Spaulding Fibre Facility

ERIE, NEW YORK

Construction Completion Report Operable Unit 6

NYSDEC Site Number: E915050

Prepared for:

Erie County Industrial Development Agency 275 Oak Street Buffalo, New York

Prepared by:

LiRo Engineers, Inc. 690 Delaware Avenue Buffalo, New York

DECEMBER 30, 2010

CERTIFICATIONS

I, <u>Martin J. Wesolowski, P.E.</u>, am currently a registered professional engineer licensed by the State of New York; I had primary direct responsibility for implementation of the remedial program activities; and I certify that this Construction Completion Report (CCR) was implemented and that all construction activities were completed in substantial conformance with the Department-approved May 1, 2009, Interim Remedial Measure (IRM) Work Plan – OU6.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Martin J. Wesolowski, P.E., of LiRo Engineers, Inc. located at 690 Delaware Avenue in Buffalo, New York, am certifying as Owner's Designated Site Representative.

074266

116/2011

NYS Professional Engineer #

Date

TABLE OF CONTENTS

CERTIFICATIONSI		
TABLE (DF CONTENTSII	
LIST OF	FIGURESVI	
LIST OF	APPENDICES (ON DVD)X	
1.0 B	ACKGROUND AND SITE DESCRIPTION 1 -	
2.0 SU	JMMARY OF SITE REMEDY 2 -	
2.1	Remedial Action Alternatives and Objectives 2 -	
2.2	Description of Selected Remedy 3 -	
3.0 D	ESCRIPTION OF REMEDIAL ACTIONS COMPLETED	
3.1	Remediation Costs4 -	
4.0 G	OVERNING DOCUMENTS 6 -	
4.1	Site Specific Health & Safety Plan6 -	
4.2	Quality Assurance Project Plan	
4.3	Soil/Materials Management Plan 6 -	
4.4	Storm-Water Pollution Prevention Plan (SWPPP)	
4.5	Community Air Monitoring Plan (CAMP) 7 -	
4.6	Contractors Site Operations Plans (SOPs)	
4.7	Community Participation Plan 7 -	
5.0 R	EMEDIAL PROGRAM ELEMENTS 8 -	
5.1	Contractors and Consultants 8 -	
5.2	Site Preparation8 -	
5.3	General Site Controls 8 -	
5.4	Nuisance controls 8 -	
5.5	CAMP results 8 -	
5.6	Reporting 8 -	
5.7	Well Decomissioning	
5.8	Ditches and Sewers9 -	
5.9	Grading, Topsoil and Seeding9 -	
6.0 C	ONTAMINATED MATERIALS REMOVAL 10 -	
6.2	OU6 Soil Remediation Areas 10 -	
6.2.		
6.2.	2 Work Area 2 11 -	

	6.2.3	Work Area 3 11 -
	6.2.4	Work Area 4 11 -
7.0	CO	NFIRMATION SAMPLING 13 -
8.0	OU	5 SOIL REMEDIATION WORK AREA 1 14 -
	8.1	Area AD 14 -
	8.1.1	Area AD Confirmation Soil Sampling 14 -
	8.2	Area AE 14 -
	8.2.1	Area AE Confirmation Soil Sampling 15 -
	8.3	Area AF 15 -
	8.3.1	Area AF Confirmation Soil Sampling 16 -
	8.4	Area AG 17 -
	8.4.1	Area AG Confirmation Soil Sampling 17 -
	8.5	Area AH 18 -
	8.5.1	Area AH Confirmation Soil Sampling 18 -
	8.6	Area BF 19 -
	8.6.1	Area BF Confirmation Sampling 20 -
	8.7	Area BH 20 -
	8.7.1	Area BH Confirmation Soil Sampling 21 -
9.0	OUe	5 SOIL REMEDIATION WORK AREA 1A 22 -
	9.1	Area AC 22 -
	9.1.1	Area AC Confirmation Soil Sampling 22 -
	9.2	Area AJ-a 23 -
	9.2.1	Area AJ-a Confirmation Soil Sampling 24 -
	9.3	Area AJ-b 25 -
	9.3.1	Area AJ-b Confirmation Soil Sampling 25 -
	9.4	Area AK-a 26 -
	9.4.1	Area AK-a Confirmation Soil Sampling 27 -
	9.5	Area AK-b Excavation Description 27 -
	9.5.1	Area AK-b Confirmation Soil Sampling 28 -
	9.6	Area AK-c Excavation Description 28 -
	9.6.1	Area AK-c Confirmation Soil Sampling 29 -
	9.7	Area AL 30 -
	9.7.1	Area AL Confirmation Soil Sampling 30 -
	9.8	Area BB 31 -
	9.8.1	Area BB Confirmation Soil Sampling 31 -
	9.9	Area BC-a 31 -
	9.9.1	Area BC-a Confirmation Soil Sampling 32 -
	9.10	Area BC-b 32 -
	9.10.1	<i>y i o</i>
	9.11	Area BC-c 33 -
	9.11.1	Area BC-c Confirmation Soil Sampling 33 -

9.12	Area BD	
9.12.1	Area BD Confirmation Soil Sampling	- 34 -
9.13	Area BE	
9.13.1	Area BE Confirmation Soil Sampling	- 35 -
9.14	Area BI	- 35 -
9.14.1	Area BI Confirmation Soil Sampling	- 36 -
9.15	Area BK	- 36 -
9.15.1	Area BK Confirmation Soil Sampling	- 36 -
9.16	K-Line Sewer Area	- 37 -
9.16.1	K-Line Sewer Confirmation Soil Sampling	- 37 -
10.0 OU	5 SOIL REMEDIATION WORK AREA 2	- 38 -
10.1	Area C Excavation Description	- 38 -
10.1.1	Area C Confirmation Soil Sampling	- 38 -
10.2	Area D Excavation Description	- 39 -
10.2.1	Area D Confirmation Soil Sampling	- 39 -
10.2.2	0 1	
10.2.3	Ditch A Confirmation Soil Sampling	40 -
10.2.4	Grinding Waste Confirmation Soil Sampling	40 -
10.3	Area E Excavation Description	- 40 -
10.3.1	Area E Confirmation Soil Sampling	41 -
10.4	Area F	- 41 -
10.4.1	Area F Confirmation Soil Sampling	- 42 -
10.5	Area G and Ditch B	- 42 -
10.5.1		
10.5.2	Area G –Ditch B Confirmation Soil Sampling	- 43 -
10.6	Area H	- 43 -
10.6.1	Area H Confirmation Soil Sampling	44 -
10.7	Area K	- 44 -
10.7.1		
10.8	Area M	45 -
10.8.1		
10.9	Area N	
10.9.1		
10.10	Area AA	
10.10.		
10.11	Area AB	
10.11.		
10.12	Area AI	
10.12.		
	5 SOIL REMEDIATION WORK AREA 3	
11.1	Gibson Street Sewer Area	
11.1.1	Gibson Street Sewer Area Confirmation Soil Sampling	- 50 -

11.2	Spauldite Tube Area	51 -
11.2.1	Spauldite Tube Area Confirmation Soil Sampling	51 -
11.3	Work Area BA	52 -
11.3.1		
12.0 OU	5 SOIL REMEDIATION WORK AREA 4	53 -
12.1	Rail Line Excavation	53 -
12.1.1	Rail Line Area Confirmation Soil Sampling	53 -
12.2	Coal Conveyer Area	
12.2.1		
13.0 MI	SCELLANEOUS MATERIAL REMOVAL AND DISPOSAL	57 -
13.1	Elevator Shaft Area	57 -
13.2	Pit East of BH Area	
13.3	Fibre Storage Drum Area	
13.4	Boiler House Area	
13.5	Spauldite Building Trench Area	
13.6	Cooker Building Area	
14.0 DIS	SPOSAL DETAILS	
15.0 BA	CKFILL	60 -
15.1	Concrete Backfill	60 -
15.2	Topsoil	60 -
15.2.1	-	
15.2.2	Topsoil Source 2	60 -
16.0 DEV	/IATIONS FROM THE REMEDIAL ACTION WORK PLAN	62 -

LIST OF FIGURES

- Figure 1 Spaulding Fibre Site Location Map
- Figure 2 Spaulding Fibre Site Plan
- Figure 3 Proposed Excavation Plan
- Figure 4 Work Area Plan
- Figure 5 Excavation Map and Confirmation Sample Locations
- Figure 6 Final Topographic Survey

WORK AREA 1 TABLES

Table 8-1-A	Summary of Soil Disposal Area AD
Table 8-1-B	Confirmation Soil Results Area AD
Table 8-2-A	Summary of Soil Disposal Area AE
Table 8-2-B	Confirmation Soil Results Area AE
Table 8-3-A	Summary of Soil Disposal Area AF
Table 8-3-B	Confirmation Soil Results Area AF
Table 8-4-A	Summary of Soil Disposal Area AG
Table 8-4-B	Confirmation Soil Results Area AG
Table 8-5-A	Summary of Soil Disposal Area AH
Table 8-5-B	Confirmation Soil Result Area AH
Table 8-6-A	Summary of Soil Disposal Area BF
Table 8-6-B	Confirmation Soil Results Area BF
Table 8-7-A	Summary of Soil Disposal Area BH
Table 8-7-B	Confirmation Soil Results for Area BH

WORK AREA 1A TABLES

Table 9-1-A	Summary of Soil Disposal Area AC
Table 9-1-B	Confirmation Soil Results for Area AC
Table 9-2-A	Summary of Soil Disposal Area AJ-A
Table 9-2-B	Confirmation Soil Results Area AJ-A
Table 9-3-A	Summary of Soil Disposal Area AJ-B
Table 9-3-B	Confirmation Soil Results Area AJ-B
Table 9-4-A	Summary of Soil Disposal Area AK-A
Table 9-4-B	Confirmation Soil Results Area AK-A
Table 9-5-A	Summary of Soil Disposal Area AK-B
Table 9-5-B	Confirmation Soil Results Area AK-B
Table 9-6-A	Summary of Soil Disposal Area AK-C
Table 9-6-B	Confirmation Soil Results Area AK-C
Table 9-7-A	Summary of Soil Disposal Area AL
Table 9-7-B	Confirmation Soil Results Area AL
Table 9-8-A	Summary of Soil Disposal Area BB
Table 9-8-B	Confirmation Soil Results Area BB
Table 9-9-A	Summary of Soil Disposal Area BC-a
Table 9-9-B	Confirmation Soil Results Area BC-a
Table 9-10-A	Summary of Soil Disposal Area BC-B
Table 9-10-B	Confirmation Soil Results Area BC-B
Table 9-11-A	Summary of Soil Disposal Area BC-C
Table 9-11-B	Confirmation Soil Results Area BC-C
Table 9-12-A	Summary of Soil Disposal Area BD
Table 9-12-B	Confirmation Soil Results Area BD
Table 9-13-A	Summary of Soil Disposal Area BE
Table 9-13-B	Confirmation Soil Results Area BE
Table 9-14-A	Summary of Soil Disposal Area BI
Table 9-14-B	Confirmation Soil Results Area BI
Table 9-15-A	Summary of Soil Disposal Area BK
Table 9-15-B	Confirmation Soil Results Area BK
Table 9-16-A	Summary of Soil Disposal Area K-Line Sewer Area
Table 9-16-B	Confirmation Soil Results K-Line Sewer Area

WORK AREA 2 TABLES

Table 10-1-A	Summary of Soil Disposal Area C
Table 10-1-B	Confirmation Soil Results for Area C
Table 10-2-A	Summary of Soil Disposal Area D
Table 10-2-B	Confirmation Soil Results for Area D
Table 10-2-C	Confirmation Soil Results for Area D Ditch A
Table 10-3-A	Summary of Soil Disposal Area E
Table 10-3-B	Confirmation Soil Results for Area E
Table 10-4-A	Summary of Soil Disposal Area F
Table 10-4-B	Confirmation Soil Results for Area F
Table 10-5-A	Summary of Soil Disposal Area G
Table 10-5-B	Confirmation Soil Results for Area G
Table 10-6-A	Summary of Soil Disposal Area H
Table 10-6-B	Confirmation Soil Results for Area H
Table 10-7-A	Summary of Soil Disposal Area K
Table 10-7-B	Confirmation Soil Results for Area K
Table 10-8-A	Summary of Soil Disposal Area M
Table 10-8-B	Confirmation Soil Results for Area M
Table 10-9-A	Summary of Soil Disposal Area N
Table 10-9-B	Confirmation Soil Results for Area N
Table 10-10-A	Summary of Soil Disposal Area AA
Table 10-10-B	Confirmation Soil Results for Area AA
Table 10-11-A	Summary of Soil Disposal Area AB
Table 10-11-B	Confirmation Soil Results for Area AB
Table 10-12-A	Summary of Soil Disposal Area AI
Table 10-12-B	Confirmation Soil Results for Area AI

WORK AREA 3 TABLES

Table 11-1-A	Summary of Soil Disposal Sewer Area
Table 11-1-B	Confirmation Soil Results for Sewer Area
Table 11-2-A	Summary of Soil Disposal Spauldite Tube Area
Table 11-2-B	Confirmation Soil Results for Spauldite Tube Area
Table 11-3-A	Summary of Soil Disposal Area BA
Table 11-3-B	Confirmation Soil Results for Area BA

WORK AREA 4 TABLES

Table 12-1-A	Summary of Soil Disposal Rail Line Area
Table 12-1-B	Confirmation Soil Results Rail Line Area
Table 12-2-A	Summary of Soil Disposal Coal Conveyer Area
Table 12-2-B	Confirmation Soil Results Coal Conveyer Area

MISCELLANEOUS TABLES

- Table 13-1Summary of Soil Disposal for Elevator Shaft Area
- Table 13-2Summary of Soil Disposal for Pit East of BH Area
- Table 13-3Summary of Soil Disposal Fibre Drum Area
- Table 13-4Summary of Soil Disposal Boiler House Area
- Table 13-5Summary of Soil Disposal for Spauldite Building Trench Area
- Table 13-6Summary of Soil Disposal for Cooker Building Area
- Table 15-1
 Crushed Concrete Backfill Analytical Results
- Table 15-2Topsoil Backfill Soil Analytical Results

LIST OF APPENDICES (ON DVD)

- 1 Survey Map
- 2 Digital Copy of the CCR
- 3 Daily and Monthly Reports
- 4 Project Photo Log
- 5 Waste Transporter Permit Certificates
- 6 Disposal Facility Approval and Approval Letters
- 7 Waste Manifests and Weight Tickets
 - Modern Landfill, Inc
 - Town of Tonawanda Landfill
- 8 CAMP Field Data Sheets and Air Monitoring Data
- 9 Soil Analytical Laboratory Data
- 10 Imported Topsoil Analytical Laboratory Data

LIST OF ACRONYMS

Acronym	Definition
AOC	Area of Concern
bgs	below ground surface
CFR	Code of Federal Regulations
Committee	Spaulding Fibre Steering Committee
COCs	chemicals of concern
cy	cubic yard
ĒA	Qualitative Human Health Exposure Assessment
ECIDA	Erie County Industrial Development Agency
ERP	Environmental Restoration Program
ft	feet
IC/EC	institutional controls and engineering controls
IRM	interim remedial measure
ISS	in situ solidification
LiRo	LiRo Engineers, Inc.
mg/kg	milligram per kilogram
MNA	Monitored Natural Attenuation
NC	no criteria
ND	non-detect
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
OSHA	Occupational Safety and Health Administration
OU	Operable Unit
PAHs	polycyclic aromatic hydrocarbons
PID	photoionization detector
RAOs	remedial action objectives
RAR	Remedial Alternatives Report
RCRA	Resource Conservation and Recovery Act Record of Decision
ROD SCGs	Standards, Criteria, and Guidance
SUUS	Standards, Chiena, and Guidance Site Investigation
SIR	Site Investigation Report
SMP	Site Management Plan
Spaulding	Spaulding Fibre Site
SSF	State Superfund
SSI	Supplemental Site Investigation
SVOCs	semi-volatile organic compounds
SWMU	Solid Waste Management Unit
TAGM	Technical and Administrative Guidance Memorandum
TCLP	toxicity characteristic leaching procedure
TCL/TAL	Target Compound List/Target Analyte List
TOGS	Technical and Operational Guidance Series
TSCA	Toxic Substances Control Act
USEPA	United Stated Environmental Protection Agency
VOCs	volatile organic compounds

1.0 BACKGROUND AND SITE DESCRIPTION

The City of Tonawanda, Erie County and Erie County Industrial Development Agency (ECIDA) entered into a State Assistance Contract (SAC) with the New York State Department of Environmental Conservation (NYSDEC) in August 2006 to investigate and remediate a 46-acre property (the Site) located in the City of Tonawanda, New York (refer to Figure 1) under the Environmental Restoration Program (ERP). The Spaulding Fibre Steering Committee (Committee), which is comprised of representatives from those three previously-listed groups plus the Town of Tonawanda and Empire State Development Corporation, is responsible for direction of the Site redevelopment program. NYSDEC is responsible for oversight of the Site investigation/remedial work as well as review and approval of project deliverables. LiRo Engineers, Inc. (LiRo) of Buffalo, New York completed the Site Investigation work and oversaw the SAC remedial activities.

Approximately 20 acres of the Site were developed with former plant buildings and structures (Figure 2). To facilitate the Site ERP investigation, three distinct operable units (OUs) were defined at the Site. Operable Unit 5 (OU5) is the former parking lot on the east side of Wheeler Street, Operable Unit 6 (OU6) is the former main plant operations area, and Operable Unit 7 (OU7) is the undeveloped western portion of the Site. Operable Units OU1 – OU4 refer to waste disposal areas within OU6 that were addressed separately by NYSDEC under their Superfund Program. The subject of this report is OU6, which was planned for remedial excavation compliant with NYSDEC Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs) as presented in Title 6 New York Codes, Rules and Regulations (NYCRR) Part 375-6.8 (b). The intended re-use of the property is commercial.

OU6 is located in the County of Erie New York and is identified as the eastern portion of 310 Wheeler Street, Block 6, Lots 87 and 88 on City of Tonawanda Tax Map #42 (SBL: 52.08-5-3.1). A Boundary Survey is included in Appendix 1. OU6 consists of the eastern half of 310 Wheeler Street excluding areas OU1 through OU4. The area referred to as OU6 was primarily used as the Spaulding Fibre manufacturing facility. OU6 is bounded by commercial/residential properties to the north, Hackett Drive to the south, OU7 and Hinds Street to the west, and Wheeler Street to the east.

An electronic copy of this Construction Completion Report (CCR) with all supporting documentation is included as Appendix 2.

2.0 SUMMARY OF SITE REMEDY

In completion of the Site Investigation phase of the project, LiRo submitted Work Plans (October 17, 2007), a site Health and Safety Plan (September 14, 2007), a Citizen Participation Plan (September 21, 2007), a Site Investigation Report (May 20, 2008), and a Supplemental Site Investigation Report (January 30, 2009). The Site Investigation (SI) Report and the Supplemental Site Investigation (SSI) Report identified contaminated shallow fill soil containing metals, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) with soil analytical results greater than restricted residential SCOs at various depths at discrete areas within OU6. On June 25, 2009, LiRo submitted an Interim Remedial Measure (IRM) Work Plan for OU6. The IRM Work Plan included a detailed Remedial Alternatives Analysis which was used as a basis for determining that excavation and disposal of contaminated soil as an IRM was the preferred site remedy. This CCR summarizes remedial activities completed as an IRM at OU6.

In addition to the IRM work conducted under the Environmental Restoration Program, NYSDEC conducted remediation at Operable Units 1 through 4 prior to the initiation of remedial activities at OU5 and OU6. Remedial activities completed at OU5 are detailed in LiRo's November 2010 OU5 Construction Completion Report.

2.1 Remedial Action Alternatives and Objectives

Remedial technologies considered feasible for OU6 are combined into the following list of remedial alternatives that were described in detail in the IRM Work Plan and subjected to an evaluation with respect to the criteria outlined in 6 NYCRR Part 375. These alternatives are listed below:

- Alternative 1 No Action
- Alternative 2 Institutional Controls (SMP, MNA)
- Alternative 3 Excavation and Offsite Disposal
- Alternative 4 In Situ Solidification
- Alternative 5 Excavation and Onsite Solidification.

The remedial action objectives (RAOs) for OU6 soil were to eliminate or mitigate all significant threats to human health and/or the environment, to the extent practicable, caused by contaminants present due to former OU6 use by:

- Eliminate or reduce, to the extent practicable, Site contamination sources that exceed soil SCGs.
- Eliminate or reduce the potential for exposure to contaminated soil.

The RAOs for OU6 air/soil vapor were to:

- Prevent or mitigate potential exposure to contaminated soil vapor and fugitive dust.
- Prevent or mitigate potential inhalation of volatile contaminants through soil vapor intrusion into future structures.

The remedial action objective for groundwater was to Prevent or mitigate the potential for exposure to contaminated groundwater.

2.2 Description of Selected Remedy

The IRM Work Plan outlined the selected remedial measures at OU6 which included excavation and offsite disposal (Figure 3). The factors considered during the selection of the remedy are those listed in 6NYCRR 375-1.8. The following were the components of the recommended and selected remedy:

- 1. Excavation and off-site disposal of soil/fill exceeding 6NYCRR Part 375-6.8 (b) restricted residential use SCOs.
- 2. Verification sampling within each excavation area from excavation sidewalls and bottoms to confirm removal of contaminated soil.
- 3. Site restoration including backfilling and re-grading.

The site remedial plan for OU6 included on-site crushing of building and foundation concrete, testing of the crushed concrete to verify that the material complied with Part 375 criteria and re-use of compliant material as on-site backfill.

3.0 DESCRIPTION OF REMEDIAL ACTIONS COMPLETED

Remedial efforts at other Spaulding Fibre OUs are discussed in the corresponding Construction Completion Reports. The remedy for OU6 was completed as an IRM project. LiRo oversaw IRM activities at OU6.

In preparation for the IRM, the Steering Committee contracted in 2009 with Demco, Inc.(Demco) to demolish all remaining above-grade structures at the Site and to remove building foundations in portions of the Site that were found to be uncontaminated during the Site Investigations. Because the demolition was completed and funds from sources outside the SAC were available to begin the Site IRM work, the Steering Committee directed Demco to initiate Site remediation activities in Area BF in 2009. The Demco IRM work was conducted in accordance with the IRM Work Plan requirements and the results/description of the remedial excavation work performed by Demco have been incorporated into this report.

Mark Cerrone Inc. (MCI), of Niagara Falls, New York was contracted in 2010 to complete the IRM soil excavation and disposal work which was conducted with SAC funding as well as site foundation demolition work which was funded by sources outside the SAC. Beginning in February 2010 MCI (and their concrete demolition subcontractor Wargo, Inc.) completed former facility building foundation demolitions.

Between February and August 2010, MCI excavated, transported and disposed of contaminated soil to complete the IRM. LiRo provided construction oversight and documentation for the IRM work. Contaminated soil was transported by B. Pariso Transport, Inc. (Pariso) of Grand Island, New York or MCI to one of two locations: the Town of Tonawanda (TOT) Landfill in Tonawanda, New York or Modern Landfill, Inc. (Modern) of Model City, New York for disposal. Confirmation soil samples were collected by LiRo following excavation of each Area. Soil samples were submitted to Mitkem Inc. (Mitkem) of Warwick, Rhode Island, or Mitkem's parent company Spectrum Analytical, Inc. (Spectrum) of Massachusetts (both are NYSDOH ELAP-certified laboratories) for analysis. Confirmation soil sample results were compared to SCGs. Surveys of soil sample locations and limits of excavation were completed by Wendel Duchscherer Architects & Engineers P.C. (Wendel) of Buffalo, New York under contract to MCI.

Following receipt of confirmation sample results and NYSDEC approval, excavations requiring backfill were backfilled with crushed concrete from the ongoing Site demolition work. Because the overall Site grade was reduced during the IRM, not all excavation areas required crushed concrete backfill.

3.1 Remediation Costs

The Spaulding Fibre OU6 ERP Remediation work was completed at a cost of approximately \$2,348,000 under the SAC program. Combined with OU5 (approximately \$65,000) the project remediation total was approximately \$2,413,000. The costs for MCI remediation work were distributed as follows:

Contaminated soil excavation and disposal costs (includes dewatering) – \$2,180,000

Site Restoration and Management (includes topsoil, seeding, survey) - \$98,000

Construction Support (includes mobilization, health/safety, site services) - \$135,000

As noted previously, funding from other sources was available for site demolition and remediation including soils excavation and disposal. In addition to the remediation costs cited above, MCI completed the building floor slab removal, foundation removal, and concrete re-cycling required to support the OU6 soil remediation work at a cost of approximately \$1,720,000. Building demolition work was required prior to the remediation work as the former plant floor area was on the order of 860,000 square feet and hazardous materials (i.e., asbestos, transformers, electrical equipment, etc.) were present throughout the structures. Building superstructure demolition work was completed under two abatement/demolition contracts at a combined cost of approximately \$4,200,000. Area BF remediation was completed as a change order to the second demolition contract at a cost of approximately \$233,000 from outside funding sources in 2009. The total cost to complete the demolition and remediation work directed by the Steering Committee at OU6 was approximately \$8,300,000.

4.0 GOVERNING DOCUMENTS

4.1 Site Specific Health & Safety Plan

All ERP remedial work performed at OU6 under this Remedial Action was in full compliance with governmental requirements, including Site and worker safety requirements mandated by Federal OSHA. The March 23, 2010 "Site Specific Health and Safety Plan, Site Remediation and Foundation Demolition, Spaulding Fibre Facility, Tonawanda, NY" (HASP) was completed by MCI and Mark A. Cotter, CIH, CSP, Certified Industrial Hygienist #5897. The HASP was complied with for all remedial and invasive work completed at the Site.

4.2 Quality Assurance Project Plan

The Quality Assurance Project Plan (QAPP) was included as Part 3 of the September 17, 2007 IRM work plans submitted by LiRo to NYSDEC and was approved by the NYSDEC on October 10, 2007. The QAPP described the specific policies, objectives, organization, functional activities and quality assurance/quality control activities designed to achieve the project data quality objectives.

4.3 Soil/Materials Management Plan

Detailed plans for demolition and material removal; abatement, removal and characterization of wastes and a plan for on-site water treatment and disposal were presented in MCI's January, 2010 Site Specific Work Plan (SSW) for Site Remediation and Foundation Demolition of the Spaulding Fibre Facility. The SSW also addressed the general requirements and sequencing to demolish concrete floor slabs, foundation structures, pit walls and underground utility tunnels throughout the facility. Concrete was planned for crushing, sampling and analysis to determine the suitability for re-use as Site backfill.

The SSW also summarized plans for soil disposal approval including appropriate soil sampling frequencies and analytical data requirements. Tonawanda Landfill in the Town of Tonawanda, New York, and Modern Disposal in Model City, New York were planned as the disposal facilities for OU6 non-hazardous soil. Modern Disposal in Model City, New York was planned as the disposal facility for OU6 non-friable/friable asbestos waste. CWM Chemical Services, LLC landfill in Model City, New York was planned as the disposal facility for OU6 hazardous soil.

Between August 28, 2009 and September 2, 2010, approximately 67,000 tons of impacted soil were excavated from OU6, and disposed of at Tonawanda Landfill or Modern Landfill. No hazardous waste was encountered during the OU6 IRM.

The SSW detailed the Erosion and Sediment Control Plan and the Dust and Windblown Site Containment Plan. MCI complied with the site Storm Water Pollution Prevention Plan (SWPPP) and stormwater was not allowed to escape from any contained stockpiles into the regulated MS4 sewer system. MCI used Site grading, swales, silt protection, straw bales and silt fence to control runoff and promote infiltration. The Dust and Windblown Site Containment Plan outlined the planned Site construction use of sprinkling/wetting, concrete crushing equipment outfitted with misters, haul trucks with tarp covers, a decontamination station, vehicle caution and reduced speed to prevent dust emissions. Airborne dust and particulate monitoring were conducted during the remedial work (see Section 4.5 below).

The SSW also addressed the proposed removal and disposal of asbestos containing material (ACM) and asbestos containing waste (ACW). Known ACM was present in Area AE where bagged resin dust had been buried. Incidental ACM was encountered as waterproof coating on concrete and miscellaneous roofing materials that were encountered along some building footers. Modern Disposal (Modern) of Model City, New York was used as the disposal facility for 2,350 tons of ACM and ACW materials. ACW was wetted down to prevent emissions of asbestos dust into the air and loaded into lined dump trucks or trailers. ACM handling, packaging, disposal and decontamination procedures were in accordance with NYS Industrial Code Rule (ICR) 56 and EPA National Emissions Standards for Hazardous Air Pollutants (NEHAPS).

4.4 Storm-Water Pollution Prevention Plan (SWPPP)

The erosion and sediment controls for all remedial construction were completed in conformance with requirements presented in the New York State Guidelines for Urban Erosion and Sediment Control and the June, 2009 Storm Water Pollution Prevention Plan (SWPPP) for the Spaulding Fibre Site. The SWPPP was completed by LiRo for the City of Tonawanda.

4.5 Community Air Monitoring Plan (CAMP)

The CAMP was developed in accordance with the New York State Department of Health Generic CAMP and is summarized in Section 4.0 of MCI's March 23, 2010 HASP. The CAMP included daily dust sampling of downwind and upwind perimeter locations to fulfill perimeter community air monitoring requirements. VOC monitoring was implemented at areas where VOCs were a contaminant of concern.

4.6 Contractors Site Operations Plans (SOPs)

In MCI's January, 2010 SSW, Site Operation Plans were also detailed. The Erosion and Sediment Control Plan, the Dust and Windblown Site Containment Plan, the Emergency Spill Control Plan and the Environmental Protection Plan, were included in the SSW. LiRo reviewed the January, 2010 SSW and confirmed that it was in compliance with the IRM Design Documents and the IRM Work Plan.

4.7 Community Participation Plan

The September 21, 2007, Citizen Participation Plan (CPP) was submitted by LiRo to ECIDA and NYSDEC. The CPP summarized site financial resources, site history, previous investigations and the remedial project schedule. The CPP designated the City of Tonawanda Public Library as a public repository of site information in addition to the NYSDEC Buffalo office. The CPP summarized the intended schedule for public response to ERP documents and designated public agency contacts.

5.0 **REMEDIAL PROGRAM ELEMENTS**

5.1 Contractors and Consultants

- MCI implemented IRM construction work under the supervision of LiRo.
- Martin Wesolowski, P.E. is the Engineer of Record for the IRM project.

5.2 Site Preparation

On January 11, 2010, a Project kick-off meeting was held with NYSDEC, LiRo, the Spaulding Fibre Steering Committee representatives and the remedial Contractor. MCI mobilized to the site in February 2010 constructing a decontamination station and surveying remedial excavation areas. MCI also installed erosion and sedimentation controls as per the SWPPP and cleared utilities. Prior to IRM work, MCI completed test pits in the site remediation areas to collect waste characterization soil samples in accordance with the landfill permit requirements. Characterization analytical results are included in Appendix 9.

A NYSDEC-approved project sign was erected at the project entrance and remained in place during all phases of the Remedial Action.

5.3 General Site Controls

OU6 is located in a secured fenced area. Temporary fencing or warning tape was erected as needed around asbestos work areas as required by Federal and State asbestos requirements. Equipment decontamination was completed in the OU6 area of the Spaulding Fibre property.

5.4 Nuisance Controls

Truck routing was arranged to minimize local impacts. Because the site is a former industry, commercial trucking routes were easily accessible. OU6 was the location of the facility's former factory buildings with a driveway and concrete access/egress. Dust control was implemented utilizing road cleaning, water truck misting haul roads and water misting on the concrete crusher. There were no odor problems observed onsite. Runoff was reported to a private property. MCI constructed a ditch to intercept runoff. Episodic dust complaints were reported during the construction, most of which related to the concrete crushing operation. Water misting was used to control dust emissions from the crusher.

5.5 CAMP results

Air monitoring data were collected by MCI throughout OU6 remedial excavation activities. Copies of all field data sheets relating to the CAMP are provided in electronic format in Appendix 8.

5.6 Reporting

Daily field activity reports were completed and maintained at the site trailer by LiRo's field inspector. All daily reports are included in electronic format in Appendix 3. A digital photo record is included in electronic format in Appendix 4.

5.7 Well Decomissioning

MCI subcontracted Buffalo Drilling Company to decommission a former process water production well in the northwest portion of site and groundwater monitoring wells that were no longer needed at the Site. The wells were decommissioned by cutting the well casing four feet below ground surface, tremie grouting the well with a cement-bentonite grout to the cut line and backfilling to grade. A total of 13 monitoring wells and the production well were decommissioned on August 31, 2010, and September 1, 2010.

5.8 Ditches and Sewers

After NYSDEC Superfund work was completed in the northernmost portion of OU6, the backfilled soil level was higher than the surrounding properties to the north. Lacking any vegetation, the soil was easily eroded and transported via overland flow to the neighboring properties. Based on this condition, NYSDEC and the Steering Committee requested that MCI install a drainage ditch to divert the water. The ditch begins at the northwest fence line where it parallels Gibson Street. The ditch drains storm water to the east toward Wheeler Street and then to the south where it discharges to a City of Tonawanda storm sewer line. Figure 6 shows the final site topographic survey and as-built conditions.

As part of the demolition project all unused storm and sanitary sewer connections leaving the site were cut and capped. Ancillary to that work, a portion of the storm sewer line near the corner of Gibson Street and Dodge Avenue in the northern portion of the site was replaced and a cleanout manhole structure was installed.

A new storm sewer catch basin was installed in the east-central portion of the site and connected to an existing storm line on Wheeler Street.

5.9 Grading, Topsoil and Seeding

After completion of remedial excavation activities, the Site was re-graded to meet final site grading plan requirements. The final topographic survey and as-built conditions are shown on Figure 6. In general, low areas at the site were re-graded with clean borrow pushed from OU6 areas where excess crushed concrete was present; where excess clean backfill had been previously placed (before the final grading plan was developed) in OU1 – OU4; or where site SI/SSI had shown that soil meeting Restricted Residential Criteria was present. All excavated or highly disturbed areas of OU6 were covered with 4-inches to 6-inches of topsoil and seeded.

6.0 CONTAMINATED MATERIALS REMOVAL

SCGs are cleanup standards, standards of control, and other substantive environmental protection requirements, criteria or limitations promulgated under federal or state law that specifically address a hazardous substance, pollutant, contaminant, remedial action, or location. Guidance values include non-promulgated criteria and guidelines that are not legal requirements but should be considered if determined to be applicable to the Site. For the IRM, chemical-specific SCGs are based on 6NYCRR Part 375 Restricted Residential Soil Cleanup Objectives (SCOs). Tables 8-1-B through 12-3-B compare soil analytical results to their respective SCGs.

Between August 28, 2009 and September 2, 2010, approximately 67,000 tons of impacted soil were excavated from OU6 and disposed of at Tonawanda Landfill or Modern Landfill. Photographs of excavation and sampling locations are included in Appendix 4. Soil excavation, transportation and disposal dates, landfills and tonnage total are summarized in each Section and are detailed in Tables 8-1-A through 12-3-A. Soil disposal manifests and weight tickets are included in Attachment 7.

The anticipated redevelopment plan for OU6 is for commercial use. LiRo completed a qualitative human health exposure assessment (EA) during the Site Investigation phase to evaluate the presence of completed or potential exposure pathways in order to determine if Site contamination poses an existing or potential hazard to current or future Site users. The EA identified the potential for human exposures to chemical constituents detected in soil, groundwater, and air at the Site. Based on Site Investigation results, OU6 was observed to be affected by plant operations. Chemicals of potential concern for soil at OU6 were identified based on exceedances of SCGs.

6.1 OU6 Soil Remediation Areas

In OU6, thirty-seven discrete soil contamination areas were identified during the SI and SSI: Areas A, B, C, D, E, F, G, H, K, L, M, N, AA, AB, AC, AD, AE, AF, AG, AH, AI, AJ, AK, AL, AM, AN, BA, BB, BC, BD, BE, BF, BG, BH, BI, BJ and BK. The IRM Work Plan described the areas and depths of excavation (Figure 3) that were planned for the IRM. Prior to excavation work, MCI staked planned excavation area boundaries. Initial excavation limits in the plant building areas were clearly defined as the areas were bounded by former building walls. Outdoor work areas that were based on visual observation of button ash were initially advanced to the limits where button ash was observed during the excavation work (rather than the staked limits). Initial excavation depths were conducted to the depths noted in the IRM Work Plan unless the top of native clay, which was the target depth for many of the excavations) was observed at a shallower or deeper depth. For areas requiring over-excavation due to endpoint failures, bottoms were typically extended in one-foot lifts and sidewalls were extended approximately 4 feet beyond the failed sample area.

To facilitate the IRM contracting, the site work was divided into five Work Areas: 1, 1A, 2, 3 and 4. The five Work Areas are shown in Figure 4 and described in the following paragraphs.

6.1.1 Work Areas 1 and 1A

Work Area 1 and 1A consisted of all known remaining ERP remedial soil excavation and disposal work in the former main plant area in OU6. All concrete floor slabs, pit/basement walls and foundation

structures in the area were demolished. All remaining utility lines and conduits, wastes and equipment present in this area of the facility were also removed.

Other related work elements for Area 1 and 1A included:

- Dewatering of former process pits and subsurface structures.
- Removal of floor slabs and subsurface structures. Work Area 1 contained numerous large process pits, dryer room pits, a utility tunnel, and multiple floor slab levels in portions of the former plant.
- Removal of bagged resin dust waste. Bagged resin dust waste containing some asbestos substrate dusts was present between floor slabs in the central portion of the Main Building. Based on waste characterization results, the waste was non-hazardous relative to RCRA and toxicity characteristics.
- Crushing and recycling of concrete.
- Site grading.

6.1.2 Work Area 2

Work Area 2 consisted of contaminated soil excavation at exterior areas in OU5 and OU6 where either shallow landfilling of wastes (button ash and C&D waste) occurred or where contaminated fill was used for historical site grading.

Other related work elements in Area 2 included:

- Recycling of concrete.
- Site grading.

6.1.3 Work Area 3

Work Area 3 consisted of all former main plant areas outside of the known ERP remediation areas. All concrete floor slabs, pit/basement walls and foundation structures in the area were demolished. All remaining utility lines and conduits, wastes and equipment present in this area of the facility were also removed.

Key work elements for Work Area 3 included:

- Contingency excavation and disposal of unexpected soil contamination.
- Crushing and recycling of concrete.
- Site grading.

6.1.4 Work Area 4

Work Area 4 included floor and foundation removal of small outlying structures that were previously demolished to floor level. In addition, Work Area 4 included the removal and disposal of portions of the rail spur outside of the NYSDEC Superfund work areas. All concrete floor slabs and foundation

structures in the area were demolished. All rails and timbers associated with the rail spur within the area were removed and disposed of or recycled.

Key work elements for Work Area 4 included:

- Demolition/removal of Boiler Building basement top slab and columns. Debris and ash was removed, the basement was dewatered; and the basement walls were removed (for recycling) to a depth of 6 feet below the top slab level. The concrete sub-floor slab was demolished (broken) inplace.
- Demolition/removal of slabs and foundations from the Office Building and small outbuildings. A small basement area in the office building was entirely removed. Work Area 4 also included removal of a utility conduit believed to have been historically used to convey steam from the former boiler house to the Office Building.
- Contingency excavation and disposal of unexpected soil contamination.
- Crushing and recycling of concrete.
- Asbestos abatement of sewer line and utility conduit. Suspected ACM utilities and sewer were removed and disposed of.
- Site grading.

Between February and August, 2010, areas within OU6 were excavated until soil analytical data results were below SCGs and/or NYSDEC determined that further excavation was not required. Following NYSDEC approval of the confirmation sample results, Wendel surveyed the excavation limits and final confirmation soil sample locations and MCI backfilled with crushed concrete as needed to meet final grading requirements. The limits of excavation and confirmation soil sample locations are shown on Figure 5. Soil disposal summaries are listed below.

- Details of soil disposal totals for excavations in Work Area 1 are listed in Tables 8-1-A through 8-7-A.
- Details of soil disposal totals for excavations in Work Area 1A are listed in Tables 9-1-A through 9-16-A.
- Details of soil disposal totals for excavations in Work Area 2 are listed in Tables 10-1-A through 10-12-A.
- Details of soil disposal totals for excavations in Work Area 3 are listed in Tables 11-1-A through 11-3-A.
- Details of soil disposal totals for excavations in Work Area 4 are listed in Tables 12-1-A through 12-2-A.

7.0 CONFIRMATION SAMPLING

Between March 2010 and August 2010, excavation endpoint confirmation soil samples were collected from the excavation sidewalls and bottoms. The confirmation soil samples were collected using dedicated, disposable polyethylene sample scoops. Bottom samples were typically collected from underlying native clay/silt soils. The character of sidewall fill and the underlying native clay was visually examined and sidewall/bottom sample locations were biased toward areas of highest expected contamination as determined by visual evidence of fill characteristics. All confirmation soil samples were submitted for analysis to Mitkem/Spectrum. The analytical schedule for each remediation area was based on SCG exceedances in the SI/SSI. Analysis was conducted for VOCs by USEPA Method 8260, for SVOCs by USEPA Method 8270, for metals by USEPA 6010 and 7471, and for PCBs by USEPA Method 8082. Category B data reporting was used for the confirmation sampling. All confirmation sample results were compared to 6 NYCRR Part 375 Restricted Residential Use SCOs.

The excavations remained open until receipt of soil analytical results determined that confirmation soil samples were below SCGs and/or NYSDEC issued approval to discontinue excavation. Upon completion of the excavation work, the final extent and final depths of the excavation were surveyed as were the locations of all final confirmatory samples. Soil sample locations are shown on Figure 5. Laboratory Analytical reports are provided in Appendix 9 on compact disc. The confirmation sampling for each excavation area is discussed in Section 8 through Section 12 of this report.

8.0 OU6 SOIL REMEDIATION WORK AREA 1

Work Area 1 is located in the southern portion of the main former plant process area. The area was primarily used for treating fibre products in a zinc chloride solution. Zinc and/or cadmium were the primary contaminants of concern. Asbestos-containing waste resin dust was buried in Area AE of Work Area 1.

8.1 Area AD

Area AD is located in the central part of OU6 under the Spaulding Fibre former main building (Figure 3). During the SI and SSI, LiRo encountered zinc in shallow fill soil above SCGs. Area AD was covered with a lower floor slab (approximately 5 feet below the main plant floor) and soil excavation commenced after that lower floor slab was removed.

On May 4 and May 5, 2010, 693.47 and 687.42 tons of zinc contaminated soil were transported and disposed of at Modern Landfill, Inc. (Modern). The total volume of contaminated soil removed from Area AD was 1,380.89 tons. The excavation was initially advanced to a depth of 2 feet and was finished in underlying native brown silty clay. Confirmation soil sampling results concluded that there was an exceedance of the zinc SCO in the North wall of the excavation. Additional excavation of this sidewall was considered to be part of Area AC and was remediated and sampled under work performed for Area AC described in Section 9.1. Soil disposal facilities, removal dates and quantities are listed in Table 8-1-A.

On May 6, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). The area was rough graded in October 2010 as part of the overall site grading plan.

8.1.1 Area AD Confirmation Soil Sampling

On May 5, 2010, two bottom confirmation samples (AD-BS-1 and AD-BS-2) and two sidewall confirmation samples (AD-SS-1 and AD-SS-2) were collected from excavation AD and submitted to Mitkem for analysis of zinc.

The confirmation sample results are listed in Table 8-1-B and are summarized below.

- Final confirmation samples AD-BS-1, AD-BS-2, and AD-SS-1 were below SCOs.
- Initial confirmation sample AD-SS-2 on the north sidewall exceeded the zinc SCO. As discussed above, additional excavation of this sidewall was completed as part of the Area AC excavation.

8.2 Area AE

Area AE is located in the central part of OU6 under the former main building (south of Area AD; Figure 3). The SI and SSI determined that asbestos-containing waste resin dust was mixed in fill containing PCBs, cadmium, and lead above SCGs. Prior to conducting any excavation work in Area AE, an asbestos work area perimeter and asbestos decontamination station were established in accordance with Federal and State asbestos regulations. On February 15, 2010, remedial excavation was initiated in Area AE. Fill excavated in Area AE consisted of black foundry sand, resin dust (ACM), wood, bricks and gravel overlying a lower floor slab at a depth of approximately 5 feet below the main plant floor level. Between February 15, 2010 and February 19, 2010, 1,866.76 tons of ACM contaminated fill were excavated, transported and disposed of at Modern.

After removal of the lower floor slab and receipt of final asbestos clearance air samples, the asbestos work area was de-regulated and initial confirmation samples were collected from the re-graded clayey silt fill material underlying the lower floor slab. Based on exceedances for cadmium and zinc in the initial confirmation samples, LiRo conducted grid sampling in an attempt to delineate the area requiring further excavation. Additional limited excavation (190.26 tons of contaminated soil) was conducted on April 12, 2010, however, based on the observation of a foundry sand layer approximately 1.5 feet below the bottom level (observed from the adjacent area AF which had been excavated in March 2010, below the AE level), the entire bottom of AE (305.35 tons) was excavated on May 4, 2010, to remove the sand layer.

Final bottom confirmation samples collected on May 5, 2010, showed no exceedances of SCOs (Table 8-2-B). On May 24, 2010, NYSDEC required no additional excavation in Area AE. Soil disposal facilities, removal dates and quantities are listed in Table 8-2-A.

On May 6, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5) and on May 25, 2010 the excavation was backfilled with crushed concrete from piles 18 and 19 (see Section 15.1 for description of crushed concrete backfill).

8.2.1 Area AE Confirmation Soil Sampling

On March 15, 2010 and March 16, 2010 two bottom confirmation samples (AE-BS-1 and AE-BS-2) and two sidewall confirmation samples (AE-SS-1 and AE-SS-2) were collected from excavation AE and submitted to Mitkem for analysis of PCBs, cadmium and lead. The bottom samples were additionally analyzed for zinc. Confirmation sample results are listed in Table 8-2-B and are summarized below.

- Final confirmation samples AE-SS-1 and AE-SS-2 were below SCOs.
- Initial confirmation sample AE-BS-1 exceeded the zinc SCO.
- Initial confirmation sample AE-BS-2 exceeded cadmium and zinc SCOs

On March 26, 2010 eight bottom delineation samples (AE-BS-3, AE-BS-4, AE-BS-5, AE-BS-6, AE-BS-7, AE-BS-8, AE-BS-9 and AE-BS-10) were collected in a grid pattern in an attempt to delineate the area requiring further excavation.

- Delineation samples AE-BS-3, AE-BS-5 and AE-BS-8, exceeded the cadmium SCO.
- Delineation samples AE-BS-4, AE-BS-6, AE-BS-7, AE-BS-9 and AE-BS-10 were below SCOs.

On April 12, 2010, two bottom confirmation samples (AE-BS-11 and AE-BS-12) were collected and did not exceed SCOs. However, based on the observation of a foundry sand layer approximately 1.5 ft below the bottom level (observed from the adjacent area AF which had been excavated below the AE level) and repeated SCO exceedances in the AF north sidewall (common to Area AE) samples, the entire bottom of AE was excavated to remove the sand layer. On May 5, 2010 two bottom confirmation samples (AE-BS-13 and AE-BS-14) were collected from excavation AE and analyzed for cadmium and lead.

• Final confirmation samples AE-BS-13 and AE-BS-14 were below cadmium and lead SCOs.

8.3 Area AF

Area AF is located in a former process pit in the central part of OU6 in the former main building south of Area AE (Figure 3), where the SI and SSI encountered cadmium and zinc in shallow fill soil above SCGs.

Remedial excavation work at Area AF was initiated on March 4, 2010 and March 5, 2010, with the excavation and transportation of 346.92 tons and 884.31 tons of contaminated soil, respectively, to TOT Landfill for disposal. The excavation was initially advanced to a depth of 3 feet to the top of the underlying native silty clay.

Based on initial bottom sample exceedances (Table 8-3-B), LiRo conducted grid sampling in an attempt to delineate the area requiring further excavation. On April 12, 2010, the north sidewall was extended into Area AE (39.96 tons) and on April 16, 2010, the bottom was re-excavated (213.75 tons) in the portion of AF shown to be contaminated by the grid sampling. The April excavation soil was transported to Modern for disposal.

Based on the April 19, 2010 confirmation sample results, an additional 104.92 tons of contaminated soil were excavated on May 4, 2010, and transported to Modern for disposal. Two additional confirmation samples were collected and following receipt of confirmation sample results that complied with SCOs, NYSDEC approved no additional excavation in Area AF on May 25, 2010. Between March 4 and May 4, 2010, a total of 1,589.86 tons of soil were excavated from Area AF. Soil disposal facilities, removal dates and quantities are listed in Table 8-3-A.

On May 6, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). On May 18, 2010, the excavation was backfilled with crushed concrete from piles 18 and 19.

8.3.1 Area AF Confirmation Soil Sampling

On March 15, 2010, one sidewall excavation confirmation sample (AF-SS-1) and two bottom excavation confirmation samples (AF-BS-1 and AF-BS-2) were collected from the excavation in Area AF and submitted for cadmium and zinc analysis. All confirmation sample results are listed in Table 8-3-B and are summarized below.

- Final confirmation sample AF-BS-2 was below SCOs.
- Initial confirmation sample AF-SS-1 exceeded the cadmium and zinc SCOs.
- Initial confirmation sample AF-BS-1 exceeded the cadmium SCO.

On March 26, 2010, three additional north sidewall confirmation samples (AF-SS-2, AF-SS-3 and AF-SS-4) were collected from suspect material that was evident approximately 1.5 feet below the floor of adjacent excavation Area AE.

- Initial confirmation samples AF-SS-3 and AF-SS-4 exceeded the zinc SCO.
- Initial confirmation sample AF-SS-2 was below the zinc SCO, but was later excavated.

On March 29, 2010, eight additional bottom delineation samples (AF-BS-3 through AF-BS-10) were collected in a grid pattern and analyzed for cadmium to delineate the area requiring further excavation.

- Delineation samples AF-BS-4, AF-BS-5, AF-BS-7, AF-BS-8, AF-BS-9 and AF-BS-10 exceeded the cadmium SCO.
- Delineation samples AF-BS-3 and AF-BS-6 were below the cadmium SCO.

After additional excavation, four additional northern sidewall confirmation samples (AF-SS-5 through AF-SS-8) were collected on April 12, 2010 and analyzed for cadmium and zinc.

- Initial confirmation samples AF-SS-6 and AF-SS-8 exceeded the cadmium SCO.
- Initial confirmation sample AF-SS-7 exceeded the zinc SCO.
- Final confirmation sample AF-SS-5 was below the cadmium and zinc SCOs.

Based on the observation of a foundry sand layer with repeated SCO exceedances in the AF north sidewall (common to Area AE), the entire bottom of AE was excavated to a common depth with Area AF. Therefore no additional Area AF north wall samples were acquired.

After additional excavation, one additional sidewall sample (AF-SS-9) and three additional bottom samples (AF-BS-11, AF-BS-12 and AF-BS-13) were collected on April 19, 2010, and analyzed for cadmium and zinc.

- Initial confirmation sample AF-BS-13 exceeded the zinc SCO.
- Final confirmation samples AF-SS-9, AF-BS-11 and AF-BS-12 were below the SCOs.

After additional excavation, two additional bottom confirmation samples (AF-BS-14 and AF-BS-15) were collected on May 5, 2010 and submitted for zinc analysis.

• Final confirmation samples AF-BS-14 and AF-BS-15 were below the zinc SCO.

8.4 Area AG

Area AG is located in a former process pit in the former Fibre Tube building south of Area AF (Figure 3), where the SI and SSI encountered zinc in shallow fill soil above SCGs. Remedial excavation work at Area AG was initiated on March 3, 2010 with the excavation, transportation and disposal of 1,824.27 tons of contaminated soil. Soil was transported and disposed of at TOT Landfill.

The excavation was advanced to the top of the underlying native brown to red-brown silty clay 2.5 to 3 feet below the pre-excavation ground surface. Following receipt of confirmation sample results, sidewall confirmation samples exceeded the zinc SCO and NYSDEC requested sidewall delineation sampling on the south and west sidewalls

Based on the sidewall sampling results additional excavation at Area AG was completed on April 12, 2010, with the excavation, transportation and disposal of an additional 93.20 tons of contaminated soil. Following receipt of subsequent confirmation sample results, zinc was below the SCO and on April 28, 2010 NYSDEC required no additional excavation in Area AG. Between March 3 and April 12, 2010, a total of 1,917.47 tons were excavated, transported and disposed of from Area AG. Soil disposal facilities, removal dates and quantities are listed in Table 8-4-A.

On April 21, 2010 and September 20, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). From April 26, 2010, to April 28, 2010, the excavation was backfilled with crushed concrete from piles 1, 3, 4, 16, and 17. On April 30, 2010, area AG was backfilled with concrete from pile 13.

8.4.1 Area AG Confirmation Soil Sampling

All confirmation samples from the Area AG excavation were submitted to Mitkem for analysis of zinc. Confirmation sample results are listed in Table 8-4-B and are summarized below.

On March 12, 2010 four sidewall confirmation samples (AG-SS-1 through AG-SS-4) and two bottom confirmation samples (AG-BS-1 and AG-BS-2) were collected and submitted for analysis of zinc.

- Initial confirmation samples AG-SS-3 and AG-SS-4 exceeded the zinc SCO.
- Final confirmation samples AG-SS-1, AG-SS-2, AG-BS-1 and AG-BS-2 were below the zinc SCO.

On March 25, 2010 five additional sidewall delineation samples (AG-SS-4a, AG-SS-5, AG-SS-6, AG-SS-7, AG-SS-8 and AG-SS-9) were collected and submitted for analysis of zinc to delineate the area requiring further excavation.

- Delineation samples AG-SS-5, AG-SS-7 and AG-SS-8 exceeded the zinc SCO.
- Delineation samples AG-SS-4a, AG-SS-6 and AG-SS-9 were below the zinc SCO.

After additional sidewall excavation, two additional sidewall confirmation samples (AG-SS-10 and AG-SS-11) were collected on April 12, 2010, and submitted for analysis of zinc.

• Final confirmation samples AG-SS-10 and AG-SS-11 were below the zinc SCO.

8.5 Area AH

Area AH is located west of Area AG in the former Fibre Tube building (Figure 3). In Area AH, the SI and SSI identified arsenic, copper, manganese and zinc in shallow fill soil above SCGs. Remedial excavation work at Area AH was initiated on March 3, 2010 and March 4, 2010 with the excavation, transportation and disposal of 1,353.29 and 679.55 tons of contaminated soil, respectively. Soil was transported to TOT Landfill for disposal. The excavation was advanced to the top of the underlying native brown to red-brown silty clay which was encountered at approximately 2.5 to 3 feet below the pre-excavation ground surface.

Based on initial bottom confirmation sample exceedances, LiRo conducted grid sampling in an attempt to delineate the area requiring further excavation and on April 2, 2010 NYSDEC requested additional excavation in Area AH along the southern floor based on the grid sampling results.

Additional bottom excavation was conducted on April 12, 2010 and April 16, 2010. Additional delineation sampling was conducted April 19, 2010 and based on the results, the floor was re-excavated on May 5, 2010, with the transportation and disposal total of an additional 120.13 tons of contaminated soil. May 5, 2010, confirmation results complied with SCOs and NYSDEC required no further excavation in the area. Between March 3 and May 5, 2010, a total of 2,363.96 tons of contaminated soil was excavated, transported and disposed from Area AH. Soil disposal facilities, removal dates and quantities are listed in Table 8-5-A.

On May 6, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). On May 26, 2010; July 6, 2010; and July 7, 2010, the excavation was backfilled with crushed concrete from piles 17, 27 and 28.

8.5.1 Area AH Confirmation Soil Sampling

All confirmation samples from the Area AH excavation were submitted to Mitkem for analysis. Confirmation sample results are listed in Table 8-5-B and are summarized below.

On March 12, 2010 three sidewall confirmation samples (AH-S1, AH-S2, and AH-S3) and two bottom confirmation samples (AH-B1 and AH-B2) were collected for analysis of di-n-butylphthalate, arsenic, copper, manganese, and zinc.

- Initial confirmation sample results for AH-B-1 exceeded the zinc SCO.
- Final confirmation samples AH-S-1, AH-S-2, AH-S-3 and AH-B-2 were below SCOs.

On March 25, ten additional bottom delineation samples (AH-BS-3 through AH-BS-12) were collected in a grid pattern and analyzed for zinc to delineate the area requiring further excavation.

- Delineation samples AH-BS-3, AH-BS-6, AH-BS-7, AH-BS-9, AH-BS-10, AH-BS-11, and AH-BS-12 exceeded the zinc SCO.
- Delineation samples AH-BS-4, AH-BS-5 and AH-BS-8 were below the zinc SCO.

Following additional excavation, on April 12, 2010, two additional bottom confirmation samples (AH-BS-13 and AH-BS-14) were collected and analyzed for arsenic, copper, manganese, zinc and di-n-butylphthalate.

- Initial confirmation sample AH-BS-13 exceeded the zinc SCO.
- Final confirmation sample AH-BS-14 was below SCOs for all analyzed compounds.

On April 29, 2010 six additional bottom delineation samples (AH-BS-15 through AH-BS-20) were collected in a grid pattern and analyzed for arsenic and zinc to delineate the area requiring further excavation.

- Delineation samples AH-BS-15, AH-BS-17, and AH-BS-20 exceeded the zinc SCO.
- Delineation samples AH-BS-16, AH-BS-18 and AH-BS-19 were below arsenic and zinc SCOs.

After additional excavation on May 5, 2010, three additional bottom confirmation samples (AH-BS-21 through AH-BS-23) were collected and analyzed for arsenic, copper, manganese, zinc and di-n-butylphthalate.

• Final confirmation samples AH-BS-21 through AH-BS-23 were below SCOs for all analyzed compounds.

8.6 Area BF

During the SI phase, barium and chromium exceedances were observed in fill comprised of foundry sand and slag. Test pits completed in July 2009 determined that the foundry sand and slag were present to a depth of 4 feet in the majority of Area BF (Figure 3). Native clay was found below this depth. As previously noted, Area BF remedial work was conducted by Demco in August – September 2009.

The remedial excavation at Area BF was initiated on August 28, 2009 with the removal of 764.58 tons of contaminated foundry sand that were transported to TOT Landfill for disposal. From August 31, 2009 to September 4, 2009, an additional 4,335.14 tons of contaminated foundry sand were removed from Area BF and transported to TOT Landfill for disposal. From September 8, 2009 to September 9, 2009, the excavation of contaminated foundry sand was halted so the foundations could be removed and the area cleaned. On September 10, 2009, excavation resumed and an additional 973.69 tons of contaminated foundry sand were removed from Area BF and transported to TOT Landfill for disposal. Confirmation end point samples were collected on September 10, 2009. The excavation was completed in native silty clay

soil. A total of 6073.41 tons of contaminated foundry sand were removed from Area BF. Soil disposal facilities, removal dates and quantities are listed in Table 8-6-A.

On September 11, 2009 and September 28, 2009, William Schutt and Associates, P.C. surveyed the final limits and confirmation soil sample locations of the base and sidewalls of the excavation, respectively (Figure 5). Prior to backfilling the excavation, a 6-mil polyethylene liner was placed on the bottom of the excavation to separate the native soil from the backfill. The excavation was backfilled with soil from the northeastern area (long leg) of the excavation. Rough grading of the area was completed on October 8, 2009. On October 16, 2009, crushed concrete from piles 7, 8 and 9 was moved into the west end of Area BF. In October 2010 the area was regraded to meet final site grade requirements and covered with four inches of topsoil.

8.6.1 Area BF Confirmation Sampling

The locations of the confirmation samples collected from Area BF are shown on Figure 5. The confirmation samples were submitted to Chemtech of Mountainside, NJ for analysis of barium, hexavalent chromium and total chromium. Confirmation sample results for Area BF are included in Table 8-6-B.

On September 10, 2009, following excavation, five bottom confirmation samples (BF-1E through BF-5E) were collected and submitted for analysis.

• Final confirmation samples (BF-1E through BF-5E) were below SCOs.

On September 21, 2009, following foundation wall removal, seven sidewall confirmation samples (BFW-1 through BFW-7) were collected and submitted for analysis.

• Final confirmation samples (BFW-1 through BFW-7) were below SCOs.

8.7 Area BH

Area BH is located under the eastern half of the Spaulding Fibre former main building, east of Area AE (Figure 3). During the SI and SSI LiRo encountered PAHs and metals in shallow fill soil above SCGs. Remedial excavation at Area BH was initiated on March 5 and 9, 2010, with the excavation, transportation and disposal of 887.07 and 798.03 tons of contaminated soil, respectively. Soil was transported to TOT Landfill for disposal.

Following receipt of confirmation sample results, several PAHs in sidewall confirmation sample BH-SS2 exceeded SCOs and on April 16, 2010, an additional 78.64 tons of contaminated soil were excavated from the south wall, transported and disposed of at Modern. The excavation was advanced to the top of the underlying native brown to red-brown silty clay, which was encountered between 2 to 2.5 feet below the pre-excavation ground surface.

Following receipt of confirmation sample results, all final confirmation samples were below SCOs and on May 13, 2010 NYSDEC required no further excavation. Between March 5 and April 16, 2010, 1,763.74 tons of contaminated soil were excavated from Area BH and transported to landfills for disposal. Soil disposal facilities, removal dates and quantities are listed in Table 8-7-A.

On April 21, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). The area did not require backfill and was re-graded in October 2010.

8.7.1 Area BH Confirmation Soil Sampling

Area BH confirmation samples were submitted to Mitkem for analysis of PAHs and TAL metals. Confirmation sample results are listed in Table 8-7-B.

On March 26, 2010 two sidewall confirmation samples (BH-SS-1 and BH-SS-2) and two bottom confirmation samples (BH-BS-1 and BH-BS-2) were collected and submitted for analysis.

- Initial confirmation sample results for BH-SS-2 contained levels of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene that exceeded SCOs.
- Final confirmation results for samples for BH-SS-1, BH-BS-1, and BH-BS-2 were below SCOs.

On April 19, 2010 one additional sidewall confirmation samples (BH-SS-3) was collected after the sidewall was re-excavated.

