	1			2200.111				
н	/6"		(FT.)	/RQD(%)	(%)								
	N/A	1	1-4	N/A	13%	0 - 0.5' Weathered	asphalt				0.5'		0 ppm
1						0.5 - 6' dark brown		4) dry to	moist SILT	and gravel	•		
		1					(·/					
2						1							
						1							
3					h	1							
Ĩ					t	1							
⊿						4							
1	N/A	2	4-8	N/A	100%	same							
5	19/3			11/1	10078								0 ppm
1 1		 			·	4							
		I				4							
6							(1.2)				6'		
		<u> </u>				6 - 7' medium brow	/n (10YR/	4/3) moi	st SILT some	e clay and gi	avel		
7											7'		
						7 - 9.5' medium bro		ay (10Y	R5/1) moist \$	SILT some o	lay		
8		<u> </u>				little gravel trace sa	and						
	N/A	3	8-12	N/A	60%	4							1700 ppm
9						4							
											9.5'		
10		L				9.5 - 14' dark brow	nish gray	(10YR4	/1) moist SI	LT some cla	y little		
						gravel, petroleum l	ike odor.						
11													
12						same becomes we	t at 12'						1
	N/A	4	12-16	N/A	60%	1							600 ppm
13						1							pp,
						1							
14						4 inch CLAY silt se	am at 14	<u>.</u>			14'		
						14 - 15' medium br			noist SILT a	nd sand som			
15						little gravel.		, (15'		
						15 - 16' medium gr	av SILT :	and clav	trace gravel				
16		1			<u> </u>	1			giurei		16'		
]		1				Boring terminated	at 16 feet	ł			.v		4
17		<u> </u>			<u> </u>	Soil from 8-12' bgs			the following	laboratory	analveie		
''						-8260 TCL VOCs	100 100		volatiles	jiauuratury	anaiyois.		1
18		t				-8270 TCL SVOC		-	semivolatile				1
''						-TAL Metals		-TCLP		Co.			1
19													1
''					<u> </u>	-8081 Pesticides		-Ignita	Dility				1
						-8082 PCBs							
20		LEGEN			L	Poil colors days that	In						
	e		I <u>D</u> SPOON SOI			Soil colors described us	ing the Mur	ISEII COlor :	system.				
			TURBED SC										
<u> </u>	C- GENERAL		CORE SAM			l							
						TE BOUNDARY BETWE							
						TIMES AND UNDER COM							
	-)					OSE PRESENT AT THE					MALEN		
										BORING #	B-11	· · · ·	

r												
		MEED				PROJECT			BORING B-1			
				ENFIELD ROAD		Former Nichol ERP S)29	SHEET 1 OF			
	Civil and E	INTONINO	ia Penriel	.D, NEW YORK	14020	Remedial investigation	11		JOB #: 41101 CHKD, BY: N			
CONT	RACTOR		Environm	antal Inc		BORING LOCATION			CHKD. BT: N	/A		
DRILL	ER: Jim A	Agar		sintai, mo.		GROUND SURFACE				UM: N/A		
JCL C	EOLOGIS	ST: JDN	4			START DATE: Sept.		-	ATE: Sept. 4, 2			
						Office Brite Copt.	4, 2000 			EVEL DATA		
TYPE	OF DRIL	L RIG: (Geoprobe™	Model 6620E	т		DATE	TIME	WATER	CASING	REMARKS	
	NG SIZE A											
				HOD: continue	ous/direct push							·
	<u> CRILLIN</u>	G MET	HOD: N/A									
D												
E			SAMPLI	E DATA								
P		<u>.</u>					SA	MPLE	DESCRIPT	FION		PID
Т	BLOW	NO.	DEPTH	N-VALUE	RECOVERY							
н	/6"		(FT.)	/RQD(%)	(%)							
	N/A	1	1-4	N/A	78%	0-0.5' weathered a					0.5	1 ppm
1						0.5 - 2' medium bro	own (10YF	75/4), d	ry, SILT and	gravel little	clay	
2											2'	
[2 - 6' dark brown (1	0YR4/4)	moist S	ILT some cla	y little grave	- H	
3						1				,		
						1						
4						1						
	N/A	2	4-8	N/A	100%	same						
5		<u> </u>			10070	Jame						0 ppm
ľ						4						
						4						
6		ļ									6'	
_		I				6 - 10' dark brown	•) with lig	pht orangish	brown (10YI	R5/8) mottles	
7						SILT and clay trace	e gravel					
8												
	N/A	3	8-12	N/A	100%							750 ppm
9						same						
10		1				1					10'	
1						10 - 11' medium br	ownish ar	av (10Y	'R5/1) wet S	LT and grav	/el	1
11		1				1			,		11'	
		1				11 - 12' medium gr	avish bro	wn (10Y	(85/2) wet S	I T some cl	- ' and gravel	
12							ayion bio		10/2) WOU OF		12'	
	N/A	4	12-16	N/A	45%	12 - 15' medium gr	avieb bro	4m (10)	(DE/2) moint			
13	1.071		12 10			trace clay	ayisii bio	wii(iui	n5/2) moist	GRAVEL SC	ane sit	10 ppm
13												
						-						
14						4						
		 			ļ	4						
15						ļ					15'	
						15 - 16' medium br	own (10Y	'R 5/3) r	noist SILT so	ome gravel a	and clay	
16											16'	
						Boring Terminated	at 16 fee	tbgs.				
17						Soil from 8-12' bgs	was retai	ined for	the following	laboratory	analvsis:	
l ľ						-8260 TCL VOCs				, ,		
18		i – –				-8270 TCL SVOC						
		1				-TAL Metals						
19						-8081 Pesticides						
						-8082 PCBs						
						-0002 PCBS						
20												
			IL SPOON SOI			Soil colors described us	ing the Mun	sell color s	system.			
			TURBED SO									
	C- GENERAL		CORE SAM	<u>'LE</u>		1						
						TE BOUNDARY BETWE		DC0 TO				
	() 2)	WATE		ADINGS HAVE		TIMES AND UNDER CON		TATED 5	UCTUATIONS MA			
	2)					OSE PRESENT AT THE					WAIER	
						OULT REDENT AT THE		ONEMEN	I O WERE MAL		P 10	

	_					PROJECT			BORING B-1	3			
		SINEER		ENFIELD ROAD		Former Nichol ERP S		29	SHEET 1 OF	1			
	Civil and E	invironmen	ital PENFIEI	LD, NEW YORK	14526	Remedial investigation	n		JOB #: 4110				
CONT	TRACTOR	TREC	Environm	ental. Inc.		BORING LOCATION			CHKD. BY: N	I/A			
DRILL	LER: Jim /	Agar		,		GROUND SURFACE			DAT	UM: N/A			
JCL 0	EOLOGI	ST: JDN	1			START DATE: Sept.	4, 2008	END D/	ATE: Sept. 4,				
		RIG: (Geoprobe™	4 Model 6620	т		DATE	TIME	WATER LI WATER	EVEL DATA	REMARKS		
	NG SIZE /						DAIL			CASING	REMARKS		
				HOD: continue	ous/direct push								
ROCI D		G MET	HOD: N/A			1							
E			SAMPL	F DATA									
P							SAN	MPLE	DESCRIP	TION			PID
Т	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	1							
н	/6"	1	(FT.)	/RQD(%)	(%)		(10)(5)	4 (0)					
1	N/A	<u> '</u>	1-4	<u>N/A</u>	63%	0 - 0.5' medium bro 0.5 - 1' weathered		4/3) dr	y SILT little t	ine sand	0.5'	0 p	pm
					ł	1 - 3.5' dark brown		moist	SII T some	aravel and c	_1'		
2							(101110/0)	moist		giavei anu c	lay		
						1							
3]							
											3.5'		
4	A1/A			A L/A		3.5 - 6' dark brown	(10YR3/3)	moist	SILT some	clay			
	N/A	2	4-8	N/A	75%	4						0 p	pm
5					+	4							
6						-					6'		
						6 - 9' dark grayish	brown (10)	(R2/1)	moist SILT :	some clav lit	tle gravel		
7] ,	, ,			,,	g		
8						-							
	N/A	3	8-12	N/A	53%	same						360	0 ppm
9							10.0		and the later of the second	(10)/0 (/0	_9'		
10					<u> </u>	9 - 11' dark gray (N moist SILT some g) motties		
							naver intie i	ciay (pi		JI)			
11						1					11'		
						11 - 15' medium gi	rayish brow	m (10Y	R5/1) moist	SILT some			
12													
	N/A	4	12-16	N/A	45%	becomes wet at 12	2'					39	1 ppm
13						-							
14						4							
'7					<u> </u>	-							
15						4 inch CLAY silt se	am at 15 f	eet			15'		
		ĺ			1	15 - 16' medium gi			'R5/2) moist	SILT some			
16											16'		
						Boring terminated	at 16 feet b	ogs					
17						4							
18					<u>├</u> ───	4						a.	
'°		-				1							
19		t			1	1							
						1							
20													
		LEGEN				Soil colors described us	ing the Munse	ell color s	system.			•	
			SPOON SOI										
			TURBED SC CORE SAM										
<u> </u>	GENERAL			<u></u>		1							
1	1)	STRAT	IFICATION L	INES REPRES	ENT APPROXIMA	TE BOUNDARY BETWE	EN SOIL TYP	ES, TR	ANSITIONS MA	Y BE GRADUA	Ŀ.		
	2)					TIMES AND UNDER CON					WATER		
		MAT U	OCON DUE	IO UTHER PAG	UIUNG IMAN IH	OSE PRESENT AT THE	TIME MEASU	REMEN	IS WERE MAL	BORING #	B-13		
_										1			

		INFER	S 2230 PI	ENFIELD ROAD	,	PROJECT Former Nichol ERP S			BORING B-1 SHEET 1 OF				
21				D, NEW YORK		Remedial investigation		23	JOB #: 41101	ŀ			
	PACTOR		Environme	antal Inc		BORING LOCATION			CHKD. BY: N	I/A			
	ER: Jim A			sintai, into.		GROUND SURFACE			DAT	UM: N/A			
CL G	EOLOGIS	ST: JDN	1			START DATE: Sept.	4, 2008	END D/	ATE: Sept. 4, :				
YPE	OF DRILI	RIG: C	Geoprobe™	Model 6620D	т		DATE	TIME	WATER LI WATER	EVEL DATA	REMARKS		
ASIN	IG SIZE A	ND TY	PE: N/A							0,10,110			
			LING METI HOD: N/A	HOD: continuo	us/direct push								
D								L	I	1			
E P			SAMPLE	E DATA									
Ŧŀ	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	-	54	MPLE	DESCRIP	HON			PID
н	/6"		(FT.)	/RQD(%)	(%)								
₋⊦	N/A	1	1-4	N/A	30%	0-0.5' weathered as					0.5'		0 ppm
1	•					0.5 - 5' medium bro gravel trace sands		(4/3) dr	y to moist SI	LT some			
2		-					and day						
]							
3						4							
₄ŀ						-							
ľ	N/A	2	4-8	N/A	38%	same							0 ppm
5											_5'		
6						5 - 7' medium gray	ish brown	(10YR5	5/2) moist SI	LT and grav	el		
ී													
7											7'		
ŀ						7-9' medium brown	(10YR 5	3) mois	t SILT some	clay little g	avel		
비	N/A	3	8-12	N/A	60%	same							
9			0-12		00 /8	Same					9'		1500 ppn
						9 - 10' medium gra	ayish brov	/n (10Ÿ	R5/2) moist	SILT and gr			
10								(1.0)			_10'		
11						10 - 14' medium gr some sand trace c		wn (10Y	(H5/2) moist	SILI and gi	avel		
							ay.						
12]							
13	N/A	4	12-16	N/A	100%	same becomes we	t at 12'						300 ppm
'						-							
14						4 inch SILT clay se					14'		ł
ļ						14 - 16' medium br	ownish gr	ay (10Y	'R5/1) moist	SILT some	clay		
15						and gravel							
16						1					16'		
						Boring terminated							1
17						Soil from 12.5' bgs	was retai	ned for	the following	g laboratory	analysis:		
18				~		-8260 TCL VOCs -8270 TCL SVOC							
Ť						-TAL Metais							
19						-8081 Pesticides							1
						-8082 PCBs							
20		LEGEN	D		L	Soil colors described us	ing the Mun	sell color «	system.			<u> </u>	L
		SPLIT S	SPOON SOI						,				
			URBED SO										
(C- GENERAL		CORE SAME	<u></u>							<u> </u>		
	1)	STRAT		INES REPRESE		TE BOUNDARY BETWE	EN SOIL TY	PES, TR/	ANSITIONS MA	Y BE GRADUA	NL.		
		WATER	LEVEL RE	ADINGS HAVE I	BEEN MADE AT	TIMES AND UNDER COM	IDITIONS S	TATED, F	LUCTUATIONS	S OF GROUND	WATER		
	2)	MAYO			TORS THAN TH	OSE PRESENT AT THE				15			

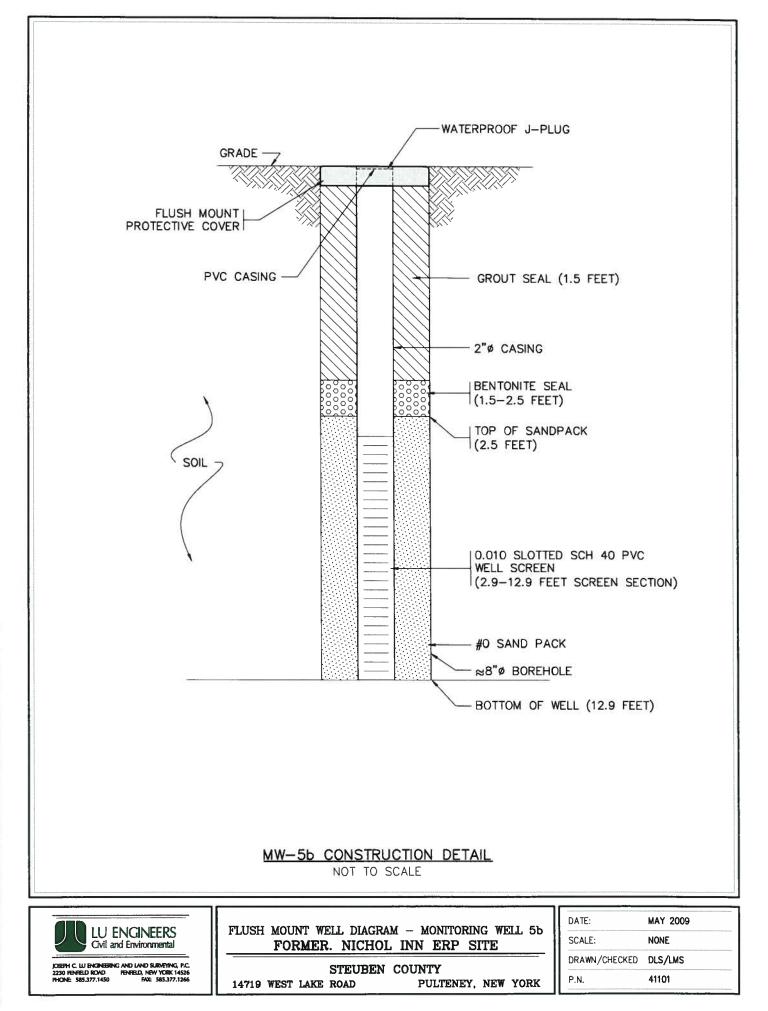
	_					PROJECT			BORING B-15	5			
				ENFIELD ROAD		Former Nichol ERP S	Site #E8510)29	SHEET 1 OF	1			
	Civil and E	nvironmen	tal PENFIEI	LD, NEW YORK	14526	Remedial investigation	on		JOB #: 41101 CHKD. BY: N				
CON	RACTOR	: TREC	Environm	ental, inc.		BORING LOCATION							
	ER: Jim A	lgar ST⊡DN				GROUND SURFACE				JM: N/A			
1002		1. 304				START DATE: Sept.	4, 2008	ENDD	ATE: Sept. 4, 2 WATER LE				
				Model 6620D	т		DATE	TIME	WATER	CASING	REMARKS		
	NG SIZE A			HOD: continuo	us/direct.push			<u> </u>					
			HOD: N/A										
			SAMPLI							******			
E P			SAIVIPLI	EDATA			SA		DESCRIPT				PID
т	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	4	0/		DECOMIN				FID
н	/6"		(FT.)	/RQD(%)	(%)		(<u> </u>			
	N/A	1	1-4	N/A	38%	0-1' medium brown	1 (10YR4/4	4) dry S	ILT and grav	el	41	la) ppm
'						1-8' medium brown	(10YB4/	4) drav i	o moist SILT	some grav	_ I rel and clav		
2								.,		como gran	or and only		
3		<u> </u>				-							
4													
	N/A	2	4-8	N/A	<5%	same							0 ppm
5													, ppm
						4							
6						4							
7						4							
]							
8											_8'	1	
	N/A	3	8-12	N/A	23%	8 - 12' medium bro		y (10YF	R5/1) moist S	ILT some g	ravel	•	1.8 ppm
9						and clay (very loos	ie)						
10													
]							
11						4							
12						-							
'`	N/A	4	12-16	N/A	50%	becomes wet at 12	2'				12'		10 ppm
13						12 - 15' medium gr		wn (10Y	'R4/2) wet SI	LT sand an			ro ppm
												ŀ	
14						4							
15					4	4 inch SILT clay la	ver at 15				15'		
						15 - 16' yellowish b	prown (10)	YR6/4)	wet SILT and	l clay some			
16											16'		
						Boring terminated			ا من المناطقة الم	hauste	h i		
17		<u> </u>		3 .		Soil from 12' bgs w -8260 TCL VOCs	vas retaini	ea tor th	e tollowing la	aporatory ar	iaiysis:		
18						-8270 TCL SVOC							
						-TAL Metals							
19													
20						-							
	L	LEGEN	D		L.	Soil colors described us	ing the Mun	sell color :	system.				
			SPOON SOI										
			TURBED SC CORE SAMI	DIL SAMPLE									
<u>├</u>	GENERAL	NOTES				I					. <u></u>		
	1)	STRAT		INES REPRES		TE BOUNDARY BETWE	EN SOIL TY	PES, TR	ANSITIONS MAY	Y BE GRADUA	NL.		
	2)	MAY O	CCUR DUF	ADINGS HAVE	BEEN MADE AT	TIMES AND UNDER CON OSE PRESENT AT THE	NDITIONS S		LUCTUATIONS		WATER		
										BORING #	B-15		
	_												

	_					PROJECT			BORING B-1	6			
	LU ENG			ENFIELD ROAD		Former Nichol ERP S	Site #E8510	29	SHEET 1 OF	1			
	Civil and E	nvironme	ntal PENFIEI	LD, NEW YORK	14526	Remedial investigation	n		JOB #: 41101				
	BACTOR	TRE	C Environm	ental Inc.		BORING LOCATION		<u></u>	CHKD. BY: N	/A		_·	
	.ER: Jim A					GROUND SURFACE			DAT	UM: N/A			
CL G	EOLOGI	ST: JDI	<u>v</u>			START DATE: Sept.	4, 2008	END D	ATE: Sept. 4, 2				
			Geoprobell	Model 6620D	T		DATE	TIME		EVEL DATA			
	NG SIZE A				71		DATE	TIME	WATER	CASING	REMARKS		
				HOD: continuo	us/direct push								
		G MET	HOD: N/A						l				
D													
E P			SAMPLI	EDATA									
г	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	-	54		DESCRIPT	IUN			PID
	/6"		(FT.)	/RQD(%)	(%)								1
Τ	N/A	1	1-4	N/A	50%	0 - 1' medium brow	n (10YR5	/3) dry	SILT and gra	vel			0 ppm
1									-		1'		
						1 - 4' medium gray	ish brown	(10YR	5/2) dry to ma	oist SILT so	ne clay little gravel		
2						4							
						-							
3						4							
٦ł						-					4		
⁻┢	Ñ/A	2	4-8	N/A	55%	4 - 11' medium gra	vish brow	n (10V	25/2) moist S		4 ⁻		
۶ľ		<u> </u>	<u> </u>		00 //		yish brow		10/2) moist a	ici iluə yıa	ver trace clay		0 ppm
ľ													1
6													
[-								
7													
ŀ													
8	61/A		0.40	N1/A	450/	4							1
╷	N/A	3_	8-12	N/A	45%	same							125 ppn
ᆘ													
٥ŀ						-							
ľ					-	1							
٩ľ		-				1					11'		
[11 - 14' medium br	rownish gr	ay (10)	(R5/1) with c	lark gray (N	3/)		
2	N/A	4	12-16	N/A	45%	mottles moist to we	et SILT sa	nd and	gravel				16 ppm
ļ													
зŀ						4							
╢		<u> </u>			ļ	4							1
⁴┝						14 101 Kake Las	(10)/00/	0		ala., Paul	14'		
₅⊦						14 - 16' light brown trace sand	I (IUTH6/4	+) (TIOIS	I SILI SOME	ciay little gra	IVEI		1
Ť						ace sally							1
sľ						1					16'		
t						Boring terminated	at 16 feet	bgs.		L			1
7						Soil from 12' bgs w			ne following la	aboratory ar	alysis:		1
				4L		-8260 TCL VOCs				.,			1
8						-8270 TCL SVOC							1
						-TAL Metals							1
9		<u> </u>				4							
┨						4							1
0		LEGEN			<u> </u>	Soil onlors described	ing the Mar-		oveteen				
	S-		92 Spoon Soi	L SAMPLE		Soil colors described us	my me Muns	Sell COIOF	system.				
			TURBED SC										
			CORE SAMI										
	GENERAL	NOTES	:								<u> </u>		
	1)	STRAT		INES REPRES		TE BOUNDARY BETWE	EN SOIL TY	PES, TR	ANSITIONS MA	Y BE GRADUA	L.		
	2)	MAYC	R LEVEL RE		BEEN MADE AT 1	TIMES AND UNDER CON	NDITIONS S	TATED, I			WATER		
			SOUT DUL	AC		OULT REGENT AT THE	IN THE MEAS		NIG WERE MAL	BORING #	B-16		
											- IV		

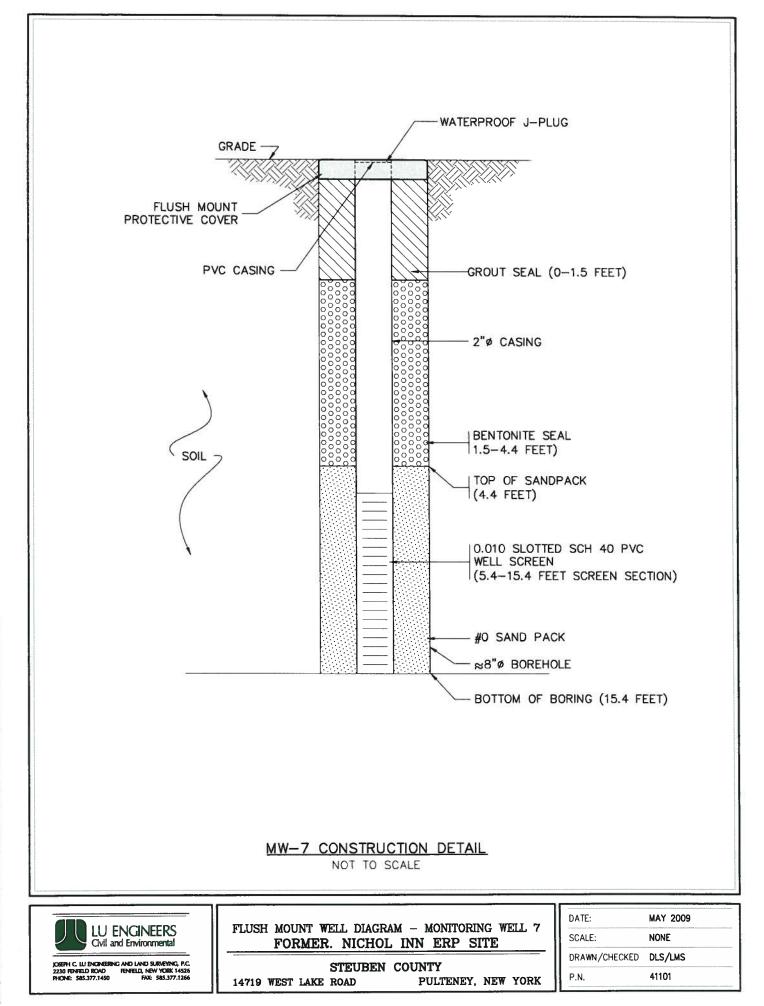
						PROJECT		_	BORING B-1	7	·····	
		INFER	S 2230 P	ENFIELD ROAD	1	Former Nichol ERP S		29	SHEET 1 OF			
\mathcal{P}	Civil and F	Minner		.D, NEW YORK	14526	Remedial investigatio		23	JOB #: 41101	-		
	Court David L					l			CHKD. BY: N			
CONT	TRACTOR	: TREC	Environme	ental, Inc.		BORING LOCATION	SEE PLA	V	1.0.01.1			
	ER: Jim A					GROUND SURFACE			DATI	UM: N/A		
JCL 0	EOLOGI	ST: JDN	/			START DATE: Sept.			ATE: Sept. 5, 2	2008		
										EVEL DATA		
				Model 6620D	т		DATE	TIME	WATER	CASING	REMARKS	
	NG SIZE A						L					
				HOD: continuo	us/direct push		L	ļ				
D		UNEL	HOD: N/A			<u>r — · </u>		L	L	L		
E			SAMPLI									
							~		DECODIES			
P T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	4	5A		DESCRIPT	NON		PID
н	/6"		(FT.)	/RQD(%)	(%)							
	N/A	1	1-4	N/A	50%	0-0.5' modium aray	ich brown		4/0) day CD4		0.51	
I.	19/73	<u> '</u>	1-4	11/74	50%	0-0.5' medium gray						0 ppm
'						0.5 - 2' medium bro	wn (10YF	1 5/3) d	ry to moist S	ILI and grav	(6)	
						4						
2		 			ļ						2'	
		ļ				2 - 5' medium brow	/n (10YR4	/3) moi	st SILT some	e gravel and	clay	
3		L				4						
		L				1						
4												
[N/A	2	4-8	N/A	55%	same						0 ppm
5											5'	
						5 - 6' medium brow	n (10YR !	5/3) mo	ist SILT and	aravel	•	
6					l	1		.,		3	6'	
					i —	6 - 11' dark grayish	brown (1	0YR4/2		some grave		
7		t						~		Some grave		
'		<u> </u>			l	1						
		 				1						
l °	N/A	3	8-12	N/A	48%	1						
	IN/A	<u> </u>	0-12	IN/A	40%	same						0 ppm
9		 				4						
		 				4						
10		<u> </u>				4						
			<u> </u>		<u> </u>	4						
11		 									_11'	
			L			11 - 14' medium br	ownish gr	ay (10Y	'R4/1) moist	SILT some	gravel little sand	
12						4						
l	N/A	4	12-16	N/A	50%	same becomes we	et at 12'					0 ppm
13]						
[
14						1					14'	
						14 - 16' medium br	own (10Y	R4/3) S	LT some cl	av little sand		
15		-				1		, .			3.4.4.	
			i		1	1						
16						1					16'	
						Boring terminated	at 16 feet	bae				
17					h	Soil from 12' bgs w	at i U i UUI	192 192			al valar	
''						-8260 TCL VOCs	as relaine			aboratory an	aysis.	
		<u> </u>	├									
18					<u> </u>	-8270 TCL SVOC						
		<u> </u>				-TAL Metals						
19			├ ──┤		ļ	-8081 Pesticides						
						-8082 PCBs						
20		L										
		LEGEN	_			A temporary well was se	et at 15 feet l	ogs with 1	0 feet of screen	from 5-15 feet	bgs and a riser to grade. A tem	porary flush mount
			SPOON SOI								ite seal to 1 foot bgs. The curb	box was grouted
			TURBED SO			in place. Soil colors des	scribed using	the Mun	seli color system	1.		
<u> </u>	C- GENERAL		CORE SAMP			L						
				INES REPRES		TE BOUNDARY BETWE						
	2)	WATER	R LEVEL BE			TIMES AND UNDER CON		TATED 5	NINGTI UNS MA			
	2)	MAYO	CCUR DUF	TO OTHER FAC	TORS THAN THE	OSE PRESENT AT THE	TIME MEAS		TS WERE MAR)F		
							MLAO			BORING #	B 17	

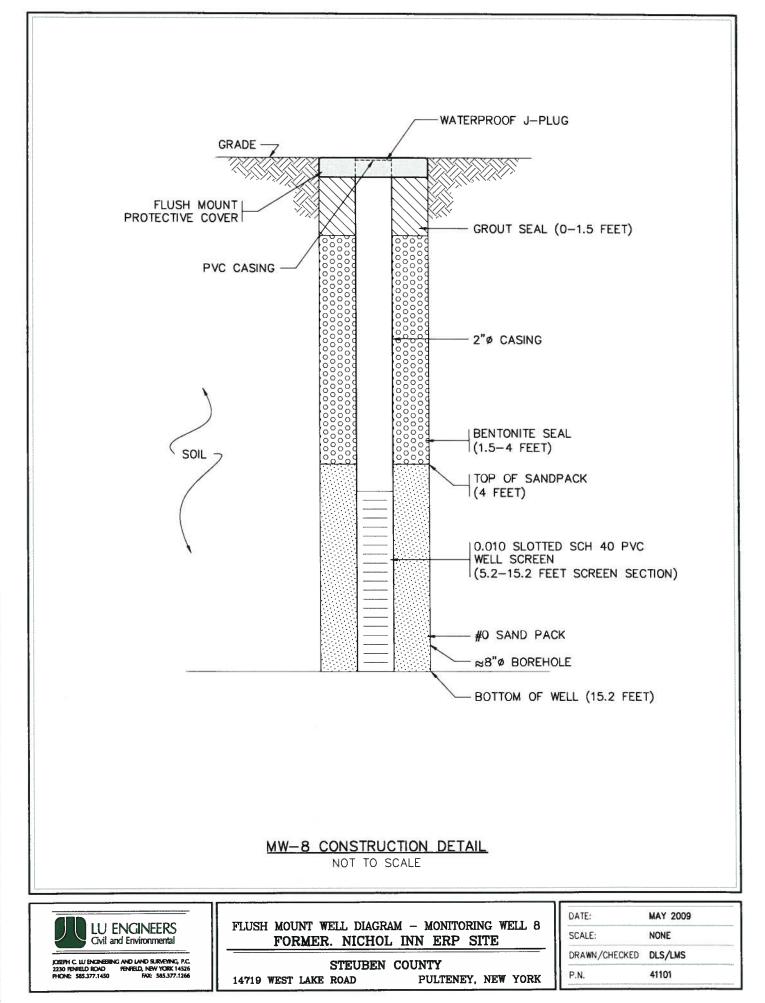
						PRO IECT		-				
		INFER	S 2230 PI	ENFIELD ROAD	2	PROJECT Former Nichol ERP S		20	BORING MW SHEET 1 OF			
2				_D, NEW YORK		Remedial investigation			JOB #: 41101			
				-					CHKD. BY: N			
			Environme	ental, Inc.		BORING LOCATION						
	ER: Jim A	•	4			GROUND SURFACE START DATE: Dec. 9				JM: N/A		
						UTANI DATE. DOC.	5,2000		ATE: Dec. 10, WATER LE	ZUU8 EVEL DATA		
					DT with 4.25" Au	gers	DATE	TIME	WATER		REMARKS	
			PE: 2" PVC									
1			LING METI HOD: N/A	HOD: continuo	ous/direct push		<u> </u>					
D			IQU. IVA				L	I	<u> </u>			
E			SAMPLE	E DATA								
Р							SA	MPLE	DESCRIPT	ΓΙΟΝ		PID
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY							
н	/6"	-	(FT.)	/RQD(%)	(%)		(4.0)(D.0/0	· · · · · · · ·	<u> </u>			
	N/A	1	1-4	N/A	95%	0 - 0.3' dark brown						0 ppm
'						0.3 - 1' dark brown	(104H3/2) ary Si	LI some sar	nd and grave	•	
2					<u> </u>	1 - 4.5' medium gra	wieh brow	m (10V	D4/2) dayto r	noiot CII T	1'	
					<u> </u>	some gravel little s			114/2) diy to r			
3					T			July				
						1						
4]						
[N/A	2	4-8	N/A	98%	same					4.5'	0 ppm
5											•	
						4.5 - 7.5' dark brow	vn (10YR3	1/4) moi	st SILT some	e gravel little	clay	
6												
						4						
7					 	4						
8					·	petroleum odor at	7.5'				7.5'	
8	N/A	3	8-12	N/A	70%	7.5 15' dorte vollos	wich brow	~ (0 EV				4.2 ppm
9		3	0-12	11/74	10/0	7.5 - 15' dark yellow becomes wet at 8'	wish drow	n (2.51	3/2) moist Si	L1 some gra	avel little clay	(at 7.5')
Ĵ						becomes wet at o						707 ppm
10					1	10 - 10.2' layer of r	nedium S					
						1						
11					1	1						
12												
	N/A	4	12-16	N/A	63%	same						300 ppm
13						-						
						-						
14						4						
1.5					 	4					451	
15						15 - 16' light brown		6) wet 6	II Teomo di	av and crow	15'	
16					1			J wel c	ALT SUITE CI	ay anu yrave	9 16'	
						Boring terminated	at 16 feet	BGS				
17												
				2		÷						
18												-
19					1	4						
					<u> </u>	-						2
20						A O in oh world and a difference of the	10 (0.404		
	<u>s</u> .	LEGEN SPLIT S	I <u>U</u> SPOON SOII								and a riser to grade. A sand pa finished with a flush mount curb	
			TURBED SO			installed with cement. S					noisceu wiur a nush mount curo	DUX
			CORE SAME							-,		
	GENERAL						2					
	1)	STRAT		INES REPRES	ENT APPROXIMA	TE BOUNDARY BETWE	EN SOIL TY	PES, TR	ANSITIONS MA	Y BE GRADUA		
ŀ	2)	MAYO	CCUR DUF	TO OTHER FAI	CTORS THAN TH	TIMES AND UNDER CON OSE PRESENT AT THE	NUTIONS S	IAIED, F	LUCTUATIONS	GROUND	WATER	
										BORING #	MW-5B	

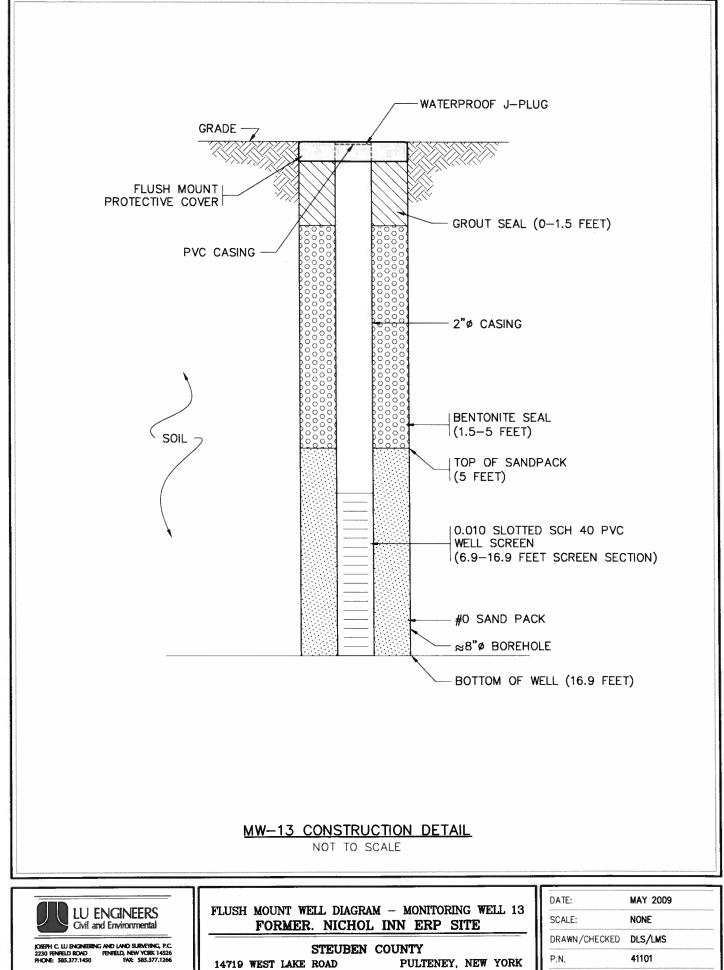
						PROJECT			BORING MW	-6		
	LU ENG	INEER	S 2230 PI	ENFIELD ROAD)	Former Nichol ERP S	ite #E8510	29	SHEET 1 OF			
P				D, NEW YORK		Remedial investigation			JOB #: 41101			
									CHKD. BY: N			
CON	TRACTOR	: TREC	Environme	ental, Inc.		BORING LOCATION	SEE PLA	N				
	LER: Jim A					GROUND SURFACE	ELEVATIO			UM: N/A		
JCL (GEOLOGIS	ST: JDN	1			START DATE: Dec. 9	9, 2008	END D	ATE: Dec. 10,	2008		
										EVEL DATA		
				Model 6620	OT with 4.25" Au	gers	DATE	TIME	WATER	CASING	REMARKS	
	NG SIZE A							<u> </u>				
	K DRILLIN			HOD: continue	ous/direct push		<u> </u>		· · · · ·	ļ		
D			NUD. IN/A			1			L		l	
E			SAMPLE	Ε ΓΓΑΤΑ								
P												
Ť	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	4	34		DESCRIP	ION		PID
н	/6*	110.	(FT.)	/RQD(%)	(%)							
	N/A	1	1-4	N/A	56%	0 - 0.4' dark brown	(10VB2/2	l) moiet		ino cand (to	n coil)	
1				14/1	00/0	0.4 to 0.5' tree root		9 110151	SILT SUITE I	ine sanu (to	0.4	0 ppm
'												
								- 4/02 -1				
2						0.5 - 3' medium bro		44/3) ar	y SILT some	sand and g	ravel	
						4						
3									· · · · · · · · · · · · · · · · · · ·		3'	
						3 - 6.5' medium bro	own (10YF	7 5/3) d	ry to moist S	ILT little clay	rtrace gravel	
4												
	N/A	2	4-8	N/A	83%							0 ppm
5						same						
6						1						
											6.5'	
7											0.0	
						6.5 - 9' medium bro	wn (10VF	⊇ <i>A/A</i>) n	noiet SII T eo	me gravel a	nd cond	
8								1		nie gravera	nu sanu	
Ŭ	N/A	3	8-12	N/A	90%	- and						
			0-12	N/A	30 /0	same					-	0 ppm
9						0.4014.4		01.01		······	_9'	
						9 - 10' dark gray (N	13/) moist	CLAY S	some silt trac	e gravel		
10					 	<u> </u>					_10'	
						10 - 12' medium gr	ayish brow	wn (2.5	Y5/2) moist S	SILT and gra	vel some clay	
11												
12							_				_12'	
	N/A	4	12-16	N/A	83%	12 - 14' medium gr	ayish brov	wn (10)	(R5/2) wet S	ILT some cla	ay little gravel	0.5 ppm
13												
14					i — —	1					14'	
							-		· ·		- *	
15					· · · · ·	14 - 16' medium br	own (10Y	(R5/4) v	vet SILT som	e clav little r	ravel	
						1				- eray intro §		
16					I	1					16'	
	N/A	4	16-20	N/A	83%	16 - 17' medium ye	lowish -		VE/1) wet OI	AV	16'	
17			10.20	11/1	00 /0		mowish gi	ay (SG	ion) well CL	AT SUME SI		1.2 ppm
					<u> </u>						_17'	
		-	· · · · ·			17 10						
18					+	17 - 19' medium br	own (10Y	H4/2) V	vet SILT som	ie clay		
		ļ			 	4						
19					ļ						_19'	
					L	19 - 20' dark reddis					It and gravel	
20							Boring te	erminate	ed at 20 feet	bgs	20'	
		LEGEN	_			A 2 inch well was set at	20 feet bgs	with 10 fe	et of screen from	n 12-20 feet bg	s and a riser to grade. A sa	Ind pack was
			SPOON SOI								feet bgs. The boring was fir	
			TURBED SO			a flush mount curb box i	nstalled with	i cement.	Soil colors des	cribed using the	Munsell color system.	
		÷	CORE SAMP	PLE								
	GENERAL											
						TE BOUNDARY BETWE						
						TIMES AND UNDER CON					WATER	
			SOON DUE		STORS THAN TH	OSE PRESENT AT THE	INC MEAS	UNEMEN	NIS WERE MAL	BORING #	MW/6	
											191 B X - C)	


DRIL	LER: Jim	Agar		ental, Inc.		BORING LOCATION GROUND SURFACE	ELEVATION	ON: N/A		UM: N/A		
	GEOLOGI				<u> </u>	START DATE: Dec. 9	ə, 2008	END D/	ATE: Dec. 10, WATER LE	2008 EVEL DATA		
					OT with 4.25" Au	gers	DATE	TIME	WATER	CASING	REMARKS	
			'PE: 2" PV(LING METI		ous/direct push							
ROC			HOD: N/A			•						
D E P			SAMPL	E DATA			SA		DESCRIPT			
т Н	BLOW /6"	NO.	DEPTH (FT.)	N-VALUE /RQD(%)	RECOVERY (%)	1						
	N/A	1	1-4	N/A	80%	0 - 0.5' dark brown	(10YR3/3) moist	GRAVEL so	me silt and	sand (gravel driveway)	
1						-						
2						1 - 1.5' dark brown	(10113/4	moist	SAND and S	an some gra	1.5'	
						1.5 - 3' dark brown	(10YR3/4) moist	SILT some of	clay and gra	vel	
3		<u> </u>				3 - 4.5' medium yel	lowich br	Num (10			3'	
4							IOWISTI DIC	wii (10	111 4/0/1108		graver and sand	
	N/A	2	4-8	N/A	75%	same		_			4.5'	
5						4.5 - 7.5' medium k	prown (10	YR4/4)	moist SILT s	ome sand a	nd gravel	
6	<u> </u>				<u> </u>	4						
						1						
7		<u> </u>				4						
8	<u> </u>				 						7.5'	
ľ	N/A	3	8-12	N/A	55%	7.5 - 10' medium y	ellowish b	rown (1	0YR4/6) moi	st SILT and	clay little gravel	
9								•	,		, , ,	
10											10	
											_10'	
11						10 - 13' light grayis	h brown (10YR6/	2) wet SILT a	and gravel		
12	<u> </u>	+		<u> </u>		-						
	N/A	4	12-16	N/A	70%	same						
13					<u> </u>		(8140			<u> </u>	_13'	
14						13 - 14.5' dark gray	/ (N4/) we	t SILT (coarse sand	some clay		
											14.5'	
15											-	
16						14.5 - 16' medium	gray (N5/)	SILT s	ome clay		16'	
			-			Boring terminated	at 16 feet	bgs			10	·
17								-				
18						-						
^{'0}	<u> </u>				<u> </u>	1						
19]						
_						4						
20	1	LEGEN	L		L	A 2 inch well was set at	15 feet bas	with 10 fe	et of screen from	n 5-15 feet bos	and a riser to grade. A sand p	nack wae
			SPOON SOI			installed to 4 feet bgs wi	th a bentonit	e seal to	1.5 feet bgs. Th	e boring was fi	nished with a flush mount curb t	
			TURBED SC			installed with cement. S	Soil colors de	scribed u	sing the Munsel	l color system.		
<u> </u>	GENERAL	NOTES	:			.					<u> </u>	
	1) STRAT		INES REPRES	ENT APPROXIMA	TE BOUNDARY BETWE	EN SOIL TY	PES, TR	ANSITIONS MA	Y BE GRADUA		
	2	MAY O	CCUR DUE	TO OTHER FA	CTORS THAN TH	DSE PRESENT AT THE	TIME MEAS	UREMEN	ITS WERE MAD	DE.	WAIER	
		_								BORING #	MW-7	

						PROJECT		T	BORING MW	-8	······································	
	LU ENG	INEER	S 2230 PI	ENFIELD ROAD)	Former Nichol ERP S		-	SHEET 1 OF			
R.	Civil and E	nvironmen	tal PENFIEL	D, NEW YORK	14526	Remedial investigatio	n		JOB #: 41101			
001	TRACTOR	TOPO							CHKD, BY: N	/A		
	LER: Jim A		Environme	ental, Inc.		BORING LOCATION GROUND SURFACE		N1/A	DAT	IK.4. K1/A		
	GEOLOGIS		4			START DATE: Dec. 9			TE: Dec. 10,	JM: N/A 2008		
						OTATI DATE. DOU.	, 2000 EI		WATER LE			
)T with 4.25" Au	gers	DATE TI	ME	WATER	CASING	REMARKS	
			PE: 2" PVC									
	K DRILLIN			HOD: continuo	us/direct push							
D			100.10/1			Τ	LL					<u> </u>
Е			SAMPLE	E DATA								
Р							SAMP	'LE I	DESCRIPT	ION		PID
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY							
н	/6" N/A	1	(FT.)	/RQD(%)	(%)					1.6	***	
1	IN/A		1-4	N/A	65%	0 - 1' medium brow	n (10YR4/4) i	mois	st SIL1 trace	sand (top s	Dil)	0 ppm
'						1 - 2.5' dark yellow	ich brown (10	VD2	(6) moint CII	Taoma ara	1'	
2						1 - 2.5 Gark yellow		n no	vo) moist Sit	_r some gra	ver and clay	
-						1					2.5'	
3				· · ·							2.5	1
						2.5 - 11' medium b	rown (10YR 4	l/6) n	noist SILT a	nd aravel litt	le clav	
4]	,	,		J	····;	
	N/A	2	4-8	N/A	70%]						0 ppm
5						same						
												1
6												
7												
						4						
8	N/A	3	8-12	N/A	58%	-						
9		3	0-12	IN/A								0 ppm
9						same						
10						1						
						1						
11						1					11'	
						11 - 12' medium gr	ayish brown ((10Y	R 5/1) with li	ght gray (10	YR6/2) mottles wet SILT and	
12			=			gravel so		•	,	0 0 7 (12'	
	N/A	4	12-16	N/A	68%	12 - 13.5' medium	brown (10YR	5/4)	wet SILT an	d gravel sor	ne clay	0 ppm
13												1
											13.5'	
14						13.5 - 16' medium	bluish gray (5	G5/1	1) wet CLAY	some silt lit	tle gravel	
4-		-			<u> </u>	4						
15						4						1
16					<u> </u>						16'	
						Boring terminated	at 16 feet hos					-
17												
			· · ·			2						1
18]						
19]						
						4						
20												
	e.	LEGEN	<u>id</u> Spoon soil								a riser to grade. A sand pack was	
			TURBED SO			installed with cement. S					nished with a flush mount curb box	
			CORE SAMP							Leior ayatonii.		
	GENERAL	NOTES:				-						
	1)	STRAT	IFICATION L	INES REPRES		TE BOUNDARY BETWE	EN SOIL TYPES	, TRA	NSITIONS MA	Y BE GRADUA	L.	
	2)	MAYO		NUINGS HAVE	DEEN MADE AT 1	TIMES AND UNDER CON OSE PRESENT AT THE	NUTIONS STATE	ED, FI		OF GROUND	WATER	
			- JOIN DOL				INC NEADURE		TO WERE MAL	BORING #	MW-8	


						PROJECT			BORING MW	-10			_
	LU ENG	INEER	S 2230 PI	ENFIELD ROAD		Former Nichol ERP S		29	SHEET 1 OF				
\mathbb{P}				D, NEW YORK	14526	Remedial investigation			JOB #: 41101	-			
									CHKD. BY: N				
			Environme	ental, Inc.		BORING LOCATION							
	ER: Jim A					GROUND SURFACE				JM: N/A			
JCL 0	BEOLOGIS	sf:JDN	1			START DATE: Sept.	4, 2008	END D	ATE: Sept. 5,				
		00.4	2000r	Madal 2000)T		D.47-	T TIN 100		VEL DATA			
			PE: 1" PVC	^ Model 6620E			DATE	TIME	WATER	CASING	REMARKS		
					ous/direct push			 					
				TOD. Continue	us/unect push		┣────	<u> </u>					
D	(Bracent		100.107		•	T	L	I					
E			SAMPLI	E DATA									
P							S۵		DESCRIPT				DID
Τ	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	4	0/1		DECOTIN				PID
н	/6"		(FT.)	/RQD(%)	(%)								
	N/A	1	1-4	N/A	68%	0 - 1' medium brow	n (10YB4	/4) drv	SILT little gra	vel (top soi	0		0 ppm
1								, i) aiy	oner indo gio		ッ 1'		o ppm
					-	1 - 3' dark brown (1	0YB3/3)	dry to r	noist SILT so	me gravel t	.' race clav		
2							101110/0)			nie glaver t	lace clay		
- T						-							
3						-					0		
ן יו					 	2 6 modium valle	wich here:	m (10)/			ີ 3 		
					<u> </u>	3 - 6' medium yello	WISH DIOW	/n (10Y	H 4/6) MOIST	SILISOME	ciay		
4	NI/A			N1/A	759/	trace gravel							
	N/A	2	4-8	N/A	75%	4							0 ppm
5						same							
6											6'		
						6 - 7' medium brov	wn (10YR₄	4/3) mo	ist SILT som	e gravel	-		
7											7'		
						7 - 9' dark brown (*	10YR 3/3)	moist S	SILT and grav	/el some cla	ly		
8									-		•		
	N/A	3	8-12	N/A	83%	same							0 ppm
9						1					9'		
						9 - 11' dark brown	(10YR3/3)) moist	SILT some c	lav trace ora			
10						1	(,		, g			1
						1							
11						1					11'		
						11 - 13.5' medium	aravish hr	own (1)	NVR5/2) with	medium br			
12						yellow (10YR 5/8)							
'-	N/A	4	12-16	N/A	83%	becomes wet at 12			I some clay	inte graver	anu sanu		
13	1.0/7		12 10	19/7	00/8	Isame							0 ppm
						2 inch SILT clay se					_13.5'		
14					ł —	13.5 - 16' dark gray	y (193/) mc	NST SIL	i some tine s	and trace g	ravei		
						4							l
15						4							i
						4							
16					<u> </u>						16'		
						Boring terminated	at 16 feet	bgs					-
17					<u> </u>								
						4							
18													
													1
19						_							
[]							
20													
		LEGEN	<u>D</u>			A temporary well was se	et at 15 feet t	bgs with 1	0 feet of screen	from 5-15 feet	bgs and a riser to grade.	A sand pack w	vas
	S-	SPLIT	SPOON SOI	LSAMPLE		installed to 4 feet bgs wi	th a bentonit	e seal to	grade.			Provide State of the second state	
	U-	UNDIST	TURBED SO	IL SAMPLE		Soil colors described us							
			CORE SAME	PLE									
	GENERAL												
	1)	STRAT	IFICATION L	INES REPRES		TE BOUNDARY BETWE	EN SOIL TY	PES, TR	ANSITIONS MAY	Y BE GRADUA	L.		
	2)					TIMES AND UNDER COM					WATER		
		MAYO	COUR DUE	IO UTHER FAC	TORS THAN THE	OSE PRESENT AT THE	TIME MEAS	UREMEN	ITS WERE MAD				
										BORING #	MW-10		


			C 2230 D		•	PROJECT Former Nichol ERP S		20	BORING MW SHEET 1 OF				
יען	Civil and E		tal PENFIEL	LD, NEW YORK	14526	Remedial investigatio		29	JOB #: 41101				
									CHKD. BY: N				
			Environme	ental, Inc.		BORING LOCATION		N			<u></u>		
	ER: Jim A					GROUND SURFACE				JM: N/A			
JUL	EOLOGIS	ST: JDN	//			START DATE: Sept.	5, 2008 I	END D	ATE: Sept. 5, 2	VEL DATA			
TYPE	OF DRILL	L RIG: 0	Geoprobe™	Model 6620E	т		DATE	TIME	WATER	CASING	REMARKS		
			'PE: 1" PVC										
				HOD: continuo	ous/direct push								
		G MET	HOD: N/A										
			SAMPL										
E P			SAIVIPLI	DATA			C 4		DESCRIPT				
╎┼╎	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	1	34						PID
н	/6"		(FT.)	/RQD(%)	(%)								
	N/A	1	1-4	N/A	90%	0 - 1' medium brow	/n (10YR4	/4) dry :	SILT some sa	and (top so	ii)		0 ppm
1											1'		
[1 - 2' dark brown (1	10YR3/4)	dry to r	noist SILT so	me little gra	vel		
2											2'		
[2 - 4.5' medium gra	ayish brow	/n (10Yl	R5/2) moist S	SILT some c	lay little gravel		
3	-					4							
						4							
4	A1/6			A 1/A	40001	4							
_	N/A	2	4-8	N/A	100%	same					4.5'		0 ppm
5			\mid		ļ	4.5' - 7 medium yel	llowish bro	own (10	YR4/6) SILT	some clay t	race gravel		
						4							
6			 		<u> </u>	4							
_						4					-		
1						7 O'medius ha	m (10)/D 1	(2)			7		
8						7 - 8' medium brow		43) moi:	SI SILI SOME	e clay and gr	avel		
l °	N/A	3	8-12	N/A	65%	8 - 10' medium gra	vish brow	n (10V	25/2) wat CAL	ND and area	o vol		
9	1973	<u> </u>	<u> </u>	1.1//1	0070		yian brow		UL WEL JAI	anu yia\	0		0 ppm
Ĭ						1							
10				w		1					10'		
						10 - 12' medium gr	avish brow	wn (10Y	(R5/2) SILT a	Ind clay	• • •		
11]		• • • •	,, -				
]							
12						1					12'		
[N/A	4	12-16	N/A	100%	10 14 modium brown (10)/D 4/0) maint OD A)/(5) and a set a site						0 ppm	
13						1					-		··
[1							
14						L	-				_14'		
								_					
15						14 - 16' dark gray ((10YR2/1)	moist S	SILT and clay	/ some grav	el		
						4							1
16		-				Devine to mylant.		b			16'		4
17						Boring terminated			following to b		husio		l
''			-			Soil from 9' bgs wa -8260 TCL VOCs	is retained		nonowing lat	poratory ana	iysis:		
18						-8270 TCL SVOC							1
						-TAL Metals							
19					<u> </u>								
					1	1							
20												1	
	LEGEND A temporary well was set at 15 feet bgs with 10 feet of screen from 5-15 feet bgs and a riser to grade. A sand pack was												
	S- SPLIT SPOON SOIL SAMPLE installed to 4 feet bgs with a bentonite seal to grade.												
						Soil colors described us	ing the Muns	sell color s	system.				
-	C- GENERAL		CORE SAME	LE		L	_						
				INES REPRES		TE BOUNDARY BETWE		PES TP	ANSITIONS MAY		1		
	2)	WATER	R LEVEL RE	ADINGS HAVE	BEEN MADE AT 1	TIMES AND UNDER CON	DITIONS S	TATED, F	LUCTUATIONS	OF GROUND	WATER		
						OSE PRESENT AT THE			ITS WERE MAD	E.			
										BORING #	MW-11		


						PROJECT			BORING MW	-13			
		INEER		ENFIELD ROAD		Former Nichol ERP S		29	SHEET 1 OF	1			
	Civil and E	nvironmen	tal PENFIEI	LD, NEW YORK	14526	Remedial investigatio	n		JOB #: 41101				
CON	FRACTOR	: TREC	Environme	ental, inc.		BORING LOCATION	SEE PLAN		CHKD. BY: N	/A			
DRIL	LER: Jim A	lgar				GROUND SURFACE	ELEVATIO	DN: N/A		JM: N/A			
JCL (EOLOGIS	ST: RF				START DATE: 3/31/0	9	END D/	ATE: 3/31/09				
ТҮРЕ	OF DRILL	- RIG: (Geoprobe™	Model 6620D	OT with 4.25" Au	aers	DATE	TIME	WATER	VEL DATA CASING	REMARKS		
CASI	NG SIZE A	ND TY	PE: N/A			9010	DATE			U/Jointa			
				HOD: continuc	ous/direct push								
D	(DRILLIN	GMET	HUD: N/A			T							
E			SAMPL	E DATA									
Р							SA	MPLE	DESCRIPT	TION		PID	D
Т	BLOW	NO.	DEPTH	N-VALUE	RECOVERY								-
н	/6" N/A	1	(FT.) 1-4	/RQD(%) N/A	(%) 75%	0 0 5' modium bro			and (tem easily				
1			1-4		1378	0 - 0.5' medium bro 0.5-2' medium brow		Ind GRA	VEL some r	and		0.0 ppr	m
									VEL, 30116 3	Sanu			
2						1							
						2-4' medium brow	-4' medium brown SILT, little gravel, trace clay						
3		<u> </u>										0.0 ppr	
						-							
4	N/A	2	4-8	N/A	75%	4-6' same as abov	•						
5			_ + 0	11/7	13/8		8					0.0 ppr	m
6													
						6-8' medium brow	n SILT and	GRA	/EL, trace cla	ay, moist		0.0 ppr	m
7					· · · · ·	4							
8						4							
	N/A	3	8-12	N/A	75%	8-12' same as abo	ve: wet at	11' ha				0.0	
9			012	14/14	10/0		we, wet at	ii by:	2			0.0 ppr	m
						1							
10													
						4							
11						4							
12						-							
	N/A	4	12-16	N/A	50%	12-16' medium bro	wn Sli T	some (ravel trace	clav: saturat	red at 12' bos		
13								001110 §	jiavoi, liaco	olay, batara		0.0 ppr	лті
14													
						4							
15						4							
16						1							
						1							
17													
			. e			Total Depth= 17 f	eet						
18					ļ	4							
19						4							
19						1							
20						1							
	LEGEND A 2-inch diameter well was set at 17 feet bgs with 10 feet of screen from 7-17 feet bgs and a riser to grade. A sand pack was												
	S- SPLIT SPOON SOIL SAMPLE installed to 5 feet bgs with a bentonite seal to 1.5 feet bgs. The boring was finished with a flush mount curb box												
			CORE SAMI			installed with cement.							
	GENERAL	NOTES:									- <u></u>		
	1)	STRAT		INES REPRES		TE BOUNDARY BETWE	EN SOIL TY	PES, TR/	ANSITIONS MA	Y BE GRADUA	L		
	2)					TIMES AND UNDER CON DSE PRESENT AT THE					WATER		
										BORING #	MW-13		

J:/Projects/41100 Steuben County/41101 Nichol Inn/Cadd/MW_diagnams dwg, 5/21/2009 9:36:40 AM, diane, AC2008

Well De	Well Development Field Record 2230 Penfield Road Penfield, New York 14526											
Project Na Well ID: Logged by	ame: <u>N(C</u> /:	thel Inn 1 MW-1 15	ERP	Developme Installation	ent Date: <u>9</u> Date:	-18-08	Joi	$50 \text{ Fax 585.377.1266} \\ b \# 4101 \\ art Time: 13'10 \\ 13'10 \\ art Time: 14'02 \\ 14'02 \\ art Time: 10'00 \\ art Time: 1$				
Initial Depth to Water: $10.33'$ Measurement Point:Measurement Point: TOR Measurement Point:Well Diameter:Final Depth to Water: 10.66 Measurement Point:Well Depth before: 19.58 Measurement Depth after:Well Diameter: 2 Well Depth after:Well Diameter: 2 Well Depth after: $20.01'$ CasingWell Diameter: 2 Well Integrity: Cap Casing Cap 												
Volume												
Time	Volume Purged (gals)	Purge Rate (gals/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Comments				
	2.5	~2	(purged	dny)	<u>. </u>			dk grey, petrol odd				
13.25	4				<u> </u>	59.5		purged dry again				
10.10	6,5		(purged	any)	<u> </u>			Clear; petrol. oder				
Type of Water Quality Meter: Purge Observations: Observat												
Well Development Criteria Met: Notes: <u>Purged dry 4 times after vigal</u> . <u>Development water has strong color of degraded petroleum and darkgrey</u> odor. <u>Water began to clear up to when recharging</u> .												
	Signature:											

Well [Well Development Field Record ULU ENGINEERS 2230 Penfield Road Penfield, New York 14526 585.377.1450 Fax 585.377.1266												
Project Well ID Logged	Name: <u>N</u>): by:	ichol Innt MW-2 NS	<u>PP</u>	Developme Installation	nt Date: Date:	-19-08	Joł Sta	Job # <u>41101</u> Start Time: <u>13:34</u>					
Final D Screen D Well Vo (2" diam Protecti	epth to Wat Length: olume: neter = 0.163 ga ve casing st	tick-up: <u>flus</u>	<u>gals</u> depth, 4" diamete	Well Depth before:19.10Well Integrity:Well Depth after:19.15CapSediment Depth Removed:Casingter = 0.653 gallons per foot of depth)Locked				ell Diameter: <u>2"</u> ell Integrity: Cap <u>/</u> Casing <u>/</u> Locked <u>/</u> Collar <u>deferiora ted</u>					
	WATER OUALITY PARAMETERS Volume Purge Rate Temp. pH Dissolved Turbidity Cond.												
Time	Purged (gals)	Purge Rate (gals/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Comments					
13:37 13:50 14:30	2 3 4	2.0 2.0 2.0	18.5	6.7				Pumped dry. N.grey; + Pumped dry: Pumped dry.					
, , , ,	Type of Water Quality Meter: La Motte 2020e Hanna pH meter Purge Observations: Dorkgrey colored; degraded petroleum odor Purge Water Containerized: US												
Subi	EOUIPMENT DOCUMENTATION Image Block Image Block												
	Well Development Criteria Met: Notes:												
2													
	Signature: <u>Librith</u> Checked By:												

J:\STANDARDS\Environmental\Phase II Standards\Well Development_Log.doc

*

		1004 004 00										
Well I	Well Development Field Record USU ENGINEERS LU ENGINEERS L230 Penfield Road Penfield, New York 14526 585.377.1450 Fax 585.377.1266											
Project Well ID Logged	Name:): by:	Chol Inn ER MW-3 MS	2 <u>P</u>	Developme Installation	ent Date: <u>9</u> - 1 Date:	19-08	Job # $4/101$ Start Time: 11.53					
Screen 1 Well Vo (2" diam Protecti	Length: olume: neter = 0.163 ga	tter: $9,20$ ter: 1.43 allons per foot of a tick-up: $fluc$ PARAMET	gals lepth, 4" diame	Sediment I ter = 0.653 gallo	ent Point: h before: h after: Depth Remov ons per foot of de ell difference	$\frac{1}{2}$	/	ell Diameter: ell Integrity: Cap Casing Locked Collar <u>deferiora</u> te				
Time	Volume Purged	Purge Rate (gals/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Comments				
10:00	(gals)		(008.0)	(41115)		(((10))	(IIIS/CIII)					
12:00	3.8	2.0				-		Pumped dry.				
12:25		2.0	1.5			71.0		fumped dry again				
12:54	10	2.0	15.7	6.9		89.8		Rumpeddry.				
13.12	11.5	2.0	17.0	(e.8		79.0		Pumped dry.				
								, ,				
EQUIP Sub:	Type of Water Quality Meter: LaMotte 3030e; Hanna pH meter Purge Observations: <u>degrad ad petroleum ador</u> Dark grey color, then aleared up a bit. Purge Water Containerized: <u>up a</u> <u>EOUIPMENT DOCUMENTATION</u> Submersible Pump Approximate Recharge Rate: <u>0.3/min</u>											
	ge Block er			Total Gallo	ons Removed	1:(<u> </u>					
Well De Notes:	Surge Block Total Gallons Removed:											

Well Development Field Record 2230 Penfield Road Penfield, New York 14526 585.377.1450 Fax 585.377.1266												
		chul Inn EK 1W-4 NS	20	Development Date: $9-19-08$ Job # 4101 Installation Date:Start Time: $10:38$ End Time: $11:10$								
Initial Depth to Water: 9.20 Measurement Point: ToR Well Diameter: $2''$ Final Depth to Water: 10.00 Well Depth before: $18.93+0.85=$ Well Diameter: $2''$ Screen Length:?Well Depth after: $18.90+0.25=$ Well Integrity:CapWell Volume:galsSediment Depth Removed: $0.03'$ Casing $$ (2" diameter = 0.163 gallons per foot of depth, 4" diameter = 0.653 gallons per foot of depth)Casing/Well difference: $0.57'$ Locked $$ Protective casing stick-up: $flush$ Casing/Well difference: $0.57'$ Cond.Collar deterioratedWATER OUALITY PARAMETERSTemp. (deg. C)pH (units)Dissolved $02 (mg/L)$ Turbidity (NTU)Cond. (mS/cm)Comments												
Time	Purged							Comments				
10:41 10:56	4	2.0 2.0				71.6		very turbid. Pumped dry				
11:05 11:10	8. S 10	2.0 2.0		6.8		30,6		pumped dry				
Type of Water Quality Meter:												
Notes:												
Signatu Checke	Signature: Checked By:											

								CINICEDS		
Well	Developr	nent Field	Record				Civil and	GINEERS Environmental		
								eld Road ew York 14526 50 Fax 585.377.1266		
Well II	D:	<u>chol Inn ERP</u> nw-し ms		Developm Installation	ent Date:/- 1 Date:	-19-09	Job # <u>41101</u> Start Time: <u>/3/50</u> End Time:			
Screen Well V (2" dian Protecti	Length: olume: neter = 0.163 ga	tter: <u>9.23</u> ter: <u>11.2</u> Ulons per foot of d tick-up: <u></u>	<u>gals</u> lepth, 4" diame	Sediment l ter = 0.653 gall	ent Point: h before: h after: Depth Removons per foot of de ell difference	ved: <u>, 03'</u> epth)	<u> </u>	ell Diameter: <u> </u>		
Time	Volume Purged (gals)	Purge Rate (gals/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Comments		
15:08	25		9.5		3.2	7999	1.47			
						<u></u>				
			<u> </u>							
		•								
	Purge Obse	tter Quality M rvations: <u>V</u> r Containeriz	ry tarbi	d: Siltu	arelli d	equaded	petrolellury	nder		
🛛 🗘 Sub	MENT DOC omersible Pu C Bailer	CUMENTATI ump	<u>ON</u>		ate Recharge			S.		
	ge Block er	· · · · ·		Total Gall	ons Removed	d:	>			
Well Development Criteria Met: Notes: <u>SUN very funblid + SIHY.</u> Hand bottom										
Signatu Checke	ire: id By:	·····					8			

Well	Well Development Field Record 2230 Penfield Road											
							Penfield, Ne	eld Road ew York 14526 50 Fax 585.377.1266				
Project Well II Logged	Name: <u>Nic</u> D: l by:	hol Inn ERP MW-7 S		Development Date: $1 - 19 - 09$ Job # 41101Installation Date:End Time: $10 - 00$ End Time: $12 \cdot 00$				rt Time: 10 00				
Final D Screen Well V (2" dian Protecti	epth to Wat Length: olume: neter = 0.163 ga ive casing st	ter: er: llons per foot of c ick-up:	<u>gals</u> lepth, 4'' diamete	Measureme Well Depth Well Depth Sediment D er = 0.653 gallo Casing/We	ell Diameter: Cap Casing Locked Collar							
	WATER OUALITY PARAMETERS Volume Purge Rate Temp. pH Dissolved Turbidity Cond.											
Time	Purged (gals)	Purge Rate (gals/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Comments				
12:05	15		8.2		3.1	71000	1.75					
						· · · · · · · · · · · · · · · · · · ·						
	Type of Wa Purge Obser	ter Quality M rvations: <u>511</u>	ty, grey	iba u-	0	<u> </u>						
EOUIP	Purge Observations: <u>5114</u> , <u>3724</u> Purge Water Containerized: <u>10</u> EOUIPMENT DOCUMENTATION Submersible Pump Approximate Recharge Rate: <u>0.21/min</u> PVC Bailer											
	ge Block er			Total Gallo	ons Removed	l:	<u> </u>					
	Other Well Development Criteria Met: Notes:											
Signatu Checke	Signature: Checked By:											

Project Name: Nichol Ton ERP Well ID: Image: Twitten and the product of the	Job # Start End Well & Well	D Fax 585.377.1266 #
Final Depth to Water: D. 71 Well Depth before: Purphy 19 Screen Length: gals Well Depth after: 19.89 Well Volume: gals Sediment Depth Removed: 19.89 (2" diameter = 0.163 gallons per foot of depth, 4" diameter = 0.653 gallons per foot of depth) Sediment Depth Removed: 19.89 Protective casing stick-up: Protective Casing Stick-up: Protective Casing Stick-up: Protective Casing Stick-up:	<u>.89</u> Well	I Integrity: Cap Casing Locked
Volume Purged (gals)Purge Rate (gals/min)Temp. (deg. C)pHDissolved O2 (mg/L)Turbidity (NTU)	Cond. (mS/cm)	Comments
1:32 4 M40m4min. 1458 2:04 8 11 95.4		kry turbid
2:16 11 11 16.3 6.8 51.8		
Type of Water Quality Meter: La Mette 2020 Purge Observations:		<u></u>
□ Surge Block Total Gallons Removed: 1	34	1
Well Development Criteria Met: Yes Notes: - Purce water turbid at first, but cleared up ver - Recharge Bate= .08 ft/min - Slight petroleum odor, no sheen Signature: Rochel Journationum Checked By:		/

J:\STANDARDS\Environmental\Phase II Standards\Well Development Log.doc

			. <u></u>	<u></u>			LU EN	GINEERS Environmental						
Well	Develop	ment Field	Record				2230 Penfi Penfield, N							
Project Well II Logged	Name: Ni D: I by: Rock	chal Inr NH 10 rel Freunds	LERP chuh	Developme Installation	ent Date: 9	18/08	Job # Start Time: <u>10: 32,52</u> End Time: <u>12: 18</u>							
Final D Screen Well V (2" diar Protect	Initial Depth to Water: $7.5ft$. Final Depth to Water: $10.5ft$. Screen Length: $10.ft$. Well Volume: $gals$ Measurement Point: 10.7 Well Depth before: $15.1ft$. Well Depth before: $15.1ft$. Well Depth before: $15.1ft$. Well Depth after: $1.9446t$. Sediment Depth Removed: 2° diameter = 0.163 gallons per foot of depth, 4" diameter = 0.653 gallons per foot of depth)Well Diameter: $1^{\prime\prime}$ Well Integrity: Cap Casing Locked no Collar noProtective casing stick-up: $.00ft$ Protective casing stick-up: $.00ft$ <th <="" colspan="2" td=""></th>													
Time	Purged		-	· ·				Comments						
11:48	3	400ml/min	····			1551		Very turbid, water						
12:04	10	400nL/min	· · · · · · · · · · · · · · · · · · ·			376								
EOUIP Sub PV0	Type of Water Quality Meter: Purge Observations: Purge Water Containerized: Purge Water Containerized: EOUIPMENT DOCUMENTATION Submersible Pump PVC Bailer PVC Bailer Surge Block Other Geopump w/ tubing Approximate Recharge Rate: 2500 mL/min. Total Gallons Removed: 12													
		Criteria Met:												
-	Signature: <u>Rachul Inerotochul</u> Checked By:													

Well I	Developr	ment Field	Record					GINEERS Environmental			
								eld Road ew York 14526 50 Fax 585.377.1266			
Project Well ID Logged	Name: <u>N</u>): <u>+</u> by: <u>Rach</u>	choi Inn w # 11 el Freunis	<u>-ER</u> P <u>xhu</u> h	Developme Installation	ent Date: 9 Date:	/19/08	Sta	Job # Start Time: $10:25$ End Time: $12:46$			
Final D Screen 2 Well Vo (2" dian Protecti	Initial Depth to Water: 3.0 Measurement Point: TOR Well Diameter: III Final Depth to Water: 4.88 Well Depth before: 13.0 Well Diameter: III Screen Length: Well Depth after: 14.76 Cap Cap Well Volume: gals Sediment Depth Removed: Casing Casing (2" diameter = 0.163 gallons per foot of depth, 4" diameter = 0.653 gallons per foot of depth) Locked Collar Protective casing stick-up: Casing/Well difference: Collar Collar WATER OUALITY PARAMETERS Volume Depth Temperature Net to										
	Volume Purged	Purge Rate	Temp.	рН	Dissolved	Turbidity	Cond.	÷			
Time	(gals)	(gals/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	Comments			
10:48	4	~ 400 mUmin				1293		Very turnd			
11:48	8	()				3906		5.11 or bottom			
13:13	10					3873	<u> </u>				
12:46	20.5	11	14.3	6.7		122					
				1. C	·····						
Type of Water Quality Meter: Purge Observations: Purge Water Containerized: Purge Water Containerized: EOUIPMENT DOCUMENTATION Submersible Pump Approximate Recharge Rate: 7400 mL/min. PVC Bailer Surge Block Other Gree pump Total Gallons Removed:											
Notes: - Die Sedin Lics - Rech Signatu											

J:\STANDARDS\Environmental\Phase II Standards\Well Development Log.doc

.

A CONTRACT

Well Developr	nent Field	Record	27. W L		八	2230 Penfie Penfield, No	ew York 14526				
Project Name: <u>Mic</u> Well ID: <u>Th</u> Logged by: <u>Rach</u>	nol Inn E 1717 el Freunds	RP chuh	Developme Installation	ent Date: Date:	18/08	Job Sta	585.377.1450 Fax 585.377.1266 Job # Start Time: End Time:				
Initial Depth to Water: 90 £+ Measurement Point: 10 £ Well Diam Final Depth to Water: 9, 12+ Well Depth before: 13.05 Well Diam Screen Length: Well Depth after: 13.91 Cap Well Volume: gals Sediment Depth Removed: Cas (2" diameter = 0.163 gallons per foot of depth, 4" diameter = 0.653 gallons per foot of depth) Loc Coll Protective casing stick-up: Casing/Well difference: 39 Coll WATER OUALITY PARAMETERS Temp. pH Dissolved Turbidity Cond. Time Yolume Purge Rate Temp. pH Dissolved Turbidity Cond. Time (rails) (deg. C) (units) O2 (mg/L) (NTU) (mS/cm) Coll											
Durged			· · ·				Comments				
1:06 3.5 1:20 5.75 1:52 11	902 500 mL/m 400 mL/m/2 400 mL/m/2	1			1754 273 43		Very turbid no evidence of contamination				
Purge Obse	Type of Water Quality Meter: La Montre 2020 Purge Observations: <u>Silky enitically</u> , then clear Purge Water Containerized: <u>DO</u>										
 Submersible Pu PVC Bailer Surge Block 	EQUIPMENT DOCUMENTATION Submersible Pump PVC Bailer										
Well Development Criteria Met: yes Notes:											
Signature: Roch Checked By:	el Iren	noyon	ND_								

Well I	Developn	nent Field	Record				2230 Penfi Penfield, N	IGINEERS Environmental eld Road lew York 14526 450 Fax 585.377.126
Project Well II Logged	Name: <u>Nic</u>): by:	hol Inn ERP MW-13 MS/RF		Developme Installation	ent Date: <u>4</u> - Date: <u>3-</u> 3	Job # <u>41101</u> Start Time: <u>S5</u> End Time:		
Well Vo (2" dian	olume: neter = 0.163 gal	ter: <u>9.51</u> er: <u>9.91</u> 10' Ilons per foot of d	<u>gals</u> epth, 4" diamet	Sediment I er = 0.653 gallo	ent Point: h before: h after: Depth Remove ns per foot of de ll difference:	ved: <u>0.04</u> pth)	<u></u>	ell Diameter: <u>2</u> " ell Integrity: Cap <u></u> Casing <u></u> Locked <u>no</u> Collar <u></u>
WATE	R OUALITY Volume Purged	PARAMETI Purge Rate	E RS Temp.	рН	Dissolved	Turbidity	Cond.	
Time :42 13:00	(gals) 3gals 40 gals	(gals/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	Comments Very Silty, turb
							1	2.7.3
EQUIP Sub	Purge Obser Purge Water	r Containerize	ed: <u>no</u>	Approxima	te Recharge	Rate:		<u></u>
C Oth	er					м II ²⁴		
		witomio Moti						
Well De						0	۱ <u>. م</u>	
Well De Notes:							A DECEMBER OF A	

	-		-					LU EN	GINEERS	
Low Flow Groundwater Sampling										
Field Record 2230 Penfield Road Penfield, New York 14526 585.377.1450 Fax 585.377.1266										
Project Name Nichol Inn ERPJob # 41101Location ID μ_{UD} -3Field Sample ID $N_{\overline{J}}$ - μ_{W} -3-14Sampling Event # 1Activity Time $\overline{7.45}$ -12.15Sample Time 11.45 Date2-3-09										
<u>SAMPLI</u>	NG NOTE	<u>CS</u>								
Final De Screen L Total Vo [purge volu	pth to War ength plume Purg me (milliliter Water in casin	ater 3 . ter 9 . (ged 1.3 3) s per minute) x ng -2 " diameter	feet feet feet feet gall time duration	Well PID V ons PID A (minutes) x (0.00026 gal/mi	<u>19.2</u> r lliliter]	fee		ell Diameter <u>2</u> " ell Integrity: Cap <u>/</u> Casing <u>broken</u> Locked <u>nc</u> Collar <u>brok-en</u>	
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	-Pump intako	Comments	
	9.33 9.31 9.30 9.30 9.32 9.33 Samp Purge Obse	140 100 100 100 100 100 100 100 100 100	sulfur/	6.9 7.1 7.2 7.2 7.3 7.3 7.3 7.3 7.2 petroleur 2S	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	24 22 18 16.7 15 12 12 12 8.5	.12 .11 1.11 1.10 1.10 1.10 1.11 1.14 1.21	depth (#) -4 -26 -36 -46 -49 -53 -53 -50	Flow-thrucell frozen Resume pumping 10:52 TDS=0.74/L Sal. = 0.870	
EQUIPM	AENT DO	CUMENTA	TION							
Type of	Tubing: _	100puny 1/4" HDF ality Meter	DE-	l-22;	amotte	2620	Calibr	rated:		
ANALY Paramete VOC SYDC Metal	r Vol	RAMETEI lumes 250ml	RS Sample Co	ollected			imis b	1	over + outer PVC riser Lintact.	
Signatur Checked		ra Sm.	ith	() (<i>U</i> s)	21 Mart 14	Jacober II.	H. (1997) - 3412 H. (1997) - 3412			

Low F		oundwate d Record	er Sampli I	ing	2.25 P =		J	LU EN Civil and 2230 Penfie	GINEERS Environmental	
								Penfield, Ne	eid Road ew York 14526 50 Fax 585.377.1266	
Project Locatio Activity	Name <u>N</u> n ID y Time	MW-L MW-L 130-1	2:00	Field Sam	d Sample I ple Time _	D <u>NJ-m</u> Iliot	Job ∠ Sar	Job # 4/10/		
<u>SAMPI</u>	ING NOT	ES				NI-MU	1-4-14-	D a lip		
Final D Screen I Total V [purge vol	epth to Wa Length olume Pur ume (millilite Water in cas	vater	$\frac{3}{6e}$ fee fee fee fee fee fee fee fee fee fe	1 (minutes) v	surement P l Depth Well Head Ambient A 0.00026 gal/m of depth, 4" di	.1111141		foot of depth	Il Diameter 2" Il Integrity: Cap <u>V</u> Casing <u>V</u> Locked <u>Collar</u>	
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH	Dissolved	Turbidity	Cond.	DRP(mV Pump)	
		´	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	intake- depth (ft)-	Comments	
10:05	3tart 9.65	proje 150	0.0	6						
10:20	9,61	100	8.8	6.0	0,58		1,42	-41		
10:25	9,8	150		6.3	0,40	13	1.49	-79		
10:30		150	9.5	6,5	0.1.1		1.7.0			
1013.5		100	91	6.5	0.61	1.57	1.50	-94		
11-	9.75	100	9.3	6.5	0,0	1.51	1,49	-100		
	and the second se	(50	9.3	6,5	0,0		1.50	-11		
	9.76	100	9.3	6.5	0,0	0,56	1:51	-115		
11:00	9.76	100	Sam			~136	1,52	-120		
11:10	9.76	100	Sami	2						
P	urge Obse	rvations:	dea	C dia	racid	netoleu	in de			
Р	urge Wate	r Containe	rized: <u> </u>	es 0	/					
		CUMENTA			- 7	Final	Sal:	0.1	TIS: 1,0	
Type of 7	Tubing:	14"HDPt	<u> </u>							
Type of V	Water Qua	lity Meter:	Horiba U	-22; Lai	Motte 2020		Calibra	ted:		
ANALYT	ICAL PAI	RAMETER	S				ATION N	OTEC		
Parameter		mes S	Sample Col	lected			ATIONIN	UIE5		
SVOC	<u> </u>	40ml				9	measur	rd DTW	from TOR	
Metal		SOM	V	/	-		section	-was al	Ided to	
PCB/F)			-		raken i	riser.		
	csi	b	~							
Signature: Checked I	By:	Smith	May		 					
			V							

Project N Location	Field	ndwater Record	ERP		Sample ID	NI-MU 17:0		2230 Penfiel Penfield, Ne 585.377.145 Job	GINEERS invironmental d Road w York 14526 00 Fax 585.377.1266 # 4101 npling Event # 1 e _2-2-09
Initial D Final De Screen I Total Vc [purge volu	pth to Wa ength plume Purg me (milliliter Water in casis	ater ter ged s per minute) x	<u>03</u> feet feet 17 gall time duration	Well PID ons PID (minutes) x	Surement Po Depth Well Head Ambient Ai 0.00026 gal/mi of depth, 4" dia	<u>/2.90</u> ir Ililiter]	fee	e <u>t</u> We foot of depth	Il Diameter Il Integrity: Cap Casing Locked Collar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	ORP(mV Pump -intake depth (ft)-	Comments
16:20	8,98	250		á <u>.</u>		<u> </u>		ucpur(H)4	
110:27	8.96	160	7.6	Le.7	0.0	24	3.17	-45	
16:32	9.06	160	8.0	6.7	0.0	14	3.71	-71	
16:39	9.05	150	7.9	6.7	0.0	10.8	3.73	- 77	
16:46	9.05	150	7.9	607	0.0	7.8	3:76	- 82	
16:51	9.06	150	7.8	6.7	0.0	-4.5	3.75	1-86	
16:56	9.06	150	7.9	6.7	0.0	4.7	3:73	- 88	A
17100	Sampl	<u>2 UBILEC</u> +	ed						TDS=2.49/L Sol=0:2%
F EQUIPM Type of Type of Type of	Purge Wate <u>AENT DO</u> Pump: Tubing: Water Qu <u>TICAL PA</u> <u>er Vo</u>	er Containe <u>CUMENTA</u> <u>FEOPUMO</u> V4" HDPE	rized:y . <u>TION</u> : _Horiba l	<u>es</u> 1-22; La	motte 2020	3	CATION	rated: NOTES K. Plan	
) <u>PCB</u> Signatur	rest	He Sm	ith		adam i				

ł

Low F		undwater Record	Samplin	g			八	LU EN Civil and 1 2230 Penfie		E RS ental	
		licooliu			100			Penfield, Ne	ew York 148		
Location	n ID	$\frac{1}{100}$		Field Samj	l Sample ID ple Time	NI-1	Job 5 Sar	585.377.1450 Fax 585.377.1266 Job $\#$ 41101 Sampling Event $\#$ Date 2-2-09			
SAMPL	ING NOTI	ES									
Final De Screen I Total Ve [purge volu	epth to Wa Length olume Purg ume (milliliter Water in casi	s per minute) x	6 Z feet feet feet feet gall time duration	Well PID ons PID (minutes) x	Surement Pc Depth Well Head Ambient Ai 0.00026 gal/mi of depth, 4" dia	<u>20.1</u> r <u> </u>	<u>5 fee</u>	- We <u>t</u> We - - foot of depth	ell Diamete ell Integrity Cap Casing Locke Collar	er _ 2" /: d	
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake depth (ft)	Comm	nents	
16:25	9,41	start p							Rodex		
16:30	9.54	200 '	8,1	6,3	2.12	20	1,56	15'	-112	. 0.3	
16:35		100	8.1	6.4	0,26		1,55	15'	-120		
16.40	9.61	100	84	6,5	0.0	6.2	1.58		-130		
16:43		100	8.4	6.5	0.0	1.5	1.65	<u>↓</u>	-136		
16:50	9.62	100	8,4 8,4	6,5	0.0		1,59	+	-140		
16:55	9.62	100	8,4	6.5	0,0	1.5	1.60		-142		
17:05	Samp		0,4	6,5	0,0		1.60		+	Di	
11.05	Swhop	Le .						+ +			
									+		
				····				$+\sqrt{-}$	+		
1	Purge Obse	ervations:	degrad	eel p	etroleon	rodor	.I	<u>.1 · · · · · · · · · · · · · · · · · · ·</u>			
]	Purge Wate	er Containe	rized	2S							
Type of Type of	Pump: Tubing:	CUMENTA leopunf 1/4" HD	PE		al 50	x	785	2			
Type of	Water Qu	ality Meter: ARAMETEI	Horiba	<u>И-22;</u>	Lamothe		Calibr CATION 1	ated:	1-31-09		
Paramet	ter <u>Vo</u>	lumes	Sample Co	ollected						hi	
<u>VCC</u> <u>SVCC</u> <u>Metr</u>	S	3×40ml. 1L 250ml	· · ·				11 5				
Signatur Checkée	re: <u>Aeb</u> d By: <u>X</u>	Smith	May	10.001	yoldy good "re	ajum.	2-igul - m		c lign - sky.		

