

Panamerican Environmental, Inc.

2390 Clinton St. Buffalo, NY 14227

Ph: (716) 821-1650 Fax: (716) 821-1607

SITE INVESTIGATION/ REMEDIAL ALTERNATIVES ANALYSIS

FOR

FORMER RANDOLPH FOUNDRY NYSDEC SITE NO. E905030 2-8 SHELDON STREET VILLAGE OF RANDOLPH, NEW YORK

Prepared for:

COUNTY OF CATTARAUGUS 303 COURT STREET LITTLE VALLEY, NEW YORK 14755

Prepared by:

Panamerican Environmental, Inc. 2390 Clinton Street Buffalo, New York 14227

July 2011

SITE INVESTIGATION / REMEDIAL ALTERNATIVES REPORT

FOR THE

FORMER RANDOLPH FOUNDRY SITE NO. E905030 2-8 SHELDON STREET VILLAGE OF RANDOLPH, NEW YORK

Prepared for:

COUNTY OF CATTARAUGUS 303 COURT STREET LITTLE VALLEY, NEW YORK 14755

Prepared by:

Panamerican Environmental, Inc. 2390 Clinton Street Buffalo, New York 14227

TABLE OF CONTENTS

Sect	tion	Page
Exec	cutive Summary	iii
1.0	INTRODUCTION AND BACKGROUND1.1 Introduction	1
2.0	SITE INVESTIGATION	4
3.0	PHYSICAL CHARACTERISTICS OF THE STUDY AREA	7 7
4.0	NATURE AND EXTENT OF CONTAMINATION 4.1 Introduction 4.2 Potential Sources 4.3 Soil Sampling and Analytical Program 4.4 Groundwater	9 9
5.0	INTERIM REMEDIAL MEASURES	13
6.0	CONTAMINANT FATE AND TRANSPORT	14
7.0	QUALITATIVE EXPOSURE ASSESSMENT	15
8.0	SUMMARY AND CONCLUSIONS	16
9.0	REMEDIAL ALTERNATIVES AND RECOMMENDED REMEDY 9.1 Remedial Action Objectives	18 19 19 21

LIST OF TABLES

- Analytical Results Summary Table Surface/Subsurface Soil Samples Demolition IRM Confirmatory Soil Samples 1
- 2
- Analytical Results Summary Table Ground Water Sample MW-02 3

LIST OF FIGURES

- Project Area Map
- 2
- Project Location Map (regional plan w/USGS Topo)
 Investigation Plan (TVGA demo plan with trenches and sample locations) 3
- Confirmation Soil Sample Locations-Below Sumps and Pits

APPENDICES

Appendix A Trench and Monitoring Well Logs

Appendix B Analytical Results Appendix C Photographs

EXECUTIVE SUMMARY

This document presents details of a site investigation and remedial alternatives evaluation completed to support a Site Investigation/ Remedial Alternatives Report (SI/RAR) and an Interim Remedial Measure (IRM) at the Former Randolph Foundry site located in the Village of Randolph, New York (refer to Figure 1). The work is being completed by Cattaraugus County (County) under the New York State Department of Environmental Conservation (NYSDEC) Environmental Restoration Program (ERP). To complete the work, the County contracted with Panamerican Environmental, Inc. (PEI) and its teaming partner TVGA Consultants (TVGA) to complete an Interim Remedial Measure (IRM) and conduct a SI/RAR program for the site.

The goal of the SI task was to complete focused environmental investigations to accurately assess the potential for contamination. One of the main purposes of the initial effort was to complete an IRM to expeditiously demolish the former foundry structure and remove drums, foundry sands, and miscellaneous abandoned chemical products and wastes to alleviate the potential public safety and liability concerns for the County at the property, and make it ready for re-use. Completed after the IRM, the purpose of the post IRM SI was to further determine the likelihood of residual contamination associated with past commercial/industrial use on portions of the property. With the completion of the IRM and an assessment of the SI results final remedial alternatives were evaluated as part of this report with a recommended final remedy of no further action required beyond the IRM with implementation of an environmental easement and institutional and engineering controls for future site development.

The Randolph Foundry site is located at 2-8 Sheldon Street at the northwest corner of South Washington and Sheldon streets in the Village of Randolph, Cattaraugus County, New York (refer to Figure 2). The ERP site encompasses approximately 0.91 acres which includes the former foundry parcel and a portion of a railroad right of way where a section of the former foundry building resided. In consultation with the NYSDEC and based on observations made during the IRM, a post IRM SI was completed by PEI at the Former Randolph Foundry site. The post IRM SI was completed in accordance with the scope of work provided in PEI's letter of November 17, 2008 (Re: Randolph SI/RAR/IRM Project-Proposed Limited Site Investigation Activities) and under PEI's contract with the County of Cattaraugus to complete a SI/RAR and IRM program for the site.

Prior to the SI/RAR and IRM program for the site, PEI completed a Phase 1 Environmental Site Assessment at the site in 2005 (*Phase 1 Environmental Site Assessment, Former Foundry Building and Property, Town of Randolph, Cattaraugus County, New York, Prepared by Panamerican Environmental, Inc., for Cattaraugus County, June-July 2005*). The assessment identified potential contamination associated with asbestos containing building materials, foundry sands and various drums/containers within the building that were in poor condition containing unknown chemical products and chemical wastes. In 2006, Cattaraugus County received a grant through the NYSDEC ERP. PEI was subsequently selected by the County to conduct an SI, complete an RAR, and assist in implementing an IRM that was included in the ERP grant. In 2008 the IRM program was

conducted at the site that included the demolition and removal of the old foundry building, removal and proper disposal of building contents (drums/containers, machinery and some waste foundry sand fill) and removal of building floor slabs and sumps/pits. All materials were sampled and tested and properly disposed of at approved off-site facilities. As part of the IRM, low areas including four sumps/pits were filled/graded with existing site soils to eliminate low areas and reduce ponding. During the IRM, one soil sample was collected from the area beneath each of the four sumps/pits before filling and analyzed for Target Analyte List (TAL) metals, Target Compound List (TCL) volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), and PCBs/Pesticides. The analytical results indicated that there were no compounds detected at concentrations above NYSDEC 6 NYCRR Part 375-6.8 Commercial soil cleanup objectives. The IRM was completed in October 2008. Details of the IRM program will be provided in a Final Engineering Report (FER) yet to be completed.

At the completion of the demolition portion of the IRM the County, based on discussions with the NYSDEC, agreed to perform a post IRM SI to evaluate soil conditions within areas of the former building footprint not previously sampled and the areas outside the former building footprint across the remainder of the property. The program also included an evaluation of groundwater conditions beneath the property. The program entailed a one day test trenching and soil sampling program and the installation/sampling of three Geoprobe installed mini-wells. These tasks were included as part of the original SI/RAR Program as detailed in the SI/RAR work plan. The intent of this post IRM SI was to define the geology/hydrogeology of the site and to determine the extent and nature of the foundry sands across the site as well as the identification of any other potential contaminants in the soils and groundwater.

The post IRM SI of the surface and subsurface soils was completed on December 16, 2008. A total of ten test trenches were excavated across the site ranging in length from 10 feet to 76 feet and in depth from 4 feet below ground surface (bgs) to 12 feet bgs (refer to Figure 3). Field screening for VOCs using a photoionization detector (PID) indicated no PID readings in any of the trenches exceeded background levels. A total of eight surface and eight subsurface soil samples were collected from the test trench material. Subsurface soil samples were selected for analysis from the test trench areas that indicated the highest potential for contamination based on visual, olfactory, and screening information.

The test trenching program indicated the presence of fill material at varied depth across the site. In general, fill depths varied by location from no fill at the southwest section of the site and up to five feet at the northeast section of the site. In the areas containing fill, the top six inches to a foot of the fill is composed of black and grey fine granular material (waste foundry sand), brick and concrete fragments, and coarse to fine gravel. The composition and depths of this material may have been influenced by the final grading of the site upon completion of the IRM. Below this surface layer is a fill layer, up to the three to five foot in depth, consisting of brown to black medium to fine sand and cinders (foundry sand) with traces of ash, gravel and silt. This layer is most likely fill material deposited from the foundry operations. Below this fill layer, the soil was mostly light brown (tan) and grey, granular, medium to fine (M-F) sand with gravel and traces of silty clay and is considered natural soil material.

Surface and subsurface soil/fill samples were analyzed for TAL metals, TCL VOCs (except surface samples) and SVOCs, and PCBs. Analytical results were compared with 6 NYCRR Part 375-6.8 Commercial Soil Cleanup Objectives (SCOs). Numerous SVOCs, consisting primarily of polycyclic aromatic hydrocarbons (PAHs), were detected in both surface and subsurface soil/fill samples. Only four of these PAH compounds were detected at concentrations slightly exceeded part 375 Commercial SCOs. PAH compounds are common constituents of fill material in urban and industrial environments. These compounds can be introduced into the environment by natural (e.g., soil chemistry, forest fires) and human processes (e.g., automobile, coal or other heating fuel combustion, industrial, railroad, and commercial).

Various metal compounds were also detected in all of the surface and subsurface soil/fill samples; however, only one metal compound (copper) detected in two surface soil samples was at a concentration that exceeded Part 375 Commercial soil cleanup objectives. Most metals are naturally present in soil and fill materials. Concentrations of metals in soil and fill exhibit considerable variability, both stratigraphically and spatially. This variability is related to the composition of the fill, natural soils' origin, weathering processes that chemically and physically modify soil and, groundwater interactions that modify the geochemistry.

There were no volatile or PCB compounds detected in surface and subsurface soil/fill samples at concentrations above Part 375 Commercial soil cleanup objectives. A section of one trench exhibited a slight chemical odor. However, sample results from this area indicated compounds below NYSDEC guidance levels.

Three groundwater mini-wells were also installed at the southeast corner, north end and east side of the site. No groundwater was observed in any of the wells on the day of installation. After a transitional period, only one well had a small amount of water. The amount of water was not sufficient to develop or purge the well in accordance with the work plan. However, after consultation with NYSDEC representatives, two vials of water were collected and analyzed for TCL VOCs and SVOCs only. There was insufficient volume for metals analysis. The analyses did not detect the presence of any VOC or SVOC compounds in the water sample.

The final site restoration was completed after the SI and included additional grading to level the site (fill in depressions from the removal of sumps and pits). During the grading process in the south/south central area of the site two areas were uncovered of thin layers (up to 12 inches thick) of some industrial debris and foundry sands. This material was scraped away and pushed into the former furnace pit depressed area. The foundry property was then covered with a minimum of six inches of clean soil of a consistency to promote the establishment of vegetative cover. Six inches of clean cover fill material was also placed over portions of the STERA railroad right-of-way disturbed during the IRM. This clean cover fill was a coarse granular material that would inhibit vegetative growth and minimize vegetation management by STERA. The clean fill material was tested and met the requirements of NYSDEC DER-10-Technical Guidance for Site Investigations and Remediation, Appendix 5A- Allowable Constituent Levels for Imported Fill or Soil,

Subdivision 5.4 (e) for Commercial Use.

SI Findings Summary

The post IRM SI program revealed the areal extent and depth of remaining foundry sand and levels of residual contaminants. In general, the remaining foundry sand waste fill is limited to the north-northeast section of the actual foundry parcel and covers most of the adjoining railroad right-of-way between the railroad tracks and foundry property boundary. The foundry sand waste fill varies in depth where it was observed to be three to five feet thick at the northeast section of the site and diminishes in thickness to the south-southwest. The foundry sand waste fill at the site is mixed with some construction and demolition (C&D) debris near the surface and contains random pieces of larger C&D debris below the surface. Areas of the former foundry parcel that do not have any appreciable amounts of foundry sand, but the surface contains C&D fragments and some minor amounts of scattered foundry sand mixed in at the surface of the exposed subsoil.

Soil sample analytical results indicate that only a few slightly elevated metals and PAH compounds were detected in the surface and subsurface fill. The levels appear to be consistent with commercial fill conditions and urban background in general. Soil samples from below the fill layer obtained during the IRM confirm that these slightly elevated levels of these compounds were restricted to the fill layer. These results suggest that remediation is not necessary for the site fill/soils that have slightly elevated metal and PAH compounds based on a future commercial property use scenario.

Groundwater impacts were not observed and groundwater appears to be at or greater than 23 feet in depth. Additionally, since municipal potable water is available, use of groundwater from below the site is not envisioned. The regional topography slopes generally in an easterly direction toward Conewango Creek. Groundwater gradients will typically mimic surface topographic contours. Therefore, the groundwater gradient is presumed to be flowing in an easterly direction. Though only one mini-well was sufficiently deep enough to intercept groundwater, the groundwater gradient could not be confirmed. Using an assumed easterly groundwater gradient, the mini-well where groundwater samples were collected would suggest that this well is a downgradient well, and that any potential offsite migration of groundwater contaminants would be detected in this well. No contaminants of concern were detected in the water sample from this mini-well, and it can be reasonably concluded that no groundwater contamination from previous activities at the site exists at the site.

Remedial Recommendations

The final remedial measure for the Randolph site must satisfy Remedial Action Objectives (RAOs). The RAOs are site specific goals for minimizing or eliminating risks to the environment and public health. Appropriate RAOs for the Randolph site are:

 Removal of contaminants of concern related to the foundry building, asbestos containing materials, containers of chemical products and associated foundry sands/industrial debris within the building. Mitigate human exposure to remaining site fill material that exceeds soil cleanup objectives (SCOs) for the site (Part 375 commercial use soil cleanup objectives).

The IRM accomplished the first RAO by demolishing the building and disposing of all building materials, containers of chemical products, building foundry sands and associated industrial debris at off-site regulated disposal facilities. The IRM also accomplished the second RAO for the site in its undeveloped state by the placement of the restoration clean cover soil over the entire site.

To restrict and manage community exposure to the impacted soils for future development it is recommended that the final remedy for the site be no further action with institutional controls (IC) and engineering controls (EC) as established under Part 375 regulations for commercial development. Part 375 regulations describe the IC/EC general requirements for the various site classifications for future development. To restrict future development of the site to commercial use, the following IC/EC will be required. The IC/EC will apply to both the former foundry parcel and the STERA railroad right-of-way disturbed by the IRM. A separate environmental easement (IC) would be required for each parcel.

1.0 INTRODUCTION AND BACKGROUND

1.1 Introduction

The goal of the project was to complete focused environmental investigations to accurately assess the potential for contamination at the Former Randolph Foundry site located in the Village of Randolph, County of Cattaraugus, New York (refer to Figure 1). One of the main tasks of the initial project effort was to complete an interim remedial measure (IRM). The goal of the IRM was to expeditiously demolish the former foundry structure and remove drums containing miscellaneous abandoned chemical products and wastes, waste foundry sands with elevated metal concentrations, and random abandoned containers with miscellaneous chemical products and wastes to alleviate the potential public safety and liability concerns for the County at the property and make it ready for re-use.

A post IRM Site Investigation (post IRM SI) was completed by Panamerican Environmental, Inc. (PEI) at the Former Randolph Foundry site. The post IRM SI was completed in accordance with the scope of work provided in PEI's letter of November 17, 2008 (Re: Randolph SI/RAR/IRM Project-Proposed Limited Site Investigation Activities). This scope of work was based on PEI's contract with the County of Cattaraugus to complete an IRM and conduct a Site Investigation/ Remedial Alternatives Report (SI/RAR) program for the site under the ERP program. The IRM portion of the contract was completed in two stages. The first stage was completed in October 2008 and included the demolition and removal of the on-site foundry building and contents, including machinery, drums and foundry sands within the building.

After the completion of this stage of the IRM (which also included an interim assessment of preliminary data collected during the IRM) the County, in concert with the NYSDEC, decided to conduct a further assessment of the site. The objective was to evaluate soil and shallow groundwater conditions within areas of the former building footprint and the areas outside the former building footprint across the remainder of the property. The program entailed a one day test trenching and soil sampling program and the installation/sampling of three Geoprobe installed mini-wells. These tasks were part of the original SI/RAR Program as detailed in the SI/RAR work plan (Work Plan for Site Investigation/Remedial Alternatives Report and Interim Remedial Measure, Former Randolph Foundry Site-Number E905030, Village of Randolph, New York prepared for: County of Cattaraugus, prepared by: PEI/TVGA, April 2007).

Based on observations made during the initial stage of the IRM, the intent of this SI was to further assess the geology/hydrogeology and to determine the extent and nature of the foundry sand fill across the site as well as to further assess potential contaminants in the soils and groundwater. After completion of the site investigation activities the IRM site restoration stage of the IRM was completed in November 2009 and included: grading of the site; movement of some uncovered foundry sands during grading to the former furnace pit area; and covering the entire site with six inches of clean fill material suitable for vegetative growth.

1.2 Background

The Randolph Foundry site is located at 2-8 Sheldon Street at the northwest corner of South Washington and Sheldon streets in the Village of Randolph, Cattaraugus County, New York. The site subject to the ERP grant encompasses approximately 0.91 acres which includes a portion of a railroad right of way where a section of the former foundry building resided (see Figure 2). Cattaraugus County took possession of the former foundry parcel in 2005 through property tax foreclosure. The initial ERP grant only included the former foundry parcel. However, after a property boundary survey was conducted, the survey revealed that the foundry plant extended onto the right-of-way owned by the Chautauqua, Cattaraugus, Allegany and Steuben County Southern Tier Extension Railroad Authority, alternatively known as the Southern Tier Extension Railroad Authority (STERA). STERA was determined to be a municipality under the ERP, and the portion of the foundry site encroaching onto the railroad right of way was allowed entry into the ERP by amendment dated May 15, 2007.

PEI completed a Phase I Environmental Site Assessment at the site in 2005 (Phase 1 Environmental Site Assessment, Former Foundry Building and Property, Town of Randolph, Cattaraugus County, New York, Prepared by Panamerican Environmental, Inc., for Cattaraugus County, June-July 2005). The assessment identified potential contamination associated with asbestos containing building materials, waste foundry sands and various drums/containers within the building that were in poor condition containing unknown contents. A review of historic aerial and Sanborn maps as well as building permit records during the Phase I indicated that the former foundry structures and property had been altered over time. The exact date that the former foundry was built is unknown; however, as late as 1897 however, a dairy was located on the property. Historical maps indicate that a foundry and machine shop (F. H. Pike Foundry and Machine Shop) was located on the property as early as 1902. By 1929, historic maps indicate that the property was identified as the Randolph Foundry and Machine Shop. Randolph Foundry was at one time owned by Aeolian (verified also by ownership records) and made cast iron piano plates and used scrap iron for foundry material stock. The foundry was later sold and went out-of-business around 1986. The owner of the property eventually became delinguent in property taxes. Through a property tax foreclosure, Cattaraugus County took possession of the property in 2005. The former foundry parcel is currently zoned village residential (R-1).

In 2005, Cattaraugus County submitted an application for entry into the ERP. The County was allowed entry into the ERP in 2006. Because the actual foundry plant was determined to encroach onto the railroad right of way owned by STERA, and that the project could not be realistically completed with a portion of the plant on an adjoining property, STERA was admitted to the ERP as a co-applicant in 2007. Following the admission of STERA to the program, specific elements of the project work plan were executed including inventorying of abandoned chemical wastes and products, sampling and characterizing foundry sand for waste disposal, and preparing contract documents to implement the IRM. The IRM contract documents specified the removal and appropriate disposal of the abandoned chemical wastes and products, asbestos abatement required for building demolition, building demolition, floor slab removal and removal of in-ground pits, sumps and process tanks, and removal of some foundry sand fill with elevated levels of metals (i.e. lead) as

industrial solid waste.

The IRM was bid in April 2008. The IRM contract was awarded May 2008 and, with the exception of site restoration, was completed October 2008. The IRM conducted at the site included the demolition and removal of the old foundry building, removal and proper disposal of building contents (drums/containers, machinery and some waste foundry sand fill) and removal of building floor slabs and sumps/pits. All waste materials removed from the site were properly disposed of at approved off-site facilities. As part of the IRM, the depressions resulting from the removal of four sumps/pits were partially graded using existing site soils to eliminate abrupt grade changes in grade that could create unsafe conditions. One soil sample was collected from the soil beneath each of the four sumps/pits before grading and analyzed for TCL VOCs and SVOCs, PCBs/Pesticides and TAL Metals. The analytical results indicated that there were no compounds detected at concentrations above Part 375 Commercial soil cleanup objectives (refer to Table 2). This sampling indicated that soils below the site fill materials in the areas sampled were not impacted. As noted in the Introduction, after assessing the data from the IRM a proposed limited site investigation (SI) was undertaken as discussed herein. The objective of the SI was to evaluate soil and shallow groundwater conditions within areas of the former building footprint and the areas outside the former building footprint across the remainder of the property. As a final IRM activity, upon completion of the SI, the site ground surface was restored which involved surface grading, placement of clean fill to level the depressions resulting from the IRM demolition and placement of a six inch layer of clean soil suitable for vegetative growth over the entire site. Complete details of IRM activities will be provided in the Final Engineering Report.

2.0 SITE INVESTIGATION

2.1 Surface and Subsurface Soil Assessment

To examine surface and subsurface soil/fill materials across the site, a post IRM SI consisting of a total of ten test trenches was excavated on December 16, 2008 using a trackhoe provided and operated by EPS Vermont under a subcontract to PEI. Test trenches ranged in length from 10 feet to 76 feet and in depth from 2 feet below ground surface (bgs) to 12 feet bgs (refer to Figure 3). Trench locations, depths and lengths were selected by PEI staff in consultation with NYSDEC personnel based on historical information, the former location of various facility operations or containers (as determined prior to demolition) and field observations. The test trenches were advanced in areas throughout the site some of which were previously occupied by the demolished building. Photographs of site investigation activities are provided in Appendix C.

A PEI geologist visually examined and logged all test trenches (refer to Appendix A, Trench Logs) and performed field screening for VOCs using a photoionization detector (PID). The exact locations of trenches were subject to accessibility and proximity to known underground utility lines. All trenches were advanced at a minimum distance of 2.5 feet away from marked utilities, where present, to reduce the possibility of accidentally damaging an underground line. All trenches were filled with indigenous material upon completion in the order in which it was removed.

A total of eight surface soil and eight subsurface soil samples were collected from the test trench material. Subsurface soil samples were selected from the test trench areas that indicated the highest potential for contamination based on visual, olfactory, and screening information. Alternatively, where no evidence of contamination was observed, some samples were collected from varied depths to profile the soil/fill materials vertically. Surface soil samples were collected from the upper two inches or immediately below the turf layer utilizing the same selection criteria as subsurface soil samples. An odor was detected in one test trench (RF-TP-05) and a sample of the material (RF-TP-05B) was collected for analysis. The intent of the post IRM SI was to identify the nature and extent of residual contamination at the site following the completion of the IRM. An additional goal of the post IRM SI was to also identify the aerial extent and depth of waste foundry sand fill across the site. Sampling locations are indicated on Figure 3 and on the Test Pit Logs provided in Appendix A. All samples were submitted to Test America, a NYSDEC certified contract laboratory and analyzed for TAL metals, TCL VOCs and SVOCs, and PCBs. Surface soil samples were not analyzed for TCL VOCs. Analytical results are discussed in Section 4.0.

In addition to the test pit sampling, samples of native soil were collected from below four sumps/pits after removal during the IRM building demolition. These samples were collected following their removal to assess if there were any contaminants of concern that may have emanated from these structures during foundry operations. Refer to Figure 4 for confirmation soil sample locations. After sampling of the depressions from the structure removal, the depressions were partially graded to eliminate abrupt grade changes that could have created safety hazards.

The post IRM SI test trenching program indicated the presence of fill material at varied depths across the site and levels of residual contaminants. In general, the remaining foundry sand waste fill is limited to the north-northeast section of the actual foundry parcel and covers most of the adjoining railroad right-of-way between the railroad tracks and property boundary. The foundry sand waste fill varies in depth where it was observed to be three to five feet thick at the northeast section of the site and diminishes in thickness toward the south-southwest. The foundry sand waste fill at the site is mixed with some construction and demolition (C&D) debris near the surface and contains random pieces of larger C&D debris below the surface. Areas of the former foundry parcel that do not have any appreciable amounts of foundry sand contains some C&D fragments and some minor amounts of scattered foundry sand mixed in at the surface of the exposed subsoil. The composition of the surface material was most likely influenced by the final grading of the site upon completion of the IRM. Below the fill layer, the soil was mostly light brown (tan) and grey, granular, M-F sand with gravel and traces of silty clay and is considered natural soil material. Similar native soil was encountered below the four sumps/pits that were removed during the IRM demolition.

It is important to note that much of the foundry sand waste fill encountered at the site was beneath several areas of the former foundry building. The foundry sand was also deeper and more pervasive along the STERA railroad right-of-way. The deepest/thickest layer of foundry sand fill was encountered at the northeast end of the study area along the railroad right-of-way. Based upon field observations and conversation with the property owner at 10 Dean Street, the waste foundry sand fill continues northward beyond the study area along the west side of the railroad right-of-way.

All trenching and sampling was performed in general conformance with the approved SI/RAR work plan.

2.2 Groundwater Investigation

A total of three groundwater mini-wells were installed on December 16, 2008 in converted Geoprobe borings. The Geoprobe boring were advanced until refusal was encountered. Monitoring well MW-01 was installed at the southeast corner of the site, MW-02 at the northeast end of the site and MW-03 at the southeast side of the site. Monitoring well locations are shown on Figure 3.

Each mini-well consisted of a 1-inch diameter PVC pipe equipped with a 10 foot slotted screen and solid riser pipe extending to the surface. Since groundwater was not initially encountered in any of the three boreholes the slotted screen was placed at the bottom of each of the three wells. The annulus around the screen was filled with filter sand to one foot above the top of the screen. A three-foot thick bentonite seal was then installed and the borehole filled to the ground surface with a cement/bentonite mix. A flush mounted protective cover was installed to complete each well installation.

Monitoring wells were installed at the following depths:

- MW-01 at 17.5 feet bgs with no standing water
- MW-02 at 22.9 feet bgs with no standing water

• MW-03 at 18.7 feet bgs with no standing water

Groundwater was not observed in any of the wells during installation. The wells were allowed to sit until December 30, 2008 to allow groundwater to enter the wells. During a check of water levels on December 30, 2008, no groundwater was observed in MW-01 or MW-03. However, groundwater was observed in MW-02 at 22.1 feet bgs which equated to approximately 0.8 feet of water at the bottom of the well. The amount of water was not sufficient to be able to develop or purge the well in accordance with the work plan. After consultation with the NYSDEC, it was decided to collect as much sample as possible from MW-02. A PVC disposable bailer was used to collect two sample vials before the well went dry. The sample was sent to Test American and analyzed for TCL VOCs and SVOCs. Sample analytical results are discussed in section 4.

Well construction diagrams for each well are provided in Appendix A. All wells were installed in accordance with the SI/RAR approved work plan except as noted above.

3.0 PHYSICAL CHARACTERISTICS OF THE STUDY AREA

3.1 Surface Features

The property is located in a primarily residential area at 2-8 Sheldon Street on the northwestern corner of the intersection of Washington and Sheldon Streets in the Village of Randolph (see Figure 2). Adjacent to the property to the east is railroad lines for the Southern Tier Extension Railway Authority. Adjacent to the property to the south across Sheldon Street is a small commercial storage facility.

After the demolition/removal of the foundry building and nominal re-grading of the site for safety purposes, the property surface is composed of bare soil with little to no vegetation. The topography in the immediate vicinity of the site is generally flat and slopes slightly from southwest to northeast.

3.2 Geology/Hydrogeology

The post IRM SI program revealed the aerial extent and depth of remaining foundry sand and depth to native soil at the site. In general, the remaining foundry sand waste fill is limited to the north-northeast section of the actual foundry parcel and covers most of the adjoining railroad right-of-way between the railroad tracks and property boundary. The foundry sand waste fill varies in depth where it was observed to be three to five feet thick at the northeast section of the site and diminishes in thickness to the south-southwest. The foundry sand waste fill at the site is mixed with some construction and demolition (C&D) debris near the surface and contains random pieces of larger C&D debris below the surface. Areas of the former foundry parcel that do not have any appreciable amounts of foundry sand consist of exposed native subsoil. However, some of the native subsoil surface contains C&D fragments and some minor amounts of scattered foundry sand mixed in at the surface of the exposed subsoil. Below the waste fill at the site, native soil encountered was mostly light brown (tan) and grey, granular, M-F sand with gravel and traces of silty clay.

Groundwater was not encountered in any of the test trenches and was encountered in only one well (MW-02) at approximately 22 feet bgs. This level was within 8 inches of the bottom of the well. The regional topography (see Figure 1) slopes generally in an easterly direction toward Conewango Creek. Groundwater gradients will typically mimic surface topographic contours. Therefore, the groundwater gradient is presumed to be flowing in an easterly direction. Though only one mini-well was sufficiently deep enough to intercept groundwater, the groundwater gradient could not be confirmed. Using an assumed easterly groundwater gradient, the mini-well where groundwater samples were collected would suggest that this well is a downgradient well, and that any potential offsite migration of groundwater contaminants would be detected in this well. No contaminants of concern were detected in the water sample from this mini-well, and it can be reasonably concluded that no groundwater contamination from previous activities at the site exists at the site.

3.3 Demography and Land use

The Village of Randolph Land uses in the vicinity of the subject property include residential,

especially along Sheldon, Green and Washington Streets and mixed commercial/retail in the surrounding areas. The property itself is zoned village residential (R-1 per zoning map). Though the site was industrial in nature, it may have been a non-conforming use for the area.

Randolph is known for its fish hatcheries and the Amish community. The town is accessible via I-86 (which is also the Southern Tier Expressway and Route 17) and NYS routes 241 and 394. The village is at the junction of routes NY241, NY394, and County Road 9. Randolph was the first location settled within the town, around 1820. The Village of Randolph was incorporated in 1867. Randolph is located at 429'35 \(\text{N} \) 7858'58 \(\text{W} \) and 42.15972\(\text{N} \) 78.98278\(\text{W} \). The principal stream of Randolph is the Little Conewango Creek. Battle Creek flows into the Little Conewango just outside of the Village.

According to the United States Census Bureau, the village has a total area of 3.3 square miles (8.4km²), of which, 3.2 square miles (8.4km²) of it is land and 0.31% is water. As of the census of 2000, there were 1,316 people, 550 households and 343 families residing in the village. The population density was 404.9 people per square mile (156.3/km²). There were 590 housing units at an average density of 181.5/sq mi (70.1/km²). The racial makeup of the village was 98.48% White, 0.15% Black or African American, 0.38% Native American, 0.08% Pacific Islander, and 0.91% from two or more races. Hispanic or Latino of any race was 0.08% of the population. There were 550 households out of which 28.0% had children under the age of 18 living with them, 47.5% were married couples living together, 12.2% had a female householder with no husband present, and 37.6% were non-families. 32.9% of all households were made up of individuals and 16.0% had someone living alone who was 65 years of age or older. The average household size was 2.37 and the average family size was 3.00.

In the village the population was spread out with 24.8% under the age of 18, 8.0% from 18 to 24, 25.5% from 25 to 44, 23.9% from 45 to 64, and 17.8% who were 65 years of age or older. The median age was 39 years. For every 100 females there were 85.4 males. For every 100 females age 18 and over, there were 83.5 males. The median income for a household in the village was \$32,679, and the median income for a family was \$39,861. Males had a median income of \$30,750 versus \$21,250 for females. The per capita income for the village was \$17,812. About 3.7% of families and 6.0% of the population were below the poverty line, including 6.9% of those under age 18 and 6.0% of those ages 65 or over.

4.0 NATURE AND EXTENT OF CONTAMINATION

4.1 Introduction

This section discusses the results of the post IRM SI activities, and in particular the nature and extent of contaminants in the media investigated.

4.2 Potential Sources

The post IRM SI indicated the presence of slightly impacted media remaining on site after completion of the foundry building demolition/removal IRM. Impacts consisted of waste foundry sand fill which contained slightly elevated levels of metal and SVOCs, primarily polynuclear aromatic hydrocarbons (PAH) compounds. The potential source of contamination in the soils is most likely the historic operations of the foundry and machine shop on site (over 80 years) and an operating railroad directly west of the property. It should be noted that foundries (or metal casting operations) make parts from molten metal according to end user specifications. In general, foundry and machine shops are involved with the manufacturing, prefabrication, and repair of articles of steel, iron, and other metals. Environmental contamination associated with these facilities include elevated levels of lead and other metals in near and subsurface soils and wastes associated with slag/foundry sands such as phenols. Other contaminants, including solvents and petroleum products are typically associated with drummed or containerized materials.

PAHs are a group of chemicals that are formed during incomplete burning of wood, coal, gas, garbage or other organic substances and are widely distributed in the environment and particularly in older urban environments where coal, gas, and petroleum were burned for heat and other energy uses. PAH compounds are common constituents of fill material found in urban environments, and are typically associated with both fill material, coal tar and asphalt based materials or ash.

Most metals occur in nature and their concentrations in fill and natural soil will exhibit considerable variability both stratigraphically and spatially. This variability is related to the variable composition of the fill, natural soils' protolith, weathering processes that chemically and physically modify soil and groundwater interactions that modify the geochemistry. Metals are also associated with foundry and machining operations as noted above.

4.3 Soil sampling and Analytical Program

The eight surface and eight subsurface soil/fill samples from test trenches were analyzed in accordance with NYSDEC Analytical Services Protocol (ASP), 10/95 edition. Surface soil/fill samples and subsurface soil/fill samples were submitted to Test America a NYSDEC certified contract laboratory and analyzed for TAL metals, TCL VOCs and SVOCs, and PCBs. Surface soil samples were not analyzed for TCL VOCs.

Also, as noted in section 2.1, four confirmation soil samples were collected from native soils below sumps/pits (refer to Figure 4) after building demolition during the IRM.

Compounds detected during the test trench soil/fill sampling program and confirmation soil

sampling are summarized in Table's 1 and 2 respectively, and discussed in detail below. The table also provides a comparison of the analytical results with 6 NYCRR Part 375-6.8 Commercial and Industrial Soil Cleanup Objectives. Complete analytical results are provided in Appendix B.

Volatile Organic Compounds (VOCs)

VOC compounds methylene chloride and acetone were detected in several test trench samples at concentration well below Part 375 soil cleanup objectives. Methylene chloride was also detected at similar concentrations in the laboratory method blank indicating that the detection maybe due to laboratory contamination. Both of these compounds, methylene chloride and acetone, are common laboratory contaminates. Other VOC compounds detected in test trench samples included ethylebenzene and xylene (Sample RF-TP-08B) and 2-butanone (sample RF-TP-05B). These compounds were detected at concentrations significantly below Part 375 commercial soil cleanup objectives (refer to Table 1). As noted earlier sample RF-TP-05B was collected where an odor was detected during test trenching. The odor can be attributed to the detected VOCs in this sample.

Acetone and Methylene chloride were also detected in the confirmation soil samples at very low concentrations below Part 375 soil cleanup objectives. No other VOCs were detected in the confirmation samples.

Semi-Volatile Organic Compounds (SVOCs)

Numerous SVOCs consisting primarily of PAHs were detected in both surface and subsurface test trench soil/fill samples (refer to Table 1). PAHs, as well as metals, are not, in general, very mobile in soils. PAHs have low solubility's with water and tend to adsorb to the soil grains. These compounds do not readily breakdown in the environment. PAHs deposited from the historical combustion of coal or other fuels will most likely still be present in soils today. Based on their low volatility and their association with soil, the primary concern for potential human exposure to PAHs includes inhalation, ingestion and dermal contact.

As might be expected, in a former industrial (foundry) and associated railroad environment, analytical results from both test trench surface and subsurface soils indicated the presence of several PAHs at concentrations that slightly exceeded Part 375 commercial soil cleanup objectives. As described above, PAH compounds are common constituents of fill material in urban and industrial environments and are common at foundry and metal machine operations. These compounds are also typically elevated in urban and industrial areas due to the long history of fossil fuel burning.

Only four PAH compounds were detected at concentrations in test trench soil/fill samples that exceeded Part 375 Commercial soil cleanup objectives. These samples were from areas that still contained appreciable amounts of foundry sand fill and are indicative of residual PAH compounds in the fill only. Samples of native soil from test trench areas with nominal or no foundry sand fill PAH compounds were detected at concentrations significantly below their Part 375 Commercial soil cleanup objectives. For test trench fill samples with PAH exceedences, the concentration of benzo(a)pyrene exceeded Part 375

Commercial (1 ppm) cleanup objectives in surface soil/fill samples RF-TP-04A (1.2 ppm), RF-TP-05A (2.3 ppm), RF-TP-08A (4.7 ppm), RF-TP-09A (2.2 ppm) and RF TP-11A (1.5 ppm) and subsurface soil/fill sample RF-TP-05B (7 ppm). The concentration of benzo(a)anthracene exceeded Part 375 Commercial (5.6 ppm) cleanup objective in subsurface soil/fill sample RF-TP-05B (8.8 ppm). The concentration of Benzo(b)fluoranthene exceeded Part 375 Commercial (5.6 ppm) in surface soil/fill sample RF-TP-08A (6 ppm) and subsurface soil/fill sample RF-TP-05B (7 ppm). The concentration of dibenzo(a,h)anthracene exceeded Part 375 Commercial (0.56 ppm) and Industrial (1.1 ppm) in subsurface soil sample RF-TP-05B (1.1 ppm).

A number of other SVOCs were detected in test trench samples at concentrations significantly below their Part 375 Commercial soil cleanup objectives (refer to Table 1). These samples were mainly collected from test trenches in the former foundry parcel which contained nominal foundry sand fill.

Also, SVOCs were detected in native soil samples below the four pits/sumps that were formerly located at the site at concentrations significantly below their Part 375 Commercial soil cleanup objectives (refer to Table 2).

PCBs

There were no PCB compounds detected in test trench or confirmation soil samples at concentrations above Part 375 Commercial soil cleanup objectives (refer to Tables 1 and 2).

PCB contamination of concrete flooring was revealed during the IRM demolition. The PCB levels in the impacted concrete surfaces were below TSCA hazardous waste levels. The PCB contaminated concrete was segregated and managed accordingly at an offsite permitted disposal facility. A confirmation sample of soil below the PCB contaminated concrete did not reveal any PCB levels above the residual use standard.

Metals

Metal compounds were detected in all of the test trench surface and subsurface soil/fill samples. The results indicate the presence of only one metal compound at a concentration that exceeded Part 375 Commercial soil cleanup objectives. The concentration of copper exceeded Part 375 Commercial (270 ppm) soil cleanup objective in surface samples RF-TP-08A (834 ppm) and RF-TP-11A (1300 ppm).

In the confirmation soils samples the concentration of arsenic (20.7 ppm) exceeded Part 375 Commercial (16 ppm) soil cleanup objective in native soil below the former septic tank

Most metals are naturally present in soil and fill materials. Concentrations of metals in soil and fill exhibit considerable variability, both stratigraphically and spatially. This variability is related to the composition of the fill, natural soils' origin, weathering processes that chemically and physically modify soil and, groundwater interactions that modify the geochemistry.

4.4 Groundwater

As discussed in Section 2.2 there was insufficient recharge in any of the wells except MW-02 to collect a sufficient volume of water to perform the planned number of analysis. In well MW-02, two vials of water were collected allowing for the analysis for TCL VOCs and SVOCs. The analyses did not detect the presence of any VOC or SVOC compounds in the water sample. Analytical results are summarized in Table 3 and complete analytical results are provided in Appendix B.

The regional hydrogeology typically mimics surface contours which slope easterly toward Conewango Crk. Also, a ground water contour profile could not be confirmed with the limited data.

5.0 INTERIM REMEDIAL MEASURES

An IRM was implemented at the Randolph Foundry site in general accordance with the June 2007 SI/RAR and IRM Work Plan. The need for an IRM was based upon environmental concerns resulting from an earlier Phase 1 ESA at the site. The assessment identified potential contamination associated with asbestos containing building materials, foundry sands and various drums/containers within the building that were in poor condition containing unknown chemical products and chemical wastes. The County was interested in completing an IRM to remove the building, debris, and materials in an expeditious manner to allow for the redevelopment of the parcel and to maintain a safe environment for Village residents.

Construction bid documents for the IRM were completed by PEI and their subcontractor TVGA and after public bidding by the County, Donald J. Braasch Construction, Inc. was awarded a contract to implement an IRM program. In 2008, the IRM program was conducted at the site that included the demolition and removal of the old foundry building, removal and proper disposal of building contents (drums/containers, machinery and some waste foundry sand fill) and removal of building floor slabs and sumps/pits. All waste materials were sampled and tested and properly disposed of at approved off-site facilities. As part of the IRM, low areas including four sumps/pits were filled/graded with existing site soils to eliminate low areas and reduce potential site ponding. During the IRM, one soil sample was collected from the area beneath each of the four sumps/pits before filling and analyzed for Target Analyte List (TAL) metals. Target Compound List (TCL) volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), and PCBs/Pesticides. The analytical results indicated that there were no compounds detected at concentrations above NYSDEC 6 NYCRR Part 375-6.8 Commercial soil cleanup objectives. With the exception of site restoration (see below) the IRM was completed in October 2008.

The final site restoration was completed after the SI and included additional grading to level the site (fill in depressions from the removal of sumps and pits). During the grading process in the south/south central area of the site two areas were uncovered of thin layers (up to 12 inches thick) of some industrial debris and foundry sands. This material was scraped away and pushed into the former furnace pit depressed area. The foundry property was then covered with a minimum of six inches of clean soil of a consistency to promote the establishment of vegetative cover. Six inches of clean cover fill material was also placed over portions of the STERA railroad right-of-way disturbed during the IRM. This clean cover fill was a coarse granular material that would inhibit vegetative growth and minimize vegetation management by STERA. The clean fill material was tested and met the requirements of NYSDEC DER-10-Technical Guidance for Site Investigations and Remediation, Appendix 5A- Allowable Constituent Levels for Imported Fill or Soil, Subdivision 5.4 (e) for Commercial Use.

Details of all IRM activities will be provided in the Final Engineering Report to be issued under separate cover.

6.0 CONTAMINANT FATE AND TRANSPORT

The Phase 1 ESA identified potential contaminants of concern including asbestos containing building materials, foundry sands and various drums/containers within the building that were in poor condition containing unknown chemical products and chemical wastes. The IRM eliminated these contaminants of concerns as follows:

- The foundry building was demolished and all the building debris, universal wastes and asbestos containing materials disposed of at an approved landfill.
- All drums and containers of unknown substances where tested, categorized, overpacked and properly disposed of at approved offsite facilities.
- Foundry sands within the building were removed and disposed of with other C & D material at an approved sanitary landfill.

The post IRM site investigation identified that only SVOC and metal compounds were detected in soil samples that exceeded the site cleanup goals (Part 375 Commercial soil cleanup objectives). The SVOC compounds were primarily PAHs and only four were detected at concentrations marginally exceeding part 375 Commercial soil cleanup objectives. A number of other SVOCs were also detected but at concentrations significantly below Part 375 Commercial cleanup objectives (refer to Table 1). Metal compounds were detected in all of the surface and subsurface soil samples. However, only one metal compound, copper was detected at a concentration that exceeded Part 375 Commercial soil cleanup objectives.

Airborne pathways

Airborne pathways are not a concern at the site. Site soils basically meet Tract 2 commercial requirements and a vegetative and/ or a stone cover has been established across the site.

Waterborne Pathways

Waterborne pathways are not a concern at the site. Site soils basically meet Tract 2 commercial requirements and a vegetative and/ or a stone cover has been established across the site.

It should also be noted that potable water is available at the site and if groundwater is planned to be used for any future development Part 375 regulations requires testing of the groundwater to meet its applicable intended use.

7.0 QUALITATIVE EXPOSURE ASSESSMENT

A qualitative exposure assessment consists of characterizing the exposure setting (including the physical environment and potentially exposed human populations) and identifying exposure pathways.

An exposure pathway describes the means by which an individual may be exposed to contaminants originating from a site. An exposure pathway has five elements: (1) a contaminant source; (2) contaminant release and transport mechanisms; (3) a point of exposure; (4) a route of exposure; and (5) a receptor population.

At present, there are no buildings on site and the site is vacant and unoccupied. The site classification for future development will be limited to commercial development.

Based on the fate and transport discussion in Section 6.0 the potential contaminants of concern are several PAH and metal compounds in the site soils that exceed Part 375 Commercial soil cleanup objectives. Since the site is currently covered with a clean soil layer and is unoccupied, disturbance of the residual impacted soils by human contact, thereby releasing contaminants, is minimal. The site cover placed as part of the IRM has eliminated impacted soil exposure due to wind borne dust generation and potential erosion of the cover has been reduced by site grading and grass vegetation. However, future development of the site may result in human contact (dust inhalation/dermal absorption) with the impacted soils by, primarily, construction workers.

To mitigate this exposure pathway an environmental easement will be imposed on the property (refer to Section 9.0) which will include a soils management plan to address disturbance/movement of impacted soils required during future development. The soils management plan will address worker protection, dust suppression, ways to minimizing soil disturbance, etc.

The environmental easement will also restrict human contact or consumption of the site groundwater in the future. No drilling of water wells will be allowed under the easement. Also, the adjacent community is on a municipal water supply which can be accessed for any future development needs at the site.

8.0 SUMMARY AND CONCLUSIONS

The primary goal of the project was to complete focused environmental investigations to accurately assess the potential for contamination at the Former Randolph Foundry site. One of the main purposes of the initial effort was to complete an IRM to expeditiously demolish the former foundry structure and remove drums, foundry sands, and miscellaneous abandoned chemical products and wastes to alleviate the potential public safety and liability concerns for the County at the property, and make it ready for re-use. The building demolition and removal of all building related wastes was successfully completed in October 2008 and upon completion of the post IRM site investigation, the site was graded and covered with a clean soil layer as the final IRM site restoration task. Completed after the IRM, the purpose of the post IRM SI was to further determine the likelihood of residual contamination associated with past commercial/industrial use on portions of the property.

The SI test trenching program indicated the presence of fill material at varied depth across the site. In general, the remaining foundry sand waste fill is limited to the north-northeast section of the actual foundry parcel and covers most of the adjoining railroad right-of-way between the railroad tracks and the foundry property boundary. The foundry sand waste fill varies in depth where it was observed to be three to five feet thick at the northeast section of the site and diminishes in thickness to the south-southwest. The foundry sand waste fill at the site is mixed with some construction and demolition (C&D) debris near the surface and contains random pieces of larger C&D debris below the surface. The composition of this material is most likely influenced by the final grading of the site upon completion of the IRM. Below this layer is native soil consisting of a coarse to fine gravel and medium fine sands with traces of silt. Areas of the former foundry parcel that do not have any appreciable amounts of foundry sand consist of native subsoil. However, some of the exposed native subsoil surface contains C&D fragments and some minor amounts of scattered foundry sand mixed in at the surface of the exposed subsoil.

The analytical results from test trench soil samples indicate that only SVOC and metal compounds were detected that marginally exceeded Part 375 Commercial soil cleanup objectives the established SCOs for the site. The SVOC compounds were primarily PAHs and only four were detected at concentrations exceeding part 375 Commercial soil cleanup objectives. A number of other SVOCs were also detected but at concentrations significantly below Part 375 Commercial soil cleanup objectives (refer to Table 1). Metal compounds were detected in all of the surface and subsurface soil samples. However, only one metal compound, copper was detected at a concentration that exceeded Part 375 Commercial soil cleanup objectives.

Only one of the three groundwater mini-wells (MW-02) had water; the others were dry. Groundwater collected from MW-02 was analyzed for TCL VOCs and SVOCs. The analyses did not detect the presence of any VOC or SVOC compounds in the water sample. The regional topography (see Figure 1) slopes generally in an easterly direction toward Conewango Creek. Groundwater gradients will typically mimic surface topographic contours. Therefore, the groundwater gradient is presumed to be flowing in an easterly direction. Though only one mini-well was sufficiently deep enough to intercept

groundwater, the groundwater gradient could not be confirmed. Using an assumed easterly groundwater gradient, the mini-well where groundwater samples were collected would suggest that this well is a downgradient well, and that any potential offsite migration of groundwater contaminants would be detected in this well. No contaminants of concern were detected in the water sample from this mini-well, and it can be reasonably concluded that no groundwater contamination from previous activities at the site exists at the site.

With the completion of the IRM the primary contaminants of concern have either been removed from the site to a regulated disposal facility (asbestos containing materials, building C & D debris, containers of chemical products/wastes and foundry sands from within/around the building) or sufficiently covered with clean fill (remaining foundry sands and residual industrial C & D material). The analytical results from the SI soil samples indicate only a few PAH and metal compounds with concentrations that slightly exceeded Part 375 Commercial soil cleanup objectives. Therefore, as a result of completing the IRM and low levels of contaminant concentrations remaining in the soil fill material that are generally within commercial use criteria, it is recommended that no further remedial action will be required at the site. However, future development will be limited to commercial development through the implementation of Institutional and Engineering Controls (IC and EC) as defined under Part 375 regulations for commercial development.

To satisfy the requirements of Part 375 Section 9 will evaluate both the No Further Action with ICs and for commercial development status and the Unrestricted Use alternative.

9.0 REMEDIAL ALTERNATIVES AND RECOMMENDED REMEDY

9.1 Remedial Action Objectives

The final remedial measure for the Former Randolph Foundry site must satisfy Remedial Action Objectives (RAOs). The RAOs are site specific goals for minimizing or eliminating risks to the environment and public health. Appropriate RAOs for the Randolph site are:

- Removal of contaminants of concern related to the foundry building, asbestos containing materials, containers of chemical products, and associated foundry sands/industrial debris within the building.
- Stabilize remaining site fill material with a soil and vegetation layer.

As discussed in Section 5.0 Interim Remedial Measures, the IRM accomplished the first RAO by demolishing the building and disposing of all building debris, containers of chemical products, waste foundry sands and associated industrial debris at off-site regulated disposal facilities. The IRM also accomplished the second RAO for the site in its undeveloped state by the placement of the clean restoration cover soil layer over the entire site

In addition to achieving RAOs the Environmental Restoration Program calls for remedy evaluation in accordance with NYSDEC DER-10 whereby the remedial action is compared to the following criteria:

1 Overall Protection of Human Health and the Environment

- Exposure to human health and the environment after remediation
- Residual public health risks after remediation
- Residual environmental risks after remediation

2 Compliance with Remedial Action Objectives

3 Short-Term Effectiveness

- Protection of the community during remedial actions
- Environmental impacts
- Time to implement the remedy

4 Long-Term Effectiveness and Permanence

- Lifetime of remedial actions
- Residual risks
- Adequacy and reliability of controls

5 Reduction of Toxicity, Mobility and Volume

- Volume of hazardous substances reduced
- Reduction in mobility of hazardous substances
- Irreversibility of the destruction or treatment

6 Implementability

- Suitable to site conditions
- Consideration of feasibility
- Availability of services and materials

7 Cost Effectiveness

8 Community Acceptance

9.2 Alternatives Evaluation

The following sections evaluate remedial action alternatives that could be implemented at the site, which are compared to the criteria listed in Section 9.1.

9.2.1 No Further Action with ICs for Commercial Use Status

This alternative requires no further action beyond the IRM with institutional controls (IC) to restrict and manage community exposure to the impacted soils remaining at the site and meet Part 375 regulations for commercial development. Part 375 regulations describe the IC/EC general requirements for the various site classifications for future development. To restrict future development of the site to commercial use, the following IC/EC will be required.

Institutional Controls

The following ICs for the site are recommended.

- 1. Rezoning of the former foundry parcel from its current residential zoning to commercial use zoning. The zoning or current designated use for the railroad right-of-way can remain as is.
- 2. Imposing environmental easements (EE) on both the former foundry parcel and the section of the STERA railroad right of way included in the IRM.
- 3. Prepare a Site Management Plan (SMP) for the site as detailed in the Part 375 regulations.

The EE for the site would mandate the following:

- limiting the use and development of the foundry property within the easement area to commercial use;
- Compliance with the SMP;
- Restricting the use of groundwater as a source of potable or process water, without further testing and necessary water quality treatment as determined by the New York State Department of Health (NYSDOH); and
- The property owner to complete and submit to the NYSDEC a periodic certification of institutional and engineering controls.

Engineering Controls

Though there are limited areas of the site with slightly elevated levels of metals and PAHs above commercial use criteria in some remaining fill, the site is suitable for commercial use and site redevelopment without further remedial measures. Therefore no engineering controls (EC) will be required for future development (commercial). The former foundry parcel was restored with a 6-inch soil layer to promote the propagation of a vegetation cover to stabilize soils on the site. This soil/vegetation cover does not constitute an engineering control for this site.