• Final confirmation results for sample BH-SS-3 were below SCOs.

9.0 OU6 SOIL REMEDIATION WORK AREA 1A

9.1 Area AC

Area AC is located in the central portion of OU6 under the former Spaulding Fibre Evaporator and Acid House (Figure 3) where the SI and SSI encountered cadmium and zinc in fill above SCGs to a depth of 3 feet. Remedial excavation work at Area AC was initiated on April 5, 2010 with the excavation, transportation and disposal of 341.63 tons of contaminated soil at TOT Landfill and 159.52 tons of contaminated soil at Modern. On April 6, 2010, an additional 42.30 tons of contaminated soil was excavated, transported and disposed of at TOT landfill. On April 7, 2010 an additional 486.55 tons of contaminated soil was excavated, transported and disposed of at TOT Landfill and an additional 307.69 tons were excavated, transported and disposed of at Modern.

Based on bottom confirmation sample results from AC-BS-1 exceeding SCOs (Table 9-1-A), an additional 220.96 tons of soil were excavated, transported and disposed of at Modern on May 5, 2010. The May 5th bottom re-sample also exceeded SCOs so additional soil was excavated, transported and disposed of at Modern on May 26 and 27, 2010. Based on additional bottom sample SCO exceedances, grid sampling to delineate the area requiring excavation was conducted on June 9, 2010, and June 24, 2010. Final excavation work was completed on June 25, 2010 with the excavation, transportation and disposal of 375.66 tons of soil at Modern. Between April 5 and July 25, 2010, a total of 2,835.09 tons of contaminated soil were removed from Area AC.

Following receipt of final confirmation sample results, zinc and cadmium in all samples were below SCOs and on July 29, 2010 NYSDEC required no further excavation in Area AC. Soil disposal facilities, removal dates and quantities are listed in Table 9-1-A.

On May 6, 2010, and August 6, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). The area was partially filled with borrow from the machine shop area to meet final site grade requirements and covered with four inches of topsoil in October 2010.

9.1.1 Area AC Confirmation Soil Sampling

All confirmation soil samples collected from the Area AC excavation were submitted to Mitkem for analysis of cadmium and zinc. Confirmation sample results are listed in Table 9-1-B and are summarized below.

On April 14, 2010 one sidewall confirmation sample (AC-SS-1) and two bottom confirmation samples (AC-BS-1 and AC-BS-2) were collected and submitted for analysis.

- Initial confirmation sample AC-BS-1 exceeded cadmium and zinc SCOs.
- Final confirmation samples AC-SS-1 and AC-BS-2 were below cadmium and zinc SCOs.

Following additional excavation, on May 5, 2010 one additional bottom confirmation sample (AC-BS-3) was collected and submitted for analysis.

• Initial confirmation sample AC-BS-3 exceeded the zinc SCO.

Following additional excavation, on May 27, 2010 one additional bottom confirmation sample (AC-BS-4) was collected and submitted for analysis.

• Initial confirmation sample AC-BS-4 exceeded cadmium and zinc SCOs.

To delineate the area requiring further excavation, eight additional bottom delineation samples (AC-BS-5 through AC-BS-13) were collected for cadmium and zinc analysis.

- Delineation samples AC-BS-6, AC-BS-9 and AC-BS-10 exceeded cadmium and zinc SCOs.
- Delineation samples AC-BS-7, AC-BS-12 and AC-BS-13 exceeded the zinc SCO.
- Delineation sample AC-BS-8 exceeded the cadmium SCO.
- Delineation samples AC-BS-5 and AC-BS-11 were below zinc and cadmium SCOs.

Following additional excavation, seven additional bottom delineation samples (AC-BS-14 through AC-BS-20) were collected on June 24, 2010, and submitted for analysis.

- Delineation samples AC-BS-17, AC-BS-18, and AC-BS-20 exceeded the cadmium SCO.
- Delineation samples AC-BS-14, AC-BS-15, AC-BS-16 and AC-BS-19 were below cadmium and zinc SCOs.

Following additional excavation, on July 15, 2010 two additional bottom confirmation samples (AC-BS-21 and AC-BS-22) were collected and submitted for analysis.

• Final confirmation samples AC-BS-21 and AC-BS-22 were below cadmium and zinc SCOs.

9.2 Area AJ-a

Area AJ-a is located in the western portion of area OU6 (Figure 5) where cadmium, copper and zinc were detected in shallow fill in excess of SCGs. Area AJ-a is located at the main plant floor level and is divided into a southern and northern portion by a large process pit (Area AJ-b).

Remedial excavation work at Area AJ-a (north) was initiated on April 13 and 16, 2010 with the excavation of 850.63 and 128.42 tons of contaminated soil from the northern portion of AJ-a. Soil was transported and disposed of at TOT Landfill. The excavation was advanced through foundry sand to the top of the underlying native clayey-silt soil, which was encountered at a depth of approximately 2 feet below the pre-excavation ground surface. Based on confirmation sampling conducted on May 7, 2010, no further excavation was conducted in the northern portion of AJ-a.

Remedial excavation work at AJ-a (south) was initiated on April 30, 2010 and continued through August 11, 2010. Soil excavated on April 30, June 24, July 12 and 19 and August 3, 10, and 11, 2010 was transported and disposed of at Modern. Soil excavated on June 16, 17 and 18, 2010 was transported to TOT Landfill for disposal. The remedial excavation encountered re-graded red-brown silty clay, and construction materials (brick etc.) in fill in the southern portion of AJ-a.

Southern AJ-a confirmation samples were collected on numerous dates in June, July and August (Table 9-2-B) with exceedances of SCOs requiring additional excavations. Following receipt of final confirmation sample results, zinc and cadmium in all samples were below SCOs and on September 8, 2010, NYSDEC

required no further excavation in Area AJ-a. A total of 3,219.3 tons of contaminated soil was excavated from AJ-a (south). Soil disposal facilities, removal dates and quantities are listed in Table 9-2-A.

On August 16, 2010 and September 20, 2010, Wendel surveyed the final limits and confirmation soil sample locations in area AJ-a (Figure 5). The excavation was partially filled with borrow from the fibre storage area to meet final site grade requirements and covered with four inches of topsoil in October 2010.

9.2.1 Area AJ-a Confirmation Soil Sampling

All confirmation soil samples collected from Area AJ-a were submitted to Spectrum for analysis of cadmium, copper and zinc. Confirmation sample results are listed on Table 9-2-B and are summarized below.

On May 7, 2010 one bottom confirmation sample (AJ-a-BS-1) was collected and submitted for analysis.

• Final confirmation sample AJ-a-BS-1 was below cadmium, copper and zinc SCOs.

All subsequent sampling was conducted in the southern portion of Area AJ-a. On June 22, 2010 two bottom confirmation samples (AJ-a-BS-2 and AJ-a-BS-3) were collected and submitted for analysis.

• Initial confirmation samples AJ-a-BS-2 and AJ-a-BS-3 exceeded copper and zinc SCOs.

After additional excavation, on July 9, 2010 one eastern sidewall confirmation sample (AJ-a-SS-1) and two bottom confirmation samples (AJ-a-BS-4 and AJ-a-BS-5) were collected and submitted for analysis.

- Initial confirmation sample AJ-a-SS-1 exceeded cadmium, copper and zinc SCOs.
- Initial confirmation sample AJ-a-BS-5 exceeded the zinc SCO.
- Final confirmation sample AJ-a-BS-4 was below cadmium, copper and zinc SCOs.

After additional east sidewall excavation, on July 19, 2010 one sidewall confirmation sample (AJ-a-SS-2) was collected and submitted for analysis.

• Final confirmation sample AJ-a-SS-2 was below cadmium, copper and zinc SCOs.

After additional bottom excavation, six bottom delineations samples (AJ-a-BS-6 through AJ-a-BS-11) were collected on July 26, 2010 with four bottom delineation samples (AJ-a-BS-12 through AJ-a-BS-15) collected on July 27, 2010. These samples were collected on a grid pattern, with samples AJ-a-BS-12 through AJ-a-BS-15 collected at depths of one-foot and two-feet below the excavation floor to delineate the lateral and vertical extent of soil requiring excavation.

- Delineation sample AJ-a-BS-8 exceeded copper and zinc SCOs.
- Delineation samples AJ-a-BS-9, AJ-a-BS-10 and AJ-a-BS-11 exceeded cadmium and zinc SCOs.
- Delineation samples AJ-a-BS-6 and AJ-a-BS-7 were below SCOs.
- Delineation samples AJ-a-BS-12 through AJ-a-BS-15 were below SCOs.

After additional bottom excavation, bottom confirmation sample (AJ-a-BS-16) was collected on August 3, 2010 and bottom confirmation sample (AJ-a-BS-17) was collected on August 4, 2010, and submitted for analysis.

- Final confirmation samples AJ-a-BS-16 was below the cadmium, copper and zinc SCOs.
- Initial confirmation sample AJ-a-BS-17 exceeded the cadmium SCO.

After additional excavation, on August 10, 2010 two bottom confirmation samples (AJ-a-BS-18 and AJ-a-BS-19) were collected and submitted for analysis.

• Final confirmation samples AJ-a-BS-18 and AJ-a-BS-19 were below SCOs.

9.3 Area AJ-b

Area AJ-b is located in the western part of the former Spaulding Fibre building and occupies the former process pit that divides Area AJ-a (Figure 3). In Area AJ-b the SI and SSI encountered cadmium and zinc in shallow fill above SCGs. Remedial excavation work at AJ-b was initiated on April 5, 2010 and continued through August 5, 2010. On April 5, 6 and 15, 2010, 68.50 tons, 20.64 tons and 63.48 tons of contaminated soil were excavated, transported and disposed of at TOT Landfill. On April 6, 13, 15, 27, 28, May 26 and 27, July 12, 19, August 3 and 5, 2010, a total of 1,615.34 tons of contaminated soil were excavated, transported and disposed of at Modern. A total of 1,767.96 tons of contaminated soil was excavated from Area AJ-b. Soil disposal facilities, removal dates and quantities are listed in Table 9-3-A.

AJ-b confirmation samples were collected on several dates in May, June, July and August (Table 9-3-B and Section 9.3.1) with exceedances of SCOs requiring additional excavations. Following receipt of final confirmation sample results, zinc and cadmium in all samples were below SCOs and NYSDEC required no further excavation in Area AJ-b.

On August 16, 2010 and September 20, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). The excavation was partially filled with borrow from the fibre storage area to meet final site grade requirements and covered with four inches of topsoil in October 2010.

9.3.1 Area AJ-b Confirmation Soil Sampling

All confirmation soil samples collected from Area AJ-b were submitted to Spectrum for analysis of cadmium and zinc. Confirmation sample results are listed on Table 9-3-B and are summarized below.

After initial excavation in Area AJ-b, on May 7, 2010 seven bottom confirmation samples (AJ-b-BS-1 through AJ-b-BS-7) were collected and submitted for analysis.

- Initial confirmation samples AJ-b-BS-1, AJ-b-BS-3 and AJ-b-BS-5 exceeded the zinc SCO.
- Initial confirmation samples AJ-b-BS-3 and AJ-b-BS-5 also exceeded the cadmium SCO.
- Final confirmation samples AJ-a-BS-2, AJ-a-BS-4, AJ-b-BS-6 and AJ-b-BS-7 were below SCOs.

Following additional excavation, on May 27, 2010 two bottom confirmation samples (AJ-b-BS-8 and AJ-b-BS-9) were collected and submitted for analysis.

- Initial confirmation sample AJ-b-BS-9 exceeded the zinc SCO.
- Final confirmation sample AJ-a-BS-8 was below cadmium and zinc SCOs.

Following additional excavation, on June 8, 2010 one bottom confirmation sample (AJ-b-BS-10) and two sidewall confirmation samples (AJ-b-SS-1 and AJ-b-SS-2) were collected and submitted for analysis.

- Initial confirmation sample AJ-b-BS-10 exceeded cadmium and zinc SCOs.
- Initial confirmation sample AJ-b-SS-2 exceeded the zinc SCO.
- Final confirmation sample AJ-b-SS-1 was below cadmium and zinc SCOs.

Following additional excavation, on June 23, 2010 two bottom confirmation samples (AJ-b-BS-11 and AJ-b-BS-12) and one sidewall confirmation sample (AJ-b-SS-3) were collected and submitted for analysis.

- All three initial confirmation samples exceeded the zinc SCO.
- Initial confirmation sample AJ-b-SS-3 also exceeded the cadmium SCO.

Following additional excavation, on July 9, 2010 two bottom confirmation samples (AJ-b-BS-13 and AJ-b-BS-14) and one sidewall confirmation sample (AJ-b-SS-4) were collected and submitted for analysis. Sample AJ-b-BS-14 was collected in the same area as previous samples AJ-b-BS-1 and AJ-b-BS-9.

- Initial confirmation sample AJ-b-BS-13 exceeded the cadmium and zinc SCOs.
- Final confirmation samples AJ-b-BS-14 and AJ-b-SS-4 were below the cadmium and zinc SCOs.

Following additional excavation, on July 19, 2010 bottom confirmation sample (AJ-b-BS-15) was collected in the same area as previous sample AJ-b-BS-13 and submitted to Mitkem for analysis.

• Initial confirmation sample AJ-b-BS-15 exceeded the cadmium and zinc SCOs.

Following additional excavation, on August 4, 2010 bottom confirmation sample (AJ-b-BS-16) was collected and submitted for analysis.

• Final confirmation sample AJ-b-BS-16 was below cadmium and zinc SCOs.

9.4 Area AK-a

Area AK-a is located in the southwest corner of the former Spaulding Fibre buildings (Figure 3). In Area AK-a the SI and SSI encountered fill contaminated with PAHs and manganese above SCGs. Subsurface conditions encountered during remedial excavation activities included fill containing black foundry sand with C&D consisting of concrete, wood and metal followed by native red-brown silty clay. Remedial excavation work at Area AK-a was initiated on April 13, 2010 with the excavation, transportation and disposal of 312.11 tons of contaminated soil at Modern. Following initial confirmation sample results exceeding SCOs, additional excavation was completed between April and June 2010. On April 14 and 15, May 3 and 21 and June 24, 2010, additional excavation of contaminated soil was transported and disposed of at Modern. On April 30 and June 18, 2010, 67.02 tons and 420.50 tons of contaminated soil was excavated and transported for disposal at TOT Landfill. Soil disposal total at Modern from Area AKa was 1,752.17 tons. Soil disposal total at TOT Landfill was 487.52 tons. The Area AK-a total soil disposal was 2,239.69 tons. The excavation was advanced to the top of the underlying native brown to red-brown silty clay encountered at between three and four feet below the pre-excavation ground surface. Following receipt of final confirmation sample results, PAHs and manganese in all confirmation samples were below SCOs and NYSDEC required no further excavation in Area AK-a. Soil disposal facilities, removal dates and quantities are listed in Table 9-4-A.

On August 16, 2010 and September 20, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). The excavation was re-graded with soil from the previously remediated and backfilled area to the west.

9.4.1 Area AK-a Confirmation Soil Sampling

All confirmation soil samples collected from Area AK-a were submitted to Spectrum for analysis of PAHs and manganese. Confirmation sample results are listed on Table 9-4-B and are summarized below.

After initial excavation in Area AK-a, on May 20, 2010 two bottom confirmation samples (AK-a-BS-1 and AK-a-BS-2) were collected and submitted for analysis.

- Initial confirmation sample AK-a-BS-2 contained benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene that exceeded SCOs.
- Final confirmation sample AK-a-BS-1 was below PAH and manganese SCOs.

Following additional excavation in Area AK-a, on June 3, 2010 one eastern sidewall confirmation sample (AK-a-SS-1) was collected and submitted for analysis.

• Final confirmation sample AK-a-SS-1 was below PAH and manganese SCOs.

Following additional excavation in Area AK-a, on June 23, 2010 one bottom confirmation sample (AK-a-BS-3) was collected in the vicinity of initial sample AK-a-BS-2 and submitted for analysis.

• Final confirmation sample AK-a-BS-3 was below SCOs for PAH and manganese.

Following additional excavation in Area AK-a, on July 15, 2010 one southern sidewall confirmation sample (AK-a-SS-2) was collected in the vicinity of initial sample AK-a-BS-2 and submitted for analysis.

• Final confirmation samples AK-a-SS-2 was below PAH and manganese SCOs.

9.5 Area AK-b Excavation Description

Area AK-b is located in a former process pit area in the westernmost part of the former Spaulding Fibre building area of OU6 (Figure 3) where cadmium, chromium, copper and zinc in shallow fill soil were detected in excess of SCGs. Remedial excavation work at AK-b was initiated on May 13, 2010 and continued through August 18, 2010. On May 13, 14, 19, 20, June 24, and August 5 and 18, 2010, a total of 2,273.82 tons of contaminated soil were excavated, transported and disposed of at Modern.

Following receipt of confirmation sample results (Table 9-5-B), additional excavation was conducted in the northern portion of Area AK-b due to SCO exceedances at AK-b-BS-1. Grid sampling was conducted on July 29, 2010 to delineate the exceedance area around AK-b-BS-1.

On August 5, 2010 an additional 20.39 tons of soil were excavated, transported and disposed of at Modern. Confirmation samples were collected and an exceedance of the cadmium SCO remained. Consequently, on August 18, 2010, an additional 21.66 tons of soil was excavated, transported and disposed of at Modern. All confirmation soil samples were below cadmium, chromium, copper and zinc SCOs and on September 9, 2010, NYSDEC requested no further excavation in Area AK-b. Soil disposal facilities, removal dates and quantities are listed in Table 9-5-A.

On August 16, 2010 and September 20, 2010, Wendel surveyed the final limits of excavation and confirmation soil sample locations (Figure 5). The excavation was re-graded with soil from the clean soil area to the west.

9.5.1 Area AK-b Confirmation Soil Sampling

All confirmation samples from Area AK-b were submitted to Spectrum for analysis of cadmium, chromium, copper and zinc. The confirmation results are summarized in Table 9-5-B and are summarized below.

On May 27, 2010 two western sidewall confirmation soil samples (AK-b-SS-1 and AK-b-SS-2) were collected and submitted for analysis.

• Final confirmation samples AK-b-SS-1 and AK-b-SS-2 were below SCOs.

On June 3, 2010 two bottom confirmation samples (AK-b-BS-1 and AK-b-BS-2) were collected and submitted for analysis.

- Initial confirmation sample AK-b-BS-1 exceeded cadmium and zinc SCOs.
- Final confirmation sample AK-b-BS-2 was below SCOs.

After additional excavation bottom confirmation sample (AK-b-BS-3) was collected On June 23, 2010, from the vicinity of previous sample AK-b-BS-2 and submitted for analysis.

• Final confirmation sample AK-b-BS-3 was below SCOs

After additional excavation, seven bottom delineation samples (AK-b-BS-4 through AK-b-BS-10) were collected on July 29, 2010, in a grid pattern from the vicinity of previous AK-b-BS-1 and submitted for analysis.

- Delineation sample AK-b-BS-8 exceeded cadmium and zinc SCOs.
- Delineation sample AK-b-BS-7 exceeded the cadmium SCO.
- Delineation samples AK-b-BS-4, AK-b-BS-5, AK-b-BS-6, AK-b-BS-9 and AK-b-BS-10 were below SCOs.

After additional excavation, two bottom confirmation samples (AK-b-BS-11 and AK-b-BS-12) in the vicinity of previous sample AK-b-BS-1 were collected on August 9, 2010, and submitted for analysis.

- Initial confirmation sample AK-b-BS-11 exceeded the cadmium SCO.
- Final confirmation sample AK-b-BS-12 was below SCOs.

After additional excavation, two bottom confirmation samples (AK-b-BS-13 and AK-b-BS-14) in the vicinity of previous sample AK-b-BS-1 were collected on August 17, 2010, and submitted for analysis.

• Final confirmation samples AK-b-BS-13 and AK-b-BS-14 were below SCOs.

9.6 Area AK-c Excavation Description

Area AK-c is located in the northwestern part of the former Spaulding Fibre building area of OU6 (Figure 3) where fill consisting of brown silty sand, black foundry sand, orange bricks, concrete and wood was

encountered. Cadmium, chromium, copper and zinc in fill were detected in excess of SCGs during the SI and SSI. Excavation of Area AK-c was initiated on April 1, 2010 with the excavation and transportation of 142.17 tons of contaminated soil to Modern for disposal. Due to the shape of the area and ongoing foundation work, the initial soil removal effort continued through April 29, 2010, with the removal of an additional 2,061.8 tons of contaminated soil.

Following receipt of confirmation sample results (Table 9-6-B), additional excavation was conducted on May 27, 2010, due to SCO exceedances at AK-c-BS-1. Subsequent analytical results from confirmation samples AK-c-SS-1 and AK-c-SS-2 showed there were zinc exceedances along the north and west sidewalls of the excavation. The north and west sidewalls were excavated further on June 24, 2010, and confirmation soil samples were collected. Total soil disposal from Area AK-c was 2,419.19 tons. Soil disposal facilities, removal dates and quantities are listed in Table 9-6-A. The excavation was advanced to the top of the underlying native brown silty clay that was encountered at a depth of approximately 6 feet below the pre-excavation ground surface.

Following receipt of soil analytical results (Table 9-6-B), all confirmation soil samples were below SCOs for cadmium, chromium, copper and zinc and NYSDEC requested no additional excavation in Area AK-c.

On August 16, 2010 and September 20, 2010, Wendel surveyed the final limits of excavation and confirmation soil sample locations. The excavation was re-graded with soil from the clean soil area to the west.

9.6.1 Area AK-c Confirmation Soil Sampling

All confirmation samples from Area AK-c were submitted to Spectrum for analysis of cadmium, chromium, copper and zinc. The confirmation results are summarized in Table 9-6-B and are summarized below.

On May 7, 2010 one bottom confirmation sample (AK-c-BS-1) was collected and submitted for analysis.

• Initial confirmation sample AK-c-BS-1 exceeded the zinc SCO.

After additional bottom excavation, one bottom confirmation sample (AK-c-BS-2) was collected on May 27, 2010 and submitted for analysis.

• Final confirmation sample AK-c-BS-2 was below SCOs.

On June 3, 2010 two sidewall confirmation samples (AK-c-SS-1 and AK-c-SS-2) and one bottom confirmation sample (AK-c-BS-3) were collected and submitted for analysis.

- Initial confirmation samples AK-c-SS-1 (north wall) and AK-c-SS-2 (west wall) exceeded zinc SCOs.
- Final confirmation sample AK-c-BS-3 was below SCOs.

After additional sidewall excavation confirmation samples (AK-c-SS-3 and AK-c-SS-4) were collected on June 23, 2010 from the sidewalls of the excavation.

• Final confirmation samples AK-c-SS-3 and AK-c-SS-4 were below SCOs.

9.7 Area AL

Area AL is located in the former boiler house in the northwestern corner of the former Spaulding Fibre building area of OU6 (Figure 3) where PAHs, Phthalates, PCBs, cadmium, chromium, and zinc in fill were identified in excess of SCGs during the SI and SSI. During the remedial excavation fill material encountered in Area AL consisted of black foundry sand, cinders, bricks, slag, and wood. Excavation in Area AL was initiated on April 1, 2010 with the excavation, transportation and disposal of 846.06 tons of soil at TOT Landfill. On April 29 and 30 and June 7, 2010 a total of 1,833.36 tons of contaminated soil were transported and disposed of at Modern. In addition, 115 tons of contaminated soil were excavated from the area west of Area AL on June 7, 2010 and transported to Modern for disposal. The excavation was advanced to the top of the underlying native brown silty clay that was encountered at depths ranging from approximately 4 feet below the pre-excavation ground surface. Along the northern wall the excavation was extended to 5 feet below the pre-excavation ground surface due to deeper fill.

Based on the observation of foundry sand below the adjacent floor slab to the west of the boiler house, the west wall of Area AL was extended to encompass that area. Following receipt of soil analytical results (Table 9-7-B), all confirmation soil samples were below PAHs, Phthalates, PCBs, cadmium, chromium, and zinc SCOs and NYSDEC required no additional excavation in Area AL. Total soil disposal in Area AL was 2,679.53 tons. Soil disposal facilities, removal dates and quantities are listed in Table 9-7-A.

On June 23, 2010, Wendel surveyed the final limits of excavation and confirmation soil sample locations in Area AL (Figure 5). On June 25, 2010 the AL excavation was backfilled with crushed concrete from pile 26. On August 16, 2010 and September 20, 2010, Wendel surveyed the final limits of excavation and confirmation soil sample locations in Area West of AL (Figure 5)

9.7.1 Area AL Confirmation Soil Sampling

All confirmation samples from Area AL were submitted to Mitkem for analysis of PAHs, phthalates, PCBs, cadmium, chromium, and zinc. The confirmation sample results are summarized in Table 9-7-B and are summarized below.

On May 7, 2010 two bottom confirmation samples (AL-BS-1 and AL-BS-2) were collected and submitted for analysis.

• Final confirmation samples AL-BS-1 and AL-BS-2 were below SCOs.

Following additional excavation, on June 8, 2010 confirmation sample (AL-SS-1) was collected from the northern sidewall of the excavation and submitted for analysis.

• Final confirmation sample AL-SS-1 was below SCOs.

Following additional excavation, on June 23, 2010 one bottom confirmation sample (West of the Boiler House – BS-1) was collected west of Area AL and submitted for analysis.

• Final confirmation sample (West of the Boiler House – BS-1) was below SCOs.

Following additional excavation, on July 13, 2010 one sidewall confirmation sample (West of the Boiler House – SS-1) was collected west of Area AL and submitted for analysis.

• Initial confirmation sample (West of the Boiler House – SS-1) exceeded benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene and zinc SCOs.

Following additional excavation, on August 3, 2010 two western sidewall confirmation samples (West of AL-SS-2 and West of AL-SS-3) were collected west of Area AL and submitted for analysis.

• Final confirmation samples (West of AL-SS-2 and West of AL-SS-3) were below SCOs.

9.8 Area BB

Area BB is located in the northern extent of the former Spaulding Fibre buildings and south of Gibson Street (Figure 3) and is the former raw material chemical storage area. During the SI and SSI PAHs in shallow fill were detected in Area BB in excess of SCGs. On March 30 and 31, 2010, 1,465.87 tons of contaminated soil was excavated and transported to TOT Landfill for disposal. The excavation was advanced to the top of the underlying native red-brown silty clay soil, which was encountered at a depth of approximately 4 feet below the pre-excavation ground surface.

Following receipt of soil analytical results (Table 9-8-B), all confirmation soil samples were below SCOs for PAHs and on May 10, 2010, NYSDEC required no further excavation in Area BB. Soil disposal facilities, removal dates and quantities are listed in Table 9-8-A.

On June 23, 2010, Wendel surveyed the final limits of excavation and confirmation soil sample locations in Area BB (Figure 5). The excavation was re-graded with soil from the clean soil area to the north to meet final site grading requirements and covered with four inches of topsoil.

9.8.1 Area BB Confirmation Soil Sampling

One sidewall confirmation sample (BB-SS-1) and two bottom confirmation samples (BB-BS-1 and BB-BS-2) were submitted to Mitkem for analysis of PAHs and phthalates. The confirmation results are summarized in Table 9-8-B and are summarized below.

• Final confirmation samples BB-SS-1, BB-BS-1 and BB-BS-2 were below SCOs.

9.9 Area BC-a

Area BC-a is a former loading dock area located in the northern portion of the former Spaulding Fibre buildings and south of Gibson Street (Figure 3) where benzene and arsenic in shallow fill was detected during the SI and SSI that exceeded SCGs. On March 29, 2010, excavation was initiated in Area BC-a. On March 30, 2010, 660.82 tons of contaminated soil was excavated and transported to Modern for disposal. The building was constructed with a raised floor slab so the excavation was initiated at a level approximately 4 feet below the main plant floor slab and advanced to the top of the underlying native redbrown silty clay soil which was encountered at a depth of approximately 1 foot below the pre-excavation ground surface. On April 28, 2010 an additional 85.49 tons of contaminated soil were excavated and transported to Modern for disposal. Total disposal for Area BC-a was 746.31 tons.

Following receipt of soil analytical results (Table 9-9-B), all confirmation soil samples were below SCOs for benzene and arsenic and NYSDEC required no further excavation in Area BC-a. Soil disposal facilities, removal dates and quantities are listed in Table 9-9-A.

On April 21 and May, 6, 2010 Wendel surveyed the final limits of excavation and confirmation soil sample locations in Area BC-a (Figure 5). The excavation was re-graded with soil from the clean soil area to the north to meet final site grading requirements and covered with four inches of topsoil.

9.9.1 Area BC-a Confirmation Soil Sampling

On April 8, 2010 one bottom confirmation sample (BC-a-BS-1) was submitted to Spectrum for analysis of arsenic and benzene. The confirmation results are summarized in Table 9-9-B and are summarized below. The bottom samples were collected over several sampling events due to ongoing foundation removal work. No sidewall samples were collected from Area BC-a because it was surrounded by deeper remediation areas and a NYSDEC remediation area that was backfilled with clean soil.

• Final confirmation sample BC-a-BS-1 was below SCOs.

Following additional excavation, on April 15, 2010 one bottom confirmation sample (BC-a-BS-2) was collected and submitted for analysis.

• Final confirmation sample BC-a-BS-2 was below SCOs.

Following additional excavation, on April 29, 2010 one bottom confirmation sample (BC-a-BS-3) was collected and submitted for analysis.

• Final confirmation sample BC-a-BS-3 was below SCOs.

9.10 Area BC-b

Area BC-b is located immediately south of BC-a (Figure 3) where benzene and arsenic in fill were detected above SCGs during the SI and SSI. On March 30, 2010 excavation was initiated in Area BC-b with the excavation, transportation and disposal of 500.34 tons of contaminated soil to TOT Landfill. Excavation, transportation and disposal to TOT Landfill continued on April 7 and April 8, 2010. Excavation, transportation and disposal to Modern also occurred on April 7 and 8, 2010. The excavation was advanced to the top of the underlying native silty clay, which was encountered at approximately 6 feet below the pre-excavation ground surface.

Following receipt of soil analytical results (Table 9-10-B), all confirmation soil samples were below SCOs for benzene and arsenic and on May 10, 2010, NYSDEC required no further excavation in Area BC-b. Total soil disposal at TOT Landfill was 661.98 tons and total soil disposal at Modern was 141.10 tons. A total of 803.08 tons of contaminated soil were removed from Area BC-b. Soil disposal facilities, removal dates and quantities are listed in Table 9-10-A.

On April 21, 2010 Wendel surveyed the final limits of excavation and confirmation soil sample locations in Area BC-b (Figure 5). The excavation was re-graded with soil from the clean soil area to the north to meet final site grading requirements and covered with four inches of topsoil.

9.10.1 Area BC-b Confirmation Soil Sampling

All confirmation samples in Area BC-b were submitted to Mitkem for analysis of benzene and arsenic. The confirmation results are listed in Table 9-10-B and are summarized below.

On April 8, 2010 two bottom confirmation samples (BC-b-BS-1 and BC-b-BS-2) and two sidewall confirmation samples (BC-b-SS-1 and BC-b-SS-2) were submitted for analysis.

• Final confirmation samples BC-b-BS-1, BC-b-BS-2, BC-b-SS-1 and BC-b-SS-2 were below SCOs.

9.11 Area BC-c

Area BC-c is located in the former Spaulding shipping room in the northern portion of the former Spaulding Fibre buildings and south of Gibson Street (Figure 3) where benzene and arsenic in fill were detected above SCGs during the SI and SSI. On March 31 and April 1, 2010, excavation was initiated in Area BC-c with the excavation, transportation and disposal of 1,128.07 tons of contaminated soil at TOT Landfill.

Based on initial confirmation bottom samples exceeding SCOs (Table 9-11-B), the excavation bottom was re-excavated on April 28, 2010, with the transportation and disposal of 87.73 tons of contaminated soil at Modern. The excavation was advanced to the top of the underlying native red-brown silty clay soil, which was encountered at a depth of approximately 4 feet below the pre-excavation ground surface.

Following receipt of soil analytical results (Table 9-11-B), all confirmation soil samples were below benzene and arsenic SCOs and NYSDEC required no further excavation in Area BC-c. A total of 87.73 tons of soil were disposed of at Modern and a total of 1,128.07 tons were disposed of at TOT Landfill. A total of 1,215.80 tons of contaminated soil were removed from Area BC-c. Soil disposal facilities, removal dates and quantities are listed in Table 9-11-A.

On April 21 and May 6, 2010 Wendel surveyed the final limits of excavation and confirmation soil sample locations in Area BC-c (Figure 5). The excavation was re-graded with soil from the clean soil area to the north and east to meet final site grading requirements and covered with four inches of topsoil.

9.11.1 Area BC-c Confirmation Soil Sampling

All confirmation samples in Area BC-c were submitted to Mitkem for analysis of benzene and arsenic. The confirmation results are listed in Table 9-11-B and are summarized below.

On April 8, 2010 two bottom confirmation samples (BC-c-BS-1 and BC-c-BS-2) were submitted for analysis.

- Initial confirmation sample BC-c-BS-1 exceeded the arsenic SCO.
- Initial confirmation sample BC-c-BS-2 was below SCOs.

On April 28, 2010 two bottom confirmation samples (BC-c-BS-3 and BC-c-BS-4) were submitted for analysis.

• Final confirmation samples BC-c-BS-3 and BC-c-BS-4 were below SCOs.

9.12 Area BD

Area BD is located in the former Press Room in the northern extent of the former Spaulding Fibre building (Figure 3). During the SI and SSI PAHs were detected in excess of the SCGs. The remedial excavation was initiated on March 30, 2010 with the excavation of 236.88 tons of contaminated soil that was transported to TOT Landfill for disposal. Additional soil was excavated, transported and disposed of

at TOT Landfill between March 31 and April 9, 2010. Between April 8 and May 10, 2010 soil was also excavated and transported to Modern for disposal.

Following receipt of soil analytical results (Table 9-12-B), sidewall confirmation sample BD-SS-1 slightly exceeded the benzo(a)anthracene SCO. Due to this minor exceedance (1.1 ppm versus the SCO of 1.0 ppm), on May 10, 2010, NYSDEC required no further excavation along this sidewall. Bottom confirmation sample BD-BS-2 exceeded several PAH SCOs. Based on BD-BS-2 confirmation sample results, on May 10, 2010, NYSDEC requested additional excavation on the floor of the Area BD excavation.

On May 10, 2010 the excavation in Area BD was completed with the excavation of 213.20 tons of soil from the excavation floor. The excavation was advanced to the top of the underlying native red-brown silty clay soil, which was encountered at depths of approximately 3 to 4 feet below the pre-excavation ground surface. Following receipt of soil analytical results (Table 9-12-B), all confirmation soil samples were below PAH SCOs and NYSDEC required no further excavation in Area BD. The total quantity of contaminated soil from Area BD that was transported and disposed of at TOT Landfill was 1,348.58 tons. The total quantity of contaminated soil from Area BD that was transported and disposed of at Modern was 1,334.54 tons. A total of 2,683.12 tons of contaminated soil were removed from Area BD. Soil disposal facilities, removal dates and quantities are listed in Table 9-12-A.

On June 23, 2010 Wendel surveyed the final limits of excavation and confirmation soil sample locations in Area BD (Figure 5). The excavation was re-graded with soil from the clean soil area to the west to meet final site grading requirements and covered with four inches of topsoil.

9.12.1 Area BD Confirmation Soil Sampling

All confirmation samples in Area BD were submitted to Mitkem for analysis of PAHs. The confirmation sample results are listed in Table 9-12-B and are summarized below.

On April 20, 2010 one sidewall confirmation sample (BD-SS-1) and two bottom confirmation samples (BD-BS-1 and BD-BS-2) were collected and submitted for analysis.

- Final confirmation sample BD-SS-1 slightly exceeded the benzo(a)anthracene SCO. Due to the minor exceedance of (1.1 ppm versus the SCO of 1.0 ppm), NYSDEC required no further excavation along this sidewall.
- Initial confirmation sample BD-BS-2 contained levels of benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene and indeno(1,2,3-cd)pyrene that exceeded SCOs.
- Final confirmation sample BD-BS-1 was below SCOs.

After further excavation, on May 10, 2010 two additional confirmation samples (BD-SS-2 and BD-BS-3) were collected from the excavation.

• Final confirmation samples BD-SS-2 and BD-BS-3 were below SCOs.

9.13 Area BE

Area BE is located west of the former turbine room of the former Spaulding Fibre buildings and south of Gibson Street (Figure 3). During the SI and SSI, cadmium, lead and zinc were detected in Area BE in fill

in excess of the SCG. On April 5, 2010 excavation was initiated and completed in Area BE with the excavation, transportation and disposal of 220.49 tons at Modern. Fill encountered during remedial excavation consisted of black foundry sand, wood, bricks, and concrete overlain by red-brown silty clay. The excavation was advanced to the top of the underlying native red-brown silty clay soil, which was encountered at a depth of 5 feet below the pre-excavation ground surface. All confirmation soil samples were below SCOs and NYSDEC required no further excavation in Area BD. Soil disposal facilities, removal dates and quantities are listed in Table 9-13-A.

On June 23, 2010 Wendel surveyed the final limits of excavation and confirmation soil sample locations in Area BE (Figure 5). The excavation required minimal re-grading to meet final site grading requirements and was covered with four inches of topsoil.

9.13.1 Area BE Confirmation Soil Sampling

All confirmation samples in Area BE were submitted to Mitkem for analysis of cadmium, lead and zinc. The confirmation results are listed in Table 9-13-B and are summarized below.

On April 14, 2010, one sidewall confirmation sample (BE-SS-1) and two bottom confirmation samples (BE-BS-1 and BE-BS-2) were collected from the excavation.

• Final confirmation samples BE-BS-1, BE-BS-2 and BE-SS-1 were below SCOs.

9.14 Area BI

Area BI is located west of the former paper machine room in the former Spaulding Fibre building south of Gibson Street (Figure 3). During the SI and SSI cadmium, lead and zinc exceeding SCGs were detected in shallow fill. During remedial excavation fill encountered consisted of black foundry sand, slag, bricks, wood and cinders. On April 1, 2010, the excavation of Area BI was initiated with the excavation, transportation and disposal of 42.11 tons of contaminated soil to Modern and 340.08 tons of contaminated soil to TOT. The excavation was advanced to the top of the underlying native red-brown silty clay soil, which was encountered at a depth of approximately 5 feet below the pre-excavation ground surface. Between April 1 and 12, 2010, 1,847.45 tons of contaminated soil were excavated, transported and disposed of at TOT Landfill and 2,079.09 tons of contaminated soil were removed from Area BI. Soil disposal facilities, removal dates and quantities are listed in Table 9-14-A.

Following receipt of soil analytical results (Table 9-14-B), sidewall confirmation soil sample (BI-SS-2) exceeded the cadmium and zinc SCOs. Consequently, on May 10, 2010, NYSDEC requested additional excavation of the south sidewall. The sidewall sample that failed was in the southwest corner of Area BI abutting Area AJ-b. Additional excavation of the sidewall was conducted on May 27, 2010 (the soil was loaded out with Area AJ-b soil).

Following additional excavation and receipt of confirmation sample results (Table 9-14-B), all confirmation soil samples were below cadmium, lead and zinc SCOs and NYSDEC required no further excavation in Area BI.

On June 23, 2010, Wendel surveyed the final limits of excavation and confirmation soil sample locations in Area BI (Figure 5). The excavation was re-graded with soil from the clean soil area to the north to meet final site grading requirements and covered with four inches of topsoil.

9.14.1 Area BI Confirmation Soil Sampling

All confirmation samples in Area BI were submitted to Mitkem for analysis of cadmium, lead and zinc. Confirmation sample results are listed in Table 9-14-B and are summarized below.

On April 14, 2010 two bottom confirmation samples (BI-BS-1 and BI-BS-2) were collected and submitted for analysis.

• Final confirmation samples BI-BS-1 and BI-BS-2 were below SCOs.

On April 19, 2010, one northern sidewall confirmation sample (BI-SS-1) was collected and submitted for analysis.

• Final confirmation sample BI-SS-1 was below SCOs.

On April 20, 2010 one southern sidewall confirmation sample (BI-SS-2) was collected and submitted for analysis.

• Initial southern sidewall confirmation sample BI-SS-2 exceeded cadmium and zinc SCOs.

Following additional excavation, on May 27, 2010, southern sidewall confirmation sample (BI-SS-3) was collected and submitted for analysis.

• Final confirmation sample BI-SS-3 was below SCOs.

9.15 Area BK

Area BK is located in the northern portion of the former Spaulding Fibre building south of Gibson Street (Figure 3) where PAHs that exceeded SCGs were detected in shallow fill encountered during the SI and SSI. The building is the former lab and was constructed at two levels, with the western floor area approximately 3 feet higher than the eastern floor area. On March 29 and March 30, 2010 the excavation in Area BK was initiated and completed with the excavation, transportation and disposal of 706.13 tons of contaminated soil to TOT Landfill. The excavation was advanced to the top of the underlying native redbrown silty clay soil, which was encountered at depths ranging from 2-3 feet below the pre-excavation ground surface.

Following receipt of soil analytical results (Table 9-15-B), all confirmation soil samples were below SCOs for PAHs and on May 5, 2010, NYSDEC required no further excavation in Area BK. Soil disposal facilities, removal dates and quantities are listed in Table 9-15-A.

On April 21, 2010, Wendel surveyed the final limits of excavation and confirmation soil sample locations in Area BK (Figure 5). On April 27, 2010 and April 28, 2010, the excavation was backfilled with crushed concrete from piles 6, 7 and 8 and graded level with the surrounding area.

9.15.1 Area BK Confirmation Soil Sampling

All confirmation samples in Area BK were submitted to Mitkem for analysis of PAHs and di-nbutylphthalate. On April 14, 2010, one sidewall confirmation sample (BK-SS-1) and two bottom confirmation samples (BK-BS-1 and BK-BS-2) were submitted for analysis. Confirmation sample results are summarized in Table 9-15-B and are summarized below.

• Final confirmation samples BK-SS-1, BK-BS-1 and BK-BS-2 were below SCOs.

9.16 K-Line Sewer Area

The K-Line Sewer Area is located east of the former B-Stage storage room in the northwestern corner of the former Spaulding Fibre building (Figure 3). During NYSDEC IRM work contamination was encountered in the sewer line backfill that exceeded SCGs. On May 6, 2010 the excavation in the K-Line Sewer Area was initiated. The excavation was advanced to remove the sewer line, which was encountered at depths of approximately 7 to 8 feet below the pre-excavation ground surface.

Based on confirmation sample failure, additional sidewall excavation was completed on June 8, 2010 and the soil was loaded out with contaminated soil from the adjacent Area BA. An estimated 15 cubic yards of additional soil was removed from the K-Line sewer, however there was no separate weigh ticket as the soil was combined with, and is included in, the Area BA totals. Following receipt of soil analytical results (Table 9-16-B), all confirmation soil samples were below SCOs for PAHs, PCBs and metals and NYSDEC required no further excavation in the K-Line Sewer Area. Between May 6 and May 13, 2010, a total of 1,100.65 tons of soil were excavated, transported and disposed of at Modern. The additional K-Line soil that was excavated on June 8, 2010 (likely on the order of 25 tons) was also disposed of at Modern and is included in the Area BA totals. Soil disposal facilities, removal dates and quantities are listed in Table 9-16-A.

On June 23, 2010, Wendel surveyed the final limits of excavation and confirmation soil sample locations in the K-Line Sewer Area (Figure 5). On June 28, 2010 the excavation was backfilled with crushed concrete from pile 26 and graded level with the surrounding area.

9.16.1 K-Line Sewer Confirmation Soil Sampling

All confirmation samples in the K-line sewer area were submitted to Spectrum for analysis of PAHs, PCBs and TAL metals. The confirmation sample results are listed in Table 9-16-B and are summarized below.

On May 12, 2010, four sidewall confirmation samples (K-Line Sewer SS-1 through K-Line Sewer SS-4) were submitted for analysis.

• Final confirmation samples K-Line Sewer SS-1 through K-Line Sewer SS-4 were below SCOs.

On May 13, 2010, four sidewall confirmation samples (K-Line Sewer SS-5 through K-Line Sewer SS-8) were submitted for analysis.

- Initial confirmation sample K-Line Sewer SS-5 exceeded the benzo(a)anthracene, benzo(b)fluoranthene and benzo(a)pyrene SCOs.
- Final confirmation samples K-Line Sewer SS-6 through K-Line Sewer SS-8 were below SCOs.

Following additional excavation, on June 9, 2010, sidewall confirmation sample K-Line Sewer SS-9 was submitted for analysis.

• Final confirmation sample K-Line Sewer SS-9 was below SCOs.

10.0 OU6 SOIL REMEDIATION WORK AREA 2

10.1 Area C Excavation Description

Area C is located in the southwestern area of OU6 (Figure 3) where the SI and SSI detected PAHs and TAL metals above SCGs in shallow fill that contained button ash. Remedial excavation work at Area C was initiated on February 16 and 17, 2010 with the excavation and disposal of 779.99 tons of PAH and metals contaminated soil at TOT Landfill (Table 10-1-A).

As the excavation progressed on February 17, 2010, suspect roofing material was identified in the button ash fill. The roofing material was sampled and testing indicated that the roofing contained asbestos. An asbestos work area was established and the excavation continued in accordance with applicable Federal and State asbestos regulations until the limits of button ash fill were reached based on visual observations. Because the quantity of roofing was too great to cost-effectively segregate the asbestos material by hand picking, the soil/ACM mix was disposed of as asbestos contaminated soil. On February 26, 2010, 347.1 tons of asbestos-contaminated soil was transported to Modern for disposal. After the ACM was removed, the excavation was advanced to the top of the underlying native clayey-silt soil encountered at depths ranging from approximately 1 to 2 feet below the pre-excavation ground surface. An additional 150.32 tons of button ash containing fill was transported for disposal on March 23 and March 24, 2010, at the TOT Landfill. Confirmation soil samples were collected and submitted to Mitkem for analysis of PAHs and TAL metals. Following receipt of confirmatory sample results (Table 10-1-B), cadmium was greater than SCOs in sidewall sample C-SS-1 and on April 12, 2010, NYSDEC requested additional excavation.

On April 15, 2010 an additional 56.98 tons of soil were excavated from the SS-1 sidewall and on April 19, 2010 confirmation soil sample C-SS-6 was collected and submitted to Mitkem for analysis of TAL metals (Table 10-1-B). Following receipt of soil analytical results, metals were below SCOs and on May 13, 2010 NYSDEC required no additional excavation in Area C. Total soil removed from Area C was 1,334.39 tons. Soil disposal facilities, removal dates and quantities are listed in Table 10-1-A.

On May 6, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). Because the excavation was shallow at the margin, no backfill was placed in Area C. The area was topsoiled and seeded in May 2010.

10.1.1 Area C Confirmation Soil Sampling

On March 25, 2010 five excavation sidewall confirmation soil samples (C-SS-1, C-SS-2, C-SS-3, C-SS-4, C-SS-5) and three excavation bottom confirmation soil samples (C-BS-1, C-BS-2 and C-BS-3) were collected from the excavation in Area C. The soil samples were submitted to Mitkem for analysis of PAHs and TAL metals. The confirmation sample results are listed in Table 10-1-B and are summarized below.

- Initial eastern sidewall confirmatory sample C-SS-1 exceeded the cadmium SCO.
- Final confirmation samples C-SS-2, C-SS-3, C-SS-4, C-SS-5, C-BS-1, C-BS-2 and C-BS-3 were below SCOs.

On April 19, 2010 eastern sidewall confirmation soil sample C-SS-6 was collected and submitted for analysis.

• Final confirmation sample C-SS-6 was below SCOs.

10.2 Area D Excavation Description

Area D is located in the southwestern area of OU6 (Figure 3) where metals and PAHs in shallow fill were detected in excess of SCGs. On February 16 and March 2, 2010, remedial excavation work was initiated at Area D with the excavation and disposal of 497.21 tons of contaminated soil (Table 10-2-A). The soil quantity includes soil from Ditch A, which was loaded out together with the Area D soil. Soil was transported to TOT Landfill for disposal. The excavation was advanced to the top of the underlying native clayey-silt soil, which was encountered at depths ranging from approximately 1 to 2 feet below the pre-excavation ground surface. A discussion concerning the Ditch A remediation is provided in Section 10.2.2. Total soil disposal from Area D and Ditch A was 1,905.55 tons. Soil disposal facilities, removal dates and quantities are listed in Table 10-2-A.

Confirmation sample results from sidewall soil sample D-SS-1 marginally exceeded SCOs for two PAH compounds and NYSDEC did not require additional sidewall excavation.

On March 22, 2010, Wendel surveyed the final limits and confirmation soil sample locations in Area D (Figure 5). On March 24, 2010 the excavation was backfilled with crushed concrete from Pile 2 and graded level with the surrounding area.

10.2.1 Area D Confirmation Soil Sampling

On February 24, 2010, five confirmation soil samples (D-BS-1, D-BS-2, D-SS-1, D-SS-2 and D-SS-3) were collected from the excavation in Area D. Of those, three samples were collected from the excavation side walls and two samples were collected from the excavation bottom. The samples were submitted to Mitkem for analysis of PAHs, di-n-butylphthalate and TAL metals. The confirmation sample results are listed in Table 10-2-B and are summarized below.

- Final confirmation samples D-BS-1, D-BS-2, D-SS-2 and D-SS-3 were below SCOs.
- Final sidewall confirmation sample D-SS-1 marginally exceeded SCOs for benzo(b)fluoranthene and indeno(1,2,3-cd)pyrene.

Based on the marginal exceedances, NYSDEC did not require additional sidewall excavation.

10.2.2 Ditch A/Grinding Waste Excavation Description

Ditch A excavation work was initiated on February 16, 2010 with the removal of approximately one foot of soil from the ditch bottom and sides. The excavation was started at the north end of the ditch and extended south then east (following the bend in the ditch) to the margin of an adjacent NYSDEC SSF remediation area. Soil from the ditch was loaded together with soil from Area D on February 16th. Two Ditch A bottom samples (D-BS-3 and D-BS-4) were collected on February 24, 2010 and both samples were found to contain PCBs at levels that exceeded the SCO. On March 23 and 24, 2010, an additional 89.74 tons of contaminated soil were removed from Ditch A.

After the March 23, 2010 excavation work, material that appeared to be Spaulding fibre grinding waste was observed along the northern bank of the ditch. The grinding waste material was excavated on April 15, April 16, May 3, and May 26, 2010 until no visual evidence of grinding waste was observed. The ditch portion of Ditch A was excavated to approximately 18 inches below its original grade and the grinding waste area was excavated to depths up to three feet. Total soil removed from Ditch A and the grinding waste area was 1,482.00 tons. Soil disposal facilities, removal dates and quantities are listed in Table 10-2-A.

On June 23, 2010, Wendel surveyed the final limits and confirmation soil sample locations in Ditch A and the grinding waste area (Figure 5). The grinding waste area margins were re-graded in October 2010 to promote drainage to the ditch and to match the surrounding area prior to topsoil and seeding.

10.2.3 Ditch A Confirmation Soil Sampling

On February 24, 2010 two confirmation soil samples (D-BS-3 and D-BS-4) were collected from Ditch A. The samples were submitted to Mitkem for analysis of PCBs, PAHs, di-n-butylphthalate and TAL metals. The confirmation sample results are listed in Table 10-2-C and are summarized below.

• Initial confirmation samples D-BS-3 and D-BS4 exceeded the total PCB SCO.

On March 9, 2010 NYSDEC requested additional excavation in Ditch A due to initial confirmation samples results in floor samples (D-BS-3 and D-BS-4) exceeding the SCO for PCBs. The Ditch A bottom was overexcavated and was resampled (Ditch A BS-3 and Ditch A BS-4) on May 27, 2010. The resampled ditch bottom confirmation sample results are summarized below.

• Final confirmation samples Ditch A BS-3 and Ditch A BS-4 were below SCOs.

10.2.4 Grinding Waste Confirmation Soil Sampling

Following excavation of the grinding waste area adjacent to Ditch A, confirmation samples (Ditch-A-SS-1, Ditch-A-SS-2, Ditch-A-BS-1 and Ditch-A-BS-2) were collected on May 5, 2010 and submitted to Mitkem for analysis of di-n-butylphthalate and PCBs. Because the samples also required analysis for PAHs and metals, LiRo collected additional samples (Ditch-A-SS-1A, Ditch-A-SS-2A, Ditch-A-BS-1A and Ditch-A-BS-2A) on May 28, 2010 at the original sample locations. The confirmation sample results are listed in Table 10-2-C and are summarized below.

• Final confirmation samples were below SCOs.

10.3 Area E Excavation Description

Area E is located east of Area D and north of the driveway in the southwestern area of OU6 (Figure 3) where PAHs and metals in shallow fill were detected in excess of SCGs during the SI and SSI. On February 17, 2010, remedial excavation work was initiated at Area E with the excavation and disposal of 476.6 tons of contaminated soil (Table 10-3-A). Soil was transported to TOT Landfill for disposal. The excavation was advanced to the top of the underlying native clayey-silt soil, which was generally encountered at shallow depths ranging from less than 1 to approximately 2 feet below the pre-excavation ground surface. Fill was deeper (up to approximately 4 feet) in the northwestern portion of the excavation area.

Following receipt of confirmation sample results (Table 10-3-B), bottom sample E-BS-1 exceeded the SCO for Cadmium. On March 9, 2010, NYSDEC requested additional excavation in the bottom of Area E.

An additional 102.16 tons of soil was excavated on March 23, 2010 and bottom sample E-BS-4 was collected on March 24, 2010. Based on the E-BS-4 results, all confirmation soil samples were below laboratory detection limits and/or were below SCOs and NYSDEC did not require additional excavation.

Total soil removed from Area E is 578.76 tons. Soil disposal facilities, removal dates and quantities are listed in Table 10-3-B.

On April 12, 2010 Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). On April 13, 2010 the excavation was backfilled with approximately 200 tons of crushed concrete from Pile 4 and graded level with the surrounding area.

10.3.1 Area E Confirmation Soil Sampling

On February 24, 2010 two sidewall confirmation samples (E-SS-1 and E-SS-2) and four bottom confirmation samples (E-BS-1, E-BS-2, E-BS-3 and E-BS-4) were collected from the excavation in Area E. The samples were submitted to Mitkem for analysis of PAHs, TAL metals and cyanide. The confirmation sample results are listed in Table 10-3-B and are summarized below.

- Final confirmation samples E-SS-1, E-SS-2, E-BS-2, E-BS-3 and E-BS-4 were below SCOs.
- Initial confirmation sample E-BS-1 exceeded the cadmium SCO.

Following additional excavation, final confirmation sample E-BS-4 was collected on March 24, 2010, and submitted to Mitkem for analysis of PAHs and TAL metals. The confirmation sample results are listed in Table 10-3-B and are summarized below.

• Final confirmation sample E-BS-4 was below SCOs.

10.4 Area F

Area F is located west of Area E, north of Area D and east of the driveway in the southwestern area of OU6 (Figure 3). In Area F during the SI and SSI, PAHs and metals in shallow fill were detected in excess of SCGs. On February 18, 2010, remedial excavation work was initiated at Area F with the excavation, transportation and disposal of 157.14 tons of contaminated soil at TOT Landfill (Table 10-4-A). The excavation was advanced to the top of the underlying native clayey-silt soil, which was encountered at depths ranging up to approximately 2 feet below the pre-excavation ground surface.

Following receipt of confirmation sample results (Table 10-4-B), exceedances of SCOs were observed in the western and eastern sidewalls. Button ash was visible in the western wall of the excavation, which was immediately adjacent to the Site driveway.

On March 2, 2010 an additional 285.40 tons were removed from the eastern portion of Area F (Table 10-4-A). Because excavation of the north sidewall would undermine the main Site driveway, excavation of that area was deferred. NYSDEC recommended removing the button ash under the driveway in the vicinity of confirmatory sample F-SS-2 at a later date when the driveway wasn't being used on a daily basis.

On March 24, 2010, an additional confirmation sample (F-SS-4) was collected from the east sidewall. Based on exceedances of SCOs in F-SS-4, on April 7, 2010, NYSDEC requested additional excavation from the eastern sidewall of the Area F excavation.

From July 16, 2010 through August 5, 2010, additional excavation, transportation and disposal was completed in Area F under the driveway. Total soil removed from Area F and transported to TOT Landfill for disposal was 680.58 tons. Total soil removed from Area F and transported to Modern for disposal was 74.78 tons. A total of 755.36 tons of contaminated soil were removed from Area F. Soil disposal facilities, removal dates and quantities are listed in Table 10-4-A.

On March 22, 2010 and April 12, 2010, Wendel surveyed the final limits and confirmation soil sample locations completed to date which did not include extra excavation under the Site driveway (Figure 5). On April 13, 2010, the excavation was partially backfilled with crushed concrete from Pile 2 to prevent a driving hazard and to prevent water collection. On August 16, 2010, Wendel completed the survey of the final excavation limits and confirmation soil sample locations. The backfilling of the driveway portion of the excavation with crushed concrete was also completed in August 2010.

10.4.1 Area F Confirmation Soil Sampling

On March 8, 2010, three sidewall confirmation samples (F-SS-1, F-SS-2 and F-SS-3) and one bottom confirmation sample (F-BS-1) were collected from the excavation in Area F. At NYSDEC's direction, a fourth sidewall sample (F-SS-4) was collected on March 24, 2010 from the east sidewall of the excavation. The samples were submitted to Spectrum for analysis of PAHs and TAL metals. The confirmation sample results are listed in Table 10-4-B and are summarized below.

- Final confirmation samples F-BS-1, F-SS-1 and F-SS-3 were below SCOs.
- Initial confirmation samples from F-SS-2 and F-SS-4 exceeded SCOs for several PAHs and metals.

After further excavation of the eastern sidewall (due to the F-SS-4 exceedance), on April 12, 2010, one additional sidewall sample (F-SS-5) was collected and submitted for analysis.

• Final confirmation sample F-SS-5 was below SCOs.

After further excavation to address contamination beneath the driveway (based on the F-SS-2 exceedance), on July 26, 2010, one additional sidewall sample (F-SS-6) was collected and submitted to Mitkem for analysis.

• Final confirmation sample F-SS-6 was below SCOs.

Following additional excavation, on August 9, 2010 confirmation sample F-SS-7 was collected and submitted to Spectrum for analysis.

• Final confirmation sample F-SS-7 was below SCOs.

10.5 Area G and Ditch B

Area G and Ditch B are located in the southeastern corner of OU6, northwest of the intersection of Wheeler Street and Hackett Drive (Figure 3). During the SI and SSI, arsenic and cadmium in shallow fill were detected in excess of SCGs. On March 2, 2010, remedial excavation work was initiated at Area G

and Ditch B with the excavation, transportation and disposal of 652.16 tons of contaminated soil at TOT Landfill (Table 10-5-A). The Area G excavation was advanced to the top of the underlying native clayey-silt soil, which was encountered at approximately 2 to 3 feet below the pre-excavation ground surface.

Several of the initial confirmation samples exceeded arsenic and/or cadmium SCOs (Table 10-5-B). Consequently, on March 22, 2010 an additional 131.96 tons of soil were excavated from Area G.

Second round confirmation sample results (Table 10-5-B) indicated that soil samples were below SCOs. Total soil removed from Area G and Ditch B was 784.12 tons. Soil disposal facilities, removal dates and quantities are listed in Table 10-5-A.

On April 12, 2010, Wendel surveyed the Area G and Ditch B final limits and confirmation soil sample locations (Figure 5). Area G was backfilled with crushed concrete from Pile 3 on April 21, 2010.

10.5.1 Area G Confirmation Soil Sampling

All confirmation samples from the Area G excavation were submitted to Mitkem for analysis of arsenic and cadmium. The confirmation sample results are listed in Table 10-5-B and are summarized below.

On March 9, 2010 four sidewall confirmation samples (G-SS-1, G-SS-2, G-SS-3 and G-SS-4) and two bottom confirmation samples (G-BS-1and G-BS-2) were collected and submitted for analysis.

- Final bottom confirmation sample G-BS-1 was below SCOs.
- Initial bottom confirmation G-BS-2 exceeded the arsenic and cadmium SCOs.
- Initial sidewall samples G-SS-1 through G-SS-4 exceeded the arsenic SCO.

After additional excavation, eight sidewall confirmation samples (G-SS-5 through G-SS-12) and one bottom confirmation sample (G-BS-3) were collected on March 24, 2010, and submitted for analysis.

• Final confirmation samples G-SS-5 through G-SS-12 and G-BS-3 were below SCOs.

10.5.2 Area G – Ditch B Confirmation Soil Sampling

All confirmation samples from the Area G –Ditch B excavation were submitted to Mitkem for analysis of di-n-butylphthalate, PCBs, arsenic and cadmium. The confirmation sample results are listed in Table 10-5-B and are summarized below.

On April 27, 2010 two bottom confirmation samples (Ditch-B-BS 1 and Ditch-B-BS 2) were collected and submitted for di-n-butylphthalate and PCB analysis. The locations were resampled on July 27, 2010, and submitted for arsenic and cadmium analysis.

• Final bottom confirmation samples Ditch-B-BS-1 and Ditch-B-BS-2 were below SCOs.

10.6 Area H

Area H is located near the southeast corner of the former Spaulding building complex where an oil transfer pipe was formerly located (Figure 3). Area H soil was found to be contaminated with PAHs, din-butylphthalate, PCBs and metals to a depth of approximately 3 feet during the SI and SSI. On March 2, 2010, remedial excavation work was initiated and completed in Area H with the excavation and disposal of 25.04 tons of contaminated soil at TOT Landfill (Table 10-6-A). The excavation was advanced to a

depth of 3 feet and completed in the underlying native clayey-silt soil. The initial excavation area was approximately 60 square feet in size.

On March 16, 2010 confirmation samples were collected and submitted to Mitkem for analysis of PAHs, TAL metals, PCBs and di-n-butylphthalate. Confirmatory sample results for western sidewall H-SS-3 and bottom sample H-BS-1 exceeded the SCOs for PAHs. Therefore, an estimated 5 tons (soil was added to an area AK-c truck) of soil were removed from the western sidewall and the floor on April 13, 2010.

Additional bottom and sidewall confirmation samples were collected on April 13, 2010. There were no exceedances of SCOs.