Low F		undwater Record	[.] Samplir	ng			<u>Л</u>	2230 Penfie Penfield, Ne	GINEERS Invironmental Id Road W York 14526 50 Fax 585.377.1266
Project 1 Locatior Activity	Name $\underline{\qquad}$ n ID Time $\underline{\qquad}$	ichol Inn MW-7 30-13:	ERP	Field Samp	Sample ID ble Time	NI-MW- 12:15	1-11 MS	Job MSD San	# <u>41101</u> apling Event # <u>1</u> e_ <u>2-2-09</u>
Initial D Final De Screen I Total Vo [purge volu	epth to Wa Length olume Purg ume (milliliter Water in casin	ES ater	feet feet feet gall a time duration	Well PID ons PID (minutes) x		<u></u> ir <u></u> lliliter]	fee	<u>et</u> We 	Il Diameter Il Integrity: Cap Casing Locked Collar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump- intake	Comments
:43 :50 1:55 2:05 2:05 2:15	7.48 7.50	150 150 125 100 100 100 e collec	8,8 9,2 9,2 9,1 8,9 8,9 ed	7.0 6.6 6.5 6.5 6.4		0,83 0,34 0,25 0,04 0.15	2.11 2.10 2.09 2.08 2.08 2.07	-depti (ft) 153 148 144 144 144 135 128 122	pump@lavest Setting
	-	ervations: _ er Containe							TDS = 1.3g/L Sal. = 0.1 %
EQUIPM Type of Type of ANALY Paramete Voc SVOC Metal	Pump: Tubing: Water Qu TICAL PA er Vol	<u>CUMENTA</u>	<u>ATION</u> : <u>Huriba u</u> <u>RS</u> Sample Co	1-22, 1-0	::motte 202		Calibr		31-09

þ,

Low F	low Grou	undwater	r Samplin	g	e.		八	LU EN Civil and I		ERS ental	
	Field	Record	13		2230 Penfield Road Penfield, New York 14526 585.377.1450 Fax 585.377.1266						
		ichal Ir 114-8 00-121		Field Samp	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
SAMPL	ING NOTE	<u> </u>									
Final De Screen I Total Ve [purge volu	epth to Wa Length olume Purg ume (milliliter Water in casin	ged, s per minute) >		Well PID V ons PID A (minutes) x (ons per foot o	0.00026 gal/mi of depth, 4" dia	15.15 ir lliliter] ameter = 0.65	feet	We We	ll Diameto ll Integrit Cap Casin Locke Collar	er <u>2</u> y: <u></u> g <u></u> d <u></u>	
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake			
11100	0.2							depth (ft)			
11:20	9.2	1.0	20	10	1.0.00	+			Rectar		
11:25	9.31	100	9.0	6.2	0.0	50	15.7	12'	-28		
11:30	9.35	100	9.2	6.2	0.0	57	16.5		-30		
11:35	9.37	100	9.0	6.2	0,0	46	17.1		-33		
1:40	9.38	100	8.9	6.2	0,0	34	17.0		-39		
11:45	9.39	100	8.8	6.2	6.0	20	16.0		-41		
11:30	4.38	100	8.8	6.2	0,0	13	15,5		-43		
1:35	9.38	100	8.7	6,2	0,0	6.1	14.5		-46		
12:00	9.38	100	8.7	6,2	0,0	3.4	14.0		-48	1	
12:05	9.30	100	8.7	6.2	0,0	2.1	13,6		-49	1.	
12:10		100	8.7	6.2	0.0	(13.4		-49		
12:15	Sam	ble							1.1		
]		rvations:	dear		124						
]]	Purge Wate	er Containe	erized:	0							
Type of Type of	Pump: Tubing:			Fin Stalfic Horis	1	TOSI		salinity			
	TICAL PA ter Vol 3)	ARAMETE lumes (40inL			LOCATION NOTES						
	re: <u>Aq</u> d By: <u>X</u>		May		1 ¹⁰ 1012 (10		7. 54512-100 5		 Sep /V '0 of		

Low FI		undwater	Samplir	ng			八		GINEERS	
		Record						2230 Penfie Penfield, Ne 585.377.145	ld Road w York 14526 50 Fax 585.377.1;	266
Location	ID	12:30-1	0	Field Samp	Sample ID ble Time	NI-M 14:20	<u>1W-10-11</u>	San	#_ <u>41101</u> npling Event # e_ <u>2-2-09</u>	
<u>SAMPLI</u>	NG NOTE	ES								
Final De Screen L Total Vo [purge volu	pth to Wa ength plume Purg me (milliliter Water in casin	ater $7,3$ ter 10 ged 2.08 1 s per minute) x ng -2 " diameter	feet feet feet feet gall time duration	Well PID V ons PID A (minutes) x	0.00026 gal/mi	r lliliter]	fee	ut We	ll Diameter ll Integrity: Cap Casing Locked Collar	-
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake	Comments	-
13:00	7.30	atent n	rge e le	Э			1	depth (ft)	01	
13:10	7.58	100	6.6	7.0	1,13	197	1.44	11	Rudex -26	
13:15	7,60	100	7.0	6,5	0.0	91	1.27		-1	
13:20	7.60	100	7.2	6,2	0.0	37	1.28		20	
13:25	7,59	100	7.2	6,0	0.0	19	1,43			
13:30	7.59	100	71	6,0	0.0	16	1,47		34	
13:35	7.59	100	7.2	5.9	0.0	13	1,56		34	-
13:40	7.59	100	7.1	5,9	0.0	10	1,29		38	
13:45		1.00	7.1	5.9	0,0	7,3	1,27		39	
13:50	7.59	100	7.1	5.9	0.0	6.2	1,25		39	
	7.59	160	7.1	5,9	6.0	9.8	1,34			
	7.59	100	7,1	5.9	0.0	5,9	131		Lin	
		ervations:	ale			97		1V	7/	
F	Purge Wate	er Containe	rized:	1 0				e here a		
		<u>CUMENTA</u>			VFrnal	TOS	oi 0,8 g	12 Sali,	ity. Oil le	
Type of	Pump:	eristaltic	- Gropi	inp	<u></u>					
	Tubing: Water Qu	ADF ³ ality Meter	Horiba	U-22			Calibr	rated: <u>/-</u>	31-09	
ANALY Paramete		RAMETE	<u>RS</u> Sample Co	ollected		LO	CATION]	NOTES		
VOC	3	×40inL	V			' — I	14			
SVOC		4	/							
metal		00.nL	/	·						
_Pert/R	Br.	L								
	e: <u>Rebe</u> l By:		lay	а (4 м) (1		no la i	0 20171		io antir tert	

ADDITIONAL PURGE DATA

Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake depth (ft)	Comments Refere
14:05	7.59	100	7.3	5.9	0,0	10	1.31	11'	42
14:10	7.59	001	7.4	5.9	0.0	7	1.42		91
14:15	7.59	100	7.4	5.9	0,0	9	1.39		43
14:20	Samp			**					
1		<u> </u>			1				
					<u> </u>				
P									
	21								
						74.1			
								Y J	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
							1		
-									
									0.0000000000
	<u> </u>					·			
								1 10	Supervision Pankar
=		1.0.0.70		-			-		
	n (m.2		±	5				2.1	
		=		-					· · · · · · · · · · · · · · · · · · ·
				_	4	v 14			- 92 - 92
	- × -								WI Contraction
				1	-		h.		· · · ·
				·					
	1						-	1	
	<u></u>							<u> </u>	
							E He a	100 at 100 at 11	n in Treas
				<u> </u>					
ļ			·				513		t guit gain, idd
				<u> </u>					
								2 BV	i estation de la company
									a nin Srita
	<u>`</u>								나는 것 같은 전 것 같아.
		Thomas and	2 I 24	1006		A			
		= 1 1 =			1				1
-									
			<u> </u>					1	
					+				1
 							- M		Lan marked
L	L	L							

J:\STANDARDS\Environmental\Phase II Standards\GW Sampling Log.doc

			0				贝	LU EN	GINEERS invironmental
		Indwater Record	⁻ Samplin	-					
		Record							w York 14526 0 Fax 585.377.1266
Location	n ID	Hol Jnn F MW-10 130-15	<u> </u>	Field Samp	Sample ID	NI-MW 1413	-10-10 38	San	# 41101 pling Event # 1 e _ 2 - 2 - 09
SAMPL	ING NOTH	<u>ES</u>							
Screen I Total Vo [purge volu	ength olume Purg me (milliliter Water in casin	s per minute) >	$\frac{12}{14} \frac{\text{feet}}{\text{feet}}$ $\frac{12}{14} \frac{\text{feet}}{\text{feet}}$ $\frac{13}{14} \frac{\text{gall}}{\text{gall}}$ $\frac{1}{14} \frac{1}{14} \frac{1}$	PID ons PID (minutes) x	0.00026 gal/mi	r lliliter]		-	Il Diameter' Il Integrity: Cap Casing Locked Collar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump inteles	Comments
13:48	2.35	100	5.2	6.8	0:24	45	3.03	-118	
13:53	2,35	100	4.9	6.8	0.0	28	3.01	117 -	
14:06	2.65	100	4.10	6.9	0.0	17	2.92	111	
14:13	2.54	100	4.6	69	0.0	[=]	2.89	110	·
14:20	2.52	100	4.5	6.9	0.0	7.7	2.90	108	
14:25		00	4.5	6.9	0.0	7.1	2.89	108	
14:32	2.53	100	4.5	6.9	$\mathcal{O}_{\alpha}\mathcal{O}$	5.3	2.87	106	
14:38	samp	e calle	r-feed	-		_	=		
	- 22 -					1 = =		-	
				-					TDS= 1.89/L
		1	4			-			Sal = 0,1%
Lr	l Purge Obse	mustions							
	-	_	rized: <u>r</u>	10					
1.1.1	uige wat	or containe							
EQUIPN	MENT DO	CUMENTA	TION						
Type of	Tubing: _	1200000 1/4" HD ality Meter	PE : Horiba 4	-22; Lar	note 2020		Calibr	rated:3	51-09
ANALY Paramet		ARAMETE lumes	<u>RS</u> Sample Co	ollected			CATION	NOTES	
VOC SVIC		x40mls. 1L	((
Meti	115	250 ml		~					
Signatur Checked	re: <u>Au</u> 1 By: <u>R</u>	ia Smr	th	942 Yo I	entiquită 16	1999 (1999) (1998) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999)			Secolulation of the

Low F		oundwate		ng				LU EN Civil and	GINEERS Environmental	
								2230 Penfie Penfield, N 585.377.14	eld Road lew York 14526 50 Fax 585.377.12	66
Location Activity	n ID	<u>chol Inn</u> <u>MW-12</u> 2:15-13	2	Field Sam	d Sample II ple Time _) <u>NI-MI</u>]3.95	<u>v-12-12</u>	Job Sar	b #_ <u>4/10</u> mpling Event #_] tte 2-3-09	
Initial D Final De Screen I Total Vo [purge volu	Depth to Wa epth to Wa Length olume Pur ume (millilited Water in casi	Vater <u>8</u> ater <u>9</u> <i>10</i> ged <u>1</u> rs per minute)	feet H3 gall x time duration	t Well t PID lons PID	surement P l Depth Well Head Ambient A 0.00026 gal/m of depth, 4" dia	<u>/3.9</u> 	/ fee	<u>et</u> We foot of depth	ell Diameter ell Integrity: Cap Casing Locked Collar	
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	ORP (m) -Pump> intake	Comments	
12:35 13:00 13:05 13:10 13:15 13:15 13:20 13:20 13:25	9.12 9.12 9.14 9.15 9.10 9.10 9.10 9.10 9.10 9.10 9.10	100 100 100 100 100 100 100 100 100 100			0.56 0.15 0.0 0.0 0.0 0.0 0.0 0.0	224 51 24 14 9,5	2,93 2,92 2.86 2.85 2.85 2.85 2.81 2.81 2.81 2.81 2.81	depth (ft) -4 -14 -14 -18 -21 -16 -17 -19		7%
Type of F Type of T	ump: Tubing:	14" HLPE		1-22; La	Fi			τds :		
ANALYT Parameter VOC SVOC Metals	r <u>Volu</u> 3x 0	RAMETER: mes <u>S</u> 40m1 L 50m1	<u>Sample Col</u>				CATION NO	DTES		
Signature: Checked H	Roho	aca l	lay							

Low Flow Groundwater Sampling Field Record

	U ENGINEERS Civil and Environmental
I	2230 Penfield Road Penfield, New York 14526 585.377.1450 Fax 585.377.1266

Project Name <u>Nichol Inn ERP</u> Location ID <u>MIN-13</u> Activity Time <u>ID: 45- 12:45</u> SAMPLING NOTES	Field Sample ID <u>NI-MW-13-13</u> Sample Time <u>12:10</u> 12:13 MS 12:15 MD	Job # <u>4101</u> Sampling Event # <u>1</u> Date <u>4-21-09</u>
Initial Depth to Water 9.54 fee Final Depth to Water 9.63 fee Screen Length 10 fee	Well Depth 16.90 feet	Well Diameter Well Integrity: Cap
Total Volume Purged <u>3,4 ga</u>	ons PID Well Head	Casing_
[purge volume (milliliters per minute) x time duratio	(minutes) x 0.00026 gal/milliliter]	Locked
Volume of Water in casing -2 " diameter = 0.163 ga	ons per foot of depth, 4" diameter = 0.653 gallons per foot of	depth Collar

PURGE DATA

Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	ORP (mV)	Comments
11:04	Start	Rump	4 .	6.8	2233		+2+	<u> </u>	
11:10	A.62	175	9.0	6.8	2.23	44.7	12.1	218	
11:15	9.64	200	9.0	6.9	2.13	33.6	12.3	199	
11:21	9.63	200	8.9	6,9	2,10	29.9	12.4	189	
11:26	9.62	200	8,8	69	212	28.4	12.4	184	
11:31	9.63	200	8.8	6.9	2.15	20.9	12.5	180	
11:43	9.63	200	8.8	7.0	2.34	18.5	12.5	168	
11:52	9.64	200	8.9	69	2.40	12.8	12.5	165	
12:00	9.63	20)	8.9	Ge .9	2.48	9.6	12.5	163	
12:05	9.63	200	9.0	6.9	2.45	8.0	12.5	161	
12:10	roller	+ sam	ple						
			ł	,		4		4	
F	Purge Obse	rvations:	Sightly to	urbd, tl	ren clei	ned up) ·		·
F	Purge Wate	er Containe	rized: <u>h</u>	<u> </u>		1			

EQUIPMENT DOCUMENTATION

Type of Pump: <u>Geopump</u>
Type of Tubing: <u>1/4" HIDE</u>
Type of Water Quality Meter: Horiba U-22; LaMotte 2020

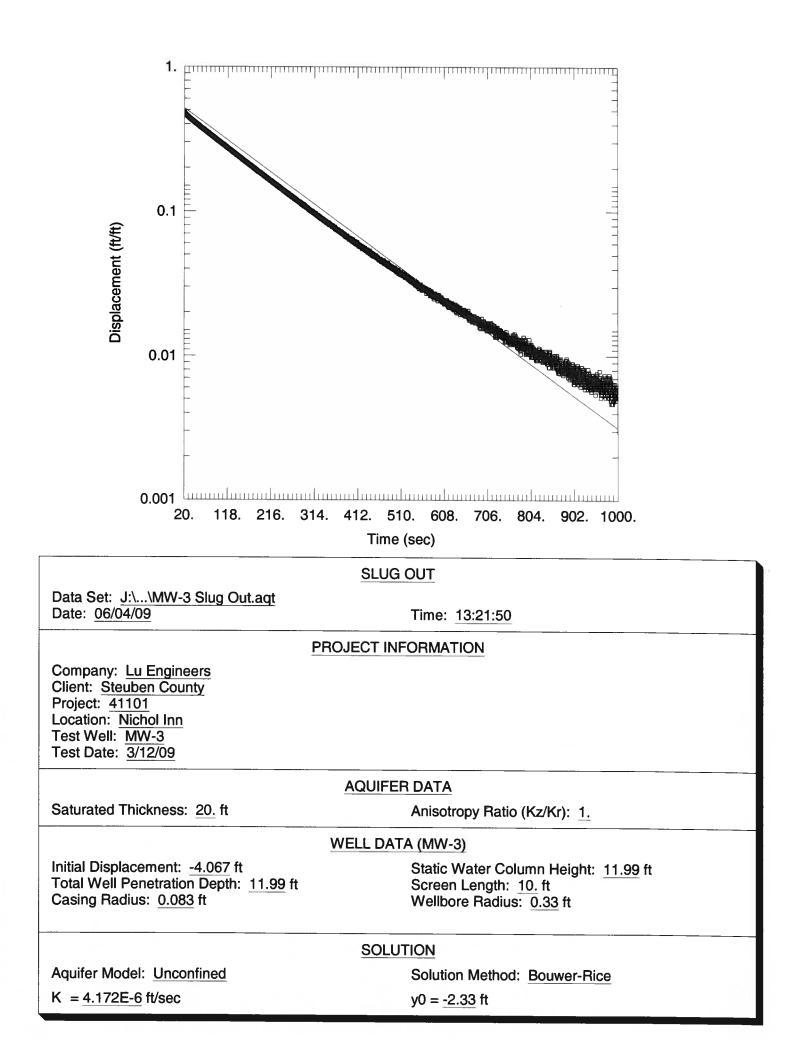
ANALYTICAL PARAMETERS

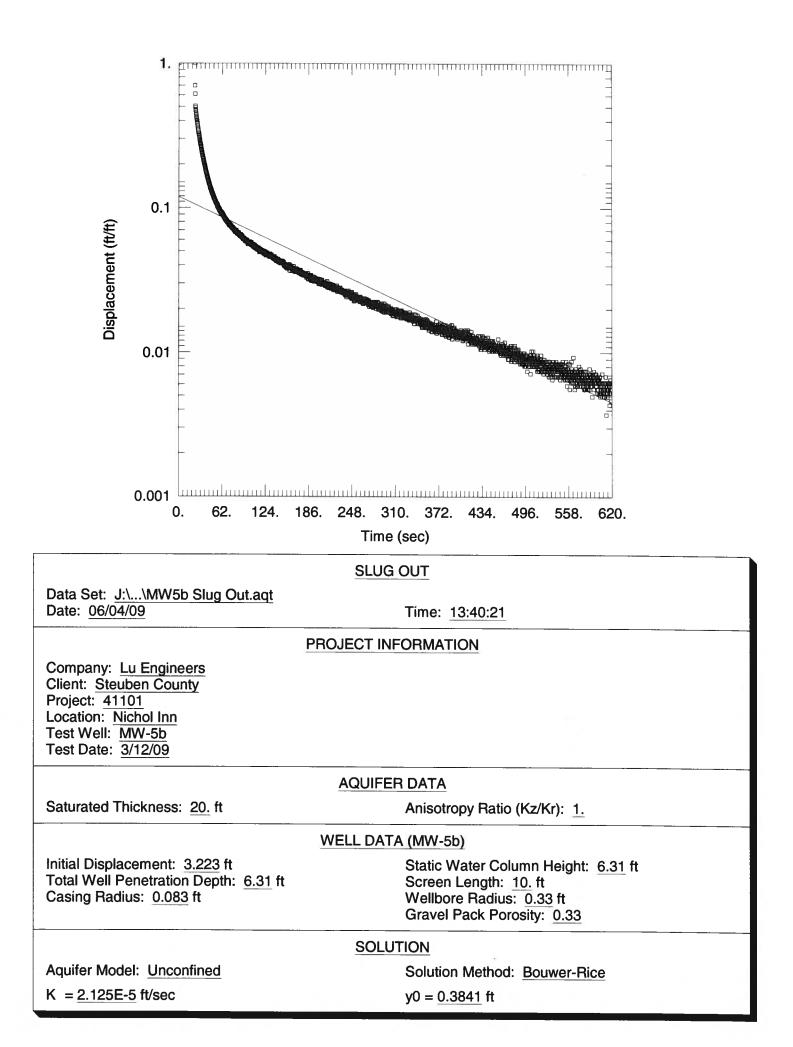
Parameter	<u>Volumes</u>	Sample Collected
82		/
VOCs	9 🕉 x 40 ml	
	•	
Signature:	Laura In	uth
Checked By	•	

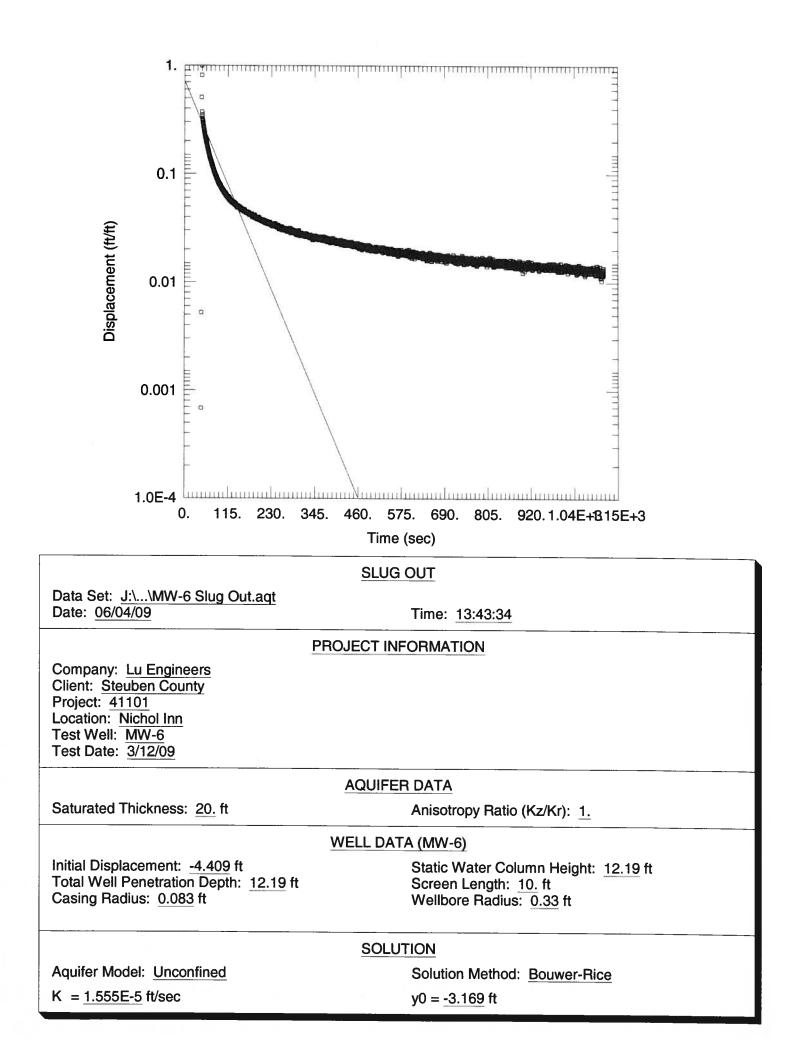
Calibrated:

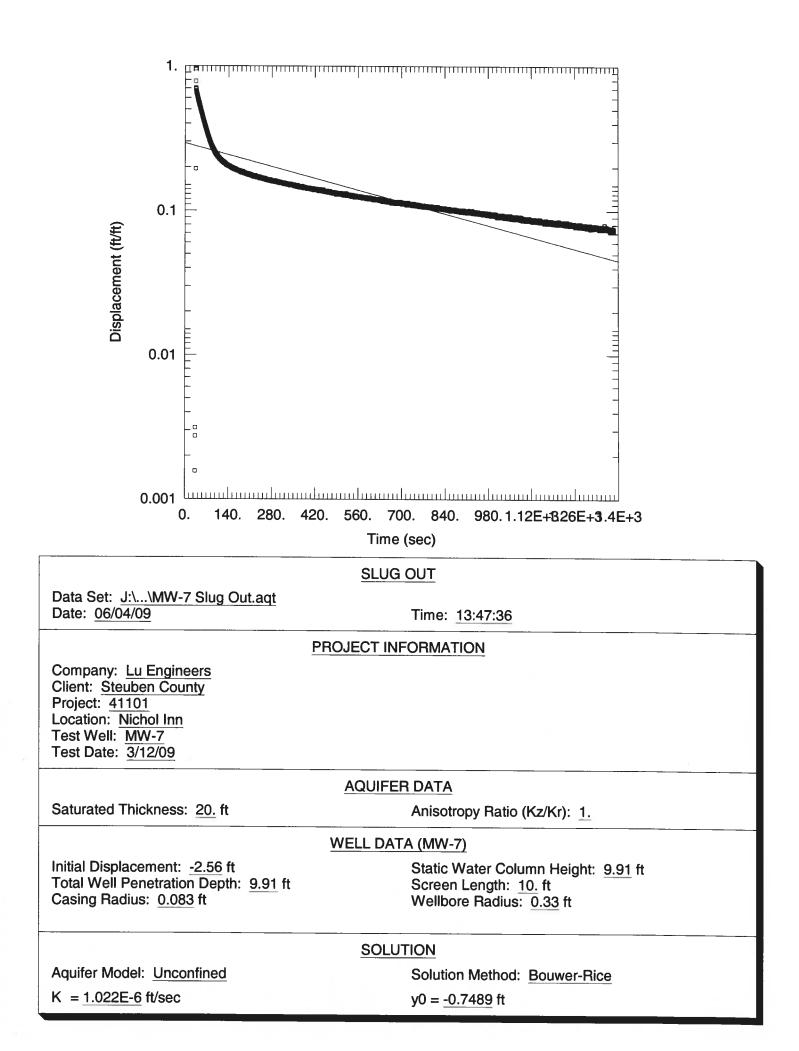
LOCATION NOTES

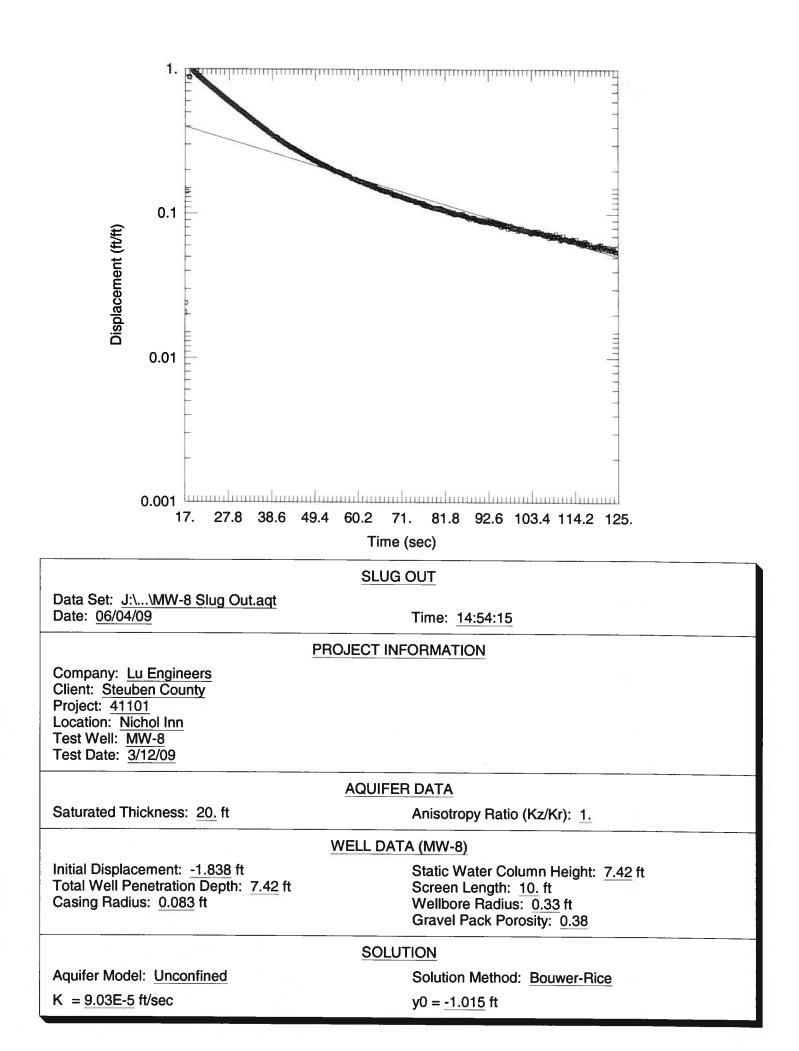
Low Flow	w Grou	undwater	Samplin	ıg			J	LU EN Civil and	NGINEERS d Environmental
	Field	Record						Penfield,	field Road New York 14526 I450 Fax 585.377.1266
Project Na Location I Activity Ti	$\frac{M}{D} = \frac{M}{P}$ $\frac{M}{D} = \frac{M}{P}$	hei Inn W-1 1:30-12:	ERP 40	Field Samp	Sample II ble Time) <u>NI-Pu</u> 12:3	<u>)-1m</u>	_ s	ob #_41101 ampling Event #_1_ Date4-21-09
<u>SAMPLIN</u>	<u>G NOTI</u>	<u>ES</u>							
Final Dept Screen Ler Total Volu [purge volume	h to Wa ngth ume Purg e (milliliter ater in casin	ater 7.2 ter $?$ ged 1° s per minute) x ng - 2" diameter	feet feet ogall time duration	Well Pump ons PID ((minutes) x	0.000 <mark>26</mark> gal/m	pth	fee ?	<u>et</u> V 	Vell Diameter _/ 🤍 '' Vell Integrity: Cap Casing Locked Collar
	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	ORP (mV)	Comments
11:52		5001/min							Rust colored purge water
12:30			11.5	8.0	2.88	15.5	0.74	-116	clear
					<u> </u>				
Pur	rge Wate	ervations: er Containe CUMENTA	rized: <u>∩</u>	en de	ared u	ρ			
Type of Tu	ıbing:	opump- s n/a ality Meter:			otte 2020		Calibr	ated:	
ANALYTI Parameter VOCs	<u>Vol</u>	RAMETER umes 40 ml	<u>RS</u> Sample Co	bllected			CATION M Private hard at	well	located in gart residence.
						<u></u>			
Signature: Checked B		Amith							


Groundwater Elevations


February	2-3,	2009
----------	------	------


	MW-1	MW-2	MW-3	MW-4	MW-5b	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12
PVC Elevation (ft)			729.33	728.89	729.08	728.16	721.43	723.28		727.25	731.32	729.32
Depth to Water (ft)			8.85	9.31	8.78	9.42	6.74	9.19		7.35	1.72	8.98
Water Elevation (ft)			720.48	719.58	720.30	718.74	714.69	714.09		719.90	729.60	720.34


June 11, 2009


	MW-1	MW-2	MW-3	MW-4	MW-5b	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12
PVC Elevation (ft)			729.33	728.89	729.08	728.16	721.43	723.28		727.25	731.32	729.32
Depth to Water (ft)			8.81	9.30	8.83	9.38		8.80		7.47	2.26	
Water Elevation (ft)			720.52	719.59	720.25	718.78		714.48		719.78	729.06	

STEUBEN COUNTY – NICHOL INN ERP SITE

REMEDIAL INVESTIGATION REPORT

NYSDEC SITE#E851029

HYDROGEOLOGICAL CALCULATIONS

HYDRAULIC CONDUCTIVITY (K) VALUES*

- MW-3: 0.000004172 ft/sec
- MW-5b: 0.00002125 ft/sec
- MW-6: 0.00001555 ft/sec
- MW-7: 0.000001022 ft/sec
- MW-8: <u>0.0000903 ft/</u>sec 0.000132294 ft/sec

AVERAGE K (for all 5 wells tested) = 0.000132294/5 = 0.000026458 ft/sec = 2.65×10^{-5} ft/sec

HYDRAULIC GRADIENT CALCULATIONS (based on Feb '09 GW elevations)

- MW-12 to MW-10: 720.34-719.9 = 0.44 ft / 136 ft = 0.0032 ft/ft (north to south across Site)
- MW-3 to MW-8: 720.48-714.09 = 6.39 ft / 87 ft = 0.0734 ft/ft (west to east across Site & Rte.54A)

GROUNDWATER VELOCITY CALCULATIONS

- V= K(dh/dl)
- MW-12 to MW-10: 2.65 x 10⁻⁵ ft/sec (0.0032 ft/ft) = 8.4 x 10⁻⁸ ft/sec = 0.007 ft/day (north to south across Site)
- MW-3 to MW-8: 2.65 x 10⁻⁵ ft/sec (0.0734 ft/ft) = 1.95 x 10⁻⁶ ft/sec = 0.168 ft/day (west to east across Site & Rte.54A)

* Hydraulic Conductivity (K) values were determined by AQTESOLV for Windows Standard 3.5

Sample ID: NI-B-10-10 Lab Sample ID: A8A88803 Date Collected: 09/04/2008 Time Collected: 11:25

				Date/Time			
Parameter	Result	Flag	Limit	<u> Units </u>	Method	Analyzed	Analys
SOIL - SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		23	UG/KG	8260	09/08/2008 17:10	LH
1,1,2,2-Tetrachloroethane	ND		23	UG/KG	8260	09/08/2008 17:10	LH
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		23	UG/KG	8260	09/08/2008 17:10	LH
1,1,2-Trichloroethane	ND		23	UG/KG	8260	09/08/2008 17:10	LH
1,1-Dichloroethane	ND		23	UG/KG	8260	09/08/2008 17:10	LH
1,1-Dichloroethene	ND		23	UG/KG	8260	09/08/2008 17:10	LH
1,2,4-Trichlorobenzene	ND		23	UG/KG	8260	09/08/2008 17:10	LH
1,2-Dibromo-3-chloropropane	ND		23	UG/KG	8260	09/08/2008 17:10	
1,2-Dibromoethane	ND		23	UG/KG	8260	09/08/2008 17:10	
1,2-Dichlorobenzene	ND		23	UG/KG	8260	09/08/2008 17:10	
1,2-Dichloroethane	ND		23	UG/KG	8260	09/08/2008 17:10	
1,2-Dichloropropane	ND		23	UG/KG	8260	09/08/2008 17:10	
1,3-Dichlorobenzene	ND		23	UG/KG	8260	09/08/2008 17:10	
1,4-Dichlorobenzene	ND		23	UG/KG	8260	09/08/2008 17:10	
2-Butanone	ND		110	UG/KG	8260	09/08/2008 17:10	
2-Hexanone	ND		110	UG/KG	8260	09/08/2008 17:10	
4-Methyl-2-pentanone	ND		110	UG/KG	8260	09/08/2008 17:10	
Acetone	200		110	UG/KG	8260	09/08/2008 17:10	
Benzene	18	J	23	UG/KG	8260	09/08/2008 17:10	
Bromodichloromethane	ND		23	UG/KG	8260	09/08/2008 17:10	
Bromoform	ND		23	UG/KG	8260	09/08/2008 17:10	
Bromomethane	ND		23	UG/KG	8260	09/08/2008 17:10	
Carbon Disulfide	6	j	23	UG/KG	8260	09/08/2008 17:10	
Carbon Tetrachloride	ND		23	UG/KG	8260	09/08/2008 17:10	
Chlorobenzene	ND		23	UG/KG	8260	09/08/2008 17:10	
Chloroethane	ND		23	UG/KG	8260	09/08/2008 17:10	
Chloroform	ND		23	UG/KG	8260	09/08/2008 17:10	
Chloromethane	ND		23	UG/KG	8260	09/08/2008 17:10	
cis-1,2-Dichloroethene	ND		23	UG/KG	8260	09/08/2008 17:10	
cis-1,3-Dichloropropene	ND		23	UG/KG	8260	09/08/2008 17:10	
Cyclohexane	550		23	UG/KG	8260	09/08/2008 17:10	
Dibromochloromethane	ND		23	UG/KG	8260	09/08/2008 17:10	
Dichlorodifluoromethane	ND		23	UG/KG	8260	09/08/2008 17:10	
Ethylbenzene	2100	Е	23	UG/KG	8260	09/08/2008 17:10	
Isopropylbenzene	250		23	UG/KG	8260	09/08/2008 17:10	
Methyl acetate	ND		23	UG/KG	8260	09/08/2008 17:10	
Methyl-t-Butyl Ether (MTBE)	ND		23	UG/KG	8260	09/08/2008 17:10	
Methylcyclohexane	850		23	UG/KG	8260	09/08/2008 17:10	
Methylene chloride	92	в	23	UG/KG	8260	09/08/2008 17:10	
Styrene	ND		23	UG/KG	8260	09/08/2008 17:10	
Tetrachloroethene	ND		23	UG/KG	8260	09/08/2008 17:10	
Toluene	1200	BE	23	UG/KG	8260	09/08/2008 17:10	
Total Xylenes	9200	E	69	UG/KG	8260	09/08/2008 17:1	
trans-1,2-Dichloroethene	ND		23	UG/KG	8260	09/08/2008 17:1	
trans-1,3-Dichloropropene	ND		23	UG/KG	8260	09/08/2008 17:1	
Trichloroethene	ND		23	UG/KG	8260	09/08/2008 17:1	
Trichlorofluoromethane	ND		23	UG/KG	8260	09/08/2008 17:1	
Vinyl chloride	ND		46	UG/KG	8260	09/08/2008 17:1	

Sample ID: NI-B-10-10 Lab Sample ID: A8A88803 Date Collected: 09/04/2008 Time Collected: 11:25

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u> Units </u>	Method	Analyzed	<u>Analyst</u>
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		190	UG/KG	8270	09/11/2008 02:57	MD
2,4,5-Trichlorophenol	ND		190	UG/KG	8270	09/11/2008 02:57	MD
2,4,6-Trichlorophenol	ND		190	UG/KG	8270	09/11/2008 02:57	MD
2,4-Dichlorophenol	ND		190	UG/KG	8270	09/11/2008 02:57	MD
2,4-Dimethylphenol	86	J	190	UG/KG	8270	09/11/2008 02:57	MD
2,4-Dinitrophenol	ND		360	UG/KG	8270	09/11/2008 02:57	
2,4-Dinitrotoluene	ND		190	UG/KG	8270	09/11/2008 02:57	
2,6-Dinitrotoluene	ND		190	UG/KG	8270	09/11/2008 02:57	
2-Chloronaphthalene	ND		190	UG/KG	8270	09/11/2008 02:57	
2-Chlorophenol	ND		190	, UG/KG	8270	09/11/2008 02:57	
2-Methylnaphthalene	240		190	UG/KG	8270	09/11/2008 02:57	
2-Methylphenol	ND		190	, UG/KG	8270	09/11/2008 02:57	
2-Nitroaniline	ND		360	UG/KG	8270	09/11/2008 02:57	
2-Nitrophenol	ND		190	UG/KG	8270	09/11/2008 02:57	
3,3'-Dichlorobenzidine	ND		190	UG/KG	8270	09/11/2008 02:57	
3-Nitroaniline	ND		360	UG/KG	8270	09/11/2008 02:57	
4,6-Dinitro-2-methylphenol	ND		360	UG/KG	8270	09/11/2008 02:57	
4-Bromophenyl phenyl ether	ND		190	UG/KG	8270	09/11/2008 02:57	
4-Chloro-3-methylphenol	ND		190	UG/KG	8270	09/11/2008 02:57	
4-Chloroaniline	ND		190	UG/KG	8270	09/11/2008 02:57	
4-Chlorophenyl phenyl ether	ND		190	UG/KG	8270	09/11/2008 02:57	
4-Methylphenol	ND		190	UG/KG	8270	09/11/2008 02:57	
4-Nitroaniline	ND		360	UG/KG	8270	09/11/2008 02:57	
4-Nitrophenol	ND		360	UG/KG	8270	09/11/2008 02:57	
Acenaphthene	ND		190	UG/KG	8270	09/11/2008 02:57	
Acenaphthylene	ND		190	UG/KG	8270	09/11/2008 02:57	
Acetophenone	ND		190	UG/KG	8270	09/11/2008 02:57	
Anthracene	ND		190	UG/KG	8270	09/11/2008 02:57	
Atrazine	ND		190	UG/KG	8270		
Benzaldehyde	ND		190	UG/KG UG/KG	8270	09/11/2008 02:57	
Benzo(a)anthracene	ND		190	UG/KG UG/KG		09/11/2008 02:57 09/11/2008 02:57	
Benzo(a)pyrene				-	8270		
Benzo(b)fluoranthene	ND		190	UG/KG	8270	09/11/2008 02:57	
Benzo(ghi)perylene	ND		190	UG/KG	8270	09/11/2008 02:57	
Benzo(k)fluoranthene	ND		190	UG/KG	8270	09/11/2008 02:57	
	ND		190	UG/KG	8270	09/11/2008 02:57	
Biphenyl Bis(2-chloroethoxy) methane	ND		190	UG/KG	8270	09/11/2008 02:57	
Bis(2-chloroethyl) ether	ND		190	UG/KG	8270	09/11/2008 02:57	
	ND		190	UG/KG	8270	09/11/2008 02:57	
Bis(2-ethylhexyl) phthalate	61	J	190	UG/KG	8270	09/11/2008 02:57	
Butyl benzyl phthalate	ND		190	UG/KG	8270	09/11/2008 02:57	
Caprolactam	ND		190	UG/KG	8270	09/11/2008 02:57	
Carbazole	ND		190	UG/KG	8270	09/11/2008 02:57	
Chrysene	ND		190	UG/KG	8270	09/11/2008 02:57	
Di-n-butyl phthalate	ND		190	UG/KG	8270	09/11/2008 02:57	
Di-n-octyl phthalate	ND		190	UG/KG	8270	09/11/2008 02:57	
Dibenzo(a,h)anthracene	ND		190	UG/KG	8270	09/11/2008 02:57	
Dibenzofuran	ND		190	UG/KG	8270	09/11/2008 02:57	
Diethyl phthalate	ND		190	UG/KG	8270	09/11/2008 02:57	
Dimethyl phthalate	ND		190	UG/KG	8270	09/11/2008 02:57	' MD

Sample ID: NI-B-10-10 Lab Sample ID: A8A88803 Date Collected: 09/04/2008 Time Collected: 11:25

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	ND		190	UG/KG	8270	09/11/2008 02:57	MD
Fluorene	ND		190	UG/KG	8270	09/11/2008 02:57	MD
Hexachlorobenzene	ND		190	UG/KG	8270	09/11/2008 02:57	MD
Hexachlorobutadiene	ND		190	UG/KG	8270	09/11/2008 02:57	MD
Hexachlorocyclopentadiene	ND		190	UG/KG	8270	09/11/2008 02:57	MD
Hexachloroethane	ND		190	UG/KG	8270	09/11/2008 02:57	MD
Indeno(1,2,3-cd)pyrene	ND		190	UG/KG	8270	09/11/2008 02:57	MD
Isophorone	ND		190	UG/KG	8270	09/11/2008 02:57	MD
N-Nitroso-Di-n-propylamine	ND		190	UG/KG	8270	09/11/2008 02:57	MD
N-nitrosodiphenylamine	ND		190	UG/KG	8270	09/11/2008 02:57	MD
Naphthalene	280		190	UG/KG	8270	09/11/2008 02:57	MD
Nitrobenzene	ND		190	UG/KG	8270	09/11/2008 02:57	MD
Pentachlorophenol	ND		360	UG/KG	8270	09/11/2008 02:57	MD
Phenanthrene	10	J	190	UG/KG	8270	09/11/2008 02:57	MD
Phenol	ND		190	UG/KG	8270	09/11/2008 02:57	
Pyrene	ND		190	UG/KG	8270	09/11/2008 02:57	MD
etals Analysis							
Aluminum – Total	13400	EN	10.8	MG/KG	6010	09/09/2008 16:44	
Antimony - Total	ND	N	16.2	MG/KG	6010	09/09/2008 16:44	
Arsenic – Total	8.0	N	2.2	MG/KG	6010	09/09/2008 16:44	
Barium – Total	58.7	EN	0.54	MG/KG	6010	09/09/2008 16:44	
Beryllium - Total	0.62	N	0.22	MG/KG	6010	09/09/2008 16:44	
Cadmium — Total	ND	N	0.22	MG/KG	6010	09/09/2008 16:44	
Calcium — Total	1620	EN*	54.0	MG/KG	6010	09/09/2008 16:44	
Chromium — Total	20.0	EN	0.54	MG/KG	6010	09/09/2008 16:44	
Cobalt – Total	12.0 ⁻	EN	0.54	MG/KG	6010	09/09/2008 16:44	
Copper – Total	24.6	EN	1.1	MG/KG	6010	09/09/2008 16:44	÷
Iron – Total	31400	E	10.8	MG/KG	6010	09/09/2008 16:44	ł
Lead - Total	20.4	EN	1.1	MG/KG	6010	09/09/2008 16:44	
Magnesium - Total	5120	EN*	21.6	MG/KG	6010	09/09/2008 16:44	÷
Manganese – Total	415	E*	0.22	MG/KG	6010	09/09/2008 16:44	
Mercury - Total	ND		0.023	MG/KG	7471	09/09/2008 14:05	
Nickel - Total	34.1	EN	0.54	MG/KG	6010	09/09/2008 16:44	
Potassium - Total	1300	EN	32.4	MG/KG	6010	09/09/2008 16:44	÷
Selenium - Total	ND	N	4.3	MG/KG	6010	09/09/2008 16:44	
Silver – Total	ND	N	0.54	MG/KG	6010	09/09/2008 16:44	
Sodium – Total	160	N	151	MG/KG	6010	09/09/2008 16:44	
Thallium — Total	ND	N	6.5	MG/KG	6010	09/09/2008 16:44	
Vanadium - Total	20.6	EN	0.54	, MG/KG	6010	09/09/2008 16:44	
Zinc – Total	71.6	EN	2.2	MG/KG	6010	09/09/2008 16:44	

Sample ID: NI-B-10-10 DL Lab Sample ID: A8A88803DL Date Collected: 09/04/2008 Time Collected: 11:25

	Detection					Date /Time				
Daramatan	Beaute	Flam	Detection	110-14-	Made	Date/Time				
Parameter SOIL - SW8463 8260 - TCL VOLATILES	Result	Flag	Limit	<u> Units </u>	Method	Analyzed	<u>Analyst</u>			
1,1,1-Trichloroethane	ND		350		02/0	00/11/2000 00 5-				
1,1,2,2-Tetrachloroethane	ND		250	UG/KG	8260	09/11/2008 02:55	PQ			
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		250	UG/KG	8260	09/11/2008 02:55	PQ			
	ND		250	UG/KG	8260	09/11/2008 02:55	PQ			
1,1,2-Trichloroethane	ND		250	UG/KG	8260	09/11/2008 02:55				
1,1-Dichloroethane	ND		250	UG/KG	8260	09/11/2008 02:55				
1,1-Dichloroethene	ND		250	UG/KG	8260	09/11/2008 02:55				
1,2,4-Trichlorobenzene	ND		250	UG/KG	8260	09/11/2008 02:55				
1,2-Dibromo-3-chloropropane	ND		250	UG/KG	8260	09/11/2008 02:55				
1,2-Dibromoethane	ND		250	UG/KG	8260	09/11/2008 02:55				
1,2-Dichlorobenzene	ND		250	UG/KG	8260	09/11/2008 02:55				
1,2-Dichloroethane	ND		250	UG/KG	8260	09/11/2008 02:55				
1,2-Dichloropropane	ND		250	UG/KG	8260	09/11/2008 02:55				
1,3-Dichlorobenzene	ND		250	UG/KG	8260	09/11/2008 02:55	PQ			
1,4-Dichlorobenzene	ND		250	UG/KG	8260	09/11/2008 02:55	PQ			
2-Butanone	ND		1200	UG/KG	8260	09/11/2008 02:55	PQ			
2-Hexanone	ND		1200	UG/KG	8260	09/11/2008 02:55	PQ			
4-Methyl-2-pentanone	ND		1200	UG/KG	8260	09/11/2008 02:55	PQ			
Acetone	ND		1200	UG/KG	8260	09/11/2008 02:55	PQ			
Benzene	ND		250	UG/KG	8260	09/11/2008 02:55	PQ			
Bromodichloromethane	ND		250	UG/KG	8260	09/11/2008 02:55	PQ			
Bromoform	ND		250	UG/KG	8260	09/11/2008 02:55	PQ			
Bromomethane	ND		250	UG/KG	8260	09/11/2008 02:55	PQ			
Carbon Disulfide	ND		250	UG/KG	8260	09/11/2008 02:55				
Carbon Tetrachloride	ND		250	UG/KG	8260	09/11/2008 02:55				
Chlorobenzene	ND		250	UG/KG	8260	09/11/2008 02:55				
Chloroethane	ND		250	UG/KG	8260	09/11/2008 02:55				
Chloroform	ND		250	UG/KG	8260	09/11/2008 02:55				
Chloromethane	ND		250	UG/KG	8260	09/11/2008 02:55				
cis-1,2-Dichloroethene	ND		250	UG/KG	8260	09/11/2008 02:55				
cis-1,3-Dichloropropene	ND		250	UG/KG	8260	09/11/2008 02:55				
Cyclohexane	700	D	250	UG/KG	8260	09/11/2008 02:55				
Dibromochloromethane	ND	-	250	UG/KG	8260	09/11/2008 02:55				
Dichlorodifluoromethane	ND		250	UG/KG	8260	09/11/2008 02:55				
Ethylbenzene	2200	D	250	UG/KG	8260	09/11/2008 02:55				
Isopropylbenzene	250	D	250	UG/KG	8260	09/11/2008 02:55				
Methyl acetate	ND	Ľ	250	UG/KG	8260	09/11/2008 02:55				
Methyl-t-Butyl Ether (MTBE)	ND		250	UG/KG	8260	09/11/2008 02:55				
Methylcyclohexane	1300	D	250	UG/KG UG/KG	8260					
Methylene chloride	ND	U	250	UG/KG UG/KG		09/11/2008 02:55				
Styrene					8260	09/11/2008 02:55				
TetrachLoroethene	ND		250	UG/KG	8260	09/11/2008 02:55				
Toluene	ND 800	D	250	UG/KG	8260	09/11/2008 02:55				
	800	D	250	UG/KG	8260	09/11/2008 02:55				
Total Xylenes	13000	D	750	UG/KG	8260	09/11/2008 02:55				
trans-1,2-Dichloroethene	ND		250	UG/KG	8260	09/11/2008 02:55				
trans-1,3-Dichloropropene	ND		250	UG/KG	8260	09/11/2008 02:55				
Trichloroethene	ND		250	UG/KG	8260	09/11/2008 02:55				
Trichlorofluoromethane	ND ND		250	UG/KG UG/KG	8260	09/11/2008 02:55				
Vinyl chloride			500		8260	09/11/2008 02:55				

Sample ID: NI-B-11-12 Lab Sample ID: A8A88804 Date Collected: 09/04/2008 Time Collected: 16:30

	Detection				Date/Time				
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys		
SOIL - SW8463 8260 - TCL VOLATILES									
1,1,1-Trichloroethane	ND		26	UG/KG	8260	09/08/2008 17:35	LH		
1,1,2,2-Tetrachloroethane	ND		26	UG/KG	8260	09/08/2008 17:35			
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		26	UG/KG	8260	09/08/2008 17:35			
1,1,2-Trichloroethane	ND		26	UG/KG	8260	09/08/2008 17:35			
1,1-Dichloroethane	ND		26	UG/KG	8260	09/08/2008 17:35			
1,1-Dichloroethene	ND		26	, UG/KG	8260	09/08/2008 17:35			
1,2,4-Trichlorobenzene	ND		26	, UG/KG	8260	09/08/2008 17:35			
1,2-Dibromo-3-chloropropane	ND		26	UG/KG	8260	09/08/2008 17:35			
1,2-Dibromoethane	ND		26	UG/KG	8260	09/08/2008 17:35			
1,2-Dichlorobenzene	ND		26	UG/KG	8260	09/08/2008 17:35			
1,2-Dichloroethane	ND		26	UG/KG	8260	09/08/2008 17:35			
1,2-Dichloropropane	ND		26	UG/KG	8260	09/08/2008 17:35			
1,3-Dichlorobenzene	ND		26	UG/KG	8260	09/08/2008 17:35			
1,4-Dichlorobenzene	ND		26	UG/KG	8260	09/08/2008 17:35			
2-Butanone	ND		130	UG/KG	8260	09/08/2008 17:3:			
2-Hexanone	ND		130	UG/KG	8260	09/08/2008 17:35			
4-Methyl-2-pentanone	ND		130	UG/KG	8260	09/08/2008 17:35			
Acetone	380		130	UG/KG UG/KG	8260	09/08/2008 17:3			
Benzene	44		26	UG/KG UG/KG		09/08/2008 17:3			
Bromodichloromethane				•	8260				
	ND		26	UG/KG	8260	09/08/2008 17:35			
Bromoform	ND		26	UG/KG	8260	09/08/2008 17:3			
Bromomethane	. ND		26	UG/KG	8260	09/08/2008 17:3			
Carbon Disulfide	6	J	26	UG/KG	8260	09/08/2008 17:3			
Carbon Tetrachloride	ND		26	UG/KG	8260	09/08/2008 17:3			
Chlorobenzene	ND		26	UG/KG	8260	09/08/2008 17:3			
Chloroethane	ND		26	UG/KG	8260	09/08/2008 17:3			
Chloroform	ND		26	UG/KG	8260	09/08/2008 17:3			
Chloromethane	ND		26	UG/KG	8260	09/08/2008 17:3			
cis-1,2-Dichloroethene	ND		26	UG/KG	8260	09/08/2008 17:3			
cis-1,3-Dichloropropene	ND		26	UG/KG	8260	09/08/2008 17:3			
Cyclohexane	1500	Е	26	UG/KG	8260	09/08/2008 17:3			
Dibromochloromethane	ND		26	UG/KG	8260	09/08/2008 17:3			
Dichlorodifluoromethane	ND		26	UG/KG	8260	09/08/2008 17:3			
Ethylbenzene	2600	Е	26	UG/KG	8260	09/08/2008 17:3			
Isopropylbenzene	580		26	UG/KG	8260	09/08/2008 17:3			
Methyl acetate	ND		26	UG/KG	8260	09/08/2008 17:3	5 LH		
Methyl-t-Butyl Ether (MTBE)	ND		26	UG/KG	8260	09/08/2008 17:3	5 LH		
Methylcyclohexane	1700	Е	26	UG/KG	8260	09/08/2008 17:3	5 LH		
Methylene chloride	ND		26	UG/KG	8260	09/08/2008 17:3	5 LH		
Styrene	ND		26	UG/KG	8260	09/08/2008 17:3	5 LH		
Tetrachloroethene	ND		26	UG/KG	8260	09/08/2008 17:3	5 LH		
Toluene	2000	BE	26	UG/KG	8260	09/08/2008 17:3	5 LH		
Total Xylenes	11000	Е	78	UG/KG	8260	09/08/2008 17:3	5 L.H		
trans-1,2-Dichloroethene	ND		26	UG/KG	8260	09/08/2008 17:3			
trans-1,3-Dichloropropene	ND		26	UG/KG	8260	09/08/2008 17:3			
TrichLoroethene	ND		26	UG/KG	8260	09/08/2008 17:3			
Trichlorofluoromethane	ND		26	, UG/KG	8260	09/08/2008 17:3			
Vinyl chloride	ND		52	UG/KG	8260	09/08/2008 17:3			

Sample ID: NI-B-11-12 Lab Sample ID: A8A88804 Date Collected: 09/04/2008 Time Collected: 16:30

Site No:

			Detection				
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analys
SOIL - SW8463 8260 - TCLP VOLATILES							
1,1-Dichloroethene	ND		0.050	MG/L	8260	09/11/2008 20:13	DHC
1,2-Dichloroethane	ND		0.050	MG/L	8260	09/11/2008 20:13	DHC
2-Butanone	ND		0.25	MG/∟	8260	09/11/2008 20:13	DHC
Benzene	ND		0.050	MG/∟	8260	09/11/2008 20:13	DHC
Carbon Tetrachloride	ND		0.050	MG/∟	8260	09/11/2008 20:13	DHC
Chlorobenzene	ND		0.050	MG/L	8260	09/11/2008 20:13	DHC
Chloroform	ND		0.050	MG/L	8260	09/11/2008 20:13	DHC
Tetrachloroethene	ND		0.050	MG/L	8260	09/11/2008 20:13	DHC
Trichloroethene	ND		0.050	MG/∟	8260	09/11/2008 20:13	DHC
Vinyl chloride	ND		0.050	MG/∟	8260	09/11/2008 20:13	DHC
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		200	UG/KG	8270	09/11/2008 03:19	MD
2,4,5-Trichlorophenol	ND		200	UG/KG	8270	09/11/2008 03:19	
2,4,6-Trichlorophenol	ND		200	UG/KG	8270	09/11/2008 03:19	
2,4-Dichlorophenol	ND		200	UG/KG	8270	09/11/2008 03:19	
2,4-Dimethylphenol	ND		200	UG/KG	8270	09/11/2008 03:19	
2,4-Dinitrophenol	ND		380	UG/KG	8270	09/11/2008 03:19	
2,4-Dinitrotoluene	ND		200	UG/KG	8270	09/11/2008 03:19	
2,6-Dinitrotoluene	ND		200	UG/KG	8270	09/11/2008 03:19	
2-Chloronaphthalene	ND		200	UG/KG	8270	09/11/2008 03:19	
2-Chlorophenol	ND		200	UG/KG	8270	09/11/2008 03:19	
2-Methylnaphthalene	190	J	200	UG/KG	8270	09/11/2008 03:19	
2-Methylphenol	16	J	200	UG/KG	8270	09/11/2008 03:19	
2-Nitroaniline	ND		380	UG/KG	8270	09/11/2008 03:19	
2-Nitrophenol	ND		200	UG/KG	8270	09/11/2008 03:19	
3,3'-Dichlorobenzidine	ND		200	UG/KG	8270	09/11/2008 03:19	
3-Nitroaniline	ND		380	UG/KG	8270	09/11/2008 03:19	
4,6-Dinitro-2-methylphenol	ND		380	UG/KG	8270	09/11/2008 03:19	
4-Bromophenyl phenyl ether	ND		200	UG/KG	8270	09/11/2008 03:19	
4-Chloro-3-methylphenol	ND		200	UG/KG	8270	09/11/2008 03:19	
4-Chloroaniline	ND		200	UG/KG	8270	09/11/2008 03:19	
4-Chlorophenyl phenyl ether	ND		200	UG/KG	8270	09/11/2008 03:19	
4-Methylphenol	11	J	200	UG/KG	8270	09/11/2008 03:19	
4-Nitroaniline	ND		380	UG/KG	8270	09/11/2008 03:19	
4-Nitrophenol	ND		380	UG/KG	8270	09/11/2008 03:19	
Acenaphthene	ND		200	UG/KG	8270	09/11/2008 03:19	
Acenaphthylene	ND		200	UG/KG	8270	09/11/2008 03:19	
Acetophenone	ND		200	UG/KG	8270	09/11/2008 03:19	
Anthracene	ND		200	UG/KG	8270	09/11/2008 03:19	
Atrazine	ND		200	UG/KG	8270	09/11/2008 03:19	
Benzaldehyde	ND		200	UG/KG	8270	09/11/2008 03:19	
Benzo(a)anthracene	ND		200	UG/KG	8270	09/11/2008 03:19	
Benzo(a)pyrene	ND		200	UG/KG	8270	09/11/2008 03:19	
Benzo(b)fluoranthene	ND		200	UG/KG	8270	09/11/2008 03:19	
Benzo(ghi)perylene	ND		200	UG/KG	8270	09/11/2008 03:19	
Benzo(k)fluoranthene	ND		200	UG/KG UG/KG			
Biphenyl					8270	09/11/2008 03:19	
Bis(2-chloroethoxy) methane	ND ND		200 200	UG/KG UG/KG	8270 8270	09/11/2008 03:19 09/11/2008 03:19	

Date Received: 09/06/2008

Nichol Inn ERP Site (Category B)

Sample ID: NI-B-11-12 Lab Sample ID: A8A88804 Date Collected: 09/04/2008 Time Collected: 16:30

1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol

2,4-Dinitrotoluene

2-Methylphenol

3-Methylphenol

4-Methylphenol

Hexachlorobenzene

Hexachloroethane

Pentachlorophenol

Nitrobenzene

Pyridine

Hexachlorobutadiene

Lab Sample ID: A8A88804	Project No: NY8A9801						
Date Collected: 09/04/2008					(Client No: 423943	
Time Collected: 16:30						Site No:	
			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
Bis(2-chloroethyl) ether	ND		200	UG/KG	8270	09/11/2008 03:19	MD
Bis(2-ethylhexyl) phthalate	65	J	200	UG/KG	8270	09/11/2008 03:19	MD
Butyl benzyl phthalate	ND		200	UG/KG	8270	09/11/2008 03:19	
Caprolactam	ND		200	UG/KG	8270	09/11/2008 03:19	MD
Carbazole	ND		200	UG/KG	8270	09/11/2008 03:19	MD
Chrysene	ND		200	ug/kg	8270	09/11/2008 03:19	MD
Di-n-butyl phthalate	ND		200	UG/KG	8270	09/11/2008 03:19	MD
Di-n-octyl phthalate	ND		200	υg/kg	8270	09/11/2008 03:19	MD
Dibenzo(a,h)anthracene	ND		200	UG/KG	8270	09/11/2008 03:19	MD
Dibenzofuran	ND		200	UG/KG	8270	09/11/2008 03:19	MD
Diethyl phthalate	ND		200	UG/KG	8270	09/11/2008 03:19	
Dimethyl phthalate	ND		200	UG/KG	8270	09/11/2008 03:19	MD
Fluoranthene	ND		200	UG/KG	8270	09/11/2008 03:19	MD
Fluorene	ND		200	UG/KG	8270	09/11/2008 03:19	MD
Hexachlorobenzene	ND		200	UG/KG	8270	09/11/2008 03:19	MD
Hexachlorobutadiene	ND		200	UG/KG	8270	09/11/2008 03:19	MD
Hexachlorocyclopentadiene	ND		200	UG/KG	8270	09/11/2008 03:19	MD
Hexachloroethane	ND		200	UG/KG	8270	09/11/2008 03:19) MD
Indeno(1,2,3-cd)pyrene	ND		200	UG/KG	8270	09/11/2008 03:19) MD
Isophorone	ND		200	UG/KG	8270	09/11/2008 03:19	
N-Nitroso-Di-n-propylamine	ND		200	UG/KG	8270	09/11/2008 03:19) MD
N-nitrosodiphenylamine	ND		200	UG/KG	8270	09/11/2008 03:19	MD (
Naphthalene	150	J	200	UG/KG	8270	09/11/2008 03:19	
Nitrobenzene	ND		200	UG/KG	8270	09/11/2008 03:19	
Pentachlorophenol	ND		380	UG/KG	8270	09/11/2008 03:19	
Phenanthrene	11	J	200	UG/KG	8270	09/11/2008 03:19	
Phenol	ND		200	UG/KG	8270	09/11/2008 03:19	
Pyrene	ND		200	UG/KG	8270	09/11/2008 03:19	
SOIL - SW8463 8270 - TCLP BNA EXTRACTABLES							
1,4-Dichlorobenzene	ND		0.040	MG/L	8270	09/15/2008 13:37	7 MD
2,4,5-Trichlorophenol	ND		0.020	MG/L	8270	09/15/2008 13:37	
				, -			110

0.020

0.020

0.020

0.040

0.020

0.020

0.020

0.020

0.020

0.040

0.10

MG/L

8270

8270

8270

8270

8270

8270

8270

8270

8270

8270

8270

8081

8081

8081

8081

09/15/2008 13:37

09/15/2008 13:37

09/15/2008 13:37

09/15/2008 13:37

09/15/2008 13:37

09/15/2008 13:37

09/15/2008 13:37

09/15/2008 13:37

09/15/2008 13:37

09/15/2008 13:37

09/15/2008 13:37

09/27/2008 12:46

09/27/2008 12:46

09/27/2008 12:46

09/27/2008 12:46

SOIL	-	sw8463	8270	-	TCLP	BNA	EXTRACTABLES

SOIL	- sw8463	8081 -	- TCL	PESTICIDES
1.	A1-000			

4,4'-DDD	48	9.8	UG/KG
4,4'-DDE	ND	9.8	ug/kg
4,4'-DDT	ND	9.8	UG/KG
Aldrin	ND	9.8	UG/KG

ND

ND

ND

ND

ND

ND

ND

ND

ND

0.0022 J

0.0016 J

TestAmerica

MD

тсн

тсн

тсн

тсн

Sample ID: NI-B-11-12 Lab Sample ID: A8A88804 Date Collected: 09/04/2008 Time Collected: 16:30

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
SOIL - SW8463 8081 - TCL PESTICIDES							Anacyst
alpha-BHC	ND		9.8	UG/KG	8081	09/27/2008 12:46	тсн
beta-BHC	ND		9.8	UG/KG	8081	09/27/2008 12:46	
Chlordane	ND		98	UG/KG	8081	09/27/2008 12:46	
delta-BHC	ND		9.8	UG/KG	8081	09/27/2008 12:46	
Dieldrin	ND		9.8	UG/KG	8081	09/27/2008 12:46	
Endosulfan I	ND		9.8	UG/KG	8081	09/27/2008 12:46	
Endosulfan II	ND		9.8	UG/KG	8081	09/27/2008 12:46	
Endosulfan Sulfate	ND		9.8	UG/KG	8081	09/27/2008 12:46	
Endrin	ND		9.8	UG/KG	8081	09/27/2008 12:46	
Endrin aldehyde	ND		9.8	UG/KG	8081	09/27/2008 12:46	
gamma-BHC (Lindane)	5.7	J	9.8	UG/KG	8081	09/27/2008 12:46	
Heptachlor	ND	Ū	9.8	UG/KG	8081	09/27/2008 12:46	
Heptachlor epoxide	ND		9.8	UG/KG	8081	09/27/2008 12:46	
Methoxychlor	ND		9.8	UG/KG	8081	09/27/2008 12:46	
Toxaphene	ND		98	UG/KG	8081	09/27/2008 12:46	
loxupitette	ND		70	007 NO	0001	09/27/2008 12:40	тсн
SOIL - SW8463 8082 - PCBS							
Aroclor 1016	ND		20	UG/KG	8082	09/11/2008 09:48	GFD
Aroclor 1221	ND		20	UG/KG	8082	09/11/2008 09:48	
Aroclor 1232	ND		20	UG/KG	8082	09/11/2008 09:48	
Aroclor 1242	ND		20	UG/KG	8082	09/11/2008 09:48	
Aroclor 1248	ND		20	UG/KG	8082	09/11/2008 09:48	
Aroclor 1254	ND		20	UG/KG	8082	09/11/2008 09:48	
Aroclor 1260	ND		20	, UG/KG	8082	09/11/2008 09:48	
Metals Analysis				,		, ,	
Aluminum - Total	135		0.12	MG/KG	6010	09/09/2008 16:50	
Antimony - Total	ND		0.18	MG/KG	6010	09/09/2008 16:50	
Arsenic - Total	0.07		0.02	MG/KG	6010	09/09/2008 16:50	
Barium - Total	0.62		0.01	MG/KG	6010	09/09/2008 16:50	
Beryllium — Total	0.01		0	MG/KG	6010	09/09/2008 16:50	
Cadmium - Total	ND		0	MG/KG	6010	09/09/2008 16:50	
Calcium - Total	72.0		0.59	MG/KG	6010	09/09/2008 16:50	
Chromium – Total	0.20		0.01	MG/KG	6010	09/09/2008 16:50	
Cobalt - Total	0.12		0.01	MG/KG	6010	09/09/2008 16:50	
Copper – Total	0.23		0.01	MG/KG	6010	09/09/2008 16:50)
Iron – Total	292		0.12	MG/KG	6010	09/09/2008 16:50)
Lead — Total	0.19		0.01	MG/KG	6010	09/09/2008 16:50)
Magnesium - Total	60.7		0.23	MG/KG	6010	09/09/2008 16:50)
Manganese – Total	4.8		0	MG/KG	6010	09/09/2008 16:50)
Mercury – Total	ND		0.022	MG/KG	7471	09/09/2008 14:06	6
Nickel – Total	0.33		0.01	MG/KG	6010	09/09/2008 16:50)
Potassium — Total	15.5		0.35	MG/KG	6010	09/09/2008 16:50)
Selenium — Total	ND		0.05	MG/KG	6010	09/09/2008 16:50	נ
Silver – Total	ND		0.01	MG/KG	6010	09/09/2008 16:50)
Sodium - Total	ND		1.6	MG/KG	6010	09/09/2008 16:50	
Thallium - Total	ND		0.07	MG/KG	6010	09/09/2008 16:50	
Vanadium – Total	0.23		0.01	MG/KG	6010	09/09/2008 16:50	
Zinc - Total	0.77		0.02	MG/KG	6010	09/09/2008 16:50	

Sample ID: NI-B-11-12 Lab Sample ID: A8A88804 Date Collected: 09/04/2008 Time Collected: 16:30

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analyst
TCLP Metals Analysis							
Lead – Total	20.8		5.0	UG/L	6010	09/10/2008 13:16	
Wet Chemistry Analysis							
Flashpoint	>176		0	°F	1010	09/09/2008 11:00	RMM

Sample ID: NI-B-11-12 DL Lab Sample ID: A8A88804DL Date Collected: 09/04/2008 Time Collected: 16:30

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
1,1,2,2-Tetrachloroethane	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
1,1,2-Trichloroethane	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
1,1-Dichloroethane	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
1,1-Dichloroethene	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
1,2,4-Trichlorobenzene	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
1,2-Dibromo-3-chloropropane	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
1,2-Dibromoethane	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
1,2-Dichlorobenzene	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
1,2-Dichloroethane	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
1,2-Dichloropropane	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
1,3-Dichlorobenzene	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
1,4-Dichlorobenzene	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
2-Butanone	ND		3600	UG/KG	8260	09/09/2008 18:59	RJ
2-Hexanone	ND		3600	UG/KG	8260	09/09/2008 18:59	RJ
4-Methyl-2-pentanone	ND		3600	UG/KG	8260	09/09/2008 18:59	RJ
Acetone	ND		3600	UG/KG	8260	09/09/2008 18:59	RJ
Benzene	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
Bromodichloromethane	ND		710	ug/kg	8260	09/09/2008 18:59	RJ
Bromoform	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
Bromomethane	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
Carbon Disulfide	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
Carbon Tetrachloride	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
Chlorobenzene	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
Chloroethane	ND		710	UG/KG	8260	09/09/2008 18:59	RJ
Chloroform	ND		710	UG/KG	8260	09/09/2008 18:59	
Chloromethane	ND		710	UG/KG	8260	09/09/2008 18:59	
cis-1,2-Dichloroethene	ND		710	UG/KG	8260	09/09/2008 18:59	
cis-1,3-Dichloropropene	ND		710	UG/KG	8260	09/09/2008 18:59	
Cyclohexane	2200	D	710	UG/KG	8260	09/09/2008 18:59	
Dibromochloromethane	ND		710	UG/KG	8260	09/09/2008 18:59	
Dichlorodifluoromethane	ND		710	UG/KG	8260	09/09/2008 18:59	
Ethylbenzene	4600	D	710	UG/KG	8260	09/09/2008 18:59	
Isopropylbenzene	1100	D	710	UG/KG	8260	09/09/2008 18:59	
Methyl acetate	ND		710	UG/KG	8260	09/09/2008 18:59	
Methyl-t-Butyl Ether (MTBE)	ND		710	UG/KG	8260	09/09/2008 18:59	
Methylcyclohexane	4400	D	710	UG/KG	8260	09/09/2008 18:59	
Methylene chloride	ND		710	UG/KG	8260	09/09/2008 18:59	
Styrene	ND		710	UG/KG	8260	09/09/2008 18:59	
Tetrachloroethene	ND		710	UG/KG	8260	09/09/2008 18:59	
Toluene	2000	D	710	UG/KG	8260	09/09/2008 18:59	
Total Xylenes	26000	D	2100	UG/KG	8260	09/09/2008 18:59	
trans-1,2-Dichloroethene	ND		710	UG/KG	8260	09/09/2008 18:59	
trans-1,3-Dichloropropene	ND		710	UG/KG	8260	09/09/2008 18:59	
Trichloroethene	ND		710	UG/KG	8260	09/09/2008 18:59	
Trichlorofluoromethane	ND		710	UG/KG	8260	09/09/2008 18:59	
Vinyl chloride	ND		1400	UG/KG	8260	09/09/2008 18:59	
· ··· / · ··· · · · · · · · · · · · · · · · ·			100	00710	0200	07/07/2000 10:09	КJ

Nichol Inn ERP Site (Category B)

Sample ID: NI-B-12-12 Lab Sample ID: A8A88805 Date Collected: 09/04/2008 Time Collected: 15:40

Date Received:	09/06/2008
Project No:	NY8A9801
Client No:	423943
Site No:	

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
SOIL - SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		130	UG/KG	8260	09/11/2008 03:19	
1,1,2,2-Tetrachloroethane	ND		130	UG/KG	8260	09/11/2008 03:19	PQ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		130	UG/KG	8260	09/11/2008 03:19	PQ
1,1,2-Trichloroethane	ND		130	UG/KG	8260	09/11/2008 03:19	PQ
1,1-Dichloroethane	ND		130	UG/KG	8260	09/11/2008 03:19	PQ
1,1-Dichloroethene	ND		130	UG/KG	8260	09/11/2008 03:19	PQ
1,2,4-Trichlorobenzene	ND		130	UG/KG	8260	09/11/2008 03:19	PQ
1,2-Dibromo-3-chloropropane	ND		130	UG/KG	8260	09/11/2008 03:19	PQ
1,2-Dibromoethane	ND		130	UG/KG	8260	09/11/2008 03:19	PQ
1,2-Dichlorobenzene	ND		130	UG/KG	8260	09/11/2008 03:19	PQ
1,2-Dichloroethane	ND		130	UG/KG	8260	09/11/2008 03:19	PQ
1,2-Dichloropropane	ND		130	UG/KG	8260	09/11/2008 03:19	PQ
1,3-Dichlorobenzene	ND		130	UG/KG	8260	09/11/2008 03:19	PQ
1,4-Dichlorobenzene	ND		130	UG/KG	8260	09/11/2008 03:19	PQ
2-Butanone	ND		670	UG/KG	8260	09/11/2008 03:19	PQ
2-Hexanone	ND		670	UG/KG	8260	09/11/2008 03:19	PQ
4-Methyl-2-pentanone	ND		670	UG/KG	8260	09/11/2008 03:19	
Acetone	ND		670	UG/KG	8260	09/11/2008 03:19	PQ
Benzene	ND		130	UG/KG	8260	09/11/2008 03:19	
Bromodichloromethane	ND		130	UG/KG	8260	09/11/2008 03:19	
Bromoform	ND		130	UG/KG	8260	09/11/2008 03:19	
Bromomethane	ND		130	UG/KG	8260	09/11/2008 03:19	
Carbon Disulfide	ND		130	UG/KG	8260	09/11/2008 03:19	
Carbon Tetrachloride	ND		130	UG/KG	8260	09/11/2008 03:19	
Chlorobenzene	ND		130	UG/KG	8260	09/11/2008 03:19	
Chloroethane	ND		130	UG/KG	8260	09/11/2008 03:19	
Chloroform	ND		130	UG/KG	8260	09/11/2008 03:19	
Chloromethane	ND		130	UG/KG	8260	09/11/2008 03:19	
cis-1,2-Dichloroethene	ND		130	UG/KG	8260	09/11/2008 03:19	
cis-1,3-Dichloropropene	ND		130	UG/KG	8260	09/11/2008 03:19	
Cyclohexane	2800		130	, UG/KG	8260	09/11/2008 03:19	
Dibromochloromethane	ND		130	, UG/KG	8260	09/11/2008 03:19	
Dichlorodifluoromethane	ND		130	UG/KG	8260	09/11/2008 03:19	
Ethylbenzene	1500		130	, UG/KG	8260	09/11/2008 03:19	
Isopropylbenzene	550		130	, UG/KG	8260	09/11/2008 03:19	
Methyl acetate	ND		130	UG/KG	8260	09/11/2008 03:19	
Methyl-t-Butyl Ether (MTBE)	ND		130	UG/KG	8260	09/11/2008 03:19	
Methylcyclohexane	8000		130	UG/KG	8260	09/11/2008 03:19	
Methylene chloride	ND		130	UG/KG	8260	09/11/2008 03:19	
Styrene	ND		130	UG/KG	8260	09/11/2008 03:19	
Tetrachloroethene	ND		130	UG/KG	8260	09/11/2008 03:19	
Toluene	130		130	UG/KG	8260	09/11/2008 03:19	
Total Xylenes	7700		400	UG/KG	8260	09/11/2008 03:19	
trans-1,2-Dichloroethene	ND		130	UG/KG	8260	09/11/2008 03:19	
trans-1,3-Dichloropropene	ND		130	UG/KG	8260	09/11/2008 03:19	
Trichloroethene	ND		130	UG/KG	8260	09/11/2008 03:19	
Trichlorofluoromethane	ND		130	UG/KG	8260	09/11/2008 03:19	
Vinyl chloride	ND		270	UG/KG	8260	09/11/2008 03:19	

=

Nichol Inn ERP Site (Category B)

Sample ID: NI-B-12-12 Lab Sample ID: A8A88805 Date Collected: 09/04/2008 Time Collected: 15:40

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		200	UG/KG	8270	09/11/2008 03:42	MD
2,4,5-Trichlorophenol	ND		200	UG/KG	8270	09/11/2008 03:42	MD
2,4,6-Trichlorophenol	ND		200	UG/KG	8270	09/11/2008 03:42	MD
2,4-Dichlorophenol	ND		200	UG/KG	8270	09/11/2008 03:42	MD
2,4-Dimethylphenol	ND		200	UG/KG	8270	09/11/2008 03:42	MD
2,4-Dinitrophenol	ND		400	UG/KG	8270	09/11/2008 03:42	MD
2,4-Dinitrotoluene	ND		200	UG/KG	8270	09/11/2008 03:42	MD
2,6-Dinitrotoluene	ND		200	UG/KG	8270	09/11/2008 03:42	MD
2-Chloronaphthalene	ND		200	UG/KG	8270	09/11/2008 03:42	MD
2-Chlorophenol	ND		200	UG/KG	8270	09/11/2008 03:42	MD
2-Methylnaphthalene	780		200	UG/KG	8270	09/11/2008 03:42	
2-Methylphenol	ND		200	UG/KG	8270	09/11/2008 03:42	MD
2-Nitroaniline	ND		400	UG/KG	8270	09/11/2008 03:42	
2-Nitrophenol	ND		200	UG/KG	8270	09/11/2008 03:42	
3,3'-Dichlorobenzidine	ND		200	UG/KG	8270	09/11/2008 03:42	
3-Nitroaniline	ND		400	UG/KG	8270	09/11/2008 03:42	
4,6-Dinitro-2-methylphenol	ND		400	UG/KG	8270	09/11/2008 03:42	
4-Bromophenyl phenyl ether	ND		200	UG/KG	8270	09/11/2008 03:42	
4-Chloro-3-methylphenol	ND		200	UG/KG	8270	09/11/2008 03:42	
4-Chloroaniline	ND		200	UG/KG	8270	09/11/2008 03:42	
4-Chlorophenyl phenyl ether	ND		200	UG/KG	8270	09/11/2008 03:42	
4-Methylphenol	ND		200	, UG/KG	8270	09/11/2008 03:42	
4-Nitroaniline	ND		400	, UG/KG	8270	09/11/2008 03:42	
4-Nitrophenol	ND		400	, UG/KG	8270	09/11/2008 03:42	
Acenaphthene	8	J	200	UG/KG	8270	09/11/2008 03:42	
Acenaphthylene	ND		200	UG/KG	8270	09/11/2008 03:42	
Acetophenone	ND		200	UG/KG	8270	09/11/2008 03:42	
Anthracene	ND		200	UG/KG	8270	09/11/2008 03:42	
Atrazine	ND		200	UG/KG	8270	09/11/2008 03:42	
Benzaldehyde	ND		200	UG/KG	8270	09/11/2008 03:42	
Benzo(a)anthracene	ND		200	UG/KG	8270	09/11/2008 03:42	
Benzo(a)pyrene	ND		200	UG/KG	8270	09/11/2008 03:42	
Benzo(b)fluoranthene	ND		200	UG/KG	8270	09/11/2008 03:42	
Benzo(ghi)perylene	ND		200	UG/KG	8270	09/11/2008 03:42	
Benzo(k)fluoranthene	ND		200	UG/KG	8270	09/11/2008 03:42	
Biphenyl	74	J	200	UG/KG	8270	09/11/2008 03:42	
Bis(2-chloroethoxy) methane	ND	Ū	200	UG/KG	8270	09/11/2008 03:42	
Bis(2-chloroethyl) ether	ND		200	UG/KG	8270	09/11/2008 03:42	
Bis(2-ethylhexyl) phthalate	77	J	200	UG/KG UG/KG	8270	09/11/2008 03:42	
Butyl benzyl phthalate	ND	Ū	200	UG/KG	8270	09/11/2008 03:42	
Caprolactam	ND		200	UG/KG UG/KG			
Carbazole	ND		200	UG/KG UG/KG	8270	09/11/2008 03:42	
Chrysene			200		8270	09/11/2008 03:42	
Di-n-butyl phthalate	ND			UG/KG	8270 8270	09/11/2008 03:42	
Di-n-octyl phthalate	ND		200	UG/KG	8270	09/11/2008 03:42	
	ND		200	UG/KG	8270	09/11/2008 03:42	
Dibenzo(a,h)anthracene	ND 20		200	UG/KG	8270	09/11/2008 03:42	
Dibenzofuran Diethyl phthalate	20	J	200	UG/KG	8270	09/11/2008 03:42	
Diethyl phthalate	ND		200	UG/KG	8270	09/11/2008 03:42	
Dimethyl phthalate	ND		200	UG/KG	8270	09/11/2008 03:42	MD

Sample ID: NI-B-12-12 Lab Sample ID: A8A88805 Date Collected: 09/04/2008 Time Collected: 15:40

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	ND		200	UG/KG	8270	09/11/2008 03:42	
Fluorene	24	J	200	UG/KG	8270	09/11/2008 03:42	
Hexachlorobenzene	ND		200	UG/KG	8270	09/11/2008 03:42	
Hexachlorobutadiene	ND		200	UG/KG	8270	09/11/2008 03:42	
Hexachlorocyclopentadiene	ND		200	UG/KG	8270	09/11/2008 03:42	MD
Hexachloroethane	ND		200	UG/KG	8270	09/11/2008 03:42	MD
Indeno(1,2,3-cd)pyrene	ND		200	UG/KG	8270	09/11/2008 03:42	MD
Isophorone	ND		200	UG/KG	8270	09/11/2008 03:42	MD
N-Nitroso-Di-n-propylamine	ND		200	UG/KG	8270	09/11/2008 03:42	MD
N-nitrosodiphenylamine	ND		200	UG/KG	8270	09/11/2008 03:42	MD
Naphthalene	450		200	UG/KG	8270	09/11/2008 03:42	MD
Nitrobenzene	ND		200	UG/KG	8270	09/11/2008 03:42	MD
Pentachlorophenol	ND		400	UG/KG	8270	09/11/2008 03:42	MD
Phenanthrene	14	J	200	UG/KG	8270	09/11/2008 03:42	MD
Phenol	ND		200	UG/KG	8270	09/11/2008 03:42	MD
Pyrene	ND		200	UG/KG	8270	09/11/2008 03:42	MD
SOIL - SW8463 8081 - TCL PESTICIDES							
4,4'-DDD	ND		4.0	UG/KG	8081	09/27/2008 13:22	тсн
4,4'-DDE	ND		4.0	UG/KG	8081	09/27/2008 13:22	тсн
4,4'-DDT	ND		4.0	UG/KG	8081	09/27/2008 13:22	
Aldrin	1.8	J	4.0	UG/KG	8081	09/27/2008 13:22	
alpha-BHC	ND		4.0	UG/KG	8081	09/27/2008 13:22	
beta-BHC	4.9		4.0	UG/KG	8081	09/27/2008 13:22	с тсн
Chlordane	ND		40	UG/KG	8081	09/27/2008 13:22	с тен
delta-BHC	ND		4.0	UG/KG	8081	09/27/2008 13:22	2 тсн
Dieldrin	ND		4.0	UG/KG	8081	09/27/2008 13:22	
Endosulfan I	ND		4.0	UG/KG	8081	09/27/2008 13:22	
Endosulfan II	ND		4.0	UG/KG	8081	09/27/2008 13:22	
Endosulfan Sulfate	ND		4.0	UG/KG	8081	09/27/2008 13:22	
Endrin	ND		4.0	UG/KG	8081	09/27/2008 13:22	
Endrin aldehyde	ND		4.0	UG/KG	8081	09/27/2008 13:22	
gamma-BHC (Lindane)	5.9		4.0	, UG/KG	8081	09/27/2008 13:22	
Heptachlor	ND		4.0	υg/kg	8081	09/27/2008 13:22	
Heptachlor epoxide	ND		4.0	, UG/KG	8081	09/27/2008 13:22	
Methoxychlor	2.3	J	4.0	UG/KG	8081	09/27/2008 13:22	
Toxaphene	ND		40	UG/KG	8081	09/27/2008 13:22	
SOIL - SW8463 8082 - PCBS							
Aroclor 1016	ND		20	UG/KG	8082	09/11/2008 10:0	5 GFD
Aroclor 1221	ND		20	UG/KG	8082	09/11/2008 10:0	
Aroclor 1232	ND		20	UG/KG	8082	09/11/2008 10:03	
Aroclor 1242	ND		20	UG/KG	8082	09/11/2008 10:0	
Aroclor 1248	ND		20	UG/KG	8082	09/11/2008 10:0	
Aroclor 1254	ND		20	UG/KG	8082	09/11/2008 10:0	
Aroclor 1254	ND		20	UG/KG	8082	09/11/2008 10:0	
			20	00710	0.02	077172000 10:0	J UrV
Metals Analysis							
Aluminum - Total	12800	EN	12.0	MG/KG	6010	09/09/2008 16:5	5

Sample ID: NI-B-12-12 Lab Sample ID: A8A88805 Date Collected: 09/04/2008 Time Collected: 15:40

			Detection		Date/Time			
Parameter	Result	Flag	Limit	Units	Method	AnalyzedAnalyst		
Metals Analysis								
Antimony - Total	ND	N	18.0	MG/KG	6010	09/09/2008 16:55		
Arsenic - Total	4.0	N	2.4	MG/KG	6010	09/09/2008 16:55		
Barium - Total	62.4	EN	0.60	MG/KG	6010	09/09/2008 16:55		
Beryllium – Total	0.47	N	0.24	MG/KG	6010	09/09/2008 16:55		
Cadmium – Total	ND	N	0.24	MG/KG	6010	09/09/2008 16:55		
Calcium - Total	1490	EN*	59.9	MG/KG	6010	09/09/2008 16:55		
Chromium – Total	16.0	EN	0.60	MG/KG	6010	09/09/2008 16:55		
Cobalt – Total	10.0	EN	0.60	MG/KG	6010	09/09/2008 16:55		
Copper – Total	16.1	EN	1.2	MG/KG	6010	09/09/2008 16:55		
Iron – Total	29700	E	12.0	MG/KG	6010	09/09/2008 16:55		
Lead - Total	11.1	EN	1.2	MG/KG	6010	09/09/2008 16:55		
Magnesium – Total	4530	EN*	24.0	MG/KG	6010	09/09/2008 16:55		
Manganese – Total	486	E*	0.24	MG/KG	6010	09/09/2008 16:55		
Mercury – Total	ND		0.026	MG/KG	7471	09/09/2008 14:08		
Nickel – Total	27.7	EN	0.60	MG/KG	6010	09/09/2008 16:55		
Potassium - Total	1390	EN	35.9	MG/KG	6010	09/09/2008 16:55		
Selenium – Total	ND	N	4.8	MG/KG	6010	09/09/2008 16:55		
Silver – Total	ND	N	0.60	MG/KG	6010	09/09/2008 16:55		
Sodium - Total	ND	N	168	MG/KG	6010	09/09/2008 16:55		
Thallium — Total	ND	N	7.2	MG/KG	6010	09/09/2008 16:55		
Vanadium – Total	18.2	EN	0.60	MG/KG	6010	09/09/2008 16:55		
Zinc - Total	63.6	EN	2.4	MG/KG	6010	09/09/2008 16:55		

Sample ID: NI-B-12-12D Lab Sample ID: A8A88806 Date Collected: 09/04/2008 Time Collected: 15:40

			Detection				
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
SOIL - SW8463 8260 - TCL VOLATILES				· ·····			
1,1,1-Trichloroethane	ND		26	UG/KG	8260	09/08/2008 18:26	LH
1,1,2,2-Tetrachloroethane	ND		26	UG/KG	8260	09/08/2008 18:26	LH
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		26	UG/KG	8260	09/08/2008 18:26	LH
1,1,2-Trichloroethane	ND		26	UG/KG	8260	09/08/2008 18:26	LH
1,1-Dichloroethane	ND		26	UG/KG	8260	09/08/2008 18:26	LH
1,1-Dichloroethene	ND		26	UG/KG	8260	09/08/2008 18:26	LH
1,2,4-Trichlorobenzene	ND		26	UG/KG	8260	09/08/2008 18:26	LH
1,2-Dibromo-3-chloropropane	ND		26	UG/KG	8260	09/08/2008 18:26	LH
1,2-Dibromoethane	ND		26	UG/KG	8260	09/08/2008 18:26	LH
1,2-Dichlorobenzene	ND		26	UG/KG	8260	09/08/2008 18:26	LH
1,2-Dichloroethane	ND		26	UG/KG	8260	09/08/2008 18:26	LH
1,2-Dichloropropane	ND		26	UG/KG	8260	09/08/2008 18:26	LH
1,3-Dichlorobenzene	ND		26	UG/KG	8260	09/08/2008 18:26	LH
1,4-Dichlorobenzene	ND		26	UG/KG	8260	09/08/2008 18:26	LH
2-Butanone	ND		130	, UG/KG	8260	09/08/2008 18:26	LH
2-Hexanone	ND		130	UG/KG	8260	09/08/2008 18:26	LH
4-Methyl-2-pentanone	ND		130	UG/KG	8260	09/08/2008 18:26	LH
Acetone	340		130	UG/KG	8260	09/08/2008 18:26	LH
Benzene	13	J	26	UG/KG	8260	09/08/2008 18:26	LH
Bromodichloromethane	ND		26	, UG/KG	8260	09/08/2008 18:26	LH
Bromoform	ND		26	UG/KG	8260	09/08/2008 18:26	LH
Bromomethane	ND		26	UG/KG	8260	09/08/2008 18:26	LH
Carbon Disulfide	6	J	26	, UG/KG	8260	09/08/2008 18:26	LH
Carbon Tetrachloride	ND		26	, UG/KG	8260	09/08/2008 18:26	LH
Chlorobenzene	ND		26	UG/KG	8260	09/08/2008 18:26	LH
Chloroethane	ND		26	UG/KG	8260	09/08/2008 18:26	LH
Chloroform	ND		26	UG/KG	8260	09/08/2008 18:26	LH
Chloromethane	NÐ		26	, UG/KG	8260	09/08/2008 18:26	
cis-1,2-Dichloroethene	ND		26	UG/KG	8260	09/08/2008 18:26	
cis-1,3-Dichloropropene	ND		26	UG/KG	8260	09/08/2008 18:26	
Cyclohexane	1600	E	26	UG/KG	8260	09/08/2008 18:26	
Dibromochloromethane	ND		26	UG/KG	8260	09/08/2008 18:26	
Dichlorodifluoromethane	ND		26	, UG/KG	8260	09/08/2008 18:26	
Ethylbenzene	1500	E	26	UG/KG	8260	09/08/2008 18:26	
Isopropylbenzene	480		26	UG/KG	8260	09/08/2008 18:26	
Methyl acetate	ND		26	UG/KG	8260	09/08/2008 18:26	
Methyl-t-Butyl Ether (MTBE)	ND		26	UG/KG	8260	09/08/2008 18:26	
Methylcyclohexane	3300	Е	26	UG/KG	8260	09/08/2008 18:26	
Methylene chloride	ND		26	UG/KG	8260	09/08/2008 18:26	
Styrene	ND		26	UG/KG	8260	09/08/2008 18:26	
Tetrachloroethene	ND		26	UG/KG	8260	09/08/2008 18:26	
Toluene	170	в	26	UG/KG	8260	09/08/2008 18:26	
Total Xylenes	5600	Е	78	UG/KG	8260	09/08/2008 18:26	
trans-1,2-Dichloroethene	ND		26	UG/KG	8260	09/08/2008 18:26	
trans-1,3-Dichloropropene	ND		26	UG/KG	8260	09/08/2008 18:26	
Trichloroethene	ND		26	UG/KG	8260	09/08/2008 18:26	
Trichlorofluoromethane	ND		26	UG/KG	8260	09/08/2008 18:26	
Vinyl chloride	ND		52	UG/KG	8260	09/08/2008 18:26	

Sample ID: NI-B-12-12D Lab Sample ID: A8A88806 Date Collected: 09/04/2008 Time Collected: 15:40