Future owners/developers of the site will be required to comply with the SMP and mitigate human exposure of construction workers to the fill and for proper management of any surplus fill spoils. As part of the SMP, a soils management plan will be required to manage the residual fill soil during future development activities where any disturbance to the site soil will be required. The SMP will only apply to the former foundry parcel as it will likely be sold by the County for future commercial reuse and redevelopment.

Based on the above with the completion of the IRM and proposed restriction of future site use to commercial use under Part 375 regulations to include institutional controls under an environmental easement the RAOs for the site will be successfully achieved.

Evaluation of the "no further action" with future development limited to commercial use through the implementation of ICs against DER-10 criteria is presented below.

- 1. Overall Protection of the Human Health and the Environment. The IRM removed the foundry building and disposed of all building debris, containers of chemical products, waste foundry sands and associated industrial debris at off-site regulated disposal facilities. The IRM also placed clean cover soil over the existing site soils to stabilize site soils with a vegetative cover.. The implementation of IC for future site development reduces the exposure risk of site soils to the public and will control the disturbance or movement of site soils through soils management practices.
- 2. Compliance with Remedial Action Objectives. With the completion of the IRM and the implementation of ICs for future development the RAOs for the site have been successfully achieved.
- **3. Short-Term Effectiveness.** There are no short term impacts and risks to the community, workers and the environment for the site in its current state (undeveloped) under the "no further action" remedy. As noted previously, the implementation of IC for future development will reduce and/or eliminate any short term impacts and risks to the community, workers and the environment.
- **4. Long-Term Effectiveness and Permanence.** With the completion of the IRM and implementation of the "no further action" remedy residual impacted soils remain on site beneath the clean soil cover. The risks to the community and the environment are minimal as a result of the cover placement and vegetative growth to reduce erosion. The implementation of IC for future site development will adequately reduce the exposure risk of site soils to the public and will control the disturbance or movement of site soils through

soils management practices. To assure future compliance to the IC Part 375 regulations require the current/future property owner to complete and submit to the NYSDEC a periodic certification of institutional and engineering controls.

- **5. Reduction of Toxicity, mobility and Volume.** With the completion of the IRM the predominant volume of waste material has been removed from the site and properly disposed off-site. The remaining residual contamination in the soil has been covered with a clean soil layer that has been properly graded to reduce run-off erosion. ICs for future development will require that the residual contaminated soils on site be managed under a soils management plan that will require that any exposed residual contaminated soils resulting from development will be covered with clean soils and/or buildings/pavement sections all as prescribed in Part 375 regulations for commercial development.
- **6. Implementability.** With the "no further action" remedy there is nothing to implement at the site in its undeveloped state. There does not appear to be any implementation issues related to ICs for future commercial development of the site.
- **7. Cost Effectiveness.** There will be no capital, operational or monitoring costs related to the "no further action" with IC alternative. The cost of the periodic certification to the NYSDEC of the IC will be borne by the site owner.
- **8. Community Acceptance** The criterion of community acceptance will be evaluated by The Village of Randolph and NYSDEC following issuance of the proposed remedy.

9.2.2 Unrestricted Use Alternative

An Unrestricted Use alternative would necessitate remediation of all soil/fill where concentrations exceed the Unrestricted Use SCOs per 6NYCRR Part 375 after implementation of the IRM. For Unrestricted Use scenarios, excavation and off-site disposal of impacted soil/fill is generally regarded as the most applicable remedial measure, because institutional controls cannot be used to supplement the remedy. As such, the Unrestricted Use alternative assumes that those areas with constituents above Unrestricted Use SCOs would be excavated and disposed at an off-site commercial solid waste landfill.

The soil sample analytical results from the RI test trenching program indicate that a number of compound concentrations in the remaining foundry sands and fill material across the site, to natural grade, exceed unrestricted use SCOs. All of this fill material would have to be removed and disposed at a commercial solid waste landfill. The estimated total volume of impacted foundry sands/fill material that would be removed from this area is approximately 5,100 cubic yards. Approximately the same amount of imported clean fill would be required to replace the excavated material and grade the site for proper drainage. It is assumed that no groundwater remediation would be required under this alternative.

A comparison of the unrestricted use alternative to the DER-10 criteria is provided below.

1. Overall Protection of the Human Health and the Environment. The Unrestricted Use alternative would achieve the corresponding Part 375 SCOs, which are designed to be

protective of human health under any reuse scenario.

- **2. Compliance with Remedial Action Objectives.** With the completion this alternative the RAOs for the site have been successfully achieved.
- **3. Short-Term Effectiveness.** The short-term adverse impacts and risks to the community, workers, and environment during implementation of the Unrestricted Use alternative are not considered significant and are controllable, but would increase the duration of time community, workers, and the environment is exposed to fugitive dust and potentially VOC vapors from groundwater during remediation.
- **4. Long-Term Effectiveness and Permanence.** The Unrestricted Use alternative would achieve removal of all residual impacted soil/fill; therefore, no soil/fill exceeding the Unrestricted SCOs would remain on the Site. Therefore, the Unrestricted Use alternative would provide long-term effectiveness and permanence.
- **5. Reduction of Toxicity, mobility and Volume.** Through removal of all impacted soil/fill the Unrestricted Use alternative would permanently and significantly reduce the toxicity, mobility, and volume of Site contamination.
- **6. Implementability.** There are no significant technical or administrative limitations to completing this alternative.
- **7. Cost Effectiveness.** The capital cost to implement the unrestricted use alternative is estimated to be approximately \$535,000. The cost includes the removal and disposal of an estimated 5100 cubic yards of fill material at a commercial solid waste landfill and importing and placement of an estimated 5,100 cubic yards of clean stone/gravel fill material.
- **8. Community Acceptance** The criterion of community acceptance will be evaluated by The Village of Randolph and NYSDEC following issuance of the proposed remedy.

9.3 Recommended Remedial Measure

Based on the above evaluation the "no further action" with ICs for commercial use status fully satisfies the remedial action objectives and is fully protective of human health and the environment. Therefore, this alternative is the recommended as the final remedy for the Former Randolph Foundry site.

TABLE 1
Test Pit Surface/Subsurface Soil Sample Analytical Results - Site Investigation Program Former Randolph Foundary, Randolph, New York

r omior ramaoiphir c	, ,	,							NYSDEC PART 375	NYSDEC PART 375
Sample Number	RF-TP-01A	RF-TP-01B	RF-TP-04A	RF-TP-04B	RF-TP-05A	RF-TP-05B	RF-TP-05C	RF-TP-06A	Commercial	Industrial
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Cleanup Objectives	Cleanup Objectives
Sample Date	12/16/2008	12/16/2008	12/16/2008	12/16/2008	12/16/2008	12/16/2008	12/16/2008	12/16/2008	mg/kg	mg/kg
Sample Depth	Surface	5-6.5 ft.	Surface	2-4 ft.	Surface	4-5 ft.	5-5.5 ft.	Surface	(a)	(b)
Metals					<u> </u>					
Aluminum	4620 EN*	7800 EN*	4810 EN*	4650 EN*	3590 EN*	5350 EN*	8480 EN*	3600 EN*	N/A	N/A
Aresnic	4.2 *	4.9 *	7.2 *	9.2 *	4.8 *	8.6 *	7.2 N*	4.6 *	16	16
Barium	52.8 E*	57.3 E*	64.3 E*	68.2 E*	59.1 E*	66.7 E*	198 E*	69.3 E*	400	10,000
Beryillium	0.24	ND	0.23	0.37	0.27	0.38	0.28	ND	590	2,700
Cadmium	ND	ND	0.42	ND	0.49	ND	ND	ND	9.3	60
Calcium	37700 E*	746 E*	13900 E*	12900 E*	8790 E*	5990 E*	1410 E*	45600 E*	N/A	N/A
Chromium	7.1 E	8.8 E	22.7 E	5.6 E	21.1 E	12.7 E	8.8 E	17.7 E	400 #	800 #
Cobalt	3.3 E 66.7 EN*	6.3 E 24 EN*	3.5 E 967 EN*	5.7 E	3.1 E 138 EN*	6.1 E 158 EN*	8.3 E	3 E 32.3 EN*	N/A 270	N/A 10,000
Copper Iron	12300 E*	14900 E*	21200 E*	81.4 EN* 16000 E*	21100 E*	34500 E*	18.2 EN* 18800 E*	32.3 EN 22900 E*	N/A	10,000 N/A
Lead	15 N	15.2 N	65.4 N	84 N	128 N	158 N	19.4 N	22.6 N	1,000	3,900
Magnesium	4630 E*	2400 E*	2300 E*	3730 E*	1090 E*	1460 E*	2030 E*	4620 E*	N/A	N/A
Manganese	533 E*	186 E*	562 E*	553 E*	338 E*	586 E*	1550 E*	411 E*	10,000	10,000
Mercury	0.032	0.209	0.25	0.052	0.11	0.105	0.077	ND	2.8	5.7
Nickel	9.6 EN*	13 EN*	18.2 EN*	10.5 EN*	24 EN*	20.2 EN*	17 EN*	16.6 EN*	310	10,000
Potassium	567 EN	659 EN	488 EN	615 EN	543 EN	650 EN	791 EN	429 EN	N/A	N/A
Silver	ND	ND	ND	ND	ND	ND	ND	ND	1,500	6,800
Sodium	ND	ND	ND	ND	ND	ND 15.5.5	ND	ND	N/A	N/A
Vanadium	6.3 E 73.2 EN*	9.4 E 62.7 EN*	8.2 E 180 EN*	8.2 E 46.6 EN*	7.7 E 233 EN*	15.7 E 170 EN*	11.4 E 49.2 EN*	5.6 E 72.2 EN*	N/A 10,000	N/A 10,000
Zinc PCB's/Pest	73.2 EIN	62.7 EIN	180 EN	40.0 EIN	233 EN	170 EN	49.2 EN	72.2 EIN	10,000	10,000
PCB 1242	ND	ND	0.12	ND	0.046	0.03	ND	ND	1	25
PCB 1248	0.01 J	ND	ND	ND	ND	ND	ND ND	ND ND	1	25
PCB 1254	ND	0.0067 J	0.04	ND	ND	ND	ND	0.012 J	1	25
PCB 1260	0.035	ND	0.1	ND	0.029	0.029	ND	0.018	1	25
Semi-Volatile Organics										
4-Chloroaniline	ND	0.077 J	ND	ND	ND	ND	ND	ND	N/A	N/A
Acenaphthene	ND	ND	0.052 J	0.01 J	0.34	1.3	ND	ND	500	1,000
Acenaphthylene	0.24 J	ND ND	0.1 J	0.047 J	0.4	0.96	0.033 J	0.26 J	500	1,000
Anthracene	0.094 J 0.59 J	ND ND	0.35 J 1.5	0.06 J 0.19	1.1 2.8	4.3 8.8 (a)	0.03 J 0.15 J	0.097 J 0.44	500 5.6	1,000 11
Benzo(a)anthracene Benzo(a)pyrene	0.69 J	0.01 J	1.2 (a), (b)	0.19 0.16 J	2.3 (a), (b)	7 (a), (b)	0.15 J 0.14 J	0.44	1	1.1
Benzo(b)fluoranthene	0.76 J	ND	1.7	0.103	2.5 (a), (b)	7 (a), (b)	0.14 J	0.57	5.6	11
Benzo(g,h,l)perylene	0.65 J	ND	0.96	0.12 J	1.4	4.4	0.094 J	0.29 J	500	1,000
Benzo(k)fluoranthene	0.3 J	ND	0.52	0.082 J	1.2	3.3	0.064 J	0.25 J	56	110
Biphenyl	ND	ND	0.054 J	ND	0.086 J	0.21 J	ND	ND	N/A	N/A
Bis(2-ethylhexyl) phthalate	1.3	ND	1.5	ND	0.68	0.35 J	ND	0.16 J	N/A	N/A
Caprolactam	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A
Carbazole	ND	ND ND	0.24 J	0.04 J	0.46	1.7	ND	0.017 J	N/A	N/A
Chrysene	0.54 J ND	ND ND	1.5 0.054 J	0.17 J ND	2.6 ND	7.5 ND	0.14 J ND	0.44 ND	56 N/A	110 N/A
Di-n-octyl phthalate Dibenzo(a.h)anthracene	0.14 J	ND ND	0.054 J 0.23 J	0.039 J	0.37	1.1 (a), (b)	0.028 J	0.031 J	0.56	1.1
Dibenzofuran	0.14 J ND	ND ND	0.23 J 0.11 J	0.039 J 0.018 J	0.46	1.1 (a), (b) 1.3	0.026 J ND	0.031 J	N/A	N/A
Fluoranthene	0.78 J	ND ND	3	0.42	5.3	18	0.26	0.61	500	1,000
Flourene	ND	ND	0.08 J	0.034 J	0.68	2.6	ND	0.021 J	500	1,000
Indeno(1,2,3-cd)pyrene	0.55 J	ND	0.81	0.11 J	1.3	4.1	0.091 J	0.26 J	5.6	11
2-methylnaphthalene	ND	ND	0.26 J	0.024 J	0.4	0.97	0.018 J	0.041 J	N/A	N/A
2-Methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A
N-nitrosodiphenylamine	ND NB	ND NB	0.031 J	ND	ND	ND	ND	ND	N/A	N/A
Naphthalene Dhananthrana	ND 0.29 J	ND ND	ND 1.0	0.017 J 0.29	0.62	1.7 16	0.014 J	0.044 J 0.2 J	500 500	1,000 1,000
Phenanthrene Pyropo	0.29 J 0.76 J	ND ND	1.8 2.5	0.29	4.3 4.8	16 16	0.11 J 0.24	0.2 J 0.63	500	1,000
Pyrene Volatile Organics	U./6 J	ND	∠.5	0.3	4.8	16	0.24	0.63	500	1,000
Methylene chloride	N/A	0.013 B	N/A	0.021 B	N/A	0.025 B	0.016 J	N/A	500	1,000
Ethylebenzene	N/A	ND	N/A	ND	N/A	ND	ND	N/A	390	780
Total Xylenes	N/A	ND	N/A	ND	N/A	ND	ND	N/A	500	1,000
2-Butanone	N/A	ND	N/A	ND	N/A	0.01 J	ND	N/A	N/A	N/A
Acetone	N/A	ND	N/A	ND	N/A	0.067	0.006 J	N/A	500	1,000

									NYSDEC PART 375	NYSDEC PART 375
Sample Number	RF-TP-06B	RF-TP-07A	RF-TP-07B	RF-TP-07C	RF-TP-08A	RF-TP-08B	RF-TP-09A	RF-TP-11A	Commercial	Industrial
·	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Cleanup Objectives	Cleanup Objectives
Sample Date	12/16/2008	12/16/2008	12/16/2008	12/16/2008	12/16/2008	12/16/2008	12/16/2008	12/16/2008	mg/kg	mg/kg
Sample Depth	4-4.5 ft.	Surface	4-4.5 ft.	5-5.5 ft.	Surface	2-2.5 ft.	Surface	Surface	(a)	(b)
Metals										
Aluminum	10900 EN*	3350 EN*	2070 EN*	6910 EN*	7140 EN*	9180 EN*	3730 EN*	8580 EN*	N/A	N/A
Aresnic	8.9 *	3.6 *	2.4 *	7.2 *	12.3 *	9.2 *	6.1 *	11.6 *	16	16
Barium	71.8 E*	36.6 E*	21.4 E*	296 E*	128 E*	229 E*	57.1 E*	163 E*	400	10,000
Beryillium	0.49	ND	ND	ND	0.31	0.25	ND	0.33	590	2,700
Cadmium	ND	0.29	0.41	ND	0.87	ND	0.3	1.4	9.3	60
Calcium	22600 E*	4310 E*	911 E*	44000 E*	19600 E*	3510 E*	1990 E*	6430 E*	N/A	N/A
Chromium	13.9 E	11.4 E	10.3 E	9.1 E	38.1 E	10.4 E	6.6 E	43.7 E	400 #	800 #
Cobalt	9.7 E	2.4 E	1.3 E	6 E	7.7 E	8.3 E	2.1 E	8.9 E	N/A	N/A
Copper	20.9 EN*	51.5 EN*	31.1 EN*	13.2 EN*	834 EN* (a)	39.7 EN*	96.5 EN*	1300 EN* (a)	270	10,000
Iron	23300 E*	12600 E*	9610 E*	16400 E*	59200 E*	19000 E*	10800 E*	49700 E*	N/A	N/A
Lead	11.1 N	56.5 N	39.3 N	13.1 N	140 N	25.9 N	79.2 N	541 N	1,000	3,900
Magnesium	9820 E*	1200 E*	402 E*	27600 E*	2350 E*	2610 E*	590 E*	1980 E*	N/A	N/A
Manganese	363 E*	342 E*	122 E*	981 E*	891 E*	648 E*	354 E*	982 E*	10,000	10,000
Mercury	ND 040 ENX	0.07	0.082	ND 44 ENIX	0.214	0.034	0.074	0.074	2.8	5.7
Nickel	24.2 EN*	11.7 EN*	10.4 EN*	14 EN*	79.4 EN*	18.7 EN*	7.7 EN*	44.2 EN*	310	10,000
Potassium	1380 EN	378 EN	221 EN	709 EN	815 EN	710 EN	358 EN	733 EN	N/A	N/A
Silver	ND ND	ND ND	ND	ND ND	ND 177 *	ND ND	ND	0.71	1,500	6,800
Sodium		ND 5.5	ND				ND 0.7.F	ND 10.45	N/A	N/A
Vanadium	16.6 E	5 E	3.6 E	10 E	22.1 E	10.2 E	6.7 E	16.4 E	N/A	N/A
Zinc	55.1 EN*	117 EN*	82.3 EN*	41.7 EN*	436 EN*	79.5 EN*	148 EN*	645 EN*	10,000	10,000
PCB's/Pest	ND	0.054	ND	ND	ND	ND	ND	ND		05
PCB 1242 PCB 1248	ND ND	0.054 ND	ND ND	ND ND	ND 0.18	ND 0.011 J	ND ND	ND ND	1	25 25
PCB 1246 PCB 1254	ND ND	0.026	0.03	ND ND	ND	0.0113 ND	ND ND	ND ND	1	25
PCB 1260	ND ND	0.026 ND	ND	ND ND	0.055	0.004 J	ND ND	ND ND	1	25
	NU	ND	NU	IND	0.055	0.004 J	ND	IND	-	25
Semi-Volatile Organics	ND	ND	ND	ND	ND	ND	ND	ND	N1/0	N1/0
4-Chloroaniline Acenaphthene	ND ND	ND 0.019 J	ND 0.015 J	ND ND	ND 0.6 J	ND ND	ND 0.3 J	ND 0.048 J	N/A 500	N/A 1,000
Acenaphthylene	ND ND	0.019 J	0.015 J	ND ND	0.6 J 0.42 J	ND ND	0.3 J	0.046 J 0.11 J	500	1,000
Anthracene	ND ND	0.082 J	0.032 J	ND ND	2.1	0.008 J	1.3	0.11 J	500	1,000
Benzo(a)anthracene	ND ND	0.49	0.0733	ND ND	5	0.008 J	2.6	1.1	5.6	11
Benzo(a)pyrene	ND ND	0.52	0.46	ND ND	4.7 (a), (b)	0.045 J	2.2 (a), (b)	1.5 (a). (b)	1	1.1
Benzo(b)fluoranthene	ND ND	0.82	0.69	ND ND	6 (a)	0.043 J	2.6	2	5.6	11
Benzo(g,h,l)perylene	ND ND	0.34 J	0.29	ND ND	2.1	0.033 J	1	0.94 J	500	1.000
Benzo(k)fluoranthene	ND	0.23 J	0.28	ND	2	0.024 J	1.2	0.84 J	56	110
Biphenyl	ND	0.04 J	0.069 J	ND ND	0.1 J	ND	0.059 J	ND	N/A	N/A
Bis(2-ethylhexyl) phthalate	ND	0.4	0.34	ND	9.8	0.29	0.34 J	4.9	N/A	N/A
Caprolactam	ND	ND	0.11 J	ND	ND	ND	ND	ND	N/A	N/A
Carbazole	ND	0.042 J	0.027 J	ND	0.92	ND	0,22 J	0.16 J	N/A	N/A
Chrysene	ND	0.56	0.52	ND	4.2	0.042 J	2.3	1.4	56	110
Di-n-octyl phthalate	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A
Dibenzo(a,h)anthracene	ND	0.032 J	0.076 J	ND	0.54 J	ND	0.094 J	0.24 J	0.56	1.1
Dibenzofuran	ND	0.056 J	0.084 J	ND	0.75 J	ND	0.37 J	0.073 J	N/A	N/A
Fluoranthene	ND	0.81	0.37	ND	12	0.072 J	6.4	2.1	500	1,000
Flourene	ND	0.025 J	0.023 J	ND	1.1	ND	0.67 J	0.066 J	500	1,000
Indeno(1,2,3-cd)pyrene	ND	0.3 J	0.24	ND	2	0.028 J	0.98	0.81 J	5.6	11
2-methylnaphthalene	ND	0.15 J	0.26	ND	0.24 J	ND	0.17 J	0.23 J	N/A	N/A
2-Methylphenol	ND	ND	0.021 J	ND	ND	ND	ND	ND	N/A	N/A
N-nitrosodiphenylamine	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A
Naphthalene	ND	0.2 J	0.38	ND	0.21 J	0.008 J	0.15 J	0.18 J	500	1,000
Phenanthrene	ND	0.46	0.41	ND	11	0.039 J	5.7	1.1	500	1,000
Pyrene	ND	0.7	0.34	ND	8.8	0.059 J	4.8	1.8	500	1,000
Volatile Organics										
Methylene chloride	0.017 B	N/A	0.009 B	0.014 B	N/A	0.014 B	N/A	N/A	500	1,000
Ethylebenzene	ND	N/A	ND	ND	N/A	0.006 J	N/A	N/A	390	780
Total Xvlenes	ND	N/A	ND	ND	N/A	0.098	N/A	N/A	500	1,000
,										
2-Butanone Acetone	ND 0.028	N/A N/A	ND ND	ND 0.009 J	N/A N/A	ND 0.013 J	N/A N/A	N/A N/A	N/A 500	N/A 1,000

mg/kg - milligrams per kilograms (parts per million)
ND - Not Detected

- J The result is an estimated quantity

- F Result is estimated due to interferences
 (a) Value exceeded this NYSDEC Commercial cleanup objective
 (b) Value exceeded this NYSDEC Industrial cleanup objective
- D The sample result was reported from a secondary dilution analysis
- N/A Not Available
- N Indicates persumptive evidence of compounds
- * Not within the control limits
- B Analyte found in blank and in sample

TABLE 2 Demolition Confirmation Soil Sample Analytical Results - Site Investigation Program Former Randolph Foundary, Randolph, New York

Sample Location	Large Sump	Large Sump			NYSDEC PART 375	NYSDEC PART 375
Jampie Location	Northwest	Southeast	North Sump	Septic Tank	Commercial	Industrial
	mg/kg	mg/kg	mg/kg	mg/kg	Cleanup Objectives	Cleanup Objectives
Sample date	9/9/2008	9/9/2008	9/9/2008	9/9/2008	mg/kg	mg/kg
Sample Depth	Below Sump	Below Sump	Below Sump	Below Tank	(a)	(b)
Metals						
Aluminum	12400	7590	7820	5880	N/A	N/A
Aresnic	8.7	5.6	8.9	20.7 (a), (b)	16	16
Barium	228	258	116	205	400	10,000
Beryillium	0.3	0.28	0.5	0.28	590	2,700
Cadmium	ND	ND	0.64	ND	9.3	60
Calcium	2220	2280	55400	1230	N/A	N/A
Chromium	14.8 10	9.2	48.7	8.4 4.7	400 # N/A	800 # N/A
Cobalt Copper	30.1	5.4 16.8	5.5 105	15.8	270	10,000
Iron	24500	17900	31800	14700	N/A	N/A
Lead	9.6	7.8	143	9.2	1,000	3,900
Magnesium	5440	2440	4080	1780	N/A	N/A
Manganese	453	1110	1150	735	10,000	10,000
Mercury	ND	0.031	0.075	ND	2.8	5.7
Nickel	17.4	13.9	28.9	11.2	310	10,000
Potassium	2060	732	783	764	N/A	N/A
Silver	ND	ND	ND	ND	1,500	6,800
Sodium	414	154	ND	ND	N/A	N/A
Vanadium	26.4	9.5	25.4	8.9	N/A	N/A
Zinc	72.6	48.8	350	36.4	10,000	10,000
Cyanide - Total (wet chem)	2.6	ND	ND	ND	27	10,000
PCB's/Pest						
PCB 1242	ND 0.00	ND	ND	ND	<u> </u>	25
PCB 1248	0.29 ND	0.27 ND	ND 0.007	ND ND	1	25
PCB 1254 PCB 1260	ND ND	ND ND	0.037 ND	ND ND	1	25 25
4,4'-DDT	0.016 J	ND	ND	0.00096 J	47	94
,	0.0103	ND	ND	0.000903	47	34
Semi-Volatile Organics 2,4-Dimethylphenol	1.7 - 1.3 J	0.22	ND	ND	N/A	N/A
4-Chloroaniline	ND	ND	ND	ND	N/A	N/A
Acenaphthene	ND	ND	ND	ND	500	1,000
Acenaphthylene	ND	ND	0.097 J	ND	500	1,000
Anthracene	ND	0.007 J	0.19 J	ND	500	1,000
Benzo(a)anthracene	0.014 J	ND	0.8 J	ND	5.6	11
Benzo(a)pyrene	ND	ND	0.62 J	ND	1	1.1
Benzo(b)fluoranthene	ND	ND	0.74 J	ND	5.6	11
Benzo(g,h,I)perylene	ND	ND	0.4 J	ND	500	1,000
Benzo(k)fluoranthene	ND	ND	0.32 J	ND	56	110
Biphenyl	ND	ND	ND	ND	N/A	N/A
Bis(2-ethylhexyl) phthalate	ND	0.073 J	0.72 J	ND	N/A	N/A
Caprolactam Carbazole	ND	ND ND	ND	ND	N/A	N/A
	ND ND	0.027 J	0.096 J 0.67 J	ND ND	N/A	N/A 110
Chrysene Di-n-octyl phthalate	ND ND	0.027 J ND	0.67 J ND	ND ND	56 N/A	N/A
Dibenzo(a,h)anthracene	ND	ND	0.12 J	ND	0.56	1.1
Dibenzofuran	ND	ND	0.14 J	ND	N/A	N/A
Fluoranthene	0.014 J	0.009 J	1.5 J	ND	500	1,000
Flourene	ND	ND	ND	ND	500	1,000
Indeno(1,2,3-cd)pyrene	ND	ND	0.36 J	ND	5.6	11
2-methylnaphthalene	ND	ND	0.32 J	ND	N/A	N/A
2-Methylphenol	3.0 - 0.039 J	ND	ND	ND	N/A	N/A
4-Methylphenol	3.6 J	0.46 - 041 J	ND	ND	N/A	N/A
N-nitrosodiphenylamine	ND	ND	ND	ND	N/A	N/A
Naphthalene	ND	ND	0.26 J	ND	500	1,000
Phenanthrene	0.015 J	0.012 J	1.0 J	ND	500	1,000
Phenol	4.1 - 5.4	1.2 - 1.4 J	ND	ND	500	1,000
Pyrene	0.008 J	ND	1.1 J	ND	500	1,000
Volatile Organics	0.42	ND	ND	ND	E00	1000
Acetone Methylene chloride	0.13	ND ND	0.012 B		500 500	1000 1,000
Methylene chloride Ethylebenzene	0.009 B ND	ND ND	0.012 B ND	0.008 B ND	390	1,000 780
Total Xylenes	ND ND	ND	ND ND	ND ND	500	1,000
2-Butanone	ND ND	ND	ND ND	ND ND	N/A	N/A
Acetone	0.13	ND	ND	ND	500	1,000
Key:	0.10					.,500

mg/kg - milligrams per kilograms (parts per million)

ND - Not Detected J - The result is an estimated quantity

- D The sample result was reported from a secondary dilution analysis N/A - Not Available
- N Indicates persumptive evidence of compounds
- * Not within the control limits E - Result is estimated due to interferences (a) - Value exceeded this NYSDEC Commercial cleanup obj B - Analyte found in blank and in sample
- (b) Value exceeded this NYSDEC Industrial cleanup objective
- B Analyte is found in the associated balnk sample.

TABLE 3
Groundwater Sample Analytical Results - Site Investigation Program
Former Randolph Foundary, Randolph, New York

Sample Location	MW-02
Sample date	12/30/2008
Unit	UG/L
Semi-Volatile Organics (1)	
2,4-Dimethylphenol	ND
4-Chloroaniline	ND
Acenaphthene	ND
Acenaphthylene	ND
Anthracene	ND
Benzo(a)anthracene	ND
Benzo(a)pyrene	ND
Benzo(b)fluoranthene	ND
Benzo(g,h,I)perylene	ND
Benzo(k)fluoranthene	ND
Biphenyl	ND
Bis(2-ethylhexyl) phthalate	ND
Caprolactam	ND
Carbazole	ND
Chrysene	ND
Di-n-octyl phthalate	ND
Dibenzo(a,h)anthracene	ND
Dibenzofuran	ND
Fluoranthene	ND
Flourene	ND
Indeno(1,2,3-cd)pyrene	ND
2-methylnaphthalene	ND
2-Methylphenol	ND
4-Methylphenol	ND
N-nitrosodiphenylamine	ND
Naphthalene	ND
Phenanthrene	ND
Phenol	ND
Pyrene	ND
Volatile Organics (1)	
Methylene chloride	ND
Ethylebenzene	ND
Total Xylenes	ND
2-Butanone	ND
Acetone	ND

Key:

UG/L - micrograms per liter

ND - Not Detected

(1)-The above is a partial list of compounds from the full TCL SVOC and TCL VOC list analyzed for at the laboratory. All compounds on the complete list analyzed for were non-detect.

Figure 1. Project areas location in Village of Randolph, Cattaraugus County, New York (USGS 7.5' Quadrangle, Randolph, NY 1986 [1965]).

Figure 2. Project Location Plan (Regional Plan with USGS Topo).

Figure 4. Soil Confirmation Sample Locations - Below Sumps/Pits

APPENDIX A

TEST TRENCH & MONITORING WELL LOGS

PROJECT:	orm	er R	andolph Foundary Site - Randolph	n, NY	SHEET:	1	OF	1
			attaraugus / NYSDEC	JOB NUMBER: E905030	<u>. </u>	,		
			f Vermont	LOCATION: 2-8 Sheldon Street	· · · · · · · · · · · · · · · · · · ·	****		
DATE STAR	TED: [ece)	mber 16, 2008	GROUND ELEVATION: N/A				
DATE COM	LETED	:De	cember 16, 2008	OPERATOR: Ron Huntington				
PIT NUMBE	₹ RA	N-T	P-01	авоьовыя: J. Ryszkiewicz				
				GROUND WATER: N/A				
DEPTH (FT)	SAM NO.	IPLE TYPE		DESCRIPTION				114.15 TY 14.15
1	01A		- Black and grey, fill material, brick, concrete, of M-F (medium to fine) sand	topsoil material with C-F (coarse to fin	e) gravel a	ind tr	aces	S
2			- Light brown and black, C-F gravel and M-F	sand with traces of silt				
3 —								
4 			- Light brown and grey, C-F gravel (river rock)	with traces of M.E. cond and all				
6			and group of graver (mor rodry	with the cost of Weir stand and sit				
7	018				· · · · · · · · · · · · · · · · · · ·			
8			Ended test trench @ 7.0 ft. bgs (cave-in from	n loose material)				
9								
10								
11								
12								

COMMENTS: Size of Test Pit: 7.0'D x 6'W x 14'L
Photoionization readings were taken with a Mini-Rae 2000
No other readings other than background were recorded
Surface and Suburface Soil samples were taken at this location
TAL Metals, TCL Semi-Volatiles, PCBs and TCL Volatiles (not Surface) were the analysis

PROJECT:	orm	ner R	andolph Foundary Site - Randolph	n, NY	SHEET:	1	OF	1
			attaraugus / NYSDEC	JOB NUMBER: E905030	- 			
CONTRACTO	on: E	PS c	f Vermont	LOCATION: 2-8 Sheldon Street				
DATE STAR	TEO: [Dece	mber 16, 2008	GROUND ELEVATION; N/A	·	-		
DATE COMP	LETE	: De	cember 16, 2008	OPERATOR: Ron Huntington				
PIT NUMBER	::RA	N-T	P-02	GEOLOGIST: J. Ryszkiewicz			****	
				GROUND WATER: N/A				
DEPTH (FT)		IPLE TYPE		DESCRIPTION		1990		
1			- Black and grey, fill material, brick, concrete, of M-F (medium to fine) sand - Light brown and black, C-F gravel and M-F s	sand with traces of silt	e) gravel a	nd tr	aces	,
12								
(2)			Ended test trench @ 12.0 ft. bgs					
						-		-

COMMENTS: Size of Test Pit: 12.0'D x 5'W x 14'L
Photoionization readings were taken with a Mini-Rae 2000
No other readings other than background were recorded

								
PROJECT:	Form	ner R	andolph Foundary Site - Randolp	h, NY	SHEET:	1	OF	1
CLIENT: C	ounty	of C	attaraugus / NYSDEC	ЈОВ NUMBER: E905030				
			f Vermont	LOCATION: 2-8 Sheldon Street				
DATE STAR	TED: [Dece	mber 16, 2008	GROUND ELEVATION: N/A				
DATE COM	PLETE	: De	cember 16, 2008	OPERATOR: Ron Huntington				
PIT NUMBE	n: RA	N-T	P-03/04	GEOLOGIST: J. Ryszkiewicz			•	
				GROUND WATER: N/A				
DEPTH (FT)	SAN NO.	MPLE TYPE		DESCRIPTION		21-22-11		
1	04A		- Black and grey, fill material, brick, concrete and traces of M-F (medium to fine) foundry s - Black, M-F foundry sand with C-F gravel ar	sand	F (coarse	to fi	g	rave
3 	04B		- Grey, M-F sand with C-F gravel and traces					
5			en e	d.				
6			- Light brown, C-F gravel with M-F sand and	traces of silty clay				
7 —— 8 ——			Ended test trench @ 7.0 ft. bgs					
9	-		V 44					
10	 - -							
12								

COMMENTS: Size of Test Pit: 7.0'D x 5'W x 10'L

Photoionization readings were taken with a Mini-Rae 2000 No other readings other than background were recorded Surface and Suburface Soil samples were taken at this location TAL Metals, TCL Semi-Volatiles, PCBs and TCL Volatiles (not Surface) were the analysis

		r Randolph Foundary Site - R		SHEET: 1 OF 1				
		f Cattaraugus / NYSDEC	JOB NUMBER: E905030					
		6 of Vermont	LOCATION: 2-8 Sheldon Stree					
		cember 16, 2008	GROUND ELEVATION; N/A					
		December 16, 2008	OPERATOR: Ron Huntington					
PIT NUMBE	n: RAN	-TP-05 (East Third)	geologist: J. Ryszkiewicz					
			GROUND WATER: N/A					
DEPTH (FT)	SAMPL NO. TY	E /PE	DESCRIPTION					
1	. 05A	- Black and grey, fill material, brick, and traces of M-F (medium to fine)	, concrete, metal conduit, topsoil material with foundry sand	h C-F (coarse to fine) gra				
2	_	- Black cinder and M-E foundry sat	nd with C-F gravel and traces of silt. A lense	of ash, concrete and grey				
4		M-F sand was observed in the midd	dle (length) of the excavation	or asii, concrete ang grey				
5	05B	2.845	•					
	-l l	į.						
6		- Light brown, C-F gravel with M-F s	sand and traces of silty clay					
-			sand and traces of silty clay					
-		- Light brown, C-F gravel with M-F s Ended test trench @ 7.0 ft. bgs	sand and traces of silty clay					
-			sand and traces of silty clay					
-			sand and traces of silty clay					
6 —— 7 —— 8 —— 9 ——			sand and traces of silty clay					

COMMENTS: Size of Test Pit: Size of Test Pit: 7.0'D x 7'W x 22'L (Total average size of Pit: 6.0'D x 7'W x 66'L)
Photoionization readings were taken with a Mini-Rae 2000
No other readings other than background were recorded
Surface and Fill (4.5-5ft bgs) samples were taken at this location
TAL Metals, TCL Semi-Volatiles, PCBs and TCL Volatiles (not Surface) were the analysis

PROJECT: F	orm	er R	andolph Foundary Site - Randolpl		SHEET:	1 0)F	
CLIENT: CO	unty	of C	attaraugus / NYSDEC	JOB NUMBER: E905030				
CONTRACTO	or:El	S o	f Vermont	LOCATION: 2-8 Sheldon Street				
DATE START	red: [ece)	mber 16, 2008	GROUND ELEVATION; N/A				
DATE COMP	LETED	: De	cember 16, 2008	OPERATOR: Ron Huntington	. t			
PIT NUMBER	: RA	N-TI	P-05 (Central Third)	GEOLOGIST: J. Ryszkiewicz				
· _				GROUND WATER: N/A		****		
DEPTH (FT)	 	IPLE TYPE		DESCRIPTION				
1 ————————————————————————————————————	05C		- Black and grey, fill material, brick, concrete, and traces of M-F (medium to fine) foundry set. - Black, cinder and M-F foundry sand with C-M-F sand was observed in the middle (lengther). - Light brown, C-F gravel with M-F sand and Ended test trench @ 6.0 ft. bgs	eand -F gravel and traces of silt. A lense of a า) of the excavation				
9			**					
10								
12 —								

COMMENTS: Size of Test Pit: 6.0'D x 7'W x 22'L (Total average size of Pit: 6.0'D x 7'W x 66'L)
Photoionization readings were taken with a Mini-Rae 2000
No other readings other than background were recorded
Sub-Fill (5-5.5 ft bgs) Soil samples were taken at this location
TAL Metals, TCL Semi-Volatiles, PCBs and TCL Volatiles (not Surface) were the analysis

PROJECT: F	orm	ner R	andolph Foundary Site - Randolph	n, NY	SHEET: 1 OF 1
CLIENT: CC	CONTRACTOR: EPS of Vermont DATE STARTED: December 16, 2008 DATE COMPLETED: December 16, 2008 DIT NUMBER: RAN-TP-05 (West Third) DEPTH (FT) SAMPLE NO. TYPE Black and grey, fill material, brick, concre		attaraugus / NYSDEC	JOB NUMBER: E905030	
CONTRACTO	n: E	PS o	f Vermont	LOCATION: 2-8 Sheldon Street	
DATE START	DEPTH (FT) NO. TYPE - Black and grey, fill material, brick, concret and traces of M-F (medium to fine) foundry		mber 16, 2008	GROUND ELEVATION: N/A	
DATE COMP	LETE	: Ded	cember 16, 2008	OPERATOR: Ron Huntington	
PIT NUMBER	: RA	N-TI	P-05 (West Third)	geologist: J. Ryszkiewicz	
				GROUND WATER: N/A	
				DESCRIPTION	
1	140.		- Black and grey, fill material, brick, concrete, and traces of M-F (medium to fine) foundry s	metal conduit, topsoil material with C-F and	coarse to fine) gravel
3 —			- Light brown, C-F gravel with M-F sand and	traces of silty clay	 ** ** **
5 —— 6 —— 7 —— 8 —— 9 ——			Ended test trench @ 5.0 ft. bgs		
10					a S

COMMENTS: Size of Test Pit: 5.0'D x 7'W x 22'L (Total average size of Pit: 6.0'D x 7'W x 66'L)
Photoionization readings were taken with a Mini-Rae 2000
No other readings other than background were recorded

PROJECT: Former Randolph Foundary Site - Randolph, NY CUENT: County of Cattaraugus / NYSDEC JOB NUMBER: E905030 CONTRACTOR: EPS of Vermont LOCATION: 2-8 Sheldon Street APPENDED: December 16, 2008 DATE STAFFED: December 16, 2008 DATE COMPLETED: December 16, 2008 DATE COMPLETED: December 16, 2008 DEFANTOR: RON Huntington GEOLOGIST: J. Ryszklewicz GROUND WATER: N/A DESCRIPTION DESCRIPTION DESCRIPTION Black and grey, fill material, brick, concrete, metal conduit, topsoil material with C-F (coarse to fine) gravel and traces of M-F (medium to fine) foundry sand Black, cinder and M-F foundry sand with C-F gravel and traces of silt. Metal conduit and other small pleces of metal and wood were observed within this layer									
CONTRACTOR: EPS of Vermont DATE STARTED: December 16, 2008 DATE COMPLETED: December 16, 2008 DATE COMPLETED: December 16, 2008 DEPTH NUMBER: RAN-TP-06 SAMPLE (FD NO, TYPE) - Black and grey, fill material, brick, concrete, metal conduit, topsoil material with C-F (coarse to fine) gravel and traces of M-F (medium to fine) foundry sand - Black, cinder and M-F foundry sand with C-F gravel and traces of silt. Metal conduit and other small pleces of metal and wood were observed within this layer - Light brown, C-F gravel with M-F sand and traces of silty clay Ended test trench @ 5.0 ft. bgs - Contract (Coarse to fine) gravel and traces of silty clay - Light brown, C-F gravel with M-F sand and traces of silty clay - Coarse to fine) gravel within this layer - Light brown, C-F gravel with M-F sand and traces of silty clay - Light brown, C-F gravel with M-F sand and traces of silty clay						SHEET:	1 of 1		
DATE STARTED: December 16, 2008 DATE COMPLETED: December 16, 2008 DATE COMPLETED: December 16, 2008 PIT NUMBER: RAN-TP-06 DESCRIPTION SAMPLE DESCRIPTION - Black and grey, fill material, brick, concrete, metal condult, topsoil material with C-F (coarse to fine) gravel and traces of M-F (medium to fine) foundry sand - Black, cinder and M-F foundry sand with C-F gravel and traces of silt. Metal conduit and other small pleces of metal and wood were observed within this layer - Light brown, C-F gravel with M-F sand and traces of silty clay Ended test trench @ 5.0 ft. bgs					JOB NUMBER: E905030				
DATE COMPLETED: December 16, 2008 PIT NUMBER: RAN-TP-06 RECLOSIST: J. Ryszkiewicz GROUND WATER: N/A DESCRIPTION		*******			LOCATION: 2-8 Sheldon Street				
PIT NUMBER: RAN-TP-06 BEOLOGIST: J. Ryszkiewicz GROUND WATER: N/A DESCRIPTION					GROUND ELEVATION: N/A				
BEPTH (FT) NO. TYPE DESCRIPTION	-				ореватоя: Ron Huntington				
DESCRIPTION DESCRIPTION DESCRIPTION	PIT NUMBER	₹RA	N-T	P-06	geologist: J. Ryszkiewicz		ı		
DESCRIPTION NO. TYPE OBA - Black and grey, fill material, brick, concrete, metal conduit, topsoil material with C-F (coarse to fine) gravel and traces of M-F (medium to fine) foundry sand - Black, cinder and M-F foundry sand with C-F gravel and traces of silt. Metal conduit and other small pieces of metal and wood were observed within this layer - Light brown, C-F gravel with M-F sand and traces of silty clay - Ended test trench @ 5.0 ft. bgs - The sand and traces of silty clay					GROUND WATER: N/A				
- Black and grey, fill material, brick, concrete, metal conduit, topsoil material with C-F (coarse to fine) gravel and traces of M-F (medium to fine) foundry sand - Black, cinder and M-F foundry sand with C-F gravel and traces of silt. Metal conduit and other small pieces of metal and wood were observed within this layer - Light brown, C-F gravel with M-F sand and traces of silty clay - Ended test trench @ 5.0 ft. bgs - The sand and traces of silty clay		 -			DESCRIPTION				
12 —	6 — 7 — 8 — 9 — 10 — —			- Black, cinder and M-F foundry sand with C-pieces of metal and wood were observed wit	sand -F gravel and traces of silt. Metal condu hin this layer				
	12								

COMMENTS: Size of Test Pit: 5.0'D x 6'W x 25'L
Photoionization readings were taken with a Mini-Rae 2000
No other readings other than background were recorded
Surface and Sub-Fill (4-4.5 ft bgs) Soil samples were taken at this location
TAL Metals, TCL Semi-Volatiles, PCBs and TCL Volatiles (not Surface) were the analysis

			andolph Foundary Site - Randolp		SHEET: 1	OF		
			attaraugus / NYSDEC	JOB NUMBER: E905030				
			f Vermont	LOCATION: 2-8 Sheldon Street	The state of the s			
			mber 16, 2008	GROUND ELEVATION: N/A				
			cember 16, 2008	OPERATOR: Ron Huntington		·, ·		
PIT NUMBER	₹RΑ	N-TI	P-07 (North Third)	GEOLOGIST: J. Ryszkiewicz				
				GROUND WATER: N/A			_	
DEPTH (FT)	SAN NO.	MPLE TYPE		DESCRIPTION				
1	07A		- Black and grey, fill material, brick, concrete and traces of M-F (medium to fine) foundry	e, metal conduit, topsoil material with C- sand	F (coarse to	fine) g	ra	
3 —	07В		- Black, cinder and M-F foundry sand with C other small pieces of metal and wood were	-F gravel and traces of silt. Metal condu observed within this layer	uit, rail road ti	es an	t	
5 — - 6 —								
7 —			- Light brown, C-F gravel with M-F sand and	traces of silty clay				
8								
9	1		Ended test trench @ 9.0 ft. bgs					
	1							
10	1							
10	- 		生物 化学					

COMMENTS: Size of Test Pit: 9.0'D x 6'W x 25'L (Total average size of Pit: 7.0'D x 6'W x 75'L) Photoionization readings were taken with a Mini-Rae 2000

No other readings other than background were recorded Surface and Fill (4-4.5 ft bgs) samples were taken at this location TAL Metals, TCL Semi-Volatiles, PCBs and TCL Volatiles (not Surface) were the analysis

PROJECT: Former Randolph Foundary Site - Randolp	oh NY SHEET: 1 OF 1
CLIENT: County of Cattaraugus / NYSDEC	JOB NUMBER: E905030
CONTRACTOR: EPS of Vermont	LOCATION: 2-8 Sheldon Street
DATE STARTED: December 16, 2008	GROUND ELEVATION: N/A
DATE COMPLETED: December 16, 2008	OPERATOR: Ron Huntington
PIT NUMBER: RAN-TP-07 (Center Third)	GEOLOGIST: J. Ryszkiewicz
Center initial	GROUND WATER: N/A
SAMPLE	Groot Water 1477
DEPTH (FT) NO. TYPE	DESCRIPTION
and traces of M-F (medium to fine) foundry - Black, cinder and M-F foundry sand with Cother small pieces of metal and wood were - 07c - 07c	C-F gravel and traces of silt. Metal conduit, rail road ties and observed within this layer
- Light brown, C-F gravel with M-F sand and	d traces of silty clay
Ended test trench @ 8.0 ft. bgs	
9 9	
10	
11 —	
12 —	

COMMENTS: Size of Test Pit: 8.0'D x 6'W x 25'L (Total average size of Pit: 8.0'D x 6'W x 75'L)
Photoionization readings were taken with a Mini-Rae 2000
No other readings other than background were recorded
SubFill (5-5.5 ft bgs) sample was taken at this location
TAL Metals, TCL Semi-Volatiles, PCBs and TCL Volatiles were the analysis

PROJECT:	orn	ner R	Randolph Foundary Site - Randolp	- 1 · · · · · · · · · · · · · · · · · ·	SHEET:	1 0	OF 1	1
			Cattaraugus / NYSDEC	JOB NUMBER: E905030				
CONTRACT	OR: E	PS c	of Vermont	LOCATION: 2-8 Sheldon Street				
DATE STAR	TED: [Dece	mber 16, 2008	GROUND ELEVATION: N/A				
DATE COM	PLETE	o: De	cember 16, 2008	OPERATOR: Ron Huntington				
PIT NUMBE	R: RA	N-T	P-07 (South Third)	geologist: J. Ryszkiewicz				
				GROUND WATER: N/A				
DEPTH	SAI	MPLE		DESCRIPTION				
(FT)	NO.	TYPE	·	DESCRIPTION				
1			Black and grey, fill material, brick, concrete and traces of M-F (medium to fine) foundry s	, metal conduit, topsoil material with C- eand	F (coarse	to fine) gra	avel
2	1		- Black, cinder and M-F foundry sand with C other small pieces of metal and wood were o	-F gravel and traces of silt. Metal condu observed within this layer	uit, rail road	d ties	and	
3 —		:	34 y 3 3 4	(1)				
4			we the second					
5			- Light brown, C-F gravel with M-F sand and	traces of silty clay				
6								
7	-		Ended test trench @ 7.0 ft. bgs					
8			Évyth Bel					
9	1							
10	-							
11	-							
12			e e					

COMMENTS: Size of Test Pit: 7.0'D x 6'W x 25'L (Total average size of Pit: 8.0'D x 6'W x 75'L)

Photoionization readings were taken with a Mini-Rae 2000

No other readings other than background were recorded

19.6

PROJECT: F	orm	er R	andolph Foundary Site - Randolpl	h, NY	SHEET: 1 OF 1
	M-F (medium to fine) foundry sand	JOB NUMBER: E905030			
				LOCATION: 2-8 Sheldon Street	
DATE STAR	TED: D	ece	mber 16, 2008	GROUND ELEVATION: N/A	·
DATE COMP	LETED	Dec	cember 16, 2008	OPERATOR: Ron Huntington	
PIT NUMBER	: RA	N-TI	P-08 (North Third)	GEOLOGIST: J. Ryszkiewicz	
				GROUND WATER: N/A	
				DESCRIPTION	
1			ப்பு - Light brown, C-F gravel with M-F sand and		ne) gravel and traces of
11					

COMMENTS: Size of Test Pit: 5.0'D x 6'W x 22'L (Total average size of Pit: 5.0'D x 5'W x 65'L)

Photoionization readings were taken with a Mini-Rae 2000

No other readings other than background were recorded

			T	4	4
	Randolph Foundary Site - Randolph		SHEET:	1 OF	1
	Cattaraugus / NYSDEC	JOB NUMBER: E905030			
CONTRACTOR: EPS	· · · · · · · · · · · · · · · · · · ·	LOCATION: 2-8 Sheldon Street			
DATE STARTED: Dece		GROUND ELEVATION: N/A	·		
	cember 16, 2008	OPERATOR: Ron Huntington			
PIT NUMBER: RAN-T	P-08 (Center Third)	GEOLOGIST: J. Ryszkiewicz			
		GROUND WATER: N/A		w—————————————————————————————————————	
DEPTH (FT) NO. TYPE		DESCRIPTION			
1 — 08B 3 — 08B 3 — 4 — 5 — 6 — 7 — 8 — 9 — 10 — 11 — 12 — 12 — 12 — 12 — 12 — 12	- Black and grey, fill material, brick, concrete, M-F (medium to fine) foundry sand - Light brown, C-F gravel with M-F sand and Ended test trench @ 5.0 ft. bgs		ne) gravel a	nd trace	es of
	. p= 10.			,,,,,,,	

COMMENTS: Size of Test Pit: 5.0'D x 5'W x 22'L (Total average size of Pit: 5.0'D x 5'W x 65'L) Photoionization readings were taken with a Mini-Rae 2000

No other readings other than background were recorded Surface and Sub-Fill (2-2.5 ft bgs) Soil samples were taken at this location TAL Metals, TCL Semi-Volatiles, PCBs and TCL Volatiles (not Surface) were the analysis