Total soil removed from Area H was approximately 30 tons. Soil disposal facilities, removal dates and quantities are listed in Table 10-6-A.

On April 21, 2010 Wendel surveyed the final limits and confirmation soil sample locations (Figure 5) and on April 29, 2010 the excavation was backfilled with crushed concrete from Pile 5 and graded level with the surrounding area.

10.6.1 Area H Confirmation Soil Sampling

On March 16, 2010 three sidewall confirmation samples (H-SS-1, H-SS-2, and H-SS-3) and one bottom confirmation sample (H-BS-1) were collected from the excavation in Area H. The samples were submitted to Mitkem for analysis of PAHs, di-n-butylphthalate, PCBs and TAL metals. The confirmation sample results are listed in Table 10-6-B and are summarized below.

- Final sidewall confirmation samples H-SS-1 and H-SS-2 were below SCOs.
- Initial sidewall confirmation sample H-SS-3 and initial bottom confirmation sample H-BS-1 contained several PAHs that exceeded SCOs.

Following additional excavation, on April 13, 2010 an additional sidewall confirmation sample (H-SS-4) and an additional bottom confirmation sample (H-BS-2) were collected from the excavation in Area H. The confirmation sample results are listed in Table 10-6-B and are summarized below.

• Final sidewall confirmation sample H-SS-4 and final bottom confirmation sample H-BS-4 were below SCOs.

10.7 Area K

Area K is located southwest of the former main office on the west side of Wheeler Street (Figure 3) where PAHs and metals in shallow fill were detected in excess of SCGs during the SI and SSI.

On March 2, 2010, remedial excavation work was initiated at Area K with the excavation and disposal of 118.00 tons of contaminated soil at TOT Landfill (Table 10-7-A). The excavation was advanced to the top of the underlying native clayey-silt soil, which was encountered at depths ranging from approximately 2 to 3 feet below the pre-excavation ground surface.

Confirmation samples were collected on March 11, 2010 and results showed that confirmation sidewall sample K-SS-3 exceeded SCOs for PAHs. Therefore, additional excavation was required on the southeastern sidewall of the Area K excavation.

On April 7, 2010, additional excavation was completed and 48.76 tons of contaminated soil were transported by Pariso for disposal at TOT Landfill and 35.99 tons of contaminated soil were transported to Modern for disposal. An additional sidewall sample (K-SS-5) was collected on April 8, 2010.

On April 28, 2010, following receipt of confirmation sample results (Table 10-7-B), confirmation sample K-SS-5 from the eastern sidewall exceeded SCGs. This sidewall, however, had reached the rail spur that was to be removed as part of Work Area 4. NYSDEC recommended that the remaining contamination be addressed when the rail spur was removed (rail spur removal is discussed in Section 12.0 of this report). Total soil removed from Area K was 202.75 tons. Soil disposal facilities, removal dates and quantities are listed in Table 10-7-A.

On May 6, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). On May 7, 2010, the excavation was partially backfilled with crushed concrete from Pile 12 and in October 2010, the area was re-graded to meet the final grading plan.

10.7.1 Area K Confirmation Soil Sampling

On March 11, 2010 four sidewall confirmation samples (K-SS-1, K-SS-2, K-SS-3 and K-SS-4) and one bottom confirmation sample (K-BS-1) were collected from the excavation in Area K. The samples were submitted to Mitkem for analysis of PAHs. The confirmation sample results are listed in Table 10-7-B and are summarized below.

- Final confirmation samples K-BS-1, K-SS-1, K-SS-2 and K-SS-4 were below SCOs.
- Initial sidewall confirmation sample K-SS-3 exceeded several PAH SCOs.

Following additional excavation, an additional sidewall confirmation sample (K-SS-5) was collected on April 8, 2010, and submitted for analysis.

• Initial sidewall confirmation sample K-SS-5 exceeded several PAH SCOs. This sidewall, however, was later removed when the adjacent rail spur was excavated

10.8 Area M

Area M is located in the northeast corner of OU6 (Figure 3) where PAHs and metals were detected in excess of SCGs in fill overlying native brown silty clay.

On February 19, 2010, remedial excavation work was initiated at Area M with the excavation and disposal of 152.46 tons of contaminated soil at TOT Landfill (Table 10-8-A). The excavation was advanced to the top of the underlying native clayey-silt soil, which was encountered at depths ranging from approximately 2 to 3 feet below the pre-excavation ground surface. The excavation work was continued in Area M with the excavation, transportation and disposal of an additional 47.98 tons of contaminated soil on March 2, 2010.

Following receipt of confirmation sample results (Table 10-8-B), confirmation sidewall samples M-SS-1, M-SS-2 and M-SS-4 exceeded SCOs for PAHs and/or metals and on March 16, NYSDEC required additional excavation.

On March 23, 2010 an additional 23.64 tons of contaminated soil and on March 24, 2010 an additional 46.04 tons of contaminated soil were excavated and transported to TOT Landfill for disposal. An

additional bottom sample from the western portion of the excavation and additional confirmation sidewall samples were collected. Following receipt of confirmation sample results (Table 10-8-B), all confirmation samples from Area M were below PAH and metals SCOs and on April 12, 2010, NYSDEC required no further excavation. Total soil removed from Area M was 270.12 tons. Soil disposal facilities, removal dates and quantities are listed in Table 10-8-A.

On April 21, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). On April 22, 2010, the excavation was backfilled with crushed concrete from Pile 1 and graded level with the surrounding area.

10.8.1 Area M Confirmation Soil Sampling

On March 8, 2010 four sidewall confirmation samples (M-SS-1, M-SS-2, M-SS-3, and M-SS-4) and one bottom confirmation sample (M-BS-1) were collected from the excavation in Area M. Sidewall samples were submitted to Mitkem for analysis of PAHs, barium, cadmium, copper and lead, while the bottom sample was additionally analyzed for arsenic. The confirmation sample results are listed in Table 10-8-B and are summarized below.

- Final confirmation samples M-SS-3 and M-BS-1 were below SCOs.
- Initial sidewall confirmation samples M-SS-1, M-SS-2 and M-SS-4 exceeded PAH, lead, cadmium and/or copper SCOs.

On March 16, 2010, NYSDEC requested additional excavation of the sidewalls and additional confirmation sampling of the western excavation bottom. Following additional excavation, on March 24, 2010 three sidewall confirmation sample (M-SS-5, M-SS-6 and M-SS-7) and one bottom confirmation sample (M-BS-2) were collected from the excavation in Area M. The confirmation samples were submitted to Mitkem for analysis.

• Final confirmation samples M-SS-5, M-SS-6, M-SS-7 and M-BS-2 were below SCOs.

10.9 Area N

Area N is located in the northeastern corner of OU6, west of Area M (Figure 3) where the SI and SSI results showed barium and copper in shallow fill above SCGs. Remedial excavation work at Area N was initiated on February 19, 2010 with the excavation and transportation of 98.40 tons of barium and copper contaminated soil to TOT Landfill for disposal (Table 10-9-A). The excavation was advanced to the top of the underlying native clayey-silt soil, which was encountered at depths ranging from approximately 1 to 1.5 feet below the pre-excavation ground surface.

Following receipt of confirmatory sample results (Table 10-9-B), barium and copper were below SCOs and on March 25, 2010, NYSDEC required no further excavation in Area N. Total soil removed from Area N was 98.40 tons. Soil disposal facilities, removal dates and quantities are listed in Table 10-9-A.

On April 12, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). Because the excavation was shallow no backfill was required. On April 22, 2010 the excavation was dressed with topsoil and graded level with the surrounding area.

10.9.1 Area N Confirmation Soil Sampling

On March 8, 2010 two sidewall confirmation samples (N-SS-1 and N-SS-2) and one bottom confirmation sample (N-BS-1) were collected from the excavation in Area N. Confirmation samples were submitted to Mitkem for analysis of barium and copper. The confirmation sample results are listed in Table 10-9-B and are summarized below.

• Final confirmation samples N-SS-1, N-SS-2, and N-BS-1 were below SCOs.

NYSDEC requested collection and analysis of two additional confirmation sidewall samples. On March 16, 2010 confirmation samples N-SS-3 and N-SS-4 were collected and submitted for analysis.

• Final confirmation samples N-SS-3 and N-SS-4 were below SCOs.

10.10 Area AA

Area AA is located in the eastern half of OU6, west of the Coal Conveyor (Figure 3), where the SI and SSI detected PAHs, arsenic, copper and mercury in exceedance of SCGs. Remedial excavation was initiated in Area AA on February 19, 2010 with the excavation of 343.72 tons of contaminated soil. The excavation was advanced to the top of the underlying native clayey-silt soil, which was encountered at depths ranging from approximately 3 to 4 feet below the pre-excavation ground surface. The excavation was advanced further (due to surrounding work) on March 5, 2010, and March 9, 2010. Total soil excavation, transportation and disposal from Area AA was 1,360.22 tons. All soil from Area AA was transported to TOT Landfill for disposal. Soil disposal facilities, removal dates and quantities are listed in Table 10-10-A.

On March 25, 2010 following receipt of confirmation sample results (Table 10-10-B), all confirmation samples from the Area AA excavation were below PAHs, arsenic, copper and mercury SCOs and NYSDEC required no further excavation in Area AA.

On April 12, 2010 Wendel surveyed the final limits and confirmation soil sample locations (Figure 5) and on May 13, 2010 the excavation was partially backfilled with crushed concrete from Pile 33 and was later re-graded to meet the final site grading plan.

10.10.1 Area AA Confirmation Soil Sampling

On March 11, 2010 three sidewall confirmation samples (AA-S-1 through AA-S-3) and one bottom confirmation samples (AA-B-1) were collected and submitted to Mitkem for analysis of PAHs, arsenic, copper and mercury. The confirmation sample results are listed in Table 10-10-B and are summarized below.

• Final confirmation samples AA-S-1 through AA-S-3 and AA-B-1 were below SCOs.

10.11 Area AB

Area AB is located in the eastern half of OU6, west of Area AA (Figure 3), where the SI and SSI detected PAHs and metals in exceedance of SCGs. On February 18 and 19, 2010, remedial excavation at Area AB was initiated with the excavation and disposal of 491.34 and 347.16 tons of contaminated soils, respectively (Table 10-11-A). Soil was transported to TOT Landfill for disposal. Following receipt of confirmation sample results (Table 10-11-B) confirmation sidewall sample AB-S2 exceeded PAH and

arsenic SCOs. Consequently, the sidewall was extended on April 7, 2010, with the removal of an additional 315.62 tons of contaminated soil. Based on the sidewall re-sampling which showed compliance with SCOs, NYSDEC required no additional excavation. Total soil removed from Area AB was 1,154.12 tons. Soil disposal facilities, removal dates and quantities are listed in Table 10-11-A.

On April 21, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). On May 13, 2010, the excavation was partially backfilled with crushed concrete from Pile 1 and in October 2010, the area was re-graded to meet the final site grading plan.

10.11.1 Area AB Confirmation Soil Sampling

On March 11, 2010, one bottom confirmation sample (AB-B-1) was collected and submitted to Mitkem for analysis of PAHs and TAL metals. On March 12, 2010 two sidewall confirmation sample (AB-S-1 and AB-S-2) were collected and submitted to Mitkem and analyzed for PAHs and TAL metals. The confirmation sample results are listed in Table 10-11-B and are summarized below.

- Confirmation sample AB-S-2 exceeded SCOs for arsenic and several PAHs.
- Final confirmation samples AB-B-1 and AB-S-1 were below SCOs.

On March 25, 2010, NYSDEC requested additional excavation of Area AB. Following additional excavation, an additional sidewall confirmation sample (AB-SS-3) was collected on April 8, 2010 and submitted for analysis.

• Final confirmation sample AB-SS-3 was below SCOs.

10.12 Area AI

Area AI is located in the western half of OU6, west of Area AK-a (Figure 3), where the SI and SSI detected arsenic, copper, mercury, lead and zinc in exceedance of SCGs. On February 17 and 18, 2010, remedial excavation at Area AI was initiated with the excavation, transportation and disposal of 402.52 and 611.70 tons of contaminated soil, respectively (Table 10-12-A). Confirmation sample results (Table 10-12-B) from sidewall samples AI-SS-1 and AI-SS-2 exceeded SCOs. Consequently, on March 22, 2010, and March 23, 2010, excavation sidewalls were extended and an additional 118.6 and 42.76 tons of contaminated soil, respectively, were transported to TOT Landfill for disposal. Based on the sidewall resampling which showed compliance with SCOs, NYSDEC required no additional excavation. All soil from excavation AI was transported to TOT Landfill for disposal. Total soil removed from Area AI was 1,175.58 tons. Soil disposal facilities, removal dates and quantities are listed in Table 10-12-A.

On April 12, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). On April 13, 2010, the excavation was backfilled with crushed concrete from Pile 4 and graded level with the surrounding area.

10.12.1 Area AI Confirmation Soil Sampling

On February 24, 2010 four sidewall confirmation samples (AI-SS-1, AI-SS-2, AI-SS-3 and AI-SS-4) and two bottom confirmation samples (AI-BS-1 and AI-BS-2) were collected from the excavation. Confirmation samples were submitted to Mitkem for analysis of arsenic, copper, lead, mercury and zinc. The confirmation sample results are listed in Table 10-12-B and are summarized below.

- Initial confirmation samples AI-SS-1 and AI-SS-3 exceeded arsenic, copper and/or zinc SCOs.
- Final confirmation samples AI-BS-1, AI-BS-2, AI-SS-2 and AI-SS-4 were below SCOs

On March 9, 2010, NYSDEC requested additional excavation. Following additional excavation to the east and north, on March 24, 2010 an additional sidewall confirmation sample (AI-SS-5) was collected from the north sidewall and submitted for analysis. The east sidewall was advanced to the adjoining concrete foundation wall, therefore, no additional east sidewall sample was acquired.

• Final confirmation sample AI-SS-5 was below SCOs.

11.0 OU6 SOIL REMEDIATION WORK AREA 3

Work Area 3 did not include any known contaminated areas, however, recognizing that foundation removal work could potentially reveal unknown contaminated areas, provisions were provided to excavate and dispose of contaminated soil in accordance with the procedures and requirements of the expected remedial work. Several such areas were discovered and are described in this Section of the report.

11.1 Gibson Street Sewer Area

Apparent contamination (discolored soil with hardened resin) was observed during excavation for replacement of a storm sewer line located south of Gibson Street/Dodge Avenue intersection and north of Area BA in the northwest corner of OU6 (Figure 5). An initial characterization sample showed that the soil around the sewer pipe was contaminated with VOCs and phenol at levels exceeding SCOs.

On August 11 through September 2, 2010 remedial excavation was completed in the Gibson Street Sewer Area with the excavation, transportation and disposal of 588.60 tons of contaminated soil at Modern (Table 11-1-A). The excavation was advanced until no visual evidence of contamination was observed laterally and until the top of the underlying native clayey-silt soil was encountered (approximately 4 feet below the pre-excavation ground surface).

Following receipt of final confirmation sample results showing compliance with SCOs, NYSDEC required no further excavation in the Sewer Area. Total soil removed from the Sewer Area was 588.60 tons. Soil disposal facilities, removal dates and quantities are listed in Table 11-1-A.

On September 16, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). The excavation was backfilled with #1 crushed stone (for bedding) and the storm sewer connection to Gibson Street was installed by MCI.

11.1.1 Gibson Street Sewer Area Confirmation Soil Sampling

On August 11, 2010, an initial characterization sample (Sewer Pipe-SS-1) was collected from the visibly impacted soil in the excavation and submitted to Mitkem/Spectrum for analysis of TCL VOCs, SVOCs and TAL metals. Since only SCO exceedances for toluene and phenol were observed in the initial sample, metals were removed from the subsequent confirmation sampling schedule. The confirmation sample results are listed in Table 11-1-B and are summarized below.

On August 17, 2010, three sidewall confirmation samples (Sewer Pipe-SS-3, Sewer Pipe-SS-4 and Sewer Pipe-SS-5) and one bottom confirmatory sample (Sewer Pipe-BS-1) were collected and submitted for VOC and SVOC analysis only.

- Initial confirmation sample Sewer Pipe-SS-5 exceeded the phenol SCOs.
- Final confirmation samples Sewer Pipe-SS-3, Sewer Pipe-SS-4 and Sewer Pipe-BS-1 were below SCOs

On September 1, 2010, one sidewall confirmation sample (Sewer Pipe-SS-6) was collected and submitted for VOC and SVOC analysis only. Additional visual evidence of contamination was subsequently observed and additional excavation was conducted until the visual impacts were removed.

• Initial confirmation sample Sewer Pipe-SS-6 exceeded the phenol SCO.

On September 7, 2010, one sidewall confirmation sample (Sewer Pipe-SS-7) was collected from the excavation and submitted for SVOC analysis only.

• Final confirmation sample Sewer Pipe-SS-7 was below SCOs.

11.2 Spauldite Tube Area

The Spauldite Tube Area is in the northwestern portion of OU6 (Figure 3) where foundry sand was observed upon removal of the concrete floor slab. Characterization samples collected on June 4, 2010 indicated that the sand contained levels of PAHs and copper that exceeded SCOs. Remedial excavation work at the Spauldite Tube Area was initiated on June 24, 2010 and June 29, 2010 with the excavation, transportation and disposal of 300.34 and 672.92 tons of contaminated soil, respectively. The excavation was advanced to the top of the underlying native clayey-silt soil, which was encountered at depths of approximately 3 feet below the pre-excavation ground surface. All contaminated soil from the Spauldite Tube Area was disposed of at Modern.

Confirmation sample results (Table 11-2-B) from sidewall samples Spauldite-SS-2 and Spauldite-SS-3 exceeded SCOs. Additional excavations of the west and north walls were completed on August 9, 2010 and the soil was stockpiled. Follow-up confirmation sample Spauldite-SS-5 (west wall), collected on August 10, 2010, also exceeded SCOs, but additional confirmation sample Spauldite-SS-6 (north wall) was below SCOs. Based on the marginal exceedances in sample Spauldite-SS-5, NYSDEC required no additional excavation in the Spauldite Tube Area. The stockpiled soil was transported/disposed of on August 11, 2010, with the removal of 102.49 tons of contaminated soil to Modern for disposal. Total soil removed from the Spauldite Tube Area was 1,075.75 tons. Soil disposal facility, removal dates and quantities are listed in Table 11-2-A.

On August 16, 2010 and September 20, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). The excavation was partially backfilled with crushed concrete and later regraded to meet final site grading requirements.

11.2.1 Spauldite Tube Area Confirmation Soil Sampling

On June 30, 2010, two bottom confirmation samples (Spauldite-BS-1 and Spauldite-BS-2) were collected from the Spauldite Tube Area. On July 13, 2010, a confirmation sample (Spauldite-SS-1) was collected from the eastern sidewall. The other sidewalls were not sampled at that time because foundation removal work was ongoing in the same area. The samples were submitted to Spectrum for PAH and copper analysis. The confirmation sample results are listed in Table 11-2-B and are summarized below.

• Final confirmation samples Spauldite-BS-1, Spauldite-BS-2 and Spauldite-SS-1 were below SCOs.

After foundation work in the area was completed, sidewall samples (Spauldite-SS-2 and Spauldite-SS-3) were collected from the north and west sidewalls on July 30, 2010.

- Initial confirmation sample Spauldite-SS-2 exceeded the copper SCO.
- Initial confirmation sample Spauldite-SS-3 contained levels of benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene and indeno(1,2,3-cd)pyrene that exceeded SCOs.

After foundation work was completed in the area, confirmation sample (Spauldite-SS-4) was collected from the south sidewall of the excavation on August 3, 2010.

• Final confirmation sample Spauldite-SS-4 was below SCOs.

After additional excavation of the western and northern sidewalls, two confirmation samples (Spauldite-SS-5 and Spauldite-SS-6) were collected on August 10, 2010.

- Final confirmation sample Spauldite-SS-6 (northern sidewall) was below SCOs.
- Final confirmation Spauldite-SS-5 (western sidewall) contained levels of benzo(a)anthracene, benzo(b)fluoranthene and benzo(a)pyrene that marginally exceeded SCOs.

Based on confirmation sample Spauldite-SS-6 results that showed compliance with SCOs and because the exceedances in sample Spauldite-SS-5 had been marginal, NYSDEC required no further excavation in the Spauldite Tube Area.

11.3 Work Area BA

Area BA is located west of Area BB (Figure 3). During foundation removal work, hardened resin was identified in soil – generally occurring in a layer about 2.5 to 3.5 feet below grade. Remedial excavation work at Area BA was initiated on June 8, 2010 and completed on June 9, 2010 with the excavation and disposal of 2,021.55 tons of contaminated soil at Modern (Table 11-3-A). The excavation was advanced to the top of the underlying native clayey-silt soil, which was encountered at depths ranging from approximately 4 feet below the pre-excavation ground surface. Confirmation sample results (Table 11-3-B) complied with SCOs and on June 28, 2010, NYSDEC required no further excavation.

On June 23, 2010 and September 20, 2010, Wendel surveyed the final limits and confirmation sample locations. The excavation did not require significant backfill and was re-graded in October 2010 to meet final site grading requirements.

11.3.1 Area BA Confirmation Soil Sampling

On June 8, 2010 one sidewall confirmation sample (BA-SS-1) was collected and submitted to Spectrum for analysis of PAHs, PCBs, and TAL metals. The confirmation sample results are listed in Table 11-3-B and are summarized below.

• Final confirmation sample BA-SS-1 was below SCOs.

On June 17, 2010 two bottom confirmation samples (BA-BS-1 and BA-BS-2) were collected and analyzed for PAHs, PCBs, arsenic and cadmium.

• Final confirmation samples BA-BS-1 and BA-BS-2 were below SCOs.

12.0 OU6 SOIL REMEDIATION WORK AREA 4

12.1 Rail Line Excavation

The Rail Line excavation was completed across a broad area where a north-south running rail line and spur were present in the eastern portion of OU6 (Figure 4). Based on historical use, the rail bedding was presumed to be potentially contaminated with PAHs and/or metals. For all rail line excavation work, rail ties and steel were segregated and re-cycled (steel)

Rail line excavation work was initiated at the southern end of the Rail Line Area on June 10, 2010. The area was excavated to a depth of 2 ft. bgs and railroad ties were removed. The excavated soil was stockpiled onsite for future removal. Three confirmation samples were collected from the southern area on June 11, 2010. Analytical results showed no exceedances of SCOs. The excavation activities were progressed northward and included the removal of railroad ties as well as excavation to a depth of approximately 2 ft. bgs to 3 ft. bgs. From June 22, 2010 to June 28, 2010, fifteen additional bottom confirmation samples were collected from the northern and central rail line areas. Analytical results showed PAHs and arsenic at levels exceeding SCOs in several samples. The northern and central areas with exceedances were over-excavated and four additional bottom confirmation samples were collected from July 13, 2010 to July 15, 2010. The analytical results from the northern area showed no exceedances of SCOs, but the central area still showed PAHs and arsenic at levels exceeding SCOs. The excavation of the central area was continued and two additional bottom confirmation samples were collected on July 20, 2010. the analytical results from these samples showed no exceedances of SCOs. On August 4, 2010, two sidewall samples were collected from the eastern sidewall of the excavation in the central portion of the rail line area. One sample showed no exceedances of SCOs while the other showed exceedances of PAHs and arsenic. The eastern sidewall was excavated further in the area of the exceedances. On August 11, 2010, a confirmation sample was collected from the eastern sidewall. Analytical results showed no exceedances of SCOs. On August 18, 2010, the last of the soil that had been stockpiled from the rail line area was removed from the Site. In an e-mail dated September 9, 2010, the NYSDEC stated that no further excavation was required in the rail line area.

Total soil removed from the Rail Line area was 2,486.15 tons (Table 12-1-A). Soil disposal facilities, removal dates and quantities are listed in Table 12-1-A.

On August 16, 2010 and September 20, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). No backfill was placed in the Rail Line area. The excavation was re-graded in October 2010 to meet the final site grading plan.

12.1.1 Rail Line Area Confirmation Soil Sampling

All confirmation samples from the rail line area were submitted to Spectrum for analysis. Confirmation samples were initially collected for analysis of PAHs and TAL metals. Based on results from the first 8 samples (RR-BS-1 through RR-BS-8) it became apparent that arsenic was the only metal requiring analysis (i.e., no other metals exceeded SCOs) so subsequent samples were analyzed for PAHs and arsenic. Confirmation sample results are listed in Table 12-1-B and are summarized below.

On June 11, 2010, three bottom confirmation samples (RR-BS-1, RR-BS-2 and RR-BS-3) were collected from the southern portion of the Rail Line excavation.

• Final confirmation samples RR-BS-1, RR-BS-2 and RR-BS-3 were below SCOs.

On June 22, 2010 and June 23, 2010, seven bottom confirmation samples (RR-BS-4, RR-BS-5, RR-BS-6, RR-BS-7, RR-BS-8, RR-BS-9, and RR-BS-10) were collected from the excavation in the northern portion of the Rail Line area. Due to laboratory error, sample RR-BS-10 was initially analyzed for manganese rather than arsenic; the location was re-sampled for arsenic on June 25, 2010.

- Initial confirmation sample RR-BS-4 exceeded SCOs for benzo(a)anthracene, benzo(b)fluoranthene and benzo(a)pyrene and sample RR-BS-5 exceeded the SCO for arsenic.
- Final confirmation samples RR-BS-6 through RR-BS-10 were below SCOs.

In the central portion of the Rail Line excavation, six bottom confirmation samples (resample of RR-BS-10, RR-BS-11, RR-BS-12, RR-BS-13, RR-BS-14 and RR-BS-15) were collected on June 25, 2010, and two bottom confirmation samples (RR-BS-17 and RR-BS-19) were collected on June 28, 2010.

- Initial confirmation samples RR-BS-11, RR-BS-12, RR-BS-14, RR-BS-15 and RR-BS-17 exceeded SCOs for one or more PAHs while samples RR-BS-11, RR-BS-12 and RR-BS-17 exceeded the SCO for arsenic.
- Final confirmation samples RR-BS-13 and RR-BS-19 were below SCOs.

After additional excavation in the central portion of the Rail Line area based on exceedances at several locations, three bottom confirmation samples (RR-BS-21, RR-BS-22 and RR-BS-23) were collected on July 13, 2010.

- Initial confirmation samples RR-BS-21 and RR-BS-23 exceeded SCOs for benzo(a)anthracene, benzo(b)fluoranthene and benzo(a)pyrene and arsenic.
- Final confirmation sample RR-BS-22 was below SCOs.

After re-excavation based on an exceedance in the northern portion of the Rail Line excavation, one bottom confirmation sample (RR-BS-24) was collected on July 15, 2010.

• Final confirmation sample RR-BS-24 was below SCOs.

After additional excavation in the central portion of the Rail Line area based on exceedances at RR-BS-21 and RR-BS-23, two bottom confirmation samples (RR-BS-25, and RR-BS-26) were collected on July 20, 2010.

• Final confirmation samples RR-BS-25 and RR-BS-26 were below SCOs.

Most of the rail line excavation adjoined previously remediated areas so limited sidewall sampling was required. On August 4, 2010, two sidewall confirmation samples (RR-SS-01 and RR-SS-02) were collected from the eastern sidewall in the central portion of the Rail Line area.

- Initial confirmation sample RR-SS-02 exceeded SCOs for numerous PAHs.
- Final confirmation sample RR-SS-01 was below SCOs.

After further excavation, one sidewall confirmation sample (RR-SS-03) was collected from the eastern sidewall in the central portion of the Rail Line area.

• Final confirmation sample RR-SS-03 was below SCOs.

Following receipt of the confirmation sample results, the NYSDEC required no further excavation within the Rail Line area.

12.2 Coal Conveyer Area

A former coal conveyer was located to the north of the former Main Office and to the west of Wheeler Street (Figure 5). Due to the presence of coal that was discovered during concrete removal activity, this area was included in the remedial excavation areas.

On July 16, 2010 and July 19, 2010, remedial excavation was initiated in the Coal Conveyer area with the excavation, transportation and disposal of 239.90 tons and 203.52 tons of contaminated soil, respectively (Table 12-2-A). The contaminated soil was disposed of at Modern Landfill. The excavation was advanced to the top of the underlying native silty clay soil, which was encountered at approximately 2 feet below the pre-excavation ground surface. Confirmation samples were collected on July 29, 2010. Analytical results showed that the sample collected from the southern sidewall contained arsenic at a level that exceeded SCOs. On August 9, 2010, additional excavation was completed along the southern sidewall in the area of the exceedance and an additional confirmation sample was collected. The analytical results showed no exceedances of SCOs. In an e-mail dated September 9, 2010, the NYSDEC stated that no further excavation was required in the Coal Conveyer area. Total soil removed from the Coal Conveyer area was 465.53 tons. Soil disposal facilities, removal dates and quantities are listed in Table 12-2-A.

On August 16, 2010, Wendel surveyed the final limits and confirmation soil sample locations (Figure 5). The excavation did not require backfilling and in October 2010 the area was re-graded to meet site final grade requirements.

12.2.1 Coal Conveyer Area Confirmation Soil Sampling

Confirmation samples from the Coal Conveyor area were submitted to Mitkem for analysis of PAHs, arsenic and cadmium. Confirmation sample results are listed in Table 12-2-B and are summarized below.

On July 29, 2010, two sidewall confirmation samples (Coal Conveyer SS-1 and Coal Conveyer SS-2) and one bottom confirmation sample (Coal Conveyer BS-1) were collected from the excavation in the Coal Conveyer area.

- Final confirmation samples Coal Conveyor SS-2 and Coal Conveyor BS-1 were below SCOs.
- Initial confirmation sample Coal Conveyor SS-1 exceeded the SCO for arsenic.

Following additional excavation, an additional sidewall confirmation sample (Coal Conveyor SS-3) was collected on August 9, 2010, and submitted for analysis.

• Final confirmation sample Coal Conveyor SS-3 was below SCOs.

Following receipt of confirmation sample results, on September 9, 2010 NYSDEC required no further excavation within the Coal Conveyer Area.

13.0 MISCELLANEOUS MATERIAL REMOVAL AND DISPOSAL

During the course of the Remediation and Demolition Work, potentially or visibly contaminated materials not part of the IRM Work Plan were discovered onsite. Based on the visible characteristics of the material or characterization testing, it was determined that these materials should be removed from the Site and properly disposed of. Because the areas were concrete encased, except the elevator shaft, the materials were treated as incidental waste rather than as a remedial excavation area. The areas where these materials were discovered are summarized in the paragraphs below.

13.1 Elevator Shaft Area

The Elevator Shaft Area is located east of the former Spaulding Fibre main office. The elevator piston was approximately 6 feet long and was removed by MCI. In general, the shaft was installed into native clayey-silt, however, fill material had been placed around the shaft when it was installed. The fill in the elevator shaft was removed and the hole was overexcavated to a depth between eight and ten feet below grade to ensure that no other structures or fill remained. The Elevator Shaft Area excavation was initiated and completed on April 7, 2010 with the excavation, transportation and disposal of 287.76 tons of soil at Modern. Soil disposal facilities, removal dates and quantities are listed in Table 13-1.

13.2 Pit East of BH Area

The Pit East of BH Area is located east of Area BH and immediately south of the former maintenance shop building (Figure 3). It's former use was unclear, but the structure had concrete floor and walls and was filled with discolored fill. The Pit East of BH excavation was initiated on April 22, 2010 with the excavation, transportation and disposal of 22.18 tons of soil at Modern. On May 3, 2010 the excavation was completed with the transportation and disposal of 215.4 tons of soil at Modern. Later the concrete was removed and disposed of following concrete sampling and analysis. Total soil disposal from the Pit East of BH Area was 237.58 tons. Soil disposal facilities, removal dates and quantities are listed in Table 13-2.

13.3 Fibre Storage Drum Area

The area immediately east of Area AJ was bordered by a utility tunnel (Figure 3). During foundation removal, a portion of the tunnel was discovered to contain nineteen 55-gallon drums filled with hardened resin. It appeared that the drums were placed (on their sides) in the tunnel, a concrete block wall was built and the void space backfilled with foundry sand. The drums were highly degraded with no tops, and bottoms that were rusted through. Hardened resin was present within the drum remains and in the soil adjacent to the drums. The resin and soil adjacent to the drums was sampled on May 20, 2010 and analyzed using TCLP. The drummed material and adjacent soils were non-hazardous. On June 10, 2010, 167.19 tons of fill with drum debris were transported to Modern for disposal. Soil disposal facilities, removal dates and quantities are listed in Table 13-3. The concrete surrounding the drums was later removed for onsite crushing.

13.4 Boiler House Area

The Boiler House Area is located northwest of the former Spaulding Fibre main office (Figure 3). The boiler house basement was anticipated to be empty, but upon removal of the main floor slab, a large quantity of ash, fill and construction & demolition (C&D) debris - mostly brick - was observed in the basement. Excavation of the fill and brick was initiated on July 16, 2010, with the excavation of 850.55 tons of material. After the fill and brick was excavated, a viscous slurry of fill, ash and water remained. The slurry was mixed with fines from the concrete crushing operation to meet landfill acceptance criteria for water content. Between July 16 and August 10, 2010, 1,381.03 tons of C&D debris and 418.50 tons of soil were removed from the former boiler house basement and transported to modern for disposal. Later the concrete was removed and disposed of following concrete sampling and analysis. Soil disposal facilities, removal dates and quantities are listed in Table 13-4.

13.5 Spauldite Building Trench Area

The Spauldite Building Trench Area is located in the center of the eastern half of the former Spauldite building located in the northwestern corner of the site. During foundation demolition a relatively small concrete trench was discovered that contained visibly contaminated soil and sludge. The material was characterized and found to be non-hazardous. The Spauldite Building trench material was removed on August 3, 2010 with transportation and disposal of 139.88 tons of waste at Modern. Soil disposal facilities, removal dates and quantities are listed in Table 13-5.

13.6 Cooker Building Area

The Cooker Building Area was located outside the southeastern corner of the former Cooker building in the northeastern portion of the site. When the walls for the Cooker building were removed, materials consisting of foundry sand and a pipe from State Superfund AOC 45 were encountered along the foundation wall. On August 3, 2010, a total of 134.88 tons of foundry sand and waste were excavated, transported and disposed of at Modern. Soil disposal facilities, removal dates and quantities are listed in Table 13-6.

14.0 DISPOSAL DETAILS

MCI collected 27 waste characterization samples from OU6 and submitted the samples to Paradigm Environmental Services, Inc. of Rochester, New York for analysis of Full TCLP by USEPA Method 8260 (VOCs), 8470C (PAHs), 6010 and 7470 (metals), 10709 (herbicides), 1311/8151, 8081 (pesticides), pH, PCBs by USEPA 8082 and ignitability by Pensky-Martin method (Appendix 9). The results were submitted for approval to dispose of soil at the Town of Tonawanda Landfill.

MCI submitted SI and SSI data to Modern landfill. Approval of waste disposal at Modern was based on that data.

Tables 8-1-A through 12-3-A show the total quantity of soil removed from each excavation in OU6. Waste transporter certification is included in Appendix 5.

Soil from OU6 was transported by Pariso and disposed at both the Town of Tonawanda Landfill and Modern (refer to Tables 8-1-A through 12-3-A). Town of Tonawanda Landfill and Modern disposal facility profiles and approvals are included in Appendix 6. Waste manifests and weight tickets from the Town of Tonawanda Landfill and Modern are included in electronic format in Appendix 7.

15.0 BACKFILL

15.1 Concrete Backfill

As per the approved IRM Work Plan, crushed concrete from the Spaulding Fibre Plant demolition work was tested for compliance with NYSDEC Part 375 SCOs prior to re-use at the site. On November 2, 2009 nine crushed concrete samples were collected from piles one through nine and were submitted to Con-test Analytical Laboratory (Con-test) of East Longmeadow, MA for analysis of PAHs by USEPA Method 8270C, PCBs by USEPA Method 8082 and metals by USEPA Method 6010B and 7471. Between March and August, 2010, forty-one concrete samples were additionally submitted for analysis. Crushed Concrete analytical results were compared to NYSDEC Part 375 restricted residential SCOs and are summarized in Table 15-1. Concrete analytical results are included in Appendix 10.

15.2 Topsoil

Four to six inches of topsoil were used to restore remedial excavation areas. Soil utilized onsite came from one of two sources. The topsoil was tested for compliance with NYSDEC Part 375 restricted residential SCOs prior to use at the site. Following placement, the site was finished with grass seed, fertilizer and mulch.

15.2.1 Topsoil Source 1

Topsil source 1 was the same source utilized during the State Superfund remedial work completed at the site by Op-tech Environmental Services, Inc. (Op-tech) of East Syracuse, New York. On March 11, 2010, Op-tech submitted a composite topsoil sample (Topsoil) to Adirondack Environmental Services of Albany, New York for analysis of VOCs by USEPA Method 8260, PAHs by 8270C, PCBs by USEPA Method 8082, TAL Metals by 6010B, mercury by USEPA 7471A, pH by USEPA Method 9045B and moisture content by USEPA D2216. Soil analytical results were compared to NYSDEC Part 375 SCOs and are listed in Table 15-2. The soil analytical results are included in Appendix 9 and are summarized below.

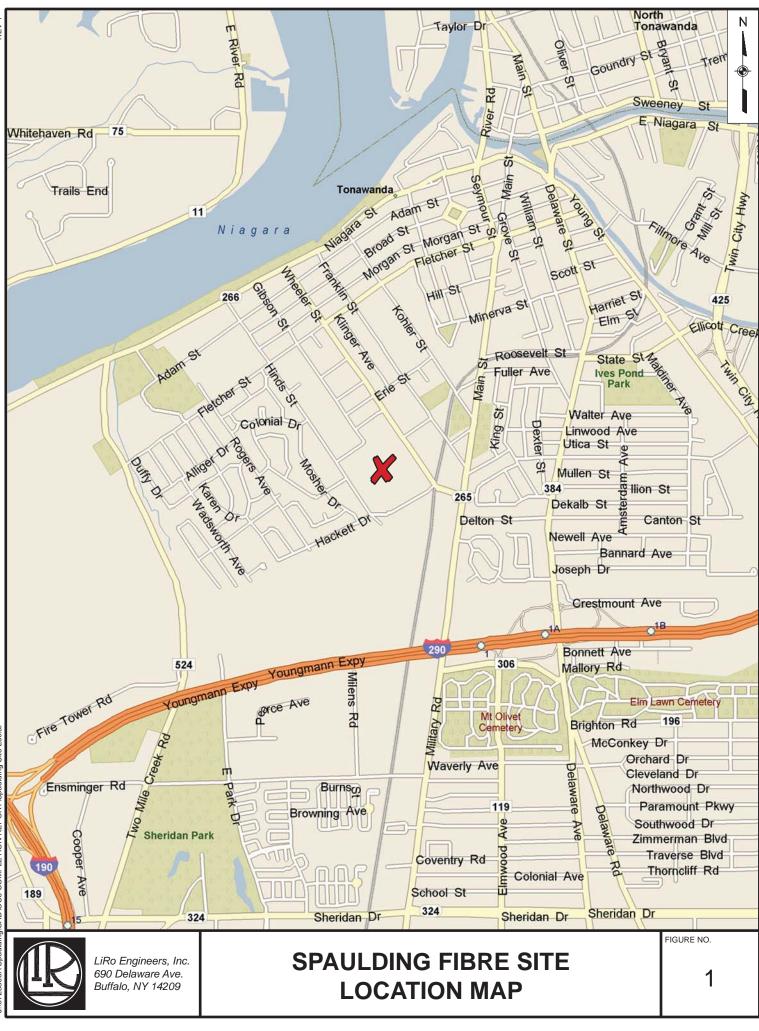
• Bulk sample Topsoil was below laboratory detection limits and/or was below SCOs for VOCs, PAHs, metals and PCBs.

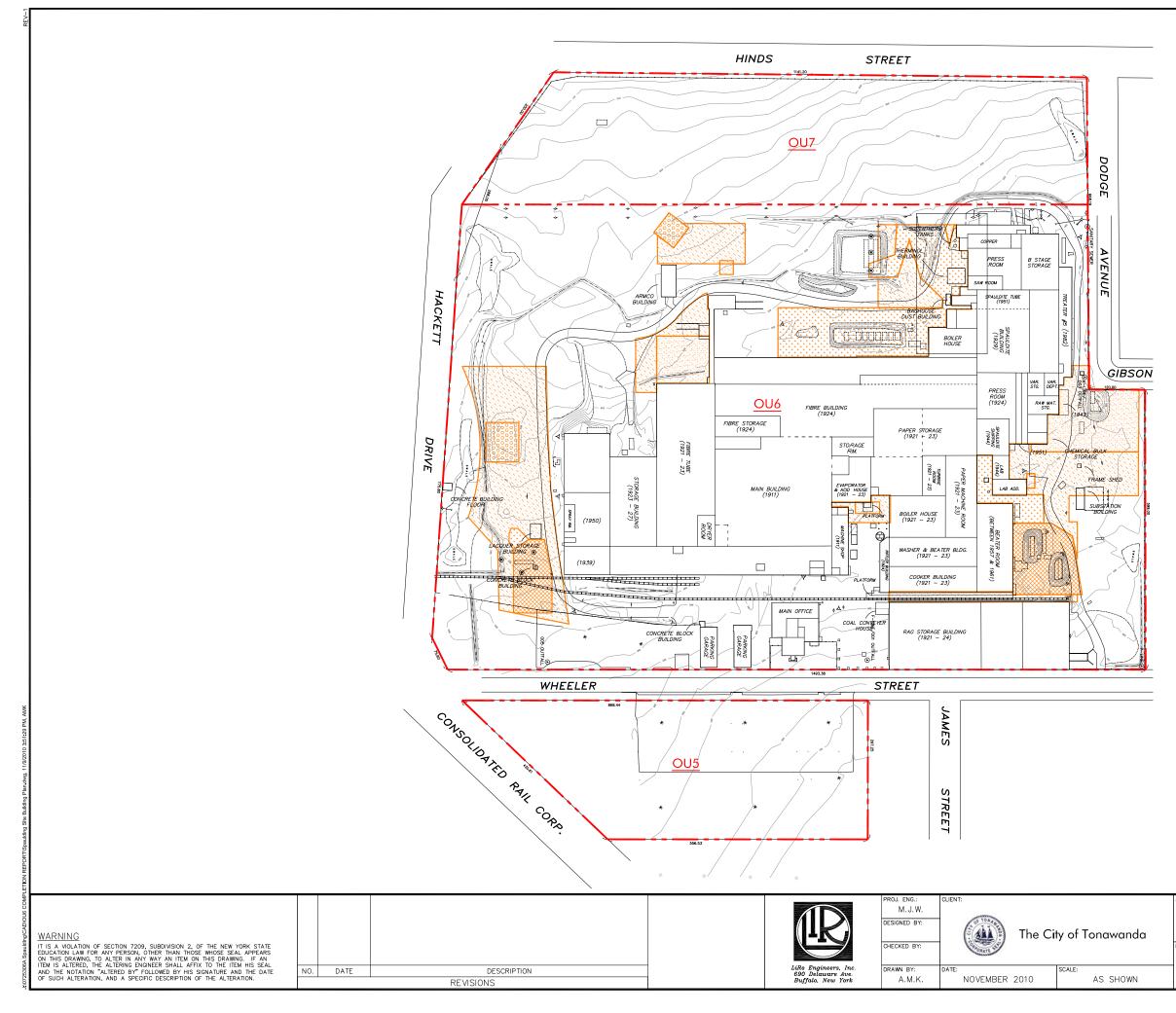
On September 16, 2010, NYSDEC approved use of topsoil from source #1 for OU6 excavations.

15.2.2 Topsoil Source 2

Topsoil source 2 site was located at a residential development north of Pleasant View Drive and east of Stony Road in Lancaster, New York. On October 12, 2010 MCI's consultant submitted a composite soil sample (SP-1) from the source 2 site to Paradigm Environmental Services of Rochester, New York for analysis of VOCs by USEPA Method 8260B, PAHs by USEPA Method 8270C, pH by USEPA Method

9045C, total cyanide by USEPA Method 9012, TAL metals by USEPA 6010 and 7471, PCBs by USEPA Method 8082 and pesticides by USEPA Method 8081. Soil analytical results were compared to NYSDEC Part 375 SCOs and are listed in Table 15-2. The soil analytical results are included in Appendix 9 and are summarized below.


• Bulk sample SP-1 was below laboratory detection limits and/or was below SCOs for VOCs, PAHs, metals, pesticides, PCBs and cyanide.


- 61 -

16.0 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN

As noted previously, relatively broad areas of OU6-Work Area 2 were identified for potential excavation, however, the initial excavation limits were based on visual observation of the target material (typically button ash) being excavated. Based on the confirmation sample results, the actual excavations differed from the potential excavation areas. In the IRM Work Plan, planned final restoration for OU6 included backfilling with on-site (OU7) soil and topsoil/seeding. No OU7 soil was used for backfilling. Sufficient soil from non-contaminated OU6 areas, residual crushed concrete and excess soil that was placed in the northern State Superfund areas was used for backfill.

SITE BUILDING PLAN

DRAWING TITLE:

JOB TITLE AND LOCATION:

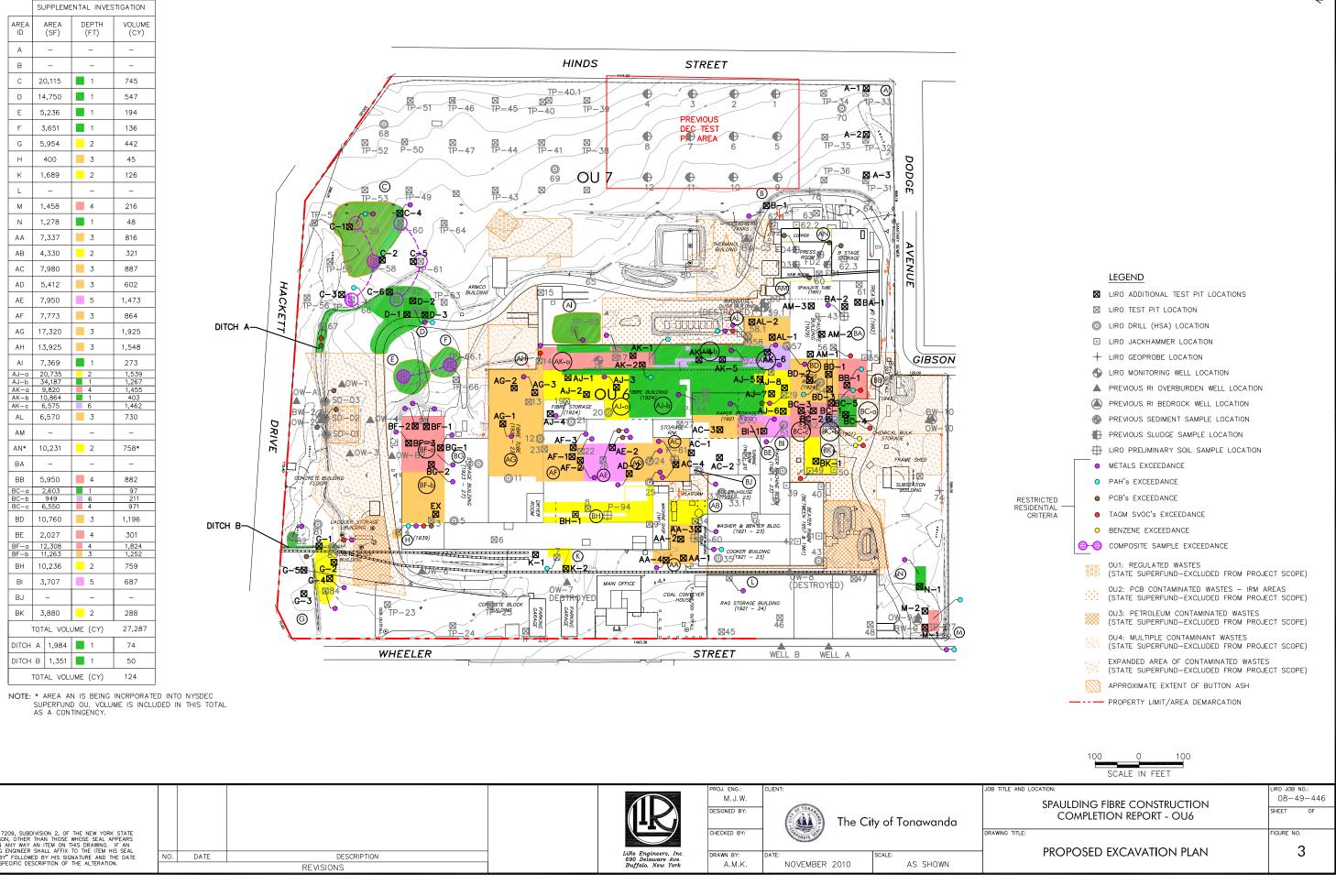
SPAULDING FIBRE CONSTRUCTION COMPLETION REPORT - OU6

OF

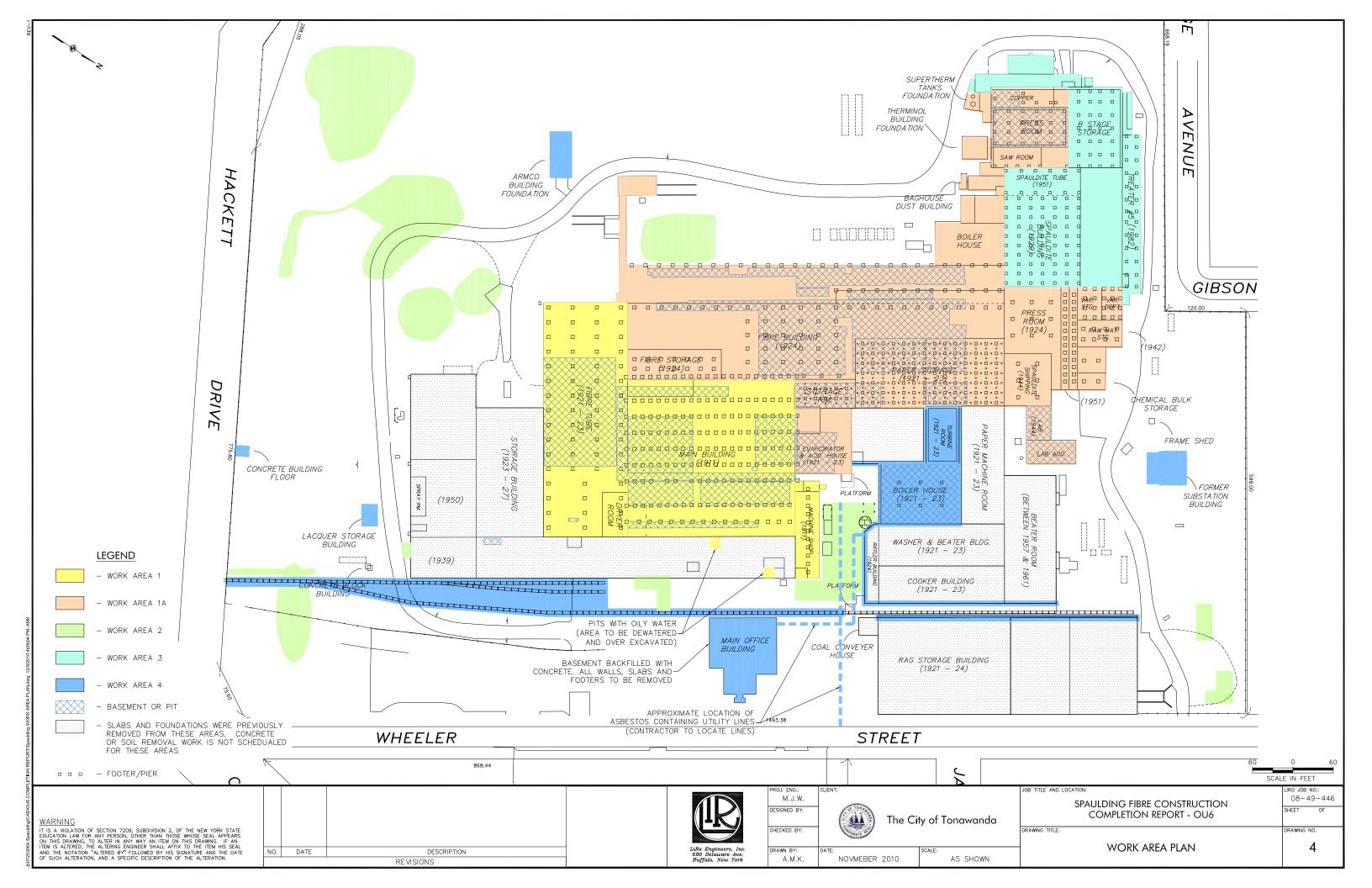
RO JOB NO.

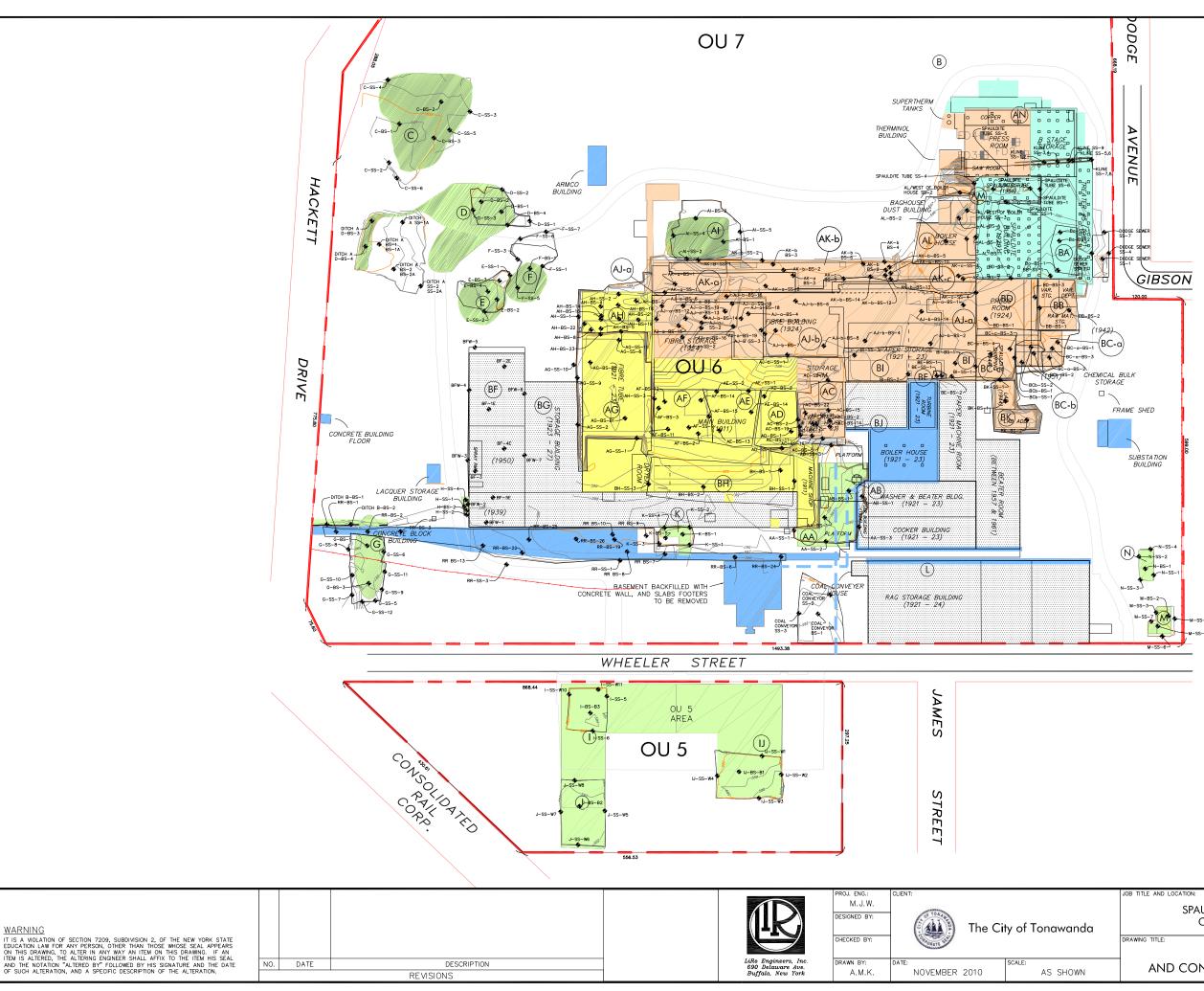
100 0 SCALE IN FEET

- - PROPERTY LIMIT/AREA DEMARCATION

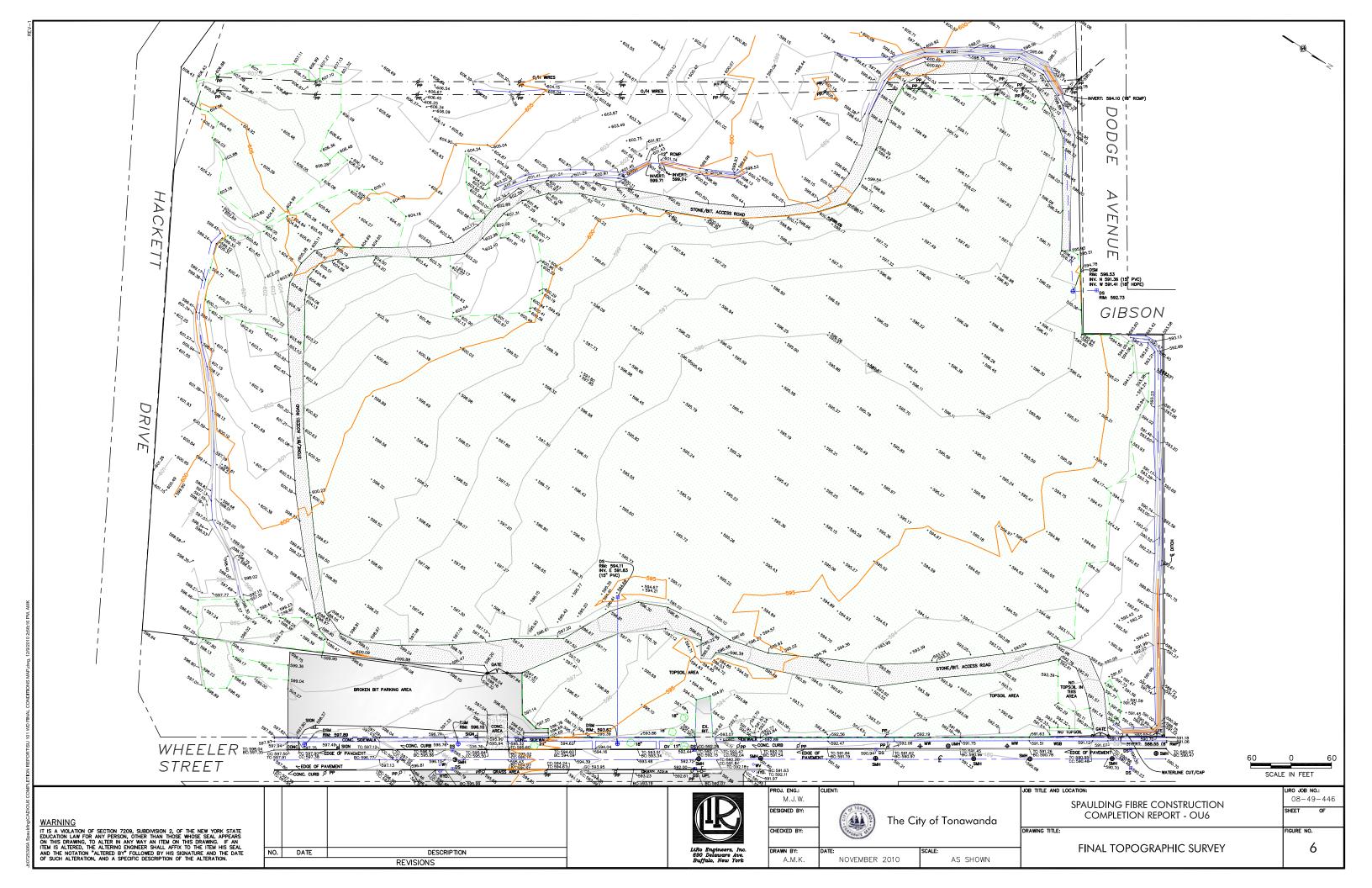

- EXPANDED AREA OF CONTAMINATED WASTES (STATE SUPERFUND-EXCLUDED FROM PROJECT SCOPE)
- OU4: MULTIPLE CONTAMINANT WASTES (STATE SUPERFUND-EXCLUDED FROM PROJECT SCOPE)
- OU3: PETROLEUM CONTAMINATED WASTES (STATE SUPERFUND-EXCLUDED FROM PROJECT SCOPE)
- OU2: PCB CONTAMINATED WASTES IRM AREAS (STATE SUPERFUND-EXCLUDED FROM PROJECT SCOPE)
- OU1: REGULATED WASTES (STATE SUPERFUND-EXCLUDED FROM PROJECT SCOPE)

LEGEND




FIGURE NO. 2

08-49-446


LEGEND

SAMPLING POINT LOCATION/DESIGNATION

GENERAL NOTES:

- ALL DATA SHOWN ON THIS MAP EXCEPT THE SAMPLING POINT LOCATIONS/DESIGNATIONS AND EXCAVATION LIMITS ARE TAKEN FROM DRAWING ENTITLE LIMITS OF WORK - OUE AND LIMITS OF WORK - OUS, LIRO JOB NO.: 08-49-446, DATED OCTOBER 2009, DRAWING NO. 4 AND 5
- SAMPLING POINT LOCATIONS/DESIGNATIONS ARE SHOWN FROM DATA GATHERED BY WENDEL SURVEY BETWEEN THE MONTHS OF APRIL 2010 TO AUGUST 2010 AND INFORMATION PROVIDED BY LIRO ENGINEERS INC.
- EXCAVATION LIMITS SHOWN ON THIS MAP WERE GATHERED BY WENDEL SURVEY BETWEEN THE MONTHS OF MARCH 2010 TO AUGUST 2010
- 4. VERTICAL DATUM: SITE SPECIFIC

	80 SCALE	0 E IN FEE	80 T
JOB TITLE AND LOCATION:		LIRO JOB NO	
SPAULDING FIBRE CONSTRUCTION		08-49	
COMPLETION REPORT - OU6		SHEET	OF
DRAWING TITLE:		FIGURE NO.	
EXCAVATION MAP		5	
AND CONFIRMATION SAMPLE LOCATIO	NS)

Material/ Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Soil Area AD	5/4/2010	910	22.56	Modern
Soil Area AD	5/4/2010	911	24.95	Modern
Soil Area AD	5/4/2010	912	23.44	Modern
Soil Area AD	5/4/2010	913	22.39	Modern
Soil Area AD	5/4/2010	914	22.8	Modern
Soil Area AD	5/4/2010	915	22.54	Modern
Soil Area AD	5/4/2010	917	22.48	Modern
Soil Area AD	5/4/2010	918	23.31	Modern
Soil Area AD	5/4/2010	919	21.15	Modern
Soil Area AD	5/4/2010	920	23.96	Modern
Soil Area AD	5/4/2010	924	21.29	Modern
Soil Area AD	5/4/2010	925	26.09	Modern
Soil Area AD	5/4/2010	927	21.68	Modern
Soil Area AD	5/4/2010	926	21.57	Modern
Soil Area AD	5/4/2010	928	23.35	Modern
Soil Area AD	5/4/2010	930	23.1	Modern
Soil Area AD	5/4/2010	931	23.28	Modern
Soil Area AD	5/4/2010	934	22.85	Modern
Soil Area AD	5/4/2010	935	24.31	Modern
Soil Area AD	5/4/2010	936	22.86	Modern
Soil Area AD	5/4/2010	940	22.72	Modern
Soil Area AD	5/4/2010	942	26.44	Modern
Soil Area AD	5/4/2010	943	22.92	Modern
Soil Area AD	5/4/2010	945	22.47	Modern
Soil Area AD	5/4/2010	948	22.43	Modern
Soil Area AD	5/4/2010	939	22.39	Modern
Soil Area AD	5/4/2010	949	23.46	Modern
Soil Area AD	5/4/2010	951	25.68	Modern
Soil Area AD	5/4/2010	952	21.98	Modern
Soil Area AD	5/4/2010	954	23.02	Modern
Area Al	D Modern Soil Disj	posal Totals for 5/4/2010	693.47	Modern
Soil Area AD	5/5/2010	237	20.42	Modern
Soil Area AD	5/5/2010	238	22.63	Modern
Soil Area AD	5/5/2010	240	22.93	Modern
Soil Area AD	5/5/2010	241	21.61	Modern
Soil Area AD	5/5/2010	242	21.68	Modern
Soil Area AD	5/5/2010	243	24.81	Modern
Soil Area AD	5/5/2010	244	21.95	Modern
Soil Area AD	5/5/2010	245	21.37	Modern
Soil Area AD	5/5/2010	246	22.55	Modern
Soil Area AD	5/5/2010	248	24.13	Modern
Soil Area AD	5/5/2010	249	24.48	Modern
Soil Area AD	5/5/2010	250	23.28	Modern
Soil Area AD	5/5/2010	251	22.89	Modern
Soil Area AD	5/5/2010	252	21.43	Modern
Soil Area AD	5/5/2010	254	23.69	Modern
Soil Area AD	5/5/2010	256	23.61	Modern
Soil Area AD	5/5/2010	257	22.66	Modern

Material/ Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Soil Area AD	5/5/2010	259	23.2	Modern
Soil Area AD	5/5/2010	262	22.58	Modern
Soil Area AD	5/5/2010	263	24.29	Modern
Soil Area AD	5/5/2010	265	24.74	Modern
Soil Area AD	5/5/2010	266	24.83	Modern
Soil Area AD	5/5/2010	267	23.79	Modern
Soil Area AD	5/5/2010	270	25.81	Modern
Soil Area AD	5/5/2010	284	22.25	Modern
Soil Area AD	5/5/2010	326	20.16	Modern
Soil Area AD	5/5/2010	302	23.86	Modern
Soil Area AD	5/5/2010	307	22.74	Modern
Soil Area AD	5/5/2010	309	20.26	Modern
Soil Area AD	5/5/2010	312	22.79	Modern
Area Al	D Modern Soil Dis	687.42	Modern	
	Area AD Tot	tal Soil Disposal Amount	1,380.89	Modern

Table 8-1-BSpaulding Fibre Facility OU6Confirmation Soil Results Area AD

Sample ID	6 NYCRR	AD-BS-1	AD-BS-2	AD-SS-1	AD-SS-2	
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Sidewall	Sidewall	
Date Sampled	RRU SCOs¹	5/5/2010	5/5/2010	5/5/2010	5/5/2010	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
METALS						
Zinc	10000	1550	7340	53.2	29700	

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restriced Residential Use(RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU

3) mg/kg = milligrams per kilogram

4) Zinc analyzed by USEPA method 6010.