Parameter Regult File Linit Units Method Analyzed Analyzed 2,2-9xphisf1-chloropennol N9 200 Us/Ka 6270 09/11/2008 64,05 N0 2,4,5-71-chloropennol N9 200 Us/Ka 6270 09/11/2008 64,05 N0 2,4-6-fichtoropennol N0 200 Us/Ka 6270 09/11/2008 64,05 N0 2,4-6-fichtoropennol N0 200 Us/Ka 6270 09/11/2008 64,05 N0 2,4-6-finitoropennol N0 200 Us/Ka 6270 09/11/2008 64,05 N0 2,4-6-finitoropennol N0 200 Us/Ka 6270 09/11/2008 64,05 N0 2-6-finitoropennol N0 200 Us/Ka 8270 09/11/2008 64,05 N0 2-6-finitoropennol N0 200 Us/Ka 8270 09/11/2008 64,05 N0 2-finitoropennol N0 200 Us/Ka <				Detection			Date/Time	
2.2 - Oxybis(1-thlorsphenel) N0 200 UG/KG 82.70 09/11/208 04.05 N0 2.4, 6-r1fablorsphenel N0 200 UG/KG 82.70 09/11/208 04.05 N0 2.4-bithorsphenel N0 200 UG/KG 82.70 09/11/208 04.05 N0 2-hitrophenel N0 200 UG/KG 82.70 09/11/208 04.05 N0 2-hitrophenel N0 200 UG/KG 82.70 09/11/208 04.05 N0 2-hitrophenel N0 200 UG/KG 82.70 <t< th=""><th>Parameter</th><th> Result</th><th>Flag</th><th>Limit</th><th><u> Units </u></th><th>Method</th><th>Analyzed</th><th><u>Analyst</u></th></t<>	Parameter	Result	Flag	Limit	<u> Units </u>	Method	Analyzed	<u>Analyst</u>
2,4,5-Trithlorophenol ND 200 UU/KG 8270 09/11/2008 64:05 HD 2,4,6-Trithlorophenol ND 200 UU/KG 8270 09/11/2008 64:05 HD 2,4-Stinterhytphenol ND 200 UU/KG 8270 09/11/2008 64:05 HD 2,4-Stinterhytphenol ND 200 UU/KG 8270 09/11/2008 64:05 HD 2,4-Stinterhytphenol ND 200 UU/KG 8270 09/11/2008 64:05 HD 2,6-Dinitrotoluene ND 200 UU/KG 8270 09/11/2008 64:05 HD 2-Chiarophenol ND 200 UU/KG 8270 09/11/2008 64:05 HD 2-Histrybhenol ND 200 UU/KG 8270 09/11/2008 64:05 HD 2-Histrybhenol ND 200 UU/KG 8270 09/11/2008 64:05 HD 2-Histrybhenol ND 200 UU/KG 8270 <	SOIL - SW8463 8270 - TCL SVOA ORGANICS							
2,4,6-Trichlorophenol ND 200 Us/KS 8270 09/1/1208 04:05 HD 2,4-Distrophenol ND 200 Us/KS 8270 09/11/208 04:05 HD 2-Hebtylphenol ND 200 Us/KS 8270 09/11/208 04:05 HD 2-Hebtylphenol ND 200 Us/KS 8270 09/11/208 04:05 HD 2-Hebtylphenol ND 200 Us/KS 8270 09/11/208 04:05 HD 2-Hitrophenol ND 200 Us/KS 8270 09/11/208 <td< td=""><td>2,2'-Oxybis(1-Chloropropane)</td><td>ND</td><td></td><td>200</td><td>UG/KG</td><td>8270</td><td>09/11/2008 04:05</td><td>MD</td></td<>	2,2'-Oxybis(1-Chloropropane)	ND		200	UG/KG	8270	09/11/2008 04:05	MD
2,4-Dichlarophenol ND 200 Us/ks 8270 09/11/2008 04:05 HD 2,4-Dintrocluene ND 200 Us/ks 8270 09/11/2008 04:05 HD 2-chlorophenol ND 200 Us/ks 8270 09/11/2008 04:05 HD 2-Mitronhol ND 200 Us/ks 8270 09/11/2008 04:05 HD 2-Mitrophenol ND 200 Us/ks 8270	2,4,5-Trichlorophenol	ND		200	UG/KG	8270	09/11/2008 04:05	MD
2,4-D initrophenol ND 200 Ug/Ks 8270 09/11/2008 04:05 HD 2,4-D initrophenol ND 200 Ug/Ks 8270 09/11/2008 04:05 HD 2,4-D initrophenol ND 200 Ug/Ks 8270 09/11/2008 04:05 HD 2,4-D initrophenol ND 200 Ug/Ks 8270 09/11/2008 04:05 HD 2-Chlornsphthalene ND 200 Ug/Ks 8270 09/11/2008 04:05 HD 2-Methylphenol ND 200 Ug/Ks 8270 09/11/2008 04:05 HD 2-Methylphenol ND 200 Ug/Ks 8270 09/11/2008 04:05 HD 3-3-1trophenol ND 200 Ug/Ks 8270 09/11/2008 04:05 HD 3-3-1trophenol ND 200 Ug/Ks 8270 09/11/2008 04:05 HD 3-4-Forophenylphylphenol ND 200 Ug/Ks 8270 09/	2,4,6-Trichlorophenol	ND		200	UG/KG	8270	09/11/2008 04:05	MD
2.4-Dinitrophenol ND 370 us/ks 8270 09/11/2008 04.05 HD 2.4-Dinitrotoluene ND 200 us/ks 8270 09/11/2008 04.05 HD 2.6-Dinitrotoluene ND 200 us/ks 8270 09/11/2008 04.05 HD 2-chloronphthalene ND 200 us/ks 8270 09/11/2008 04.05 HD 2-rhestrylphonol ND 200 us/ks 8270 09/11/2008 04.05 HD 2-rhestrylphonol ND 200 us/ks 8270 09/11/2008 04.05 HD 2-rhitrophenol ND 200 us/ks 8270 09/11/2008 <td></td> <td>ND</td> <td></td> <td>200</td> <td>UG/KG</td> <td>8270</td> <td>09/11/2008 04:05</td> <td>MD</td>		ND		200	UG/KG	8270	09/11/2008 04:05	MD
2, A-D initrotoluene ND 200 Us/Ks 8270 09/11/2008 04.05 MD 2, A-D initrotoluene ND 200 Us/Ks 8270 09/11/2008 04.05 MD 2-Chlorophenol ND 200 Us/Ks 8270 09/11/2008 04.05 MD 2-hethy(nphenol ND 200 Us/Ks 8270 09/11/2008 04.05 MD 2-Hethy(nphenol ND 200 Us/Ks 8270 09/11/2008 04.05 MD 2-Hitroaniline ND 200 Us/Ks 8270 09/11/2008 04.05 MD 3-Titroaniline ND 200 Us/Ks 8270 09/11/2008 04.05 MD 3-Titroaniline ND 200 Us/Ks 8270 09/11/2008 04.05 MD 4-Foroanpheny Lhenyl ND 200 Us/Ks 8270 09/11/2008 04.05 MD 4-Foroanphenyl Lhenyl ND 200 Us/Ks 8270 09/11/	2,4-Dimethylphenol	ND		200	UG/KG	8270	09/11/2008 04:05	MD
2,6-01nitrotoluene ND 200 US/KS 8270 09/11/2008 04.05 ND 2-chloromaphthaltere ND 200 UG/KS 8270 09/11/2008 04.05 ND 2-chlorophenol ND 200 UG/KS 8270 09/11/2008 04.05 ND 2-met britylomphthaltere ND 200 UG/KS 8270 09/11/2008 04.05 ND 2-met britylomphthaltere ND 200 UG/KS 8270 09/11/2008 04.05 ND 2-Mitrophenol ND 200 UG/KS 8270 09/11/2008 04.05 ND 3.3'-0' Loitondbez/dine ND 200 UG/KS 8270 09/11/2008 04.05 ND 46'Dinitro-2=stritylohenol ND 200 UG/KS 8270 09/11/2008 04.05 ND 4Florophenyl phenyl ether ND 200 UG/KS 8270 09/11/2008 04.05 ND 4-mitroaniline ND 200 UG/KS	2,4-Dinitrophenol	ND		390	UG/KG	8270	09/11/2008 04:05	MD
P-Chloronaphthalene ND 200 Uu/ks 8270 09/11/2008 04:05 ND 2-Mitorphenol ND 200 Uu/ks 8270 09/11/2008 04:05 ND 2-Mitorphenol ND 200 Uu/ks 8270 09/11/2008 04:05 ND 2-Mitorphenol ND 200 Uu/ks 8270 09/11/2008 04:05 ND 3.3'-Diftorphenol ND 200 Uu/ks 8270 09/11/2008 04:05 ND 3.3'-Diftorphenol ND 200 Uu/ks 8270 09/11/2008 04:05 ND 4.4-Dinorbenzidine ND 200 Uu/ks 8270 09/11/2008 04:05 ND 4-Horonaphnyt phenyl ether ND 200 Uu/ks 8270 09/11/2008 04:05 ND 4-chloronari line ND 200 Uu/ks 8270 09/11/2008 04:05 ND 4-chloronari line ND 200 Uu/ks 8270 09/	2,4-Dinitrotoluene	ND		200	UG/KG	8270	09/11/2008 04:05	MD
2-Chlorophenol ND 200 Ug/Ka 8270 09/11/2008 04:05 ND 2-Methylaphallene 590 200 Ug/Ka 8270 09/11/2008 04:05 ND 2-Methylaphall ND 200 Ug/Ka 8270 09/11/2008 04:05 ND 2-Nitrophenol ND 200 Ug/Ka 8270 09/11/2008 04:05 ND 3-Nitroaniline ND 200 Ug/Ka 8270 09/11/2008 04:05 ND 3-Nitroaniline ND 200 Ug/Ka 8270 09/11/2008 04:05 ND 3-Nitroaniline ND 200 Ug/Ka 8270 09/11/2008 04:05 ND 4-Chloroanitine ND 200 Ug/Ka 8270 09/11/2008 04:05 ND 4-Chloroanitine ND 200 Ug/Ka 8270 09/11/2008 04:05 ND 4-Mitrophonil ND 200 Ug/Ka 8270 09/11/2008 0	2,6-Dinitrotoluene	ND		200	UG/KG	8270	09/11/2008 04:05	MD
2-Methylnaphthalene 590 200 uk/k6 8270 09/11/2006 04:05 MD 2-Methylphenol ND 200 uk/k6 8270 09/11/2006 04:05 MD 2-Mitroaniline ND 200 uk/k6 8270 09/11/2006 04:05 MD 3.3'-Dichlorobenzidine ND 200 uk/k6 8270 09/11/2006 04:05 MD 3.3'-Dichlorobenzidine ND 200 uk/k6 8270 09/11/2008 04:05 MD 4-G-Dintro2-methylphenol ND 200 uk/k6 8270 09/11/2008 04:05 MD 4-Chloron-Smethylphenol ND 200 uk/k6 8270 09/11/2008 04:05 MD 4-Chloron-Smethylphenol ND 200 uk/k6 8270 09/11/2008 04:05 MD 4-Chloron-Smethylphenol ND 200 uk/k6 8270 09/11/2008 04:05 MD 4-Mitrophenol ND 200 uk/k6 <	2-Chloronaphthalene	ND		200	UG/KG	8270	09/11/2008 04:05	MD
2-Methylphenol ND 200 UG/KG 8270 09/11/2008 04-05 MD 2-Nitrophenol ND 300 UG/KG 8270 09/11/2008 04-05 MD 3.3-Dichlorobenzidine ND 200 UG/KG 8270 09/11/2008 04-05 MD 3.4-Dichlorobenzidine ND 200 UG/KG 8270 09/11/2008 04-05 MD 3.4-Foranchiline ND 300 UG/KG 8270 09/11/2008 04-05 MD 4-Bronghenyl phenyl ether ND 200 UG/KG 8270 09/11/2008 04-05 MD 4-Chloros-methylphenol ND 200 UG/KG 8270 09/11/2008 04-05 MD 4-Mitrophenyl phenyl ether ND 200 UG/KG 8270 09/11/2008 04-05 MD 4-Mitrophenol ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Mitrophenol ND 200 UG/KG 8270	2-Chlorophenol	ND		200	UG/KG	8270	09/11/2008 04:05	MD
2-Nitroaniline ND 390 UK/K6 8270 09/11/2008 04.05 MD 2-Nitrophenol ND 200 UG/K6 8270 09/11/2008 04.05 MD 3.5'-bichtordenzidine ND 200 UG/K6 8270 09/11/2008 04.05 MD 4.6-Dinitro-2-methylphenol ND 390 UG/K6 8270 09/11/2008 04.05 MD 4-Bromophenyl phenyl ether ND 200 UG/K6 8270 09/11/2008 04.05 MD 4-chloro-3-methylphenol ND 200 UG/K6 8270 09/11/2008 04.05 MD 4-chloro-similine ND 200 UG/K6 8270 09/11/2008 04.05 MD 4-Witroaniline ND 200 UG/K6 8270 09/11/2008 04.05 MD 4-witrophenol ND 390 UG/K6 8270 09/11/2008 04.05 MD Acenaphthylene ND 200 UG/K6 8270	2-Methylnaphthalene	590		200	UG/KG	8270	09/11/2008 04:05	MD
2-Nitrophenol ND 200 U/A 8270 09/11/2008 04.05 MD 3.3 ⁻ Dichlorobenzidine ND 200 Ud/K6 8270 09/11/2008 04.05 MD 3.4 ⁻ Dichlorobenzidine ND 300 Ud/K6 8270 09/11/2008 04.05 MD 4.6 ⁻ Dinitro-2 ⁻ methylphenol ND 300 Ud/K6 8270 09/11/2008 04.05 MD 4. ⁻ Chloro-3 ⁻ methylphenol ND 200 Ud/K6 8270 09/11/2008 04.05 MD 4 ⁻ Chloro-3 ⁻ methylphenol ND 200 Ud/K6 8270 09/11/2008 04.05 MD 4 ⁻ Chloro-3 ⁻ methylphenol ND 200 Ud/K6 8270 09/11/2008 04.05 MD 4 ⁻ Methylphenol ND 390 Ud/K6 8270 09/11/2008 04.05 MD 4 ⁻ Nitrophenol ND 390 Ud/K6 8270 09/11/2008 04.05 MD Accaphenone ND 200 Ud/K6	2-Methylphenol	ND		200	UG/KG	8270	09/11/2008 04:05	MD
3,3'-Dichlorobenzidine ND 200 U6/KG 8270 09/11/2008 04.05 MD 3-Hitroaniline ND 390 U6/KG 8270 09/11/2008 04.05 MD 4,6-Diniror2-methylphenol ND 390 U6/KG 8270 09/11/2008 04.05 MD 4-Chloro-3-methylphenol ND 200 U6/KG 8270 09/11/2008 04.05 MD 4-Chloroaniline ND 200 U6/KG 8270 09/11/2008 04.05 MD 4-Chloroaniline ND 200 U6/KG 8270 09/11/2008 04.05 MD 4-Mitroaniline ND 200 U6/KG 8270 09/11/2008 04.05 MD 4-Nitroaniline ND 390 U6/KG 8270 09/11/2008 04.05 MD 4-Nitroaniline ND 200 U6/KG 8270 09/11/2008 04.05 MD 4-Nitroaniline ND 200 U6/KG 8270 09/	2-Nitroaniline	ND		390	UG/KG	8270	09/11/2008 04:05	MD
3.3 ⁺ Dichlorobenzidine ND 200 Us/ks 8270 09/11/2008 04:05 MD 3-Nitroaniline ND 390 Us/ks 8270 09/11/2008 04:05 MD 4.6-Diniror3-methylphenol ND 390 Us/ks 8270 09/11/2008 04:05 MD 4-chloror3-methylphenol ND 200 Us/ks 8270 09/11/2008 04:05 MD 4-chloroshinyl phenyl ether ND 200 Us/ks 8270 09/11/2008 04:05 MD 4-chlorophenyl phenyl ether ND 200 Us/ks 8270 09/11/2008 04:05 MD 4-Nitroaniline ND 390 Us/ks 8270 09/11/2008 04:05 MD 4-Nitroaniline ND 390 Us/ks 8270 09/11/2008 04:05 MD Acenapthenel ND 200 Us/ks 8270 09/11/2008 04:05 MD Acenapthylene ND 200 Us/ks 8270 09/11/2008 04:05 MD Acenapthylene ND 200	2-Nitrophenol	ND		200	UG/KG	8270	09/11/2008 04:05	MD
3-Mitroaniline ND 390 Ug/kG 8270 09/11/2008 04:05 MD 4,6-Dinitro-2-methylphenol ND 390 UG/KG 8270 09/11/2008 04:05 MD 4-Bromophnyl phenyl ether ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-chloro-fmethylphenol ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-chloro-fmethylphenol ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-chloro-fneyl phenyl ether ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Mitrophenol ND 390 UG/KG 8270 09/11/2008 04:05 MD 4-Mitrophenol ND 390 UG/KG 8270 09/11/2008 04:05 MD Acenaphthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Acenaphthylene ND 200 UG/KG 8270 09/11/2008 04:05 MD Acenaphthylene ND 200	3,3'-Dichlorobenzidine	ND		200	UG/KG	8270		
4,6-binitro-2=methylphenol ND 390 UG/KG 8270 09/11/2008 04:05 MD 4-BromophenyL phenyl ether ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Chloro-3=methylphenol ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Chloro-3=methylphenol ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-ChlorophenyL phenyl ether ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Nitroaniline ND 390 UG/KG 8270 09/11/2008 04:05 MD Acenaphthene ND 390 UG/KG 8270 09/11/2008 04:05 MD Acenaphthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Acenaphthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Acenaphthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Acetophenone ND 20	3-Nitroaniline	ND		390	UG/KG	8270		
4-Bromophenyl phenyl ether ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Chloro-3-methylphenol ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Chloro-amethylphenol ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Chlorophenyl phenyl ether ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Mitroaniline ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Nitroaniline ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Nitroaniline ND 200 UG/KG 8270 09/11/2008 04:05 MD Acenaphthylene ND 200 UG/KG 8270 09/11/2008 04:05 MD Aceophenone ND 200 UG/KG 8270 09/11/2008 04:05 MD Atrazine ND 200 UG/KG 8270	4,6-Dinitro-2-methylphenol	ND		390	UG/KG	8270		
4-chloro-3-methylphenol ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-chloroaniline ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-chloroaniline ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Mitroaniline ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Mitroaniline ND 390 UG/KG 8270 09/11/2008 04:05 MD 4-Nitrophenol ND 390 UG/KG 8270 09/11/2008 04:05 MD Acenaphthene 11 J 200 UG/KG 8270 09/11/2008 04:05 MD Acenaphthylene ND 200 UG/KG 8270 09/11/2008 04:05 MD Acetophenone ND 200 UG/KG 8270 09/11/2008 04:05 MD Acetophenone ND 200 UG/KG 8270 09/11/2008 04:05 MD Acetophenone ND 200 UG/KG <td>4-Bromophenyl phenyl ether</td> <td>ND</td> <td></td> <td>200</td> <td></td> <td>8270</td> <td></td> <td></td>	4-Bromophenyl phenyl ether	ND		200		8270		
4-Chloroaniline ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Chlorophenyl phenyl ether ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-methylphenol ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Nitrophenol ND 390 UG/KG 8270 09/11/2008 04:05 MD 4-Nitrophenol ND 390 UG/KG 8270 09/11/2008 04:05 MD Acenaphthylene ND 200 UG/KG 8270 09/11/2008 04:05 MD Acenaphthylene ND 200 UG/KG 8270 09/11/2008 04:05 MD Actatophenone ND 200 UG/KG 8270 09/11/2008 04:05 MD Attrazine ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzol@hytene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzol@hytene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzol@hytene ND 200 <t< td=""><td>4-Chloro-3-methylphenol</td><td>ND</td><td></td><td>200</td><td></td><td>8270</td><td></td><td></td></t<>	4-Chloro-3-methylphenol	ND		200		8270		
4-chlorophenyl phenyl phenyl phenyl phenyl phenyl ND 200 Ug/KG 8270 09/11/2008 04:05 MD 4-methylphenol ND 390 Ug/KG 8270 09/11/2008 04:05 MD 4-Nitrophenol ND 390 Ug/KG 8270 09/11/2008 04:05 MD Acenaphthene 11 J 200 Ug/KG 8270 09/11/2008 04:05 MD Acenaphthene 11 J 200 Ug/KG 8270 09/11/2008 04:05 MD Acetophenone ND 200 Ug/KG 8270 09/11/2008 04:05 MD Anthracene ND 200 Ug/KG 8270 09/11/2008 04:05 MD Benza(da)ptde ND 200 Ug/KG 8270 09/11/2008 04:05 MD Benza(da)ptde ND 200 Ug/KG 8270 09/11/2008 04:05 MD Benzo(A)anthracene ND 200 Ug/KG 8270 09/11/2008 04:05 MD Benzo(A)fluoranthene <td< td=""><td>4-Chloroaniline</td><td>ND</td><td></td><td>200</td><td></td><td></td><td></td><td></td></td<>	4-Chloroaniline	ND		200				
4-Methylphenol ND 200 UG/KG 8270 09/11/2008 04:05 MD 4-Nitroaniline ND 390 UG/KG 8270 09/11/2008 04:05 MD 4-Nitrophenol ND 390 UG/KG 8270 09/11/2008 04:05 MD Acenaphthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Acenaphthylene ND 200 UG/KG 8270 09/11/2008 04:05 MD Acenaphthylene ND 200 UG/KG 8270 09/11/2008 04:05 MD Actazine ND 200 UG/KG 8270 09/11/2008 04:05 MD Benza(dahyde ND 200 UG/KG 8270 09/11/2008 04:05 MD Benza(abhyrene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benza(abhyrene ND 200 UG/KG 8270 09/11/2008 04:05	4-Chlorophenyl phenyl ether	ND		200				
4-Nitroaniline ND 390 U6/K6 8270 09/11/2008 04:05 MD 4-Nitrophenol ND 390 U6/K6 8270 09/11/2008 04:05 MD Acenaphthene 11 J 200 U6/K6 8270 09/11/2008 04:05 MD Acenaphthylene ND 200 U6/K6 8270 09/11/2008 04:05 MD Acenaphthylene ND 200 U6/K6 8270 09/11/2008 04:05 MD Acetophenone ND 200 U6/K6 8270 09/11/2008 04:05 MD Benzaldehyde ND 200 U6/K6 8270 09/11/2008 04:05 MD Benzo(a)anthracene ND 200 U6/K6 8270 09/11/2008 04:05 MD Benzo(b)fluoranthene ND 200 U6/K6 8270 09/11/2008 04:05 MD Benzo(k)fluoranthene ND 200 U6/K6 8270 09/11	4-Methylphenol	ND		200	-			
4-Nitrophenol ND 390 UG/KG 8270 09/11/2008 04:05 MD Acenaphthene 11 J 200 UG/KG 8270 09/11/2008 04:05 MD Acenaphthylene ND 200 UG/KG 8270 09/11/2008 04:05 MD Acetophenone ND 200 UG/KG 8270 09/11/2008 04:05 MD Anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzofa)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzofa)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzofa)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzofa)thuranthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethxy) methane ND 200 UG/KG 8270	4-Nitroaniline	ND		390			-	
Acenaphthene 11 J 200 UG/KG 8270 09/11/2008 04:05 MD Acenaphthylene ND 200 UG/KG 8270 09/11/2008 04:05 MD Acenaphthylene ND 200 UG/KG 8270 09/11/2008 04:05 MD Acetophenone ND 200 UG/KG 8270 09/11/2008 04:05 MD Anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzoldahrde ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzolapyrene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzolyluoranthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzolyluoranthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethxy) methane ND 200 UG/KG 8270 09/11	4-Nitrophenol	ND		390	· · · ·			
Acenaphthylene ND 200 UG/KG 8270 09/11/2008 04:05 MD Acetophenone ND 200 UG/KG 8270 09/11/2008 04:05 MD Antracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Atrazine ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzaldehyde ND 200 UG/KG 8270 09/11/2008 04:05 MD Benza(a)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(a)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(b)fluoranthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethoxy) methane ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethy!) ether ND 200 UG/KG 8270 09/11/2008<	Acenaphthene	11	J	200				
Acetophenone ND 200 UG/KG 8270 09/11/2008 04:05 MD Anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Atrazine ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzaldehyde ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(a)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(a)apyrene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(b)fluoranthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(k)fluoranthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis/perylene ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis/2-chloroethoxy) methane ND 200 UG/KG 8270 09/11/2008	AcenaphthyLene	ND						
Anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Atrazine ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzaldehyde ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(a)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(a)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(a)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(b)fluoranthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(k)fluoranthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethyr)methane ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethyr) methane ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethyr) phthalate 98 <t< td=""><td>Acetophenone</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Acetophenone							
Atrazine ND 200 Ug/kG 8270 09/11/2008 04:05 MD Benzaldehyde ND 200 UG/KG 8270 09/11/2008 04:05 MD Benza(a)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(a)apyrene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(b)fluoranthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(b)fluoranthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(k)fluoranthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(k)fluoranthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethxy) methane ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethxy) methane ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethxy) methane ND	Anthracene	ND						
Benzaldehyde ND 200 UG/KG 8270 O9/11/2008 04:05 MD Benzo(a)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(a)apyrene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(a)pyrene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(b)fluoranthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(ghi)perylene ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2chloroethoxy) methane ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethoxy) methane ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethyl) ether ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethyl) phthalate 98 J 200 <	Atrazine				•			
Benzo(a) anthracene ND 200 Us/KG 8270 09/11/2008 04/05 MD Benzo(a) pyrene ND 200 Us/KG 8270 09/11/2008 04/05 MD Benzo(a) pyrene ND 200 Us/KG 8270 09/11/2008 04/05 MD Benzo(b) fluoranthene ND 200 Ug/KG 8270 09/11/2008 04/05 MD Benzo(k) fluoranthene ND 200 Ug/KG 8270 09/11/2008 04/05 MD Biphenyl ND 200 Ug/KG 8270 09/11/2008 04/05 MD Bis(2-chloroethxy) methane ND 200 Ug/KG 8270 09/11/2008 04/05 MD Bis(2-chloroethyl) ether ND 200 Ug/KG 8270 09/11/2008 04/05 MD Bis(2-chloroethyl) phthalate 98 J 200 Ug/KG 8270 09/11/2008 04/05 MD Bis(2-chloroethyl) phthalate 98 J	Benzaldehyde							
Benzo(a)pyrene ND 200 UG/KG 8270 09/11/208 04:05 MD Benzo(b)fluoranthene ND 200 UG/KG 8270 09/11/208 04:05 MD Benzo(ghi)perylene ND 200 UG/KG 8270 09/11/208 04:05 MD Benzo(ghi)perylene ND 200 UG/KG 8270 09/11/208 04:05 MD Biphenyl ND 200 UG/KG 8270 09/11/208 04:05 MD Bis(2-chloroethoxy) methane ND 200 UG/KG 8270 09/11/208 04:05 MD Bis(2-chloroethyl) ether ND 200 UG/KG 8270 09/11/208 04:05 MD Bis(2-chloroethyl) ether ND 200 UG/KG 8270 09/11/208 04:05 MD Bis(2-chloroethyl) phthalate 98 J 200 UG/KG 8270 09/11/208 04:05 MD Butyl benzyl phthalate ND 200 UG/KG	-							
Benzo(b)fluoranthene ND 200 UG/KG 8270 09/11/2008 04105 MD Benzo(ghi)perylene ND 200 UG/KG 8270 09/11/2008 04105 MD Benzo(ghi)perylene ND 200 UG/KG 8270 09/11/2008 04105 MD Benzo(k)fluoranthene ND 200 UG/KG 8270 09/11/2008 04105 MD Bisphenyl ND 200 UG/KG 8270 09/11/2008 04105 MD Bis(2-chloroethoxy) methane ND 200 UG/KG 8270 09/11/2008 04105 MD Bis(2-chloroethyl) ether ND 200 UG/KG 8270 09/11/2008 04105 MD Butyl benzyl phthalate 98 J 200 UG/KG 8270 09/11/2008 04105 MD Garolactam ND 200 UG/KG 8270 09/11/2008 04105 MD Chrysene ND 200 UG/KG					-			
Benzo(ghi)perylene ND 200 UG/KG 8270 09/11/2008 04:05 MD Benzo(k)fluoranthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Biphenyl ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis/2-chloroethoxy) methane ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethoxy) methane ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethyl) ether ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-ethylhexyl) phthalate 98 J 200 UG/KG 8270 09/11/2008 04:05 MD Butyl benzyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Caprolactam ND 200 UG/KG 8270 09/11/2008 04:05 MD Chrysene ND 200 UG/KG </td <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td>					•			
Benzo(k)fluoranthene ND 200 UG/KG 8270 09/11/2008 04:05 MD Biphenyl ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethoxy) methane ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethoxy) methane ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethyl) ether ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-ethylhexyl) phthalate 98 J 200 UG/KG 8270 09/11/2008 04:05 MD Butyl benzyl phthalate 98 J 200 UG/KG 8270 09/11/2008 04:05 MD Caprolactam ND 200 UG/KG 8270 09/11/2008 04:05 MD Chrysene ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Biphenyl ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethoxy) methane ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethyl) ether ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethyl) ether ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-ethylhexyl) phthalate 98 J 200 UG/KG 8270 09/11/2008 04:05 MD Butyl benzyl phthalate 98 J 200 UG/KG 8270 09/11/2008 04:05 MD Gaprolactam ND 200 UG/KG 8270 09/11/2008 04:05 MD Chrysene ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-octyl phthalate ND 200								
Bis(2-chloroethoxy) methane ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-chloroethyl) ether ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-ethylhexyl) phthalate 98 J 200 UG/KG 8270 09/11/2008 04:05 MD Butyl benzyl phthalate 98 J 200 UG/KG 8270 09/11/2008 04:05 MD Caprolactam ND 200 UG/KG 8270 09/11/2008 04:05 MD Carbazole ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-ctyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzo(a,h)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD								
Bis(2-chloroethyl) ether ND 200 UG/KG 8270 09/11/2008 04:05 MD Bis(2-ethylhexyl) phthalate 98 J 200 UG/KG 8270 09/11/2008 04:05 MD Butyl benzyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Caprolactam ND 200 UG/KG 8270 09/11/2008 04:05 MD Carbazole ND 200 UG/KG 8270 09/11/2008 04:05 MD Chrysene ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-octyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzo(a,h)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzofuran 16							· •	
Bis(2-ethylhexyl) phthalate 98 J 200 UG/KG 8270 09/11/2008 04:05 MD Butyl benzyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Caprolactam ND 200 UG/KG 8270 09/11/2008 04:05 MD Carbazole ND 200 UG/KG 8270 09/11/2008 04:05 MD Chrysene ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-octyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzo(a,h)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzofuran 16 J 200 UG/KG 8270 09/11/2008 04:05 MD Diethyl phthalate <								
Butyl benzyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Caprolactam ND 200 UG/KG 8270 09/11/2008 04:05 MD Carbazole ND 200 UG/KG 8270 09/11/2008 04:05 MD Chrysene ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-octyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzo(a,h)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzofuran 16 J 200 UG/KG 8270 09/11/2008 04:05 MD Diethyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD	-		1					
Caprolactam ND 200 UG/KG 8270 09/11/2008 04:05 MD Carbazole ND 200 UG/KG 8270 09/11/2008 04:05 MD Chrysene ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-octyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzo(a,h)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzofuran 16 J 200 UG/KG 8270 09/11/2008 04:05 MD Diethyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD			v					
Carbazole ND 200 UG/KG 8270 09/11/2008 04:05 MD Chrysene ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-octyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzo(a,h)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzofuran 16 J 200 UG/KG 8270 09/11/2008 04:05 MD Diethyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD					· · · · · · · · · · · · · · · · · · ·			
Chrysene ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-octyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzo(a,h)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzofuran 16 J 200 UG/KG 8270 09/11/2008 04:05 MD Diethyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD								
Di-n-butyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Di-n-octyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzo(a,h)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzo(a,h)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzofuran 16 J 200 UG/KG 8270 09/11/2008 04:05 MD Diethyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD					-			
Di-n-octyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzo(a,h)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzofuran 16 J 200 UG/KG 8270 09/11/2008 04:05 MD Diethyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD					-			
Dibenzo(a,h)anthracene ND 200 UG/KG 8270 09/11/2008 04:05 MD Dibenzofuran 16 J 200 UG/KG 8270 09/11/2008 04:05 MD Diethyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD					-			
Dibenzofuran 16 J 200 UG/KG 8270 09/11/2008 04:05 MD Diethyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD								
Diethyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD			,					
			J					
Dimethyl phthalate ND 200 UG/KG 8270 09/11/2008 04:05 MD								
	vimetnyl phinalate	ND		200	UG/KG	8270	09/11/2008 04:05	i MD

Date Received: 09/06/2008

Project No: NY8A9801

Client No: 423943

Site No:

Nichol Inn ERP Site (Category B)

Sample ID: NI-B-12-12D Lab Sample ID: A8A88806 Date Collected: 09/04/2008 Time Collected: 15:40

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							<u></u>
Fluoranthene	ND		200	UG/KG	8270	09/11/2008 04:05	MD
Fluorene	18	J	200	UG/KG	8270	09/11/2008 04:05	
HexachLorobenzene	ND		200	UG/KG	8270	09/11/2008 04:05	
Hexachlorobutadiene	ND		200	UG/KG	8270	09/11/2008 04:05	
Hexachlorocyclopentadiene	ND		200	UG/KG	8270	09/11/2008 04:05	
HexachLoroethane	ND		200	UG/KG	8270	09/11/2008 04:05	
Indeno(1,2,3-cd)pyrene	ND		200	UG/KG	8270	09/11/2008 04:05	
Isophorone	ND		200	UG/KG	8270	09/11/2008 04:05	
N-Nitroso-Di-n-propylamine	ND		200	UG/KG	8270	09/11/2008 04:05	
N-nitrosodiphenylamine	ND		200	UG/KG	8270	09/11/2008 04:05	
Naphthalene	410		200	UG/KG	8270	09/11/2008 04:05	
Nitrobenzene	ND		200	UG/KG	8270	09/11/2008 04:05	
Pentachlorophenol	ND		390	UG/KG	8270	09/11/2008 04:05	
Phenanthrene	14	J	200	UG/KG	8270	09/11/2008 04:05	
Phenol	ND		200	UG/KG	8270	09/11/2008 04:05	
Pyrene	ND		200	UG/KG	8270	09/11/2008 04:05	
				•			
SOIL - SW8463 8081 - TCL PESTICIDES							
4,4'-DDD	ND		9.8	UG/KG	8081	09/27/2008 13:58	тсн
4,4'-DDE	ND		9.8	UG/KG	8081	09/27/2008 13:58	тсн
4,4'-DDT	ND		9.8	UG/KG	8081	09/27/2008 13:58	тсн
Aldrin	3.7	J	9.8	UG/KG	8081	09/27/2008 13:58	тсн
alpha-BHC	ND		9.8	UG/KG	8081	09/27/2008 13:58	
beta-BHC	11		9.8	UG/KG	8081	09/27/2008 13:58	тсн
Chlordane	ND		98	UG/KG	8081	09/27/2008 13:58	тсн
delta-BHC	ND		9.8	UG/KG	8081	09/27/2008 13:58	тсн
Dieldrin	ND		9.8	UG/KG	8081	09/27/2008 13:58	тсн
Endosulfan I	ND		9.8	UG/KG	8081	09/27/2008 13:58	тсн
Endosulfan II	ND		9.8	UG/KG	8081	09/27/2008 13:58	тсн
Endosulfan Sulfate	ND		9.8	UG/KG	8081	09/27/2008 13:58	тсн
Endrin	ND		9.8	UG/KG	8081	09/27/2008 13:58	тсн
Endrin aldehyde	ND		9.8	UG/KG	8081	09/27/2008 13:58	тсн
gamma-BHC (Lindane)	14		9.8	UG/KG	8081	09/27/2008 13:58	тсн
Heptachlor	ND		9.8	UG/KG	8081	09/27/2008 13:58	тсн
Heptachlor epoxide	ND		9.8	UG/KG	8081	09/27/2008 13:58	тсн
Methoxychlor	ND		9.8	UG/KG	8081	09/27/2008 13:58	тсн
Toxaphene	ND		98	UG/KG	8081	09/27/2008 13:58	з тсн
SOIL - SW8463 8082 - PCBS							
Aroclor 1016	ND		20	UG/KG	8082	09/11/2008 10:22	GFD
Aroclor 1221	ND		20	UG/KG	8082	09/11/2008 10:22	
Aroclor 1232	ND		20	ug/kg	8082	09/11/2008 10:22	GFD
Aroclor 1242	ND		20	UG/KG	8082	09/11/2008 10:22	GFD GFD
Aroclor 1248	ND		20	UG/KG	8082	09/11/2008 10:22	
Aroclor 1254	ND		20	UG/KG	8082	09/11/2008 10:22	2 GFD
Aroclor 1260	ND		20	UG/KG	8082	09/11/2008 10:22	2 GFD
Metals Analysis						<i>.</i> .	
Aluminum - Total	14800	EN	12.3	MG/KG	6010	09/09/2008 17:13	3

Sample ID: NI-B-12-12D Lab Sample ID: A8A88806 Date Collected: 09/04/2008 Time Collected: 15:40

			Detection		Date/Time			
Parameter	Result	Flag	Limit	Units	Method	AnalyzedAnalyst		
Metals Analysis								
Antimony – Total	ND	N	18.5	MG/KG	6010	09/09/2008 17:13		
Arsenic – Total	8.7	N	2,5	мс/кс	6010	09/09/2008 17:13		
Barium – Total	86.2	EN	0.62	MG/KG	6010	09/09/2008 17:13		
Beryllium – Total	0.78	N	0.25	MG/KG	6010	09/09/2008 17:13		
Cadmium – Total	0.25	N	0.25	MG/KG	6010	09/09/2008 17:13		
Calcium – Total	1600	EN*	61.6	MG/KG	6010	09/09/2008 17:13		
Chromium - Total	20.9	EN	0.62	MG/KG	6010	09/09/2008 17:13		
Cobalt – Total	13.9	EN	0,62	MG/KG	6010	09/09/2008 17:13		
Copper – Total	26.2	EN	1.2	MG/KG	6010	09/09/2008 17:13		
Iron – Total	32400	Ε	12.3	MG/KG	6010	09/09/2008 17:13		
Lead - Total	20.6	EN	1.2	MG/KG	6010	09/09/2008 17:13		
Magnesium – Total	4810	EN*	24.6	MG/KG	6010	09/09/2008 17:13		
Manganese – Total	596	E*	0.25	MG/KG	6010	09/09/2008 17:13		
Mercury – Total	0.028		0.025	MG/KG	7471	09/09/2008 14:10		
Nickel – Total	37.5	EN	0.62	MG/KG	6010	09/09/2008 17:13		
Potassium – Total	1730	EN	37.0	MG/KG	6010	09/09/2008 17:13		
Selenium – Total	ND	N	4.9	MG/KG	6010	09/09/2008 17:13		
Silver – Total	ND	N	0.62	MG/KG	6010	09/09/2008 17:13		
Sodium – Total	ND	N	173	MG/KG	6010	09/09/2008 17:13		
Thallium – Total	ND	N	7.4	MG/KG	6010	09/09/2008 17:13		
Vanadium - Total	23.8	EN	0.62	MG/KG	6010	09/09/2008 17:13		
Zinc – Total	86.1	EN	2,5	MG/KG	6010	09/09/2008 17:13		

_

Nichol Inn ERP Site (Category B)

Sample ID: NI-B-12-12D DL Lab Sample ID: A8A88806DL Date Collected: 09/04/2008 Time Collected: 15:40

	DetectionD					Date/Time	-
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		510	UG/KG	8260	09/09/2008 19:56	RJ
1,1,2,2-Tetrachloroethane	ND		510	UG/KG	8260	09/09/2008 19:56	RJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		510	UG/KG	8260	09/09/2008 19:56	RJ
1,1,2-Trichloroethane	ND		510	UG/KG	8260	09/09/2008 19:56	
1,1-Dichloroethane	ND		510	UG/KG	8260	09/09/2008 19:56	RJ
1,1-Dichloroethene	ND		510	UG/KG	8260	09/09/2008 19:56	RJ
1,2,4-Trichlorobenzene	ND		510	UG/KG	8260	09/09/2008 19:56	
1,2-Dibromo-3-chloropropane	ND		510	UG/KG	8260	09/09/2008 19:56	
1,2-Dibromoethane	ND		510	UG/KG	8260	09/09/2008 19:56	
1,2-Dichlorobenzene	ND		510	UG/KG	8260	09/09/2008 19:56	
1,2-Dichloroethane	ND		510	UG/KG	8260	09/09/2008 19:56	
1,2-Dichloropropane	ND		510	UG/KG	8260	09/09/2008 19:56	
1,3-Dichlorobenzene	ND		510	UG/KG	8260	09/09/2008 19:56	
1,4-Dichlorobenzene	ND		510	UG/KG	8260	09/09/2008 19:56	
2-Butanone	ND		2600	UG/KG	8260	09/09/2008 19:56	
2-Hexanone	ND		2600	UG/KG	8260	09/09/2008 19:56	
4-Methyl-2-pentanone	ND		2600	UG/KG	8260	09/09/2008 19:56	
Acetone	ND		2600	UG/KG	8260	09/09/2008 19:50	
Benzene	ND		510	UG/KG	8260	09/09/2008 19:56	
Bromodichloromethane	ND		510	UG/KG	8260	09/09/2008 19:50	
Bromoform	ND		510	UG/KG	8260	09/09/2008 19:50	
Bromomethane	ND		510	UG/KG	8260	09/09/2008 19:50	
Carbon Disulfide	ND		510	UG/KG	8260	09/09/2008 19:50	
Carbon Tetrachloride	ND		510	UG/KG	8260	09/09/2008 19:50	
Chlorobenzene	ND		510	UG/KG	8260	09/09/2008 19:50	
Chloroethane	ND		510	UG/KG	8260	09/09/2008 19:50	
Chloroform	ND		510	UG/KG	8260	09/09/2008 19:50	
Chloromethane	ND		510	UG/KG	8260	09/09/2008 19:50	
cis-1,2-Dichloroethene	ND		510	UG/KG	8260	09/09/2008 19:50	
cis-1,3-Dichloropropene	ND		510	UG/KG	8260	09/09/2008 19:50	
Cyclohexane	1200	D	510	UG/KG	8260	09/09/2008 19:5	
Dibromochloromethane	ND	-	510	UG/KG	8260	09/09/2008 19:5	
Dichlorodifluoromethane	ND		510	UG/KG	8260	09/09/2008 19:5	
Ethylbenzene	1200	D	510	UG/KG	8260	09/09/2008 19:5	
Isopropylbenzene	470	DJ	510	UG/KG	8260	09/09/2008 19:5	
Methyl acetate	ND		510	UG/KG	8260	09/09/2008 19:5	
Methyl-t-Butyl Ether (MTBE)	ND		510	UG/KG	8260	09/09/2008 19:5	
Methylcyclohexane	3700	D	510	UG/KG	8260	09/09/2008 19:5	
Methylene chloride	ND	-	510	UG/KG	8260	09/09/2008 19:5	
Styrene	ND		510	UG/KG	8260	09/09/2008 19:5	
Tetrachloroethene	ND		510	UG/KG	8260	09/09/2008 19:5	
Toluene	ND		510	UG/KG	8260	09/09/2008 19:5	
Total Xylenes	5600	D	1500	UG/KG	8260	09/09/2008 19:5	
trans-1,2-Dichloroethene	ND	-	510	UG/KG	8260	09/09/2008 19:5	
trans-1,3-Dichloropropene	ND		510	UG/KG	8260	09/09/2008 19:5	
Trichloroethene	ND		510	UG/KG	8260	09/09/2008 19:5	
Trichlorofluoromethane	ND		510	UG/KG	8260	09/09/2008 19:5	
Vinyl chloride	ND		1000	UG/KG	8260	09/09/2008 19:5	

Sample ID: NI-B-14-12.5 Lab Sample ID: A8A88808 Date Collected: 09/04/2008 Time Collected: 14:20

Parameter	Detection				Date/Time		
	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	<u>Analyst</u>
SOIL - SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		26	UG/KG	8260	09/08/2008 18:50	LH
1,1,2,2-Tetrachloroethane	ND		26	UG/KG	8260	09/08/2008 18:50	LH
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		26	UG/KG	8260	09/08/2008 18:50	LH
1,1,2-Trichloroethane	ND		26	UG/KG	8260	09/08/2008 18:50	LH
1,1-Dichloroethane	ND		26	UG/KG	8260	09/08/2008 18:50	LH
1,1-Dichloroethene	ND		26	UG/KG	8260	09/08/2008 18:50	LH
1,2,4-Trichlorobenzene	ND		26	UG/KG	8260	09/08/2008 18:50	LH
1,2-Dibromo-3-chloropropane	ND		26	UG/KG	8260	09/08/2008 18:50	LH
1,2-Dibromoethane	ND		26	UG/KG	8260	09/08/2008 18:50	LH
1,2-Dichlorobenzene	ND		26	UG/KG	8260	09/08/2008 18:50	LH
1,2-Dichloroethane	ND		26	UG/KG	8260	09/08/2008 18:50	LH
1,2-Dichloropropane	ND		26	UG/KG	8260	09/08/2008 18:50	LH
1,3-Dichlorobenzene	ND		26	UG/KG	8260	09/08/2008 18:50	
1,4-Dichlorobenzene	ND		26	UG/KG	8260	09/08/2008 18:50	LH
2-Butanone	ND		130	UG/KG	8260	09/08/2008 18:50	
2-Hexanone	ND		130	UG/KG	8260	09/08/2008 18:50	
4-Methyl-2-pentanone	ND		130	UG/KG	8260	09/08/2008 18:50	
Acetone	ND		130	UG/KG	8260	09/08/2008 18:50	
Benzene	8	J	26	UG/KG	8260	09/08/2008 18:50	
Bromodichloromethane	ND		26	ug/kg	8260	09/08/2008 18:50	
Bromoform	ND		26	UG/KG	8260	09/08/2008 18:50	
Bromomethane	ND		26	UG/KG	8260	09/08/2008 18:50	
Carbon Disulfide	6	J	, 26	UG/KG	8260	09/08/2008 18:50	
Carbon Tetrachloride	ND		26	UG/KG	8260	09/08/2008 18:50	
Chlorobenzene	ND		26	UG/KG	8260	09/08/2008 18:50	LH
Chloroethane	ND		26	UG/KG	8260	09/08/2008 18:50	LH
Chloroform	ND		26	UG/KG	8260	09/08/2008 18:50	
Chloromethane	ND		26	UG/KG	8260	09/08/2008 18:50	
cis-1,2-Dichloroethene	ND		26	UG/KG	8260	09/08/2008 18:50	LH
cis-1,3-Dichloropropene	ND		26	UG/KG	8260	09/08/2008 18:50	LH
Cyclohexane	2800	Е	26	UG/KG	8260	09/08/2008 18:50	LH
Dibromochloromethane	ND		26	UG/KG	8260	09/08/2008 18:50	
Dichlorodifluoromethane	ND		26	UG/KG	8260	09/08/2008 18:50	LH
Ethylbenzene	1500	E	26	UG/KG	8260	09/08/2008 18:50	
Isopropylbenzene	290		26	UG/KG	8260	09/08/2008 18:50	LH
Methyl acetate	ND		26	UG/KG	8260	09/08/2008 18:50	
Methyl-t-Butyl Ether (MTBE)	ND		26	UG/KG	8260	09/08/2008 18:50	
Methylcyclohexane	4500	Е	26	UG/KG	8260	09/08/2008 18:50	LH
Methylene chloride	ND		26	UG/KG	8260	09/08/2008 18:50	LH
Styrene	ND		26	ug/kg	8260	09/08/2008 18:50	LH
Tetrachloroethene	ND		26	UG/KG	8260	09/08/2008 18:50	LH
Toluene	210	В	26	UG/KG	8260	09/08/2008 18:50	
Total Xylenes	5200	E	79	UG/KG	8260	09/08/2008 18:50	
trans-1,2-Dichloroethene	ND		26	UG/KG	8260	09/08/2008 18:50	
trans-1,3-Dichloropropene	ND		26	ug/kg	8260	09/08/2008 18:50	
TrichLoroethene	ND		26	UG/KG	8260	09/08/2008 18:50	
Trichlorofluoromethane	ND		26	UG/KG	8260	09/08/2008 18:50	
Vinyl chloride	ND		53	UG/KG	8260	09/08/2008 18:50	

Date Received: 09/06/2008

Project No: NY8A9801

Client No: 423943

-----Date/Time--

Site No:

Nichol Inn ERP Site (Category B)

Detection

Sample ID: NI-B-14-12.5 Lab Sample ID: A8A88808 Date Collected: 09/04/2008 Time Collected: 14:20

Parameter			Detection		Date/Time		-
	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		190	UG/KG	8270	09/11/2008 05:36	
2,4,5-Trichlorophenol	ND		190	UG/KG	8270	09/11/2008 05:36	
2,4,6-Trichlorophenol	ND		190	UG/KG	8270	09/11/2008 05:36	MD
2,4-Dichlorophenol	ND		190	UG/KG	8270	09/11/2008 05:36	MD
2,4-Dimethylphenol	ND		190	UG/KG	8270	09/11/2008 05:36	MD
2,4-Dinitrophenol	ND		360	UG/KG	8270	09/11/2008 05:36	MD
2,4-Dinitrotoluene	ND		190	UG/KG	8270	09/11/2008 05:36	MD
2,6-Dinitrotoluene	ND		190	UG/KG	8270	09/11/2008 05:36	MD
2-Chloronaphthalene	ND		190	UG/KG	8270	09/11/2008 05:36	MD
2-Chlorophenol	ND		190	UG/KG	8270	09/11/2008 05:36	MD
2-Methylnaphthalene	170	J	190	UG/KG	8270	09/11/2008 05:36	MD
2-Methylphenol	ND		190	UG/KG	8270	09/11/2008 05:36	MD
2-Nitroaniline	ND		360	UG/KG	8270	09/11/2008 05:36	MD
2-Nitrophenol	ND		190	UG/KG	8270	09/11/2008 05:36	MD
3,3'-Dichlorobenzidine	ND		190	UG/KG	8270	09/11/2008 05:36	MD
3-Nitroaniline	ND		360	UG/KG	8270	09/11/2008 05:36	MD
4,6-Dinitro-2-methylphenol	ND		360	UG/KG	8270	09/11/2008 05:36	MD
4-Bromophenyl phenyl ether	ND		190	UG/KG	8270	09/11/2008 05:36	MD
4-Chloro-3-methylphenol	ND		190	UG/KG	8270	09/11/2008 05:36	MD
4-Chloroaniline	ND		190	UG/KG	8270	09/11/2008 05:36	MD
4-Chlorophenyl phenyl ether	ND		190	UG/KG	8270	09/11/2008 05:36	MD
4-Methylphenol	ND		190	ug/kg	8270	09/11/2008 05:36	MD
4-Nitroaniline	ND		360	UG/KG	8270	09/11/2008 05:36	MD
4-Nitrophenol	ND		360	UG/KG	8270	09/11/2008 05:36	MD
Acenaphthene	ND		190	UG/KG	8270	09/11/2008 05:36	MD
Acenaphthylene	ND		190	ug/kg	8270	09/11/2008 05:36	MD
Acetophenone	ND		190	UG/KG	8270	09/11/2008 05:36	MD
Anthracene	ND		190	UG/KG	8270	09/11/2008 05:36	5 MD
Atrazine	ND		190	UG/KG	8270	09/11/2008 05:36	5 MD
Benzaldehyde	ND		190	UG/KG	8270	09/11/2008 05:36	MD
Benzo(a)anthracene	ND		190	UG/KG	8270	09/11/2008 05:36	5 MD
Benzo(a)pyrene	ND		190	UG/KG	8270	09/11/2008 05:36	6 MD
Benzo(b)fluoranthene	ND		190	UG/KG	8270	09/11/2008 05:30	5 MD
Benzo(ghi)perylene	ND		190	UG/KG	8270	09/11/2008 05:30	5 MD
Benzo(k)fluoranthene	ND		190	UG/KG	8270	09/11/2008 05:30	
Biphenyl	ND		190	UG/KG	8270	09/11/2008 05:30	5 MD
Bis(2-chloroethoxy) methane	ND		190	UG/KG	8270	09/11/2008 05:30	
Bis(2-chloroethyl) ether	ND		190	UG/KG	8270	09/11/2008 05:30	
Bis(2-ethylhexyl) phthalate	90	J	190	ug/kg	8270	09/11/2008 05:30	
Butyl benzyl phthalate	ND		190	UG/KG	8270	09/11/2008 05:30	
Caprolactam	ND		190	UG/KG	8270	09/11/2008 05:30	
Carbazole	ND		190	UG/KG	8270	09/11/2008 05:30	
Chrysene	ND		190	UG/KG	8270	09/11/2008 05:30	
Di-n-butyl phthalate	ND		190	UG/KG	8270	09/11/2008 05:30	
Di-n-octyl phthalate	ND		190	UG/KG	8270	09/11/2008 05:3	
Dibenzo(a,h)anthracene	ND		190	UG/KG	8270	09/11/2008 05:3	
Dibenzofuran	ND		190	UG/KG	8270	09/11/2008 05:3	
						, ,	
Diethyl phthalate	ND		190	UG/KG	8270	09/11/2008 05:3	5 MD

Sample ID: NI-B-14-12.5 Lab Sample ID: A8A88808 Date Collected: 09/04/2008 Time Collected: 14:20

			Detection			Date/Time		
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analyst	
SOIL - SW8463 8270 - TCL SVOA ORGANICS								
Fluoranthene	ND		190	UG/KG	8270	09/11/2008 05:36	MD	
Fluorene	ND		190	UG/KG	8270	09/11/2008 05:36	MD	
Hexachlorobenzene	ND		190	UG/KG	8270	09/11/2008 05:36	MD	
Hexachlorobutadiene	ND		190	UG/KG	8270	09/11/2008 05:36	MD	
Hexachlorocyclopentadiene	ND		190	UG/KG	8270	09/11/2008 05:36	MD	
Hexachloroethane	ND		190	UG/KG	8270	09/11/2008 05:36	MD	
Indeno(1,2,3-cd)pyrene	ND		190	UG/KG	8270	09/11/2008 05:36	MD	
Isophorone	ND		190	UG/KG	8270	09/11/2008 05:36	MD	
N-Nitroso-Di-n-propylamine	ND		190	UG/KG	8270	09/11/2008 05:36	MD	
N-nitrosodiphenylamine	ND		190	UG/KG	8270	09/11/2008 05:36	MD	
Naphthalene	150	J	190	UG/KG	8270	09/11/2008 05:36	MD	
Nitrobenzene	ND		190	UG/KG	8270	09/11/2008 05:36	MD	
Pentachlorophenol	ND		360	UG/KG	8270	09/11/2008 05:36		
Phenanthrene	8	J	190	UG/KG	8270	09/11/2008 05:36	MD	
Phenol	ND		190	UG/KG	8270	09/11/2008 05:36	MD	
Pyrene	ND		190	UG/KG	8270	09/11/2008 05:36	MD	
SOIL - SW8463 8081 - TCL PESTICIDES								
4,4'-DDD	ND		9.2	UG/KG	8081	09/27/2008 14:34	тсн	
4,4'-DDE	2.7	J	9.2	UG/KG	8081	09/27/2008 14:34		
4,4'-DDT	ND		9.2	UG/KG	8081	09/27/2008 14:34		
Aldrin	ND		9.2	UG/KG	8081	09/27/2008 14:34		
alpha-BHC	ND		9.2	UG/KG	8081	09/27/2008 14:34		
beta-BHC	ND		9.2	UG/KG	8081	09/27/2008 14:34		
Chlordane	ND		92	UG/KG	8081	09/27/2008 14:34		
delta-BHC	ND		9.2	UG/KG	8081	09/27/2008 14:34		
Dieldrin	ND		9.2	UG/KG	8081	09/27/2008 14:34		
Endosulfan I	ND		9.2	UG/KG	8081	09/27/2008 14:34		
Endosulfan II	ND		9.2	UG/KG	8081	09/27/2008 14:34		
Endosulfan Sulfate	ND		9.2	UG/KG	8081	09/27/2008 14:34		
Endrin	ND		9.2	UG/KG	8081	09/27/2008 14:34		
Endrin aldehyde	ND		9.2	UG/KG	8081	09/27/2008 14:34		
gamma-BHC (Lindane)	ND		9.2	UG/KG	8081	09/27/2008 14:34		
Heptachlor	ND		9.2	UG/KG	8081	09/27/2008 14:34		
Heptachlor epoxide	ND		9.2	UG/KG	8081	09/27/2008 14:34		
Methoxychlor	ND		9.2	UG/KG	8081	09/27/2008 14:34		
Toxaphene	ND		92	UG/KG	8081	09/27/2008 14:34		
SOIL - SW8463 8082 - PCBS								
Aroclor 1016	ND		18	UG/KG	8082	09/11/2008 10:40	GFD	
Aroclor 1221	ND		18	UG/KG	8082	09/11/2008 10:40		
Aroclor 1232	ND		18	UG/KG	8082	09/11/2008 10:40		
Aroclor 1242	ND		18	UG/KG	8082	09/11/2008 10:40		
Aroclor 1248	ND		18	UG/KG	8082	09/11/2008 10:40		
Aroclor 1254	ND		18	UG/KG	8082	09/11/2008 10:40		
Aroclor 1260	ND		18	UG/KG	8082	09/11/2008 10:40		
Metals Analysis								
Aluminum - Total	13600	EN	12.1	MG/KG	6010	09/09/2008 17:45		
				,				

Sample ID: NI-B-14-12.5 Lab Sample ID: A8A88808 Date Collected: 09/04/2008 Time Collected: 14:20

			Detection		Date/Time			
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analyst	
Metals Analysis								
Antimony – Total	ND	N	18.1	MG/KG	6010	09/09/2008 17:45		
Arsenic – Total	7.1	N	2.4	MG/KG	6010	09/09/2008 17:45		
Barium – Total	59.4	EN	0.60	MG/KG	6010	09/09/2008 17:45		
Beryllium — Total	0.57	N	0.24	MG/KG	6010	09/09/2008 17:45		
Cadmium — Total	ND	N	0.24	MG/KG	6010	09/09/2008 17:45		
Calcium — Total	3050	EN*	60.5	MG/KG	6010	09/09/2008 17:45		
Chromium - Total	19.5	EN	0.60	MG/KG	6010	09/09/2008 17:45		
Cobalt – Total	11.1	EN	0.60	MG/KG	6010	09/09/2008 17:45		
Copper – Total	23.6	EN	1.2	MG/KG	6010	09/09/2008 17:45		
Iron – Total	30300	Е	12.1	MG/KG	6010	09/09/2008 17:45		
Lead – Total	10.6	EN	1.2	MG/KG	6010	09/09/2008 17:45		
Magnesium - Total	5270	EN*	24.2	мб/кб	6010	09/09/2008 17:45		
Manganese – Total	559	E*	0.24	MG/KG	6010	09/09/2008 17:45		
Mercury – Total	ND		0.021	MG/KG	7471	09/09/2008 14:21		
Nickel – Total	34.8	EN	0.60	MG/KG	6010	09/09/2008 17:45		
Potassium – Total	1470	EN	36.3	MG/KG	6010	09/09/2008 17:45		
Selenium - Total	ND	N	4.8	MG/KG	6010	09/09/2008 17:45		
Silver – Total	ND	N	0.60	MG/KG	6010	09/09/2008 17:45		
Sodium – Total	ND	N	169	MG/KG	6010	09/09/2008 17:45		
Thallium – Total	ND	N	7.3	MG/KG	6010	09/09/2008 17:45		
Vanadium – Total	20.3	EN	0.60	MG/KG	6010	09/09/2008 17:45		
Zinc – Total	84.7	EN	2.4	MG/KG	6010	09/09/2008 17:45		

Sample ID: NI-B-14-12.5 DL Lab Sample ID: A8A88808DL Date Collected: 09/04/2008 Time Collected: 14:20

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u> Units </u>	Method	Analyzed	Analyst
SOIL - SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		140	ug/kg	8260	09/11/2008 03:43	
1,1,2,2-Tetrachloroethane	ND		140	UG∕KG	8260	09/11/2008 03:43	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		140	UG/KG	8260	09/11/2008 03:43	
1,1,2-Trichloroethane	ND		140	UG/KG	8260	09/11/2008 03:43	
1,1-Dichloroethane	ND		140	UG/KG	8260	09/11/2008 03:43	
1,1-Dichloroethene	ND		140	UG/KG	8260	09/11/2008 03:43	
1,2,4-Trichlorobenzene	ND		140	UG/KG	8260	09/11/2008 03:43	
1,2-Dibromo-3-chloropropane	ND		140	UG/KG	8260	09/11/2008 03:43	
1,2-Dibromoethane	ND		140	UG/KG	8260	09/11/2008 03:43	
1,2-Dichlorobenzene	ND		140	UG/KG	8260	09/11/2008 03:43	
1,2-Dichloroethane	ND		140	UG/KG	8260	09/11/2008 03:43	
1,2-Dichloropropane	ND		140	UG/KG	8260	09/11/2008 03:43	
1,3-Dichlorobenzene	ND		140	UG/KG	8260	09/11/2008 03:43	
1,4-Dichlorobenzene	ND		140	UG/KG	8260	09/11/2008 03:43	
2-Butanone	ND		710	UG/KG	8260	09/11/2008 03:43	
2-Hexanone	ND		710	UG/KG	8260	09/11/2008 03:43	
4-Methyl-2-pentanone	ND		710	UG/KG	8260	09/11/2008 03:43	
Acetone	ND		710	UG/KG	8260	09/11/2008 03:43	
Benzene	ND		140	UG/KG	8260	09/11/2008 03:43	
Bromodichloromethane	ND		140	UG/KG	8260	09/11/2008 03:43	
Bromoform	ND		140	UG/KG	8260	09/11/2008 03:43	
Bromomethane	ND		140	UG/KG	8260	09/11/2008 03:43	
Carbon Disulfide	ND		140	UG/KG	8260	09/11/2008 03:43	
Carbon Tetrachloride	ND		140	UG/KG	8260	09/11/2008 03:43	
Chlorobenzene	ND		140	UG/KG	8260	09/11/2008 03:43	
Chloroethane	ND		140	UG/KG	8260	09/11/2008 03:43	
Chloroform	ND		140	UG/KG	8260	09/11/2008 03:43	
Chloromethane	ND		140	UG/KG	8260	09/11/2008 03:43	
cis-1,2-Dichloroethene	ND		140	UG/KG	8260	09/11/2008 03:43	
cis-1,3-Dichloropropene	ND		140	UG/KG	8260	09/11/2008 03:43	
Cyclohexane	2400	D	140	UG/KG	8260	09/11/2008 03:43	
Dibromochloromethane	ND		140	UG/KG	8260	09/11/2008 03:43	
Dichlorodifluoromethane	ND		140	UG/KG	8260	09/11/2008 03:43	
Ethylbenzene	1300	D	140	UG/KG	8260	09/11/2008 03:43	
Isopropylbenzene	320	D	140	UG/KG	8260	09/11/2008 03:43	
Methyl acetate	ND		140	UG/KG	8260	09/11/2008 03:43	
Methyl-t-Butyl Ether (MTBE)	ND		140	UG/KG	8260	09/11/2008 03:43	
Methylcyclohexane	8700	D	140	UG/KG	8260	09/11/2008 03:43	
Methylene chloride	ND		140	UG/KG	8260	09/11/2008 03:43	
Styrene	ND		140	UG/KG	8260	09/11/2008 03:43	
Tetrachloroethene	ND		140	UG/KG	8260	09/11/2008 03:43	
Toluene	120	DJ	140	UG/KG	8260	09/11/2008 03:43	
Total Xylenes	6100	D	420	UG/KG	8260	09/11/2008 03:43	
trans-1,2-Dichloroethene	ND		140	UG/KG	8260	09/11/2008 03:43	
trans-1,3-Dichloropropene	ND		140	UG/KG	8260	09/11/2008 03:43	
Trichloroethene	ND		140	UG/KG	8260	09/11/2008 03:43	
Trichlorofluoromethane	ND		140	UG/KG	8260	09/11/2008 03:43	
Vinyl chloride	ND		280	UG/KG	8260	09/11/2008 03:43	
				,		,,	

=

Nichol Inn ERP Site (Category B)

Sample ID: NI-B-15-12 Lab Sample ID: A8A88809 Date Collected: 09/04/2008 Time Collected: 11:35

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u> Units </u>	Method	Analyzed	<u>Analyst</u>
SOIL - SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		5	UG/KG	8260	09/08/2008 15:53	LH
1,1,2,2-Tetrachloroethane	ND		5	UG/KG	8260	09/08/2008 15:53	LH
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5	UG/KG	8260	09/08/2008 15:53	LH
1,1,2-Trichloroethane	ND		5	UG/KG	8260	09/08/2008 15:53	LH
1,1-Dichloroethane	ND		5	UG/KG	8260	09/08/2008 15:53	LH
1,1-Dichloroethene	ND		5	UG/KG	8260	09/08/2008 15:53	LH
1,2,4-Trichlorobenzene	ND		5	UG/KG	8260	09/08/2008 15:53	LH
1,2-Dibromo-3-chloropropane	ND		5	UG/KG	8260	09/08/2008 15:53	LH
1,2-Dibromoethane	ND		5	UG/KG	8260	09/08/2008 15:53	LH
1,2-Dichlorobenzene	ND		5	UG/KG	8260	09/08/2008 15:53	LH
1,2-Dichloroethane	ND		5	UG/KG	8260	09/08/2008 15:53	LH
1,2-Dichloropropane	ND		5	UG/KG	8260	09/08/2008 15:53	LH
1,3-Dichlorobenzene	ND		5	UG/KG	8260	09/08/2008 15:53	LH
1,4-Dichlorobenzene	ND		5	UG/KG	8260	09/08/2008 15:53	LH
2-Butanone	5	J	26	UG/KG	8260	09/08/2008 15:53	LH
2-Hexanone	ND		26	UG/KG	8260	09/08/2008 15:53	LH
4-Methyl-2-pentanone	ND		26	UG/KG	8260	09/08/2008 15:53	
Acetone	42		26	UG/KG	8260	09/08/2008 15:53	
Benzene	ND		5	UG/KG	8260	09/08/2008 15:53	
Bromodichloromethane	ND		5	UG/KG	8260	09/08/2008 15:53	
Bromoform	ND		5	UG/KG	8260	09/08/2008 15:53	
Bromomethane	ND		5	UG/KG	8260	09/08/2008 15:53	
Carbon Disulfide	1	J	5	UG/KG	8260	09/08/2008 15:53	
Carbon Tetrachloride	ND		5	UG/KG	8260	09/08/2008 15:53	
Chlorobenzene	ND		5	UG/KG	8260	09/08/2008 15:53	
Chloroethane	ND		5	UG/KG	8260	09/08/2008 15:53	
Chloroform	ND		5	UG/KG	8260	09/08/2008 15:53	
Chloromethane	ND		5	UG/KG	8260	09/08/2008 15:53	
cis-1,2-Dichloroethene	ND		5	UG/KG	8260	09/08/2008 15:53	
cis-1,3-Dichloropropene	ND		5	UG/KG	8260	09/08/2008 15:53	
Cyclohexane	5		5	UG/KG	8260	09/08/2008 15:53	
Dibromochloromethane	ND		5	UG/KG	8260	09/08/2008 15:53	
Dichlorodifluoromethane	ND		5	UG/KG	8260	09/08/2008 15:53	
Ethylbenzene	3	J	5	UG/KG	8260	09/08/2008 15:53	
Isopropylbenzene	3	J	5	UG/KG	8260	09/08/2008 15:53	
Methyl acetate	ND		5	UG/KG	8260	09/08/2008 15:53	
Methyl-t-Butyl Ether (MTBE)	ND		5	UG/KG	8260	09/08/2008 15:53	
Methylcyclohexane	8		5	UG/KG	8260	09/08/2008 15:53	
Methylene chloride	6	в	5	UG/KG	8260	09/08/2008 15:53	
Styrene	ND		5	UG/KG	8260	09/08/2008 15:53	
Tetrachloroethene	ND		5	, UG/KG	8260	09/08/2008 15:53	
Toluene	2	BJ	5	UG/KG	8260	09/08/2008 15:53	
Total Xylenes	4	J	16	UG/KG	8260	09/08/2008 15:53	
trans-1,2-Dichloroethene	ND		5	UG/KG	8260	09/08/2008 15:53	
trans-1,3-Dichloropropene	ND		5	UG/KG	8260	09/08/2008 15:53	
Trichloroethene	ND		5	UG/KG	8260	09/08/2008 15:53	
Trichlorofluoromethane	ND		5	UG/KG	8260	09/08/2008 15:53	
Vinyl chloride	ND		10	UG/KG	8260	09/08/2008 15:53	
•							

Sample ID: NI-B-15-12 Lab Sample ID: A8A88809 Date Collected: 09/04/2008 Time Collected: 11:35

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	<u> Units</u>	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		180	UG/KG	8270	09/11/2008 05:59	MD
2,4,5-Trichlorophenol	ND		180	UG/KG	8270	09/11/2008 05:59	MD
2,4,6-Trichlorophenol	ND		180	UG/KG	8270	09/11/2008 05:59	MD
2,4-Dichlorophenol	ND		180	UG/KG	8270	09/11/2008 05:59	MD
2,4-Dimethylphenol	ND		180	UG/KG	8270	09/11/2008 05:59	MD
2,4-Dinitrophenol	ND		350	UG/KG	8270	09/11/2008 05:59	MD
2,4-Dinitrotoluene	ND		180	UG/KG	8270	09/11/2008 05:59	MD
2,6-Dinitrotoluene	ND		180	UG/KG	8270	09/11/2008 05:59	MD
2-Chloronaphthalene	ND		180	UG/KG	8270	09/11/2008 05:59	MD
2-Chlorophenol	ND		180	UG/KG	8270	09/11/2008 05:59	
2-Methylnaphthalene	ND		180	UG/KG	8270	09/11/2008 05:59	
2-Methylphenol	ND		180	UG/KG	8270	09/11/2008 05:59	
2-Nitroaniline	ND		350	UG/KG	8270	09/11/2008 05:59	
2-Nitrophenol	ND		180	, UG/KG	8270	09/11/2008 05:59	
3,3'-Dichlorobenzidine	ND		180	UG/KG	8270	09/11/2008 05:59	
3-Nitroaniline	ND		350	UG/KG	8270	09/11/2008 05:59	
4,6-Dinitro-2-methylphenol	ND		350	UG/KG	8270	09/11/2008 05:59	
4-Bromophenyl phenyl ether	ND		180	UG/KG	8270	09/11/2008 05:59	
4-Chloro-3-methylphenol	ND		180	UG/KG	8270	09/11/2008 05:59	
4-Chloroaniline	ND		180	UG/KG	8270	09/11/2008 05:59	
4-Chlorophenyl phenyl ether	ND		180	UG/KG	8270	09/11/2008 05:59	
4-Methylphenol	ND		180	UG/KG	8270	09/11/2008 05:59	
4-Nitroaniline	ND		350	UG/KG	8270	09/11/2008 05:59	
4-Nitrophenol	ND		350	UG/KG	8270	09/11/2008 05:59	
Acenaphthene	ND		180	UG/KG	8270	09/11/2008 05:59	
Acenaphthylene	ND		180	UG/KG	8270	09/11/2008 05:59	
Acetophenone	ND		180	UG/KG	8270	09/11/2008 05:59	
Anthracene	ND		180	UG/KG	8270	09/11/2008 05:59	
Atrazine	ND		180	UG/KG	8270	09/11/2008 05:59	
Benzaldehyde	ND		180	UG/KG	8270	09/11/2008 05:59	
Benzo(a)anthracene	ND		180	UG/KG	8270	09/11/2008 05:59	
Benzo(a)pyrene	ND		180	UG/KG	8270	09/11/2008 05:59	
Benzo(b)fluoranthene	ND		180	UG/KG	8270	09/11/2008 05:59	
Benzo(ghi)perylene	ND		180	UG/KG	8270	09/11/2008 05:59	
Benzo(k)fluoranthene							
Biphenyl	ND		180	UG/KG	8270	09/11/2008 05:59	
Bis(2-chloroethoxy) methane	ND		180	UG/KG UG/KG	8270	09/11/2008 05:59	
Bis(2-chloroethyl) ether	ND		180	· · · · · · · · · · · · · · · · · · ·	8270	09/11/2008 05:59	
Bis(2-ethylhexyl) phthalate	ND 180		180	UG/KG	8270	09/11/2008 05:59	
Bistz-ethythexyt7 phthatate Butyl benzyl phthalate	180		180	UG/KG	8270	09/11/2008 05:59	
	ND		180	UG/KG	8270	09/11/2008 05:59	
Caprolactam	ND		180	UG/KG	8270	09/11/2008 05:59	
Carbazole	ND		180	UG/KG	8270	09/11/2008 05:59	
Chrysene	ND		180	UG/KG	8270	09/11/2008 05:59	
Di-n-butyl phthalate	ND		180	UG/KG	8270	09/11/2008 05:59	
Di-n-octyl phthalate	ND		180	UG/KG	8270	09/11/2008 05:59	
Dibenzo(a,h)anthracene	ND		180	UG/KG	8270	09/11/2008 05:59	
Dibenzofuran	ND		180	UG/KG	8270	09/11/2008 05:59	
Diethyl phthalate	ND		180	UG/KG	8270	09/11/2008 05:59	
Dimethyl phthalate	ND		180	UG/KG	8270	09/11/2008 05:59	9 MD

Sample ID: NI-B-15-12 Lab Sample ID: A8A88809 Date Collected: 09/04/2008 Time Collected: 11:35

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	ND		180	UG/KG	8270	09/11/2008 05:59	MD
Fluorene	ND		180	UG/KG	8270	09/11/2008 05:59	MD
Hexachlorobenzene	ND		180	UG/KG	8270	09/11/2008 05:59	MD
Hexachlorobutadiene	ND		180	UG/KG	8270	09/11/2008 05:59	MD
Hexachlorocyclopentadiene	ND		180	UG/KG	8270	09/11/2008 05:59	MD
Hexachloroethane	ND		180	UG/KG	8270	09/11/2008 05:59	MD
Indeno(1,2,3-cd)pyrene	ND		180	UG/KG	8270	09/11/2008 05:59	MD
Isophorone	ND		180	UG/KG	8270	09/11/2008 05:59) MD
N-Nitroso-Di-n-propylamine	ND		180	UG/KG	8270	09/11/2008 05:59	MD
N-nitrosodiphenylamine	ND		180	UG/KG	8270	09/11/2008 05:59) MD
Naphthalene	ND		180	UG/KG	8270	09/11/2008 05:59	MD
Nitrobenzene	ND		180	UG/KG	8270	09/11/2008 05:59	
Pentachlorophenol	ND		350	UG/KG	8270	09/11/2008 05:59	
Phenanthrene	ND		180	UG/KG	8270	09/11/2008 05:59	9 MD
Phenol	ND		180	UG/KG	8270	09/11/2008 05:59) MD
Pyrene	ND		180	UG/KG	8270	09/11/2008 05:59	
etals Analysis							
Aluminum - Total	12500	EN	11.8	MG/KG	6010	09/09/2008 17:51	1
Antimony - Total	ND	N	17.6	MG/KG	6010	09/09/2008 17:51	1
Arsenic - Total	7.2	Ν	2.4	MG/KG	6010	09/09/2008 17:5	1
Barium – Total	59.6	EN	0.59	MG/KG	6010	09/09/2008 17:5	1
Beryllium – Total	0.57	N	0.24	MG/KG	6010	09/09/2008 17:5	1
Cadmium – Total	ND	N	0.24	MG/KG	6010	09/09/2008 17:5	1
Calcium — Total	4810	EN*	58.8	MG/KG	6010	09/09/2008 17:5 ⁴	1
Chromium – Total	18.4	EN	0.59	MG/KG	6010	09/09/2008 17:5	1
Cobalt - Total	11.0	EN	0.59	MG/KG	6010	09/09/2008 17:5 [.]	1
Copper – Total	16.2	EN	1.2	MG/KG	6010	09/09/2008 17:5 [.]	1
Iron – Total	28400	Е	11.8	MG/KG	6010	09/09/2008 17:5 [.]	1
Lead - Total	12.8	EN	1.2	MG/KG	6010	09/09/2008 17:5	1
Magnesium - Total	5020	EN*	23.5	MG/KG	6010	09/09/2008 17:5	1
Manganese – Total	387	E*	0.24	MG/KG	6010	09/09/2008 17:5	1
Mercury - Total	ND		0.023	MG/KG	7471	09/09/2008 14:2	2
Nickel – Total	32.0	EN	0.59	MG/KG	6010	09/09/2008 17:5	1
Potassium - Total	1450	EN	35.3	MG/KG	6010	09/09/2008 17:5	1
Selenium - Total	ND	N	4.7	MG/KG	6010	09/09/2008 17:5	
Silver – Total	ND	N	0.59	MG/KG	6010	09/09/2008 17:5	
Sodium – Total	186	N	165	MG/KG	6010	09/09/2008 17:5	
Thallium - Total	ND	N	7.1	MG/KG	6010	09/09/2008 17:5	
Vanadium - Total	19.4	EN	0.59	MG/KG	6010	09/09/2008 17:5	
Zinc - Total	68.9	EN	2.4	MG/KG	6010	09/09/2008 17:5	

Sample ID: NI-B-16-12 Lab Sample ID: A8A88810 Date Collected: 09/04/2008 Time Collected: 12:50

		Detection			Date/Time	
Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analyst
ND		130	UG/KG	8260	09/11/2008 04:07	,
ND		130	UG/KG	8260	09/11/2008 04:07	
ND		130	UG/KG	8260	09/11/2008 04:07	,
ND		130	UG/KG	8260	09/11/2008 04:07	,
ND		130	UG/KG	8260	09/11/2008 04:07	
ND		130	UG/KG	8260	09/11/2008 04:07	,
ND		130	UG/KG	8260	09/11/2008 04:07	,
ND		130	UG/KG	8260	09/11/2008 04:07	,
ND		130	UG/KG	8260	09/11/2008 04:07	,
ND		130	UG/KG	8260	09/11/2008 04:07	,
ND		130	UG/KG	8260	09/11/2008 04:07	,
ND		130	UG/KG	8260		
ND		130	UG/KG	8260		
ND		130	UG/KG	8260		
ND		650	-	8260		
ND		650	-			
ND		650	-			
ND		650	-			
ND		130	· · · · ·		· · ·	
ND		130				
ND		130				
ND		130				
ND			-		-	
ND		130	· · ·		-	
ND		130				
ND						
ND		130				
ND		130				
ND		130				
ND		130				
1100			-			
ND		130	-			
ND			•			
690			-			
290						
			•			
			•			
			-			
			-			
			-			
			UG/KG	0200	09/11/2008 04:0	
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND	Result Flag Limit ND 130 ND	Result Flag Limit Units ND 130 UG/KG ND 130 UG/KG ND 650 UG/KG ND 130 UG/KG ND 130 UG/KG ND 130 UG/KG ND 130 UG/KG ND 130 UG/KG ND 130 UG/KG ND 130 UG/KG N	Result Flag Limit Units Method ND 130 UG/KG 8260 ND 130 UG/KG 8260 <t< td=""><td>Result Flag Limit Units Method Analyzed ND 130 UG/KG 8260 09/11/2008 04:07 ND 130 UG/KG 8260 09/11/2008 04:07</td></t<>	Result Flag Limit Units Method Analyzed ND 130 UG/KG 8260 09/11/2008 04:07 ND 130 UG/KG 8260 09/11/2008 04:07

-

Nichol Inn ERP Site (Category B)

Sample ID: NI-B-16-12 Lab Sample ID: A8A88810 Date Collected: 09/04/2008 Time Collected: 12:50

			Detection	Date/Time				
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst	
SOIL - SW8463 8270 - TCL SVOA ORGANICS								
2,2'-0xybis(1-Chloropropane)	ND		190	UG/KG	8270	09/11/2008 06:22	MD	
2,4,5-Trichlorophenol	ND		190	UG/KG	8270	09/11/2008 06:22	MD	
2,4,6-Trichlorophenol	ND		190	UG/KG	8270	09/11/2008 06:22		
2,4-Dichlorophenol	ND		190	UG/KG	8270	09/11/2008 06:22	MD	
2,4-Dimethylphenol	ND		190	UG/KG	8270	09/11/2008 06:22	MD	
2,4-Dinitrophenol	ND		370	UG/KG	8270	09/11/2008 06:22	MD	
2,4-Dinitrotoluene	ND		190	UG/KG	8270	09/11/2008 06:22		
2,6-Dinitrotoluene	ND		190	UG/KG	8270	09/11/2008 06:22		
2-Chloronaphthalene	ND		190	UG/KG	8270	09/11/2008 06:22		
2-Chlorophenol	ND		190	UG/KG	8270	09/11/2008 06:22		
2-Methylnaphthalene	36	J	190	UG/KG	8270	09/11/2008 06:22		
2-Methylphenol	ND		190	UG/KG	8270	09/11/2008 06:22		
2-Nitroaniline	ND		370	UG/KG	8270	09/11/2008 06:22		
2-Nitrophenol	ND		190	UG/KG	8270	09/11/2008 06:22		
3,3'-Dichlorobenzidine	ND		190	UG/KG	8270	09/11/2008 06:22		
3-Nitroaniline	ND		370	UG/KG	8270	09/11/2008 06:22		
4,6-Dinitro-2-methylphenol	ND		370	UG/KG	8270	09/11/2008 06:22		
4~Bromophenyl phenyl ether	ND		190	UG/KG	8270	09/11/2008 06:22		
4-Chloro-3-methylphenol	ND		190	UG/KG	8270	09/11/2008 06:22		
4-Chloroaniline	ND		190	UG/KG UG/KG	8270	09/11/2008 06:22		
4-Chlorophenyl phenyl ether	ND		190	UG/KG		09/11/2008 06:22		
4-Methylphenol	ND		190		8270			
4-Nitroaniline			370	UG/KG UG/KG	8270	09/11/2008 06:22		
4-Nitrophenol	ND			•	8270	09/11/2008 06:22		
Acenaphthene	ND 13		370	UG/KG	8270	09/11/2008 06:22		
	12	J	190	UG/KG	8270	09/11/2008 06:22		
Acenaphthylene	ND		190	UG/KG	8270	09/11/2008 06:22		
Acetophenone	ND		190	UG/KG	8270	09/11/2008 06:22		
Anthracene	25	J	190	UG/KG	8270	09/11/2008 06:22		
Atrazine	ND		190	UG/KG	8270	09/11/2008 06:22		
Benzaldehyde	ND		190	UG/KG	8270	09/11/2008 06:22		
Benzo(a)anthracene	62	J	190	UG/KG	8270	09/11/2008 06:2		
Benzo(a)pyrene	38	J	190	UG/KG	8270	09/11/2008 06:2		
Benzo(b)fluoranthene	42	J	190	UG/KG	8270	09/11/2008 06:2		
Benzo(ghi)perylene	28	J	190	UG/KG	8270	09/11/2008 06:2		
Benzo(k)fluoranthene	19	J	190	UG/KG	8270	09/11/2008 06:23		
Biphenyl	ND		190	UG/KG	8270	09/11/2008 06:2		
Bis(2-chloroethoxy) methane	ND		190	UG/KG	8270	09/11/2008 06:2		
Bis(2-chloroethyl) ether	ND		190	UG/KG	8270	09/11/2008 06:2		
Bis(2-ethylhexyl) phthalate	120	J	190	UG/KG	8270	09/11/2008 06:2		
Butyl benzyl phthalate	ND		190	UG/KG	8270	09/11/2008 06:2	2 MD	
Caprolactam	ND		190	UG/KG	8270	09/11/2008 06:2		
Carbazole	ND		190	UG/KG	8270	09/11/2008 06:2	2 MD	
Chrysene	51	J	190	UG/KG	8270	09/11/2008 06:2		
Di-n-butyl phthalate	ND		190	UG/KG	8270	09/11/2008 06:2	2 MD	
Di-n-octyl phthalate	ND		190	ug/kg	8270	09/11/2008 06:2	2 MD	
Dibenzo(a,h)anthracene	8	J	190	ug/kg	8270	09/11/2008 06:2	2 MD	
Dibenzofuran	ND		190	ug/kg	8270	09/11/2008 06:2	2 MD	
Diethyl phthalate	ND		190	UG/KG	8270	09/11/2008 06:2	2 MD	
Dimethyl phthalate	ND		190	UG/KG	8270	09/11/2008 06:2	2 MD	

Sample ID: NI-B-16-12 Lab Sample ID: A8A88810 Date Collected: 09/04/2008 Time Collected: 12:50

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	150	J	190	UG/KG	8270	09/11/2008 06:22	MD
Fluorene	12	J	190	UG/KG	8270	09/11/2008 06:22	MD
Hexachlorobenzene	ND		190	UG/KG	8270	09/11/2008 06:22	MD
Hexachlorobutadiene	ND		190	UG/KG	8270	09/11/2008 06:22	MD
Hexachlorocyclopentadiene	ND		190	UG/KG	8270	09/11/2008 06:22	MD
Hexachloroethane	ND		190	UG/KG	8270	09/11/2008 06:22	MD
Indeno(1,2,3-cd)pyrene	24	J	190	UG/KG	8270	09/11/2008 06:22	
Isophorone	ND		190	UG/KG	8270	09/11/2008 06:22	
N-Nitroso-Di-n-propylamine	ND		190	UG/KG	8270	09/11/2008 06:22	
N-nitrosodiphenylamine	ND		190	UG/KG	8270	09/11/2008 06:22	
Naphthalene	24	J	190	UG/KG	8270	09/11/2008 06:22	
Nitrobenzene	ND		190	UG/KG	8270	09/11/2008 06:22	
Pentachlorophenol	ND		370	UG/KG	8270	09/11/2008 06:22	
Phenanthrene	110	J	190	UG/KG	8270	09/11/2008 06:22	
Phenol	ND		190	UG/KG	8270	09/11/2008 06:22	
Pyrene	120	J	190	UG/KG	8270	09/11/2008 06:22	
Metals Analysis							
Aluminum - Total	8370	EN	10.8	MG/KG	6010	09/09/2008 17:56	ò
Antimony - Total	ND	N	16.2	MG/KG	6010	09/09/2008 17:56	
Arsenic - Total	3.4	N	2.2	MG/KG	6010	09/09/2008 17:56	
Barium - Total	34.8	EN	0.54	MG/KG	6010	09/09/2008 17:56	
Beryllium - Total	0.33	N	0.22	MG/KG	6010	09/09/2008 17:56	
Cadmium — Total	ND	N	0.22	MG/KG	6010	09/09/2008 17:56	
Calcium - Total	5060	EN*	54.1	MG/KG	6010	09/09/2008 17:56	
Chromium – Total	12.2	EN	0.54	MG/KG	6010	09/09/2008 17:56	
Cobalt - Total	6.9	EN	0.54	MG/KG	6010	09/09/2008 17:50	
Copper - Total	16.4	EN	1.1	MG/KG	6010	09/09/2008 17:50	
Iron – Total	17900	Е	10.8	MG/KG	6010	09/09/2008 17:50	
Lead - Total	7.8	EN	1.1	MG/KG	6010	09/09/2008 17:50	
Magnesium - Total	3340	EN*	21.7	MG/KG	6010	09/09/2008 17:50	
Manganese – Total	264	E*	0.22	MG/KG	6010	09/09/2008 17:56	
Mercury - Total	ND		0.021	MG/KG	7471	09/09/2008 14:24	
Nickel - Total	20.0	EN	0.54	MG/KG	6010	09/09/2008 17:50	
Potassium - Total	967	EN	32.5	MG/KG	6010	09/09/2008 17:50	
Selenium - Total	ND	N	4.3	MG/KG	6010	09/09/2008 17:50	
Silver - Total	ND	N	0.54	MG/KG	6010	09/09/2008 17:50	
Sodium – Total	ND	N	152	MG/KG	6010	09/09/2008 17:50	
Thallium – Total	ND	N	6.5	MG/KG	6010	09/09/2008 17:50	
Vanadium - Total	12.8	EN	0.54	MG/KG	6010	09/09/2008 17:50	
Zinc – Total	59.7	EN	2.2	MG/KG	6010	09/09/2008 17:50	

_

Nichol Inn ERP Site (Category B)

Sample ID: NI-B-17-12 Lab Sample ID: A8A88811 Date Collected: 09/04/2008 Time Collected: 12:20

			Detection				
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		6	UG/KG	8260	09/08/2008 16 : 19	LH
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	09/08/2008 16 : 19	LH
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6	UG/KG	8260	09/08/2008 16 : 19	LH
1,1,2-Trichloroethane	ND		6	UG/KG	8260	09/08/2008 16 : 19	LH
1,1-Dichloroethane	ND		6	UG/KG	8260	09/08/2008 16 : 19	LH
1,1-Dichloroethene	ND		6	UG/KG	8260	09/08/2008 16:19	LH
1,2,4-Trichlorobenzene	ND		6	UG/KG	8260	09/08/2008 16:19	LH
1,2-Dibromo-3-chloropropane	ND		6	UG/KG	8260	09/08/2008 16:19	LH
1,2-Dibromoethane	ND		6	UG/KG	8260	09/08/2008 16:19	LH
1,2-Dichlorobenzene	ND		6	UG/KG	8260	09/08/2008 16:19	LH
1,2-Dichloroethane	ND		6	UG/KG	8260	09/08/2008 16:19	LH
1,2-Dichloropropane	ND		6	ug/kg	8260	09/08/2008 16:19	LH
1,3-Dichlorobenzene	ND		6	UG/KG	8260	09/08/2008 16:19	LH
1,4-Dichlorobenzene	ND		6	UG/KG	8260	09/08/2008 16:19	LH
2-Butanone	ND		28	UG/KG	8260	09/08/2008 16:19	LH
2-Hexanone	ND		28	UG/KG	8260	09/08/2008 16:19	LH
4-Methyl-2-pentanone	ND		28	UG/KG	8260	09/08/2008 16:19	LH
Acetone	ND		28	UG/KG	8260	09/08/2008 16:19	LH
Benzene	ND		6	UG/KG	8260	09/08/2008 16:19	LH
Bromodichloromethane	ND		6	UG/KG	8260	09/08/2008 16:19	LH
Bromoform	ND		6	UG/KG	8260	09/08/2008 16:19	LH
Bromomethane	ND		6	UG/KG	8260	09/08/2008 16:19	LH
Carbon Disulfide	ND		6	UG/KG	8260	09/08/2008 16:19	LH
Carbon Tetrachloride	ND		6	UG/KG	8260	09/08/2008 16:19	LH
Chlorobenzene	ND		6	UG/KG	8260	09/08/2008 16:19	LH
Chloroethane	ND		6	UG/KG	8260	09/08/2008 16:19	LH
Chloroform	ND		6	UG/KG	8260	09/08/2008 16:19	LH
Chloromethane	ND		6	UG/KG	8260	09/08/2008 16:19	LH
cis-1,2-Dichloroethene	ND		6	UG/KG	8260	09/08/2008 16:19	
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	09/08/2008 16:19	
Cyclohexane	ND		6	UG/KG	8260	09/08/2008 16:19	
Dibromochloromethane	ND		6	UG/KG	8260	09/08/2008 16:19	
Dichlorodifluoromethane	ND		6	, UG/KG	8260	09/08/2008 16:19	
Ethylbenzene	ND		6	UG/KG	8260	09/08/2008 16:19	
Isopropylbenzene	ND		6	UG/KG	8260	09/08/2008 16:19	
Methyl acetate	ND		6	UG/KG	8260	09/08/2008 16:19	
Methyl-t-Butyl Ether (MTBE)	ND		6	UG/KG	8260	09/08/2008 16:19	
Methylcyclohexane	ND		6	UG/KG	8260	09/08/2008 16:19	
Methylene chloride	6	в	6	UG/KG	8260	09/08/2008 16:19	
Styrene	ND		6	UG/KG	8260	09/08/2008 16:19	
Tetrachloroethene	ND		6	UG/KG	8260	09/08/2008 16:19	
Toluene	ND		6	UG/KG	8260	09/08/2008 16:19	
Total Xylenes	ND		17	UG/KG	8260	09/08/2008 16:19	
trans-1,2-Dichloroethene	ND		6	UG/KG	8260	09/08/2008 16:19	
trans-1,3-Dichloropropene	ND		6	UG/KG	8260	09/08/2008 16:19	
				· · · ·			
Trichloroethene Trichlorofluoromethane Vinyl chloride	ND ND ND		6 6 11	UG/KG UG/KG UG/KG	8260 8260 8260	09/08/2008 16:19 09/08/2008 16:19 09/08/2008 16:19	

Sample ID: NI-B-17-12 Lab Sample ID: A8A88811 Date Collected: 09/04/2008 Time Collected: 12:20

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		1000	UG/KG	8270	09/11/2008 06:44	MD
2,4,5-Trichlorophenol	ND		1000	UG/KG	8270	09/11/2008 06:44	MD
2,4,6-Trichlorophenol	ND		1000	UG/KG	8270	09/11/2008 06:44	MD
2,4-Dichlorophenol	ND		1000	UG/KG	8270	09/11/2008 06:44	MD
2,4-Dimethylphenol	ND		1000	UG/KG	8270	09/11/2008 06:44	MD
2,4-Dinitrophenol	ND		1900	UG/KG	8270	09/11/2008 06:44	MD
2,4-Dinitrotoluene	ND		1000	UG/KG	8270	09/11/2008 06:44	MD
2,6-Dinitrotoluene	ND		1000	UG/KG	8270	09/11/2008 06:44	MD
2-Chloronaphthalene	ND		1000	UG/KG	8270	09/11/2008 06:44	
2-Chlorophenol	ND		1000	UG/KG	8270	09/11/2008 06:44	MD
2-Methylnaphthalene	ND		1000	UG/KG	8270	09/11/2008 06:44	
2-Methylphenol	ND		1000	UG/KG	8270	09/11/2008 06:44	
2-Nitroaniline	ND		1900	UG/KG	8270	09/11/2008 06:44	
2-Nitrophenol	ND		1000	UG/KG	8270	09/11/2008 06:44	
3,3'-Dichlorobenzidine	ND		1000	UG/KG	8270	09/11/2008 06:44	
3-Nitroaniline	ND		1900	UG/KG	8270	09/11/2008 06:44	
4,6-Dinitro-2-methylphenol	ND		1900	UG/KG	8270	09/11/2008 06:44	
4-Bromophenyl phenyl ether	ND		1000	UG/KG	8270	09/11/2008 06:44	
4-Chloro-3-methylphenol	ND		1000	UG/KG	8270	09/11/2008 06:44	
4-Chloroaniline	ND		1000	UG/KG	8270	09/11/2008 06:44	
4-Chlorophenyl phenyl ether	ND		1000	UG/KG	8270	09/11/2008 06:44	
4-Methylphenol	ND		1000	UG/KG	8270	09/11/2008 06:44	
4-Nitroaniline	ND		1900	UG/KG	8270	09/11/2008 06:44	
4-Nitrophenol	ND		1900	UG/KG	8270	09/11/2008 06:44	
Acenaphthene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Acenaphthylene	ND		1000	, UG/KG	8270	09/11/2008 06:44	
Acetophenone	ND		1000	UG/KG	8270	09/11/2008 06:44	
Anthracene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Atrazine	ND		1000	UG/KG	8270	09/11/2008 06:44	
Benzaldehyde	ND		1000	UG/KG	8270	09/11/2008 06:44	
Benzo(a)anthracene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Benzo(a)pyrene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Benzo(b)fluoranthene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Benzo(ghi)perylene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Benzo(k)fluoranthene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Biphenyl	ND		1000	UG/KG	8270	09/11/2008 06:44	
Bis(2-chloroethoxy) methane	ND		1000	UG/KG	8270	09/11/2008 06:44	
Bis(2-chloroethyl) ether	ND		1000	UG/KG	8270	09/11/2008 06:44	
Bis(2-ethylhexyl) phthalate	ND		1000	UG/KG	8270	09/11/2008 06:44	
Butyl benzyl phthalate	ND		1000	UG/KG	8270	09/11/2008 06:44	
Caprolactam	ND		1000	UG/KG	8270	09/11/2008 06:44	
Carbazole	ND		1000	UG/KG	8270	09/11/2008 06:44	
Chrysene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Di-n-butyl phthalate	ND		1000	UG/KG UG/KG			
Di-n-octyl phthalate	ND		1000	UG/KG UG/KG	8270 8270	09/11/2008 06:44 09/11/2008 06:44	
Dibenzo(a,h)anthracene	ND		1000	UG/KG UG/KG		09/11/2008 06:44	
Dibenzofuran	ND		1000	UG/KG UG/KG	8270 8270		
Diethyl phthalate	ND		1000	UG/KG UG/KG	8270 8270	09/11/2008 06:44 09/11/2008 06:44	
	עמ		1.1.1.1.1	09/69	027U	U7/11//UUX U6:44	4 MD

Sample ID: NI-B-17-12 Lab Sample ID: A8A88811 Date Collected: 09/04/2008 Time Collected: 12:20

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							· · · · · · · · · · · · · · · · · · ·
Fluoranthene	ND		1000	UG/KG	8270	09/11/2008 06:44	MD
Fluorene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Hexachlorobenzene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Hexachlorobutadiene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Hexachlorocyclopentadiene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Hexachloroethane	ND		1000	UG/KG	8270	09/11/2008 06:44	
Indeno(1,2,3-cd)pyrene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Isophorone	ND		1000	UG/KG	8270	09/11/2008 06:44	
N-Nitroso-Di-n-propylamine	ND		1000	UG/KG	8270	09/11/2008 06:44	
N-nitrosodiphenylamine	ND		1000	UG/KG	8270	09/11/2008 06:44	
Naphthalene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Nitrobenzene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Pentachlorophenol	ND		1900	UG/KG	8270	09/11/2008 06:44	
Phenanthrene	ND		1000	UG/KG	8270	09/11/2008 06:44	
Phenol	ND		1000	UG/KG	8270	09/11/2008 06:44	
Pyrene	ND		1000	UG/KG	8270	09/11/2008 06:44	
SOIL - SW8463 8081 - TCL PESTICIDES							
4,4'-DDD	ND		1.9	UG/KG	8081	09/27/2008 15:11	тсн
4,4'-DDE	ND		1.9	UG/KG	8081	09/27/2008 15:11	тсн
4,4'-DDT	ND		1.9	UG/KG	8081	09/27/2008 15:11	тсн
Aldrin	ND		1.9	UG/KG	8081	09/27/2008 15:11	
alpha-BHC	ND		1.9	UG/KG	8081	09/27/2008 15:11	тсн
beta-BHC	ND		1.9	UG/KG	8081	09/27/2008 15:14	тсн
Chlordane	ND		19	UG/KG	8081	09/27/2008 15:11	тсн
delta-BHC	ND		1.9	UG/KG	8081	09/27/2008 15:11	тсн
Dieldrin	ND		1.9	UG/KG	8081	09/27/2008 15:1	і тсн
Endosulfan I	ND		1.9	UG/KG	8081	09/27/2008 15:1	І ТСН
Endosulfan II	ND		1.9	UG/KG	8081	09/27/2008 15:1 [,]	тсн
Endosulfan Sulfate	ND		1.9	UG/KG	8081	09/27/2008 15:1 [,]	і тсн
Endrin	ND		1.9	UG/KG	8081	09/27/2008 15:1 ⁴	і тсн
Endrin aldehyde	ND		1.9	UG/KG	8081	09/27/2008 15:1 ⁴	і тсн
gamma-BHC (Lindane)	ND		1.9	UG/KG	8081	09/27/2008 15:1 [.]	1 тсн
Heptachlor	ND		1.9	UG/KG	8081	09/27/2008 15:1 [,]	1 тсн
Heptachlor epoxide	ND		1.9	UG/KG	8081	09/27/2008 15:1 ⁻	1 тсн
Methoxychlor	ND		1.9	UG/KG	8081	09/27/2008 15:1 [,]	1 тсн
Toxaphene	ND		19	UG/KG	8081	09/27/2008 15:1	1 тсн
SOIL - SW8463 8082 - PCBS							
Aroclor 1016	ND		19	UG/KG	8082	09/11/2008 10:5	7 GFD
Aroclor 1221	ND		19	UG/KG	8082	09/11/2008 10:5	7 GFD
Aroclor 1232	ND		19	UG/KG	8082	09/11/2008 10:5	7 GFD
Aroclor 1242	ND		19	UG/KG	8082	09/11/2008 10:5	7 GFD
Aroclor 1248	ND		19	UG/KG	8082	09/11/2008 10:5	7 GFD
Aroclor 1254	ND		19	UG/KG	8082	09/11/2008 10:5	7 GFD
Aroclor 1260	ND		19	UG/KG	8082	09/11/2008 10:5	
Metals Analysis							
Aluminum - Total	13300	EN	11.0	MG/KG	6010	09/09/2008 18:0	1
						aT	stAmerica

4

Nichol Inn ERP Site (Category B)

Sample ID: NI-B-17-12 Lab Sample ID: A8A88811 Date Collected: 09/04/2008 Time Collected: 12:20

			Detection		Date/Time			
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analyst	
Metals Analysis								
Antimony – Total	ND	N	16.6	MG/KG	6010	09/09/2008 18:01		
Arsenic – Total	7.2	N	2.2	MG/KG	6010	09/09/2008 18:01		
Barium – Total	60.8	EN	0.55	MG/KG	6010	09/09/2008 18:01		
Beryllium - Total	0.59	N	0.22	MG/KG	6010	09/09/2008 18:01		
Cadmium – Total	0.24	N	0.22	MG/KG	6010	09/09/2008 18:01		
Calcium — Total	5900	EN*	55.2	MG/KG	6010	09/09/2008 18:01		
Chromium - Total	20.3	EN	0.55	MG/KG	6010	09/09/2008 18:01		
Cobalt – Total	11.2	EN	0.55	MG/KG	6010	09/09/2008 18:01		
Copper – Total	25.2	EN	1.1	MG/KG	6010	09/09/2008 18:01		
Iron – Total	29100	E	11.0	MG/KG	6010	09/09/2008 18:01		
Lead – Total	13.0	EN	1.1	MG/KG	6010	09/09/2008 18:01		
Magnesium - Total	5080	EN*	22.1	MG/KG	6010	09/09/2008 18:01		
Manganese – Total	572	E*	0.22	MG/KG	6010	09/09/2008 18:01		
Mercury – Total	ND		0.022	MG/KG	7471	09/09/2008 14:26		
Nickel – Total	33.1	EN	0.55	MG/KG	6010	09/09/2008 18:01		
Potassium – Total	1570	EN	33.1	MG/KG	6010	09/09/2008 18:01		
Selenium - Total	ND	N	4.4	MG/KG	6010	09/09/2008 18:01		
Silver – Total	ND	N	0.55	MG/KG	6010	09/09/2008 18:01		
Sodium – Total	227	N	155	MG/KG	6010	09/09/2008 18:01		
Thallium – Total	ND	N	6.6	MG/KG	6010	09/09/2008 18:01		
Vanadium - Total	21.5	EN	0.55	MG/KG	6010	09/09/2008 18:01		
Zinc – Total	77.3	EN	2.2	MG/KG	6010	09/09/2008 18:01		
						•		

Sample ID: NI-B-8-12 Lab Sample ID: A8A88801 Date Collected: 09/04/2008 Time Collected: 09:45

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
SOIL - SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		6	UG/KG	8260	09/08/2008 14:12	
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	09/08/2008 14:12	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6	UG/KG	8260	09/08/2008 14:12	LH
1,1,2-Trichloroethane	ND		6	UG/KG	8260	09/08/2008 14:12	
1,1-Dichloroethane	ND		6	UG/KG	8260	09/08/2008 14:12	
1,1-Dichloroethene	ND		6	UG/KG	8260	09/08/2008 14:12	
1,2,4-Trichlorobenzene	ND		6	UG/KG	8260	09/08/2008 14:12	
1,2-Dibromo-3-chloropropane	ND		6	UG/KG	8260	09/08/2008 14:12	LH
1,2-Dibromoethane	ND		6	UG/KG	8260	09/08/2008 14:12	
1,2-Dichlorobenzene	ND		6	UG/KG	8260	09/08/2008 14:12	
1,2-Dichloroethane	ND		6	UG/KG	8260	09/08/2008 14:12	LH
1,2-Dichloropropane	ND		6	UG/KG	8260	09/08/2008 14:12	LH
1,3-Dichlorobenzene	ND		6	UG/KG	8260	09/08/2008 14:12	LH
1,4-Dichlorobenzene	ND		6	UG/KG	8260	09/08/2008 14:12	LH
2-Butanone	ND		29	UG/KG	8260	09/08/2008 14:12	LH
2-Hexanone	ND		29	UG/KG	8260	09/08/2008 14:12	LH
4-Methyl-2-pentanone	ND		29	UG/KG	8260	09/08/2008 14:12	LH
Acetone	9	J	29	UG/KG	8260	09/08/2008 14:12	LH
Benzene	ND		6	UG/KG	8260	09/08/2008 14:12	LH
Bromodichloromethane	ND		6	UG/KG	8260	09/08/2008 14:12	LH
Bromoform	ND		6	UG/KG	8260	09/08/2008 14:12	LH
Bromomethane	ND		6	UG/KG	8260	09/08/2008 14:12	
Carbon Disulfide	ND		6	UG/KG	8260	09/08/2008 14:12	
Carbon Tetrachloride	ND		6	UG/KG	8260	09/08/2008 14:12	
Chlorobenzene	ND		6	UG/KG	8260	09/08/2008 14:12	
Chloroethane	ND		6	UG/KG	8260	09/08/2008 14:12	
Chloroform	ND		6	UG/KG	8260	09/08/2008 14:12	
Chloromethane	ND		6	UG/KG	8260	09/08/2008 14:12	
cis-1,2-Dichloroethene	ND		6	UG/KG	8260	09/08/2008 14:12	
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	09/08/2008 14:12	
Cyclohexane	ND		6	UG/KG	8260	09/08/2008 14:12	
Dibromochloromethane	ND		6	UG/KG	8260	09/08/2008 14:12	
Dichlorodifluoromethane	ND		6	UG/KG	8260	09/08/2008 14:12	
Ethylbenzene	ND		6	UG/KG	8260	09/08/2008 14:12	
Isopropylbenzene	ND		6	UG/KG	8260	09/08/2008 14:12	
Methyl acetate	ND		6	UG/KG	8260	09/08/2008 14:12	
Methyl-t-Butyl Ether (MTBE)	ND		6	υg/kg	8260	09/08/2008 14:12	
Methylcyclohexane	ND		6	UG/KG	8260	09/08/2008 14:12	
Methylene chloride	8	в	6	UG/KG	8260	09/08/2008 14:12	
Styrene	ND		6	UG/KG	8260	09/08/2008 14:12	
Tetrachloroethene	ND		6	UG/KG	8260	09/08/2008 14:12	
Toluene	ND		6	UG/KG	8260	09/08/2008 14:12	
Total Xylenes	ND		17	UG/KG	8260	09/08/2008 14:12	
trans-1,2-Dichloroethene	ND		6	UG/KG	8260	09/08/2008 14:12	
trans-1,3-Dichloropropene	ND		6	UG/KG	8260	09/08/2008 14:12	
Trichloroethene	ND		6	UG/KG	8260	09/08/2008 14:12	
Trichlorofluoromethane	ND		6	UG/KG	8260	09/08/2008 14:12	
Vinyl chloride	ND		11	UG/KG	8260	09/08/2008 14:12	