PROJECT: Former Randolph Foundary Site - Randolph, NY CILENT: County of Cattaraugus / NYSDEC CONTRACTOR: EPS of Vermont LOCATION: 2-8 Sheldon Street DATE STARTED: December 16, 2008 OPERATOR: RON HUntington PIT NUMBER: RAN-TP-08 (South Third) DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION - Black and grey, fill material, brick, concrete, topsoil material with C-F (coarse to fine) gravel and traces of silly clay - Light brown, C-F gravel with M-F sand and traces of silly clay Ended test trench @ 4.0 ft. bgs Ended test trench @ 4.0 ft. bgs						-		
CONTRACTOR: EPS of Vermont DATE STARTED: December 16, 2008 DATE COMPLETED: December 16, 2008 PIT NUMBER: RAN-TP-08 (South Third) DEPTH (PT) SAMPLE ON TYPE Black and grey, fill material, brick, concrete, topsoil material with C-F (coarse to fine) gravel and traces of M-F (medium to fine) foundry sand Light brown, C-F gravel with M-F sand and traces of silty clay Ended test trench @ 4.0 ft. bgs Ended test trench @ 4.0 ft. bgs	PROJECT: F	ormer F	Randolph Foundary Site - Randolp	h, NY	SHEET:	1	OF	1
DATE STARTEC: December 16, 2008 DATE COMPLETED: December 16, 2008 PIT NUMBER: RAN-TP-08 (South Third) DEPTH (FT) SAMPLE NO. TYPE - Black and grey, fill material, brick, concrete, topsoil material with C-F (coarse to fine) gravel and traces of M-F (medium to fine) foundry sand - Light brown, C-F gravel with M-F sand and traces of sitty clay Ended test trench @ 4.0 ft. bgs Ended test trench @ 4.0 ft. bgs	CLIENT: CC	unty of C	Cattaraugus / NYSDEC	JOB NUMBER: E905030				
DATE COMPLETED: December 16, 2008 PIT NUMBER: RAN-TP-08 (South Third) DESCRIPTION (FT) NO. TYPE - Black and grey, fill material, brick, concrete, topsoil material with C-F (coarse to fine) gravel and traces of M-F (medium to fine) foundry sand - Light brown, C-F gravel with M-F sand and traces of slity clay Ended test trench @ 4.0 ft. bgs - Light brown, C-F gravel with M-F sand and traces of slity clay	CONTRACTO	PR: EPS C	of Vermont	LOCATION: 2-8 Sheldon Street				
PIT NUMBER: RAN-TP-08 (South Third) DESCRIPTION SAMPLE DESCRIPTION Find grey, fill material, brick, concrete, topsoil material with C-F (coarse to fine) gravel and traces of M-F (medium to fine) foundry sand - Light brown, C-F gravel with M-F sand and traces of silty clay - Light brown, C-F gravel with M-F sand and traces of silty clay Ended test trench @ 4.0 ft. bgs - Red	DATE START	red: Dece	mber 16, 2008					
BEPTH (FT) NO. TYPE - Black and grey, fill material, brick, concrete, topsoil material with C-F (coarse to fine) gravel and traces of M-F (medium to fine) foundry sand - Light brown, C-F gravel with M-F sand and traces of silty clay - Light dest trench @ 4.0 ft. bgs - The destination of the de	DATE COMP	LETED: De	cember 16, 2008					
DEPTH (FT) NO. TYPE	PIT NUMBER	RAN-T	P-08 (South Third)					
DESCRIPTION (FT) NO. TYPE - Black and grey, fill material, brick, concrete, topsoil material with C-F (coarse to fine) gravel and traces of M-F (medium to fine) foundry sand - Light brown, C-F gravel with M-F sand and traces of silty clay - Light dest trench @ 4.0 ft. bgs - The sand and traces of silty clay				GROUND WATER: N/A				****
- Black and grey, fill material, brick, concrete, topsoil material with C-F (coarse to fine) gravel and traces of M-F (medium to fine) foundry sand - Light brown, C-F gravel with M-F sand and traces of silty clay - Light brown, C-F gravel with M-F sand and traces of silty clay - Ended test trench @ 4.0 ft. bgs				DESCRIPTION				
8 —			- Black and grey, fill material, brick, concrete M-F (medium to fine) foundry sand	, topsoil material with C-F (coarse to fi	ne) gravel	and t	race	s of
8 —	1							
5 — 6 — 7 — 8 — 9 — 10 — 11 — 11 — 11 — 11 — 11 — 11	2		- Light brown, C-F gravel with M-F sand and	traces of silty clay				
5 — 6 — 7 — 8 — 9 — 10 — 11 — 11 — 11 — 11 — 11 — 11	3 -							
5 — 6 — 7 — 8 — 9 — 10 — 11 — 11 — 11 — 11 — 11 — 11	4		Ended test trench @ 4.0 ft. bgs					
	5							
	6							
	7							
11 —	8		pare N		-			
11 —	9							
	10							
12 —	11							
	12		100 miles 100 miles 100 miles					
		<u> </u>						

COMMENTS: Size of Test Pit: 4.0'D x 5'W x 21'L (Total average size of Pit: 5.0'D x 5'W x 65'L)
Photoionization readings were taken with a Mini-Rae 2000
No other readings other than background were recorded

			andolph Foundary Site - Randolp		SHEET:	1	OF	1_
			attaraugus / NYSDEC	JOB NUMBER: E905030				
CONTRACT	OR: EF	PS o	f Vermont	LOCATION: 2-8 Sheldon Street				
			mber 16, 2008	GROUND ELEVATION; N/A				
			cember 16, 2008	OPERATOR: Ron Huntington				
PIT NUMBE	R: RA	N-TF	P-09	GEOLOGIST: J. Ryszkiewicz				
				GROUND WATER: N/A				
DEPTH (FT)	SAM NO.	PLE TYPE		DESCRIPTION				
3 —	09A		- Black and grey, fill material, including tops grading to M-F (medium to fine) sand Ended test trench @ 4.0 ft. bgs	oil and brick, concrete with C-F (coarse	to fine) ς	gravel	and	
6								
8								
10								

COMMENTS: Size of Test Pit: 4.0'D x 5'W x 20'L

Photoionization readings were taken with a Mini-Rae 2000 No other readings other than background were recorded Surface Soil samples were taken at this location

TAL Metals, TCL Semi-Volatiles and PCBs were the analysis

PROJECT:	Form	er R	andolph Foundary Site - Randolph	h, NY	SHEET:	1	OF	1
CLIENT: C	ounty	of C	attaraugus / NYSDEC	ЈОВ NUMBER: E905030				
CONTRACT	OR: E	PS o	f Vermont	LOCATION: 2-8 Sheldon Street				
			mber 16, 2008	GROUND ELEVATION: N/A				
DATE COM	PLETEC	: De	cember 16, 2008	OPERATOR: Ron Huntington				
PIT NUMBE	n: RA	N-T	P-10	GEOLOGIST: J. Ryszkiewicz				
				GROUND WATER: N/A				
DEPTH (FT)	<u> </u>	TYPE		DESCRIPTION				
1			- Black and grey, fill material, brick, concrete M-F (medium to fine) sand	, topsoil material with C-F (coarse to fir	ne) gravel	and	trace	s of
2			Plack sinder and M.E. and with C.E. grovel	land traces of silt. A small lance of val	lavi aand v			m . m . al
-	1		 Black, cinder and M-F sand with C-F gravel from 2-2.5 ft bgs in the middle (length) of this 	rand traces of silt. A small lense of yel s layer	iow sand v	vas	obse	veu
3 —			(3.7)					
3				·: ·	a a			
3 ————————————————————————————————————								
3 ————————————————————————————————————			Marin Salah					
3 ————————————————————————————————————			- Brown and black, C-F gravel with M-F sand					· · · · · · · · · · · · · · · · · · ·
3 —— 4 —— 5 —— 6 —— 7 —— 8 ——			- Brown and black, C-F gravel with M-F sand					
3 ————————————————————————————————————			- Brown and black, C-F gravel with M-F sand					
3 —— 4 —— 5 —— 6 —— 7 —— 8 —— 9 —— 10 ——			- Brown and black, C-F gravel with M-F sand					
3 —— 4 —— 5 —— 6 —— 7 —— 8 —— 10 —— 11 ——			- Brown and black, C-F gravel with M-F sand					

COMMENTS: Size of Test Pit: 6.0'D x 4'W x 10'L
Photoionization readings were taken with a Mini-Rae 2000
No other readings other than background were recorded

2390 Clinton Street Buffalo, New York 14227

												GEO	<u> P</u>	RO	BE LOG
												вояіна но.: Г	RF-	MW-	01
РЯО	JECT: F	orm	er R	andolr	h Four	ıda	ry Si	te - F	Rand	olph	, NY	SHEET: 1 OF	3		
					augus /							J08 но.: N/A	1		
					m <u>ent</u> a				Ver	mor	nt	BORING LOCAT	ION:	SW F	Part of Property
	UNDWAT							CAS.	SAM		CORE TUBE	GROUND ELEV	ATIO	N: N/A	1
DAT	E TIME	LI	EVEL		TYPE		TYPE		L			DATE STARTED	: D	ecem	nber 16, 2008
			•				DIA.					DATE FINISHED	: D	ecen	ber 16, 2008
							WT.					DRILLER: A.	Mo	rse	
							FALL					GEOLOGIST: (<u> J. F</u>	≀yszk	iewicz
						,	* P(OCKET I	PENETF	OMET	ER READING	REVIEWED BY:	Ν/.	Α	
				SAMPLE		_		·····			ESCRIPTION			C 1 - 1	REMARKS
OEPTH FEET	STRATA	'S' NO.	CORE NO.	BLOVYS	ROON	c	OLOR	CONSIS Idrah			MATI DESCR			CLASS USCS	перидило
						†								_	
					_	ļ				- Biac	k and grev. s	oil with silty clay	.	-	0.0 ppm
 	[_		Black	Grav	eliv	C-F	(coarse to fin	e) gravel and M oundry sand. La	-F		Readings
-1-]						Frey	Jiur	J.1.y		moist.	oundry sailu. La	ay o i '	_	on Photoionization
 					1									-	Detector
					1 42	├-								_	
	[}		4 <u>2</u> 48		ſ							_	ļ
- 2 -]	l	Ì								
					4	-	l							-	0.0 555
			}		1	İ									0.0 ppm Readings
_ 3]									•	on
					-	ł									Photoionization
						1								_	Detector
			}		-		1							-	_
- 4 -]									-	
		i	ł		1		1							_	0.0 ppm
			}		4] ,	ght	_				ular, C-F gravel	with	-	Readings
- 5							own	Gran	ular		sand and trac er was damp.	es of silty clay.			on Photoionization
			[}							_	Detector
					45 48								•		
- 6] ~~										
					-]			İ				_	
			ן וַ											=	0.0 ppm
							ļ							-	Readings
- 7 -														_	on Photoionization
ļ. <u></u>														-	Detector
							ļ							_	
- g			}		3 <u>1</u> 48									_	
		Phote	oioniz	ation re	adings w	ere	taken	with a	Mini-	Rae 2	2000.				
CON	IMENIS:												PRO	DJECT N	RF-MW-01
													801	HING NO); <u> (</u>

Buffalo, New York 14227

													GEC	P	ROE	BE LOG
													вонис ио.: Р	F-1	MW-(01
PROJ	ect:Fo	rme	r Ra	andolph	Found	lar	y Site	e - R	ando	olph.	NY		SHEET: 2 OF	3		
CLIE	17: Col	intv	of (Cattara	ugus /	NY	/SDI	EC					ЈОВ НО.: N/A			
BOAL	NG CONT	RACT	or: E	nviron	nental	Se	rvice	es of	Ver	mor	t		BORING LOCATI	он:{	SW E	art of Property
)bserve				CAS.	SAMP		CORE	TUBE	GROUND ELEVA			· · · · · · · · · · · · · · · · · · ·
DATE	TIME	LI	EVEL		TYPE		TYPE									ber 16, 2008
							DIA.				·					ber 16, 2008
							W T.						ORILLER: A.			
	FALL GEOLOGIS * POCKET PENETAOMETER READING REVIEWED															ewicz
,	* POCKET PENETROMETER READING REVIEWED														4	
			laonel	SAMPLE BLOVS	RECOVERA			CONSIS	TENCY		ESCRIP'	HATE	RIAL		CLASS	REMARKS
FEET TEST	STRATA	'S' NO.	CORE NO.	PER 6'	ROON	CO	LOR	HARD		<u> </u>		DESCRI			USCS	
					-									- 1		
															4	0.0 ppm Readings
					34				ļ						_	on
— 9 					3 <u>1</u> 48		}								-	Photoionization Detector
					1 1									-	J	Detector
]		l								_	
10	•				-{									- {		
]		1									
					-		j									0.0 ppm Readings
														- 1		on
					4											Photoionization
														-		Detector
]			 - Ligh	t Brown	ı, granı	ular, C-F gravel	with		
12					48 48		ght own	Gran	ular	M-F	sand ar er was c	nd trac Jamp.	es of silty clay.			
					40							•				0.0 ppm
					-		ļ							- 1		Readings
13					1		1									on
					-											Photoionization Detector
]											20.00.0.
— 14 —					+	}									_	
															_	0.0 ppm
					1											0.0 ppm Readings
- 15		[7										_	on
 					42 48										_	Photoionization Detector
					┤ 'ઁ										-	Detector
		ļ			_									į	=	
16		<u> </u>	<u> </u>		1	<u></u>		<u> </u>		<u> </u>	2022	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · · · · · · · · · · · · · · · · · ·		<u> </u>	
CON	MENTS:	Pho	<u>toioni</u>	ization re	<u>adings w</u>	ere	taken	with a	Mini:	кае	2000.			PRO	DJECT 1	10.1
	-													BQI	RING N	o., <u>RF-MW-01</u>

2390 Clinton Street
Buffalo, New York 14227

													GEC	PR	OE	BE LOG
													вояіна но.: Р	F-MV	۷-()1
PROJ	ECT:FO	rme	r Ra	ando	olph	Found	dar	y Sit	e - R	ando	olph,	NY	SHEET: 3 OF	3		
						ugus /							ЈОВ НО.: N/A			
						nental				Ver	mor	ıt	BORING LOCAT	on:SV	۷F	Part of Property
	JADWATE								CAS.	SAME		CORE TUBE	GROUND ELEV			
DATE	1	Т	VEL			YPE		TYPE					DATE STARTED	Dece	<u>em</u>	ber 16, 2008
		1	**********					DIA.					DATE FINISHED	Dece	eml	ber 16, 2008
	WT. ORILLER: FALL GEOLOGIS															
															zki	ewicz
	POCKET PENETHOMETER READING REVIEWED														·	
				SAMI								DESCRIPTION		— <u>(17.</u>	_	REMARKS
OEPTH FEET	STRATA	•5• NO.	CORE NO.	BLO PER		RECOVERY ROD!	C	DLO R	CONSIS	TENCY NESS		MATE Descr		CLA US	CS CS	HENDINGO
																-
 								ľ							-	0.0 nnm
						4.		iaht			Ligh	t Brown, gran	ılar, C-F gravel	with		0.0 ppm Readings
— 17 						42 48		ight rown	Gran	nular		sand and tracer was damp.	es of silty clay.		\dashv	on
						j					,.				\exists	Photoionization
								\						1	-	Detector
					-											
18		•									- Refu	ısal of boring	at 18 feet bgs		-	
					ļ											
	}							l			ļ				\exists	
19	}		1					Ì								
						1					İ					
		,													\dashv	
20					<u> </u>			Ì							コ	
20-															\exists	;
	i				_			- 1							-	
21						j										
				-	-	<u> </u>								l l		
- 22								Ì							_	
						\ 		ļ								
								Ì							-	
					-	1										
23						1									_	
					ļ	-									_	
					-											
24]									_	
		7 L - 1	<u> </u>	- Li -	<u> </u>	dinas	L	takan	with a	Mini	Rec 1	2000		1		
COM	MENTS:	-note	oloniz	zatior	read	dings we	#1e	laken	wuna	TAINT II-	<u> </u>			PROJEC	CT N	RF-MW-01
		-,,,												BORING	3 NC).: 1XI -IVIVV-U1

2390 Clinton Street Buffalo, New York 14227

												GE	<u> P</u>	RO	BE LOG
												воянено.:	₹F-I	MW-	02
PRO	JECT: FO	orme	er R	andolp	h Four	ıda	ry Si	te - R	≀and	olph	, NY	SHEET: 1 OF	_f 3		
					ugus /							ЈОВ ИО.: N/	۸		
					mental				Ver	mor	ıt	BORING LOCAT	пон:	NE P	art of Property
				bserve				CAS.	SANIF		CORE TUBE	GROUND ELEV	ATION	i N/A	\
DATI			VEL		TYPE		TYPE					DATE STARTE	o: De	ecem	ber 16, 2008
1		1					DIA.					DATE FINISHED	⊳: De	ecem	ber 16, 2008
WT. ORILLER: A. MOTSE FALL GEOLOGIST: J. RYSZKIEW															
														yszk	iewicz
	POCKET PENETHOMETER READING REVIEWED BY														
SAMPLE DESCRIPTION														REMARKS	
OEPTH FEET	STRATA	'S' NO.	CORE NO.	BLOWS	ROON	C	OLOA (CONSIS Idrah				erial Liption		USCS	CEMATING
7.5.					1					Blac	k and grov s	oil with silty clay	,	_	
ļ					-{	, –	lack	Grave	ellv	C-F	(coarse to fin	e) gravel and M	-F		0.0 ppm
 	[-		_		Brey	Oldar	-",		dium to fine) i er was moist.	oundary sand.		_	Readings
- 1]					ĺ					on Photoionization
 			 		1		İ							_	Detector
	ļ	i			1 42		ĺ						}	-	
 			}		42 48										
2 -]	İ	i							_	
_			}		-{					- Blac	k, gravelly, ci	nder and M-F	1		0.0 ppm
 			·		1	В	lack	Grav	elly	foun	dary sand wi	h C-F gravel an	ıd	-	Readings
3					4	ļ				แลน	75 OI SIIL.		}	•	on
ļ			 		-										Photoionization
		- [<u> </u>	1	-						- {	-	Detector
					_		Ì								
4	}		F]		1							•	
					1	ļ	1							-	0.0 ppm
ļ			}		-		ŀ								Readings
- 5 -					1	 				1					on Photoionization
<u> </u>			-		-		1								Detector
			}		42 48										
- 6		l]		}								
ļ]					Linh	t Brown arer	ular, C-F gravel	l Mtiw I		
]		ight own	Gran	ular	M-F	sand and tra	ces of silty clay.	. WILL		0.0 ppm
 			}		-		١			Laye	er was damp.			<u></u>	Readings on
7 —] }														Photoionization
<u> </u>			}		10										Detector
					4 <u>8</u> 48										
- в			-		4		İ							-	
 		Phot	oioniz	ation re	adings w	ere	taken	with a	Mini-	Rae 2	2000.		<u> </u>		
CON	MENTS:_												PRC	NECL N	RF-MW-02
													BOP	ung No).1 <u>131 1919 7 96</u>

Buffalo, New York 14227

														GE	OP	RO	BE LOG
														вонімомо.:	RF-	MW-	02
PRO	JECT:	Fo	rme	r Ra	andolph	Foun	dar	y Sit	e - R	ando	olph,	NY		внеет: 2 о	ғ 3		
					Cattara									лов но.: №//	4		
BOR	ING C	ONT	RACT	оя: Е	nvironr	nental	Se	ervice	es of	Ver	mor	<u>it</u>		BORING LOCA	TION:	NEE	art of Property
GRO	ииру	VATE	a:N	ot C)bserve	ed			CAS.	SAMI	PLER	CORE	TUBE	GROUND ELEV			····
DAT	ET	IME	Li	YEL	1	TYPE		TYPE									ber 16, 2008
								DIA.		<u> </u>							iber 16, 2008
				·····				WT.	<u> </u>		··-			DRILLER: A.			
	\perp		\perp		ļ			FALL				L		GEOLOGIST: ,			iewicz
		,			<u> </u>			* P(OCKET F	PENET	IOMET	ER READ	IHG	REVIEWEO BY	: N/	<u> </u>	
	SAMPLE DESCRIPTION													DIAI		CLASS	REMARKS
FEET	SIR	AIA	NO.	NO.	PER 6'	ROON	co					i				USCS	
OEPTH STRATA 'S' CORE BLOYS RECOETY CONSISTENCY MATERIAL CLAS												0.0 ppm Readings on Photoionization Detector 0.0 ppm Readings on Photoionization Detector 0.0 ppm Readings on Photoionization Detector 0.0 ppm Readings on Photoionization Detector					
CON	IMEN	rs: <u>1</u>	Phot	oioniz	zation rea	dings we	ere t	aken	with a	Mini-	Rae 2	2000.			PRI BO	4 TOBLO	no.: D.: <u>RF-MW-02</u>

Buffalo, New York 14227

				···							GF	OP.	BUE	BE LOG
}	воямано: RF-MW-02 Рвојест: Former Randolph Foundary Site - Randolph, NY sheet: 3 ог 3													
<u> </u>						3-2-04		ا اد مرم	- l- l-	NV			VIVV-U	J <u>C</u>
								ando	Jipn,	INY	JOB NO.: N/	<u>_</u>		
				Cattara									NE D	art of Property
				nvironr		Servic				1	 			art of Property
	1	Τ)bserve			CAS.	SAMI	PLER	CORE TUBE				hor 16, 2009
DATE	TIME	L:	EVEL	3	YPE	TYPE	 							ber 16, 2008
ļ						DIA.	 	ļ						ber 16, 2008
 	<u> </u>	 		<u> </u>		<u>₩</u> 7.	 		·		ORILLER: A.			
		-		ļ		FALL	<u> </u>	l			GEOLOGIST:			iewicz
	* POCKET PENETROMETER READING REVIEWE SAMPLE DESCRIPTION													
חבחזא	DEPTH STRATA 'S' CORE BLOVS RECOERY CONSISTENCY MATERIAL													REMARKS
FEET														
POCKET PENETROMETER READING REVIEWED BY: N/A SAMPLE SAMPLE STRATA STRAT													Readings on Photoionization Detector 0.0 ppm Readings on Photoionization Detector 0.0 ppm Readings on Photoionization Detector 0.0 ppm Readings on Photoionization Detector	
	MENTS: [hoto	oioniz	ation rea	l dings we	re taken	with a	Mini-J	l Rae 2	000.		PRC	DIECT N	o.: o.: RF-MW-02
1										·····		ا تانا	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

2390 Clinton Street Buffalo, New York 14227

													GEC	PRO	BE LOG
	PROJECT: Former Randolph Foundary Site - Randolph, NY SHEET: 1 OF 3 CLIENT: County of Cattaraugus / NYSDEC JOB NO.: N/A														
PRO	ECT: F	orm	er R	and	olp	n Four	dary	/ Sit	e - R	and	olph	, NY	SHEET: 1 OF	3	
													ЈОВ НО.: N/A		
						nental				Ver	mor	nt	BORING LOCATI	งห:SE F	Part of Property
	JNDWATE								CAS.	SAME		CORE TUBE	GROUND ELEVA	тіон: N//	A
DATE	1		EVEL			YPE	יז	YPE					DATE STARTED	Decen	nber 16, 2008
		1-	·	†			C	DIA.							nber 16, 2008
		1					1	wt.					ORILLER: A.		
				\Box			F.	ALL					GEOLOGIST: J	Ryszk	iewicz
		1		\				* PC	CKET P	ENETF	OMET	ER READING	REVIEWED BY:		
				SAM	PLE						Ľ	ESCRIPTION			
OEPTH FEET	STRATA	's' NO.	CORE NO.	BLC PE		RECONERY ROOM	COLC		CONSIST			MATE DESCR		CLASS	REMARKS
1461		NO.	10.	ru	1	na.		+	TIATIO	1233					
							Blac	ck			- Blac	k and grey, so	il with silty clay,	_	0.0 ppm
	j						and	d	Grave	elly			e) gravel and M-loundry sand. La		Readings
	Ì		[Gre	,y			was	moist.	•	_	on
1 -								\neg						_	Photoionization
														-	Detector
	1				-	4 <u>8</u> 48					l				
- 2 -	f					48	Blac	ck	Grav	ellv	- Blac	k, gravelly, cir darv sand witl	ider and M-F i C-F gravel and	-	
						l				,		es of silt.	, o , granta and	-	
	1					:								_	0.0 ppm
	- }													} _	Readings
_ 3										••					on
	l		{		<u> </u>							(* **		_	Photoionization
							Gre	ey	Grav	elly		/, gravelly, M-l el with traces	F sand and C-F of silt.	-	Detector
			1 1		-						3	-,	-,	-	
4															
	ł							[-	0.0 ppm
								-							Readings
5	ĺ													-	on
	ŀ		}											-	Photoionization
]				 	42		- 1						-	Detector
]					42 48		. {			- Ligh	t Brown, gran	ular, C-F gravel	vith -	_
- 6 -	}	ì					Ligh Brow		Granu	ılar	M-F	sand and tracer was damp.	es of silty clay.	-	
			}				_,_,				Laye	ir was damp.		-	
	1							-						_	0.0 ppm
	1		}		<u> </u>									-	Readings
7 -			}											-	on Dhotoigningtion
	ļ							}						[-	Photoionization Detector
														-	1 20100101
						42 48					[-	
- 8 -	l										<u> </u>				
COM	MENTS: _	hote	oloniz	zatio	n rea	dings we	ere tal	ken '	with a	Mini-	Rae 2	2000.		PROJECT	No.:
										·	······•			BORING N	o., RF-MW-03
		,													

Buffalo, New York 14227

										· · · · · · · · · · · · · · · · · · ·			GE	OF	RO	BE LOG
													BORING NO.:	RF-	-MW-	03
PRO	JECT: FC	orme	er Ra	andolph	Foun	dary	Site	<u>e - R</u>	and	olph,	NY		sнеет: 2 d			
CLIE	нт: Соц	unty	of C	Cattara	ugus /	NYS	SDE	<u>EC</u>					ов но.: N/	Α		
BOR	ING CON	RACT	:οл: Ε	nvironr	<u>nental</u>	Ser	vice	es of	Ver	mor	t	_ ['	BORING LOCA	ноіт	SE P	art of Property
GRO	TAWQNU	ER: N	ot O)bserve	ed			CAS.	SAM	PLER	CORE TUB		GROUND ELE			
DAT	E TIME	L	EVEL	1	TYPE	71	YPE		Ĺ			1	DATE STARTE	o: D	ecem	ber 16, 2008
						ם	AIC.									nber 16, 2008
						V	ντ.					_ !	PRILLER: A.	Mo	rse	
	<u> </u>															iewicz
				<u> </u>			* PC	CKET	ENET	TAMOR	R READING		REVIEWED BY	: N/	Α	
SAMPLE DESCRIPTION													Ta: 100	REMARKS		
OEPTH FEET	EPTH STRATA 'S' CORE BLOWS RECOVERY CONSISTENCY MATERIAL														CLASS USCS	Heliositica
	}						•								_	_ `-
 			1 t							ĺ						0.0 ppm
			! [Readings on
— g 			-		42 48					ŀ					<u>-</u>	Photoionization
																Detector
			h												-	
															_	
																0.0 ppm
			 -							ĺ					_	Readings
— 11 																on Photoionization
			-												-	Detector
										Liabe	Braum ara	saula.	C E arous	المنافقية ا		
12						Light		Granu	ılar	M-F	sand and tra	aces	r, C-F grave of silty clay.	VVILLE	_	e de la companya de l
			-			Brown	n			Laye	r was damp).		i	_	
																0.0 ppm
13 <i>-</i>			-		48 48										-	Readings
																on Photoionization
	İ		ŀ												***	Detector
-14-	.		Ľ												-	
	Ì		, <i>-</i>													
																0.0 ppm
	Ì		<u> </u>				ļ								_	Readings
15 			<u> </u>											ļ		on Photoionization
·	ļ		<u> </u>		18										-	Detector
					48 48											
- 16 -	ŀ		-													
		! ⊇hot/	nioniz:	ation read	dinas we	re tak	en v	vith a	—— Mini-l	Rae 2	000					
COM		HOU	ACTIVES	unon rodi	AILINO MAC	i c tak	<u> </u>		····		×××			PRC	DJECT N	o.: ,: RF-MW-03_
														BOF	AING NO	" TVI -IAIAA-02

2390 Clinton Street Buffalo, New York 14227

													GEO	PRO	BE LOG
L.	PROJECT: Former Randolph Foundary Site - Randolph, NY SHEET: 3 OF 3 CLIENT: County of Cattaraugus / NYSDEC JOBNO:: N/A														
PRO	JECT: FC	rme	er Ra	andol	oh Fo	unda	ary Sit	<u>e -</u> R	ando	olph,	NY			}	
CLIE	нт: Соц	ınty	of C	Catta	augu	ıs/N	IYSD	EC_					J08 ио.: N/A		
BOR	ING CONT	RACY	оя: Е	nviro	nmer	ital S	Servic	es of	Ver	mor	ıt		BORING LOCATIO	N:SE F	art of Property
GRO	UNOWAT	я: N	ot O	bser	/ed			CAS.	SAM	PLER	CORE TU	BE	GROUND ELEVAT	он: NA	
DAT	E TIME	LI	EVEL		TYPE		TYPE						DATE STARTED:	Decem	ber 16, 2008
		1		Ī			DIA.						DATE FINISHED:	ecem	ber 16, 2008
							WT.						DRILLER: A. N	orse	
							FALL						aeoloaist: J	Ryszk	iewicz
		1					· P	OCKET	PENETI	ROMET	ER READING	ì	REVIEWED BY: N	l/A	
				SAMPLE						Ĺ	ESCRIPTIO	N			
OEPTH FEET	STRATA	'\$' NO.	CORE NO.	BLOVYS PER 6"	FECX RC	MERY	COLOA	CONSIS				ATE	RIAL PTION	CLASS	REMARKS
1661		110.	110.			-	002071	11.11.10	1200	ļ					· · · · · · · · · · · · · · · · · · ·
							1								
 -			 				-							_	0.0 ppm
— 17 —															Readings on
<u> </u>	ļ		-		-										Photoionization
					\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	<u> </u>	Light Brown	Grand	ular	i Lighi I M-F	t Brown, gr sand and t	ranu	lar, C-F gravel wi es of silty clay.	tn -	Detector
					☐ 4	B '	SIOWII				r was dam		,,		
18	•		 		\dashv									-	
	i						-							-	0.0 ppm
ļ				-	_									-	Readings on PID
19										[]				_ _	
19			-							Refu	sal of borin	ng a	t 19 feet bgs	-	
			-		-									-	
			F				Ì							_	
20					_	İ	}								
			F		7	1	l							-	
							- 1							-	
21			 		_									-	1
			 	_	_									-	
					7										
			<u> </u>		\dashv		1							-	1
- 22					_									_]
 			-	_	-		ļ								
			<u>-</u>		7									_]
- 23					7		1							_	
			F	_	\dashv										<u> </u>
					_									-	
 -			-	_	{		- 1							_	1
24					1_										<u> </u>
COM	MENTS: E	hoto	ioniza	ation re	ading	were	taken	with a	Mini-F	Rae 2	000.	····		ROJECT N	10.:
									~					OBINO NO	RF-MW-03
													P	onina at	/n

APPENDIX B

SAMPLE ANALYTICAL RESULTS

SDG NARRATIVE

Job#: <u>A08-F961</u>

Project#: NY5A946109

Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A08-F961

Sample Cooler(s) were received at the following temperature(s); $4.6~^{\circ}$ C All samples were received in good condition.

GC/MS Volatile Data

Linear regression was used to calibrate all analytes and surrogates that were greater than 15% RSD in the initial calibration standard curve A8I0000983-1.

The analyte Methylene Chloride was detected in the Method Blank VBLK60 (A8B2794904) at a level above the project established reporting limit. Samples had levels of Methylene Chloride at similar concentrations to that of the Method Blank value. All sample detections for Methylene Chloride may potentially be due to laboratory contamination and should be evaluated accordingly. All associated sample detections were qualified with a "B".

GC/MS Semivolatile Data

Linear regression was used to calibrate analytes that were greater than 15% RSD in the initial calibration A8I0000995 AND A8I0000967.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

GC Extractable Data

For method 8082, several sample extracts and associated quality control required treatment with Copper prior to analysis due to the presence of elemental Sulfur.

Metals Data

The recoveries of sample RF-TP-07C Matrix Spike exhibited results below the quality control limits for Aluminum, Antimony, Copper, Nickel, Potassium, Thallium and Zinc. The recoveries of sample RF-TP-07C Matrix Spike Duplicate exhibited results above the quality control limits for Aluminum and Zinc and below for Antimony. Sample matrix is suspect. The RPD between sample RF-TP-07C Matrix Spike and Matrix Spike Duplicate exceeded quality control criteria for Aluminum, Antimony, Copper, Nickel, Sodium and Zinc. However, the LCS was acceptable.

The recoveries of sample RF-TP-07C Matrix Spike exhibited results above the quality control limits for Calcium and Magnesium and below for Barium, Iron, Manganese and Vandaium. The recoveries of sample RF-TP-07C Matrix Spike Duplicate exhibited results above the quality control limits for Barium, Iron and Manganese and below for Calcium and Magnesium. The sample result is more than four times greater than the spike added. The RPD between sample RF-TP-07C Matrix Spike and Matrix Spike Duplicate exceeded quality control criteria for Arsenic, Barium, Calcium, Iron, Magnesium and Manganese. However, the LCS was acceptable.

The Post Spike and Serial Dilution of sample RF-TP-07C exceeded the quality control limits for Barium, Calcium, Iron, Magnesium, Manganese and Zinc. Sample matrix is suspect, therefore, no correction action was necessary.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

The Serial Dilution of sample RF-TP-07C exceeded the quality control limits for Alunimum, Chromium, Cobalt, Copper, and Vanadium. However, the Post Spike was compliant for these elements. Therefore, no corrective action was necessary.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Iaboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager

1-19-08

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 1 Rept: AN1178

Sample ID: RF-TP-01A Lab Sample ID: A8F96101 Date Collected: 12/16/2008 Time Collected: 08:50 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

Site No:

<u>Parameter</u>			Detection			Date/Time	
	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND .	#1.#J	900	UG/KG	8270	12/26/2008 14:57	ERK
2,4,5-Trichlorophenol	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
2,4,6-Trichlorophenol	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
2,4-Dichlorophenol	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
2,4-Dimethylphenol	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
2,4-Dinitrophenol	ND		1700	UG/KG	8270	12/26/2008 14:57	ERK
2,4-Dinitrotoluene	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
2,6-Dinitrotoluene	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
2-Chloronaphthalene	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
2-Chlorophenol	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
2-Methylnaphthalene	ND		900	UG/KG	8270	12/26/2008 14:57	
2-Methylphenol	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
2-Nitroaniline	ND	Mary	1700	UG/KG	8270	12/26/2008 14:57	
2-Nitrophenol	ND	•	900	UG/KG	8270	12/26/2008 14:57	
3,31-Dichlorobenzidine	ND		900	UG/KG	8270	12/26/2008 14:57	
3-Nitroaniline	ND		1700	UG/KG	8270	12/26/2008 14:57	
4,6-Dinitro-2-methylphenol	ND		1700	UG/KG	8270	12/26/2008 14:57	
4-Bromophenyl phenyl ether	ND		900	UG/KG	8270	12/26/2008 14:57	
4-Chloro-3-methylphenol	ND		900	UG/KG	8270	12/26/2008 14:57	
4-Chloroaniline	ND		900	UG/KG	8270	12/26/2008 14:57	
4-Chlorophenyl phenyl ether	ND		900	UG/KG	8270	12/26/2008 14:57	
4-Methylphenol	ND		900	UG/KG	8270	12/26/2008 14:57	
4-Nitroaniline	ND		1700	UG/KG	8270	12/26/2008 14:57	
4-Nitrophenol	ND		1700	UG/KG	8270	12/26/2008 14:57	
Acenaphthene	ND		900	UG/KG	8270	12/26/2008 14:57	
Acenaphthylene	240	J	900	UG/KG	8270	12/26/2008 14:57	
Acetophenone	ND		900	UG/KG	8270	12/26/2008 14:57	
Anthracene	94	J	900	UG/KG	8270	12/26/2008 14:57	
Atrazine	ND		900	UG/KG	8270	12/26/2008 14:57	
Benzaldehyde	ND		900	UG/KG	8270	12/26/2008 14:57	
Benzo(a)anthracene	590	J	900	UG/KG	8270	12/26/2008 14:57	
Benzo(a)pyrene	690	J	900	UG/KG	8270	12/26/2008 14:57	
Benzo(b)fluoranthene	760	J	900	UG/KG	8270	12/26/2008 14:57	
Benzo(ghi)perylene	650	J	900	UG/KG	8270	12/26/2008 14:57	
Benzo(k)fluoranthene	300	J	900	UG/KG	8270	12/26/2008 14:57	
Biphenyl	ND		900	UG/KG	8270	12/26/2008 14:57	
Bis(2-chloroethoxy) methane	ND		900	UG/KG	8270	12/26/2008 14:57	
Bis(2-chloroethyl) ether	ND		900	UG/KG	8270	12/26/2008 14:57	
Bis(2-ethylhexyl) phthalate	1300		900	UG/KG	8270	12/26/2008 14:57	
Butyl benzyl phthalate	ND		900	UG/KG	8270	12/26/2008 14:57	
Caprolactam	ND		900	UG/KG	8270	12/26/2008 14:57	
Carbazole	ND		900	UG/KG	8270	12/26/2008 14:57	
Chrysene	540	J	900	UG/KG	8270	12/26/2008 14:57	
Di-n-butyl phthalate	ND	-	900	UG/KG	8270 8270	12/26/2008 14:57	
Di-n-octyl phthalate	ND		900	UG/KG	8270	12/26/2008 14:57	
Dibenzo(a,h)anthracene	140	J	900	UG/KG	8270 8270	12/26/2008 14:57	
Dibenzofuran	ND	9	900	UG/KG	8270 8270	12/26/2008 14:57	
Diethyl phthalate	ND		900	UG/KG	8270	12/26/2008 14:57	
Dimethyl phthalate	ND		900	UG/KG	8270	12/26/2008 14:57	

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 2 Rept: AN1178

Sample ID: RF-TP-01A Lab Sample ID: A8F96101 Date Collected: 12/16/2008 Time Collected: 08:50 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	-
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	<u>Analys</u> 1
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	780	J	900	UG/KG	8270	12/26/2008 14:57	ERK
Fluorene	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
Hexachlorobenzene	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
Hexachlorobutadiene	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
Hexachlorocyclopentadiene	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
Hexachloroethane	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
Indeno(1,2,3-cd)pyrene	550	J	900	UG/KG	8270	12/26/2008 14:57	ERK
Isophorone	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
N-Nitroso-Di-n-propylamine	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
N-nitrosodiphenylamine	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
Naphthalene	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
Nitrobenzene	ND		900	UG/KG	8270	12/26/2008 14:57	ERK
Pentachlorophenol	ND	Section 1	1700	UG/KG	8270	12/26/2008 14:57	ERK
Phenanthrene	290	J	900	UG/KG	8270	12/26/2008 14:57	ERK
Phenol	ND		900	UG/KG	8270	12/26/2008 14:57	' ERK
Pyrene	760	j	900	UG/KG	8270	12/26/2008 14:57	ERK
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS	•						
Aroclor 1016	ND		18	UG/KG	8082	12/22/2008 14:02	DW
Aroclor 1221	ND		18	UG/KG	8082	12/22/2008 14:02	DW
Aroclor 1232	ND		18	UG/KG	8082	12/22/2008 14:02	DW
Aroclor 1242	ND		18	UG/KG	8082	12/22/2008 14:02	
Aroclor 1248	10	J	18	UG/KG	8082	12/22/2008 14:02	
Aroclor 1254	ND		18	UG/KG	8082	12/22/2008 14:02	
Aroclor 1260	35		18	UG/KG	8082	12/22/2008 14:02	
Metals Analysis	·						
Aluminum - Total	4620	EN*	10.5	MG/KG	6010	12/19/2008 14:23	TWS
Antimony - Total	ND	N*	15.7	MG/KG	6010	12/19/2008 14:23	
Arsenic - Total	4.2	*	2.1	MG/KG	6010	12/19/2008 14:23	TWS
Barium - Total	52.8	E*	0.52	MG/KG	6010	12/19/2008 14:23	
Beryllium - Total	0.24		0.21	MG/KG	6010	12/19/2008 14:23	
Cadmium - Total	ND		0.21	MG/KG	6010	12/19/2008 14:23	TWS
Calcium - Total	37700	E*	52.4	MG/KG	6010	12/19/2008 14:23	
Chromium - Total	7.1	Е	0.52	MG/KG	6010	12/19/2008 14:23	
Cobalt - Total	3.3	E	0.52	MG/KG	6010	12/19/2008 14:23	
Copper - Total	66.7	EN*	1.0	MG/KG	6010	12/19/2008 14:23	
Iron - Total	12300	E*	10.5	MG/KG	6010	12/19/2008 14:23	
Lead - Total	15.0	N	1.0	MG/KG	6010	12/19/2008 14:23	
Magnesium - Total	4630	E*	20.9	MG/KG	6010	12/19/2008 14:23	
Manganese - Total	533	E*	0.21	MG/KG	6010	12/19/2008 14:23	
Mercury - Total	0.032		0.020	MG/KG	7471	12/19/2008 15:52	
Nickel - Total	9.6	EN*	0.52	MG/KG	6010	12/19/2008 14:23	
Potassium - Total	567	EN	31.4	MG/KG	6010	12/19/2008 14:23	
Selenium - Total	ND		4.2	MG/KG	6010	12/19/2008 14:23	
Silver - Total	ND		0.52	MG/KG	6010	12/19/2008 14:23	
Sodium - Total	ND	*	147	MG/KG	6010	12/19/2008 14:23	
Thallium - Total	ND	N	6.3	MG/KG	6010	12/19/2008 14:23	
Vanadium - Total	6.3	E	0.52	MG/KG	6010	12/19/2008 14:23	

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Randolph Foundry: Site #E905030

Sample ID: RF-TP-01A Lab Sample ID: A8F96101 Date Collected: 12/16/2008 Time Collected: 08:50

Date Received: 12/16/2008 Project No: NY5A946109

Client No: L10190

Page:

Rept: AN1178

				Detection	Date/Time			
	Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
Metals Analysis Zinc - Total	**	73.2	EN*	2.1	MG/KG	6010	12/19/2008 14:23	TWS

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 Page: 4 Rept: AN1178

Sample ID: RF-TP-01B Lab Sample ID: A8F96102 Date Collected: 12/16/2008 Time Collected: 09:10 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND ***	**. * *	5	UG/KG	8260	12/19/2008 03:42	CDC
1,1,2,2-Tetrachloroethane	ND		5	UG/KG	8260	12/19/2008 03:42	CDC
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5	UG/KG	8260	12/19/2008 03:42	CDC
1,1,2-Trichloroethane	ND		5	UG/KG	8260	12/19/2008 03:42	CDC
1,1-Dichloroethane	ND		5	UG/KG	8260	12/19/2008 03:42	
1,1-Dichloroethene	ND		5	UG/KG	8260	12/19/2008 03:42	
1,2,4-Trichlorobenzene	ND -		5	UG/KG	8260	12/19/2008 03:42	
1,2-Dibromo-3-chloropropane	ND		5	UG/KG	8260	12/19/2008 03:42	
1,2-Dibromoethane	ND		5	UG/KG	8260	12/19/2008 03:42	
1,2-Dichlorobenzene	ND		. 5	UG/KG	8260	12/19/2008 03:42	
1,2-Dichloroethane	ND		5	UG/KG	8260	12/19/2008 03:42	
1,2-Dichloropropane	ND		5	UG/KG	8260	12/19/2008 03:42	
1,3-Dichlorobenzene	ND.		5 ^	UG/KG	8260	12/19/2008 03:42	
1,4-Dichlorobenzene	ND		. 5	UG/KG	8260	12/19/2008 03:42	
2-Butanone	ND		27	UG/KG	8260	12/19/2008 03:42	
2-Hexanone	ND		27	UG/KG	8260	12/19/2008 03:42	
4-Methyl-2-pentanone	ND		27	UG/KG	8260	12/19/2008 03:42	
Acetone	ND		27	UG/KG	8260	12/19/2008 03:42	
Benzene	ND		5	UG/KG	8260	12/19/2008 03:42	
Bromodichloromethane	ND		5	UG/KG	8260	12/19/2008 03:42	
Bromoform	ND		5	UG/KG	8260	12/19/2008 03:42	
Bromomethane	ND		5	UG/KG	8260	12/19/2008 03:42	
Carbon Disulfide	ND		5	UG/KG	8260	12/19/2008 03:42	
Carbon Tetrachloride	ND		5	UG/KG	8260	12/19/2008 03:42	
Chlorobenzene	ND:		5	UG/KG	8260	12/19/2008 03:42	
Chloroethane	ND		5	UG/KG	8260	12/19/2008 03:42	
Chloroform	ND		5	UG/KG	8260	12/19/2008 03:42	
Chloromethane	ND		5	UG/KG	8260	12/19/2008 03:42	
cis-1,2-Dichloroethene	ND		5	UG/KG	8260	12/19/2008 03:42	
cis-1,3-Dichloropropene	ND		5	UG/KG	8260	12/19/2008 03:42	
Cyclohexane	ND		5	UG/KG	8260	12/19/2008 03:42	
Dibromochloromethane	ND		5	UG/KG	8260	12/19/2008 03:42	
Dichlorodifluoromethane	ND		5	UG/KG	8260	12/19/2008 03:42	
Ethylbenzene	ND		5	UG/KG	8260	12/19/2008 03:42	
Isopropylbenzene	ND		5	UG/KG	8260	12/19/2008 03:42	
Methyl acetate	ND		5	UG/KG	8260	12/19/2008 03:42	
Methyl-t-Butyl Ether (MTBE)	ND		5	UG/KG	8260	12/19/2008 03:42	
Methylcyclohexane	ND		5	UG/KG	8260	12/19/2008 03:42	
Methylene chloride	13	В	5	UG/KG	8260	12/19/2008 03:42	
Styrene	ND	ь	5	UG/KG	8260	12/19/2008 03:42	
Tetrachloroethene	ND		5		8260		
Toluene	ND ND		. 5	UG/KG		12/19/2008 03:42	
Total Xylenes	ND ND		16	UG/KG	8260 8260	12/19/2008 03:42 12/19/2008 03:42	
trans-1,2-Dichloroethene	ND ND		16 5	UG/KG	8260 8260		
trans-1,3-Dichloropropene	ND ND		5	UG/KG	8260 8260	12/19/2008 03:42	
Trichloroethene				UG/KG	8260 8260	12/19/2008 03:42	
Trichlorofluoromethane	ND ND		5	UG/KG	8260 8260	12/19/2008 03:42	
Vinyl chloride	ND ND		5 11	UG/KG UG/KG	8260 8260	12/19/2008 03:42 12/19/2008 03:42	

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 5 Rept: AN1178

Sample ID: RF-TP-01B Lab Sample ID: A8F96102 Date Collected: 12/16/2008 Time Collected: 09:10 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND	÷	190	UG/KG	8270	12/26/2008 15:20	ERK
2,4,5-Trichlorophenol	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
2,4,6-Trichlorophenol	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
2,4-Dichtorophenol	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
2,4-Dimethylphenol	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
2,4-Dinitrophenol	ND		370	UG/KG	8270	12/26/2008 15:20	ERK
2,4-Dinitrotoluene	ND .		190	UG/KG	8270	12/26/2008 15:20	ERK
2,6-Dinitrotoluene	ND .		190	UG/KG	8270	12/26/2008 15:20	ERK
2-Chloronaphthalene	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
2-Chlorophenol	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
2-Methylnaphthalene	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
2-Methylphenol	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
2-Nitroaniline	ND		370	UG/KG	8270	12/26/2008 15:20	ERK
2-Nitrophenol	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
3,3'-Dichlorobenzidine	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
3-Nitroaniline	ND		370	UG/KG	8270	12/26/2008 15:20	ERK
4,6-Dinitro-2-methylphenol	ND		370	UG/KG	8270	12/26/2008 15:20	ERK
4-Bromophenyl phenyl ether	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
4-Chloro-3-methylphenol	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
4-Chloroaniline	77	J	190	UG/KG	8270	12/26/2008 15:20	ERK
4-Chlorophenyl phenyl ether	ND	Ū	190	UG/KG	8270	12/26/2008 15:20	ERK
4-Methylphenol	ND		190	UG/KG	8270 8270	12/26/2008 15:20	
4-Nitroaniline	ND		370	UG/KG	8270	12/26/2008 15:20	ERK
4-Nitrophenol	ND		370	UG/KG	8270	12/26/2008 15:20	ERK
Acenaphthene	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Acenaphthylene	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Acetophenone	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Anthracene	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Atrazine	ND		190	UG/KG	8270 8270	12/26/2008 15:20	ERK
Benzaldehyde	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Benzo(a)anthracene	ND		190	UG/KG	8270	•	ERK
Benzo(a)pyrene	10	J	190	UG/KG	8270	12/26/2008 15:20 12/26/2008 15:20	ERK
Benzo(b)fluoranthene	ND	u	190	UG/KG	8270	12/26/2008 15:20	ERK
Benzo(ghi)perylene	ND		190	UG/KG	8270		ERK
Benzo(k)fluoranthene	ND		190			12/26/2008 15:20	ERK
Biphenyl	ND			UG/KG	8270	12/26/2008 15:20	ERK
Bis(2-chloroethoxy) methane	ND ND		190	UG/KG	8270	12/26/2008 15:20	ERK
•	ND ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Bis(2-chloroethyl) ether Bis(2-ethylhexyl) phthalate			190	UG/KG	8270	12/26/2008 15:20	ERK
Butyl benzyl phthalate	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
· · · · · · · · · · · · · · · · · · ·	ND ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Caprolactam	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Carbazole	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Chrysene	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Di-n-butyl phthalate	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Di-n-octyl phthalate	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Dibenzo(a,h)anthracene	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Dibenzofuran	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Diethyl phthalate	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Dimethyl phthalate	ND		190	UG/KG	8270	12/26/2008 15:20	ERK

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 6 Rept: AN1178

TestAmerica

Sample ID: RF-TP-01B Lab Sample ID: A8F96102 Date Collected: 12/16/2008 Time Collected: 09:10 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	-
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analysi
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	ND		190	UG/KG	8270	~12/26/2008. 15 : 20	ERK :
Fluorene	ND		190	UG/KG	8270	12/26/2008 15:20) ERK
Hexachlorobenzene	ND		190	UG/KG	8270	12/26/2008 15:20) ERK
Hexachlorobutadiene	ND		190	UG/KG	8270	12/26/2008 15:20) ERK
Hexachlorocyclopentadiene	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Hexachloroethane	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Indeno(1,2,3-cd)pyrene	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Isophorone	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
N-Nitroso-Di-n-propylamine	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
N-nitrosodiphenylamine	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Naphthalene	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Nitrobenzene	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Pentachlorophenol	ND	* **	370	UG/KG	8270	12/26/2008 15:20	ERK
Phenanthrene	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Phenol	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
Pyrene	ND		190	UG/KG	8270	12/26/2008 15:20	ERK
	•						
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		19	UG/KG	8082	12/22/2008 14:21	DW
Aroclor 1221	ND		19	UG/KG	8082	12/22/2008 14:21	
Aroclor 1232	ND		19	UG/KG	8082	12/22/2008 14:21	
Aroclor 1242	ND		19	UG/KG	8082	12/22/2008 14:21	
Aroclor 1248	ND		19	UG/KG	8082	12/22/2008 14:21	
Aroclor 1254	6.7	J	19	UG/KG	8082	12/22/2008 14:21	
Aroclor 1260	ND		19	UG/KG	8082	12/22/2008 14:21	
Metals Analysis				7.3		es electrical de la companya della companya de la companya della c	
Aluminum - Total	7800	EN*	12.2	MG/KG	6010	12/19/2008 14:28	TWS
Antimony - Total	ND	N*	18.3	MG/KG	6010	12/19/2008 14:28	
Arsenic - Total	4.9	*	2.4	MG/KG	6010	12/19/2008 14:28	
Barium - Total	57.3	E*	0.61	MG/KG	6010	12/19/2008 14:28	
Beryllium - Total	ND	-	0.24	MG/KG	6010	12/19/2008 14:28	
Cadmium - Total	ND		0.24	MG/KG	6010	12/19/2008 14:28	
Calcium - Total	746	E*	60.9	MG/KG	6010	12/19/2008 14:28	
Chromium - Total	8.8	E	0.61	MG/KG	6010	12/19/2008 14:28	
Cobalt - Total	6.3	E	0.61	MG/KG	6010	12/19/2008 14:28	
Copper - Total	24.0	EN*	1.2	MG/KG	6010	12/19/2008 14:28	
Iron - Total	14900	E*	12.2	MG/KG	6010	12/19/2008 14:28	
Lead - Total	15.2	_	1.2		6010		
Magnesium - Total	2400	N E*		MG/KG	6010	12/19/2008 14:28	
Manganese - Total	186	E*	24.4 0.24	MG/KG	6010	12/19/2008 14:28	
		E"		MG/KG		12/19/2008 14:28	
Mercury - Total	0.209	FN+	0.022	MG/KG	7471	12/19/2008 15:54	
Nickel - Total Potassium - Total	13.0	EN*	0.61	MG/KG	6010	12/19/2008 14:28	
Potassium - Total Selenîum - Total	659	EN	36.6	MG/KG	6010	12/19/2008 14:28	
	ND		4.9	MG/KG	6010	12/19/2008 14:28	
Silver - Total	ND	*	0.61	MG/KG	6010	12/19/2008 14:28	
Sodium - Total	ND		171	MG/KG	6010	12/19/2008 14:28	
Thallium - Total	ND	N	7.3	MG/KG	6010	12/19/2008 14:28	TWS

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Randolph Foundry: Site #E905030