5) The red crossed out confirmation sample was overexcavated until it met excavation Area AC.

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AE Soil/Resin Dust (Asbestos)	2/15/2010	4766088	22.36	Modern
AE Soil/Resin Dust (Asbestos)	2/15/2010	4766074	25.55	Modern
AE Soil/Resin Dust (Asbestos)	2/15/2010	4766071	26.24	Modern
AE Soil/Resin Dust (Asbestos)	2/15/2010	4766067	25.71	Modern
AE Soil/Resin Dust (Asbestos)	2/15/2010	4766068	24.94	Modern
AE Soil/Resin Dust (Asbestos)	2/15/2010	4766075	25.28	Modern
AE Soil/Resin Dust (Asbestos)	2/15/2010	4766076	25.33	Modern
AE Soil/Resin Dust (Asbestos)	2/15/2010	4766077	24.85	Modern
	Area AE Soil Dispo	osal Total for 2/15/2010	200.26	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4766753	25.27	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4766752	24.91	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4766754	23.88	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4766737	24.3	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4766739	23.39	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4766747	22.7	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4766749	24.43	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4766750	25.93	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4766751	26.62	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4767389	26.73	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4767387	22.42	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4767388	24.4	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4767383	26.4	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4767385	23.63	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4767386	27.41	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4767379	28.12	Modern
AE Soil/Resin Dust (Asbestos)	2/17/2010	4767378	27.68	Modern
	Area AE Soil Dispo	osal Total for 2/17/2010	428.22	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766069	27.65	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766079	26.92	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766080	27.54	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766081	30.1	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766082	28.59	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766083	26.94	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766084	28.83	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766085	23.89	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766086	21.93	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766078	21.34	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766087	24.25	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766473	22.66	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766475	22.94	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766476	21.9	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766477	23.8	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766478	25.64	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766479	21.09	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766480	24.29	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766486	26.2	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766487	24.98	Modern
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766490	21.23	Modern

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location	
AE Soil/Resin Dust (Asbestos)	2/18/2010	4766491	24.46	Modern	
AE Soil/Resin Dust (Asbestos)	2/18/2010	4767377	24.38	Modern	
	Area AE Soil Disp	osal Total for 2/18/2010	571.55	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4769033	22.37	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4769025	23.84	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4769029	22.72	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4769001	21.71	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4769000	23.11	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4769004	25.77	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768995	26.79	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768996	27	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768998	22.26	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768978	23.23	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768965	24.42	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768966	23.3	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768967	24.5	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768968	26.64	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768969	22.96	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768971	24.34	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768972	23.37	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768970	22.91	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768973	23.82	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768974	24.6	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768975	23.23	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768976	25.57	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768977	23.47	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768960	23.33	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768961	23.51	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4768962	26.07	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4767376	25.15	Modern	
AE Soil/Resin Dust (Asbestos)	2/19/2010	4767375	16.74	Modern	
	Area AE Soil Disp	osal Total for 2/18/2010	666.73	Modern	
AE Soil	4/12/2010	397622	17.88	TOT	
AE Soil	4/12/2010	397623	22.26	TOT	
AE Soil	4/12/2010	397624	19.94	TOT	
AE Soil	4/12/2010	397625	21.42	TOT	
AE Soil	4/12/2010	397626	21.62	TOT	
AE Soil	4/12/2010	397627	21.9	TOT	
AE Soil	4/12/2010	397686	21.94	TOT	
AE Soil	4/12/2010	397687	19.92	TOT	
AE Soil	4/12/2010	397688	23.38	TOT	
	Area AE Soil Disp	osal Total for 4/12/2010	190.26	TOT	
AE Soil	5/4/2010	896	22.82	Modern	
AE Soil	5/4/2010	897	20.48	Modern	
AE Soil	5/4/2010	898	21.37	Modern	
AE Soil	5/4/2010	899	19.84	Modern	
AE Soil	5/4/2010	900	21.79	Modern	

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AE Soil	5/4/2010	901	22.15	Modern
AE Soil	5/4/2010	902	22.7	Modern
AE Soil	5/4/2010	903	23.66	Modern
AE Soil	5/4/2010	904	22.62	Modern
AE Soil	5/4/2010	905	22.2	Modern
AE Soil	5/4/2010	906	21.54	Modern
AE Soil	5/4/2010	907	21.87	Modern
AE Soil	5/4/2010	908	20.49	Modern
AE Soil	5/4/2010	909	21.82	Modern
Area A	E Modern Soil Dispo	osal Totals for 5/4/2010	305.35	Modern
Area	AE (Asbestos) Mod	ern Soil Disposal Total	1,866.76	Modern
	Area AE T	OT Soil Disposal Totals	190.26	ТОТ
	Area AE Tota	l Soil Disposal Amount	2,057.02	Modern & TOT

Table 8-2-BSpaulding Fibre Facility OU6Confirmation Soil Results Area AE

Sample ID	6 NYCRR	AE-SS-1	AE-BS-1	AE-BS-2	AE-SS-2	AE-BS-3	AE-BS-4	AE-BS-5	AE-BS-6
Sample Location	Part 375-6.8(b)	Sidewall	Bottom	Bottom	Sidewall	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs¹	3/15/2010	3/15/2010	3/15/2010	3/16/2010	3/26/2010	3/26/2010	3/26/2010	3/26/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS									
Cadmium	4.3	0.4	3.5	4.6	0.39	14.3	4.3	10.1	3.77
Lead	400	13.7	18.4	16.1	15.2	NA	NA	NA	NA
Zinc	10,000	NA	11,600	14,000	NA	NA	NA	NA	NA
PCBs									
Aroclor- 1016	NC	ND	ND	ND	ND	NA	NA	NA	NA
Aroclor-1221	NC	ND	ND	ND	ND	NA	NA	NA	NA
Aroclor-1232	NC	ND	ND	ND	ND	NA	NA	NA	NA
Aroclor-1242	NC	ND	ND	ND	ND	NA	NA	NA	NA
Aroclor-1248	NC	ND	ND	ND	ND	NA	NA	NA	NA
Aroclor-1254	NC	ND	ND	ND	ND	NA	NA	NA	NA
Aroclor-1260	NC	ND	ND	ND	ND	NA	NA	NA	NA

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NC = No Criteria

6) B - Compound appeared in blank

7) NA - Not Analyzed

8) PCBs analyzed by USEPA Method SW846-8082, metals analyzed by USEPA Method 6010.

Table 8-2-BSpaulding Fibre Facility OU6Confirmation Soil Results Area AE

Sample Location	6 NYCRR	AE-BS-7	AE-BS-8	AE-BS-9	AE-BS-10	AE-BS-11	AE-BS-12	AE-BS-13	AE-BS-14
Depth Interval(ft)	Part 375-6.8(b)	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs¹	3/26/2010	3/26/2010	3/26/2010	3/26/2010	4/12/2010	4/12/2010	5/5/2010	5/5/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS									
Cadmium	4.3	3.35	10.6	3.42	2.82	1.1	1	2.36	2.72
Lead	400	NA	NA	NA	NA	11.5	8.8	17.3	21.1
Zinc	10,000	NA	NA	NA	NA	NA	NA	NA	NA
PCBs									
Aroclor- 1016	NC	NA	NA	NA	NA	ND	ND	NA	NA
Aroclor-1221	NC	NA	NA	NA	NA	ND	ND	NA	NA
Aroclor-1232	NC	NA	NA	NA	NA	ND	ND	NA	NA
Aroclor-1242	NC	NA	NA	NA	NA	ND	ND	NA	NA
Aroclor-1248	NC	NA	NA	NA	NA	ND	ND	NA	NA
Aroclor-1254	NC	NA	NA	NA	NA	ND	ND	NA	NA
Aroclor-1260	NC	NA	NA	NA	NA	ND	ND	NA	NA

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NC = No Criteria

6) B - Compound appeared in blank

7) NA - Not Analyzed

8) PCBs analyzed by USEPA Method SW846-8082, metals analyzed by USEPA Method 6010.

Material/Work Area ID	ial/Work Area ID Date Manifest Numbe		Actual Weight Tonnage	Landfill Location
Soil/Area AF	3/4/2010	396346	21.34	ТОТ
Soil/Area AF	3/4/2010	396347	20.52	TOT
Soil/Area AF	3/4/2010	396348	19.72	TOT
Soil/Area AF	3/4/2010	396349	19.34	TOT
Soil/Area AF	3/4/2010	396350	23.32	TOT
Soil/Area AF	3/4/2010	396351	22.68	TOT
Soil/Area AF	3/4/2010	396352	20.46	TOT
Soil/Area AF	3/4/2010	396353	23.6	TOT
Soil/Area AF	3/4/2010	396354	20.02	TOT
Soil/Area AF	3/4/2010	396355	20.52	TOT
Soil/Area AF	3/4/2010	396356	21.76	TOT
Soil/Area AF	3/4/2010	396357	26.98	TOT
Soil/Area AF	3/4/2010	396358	23.34	TOT
Soil/Area AF	3/4/2010	396359	21.84	TOT
Soil/Area AF	3/4/2010	396360	22.34	TOT
Soil/Area AF	3/4/2010	396361	19.14	TOT
	Area AF Soil Dis	posal Total for 3/4/2010	346.92	TOT
Soil/Area AF	3/5/2010	396362	16.42	TOT
Soil/Area AF	3/5/2010	396363	19.82	TOT
Soil/Area AF	3/5/2010	396364	19.52	TOT
Soil/Area AF	3/5/2010	396365	17.64	TOT
Soil/Area AF	3/5/2010	396366	18.78	TOT
Soil/Area AF	3/5/2010	396367	19.3	TOT
Soil/Area AF	3/5/2010	396368	21	TOT
Soil/Area AF	3/5/2010	396369	19.36	TOT
Soil/Area AF	3/5/2010	396370	18.78	TOT
Soil/Area AF	3/5/2010	396371	15.82	TOT
Soil/Area AF	3/5/2010	396372	19.62	TOT
Soil/Area AF	3/5/2010	396373	19.84	TOT
Soil/Area AF	3/5/2010	396374	20.44	TOT
Soil/Area AF	3/5/2010	396375	17.54	TOT
Soil/Area AF	3/5/2010	396376	20.74	TOT
Soil/Area AF	3/5/2010	396377	18.8	TOT
Soil/Area AF	3/5/2010	396378	19.5	TOT
Soil/Area AF	3/5/2010	396379	23.14	TOT
Soil/Area AF	3/5/2010	396380	23.56	TOT
Soil/Area AF	3/5/2010	396381	16.28	TOT
Soil/Area AF	3/5/2010	396382	22.71	TOT
Soil/Area AF	3/5/2010	396383	21.2	TOT
Soil/Area AF	3/5/2010	396384	22.9	TOT
Soil/Area AF	3/5/2010	396385	19.94	TOT
Soil/Area AF	3/5/2010	396386	17.38	TOT
Soil/Area AF	3/5/2010	396387	20.34	TOT
Soil/Area AF	3/5/2010	396388	23.72	TOT
Soil/Area AF	3/5/2010	396389	23.62	TOT
Soil/Area AF	3/5/2010	396390	22.24	TOT
Soil/Area AF	3/5/2010	396391	22.86	TOT
Soil/Area AF	3/5/2010	396392	18.4	TOT

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Soil/Area AF	3/5/2010	396393	23.94	TOT
Soil/Area AF	3/5/2010	396394	21.26	TOT
Soil/Area AF	3/5/2010	396395	23.14	TOT
Soil/Area AF	3/5/2010	396396	18.34	TOT
Soil/Area AF	3/5/2010	396397	20.98	TOT
Soil/Area AF	3/5/2010	396398	19.5	TOT
Soil/Area AF	3/5/2010	396399	24.62	TOT
Soil/Area AF	3/5/2010	396400	22.98	TOT
Soil/Area AF	3/5/2010	396401	25.1	TOT
Soil/Area AF	3/5/2010	396402	21.76	TOT
Soil/Area AF	3/5/2010	396403	18.42	TOT
Soil/Area AF	3/5/2010	396404	23.06	TOT
	Area AF Soil Dispo	osal Total for 2/18/2010	884.31	ТОТ
Soil/Area AF	4/12/2010	397620	19.42	TOT
Soil/Area AF	4/12/2010	397621	20.54	TOT
	Area AF Soil Dispo	osal Total for 4/12/2010	39.96	ТОТ
Soil/Area AF	4/16/2010	04-16-2010-07	22.96	Modern
Soil/Area AF	4/16/2010	8	23.98	Modern
Soil/Area AF	4/16/2010	9	20.94	Modern
Soil/Area AF	4/16/2010	10	20.69	Modern
Soil/Area AF	4/16/2010	11	23.41	Modern
Soil/Area AF	4/16/2010	12	20.37	Modern
Soil/Area AF	4/16/2010	13	21.9	Modern
Soil/Area AF	4/16/2010	14	19.55	Modern
Soil/Area AF	4/16/2010	15	18.95	Modern
Soil/Area AF	4/16/2010	16	21	Modern
	Area AF Soil Dispo	osal Total for 4/16/2010	213.75	Modern
Soil/Area AF	5/4/2010	892	18.99	Modern
Soil/Area AF	5/4/2010	891	18.68	Modern
Soil/Area AF	5/4/2010	893	23.24	Modern
Soil/Area AF	5/4/2010	894	19.04	Modern
Soil/Area AF	5/4/2010	895	24.97	Modern
	Area AF Soil Disj	posal Total for 5/4/2010	104.92	Modern
	Area AF Mod	lern Soil Disposal Total	318.67	Modern
	Area AF T	OT Soil Disposal Totals	1,271.19	ТОТ
	Area AF Tota	ll Soil Disposal Amount	1,589.86	Modern & TOT

Table 8-3-BSpaulding Fibre Facility OU6Confirmation Soil Results Area AF

Sample ID	6 NYCRR	AF-SS-1*	AF-BS-1*	AF-BS-2	AF-SS-2*	AF-SS-3*	AF-SS-4*	AF-BS-3	AF-BS-4*
Sample Location	Part 375-6.8(b)	Sidewall	Bottom	Bottom	Sidewall	Sidewall	Sidewall	Bottom	Bottom
Date Sampled	RRU SCOs¹	3/15/2010	3/15/2010	3/15/2010	3/26/2010	3/26/2010	3/26/2010	3/29/2010	3/29/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS									
Cadmium	4.3	29.5	6.8	0.54	NA	NA	NA	3.48	12.2
Zinc	10,000	17,800	8,430	1,580	9,620	16,000	10,400	NA	NA

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) NA - Not Analyzed

5) Metals analyzed by USEPA Method 6010.

6) The red crossed out confirmation sample locations were overexcavated.

*Sample location was overexcavated and resampled.

**Sample location was overexcavated until Area AF joined Area AE; therefore, there was no resample.

Table 8-3-BSpaulding Fibre Facility OU6Confirmation Soil Results Area AF

Sample Location	6 NYCRR	AF-BS-5*	AF-BS-6	AF-BS-7*	AF-BS-8*	AF-BS-9*	AF-BS-10*	AF-SS-5**	AF-SS-6**
Depth Interval(ft)	Part 375-6.8(b)	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Sidewall	Sidewall
Date Sampled	RRU SCOs¹	3/29/2010	3/29/2010	3/29/2010	3/29/2010	3/29/2010	3/29/2010	4/12/2010	4/12/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS									
Cadmium	4.3	22.2	1.05	6.65	15.3	14.1	6.56	1.7	5.3
Zinc	10,000	NA	NA	NA	NA	NA	NA	5,180	9,090

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) NA - Not Analyzed

5) Metals analyzed by USEPA Method 6010.

6) The red crossed out confirmation sample locations were overexcavated and resampled.

*Sample location was overexcavated and resampled.

**Sample location was overexcavated until Area AF joined Area AE; therefore, there was no resample.

Table 8-3-BSpaulding Fibre Facility OU6Confirmation Soil Results Area AF

Sample Location	6 NYCRR	AF-SS-7**	AF-SS-8**	AF-SS-9	AF-BS-11	AF-BS-12	AF-BS-13*	AF-BS-14	AF-BS-15
Depth Interval(ft)	Part 375-6.8(b)	Sidewall	Sidewall	Sidewall	Bottom	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs¹	4/12/2010	4/12/2010	4/19/2010	4/19/2010	4/19/2010	4/19/2010	5/5/2010	5/5/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS									
Cadmium	4.3	4.3	9.2	1.3	0.39	4.3	1.3	NA	NA
Zinc	10,000	10,300	8,490	3,760	62	2,180	14,000	1,300	3,340

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) NA - Not Analyzed

5) Metals analyzed by USEPA Method 6010.

6) The red crossed out confirmation sample locations were overexcavated and resampled.

*Sample location was overexcavated and resampled.

**Sample location was overexcavated until Area AF joined Area AE; therefore, there was no resample.

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Soil/Area AG	3/3/2010	396176	22.42	TOT
Soil/Area AG	3/3/2010	396177	27.14	TOT
Soil/Area AG	3/3/2010	396178	21.28	TOT
Soil/Area AG	3/3/2010	396179	26.1	ТОТ
Soil/Area AG	3/3/2010	396180	23	TOT
Soil/Area AG	3/3/2010	396181	24.38	TOT
Soil/Area AG	3/3/2010	396182	22.58	TOT
Soil/Area AG	3/3/2010	396183	22.9	TOT
Soil/Area AG	3/3/2010	396184	25	TOT
Soil/Area AG	3/3/2010	396185	22.16	TOT
Soil/Area AG	3/3/2010	396186	29.16	TOT
Soil/Area AG	3/3/2010	396187	22.56	TOT
Soil/Area AG	3/3/2010	396188	22.74	TOT
Soil/Area AG	3/3/2010	396189	24.54	TOT
Soil/Area AG	3/3/2010	396190	24.46	TOT
Soil/Area AG	3/3/2010	396191	26.28	TOT
Soil/Area AG	3/3/2010	396192	25.14	TOT
Soil/Area AG	3/3/2010	396193	23.86	TOT
Soil/Area AG	3/3/2010	396194	21.98	TOT
Soil/Area AG	3/3/2010	396195	25.42	TOT
Soil/Area AG	3/3/2010	396196	25.31	TOT
Soil/Area AG	3/3/2010	396197	25.3	TOT
Soil/Area AG	3/3/2010	396198	19.42	TOT
Soil/Area AG	3/3/2010	396199	23.68	TOT
Soil/Area AG	3/3/2010	396200	23.84	TOT
Soil/Area AG	3/3/2010	396201	23.74	TOT
Soil/Area AG	3/3/2010	396202	23.08	TOT
Soil/Area AG	3/3/2010	396203	21.6	TOT
Soil/Area AG	3/3/2010	396204	21.88	TOT
Soil/Area AG	3/3/2010	396205	19.84	TOT
Soil/Area AG	3/3/2010	396206	20.34	TOT
Soil/Area AG	3/3/2010	396207	21.34	TOT
Soil/Area AG	3/3/2010	396208	20.72	TOT
Soil/Area AG	3/3/2010	396209	24.46	TOT
Soil/Area AG	3/3/2010	396210	25.6	TOT
Soil/Area AG	3/3/2010	396211	27.24	TOT
Soil/Area AG	3/3/2010	396212	20.86	TOT
Soil/Area AG	3/3/2010	396213	23.48	TOT
Soil/Area AG	3/3/2010	396214	25.02	TOT
Soil/Area AG	3/3/2010	396215	19.88	TOT
Soil/Area AG	3/3/2010	396216	25.47	TOT
Soil/Area AG	3/3/2010	396217	22.9	TOT
Soil/Area AG	3/3/2010	396218	21.8	TOT
Soil/Area AG	3/3/2010	396219	22.45	TOT
Soil/Area AG	3/3/2010	396220	24.3	TOT
Soil/Area AG	3/3/2010	396221	20.84	TOT
Soil/Area AG	3/3/2010	396222	25.08	TOT
Soil/Area AG	3/3/2010	396223	25.48	TOT
Soil/Area AG	3/3/2010	396224	23.5	ТОТ

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Soil/Area AG	3/3/2010	396225	24.38	TOT
Soil/Area AG	3/3/2010	396226	22.24	TOT
Soil/Area AG	3/3/2010	396227	25.42	TOT
Soil/Area AG	3/3/2010	396228	26.78	TOT
Soil/Area AG	3/3/2010	396229	23.3	TOT
Soil/Area AG	3/3/2010	396230	26.9	TOT
Soil/Area AG	3/3/2010	396231	26.56	TOT
Soil/Area AG	3/3/2010	396232	24.76	TOT
Soil/Area AG	3/3/2010	396233	23.06	TOT
Soil/Area AG	3/3/2010	396234	26.32	TOT
Soil/Area AG	3/3/2010	396235	24.52	TOT
Soil/Area AG	3/3/2010	396236	27.1	TOT
Soil/Area AG	3/3/2010	396237	31.76	TOT
Soil/Area AG	3/3/2010	396238	26.56	TOT
Soil/Area AG	3/3/2010	396239	27.18	TOT
Soil/Area AG	3/3/2010	396240	24.26	TOT
Soil/Area AG	3/3/2010	396241	21.02	TOT
Soil/Area AG	3/3/2010	396242	29.44	TOT
Soil/Area AG	3/3/2010	396243	25.52	TOT
Soil/Area AG	3/3/2010	396244	26.04	TOT
Soil/Area AG	3/3/2010	396245	23.44	TOT
Soil/Area AG	3/3/2010	396246	25.12	TOT
Soil/Area AG	3/3/2010	396247	22.92	TOT
Soil/Area AG	3/3/2010	396248	23.06	TOT
Soil/Area AG	3/3/2010	396249	22.68	TOT
Soil/Area AG	3/3/2010	396250	22.3	TOT
Soil/Area AG	3/3/2010	396251	20.08	TOT
	Area AG Soil Disp	osal Total for 2/18/2010	1,824.27	TOT
Soil/Area AG	4/12/2010	397611	23.28	TOT
Soil/Area AG	4/12/2010	397612	24.8	TOT
Soil/Area AG	4/12/2010	397613	20.62	TOT
Soil/Area AG	4/12/2010	397614	24.5	TOT
	Area AG Soil Disp	osal Total for 4/12/2010	93.20	TOT
	Area	AG Soil Disposal Total	1,917.47	ТОТ

Table 8-4-BSpaulding Fibre Facility OU6Confirmation Soil Results Area AG

Sample ID	6 NYCRR	AG-SS-1	AG-SS-2	AG-SS-3*	AG-SS-4*	AG-BS-1	AG-BS-2	AG-SS-4a	AG-SS-5	AG-SS-6	AG-SS-7	AG-SS-8	AG-SS-9	AG-SS-10	AG-SS-11
Sample Location	Part 375-6.8(b)	Sidewall	Sidewall	Sidewall	Sidewall	Bottom	Bottom	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall
Date Sampled	RRU SCOs¹	3/12/2010	3/12/2010	3/12/2010	3/12/2010	3/12/2010	3/12/2010	3/25/2010	3/25/2010	3/25/2010	3/25/2010	3/25/2010	3/25/2010	4/12/2010	4/12/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS															
Zinc	10,000	71	150	12,000	23,000	930	1,200	9,700	76,000	3,200	41,000	120,000	8,100	400	6,800

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs) 2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) B - Compound appeared in blank

5) Zinc analyzed by USEPA Method 6010.

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Soil/Area AH	3/3/2010	396268	20.22	TOT
Soil/Area AH	3/3/2010	396269	18.24	TOT
Soil/Area AH	3/3/2010	396270	20.52	TOT
Soil/Area AH	3/3/2010	396271	18.94	TOT
Soil/Area AH	3/3/2010	396272	19.08	TOT
Soil/Area AH	3/3/2010	396273	22.86	TOT
Soil/Area AH	3/3/2010	396274	21.92	TOT
Soil/Area AH	3/3/2010	396275	21.34	TOT
Soil/Area AH	3/3/2010	396276	21.9	TOT
Soil/Area AH	3/3/2010	396277	22.38	TOT
Soil/Area AH	3/3/2010	396278	20.3	TOT
Soil/Area AH	3/3/2010	396279	20.6	TOT
Soil/Area AH	3/3/2010	396280	17.36	TOT
Soil/Area AH	3/3/2010	396281	22.74	TOT
Soil/Area AH	3/3/2010	396282	18.08	TOT
Soil/Area AH	3/3/2010	396283	21.04	TOT
Soil/Area AH	3/3/2010	396284	20.18	TOT
Soil/Area AH	3/3/2010	396285	19.76	TOT
Soil/Area AH	3/3/2010	396286	23.56	TOT
Soil/Area AH	3/3/2010	396287	18.36	TOT
Soil/Area AH	3/3/2010	396288	22.94	TOT
Soil/Area AH	3/3/2010	396289	20.56	TOT
Soil/Area AH	3/3/2010	396280	20.62	TOT
Soil/Area AH	3/3/2010	396291	20.56	TOT
Soil/Area AH	3/3/2010	396292	23.36	TOT
Soil/Area AH	3/3/2010	396293	21.66	TOT
Soil/Area AH	3/3/2010	396294	18.82	TOT
Soil/Area AH	3/3/2010	396295	22.34	TOT
Soil/Area AH	3/3/2010	396296	21.8	TOT
Soil/Area AH	3/3/2010	396297	24.66	TOT
Soil/Area AH	3/3/2010	396298	20.06	TOT
Soil/Area AH	3/3/2010	396299	23.62	TOT
Soil/Area AH	3/3/2010	396300	21.32	TOT
Soil/Area AH	3/3/2010	396301	22.96	TOT
Soil/Area AH	3/3/2010	396302	21.44	TOT
Soil/Area AH	3/3/2010	396303	20.72	TOT
Soil/Area AH	3/3/2010	396304	18.32	TOT
Soil/Area AH	3/3/2010	396305	18.34	TOT
Soil/Area AH	3/3/2010	396306	21.76	TOT
Soil/Area AH	3/3/2010	396307	20.88	TOT
Soil/Area AH	3/3/2010	396308	25.34	TOT
Soil/Area AH	3/3/2010	396309	23.5	TOT
Soil/Area AH	3/3/2010	396310	20.5	TOT
Soil/Area AH	3/3/2010	396311	24.62	TOT
Soil/Area AH	3/3/2010	396312	22.12	TOT
Soil/Area AH	3/3/2010	396312	24.58	ТОТ
Soil/Area AH	3/3/2010	396314	23.12	ТОТ
Soil/Area AH	3/3/2010	396315	21.5	TOT
Soil/Area AH	3/3/2010	396252	24.08	TOT

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Soil/Area AH	3/3/2010	396253	18.24	TOT
Soil/Area AH	3/3/2010	396254	18.46	TOT
Soil/Area AH	3/3/2010	396255	22.76	TOT
Soil/Area AH	3/3/2010	396256	22.68	TOT
Soil/Area AH	3/3/2010	396257	22.56	TOT
Soil/Area AH	3/3/2010	396258	17.42	TOT
Soil/Area AH	3/3/2010	396259	18.68	TOT
Soil/Area AH	3/3/2010	396260	20.58	TOT
Soil/Area AH	3/3/2010	396261	22.16	TOT
Soil/Area AH	3/3/2010	396262	21.84	TOT
Soil/Area AH	3/3/2010	396263	22.1	TOT
Soil/Area AH	3/3/2010	396264	17.86	TOT
Soil/Area AH	3/3/2010	396265	19.8	TOT
Soil/Area AH	3/3/2010	396266	20.33	TOT
Soil/Area AH	3/3/2010	396267	22.34	TOT
		posal Total for 3/3/2010	1,353.29	ТОТ
Soil/Area AH	3/4/2010	396316	20.5	TOT
Soil/Area AH	3/4/2010	396317	22.88	TOT
Soil/Area AH	3/4/2010	396318	20.06	TOT
Soil/Area AH	3/4/2010	396319	21.34	TOT
Soil/Area AH	3/4/2010	396320	23.84	TOT
Soil/Area AH	3/4/2010	396321	18.14	TOT
Soil/Area AH	3/4/2010	396322	22.4	TOT
Soil/Area AH	3/4/2010	396323	19.38	TOT
Soil/Area AH	3/4/2010	396324	21.8	TOT
Soil/Area AH	3/4/2010	396325	21.62	TOT
Soil/Area AH	3/4/2010	396326	20.4	TOT
Soil/Area AH	3/4/2010	396327	22.82	TOT
Soil/Area AH	3/4/2010	396328	18.66	TOT
Soil/Area AH	3/4/2010	396329	21.32	TOT
Soil/Area AH	3/4/2010	396330	23.26	TOT
Soil/Area AH	3/4/2010	396331	21.92	TOT
Soil/Area AH	3/4/2010	396332	21.34	TOT
Soil/Area AH	3/4/2010	396333	21.04	TOT
Soil/Area AH	3/4/2010	396334	27.72	TOT
Soil/Area AH	3/4/2010	396335	24.98	TOT
Soil/Area AH	3/4/2010	396336	22.62	TOT
Soil/Area AH	3/4/2010	396337	26.66	TOT
Soil/Area AH	3/4/2010	396338	28.08	TOT
Soil/Area AH	3/4/2010	396339	26.6	TOT
Soil/Area AH	3/4/2010	396340	26.14	TOT
Soil/Area AH	3/4/2010	396341	22.08	TOT
Soil/Area AH	3/4/2010	396342	25.76	TOT
Soil/Area AH	3/4/2010	396343	22.34	TOT
Soil/Area AH	3/4/2010	396344	22.75	TOT
Soil/Area AH	3/4/2010	396345	21.1	TOT
	Area AH Soil Dis	posal Total for 3/4/2010	679.55	ТОТ

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Soil/Area AH	4/12/2010	397615	21.22	TOT
Soil/Area AH	4/12/2010	397616	21.14	TOT
Soil/Area AH	4/12/2010	397617	22.44	TOT
Soil/Area AH	4/12/2010	397615	19.28	TOT
Soil/Area AH	4/12/2010	397619	19.22	TOT
	Area AH Soil Dispo	osal Total for 4/12/2010	103.30	TOT
Soil/Area AH	4/16/2010	22	22.62	Modern
Soil/Area AH	4/16/2010	23	19.7	Modern
Soil/Area AH	4/16/2010	24	19.65	Modern
Soil/Area AH	4/16/2010	25	25.64	Modern
Soil/Area AH	4/16/2010	20	20.08	Modern
Area AH	l Modern Soil Dispo	osal Total for 4/16/2010	107.69	Modern
Soil/Area AH	5/5/2010	322	24.98	Modern
Soil/Area AH	5/5/2010	323	24.08	Modern
Soil/Area AH	5/5/2010	325	23.57	Modern
Soil/Area AH	5/5/2010	311	23.83	Modern
Soil/Area AH	5/5/2010	310	23.67	Modern
	Area AH Soil Disp	oosal Total for 5/5/2010	120.13	Modern
	Area AH T	2,136.14	ТОТ	
	Area AH Mode	ern Soil Disposal Totals	227.82	Modern
	Area A	AH Soil Disposal Totals	2,363.96	Modern & TOT

Table 8-5-BSpaulding Fibre Facility OU6Confirmation Soil Results Area AH

Sample ID	6 NYCRR	AH-S1	AH-S2	AH-S3	AH-B1	AH-B2	AH-BS-3	AH-BS-4	AH-BS-5	AH-BS-6
Sample Location	Part 375-6.8(b)	Sidewall	Sidewall	Sidewall	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs¹	3/12/2010	3/12/2010	3/12/2010	3/12/2010	3/12/2010	3/25/2010	3/25/2010	3/25/2010	3/25/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
SVOCs, STARS List										
Di-n-butylphthalate	100	0.092 J	ND	ND	ND	ND	NA	NA	NA	NA
METALS										
Arsenic	16	6	2.6	6.9	7	5.5	NA	NA	NA	NA
Copper	270	45	16	83	53	21	NA	NA	NA	NA
Manganese	2000	590	380	590	600	1100	NA	NA	NA	NA
Zinc	10,000	600	70	5,200	21,000	1,200	70,000	6,700	5,400	95,000

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NA - Not Analyzed

6) PAHs were analyzed by SW846-8270C and metals analyzed by USEPA method 6010.

Table 8-5-BSpaulding Fibre Facility OU6Confirmation Soil Results Area AH

Sample Location	6 NYCRR	AH-BS-7	AH-BS-8	AH-BS-9	AH-BS-10	AH-BS-11	AH-BS-12	AH-BS-13	AH-BS-14	AH-BS-15
Depth Interval(ft)	Part 375-6.8(b)	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs¹	3/25/2010	3/25/2010	3/25/2010	3/25/2010	3/25/2010	3/25/2010	4 /12/2010	4/12/2010	4 /29/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
SVOCs, STARS List										
Di-n-butylphthalate	100	NA	NA	NA	NA	NA	NA	ND	ND	NA
METALS										
Arsenic	16	NA	NA	NA	NA	NA	NA	3.5	4.2	4.31
Copper	270	NA	NA	NA	NA	NA	NA	21	20	NA
Manganese	2000	NA	NA	NA	NA	NA	NA	550	720	NA
Zinc	10,000	99,000	77	24,000	14,000	50,000	20,000	88,000	2,100	71,700

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NA - Not Analyzed

6) PAHs were analyzed by SW846-8270C and metals analyzed by USEPA method 6010.

Table 8-5-BSpaulding Fibre Facility OU6Confirmation Soil Results Area AH

Sample Location	6 NYCRR	AH-BS-16	AH-BS-17	AH-BS-18	AH-BS-19	AH-BS-20	AH-BS-21	AH-BS-22	AH-BS-23
Depth Interval(ft)	Part 375-6.8(b)	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs¹	4/29/2010	4 /29/2010	4/29/2010	4/29/2010	4 /29/2010	5/5/2010	5/5/2010	5/5/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
SVOCs, STARS List									
Di-n-butylphthalate	100	NA	NA	NA	NA	NA	ND	ND	ND
METALS									
Arsenic	16	1.55	2.9	3.2	3.14	4.18	3.95	3.35	2.18
Copper	270	NA	NA	NA	NA	NA	19.1	20.7	19
Manganese	2000	NA	NA	NA	NA	NA	213	450	361
Zinc	10,000	7,730	13,700	4,310	6,920	17,900	6,340	66	6,850

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NA - Not Analyzed

6) PAHs were analyzed by SW846-8270C and metals analyzed by USEPA method 6010.

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Soil/Area BF	8/28/2009	392657	24.24	TOT
Soil/Area BF	8/28/2009	392658	28.05	TOT
Soil/Area BF	8/28/2009	392659	20.76	TOT
Soil/Area BF	8/28/2009	392660	21.10	TOT
Soil/Area BF	8/28/2009	392661	20.28	TOT
Soil/Area BF	8/28/2009	392662	20.58	TOT
Soil/Area BF	8/28/2009	392663	19.66	TOT
Soil/Area BF	8/28/2009	392664	17.52	TOT
Soil/Area BF	8/28/2009	392665	22.07	TOT
Soil/Area BF	8/28/2009	392666	24.14	TOT
Soil/Area BF	8/28/2009	392667	21.63	TOT
Soil/Area BF	8/28/2009	392668	22.18	TOT
Soil/Area BF	8/28/2009	392670	26.94	TOT
Soil/Area BF	8/28/2009	392671	29.68	TOT
Soil/Area BF	8/28/2009	392672	27.09	TOT
Soil/Area BF	8/28/2009	392675	26.59	TOT
Soil/Area BF	8/28/2009	392676	23.34	TOT
Soil/Area BF	8/28/2009	392677	24.38	TOT
Soil/Area BF	8/28/2009	392678	22.67	TOT
Soil/Area BF	8/28/2009	392679	23.46	TOT
Soil/Area BF	8/28/2009	392680	23.19	TOT
Soil/Area BF	8/28/2009	392681	19.42	TOT
Soil/Area BF	8/28/2009	392682	19.70	TOT
Soil/Area BF	8/28/2009	392683	27.77	TOT
Soil/Area BF	8/28/2009	392684	23.73	TOT
Soil/Area BF	8/28/2009	392685	24.43	TOT
Soil/Area BF	8/28/2009	392686	23.42	TOT
Soil/Area BF	8/28/2009	392687	21.90	TOT
Soil/Area BF	8/28/2009	392688	26.75	TOT
Soil/Area BF	8/28/2009	392689	22.70	TOT
Soil/Area BF	8/28/2009	392690	24.66	TOT
Soil/Area BF	8/28/2009	392691	20.88	TOT
Soil/Area BF	8/28/2009	392692	19.67	TOT
	Area BF 8/28/20	09 Soil Disposal Totals	764.58	ТОТ
Soil/Area BF	8/31/2009	392693	23.84	TOT
Soil/Area BF	8/31/2009	392694	25.33	TOT
Soil/Area BF	8/31/2009	392695	26.75	TOT
Soil/Area BF	8/31/2009	392696	23.72	TOT
Soil/Area BF	8/31/2009	392697	23.34	TOT
Soil/Area BF	8/31/2009	392698	23.66	TOT
Soil/Area BF	8/31/2009	392699	26.50	TOT
Soil/Area BF	8/31/2009	392700	22.67	TOT
Soil/Area BF	8/31/2009	392701	27.84	TOT
Soil/Area BF	8/31/2009	392702	23.03	TOT
Soil/Area BF	8/31/2009	392703	28.38	TOT
Soil/Area BF	8/31/2009	392704	25.06	TOT
Soil/Area BF	8/31/2009	392705	23.70	TOT
Soil/Area BF	8/31/2009	392706	25.31	TOT
Soil/Area BF	8/31/2009	392707	25.89	TOT

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Soil/Area BF	8/31/2009	392708	21.85	TOT
Soil/Area BF	8/31/2009	392709	28.08	TOT
Soil/Area BF	8/31/2009	392710	24.32	TOT
Soil/Area BF	8/31/2009	392711	27.29	TOT
Soil/Area BF	8/31/2009	392712	24.75	TOT
Soil/Area BF	8/31/2009	392713	22.92	TOT
Soil/Area BF	8/31/2009	392714	24.17	TOT
Soil/Area BF	8/31/2009	392715	27.43	TOT
Soil/Area BF	8/31/2009	392716	35.72	TOT
Soil/Area BF	8/31/2009	392717	23.29	TOT
Soil/Area BF	8/31/2009	392718	23.90	TOT
Soil/Area BF	8/31/2009	392719	26.29	TOT
Soil/Area BF	8/31/2009	392720	23.56	TOT
Soil/Area BF	8/31/2009	392721	23.62	TOT
Soil/Area BF	8/31/2009	39272	20.93	TOT
Soil/Area BF	8/31/2009	392723	23.19	TOT
Soil/Area BF	8/31/2009	392724	20.40	TOT
Soil/Area BF	8/31/2009	392725	21.53	TOT
Soil/Area BF	8/31/2009	392726	22.61	TOT
Soil/Area BF	8/31/2009	392727	22.11	TOT
Soil/Area BF	8/31/2009	392728	22.29	TOT
Soil/Area BF	8/31/2009	392729	19.85	TOT
Soil/Area BF	8/31/2009	392730	22.11	TOT
Soil/Area BF	8/31/2009	392731	20.48	TOT
Soil/Area BF	8/31/2009	392732	31.91	TOT
Soil/Area BF	8/31/2009	392733	25.70	TOT
Soil/Area BF	8/31/2009	392734	21.54	TOT
Soil/Area BF	8/31/2009	392735	21.33	TOT
Soil/Area BF	8/31/2009	392736	20.71	TOT
Soil/Area BF	8/31/2009	392737	20.28	TOT
Soil/Area BF	8/31/2009	392738	19.42	TOT
Soil/Area BF	8/31/2009	392739	22.52	TOT
Soil/Area BF	8/31/2009	392740	28.87	TOT
Soil/Area BF	8/31/2009	392741	24.21	TOT
Soil/Area BF	8/31/2009	392742	22.23	TOT
Soil/Area BF	8/31/2009	392743	23.18	TOT
Soil/Area BF	8/31/2009	392744	19.11	TOT
Soil/Area BF	8/31/2009	392745	25.09	TOT
Soil/Area BF	8/31/2009	392746	21.08	TOT
Soil/Area BF	8/31/2009	392747	22.52	TOT
Soil/Area BF	8/31/2009	392748	20.66	TOT
Soil/Area BF	8/31/2009	392749	18.70	TOT
Soil/Area BF	8/31/2009	392750	20.14	TOT
Soil/Area BF	8/31/2009	392751	22.14	TOT
Soil/Area BF	8/31/2009	392752	15.60	TOT
Soil/Area BF	8/31/2009	392753	19.72	TOT
Soil/Area BF	8/31/2009	392754	22.44	TOT
Area BF 8/31/2009 Soil Disposal Totals			1456.81	ТОТ

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Soil/Area BF	9/1/2009	392755	24.29	TOT
Soil/Area BF	9/1/2009	392756	25.14	TOT
Soil/Area BF	9/1/2009	392757	21.92	TOT
Soil/Area BF	9/1/2009	392758	21.64	TOT
Soil/Area BF	9/1/2009	392759	23.85	TOT
Soil/Area BF	9/1/2009	392760	23.41	TOT
Soil/Area BF	9/1/2009	392761	22.65	TOT
Soil/Area BF	9/1/2009	392762	25.94	TOT
Soil/Area BF	9/1/2009	392763	22.21	TOT
Soil/Area BF	9/1/2009	392764	24.15	TOT
Soil/Area BF	9/1/2009	392765	23.23	TOT
Soil/Area BF	9/1/2009	392766	22.44	TOT
Soil/Area BF	9/1/2009	392676	22.28	TOT
Soil/Area BF	9/1/2009	392768	25.38	TOT
Soil/Area BF	9/1/2009	392769	20.62	TOT
Soil/Area BF	9/1/2009	392770	22.26	TOT
Soil/Area BF	9/1/2009	392771	25.96	TOT
Soil/Area BF	9/1/2009	392772	25.85	TOT
Soil/Area BF	9/1/2009	392773	23.04	ТОТ
Soil/Area BF	9/1/2009	392774	24.80	ТОТ
Soil/Area BF	9/1/2009	392775	21.22	ТОТ
Soil/Area BF	9/1/2009	392776	19.31	ТОТ
Soil/Area BF	9/1/2009	392777	23.61	ТОТ
Soil/Area BF	9/1/2009	392778	20.62	ТОТ
Son/Titou Br		009 Soil Disposal Totals	555.82	ТОТ
Soil/Area BF	9/2/2009	392779	22.92	ТОТ
Soil/Area BF	9/2/2009	392780	23.88	TOT
Soil/Area BF	9/2/2009	392781	21.09	TOT
Soil/Area BF	9/2/2009	392782	21.16	TOT
Soil/Area BF	9/2/2009	392783	24.78	TOT
Soil/Area BF	9/2/2009	392784	24.17	TOT
Soil/Area BF	9/2/2009	392785	23.55	TOT
Soil/Area BF	9/2/2009	392786	25.66	TOT
Soil/Area BF	9/2/2009	392787	22.18	TOT
Soil/Area BF	9/2/2009	392788	21.66	ТОТ
Soil/Area BF	9/2/2009	392789	25.69	TOT
Soil/Area BF	9/2/2009	392790	23.48	ТОТ
Soil/Area BF	9/2/2009	392791	22.22	ТОТ
Soil/Area BF	9/2/2009	392792	25.42	ТОТ
Soil/Area BF	9/2/2009	392793	23.78	TOT
Soil/Area BF	9/2/2009	392794	22.06	TOT
Soil/Area BF	9/2/2009	392795	24.36	TOT
Soil/Area BF	9/2/2009	392796	23.06	ТОТ
Soil/Area BF	9/2/2009	392797	21.86	ТОТ
Soil/Area BF	9/2/2009	392798	25.90	ТОТ
Soil/Area BF	9/2/2009	392799	24.32	TOT

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Soil/Area BF	9/2/2009	392800	21.10	TOT
Soil/Area BF	9/2/2009	392801	25.78	TOT
Soil/Area BF	9/2/2009	392802	24.66	TOT
	Area BF 9/2/2009 Soil Disposal Totals		564.74	TOT
Soil/Area BF	9/3/2009	392803	21.68	TOT
Soil/Area BF	9/3/2009	392804	20.62	TOT
Soil/Area BF	9/3/2009	392805	24.10	TOT
Soil/Area BF	9/3/2009	392806	23.03	TOT
Soil/Area BF	9/3/2009	392807	24.98	TOT
Soil/Area BF	9/3/2009	392808	22.70	TOT
Soil/Area BF	9/3/2009	392809	24.83	TOT
Soil/Area BF	9/3/2009	392810	23.72	TOT
Soil/Area BF	9/3/2009	392811	22.73	TOT
Soil/Area BF	9/3/2009	392812	22.25	TOT
Soil/Area BF	9/3/2009	392813	24.69	TOT
Soil/Area BF	9/3/2009	392814	22.27	ТОТ
Soil/Area BF	9/3/2009	392815	23.93	ТОТ
Soil/Area BF	9/3/2009	392816	21.87	ТОТ
Soil/Area BF	9/3/2009	392817	25.17	TOT
Soil/Area BF	9/3/2009	392818	23.39	TOT
Soil/Area BF	9/3/2009	392819	25.75	TOT
Soil/Area BF	9/3/2009	392820	24.98	TOT
Soil/Area BF	9/3/2009	392821	25.89	TOT
Soil/Area BF	9/3/2009	392822	23.29	TOT
Soil/Area BF	9/3/2009	392823	21.40	TOT
Soil/Area BF	9/3/2009	392824	25.47	TOT
Soil/Area BF	9/3/2009	392825	23.93	TOT
Soil/Area BF	9/3/2009	392826	21.44	TOT
Soil/Area BF	9/3/2009	392827	24.31	TOT
Soil/Area BF	9/3/2009	392828	22.13	TOT
Soil/Area BF	9/3/2009	392829	23.55	TOT
Soil/Area BF	9/3/2009	392830	25.41	TOT
Soil/Area BF	9/3/2009	392831	21.06	TOT
Soil/Area BF	9/3/2009	392832	19.43	TOT
Soil/Area BF	9/3/2009	392833	23.22	TOT
Area BF 9/3/2009 Soil Disposal Totals			680.57	TOT
Soil/Area BF	9/4/2009	392834	19.66	ТОТ
Soil/Area BF	9/4/2009	392835	18.19	TOT
Soil/Area BF	9/4/2009	392836	24.24	TOT
Soil/Area BF	9/4/2009	392837	21.94	TOT
Soil/Area BF	9/4/2009	392838	22.24	TOT
Soil/Area BF	9/4/2009	392839	29.18	TOT
Soil/Area BF	9/4/2009	392840	21.55	TOT
Soil/Area BF	9/4/2009	392841	20.81	TOT
Soil/Area BF	9/4/2009	392842	22.23	TOT
Soil/Area BF	9/4/2009	392843	21.97	TOT

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Soil/Area BF	9/4/2009	392844	23.24	TOT
Soil/Area BF	9/4/2009	392845	20.54	TOT
Soil/Area BF	9/4/2009	329846	22.35	TOT
Soil/Area BF	9/4/2009	392847	27.19	TOT
Soil/Area BF	9/4/2009	392848	24.39	TOT
Soil/Area BF	9/4/2009	392849	25.40	TOT
Soil/Area BF	9/4/2009	392850	21.85	TOT
Soil/Area BF	9/4/2009	392851	21.71	TOT
Soil/Area BF	9/4/2009	392852	26.36	TOT
Soil/Area BF	9/4/2009	392853	23.66	TOT
Soil/Area BF	9/4/2009	392854	24.50	TOT
Soil/Area BF	9/4/2009	392855	25.07	TOT
Soil/Area BF	9/4/2009	392856	27.00	TOT
Soil/Area BF	9/4/2009	392857	22.33	TOT
Soil/Area BF	9/4/2009	392858	27.26	TOT
Soil/Area BF	9/4/2009	392859	23.23	TOT
Soil/Area BF	9/4/2009	392860	23.38	TOT
Soil/Area BF	9/4/2009	392861	22.95	TOT
Soil/Area BF	9/4/2009	392862	26.50	TOT
Soil/Area BF	9/4/2009	392863	21.64	TOT
Soil/Area BF	9/4/2009	392864	24.85	TOT
Soil/Area BF	9/4/2009	392865	26.26	TOT
Soil/Area BF	9/4/2009	392866	22.44	TOT
Soil/Area BF	9/4/2009	392867	23.98	TOT
Soil/Area BF	9/4/2009	392868	20.10	TOT
Soil/Area BF	9/4/2009	392869	22.89	TOT
Soil/Area BF	9/4/2009	392870	23.20	TOT
Soil/Area BF	9/4/2009	392871	23.73	TOT
Soil/Area BF	9/4/2009	392872	20.51	TOT
Soil/Area BF	9/4/2009	392873	22.42	TOT
Soil/Area BF	9/4/2009	392874	26.34	TOT
Soil/Area BF	9/4/2009	392875	20.45	TOT
Soil/Area BF	9/3/2009	392876	20.87	TOT
Soil/Area BF	9/4/2009	392877	24.49	TOT
Soil/Area BF	9/4/2009	392878	27.59	TOT
Soil/Area BF	9/4/2009	392879	24.52	TOT
Area BF 9/4/2009 Soil Disposal Totals			1077.20	TOT
Soil/Area BF	9/10/2009	392880	21.17	TOT
Soil/Area BF	9/10/2009	392881	17.90	TOT
Soil/Area BF	9/10/2009	392882	19.39	TOT
Soil/Area BF	9/10/2009	392883	22.43	TOT
Soil/Area BF	9/10/2009	392884	21.70	TOT
Soil/Area BF	9/10/2009	392885	19.38	TOT
Soil/Area BF	9/10/2009	392886	22.57	TOT
Soil/Area BF	9/10/2009	392887	21.26	TOT
Soil/Area BF	9/10/2009	392888	23.68	TOT

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Soil/Area BF	9/10/2009	392889	23.31	ТОТ
Soil/Area BF	9/10/2009	392890	21.99	ТОТ
Soil/Area BF	9/10/2009	392891	25.86	ТОТ
Soil/Area BF	9/10/2009	392892	22.17	TOT
Soil/Area BF	9/10/2009	392893	24.27	TOT
Soil/Area BF	9/10/2009	392894	22.80	TOT
Soil/Area BF	9/10/2009	392895	23.89	TOT
Soil/Area BF	9/10/2009	392896	26.12	TOT
Soil/Area BF	9/10/2009	392897	19.10	TOT
Soil/Area BF	9/10/2009	392898	24.30	TOT
Soil/Area BF	9/10/2009	392899	23.02	TOT
Soil/Area BF	9/10/2009	392900	24.24	TOT
Soil/Area BF	9/10/2009	392901	22.59	ТОТ
Soil/Area BF	9/10/2009	392902	24.91	ТОТ
Soil/Area BF	9/10/2009	392902	27.33	ТОТ
Soil/Area BF	9/10/2009	392904	27.12	ТОТ
Soil/Area BF	9/10/2009	392905	21.10	ТОТ
Soil/Area BF	9/10/2009	393208	21.42	TOT
Soil/Area BF	9/10/2009	393209	20.65	ТОТ
Soil/Area BF	9/10/2009	393210	20.90	TOT
Soil/Area BF	9/10/2009	393211	20.65	TOT
Soil/Area BF	9/10/2009	393212	23.52	TOT
Soil/Area BF	9/10/2009	393213	20.34	TOT
Soil/Area BF	9/10/2009	393214	23.58	TOT
Soil/Area BF	9/10/2009	393215	22.39	TOT
Soil/Area BF	9/10/2009	393216	17.37	TOT
Soil/Area BF	9/10/2009	393217	24.81	TOT
Soil/Area BF	9/10/2009	393218	20.05	TOT
Soil/Area BF	9/10/2009	393219	14.43	TOT
Soil/Area BF	9/10/2009	393220	18.53	TOT
Soil/Area BF	9/10/2009	393221	18.99	TOT
Soil/Area BF	9/10/2009	393222	14.37	TOT
Soil/Area BF	9/10/2009	393223	20.09	TOT
Soil/Area BF	9/10/2009	393224	21.30	TOT
Soil/Area BF	9/10/2009	393225	18.48	TOT
Soil/Area BF	9/10/2009	393226	18.22	TOT
		009 Soil Disposal Totals	973.69	ТОТ
	Area	BF Soil Disposal Totals	6,073.41	ТОТ

Table 8-6-BSpaulding Fibre Facility OU6Confirmation Soil Results Area BF

Sample ID	6 NYCRR	BF-1E	BF-2E	BF-3E	BF-4E	BF-5E	BFW-1	BFW-2	BFW-3	BFW-4	BFW-5	BFW-6	BFW-7
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Bottom	Bottom	Bottom	Sidewall						
Date Sampled	RRU SCOs ¹	9/10/2009	9/10/2009	9/10/2009	9/10/2009	9/10/2009	9/21/2009	9/21/2009	9/21/2009	9/21/2009	9/21/2009	9/21/2009	9/21/2009
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS													
Barium	400	133	134	147	112	87.8	157	117	145	122	62.7	85.6	74.9
Chromium, hexavalent	180	ND											
Chromium, total	180	20.4	18.9	27.8	26.6	12.2	24.9	18.9	25.6	22.1	13.8	17.5	13.2

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's

5) Metals analyzed by USEPA 6000/7000 Series Methods.