Sample ID: NI-B-8-12 Lab Sample ID: A8A88801 Date Collected: 09/04/2008 Time Collected: 09:45

	Detection					Date/Time	<u>.</u>
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS				-			///////////////////////////////////////
2,2'-Oxybis(1-Chloropropane)	ND		210	UG/KG	8270	09/11/2008 02:11	MD
2,4,5-Trichlorophenol	ND		210	UG/KG	8270	09/11/2008 02:11	
2,4,6-Trichlorophenol	ND		210	UG/KG	8270	09/11/2008 02:11	
2,4-Dichlorophenol	ND		210	UG/KG	8270	09/11/2008 02:11	
2,4-Dimethylphenol	ND		210	UG/KG	8270	09/11/2008 02:11	
2,4-Dinitrophenol	ND		400	UG/KG	8270	09/11/2008 02:11	
2,4-Dinitrotoluene	ND		210	UG/KG	8270	09/11/2008 02:11	
2,6-Dinitrotoluene	ND		210	∪g/kg	8270	09/11/2008 02:11	
2-Chloronaphthalene	ND		210	υg/kg	8270	09/11/2008 02:11	
2-Chlorophenol	ND		210	UG/KG	8270	09/11/2008 02:11	
2-Methylnaphthalene	17	J	210	UG/KG	8270	09/11/2008 02:11	
2-Methylphenol	ND		210	UG/KG	8270	09/11/2008 02:11	
2-Nitroaniline	ND		400	UG/KG	8270	09/11/2008 02:11	
2-Nitrophenol	ND		210	UG/KG	8270	09/11/2008 02:11	
3,3'-Dichlorobenzidine	ND		210	UG/KG	8270	09/11/2008 02:11	
3-Nitroaniline	ND		400	UG/KG	8270	09/11/2008 02:11	
4,6-Dinitro-2-methylphenol	ND		400	UG/KG	8270	09/11/2008 02:11	
4-Bromophenyl phenyl ether	ND		210	UG/KG	8270	09/11/2008 02:11	
4-Chloro-3-methylphenol	ND		210	UG/KG	8270	09/11/2008 02:11	
4-Chloroaniline	ND		210	UG/KG	8270	09/11/2008 02:11	
4-Chlorophenyl phenyl ether	ND		210	UG/KG	8270	09/11/2008 02:11	
4-Methylphenol	ND		210	UG/KG	8270	09/11/2008 02:11	
4-Nitroaniline	ND		400	UG/KG	8270	09/11/2008 02:11	
4-Nitrophenol	ND		400	UG/KG	8270	09/11/2008 02:11	
Acenaphthene	ND		210	UG/KG	8270	09/11/2008 02:11	
Acenaphthylene	ND		210	UG/KG	8270	09/11/2008 02:11	
Acetophenone	ND		210	UG/KG	8270	09/11/2008 02:11	
Anthracene	ND		210	UG/KG	8270	09/11/2008 02:11	
Atrazine	ND		210	UG/KG	8270	09/11/2008 02:11	
Benzaldehyde	ND		210	UG/KG	8270	09/11/2008 02:11	
Benzo(a)anthracene	ND		210	UG/KG	8270	09/11/2008 02:11	
Benzo(a)pyrene	ND		210	UG/KG	8270	09/11/2008 02:11	
Benzo(b)fluoranthene	ND		210	UG/KG	8270	09/11/2008 02:11	
Benzo(ghi)perylene	ND		210	UG/KG	8270	09/11/2008 02:11	
Benzo(k)fluoranthene	ND		210	UG/KG	8270	09/11/2008 02:11	
Biphenyl	ND		210	UG/KG	8270	09/11/2008 02:11	
Bis(2-chloroethoxy) methane	ND		210	UG/KG	8270	09/11/2008 02:1	
Bis(2-chloroethyl) ether	ND		210	UG/KG	8270	09/11/2008 02:1	
Bis(2-ethylhexyl) phthalate	200	J	210	UG/KG	8270	09/11/2008 02:1	
Butyl benzyl phthalate	ND	v	210	UG/KG	8270	09/11/2008 02:1	
Caprolactam	ND		210	UG/KG	8270	09/11/2008 02:1	
Carbazole	ND		210	UG/KG	8270	09/11/2008 02:1	
Chrysene	ND		210	UG/KG	8270	09/11/2008 02:1	
Di-n-butyl phthalate	ND		210	UG/KG	8270	09/11/2008 02:1	
Di-n-octyl phthalate	ND		210	UG/KG	8270	09/11/2008 02:1	
Dibenzo(a,h)anthracene	ND		210	UG/KG UG/KG	8270		
Dibenzofuran	ND		210	UG/KG UG/KG	8270 8270	09/11/2008 02:1 [,] 09/11/2008 02:1 [,]	
Diethyl phthalate	ND		210	UG/KG UG/KG	8270		
Dimethyl phthalate	ND		210	UG/KG UG/KG	8270 8270	09/11/2008 02:1 ⁴ 09/11/2008 02:1 ⁴	

Sample ID: NI-B-8-12 Lab Sample ID: A8A88801 Date Collected: 09/04/2008 Time Collected: 09:45

			Detection				
Parameter	Result	Flag	Limit	<u> Units </u>	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	ND		210	UG/KG	8270	09/11/2008 02:11	MD
Fluorene	ND		210	UG/KG	8270	09/11/2008 02:11	MD
Hexachlorobenzene	ND		210	ug/kg	8270	09/11/2008 02:11	MD
Hexachlorobutadiene	ND		210	ug/kg	8270	09/11/2008 02:11	MD
Hexachlorocyclopentadiene	ND		210	UG/KG	8270	09/11/2008 02:11	MD
Hexachloroethane	ND		210	UG/KG	8270	09/11/2008 02:11	MD
Indeno(1,2,3-cd)pyrene	ND		210	UG/KG	8270	09/11/2008 02:11	MD
Isophorone	ND		210	UG/KG	8270	09/11/2008 02:11	MD
N-Nitroso-Di-n-propylamine	ND		210	UG/KG	8270	09/11/2008 02:11	MD
N-nitrosodiphenylamine	ND		210	UG/KG	8270	09/11/2008 02:11	MD
Naphthalene	13	J	210	UG/KG	8270	09/11/2008 02:11	MD
Nitrobenzene	ND		210	UG/KG	8270	09/11/2008 02:11	MD
Pentachlorophenol	ND		400	UG/KG	8270	09/11/2008 02:11	MD
Phenanthrene	9	J	210	UG/KG	8270	09/11/2008 02:11	
Phenol	ND		210	UG/KG	8270	09/11/2008 02:11	MD
Pyrene	ND		210	UG/KG	8270	09/11/2008 02:11	MD
Metals Analysis							
Aluminum — Total	14000	EN	11.8	MG/KG	6010	09/09/2008 16:34	
Antimony - Total	ND	N	17.6	MG/KG	6010	09/09/2008 16:34	
Arsenic – Total	8.2	N	2.4	MG/KG	6010	09/09/2008 16:34	
Barium - Total	73.8	EN	0,59	MG/KG	6010	09/09/2008 16:34	
Beryllium – Total	0.59	N	0.24	MG/KG	6010	09/09/2008 16:34	
Cadmium — Total	ND	N	0,24	MG/KG	6010	09/09/2008 16:34	
Calcium - Total	2170	EN*	58.8	MG/KG	6010	09/09/2008 16:34	
Chromium - Total	19.9	EN	0.59	MG/KG	6010	09/09/2008 16:34	
Cobalt - Total	11.2	EN	0.59	MG/KG	6010	09/09/2008 16:34	
Copper – Total	26.4	EN	1.2	MG/KG	6010	09/09/2008 16:34	
Iron – Total	28900	Е	11.8	MG/KG	6010	09/09/2008 16:34	
Lead - Total	12.8	EN	1.2	MG/KG	6010	09/09/2008 16:34	,
Magnesium - Total	4660	EN*	23.5	MG/KG	6010	09/09/2008 16:34	÷
Manganese - Total	555	E*	0.24	MG/KG	6010	09/09/2008 16:34	
Mercury – Total	ND		0.022	MG/KG	7471	09/09/2008 14:02	
Nickel – Total	32.3	EN	0.59	MG/KG	6010	09/09/2008 16:34	•
Potassium – Total	1850	EN	35.3	MG/KG	6010	09/09/2008 16:34	•
Selenium - Total	ND	N	4.7	MG/KG	6010	09/09/2008 16:34	•
Silver – Total	ND	Ν	0.59	MG/KG	6010	09/09/2008 16:34	
Sodium - Total	296	N	165	MG/KG	6010	09/09/2008 16:34	
Thallium - Total	ND	N	7.1	MG/KG	6010	09/09/2008 16:34	
Vanadium – Total	22.3	EN	0.59	MG/KG	6010	09/09/2008 16:34	
Zinc - Total	77.0	EN	2.4	MG/KG	6010	09/09/2008 16:34	

Sample ID: NI-B-9-10 Lab Sample ID: A8A88802 Date Collected: 09/04/2008 Time Collected: 10:00

			Detection			——Date/Time——	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
SOIL - SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		28	UG/KG	8260	09/08/2008 16:44	
1,1,2,2-Tetrachloroethane	ND		28	UG/KG	8260	09/08/2008 16:44	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		28	UG/KG	8260	09/08/2008 16:44	
1,1,2-Trichloroethane	ND		28	UG/KG	8260	09/08/2008 16:44	LH
1,1-Dichloroethane	ND		28	UG/KG	8260	09/08/2008 16:44	LH
1,1-Dichloroethene	ND		28	UG/KG	8260	09/08/2008 16:44	LH
1,2,4-Trichlorobenzene	ND		28	UG/KG	8260	09/08/2008 16:44	LH
1,2-Dibromo-3-chloropropane	ND		28	UG/KG	8260	09/08/2008 16:44	LH
1,2-Dibromoethane	ND		28	UG/KG	8260	09/08/2008 16:44	LH
1,2-Dichlorobenzene	ND		28	UG/KG	8260	09/08/2008 16:44	LH
1,2-Dichloroethane	ND		28	UG/KG	8260	09/08/2008 16:44	LH
1,2-Dichloropropane	ND		28	UG/KG	8260	09/08/2008 16:44	LH
1,3-Dichlorobenzene	ND		28	UG/KG	8260	09/08/2008 16:44	LH
1,4-Dichlorobenzene	ND		28	UG/KG	8260	09/08/2008 16:44	LH
2-Butanone	ND		140	UG/KG	8260	09/08/2008 16:44	LH
2-Hexanone	ND		140	UG/KG	8260	09/08/2008 16:44	LH
4-Methyl-2-pentanone	ND		140	UG/KG	8260	09/08/2008 16:44	LH
Acetone	ND		140	UG/KG	8260	09/08/2008 16:44	
Benzene	ND		28	UG/KG	8260	09/08/2008 16:44	
Bromodichloromethane	ND		28	UG/KG	8260	09/08/2008 16:44	
Bromoform	ND		28	UG/KG	8260	09/08/2008 16:44	
Bromomethane	ND		28	UG/KG	8260	09/08/2008 16:44	
Carbon Disulfide	9	J	28	UG/KG	8260	09/08/2008 16:44	
Carbon Tetrachloride	ND		28	UG/KG	8260	09/08/2008 16:44	
Chlorobenzene	ND		28	UG/KG	8260	09/08/2008 16:44	
Chloroethane	ND		28	UG/KG	8260	09/08/2008 16:44	
Chloroform	ND		28	, UG/KG	8260	09/08/2008 16:44	
Chloromethane	ND		28	UG/KG	8260	09/08/2008 16:44	
cis-1,2-Dichloroethene	ND		28	UG/KG	8260	09/08/2008 16:44	
cis-1,3-Dichloropropene	ND		28	UG/KG	8260	09/08/2008 16:44	
Cyclohexane	1200	Е	28	UG/KG	8260	09/08/2008 16:44	
Dibromochloromethane	ND	_	28	UG/KG	8260	09/08/2008 16:44	
Dichlorodifluoromethane	ND		28	UG/KG	8260	09/08/2008 16:44	
Ethylbenzene	1200	Е	28	UG/KG	8260	09/08/2008 16:44	
Isopropylbenzene	290	-	28	UG/KG	8260	09/08/2008 16:44	
Methyl acetate	ND		28	UG/KG	8260	09/08/2008 16:44	
Methyl-t-Butyl Ether (MTBE)	ND		28	UG/KG	8260	09/08/2008 16:44	
Methylcyclohexane	1300	Е	28	UG/KG	8260	09/08/2008 16:44	
Methylene chloride	ND	L	28	UG/KG	8260	09/08/2008 16:44	
Styrene	ND		28	UG/KG	8260	09/08/2008 16:44	
Tetrachloroethene	ND		28	UG/KG	8260		
Toluene	25	BJ	28	UG/KG	8260 8260	09/08/2008 16:44	
Total Xylenes	3100	E	28 84	UG/KG UG/KG		09/08/2008 16:44	
trans-1,2-Dichloroethene		6			8260	09/08/2008 16:44	
trans-1,3-Dichloropropene	ND		28	UG/KG	8260	09/08/2008 16:44	
Trichloroethene	ND		28	UG/KG	8260	09/08/2008 16:44	
Trichlorofluoromethane	ND		28	UG/KG	8260	09/08/2008 16:44	
	ND		28	UG/KG	8260	09/08/2008 16:44	
Vinyl chloride	ND		56	UG/KG	8260	09/08/2008 16:44	∔ LH

Sample ID: NI-B-9-10 Lab Sample ID: A8A88802 Date Collected: 09/04/2008 Time Collected: 10:00

Date Received:	09/06/2008
Project No:	NY8A9801
Client No:	423943
Site No:	

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analys
OIL - SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		200	UG/KG	8270	09/11/2008 02:34	
2,4,5-Trichlorophenol	ND		200	UG/KG	8270	09/11/2008 02:34	
2,4,6-Trichlorophenol	ND		200	UG/KG	8270	09/11/2008 02:34	MD
2,4-Dichlorophenol	ND		200	UG/KG	8270	09/11/2008 02:34	MD
2,4-Dimethylphenol	ND		200	UG/KG	8270	09/11/2008 02:34	MD
2,4-Dinitrophenol	ND		380	UG/KG	8270	09/11/2008 02:34	MD
2,4-Dinitrotoluene	ND		200	UG/KG	8270	09/11/2008 02:34	MD
2,6-Dinitrotoluene	ND		200	UG/KG	8270	09/11/2008 02:34	MD
2-Chloronaphthalene	ND		200	UG/KG	8270	09/11/2008 02:34	MD
2-Chlorophenol	ND		200	UG/KG	8270	09/11/2008 02:34	
2-Methylnaphthalene	110	J	200	UG/KG	8270	09/11/2008 02:34	
2-Methylphenol	ND		200	UG/KG	8270	09/11/2008 02:34	
2-Nitroaniline	ND		380	UG/KG	8270	09/11/2008 02:34	
2-Nitrophenol	ND		200	UG/KG	8270	09/11/2008 02:34	
3,3'-Dichlorobenzidine	ND		200	UG/KG	8270	09/11/2008 02:34	
3-Nitroaniline	ND		380	UG/KG	8270	09/11/2008 02:34	
4,6-Dinitro-2-methylphenol	ND		380	UG/KG	8270	09/11/2008 02:34	
4-Bromophenyl phenyl ether	ND		200	UG/KG	8270	09/11/2008 02:34	
4-Chloro-3-methylphenol	ND		200	UG/KG	8270	09/11/2008 02:34	
4-Chloroaniline	ND		200	UG/KG	8270	09/11/2008 02:34	
4-Chlorophenyl phenyl ether	ND		200	UG/KG			
4-Methylphenol				-	8270	09/11/2008 02:34	
4-Nitroaniline	ND		200	UG/KG	8270	09/11/2008 02:34	
	ND		380	UG/KG	8270	09/11/2008 02:34	
4-Nitrophenol	ND		380	UG/KG	8270	09/11/2008 02:34	
Acenaphthene	ND		200	UG/KG	8270	09/11/2008 02:34	
Acenaphthylene	ND		200	UG/KG	8270	09/11/2008 02:34	
Acetophenone	ND		200	UG/KG	8270	09/11/2008 02:34	
Anthracene	ND		200	UG/KG	8270	09/11/2008 02:34	
Atrazine	ND		200	UG/KG	8270	09/11/2008 02:34	
Benzaldehyde	ND		200	UG/KG	8270	09/11/2008 02:34	HD MD
Benzo(a)anthracene	ND		200	UG/KG	8270	09/11/2008 02:34	H MD
Benzo(a)pyrene	ND		200	UG/KG	8270	09/11/2008 02:34	⊢ MD
Benzo(b)fluoranthene	ND		200	UG/KG	8270	09/11/2008 02:34	MD
Benzo(ghi)perylene	ND		200	UG/KG	8270	09/11/2008 02:34	MD
Benzo(k)fluoranthene	ND		200	UG/KG	8270	09/11/2008 02:34	MD
Biphenyl	ND		200	UG/KG	8270	09/11/2008 02:34	
Bis(2-chloroethoxy) methane	ND		200	UG/KG	8270	09/11/2008 02:34	
Bis(2-chloroethyl) ether	ND		200	UG/KG	8270	09/11/2008 02:34	
Bis(2-ethylhexyl) phthalate	83	J	200	UG/KG	8270	09/11/2008 02:34	
Butyl benzyl phthalate	ND		200	UG/KG	8270	09/11/2008 02:34	
Caprolactam	ND		200	UG/KG	8270	09/11/2008 02:34	
Carbazole	ND		200	UG/KG	8270	09/11/2008 02:34	
Chrysene	ND		200	UG/KG	8270	09/11/2008 02:34	
Di-n-butyl phthalate	ND		200	UG/KG	8270	09/11/2008 02:32	
Di-n-octyl phthalate	ND		200	UG/KG	8270	09/11/2008 02:34	
Dibenzo(a,h)anthracene	ND						
Dibenzofuran			200	UG/KG	8270	09/11/2008 02:34	
	ND		200	UG/KG	8270	09/11/2008 02:34	
Diethyl phthalate	ND		200	UG/KG	8270	09/11/2008 02:34	
Dimethyl phthalate	ND		200	UG/KG	8270	09/11/2008 02:34	4 MD

Sample ID: NI-B-9-10 Lab Sample ID: A8A88802 Date Collected: 09/04/2008 Time Collected: 10:00

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	ND		200	UG/KG	8270	09/11/2008 02:34	MD
Fluorene	ND		200	UG/KG	8270	09/11/2008 02:34	MD
Hexachlorobenzene	ND		200	UG/KG	8270	09/11/2008 02:34	
Hexachlorobutadiene	ND		200	UG/KG	8270	09/11/2008 02:34	
Hexachlorocyclopentadiene	ND		200	UG/KG	8270	09/11/2008 02:34	
Hexachloroethane	ND		200	UG/KG	8270	09/11/2008 02:34	
Indeno(1,2,3-cd)pyrene	ND		200	UG/KG	8270	09/11/2008 02:34	
Isophorone	ND		200	UG/KG	8270	09/11/2008 02:34	
N-Nitroso-Di-n-propyLamine	ND		200	UG∕KG	8270	09/11/2008 02:34	
N-nitrosodiphenylamine	ND		200	UG/KG	8270	09/11/2008 02:34	
Naphthalene	51	J	200	UG/KG	8270	09/11/2008 02:34	
Nitrobenzene	ND		200	UG/KG	8270	09/11/2008 02:34	
Pentachlorophenol	ND		380	UG/KG	8270	09/11/2008 02:34	
Phenanthrene	10	J	200	UG/KG	8270	09/11/2008 02:34	
Phenol	ND		200	UG/KG	8270	09/11/2008 02:34	
Pyrene	ND		200	UG/KG	8270	09/11/2008 02:34	
Metals Analysis	47000						
Aluminum - Total	13000	EN	12.2	MG/KG	6010	09/09/2008 16:39	
Antimony - Total	ND	N	18.3	MG/KG	6010	09/09/2008 16:39	
Arsenic – Total	5.2	N	2.4	MG/KG	6010	09/09/2008 16:39	
Barium – Total	51.5	EN	0.61	MG/KG	6010	09/09/2008 16:39	
Beryllium - Total	0.52	N	0.24	MG/KG	6010	09/09/2008 16:39	
Cadmium - Total	ND	N	0.24	MG/KG	6010	09/09/2008 16:39	
Calcium - Total	3680	EN*	61.1	MG/KG	6010	09/09/2008 16:39	
Chromium - Total	18.4	EN	0.61	MG/KG	6010	09/09/2008 16:39	
Cobalt - Total	10.3	EN	0.61	MG/KG	6010	09/09/2008 16:39	
Copper - Total	26.7	EN	1.2	MG/KG	6010	09/09/2008 16:39	
Iron - Total	28500	Е	12.2	MG/KG	6010	09/09/2008 16:39	
Lead - Total	10.2	EN	1.2	MG/KG	6010	09/09/2008 16:39	
Magnesium - Total	5500	EN*	24.5	MG/KG	6010	09/09/2008 16:39	
Manganese – Total	371	E*	0.24	MG/KG	6010	09/09/2008 16:39	
Mercury – Total	ND		0.022	MG/KG	7471	09/09/2008 14:00	
Nickel – Total	29.4	EN	0.61	MG/KG	6010	09/09/2008 16:39	
Potassium – Total	1320	EN	36.7	MG/KG	6010	09/09/2008 16:39	
Selenium – Total	ND	N	4.9	MG/KG	6010	09/09/2008 16:39	
Silver – Total	ND	N	0.61	MG/KG	6010	09/09/2008 16:39	
Sodium - Total	ND	N	171	MG/KG	6010	09/09/2008 16:39	
Thallium - Total	ND	N	7.3	MG/KG	6010	09/09/2008 16:39	
Vanadium - Total	18.5	EN	0.61	MG/KG	6010	09/09/2008 16:39	
Zinc – Total	77.9	EN	2.4	MG/KG	6010	09/09/2008 16:39	9

Nichol Inn ERP Site (Category B)

Sample ID: NI-B-9-10 DL Lab Sample ID: A8A88802DL Date Collected: 09/04/2008 Time Collected: 10:00

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		290	UG/KG	8260	09/09/2008 18:02	RJ
1,1,2,2-Tetrachloroethane	ND		290	UG/KG	8260	09/09/2008 18:02	RJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		290	UG/KG	8260	09/09/2008 18:02	RJ
1,1,2-Trichloroethane	ND		290	UG/KG	8260	09/09/2008 18:02	RJ
1,1-Dichloroethane	ND		290	UG/KG	8260	09/09/2008 18:02	RJ
1,1-Dichloroethene	ND		290	UG/KG	8260	09/09/2008 18:02	RJ
1,2,4-Trichlorobenzene	ND		290	UG/KG	8260	09/09/2008 18:02	RJ
1,2-Dibromo-3-chloropropane	ND		290	UG/KG	8260	09/09/2008 18:02	RJ
1,2-Dibromoethane	ND		290	UG/KG	8260	09/09/2008 18:02	RJ
1,2-Dichlorobenzene	ND		290	UG/KG	8260	09/09/2008 18:02	RJ
1,2-Dichloroethane	ND		290	UG/KG	8260	09/09/2008 18:02	RJ
1,2-Dichloropropane	ND		290	UG/KG	8260	09/09/2008 18:02	RJ
1,3-Dichlorobenzene	ND		290	UG/KG	8260	09/09/2008 18:02	RJ
1,4-Dichlorobenzene	ND		290	UG/KG	8260	09/09/2008 18:02	RJ
2-Butanone	ND		1400	UG/KG	8260	09/09/2008 18:02	RJ
2-Hexanone	ND		1400	UG/KG	8260	09/09/2008 18:02	
4-Methyl-2-pentanone	ND		1400	UG/KG	8260	09/09/2008 18:02	
Acetone	ND		1400	UG/KG	8260	09/09/2008 18:02	
Benzene	ND		290	UG/KG	8260	09/09/2008 18:02	
Bromodichloromethane	ND		290	UG/KG	8260	09/09/2008 18:02	
Bromoform	ND		290	UG/KG	8260	09/09/2008 18:02	
Bromomethane	ND		290	UG/KG	8260	09/09/2008 18:02	
Carbon Disulfide	ND		290	UG/KG	8260	09/09/2008 18:02	
Carbon Tetrachloride	ND		290	UG/KG	8260	09/09/2008 18:02	
Chlorobenzene	ND		290	UG/KG	8260	09/09/2008 18:02	
Chloroethane	ND		290	UG/KG	8260	09/09/2008 18:02	
Chloroform	ND		290	UG/KG	8260	09/09/2008 18:02	
Chloromethane	ND		290	UG/KG	8260	09/09/2008 18:02	
cis-1,2-Dichloroethene	ND		290	UG/KG	8260	09/09/2008 18:02	
cis-1,3-Dichloropropene	ND		290	UG/KG	8260	09/09/2008 18:02	
Cyclohexane	1900	D	290	UG/KG	8260	09/09/2008 18:02	
Dibromochloromethane	ND	-	290	UG/KG	8260	09/09/2008 18:02	
Dichlorodifluoromethane	ND		290	UG/KG	8260	09/09/2008 18:02	
Ethylbenzene	1000	D	290	UG/KG	8260	09/09/2008 18:02	
Isopropylbenzene	390	D	290	UG/KG	8260	09/09/2008 18:02	
Methyl acetate	ND	-	290	UG/KG	8260	09/09/2008 18:02	
Methyl-t-Butyl Ether (MTBE)	ND		290	UG/KG	8260	09/09/2008 18:02	
Methylcyclohexane	3600	D	290	UG/KG	8260	09/09/2008 18:02	
Methylene chloride	ND	•	290	UG/KG	8260	09/09/2008 18:02	
Styrene	ND		290	UG/KG	8260	09/09/2008 18:02	
Tetrachloroethene	ND		290	UG/KG	8260	09/09/2008 18:02	
Toluene	ND		290	UG/KG	8260	09/09/2008 18:02	
Total Xylenes	3100	D	860	UG/KG	8260	09/09/2008 18:02	
trans-1,2-Dichloroethene	ND	-	290	UG/KG	8260	09/09/2008 18:02	
trans-1,3-Dichloropropene	ND		290	UG/KG	8260	09/09/2008 18:02	
Trichloroethene	ND		290	UG/KG	8260	09/09/2008 18:02	
Trichlorofluoromethane	ND		290	UG/KG	8260	09/09/2008 18:02	
Vinyl chloride	ND		570	UG/KG	8260	09/09/2008 18:02	
			210	00710	0200	07/07/2000 10:02	κJ

Sample ID: NI-SS-1 Lab Sample ID: A8A88812 Date Collected: 09/04/2008 Time Collected: 11:40

			Detection			Date/Time	
Parameter	Result	<u> </u>	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
2,4,5-Trichlorophenol	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
2,4,6-Trichlorophenol	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
2,4-Dichlorophenol	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
2,4-Dimethylphenol	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
2,4-Dinitrophenol	ND		3800	UG/KG	8270	09/11/2008 07:07	MD
2,4-Dinitrotoluene	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
2,6-Dinitrotoluene	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
2-Chloronaphthalene	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
2-Chlorophenol	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
2-Methylnaphthalene	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
2-Methylphenol	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
2-Nitroaniline	ND		3800	, UG/KG	8270	09/11/2008 07:07	MD
2-Nitrophenol	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
3,3'-Dichlorobenzidine	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
3-Nitroaniline	ND		3800	UG/KG	8270	09/11/2008 07:07	MD
4,6-Dinitro-2-methylphenol	ND		3800	UG/KG	8270	09/11/2008 07:07	MD
4-Bromophenyl phenyl ether	ND		2000	UG/KG	8270	09/11/2008 07:07	
4-Chloro-3-methylphenol	ND		2000	UG/KG	8270	09/11/2008 07:07	
4-Chloroaniline	ND		2000	UG/KG	8270	09/11/2008 07:07	
4-Chlorophenyl phenyl ether	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
4-Methylphenol	ND		2000	UG/KG	8270	09/11/2008 07:07	
4-Nitroaniline	ND		3800	UG/KG	8270	09/11/2008 07:07	
4-Nitrophenol	ND		3800	UG/KG	8270	09/11/2008 07:07	
Acenaphthene	ND		2000	UG/KG	8270	09/11/2008 07:07	
Acenaphthylene	ND		2000	UG/KG	8270	09/11/2008 07:07	
Acetophenone	ND		2000	UG/KG	8270	09/11/2008 07:07	
Anthracene	ND		2000	UG/KG	8270	09/11/2008 07:07	
Atrazine	ND		2000	UG/KG	8270	09/11/2008 07:07	
Benzaldehyde	ND		2000	UG/KG UG/KG	8270	09/11/2008 07:07	
Benzo(a)anthracene	190	J	2000	UG/KG			
Benzo(a)pyrene	140				8270	09/11/2008 07:07	
Benzo(b)fluoranthene		J	2000	UG/KG	8270	09/11/2008 07:07	
Benzo(ghi)perylene	150	J	2000	UG/KG	8270	09/11/2008 07:07	
Benzo(k)fluoranthene	120	J	2000	UG/KG	8270	09/11/2008 07:07	
	ND		2000	UG/KG	8270	09/11/2008 07:07	
Biphenyl Bis(2-chloroethoxy) methane	ND		2000	UG/KG	8270	09/11/2008 07:07	
-	ND		2000	UG/KG	8270	09/11/2008 07:07	
Bis(2-chloroethyl) ether	ND		2000	UG/KG	8270	09/11/2008 07:07	
Bis(2-ethylhexyl) phthalate	ND		2000	UG/KG	8270	09/11/2008 07:07	
Butyl benzyl phthalate	ND		2000	UG/KG	8270	09/11/2008 07:07	
Caprolactam	ND		2000	UG/KG	8270	09/11/2008 07:07	
Carbazole	ND		2000	UG/KG	8270	09/11/2008 07:07	
Chrysene	120	J	2000	UG/KG	8270	09/11/2008 07:07	
Di-n-butyl phthalate	ND		2000	UG/KG	8270	09/11/2008 07:07	
Di-n-octyl phthalate	ND		2000	UG/KG	8270	09/11/2008 07:07	
Dibenzo(a,h)anthracene	ND		2000	UG/KG	8270	09/11/2008 07:07	
Dibenzofuran	ND		2000	UG/KG	8270	09/11/2008 07:07	
Diethyl phthalate	ND		2000	UG/KG	8270	09/11/2008 07:07	
Dimethyl phthalate	ND		2000	UG/KG	8270	09/11/2008 07:07	' MD

Sample ID: NI-SS-1 Lab Sample ID: A&A&8812 Date Collected: 09/04/2008 Time Collected: 11:40

			Detection			Date/Time	
Parameter	Result	<u> </u>	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	190	J	2000	UG/KG	8270	09/11/2008 07:07	MD
Fluorene	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
Hexachlorobenzene	ND		2000	UG/KG	8270	09/11/2008 07 : 07	MD
Hexachlorobutadiene	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
Hexachlorocyclopentadiene	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
Hexachloroethane	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
Indeno(1,2,3-cd)pyrene	88	J	2000	UG/KG	8270	09/11/2008 07:07	MD
Isophorone	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
N-Nitroso-Di-n-propylamine	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
N-nitrosodiphenylamine	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
Naphthalene	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
Nitrobenzene	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
Pentachlorophenol	ND		3800	UG/KG	8270	09/11/2008 07:07	MD
Phenanthrene	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
Phenol	ND		2000	UG/KG	8270	09/11/2008 07:07	MD
Pyrene	180	J	2000	UG/KG	8270	09/11/2008 07:07	MD
SOIL - SW8463 8081 - TCL PESTICIDES							
4,4'-DDD	ND		190	UG/KG	8081	09/27/2008 15:47	тсн
4,4'-DDE	ND		190	UG/KG	8081	09/27/2008 15:47	TCH
4,4'-DDT	ND		190	UG/KG	8081	09/27/2008 15:47	тсн
Aldrin	ND		190	UG/KG	8081	09/27/2008 15:47	ТСН
alpha-BHC	ND		190	UG/KG	8081	09/27/2008 15:47	тсн
beta-BHC	ND		190	, UG/KG	8081	09/27/2008 15:47	тсн
Chlordane	ND		1900	UG/KG	8081	09/27/2008 15:47	тсн
delta-BHC	ND		190	UG/KG	8081	09/27/2008 15:47	тсн
Dieldrin	ND		190	UG/KG	8081	09/27/2008 15:47	тсн
Endosulfan I	ND		190	UG∕KG	8081	09/27/2008 15:47	тсн
Endosulfan II	ND		190	UG/KG	8081	09/27/2008 15:47	тсн
Endosulfan Sulfate	ND		190	UG/KG	8081	09/27/2008 15:47	тсн
Endrin	ND		190	UG∕KG	8081	09/27/2008 15:47	тсн
Endrin aldehyde	ND		190	UG/KG	8081	09/27/2008 15:47	тсн
gamma-BHC (Lindane)	ND		190	UG/KG	8081	09/27/2008 15:47	тсн
Heptachlor	ND		190	UG/KG	8081	09/27/2008 15:47	тсн
Heptachlor epoxide	ND		190	UG/KG	8081	09/27/2008 15:47	тсн
Methoxychlor	ND		190	UG/KG	8081	09/27/2008 15:47	тсн
Toxaphene	ND		1900	UG/KG	8081	09/27/2008 15:47	тсн
SOIL - SW8463 8082 - PCBS							
Aroclor 1016	ND		19	UG/KG	8082	09/11/2008 11:14	GFD
Aroclor 1221	ND		19	UG/KG	8082	09/11/2008 11:14	
Aroclor 1232	ND		19	UG/KG	8082	09/11/2008 11:14	
Aroclor 1242	ND		19	UG/KG	8082	09/11/2008 11:14	
Aroclor 1248	ND		19	UG/KG	8082	09/11/2008 11:14	
Aroclor 1254	ND		19	UG/KG	8082	09/11/2008 11:14	
Aroclor 1260	ND		19	UG/KG	8082	09/11/2008 11:14	
Metals Analysis							
Aluminum - Total	6430	EN	12.8	MG/KG	6010	09/09/2008 18:19	
	0-50		12.0	10/10	5010	07/07/2000 10:19	

Sample ID: NI-SS-1 Lab Sample ID: A8A88812 Date Collected: 09/04/2008 Time Collected: 11:40

_			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	<u>Analyst</u>
1etals Analysis							
Antimony - Total	ND	Ν	19.3	MG/KG	6010	09/09/2008 18:19	
Arsenic – Total	5.0	N	2.6	MG/KG	6010	09/09/2008 18:19	
Barium – Total	38.2	EN	0.64	MG/KG	6010	09/09/2008 18:19	
Beryllium – Total	0.31	N	0.26	MG/KG	6010	09/09/2008 18:19	
Cadmium - Total	0.39	N	0.26	MG/KG	6010	09/09/2008 18:19	
Calcium – Total	21800	EN*	64.2	MG/KG	6010	09/09/2008 18:19	
Chromium – Total	13.3	EN	0.64	MG/KG	6010	09/09/2008 18:19	
Cobalt - Total	7.1	EN	0.64	MG/KG	6010	09/09/2008 18:19	
Copper – Total	39.0	EN	1.3	MG/KG	6010	09/09/2008 18:19	
Iron – Total	17100	Е	12.8	MG/KG	6010	09/09/2008 18:19	
Lead - Total	40.0	EN	1.3	MG/KG	6010	09/09/2008 18:19	
Magnesium – Total	7430	EN*	25.7	MG/KG	6010	09/09/2008 18:19	
Manganese – Total	374	E*	0.26	MG/KG	6010	09/09/2008 18:19	
Mercury – Total	ND		0.023	MG/KG	7471	09/09/2008 14:27	
Nickel – Total	17.0	EN	0.64	MG/KG	6010	09/09/2008 18:19	
Potassium – Total	738	EN	38.5	MG/KG	6010	09/09/2008 18:19	
Selenium - Total	ND	N	5.1	MG/KG	6010	09/09/2008 18:19	
Silver – Total	ND	N	0.64	MG/KG	6010	09/09/2008 18:19	
Sodium – Total	ND	N	180	MG/KG	6010	09/09/2008 18:19	
Thallium – Total	ND	N	7.7	MG/KG	6010	09/09/2008 18:19	
Vanadium - Total	11.9	EN	0.64	MG/KG	6010	09/09/2008 18:19	
Zinc - Total	95.9	EN	2.6	MG/KG	6010	09/09/2008 18:19	

Sample ID: NI-SS-1D Lab Sample ID: A8A88813 Date Collected: 09/04/2008 Time Collected: 11:40

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
2,4,5-Trichlorophenol	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
2,4,6-Trichlorophenol	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
2,4-Dichlorophenol	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
2,4-Dimethylphenol	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
2,4-Dinitrophenol	ND		7800	UG/KG	8270	09/11/2008 07:30	MD
2,4-Dinitrotoluene	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
2,6-Dinitrotoluene	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
2-Chloronaphthalene	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
2-Chlorophenol	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
2-Methylnaphthalene	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
2-Methylphenol	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
2-Nitroaniline	ND		7800	UG/KG	8270	09/11/2008 07:30	MD
2-Nitrophenol	ND		4000	UG/KG	8270	09/11/2008 07:30	
3,3'-Dichlorobenzidine	ND		4000	UG/KG	8270	09/11/2008 07:30	
3-Nitroaniline	ND		7800	UG/KG	8270	09/11/2008 07:30	
4,6-Dinitro-2-methylphenol	ND		7800	UG/KG	8270	09/11/2008 07:30	
4-Bromophenyl phenyl ether	ND		4000	UG/KG	8270	09/11/2008 07:30	
4-Chloro-3-methylphenol	ND		4000	UG/KG	8270	09/11/2008 07:30	
4-Chloroaniline	ND		4000	UG/KG	8270	09/11/2008 07:30	
4-Chlorophenyl phenyl ether	ND		4000	UG/KG	8270	09/11/2008 07:30	
4-Methylphenol	ND		4000	UG/KG	8270	09/11/2008 07:30	
4-Nitroaniline	ND		7800	UG/KG	8270	09/11/2008 07:30	
4-Nitrophenol	ND		7800	UG/KG	8270	09/11/2008 07:30	
Acenaphthene	ND		4000	UG/KG	8270	09/11/2008 07:30	
Acenaphthylene	ND		4000	UG/KG	8270	09/11/2008 07:30	
Acetophenone	ND		4000	UG/KG	8270	09/11/2008 07:30	
Anthracene	ND		4000	UG/KG	8270	09/11/2008 07:30	
Atrazine	ND		4000	UG/KG	8270	09/11/2008 07:30	
Benzaldehyde	ND		4000	UG/KG	8270	09/11/2008 07:30	
Benzo(a)anthracene	270	J	4000	UG/KG	8270	09/11/2008 07:30	
Benzo(a)pyrene	200	j	4000	UG/KG	8270	09/11/2008 07:30	
Benzo(b)fluoranthene	190	J	4000	UG/KG	8270	09/11/2008 07:30	
Benzo(ghi)perylene	ND	-	4000	UG/KG	8270	09/11/2008 07:30	
Benzo(k)fluoranthene	ND		4000	UG/KG	8270	09/11/2008 07:30	
Biphenyl	ND		4000	UG/KG	8270	09/11/2008 07:30	
Bis(2-chloroethoxy) methane	ND		4000	UG/KG	8270	09/11/2008 07:30	
Bis(2-chloroethyl) ether	ND		4000	UG/KG	8270	09/11/2008 07:30	
Bis(2-ethylhexyl) phthalate	ND		4000	UG/KG	8270	09/11/2008 07:30	
Butyl benzyl phthalate	ND		4000	UG/KG	8270	09/11/2008 07:30	
Caprolactam	ND		4000	UG/KG	8270	09/11/2008 07:30	
Carbazole	ND		4000	UG/KG	8270	09/11/2008 07:30	
Chrysene	180	j	4000	UG/KG	8270	09/11/2008 07:30	
Di-n-butyl phthalate	ND	5	4000	UG/KG	8270		
Di-n-octyl phthalate	ND		4000	UG/KG UG/KG	8270	09/11/2008 07:30 09/11/2008 07:30	
Dibenzo(a,h)anthracene	ND		4000	UG/KG UG/KG		09/11/2008 07:30	
Dibenzofuran	ND		4000	UG/KG UG/KG	8270 8270	09/11/2008 07:30	
Diethyl phthalate	ND		4000	UG/KG UG/KG	8270 8270		
					8270	09/11/2008 07:30	
Dimethyl phthalate	ND		4000	UG/KG	8270	09/11/2008 07:30	O MD

Sample ID: NI-SS-1D Lab Sample ID: A8A88813 Date Collected: 09/04/2008 Time Collected: 11:40

			Detection				
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	210	J	4000	UG/KG	8270	09/11/2008 07:30	MD
Fluorene	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
Hexachlorobenzene	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
Hexachlorobutadiene	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
Hexachlorocyclopentadiene	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
Hexachloroethane	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
Indeno(1,2,3-cd)pyrene	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
Isophorone	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
N-Nitroso-Di-n-propylamine	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
N-nitrosodiphenylamine	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
Naphthalene	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
Nitrobenzene	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
Pentachlorophenol	ND		7800	UG/KG	8270	09/11/2008 07:30	MD
Phenanthrene	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
Phenol	ND		4000	UG/KG	8270	09/11/2008 07:30	MD
Pyrene	220	J	4000	UG/KG	8270	09/11/2008 07:30	MD
						077172000 07150	ΠD
SOIL - SW8463 8081 - TCL PESTICIDES							
4,4'-DDD	ND		200	UG/KG	8081	09/27/2008 16:23	тсн
4,4'-DDE	ND		200	UG/KG	8081	09/27/2008 16:23	тсн
4,4'-DDT	ND		200	UG/KG	8081	09/27/2008 16:23	тсн
Aldrin	ND		200	UG/KG	8081	09/27/2008 16:23	
alpha-BHC	ND		200	UG/KG	8081	09/27/2008 16:23	TCH
beta-BHC	ND		200	UG/KG	8081	09/27/2008 16:23	TCH
Chlordane	ND		2000	UG/KG	8081	09/27/2008 16:23	TCH
delta-BHC	ND		200	UG/KG	8081	09/27/2008 16:23	TCH
Dieldrin	ND		200	UG/KG	8081	09/27/2008 16:23	TCH
Endosulfan I	ND		200	UG/KG	8081	09/27/2008 16:23	TCH
Endosulfan II	ND		200	UG/KG	8081	09/27/2008 16:23	TCH
Endosulfan Sulfate	ND		200	UG/KG	8081	09/27/2008 16:23	TCH
Endrin	ND		200	UG/KG	8081	09/27/2008 16:23	TCH
Endrin aldehyde	ND		200	UG/KG	8081	09/27/2008 16:23	TCH
gamma-BHC (Lindane)	ND		200	UG/KG UG/KG			TCH
Heptachlor	ND		200		8081	09/27/2008 16:23	ТСН
Heptachlor epoxide			200	UG/KG	8081	09/27/2008 16:23	ТСН
Methoxychlor	ND			UG/KG	8081	09/27/2008 16:23	тсн
Toxaphene	ND		200	UG/KG	8081	09/27/2008 16:23	
Toxapiteite	ND		2000	UG/KG	8081	09/27/2008 16:23	TCH
SOIL - SW8463 8082 - PCBS							
			20				
Aroclor 1016 Aroclor 1221	ND		20	UG/KG	8082	09/11/2008 11:32	
	ND		20	UG/KG	8082	09/11/2008 11:32	
Aroclor 1232	ND		20	UG/KG	8082	09/11/2008 11:32	
Aroclor 1242	ND		20	UG/KG	8082	09/11/2008 11:32	
Aroclor 1248	ND		20	UG/KG	8082	09/11/2008 11:32	
Aroclor 1254	ND		20	UG/KG	8082	09/11/2008 11:32	
Aroclor 1260	ND		20	UG/KG	8082	09/11/2008 11:32	GFD
Madala Analysia							
Metals Analysis	<i></i>						
Aluminum – Total	6260	EN	12.0	MG/KG	6010	09/09/2008 18:25	

Sample ID: NI-SS-1D Lab Sample ID: A8A88813 Date Collected: 09/04/2008 Time Collected: 11:40

Parameter		Detection				Date/Time			
	Result	Flag	Limit	Units	Method	AnalyzedAnalyst			
Metals Analysis									
Antimony – Total	ND	N	18.0	MG/KG	6010	09/09/2008 18:25			
Arsenic – Total	5.3	N	2.4	MG/KG	6010	09/09/2008 18:25			
Barium - Total	37.3	EN	0.60	MG/KG	6010	09/09/2008 18:25			
Beryllium – Total	0.31	N	0.24	MG/KG	6010	09/09/2008 18:25			
Cadmium — Total	0.34	N	0.24	MG/KG	6010	09/09/2008 18:25			
Calcium – Total	33000	EN*	60.0	MG/KG	6010	09/09/2008 18:25			
Chromium - Total	12.4	EN	0.60	MG/KG	6010	09/09/2008 18:25			
Cobalt – Total	7.0	EN	0.60	MG/KG	6010	09/09/2008 18:25			
Copper – Total	37.9	EN	1.2	MG/KG	6010	09/09/2008 18:25			
Iron - Total	16800	Е	12.0	MG/KG	6010	09/09/2008 18:25			
Lead – Total	37.5	EN	1.2	MG/KG	6010	09/09/2008 18:25			
Magnesium – Total	6830	EN*	24.0	MG/KG	6010	09/09/2008 18:25			
Manganese – Total	383	Е*	0.24	MG/KG	6010	09/09/2008 18:25			
Mercury – Total	ND		0.025	MG/KG	7471	09/09/2008 14:29			
Nickel – Total	16.7	EN	0.60	MG/KG	6010	09/09/2008 18:25			
Potassium - Total	768	EN	36.0	MG/KG	6010	09/09/2008 18:25			
Selenium – Total	ND	N	4.8	MG/KG	6010	09/09/2008 18:25			
Silver – Total	ND	N	0.60	MG/KG	6010	09/09/2008 18:25			
Sodium – Total	ND	N	168	MG/KG	6010	09/09/2008 18:25			
Thallium — Total	ND	N	7.2	MG/KG	6010	09/09/2008 18:25			
Vanadium – Total	12.4	EN	0.60	MG/KG	6010	09/09/2008 18:25			
Zinc - Total	92.7	EN	2.4	MG/KG	6010	09/09/2008 18:25			

Sample ID: NI-SS-2 Lab Sample ID: A8A88814 Date Collected: 09/04/2008 Time Collected: 11:20

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
2,4,5-Trichlorophenol	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
2,4,6-Trichlorophenol	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
2,4-Dichlorophenol	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
2,4-Dimethylphenol	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
2,4-Dinitrophenol	ND		3900	UG/KG	8270	09/11/2008 07:53	MD
2,4-Dinitrotoluene	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
2,6-Dinitrotoluene	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
2-Chloronaphthalene	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
2-Chlorophenol	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
2-Methylnaphthalene	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
2-Methylphenol	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
2-Nitroaniline	ND		3900	UG/KG	8270	09/11/2008 07:53	MD
2-Nitrophenol	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
3,3'-Dichlorobenzidine	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
3-Nitroaniline	ND		3900	UG/KG	8270	09/11/2008 07:53	
4,6-Dinitro-2-methylphenol	ND		3900	UG/KG	8270	09/11/2008 07:53	
4-Bromophenyl phenyl ether	ND		2000	UG/KG	8270	09/11/2008 07:53	
4-Chloro-3-methylphenol	ND		2000	UG/KG	8270	09/11/2008 07:53	
4-Chloroaniline	ND		2000	UG/KG	8270	09/11/2008 07:53	
4-Chlorophenyl phenyl ether	ND		2000	UG/KG	8270	09/11/2008 07:53	
4-Methylphenol	ND		2000	UG/KG	8270	09/11/2008 07:53	
4-Nitroaniline	ND		3900	UG/KG	8270	09/11/2008 07:53	
4-Nitrophenol	ND		3900	UG/KG	8270	09/11/2008 07:53	
Acenaphthene	ND		2000	UG/KG	8270	09/11/2008 07:53	
Acenaphthylene	ND		2000	UG/KG	8270	09/11/2008 07:53	
Acetophenone	ND		2000	UG/KG	8270	09/11/2008 07:53	
Anthracene	ND		2000	UG/KG	8270	09/11/2008 07:53	
Atrazine	ND		2000	UG/KG	8270	09/11/2008 07:53	
Benzaldehyde	ND		2000	UG/KG	8270	09/11/2008 07:53	
Benzo(a)anthracene	160	J	2000	UG/KG	8270	09/11/2008 07:53	
Benzo(a)pyrene	100	J	2000	UG/KG	8270	09/11/2008 07:53	
Benzo(b)fluoranthene	190	J	2000	UG/KG	8270	09/11/2008 07:53	
Benzo(ghi)perylene	ND	·	2000	UG/KG	8270	09/11/2008 07:53	
Benzo(k)fluoranthene	ND		2000	UG/KG	8270	09/11/2008 07:53	
Biphenyl	ND		2000	UG/KG	8270	09/11/2008 07:53	
Bis(2-chloroethoxy) methane	ND		2000	UG/KG	8270	09/11/2008 07:53	
Bis(2-chloroethyl) ether	ND		2000	UG/KG	8270	09/11/2008 07:53	
Bis(2-ethylhexyl) phthalate	ND		2000	UG/KG	8270	09/11/2008 07:53	
Butyl benzyl phthalate	ND		2000	UG/KG	8270	09/11/2008 07:53	
Caprolactam	ND		2000	UG/KG	8270	09/11/2008 07:53	
Carbazole	ND		2000	UG/KG	8270	09/11/2008 07:53	
Chrysene	100	J	2000	UG/KG			
Di-n-butyl phthalate	ND	5	2000	UG/KG UG/KG	8270 8270	09/11/2008 07:53	
Di-n-octyl phthalate	ND		2000	-	8270 8270	09/11/2008 07:53	
Dibenzo(a,h)anthracene			2000	UG/KG	8270 8270	09/11/2008 07:53	
Dibenzofuran	ND			UG/KG	8270 8270	09/11/2008 07:53	
Diethyl phthalate	ND		2000	UG/KG	8270	09/11/2008 07:53	
Dimethyl phthalate	ND		2000	UG/KG	8270 8270	09/11/2008 07:53	
o me dife prenatate	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
						-	

Nichol Inn ERP Site (Category B)

Sample ID: NI-SS-2 Lab Sample ID: A8A88814 Date Collected: 09/04/2008 Time Collected: 11:20

Date Received:	09/06/2008
Project No:	NY8A9801
Client No:	423943
Site No:	

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							Mild Cyst
Fluoranthene	160	J	2000	UG/KG	8270	09/11/2008 07:53	MD
Fluorene	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
Hexachlorobenzene	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
Hexachlorobutadiene	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
Hexachlorocyclopentadiene	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
Hexachloroethane	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
Indeno(1,2,3-cd)pyrene	80	J	2000	UG/KG	8270	09/11/2008 07:53	MD
Isophorone	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
N-Nitroso-Di-n-propylamine	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
N-nitrosodiphenyLamine	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
Naphthalene	ND		2000	UG/KG	8270	09/11/2008 07:53	
Nitrobenzene	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
Pentachlorophenol	ND		3900	UG/KG	8270	09/11/2008 07:53	MD
Phenanthrene	ND		2000	UG/KG	8270	09/11/2008 07:53	MD
Phenol	ND		2000	UG/KG	8270	09/11/2008 07:53	
Pyrene	170	J	2000	UG/KG	8270	09/11/2008 07:53	MD
i ji che		Ũ	2000	odyka	0270	0711/2008 07:55	MD
SOIL - SW8463 8081 - TCL PESTICIDES							
4,4'-DDD	ND		100	UG/KG	8081	09/27/2008 17:00	тсн
4,4'-DDE	ND		100	UG/KG	8081	09/27/2008 17:00	
4,4'-DDT	ND		100	UG/KG	8081	09/27/2008 17:00	
Aldrin	ND		100	UG/KG	8081	09/27/2008 17:00	
alpha-BHC	ND		100	UG/KG	8081	09/27/2008 17:00	
beta-BHC	ND		100	UG/KG	8081	09/27/2008 17:00	
Chlordane	ND		1000	UG/KG	8081	09/27/2008 17:00	
de L ta-BHC	ND		100	UG/KG	8081	09/27/2008 17:00	
Dieldrin	ND		100	UG/KG	8081	09/27/2008 17:00	
Endosulfan I	ND		100	UG/KG	8081	09/27/2008 17:00	
Endosulfan II	ND		100	UG/KG	8081	09/27/2008 17:00	
Endosulfan Sulfate	ND		100	UG/KG	8081	09/27/2008 17:00	
Endrin	ND		100	UG/KG	8081	09/27/2008 17:00	
Endrin aldehyde	ND		100	UG/KG			
gamma-BHC (Lindane)				UG/KG	8081	09/27/2008 17:00	
Heptachlor	ND		100	UG/KG UG/KG	8081	09/27/2008 17:00	
	ND		100	-	8081	09/27/2008 17:00	
Heptachlor epoxide Methoxychlor	ND		100	UG/KG	8081	09/27/2008 17:00	
	ND		100	UG/KG	8081	09/27/2008 17:00	
Toxaphene	ND		1000	UG/KG	8081	09/27/2008 17:00	тсн
SOIL - SW8463 8082 - PCBS							
Aroclor 1016	ND		20	uclive	0000	00/11/2000 11.10	
Aroclor 1221	ND		20 20	ug/kg ug/kg	8082	09/11/2008 11:49	
Aroclor 1221	ND		20	UG/KG UG/KG	8082	09/11/2008 11:49	
	ND				8082	09/11/2008 11:49	
Aroclor 1242 Aroclor 1248	ND		20	UG/KG	8082	09/11/2008 11:49	
	ND		20	UG/KG	8082	09/11/2008 11:49	
Aroclor 1254 Aroclor 1260	ND 12	,	20	UG/KG	8082	09/11/2008 11:49	
	12	J	20	UG/KG	8082	09/11/2008 11:49	9 GFD
Metals Analysis							
Aluminum – Total	10600	EN	12.0	MG/KG	6010	09/09/2008 18:30	, ,
	10000	L14	12.0	110/10	0010	07/07/2000 18:30	J
						T	

Sample ID: NI-SS-2 Lab Sample ID: A8A88814 Date Collected: 09/04/2008 Time Collected: 11:20

			Detection			Date/Time
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed Analyst
Metals Analysis						
Antimony - Total	ND	N	18.0	MG/KG	6010	09/09/2008 18:30
Arsenic – Total	8.8	N	2.4	MG/KG	6010	09/09/2008 18:30
Barium – Total	64.5	EN	0.60	MG/KG	6010	09/09/2008 18:30
Beryllium – Total	0.59	N	0.24	MG/KG	6010	09/09/2008 18:30
Cadmium - Total	0.59	N	0.24	MG/KG	6010	09/09/2008 18:30
Calcium - Total	6190	EN*	60.0	MG/KG	6010	09/09/2008 18:30
Chromium - Total	19.6	EN	0.60	MG/KG	6010	09/09/2008 18:30
Cobalt - Total	12.6	EN	0.60	MG/KG	6010	09/09/2008 18:30
Copper – Total	32.1	EN	1.2	MG/KG	6010	09/09/2008 18:30
Iron - Total	28000	E	12.0	MG/KG	6010	09/09/2008 18:30
Lead - Total	77.3	EN	1.2	MG/KG	6010	09/09/2008 18:30
Magnesium - Total	4940	EN*	24.0	MG/KG	6010	09/09/2008 18:30
Manganese – Total	599	E*	0.24	MG/KG	6010	09/09/2008 18:30
Mercury - Total	0.042		0.024	MG/KG	7471	09/09/2008 14:32
Nickel – Total	28.7	EN	0.60	MG/KG	6010	09/09/2008 18:30
Potassium - Total	1280	EN	36.0	MG/KG	6010	09/09/2008 18:30
Selenium - Total	ND	N	4.8	MG/KG	6010	09/09/2008 18:30
Silver – Total	ND	N	0.60	MG/KG	6010	09/09/2008 18:30
Sodium - Total	ND	N	168	MG/KG	6010	09/09/2008 18:30
Thallium - Total	ND	N	7.2	MG/KG	6010	09/09/2008 18:30
Vanadium - Total	19.0	EN	0.60	MG/KG	6010	09/09/2008 18:30
Zinc - Total	144	EN	2.4	MG/KG	6010	09/09/2008 18:30

Sample ID: NI-SS-3 Lab Sample ID: A8A88815 Date Collected: 09/04/2008 Time Collected: 12:20

Date Received:	09/06/2008				
Project No:	NY8A9801				
Client No:	423943				
Site No:					

			Detection			Date/Time	
Parameter	Result	<u> </u>	Limit	<u> Units </u>	Method	Analyzed	Analys
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		1100	UG/KG	8270	09/11/2008 08:15	i MD
2,4,5-Trichlorophenol	ND		1100	UG/KG	8270	09/11/2008 08:15	
2,4,6-Trichlorophenol	ND		1100	UG/KG	8270	09/11/2008 08:15	MD
2,4-Dichlorophenol	ND		1100	UG/KG	8270	09/11/2008 08:15	i MD
2,4-Dimethylphenol	ND		1100	UG/KG	8270	09/11/2008 08:15	i MD
2,4-Dinitrophenol	ND		2200	UG/KG	8270	09/11/2008 08:15	5 MD
2,4-Dinitrotoluene	ND		1100	UG/KG	8270	09/11/2008 08:15	i MD
2,6-Dinitrotoluene	ND		1100	UG/KG	8270	09/11/2008 08:15	5 MD
2-Chloronaphthalene	ND		1100	UG/KG	8270	09/11/2008 08:15	5 MD
2-Chlorophenol	ND		1100	UG/KG	8270	09/11/2008 08:15	5 MD
2-Methylnaphthalene	ND		1100	UG/KG	8270	09/11/2008 08:15	5 MD
2-Methylphenol	ND		1100	UG/KG	8270	09/11/2008 08:15	5 MD
2-Nitroaniline	ND		2200	UG/KG	8270	09/11/2008 08:15	5 MD
2-Nitrophenol	ND		1100	UG/KG	8270	09/11/2008 08:15	5 MD
3,3'-Dichlorobenzidine	ND		1100	UG/KG	8270	09/11/2008 08:15	5 MD
3-Nitroaniline	ND		2200	ug/kg	8270	09/11/2008 08:15	5 MD
4,6-Dinitro-2-methylphenol	ND		2200	ug/kg	8270	09/11/2008 08:15	5 MD
4-Bromophenyl phenyl ether	ND		1100	UG/KG	8270	09/11/2008 08:15	5 MD
4-Chloro-3-methylphenol	ND		1100	UG/KG	8270	09/11/2008 08:15	
4-Chloroaniline	ND		1100	UG/KG	8270	09/11/2008 08:15	
4-Chlorophenyl phenyl ether	ND		1100	UG/KG	8270	09/11/2008 08:15	
4-Methylphenol	ND		1100	UG/KG	8270	09/11/2008 08:15	
4-Nitroaniline	ND		2200	UG/KG	8270	09/11/2008 08:1	
4-Nitrophenol	ND		2200	UG/KG	8270	09/11/2008 08:1	
Acenaphthene	ND		1100	UG/KG	8270	09/11/2008 08:1	
Acenaphthylene	ND		1100	UG/KG	8270	09/11/2008 08:1	
Acetophenone	ND		1100	UG/KG	8270	09/11/2008 08:1	
Anthracene	ND		1100	UG/KG	8270	09/11/2008 08:1	
Atrazine	ND		1100	UG/KG	8270	09/11/2008 08:1	
Benzaldehyde	ND		1100	UG/KG	8270	09/11/2008 08:1	
Benzo(a)anthracene	170	J	1100	UG/KG	8270	09/11/2008 08:1	
Benzo(a)pyrene	100	J	1100	UG/KG	8270	09/11/2008 08:1	
Benzo(b)fluoranthene	120	J	1100	UG/KG	8270	09/11/2008 08:1	
Benzo(ghi)perylene	66	J	1100	UG/KG	8270	09/11/2008 08:1	
Benzo(k)fluoranthene	60	J	1100	UG/KG	8270	09/11/2008 08:1	
Biphenyl	ND		1100	UG/KG	8270	09/11/2008 08:1	
Bis(2-chloroethoxy) methane	ND		1100	UG/KG	8270	09/11/2008 08:1	
Bis(2-chloroethyl) ether	ND		1100	UG/KG	8270	09/11/2008 08:1	
Bis(2-ethylhexyl) phthalate	ND		1100	UG/KG	8270	09/11/2008 08:1	
Butyl benzyl phthalate	ND		1100	UG/KG	8270	09/11/2008 08:1	
Caprolactam	ND		1100	, UG/KG	8270	09/11/2008 08:1	
Carbazole	ND		1100	UG/KG	8270	09/11/2008 08:1	
Chrysene	120	J	1100	UG/KG	8270	09/11/2008 08:1	
Di-n-butyl phthalate	ND	-	1100	UG/KG	8270	09/11/2008 08:1	
Di-n-octyl phthalate	ND		1100	UG/KG	8270	09/11/2008 08:1	
Dibenzo(a,h)anthracene	ND		1100	UG/KG	8270	09/11/2008 08:1	
Dibenzofuran	ND		1100	UG/KG	8270	09/11/2008 08:1	
Diethyl phthalate	ND		1100	UG/KG	8270	09/11/2008 08:1	
Dimethyl phthalate	ND		1100	UG/KG	8270	09/11/2008 08:1	

Sample ID: NI-SS-3 Lab Sample ID: A8A88815 Date Collected: 09/04/2008 Time Collected: 12:20

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u> Units </u>	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	350	J	1100	UG/KG	8270	09/11/2008 08:15	MD
Fluorene	ND		1100	UG/KG	8270	09/11/2008 08:15	MD
Hexachlorobenzene	ND		1100	UG/KG	8270	09/11/2008 08:15	MD
Hexachlorobutadiene	ND		1100	UG/KG	8270	09/11/2008 08:15	MD
Hexachlorocyclopentadiene	ND		1100	UG/KG	8270	09/11/2008 08:15	MD
Hexachloroethane	ND		1100	UG/KG	8270	09/11/2008 08:15	MD
Indeno(1,2,3-cd)pyrene	62	J	1100	UG/KG	8270	09/11/2008 08:15	MD
Isophorone	ND		1100	UG/KG	8270	09/11/2008 08:15	MD
N-Nitroso-Di-n-propylamine	ND		1100	UG/KG	8270	09/11/2008 08:15	MD
N-nitrosodiphenylamine	ND		1100	UG/KG	8270	09/11/2008 08:15	MD
Naphthalene	ND		1100	UG/KG	8270	09/11/2008 08:15	MD
Nitrobenzene	ND		1100	UG/KG	8270	09/11/2008 08:15	MD
Pentachlorophenol	ND		2200	UG/KG	8270	09/11/2008 08:15	MD
Phenanthrene	290	J	1100	UG/KG	8270	09/11/2008 08:15	MD
Phenol	ND		1100	, UG∕KG	8270	09/11/2008 08:15	MD
Pyrene	260	J	1100	UG/KG	8270	09/11/2008 08:15	MD
SOIL - SW8463 8081 - TCL PESTICIDES							
4,4'-DDD	ND		21	UG/KG	8081	09/27/2008 18:49	
4,4'-DDE	5.5	J	21	UG/KG		· ·	тсн
4,4'~DDT	14	J	21	UG/KG	8081	09/27/2008 18:49 09/27/2008 18:49	ТСН
Aldrin	ND	J	21	UG/KG	8081	09/27/2008 18:49	TCH
alpha-BHC	ND		21	UG/KG	8081		тсн
beta-BHC	ND		21	UG/KG	8081	09/27/2008 18:49	тсн
Chlordane	ND		210	UG/KG UG/KG	8081	09/27/2008 18:49	тсн
delta-BHC	ND		210		8081	09/27/2008 18:49	тсн
Dieldrin				UG/KG	8081	09/27/2008 18:49	тсн
Endosulfan I	ND		21	UG/KG	8081	09/27/2008 18:49	тсн
Endosulfan II	ND		21	UG/KG	8081	09/27/2008 18:49	TCH
Endosulfan Sulfate	ND		21	UG/KG	8081	09/27/2008 18:49	тсн
	ND		21	UG/KG	8081	09/27/2008 18:49	тсн
Endrin	ND		21	UG/KG	8081	09/27/2008 18:49	TCH
Endrin aldehyde	ND		21	UG/KG	8081	09/27/2008 18:49	тсн
gamma~BHC (Lindane)	ND		21	UG/KG	8081	09/27/2008 18:49	тсн
Heptachlor	ND		21	UG/KG	8081	09/27/2008 18:49	тсн
Heptachlor epoxide	ND		21	UG/KG	8081	09/27/2008 18:49	TCH
Methoxychlor	ND		21	UG/KG	8081	09/27/2008 18:49	
Toxaphene	ND		210	UG/KG	8081	09/27/2008 18:49	тсн
SOIL - SW8463 8082 - PCBS							
Aroclor 1016	ND		21	UG/KG	8082	09/11/2008 12:41	GFD
Aroclor 1221	ND		21	UG/KG	8082	09/11/2008 12:41	
Aroclor 1232	ND		21	UG/KG	8082	09/11/2008 12:41	
Aroclor 1242	ND		21	UG/KG	8082	09/11/2008 12:41	
Aroclor 1248	ND		21	UG/KG	8082	09/11/2008 12:41	
Aroclor 1254	ND		21	UG/KG	8082	09/11/2008 12:41	
Aroclor 1260	11	J	21	UG/KG	8082	09/11/2008 12:41	
Metals Analysis							
Aluminum - Total	8160	EN	13.7	MG/KG	6010	09/10/2008 12:40	
				,			

Sample ID: NI-SS-3 Lab Sample ID: A8A88815 Date Collected: 09/04/2008 Time Collected: 12:20

			Detection	Date/Time			
Parameter	Result	<u>Flag</u>	Limit	Units	Method	AnalyzedAnalyst	
Metals Analysis							
Antimony - Total	ND	N	20.6	MG/KG	6010	09/10/2008 12:40	
Arsenic – Total	10.2	N	2.7	MG/KG	6010	09/10/2008 12:40	
Barium – Total	55.0	EN	0.69	MG/KG	6010	09/10/2008 12:40	
Beryllium – Total	0.37	N	0.27	MG/KG	6010	09/10/2008 12:40	
Cadmium – Total	0.47	N	0.27	MG/KG	6010	09/10/2008 12:40	
Calcium - Total	10700	EN*	68.6	MG/KG	6010	09/10/2008 12:40	
Chromium - Total	13.7	EN	0.69	MG/KG	6010	09/10/2008 12:40	
Cobalt – Total	8.3	EN	0.69	MG/KG	6010	09/10/2008 12:40	
Copper – Total	27.6	EN	1.4	MG/KG	6010	09/10/2008 12:40	
Iron – Total	22100	Е	13.7	MG/KG	6010	09/10/2008 12:40	
Lead – Total	40.1	EN	1.4	MG/KG	6010	09/10/2008 12:40	
Magnesium - Total	4970	EN*	27.5	MG/KG	6010	09/10/2008 12:40	
Manganese – Total	362	Е*	0.27	MG/KG	6010	09/10/2008 12:40	
Mercury – Total	0.049		0.028	MG/KG	7471	09/09/2008 14:33	
Nickel – Total	20.9	EN	0.69	MG/KG	6010	09/10/2008 12:40	
Potassium – Total	1020	EN	41.2	MG/KG	6010	09/10/2008 12:40	
Selenium - Total	ND	N	5.5	MG/KG	6010	09/10/2008 12:40	
Silver – Total	ND	N	0.69	MG/KG	6010	09/10/2008 12:40	
Sodium - Total	ND	N	192	MG/KG	6010	09/10/2008 12:40	
Thallium - Total	ND	N	8.2	MG/KG	6010	09/10/2008 12:40	
Vanadium - Total	13.7	EN	0.69	MG/KG	6010	09/10/2008 12:40	
Zinc - Total	99.4	EN	2.7	MG/KG	6010	09/10/2008 12:40	

Sample ID: NI-SS-4 Lab Sample ID: A8A88816 Date Collected: 09/04/2008 Time Collected: 14:20

			Detection			Date/Time	≥/Time		
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys		
SOIL - SW8463 8270 - TCL SVOA ORGANICS									
2,2'-Oxybis(1-Chloropropane)	ND		4000	UG/KG	8270	09/11/2008 09:24			
2,4,5-Trichlorophenol	ND		4000	UG/KG	8270	09/11/2008 09:24			
2,4,6-Trichlorophenol	ND		4000	UG/KG	8270	09/11/2008 09:24			
2,4-Dichlorophenol	ND		4000	UG/KG	8270	09/11/2008 09:24			
2,4-Dimethylphenol	ND		4000	UG/KG	8270	09/11/2008 09:24			
2,4-Dinitrophenol	ND		7800	UG/KG	8270	09/11/2008 09:24	MD		
2,4-Dinitrotoluene	ND		4000	UG/KG	8270	09/11/2008 09:24	MD		
2,6-Dinitrotoluene	ND		4000	UG/KG	8270	09/11/2008 09:24			
2-Chloronaphthalene	ND		4000	UG/KG	8270	09/11/2008 09:24	MD		
2-Chlorophenol	ND		4000	UG/KG	8270	09/11/2008 09:24			
2-Methylnaphthalene	ND		4000	UG/KG	8270	09/11/2008 09:24	MD		
2-Methylphenol	ND		4000	UG/KG	8270	09/11/2008 09:24	MD		
2-Nitroaniline	ND		7800	UG/KG	8270	09/11/2008 09:24	MD		
2-Nitrophenol	ND		4000	UG/KG	8270	09/11/2008 09:24	MD		
3,3'-Dichlorobenzidine	ND		4000	UG/KG	8270	09/11/2008 09:24	MD		
3-Nitroaniline	ND		7800	UG/KG	8270	09/11/2008 09:24	MD		
4,6-Dinitro-2-methylphenol	ND		7800	UG/KG	8270	09/11/2008 09:24	MD		
4-Bromophenyl phenyl ether	ND		4000	UG/KG	8270	09/11/2008 09:24	MD		
4-Chloro-3-methylphenol	ND		4000	UG/KG	8270	09/11/2008 09:24	MD		
4-Chloroaniline	ND		4000	UG/KG	8270	09/11/2008 09:24	MD		
4-Chlorophenyl phenyl ether	ND		4000	UG/KG	8270	09/11/2008 09:24	MD		
4-Methylphenol	ND		4000	UG/KG	8270	09/11/2008 09:24			
4-Nitroaniline	ND		7800	UG/KG	8270	09/11/2008 09:24			
4-Nitrophenol	ND		7800	UG/KG	8270	09/11/2008 09:24	MD		
Acenaphthene	ND		4000	UG/KG	8270	09/11/2008 09:24			
Acenaphthylene	ND		4000	UG/KG	8270	09/11/2008 09:24			
Acetophenone	ND		4000	UG/KG	8270	09/11/2008 09:24			
Anthracene	ND		4000	UG/KG	8270	09/11/2008 09:24			
Atrazine	ND		4000	UG/KG	8270	09/11/2008 09:24			
Benzaldehyde	ND		4000	UG/KG	8270	09/11/2008 09:24			
Benzo(a)anthracene	160	J	4000	UG/KG	8270	09/11/2008 09:24			
Benzo(a)pyrene	ND		4000	UG/KG	8270	09/11/2008 09:24			
Benzo(b)fluoranthene	ND		4000	UG/KG	8270	09/11/2008 09:24			
Benzo(ghi)perylene	ND		4000	UG/KG	8270	09/11/2008 09:24			
Benzo(k)fluoranthene	ND		4000	UG/KG	8270	09/11/2008 09:24	4 MD		
Biphenyl	ND		4000	UG/KG	8270	09/11/2008 09:24			
Bis(2-chloroethoxy) methane	ND		4000	UG/KG	8270	09/11/2008 09:24			
Bis(2-chloroethyl) ether	ND		4000	UG/KG	8270	09/11/2008 09:24			
Bis(2-ethylhexyl) phthalate	ND		4000	UG/KG	8270	09/11/2008 09:2			
Butyl benzyl phthalate	ND		4000	UG/KG	8270	09/11/2008 09:2			
Caprolactam	ND		4000	UG/KG	8270	09/11/2008 09:24			
Carbazole	ND		4000	UG/KG	8270	09/11/2008 09:2			
Chrysene	ND		4000	UG/KG	8270	09/11/2008 09:2			
Di-n-butyl phthalate	ND		4000	UG/KG	8270	09/11/2008 09:2			
Di-n-octyl phthalate	ND		4000	UG/KG	8270	09/11/2008 09:2			
Dibenzo(a,h)anthracene	ND		4000	UG/KG	8270	09/11/2008 09:2			
Dibenzofuran	ND		4000	UG/KG	8270	09/11/2008 09:2			
Diethyl phthalate	ND		4000	UG/KG	8270	09/11/2008 09:2			
Dimethyl phthalate	ND		4000	UG/KG	8270	09/11/2008 09:2			

Sample ID: NI-SS-4 Lab Sample ID: A8A88816 Date Collected: 09/04/2008 Time Collected: 14:20

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	ND		4000	UG/KG	8270	09/11/2008 09:24	MD
Fluorene	ND		4000	UG/KG	8270	09/11/2008 09:24	MD
Hexachlorobenzene	ND		4000	UG/KG	8270	09/11/2008 09:24	MD
Hexachlorobutadiene	ND		4000	UG/KG	8270	09/11/2008 09:24	MD
Hexachlorocyclopentadiene	ND		4000	UG/KG	8270	09/11/2008 09:24	MD
Hexachloroethane	ND		4000	UG/KG	8270	09/11/2008 09:24	MD
Indeno(1,2,3-cd)pyrene	ND		4000	UG/KG	8270	09/11/2008 09:24	MD
Isophorone	ND		4000	UG/KG	8270	09/11/2008 09:24	MD
N-Nitroso-Di-n-propylamine	ND		4000	UG/KG	8270	09/11/2008 09:24	MD
N-nitrosodiphenylamine	ND		4000	UG/KG	8270	09/11/2008 09:24	MD
Naphthalene	ND		4000	UG/KG	8270	09/11/2008 09:24	MD
Nitrobenzene	ND		4000	, UG/KG	8270	09/11/2008 09:24	MD
Pentachlorophenol	ND		7800	, UG/KG	8270	09/11/2008 09:24	MD
Phenanthrene	ND		4000	UG/KG	8270	09/11/2008 09:24	MD
Phenol	ND		4000	UG/KG	8270	09/11/2008 09:24	MD
Pyrene	ND		4000	UG/KG	8270	09/11/2008 09:24	MD
				00,110	0210	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	nu
SOIL - SW8463 8081 - TCL PESTICIDES							
4,4'-DDD	ND		19	UG/KG	8081	09/27/2008 20:38	тсн
4,4'-DDE	6.6	J	19	UG/KG	8081	09/27/2008 20:38	тсн
4,4'-DDT	14	J	19	UG/KG	8081	09/27/2008 20:38	тсн
Aldrin	ND	-	19	UG/KG	8081	09/27/2008 20:38	тсн
a Lpha-BHC	ND		19	UG/KG	8081	09/27/2008 20:38	тсн
beta-BHC	ND		19	UG/KG	8081	09/27/2008 20:38	тсн
Chlordane	ND		190	UG/KG	8081	09/27/2008 20:38	тсн
delta-BHC	ND		19	UG/KG	8081	09/27/2008 20:38	тсн
Dieldrin	ND		19	UG/KG	8081	09/27/2008 20:38	тсн
Endosulfan I	ND		19	UG/KG	8081	09/27/2008 20:38	
Endosulfan II	ND		19	UG/KG	8081	09/27/2008 20:38	
Endosulfan Sulfate	ND		19	UG/KG	8081	09/27/2008 20:38	
Endrin	ND		19	UG/KG	8081	09/27/2008 20:38	
Endrin aldehyde	ND		19	UG/KG	8081	09/27/2008 20:38	
gamma-BHC (Lindane)	ND		19	UG/KG	8081	09/27/2008 20:38	
Heptachlor	ND		19	UG/KG	8081	09/27/2008 20:38	
Heptachlor epoxide	ND		19	UG/KG	8081	09/27/2008 20:38	
Methoxychlor	ND		19	UG/KG	8081	09/27/2008 20:38	
Toxaphene	ND		190	UG/KG	8081	09/27/2008 20:38	
	110		170	00/10	0001	07272008 20.38	ICH
SOIL - SW8463 8082 - PCBS							
Aroclor 1016	ND		19	UG/KG	8082	09/11/2008 13:32	GFD
Aroclor 1221	ND		19	UG/KG	8082	09/11/2008 13:32	
Aroclor 1232	ND		19	UG/KG	8082	09/11/2008 13:32	
Aroclor 1242	ND		19	UG/KG	8082	09/11/2008 13:32	
Aroclor 1248	ND		19	UG/KG	8082	09/11/2008 13:32	
Aroclor 1254							
Aroclor 1254	ND ND		19 19	UG/KG UG/KG	8082 8082	09/11/2008 13:32	
Motor 1200	NU		17	00/60	0002	09/11/2008 13:32	GFD
Metals Analysis							
Aluminum - Total	9270	EN	11.9	MG/KG	6010	09/09/2008 19:02	
	210	-11	11.2		0010	07/07/2000 19:02	

Sample ID: NI-SS-4 Lab Sample ID: A8A88816 Date Collected: 09/04/2008 Time Collected: 14:20

			Detection			Date/Time		
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	AnalyzedAnalyst		
Metals Analysis								
Antimony – Total	ND	N	17.9	MG/KG	6010	09/09/2008 19:02		
Arsenic - Total	9.9	N	2.4	MG/KG	6010	09/09/2008 19:02		
Barium – Total	58.1	EN	0.60	MG/KG	6010	09/09/2008 19:02		
Beryllium — Total	0.45	N	0.24	MG/KG	6010	09/09/2008 19:02		
Cadmium – Total	0.43	N	0.24	MG/KG	6010	09/09/2008 19:02		
Calcium — Total	13000	EN*	59.7	MG/KG	6010	09/09/2008 19:02		
Chromium – Total	15.7	EN	0.60	MG/KG	6010	09/09/2008 19:02		
Cobalt - Total	11.8	EN	0.60	MG/KG	6010	09/09/2008 19:02		
Copper – Total	27.9	EN	1.2	MG/KG	6010	09/09/2008 19:02		
Iron – Total	24300	E	11.9	MG/KG	6010	09/09/2008 19:02		
Lead – Total	35.3	EN	1.2	MG/KG	6010	09/09/2008 19:02		
Magnesium - Total	6370	EN*	23.9	MG/KG	6010	09/09/2008 19:02		
Manganese – Total	465	E*	0.24	MG/KG	6010	09/09/2008 19:02		
Mercury — Total	0.045		0.025	MG/KG	7471	09/09/2008 14:42		
Nickel - Total	23.8	EN	0.60	MG/KG	6010	09/09/2008 19:02		
Potassium - Total	1160	EN	35.8	MG/KG	6010	09/09/2008 19:02		
Selenium - Total	ND	N	4.8	MG/KG	6010	09/09/2008 19:02		
Silver – Total	ND	N	0.60	MG/KG	6010	09/09/2008 19:02		
Sodium – Total	ND	N	167	MG/KG	6010	09/09/2008 19:02		
Thallium - Total	ND	N	7.2	MG/KG	6010	09/09/2008 19:02		
Vanadium – Total	16.9	EN	0.60	MG/KG	6010	09/09/2008 19:02		
Zinc - Total	97.8	EN	2.4	MG/KG	6010	09/09/2008 19:02		

Sample ID: NI-SS-5 Lab Sample ID: A8A88817 Date Collected: 09/04/2008 Time Collected: 14:45

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		3800	UG/KG	8270	09/11/2008 09:40	
2,4,5-Trichlorophenol	ND		3800	UG/KG	8270	09/11/2008 09:40	5 MD
2,4,6-Trichlorophenol	ND		3800	UG/KG	8270	09/11/2008 09:40	5 MD
2,4-Dichlorophenol	ND		3800	UG/KG	8270	09/11/2008 09:40	5 MD
2,4-Dimethylphenol	ND		3800	UG/KG	8270	09/11/2008 09:40	5 MD
2,4-Dinitrophenol	ND		7400	UG/KG	8270	09/11/2008 09:40	5 MD
2,4-Dinitrotoluene	ND		3800	UG/KG	8270	09/11/2008 09:40	5 MD
2,6-Dinitrotoluene	ND		3800	UG/KG	8270	09/11/2008 09:40	5 MD
2-Chloronaphthalene	ND		3800	UG/KG	8270	09/11/2008 09:40	5 MD
2-Chlorophenol	ND		3800	UG/KG	8270	09/11/2008 09:44	5 MD
2-Methylnaphthalene	ND		3800	UG/KG	8270	09/11/2008 09:44	6 MD
2-Methylphenol	ND		3800	UG/KG	8270	09/11/2008 09:44	5 MD
2-Nitroaniline	ND		7400	UG/KG	8270	09/11/2008 09:44	6 MD
2-Nitrophenol	ND		3800	UG/KG	8270	09/11/2008 09:44	5 MD
3,3'-Dichlorobenzidine	ND		3800	UG/KG	8270	09/11/2008 09:4	
3-Nitroaniline	ND		7400	UG/KG	8270	09/11/2008 09:4	
4,6-Dinitro-2-methylphenol	ND		7400	UG/KG	8270	09/11/2008 09:4	
4-Bromophenyl phenyl ether	ND		3800	UG/KG	8270	09/11/2008 09:4	6 MD
4-Chloro-3-methylphenol	ND		3800	UG/KG	8270	09/11/2008 09:4	6 MD
4-Chloroaniline	ND		3800	UG/KG	8270	09/11/2008 09:4	
4-Chlorophenyl phenyl ether	ND		3800	UG/KG	8270	09/11/2008 09:4	
4-Methylphenol	ND		3800	UG/KG	8270	09/11/2008 09:4	
4-Nitroaniline	ND		7400	UG/KG	8270	09/11/2008 09:4	
4-Nitrophenol	ND		7400	UG/KG	8270	09/11/2008 09:4	
Acenaphthene	ND		3800	UG/KG	8270	09/11/2008 09:4	
Acenaphthylene	ND		3800	UG/KG	8270	09/11/2008 09:4	
Acetophenone	ND		3800	UG/KG	8270	09/11/2008 09:4	
Anthracene	ND		3800	UG/KG	8270	09/11/2008 09:4	
Atrazine	ND		3800	UG/KG	8270	09/11/2008 09:4	
Benzaldehyde	ND		3800	UG/KG	8270	09/11/2008 09:4	
Benzo(a)anthracene	360	J	3800	UG/KG	8270	09/11/2008 09:4	
Benzo(a)pyrene	310	J	3800	UG/KG	8270	09/11/2008 09:4	
Benzo(b)fluoranthene	300	J	3800	UG/KG	8270	09/11/2008 09:4	
Benzo(ghi)perylene	200	J	3800	UG/KG	8270	09/11/2008 09:4	
Benzo(k)fluoranthene	220	J	3800	UG/KG	8270	09/11/2008 09:4	
Biphenyl	ND		3800	UG/KG	8270	09/11/2008 09:4	
Bis(2-chloroethoxy) methane	ND		3800	UG/KG	8270	09/11/2008 09:4	
Bis(2-chloroethyl) ether	ND		3800	UG/KG	8270	09/11/2008 09:4	
Bis(2-ethylhexyl) phthalate	ND		3800	UG/KG	8270	09/11/2008 09:4	
Butyl benzyl phthalate	ND		3800	UG/KG	8270	09/11/2008 09:4	
Caprolactam	ND		3800	UG/KG	8270	09/11/2008 09:4	
Carbazole	ND		3800	UG/KG	8270	09/11/2008 09:4	
Chrysene	410	J	3800	UG/KG	8270	09/11/2008 09:4	
Di-n-butyl phthalate	ND		3800	UG/KG	8270	09/11/2008 09:4	
Di-n-octyl phthalate	ND		3800	UG/KG	8270	09/11/2008 09:4	
Dibenzo(a,h)anthracene	ND		3800	UG/KG	8270	09/11/2008 09:4	
Dibenzofuran	ND		3800	UG/KG	8270	09/11/2008 09:4	
Diethyl phthalate Dimethyl phthalate	ND ND ND		3800 3800 3800	UG/KG UG/KG UG/KG	8270 8270 8270	09/11/2008 09:4 09/11/2008 09:4	6

Sample ID: NI-SS-5 Lab Sample ID: A8A88817 Date Collected: 09/04/2008 Time Collected: 14:45

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	540	J	3800	UG/KG	8270	09/11/2008 09:46	MD
Fluorene	ND		3800	UG/KG	8270	09/11/2008 09:46	MD
Hexachlorobenzene	ND		3800	UG/KG	8270	09/11/2008 09:46	
Hexachlorobutadiene	ND		3800	UG/KG	8270	09/11/2008 09:46	
Hexachlorocyclopentadiene	ND		3800	UG/KG	8270	09/11/2008 09:46	
Hexachloroethane	ND		3800	UG/KG	8270	09/11/2008 09:46	
Indeno(1,2,3-cd)pyrene	180	J	3800	UG/KG	8270	09/11/2008 09:46	
Isophorone	ND		3800	UG/KG	8270	09/11/2008 09:46	
N-Nitroso-Di-n-propylamine	ND		3800	UG/KG	8270	09/11/2008 09:46	
N-nitrosodiphenylamine	ND		3800	UG/KG	8270	09/11/2008 09:46	
Naphthalene	ND		3800	UG/KG	8270	09/11/2008 09:46	
Nitrobenzene	ND		3800	UG/KG	8270	09/11/2008 09:46	
Pentachlorophenol	ND		7400	UG/KG	8270	09/11/2008 09:46	
Phenanthrene	290	J	3800	UG/KG	8270	09/11/2008 09:46	
Phenol	ND		3800	UG/KG	8270	09/11/2008 09:46	
Pyrene	450	J	3800	UG/KG	8270	09/11/2008 09:46	
						0771172000 07.40	ΠD
SOIL - SW8463 8081 - TCL PESTICIDES							
4,4'-DDD	68	J	92	UG/KG	8081	09/27/2008 21:14	тсн
4,4'-DDE	100		92	UG/KG	8081	09/27/2008 21:14	
4,4'-DDT	110		92	UG/KG	8081	09/27/2008 21:14	
Aldrin	ND		92	UG/KG	8081	09/27/2008 21:14	
alpha-BHC	ND		92	UG/KG	8081	09/27/2008 21:14	
beta-BHC	ND		92	UG/KG	8081	09/27/2008 21:14	
Chlordane	ND		920	UG/KG	8081	09/27/2008 21:14	
delta-BHC	ND		92	UG/KG	8081	09/27/2008 21:14	
Dieldrin	ND		92	UG/KG	8081	09/27/2008 21:14	
Endosulfan I	ND		92	UG/KG	8081	09/27/2008 21:14	
Endosulfan II	ND		92	UG/KG	8081	09/27/2008 21:14	
Endosulfan Sulfate	ND		92	UG/KG	8081	09/27/2008 21:14	
Endrin	ND		92	UG/KG	8081	09/27/2008 21:14	
Endrin aldehyde	ND		92	UG/KG	8081	09/27/2008 21:14	
gamma-BHC (Lindane)	ND		92	UG/KG	8081	09/27/2008 21:14	
Heptachlor	ND		92	UG/KG	8081	09/27/2008 21:14	
Heptachlor epoxide	ND		92	UG/KG	8081	09/27/2008 21:14	
Methoxychlor	ND		92	UG/KG	8081	09/27/2008 21:14	
Toxaphene	ND		920	UG/KG	8081	09/27/2008 21:14	
, oraprovid			,20	007 K0	0001	07/27/2008 21:14	тсн
SOIL - SW8463 8082 - PCBS							
Aroclor 1016	ND		18	UG/KG	8082	09/11/2008 13:50	
Aroclor 1221	ND		18	UG/KG	8082		
Aroclor 1232	ND			UG/KG UG/KG		09/11/2008 13:50	
Aroclor 1242	ND		18 18	UG/KG UG/KG	8082 8082	09/11/2008 13:50	
Aroclor 1248					8082	09/11/2008 13:50	
Aroclor 1240 Aroclor 1254	ND 510		18	UG/KG	8082	09/11/2008 13:50	
Aroclor 1254 Aroclor 1260	76		18	UG/KG	8082	09/11/2008 13:50	
	10		18	UG/KG	8082	09/11/2008 13:50) GFD
Metals Analysis							
Aluminum - Total	7530	E.P.		nolue	(040	00/00/0000	
	7550	EN	11.4	MG/KG	6010	09/09/2008 19:08	5

Nichol Inn ERP Site (Category B)

Sample ID: NI-SS-5 Lab Sample ID: A8A88817 Date Collected: 09/04/2008 Time Collected: 14:45

Site No:

			Detection			Date/Time
Parameter	Result	<u>Flag</u>	Limit	Units	Method	AnalyzedAnalysi
Metals Analysis						
Antimony – Total	ND	N	17.1	MG/KG	6010	09/09/2008 19:08
Arsenic – Total	9.9	N	2.3	MG/KG	6010	09/09/2008 19:08
Barium - Total	168	EN	0.57	MG/KG	6010	09/09/2008 19:08
Beryllium – Total	0.56	N	0.23	MG/KG	6010	09/09/2008 19:08
Cadmium – Total	2.0	N	0.23	MG/KG	6010	09/09/2008 19:08
Calcium – Total	13100	EN*	56.9	MG/KG	6010	09/09/2008 19:08
Chromium – Total	18.8	EN	0.57	MG/KG	6010	09/09/2008 19:08
Cobalt – Total	6.9	EN	0.57	MG/KG	6010	09/09/2008 19:08
Copper – Total	51.9	EN	1.1	MG/KG	6010	09/09/2008 19:08
Iron - Total	15800	Е	11.4	MG/KG	6010	09/09/2008 19:08
Lead - Total	351	EN	1.1	MG/KG	6010	09/09/2008 19:08
Magnesium - Total	4270	EN*	22.8	MG/KG	6010	09/09/2008 19:08
Manganese – Total	355	Е*	0.23	MG/KG	6010	09/09/2008 19:08
Mercury – Total	0.574		0.023	MG/KG	7471	09/09/2008 14:44
Nickel - Total	20.1	EN	0.57	MG/KG	6010	09/09/2008 19:08
Potassium – Total	1340	EN	34.1	MG/KG	6010	09/09/2008 19:08
Selenium – Total	ND	N	4.6	MG/KG	6010	09/09/2008 19:08
Silver - Total	ND	N	0.57	MG/KG	6010	09/09/2008 19:08
Sodium – Total	ND	N	159	MG/KG	6010	09/09/2008 19:08
Thallium - Total	ND	N	6.8	MG/KG	6010	09/09/2008 19:08
Vanadium - Total	19.8	EN	0.57	MG/KG	6010	09/09/2008 19:08
Zinc - Total	367	EN	2.3	MG/KG	6010	09/09/2008 19:08
				•		. ,

Nichol Inn ERP Site (Category B)

Sample ID: NI-WB-11-9 Lab Sample ID: A8A88807 Date Collected: 09/04/2008 Time Collected: 16:30

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		6	UG/KG	8260	09/08/2008 14:37	LH
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	09/08/2008 14:37	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6	UG/KG	8260	09/08/2008 14:37	
1,1,2-Trichloroethane	ND		6	UG/KG	8260	09/08/2008 14:37	
1,1-Dichloroethane	ND		6	UG/KG	8260	09/08/2008 14:37	
1,1-Dichloroethene	ND		6	UG/KG	8260	09/08/2008 14:37	
1,2,4-Trichlorobenzene	ND		6	UG/KG	8260	09/08/2008 14:37	
1,2-Dibromo-3-chloropropane	ND		6	UG/KG	8260	09/08/2008 14:37	
1,2-Dibromoethane	ND		6	UG/KG	8260	09/08/2008 14:37	
1,2-Dichlorobenzene	ND		6	UG/KG	8260	09/08/2008 14:37	
1,2-Dichloroethane	ND		6	UG/KG	8260	09/08/2008 14:37	
1,2-Dichloropropane	ND		6	UG/KG	8260	09/08/2008 14:37	
1,3-Dichlorobenzene	ND		6	UG/KG	8260	09/08/2008 14:37	
1,4-Dichlorobenzene	ND		6	UG/KG	8260	09/08/2008 14:37	
2-Butanone	ND		30	UG/KG	8260	09/08/2008 14:37	
2-Hexanone	ND		30	UG/KG	8260	09/08/2008 14:37	
4-Methyl-2-pentanone	ND		30	UG/KG	8260	09/08/2008 14:37	
Acetone	ND		30	UG/KG	8260	09/08/2008 14:37	
Benzene	ND		6	UG/KG	8260	09/08/2008 14:37	
Bromodichloromethane	ND		6	UG/KG	8260	09/08/2008 14:37	
Bromoform	ND		6	UG/KG	8260	09/08/2008 14:37	
Bromomethane	ND		6	UG/KG	8260	09/08/2008 14:37	
Carbon Disulfide	ND		6	UG/KG	8260	09/08/2008 14:37	
Carbon Tetrachloride	ND		6	UG/KG	8260	09/08/2008 14:37	
Chlorobenzene	ND		6	UG/KG	8260	09/08/2008 14:37	
Chloroethane	ND		6	UG/KG	8260	09/08/2008 14:37	
Chloroform	ND		6	, UG/KG	8260	09/08/2008 14:37	
Chloromethane	ND		6	, UG/KG	8260	09/08/2008 14:37	
cis-1,2-Dichloroethene	ND		6	UG/KG	8260	09/08/2008 14:37	
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	09/08/2008 14:37	
Cyclohexane	ND		6	UG/KG	8260	09/08/2008 14:37	
Dibromochloromethane	ND		6	UG/KG	8260	09/08/2008 14:37	
Dichlorodifluoromethane	ND		6	, UG/KG	8260	09/08/2008 14:37	
Ethylbenzene	ND		6	UG/KG	8260	09/08/2008 14:37	
Isopropylbenzene	ND		6	UG/KG	8260	09/08/2008 14:37	
Methyl acetate	ND		6	UG/KG	8260	09/08/2008 14:37	
Methyl-t-Butyl Ether (MTBE)	ND		6	UG/KG	8260	09/08/2008 14:37	
Methylcyclohexane	ND		6	UG/KG	8260	09/08/2008 14:37	
Methylene chloride	7	в	6	UG∕KG	8260	09/08/2008 14:37	
Styrene	ND		6	UG/KG	8260	09/08/2008 14:37	
Tetrachloroethene	ND		6	UG/KG	8260	09/08/2008 14:37	
Toluene	ND		6	UG/KG	8260	09/08/2008 14:37	
Total Xylenes	ND		18	UG/KG	8260	09/08/2008 14:37	
trans-1,2-Dichloroethene	ND		6	UG/KG	8260	09/08/2008 14:37	
trans-1,3-Dichloropropene	ND		6	UG/KG	8260	09/08/2008 14:37	
Trichloroethene	ND		6	UG/KG	8260	09/08/2008 14:37	
Trichlorofluoromethane	ND			UG/KG	8260	09/08/2008 14:37	
	110		6	06/KG	0200	09/08/2008 14:1/	'LH