Date Received: 12/16/2008

Project No: NY5A946109 Client No: L10190

Page:

Rept: AN1178

Site No:

Sample ID: RF-TP-01B Lab Sample ID: A8F96102 Date Collected: 12/16/2008 Time Collected: 09:10

				—Date/Time	ate/Time—				
	Parameter		Result	<u>Flag</u>	<u>Limīt</u>	Units	Method	Analyzed	Analyst
Metals Analysis Zinc - Total	New york	$(s_{i+1}, y_i, q_i) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n}$	62.7	EN* ···	2.4	MG/KG	6010	12/19/2008 14:28	3 TWS

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Randolph Foundry: Site #E905030

Sample ID: RF-TP-04A Lab Sample ID: A8F96103 Date Collected: 12/16/2008 Time Collected: 10:40

Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

Page:

Rept: AN1178

			Detection			——Date/Time——	A 1
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND '		380	UG/KG	8270	12/26/2008 15:43	ERK
2,4,5-Trichlorophenol	ND		380	UG/KG	8270	12/26/2008 15:43	ERK
2,4,6-Trichlorophenol	ND		380	UG/KG	8270	12/26/2008 15:43	ERK
2,4-Dichlorophenol	ND		380	UG/KG	8270	12/26/2008 15:43	ERK
2,4-Dimethylphenol	ND		380	UG/KG	8270	12/26/2008 15:43	ERK
2,4-Dinitrophenol	ND		750	UG/KG	8270	12/26/2008 15:43	ERK
2,4-Dinitrotoluene	ND		380	UG/KG	8270	12/26/2008 15:43	ERK
2,6-Dinitrotoluene	ND		380	UG/KG	8270	12/26/2008 15:43	ERK
2-Chloronaphthalene	ND		380	UG/KG	8270	12/26/2008 15:43	ERK
2-Chlorophenol	ND		380	UG/KG	8270	12/26/2008 15:43	ERK
2-Methylnaphthalene	260	J	380	UG/KG	8270	12/26/2008 15:43	ERK
2-Methylphenol	ND		380	UG/KG	8270	12/26/2008 15:43	ERK
2-Nitroaniline	ND	* *	750	UG/KG	8270	12/26/2008 15:43	
2-Nitrophenol	ND		380	UG/KG	8270	12/26/2008 15:43	
3,31-Dichlorobenzidine	ND		380	UG/KG	8270	12/26/2008 15:43	
3-Nitroaniline	ND		750	UG/KG	8270	12/26/2008 15:43	
4,6-Dinitro-2-methylphenol	ND		750	UG/KG	8270	12/26/2008 15:43	
4-Bromophenyl phenyl ether	ND		380	UG/KG	8270	12/26/2008 15:43	
4-Chloro-3-methylphenol	ND		380	UG/KG	8270	12/26/2008 15:43	
4-Chloroaniline	ND	•	380	UG/KG	8270	12/26/2008 15:43	
4-Chlorophenyl phenyl ether	ND		380	UG/KG	8270	12/26/2008 15:43	
4-Methylphenol	ND		380	UG/KG	8270	12/26/2008 15:43	
4-Nitroaniline	ND		750	UG/KG	8270	12/26/2008 15:43	
4-Nitrophenol	ND		750	UG/KG	8270	12/26/2008 15:43	
Acenaphthene	52	J	380	UG/KG	8270	12/26/2008 15:43	
Acenaphthylene	100	J	380	UG/KG	8270	12/26/2008 15:43	
Acetophenone	ND	_	380	UG/KG	8270	12/26/2008 15:43	
Anthracene	350	J	380	UG/KG	8270	12/26/2008 15:43	
Atrazine	ND	•	380	UG/KG	8270	12/26/2008 15:43	
Benzaldehyde	ND		380	UG/KG	8270	12/26/2008 15:43	
Benzo(a)anthracene	1500		380	UG/KG	8270	12/26/2008 15:43	
Benzo(a)pyrene	1200		380	UG/KG	8270	12/26/2008 15:43	
Benzo(b)fluoranthene	1700		380	UG/KG	8270	12/26/2008 15:43	
Benzo(ghi)perylene	960		380	UG/KG	8270	12/26/2008 15:43	
Benzo(k)fluoranthene	520		380	UG/KG	8270	12/26/2008 15:43	
Biphenyl	54	J	380	UG/KG	8270	12/26/2008 15:43	
Bis(2-chloroethoxy) methane	ND	-	380	UG/KG	8270	12/26/2008 15:43	
Bis(2-chloroethyl) ether	ND		380	UG/KG	8270	12/26/2008 15:43	
Bis(2-ethylhexyl) phthalate	1500		380	UG/KG	8270	12/26/2008 15:43	
Butyl benzyl phthalate	ND		380	UG/KG	8270	12/26/2008 15:43	
Caprolactam	ND		380	UG/KG	8270	12/26/2008 15:43	
Carbazole	240	J	380	UG/KG	8270 8270	12/26/2008 15:43	
Chrysene	1500	v	380	UG/KG	8270	12/26/2008 15:43	
Di-n-butyl phthalate	ND		380	UG/KG	8270	12/26/2008 15:43	
Di-n-octyl phthalate	54	j	380	UG/KG	8270		
Dibenzo(a,h)anthracene	230	J	380	UG/KG	8270	12/26/2008 15:43	
Dibenzofuran	230 110	J	380	UG/KG	8270 8270	12/26/2008 15:43	
Diethyl phthalate	ND	u	380 380	UG/KG UG/KG		12/26/2008 15:43	
Promy's phonacase	NU		200	UU/KU	8270	12/26/2008 15:43	ERK

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

Page:

Rept: AN1178

Sample ID: RF-TP-04A Lab Sample ID: A8F96103 Date Collected: 12/16/2008 Time Collected: 10:40 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time			
Parameter	Result	<u>Flag</u>	Limit	Units_	Method	Analyzed	Analysi		
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS				•					
Fluoranthene	3000	** \$ **	380	UG/KG	8270	12/26/2008 15:43	ERK		
Fluorene	80	J	380	UG/KG	8270	12/26/2008 15:43	ERK		
Hexachlorobenzene	ND		380	UG/KG	8270	12/26/2008 15:43	ERK		
Hexachlorobutadiene	ND		380	UG/KG	8270	12/26/2008 15:43	ERK		
Hexachlorocyclopentadiene	ND		380	UG/KG	8270	12/26/2008 15:43	ERK		
Hexachloroethane	ND		380	UG/KG	8270	12/26/2008 15:43	ERK		
Indeno(1,2,3-cd)pyrene	810		380	UG/KG	8270	12/26/2008 15:43			
Isophorone	ND		380	UG/KG	8270	12/26/2008 15:43	ERK		
N-Nitroso-Di-n-propylamine	ND		380	UG/KG	8270	12/26/2008 15:43	ERK		
N-nitrosodiphenylamine	31	J	380	UG/KG	8270	12/26/2008 15:43	ERK		
Naphthalene	280	J	380	UG/KG	8270	12/26/2008 15:43	ERK		
Nitrobenzene	ND		380	UG/KG	8270	12/26/2008 15:43	ERK		
Pentachlorophenol	ND		750	UG/KG	8270	12/26/2008 15:43			
Phenanthrene	1800		380	UG/KG	8270	12/26/2008 15:43			
Phenol	ND		380	UG/KG	8270	12/26/2008 15:43			
Pyrene	2500		380	UG/KG	8270	12/26/2008 15:43			
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS									
Aroclor 1016	ND		18	UG/KG	8082	12/22/2008 14:41	DW		
Aroclor 1221	ND		18	UG/KG	8082	12/22/2008 14:41	DW		
Aroclor 1232	ND		18	UG/KG	8082	12/22/2008 14:41	DW		
Aroclor 1242	120		18	UG/KG	8082	12/22/2008 14:41	DW		
Aroclor 1248	ND		18	UG/KG	8082	12/22/2008 14:41	DW		
Aroclor 1254	40		18	UG/KG	8082	12/22/2008 14:41	DW		
Aroclor 1260	100		18	UG/KG	8082	12/22/2008 14:41	DW		
Metals Analysis			`= -	- 1					
Aluminum - Total	4810	EN*	10.3	MG/KG	6010	12/19/2008 14:33	TWS		
Antimony - Total	ND	N*	15.5	MG/KG	6010	12/19/2008 14:33	TWS		
Arsenic - Total	7.2	*	2.1	MG/KG	6010	12/19/2008 14:33	TWS		
Barium - Total	64.3	E*	0.52	MG/KG	6010	12/19/2008 14:33	TWS		
Beryllium - Total	0.23		0.21	MG/KG	6010	12/19/2008 14:33	TWS		
Cadmium - Total	0.42		0.21	MG/KG	6010	12/19/2008 14:33	TWS		
Calcium - Total	13900	E*	51.6	MG/KG	6010	12/19/2008 14:33	TWS		
Chromium - Total	22.7	E	0.52	MG/KG	6010	12/19/2008 14:33	TWS		
Cobalt - Total	3.5	E	0.52	MG/KG	6010	12/19/2008 14:33	T₩S		
Copper - Total	96.7	EN*	1.0	MG/KG	6010	12/19/2008 14:33	TWS		
Iron - Total	21200	E*	10.3	MG/KG	6010	12/19/2008 14:33	TWS		
Lead - Total	65.4	N	1.0	MG/KG	6010	12/19/2008 14:33	TWS		
Magnesium - Total	2300	E*	20.7	MG/KG	6010	12/19/2008 14:33	TWS		
Manganese - Total	562	E*	0.21	MG/KG	6010	12/19/2008 14:33	TWS		
Mercury - Total	0.250		0.023	MG/KG	7471	12/19/2008 15:56	MM		
Nickel - Total	18.2	EN*	0.52	MG/KG	6010	12/19/2008 14:33	TWS		
Potassium - Total	488	EN	31.0	MG/KG	6010	12/19/2008 14:33	TWS		
Selenium - Total	ND		4.1	MG/KG	6010	12/19/2008 14:33	TWS		
Silver - Total	ND		0.52	MG/KG	6010	12/19/2008 14:33	TWS		
Sodium - Total	ND	*	145	MG/KG	6010	12/19/2008 14:33	TWS		
Thallium - Total	ND	N	6.2	MG/KG	6010	12/19/2008 14:33	TWS		
Vanadium - Total	8.2	E	0.52	MG/KG	6010	12/19/2008 14:33	TWS		

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 Page:

Rept: AN1178

Sample ID: RF-TP-04A Lab Sample ID: A8F96103 Date Collected: 12/16/2008

Zinc - Total

Date Received: 12/16/2008

Project No: NY5A946109 Client No: L10190

12/19/2008 14:33

Site No:

6010

MG/KG

Time Collected: 10:40 Detection —Date/Time-Result Parameter Flag Limit Units Method Analyzed <u>Analyst</u> Metals Analysis

EN*

2.1

180

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 11 Rept: AN1178

Sample ID: RF-TP-04B Lab Sample ID: A8F96104 Date Collected: 12/16/2008 Time Collected: 10:50 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

·			Detection			Date/Time	
Parameter F	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES				• .			
1,1,1-Trichloroethane	ND.		5 H	UG/KG	# 826 0	12/19/2008 04:08	CDC
1,1,2,2-Tetrachloroethane	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5	UG/KG	8260	12/19/2008 04:08	
1,1,2-Trichloroethane	ND		5	UG/KG	8260	12/19/2008 04:08	
1,1-Dichloroethane	ND		5	UG/KG	8260	12/19/2008 04:08	
1,1-Dichloroethene	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
1,2,4-Trichlorobenzene	ND		5 .	UG/KG	8260	12/19/2008 04:08	
1,2-Dibromo-3-chloropropane	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
1,2-Dibromoethane	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
1,2-Dichlorobenzene	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
1,2-Dichloroethane	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
1,2-Dichloropropane	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
1,3-Dichlorobenzene	ND	* - F.45.*	5	UG/KG	8260	12/19/2008 04:08	CDC
1,4-Dichlorobenzene	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
2-Butanone	ND		26	UG/KG	8260	12/19/2008 04:08	CDC
2-Hexanone	ND		26	UG/KG	8260	12/19/2008 04:08	
4-Methyl-2-pentanone	ND		26	UG/KG	8260	12/19/2008 04:08	CDC
Acetone	ND		26	UG/KG	8260	12/19/2008 04:08	CDC
Benzene	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Bromodichloromethane	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Bromoform	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Bromomethane	ND		. 5	UG/KG	8260	12/19/2008 04:08	CDC
Carbon Disulfide	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Carbon Tetrachloride	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Chlorobenzene	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Chloroethane	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Chloroform	ND	* * * * *	5	UG/KG	8260	12/19/2008 04:08	CDC
Chloromethane	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
cis-1,2-Dichloroethene	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
cis-1,3-Dichloropropene	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Cyclohexane	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Dibromochloromethane	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Dichlorodifluoromethane	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Ethylbenzene	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Isopropylbenzene	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Methyl acetate	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Methyl-t-Butyl Ether (MTBE)	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Methylcyclohexane	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Methylene chloride	21	В	5	UG/KG	8260	12/19/2008 04:08	CDC
Styrene	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Tetrachloroethene	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Toluene	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Total Xylenes	ND		16	UG/KG	8260	12/19/2008 04:08	CDC
trans-1,2-Dichloroethene	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
trans-1,3-Dichloropropene	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Trichloroethene	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Trichlorofluoromethane	ND		5	UG/KG	8260	12/19/2008 04:08	CDC
Vinyl chloride	ND ·		10	UG/KG	8260	12/19/2008 04:08	CDC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 Page: Rept: AN1178

12

Sample ID: RF-TP-04B Lab Sample ID: A8F96104 Date Collected: 12/16/2008

Time Collected: 10:50

Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		190	UG/KG	8270	12/26/2008 16:06	ERK
2,4,5-Trichlorophenol	ND		190	UG/KG	8270	12/26/2008 16:06	
2,4,6-Trichlorophenol	ND		190	UG/KG	8270	12/26/2008 16:06	
2,4-Dichlorophenol	ND		190	UG/KG	8270	12/26/2008 16:06	
2,4-Dimethylphenol	ND		190	UG/KG	8270	12/26/2008 16:06	
2,4-Dinitrophenol	ND		360	UG/KG	8270	12/26/2008 16:06	
2,4-Dinitrotoluene	ND		190	UG/KG	8270	12/26/2008 16:06	
2,6-Dinitrotoluene	ND		190	UG/KG	8270	12/26/2008 16:06	
2-Chloronaphthalene	ND		190	UG/KG	8270	12/26/2008 16:06	
2-Chlorophenol	ND ·		190	UG/KG	8270	12/26/2008 16:06	
2-Methylnaphthalene	24	J	190	UG/KG	8270	12/26/2008 16:06	
2-Methylphenol	ND		190	UG/KG	8270	12/26/2008 16:06	
2-Nitroaniline	ND -	(4: '	360	UG/KG	8270	12/26/2008 16:06	
2-Nitrophenol	ND		190	UG/KG	8270	12/26/2008 16:06	
3,3'-Dichlorobenzidine	ND .		190	UG/KG	8270	12/26/2008 16:06	
3-Nitroaniline	ND		360	UG/KG	8270	12/26/2008 16:06	
4,6-Dinitro-2-methylphenol	ND		360	UG/KG	8270	12/26/2008 16:06	
4-Bromophenyl phenyl ether	ND		190	UG/KG	8270	12/26/2008 16:06	
4-Chloro-3-methylphenol	ND		190	UG/KG	8270	12/26/2008 16:06	
4-Chloroaniline	ND		190	UG/KG	8270	12/26/2008 16:06	
4-Chlorophenyl phenyl ether	ND		190	UG/KG	8270	12/26/2008 16:06	
4-Methylphenol	ND		190	UG/KG	8270	12/26/2008 16:06	
4-Nitroaniline	ND		360	UG/KG	8270	12/26/2008 16:06	
4-Nitrophenol	ND		360	UG/KG	8270	12/26/2008 16:06	
Acenaphthene	10	J	190	UG/KG	8270	12/26/2008 16:06	
Acenaphthylene	47	J	190	UG/KG	8270	12/26/2008 16:06	ERK
Acetophenone	ND	•	190	UG/KG	8270	12/26/2008 16:06	
Anthracene	60	j	190	UG/KG	8270	12/26/2008 16:06	ERK
Atrazine	ND	-	190	UG/KG	8270	12/26/2008 16:06	ERK
Benza i dehyde	ND		190	UG/KG	8270	12/26/2008 16:06	ERK
Benzo(a)anthracene	190		190	UG/KG	8270	12/26/2008 16:06	
Benzo(a)pyrene	160	J	190	UG/KG	8270	12/26/2008 16:06	
Benzo(b)fluoranthene	200	•	190	UG/KG	8270	12/26/2008 16:06	ERK
Benzo(ghi)perylene	120	.1	190	UG/KG	8270	12/26/2008 16:06	ERK
Benzo(k)fluoranthene	82	J	190	UG/KG	8270	12/26/2008 16:06	ERK
Biphenyl	ND	·	190	UG/KG	8270	12/26/2008 16:06	ERK
Bis(2-chloroethoxy) methane	ND		190	UG/KG	8270	12/26/2008 16:06	
Bis(2-chloroethyl) ether	ND	-	190	UG/KG	8270	12/26/2008 16:06	
Bis(2-ethylhexyl) phthalate	ND		190	UG/KG	8270	12/26/2008 16:06	
Butyl benzyl phthalate	ND		190	UG/KG	8270	12/26/2008 16:06	ERK
Caprolactam	ND		190	UG/KG	8270	12/26/2008 16:06	ERK
		4					ERK
Carbazole	40 170	J	190 100	UG/KG	8270 8270	12/26/2008 16:06	ERK
Chrysene		J	190 100	UG/KG	8270	12/26/2008 16:06	ERK
Di-n-butyl phthalate	ND		190	UG/KG	8270	12/26/2008 16:06	ERK
Di-n-octyl phthalate	ND ZO	,	190 100	UG/KG	8270	12/26/2008 16:06	ERK
Dibenzo(a,h)anthracene	39	J	190 100	UG/KG	8270	12/26/2008 16:06	ERK
Dibenzofuran	18	J	190	UG/KG	8270	12/26/2008 16:06	ERK
Diethyl phthalate	ND		190	UG/KG	8270	12/26/2008 16:06	ERK

Sample ID: RF-TP-04B

Lab Sample ID: A8F96104

Date Collected: 12/16/2008

Time Collected: 10:50

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Randolph Foundry: Site #E905030

Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

Page:

Rept: AN1178

13

			Detection			——Date/Time——	
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	420	11 12-	190	UG/KG	8270	12/26/2008 16:06	
Fluorene	34	J	190	UG/KG	8270	12/26/2008 16:06	
Hexachlorobenzene	ND		190	UG/KG	8270	12/26/2008 16:06	ERK
Hexachlorobutadiene	ND		190	UG/KG	8270	12/26/2008 16:06	
Hexachlorocyclopentadiene	ND		190	UG/KG	8270	12/26/2008 16:06	
Hexachloroethane	ND		190	UG/KG	8270	12/26/2008 16:06	
Indeno(1,2,3-cd)pyrene	110	J	190	UG/KG	8270	12/26/2008 16:06	
Isophorone	ND		190	UG/KG	8270	12/26/2008 16:06	
N-Nitroso-Di-n-propylamine	ND		190	UG/KG	8270	12/26/2008 16:06	ERK
N-nitrosodiphenylamine	ND		190	UG/KG	8270	12/26/2008 16:06	ERK
Naphtha l ene	17	J	190	UG/KG	8270	12/26/2008 16:06	ERK
Nitrobenzene	ND		190	UG/KG	8270	12/26/2008 16:06	ERK
Pentachlorophenol	ND		360	UG/KG	8270	12/26/2008 16:06	ERK
Phenanthrene	290		190	UG/KG	8270	12/26/2008 16:06	ERK
Phenol	ND		190	UG/KG	8270	12/26/2008 16:06	ERK
Pyrene	300		190	UG/KG	8270	12/26/2008 16:06	ERK
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	- ND		18	UG/KG	8082	12/22/2008 15:01	DW
Aroclor 1221	ND		18	UG/KG	8082	12/22/2008 15:01	D₩
Aroctor 1232	ND		18	UG/KG	8082	12/22/2008 15:01	D₩
Aroctor 1242	ND		18	UG/KG	8082	12/22/2008 15:01	DW
Aroclor 1248	ND		18	UG/KG	8082	12/22/2008 15:01	D₩
Aroclor 1254	ND		18	UG/KG	8082	12/22/2008 15:01	DW
Aroclor 1260	ND		18	UG/KG	8082	12/22/2008 15:01	DW
Metals Analysis			•			en en en en en en en en en en en en en e	
Aluminum - Total	4650	EN*	10.6	MG/KG	6010	12/19/2008 14:38	TWS
Antimony - Total	ND	N*	15.9	MG/KG	6010	12/19/2008 14:38	TWS
Arsenic - Total	9.2	*	2.1	MG/KG	6010	12/19/2008 14:38	TWS
Barium - Total	68.2	E*	0.53	MG/KG	6010	12/19/2008 14:38	TWS
Beryllium - Total	0.37		0.21	MG/KG	6010	12/19/2008 14:38	TWS
Cadmium - Total	ND		0.21	MG/KG	6010	12/19/2008 14:38	TWS
Calcium - Total	12900	E*	53.0	MG/KG	6010	12/19/2008 14:38	TWS
Chromium - Total	5.6	E	0.53	MG/KG	6010	12/19/2008 14:38	TWS
Cobalt - Total	5.7	E	0.53	MG/KG	6010	12/19/2008 14:38	TWS
Copper - Total	81.4	EN*	1.1	MG/KG	6010	12/19/2008 14:38	TWS
Iron - Total	16000	E*	10.6	MG/KG	6010	12/19/2008 14:38	TWS
Lead - Total	84.0	N	1.1	MG/KG	6010	12/19/2008 14:38	TWS
Magnesium - Total	3730	E*	21.2	MG/KG	6010	12/19/2008 14:38	TWS
Manganese - Total	553	E*	0.21	MG/KG	6010	12/19/2008 14:38	TWS
Mercury - Total	0.052		0.022	MG/KG	7471	12/19/2008 15:57	MM
Nickel - Total	10.5	EN*	0.53	MG/KG	6010	12/19/2008 14:38	
Potassium - Total	615	EN	31.8	MG/KG	6010	12/19/2008 14:38	TWS
Selenium - Total	ND		4.2	MG/KG	6010	12/19/2008 14:38	
Silver - Total	ND		0.53	MG/KG	6010	12/19/2008 14:38	
Sodium - Total	ND	*	148	MG/KG	6010	12/19/2008 14:38	TWS
Thallium - Total	ND	N	6.4	MG/KG	6010	12/19/2008 14:38	
Vanadium - Total	8.2	E	0.53	MG/KG	6010	12/19/2008 14:38	TWS

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 14 Rept: AN1178

Sample ID: RF-TP-04B Lab Sample ID: A8F96104 Date Collected: 12/16/2008 Time Collected: 10:50

Date Received: 12/16/2008 Project No: NY5A946109

Client No: L10190

						~	Detec	tion			—Date/Time	
	Paramete	<u>r</u>			Result	Flag	<u>Lim</u>	ni t	<u>Units</u>	Method	Analyzed	Analyst
Metals Analysis Zinc - Total	in a neday	55K	* **		46.6	EN*	e in	2.1	MG/KG	6010	12/19/2008 14:38	TWS

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 15 Rept: AN1178

Sample ID: RF-TP-05A Lab Sample ID: A8F96105 Date Collected: 12/16/2008

Time Collected: 11:10

Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

•			Detection			——Date/Time——	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,21-Oxybis(1-Chloropropane)	THE ND :	5.14	180	UG/KG ~	8270	12/26/2008 16:29	ERK
2,4,5-Trichlorophenol	ND		180	UG/KG	8270	12/26/2008 16:29	ERK
2,4,6-Trichlorophenol	ND		180	UG/KG	8270	12/26/2008 16:29	ERK
2,4-Dichlorophenol	ND		180	UG/KG	8270	12/26/2008 16:29	
2,4-Dimethylphenol	ND		180	UG/KG	8270	12/26/2008 16:29	
2,4-Dinitrophenol	ND		3 50	UG/KG	8270	12/26/2008 16:29	
2,4-Dinitrotoluene	ND		180	UG/KG	8270	12/26/2008 16:29	
2,6-Dinitrotoluene	ND		180	UG/KG	8270	12/26/2008 16:29	
2-Chloronaphthalene	ND		180	UG/KG	8270	12/26/2008 16:29	
2-Chlorophenol	ND		180	UG/KG	8270	12/26/2008 16:29	
2-Methylnaphthalene	400		180	UG/KG	8270	12/26/2008 16:29	
2-Methylphenol	ND		180	UG/KG	8270	12/26/2008 16:29	
2-Nitroaniline	·· ND		350	UG/KG	8270	12/26/2008 16:29	
2-Nitrophenol	ND		180	UG/KG	8270	12/26/2008 16:29	
3,3'-Dichlorobenzidine	ND		180	UG/KG	8270	12/26/2008 16:29	
3-Nitroaniline	ND		350	UG/KG	8270	12/26/2008 16:29	
4,6-Dinitro-2-methylphenol	ND		350	UG/KG	8270	12/26/2008 16:29	
4-Bromophenyl phenyl ether	ND		180	UG/KG	8270	12/26/2008 16:29	
4-Chloro-3-methylphenol	ND		180	UG/KG	8270	12/26/2008 16:29	
4-Chloroaniline	ND		180	UG/KG	8270	12/26/2008 16:29	
4-Chlorophenyl phenyl ether	ND		180	UG/KG	8270	12/26/2008 16:29	
4-Methylphenol	ND		180	UG/KG	8270	12/26/2008 16:29	
4-Nitroaniline	ND		350	UG/KG	8270	12/26/2008 16:29	
4-Nitrophenol	ND		350	UG/KG	8270	12/26/2008 16:29	
Acenaphthene	340		180	UG/KG	8270	12/26/2008 16:29	
Acenaphthylene	400		180	UG/KG	8270	12/26/2008 16:29	ERK
Acetophenone	ND		180	UG/KG	8270	12/26/2008 16:29	
Anthracene	1100		180	UG/KG	8270	12/26/2008 16:29	
Atrazine	ND		180	UG/KG	8270	12/26/2008 16:29	ERK
Benzaldehyde	ND		180	UG/KG	8270	12/26/2008 16:29	ERK
Benzo(a)anthracene	2800		180	UG/KG	8270	12/26/2008 16:29	ERK
Benzo(a)pyrene	2300		180	UG/KG	8270	12/26/2008 16:29	ERK
Benzo(b)fluoranthene	2500		180	UG/KG	8270	12/26/2008 16:29	ERK
Benzo(ghi)perylene	1400		180	UG/KG	8270	12/26/2008 16:29	ERK
Benzo(k)fluoranthene	1200		180	UG/KG	8270	12/26/2008 16:29	ERK
Biphenyl	86	J	180	UG/KG	8270	12/26/2008 16:29	ERK
Bis(2-chloroethoxy) methane	ND	U	180	UG/KG	8270	12/26/2008 16:29	ERK
Bis(2-chloroethyl) ether	ND		180	UG/KG	8270	12/26/2008 16:29	
Bis(2-ethylhexyl) phthalate	680		180		8270		ERK
Butyl benzyl phthalate	ND		180	UG/KG	8270 8270	12/26/2008 16:29	ERK
Caprolactam	ND		180	UG/KG		12/26/2008 16:29	ERK
Carbazole				UG/KG	8270	12/26/2008 16:29	ERK
	460		180	UG/KG	8270	12/26/2008 16:29	ERK
Chrysene	2600		180	UG/KG	8270	12/26/2008 16:29	ERK
Di-n-butyl phthalate	ND .		180	UG/KG	8270	12/26/2008 16:29	ERK
Di-n-octyl phthalate	ND		180	UG/KG	8270	12/26/2008 16:29	ERK
Dibenzo(a,h)anthracene	370		180	UG/KG	8270	12/26/2008 16:29	ERK
Dibenzofuran	460		. 180	UG/KG	8270	12/26/2008 16:29	ERK
Diethyl phthalate	ND		180	UG/KG	8270	12/26/2008 16:29	ERK
Dimethyl phthalate	ND		180	UG/KG	8270	12/26/2008 16:29	ERK

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 16 Rept: AN1178

Sample ID: RF-TP-05A Lab Sample ID: A8F96105 Date Collected: 12/16/2008 Time Collected: 11:10 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS			-				
Fluoranthene	5300	**	180	UG/KG	8270 %	12/26/2008 16:29	ERK
Fluorene	680		180	UG/KG	8270	12/26/2008 16:29	ERK
Hexachlorobenzene	ND		180	UG/KG	8270	12/26/2008 16:29	ERK
Hexachlorobutadiene	ND		180	UG/KG	8270	12/26/2008 16:29	ERK
Hexachlorocyclopentadiene	ND		180	UG/KG	8270	12/26/2008 16:29	ERK
Hexachloroethane	ND		180	UG/KG	8270	12/26/2008 16:29	ERK
Indeno(1,2,3-cd)pyrene	1300		180	UG/KG	8270	12/26/2008 16:29	ERK
Isophorone	ND		180	UG/KG	8270	12/26/2008 16:29	ERK
N-Nitroso-Di-n-propylamine	ND		180	UG/KG	8270	12/26/2008 16:29	ERK
N-nitrosodiphenylamine	ND		180	UG/KG	8270	12/26/2008 16:29	ERK
Naphthalene	620		180	UG/KG	8270	12/26/2008 16:29	ERK
Nitrobenzene	ND		180	UG/KG	8270	12/26/2008 16:29	ERK
Pentachlorophenol	ND		350	UG/KG	8270	12/26/2008 16:29	ERK
Phenanthrene	4300		180	UG/KG	8270	12/26/2008 16:29	ERK
Phenol	ND		180	UG/KG	8270	12/26/2008 16:29	ERK
Pyrene	4800		180	UG/KG	8270	12/26/2008 16:29	ERK
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		18	UG/KG	8082	12/22/2008 15:20	DW
Aroclor 1221	ND		18	UG/KG	8082	12/22/2008 15:20	DW
Aroclor 1232	ND	•	18	UG/KG	8082	12/22/2008 15:20	DW
Aroclor 1242	46		18	UG/KG	8082	12/22/2008 15:20	DW
Aroclor 1248	ND		18	UG/KG	8082	12/22/2008 15:20	DW
Aroclor 1254	ND ·		18	UG/KG	8082	12/22/2008 15:20	DW
Aroclor 1260	29		18	UG/KG	8082	12/22/2008 15:20	DW
Metals Analysis			. •	: .			
Aluminum - Total	3590	EN*	10.2	MG/KG	6010	12/19/2008 14:43	TWS
Antimony - Total	ND	N*	15.3	MG/KG	6010	12/19/2008 14:43	TWS
Arsenic - Total	4.8	*	2.0	MG/KG	6010	12/19/2008 14:43	TWS
Barium - Total	59.1	E*	0.51	MG/KG	6010	12/19/2008 14:43	TWS
Beryllium - Total	0.27		0.20	MG/KG	6010	12/19/2008 14:43	TWS
Cadmium - Total	0.49		0.20	MG/KG	6010	12/19/2008 14:43	TWS
Calcium - Total	8790	E*	51.0	MG/KG	6010	12/19/2008 14:43	TWS
Chromium - Total	21.1	E	0.51	MG/KG	6010	12/19/2008 14:43	TWS
Cobalt - Total	3.1	E	0.51	MG/KG	6010	12/19/2008 14:43	TWS
Copper - Total	138	EN*	1.0	MG/KG	6010	12/19/2008 14:43	TWS
Iron - Total	21100	E*	10.2	MG/KG	6010	12/19/2008 14:43	TWS
Lead - Total	128	N	1.0	MG/KG	6010	12/19/2008 14:43	TWS
Magnesium - Total	1090	E*	20.4	MG/KG	6010	12/19/2008 14:43	TWS
Manganese - Total	338	E*	0.20	MG/KG	6010	12/19/2008 14:43	TWS
Mercury - Total	0.110	-	0.021	MG/KG	7471	12/19/2008 16:01	MM
Nickel - Total	24.0	EN*	0.51	MG/KG	6010	12/19/2008 14:43	TWS
Potassium - Total	543	EN	30.6	MG/KG	6010	12/19/2008 14:43	TWS
Selenium - Total	ND		4.1	MG/KG	6010	12/19/2008 14:43	TWS
Silver - Total	ND		0.51	MG/KG	6010	12/19/2008 14:43	TWS
Sodium - Total	ND	*	143	MG/KG	6010	12/19/2008 14:43	
Thallium - Total	ND	N	6.1	MG/KG	6010	12/19/2008 14:43	TWS
Vanadium - Total	7.7						TWS
variautum - (Vtal	1.1	E	0.51	MG/KG	6010	12/19/2008 14:43	TWS

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 17 Rept: AN1178

Sample ID: RF-TP-05A Lab Sample ID: A8F96105 Date Collected: 12/16/2008 Time Collected: 11:10 Date Received: 12/16/2008

Project No: NY5A946109 Client No: L10190

			<u> </u>	Detection				— Date/Time	
	Parameter	Result	<u>Flag</u>	Limit		Units	Method	Analyzed	<u>Analyst</u>
Metals Analysis Zinc - Total	and the grouper control of the group of grown	233	EN*	2.0	nga s	MG/KG	6010	12/19/2008 14:43	TWS

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Randolph Foundry: Site #E905030

Date Received: 12/16/2008 Project No: NY5A946109

> Client No: L10190 Site No:

Page:

Rept: AN1178

18

Sample ID: RF-TP-05B Lab Sample ID: A8F96106 Date Collected: 12/16/2008 Time Collected: 11:40

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

			Detection			Date/Time-	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analysi
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND	34	18 V 1 6 1 10 10 10 10 10 10 10 10 10 10 10 10 1	UG/KG	8260	12/19/2008 04:33	CDC
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
1,1,2-Trichloroethane	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
1,1-Dichloroethane	· ND		6	UG/KG	8260	12/19/2008 04:33	CDC
1,1-Dichloroethene	ND	•	6	UG/KG	8260	12/19/2008 04:33	CDC
1,2,4-Trichlorobenzene	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
1,2-Dibromo-3-chloropropane	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
1,2-Dibromoethane	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
1,2-Dichlorobenzene	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
1,2-Dichloroethane	ND	•	6	UG/KG	8260	12/19/2008 04:33	CDC
1,2-Dichloropropane	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
1,3-Dichlorobenzene	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
1,4-Dichlorobenzene	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
2-Butanone	10	J	30	UG/KG	8260	12/19/2008 04:33	CDC
2-Hexanone	ND		30	UG/KG	8260	12/19/2008 04:33	CDC
4-Methyl-2-pentanone	ND		30	UG/KG	8260	12/19/2008 04:33	CDC
Acetone	67		30	UG/KG	8260	12/19/2008 04:33	CDC
Benzene	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Bromodichloromethane	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Bromoform	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Bromomethane	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Carbon Disulfide	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Carbon Tetrachloride	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Chlorobenzene	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Chloroethane	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Chloroform	ND	•	6	UG/KG	8260	12/19/2008 04:33	CDC
Chloromethane	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
cis-1,2-Dichloroethene	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Cyclohexane	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Dibromochloromethane	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Dichlorodifluoromethane	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Ethylbenzene	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Isopropylbenzene	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Methyl acetate	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Methyl-t-Butyl Ether (MTBE)	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Methylcyclohexane	ND		6	UG/KG	8260	12/19/2008 04:33	CDC
Methylene chloride	25	В	6	UG/KG	8260	12/19/2008 04:33	CDC
Styrene	ND		6	UG/KG	8260	12/19/2008 04:33	
Tetrachloroethene	ND		6	UG/KG	8260	12/19/2008 04:33	
Toluene	ND		6	UG/KG	8260	12/19/2008 04:33	
Total Xylenes	NĐ		18	UG/KG	8260	12/19/2008 04:33	
trans-1,2-Dichloroethene	ND		6	UG/KG	8260	12/19/2008 04:33	
trans-1 7-Dishlerennens	ND		_	UC /YC	9240	12/10/2009 04:33	

ND

ND

ND

ND

6

6

6

12

UG/KG

UG/KG

UG/KG

UG/KG

8260

8260

8260

8260

CDC

CDC

CDC

CDC

12/19/2008 04:33

12/19/2008 04:33

12/19/2008 04:33

12/19/2008 04:33

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 19 Rept: AN1178

Sample ID: RF-TP-05B Lab Sample ID: A8F96106 Date Collected: 12/16/2008 Time Collected: 11:40 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	-
<u>Parameter</u>	Result	Flag	<u>Limît</u>	Units	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-0xybis(1-Chloropropane)	ND		790	UG/KG	8270	·· 12/26/2008 16:52	ERK
2,4,5-Trichlorophenol	ND		790	UG/KG	8270	12/26/2008 16:52	ERK
2,4,6-Trichlorophenol	ND		790	UG/KG	8270	12/26/2008 16:52	ERK
2,4-Dichlorophenol	ND		790	UG/KG	8270	12/26/2008 16:52	ERK
2,4-Dimethylphenol	ND		790	UG/KG	8270	12/26/2008 16:52	ERK
2,4-Dinitrophenol	ND		1500	UG/KG	8270	12/26/2008 16:52	ERK
2,4-Dinitrotoluene	ND		790	UG/KG	8270	12/26/2008 16:52	ERK
2,6-Dinitrotoluene	ND		790	UG/KG	8270	12/26/2008 16:52	ERK
2-Chloronaphthalene	ND		79 0	UG/KG	8270	12/26/2008 16:52	
2-Chlorophenol	ND		790	UG/KG	8270	12/26/2008 16:52	
2-Methylnaphthalene	970		790	UG/KG	8270	12/26/2008 16:52	
2-Methylphenol	ND		790	UG/KG	8270	12/26/2008 16:52	
2-Nitroaniline	ND:	e e mario di di	1500	UG/KG	8270	12/26/2008 16:52	
2-Nitrophenol	ND		790	UG/KG	8270	12/26/2008 16:52	
3,31-Dichlorobenzidine	ND		790	UG/KG	8270	12/26/2008 16:52	
3-Nitroaniline	ND		1500	UG/KG	8270	12/26/2008 16:52	
4,6-Dinitro-2-methylphenol	ND		1500	UG/KG	8270	12/26/2008 16:52	
4-Bromophenyl phenyl ether	ND		790	UG/KG	8270	12/26/2008 16:52	
4-Chloro-3-methylphenol	ND		790	UG/KG	8270	12/26/2008 16:52	
4-Chloroaniline	ND		790	UG/KG	8270	12/26/2008 16:52	
4-Chlorophenyl phenyl ether	ND		790	UG/KG	8270	12/26/2008 16:52	
4-Methylphenol	ND		790	UG/KG	8270	12/26/2008 16:52	
4-Nitroaniline	ND		1500	UG/KG	8270	12/26/2008 16:52	
4-Nîtrophenol	ND		1500	UG/KG	8270	12/26/2008 16:52	
Acenaphthene	1300		790	UG/KG	8270	12/26/2008 16:52	
Acenaphthylene	960		790	UG/KG	8270	12/26/2008 16:52	
Acetophenone	ND	;	790	UG/KG	8270	12/26/2008 16:52	
Anthracene	4300		790	UG/KG	8270	12/26/2008 16:52	
Atrazine	ND		790	UG/KG	8270	12/26/2008 16:52	
Benzaldehyde	ND ND		790	UG/KG	8270	12/26/2008 16:52	
Benzo(a)anthracene	8800		790	UG/KG	8270	12/26/2008 16:52	
Benzo(a)pyrene	7000		790 790	UG/KG	8270		
Benzo(b)fluoranthene	7000		790 790	UG/KG	8270 8270	12/26/2008 16:52 12/26/2008 16:52	
Benzo(ghi)perylene	4400		790 790				
Benzo(k)fluoranthene	3300			UG/KG	8270	12/26/2008 16:52	
Biphenyl			790	UG/KG	8270	12/26/2008 16:52	
• •	210	J	790	UG/KG	8270	12/26/2008 16:52	
Bis(2-chloroethoxy) methane	ND		790	UG/KG	8270	12/26/2008 16:52	
Bis(2-chloroethyl) ether	ND		790	UG/KG	8270	12/26/2008 16:52	
Bis(2-ethylhexyl) phthalate	350	J	790	UG/KG	8270	12/26/2008 16:52	
Butyl benzyl phthalate	ND		790	UG/KG	8270	12/26/2008 16:52	
Caprolactam	ND	•	790	UG/KG	8270	12/26/2008 16:52	
Carbazole	1700		790	UG/KG	8270	12/26/2008 16:52	
Chrysene	7500		790	UG/KG	8270	12/26/2008 16:52	
Di-n-butyl phthalate	ND		790	UG/KG	8270	12/26/2008 16:52	
Di-n-octyl phthalate	ND		790	UG/KG	8270	12/26/2008 16:52	
Dibenzo(a,h)anthracene	1100		790	UG/KG	8270	12/26/2008 16:52	
Dibenzofuran	1300		790	UG/KG	8270	12/26/2008 16:52	
Diethyl phthalate	ND		790	UG/KG	. 8270	12/26/2008 16:52	
Dimethyl phthalate	ND		790	UG/KG	8270	12/26/2008 16:52	ERK

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 20 Rept: AN1178

Sample ID: RF-TP-05B Lab Sample ID: A8F96106 Date Collected: 12/16/2008 Time Collected: 11:40 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
<u>Parameter</u>	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS	•					,	
Fluoranthene	18000	4.500	790 with	UG/KG	8270	12/26/2008 16:52	ERK
Fluorene	2600		790	UG/KG	8270	12/26/2008 16:52	
Hexachlorobenzene	ND		790	UG/KG	8270	12/26/2008 16:52	
Hexachlorobutadiene	ND		790	UG/KG	8270	12/26/2008 16:52	
Hexachlorocyclopentadiene	ND		7 9 0	UG/KG	8270	12/26/2008 16:52	
Hexachloroethane	ND		7 9 0	UG/KG	8270	12/26/2008 16:52	
Indeno(1,2,3-cd)pyrene	4100		790	UG/KG	8270	12/26/2008 16:52	
Isophorone	ND		790	UG/KG	8270	12/26/2008 16:52	
N-Nitroso-Di-n-propylamine	ND		79 0	UG/KG	8270	12/26/2008 16:52	ERK
N-nitrosodiphenylamine	ND		790	UG/KG	8270	12/26/2008 16:52	
Naphthalene	1700		790	UG/KG	8270	12/26/2008 16:52	ERK
Nitrobenzene	ND		7 9 0	UG/KG	8270	12/26/2008 16:52	
Pentachlorophenol	ND	er englise.	1500	UG/KG	8270	12/26/2008 16:52	
Phenanthrene	16000		790	UG/KG	8270	12/26/2008 16:52	
Phenol	ND		790	UG/KG	8270	12/26/2008 16:52	
Pyrene	16000		790	UG/KG	8270	12/26/2008 16:52	
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	. ND		19	UG/KG	8082	12/22/2008 15:40	DW
Aroclor 1221	ND		19	UG/KG	8082	12/22/2008 15:40	
Aroclor 1232	ND		19	UG/KG	8082	12/22/2008 15:40	
Aroclor 1242	30		19	UG/KG	8082	12/22/2008 15:40	
Aroclor 1248	ND		19	UG/KG	8082	12/22/2008 15:40	
Aroclor 1254	ND		19	UG/KG	8082	12/22/2008 15:40	
Aroclor 1260	29		19	UG/KG	8082	12/22/2008 15:40	
Metals Analysis	9 x 1 - 4 2		-			-	
Aluminum - Total	5350	EN*	11.1	MG/KG	6010	12/19/2008 14:48	TWS
Antimony - Total	ND	N*	16.6	MG/KG	6010	12/19/2008 14:48	
Arsenic - Total	8.6	*	2.2	MG/KG	6010	12/19/2008 14:48	
Barium - Total	66.7	E*	0.55	MG/KG	6010	12/19/2008 14:48	
Beryllium - Total	0.38	-	0.22	MG/KG	6010	12/19/2008 14:48	
Cadmium - Total	ND		0.22	MG/KG	6010	12/19/2008 14:48	
Calcium - Total	5990	E*	55.4	MG/KG	6010	12/19/2008 14:48	
Chromium - Total	12.7	E	0.55	MG/KG	6010	12/19/2008 14:48	
Cobalt - Total	6.1	E	0.55	MG/KG	6010	12/19/2008 14:48	
Copper - Total	158	EN*	1.1	MG/KG	6010	12/19/2008 14:48	
Iron - Total	34500	E*	11.1	MG/KG	6010	12/19/2008 14:48	
Lead - Total	158	N.	1.1	MG/KG	6010	12/19/2008 14:48	
Magnesium - Total	1460	E*	22.1	MG/KG	6010	12/19/2008 14:48	TWS
Manganese - Total	586	E*	0.22	MG/KG	6010	12/19/2008 14:48	
Mercury - Total	0.105	L	0.025	MG/KG	7471		
Nickel - Total	20.2	EN*	0.55		6010	12/19/2008 16:02	
Potassium - Total				MG/KG		12/19/2008 14:48	TWS
Selenium - Total	650	EN	33.2 4.4	MG/KG	6010 6010	12/19/2008 14:48	TWS
Silver - Total	ND ND		4.4 0.55	MG/KG	6010 6010	12/19/2008 14:48	TWS
Sodium - Total	ND	×	0.55	MG/KG	6010	12/19/2008 14:48	TWS
Thallium - Total	ND ND		155	MG/KG	6010	12/19/2008 14:48	TWS
	ND	N	6.6	MG/KG	6010	12/19/2008 14:48	TWS
Vanadium - Total	15.7	E	0.55	MG/KG	6010	12/19/2008 14:48	T₩S

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Randolph Foundry: Site #E905030

Sample ID: RF-TP-05B Lab Sample ID: A8F96106 Date Collected: 12/16/2008

Time Collected: 11:40

Date Received: 12/16/2008

Project No: NY5A946109

Page:

Rept: AN1178

Client No: L10190

						Detection			Date/Time	
-	Parameter			Result	Flag	Limit	<u>Units</u>	Method	Analyzed	<u>Analyst</u>
Metals Analysis Zinc - Total	- ⁵	tga s	3.	170	EN*	2.2	MG/KG	6010	12/19/2008 14:48	TWS "

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 22 Rept: AN1178

Sample ID: RF-TP-05C Lab Sample ID: A8F96107 Date Collected: 12/16/2008 Time Collected: 11:45

Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analysi
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND	44	·5 ·	UG/KG	8260	12/19/2008 04:59	CDC
1,1,2,2-Tetrachloroethane	ND		5	UG/KG	8260	12/19/2008 04:59	CDC
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5	UG/KG	8260	12/19/2008 04:59	
1,1,2-Trichloroethane	ND		5	UG/KG	8260	12/19/2008 04:59	
1,1-Dichloroethane	ND		5	UG/KG	8260	12/19/2008 04:59	
1,1-Dichloroethene	ND		5	UG/KG	8260	12/19/2008 04:59	
1,2,4-Trichlorobenzene	ND	•	5	UG/KG	8260	12/19/2008 04:59	
1,2-Dibromo-3-chloropropane	ND		5	UG/KG	8260	12/19/2008 04:59	
1,2-Dibromoethane	ND		5	UG/KG	8260	12/19/2008 04:59	
1,2-Dichlorobenzene	ND		5	UG/KG	8260	12/19/2008 04:59	
1,2-Dichloroethane	ND		5	UG/KG	8260	12/19/2008 04:59	
1,2-Dichloropropane	ND		5	UG/KG	8260	12/19/2008 04:59	
1,3-Dichlorobenzene	ND		5	UG/KG	8260	12/19/2008 04:59	
1,4-Dichlorobenzene	ND		5	UG/KG	8260	12/19/2008 04:59	
2-Butanone	ND		27	UG/KG	8260	12/19/2008 04:59	
2-Hexanone	ND		27	UG/KG	8260	12/19/2008 04:59	
4-Methyl-2-pentanone	ND		27	UG/KG	8260	12/19/2008 04:59	
Acetone	6	J	27	UG/KG	8260	12/19/2008 04:59	
Benzene	ND	•	ے، 5	UG/KG	8260	12/19/2008 04:59	
Bromodichloromethane	ND		5	UG/KG	8260	12/19/2008 04:59	
Bromoform	ND		5	UG/KG	8260	12/19/2008 04:59	
Bromomethane	ND		5	UG/KG	8260	12/19/2008 04:59	
Carbon Disulfide	ND		5	UG/KG	8260	12/19/2008 04:59	
Carbon Tetrachloride	ND		5	UG/KG	8260	12/19/2008 04:59	
Chlorobenzene	ND		5	UG/KG	8260	12/19/2008 04:59	
Chloroethane	ND		5	UG/KG	8260	12/19/2008 04:59	
Chloroform	ND		5	UG/KG	8260	12/19/2008 04:59	
Chloromethane	ND		5	UG/KG	8260	12/19/2008 04:59	
cis-1,2-Dichloroethene	ND		5	UG/KG	8260	12/19/2008 04:59	
cis-1,3-Dichloropropene	ND		5	UG/KG	8260	12/19/2008 04:59	
Cyclohexane	ND		5	UG/KG	8260	•	
Dibromochloromethane	ND		5	UG/KG	8260	12/19/2008 04:59 12/19/2008 04:59	
Dichlorodifluoromethane	ND		5	UG/KG	8260	•	
Ethylbenzene	ND		5			12/19/2008 04:59	
Isopropylbenzene	ND ND		5	UG/KG	8260	12/19/2008 04:59	
Methyl acetate	ND ND		5	UG/KG	8260	12/19/2008 04:59	
Methyl-t-Butyl Ether (MTBE)			5	UG/KG	8260	12/19/2008 04:59	
Methylcyclohexane	ND		5	UG/KG	8260	12/19/2008 04:59	
	ND	_	5	UG/KG	8260	12/19/2008 04:59	
Methylene chloride	16	В	5	UG/KG	8260	12/19/2008 04:59	
Styrene	ND		5	UG/KG	8260	12/19/2008 04:59	
Tetrachloroethene	ND		5	UG/KG	8260	12/19/2008 04:59	CDC
Total Vulence	ND		5	UG/KG	8260	12/19/2008 04:59	CDC
Total Xylenes	ND		16	UG/KG	8260	12/19/2008 04:59	CDC
trans-1,2-Dichloroethene	ND		5	UG/KG	8260	12/19/2008 04:59	CDC
trans-1,3-Dichloropropene	ND		5	UG/KG	8260	12/19/2008 04:59	CDC
Trichloroethene	ND		5	UG/KG	8260	12/19/2008 04:59	CDC
Trichlorofluoromethane	ND		5	UG/KG	8260	12/19/2008 04:59	CDC
Vinyl chloride	ND		11	UG/KG	. 8260	12/19/2008 04:59	CDC

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Randolph Foundry: Site #E905030

Sample ID: RF-TP-05C Lab Sample ID: A8F96107 Date Collected: 12/16/2008 Time Collected: 11:45

Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

Page:

Rept: AN1178

23

			Detection			Date/Time	-
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND	1.00	200	UG/KG	8270	12/26/2008 17:15	ERK
2,4,5-Trichlorophenol	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
2,4,6-Trichlorophenol	NĐ		200	UG/KG	8270	12/26/2008 17:15	ERK
2,4-Dichlorophenol	ND	•	200	UG/KG	8270	12/26/2008 17:15	ERK
2,4-Dimethylphenol	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
2,4-Dinitrophenol	ND	1	390	UG/KG	8270	12/26/2008 17:15	ERK
2,4-Dinitrotoluene	ND -	1.	200	UG/KG	8270	12/26/2008 17:15	ERK
2,6-Dinitrotoluene	ND	;	200	UG/KG	8270	12/26/2008 17:15	ERK
2-Chloronaphthalene	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
2-Chlorophenol	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
2-Methylnaphthalene	18	J	200	UG/KG	8270	12/26/2008 17:15	ERK
2-Methylphenol	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
2-Nitroaniline	ND		390	UG/KG	8270	12/26/2008 17:15	ERK
2-Nitrophenol	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
3,3'-Dichlorobenzidine	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
3-Nitroaniline	ND		390	UG/KG	8270	12/26/2008 17:15	ERK
4,6-Dinitro-2-methylphenol	ND		390	UG/KG	8270	12/26/2008 17:15	ERK
4-Bromophenyl phenyl ether	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
4-Chloro-3-methylphenol	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
4-Chloroaniline	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
4-Chlorophenyl phenyl ether	ND		200	UG/KG	8270	12/26/2008 17:15	
4-Methylphenol	· ND		200	UG/KG	8270	12/26/2008 17:15	
4-Nitroaniline	ND		390	UG/KG	8270	12/26/2008 17:15	
4-Nitrophenol	ND	•	390	UG/KG	8270	12/26/2008 17:15	
Acenaphthene	ND		200	UG/KG	8270	12/26/2008 17:15	
Acenaphthylene	33	J	200	UG/KG	8270	12/26/2008 17:15	
Acetophenone	ND		200	UG/KG	8270	12/26/2008 17:15	
Anthracene	30	J	200	UG/KG	8270	12/26/2008 17:15	
Atrazine	ND		200	UG/KG	8270	12/26/2008 17:15	
Benzaldehyde	ND		200	UG/KG	8270	12/26/2008 17:15	
Benzo(a)anthracene	150	J	200	UG/KG	8270	12/26/2008 17:15	
Benzo(a)pyrene	140	J	200	UG/KG	8270	12/26/2008 17:15	
Benzo(b)fluoranthene	160	J	200	UG/KG	8270	12/26/2008 17:15	
Benzo(ghi)perylene	94	J	200	UG/KG	8270	12/26/2008 17:15	
Benzo(k)fluoranthene	64	J	200	UG/KG	8270	12/26/2008 17:15	
Biphenyl	ND		200	UG/KG	8270	12/26/2008 17:15	
Bis(2-chloroethoxy) methane	, ND		200	UG/KG	8270	12/26/2008 17:15	
Bis(2-chloroethyl) ether	ND		200	UG/KG	8270	12/26/2008 17:15	
Bis(2-ethylhexyl) phthalate	ND		200	UG/KG	8270	12/26/2008 17:15	
Butyl benzyl phthalate	ND		200	UG/KG	8270	12/26/2008 17:15	
Caprolactam	ND		200	UG/KG	8270	12/26/2008 17:15	
Carbazole	ND		200	UG/KG	8270	12/26/2008 17:15	
Chrysene	140	J	200	UG/KG	8270	12/26/2008 17:15	
Di-n-butyl phthalate	ND		200	UG/KG	8270	12/26/2008 17:15	
Di-n-octyl phthalate	ND		200	UG/KG	8270	12/26/2008 17:15	
Dibenzo(a,h)anthracene	28	J	200	UG/KG	8270	12/26/2008 17:15	
Dibenzofuran	ND	-	200	UG/KG	8270	12/26/2008 17:15	
Diethyl phthalate	ND		200	UG/KG	8270	12/26/2008 17:15	
Dimethyl phthalate	ND		200	UG/KG	8270	12/26/2008 17:15	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 24 Rept: AN1178

Sample ID: RF-TP-05C Lab Sample ID: A8F96107 Date Collected: 12/16/2008 Time Collected: 11:45 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	-
<u>Parameter</u>	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS				٠			
Fluoranthene	260		200	UG/KG	8270	12/26/2008 17:15	
Fluorene	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
Hexach l orobenzene	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
Hexachlorobutadiene	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
Hexachlorocyclopentadiene	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
Hexachloroethane	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
Indeno(1,2,3-cd)pyrene	91	J	200	UG/KG	8270	12/26/2008 17:15	ERK
Isophorone	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
N-Nitroso-Di-n-propylamine	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
N-nitrosodiphenylamine	ND	•	200	UG/KG	8270	12/26/2008 17:15	ERK
Naphthalene	14	J	200	UG/KG	8270	12/26/2008 17:15	ERK
Nitrobenzene	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
Pentachlorophenol	ND -	•	390	UG/KG	8270	12/26/2008 17:15	ERK
Phenanthrene	110	J	200	UG/KG	8270	12/26/2008 17:15	ERK
Phenol	ND		200	UG/KG	8270	12/26/2008 17:15	ERK
Pyrene	240		200	UG/KG	8270	12/26/2008 17:15	ERK
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		19	UG/KG	8082	12/22/2008 15:59	DW
Aroclor 1221	ND		19	UG/KG	8082	12/22/2008 15:59	DW
Aroclor 1232	ND		19	UG/KG	8082	12/22/2008 15:59	₽₩
Aroclor 1242	ND		19	UG/KG	8082	12/22/2008 15:59	DW
Aroclor 1248	ND		19	UG/KG	8082	12/22/2008 15:59	DW
Aroclor 1254	ND		19	UG/KG	8082	12/22/2008 15:59	DW
Aroclor 1260	ND		19	UG/KG	8082	12/22/2008 15:59	DW
Metals Analysis			-		en en en en en en en en en en en en en e	e. produce	
Aluminum - Total	8480	EN*	10.9	MG/KG	6010	12/19/2008 14:54	TWS
Antimony - Total	ND	N*	16.3	MG/KG	6010	12/19/2008 14:54	
Arsenic - Total	7.2	*	2.2	MG/KG	6010	12/19/2008 14:54	
Barium - Total	198	E*	0.54	MG/KG	6010	12/19/2008 14:54	
Beryllium - Total	0.28	_	0.22	MG/KG	6010	12/19/2008 14:54	
Cadmium - Total	ND		0.22	MG/KG	6010	12/19/2008 14:54	
Calcium - Total	1410	E*	54.3	MG/KG	6010	12/19/2008 14:54	
Chromium - Total	8.8	E	0.54	MG/KG	6010	12/19/2008 14:54	
Cobalt - Total	8,3	E	0.54	MG/KG	6010	12/19/2008 14:54	
Copper - Total	18.2	EN*	1.1	MG/KG	6010	12/19/2008 14:54	
Iron - Total	18800	E*	10.9	MG/KG	6010	12/19/2008 14:54	
Lead - Total	19.4	N	1.1	MG/KG	6010	12/19/2008 14:54	
Magnesium - Total	2030	E*	21.7	MG/KG	6010	12/19/2008 14:54	
Manganese - Total	1550	E*	0.22	MG/KG	6010	12/19/2008 14:54	
Mercury - Total	0.077	-	0.022	MG/KG	7471	12/19/2008 16:03	
Nickel - Total	17.0	EN*	0.54	MG/KG	6010	12/19/2008 14:54	
Potassium - Total	791	EN	32.6	MG/KG	6010	12/19/2008 14:54	
Selenium - Total	ND	L17	4.3	MG/KG	6010	12/19/2008 14:54	
Silver - Total	ND ND		0.54	MG/KG	6010	12/19/2008 14:54	
Sodium - Total	ND ND	*	152	MG/KG MG/KG	6010		
Thallium - Total	ND ND		6.5	MG/KG	6010	12/19/2008 14:54	
Vanadium - Total	ND 11.4	N E				12/19/2008 14:54	
variad full 7 TUtat	11.4	E	0.54	MG/KG	6010	12/19/2008 14:54	TWS

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Page:

Rept: AN1178

Sample ID: RF-TP-05C Lab Sample ID: A8F96107 Date Collected: 12/16/2008 Time Collected: 11:45 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

Site No:

Detection ---Date/Time-Result Limit Parameter Flag Units Method Analyzed Analyst Metals Analysis Zinc - Total 49.2 EN* 2.2 MG/KG 6010 12/19/2008 14:54

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 26 Rept: AN1178

Sample ID: RF-TP-06A Lab Sample ID: A8F96108 Date Collected: 12/16/2008 Time Collected: 12:10

Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			—Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND.		360	UG/KG	8270	12/26/2008 17:38	ERK
2,4,5-Trichlorophenol	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
2,4,6-Trichlorophenol	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
2,4-Dichlorophenol	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
2,4-Dimethylphenol	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
2,4-Dinitrophenol	ND		700	UG/KG	8270	12/26/2008 17:38	ERK
2,4-Dinitrotoluene	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
2,6-Dinitrotoluene	ND	•	360	UG/KG	8270	12/26/2008 17:38	ERK
2-Chloronaphthalene	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
2-Chlorophenol	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
2-Methylnaphthalene	41	J	360	UG/KG	8270	12/26/2008 17:38	ERK
2-Methylphenol	ND	_	360	UG/KG	8270	12/26/2008 17:38	ERK
2-Nitroaniline	ND		700	UG/KG	8270	12/26/2008 17:38	ERK
2-Nitrophenol	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
3,31-Dichlorobenzidine	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
3-Nitroaniline	ND		700	UG/KG	8270	12/26/2008 17:38	ERK
4,6-Dinitro-2-methylphenol	ND		700	UG/KG	8270	12/26/2008 17:38	ERK
4-Bromophenyl phenyl ether	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
4-Chloro-3-methylphenol	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
4-Chloroaniline	ND.		360	UG/KG	8270	12/26/2008 17:38	ERK
4-Chlorophenyl phenyl ether	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
4-Methylphenol	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
4-Nitroaniline	ND		700	UG/KG	8270	12/26/2008 17:38	ERK
4-Nîtrophenol	ND		700	UG/KG	8270	12/26/2008 17:38	ERK
Acenaphthene	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
Acenaphthylene	260	j	360	UG/KG	8270	12/26/2008 17:38	ERK
Acetophenone	ND	u	360	UG/KG	8270	12/26/2008 17:38	ERK
Anthracene	97	J	360	UG/KG	8270	12/26/2008 17:38	
Atrazine	ND	J	360	UG/KG	8270	12/26/2008 17:38	ERK
Benzaldehyde	ND		360	UG/KG	8270	12/26/2008 17:38	ERK ERK
Benzo(a)anthracene	440	·	360	UG/KG	8270	12/26/2008 17:38	ERK
Benzo(a)pyrene	500		360	UG/KG	8270 8270	12/26/2008 17:38	ERK
Benzo(b)fluoranthene	570		360	UG/KG	8270	12/26/2008 17:38	
Benzo(ghi)perylene	290	J	360	UG/KG	8270 8270	12/26/2008 17:38	ERK
Benzo(k)fluoranthene	250	J	360	UG/KG	8270		ERK
Biphenyl	ND	J	360	UG/KG	8270	12/26/2008 17:38	ERK
Bis(2-chloroethoxy) methane	ND ND		360			12/26/2008 17:38	ERK
Bis(2-chloroethyl) ether				UG/KG	8270	12/26/2008 17:38	ERK
Bis(2-ethylhexyl) phthalate	ND 140		360 360	UG/KG	8270	12/26/2008 17:38	ERK
·	160	J	360	UG/KG	8270	12/26/2008 17:38	ERK
Butyl benzyl phthalate	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
Caprolactam	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
Carbazole	17	J	360	UG/KG	8270	12/26/2008 17:38	ERK
Chrysene	440		360	UG/KG	8270	12/26/2008 17:38	ERK
Di-n-butyl phthalate	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
Di-n-octyl phthalate	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
Dibenzo(a,h)anthracene	31	J	360	UG/KG	8270	12/26/2008 17:38	ERK
Dibenzofuran	16	J	360	UG/KG	8270	12/26/2008 17:38	ERK
Diethyl phthalate	ND		360	UG/KG	8270	12/26/2008 17:38	ERK
Dimethyl phthalate	ND		360	UG/KG	8270	12/26/2008 17:38	ERK

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

Page: 27 Rept: AN1178

NYSDEC Spills - Randolph Foundry: Site #E905030

Date Received: 12/16/2008 Project No: NY5A946109

Client No: L10190

	Sample	ID:	RF-TP-06A
Lab	Sample	ID:	A8F96108
Date	Collect	ed:	12/16/2008
Time	Collect	ed•	12:10

Time Collected: 12:10		Site No:								
		· · · · · · · · · · · · · · · · · · ·	Detection			Date/Time				
<u>Parameter</u>	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed	Analyst			
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS										
Fluoranthene	610	+21 -1	360 · · · · ·	UG/KG	8270	12/26/2008 17:38	ERK			
Fluorene	21	J	360	UG/KG	8270	12/26/2008 17:38	ERK			
Hexachlorobenzene	ND		360	UG/KG	8270	12/26/2008 17:38	ERK			
Hexachlorobutadiene	ND		360	UG/KG	8270	12/26/2008 17:38	ERK			
Hexachlorocyclopentadiene	ND		360	UG/KG	8270	12/26/2008 17:38	ERK			
Hexachloroethane	ND		360	UG/KG	8270	12/26/2008 17:38	ERK			
Indeno(1,2,3-cd)pyrene	260	J	360	UG/KG	8270	12/26/2008 17:38	ERK			
Isophorone	ND		360	UG/KG	8270	12/26/2008 17:38	ERK			
N-Nitroso-Di-n-propylamine	ND		360	UG/KG	8270	12/26/2008 17:38	ERK			
N-nitrosodiphenylamine	ND		360	UG/KG	8270	12/26/2008 17:38				
Naphthalene	44	J	360	UG/KG	8270	12/26/2008 17:38				
Nitrobenzene	ND	-	360	UG/KG	8270	12/26/2008 17:38				
Pentachlorophenol	ND		700		8270	12/26/2008 17:38				
Phenanthrene	200	J	360	UG/KG	8270	12/26/2008 17:38				
Phenol	ND	•	360	UG/KG	8270	12/26/2008 17:38				
Pyrene	630		360	UG/KG	8270	12/26/2008 17:38				
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS										
Aroclor 1016	ND		17	UG/KG	8082	12/22/2008 16:19	DW			
Aroclor 1221	ND		 17	UG/KG	8082	12/22/2008 16:19				
Aroclor 1232	ND		17	UG/KG	8082	12/22/2008 16:19				
Aroclor 1242	ND		17	UG/KG	8082	12/22/2008 16:19				
Aroclor 1248	ND ND		17	UG/KG	8082	12/22/2008 16:19				
Aroclor 1254	12	J	17	UG/KG	8082	12/22/2008 16:19				
Aroctor 1254 Aroctor 1260	18	U	17	UG/KG	8082	12/22/2008 16:19				
Metals Analysis			4 - 65.		•					
Aluminum - Total	3600	EN*	11.3	MG/KG	6010	12/19/2008 14:59	TWS			
Antimony - Total	ND	N*	17.0	MG/KG	6010	12/19/2008 14:59				
Arsenic - Total	4.6	*	2.3	MG/KG	6010	12/19/2008 14:59				
Barium - Total	69.3	E*	0.57	MG/KG	6010	12/19/2008 14:59				
Beryllium - Total	ND	_	0.23	MG/KG	6010	12/19/2008 14:59				
Cadmium - Total	ND		0.23	MG/KG	6010	12/19/2008 14:59				
	45600	E*				12/19/2008 14:59				
Calcium - Total			56.6	MG/KG	6010					
Chromium - Total	17.7	E .	0.57	MG/KG	6010	12/19/2008 14:59				
Cobalt - Total	3.0	E	0.57	MG/KG	6010	12/19/2008 14:59				
Copper - Total	32.3	EN*	1.1	MG/KG	6010	12/19/2008 14:59				
Iron - Total	22900	E*	11.3	MG/KG	6010	12/19/2008 14:59				
Lead - Total	22.6	N	1.1	MG/KG	6010	12/19/2008 14:59				
Magnesium - Total	4620	E*	22.6	MG/KG	6010	12/19/2008 14:59				
Manganese - Total	411	E*	0.23	MG/KG	6010	12/19/2008 14:59	TWS			
Mercury - Total	ND		0.022	MG/KG	7471	12/19/2008 16:05	MM			
Nickel - Total	16.6	EN*	0.57	MG/KG	6010	12/19/2008 14:59				
Potassium - Total	429	EN	33.9	MG/KG	6010	12/19/2008 14:59	TWS			
Selenium - Total	ND		4.5	MG/KG	6010	12/19/2008 14:59	TWS			
Silver - Total	ND		0.57	MG/KG	6010	12/19/2008 14:59	TWS			
Sodium - Total	ND	*	158	MG/KG	6010	12/19/2008 14:59	TWS			
Thallium - Total	ND	N	6.8	MG/KG	6010	12/19/2008 14:59	TWS			
Vanadium - Total	5.6	Ε	0.57	MG/KG	6010	12/19/2008 14:59	TWS			

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 Page:

Rept: AN1178

Sample ID: RF-TP-06A Lab Sample ID: A8F96108 Date Collected: 12/16/2008 Time Collected: 12:10

Date Received: 12/16/2008

Project No: NY5A946109

Client No: L10190

			10-3-11-						
					Detection			Date/Time	
	Parameter		Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analyst
Metals Analysis Zinc - Total	45 m s	. •	72.2	EN*	2.3**	MG/KG	6010	12/19/2008 14:59	TWS

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Date Received: 12/16/2008

Project No: NY5A946109 Client No: L10190

Page:

Rept: AN1178

Site No:

Sample ID: RF-TP-06B Lab Sample ID: A8F96109 Date Collected: 12/16/2008 Time Collected: 12:15

Time dettector, 15,412					Site No.			
			Detection			——Date/Time		
Parameter	Result	<u>Flag</u>	<u>Limit</u>	<u>Units</u>	Method	Analyzed	Analys	
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES								
1,1,1-Trichloroethane	ND		6.4.4.4.	UG/KG		12/19/2008 05:24		
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	12/19/2008 05:24		
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6	UG/KG	82 6 0	12/19/2008 05:24	CDC	
1,1,2-Trichloroethane	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
1,1-Dichloroethane	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
1,1-Dichloroethene	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
1,2,4-Trichlorobenzene	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
1,2-Dibromo-3-chloropropane	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
1,2-Dibromoethane	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
1,2-Dichlorobenzene	ND ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
1,2-Dichloroethane	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
1,2-Dichloropropane	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
1,3-Dichlorobenzene	ND	** *** * * * * *	6	UG/KG	8260	12/19/2008 05:24	CDC	
1,4-Dichlorobenzene	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
2-Butanone	ND		28	UG/KG	8260	12/19/2008 05:24	CDC	
2-Hexanone	ND		28	UG/KG	8260	12/19/2008 05:24	CDC	
4-Methyl-2-pentanone	ND		28	UG/KG	8260	12/19/2008 05:24	CDC	
Acetone	28		28	UG/KG	8260	12/19/2008 05:24	CDC	
Benzene	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
Bromodichloromethane	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
Bromoform	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
Bromomethane	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
Carbon Disulfide	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
Carbon Tetrachloride	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
Chlorobenzene	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
Chloroethane	ND		6	UG/KG	8260	12/19/2008 05:24		
Chloroform	ND ··	è	6	UG/KG	8260	12/19/2008 05:24		
Chloromethane	ND		6	UG/KG	8260	12/19/2008 05:24		
cis-1,2-Dichloroethene	ND		6	UG/KG	8260	12/19/2008 05:24		
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	12/19/2008 05:24		
Cyclohexane	ND		6	UG/KG	8260	12/19/2008 05:24		
Dibromochloromethane	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
Dichlorodifluoromethane	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
Ethylbenzene	ND		6	UG/KG	8260	12/19/2008 05:24	CDC	
Isopropylbenzene	ND		6	UG/KG	8260	12/19/2008 05:24		
Methyl acetate	ND		6	UG/KG	8260	12/19/2008 05:24		
Methyl-t-Butyl Ether (MTBE)	ND		6	UG/KG	8260	12/19/2008 05:24		
Methylcyclohexane	ND		6	UG/KG	8260	12/19/2008 05:24		
Methylene chloride	17	В	6	UG/KG	8260	12/19/2008 05:24		
Styrene	ND.		6	UG/KG	8260			
Tetrachloroethene	ND		6			12/19/2008 05:24		
Toluene	ND		6	UG/KG UG/KG	8260 8260	12/19/2008 05:24		
Total Xylenes	ND		17		8260	12/19/2008 05:24 12/19/2008 05:24		
trans-1,2-Dichloroethene	ND ND			UG/KG				
			6	UG/KG	8260 8260	12/19/2008 05:24		
trans-1,3-Dichloropropene Trichloroethene	ND		6	UG/KG	8260	12/19/2008 05:24		
Trichloroethene Trichlorofluoromethane	ND		6	UG/KG	8260 8260	12/19/2008 05:24		
	ND		6	UG/KG	8260 8260	12/19/2008 05:24		
Vinyl chloride	ND		11	UG/KG	8260	12/19/2008 05:24	CDC	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 30 Rept: AN1178

Sample ID: RF-TP-06B Lab Sample ID: A8F96109 Date Collected: 12/16/2008 Time Collected: 12:15 Date Received: 12/16/2008 Project No: NY5A946109

Client No: L10190

Time Collected: 12:15						Site No:	
Parameter	Result	Flag	Detection Limit	Units	Method	Date/Time Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND	· · · · · · · · · · · · · · · · · · ·	200	UG/KG	8270	12/26/2008 18:01	ERK**
2,4,5-Trichlorophenol	ND		200	UG/KG	8270	12/26/2008 18:01	
2,4,6-Trichlorophenol	ND		200	UG/KG	8270	12/26/2008 18:01	
2,4-Dichlorophenol	ND		200	UG/KG	8270	12/26/2008 18:01	
2,4-Dimethylphenol	ND		200	UG/KG	8270	12/26/2008 18:01	
2,4-Dinitrophenol	ND		390	UG/KG	8270	12/26/2008 18:01	
2,4-Dinitrotoluene	ND		200	UG/KG	8270	12/26/2008 18:01	
2,6-Dinitrotoluene	ND		200	UG/KG	8270	12/26/2008 18:01	
2-Chloronaphthalene	ND		200	UG/KG	8270	12/26/2008 18:01	
2-Chlorophenol	ND		200	UG/KG	8270	12/26/2008 18:01	
2-Methylnaphthalene	ND		200	UG/KG	8270	12/26/2008 18:01	
2-Methylphenol	ND		200	UG/KG	8270	12/26/2008 18:01	
2-Nitroaniline	ND		390	UG/KG	8270	12/26/2008 18:01	
2-Nitrophenol	ND		200	UG/KG	8270	12/26/2008 18:01	
3,3'-Dichlorobenzidine	ND		200	UG/KG	8270	12/26/2008 18:01	
3-Nitroaniline	ND		390	UG/KG	8270	12/26/2008 18:01	
	ND		390	UG/KG	8270		
4,6-Dinitro-2-methylphenol	ND ·		200	UG/KG	8270 8270	12/26/2008 18:01	
4-Bromophenyl phenyl ether				· ·		12/26/2008 18:01	
4-Chloro-3-methylphenol	ND		200	UG/KG	8270	12/26/2008 18:01	
4-Chloroaniline	ND		200	UG/KG	8270	12/26/2008 18:01	
4-Chlorophenyl phenyl ether	ND		200	UG/KG	8270	12/26/2008 18:01	
4-Methylphenol	ND		200	UG/KG	8270	12/26/2008 18:01	
4-Nitroaniline	ND		390	UG/KG	8270	12/26/2008 18:01	
4-Nitrophenol	ND		390	UG/KG	8270	12/26/2008 18:01	
Acenaphthene	ND		200	UG/KG	8270	12/26/2008 18:01	
Acenaphthylene	ND		200	UG/KG	8270	12/26/2008 18:01	
Acetophenone	· ND		200	UG/KG	8270	12/26/2008 18:01	
Anthracene	ND		200	UG/KG	8270	12/26/2008 18:01	
Atrazine	ND		200	UG/KG	8270	12/26/2008 18:01	
Benza l dehyde	ND		200	UG/KG	8270	12/26/2008 18:01	
Benzo(a)anthracene	ND		200	UG/KG	8270	12/26/2008 18:01	
Benzo(a)pyrene	ND		200	UG/KG	8270	12/26/2008 18:01	
Benzo(b)fluoranthene	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Benzo(ghi)perylene	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Benzo(k)fluoranthene	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Biphenyl	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Bis(2-chloroethoxy) methane	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Bis(2-chloroethyl) ether	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Bis(2-ethylhexyl) phthalate	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Butyl benzyl phthalate	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Caprolactam	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Carbazole	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Chrysene	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Dī-n-butyl phthalate	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Di-n-octyl phthalate	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Dibenzo(a,h)anthracene	ND		200	UG/KG	8270	12/26/2008 18:01	
Dibenzofuran	ND		200	UG/KG	8270	12/26/2008 18:01	
Diethyl phthalate	ND		200	UG/KG	8270	12/26/2008 18:01	
Dimethyl phthalate	ND		200	UG/KG	8270	12/26/2008 18:01	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Randolph Foundry: Site #E905030

Sample ID: RF-TP-06B Lab Sample ID: A8F96109 Date Collected: 12/16/2008

Time Collected: 12:15

Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

Page:

Rept: AN1178

31

Time Socretical, 12.13						Site No.	
			Detection			——Date/Time——	-
<u>Parameter</u>	Result	<u>Flag</u>	<u>Limit</u>	<u>Units</u>	<u>Method</u>	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							•
rtuorantnene	ND	* *	200	UG/KG	8270	12/26/2008 18:01	
Fluorene	ND		200	UG/KG	8270	12/26/2008 18:01	
Hexachlorobenzene	ND		200	UG/KG	8270	12/26/2008 18:01	
Hexachlorobutadiene	ND		200	UG/KG	8270	12/26/2008 18:01	
Hexachlorocyclopentadiene	ND		200	UG/KG	8270	12/26/2008 18:01	
Hexachloroethane	ND		200	UG/KG	8270	12/26/2008 18:01	
Indeno(1,2,3-cd)pyrene	ND		200	UG/KG	8270	12/26/2008 18:01	
Isophorone	ND		200	UG/KG	8270	12/26/2008 18:01	
N-Nitroso-Di-n-propylamine	ND		200	UG/KG	8270	12/26/2008 18:01	
N-nitrosodiphenylamine	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Naphthalene	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Nitrobenzene	ND .		200	UG/KG	8270	12/26/2008 18:01	ERK
Pentachlorophenol	ND ND	•	390	UG/KG	8270	12/26/2008 18:01	ERK ·
Phenanthrene	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Phenol	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
Pyrene	ND		200	UG/KG	8270	12/26/2008 18:01	ERK
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		20	UG/KG	8082	12/22/2008 17:18	DW.
Aroclor 1221	ND		20	UG/KG	8082	12/22/2008 17:18	
Aroclor 1232	ND		20	UG/KG	8082	12/22/2008 17:18	
Aroclor 1242	ND		20	UG/KG	8082	12/22/2008 17:18	
Aroclor 1248	ND		20	UG/KG	8082	12/22/2008 17:18	
Aroclor 1254	ND		20	UG/KG	8082	12/22/2008 17:18	
Aroclor 1260	ND		20	UG/KG	8082	12/22/2008 17:18	
A CAMPANIA AND AND AND AND AND AND AND AND AND AN			-				
Metals Analysis Aluminum - Total	10900	~u*	11.8	NC INC	4010	4274072000 45-42	
Antimony - Total	ND	EN* N*		MG/KG	6010	12/19/2008 15:17	
Arsenic - Total	8.9	*	17.8	MG/KG	6010	12/19/2008 15:17	
Barium - Total	71.8	 E*	2.4	MG/KG	6010	12/19/2008 15:17	
Beryllium - Total	0.49	Ε"	0.59	MG/KG	6010	12/19/2008 15:17	
Cadmium - Total	ND		0.24	MG/KG	6010 6010	12/19/2008 15:17	
Calcium - Total			0.24	MG/KG	6010	12/19/2008 15:17	
Chromium - Total	22600	E*	59.2	MG/KG	6010	12/19/2008 15:17	
	13.9	E	0.59	MG/KG	6010	12/19/2008 15:17	
Cobalt - Total	9.7	E	0.59	MG/KG	6010	12/19/2008 15:17	
Copper - Total	20.9	EN*	1.2	MG/KG	6010	12/19/2008 15:17	
Iron - Total	23300	E*	11.8	MG/KG	6010	12/19/2008 15:17	
Lead - Total	11.1	N 	1.2	MG/KG	6010	12/19/2008 15:17	
Magnesium - Total	9820	E*	23.7	MG/KG	6010	12/19/2008 15:17	
Manganese - Total	363	E*	0.24	MG/KG	6010	12/19/2008 15:17	
Mercury - Total	ND		0.026	MG/KG	7471	12/19/2008 16:06	
Nickel - Total	24.2	EN*	0.59	MG/KG	6010	12/19/2008 15:17	
Potassium - Total	1380	EN	35.5	MG/KG	6010	12/19/2008 15:17	
Selenium - Total	ND		4.7	MG/KG	6010	12/19/2008 15:17	
Silver - Total	ND		0.59	MG/KG	6010	12/19/2008 15:17	
Sodium - Total	ND	*	166	MG/KG	6010	12/19/2008 15:17	
Thallium - Total	ND	N	7.1	MG/KG	6010	12/19/2008 15:17	
Vanadium - Total	16.6	E	0.59	MG/KG	6010	12/19/2008 15:17	TWS

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills ~ Randolph Foundry: Site #E905030 Page:

32 Rept: AN1178

Sample ID: RF-TP-068

Date Received: 12/16/2008

Project No: NY5A946109

Client No: L10190

Site No:

Lab Sample ID: A8F96109 Date Collected: 12/16/2008 Time Collected: 12:15

							Detection			Date/Time	
	Parame	ter			Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analyst
Metals Analysis Zinc - Total	i tha se	A Gara	· gw	7.8	√35.1	EN*	2.4 -	MG/KG	6010	12/19/2008 15:17	TWS

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 Page:

33 Rept: AN1178

Sample ID: RF-TP-07A Lab Sample ID: A8F96110 Date Collected: 12/16/2008 Time Collected: 13:40

Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection <u>Limit</u>			Date/Time	Analyst
Parameter	Result	<u>Flag</u>		Units	Method	Analyzed	
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		370	UG/KG	8270	12/26/2008 18:24	
2,4,5-Trichlorophenol	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
2,4,6-Trichlorophenol	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
2,4-Dichlorophenol	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
2,4-Dimethylphenol	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
2,4-Dinitrophenol	ND		720	UG/KG	8270	12/26/2008 18:24	ERK
2,4-Dinitrotoluene	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
2,6-Dinitrotoluene	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
2-Chloronaphthalene	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
2-Chlorophenol	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
2-Methylnaphthalene	150	J	370	UG/KG	8270	12/26/2008 18:24	ERK
2-Methylphenol	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
2-Nitroaniline	ND `	•	720	UG/KG	8270	12/26/2008 18:24	ERK
2-Nitrophenol	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
3,3'-Dichlorobenzidine	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
3-Nitroaniline	ND		720	UG/KG	8270	12/26/2008 18:24	ERK
4,6-Dinitro-2-methylphenol	ND		720	UG/KG	8270	12/26/2008 18:24	ERK
4-Bromophenyl phenyl ether	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
4-Chloro-3-methylphenol	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
4-Chloroaniline	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
4-Chlorophenyl phenyl ether	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
4-Methylphenol	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
4-Nitroaniline	ND		720	UG/KG	8270	12/26/2008 18:24	ERK
4-Nitrophenol	ND		720	UG/KG	8270	12/26/2008 18:24	ERK
Acenaphthene	19	J	370	UG/KG	8270	12/26/2008 18:24	ERK
Acenaphthylene	82	J	370	UG/KG	8270	12/26/2008 18:24	ERK
Acetophenone	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
Anthracene	90	J	370	UG/KG	8270	12/26/2008 18:24	ERK
Atrazine	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
Benzaldehyde	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
Benzo(a)anthracene	490		370	UG/KG	8270	12/26/2008 18:24	ERK
Benzo(a)pyrene	520		370	UG/KG	8270	12/26/2008 18:24	
Benzo(b)fluoranthene	820		370	UG/KG	8270	12/26/2008 18:24	
Benzo(ghi)perylene	340	J	370	UG/KG	8270	12/26/2008 18:24	ERK
Benzo(k)fluoranthene	230	J	370	UG/KG	8270	12/26/2008 18:24	
Biphenyl	40	J	370	UG/KG	8270	12/26/2008 18:24	
Bis(2-chloroethoxy) methane	ND		370	UG/KG	8270	12/26/2008 18:24	
Bis(2-chloroethyl) ether	ND		370	UG/KG	8270	12/26/2008 18:24	
Bis(2-ethylhexyl) phthalate	400		370	UG/KG	8270	12/26/2008 18:24	
Butyl benzyl phthalate	ND		370	UG/KG	8270	12/26/2008 18:24	
Caprolactam	ND		370	UG/KG	8270	12/26/2008 18:24	
Carbazole	42	J	370	UG/KG	8270	12/26/2008 18:24	
Chrysene	560		370	UG/KG	8270	12/26/2008 18:24	
Di-n-butyl phthalate	ND		370	UG/KG	8270	12/26/2008 18:24	
Di-n-octyl phthalate	ND		370	UG/KG	8270	12/26/2008 18:24	
Dibenzo(a,h)anthracene	32	J	370	UG/KG	8270	12/26/2008 18:24	
Dibenzofuran	56	J	370	UG/KG	8270	12/26/2008 18:24	
Diethyl phthalate	ND	-	370	UG/KG	8270	12/26/2008 18:24	
Dimethyl phthalate	ND		370	UG/KG	8270	12/26/2008 18:24	

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Sample ID: RF-TP-07A Lab Sample ID: A8F96110 Date Collected: 12/16/2008

Time Collected: 13:40

Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

Page:

Rept: AN1178

Time sotteeted. 13,40						Site No:	
			Detection			Date/Time	
<u>Parameter</u>	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed	Analysi
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluorantnene	810		370	UG/KG	8270	12/26/2008 18:24	
Fluorene	25	J	370	UG/KG	8270	12/26/2008 18:24	
Hexachlorobenzene	ND		370	UG/KG	8270	12/26/2008 18:24	
Hexachlorobutadiene	ND		370	UG/KG	8270	12/26/2008 18:24	
Hexachlorocyclopentadiene	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
Hexachloroethane	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
Indeno(1,2,3-cd)pyrene	300	J	370	UG/KG	8270	12/26/2008 18:24	ERK
Isophorone	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
N-Nitroso-Di-n-propylamine	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
N-nitrosodiphenylamine	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
Naphthal ene	200	J	370	UG/KG	8270	12/26/2008 18:24	ERK
Nitrobenzene	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
Pentachlorophenol	ND	•	720	UG/KG	8270	* 12/26/2008 18:24	ERK
Phenanthrene	460		370	UG/KG	8270	12/26/2008 18:24	ERK
Phenol	ND		370	UG/KG	8270	12/26/2008 18:24	ERK
Pyrene	700		370	UG/KG	8270	12/26/2008 18:24	ERK
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		18	UG/KG	8082	12/22/2008 17:38	DW
Aroclor 1221	ND		18	UG/KG	8082	12/22/2008 17:38	
Aroclor 1232	ND		18	UG/KG	8082	12/22/2008 17:38	
Aroclor 1242	54		18	UG/KG	8082	12/22/2008 17:38	
Aroclor 1248	ND		18	UG/KG	8082	12/22/2008 17:38	
Aroclor 1254	26		18	UG/KG	8082	12/22/2008 17:38	
Aroclor 1260	ND		18	UG/KG	8082	12/22/2008 17:38	
Metals Analysis		•			er ja ja		
Aluminum - Total	3350	EN*	12.2	MG/KG	6010	42/40/2000 45.33	T.10
Antimony - Total	ND	N*	18.3		6010	12/19/2008 15:22	
Arsenic - Total	3.6	*		MG/KG		12/19/2008 15:22	
Barium - Total			2.4	MG/KG	6010	12/19/2008 15:22	
	36.6	E*	0.61	MG/KG	6010	12/19/2008 15:22	
Beryllium - Total Cadmium - Total	ND 0.00		0.24	MG/KG	6010	12/19/2008 15:22	
	0.29		0.24	MG/KG	6010	12/19/2008 15:22	
Calcium - Total	4310	E*	61.1	MG/KG	6010	12/19/2008 15:22	
Chromium - Total	11.4	E	0.61	MG/KG	6010	12/19/2008 15:22	
Cobalt - Total	2.4	E	0.61	MG/KG	6010	12/19/2008 15:22	
Copper - Total	51.5	EN*	1.2	MG/KG	6010	12/19/2008 15:22	
Iron - Total	12600	E*	12.2	MG/KG	6010	12/19/2008 15:22	
Lead - Total	56.5	N ·	1.2	MG/KG	6010	12/19/2008 15:22	TWS
Magnesium - Total	1200	E*	24.4	MG/KG	6010	12/19/2008 15:22	TWS
Manganese - Total	342	E*	0.24	MG/KG	6010	12/19/2008 15:22	TWS
Mercury - Total	0.070		0.022	MG/KG	7471	12/19/2008 16:08	MM
Nickel - Total	11.7	EN*	0.61	MG/KG	6010	12/19/2008 15:22	TWS
Potassium - Total	378	EN	36.7	MG/KG	6010	12/19/2008 15:22	TWS
Selenium - Total	ND		4.9	MG/KG	6010	12/19/2008 15:22	TWS
Silver - Total	ND		0.61	MG/KG	6010	12/19/2008 15:22	TWS
				*** ***	4040	10/40/2009 45-22	TUE
Sodium - Total	ND	*	171	MG/KG	6010	12/19/2008 15:22	TWS
Sodium - Total Thallium - Total	ND ND	N.	171 7.3	MG/KG MG/KG	~ 6010	12/19/2008 15:22	

Sample ID: RF-TP-07A

Lab Sample ID: A8F96110

Date Collected: 12/16/2008

Time Collected: 13:40

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Randolph Foundry: Site #E905030

Date Received: 12/16/2008

Project No: NY5A946109

Page:

Rept: AN1178

Client No: L10190

		D	etection			Date/Time	•
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
Metals Analysis							
Zinc - Total	117	EN*	2.4	MG/KG	6010	12/19/2008: 15:22	TWS

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 Page: 36 Rept: AN1178

Sample ID: RF-TP-07B

Lab Sample ID: A8F96111
Date Collected: 12/16/2008
Time Collected: 13:35

Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	<u>Limit</u>	<u>Units</u>	Method	Analyzed	Analys
YYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		6 9	UG/KG	8260	12/19/2008 05:49	CDC
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	12/19/2008 05:49	CDC
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6	UG/KG	8260	12/19/2008 05:49	CDC
1,1,2-Trichloroethane	ND		6	UG/KG	8260	12/19/2008 05:49	CDC
1,1-Dichloroethane	ND		6	UG/KG	8260	12/19/2008 05:49	CDC
1,1-Dichloroethene	ND.		6	UG/KG	8260	12/19/2008 05:49	CDC
1,2,4-Trichlorobenzene	ND		6	UG/KG	8260	12/19/2008 05:49	CDC
1,2-Dibromo-3-chloropropane	ND		6	UG/KG	8260	12/19/2008 05:49	CDC
1,2-Dibromoethane	ND .		6	UG/KG	8260	12/19/2008 05:49	CDC
1,2-Dichlorobenzene	ND		6	UG/KG	8260	12/19/2008 05:49	CDC
1,2-Dichloroethane	ND		6	UG/KG	8260	12/19/2008 05:49	CDC
1,2-Dichloropropane	ND		6	UG/KG	8260	12/19/2008 05:49	CDC
1,3-Dichlorobenzene	ND		6 K.	" UG/KG	8260	12/19/2008 05:49	CDC
1,4-Dichlorobenzene	ND		6	UG/KG	8260	12/19/2008 05:49	
2-Butanone	ND		29	UG/KG	8260	12/19/2008 05:49	
2-Hexanone	ND		29	UG/KG	8260	12/19/2008 05:49	
4-Methyl-2-pentanone	ND		29	UG/KG	8260	12/19/2008 05:49	
Acetone	ND		29	UG/KG	8260	12/19/2008 05:49	
Benzene	ND		6	UG/KG	8260	12/19/2008 05:49	
Bromodichloromethane	ND		6	UG/KG	8260	12/19/2008 05:49	
Bromoform	ND		6	UG/KG	8260	12/19/2008 05:49	
Bromomethane	ND		6	UG/KG	8260	12/19/2008 05:49	
Carbon Disulfide	ND		6	UG/KG	8260	12/19/2008 05:49	
Carbon Tetrachloride	ND		6	UG/KG	8260	12/19/2008 05:49	
Chlorobenzene	ND		6	UG/KG	8260	12/19/2008 05:49	
Chloroethane	ND		6	UG/KG	8260	12/19/2008 05:49	
Chloroform	ND		6	UG/KG	8260	12/19/2008 05:49	
Chloromethane	ND		6	UG/KG	8260	12/19/2008 05:49	
cis-1,2-Dichloroethene	ND		6	UG/KG	8260	12/19/2008 05:49	
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	12/19/2008 05:49	
Cyclohexane	ND		6	UG/KG	8260	12/19/2008 05:49	
Dibromochloromethane	ND		6	UG/KG	8260	12/19/2008 05:49	
Dichlorodifluoromethane	ND		6	UG/KG	8260	12/19/2008 05:49	
Ethylbenzene	ND		ė.	UG/KG	8260	12/19/2008 05:49	
Isopropylbenzene	ND		6	UG/KG	8260	12/19/2008 05:49	
Methyl acetate	ND		6	UG/KG	8260	12/19/2008 05:49	
Methyl-t-Butyl Ether (MTBE)	ND		6	UG/KG	8260 8260	12/19/2008 05:49	
Methylcyclohexane	ND		6	UG/KG	8260	12/19/2008 05:49	
Methylene chloride	9	ь.					
•		В	6	UG/KG	8260	12/19/2008 05:49	
Styrene	ND		6	UG/KG	8260	12/19/2008 05:49	
Tetrachloroethene	ND		6	UG/KG	8260	12/19/2008 05:49	
Toluene	ND		6	UG/KG	8260	12/19/2008 05:49	
Total Xylenes	ND		18	UG/KG	8260	12/19/2008 05:49	
trans-1,2-Dichloroethene	ND		6	UG/KG	8260	12/19/2008 05:49	
trans-1,3-Dichloropropene	ND		6	UG/KG	8260	12/19/2008 05:49	
Trichloroethene	ND		6	UG/KG	8260	12/19/2008 05:49	
Trichlorofluoromethane	ND		6	UG/KG	8260	12/19/2008 05:49	
Vinyl chloride	ND		12	UG/KG	8260	12/19/2008 05:49	CDC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 37 Rept: AN1178

Sample ID: RF-TP-07B Lab Sample ID: A8F96111 Date Collected: 12/16/2008 Time Collected: 13:35 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

	Detection					——Date/Time		
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analys	
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS						•		
2,2'-Oxybis(1-Chloropropane)	ND	track to	190 185	UG/KG	8270	12/26/2008 18:47	ERK	
2,4,5-Trichlorophenol	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
2,4,6-Trichlorophenol	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
2,4-Dichlorophenol	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
2,4-Dimethylphenol	ND -		190	UG/KG	8270	12/26/2008 18:47	ERK	
2,4-Dinitrophenol	ND		370	UG/KG	8270	12/26/2008 18:47	ERK	
2,4-Dinitrotoluene	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
2,6-Dinitrotoluene	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
2-Chloronaphthalene	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
2-Chlorophenol	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
2-Methylnaphthalene	260		190	UG/KG	8270	12/26/2008 18:47	ERK	
2-Methylphenol	21	J	190	UG/KG	8270	12/26/2008 18:47	ERK	
2-Nitroaniline	ND ·		370	UG/KG	8270	12/26/2008 18:47		
2-Nitrophenol	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
3,3'-Dichlorobenzidine	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
3-Nitroaniline	ND		370	UG/KG	8270	12/26/2008 18:47	ERK	
4,6-Dinitro-2-methylphenol	ND		370	UG/KG	8270	12/26/2008 18:47	ERK	
4-Bromophenyl phenyl ether	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
4-Chloro-3-methylphenol	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
4-Chloroaniline	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
4-Chlorophenyl phenyl ether	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
4-Methylphenol	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
4-Nitroaniline	ND		370	UG/KG	8270	12/26/2008 18:47	ERK	
4-Nitrophenol	ND		370	UG/KG	8270	12/26/2008 18:47	ERK	
Acenaphthene	15	J	190	UG/KG	8270	12/26/2008 18:47	ERK	
Acenaphthylene	32	J	190	UG/KG	8270	12/26/2008 18:47	ERK	
Acetophenone	ND ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
Anthracene	73	J	190	UG/KG	8270	12/26/2008 18:47	ERK	
Atrazine	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
Benzaldehyde	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
Benzo(a)anthracene	330		190	UG/KG	8270	12/26/2008 18:47	ERK	
Benzo(a)pyrene	460		190	UG/KG	8270	12/26/2008 18:47	ERK	
Benzo(b)fluoranthene	690		190	UG/KG	8270	12/26/2008 18:47	ERK	
Benzo(ghi)perylene	290		190	UG/KG	8270	12/26/2008 18:47	ERK	
Benzo(k)fluoranthene	280		190	UG/KG	8270	12/26/2008 18:47	ERK	
Biphenyl	69	J	190	UG/KG	8270	12/26/2008 18:47	ERK	
Bis(2-chloroethoxy) methane	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
Bis(2-chloroethyl) ether	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
Bis(2-ethylhexyl) phthalate	340		190	UG/KG	8270	12/26/2008 18:47	ERK	
Butyl benzyl phthalate	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
Caprolactam	110	j	190	UG/KG	8270	12/26/2008 18:47	ERK	
Carbazole	27	J	190	UG/KG	8270	12/26/2008 18:47	ERK	
Chrysene	520	-	190	UG/KG	8270	12/26/2008 18:47	ERK	
Di-n-butyl phthalate	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
Di-n-octyl phthalate	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	
Dibenzo(a,h)anthracene	76	J	190	UG/KG	8270	12/26/2008 18:47	ERK	
Dibenzofuran	84	J	190	UG/KG	8270 8270	12/26/2008 18:47		
Diethyl phthalate	ND	J	190	UG/KG	8270	12/26/2008 18:47	ERK ERK	
Dimethyl phthalate	ND		190	UG/KG	8270	12/26/2008 18:47	ERK	

Date: 01/19/2009 Time: 12:08:35 NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Page:

Rept: AN1178

Sample ID: RF-TP-07B Lab Sample ID: A8F96111 Date Collected: 12/16/2008 Time Collected: 13:35 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	<u>Analyzed</u>	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	370		190	UG/KG	8270	12/26/2008 18:47	ERK
Fluorene	23	J	190	UG/KG	8270	12/26/2008 18:47	ERK
Hexachlorobenzene	ND		190	UG/KG	8270	12/26/2008 18:47	ERK
Hexachlorobutadiene	ND		190	UG/KG	8270	12/26/2008 18:47	ERK
Hexachlorocyclopentadiene	ND		190	UG/KG	8270	12/26/2008 18:47	ERK
Hexachloroethane	ND		190	UG/KG	8270	12/26/2008 18:47	ERK
Indeno(1,2,3-cd)pyrene	240		190	UG/KG	8270	12/26/2008 18:47	ERK
Isophorone	ND		190	UG/KG	8270	12/26/2008 18:47	ERK
N-Nitroso-Di-n-propylamine	ND		190	UG/KG	8270	12/26/2008 18:47	ERK
N-nitrosodiphenylamine	ND		190	UG/KG	8270	12/26/2008 18:47	ERK
Naphthalene	380		190	UG/KG	8270	12/26/2008 18:47	ERK
Nitrobenzene	ND		190	UG/KG	8270	12/26/2008 18:47	ERK
Pentachlorophenol	ND	The Armada Markett	370	UG/KG	8270	12/26/2008 18:47	ERK
Phenanthrene	410		190	UG/KG	8270	12/26/2008 18:47	ERK
Phenol	ND		190	UG/KG	8270	12/26/2008 18:47	ERK
Pyrene	340		190	UG/KG	8270	12/26/2008 18:47	ERK
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		19	UG/KG	8082	12/22/2008 17:57	DW
Aroclor 1221	ND		19	UG/KG	8082	12/22/2008 17:57	
Aroclor 1232	ND		19	UG/KG	8082	12/22/2008 17:57	
Aroclor 1242	ND		19	UG/KG	8082	12/22/2008 17:57	
Aroclor 1248	ND		19	UG/KG	8082	12/22/2008 17:57	
Aroclor 1254	30		19	UG/KG	8082	12/22/2008 17:57	
Aroclor 1260	ND		19	UG/KG	8082	12/22/2008 17:57	
Metals Analysis	e e e e e e e e e e e e e e e e e e e						
Aluminum - Total	2070	EN*	11.7	MG/KG	6010	12/19/2008 15:27	TWS
Antimony - Total	ND	N*	17.6	MG/KG	6010	12/19/2008 15:27	
Arsenic - Total	2.4	*	2.3	MG/KG	6010	12/19/2008 15:27	
Barium - Total	21.4	E*	0.59	MG/KG	6010	12/19/2008 15:27	
Beryllîum - Total	ND		0.23	MG/KG	6010	12/19/2008 15:27	
Cadmium - Total	0.41		0.23	MG/KG	6010	12/19/2008 15:27	
Calcium - Total	911	E*	58.6	MG/KG	6010	12/19/2008 15:27	
Chromium - Total	10.3	E	0.59	MG/KG	6010	12/19/2008 15:27	
Cobalt - Total	1.3	E	0.59	MG/KG	6010	12/19/2008 15:27	
Copper - Total	31.1	EN*	1.2	MG/KG	6010	12/19/2008 15:27	
Iron - Total	9610	E*	11.7	MG/KG	6010	12/19/2008 15:27	
Lead - Total	39.3	N	1.2	MG/KG	6010	12/19/2008 15:27	
Magnesium - Total	402	E*	23.4	MG/KG	6010	12/19/2008 15:27	
Manganese - Total	122	E*	0.23	MG/KG	6010	12/19/2008 15:27	
Mercury - Total	0.082	-	0.021	MG/KG	7471	12/19/2008 15:27	
Nickel - Total	10.4	EN*	0.59	MG/KG	6010	12/19/2008 15:27	
Potassium - Total	221	EN	35.1	MG/KG	6010	12/19/2008 15:27	
Selenium - Total	ND	E14	4.7	MG/KG	6010	12/19/2008 15:27	
Silver - Total	ND		0.59	MG/KG	6010	12/19/2008 15:27	
Sodium - Total	ND	*	164	MG/KG	6010	12/19/2008 15:27	
Thallium - Total	ND	N	7.0	MG/KG	6010	12/19/2008 15:27	
Vanadium - Total	3.6	E	0.59	MG/KG	6010		
randram recet	3.0	-	0.37	may Nu	0010	12/19/2008 15:27	TWS

Date: 01/19/2009 Time: 12:08:35

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 Page:

Rept: AN1178

Sample ID: RF-TP-07B Lab Sample ID: A8F96111 Date Collected: 12/16/2008 Time Collected: 13:35

Date Received: 12/16/2008

Project No: NY5A946109

Client No: L10190

			 		Detection	n		—Date/Time	
***************************************	Parameter		 Result	Flag	Limit	Units	Method	Analyzed	Analyst
Metals Analysis									
Zinc - Total	ģ d ₂	erryer r	 82.3	EN*	2.3	MG/KG	6010	12/19/2008 15:27	TWS

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 40 Rept: AN1178

Sample ID: RF-TP-07C Lab Sample ID: A8F96112 Date Collected: 12/16/2008 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