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Soil/Area BH	3/5/2010	396405	20.7	TOT
Soil/Area BH	3/5/2010	396406	20.34	TOT
Soil/Area BH	3/5/2010	396407	22.48	TOT
Soil/Area BH	3/5/2010	396408	21.68	TOT
Soil/Area BH	3/5/2010	396409	18.54	TOT
Soil/Area BH	3/5/2010	396410	18.82	TOT
Soil/Area BH	3/5/2010	396411	20.1	TOT
Soil/Area BH	3/5/2010	396412	20.74	TOT
Soil/Area BH	3/5/2010	396413	18.96	TOT
Soil/Area BH	3/5/2010	396414	15.46	TOT
Soil/Area BH	3/5/2010	396415	16.28	TOT
Soil/Area BH	3/5/2010	396416	18.58	TOT
Soil/Area BH	3/5/2010	396417	20.26	TOT
Soil/Area BH	3/5/2010	396418	22.18	TOT
Soil/Area BH	3/5/2010	396419	19.94	TOT
Soil/Area BH	3/5/2010	396420	20.08	TOT
Soil/Area BH	3/5/2010	396421	20.04	TOT
Soil/Area BH	3/5/2010	396422	19.52	ТОТ
Soil/Area BH	3/5/2010	396423	21.38	TOT
Soil/Area BH	3/5/2010	396424	23.46	TOT
Soil/Area BH	3/5/2010	396425	21.98	ТОТ
Soil/Area BH	3/5/2010	396426	19.96	TOT
Soil/Area BH	3/5/2010	396427	19.72	TOT
Soil/Area BH	3/5/2010	396428	23.08	TOT
Soil/Area BH	3/5/2010	396429	19.38	TOT
Soil/Area BH	3/5/2010	396430	18.62	TOT
Soil/Area BH	3/5/2010	396431	22.5	TOT
Soil/Area BH	3/5/2010	396432	22.08	TOT
Soil/Area BH	3/5/2010	396433	19.12	TOT
Soil/Area BH	3/5/2010	396434	19.34	TOT
Soil/Area BH	3/5/2010	396435	17.64	TOT
Soil/Area BH	3/5/2010	396436	21.98	TOT
Soil/Area BH	3/5/2010	396437	23.88	TOT
Soil/Area BH	3/5/2010	396438	20.96	TOT
Soil/Area BH	3/5/2010	396439	19.96	TOT
Soil/Area BH	3/5/2010	396440	22.5	TOT
Soil/Area BH	3/5/2010	396441	19.72	TOT
Soil/Area BH	3/5/2010	396442	23.16	TOT
Soil/Area BH	3/5/2010	396443	21.9	TOT
Soil/Area BH	3/5/2010	396444	22.94	TOT
Soil/Area BH	3/5/2010	396445	19.95	TOT
Soil/Area BH	3/5/2010	396446	24.04	TOT
Soil/Area BH	3/5/2010	396447	23.12	TOT
		posal Total for 3/5/2010	887.07	TOT
Soil/Area BH	3/9/2010	396448	17.42	TOT
Soil/Area BH	3/9/2010	396449	22.36	TOT
Soil/Area BH	3/9/2010	396450	19.56	TOT
Soil/Area BH	3/9/2010	396451	17.06	TOT
Soil/Area BH	3/9/2010	396452	20.9	TOT

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location	
Soil/Area BH	3/9/2010	396453	20.38	TOT	
Soil/Area BH	3/9/2010	396454	23.66	TOT	
Soil/Area BH	3/9/2010	396455	23.48	TOT	
Soil/Area BH	3/9/2010	396456	21.6	TOT	
Soil/Area BH	3/9/2010	396457	19.06	TOT	
Soil/Area BH	3/9/2010	396458	20.08	TOT	
Soil/Area BH	3/9/2010	396459	20.94	TOT	
Soil/Area BH	3/9/2010	396460	16.2	TOT	
Soil/Area BH	3/9/2010	396461	18.36	TOT	
Soil/Area BH	3/9/2010	396462	21.24	TOT	
Soil/Area BH	3/9/2010	396463	21.52	TOT	
Soil/Area BH	3/9/2010	396464	23.78	TOT	
Soil/Area BH	3/9/2010	396465	23.26	TOT	
Soil/Area BH	3/9/2010	396466	23.28	TOT	
Soil/Area BH	3/9/2010	396467	24.2	TOT	
Soil/Area BH	3/9/2010	396468	24.8	TOT	
Soil/Area BH	3/9/2010	396469	23.62	TOT	
Soil/Area BH	3/9/2010	396470	22.6	TOT	
Soil/Area BH	3/9/2010	396471	19.62	TOT	
Soil/Area BH	3/9/2010	396472	22.44	TOT	
Soil/Area BH	3/9/2010	396473	23.17	TOT	
Soil/Area BH	3/9/2010	396474	25.14	TOT	
Soil/Area BH	3/9/2010	396475	24.24	TOT	
Soil/Area BH	3/9/2010	396476	23.32	TOT	
Soil/Area BH	3/9/2010	396477	27.14	TOT	
Soil/Area BH	3/9/2010	396478	27.48	TOT	
Soil/Area BH	3/9/2010	396479	23.32	TOT	
Soil/Area BH	3/9/2010	396480	25.24	TOT	
Soil/Area BH	3/9/2010	396481	20.78	TOT	
Soil/Area BH	3/9/2010	396482	22.58	TOT	
Soil/Area BH	3/9/2010	396483	24.2	TOT	
	Area BH Soil Disp	oosal Total for 3/9/2010	798.03	TOT	
Soil/Area BH	4/16/2010	17	16.3	Modern	
Soil/Area BH	4/16/2010	19	16.1	Modern	
Soil/Area BH	4/16/2010	20	20.08	Modern	
Soil/Area BH	4/16/2010	21	26.16	Modern	
Area BH	Area BH Modern Soil Disposal Total for 4/16/2010				
	Area BH TOT Soil Disposal Totals				
	Area BH Modern Soil Disposal Totals				
	Area I	3H Soil Disposal Totals	1,763.74	Modern & TOT	

Table 8-7-B Spaulding Fibre Facility OU6 Confirmation Soil Results Area BH

Sample ID	6 NYCRR	BH-SS-1	BH-SS-2	BH-BS-1	BH-BS-2	BH-SS-3
Sample Location	Part 375-6.8(b)	Sidewall	Sidewall	Bottom	Bottom	Sidewall
Date Sampled	RRU SCOs¹	3/26/2010	3/26/2010	3/26/2010	3/26/2010	4/19/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs						
Acenaphthene	100	ND	0.607	ND	ND	ND
Anthracene	100	ND	1.04	ND	ND	ND
Benzo (a) anthracene	1	ND	1.61	0.113	0.0975	0.027 J
Benzo (a) pyrene	1	ND	1.26	0.09	ND	ND
Benzo (b) fluoranthene	1	ND	1.3	0.09	ND	ND
Benzo (g,h,i) pylene	100	ND	0.616	ND	ND	ND
Benzo (k) fluoranthene	3.9	ND	1.09	ND	ND	ND
Chrysene	3.9	ND	1.53	0.105	0.0941	ND
Dibenzo (a,h) anthracene	0.33	ND	0.22	ND	ND	ND
Fluoranthene	100	ND	4.14	0.28	0.254	0.042 J
Fluorene	100	ND	0.696	ND	ND	ND
Indeno (1,2,3-cd) pyrene	0.5	ND	0.805	ND	ND	ND
Naphthalene	100	ND	0.391	ND	ND	ND
Phenanthrene	100	ND	3.86	0.253	0.249	0.033 J
Pyrene	100	ND	2.57	0.185	0.176	ND
METALS						
Aluminum	NC	25,000	28,700	33,300	29,100	19,100
Antimony	NC	ND	ND	ND	ND	ND
Arsenic	16	3.74	4.44	4.43	5.09	5.2
Barium	400	132	158	177	177	146
Beryllium	72	0.92	1.15	1.46	1.23	1.1
Cadmium	4.3	0.501	1.56	0.682	0.719	0.42
Calcium	NC	7,820	16,800	2,870	20,100	3,210
Cobalt	NC	11.7	13.9	22	14.6	14.2
Chromium	180	30	36.7	39.5	36.5	26.8
Copper	270	21.3	38.2	29.5	30.4	24
Iron	NC	28,700	38,100	37,500	36,700	43,100
Lead	400	13.6	33.4	17.7	19.4	10.5
Magnesium	NC	11,500	12,600	11,400	14,100	8,720
Manganese	2000	388	550	508	715	480
Mercury	0.81	0.0228	0.14	0.12	0.0241	0.026
Nickel	310	26.2	32.9	34.9	33.8	34
Potassium	NC	4,870	6,110	6,610	6,700	1,930
Sodium	NC	163	262	179	212	120
Selenium	180	ND	ND	ND	ND	ND
Silver	180	ND	ND	0.299	0.375	ND
Thallium	NC	0.909	0.97	0.963	1.2	2.9
Vanadium	NC	44.8	52.8	57.6	54.8	32.8
Zinc	10000	85.7	341	327	127	67.1

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

- 3) mg/kg = milligrams per kilogram
- 4) ND = not detected below the laboratory's method dectection limit (MDL)
- 5) NC = No Criteria
- 6) PAHs analyzed by SW846-8270C
- 7) Metals analyzed by USEPA 6000/7000 Series Methods.
- 8) Red crossed out sample location was overexcavated and resampled.

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AC	4/5/2010	397347	20.84	TOT
AC	4/5/2010	397348	22.84	TOT
AC	4/5/2010	397349	20.94	TOT
AC	4/5/2010	397350	21.16	TOT
AC	4/5/2010	397351	20.28	TOT
AC	4/5/2010	397352	17.92	TOT
AC	4/5/2010	397353	23.72	TOT
AC	4/5/2010	397354	19.04	TOT
AC	4/5/2010	397355	18.42	TOT
AC	4/5/2010	397356	19.86	TOT
AC	4/5/2010	397357	19.05	TOT
AC	4/5/2010	397358	20.02	TOT
AC	4/5/2010	397359	19.92	TOT
AC	4/5/2010	397360	20.94	TOT
AC	4/5/2010	397361	20.60	TOT
AC	4/5/2010	397364	18.98	TOT
AC	4/5/2010	397365	17.10	TOT
	Area AC Soil Disp	oosal Total for 4/5/2010	341.63	ТОТ
AC	4/5/2010	4811380	20.54	Modern
AC	4/5/2010	4811394	22.88	Modern
AC	4/5/2010	4811395	22.34	Modern
AC	4/5/2010	4811381	21.84	Modern
AC	4/5/2010	4811373	16.58	Modern
AC	4/5/2010	4811374	14.93	Modern
AC	4/5/2010	4811385	19.97	Modern
AC	4/5/2010	4811375	20.44	Modern
	Area AC Soil Disp	oosal Total for 4/5/2010	159.52	Modern
AC	4/6/2010	397425	19.70	TOT
AC	4/6/2010	397416	22.60	TOT
	Area AC Soil Disp	osal Total for 4/6/2010	42.30	ТОТ
AC	4/7/2010	397427	21.06	TOT
AC	4/7/2010	397428	24.88	TOT
AC	4/7/2010	397429	23.44	ТОТ
AC	4/7/2010	397430	22.48	TOT
AC	4/7/2010	397431	26.44	TOT
AC	4/7/2010	397432	20.42	TOT
AC	4/7/2010	397433	21.86	TOT
AC	4/7/2010	397434	22.39	TOT
AC	4/7/2010	397435	22.43	TOT
AC	4/7/2010	397436	16.07	TOT
AC	4/7/2010	397437	23.48	TOT
AC	4/7/2010	397438	24.16	TOT
AC	4/7/2010	397439	24.66	TOT
AC	4/7/2010	397440	22.50	TOT
AC	4/7/2010	397441	24.04	TOT
AC	4/7/2010	397442	19.04	TOT
AC	4/7/2010	397443	19.20	TOT
AC	4/7/2010	397444	23.76	TOT

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AC	4/7/2010	397445	16.92	TOT
AC	4/7/2010	397446	22.98	TOT
AC	4/7/2010	397447	23.48	TOT
AC	4/7/2010	397448	20.86	TOT
	Area AC Soil Disp	oosal Total for 4/7/2010	486.55	ТОТ
AC	4/7/2010	4826663	21.65	Modern
AC	4/7/2010	4826664	21.12	Modern
AC	4/7/2010	4826665	20.59	Modern
AC	4/7/2010	4826666	19.15	Modern
AC	4/7/2010	4826667	21.32	Modern
AC	4/7/2010	4826668	22.11	Modern
AC	4/7/2010	4826645	20.29	Modern
AC	4/7/2010	4826604	23.57	Modern
AC	4/7/2010	4826603	21.83	Modern
AC	4/7/2010	4826599	22.05	Modern
AC	4/7/2010	4826598	24.45	Modern
AC	4/7/2010	4826614	23.57	Modern
AC	4/7/2010	4826613	22.57	Modern
AC	4/7/2010	4826588	23.42	Modern
	÷	oosal Total for 4/7/2010	307.69	Modern
AC	5/5/2010	260	24.39	Modern
AC	5/5/2010	288	24.19	Modern
AC	5/5/2010	313	20.89	Modern
AC	5/5/2010	313	23.11	Modern
AC	5/5/2010	315	18.89	Modern
AC	5/5/2010	316	23.67	Modern
AC	5/5/2010	317	18.37	Modern
AC	5/5/2010	318	23.76	Modern
AC	5/5/2010	320	21.33	Modern
AC	5/5/2010	320	22.36	Modern
		oosal Total for 5/5/2010	220.96	Modern
AC	5/26/2010	518	20.66	Modern
AC	5/26/2010	523	20.00	Modern
AC	5/26/2010	524	19.69	Modern
AC	5/26/2010	499	19.80	Modern
AC	5/26/2010	501	21.99	Modern
AC	5/26/2010	503	22.36	Modern
AC	5/26/2010	504	22.30	Modern
AC	5/26/2010	506	20.60	Modern
AC	5/26/2010	508	20.00	Modern
AC	5/26/2010	509	24.39	Modern
AC	5/26/2010	513	22.47	Modern
AC	5/26/2010	487	22.73	Modern
AC	5/26/2010	487	21.17	Modern
AC	5/26/2010	483	21.17	Modern
AC	5/26/2010	482	25.13	Modern
AC	5/26/2010	479	26.23	Modern
AC	5/26/2010	479	23.74	Modern

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AC	5/26/2010	477	23.14	Modern
AC	5/26/2010	476	20.87	Modern
AC	5/26/2010	474	22.38	Modern
AC	5/26/2010	473	21.47	Modern
AC	5/26/2010	471	23.11	Modern
AC	5/26/2010	472	21.59	Modern
AC	5/26/2010	470	22.59	Modern
AC	5/26/2010	467	20.59	Modern
AC	5/26/2010	468	23.97	Modern
AC	5/26/2010	466	20.66	Modern
AC	5/26/2010	166	22.04	Modern
AC	5/26/2010	165	24.20	Modern
AC	5/26/2010	164	22.01	Modern
AC	5/26/2010	163	23.78	Modern
AC	5/26/2010	162	23.57	Modern
		osal Total for 5/26/2010	720.20	Modern
AC	5/27/2010	844	22.15	Modern
AC	5/27/2010	845	22.97	Modern
AC	5/27/2010	846	24.60	Modern
AC	5/27/2010	157	20.88	Modern
AC	5/27/2010	849	21.59	Modern
AC	5/27/2010	847	22.83	Modern
AC	5/27/2010	850	23.53	Modern
AC	5/27/2010	152	22.03	Modern
		osal Total for 5/27/2010	180.58	Modern
AC	7/25/2010	255	21.63	Modern
AC	7/25/2010	256	21.80	Modern
AC	7/25/2010	257	22.67	Modern
AC	7/25/2010	258	23.60	Modern
AC	7/25/2010	259	19.40	Modern
AC	7/25/2010	261	21.89	Modern
AC	7/25/2010	262	20.21	Modern
AC	7/25/2010	263	20.26	Modern
AC	7/25/2010	264	21.65	Modern
AC	7/25/2010	265	21.24	Modern
AC	7/25/2010	266	23.36	Modern
AC	7/25/2010	267	23.62	Modern
AC	7/25/2010	268	23.26	Modern
AC	7/25/2010	269	20.83	Modern
AC	7/25/2010	270	22.45	Modern
AC	7/25/2010	271	24.28	Modern
AC	7/25/2010	272	23.51	Modern
A	Area AC Soil Dispo	osal Total for 7/25/2010	375.66	Modern
	Area AC N	1,964.61	Modern	
		870.48	ТОТ	
	Area A	AC Soil Disposal Totals	2,835.09	TOT & Modern

Table 9-1-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area AC

Sample ID	6 NYCRR	AC-SS-1	AC-BS-1	AC-BS-2	AC-BS-3	AC-BS-4	AC-BS-5	AC-BS-6	AC-BS-7	AC-BS-8	AC-BS-9	AC-BS-10
Sample Location	Part 375-6.8(b)	Sidewall	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs¹	4/14/2010	4/14/2010	4/14/2010	5/5/2010	5/27/2010	6/9/2010	6/9/2010	6/9/2010	6/9/2010	6/9/2010	6/9/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS												
Cadmium	4.3	2	7.4	2.2	2.28	7.19	2.19	5.83	4.22	5.53	5.79	4.37
Zinc	10000	6200	13000	1100	16000	76000	3790	12800	53400	6550	161000	119000

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NA - Not Analyzed

6) Metals analyzed by USEPA Method 6010.

Table 9-1-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area AC

Sample ID	6 NYCRR	AC-BS-11	AC-BS-12	AC-BS-13	AC-BS-14	AC-BS-15	AC-BS-16	AC-BS-17	AC-BS-18	AC-BS-19	AC-BS-20	AC-BS-21	AC-BS-22
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs¹	6/9/2010	6/9/2010	6/9/2010	6/24/2010	6/24/2010	6/24/2010	6/24/2010	6/24/2010	6/24/2010	6/24/2010	7/15/2010	7/15/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS													
Cadmium	4.3	2.82	4.21	5.63	1.69	3.2	1.51	4.42	4.43	2.54	5.44	2.61	2.94
Zinc	10000	5190	98200	84700	2290	3190	1890	2690	6080	2340	5000	1990	5290

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NA - Not Analyzed

6) Metals analyzed by USEPA Method 6010.

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AJ-A	4/13/2010	4835445	23.86	Modern
AJ-A	4/13/2010	4835446	23.67	Modern
AJ-A	4/13/2010	4835444	23.93	Modern
AJ-A	4/13/2010	4835471	21.49	Modern
AJ-A	4/13/2010	4835472	17.98	Modern
AJ-A	4/13/2010	4835461	26.44	Modern
AJ-A	4/13/2010	4835462	25.05	Modern
AJ-A	4/13/2010	4835463	25.75	Modern
AJ-A	4/13/2010	4835464	22.8	Modern
AJ-A	4/13/2010	4835465	23.84	Modern
AJ-A	4/13/2010	4835466	25	Modern
AJ-A	4/13/2010	4835413	20.79	Modern
AJ-A	4/13/2010	4835439	22.43	Modern
AJ-A	4/13/2010	4835416	24.02	Modern
AJ-A	4/13/2010	4835415	22.77	Modern
AJ-A	4/13/2010	4835437	21.59	Modern
AJ-A	4/13/2010	4835436	18.85	Modern
AJ-A	4/13/2010	4835431	21.73	Modern
AJ-A	4/13/2010	4835435	19.96	Modern
AJ-A	4/13/2010	4835399	22.82	Modern
AJ-A	4/13/2010	4835398	20.04	Modern
AJ-A	4/13/2010	4835397	21.73	Modern
AJ-A	4/13/2010	4835434	21.32	Modern
AJ-A	4/13/2010	4835433	20.94	Modern
AJ-A	4/13/2010	4835428	22.34	Modern
AJ-A	4/13/2010	4835430	21.7	Modern
AJ-A	4/13/2010	4835395	24.7	Modern
AJ-A	4/13/2010	4835429	20.92	Modern
AJ-A	4/13/2010	4835427	21.52	Modern
AJ-A	4/13/2010	4835426	22.36	Modern
AJ-A	4/13/2010	4835425	19.23	Modern
AJ-A	4/13/2010	4835424	22.91	Modern
AJ-A	4/13/2010	4835423	22.25	Modern
AJ-A	4/13/2010	4835422	22.8	Modern
AJ-A	4/13/2010	4835421	23.84	Modern
AJ-A	4/13/2010	4835420	21.21	Modern
AJ-A	4/13/2010	4835400	21.72	Modern
AJ-A	4/13/2010	4835403	24.33	Modern
	-	osal Total for 4/13/2010	850.63	Modern
AJ-A	4/16/2010		23.68	Modern
AJ-A	4/16/2010		19.11	Modern
AJ-A	4/16/2010		20.01	Modern
AJ-A	4/16/2010		22.95	Modern
AJ-A	4/16/2010		21.91	Modern
AJ-A	4/16/2010		20.76	Modern
	-	osal Total for 4/16/2010	128.42	Modern
	Area AJ (no	rth) 4/13 and 4/16/2010	979.05	Modern

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AJ-A	4/30/2010	39	20.76	Modern
AJ-A	4/30/2010	40	24.34	Modern
AJ-A	4/30/2010	41	22.11	Modern
AJ-A	4/30/2010	42	23.22	Modern
AJ-A	4/30/2010	43	19.13	Modern
AJ-A	4/30/2010	593	24.95	Modern
AJ-A	4/30/2010	44	22.81	Modern
AJ-A	4/30/2010	602	23.69	Modern
AJ-A	4/30/2010	478	22.9	Modern
AJ-A	4/30/2010	604	21.51	Modern
AJ-A	4/30/2010	477	19.43	Modern
	Area AJ-A Soil Dispo	osal Total for 4/30/2010	244.85	Modern
AJ-A	6/16/2010	504	25.66	TOT
AJ-A	6/16/2010	505	19.96	TOT
AJ-A	6/16/2010	506	20.76	TOT
AJ-A	6/16/2010	507	18.96	TOT
AJ-A	6/16/2010	508	20.86	TOT
AJ-A	6/16/2010	509	18.74	TOT
AJ-A	6/16/2010	510	22.48	TOT
AJ-A	6/16/2010	511	23.9	TOT
AJ-A	6/16/2010	512	18.12	TOT
AJ-A	6/16/2010	513	20.86	TOT
AJ-A	6/16/2010	514	19.76	TOT
AJ-A	6/16/2010	515	20.18	TOT
AJ-A	6/16/2010	516	21.26	TOT
AJ-A	6/16/2010	517	22.88	TOT
AJ-A	6/16/2010	518	22.58	TOT
AJ-A	6/16/2010	519	22.66	TOT
	Area AJ-A Soil Disp	osal Total for 6/16/2010	339.62	ТОТ
AJ-A	6/17/2010	520	22.8	TOT
AJ-A	6/17/2010	521	22.8	TOT
AJ-A	6/17/2010	522	23.24	TOT
AJ-A	6/17/2010	523	22.58	TOT
AJ-A	6/17/2010	524	21.76	TOT
AJ-A	6/17/2010	525	25.14	TOT
AJ-A	6/17/2010	526	23.1	TOT
AJ-A	6/17/2010	527	22.04	TOT
AJ-A	6/17/2010	528	24.5	TOT
AJ-A	6/17/2010	529	22.94	TOT
AJ-A	6/17/2010	530	25.66	TOT
AJ-A	6/17/2010	531	23.92	TOT
AJ-A	6/17/2010	532	22.04	TOT
AJ-A	6/17/2010	533	22	TOT
AJ-A	6/17/2010	534	24.88	TOT
AJ-A	6/17/2010	535	22.36	TOT
AJ-A	6/17/2010	536	25.78	TOT
AJ-A	6/17/2010	537	23.02	TOT
AJ-A	6/17/2010	538	23.82	TOT
AJ-A	6/17/2010	539	22.6	TOT
AJ-A	6/17/2010	540	23.2	TOT

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA1ASoilDisposalTables\9-2-A(AJ-A)

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AJ-A	6/17/2010	541	23.82	TOT
AJ-A	6/17/2010	542	21.06	TOT
AJ-A	6/17/2010	543	23.2	TOT
AJ-A	6/17/2010	544	23.46	TOT
AJ-A	6/17/2010	545	23.12	TOT
AJ-A	6/17/2010	547	24.1	TOT
AJ-A	6/17/2010	548	21.8	TOT
AJ-A	6/17/2010	549	23.06	TOT
AJ-A	6/17/2010	550	23.5	TOT
AJ-A	6/17/2010	551	23.18	TOT
AJ-A	6/17/2010	552	25.54	TOT
AJ-A	6/17/2010	553	23.26	TOT
AJ-A	6/17/2010	554	24.76	TOT
AJ-A	6/17/2010	555	21.96	TOT
AJ-A	6/17/2010	556	24.52	TOT
AJ-A	6/17/2010	557	23.76	TOT
AJ-A	6/17/2010	558	21.72	TOT
AJ-A	6/17/2010	559	23.54	TOT
AJ-A	6/17/2010	560	26.28	TOT
AJ-A	6/17/2010	561	23.8	TOT
AJ-A	6/17/2010	562	25.88	TOT
AJ-A	6/17/2010	563	21.48	TOT
AJ-A	6/17/2010	564	26.52	TOT
AJ-A	6/17/2010	565	25.96	TOT
AJ-A	6/17/2010	566	27.44	TOT
AJ-A	6/17/2010	567	25.6	TOT
AJ-A	6/17/2010	568	25.3	TOT
AJ-A	6/17/2010	569	26.34	TOT
AJ-A	6/17/2010	570	23.84	TOT
AJ-A	6/17/2010	571	24.46	TOT
	Area AJ-A Soil Disp	osal Total for 6/17/2010	1,212.44	TOT
AJ-A	6/18/2010	572	22.34	TOT
AJ-A	6/18/2010	573	23.56	TOT
AJ-A	6/18/2010	574	22.34	TOT
AJ-A	6/18/2010	575	25.08	TOT
AJ-A	6/18/2010	576	22.54	TOT
AJ-A	6/18/2010	577	24	TOT
AJ-A	6/18/2010	578	22.28	TOT
AJ-A	6/18/2010	579	24.64	TOT
AJ-A	6/18/2010	580	22.4	TOT
AJ-A	6/18/2010	581	22.43	TOT
AJ-A	6/18/2010	582	22.88	TOT
AJ-A	6/18/2010	583	22.22	TOT
AJ-A	6/18/2010	584	23.4	TOT
AJ-A	6/18/2010	585	23.86	TOT
AJ-A	6/18/2010	586	24.25	TOT
AJ-A	6/18/2010	587	24.12	TOT
AJ-A	6/18/2010	588	24.28	TOT
AJ-A	6/18/2010	589	23.78	TOT
AJ-A	6/18/2010	590	24.32	TOT

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AJ-A	6/18/2010	591	23.38	TOT
AJ-A	6/18/2010	592	23.02	TOT
AJ-A	6/18/2010	593	25.9	TOT
AJ-A	6/18/2010	594	25.6	TOT
AJ-A	6/18/2010	595	23.14	TOT
	Area AJ-A Soil Disp	osal Total for 6/18/2010	565.76	TOT
AJ-A	6/24/2010	4907537	21.55	Modern
AJ-A	6/24/2010	4907538	21.67	Modern
AJ-A	6/24/2010	4909713	21.9	Modern
AJ-A	6/24/2010	4910716	24.9	Modern
	Area AJ-A Soil Disp	osal Total for 6/24/2010	90.02	Modern
AJ-A	7/12/2010	4843554	22.12	Modern
AJ-A	7/12/2010	4876933	22.64	Modern
AJ-A	7/12/2010	4876935	24.68	Modern
AJ-A	7/12/2010	4876936	23.12	Modern
AJ-A	7/12/2010	4927275	22.66	Modern
AJ-A	7/12/2010	4927276	21.28	Modern
AJ-A	7/12/2010	4927277	21.97	Modern
AJ-A	7/12/2010	4927279	22.57	Modern
AJ-A	7/12/2010	4959360	21.91	Modern
AJ-A	7/12/2010	361	24.9	Modern
AJ-A	7/12/2010	362	23.28	Modern
AJ-A	7/12/2010	363	24.11	Modern
	Area AJ-A Soil Disp	osal Total for 7/12/2010	275.24	Modern
AJ-A	7/19/2010	665	21.58	Modern
	Area AJ-A Soil Disp	osal Total for 7/19/2010	21.58	Modern
AJ-A	8/3/2010	448	25.97	Modern
AJ-A	8/3/2010	447	23.38	Modern
AJ-A	8/3/2010	446	21.78	Modern
AJ-A	8/3/2010	444	22.63	Modern
AJ-A	8/3/2010	443	24.03	Modern
AJ-A	8/3/2010	442	23.14	Modern
AJ-A	8/3/2010	785	21.93	Modern
AJ-A	8/3/2010	723	25.33	Modern
AJ-A	8/3/2010	862	24.51	Modern
	Area AJ-A Soil Dis	posal Total for 8/3/2010	212.70	Modern
AJ-A	8/10/2010	3522	19.16	Modern
AJ-A	8/10/2010	190	22.09	Modern
AJ-A	8/10/2010	184	20.73	Modern
	Area AJ-A Soil Disp	osal Total for 8/10/2010	61.98	Modern
AJ-A	8/11/2010	5493	21.09	Modern
AJ-A	8/11/2010	522	15.58	Modern
AJ-A	8/11/2010	5524	19.42	Modern
AJ-A	8/11/2010	5525	17.31	Modern
AJ-A	8/11/2010	473	19.19	Modern
AJ-A	8/11/2010	5528	18.6	Modern
AJ-A	8/11/2010	5529	21.89	Modern
AJ-A	8/11/2010	5530	21.99	Modern

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA1ASoilDisposalTables\9-2-A(AJ-A)

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location			
AJ-A	8/11/2010	5469	18.65	Modern			
AJ-A	8/11/2010	21.39	Modern				
l	Area AJ-A Soil Dispo	195.11	Modern				
	Area AJ-A (Sout	th) Soil Disposal Total	3,219.30	TOT & Modern			
	Area AJ-A M	Iodern Disposal Totals	2,080.53	Modern			
	Area AJ-A TOT Totals						
	Area AJ-A Soil Disposal Totals						

Table 9-2-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area AJ-a

Sample ID	6 NYCRR	AJ-a-BS-1	AJ-a-BS-2	AJ-a-BS-3	AJ-a-SS-1	AJ-a-BS-4	AJ-a-BS-5	AJ-a-SS-2	AJ-a-BS-6	AJ-a-BS-7	AJ-a-BS-8	AJ-a-BS-9
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Bottom	Sidewall	Bottom	Bottom	Sidewall	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs¹	5/7/2010	6/22/2010	<u>6/22/2010</u>	7/9/2010	7/9/2010	7/9/2010	7/19/2010	7/26/2010	7/26/2010	7/26/2010	7/26/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS												
Cadmium	4.3	0.933	3.09	3.64	23.9	1.84	2.96	3.35	1.58	0.828	2.15	9.05
Copper	270	27.6	468	423	303	101	117	14	69.8	56.5	513	165
Zinc	10,000	962	14,500	77,800	70,300	4,030	24,400	8,680	4,680	1,260	28,000	38,900

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NA - Not Analyzed

6) Metals analyzed by USEPA Method 6010.

Table 9-2-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area AJ-a

Sample ID	6 NYCRR	AJ-a-BS-10	AJ-a-BS-11	AJ-a-BS-12	AJ-a-BS-13	AJ-a-BS-14	AJ-a-BS-15	AJ-a-BS-16	AJ-a-BS-17	AJ-a-BS-18	AJ-a-BS-19
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs¹	7/26/2010	7/26/2010	7/27/2010	7/27/2010	7/27/2010	7/27/2010	8/3/2010	8/4/2010	8/10/2010	8/10/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS											
Cadmium	4.3	16.8	4.95	0.694	0.686	0.948	0.789	3.47	24.2	0.873	1.18
Copper	270	230	253	38.2	30.1	31.2	6.99	21.4	27.3	25.2	69.2
Zinc	10,000	438,000	37,000	109	83	95	46	5,630	6,260	449	4,850

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NA - Not Analyzed

6) Metals analyzed by USEPA Method 6010.

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AJ-B	4/5/2010	397366	23.46	TOT
AJ-B	4/5/2010	397367	23.2	TOT
AJ-B	4/5/2010	397368	21.84	TOT
	Area AJ-B Soil Disj	posal Total for 4/5/2010	68.50	TOT
AJ-B	4/6/2010	397406	20.64	TOT
	Area AJ-B Soil Dis	posal Total for 4/6/2010	20.64	ТОТ
AJ-B	4/6/2010	4811360	18.88	Modern
AJ-B	4/6/2010	4811361	21.06	Modern
AJ-B	4/6/2010	4809833	18.98	Modern
AJ-B	4/6/2010	4809831	20.53	Modern
AJ-B	4/6/2010	4811364	22.96	Modern
AJ-B	4/6/2010	4809827	22.62	Modern
AJ-B	4/6/2010	4809826	21.56	Modern
AJ-B	4/6/2010	4809825	18.72	Modern
AJ-B	4/6/2010	4809824	18.91	Modern
AJ-B	4/6/2010	4809823	16.52	Modern
AJ-B	4/6/2010	4809822	20.92	Modern
AJ-B	4/6/2010	4809820	19.45	Modern
		posal Total for 4/6/2010	241.11	Modern
AJ-B	4/13/2010	4835448	22.03	Modern
AJ-B	4/13/2010	4835449	24.22	Modern
AJ-B	4/13/2010	4835438	23.79	Modern
		osal Total for 4/13/2010	70.04	Modern
AJ-B	4/15/2010	4811438	27.93	Modern
AJ-B AJ-B	4/15/2010	4811437	27.61	Modern
AJ-B	4/15/2010	4811436	22.72	Modern
AJ-B	4/15/2010	4811435	23.54	Modern
AJ-B	4/15/2010	4811412	23.47	Modern
AJ-B	4/15/2010	4826585	22.71	Modern
AJ-B	4/15/2010	4826583	22.35	Modern
AJ-B	4/15/2010	4835373	24.6	Modern
AJ-B	4/15/2010	4835377	23.67	Modern
AJ-B	4/15/2010	4835378	21.8	Modern
AJ-B	4/15/2010	4835379	20.35	Modern
AJ-B	4/15/2010	4835380	21.26	Modern
AJ-B	4/15/2010	4835381	23.19	Modern
AJ-B	4/15/2010	4835382	23.79	Modern
AJ-B	4/15/2010	4835383	20.07	Modern
AJ-B	4/15/2010	4835385	21.12	Modern
AJ-B	4/15/2010	4835394	21.84	Modern
AJ-B	4/15/2010	4835396	20.61	Modern
AJ-B	4/15/2010	4826578	22	Modern
AJ-B	4/15/2010	4809829	19.32	Modern
AJ-B	4/15/2010	4826581	21.31	Modern
AJ-B	4/15/2010	4826576	22.93	Modern
AJ-B	4/15/2010	4811440	21.76	Modern
AJ-B	4/15/2010	4811439	22.66	Modern
AJ-B	4/15/2010	4811397	19.07	Modern
AJ-B	4/15/2010	4835408	21.29	Modern
AJ-B	4/15/2010	4826582	20.07	Modern
	Area AJ-B Soli Disp	osal Total for 4/15/2010	603.04	Modern

 $J:\label{eq:linear} J:\label{linear} J$

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AJ-B	4/15/2010	397632	19.52	TOT
AJ-B	4/15/2010	397633	22.04	TOT
AJ-B	4/15/2010	397634	21.92	TOT
	Area AJ-B Soil Dispo	osal Total for 4/15/2010	63.48	TOT
AJ-B	4/27/2010	4 27 10-01	27.38	Modern
AJ-B	4/27/2010	4 27 10-02	27.16	Modern
	Area AJ-B Soil Dispo	osal Total for 4/27/2010	54.54	Modern
AJ-B	4/28/2010	595	23.99	Modern
AJ-B	4/28/2010	597	22.71	Modern
AJ-B	4/28/2010	598	23.25	Modern
AJ-B	4/28/2010	593	24.18	Modern
AJ-B	4/28/2010	592	24.31	Modern
AJ-B	4/28/2010	599	23.85	Modern
AJ-B	4/28/2010	591	21.89	Modern
AJ-B	4/28/2010	590	23.71	Modern
AJ-B	4/28/2010	589	22.3	Modern
	-	osal Total for 4/28/2010	210.19	Modern
AJ-B	5/26/2010	465	22.05	Modern
AJ-B	5/26/2010	464	23.7	Modern
AJ-B	5/26/2010	461	23.4	Modern
AJ-B	5/26/2010	460	23.13	Modern
AJ-B	5/26/2010	173	22.75	Modern
	-	osal Total for 5/26/2010	115.03	Modern
AJ-B	5/27/2010	851	20.18	Modern
AJ-B	5/27/2010	852	21.46	Modern
AJ-B	5/27/2010	853	23.14	Modern
	Area AJ-B Soil Dispo	osal Total for 5/27/2010	64.78	Modern
AJ-B	7/12/2010	4876937	23.64	Modern
AJ-B	7/12/2010	4876938	22.83	Modern
AJ-B	7/12/2010	4876939	22.84	Modern
AJ-B	7/12/2010	4876940	23.33	Modern
AJ-B	7/12/2010	4876941	21.96	Modern
	Area AJ-B Soil Dispo	osal Total for 7/12/2010	114.60	Modern
AJ-B	7/19/2010	666	23.32	Modern
	Area AJ-B Soil Dispo	osal Total for 7/19/2010	23.32	Modern
AJ-B	8/3/2010	5860	22.69	Modern
		oosal Total for 8/3/2010	22.69	Modern
AJ-B	8/5/2010	3515	25.74	Modern
AJ-B	8/5/2010	3513	21.78	Modern
AJ-B	8/5/2010	3516	25.17	Modern
AJ-B	8/5/2010	3517	23.31	Modern
		oosal Total for 8/5/2010	96.00	Modern
	-	Aodern Disposal Totals	1,615.34	Modern
		wanda Disposal Totals	152.62	ТОТ
		-B Soil Disposal Totals	1,767.96	TOT & Moder

Table 9-3-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area AJ-b

Sample ID	6 NYCRR	AJ-b-BS-1	AJ-b-BS-2	AJ-b-BS-3	AJ-b-BS-4	AJ-b-BS-5	AJ-b-BS-6	AJ-b-BS-7	AJ-b-BS-8	AJ-b-BS-9	AJ-b - SS-1
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Sidewall
Date Sampled	RRU SCOs ¹	5/7/2010	5/7/2010	5/7/2010	5/7/2010	5/7/2010	5/7/2010	5/7/2010	5/27/2010	5/27/2010	6/8/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS											
Cadmium	4.3	4.3	1.68	4.43	4.18	4.87	3.7	1.38	0.531	1.37	2.68
Zinc	10000	34800	4760	11100	3100	20000	5490	1430	118	16000	3620

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NC = No Criteria

6) Metals analyzed by USEPA Method 6010.

Table 9-3-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area AJ-b

Sample ID	6 NYCRR	AJ-b-SS-2	AJ-b-BS-10	AJ-b-SS-3	AJ-b-BS-11	AJ-b-BS-12	AJ-b-SS-4	AJ-b-BS-13	AJ-b-BS-14	AJ-b-BS-15	AJ-b-BS-16
Sample Location	Part 375-6.8(b)	Sidewall	Bottom	Sidewall	Bottom	Bottom	Sidewall	Bottom	Sidewall	Bottom	Bottom
Date Sampled	RRU SCOs¹	6/8/2010	6/8/2010	6/23/2010	6/23/2010	6/23/2010	7/9/2010	7/9/2010	7/9/2010	7/19/2010	8/4/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS											
Cadmium	4.3	3.31	5.05	4.43	4.06	2.4	3.12	10.9	4.11	27.8	0.389 J
Zinc	10000	12500	15700	11100	93400	44900	8370	44700	4810	13000	183

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NC = No Criteria

6) Metals analyzed by USEPA Method 6010.

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AK-A	4/13/2010	4835404	29.15	Modern
AK-A	4/13/2010	4835405	26.20	Modern
AK-A	4/13/2010	4835407	22.25	Modern
AK-A	4/13/2010	4835406	24.53	Modern
AK-A	4/13/2010	4835393	26.22	Modern
AK-A	4/13/2010	4835392	26.49	Modern
AK-A	4/13/2010	4835391	22.91	Modern
AK-A	4/13/2010	4835390	28.34	Modern
AK-A	4/13/2010	4835389	27.79	Modern
AK-A	4/13/2010	4835388	27.94	Modern
AK-A	4/13/2010	4835387	24.70	Modern
AK-A	4/13/2010	4835386	25.59	Modern
		osal Total for 4/13/2010	312.11	Modern
AK-A	4/14/2010	4836419	25.45	Modern
AK-A	4/14/2010	4836421	22.98	Modern
AK-A	4/14/2010	4836422	22.90	Modern
AK-A	4/14/2010	4836386	25.50	Modern
AK-A	4/14/2010	4836387	22.65	Modern
AK-A	4/14/2010	4836389	22.37	Modern
AK-A	4/14/2010	4836390	26.77	Modern
AK-A	4/14/2010	4836393	27.29	Modern
AK-A	4/14/2010	4836395	25.27	Modern
AK-A AK-A	4/14/2010	4836395	23.12	Modern
AK-A AK-A	4/14/2010	4836383	22.83	Modern
AK-A AK-A	4/14/2010	4836357	21.89	Modern
AK-A AK-A	4/14/2010	4836359	24.16	Modern
	4/14/2010	4836361	23.30	
AK-A	4/14/2010	4836362	22.29	Modern
AK-A	4/14/2010	4836358	21.63	Modern
AK-A				Modern
AK-A	4/14/2010	4836338	22.95	Modern
AK-A	4/14/2010	4836300	20.69	Modern
AK-A	4/14/2010	4836330	23.92	Modern
AK-A	4/14/2010	4836318	21.50	Modern
AK-A	4/14/2010	4836319	24.81	Modern
AK-A	4/14/2010	4836323	23.51	Modern
AK-A	4/14/2010	4836320	27.10	Modern
AK-A	4/14/2010	4836322	22.51	Modern
AK-A	4/14/2010	4836324	23.83	Modern
AK-A	4/14/2010	4836326	25.65	Modern
AK-A	4/14/2010	4836327	25.66	Modern
AK-A	4/14/2010	4836328	22.27	Modern
AK-A	4/14/2010	4836364	24.61	Modern
AK-A	4/14/2010	4836374	24.62	Modern
AK-A	4/14/2010	4836376	22.60	Modern
AK-A	4/14/2010	4836377	24.53	Modern
AK-A	4/14/2010	4836398	25.10	Modern
A	Area AK-A Soil Disp	osal Total for 4/14/2010	785.85	Modern
AK-A	4/15/2010	4835372	20.06	Modern
AK-A	4/15/2010	4835371	22.14	Modern
AK-A	4/15/2010	4835369	23.41	Modern

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AK-A	4/15/2010	4835367	21.09	Modern
AK-A	4/15/2010	4835365	22.75	Modern
1	Area AK-A Soil Disp	osal Total for 4/15/2010	109.45	Modern
AK-A	4/30/2010		23.54	TOT
AK-A	4/30/2010		21.30	TOT
AK-A	4/30/2010		22.18	TOT
I	Area AK-A Soil Disp	osal Total for 4/30/2010	67.02	TOT
AK-A	4/30/2010	38	21.41	Modern
A	Area AK-A Soil Disp	osal Total for 4/30/2010	21.41	Modern
AK-A	5/3/2010	854	20.48	Modern
AK-A	5/3/2010	855	19.19	Modern
AK-A	5/3/2010	870	22.17	Modern
AK-A	5/3/2010	856	21.36	Modern
AK-A	5/3/2010	857	20.08	Modern
AK-A	5/3/2010	859	22.32	Modern
	Area AK-A Soil Dis	posal Total for 5/3/2010	125.60	Modern
AK-A	5/21/2010	712	21.14	Modern
AK-A	5/21/2010	713	24.14	Modern
AK-A	5/21/2010	714	21.97	Modern
AK-A	5/21/2010	715	21.79	Modern
AK-A	5/21/2010	716	20.81	Modern
AK-A	5/21/2010	717	23.89	Modern
AK-A	5/21/2010	719	22.04	Modern
AK-A	5/21/2010	720	23.16	Modern
AK-A	5/21/2010	721	26.66	Modern
AK-A	5/21/2010	737	23.75	Modern
AK-A	5/21/2010	150	20.50	Modern
AK-A	5/21/2010	151	21.21	Modern
Area AK-A So	oil Disposal Total for	5/21/2010	271.06	Modern
AK-A	6/18/2010	596	24.78	TOT
AK-A	6/18/2010	597	26.68	TOT
AK-A	6/18/2010	598	24.64	TOT
AK-A	6/18/2010	599	27.06	TOT
AK-A	6/18/2010	600	23.80	TOT
AK-A	6/18/2010	601	24.34	TOT
AK-A	6/18/2010	602	20.48	TOT
AK-A	6/18/2010	603	22.32	TOT
AK-A	6/18/2010	604	24.32	TOT
AK-A	6/18/2010	605	22.66	TOT
AK-A	6/18/2010	606	22.52	TOT
AK-A	6/18/2010	607	25.04	TOT
AK-A	6/18/2010	608	21.06	TOT
AK-A	6/18/2010	609	20.52	TOT
AK-A	6/18/2010	610	20.44	TOT
AK-A	6/18/2010	611	20.86	TOT
AK-A	6/18/2010	612	23.74	TOT
AK-A	6/18/2010	613	25.24	TOT
,	Area AK-A Soil Disp	osal Total for 6/18/2010	420.50	TOT

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AK-A	6/24/2010	4907530	17.92	Modern
AK-A	6/24/2010	4907531	21.37	Modern
AK-A	6/24/2010 4907532		20.67	Modern
AK-A	6/24/2010 4907533		21.67	Modern
AK-A	6/24/2010	4907534	22.70	Modern
AK-A	6/24/2010	4907535	22.36	Modern
А	rea AK-A Soil Dispo	osal Total for 6/24/2010	126.69	Modern
	Area AK-A N	Modern Disposal Totals	1,752.17	Modern
	Area AK-A Tona	487.52	ТОТ	
	Area AK	2,239.69	Modern & TOT	

Table 9-4-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area AK-a

Sample ID	6 NYCRR	AK-a-BS-1	AK-a-BS-2	AK-a-SS-1	AK-a-BS-3	AK-a-SS-2
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Sidewall	Bottom	Sidewall
Date Sampled	RRU SCOs ¹	5/20/2010	5/20/2010	6/3/2010	6/23/2010	7/15/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs						
Naphthalene	100	ND	0.597	ND	ND	ND
2-Methylnaphthalene	NC	ND	0.237 J	ND	ND	ND
Acenaphthylene	100	ND	ND	ND	ND	ND
Acenaphthene	100	ND	0.77	ND	ND	ND
Fluorene	100	ND	1.16	ND	ND	ND
Phenanthrene	100	ND	5.94	ND	ND	ND
Anthracene	100	ND	1.82	ND	ND	ND
Fluoranthene	100	0.159 J	7.53	ND	ND	ND
Pyrene	100	0.103 J	5.34	ND	ND	ND
Benzo (a) anthracene	1	ND	3.23	ND	ND	ND
Chrysene	3.9	ND	3.14	ND	ND	ND
Benzo (b) fluoranthene	1	ND	2.49	ND	ND	ND
Benzo (k) fluoranthene	3.9	ND	3.14	ND	ND	ND
Benzo (a) pyrene	1	ND	2.98	ND	ND	ND
Indeno (1,2,3-cd) pyrene	0.5	ND	1.42	ND	ND	ND
Dibenzo (a,h) anthracene	0.33	ND	0.358	ND	ND	ND
Benzo (g,h,i) perylene	100	ND	1.16	ND	ND	ND
METALS						
Manganese	2000	479	730	577	486	500

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NC = No Criteria

6) SVOCs analyzed by SW846-8270C; total metals analyzed by Method USEPA 6010.

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AK-B	5/13/2010	5 13 10 - 18	22.85	Modern
AK-B	5/13/2010	19	24.88	Modern
AK-B	5/13/2010	20	23.64	Modern
AK-B	5/13/2010	21	23.88	Modern
AK-B	5/13/2010	22	26.81	Modern
AK-B	5/13/2010	23	24.36	Modern
AK-B	5/13/2010	24	23.94	Modern
AK-B	5/13/2010	25	24.87	Modern
AK-B	5/13/2010	26	24.9	Modern
AK-B	5/13/2010	27	22.15	Modern
AK-B	5/13/2010	28	21.19	Modern
AK-B	5/13/2010	29	23.37	Modern
AK-B	5/13/2010	30	23.5	Modern
AK-B	5/13/2010	31	23.2	Modern
AK-B	5/13/2010	32	22.06	Modern
AK-B	5/13/2010	33	22.52	Modern
AK-B	5/13/2010	34	23.42	Modern
AK-B	5/13/2010	35	25.53	Modern
		osal Total for 5/13/2010	427.07	Modern
AK-B	5/14/2010	5 14 10-1	26.32	Modern
AK-B	5/14/2010	2	24.18	Modern
AK-B	5/14/2010	3	24.41	Modern
AK-B	5/14/2010	4	24.47	Modern
AK-B	5/14/2010	5	24.87	Modern
AK-B	5/14/2010	6	23.79	Modern
AK-B	5/14/2010	7	26.28	Modern
AK-B	5/14/2010	8	24.22	Modern
AK-B	5/14/2010	9	24.07	Modern
AK-B	5/14/2010	10	23.55	Modern
AK-B	5/14/2010	10	24.22	Modern
AK-B	5/14/2010	11	23.06	Modern
AK-B	5/14/2010	12	20.55	Modern
AK-B	5/14/2010	13	25.88	Modern
AK-B	5/14/2010	14	25.88	Modern
AK-B		15	23.74	Modern
	5/14/2010			
AK-B	5/14/2010	17	24.32	Modern
AK-B	5/14/2010	18	27.08	Modern
AK-B	5/14/2010	19	27.4	Modern
AK-B	5/14/2010	20	25.52	Modern
AK-B	5/14/2010	21	27.04	Modern
AK-B	5/14/2010	22	23.54	Modern
AK-B	5/14/2010	23	21.48	Modern
AK-B	5/14/2010	24	26.74	Modern
AK-B	5/14/2010	25	25.86	Modern
AK-B	5/14/2010	26	27.31	Modern
AK-B	5/14/2010	27	21.75	Modern
AK-B	5/14/2010	28	23.62	Modern
AK-B	5/14/2010	29	24.89	Modern
AK-B	5/14/2010	30	26.78	Modern
AK-B	5/14/2010	31	22.39	Modern
AK-B	5/14/2010	32	26.17	Modern
AK-B	5/14/2010	33	24	Modern

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA1ASoilDisposalTables\9-5-A(AK-B)

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AK-B	5/14/2010	34	22.87	Modern
AK-B	5/14/2010	35	23.94	Modern
Α	rea AK-B Soil Dispo	osal Total for 5/14/2010	862.79	Modern
AK-B	5/19/2010	722	25.58	Modern
AK-B	5/19/2010	724	21.76	Modern
AK-B	5/19/2010	725	24.35	Modern
AK-B	5/19/2010	726	22.92	Modern
AK-B	5/19/2010	727	23.3	Modern
AK-B	5/19/2010	728	25.14	Modern
AK-B	5/19/2010	729	26.97	Modern
AK-B	5/19/2010	730	24.02	Modern
AK-B	5/19/2010	732	24.28	Modern
AK-B	5/19/2010	733	23	Modern
AK-B	5/19/2010	734	25.58	Modern
AK-B	5/19/2010	735	25.88	Modern
AK-B	5/19/2010	736	24.6	Modern
AK-B	5/19/2010	706	24.02	Modern
AK-B	5/19/2010	707	24.04	Modern
AK-B	5/19/2010	709	24.26	Modern
Α	rea AK-B Soil Dispo	osal Total for 5/19/2010	389.70	Modern
AK-B	5/20/2010	948	19.1	Modern
AK-B	5/20/2010	395	21.69	Modern
AK-B	5/20/2010	944	23.36	Modern
AK-B	5/20/2010	946	21.39	Modern
AK-B	5/20/2010	947	27.69	Modern
AK-B	5/20/2010	738	26.72	Modern
AK-B	5/20/2010	740	24.39	Modern
AK-B	5/20/2010	741	28.14	Modern
AK-B	5/20/2010	742	29.84	Modern
AK-B	5/20/2010	743	22.14	Modern
AK-B	5/20/2010	744	23.97	Modern
AK-B	5/20/2010	746	25.12	Modern
AK-B	5/20/2010	747	18.3	Modern
AK-B	5/20/2010	748	23.74	Modern
AK-B	5/20/2010	749	26.17	Modern
Α	rea AK-B Soil Dispo	osal Total for 5/20/2010	361.76	Modern
AK-B	6/24/2010	4909717	22.98	Modern
AK-B	6/24/2010	4909721	22.25	Modern
AK-B	6/24/2010	4910716	23.7	Modern
AK-B	6/24/2010	9724	26.4	Modern
AK-B	6/24/2010	9725	24.93	Modern
AK-B	6/24/2010	9726	21.76	Modern
AK-B	6/24/2010	9716	23.7	Modern
AK-B	6/24/2010	4910714	24.73	Modern
	rea AK-B Soil Dispo	osal Total for 6/24/2010	190.45	Modern
AK-B	8/5/2010	813	20.39	Modern
		osal Total for 8/5/2010	20.39	Modern
	1	199		
AK-B	8/18/2010	199 sal Total for 8/18/2010	21.66	Modern
A	i ta AR-d Soli Dispo	isai 10tai 10f 8/18/2010	21.66	Modern
	Area AK	-B Soil Disposal Totals	2,273.82	Modern

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA1ASoilDisposalTables\9-5-A(AK-B)

Table 9-5-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area AK-b

Sample ID	6 NYCRR	AK-b-SS-1	AK-b-SS-2	AK-b-BS-1	AK-b-BS-2	AK-b-BS-3	AK-b-BS-4	AK-b-BS-5	AK-b-BS-6	AK-b-BS-7
Sample Location	Part 375-6.8(b)	Sidewall	Sidewall	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs¹	5/27/2010	5/27/2010	6/3/2010	6/3/2010	6/23/2010	7/29/2010	7/29/2010	7/29/2010	7/29/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS										
Cadmium	4.3	1.79	0.7	10.9	1.09	1.29	1.53	1.91	0.752	5.82
Chromium	180	59.9	31.7	32.1	28.7	26.5	22.2	23.7	26.9	24
Copper	270	209	22	159	30.6	23.9	22.3	45.7	28.2	20.4
Zinc	10000	7550	2040	48900	115	87.6	472	4050	245	3700

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) Metals analyzed by USEPA Method 6010.

Table 9-5-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area AK-b

Sample ID	6 NYCRR	AK-b-BS-8	AK-b-BS-9	AK-b-BS-10	AK-b-BS-11	AK-b-BS-12	AK-b-BS-13	AK-b-BS-14
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs¹	7/29/2010	7/29/2010	7/29/2010	8/9/2010	8/9/2010	8/17/2010	8/17/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS								
Cadmium	4.3	5.86	1.68	0.964	6.22	0.251	0.442 J	0.828
Chromium	180	27.6	21.9	29.3	28.9	24.8	24.8	24.4
Copper	270	27	34.5	26.2	26.9	22.2	24.2	24
Zinc	10000	29000	4650	1420	2860	65.6	73	300

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) Metals analyzed by USEPA Method 6010.

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AK-C	4/1/2010	4809779	19.78	Modern
AK-C	4/1/2010	4809950	22.50	Modern
AK-C	4/1/2010	4809951	20.80	Modern
AK-C	4/1/2010	4809777	16.68	Modern
AK-C	4/1/2010	4809789	17.98	Modern
AK-C	4/1/2010	4809784	20.54	Modern
AK-C	4/1/2010	4809790	23.89	Modern
	Area AK-C Soil Dis	posal Total for 4/1/2010	142.17	Modern
AK-C	4/12/2010	4827592	21.97	Modern
AK-C	4/12/2010	4811401	19.60	Modern
AK-C	4/12/2010	4827580	24.34	Modern
AK-C	4/12/2010	4827578	24.71	Modern
AK-C	4/12/2010	4827566	20.63	Modern
AK-C	4/12/2010	4826611	24.65	Modern
AK-C	4/12/2010	4826610	21.95	Modern
AK-C	4/12/2010	4826609	21.73	Modern
AK-C	4/12/2010	4826593	19.65	Modern
	Area AK-C Soil Disp	osal Total for 4/12/2010	199.23	Modern
AK-C	4/12/2010	397690	22.20	TOT
AK-C	4/12/2010	397691	22.34	TOT
AK-C	4/12/2010	397692	22.14	TOT
AK-C	4/12/2010	397693	20.06	TOT
AK-C	4/12/2010	397694	22.68	TOT
AK-C	4/12/2010	397695	25.26	TOT
	Area AK-C Soil Disp	osal Total for 4/12/2010	134.68	TOT
AK-C	4/13/2010	ES 397630	23.00	TOT
AK-C	4/13/2010	ES 397631	23.00	TOT
		osal Total for 4/12/2010	46.00	TOT
AK-C	4/13/2010	4835467	25.73	Modern
AK-C	4/13/2010	4835457	24.18	Modern
AK-C	4/13/2010	4835460	22.19	Modern
AK-C	4/13/2010	4835459	24.38	Modern
AK-C	4/13/2010	4835470	19.91	Modern
AK-C	4/13/2010	4835468	23.97	Modern
AK-C	4/13/2010	4835469	21.49	Modern
AK-C	4/13/2010	4835456	20.38	Modern
AK-C	4/13/2010	4835455	21.12	Modern
AK-C	4/13/2010	4835454	18.56	Modern
AK-C	4/13/2010	4835453	21.72	Modern
AK-C	4/13/2010	4835452	22.03	Modern
AK-C	4/13/2010	4835451	20.71	Modern
AK-C	4/13/2010	4835458	21.02	Modern
AK-C	4/13/2010	4835447	22.22	Modern
AK-C	4/13/2010	4835450	21.18	Modern
		osal Total for 4/12/2010	350.79	Modern
AK-C	4/21/2010	286	19.02	Modern
AK-C	4/21/2010	287	21.02	Modern
AK-C	4/21/2010	289	17.30	Modern
AK-C	4/21/2010	290	22.32	Modern

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA1ASoilDisposalTables\9-6-A(AK-C)

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AK-C	4/21/2010	293	22.47	Modern
AK-C	4/21/2010	295	21.74	Modern
AK-C	4/21/2010	297	22.17	Modern
AK-C	4/21/2010	298	22.37	Modern
AK-C	4/21/2010	300	24.77	Modern
AK-C	4/21/2010	301	23.82	Modern
AK-C	4/21/2010	303	25.69	Modern
AK-C	4/21/2010	304	28.48	Modern
AK-C	4/21/2010	306	23.46	Modern
AK-C	4/21/2010	307	21.94	Modern
AK-C	4/21/2010	308	20.76	Modern
AK-C	4/21/2010	310	23.67	Modern
AK-C	4/21/2010	311	25.50	Modern
AK-C	4/21/2010	312	21.98	Modern
AK-C	4/21/2010	313	27.72	Modern
AK-C	4/21/2010	482	23.95	Modern
AK-C	4/21/2010	483	23.47	Modern
AK-C	4/21/2010	484	21.13	Modern
AK-C	4/21/2010	485	24.04	Modern
AK-C	4/21/2010	486	25.57	Modern
AK-C	4/21/2010	487	26.14	Modern
AK-C	4/21/2010	488	22.85	Modern
AK-C	4/21/2010	489	24.73	Modern
AK-C	4/21/2010	490	23.16	Modern
AK-C	4/21/2010	491	27.00	Modern
AK-C	4/21/2010	492	25.35	Modern
AK-C	4/21/2010	493	24.67	Modern
		osal Total for 5/14/2010	728.26	Modern
AK-C	4/28/2010	577	23.82	Modern
AK-C	4/28/2010	573	22.28	Modern
AK-C	4/28/2010	572	22.84	Modern
AK-C	4/28/2010	571	24.21	Modern
AK-C	4/28/2010	570	27.57	Modern
AK-C	4/28/2010	611	25.66	Modern
AK-C	4/28/2010	473	26.58	Modern
AK-C	4/28/2010	474	24.14	Modern
AK-C	4/28/2010	475	22.62	Modern
AK-C	4/28/2010	575	25.19	Modern
AK-C	4/28/2010	569	25.18	Modern
ŀ	Area AK-C Soil Dispo	osal Total for 5/19/2010	270.09	Modern
AK-C	4/29/2010	418	27.12	Modern
AK-C	4/29/2010	419	23.31	Modern
AK-C	4/29/2010	421	22.51	Modern
AK-C	4/29/2010	452	24.57	Modern
AK-C	4/29/2010	411	24.54	Modern
AK-C	4/29/2010	471	23.22	Modern
AK-C	4/29/2010	410	23.62	Modern
AK-C	4/29/2010	407	22.27	Modern
AK-C	4/29/2010	402	24.67	Modern
AK-C	4/29/2010	317	21.86	Modern
AK-C	4/29/2010	412	24.08	Modern

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA1ASoilDisposalTables\9-6-A(AK-C)

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AK-C	4/29/2010	415	23.92	Modern
AK-C	4/29/2010	470	22.50	Modern
AK-C	4/29/2010 400		24.56	Modern
A	Area AK-C Soil Dispo	osal Total for 5/20/2010	332.75	Modern
AK-C	5/27/2010	153	23.92	Modern
AK-C	5/27/2010	854	23.24	Modern
AK-C	5/27/2010	855	22.56	Modern
AK-C	5/27/2010	156	20.17	Modern
AK-C	5/27/2010	856	23.40	Modern
A	Area AK-C Soil Dispo	osal Total for 5/27/2010	113.29	Modern
AK-C	6/24/2010	4910724	25.48	Modern
AK-C	6/24/2010	4910726	27.69	Modern
AK-C	6/24/2010	4910730	23.59	Modern
AK-C	6/24/2010	4910731	25.17	Modern
A	Area AK-C Soil Dispo	osal Total for 6/24/2010	101.93	Modern
	Area AK-C N	Iodern Disposal Totals	2238.51	Modern
	Area AK-C T	OT Soil Disposal Totals	180.68	ТОТ
	Area Al	K-C Soil Disposal Total	2419.19	TOT & Modern

Table 9-6-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area AK-c

Sample ID	6 NYCRR	AK-e-BS-1	AK-c-BS-2	AK-c-BS-3	AK-c-SS-1	AK-c-SS-2	AK-c - SS-3	AK-c - SS-4
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Bottom	Sidewall	Sidewall	Sidewall	Sidewall
Date Sampled	RRU SCOs¹	5/7/2010	5/27/2010	6/3/2010	6/3/2010	6/3/2010	6/23/2010	6/23/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS								
Cadmium	4.3	3.96	1.57	2.35	3.51	3.98	3.23	1.5
Chromium	180	25.6	38.2	28.9	29.2	32.3	26.5	26.2
Copper	270	98.7	23.7	35.5	106	98.8	17.5	20.5
Zinc	10000	18500	1580	2070	11800	11100	9830	2830

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use

(RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) Metals analyzed by USEPA Method 6010.