_

Nichol Inn ERP Site (Category B)

Sample ID: NI-WB-11-9 Lab Sample ID: A8A88807 Date Collected: 09/04/2008 Time Collected: 16:30 Date Received: 09/06/2008 Project No: NY8A9801 Client No: 423943 Site No:

			Detection			Date/Time	
Parameter		Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		200	UG/KG	8270	09/11/2008 04:28	MD
2,4,5-Trichlorophenol	ND		200	UG/KG	8270	09/11/2008 04:28	MD
2,4,6-Trichlorophenol	ND		200	UG/KG	8270	09/11/2008 04:28	MD
2,4-Dichlorophenol	ND		200	UG/KG	8270	09/11/2008 04:28	MD
2,4-Dimethylphenol	ND		200	UG/KG	8270	09/11/2008 04:28	MD
2,4-Dinitrophenol	ND		390	UG/KG	8270	09/11/2008 04:28	MD
2,4-Dinitrotoluene	ND		200	UG/KG	8270	09/11/2008 04:28	MD
2,6-Dinitrotoluene	ND		200	UG/KG	8270	09/11/2008 04:28	MD
2-Chloronaphthalene	ND		200	UG/KG	8270	09/11/2008 04:28	MD
2-Chlorophenol	ND		200	UG/KG	8270	09/11/2008 04:28	MD
2-Methylnaphthalene	ND		200	UG/KG	8270	09/11/2008 04:28	MD
2-Methylphenol	ND		200	UG/KG	8270	09/11/2008 04:28	MD
2-Nitroaniline	ND		390	UG/KG	8270	09/11/2008 04:28	MD
2-Nitrophenol	ND		200	UG/KG	8270	09/11/2008 04:28	MD
3,3'-Dichlorobenzidine	ND		200	, UG/KG	8270	09/11/2008 04:28	MD
3-Nitroaniline	ND		390	, UG/KG	8270	09/11/2008 04:28	MD
4,6-Dinitro-2-methylphenol	ND		390	UG/KG	8270	09/11/2008 04:28	MD
4-Bromophenyl phenyl ether	ND		200	UG/KG	8270	09/11/2008 04:28	MD
4-Chloro-3-methylphenol	ND		200	UG/KG	8270	09/11/2008 04:28	MD
4-Chloroaniline	ND		200	UG/KG	8270	09/11/2008 04:28	
4-Chlorophenyl phenyl ether	ND		200	UG/KG	8270	09/11/2008 04:28	
4-Methylphenol	ND		200	UG/KG	8270	09/11/2008 04:28	MD
4-Nitroaniline	ND		390	UG/KG	8270	09/11/2008 04:28	
4-Nitrophenol	ND		390	UG/KG	8270	09/11/2008 04:28	
Acenaphthene	ND		200	UG/KG	8270	09/11/2008 04:28	
Acenaphthylene	ND		200	UG/KG	8270	09/11/2008 04:28	
Acetophenone	ND		200	UG/KG	8270	09/11/2008 04:28	
Anthracene	ND		200	UG/KG	8270	09/11/2008 04:28	
Atrazine	ND		200	UG/KG	8270	09/11/2008 04:28	
Benzaldehyde	ND		200	UG/KG	8270	09/11/2008 04:28	
Benzo(a)anthracene	13	J	200	UG/KG	8270	09/11/2008 04:28	
Benzo(a)pyrene	ND	Ŭ	200	UG/KG	8270	09/11/2008 04:28	
Benzo(b)fluoranthene	8	J	200	UG/KG	8270	09/11/2008 04:28	
Benzo(ghi)perylene	ND	Ŭ	200	UG/KG	8270	09/11/2008 04:28	
Benzo(k)fluoranthene	ND		200	UG/KG	8270	09/11/2008 04:28	
Biphenyl	ND		200	UG/KG	8270	09/11/2008 04:28	
Bis(2-chloroethoxy) methane	ND		200	UG/KG	8270	09/11/2008 04:28	
Bis(2-chloroethyl) ether	ND		200	UG/KG	8270	09/11/2008 04:28	
Bis(2-ethylhexyl) phthalate	230		200	UG/KG	8270	09/11/2008 04:28	
Butyl benzyl phthalate	ND		200	UG/KG	8270	09/11/2008 04:28	
Caprolactam	ND		200	UG/KG	8270	09/11/2008 04:28	
Carbazole	ND		200	UG/KG	8270	09/11/2008 04:28	
Chrysene	ND		200	UG/KG	8270	09/11/2008 04:28	
Di-n-butyl phthalate			200	UG/KG	8270	09/11/2008 04:28	
Di-n-octyl phthalate	ND					-	
Dibenzo(a,h)anthracene	ND		200	UG/KG UG/KG	8270 8270	09/11/2008 04:28	
Dibenzoturan	ND		200		8270 8270	09/11/2008 04:28	
Diethyl phthalate	ND		200 200	UG/KG UG/KG	8270 8270	09/11/2008 04:28	
Dimethyl phthalate	ND ND		200		8270 8270	09/11/2008 04:28 09/11/2008 04:28	
	NU		200	UG/KG	0270		
						Tor	stAmorica

Nichol Inn ERP Site (Category B)

Sample ID: NI-WB-11-9 Lab Sample ID: A&A&&807 Date Collected: 09/04/2008 Time Collected: 16:30 Date Received: 09/06/2008 Project No: NY8A9801 Client No: 423943 Site No:

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
SOIL - SW8463 8270 - TCL SVOA ORGANICS							· <u> </u>
Fluoranthene	21	J	200	UG/KG	8270	09/11/2008 04:28	MD
Fluorene	ND		200	UG/KG	8270	09/11/2008 04:28	MD
Hexachlorobenzene	ND		200	UG/KG	8270	09/11/2008 04:28	MD
Hexachlorobutadiene	ND		200	UG/KG	8270	09/11/2008 04:28	MD
Hexachlorocyclopentadiene	ND		200	UG/KG	8270	09/11/2008 04:28	MD
Hexachloroethane	ND		200	UG/KG	8270	09/11/2008 04:28	MD
Indeno(1,2,3-cd)pyrene	ND		200	ug/kg	8270	09/11/2008 04:28	MD
Isophorone	ND		200	ug/kg	8270	09/11/2008 04:28	MD
N-Nitroso-Di-n-propylamine	ND		200	UG/KG	8270	09/11/2008 04:28	MD
N-nitrosodiphenylamine	ND		200	UG/KG	8270	09/11/2008 04:28	
Naphthalene	ND		200	UG/KG	8270	09/11/2008 04:28	
Nitrobenzene	ND		200	UG/KG	8270	09/11/2008 04:28	
Pentachlorophenol	ND		390	UG/KG	8270	09/11/2008 04:28	
Phenanthrene	17	J	200	UG/KG	8270	09/11/2008 04:28	
Phenol	ND		200	UG/KG	8270	09/11/2008 04:28	
Pyrene	18	J	200	UG/KG	8270	09/11/2008 04:28	
Metals Analysis							
Aluminum — Total	12100	EN	11.3	MG/KG	6010	09/09/2008 17:18	
Antimony - Total	ND	N	16.9	MG/KG	6010	09/09/2008 17:18	
Arsenic - Total	8.8	N	2.3	MG/KG	6010	09/09/2008 17:18	
Barium – Total	74.3	EN	0.56	MG/KG	6010	09/09/2008 17:18	3
Beryllium - Total	0.69	N	0.23	MG/KG	6010	09/09/2008 17 : 18	3
Cadmium - Total	0.24	N	0.23	MG/KG	6010	09/09/2008 17 : 18	3
Calcium - Total	9500	EN*	56.3	MG/KG	6010	09/09/2008 17:18	3
Chromium - Total	17.9	EN	0.56	MG/KG	6010	09/09/2008 17:18	
Cobalt - Total	15.6	EN	0.56	MG/KG	6010	09/09/2008 17:18	3
Copper – Total	24.7	EN	1.1	MG/KG	6010	09/09/2008 17:18	3
Iron - Total	26800	Е	11.3	MG/KG	6010	09/09/2008 17:18	3
Lead - Total	16.5	EN	1.1	MG/KG	6010	09/09/2008 17:18	3
Magnesium - Total	4430	EN*	22.5	MG/KG	6010	09/09/2008 17:18	3
Manganese - Total	707	E*	0.23	MG/KG	6010	09/09/2008 17:18	
Mercury - Total	0.028		0.024	MG/KG	7471	09/09/2008 14:11	I
Nickel — Total	34.5	EN	0.56	MG/KG	6010	09/09/2008 17:18	3
Potassium - Total	1470	EN	33.8	MG/KG	6010	09/09/2008 17:18	3
Selenium — Total	ND	Ν	4.5	MG/KG	6010	09/09/2008 17:18	3
Silver – Total	ND	Ν	0.56	MG/KG	6010	09/09/2008 17:18	3
Sodium - Total	165	N	158	MG/KG	6010	09/09/2008 17:18	3
Thallium - Total	ND	N	6.8	MG/KG	6010	09/09/2008 17:18	3
Vanadium - Total	20.0	EN	0.56	MG/KG	6010	09/09/2008 17:18	3
Zinc - Total	80.7	EN	2.3	MG/KG	6010	09/09/2008 17:18	

THE LEADER IN ENVIRONMENTAL TESTING

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- ¹ Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

6

6

6

6

6

3

3

6

6

1

5

U

U

U

U

U

J

J

U

J

J

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS ANALYSIS DATA SHEET

	Client No.
Lab Name: <u>TestAmerica Laboratories Inc.</u> Contract:	NI-TC-01-08
Lab Code: <u>RECNY</u> Case No.: SAS No.:	: SDG No.:
Matrix: (soil/water) SOIL	Lab Sample ID: <u>A8G14501</u>
Sample wt/vol: 5.11 (g/mL) G	Lab File ID: <u>F6723.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/16/2008</u> <u>12/20/2008</u>
% Moisture: not dec. <u>15</u> Heated Purge: \underline{Y}	Date Analyzed: <u>12/27/2008</u>
GC Column: <u>ZB-624</u> ID: <u>0.20</u> (mm)	Dilution Factor: <u>1.00</u>
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
71-43-2Benzene 104-51-8n-Butylbenzene 135-98-8sec-Butylbenzene 98-06-6tert-Butylbenzene 100-41-4Ethylbenzene	6 U 6 U 6 U 6 U 6 U 6 U 6 U

98-82-8-----Isopropylbenzene

103-65-1----n-Propylbenzene

99-87-6----p-Cymene_

108-88-3----Toluene

95-47-6----o-Xylene

-----m/p-Xylenes

91-20-3-----Naphthalene

1330-20-7----Total Xylenes

1634-04-4----Methyl-t-Butyl Ether (MIBE)

95-63-6-----1,2,4-Trimethylbenzene

108-67-8-----1,3,5-Trimethylbenzene

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

		NI-TC-01-08
Lab Name: <u>TestAmerica Laborat</u> Contract:		
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A8G14501
Sample wt/vol: 5.11 (g/mL) G	Lab File ID:	F6723.RR
Level: (low/med) LOW	Date Samp/Recv:	<u>12/16/2008</u> <u>12/20/2008</u>
% Moisture: not dec. <u>14.9</u>	Date Analyzed:	<u>12/27/2008</u>
GC Column: <u>ZB-624</u> ID: <u>0.20</u> (mm)	Dilution Factor	:1.00
Soil Extract Volume: (uL)	Soil Aliquot Vo	lume: (uL)
	CONCENTRATION UNI	TS:

Number TICs found: <u>3</u>

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 75-09-2	METHYLENE CHLORIDE	2.59	6	JN
2. 556-67-2	CYCLOTEIRASILOXANE, OCIAMETH	8.39	6	BJN
3.	UNKNOWN NAPHIHALENE DERIVATI	12.29	8	J

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS ANALYSIS DATA SHEET

Client No. NI-TC-02-07 Lab Name: <u>TestAmerica Laboratories Inc.</u> Contract: _____ Lab Code: <u>RECNY</u> Case No.: ____ SAS No.: _____ SDG No.: ____ Matrix: (soil/water) SOIL Lab Sample ID: <u>A8G14502</u> Lab File ID: <u>F6693.RR</u> Sample wt/vol: 5.11 (g/mL) G Date Samp/Recv: <u>12/16/2008</u> <u>12/20/2008</u> Level: (low/med) LOW % Moisture: not dec. <u>11</u> Heated Purge: Y Date Analyzed: <u>12/24/2008</u> GC Column: <u>ZB-624</u> ID: <u>0.20</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: _____ (uL)

CONCENTRATION UNITS:

Soil Aliquot Volume: _____ (uL)

		Q
	6	υ
	б	υ
	6	U
	6	U
	б	U
	б	U
	6	ប
	6	U
	1	BJ
	6	U
	11	ט
······································	16	U
TIBE)	6	U
	6	υ
· · · · · · · · · · · · · · · · · · ·	6	U
	2	J
	(ug/L or ug/Kg)	6 6 6 6 6 6 6 6 6 6 6 6 1 1 6 11 16 11 16 11 6 6 11 6 6 6 6 6 6 6 6 6 6 6 6 6

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

	NI-TC-02-07
Lab Name: <u>TestAmerica Laborat</u> Contract:	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: <u>A8G14502</u>
Sample wt/vol: 5.11 (g/mL) G	Lab File ID: <u>F6693.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/16/2008</u> <u>12/20/2008</u>
% Moisture: not dec. <u>11.2</u>	Date Analyzed: <u>12/24/2008</u>
GC Column: <u>ZB-624</u> ID: <u>0.20</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
Number TICs found:0	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO.	Compound Name	RT	Est. Conc.	Q	

JOSEPH C. LU ENG & LAND SURVEYING PC AQUEOUS 8260 STARS LIST ANALYSIS DATA SHEET

Client No.

Tab Mana Mashanani na Tabasahani an Tana Orahasah		NI-TC-03-12
Lab Name: <u>TestAmerica Laboratories Inc.</u> Contract:		L
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: _	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A8G14503</u>
Sample wt/vol:5.00 (g/mL) ML	Lab File ID:	J3980.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: not dec Heated Purge: \underline{N}	Date Analyzed:	12/30/2008
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	

S	NO.	COMPOUND

Q

71-43-2Benzene	5	
100-41-4Ethylbenzene	110	E
108-88-3Toluene	-19	
95-47-6o-Xylene		
m/p-Xylenes	270	E
1330-20-7Total Xylenes	320	E
98-82-8Isopropylbenzene	19	
103-65-1n-Propylbenzene	44	
99-87-6p-Cymene	6	
95-63-61,2,4-Trimethylbenzene	220	E
108-67-81,3,5-Trimethylbenzene	72	
104-51-8n-Butylbenzene	1	U
135-98-8sec-Butylbenzene		
98-06-6tert-Butylbenzene	1	U
91-20-3Naphthalene	26	
1634-04-4Methyl-t-Butyl Ether (MIBE)	1	U

JOSEPH C. LU ENG & LAND SURVEYING PC AQUEOUS 8260 STARS LIST TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

Lab Name: <u>TestAmerica Laborat</u> Contract:	_	NI-TC-03-12
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A8G14503
Sample wt/vol: (g/mL) ML	Lab File ID:	J3980.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/18/2008 12/20/2008</u>
% Moisture: not dec.	Date Analyzed:	12/30/2008
GC Column: <u>ZB-624</u> ID: 0.25 (mm)	Dilution Factor	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	lume: (uL)
	CONCENTRATION UNIT	rs:

Number TICs found: <u>10</u>

(ug/L or ug/Kg) <u>UG/L</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 107-83-5 2. 96-37-7 3. 108-87-2 4. 5. 6. 7. 8. 9. 10.	2-METHYL PENIANE METHYL CYCLOPENIANE METHYLCYCLOHEXANE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE	2.86 3.57 4.72 7.62 7.87 8.51 8.56 8.88 9.00 9.62	110 96 140 230 120 99 100 76 68 91	JN JN J J J J J J J J J J J J J J J J J

JOSEPH C. LU ENG & LAND SURVEYING PC AQUEOUS 8260 STARS LIST ANALYSIS DATA SHEET

Client No.

			· · · · ·
Lab Name: <u>TestAmerica Laboratories Inc.</u> Contract:	177 # 10 - 1 - 1	NI-TC-03-	12 DL
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: _		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A8G14503DL</u>	Į
Sample wt/vol: (g/mL) ML	Lab File ID:	G7709.RR	
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/18/2008	<u>12/20/2008</u>
% Moisture: not dec Heated Purge: \underline{N}	Date Analyzed:	12/31/2008	
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	5.00	
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	UG/L	Q
71-43-2Benzene 100-41-4Ethylbenzene 108-88-3Ethylbenzene 95-47-6O-Xylene 95-47-6O-Xylene 1330-20-7Total Xylenes 1330-20-7Total Xylenes 98-82-8Isopropylbenzene 103-65-1P-Cymene 99-87-6p-Cymene 95-63-6		5 D 120 D 20 D 63 D 340 D 22 D 54 D 350 D 110 D 5 D 43 D 5 D)))))))))))))))))))

JOSEPH C. LU ENG & LAND SURVEYING PC AQUEOUS 8260 STARS LIST TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

Ish Name, Togt Amari as Isharat Contract		NI-TC-03-12 DL
Lab Name: <u>TestAmerica Laborat</u> Contract:		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A8G14503DL
Sample wt/vol: (g/mL) ML	Lab File ID:	G7709.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/18/2008 12/20/2008
% Moisture: not dec.	Date Analyzed:	<u>12/31/2008</u>
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor	:5.00
Soil Extract Volume: (uL)	Soil Aliquot Vo	lume: (uL)
		TC .

Number TICs found: <u>10</u>

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/L</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 107-83-5	2-METHYL PENIANE	3.16	250	NC
2. 96-37-7	METHYL CYCLOPENIANE	4.25	190	NL
3. 108-87-2	METHYLCYCLOHEXANE	5.96	260	JN
4.	UNKNOWN BENZENE DERIVATIVE	10.03	430	J
5.	UNKNOWN BENZENE DERIVATIVE	10.32	200	J
6.	UNKNOWN BENZENE DERIVATIVE	11.08	230	J
7.	UNKNOWN BENZENE DERIVATIVE	11.15	170	J
8.	UNKNOWN BENZENE DERIVATIVE	11.40	140	J
9.	UNKNOWN BENZENE DERIVATIVE	11.49	120	J
10.	AROMATIC DERIVATIVE	12.27	120	J

290

600

1700

2300

1000

470

280

6

BE

Е

E

Ε

U

Ε

E

E

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS ANALYSIS DATA SHEET

Client No.

Lab Name: <u>TestAmerica Laboratories Inc.</u> Contract:	NI-TC-04-12
Lab Code: <u>RECINY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: <u>A8G14504</u>
Sample wt/vol: 4.99 (g/mL) <u>G</u>	Lab File ID: <u>F6694.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: not dec. <u>19</u> Heated Purge: \underline{Y}	Date Analyzed: <u>12/24/2008</u>
GC Column: <u>ZB-624</u> ID: <u>0.20</u> (mm)	Dilution Factor: <u>1.00</u>
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
71-43-2Benzene 104-51-8n-Butylbenzene 135-98-8sec-Butylbenzene 98-06-6tert-Butylbenzene 100-41-4Ethylbenzene 98-82-8Isopropylbenzene 99-87-6p-Cymene 103-65-1n-Propylbenzene	6 U 560 E

108-88-3----Toluene

95-47-6----o-Xylene

-----m/p-Xylenes

91-20-3-----Naphthalene

1330-20-7----Total Xylenes

1634-04-4----Methyl-t-Butyl Ether (MTBE)

95-63-6-----1,2,4-Trimethylbenzene

108-67-8----1,3,5-Trimethylbenzene

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

Lab Name: TestAmerica Laborat Contract:		NI-TC-04-12
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A8G14504
Sample wt/vol: <u>4.99</u> (g/mL) <u>G</u>	Lab File ID:	F6694.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/18/2008 12/20/2008
% Moisture: not dec. <u>18.6</u>	Date Analyzed:	12/24/2008
GC Column: <u>ZB-624</u> ID: <u>0.20</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	.ume: (uL)
	CONCENTRATION UNIT	S:

Number TICs found: <u>10</u>

(ug/Lorug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 2. 108-87-2 3. 4. 5. 6. 7. 8. 9. 10.	UNKNOWN METHYLCYCLOHEXANE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE	4.13 4.74 8.53 8.85 9.48 9.68 9.77 10.13 10.54 10.90	240 190 790 300 290 280 310 190 180 200	L L L L L L L L L L L L L L L L L L L

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS ANALYSIS DATA SHEET

Client No. NI-TC-04-12 DL Lab Name: TestAmerica Laboratories Inc. Contract: _____ Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: _____ SDG No.: _ Matrix: (soil/water) SOIL Lab Sample ID: <u>A8G14504DL</u> Sample wt/vol: 4.09 (g/mL) G Lab File ID: G7667.RR Level: (low/med) Date Samp/Recv: <u>12/18/2008</u> <u>12/20/2008</u> MED % Moisture: not dec. <u>19</u> Heated Purge: <u>N</u> Date Analyzed: <u>12/30/2008</u> GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm) Dilution Factor: ____1.00 Soil Extract Volume: <u>10000</u> (uL) Soil Aliquot Volume: <u>100.00</u> (uL) CONCENTRATION UNITS: CAS NO. COMPOUND $\left(uq/L \text{ or } uq/Kq \right)$ UG/KG 0

	-9/ <u>-00/100</u>	×
71-43-2Benzene	150	U
104-51-8n-Butylbenzene	150	ប
135-98-8sec-Butylbenzene	150	U
98-06-6tert-Butylbenzene	150	U
100-41-4Ethylbenzene	870	D
98-82-8Isopropylbenzene	90	U
99-87-6p-Cymene	150	υ
103-65-1n-Propylbenzene	300	D
108-88-3Toluene	330	D
95-47-6o-Xylene	890	D
m/p-Xylenes	3400	D
1330-20-7Total Xylenes	4300	D
1634-04-4Methyl-t-Butyl Ether (MIBE)	150	U
95-63-61,2,4-Trimethylbenzene	2100	D
108-67-81,3,5-Trimethylbenzene	690	D
91-20-3Naphthalene	4200	D

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS TENIATIVELY IDENTIFIED COMPOUNDS

Client No.

Lab Name: <u>TestAmerica Laborat</u> Contract:		NI-TC-04-12 DL
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A8G14504DL
Sample wt/vol: 4.09 (g/mL) G	Lab File ID:	G7667.RR
Level: (low/med) <u>MED</u>	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: not dec. <u>18.6</u>	Date Analyzed:	12/30/2008
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: <u>10000</u> (uL)	Soil Aliquot Vol	ume: <u>100.00</u> (uL)

Number TICs found: <u>10</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 2. 3. 4. 5. 6. 4175-54-6 7. 8. 9. 10.	UNKNOWN UNKNOWN UNKNOWN BENZENE DERIVATIVE UNKNOWN ALKANE NAPPHTHALENE, 1,2,3,4-TETRHY UNKNOWN NAPHTHALENE DERIVATI UNKNOWN NAPHTHALENE DERIVATI UNKNOWN NAPHTHALENE DERIVATI	$13.12 \\ 13.28 \\ 13.43 \\ 13.55 \\ 13.64 \\ 13.69 \\ 13.73 \\ 13.80 \\ 13.88 \\ 14.46$	5500 6700 4100 7200 7500 4500 15000 3600 13000 4200	L L L L L L L L L L L L L L L L L L L

• • • •

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS ANALYSIS DATA SHEET

Client No.

Lab Name: <u>TestAmerica Laboratories Inc.</u> Contract:	-	NI-TC-04-12D
Lab Code: <u>RECINY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A8G14505
Sample wt/vol: 4.09 (g/mL) G	Lab File ID:	G7668.RR
Level: (low/med) MED	Date Samp/Recv:	12/18/2008 12/20/2008
% Moisture: not dec. <u>16</u> Heated Purge: <u>N</u>	Date Analyzed:	12/30/2008
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: <u>10000</u> (uL)	Soil Aliquot Vol	ume: <u>100.00</u> (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	
71-43-2Benzene 104-51-8n-Butylbenzene	and the second	150 U 150 U

71 15 Z Delizenc	100	10
104-51-8n-Butylbenzene	150	U
135-98-8sec-Butylbenzene	240	
98-06-6tert-Butylbenzene	150	U
100-41-4Ethylbenzene	4400	
98-82-8Isopropylbenzene	580	
99-87-6p-Cymene	150	U
103-65-1n-Propylbenzene	1800	
108-88-3Toluene	1700	
95-47-6o-Xylene	4400	
m/p-Xylenes	20000	
1330-20-7Total Xylenes	24000	
1634-04-4Methyl-t-Butyl Ether (MIBE)	150	U
95-63-61,2,4-Trimethylbenzene	13000	
108-67-81,3,5-Trimethylbenzene	3900	
91-20-3Naphthalene	2600	-

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

	1	
Lab Name: <u>TestAmerica_Laborat</u> Contract:		NI-TC-04-12D
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A8G14505</u>
Sample wt/vol: 4.09 (g/mL) G	Lab File ID:	G7668.RR
Level: (low/med) MED	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: not dec. <u>16.3</u>	Date Analyzed:	12/30/2008
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: <u>10000</u> (uL)	Soil Aliquot Vol	ume: <u>100.00</u> (uL)
Nuclear First Land	CONCENTRATION UNIT	CS:

Number TICs found: <u>10</u>

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 2. 108-87-2 3. 4. 111-65-9 5. 6. 7. 8. 9. 10.	UNKNOWN ALKANE METHYLCYCLOHEXANE SATURATED HYDROCARBON N-OCTANE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN NAPHIHALENE DERIVATI UNKNOWN NAPHIHALENE DERIVATI	$5.23 \\ 5.96 \\ 6.48 \\ 7.13 \\ 10.03 \\ 10.32 \\ 11.09 \\ 11.15 \\ 13.73 \\ 13.88 $	9400 6400 7000 6200 18000 6000 7400 6800 6800 6800 7100	J JN J JN J J J J J J J J J J J

1000

1800

63

120

10 450

320

1

1

1

1

230

Ε

E

Ε

Ε

Ε

U

U

U

Ε

U

JOSEPH C. LU ENG & LAND SURVEYING PC AQUEOUS 8260 STARS LIST ANALYSIS DATA SHEET

Client No.

Lab Name: <u>TestAmerica Laboratories Inc.</u> C	ontract.		NI-TC-05	-16
Lab Malle. <u>IEStratici da Daboracorres Inc.</u> O				
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	·	
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	<u>A8G14506</u>	
Sample wt/vol: <u>5.00</u> (g/mL) <u>ML</u>		Lab File ID:	<u>J3981.RR</u>	
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/18/2008	3 <u>12/20/2008</u>
% Moisture: not dec Heated Purge:	N	Date Analyzed:	12/30/200	3
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)		Dilution Factor:	1.00	
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume:	(uL)
CAS NO. COMPOUND		NCENTRATION UNITS: ug/L or ug/Kg)	UG/L	• • Q
71-43-2Benzene 100-41-4Ethylbenzene 108-88-3Toluene 95-47-6o-Xylene			330] 440]	E E E

-----m/p-Xylenes

1330-20-7----Total Xylenes

98-82-8-----Isopropylbenzene

99-87-6----p-Cymene______ 95-63-6-----1,2,4-Trimethylbenzene_

108-67-8----1,3,5-Trimethylbenzene

1634-04-4----Methyl-t-Butyl Ether (MIBE)

103-65-1----n-Propylbenzene

104-51-8----n-Butylbenzene

91-20-3----Naphthalene

135-98-8----sec-Butylbenzene

98-06-6----tert-Butylbenzene

JOSEPH C. LU ENG & LAND SURVEYING PC AQUEOUS 8260 STARS LIST TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

Lab Name: <u>TestAmerica Laborat</u> Contract:		NI-TC-05-16
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A8G14506
Sample wt/vol: 5.00 (g/mL) <u>ML</u>	Lab File ID:	J3981.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/18/2008 12/20/2008
% Moisture: not dec.	Date Analyzed:	12/30/2008
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	.ume: (uL)

Number TICs found: <u>10</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 78-78-4 2. 3. 96-14-0 4. 96-37-7 5. 6. 108-87-2 7. 8. 9. 10.	BUTANE 2-METHYL- UNKNOWN ALKANE 3-METHYL PENTANE METHYL CYCLOPENTANE UNKNOWN ALKANE METHYLCYCLOHEXANE UNKNOWN UNKNOWN UNSATURATED HYDROCARBON UNKNOWN BENZENE DERIVATIVE	2.16 2.86 3.00 3.57 4.29 4.72 4.97 5.06 7.63 7.87	38 98 29 85 25 110 41 66 56 25	J J J J J J J J J J J J J J J J J J J

JOSEPH C. LU ENG & LAND SURVEYING PC AQUEOUS 8260 STARS LIST ANALYSIS DATA SHEET

Client No.

Lab Name: <u>TestAmerica Laboratories Inc.</u> Contract:		NI-TC-05-16 DL
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	• • • • • • • • • • • • • • • • • • •
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A8G14506DL
Sample wt/vol: (g/mL) ML	Lab File ID:	G7710.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: not dec Heated Purge: \underline{N}	Date Analyzed:	<u>12/31/2008</u>
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	50.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)
	יאיזיאדודאאיזידראר זאזדיזייי	

CONCENTRATION UNITS:

0

CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>	Q
71-43-2	Benzene		120	D
100-41-4	Ethylbenzene		820	D
108-88-3	Toluene		610	D
95-47-6	o-Xylene		1900	D
	m/p-Xylenes		4800	D
1330-20-7	Total Xylenes		6700	D
98-82-8	Isopropylbenzene		62	D
103-65-1	n-Propylbenzene		140	D
99-87-6	p-Cymene		50	U
95-63-6	1,2,4-Trimethylbenzene		2000	D
108-67-8	1,3,5-Trimethylbenzene		620	D
104-51-8	n-Butylbenzene		50	U
135-98-8	sec-Butylbenzene		50	U
98-06-6	tert-Butylbenzene		50	U
91-20-3	Naphthalene		380	D
1634-04-4	Methyl-t-Butyl Ether (MI	:BE)	50	υ

JOSEPH C. LU ENG & LAND SURVEYING PC AQUEOUS 8260 STARS LIST TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

Ish Name, West Namerica Isheret		NI-TC-05-16 DL
Lab Name: <u>TestAmerica Laborat</u> Contract:		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) WATER	Lab Sample ID:	A8G14506DL
Sample wt/vol: (g/mL) ML	Lab File ID:	<u>G7710.RR</u>
Level: (low/med) LOW	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: not dec.	Date Analyzed:	12/31/2008
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor	:50.00
Soil Extract Volume: (uL)	Soil Aliquot Vo	lume: (uL)

Number TICs found: <u>10</u>

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/L</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 108-87-2	METHYLCYCLOHEXANE	5.96	230	JN
2.	UNKNOWN BENZENE DERIVATIVE	10.03	2500	J
3.	UNKNOWN BENZENE DERIVATIVE	10.32	950	J
4.	UNKNOWN BENZENE DERIVATIVE	10.89	980	J
5.	UNKNOWN	11.08	800	J
б.	UNKNOWN BENZENE DERIVATIVE	11.15	380	J
7.	UNKNOWN BENZENE DERIVATIVE	11.40	350	J
8.	UNKNOWN BENZENE DERIVATIVE	11.49	290	J
9.	UNKNOWN BENZENE DERIVATIVE	11.90	260	J
10. 2039-89-6	BENZENE, 2-ETHENYL-1,4-DIMET	12.27	340	JN

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS ANALYSIS DATA SHEET

Client No.

Lab Name: <u>TestAmerica Laboratories Inc.</u> Contract:		IC-06-08
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: <u>A8G14</u>	1507
Sample wt/vol: 4.30 (g/mL) <u>G</u>	Lab File ID: <u>G7669</u>	O.RR
Level: (low/med) <u>MED</u>	Date Samp/Recv: <u>12/18</u>	3/2008 12/20/2008
% Moisture: not dec. <u>14</u> Heated Purge: <u>N</u>	Date Analyzed: <u>12/30</u>	0/2008
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	L.00
Soil Extract Volume: <u>10000</u> (uL)	Soil Aliquot Volume:	<u>100.00</u> (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>	. Q
71-43-2Benzene 104-51-8n-Butylbenzene 135-98-8sec-Butylbenzene 98-06-6tert-Butylbenzene 98-06-6Ethylbenzene 98-82-8Ethylbenzene 99-87-6P-Cymene 103-65-1n-Propylbenzene 108-88-3Toluene 95-47-6	130 1500 470 450 1500 130 1500 130 130 130 130 130 130 130 1300 10000 14000 14000	บ บ บ บ E

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

Lab Name: TestAmerica Laborat Contract:		NI-TC-06-08
Lab Code: <u>RECNY</u> Case No.: SAS No.:	- SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A8G14507</u>
Sample wt/vol: 4.30 (g/mL) G	Lab File ID:	G7669.RR
Level: (low/med) MED	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: not dec. <u>13.8</u>	Date Analyzed:	12/30/2008
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor	:1.00
Soil Extract Volume: <u>10000</u> (uL)	Soil Aliquot Vo	lume: <u>100.00</u> (uL)

Number TICs found: <u>10</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1.	SATURATED HYDROCARBON	6.48	8500	J
2.	SATURATED HYDROCARBON	6.56	8000	J
3. 111-65-9	N-OCTANE	7.13	8500	JN
4.	SATURATED HYDROCARBON	8.17	14000	J
5.	SATURATED HYDROCARBON	8.30	8200	J
6.	UNKNOWN BENZENE DERIVATIVE	10.03	16000	J
7.	UNKNOWN BENZENE DERIVATIVE	11.15	8800	J
8. 1120-21-4	N-UNDECANE	11.25	16000	JN
9.	UNKNOWN BENZENE DERIVATIVE	11.43	9300	J
10. 112-40-3	N-DODECANE	12.21	10000	JN
	L	L	L	L

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS ANALYSIS DATA SHEET

Client No.

Lab Name: <u>TestAmerica Laboratories Inc.</u> Contract:		NI-TC-06-08 DL
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: _	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A8G14507DL
Sample wt/vol: 4.30 (g/mL) G	Lab File ID:	G7691.RR
Level: (low/med) MED	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: not dec. <u>14</u> Heated Purge: <u>N</u>	Date Analyzed:	12/31/2008
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	:2.00
Soil Extract Volume: <u>10000</u> (uL)	Soil Aliquot Vol	lume: <u>100.00</u> (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	

		×
71-43-2Benzene	270	U
104-51-8n-Butylbenzene	270	U
135-98-8sec-Butylbenzene	400	D
98-06-6tert-Butylbenzene	270	U
100-41-4Ethylbenzene	1500	D
98-82-8Isopropylbenzene	510	D
99-87-6p-Cymene	270	U
103-65-1n-Propylbenzene	1600	D
108-88-3Toluene	270	U
95-47-6o-Xylene	3500	D
m/p-Xylenes	10000	D
1330-20-7Total Xylenes	14000	D
1634-04-4Methyl-t-Butyl Ether (MIBE)	270	U
95-63-61,2,4-Trimethylbenzene	15000	D
108-67-81,3,5-Trimethylbenzene	5500	D
91-20-3Naphthalene	1300	D

JOSEPH C. LU ENG & LAND SURVEYING PC MEIHOD 8260 - STARS VOAS TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

Lab Name, Maghamaniga Laborath Contract		NI-TC-06-08 DL
Lab Name: TestAmerica Laborat Contract:		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A8G14507DL
Sample wt/vol: 4.30 (g/mL) G	Lab File ID:	<u>G7691.RR</u>
Level: (low/med) <u>MED</u>	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: not dec. <u>13.8</u>	Date Analyzed:	<u>12/31/2008</u>
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor	:2.00
Soil Extract Volume: 10000 (uL)	Soil Aliquot Vo	lume: <u>100.00</u> (uL)

Number TICs found: <u>10</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q ·
1. 2. 111-65-9 3. 4. 5. 6. 7. 8. 1120-21-4 9. 10. 112-40-3	SATURATED HYDROCARBON N-OCTANE UNKNOWN ALKANE SATURATED HYDROCARBON UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE N-UNDECANE UNKNOWN BENZENE DERIVATIVE N-DODECANE	$\begin{array}{r} 6.48 \\ 7.13 \\ 8.17 \\ 8.30 \\ 10.03 \\ 11.09 \\ 11.15 \\ 11.25 \\ 11.43 \\ 12.21 \end{array}$	10000 9100 15000 9100 18000 9000 10000 20000 11000 12000	J J J J J J J J J J J J J J J J J J J

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS ANALYSIS DATA SHEET

	-	Client No.
Lab Name: TestAmerica Laboratories Inc. Contract:		NI-TC-07-08
Tab Name: <u>rescamence factatories me.</u> Contract:		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A8G14508</u>
Sample wt/vol: 4.24 (g/mL) G	Lab File ID:	G7670.RR
Level: (low/med) MED	Date Samp/Recv:	12/18/2008 12/20/2008
% Moisture: not dec. <u>16</u> Heated Purge: <u>N</u>	Date Analyzed:	12/30/2008
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: <u>10000</u> (uL)	Soil Aliquot Vol	ume: <u>100.00</u> (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	<u>UG/KG</u> Q

	02 03, 103,	<u></u>	×
71-43-2Benzene		140	U
104-51-8n-Butylbenzene		140	U .
135-98-8sec-Butylbenzene		680	
98-06-6tert-Butylbenzene		140	U
100-41-4Ethylbenzene		5800	
98-82-8Isopropylbenzene		1300	
99-87-6p-Cymene		140	U
103-65-1n-Propylbenzene		4300	
108-88-3Toluene		470	
95-47-6o-Xylene		6800	
m/p-Xylenes		21000	
1330-20-7Total Xylenes		28000	
1634-04-4Methyl-t-Butyl Ether (MIBE)		140	U
95-63-61,2,4-Trimethylbenzene		28000	E
108-67-81,3,5-Trimethylbenzene		9800	
91-20-3Naphthalene	· · · · · · · · · · · · · · · · · · ·	2700	
	the second se		

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

Lab Name: <u>TestAmerica Laborat</u> Contract:		NI-TC-07-08
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID:	A8G14508
Sample wt/vol: 4.24 (g/mL) G	Lab File ID:	G7670.RR
Level: (low/med) <u>MED</u>	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: not dec. <u>16.0</u>	Date Analyzed:	<u>12/30/2008</u>
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: <u>10000</u> (uL)	Soil Aliquot Vol	ume: <u>100.00</u> (uL)

Number TICs found: 10

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 2. 111-65-9 3. 4. 5. 6. 7. 8. 9. 10.	UNKNOWN ALKANE N-OCTANE UNKNOWN ALKANE SATURATED HYDROCARBON UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE	$5.24 \\ 7.13 \\ 8.17 \\ 8.30 \\ 10.03 \\ 10.32 \\ 10.89 \\ 11.09 \\ 11.15 \\ 11.43$	12000 21000 21000 13000 37000 14000 13000 19000 20000 16000	J JN J J J J J J J J J J J J J J J

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8260 - STARS VOAS ANALYSIS DATA SHEET

Client No.

Lab Name: <u>TestAmerica Laboratories Inc.</u> Contract:		NI-TC-07-08 DL
	SDG No.: _	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A8G14508DL
Sample wt/vol: 4.24 (g/mL) G	Lab File ID:	<u>G7692.RR</u>
Level: (low/med) MED	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: not dec. <u>16</u> Heated Purge: <u>N</u>	Date Analyzed:	12/31/2008
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	4.00
Soil Extract Volume: 10000 (uL)	Soil Aliquot Vol	ume: <u>100.00</u> (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	

CAS NO. COMPOUND

	00/103	× ×
71-43-2Benzene	560	U
104-51-8n-Butylbenzene	 560	U
135-98-8sec-Butylbenzene	740	D
98-06-6tert-Butylbenzene	 560	U
100-41-4Ethylbenzene	6000	D
98-82-8Isopropylbenzene	1400	D
99-87-6p-Cymene	560	U
103-65-1n-Propylbenzene	 4800	D
108-88-3Toluene	490	M
95-47-6o-Xylene	7100	D
m/p-Xylenes	23000	D
1330-20-7Total Xylenes	30000	D
1634-04-4Methyl-t-Butyl Ether (MTBE)	560	υ
95-63-61,2,4-Trimethylbenzene	33000	D
108-67-81,3,5-Trimethylbenzene	11000	D
91-20-3Naphthalene	3800	D

JOSEPH C. LU ENG & LAND SURVEYING PC MEIHOD 8260 - STARS VOAS TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

		NI-TC-07-08 DL
Lab Name: <u>TestAmerica Laborat</u> Contract:		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A8G14508DL
Sample wt/vol: 4.24 (g/mL) G	Lab File ID:	G7692.RR
Level: (low/med) <u>MED</u>	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: not dec. <u>16.0</u>	Date Analyzed:	12/31/2008
GC Column: <u>ZB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor	:4.00
Soil Extract Volume: <u>10000</u> (uL)	Soil Aliquot Vol	lume: <u>100.00</u> (uL)

Number TICs found: <u>10</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 2. 142-82-5 3. 108-87-2 4. 5. 6. 111-65-9 7. 8. 9. 10.	UNKNOWN ALKANE HEPTANE METHYLCYCLOHEXANE SATURATED HYDROCARBON SATURATED HYDROCARBON N-OCTANE UNKNOWN ALKANE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE UNKNOWN BENZENE DERIVATIVE	5.23 5.42 5.96 6.48 6.56 7.13 8.17 10.03 11.09 11.15	28000 18000 24000 21000 20000 28000 26000 35000 17000 18000	J J Z J J J J J J J J J J J J

U

U

U

U

U

U

U

1

1

1

1

1

1

1

JOSEPH C. LU ENG & LAND SURVEYING PC AQUEOUS 8260 STARS LIST ANALYSIS DATA SHEET

Client No.

				. 1
Lab Name: <u>TestAmerica Laboratories Inc.</u> Contract: _		TRIP BL	ANK	
Lab Code: <u>RECNY</u> Case No.: SAS No.: _	SDG No.: _			
Matrix: (soil/water) WATER	Lab Sample ID:	A8G14509		
Sample wt/vol: (g/mL) ML	Lab File ID:	<u>J3979.RR</u>		
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/18/20</u>	08 12/2	0/2008
% Moisture: not dec Heated Purge: \underline{N}	Date Analyzed:	12/30/20	08	
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00	ŀ	
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume:	(u	ட)
	ONCENIRATION UNITS: (ug/L or ug/Kg)		Q	
71-43-2Benzene		1	U	
100-41-4Ethylbenzene	······	1	U	
1108-88-3Toluene		1	U	
95-47-6O-Xylene		1	U	
m/p-Xylenes		2	U	
1330-20-7IOCAL AYLENES		.3	U	
98-82-8Isopropylbenzene		1	U	
103-65-1n-Propylbenzene		1	U	
99-87-6p-Cymene		1	U U	

95-63-6-----1,2,4-Trimethylbenzene

108-67-8-----1,3,5-Trimethylbenzene_____

91-20-3-----Naphthalene 1634-04-4----Methyl-t-Butyl Ether (MTBE)

135-98-8-----sec-Butylbenzene

98-06-6-----tert-Butylbenzene

JOSEPH C. LU ENG & LAND SURVEYING PC AQUEOUS 8260 STARS LIST TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

I ab Name, Teathmarian I abarat Contract.		TRIP BLANK
Lab Name: <u>TestAmerica Laborat</u> Contract:		· · · · · · · · · · · · · · · · · · ·
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) WATER	Lab Sample ID:	<u>A8G14509</u>
Sample wt/vol: 5.00 (g/mL) <u>ML</u>	Lab File ID:	J3979.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/18/2008 12/20/2008
% Moisture: not dec.	Date Analyzed:	12/30/2008
GC Column: <u>ZB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	.ume: (uL)
Number TICs found: <u>0</u>	CONCENTRATION UNIT (ug/L or ug/Kg)	

CAS NO.	Compound Name	RT	Est. Conc.	Q

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) ANALYSIS DATA SHEET

Client No.

Lab Name: <u>TestAmerica Laboratories Inc.</u>	Contract:	NI-TC-01-08
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SDG No.: _	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A8G14501
Sample wt/vol: 30.25 (g/mL) <u>G</u>	Lab File ID:	<u>V0938.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/16/2008 12/20/2008
% Moisture: <u>17</u> decanted: (Y/N) <u>N</u>	Date Extracted:	12/23/2008
Concentrated Extract Volume: 1000(uL)	Date Analyzed:	12/27/2008
Injection Volume: <u>1.00</u> (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH:		

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
	Acenaphthylene		200	υ
	Acenaphthene		200	Ū
	Anthracene		200	Ū
	Benzo(a)anthracene		200	Ū
205-99-2	Benzo(b)fluoranthene		200	U
207-08-9	Benzo(k)fluoranthene		200	U
191-24-2	Benzo(ghi)perylene		200	τ
50-32-8	Benzo(a)pyrene		200	U
218-01-9			200	U
	Dibenzo (a, h) anthracene		200	U
206-44-0	Fluoranthene		200	U
86-73-7			200	U
193-39-5	Indeno (1,2,3-cd) pyrene		200	U
	Phenanthrene		8.1	J
129-00-0			200	U
	Naphthalene		200	U

.

,

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

- -

]	NTL ITCL 01 00
Lab Name: <u>TestAmerica Laborat</u> Contract:	. [NI-TC-01-08
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID:	<u>A8G14501</u>
Sample wt/vol: 30.25 (g/mL) <u>G</u>	Lab File ID:	V0938.RR
Level: (low/med) LOW	Date Samp/Recv:	<u>12/16/2008</u> <u>12/20/2008</u>
% Moisture: <u>17.1</u> decanted: (Y/N) <u>N</u>	Date Extracted:	12/23/2008
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed:	12/27/2008
Injection Volume: <u>1.00</u> (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:		
	CANCENTION TAT INTO	· ·

Number TICs found: __0

.

CONCENTRATION UNITS:

(ug/Lorug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) ANALYSIS DATA SHEET

Client No.

Lab Name: <u>TestAmerica Laboratories Inc.</u> C	ontract:	NI-TC-02-07
	SAS No.: SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A8G14502
Sample wt/vol: 30.50 (g/mL) <u>G</u>	Lab File ID:	V0939.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/16/2008</u> <u>12/20/2008</u>
% Moisture: <u>10</u> decanted: (Y/N) \underline{N}	Date Extracted:	12/23/2008
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed:	12/27/2008
Injection Volume: 1.00(uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:		

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/KG</u>	Q
208-96-8	Acenaphthylene		22	J
83-32-9	Acenaphthene		180	U
	Anthracene		17	J
	Benzo(a)anthracene		87	J
	Benzo(b)fluoranthene		100	J
207-08-9	Benzo(k)fluoranthene		58	J
	Benzo(ghi)perylene		68	J
50-32-8	Benzo(a)pyrene		86	J
218-01-9	Chrysene		86	J
53-70-3	Dibenzo (a, h) anthracene		20	J
206-44-0	Fluoranthene		160	J
	Fluorene		180	U
193-39-5	Indeno (1,2,3-cd) pyrene		58	J
	Phenanthrene		30	J
129-00-0			130	J
91-20-3	Naphthalene		180	υ

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

		NI-TC-02-07
Lab Name: <u>TestAmerica Laborat</u> Contract:	. E	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A8G14502</u>
Sample wt/vol: 30.50 (g/mL) G	Lab File ID:	V0939.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/16/2008</u> <u>12/20/2008</u>
% Moisture: <u>9.7</u> decanted: (Y/N) <u>N</u>	Date Extracted:	12/23/2008
Concentrated Extract Volume: 1000 (uL)	Date Analyzed:	12/27/2008
Injection Volume: <u>1.00</u> (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:		
	CONCENTRATION UNIT	ˈS:

Number TICs found: ___0

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
			· · · · · · · · · · · · · · · · · · ·	

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) ANALYSIS DATA SHEET

Client No.

Lab Name: <u>TestAmerica Laboratories Inc.</u>	Contract:		NI-TC-04-12
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	<u>A8G14504</u>
Sample wt/vol: 30.58 (g/mL) G		Lab File ID:	V0940.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/18/2008 12/20/2008
% Moisture: <u>17</u> decanted: (Y/N) \underline{N}		Date Extracted:	12/23/2008
Concentrated Extract Volume: 1000(uL)		Date Analyzed:	12/27/2008
Injection Volume: <u>1.00</u> (uL)		Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:			

CAS NO. COMPOUND

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/KG</u>	Q
208-96-8	Acenaphthylene		200	υ
83-32-9	Acenaphthene		200	U
	Anthracene		200	U
56-55-3	Benzo(a) anthracene		200	U
	Benzo(b)fluoranthene		200	U
207-08-9	Benzo(k)fluoranthene		200	U
191-24-2	Benzo(ghi)perylene		200	U
50-32-8	Benzo(a) pyrene		200	ប
218-01-9	Chrysene		200	U
53-70-3	Dibenzo(a, h) anthracene		200	U
206-44-0	Fluoranthene		200	U
86-73-7	Fluorene		200	U
193-39-5	Indeno (1,2,3-cd) pyrene		200	U
	Phenanthrene	······································	25	J
129-00-0	Pyrene		200	Ū
	Naphthalene		910	

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

Lab Name: <u>TestAmerica Laborat</u> Contract:		NI-TC-04-12
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID:	<u>A8G14504</u>
Sample wt/vol: 30.58 (g/mL) G	Lab File ID:	<u>V0940.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: <u>16.8</u> decanted: (Y/N) <u>N</u>	Date Extracted:	12/23/2008
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed:	12/27/2008
Injection Volume: <u>1.00</u> (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:		

Number TICs found: <u>27</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 111-84-2	NONANE	3.98	560	NL
2. 103-65-1	BENZENE, PROPYL	4.72	590	JN
3.	UNKNOWN ALKANE	4.77	440	J
4.	UNKNOWN BENZENE DERIVATIVE	4.81	2400	J
5.	UNKNOWN BENZENE DERIVATIVE	4.85	990	J.
6.	UNKNOWN BENZENE DERIVATIVE	4.91	1500	J
7.	UNKNOWN BENZENE DERIVATIVE	5.02	940	J
8.	UNKNOWN BENZENE DERIVATIVE	5.21	4300	J
9. 124-18-5	DECANE	5.24	580	JN
10.	UNKNOWN BENZENE DERIVATIVE	5.52	900	J
11. 496-11-7	INDANE	5.68	580	JN
12.	UNKNOWN BENZENE DERIVATIVE	5.80	420	J
13.	UNKNOWN BENZENE DERIVATIVE	5.83	1100	J
14.	UNKNOWN BENZENE DERIVATIVE	5.90	1800	J
15.	UNKNOWN ALKANE	5.94	380	J
16.	UNKNOWN BENZENE DERIVATIVE	6.09	690	J
17.	UNKNOWN BENZENE DERIVATIVE	6.12	600	J
18. 1120-21-4	UNDECANE	6.30	930	JN
19.	UNKNOWN BENZENE DERIVATIVE	6.49	410	J
20.	UNKNOWN BENZENE DERIVATIVE	6.53	620	J
21.	UNKNOWN BENZENE DERIVATIVE	6.74	420	J
22.	UNKNOWN BENZENE DERIVATIVE	6.82	860	J
23.	UNKNOWN	6.88	370	J

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

		NI-TC-04-12
Lab Name: TestAmerica Laborat Contract:	l	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A8G14504</u>
Sample wt/vol: 30.58 (g/mL) G	Lab File ID:	V0940.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: <u>16.8</u> decanted: (Y/N) <u>N</u>	Date Extracted:	12/23/2008
Concentrated Extract Volume: 1000 (uL)	Date Analyzed:	<u>12/27/2008</u>
Injection Volume: <u>1.00</u> (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:		• · · ·

Number TICs found: _27

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
24. 629-50-5	TRIDECANE	8.00	720	NU
25.	UNKNOWN NAPHTHALENE DERIVATI	8.09	750	J
26.	UNKNOWN NAPHTHALENE DERIVATI	8.21	410	J
27. 629-59-4	TETRADECANE	8.74	650	MU

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) ANALYSIS DATA SHEET

Client No.

Lab Name: <u>TestAmerica Laboratories Inc.</u>	Contract:		NI-TC-04-12D
		SDG No.:	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	A8G14505
Sample wt/vol: <u>30.55</u> (g/mL) <u>G</u>		Lab File ID:	V0941.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/18/2008 12/20/2008
% Moisture: <u>20</u> decanted: (Y/N) \underline{N}		Date Extracted:	12/23/2008
Concentrated Extract Volume: 1000(uL)		Date Analyzed:	12/27/2008
Injection Volume: <u>1.00</u> (uL)		Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:			

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/KG</u>	Q
	Acenaphthylene		210	U
83-32-9	Acenaphthene		210	U
	Anthracene		210	U
56-55-3	Benzo (a) anthracene		210	U
205-99-2	Benzo (b) fluoranthene		210	Ū
207-08-9	Benzo(k)fluoranthene		210	Ū
191-24-2	Benzo(ghi)perylene		210	Ū
50-32-8	Benzo (a) pyrene		210	Ū
	Chrysene		210	Ū
53-70-3	Dibenzo (a, h) anthracene		210	Ū
206-44-0	Fluoranthene		210	U
86-73-7	Fluorene		210	U
193-39-5	Indeno (1,2,3-cd) pyrene		210	U
85-01-8	Phenanthrene		13	Л
129-00-0	Pyrene	······	210	U
91-20-3	Naphthalene	· · · · · · · · · · · · · · · · · · ·	510	ľ

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

		NI-TC-04-12D
Lab Name: <u>TestAmerica Laborat</u> Contract:		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A8G14505</u>
Sample wt/vol:30.55 (g/mL) G	Lab File ID:	V0941.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: <u>19.6</u> decanted: (Y/N) <u>N</u>	Date Extracted:	12/23/2008
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed:	12/27/2008
Injection Volume: <u>1.00</u> (uL)	Dilution Factor	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:		

Number TICs found: <u>27</u>

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 111-84-2	NONANE	3.97	290	JN
2. 103-65-1	BENZENE, PROPYL-	4.72	260	JN
3.	UNKNOWN ALKANE	4.77	210	J
4.	UNKNOWN BENZENE DERIVATIVE	4.81	1000	J
5.	UNKNOWN BENZENE DERIVATIVE	4.85	450	J
6.	UNKNOWN BENZENE DERIVATIVE	4.91	650	J
7.	UNKNOWN BENZENE DERIVATIVE	5.02	400	J
8.	UNKNOWN BENZENE DERIVATIVE	5.21	1800	J
9. 124-18-5	DECANE	5.24	300	JN
10.	UNKNOWN BENZENE DERIVATIVE	5.52	370	J
11.	UNKNOWN ALKANE	5.63	180	J
12. 496-11-7	INDANE	5.68	260	JN
13.	UNKNOWN BENZENE DERIVATIVE	5.83	400	J
14.	UNKNOWN BENZENE DERIVATIVE	5.90	670	J
15.	UNKNOWN BENZENE DERIVATIVE	6.09	220	J
16.	UNKNOWN BENZENE DERIVATIVE	6.12	210	J
17. 1120-21-4	UNDECANE	6.30	270	JN
18.	UNKNOWN BENZENE DERIVATIVE	6.53	300	J
19.	UNKNOWN	6.74	230	J
20.	UNKNOWN	6.82	420	J
21.	UNKNOWN BENZENE DERIVATIVE	6.88	190	J
22.	UNKNOWN ALKANE	7.78	200	J
23. 629-50-5	TRIDECANE	8.00	420	JN

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

Lab Name: <u>TestAmerica Laborat</u> Contract:		NI-TC-04-12D
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A8G14505</u>
Sample wt/vol: 30.55 (g/mL) G	Lab File ID:	V0941.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: <u>19.6</u> decanted: (Y/N) <u>N</u>	Date Extracted:	12/23/2008
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed:	12/27/2008
Injection Volume: <u>1.00</u> (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:		

Number TICs found: <u>27</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
24.	UNKNOWN NAPHTHALENE DERIVATI	8.09	410	J
25.	UNKNOWN NAPHIHALENE DERIVATI	8.21	230	J
26. 629-59-4	TETRADECANE	8.74	380	JN
27.	UNKNOWN ALKANE	9.15	200	J

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) ANALYSIS DATA SHEET

Client No.

		·····
Lab Name: <u>TestAmerica Laboratories Inc.</u> Con	ntract:	NI-TC-06-08
Lab Code: <u>RECNY</u> Case No.: Si	AS No.: SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID:	A8G14507
Sample wt/vol: 30.87 (g/mL) G	Lab File ID:	V0942.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: <u>15</u> decanted: (Y/N) \underline{N}	Date Extracted:	12/23/2008
Concentrated Extract Volume: 1000(uL)	Date Analyzed:	12/27/2008
Injection Volume: <u>1.00</u> (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:		

	,	CONCENTRATION UN		
CAS NO.		(ug/L or ug/Kg)	<u>UG/KG</u>	Q
	Acenaphthylene		200	U
	Acenaphthene		24	J
	Anthracene		9.4	J
	Benzo (a) anthracene		13	J
	Benzo(b)fluoranthene		8.3	J
	Benzo(k)fluoranthene		200	U
191-24-2	Benzo(ghi)perylene		200	U
50-32-8	Benzo (a) pyrene		200	U
218-01-9	Chrysene		10	J
	Dibenzo (a, h) anthracene		200	U
	Fluoranthene		16	J
86-73-7			64	J
193-39-5	Indeno (1,2,3-cd) pyrene		200	U
	Phenanthrene		40	J
129-00-0	Pyrene		17	J
91-20-3	Naphthalene		800	-

•

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

Lab Name: <u>TestAmerica Laborat</u> Contract:		NI-TC-06-08
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A8G14507
Sample wt/vol: 30.87 (g/mL) G	Lab File ID:	<u>V0942.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: <u>15.3</u> decanted: (Y/N) <u>N</u>	Date Extracted:	12/23/2008
Concentrated Extract Volume: 1000 (uL)	Date Analyzed:	12/27/2008
Injection Volume: <u>1.00</u> (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:		

Number TICs found: 29

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1.	UNKNOWN ALKANE	3.48	2800	J
2. 111-84-2	NONANE	3.98	5300	JN
3.	UNKNOWN ALKANE	4.13	1300	J
4.	UNKNOWN ALKANE	4.30	1800	J
5.	UNKNOWN ALKANE	4.43	3300	J
6.	UNKNOWN ALKANE	4.69	2000	J
7.	UNKNOWN ALKANE	4.78	2900	J
8.	UNKNOWN BENZENE DERIVATIVE	4.81	6100	J
9.	UNKNOWN BENZENE DERIVATIVE	4.85	2000	J
10.	UNKNOWN BENZENE DERIVATIVE	4.91	4300	J
11.	UNKNOWN BENZENE DERIVATIVE	5.03	1800	J
12.	UNKNOWN ALKANE	5.10	1700	J
13.	UNKNOWN BENZENE DERIVATIVE	5.21	6000	J
14. 124-18-5	DECANE	5.25	8300	JN
15.	UNKNOWN ALKANE	5.50	2500	J
16.	UNKNOWN BENZENE DERIVATIVE	5.53	1200	J
17.	UNKNOWN BENZENE DERIVATIVE	5.80	1100	J
18.	UNKNOWN BENZENE DERIVATIVE	5.84	2100	J
19.	UNKNOWN BENZENE DERIVATIVE	5.90	4400	J
20. 6975-98-0	DECANE, 2-METHYL-	5.94	2400	JN
21. 13151-34-3	DECANE, 3-METHIL	6.01	1900	JN
22. 1120-21-4	UNDECANE	6.31	2400	JN
23.	UNKNOWN BENZENE DERIVATIVE	6.82	1100	J

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

Lab Name: <u>TestAmerica Laborat</u> Contract:		NI-TC-06-08
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A8G14507
Sample wt/vol: 30.87 (g/mL) G	Lab File ID:	V0942.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: <u>15.3</u> decanted: (Y/N) <u>N</u>	Date Extracted:	12/23/2008
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed:	12/27/2008
Injection Volume: <u>1.00</u> (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:		

Number TICs found: <u>29</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
24. 25. 629-50-5 26. 27. 629-59-4 28. 29.	UNKNOWN ALKANE TRIDECANE UNKNOWN ALKANE TETRADECAME UNKNOWN ALKANE UNKNOWN ALKANE	7.78 8.01 8.38 8.74 9.15 10.63	1100 1900 1100 2100 1700 1200	J JN J J J J J J

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) ANALYSIS DATA SHEET

Client No.

Lab Name: TestAmerica Laboratories Inc. Contract	:	NI-TC-07-08
	: SDG No.: _	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A8G14508</u>
Sample wt/vol: 30.19 (g/mL) G	Lab File ID:	V0943.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: <u>17</u> decanted: (Y/N) \underline{N}	Date Extracted:	<u>12/23/2008</u>
Concentrated Extract Volume: 1000(uL)	Date Analyzed:	12/27/2008
Injection Volume: <u>1.00</u> (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:		· · ·

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
208-96-8	Acenaphthylene		200	U
83-32-9	Acenaphthene		200	υ
120-12-7	Anthracene		200	U
56-55-3	Benzo (a) anthracene		200	U
205-99-2	Benzo(b)fluoranthene		200	U
	Benzo(k)fluoranthene		200	υ
191-24-2	Benzo(ghi)perylene		200	U
50-32-8	Benzo (a) pyrene		200	U
218-01-9	Chrysene		200	U
53-70-3	Dibenzo (a, h) anthracene		200	Ū
206-44-0	Fluoranthene		200	Ū
86-73-7	Fluorene		200	U
193-39-5	Indeno (1,2,3-cd) pyrene		200	Ū
	Phenanthrene		9.1	J
129-00-0	Pyrene		200	Ū
91-20-3	Naphthalene		220	

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

Lab Name: TestAmerica Laborat Contract:		NI-TC-07-08
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A8G14508
Sample wt/vol: <u>30.19</u> (g/mL) <u>G</u>	Lab File ID:	V0943.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/18/2008 12/20/2008
% Moisture: <u>16.9</u> decanted: (Y/N) <u>N</u>	Date Extracted:	12/23/2008
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed:	12/27/2008
Injection Volume: <u>1.00</u> (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:		

Number TICs found: <u>27</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 111-84-2	NONANE	3.97	950	JN
2.	UNKNOWN ALKANE	4.43	500	J
3.	UNKNOWN ALKANE	4.68	320	J
4. 103-65-1	BENZENE, PROPYL-	4.72	340	JN
5.	UNKNOWN ALKANE	4.76	710	J
6.	UNKNOWN BENZENE DERIVATIVE	4.81	1500	J
7.	UNKNOWN BENZENE DERIVATIVE	4.85	620	J
8.	UNKNOWN BENZENE DERIVATIVE	4.91	1200	J
9.	UNKNOWN BENZENE DERIVATIVE	5.02	660	J
10.	UNKNOWN BENZENE DERIVATIVE	5.21	2400	J
11. 124-18-5	DECANE	5.24	840	JN
12.	UNKNOWN BENZENE DERIVATIVE	5.52	410	J
13.	UNKNOWN ALKANE	5.63	490	J
14.	UNKNOWN BENZENE DERIVATIVE	5.68	360	J
15.	UNKNOWN BENZENE DERIVATIVE	5.80	370	J
16.	UNKNOWN BENZENE DERIVATIVE	5.83	930	J
17.	UNKNOWN BENZENE DERIVATIVE	5.90	1500	J
18.	UNKNOWN ALKANE	5.94	460	J
19.	UNKNOWN BENZENE DERIVATIVE	6.09	540	J
20.	UNKNOWN BENZENE DERIVATIVE	6.12	450	J
21. 1120-21-4	UNDECANE	6.30	440	JN
22.	UNKNOWN BENZENE DERIVATIVE	6.50	340	J
23.	UNKNOWN BENZENE DERIVATIVE	6.53	490	J

JOSEPH C. LU ENG & LAND SURVEYING PC METHOD 8270 SEMIVOLATILES (STARS) TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

Lab Name: <u>TestAmerica Laborat</u> Contract:		NI-TC-07-08
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A8G14508</u>
Sample wt/vol: 30.19 (g/mL) G	Lab File ID:	<u>V0943.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>12/18/2008</u> <u>12/20/2008</u>
% Moisture: <u>16.9</u> decanted: (Y/N) <u>N</u>	Date Extracted:	12/23/2008
Concentrated Extract Volume: <u>1000</u> (uL)	Date Analyzed:	12/27/2008
Injection Volume:1.00 (uL)	Dilution Factor	1.00
GPC Cleanup: (Y/N) <u>N</u> pH:		

Number TICs found: <u>27</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
24. 25. 26. 27.	UNKNOWN UNKNOWN UNKNOWN ALKANE	6.74 6.82 6.89 8.00	310 640 310 280	J J J J J

Joseph C. Lu Eng & Land Surveying PC

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Joseph (C. Lu Eng & Land S	Surveying	I SDG	No.:	A08-G1	.45	Meth	nod Type:			
Sample ID: A8	G14501					Client I	D: NI-TC-01	-08			
Matrix: SOI	L	Date Re	ceived:	12/2	0/2008	Date (Collected:	12/16/200	8 Level:	LOW	
% Solids: 83		Sample	Wt/Vol:	0.5		Final	Vol:	50.0			
Prep Batch ID:	A8B28002			Pre	p Date:	12/2	3/2008			·	
Analyte	Concentration U	nits C	Oual	RL	RL	Dil	Ana Date	lytical Time	Instrument	Run	
Lead	18.1 mg		E E	1.1	1.1	1	12/23/2008		SUPERTRACE	1122308	<u>M</u> P

-

Joseph C. Lu Eng & Land Surveying PC

- 1 -

INORGANIC ANALYSIS DATA PACKAGE

Client: Joseph (C. Lu Eng & Land S	Survey	/ing i	I SDG	180.:	A08-G1		Met	hod Type:	n fill fragmen an	The local division of the second second	
Sample ID: A8	G14502						Client I	D: NI-TC-02	2-07			
Matrix: SOI	L	Date	Rec	eived:	12/2	0/2008	Date (Collected:	12/16/200	8 Level:	LOW	
% Solids: 90		Sam	ple V	Wt/Vol:	0.5		Final	Vol:	50.0			
Prep Batch ID:	A8B28002				Pre	p Date:	12/2	3/2008				
								Ana	lytical			
nalyte	Concentration U	nits	С	Qual	RL	RL	Dil	Date	Time	Instrument	Run	ľ
ad	24.3 mg	g∕Kg		E	1.2	1.2	1	12/23/200	8 16:47	SUPERTRACE	1122308	

Joseph C. Lu Eng & Land Surveying PC

- 1 -

INORGANIC ANALYSIS DATA PACKAGE

Client: Joseph	C. Lu Eng & Land	Surveyi	ng I	SDG N	ło.:	A08-G1	.45	Met	hod Type:			
Sample ID: A8	G14504						Client I	D: NI-TC-0	4-12			
Matrix: SOI	L	Date I	Receiv	ed:	12/2	20/2008	Date	Collected:	12/18/200	8 Level:	LOW	
% Solids: 83		Samp	ole Wt	Vol:	0.5		Final	Vol:	50.0			
Prep Batch ID:	A8B28002				Pro	ep Date:	12/2	3/2008				
								An	alytical			
Analyte	Concentration U	nits 🛛	CQ	ual	RL	RL	Dil	Date	Time	Instrument	Run	Μ
Lead	16.3 mg	g/Kg		E	1.3	1.3	1	12/23/200	8 16:52	SUPERTRACE	1122308	Р

•

Joseph C. Lu Eng & Land Surveying PC

-1-

INORGANIC ANALYSIS DATA PACKAGE

Prep Batch ID:	A8B28002			Pre	p Date:	12/23	3/2008				
% Solids: 80		Sample V		0.5	0/2008	Final		50.0	Level:	LOW	
Sample ID: A8G1 Matrix: SOIL	4505	Date Rec	eived	12/20)/2008		D: NI-TC-04	I-12D 12/18/2008	Lavalı	LOW	

•

Joseph C. Lu Eng & Land Surveying PC

- 1 -INORGANIC ANALYSIS DATA PACKAGE

nalyte	Concentration Un	its C	Qual	RL	 1.1	Dil	Date	Time	Instrument	Run	M
					~~~			lytical			
Prep Batch ID:	A8B28002			Pre	p Date:	12/2	3/2008				
% Solids: 85		Sample	Wt/Vol:	0.5		Final	Vol:	50.0			
Matrix: SOIL	,	Date Re	ceived:	12/20	0/2008	Date (	Collected:	12/18/2008	3 Level:	LOW	
Sample ID: A80	614507					Client I	<b>D:</b> NI-TC-0	5-08			

# Joseph C. Lu Eng & Land Surveying PC

- 1 -

INORGANIC ANALYSIS DATA PACKAGE

alyte	Concentration U	nita	с	Oual	RL	RL	Dil	Ana Date	alytical Time	Instrument	Run	 N
Prep Batch ID:	A8B28002				Pre	p Date:	12/23	3/2008				
% Solids: 83				/t/Vol:	0.5	J/2008	Final	Collected: Vol:	12/18/2008 50.0	Level:	LOW	
Sample ID: A8G Matrix: SOIL		Date	Daar	in ad a	10/0	0/2008		<b>D:</b> NI-TC-07		¥ ₹.	LOW	

•



# **ANALYTICAL REPORT**

Job Number: 220-7988-1

SDG Number: 220-7988

Job Description: Former Nichol Inn ERP

For: Joseph C. Lu Eng & Land Surveying PC 2230 Penfield Road Penfield, NY 14526 Attention: Ms. Laura Smith

Chery ann Cascella

Approved for release. Cheryl Cascella 2/18/2009 2:43 PM

Designee for Johanna Dubauskas Project Manager I johanna.dubauskas@testamericainc.com 02/18/2009

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Project Manager.

TestAmerica Connecticut Certifications and Approvals: CTDOH PH-047, MADEP CT023, RIDOH A43, NYDOH 10602, NY NELAP 10602, NHDES 2528, NJDEP CT410, ME DOH CT023, UT DOH 2032614458

TestAmerica Laboratories, Inc.TestAmerica Connecticut128 Long Hill Cross Road, Shelton, CT 06484Tel (203) 929-8140Fax (203) 929-8142www.testamericainc.com



#### Job Narrative 220-J7988-1

#### **Comments**

No additional comments.

#### Receipt

One amber glass container for the following sample was received broken: NI-MW-6-15. Requested semi-volatile analysis was unable to be performed.

A trip blank was submitted for analysis with these samples; however, it was not listed on the Chain-of-Custody (COC).

All other samples were received in good condition within temperature requirements.

#### GC/MS VOA

No analytical or quality issues were noted.

#### GC/MS Semi VOA

Method(s) 8270C: Spike compounds were inadvertently omitted during the extraction process for the matrix spike/matrix spike duplicate (MS/MSD); therefore, matrix spike recoveries are unavailable for batch 220-24156. There was insufficient volume for re-extraction.

Method(s) 8270C: The laboratory control standard (LCS) for batch 220-24165 recovered outside acceptance limits for 2-Chlorophenol, 2-Nitrophenol, Benzoic Acid, 2,4 Dichlorophenol, 2,4,6 Trichlorophenol, 2,4,5 Trichlorophenol, 2,4 Dinitrophenol, 2,4 Dinitrophenol, 2,4 Dinitrophenol, 4,6 Dinitro-2-methylphenol, and Pentachlorophenol. The surrogate recoveries were also outside acceptance limits. There was insufficient sample to perform a re-extraction. Only one set of data has been reported.

Method(s) 8270C: Surrogate recovery for the following sample was outside of acceptance limits: NI-MW-5b-11 (220-7988-4). There was insufficient sample to perform a re-extraction. One set of data has been reported.

No other analytical or quality issues were noted.

#### GC Semi VOA

Method(s) 8081A: Surrogate recovery for the following sample was outside of acceptance limits: NI-MW-4-14 (220-7988-2). There was insufficient sample to perform a re-extraction; therefore, the data has been reported.

Method(s) 8081A: The capping continuing calibration verification (CCV) analyzed on GC-hp-6890-7 on 2/10/09 did not meet control limits on both columns.

Method(s) 8082: Surrogate recovery for the following sample was outside of acceptance limits: NI-MW-4-14 (220-7988-2). There was insufficient sample to perform a re-extraction; therefore, the data have been reported.

No other analytical or quality issues were noted.

#### Metals

No analytical or quality issues were noted.

#### **Organic Prep**

No analytical or quality issues were noted.

### SAMPLE SUMMARY

Client: Joseph C. Lu Eng & Land Surveying PC

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
220-7988-1	NI-MW-3-14	Water	02/03/2009 1145	02/06/2009 0950
220-7988-2	NI-MW-4-14	Water	02/03/2009 1100	02/06/2009 0950
220-7988-3	NI-MW-4-14D	Water	02/03/2009 1110	02/06/2009 0950
220-7988-4	NI-MW-5b-11	Water	02/02/2009 1700	02/06/2009 0950
220-7988-5	NI-MW-6-15	Water	02/02/2009 1705	02/06/2009 0950
220-7988-6	NI-MW-7-11	Water	02/02/2009 1215	02/06/2009 0950
220-7988-6MS	NI-MW-7-11	Water	02/02/2009 1215	02/06/2009 0950
220-7988-6MSD	NI-MW-7-11	Water	02/02/2009 1215	02/06/2009 0950
220-7988-7	NI-MW-8-12	Water	02/02/2009 1215	02/06/2009 0950
220-7988-8	NI-MW-10-11	Water	02/02/2009 1420	02/06/2009 0950
220-7988-9	NI-MW-11-10	Water	02/02/2009 1438	02/06/2009 0950
220-7988-10	NI-MW-12-12	Water	02/03/2009 1325	02/06/2009 0950
220-7988-11TB	TRIP BLANK	Water	02/02/2009 0000	02/06/2009 0950

Client: Joseph C. Lu Eng & Land Surveying PC

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
220-7988-1	NI-MW-3-14				
Aluminum Barium Calcium Iron Potassium Magnesium Manganese Sodium Nickel		290 J 39 118000 820 4600 55300 1600 54200 1.5 J	500 10 500 250 500 500 15 500 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
220-7988-2	NI-MW-4-14				
Acetone Benzene Ethylbenzene Toluene Xylenes, Total Naphthalene Barium Calcium Iron Potassium Magnesium Manganese Sodium		5.8       J         16       100         2.6       J         14       2.2         87       J         112000       4200         5900       47100         13000       81400	20 10 10 10 10 4.0 10 500 250 500 500 15 500	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8260B 8270C 6010B 6010B 6010B 6010B 6010B 6010B 6010B
220-7988-3	NI-MW-4-14D				
Acetone Benzene Ethylbenzene Toluene Xylenes, Total Naphthalene Barium Calcium Iron Potassium Magnesium Manganese Sodium		5.2 J 16 100 2.8 J 15 1.7 J 86 114000 4300 6000 46700 13100 80900	20 10 10 10 4.0 10 500 250 500 500 15 500	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8260B 8270C 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B

Client: Joseph C. Lu Eng & Land Surveying PC

Lab Sample ID Analyte	Client Sample ID	Result / Qı	ualifier	Reporting Limit	Units	Method	
220-7988-4	NI-MW-5B-11						
Benzene Ethylbenzene Toluene Xylenes, Total 2-Methylphenol 4-Methylphenol Naphthalene 2-Methylnaphthalene Aluminum Arsenic Barium Calcium Iron Potassium Magnesium Manganese Sodium Lead Vanadium	6	4300 2300 20000 14 81 130 27 140 23 210 199000 35400 5100 70600 31100 296000 9.0 1.5	J J J	2000 2000 2000 2000 16 16 16 16 500 20 10 500 250 500 500 15 2500 10 10 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8270C 8270C 8270C 8270C 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	
220-7988-5	NI-MW-6-15						
Acetone Benzene Ethylbenzene Toluene Xylenes, Total Barium Calcium Iron Potassium Magnesium Manganese Sodium Vanadium		53 34 280 33 550 100 105000 7900 6700 36300 11300 87000 1.2	J	50 25 25 25 25 10 500 250 500 15 500 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8260B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
220-7988-6	NI-MW-7-11				
Barium		86	10	ug/L	6010B
Calcium		102000	500	ug/L	6010B
Cobalt		1.9 J	10	ug/L	6010B
Iron		140 J	250	ug/L	6010B
Potassium		7500	500	ug/L	6010B
Magnesium		37100	500	ug/L	6010B
Manganese		1500	15	ug/L	6010B
Sodium		183000	2500	ug/L	6010B
Nickel		3.0 J	10	ug/L	6010B
220-7988-7	NI-MW-8-12				
Benzene		7.4	5.0	ug/L	8260B
1,2-Dichloroethane		0.84 J	5.0	ug/L	8260B
Ethylbenzene		5.0 J	5.0	ug/L	8260B
Barium		420	10	ug/L	6010B
Calcium		320000	500	ug/L	6010B
Cobalt		4.0 J	10	ug/L	6010B
Iron		5300	250	ug/L	6010B
Potassium		20600	500	ug/L	6010B
Magnesium		77500	500	ug/L	6010B
Manganese		18300	15	ug/L	6010B
Sodium		1140000	5000	ug/L	6010B
Nickel		2.9 J	10	ug/L	6010B
220-7988-8	NI-MW-10-11				
Aluminum		240 J	500	ug/L	6010B
Barium		56	10	ug/L	6010B
Calcium		67100	500	ug/L	6010B
Iron		1200	250	ug/L	6010B
Potassium		3600	500	ug/L	6010B
Magnesium		34400	500	ug/L	6010B
Manganese		440	15	ug/L	6010B
Sodium		62400	500	ug/L	6010B
Nickel		31	10	ug/L	6010B
Zinc		45 J	50	ug/L	6010B

.

Client: Joseph C. Lu Eng & Land Surveying PC

Lab Sample ID Analyte	Client Sample ID	Result / Qualit	fier	Reporting Limit	Units	Method
220-7988-9	NI-MW-11-10					
Aluminum Barium Calcium Cobalt Iron Potassium Magnesium Manganese Sodium		130     J       110     139000       2.2     J       140     J       8200       44000       2600       266000	I	500 10 500 10 250 500 500 15 2500	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
220-7988-10	NI-MW-12-12					
Aluminum Barium Calcium Iron Potassium Magnesium Manganese Sodium Nickel		130     J       150     136000       1300     7000       50000     1500       258000     J       3.6     J		500 10 500 250 500 500 15 2500 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B

### **METHOD SUMMARY**

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds (GC/MS) Purge and Trap	TAL CT TAL CT	SW846 8260B	SW846 5030B
Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	TAL CT	SW846 8270C	
Liquid-Liquid Extraction (Separatory Funnel)	TAL CT		SW846 3510C
Organochlorine Pesticides (GC) Liquid-Liquid Extraction (Separatory Funnel)	TAL CT TAL CT	SW846 8081A	SW846 3510C
Polychlorinated Biphenyls (PCBs) by Gas Chromatography Liquid-Liquid Extraction (Separatory Funnel)	TAL CT TAL CT	SW846 8082	SW846 3510C
Metals (ICP) Preparation, Total Metals	TAL CT TAL CT	SW846 6010B	SW846 3010A
Mercury (CVAA) Preparation, Mercury	TAL CT TAL CT	SW846 7470A	SW846 7470A

#### Lab References:

TAL CT = TestAmerica Connecticut

#### Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

# METHOD / ANALYST SUMMARY

Client: Joseph C. Lu Eng & Land Surveying PC

Analyst	Analyst ID
Kostrzewska, Barbara	ВК
Jonas, Stephan	SJ
Cooper, Susan	SC
Smith, Karli	KS
Petronchak, Nestor	NP
Voytek, Joseph F	JFV
	Kostrzewska, Barbara Jonas, Stephan Cooper, Susan Smith, Karli Petronchak, Nestor

#### Client: Joseph C. Lu Eng & Land Surveying PC

NI-MW-3-14

220-7988-1

Water

Client Sample ID:

Lab Sample ID:

Client Matrix:

Job Number: 220-7988-1 Sdg Number: 220-7988

Date Sampled:02/03/20091145Date Received:02/06/20090950

Method:8260BAnalysis Batch: 220-24318Preparation:5030BDilution:1.0Date Analyzed:02/12/2009 1622Date Prepared:02/12/2009 1622	Instrument ID: HP 6890/5973 GC/MS Lab File ID: V1697.D Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL
------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------

Analyte	Result (ug/L)	Qualifier	MDL	RL
Acetone	10	U	1.0	10
Benzene	5.0	U	0.74	5.0
Bromodichloromethane	5.0	U	0.48	5.0
Bromoform	5.0	U	0.46	5.0
Bromomethane	5.0	U	2.1	5.0
Methyl Ethyl Ketone	10	U	1.1	10
Carbon disulfide	5.0	U	0.90	5.0
Carbon tetrachloride	5.0	U	1.1	5.0
Chlorobenzene	5.0	U	0.72	5.0
Chloroethane	5.0	U	1.1	5.0
Chloroform	5.0	U	0.67	5.0
Chloromethane	5.0	U	1.1	5.0
Dibromochloromethane	5.0	U	0.55	5.0
1,1-Dichloroethane	5.0	U	1.0	5.0
1,2-Dichloroethane	5.0	U	0.72	5.0
1,1-Dichloroethene	5.0	U	0.83	5.0
1,2-Dichloropropane	5.0	U	0.71	5.0
cis-1,3-Dichloropropene	5.0	U	0.28	5.0
trans-1,3-Dichloropropene	5.0	U	0.57	5.0
Ethylbenzene	5.0	U	0.87	5.0
2-Hexanone	10	U	1.1	10
Methylene Chloride	5.0	U	0.78	5.0
methyl isobutyl ketone	10	U	0.38	10
Styrene	5.0	U *	0.64	5.0
1,1,2,2-Tetrachloroethane	5.0	U	0.81	5.0
Tetrachloroethene	5.0	U	0.81	5.0
Toluene	5.0	U	0.72	5.0
1,1,1-Trichloroethane	5.0	U	0.69	5.0
1,1,2-Trichloroethane	5.0	U	0.65	5.0
Trichloroethene	5.0	U	0.62	5.0
Vinyl chloride	5.0	U	0.99	5.0
Xylenes, Total	5.0	U	2.3	5.0
cis-1,2-Dichloroethene	5.0	U	0.99	5.0
trans-1,2-Dichloroethene	5.0	U	0.76	5.0
Surrogate	%Rec		Accep	otance Limits
1,2-Dichloroethane-d4 (Surr)	100	*****	53 -	
4-Bromofluorobenzene	96		73 -	
Dibromofluoromethane	113		54 -	
Toluene-d8 (Surr)	113		63 -	

Client: Joseph C. Lu Eng & Land Surveying PC			Job Number: 220-7			
Client Sample ID: NI-MW-3-14			Sdg N		umber: 220-798	
Lab Sample ID: Client Matrix:	220-7988-1 Water			Date Sampled: 02/03/2009 Date Received: 02/06/2009		
	1	8260B Volatile Organic Compo	unds (GC	/MS)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 02/12/2009 1622 02/12/2009 1622	Analysis Batch: 220-2431	8	Instrument ID: HP 6890/5973 Ge Lab File ID: V1697.D Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL	C/MS	
Tentatively Ident	tified Compounds	Number TIC's Found:	0			
Cas Number	Analyte		RT	Est. Result (ug/L) Q	ualifier	
	Tentatively Identified	I Compound		None	********	

#### Client: Joseph C. Lu Eng & Land Surveying PC

NI-MW-4-14

Client Sample ID:

Job Number: 220-7988-1 Sdg Number: 220-7988

Lab Sample ID:	220-7988-2	02/03/2009 1100
Client Matrix:	Water	02/06/2009 0950

Method:8260BAnalysis Batch: 220-24318Preparation:5030BDilution:2.0Date Analyzed:02/12/2009 2046Date Prepared:02/12/2009 2046	Instrument ID: HP 6890/5973 GC/MS Lab File ID: V1707.D Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL
------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------

Analyte	Result (ug/L)	Qualifier	MDL	RL
Acetone	5.8	J	2.1	20
Benzene	16		1.5	10
Bromodichloromethane	10	U	0.96	10
Bromoform	10	U	0.92	10
Bromomethane	10	U	4.2	10
Methyl Ethyl Ketone	20	U	2.2	20
Carbon disulfide	10	U	1.8	10
Carbon tetrachloride	10	U	2.1	10
Chlorobenzene	10	U	1.4	10
Chloroethane	10	U	2.1	10
Chloroform	10	U	1.3	10
Chloromethane	10	U	2.2	10
Dibromochloromethane	10	U	1.1	10
1,1-Dichloroethane	10	U	2.1	10
1,2-Dichloroethane	10	U	1.4	10
1,1-Dichloroethene	10	U	1.7	10
1,2-Dichloropropane	10	Ŭ	1.4	10
sis-1,3-Dichloropropene	10	U	0.56	10
rans-1,3-Dichloropropene	10	U	1.1	10
Ethylbenzene	100		1.7	10
2-Hexanone	20	U	2.2	20
Methylene Chloride	10	U	1.6	10
nethyl isobutyl ketone	20	U	0.76	20
Styrene	10	U *	1.3	10
1,1,2,2-Tetrachloroethane	10	Ŭ,	1.6	10
Fetrachloroethene	10	U	1.6	10
Foluene	2.6	Ĵ	1.4	10
1,1,1-Trichloroethane	10	U	1.4	10
1,1,2-Trichloroethane	10	Ŭ	1.3	10
Frichloroethene	10	Ū	1.2	10
/inyl chloride	10	Ŭ	2.0	10
Xylenes, Total	14		4.5	10
cis-1,2-Dichloroethene	10	U	2.0	10
trans-1,2-Dichloroethene	10	U	1.5	10
Surrogate	%Rec		Accer	otance Limits
1,2-Dichloroethane-d4 (Surr)	91		53 -	
4-Bromofluorobenzene	80		73 -	
Dibromofluoromethane	96		54 -	
Toluene-d8 (Surr)	101		63 -	

#### Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

# Client Sample ID:NI-MW-4-14Lab Sample ID:220-7988-2Client Matrix:Water

Date Sampled:02/03/20091100Date Received:02/06/20090950

Method: Preparation: Dilution: Date Analyzed:	8260B 5030B 2.0 02/12/2009 2046	Analysis Batch: 220-24318	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vo	V1707. olume <b>:</b>	90/5973 GC/MS D 5 mL 5 mL
Date Prepared:	02/12/2009 2046		Final weight vo	iume.	5 mL

Tentatively Ider	tified Compounds Number TIC's Found:	30		
Cas Number	Analyte	RT	Est. Result (ug/L)	Qualifier
75-71-8	Dichlorodifluoromethane	0.93	51	JN
	Unknown Alkane	0.99	11	J
	Unknown Alkane	1.06	25	J
78-78-4	Butane, 2-methyl-	1.30	120	JN
	Unknown Alkane	1.42	6.4	J
513-35 <del>-</del> 9	2-Butene, 2-methyl-	1.60	17	JN
	Unknown Alkane	1.69	6.5	J
	Unknown Alkane	1.97	68	J
96-14-0	Pentane, 3-methyl-	2.14	23	JN
	Unknown Cycloalkane	2.61	15	J
96-37-7	Cyclopentane, methyl-	2.87	58	JN
110-82-7	Cyclohexane	3.54	38	JN
	Unknown Alkane	3.68	7.1	J
	Unknown Cycloalkane	4.06	20	J
822-50-4	Cyclopentane, 1,2-dimethyl-, trans-	4.14	17	JN
108-87-2	Cyclohexane, methyl-	4.89	38	JN
591-47-9	Cyclohexene, 4-methyl-	5.41	9.7	JN
1528-22-9	Cyclobutane, (1-methylethylidene)-	5.59	13	JN
591-49-1	Cyclohexene, 1-methyl-	6.01	6.3	JN
591-21-9	1,3-Dimethylcyclohexane,c&t	6.14	18	JN
	Unknown Cycloalkane	6.75	11	J
	Unknown Cycloalkane	7.28	9.8	J
98-82-8	Benzene, (1-methylethyl)-	9.69	12	JN
103-65-1	Benzene, propyl-	10.11	20	JN
611-14-3	Benzene, 1-ethyl-2-methyl-	10.50	32	JN
108-67 <b>-</b> 8	Benzene, 1,3,5-trimethyl-	10.66	73	JN
496-11-7	Indane	11.12	47	JN
2870-04-4	Benzene, 2-ethyl-1,3-dimethyl-	11.51	9.2	JN
767-58-8	Indan, 1-methyl-	11.57	17	JN
2039-89-6	Benzene, 2-ethenyl-1,4-dimethyl-	12.13	16	JN

#### Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

#### Client Sample ID: NI-MW-4-14D

Lab Sample ID:	220-7988-3	•	02/03/2009 1110
Client Matrix:	Water		02/06/2009 0950

Method:	8260B	Analysis Batch: 220-24318	Instrument ID:	HP 6890/5973 GC/MS
Preparation:	5030B		Lab File ID:	V1710.D
Dilution: Date Analyzed: Date Prepared:	2.0 02/12/2009 2205 02/12/2009 2205		Initial Weight/Vo Final Weight/Vo	

Analyte	Result (ug/L)	Qualifier	MDL	RL
Acetone	5.2	J	2.1	20
Benzene	16		1.5	10
Bromodichloromethane	10	U	0.96	10
Bromoform	10	U	0.92	10
Bromomethane	10	U	4.2	10
Methyl Ethyl Ketone	20	U	2.2	20
Carbon disulfide	10	U	1.8	10
Carbon tetrachloride	10	U	2.1	10
Chlorobenzene	10	U	1.4	10
Chloroethane	10	U	2.1	10
Chloroform	10	U	1.3	10
Chloromethane	10	U	2.2	10
Dibromochloromethane	10	U	1.1	10
1,1-Dichloroethane	10	U	2.1	10
1,2-Dichloroethane	10	U	1.4	10
1,1-Dichloroethene	10	U	1.7	10
1,2-Dichloropropane	10	U	1.4	10
cis-1,3-Dichloropropene	10	U	0.56	10
trans-1,3-Dichloropropene	10	U	1.1	10
Ethylbenzene	100		1.7	10
2-Hexanone	20	U	2.2	20
Methylene Chloride	10	U	1.6	10
methyl isobutyl ketone	20	U	0.76	20
Styrene	10	U *	1.3	10
1,1,2,2-Tetrachloroethane	10	U	1.6	10
Tetrachloroethene	10	U	1.6	10
Toluene	2.8	J	1.4	10
1,1,1-Trichloroethane	10	U	1.4	10
1,1,2-Trichloroethane	10	U	1.3	10
Trichloroethene	10	U	1.2	10
Vinyl chloride	10	Ŭ	2.0	10
Xylenes, Total	15		4.5	10
cis-1,2-Dichloroethene	10	U	2.0	10
trans-1,2-Dichloroethene	10	U	1.5	10
Surrogate	%Rec		Accep	otance Limits
1,2-Dichloroethane-d4 (Surr)	85	53 - 125		
4-Bromofluorobenzene	78		73 -	
Dibromofluoromethane	92	54 - 137		
Toluene-d8 (Surr)	101		63 -	

### Client: Joseph C. Lu Eng & Land Surveying PC

# Client Sample ID:NI-MW-4-14DLab Sample ID:220-7988-3Client Matrix:Water

Job Number: 220-7988-1 Sdg Number: 220-7988

Date Sampled:02/03/20091110Date Received:02/06/20090950

### 8260B Volatile Organic Compounds (GC/MS)

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 2.0 02/12/2009 2205 02/12/2009 2205	Analysis Batch: 220-24318	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vo	V1710. lume:	00/5973 GC/MS D 5 mL 5 mL
Date Prepared:	02/12/2009 2205				