Date	Collected:	12/16/2008
Time	Collected:	13:30

			Detection			—Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES			Limit	· UIII CS	nethod	- Midtyzed	Allatys
1,1,1-Trichloroethane	ND - K		6	UG/KG	8260	12/19/2008 12:26	PQ
1,1,2,2-Tetrachloroethane	. ND		6	UG/KG	8260	12/19/2008 12:26	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6	UG/KG	8260	12/19/2008 12:26	
1,1,2-Trichloroethane	ND		6	UG/KG	8260	12/19/2008 12:26	
1,1-Dichloroethane	ND		6	UG/KG	8260	12/19/2008 12:26	
1,1-Dichloroethene	ND .		6	UG/KG	8260	12/19/2008 12:26	
1,2,4-Trichlorobenzene	. ND		6	UG/KG	8260	12/19/2008 12:26	
1,2-Dibromo-3-chloropropane	ND		6	UG/KG	8260	12/19/2008 12:26	
1,2-Dibromoethane	ND		6	UG/KG	8260	12/19/2008 12:26	
1,2-Dichlorobenzene	ND		6	UG/KG	8260	12/19/2008 12:26	
1,2-Dichloroethane	ND		6	UG/KG	8260	12/19/2008 12:26	
1,2-Dichloropropane	ND		6	UG/KG	8260		
1,3-Dichlorobenzene	ND		6		8260	12/19/2008 12:26	
1,4-Dichlorobenzene	ND		6	UG/KG UG/KG	8260	12/19/2008 12:26	
2-Butanone	ND		29			12/19/2008 12:26	
2-Hexanone	ND		29 29	UG/KG	8260	12/19/2008 12:26	
				UG/KG	8260	12/19/2008 12:26	
4-Methyl-2-pentanone Acetone	ND 9		29	UG/KG	8260	12/19/2008 12:26	
		J	29	UG/KG	8260	12/19/2008 12:26	
Benzene	ND		6	UG/KG	8260	12/19/2008 12:26	
Bromodichloromethane	ND		6	UG/KG	8260	12/19/2008 12:26	
Bromoform	ND		6	UG/KG	8260	12/19/2008 12:26	
Bromomethane	ND		6	UG/KG	8260	12/19/2008 12:26	
Carbon Disulfide	ND	-	6	UG/KG	8260	12/19/2008 12:26	
Carbon Tetrachloride	ND		6	UG/KG	8260	12/19/2008 12:26	
Chlorobenzene	ND		6	UG/KG	8260	12/19/2008 12:26	
Chloroethane	ND		6	UG/KG	8260	12/19/2008 12:26	
Chloroform	ND		6	UG/KG	8260	12/19/2008 12:26	
Chloromethane	ND		6	UG/KG	8260	12/19/2008 12:26	
cis-1,2-Dichloroethene	ND		6	UG/KG	8260	12/19/2008 12:26	
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	12/19/2008 12:26	
Cyclohexane	ND		6	UG/KG	8260	12/19/2008 12:26	
Dibromochloromethane	ND		6	UG/KG	8260	12/19/2008 12:26	
Dichlorodifluoromethane	ND		6	UG/KG	8260	12/19/2008 12:26	PQ
Ethylbenzene	ND		6	UG/KG	8260	12/19/2008 12:26	PQ
Isopropylbenzene	ND		6	UG/KG	8260	12/19/2008 12:26	PQ
Methyl acetate	ND		6	UG/KG	8260	12/19/2008 12:26	PQ
Methyl-t-Butyl Ether (MTBE)	ND		6	UG/KG	8260	12/19/2008 12:26	PQ
Methylcyclohexane	ND		6	UG/KG	8260	12/19/2008 12:26	PQ
Methylene chloride	14	В	6	UG/KG	8260	12/19/2008 12:26	PQ
Styrene	ND		6	UG/KG	8260	12/19/2008 12:26	PQ
Tetrachloroethene	ND		6	UG/KG	8260	12/19/2008 12:26	PQ
Toluene	ND		6	UG/KG	8260	12/19/2008 12:26	PQ
Total Xylenes	ND		17	UG/KG	8260	12/19/2008 12:26	PQ
trans-1,2-Dichloroethene	ND		6	UG/KG	8260	12/19/2008 12:26	PQ
trans-1,3-Dichloropropene	ND		6	UG/KG	8260	12/19/2008 12:26	PQ
Trichloroethene	ND		6	UG/KG	8260	12/19/2008 12:26	PQ
Trichlorofluoromethane	ND		6	UG/KG	8260	12/19/2008 12:26	PQ
Vinyl chloride	ND		12	UG/KG	8260	12/19/2008 12:26	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 41 Rept: AN1178

Sample ID: RF-TP-07C Lab Sample ID: A8F96112 Date Collected: 12/16/2008 Time Collected: 13:30 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			——Date/Tim e	-
Parameter	Resul t	<u>Flag</u>	Limit	Units	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,21-0xybis(1-Chloropropane)	ND 2		200	UG/KG	8270	12/26/2008 19:10	ERK
2,4,5-Trichlorophenol	ND		200	UG/KG	8270	12/26/2008 19:10	ERK
2,4,6-Trichlorophenol	ND		200	UG/KG	8270	12/26/2008 19:10	ERK
2,4-Dichlorophenol	ND		200	UG/KG	8270	12/26/2008 19:10	ERK
2,4-Dimethylphenol	ND		200	UG/KG	8270	12/26/2008 19:10	ERK
2,4-Dinitrophenol	ND		400	UG/KG	8270	12/26/2008 19:10	ERK
2,4-Dinitrotoluene	ND		200	UG/KG	8270	12/26/2008 19:10	ERK
2,6-Dinitrotoluene	ND -		200	UG/KG	8270	12/26/2008 19:10	ERK
2-Chloronaphthalene	ND		200	UG/KG	8270	12/26/2008 19:10	ERK
2-Chlorophenol	ND		200	UG/KG	8270	12/26/2008 19:10	ERK
2-Methylnaphthalene	ND		200	UG/KG	8270	12/26/2008 19:10	ERK
2-Methylphenol	ND		200	UG/KG	8270	12/26/2008 19:10	ERK
2-Nitroaniline	ND		400	UG/KG	8270	12/26/2008 19:10	ERK
2-Nitrophenol	ND		200	UG/KG	8270	12/26/2008 19:10	ERK
3,3'-Dichlorobenzidine	ND		200	UG/KG	8270	12/26/2008 19:10	ERK
3-Nitroaniline	ND		400	UG/KG	8270	12/26/2008 19:10	ERK
4,6-Dinitro-2-methylphenol	ND		400	UG/KG	8270	12/26/2008 19:10	ERK
4-Bromophenyl phenyl ether	ND		200	UG/KG	8270	12/26/2008 19:10	ERK
4-Chloro-3-methylphenol	ND		200	UG/KG	8270	12/26/2008 19:10	ERK
4-Chloroaniline	ND		200	UG/KG	8270	12/26/2008 19:10	
4-Chlorophenyl phenyl ether	ND		200	UG/KG	8270	12/26/2008 19:10	
4-Methylphenol	ND		200	UG/KG	8270	12/26/2008 19:10	
4-Nitroaniline	ND .		400	UG/KG	8270	12/26/2008 19:10	
4-Nitrophenol	ND		400	UG/KG	8270	12/26/2008 19:10	
Acenaphthene	ND		200	UG/KG	8270	12/26/2008 19:10	
Acenaphthylene	ND		200	UG/KG	8270	12/26/2008 19:10	
Acetophenone	ND		200	UG/KG	8270	12/26/2008 19:10	
Anthracene	ND		200	UG/KG	8270	12/26/2008 19:10	
Atrazine	ND		200	UG/KG	8270	12/26/2008 19:10	
Benzaldehyde	ND		200	UG/KG	8270	12/26/2008 19:10	
Benzo(a)anthracene	ND		200	UG/KG	8270	12/26/2008 19:10	
Benzo(a)pyrene	ND		200	UG/KG	8270	12/26/2008 19:10	
Benzo(b)fluoranthene	ND		200	UG/KG	8270	12/26/2008 19:10	
Benzo(ghi)perylene	ND		200	UG/KG	8270	12/26/2008 19:10	
Benzo(k)fluoranthene	ND		200	UG/KG	8270	12/26/2008 19:10	
Biphenyl	ND		200	UG/KG	8270	12/26/2008 19:10	
Bis(2-chloroethoxy) methane	ND		200	UG/KG	8270	12/26/2008 19:10	
Bis(2-chloroethyl) ether	ND		200	UG/KG	8270	12/26/2008 19:10	
Bis(2-ethylhexyl) phthalate	ND		200	UG/KG	8270	12/26/2008 19:10	
Butyl benzyl phthalate	ND		200	UG/KG	8270	12/26/2008 19:10	
Caprolactam	ND		200	UG/KG	8270	12/26/2008 19:10	
Carbazole	ND		200	UG/KG	8270	12/26/2008 19:10	
Chrysene	ND		200	UG/KG	8270	12/26/2008 19:10	
Di-n-butyl phthalate	ND		200	UG/KG	8270	12/26/2008 19:10	
Di-n-octyl phthalate	ND		200	UG/KG	8270	12/26/2008 19:10	
Dibenzo(a,h)anthracene	ND		200	UG/KG	8270	12/26/2008 19:10	
Dibenzofuran	ND		200	UG/KG	8270	12/26/2008 19:10	
Diethyl phthalate	ND		200	UG/KG	8270	12/26/2008 19:10	
Dimethyl phthalate	ND		200	UG/KG	8270	12/20/2000 17:10	EKK

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Randolph Foundry: Site #E905030

Sample ID: RF-TP-07C Lab Sample ID: A8F96112 Date Collected: 12/16/2008

Time Collected: 13:30

Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

Page:

Rept: AN1178

Result	Flag	Limit	Units	Method	Analyze	d	Apolyot
						<u> </u>	<u>Analyst</u>
ND		200	UG/KG	8270	12/26/2008	19:10	ERK
ND		200	UG/KG	8270	12/26/2008	19:10	ERK
ND		200	UG/KG	8270	12/26/2008	19:10	ERK
ND		200	UG/KG	8270	12/26/2008	19:10	ERK
ND		200	UG/KG	8270	12/26/2008	19:10	ERK
ND		200	UG/KG	8270	12/26/2008	19:10	ERK
ND		200	UG/KG	8270	12/26/2008	19:10	ERK
ND		200	UG/KG	8270	12/26/2008	19:10	ERK
ND		200	UG/KG	8270	12/26/2008	19:10	ERK
ND		200	UG/KG	8270	12/26/2008	19:10	ERK
ND		200	UG/KG	8270	12/26/2008	19:10	ERK
ND		200	UG/KG	8270	12/26/2008	19:10	ERK
ND		400	UG/KG	8270	12/26/2008	19:10	ERK
ND		200	UG/KG	8270	12/26/2008	19:10	ERK
ND		200	UG/KG	8270	12/26/2008	19:10	ERK
ND		200	UG/KG	8270	12/26/2008	19:10	ERK
ND		20	UG/KG	8082	12/22/2008	18:17	DW
NĐ		20	UG/KG	8082			DW
ND		20	UG/KG	8082			DW
	•		•				DW
			-				DW
			=				DW
ND		20	UG/KG	8082	· ·		DW
			w		ture f		
6910	EN*	10.7	MG/KG	6010	12/19/2008	15:38	TWS
			-				TWS
	*		-				TWS
	E*		-				TWS
	-						TWS
							TWS
	F*						TWS
	-						TWS
							TWS
							TWS
							TWS
							TWS
							TWS
	E"						TWS
	ru÷.						
	EN						TWS
							TWS
	÷						TWS
ND ND		149 6.4	MG/KG MG/KG	6010 6010	12/19/2008		TWS TWS
	N						
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 200 ND 20 ND 32 ND 0.21 ND 0.21 ND 0.21 ND 0.21 ND 0.53 ND 0.53 ND 0.53 ND 0.53 ND 0.53 ND 4.3	ND 200 UG/KG ND 200 UG/KG ND 200 UG/KG ND 200 UG/KG ND 200 UG/KG ND 200 UG/KG ND 200 UG/KG ND 200 UG/KG ND 200 UG/KG ND 200 UG/KG ND 200 UG/KG ND 200 UG/KG ND 200 UG/KG ND 200 UG/KG ND 200 UG/KG ND 20 UG/KG ND 0.21 MG/KG ND 0.21	ND	ND 200 UG/KG 8270 12/26/2008 ND 200 UG/KG 8082 12/22/2008 ND 20 UG/KG 6010 12/19/2008 ND 20 UG/KG 6010 12/19/2008 ND 20 UG/KG 6010 12/19/2008 ND 20 UG/KG 6010 12/19/2008 N	ND

Date: 01/19/2009 Time: 12:08:35 NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Randolph Foundry: Site #E905030

Date Received: 12/16/2008

Project No: NY5A946109

Page:

Rept: AN1178

Client No: L10190

Site No:

Sample ID: RF-TP-07C Lab Sample ID: A8F96112 Date Collected: 12/16/2008 Time Collected: 13:30

		 		Detection			— Date/Time	
M. L. J. M. J. J. S.	Parameter	 Result	Flag	Limit	<u>Units</u>	Method	Analyzed	<u>Analyst</u>
Metals Analysis Zinc - Total	egister over the power of	 41.7	EN*	- 2.1	MG/KG	6010	12/19/2008 15:38	TWS

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Page:

Rept: AN1178

Sample ID: RF-TP-08A Lab Sample ID: A8F96113 Date Collected: 12/16/2008 Time Collected: 14:30 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection	•		Date/Time	
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND	200.5	770	UG/KG	8270	12/26/2008 20:19	ERK
2,4,5-Trichlorophenol	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
2,4,6-Trichlorophenol	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
2,4-Dichlorophenol	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
2,4-Dimethylphenol	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
2,4-Dinitrophenol	ND		1500	UG/KG	8270	12/26/2008 20:19	ERK
2,4-Dinitrotoluene	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
2,6-Dinitrotoluene	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
2-Chloronaphthalene	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
2-Chlorophenol	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
2-Methylnaphthalene	240	J	770	UG/KG	8270	12/26/2008 20:19	ERK
2-Methylphenol	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
2-Nitroaniline	ND		1500	UG/KG	8270	12/26/2008 20:19	ERK
2-Nitrophenol	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
3,3'-Dichlorobenzidine	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
3-Nitroaniline	ND		1500	UG/KG	8270	12/26/2008 20:19	ERK
4,6-Dinitro-2-methylphenol	ND		1500	UG/KG	8270	12/26/2008 20:19	ERK
4-Bromophenyl phenyl ether	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
4-Chloro-3-methylphenol	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
4-Chloroaniline	ND		770	UG/KG	8270	12/26/2008 20:19	€RK
4-Chlorophenyl phenyl ether	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
4-Methylphenol	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
4-Nitroaniline	ND		1500	UG/KG	8270	12/26/2008 20:19	ERK
4-Nitrophenol	ND		1500	UG/KG	8270	12/26/2008 20:19	
Acenaphthene	600	J	770	UG/KG	8270	12/26/2008 20:19	
Acenaphthylene	420	J	770	UG/KG	8270	12/26/2008 20:19	
Acetophenone	ND		770	UG/KG	8270	12/26/2008 20:19	
Anthracene	2100		770	UG/KG	8270	12/26/2008 20:19	
Atrazine	ND		770	UG/KG	8270	12/26/2008 20:19	
Benzaldehyde	ND		770	UG/KG	8270	12/26/2008 20:19	
Benzo(a)anthracene	5000		770	UG/KG	8270	12/26/2008 20:19	
Benzo(a)pyrene	4700		770	UG/KG	8270	12/26/2008 20:19	
Benzo(b)fluoranthene	6000		770	UG/KG	8270	12/26/2008 20:19	
Benzo(ghi)perylene	2100		770	UG/KG	8270	12/26/2008 20:19	
Benzo(k)fluoranthene	2000		770	UG/KG	8270	12/26/2008 20:19	
Biphenyl	100	J	770	UG/KG	8270	12/26/2008 20:19	
Bis(2-chloroethoxy) methane	ND		770	UG/KG	8270	12/26/2008 20:19	
Bis(2-chloroethyl) ether	ND		770	UG/KG	8270	12/26/2008 20:19	
Bis(2-ethylhexyl) phthalate	9800		770	UG/KG	8270	12/26/2008 20:19	
Butyl benzyl phthalate	ND		770	UG/KG	8270	12/26/2008 20:19	
Caprolactam	ND		770	UG/KG	8270	12/26/2008 20:19	
Carbazole	920		770	UG/KG	8270	12/26/2008 20:19	
Chrysene	4200		770	UG/KG	8270	12/26/2008 20:19	
Di-n-butyl phthalate	ND		770	UG/KG	8270	12/26/2008 20:19	
Di-n-octyl phthalate	ND ND		770	UG/KG	8270	12/26/2008 20:19	
Dibenzo(a,h)anthracene	540	J	770	UG/KG	8270		
Dibenzofuran	750	ن ل	770 770	UG/KG	8270 8270	12/26/2008 20:19	
Diethyl phthalate	ND	J	770 770	UG/KG	8270	12/26/2008 20:19	
Promyt pinnatate	שא		770 770	UG/KG	8270	12/26/2008 20:19 12/26/2008 20:19	ERK ERK

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 Page: 45 Rept: AN1178

Sample ID: RF-TP-08A Lab Sample ID: A8F96113 Date Collected: 12/16/2008

Time Collected: 14:30

Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

Time Cottected, 14.50						SILE NO.	
			Detection			Date/Time	-
<u>Parameter</u>	<u>Resul t</u>	Flag	Limit	<u>Units</u>	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	12000	1 - 24 / pls	770	UG/KG	8270	12/26/2008 20:19) ERK
Fluorene	1100		770	UG/KG	8270	12/26/2008 20:19	ERK
Hexachlorobenzene	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
Hexach Lorobutadiene	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
Hexachlorocyclopentadiene	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
Hexachloroethane	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
Indeno(1,2,3-cd)pyrene	2000		770	UG/KG	8270	12/26/2008 20:19	ERK
Isophorone	ND	*	770	UG/KG	8270	12/26/2008 20:19	ERK
N-Nitroso-Di-n-propylamine	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
N-nitrosodiphenylamine	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
Naphthalene	210	J	770	UG/KG	8270	12/26/2008 20:19	ERK
Nitrobenzene	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
Pentachlorophenol	ND	The profession	1500	UG/KG	8270	12/26/2008 20:19	ERK
Phenanthrene	11000		770	UG/KG	8270	12/26/2008 20:19	ERK
Phenol	ND		770	UG/KG	8270	12/26/2008 20:19	ERK
Pyrene	8800		770	UG/KG	8270	12/26/2008 20:19	ERK
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		19	UG/KG	8082	12/22/2008 19:16	. DW
Aroclor 1221	ND		19	UG/KG	8082	12/22/2008 19:16	5 DW
Aroclor 1232	ND		19	UG/KG	8082	12/22/2008 19:16	5 DW
Aroclor 1242	ND		19	UG/KG	8082	12/22/2008 19:16	b DW
Aroclor 1248	180		19	UG/KG	8082	12/22/2008 19:16	DW .
Aroclor 1254	ND		19	UG/KG	8082	12/22/2008 19:16	. DW
Aroclor 1260	55		19	UG/KG	8082	12/22/2008 19:16	DW .
Métals Analysis	6	** .					
Aluminum - Total	7140	EN*	10.7	MG/KG	6010	12/19/2008 16:03	TWS
Antimony - Total	ND	N*	16.1	MG/KG	6010	12/19/2008 16:03	TWS
Arsenic - Total	12.3	*	2.1	MG/KG	6010	12/19/2008 16:03	TWS
Barium - Total	128	E*	0.54	MG/KG	6010	12/19/2008 16:03	TWS
Beryllium - Total	0.31		0.21	MG/KG	6010	12/19/2008 16:03	TWS
Cadmium - Total	0.87		0.21	MG/KG	6010	12/19/2008 16:03	TWS
Calcium - Total	19600	E*	53.5	MG/KG	6010	12/19/2008 16:03	
Chromium - Total	38.1	Ε	0.54	MG/KG	6010	12/19/2008 16:03	
Cobalt - Total	7.7	E	0.54	MG/KG	6010	12/19/2008 16:03	
Copper - Total	834	EN*	1.1	MG/KG	6010	12/19/2008 16:03	
Iron - Total	59200	E*	10.7	MG/KG	6010	12/19/2008 16:03	
Lead - Total	140	N	1.1	MG/KG	6010	12/19/2008 16:03	
Magnesium - Total	2350	E*	21.4	MG/KG	6010	12/19/2008 16:03	
Manganese - Total	891	E*	0.21	MG/KG	6010	12/19/2008 16:03	
Mercury - Total	0.214	-	0.022	MG/KG	7471	12/19/2008 16:20	
Nickel - Total	79.4	EN*	0.54	MG/KG	6010	12/19/2008 16:03	
Potassium - Total	815	EN	32.1	MG/KG	6010	12/19/2008 16:03	
Selenium - Total	ND	F10	4.3	MG/KG	6010	12/19/2008 16:03	
Silver - Total	ND		0.54	MG/KG	6010	12/19/2008 16:03	
Solium - Total	177	*	150	MG/KG MG/KG	6010	12/19/2008 16:03	
Thallium - Total	. ND	N +	6.4	MG/KG	6010	12/19/2008 16:03	
Vanadium - Total	22.1	E	0.54	MG/KG	6010	12/19/2008 16:03	TWS

Date: 01/19/2009 Time: 12:08:35 NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

Re

Page: 46 Rept: AN1178

NYSDEC Spills - Randolph Foundry: Site #E905030

Sample ID: RF-TP-08A Lab Sample ID: A8F96113

Date Collected: 12/16/2008 Time Collected: 14:30 Date Received: 12/16/2008

Project No: NY5A946109 Client No: L10190

	THE PROPERTY OF								
					Detection			Date/Time	
	Parameter		Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
Metals Analysis								•	
Zinc - Total	y -	•	436	EN* ****	2.1	MG/KG	6010	12/19/2008 16:03	TWS

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 Page: 47 Rept: AN1178

Sample ID: RF-TP-08B Lab Sample ID: A8F96114 Date Collected: 12/16/2008 Time Collected: 14:15 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

·			Detection			Date/Time	•
Parameter	Result	<u>Flag</u>	Limit	Units_	Method	Analyzed	<u>Analys</u> 1
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND	11. The 11.	a⊁ 1 7 1	·· UG/KG	8260	12/19/2008 13:43	PQ
1,1,2,2-Tetrachloroethane	ND		7	UG/KG	8260	12/19/2008 13:43	PQ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		7	UG/KG	8260	12/19/2008 13:43	PQ
1,1,2-Trichloroethane	ND		7	UG/KG	8260	12/19/2008 13:43	PQ
1,1-Dichloroethane	ND		7	UG/KG	8260	12/19/2008 13:43	PQ
1,1-Dichloroethene	ND		7	UG/KG	8260	12/19/2008 13:43	PQ
1,2,4-Trichlorobenzene	ND		7 .	UG/KG	8260	12/19/2008 13:43	PQ
1,2-Dibromo-3-chloropropane	ND		7	UG/KG	8260	12/19/2008 13:43	PQ
1,2-Dibromoethane	ND		7	UG/KG	8260	12/19/2008 13:43	PQ
1,2-Dichlorobenzene	ND		7	UG/KG	8260	12/19/2008 13:43	PQ
1,2-Dichloroethane	ND		7	UG/KG	8260	12/19/2008 13:43	PQ
1,2-Dichloropropane	ND		7	UG/KG	8260	12/19/2008 13:43	PQ
1,3-Dichlorobenzene	ND.		7	UG/KG	8260	12/19/2008 13:43	
1,4-Dichlorobenzene	ND		7	UG/KG	8260	12/19/2008 13:43	
2-Butanone	ND		34	UG/KG	8260	12/19/2008 13:43	
2-Hexanone	ND		34	UG/KG	8260	12/19/2008 13:43	
4-Methyl-2-pentanone	ND		34	UG/KG	8260	12/19/2008 13:43	
Acetone	13	J	34	UG/KG	8260	12/19/2008 13:43	
Benzene	ND		7	UG/KG	8260	12/19/2008 13:43	
Bromodichloromethane	ND		7	UG/KG	8260	12/19/2008 13:43	
Bromoform	ND		7	UG/KG	8260	12/19/2008 13:43	
Bromomethane	NĐ		7	UG/KG	8260	12/19/2008 13:43	
Carbon Disulfide	ND		7	UG/KG	8260	12/19/2008 13:43	
Carbon Tetrachloride	ND		7	UG/KG	8260	12/19/2008 13:43	
Chlorobenzene	ND		7	UG/KG	8260	12/19/2008 13:43	
Chloroethane	ND		7	UG/KG	8260	12/19/2008 13:43	
Chloroform	ND		7	UG/KG	8260	12/19/2008 13:43	
Chloromethane	ND		7	UG/KG	8260	12/19/2008 13:43	
cis-1,2-Dichloroethene	ND		7	UG/KG	8260	12/19/2008 13:43	
cis-1,3-Dichloropropene	ND		7	UG/KG	8260	12/19/2008 13:43	
Cyclohexane	ND		7	UG/KG	8260	12/19/2008 13:43	
Dîbromochloromethane	ND		7	UG/KG	8260	12/19/2008 13:43	
Dichlorodifluoromethane	ND		7	UG/KG	8260	12/19/2008 13:43	
Ethylbenzene	6	.I	7	UG/KG	8260	12/19/2008 13:43	
Isopropylbenzene	ND	u	7	UG/KG	8260	12/19/2008 13:43	
Methyl acetate	ND		7	UG/KG	8260	12/19/2008 13:43	
Methyl-t-Butyl Ether (MTBE)	ND		7	UG/KG	8260		
Methylcyclohexane	ND		7	UG/KG	8260	12/19/2008 13:43	
Methylene chloride	14	В	7			12/19/2008 13:43	
Styrene	ND	Đ	7	UG/KG	8260	12/19/2008 13:43	
Tetrachloroethene				UG/KG	8260	12/19/2008 13:43	
Toluene	ND		7	UG/KG	8260	12/19/2008 13:43	
	ND OB		7	UG/KG	8260	12/19/2008 13:43	
Total Xylenes	98		20	UG/KG	8260	12/19/2008 13:43	
trans-1,2-Dichloroethene	ND		7	UG/KG	8260	12/19/2008 13:43	
trans-1,3-Dichloropropene	ND		7	UG/KG	8260	12/19/2008 13:43	
Trichloroethene	ND		7	UG/KG	8260	12/19/2008 13:43	
Trichlorofluoromethane	ND		7	UG/KG	8260	12/19/2008 13:43	
Vinyl chloride	ND		13	UG/KG	8260	12/19/2008 13:43	PQ

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 48 Rept: AN1178

Sample ID: RF-TP-08B Lab Sample ID: A8F96114 Date Collected: 12/16/2008 Time Collected: 14:15 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	<u> </u>	Limit	<u>Units</u>	Method	Analyzed	<u>Analys</u>
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS						•	
2,2'-Oxybis(1-Chloropropane)	ND		180	UG/KG	8270	12/26/2008 20:42	
2,4,5-Trichlorophenol	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
2,4,6-Trichlorophenol	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
2,4-Dichlorophenol	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
2,4-Dimethylphenol	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
2,4-Dinitrophenol	ND		350	UG/KG	8270	12/26/2008 20:42	ERK
2,4-Dinitrotoluene	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
2,6-Dinitrotoluene	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
2-Chloronaphthalene	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
2-Chlorophenol	ND	•	180	UG/KG	8270	12/26/2008 20:42	ERK
2-Methylnaphthalene	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
2-Methylphenol	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
2-Nitroaniline	ND		350	UG/KG	8270	12/26/2008 20:42	ERK
2-Nitrophenol	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
3,31-Dichlorobenzidine	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
3-Nitroaniline	ND		350	UG/KG	8270	12/26/2008 20:42	ERK
4,6-Dinitro-2-methylphenol	ND		350	UG/KG	8270	12/26/2008 20:42	
4-Bromophenyl phenyl ether	ND		180	UG/KG	8270	12/26/2008 20:42	
4-Chloro-3-methylphenol	ND		180	UG/KG	8270	12/26/2008 20:42	
4-Chloroaniline	ND		180	UG/KG	8270	12/26/2008 20:42	
4-Chlorophenyl phenyl ether	ND		180	UG/KG	8270	12/26/2008 20:42	
4-Methylphenol	ND		180	UG/KG	8270	12/26/2008 20:42	
4-Nitroaniline	ND		350	UG/KG	8270	12/26/2008 20:42	
4-Nitrophenol	ND		350	UG/KG	8270	12/26/2008 20:42	
Acenaphthene	ND		180	UG/KG	8270	12/26/2008 20:42	
Acenaphthylene	ND		180	UG/KG	8270	12/26/2008 20:42	
Acetophenone	ND		180	UG/KG	8270	12/26/2008 20:42	
Anthracene	8	J	180	UG/KG	8270	12/26/2008 20:42	
Atrazine	ND		180	UG/KG	8270	12/26/2008 20:42	
Benzaldehyde	ND		180	UG/KG	8270	12/26/2008 20:42	
Benzo(a)anthracene	39	J	180	UG/KG	8270	12/26/2008 20:42	
Benzo(a)pyrene	45	j	180	UG/KG	8270	12/26/2008 20:42	
Benzo(b)fluoranthene	61	J	180	UG/KG	8270	12/26/2008 20:42	
Benzo(ghi)perylene	33	J	180	UG/KG	8270	12/26/2008 20:42	
Benzo(k)fluoranthene	24	J	180	UG/KG	8270	12/26/2008 20:42	
Biphenyl	ND		180	UG/KG	8270	12/26/2008 20:42	
Bis(2-chloroethoxy) methane	ND		180	UG/KG	8270	12/26/2008 20:42	
Bis(2-chloroethyl) ether	ND		180	UG/KG	8270	12/26/2008 20:42	
Bis(2-ethylhexyl) phthalate	290		180	UG/KG	8270	12/26/2008 20:42	
Butyl benzyl phthalate	ND		180	UG/KG	8270	12/26/2008 20:42	
Caprolactam	ND		180	UG/KG	8270	12/26/2008 20:42	
Carbazole	ND		180	UG/KG	8270	12/26/2008 20:42	
Chrysene	42	J	180	UG/KG	8270	12/26/2008 20:42	
Di-n-butyl phthalate	ND	J	180	UG/KG	8270	12/26/2008 20:42	
Di-n-octyl phthalate	ND		180	UG/KG	8270	12/26/2008 20:42	
Dibenzo(a,h)anthracene	ND		180	UG/KG	8270 8270		
Dibenzofuran	ND ND		180			12/26/2008 20:42	
				UG/KG	8270	12/26/2008 20:42	
Diethyl phthalate Dimethyl phthalate	ND ND		180 180	UG/KG UG/KG	8270 8270	12/26/2008 20:42 12/26/2008 20:42	

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 49 Rept: AN1178

Sample ID: RF-TP-08B Lab Sample ID: A8F96114 Date Collected: 12/16/2008

Time Collected: 14:15

Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			——Date/Time	
<u>Parameter</u>	Result	<u>Flag</u>	Limit	<u>Units</u>	<u>Method</u>	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	72	J	180	UG/KG	8270	12/26/2008 20:42	
Fluorene	ND		180	UG/KG	8270	12/26/2008 20:42	
Hexachlorobenzene	ND		180	UG/KG	8270	12/26/2008 20:42	
Hexachlorobutadiene	ND		180	UG/KG	8270	12/26/2008 20:42	
Hexachlorocyclopentadiene	ND		180	UG/KG	8270	12/26/2008 20:42	
Hexachloroethane	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
Indeno(1,2,3-cd)pyrene	28	J	180	UG/KG	8270	12/26/2008 20:42	ERK
Isophorone	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
N-Nitroso-Di-n-propylamine	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
N-nitrosodiphenylamine	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
Naphthalene	8	J	180	UG/KG	8270	12/26/2008 20:42	ERK
Nitrobenzene	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
Pentachlorophenol	ND	**	350	UG/KG	8270	12/26/2008 20:42	ERK
Phenanthrene	39	J.	180	UG/KG	8270	12/26/2008 20:42	ERK
Phenot	ND		180	UG/KG	8270	12/26/2008 20:42	ERK
Pyrene	59	J	180	UG/KG	8270	12/26/2008 20:42	ERK
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		18	UG/KG	8082	12/22/2008 19:35	D₩
Aroclor 1221	ND		18	UG/KG	8082	12/22/2008 19:35	DW
Aroclor 1232	ND		18	UG/KG	8082	12/22/2008 19:35	DW
Aroclor 1242	ND		18	UG/KG	8082	12/22/2008 19:35	DW
Aroclor 1248	11	J	18	UG/KG	8082	12/22/2008 19:35	DW
Aroclor 1254	ND		18	UG/KG	8082	12/22/2008 19:35	DW
Aroclor 1260	4.0	J	18	UG/KG	8082	12/22/2008 19:35	DW
Metals Analysis						week of the second	
Aluminum - Total	9180	EN*	10.4	MG/KG	6010	12/19/2008 16:08	TWS
Antimony - Total	ND	N*	15.6	MG/KG	6010	12/19/2008 16:08	TWS
Arsenic - Total	9.2	*	2.1	MG/KG	6010	12/19/2008 16:08	TWS
Barium - Total	229	E*	0.52	MG/KG	6010	12/19/2008 16:08	TWS
Beryllium - Total	0.25		0.21	MG/KG	6010	12/19/2008 16:08	TWS
Cadmium - Total	ND		0.21	MG/KG	6010	12/19/2008 16:08	TWS
Calcium - Total	3510	E*	52.1	MG/KG	6010	12/19/2008 16:08	TWS
Chromium - Total	10.4	E	0.52	MG/KG	6010	12/19/2008 16:08	TWS
Cobalt - Total	8.3	E	0.52	MG/KG	6010	12/19/2008 16:08	TWS
Copper - Total	39.7	EN*	1.0	MG/KG	6010	12/19/2008 16:08	TWS
Iron - Total	19000	E*	10.4	MG/KG	6010	12/19/2008 16:08	TWS
Lead - Total	25.9	N	1.0	MG/KG	6010	12/19/2008 16:08	TWS
Magnesium - Totał	2610	E*	20.9	MG/KG	6010	12/19/2008 16:08	TWS
Manganese - Total	648	E*	0.21	MG/KG	6010	12/19/2008 16:08	TWS
Mercury - Total	0.034	_	0.022	MG/KG	7471	12/19/2008 16:22	
Nickel - Total	18.7	EN*	0.52	MG/KG	6010	12/19/2008 16:08	MM Tws
Potassium - Total	710	EN	31.3	MG/KG	6010	12/19/2008 16:08	
Selenium - Total	ND	L14	4.2	MG/KG	6010		TWS
Silver - Total	ND		0.52	MG/KG	6010	12/19/2008 16:08	T₩S
Sodium - Total	ND ND	*	146	MG/KG	6010	12/19/2008 16:08	TWS
Thallium - Total	ND .	N	6.3	MG/KG MG/KG	6010	12/19/2008 16:08	TWS
Vanadium - Total	10.2					12/19/2008 16:08	TWS
TAIRACTUM TOLES	10.2	E	0.52	MG/KG	6010	12/19/2008 16:08	TWS

Date: 01/19/2009 Time: 12:08:35

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 Page:

Rept: AN1178

Sample ID: RF-TP-08B Lab Sample ID: A8F96114 Date Collected: 12/16/2008 Time Collected: 14:15

Date Received: 12/16/2008 Project No: NY5A946109

Client No: L10190

					Detection			——Date/Time-	
	Parameter		Result	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed	Analyst
Metals Analysis Zinc - Total	tur again — masa n	art.	79.5	EN*	· 2.1	MG/KG	6010 ·→ ·	12/19/2008 16:08	TWS

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Rept: AN1178

Page:

Sample ID: RF-TP-09A Lab Sample ID: A8F96115 Date Collected: 12/16/2008 Time Collected: 15:00 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,21-0xybis(1-Chloropropane)	Au - ND		940	UG/KG?	8270	12/26/2008 21:05	ERK
2,4,5-Trichlorophenol	ND		940	UG/KG	8270	12/26/2008 21:05	ERK
2,4,6-Trichlorophenol	ND		940	UG/KG	8270	12/26/2008 21:05	ERK
2,4-Dichlorophenol	ND		940	UG/KG	8270	12/26/2008 21:05	
2,4-Dimethylphenol	ND		940	UG/KG	8270	12/26/2008 21:05	
2,4-Dinitrophenol	ND		1800	UG/KG	8270	12/26/2008 21:05	
2,4-Dinitrotoluene	ND		940	UG/KG	8270	12/26/2008 21:05	
2,6-Dinitrotoluene	ND	•	940	UG/KG	8270	12/26/2008 21:05	
2-Chloronaphthalene	ND		940	UG/KG	8270	12/26/2008 21:05	
2-Chlorophenol	ND		940	UG/KG	8270	12/26/2008 21:05	
2-Methylnaphthalene	170	J	940	UG/KG	8270	12/26/2008 21:05	
2-Methylphenol	ND		940	UG/KG	8270	12/26/2008 21:05	
2-Nitroaniline	ND		1800	UG/KG	8270	12/26/2008 21:05	
2-Nitrophenol	ND		940	UG/KG	8270	12/26/2008 21:05	
3,3'-Dichlorobenzidine	ND		940	UG/KG	8270	12/26/2008 21:05	
3-Nitroaniline	ND		1800	UG/KG	8270	12/26/2008 21:05	
4,6-Dinitro-2-methylphenol	ND		1800	UG/KG	8270	12/26/2008 21:05	
4-Bromophenyl phenyl ether	ND		940	UG/KG	8270	12/26/2008 21:05	
4-Chloro-3-methylphenol	ND		940	UG/KG	8270	12/26/2008 21:05	
4-Chloroaniline	ND		940	UG/KG	8270	12/26/2008 21:05	
4-Chlorophenyl phenyl ether	ND		940	UG/KG	8270	12/26/2008 21:05	
4-Methylphenol	ND		940	UG/KG	8270	12/26/2008 21:05	
4-Nitroaniline	ND		1800	UG/KG	8270	12/26/2008 21:05	
4-Nitrophenol	ND		1800	UG/KG	8270	12/26/2008 21:05	
Acenaphthene	300	J	940	UG/KG	8270	12/26/2008 21:05	
Acenaphthylene	300	J	940	UG/KG	8270	12/26/2008 21:05	
Acetophenone	ND	J	940	UG/KG	8270	12/26/2008 21:05	
Anthracene	1300		940	UG/KG	8270	12/26/2008 21:05	
Atrazine	ND		940	UG/KG	8270	12/26/2008 21:05	
Benzal dehyde	ND		940	UG/KG	8270	12/26/2008 21:05	
Benzo(a)anthracene	2600		940	UG/KG	8270	12/26/2008 21:05	
Benzo(a)pyrene	2200		940	UG/KG	8270	12/26/2008 21:05	
Benzo(b)fluoranthene	2600		940	UG/KG	8270	12/26/2008 21:05	ERK
	1000		940	UG/KG	8270	12/26/2008 21:05	
Benzo(ghi)perylene Benzo(k)fluoranthene	1200		940	UG/KG	8270	12/26/2008 21:05	
Biphenyl	59		940		8270		
• •		J	940 940	UG/KG		12/26/2008 21:05	
Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether	ND		940	UG/KG	82 <u>7</u> 0	12/26/2008 21:05	
•	ND 740			UG/KG	8270	12/26/2008 21:05	
Bis(2-ethylhexyl) phthalate	340	J	940	UG/KG	8270	12/26/2008 21:05	
Butyl benzyl phthalate	ND		940	UG/KG	8270	12/26/2008 21:05	
Caprolactam	ND		940	UG/KG	8270	12/26/2008 21:05	
Carbazole	220	J	940	UG/KG	8270	12/26/2008 21:05	
Chrysene	2300		940	UG/KG	8270	12/26/2008 21:05	
Di-n-butyl phthalate	ND		940	UG/KG	8270	12/26/2008 21:05	
Di-n-octyl phthalate	ND		940	UG/KG	8270	12/26/2008 21:05	
Dibenzo(a,h)anthracene	94	J	940	UG/KG	8270	12/26/2008 21:05	
Dibenzofuran	370	J	940	UG/KG	8270	12/26/2008 21:05	
Diethyl phthalate	ND		940		~ × 8270	12/26/2008 21:05	
Dimethyl phthalate	ND		940	UG/KG	8270	12/26/2008 21:05	ERK

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 52 Rept: AN1178

Sample ID: RF-TP-09A Lab Sample ID: A8F96115 Date Collected: 12/16/2008 Time Collected: 15:00 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
<u>Parameter</u>	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	6400		940	UG/KG	8270	12/26/2008 21:05	ERK
Fluorene	670	J	940	UG/KG	8270	12/26/2008 21:05	ERK
Hexachlorobenzene	ND	•	940	UG/KG	8270	12/26/2008 21:05	ERK
Hexachlorobutadiene	ND		940	UG/KG	8270	12/26/2008 21:05	ERK
Hexachlorocyclopentadiene	ND		940	UG/KG	8270	12/26/2008 21:05	ERK
Hexachloroethane	ND		940	UG/KG	8270	12/26/2008 21:05	ERK
Indeno(1,2,3-cd)pyrene	980		940	UG/KG	8270	12/26/2008 21:05	ERK
Isophorone	ND		940	UG/KG	8270	12/26/2008 21:05	ERK
N-Nitroso-Di-n-propylamine	ND		940	UG/KG	8270	12/26/2008 21:05	ERK
N-nîtrosodiphenylamine	ND		940	UG/KG	8270	12/26/2008 21:05	ERK
Naphthalene	150	J	940	UG/KG	8270	12/26/2008 21:05	ERK
Nitrobenzene	ND		940	UG/KG	8270	12/26/2008 21:05	ERK
Pentachlorophenol	ND		1800	UG/KG	8270	12/26/2008 21:05	ERK
Phenanthrene	5700		940	UG/KG	8270	12/26/2008 21:05	ERK
Phenol	ND		940	UG/KG	8270	12/26/2008 21:05	ERK
Pyrene	4800		940	UG/KG	8270	12/26/2008 21:05	ERK
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	. ND		18	UG/KG	8082	12/22/2008 19:55	DW
Aroclor 1221	ND		18	UG/KG	8082	12/22/2008 19:55	DW
Aroclor 1232	ND		18	UG/KG	8082	12/22/2008 19:55	DW DW
Aroclor 1242	ND		18	UG/KG	8082	12/22/2008 19:55	DW
Aroclor 1248	ND		18	UG/KG	8082	12/22/2008 19:55	DW
Aroclor 1254	ND		18	UG/KG	8082	12/22/2008 19:55	DW
Aroclor 1260	ND		18	UG/KG	8082	12/22/2008 19:55	DW
Metals Analysis					.:		
Aluminum - Total	3730	EN*	. 11.1	MG/KG	6010	12/19/2008 16:26	TUO
Antimony - Total	ND	N*	16.7	MG/KG	6010	12/19/2008 16:26	TWS
Arsenic - Total	6.1	*	2.2	MG/KG	6010		TWS
Barium - Total	57.1	E*	0.56	MG/KG	6010	12/19/2008 16:26	TWS
Beryllium - Total	ND	E.	0.22			12/19/2008 16:26	TWS
Cadmium - Total	0.30		0.22	MG/KG	6010 6010	12/19/2008 16:26	TWS
Calcium - Total		E*		MG/KG		12/19/2008 16:26	TWS
Chronium - Total	1990	E*	55.7	MG/KG	6010	12/19/2008 16:26	TWS
Cobalt - Total	6.6	E	0.56	MG/KG	6010	12/19/2008 16:26	TWS
	2.1	E	0.56	MG/KG	6010	12/19/2008 16:26	TWS
Copper - Total Iron - Total	96.5	EN*	1.1	MG/KG	6010	12/19/2008 16:26	TWS
	10800	E*	11.1	MG/KG	6010	12/19/2008 16:26	TWS
Lead - Total	79.2	N	1.1	MG/KG	6010	12/19/2008 16:26	TWS
Magnesium - Total	590	E*	22.3	MG/KG	6010	12/19/2008 16:26	TWS
Manganese - Total	354	E*	0.22	MG/KG	6010	12/19/2008 16:26	TWS
Mercury - Total	0.074		0.021	MG/KG	7471	12/19/2008 16:24	MM
Nickel - Total	7.7	EN*	0.56	MG/KG	6010	12/19/2008 16:26	TWS
Potassium - Total	358	EN	33.4	MG/KG	6010	12/19/2008 16:26	TWS
Selenium - Total	NĐ		4.5	MG/KG	6010	12/19/2008 16:26	TWS
Silver - Total	ND		0.56	MG/KG	6010	12/19/2008 16:26	TWS
Sodium - Total	ND	*	156	MG/KG	6010	12/19/2008 16:26	TWS
Thallium - Total	ND	N		* ~MG/KG	6010	12/19/2008 16:26	TWS
Vanadium - Total	6.7	E	0.56	MG/KG	6010	12/19/2008 16:26	TWS

Date: 01/19/2009 Time: 12:08:35 NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 53

Rept: AN1178

Sample ID: RF-TP-09A Lab Sample ID: A8F96115 Date Collected: 12/16/2008 Time Collected: 15:00 Date Received: 12/16/2008

Project No: NY5A946109

Client No: L10190

1-1-1000-00-00-00-00-00-00-00-00-00-00-0								
				Detection			Date/Time	
Parameter		Resul t	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed	Analyst
Metals Analysis								
Zinc - Total	•	148	EN*	2.2.5	MG/KG	6010	12/19/2008 16:26	TWS

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 54 Rept: AN1178

Sample ID: RF-TP-11A Lab Sample ID: A8F96116 Date Collected: 12/16/2008 Time Collected: 15:20 Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

Time Collected: 15:20						Site No:	
	_		Detection			Date/Time	•
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analysi
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS 2,21-0xybis(1-Chloropropane)	ND	* a 4,	1000 (1898) A	UG/KG	8270	12/26/2008 21:28	ERK
2,4,5-Trichlorophenol	ND		1000	UG/KG	8270	12/26/2008 21:28	
				-	8270 8270		
2,4,6-Trichlorophenol	ND		1000	UG/KG	8270 8270	12/26/2008 21:28	
2,4-Dichlorophenol	ND		1000	UG/KG		12/26/2008 21:28	
2,4-Dimethylphenol	ND		1000	UG/KG	8270	12/26/2008 21:28	
2,4-Dinitrophenol	ND		2000	UG/KG	8270	12/26/2008 21:28	
2,4-Dinitrotoluene	ND .		1000	UG/KG	8270	12/26/2008 21:28	
2,6-Dinitrotoluene	ND		1000	UG/KG	8270	12/26/2008 21:28	
2-Chloronaphthalene	ND		1000	UG/KG	8270	12/26/2008 21:28	
2-Chlorophenol	ND		1000	UG/KG	8270	12/26/2008 21:28	
2-Methylnaphthalene	230	J	1000	UG/KG	8270	12/26/2008 21:28	
2-Methylphenol	ND		1000	UG/KG	8270	12/26/2008 21:28	
2-Nitroaniline	ND		2000	UG/KG	8270	12/26/2008 21:28	
2-Nitrophenol	ND		1000	UG/KG	8270	12/26/2008 21:28	
3,3'-Dichlorobenzidine	ND		1000	UG/KG	8270	12/26/2008 21:28	
3-Nitroaniline	ND		2000	UG/KG	8270	12/26/2008 21:28	
4,6-Dinitro-2-methylphenol	ND		2000	UG/KG	8270	12/26/2008 21:28	
4-Bromophenyl phenyl ether	ND		1000	UG/KG	8270	12/26/2008 21:28	
4-Chloro-3-methylphenol	ND		1000	UG/KG	8270	12/26/2008 21:28	
4-Chloroaniline	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
4-Chlorophenyl phenyl ether	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
4-Methylphenol	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
4-Nitroaniline	ND		2000	UG/KG	8270	12/26/2008 21:28	ERK
4-Nitrophenol	ND .		2000	UG/KG	8270	12/26/2008 21:28	ERK
Acenaphthene	48	J	1000	UG/KG	8270	12/26/2008 21:28	ERK
Acenaphthylene	110	J	1000	UG/KG	8270	12/26/2008 21:28	ERK
Acetophenone	ND "		1000	UG/KG	8270	12/26/2008 21:28	ERK
Anthracene	180	J	1000	UG/KG	8270	12/26/2008 21:28	ERK
Atrazine	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
Benza l dehyde	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
Benzo(a)anthracene	1100		1000	UG/KG	8270	12/26/2008 21:28	ERK
Benzo(a)pyrene	1500		1000	UG/KG	8270	12/26/2008 21:28	ERK
Benzo(b)fluoranthene	2000		1000	UG/KG	8270	12/26/2008 21:28	ERK
Benzo(ghi)perylene	940	j	1000	UG/KG	8270	12/26/2008 21:28	ERK
Benzo(k)fluoranthene	840	J	1000	UG/KG	8270	12/26/2008 21:28	ERK
Biphenyl	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
Bis(2-chloroethoxy) methane	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
Bis(2-chloroethyl) ether	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
Bis(2-ethylhexyl) phthalate	4900		1000	UG/KG	8270	12/26/2008 21:28	
Butyl benzyl phthalate	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
Caprolactam	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
Carbazole	160	J	1000	UG/KG	8270	12/26/2008 21:28	
Chrysene	1400		1000	UG/KG	8270	12/26/2008 21:28	
Di-n-butyl phthalate	ND		1000	UG/KG	8270	12/26/2008 21:28	
Di-n-octyl phthalate	ND		1000	UG/KG	8270	12/26/2008 21:28	
Dibenzo(a,h)anthracene	240	J	1000	UG/KG	8270	12/26/2008 21:28	
Dibenzofuran	73	J	1000	UG/KG	8270	12/26/2008 21:28	
Diethyl phthalate	ND		1000	UG/KG	8270	12/26/2008 21:28	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Randolph Foundry: Site #E905030

Sample ID: RF-TP-11A Lab Sample ID: A8F96116 Date Collected: 12/16/2008

Time Collected: 15:20

Date Received: 12/16/2008 Project No: NY5A946109 Client No: L10190

Page:

Rept: AN1178

55

•			Detection			Date/Time	-
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u> _	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS			4				
Fluoranthene	2100	200	1000	UG/KG	8270	12/26/2008 21:28	
Fluorene	66	J	1000	UG/KG	8270	12/26/2008 21:28	ERK
Hexachlorobenzene	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
Hexachlorobutadiene	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
Hexachlorocyclopentadiene	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
Hexachloroethane	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
Indeno(1,2,3-cd)pyrene	810	J	1000	UG/KG	8270	12/26/2008 21:28	ERK
Isophorone	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
N-Nitroso-Di-n-propylamine	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
N-nitrosodiphenylamine	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
Naphthalene	180	J	1000	UG/KG	8270	12/26/2008 21:28	ERK
Nitrobenzene	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
Pentachlorophenol	ND	17 17 17 17	2000	UG/KG	8270	12/26/2008 21:28	ERK
Phenanthrene	1100		1000	UG/KG	8270	12/26/2008 21:28	ERK
Phenol	ND		1000	UG/KG	8270	12/26/2008 21:28	ERK
Pyrene	1800		1000	UG/KG	8270	12/26/2008 21:28	
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		20	UG/KG	8082	12/22/2008 20:15	D₩
Aroclor 1221	ND		20	UG/KG	8082	12/22/2008 20:15	DW
Aroclor 1232	ND		20	UG/KG	8082	12/22/2008 20:15	
Aroclor 1242	ND		20	UG/KG	8082	12/22/2008 20:15	
Aroclor 1248	27		20	UG/KG	8082	12/22/2008 20:15	
Aroclor 1254	ND		20	UG/KG	8082	12/22/2008 20:15	
Aroclor 1260	ND		20	UG/KG	8082	12/22/2008 20:15	
Metals Analysis	, st	tong in the					
Aluminum - Total	8580	EN*	12.6	MG/KG	6010	12/19/2008 16:31	TWS
Antimony - Total	ND	N*	19.0	MG/KG	6010	12/19/2008 16:31	TWS
Arsenic - Total	11.6	*	2.5	MG/KG	6010	12/19/2008 16:31	TWS
Barium - Total	163	E*	0,63	MG/KG	6010	12/19/2008 16:31	
Beryllium - Total	0.33		0.25	MG/KG	6010	12/19/2008 16:31	
Cadmium - Total	1.4		0.25	MG/KG	6010	12/19/2008 16:31	
Calcium - Total	6430	E* .	63.2	MG/KG	6010	12/19/2008 16:31	
Chromium - Total	43.7	E	0.63	MG/KG	6010	12/19/2008 16:31	
Cobalt - Total	8.9	E	0.63	MG/KG	6010	12/19/2008 16:31	
Copper - Total	1300	EN*	1.3	MG/KG	6010	12/19/2008 16:31	
Iron - Total	49700	E*	12.6	MG/KG	6010	12/19/2008 16:31	
Lead - Total	541	N	1.3	MG/KG	6010	12/19/2008 16:31	
Magnesium - Total	1980	E*	25.3	MG/KG	6010	12/19/2008 16:31	
Manganese - Total	982	E*	0.25	MG/KG	6010	12/19/2008 16:31	
Mercury - Total	0.074	_	0.025	MG/KG	7471	12/19/2008 16:25	
Nickel - Total	44.2	EN*	0.63	MG/KG	6010	12/19/2008 16:31	
Potassium - Total	733	EN	37.9	MG/KG	6010	12/19/2008 16:31	
Selenium - Total	ND		5.1	MG/KG	6010	12/19/2008 16:31	
Silver - Total	0.71		0.63	MG/KG	6010	12/19/2008 16:31	
Sodium - Total	ND	*	177	MG/KG	6010	12/19/2008 16:31	
			111	114/14	~~ , ~	, ., _,, _,,, ,	1 11 13
Thallium - Total	ND	N	7.6	MG/KG	6010	12/19/2008 16:31	TWS

Date: 01/19/2009 Time: 12:08:35 NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Page:

Rept: AN1178

Sample ID: RF-TP-11A Lab Sample ID: A8F96116

Date Collected: 12/16/2008 Time Collected: 15:20 Date Received: 12/16/2008

Project No: NY5A946109 Client No: L10190

		····				•	 			
						Detection			——Date/Time——	
	Parameter			Result	<u>Flag</u>	Limit	Units_	<u>Method</u>	Analyzed	<u>Analyst</u>
Metals Analysis										
Zinc - Total	eg t	27 N - 4	C	645	EN*	2.5	MG/KG	6010	12/19/2008 16:31	TWS

Chain of Custody Record

Temperature on Receipt _

0	
4	
S	
.0	

TAL-4124 (1007)	Drin	Drinking Water? Yes□	No	THE LEADER IN ENVIRONMENTAL TESTING	ŋ
Client	Proje	Project Manager		Date	Chain of Custody Number
The Confidence of the second			7 500 CHY	2	12728
\$ (~~)	Tele	ephone Number (Are	Telephone Number (Area Code)/Fax Number	Lab Number	Page 6 01
State Zi	Zip Code Site	Site Contact	Lab Contact	Analysis (Attach list if more space is needed)	
9000		Carrier/Waybill Number	. Was		
Order/Quote No.	Tools took	Matrix	Containers & Preservatives	Aera- Sysc Voc	Special Instructions/ Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date Time	Air euceupA be2. Ito2	HOBOH HOSOH HOSOH HOBOH	70.c. Fast	
Gr-TE-WA	3 1 1 1 C S S S S S S S S S S S S S S S S		*	**	KO K Jawask
R-T- UB		×	*	×	
R - T : C1A		,38¢,	*	*	
R-11-046	3	.*	×	* * * * * * * * * * * * * * * * * * *	The state of the s
KF-15-65A	Samuel Comment	×	*	, x	
Q 1 1. S. B 1		× -	~	× ×	
AF-76-05C		×	***	*	
Cr. Tr. Och	95	*	×	* * * * * * * * * * * * * * * * * * *	
7. T- 0. B	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*.	*	*	
£0.4-4	30	*	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
St. 5-7-73	8	\(\frac{1}{2}\)	×	* * * * * * * * * * * * * * * * * * *	
R-P-OX	2		*	**	,
ion ammable 🔲 Skin Irritant	□ Poison B □ Unknown	Sample Disposal vn	☐ Disposal By Lab	(A fee may bo Archive For Months Inger than 1	(A fee may be assessed if samples are retained longer than 1 month)
Turn Around Time Required 24 Hours	☐ 21 Days	1 5°	QC Requirements (Spo		- princessas as
1. Relinguished Bis	Date	16 28 Time	(S) 1. Received, By	The Miles	Date Time 12-16-245/
2. Palinquished By ()(Date	оптоказ	2. Received By		Date Time
3. Relinquished By	Date	Time	3. Received By	70 / 7/	Date
Comments					

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Chain of Custody Record

TAL-4124 (1007)

Drinking Water? Yes □ No 🙀 Temperature on Receipt —

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Olient 5		Project I	Project Manager	Lower	Date		ain of Custody Me	ımber
MYAMERIN Christmanal, Inc	ن		2			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1228	ব ত
Address		oudejet	Tejephone Number (Area (code)/Fax Number	Lab Number			<u> </u>
						<u>Q</u>	Page (J. 10
State	Zip Code	Site Contact	itact	Lap Contact	Analysis (Attach list if			
Lang.	ついこ	Ž	がある。このでは、		more space is needed)	Jed)		
ocation (State)		CarrierA	Naybill Number	No. of the last of				
V KHURRPH			ag.	containments	Size		Special II	Special Instructions/
der/Quote No.	Truster.		Matrix	Containers & Preservatives	NOV SVOX		Condition	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	riA suceupA beS lioS	POPSH \$OSSH FONH IOH HOEN WANZ	101 101 101 11			
Rr-Tr-OFC- MS		1330	×	X	* * * * * * * * * * * * * * * * * * *		45P-R	Principality
R. T. D. L. W.	2	3	· */	***	* * * * * * * * * * * * * * * * * * *		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*
DF-70-08A		15000 15000	**	*	× × ×			
R-T-085	diameter springers	Shi	*	*	* * * * * * * * * * * * * * * * * * *			
R-T-M	500 2 mm 2 7 / 1/1	035		**	×			
		3			×××			and the first contract of the first contract
	8 50				(855 14/14/08 -Contrants	7	******	
		:						THE PARTY OF THE P
,								
Possible Hazard Identification Non-Hazard		🗌 Ипкпоwп	Sample Disposal	Disposal By Lab	(A Archive For Months Ion	(A fee may be assessed if samples are retained longer than 1 month)	d if samples are n	stained
Turn Around Time Required 24 Hours	/s		K Other 550 (30 DM	AN QC Requirements (Specify)	ĬŶ)		T-AA-VINITE STANDARD	
1. Relinquished By		Date	17me 1805	1. Received By) Herry		Date 7 - 1. hv	Time
2. Relinquished By		Date	Time	2. Received By		<u> </u>	Date	Time
3. Relinquished By		Date	Time	3. Received By	The state of the s		Date	Time
Comments				NAME OF THE PARTY	3.0			
Continuence								
DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample;	ANARY - Stays w	ith the Sampl	e; PINK - Field Copy	Ха	2	100000000000000000000000000000000000000		

SDG NARRATIVE

Job#: <u>A08-G358</u>

Project#: NY5A946109

Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A08-G358

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC/MS Volatile Data

Linear regression was used to calibrate all analytes that were greater than 15% RSD in the initial calibration standard curve A8I0001006-1.