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AL	4/1/2010	397274	23.6	TOT
AL	4/1/2010	397275	22.76	TOT
AL	4/1/2010	397276	22.34	TOT
AL	4/1/2010	397277	23	TOT
AL	4/1/2010	397278	24.48	TOT
AL	4/1/2010	397280	23.62	TOT
AL	4/1/2010	397281	26.66	TOT
AL	4/1/2010	397282	24.56	TOT
AL	4/1/2010	397283	24.8	TOT
AL	4/1/2010	397284	21.52	TOT
AL	4/1/2010	397285	21.04	TOT
AL	4/1/2010	397286	24.9	ТОТ
AL	4/1/2010	397287	24.2	ТОТ
AL	4/1/2010	397288	24.34	TOT
AL	4/1/2010	397289	25.14	TOT
AL	4/1/2010	397290	25.02	ТОТ
AL	4/1/2010	397291	28.54	ТОТ
AL	4/1/2010	397292	19.92	ТОТ
AL	4/1/2010	397293	22.58	ТОТ
AL	4/1/2010	397294	24.42	ТОТ
AL	4/1/2010	397295	23.06	ТОТ
AL	4/1/2010	397296	23.5	ТОТ
AL	4/1/2010	397297	26.32	ТОТ
AL	4/1/2010	397298	26.2	ТОТ
AL	4/1/2010	397299	24.9	ТОТ
AL	4/1/2010	397300	20.32	ТОТ
AL	4/1/2010	397301	23.3	ТОТ
AL	4/1/2010	397302	22.68	TOT
AL	4/1/2010	397303	19.84	ТОТ
AL	4/1/2010	397304	23.06	ТОТ
AL	4/1/2010	397305	22.94	TOT
AL	4/1/2010	397306	22.68	TOT
AL	4/1/2010	397307	22.32	TOT
AL	4/1/2010	397308	23.36	TOT
AL	4/1/2010	397309	23.14	TOT
AL	4/1/2010	397310	21	TOT
	Area AL Soil Disp	osal Total for 4/1/2010	846.06	ТОТ
AL	4/29/2010	318	25.57	Modern
AL	4/29/2010	602	25.66	Modern
AL	4/29/2010	601	25.14	Modern
AL	4/29/2010	600	22.67	Modern
AL	4/29/2010	472	22.12	Modern
AL	4/29/2010	469	23.82	Modern
AL	4/29/2010	610	26.7	Modern
AL	4/29/2010	608	28.16	Modern
AL	4/29/2010	607	26.59	Modern
AL	4/29/2010	553	21.05	Modern
AL	4/29/2010	606	22.88	Modern
AL	4/29/2010	603	23.17	Modern
AL	4/29/2010	611	23.23	Modern
AL	4/29/2010	632	21.01	Modern

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA1ASoilDisposalTables\9-7-A(AL)

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location		
	Area AL Soil Disp	osal Total for 4/29/2010	337.77	Modern		
AL	4/30/2010	476	20.78	Modern		
AL	4/30/2010	479	21.02	Modern		
AL	4/30/2010	480	23.9	Modern		
AL	4/30/2010	481	24.78	Modern		
AL	4/30/2010	28	25.01	Modern		
AL	4/30/2010	29	21.35	Modern		
AL	4/30/2010	30	22.71	Modern		
AL	4/30/2010	31	23.3	Modern		
AL	4/30/2010	32	23.84	Modern		
AL	4/30/2010	33	21.89	Modern		
AL	4/30/2010	34	22.35	Modern		
AL	4/30/2010	35	20.19	Modern		
AL	4/30/2010	36	22.15	Modern		
AL	4/30/2010	37	23.52	Modern		
	Area AL Soil Disp	osal Total for 4/30/2010	316.79	Modern		
AL	6/7/2010	577	22.72	Modern		
AL	6/7/2010	561	21.1	Modern		
AL	6/7/2010	562	21.94	Modern		
AL	6/7/2010	563	23.2	Modern		
AL	6/7/2010	564	24.24	Modern		
AL	6/7/2010	566	24.01	Modern		
AL	6/7/2010	482	25.44	Modern		
AL	6/7/2010	484	23.8	Modern		
AL	6/7/2010	486	24.64	Modern		
AL	6/7/2010	487	26.48	Modern		
AL	6/7/2010	488	25.76	Modern		
AL	6/7/2010	489	27.34	Modern		
AL	6/7/2010	490	23.53	Modern		
AL	6/7/2010	575	27.05	Modern		
AL	6/7/2010	494	25.88	Modern		
AL	6/7/2010	496	25.9	Modern		
AL	6/7/2010	498	25.41	Modern		
AL	6/7/2010	499	26.41	Modern		
AL	6/7/2010	491	26.31	Modern		
AL	6/7/2010	500	27.22	Modern		
AL	6/7/2010	501	26.29	Modern		
AL	6/7/2010	502	23.62	Modern		
AL	6/7/2010	505	28.62	Modern		
AL	6/7/2010	506	28.72	Modern		
AL	6/7/2010	507	29.3	Modern		
AL	6/7/2010	508	28.96	Modern		
AL	6/7/2010	572	22.95	Modern		
AL	6/7/2010	509	28.28	Modern		
AL	6/7/2010	510	27.2	Modern		
AL	6/7/2010	512	28.92	Modern		
AL	6/7/2010	513	27.29	Modern		
AL	6/7/2010	514	25.72	Modern		
AL	6/7/2010	515	26.34	Modern		
AL	6/7/2010	516	24.42	Modern		
AL	6/7/2010	517	24.65	Modern		

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA1ASoilDisposalTables\9-7-A(AL)

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AL	6/7/2010	518	24.63	Modern
AL	6/7/2010	519	27.6	Modern
AL	6/7/2010	574	28.11	Modern
AL	6/7/2010 520		27.41	Modern
AL	6/7/2010	526	26.36	Modern
AL	6/7/2010	528	30.14	Modern
	Area AL Soil Disposal Total for 6/7/2010			Modern
AL (Area west of AL)	6/7/2010	521	23	Modern
AL (Area west of AL)	6/7/2010	522	23	Modern
AL (Area west of AL)	6/7/2010	523	23	Modern
AL (Area west of AL)	6/7/2010	524	23	Modern
AL (Area west of AL)	6/7/2010	525	23	Modern
Area	a AL (Area west of A	L) Soil Disposal Total	115	Modern
	Area AL T	OT Soil Disposal Total	846.06	ТОТ
	Area AL Modern Soil Disposal Total			Modern
	Area AL Soil Disposal Total			Modern and TOT

Table 9-7-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area AL

Sample ID	6 NYCRR	AL-BS-1	AL-BS-2	AL-SS-1	West of Boiler houseBS-1	West of BH-SS-1	West of AL-SS-2	West of AL-SS-3
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Sidewall	Bottom	Sidewall	Sidewall	Sidewall
Date Sampled	RRU SCOs ¹	5/7/2010	5/7/2010	6/8/2010	6/23/2010	7/13/2010	8/3/2010	8/3/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs								00
Naphthalene	100	ND	ND	ND	ND	0.164 J	ND	ND
2-Methylnaphthalene	NC	ND	ND	ND	ND	0.187 J	ND	ND
Acenaphthylene	100	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	100	ND	ND	ND	ND	0.722	ND	ND
Fluorene	100	ND	ND	ND	ND	1.24	ND	ND
Phenanthrene	100	ND	ND	ND	ND	6.17	ND	ND
Anthracene	100	ND	ND	ND	ND	1.86	ND	ND
Di-n-butylphthalate	NC	ND	ND	ND	ND	ND	NA	NA
Fluoranthene	100	ND	ND	ND	0.0376	6.94	ND	ND
Pyrene	100	ND	ND	ND	ND	5.93	ND	ND
Benzo (a) anthracene	1	ND	ND	ND	ND	2.94	ND	ND
Chrysene	3.9	ND	ND	ND	ND	2.59	ND	ND
Benzo (b) fluoranthene	1	ND	ND	ND	ND	2.22	ND	ND
Benzo (k) fluoranthene	3.9	ND	ND	ND	ND	2.23	ND	ND
Benzo (a) pyrene	1	ND	ND	ND	ND	2.42	ND	ND
Indeno (1,2,3-cd) pyrene	0.5	ND	ND	ND	ND	1.25	ND	ND
Dibenzo (a,h) anthracene	0.33	ND	ND	ND	ND	0.337	ND	ND
Benzo (g,h,i) perylene	100	ND	ND	ND	ND	0.991	ND	ND
PCBs								
Aroclor- 1016	NC	ND	ND	ND	ND	ND	ND	ND
Aroclor-1221	NC	ND	ND	ND	ND	ND	ND	ND
Aroclor-1232	NC	ND	ND	ND	ND	ND	ND	ND
Aroclor-1242	NC	ND	ND	ND	ND	ND	ND	ND
Aroclor-1248	NC	ND	ND	ND	ND	0.485	ND	0.0561
Aroclor-1254	NC	ND	ND	ND	ND	ND	ND	ND
Aroclor-1260	NC	ND	ND	ND	ND	ND	ND	ND
Aroclor-1262	NC	ND	ND	ND	ND	ND	ND	ND
Aroclor-1268	NC	ND	ND	ND	ND	ND	ND	ND
METALS								
Cadmium	4.3	1.58	1.31	0.68	1.02	2.8	0.938	0.675
Chromium	180	28	26.6	19.4	17.8	22	32.3	24.1
Zinc	10000	1010	83.7	55.1	727	17400	80.6	63.3

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NA - Not Analyzed

6) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.

7) PAHs analyzed by SW846-8270C; metals analyzed by USEPA Method 6010; PCBs analyzed by SW846-8082.

9-8-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Area BB

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
BB	3/30/2010	396516	22.88	TOT
BB	3/30/2010	396517	23.74	TOT
BB	3/30/2010	396518	23.44	TOT
BB	3/30/2010	396519	24.92	TOT
BB	3/30/2010	396520	23.34	TOT
BB	3/30/2010	396521	18.8	TOT
BB	3/30/2010	396522	21.9	TOT
BB	3/30/2010	396523	22.96	TOT
BB	3/30/2010	396524	21.18	TOT
BB	3/30/2010	396525	25.68	TOT
BB	3/30/2010	396526	22.96	TOT
BB	3/30/2010	396527	24.96	TOT
BB	3/30/2010	396528	24.16	TOT
BB	3/30/2010	396529	24.22	TOT
BB	3/30/2010	396530	26.06	TOT
BB	3/30/2010	396531	23.46	TOT
BB	3/30/2010	396532	29.38	TOT
BB	3/30/2010	396533	25.22	TOT
BB	3/30/2010	396534	25.06	TOT
BB	3/30/2010	396535	22.76	TOT
BB	3/30/2010	396536	25.34	TOT
BB	3/30/2010	396537	27.63	TOT
BB	3/30/2010	396538	24.86	TOT
BB	3/30/2010	396539	21.58	TOT
BB	3/30/2010	396540	21.61	TOT
BB	3/30/2010	396541	22.92	TOT
BB	3/30/2010	396542	23.94	TOT
BB	3/30/2010	396543	22.4	TOT
BB	3/30/2010	396544	23.62	TOT
BB	3/30/2010	396545	24.32	TOT
BB	3/30/2010	396546	24.06	TOT
BB	3/30/2010	396547	22.82	TOT
BB	3/30/2010	396548	21.06	TOT
BB	3/30/2010	396549	29.7	TOT
BB	3/30/2010	396572	17.24	TOT
BB	3/30/2010	396573	21.02	TOT
BB	3/30/2010	396574	18	TOT
BB	3/30/2010	396575	21.38	TOT
BB	3/30/2010	396576	17.54	TOT
BB	3/30/2010	396577	22.76	TOT
BB	3/30/2010	396578	20.3	TOT
BB	3/30/2010	396580	23.78	TOT
BB	3/30/2010	396580	22.96	TOT
BB	3/30/2010	396593	16.26	TOT
	-	al Total for 3/30/2010	1,014.18	TOT
BB	3/31/2010	396616	24.62	TOT
BB	3/31/2010	396617	21.98	TOT
BB	3/31/2010	396618	23.52	TOT
BB	3/31/2010	396619	22.66	TOT
BB	3/31/2010	396620	20.52	TOT
BB	3/31/2010	396621	17.72	TOT

 $J:\label{eq:linear} J:\label{linear} J$

9-8-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Area BB

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
BB	3/31/2010	396622	18.2	TOT
BB	3/31/2010	396623	17.84	TOT
BB	3/31/2010	396624	20.08	TOT
BB	3/31/2010	396625	21.52	TOT
BB	3/31/2010	396626	20.38	TOT
BB	3/31/2010	396982	21.86	TOT
BB	3/31/2010	396983	19.02	TOT
BB	3/31/2010	396984	22.84	TOT
BB	3/31/2010	396985	24.2	TOT
BB	3/31/2010	396986	23.54	TOT
BB	3/31/2010	396887	16.82	TOT
BB	3/31/2010	396988	17.37	TOT
BB	3/31/2010	396989	18.72	TOT
BB	3/31/2010	396990	17.58	TOT
BB	3/31/2010	396991	19.84	TOT
BB	3/31/2010	396992	20.86	TOT
А	Area BB Soil Disposal Total for 3/31/2010			TOT
Area BB Soil Disposal Total			1,465.87	TOT

Table 9-8-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area BB

Sample ID	6 NYCRR	BB-BS-1	BB-BS-2	BB-SS-1
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Sidewall
Date Sampled	RRU SCOs ¹	4/20/2010	4/20/2010	4/20/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg
PAHs				
Naphthalene	100	ND	ND	ND
Acenaphthylene	100	ND	ND	ND
Acenaphthene	100	ND	ND	ND
Fluorene	100	ND	ND	0.023 J
Phenanthrene	100	ND	ND	0.190 J
Anthracene	100	ND	ND	0.059 J
Di-n-butylphthalate	NC	ND	1.1	4.5 E
Fluoranthene	100	ND	ND	0.23
Pyrene	100	ND	ND	0.170 J
Benzo (a) anthracene	1	ND	ND	0.130 J
Chrysene	3.9	ND	ND	0.091 J
Benzo (b) fluoranthene	1	ND	ND	0.082 J
Benzo (k) fluoranthene	3.9	ND	ND	0.041 J
Benzo (a) pyrene	1	ND	ND	0.066 J
Indeno (1,2,3-cd) pyrene	0.5	ND	ND	0.036 J
Dibenzo (a,h) anthracene	0.33	ND	ND	ND
Benzo (g,h,i) perylene	100	ND	ND	0.045 J

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL).

5) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.

6) E = Analyte concentration exceeds calibration range of instrument used for analysis.

7) PAHs analyzed by USEPA Method SW846-8270C.

9-9-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Area BC-a

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
BC-a	3/30/2010	4807838	20.05	Modern
BC-a	3/30/2010	4807854	21.21	Modern
BC-a	3/30/2010	4807852	20.76	Modern
BC-a	3/30/2010	4807840	23.26	Modern
BC-a	3/30/2010	4807842	19.64	Modern
BC-a	3/30/2010	4807845	21.70	Modern
BC-a	3/30/2010	4807846	20.14	Modern
BC-a	3/30/2010	4807848	17.16	Modern
BC-a	3/30/2010	4807849	20.51	Modern
BC-a	3/30/2010	4807856	22.66	Modern
BC-a	3/30/2010	4808092	21.81	Modern
BC-a	3/30/2010	4808081	19.74	Modern
BC-a	3/30/2010	4808088	19.22	Modern
BC-a	3/30/2010	4808095	24.26	Modern
BC-a	3/30/2010	4808082	21.56	Modern
BC-a	3/30/2010	4808085	19.15	Modern
BC-a	3/30/2010	4807846	20.14	Modern
BC-a	3/30/2010	4808080	24.60	Modern
BC-a	3/30/2010	4808087	19.51	Modern
BC-a	3/30/2010	4808598	23.41	Modern
BC-a	3/30/2010	4808596	20.98	Modern
BC-a	3/30/2010	4808595	23.75	Modern
BC-a	3/30/2010	4808573	23.77	Modern
BC-a	3/30/2010	4808571	21.31	Modern
BC-a	3/30/2010	4808567	22.19	Modern
BC-a	3/30/2010	4808565	25.46	Modern
BC-a	3/30/2010	4808564	17.94	Modern
BC-a	3/30/2010	4809563	24.14	Modern
BC-a	3/30/2010	4808561	20.81	Modern
BC-a	3/30/2010	4808560	20.48	Modern
BC-a	3/30/2010	4808089	19.50	Modern
	Area BC-a Soil Dispe	osal Total for 3/30/2010	660.82	Modern
BC-a	4/28/2010	584	22.80	Modern
BC-a	4/28/2010	580	21.14	Modern
BC-a	4/28/2010	579	22.28	Modern
BC-a	4/28/2010	578	19.27	Modern
		osal Total for 4/28/2010	85.49	Modern
	Area B	746.31	Modern	

Table 9-9-BSpaulding Fibre Facility OU6Confirmation Soil Results Area BC-a

Sample ID		BC-a-BS-1	BC-a-BS-2	BC-a-BS-3
Sample Location	6 NYCRR Part 375-6.8(b)	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs ¹	4/8/2010	4/15/2010	4/29/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg
VOCs				
Benzene	4.8	ND	ND	0.0058 J
METALS				
Arsenic	16	4.5	6.8	5.18

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6

NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL).

9-10-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Area BC-b

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
BC-B	3/30/2010	396550	26.30	TOT
BC-B	3/30/2010	396551	26.40	TOT
BC-B	3/30/2010	396552	25.90	TOT
BC-B	3/30/2010	396553	22.98	TOT
BC-B	3/30/2010	396554	28.04	TOT
BC-B	3/30/2010	396555	26.00	TOT
BC-B	3/30/2010	396556	21.82	TOT
BC-B	3/30/2010	396557	19.76	TOT
BC-B	3/30/2010	396558	25.10	TOT
BC-B	3/30/2010	396559	21.60	TOT
BC-B	3/30/2010	396560	22.02	TOT
BC-B	3/30/2010	396561	21.78	TOT
BC-B	3/30/2010	396562	23.50	TOT
BC-B	3/30/2010	396563	19.04	TOT
BC-B	3/30/2010	396564	21.28	TOT
BC-B	3/30/2010	396565	22.14	TOT
BC-B	3/30/2010	396566	20.22	TOT
BC-B	3/30/2010	396567	23.24	TOT
BC-B	3/30/2010	396568	21.88	TOT
BC-B	3/30/2010	396569	20.50	TOT
BC-B	3/30/2010	396570	19.64	TOT
BC-B	3/30/2010	396571	21.20	TOT
Area	a BC-B Soil Dispos	al Total for 3/30/2010	500.34	ТОТ
BC-B	4/7/2010	397449	25.66	TOT
BC-B	4/7/2010	397450	23.28	TOT
BC-B	4/7/2010	397451	22.78	TOT
BC-B	4/7/2010	397452	20.40	TOT
BC-B	4/7/2010	397453	20.80	TOT
BC-B	4/7/2010	397455	20.90	TOT
Are	ea BC-B Soil Dispo	osal Total for 4/7/2010	133.82	ТОТ
BC-B	4/7/2010	4826589	22.46	Modern
BC-B	4/7/2010	4826591	20.26	Modern
Are	ea BC-B Soil Dispo	osal Total for 4/7/2010	42.72	Modern
BC-B	4/8/2010	4827594	23.51	Modern
BC-B	4/8/2010	4827597	22.15	Modern
BC-B	4/8/2010	4827599	28.20	Modern
BC-B	4/8/2010	4827581	24.52	Modern
	ea BC-B Soil Dispo	sal Total for 4/8/2010	98.38	Modern
BC-B	4/8/2010	397454	27.82	TOT
Are	Area BC-B Soil Disposal Total for 4/8/2010		27.82	ТОТ
	Area BC-B Modern Soil Disposal Total			Modern
	Area BC-B TO	T Soil Disposal Total	661.98	ТОТ
	Area BC-B Soil Disposal Total			Modern & TOT

Table 9-10-BSpaulding Fibre Facility OU6Confirmation Soil Results Area BC-b

Sample ID		BC-b-BS-1	BC-b-BS-2	BC-b-SS-1	BC-b-SS-2
Sample Location	6 NYCRR Part 375-6.8(b)	Bottom	Bottom	Sidewall	Sidewall
Date Sampled	RRU SCOs ¹	4/8/2010	4/8/2010	4/8/2010	4/8/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
VOCs					
Benzene	4.8	0.0012 J	0.0023 J	ND	0.0011 J
METALS					
Arsenic	16	4	7.1	2.8	4.70

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) mg/kg = milligrams per kilogram

3) ND = not detected below the laboratory's method dectection limit (MDL).

4) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.

5) VOCs analyzed by SW846-8240; arsenic analyzed by USEPA Method 6010.

9-11-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Area BC-c

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
BC-C	3/31/2010	396594	30.48	TOT
BC-C	3/31/2010	396606	26.72	TOT
BC-C	3/31/2010	396607	26.08	TOT
BC-C	3/31/2010	396608	21.70	TOT
BC-C	3/31/2010	396609	22.58	TOT
BC-C	3/31/2010	396610	24.26	TOT
BC-C	3/31/2010	396611	26.91	TOT
BC-C	3/31/2010	396612	21.70	TOT
BC-C	3/31/2010	396613	22.92	TOT
BC-C	3/31/2010	396614	25.10	TOT
BC-C	3/31/2010	396615	27.46	TOT
BC-C	3/31/2010	397017	22.38	TOT
BC-C	3/31/2010	397018	24.70	TOT
BC-C	3/31/2010	397019	24.64	TOT
BC-C	3/31/2010	397020	24.82	TOT
BC-C	3/31/2010	397021	24.58	TOT
BC-C	3/31/2010	397022	24.38	TOT
BC-C	3/31/2010	397023	25.28	TOT
BC-C	3/31/2010	397024	23.36	TOT
BC-C	3/31/2010	397025	25.86	TOT
BC-C	3/31/2010	397026	24.58	TOT
BC-C	3/31/2010	397027	21.90	TOT
BC-C	3/31/2010	397028	24.88	TOT
BC-C	3/31/2010	397029	24.02	TOT
BC-C	3/31/2010	397030	24.40	TOT
BC-C	3/31/2010	397031	23.72	TOT
BC-C	3/31/2010	397032	21.14	TOT
BC-C	3/31/2010	397033	24.60	TOT
BC-C	3/31/2010	397034	24.98	TOT
BC-C	3/31/2010	397035	23.98	TOT
BC-C	3/31/2010	397036	26.30	TOT
BC-C	3/31/2010	397037	27.90	TOT
BC-C	3/31/2010	397038	23.02	TOT
BC-C	3/31/2010	397039	24.18	TOT
BC-C	3/31/2010	397040	21.88	TOT
BC-C	3/31/2010	397041	22.12	TOT
BC-C	3/31/2010	397042	25.24	TOT
BC-C	3/31/2010	397043	21.88	TOT
BC-C	3/31/2010	397044	26.04	TOT
Aı	-	osal Total for 3/31/2010	952.67	TOT
BC-C	4/1/2010	397267	18.76	TOT
BC-C	4/1/2010	397268	19.92	TOT
BC-C	4/1/2010	397269	20.56	TOT
BC-C	4/1/2010	397270	18.40	TOT
BC-C	4/1/2010	397271	22.08	TOT
BC-C	4/1/2010	397272	26.22	TOT
BC-C	4/1/2010	397273	24.34	TOT
BC-C	4/1/2010	397279	25.12	TOT
200	., 1, 2010	27.417		

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
BC-C	4/28/2010	588	21.49	Modern
BC-C	4/28/2010	587	22.28	Modern
BC-C	4/28/2010	586	21.25	Modern
BC-C	4/28/2010	581	22.71	Modern
Α	rea BC-C Soil Dispo	sal Total for 4/28/2010	87.73	Modern
	Area BC-C Mode	rn Soil Disposal Total	87.73	Modern
Area BC-C TOT Soil Disposal Total			1,128.07	ТОТ
Area BC-C Soil Disposal Total			1,215.80	Modern & TOT

Table 9-11-BSpaulding Fibre Facility OU6Confirmation Soil Results Area BC-c

Sample ID	6 NYCRR	BC-c-BS-1	BC-c-BS-2	BC-c-BS-3	BC-c-BS-4
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs¹	4 /8/2010	4 /8/2010	4/28/2010	4/28/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
VOCs					
Benzene	4.8	ND	0.069	ND	ND
METALS					
Arsenic	16	33	5.3	2.98	4.36

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-

6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram (ppm)

4) ND = Analyte included in the analysis, but not detected.

5) VOCs analyzed by SW846-8240; arsenic analyzed by USEPA Method 6010.

6) The red crossed out confirmation sample locations were overexcavated and resampled.

9-12-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Area BD

		Tonnage	Location
3/30/2010	396595	17.34	TOT
3/30/2010	396596	20.46	TOT
	396597	18.94	TOT
	396598	21.22	TOT
		22.56	TOT
		18.44	TOT
	396601	25.32	TOT
	396602	25.04	TOT
	396603	22.34	TOT
			TOT
			TOT
		236.88	ТОТ
3/31/2010	396993	23.28	TOT
			TOT
		477.91	ТОТ
4/1/2010	397311	18.05	TOT
			TOT
	3/30/2010 3/30/2010 3/30/2010 3/30/2010 3/30/2010 3/30/2010 3/30/2010 3/30/2010 3/30/2010 Area BD Soil Dispo 3/31/2010	3/30/2010 396597 3/30/2010 396598 3/30/2010 396600 3/30/2010 396601 3/30/2010 396602 3/30/2010 396603 3/30/2010 396603 3/30/2010 396604 3/30/2010 396605 Area BD Soil Disposal Total for 3/30/2010 396993 3/31/2010 396993 3/31/2010 396995 3/31/2010 396997 3/31/2010 396997 3/31/2010 396997 3/31/2010 396997 3/31/2010 396999 3/31/2010 397001 3/31/2010 397002 3/31/2010 397002 3/31/2010 397003 3/31/2010 397004 3/31/2010 397007 3/31/2010 397010 3/31/2010 397012 3/31/2010 397012 3/31/2010 397012 3/31/2010 397013 3/31/2010 3970	3/30/2010 396597 18.94 3/30/2010 396598 21.22 3/30/2010 396600 18.44 3/30/2010 396601 25.32 3/30/2010 396602 25.04 3/30/2010 396603 22.34 3/30/2010 396604 22.02 3/30/2010 396605 23.20 Area BD Soil Disposal Total for 3/30/2010 236.88 3/31/2010 396993 23.28 3/31/2010 396994 23.46 3/31/2010 396995 19.32 3/31/2010 396997 20.40 3/31/2010 396997 20.40 3/31/2010 396778 18.38 3/31/2010 397003 22.44 3/31/2010 397003 22.44 3/31/2010 397007 21.64 3/31/2010 397009 17.78 3/31/2010 397009 17.78 3/31/2010 397011 18.74 3/31/2010 397013 24.20

 $J:\label{eq:linear} J:\label{eq:linear} J:\label{linear} J:\label{linear$

9-12-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Area BD

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
BD	4/1/2010	397326	17.48	TOT
BD	4/1/2010	397327	21.76	TOT
BD	4/1/2010	397328	21.16	TOT
BD	4/1/2010	397329	21.44	TOT
BD	4/1/2010	397330	21.12	TOT
BD	4/1/2010	397331	18.58	TOT
BD	4/1/2010	397332	19.96	TOT
	Area BD Soil Dis	443.89	ТОТ	
BD	4/8/2010	397456	22.42	TOT
BD	4/8/2010	397457	22.66	TOT
BD	4/8/2010	397458	24.42	TOT
BD	4/8/2010	397459	22.96	TOT
BD	4/8/2010	397460	25.46	TOT
BD	4/8/2010	397461	25.56	TOT
		posal Total for 4/8/2010	143.48	ТОТ
BD	4/8/2010	4827596	23.77	Modern
BD	4/8/2010	4827582	22.42	Modern
BD	4/8/2010	4827583	21.53	Modern
BD	4/8/2010	4827585	24.10	Modern
BD	4/8/2010	4827563	22.19	Modern
BD	4/8/2010	4827586	20.38	Modern
BD	4/8/2010	4827587	22.28	Modern
BD	4/8/2010	4827588	22.23	Modern
BD	4/8/2010	4827590	23.72	Modern
BD BD	4/8/2010	4827576	22.31	Modern
BD BD	4/8/2010	4827552	22.31	Modern
BD BD	4/8/2010	4827554	22.80	Modern
BD BD	4/8/2010	4827556	23.94	Modern
BD BD	4/8/2010	4827558	23.99	Modern
BD BD	4/8/2010		20.50	
		4827559		Modern
BD	4/8/2010	4827564	25.16	Modern
BD	4/8/2010	4827561	23.34	Modern
BD	4/8/2010	4827562	24.54	Modern
BD	4/8/2010 Area BD Soil Dis	4827567 posal Total for 4/8/2010	26.07 438.13	Modern Modern
BD	4/9/2010	397462	23.80	ТОТ
BD BD	4/9/2010	397602	22.62	TOT
		posal Total for 4/8/2010	46.42	ТОТ
BD	4/9/2010	4827568	22.82	Modern
BD	4/9/2010	4827569	22.41	Modern
BD	4/9/2010	4827570	22.69	Modern
BD	4/9/2010	4827533	20.95	Modern
BD	4/9/2010	4827532	22.61	Modern
BD	4/9/2010	4827529	22.79	Modern
BD	4/9/2010	4827521	20.83	Modern
BD	4/9/2010	4827525	20.34	Modern
BD	4/9/2010	4827519	23.14	Modern
BD	4/9/2010	4827516	26.90	Modern
		posal Total for 4/9/2010	225.48	Modern

9-12-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Area BD

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
BD	4/13/2010	4835432	24.79	Modern
BD	4/13/2010	4835384	22.44	Modern
BD	4/13/2010	4835412	19.47	Modern
BD	4/13/2010	4835411	23.03	Modern
BD	4/13/2010	4835410	19.01	Modern
BD	4/13/2010	4835409	17.66	Modern
	Area BD Soil Disp	osal Total for 4/9/2010	126.40	Modern
BD	5/6/2010	605	21.76	Modern
BD	5/6/2010	606	25.37	Modern
BD	5/6/2010	607	18.38	Modern
BD	5/6/2010	608	19.38	Modern
BD	5/6/2010	609	22.49	Modern
BD	5/6/2010	610	22.04	Modern
BD	5/6/2010	613	26.45	Modern
BD	5/6/2010	614	24.25	Modern
BD	5/6/2010	616	22.32	Modern
BD	5/6/2010	617	22.25	Modern
BD	5/6/2010	624	19.86	Modern
BD	5/6/2010	618	21.17	Modern
BD	5/6/2010	619	20.39	Modern
BD	5/6/2010	622	22.35	Modern
BD	5/6/2010	623	22.87	Modern
	Area BD Soil Disp	osal Total for 5/6/2010	331.33	Modern
BD	5/10/2010	3629	19.10	Modern
BD	5/10/2010	3621	21.11	Modern
BD	5/10/2010	3622	20.81	Modern
BD	5/10/2010	3623	20.78	Modern
BD	5/10/2010	625	21.23	Modern
BD	5/10/2010	3626	22.27	Modern
BD	5/10/2010	627	20.68	Modern
BD	5/10/2010	555	20.14	Modern
BD	5/10/2010	556	24.40	Modern
BD	5/10/2010	559	22.68	Modern
	Area BD Soil Dispo	sal Total for 5/10/2010	213.20	Modern
	Area BD TO	OT Soil Disposal Total	1,348.58	ТОТ
	Area BD Mode	rn Soil Disposal Totals	1,334.54	Modern
	Area I	3D Soil Disposal Totals	2,683.12	TOT & Modern

Table 9-12-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area BD

Sample ID	6 NYCRR	BD-SS-1	BD-BS-1	BD-BS-2	BD-SS-2	BD-BS-3
Sample Location	Part 375-6.8(b)	Sidewall	Bottom	Bottom	Sidewall	Bottom
Date Sampled	RRU SCOs¹	4/20/2010	4/20/2010	4 /20/2010	5/10/2010	5/10/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs						
Naphthalene	12	0.66	ND	0.91	ND	ND
2-Methylnaphthalene	NC	0.22	ND	0.24	ND	ND
Acenaphthylene	100	ND	ND	ND	ND	ND
Acenaphthene	20	0.46	ND	0.7	ND	ND
Fluorene	30	0.41	ND	0.82	ND	ND
Phenanthrene	100	3	ND	7.5 E	ND	ND
Anthracene	100	0.79	ND	1.7	ND	ND
Fluoranthene	100	2.9	ND	7.6 E	ND	ND
Pyrene	100	1.4	ND	3.9 E	ND	ND
Benzo (a) anthracene	1	1.1	ND	1.9	ND	ND
Chrysene	1	0.83	ND	1.9	ND	ND
Benzo (b) fluoranthene	1	0.91	ND	2	ND	ND
Benzo (k) fluoranthene	0.8	0.33	ND	0.66	ND	ND
Benzo (a) pyrene	1	0.68	ND	1.5	ND	ND
Indeno (1,2,3-cd) pyrene	0.5	0.4	ND	0.96	ND	ND
Dibenzo (a,h) anthracene	0.33	0.130 J	ND	0.28	ND	ND
Benzo (g,h,i) pylene	100	0.48	ND	1.1	ND	ND

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.

4) mg/kg = milligrams per kilogram (ppm)

5) NC = No Criteria

6) ND = Analyte included in the analysis, but not detected.

7) E = Analyte concentration exceeds calibration range of instrument used for analysis.

8) PAHs analyzed by SW846-8270C.

9) The red crossed out confirmation sample locations were overexcavated and resampled.

9-13-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Area BE

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
BE	4/5/2010	4811382	18.61	Modern
BE	4/5/2010	4811387	23.44	Modern
BE	4/5/2010	4811388	22.48	Modern
BE	4/5/2010	4811396	24.22	Modern
BE	4/5/2010	4809774	25.82	Modern
BE	4/5/2010	4811389	19.93	Modern
BE	4/5/2010	4811390	23.85	Modern
BE	4/5/2010	4811391	18.03	Modern
BE	4/5/2010	4811393	22.35	Modern
BE	4/5/2010	4811383	21.76	Modern
	Area BE Soil Disposal Total for 4/5/2010			Modern
	Area	BE Soil Disposal Totals	220.49	Modern

Table 9-13-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area BE

Sample ID	6 NYCRR	BE - BS-1	BE - BS-2	BE - SS-1	
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Sidewall	
Date Sampled	RRU SCOs¹	4/14/2010	4/14/2010	4/14/2010	
Units	mg/kg	mg/kg	mg/kg	mg/kg	
METALS					
Cadmium	4.3	0.014	0.54	1.1	
Lead	400	0.54	7.9	9.6	
Zinc	10000	140	140	390	

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs).

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) Metals analyzed by USEPA Method 6010.

9-14-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Area BI

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
BI	4/1/2010	4809949	23.02	Modern
BI	4/1/2010	4809781	19.09	Modern
	Area BI Soil Dispo	sal Total for 4/1/2010	42.11	Modern
BI	4/1/2010	397333	21.58	ТОТ
BI	4/1/2010	397334	27.68	TOT
BI	4/1/2010	397335	27.68	TOT
BI	4/1/2010	397336	20.72	TOT
BI	4/1/2010	397337	25.26	TOT
BI	4/1/2010	397338	23.28	TOT
BI	4/1/2010	397339	26.26	TOT
BI	4/1/2010	397340	25.32	TOT
BI	4/1/2010	397341	24.34	TOT
BI	4/1/2010	397342	24.92	TOT
BI	4/1/2010	397343	23.48	TOT
BI	4/1/2010	397344	21.60	TOT
BI	4/1/2010	397345	23.16	TOT
BI	4/1/2010	397346	24.80	TOT
	Area BI Soil Dispo	sal Total for 4/1/2010	340.08	ТОТ
BI	4/5/2010	4811386	24.76	Modern
BI	4/5/2010	4809791	24.70	Modern
	Area BI Soil Dispo	sal Total for 4/5/2010	49.46	Modern
BI	4/5/2010	397369	24.06	TOT
BI	4/5/2010	397370	25.72	TOT
BI	4/5/2010	397371	23.38	TOT
BI	4/5/2010	397372	19.18	ТОТ
BI	4/5/2010	397373	24.26	ТОТ
BI	4/5/2010	397374	23.82	ТОТ
BI	4/5/2010	397375	25.30	TOT
BI	4/5/2010	397376	25.92	TOT
BI	4/5/2010	397377	23.38	TOT
BI	4/5/2010	397378	23.21	TOT
BI	4/5/2010	397379	21.64	TOT
BI	4/5/2010	397380	26.58	TOT
BI	4/5/2010	397381	23.40	TOT
BI	4/5/2010	397382	21.86	TOT
BI	4/5/2010	397383	24.98	TOT
BI	4/5/2010	397384	22.66	TOT
BI	4/5/2010	397385	23.70	TOT
BI	4/5/2010	397386	24.92	TOT
BI	4/5/2010	397387	24.14	TOT
BI	4/5/2010	397388	26.52	TOT
BI	4/5/2010	397389	22.08	TOT
BI	4/5/2010	397390	25.78	TOT
BI	4/5/2010	397391	25.32	TOT
BI	4/5/2010	397392	24.68	TOT
BI	4/5/2010	397393	23.72	TOT
BI	4/5/2010	397394	22.48	TOT
BI	4/5/2010	397395	24.32	TOT
BI	4/5/2010	397396	24.38	TOT
BI	4/5/2010	397397	22.56	TOT

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA1ASoilDisposalTables\9-14-A(BI)

BI	4/5/2010	397398	19.68	ТОТ
		al Total for 4/5/2010	713.63	ТОТ
BI	4/6/2010	397399	23.20	TOT
BI	4/6/2010	397400	22.02	ТОТ
BI	4/6/2010	397401	21.20	ТОТ
BI	4/6/2010	397402	23.66	TOT
BI	4/6/2010	397403	23.26	TOT
BI	4/6/2010	397404	24.74	TOT
BI	4/6/2010	397405	19.00	TOT
BI	4/6/2010	397407	21.40	TOT
BI	4/6/2010	397408	20.34	TOT
BI	4/6/2010	397409	21.12	TOT
BI	4/6/2010	397410	24.30	TOT
BI	4/6/2010	397411	21.54	TOT
BI	4/6/2010	397412	21.40	TOT
BI	4/6/2010	397413	22.42	TOT
BI	4/6/2010	397414	21.80	TOT
BI	4/6/2010	397415	23.02	TOT
BI	4/6/2010	397416	22.38	TOT
BI	4/6/2010	397417	25.24	TOT
BI	4/6/2010	397418	21.50	TOT
BI	4/6/2010	397419	25.12	TOT
BI	4/6/2010	397420	23.60	TOT
BI	4/6/2010	397421	20.24	TOT
BI	4/6/2010	397422	20.80	TOT
BI	4/6/2010	397423	24.13	TOT
BI	4/6/2010	397424	20.46	ТОТ
	-	al Total for 4/6/2010	557.89	ТОТ
BI	4/6/2010	4811363	21.22	Modern
BI	4/6/2010	4811354	20.43	Modern
BI	4/6/2010	4811356	22.19	Modern
BI	4/6/2010	4811357	21.17	Modern
BI	4/6/2010	4811358	23.59	Modern
BI	4/6/2010	4811368	19.65	Modern
BI	4/6/2010	4811359	23.52	Modern
BI	4/6/2010	4809819	22.93	Modern
BI	4/6/2010	4809818	21.62	Modern
BI	4/6/2010	4809816	21.72	Modern
BI	4/6/2010	4811365	20.84	Modern
BI	4/6/2010	4809815	24.64	Modern
BI	4/6/2010	4809814	21.87	Modern
BI	4/6/2010	4809812	23.89	Modern
BI	4/6/2010	4809808	23.74	Modern
BI	4/6/2010	4809807	24.46	Modern
BI	4/6/2010	4809806	24.62	Modern
BI	4/6/2010	4809805	20.43	Modern
BI	4/6/2010	4809804	25.53	Modern
BI	4/6/2010	4809803	24.43	Modern
BI	4/6/2010	4811366	21.89	Modern
BI	4/6/2010	4809802	21.29	Modern
BI	4/6/2010	4809793	22.66	Modern
BI	4/0/2010	4809/93	22.66	Modern

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA1ASoilDisposalTables\9-14-A(BI)

9-14-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Area BI

BI	4/6/2010	4808557	22.93	Modern
BI	4/6/2010	4809792	21.31	Modern
BI	4/6/2010	4808555	23.27	Modern
BI	4/6/2010	4811376	19.65	Modern
BI	4/6/2010	4811377	22.55	Modern
BI	4/6/2010	4811367	20.11	Modern
BI	4/6/2010	4811378	23.48	Modern
	Area BI Soil Dispos	al Total for 4/6/2010	671.63	Modern
BI	4/9/2010	397603	25.00	ТОТ
BI	4/9/2010	397604	27.60	TOT
BI	4/9/2010	397605	28.16	TOT
BI	4/9/2010	397606	28.32	ТОТ
BI	4/9/2010	397607	27.04	TOT
BI	4/9/2010	397608	20.17	TOT
BI	4/9/2010	397609	26.62	ТОТ
DI				
	-	al Total for 4/9/2010	182.91	ТОТ
BI	4/9/2010	4809800	25.06	Modern
BI	4/9/2010	4809797	24.34	Modern
BI	4/9/2010	4809794	25.52	Modern
BI	4/9/2010	4827529	22.06	Modern
BI	4/9/2010	4827534	25.78	Modern
BI	4/9/2010	4827536	25.80	Modern
BI	4/9/2010	4827537	27.38	Modern
BI	4/9/2010	4809801	30.81	Modern
BI	4/9/2010	4827524	26.93	Modern
BI	4/9/2010	4827515	25.30	Modern
BI	4/9/2010	4827513	24.75	Modern
BI	4/9/2010	4827512	26.66	Modern
BI	4/9/2010	4811414	23.82	Modern
BI	4/9/2010	4811413	25.85	Modern
BI	4/9/2010	4811400	19.76	Modern
BI	4/9/2010	4811399	25.33	Modern
BI	4/9/2010	4811379	23.32	Modern
BI	4/9/2010	4811372	23.87	Modern
BI	4/9/2010	4811371	24.60	Modern
BI	4/9/2010	4811370	24.39	Modern
BI	4/9/2010	4811369	24.40	Modern
BI	4/9/2010	4811362	25.90	Modern
BI	4/9/2010	4811355	22.06	Modern
BI	4/9/2010	4811353	25.30	Modern
BI	4/9/2010	4827572	22.50	Modern
BI	4/9/2010	4811423	24.24	Modern
BI	4/9/2010	4811420	26.68	Modern
BI	4/9/2010	4811419	24.71	Modern
BI	4/9/2010	4811418	24.61	Modern
BI	4/9/2010	4811417	24.83	Modern
BI	4/9/2010	4811416	23.46	Modern
BI	4/9/2010	4811415	22.81	Modern
BI	4/9/2010	4827573	25.30	Modern
BI	4/9/2010	4827514	23.66	Modern
ום	7/2/2010	7027317	23.00	modelli

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA1ASoilDisposalTables\9-14-A(BI)

9-14-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Area BI

Area BI Soil Disposal Totals		3,926.54	TOT & Modern	
		Soil Disposal Total Soil Disposal Totals	1,847.45 2,079.09	TOT Modern
	Area BI Soil Disposal Total for 4/12/2010			ТОТ
BI	4/12/2010	397689	29.22	TOT
BI	4/12/2010	397610	23.72	TOT
	Area BI Soil Disposal	Total for 4/12/2010	151.26	Modern
BI	4/12/2010	4811402	24.13	Modern
BI	4/12/2010	4811405	25.25	Modern
BI	4/12/2010	4811411	28.75	Modern
BI	4/12/2010	4811408	25.26	Modern
BI	4/12/2010	4811410	21.73	Modern
BI	4/12/2010	4811409	26.14	Modern
	Area BI Soil Dispos	al Total for 4/9/2010	1,164.63	Modern
BI	4/9/2010	4811426	20.91	Modern
BI	4/9/2010	4811432	23.61	Modern
BI	4/9/2010	4811427	28.37	Modern
BI	4/9/2010	4811424	26.78	Modern
BI	4/9/2010	4811428	24.46	Modern
BI	4/9/2010	4811429	22.94	Modern
BI	4/9/2010	4811430	24.28	Modern
BI	4/9/2010	4811431	23.72	Modern
BI	4/9/2010	4811433	22.64	Modern
BI	4/9/2010	4811434	20.30	Modern
BI	4/9/2010	4827511	28.50	Modern
BI BI	4/9/2010 4/9/2010	4827542 4827545	25.58 28.64	Modern Modern

Table 9-14-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area BI

Sample ID	6 NYCRR	BI-BS-1	BI-BS-2	BI-SS-1	BI-SS-2	BI-SS-3
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Sidewall	Sidewall	Sidewall
Date Sampled	RRU SCOs¹	4/14/2010	4/14/2010	4/19/2010	4 /20/2010	5/27/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS						
Cadmium	4.3	0.76	0.36	0.41	18.4	2.58
Lead	400	12.5	11.1	11.6	47.6	99.6
Zinc	10000	2570	114	134	70200	6710

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs).

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) Metals analyzed by USEPA Method 6010.

5) The red crossed out confirmation sample locations were overexcavated and resampled.

9-15-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Area BK

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
ВК	3/30/2010	396485	18.44	TOT
ВК	3/30/2010	396486	22.48	TOT
ВК	3/30/2010	396487	20.92	TOT
BK	3/30/2010	396488	19.65	TOT
ВК	3/30/2010	396489	22.24	TOT
ВК	3/30/2010	396490	17.54	TOT
ВК	3/30/2010	396491	19.40	TOT
ВК	3/30/2010	396492	24.18	TOT
ВК	3/30/2010	396493	25.84	TOT
ВК	3/30/2010	396494	22.82	TOT
ВК	3/30/2010	396595	21.50	TOT
ВК	3/30/2010	396496	28.94	TOT
ВК	3/30/2010	396497	25.75	TOT
ВК	3/30/2010	396498	26.64	TOT
ВК	3/30/2010	396299	25.50	TOT
ВК	3/30/2010	396500	26.06	TOT
ВК	3/30/2010	396501	25.46	TOT
ВК	3/30/2010	396502	22.56	TOT
BK	3/30/2010	396503	23.61	TOT
BK	3/30/2010	396504	23.44	TOT
BK	3/30/2010	396505	25.10	TOT
BK	3/30/2010	396506	19.14	TOT
BK	3/30/2010	396507	22.02	TOT
BK	3/30/2010	396508	19.86	TOT
BK	3/30/2010	396509	27.14	TOT
BK	3/30/2010	396510	18.26	TOT
BK	3/30/2010	396511	19.74	TOT
BK	3/30/2010	396512	21.72	TOT
BK	3/30/2010	396513	23.86	TOT
BK	3/30/2010	396514	23.98	TOT
BK	3/30/2010	396515	22.34	TOT
	Area BK Soil Disp	osal Total for 3/30/2010	706.13	ТОТ
	Area	BK Soil Disposal Totals	706.13	ТОТ

Table 9-15-B **Spaulding Fibre Facility OU6 Confirmation Soil Results for Area BK**

Sample ID	6 NYCRR	BK-BS-1	BK-BS-2	BK-SS-1
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Sidewall
Sample Location	RRU SCOs ¹	4/14/2010	4/14/2010	4/14/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg
PAHs	mg/kg	iiig/ Kg	ilig/ kg	iiig/kg
Naphthalene	12	ND	ND	ND
2-Methylnaphthalene	NC	ND	ND	ND
Acenaphthylene	100	ND	ND	ND
Acenaphthene	20	0.028 J	ND	ND
Fluorene	30	0.020 J	ND	ND
Phenanthrene	100	0.26	0.025 J	0.16 J
Anthracene	100	0.069 J	ND	ND
Di-n-butylphthalate	NC	0.28	ND	ND
Fluoranthene	100	0.29	ND	ND
Pyrene	100	0.3	ND	ND
Benzo (a) anthracene	1	0.17 J	ND	ND
Chrysene	1	0.13 J	ND	ND
Benzo (b) fluoranthene	1	0.13 J	ND	ND
Benzo (k) fluoranthene	0.8	0.059 J	ND	ND
Benzo (a) pyrene	1	0.095 J	ND	ND
Indeno (1,2,3-cd) pyrene	0.5	0.049 J	ND	ND
Dibenzo (a,h) anthracene	0.33	ND	ND	ND
Benzo (g,h,i) perylene	100	0.062 J	ND	ND
PCBs				
Aroclor-1016	NC	ND	ND	ND
Aroclor-1221	NC	ND	ND	ND
Aroclor-1232	NC	ND	ND	ND
Aroclor-1242	NC	ND	ND	ND
Aroclor-1248	NC	ND	ND	ND
Aroclor-1254	NC	0.11	ND	ND
Aroclor-1260	NC	ND	ND	ND
Total PCBs	1	0.11	0	0
METALS				
Aluminum	NC	15900	8490	18200
Antimony	NC	0.27 B	0.25 B	ND
Arsenic	16	5.1	3.2	6.2
Barium	400	91.5	68.7	368
Beryllium	72	0.9	0.5	1.1
Cadmium	4.3	1	0.53	1.9
Calcium	NC	49500	62600	4570
Chromium	180	21.6	12.3	22.1
Cobalt	NC	11.4	7.2	10.7
Copper	270	27.5	15.9	27.9
Iron	NC	35000	22400	35500
Lead	400 NC	12.2	7.8	20.9
Magnesium	NC 2000	<u>11500</u> 486	13600 562	5460 190
Manganese Mercury	2000 0.18	486 0.018 B	0.019 B	0.029 B
Nickel	310	26.7	15.8	0.029 B 27.1
Potassium	NC	26.7	15.8	1720
Selenium	180	1.7	1.1 B	3.4
Silver	180	0.15 B	ND	0.15 B
Sodium	NC	<u> </u>	144	105
Thallum	NC	2.3	2.3	1.3
Vanadium	NC	2.5		
Zinc		<u> </u>	18.3 51.4	31.6
Zinc Notes:	10000	11/	31.4	670

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs).

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NC = No Criteria

6) B - Compound appeared in blank

7) PAHs analyzed by SW846-8270C; total metals analyzed by USEPA Method 6010 and 7471; PCBs analyzed by USEPA Method 8082.

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
K-Line Sewer Area	5/6/2010	748	34.00	Modern
K-Line Sewer Area	5/6/2010	750	34.90	Modern
K-Line Sewer Area	5/6/2010	752	24.84	Modern
K-Line Sewer Area	5/6/2010	755	27.99	Modern
K-Line Sewer Area	5/6/2010	969	23.22	Modern
K-Line Sewer Area	5/6/2010	971	25.00	Modern
K-Line Sew	K-Line Sewer Area Soil Disposal Total for 5/6/2010			Modern
K-Line Sewer Area	5/12/2010	562	34.43	Modern
K-Line Sewer Area	5/12/2010	564	29.87	Modern
K-Line Sewer Area	5/12/2010	949	31.94	Modern
K-Line Sewer Area	5/12/2010	950	26.34	Modern
K-Line Sewer Area	5/12/2010	952	27.24	Modern
K-Line Sewer Area	5/12/2010	955	23.82	Modern
K-Line Sewer Area	5/12/2010	889	27.15	Modern
K-Line Sewer Area	5/12/2010	199	28.98	Modern
K-Line Sewer Area	5/12/2010	217	27.55	Modern
K-Line Sewer Area	5/12/2010	218	30.19	Modern
K-Line Sewer Area	5/12/2010	631	29.46	Modern
K-Line Sewer Area	5/12/2010	928	30.64	Modern
K-Line Sewer Area	5/12/2010	948	30.14	Modern
K-Line Sewer Area	5/12/2010	223	26.72	Modern
K-Line Sewer Area	5/12/2010	220	34.55	Modern
K-Line Sewer Area	5/12/2010	220	28.77	Modern
K-Line Sewer Area	5/12/2010	224	26.80	Modern
K-Line Sewer Area	5/12/2010	227	26.00	Modern
K-Line Sewer Area	5/12/2010	228	17.93	Modern
		sal Total for 5/12/2010	538.52	Modern
	-			
K-Line Sewer Area	5/13/2010	967	21.35	Modern
K-Line Sewer Area	5/13/2010	750	21.64	Modern
K-Line Sewer Area	5/13/2010	613	25.49	Modern
K-Line Sewer Area	5/13/2010	614	22.96	Modern
K-Line Sewer Area	5/13/2010	617	22.85	Modern
K-Line Sewer Area	5/13/2010	18	22.88	Modern
K-Line Sewer Area	5/13/2010	619	19.59	Modern
K-Line Sewer Area	5/13/2010	628	20.86	Modern
K-Line Sewer Area	5/13/2010	956	22.42	Modern
K-Line Sewer Area	5/13/2010	958	24.31	Modern
K-Line Sewer Area	5/13/2010	959	21.62	Modern
K-Line Sewer Area	5/13/2010	960	22.73	Modern
K-Line Sewer Area	5/13/2010	961	23.00	Modern
K-Line Sewer Area	5/13/2010	963	26.15	Modern
K-Line Sewer Area	5/13/2010	964	23.74	Modern
K-Line Sewer Area	5/13/2010	685	23.02	Modern
K-Line Sewer Area	5/13/2010	686	27.57	Modern
K-Line Sewe	r Area Soil Dispo	sal Total for 5/13/2010	392.18	Modern
	K-Line Sewer A	rea Soil Disposal Total	1,100.65	Modern

Table 9-16-B Spaulding Fibre Facility OU6 Confirmation Soil Results for K Line Sewer Area

Sample ID	6 NYCRR	K LINE-SS-1	K I INF-SS-2	K LINE-SS-3	K I INF-SS-4	K LINE-SS-5	K LINE-SS-6	K I INF-SS-7	K I INF-SS-8	K I INF-SS-0
Sample Location	Part 375-6.8(b)	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall
Date Sampled	RRU SCOs ¹	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/13/2010	5/13/2010	5/13/2010	5/13/2010	6/9/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs	iiig/kg	mg/kg	mg/kg	mg/kg	iiig/kg	iiig/ kg	iiig/ Kg	iiig/ Kg	iiig/ kg	iiig/kg
Naphthalene	100	0.166 J	0.14 J	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	NC	0.100 J ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	100	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	100	ND	ND	ND	ND	0.433	ND	ND	ND	0.0831 J
Fluorene	100	ND	ND	ND	ND	0.433	ND	ND	ND	0.0898 J
Hexachlorobenzene	1.2	ND	ND	ND	ND	ND	ND	ND	ND	0.0070 J
Phenanthrene	1.2	0.0724 J	ND	ND	ND	3.26	ND	ND	ND	0.873
Anthracene	100	0.0724 J ND	ND	ND	ND	0.878	ND	ND	ND	0.302
Fluoranthene	100	0.115 J	ND	ND	ND	4.03	ND	ND	ND	1.12
Pyrene	100	0.0917 J	ND	ND	ND	2.86	ND	ND	ND	0.84
Benzo (a) anthracene	100	0.0703 J	ND	ND	ND	1.99	ND	ND	ND	0.412
Chrysene	3.9	0.0657 J	ND	ND	ND	1.99	ND	ND	ND	0.412
Benzo (b) fluoranthene	1	0.0057 J ND	ND	ND	ND	1.75	ND	ND	ND	0.42
Benzo (k) fluoranthene	3.9	0.0552 J	ND	ND	ND	1.73	ND	ND	ND	0.284
Benzo (k) fluorantnene Benzo (a) pyrene	3.9	0.0552 J 0.0521 J	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	0.328
Indeno (1,2,3-cd) pyrene	0.5	0.0521 J ND	ND ND	ND ND	ND ND	1.61 0.762	ND ND	ND ND	ND ND	0.332 0.172 J
Dibenzo (a,h) anthracene	0.5	ND ND	ND ND	ND ND	ND ND	0.762 0.225 J	ND ND	ND ND	ND ND	0.172 J 0.0463 J
Dibenzofuran	59	ND	ND	ND	ND	0.223 J 0.179 J	ND	ND	ND	0.0403 J ND
Benzo (g,h,i) pylene	100	ND	ND	ND	ND	0.179 J	ND	ND	ND	0.164 J
Pentachlorophenol	6.7	ND	ND	ND	ND	ND	ND	ND	ND	0.104 J ND
Phenol	100	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCBs	100	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor- 1016	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1016 Aroclor-1221	NC	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND
Aroclor-1221 Aroclor-1232	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1242	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1242 Aroclor-1248	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1254	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1260	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1262	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1268	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
METALS										
Aluminum	NC	4230	20100	15200	11500	11000	13300	19100	20900	4460
Antimony	NC	1.33 J	ND	ND	ND	1.13 J	ND	0.667 J	ND	ND
Arsenic	16	14.7	1.98	3.48	4.12	7.07	2.08	2.65	3.07	1.34 J
Barium	400	261	136	134	106	126	112	146	141	20.6
Beryllium	72	0.896	1.13	0.953	0.695	1.84	0.732	1.04	1.07	0.347 J
Cadmium	4.3	2.14	1.04	0.97	0.782	2.02	1.12	1.08	1.28	0.459 J
Calcium	NC	23200	5810	5130	52400	61000	60800	15500	4640	85500
Chromium	180	7.17	27.5	21.6	16.9	13.1	19	25.4	26.1	7.7
Cobalt	NC	3.33	12.2	10	8.54	6.19	9.82	12.8	14.4	2.75
Copper	270	81.2	23.1	34.2	20.5	58.5	34.2	22.8	21.7	11.6
Iron	NC	60500	38300	33000	21000	31300	23900	27100	28800	11700
Lead	400	10.7	8.55	10.7	7.71	24	17	9.02	17.5	6.71
Magnesium	NC	4170	13300	7100	16400	12000	15600	12500	6980	41400
Manganese	2000	224	548	226	406	1190	582	481	541	304
Mercury	0.81	0.0508	0.0228 J	0.0431	0.0171 J	0.042	0.0233 J	0.0216 J	0.0488	0.0119 J
Nickel	310 NC	5.1 878	29 2480	21 1810	18.6 2350	15.4 1130	20.8 2190	30 2510	24.2 2330	6.07 1080
Potassium Selenium	180	4.52	2480 1.39 J	1810 1.21 J	0.993 J	2.22	0.935 J	2510 1.28 J		
Selenium Silver	180	4.52 ND	1.39 J ND	ND	0.993 J ND	2.22 ND	0.935 J ND	1.28 J ND	1.63 J ND	0.313 J ND
Sodium	NC	135	121	82.2	165	316	135	116	95.3	177
Thallium	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	18.8	31.6	25.9	20.9	13.9	27.1	34	38.4	12.3
Zinc	10000	80.1	64.8	141	52.8	277	553	59.5	187	51.2
Notes:	10000	00.1	07.0	1 7 1	52.0		555	57.5	107	51.2

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Restricted Residential Use (RRU) Soil Cleanup Objectives (SCOs). 2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL).

5) NC = No Criteria

6) B - Compound appeared in blank

7) NA - Not Analyzed

8) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.

9) PAHs analyzed by SW846-8270; total metals analyzed by USEPA 6000/7000 Series Methods; PCBs analyzed by SW846-8082.

10) The red crossed out confirmation sample locations were overexcavated and resampled.

Table 10-1-A Spaulding Fibre Facility OU6 Summary of Soil Disposal for Area C

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
С	2/16/2010	395423	17.16	TOT
С	2/16/2010	395424	20.92	TOT
С	2/16/2010	395425	19.12	TOT
С	2/16/2010	395426	24.10	TOT
С	2/16/2010	395427	21.02	TOT
С	2/16/2010	395428	19.84	TOT
С	2/16/2010	395429	18.76	TOT
С	2/16/2010	395430	21.26	TOT
A	rea C Soil Disposal	Total for 2/16/2010	162.18	ТОТ
С	2/17/2010	395431	19.25	TOT
С	2/17/2010	395432	19.10	TOT
С	2/17/2010	395433	18.66	TOT
С	2/17/2010	395434	15.78	TOT
С	2/17/2010	395435	16.76	TOT
C	2/17/2010	395436	16.46	TOT
С	2/17/2010	395437	23.88	TOT
C	2/17/2010	395438	21.40	TOT
C	2/17/2010	395439	26.26	TOT
C	2/17/2010	395440	24.00	TOT
C	2/17/2010	395441	18.10	TOT
C	2/17/2010	395442	19.08	TOT
C	2/17/2010	395443	17.60	TOT
C	2/17/2010	395444	16.04	TOT
C	2/17/2010	395445	21.90	TOT
C	2/17/2010	395446	20.70	TOT
C	2/17/2010	395447	23.48	TOT
C	2/17/2010	395448	18.08	TOT
C	2/17/2010	395449	22.90	TOT
C	2/17/2010	395450	21.22	TOT
C	2/17/2010	395450	20.68	TOT
C	2/17/2010	395452	20.08	TOT
C	2/17/2010	395452	18.94	TOT
C	2/17/2010	395455	19.46	TOT
C	2/17/2010	395455	21.34	TOT
C				TOT
	2/17/2010 2/17/2010	395456 395457	20.98 23.18	TOT
C C	2/17/2010	395457 395458	22.34	TOT
C			22.34	TOT
C	2/17/2010	395459 295460		TOT
	2/17/2010 rea C Soil Disposal	Total for 2/17/2010	26.10 617.81	TOT
C (asbestos)	2/26/2010	22601	19.44	Modern
C (asbestos)	2/26/2010	22602	17.91	Modern
C (asbestos)	2/26/2010	22602	21.84	Modern
C (asbestos)	2/26/2010	22603	24.05	Modern
C (asbestos)	2/26/2010	22604	24.05	Modern
C (asbestos)	2/26/2010	22605	24.75	Modern
C (asbestos)	2/26/2010	22607	23.14	Modern
C (asbestos) C (asbestos)	2/26/2010	22608	24.85	Modern
C (asbestos) C (asbestos)	2/26/2010	22608	24.83	Modern
	2/26/2010	22609	24.06	Modern
C (asbestos) C (asbestos)	2/26/2010	22610	24.93	Modern

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA2Soil DisposalTables\10-1-A(C)

Table 10-1-A Spaulding Fibre Facility OU6 Summary of Soil Disposal for Area C

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
C (asbestos)	2/26/2010	22612	24.03	Modern
C (asbestos)	2/26/2010	22613	23.83	Modern
C (asbestos)	2/26/2010	22614	22.72	Modern
C (asbestos)	2/26/2010	22615	22.59	Modern
Area C Soil D	isposal (Asbestos)	Total for 2/26/2010	347.10	Modern
С	3/23/2010	395744	26.64	TOT
С	3/23/2010	395745	26.06	TOT
С	3/23/2010	395746	25.18	TOT
С	3/23/2010	395747	24.28	TOT
Ar	ea C Soil Disposal	Total for 3/23/2010	102.16	ТОТ
С	3/24/2010	395739	25.74	TOT
С	3/24/2010	395738	22.42	TOT
Ar	ea C Soil Disposal	Total for 3/24/2010	48.16	тот
С	4/15/2010	398196	16.58	TOT
С	4/15/2010	398197	17.84	TOT
С	4/15/2010	397198	22.56	TOT
Ar	ea C Soil Disposal	Total for 4/15/2010	56.98	тот
	Area C TOT	Soil Disposal Total	987.29	тот
Area C M	Aodern Soil Dispo	osal (Asbestos) Total	347.10	Modern
Area C Soil Disposal Totals			1,334.39	TOT& Modern

Table 10-1-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area C

Sample ID	6 NYCRR	C-SS-1	C-SS-2	C-SS-3	C-SS-4	C-SS-5	C-BS-1	C-BS-2	C-BS-3	C-SS-6
Sample Location	Part 375-6.8(b)	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Bottom	Bottom	Bottom	Sidewall
Date Sampled	RRU SCOs¹	3/25/2010	3/25/2010	3/25/2010	3/25/2010	3/25/2010	3/25/2010	3/25/2010	3/25/2010	4/19/2010
Units	mg/kg	mg/kg	mg/kg							
PAHs										
Naphthalene	100	ND	ND	ND	ND	ND	ND	0.51	ND	ND
2-Methylnaphthalene	N/A	ND	ND	ND	ND	ND	ND	0.64	ND	ND
Acenaphthylene	100	ND	ND	ND	ND	ND	ND	0.087 J	ND	ND
Acenaphthene	100	ND	ND	0.026 J	ND	ND	ND	0.42	ND	ND
Fluorene	100	ND	ND	0.024 J	ND	ND	ND	0.26	ND	ND
Phenanthrene	100	0.025 J	ND	0.160 J	ND	0.110 J	0.029 J	0.86	0.039 J	ND
Anthracene	100	ND	ND	0.049 J	ND	0.040 J	ND	0.25	ND	ND
Fluoranthene	100	ND	0.028 J	0.170 J	ND	0.180 J	ND	0.24	0.042 J	0.029 J
Pyrene	100	ND	ND	0.220 J	ND	0.220 J	ND	0.44	0.052 J	ND
Benzo (a) anthracene	1	ND	0.023 J	0.100 J	ND	0.120 J	ND	0.170 J	0.027 J	0.024 J
Chrysene	3.9	ND	ND	0.091 J	ND	0.100 J	ND	0.140 J	0.027 J	ND
Benzo (b) fluoranthene	1	ND	ND	0.100 J	ND	0.120 J	ND	0.076 J	ND	ND
Benzo (k) fluoranthene	3.9	ND	ND	0.030 J	ND	0.034 J	ND	0.025 J	ND	ND
Benzo (a) pyrene	1	ND	ND	0.073 J	ND	0.076 J	ND	0.082 J	ND	ND
Indeno (1, 2, 3-cd) pyrene	0.5	ND	ND	0.043 J	ND	0.047 J	ND	0.025 J	ND	ND
Dibenzo (a, h) anthracene	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo (g, h, i,) perylene	100	ND	ND	0.056 J	ND	0.059 J	ND	0.040 J	ND	ND

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds Restricted Residential SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit

5) J - detected above the method of detection limit (MDL), but below the RL; therefore the result is an estimated concentration.