#### Tentatively Identified Compounds

~~~

Number TIC's Found: 30

| Cas Number | Analyte | RT | Est. Result (ug/L) | Qualifier |
|------------|--------------------------------------|-------|--------------------|-----------|
| 75-71-8 | Dichlorodifluoromethane | 0.93 | 50 | JN |
| | Unknown Alkane | 0.99 | 11 | J |
| | Unknown Alkane | 1.06 | 19 | J |
| 78-78-4 | Butane, 2-methyl- | 1.30 | 120 | JN |
| 930-18-7 | Cyclopropane, 1,2-dimethyl-, cis- | 1.60 | 15 | JN |
| 75-83-2 | Butane, 2,2-dimethyl- | 1.69 | 6.4 | JN |
| | Unknown Alkane | 1.97 | 68 | J |
| 96-14-0 | Pentane, 3-methyl- | 2.14 | 23 | JN |
| 616-12-6 | 2-Pentene, 3-methyl-, (E)- | 2.61 | 11 | JN |
| 96-37-7 | Cyclopentane, methyl- | 2.87 | 52 | JN |
| | Unknown | 3.40 | 6.8 | J |
| 110-82-7 | Cyclohexane | 3.54 | 38 | JN |
| | Unknown Alkane | 3.68 | 9.1 | J |
| | Unknown Cycloalkane | 4.06 | 21 | J |
| 822-50-4 | Cyclopentane, 1,2-dimethyl-, trans- | 4.14 | 18 | JN |
| 108-87-2 | Cyclohexane, methyl- | 4.89 | 45 | JN |
| 591-47-9 | Cyclohexene, 4-methyl- | 5.41 | 11 | JN |
| 1528-22-9 | Cyclobutane, (1-methylethylidene)- | 5.59 | 15 | JN |
| 591-49-1 | Cyclohexene, 1-methyl- | 6.01 | 6.4 | JN |
| 589-90-2 | Cyclohexane, 1,4-dimethyl- | 6.14 | 20 | JN |
| 638-04-0 | Cyclohexane, 1,3-dimethyl-, cis- | 6.75 | 11 | JN |
| 1678-91-7 | Cyclohexane, ethyl- | 7.34 | 7.8 | JN |
| 98-82-8 | Benzene, (1-methylethyl)- | 9.69 | 13 | JN |
| 103-65-1 | Benzene, propyl- | 10.11 | 21 | JN |
| 611-14-3 | Benzene, 1-ethyl-2-methyl- | 10.49 | 33 | JN |
| 95-63-6 | Benzene, 1,2,4-trimethyl- | 10.66 | 75 | JN |
| 496-11-7 | Indane | 11.12 | 46 | JN |
| 99-87-6 | Benzene, 1-methyl-4-(1-methylethyl)- | 11.51 | 9.9 | JN |
| 767-58-8 | Indan, 1-methyl- | 11.57 | 18 | JN |
| 3290-53-7 | Benzene, (2-methyl-2-propenyl)- | 12.13 | 18 | JN |

Client: Joseph C. Lu Eng & Land Surveying PC

NI-MW-5b-11

220-7988-4

Water

Client Sample ID:

Lab Sample ID:

Client Matrix:

Job Number: 220-7988-1 Sdg Number: 220-7988

Date Sampled:02/02/20091700Date Received:02/06/20090950

| , | Analysis Batch: 220-243 <sup>.</sup>
009 2112
009 2112 | Instrument ID: HP 6890/5973 GC/MS
Lab File ID: V1708.D
Initial Weight/Volume: 5 mL
Final Weight/Volume: 5 mL |
|---|--|---|
|---|--|---|

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|------------------------------|---------------|-----------|-------|---------------|
| Acetone | 4000 | U | 410 | 4000 |
| Benzene | 4300 | | 300 | 2000 |
| Bromodichloromethane | 2000 | U | 190 | 2000 |
| Bromoform | 2000 | U | 180 | 2000 |
| Bromomethane | 2000 | U | 850 | 2000 |
| Methyl Ethyl Ketone | 4000 | U | 440 | 4000 |
| Carbon disulfide | 2000 | U | 360 | 2000 |
| Carbon tetrachloride | 2000 | U | 430 | 2000 |
| Chlorobenzene | 2000 | U | 290 | 2000 |
| Chloroethane | 2000 | U | 420 | 2000 |
| Chloroform | 2000 | U | 270 | 2000 |
| Chloromethane | 2000 | U | 440 | 2000 |
| Dibromochloromethane | 2000 | U | 220 | 2000 |
| 1,1-Dichloroethane | 2000 | Ŭ | 410 | 2000 |
| 1,2-Dichloroethane | 2000 | U | 290 | 2000 |
| 1,1-Dichloroethene | 2000 | Ŭ | 330 | 2000 |
| 1,2-Dichloropropane | 2000 | Ū | 280 | 2000 |
| cis-1,3-Dichloropropene | 2000 | U | 110 | 2000 |
| trans-1,3-Dichloropropene | 2000 | Ŭ | 230 | 2000 |
| Ethylbenzene | 2300 | - | 350 | 2000 |
| 2-Hexanone | 4000 | U | 440 | 4000 |
| Methylene Chloride | 2000 | Ū | 310 | 2000 |
| methyl isobutyl ketone | 4000 | Ū | 150 | 4000 |
| Styrene | 2000 | Ū* | 260 | 2000 |
| 1,1,2,2-Tetrachloroethane | 2000 | Ŭ | 320 | 2000 |
| Tetrachloroethene | 2000 | Ŭ | 320 | 2000 |
| Toluene | 20000 | - | 290 | 2000 |
| 1,1,1-Trichloroethane | 2000 | U | 280 | 2000 |
| 1,1,2-Trichloroethane | 2000 | Ŭ | 260 | 2000 |
| Trichloroethene | 2000 | Ŭ | 250 | 2000 |
| Vinyl chloride | 2000 | Ŭ | 400 | 2000 |
| Xylenes, Total | 20000 | 0 | 910 | 2000 |
| cis-1,2-Dichloroethene | 2000 | U | 400 | 2000 |
| trans-1,2-Dichloroethene | 2000 | Ŭ | 300 | 2000 |
| | 2000 | 0 | 000 | 2000 |
| Surrogate | %Rec | | Accer | otance Limits |
| 1,2-Dichloroethane-d4 (Surr) | 92 | | 53 - | 125 |
| 4-Bromofluorobenzene | 79 | | 73 - | 127 |
| Dibromofluoromethane | 99 | | | 137 |
| Toluene-d8 (Surr) | 96 | | | 121 |

Job Number: 220-7988-1 Sdg Number: 220-7988

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-5b-11

 Lab Sample ID:
 220-7988-4
 Date Sampled:
 02/02/2009
 1700

 Client Matrix:
 Water
 Date Received:
 02/06/2009
 0950

| Method:
Preparation: | 8260B
5030B | Analysis Batch: 220-24318 | Instrument ID:
Lab File ID: | HP 689
V1708 | 90/5973 GC/MS
.D |
|----------------------------------|------------------------------------|---------------------------|--------------------------------|-----------------|---------------------|
| Dilution: | 400 | | Initial Weight/Vo | lume: | 5 mL |
| Date Analyzed:
Date Prepared: | 02/12/2009 2112
02/12/2009 2112 | | Final Weight/Vo | lume: | 5 mL |

| Tentatively Identified Compounds | | Number TIC's Found: | 7 | | |
|----------------------------------|-----------------------------|---------------------|-------|--------------------|-----------|
| Cas Number | Analyte | | RT | Est. Result (ug/L) | Qualifier |
| | Unknown Alkane | | 1.06 | 2100 | J |
| 78-78-4 | Butane, 2-methyl- | | 1.30 | 4400 | JN |
| | Unknown Alkene | | 1.50 | 1600 | J |
| 2402-06-4 | Cyclopropane, 1,2-dimethyl- | , trans- | 1.60 | 1700 | JN |
| | Unknow n Cycloalkane | | 1.97 | 1300 | J |
| 622-96-8 | Benzene, 1-ethyl-4-methyl- | | 10.21 | 1300 | JN |
| 95-63-6 | Benzene, 1,2,4-trimethyl- | | 10.66 | 1400 | JN |

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

Client Sample ID: NI-MW-6-15

| Lab Sample ID: | 220-7988-5 | • | 02/02/2009 1705 |
|----------------|------------|---|-----------------|
| Client Matrix: | Water | | 02/06/2009 0950 |
| | | | |

| Method:8260BAnalysis Batch: 220-24318Preparation:5030BDilution:5.0Date Analyzed:02/12/2009 2139Date Prepared:02/12/2009 2139 | Instrument ID: HP 6890/5973 GC/MS
Lab File ID: V1709.D
Initial Weight/Volume: 5 mL
Final Weight/Volume: 5 mL |
|--|---|
|--|---|

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|------------------------------|---------------|---|------|---------------|
| Acetone | 53 | *************************************** | 5.2 | 50 |
| Benzene | 34 | | 3.7 | 25 |
| Bromodichloromethane | 25 | U | 2.4 | 25 |
| Bromoform | 25 | U | 2.3 | 25 |
| Bromomethane | 25 | U | 11 | 25 |
| Methyl Ethyl Ketone | 50 | U | 5.4 | 50 |
| Carbon disulfide | 25 | U | 4.5 | 25 |
| Carbon tetrachloride | 25 | U | 5.4 | 25 |
| Chlorobenzene | 25 | U | 3.6 | 25 |
| Chloroethane | 25 | U | 5.3 | 25 |
| Chloroform | 25 | U | 3.4 | 25 |
| Chloromethane | 25 | U | 5.4 | 25 |
| Dibromochloromethane | 25 | U | 2.8 | 25 |
| 1,1-Dichloroethane | 25 | Ū | 5.2 | 25 |
| 1,2-Dichloroethane | 25 | U | 3.6 | 25 |
| 1,1-Dichloroethene | 25 | Ŭ | 4.2 | 25 |
| 1,2-Dichloropropane | 25 | Ŭ | 3.6 | 25 |
| cis-1,3-Dichloropropene | 25 | Ŭ | 1.4 | 25 |
| trans-1,3-Dichloropropene | 25 | Ū | 2.8 | 25 |
| Ethylbenzene | 280 | Ū. | 4.4 | 25 |
| 2-Hexanone | 50 | U | 5.4 | 50 |
| Methylene Chloride | 25 | Ŭ | 3.9 | 25 |
| methyl isobutyl ketone | 50 | Ŭ | 1.9 | 50 |
| Styrene | 25 | Ū* | 3.2 | 25 |
| 1,1,2,2-Tetrachloroethane | 25 | Ū | 4.0 | 25 |
| Tetrachloroethene | 25 | Ũ | 4.0 | 25 |
| Toluene | 33 | - | 3.6 | 25 |
| 1,1,1-Trichloroethane | 25 | U | 3.4 | 25 |
| 1,1,2-Trichloroethane | 25 | Ŭ | 3.2 | 25 |
| Trichloroethene | 25 | Ŭ | 3.1 | 25 |
| Vinyl chloride | 25 | Ŭ | 5.0 | 25 |
| Xylenes, Total | 550 | Ũ | 11 | 25 |
| cis-1,2-Dichloroethene | 25 | U | 5.0 | 25 |
| trans-1,2-Dichloroethene | 25 | U | 3.8 | 25 |
| | 20 | 0 | 0.0 | 25 |
| Surrogate | %Rec | | Acce | ptance Limits |
| 1,2-Dichloroethane-d4 (Surr) | 88 | | | 125 |
| 4-Bromofluorobenzene | 79 | | | 125 |
| Dibromofluoromethane | 91 | | | 137 |
| Toluene-d8 (Surr) | 101 | | | |
| | 101 | | 63 - | 121 |

Job Number: 220-7988-1 Sdg Number: 220-7988

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-6-15

 Lab Sample ID:
 220-7988-5
 Date Sampled:
 02/02/2009
 1705

 Client Matrix:
 Water
 Date Received:
 02/06/2009
 0950

8260B Volatile Organic Compounds (GC/MS)

| Method:
Preparation:
Dilution:
Date Analyzed: | 8260B
5030B
5.0
02/12/2009 2139 | Analysis Batch: 220-24318 | | |
|--|--|---------------------------|--------------------|---------|
| Date Prepared: | 02/12/2009 2139 | | rinal weigh/volume | e: 5 mL |

Tentatively Identified Compounds

Number TIC's Found: 30

| Cas Number | Analyte | RT | Est. Result (ug/L) | Qualifier |
|-------------------|--------------------------------------|-------|--------------------|-----------|
| | Unknown Alkane | 1.06 | 75 | J |
| 78-78-4 | Butane, 2-methyl- | 1.29 | 450 | JN |
| 109-66-0 | Pentane | 1.42 | 140 | JN |
| 513-35-9 | 2-Butene, 2-methyl- | 1.60 | 80 | JN |
| 107-83-5 | Pentane, 2-methyl- | 1.97 | 340 | JN |
| 96-14-0 | Pentane, 3-methyl- | 2.14 | 110 | JN |
| | Unknown Alkane | 2.33 | 44 | J |
| 563-79-1 | 2-Butene, 2,3-dimethyl- | 2.53 | 45 | JN |
| 616-12-6 | 2-Pentene, 3-methyl-, (E)- | 2.61 | 95 | JN |
| 625-27-4 | 2-Pentene, 2-methyl- | 2.76 | 44 | JN |
| 96-37-7 | Cyclopentane, methyl- | 2.86 | 270 | JN |
| 110-82-7 | Cyclohexane | 3.54 | 230 | JN |
| | Unknown Cycloalkane | 4.06 | 72 | J |
| | Unknown Cycloalkane | 4.14 | 45 | J |
| 108-87 - 2 | Cyclohexane, methyl- | 4.89 | 170 | JN |
| 7459-71-4 | 3,5-Dimethylcyclopentene | 5.59 | 42 | JN |
| 98-82-8 | Benzene, (1-methylethyl)- | 9.69 | 56 | JN |
| 103-65-1 | Benzene, propyl- | 10.11 | 110 | JN |
| 622-96-8 | Benzene, 1-ethyl-4-methyl- | 10.22 | 170 | JN |
| 611-14-3 | Benzene, 1-ethyl-2-methyl- | 10.49 | 220 | JN |
| 95-63-6 | Benzene, 1,2,4-trimethyl- | 10.66 | 770 | JN |
| 526-73-8 | Benzene, 1,2,3-trimethyl- | 11.02 | 95 | JN |
| 496-11-7 | Indane | 11.12 | 130 | JN |
| | Unknown alkylbenzene | 11.20 | 41 | J |
| 1758-88-9 | Benzene, 2-ethyl-1,4-dimethyl- | 11.44 | 65 | JN |
| 527-84-4 | Benzene, 1-methyl-2-(1-methylethyl)- | 11.51 | 71 | JN |
| 767 - 58-8 | Indan, 1-methyl- | 11.57 | 58 | JN |
| 95-93-2 | Benzene, 1,2,4,5-tetramethyl- | 11.85 | 56 | JN |
| 874-35-1 | 1H-Indene, 2,3-dihydro-5-methyl- | 12.00 | 43 | JN |
| | Unknown Alkylbenzene | 12.13 | 97 | J |

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

Client Sample ID: NI-MW-7-11

| Client Matrix: | Water | Date Received: | 02/06/2009 0950 |
|----------------|------------|----------------|-----------------|
| Lab Sample ID: | 220-7988-6 | Date Sampled: | 02/02/2009 1215 |

| Method:8260BAnalysis Batch: 220-24318Preparation:5030BDilution:1.0Date Analyzed:02/12/2009 1715Date Prepared:02/12/2009 1715 | Instrument ID: HP 6890/5973 GC/MS
Lab File ID: V1699.D
Initial Weight/Volume: 5 mL
Final Weight/Volume: 5 mL |
|--|---|
|--|---|

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|------------------------------|---------------|-----------|--------------|--------------|
| Acetone | 10 | U | 1.0 | 10 |
| Benzene | 5.0 | U | 0.74 | 5.0 |
| Bromodichloromethane | 5.0 | U | 0.48 | 5.0 |
| Bromoform | 5.0 | U | 0.46 | 5.0 |
| Bromomethane | 5.0 | U | 2.1 | 5.0 |
| Methyl Ethyl Ketone | 10 | U | 1.1 | 10 |
| Carbon disulfide | 5.0 | U | 0.90 | 5.0 |
| Carbon tetrachloride | 5.0 | U | 1.1 | 5.0 |
| Chlorobenzene | 5.0 | U | 0.72 | 5.0 |
| Chloroethane | 5.0 | Ų | 1.1 | 5.0 |
| Chloroform | 5.0 | U | 0.67 | 5.0 |
| Chloromethane | 5.0 | U | 1.1 | 5.0 |
| Dibromochloromethane | 5.0 | U | 0.55 | 5.0 |
| 1,1-Dichloroethane | 5.0 | U | 1.0 | 5.0 |
| 1,2-Dichloroethane | 5.0 | U | 0.72 | 5.0 |
| 1,1-Dichloroethene | 5.0 | U | 0.83 | 5.0 |
| 1,2-Dichloropropane | 5.0 | U | 0.71 | 5.0 |
| cis-1,3-Dichloropropene | 5.0 | U | 0.28 | 5.0 |
| trans-1,3-Dichloropropene | 5.0 | U | 0.57 | 5.0 |
| Ethylbenzene | 5.0 | U | 0.87 | 5.0 |
| 2-Hexanone | 10 | U | 1.1 | 10 |
| Methylene Chloride | 5.0 | U | 0.78 | 5.0 |
| methyl isobutyl ketone | 10 | U | 0.38 | 10 |
| Styrene | 5.0 | U * | 0.64 | 5.0 |
| 1,1,2,2-Tetrachloroethane | 5.0 | U | 0.81 | 5.0 |
| Tetrachloroethene | 5.0 | U | 0.81 | 5.0 |
| Toluene | 5.0 | U | 0.72 | 5.0 |
| 1,1,1-Trichloroethane | 5.0 | U | 0.69 | 5.0 |
| 1,1,2-Trichloroethane | 5.0 | U | 0.65 | 5.0 |
| Trichloroethene | 5.0 | U | 0.62 | 5.0 |
| Vinyl chloride | 5.0 | U | 0.99 | 5.0 |
| Xylenes, Total | 5.0 | U | 2.3 | 5.0 |
| cis-1,2-Dichloroethene | 5.0 | U | 0.99 | 5.0 |
| trans-1,2-Dichloroethene | 5.0 | U | 0.76 | 5.0 |
| Surrogate | %Rec | | Accen | tance Limits |
| 1,2-Dichloroethane-d4 (Surr) | 109 | | 53 - | |
| 4-Bromofluorobenzene | 97 | | 73 - | |
| Dibromofluoromethane | 119 | | 73 -
54 - | |
| Toluene-d8 (Surr) | 115 | | 63 - | |

| Client: Joseph C. Lu Eng & Land Surveying PC | | | Job Number: | | |
|--|---|------------------------------|-------------|--|----------------------------|
| Client Sample ID: NI-MW-7-11 | | | | Sdg Nu | mber: 220-7988 |
| Lab Sample ID:
Client Matrix: | 220-7988-6
Water | | | | 2/2009 1215
5/2009 0950 |
| | | 8260B Volatile Organic Compo | unds (GC | :/MS) | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 8260B
5030B
1.0
02/12/2009 1715
02/12/2009 1715 | Analysis Batch: 220-2431 | 8 | Lab File ID: V1699.D
Initial Weight/Volume: | 5973 GC/MS
5 mL
5 mL |
| Tentatively Ident | tified Compounds | Number TIC's Found: | 0 | | |
| Cas Number | Analyte | | RT | Est. Result (ug/L) | Qualifier |
| | Tentatively Identified | d Compound | | None | |

Client: Joseph C. Lu Eng & Land Surveying PC

NI-MW-8-12

220-7988-7

Water

Client Sample ID:

Lab Sample ID:

Client Matrix:

Job Number: 220-7988-1 Sdg Number: 220-7988

Date Sampled: 02/02/2009 1215 Date Received: 02/06/2009 0950

| Method:
Preparation: | 8260B
5030B | Analysis Batch: 220-24318 | Instrument ID:
Lab File ID: | HP 6890/5973 GC/MS
V1698.D |
|-------------------------|-----------------|---------------------------|--------------------------------|-------------------------------|
| Dilution: | 1.0 | | Initial Weight/Vol | ume: 5 mL |
| Date Analyzed: | 02/12/2009 1648 | | Final Weight/Volu | ume: 5 mL |
| Date Prepared: | 02/12/2009 1648 | | | |

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|------------------------------|---------------|-----------|-------|--------------|
| Acetone | 10 | U | 1.0 | 10 |
| Benzene | 7.4 | | 0.74 | 5.0 |
| Bromodichloromethane | 5.0 | U | 0.48 | 5.0 |
| Bromoform | 5.0 | U | 0.46 | 5.0 |
| Bromomethane | 5.0 | U | 2.1 | 5.0 |
| Methyl Ethyl Ketone | 10 | U | 1.1 | 10 |
| Carbon disulfide | 5.0 | U | 0.90 | 5.0 |
| Carbon tetrachloride | 5.0 | U | 1.1 | 5.0 |
| Chlorobenzene | 5.0 | U | 0.72 | 5.0 |
| Chloroethane | 5.0 | U | 1.1 | 5.0 |
| Chloroform | 5.0 | U | 0.67 | 5.0 |
| Chloromethane | 5.0 | U | 1.1 | 5.0 |
| Dibromochloromethane | 5.0 | U | 0.55 | 5.0 |
| 1,1-Dichloroethane | 5.0 | U | 1.0 | 5.0 |
| 1,2-Dichloroethane | 0.84 | J | 0.72 | 5.0 |
| 1,1-Dichloroethene | 5.0 | U | 0.83 | 5.0 |
| 1,2-Dichloropropane | 5.0 | U | 0.71 | 5.0 |
| cis-1,3-Dichloropropene | 5.0 | U | 0.28 | 5.0 |
| trans-1,3-Dichloropropene | 5.0 | U | 0.57 | 5.0 |
| Ethylbenzene | 5.0 | J | 0.87 | 5.0 |
| 2-Hexanone | 10 | U | 1.1 | 10 |
| Methylene Chloride | 5.0 | U | 0.78 | 5.0 |
| methyl isobutyl ketone | 10 | U | 0.38 | 10 |
| Styrene | 5.0 | U * | 0.64 | 5.0 |
| 1,1,2,2-Tetrachloroethane | 5.0 | U | 0.81 | 5.0 |
| Tetrachloroethene | 5.0 | U | 0.81 | 5.0 |
| Toluene | 5.0 | U | 0.72 | 5.0 |
| 1,1,1-Trichloroethane | 5.0 | U | 0.69 | 5.0 |
| 1,1,2-Trichloroethane | 5.0 | U | 0.65 | 5.0 |
| Trichloroethene | 5.0 | U | 0.62 | 5.0 |
| Vinyl chloride | 5.0 | U | 0.99 | 5.0 |
| Xylenes, Total | 5.0 | U | 2.3 | 5.0 |
| cis-1,2-Dichloroethene | 5.0 | U | 0.99 | 5.0 |
| trans-1,2-Dichloroethene | 5.0 | U | 0.76 | 5.0 |
| Surrogate | %Rec | | Accep | tance Limits |
| 1,2-Dichloroethane-d4 (Surr) | 105 | | 53 - | |
| 4-Bromofluorobenzene | 98 | | 73 - | |
| Dibromofluoromethane | 112 | | 54 - | |
| Toluene-d8 (Surr) | 115 | | 63 - | |

Job Number: 220-7988-1 Sdg Number: 220-7988

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-8-12

 Lab Sample ID:
 220-7988-7
 Date Sampled:
 02/02/2009
 1215

 Client Matrix:
 Water
 Date Received:
 02/06/2009
 0950

| Method:
Preparation:
Dilution: | 8260B
5030B
1.0 | Analysis Batch: 220-24318 | Instrument ID:
Lab File ID: | V1698 | |
|--------------------------------------|------------------------------------|---------------------------|---------------------------------------|-------|--------------|
| Date Analyzed:
Date Prepared: | 02/12/2009 1648
02/12/2009 1648 | | Initial Weight/Vo
Final Weight/Vol | | 5 mL
5 mL |

| Tentatively Identified Compounds | | Number TIC's Found: | 8 | | |
|----------------------------------|-----------------------|---------------------|-------|--------------------|-----------|
| Cas Number | Analyte | | RT | Est. Result (ug/L) | Qualifier |
| | Unknown Alkane | | 0.99 | 3.1 | J |
| 78-78-4 | Butane, 2-methyl- | | 1.30 | 21 | JN |
| 79-29-8 | Butane, 2,3-dimethyl- | | 1.96 | 11 | JN |
| 96-37-7 | Cyclopentane, methyl- | | 2.86 | 3.9 | JN |
| 110-82-7 | Cyclohexane | | 3.54 | 4.4 | JN |
| 6863-58-7 | Di-sec-butyl ether | | 6.75 | 4.9 | JN |
| | Unknown | | 6.88 | 4.6 | 1 |
| 496-11-7 | Indane | | 11.12 | 7.1 | JN |

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

Client Sample ID: NI-MW-10-11

| Lab Sample ID:
Client Matrix: | 220-7988-8
Water | • | 02/02/2009 1420
02/06/2009 0950 |
|----------------------------------|---------------------|---|------------------------------------|
| | | | |

| Method: | 8260B | Analysis Batch: 220-24318 | Instrument ID: HP 6890/5973 GC/MS |
|----------------------------------|------------------------------------|---------------------------|-----------------------------------|
| Preparation: | 5030B | | Lab File ID: V1700.D |
| Dilution: | 1.0 | | Initial Weight/Volume: 5 mL |
| Date Analyzed:
Date Prepared: | 02/12/2009 1741
02/12/2009 1741 | | Final Weight/Volume: 5 mL |

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|------------------------------|---------------|-----------------|-------|---------------|
| Acetone | 10 | U | 1.0 | 10 |
| Benzene | 5.0 | U | 0.74 | 5.0 |
| Bromodichloromethane | 5.0 | U | 0.48 | 5.0 |
| Bromoform | 5.0 | U | 0.46 | 5.0 |
| Bromomethane | 5.0 | U | 2.1 | 5.0 |
| Methyl Ethyl Ketone | 10 | U | 1.1 | 10 |
| Carbon disulfide | 5.0 | U | 0.90 | 5.0 |
| Carbon tetrachloride | 5.0 | U | 1.1 | 5.0 |
| Chlorobenzene | 5.0 | U | 0.72 | 5.0 |
| Chloroethane | 5.0 | U | 1.1 | 5.0 |
| Chloroform | 5.0 | U | 0.67 | 5.0 |
| Chloromethane | 5.0 | U | 1.1 | 5.0 |
| Dibromochloromethane | 5.0 | U | 0.55 | 5.0 |
| 1,1-Dichloroethane | 5.0 | U | 1.0 | 5.0 |
| 1,2-Dichloroethane | 5.0 | U | 0.72 | 5.0 |
| 1,1-Dichloroethene | 5.0 | U | 0.83 | 5.0 |
| 1,2-Dichloropropane | 5.0 | U | 0.71 | 5.0 |
| cis-1,3-Dichloropropene | 5.0 | U | 0.28 | 5.0 |
| trans-1,3-Dichloropropene | 5.0 | U | 0.57 | 5.0 |
| Ethylbenzene | 5.0 | U | 0.87 | 5.0 |
| 2-Hexanone | 10 | U | 1.1 | 10 |
| Methylene Chloride | 5.0 | U | 0.78 | 5.0 |
| methyl isobutyl ketone | 10 | U | 0.38 | 10 |
| Styrene | 5.0 | U * | 0.64 | 5.0 |
| 1,1,2,2-Tetrachloroethane | 5.0 | U | 0.81 | 5.0 |
| Tetrachloroethene | 5.0 | U | 0.81 | 5.0 |
| Toluene | 5.0 | U | 0.72 | 5.0 |
| 1,1,1-Trichloroethane | 5.0 | U | 0.69 | 5.0 |
| 1,1,2-Trichloroethane | 5.0 | U | 0.65 | 5.0 |
| Trichloroethene | 5.0 | U | 0.62 | 5.0 |
| Vinyl chloride | 5.0 | U | 0.99 | 5.0 |
| Xylenes, Total | 5.0 | U | 2.3 | 5.0 |
| cis-1,2-Dichloroethene | 5.0 | U | 0.99 | 5.0 |
| trans-1,2-Dichloroethene | 5.0 | U | 0.76 | 5.0 |
| Surrogate | %Rec | | Accep | otance Limits |
| 1,2-Dichloroethane-d4 (Surr) | 96 | 53 - 125 | | |
| 4-Bromofluorobenzene | 78 | | 73 - | |
| Dibromofluoromethane | 104 | 54 - 137 | | |
| Toluene-d8 (Surr) | 98 | | 63 - | |

| Client: Joseph C. Lu Eng & Land Surveying PC | | | Job Number: 220- | | |
|--|---|------------------------------|------------------|--|------------|
| Client Sample ID | : NI-MW-10-11 | | | Sdg Number: | 220-79 |
| Lab Sample ID:
Client Matrix: | 220-7988-8
Water | | | Date Sampled: 02/02/2009 1
Date Received: 02/06/2009 0 | 420
950 |
| | 8 | 3260B Volatile Organic Compo | unds (GC | :/MS) | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 8260B
5030B
1.0
02/12/2009 1741
02/12/2009 1741 | Analysis Batch: 220-2431 | 8 | Instrument ID: HP 6890/5973 GC
Lab File ID: V1700.D
Initial Weight/Volume: 5 mL
Final Weight/Volume: 5 mL | C/MS |
| Tentatively Ident | ified Compounds | Number TIC's Found: | 0 | | |
| Cas Number | Analyte | | RT | Est. Result (ug/L) Qu | ualifier |
| | Tentatively Identified | Compound | | None | |

Client: Joseph C. Lu Éng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

Client Sample ID: NI-MW-11-10

| Lab Sample ID:
Client Matrix: | 220-7988-9
Water | | • | 02/02/2009 1438
02/06/2009 0950 |
|----------------------------------|---------------------|--|---|------------------------------------|
| | | 8260B Volatile Organic Compounds (GC/MS) | | |

| Preparation: 5
Dilution: 1
Date Analyzed: 0 | 8260B
5030B
1.0
02/12/2009 1807
02/12/2009 1807 | Analysis Batch: 220-24318 | Instrument ID:
Lab File ID:
Initial Weight/Vol
Final Weight/Vol | |
|---|---|---------------------------|--|--|
|---|---|---------------------------|--|--|

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|------------------------------|---------------|-----------|-------------|---------------|
| Acetone | 10 | U | 1.0 | 10 |
| Benzene | 5.0 | U | 0.74 | 5.0 |
| Bromodichloromethane | 5.0 | U | 0.48 | 5.0 |
| Bromoform | 5.0 | U | 0.46 | 5.0 |
| Bromomethane | 5.0 | U | 2.1 | 5.0 |
| Methyl Ethyl Ketone | 10 | U | 1.1 | 10 |
| Carbon disulfide | 5.0 | U | 0.90 | 5.0 |
| Carbon tetrachloride | 5.0 | U | 1.1 | 5.0 |
| Chlorobenzene | 5.0 | U | 0.72 | 5.0 |
| Chloroethane | 5.0 | U | 1.1 | 5.0 |
| Chloroform | 5.0 | U | 0.67 | 5.0 |
| Chloromethane | 5.0 | U | 1.1 | 5.0 |
| Dibromochloromethane | 5.0 | Ū | 0.55 | 5.0 |
| 1,1-Dichloroethane | 5.0 | Ŭ | 1.0 | 5.0 |
| 1,2-Dichloroethane | 5.0 | Ŭ | 0.72 | 5.0 |
| 1,1-Dichloroethene | 5.0 | Ű | 0.83 | 5.0 |
| 1,2-Dichloropropane | 5.0 | Ŭ | 0.71 | 5.0 |
| cis-1,3-Dichloropropene | 5.0 | Ŭ | 0.28 | 5.0 |
| trans-1,3-Dichloropropene | 5.0 | Ŭ | 0.57 | 5.0 |
| Ethylbenzene | 5.0 | Ŭ | 0.87 | 5.0 |
| 2-Hexanone | 10 | Ŭ | 1.1 | 10 |
| Methylene Chloride | 5.0 | Ŭ | 0.78 | 5.0 |
| methyl isobutyl ketone | 10 | Ŭ | 0.38 | 10 |
| Styrene | 5.0 | Ŭ * | 0.64 | 5.0 |
| 1,1,2,2-Tetrachloroethane | 5.0 | υ | 0.81 | 5.0 |
| Tetrachloroethene | 5.0 | Ŭ | 0.81 | 5.0 |
| Toluene | 5.0 | Ű | 0.72 | 5.0 |
| 1,1,1-Trichloroethane | 5.0 | Ŭ | 0.69 | 5.0 |
| 1,1,2-Trichloroethane | 5.0 | Ű | 0.65 | 5.0 |
| Trichloroethene | 5.0 | U | 0.62 | 5.0 |
| Vinyl chloride | 5.0 | U | 0.99 | |
| Xylenes, Total | 5.0 | U | 2.3 | 5.0 |
| cis-1,2-Dichloroethene | 5.0 | U | 2.3
0.99 | 5.0 |
| trans-1,2-Dichloroethene | 5.0 | U | | 5.0 |
| | 3.0 | U | 0.76 | 5.0 |
| Surrogate | %Rec | | Accep | otance Limits |
| 1,2-Dichloroethane-d4 (Surr) | 97 | | 53 - | |
| 4-Bromofluorobenzene | 78 | 73 - 127 | | |
| Dibromofluoromethane | 105 | 54 - 137 | | |
| Toluene-d8 (Surr) 96 63 - 1 | | | | |
| | | | 00 ** | |

| Client: Joseph C. Lu Eng & Land Surveying PC | | | Job Number: 220-798 | | |
|--|---|------------------------------|---------------------|---|----------|
| Client Sample ID |): NI-MW-11-10 | | | Sdg Number: | 220-79 |
| Lab Sample ID:
Client Matrix: | 220-7988-9
Water | | | Date Sampled: 02/02/2009
Date Received: 02/06/2009 | |
| | Ę | 3260B Volatile Organic Compo | ounds (GC | C/MS) | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 8260B
5030B
1.0
02/12/2009 1807
02/12/2009 1807 | Analysis Batch: 220-2431 | 8 | Instrument ID: HP 6890/5973 G
Lab File ID: V1701 D
Initial Weight/Volume: 5 mL
Final Weight/Volume: 5 mL | C/MS |
| Tentatively Ident | tified Compounds | Number TIC's Found: | 0 | | |
| Cas Number | Analyte | | RT | Est. Result (ug/L) Q | ualifier |
| | Tentatively Identified | Compound | | None | |

Job Number: 220-7988-1 Sdg Number: 220-7988

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-12-12

| Lab Sample ID: | 220-7988-10 | - | 02/03/2009 1325 |
|----------------|-------------|---|-----------------|
| Client Matrix: | Water | | 02/06/2009 0950 |
| | | | |

| Method:
Preparation: | 8260B
5030B | Analysis Batch: 220-24318 | Instrument ID:
Lab File ID: | HP 6890/5973 GC/MS
V1702.D |
|-----------------------------|------------------------|---------------------------|---------------------------------------|-------------------------------|
| Dilution:
Date Analyzed: | 1.0
02/12/2009 1834 | | Initial Weight/Vo
Final Weight/Vol | = |
| Date Prepared: | 02/12/2009 1834 | | | |

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|------------------------------|---------------|-----------|-------|--------------|
| Acetone | 10 | U | 1.0 | 10 |
| Benzene | 5.0 | U | 0.74 | 5.0 |
| Bromodichloromethane | 5.0 | U | 0.48 | 5.0 |
| Bromoform | 5.0 | U | 0.46 | 5.0 |
| Bromomethane | 5.0 | U | 2.1 | 5.0 |
| Methyl Ethyl Ketone | 10 | U | 1.1 | 10 |
| Carbon disulfide | 5.0 | U | 0.90 | 5.0 |
| Carbon tetrachloride | 5.0 | U | 1.1 | 5.0 |
| Chlorobenzene | 5.0 | U | 0.72 | 5.0 |
| Chloroethane | 5.0 | U | 1.1 | 5.0 |
| Chloroform | 5.0 | U | 0.67 | 5.0 |
| Chloromethane | 5.0 | U | 1.1 | 5.0 |
| Dibromochloromethane | 5.0 | U | 0.55 | 5.0 |
| 1,1-Dichloroethane | 5.0 | U | 1.0 | 5.0 |
| 1,2-Dichloroethane | 5.0 | Ū | 0.72 | 5.0 |
| 1,1-Dichloroethene | 5.0 | Ŭ | 0.83 | 5.0 |
| 1,2-Dichloropropane | 5.0 | Ū | 0.71 | 5.0 |
| cis-1,3-Dichloropropene | 5.0 | Ū | 0.28 | 5.0 |
| trans-1,3-Dichloropropene | 5.0 | Ŭ | 0.57 | 5.0 |
| Ethylbenzene | 5.0 | Ŭ | 0.87 | 5.0 |
| 2-Hexanone | 10 | U | 1.1 | 10 |
| Methylene Chloride | 5.0 | Ŭ | 0.78 | 5.0 |
| methyl isobutyl ketone | 10 | U | 0.38 | 10 |
| Styrene | 5.0 | U * | 0.64 | 5.0 |
| 1,1,2,2-Tetrachloroethane | 5.0 | U | 0.81 | 5.0 |
| Tetrachloroethene | 5.0 | U | 0.81 | 5.0 |
| Toluene | 5.0 | U | 0.72 | 5.0 |
| 1,1,1-Trichloroethane | 5.0 | U | 0.69 | 5.0 |
| 1,1,2-Trichloroethane | 5.0 | U | 0.65 | 5.0 |
| Trichloroethene | 5.0 | U | 0.62 | 5.0 |
| Vinyl chloride | 5.0 | U | 0.99 | 5.0 |
| Xylenes, Total | 5.0 | U | 2.3 | 5.0 |
| cis-1,2-Dichloroethene | 5.0 | Ŭ | 0.99 | 5.0 |
| trans-1,2-Dichloroethene | 5.0 | Ŭ | 0.76 | 5.0 |
| Surrogate | %Rec | | Accen | tance Limits |
| 1,2-Dichloroethane-d4 (Surr) | 98 | 53 - 125 | | |
| 4-Bromofluorobenzene | 77 | 73 - 127 | | |
| Dibromofluoromethane | 106 | 54 - 137 | | |
| Toluene-d8 (Surr) | 96 | 63 - 121 | | |
| | | | - 05 | 121 |

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-12-12

Lab Sample ID:220-7988-10Client Matrix:Water

Job Number: 220-7988-1 Sdg Number: 220-7988

Date Sampled:02/03/20091325Date Received:02/06/20090950

| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 8260B
5030B
1.0
02/12/2009 1834
02/12/2009 1834 | Analysis Batch: 220-24318 | Instrument ID:
Lab File ID:
Initial Weight/Vo
Final Weight/Vo | |
|--|---|---------------------------|--|--|
|--|---|---------------------------|--|--|

| Tentatively Ident | ified Compounds | Number TIC's Found: | 1 | | |
|-------------------|-----------------------|---------------------|------|--------------------|-----------|
| Cas Number | Analyte | | RT | Est. Result (ug/L) | Qualifier |
| 75-71-8 | Dichlorodifluorometha | ine | 0.93 | 22 | JN |

Job Number: 220-7988-1 Sdg Number: 220-7988

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: **TRIP BLANK**

| Lab Sample ID: | 220-7988-11TB | 02/02/2009 0000 |
|----------------|---------------|-----------------|
| Client Matrix: | Water | 02/06/2009 0950 |
| | | |

8260B Volatile Organic Compounds (GC/MS) Instrument ID: HP 6890/5973 GC/MS 8260B Analysis Batch: 220-24254

| Method: | 8260B | Analysis Batch: 220-24254 | Instrument ID: | HP 689 | 30/59 | 973 G |
|----------------|-----------------|---------------------------|-------------------|--------|-------|-------|
| Preparation: | 5030B | | Lab File ID: | V1666 | .D | |
| Dilution: | 2.0 | | Initial Weight/Vo | lume: | 5 | mL |
| Date Analyzed: | 02/11/2009 2032 | | Final Weight/Vo | lume: | 5 | mL |
| Date Prepared: | 02/11/2009 2032 | | 0 | | | |
| | | | | | | |

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|------------------------------|---------------|-----------|--------------|---------------|
| Acetone | 20 | U * | 2.1 | 20 |
| Benzene | 10 | U | 1.5 | 10 |
| Bromodichloromethane | 10 | U | 0.96 | 10 |
| Bromoform | 10 | U | 0.92 | 10 |
| Bromomethane | 10 | U | 4.2 | 10 |
| Methyl Ethyl Ketone | 20 | U | 2.2 | 20 |
| Carbon disulfide | 10 | U | 1.8 | 10 |
| Carbon tetrachloride | 10 | U | 2.1 | 10 |
| Chlorobenzene | 10 | U | 1.4 | 10 |
| Chloroethane | 10 | U | 2.1 | 10 |
| Chloroform | 10 | U | 1.3 | 10 |
| Chloromethane | 10 | U | 2.2 | 10 |
| Dibromochloromethane | 10 | U | 1.1 | 10 |
| 1,1-Dichloroethane | 10 | U | 2.1 | 10 |
| 1,2-Dichloroethane | 10 | U | 1.4 | 10 |
| 1,1-Dichloroethene | 10 | U | 1.7 | 10 |
| 1,2-Dichloropropane | 10 | U | 1.4 | 10 |
| cis-1,3-Dichloropropene | 10 | U | 0.56 | 10 |
| trans-1,3-Dichloropropene | 10 | U | 1.1 | 10 |
| Ethylbenzene | 10 | U | 1.7 | 10 |
| 2-Hexanone | 20 | U | 2.2 | 20 |
| Methylene Chloride | 10 | U | 1.6 | 10 |
| methyl isobutyl ketone | 20 | U | 0.76 | 20 |
| Styrene | 10 | U * | 1.3 | 10 |
| 1,1,2,2-Tetrachloroethane | 10 | U | 1.6 | 10 |
| Tetrachloroethene | 10 | U | 1.6 | 10 |
| Toluene | 10 | U | 1.4 | 10 |
| 1,1,1-Trichloroethane | 10 | U | 1.4 | 10 |
| 1,1,2-Trichloroethane | 10 | U | 1.3 | 10 |
| Trichloroethene | 10 | U | 1.2 | 10 |
| Vinyl chloride | 10 | U | 2.0 | 10 |
| Xylenes, Total | 10 | U | 4.5 | 10 |
| cis-1,2-Dichloroethene | 10 | Ŭ | 2.0 | 10 |
| trans-1,2-Dichloroethene | 10 | U | 1.5 | 10 |
| Surrogate | %Rec | | Accer | otance Limits |
| 1,2-Dichloroethane-d4 (Surr) | 111 | | 53 - | |
| 4-Bromofluorobenzene | 86 | | 73 - | |
| Dibromofluoromethane | 117 | | 73 -
54 - | |
| Toluene-d8 (Surr) | 107 | | - 54
- 63 | |
| | 101 | | 03 - | 121 |

| | | | | Analytical Data |
|--|---|-----------------------------|-----------|---|
| Client: Joseph | C. Lu Eng & Land Surv | veying PC | | Job Number: 220-7988-1 |
| Client Sample ID | : TRIP BLANK | | | Sdg Number: 220-7988 |
| Lab Sample ID:
Client Matrix: | 220-7988-11TB
Water | | | Date Sampled: 02/02/2009 0000
Date Received: 02/06/2009 0950 |
| | 82 | 260B Volatile Organic Compo | ounds (GC | C/MS) |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 8260B
5030B
2.0
02/11/2009 2032
02/11/2009 2032 | Analysis Batch: 220-2425 | 4 | Instrument ID: HP 6890/5973 GC/MS
Lab File ID: V1666.D
Initial Weight/Volume: 5 mL
Final Weight/Volume: 5 mL |
| Tentatively Ident | lified Compounds | Number TIC's Found: | 0 | |
| Cas Number | Analyte | | RT | Est. Result (ug/L) Qualifier |
| | Tentatively Identified (| Compound | | None |

Client: Joseph C. Lu Eng & Land Surveying PC

NI-MW-3-14

Job Number: 220-7988-1 Sdg Number: 220-7988

Lab Sample ID: 220-7988-1 Client Matrix: Water

Client Sample ID:

Date Sampled: 02/03/2009 1145 Date Received: 02/06/2009 0950

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

| Method: | 8270C | Analysis Batch: 220-24267 | Instrument ID: | HP 689 | |
|---|---|---------------------------|--|---------|---------------------------|
| Preparation: | 3510C | Prep Batch: 220-24165 | Lab File ID: | A3925.[| |
| Dilution:
Date Analyzed:
Date Prepared: | 1.0
02/11/2009 1952
02/09/2009 0959 | | Initial Weight/Vo
Final Weight/Vo
Injection Volume | lume: | 1000 mL
1 mL
1.0 uL |

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|------------------------------|---------------|-----------|------|-----------|
| Phenol | 4.0 | U | 0.29 | 4.0 |
| Bis(2-chloroethyl)ether | 4.0 | U | 1.0 | 4.0 |
| 2-Chlorophenol | 4.0 | U * | 0.61 | 4.0 |
| 1,3-Dichlorobenzene | 4.0 | U | 0.43 | 4.0 |
| 1,4-Dichlorobenzene | 4.0 | U | 0.51 | 4.0 |
| Benzyl alcohol | 4.0 | U | 0.39 | 4.0 |
| 1,2-Dichlorobenzene | 4.0 | U | 0.48 | 4.0 |
| 2,2'-oxybis[1-chloropropane] | 4.0 | U | 0.71 | 4.0 |
| 2-Methylphenol | 4.0 | U | 0.60 | 4.0 |
| Hexachloroethane | 4.0 | U | 0.52 | 4.0 |
| N-Nitrosodi-n-propylamine | 4.0 | U | 0.41 | 4.0 |
| 4-Methylphenol | 4.0 | U | 0.39 | 4.0 |
| Nitrobenzene | 4.0 | U | 0.73 | 4.0 |
| Isophorone | 4.0 | Ŭ | 0.38 | 4.0 |
| 2-Nitrophenol | 4.0 | Ū * | 0.51 | 4.0 |
| 2,4-Dimethylphenol | 4.0 | Ŭ | 0.50 | 4.0 |
| Bis(2-chloroethoxy)methane | 4.0 | Ŭ | 1.1 | 4.0 |
| 2,4-Dichlorophenol | 4.0 | Ū * | 0.55 | 4.0 |
| 1,2,4-Trichlorobenzene | 4.0 | Ŭ | 0.65 | 4.0 |
| Naphthalene | 4.0 | Ŭ | 0.42 | 4.0 |
| 4-Chloroaniline | 4.0 | Ŭ | 0.67 | 4.0 |
| Hexachlorobutadiene | 4.0 | Ŭ | 0.86 | 4.0 |
| 4-Chloro-3-methylphenol | 5.0 | Ŭ | 1.3 | 5.0 |
| 2-Methylnaphthalene | 4.0 | Ŭ | 0.47 | 4.0 |
| Hexachlorocyclopentadiene | 4.0 | Ŭ | 0.75 | 4.0 |
| 2,4,6-Trichlorophenol | 4.0 | Ŭ* | 0.49 | 4.0 |
| 2,4,5-Trichlorophenol | 10 | Ŭ * | 0.54 | 10 |
| 2-Chloronaphthalene | 4.0 | Ŭ | 0.49 | 4.0 |
| 2-Nitroaniline | 4.0 | Ű | 0.53 | 4.0 |
| Acenaphthylene | 4.0 | Ű | 0.33 | 4.0 |
| Dimethyl phthalate | 4.0 | Ű | 0.33 | 4.0 |
| 2,6-Dinitrotoluene | 4.0 | U | 0.33 | 4.0 |
| Acenaphthene | 4.0 | U | 0.42 | |
| 3-Nitroaniline | 4.0 | U | 0.37 | 4.0 |
| 2,4-Dinitrophenol | 25 | U * | 1.1 | 4.0
25 |
| Dibenzofuran | 4.0 | U | 0.39 | |
| 2,4-Dinitrotoluene | 4.0 | U * | | 4.0 |
| 4-Nitrophenol | 10 | U * | 0.30 | 4.0 |
| Fluorene | 4.0 | | 0.38 | 10 |
| 4-Chlorophenyl phenyl ether | | U
U | 0.48 | 4.0 |
| Diethyl phthalate | 4.0 | | 0.49 | 4.0 |
| 4-Nitroaniline | 4.0 | U | 0.42 | 4.0 |
| | 4.0 | U | 0.28 | 4.0 |
| 4,6-Dinitro-2-methylphenol | 25 | U * | 0.37 | 25 |
| N-Nitrosodiphenylamine | 4.0 | U | 0.35 | 4.0 |

TestAmerica Connecticut

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-3-14

Job Number: 220-7988-1 Sdg Number: 220-7988

| Lab Sample ID: | 220-7988-1 | 02/03/2009 1145 |
|----------------|------------|-----------------|
| Client Matrix: | Water | 02/06/2009 0950 |
| | | |

| Method: | 8270C | Analysis Batch: 220-24267 | Instrument ID: HP 689 | 90/5975 |
|----------------|-----------------|---------------------------|------------------------|---------|
| Preparation: | 3510C | Prep Batch: 220-24165 | Lab File ID: A3925 | .D |
| Dilution: | 1.0 | | Initial Weight/Volume: | 1000 mL |
| Date Analyzed: | 02/11/2009 1952 | | Final Weight/Volume: | 1 mL |
| Date Prepared: | 02/09/2009 0959 | | Injection Volume: | 1.0 uL |

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|-----------------------------|---------------|-----------|----------|-----------|
| 4-Bromophenyl phenyl ether | 4.0 | U | 0.49 | 4.0 |
| Hexachlorobenzene | 4.0 | U | 0.48 | 4.0 |
| Pentachlorophenol | 25 | U * | 1.2 | 25 |
| Phenanthrene | 4.0 | U | 0.39 | 4.0 |
| Carbazole | 4.0 | U | 0.35 | 4.0 |
| Anthracene | 4.0 | U | 0.42 | 4.0 |
| Di-n-butyl phthalate | 4.0 | U | 0.49 | 4.0 |
| Fluoranthene | 4.0 | U | 0.42 | 4.0 |
| Pyrene | 4.0 | U | 0.42 | 4.0 |
| Butyl benzyl phthalate | 4.0 | U | 0.48 | 4.0 |
| 3,3'-Dichlorobenzidine | 4.0 | U | 0.66 | 4.0 |
| Benzo[a]anthracene | 4.0 | U | 0.37 | 4.0 |
| Chrysene | 4.0 | U | 0.40 | 4.0 |
| Bis(2-ethylhexyl) phthalate | 4.0 | U | 0.50 | 4.0 |
| Di-n-octyl phthalate | 4.0 | U | 0.45 | 4.0 |
| Benzo[b]fluoranthene | 4.0 | U | 0.38 | 4.0 |
| Benzo[k]fluoranthene | 4.0 | U | 0.43 | 4.0 |
| Benzo[a]pyrene | 4.0 | U | 0.37 | 4.0 |
| Indeno[1,2,3-cd]pyrene | 4.0 | U | 0.41 | 4.0 |
| Dibenz(a,h)anthracene | 4.0 | U | 0.32 | 4.0 |
| Benzo[g,h,i]perylene | 4.0 | U | 0.29 | 4.0 |
| Surrogate | %Rec | | Acceptan | ce Limits |
| 2-Fluorophenol | 38 | | 21 - 97 | |
| Phenol-d5 | 25 | | 18 - 97 | |
| Nitrobenzene-d5 | 64 | | 38 - 113 | } |
| 2-Fluorobiphenyl | 63 | | 43 - 116 | |
| 2,4,6-Tribromophenol | 73 | | 29 - 126 | |
| Terphenyl-d14 | 76 | | 10 - 119 | |

| Client: Joseph | lient: Joseph C. Lu Eng & Land Surveying PC | | | | mber: 220-79 |
|--|---|--|---------|---|------------------------------|
| Client Sample ID | NI-MW-3-14 | | | Sagi | Number: 220- |
| Lab Sample ID:
Client Matrix: | 220-7988-1
Water | | | • | 03/2009 1145
06/2009 0950 |
| | 8270C Semivolatile Co | ompounds by Gas Chromatogr | aphy/Ma | ss Spectrometry (GC/MS) | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 8270C
3510C
1.0
02/11/2009 1952
02/09/2009 0959 | Analysis Batch: 220-24267
Prep Batch: 220-24165 | | Instrument ID: HP 689
Lab File ID: A3925.
Initial Weight/Volume:
Final Weight/Volume:
Injection Volume: | |
| Tentatively Ident | fied Compounds | Number TIC's Found: | 0 | | |
| Cas Number | Analyte | | RT | Est. Result (ug/L) | Qualifie |
| | Tentatively Identified | Compound | | None | |

Job Number: 220-7988-1

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-4-14

Sdg Number: 220-7988 Date Sampled: 02/03/2009 1100

Lab Sample ID: 220-7988-2 Client Matrix: Water

Date Sampled:02/03/20091100Date Received:02/06/20090950

| Preparation:
Dilution:
Date Analyzed: | 8270C
3510C
1.0
02/11/2009 2018
02/09/2009 0959 | Analysis Batch: 220-24267
Prep Batch: 220-24165 | Instrument ID:
Lab File ID:
Initial Weight/Vo
Final Weight/Vol
Injection Volume | ume: | • • • • |
|---|---|--|---|------|---------|
|---|---|--|---|------|---------|

| Analyte | Result (ug/L) | Qualifier | MDL | RL | |
|------------------------------|---------------|-----------|------|------------|--|
| Phenol | 4.0 | U | 0.29 | 4.0 | |
| Bis(2-chloroethyl)ether | 4.0 | U | 1.0 | 4.0 | |
| 2-Chlorophenol | 4.0 | U * | 0.61 | 4.0 | |
| 1,3-Dichlorobenzene | 4.0 | U | 0.43 | 4.0 | |
| 1,4-Dichlorobenzene | 4.0 | U | 0.51 | 4.0 | |
| Benzyl alcohol | 4.0 | U | 0.39 | 4.0 | |
| 1,2-Dichlorobenzene | 4.0 | U | 0.48 | 4.0 | |
| 2,2'-oxybis[1-chloropropane] | 4.0 | U | 0.71 | 4.0 | |
| 2-Methylphenol | 4.0 | U | 0.60 | 4.0 | |
| Hexachloroethane | 4.0 | U | 0.52 | 4.0 | |
| N-Nitrosodi-n-propylamine | 4.0 | U | 0.41 | 4.0 | |
| 4-Methylphenol | 4.0 | Ŭ | 0.39 | 4.0 | |
| Nitrobenzene | 4.0 | บ | 0.73 | 4.0 | |
| Isophorone | 4.0 | Ŭ | 0.38 | 4.0 | |
| 2-Nitrophenol | 4.0 | Ŭ * | 0.51 | 4.0 | |
| 2,4-Dimethylphenol | 4.0 | Ŭ | 0.50 | 4.0 | |
| Bis(2-chloroethoxy)methane | 4.0 | Ŭ | 1.1 | 4.0 | |
| 2,4-Dichlorophenol | 4.0 | U * | 0.55 | 4.0 | |
| 1,2,4-Trichlorobenzene | 4.0 | Ŭ | 0.65 | 4.0 | |
| Naphthalene | 2.2 | J | 0.42 | 4.0 | |
| 4-Chloroaniline | 4.0 | Ŭ | 0.42 | 4.0 | |
| Hexachlorobutadiene | 4.0 | Ŭ | 0.86 | 4.0 | |
| 4-Chloro-3-methylphenol | 5.0 | U | 1.3 | 4.0
5.0 | |
| 2-Methylnaphthalene | 4.0 | Ŭ | 0.47 | 4.0 | |
| Hexachlorocyclopentadiene | 4.0 | Ŭ | 0.47 | 4.0 | |
| 2,4,6-Trichlorophenol | 4.0 | U * | 0.49 | 4.0 | |
| 2,4,5-Trichlorophenol | 10 | U * | 0.49 | | |
| 2-Chloronaphthalene | 4.0 | U | 0.34 | 10 | |
| 2-Nitroaniline | 4.0 | U | 0.49 | 4.0 | |
| Acenaphthylene | 4.0 | U | | 4.0 | |
| Dimethyl phthalate | 4.0 | U | 0.47 | 4.0 | |
| 2,6-Dinitrotoluene | 4.0 | U | 0.33 | 4.0 | |
| Acenaphthene | 4.0 | U | 0.42 | 4.0 | |
| 3-Nitroaniline | 4.0 | U | 0.38 | 4.0 | |
| 2,4-Dinitrophenol | 25 | U * | 0.37 | 4.0 | |
| Dibenzofuran | 4.0 | U ··· | 1.1 | 25 | |
| 2,4-Dinitrotoluene | 4.0 | U * | 0.39 | 4.0 | |
| 4-Nitrophenol | | | 0.30 | 4.0 | |
| Fluorene | 10 | U * | 0.38 | 10 | |
| 4-Chlorophenyl phenyl ether | 4.0 | U | 0.48 | 4.0 | |
| Diethyl phthalate | 4.0 | U | 0.49 | 4.0 | |
| 4-Nitroaniline | 4.0 | U | 0.42 | 4.0 | |
| 4,6-Dinitro-2-methylphenol | 4.0 | U | 0.28 | 4.0 | |
| | 25 | U * | 0.37 | 25 | |
| N-Nitrosodiphenylamine | 4.0 | U | 0.35 | 4.0 | |
| | | | | | |

Client: Joseph C. Lu Eng & Land Surveying PC

NI-MW-4-14

Client Sample ID:

Job Number: 220-7988-1 Sdg Number: 220-7988

| Lab Sample ID: | 220-7988-2 | • | 02/03/2009 1 100 |
|----------------|------------------------|---|-------------------------|
| Client Matrix: | Water | | 02/06/2009 0950 |
| | 8270C Semivolatile Com | pounds by Gas Chromatography/Mass Spectrometry (GC/ | MS) |

| Method: | 8270C | Analysis Batch: 220-24267 | Instrument ID: HP 689 | 0/5975 |
|----------------|-----------------|---------------------------|------------------------|---------|
| Preparation: | 3510C | Prep Batch: 220-24165 | Lab File ID: A3926. | D |
| Dilution: | 1.0 | | Initial Weight/Volume: | 1000 mL |
| Date Analyzed: | 02/11/2009 2018 | | Final Weight/Volume: | 1 mL |
| Date Prepared: | 02/09/2009 0959 | | Injection Volume: | 1.0 uL |
| | | | | |

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|-----------------------------|---------------|-----------|--------|-------------|
| 4-Bromophenyl phenyl ether | 4.0 | U | 0.49 | 4.0 |
| Hexachlorobenzene | 4.0 | U | 0.48 | 4.0 |
| Pentachlorophenol | 25 | U * | 1.2 | 25 |
| Phenanthrene | 4.0 | U | 0.39 | 4.0 |
| Carbazole | 4.0 | U | 0.35 | 4.0 |
| Anthracene | 4.0 | U | 0.42 | 4.0 |
| Di-n-butyl phthalate | 4.0 | U | 0.49 | 4.0 |
| Fluoranthene | 4.0 | U | 0.42 | 4.0 |
| Pyrene | 4.0 | U | 0.42 | 4.0 |
| Butyl benzyl phthalate | 4.0 | U | 0.48 | 4.0 |
| 3,3'-Dichlorobenzidine | 4.0 | U | 0.66 | 4.0 |
| Benzo[a]anthracene | 4.0 | U | 0.37 | 4.0 |
| Chrysene | 4.0 | U | 0.40 | 4.0 |
| Bis(2-ethylhexyl) phthalate | 4.0 | U | 0.50 | 4.0 |
| Di-n-octyl phthalate | 4.0 | U | 0.45 | 4.0 |
| Benzo[b]fluoranthene | 4.0 | U | 0.38 | 4.0 |
| Benzo[k]fluoranthene | 4.0 | U | 0.43 | 4.0 |
| Benzo[a]pyrene | 4.0 | U | 0.37 | 4.0 |
| Indeno[1,2,3-cd]pyrene | 4.0 | U | 0.41 | 4.0 |
| Dibenz(a,h)anthracene | 4.0 | U | 0.32 | 4.0 |
| Benzo[g,h,i]perylene | 4.0 | U | 0.29 | 4.0 |
| Surrogate | %Rec | | Accept | ance Limits |
| 2-Fluorophenol | 33 | | 21 - 9 | 97 |
| Phenol-d5 | 23 | | 18 - 9 | 97 |
| Nitrobenzene-d5 | 56 | | 38 - 1 | 113 |
| 2-Fluorobiphenyl | 57 | | 43 - 1 | |
| 2,4,6-Tribromophenol | 73 | | 29 - 1 | |
| Terphenyl-d14 | 73 | | 10 - 1 | |

Client: Joseph C. Lu Eng & Land Surveying PC

Water

Client Sample ID: NI-MW-4-14 Lab Sample ID: 220-7988-2

Client Matrix:

Job Number: 220-7988-1 Sdg Number: 220-7988

Date Sampled: 02/03/2009 1100 Date Received: 02/06/2009 0950

| Method: | 8270C | Analysis Batch: 220-24267 | Instrument ID: HP 68 | 90/5975 |
|----------------|-----------------|---------------------------|------------------------|---------|
| Preparation: | 3510C | Prep Batch: 220-24165 | Lab File ID: A3926 | .D |
| Dilution: | 1.0 | | Initial Weight/Volume: | 1000 mL |
| Date Analyzed: | 02/11/2009 2018 | | Final Weight/Volume: | 1 mL |
| Date Prepared: | 02/09/2009 0959 | | Injection Volume: | 1.0 uL |

| Tentatively Ider | tified Compounds Number TIC's Found: | 13 | | |
|-------------------|--|------|--------------------|-----------|
| Cas Number | Analyte | RT | Est. Result (ug/L) | Qualifier |
| | Unknown | 2.71 | 33 | J |
| 496 - 11-7 | Indane | 3.09 | 34 | JN |
| | Unknown | 3.24 | 5.9 | J |
| | Unknown | 3.64 | 7.7 | J |
| 934-10-1 | 3-Phenylbut-1-ene | 3.85 | 4.8 | JN |
| | Unknown | 4.01 | 2.6 | J |
| 17059-48-2 | 1H-Indene, 2,3-dihydro-1,6-dimethyl- | 4.24 | 4.3 | JN |
| 7782-24-3 | Benzeneacetic acid, .alphamethyl-, (S) | 5.07 | 2.2 | JN |
| | Unknown Organic Acid | 5.11 | 3.0 | J |
| 499-06-9 | Benzoic acid, 3,5-dimethyl- | 5.41 | 3.8 | JN |
| | Unknown | 5.64 | 2.1 | J |
| | Unknown | 6.25 | 4.9 | J |
| 10544-50-0 | Cyclic octaatomic sulfur | 8.88 | 13 | JN |

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

Client Sample ID: NI-MW-4-14D

| Lab Sample ID: | 220-7988-3 | • | 02/03/2009 1110 |
|----------------|---------------------------------|---|-----------------|
| Client Matrix: | Water | | 02/06/2009 0950 |
| | 8270C Semivolatile Compounds by | / Gas Chromatography/Mass Spectrometry (GC/ | MS) |

Method: 8270C Analysis Batch: 220-24267 Instrument ID: HP 6890/5975 Preparation: 3510C Prep Batch: 220-24165 Lab File ID: A3927.D Dilution: 1.0 Initial Weight/Volume: 1000 mL Date Analyzed: 02/11/2009 2044 Final Weight/Volume: 1 mL Date Prepared: 02/09/2009 0959 Injection Volume: 1.0 uL

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|------------------------------|---------------|-----------|------|-------|
| Phenol | 4.0 | U | 0.29 | · 4.0 |
| Bis(2-chloroethyl)ether | 4.0 | U | 1.0 | 4.0 |
| 2-Chlorophenol | 4.0 | U * | 0.61 | 4.0 |
| 1,3-Dichlorobenzene | 4.0 | U | 0.43 | 4.0 |
| 1,4-Dichlorobenzene | 4.0 | U | 0.51 | 4.0 |
| Benzyl alcohol | 4.0 | U | 0.39 | 4.0 |
| 1,2-Dichlorobenzene | 4.0 | U | 0.48 | 4.0 |
| 2,2'-oxybis[1-chloropropane] | 4.0 | U | 0.71 | 4.0 |
| 2-Methylphenol | 4.0 | U | 0.60 | 4.0 |
| Hexachloroethane | 4.0 | U | 0.52 | 4.0 |
| N-Nitrosodi-n-propylamine | 4.0 | U | 0.41 | 4.0 |
| 4-Methylphenol | 4.0 | Ū | 0.39 | 4.0 |
| Nitrobenzene | 4.0 | Ū | 0.73 | 4.0 |
| Isophorone | 4.0 | Ū | 0.38 | 4.0 |
| 2-Nitrophenol | 4.0 | Ū * | 0.51 | 4.0 |
| 2,4-Dimethylphenol | 4.0 | Ŭ | 0.50 | 4.0 |
| Bis(2-chloroethoxy)methane | 4.0 | Ŭ | 1.1 | 4.0 |
| 2,4-Dichlorophenol | 4.0 | U * | 0.55 | 4.0 |
| 1,2,4-Trichlorobenzene | 4.0 | Ŭ | 0.65 | 4.0 |
| Naphthalene | 1.7 | J | 0.42 | 4.0 |
| 4-Chloroaniline | 4.0 | U
U | 0.42 | |
| Hexachlorobutadiene | 4.0 | U | 0.86 | 4.0 |
| 4-Chloro-3-methylphenol | 5.0 | U | 1.3 | 4.0 |
| 2-Methylnaphthalene | 4.0 | U | 0.47 | 5.0 |
| Hexachlorocyclopentadiene | 4.0 | U | | 4.0 |
| 2,4,6-Trichlorophenol | 4.0 | U * | 0.75 | 4.0 |
| 2,4,5-Trichlorophenol | 10 | U * | 0.49 | 4.0 |
| 2-Chloronaphthalene | 4.0 | U | 0.54 | 10 |
| 2-Nitroaniline | 4.0 | U | 0.49 | 4.0 |
| Acenaphthylene | 4.0 | | 0.53 | 4.0 |
| Dimethyl phthalate | 4.0 | U | 0.47 | 4.0 |
| 2,6-Dinitrotoluene | | U | 0.33 | 4.0 |
| Acenaphthene | 4.0 | U | 0.42 | 4.0 |
| 3-Nitroaniline | 4.0 | U | 0.38 | 4.0 |
| 2,4-Dinitrophenol | 4.0 | U | 0.37 | 4.0 |
| | 25 | U * | 1.1 | 25 |
| Dibenzofuran | 4.0 | U | 0.39 | 4.0 |
| 2,4-Dinitrotoluene | 4.0 | U * | 0.30 | 4.0 |
| 4-Nitrophenol | 10 | U * | 0.38 | 10 |
| Fluorene | 4.0 | U | 0.48 | 4.0 |
| 4-Chlorophenyl phenyl ether | 4.0 | U | 0.49 | 4.0 |
| Diethyl phthalate | 4.0 | U | 0.42 | 4.0 |
| 4-Nitroaniline | 4.0 | U | 0.28 | 4.0 |
| 4,6-Dinitro-2-methylphenol | 25 | U * | 0.37 | 25 |
| N-Nitrosodiphenylamine | 4.0 | U | 0.35 | 4.0 |
| | | | | |

TestAmerica Connecticut

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

| Client Sample ID: | NI-MW-4-14D |
|-------------------|-------------|
|-------------------|-------------|

| Lab Sample ID: | 220-7988-3 | • | 02/03/2009 1110 |
|----------------|------------|---|-----------------|
| Client Matrix: | Water | | 02/06/2009 0950 |
| | | | |

| Method: | 8270C | Analysis Batch: 220-24267 | Instrument ID: | HP 6890/5975 |
|---|---|---------------------------|--|--------------|
| Preparation: | 3510C | Prep Batch: 220-24165 | Lab File ID: | A3927.D |
| Dilution:
Date Analyzed:
Date Prepared: | 1.0
02/11/2009 2044
02/09/2009 0959 | | Initial Weight/Vol
Final Weight/Volu
Injection Volume: | ume: 1 mL |

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|-----------------------------|---------------|-----------|-------|--------------|
| 4-Bromophenyl phenyl ether | 4.0 | U | 0.49 | 4.0 |
| Hexachlorobenzene | 4.0 | U | 0.48 | 4.0 |
| Pentachlorophenol | 25 | U * | 1.2 | 25 |
| Phenanthrene | 4.0 | U | 0.39 | 4.0 |
| Carbazole | 4.0 | U | 0.35 | 4.0 |
| Anthracene | 4.0 | U | 0.42 | 4.0 |
| Di-n-butyl phthalate | 4.0 | U | 0.49 | 4.0 |
| Fluoranthene | 4.0 | U | 0.42 | 4.0 |
| Pyrene | 4.0 | U | 0.42 | 4.0 |
| Butyl benzyl phthalate | 4.0 | U | 0.48 | 4.0 |
| 3,3'-Dichlorobenzidine | 4.0 | U | 0.66 | 4.0 |
| Benzo[a]anthracene | 4.0 | U | 0.37 | 4.0 |
| Chrysene | 4.0 | U | 0.40 | 4.0 |
| Bis(2-ethylhexyl) phthalate | 4.0 | U | 0.50 | 4.0 |
| Di-n-octyl phthalate | 4.0 | U | 0.45 | 4.0 |
| Benzo[b]fluoranthene | 4.0 | U | 0.38 | 4.0 |
| Benzo[k]fluoranthene | 4.0 | U | 0.43 | 4.0 |
| Benzo[a]pyrene | 4.0 | U | 0.37 | 4.0 |
| Indeno[1,2,3-cd]pyrene | 4.0 | U | 0.41 | 4.0 |
| Dibenz(a,h)anthracene | 4.0 | U | 0.32 | 4.0 |
| Benzo[g,h,i]perylene | 4.0 | U | 0.29 | 4.0 |
| Surrogate | %Rec | | Accep | tance Limits |
| 2-Fluorophenol | 33 | ****** | 21 - | |
| Phenol-d5 | 22 | | 18 - | ••• |
| Nitrobenzene-d5 | 58 | | 38 - | |
| 2-Fluorobiphenyl | 58 | | 43 - | |
| 2,4,6-Tribromophenol | 76 | | 29 - | |
| Terphenyl-d14 | 78 | | 10 - | |

Client: Joseph C. Lu Eng & Land Surveying PC

NI-MW-4-14D

Client Sample ID:

Job Number: 220-7988-1 Sdg Number: 220-7988

| Lab Sample ID: | 220-7988-3 | • | 02/03/2009 1110 |
|----------------|------------|---|-----------------|
| Client Matrix: | Water | | 02/06/2009 0950 |
| | | | |

| Method:
Preparation: | 8270C
3510C | Analysis Batch: 220-24267
Prep Batch: 220-24165 | Instrument ID: HP 68
Lab File ID: A3927 | 90/5975
7.D |
|-----------------------------|------------------------|--|--|----------------|
| Dilution:
Date Analyzed: | 1.0
02/11/2009 2044 | | Initial Weight/Volume: | 1000 mL |
| Date Prepared: | 02/09/2009 0959 | | Final Weight/Volume:
Injection Volume: | 1 mL
1.0 uL |

| Tentatively Iden | ntified Compounds | Number TIC's Found: | 11 | | |
|------------------|------------------------|---------------------|------|--------------------|-----------|
| Cas Number | Analyte | | RT | Est. Result (ug/L) | Qualifier |
| | Unknown | | 2.71 | 32 | J |
| 496-11-7 | Indane | | 3.09 | 32 | JN |
| | Unknown | | 3.63 | 7.2 | J |
| 824-22-6 | 1H-Indene, 2,3-dihydi | o-4-methyl- | 3.85 | 5.0 | JN |
| 119-64-2 | Naphthalene, 1,2,3,4- | tetrahydro- | 4.01 | 2.3 | JN |
| 17059-48-2 | 1H-Indene, 2,3-dihydi | o-1,6-dimethyl- | 4.24 | 4.5 | JN |
| 90-12-0 | Naphthalene, 1-methy | /1- | 5.01 | 5.0 | JN |
| | Unknown | | 5.11 | 2.4 | J |
| 499-06-9 | Benzoic acid, 3,5-dim | ethyl- | 5.40 | 3.3 | ĴN |
| | Unknown | | 6.25 | 4.0 | J |
| 10544-50-0 | Cyclic octaatomic sulf | ūr | 8.88 | 13 | JN |

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

| Client Sample ID: | NI-MW-5b-11 |
|-------------------|-------------|
|-------------------|-------------|

| Lab Sample ID:
Client Matrix: | 220-7988-4
Water | Date Sampled:
Date Received: |
 |
|----------------------------------|---------------------|---------------------------------|------|
| | | | |

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 8270C
3510C
4.0
02/12/2009 1504
02/09/2009 0959 | Analysis Batch: 220-24289
Prep Batch: 220-24165 | Instrument ID:
Lab File ID:
Initial Weight/Vo
Final Weight/Vol
Injection Volume | ume: | |
|--|---|--|---|------|--|
|--|---|--|---|------|--|

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|------------------------------|---------------|-----------|-----|-----|
| Phenol | 16 | U | 1.2 | 16 |
| Bis(2-chloroethyl)ether | 16 | U | 4.2 | 16 |
| 2-Chlorophenol | 16 | U * | 2.4 | 16 |
| 1,3-Dichlorobenzene | 16 | U | 1.7 | 16 |
| 1,4-Dichlorobenzene | 16 | U | 2.0 | 16 |
| Benzyl alcohol | 16 | U | 1.6 | 16 |
| 1,2-Dichlorobenzene | 16 | U | 1.9 | 16 |
| 2,2'-oxybis[1-chloropropane] | 16 | U | 2.8 | 16 |
| 2-Methylphenol | 14 | J | 2.4 | 16 |
| Hexachloroethane | 16 | U | 2.1 | 16 |
| N-Nitrosodi-n-propylamine | 16 | U | 1.6 | 16 |
| 4-Methylphenol | 81 | | 1.6 | 16 |
| Nitrobenzene | 16 | U | 2.9 | 16 |
| Isophorone | 16 | U | 1.5 | 16 |
| 2-Nitrophenol | 16 | U * | 2.0 | 16 |
| 2,4-Dimethylphenol | 16 | U | 2.0 | 16 |
| Bis(2-chloroethoxy)methane | 16 | U | 4.5 | 16 |
| 2,4-Dichlorophenol | 16 | U * | 2.2 | 16 |
| 1,2,4-Trichlorobenzene | 16 | U | 2.6 | 16 |
| Naphthalene | 130 | | 1.7 | 16 |
| 4-Chloroaniline | 16 | U | 2.7 | 16 |
| Hexachlorobutadiene | 16 | U | 3.4 | 16 |
| 4-Chloro-3-methylphenol | 20 | U | 5.4 | 20 |
| 2-Methylnaphthalene | 27 | - | 1.9 | 16 |
| Hexachlorocyclopentadiene | 16 | U | 3.0 | 16 |
| 2,4,6-Trichlorophenol | 16 | Ū* | 2.0 | 16 |
| 2,4,5-Trichlorophenol | 40 | Ū * | 2.2 | 40 |
| 2-Chloronaphthalene | 16 | Ū | 2.0 | 16 |
| 2-Nitroaniline | 16 | Ŭ | 2.1 | 16 |
| Acenaphthylene | 16 | Ŭ | 1.9 | 16 |
| Dimethyl phthalate | 16 | Ŭ | 1.3 | 16 |
| 2,6-Dinitrotoluene | 16 | Ū | 1.7 | 16 |
| Acenaphthene | 16 | Ŭ | 1.5 | 16 |
| 3-Nitroaniline | 16 | Ŭ | 1.5 | 16 |
| 2,4-Dinitrophenol | 100 | Ŭ* | 4.5 | 100 |
| Dibenzofuran | 16 | Ŭ | 1.6 | 16 |
| 2,4-Dinitrotoluene | 16 | Ŭ * | 1.2 | 16 |
| 4-Nitrophenol | 40 | Ŭ * | 1.5 | 40 |
| Fluorene | 16 | Ŭ | 1.9 | 16 |
| 4-Chlorophenyl phenyl ether | 16 | Ŭ | 2.0 | 16 |
| Diethyl phthalate | 16 | U | 1.7 | 16 |
| 4-Nitroaniline | 16 | Ŭ | 1.7 | 16 |
| 4,6-Dinitro-2-methylphenol | 100 | U * | 1.1 | 100 |
| N-Nitrosodiphenylamine | 16 | U | 1.5 | 16 |
| | | 0 | 1.4 | 10 |

TestAmerica Connecticut

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

| Client Sample ID: | NI-MW-5b-11 | | ody Number. | 220-1 |
|----------------------------------|---------------------|--------------------------------|-------------|-------|
| Lab Sample ID:
Client Matrix: | 220-7988-4
Water | Date Sampled:
Date Received | | |

| Method: | 8270C | Analysis Batch: 220-24289 | Instrument ID: HP 689 | 90/5975 |
|----------------|-----------------|---------------------------|------------------------|---------|
| Preparation: | 3510C | Prep Batch: 220-24165 | Lab File ID: A3941 | D |
| Dilution: | 4.0 | | Initial Weight/Volume: | 1000 mL |
| Date Analyzed: | 02/12/2009 1504 | | Final Weight/Volume: | 1 mL |
| Date Prepared: | 02/09/2009 0959 | | Injection Volume: | 1.0 uL |

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|-----------------------------|---------------|-----------|----------|-----------|
| 4-Bromophenyl phenyl ether | 16 | U | 2.0 | 16 |
| Hexachlorobenzene | 16 | U | 1.9 | 16 |
| Pentachlorophenol | 100 | U * | 4.8 | 100 |
| Phenanthrene | 16 | U | 1.6 | 16 |
| Carbazole | 16 | U | 1.4 | 16 |
| Anthracene | 16 | U | 1.7 | 16 |
| Di-n-butyl phthalate | 16 | U | 2.0 | 16 |
| Fluoranthene | 16 | U | 1.7 | 16 |
| Pyrene | 16 | U | 1.7 | 16 |
| Butyl benzyl phthalate | 16 | U | 1.9 | 16 |
| 3,3'-Dichlorobenzidine | 16 | U | 2.6 | 16 |
| Benzo[a]anthracene | 16 | U | 1.5 | 16 |
| Chrysene | 16 | U | 1.6 | 16 |
| Bis(2-ethylhexyl) phthalate | 16 | U | 2.0 | 16 |
| Di-n-octyl phthalate | 16 | U | 1.8 | 16 |
| Benzo[b]fluoranthene | 16 | U | 1.5 | 16 |
| Benzo[k]fluoranthene | 16 | U | 1.7 | 16 |
| Benzo[a]pyrene | 16 | U | 1.5 | 16 |
| Indeno[1,2,3-cd]pyrene | 16 | U | 1.6 | 16 |
| Dibenz(a,h)anthracene | 16 | U | 1.3 | 16 |
| Benzo[g,h,i]perylene | 16 | U | 1.2 | 16 |
| Surrogate | %Rec | | Acceptan | ce Limits |
| 2-Fluorophenol | 15 | * | 21 - 97 | |
| Phenol-d5 | 13 | * | 18 - 97 | |
| Nitrobenzene-d5 | 37 | * | 38 - 113 | |
| 2-Fluorobiphenyl | 39 | * | 43 - 116 | |
| 2,4,6-Tribromophenol | 43 | | 29 - 126 | |
| Terphenyl-d14 | 50 | | 10 - 119 | |
| • • | | | 10 110 | |

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-5b-11

Lab Sample ID: 220-7988-4 Client Matrix: Water Job Number: 220-7988-1 Sdg Number: 220-7988

Date Sampled:02/02/20091700Date Received:02/06/20090950

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

| Method:
Preparation:
Dilution: | 8270C
3510C
4.0 | Analysis Batch: 220-24289
Prep Batch: 220-24165 | Instrument ID: HP 6890/5975
Lab File ID: A3941.D
Initial Weight/Volume: 1000 m | | |
|--------------------------------------|-----------------------|--|--|--------|--|
| Date Analyzed: | 02/12/2009 1504 | | Final Weight/Volume: | 1 mL | |
| Date Prepared: | 02/09/2009 0959 | | Injection Volume: | 1.0 uL | |

Tentatively Identified Compounds

Number TIC's Found: 16

| Cas Number | Analyte | RT | Est. Result (ug/L) | Qualifier |
|--------------|---------------------------------------|------|--------------------|-----------|
| | Unknown | 2.51 | 160 | J |
| 824-90-8 | 1-Phenyl-1-butene | 3.84 | 29 | JN |
| 526-75-0 | Phenol, 2,3-dimethyl- | 3.86 | 33 | JN |
| | Unknown | 4.37 | 15 | J |
| | Unknown | 4.43 | 21 | J |
| | Unknown Organic Acid | 4.48 | 43 | J |
| 99-04-7 | Benzoic acid, 3-methyl- | 4.58 | 17 | JN |
| 83-33-0 | 1H-Inden-1-one, 2,3-dihydro- | 4.77 | 190 | JN |
| 17496-14-9 | 1H-Inden-1-one, 2,3-dihydro-2-methyl- | 4.93 | 28 | JN |
| 1000191-75-0 | 1-Methylindan-2-one | 5.01 | 74 | JN |
| 1000129-68-1 | Benzoic acid, 2,5-dimethyl- | 5.07 | 18 | JN |
| | Unknown | 5.11 | 18 | J |
| 87-41-2 | 1(3H)-Isobenzofuranone | 5.18 | 46 | JN |
| 499-06-9 | Benzoic acid, 3,5-dimethyl- | 5.39 | 13 | JN |
| | Unknown | 5.62 | 20 | J |
| 1000217-15-9 | 4-Methylphthalaldehyde | 5.86 | 17 | JN |

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

Client Sample ID: NI-MW-7-11

| Lab Sample ID: | 220-7988-6 | | 02/02/2009 1215 | | | |
|--|------------|--|-----------------|--|--|--|
| Client Matrix: | Water | | 02/06/2009 0950 | | | |
| 8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) | | | | | | |

Method: 8270C Analysis Batch: 220-24227 Instrument ID: HP 6890/5975 Preparation: 3510C Prep Batch: 220-24156 Lab File ID: A3886.D Dilution: 1.0 Initial Weight/Volume: 1000 mL Date Analyzed: 02/10/2009 1915 Final Weight/Volume: 1 mL Date Prepared: 02/09/2009 0825 Injection Volume: 1.0 uL

| Analyte | Result (ug/L) | Qualifier | MDL | RL | |
|------------------------------|---------------|-----------|--------------|------------|--|
| Phenol | 4.0 | U | 0.29 | 4.0 | |
| Bis(2-chloroethyl)ether | 4.0 | U | 1.0 | 4.0 | |
| 2-Chlorophenol | 4.0 | U | 0.61 | 4.0 | |
| 1,3-Dichlorobenzene | 4.0 | U | 0.43 | 4.0 | |
| 1,4-Dichlorobenzene | 4.0 | U | 0.51 | 4.0 | |
| Benzyl alcohol | 4.0 | U | 0.39 | 4.0 | |
| 1,2-Dichlorobenzene | 4.0 | U | 0.48 | 4.0 | |
| 2,2'-oxybis[1-chloropropane] | 4.0 | U | 0.71 | 4.0 | |
| 2-Methylphenol | 4.0 | U | 0.60 | 4.0 | |
| Hexachloroethane | 4.0 | U | 0.52 | 4.0 | |
| N-Nitrosodi-n-propylamine | 4.0 | U | 0.41 | 4.0 | |
| 4-Methylphenol | 4.0 | Ŭ | 0.39 | 4.0 | |
| Nitrobenzene | 4.0 | U | 0.73 | 4.0 | |
| Isophorone | 4.0 | Ŭ | 0.38 | 4.0 | |
| 2-Nitrophenol | 4.0 | Ũ | 0.51 | 4.0 | |
| 2,4-Dimethylphenol | 4.0 | Ŭ | 0.50 | 4.0 | |
| Bis(2-chloroethoxy)methane | 4.0 | Ŭ | 1.1 | 4.0 | |
| 2,4-Dichlorophenol | 4.0 | Ŭ | 0.55 | 4.0 | |
| 1,2,4-Trichlorobenzene | 4.0 | U | 0.65 | 4.0 | |
| Naphthalene | 4.0 | U | 0.42 | 4.0 | |
| 4-Chloroaniline | 4.0 | Ŭ | 0.42 | 4.0 | |
| Hexachlorobutadiene | 4.0 | Ŭ | 0.86 | 4.0 | |
| 4-Chloro-3-methylphenol | 5.0 | Ŭ | 1.3 | 4.0
5.0 | |
| 2-Methylnaphthalene | 4.0 | U | 0.47 | | |
| Hexachlorocyclopentadiene | 4.0 | U | | 4.0 | |
| 2,4,6-Trichlorophenol | 4.0 | U | 0.75
0.49 | 4.0 | |
| 2,4,5-Trichlorophenol | 4.0 | U | | 4.0 | |
| 2-Chloronaphthalene | 4.0 | U | 0.54 | 10 | |
| 2-Nitroaniline | 4.0 | U | 0.49 | 4.0 | |
| Acenaphthylene | 4.0 | | 0.53 | 4.0 | |
| Dimethyl phthalate | 4.0 | U | 0.47 | 4.0 | |
| 2,6-Dinitrotoluene | | U | 0.33 | 4.0 | |
| Acenaphthene | 4.0 | U | 0.42 | 4.0 | |
| 3-Nitroaniline | 4.0 | U | 0.38 | 4.0 | |
| | 4.0 | U | 0.37 | 4.0 | |
| 2,4-Dinitrophenol | 25 | U | 1.1 | 25 | |
| Dibenzofuran | 4.0 | U | 0.39 | 4.0 | |
| 2,4-Dinitrotoluene | 4.0 | U | 0.30 | 4.0 | |
| 4-Nitrophenol | 10 | U | 0.38 | 10 | |
| Fluorene | 4.0 | U | 0.48 | 4.0 | |
| 4-Chlorophenyl phenyl ether | 4.0 | U | 0.49 | 4.0 | |
| Diethyl phthalate | 4.0 | U | 0.42 | 4.0 | |
| 4-Nitroaniline | 4.0 | U | 0.28 | 4.0 | |
| 4,6-Dinitro-2-methylphenol | 25 | U | 0.37 | 25 | |
| N-Nitrosodiphenylamine | 4.0 | U | 0.35 | 4.0 | |
| To the side Or an address | | | | | |

TestAmerica Connecticut

Client: Joseph C. Lu Eng & Land Surveying PC

220-7988-6

02/09/2009 0825

Water

Client Sample ID: NI-MW-7-11

Lab Sample ID:

Date Prepared:

Client Matrix:

Job Number: 220-7988-1 Sdg Number: 220-7988

1.0 uL

Date Sampled: 02/02/2009 1215 Date Received: 02/06/2009 0950

Injection Volume:

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) Method: 8270C Analysis Batch: 220-24227 Instrument ID: HP 6890/5975 Preparation: 3510C Prep Batch: 220-24156 Lab File ID: A3886.D Dilution: 1.0 Initial Weight/Volume: 1000 mL Date Analyzed: 02/10/2009 1915 Final Weight/Volume: 1 mL

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|-----------------------------|---------------|-----------|------------|-----------|
| 4-Bromophenyl phenyl ether | 4.0 | U | 0.49 | 4.0 |
| Hexachlorobenzene | 4.0 | U | 0.48 | 4.0 |
| Pentachlorophenol | 25 | U | 1.2 | 25 |
| Phenanthrene | 4.0 | U | 0.39 | 4.0 |
| Carbazole | 4.0 | U | 0.35 | 4.0 |
| Anthracene | 4.0 | U | 0.42 | 4.0 |
| Di-n-butyl phthalate | 4.0 | U | 0.49 | 4.0 |
| Fluoranthene | 4.0 | U | 0.42 | 4.0 |
| Pyrene | 4.0 | U | 0.42 | 4.0 |
| Butyl benzyl phthalate | 4.0 | U | 0.48 | 4.0 |
| 3,3'-Dichlorobenzidine | 4.0 | U | 0.66 | 4.0 |
| Benzo[a]anthracene | 4.0 | U | 0.37 | 4.0 |
| Chrysene | 4.0 | U | 0.40 | 4.0 |
| Bis(2-ethylhexyl) phthalate | 4.0 | U | 0.50 | 4.0 |
| Di-n-octyl phthalate | 4.0 | U | 0.45 | 4.0 |
| Benzo[b]fluoranthene | 4.0 | U | 0.38 | 4.0 |
| Benzo[k]fluoranthene | 4.0 | U | 0.43 | 4.0 |
| Benzo[a]pyrene | 4.0 | U | 0.37 | 4.0 |
| Indeno[1,2,3-cd]pyrene | 4.0 | U | 0.41 | 4.0 |
| Dibenz(a,h)anthracene | 4.0 | U | 0.32 | 4.0 |
| Benzo[g,h,i]perylene | 4.0 | U | 0.29 | 4.0 |
| Surrogate | %Rec | | Acceptance | ce Limits |
| 2-Fluorophenol | 37 | | 21 - 97 | ******* |
| Phenol-d5 | 24 | | 18 - 97 | |
| Nitrobenzene-d5 | 67 | | 38 - 113 | |
| 2-Fluorobiphenyl | 62 | 43 - 116 | | |
| 2,4,6-Tribromophenol | 74 | | 29 - 126 | |
| Terphenyl-d14 | 70 | | 10 - 119 | |

| Client: Joseph C. Lu Eng & Land Surveying PC | | | Job Number: 220-798 | | |
|--|------------------------|----------------------------|---------------------|-------------------------|------------------------------|
| Client Sample ID |): NI-MW-7-11 | | | Sagin | lumber: 220-79 |
| Lab Sample ID:
Client Matrix: | 220-7988-6
Water | | | | 02/2009 1215
06/2009 0950 |
| | 8270C Semivolatile Co | ompounds by Gas Chromatogr | aphy/Ma | ss Spectrometry (GC/MS) | |
| Method: | 8270C | Analysis Batch: 220-24227 | 7 | Instrument ID: HP 689 | 0/5975 |
| Preparation: | 3510C | Prep Batch: 220-24156 | | Lab File ID: A3886.[|) |
| Dilution: | 1.0 | | | Initial Weight/Volume: | 1000 mL |
| Date Analyzed: | 02/10/2009 1915 | | | Final Weight/Volume: | 1 mL |
| Date Prepared: | 02/09/2009 0825 | | | Injection Volume: | 1.0 uL |
| Tentatively Ident | tified Compounds | Number TIC's Found: | 0 | | |
| Cas Number | Analyte | | RT | Est. Result (ug/L) | Qualifier |
| | Tentatively Identified | Compound | *********** | None | |

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-8-12

Job Number: 220-7988-1 Sdg Number: 220-7988

| Lab Sample ID: | 220-7988-7 | 02/02/2009 1215 |
|----------------|------------|-----------------|
| Client Matrix: | Water | 02/06/2009 0950 |
| | | |

| Method:
Preparation:
Dilution: | 8270C
3510C
1.0 | Analysis Batch: 220-24227
Prep Batch: 220-24156 | Instrument ID:
Lab File ID: | HP 689
A3889. | D |
|--------------------------------------|------------------------------------|--|--|------------------|---------------------------|
| Date Analyzed:
Date Prepared: | 02/10/2009 2034
02/09/2009 0825 | | Initial Weight/Vo
Final Weight/Vo
Injection Volume | lume: | 1000 mL
1 mL
1.0 uL |

| Analyte | Result (ug/L) | Qualifier | MDL | RL | |
|---------------------------------------|---------------|-----------|------|------------|-----------|
| Phenol | 4.0 | U | 0.29 | 4.0 | ********* |
| Bis(2-chloroethyl)ether | 4.0 | U | 1.0 | 4.0 | |
| 2-Chlorophenol | 4.0 | U | 0.61 | 4.0 | |
| 1,3-Dichlorobenzene | 4.0 | U | 0.43 | 4.0 | |
| 1,4-Dichlorobenzene | 4.0 | U | 0.51 | 4.0 | |
| Benzyl alcohol | 4.0 | U | 0.39 | 4.0 | |
| 1,2-Dichlorobenzene | 4.0 | U | 0.48 | 4.0 | |
| 2,2'-oxybis[1-chloropropane] | 4.0 | ບ | 0.71 | 4.0 | |
| 2-Methylphenol | 4.0 | U | 0.60 | 4.0 | |
| Hexachloroethane | 4.0 | U | 0.52 | 4.0 | |
| N-Nitrosodi-n-propylamine | 4.0 | Ū | 0.41 | 4.0 | |
| 4-Methylphenol | 4.0 | Ū | 0.39 | 4.0 | |
| Nitrobenzene | 4.0 | Ŭ | 0.73 | 4.0 | |
| Isophorone | 4.0 | Ŭ | 0.38 | 4.0 | |
| 2-Nitrophenol | 4.0 | Ŭ | 0.51 | 4.0 | |
| 2,4-Dimethylphenol | 4.0 | U | 0.50 | 4.0
4.0 | |
| Bis(2-chloroethoxy)methane | 4.0 | Ŭ | | | |
| 2,4-Dichlorophenol | 4.0 | U | 1.1 | 4.0 | |
| 1,2,4-Trichlorobenzene | 4.0 | U | 0.55 | 4.0 | |
| Naphthalene | 4.0 | U | 0.65 | 4.0 | |
| 4-Chloroaniline | 4.0 | | 0.42 | 4.0 | |
| Hexachlorobutadiene | 4.0 | U | 0.67 | 4.0 | |
| 4-Chloro-3-methylphenol | 4.0
5.0 | U | 0.86 | 4.0 | |
| 2-Methylnaphthalene | | U | 1.3 | 5.0 | |
| Hexachlorocyclopentadiene | 4.0 | U | 0.47 | 4.0 | |
| 2,4,6-Trichlorophenol | 4.0 | U | 0.75 | 4.0 | |
| 2,4,5-Trichlorophenol | 4.0 | U | 0.49 | 4.0 | |
| 2-Chloronaphthalene | 10 | U | 0.54 | 10 | |
| 2-Chloronaphthalene
2-Nitroaniline | 4.0 | U | 0.49 | 4.0 | |
| | 4.0 | U | 0.53 | 4.0 | |
| Acenaphthylene | 4.0 | U | 0.47 | 4.0 | |
| Dimethyl phthalate | 4.0 | U | 0.33 | 4.0 | |
| 2,6-Dinitrotoluene | 4.0 | U | 0.42 | 4.0 | |
| Acenaphthene | 4.0 | U | 0.38 | 4.0 | |
| 3-Nitroaniline | 4.0 | U | 0.37 | 4.0 | |
| 2,4-Dinitrophenol | 25 | U | 1.1 | 25 | |
| Dibenzofuran | 4.0 | U | 0.39 | 4.0 | |
| 2,4-Dinitrotoluene | 4.0 | U | 0.30 | 4.0 | |
| 4-Nitrophenol | 10 | U | 0.38 | 10 | |
| Fluorene | 4.0 | U | 0.48 | 4.0 | |
| 4-Chlorophenyl phenyl ether | 4.0 | U | 0.49 | 4.0 | |
| Diethyl phthalate | 4.0 | Ŭ | 0.42 | 4.0 | |
| 4-Nitroaniline | 4.0 | U | 0.28 | 4.0 | |
| 4,6-Dinitro-2-methylphenol | 25 | Ŭ | 0.37 | 25 | |
| N-Nitrosodiphenylamine | 4.0 | Ŭ | 0.35 | 4.0 | |

Client: Joseph C. Lu Eng & Land Surveying PC

NI-MW-8-12

Client Sample ID:

Job Number: 220-7988-1 Sdg Number: 220-7988

| Lab Sample ID: | 220-7988-7 | • | 02/02/2009 1215 | | |
|--|------------|---|-----------------|--|--|
| Client Matrix: | Water | | 02/06/2009 0950 | | |
| 8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) | | | | | |

| | | | | , |
|----------------|-----------------|---------------------------|------------------------|---------|
| Method: | 8270C | Analysis Batch: 220-24227 | Instrument ID: HP 68 | 90/5975 |
| Preparation: | 3510C | Prep Batch: 220-24156 | Lab File ID: A3889 | .D |
| Dilution: | 1.0 | | Initial Weight/Volume: | 1000 mL |
| Date Analyzed: | 02/10/2009 2034 | | Final Weight/Volume: | 1 mL |
| Date Prepared: | 02/09/2009 0825 | | Injection Volume: | 1.0 uL |
| | | | | |

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|-----------------------------|---------------|-----------|-------|--------------|
| 4-Bromophenyl phenyl ether | 4.0 | U | 0.49 | 4.0 |
| Hexachlorobenzene | 4.0 | U | 0.48 | 4.0 |
| Pentachlorophenol | 25 | U | 1.2 | 25 |
| Phenanthrene | 4.0 | U | 0.39 | 4.0 |
| Carbazole | 4.0 | U | 0.35 | 4.0 |
| Anthracene | 4.0 | U | 0.42 | 4.0 |
| Di-n-butyl phthalate | 4.0 | U | 0.49 | 4.0 |
| Fluoranthene | 4.0 | U | 0.42 | 4.0 |
| Pyrene | 4.0 | U | 0.42 | 4.0 |
| Butyl benzyl phthalate | 4.0 | U | 0.48 | 4.0 |
| 3,3'-Dichlorobenzidine | 4.0 | U | 0.66 | 4.0 |
| Benzo[a]anthracene | 4.0 | U | 0.37 | 4.0 |
| Chrysene | 4.0 | U | 0.40 | 4.0 |
| Bis(2-ethylhexyl) phthalate | 4.0 | U | 0.50 | 4.0 |
| Di-n-octyl phthalate | 4.0 | U | 0.45 | 4.0 |
| Benzo[b]fluoranthene | 4.0 | U | 0.38 | 4.0 |
| Benzo[k]fluoranthene | 4.0 | U | 0.43 | 4.0 |
| Benzo[a]pyrene | 4.0 | U | 0.37 | 4.0 |
| Indeno[1,2,3-cd]pyrene | 4.0 | U | 0.41 | 4.0 |
| Dibenz(a,h)anthracene | 4.0 | U | 0.32 | 4.0 |
| Benzo[g,h,i]perylene | 4.0 | U | 0.29 | 4.0 |
| Surrogate | %Rec | | Accep | tance Limits |
| 2-Fluorophenol | 37 | | 21 - | 97 |
| Phenol-d5 | 26 | | 18 - | 97 |
| Nitrobenzene-d5 | 69 | | 38 - | 113 |
| 2-Fluorobiphenyl | 65 | | | |
| 2,4,6-Tribromophenol | 80 | | 29 - | 126 |
| Terphenyl-d14 | 77 | | 10 - | 119 |

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

Client Sample ID: NI-MW-8-12

| Lab Sample ID: | 220-7988-7 | • | 02/02/2009 1215 |
|----------------|------------|---|-----------------|
| Client Matrix: | Water | | 02/06/2009 0950 |
| | | | |

| 8270C | Analysis Batch: 220-24227 | Instrument ID: H | P 6890/5975 |
|-----------------|---------------------------------|---|--|
| 3510C | Prep Batch: 220-24156 | Lab File ID: A | 3889.D |
| 1.0 | | Initial Weight/Volum | ie: 1000 ml |
| 02/10/2009 2034 | | Final Weight/Volum | |
| 02/09/2009 0825 | | Injection Volume: | 1.0 uL |
| 02/09/2009 0625 | | Injection Volume: | 1.0 uL |
| | 3510C
1.0
02/10/2009 2034 | 3510C Prep Batch: 220-24156
1.0
02/10/2009 2034 | 3510CPrep Batch: 220-24156Lab File ID:A1.0Initial Weight/Volum02/10/20092034Final Weight/Volum |

| Tentatively Iden | tified Compounds | Number TIC's Found: | 3 | | |
|------------------|------------------|---------------------|-------|--------------------|-----------|
| Cas Number | Analyte | | RT | Est. Result (ug/L) | Qualifier |
| | Unknown | | 1.68 | 2.8 | J |
| 496-11-7 | Indane | | 3.10 | 5.4 | JN |
| 7773-83-3 | 1-Docosanethiol | | 12.98 | 3.9 | JN |

Client: Joseph C. Lu Eng & Land Surveying PC

NI-MW-10-11

Client Sample ID:

Job Number: 220-7988-1 Sdg Number: 220-7988

| Lab Sample ID: | 220-7988-8 | 02/02/2009 1420 |
|----------------|------------|-----------------|
| Client Matrix: | Water | 02/06/2009 0950 |
| | | |

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 8270C
3510C
1.0
02/10/2009 2100
02/09/2009 0825 | Analysis Batch: 220-24227
Prep Batch: 220-24156 | Instrument ID:
Lab File ID:
Initial Weight/Volu
Final Weight/Volu
Injection Volume: | ume: | | |
|--|---|--|---|------|--|--|
|--|---|--|---|------|--|--|

| Analyte | Result (ug/L) | Qualifier | MDL | RL | |
|------------------------------|---------------|-----------|--------------|-----------|--|
| Phenol | 4.0 | U | 0.29 | 4.0 | |
| Bis(2-chloroethyl)ether | 4.0 | U | 1.0 | 4.0 | |
| 2-Chlorophenol | 4.0 | U | 0.61 | 4.0 | |
| 1,3-Dichlorobenzene | 4.0 | U | 0.43 | 4.0 | |
| 1,4-Dichlorobenzene | 4.0 | U | 0.51 | 4.0 | |
| Benzyl alcohol | 4.0 | U | 0.39 | 4.0 | |
| 1,2-Dichlorobenzene | 4.0 | U | 0.48 | 4.0 | |
| 2,2'-oxybis[1-chloropropane] | 4.0 | U | 0.71 | 4.0 | |
| 2-Methylphenol | 4.0 | υ | 0.60 | 4.0 | |
| Hexachloroethane | 4.0 | U | 0.52 | 4.0 | |
| N-Nitrosodi-n-propylamine | 4.0 | U | 0.41 | 4.0 | |
| 4-Methylphenol | 4.0 | U | 0.39 | 4.0 | |
| Nitrobenzene | 4.0 | U | 0.73 | 4.0 | |
| Isophorone | 4.0 | U | 0.38 | 4.0 | |
| 2-Nitrophenol | 4.0 | U | 0.51 | 4.0 | |
| 2,4-Dimethylphenol | 4.0 | Ŭ | 0.50 | 4.0 | |
| Bis(2-chloroethoxy)methane | 4.0 | Ū | 1.1 | 4.0 | |
| 2,4-Dichlorophenol | 4.0 | Ŭ | 0.55 | 4.0 | |
| 1,2,4-Trichlorobenzene | 4.0 | Ŭ | 0.65 | 4.0 | |
| Naphthalene | 4.0 | Ų | 0.42 | 4.0 | |
| 4-Chloroaniline | 4.0 | Ŭ | 0.67 | 4.0 | |
| Hexachlorobutadiene | 4.0 | Ŭ | 0.86 | 4.0 | |
| 4-Chloro-3-methylphenol | 5.0 | Ŭ | 1.3 | 5.0 | |
| 2-Methylnaphthalene | 4.0 | Ŭ | 0.47 | 4.0 | |
| Hexachlorocyclopentadiene | 4.0 | Ŭ | 0.75 | 4.0 | |
| 2,4,6-Trichlorophenol | 4.0 | Ŭ | 0.49 | 4.0 | |
| 2,4,5-Trichlorophenol | 10 | Ŭ | 0.54 | 10 | |
| 2-Chloronaphthalene | 4.0 | Ŭ | 0.49 | 4.0 | |
| 2-Nitroaniline | 4.0 | Ŭ | 0.53 | 4.0 | |
| Acenaphthylene | 4.0 | Ŭ | 0.47 | 4.0 | |
| Dimethyl phthalate | 4.0 | Ŭ | 0.33 | 4.0 | |
| 2,6-Dinitrotoluene | 4.0 | Ŭ | 0.42 | 4.0 | |
| Acenaphthene | 4.0 | Ű | 0.38 | 4.0 | |
| 3-Nitroaniline | 4.0 | Ŭ | 0.37 | 4.0 | |
| 2,4-Dinitrophenol | 25 | Ű | 1.1 | 4.0
25 | |
| Dibenzofuran | 4.0 | υ | 0.39 | 4.0 | |
| 2,4-Dinitrotoluene | 4.0 | U | 0.39 | 4.0 | |
| 4-Nitrophenol | 4.0
10 | U | 0.38 | | |
| Fluorene | 4.0 | U | 0.38 | 10
4.0 | |
| 4-Chlorophenyl phenyl ether | 4.0 | U | 0.48 | | |
| Diethyl phthalate | 4.0 | U | 0.49 | 4.0 | |
| 4-Nitroaniline | 4.0 | U | 0.42 | 4.0 | |
| 4,6-Dinitro-2-methylphenol | 4.0
25 | U | | 4.0 | |
| N-Nitrosodiphenylamine | 4.0 | . U | 0.37
0.35 | 25 | |
| | | | | 4.0 | |

TestAmerica Connecticut

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

| Lab Sample ID: 220-7988-8 Date Sampled: 02/02/2009 1420 Client Matrix: Water Date Received: 02/06/2009 0950 | Client Sample ID: | NI-MW-10-11 | | oug Number. | 220-1 |
|---|-------------------|-------------|----------------|-------------|-------|
| | • | | Date Received: | 02/06/2009 | |

| Method: | 8270C | Analysi s Batch: 220-24227 | Instrument ID: HP 68 | 390/5975 |
|----------------|-----------------|-----------------------------------|------------------------|----------|
| Preparation: | 3510C | Prep Batch: 220-24156 | Lab File ID: A389 |).D |
| Dilution: | 1.0 | | Initial Weight/Volume: | 1000 mL |
| Date Analyzed: | 02/10/2009 2100 | | Final Weight/Volume: | 1 mL |
| Date Prepared: | 02/09/2009 0825 | | Injection Volume: | 1.0 uL |
| | | | | |

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|-----------------------------|---------------|-----------|----------|-----------|
| 4-Bromophenyl phenyl ether | 4.0 | U | 0.49 | 4.0 |
| Hexachlorobenzene | 4.0 | U | 0.48 | 4.0 |
| Pentachlorophenol | 25 | υ | 1.2 | 25 |
| Phenanthrene | 4.0 | U | 0.39 | 4.0 |
| Carbazole | 4.0 | U | 0.35 | 4.0 |
| Anthracene | 4.0 | U | 0.42 | 4.0 |
| Di-n-butyl phthalate | 4.0 | U | 0.49 | 4.0 |
| Fluoranthene | 4.0 | U | 0.42 | 4.0 |
| Pyrene | 4.0 | U | 0.42 | 4.0 |
| Butyl benzyl phthalate | 4.0 | U | 0.48 | 4.0 |
| 3,3'-Dichlorobenzidine | 4.0 | U | 0.66 | 4.0 |
| Benzo[a]anthracene | 4.0 | U | 0.37 | 4.0 |
| Chrysene | 4.0 | U | 0.40 | 4.0 |
| Bis(2-ethylhexyl) phthalate | 4.0 | υ | 0.50 | 4.0 |
| Di-n-octyl phthalate | 4.0 | U | 0.45 | 4.0 |
| Benzo[b]fluoranthene | 4.0 | U | 0.38 | 4.0 |
| Benzo[k]fluoranthene | 4.0 | U | 0.43 | 4.0 |
| Benzo[a]pyrene | 4.0 | U | 0.37 | 4.0 |
| Indeno[1,2,3-cd]pyrene | 4.0 | U | 0.41 | 4.0 |
| Dibenz(a,h)anthracene | 4.0 | U | 0.32 | 4.0 |
| Benzo[g,h,i]perylene | 4.0 | U | 0.29 | 4.0 |
| Surrogate | %Rec | | Acceptan | ce Limits |
| 2-Fluorophenol | 44 | | 21 - 97 | |
| Phenol-d5 | 28 | | 18 - 97 | |
| Nitrobenzene-d5 | 77 | | 38 - 113 | 3 |
| 2-Fluorobiphenyl | 71 | | 43 - 116 | |
| 2,4,6-Tribromophenol | 79 | | 29 - 126 | |
| Terphenyl-d14 | 81 | | 10 - 119 | |

| Client: Joseph C. Lu Eng & Land Surveying PC | | | Job Number: 220 | | |
|--|-----------------------|-----------------------------|-----------------|------------------------|----------------|
| Client Sample ID | : NI-MW-10-11 | | | Sdg f | Number: 220-79 |
| Lab Sample ID: | 220-7988-8 | | | Date Sampled: 02/ | 02/2009 1420 |
| Client Matrix: | Water | | | Date Received: 02/ | 06/2009 0950 |
| · · · · · · · · · · · · · · · · · · · | 8270C Semivolatile Co | ompounds by Gas Chromatogra | phy/Mas | s Spectrometry (GC/MS) | |
| Method: | 8270C | Analysis Batch: 220-24227 | | Instrument ID: HP 689 | 0/5975 |
| Preparation: | 3510C | Prep Batch: 220-24156 | | Lab File ID: A3890.I | D |
| Dilution: | 1.0 | | | Initial Weight/Volume: | 1000 mL |
| Date Analyzed: | 02/10/2009 2100 | | | Final Weight/Volume: | 1 mL |
| Date Prepared: | 02/09/2009 0825 | | | Injection Volume: | 1.0 uL |
| Tentatively Ident | ified Compounds | Number TIC's Found: | 1 | | |
| Cas Number | Analyte | | RT | Est. Result (ug/L) | Qualifier |
| | Unknown | | 12.98 | 2.1 | J |

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

Client Sample ID: NI-MW-11-10

| Lab Sample ID:
Client Matrix: | 220-7988-9
Water | Date Sampled:
Date Received: |
 |
|----------------------------------|---------------------|---------------------------------|------|
| | | | |

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

| Method: | 8270C | Analysis Batch: 220-24227 | Instrument ID: HP 68 | 90/5975 |
|----------------|-----------------|---------------------------|------------------------|---------|
| Preparation: | 3510C | Prep Batch: 220-24156 | Lab File ID: A3891 | .D |
| Dilution: | 1.0 | | Initial Weight/Volume: | 1000 mL |
| Date Analyzed: | 02/10/2009 2126 | | Final Weight/Volume: | 1 mL |
| Date Prepared: | 02/09/2009 0825 | | Injection Volume: | 1.0 uL |
| | | | | |

| Analyte | Result (ug/L) | Qualifier | MDL | RL | |
|------------------------------|---------------|-----------|------|-----|--------------|
| Phenol | 4.0 | U | 0.29 | 4.0 | ************ |
| Bis(2-chloroethyl)ether | 4.0 | U | 1.0 | 4.0 | |
| 2-Chlorophenol | 4.0 | U | 0.61 | 4.0 | |
| 1,3-Dichlorobenzene | 4.0 | U | 0.43 | 4.0 | |
| 1,4-Dichlorobenzene | 4.0 | U | 0.51 | 4.0 | |
| Benzyl alcohol | 4.0 | U | 0.39 | 4.0 | |
| 1,2-Dichlorobenzene | 4.0 | U | 0.48 | 4.0 | |
| 2,2'-oxybis[1-chloropropane] | 4.0 | U | 0.71 | 4.0 | |
| 2-Methylphenol | 4.0 | U | 0.60 | 4.0 | |
| Hexachloroethane | 4.0 | U | 0.52 | 4.0 | |
| N-Nitrosodi-n-propylamine | 4.0 | U | 0.41 | 4.0 | |
| 4-Methylphenol | 4.0 | U | 0.39 | 4.0 | |
| Nitrobenzene | 4.0 | U | 0.73 | 4.0 | |
| Isophorone | 4.0 | Ū | 0.38 | 4.0 | |
| 2-Nitrophenol | 4.0 | Ū | 0.51 | 4.0 | |
| 2,4-Dimethylphenol | 4.0 | Ŭ | 0.50 | 4.0 | |
| Bis(2-chloroethoxy)methane | 4.0 | Ŭ | 1.1 | 4.0 | |
| 2,4-Dichlorophenol | 4.0 | Ŭ | 0.55 | 4.0 | |
| 1,2,4-Trichlorobenzene | 4.0 | Ŭ | 0.65 | 4.0 | |
| Naphthalene | 4.0 | Ŭ | 0.42 | 4.0 | |
| 4-Chloroaniline | 4.0 | Ŭ | 0.67 | 4.0 | |
| Hexachlorobutadiene | 4.0 | Ŭ | 0.86 | 4.0 | |
| 4-Chloro-3-methylphenol | 5.0 | U | 1.3 | 5.0 | |
| 2-Methylnaphthalene | 4.0 | U | 0.47 | 4.0 | |
| Hexachlorocyclopentadiene | 4.0 | Ŭ | 0.47 | 4.0 | |
| 2,4,6-Trichlorophenol | 4.0 | U | 0.49 | | |
| 2,4,5-Trichlorophenol | 10 | U | 0.49 | 4.0 | |
| 2-Chloronaphthalene | 4.0 | U | | 10 | |
| 2-Nitroaniline | 4.0 | U | 0.49 | 4.0 | |
| Acenaphthylene | 4.0 | | 0.53 | 4.0 | |
| Dimethyl phthalate | 4.0 | U | 0.47 | 4.0 | |
| 2,6-Dinitrotoluene | 4.0 | U | 0.33 | 4.0 | |
| Acenaphthene | | U | 0.42 | 4.0 | |
| 3-Nitroaniline | 4.0 | U | 0.38 | 4.0 | |
| | 4.0 | U | 0.37 | 4.0 | |
| 2,4-Dinitrophenol | 25 | U | 1.1 | 25 | |
| Dibenzofuran | 4.0 | U | 0.39 | 4.0 | |
| 2,4-Dinitrotoluene | 4.0 | U | 0.30 | 4.0 | |
| 4-Nitrophenol | 10 | U | 0.38 | 10 | |
| Fluorene | 4.0 | U | 0.48 | 4.0 | |
| 4-Chlorophenyl phenyl ether | 4.0 | U | 0.49 | 4.0 | |
| Diethyl phthalate | 4.0 | U | 0.42 | 4.0 | |
| 4-Nitroaniline | 4.0 | U | 0.28 | 4.0 | |
| 4,6-Dinitro-2-methylphenol | 25 | U | 0.37 | 25 | |
| N-Nitrosodiphenylamine | 4.0 | U | 0.35 | 4.0 | |

TestAmerica Connecticut

Client: Joseph C. Lu Eng & Land Surveying PC

| Client Sample ID: | NI-MW-11-10 | | ay Number. | 220-798 |
|----------------------------------|------------------------------------|---------------------------------------|------------|---------|
| Lab Sample ID:
Client Matrix: | 220-7988-9
Water | Date Sampled:
Date Received: | | |
| 8 | 270C Semivolatile Compounds by Gas | Chromatography/Mass Spectrometry (GC/ | MS) | |

| | | | ······································ | |
|----------------|-----------------|---------------------------|--|---------|
| Method: | 8270C | Analysis Batch: 220-24227 | Instrument ID: HP 689 | 90/5975 |
| Preparation: | 3510C | Prep Batch: 220-24156 | Lab File ID: A3891 | .D |
| Dilution: | 1.0 | | Initial Weight/Volume: | 1000 mL |
| Date Analyzed: | 02/10/2009 2126 | | Final Weight/Volume: | 1 mL |
| Date Prepared: | 02/09/2009 0825 | | Injection Volume: | 1.0 uL |

| Analyte | Result (ug/L) | Qualifier | MDL | RL |
|-----------------------------|---------------|-----------|--------|-------------|
| 4-Bromophenyl phenyl ether | 4.0 | U | 0.49 | 4.0 |
| Hexachlorobenzene | 4.0 | U | 0.48 | 4.0 |
| Pentachlorophenol | 25 | U | 1.2 | 25 |
| Phenanthrene | 4.0 | U | 0.39 | 4.0 |
| Carbazole | 4.0 | U | 0.35 | 4.0 |
| Anthracene | 4.0 | U | 0.42 | 4.0 |
| Di-n-butyl phthalate | 4.0 | U | 0.49 | 4.0 |
| Fluoranthene | 4.0 | U | 0.42 | 4.0 |
| Pyrene | 4.0 | U | 0.42 | 4.0 |
| Butyl benzyl phthalate | 4.0 | U | 0.48 | 4.0 |
| 3,3'-Dichlorobenzidine | 4.0 | U | 0.66 | 4.0 |
| Benzo[a]anthracene | 4.0 | U | 0.37 | 4.0 |
| Chrysene | 4.0 | U | 0.40 | 4.0 |
| Bis(2-ethylhexyl) phthalate | 4.0 | U | 0.50 | 4.0 |
| Di-n-octyl phthalate | 4.0 | U | 0.45 | 4.0 |
| Benzo[b]fluoranthene | 4.0 | U | 0.38 | 4.0 |
| Benzo[k]fluoranthene | 4.0 | U | 0.43 | 4.0 |
| Benzo[a]pyrene | 4.0 | U | 0.37 | 4.0 |
| Indeno[1,2,3-cd]pyrene | 4.0 | U | 0.41 | 4.0 |
| Dibenz(a,h)anthracene | 4.0 | U | 0.32 | 4.0 |
| Benzo[g,h,i]perylene | 4.0 | U | 0.29 | 4.0 |
| Surrogate | %Rec | | Accept | ance Limits |
| 2-Fluorophenol | 37 | | 21 - 9 | |
| Phenol-d5 | 25 | | 18 - 9 | |
| Nitrobenzene-d5 | 72 | | 38 - 1 | |
| 2-Fluorobiphenyl | 69 | | 43 - 1 | |
| 2,4,6-Tribromophenol | 74 | | 29 - 1 | |
| Terphenyl-d14 | 79 | | 10 - 1 | |
| | | | | · · - |

| Client: Joseph C. Lu Eng & Land Surveying PC | | | Job Number: 2 | | |
|--|---|--|---------------|---|------------------------------|
| Client Sample ID | : NI-MW-11-10 | | | Sdg N | lumber: 220-79 |
| Lab Sample ID:
Client Matrix: | 220-7988-9
Water | | | | 02/2009 1438
06/2009 0950 |
| | 8270C Semivolatile Co | ompounds by Gas Chromatogra | aphy/Ma | ss Spectrometry (GC/MS) | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 8270C
3510C
1.0
02/10/2009 2126
02/09/2009 0825 | Analysis Batch: 220-24227
Prep Batch: 220-24156 | | Instrument ID: HP 6890
Lab File ID: A3891.D
Initial Weight/Volume:
Final Weight/Volume:
Injection Volume: | |
| Tentatively Ident | ified Compounds | Number TIC's Found: | 0 | | |
| Cas Number | Analyte | | RT | Est. Result (ug/L) | Qualifier |
| | Tentatively Identified | Compound | | None | |

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

Client Sample ID: NI-MW-12-12

| Lab Sample ID: | 220-7988-10 | | 02/03/2009 1325 |
|----------------|---------------------------|--|-----------------|
| Client Matrix: | Water | | 02/06/2009 0950 |
| | 8270C Semivolatile Compou | nds by Gas Chromatography/Mass Spectrometry (GC/ | MS) |

| Method:
Preparation:
Dilution: | 8270C
3510C
1.0 | Analysis Batch: 220-24227
Prep Batch: 220-24156 | Instrument ID:
Lab File ID:
Initial Weight/Voli | HP 6890
A3892.D | |
|--------------------------------------|------------------------------------|--|---|--------------------|----------------|
| Date Analyzed:
Date Prepared: | 02/10/2009 2153
02/09/2009 0825 | | Final Weight/Volu
Injection Volume: | ume: | 1 mL
1.0 uL |

| Analyte | Result (ug/L) | Qualifier | MDL | RL | |
|------------------------------|---------------|-----------|------|-----|---------------|
| Phenol | 4.0 | U | 0.29 | 4.0 | ************* |
| Bis(2-chloroethyl)ether | 4.0 | U | 1.0 | 4.0 | |
| 2-Chlorophenol | 4.0 | U | 0.61 | 4.0 | |
| 1,3-Dichlorobenzene | 4.0 | U | 0.43 | 4.0 | |
| 1,4-Dichlorobenzene | 4.0 | U | 0.51 | 4.0 | |
| Benzyl alcohol | 4.0 | U | 0.39 | 4.0 | |
| 1,2-Dichlorobenzene | 4.0 | U | 0.48 | 4.0 | |
| 2,2'-oxybis[1-chloropropane] | 4.0 | U | 0.71 | 4.0 | |
| 2-Methylphenol | 4.0 | U | 0.60 | 4.0 | |
| Hexachloroethane | 4.0 | U | 0.52 | 4.0 | |
| N-Nitrosodi-n-propylamine | 4.0 | U | 0.41 | 4.0 | |
| 4-Methylphenol | 4.0 | U | 0.39 | 4.0 | |
| Nitrobenzene | 4.0 | U | 0.73 | 4.0 | |
| Isophorone | 4.0 | Ū | 0.38 | 4.0 | |
| 2-Nitrophenol | 4.0 | Ŭ | 0.51 | 4.0 | |
| 2,4-Dimethylphenol | 4.0 | Ŭ | 0.50 | 4.0 | |
| Bis(2-chloroethoxy)methane | 4.0 | Ũ | 1.1 | 4.0 | |
| 2,4-Dichlorophenol | 4.0 | Ŭ | 0.55 | 4.0 | |
| 1,2,4-Trichlorobenzene | 4.0 | Ŭ | 0.65 | 4.0 | |
| Naphthalene | 4.0 | Ŭ | 0.42 | 4.0 | |
| 4-Chloroaniline | 4.0 | Ŭ | 0.67 | 4.0 | |
| Hexachlorobutadiene | 4.0 | Ŭ | 0.86 | 4.0 | |
| 4-Chloro-3-methylphenol | 5.0 | Ŭ | 1.3 | 5.0 | |
| 2-Methylnaphthalene | 4.0 | Ŭ | 0.47 | 4.0 | |
| Hexachlorocyclopentadiene | 4.0 | Ŭ | 0.75 | 4.0 | |
| 2,4,6-Trichlorophenol | 4.0 | Ŭ | 0.49 | 4.0 | |
| 2,4,5-Trichlorophenol | 10 | Ŭ | 0.54 | 4.0 | |
| 2-Chloronaphthalene | 4.0 | Ŭ | 0.49 | 4.0 | |
| 2-Nitroaniline | 4.0 | Ŭ | 0.53 | 4.0 | |
| Acenaphthylene | 4.0 | U | 0.33 | | |
| Dimethyl phthalate | 4.0 | U | 0.33 | 4.0 | |
| 2,6-Dinitrotoluene | 4.0 | U | 0.33 | 4.0 | |
| Acenaphthene | 4.0 | U | | 4.0 | |
| 3-Nitroaniline | 4.0 | U | 0.38 | 4.0 | |
| 2,4-Dinitrophenol | 25 | U | 0.37 | 4.0 | |
| Dibenzofuran | 4.0 | | 1.1 | 25 | |
| 2,4-Dinitrotoluene | 4.0 | U | 0.39 | 4.0 | |
| • | | U | 0.30 | 4.0 | |
| 4-Nitrophenol | 10 | U | 0.38 | 10 | |
| Fluorene | 4.0 | U | 0.48 | 4.0 | |
| 4-Chlorophenyl phenyl ether | 4.0 | U | 0.49 | 4.0 | |
| Diethyl phthalate | 4.0 | U | 0.42 | 4.0 | |
| 4-Nitroaniline | 4.0 | U | 0.28 | 4.0 | |
| 4,6-Dinitro-2-methylphenol | 25 | U | 0.37 | 25 | |
| N-Nitrosodiphenylamine | 4.0 | U | 0.35 | 4.0 | |

TestAmerica Connecticut

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-12-12

Job Number: 220-7988-1 Sdg Number: 220-7988

| Lab Sample ID: | 220-7988 - 10 | Date Sampled: | 02/03/2009 1325 |
|----------------|----------------------|----------------|-----------------|
| Client Matrix: | Water | Date Received: | 02/06/2009 0950 |
| | | | |

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

| Method: | 8270C | Analysis Batch: 220-24227 | Instrument ID: HP 689 | 90/5975 |
|----------------|-----------------|---------------------------|------------------------|---------|
| Preparation: | 3510C | Prep Batch: 220-24156 | Lab File ID: A3892. | D |
| Dilution: | 1.0 | | Initial Weight/Volume: | 1000 mL |
| Date Analyzed: | 02/10/2009 2153 | | Final Weight/Volume: | 1 mL |
| Date Prepared: | 02/09/2009 0825 | | Injection Volume: | 1.0 uL |

| Analyte | Deput | 0 10 | | |
|---|---------------|----------------------|------------------|-------------|
| | Result (ug/L) | Qualifier | MDL | RL |
| 4-Bromophenyl phenyl ether
Hexachlorobenzene | 4.0 | U | 0.49 | 4.0 |
| | 4.0 | U | 0.48 | 4.0 |
| Pentachlorophenol | 25 | U | 1.2 | 25 |
| Phenanthrene | 4.0 | U | 0.39 | 4.0 |
| Carbazole | 4.0 | U | 0.35 | 4.0 |
| Anthracene | 4.0 | U | 0.42 | 4.0 |
| Di-n-butyl phthalate | 4.0 | U | 0.49 | 4.0 |
| Fluoranthene | 4.0 | U | 0.42 | 4.0 |
| Pyrene | 4.0 | U | 0.42 | 4.0 |
| Butyl benzyl phthalate | 4.0 | U | 0.48 | 4.0 |
| 3,3'-Dichlorobenzidine | 4.0 | U | 0.66 | 4.0 |
| Benzo[a]anthracene | 4.0 | U | 0.37 | 4.0 |
| Chrysene | 4.0 | U | 0.40 | 4.0 |
| Bis(2-ethylhexyl) phthalate | 4.0 | U | 0.50 | 4.0 |
| Di-n-octyl phthalate | 4.0 | U | 0.45 | 4.0 |
| Benzo[b]fluoranthene | 4.0 | U | 0.38 | 4.0 |
| Benzo[k]fluoranthene | 4.0 | U | 0.43 | 4.0 |
| Benzo[a]pyrene | 4.0 | U | 0.37 | 4.0 |
| Indeno[1,2,3-cd]pyrene | 4.0 | U | 0.41 | 4.0 |
| Dibenz(a,h)anthracene | 4.0 | Ŭ | 0.32 | 4.0 |
| Benzo[g,h,i]perylene | 4.0 | U | 0.29 | 4.0 |
| Surrogate | %Rec | | Accept | ance Limits |
| 2-Fluorophenol | 38 | | 21 - 9 | |
| Phenol-d5 | 24 | | 18 - 9 | • |
| Nitrobenzene-d5 | 69 | 38 - 113 | | |
| 2-Fluorobiphenyl | 63 | 43 - 116 | | |
| 2,4,6-Tribromophenol | 74 | 43 - 116
29 - 126 | | |
| Terphenyl-d14 | 74 | | 29 - 1
10 - 1 | |
| | 17 | | 10 - | 113 |

| Client: Joseph C. Lu Eng & Land Surveying PC | | | | mber: 220-7988- | |
|--|---|--|---------|--|------------------------------|
| Client Sample ID | : NI-MW-12-12 | | | Sdg I | Number: 220-798 |
| Lab Sample ID:
Client Matrix: | 220-7988-10
Water | | | | 03/2009 1325
06/2009 0950 |
| | 8270C Semivolatile Co | ompounds by Gas Chromatogr | aphy/Ma | ss Spectrometry (GC/MS) | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 8270C
3510C
1.0
02/10/2009 2153
02/09/2009 0825 | Analysis Batch: 220-24227
Prep Batch: 220-24156 | | Instrument ID: HP 689
Lab File ID: A3892.I
Initial Weight/Volume:
Final Weight/Volume:
Injection Volume: | |
| Tentatively Ident | ified Compounds | Number TIC's Found: | 0 | | |
| Cas Number | Analyte | | RT | Est. Res ul t (ug/L) | Qualifier |
| | Tentatively Identified | Compound | | None | |

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

| Client Sample ID | D: NI-MW-4-14 | | | 5 | ag Number: 220-798 |
|--|---|--|----------|--|------------------------------------|
| Lab Sample ID:
Client Matrix: | 220-7988-2
Water | | | Date Sampled:
Date Received: | 02/03/2009 1100
02/06/2009 0950 |
| | | 8081A Organochlorine Pesticio | des (GC) | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 8081A
3510C
1.0
02/10/2009 1832
02/09/2009 1011 | Analysis Batch: 220-24288
Prep Batch: 220-24166 | | Lab File ID: C7
Initial Weight/Volume
Final Weight/Volume
Injection Volume: | |
| Analyte | | Result (ug/L) | Qualifie | r MDL | RL |
| 4,4'-DDD | | 0.10 | U | 0.011 | 0.10 |
| 4,4'-DDE | | 0.10 | U | 0.0095 | 0.10 |
| 4,4 '- DDT | | 0.10 | U | 0.014 | 0.10 |
| Aldrin | | 0.050 | U | 0.0082 | 0.050 |
| alpha-BHC | | 0.050 | U | 0.0079 | 0.050 |
| beta-BHC | | 0.050 | U | 0.0075 | 0.050 |
| delta-BHC | | 0.050 | U | 0.0057 | 0.050 |
| Dieldrin | | 0.10 | U | 0.0098 | 0.10 |
| Endosulfan I | | 0.050 | U | 0.0046 | 0.050 |
| Endosulfan II | | 0.10 | U | 0.0097 | 0.10 |
| Endosulfan sulfat | e | 0.10 | U | 0.014 | 0.10 |
| Endrin | | 0.10 | U | 0.014 | 0.10 |
| Endrin aldehyde | | 0.10 | U | 0.0091 | 0.10 |
| Endrin ketone | | 0.10 | U | 0.010 | 0.10 |
| gamma-BHC (Lin | dane) | 0.050 | U | 0.0053 | 0.050 |
| Heptachlor | | 0.050 | U | 0.0075 | 0.050 |
| Heptachlor epoxic | le | 0.050 | U | 0.0058 | 0.050 |
| Methoxychlor | | 0.50 | U | 0.091 | 0.50 |
| Toxaphene | | 2.5 | U | 0.21 | 2.5 |
| alpha-Chlordane
gamma-Chlordan | | 0.050 | U | 0.0048 | 0.050 |
| gamma-Chioruan | e | 0.050 | U | 0.0048 | 0.050 |
| Surrogate | | %Rec | | Accept | ance Limits |
| DCB Decachlorot | | 25 | * | 29 - 1 | |
| Tetrachloro-m-xyl | lene | 32 | * | 53 - 1 | |
| Method: | 8081A | Analysis Batch: 220-24288 | | Instrument ID: H | <sup>2</sup> 5890 with dual ECD |
| Preparation: | 3510C | Prep Batch: 220-24166 | | Lab File ID: C | 7688024.D |
| Dilution: | 1.0 | | | Initial Weight/Volum | |
| Date Analyzed: | 02/10/2009 1832 | | | Final Weight/Volume | |
| Date Prepared: | 02/09/2009 1011 | | | Injection Volume: | 1.0 uL |
| | | | | | SECONDARY |
| - · | | | | | |
| Surrogate | | %Rec | | Accep | tance Limits |
| DCB Decachloret | ainhanyl | 00 | | ***** | |

| DCB Decachlorobiphenyl | 22 | * | 29 - 156 |
|------------------------|----|---|----------|
| Tetrachloro-m-xylene | 31 | * | 53 - 144 |

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

| Client Sample I | D: NI-MW-4-14D | | | Sug Number, 220-7988 |
|----------------------------------|---------------------|--|--------------------------------|------------------------------------|
| Lab Sample ID:
Client Matrix: | 220-7988-3
Water | | Date Sampled:
Date Received | |
| | | 8081A Organochlorine Pesticides | (GC) | |
| Method:
Preparation: | 8081A
3510C | Analysis Batch: 220-24288
Prep Batch: 220-24166 | | IP 5890 with dual ECD
7688026.D |

| Preparation:
Dilution: | 3510C
1.0 | Prep Batch: 220-24166 | | Lab File ID:
Initial Weight/Volu | C7688026
me: 1 | 6.D
000 mL |
|---------------------------|-----------------|---------------------------|----------|-------------------------------------|-------------------|---------------|
| Date Analyzed: | 02/10/2009 1914 | | | Final Weight/Volur | | 0 mL |
| Date Prepared: | 02/09/2009 1011 | | | Injection Volume: | | .0 uL |
| | | | | Column ID: | PRIMAR | |
| | | | | Column 12. | I I VIIVIJ-M | |
| Analyte | | Result (ug/L) | Qualifie | r MDL | F | RL |
| 4,4'-DDD | | 0.10 | U | 0.011 | (|).10 |
| 4,4'-DDE | | 0.10 | U | 0.0095 | (|).10 |
| 4,4'-DDT | | 0.10 | U | 0.014 | (|).10 |
| Aldrin | | 0.050 | U | 0.0082 | (| 0.050 |
| alpha-BHC | | 0.050 | U | 0.0079 | (|).050 |
| beta-BHC | | 0.050 | U | 0.0075 | (| 0.050 |
| delta-BHC | | 0.050 | U | 0.0057 | | 0.050 |
| Dieldrin | | 0.10 | U | 0.0098 | (| 0.10 |
| Endosulfan I | | 0.050 | U | 0.0046 | | 0.050 |
| Endosulfan II | | 0.10 | U | 0.0097 | | D.10 |
| Endosulfan sulfate | e | 0.10 | U | 0.014 | | 0.10 |
| Endrin | | 0.10 | U | 0.014 | | 0.10 |
| Endrin aldehyde | | 0.10 | U | 0.0091 | | 0.10 |
| Endrin ketone | | 0.10 | U | 0.010 | | 0.10 |
| gamma-BHC (Lind | dane) | 0.050 | U | 0.0053 | | 0.050 |
| Heptachlor | | 0.050 | U | 0.0075 | | 0.050 |
| Heptachlor epoxic | le | 0.050 | U | 0.0058 | | 0.050 |
| Methoxychlor | | 0.50 | U | 0.091 | | 0.50 |
| Toxaphene | | 2.5 | U | 0.21 | | 2.5 |
| alpha-Chlordane | | 0.050 | Ū | 0.0048 | | 0.050 |
| gamma-Chlordan | e | 0.050 | Ŭ | 0.0048 | | 0.050 |
| - | | | - | 0.0010 | | 0.000 |
| Surrogate | *** | %Rec | | Acc | eptance L | imits |
| DCB Decachlorob | | 63 | | 29 | - 156 | |
| Tetrachloro-m-xyl | ene | 85 | | 53 | - 144 | |
| Method: | 8081A | Analysis Batch: 220-24288 | | Instrument ID: | HP 5890 | with dual ECD |
| Preparation: | 3510C | Prep Batch: 220-24166 | | Lab File ID: | C768802 | |
| Dilution: | 1.0 | | | Initial Weight/Volu | | 1000 mL |
| Date Analyzed: | 02/10/2009 1914 | | | - | | |
| Date Prepared: | 02/09/2009 1011 | | | Final Weight/Volu | | 10 mL |
| Date Mepareu. | 02/09/2009 1011 | | | Injection Volume: | | 1.0 uL |
| | | | | Column ID: | SECON | IDARY |
| | | | | | | |
| Surrogate | | %Rec | | Acc | eptance I | imits |

Surrogate%RecAcceptance LimitsDCB Decachlorobiphenyl5429 - 156Tetrachloro-m-xylene8553 - 144

Client: Joseph C. Lu Eng & Land Surveying PC

| Client Sample ID | : NI-MW-10-11 | | | Sdg | Number: 220-7988 |
|--|---|--|------------------------------|---|--------------------------------|
| Lab Sample ID:
Client Matrix: | 220-7988-8
Water | | | | /02/2009 1420
/06/2009 0950 |
| | | 8081A Organochlorine Pesticio | des (GC) | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 8081A
3510C
1.0
02/10/2009 1810
02/09/2009 0830 | Analysis Batch: 220-24288
Prep Batch: 220-24157 | اr
ل
ا
F
ار
C | 90 with dual ECD
023.D
1000 mL
10 mL
1.0 uL
IARY | |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
| 4,4'-DDD | | 0.10 | U | 0.011 | 0.10 |
| 4,4'-DDE | | 0.10 | U | 0.0095 | 0.10 |
| 4,4'-DDT | | 0.10 | U | 0.014 | 0.10 |
| Aldrin | | 0.050 | U | 0.0082 | 0.050 |
| alpha-BHC | | 0.050 | U | 0.0079 | 0.050 |
| beta-BHC | | 0.050 | U | 0.0075 | 0.050 |
| delta-BHC | | 0.050 | U | 0.0057 | 0.050 |
| Dieldrin | | 0.10 | U | 0.0098 | 0.10 |
| Endosulfan I | | 0.050 | U | 0.0046 | 0.050 |
| Endosulfan II | | 0.10 | U | 0.0097 | 0.10 |
| Endosulfan sulfate | ; | 0.10 | U | 0.014 | 0.10 |
| Endrin | | 0.10 | U | 0.014 | 0.10 |
| Endrin aldehyde | | 0.10 | U | 0.0091 | 0.10 |
| Endrin ketone | | 0.10 | U | 0.010 | 0.10 |
| gamma-BHC (Lind | lane) | 0.050 | U | 0.0053 | 0.050 |
| Heptachlor | | 0.050 | U | 0.0075 | 0.050 |
| Heptachlor epoxid | e | 0.050 | U | 0.0058 | 0.050 |
| Methoxychlor | | 0.50 | U | 0.091 | 0.50 |
| Toxaphene | | 2.5 | U | 0.21 | 2.5 |
| alpha-Chlordane | | 0.050 | U | 0.0048 | 0.050 |
| gamma-Chlordane | 9 | 0.050 | U | 0.0048 | 0.050 |
| Surrogate | | %Rec | | Acceptanc | e Limits |
| DCB Decachlorob | iphenyl | 74 | | 29 - 156 | _ |
| Tetrachloro-m-xyle | ene | 84 | | 53 - 144 | |
| Method: | 8081A | Analysis Batch: 220-24288 | 1 | Instrument ID: HP 58 | 90 with dual ECD |
| Preparation: | 3510C | Prep Batch: 220-24157 | | | 3023.D |
| Dilution: | 1.0 | | | Initial Weight/Volume: | 1000 mL |
| Date Analyzed: | 02/10/2009 1810 | | | Final Weight/Volume: | 10 mL |
| Date Prepared: | 02/09/2009 0830 | | | Injection Volume: | 1.0 uL |
| | | | | . · · · · · · · · · · · · · · · · · · · | CONDARY |
| Surrogate | | %Rec | | Acceptanc | e Limits |
| DCB Decachlorob | iphenyl | 67 | | 29 - 156 | |
| Tetrachloro-m-xyle | | 86 | | 53 - 144 | |

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

Client Sample ID: NI-MW-4-14

| Lab Sample ID:
Client Matrix: | 220-7988-2
Water | | • | 02/03/2009 1100
: 02/06/2009 0950 | | | | | |
|----------------------------------|---|---------------------------|----------------|--------------------------------------|--|--|--|--|--|
| | 8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography | | | | | | | | |
| Method: | 8082 | Analysis Batch: 220-24208 | Instrument ID. | IP 5890 with dual ECD | | | | | |

| Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 3510C
1.0
02/09/2009 1631
02/09/2009 1011 | Prep Batch: 220-24166 | Lab
Initia
Fina
Injec | File ID: D4
Il Weight/Volume
I Weight/Volume
tion Volume: | :: 10 mL
1.0 uL |
|---|--|-----------------------|--------------------------------|--|--------------------|
| Analyte | | Result (ug/L) | Qualifier | imn ID: F | RIMARY |
| PCB-1016 | | 0.50 | U | 0.075 | 0.50 |
| PCB-1221 | | 0.50 | Ŭ | 0.32 | 0.50 |
| PCB-1232 | | 0.50 | U | 0.075 | 0.50 |
| PCB-1242 | | 0.50 | U | 0.075 | 0.50 |
| PCB-1248 | | 0.50 | U | 0.075 | 0.50 |
| PCB-1254 | | 0.50 | U | 0.045 | 0.50 |
| PCB-1260 | | 0.50 | U | 0.047 | 0.50 |
| Surrogate | | %Rec | | Accept | tance Limits |
| Tetrachloro-m-xyl | ene | 33 | * | 53 - 1 | 144 |
| DCB Decachlorob | biphenyl | 19 | * | 29 - 1 | 156 |

Job Number: 220-7988-1 Sdg Number: 220-7988

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-4-14D

 Lab Sample ID:
 220-7988-3
 Date Sampled:
 02/03/2009
 1110

 Client Matrix:
 Water
 Date Received:
 02/06/2009
 0950

| | 8082 Polych | lorinated Biphenyls (PCBs) by | Gas Chro | matography | |
|--|--|--|--|---|-----------------|
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 8082
3510C
1.0
02/09/2009 1708
02/09/2009 1011 | Analysis Batch: 220-24208
Prep Batch: 220-24166 | Instrument ID: HP 589
Lab File ID: D4744
Initial Weight/Volume:
Final Weight/Volume:
Injection Volume: | | ume: 10 mL |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
| PCB-1016 | ******* | 0.50 | U | 0.075 | 0.50 |
| PCB-1221 | | 0.50 | U | 0.32 | 0.50 |
| PCB-1232 | | 0.50 | U | 0.075 | 0.50 |
| PCB-1242 | | 0.50 | U | 0.075 | 0.50 |
| PCB-1248 | | 0.50 | U | 0.075 | 0.50 |
| PCB-1254 | | 0.50 | U | 0.045 | 0.50 |
| PCB-1260 | | 0.50 | U | 0.047 | 0.50 |
| Surrogate | | %Rec | | Aco | ceptance Limits |
| Tetrachloro-m-xyl | ene | 83 | ****** | where the second state of the s | 3 - 144 |
| DCB Decachlorobiphenyl | | 46 | 29 - 156 | | |

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-10-11

| Lab Sample ID: | 220-7988-8 | | 02/02/2009 1420 |
|----------------|--|--------------------|-----------------|
| Client Matrix: | Water | | 02/06/2009 0950 |
| | 8082 Polychlorinated Biphenyls (PCBs) by | Gas Chromatography | |

| | | | | 0 1 2 | |
|--|--|--|-----------------------------------|--|---------------|
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 8082
3510C
1.0
02/10/2009 1354
02/09/2009 0830 | Analysis Batch: 220-24241
Prep Batch: 220-24157 | Lab I
Initia
Final
Injec | File ID: D
I Weight/Volum
I Weight/Volum
tion Volume: | |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
| PCB-1016 | | 0.50 | U | 0.075 | 0.50 |
| PCB-1221 | | 0.50 | U | 0.32 | 0.50 |
| PCB-1232 | | 0.50 | U | 0.075 | 0.50 |
| PCB-1242 | | 0.50 | U | 0.075 | 0.50 |
| PCB-1248 | | 0.50 | U | 0.075 | 0.50 |
| PCB-1254 | | 0.50 | U | 0.045 | 0.50 |
| PCB-1260 | | 0.50 | U | 0.047 | 0.50 |
| Surrogate | | %Rec | | Acce | otance Limits |
| Tetrachloro-m-xyl | | 86 | 53 - 144 | | |
| DCB Decachlorot | piphenyl | 61 | 29 - 156 | | |
| | | | | | |

Client: Joseph C. Lu Eng & Land Surveying PC

| Lab Sample ID:
Client Matrix: | 220-7988-1
Water | | | | 2/03/2009 1145
2/06/2009 0950 |
|--|---|--|--|----------------|---|
| | | 6010B Metals (ICP) | | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 6010B
3010A
1.0
02/10/2009 1143
02/09/2009 1230 | Analysis Batch: 220-24200
Prep Batch: 220-24177 | Instrument ID:
Lab File ID:
Initial Weight/Volume:
Final Weight/Volume: | | TJA Trace ICAP
W021009
50 mL
50 mL |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