For method 8260, sample MW-02 was preserved to a pH less than 2.

GC/MS Semivolatile Data

Linear regression was used to calibrate all analytes that were greater than 15% RSD in the initial calibration standard curve A8I0001010-1.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

The continuing calibration verification standard A9C0000032-1 exhibited the percent Difference (%D) as greater than 20% on the Form VII for the analyte Pentachlorophenol. However since this analyte was calibrated using linear regression, the CCV must be evaluated using %Drift rather than %Difference. The CCV demonstrated %Drift of 4.22%. No corrective action was required.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager

1-20.09

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Date: 01/20/2009 Time: 16:54:22

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

Page: 1 Rept: AN1178

Sample ID: MW-02 Lab Sample ID: A8G35801 Date Collected: 12/30/2008

Time Collected: 13:57

Date Received: 12/30/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	-
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed	Analyst
NYSDEC - AQUEOUS-SW8463 TCL 8260							
1,1,1-Trichloroethane	ND		1.0	UG/L	8260	01/03/2009 20:15	ND
1,1,2,2-Tetrachloroethane	ND		1.0	UG/L	8260	01/03/2009 20:15	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	UG/L	8260	01/03/2009 20:15	ND
1,1,2-Trichloroethane	ND		1.0	UG/L	8260	01/03/2009 20:15	ND
1,1-Dichloroethane	ND		1.0	UG/L	8260	01/03/2009 20:15	ND
1,1-Dichloroethene	ND		1.0	UG/L	8260	01/03/2009 20:15	ND
1,2,4-Trichlorobenzene	ND		1.0	UG/L	8260	01/03/2009 20:15	ND
1,2-Dibromo-3-chloropropane	ND		1.0	UG/L	8260	01/03/2009 20:15	ND
1,2-Dibromoethane	ND		1.0	UG/L	8260	01/03/2009 20:15	ND
1,2-Dichlorobenzene	ND		1.0	UG/L	8260	01/03/2009 20:15	ND
1,2-Dichloroethane	ND		1.0	UG/L	8260	01/03/2009 20:15	ND
1,2-Dichloropropane	ND		1.0	UG/L	8260	01/03/2009 20:15	ND
1,3-Dichlorobenzene	· ND	•	1.0	UG/L	8260	01/03/2009 20:15	. ND
1,4-Dichlorobenzene	ND		1.0	UG/L	8260	01/03/2009 20:15	
2-Butanone	ND		5.0	UG/L	8260	01/03/2009 20:15	ND
2-Hexanone	ND		5.0	UG/L	8260	01/03/2009 20:15	
4-Methyl-2-pentanone	ND		5.0	UG/L	8260	01/03/2009 20:15	
Acetone	ND		5.0	UG/L	8260	01/03/2009 20:15	
Benzene	ND		1.0	UG/L	8260	01/03/2009 20:15	
Bromodichloromethane	ND		1.0	UG/L	8260	01/03/2009 20:15	
Bromoform	ND		1.0	UG/L	8260	01/03/2009 20:15	
Bromomethane	ND		1.0	UG/L	8260	01/03/2009 20:15	
Carbon Disulfide	ND		1.0	UG/L	8260	01/03/2009 20:15	
Carbon Tetrachloride	ND		1.0	UG/L	8260	01/03/2009 20:15	
Chlorobenzene	ND		1.0	UG/L	8260	01/03/2009 20:15	
Chloroethane	ND		1.0	UG/L	8260	01/03/2009 20:15	
Chloroform	ND		1.0	UG/L	8260	01/03/2009 20:15	
Chloromethane	ND		1.0	UG/L	8260	01/03/2009 20:15	
cis-1,2-Dichloroethene	ND		1.0	UG/L	8260	01/03/2009 20:15	
cis-1,3-Dichloropropene	ND		1.0	UG/L	8260	01/03/2009 20:15	
Cyclohexane	ND		1.0	UG/L	8260	01/03/2009 20:15	
Dibromochloromethane	ND		1.0	UG/L	8260	01/03/2009 20:15	
Dichlorodifluoromethane	ND		1.0	UG/L	8260	01/03/2009 20:15	
Ethylbenzene	ND		1.0	UG/L	8260	01/03/2009 20:15	
Isopropylbenzene	ND		1.0	UG/L	8260	01/03/2009 20:15	
Methyl acetate	ND		1.0	UG/L	8260	01/03/2009 20:15	
Methyl-t-Butyl Ether (MTBE)	ND		1.0	UG/L	8260	01/03/2009 20:15	
Methylcyclohexane	ND		1.0	UG/L	8260	01/03/2009 20:15	
Methylene chloride	ND		1.0	UG/L	8260	01/03/2009 20:15	
Styrene	ND		1.0	UG/L	8260	01/03/2009 20:15	
Tetrachloroethene	ND		1.0	UG/L	8260	01/03/2009 20:15	
Toluene	ND		1.0	UG/L	8260	01/03/2009 20:15	
Total Xylenes	ND		3.0	UG/L	8260	01/03/2009 20:15	
trans-1,2-Dichloroethene	ND		1.0	UG/L	8260	01/03/2009 20:15	
trans-1,3-Dichloropropene	ND		1.0	UG/L	8260	01/03/2009 20:15	
Trichloroethene	ND		1.0	UG/L	8260	01/03/2009 20:15	
Trichlorofluoromethane	ND		1.0	UG/L	8260	01/03/2009 20:15	
Vinyl chloride	ND		1.0	UG/L	8260	1., 00, 200, 20113	ND

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

Date Received: 12/30/2008

Sample ID: MW-02 Lab Sample ID: A8G35801 Date Collected: 12/30/2008 Time Collected: 13:57

Project No: NY5A946109 Client No: L10190 Site No:

Page:

Rept: AN1178

			Detection			Date/Time	
Parameter	<u>Resul t</u>	<u>Flag</u>	Limit	<u>Units</u>	<u>Method</u>	Analyzed	<u>Analys</u>
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC							
2,2'-Oxybis(1-Chloropropane)	ND		8	UG/L	/* 8270 *	01/06/2009 17:50	BWM
2,4,5-Trichlorophenol	ND		8	UG/L	8270	01/06/2009 17:50	BWM
2,4,6-Trichlorophenol	ND		8	UG/L	8270	01/06/2009 17:50	BWM
2,4-Dichlorophenol	ND ·		8	UG/L	8270	01/06/2009 17:50	BWM
2,4-Dimethylphenol	ND		8	UG/L	8270	01/06/2009 17:50	BWM
2,4-Dinitrophenol	ND		16	UG/L	8270	01/06/2009 17:50	BWM
2,4-Dinitrotoluene	ND	1.0	8	UG/L	8270	01/06/2009 17:50	BWM
2,6-Dinitrotoluene	ND		- 8	UG/L	8270	01/06/2009 17:50	BWM
2-Chloronaphthalene	ND		8	UG/L	8270	01/06/2009 17:50	BWM
2-Chlorophenol	ND		8	UG/L	8270	01/06/2009 17:50	BWM
2-Methylnaphthalene	ND		8	UG/L	8270	01/06/2009 17:50	BWM
2-Methylphenol	ND		8	UG/L	8270	01/06/2009 17:50	BWM
2-Nitroaniline	ND	•	16	UG/L	8270	01/06/2009 17:50	
2-Nitrophenol	ND		8	UG/L	8270	01/06/2009 17:50	BWM
3,31-Dichlorobenzidine	ND		8	UG/L	8270	01/06/2009 17:50	
3-Nitroaniline	ND		16	UG/L	8270	01/06/2009 17:50	
4,6-Dinitro-2-methylphenol	ND		16	UG/L	8270	01/06/2009 17:50	
4-Bromophenyl phenyl ether	ND		8	UG/L	8270	01/06/2009 17:50	
4-Chloro-3-methylphenol	ND		8	UG/L	8270	01/06/2009 17:50	
4-Chloroaniline	ND		8	UG/L	8270	01/06/2009 17:50	
4-Chlorophenyl phenyl ether	ND		8	UG/L	8270	01/06/2009 17:50	
4-Methylphenol	ND		8	UG/L	8270	01/06/2009 17:50	
4-Nitroaniline	ND		16	UG/L	8270	01/06/2009 17:50	
4-Nitrophenol	ND		16	UG/L	8270	01/06/2009 17:50	
Acenaphthene	ND		8	UG/L	8270	01/06/2009 17:50	
Acenaphthylene	ND		8	UG/L	8270	01/06/2009 17:50	
Acetophenone	ND		8	UG/L	8270	01/06/2009 17:50	
Anthracene	ND		8	UG/L	8270	01/06/2009 17:50	
Atrazine	ND		8	UG/L	8270	01/06/2009 17:50	
Benzal dehyde	ND		8	UG/L	8270		
Benzo(a)anthracene	ND		8	UG/L	8270	01/06/2009 17:50 01/06/2009 17:50	
Benzo(a)pyrene	ND		8	UG/L	8270		
Benzo(b)fluoranthene	ND		8	•	8270 8270	01/06/2009 17:50	
Benzo(ghi)perylene				UG/L		01/06/2009 17:50	
Benzo(k)fluoranthene	ND ND		8	UG/L	8270	01/06/2009 17:50	
			8	UG/L	8270	01/06/2009 17:50	
Biphenyl	ND		8	UG/L	8270	01/06/2009 17:50	
Bis(2-chloroethoxy) methane	ND		8	UG/L	8270	01/06/2009 17:50	
Bis(2-chloroethyl) ether	ND		. 8	UG/L	8270	01/06/2009 17:50	
Bis(2-ethylhexyl) phthalate	ND		8	UG/L	8270	01/06/2009 17:50	
Butyl benzyl phthalate	ND		8	UG/L	8270	01/06/2009 17:50	
Caprolactam	ND		8	UG/L	8270	01/06/2009 17:50	
Carbazole	ND		8	UG/L	8270	01/06/2009 17:50	
Chrysene	ND		8	UG/L	8270	01/06/2009 17:50	
Di-n-butyl phthalate	ND		8	UG/L	8270	01/06/2009 17:50	
Di-n-octyl phthalate	ND		8	UG/L	8270	01/06/2009 17:50	BWM
Dibenzo(a,h)anthracene	ND		8	UG/L	8270	01/06/2009 17:50	BWM
Dibenzofuran	ND		8	UG/L	8270	01/06/2009 17:50	BWM
Diethyl phthalate	ND		8	UG/L ·	8270	01/06/2009 17:50	BWM
Dimethyl phthalate	ND		8	UG/L	8270	01/06/2009 17:50	BWM

Date: 01/20/2009 Time: 16:54:22 NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 Page:

Rept: AN1178

Sample ID: MW-02 Lab Sample ID: A8G35801 Date Collected: 12/30/2008 Time Collected: 13:57 Date Received: 12/30/2008

Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analyst
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC							,
Fluoranthene The Fluoranthene	ND		8	UG/L	8270	01/06/2009 17:50	BWM
Fluorene	ND		8	UG/L	8270	01/06/2009 17:50	BWM
Hexachlorobenzene	. ND		8	UG/L	8270	01/06/2009 17:50	BWM
Hexachlorobutadiene	ND		8	UG/L	8270	01/06/2009 17:50	BWM
Hexachlorocyclopentadiene	ND .		8	UG/L	8270	01/06/2009 17:50	BWM
Hexachloroethane	ND		8	UG/L	8270	01/06/2009 17:50	BWM
Indeno(1,2,3-cd)pyrene	ND		. 8	UG/L	8270	01/06/2009 17:50	BWM
Isophorone	ND		8	UG/L	8270	01/06/2009 17:50	BWM
N-Nitroso-Di-n-propylamine	ND		8	UG/L	8270	01/06/2009 17:50	BWM
N-nitrosodiphenylamine	ND		8	UG/L	8270	01/06/2009 17:50	BWM
Naphthalene	ND		8	UG/L	8270	01/06/2009 17:50	BWM
Nitrobenzene	ND		8	UG/L	8270	01/06/2009 17:50	BWM
Pentachlorophenol	ND		16	UG/L	8270	01/06/2009 17:50	BWM
Phenanthrene	ND		8	UG/L	8270	01/06/2009 17:50	BWM
Phenol	ND		8	UG/L	8270	01/06/2009 17:50	BWM
Pyrene	ND		8	UG/L	8270	01/06/2009 17:50	BWM

Custody Record Chain of

Temperature on Receipt

Drinking Water? Yes □ No 📉

)
8	ominoju;
	20 M
4	\bigcirc
\mathbb{Q}	

Special Instructions/ Conditions of Receipt Chain of Custody Number (A fee may be assessed if samples are retained longer than 1 month) ő Time Page. Date THE LEADER IN ENVIRONMENTAL TESTING 12 30 0% Lab Number Analysis (Attach list if more space is needed) Months ☐ Disposal By Lab ☐ Archive For 0 AOVZ 101 × ZAOV × QC Requirements (Specify) \oAnZ HO£N Containers & Preservatives Lab Contact
BRIAN FICHER HOBN 1. Received By 2. Received By 3. Received By ЮН **M**. Felchone Number (Area Code)/Fax Number (116) 821. 16.9. (116) 821. 1607 EONH ¢0SZH Project Manager John Krazy rsə.du∩ - Marie Sample Disposal

Return To Client Time 1650 yos COLEME MELNY Time Time Carrier/Waybill Number Matrix M Other 30 DAY pəs snoenby 1 12/30/69 Site Contact ηγ Unknown Date Time 7 3 21 Days 12 30 68 ☐ Poison B Date たなと 🗌 14 Days Sample I.D. No. and Description (Containers for each sample may be combined on one line) Skin Irritant State NN PANAMERIAN ENVIOUMENTE ☐ 7 Days FANDOUSE FOUNDER Contract/Purchase Order/Quote No. | Flammable Project Name and Location (State) NYSPANCIOS 2390 CUNTOW ST 48 Hours Possible Hazard Identification Turn Around Time Required NN-02 70-MM DUFFER Relinquished By 3. Relinquished By Non-Hazard dnished(B 24 Hours TAL-4124 (1007) Comments

0

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

ANALYTICAL REPORT

Job#: <u>A08-A973</u>

Project#: <u>NY5A946109</u>

Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
Task: NYSDEC Spills - Randolph Foundry: Site #E905030

Mr. Eugene Melnyk, PE NYSDEC - Region 9 270 Michigan Ave Buffalo, NY 14203

TestAmerica Laboratories Inc.

Brian J. Fischer Project Manager

10/01/2008

TestAmerica Buffalo Current Certifications

As of 6/15/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
	NELAP CWA, RCRA	01169CA
California*	SDWA, CWA, RCRA, SOIL	PH-0568
Connecticut	NELAP CWA, RCRA	E87672
Florida*	SDWA,NELAP CWA, RCRA	956
Georgia*	NELAP SDWA, CWA, RCRA	200003
Illinois*	SW/CS	374
lowa	NELAP SDWA, CWA, RCRA	E-10187
Kansas*	SDWA	90029
Kentucky	UST	30
Kentucky UST		2031
Louisiana*	NELAP CWA, RCRA	NY0044
Maine	SDWA, CWA	294
Maryland	SDWA	M-NY044
Massachusetts	SDWA, CWA	9937
Michigan	SDWA	036-999-337
Minnesota	SDWA,CWA, RCRA	233701
New Hampshire*	NELAP SDWA, CWA	
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	Registration, NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
	CWA,RCRA	252
West Virginia	CWA, RCRA	998310390
Wisconsin		

^{*}As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

SAMPLE SUMMARY

			SAMPLED		RECEIVE	ŒD.
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE _	TIME	DATE	TIME
A8A97304	LARGE SUMP NORTHWEST	SOIL	09/09/2008	13:25	09/09/2008	16:46
	LARGE SUMP SOUTHEAST	SOIL	09/09/2008	13:15	09/09/2008	16:46
110120 / 5 0 0	NORTH SUMP EXCAV.	SOIL	09/09/2008	12:40	09/09/2008	16:46
A8A97302 A8A97301	SEPTIC TANK EXCAV.	SOIL	09/09/2008	12:50	09/09/2008	16:46

METHODS SUMMARY

Job#: <u>A08-A973</u>

Project#: <u>NY5A946109</u>

Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

PARAMETER	ANALYTICAL METHOD
NYSDEC - METHOD 8260 - TCL VOLATILE ORGANICS	SW8463 8260
NYSDEC -S-METHOD 8270 - TCL SEMI-VOLATILE ORGANICS	SW8463 8270
NYS DEC-SOIL METHOD 8081 - TCL PESTICIDES	SW8463 8081
NYSDEC-SPILLS- 8082 - POLYCHLORINATED BIPHENYLS-S	SW8463 8082
Aluminum - Total	SW8463 6010
Antimony - Total	SW8463 6010
Arsenic - Total	SW8463 6010
Barium - Total	SW8463 6010
Beryllium - Total	SW8463 6010
Cadmium - Total	SW8463 6010
Calcium - Total	SW8463 6010
Chromium - Total	SW8463 6010
Cobalt - Total	SW8463 6010
Copper - Total	SW8463 6010
Iron - Total	SW8463 6010
Lead - Total	SW8463 6010
Magnesium - Total	SW8463 6010
Manganese - Total	SW8463 6010
Mercury - Total	SW8463 7471
Nickel - Total	SW8463 6010
Potassium - Total	SW8463 6010
Selenium - Total	SW8463 6010
Silver - Total	SW8463 6010
Sodium - Total	SW8463 6010
Thallium - Total	SW8463 6010
Vanadium - Total	SW8463 6010
Zinc - Total	SW8463 6010
Cyanide - Total	SW8463 9012

References:

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

SDG NARRATIVE

Job#: <u>A08-A973</u>

Project#: NY5A946109

Site Name: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A08-A973

Sample Cooler(s) were received at the following temperature(s); 5.8 °C All samples were received in good condition.

GC/MS Volatile Data

No deviations from protocol were encountered during the analytical procedures.

GC/MS Semivolatile Data

The internal standard recovery for Perylene-D12 was below the method defined quality control limit in samples LARGE SUMP SOUTHEAST and LARGE SUMP NORTHWEST. The samples were re-analyzed at a higher dilution with compliant results. Both analyses were included in the results. No further corrective action was required.

GC Extractable Data

For method 8082, the recovery of surrogate Decachlorobiphenyl in some samples is outside of established quality control limits due to the sample matrix. The recovery of surrogate Tetrachloro-m-xylene is within quality control limits; no corrective action is required.

Metals Data

No deviations from protocol were encountered during the analytical procedures.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager

10-2-03

Date

Date: 10/01/2008
Time: 10:25:58

Dilution Log w/Code Information For Job A08-A973

7/29 Page:

Rept: AN1266R

Client Sample ID	Lab Sample ID	Parameter (Inorganic)/Method (Organic)	<u>Dilution</u>	<u>Code</u>
SEPTIC TANK EXCAV.	A8A97301	8082	5.00	002
NORTH SUMP EXCAV.	A8A97302	8081	50.00	010
NORTH SUMP EXCAV.	A8A97302	8270	10.00	012
LARGE SUMP SOUTHEAST	A8A97303	8081	100.00	010
LARGE SUMP SOUTHEAST	A8A97303	8082	2.00	800
LARGE SUMP SOUTHEAST	A8A97303RI	8270	20.00	005
LARGE SUMP NORTHWEST	A8A97304	8081	20.00	010
LARGE SUMP NORTHWEST	A8A97304	8082	5.00	800
LARGE SUMP NORTHWEST	A8A97304RI	8270	20.00	005

Dilution Code Definition:

002 - sample matrix effects

003 - excessive foaming

004 - high levels of non-target compounds

005 - sample matrix resulted in method non-compliance for an Internal Standard

006 - sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

009 - sample turbidity

010 - sample color

011 - insufficient volume for lower dilution

012 - sample viscosity

013 - other

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030

9/29 Page: 1 Rept: AN1178

Sample ID: LARGE SUMP NORTHWEST

Lab Sample ID: A8A97304
Date Collected: 09/09/2008
Time Collected: 13:25

Date Received: 09/09/2008 Project No: NY5A946109 Client No: L10190 Site No:

			Detection			Date/Time	
n :*:	Result _	Flag	Limit	Units	Method	Analyzed	Analyst
Parameter NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES	Resuct						
	ND		5	UG/KG	8260	09/11/2008 21:14	LH
1,1,1-Trichloroethane	ND ND		5	ug/kg	8260	09/11/2008 21:14	LH
1,1,2,2-Tetrachloroethane	ND ND		5	UG/KG	8260	09/11/2008 21:14	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND ND		5	UG/KG	8260	09/11/2008 21:14	
1,1,2-Trichloroethane	ND		5	UG/KG	8260	09/11/2008 21:14	
1,1-Dichloroethane			5	UG/KG	8260	09/11/2008 21:14	
1,1-Dichloroethene	ND		5	UG/KG	8260	09/11/2008 21:14	
1,2,4-Trichtorobenzene	ND		5	UG/KG	8260	09/11/2008 21:14	
1,2-Dibromo-3-chloropropane	ND		5	UG/KG	8260	09/11/2008 21:14	
1,2-Dibromoethane	ND		5	UG/KG	8260	09/11/2008 21:14	
1,2-Dichlorobenzene	ND			UG/KG	8260	09/11/2008 21:14	
1,2-Dichloroethane	ND		5	UG/KG	8260	09/11/2008 21:14	
1,2-Dichloropropane	ND		5	UG/KG	8260	09/11/2008 21:14	
1,3-Dichlorobenzene	ND		5	UG/KG	8260 8260	09/11/2008 21:14	
1,4-Dichlorobenzene	ND		5	•		09/11/2008 21:14	
2-Butanone	ND		26	UG/KG	8260	09/11/2008 21:14	
2-Hexanone	ND		26	UG/KG	8260	· · · · · ·	
4-Methyl-2-pentanone	ND		26	UG/KG	8260	09/11/2008 21:14	
Acetone	130		26	UG/KG	8260	09/11/2008 21:14	
Benzene	ND		5	UG/KG	8260	09/11/2008 21:14	
Bromodichloromethane	ND		5	UG/KG	8260	09/11/2008 21:14	
Bromoform	ND		5	UG/KG	8260	09/11/2008 21:14	
Bromomethane	ND		5	UG/KG	8260	09/11/2008 21:14	
Carbon Disulfide	ND		5	UG/KG	8260	09/11/2008 21:14	
Carbon Tetrachloride	ND		5	UG/KG	8260	09/11/2008 21:14	
Chlorobenzene	ND		5	UG/KG	8260	09/11/2008 21:14	
Chloroethane	ND		5	UG/KG	8260	09/11/2008 21:14	
Chloroform	ND		5	ug/kg	8260	09/11/2008 21:14	
Chloromethane	ND		5	ug/kg	8260	09/11/2008 21:14	
cis-1,2-Dichloroethene	ND		5	UG/KG	8260	09/11/2008 21:14	
cis-1,3-Dichloropropene	ND		5	UG/KG	8260	09/11/2008 21:14	
Cyclohexane	ND		5	UG/KG	8260	09/11/2008 21:14	
Dibromochloromethane	ND		5	UG/KG	8260	09/11/2008 21:14	
Dichlorodifluoromethane	ND		5	ug/kg	8260	09/11/2008 21:14	
Ethylbenzene	ND		5	UG/KG	8260	09/11/2008 21:14	
Isopropylbenzene	ND		5	UG/KG	8260	09/11/2008 21:14	4 LH
Methyl acetate	ND		5	UG/KG	8260	09/11/2008 21:14	4 LH
Methyl-t-Butyl Ether (MTBE)	ND		5	UG/KG	8260	09/11/2008 21:14	4 LH
Methylcyclohexane	ND		5	UG/KG	8260	09/11/2008 21:14	4 LH
Methylene chloride	9	В	5	UG/KG	8260	09/11/2008 21:14	4 LH
Styrene	ND		5	UG/KG	8260	09/11/2008 21:14	4 LH
Tetrachloroethene	ND		5	UG/KG	8260	09/11/2008 21:14	4 LH
	ND		5	UG/KG	8260	09/11/2008 21:1-	4 LH
Toluene	ND		16	ug/kg	8260	09/11/2008 21:1	4 LH
Total Xylenes	ND		5	UG/KG	8260	09/11/2008 21:1	
trans-1,2-Dichloroethene	ND		5	UG/KG	8260	09/11/2008 21:1	
trans-1,3-Dichloropropene	ND		5	UG/KG	8260	09/11/2008 21:1	
Trichloroethene	ND		5	UG/KG	8260	09/11/2008 21:1	
Trichlorofluoromethane	ND ND		10	UG/KG	8260	09/11/2008 21:1	
Vinyl chloride	NV		10	20,110	,,,,		

10/29 Page: 2 Rept: AN1178

·

Sample ID: LARGE SUMP NORTHWEST

Lab Sample ID: A8A97304 Date Collected: 09/09/2008 Time Collected: 13:25

Time: 10:26:17

Date Received: 09/09/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropäne)	ND		190	UG/KG	8270	09/12/2008 16:26	MD
2,4,5-Trichlorophenol	ND		190	UG/KG	8270	09/12/2008 16:26	MD
2,4,6-Trichlorophenol	ND		190	UG/KG	8270	09/12/2008 16:26	MD
2,4-Dichlorophenol	ND		190	UG/KG	8270	09/12/2008 16:26	MD
2.4-Dimethylphenol	1700		190	ug/kg	8270	09/12/2008 16:26	MD
2,4-Dinitrophenol	ND		360	UG/KG	8270	09/12/2008 16:26	MD
2,4-Dinitrotoluene	ND		190	UG/KG	8270	09/12/2008 16:26	MD
2,6-Dinitrotoluene	ND		190	UG/KG	8270	09/12/2008 16:26	MD
2-Chloronaphthalene	ND		190	UG/KG	8270	09/12/2008 16:26	MD
	ND		190	ug/KG	8270	09/12/2008 16:26	MD
2-Chlorophenol 2-Methylnaphthalene	ND		190	UG/KG	8270	09/12/2008 16:26	MD
•	39	J	190	ug/kg	8270	09/12/2008 16:26	МĐ
2-Methylphenol 2-Nitroaniline	ND	•	360	UG/KG	8270	09/12/2008 16:26	MD
	ND		190	UG/KG	8270	09/12/2008 16:26	MD
Z-Nitrophenol 3,3'-Dichlorobenzidine	ND		190	UG/KG	8270	09/12/2008 16:26	MD
3-Nitroaniline	ND		360	UG/KG	8270	09/12/2008 16:26	MD
4,6-Dinitro-2-methylphenol	ND		360	UG/KG	8270	09/12/2008 16:26	MD
4-Bromophenyl phenyl ether	ND		190	UG/KG	8270	09/12/2008 16:26	MD
4-Chloro-3-methylphenol	ND		190	UG/KG	8270	09/12/2008 16:26	
4-Chloroaniline	ND		190	UG/KG	8270	09/12/2008 16:26	
4-Chlorophenyl phenyl ether	ND		190	UG/KG	8270	09/12/2008 16:26	
	3000		190	UG/KG	8270	09/12/2008 16:26	
4-Methylphenol 4-Nitroaniline	ND		360	UG/KG	8270	09/12/2008 16:26	
	ND		360	UG/KG	8270	09/12/2008 16:26	
4-Nitrophenol	ND		190	UG/KG	8270	09/12/2008 16:26	
Acenaphthene	ND		190	UG/KG	8270	09/12/2008 16:26	
Acenaphthylene	ND		190	UG/KG	8270	09/12/2008 16:26	
Acetophenone	ND		190	UG/KG	8270	09/12/2008 16:26	
Anthracene	ND		190	UG/KG	8270	09/12/2008 16:26	
Atrazine	ND		190	UG/KG	8270	09/12/2008 16:26	
Benzaldehyde	14	J	190	UG/KG	8270	09/12/2008 16:26	
Benzo(a)anthracene	ND	J	190	UG/KG	8270	09/12/2008 16:26	
Benzo(a)pyrene	ND ND		190	UG/KG	8270	09/12/2008 16:26	
Benzo(b)fluoranthene	ND		190	UG/KG	8270	09/12/2008 16:26	
Benzo(ghi)perylene	ND ND		190	UG/KG	8270	09/12/2008 16:26	
Benzo(k)fluoranthene	ND ND		190	UG/KG	8270	09/12/2008 16:26	
Biphenyl	ND		190	UG/KG	8270	09/12/2008 16:26	
Bis(2-chloroethoxy) methane			190	UG/KG	8270	09/12/2008 16:26	
Bis(2-chloroethyl) ether	ND ND		190	UG/KG	8270	09/12/2008 16:26	
Bis(2-ethylhexyl) phthalate	ND ND		190	UG/KG	8270	09/12/2008 16:20	
Butyl benzyl phthalate			190	UG/KG	8270	09/12/2008 16:26	
Caprolactam	ND ND		190	ug/KG	8270	09/12/2008 16:26	
Carbazole	ND		190	UG/KG	8270	09/12/2008 16:20	
Chrysene	ND		190	UG/KG	8270	09/12/2008 16:20	
Di-n-butyl phthalate	ND			UG/KG	8270	09/12/2008 16:20	
Di-n-octyl phthalate	ND ND		190 190	UG/KG	8270 8270	09/12/2008 16:20	
Dibenzo(a,h)anthracene	ND		190	UG/KG	8270	09/12/2008 16:20	
Dibenzofuran	ND			UG/KG	8270	09/12/2008 16:20	
Diethyl phthalate	ND		190		8270 8270	09/12/2008 16:20	
Dimethyl phthalate	ND		190	UG/KG	02/0	09/12/2008 16:20	U IND

11/29 Page:

Rept: AN1178

Sample ID: LARGE SUMP NORTHWEST

Lab Sample ID: A8A97304

Date Collected: 09/09/2008

Time Collected: 13:25

Date Received: 09/09/2008 Project No: NY5A946109 Client No: L10190

			Detection			pate/Time	
Doministan	Result	Flag	<u>Limit</u>	<u>Units</u>	<u>Method</u>	Analyzed	<u>Analys</u>
Parameter NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	14	J	190	ug/kg	8270	09/12/2008 16:26	MD
Fluorene	ND		190	UG/KG	8270	09/12/2008 16:26	MD
HexachLorobenzene	ND		190	UG/KG	8270	09/12/2008 16:26	MD
Hexachlorobutadiene	ND		190	UG/KG	8270	09/12/2008 16:26	MD
Hexachlorocyclopentadiene	ND		190	UG/KG	8270	09/12/2008 16:26	MD
Hexachloroethane	ND		190	UG/KG	8270	09/12/2008 16:26	
Indeno(1,2,3-cd)pyrene	ND		190	UG/K G	8270	09/12/2008 16:26	
	ND		190	UG/KG	8270	09/12/2008 16:26	
Isophorone N-Nitroso-Di-n~propylamine	ND		190	UG/KG	8270	09/12/2008 16:26	
	ND		190	ug/kg	8270	09/12/2008 16:26	
N-nitrosodiphenylamine	ND		190	UG/KG	8270	09/12/2008 16:26	
Naphthalene	ND		190	ug/kg	8270	09/12/2008 16:26	MD
Nitrobenzene	ND		360	UG/KG	8270	09/12/2008 16:26	MD
Pentachlorophenol	15	J	1 9 0	∪G/KG	8270	09/12/2008 16:26	MD
Phenanthrene	4100		190	UG/KG	8270	09/12/2008 16:26	MD
Phenol	8	J	190	UG/KG	8270	09/12/2008 16:26	MD
Pyrene	·						
NYS DEC-SOIL-SW8463 8081 - TCL PESTICIDES				un len	9094	09/26/2008 20:23	тсн
4,4'-DDD	ND		37	UG/KG	8081	09/26/2008 20:23	
4,4'-DDE	ND		37	UG/KG	8081	09/26/2008 20:23	
4,4'-DDT	16	J	37	UG/KG	8081	09/26/2008 20:23	
Aldrin	ND		37	UG/KG	8081	09/26/2008 20:23	
alpha-BHC	ND		37	UG/KG	8081	· ·	
beta-BHC	ND		37	UG/KG	8081	09/26/2008 20:23	
Chlordane	ND		370	UG/KG	8081	09/26/2008 20:23	
delta-BHC	ND		37	UG/KG	8081	09/26/2008 20:23	
Dieldrin	ND		37	ug/kg	8081	09/26/2008 20:23	
Endosulfan I	ND		37	UG/KG	8081	09/26/2008 20:23	
Endosulfan II	ND		37	UG/KG	8081	09/26/2008 20:23	
Endosulfan Sulfate	ND		37	UG/KG	8081	09/26/2008 20:23	
Endrin	ND		37	UG/KG	8081	09/26/2008 20:23	
Endrin aldehyde	ND		37	UG/KG	8081	09/26/2008 20:23	
Endrin ketone	ND		37	UG/KG	8081	09/26/2008 20:23	
gamma-BHC (Lindane)	ND		37	UG/KG	8081	09/26/2008 20:23	
Heptachlor	ND		37	UG/KG	8081	09/26/2008 20:2	
Heptachlor epoxide	ND		37	UG/KG	8081	09/26/2008 20:2	
Methoxychlor	ND		37	UG/KG	8081	09/26/2008 20:2	
Toxaphene	ND		370	UG∕KG	8081	09/26/2008 20:2	3 TCI
Toxaphene							
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS			07	UG/KG	8082	09/12/2008 20:2	.5 DW
Aroclor 1016	ND		93	UG/KG	8082	09/12/2008 20:2	
Aroclor 1221	ND		93		8082	09/12/2008 20:2	
Aroclor 1232	ND		93	UG/KG	8082	09/12/2008 20:2	
Aroclor 1242	ND		93	UG/KG		09/12/2008 20:2	
Aroclor 1248	290		93	UG/KG	8082	09/12/2008 20:2	
Aroclor 1254	ND		93	UG/KG	8082	, ,	
Aroclor 1260	ND		93	UG/KG	8082	09/12/2008 20:2	25 DW

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Randolph Foundry: Site #E905030

12/29 Page: 4 Rept: AN1178

Sample ID: LARGE SUMP NORTHWEST

Lab Sample ID: A8A97304
Date Collected: 09/09/2008
Time Collected: 13:25

Date Received: 09/09/2008 Project No: NY5A946109 Client No: L10190

Parameter	Result Flag	Detection <u>Limit</u>	Units_	Method_	——Date/Time—— Analyzed	<u>Analyst</u>
Metals Analysis			•		00/40/2000 04-70	АН
Aluminum - Total	12400	12.1	MG/KG	6010	09/12/2008 01:39	
Antimony - Total	ND	18.1	MG/KG	6010	09/12/2008 01:39	AH
Arsenic - Total	8.7	2.4	MG/KG	6010	09/12/2008 01:39	AH
Barium - Total	228	0.60	MG/KG	6010	09/12/2008 01:39	AH
Beryllium - Total	0.30	0.24	MG/KG	6010	09/12/2008 01:39	AH
Cadmium - Total	ND	0.24	MG/KG	6010	09/12/2008 16:32	AH
Calcium - Total	2220	60.3	MG/KG	6010	09/12/2008 01:39	AH
Chromium - Total	14.8	0.60	MG/KG	6010	09/12/2008 01:39	AH
Cobalt - Total	10	0.60	MG/KG	6010	09/12/2008 01:39	AH
Copper - Total	30.1	1.2	MG/KG	6010	09/12/2008 01:39	АН
Iron - Total	24500	12.1	MG/KG	6010	09/12/2008 01:39	
Lead - Total	9.6	1.2	MG/KG	6010	09/12/2008 01:39	
Magnesium - Total	5440	24.1	MG/KG	6010	09/12/2008 01:39	
Manganese - Total	453	0.24	MG/KG	6010	09/12/2008 01:39	
Mercury - Total	ND	0.023	MG/KG	7471	09/11/2008 13:35	
Nickel - Total	17.4	0.60	MG/KG	6010	09/12/2008 01:39	
Potassium - Total	2060	36.2	MG/KG	6010	09/12/2008 01:39	
Selenium - Total	ND	4.8	MG/KG	6010	09/12/2008 01:39	
Silver - Total	ND	0.60	MG/KG	6010	09/12/2008 01:39	
Sodium - Total	414	169	MG/KG	6010	09/12/2008 01:39	AH
Thallium - Total	ND	7.2	MG/KG	6010	09/12/2008 01:39	
Vanadium - Total	26.4	0.60	MG/KG	6010	09/12/2008 01:39	Р АН
Zinc - Total	72.6	2.4	MG/KG	6010	09/12/2008 01:39	Р АН
Wet Chemistry Analysis		0.72	MG/KG	9012	09/22/2008 09:35	5 LRM
Cyanide - Total	2.6	0.72	ויוטין אט	7012	07,22,2000 0710	

13/29 Page:

Rept: AN1178

Sample ID: LARGE SUMP NORTHWEST

Lab Sample ID: A8A97304RI Date Collected: 09/09/2008 Time Collected: 13:25

Date: 10/01/2008

Time: 10:26:17

Date Received: 09/09/2008 Project No: NY5A946109 Client No: L10190

· · · · · · · · · · · · · · · ·			Detection			Date/Time	
Parameter	Result	Flag_	Limit	Units	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
2,2'-0xybis(1-Chloropropane)	ND		3800	UG/KG	8270	09/18/2008 14:22	2 MD
2,4,5-Trichlorophenol	ND		3800	ug/Kg	8270	09/18/2008 14:22	2 MD
2,4,6-Trichlorophenol	ND		3800	UG/KG	8270	09/18/2008 14:22	MD ≤
2,4-Dichlorophenol	ND		3800	UG/KG	8270	09/18/2008 14:22	2 MD
2,4-Dimethylphenol	1300	J	3800	UG/KG	8270	09/18/2008 14:22	2 MD
2,4-Dinitrophenol	ND		7300	UG/KG	8270	09/18/2008 14:22	2 MD
2,4-Dinitrotoluene	ND		3800	υg/kg	8270	09/18/2008 14:22	2 MD
2,6-Dinitrotoluene	ND		3800	UG/KG	8270	09/18/2008 14:22	2 MD
2-Chloronaphthalene	ND		3800	UG/KG	8270	09/18/2008 14:22	2 MD
2-Chlorophenol	ND		3800	UG/KG	8270	09/18/2008 14:22	2 MD
2-Methylnaphthalene	ND		3800	UG/KG	8270	09/18/2008 14:22	2 MD
2-Methylphenol	ND		3800	UG/KG	8270	09/18/2008 14:22	2 MD
2-Nitroaniline	ND		7300	UG/KG	8270	09/18/2008 14:22	2 MD
2-Nitrophenol	ND		3800	ug/KG	8270	09/18/2008 14:23	2 MD
3,3'-Dichlorobenzidine	ND		3800	UG/KG	8270	09/18/2008 14:23	2 M D
3-Nitroaniline	ND		7300	UG/KG	8270	09/18/2008 14:23	2 MD
4,6-Dinitro-2-methylphenol	ND		7300	UG/KG	8270	09/18/2008 14:23	2 MD
4-Bromophenyl phenyl ether	ND		3800	UG/KG	8270	09/18/2008 14:23	2 MD
4-Chloro-3-methylphenol	ND		3800	UG/KG	8270	09/18/2008 14:23	2 MD
4-Chloroaniline	ND		3800	UG/KG	8270	09/18/2008 14:23	2 MD
4-Chlorophenyl phenyl ether	ND		3800	ug/kg	8270	09/18/2008 14:23	2 MD
4-Methylphenol	3600	J	3800	UG/KG	8270	09/18/2008 14:23	2 MD
4-Nitroaniline	ND		7300	UG/KG	8270	09/18/2008 14:23	2 MD
4-Nitrophenol	ND		7300	υg/κg	8270	09/18/2008 14:2	2 MD
Acenaphthene	ND		3800	UG/KG	8270	09/18/2008 14:2	2 MD
Acenaphthylene	ND	•	3800	υ G /KG	8270	09/18/2008 14:2	2 MD
Acetophenone	ND		3800	UG/KG	8270	09/18/2008 14:2	2 MD
Anthracene	ND		3800	UG/KG	8270	09/18/2008 14:2	
Atrazine	ND		3800	ug/kg	8270	09/18/2008 14:2	
Benzaldehyde	ND		3800	UG/KG	8270	09/18/2008 14:2	
Benza(a)anthracene	ND		3800	UG/KG	8270	09/18/2008 14:2	
Benzo(a)pyrene	ND		3800	UG/KG	8270	09/18/2008 14:2	
Benzo(b)fluoranthene	ND		3800	UG/KG	8270	09/18/2008 14:2	
Benzo(ghi)perylene	ND		3800	UG/KG	8270	09/18/2008 14:2	2 MD
Benzo(k)fluoranthene	ND		3800	UG/KG	8270	09/18/2008 14:2	
Biphenyl	ND		3800	UG/KG	8270	09/18/2008 14:2	
Bis(2-chloroethoxy) methane	ND		3800	UG/KG	8270	09/18/2008 14:2	
Bis(2-chloroethyl) ether	ND		3800	UG/KG	8270	09/18/2008 14:2	
Bis(2-ethylhexyl) phthalate	ND		3800	UG/KG	8270	09/18/2008 14:2	
Butyl benzyl phthalate	ND		3800	UG/KG	8270	09/18/2008 14:2	
Caprolactam	ND		3800	ug/kg	8270	09/18/2008 14:2	
Carbazole	ND		3800	UG/KG	8270	09/18/2008 14:2	
	ND		3800	UG/KG	8270	09/18/2008 14:2	
Chrysene	ND		3800	UG/KG	8270	09/18/2008 14:2	
Di-n-butyl phthalate	ND		3800	UG/KG	8270	09/18/2008 14:2	
Di-n-octyl phthalate	ND		3800	UG/KG	8270	09/18/2008 14:2	
Dibenzo(a,h)anthracene	ND		3800	UG/KG	8270	09/18/2008 14:2	
Dibenzofuran Diethyl phthalate	ND ND		3800	UG/KG	8270	09/18/2008 14:2	

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Randolph Foundry: Site #E905030

14/29 Page:

Rept: AN1178

Sample ID: LARGE SUMP NORTHWEST

Lab Sample ID: A8A97304RI Date Collected: 09/09/2008 Time Collected: 13:25 Date Received: 09/09/2008 Project No: NY5A946109 Client No: L10190

						Date/Time	
B	Result	Flag	Detection Limit	Units	Method	Analyzed	Analyst
Parameter	- KCJUCC						
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS	a in		3800	ug/kg	8270	09/18/2008 14:22	MD
Fluoranthene	ND		3800	UG/KG	8270	09/18/2008 14:22	MD
Fluorene	ND			UG/KG	8270	09/18/2008 14:22	
Hexachlorobenzene	ND		3800		8270	09/18/2008 14:22	
Hexachlorobutadiene	ND		3800	UG/KG		09/18/2008 14:22	
Hexachlorocyclopentadiene	ND		3800	UG/KG	8270	• •	
Hexachloroethane	ND		3800	UG/KG	8270	09/18/2008 14:22	
Indeno(1,2,3-cd)pyrene	ND		3800	UG/KG	8270	09/18/2008 14:22	
Isophorone	ND		3800	υG/KG	8270	09/18/2008 14:22	
N-Nitroso-Di-n-propylamine	ND		3800	∪G/KG	8270	09/18/2008 14:22	
N-nitrosodiphenylamine	ND		3800	UG/KG	8270	09/18/2008 14:22	MD
	ND		3800	UG/KG	8270	09/18/2008 14:22	MD
Naphthalene	ND		3800	UG/KG	8270	09/18/2008 14:22	MD
Nitrobenzene	ND		7300	UG/KG	8270	09/18/2008 14:22	MD
Pentachlorophenol	ND		3800	UG/KG	8270	09/18/2008 14:22	. MD
Phenanth rene			3800	UG/KG	8270	09/18/2008 14:22	. MD
Phenol	5400		3800	UG/KG	8270	09/18/2008 14:22	
Pyrene	ND		3000	00) 10	JETO	57, 10, 2000 11122	

15/29 Page:

Rept: AN1178

Sample ID: LARGE SUMP SOUTHEAST

Lab Sample ID: A8A97303
Pate Collected: 09/09/2008
Time Collected: 13:15

Date Received: 09/09/2008
Project No: NY5A946109
Client No: L10190

			Detection			Date/Time	
Da servator	Result	Flag	Limit	Units	Me thod	Analyzed	Analyst
Parameter NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES	<u> </u>	<u>1 tug</u>					
1,1,1-Trichloroethane	ND		5	UG/KG	8260	09/11/2008 20:48	LH
1,1,2,2-Tetrachloroethane	ND		5	u g/ Kg	8260	09/11/2008 20:48	LH
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5	UG/KG	8260	09/11/2008 20:48	LH
·	ND		5	UG/KG	8260	09/11/2008 20:48	LH
1,1,2-Trichloroethane	ND		5	∪g/kg	8260	09/11/2008 20:48	LH
1,1-Dichloroethane	ND		5	UG/KG	8260	09/11/2008 20:48	
1,1-Dichloroethene	ND		5	UG/KG	8260	09/11/2008 20:48	
1,2,4-Trichlorobenzene	ND		5	UG/KG	8260	09/11/2008 20:48	
1,2-Dibromo-3-chloropropane	ND ND		5	UG/KG	8260	09/11/2008 20:48	
1,2-Dibromoethane			5	UG/KG	8260	09/11/2008 20:48	
1,2-Dichlorobenzene	ND		5	UG/KG	8260	09/11/2008 20:48	
1,2-Dichloroethane	ND		5	UG/KG	8260	09/11/2008 20:48	
1,2-Dichloropropane	ND		5	UG/KG	8260	09/11/2008 20:48	
1,3-Dichlorobenzene	ND		5	UG/KG	8260	09/11/2008 20:48	
1,4-Dichlorobenzene	ND		26	UG/KG	8260	09/11/2008 20:48	
2-Butanone	ND			UG/KG	8260	09/11/2008 20:48	
2-Hexanone	ND		26	UG/KG	8260	09/11/2008 20:48	
4-Methyl-2-pentanone	ND		26			09/11/2008 20:48	
Acetone	ND		26	UG/KG	8260	09/11/2008 20:48	
Benzene	ND		5	UG/KG	8260	09/11/2008 20:48	
Bromodichloromethane	ND		5	UG/KG	8260		
Bromoform	ND		5	UG/KG	8260	09/11/2008 20:48	
Bromomethane	ND		5	UG/KG	8260	09/11/2008 20:48	
Carbon Disulfide	ND		5	UG/KG	8260	09/11/2008 20:48	
Carbon Tetrachloride	ND		5	UG/KG	8260	09/11/2008 20:48	
Chlorobenzene	ND		5	UG/KG	8260	09/11/2008 20:48	
Ch Loroe thane	ND		5	UG/KG	8260	09/11/2008 20:48	
Chloroform	ND		5	UG/KG	8260	09/11/2008 20:48	
Chloromethane	ND		5	UG/KG	8260	09/11/2008 20:48	
cis-1,2-Dichloroethene	ND		5	UG/KG	8260	09/11/2008 20:48	
cis-1,3-Dichloropropene	ND		5	UG/KG	8260	09/11/2008 20:48	
Cyclohexane	ND		5	UG/KG	8260	09/11/2008 20:48	
Dibromochloromethane	ND		5	UG/KG	8260	09/11/2008 20:48	
Dichlorodifluoromethane	ND		5	ue/kg	8260	09/11/2008 20:48	
Ethylbenzene	ND		5	ug/kg	8260	09/11/2008 20:48	
Isopropylbenzene	ND		5	UG/KG	8260	09/11/2008 20:48	
Methyl acetate	ND		5	UG/KG	8260	09/11/2008 20:48	
Methyl-t-Butyl Ether (MTBE)	ND		5	UG/KG	8260	09/11/2008 20:48	
Methylcyclohexane	ND		5	ug/kg	8260	09/11/2008 20:48	
Methylene chloride	ND		5	UG/KG	8260	09/11/2008 20:48	B LH
Styrene	ND		5	UG/KG	8260	09/11/2008 20:48	
Tetrachloroethene	ND		5	UG/KG	8260	09/11/2008 20:48	
Toluene	ND		5	ug/kg	8260	09/11/2008 20:48	8 L H
Total Xylenes	ND		16	UG/KG	8260	09/11/2008 20:48	8 LH
trans-1,2-Dichloroethene	ND		5	UG/KG	8260	09/11/2008 20:48	8 LH
trans-1,3-Dichloropropene	ND		5	UG/KG	8260	09/11/2008 20:48	8 LH
Trichloroethene	ND		5	UG/KG	8260	09/11/2008 20:48	8 LH
Trichlorofluoromethane	ND		5	∪G/KG	8260	09/11/2008 20:4	8 LH
Vinyl chloride	ND		11	UG/KG	8260	09/11/2008 20:4	8 LH