6) PAHs analyzed by SW846-8270C

The red crossed out confirmation sample locations were overexcavated and resampled.

Table 10-1-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area C

G-11 G1- T4	6 NYCRR	C-SS-1	C-SS-2	C-SS-3	C-SS-4	C-SS-5	C-BS-1	C-BS-2	C-BS-3	C-SS-6
Soil Sample Location	Part 375-6.8(b)	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Bottom	Bottom	Bottom	Sidewall
Date Sampled	RRU SCOs¹	3/25/2010	3/25/2010	3/25/2010	3/25/2010	3/25/2010	3/25/2010	3/25/2010	3/25/2010	4/19/2010
Units	mg/kg	mg/kg	mg/kg							
METALS										
Aluminum	NC	13300	18200	12800	13300	9790	12200	8050	24900	19200
Antimony	NC	0.96	0.69 B	1.1	0.52 B	0.60 B	ND	ND	0.33 B	ND
Arsenic	16	7.8	12.4	7.5	6.4	6.6	3.5	1.7	5.6	6.8
Barium	400	88.5	190	132	111	100	57	25.8	148	132
Beryllium	72	0.77	1.3	0.7	0.76	0.49	0.59	0.36	1.5	1
Cadmium	4.3	13.4	2.6	0.97	0.74	0.92	0.46	0.23 B	0.97	0.88
Calcium	NC	2060	3150	2700	2020	1570	1360	906	1940	2190
Chromium	110	19.7	30.4	22.2	20	17.3	17.2	9.4	27.3	26.6
Cobalt	NC	12.7	14.3	8	10.1	5.4	7.5	3.9	28.4	14.6
Copper	270	98.1	226	114	102	84.6	11.3	4.2	24	17.5
Iron	NC	27100	36100	26300	27400	22600	25000	11900	45000	42100
Lead	400	32.6	55.8	94.9	51.9	99.2	11.2	6.4	15.6	16.4
Magnesium	NC	3510	5410	3660	3820	2300	3980	2160	6880	5870
Manganese	2000	406	415	244	446	224	248	104	616	585
Mercury	0.81	0.048	0.037 B	0.29	0.030 B	0.05	0.013 B	ND	0.025 B	0.021 B
Nickel	310	20.4	43.8	21.6	23.3	14	15	8.9	30	26.5
Potassium	NC	1130	1890	1190	1510	655	1030	389	1780	1560
Selenium	180	4	3.8	3.9	3.7	3.4	4.5	1.9	4	2
Silver	180	0.088 B	0.20 B	0.45 B	0.12 B	0.25 B	ND	ND	ND	ND
Sodium	NC	39.3 B	87.8	58.3	53.5	35.4 B	58	50.3 B	65.3	61.1
Thallum	NC	2.4	2.6	1.8	2.5	1.3	1.5	0.67 B	3.6	3.5
Vanadium	NC	28.3	32.2	28.6	28.4	23.7	26.4	16.9	37.6	39.7
Zinc	10000	737	1860	541	628	424	63.7	31.7	99.6	969

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds Restricted Residential SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit

5) NC = No Criteria

6) B - Compound appeared in blank

7) Total metals analyzed by USEPA 6000/7000 Series Methods.

The red crossed out confirmation sample locations were overexcavated and resampled.

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
D (Ditch A)	2/16/2010	395405	23.34	TOT
D (Ditch A)	2/16/2010	395406	23.52	TOT
D (Ditch A)	2/16/2010	395407	23.00	TOT
D (Ditch A)	2/16/2010	395408	25.72	TOT
D (Ditch A)	2/16/2010	395409	25.72	TOT
D (Ditch A)	2/16/2010	395410	23.08	TOT
D (Ditch A)	2/16/2010	395411	24.62	TOT
D (Ditch A)	2/16/2010	395412	24.57	TOT
D (Ditch A)	2/16/2010	395413	20.58	TOT
D (Ditch A)	2/16/2010	395414	24.98	TOT
D (Ditch A)	2/16/2010	395415	21.48	ТОТ
D (Ditch A)	2/16/2010	395416	24.34	ТОТ
D (Ditch A)	2/16/2010	395417	23.32	TOT
D (Ditch A)	2/16/2010	395418	22.64	TOT
D (Ditch A)	2/16/2010	395419	24.56	TOT
D (Ditch A)	2/16/2010	395420	24.96	TOT
D (Ditch A)	2/16/2010	395421	22.54	TOT
D (Ditch A)	2/16/2010	395422	20.58	TOT
Α	rea D Soil Disposal	Total for 2/16/2010	423.55	ТОТ
D (Ditch A)	3/2/2010	395668	18.22	TOT
D (Ditch A)	3/2/2010	395669	20.88	TOT
D (Ditch A)	3/2/2010	395670	18.00	TOT
D (Ditch A)	3/2/2010	395740	16.56	TOT
Area D (Ditch A) TOT Soil Disposa	l Total for 3/2/2010	73.66	ТОТ
D (Ditch A)	3/23/2010	395748	22.68	TOT
D (Ditch A)	3/23/2010	395749	22.08	TOT
D (Ditch A)	3/24/2010	395750	22.88	TOT
D (Ditch A)	3/24/2010	395751	22.10	TOT
Area D (Ditch A)		Total for 3/23/2010	89.74	ТОТ
D (Ditch A)	4/15/2010	398199	18.52	ТОТ
D (Ditch A)	4/15/2010	398200	19.20	TOT
D (Ditch A)	4/15/2010	398201	19.80	TOT
D (Ditch A)	4/15/2010	398202	18.94	TOT
D (Ditch A)	4/15/2010	398203	18.58	TOT
D (Ditch A)	4/15/2010	398204	21.76	TOT
D (Ditch A)	4/15/2010	398205	18.46	ТОТ
D (Ditch A)	4/15/2010	398206	17.68	TOT
Area D (Ditch A)	TOT Soil Disposal	Total for 4/15/2010	152.94	ТОТ
D (Ditch A)	4/16/2020	398207	19.52	TOT
D (Ditch A)	4/16/2020	398208	19.42	TOT
D (Ditch A)	4/16/2020	398209	19.16	TOT
D (Ditch A)	4/16/2020	398210	17.18	TOT
D (Ditch A)	4/16/2020	398211	18.54	ТОТ
D (Ditch A)	4/16/2020	398212	19.48	ТОТ
D (Ditch A)	4/16/2020	398213	24.36	ТОТ
D (Ditch A)	4/16/2020	398214	22.18	ТОТ
D (Ditch A)	4/16/2020	398215	21.26	TOT
D (Ditch A)	4/16/2020	398216	20.10	TOT
D (Ditch A)	4/16/2020	398258	21.78	TOT
D (Ditch A)	4/16/2020	398259	21.70	TOT
D (Ditch A)	4/16/2020	398260	18.46	TOT

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA2Soil DisposalTables\10-2-A(D)

Work Area ID	Date	Manifest Number	Actual Weight	Landfill
		2002.61	Tonnage	Location
D (Ditch A)	4/16/2020	398261	22.06	TOT
D (Ditch A)	4/16/2020	398262	22.22	TOT
D (Ditch A)	4/16/2020	398263	<u>18.48</u> 21.54	TOT
D (Ditch A)	4/16/2020	398264 208265		TOT
D (Ditch A)	4/16/2020	398265	19.62 20.22	TOT TOT
D (Ditch A)	4/16/2020	398266 398267	20.22	TOT
D (Ditch A)	4/16/2020		19.26	TOT
D (Ditch A) D (Ditch A)	4/16/2020 4/16/2020	398268 398269	22.24	TOT
D (Ditch A)	4/16/2020	398209	22.24 20.44	TOT
D (Ditch A)	4/16/2020	398270	20.44	TOT
D (Ditch A)	4/16/2020	398272	19.76	TOT
D (Ditch A)	4/16/2020	398273	19.76	TOT
D (Ditch A)	4/16/2020	398274	21.92	TOT
D (Ditch A)	4/16/2020	398275	23.06	TOT
	TOT Soil Disposal			
, ,	•		577.80	ТОТ
D (Ditch A)	5/3/2010	7	22.99	Modern
D (Ditch A)	5/3/2010	8	21.10	Modern
D (Ditch A)	5/3/2010	9	22.39	Modern
D (Ditch A)	5/3/2010	10	24.32	Modern
D (Ditch A)	5/3/2010	11	21.41	Modern
D (Ditch A)	5/3/2010	12	21.27	Modern
D (Ditch A)	5/3/2010	13	21.93	Modern
D (Ditch A)	5/3/2010	14	22.24	Modern
D (Ditch A)	5/3/2010	15	24.40	Modern
D (Ditch A)	5/3/2010	16	23.59	Modern
D (Ditch A)	5/3/2010	17 18	23.30	Modern
D (Ditch A)	5/3/2010	18	20.43 25.64	Modern Modern
D (Ditch A) D (Ditch A)	5/3/2010 5/3/2010	7	23.04	Modern
D (Ditch A)	5/3/2010	7	24.08	Modern
		,		
Area D (Ditch A) M	-		341.86	Modern
D (Ditch A)	5/3/2010	ES 398276	18.34	TOT
D (Ditch A)	5/3/2010	277	22.38	TOT
D (Ditch A)	5/3/2010	278	19.68	TOT
D (Ditch A)	5/3/2010	952 952	20.90	ТОТ
D (Ditch A)	5/3/2010	953	22.74	TOT
D (Ditch A)	5/3/2010	954	25.36	TOT
D (Ditch A)	5/3/2010	955	21.88	TOT
D (Ditch A)	5/3/2010	956	22.23	TOT
) TOT Soil Disposa		173.51	ТОТ
D (Ditch A)	5/26/2010	4882-171	25.64	Modern
D (Ditch A)	5/26/2010	170	24.08	Modern
D (Ditch A)	5/26/2010	169	22.77	Modern
	ch A) Soil Disposal		72.49	Modern
Are	ea D (Ditch A) TOT	1491.20	ТОТ	
Area D	O (Ditch A) Modern	Soil Disposal Total	414.35	Modern
	Area D (Ditch A) S	1905.55	Modern & TOT	

Table 10-2-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area D

Sample ID	6 NYCRR	D-SS-1	D-SS-2	D-SS-3	D-BS 1	D-BS-2
Sample Location	Part 375-6.8(b)	Sidewall	Sidewall	Sidewall	Bottom	Bottom
Date Sampled	RRU SCOs¹	2/24/2010	2/24/2010	2/24/2010	2/24/2010	2/24/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs	88	8,8	8,8	88	8,8	88
Naphthalene	100	ND	ND	ND	ND	ND
2-Methylnaphthalene	N/A	0.030 J	ND	0.028 J	ND	ND
Acenaphthylene	100	0.044 J	ND	ND	ND	ND
Acenaphthene	100	0.077 J	ND	0.160 J	ND	0.065 J
Fluorene	100	0.072 J	ND	0.130 J	ND	0.063 J
Phenanthrene	100	1	0.030 J	1.1	ND	0.46
Anthracene	100	0.23	ND	0.28	ND	0.110 J
Di-n-butylphthalate	NC	ND	ND	ND	ND	ND
Fluoranthene	100	2.3	0.050 J	1.4	ND	0.5
Pyrene	100	1.8	0.039 J	1	ND	0.37
Benzo (a) anthracene	1	1	0.022 J	0.61	ND	0.200 J
Chrysene	3.9	1.2	ND	0.59	ND	0.200 J
Benzo (b) fluoranthene	1	1.4	ND	0.66	ND	0.220 J
Benzo (k) fluoranthene	3.9	0.65	ND	0.32	ND	0.100 J
Benzo (a) pyrene	1	1	ND	0.47	ND	0.150 J
Indeno (1, 2, 3-cd) pyrene	0.5	0.66	ND	0.27	ND	0.078 J
Dibenzo (a, h) anthracene	0.33	0.210 J	ND	0.096 J	ND	ND
Benzo (g, h, i,) perylene	100	0.7	ND	0.28	ND	0.083 J
METALS						
Aluminum	NC	3410	15200	10600	18600	22200
Antimony	NC	1.2	0.19	0.15	0.18	0.23
Arsenic	16	3.9	4.3	5.5	4.6	8.3
Barium	400	33.1	118	94.9	94.2	203
Baryllium	72	0.49	0.85	0.68	0.73	1.3
Cadmium	4.3	0.51	0.48	0.61	0.27	0.5
Calcium	NC	19600	6130	29900	1460	4300
Chromium	110	4.3	20	15.1	22.5	30.7
Cobalt	NC	1.2	22	8.9	10.8	18.6
Copper	270	67.2	31.4	37.2	26	38.8
Iron	NC	4840	29400	27200	35400	45400
Lead	400	18.8	16.9	18.2	14.3	19.9
Magnesium	NC	112000	6080	10900	4830	9500
Manganese	2000	640	1190	521	275	867
Mercury	0.81	0.26	0.027	0.043	0.036	0.031
Nickel	310	4.8	23.8	18.9	20.7	41.4
Potassium	NC	381	1230	1350	1180	2290
Selenium	180	0.64	1.2	0.96	2	2.4
Silver	180	0.065	0.086	0.065	0.078	5.6
Sodium	NC	269	70.5	95.5	50.4	133
Thallum	NC	2.4	7.6	2.4	1.6	5.1
Vanadium	NC 10000	5.4	26.7	23.7	31.9	41.2
Zinc	10000	305	166	354	89.8	377
Cyanide	27	3.4	0.53	0.15	0.16	0.17

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NC = No Criteria

6) B - Compound appeared in blank

7) SVOCs analyzed by SW846-8270C

8) J - detected above the method of detection limit (MDL), but below the RL; therefore the result is an estimated concentration.

9) Total metals analyzed by USEPA 6000/7000 Series Methods.

The red crossed out confirmation sample locations were overexcavated and resampled.

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Е	2/17/2010	395461	19.48	TOT
Е	2/17/2010	395462	23.1	TOT
Е	2/17/2010	395463	21	TOT
Е	2/17/2010	395464	23.72	TOT
Е	2/17/2010	395465	22.42	TOT
Е	2/17/2010	395466	22.24	TOT
Е	2/17/2010	395467	20.6	TOT
Е	2/17/2010	395468	21.52	TOT
Е	2/17/2010	395469	24	TOT
Е	2/17/2010	395470	22.5	TOT
Е	2/17/2010	395471	22.76	TOT
Е	2/17/2010	395472	20.74	TOT
Е	2/17/2010	395473	23.8	TOT
Е	2/17/2010	395474	22.58	TOT
Е	2/17/2010	395475	19.74	TOT
Е	2/17/2010	395476	20.9	TOT
Е	2/17/2010	395477	25.56	TOT
Е	2/17/2010	395478	22.86	TOT
Е	2/17/2010	395479	25.2	TOT
Е	2/17/2010	395480	28.08	TOT
Е	2/17/2010	395481	23.8	TOT
Area E	TOT Soil Disposal	Total for 2/17/2010	476.60	ТОТ
Е	3/23/2010	395744	26.64	TOT
Е	3/23/2010	395745	26.06	TOT
Е	3/23/2010	395746	25.18	TOT
Е	3/23/2010	395747	24.28	TOT
Area E	TOT Soil Disposal	Total for 3/23/2010	102.16	ТОТ
	Area E	578.76	ТОТ	

Table 10-3-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area E

Sample ID	6 NYCRR	E- SS- 1	E-SS-2	E-BS-1	E- BS- 2	E-BS-3	E-BS-4
Sample Location	Part 375-6.8(b)	Sidewall	Sidewall	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs¹	2/24/2010	2/24/2010	2/24/2010	2/24/2010	2/24/2010	3/24/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs	6.6	00	00	00	00	00	00
Naphthalene	100	0.200 J	ND	ND	ND	ND	ND
2-Methylnaphthalene	N/A	0.27	ND	ND	ND	ND	ND
Acenaphthylene	100	ND	ND	ND	ND	ND	ND
Acenaphthene	100	0.024 J	ND	0.028 J	ND	ND	ND
Fluorene	100	0.022 J	ND	0.028 J	ND	ND	ND
Phenanthrene	100	0.160 J	ND	0.26	0.050 J	0.091 J	ND
Anthracene	100	0.037 J	ND	0.063 J	ND	0.023 J	ND
Fluoranthene	100	0.26	ND	0.37	0.086 J	0.110 J	ND
Pyrene	100	0.160 J	ND	0.29	0.068 J	0.097 J	ND
Benzo (a) anthracene	1	0.092 J	ND	0.180 J	0.046 J	0.050 J	ND
Chrysene	3.9	0.110 J	ND	0.170 J	0.044 J	0.056 J	ND
Benzo (b) fluoranthene	1	0.120 J	ND	0.22	0.057 J	0.064 J	ND
Benzo (k) fluoranthene	3.9	0.069 J	ND	0.110 J	ND	0.029 J	ND
Benzo (a) pyrene	1	0.087 J	ND	0.140 J	0.040 J	0.040 J	ND
Indeno (1, 2, 3-cd) pyrene	0.5	0.062 J	ND	0.087 J	0.025 J	0.026 J	ND
Dibenzo (a, h) anthracene	0.33	ND	ND	0.027 J	ND	ND	ND
Benzo (g, h, i,) perylene	100	0.067 J	ND	0.098 J	0.026 J	0.027 J	ND
METALS							
Aluminum	NC	5080	21500	17200	16200	14300	21000 B
Antimony	NC	0.39	0.19	1.1	0.39	0.18	ND
Arsenic	16	3.2	5.4	7.1	4.7	4.9	5.2
Barium	400	66.2	166	180	130	142	140
Beryllium	72	0.34	1.7	1.3	0.91	0.84	1.9
Cadmium	4.3	3	0.47	10.2	0.79	0.38	0.81
Calcium	NC	28800	1900	17800	63800	60100	1700 B
Chromium	110	11.3	29	24.9	22.7	21.2	27
Cobalt	NC	3.6	18.3	9.3	11.5	12	40
Copper	270	69.9	25	216	34.3	33.2	26
Iron	NC	10800	44600	49800	37400	34600	40000 B
Lead	400	21.1	12.7	104	10.4	10	14
Magnesium	NC	5540	7760	5350	10900	12700	6900 B
Manganese	2000	318	307	537	438	538	1100
Nickel	310	10	36.7	37.2	28.3	27.1	34 B
Potassium	NC	503	1710	1150	2210	2250	1800B
Selenium	180	0.95	2.3	1.5	0.73	0.78	4.3
Silver	180	0.058	0.082	0.17	0.074	0.078	ND
Sodium	NC	199	92	126	106	161	84 B
Thallum	NC	1.3	1.3	2	0.34	2.2	6.5
Vanadium	NC	9.7	39.4	25.3	30.4	28.6	34
Zinc	10000	864	83.6	1620	155	87.7	82
Cyanide Notes:	27	0.17	0.18B	0.18B	0.21B	NA	NA

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NC = No Criteria

6) B - Compound appeared in blank

7) J - detected above the method of detection limit (MDL), but below the RL; therefore the result is an estimated concentration.

8) PAHs analyzed by SW846-8270C

9) Total metals analyzed by USEPA 6000/7000 Series Methods.

10) The red crossed out confirmation sample locations were overexcavated and resampled.

Table 10-4-A Spaulding Fibre Facility OU6 Summary of Soil Disposal for Area F

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location	
F	2/18/2010	395528	21.58	ТОТ	
F	2/18/2010	395529	22.60	TOT	
F	2/18/2010	395530	24.06	TOT	
F	2/18/2010	395531	21.06	TOT	
F	2/18/2010	395532	21.92	ТОТ	
F	2/18/2010	395533	25.58	ТОТ	
F	2/18/2010	395534	20.34	ТОТ	
Α	-	Total for 2/18/2010	157.14	ТОТ	
F	3/2/2010	395646	23.30	TOT	
F	3/2/2010	395652	23.10	TOT	
F	3/2/2010	395658	23.32	TOT	
F	3/2/2010	395659	25.64	TOT	
F	3/2/2010	395660	26.50	TOT	
F	3/2/2010	395661	24.48	TOT	
F	3/2/2010	395662	23.80	TOT	
F	3/2/2010	395663	25.06	TOT	
F	3/2/2010	395664	22.54	TOT	
F F	3/2/2010	395665	21.60 23.82	TOT TOT	
<u> </u>	3/2/2010 3/2/2010	395666 395667	23.82	TOT	
		al Total for 3/2/2010	285.40	тот	
F (Road)	7/16/2010		23.00	TOT	
F (Road)	7/16/2010		23.00	TOT	
		Total for 7/16/2010	46.00	тот	
F (Road)	7/19/2010	671	21.08	ТОТ	
F (Road)	7/19/2010	673	24.40	TOT	
· · · · · ·		Total for 7/19/2010	45.48	ТОТ	
F (Road)	7/21/2010	677	24.34	TOT	
F (Road)	7/21/2010	678	23.22	TOT	
Area F (Road)	TOT Soil Disposal	Total for 7/21/2010	47.56	ТОТ	
F (Road)	7/21/2010	7 21 10 -001	23.55	Modern	
Area F (Road) Mo	odern Soil Disposal	Total for 7/21/2010	23.55	Modern	
F (Road)	7/26/2010	681	24.16	ТОТ	
F (Road)	7/26/2010	679	22.78	TOT	
F (Road)	7/26/2010	680	24.12	TOT	
F (Road)	7/26/2010	682	27.94	ТОТ	
Area F (I	Road) Soil Disposal	Total for 7/26/2010	99.00	ТОТ	
F (Road)	8/5/2010		28.61	Modern	
F (Road)	8/5/2010	22.62	Modern		
Area F	(Road) Soil Disposa	al Total for 8/5/2010	51.23	Modern	
	Area F TOT	Soil Disposal Total	680.58	тот	
	Area F Modern	Soil Disposal Total	74.78	Modern	
	Area F	Soil Disposal Totals	755.36	TOT & Modern	

Table 10-4-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area F

Sample ID	6 NYCRR Part	F-BS-1	F-SS-1	F-SS-2	F-SS-3	F-SS-4	F-SS-5	F-SS-6	F-SS-7
Sample Location	375-6.8(b)	Bottom	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall
Date Sampled	RRU SCOs¹	3/8/2010	3/8/2010	3/8/2010	3/8/2010	3/24/2010	4/12/2010	7/26/2010	8/9/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs		00							22
Naphthalene	100	ND	ND	ND	ND	0.130 J	0.65	ND	ND
2-Methylnaphthalene	NC	ND	ND	0.031 J	ND	0.087 J	0.086 J	ND	ND
Acenaphthylene	100	ND	ND	0.034 J	ND	0.035 J	ND	ND	ND
Acenaphthene	100	ND	ND	0.070 J	ND	0.180 J	ND	ND	ND
Fluorene	100	ND	ND	0.072 J	ND	0.190 J	ND	ND	ND
Phenanthrene	100	0.110 J	ND	0.55	ND	2.1	0.025 J	ND	0.108 J
Anthracene	100	0.028 J	ND	0.170 J	ND	0.41	ND	ND	ND
Fluoranthene	100	0.190 J	ND	1.1	ND	3.3	0.032 J	ND	0.191
Pyrene	100	0.150 J	ND	0.69	ND	2.4	ND	ND	0.154 J
Benzo (a) anthracene	1	0.099 J	ND	0.51	ND	1.2	ND	ND	0.0924 J
Chrysene	3.9	0.095 J	ND	0.54	ND	1.2	ND	ND	0.0956 J
Benzo (b) fluoranthene	1	0.110 J	ND	0.45	ND	1.5	ND	ND	ND
Benzo (k) fluoranthene	3.9	0.050 J	ND	0.47	ND	0.56	ND	ND	0.0971 J
Benzo (a) pyrene	1	0.089 J	ND	0.48	ND	1	ND	ND	0.0924 J
Indeno (1, 2, 3-cd) pyrene	0.5	0.051 J	ND	0.31	ND	0.52	ND	ND	ND
Dibenzo (a, h) anthracene	0.33	ND	ND	0.120 J	ND	0.21	ND	ND	ND
Benzo (g, h, i,) perylene	100	0.054 J	ND	0.34	ND	0.56	ND	ND	ND
METALS									
Aluminum	NC	23,400	13,300	13,700	24,000	13,500	25,000	21,500	21,400
Antimony	NC	0.22	0.17	9.2	ND	1	ND	ND	ND
Arsenic	16	3.9	4.3	7.9	5	8.4	4.4	7.12	7.49
Barium	400	191	77.5	607	119	128	119	193	135
Beryllium	72	1.4	0.82	1.2	1.1	1.1	0.86	1.09	0.826
Cadmium	4.3	0.59	0.38	103	0.33	7.5	1.7	1.06	1.32
Calcium	NC	2,910 29.8	2,840 17.1	42,700 40.4	2,420 31.3	19,000 27	3,000 30.8	3,040 27.1	4,480 28.1
Chromium Cobalt	110 NC	<u> </u>	9.9	40.4	12.8	11.4	<u> </u>	13	28.1 NA
Copper	270	25.7	18.4	12100	25.8	170	17.4	21.7	44.7
Iron	NC	41,600	23,200	133,000	48,200	39,400	34,700	40,200	39,400
Lead	400	11.2	19.4	503	11.4	116	11.5	11.8	20
Magnesium	NC	8,850	3,870	12,900	7,330	7,570	6,060	5,410	6,680
Magnese	2000	754	256	1160	266	618	270	1240	649
Marganese	0.18	0.036 B	0.034 B	4.0	0.035 B	0.18	0.016 B	0.0377 J	0.0588
Nickel	310	38.8	16.3	214	28.7	36.7	26.3	24.3	25.7
Potassium	NC	2,010	1,120	1,070	2,120	1,510	2,240	2,210	2,140
Selenium	180	2,010	2	ND	2,120	3.6	2,240 ND	0.715 J	0.869 J
Silver	180	0.26 B	0.15 B	2.2	0.34 B	0.21 B	0.27 B	ND	ND
Sodium	NC	101	66.5	473	108	121	86.5	147	94.9
Thallium	NC	4.2	1.9	5.8	2.2	3	0.97	0.829 J	ND
Vanadium	NC	36.9	26.1	10.5	40.9	25.8	41.2	39.4	38.5
Zinc	10,000	112	182	22,900	-+0.9 91	2.040	189	78	230
Ziffe Notes:	10,000	112	102	22,900	71	2,040	109	70	230

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's

5) NC = No Criteria

6) B - Compound appeared in blank

7) NA - Not analyzed

8) PAHs analyzed by SW846-8270C; total metals analyzed by USEPA Method 6010 and mercury analyzed by USEPA Method 7471.

9) The red crossed out confirmation sample locations were overexcavated and resampled.

Table 10-5-A Spaulding Fibre Facility OU6 Summary of Soil Disposal for Area G and Ditch B

Work Area ID	Date	Manifest Number	Actual Weight	Landfill
WOIK Mica ID	Dute		Tonnage	Location
G and Ditch B	3/2/2010	395601	25.94	TOT
G and Ditch B	3/2/2010	395602	22.82	TOT
G and Ditch B	3/2/2010	395603	24.48	TOT
G and Ditch B	3/2/2010	395604	21.02	TOT
G and Ditch B	3/2/2010	395605	23.74	TOT
G and Ditch B	3/2/2010	395607	19.18	TOT
G and Ditch B	3/2/2010	395608	21.56	TOT
G and Ditch B	3/2/2010	395609	21.64	TOT
G and Ditch B	3/2/2010	395610	19.64	TOT
G and Ditch B	3/2/2010	395611	19.50	TOT
G and Ditch B	3/2/2010	395612	22.96	TOT
G and Ditch B	3/2/2010	395613	22.22	TOT
G and Ditch B	3/2/2010	395614	20.28	TOT
G and Ditch B	3/2/2010	395615	20.04	TOT
G and Ditch B	3/2/2010	395616	19.72	TOT
G and Ditch B	3/2/2010	395617	21.14	TOT
G and Ditch B	3/2/2010	395618	21.22	TOT
G and Ditch B	3/2/2010	395619	23.44	TOT
G and Ditch B	3/2/2010	395620	18.90	TOT
G and Ditch B	3/2/2010	395621	17.20	TOT
G and Ditch B	3/2/2010	395622	18.78	TOT
G and Ditch B	3/2/2010	395623	17.06	TOT
G and Ditch B	3/2/2010	395624	19.36	TOT
G and Ditch B	3/2/2010	395625	21.24	TOT
G and Ditch B	3/2/2010	395626	20.18	TOT
G and Ditch B	3/2/2010	395627	22.76	TOT
G and Ditch B	3/2/2010	395628	21.28	TOT
G and Ditch B	3/2/2010	395640	20.22	TOT
G and Ditch B	3/2/2010	395641	21.98	TOT
G and Ditch B	3/2/2010	395642	19.62	TOT
G and Ditch B	3/2/2010	395643	23.04	TOT
Area G and D	Ditch B Soil Disposa	al Total for 3/2/2010	652.16	ТОТ
G and Ditch B	3/22/2010	395728	22.20	TOT
G and Ditch B	3/22/2010	395729	15.02	TOT
G and Ditch B	3/22/2010	395730	15.72	TOT
G and Ditch B	3/22/2010	395731	22.72	TOT
G and Ditch B	3/22/2010	395732	15.34	TOT
G and Ditch B	3/22/2010	395733	17.96	TOT
G and Ditch B	3/22/2010	395734	23.00	TOT
	tch B Soil Disposal	Total for 3/22/2010	131.96	ТОТ
Α	rea G and Ditch B	Soil Disposal Totals	784.12	тот

Table 10-5-B Spaulding Fibre Facility OU6 Confirmation Soil Results for Area G

Sample ID	6 NYCRR	G-BS-1	G-BS-2	G-SS-1	G-SS-2	G-SS-3	G-SS-4	G-BS-3	G-SS-5	G-SS-6	G-SS-7	G-SS-8	G-SS-9	G-SS-10	G-SS-11	G-SS-12
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Sidewall	Sidewall	Sidewall	Sidewall	Bottom	Sidewall							
Date Sampled	RRU SCOs ¹	3/8/2010	3/8/2010	3/8/2010	3/8/2010	3/8/2010	3/8/2010	3/24/2010	3/24/2010	3/24/2010	3/24/2010	3/24/2010	3/24/2010	3/24/2010	3/24/2010	3/24/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg								
METALS																
Arsenic	16	7	108	18.1	37.7	17.9	26.4	8.9	11	9.1	5.7	10	9.5	6.2	7	16
Cadium	4.3	0.94	7.3	0.84	1.2	0.32	3.3	0.71	0.77	0.89	0.69	3.2	0.65	0.93	0.84	1.1

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NC = No Criteria

6) B - Compound appeared in blank

7) Total metals analyzed by USEPA Method 6010.

Table 10-6-A Spaulding Fibre Facility OU6 Summary of Soil Disposal for Area H

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Н	3/2/2010	395645	25.04	TOT
Н	4/13/2010	*	5*	
	Area H Soil Dispos	al Total for 3/2/2010	25.04	ТОТ
	Area H	30*	ТОТ	

* Appoximately 5 tons of additional soil was removed on 4/13/10 and loaded out with soil from Area AK-c. The manifest and weight are logged in the Table for Area AK-c

Table 10-6-B Spaulding Fibre Facility OU6 Confirmation Soil Results for Area H

Sample ID	6 NYCRR Part	H-BS-1	H-SS-1	H-SS-2	H-SS-3	H-BS-2 (H-BS-4)	H-SS-4
Sample Location	375-6.8(b) RRU	Bottom	Sidewall	Sidewall	Sidewall	Bottom	Sidewall
Date Sampled	SCOs ¹	3/16/2010	3/16/2010	3/16/2010	3/16/2010	4/13/2010	4/13/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs	mg/ kg	111 <u>5</u> / K5	mg/ ng	111 <u>5</u> , R5	ing, ng	ing, ng	ing/ Rg
Naphthalene	100	0.150 J	0.047 J	0.037 J	0.73	ND	ND
2-Methylnaphthalene	NC	0.220 J	0.33	0.099 J	0.56	0.071 J	ND
Acenaphthylene	100	0.066 J	ND	ND	ND	ND	ND
Acenaphthene	100	0.250 J	ND	0.028 J	0.97	0.069 J	ND
Fluorene	100	0.340 J	0.170 J	0.062 J	1	0.100 J	ND
Phenanthrene	100	2	0.48	0.150 J	3.9 E	0.21	ND
Anthracene	100	0.56	ND	0.031 J	1.6	0.054 J	ND
Di-n-butylphthalate	100	5.5	0.46	0.92	3.2	ND	ND
Fluoranthene	100	3.3	0.160 J	0.100 J	4.4 E	0.069 J	ND
Pyrene	100	2.4	0.160 J	0.082 J	2.8	0.110 J	ND
Benzo (a) anthracene	1	1.8	0.086 J	0.054 J	2.6	0.051 J	ND
Chrysene	3.9	1.5	0.087 J	0.047 J	1.6	0.044 J	ND
Benzo (b) fluoranthene	1	1.9	0.090 J	0.050 J	2.2	ND	ND
Benzo (k) fluoranthene	3.9	0.8	0.041 J	ND	0.95	ND	ND
Benzo (a) pyrene	1	1.5	0.057 J	0.035 J	1.8	0.027 J	ND
Indeno (1, 2, 3-cd) pyrene	0.5	0.84	0.041 J	0.022 J	1.1	ND	ND
Dibenzo (a, h) anthracene	0.33	0.390 J	ND	ND	0.61	ND	ND
Benzo (g, h, i,) perylene	100	0.9	0.046 J	0.025 J	1.1	ND	ND
PCBs							
Aroclor- 1016	NC	ND	ND	ND	ND	ND	ND
Aroclor-1221	NC	ND	ND	ND	ND	ND	ND
Aroclor-1232	NC	ND	ND	ND	ND	ND	ND
Aroclor-1242	NC	ND	ND	ND	ND	ND	ND
Aroclor-1248	NC NC	ND 0.130 P	ND 0.073	ND ND	ND 0.13	ND ND	ND ND
Aroclor-1254 Aroclor-1260	NC	0.130 P ND	0.073 ND	ND	0.13 ND	ND	ND
Total PCBs	1	0.13	0.073	ND	0.13	ND	ND
METALS	1	0.15	0.073	ND	0.13	ND	ND
Aluminum	NC	11,000 B	15,000 B	12,000 B	8,100 B	11,000 B	15,000 B
Antimony	NC	0.65 BJ	ND	ND	8,100 B ND	0.30 BJ	ND
Arsenic	16	11	7.2	5.1	10	4.3	5
Barium	400	110	140	110	120	100	8.2
Beryllium	72	0.89 S	0.93 B	0.90 B	0.83 B	0.65 B	0.050 BJ
Cadmium	4.3	0.38	0.34	0.23 J	0.38	0.03 D	0.030 BJ
Calcium	NC	45000	58000	52000	17000	76000	2700
Chromium	180	17 B	21 B	17 B	12 B	17	23
Cobalt	NC	10	13	10	7.5	11	13
Copper	270	47	24	30	38	22	25
Iron	NC	28,000 B	37,000 B	26,000 B	16,000 B	25,000 B	24,000 B
Lead	400	26	11	16	90	9.9 B	9.9 B
Magnesium	NC	11,000 B	13,000 B	13,000 B	7,700 B	14000	14000
Manganese	2000	520	530	430	360	510	560
Mercury	0.18	0.021 B	ND	0.010 B	0.026 B	0.011 B	0.014 B
Nickel	310	24	30	24	17	23	29
Potassium	NC	1,500 B	2,100 B	1,700 B	1,000 B	1900	2300
Selenium	180	3.5	2.8	2.9	1.9	ND	ND
Silver	180	0.23 B	0.095 B	ND	0.11 B	ND	ND
Sodium	NC	150 B	140 B	140 B	130 B	170 B	190 B
Thallum	NC	2.2	1.7	1.3	0.96 J	2	2.8
Vanadium	NC	21	27	24	15	22	29
Zinc Notes:	10000	240	68	120	290	62	57

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's

5) NC = No Criteria

6) B - Compound appeared in blank

7) PAHs analyzed by SW846-8270C; total metals analyzed by USEPA Method 6010 and 7471; PCBs analyzed by USEPA Method 8082.

8) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.

9) E = Analyte concentration exceeds calibration range of instrument used for analysis.

10) P = Greater than 25% difference for detected concentrations between the two GC columns

Table 10-7-A Spaulding Fibre Facility OU6 Summary of Soil Disposal for Area K

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
K	3/2/2010	395601	25.94	TOT
K	3/2/2010	395602	22.82	TOT
K	3/2/2010 395603		24.48	TOT
K	3/2/2010	395604	21.02	TOT
K	3/2/2010	395605	23.74	TOT
-	Area K Soil Dispos	118.00	ТОТ	
K	4/7/2010	396936	23.86	TOT
K	4/7/2010	396937	24.90	TOT
Area	K TOT Soil Dispos	al Total for 4/7/2010	48.76	ТОТ
K	4/7/2010	4826660	21.27	Modern
K	4/7/2010	4826659	14.72	Modern
Area K M	Iodern Soil Disposa	al Total for 4/7/2010	35.99	Modern
	Area K TO	Г Soil Disposal Total	166.76	ТОТ
	Area K Modern Soil Disposal Total			Modern
	Area K Soil Disposal Totals			TOT & Modern

Table 10-7-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area K

Sample ID	6 NYCRR	K-SS-1	K-SS-2	K-SS-3*	K-SS-4	K-BS-1	K-SS-5**
Sample Location	Part 375-6.8(b)	Sidewall	Sidewall	Sidewall	Sidewall	Bottom	Sidewall
Date Sampled	RRU SCOs¹	3/11/2010	3/11/2010	3/11/2010	3/11/2010	3/11/2010	4 /8/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs							
Naphthalene	100	0.150 J	ND	0.170 J	ND	ND	2.1
2-Methylnaphthalene	N/A	0.200 J	0.043 J	0.180 J	ND	ND	1.1
Acenaphthylene	100	0.025 J	ND	0.4	ND	ND	0.055 J
Acenaphthene	100	0.130 J	0.130 J	0.087 J	ND	0.031 J	5 E
Fluorene	100	0.180 J	0.160 J	0.097 J	ND	0.034 J	6.3 E
Phenanthrene	100	1.4	1.2	0.73	0.038 J	0.28	18 E
Anthracene	100	0.37	0.32	0.3	ND	0.081 J	7.1 E
Fluoranthene	100	1.9	1.5	1.9	0.054 J	0.39	20 E
Pyrene	100	1.3	1.1	1.7	0.043 J	0.33	12 E
Benzo (a) anthracene	1	0.76	0.68	1.5	0.028 J	0.190 J	9.6 E
Chrysene	3.9	0.79	0.6	1.3	0.024 J	0.180 J	7.4 E
Benzo (b) fluoranthene	1	0.79	0.68	1.9	0.032 J	0.210 J	13 E
Benzo (k) fluoranthene	3.9	0.35	0.31	1	ND	0.090 J	2.8
Benzo (a) pyrene	1	0.56	0.51	1.5	ND	0.150 J	9.1 E
Indeno (1, 2, 3-cd) pyrene	0.5	0.28	0.26	0.83	ND	0.084 J	4.4 E
Dibenzo (a, h) anthracene	0.33	0.088 J	0.079 J	0.35	ND	ND	2.2
Benzo (g, h, i,) perylene	100	0.31	0.27	0.94	ND	0.098 J	4.5 E

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NC = No Criteria

6) B - Compound appeared in blank

7) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.

8) E = Analyte concentration exceeds calibration range of instrument used for analysis.

9) The red crossed out confirmation sample locations were overexcavated and resampled.

*Sample location was overexcavated and resampled.

**Sample location was overexcavated. No resample was collected because overexcavation joined Area RR.

Table 10-8-A Spaulding Fibre Facility OU6 Summary of Soil Disposal for Area M

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
М	2/19/2010	395592	18.88	TOT
М	2/19/2010	395593	18.4	TOT
М	2/19/2010	395594	25.02	TOT
М	2/19/2010	395595	22.02	TOT
М	2/19/2010	395596	19.72	TOT
М	2/19/2010	395597	22.76	TOT
М	2/19/2010	395598	25.66	TOT
	Area M TOT	152.46	ТОТ	
М	3/2/2010	599	22.82	TOT
М	3/2/2010	600	25.16	TOT
	Area M TOT	Totals for 3/2/2010	47.98	ТОТ
М	3/23/2010	395743	23.64	TOT
	Area M TOT	Totals for 3/23/2010	23.64	ТОТ
М	3/24/2010	395737	22.92	TOT
М	3/24/2010	395736	23.12	TOT
	Area M TOT	46.04	ТОТ	
	Area M Soil Disposal Totals			ТОТ

Table 10-8-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area M

a						1000	15564			
Sample ID	6 NYCRR	M-SS-1	M-SS-2	M-SS-3	M-SS-4	M-BS-1	M-BS-2	M-SS-5	M-SS-6	M-SS-7
Sample Location	Part 375-6.8(b)	Sidewall	Sidewall	Sidewall	Sidewall	Bottom	Bottom	Sidewall	Sidewall	Sidewall
Date Sampled	RRU SCOs¹	<u>3/8/2010</u>	<u>3/8/2010</u>	3/8/2010	3/8/2010	3/8/2010	3/24/2010	3/24/2010	3/24/2010	3/24/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs										
Naphthalene	100	1.9	ND	ND	0.130 J	ND	ND	ND	ND	ND
2-Methylnaphthalene	N/A	1.1	0.042 J	0.095 J	0.110 J	ND	ND	ND	ND	ND
Acenaphthylene	100	0.130 J	0.053 J	0.150 J	0.049 J	ND	ND	ND	ND	ND
Acenaphthene	100	2.9	ND	0.042 J	0.33	ND	ND	ND	ND	ND
Fluorene	100	2.7	ND	0.050 J	0.28	ND	ND	ND	ND	ND
Phenanthrene	100	16 E	0.200 J	0.73	2.9	ND	0.110 J	0.023 J	ND	ND
Anthracene	100	5.2 E	0.053 J	0.200 J	0.71	ND	0.027 J	ND	ND	ND
Fluoranthene	100	18 E	0.5	1.6	4.6 E	ND	0.150 J	0.028 J	0.028 J	0.042 J
Pyrene	100	14 E	0.38	1.2	3.1	ND	0.170 J	ND	ND	0.050 J
Benzo (a) anthracene	1	12 E	0.26	0.86	2.2	ND	0.090 J	0.022 J	0.025 J	0.032 J
Chrysene	3.9	6.6 E	0.3	0.79	2	ND	0.081 J	ND	0.025 J	0.028 J
Benzo (b) fluoranthene	1	8.1 E	0.34	0.98	2	ND	0.066 J	ND	ND	0.03
Benzo (k) fluoranthene	3.9	3.5	0.015 J	0.4	1.5	ND	0.030 J	ND	ND	ND
Benzo (a) pyrene	1	6.5 E	0.24	0.71	1.8	ND	0.050 J	ND	ND	ND
Indeno (1, 2, 3-cd) pyrene	0.5	3.8 E	0.210 J	0.44	1.1	ND	0.028 J	ND	ND	ND
Dibenzo (a, h) anthracene	0.33	2.4	0.058 J	0.180 J	0.32	ND	ND	ND	ND	ND
Benzo (g, h, i,) perylene	100	4 E	0.190 J	0.51	1.2	ND	0.031 J	ND	ND	ND
METALS										
Arsenic	16	NA	NA	NA	NA	5	NA	NA	NA	NA
Barium	400	311 E	272 E	177 E	60.9 E	131 E	114	143	106	60.2
Cadium	4.3	10.3	1.9	1.2	2.3	0.55	1.5	0.84	0.81	0.61
Copper	270	887	64.4	69.1	291	28	99.6	30.5	25.1	17.5
Lead	400	453 E	655 E	346 E	79.4 E	11.5 E	98.1	45.9	231	60.5

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential

Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit

5) NC = No Criteria

6) B - Compound appeared in blank

7) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.

8) E = Analyte concentration exceeds calibration range of instrument used for analysis.

9) NA = Not Analyzed

10) PAHs analyzed by SW846-8270C; total metals analyzed by USEPA 6000/7000 Series Methods.

Table 10-9-A Spaulding Fibre Facility OU6 Summary of Soil Disposal for Area N

Work Area ID	Date			Landfill Location
Ν	2/19/2010	395587	19.56	TOT
Ν	2/19/2010	395588	24.8	TOT
Ν	2/19/2010	395589	17.76	TOT
Ν	2/19/2010	395590	17.58	TOT
Ν	2/19/2010	395591	18.7	TOT
Aı	rea N Soil Disposal	Total for 2/19/2010	98.40	ТОТ
Area N TOT Soil Disposal Total			98.40	ТОТ

Table 10-9-BSpaulding Fibre Facility OU6Confirmation Soil Results for Area N

Sample ID	6 NYCRR	N-BS-1	N-SS-1	N-SS-2	N-SS-3	N-SS-4
Sample Location	Part 375-6.8(b)	Bottom	Sidewall	Sidewall	Sidewall	Sidewall
Date Sampled	RRU SCOs ¹	3/8/2010	3/8/2010	3/8/2010	3/16/2010	3/16/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS						
Barium	400	398	247	116	56	120
Copper	270	60.1	120	57.6	68	91

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) Total metals analyzed by USEPA 6000/7000 Series Methods.

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AA	2/19/2020	395572	21.54	TOT
AA	2/19/2020	395573	21.66	TOT
AA	2/19/2020	395574	23.68	TOT
AA	2/19/2020	395575	22.42	TOT
AA	2/19/2020	395576	20.54	TOT
AA	2/19/2020	395577	23.84	TOT
AA	2/19/2020	395578	19.80	TOT
AA	2/19/2020	395579	22.88	TOT
AA	2/19/2020	395580	24.24	TOT
AA	2/19/2020	395581	21.84	TOT
AA	2/19/2020	395582	25.64	TOT
AA	2/19/2020	395583	26.02	TOT
AA	2/19/2020	395584	22.90	TOT
AA	2/19/2020	395585	24.96	TOT
AA	2/19/2020	395586	21.76	TOT
		Total for 2/19/2010	343.72	ТОТ
AA	3/5/2010	395673	25.88	ТОТ
AA	3/5/2010	395674	26.40	TOT
AA	3/5/2010	395675	28.64	TOT
AA	3/5/2010	395676	21.26	TOT
AA	3/5/2010	395677	27.38	TOT
AA	3/5/2010	395678	26.96	TOT
AA	3/5/2010	395679	28.52	TOT
AA	3/5/2010	395680	25.74	TOT
AA	3/5/2010	395683	22.56	ТОТ
AA	3/5/2010	395684	25.24	ТОТ
AA	3/5/2010	395686	27.16	TOT
AA	3/5/2010	395687	24.79	TOT
AA	3/5/2010	395688	27.30	TOT
AA	3/5/2010	395689	19.44	TOT
AA	3/5/2010	395690	19.44	TOT
AA	3/5/2010	395691	19.94	TOT
AA	3/5/2010	395692	17.60	TOT
	3/5/2010	395693	19.18	TOT
AA AA		395694	24.74	TOT
AA	3/5/2010 3/5/2010	395696	24.74	TOT
AA	3/5/2010	395697	17.40	TOT
		al Total for 3/2/2010	496.07	ТОТ
	3/9/2010	395698	23.94	ТОТ
AA	3/9/2010	395699	25.20	TOT
AA	3/9/2010	395099	24.96	TOT
AA	3/9/2010	395700	24.96	TOT
AA			27.30	TOT
AA	3/9/2010	395702 395703	28.58	TOT
AA	3/9/2010 3/9/2010	395703	25.96	TOT
AA				
AA	3/9/2010	395705	22.04	TOT
AA	3/9/2010	395706	24.32	TOT
AA	3/9/2010	395707	24.52	TOT
AA	3/9/2010	395708	22.80	TOT
AA	3/9/2010	<u>395709</u> 205710	24.86	TOT
AA	3/9/2010	395710	20.26	TOT

Page 1 of 2

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA2Soil DisposalTables\10-10-A(AA)

Table 10-10-A Spaulding Fibre Facility OU6 Summary of Soil Disposal for Area AA

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AA	3/9/2010	395711	21.74	TOT
AA	3/9/2010	395712	19.30	TOT
AA	3/9/2010	395713	21.94	TOT
AA	3/9/2010	395714	22.03	TOT
AA	3/9/2010	395715	18.68	TOT
AA	3/9/2010	395716	23.40	TOT
AA	3/9/2010	395717	26.08	TOT
AA	3/9/2010	395718	20.88	TOT
AA	3/9/2010	395719	27.20	TOT
Area AA	TOT Soil Dispos	520.43	ТОТ	
	Area AA	Soil Disposal Total	1,360.22	ТОТ

Sample ID	6 NYCRR	AA-S-1	AA-S-2	AA-S-3	AA-B-1
Sample Location	Part 375-6.8(b)	Sidewall	Sidewall	Sidewall	Bottom
Date Sampled	RRU SCOs ¹	3/11/2010	3/11/2010	3/11/2010	3/11/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs					
Naphthalene	100	ND	0.170 J	0.22	ND
2-Methylnaphthalene	NC	ND	0.31	0.76	ND
Acenaphthylene	100	ND	0.031 J	ND	ND
Acenaphthene	100	ND	0.058 J	0.170 J	ND
Fluorene	100	ND	0.065 J	0.200 J	ND
Phenanthrene	100	0.140 J	0.62	1.1	0.074 J
Anthracene	100	0.040 J	0.130 J	0.26	ND
Fluoranthene	100	0.3	0.98	1.4	0.099 J
Pyrene	100	0.25	0.57	1.3	0.077 J
Benzo (a) anthracene	1	0.170 J	0.35	0.67	0.044 J
Chrysene	3.9	0.160 J	0.44	0.71	0.042 J
Benzo (b) fluoranthene	1	0.190 J	0.42	0.78	0.048 J
Benzo (k) fluoranthene	3.9	0.100 J	0.46	0.38	0.027 J
Benzo (a) pyrene	1	0.150 J	0.45	0.64	0.038 J
Indeno (1, 2, 3-cd) pyrene	0.5	0.096 J	0.26	0.38	0.022 J
Dibenzo (a, h) anthracene	0.33	ND	0.150 J	0.120 J	ND
Benzo (g, h, i,) perylene	100	0.120 J	0.28	0.43	0.024 J
METALS					
Arsenic	16	8.8 B	12 B	3.5 B	5.0 B
Copper	270	42	95	26	28
Mercury	0.81	0.043 J	0.19	0.12	ND

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NC = No Criteria

6) B - Compound appeared in blank

7) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.

8) PAHs analyzed by SW846-8270C; total metals analyzed by USEPA 6000/7000 Series Methods.

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AB	2/18/2010	395535	22.38	TOT
AB	2/18/2010	395536	23.16	TOT
AB	2/18/2010	395537	21.37	TOT
AB	2/18/2010	395538	20.46	TOT
AB	2/18/2010	395539	24.72	TOT
AB	2/18/2010	395540	20.10	TOT
AB	2/18/2010	395541	19.52	TOT
AB	2/18/2010	395542	18.99	TOT
AB	2/18/2010	395543	23.30	TOT
AB	2/18/2010	395544	23.28	TOT
AB	2/18/2010	395545	21.16	TOT
AB	2/18/2010	395546	20.48	TOT
AB	2/18/2010	395547	26.86	TOT
AB	2/18/2010	395548	26.64	TOT
AB	2/18/2010	395549	23.18	TOT
AB	2/18/2010	395550	27.64	TOT
AB	2/18/2010	395551	26.02	TOT
AB	2/18/2010	395552	25.32	TOT
AB	2/18/2010	395553	22.10	TOT
AB	2/18/2010	395554	29.20	TOT
AB	2/18/2010	395555	25.46	TOT
		Total for 2/18/2010	491.34	тот
AB	2/19/2010	395556	22.22	TOT
AB	2/19/2010	395557	23.14	TOT
AB	2/19/2010	395558	23.28	TOT
AB	2/19/2010	395559	22.60	TOT
AB	2/19/2010	395560	20.78	TOT
AB	2/19/2010	395561	23.74	TOT
AB	2/19/2010	395562	14.00	TOT
AB	2/19/2010	395563	22.18	TOT
AB	2/19/2010	395564	23.88	TOT
AB	2/19/2010	395565	22.30	TOT
AB	2/19/2010	395566	18.90	TOT
AB	2/19/2010	395567	24.54	TOT
AB	2/19/2010	395568	20.02	TOT
AB	2/19/2010	395569	18.30	TOT
AB	2/19/2010	395570	21.70	TOT
AB	2/19/2010	395571	25.58	TOT
Area AB TO	T Soil Disposal	Total for 2/19/2010	347.16	ТОТ
AB	4/7/2010	396938	23.68	TOT
AB	4/7/2010	396939	20.42	TOT
AB	4/7/2010	396940	20.06	TOT
AB	4/7/2010	396941	20.36	TOT
AB	4/7/2010	396942	23.24	TOT
AB	4/7/2010	396943	23.04	TOT
AB	4/7/2010	396944	22.62	TOT
AB	4/7/2010	396945	24.72	TOT
AB	4/7/2010	396946	24.54	TOT
AB	4/7/2010	396947	20.88	TOT
AB	4/7/2010	396948	25.02	TOT
AB	4/7/2010	396949	19.28	TOT

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA2Soil DisposalTables\10-11-A(AB)

Table 10-11-A Spaulding Fibre Facility OU6 Summary of Soil Disposal for Area AB

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AB	4/7/2010	396950	25.70	TOT
AB	4/7/2010	396951	22.06	TOT
Area AB T	OT Soil Disposa	l Total for 4/7/2010	315.62	ТОТ
	Area AB	1,154.12	ТОТ	

Sample ID	6 NYCRR	AB-B-1	AB-S1	AB-S2	AB-SS-3
Sample Location	Part 375-6.8(b)	Bottom	Sidewall	Sidewall	Sidewall
Date Sampled	RRU SCOs¹	3/11/2010	3/12/2010	3/12/2010	4/8/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs		00			0
Naphthalene	100	ND	0.036 J	0.62	ND
2-Methylnaphthalene	N/A	ND	0.030 J	0.53	ND
Acenaphthylene	100	ND	ND	0.034 J	ND
Acenaphthene	100	ND	0.077 J	0.34	ND
Fluorene	100	ND	0.076 J	0.34	ND
Phenanthrene	100	0.038 J	0.61	3.4 E	ND
Anthracene	100	ND	0.150 J	0.97	ND
Fluoranthene	100	0.047 J	0.8	2.6	0.045 J
Pyrene	100	0.087 J	0.65	6.7 E	0.053 J
Benzo (a) anthracene	1	0.034 J	0.35	2.5	0.040 J
Chrysene	3.9	0.041 J	0.28	2.5	0.036 J
Benzo (b) fluoranthene	1	0.034 J	0.56	3	0.033 J
Benzo (k) fluoranthene	3.9	ND	0.22	2.1	ND
Benzo (a) pyrene	1	0.025 J	0.38	2.3	0.022 J
Indeno (1, 2, 3-cd) pyrene	0.5	ND	0.23	1.6	ND
Dibenzo (a, h) anthracene	0.33	ND	0.085 J	0.32	ND
Benzo (g, h, i,) perylene	100	0.028 J	0.23	1.8	ND
METALS		11200	17500	0000	1 <1 00
Aluminum	NC	11300	17500	9880	16100
Antimony	NC 16	<u>1.7</u> 6	0.93 9.9	1.5 17.1	ND
Arsenic Barium	400	68.7	9.9 204	17.1	5.3 155
Beryllium	72	0.61	1.4	1.4	0.98
Cadmium	4.3	0.01	1.4	2.4	0.98
Calcium	NC	7820	45600	60600	38600
Chromium	110	14.5	30.8	16.4	23.1
Cobalt	NC	8.9	10.7	6.8	12.2
Copper	270	18.2	86.7	156	24.6
Iron	NC	25200	34400	32000	37600
Lead	400	24.8	136	88.8	12
Magnesium	NC	5430	10000	12600	15200
Manganese	2000	228	542	483	473
Mercury	0.81	0.012 B	0.28	0.51	ND
Nickel	310	16.4	28.1	19.4	29.1
Potassium	NC	968	2030	1090	2390
Selenium	180	1.9	1.6	2.7	1.1
Silver	180	0.16 B	0.28 B	0.30 B	0.14 B
Sodium	NC	100	2170	167	130
Thallium	NC	1.4	2.4	2.2	1.4
Vanadium	NC	28.8	29.8	19.7	28.3
Zinc	10000	6630	590	6300	649

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit (MDL)

5) NC = No Criteria

6) B - Compound appeared in blank

7) PAHs analyzed by SW846-8270C;

8) Total metals analyzed by USEPA 6000/7000 Series Methods and mercury by USEPA Method 7471.