| Silver | | 10 | U | 1.3 | 10 |
| Aluminum | | 290 | J | 47 | 500 |
| Arsenic | | 20 | U | 4.4 | 20 |
| Barium | | 39 | | 1.2 | 10 |
| Beryllium | | 10 | U | 1.1 | 10 |
| Calcium | | 118000 | | 62 | 500 |
| Cadmium | | 10 | U | 2.8 | 10 |
| Cobalt | | 10 | U | 1.4 | 10 |
| Chromium | | 10 | U | 1.0 | 10 |
| Copper | | 10 | U | 1.4 | 10 |
| iron | | 820 | | 62 | 250 |
| Potassium | | 4600 | | 81 | 500 |
| Magnesium | | 55300 | | 49 | 500 |
| Manganese | | 1600 | | 2.3 | 15 |
| Sodium | | 54200 | | 50 | 500 |
| Nickel | | 1.5 | J | 1.4 | 10 |
| Lead | | 10 | Ŭ | 3.0 | 10 |
| Antimony | | 40 | Ŭ | 8.8 | 40 |
| Selenium | | 30 | Ŭ | 3.2 | 30 |
| Thallium | | 30 | Ŭ | 8.0 | 30 |
| Vanadium | | 10 | Ŭ | 1.2 | 10 |
| Zinc | | 50 | Ŭ | 7.0 | 50 |
| · · · · · · | | 7470A Mercury (CVAA |) | | |
| Method: | 7470A | Analysis Batch: 220-24287 | Instrum | nent ID: | Parkin Elman Elling |
| Preparation: | 7470A | Prep Batch: 220-24275 | Lab Fil | | Perkin Elmer FIMS |
| Dilution: | 1.0 | · · · · · · · · · · · · · · · · · · · | | | N/A |
| Date Analyzed: | 02/12/2009 1358 | | | Veight/Volume: | 25 mL |
| Date Prepared: | 02/12/2009 1200 | | Final V | Veight/Volume: | 50 mL |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
| Mercury | | 0.20 | U | 0.090 | 0.20 |

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

Client Sample ID: NI-MW-4-14

| Lab Sample ID:
Client Matrix: | 220-7988-2
Water | | • | 02/03/2009 1100
02/06/2009 0950 |
|--|---|--|--|---|
| | | 6010B Metals (ICP) | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 6010B
3010A
1.0
02/10/2009 1149
02/09/2009 1230 | Analysis Batch: 220-24200
Prep Batch: 220-24177 | Instrument ID:
Lab File ID:
Initial Weight/Volume:
Final Weight/Volume: | TJA Trace ICAP
W021009
50 mL
50 mL |

.

| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
|----------------|--|---------------------------|-----------|----------------|---------------------|
| Silver | | 10 | U | 1.3 | 10 |
| Aluminum | | 500 | U | 47 | 500 |
| Arsenic | | 20 | U | 4.4 | 20 |
| Barium | | 87 | | 1.2 | 10 |
| Beryllium | | 10 | U | 1.1 | 10 |
| Calcium | | 112000 | | 62 | 500 |
| Cadmium | | 10 | U | 2.8 | 10 |
| Cobalt | | 10 | Ū | 1.4 | 10 |
| Chromium | | 10 | U | 1.0 | 10 |
| Copper | | 10 | Ū | 1.4 | 10 |
| Iron | | 4200 | _ | 62 | 250 |
| Potassium | | 5900 | | 81 | 500 |
| Magnesium | | 47100 | | 49 | 500 |
| Manganese | | 13000 | | 2.3 | 15 |
| Sodium | | 81400 | | 50 | 500 |
| Nickel | | 10 | U | 1.4 | 10 |
| Lead | | 10 | Ŭ | 3.0 | 10 |
| Antimony | | 40 | Ŭ | 8.8 | 40 |
| Selenium | | 30 | Ŭ | 3.2 | 30 |
| Thallium | | 30 | Ŭ | 8.0 | 30 |
| Vanadium | | 10 | Ŭ | 1.2 | 10 |
| Zinc | | 50 | Ŭ | 7.0 | 50 |
| | | 7470A Mercury (CVAA | N) | | |
| Method: | 7470A | Analysis Batch: 220-24287 | İnetri | ument ID: | Dortin Elecar El 10 |
| Preparation: | 7470A | Prep Batch: 220-24275 | | | Perkin Elmer FIMS |
| Dilution: | 1.0 | 1 Tep Daton: 220-24275 | | File ID: | N/A |
| | 02/12/2009 1359 | | | Weight/Volume: | 25 mL |
| Date Analyzed: | | | Final | Weight/Volume: | 50 mL |
| Date Prepared: | 02/12/2009 1200 | | | | |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
| Mercury | 99449949900000000000000000000000000000 | 0.20 | U | 0.090 | 0.20 |

.

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-4-14D

Job Number: 220-7988-1 Sdg Number: 220-7988

| Lab Sample ID:
Client Matrix: | 220-7988-3
Water | | | |)2/03/2009 1110
)2/06/2009 0950 |
|---|---|--|--|-----|---|
| | | 6010B Metals (ICP) | | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Pr e pared: | 6010B
3010A
1.0
02/10/2009 1154
02/09/2009 1230 | Analysis Batch: 220-24200
Prep Batch: 220-24177 | Instrument ID:
Lab File ID:
Initial Weight/Volume:
Final Weight/Volume: | | TJA Trace ICAP
W021009
50 mL
50 mL |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
| Silver | | 10 | U | 1.3 | 10 |
| Aluminum | | 500 | U | 47 | 500 |
| Arsenic | | 20 | U | 4.4 | 20 |
| Barium | | 86 | | 1.2 | 10 |
| Beryllium | | 10 | U | 1.1 | 10 |
| Calcium | | 114000 | | 62 | 500 |
| Cadmium | | 10 | U | 2.8 | 10 |
| Cobalt | | 10 | U | 1.4 | 10 |
| Chromium | | 10 | U | 1.0 | 10 |
| Copper | | 10 | U | 1.4 | 10 |
| ron | | 4300 | | 62 | 250 |
| Potassium | | 6000 | | 81 | 500 |
| Mag n esium | | 46700 | | 49 | 500 |
| Manganese | | 13100 | | 2.3 | 15 |
| Sodium | | 80900 | | 50 | 500 |
| Nickel | | 10 | U | 1.4 | 10 |
| _ead | | 10 | U | 3.0 | 10 |
| Antimony | | 40 | U | 8.8 | 40 |
| Selenium | | 30 | U | 3.2 | 30 |
| Thallium | | 30 | U | 8.0 | 30 |
| Vanadium | | 10 | U | 1.2 | 10 |
| Zinc | | 50 | U | 7.0 | 50 |

7470A Analysis Batch: 220-24287 Instrument ID: 7470A Prep Batch: 220-24275 Lab File ID: 1.0 Initial Weight/Volume: Date Analyzed: 02/12/2009 1400 Final Weight/Volume:

| Analyte | Result (ug/L) | Qualifier | MDL | RL | |
|---------|---------------|-----------|-------|------|---------------------------------|
| | 0.20 | U | 0.090 | 0.20 | 17.5000-20000000000000000000000 |

Date Prepared: 02/12/2009 1200

Method:

Dilution:

Preparation:

Perkin Elmer FIMS

N/A

25 mL

50 mL

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-5b-11

| Lab Sample ID:
Client Matrix: | 220-7988-4
Water | | |)2/02/2009 1700
)2/06/2009 0950 |
|--|---|--|--|---|
| | | 6010B Metals (ICP) | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 6010B
3010A
1.0
02/10/2009 1211
02/09/2009 1230 | Analysis Batch: 220-24200
Prep Batch: 220-24177 | Instrument ID:
Lab File ID:
Initial Weight/Volume:
Final Weight/Volume: | TJA Trace ICAP
W021009
50 mL
50 mL |
| Apolita | | | | |

| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
|----------------|-----------------|---------------------------|-------------|----------------|----------------|
| Silver | | 10 | U | 1.3 | 10 |
| Aluminum | | 140 | J | 47 | 500 |
| Arsenic | | 23 | | 4.4 | 20 |
| Barium | | 210 | | 1.2 | 10 |
| Beryllium | | 10 | U | 1.1 | 10 |
| Calcium | | 199000 | | 62 | 500 |
| Cadmium | | 10 | U | 2.8 | 10 |
| Cobalt | | 10 | U | 1.4 | 10 |
| Chromium | | 10 | U | 1.0 | 10 |
| Copper | | 10 | U | 1.4 | 10 |
| Iron | | 35400 | | 62 | 250 |
| Potassium | | 5100 | | 81 | 500 |
| Magnesium | | 70600 | | 49 | 500 |
| Manganese | | 31100 | | 2.3 | 15 |
| Nickel | | 10 | U | 1.4 | 10 |
| Lead | | 9.0 | J | 3.0 | 10 |
| Antimony | | 40 | U | 8.8 | 40 |
| Selenium | | 30 | U | 3.2 | 30 |
| Thallium | | 30 | U | 8.0 | 30 |
| Vanadium | | 1.5 | J | 1.2 | 10 |
| Zinc | | 50 | U | 7.0 | 50 |
| Method: | 6010B | Analysis Batch: 220-24359 | Instrum | ent ID: | TJA Trace ICAP |
| Preparation: | 3010A | Prep Batch: 220-24177 | Lab File | e ID: | W021609 |
| Dilution: | 5.0 | • | | Veight/Volume: | 50 mL |
| Date Analyzed: | 02/16/2009 1533 | | | /eight/Volume: | |
| Date Prepared: | 02/09/2009 1230 | | 1 11 101 11 | eight volume. | 50 mL |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
| Sodium | | 296000 | | 250 | 2500 |

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-5b-11

| Lab Sample ID:
Client Matrix: | 220-7988-4
Water | | | e Sampled:
e Received: | 02/02/2009 1700
02/06/2009 0950 |
|--|---|--|-----------|---------------------------|------------------------------------|
| | | 7470A Mercury (CVAA |) | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 7470A
7470A
1.0
02/12/2009 1401
02/12/2009 1200 | Analysis Batch: 220-24287
Prep Batch: 220-24275 | | | |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
| Mercury | | 0.20 | U | 0.090 | 0.20 |

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 220-7988-1 Sdg Number: 220-7988

.

Client Sample ID: NI-MW-6-15

| Lab Sample ID:
Client Matrix: | 220-7988-5
Water | | • | 02/02/2009 1705
02/06/2009 0950 |
|--|---|--|--|---|
| | | 6010B Metals (ICP) | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 6010B
3010A
1.0
02/10/2009 1217
02/09/2009 1230 | Analysis Batch: 220-24200
Prep Batch: 220-24177 | Instrument ID:
Lab File ID:
Initial Weight/Volume:
Final Weight/Volume: | TJA Trace ICAP
W021009
50 mL
50 mL |

| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
|-----------------|--|---------------------------|-----------|-----------------|-------------------|
| Silver | | 10 | U | 1.3 | 10 |
| Aluminum | | 500 | U | 47 | 500 |
| Arsenic | | 20 | U | 4.4 | 20 |
| Barium | | 100 | | 1.2 | 10 |
| Beryllium | | 10 | U | 1.1 | 10 |
| Calcium | | 105000 | | 62 | 500 |
| Cadmium | | 10 | U | 2.8 | 10 |
| Cobalt | | 10 | U | 1.4 | 10 |
| Chromium | | 10 | U | 1.0 | 10 |
| Copper | | 10 | U | 1.4 | 10 |
| Iron | | 7900 | | 62 | 250 |
| Potassium | | 6700 | | 81 | 500 |
| Magnesium | | 36300 | | 49 | 500 |
| Manganese | | 11300 | | 2.3 | 15 |
| Sodium | | 87000 | | 50 | 500 |
| Nickel | | 10 | U | 1.4 | 10 |
| Lead | | 10 | Ŭ | 3.0 | 10 |
| Antimony | | 40 | Ŭ | 8.8 | 40 |
| Selenium | | 30 | Ū | 3.2 | 30 |
| Thallium | | 30 | Ū | 8.0 | 30 |
| Vanadium | | 1.2 | J | 1.2 | 10 |
| Zinc | | 50 | U | 7.0 | 50 |
| | | 7470A Mercury (CVAA | N) | | |
| Method: | 7470A | Analysis Batch: 220-24287 | Instrum | nent ID: | Perkin Elmer FIMS |
| Preparation: | 7470A | Prep Batch: 220-24275 | Lab Fil | | N/A |
| Dilution: | 1.0 | | | Veight/Volume: | |
| Date Analyzed: | 02/12/2009 1402 | | | Veight/Volume: | |
| Date Prepared: | 02/12/2009 1200 | | Find V | veigniv volume: | 50 mL |
| Bate i Tepareu. | | | | | |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
| Mercury | 1997 - The Content Content of Content of the Content of | 0.20 | U | 0.090 | 0.20 |

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-7-11

| Lab Sample ID:
Client Matrix: | 220-7988-6
Water | | Date Sampled: 02/02/2009 1215
Date Received: 02/06/2009 0950 | | | |
|--|---|--|--|----|--|--|
| | | 6010B Metals (ICP) | | | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 6010B
3010A
1.0
02/10/2009 1223
02/09/2009 1230 | Analysis Batch: 220-24200
Prep Batch: 220-24177 | Instrument ID:
Lab File ID:
Initial Weight/Volume
Final Weight/Volume | | | |
| Analvte | | Result (ug/t) | | DI | | |

| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
|----------------|-----------------|---------------------------|-----------|----------------|----------------|
| Silver | | 10 | U | 1.3 | 10 |
| Aluminum | | 500 | U | 47 | 500 |
| Arsenic | | 20 | U | 4.4 | 20 |
| Barium | | 86 | | 1.2 | 10 |
| Beryllium | | 10 | U | 1.1 | 10 |
| Calcium | | 102000 | | 62 | 500 |
| Cadmium | | 10 | U | 2.8 | 10 |
| Cobalt | | 1.9 | J | 1.4 | 10 |
| Chromium | | 10 | U | 1.0 | 10 |
| Copper | | 10 | U | 1.4 | 10 |
| ron | | 140 | J | 62 | 250 |
| Potassium | | 7500 | | 81 | 500 |
| Magnesium | | 37100 | | 49 | 500 |
| Manganese | | 1500 | | 2.3 | 15 |
| Nickel | | 3.0 | J | 1.4 | 10 |
| ead | | 10 | U | 3.0 | 10 |
| Antimony | | 40 | U | 8.8 | 40 |
| Selenium | | 30 | U | 3.2 | 30 |
| Thallium | | 30 | U | 8.0 | 30 |
| /anadium | | 10 | U | 1.2 | 10 |
| Zinc | | 50 | U | 7.0 | 50 |
| Aethod: | 6010B | Analysis Batch: 220-24200 | Instrum | ent ID: | TJA Trace ICAP |
| Preparation: | 3010A | Prep Batch: 220-24177 | Lab Fil | e ID: | W021009 |
| Dilution: | 5.0 | | | Veight/Volume: | 50 mL |
| Date Analyzed: | 02/10/2009 1246 | | | /eight/Volume: | 50 mL |
| Date Prepared: | 02/09/2009 1230 | | | oigne volume. | |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
| Sodium | | 183000 | | 250 | 2500 |

Client: Joseph C. Lu Eng & Land Surveying PC

| Client Sample ID: | NI-MW-7-11 |
|-------------------|------------|
|-------------------|------------|

| Lab Sample ID:
Client Matrix: | 220-7988-6
Water | | Date Sampled: 02/02/2009 1215
Date Received: 02/06/2009 0950 | | |
|--|---|--|---|----------|--|
| | | 7470A Mercury (CVAA |) | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 7470A
7470A
1.0
02/12/2009 1403
02/12/2009 1200 | Analysis Batch: 220-24287
Prep Batch: 220-24275 | | 5111 101 | Perkin Elmer FIMS
N/A
25 mL
50 mL |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
| Mercury | NY 2017 IN IN INSTANCES IN THE INTERNAL IN THE INTERNAL INFORMATION IN THE INTERNAL INFORMATION IN THE I | 0.20 | U | 0.090 | 0.20 |

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-8-12

| Lab Sample ID:
Client Matrix: | 220-7988-7
Water | | • | | 02/02/2009 1215
02/06/2009 0950 |
|--|---|--|-----------|-----|------------------------------------|
| | | 6010B Metals (ICP) | | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 6010B
3010A
1.0
02/10/2009 1252
02/09/2009 1230 | Analysis Batch: 220-24200
Prep Batch: 220-24177 | | | |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |

| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
|--------------------|-----------------|---------------------------|-----------|----------------|----------------|
| Silver | | 10 | U | 1.3 | 10 |
| luminum | | 500 | U | 47 | 500 |
| Arsenic | | 20 | U | 4.4 | 20 |
| Barium | | 420 | | 1.2 | 10 |
| Beryllium | | 10 | U | 1.1 | 10 |
| Calcium | | 320000 | | 62 | 500 |
| Cadmium | | 10 | U | 2.8 | 10 |
| Cobalt | | 4.0 | J | 1.4 | 10 |
| Chromium | | 10 | U | 1.0 | 10 |
| Copper | | 10 | U | 1.4 | 10 |
| ron | | 5300 | | 62 | 250 |
| Potassium | | 20600 | | 81 | 500 |
| lagnesium | | 77500 | | 49 | 500 |
| <i>l</i> langanese | | 18300 | | 2.3 | 15 |
| lickel | | 2.9 | J | 1.4 | 10 |
| .ead | | 10 | U | 3.0 | 10 |
| ntimony | | 40 | U | 8.8 | 40 |
| Selenium | | 30 | U | 3.2 | 30 |
| hallium | | 30 | U | 8.0 | 30 |
| 'anadium | | 10 | U | 1.2 | 10 |
| inc | | 50 | U | 7.0 | 50 |
| lethod: | 6010B | Analysis Batch: 220-24359 | Instrum | ent ID: | TJA Trace ICAP |
| reparation: | 3010A | Prep Batch: 220-24177 | Lab Fil | e ID: | W021609 |
| ilution: | 10 | | | Veight/Volume: | 50 mL |
| Date Analyzed: | 02/16/2009 1539 | | | /eight/Volume: | 50 mL |
| ate Prepared: | 02/09/2009 1230 | | | olgin volume. | 50 ML |
| | | | | | |
| nalyte | | Result (ug/L) | Qualifier | MDL | RL |
| odium | | 1140000 | **** | 500 | 5000 |

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-8-12

| Lab Sample ID:
Client Matrix: | 220-7988-7
Water | , | | - | 02/02/2009 1215
02/06/2009 0950 |
|--|---|--|-----------|-------|--|
| | | 7470A Mercury (CVAA | .) | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 7470A
7470A
1.0
02/12/2009 1409
02/12/2009 1200 | Analysis Batch: 220-24287
Prep Batch: 220-24275 | | | Perkin Elmer FIMS
N/A
25 mL
50 mL |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
| Mercury | | 0.20 | U | 0.090 | 0.20 |

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-10-11

| Lab Sample ID:
Client Matrix: | 220-7988-8
Water | | | | 2/02/2009 1420
2/06/2009 0950 |
|--|---|--|-----------|----------------|---|
| | | 6010B Metals (ICP) | | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 6010B
3010A
1.0
02/10/2009 1257
02/09/2009 1230 | Analysis Batch: 220-24200
Prep Batch: 220-24177 | | | TJA Trace ICAP
W021009
50 mL
50 mL |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
| Silver | | 10 | U | 1.3 | 10 |
| Aluminum | | 240 | J | 47 | 500 |
| Arsenic | | 20 | U | 4.4 | 20 |
| Barium | | 56 | | 1.2 | 10 |
| Beryllium | | 10 | U | 1.1 | 10 |
| Calcium | | 67100 | | 62 | 500 |
| Cadmium | | 10 | U | 2.8 | 10 |
| Cobalt | | 10 | U | 1.4 | 10 |
| Chromium | | 10 | U | 1.0 | 10 |
| Copper | | 10 | U | 1.4 | 10 |
| Iron | | 1200 | | 62 | 250 |
| Potassium | | 3600 | | 81 | 500 |
| Magnesium | | 34400 | | 49 | 500 |
| Manganese | | 440 | | 2.3 | 15 |
| Sodium | | 62400 | | 50 | 500 |
| Nickel | | 31 | | 1.4 | 10 |
| Lead | | 10 | U | 3.0 | 10 |
| Antimony | | 40 | U | 8.8 | 40 |
| Selenium | | 30 | U | 3.2 | 30 |
| Thallium | | 30 | U | 8.0 | 30 |
| Vanadium | | 10 | U | 1.2 | 10 |
| Zinc | | 45 | J | 7.0 | 50 |
| •• • • | | 7470A Mercury (CVAA | 7) | | |
| Method: | 7470A | Analysis Batch: 220-24287 | Instrum | ent ID: | Perkin Elmer FIMS |
| Preparation: | 7470A | Prep Batch: 220-24275 | Lab File | e ID: | N/A |
| Dilution: | 1.0 | | Initial W | /eight/Volume: | 25 mL |
| Date Analyzed: | 02/12/2009 1410 | | | /eight/Volume: | 50 mL |
| Date Prepared: | 02/12/2009 1200 | | | | |
| A | | Result (ug/L) | Qualifier | MDL | RL |
| Analyte | | (ug/L) | aaamoi | | |
| Analyte
Mercury | son han stand wat wat wat and a proper to the transmission of the stand stand at the stand stand stand stand st | 0.20 | U | 0.090 | 0.20 |

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-11-10

| Lab Sample ID:
Client Matrix: | 220-7988-9
Water | | | • | 02/02/2009 1438
02/06/2009 0950 |
|--|---|--|-----------|-----|---|
| | | 6010B Metals (ICP) | | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 6010B
3010A
1.0
02/10/2009 1303
02/09/2009 1230 | Analysis Batch: 220-24200
Prep Batch: 220-24177 | | | TJA Trace ICAP
W021009
50 mL
50 mL |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |

| - | | (-3,-) | Guaintoi | WIDE | |
|----------------|---|---------------------------|------------|-----------------|----------------|
| Silver | | 10 | U | 1.3 | 10 |
| Aluminum | | 130 | J | 47 | 500 |
| Arsenic | | 20 | U | 4.4 | 20 |
| Barium | | 110 | | 1.2 | 10 |
| Beryllium | | 10 | U | 1.1 | 10 |
| Calcium | | 139000 | | 62 | 500 |
| Cadmium | | 10 | U | 2.8 | 10 |
| Cobalt | | 2.2 | J | 1.4 | 10 |
| Chromium | | 10 | U | 1.0 | 10 |
| Copper | | 10 | U | 1.4 | 10 |
| ron | | 140 | J | 62 | 250 |
| Potassium | | 8200 | | 81 | 500 |
| Magnesium | | 44000 | | 49 | 500 |
| Manganese | | 2600 | | 2.3 | 15 |
| Nickel | | 10 | U | 1.4 | 10 |
| _ead | | 10 | U | 3.0 | 10 |
| Antimony | | 40 | U | 8.8 | 40 |
| Selenium | | 30 | U | 3.2 | 30 |
| Thallium | | 30 | U | 8.0 | 30 |
| ∕anadium | | 10 | U | 1.2 | 10 |
| Zinc | | 50 | U | 7.0 | 50 |
| Method: | 6010B | Analysis Batch: 220-24359 | Instrum | nent ID: | TJA Trace ICAP |
| Preparation: | 3010A | Prep Batch: 220-24177 | Lab Fil | e ID: | W021609 |
| Dilution: | 5.0 | , | | Veight/Volume: | 50 mL |
| Date Analyzed: | 02/16/2009 1545 | | | Veight/Volume: | |
| Date Prepared: | 02/09/2009 1230 | | 1 11 ICI V | eignir volunie. | 50 mL |
| | | | | | |
| Analyte | *************************************** | Result (ug/L) | Qualifier | MDL | RL |
| Sodium | | 266000 | | 250 | 2500 |
| | | | | | |

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-11-10

Job Number: 220-7988-1 Sdg Number: 220-7988

| Lab Sample ID:
Client Matrix: | 220-7988-9
Water | | | | 02/02/2009 1438
02/06/2009 0950 | | | |
|--|---|--|-----------|-------|--|--|--|--|
| | 7470A Mercury (CVAA) | | | | | | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 7470A
7470A
1.0
02/12/2009 1411
02/12/2009 1200 | Analysis Batch: 220-24287
Prep Batch: 220-24275 | | | Perkin Elmer FIMS
N/A
25 mL
50 mL | | | |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL | | | |
| Mercury | | 0.20 | U | 0.090 | 0.20 | | | |

.

Client: Joseph C. Lu Eng & Land Surveying PC

| Client Sample ID: | NI-MW-12-12 |
|-------------------|-------------|
|-------------------|-------------|

| Lab Sample ID:
Client Matrix: | 220-7988-10
Water | | | | 02/03/2009 1325
02/06/2009 0950 |
|--|---|--|-----------|-----|---|
| | | 6010B Metais (ICP) | | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 6010B
3010A
1.0
02/10/2009 1320
02/09/2009 1230 | Analysis Batch: 220-24200
Prep Batch: 220-24177 | | | TJA Trace ICAP
W021009
50 mL
50 mL |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |

| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
|----------------|-----------------|---------------------------|---|----------------|----------------|
| Silver | | 10 | U | 1.3 | 10 |
| Aluminum | | 130 | J | 47 | 500 |
| Arsenic | | 20 | U | 4.4 | 20 |
| Barium | | 150 | | 1.2 | 10 |
| Beryllium | | 10 | U | 1.1 | 10 |
| Calcium | | 136000 | | 62 | 500 |
| Cadmium | | 10 | U | 2.8 | 10 |
| Cobalt | | 10 | U | 1.4 | 10 |
| Chromium | | 10 | U | 1.0 | 10 |
| Copper | | 10 | U | 1.4 | 10 |
| ron | | 1300 | | 62 | 250 |
| Potassium | | 7000 | | 81 | 500 |
| Magnesium | | 50000 | | 49 | 500 |
| Manganese | | 1500 | | 2.3 | 15 |
| Vickel | | 3.6 | J | 1.4 | 10 |
| ead | | 10 | U | 3.0 | 10 |
| Antimony | | 40 | U | 8.8 | 40 |
| Selenium | | 30 | U | 3.2 | 30 |
| Fhallium | | 30 | U | 8.0 | 30 |
| /anadium | | 10 | U | 1.2 | 10 |
| Zinc | | 50 | U | 7.0 | 50 |
| Method: | 6010B | Analysis Batch: 220-24359 | Instrum | ent ID. | TJA Trace ICAP |
| Preparation: | 3010A | Prep Batch: 220-24177 | Lab File | | W021609 |
| Dilution: | 5.0 | | | veight/Volume: | 50 mL |
| Date Analyzed: | 02/16/2009 1551 | | | | |
| Date Prepared: | 02/09/2009 1230 | | Final W | /eight/Volume: | 50 mL |
| | 02/03/2003 1200 | | | | |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL |
| Sodium | | 258000 | *************************************** | 250 | 2500 |
| | | | | | |

Client: Joseph C. Lu Eng & Land Surveying PC

Client Sample ID: NI-MW-12-12

| Lab Sample ID:
Client Matrix: | 220-7988-10
Water | | | | 02/03/2009 1325
02/06/2009 0950 | | | |
|--|---|--|-----------|-------|------------------------------------|--|--|--|
| | 7470A Mercury (CVAA) | | | | | | | |
| Method:
Preparation:
Dilution:
Date Analyzed:
Date Prepared: | 7470A
7470A
1.0
02/12/2009 1412
02/12/2009 1200 | Analysis Batch: 220-24287
Prep Batch: 220-24275 | | | | | | |
| Analyte | | Result (ug/L) | Qualifier | MDL | RL | | | |
| Mercury | | 0.20 | U | 0.090 | 0.20 | | | |

THE LEADER IN ENVIRONMENTAL TESTING

Analytical Report

Work Order: RSD0878

Project Description Nichol Inn ERP Site (Category B)

For:

Laura Smith

Joseph C. Lu Eng & Land Surveying PC 2230 Penfield Road Penfield, NY 14526

Richard Lafond Project Manager Richard.Lafond@testamericainc.com

Monday, May 4, 2009

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Joseph C. Lu Eng & Land Surveying PC 2230 Penfield Road Penfield, NY 14526 Work Order: RSD0878

Received: 04 Reported: 05

ed: 04/22/09 ed: 05/04/09 11:21

Project: Nichol Inn ERP Site (Category B) Project Number: LU ENG

TestAmerica Buffalo Current Certifications

As of 1/27/2009

| STATE | Program | Cert # / Lab ID |
|----------------|----------------------------------|------------------|
| Arkansas | CWA, RCRA, SOIL | 88-0686 |
| California* | NELAP CWA, RCRA | 01169CA |
| Connecticut | SDWA, CWA, RCRA, SOIL | PH-0568 |
| Florida* | NELAP CWA, RCRA | E87672 |
| Georgia* | SDWA,NELAP CWA, RCRA | 956 |
| Illinois* | NELAP SDWA, CWA, RCRA | 200003 |
| Iowa | SW/CS | 374 |
| Kansas* | NELAP SD WA, C WA, R CRA | E-10187 |
| Kentucky | SD WA | 90029 |
| Kentucky UST | UST | 30 |
| Louisiana* | NELAP CWA, RCRA | 2031 |
| Maine | SDWA, CWA | N Y0044 |
| Maryland | SDWA | 294 |
| Massachusetts | SDWA, CWA | M-NY044 |
| Michigan | SD WA | 9937 |
| Minnesota | SDWA,CWA, RCRA | 036-999-337 |
| New Hampshire* | NELAP SDWA, CWA | 233701 |
| New Jersey* | NELAP, SDWA, CWA, RCRA, | NY455 |
| New York* | NELAP, AIR, SDWA, CWA, RCRA, CLP | 10026 |
| Oklahoma | CWA, RCRA | 9421 |
| Pennsylvania * | NELAP CWA,RCRA | 68-00281 |
| Tennessee | SDWA | 02970 |
| Texas * | NELAP CWA, RCRA | T104704412-08-TX |
| USDA | FOREIGN SOIL PERMIT | S-41579 |
| USDOE | Department of Energy | DOECAP-STB |
| Virginia | SDWA | 278 |
| Washington* | NELAP CWA,RCRA | C1677 |
| Wisconsin | CWA, RCRA | 998310390 |
| West Virginia | CWA,RCRA | 252 |

\*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accre ditation is required or available. Any exceptions to NELAP requirements are noted in this report.

THE LEADER IN ENVIRONMENTAL TESTING

Joseph C. Lu Eng & Land Surveying PC 2230 Penfield Road Penfield, NY 14526 Work Order: RSD0878

Received: 04/22/09 Reported: 05/04/09 11:21

Project: Nichol Inn ERP Site (Category B) Project Number: LU ENG

Case Narrative

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Joseph C. Lu Eng & Land Surveying PC 2230 Penfield Road Penfield, NY 14526

Work Order: RSD0878

Project: Nichol Inn ERP Site (Category B) Project Number: LU ENG Received: 04/22/09 Reported: 05/04/09 11:21

DATA QUALIFIERS AND DEFINITIONS

- B Analyte was detected in the associated Method Blank.
- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- L5 Analyte recovery outside of specified criteria. Individual analyte criteria exceedences allowed for multi-component analyses without disqualification of data per NELAC Standard, DOD QSM and/or AFCEE QAPP.

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

.

| Joseph C. Lu Eng & Land Surveying PC | Work Order: RSD0878 | Received: | 04/22/09 |
|--------------------------------------|---|-----------|----------------|
| 2230 Penfield Road | | Reported: | 05/04/09 11:21 |
| Penfield, NY 14526 | Project: Nichol Inn ERP Site (Category B)
Project Number: LU ENG | | |

| | | Executiv | ve Summ | ary - [| Detectio | ons | | | | |
|---|------------------|--------------------|-----------|---------|----------|--------------------|------------------|-----------|---------------|--------|
| Analyte | Sample
Result | Data
Qualifiers | Rpt Limit | MDL | Units | Dilution
Factor | Date
Analyzed | Analyst | Seq/
Batch | Method |
| Sample ID: RSD0878-01 (NI-MW-
Volatile Organic Compounds by EPA | , | | | | Sample | ed: 04/21/(| 9 12:10 | Recvd: 04 | /22/09 13 | 3:07 |
| Acetone | 3.7 | J | 5.0 | 1.3 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| Sample ID: RSD0878-04 (NI-PW-1
Volatile Organic Compounds by EPA | • | | | | Sample | ed: 04/21/0 | 9 12:30 | Recvd: 04 | V/22/09 13 | 3:07 |
| Carbon disulfide | 0.70 | J | 1.0 | 0.19 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B |
| Sample ID: RSD0878-05 (TRIP BL
Volatile Organic Compounds by EPA | • | | | | Sample | ed: 04/21/0 |)9 | Recvd: 04 | ¥/22/09 13 | 3:07 |
| Carbon disulfide | 0.71 | J | 1.0 | 0.19 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |

THE LEADER IN ENVIRONMENTAL TESTING

Joseph C. Lu Eng & Land Surveying PC 2230 Penfield Road Penfield, NY 14526 Work Order: RSD0878

Project: Nichol Inn ERP Site (Category B) Project Number: LU ENG

Sample Summary

Received:

Reported:

04/22/09

05/04/09 11:21

| SAMPLE IDENTIFICATION | LAB NUMBER | Client Matrix | Date/Time
Sampled | Date/Time
Received |
|-----------------------|------------|----------------------|----------------------|-----------------------|
| NI-MW-13-13 | RSD0878-01 | Water | 04/21/09 12:10 | 04/22/09 13:07 |
| NI-PW-1 | RSD0878-04 | Water | 04/21/09 12:30 | 04/22/09 13:07 |
| TRIP BLANK | RSD0878-05 | Water | 04/21/09 | 04/22/09 13:07 |

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Joseph C. Lu Eng & Land Surveying PC 2230 Penfield Road Penfield, NY 14526

Work Order: RSD0878

Received: 04/22/09 Reported: 05/04/09 11:21

Project: Nichol Inn ERP Site (Category B) Project Number: LU ENG

| Analytical Report | | | | | | | | | | |
|----------------------------------|----------------|------------|-----------|--------------|-------|--------------|----------------------------------|----------|--------------------|----------------|
| | Sample | Data | | | | Dilution | Date | | Seq/ | |
| Analyte | Result | Qualifiers | Rpt Limit | MDL | Units | Factor | Analyzed | Analys | t Batch | Method |
| Sample ID: RSD0878-01 (NI-MW | -13-13 - Wateı | ') | | | Samp | led: 04/21/ | 09 12:10 | 04/22/09 | 13:07 | |
| Volatile Organic Compounds by EP | A 8260B | | | | | | | | | |
| 1,1,1-Trichloroethane | ND | | 1.0 | 0.26 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 1,1,2,2-Tetrachloroethane | ND | | 1.0 | 0.21 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 1,1,2-Trichloroethane | ND | | 1.0 | 0.23 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 1,1,2-Trichlorotrifluoroethane | ND | | 1.0 | 0.31 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 1,1-Dichloroethane | ND | | 1.0 | 0.75 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 1,1-Dichloroethene | ND | | 1.0 | 0.29 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 1,2,4-Trichlorobenzene | ND | | 1.0 | 0.41 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 1,2-Dibromo-3-chloropropane | ND | | 1.0 | 1.0 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 1,2-Dibromoethane (EDB) | ND | | 1.0 | 0.17 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 1,2-Dichlorobenzene | ND | | 1.0 | 0.20 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 1,2-Dichloroethane | ND | | 1.0 | 0.21 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 1,2-Dichloropropane | ND | | 1.0 | 0.14 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 1.3.5-Trichlorobenzene | ND | | 1.0 | 0.45 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 1,3-Dichlorobenzene | ND | | 1.0 | 0.16 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 1,3-Dichloropropane | ND | | 1.0 | 0.21 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 1,4-Dichlorobenzene | ND | | 1.0 | 0.16 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 2-Butanone (MEK) | ND | | 5.0 | 1.3 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 2-Hexanone | ND | | 5.0 | 1.2 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| 4-Methyl-2-pentanone (MIBK) | ND | | 5.0 | 0.91 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| Acetone | 3.7 | J | 5.0 | 1.3 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B
8260B |
| Benzene | ND | | 1.0 | 0.16 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B
8260B |
| Bromodichloromethane | ND | | 1.0 | 0.39 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B
8260B |
| Bromoform | ND | | 1.0 | 0.26 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | |
| Bromomethane | ND | | 1.0 | 0.28 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B
8260B |
| Carbon disulfide | ND | | 1.0 | 0.19 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | |
| Carbon Tetrachloride | ND | | 1.0 | 0.27 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B
8260B |
| Chlorobenzene | ND | | 1.0 | 0.32 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| Chlorodibromomethane | ND | | 1.0 | 0.32 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133
9D30133 | 8260B
8260B |
| Chloroethane | ND | | 1.0 | 0.32 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | |
| Chloroform | ND | | 1.0 | 0.34 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133
9D30133 | 8260B |
| Chloromethane | ND | | 1.0 | 0.35 | ug/L | 1.00 | 04/30/09 23:29 | | 9D30133
9D30133 | 8260B
8260B |
| cis-1,2-Dichloroethene | ND | | 1.0 | 0.16 | ug/L | 1.00 | 04/30/09 23:29 | | 9D30133
9D30133 | |
| cis-1,3-Dichloropropene | ND | | 1.0 | 0.36 | ug/L | 1.00 | 04/30/09 23:29 | | 9D30133
9D30133 | 8260B |
| Cyclohexane | ND | | 1.0 | 0.53 | ug/L | 1.00 | 04/30/09 23:29 | | 9D30133
9D30133 | 8260B |
| Dichlorodifluoromethane | ND | | 1.0 | 0.29 | ug/L | 1.00 | 04/30/09 23:29 | | 9D30133
9D30133 | 8260B |
| Ethylbenzene | ND | | 1.0 | 0.18 | ug/L | 1.00 | 04/30/09 23:29 | ND
ND | 9D30133
9D30133 | 8260B |
| Isopropylbenzene | ND | | 1.0 | 0.19 | ug/L | 1.00 | 04/30/09 23:29 | | | 8260B |
| Methyl Acetate | ND | | 1.0 | 0.17 | ug/L | 1.00 | 04/30/09 23:29 | | 9D30133 | 8260B |
| Methyl tert-Butyl Ether | ND | | 1.0 | 0.16 | ug/L | 1.00 | 04/30/09 23:29 | | 9D30133 | 8260B |
| Methylcyclohexane | ND | | 1.0 | 0.50 | - | 1.00 | 04/30/09 23:29 | | 9D30133 | 8260B |
| Methylene Chloride | ND | | 1.0 | 0.44 | ug/L | 1.00 | 04/30/09 23:29 | | 9D30133 | 8260B |
| Styrene | ND | | 1.0 | 0.18 | ug/L | 1.00 | 04/30/09 23:29 | | 9D30133 | 8260B |
| Tetrachloroethene | ND | | 1.0 | 0.36 | ug/L | | 04/30/09 23:29 | | 9D30133 | 8260B |
| Toluene | ND | | 1.0 | 0.50 | ug/L | 1.00
1.00 | 04/30/09 23:29 04/30/09 23:29 | | 9D30133 | 8260B |
| trans-1,2-Dichloroethene | ND | | 1.0 | 0.13 | ug/L | | | | 9D30133 | 8260B |
| trans-1,3-Dichloropropene | ND | | 1.0 | 0.13 | ug/L | 1.00 | 04/30/09 23:29
04/30/09 23:29 | | 9D30133 | 8260B |
| Trichloroethene | ND | | 1.0 | 0.37 | ug/L | 1.00 | | | 9D30133 | 8260B |
| Trichlorofluoromethane | ND | | 1.0 | 0.18 | ug/L | 1.00 | 04/30/09 23:29 | | 9D30133 | 8260B |
| Vinyl chloride | ND | | 1.0 | | ug/L | 1.00 | 04/30/09 23:29 | | 9D30133 | 8260B |
| Xylenes, total | ND | | 2.0 | 0.24
0.66 | ug/L | 1.00 | 04/30/09 23:29 | | 9D30133 | 8260B |
| Ayiones, total | | | 2.0 | 0.00 | ug/L | 1.00 | 04/30/09 23:29 | ND | 9D30133 | 8260B |

www.testamericainc.com

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

| Joseph C. Lu Eng & Land Surveying
2230 Penfield Road
Penfield, NY 14526 | PC | Work Order: RSD0878
Project: Nichol Inn ERP Site (Category B)
Project Number: LU ENG | | | | | Received
Reported | | /09
/09 11:21 | |
|---|------------------|--|-----------|---------|-------|--------------------|----------------------|----------|------------------|--------|
| | | | Analyti | cal Rep | ort | | | | | |
| Analyte | Sample
Result | Data
Qualifiers | Rpt Limit | MDL | Units | Dilution
Factor | Date
Analyzed | Analyst | Seq/
Batch | Method |
| ample ID: RSD0878-01 (NI-MW-1 | 3-13 - Wate | r) - cont. | | | Samp | led: 04/21 | /09 12:10 | Recvd: 0 | 4/22/09 | 13:07 |
| Volatile Organic Compounds by EPA | 8260B - con | <u>t.</u> | | | | | | | | |
| Surr: 1,2-Dichloroethane-d4 (66-137%) | 101 % | | | | | | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| Surr: 4-Bromofluorobenzene (73-120%) | 107 % | | | | | | 04/30/09 23:29 | ND | 9D30133 | 8260B |
| Surr: Toluene-d8 (71-126%) | 115 % | | | | | | 04/30/09 23:29 | ND | 9D30133 | 8260B |

TestAmerico

THE LEADER IN ENVIRONMENTAL TESTING

Joseph C. Lu Eng & Land Surveying PC 2230 Penfield Road Penfield, NY 14526

Work Order: RSD0878

Received: 04/22/09 Reported: 05/04/09 11:21

Project: Nichol Inn ERP Site (Category B) Project Number: LU ENG

| Analytical Report | | | | | | | | | | | |
|---------------------------------|------------------|--------------------|-----------|------|-------------------------|--------------------|------------------|-----------------------|--------------------|----------------|--|
| Analyte | Sample
Result | Data
Qualifiers | Rpt Limit | MDL | Units | Dilution
Factor | Date
Analyzed | Δnalvs | Seq/
st Batch | Madha al | |
| Sample ID: RSD0878-04 (NI-PV | | | | | | | | | | Method | |
| | v-I - vvalel) | | | | Sampled: 04/21/09 12:30 | | | Recvd: 04/22/09 13:07 | | | |
| Volatile Organic Compounds by I | EPA 8260B | | | | | | | | | | |
| 1,1,1-Trichloroethane | ND | | 1.0 | 0.26 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 1,1,2,2-Tetrachloroethane | ND | | 1.0 | 0.21 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 1,1,2-Trichloroethane | ND | | 1.0 | 0.23 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 1,1,2-Trichlorotrifluoroethane | ND | | 1.0 | 0.31 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 1,1-Dichloroethane | ND | | 1.0 | 0.75 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 1,1-Dichloroethene | ND | | 1.0 | 0.29 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 1,2,4-Trichlorobenzene | ND | | 1.0 | 0.41 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 1,2-Dibromo-3-chloropropane | ND | | 1.0 | 1.0 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 1,2-Dibromoethane (EDB) | ND | | 1.0 | 0.17 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 1,2-Dichlorobenzene | ND | | 1.0 | 0.20 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 1,2-Dichloroethane | ND | | 1.0 | 0.21 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 1,2-Dichloropropane | ND | | 1.0 | 0.14 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 1,3,5-Trichlorobenzene | ND | | 1.0 | 0.45 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 1,3-Dichlorobenzene | ND | | 1.0 | 0.16 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 1,3-Dichloropropane | ND | | 1.0 | 0.21 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 1,4-Dichlorobenzene | ND | | 1.0 | 0.16 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 2-Butanone (MEK) | ND | | 5.0 | 1.3 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 2-Hexanone | ND | | 5.0 | 1.2 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| 4-Methyl-2-pentanone (MIBK) | ND | | 5.0 | 0.91 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| Acetone | ND | | 5.0 | 1.3 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| Benzene | ND | | 1.0 | 0.16 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| Bromodichloromethane | ND | | 1.0 | 0.39 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| Bromoform | ND | | 1.0 | 0.26 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| Bromomethane | ND | | 1.0 | 0.28 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| Carbon disulfide | 0.70 | J | 1.0 | 0.19 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| Carbon Tetrachloride | ND | | 1.0 | 0.27 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B
8260B | |
| Chlorobenzene | ND | | 1.0 | 0.32 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | | |
| Chlorodibromomethane | ND | | 1.0 | 0.32 | ug/L
ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B
8260B | |
| Chloroethane | ND | | 1.0 | 0.32 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | | |
| Chloroform | ND | | 1.0 | 0.34 | • | 1.00 | 05/01/09 00:43 | | 9D30133
9D30133 | 8260B | |
| Chloromethane | ND | | 1.0 | 0.35 | ug/L | 1.00 | 05/01/09 00:43 | | | 8260B | |
| cis-1,2-Dichloroethene | ND | | 1.0 | 0.16 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| cis-1,3-Dichloropropene | ND | | 1.0 | 0.36 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| Cyclohexane | ND | | 1.0 | 0.53 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| Dichlorodifluoromethane | ND | | 1.0 | 0.33 | ug/L | 1.00 | | | 9D30133 | 8260B | |
| | ND | | 1.0 | 0.29 | ug/L | | 05/01/09 00:43 | | 9D30133 | 8260B | |
| Ethylbenzene | ND | | 1.0 | 0.18 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| | ND | | | | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| Methyl Acetate | ND | | 1.0 | 0.17 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| Methyl tert-Butyl Ether | ND | | 1.0 | 0.16 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| Methylcyclohexane | ND | | 1.0 | 0.50 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| Methylene Chloride | | | 1.0 | 0.44 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| Styrene | ND | | 1.0 | 0.18 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| Tetrachloroethene | ND | | 1.0 | 0.36 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| Toluene | ND | | 1.0 | 0.51 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| trans-1,2-Dichloroethene | ND | | 1.0 | 0.13 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| trans-1,3-Dichloropropene | ND | | 1.0 | 0.37 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| Trichloroethene | ND | | 1.0 | 0.18 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| Trichlorofluoromethane | ND | | 1.0 | 0.15 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| Vinyl chloride | ND | | 1.0 | 0.24 | ug/L | 1.00 | 05/01/09 00:43 | | 9D30133 | 8260B | |
| Xylenes, total | ND | | 2.0 | 0.66 | ug/L | 1.00 | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| | | | | | | | | | | | |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

| Joseph C. Lu Eng & Land Surveying PC
2230 Penfield Road | | Work Order: RSD0878 | | | | | | Received
Reported | | 04/22/09
05/04/09 11:21 | |
|--|------------------|---|-----------|---------|-------|--------------------|------------------|----------------------|---------------|----------------------------|--|
| Penfield, NY 14526 | | Project: Nichol Inn ERP Site (Category B)
Project Number: LU ENG | | | | | | | | | |
| | | | Analyti | cal Rep | ort | | | | | | |
| Analyte | Sample
Result | Data
Qualifiers | Rpt Limit | MDL | Units | Dilution
Factor | Date
Analyzed | Analyst | Seq/
Batch | Method | |
| Sample ID: RSD0878-04 (NI-PW-1 | - Water) - c | ont. | | | Samp | led: 04/21 | /09 12:30 | Recvd: (|)4/22/09 | 13:07 | |
| Volatile Organic Compounds by EPA | 8260B - con | <u>t.</u> | | | | | | | | | |
| Surr: 1,2-Dichloroethane-d4 (66-137%) | 97 % | | | | | | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| Surr: 4-Bromofluorobenzene (73-120%) | 104 % | | | | | | 05/01/09 00:43 | ND | 9D30133 | 8260B | |
| Surr: Toluene-d8 (71-126%) | 111 % | | | | | | 05/01/09 00:43 | ND | 9D30133 | 8260B | |

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Joseph C. Lu Eng & Land Surveying PC 2230 Penfield Road Penfield, NY 14526

Work Order: RSD0878

Received: 04/22/09 Reported: 05/04/09 11:21

Project: Nichol Inn ERP Site (Category B) Project Number: LU ENG

| Analytical Report | | | | | | | | | | |
|--------------------------------|----------------|------|--------------|------|-------|------------|----------------|--------|--------------------|--------|
| A | Sample | Data | Dud Literati | MDI | | Dilution | Date | _ | Seq/ | |
| Analyte | Result | | Rpt Limit | MDL | Units | Factor | Analyzed | Analys | t Batch | Method |
| Sample ID: RSD0878-05 (TRIF | P BLANK - Wate | r) | | | Samp | led: 04/21 | /09 | Recvd: | 04/22/09 | 13:07 |
| Volatile Organic Compounds by | EPA 8260B | | | | | | | | | |
| 1,1,1-Trichloroethane | ND | | 1.0 | 0.26 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 1,1,2,2-Tetrachloroethane | ND | | 1.0 | 0.21 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 1,1,2-Trichloroethane | ND | | 1.0 | 0.23 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 1,1,2-Trichlorotrifluoroethane | ND | | 1.0 | 0.31 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 1,1-Dichloroethane | ND | | 1.0 | 0.75 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 1,1-Dichloroethene | ND | | 1.0 | 0.29 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 1,2,4-Trichlorobenzene | ND | | 1.0 | 0.41 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 1,2-Dibromo-3-chloropropane | ND | | 1.0 | 1.0 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 1,2-Dibromoethane (EDB) | ND | | 1.0 | 0.17 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 1,2-Dichlorobenzene | ND | | 1.0 | 0.20 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 1,2-Dichloroethane | ND | | 1.0 | 0.21 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 1,2-Dichloropropane | ND | | 1.0 | 0.14 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 1,3,5-Trichlorobenzene | ND | | 1.0 | 0.45 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 1,3-Dichlorobenzene | ND | | 1.0 | 0.16 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 1,3-Dichloropropane | ND | | 1.0 | 0.21 | ug/L | 1.00 | 05/01/09 01:07 | | 9D30133
9D30133 | |
| 1,4-Dichlorobenzene | ND | | 1.0 | 0.16 | - | 1.00 | 05/01/09 01:07 | ND | | 8260B |
| , | ND | | 5.0 | 1.3 | ug/L | 1.00 | | ND | 9D30133 | 8260B |
| 2-Butanone (MEK) | ND | | 5.0 | 1.3 | ug/L | | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 2-Hexanone | ND | | 5.0 | 0.91 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| 4-Methyl-2-pentanone (MIBK) | ND | | | | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Acetone | ND | | 5.0 | 1.3 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Benzene | | | 1.0 | 0.16 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Bromodichloromethane | ND | | 1.0 | 0.39 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Bromoform | ND | | 1.0 | 0.26 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Bromomethane | ND | | 1.0 | 0.28 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Carbon disulfide | 0.71 | J | 1.0 | 0.19 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Carbon Tetrachloride | ND | | 1.0 | 0.27 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Chlorobenzene | ND | | 1.0 | 0.32 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Chlorodibromomethane | ND | | 1.0 | 0.32 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Chloroethane | ND | | 1.0 | 0.32 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Chloroform | ND | | 1.0 | 0.34 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Chloromethane | ND | | 1.0 | 0.35 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| cis-1,2-Dichloroethene | ND | | 1.0 | 0.16 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| cis-1,3-Dichloropropene | ND | | 1.0 | 0.36 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Cyclohexane | ND | | 1.0 | 0.53 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Dichlorodifluoromethane | ND | | 1.0 | 0.29 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Ethylbenzene | ND | | 1.0 | 0.18 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| lsopropylbenzene | ND | | 1.0 | 0.19 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |
| Methyl Acetate | ND | | 1.0 | 0.17 | ug/L | 1.00 | 05/01/09 01:07 | | 9D30133 | 8260B |
| Methyl tert-Butyl Ether | ND | | 1.0 | 0.16 | ug/L | 1.00 | 05/01/09 01:07 | | 9D30133 | 8260B |
| Methylcyclohexane | ND | | 1.0 | 0.50 | ug/L | 1.00 | 05/01/09 01:07 | | 9D30133 | 8260B |
| Methylene Chloride | ND | | 1.0 | 0.44 | ug/L | 1.00 | 05/01/09 01:07 | | 9D30133 | 8260B |
| Styrene | ND | | 1.0 | 0.18 | ug/L | 1.00 | 05/01/09 01:07 | | 9D30133 | 8260B |
| Tetrachloroethene | ND | | 1.0 | 0.36 | ug/L | 1.00 | 05/01/09 01:07 | | 9D30133 | 8260B |
| Toluene | ND | | 1.0 | 0.51 | ug/L | 1.00 | 05/01/09 01:07 | | 9D30133 | 8260B |
| trans-1,2-Dichloroethene | ND | | 1.0 | 0.13 | - | 1.00 | 05/01/09 01:07 | | 9D30133
9D30133 | |
| trans-1,3-Dichloropropene | ND | | 1.0 | 0.13 | ug/L | 1.00 | 05/01/09 01:07 | | | 8260B |
| , , | ND | | 1.0 | 0.37 | ug/L | | | | 9D30133 | 8260B |
| Trichloroethene | ND | | 1.0 | 0.18 | ug/L | 1.00 | 05/01/09 01:07 | | 9D30133 | 8260B |
| Trichlorofluoromethane | ND | | | | ug/L | 1.00 | 05/01/09 01:07 | | 9D30133 | 8260B |
| Vinyl chloride | ND | | 1.0 | 0.24 | ug/L | 1.00 | 05/01/09 01:07 | | 9D30133 | 8260B |
| Xylenes, total | | | 2.0 | 0.66 | ug/L | 1.00 | 05/01/09 01:07 | ND | 9D30133 | 8260B |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Work Order: RSD0878 Joseph C. Lu Eng & Land Surveying PC 04/22/09 Received: 2230 Penfield Road Reported: 05/04/09 11:21 Penfield, NY 14526 Project: Nichol Inn ERP Site (Category B) Project Number: LU ENG **Analytical Report** Sample Data Dilution Date Seq/ MDL Analyte Result Qualifiers Rpt Limit Units Factor Analyzed Analyst Batch Method Sample ID: RSD0878-05 (TRIP BLANK - Water) - cont. Sampled: 04/21/09 Recvd: 04/22/09 13:07 Volatile Organic Compounds by EPA 8260B - cont. Surr: 1,2-Dichloroethane-d4 (66-137%) 97 % 05/01/09 01:07 ND 9D30133 8260B Surr: 4-Bromofluorobenzene (73-120%) 104 % 05/01/09 01:07 ND 9D30133 8260B Surr: Toluene-d8 (71-126%) 111 % 05/01/09 01:07 8260B 9D30133 ND

| Chain of
Custody Record | | | THE LEADER IN ENVIRONMENTAL TESTING | | |
|--|---|--|---|--|------|
| TAL-4142 (0907)
Client | Project Manager | | | Chain of Custody Number | |
| Address Address Port of Rd. | Vrea Code | x Number | | JCCTCC | |
| City Penfield NY 14501 | Site Contact | hund | Analysis (Attach list if
more space is needed) | | |
| cation (State) | Carrier/WayDill Number
Fed EX RISS | 81 89 3780 5959 X | · · · · · · · · · · · · · · · · · · · | Snecial Instruction | ý |
| Contract Purchase Order (Duche + 48 (D) 208 | Matr | <u>مع بن</u> | | Conditions of Receipt | pt . |
| Sample I.D. No. and Description
(Containers for each sample may be combined on one line) Date | Time
base
isosonph
isosonph
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoson
isoso
isoson
isoso
isoso
isoso
isoso
isoson
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso
isoso | 975
ноем
<i>рочи</i>
ноем
іон
сомн | | | |
| NI-mw-13-13 4/21/09 | 12!10 M | | | | |
| NI- mw-13-13 MS | 2:13 | | | | |
| JM 21-21-21-21-21 | 12:15 | | | | |
| 1-md-IN | 12:30 | | - | | |
| Trip Blank | > | -> | - | | |
| | · · | - | | | |
| | | | | | |
| | | - | | | |
| | · · · | | | | |
| - | | | | | . |
| | | | | | 5. |
| <u>}</u> | | | | | |
| Possible Hazard Identification
X Non-Hazard
Tammable
Skin Imitant
Poison B | Sample Disposal
Unknown | K Disposal By Lab | Months | (A fee may be assessed if samples are retained
longer than 1 month) | |
| Pequired 14 Days 14 Days 14 Days | Mother 10 RD | là H | Irverables | | |
| m knitt | | | T_ Beta | Lale Time | |
| Z. Relinquished By | Date | 2. Received By | | Date | |
| 3. Relinquished By | Date | 3. Received By | | Date | |
| 140 | Le Arrose | * 2.0r | | | |
| DISTRIBUTION: WHITE' Returned to Client with Report. CANARY - Stave with the | s with the Sample; PINK - Field Copy | | | | 1 |

Appendix D Soil Vapor Intrusion Data

Summary of Air Sampling Results Krause Residence 14734 Boyd Cove Rd., Hammondsport Steuben County Populto are Shown in Micrograms Der Cubic M

| | Sub-slab Soil | Indoor | Outdoor | NYSDOH E | Background <sup>1</sup> |
|------------------------|---------------|--------|---------|---------------------|-------------------------|
| | Vapor | | | Indoor <sup>2</sup> | Outdoor <sup>2</sup> |
| Petroleum Related | | | | | |
| 1,2,4-Trimethylbenzene | 0.9 | 0.65 | ND | 0.69 - 4.3 | <0.25 - 0.81 |
| Benzene | 1.4 | 0.36 | 0.45 | 1.1 - 5.9 | 0.57 - 2.3 |
| Ethylbenzene | 1.2 | ND | ND | 0.41 - 2.8 | <0.25 - 0.48 |
| Heptane | 6.9 | ND | ND | 1.0 – 7.6 | <0.25 - 1.0 |
| Hexane | 7.9 | ND | ND | 0.63 – 6.0 | < 0.25 - 0.88 |
| m/p-Xylene | 3.4 | ND | ND | 0.50 - 4.6 | <0.25 - 0.48 |
| o-Xylene | 0.93 | ND | ND | 0.39 - 3.1 | <0.25 - 0.56 |
| Styrene | 0.95 | ND | ND | <0.25 - 0.64 | <0.25 |
| Toluene | 7.6 | 1.2 | 1.7 | 3.5 - 25 | 0.60 - 2.4 |
| Non-petroleum Related | | | | | |
| 1,4-Dioxane | 11 | ND | ND | NA | NA |
| Acetone | 54 | 31 | 16 | 10 - 52 | 3.4 - 14 |
| Carbon disulfide | 0.6 | ND | ND | NA | NA |
| Freon 11 | 1.5 | 4.5 | 1.3 | 1.1 – 5.4 | <0.25 - 2.2 |
| Freon 12 | ND | 3.0 | 2.3 | <0.25 - 4.1 | < 0.25 - 4.2 |
| Isopropyl Alcohol | ND | 2.3 | 2.0 | NA | NA |
| Methyl ethyl ketone | 4.3 | 1.2 | 0.75 | 1.4 - 7.3 | 0.76 - 2.6 |
| Methylene chloride | ND | 0.78 | ND | 0.31 – 6.6 | <0.25 - 0.73 |

All Results are Shown in Micrograms Per Cubic Meter

<sup>1</sup>Summary of Indoor and Outdoor Levels of Volatile Organic Compounds From Fuel Oil Heated Homes in NYS, 1997 to 2003. Unpublished. New York State Department of Health, Bureau of Toxic Substance Assessment. http://www.nyhealth.gov/environmental/indoors/air/fuel\_oil.htm

 $^{2}$ The ranges provided in the table represent the 25th percentile to 75th percentile, (middle half), of the results and are labeled as background. A single value is the minimum reporting limit for that compound, and indicates that more than 75% of the data are below the detection limit. This database is comprised of air testing results from homes where there were no known sources of chemicals or chemical spills.

ND - Not Detected

NA - Not Available

< Means "less than." The number following a "less than sign" (<) is the lowest level the laboratory test can reliably measure (reporting limit).

Summary of Air Sampling Results Sweigart Residence 14728 Boyd Cove Rd., Hammondsport Steuben County All Results are Micrograms Per Cubic Meter

| | Sub-slab | Indoor | Outdoor | NYSDOH E | Background <sup>1</sup> |
|------------------------|------------|--------|---------|---------------------|-------------------------|
| | Soil Vapor | | ouidoor | Indoor <sup>2</sup> | Outdoor <sup>2</sup> |
| Petroleum Related | | | | | |
| 1,2,4-Trimethylbenzene | 1.6 | 4.4 | ND | 0.69 - 4.3 | <0.25 - 0.81 |
| 2,2,4-trimethylpentane | ND | 1.4 | ND | <0.25 - 2.1 | <0.25 - 0.33 |
| 4-Ethyltoluene | ND | 1.1 | ND | NA | NA |
| Benzene | 1.6 | 3.4 | 0.45 | 1.1 - 5.9 | 0.57 - 2.3 |
| Cyclohexane | 5.6 | ND | ND | <0.25 - 2.6 | < 0.25 - 0.43 |
| Ethylbenzene | 1.5 | 2 | ND | 0.41 - 2.8 | <0.25 - 0.48 |
| Heptane | 7.5 | 1.2 | ND | 1.0 – 7.6 | <0.25 - 1.0 |
| Hexane | 8.6 | 3.8 | ND | 0.63 – 6.0 | < 0.25 - 0.88 |
| m/p-Xylene | 4.1 | 6.9 | ND | 0.50 - 4.6 | <0.25 - 0.48 |
| o-Xylene | 1.1 | 2.1 | ND | 0.39 - 3.1 | <0.25 - 0.56 |
| Styrene | 1.5 | 0.69 | ND | < 0.25 - 0.64 | <0.25 |
| 1,3,5-Trimethylbenzene | ND | 0.9 | ND | 0.27-1.7 | < 0.25 - 0.34 |
| Toluene | 8.4 | 11 | 1.7 | 3.5 - 25 | 0.60 - 2.4 |
| Non-petroleum Related | | | | | |
| 1,4-Dichlorobenzene | ND | 1.8 | ND | < 0.25 - 0.54 | <0.25 |
| 1,4-Dioxane | 3.3 | ND | ND | NA | NA |
| Acetone | 17 | 36 | 16 | 10 - 52 | 3.4 - 14 |
| Carbon disulfide | 0.63 | ND | ND | NA | NA |
| Chloromethane | ND | 2.2 | 0.86 | <0.25 - 1.8 | <0.25 - 1.8 |
| Ethyl Acetate | 1.2 | 2.5 | ND | NA | NA |
| Freon 11 | 1.7 | 1.8 | 1.3 | 1.1 – 5.4 | <0.25 - 2.2 |
| Freon 12 | 2.7 | 7.1 | 2.3 | < 0.25 - 4.1 | <0.25 - 4.2 |
| Isopropyl Alcohol | ND | 18 | 2 | NA | NA |
| Methyl ethyl ketone | ND | 3.1 | 0.75 | 1.4 - 7.3 | 0.76 - 2.6 |
| Methylene chloride | ND | ND | ND | 0.31 – 6.6 | < 0.25 - 0.73 |
| Methyl isobutyl ketone | 1.4 | ND | ND | <0.25 - 0.86 | <0.25 |

<sup>1</sup>Summary of Indoor and Outdoor Levels of Volatile Organic Compounds From Fuel Oil Heated Homes in NYS, 1997 to 2003. Unpublished. New York State Department of Health, Bureau of Toxic Substance Assessment. http://www.nyhealth.gov/environmental/indoors/air/fuel\_oil.htm

 $^{2}$ The ranges provided in the table represent the 25th percentile to 75th percentile, (middle half), of the results and are labeled as background. A single value is the minimum reporting limit for that compound, and indicates that more than 75% of the data are below the detection limit. This database is comprised of air testing results from homes where there were no known sources of chemicals or chemical spills.

ND - Not Detected

NA - Not Available

< Means "less than." The number following a "less than sign" (<) is the lowest level the laboratory test can reliably measure (reporting limit).

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY **CENTER FOR ENVIRONMENTAL HEALTH**

This form must be completed for each residence involved in indoor air testing.

| | Preparer's Name LAURA SWITH Date/Time Prepared 3/31/09 10:15 am |
|---------|---|
| | Preparer's Affiliation Lu Engineers Phone No. (585)377-1450 |
| | Purpose of Investigation SOIL VAPOR INTRUSION INVESTIGATION - Fme. Nichol Irm |
| | 1. OCCUPANT: |
| | Interviewed: (Y) N |
| | Last Name: Krause First Name: Carl |
| | Address: HAJORED BEOOK AHSPORTALATY HIS 14734 Boyd Cove Rd. |
| | County: Steuben |
| | Home Phone: <u>NA</u> Office Phone: |
| (| Number of Occupants/persons at this location Age of Occupants |
| | 2. OWNER OR LANDLORD: (Check if same as occupant \checkmark) |
| | Interviewed: (Y)/N |
| | Last Name: Krause First Name: Carl |
| Mailing | Address: 14 Tobey Brook Pittsford, NY 14534 |
| | County: MONTOR |
| | Home Phone: (585)381-7489 Cell
Office Phone: (585)451-5242 |
| | |

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Residential Industrial

School Church Commercial/Multi-use Other:

ĺ

If the property is residential, type? (Circle appropriate response)

Ranch Raised Ranch Cape Cod Duplex Modular

No.

2-Family Split Level Contemporary Apartment House Log Home 3-Family Colonial Mobile Home Townhouses/Condos Other: <u>J-Story</u>.

If multiple units, how many? \_\_\_\_\_

If the property is commercial, type?

Business Type(s)

Does it include residences (i.e., multi-use)? Y / N

If yes, how many? \_\_\_\_\_

Other characteristics:

Number of floors \mathcal{A}

Is the building insulated $\langle \nabla \rangle$ N

Building age ≥ 60 yrs. (Addition is 7 yrs. old) How air tight? Tight / Average / Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors

Airflow near source

Outdoor air infiltration

Infiltration into air ducts

-

| a. Above grade constructio | n: wood frame | concrete | stone | brick |
|----------------------------|-----------------------|------------|--------------|----------------|
| b. Basement type: | full | crawlspace | slab | other |
| c. Basement floor: | concrete | dirt | stone | other |
| d. Basement floor: | uncovered + | (covered) | covered wi | th tile carpet |
| e. Concrete floor: | unsealed | sealed | sealed with | , |
| f. Foundation walls: | poured | ALL GUA | stone | other |
| g. Foundation walls: | unsealed | sealed | sealed with | 1 |
| h. The basement is: | wet | damp | dry | moldy |
| i. The basement is: | finished | unfinished | partially fi | nished |
| j. Sump present? | YN | | | |
| k. Water in sump? | Y / N /not applicable | | | |

Basement/Lowest level depth below grade: \_\_\_\_\_ (feet)

Contract,

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

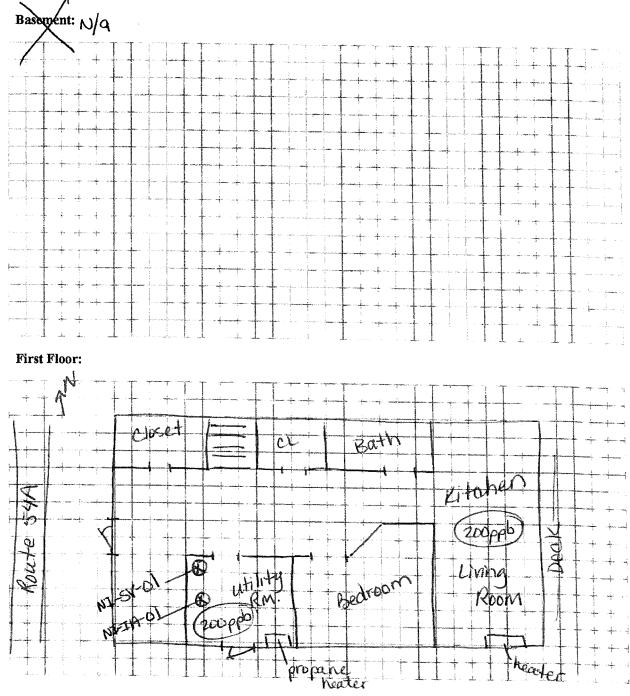
Type of heating system(s) used in this building: (circle all that apply – note primary)

| Hot air circulation
Space Heaters
Electric baseboard | Stream radiation | | Hot water baseboard
Radiant floor
Outdoor wood boiler | Other | | |
|--|---------------------------|--------------|---|-------|--|--|
| The primary type of fuel used | is: | | | | | |
| Natural Gas
Electric
Wood | Fuel Oi
Propan
Coal | | Kerosene
Solar | | | |
| Domestic hot water tank fueled by: <u>propane</u> | | | | | | |
| Boiler/furnace located in: | Basement | Outdoors | Main Floor | Other | | |
| Air conditioning: | Central Air | Window units | Open Windows | None | | |

Are there air distribution ducts present? Y(N)

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

NIA Seasonal occupancy 7. OCCUPANCY Is basement/lowest level occupied? Full-time (Occasionally) Seldom Almost Never General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage) Level Basement utility room, bedrooms, Kitchen, living room 1<sup>st</sup> Floor 2<sup>nd</sup> Floor bedrooms, bath 3rd Hoor \_\_\_\_\_ 4<sup>th</sup> Koor 8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY a. Is there an attached garage? Y (N') b. Does the garage have a separate heating unit? Y / N //NA c. Are petroleum-powered machines or vehicles Y / N //N/ stored in the garage (e.g., lawnmower, atv, car) Please specify d. Has the building ever had a fire? When?\_\_\_\_\_ Y (N) e. Is a kerosene or unvented gas space heater present? Where? Y(N) f. Is there a workshop or hobby/craft area? Y (N) Where & Type? \_\_\_\_\_ g. Is there smoking in the building? How frequently? YN h. Have cleaning products been used recently? Y (N) When & Type? \_\_\_\_\_ i. Have cosmetic products been used recently? Y (N) When & Type? \_\_\_\_\_


4

| | 5 | | · · · |
|---------|---|---|---|
| Ĩ. | j. Has painting/staining been done in the last 6 months? | YN | Where & When? |
| 1999 A. | k. Is there new carpet, drapes or other textiles? | Y (N) | Where & When? |
| | l. Have air fresheners been used recently? | YN | When & Type? |
| | m. Is there a kitchen exhaust fan? | Y/N | If yes, where vented? |
| | n. Is there a bathroom exhaust fan? | Y / N | If yes, where vented? |
| | o. Is there a clothes dryer? | Y / N | If yes, is it vented outside? Y / N |
| | p. Has there been a pesticide application? | YN | When & Type? |
| | Are there odors in the building?
If yes, please describe:Moth_ballS | (¥)/N | |
| | Do any of the building occupants use solvents at work?
(e.g., chemical manufacturing or laboratory, auto mechanic or
boiler mechanic, pesticide application, cosmetologist | Y (N
auto body | shop, painting, fuel oil delivery, |
| | If yes, what types of solvents are used? | | |
| | If yes, are their clothes washed at work? | Y/N | |
| (| Do any of the building occupants regularly use or work at a | a dry-clea | aning service? (Circle appropriate |
| | Yes, use dry-cleaning regularly (weekly)
Yes, use dry-cleaning infrequently (monthly or less) | · | No
Unknown |
| | Yes, use dry-cleaning regularly (weekly) | | |
| | Yes, use dry-cleaning regularly (weekly)
Yes, use dry-cleaning infrequently (monthly or less)
Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structure | | |
| | Yes, use dry-cleaning regularly (weekly)
Yes, use dry-cleaning infrequently (monthly or less)
Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structur
Is the system active or passive? Active/Passive
9. WATER AND SEWAGE | | Date of Installation: |
| · | Yes, use dry-cleaning regularly (weekly)
Yes, use dry-cleaning infrequently (monthly or less)
Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structur
Is the system active or passive? Active/Passive
9. WATER AND SEWAGE
Water Supply: Public Water Drilled Well Drive | re? Y (N | Date of Installation: |
| | Yes, use dry-cleaning regularly (weekly)
Yes, use dry-cleaning infrequently (monthly or less)
Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structur
Is the system active or passive? Active/Passive
9. WATER AND SEWAGE
Water Supply: Public Water Drilled Well Drive | re? Y (N
en Well
h Field) | Date of Installation:
Dug Well Other:
Dry Well Other: |
| | Yes, use dry-cleaning regularly (weekly)
Yes, use dry-cleaning infrequently (monthly or less)
Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structur
Is the system active or passive? Active/Passive
9. WATER AND SEWAGE
Water Supply: Public Water Drilled Well Drive
Sewage Disposal: Public Sewer Septic Tank Leac | re? Y N
en Well
h Field | Date of Installation:
Dug Well Other:
Dry Well Other: |
| | Yes, use dry-cleaning regularly (weekly)
Yes, use dry-cleaning infrequently (monthly or less)
Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structure
Is the system active or passive? Active/Passive
9. WATER AND SEWAGE
Water Supply: Public Water Drilled Well Drive
Sewage Disposal: Public Sewer Septic Tank Leac
10. RELOCATION INFORMATION (for oil spill resident | re? Y (N
en Well
h Field) | Date of Installation:
Dug Well Other:
Dry Well Other:
gency) |
| | Yes, use dry-cleaning regularly (weekly)
Yes, use dry-cleaning infrequently (monthly or less)
Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structur
Is the system active or passive? Active/Passive
9. WATER AND SEWAGE
Water Supply: Public Water Drilled Well Drive
Sewage Disposal: Public Sewer Septic Tank Leac
10. RELOCATION INFORMATION (for oil spill resident
a. Provide reasons why relocation is recommended: | re? Y (N
en Well
h Field)
tial emerg | Date of Installation:
Dug Well Other:
Dry Well Other:
gency)
nily relocate to hotel/motel |

11. FLOOR PLANS

1

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

"Anna

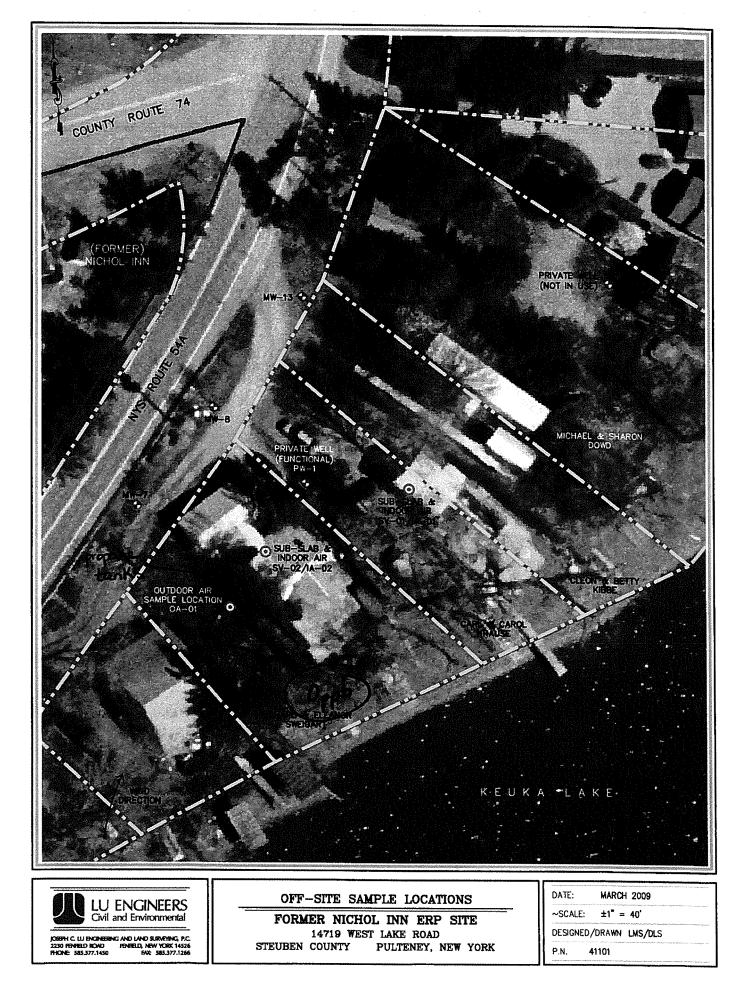
13. PRODUCT INVENTORY FORM

(

(

ĺ

Make & Model of field instrument used: ppb RAE


List specific products found in the residence that have the potential to affect indoor air quality.

| Location | Product Description | Size
(units) | Condition <sup>*</sup> | Chemical Ingredients | Field
Instrument
Reading
(units) (ppb) | Photo **
<u>Y / N</u> |
|-----------------|--|-----------------|------------------------|----------------------|---|--------------------------|
| Utility
Room | | | | - Background | 200 | N |
| | Lampoil | | _ Ц | <u> </u> | | 1 |
| | Comet | 1402. | u | none listed | 196 | |
| | White Lithium Grease | 802. | и | petroleum oil | 198 | |
| | Critter Ridder | | Ц | De capsacian | 200 | |
| | Artic Ban Antifreezo
Linsinks+ drains | Igal | и. | ethyl alcohol | 395 | |
| | Linginkst arains | ,) | | 5 | | |
| ¥ | OFF Citronella bucket | | Цģ | none listed | 222 | |
| Kitchen | Comet | 1407. | Ц | none listed | 197 | \checkmark |
| Note | : mothballs placed | | locateab | advan a | | |
| | a top them is plant | | 10 201 5 41 | Elurbon S | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | <u> </u> | | | | | |

\* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) \*\* Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

P:\Sections\SIS\Oil Spills\Guidance Docs\OSR-3.doc

8

SUMMA Canister Field Data Sheet

| Project Name: | Former Nichol In | n ERP Site | | Date: | 3/31/09 | | |
|-----------------------|------------------------------|-----------------------|------------------|-------------------------------|------------------|--|--|
| Project #: | 41101 | | | Sampler(s): | LMSDRE | | |
| Sampling Location: | 14734 Boyd Cov | /e Rd. | | | | | |
| Sub-Slab Va | oor Sample Indoor Air Sample | | | Associated Outdoor Air Sample | | | |
| Sample ID: | NIZ-SV-01 | Sample ID: | NJ-JA-01 | Sample ID: | NI-0A-01 | | |
| Can #: | 420 | Can #: | 224 | Can #: | 316 | | |
| Regulator #: | 263 | Regulator #: | 25 386 | Regulator #: | 251 | | |
| Start Date/Time: | 3-31-09 | Start Date/Time: | 3-31-09
11:25 | Start Date/Time: | 3-31-09
11:40 | | |
| Start Pressure: | -30 | Start Pressure: | -30 | Start Pressure: | - 30 | | |
| Stop Date/Time: | 4-1-09
11:13 | Stop Date/Time: | 4-1-09
11:13 | Stop Date/Time: | 4-1-09
11:32 | | |
| Stop Pressure: | 5 | Stop Pressure: | -3 | Stop Pressure: | 0 | | |
| | | | | | | | |
| Slab Thickness: | $\sim q^{\prime\prime}$ | Location: | utility room | Direction from bldg: | south | | |
| Floor Surface: | amarate | Indoor Air Temp: | 540 | Distance from
bldg: | | | |
| Odors?: | Ne | Odors?: | 20 | Odors?: | 00 | | |
| PID Reading
(ppb): | | PID Reading
(ppb): | 200 | PID Reading
(ppb): | 0 | | |
| Comments/Locatio | Comments/Location Sketch: | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

| Preparer's Name Lawra Smith Date/Time Prepared 3/31/09/12:00 |
|---|
| Preparer's Affiliation <u>LU Engineers</u> Phone No. (585)377-1450 |
| Purpose of Investigation Soil Vapor Intrusion Investigation - Fmr. Nichol Inr |
| 1. OCCUPANT: |
| Interviewed: (Ŷ/N |
| Last Name: <u>Sweigart</u> First Name: <u>Eleanor</u> |
| Address: 14728 Boyd Cove Rd. |
| County: Steuben |
| Home Phone: (607) 868-3022 Office Phone: |
| Number of Occupants/persons at this location Age of Occupants |
| 2. OWNER OR LANDLORD: (Check if same as occupant \checkmark) |
| Interviewed: Y / N |
| Last Name:First Name: |
| Address: |
| County: |
| Home Phone: Office Phone: |
| 3. BUILDING CHARACTERISTICS |
| Type of Building: (Circle appropriate response) |
| ResidentialSchoolCommercial/Multi-useIndustrialChurchOther: |

64. J. v.

ſ

ĺ

If the property is residential, type? (Circle appropriate response)

| | Ranch |
|-----------|--------------|
| | Raised Ranch |
| \langle | Cape Cod |
| | Duplex |
| | Modular |

No.

2-Family Split Level Contemporary Apartment House Log Home

3-Family Colonial Mobile Home Townhouses/Condos Other:\_\_\_\_\_

Building age ~ 60 yrs.

If multiple units, how many?

If the property is commercial, type?

Business Type(s)

Does it include residences (i.e., multi-use)? Y/N

If yes, how many?

How air tight? Tight Average? Not Tight

Other characteristics:

Number of floors 2

Is the building insulated (Y) N

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors

Airflow near source

Outdoor air infiltration

Infiltration into air ducts

t

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

| a. Above grade construct | ion: wood frame | concrete | stone | brick |
|--|------------------------|------------|-----------------|----------|
| b. Basement type: | full | crawlspace | slab | other |
| Crawle Basement floor: | concrete | dirt | stone | other |
| d. Basement floor: | uncovered | covered | covered with | linoleum |
| e. Concrete floor: | unsealed | sealed | sealed with | |
| f. Foundation walls:
Crawl space | poured | block | stone | other |
| g. Foundation walls: | unsealed | sealed | sealed with | |
| h. The basement is:
Crawlspace | wet | damp | dry | moldy |
| i. The basement is: | finished | unfinished | partially finis | hed |
| j. Sump present? | YN | | | |
| k. Water in sump? | Y / N / not applicable | <u>y</u> | | |

Basement/Lowest level depth below grade: $\frac{\sim 2.5}{\text{Craw}}$ (feet)

1

-

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

Drain/open area in slab below hot water heater. (40ppb)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

| Hot air circulation
Space Heaters
Electric baseboard | Heat pu
Stream
Wood s | radiation | Hot water baseboard
Radiant floor
Outdoor wood boiler | Other |
|--|-----------------------------|--------------|---|-------|
| The primary type of fuel used | l is: | | | |
| Natural Gas
Electric
Wood | Fuel Oi
Propan
Coal | - | Kerosene
Solar | |
| Domestic hot water tank fuele | ed by: <u>propou</u> | ne | | |
| Boiler/furnace located in: | Basement | Outdoors | Main Floor | Other |
| Air conditioning: | Central Air | Window units | Open Windows | None |

Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY Crawlspace is not used Main Is basement/lowest level occupied? (Full-time) Almost Never Only acce Occasionally Seldom General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage Level Basement Dving room, Kitchen, laundry room 1<sup>st</sup> Floor 2<sup>nd</sup> Floor Bedracius, bath 3rd Noor loor 8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY a. Is there an attached garage? b. Does the garage have a separate heating unit? Y(N)NA c. Are petroleum-powered machines or vehicles N/NA stored in the garage (e.g., lawnmower, atv, car) lease specify (W

When?

Where?

Y (N) When & Type? \_\_\_\_\_

When & Type? \_\_\_\_\_

How frequently? Auly-Living Room

Y/N\

/ N

N

Y (N) Where & Type?

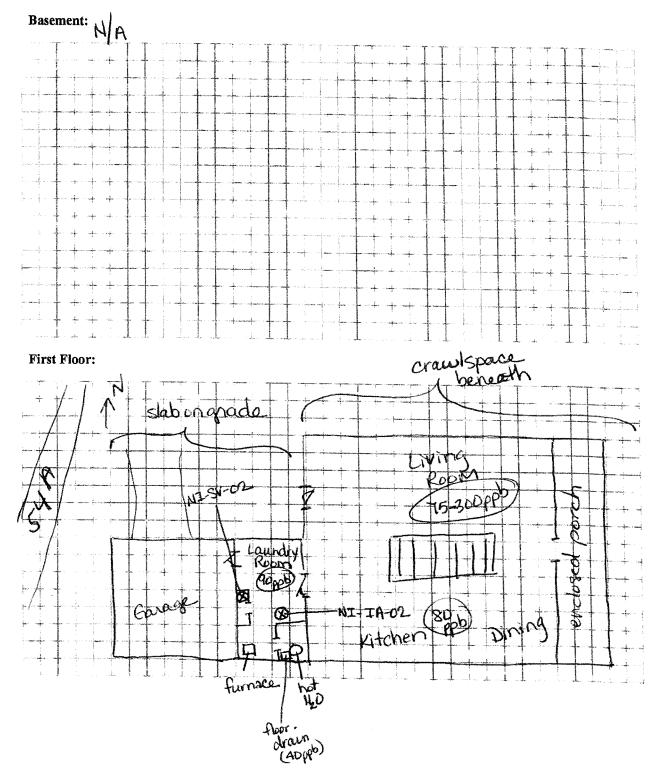
d. Has the building ever had a fire?

e. Is a kerosene or unvented gas space heater present?

f. Is there a workshop or hobby/craft area?

g. Is there smoking in the building?

h. Have cleaning products been used recently?


i. Have cosmetic products been used recently?

Y∥N

| j. Has painting/staining been done in the last 6 months? | Y (N) Where & When? |
|--|--|
| k. Is there new carpet, drapes or other textiles? | Y (N) Where & When? |
| l. Have air fresheners been used recently? | Y (N) When & Type? |
| m. Is there a kitchen exhaust fan? | Y / N If yes, where vented? |
| n. Is there a bathroom exhaust fan? | Y / N If yes, where vented? |
| o. Is there a clothes dryer? | (\dot{Y}) N If yes, is it vented outside (\dot{Y}) N |
| p. Has there been a pesticide application? | Y (N) When & Type? |
| Are there odors in the building?
If yes, please describe: | (Ŷ/ N |
| Do any of the building occupants use solvents at work?
(e.g., chemical manufacturing or laboratory, auto mechanic or an
boiler mechanic, pesticide application, cosmetologist | Y (N) uto body shop, painting, fuel oil delivery, |
| If yes, what types of solvents are used? | |
| If yes, are their clothes washed at work? | Y / N |
| Do any of the building occupants regularly use or work at a response) | dry-cleaning service? (Circle appropriate |
| Yes, use dry-cleaning regularly (weekly)
Yes, use dry-cleaning infrequently (monthly or less) | No
Unknown |
| Yes, work at a dry-cleaning service | |
| Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structure
Is the system active or passive? | |
| Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structure
Is the system active or passive? | |
| Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structure
Is the system active or passive? Active/Passive
9. WATER AND SEWAGE Fall <sup>108</sup> | de |
| Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structure
Is the system active or passive? Active/Passive
9. WATER AND SEWAGE Fall <sup>108</sup>
Water Supply: Public Water Drilled Well Driver | |
| Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structure
Is the system active or passive? Active/Passive
9. WATER AND SEWAGE Fall <sup>108</sup>
Water Supply: Public Water Drilled Well Driver | n Well Dug Well Other:
Field Dry Well Other: |
| Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structure
Is the system active or passive? Active/Passive
9. WATER AND SEWAGE Fall <sup>108</sup>
Water Supply: Public Water Orilled Well Driver
Sewage Disposal: Public Sewer Septic Tank Leach | n Well Dug Well Other:
Field Dry Well Other: |
| Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structure
Is the system active or passive? Active/Passive
9. WATER AND SEWAGE
Water Supply: Public Water Orilled Well Driver
Sewage Disposal: Public Sewer Septic Tank Leach
10. RELOCATION INFORMATION (for oil spill residential | n Well Dug Well Other:
Field Dry Well Other:
al emergency) |
| Yes, work at a dry-cleaning service
Is there a radon mitigation system for the building/structure
Is the system active or passive? Active/Passive
9. WATER AND SEWAGE Fall '0 <sup>S</sup>
Water Supply: Public Water Drilled Well Driver
Sewage Disposal: Public Sewer Septic Tank Leach
10. RELOCATION INFORMATION (for oil spill residention
a. Provide reasons why relocation is recommended: | al emergency) |

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

6

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: <u>ppb RAE</u>

List specific products found in the residence that have the potential to affect indoor air quality.

| Location | Product Description | Size
(units) | Condition <sup>*</sup> | Chemical Ingredients | Field
Instrument
Reading
(units) (ppb) | Photo **
<u>Y / N</u> |
|----------|---|-----------------|------------------------|------------------------------|---|--------------------------|
| Room | | | | Background | 90ppb | |
|
 | Latex paint : | 3 gab | u | none listed | 70 | N |
| | Wood Stain | Igal. | empty | n yl | 70 | |
| | Urethane Eramel | lQt. | U | Aliphatic hydrocarbons | 90 | |
| ļ | MinWax | 1Qt. | U | none listed | 54 | |
| | Decorator's Eramel | 202. | и | petroleum distillates, xylol | 415 | |
| | Stain + Polyurethane | 2.Qts. | D | petroleum distillestes | 86 | |
| | Furniture Polish | 1207. | U | nonelisted | 130 | |
| | Glass Cleaner | 32 <i>6</i> 2. | и | alcohol | 115 | |
| | old English spray | 2 | и | none listed distillate | \$ 70 | |
| | Old English spray
Rust-Oleum spraypäir | t cans | u | toluol, xylol | 1,432 | |
| | latex paints | 3201 | u | none listed | | |
| V | old English liquid | 2X
802. | И | petroleum distillates | 105 | V |
| | | | | • | | |
| ļ | |
 | | | | |
| | | | | | | |
| | |
 | | | | |
| ······ | | | | | | |
| | | | | | | |

\* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) \*\* Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

P:\Sections\SIS\Oil Spills\Guidance Docs\OSR-3.doc

No.

8

| Project Name: | Former Nichol Inn ERP Site | | | Date: | 3/31/09 |
|-----------------------|----------------------------|-----------------------|------------------|-----------------------|------------------|
| Project #: | 41101 | | | Sampler(s): | LMS/ RF |
| Sampling Location: | 14728 Boyd Cov | /e Rd. | | | |
| Sub-Slab Va | oor Sample | Indoor A | ir Sample | Associated Outo | loor Air Sample |
| Sample ID: | NII-SV-02 | Sample ID: | NI-IH-02 | Sample ID: | NI-0A-01 |
| Can #: | 561 | Can #: | 107 | Can #: | 316 |
| Regulator #: | 382 | Regulator #: | 380 | Regulator #: | 251 |
| Start Date/Time: | 3-31-09
13:03 | Start Date/Time: | 3-31-09
13:02 | Start Date/Time: | 3-31-09
11:40 |
| Start Pressure: | -30 | Start Pressure: | -27 | Start Pressure: | - 30 |
| Stop Date/Time: | 4-1-09
12:39 | Stop Date/Time: | 4-1-09
12:39 | Stop Date/Time: | 4-1-09
11:32 |
| Stop Pressure: | -2.5 | Stop Pressure: | 0 | Stop Pressure: | 0 |
| | | | | | |
| Slab Thickness: | ny" | Location: | Laundry River | Direction from bldg: | South |
| Floor Surface: | linoleum/ | Indoor Air Temp: | ~ (00 | Distance from bldg: | ~10 ft. |
| Odors?: | | Odors?: | smoke | Odors?: | none |
| PID Reading
(ppb): | | PID Reading
(ppb): | 90 | PID Reading
(ppb): | 0 |
| Comments/Locatio | on Sketch: | | | | |
| | | | | | |
| | | | | | |

SUMMA Canister Field Data Sheet

8.

c

Date: 08-Apr-09

| CLIENT: | Lu Engineers | Client Sample ID: NI-SV-01 |
|----------------|----------------|-----------------------------|
| Lab Order: | C0904007 | Tag Number: 420, 263 |
| Project: | Nichol Inn ERP | Collection Date: 3/31/2009 |
| Lab ID: | C0904007-001A | Matrix: AIR |
| | | |

| Analyses | Result | Limit Qu | al Units | DF | Date Analyzed |
|---------------------------|--------|----------|----------|----|---------------------|
| 1UG/M3 BY METHOD TO15 | | TO-15 | | | Analyst: RJF |
| 1,1,1-Trichloroethane | ND | 0.83 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 1,1,2,2-Tetrachloroethane | ND | 1.0 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 1,1,2-Trichloroethane | ND | 0.83 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 1,1-Dichloroethane | ND | 0.62 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 1,1-Dichloroethene | ND | 0.60 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 1,2,4-Trichlorobenzene | ND | 1.1 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 1,2,4-Trimethylbenzene | 0.90 | 0.75 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 1,2-Dibromoethane | ND | 1.2 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 1,2-Dichlorobenzene | ND | 0.92 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 1,2-Dichloroethane | ND | 0.62 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 1,2-Dichloropropane | ND | 0.70 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 1,3,5-Trimethylbenzene | ND | 0.75 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 1,3-butadiene | ND | 0.34 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 1,3-Dichlorobenzene | ND | 0.92 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 1,4-Dichlorobenzene | ND | 0.92 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 1,4-Dioxane | 11 | 11 | ug/m3 | 10 | 4/7/2009 7:08:00 AM |
| 2,2,4-trimethylpentane | ND | 0.71 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| 4-ethyltoluene | ND | 0.75 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Acetone | 54 | 7.2 | ug/m3 | 10 | 4/7/2009 7:08:00 AM |
| Allyl chloride | ND | 0.48 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Benzene | 1.4 | 0.49 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Benzyl chloride | ND | 0.88 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Bromodichloromethane | ND | 1.0 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Bromoform | ND | 1.6 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Bromomethane | ND | 0.59 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Carbon disulfide | 0.60 | 0.47 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Carbon tetrachloride | ND | 0.96 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Chlorobenzene | ND | 0.70 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Chloroethane | ND | 0.40 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Chloroform | ND | 0.74 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Chloromethane | ND | 0.31 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| cis-1,2-Dichloroethene | ND | 0.60 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| cis-1,3-Dichloropropene | ND | 0.69 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Cyclohexane | ND | 0.52 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Dibromochloromethane | ND | 1.3 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Ethyl acetate | ND | 0.92 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Ethylbenzene | 1.2 | 0.66 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Freon 11 | 1.5 | 0.86 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Freon 113 | ND | 1.2 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Freon 114 | ND | 1.1 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |

Qualifiers:

В

Е Value above quantitation range

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated. J

Analyte detected at or below quantitation limits ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Date: 08-Apr-09

| CLIENT: | Lu Engineers | Client Sample ID: NI-SV-01 |
|------------|----------------|-----------------------------|
| Lab Order: | C0904007 | Tag Number: 420, 263 |
| Project: | Nichol Inn ERP | Collection Date: 3/31/2009 |
| Lab ID: | C0904007-001A | Matrix: AIR |

| Analyses | Result | Limit Qu | ial Units | DF | Date Analyzed |
|---------------------------|--------|----------|-----------|----|---------------------|
| 1UG/M3 BY METHOD TO15 | | TO-15 | | | Analyst: RJP |
| Freon 12 | ND | 0.75 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Heptane | 6.9 | 0.62 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Hexachloro-1,3-butadiene | ND | 1.6 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Hexane | 7.9 | 5.4 | ug/m3 | 10 | 4/7/2009 7:08:00 AM |
| Isopropyl alcohol | ND | 0.37 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| m&p-Xylene | 3.4 | 1.3 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Methyl Butyl Ketone | ND | 1.2 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Methyl Ethyl Ketone | 4.3 | 0.90 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Methyl Isobutyl Ketone | ND | 1.2 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Methyl tert-butyl ether | ND | 0.55 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Methylene chloride | ND | 0.53 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| o-Xylene | 0.93 | 0.66 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Propylene | ND | 0.26 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Styrene | 0.95 | 0.65 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Tetrachloroethylene | ND | 1.0 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Tetrahydrofuran | ND | 0.45 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Toluene | 7.6 | 0.57 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| trans-1,2-Dichloroethene | ND | 0.60 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| trans-1,3-Dichloropropene | ND | 0.69 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Trichloroethene | ND | 0.82 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Vinyl acetate | ND | 0.54 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Vinyl Bromide | ND | 0.67 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |
| Vinyl chloride | ND | 0.39 | ug/m3 | 1 | 4/7/2009 3:18:00 AM |

Qualifiers:

В

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

\$

Date: 08-Apr-09

| CLIENT: | Lu Engineers | Client Sample ID: | NI-IA-01 |
|------------|----------------|-------------------|-----------|
| Lab Order: | C0904007 | Tag Number: | 224, 386 |
| Project: | Nichol Inn ERP | Collection Date: | 3/31/2009 |
| Lab ID: | C0904007-002A | Matrix: | AIR |
| | | | |

| Analyses | Result | Limit (| Qual | Units | DF | Date Analyzed |
|-------------------------------|--------|---------|------|-------|----|---------------------|
| 1UG/M3 W/ 0.25UG/M3 CT-TCE-VC | | то-1 | 15 | | | Analyst: RJF |
| 1,1,1-Trichloroethane | ND | 0.83 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 1,1,2,2-Tetrachloroethane | ND | 1.0 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 1,1,2-Trichloroethane | ND | 0.83 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 1,1-Dichloroethane | ND | 0.62 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 1,1-Dichloroethene | ND | 0.60 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 1,2,4-Trichlorobenzene | ND | 1.1 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 1,2,4-Trimethylbenzene | 0.65 | 0.75 | J | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 1,2-Dibromoethane | ND | 1.2 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 1,2-Dichlorobenzene | ND | 0.92 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 1,2-Dichloroethane | ND | 0.62 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 1,2-Dichloropropane | ND | 0.70 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 1,3,5-Trimethylbenzene | ND | 0.75 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 1,3-butadiene | ND | 0.34 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 1,3-Dichlorobenzene | ND | 0.92 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 1,4-Dichlorobenzene | ND | 0.92 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 1,4-Dioxane | ND | 1.1 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 2,2,4-trimethylpentane | ND | 0.71 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| 4-ethyltoluene | ND | 0.75 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Acetone | 31 | 7.2 | | ug/m3 | 10 | 4/7/2009 7:40:00 AM |
| Allyl chloride | ND | 0.48 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Benzene | 0.36 | 0.49 | J | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Benzyl chloride | ND | 0.88 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Bromodichloromethane | ND | 1.0 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Bromoform | ND | 1.6 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Bromomethane | ND | 0.59 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Carbon disulfide | ND | 0.47 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Carbon tetrachloride | ND | 0.26 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Chlorobenzene | ND | 0.70 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Chloroethane | ND | 0.40 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Chloroform | ND | 0.74 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Chloromethane | ND | 0.31 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| cis-1,2-Dichloroethene | ND | 0.60 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| cis-1,3-Dichloropropene | ND | 0.69 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Cyclohexane | ND | 0.52 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Dibromochloromethane | ND | 1.3 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Ethyl acetate | ND | 0.92 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Ethylbenzene | ND | 0.66 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Freon 11 | 4.5 | 0.86 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Freon 113 | ND | 1.2 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Freon 114 | ND | 1.1 | | ug/m3 | 1 | 4/7/2009 3:51:00 AM |

Qualifiers:

В

Е Value above quantitation range

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated. S

J Analyte detected at or below quantitation limits

Spike Recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

Analyte detected in the associated Method Blank

Date: 08-Apr-09

| CLIENT: | Lu Engineers | Client Sample ID: NI-IA-01 |
|------------|----------------|-----------------------------|
| Lab Order: | C0904007 | Tag Number: 224, 386 |
| Project: | Nichol Inn ERP | Collection Date: 3/31/2009 |
| Lab ID: | C0904007-002A | Matrix: AIR |

| Analyses | Result | Limit Qu | al Units | DF | Date Analyzed |
|-------------------------------|--------|----------|----------|----|---------------------|
| 1UG/M3 W/ 0.25UG/M3 CT-TCE-VC | | TO-15 | | | Analyst: RJF |
| Freon 12 | 3.0 | 0.75 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Heptane | ND | 0.62 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Hexachloro-1,3-butadiene | ND | 1.6 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Hexane | ND | 0.54 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Isopropyl alcohol | 2.3 | 0.37 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| m&p-Xylene | ND | 1.3 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Methyl Butyl Ketone | ND | 1.2 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Methyl Ethyl Ketone | 1.2 | 0.90 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Methyl Isobutyl Ketone | ND | 1.2 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Methyl tert-butyl ether | ND | 0.55 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Methylene chloride | 0.78 | 0.53 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| o-Xylene | ND | 0.66 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Propylene | ND | 0.26 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Styrene | ND | 0.65 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Tetrachloroethylene | ND | 1.0 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Tetrahydrofuran | ND | 0.45 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Toluene | 1.2 | 0.57 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| trans-1,2-Dichloroethene | ND | 0.60 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| trans-1,3-Dichloropropene | ND | 0.69 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Trichloroethene | ND | 0.22 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Vinyl acetate | ND | 0.54 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Vinyl Bromide | ND | 0.67 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |
| Vinyl chloride | ND | 0.10 | ug/m3 | 1 | 4/7/2009 3:51:00 AM |

Qualifiers:

В

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 08-Apr-09

| CLIENT: | Lu Engineers | Client Sample ID: NI-0A-01 |
|------------|----------------|-----------------------------|
| Lab Order: | C0904007 | Tag Number: 316, 251 |
| Project: | Nichol Inn ERP | Collection Date: 3/31/2009 |
| Lab ID: | C0904007-003A | Matrix: AIR |
| | | |

| Analyses | Result | Limit Qua | al Units | DF | Date Analyzed |
|-------------------------------|--------|-----------|----------|----|---------------------|
| IUG/M3 W/ 0.25UG/M3 CT-TCE-VC | | TO-15 | | | Analyst: RJI |
| 1,1,1-Trichloroethane | ND | 0.83 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 1,1,2,2-Tetrachloroethane | ND | 1.0 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 1,1,2-Trichloroethane | ND | 0.83 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 1,1-Dichloroethane | ND | 0.62 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 1,1-Dichloroethene | ND | 0.60 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 1,2,4-Trichlorobenzene | ND | 1.1 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 1,2,4-Trimethylbenzene | ND | 0.75 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 1,2-Dibromoethane | ND | 1.2 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 1,2-Dichlorobenzene | ND | 0.92 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 1,2-Dichloroethane | ND | 0.62 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 1,2-Dichloropropane | ND | 0.70 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 1,3,5-Trimethylbenzene | ND | 0.75 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 1,3-butadiene | ND | 0.34 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 1,3-Dichlorobenzene | ND | 0.92 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 1,4-Dichlorobenzene | ND | 0.92 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 1,4-Dioxane | ND | 1.1 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 2,2,4-trimethylpentane | ND | 0.71 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| 4-ethyltoluene | ND | 0.75 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Acetone | 16 | 7.2 | ug/m3 | 10 | 4/7/2009 8:13:00 AM |
| Allyl chloride | ND | 0.48 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Benzene | 0.45 | 0.49 J | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Benzyl chloride | ND | 0.88 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Bromodichloromethane | ND | 1.0 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Bromoform | ND | 1.6 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Bromomethane | ND | 0.59 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Carbon disulfide | ND | 0.47 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Carbon tetrachloride | ND | 0.26 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Chlorobenzene | ND | 0.70 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Chloroethane | ND | 0.40 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Chloroform | ND | 0.74 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Chloromethane | 0.86 | 0.31 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| cis-1,2-Dichloroethene | ND | 0.60 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| cis-1,3-Dichloropropene | ND | 0.69 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Cyclohexane | ND | 0.52 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Dibromochloromethane | ND | 1.3 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Ethyl acetate | ND | 0.92 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Ethylbenzene | ND | 0.66 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Freon 11 | 1.3 | 0.86 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Freon 113 | ND | 1.2 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Freon 114 | ND | 1.1 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |

Qualifiers:

В

E Value above quantitation range

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

c value above quantitation range

J Analyte detected at or below quantitation limits

S Spike Recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

Analyte detected in the associated Method Blank

Date: 08-Apr-09

| CLIENT: | Lu Engineers | Client Sample ID: NI-0A-01 |
|------------|----------------|-----------------------------|
| Lab Order: | C0904007 | Tag Number: 316, 251 |
| Project: | Nichol Inn ERP | Collection Date: 3/31/2009 |
| Lab ID: | C0904007-003A | Matrix: AIR |
| | | |

| Analyses | Result | Limit (| Jual Units | DF | Date Analyzed |
|-------------------------------|--------|---------|------------|----|---------------------|
| 1UG/M3 W/ 0.25UG/M3 CT-TCE-VC | | TO-1 | 5 | | Analyst: RJF |
| Freon 12 | 2.3 | 0.75 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Heptane | ND | 0.62 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Hexachloro-1,3-butadiene | ND | 1.6 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Hexane | ND | 0.54 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Isopropyl alcohol | 2.0 | 0.37 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| m&p-Xylene | ND | 1.3 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Methyl Butyl Ketone | ND | 1.2 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Methyl Ethyl Ketone | 0.75 | 0.90 | J ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Methyl Isobutyl Ketone | ND | 1.2 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Methyl tert-butyl ether | ND | 0.55 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Methylene chloride | ND | 0.53 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| o-Xylene | ND | 0.66 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Propylene | ND | 0.26 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Styrene | ND | 0.65 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Tetrachloroethylene | ND | 1.0 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Tetrahydrofuran | ND | 0.45 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Toluene | 1.7 | 0.57 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| trans-1,2-Dichloroethene | ND | 0.60 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| trans-1,3-Dichloropropene | ND | 0.69 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Trichloroethene | ND | 0.22 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Vinyl acetate | ND | 0.54 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Vinyl Bromide | ND | 0.67 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |
| Vinyl chloride | ND | 0.10 | ug/m3 | 1 | 4/7/2009 4:24:00 AM |

Qualifiers:

В

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

۰,

.

Date: 08-Apr-09

| CLIENT: | Lu Engineers | Client Sample ID: NI-SV-02 |
|------------|----------------|-----------------------------|
| Lab Order: | C0904007 | Tag Number: 561, 382 |
| Project: | Nichol Inn ERP | Collection Date: 3/31/2009 |
| Lab ID: | C0904007-004A | Matrix: AIR |
| | | |

| Analyses | Result | Limit Q | ual Units | DF | Date Analyzed |
|---------------------------|--------|---------|-----------|----|---------------------|
| 1UG/M3 BY METHOD TO15 | | TO-1 | 5 | | Analyst: RJI |
| 1,1,1-Trichloroethane | ND | 0.83 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 1,1,2,2-Tetrachloroethane | ND | 1.0 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 1,1,2-Trichloroethane | ND | 0.83 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 1,1-Dichloroethane | ND | 0.62 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 1,1-Dichloroethene | ND | 0.60 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 1,2,4-Trichlorobenzene | ND | 1.1 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 1,2,4-Trimethylbenzene | 1.6 | 0.75 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 1,2-Dibromoethane | ND | 1.2 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 1,2-Dichlorobenzene | ND | 0.92 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 1,2-Dichloroethane | ND | 0.62 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 1,2-Dichloropropane | ND | 0.70 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 1,3,5-Trimethylbenzene | ND | 0.75 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 1,3-butadiene | ND | 0.34 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 1,3-Dichlorobenzene | ND | 0.92 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 1,4-Dichlorobenzene | ND | 0.92 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 1,4-Dioxane | 3.3 | 1.1 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 2,2,4-trimethylpentane | ND | 0.71 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| 4-ethyltoluene | ND | 0.75 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Acetone | 17 | 7.2 | ug/m3 | 10 | 4/7/2009 8:45:00 AM |
| Allyl chloride | ND | 0.48 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Benzene | 1.6 | 0.49 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Benzyl chloride | ND | 0.88 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Bromodichloromethane | ND | 1.0 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Bromoform | ND | 1.6 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Bromomethane | ND | 0.59 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Carbon disulfide | 0.63 | 0.47 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Carbon tetrachloride | ND | 0.96 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Chlorobenzene | ND | 0.70 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Chloroethane | ND | 0.40 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Chloroform | ND | 0.74 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Chloromethane | ND | 0.31 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| cis-1,2-Dichloroethene | ND | 0.60 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| cis-1,3-Dichloropropene | ND | 0.69 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Cyclohexane | 5.6 | 5.2 | ug/m3 | 10 | 4/7/2009 8:45:00 AM |
| Dibromochloromethane | ND | 1.3 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Ethyl acetate | 1.2 | 0.92 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Ethylbenzene | 1.5 | 0.66 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Freon 11 | 1.7 | 0.86 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Freon 113 | ND | 1.2 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Freon 114 | ND | 1.1 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |

Qualifiers:

В

Е Value above quantitation range

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated. S

J Analyte detected at or below quantitation limits

Spike Recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

Analyte detected in the associated Method Blank