16/29 Page:

Rept: AN1178

Sample ID: LARGE SUMP SOUTHEAST

Lab Sample ID: A8A97303 Date Collected: 09/09/2008 Time Collected: 13:15 Date Received: 09/09/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	Flag_	Limit	Units	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS						_ _	
2,2'-oxybis(1-Chloropropane)	ND		180	UG/KG	8270	09/12/2008 16:04	MD
2,4,5-Trichlorophenol	ND		180	∪G/KG	8270	09/12/2008 16:04	MD
2,4,6-Trichlorophenol	ND		180	UG/KG	8270	09/12/2008 16:04	MD
2,4-Dichlorophenol	ND		180	ug/kg	8270	09/12/2008 16:04	MD
2,4-Dimethylphenol	220		180	υG/KG	8270	09/12/2008 16:04	MD
2,4-Dinitrophenol	ND		350	ug/kg	8270	09/12/2008 16:04	MĐ
2.4-Dinitrotoluene	ND		180	ug/kg	8270	09/12/2008 16:04	MD
2,6-Dinitrotoluene	ND		180	UG/KG	8270	09/12/2008 16:04	MD
2-Chloronaphthalene	ND		180	UG/KG	8270	09/12/2008 16:04	MD
•	ND		180	UG/KG	8270	09/12/2008 16:04	MD
2-Chlorophenol	ND		180	UG/KG	8270	09/12/2008 16:04	MD
2-Methylnaphthalene	ND		180	UG/KG	8270	09/12/2008 16:04	MD
2-Me thy lphenol	ND		350	UG/KG	8270	09/12/2008 16:04	MD
2-Nitroaniline	ND		180	ug/kg	8270	09/12/2008 16:04	
2-Nitrophenol	ND		180	UG/KG	8270	09/12/2008 16:04	MD
3,3'-Dichlorobenzidine	ND		350	UG/KG	8270	09/12/2008 16:04	
3-Nitroaniline	ND		350	UG/KG	8270	09/12/2008 16:04	
4,6-Dinitro-2-methylphenol	ND		180	UG/KG	8270	09/12/2008 16:04	
4-Bromophenyl phenyl ether	ND		180	UG/KG	8270	09/12/2008 16:04	
4-Chloro-3-methylphenol	ND ND		180	UG/KG	8270	09/12/2008 16:04	
4-Chloroaniline	ND		180	UG/KG	8270	09/12/2008 16:04	
4-Chlorophenyl phenyl ether	460		180	UG/KG	8270	09/12/2008 16:04	
4-Methylphenol	ND		350	UG/KG	8270	09/12/2008 16:04	
4-Nitroaniline	ND ND		350	UG/KG	8270	09/12/2008 16:04	
4-Nitrophenol	ND		180	UG/KG	8270	09/12/2008 16:04	
Acenaphthene			180	UG/KG	8270	09/12/2008 16:04	
Acenaphthylene	ND NO		180	UG/KG	8270	09/12/2008 16:04	
Acetophenone	ND 7	J	180	UG/KG	8270	09/12/2008 16:04	
Anthracene		J	180	UG/KG	8270	09/12/2008 16:04	
Atrazine	ND		180	UG/KG	8270	09/12/2008 16:04	
Benzaldehyde	ND		180	UG/KG	8270	09/12/2008 16:04	
Benzo(a)anthracene	ND		180	UG/KG	8270	09/12/2008 16:04	
Benzo(a)pyrene	ND		180	UG/KG	8270	09/12/2008 16:04	
Benzo(b)fluoranthene	ND		180	UG/KG	8270	09/12/2008 16:04	
Benzo(ghi)perylene	ND		180	UG/KG	8270	09/12/2008 16:04	
Benzo(k)fluoranthene	ND			UG/KG	8270	09/12/2008 16:04	
Biphenyl	ND		180	UG/KG	8270	09/12/2008 16:04	
Bis(2-chloroethoxy) methane	ND		180	UG/KG	8270	09/12/2008 16:04	
Bis(2-chloroethyl) ether	ND		180	UG/KG	8270	09/12/2008 16:04	
Bis(2-ethylhexyl) phthalate	73	J	180	UG/KG	8270	09/12/2008 16:04	
Butyl benzyl phthalate	ND		180	UG/KG	8270	09/12/2008 16:04	
Caprolactam	ND		180	UG/KG	8270	09/12/2008 16:04	
Carbazole	ND		180	UG/KG	8270	09/12/2008 16:04	
Chrysene	27	J	180			09/12/2008 16:04	
Di-n-butyl phthalate	ND		180	UG/KG	8270	09/12/2008 16:04	
Di-n-octyl phthalate	ND		180	UG/KG	8270 8270	09/12/2008 16:04	
Dibenzo(a,h)anthracene	ND		180	UG/KG	8270 8270	09/12/2008 16:04	
Dibenzofuran	ND		180	UG/KG	8270	09/12/2008 16:0	
Diethyl phthalate	ND		180	UG/KG	8270		
Dimethyl phthalate	ND		180	UG/KG	8270	09/12/2008 16:0	4 MD stAmerio

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 **17/29** Page: 9 Rept: AN1178

Sample ID: LARGE SUMP SOUTHEAST

Lab Sample ID: A8A97303
Date Collected: 09/09/2008
Time Collected: 13:15

Date Received: 09/09/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	_
Parameter	Result	Flag_	Limit	<u>Units</u>	Me thod	An <u>alyzed</u>	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	9	J	180	UG/KG	8270	09/12/2008 16:04	
Fluorene	ND		180	UG/KG	8270	09/12/2008 16:04	
Hexachlorobenzene	ND		180	UG/KG	8270	09/12/2008 16:04	
Hexachlorobutadiene	ND		180	υG/KG	8270	09/12/2008 16:04	
Hexachlorocyclopentadiene	ND		180	UG/KG	8270	09/12/2008 16:04	
Hexachloroethane	ND		180	UG/KG	8270	09/12/2008 16:04	MD
Indeno(1,2,3-cd)pyrene	ND		180	ug/kg	8270	09/12/2008 16:04	MD
Isophorone	ND		180	∪G/KG	8270	09/12/2008 16:04	. MD
N-Nitroso-Di-n-propylamine	ND		180	UG/KG	8270	09/12/2008 16:04	
N-nitrosodiphenylamine	ND		180	ug/kg	8270	09/12/2008 16:04	MD
Naphthalene	ND		180	ug/kg	8270	09/12/2008 16:04	MD
Nitrobenzene	ND		180	ug/kg	8270	09/12/2008 16:04	MD
Pentachlorophenol	ND		350	UG/KG	8270	09/12/2008 16:04	MD .
	12	J	180	UG/KG	8270	09/12/2008 16:04	M D
Phenanthrene	1200	-	180	UG/KG	8270	09/12/2008 16:04	MD
Phenol	ND		180	UG/KG	8270	09/12/2008 16:04	MD .
Pyrene				,			
NYS DEC-SOIL-SW8463 8081 - TCL PESTICIDES							
4,4'-000	ND		180	UG/KG	8081	09/26/2008 19:46	
4,4'-DDE	ND		180	ug/kg	8081	09/26/2008 19:46	
4,4'-DDT	ND		180	UG/KG	8081	09/26/2008 19:46	
Aldrin	ND		180	UG/KG	8081	09/26/2008 19:46	
alpha-BHC	ND		180	UG/KG	8081	09/26/2008 19:46	
beta-BHC	ND		180	UG/KG	8081	09/26/2008 19:40	
Chlordane	ND		1800	UG/KG	8081	09/26/2008 19:46	
delta-BHC	ND		180	UG/KG	8081	09/26/2008 19:46	
Dieldrin	ND		180	UG/KG	8081	09/26/2008 19:44	
Endosulfan I	ND		180	UG/KG	8081	09/26/2008 19:40	
Endosulfan II	ND		180	ug/kg	8081	09/26/2008 19:44	
Endosulfan Sulfate	ND		180	UG/KG	8081	09/26/2008 19:44	
Endrin	ND		180	UG/KG	8081	09/26/2008 19:4	
Endrin aldehyde	ND		180	UG/KG	8081	09/26/2008 19:4	
Endrin ketone	ND		180	UG/KG	8081	09/26/2008 19:4	
qamma-BHC (Lindane)	ND		180	UG/KG	8081	09/26/2008 19:4	
Heptachlor	ND		180	UG/KG	8081	09/26/2008 19:4	6 тсн
Heptachlor epoxide	ND		180	UG/KG	8081	09/26/2008 19:4	
Methoxychlor	ND		180	UG/KG	8081	09/26/2008 19:4	
Toxaphene	ND		1800	UG/KG	8081	09/26/2008 19:4	6 тсн
Toxaphone							
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS					2000	00/42/2000 20-0	6 NU
Aroclor 1016	ND		37	UG/KG	8082	09/12/2008 20:0	
Aroclor 1221	ND		37	UG/KG	8082	09/12/2008 20:0	
Aroclor 1232	ND		37	UG/KG	8082	09/12/2008 20:0	
Aroclor 1242	ND		37	UG/KG	8082	09/12/2008 20:0	
Aroclor 1248	270		37	UG/KG	8082	09/12/2008 20:0	
Aroclor 1254	ND		37	UG/KG	8082	09/12/2008 20:0	
Aroclor 1260	ND		37	UG/KG	8082	09/12/2008 20:0	6 DW

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

18/29 Page:

Rept: AN1178

Sample ID: LARGE SUMP SOUTHEAST

Lab Sample ID: A8A97303 Date Collected: 09/09/2008 Time Collected: 13:15 Date Received: 09/09/2008 Project No: NY5A946109

Client No: L10190

		Detection			Date/Time	
<u>Parameter</u>	Result Flag	Limit	Units	<u>Method</u>	Analyzed	Analyst
Metals Analysis						
Aluminum - Total	7590	10	MG/KG	6010	09/12/2008 01:33	AH
Antimony - Total	ND	15.1	MG/KG	6010	09/12/2008 01:33	
Arsenic ~ Total	5.6	2.0	MG/KG	6010	09/12/2008 01:33	
Barium - Total	258	0.50	MG/KG	6010	09/12/2008 01:33	
Beryllium - Total	0.28	0.20	MG/KG	6010	09/12/2008 01:33	AH
Cadmium - Total	ND	0.20	MG/KG	6010	09/12/2008 16:27	AH
Calcium - Total	2280	50.3	MG/KG	6010	09/12/2008 01:33	AH
Chromium - Total	9.2	0.50	MG/KG	6010	09/12/2008 01:33	AH
Cobalt - Total	5.4	0.50	MG/KG	6010	09/12/2008 01:33	АН
Copper - Total	16.8	1.0	MG/KG	6010	09/12/2008 01:33	AH
Iron - Total	17900	10	MG/KG	6010	09/12/2008 01:33	AH
Lead - Total	7.8	1.0	MG/KG	6010	09/12/2008 01:33	AH
Magnesium - Total	2440	20.1	MG/KG	6010	09/12/2008 01:33	AH
Manganese - Total	1110	0.20	MG/KG	6010	09/12/2008 01:33	AH
Mercury - Total	0.031	0.023	MG/KG	7471	09/11/2008 13:34	MM
Nickel - Total	13.9	0.50	MG/KG	6010	09/12/2008 01:33	АН
Potassium - Total	732	30.2	MG/KG	6010	09/12/2008 01:33	АН
Selenium - Total	ND	4.0	MG/KG	6010	09/12/2008 01:33	АН
Silver - Total	ND	0.50	MG/KG	6010	09/12/2008 01:33	AH
Sodium - Total	154	14 1	MG/KG	6010	09/12/2008 01:33	АН
Thallium - Total	ND	6.0	MG/KG	6010	09/12/2008 01:33	AH
Vanadium - Total	9.5	0.50	MG/KG	6010	09/12/2008 01:33	АН
Zinc - Total	48.8	2.0	MG/KG	6010	09/12/2008 01:33	АН
Wet Chemistry Analysis						
Cyanide - Total	ND	0.85	MG/KG	9012	09/22/2008 09:35	LRM

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

19/29 Page:

Page: 11 Rept: AN1178

Sample ID: LARGE SUMP SOUTHEAST

Lab Sample ID: A8A97303RI Date Collected: 09/09/2008 Time Collected: 13:15 Date Received: 09/09/2008 Project No: NY5A946109 Client No: L10190

	Detection			Date/Time				
Parameter	Result	Flag	∟imit	Units	Method	Analyzed	Analys	
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS						•		
2,2'-0xybis(1-Chloropropane)	ND		3600	UG/KG	8270	09/18/2008 13:59	MD	
2,4,5-Trichlorophenol	ND		3600	UG/KG	8270	09/18/2008 13:59	MD	
2,4,6-Trichlorophenol	ND		3600	UG/KG	8270	09/18/2008 13:59	MD	
2,4-Dichlorophenol	ND		3600	UG/KG	8270	09/18/2008 13:59	MD	
2,4-Dimethylphenol	ND		3600	UG/KG	8270	09/18/2008 13:59	MD	
2,4-Dinitrophenol	ND		7100	ug/kg	8270	09/18/2008 13:59	MD	
2,4-Dinitrotoluene	ND		3600	ug/kg	8270	09/18/2008 13:59	MD	
2,6-Dinitrotoluene	ND		3600	ug/kg	8270	09/18/2008 13:59	MD	
2-Chloronaphthalene	ND		3600	UG/KG	8270	09/18/2008 13:59	MD	
2-Chlorophenol	ND		3600	ug/kg	8270	09/18/2008 13:59	MD	
2-Methylnaphthalene	ND		3600	UG/KG	8270	09/18/2008 13:59	MD MD	
2-Me thy lphenol	ND		3600	UG/KG	8270	09/18/2008 13:59	MD MD	
2-Nitroaniline	ND		7100	ug/kg	8270	09/18/2008 13:59		
2-Nitrophenol	ND		3600	UG/KG	8270	09/18/2008 13:59		
3,3'-Dichlorobenzidine	ND		3600	UG/KG	8270	09/18/2008 13:59		
3-Nitroaniline	ND		7100	UG/KG	8270	09/18/2008 13:59		
4,6-Dinitro-2-methylphenol	ND		7100	UG/KG	8270	09/18/2008 13:59		
4-Bromophenyl phenyl ether	ND		3600	UG/KG	8270	09/18/2008 13:59		
4-Chloro-3-methylphenol	ND		3600	UG/KG	8270	09/18/2008 13:59		
4-Chloroaniline	ND		3600	UG/KG	8270	09/18/2008 13:59		
4-Chlorophenyl phenyl ether	ND		3600	UG/KG	8270	09/18/2008 13:59		
4-Methylphenol	410	J	3600	UG/KG	8270	09/18/2008 13:59		
4-Nitroaniline	ND	·	7100	UG/KG	8270	09/18/2008 13:59		
4-Nitrophenol	ND		7100	UG/KG	8270	09/18/2008 13:59		
Acenaphthene	ND		3600	UG/KG	8270	09/18/2008 13:59		
Acenaphthylene	ND		3600	UG/KG	8270	09/18/2008 13:59		
Acetophenone	ND		3600	UG/KG	8270	09/18/2008 13:59		
Anthracene	ND		3600	UG/KG	8270	09/18/2008 13:59		
Atrazine	ND		3600	UG/KG	8270	09/18/2008 13:59		
Benzaldehyde	ND		3600	UG/KG	8270	09/18/2008 13:59		
Benzo(a)anthracene	ND		3600	UG/KG	8270	09/18/2008 13:59		
Benzo(a)pyrene	ND		3600	UG/KG	8270	09/18/2008 13:59		
Benzo(b)fluoranthene	ND		3600	UG/KG	8270	09/18/2008 13:59		
Benzo(ghi)perylene	ND		3600	UG/KG	8270	09/18/2008 13:59		
Benzo(k)fluoranthene	ND		3600	UG/KG	8270	09/18/2008 13:59		
Biphenyl	ND		3600	UG/KG	8270	09/18/2008 13:59		
Bis(2-chloroethoxy) methane	ND		3600	UG/KG	8270	09/18/2008 13:59		
Bis(2-chloroethol) ether	ND		3600	UG/KG	8270	09/18/2008 13:59		
•	ND ND		3600	UG/KG	8270	09/18/2008 13:59		
Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	ND		3600	UG/KG	8270	09/18/2008 13:59		
	ND ND		3600	UG/KG	8270	09/18/2008 13:59		
Caprolactam	ND ND		3600	UG/KG	8270	09/18/2008 13:59		
Carbazole			3600	UG/KG	8270	09/18/2008 13:59		
Chrysene	ND NO		3600	UG/KG	8270			
Di-n-butyl phthalate	ND ND		3600	UG/KG	8270	09/18/2008 13:59		
Di-n-octyl phthalate	ND ND		3600	UG/KG	8270 8270	09/18/2008 13:59		
Dibenzo(a,h)anthracene	ND ND			UG/KG UG/KG	8270 8270	09/18/2008 13:59		
Dibenzofuran	ND		3600 3600	UG/KG UG/KG		09/18/2008 13:59		
Diethyl phthalate	ND		3600	UU/KU	8270	U7/ 10/4UUQ 13:33) MD	

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 20/29 Page:

Page: 12 Rept: AN1178

Sample ID: LARGE SUMP SOUTHEAST

Lab Sample ID: A8A97303RI Date Collected: 09/09/2008 Time Collected: 13:15 Date Received: 09/09/2008 Project No: NY5A946109

> Client No: L10190 Site No:

		Detection					
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed	Analyst
YSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	ND		3600	UG/K G	8270	09/18/2008 13:59	MD
Fluorene	ND		3600	UG/KG	8270	09/18/2008 13:59	MD
Hexachlorobenzene	ND		3600	UG/KG	8270	09/18/2008 13:59	MD
Hexachlorobutadiene	ND		3600	UG/KG	8270	09/18/2008 13:59	MD
Hexachlorocyclopentadiene	ND		3600	ŲG/KG	8270	09/18/2008 13:59	MD
Hexachloroethane	ND		3600	ug/kg	8270	09/18/2008 13:59	MD
Indeno(1,2,3-cd)pyrene	ND		3600	UG/KG	8270	09/18/2008 13:59	MD
Isophorone	ND		3600	∪G/KG	8270	09/18/2008 13:59	MD
N-Nitroso-Di-n-propylamine	ND		3600	ug/kg	8270	09/18/2008 13:59	MD
N-nitrosodiphenylamine	ND		3600	∪G/KG	8270	09/18/2008 13:59	MD
Naphthalene	ND		3600	ug/kg	8270	09/18/2008 13:59	MĐ
Nitrobenzene	ND		3600	ug/kg	8270	09/18/2008 13:59	MD
Pentachlorophenol	ND		7100	ug/kg	8270	09/18/2008 13:59	MD
Phenanthrene	ND		3600	ug/kg	8270	09/18/2008 13:59	MD
Phenol	1400	J	3600	ug/kg	8270	09/18/2008 13:59	MD
Pyrene	N/D		3600	ug/KG	8270	09/18/2008 13:59	MD

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 21/29 Page:

Rept: AN1178

Sample ID: NORTH SUMP EXCAV.

Lab Sample ID: A8A97302 Date Collected: 09/09/2008 Time Collected: 12:40 Date Received: 09/09/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	<u>Method</u>	Analyzed	Analys
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		6	ug/kg	8260	09/11/2008 20:23	LH
1,1,2,2-Tetrachloroethane	ND		6	UG/KG	8260	09/11/2008 20:23	LH
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		6	UG/KG	8260	09/11/2008 20:23	
1,1,2-Trichloroethane	ND		6	UG/KG	8260	09/11/2008 20:23	LH
1,1-Dichloroethane	ND		6	ug/kg	8260	09/11/2008 20:23	LH
1,1-Dichloroethene	ND		6	UG/KG	8260	09/11/2008 20:23	LH
1,2,4-Trichlorobenzene	ND		6	∪G/KG	8260	09/11/2008 20:23	LH
1,2-Dibromo-3-chloropropane	ND		6	UG/KG	8260	09/11/2008 20:23	LH
1,2-Dibromoethane	ND		6	∪G/KG	8260	09/11/2008 20:23	LH
1,2-Dichlorobenzene	ND		6	∪G/KG	8260	09/11/2008 20:23	LH
1,2-Dichloroethane	ND		6	ug/kg	8260	09/11/2008 20:23	LH
1,2-Dichloropropane	ND		6	UG/KG	8260	09/11/2008 20:23	LH
1,3-Dichlorobenzene	ND		6	ug/kg	8260	09/11/2008 20:23	LH
1,4-Dichlorobenzene	ND		6	UG/KG	8260	09/11/2008 20:23	LH
2-Butanone	ND		31	UG/KG	8260	09/11/2008 20:23	LH
2-Hexanone	ND		31	UG/KG	8260	09/11/2008 20:23	LH
4-Methyl-2-pentanone	ND		31	UG/KG	8260	09/11/2008 20:23	
Acetone	ND		31	UG/KG	8260	09/11/2008 20:23	
Benzene	ND		6	υg/kg	8260	09/11/2008 20:23	LH
Bromodichloromethane	ND		6	υσ/κσ	8260	09/11/2008 20:23	
Bromoform	ND		6	ŲG/KG	8260	09/11/2008 20:23	
Bromomethane	ND		6	UG/KG	8260	09/11/2008 20:23	
Carbon Disulfide	ND		6	ug/kg	8260	09/11/2008 20:23	
Carbon Tetrachloride	ND		6	ug/kg	8260	09/11/2008 20:23	
Chlorobenzene	ND		6	UG/KG	8260	09/11/2008 20:23	
Chloroethane	ND		6	UG/KG	8260	09/11/2008 20:23	
Chloroform	ND		6	UG/KG	8260	09/11/2008 20:23	
Chloromethane	ND		6	UG/KG	8260	09/11/2008 20:23	
cis-1,2-Dichloroethene	ND		6	UG/KG	8260	09/11/2008 20:23	
cis-1,3-Dichloropropene	ND		6	UG/KG	8260	09/11/2008 20:23	
Cyclohexane	ND		6	UG/KG	8260	09/11/2008 20:23	
Dibromochloromethane	ND		6	UG/KG	8260	09/11/2008 20:23	
Dichlorodifluoromethane	ND		6	UG/KG	8260	09/11/2008 20:23	
Ethylbenzene	ND		6	UG/KG	8260	09/11/2008 20:23	
Isopropylbenzene	ND		6	UG/KG	8260	09/11/2008 20:23	
Methyl acetate	ND		6	UG/KG	8260	09/11/2008 20:23	
Methyl-t-Butyl Ether (MTBE)	ND		6	UG/KG	8260	09/11/2008 20:23	
Methylcyclohexane	ND		6	UG/KG	8260	09/11/2008 20:23	
Methylene chloride	12	В	6	UG/KG	8260	09/11/2008 20:23	
·	ND		6	UG/KG	8260	09/11/2008 20:23	
Styrene	ND ND		6	UG/KG	8260	09/11/2008 20:23	
Tetrachloroethene	ND		6	UG/KG	8260	09/11/2008 20:23	
Total Vylones	ND		19	UG/KG	8260	09/11/2008 20:23	
Total Xylenes			6	UG/KG	8260 8260	09/11/2008 20:23	
trans-1,2-Dichloroethene	ND ND		6	UG/KG UG/KG	8260	09/11/2008 20:23	
trans-1,3-Dichloropropene	ND ND		6	UG/KG	8260	09/11/2008 20:23	
Trichloroethene	ND			-			
Trichlorofluoromethane	ND		6	∪G/KG	8260	09/11/2008 20:23	LH

22/29 Page:

Rept: AN1178

Sample ID: NORTH SUMP EXCAV.

Lab Sample ID: A8A97302 Date Collected: 09/09/2008 Time Collected: 12:40

Time: 10:26:17

Date Received: 09/09/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	<u>Me thod</u>	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
2,4,5-Trichlorophenol	ND		2000	ug/kg	8270	09/12/2008 15:41	MD
2,4,6-Trichlorophenol	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
2,4-Dichlorophenol	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
2,4-Dimethylphenol	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
2,4-Dinitrophenol	ND		3900	UG/KG	8270	09/12/2008 15:41	MD
2,4-Dinitrotoluene	ND		2000	υG/KG	8270	09/12/2008 15:41	MĐ
2,6-Dinitrotoluene	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
2-Chloronaphthalene	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
2-Chlorophenol	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
2-Methylnaphthalene	320	J	2000	UG/KG	8270	09/12/2008 15:41	MD
2-Methylphenol	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
2-Nitroaniline	ND		3900	UG/KG	8270	09/12/2008 15:41	MD
2-Nitrophenol	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
3,3'-Dichlorobenzidine	ND		2000	ug/kg	8270	09/12/2008 15:41	MD
3-Nitroaniline	ND		3900	UG/KG	8270	09/12/2008 15:41	MD
4,6-Dinitro-2-methylphenol	ND		3900	UG/KG	8270	09/12/2008 15:41	MD
4-Bromophenyl phenyl ether	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
4-Chloro-3-methylphenol	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
4-Chloroaniline	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
4-Chlorophenyl phenyl ether	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
4-Methylphenol	ND		2000	∪G/KG	8270	09/12/2008 15:41	MD
4-Nitroaniline	ND		3900	UG/KG	8270	09/12/2008 15:41	MD
4-Nitrophenol	ND		3900	ug/kg	8270	09/12/2008 15:41	MD
Acenaphthene	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
Acenaphthylene	97	J	2000	UG/KG	8270	09/12/2008 15:41	MD
Acetophenone	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
Anthracene	190	J	2000	UG/KG	8270	09/12/2008 15:41	MD
Atrazine	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
Benzaldehyde	ND		2000	ug/kg	8270	09/12/2008 15:41	MD
Benzo(a)anthracene	800	J	2000	UG/KG	8270	09/12/2008 15:41	MD
Benzo(a)pyrene	620	J	2000	UG/KG	8270	09/12/2008 15:41	MD
Benzo(b)f Luoranthene	740	J	2000	UG/KG	8270	09/12/2008 15:41	MD
Benzo(ghi)perylene	400	J	2000	UG/KG	8270	09/12/2008 15:41	MD
Benzo(k)fluoranthene	320	J	2000	UG/KG	8270	09/12/2008 15:41	MD
BiphenyL	ND	-	2000	UG/KG	8270	09/12/2008 15:41	MD
Bis(2-chloroethoxy) methane	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
Bis(2-chloroethyl) ether	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
Bis(2-ethylhexyl) phthalate	720	J	2000	UG/KG	8270	09/12/2008 15:41	MD
Butyl benzyl phthalate	ND	•	2000	UG/KG	8270	09/12/2008 15:41	MD
Caprolactam	ND		2000	UG/KG	8270	09/12/2008 15:41	MD
Carbazole	96	J	2000	UG/KG	8270	09/12/2008 15:41	MD
Chrysene	670	J	2000	UG/KG	8270	09/12/2008 15:41	MD
Di-n-butyl phthalate	ND	•	2000	UG/KG	8270	09/12/2008 15:41	MD
Di-n-octyl phthalate	ND		2000	UG/KG	8270	09/12/2008 15:41	MO
Dibenzo(a,h)anthracene	120	J	2000	ug/kg	8270	09/12/2008 15:41	MD
Dibenzofuran	140	J	2000	UG/KG	8270 8270	09/12/2008 15:41	MD
Diethyl phthalate	ND	U	2000	UG/KG	8270 8270	09/12/2008 15:41	
Dimethyl phthalate	ND		2000	UG/KG	8270	09/12/2008 15:41	MD MD

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 23/29 Page:

Page: 15 Rept: AN1178

Sample ID: NORTH SUMP EXCAV.

Lab Sample ID: A8A97302
Date Collected: 09/09/2008
Time Collected: 12:40

Date Received: 09/09/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units_	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	1500	J	2000	UG/KG	8270	09/12/2008 15:41	
Fluorene	ND		2000	UG/KG	8270	09/12/2008 15:41	
Hexachlorobenzene	ND		2000	UG/KG	8270	09/12/2008 15:41	
Hexachlorobutadiene	ND		2000	UG/KG	8270	09/12/2008 15:41	
Hexachlorocyclopentadiene	ND		2000	UG/KG	8270	09/12/2008 15:41	
Hexachloroethane	ND		2000	UG/KG	8270	09/12/2008 15:41	
Indeno(1,2,3-cd)pyrene	360	J	2000	ug/kg	8270	09/12/2008 15:41	
Isophorone	ND		2000	∪G/KG	8270	09/12/2008 15:41	
N-Nitroso-Di-n-propylamine	ND		2000	UG/KG	8270	09/12/2008 15:41	
N-nitrosodiphenylamine	ND		2000	UG/KG	8270	09/12/2008 15:41	
Naphthalene	260	J	2000	UG/KG	8270	09/12/2008 15:41	
Nitrobenzene	ND		2000	UG/KG	8270	09/12/2008 15:41	
Pentachlorophenol	ND		3900	UG/KG	8270	09/12/2008 15:41	
Phenanthrene	1000	J	2000	UG/KG	8270	09/12/2008 15:41	
Phenol	ND		2000	UG/KG	8270	09/12/2008 15:41	
Pyrene	1100	J	2000	UG/KG	8270	09/12/2008 15:41	MD
NYS DEC-SOIL-SW8463 8081 - TCL PESTICIDES							
4,4'-DDD	ND		100	UG/KG	8081	09/26/2008 19:10	
4,4'-DDE	ND		100	UG/KG	8081	09/26/2008 19:10	
4,4'-DDT	ND		100	UG/KG	8081	09/26/2008 19:10	
Aldrin	ND		100	UG/KG	8081	09/26/2008 19:10	
alpha-BHC	ND		100	ue/ke	8081	09/26/2008 19:10	
beta-BHC	ND		100	UG/KG	8081	09/26/2008 19:10	
Chlordane	ND		1000	UG/KG	8081	09/26/2008 19:10	
delta-BHC	ND		100	ug/kg	8081	09/26/2008 19:10	
Dieldrin	ND		100	UG/KG	8081	09/26/2008 19:10	
Endosulfan I	ND		100	∪G/KG	8081	09/26/2008 19:10	
Endosulfan II	ND		100	UG/KG	8081	09/26/2008 19:10	
Endosulfan Sulfate	ND		100	UG/KG	8081	09/26/2008 19:10	
Endrin	ND		100	UG/KG	8081	09/26/2008 19:10	
Endrin aldehyde	ND		100	UG/KG	8081	09/26/2008 19:10	
Endrin ketone	ND		100	UG/KG	8081	09/26/2008 19:10	
gamma-BHC (Lindane)	ND		100	UG/KG	8081	09/26/2008 19:10	
Heptachlor	ND		100	UG/KG	8081	09/26/2008 19:10	
Heptachlor epoxide	ND		100	UG/KG	8081	09/26/2008 19:10	
Methoxychlor	ND		100	UG/KG	8081	09/26/2008 19:10	
Toxaphene	ND		1000	UG/KG	8081	09/26/2008 19:10	тсн
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		20	UG/KG	8082	09/12/2008 19:46	
Aroclor 1221	ND		20	UG/KG	8082	09/12/2008 19:46	
Aroclor 1232	ND		20	UG/KG	8082	09/12/2008 19:40	
Aroclor 1242	ND		20	UG/KG	8082	09/12/2008 19:46	
Aroclor 1248	ND		20	UG/KG	8082	09/12/2008 19:40	
Aroclor 1254	37		20	ug/KG	8082	09/12/2008 19:44	
Aroclor 1260	ND		20	UG/KG	8082	09/12/2008 19:44	5 DW

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

24/29 Page:

Rept: AN1178

Sample ID: NORTH SUMP EXCAV.

Lab Sample ID: A8A97302 Date Collected: 09/09/2008 Time Collected: 12:40 Date Received: 09/09/2008 Project No: NY5A946109 Client No: L10190

		Detection			Date/Time	
Parameter	Result Flag	Limit	<u>Units</u>	Me thod	Analyzed	Analyst
Metals Analysis						
Aluminum - Total	7820	12.5	MG/KG	6010	09/12/2008 01:28	AH
Antimony - Total	ND	18.7	MG/KG	6010	09/12/2008 01:28	AH
Arsenic - Total	8.9	2.5	MG/KG	6010	09/12/2008 01:28	AH
Barium - Total	116	0.62	MG/KG	6010	09/12/2008 01:28	AH
Beryllium - Total	0.50	0.25	MG/KG	6010	09/12/2008 01:28	AH
Cadmium - Total	0.64	0.25	MG/KG	6010	09/12/2008 16:21	AH
Calcium - Total	55400	62.3	MG/KG	6010	09/12/2008 01:28	AH
Chromium - Total	48.7	0.62	MG/KG	6010	09/12/2008 01:28	AH
Cobalt - Total	5.5	0.62	MG/KG	6010	09/12/2008 01:28	AH
Copper - Total	105	1.2	MG/KG	6010	09/12/2008 01:28	AH
Iron - Total	31800	12.5	MG/KG	6010	09/12/2008 01:28	AH
Lead - Total	143	1.2	MG/KG	6010	09/12/2008 01:28	AH
Magnesium - Total	4080	24.9	MG/KG	6010	09/12/2008 01:28	AH
Manganese - Total	1150	0.25	MG/KG	6010	09/12/2008 01:28	AH
Mercury - Total	0.075	0.025	MG/KG	7471	09/11/2008 13:32	MM
Nickel - Total	28.9	0.62	MG/KG	6010	09/12/2008 01:28	AH
Potassium - Total	783	37.4	MG/KG	6010	09/12/2008 01:28	AH
Selenium - Total	ND	5.0	MG/KG	6010	09/12/2008 01:28	АН
Silver - Total	ND	0.62	MG/KG	6010	09/12/2008 01:28	AH
Sodium - Total	ND	174	MG/KG	6010	09/12/2008 01:28	АН
Thallium - Total	ND	7.5	MG/KG	6010	09/12/2008 01:28	AH
Vanadium - Total	25.4	0.62	MG/KG	6010	09/12/2008 01:28	AH
Zinc - Total	350	2.5	MG/KG	6010	09/12/2008 01:28	АН
Wet Chemistry Analysis						
Cyanide - Total	ND	1.1	MG/KG	9012	09/22/2008 09:35	LRM

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

Date Received: 09/09/2008

Project No: NY5A946109

25/29 Page:

Rept: AN1178

Client No: L10190

Site No:

Lab Sample ID: A8A97301
Date Collected: 09/09/2008
Time Collected: 12:50

Sample ID: SEPTIC TANK EXCAV.

Time: 10:26:17

Time Collected: 12:50						Site No.	
			Detection			Date/Time	
Parameter	Result	<u>Flag</u> .	Limit	Units	<u>Me thod</u>	Analyzed	Analyst
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	NĐ		5	UG/KG	8260	09/11/2008 19:57	LH
1,1,2,2-Tetrachloroethane	ND		5	UG/KG	8260	09/11/2008 19:57	LH
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5	UG/KG	8260	09/11/2008 19:57	
1,1,2-Trichloroethane	ND		5	UG/KG	8260	09/11/2008 19:57	
1,1-Dichloroethane	ND		5	ug/kg	8260	09/11/2008 19:57	
1,1-Dichloroethene	ND		5	∪G/KG	8260	09/11/2008 19:57	
1,2,4-Trichlorobenzene	ND		5	UG/KG	8260	09/11/2008 19:57	
1,2-Dibromo-3-chloropropane	ND		5	UG/KG	8260	09/11/2008 19:57	
1,2-Dibromoethane	ND		5	UG/KG	8260	09/11/2008 19:57	LH
1,2-Dichlorobenzene	ND		5	UG/KG	8260	09/11/2008 19:57	LH
1,2-Dichloroethane	ND		5	UG/KG	8260	09/11/2008 19:57	LH
1,2-Dichloropropane	ND		5	UG/KG	8260	09/11/2008 19:57	LH
1,3-Dichlorobenzene	ND		5	UG/KG	8260	09/11/2008 19:57	LH
1,4-Dichlorobenzene	ND		5	UG/KG	8260	09/11/2008 19:57	LH
2-Butanone	ND		27	UG/KG	8260	09/11/2008 19:57	LH
2-Hexanone	ND		27	UG/KG	8260	09/11/2008 19:57	LH
4-Methyl-2-pentanone	ND		27	UG/KG	8260	09/11/2008 19:57	LH
Acetone	ND		27	ug/kg	8260	09/11/2008 19:57	LH
Benzene	ND		5	UG/KG	8260	09/11/2008 19:57	LH
Bromodichloromethane	ND		5	UG/KG	8260	09/11/2008 19:57	LH
Bromoform	ND		5	UG/KG	8260	09/11/2008 19:57	LH
Bromomethane	ND		5	UG/KG	8260	09/11/2008 19:57	LH
Carbon Disulfide	ND		5	UG/KG	8260	09/11/2008 19:57	LH
Carbon Tetrachloride	ND		5	∪G/KG	8260	09/11/2008 19:57	LH
Chlorobenzene	ND		- 5	ug/kg	8260	09/11/2008 19:57	LH
Chloroethane	ND		5	υG/KG	8260	09/11/2008 19:57	LH
Chloroform	ND		5	UG/KG	8260	09/11/2008 19:57	LH
Chloromethane	ND		5	υσ/κσ	8260	09/11/2008 19:57	LH
cis-1,2-Dichloroethene	ND		5	ug/kg	8260	09/11/2008 19:57	LH
cis-1,3-Dichloropropene	ND		5	UG/KG	8260	09/11/2008 19:57	LH
Cyclohexane	ND		5	UG/KG	8260	09/11/2008 19:57	LH
Dibromochloromethane	ND		5	UG/KG	8260	09/11/2008 19:57	LH
Dichlorodifluoromethane	ND		5	UG/KG	8260	09/11/2008 19:57	LH
Ethylbenzene	ND		5	UG/KG	8260	09/11/2008 19:57	LH
Isopropylbenzene	ND		5	UG/KG	8260	09/11/2008 19:57	LH
Methyl acetate	ND		5	UG/KG	8260	09/11/2008 19:57	
Methyl-t-Butyl Ether (MTBE)	ND		5	UG/KG	8260	09/11/2008 19:57	
Methylcyclohexane	ND		5	UG/KG	8260	09/11/2008 19:57	
Methylene chloride	8	В	5	UG/KG	8260	09/11/2008 19:57	
Styrene	ND		5	UG/KG	8260	09/11/2008 19:57	
Tetrachloroethene	ND		5	UG/KG	8260	09/11/2008 19:57	
Toluene	ND		5	UG/KG	8260	09/11/2008 19:57	
Total Xylenes	ND		16	UG/KG	8260	09/11/2008 19:57	
trans-1,2-Dichloroethene	ND		5	UG/KG	8260	09/11/2008 19:57	
trans-1,3-Dichloropene	ND		5	UG/KG	8260 8260	09/11/2008 19:57	
Trichloroethene	ND		5	UG/KG	8260	09/11/2008 19:57	
Trichlorofluoromethane			5	UG/KG	8260	09/11/2008 19:57	
	ND ND						
Vinyl chloride	ND		11	UG/KG	8260	09/11/2008 19:57	LH

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

26/29 Page:

Rept: AN1178

Sample ID: SEPTIC TANK EXCAV.

Lab Sample ID: A8A97301 Date Collected: 09/09/2008 Time Collected: 12:50 Date Received: 09/09/2008 Project No: NY5A946109 Client No: L10190

			Detection			Date/Time	•
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		180	UG/KG	8270	09/12/2008 15:18	
2,4,5-Trichlorophenol	ND		180	UG/KG	8270	09/12/2008 15:18	
2,4,6-Trichlorophenol	ND		180	UG/KG	8270	09/12/2008 15:18	
2,4-Dichlorophenol	ND		180	UG/KG	8270	09/12/2008 15:18	
2,4-Dimethylphenol	ND		180	UG/KG	8270	09/12/2008 15:18	
2,4-Dinitrophenol	ND		350	UG/KG	8270	09/12/2008 15:18	
2,4-Dinitrotoluene	ND		180	UG/KG	8270	09/12/2008 15:18	
2,6-Dinitrotoluene	ND		180	ug/kg	8270	09/12/2008 15:18	
2-Chloronaphthalene	ND		180	∪G/KG	8270	09/12/2008 15:18	
2-Chlorophenol	ND		180	UG/KG	8270	09/12/2008 15:18	
2-Methylnaphthalene	ND		180	UG/KG	8270	09/12/2008 15:18	
2-Methylphenol	ND		180	UG/KG	8270	09/12/2008 15:18	
2-Nitroaniline	ND		350	UG/KG	8270	09/12/2008 15:18	MD
2-Nitrophenol	ND		180	UG/KG	8270	09/12/2008 15:18	MD
3,3'-Dichlorobenzidine	ND		180	UG/KG	8270	09/12/2008 15:18	MD
3-Nitroaniline	ND		350	UG/KG	8270	09/12/2008 15:18	MD
4,6-Dinitro-2-methylphenol	ND		350	UG/KG	8270	09/12/2008 15:18	MD
4-Bromophenyl phenyl ether	ND		180	UG/KG	8270	09/12/2008 15:18	MD
4-Chloro-3-methylphenol	ND		180	UG/KG	8270	09/12/2008 15:18	MD
4-Chloroaniline	ND		180	UG/KG	8270	09/12/2008 15:18	MD
4-Chlorophenyl phenyl ether	ND		180	UG/KG	8270	09/12/2008 15:18	MD
4-Me thy lphenol	ND		180	UG/KG	8270	09/12/2008 15:18	MD
4-Nitroaniline	ND		350	UG/KG	8270	09/12/2008 15:18	MD
4-Nitrophenol	ND		350	UG/KG	8270	09/12/2008 15:18	MD
Acenaphthene	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Acenaphthylene	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Acetophenone	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Anthracene	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Atrazine	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Benzaldehyde	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Benzo(a)anthracene	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Benzo(a)pyrene	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Benzo(b)fluoranthene	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Benzo(ghi)perylene	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Benzo(k)fluoranthene	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Biphenyl	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Bis(2-chloroethoxy) methane	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Bis(2-chloroethyl) ether	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Bis(2-ethylhexyl) phthalate	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Butyl benzyl phthalate	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Caprolactam	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Carbazole	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Chrysene	ND		180	ug/kg	8270	09/12/2008 15:18	
Di-n-butyl phthalate	ND		180	UG/KG	8270	09/12/2008 15:18	
Di-n-octyl phthalate	ND		180	ug/kg	8270	09/12/2008 15:18	MD
Dibenzo(a,h)anthracene	ND		180	UG/KG	8270	09/12/2008 15:18	
Dibenzofuran	ND		180	ue/ke	8270	09/12/2008 15:18	
Diethyl phthalate	ND		180	ug/kg	8270	09/12/2008 15:18	
Dimethyl phthalate	ND		180	UG/KG	8270	09/12/2008 15:18	

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Randolph Foundry: Site #E905030 27/29 Page:

Page: 19 Rept: AN1178

Sample ID: SEPTIC TANK EXCAV.

Lab Sample ID: A8A97301
Date Collected: 09/09/2008
Time Collected: 12:50

Date Received: 09/09/2008 Project No: NY5A946109 Client No: L10190

		Detection			──Date/Time		
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analys
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Fluorene	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Hexachlorobenzene	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Hexachlorobutadiene	ND		180	∪G/KG	8270	09/12/2008 15:18	MD
Hexachlorocyclopentadiene	ND		180	ug/KG	8270	09/12/2008 15:18	ΜĐ
Hexachloroethane ®	ND		180	∪G/KG	8270	09/12/2008 15:18	MD
Indeno(1,2,3-cd)pyrene	ND		180	∪G/KG	8270	09/12/2008 15:18	MD
Isophorone	ND		180	∪G/KG	8270	09/12/2008 15:18	MD
N-Nitroso-Di-n-propylamine	ND		180	UG/KG	8270	09/12/2008 15:18	MD
N-nitrosodiphenylamine	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Naphthalene	ND		180	∪G/KG	8270	09/12/2008 15:18	MD
Nitrobenzene	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Pentachlorophenol	ND		350	υg/kg	8270	09/12/2008 15:18	MD
Phenanthrene	ND		180	UG/KG	8270	09/12/2008 15:18	MĐ
Phenol	ND		180	UG/KG	8270	09/12/2008 15:18	MD
Pyrene	ND		180	UG/KG	8270	09/12/2008 15:18	MD
NYS DEC-SOIL-SW8463 8081 - TCL PESTICIDES							
4,4'-000	ND		1.8	UG/KG	8081	09/26/2008 15:32	TCH
4,4'-DDE	ND		1.8	UG/KG	8081	09/26/2008 15:32	TCH
4,4'-DDT	0.96	j	1.8	UG/KG	8081	09/26/2008 15:32	TCH
Aldrin	ND		1.8	UG/KG	8081	09/26/2008 15:32	TCH
alpha-BHC	ND		1.8	∪G/KG	8081	09/26/2008 15:32	тсн
beta-BHC	ND		1.8	UG/KG	8081	09/26/2008 15:32	TCH
Chlordane	ND		18	UG/KG	8081	09/26/2008 15:32	TCH
delta-BHC	ND		1.8	UG/KG	8081	09/26/2008 15:32	TCH
Dieldrin	ND		1.8	UG/KG	8081	09/26/2008 15:32	TCH
Endosulfan I	ND		1.8	UG/KG	8081	09/26/2008 15:32	TCH
Endosulfan II	ND		1.8	UG/KG	8081	09/26/2008 15:32	тсн
Endosulfan Sulfate	ND		1.8	UG/KG	8081	09/26/2008 15:32	TCH
Endrin	ND		1.8	ug/kg	8081	09/26/2008 15:32	тсн
Endrin aldehyde	ND		1.8	UG/KG	8081	09/26/2008 15:32	TCH
Endrin ketone	ND		1.8	UG/KG	8081	09/26/2008 15:32	тсн
gamma-BHC (Lindane)	ND		1.8	UG/KG	8081	09/26/2008 15:32	TCH
Heptachlor	ND		1.8	UG/KG	8081	09/26/2008 15:32	TCH
Heptachlor epoxide	ND		1.8	UG/KG	8081	09/26/2008 15:32	TCH
Methoxychlor	ND		1.8	UG/KG	8081	09/26/2008 15:32	TCH
Toxaphene	ND		18	UG/KG	8081	09/26/2008 15:32	тсн
•				,			
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		89	UG/KG	8082	09/12/2008 19:27	₽₩
Aroclor 1221	ND		89	UG/KG	8082	09/12/2008 19:27	D₩
Aroclor 1232	ND		89	∪G/KG	8082	09/12/2008 19:27	DW
Aroclor 1242	ND		89	UG/KG	8082	09/12/2008 19:27	DW
Aroclor 1248	ND		89	UG/KG	8082	09/12/2008 19:27	DW
Aroclor 1254	ND		89	UG/KG	8082	09/12/2008 19:27	DW
Aroclor 1260	ND		89	UG/KG	8082	09/12/2008 19:27	DW

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT
NYSDEC Spills - Randolph Foundry: Site #E905030

28/29 Page:

Page: 20 Rept: AN1178

Sample ID: SEPTIC TANK EXCAV.

Lab Sample ID: A8A97301 Date Collected: 09/09/2008 Time Collected: 12:50 Date Received: 09/09/2008 Project No: NY5A946109

Client No: L10190

		Detection			Date/Time	
Paramete r	Result Flag	Limit	Units	Method	Analyzed	Analys
Metals Analysis						
Aluminum - Total	5880	10.7	MG/KG	6010	09/12/2008 01:22	AH
Antimony - Total	ND	16.0	MG/KG	6010	09/12/2008 01:22	АН
Arsenic - Total	20.7	2.1	MG/KG	6010	09/12/2008 01:22	АН
Barium - Total	205	0.54	MG/KG	6010	09/12/2008 01:22	AH
Beryllium - Total	0.28	0.21	MG/KG	6010	09/12/2008 01:22	AH
Cadmium - Total	ND	0.21	MG/KG	6010	09/12/2008 16:16	АН
Calcium - Total	1230	53.5	MG/KG	6010	09/12/2008 01:22	AH
Chromium - Total	8.4	0.54	MG/KG	6010	09/12/2008 01:22	АН
Cobalt - Total	4.7	0.54	MG/KG	6010	09/12/2008 01:22	АН
Copper - Total	15.8	1.1	MG/KG	6010	09/12/2008 01:22	АН
Iron - Total	14700	10.7	MG/KG	6010	09/12/2008 01:22	АН
Lead - Total	9.2	1.1	MG/KG	6010	09/12/2008 01:22	АН
Magnesium - Total	1780	21.4	MG/KG	6010	09/12/2008 01:22	АН
Manganese - Total	735	0.21	MG/KG	6010	09/12/2008 01:22	АН
Mercury - Total	ND	0.021	MG/KG	7471	09/11/2008 13:28	MM
Nickel - Total	11.2	0.54	MG/KG	6010	09/12/2008 01:22	ΑН
Potassium - Total	764	32.1	MG/KG	6010	09/12/2008 01:22	АН
Selenium - Total	ND	4.3	MG/KG	6010	09/12/2008 01:22	АН
Silver - Total	ND	0.54	MG/KG	6010	09/12/2008 01:22	AH
Sodium - Total	ND	150	MG/KG	6010	09/12/2008 01:22	АН
Thallium - Total	ND	6.4	MG/KG	6010	09/12/2008 01:22	AH
Vanadium - Total	8.9	0.54	MG/KG	6010	09/12/2008 01:22	АН
Zinc - Total	36.4	2.1	MG/KG	6010	09/12/2008 01:22	АН
Wet Chemistry Analysis						
Cyanide - Total	ND	0.96	MG/KG	9012	09/22/2008 09:35	LRM

Custody Record Chain of

Temperature on Receipt

□ 8

Drinking Water? Yes □

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerico

29/29 Special Instructions/ Conditions of Receipt PAIL DIEC COMPANY STO 30 0A7 THE MOUNT (A fee may be assessed if samples are retained longer than 1 month) Chain of Custody Number ō Page 80/6/6 gate Analysis (Attach list if more space is needed) Lab Numbe Months Archive For 1. Received By CLUSCH WELLY LE. Received By QC Requirements (Specify) Disposal By Lab Containers & Preservatives HO₽N dec 17226 3. Received By Tropect Manager Melty K
Telephone Number (Area Code) Fax Number ЮH EONH HS2O4 goudur 4.76.6m A Other 540 40 Oxy ☐ Unknown ☐ Return To Client DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy JUS 850 7000 Sample Disposal ll0S Carrier/Waybill Number Matrix pes Date | 9/9/08 Project Manage 9/1/08 Site Contact 114 10.80 Mest/ 896/6 9/9/08 12 4PM 1154 Time 21 Days Poison B Date Large Sung North Wort (LS Niv) Zip Code 14 Days Project Name and Location (State)
Rendolph Foundry (NY) (Containers for each sample may be combined on one line) Sephe Tank excavethor Skin Imitant North Sump excavation 4 State State Sample I.D. No. and Description ☐ 7 Days Address 70 Michigan 🗌 Flammable Contract/Purchase Order/Quote No. Client NYSDEC 48 Hours Possible Hazard Identification Turn Around Time Required Large Suma On Bollalo Kevin Glaser 2. Relinquished By 2 X 24N 3. Relinquished By . Relinquished By □ Non-Hazard 24 Hours Comments

APPENDIX C

PHOTOGRAPHS

Photograph 1. Stratigraphy of RF-TP-01

Photograph 2. Stratigraphy of RF-TP-02

Photograph 3. Material excavated from RF-TP-03

Photograph 4. Eastern portion of RF-TP-05, facing east

Photograph 5. Stratigraphy of RF-TP-05, facing northwest

Photograph 6. Stratigraphy of RF-TP-06, facing northwest

Photograph 7. Stratigraphy of RF-TP-07, facing west

Photograph 8. Stratigraphy of the east portion of RF-TP-07

Photograph 9. Material excavated from RF-TP-07, facing east

Photograph 10. Stratigraphy of RF-TP-08, facing west

Photograph 11. Stratigraphy of RF-TP-09, facing south

Photograph 12. Stratigraphy of RF-TP-10