```
Date: 08-Apr-09
```

. · · ·

5

| CLIENT: | Lu Engineers | Client Sample ID: NI-SV-02 |
|------------|----------------|-----------------------------|
| Lab Order: | C0904007 | Tag Number: 561, 382 |
| Project: | Nichol Inn ERP | Collection Date: 3/31/2009 |
| Lab ID: | C0904007-004A | Matrix: AIR |

| Analyses | Result | Limit Qu | al Units | DF | Date Analyzed |
|---------------------------|--------|----------|----------|---------------------|---------------------|
| 1UG/M3 BY METHOD TO15 | TO-15 | | | Analyst: RJP | |
| Freon 12 | 2.7 | 0.75 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Heptane | 7.5 | 6.2 | ug/m3 | 10 | 4/7/2009 8:45:00 AM |
| Hexachloro-1,3-butadiene | ND | 1.6 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Hexane | 8.6 | 5.4 | ug/m3 | 10 | 4/7/2009 8:45:00 AM |
| Isopropyl alcohol | ND | 0.37 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| m&p-Xylene | 4.1 | 1.3 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Methyl Butyl Ketone | ND | 1.2 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Methyl Ethyl Ketone | ND | 0.90 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Methyl Isobutyl Ketone | 1.3 | 1.2 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Methyl tert-butyl ether | ND | 0.55 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Methylene chloride | ND | 0.53 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| o-Xylene | 1.1 | 0.66 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Propylene | ND | 0.26 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Styrene | 1.5 | 0.65 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Tetrachloroethylene | ND | 1.0 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Tetrahydrofuran | ND | 0.45 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Toluene | 8.4 | 0.57 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| trans-1,2-Dichloroethene | ND | 0.60 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| trans-1,3-Dichloropropene | ND | 0.69 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Trichloroethene | ND | 0.82 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Vinyl acetate | ND | 0.54 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Vinyl Bromide | ND | 0.67 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |
| Vinyl chloride | ND | 0.39 | ug/m3 | 1 | 4/7/2009 4:57:00 AM |

Qualifiers:

В

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

2 4 · · 4

Date: 08-Apr-09

| CLIENT: | Lu Engineers | Client Sample ID: NI-IA-02 |
|----------------|----------------|-----------------------------|
| Lab Order: | C0904007 | Tag Number: 107, 380 |
| Project: | Nichol Inn ERP | Collection Date: 3/31/2009 |
| Lab ID: | C0904007-005A | Matrix: AIR |
| | | |

| Analyses | Result | Limit Qu | ial Units | DF | Date Analyzed |
|-------------------------------|--------|----------|-----------|----|---------------------|
| 1UG/M3 W/ 0.25UG/M3 CT-TCE-VC | | TO-15 | | | Analyst: RJI |
| 1,1,1-Trichloroethane | ND | 0.83 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 1,1,2,2-Tetrachloroethane | ND | 1.0 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 1,1,2-Trichloroethane | ND | 0.83 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 1,1-Dichloroethane | ND | 0.62 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 1,1-Dichloroethene | ND | 0.60 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 1,2,4-Trichlorobenzene | ND | 1.1 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 1,2,4-Trimethylbenzene | 4.4 | 0.75 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 1,2-Dibromoethane | ND | 1.2 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 1,2-Dichlorobenzene | ND | 0.92 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 1,2-Dichloroethane | ND | 0.62 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 1,2-Dichloropropane | ND | 0.70 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 1,3,5-Trimethylbenzene | 0.90 | 0.75 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 1,3-butadiene | ND | 0.34 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 1,3-Dichlorobenzene | ND | 0.92 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 1,4-Dichlorobenzene | 1.8 | 0.92 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 1,4-Dioxane | ND | 1.1 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 2,2,4-trimethylpentane | 1.4 | 0.71 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| 4-ethyltoluene | 1.1 | 0.75 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Acetone | 36 | 7.2 | ug/m3 | 10 | 4/7/2009 9:17:00 AM |
| Allyl chloride | ND | 0.48 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Benzene | 3.4 | 0.49 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Benzyl chloride | ND | 0.88 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Bromodichloromethane | ND | 1.0 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Bromoform | ND | 1.6 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Bromomethane | ND | 0.59 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Carbon disulfide | ND | 0.47 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Carbon tetrachloride | ND | 0.26 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Chlorobenzene | ND | 0.70 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Chloroethane | ND | 0.40 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Chloroform | ND | 0.74 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Chloromethane | 2.2 | 0.31 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| cis-1,2-Dichloroethene | ND | 0.60 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| cis-1,3-Dichloropropene | ND | 0.69 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Cyclohexane | ND | 0.52 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Dibromochloromethane | ND | 1.3 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Ethyl acetate | 2.5 | 0.92 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Ethylbenzene | 2.0 | 0.66 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Freon 11 | 1.8 | 0.86 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Freon 113 | ND | 1.2 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |
| Freon 114 | ND | 1.1 | ug/m3 | 1 | 4/7/2009 6:04:00 AM |

Qualifiers:

В

Е Value above quantitation range

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

J Analyte detected at or below quantitation limits

S Spike Recovery outside accepted recovery limits ND Not Detected at the Reporting Limit

Analyte detected in the associated Method Blank

Date: 08-Apr-09

. .

| CLIENT: | Lu Engineers | Client Sample ID: NI-IA-02 |
|------------|----------------|-----------------------------|
| Lab Order: | C0904007 | Tag Number: 107, 380 |
| Project: | Nichol Inn ERP | Collection Date: 3/31/2009 |
| Lab ID: | C0904007-005A | Matrix: AIR |

| Analyses | Result | Limit Qua | al Units | DF | Date Analyzed | | |
|-------------------------------|--------|-----------|----------|----|---------------------|--|--|
| 1UG/M3 W/ 0.25UG/M3 CT-TCE-VC | | TO-15 | | | Analyst: RJP | | |
| Freon 12 | 7.1 | 0.75 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Heptane | 1.2 | 0.62 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Hexachloro-1,3-butadiene | ND | 1.6 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Hexane | 3.8 | 0.54 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Isopropyl alcohol | 18 | 3.7 | ug/m3 | 10 | 4/7/2009 9:17:00 AM | | |
| m&p-Xylene | 6.9 | 1.3 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Methyl Butyl Ketone | ND | 1.2 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Methyl Ethyl Ketone | 3.1 | 0.90 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Methyl Isobutyl Ketone | ND | 1.2 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Methyl tert-butyl ether | ND | 0.55 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Methylene chloride | ND | 0.53 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| o-Xylene | 2.1 | 0.66 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Propylene | ND | 0.26 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Styrene | 0.69 | 0.65 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Tetrachloroethylene | ND | 1.0 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Tetrahydrofuran | ND | 0.45 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Toluene | 11 | 5.7 | ug/m3 | 10 | 4/7/2009 9:17:00 AM | | |
| trans-1,2-Dichloroethene | ND | 0.60 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| trans-1,3-Dichloropropene | ND | 0.69 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Trichloroethene | ND | 0.22 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Vinyl acetate | ND | 0.54 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Vinyl Bromide | ND | 0.67 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |
| Vinyl chloride | ND | 0.10 | ug/m3 | 1 | 4/7/2009 6:04:00 AM | | |

Qualifiers:

В

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

| lel | | e | | | | | | | | | d | | | | | | | | | | <u></u> | <u></u> | | | | | <u></u> | bs.com | |
|---------------------------|---------------------------|---|---|------------------|-----------------|------------------------------------|-----------------|-------------------------------------|--------------------------------------|------------|-----------------|--------|-----------|------------|---------|---------|---------|--|--|------|---------|---------|--|---|--------------------|------------------|-------------|--|---------------------|
| Report Level | Level 1 | Level II
X Cat "B" Like | | N | | | | | | Vacuum | Start/Stop | -30/-5 | -30%-3 | -30,10 | -31)-2' | 0/20- | | | | | | | | | | | | www.Centekl.abs.com | |
| Detection Limit | Sppbv | 1ug/M3 +TCE .25 | | Ċ | کل
الح | · v | | | | ants | | - | 1 | | , | | | | | | | | | | | Fool EX | | | |
| | | 11 100 11 | :Y⊔ | e: | | | ђ. | | | Comments | | | | | | | | | | | | | | | Data/Timal Courier | | Ì | 2 | |
| nn ERP | | S | Company | Invoice: | | | Dhona: | | Email | | | | | | | | | | | | | | | | | 4/1/09 | | 50/2/2 | |
| Site Name: Nichol Inn ERP | | 287668 | | | | | | | | | maiysis kequesi | 12 | | | | , N | * | | | | | | | | | H. | MUN | | |
| Site Nan | Project: | PO#:
Other: | eers | Christia | | | X | 027 | | Vernal Vic | Analysi | F | - | | | | | | |
 | | | | | | | 1, 21 | | |
| Vbo | | 16-9759 | u Engineers | | | | | 1-1-66 | 5)377-1 | | Regulator | 2102 | 2010 | 2000 | 1000 | 202 | 086 | | | | - | | | | | Signature | MAN | N. Ju | |
| Chain of Custody | | | Company: Lt | Panort D |] | | | Phone: (5% | Fax: (5% | Email: LSM | Canister | | 707 | 211 | · alc | SGI | 107 | | | | | | | | | | | | |
| Cha | | | Due | Late: | | | | | | | Date Sampled | | 4/1/07 | | | | - | | | | | | | | | | th | | |
| <u> </u> | | | 81-9/31
Rush TAT | Surcharge % | 0%0
36% | 20%
20% | 75% | 100% | 150% | 200% | Date | | - holicic | <i>с</i> . | | | Ý | | | | | | | | | Print Name | aura Smit | le l | 7 |
| orioc | | 1 | ax: 315-4:
Check | One | | | |][|][| | | | | | | | | | | | | | | · | | | Low | N | |
| tab I abarat | Cerrent Laboratories, EEO | 143 Midler Park Drive
Syracuse, NY 13206 | Phone: 315-431-9730 Fax: 315-431-9730
Check Rush 7 | Turnaround Time: | 5 Business Days | 4 Business Days
3 Rusiness Days | 0 Business Days | 2 Dualicas daja
Navt Dav hv finm | Next Day by John
Next Day by Nnon | Same Dav | Sample ID | | [-SV-0] | 10-41-TN | - DA-DI | 1-51-02 | - TA-00 | | | | | | | | | Chain of Custody | Sampled by: | Relinquished by: | Received at Lab by. |
| Ś | Cel | 143 N
Syrac | Phon | Turni | 5 Bus | 4 Bus
3 Bus | | | Next | Same | | | 빋 | HZ
Z | LN N | | | | | | | | | | | ich' | | Relin | Rece |

•

Appendix E Disposal Documentation

STEUBEN COUNTY D.P.W. BATH LANDFILL

| Material Ty | pes | Rate/UM | Vol/QY | lbs | Tip | |
|---------------------|----------------|-------------------|---------|-------------|------------|-----------|
| 1630 - Leachate | | \$0.00/NA | 0 | 915 | \$0.00 | • |
| | н (т. 19
19 | The second second | | | | |
| <u>Lbs</u> | Tons | | Tip Fe | e | 0.00 0 | \$0.00/na |
|)ss 8700
1e 7785 | 4.35 | In/Qut: I | Spec Fe | e | 0.00 | 90.00/11d |
| Г <u>915</u> | 0.46 | | | ** * | | |
| /QY/CYD = | 0 | Tot | :al | | 1 O | |
| | | | | | | |

Ver: Weighmaster: Anna Martin-Miller 460265 ICKEL INN / CONTAMINATED WATER

Purge water

Appendix F Data Usability Summary Report

DATA USABILITY SUMMARY REPORT

Nichol Inn ERP Site Soil and Water Testing Testing Performed by: Test America Laboratories, Inc.

This report is a review of the testing performed by Test America Laboratories, Inc. for the soil and water samples submitted by Lu Engineers for the Nichol Inn ERP Site. A total of forty soil and water samples were submitted for testing. Additionally, five air samples were submitted and are on a separate report. The first set of seventeen samples were submitted for volatiles, semi-volatiles, pesticides, PCBs, flashpoint (on only one location) and metals. The next nine samples were submitted on 12/20/2008 for volatiles, semi-volatiles and lead and logged as job number A08-G145. The next eleven samples were submitted on 02/06/2009 under job number 220-7988-1 for volatiles, semi-volatiles and metals. The last group of three samples was submitted on 04/22/2009 (job number RSD0878) for volatiles. The methodologies referenced are SW-846 methods 8260B, 8270C, 8081A, 8082, 6010B, 1010, and 7470 or 71A.

INORGANICS

Job #: A08-A888

The chain of custody is complete. All preservation and holding times are met. The cooler temperature at receipt is acceptable. Internal chains of custody are not included in this report.

For sample NI-B-11-12, the report form has incorrect results for Cd, Be, and Mn reported as "0.0" (most likely due to a significant figure error). The result for all three metals should be <0.00235U as calculated from the raw data.

The Narrative addresses site QC sample NI-WB-11-9 as having matrix spike failures for Sb, Ca, Mg, Ba, and K and RPD failures for Ca, Mg, and Mn. The Narrative addresses site QC sample NI-SS-3 as having matrix spike failures for Al, Sb, Ca, and Mg. The sample result data sheets are appropriately flagged. Results for NI-WB-11-9 should be potentially considered biased low for Ba and Sb and biased high for Ca, Mg, and K. Results for Ni-SS-3 should be potentially considered biased low for Sb and biased high for Al, Ca, and Mg. The Narrative addresses the lack of calculable percent recoveries for Al, Mg, Mn, Ca, and Fe for sample NI-WB-11-9 and Ca, Fe, and Mn for location NI-SS-3 due to the concentrations in the sample being more than four times higher than the amount added as spike. Post Digest Spikes were analyzed accordingly. All recoveries were within limits except Mn which was out low and flagged with a "\*\*". As the sample

179 LAKE AVENUE • ROCHESTER, NY 14608 • (585) 647-2530 • FAX (585) 647-3311

concentration for Mn was one that was four times higher than the amount added as spike, no evaluation regarding Mn results can be made. All LCS % recoveries are within acceptable limits.

All initial and continuing calibration verifications were acceptable.

All elements for the CRQL standard are within acceptable limits.

The following metals are flagged with an "E" on the serial dilution form for location NI-WB-11-9 and should be considered estimated: Al, Ca, Co, Fe, Pb, Mg, Mn, Ni, K, V, and Zn. The following metals are flagged with an "E" on the serial dilution for location NI-SS-3 and should be considered estimated: Al, Ba, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Ni, K, V, and Zn. All associated data was flagged accordingly.

Location NI-B-11-12 was submitted for Flashpoint by Method 1010. There were no issues with this analysis. There are no other concerns with the data from this job number for inorganics.

Job #: A08-G145

The chain of custody is complete. All preservation and holding times are met. The cooler temperature at receipt is acceptable. Internal chains of custody are not included in this report.

The matrix spike recovery and RPD for site QC location NI-TC-07-08 are all within limits. Pb is outside limits in the serial dilution and all data is flagged with an "E" so these results should be considered estimated. The post digest spike recovery is within limits indicating a matrix effect. The LCS % recovery is within acceptable limits.

All initial and continuing calibration verifications that apply to this SDG are acceptable.

All elements for the CRQL standard are within acceptable limits.

There are no other concerns with the data from this job number for inorganics.

Job #: 220-7988-1

The chain of custody is complete. All preservation and holding times are met. The cooler temperature at receipt is acceptable.

No QC issues are addressed in the Case Narrative, however, there are QC issues present that require addressing. Potassium is outside limits high in the matrix spike recovery and Na and Ca are outside limits low. The latter two metals fall under the incalculable results rule due to the sample concentration being greater than the amount added as spike. Only the QC report forms flag the results as such. All K results in all associated samples should be flagged with an "N" and be considered estimated biased high.

All initial and continuing calibration verifications are acceptable.

Hits between the IDL and CRDL are flagged with a "J" accordingly. There are no hits in the initial calibration, continuing calibration, and preparation blanks.

All elements for the CRQL standard are within acceptable limits.

There are no other concerns with the data from this job number for inorganics.

VOLATILES

Job#: A08-A888

All preservation and holding times are met. The cooler temperature at receipt is acceptable.

Most of the samples were analyzed and reported as replicates to give the best possible reporting limits with compounds "E" and "D" flagged accordingly.

All surrogates are within acceptable limits except p-BFB for location NI-B-11-12DL which was out high. As this was the diluted sample and the straight-run sample's surrogates were within QC limits, there is no action required. Although four surrogates were used and analyzed for, only three were reported and assessed. The instrument tunes pass all criteria. The internal standard areas and retention times are all within acceptance windows. The method blank for the samples analyzed 09/08/08 had low hits of Methylene Chloride and Toluene (2 J ug/Kg). As the level is so low, there does not appear to be an impact on the data. All associated samples with hits for these compounds have been flagged accordingly. Analytes reported between the PQL and the MDL are flagged with a "J".

All Laboratory Control Sample, Matrix Spike Sample, and Matrix Spike Duplicate Sample Recoveries were within QC limits.

The sample data is complete, with all associated raw spectra and quantitation reports. TICs were not reported for this job number.

All data for the initial calibration is complete, including raw data and quantitation reports. All continuing calibration data is present, including raw data and quantitation reports. The six ccc's of interest are within acceptable limits.

All raw QC data is included. Any items of concern have been noted above. There are no other concerns with the volatiles data for this job number.

Job#: A08-G145

All preservation and holding times are met. The cooler temperature at receipt is acceptable.

Most of the samples were analyzed and reported as replicates to give the best possible reporting limits with compounds "E" and "D" flagged accordingly. All surrogates are within acceptable limits. Although four surrogates were used and analyzed for, only three were reported and assessed The instrument tunes pass all criteria. The internal standard areas and retention times are all within acceptance windows. The method blank report forms indicate the method blanks are free from contamination, except a low level hit of Toluene (2J ug/Kg) in the blank for the 12/23-12/24 run. As the level is so low, there does not appear to be an impact on the data. Toluene has been "B" flagged in the affected samples. Analytes reported between the PQL and the MDL are flagged with a "J".

All Laboratory Control Sample, Matrix Spike Sample, and Matrix Spike Duplicate Sample Recoveries were within QC limits.

The sample data is complete, with all associated raw spectra and quantitation reports. TICs were analyzed for and reported accordingly.

All data for the initial calibration is complete, including raw data and quantitation reports. All continuing calibration data is present, including raw data and quantitation reports, and within acceptable limits.

All raw QC data is included. Any items of concern have been noted above. There are no other concerns with the volatiles data for this job number.

Job#: 220-7988

All preservation and holding times are met. The cooler temperature at receipt is acceptable.

All surrogates are within acceptable limits. The instrument tunes pass all criteria. The internal standard areas and retention times are all within acceptance windows. The method blank report forms indicate the method blanks are free from contamination. Analytes reported between the PQL and the MDL are flagged with a "J".

All Laboratory Control Sample Recoveries were within QC limits, except Styrene (out low) for batch numbers 220-24318 and 220-24254 and Acetone (out high) for batch number 220-24254. All Styrene results and reporting limits for these two batch numbers should be considered estimated. As Acetone for batch number 220-24254 is non-detect, this QC outlier is a non-issue. All Matrix Spike Sample and Matrix Spike Duplicate Sample Recoveries were within QC limits. The sample data is complete, with all associated raw spectra and quantitation reports. TICs were analyzed for and reported accordingly.

All data for the initial calibration is complete, including raw data and quantitation reports. All continuing calibration data is present, including raw data and quantitation reports. The six ccc's of interest are within acceptable limits.

All raw QC data is included, except in lieu of analyst's handwritten run log copies, typed "Laboratory Chronicles" and "QC Association Summaries" are included instead. These appear to supply most of the data that an actual logbook copy would have. Any items of concern have been noted above. There are no other concerns with the volatiles data for this job number.

Job#: RSD0878

All holding times were presumably met. No internal or external Chains of Custody were supplied with this report so sample dates on report forms cannot be verified. A typewritten summary report was supplied. Sample preservation was verified from the analyst logbook copy.

All surrogates are within acceptable limits. Although four surrogates were used and analyzed for, only three were reported and assessed The instrument tunes pass all criteria. The internal standard areas and retention times are all within acceptance windows. The internal standard area for 1,4-Difluorobenzene for location NI-PW-1 is transcribed incorrectly on the report forms. The correct value is within QC limits. The method blank report form indicates the method blank has various compounds present at low levels. The samples do not have hits for any of these compounds so this is a non-issue. Analytes reported between the PQL and the MDL are flagged with a "J".

All Laboratory Control Sample, Matrix Spike Sample, and Matrix Spike Duplicate Sample Recoveries for the reported compounds were within QC limits.

The sample data is complete, with all associated raw spectra and quantitation reports. TICs were not analyzed and, therefore, not reported.

All data for the initial calibration is complete, including raw data and quantitation reports. All continuing calibration data is present, including raw data and quantitation reports. The six ccc's of interest are within acceptable limits.

All raw QC data is included. Any items of concern have been noted above. There are no other concerns with the volatiles data for this job number.

SEMI-VOLATILES

Job #: A08-A888

All surrogate recoveries are within acceptable limits. Matrix Spike Recoveries and Matrix Spike Duplicate Recoveries for both QC locations and Blanks were all within limits. All RPD's were within limits except 2,4-Dinitrotoluene and Acenaphthene for location NI-WB-11-9 and Acenaphthene, Phenol, Pyrene, and N-Nitroso-Di-n-Propylamine for location NI-SS-3. This appears to be a matrix interference or non-homogeneity circumstance and does not affect data usability.

The method blanks are free from contamination. The instrument tunes pass all criteria. The internal standards all show acceptable areas and retention times.

The sample data is complete, with all associated raw spectra and quantitation reports, except one compound was reported as a ND that should have been reported as a hit with a "J" flag. Biphenyl for location NI-B-12-12D should have been reported as a 59 J. All hits between the MDL and PQL are "J" flagged. TICs were not reported for this job number.

All data for the initial calibration is complete, including raw data and quantitation reports. All continuing calibration data is present, including raw data and quantitation reports. The thirteen ccc's of interest are within acceptable limits.

All raw QC data is included. Any items of concern have been noted above. There are no other concerns with the semi-volatiles data for this job number.

Job#: A08-G145

All surrogate recoveries are within acceptable limits. Matrix Spike Recoveries and Matrix Spike Duplicate Recoveries for the QC location and Blank were all within limits. All RPD's were within limits.

The method blank is free from contamination. The instrument tunes pass all criteria. The internal standards all show acceptable areas and retention times.

The sample data is complete, with all associated raw spectra and quantitation reports. TICs were required and reported with this job number and flagged with "J"s and "N"s appropriately.

All data for the initial calibration is complete, including raw data and quantitation reports. All continuing calibration data is present, including raw data and quantitation reports, and within acceptable limits.

All raw QC data is included. There are no concerns with the semi-volatiles data for this job number.

Job#: 220-7988

All holding time and preservation requirements are within acceptable guidelines. The cooler temperature upon receipt is acceptable. The semi-volatile bottle for location NI-MW-6-15 was received broken so there is no data for semi-volatiles for this location. All sample surrogate recoveries were acceptable, except 2-Fluorophenol, Phenol-d5, Nitrobenzene-d5, and 2-Fluorobiphenyl for location NI-MW-5b-11 and 2-Fluorophenol and 2,4,6-Tribromophenol for the LCS for prep. batch 220-24165. All were out low and flagged with a "\*". Due to a laboratory error, there was no MS/MSD done for this job number for semi-volatiles so there is no data to assess. All LCS recoveries were within limits except the following for LCS prep. batch 220-24165: 2-Chlorophenol, 2-Nitrophenol, 2,4-Dichlorophenol, 2,4,6-Trichlorophenol, 2,4,5-Trichlorophenol, 2,4-Dinitrotoluene, Fluorene, 4,6-Dinitro-2-methylphenol, and pentachlorophenol. They were all out low and flagged with a "\*". Results and reporting limits for these compounds in the following associated samples should be considered estimated: MB 220-24165, NI-MW-3-14, NI-MW-4-14, NI-MW-4-14D, and NI-MW-5b-11.

The method blanks are free from contamination except for a low level TIC compound at RT 1.89 for MB 220-24156. This TIC was not found in any of the samples so is a non-issue. The instrument tunes pass all criteria. The internal standards all show acceptable areas and retention times.

The sample data is complete, with all associated raw spectra and quantitation reports. TICs were required and reported with this job number and flagged with "J"s and "N"s appropriately.

All data for the initial calibration is complete, including raw data and quantitation reports. All continuing calibration data is present, including raw data and quantitation reports, and within acceptable limits.

All raw QC data is included, except in lieu of analyst's handwritten run log copies, typed "Laboratory Chronicles" and "QC Association Summaries" are included instead. These appear to supply most of the data that an actual logbook copy would have. Any items of concern have been noted above. There are no other concerns with the semi-volatiles data for this job number.

PESTICIDES & PCBS

Job#: A08-A888

All holding time and preservation requirements are within acceptable guidelines. The cooler temperature upon receipt is acceptable.

All sample surrogate recoveries were acceptable on at least one column, except TCMX for Pesticides which was out high on both columns and flagged with a "\*" for sample NI-

B-12-12D. Results for this sample should be considered estimated. The surrogate's for Pesticides were diluted out for the following locations as indicated by the "D" flags and cannot be evaluated: NI-SS-1, NI-SS-1D, NI-SS-2, NI-SS-3(+ MS & MSD), NI-SS-4, and NI-SS-5.

The MS/MSD recoveries and RPDs for location NI-SS-3 were all within limits except 4,4'DDT for both recoveries which was out low and flagged with a "\*". The Blank Spike Recovered within limits indicating the outlier is a matrix effect and no further qualification is necessary.

The method blanks and instrument blanks are all free from contamination.

The sample data is complete, with all associated chromatograms and quantitation reports. The following samples/compounds have a difference in the two column's results that is >40%: NI-B-11-12/4,4'-DDD and gamma-BHC, NI-B-12-12/Aldrin, beta-BHC, gamma-BHC, Methoxychlor, NI-B-12-12D/Aldrin, beta-BHC, gamma-BHC, NI-SS-3/Aroclor 1260, and NI-SS-5/Aroclor 1254, Aroclor 1260. Method 8000B indicates that the higher result should be reported when this circumstance exists. The Laboratory reported all results off of the Channel A (column 1). Most of these results were the higher number with the following exceptions: Aldrin for samples NI-B-12-12 and NI-B 12-12D. Aldrin for these two samples should be considered estimated.

All data for the initial calibration is complete, including raw data and quantitation reports. All continuing calibration data is present, including raw data and quantitation reports, and within acceptable limits, except various compounds on the closing calibration analyzed 09/28/2008 at 01:29. Beta-BHC, 4,4'-DDD, 4,4'-DDT, and Methoxychlor were >15.0%, although the average %D remained below 15%. The decrease in instrument response appears to be due to matrix interference and does not appear to affect the results. The 4,4'DD compound breakdown analyzed before this ccv was outside limits at 18.7%. All outliers were flagged with a "\*" accordingly.

All raw QC data is included. Any items of concern have been noted above. There are no other concerns with the pesticides and PCBs data for this job number.

Job#: 220-7988

All holding time and preservation requirements are within acceptable guidelines. The cooler temperature upon receipt is acceptable.

All sample surrogate recoveries were acceptable, except both surrogates on both columns for sample NI-MW-4-14 for pesticides and both surrogates for this location for PCBs. The surrogates were out low and flagged with a "\*". The results and reporting limits for this location for pesticides and PCBs should be considered estimated. All other samples and QC samples recovered within limits.

....

The method blanks and instrument blanks are all free from contamination.

The sample data is complete, with all associated chromatograms and quantitation reports.

All data for the initial calibration is complete, including raw data and quantitation reports. All continuing calibration data is present, including raw data and quantitation reports.

All raw QC data is included, except in lieu of analyst's handwritten run log copies, typed "Laboratory Chronicles" and "QC Association Summaries" are included instead. These appear to supply most of the data that an actual logbook copy would have. Any items of concern have been noted above. There are no other concerns with the pesticides and pcbs data for this job number.

 Image: Technical Director

 Nalendino Mulle

 Environmental Data Manager
 (signed) (signed)

(date) 6/4/2009(date) 6/4/2009

ENVIRONMENTAL SERVICES, INC.

EPA METHOD TO-15 DATA VALIDATION REPORT

CLIENT: Lu Engineering PROJECT LOCATION: Nichol Inn ERP SAMPLE DELIVERY ID: C0904007 SAMPLE DATE(S): 04/01/2009 RECEIVED DATE: 04/02/2009 ANALYSIS DATE(S): 04/07/2009

QC PARAMETER

HOLDING TIMES

All samples were analyzed within the method specified holding time of 14 days from sampling, with the following exceptions: *None*.

TUNE CRITERIA

All samples were analyzed within 24 hours of a passing BFB tune, with the following exceptions: *None*.

INITIAL CALIBRATION

The multi-point initial calibration had a Response Factor %RSD of <30% (or up to two >40%) for all reported analytes, with the following exceptions: *None*.

All reported analytes were within the .06 RRT units of the mean RRT, with the following exceptions: *None*

All reported analytes were detected at the appropriate levels in the multi-point calibration to support the reporting limits provided, with the following exceptions: *None*

CONTINUING CALIBRATION VERIFICATION

All reported analytes in the continuing calibration verification had %D of <30% from the initial calibration, with the following exceptions: *Vinyl Acetate was out high at 38.8%*. *All samples were non-detect for this analyte but the reporting limit should be considered estimated*.

METHOD BLANK

A blank was run in each 24 hour window, with the following exceptions: None.

The Internal Standard areas are within +/- 40% of the calibration areas, with the following exceptions: *None*.

The Internal Standard retention times are within 20 seconds of the calibration times, with the following exceptions: *None*.

There were no analytes at reportable levels in the blank (s), with the following exceptions: *None*.

Additional blanks were run after high level samples with potential for carryover, with the following exceptions: *None*.

LABORATORY CONTROL SAMPLE/LCS DUPLICATE

An lcs and lcs duplicate were run with each batch or SDG, with the following exceptions: *None.*

The Internal Standard areas are within +/- 40% of the calibration areas, with the following exceptions: *None*.

The Internal Standard retention times are within 20 seconds of the calibration times, with the following exceptions: *None*.

All reported analytes in the LCS and LCS duplicate recovered between 70% and 130% with the following exceptions: 1,2,4-Trichlorobenzene, Hexachloro-1,3-butadiene, Methyl Butyl Ketone, and Methyl Isobutyl Ketone were all out high. Any hits for these analytes should be considered estimated, biased high.

All RPDs in the lcs and lcs duplicate were less than or equal to 35% with the following exceptions: *Propylene was out high at 44.6%. Since both recoveries were within QC limits, there is no effect on the data for this analyte.*

SAMPLE DATA

All samples were analyzed within 24 hours of an acceptable tune and calibration or calibration verification, with the following exceptions: *None*.

The Internal Standard areas are within +/- 40% of the calibration areas, with the following exceptions: *None*.

The Internal Standard retention times are within 20 seconds of the calibration times, with the following exceptions: *None*

All reported analytes are within the calibration range of the analytical system (on the primary or diluted runs), with the following exceptions: *All the samples were analyzed straight and at a 10x dilution for various over-range compounds. The reports show only the final results and reporting limits are elevated accordingly for those compounds reported from the dilutions.*

All reported analytes have appropriate spectral match for positive compound ID, with the following exceptions: *The samples NI-IA-01, NI-OA-01, and NI-IA-02 had Isopropyl* Alcohol reported at 0.91ppbv, 0.80ppbv, and 7.2ppbv. The characteristic ions did not comaximize and this analyte should be reported as ND<0.15ppbv, ND<1.5ppbv for sample NI-IA-02. Also, the following should be noted: For manual integrations, only the after peak spectra were supplied.

All reported analytes also present in the associated blank have been appropriately qualified, with the following exceptions: *None*

Field or lab duplicates were performed once per 20 samples, and reported analyte precision was <25% D, with the following exceptions: *Run logs did not indicate any laboratory duplicates.*

CANISTER CLEANING DATA

Traceability is provided for each sample to the lot of canisters with which its canister was processed for cleaning, with the following exceptions: *None*.

All canister cleaning data show the canister lots in which the samples were collected to be free of interfering compounds, with the following exceptions: *None*.

LIMITATIONS:

This validation report addresses analytical performance as defined in EPA Method TO-15. It does not address field sample collection procedures, however, the following should be noted: locations NI-OA-01 and NI-IA-02 were at zero vacuum at the conclusion of sampling. The actual sampling duration can not be calculated.

All data review addresses only those compounds which are represented on the final laboratory reports. Additional compounds which may be present in the calibration are not addressed.

REFERENCES:

EPA Compendium of Methods for the Determination of Toxic Organic Compounds in Air. Second Edition. Compendium Method TO-15. Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS) USEPA Hazardous Waste Support Branch SOP#31 Validating Air Samples Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15

Bruce Hoogesteger

Technical Director

Valentmer h miller

Valentina Miller Environmental Data Manager

APPENDIX 3C

Fish and Wildlife Resources Impact Analysis Decision Key

| | | ······································ | |
|------------|---|--|-----------------|
| | | If YES
Go to: | If NO
Go to: |
| 1. | Is the site or area of concern a discharge or spill event? | 13 | 2. |
| 2. | Is the site or area of concern a point source of contamination to the groundwater which will be prevented from discharging to surface water? Soil contamination is not widespread, or if widespread, is confined under buildings and paved areas. | 13. | 3 |
| 3. | Is the site and all adjacent property a developed area with buildings, paved surfaces and little or no vegetation? | 4. | 9. |
| 4. | Does the site contain habitat of an endangered, threatened or special concern species? | Section 3.10.1 | 5. |
| 5. | Has the contamination gone off site? | 6. | 14. |
| 6. | Is there any discharge or erosion of contamination to surface water or the potential for discharge or erosion of contamination? | 7. | 14. |
| 7. | Are the site contaminants PCBs, pesticides or other persistent, bioaccumulable substances? | Section 3.10.1 | 8. |
| 8. | Does contamination exist at concentrations that could exceed SCGs or be toxic to aquatic life if discharged to surface water? | Section 3.10.1 | 14. |
| 9. | Does the site or any adjacent or downgradient property contain any of the following resources? a. Any endangered, threatened or special concern species or rare plants or their habitat b. Any NYSDEC designated significant habitats or rare NYS Ecological Communities c. Tidal or freshwater wetlands d. Stream, creek or river e. Pond, lake, lagoon f. Drainage ditch or channel g. Other surface water feature h. Other marine or freshwater habitat i. Forest j. Grassland or grassy field k. Parkland or woodland l. Shrubby area | | |
| | m. Urban wildlife habitatn. Other terrestrial habitat | 11. | 10. |
| 10. | Is the lack of resources due to the contamination? | Section
3.10.1 | 14. |
| 11. | Is the contamination a localized source which has not migrated and will not migrate from the source to impact any on-site or off-site resources? | 14. | 12. |
| 12. | Does the site have widespread soil contamination that is not confined under and around buildings or paved areas? | Section
3.10.1 | 13. |
| 13.
14. | Does the contamination at the site or area of concern have the potential to migrate to, erode
into or otherwise impact any on-site or off-site habitat of endangered, threatened or special
concern species or other fish and wildlife resource? (See #9 for list of potential resources.
Contact NYSDEC for information regarding endangered species.)
No Fish and Wildlife Resources Impact Analysis needed. | Section
3.10.1 | 14. |
| | | | |