Table 10-12-A Spaulding Fibre Facility OU6 Summary of Soil Disposal for Area AI

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AI	2/17/2010	395482	21.54	TOT
AI	2/17/2010	483	20.00	TOT
AI	2/17/2010	395484	18.16	TOT
AI	2/17/2010	395485	24.22	TOT
AI	2/17/2010	395486	23.92	TOT
AI	2/17/2010	395487	21.60	TOT
AI	2/17/2010	395488	22.26	TOT
AI	2/17/2010	395489	18.40	TOT
AI	2/17/2010	395490	26.78	TOT
AI	2/17/2010	395491	23.32	TOT
AI	2/17/2010	395492	22.64	TOT
AI	2/17/2010	395493	19.60	TOT
AI	2/17/2010	395494	26.56	TOT
AI	2/17/2010	395495	23.10	TOT
AI	2/17/2010	395496	23.56	TOT
AI	2/17/2010	395497	24.62	TOT
AI	2/17/2010	395498	18.50	TOT
AI	2/17/2010	395499	23.74	TOT
		Total for 2/17/2010	402.52	ТОТ
AI	2/18/2010	395500	27.14	TOT
AI	2/18/2010	395501	25.04	TOT
AI	2/18/2010	395502	19.86	TOT
AI	2/18/2010	395503	23.84	TOT
AI	2/18/2010	395504	23.64	TOT
AI	2/18/2010	395505	22.53	TOT
AI	2/18/2010	395506	21.62	TOT
AI	2/18/2010	395507	21.95	TOT
AI	2/18/2010	395508	22.08	TOT
AI	2/18/2010	395509	22.10	TOT
AI	2/18/2010	395510	21.76	TOT
AI	2/18/2010	395511	19.58	TOT
AI	2/18/2010	395512	19.86	TOT
AI	2/18/2010	395513	19.78	TOT
AI	2/18/2010	395514	16.46	TOT
AI	2/18/2010	395515	24.00	TOT
AI	2/18/2010	395516	24.08	TOT
AI	2/18/2010	395517	20.90	TOT
AI	2/18/2010	395518	21.28	TOT
AI	2/18/2010	395519	22.74	TOT
AI	2/18/2010	395520	20.90	TOT
AI	2/18/2010	395521	19.16	TOT
AI	2/18/2010	395522	21.68	TOT
AI	2/18/2010	395523	21.06	TOT
AI	2/18/2010	395524	20.90	TOT
AI	2/18/2010	395525	20.84	ТОТ
AI	2/18/2010	395526	23.02	ТОТ
AI	2/18/2010	395527	23.90	TOT
		Total for 2/18/2010	611.70	ТОТ
AICA AI IU	r Son Disposal	10tal 101 2/10/2010	011./U	101

Table 10-12-A Spaulding Fibre Facility OU6 Summary of Soil Disposal for Area AI

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
AI	3/22/2010	395720	16.36	TOT
AI	3/22/2010	395721	22.60	TOT
AI	3/22/2010	395722	26.26	TOT
AI	3/22/2010	395723	18.44	TOT
AI	3/22/2010	395724	20.74	TOT
AI	3/22/2010	395725	14.20	TOT
	Area AI TOT	Total for 3/22/2010	118.60	ТОТ
AI	3/23/2010	395741	21.56	TOT
AI	3/23/2010	395742	21.20	TOT
Area AI TO	OT Soil Disposal	Total for 3/23/2010	42.76	тот
	Area Al	Soil Disposal Total	1175.58	ТОТ

Sample ID	6 NYCRR	AI-BS-1	AI-BS-2	AI-SS-1	AI-SS-2	AI-SS-3	AI-SS-4	AI-SS-5
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall
Date Sampled	RRU SCOs¹	2/24/2010	2/24/2010	2/24/2010	2/24/2010	2/24/2010	2/24/2010	3/24/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS								
Arsenic	16	5.4	4.6	18.2	3.6	11	11.3	5.6
Copper	270	7.2	8.1	431	21.5	581	67.8	17.4
Lead	400	14.2	11.9	329	9.8	378	39.2	16.7
Mercury	0.81	0.032 B	0.021 B	0.061	ND	0.11	0.04 B	0.038 B
Zinc	10000	1180	1560	23400	78.2	16400	789	1940

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) mg/kg = milligrams per kilogram

4) ND = not detected below the laboratory's method dectection limit

5) B - Compound appeared in blank

11-1-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Gibson Street Sewer Area

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Sewer Area	8/11/2010	5514	24.4	Modern
Sewer Area	8/11/2010	5517	23.05	Modern
Sewe	er Area Modern	Totals for 8/11/2010	47.45	Modern
Sewer Area	8/17/2010	5465	19.91	Modern
Sewer Area	8/17/2010	5858	20.05	Modern
Sewer Area	8/17/2010	5859	21.79	Modern
Sewer Area	8/17/2010	3518	24.93	Modern
Sewer Area	8/17/2010	6089	23.03	Modern
Sewer Area	8/17/2010	6099	23.64	Modern
Sewer Area	8/17/2010	6102	21.67	Modern
Sewer Area	8/17/2010	6105	22	Modern
Sewer Area	8/17/2010	6108	24.7	Modern
Sewer Area	8/17/2010	2248	24.74	Modern
Sewer Area	8/17/2010	3352	24.25	Modern
Sewer Area	8/17/2010	3355	22.71	Modern
Sewe	er Area Modern	Totals for 8/17/2010	273.42	Modern
Sewer Area	8/18/2010	4201	21.88	Modern
Sewer Area	8/18/2010	202	24.08	Modern
Sewer Area	8/18/2010	197	20.05	Modern
Sewer Area	8/18/2010	198	17.72	Modern
Sewe	er Area Modern	Totals for 8/18/2010	83.73	Modern
Sewer Area	9/2/2010	5015255	23	Modern
Sewer Area	9/2/2010	235	23	Modern
Sewer Area	9/2/2010	236	23	Modern
Sewer Area	9/2/2010	239	23	Modern
Sewer Area	9/2/2010	244	23	Modern
Sewer Area	9/2/2010	247	23	Modern
Sewer Area	9/2/2010	249	23	Modern
Sewer Area	9/2/2010	251	23	Modern
Sev	ver Area Modern	n Totals for 9/2/2010	184.00	Modern
Sewer A	rea Total Excav	ated Amount of Soil	588.60	Modern

Table 11-1-BSpaulding Fibre Facility OU6Confirmation Soil Results for Gibson Street Sewer Area

	6 NYCRR	SEWER PIPE-	SEWER PIPE-	SEWER PIPE-	SEWER PIPE-	SEWER PIPE-	SEWER PIPE-	SEWER PIPE-
Sample ID	Part 375-6.8(b)	SS-1	BS-1	SS-3	SS-4	SS-5	SS-6	SS-7
Sample Location		Sidewall	Bottom	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall
Date Sampled	RRU SCOs ¹	8/11/2010	8/17/2010	8/17/2010	8/17/2010	8/17/2010	9/1/2010	9/7/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
VOCS								
Acetone	100	ND	ND	ND	ND	ND	NA	NA
Benzene	4.8	ND	ND	ND	ND	0.0678 J	NA	NA
2-Butanone (MEK)	100	ND	ND	ND	ND	ND	NA	NA
n-Butylbenzene	100	ND	ND	ND	ND	ND	NA	NA
sec-Butylbenzene	100	ND	ND	ND	ND	ND	NA	NA
tert-Butylbenzene	100	ND	ND	ND	ND	ND	NA	NA
Carbon tetrachloride	2.4	ND	ND	ND	ND	ND	NA	NA
Chlorobenzene	100	ND	ND	ND	ND	ND	NA	NA
Chloroform	49	ND	ND	ND	ND	ND	NA	NA
1,2-Dichlorobenzene	100	ND	ND	ND	ND	ND	NA	NA
1,3-Dichlorobenzene	49	ND	ND	ND	ND	ND	NA	NA
1,4-Dichlorobenzene	13	ND	ND	ND	ND	ND	NA	NA
1,2-Dichloroethane	3.1	ND	ND	ND	ND	ND	NA	NA
1,1-Dichloroethene	100	ND	ND	ND	ND	ND	NA	NA
cis-1,2-Dichloroethene	100	ND	ND	ND	ND	ND	NA	NA
trans-1,2-Dichloroethene	100	ND	ND	ND	ND	ND	NA	NA
Ethylbenzene	41	ND	0.107	ND	ND	ND	NA	NA
Methyl tert-butyl ether	100	ND	ND	ND	ND	ND	NA	NA
Naphthalene	100	7.57 J	ND	ND	ND	0.146	NA	NA
n-Propylbenzene	100	ND	ND	ND	ND	ND	NA	NA
Toluene	100	329	14.2 E	ND	ND	6.26	NA	NA
1,1,1-Trichloroethane	100	ND	ND	ND	ND	ND	NA	NA
Trichloroethene	21	ND	ND	ND	ND	ND	NA	NA
1,2,4-Trimethylbenzene	52	ND	ND	ND	ND	0.0654 J	NA	NA
1,3,5-Trimethylbenzene	52	ND	ND	ND	ND	ND	NA	NA
Vinyl chloride	0.9	ND	ND	ND	ND	ND	NA	NA
m,p-Xylene	NC	ND	0.491	ND	ND	ND	NA	NA
o-Xylene	NC	ND	0.17	ND	ND	0.0528 J	NA	NA
Xylene (total)	100	ND	0.661	ND	ND	0.0528 J	NA	NA

Table 11-1-BSpaulding Fibre Facility OU6Confirmation Soil Results for Gibson Street Sewer Area

Sample ID	6 NYCRR Part 375-6.8(b)	SEWER PIPE- SS-1	SEWER PIPE- BS-1	SEWER PIPE- SS-3	SEWER PIPE- SS-4	SEWER PIPE- SS-5	SEWER PIPE- SS-6	SEWER PIPE- SS-7
Sample Location		Sidewall	Bottom	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall
Date Sampled	RRU SCOs ¹	8/11/2010	8/17/2010	8/17/2010	8/17/2010	8/17/2010	9/1/2010	9/7/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs								
Naphthalene	100	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	100	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	100	ND	ND	ND	ND	ND	ND	ND
Fluorene	100	ND	ND	ND	ND	ND	ND	ND
Hexachlorobenzene	1.2	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	100	ND	ND	ND	ND	ND	ND	0.0981 J
Anthracene	100	ND	ND	ND	ND	ND	ND	0.031 J
Fluoranthene	100	ND	ND	ND	ND	ND	ND	0.143 J
Pyrene	100	ND	ND	ND	ND	ND	ND	0.109 J
Benzo (a) anthracene	1	ND	ND	ND	ND	ND	ND	0.0719 J
Chrysene	3.9	ND	ND	ND	ND	ND	ND	0.0645 J
Benzo (b) fluoranthene	1	ND	ND	ND	ND	ND	ND	0.0671 J
Benzo (k) fluoranthene	3.9	ND	ND	ND	ND	ND	ND	0.0585 J
Benzo (a) pyrene	1	ND	ND	ND	ND	ND	ND	0.0658 J
Indeno (1,2,3-cd) pyrene	0.5	ND	ND	ND	ND	ND	ND	0.0271 J
Dibenzo (a,h) anthracene	0.33	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	59	ND	ND	ND	ND	ND	ND	ND
Benzo (g,h,i) perylene	100	ND	ND	ND	ND	ND	ND	0.0258 J
Pentachlorophenol	6.7	ND	ND	ND	ND	ND	ND	ND
Phenol	100	388	ND	ND	ND	130	7690	ND

Table 11-1-BSpaulding Fibre Facility OU6Confirmation Soil Results for Gibson Street Sewer Area

Sample ID	6 NYCRR	SEWER PIPE-	SEWER PIPE-	SEWER PIPE-	SEWER PIPE-	SEWER PIPE-	SEWER PIPE-	SEWER PIPE-
Sample ID	Part 375-6.8(b)	SS-1	BS-1	SS-3	SS-4	SS-5	SS-6	SS-7
Sample Location		Sidewall	Bottom	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall
Date Sampled	RRU SCOs ¹	8/11/2010	8/17/2010	8/17/2010	8/17/2010	8/17/2010	9/1/2010	9/7/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
METALS								
Aluminum	NC	14300	NA	NA	NA	NA	NA	NA
Antimony	NC	2.64 J	NA	NA	NA	NA	NA	NA
Arsenic	16	8.32	NA	NA	NA	NA	NA	NA
Barium	400	105	NA	NA	NA	NA	NA	NA
Beryllium	72	0.82	NA	NA	NA	NA	NA	NA
Cadmium	4.3	1.02	NA	NA	NA	NA	NA	NA
Calcium	NC	27500	NA	NA	NA	NA	NA	NA
Chromium	180	20	NA	NA	NA	NA	NA	NA
Cobalt	NC	9.19	NA	NA	NA	NA	NA	NA
Copper	270	67.9	NA	NA	NA	NA	NA	NA
Iron	NC	23600	NA	NA	NA	NA	NA	NA
Lead	400	25.5	NA	NA	NA	NA	NA	NA
Magnesium	NC	10400	NA	NA	NA	NA	NA	NA
Manganese	2000	386	NA	NA	NA	NA	NA	NA
Mercury	0.81	0.0641	NA	NA	NA	NA	NA	NA
Nickel	310	22.9	NA	NA	NA	NA	NA	NA
Potassium	NC	2090	NA	NA	NA	NA	NA	NA
Selenium	180	1.05 J	NA	NA	NA	NA	NA	NA
Silver	180	0.336 J	NA	NA	NA	NA	NA	NA
Sodium	NC	108	NA	NA	NA	NA	NA	NA
Thallium	NC	ND	NA	NA	NA	NA	NA	NA
Vanadium	NC	27.3	NA	NA	NA	NA	NA	NA
Zinc	10000	448	NA	NA	NA	NA	NA	NA

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) VOCs analyzed by SW846-8240; PAHs analyzed by SW846-8270 and total metals analyzed by USEPA 6000/7000 Series Methods.

4) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.

5) mg/kg = milligrams per kilogram (ppm)

6) ND = Analyte included in the analysis, but not detected.

7) NC = No Criteria

8) NA = Not Analyzed

9) E = Analyte concentration exceeds calibration range of instrument used for analysis.

11-2-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Spauldite Tube Area

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Spauldite Tube	6/24/2010	4910734	24.01	Modern
Spauldite Tube	6/24/2010	4910734	23.5	Modern
Spauldite Tube	6/24/2010	4910730	24.67	Modern
Spauldite Tube	6/24/2010	4910737	25.21	Modern
Spauldite Tube	6/24/2010	4910740	20.38	Modern
Spauldite Tube	6/24/2010	4910742	20.09	Modern
Spauldite Tube	6/24/2010	4910752	19.81	Modern
Spauldite Tube	6/24/2010	4910752	19.81	Modern
Spauldite Tube	6/24/2010	4910754	19.14	Modern
Spauldite Tube	6/24/2010	4885864	20.32	Modern
Spauldite Tube	6/24/2010	4885865	18.21	Modern
Spauldite Tube	6/24/2010	723	22.31	Modern
Spauldite Tube	6/24/2010	863	22.82	Modern
Spauldite Tube	6/24/2010	157	20.75	Modern
		Totals for 6/24/2010	300.34	Modern
-			22.2	
Spauldite Tube	6/29/2010	273 274	22.2	Modern
Spauldite Tube	6/29/2010			Modern
Spauldite Tube	6/29/2010	280	22.23	Modern
Spauldite Tube	6/29/2010	281 282	23.49 23.5	Modern
Spauldite Tube	6/29/2010	282		Modern
Spauldite Tube	6/29/2010		22.83 23.32	Modern
Spauldite Tube	6/29/2010	285		Modern
Spauldite Tube	6/29/2010	287	23.81	Modern
Spauldite Tube	6/29/2010	288	23.08	Modern
Spauldite Tube	6/29/2010	289 290	26.54 24.83	Modern Modern
Spauldite Tube Spauldite Tube	6/29/2010 6/29/2010	290	23.21	Modern
Spauldite Tube	6/29/2010	291 292	23.7	Modern
Spauldite Tube	6/29/2010	292	22.17	Modern
Spauldite Tube	6/29/2010	293	23.56	Modern
Spauldite Tube	6/29/2010	294	24.27	Modern
Spauldite Tube	6/29/2010	290	23.39	Modern
Spauldite Tube	6/29/2010	297	23.62	Modern
Spauldite Tube	6/29/2010	298	22.96	Modern
Spauldite Tube	6/29/2010	300	24.78	Modern
Spauldite Tube	6/29/2010	301	23.36	Modern
Spauldite Tube	6/29/2010	302	25.4	Modern
Spauldite Tube	6/29/2010	303	25.66	Modern
Spauldite Tube	6/29/2010	304	19.65	Modern
Spauldite Tube	6/29/2010	305	21.3	Modern
Spauldite Tube	6/29/2010	305	19.94	Modern
Spauldite Tube	6/29/2010	307	23.05	Modern
Spauldite Tube	6/29/2010	308	22.55	Modern
Spauldite Tube	6/29/2010	309	23.39	Modern
		Fotals for 6/29/2010	672.92	Modern
Spauldite Tube	8/11/2010	5533	27.08	
Spauldite Tube	8/11/2010	5506	27.08	Modern
· · · · · · · · · · · · · · · · · · ·				Modern
Spauldite Tube	8/11/2010	5467 5511	26.43	Modern
Spauldite Tube	8/11/2010	1	24.98	Modern
Spauldite T	ube Area Modern '	Fotals for 8/11/2010	102.49	Modern
S	pauldite Tube Area	a Soil Disposal Total	1,075.75	Modern

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA3Soil DisposalTables\11-2-A Spauldite Tube

Table 11-2-BSpaulding Fibre Facility OU6Confirmation Soil Results for Spauldite Tube Area

Sample ID	6 NYCRR Part 375-6.8(b)	Spauldite BS-1	Spauldite BS-2	Spauldite SS-1	Spauldite SS-2	Spauldite SS-3	Spauldite SS-4	Spauldite SS-5	Spauldite SS-6
Sample Location	RRU SCOs ¹	Bottom	Bottom	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall	Sidewall
Date Sampled		6/30/2010	6/30/2010	7/13/2010	7/30/2010	7/30/2010	8/3/2010	8/10/2010	8/10/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs									
Naphthalene	100	ND	ND	ND	ND	0.0911 J	ND	0.158	ND
2-Methylnaphthalene	NC	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	100	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	100	ND	ND	ND	0.155	0.26	ND	0.296	0.238
Fluorene	100	ND	ND	ND	0.182	0.357	ND	0.505	0.253
Phenanthrene	100	ND	ND	ND	1.66	3.05	ND	3.34	1.28
Anthracene	100	ND	ND	ND	0.443	0.724	ND	0.799	0.454
Fluoranthene	100	ND	ND	ND	2.23	5.19	ND	4.24	1.35
Pyrene	100	ND	ND	ND	1.59	3.52	ND	2.75	0.914
Benzo (a) anthracene	1	ND	ND	ND	0.863	1.98	ND	1.37	0.592
Chrysene	3.9	ND	ND	ND	0.832	2.05	ND	1.37	0.518
Benzo (b) fluoranthene	1	ND	ND	ND	0.605	1.71	ND	1.11	0.353
Benzo (k) fluoranthene	3.9	ND	ND	ND	0.693	1.71	ND	0.992	0.464
Benzo (a) pyrene	1	ND	ND	ND	0.698	1.81	ND	1.09	0.468
Indeno (1, 2, 3-cd) pyrene	0.5	ND	ND	ND	0.424	1.08	ND	0.59	0.21
Dibenzo (a, h) anthracene	0.33	ND	ND	ND	0.106 J	0.263	ND	0.157	ND
Benzo (g, h, i,) perylene	100	ND	ND	ND	0.354	0.92	ND	0.461	0.158 J
METALS									
Copper	270	14.3	23	7.76	2190	53.5	34.8	56.3	56.8

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.

4) mg/kg = milligrams per kilogram (ppm)

5) ND = Analyte included in the analysis, but not detected.

6) NC = No Criteria

7) PAHs analyzed by SW846-8270C; copper analyzed by USEPA Method 6010.

11-3-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Area BA

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
BA	6/8/2010	641	24.28	Modern
BA	6/8/2010	644	22.47	Modern
BA	6/8/2010	645	22.53	Modern
BA	6/8/2010	646	25.21	Modern
BA	6/8/2010	647	22.96	Modern
BA	6/8/2010	651	26.14	Modern
BA	6/8/2010	653	23.06	Modern
BA	6/8/2010	655	24.32	Modern
BA	6/8/2010	656	26.60	Modern
BA	6/8/2010	657	26.26	Modern
BA	6/8/2010	658	24.00	Modern
BA	6/8/2010	661	26.82	Modern
BA	6/8/2010	659	23.98	Modern
BA	6/8/2010	662	26.70	Modern
BA	6/8/2010	663	24.47	Modern
BA	6/8/2010	665	23.25	Modern
BA	6/8/2010	666	24.61	Modern
BA	6/8/2010	669	23.25	Modern
BA	6/8/2010	670	26.75	Modern
BA	6/8/2010	672	25.44	Modern
BA	6/8/2010	673	25.83	Modern
BA	6/8/2010	674	26.42	Modern
BA	6/8/2010	676	24.05	Modern
BA	6/8/2010	678	23.86	Modern
BA	6/8/2010	679	25.11	Modern
BA	6/8/2010	680	22.00	Modern
BA	6/8/2010	682	25.74	Modern
BA	6/8/2010	683	26.50	Modern
BA	6/8/2010	686	25.69	Modern
BA	6/8/2010	687	26.99	Modern
BA	6/8/2010	684	24.29	Modern
BA	6/8/2010	689	26.70	Modern
BA	6/8/2010	690	24.92	Modern
BA	6/8/2010	691	26.01	Modern
BA	6/8/2010	692	27.27	Modern
BA	6/8/2010	693	27.74	Modern
BA	6/8/2010	695	27.24	Modern
BA	6/8/2010	696	25.58	Modern
BABA	6/8/2010	697	23.58	Modern
BABA	6/8/2010	699	24.02	Modern
BABA	6/8/2010	701	26.44	Modern
BA	6/8/2010	701	20.44	Modern
BABA	6/8/2010	705	20.11	Modern
BABA	6/8/2010	705	24.62	Modern
		al Total for 6/8/2010	1096.36	Modern
BA	6/9/2010	545	23.84	Modern
BA	6/9/2010	546	26.71	Modern
BA	6/9/2010	793	23.33	Modern
BA	6/9/2010	547	21.43	Modern
BA	6/9/2010	549	26.11	Modern
BA	6/9/2010	550	25.82	Modern

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA3Soil DisposalTables\11-3-A (BA)

11-3-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Area BA

Work Area ID	Date	Manifest Number	Actual Weight	Landfill
			Tonnage	Location
BA	6/9/2010	551	22.86	Modern
BA	6/9/2010	552	24.77	Modern
BA	6/9/2010	553	21.39	Modern
BA	6/9/2010	554	22.05	Modern
BA	6/9/2010	555	22.26	Modern
BA	6/9/2010	556	25.17	Modern
BA	6/9/2010	780	24.17	Modern
BA	6/9/2010	558	24.67	Modern
BA	6/9/2010	557	25.22	Modern
BA	6/9/2010	559	23.55	Modern
BA	6/9/2010	544	23.93	Modern
BA	6/9/2010	560	23.86	Modern
BA	6/9/2010	539	23.45	Modern
BA	6/9/2010	540	23.64	Modern
BA	6/9/2010	541	25.73	Modern
BA	6/9/2010	542	24.97	Modern
BA	6/9/2010	543	25.62	Modern
BA	6/9/2010	782	25.74	Modern
BA	6/9/2010	755	25.83	Modern
BA	6/9/2010	756	24.59	Modern
BA	6/9/2010	758	25.54	Modern
BA	6/9/2010	759	26.77	Modern
BA	6/9/2010	760	26.50	Modern
BA	6/9/2010	761	23.20	Modern
BA	6/9/2010	762	24.02	Modern
BA	6/9/2010	763	26.77	Modern
BA	6/9/2010	764	23.61	Modern
BA	6/9/2010	743	25.86	Modern
BA	6/9/2010	783	23.41	Modern
BA	6/9/2010	746	21.74	Modern
BA	6/9/2010	748	21.99	Modern
BA	6/9/2010	749	25.07	Modern
		sal Total for 6/9/2010	925.19	Modern
	Area B	A Soil Disposal Total	2,021.55	Modern

Table 11-3-B Spaulding Fibre Facility OU6 Confirmation Soil Results for Area BA

Sample ID	6 NYCRR	BA SS-1	BA BS-1	BA BS-2	
Sample Location	Part 375-6.8(b)	Sidewall	Bottom	Bottom	
Date Sampled	RRU SCOs ¹	6/8/2010	6/17/2010	6/17/2010	
Units	mg/kg	mg/kg	mg/kg	mg/kg	
PAHs	8 8	6 6	6 6	6 6	
Naphthalene	100	ND	ND	ND	
2-Methylnaphthalene	NC	ND	ND	ND	
Acenaphthylene	100	ND	ND	ND	
Acenaphthene	100	ND	ND	ND	
Fluorene	100	ND	ND	ND	
Phenanthrene	100	ND	ND	ND	
Anthracene	100	ND	ND	ND	
Fluoranthene	100	ND	ND	ND	
Pyrene	100	ND	ND	ND	
Benzo (a) anthracene	1	ND	ND	ND	
Chrysene	3.9	ND	ND	ND	
Benzo (b) fluoranthene	1	ND	ND	ND	
Benzo (k) fluoranthene	3.9	ND	ND	ND	
Benzo (a) pyrene	1	ND	ND	ND	
Indeno (1,2,3-cd) pyrene	0.5	ND	ND	ND	
Dibenzo (a,h) anthracene	0.33	ND	ND	ND	
Benzo (g,h,i) perylene	100	ND	ND	ND	
PCBs Aroclor- 1016	NG	ND	ND	ND	
	NC NC	ND ND	ND ND	ND	
Aroclor-1221 Aroclor-1232	NC	ND ND	ND	ND ND	
Aroclor-1242	NC	ND ND	ND	ND	
Aroclor-1248	NC	ND	ND	ND	
Aroclor-1254	NC	ND	ND	ND	
Aroclor-1260	NC	ND	ND	ND	
Aroclor-1262	NC	ND	ND	ND	
Aroclor-1268	NC	ND	ND	ND	
METALS					
Aluminum	NC	20900	NA	NA	
Antimony	NC	2.09 J	NA	NA	
Arsenic	16	7.04	2.47	4.42	
Barium	400	302	NA	NA	
Beryllium	72	1.02	NA	NA	
Cadmium	4.3	2.52	0.575 J	1.12	
Calcium	NC	2910	NA	NA	
Chromium	180	17.2	NA	NA	
Cobalt	NC	5.88	NA	NA	
Copper	270	113	NA	NA	
Iron	NC	92100	NA	NA	
Lead	400	12.8	NA	NA	
Magnesium	NC 2000	710	NA	NA	
Manganese	2000	104 0.0158 J	NA	NA	
Mercury Nickel	0.81 310	0.0158 J 10	NA NA	NA NA	
Potassium	NC	909	NA	NA	
Selenium	180	3.57	NA	NA	
Silver	180	ND	NA	NA	
Sodium	NC	344	NA	NA	
Thallium	NC	ND	NA	NA	
Vanadium	NC	27.9	NA	NA	
Zinc	10000	207	NA	NA	

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs).

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) PAHs analyzed by SW846-8270C; total metals analyzed by USEPA 6000/7000 Series Methods; PCBs analyzed by SW846-8082.

4) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.

5) mg/kg = milligrams per kilogram (ppm)

6) NA- Not analyzed

7) ND = Analyte included in the analysis, but not detected.

8) NC = No Criteria

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Rail Area	6/16/2010	454	17.82	TOT
Rail Area	6/16/2010	457	18.76	ТОТ
Rail Area	6/16/2010	458	21.76	ТОТ
Rail Area	6/16/2010	459	18.56	ТОТ
Rail Area	6/16/2010	460	19.06	ТОТ
Rail Area	6/16/2010	461	20.72	TOT
Rail Area	6/16/2010	462	20.24	TOT
Rail Area	6/16/2010	463	17.84	TOT
Rail Area	6/16/2010	464	21.39	TOT
Rail Area	6/16/2010	465	24.16	TOT
Rail Area	6/16/2010	466	22.9	TOT
Rail Area	6/16/2010	467	24.16	TOT
Rail Area	6/16/2010	468	25.52	TOT
Rail Area	6/16/2010	469	20.28	TOT
Rail Area	6/16/2010	470	24.48	TOT
Rail Area	6/16/2010	471	26.5	TOT
Rail Area	6/16/2010	472	24.34	TOT
Rail Area	6/16/2010	473	25.12	TOT
Rail Area	6/16/2010	474	24.1	TOT
Rail Area	6/16/2010	475	22.64	TOT
Rail Area	6/16/2010	476	23.12	TOT
Rail Area	6/16/2010	477	21.42	TOT
Rail Area	6/16/2010	478	24.16	ТОТ
Rail Area	6/16/2010	479	25.62	ТОТ
Rail Area	6/16/2010	480	24.02	TOT
Rail Area	6/16/2010	481	23.98	TOT
Rail Area	6/16/2010	482	24.46	TOT
Rail Area	6/16/2010	483	25.1	TOT
Rail Area	6/16/2010	484	22	TOT
Rail Area	6/16/2010	485	26.6	TOT
Rail Area	6/16/2010	486	21.74	TOT
Rail Area	6/16/2010	487	21.4	TOT
Rail Area	6/16/2010	488	24.64	TOT
Rail Area	6/16/2010	489	24.74	TOT
Rail Area	6/16/2010	490	25.28	TOT
Rail Area	6/16/2010	491	26.16	TOT
Rail Area	6/16/2010	492	23.48	TOT
Rail Area	6/16/2010	493	24.52	TOT
Rail Area	6/16/2010	494	24.203	TOT
Rail Area	6/16/2010	495	22.32	TOT
Rail Area	6/16/2010	496	22.54	TOT
Rail Area	6/16/2010	497	25.06	TOT
Rail Area	6/16/2010	498	24.58	TOT
Rail Area	6/16/2010	499	24.4	TOT
Rail Area	6/16/2010	500	25.24	TOT
Rail Area	6/16/2010	501	25.2	TOT
Rail Area	6/16/2010	502	22.32	TOT
Rail Area	6/16/2010	503	24.5	TOT
	Rail Area TOT	Fotals for 6/16/2010	1,113.15	ТОТ
Rail Area	6/22/2010	614	23.74	ТОТ
Rail Area	6/22/2010	615	23.92	TOT

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA4Soil DisposalTables\12-1-A(Rail)

Table 12-1-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Rail Line Area

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Rail Area	6/22/2010	616	26.08	TOT
Rail Area	6/22/2010	617	25.04	TOT
Rail Area	6/22/2010	618	25.64	TOT
Rail Area	6/22/2010	619	23.2	TOT
Rail Area	6/22/2010	620	22.98	TOT
Rail Area	6/22/2010	621	24.58	TOT
Rail Area	6/22/2010	622	22.76	TOT
Rail Area	6/22/2010	623	23.16	TOT
Rail Area	6/22/2010	624	24.32	TOT
Rail Area	6/22/2010	625	23.72	TOT
Rail Area	6/22/2010	626	23.08	TOT
Rail Area	6/22/2010	627	22.46	TOT
Rail Area	6/22/2010	628	23.56	TOT
Rail Area	6/22/2010	629	25.62	TOT
Rail Area	6/22/2010	630	25.86	TOT
Rail Area	6/22/2010	631	26.66	TOT
Rail Area	6/22/2010	632	25.42	TOT
Rail Area	6/22/2010	633	21.76	TOT
Rail Area	6/22/2010	634	21.96	TOT
Rail Area	6/22/2010	635	24.92	TOT
	Rail Area TOT	Totals for 6/22/2010	530.44	ТОТ
Rail Area	6/25/2010	638	23.56	ТОТ
Rail Area	6/25/2010	639	24.4	TOT
Rail Area	6/25/2010	640	22.88	TOT
Rail Area	6/25/2010	641	23.08	TOT
Rail Area	6/25/2010	642	23	TOT
Rail Area	6/25/2010	643	23.56	TOT
Rail Area	6/25/2010	644	22.72	TOT
Rail Area	6/25/2010	645	23.02	TOT
Rail Area	6/25/2010	646	22.5	TOT
Rail Area	6/25/2010	647	21.86	TOT
Rail Area	6/25/2010	648	26.04	TOT
Rail Area	6/25/2010	649	23.28	TOT
Rail Area	6/25/2010	650	24.92	TOT
Rail Area	6/25/2010	651	23.84	TOT
Rail Area	6/25/2010	652	23.22	TOT
Rail Area	6/25/2010	653	21.78	TOT
Rail Area	6/25/2010	654	24.1	TOT
Rail Area	6/25/2010	655	24.66	TOT
Rail Area	6/25/2010	656	21.08	TOT
Rail Area	6/25/2010	657	23.42	TOT
Rail Area	6/25/2010	658	24.14	ТОТ
Rail Area	6/25/2010	659	19.34	ТОТ
Rail Area	6/25/2010	660	22.22	TOT
Rail Area	6/25/2010	661	22.64	TOT
Rail Area	6/25/2010	662	19.28	ТОТ
Rail Area	6/25/2010	696	23	TOT
Rail Area	6/25/2010	697	23	ТОТ
Rail Area	6/25/2010	698	23	TOT
	Rail Area TOT	Totals for 6/22/2010	643.54	ТОТ

Table 12-1-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Rail Line Area

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Rail Area	7/12/2010	397668	19.7	TOT
Rail Area	7/12/2010	670	21.14	TOT
Rail Area	7/12/2010	672	21.96	TOT
Rail Area	7/12/2010	669	21.54	TOT
	Rail Area TOT	Fotals for 7/12/2010	84.34	ТОТ
Rail Area	7/21/2010	674	14.84	TOT
Rail Area	7/21/2010	675	20.04	TOT
Rail Area	7/21/2010	676	16.36	TOT
	Rail Area TOT	Fotals for 7/21/2010	51.24	ТОТ
Rail Area	8/11/2010	5518	20.34	Modern
Rail Area	8/11/2010	5509	19.34	Modern
Ra	ail Area Modern 🛛	Fotals for 8/11/2010	39.68	Modern
Rail Area	8/18/2010	200	23.76	Modern
Ra	ail Area Modern 🛛	Fotals for 8/18/2010	23.76	Modern
	Rail Area TOT	Soil Disposal Total	2,422.71	ТОТ
F	Rail Area Modern	Soil Disposal Total	63.44	Modern
	Rail Area	ı Soil Disposal Total	2,486.15	Modern & TOT

					1	1	1	
Sample ID	6 NYCRR	WA-4- RR-BS-1	WA-4- RR-BS-2	WA-4- RR-BS-3	RR-BS- 4	RR-BS-5	RR-BS-6	RR-BS-7
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs¹	6/11/2010	6/11/2010	6/11/2010	<u>6/22/2010</u>	6/22/2010	6/22/2010	6/22/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs								
Naphthalene	100	ND	ND	ND	0.119 J	ND	ND	ND
2-Methylnaphthalene	NC	ND	ND	ND	0.122 J	ND	ND	ND
Acenaphthylene	100	ND	ND	ND	0.107 J	ND	ND	ND
Acenaphthene	100	ND	ND	ND	0.126 J	ND	ND	ND
Fluorene	100	ND	ND	ND	0.162	ND	ND	ND
Phenanthrene	100	0.21	ND	ND	1.21	ND	ND	ND
Anthracene	100	ND	ND	ND	0.323	ND	ND	ND
Fluoranthene	100	0.377	ND	0.166 J	2.21	ND	ND	ND
Pyrene	100	0.346	ND	0.169 J	1.84	ND	ND	ND
Benzo (a) anthracene	1	0.205	ND	0.113 J	1.02	ND	ND	ND
Chrysene	3.9	0.29	ND	0.151 J	1.36	ND	ND	ND
Benzo (b) fluoranthene	1	0.223	ND	0.122 J	1.06	ND	ND	ND
Benzo (k) fluoranthene	3.9	0.269	ND	0.167 J	1.1	ND	ND	ND
Benzo (a) pyrene	1	0.244	ND	0.121 J	1.03	ND	ND	ND
Indeno (1,2,3-cd) pyrene	0.5	0.123 J	ND	ND	0.585	ND	ND	ND
Dibenzo (a,h) anthracene	0.33	ND	ND	ND	0.158	ND	ND	ND
Benzo (g,h,i) perylene	100	0.13 J	ND	ND	0.576	ND	ND	ND
METALS								
Aluminum	NC	4950	6670	5670	5810	18300	12200	26000
Antimony	NC	ND	0.718 J	0.93 J	0.826 J	ND	ND	ND
Arsenic	16	14.5	8.75	9.24	12.1	29.2	9.83	2.82
Barium	400	57.1	107	64.6	94.6	109	76.7	135
Beryllium	72	0.663	0.715	0.761	0.984	3.78	1.34	1.71
Cadmium	4.3	0.914	0.755	0.917	1.43	1.06	0.706	1.04
Calcium	NC	6420	7500	9360	9830	132000	72300	3250
Chromium	180	10.8	9.54	9.87	8.51	3.97	12.1	32.7
Cobalt	NC	4.96	7.65	4.6	49.3	12.9	8.61	21.4
Copper	270	30.3	29.7	31.2	45.4	23.6	17.4	24.7
Iron	NC	18000	19800	24900	25700	21700	17500	46100
Lead	400	57.5	26.9	25.2	57.5	5.95	7.36	13.7
Magnesium	NC	2600	2690	2470	2090	4130	14200	9650
Manganese	2000	182	1120	297	386	1870	529	204
Mercury	0.81	0.134	0.0572	0.122	0.186	0.0275 J	0.0086 J	0.0203 J
Nickel	310	12	14.9	11.9	32	23.1	19.4	31
Potassium	NC	786	1090	751	565	987	1640	3380
Selenium	180	1.21 J	1.34 J	1.32 J	1.51 J	3.17	1.54 J	1.31 J
Silver	180	ND	ND	ND	ND	ND	ND	ND
Sodium	NC	105	182	120	190	607	172	149
Thallium	NC	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	14	13.9	12	12.8	8.37	16.1	40.4
Zinc	10000	156	126	206	434	191	94.3	100

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) PAHs analyzed by SW846-8270C; total metals analyzed by USEPA 6000/7000 Series Methods.
4) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.
5) mg/kg = milligrams per kilogram (ppm)

6) ND = Analyte included in the analysis, but not detected.

7) NC = No Criteria

Sample ID	6 NYCRR	RR-BS-8	RR-BS-9	RR-I	BS-10	RR-BS-11	RR-BS-12	RR-BS-13
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs ¹	6/22/2010	6/22/2010	6/23/2010	6/25/2010	<u>6/25/2010</u>	<u>6/25/2010</u>	6/25/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs		00	00	00				00
Naphthalene	100	ND	ND	ND	NA	0.182	0.248	ND
2-Methylnaphthalene	NC	ND	ND	ND	NA	ND	0.141 J	ND
Acenaphthylene	100	ND	ND	ND	NA	ND	ND	ND
Acenaphthene	100	ND	ND	ND	NA	0.333	0.541	ND
Fluorene	100	ND	ND	ND	NA	0.382	0.653	ND
Phenanthrene	100	ND	0.159	ND	NA	2.24	3.7	0.265
Anthracene	100	ND	ND	ND	NA	0.617	1.05	ND
Fluoranthene	100	ND	0.212	ND	NA	2.19	4.44	0.295
Pyrene	100	ND	0.152 J	ND	NA	1.81	3.59	0.213
Benzo (a) anthracene	1	ND	0.0867 J	ND	NA	1.13	2.11	0.136 J
Chrysene	3.9	ND	0.0898 J	ND	NA	1.28	2.42	0.138 J
Benzo (b) fluoranthene	1	ND	ND	ND	NA	0.796	1.85	ND
Benzo (k) fluoranthene	3.9	ND	ND	ND	NA	0.929	2.24	0.124 J
Benzo (a) pyrene	1	ND	ND	ND	NA	0.855	1.86	0.0967 J
Indeno (1,2,3-cd) pyrene	0.5	ND	ND	ND	NA	0.461	1.1	ND
Dibenzo (a,h) anthracene	0.33	ND	ND	ND	NA	0.137 J	0.322	ND
Benzo (g,h,i) perylene	100	ND	ND	ND	NA	0.451	0.985	ND
METALS								
Aluminum	NC	16900	15400	NA	NA	NA	NA	NA
Antimony	NC	ND	BRL	NA	NA	NA	NA	NA
Arsenic	16	4.24	4.5	NA	1.9	30.2	28.3	7.02
Barium	400	117	135	NA	NA	NA	NA	NA
Beryllium	72	1.01	0.898	NA	NA	NA	NA	NA
Cadmium	4.3	0.826	0.855	NA	NA	NA	NA	NA
Calcium	NC	5060	3370	NA	NA	NA	NA	NA
Chromium	180	24.4	22.2	NA	NA	NA	NA	NA
Cobalt	NC	10.7	9.44	NA	NA	NA	NA	NA
Copper	270	22.5	20.6	NA	NA	NA	NA	NA
Iron	NC	24800	21500	NA	NA	NA	NA	NA
Lead	400	14.8	9.93	NA	NA	NA	NA	NA
Magnesium	NC	9940	4930	NA	NA	NA	NA	NA
Manganese	2000	256	256	451	NA	NA	NA	NA
Mercury	0.81	0.0149 J	0.0193 J	NA	NA	NA	NA	NA
Nickel	310	24.8	23.1	NA	NA	NA	NA	NA
Potassium	NC	2580	2140	NA	NA	NA	NA	NA
Selenium	180	1.07 J	0.702 J	NA	NA	NA	NA	NA
Silver	180	ND	ND	NA	NA	NA	NA	NA
Sodium	NC	114	107	NA	NA	NA	NA	NA
Thallium	NC	ND	ND	NA	NA	NA	NA	NA
Vanadium	NC	29.5	27.7	NA	NA	NA	NA	NA
Zinc	10000	86.6	225	NA	NA	NA	NA	NA

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) PAHs analyzed by SW846-8270C; total metals analyzed by USEPA 6000/7000 Series Methods. 4) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.

5) mg/kg = milligrams per kilogram (ppm)

6) ND = Analyte included in the analysis, but not detected.

7) NC = No Criteria

Sample ID	6 NYCRR	RR-BS-14	RR-BS-15	RR-BS-17	RR-BS-19	RR-BS-21	RR-BS-22	RR-BS-23
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom
Date Sampled	RRU SCOs ¹	<u>6/25/2010</u>	<u>6/25/2010</u>	<u>6/28/2010</u>	6/28/2010	7/13/2010	7/13/2010	7/13/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs	00	00	00	00	00	00	00	
Naphthalene	100	0.569	0.608	ND	ND	0.215	ND	0.32 J
2-Methylnaphthalene	NC	0.447	0.367	0.109 J	0.0897 J	0.148 J	ND	0.437
Acenaphthylene	100	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	100	1.53	1	0.206	ND	0.387	ND	0.46
Fluorene	100	2.3	1.28	0.206	ND	0.452	ND	0.633
Phenanthrene	100	7.77	5.9	1.71	0.103	3.16	ND	4.45
Anthracene	100	2.73	1.95	0.31	ND	0.694	ND	1.07
Fluoranthene	100	8.69	6.83	2.69	0.174	3.82	ND	6.42
Pyrene	100	5.97	5.2	1.64	0.133	3.07	ND	5.87
Benzo (a) anthracene	1	3.35	3.22	1.03	0.0888 J	1.62	ND	2.67
Chrysene	3.9	3.26	3.26	1.21	0.101	1.64	ND	2.82
Benzo (b) fluoranthene	1	2.16	2.57	1.02	0.0706 J	1.39	ND	2.97
Benzo (k) fluoranthene	3.9	2.07	2.14	1.02	0.0936 J	1.48	ND	2.5
Benzo (a) pyrene	1	2.26	2.51	1.02	0.0916 J	1.48	ND	2.77
Indeno (1,2,3-cd) pyrene	0.5	1.08	1.16	0.852	0.0477 J	0.782	ND	2.28
Dibenzo (a,h) anthracene	0.33	0.333 J	0.338	0.195 J	ND	0.222	ND	0.475
Benzo (g,h,i) perylene	100	0.912	1.04	0.973	0.0487 J	0.65	ND	2.09
METALS								
Aluminum	NC	NA	NA	NA	NA	NA	NA	NA
Antimony	NC	NA	NA	NA	NA	NA	NA	NA
Arsenic	16	9.49	8.29	26.3	7.21	26.7	7.28	21.5
Barium	400	NA	NA	NA	NA	NA	NA	NA
Beryllium	72	NA	NA	NA	NA	NA	NA	NA
Cadmium	4.3	NA	NA	NA	NA	NA	NA	NA
Calcium	NC	NA	NA	NA	NA	NA	NA	NA
Chromium	180	NA	NA	NA	NA	NA	NA	NA
Cobalt	NC	NA	NA	NA	NA	NA	NA	NA
Copper	270	NA	NA	NA	NA	NA	NA	NA
Iron	NC	NA	NA	NA	NA	NA	NA	NA
Lead	400	NA	NA	NA	NA	NA	NA	NA
Magnesium	NC	NA	NA	NA	NA	NA	NA	NA
Manganese	2000	NA	NA	NA	NA	NA	NA	NA
Mercury	0.81	NA	NA	NA	NA	NA	NA	NA
Nickel	310	NA	NA	NA	NA	NA	NA	NA
Potassium	NC	NA	NA	NA	NA	NA	NA	NA
Selenium	180	NA	NA	NA	NA	NA	NA	NA
Silver	180	NA	NA	NA	NA	NA	NA	NA
Sodium	NC	NA	NA	NA	NA	NA	NA	NA
Thallium	NC	NA	NA	NA	NA	NA	NA	NA
Vanadium	NC	NA	NA	NA	NA	NA	NA	NA
Zinc	10000	NA	NA	NA	NA	NA	NA	NA

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) PAHs analyzed by SW846-8270C; total metals analyzed by USEPA 6000/7000 Series Methods.
4) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.

5) mg/kg = milligrams per kilogram (ppm)

6) ND = Analyte included in the analysis, but not detected.

7) NC = No Criteria

Sample ID	6 NYCRR	RR-BS-24	RR-BS-25	RR-BS-26	RR-SS-01	RR-SS-02	RR-SS-03
Sample Location	Part 375-6.8(b)	Bottom	Bottom	Bottom	Sidewall	Sidewall	Sidewall
Date Sampled	RRU SCOs ¹	7/15/2010	7/20/2010	7/20/2010	8/4/2010	8/4/2010	8/11/2010
Units							
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs							
Naphthalene	100	ND	ND	ND	ND	3.13	ND
2-Methylnaphthalene	NC	ND	0.11 J	ND	ND	1.39	ND
Acenaphthylene	100	ND	ND	ND	0.112 J	ND	ND
Acenaphthene	100	ND	ND	ND	ND	6.42	ND
Fluorene	100	ND	ND	0.17 J	ND	7.14	ND
Phenanthrene	100	ND	ND	ND	0.141 J	45.5	ND
Anthracene	100	ND	ND	ND	ND	9.94	ND
Fluoranthene	100	ND	ND	ND	0.357	50.7	ND
Pyrene	100	ND	ND	ND	0.42	35.5	ND
Benzo (a) anthracene	1	ND	ND	ND	0.303	19.9	ND
Chrysene	3.9	ND	ND	ND	0.349	21	ND
Benzo (b) fluoranthene	1	ND	ND	ND	0.494	16.9	ND
Benzo (k) fluoranthene	3.9	ND	ND	ND	0.57	12.8	ND
Benzo (a) pyrene	1	ND	ND	ND	0.415	13.1	ND
Indeno (1,2,3-cd) pyrene	0.5	ND	ND	ND	0.215	4.86	ND
Dibenzo (a,h) anthracene	0.33	ND	ND	ND	ND	1.45	ND
Benzo (g,h,i) perylene	100	ND	ND	ND	0.201	3.72	ND
METALS							
Aluminum	NC	NA	NA	NA	NA	NA	NA
Antimony	NC	NA	NA	NA	NA	NA	NA
Arsenic	16	6.19	1.75	3.35	10.5	25.3	7.44
Barium	400	NA	NA	NA	NA	NA	NA
Beryllium	72	NA	NA	NA	NA	NA	NA
Cadmium	4.3	NA	NA	NA	NA	NA	NA
Calcium	NC	NA	NA	NA	NA	NA	NA
Chromium	180	NA	NA	NA	NA	NA	NA
Cobalt	NC	NA	NA	NA	NA	NA	NA
Copper	270	NA	NA	NA	NA	NA	NA
Iron	NC	NA	NA	NA	NA	NA	NA
Lead	400	NA	NA	NA	NA	NA	NA
Magnesium	NC	NA	NA	NA	NA	NA	NA
Manganese	2000	NA	NA	NA	NA	NA	NA
Mercury	0.81	NA	NA	NA	NA	NA	NA
Nickel	310	NA	NA	NA	NA	NA	NA
Potassium	NC	NA	NA	NA	NA	NA	NA
Selenium	180	NA	NA	NA	NA	NA	NA
Silver	180	NA	NA	NA	NA	NA	NA
Sodium	NC	NA	NA	NA	NA	NA	NA
Thallium	NC	NA	NA	NA	NA	NA	NA
Vanadium	NC	NA	NA	NA	NA	NA	NA
Zinc	10000	NA	NA	NA	NA	NA	NA

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup

0.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs)

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) PAHs analyzed by SW846-8270C; total metals

analyzed by USEPA 6000/7000 Series Methods.

4) J = detected above the MDL, but below the RL;

therefore, result is an estimated concentration.

5) mg/kg = milligrams per kilogram (ppm)

6) ND = Analyte included in the analysis, but not detected.

7) NC = No Criteria

12-2-A Spaulding Fibre Facility OU6 Summary of Soil Disposal Coal Conveyer Area

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
Coal Conveyer	7/16/2010	4876934	20.35	Modern
Coal Conveyer	7/16/2010	4876942	18.04	Modern
Coal Conveyer	7/16/2010	4876943	16.99	Modern
Coal Conveyer	7/16/2010	4882152	14.57	Modern
Coal Conveyer	7/16/2010	4882153	24.07	Modern
Coal Conveyer	7/16/2010	4882154	20.2	Modern
Coal Conveyer	7/16/2010	4882155	19.95	Modern
Coal Conveyer	7/16/2010	4882158	23.92	Modern
Coal Conveyer	7/16/2010	4882159	20.63	Modern
Coal Conveyer	7/16/2010	4882160	20.78	Modern
Coal Conveyer	7/16/2010	4882161	19.15	Modern
Coal Conveyer	7/16/2010	4885857	21.25	Modern
Coal Conveyer A	Area Soil Disposa	l Total for 7/16/2010	239.90	Modern
Coal Conveyer	7/19/2010	655	22.17	Modern
Coal Conveyer	7/19/2010	656	19.4	Modern
Coal Conveyer	7/19/2010	657	22.53	Modern
Coal Conveyer	7/19/2010	658	18.76	Modern
Coal Conveyer	7/19/2010	659	17.71	Modern
Coal Conveyer	7/19/2010	660	19.74	Modern
Coal Conveyer	7/19/2010	661	19	Modern
Coal Conveyer	7/19/2010	662	22.25	Modern
Coal Conveyer	7/19/2010	663	19.37	Modern
Coal Conveyer	7/19/2010	664	22.59	Modern
Coal Conveyer A	Area Soil Disposa	l Total for 7/19/2010	203.52	Modern
Coal Conveyor	8/9/2010	3341	22.11	Modern
Coal Conveyer	Area Soil Dispos	al Total for 8/9/2010	22.11	Modern
Co	al Convever Are	a Soil Disposal Total	465.53	Modern

Table 12-2-BSpaulding Fibre Facility OU6Confirmation Soil Results for Coal Conveyer Area

Sample ID		Coal Conveyor	Coal Conveyor	Coal Conveyor	Coal Conveyor
Sample ID	6 NYCRR	BS-1	SS-1	SS-2	SS-3
Sample Location	Part 375-6.8(b)	Bottom	Sidewall	Sidewall	Sidewall
Date Sampled	RRU SCOs¹	7/29/2010	7/29/2010	7/29/2010	8/9/2010
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs					
Naphthalene	100	ND	ND	ND	ND
2-Methylnaphthalene	NC	ND	ND	ND	ND
Acenaphthylene	100	ND	ND	ND	ND
Acenaphthene	100	ND	ND	ND	ND
Fluorene	100	ND	ND	ND	ND
Phenanthrene	100	ND	ND	ND	ND
Anthracene	100	ND	ND	ND	ND
Fluoranthene	100	ND	ND	ND	ND
Pyrene	100	ND	ND	ND	ND
Benzo (a) anthracene	1	ND	ND	ND	ND
Chrysene	3.9	ND	ND	ND	ND
Benzo (b) fluoranthene	1	ND	ND	ND	ND
Benzo (k) fluoranthene	3.9	ND	ND	ND	ND
Benzo (a) pyrene	1	ND	ND	ND	ND
Indeno (1,2,3-cd) pyrene	0.5	ND	ND	ND	ND
Dibenzo (a,h) anthracene	0.33	ND	ND	ND	ND
Benzo (g,h,i) perylene	100	ND	ND	ND	ND
METALS					
Arsenic	16	15.2	24.7	6.41	7.83
Cadmium	4.3	0.702	1.13	0.922	1.14

Notes:

1) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6.8(b) Residential Restriced Use (RRU) Soil Cleanup Objectives (SCOs).

2) Concentration exceeds 6 NYCRR Part 375-6.8(b) RRU SCOs.

3) PAHs analyzed by SW846-8270C; metals analyzed by USEPA 6010.

4) J = detected above the MDL, but below the RL; therefore, result is an estimated concentration.

5) mg/kg = milligrams per kilogram (ppm)

6) ND = Analyte included in the analysis, but not detected.

7) NC = No Criteria

8) The red crossed out confirmation sample locations were overexcavated and resampled.

13-1 Spaulding Fibre Facility OU6 Summary of Soil Disposal for Elevator Shaft Area

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location		
Elevator Shaft Area	4/7/2010	4826692	20.69	Modern		
Elevator Shaft Area	4/7/2010	4826694	17.94	Modern		
Elevator Shaft Area	4/7/2010	4826690	22.8	Modern		
Elevator Shaft Area	4/7/2010	4826684	22.88	Modern		
Elevator Shaft Area	4/7/2010	4826686	18.72	Modern		
Elevator Shaft Area	4/7/2010	4826688	18.9	Modern		
Elevator Shaft Area	4/7/2010	4826676	20.75	Modern		
Elevator Shaft Area	4/7/2010	4826677	21.38	Modern		
Elevator Shaft Area	4/7/2010	4826678	20.06	Modern		
Elevator Shaft Area	4/7/2010	4826681	21.84	Modern		
Elevator Shaft Area	4/7/2010	4826680	18.47	Modern		
Elevator Shaft Area	4/7/2010	4826679	21.03	Modern		
Elevator Shaft Area	4/7/2010	4826682	22.56	Modern		
Elevator Shaft Area	4/7/2010	4826662	19.74	Modern		
	Elevator Shaft Area Soil Disposal Total					

13-2 Spaulding Fibre Facility OU6 Summary of Soil Disposal for Pit East of BH Area

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location		
Pit East of BH Area	4/22/2010	4842626	22.18	Modern		
Pit Eas	t of BH Area 4/22/20)10 Soil Disposal Total	22.18	Modern		
Pit East of BH Area	5/3/2010	874	26.34	Modern		
Pit East of BH Area	5/3/2010	873	21.75	Modern		
Pit East of BH Area	5/3/2010	875	25.01	Modern		
Pit East of BH Area	5/3/2010	876	23.45	Modern		
Pit East of BH Area	5/3/2010	878	24.25	Modern		
Pit East of BH Area	5/3/2010	879	27.86	Modern		
Pit East of BH Area	5/3/2010	4843566	21.36	Modern		
Pit East of BH Area	5/3/2010	568	21.95	Modern		
Pit East of BH Area	5/3/2010	612	23.43	Modern		
Pit Ea	Pit East of BH Area 5/3/2010 Soil Disposal Total					
	Pit East of BH Area Soil Disposal Total					

13-3 Spaulding Fibre Facility OU6 Summary of Soil Disposal Fibre Storage Drum Area

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location		
Fibre Storage Drum Area	6/10/2010	707	23.63	Modern		
Fibre Storage Drum Area	6/10/2010	708	24.36	Modern		
Fibre Storage Drum Area	6/10/2010	710	21.93	Modern		
Fibre Storage Drum Area	6/10/2010	712	24.93	Modern		
Fibre Storage Drum Area	6/10/2010	714	23.81	Modern		
Fibre Storage Drum Area	6/10/2010	717	23.88	Modern		
Fibre Storage Drum Area	6/10/2010	718	24.65	Modern		
Fibre Storage D	Fibre Storage Drum Area Soil Disposal Total for 6/10/10					
Fibre	167.19	Modern				

13-4 Spaulding Fibre Facility OU6 Summary of Soil Disposal Boiler House Area

Material/Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location
C&D/Boiler House	7/16/2010	615	24.39	Modern
C&D/Boiler House	7/16/2010	616	30.34	Modern
C&D/Boiler House	7/16/2010	617	27.91	Modern
C&D/Boiler House	7/16/2010	618	25.74	Modern
C&D/Boiler House	7/16/2010	620	22.85	Modern
C&D/Boiler House	7/16/2010	621	21.69	Modern
C&D/Boiler House	7/16/2010	622	20.84	Modern
C&D/Boiler House	7/16/2010	624	23.49	Modern
C&D/Boiler House	7/16/2010	628	24.91	Modern
C&D/Boiler House	7/16/2010	631	25.72	Modern
C&D/Boiler House	7/16/2010	633	26.10	Modern
C&D/Boiler House	7/16/2010	634	23.38	Modern
C&D/Boiler House	7/16/2010	635	22.90	Modern
C&D/Boiler House	7/16/2010	638	28.21	Modern
C&D/Boiler House	7/16/2010	641	26.85	Modern
C&D/Boiler House	7/16/2010	642	24.45	Modern
C&D/Boiler House	7/16/2010	643	19.97	Modern
C&D/Boiler House	7/16/2010	645	24.20	Modern
C&D/Boiler House	7/16/2010	646	18.92	Modern
C&D/Boiler House	7/16/2010	648	24.30	Modern
C&D/Boiler House	7/16/2010	649	20.99	Modern
C&D/Boiler House	7/16/2010	650	21.17	Modern
C&D/Boiler House	7/16/2010	651	24.88	Modern
C&D/Boiler House	7/16/2010	656	24.48	Modern
C&D/Boiler House	7/16/2010	657	24.29	Modern
C&D/Boiler House	7/16/2010	659	20.47	Modern
C&D/Boiler House	7/16/2010	660	24.97	Modern
C&D/Boiler House	7/16/2010	661	22.87	Modern
C&D/Boiler House	7/16/2010	662	26.64	Modern
C&D/Boiler House	7/16/2010	666	20.67	Modern
C&D/Boiler House	7/16/2010	668	21.03	Modern
C&D/Boiler House	7/16/2010	669	22.37	Modern
C&D/Boiler House	7/16/2010	670	22.63	Modern
C&D/Boiler House	7/16/2010	671	23.22	Modern
C&D/Boiler House	7/16/2010	673	21.04	Modern
C&D/Boiler House	7/16/2010	674	21.67	Modern
Boiler	House Area C& D	Total for 7/16/2010	850.55	Modern
Soil/Boiler House	7/19/2010	644	19.20	Modern
Soil/Boiler House	7/19/2010	652	21.22	Modern
Soil/Boiler House	7/19/2010	653	19.45	Modern
Soil/Boiler House	7/19/2010	654	22.34	Modern
		Total for 7/19/2010	82.21	Modern
C&D/Boiler House	7/21/2010	670	23.68	Modern
C&D/Boiler House	7/21/2010	671	19.94	Modern
C&D/Boiler House	7/21/2010	672	24.88	Modern
C&D/Boiler House	7/21/2010	674	20.68	Modern
C&D/Boiler House	7/21/2010	715	26.41	Modern
C&D/Boiler House	7/21/2010	718	21.99	Modern
C&D/Boiler House	7/21/2010	721	24.91	Modern

J:\0725306A Spaulding\IRM Engineer Report\OU6\Tables\Disposal Tables\WA4Soil DisposalTables\13-4(Boiler house)

13-4 Spaulding Fibre Facility OU6 Summary of Soil Disposal Boiler House Area

	.		Actual Weight	Landfill		
Material/Work Area ID	Date	Manifest Number	Tonnage	Location		
C&D/Boiler House	7/21/2010	723	16.59	Modern		
C&D/Boiler House	7/21/2010	727	21.62	Modern		
C&D/Boiler House	7/21/2010	728	22.17	Modern		
C&D/Boiler House	7/21/2010	730	25.15	Modern		
C&D/Boiler House	7/21/2010	732	22.49	Modern		
C&D/Boiler House	7/21/2010	733	19.50	Modern		
C&D/Boiler House	7/21/2010	734	24.47	Modern		
C&D/Boiler House	7/21/2010	745	22.65	Modern		
C&D/Boiler House	7/21/2010	747	25.81	Modern		
C&D/Boiler House	7/21/2010	750	22.15	Modern		
Boiler	House Area C& D	Total for 7/21/2010	385.09	Modern		
C&D/Boiler House						
C&D/Boiler House	8/9/2010	2456	13.92 10.64	Modern Modern		
C&D/Boiler House	8/9/2010	441	12.84	Modern		
C&D/Boiler House	8/9/2010	442	19.40	Modern		
C&D/Boiler House	8/9/2010	444	18.04	Modern		
C&D/Boiler House	8/9/2010	446	14.77	Modern		
C&D/Boiler House	8/9/2010	447	14.92	Modern		
C&D/Boiler House	8/9/2010	452	10.16	Modern		
C&D/Boiler House	8/9/2010	453	12.50	Modern		
C&D/Boiler House	8/9/2010	454	9.98	Modern		
C&D/Boiler House	8/9/2010	455	8.22	Modern		
		D Total for 8/9/2010	145.39	Modern		
Soil/Boiler House	8/10/2010	181	28.39	Modern		
Soil/Boiler House	8/10/2010	182	23.99	Modern		
Soil/Boiler House	8/10/2010	183	23.69	Modern		
Soil/Boiler House	8/10/2010	185	25.73	Modern		
Soil/Boiler House	8/10/2010	186	20.79	Modern		
Soil/Boiler House	8/10/2010	187	22.35	Modern		
Soil/Boiler House	8/10/2010	188	26.17	Modern		
Soil/Boiler House	8/10/2010	191	23.30	Modern		
Soil/Boiler House	8/10/2010	192	23.89	Modern		
Soil/Boiler House	8/10/2010	521	19.74	Modern		
Soil/Boiler House	8/10/2010	625	23.83	Modern		
Soil/Boiler House	8/10/2010	626	27.33	Modern		
Soil/Boiler House	8/10/2010	627	24.98	Modern		
	Boiler House Area Soil Disposal Total for 8/10/2010					
	Boiler House Area C&D Total					
	396.39	Modern				

13-5 Spaulding Fibre Facility OU6 Summary of Soil Disposal Spauldite Building Trench Area

Work Area ID	Date Manifest Numb		Actual Weight Tonnage	Landfill Location			
Spauldite Building Trench Area	8/3/2010	6119	22.59	Modern			
Spauldite Building Trench Area	8/3/2010	6118	22.41	Modern			
Spauldite Building Trench Area	8/3/2010	6117	24.41	Modern			
Spauldite Building Trench Area	8/3/2010	6112	23.93	Modern			
Spauldite Building Trench Area	8/3/2010	6110	23.05	Modern			
Spauldite Building Trench Area	8/3/2010	9722	23.49	Modern			
Spauldite Buildir	Spauldite Building Trench Area Soil Disposal Total						

13-6 Spaulding Fibre Facility OU6 Summary of Soil Disposal Cooker Building Area

Work Area ID	Date	Manifest Number	Actual Weight Tonnage	Landfill Location		
Cooker Building Area	8/3/2010	663	23.14	Modern		
Cooker Building Area	8/3/2010	664	22.44	Modern		
Cooker Building Area	8/3/2010	699	24.54	Modern		
Cooker Building Area	8/3/2010	665	20.04	Modern		
Cooker Building Area	8/3/2010	666	22.40	Modern		
Cooker Building Area	8/3/2010	667	22.32	Modern		
Cooker	Cooker Building Area Soil Disposal Total					

SAMPLE ID	Restricted	Pile #1	Pile # 1 RE	Pile # 2	Pile # 3	Pile # 4	Pile # 5 A	Pile # 5 B	Pile # 5 C
DATE SAMPLED	Residential	03/11/10	03/18/10	03/11/10	03/18/10	03/23/10	04/01/10	04/01/10	04/13/10
Units	SCOs	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs									
1-Methylnaphthalene	NC	ND	ND	ND	ND	ND	ND	0.352	ND
2-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	100	0.5	0.018 J	ND	0.031 J	ND	ND	1.89	ND
2-Methylnaphthalene	NC	0.25	ND	ND	ND	ND	ND	0.508	ND
Acenaphthylene	100	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	100	0.93	0.022 J	0.027 J	0.044 J	0.071 J	ND	1.61	0.077 J
Dibenzofuran	NC	0.66	ND	0.022 J	ND	0.04	ND	1.11	0.048 J
Fluorene	100	0.96	0.026 J	0.036 J	0.052 J	0.067 J	ND	2.16	0.092 J
Pentachlorophenol	NC	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	100	7.2 E	0.19	0.28	0.36	0.62	0.0505	13.2	0.73
Phenol	100	ND	ND	ND	ND	ND	0.0873	ND	0.023 J
Anthracene	100	1.5	0.045 J	0.049 J	0.1 J	0.140 J	ND	3.29	0.180 J
Carbazole	NC	0.51	ND	0.021 J	ND	ND	ND	1.89	ND
Di-N-butyphthalate	NC	0.030 J	ND	ND	ND	ND	ND	1.13	ND
Fluoranthene	100	3.9 E	0.2	0.27	0.4	0.69	0.0586	13.1	0.87
Pyrene	100	8.3 E	0.130 J	0.28	0.24	0.65	0.0449	10.1	0.65
Benzo(a)anthracene	1	2.2	0.076 J	0.110 J	0.17	0.3	0.0274	5.41	0.35
Chrysene	3.9	2.3	0.097 J	0.130 J	0.160 J	0.3	0.0267	4.84	0.32
Benzo(b)fluoranthene	1	2.4	0.095 J 0.043 J	0.18	0.150 J 0.100 J	0.26	0.0231	3.68	0.28 0.140 J
Benzo(k)fluoranthene	1	2.1	0.043 J 0.062 J	0.19 0.080 J	0.100 J 0.100 J	0.120 J 0.21	ND 0.0203	4.17 4.32	0.140 J 0.210 J
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	0.5	1.9	0.062 J 0.026 J	0.080 J 0.062 J	0.100 J 0.050 J	0.21 0.120 J	0.0205 ND	2.57	0.210 J 0.120 J
Dibenzo(a,h)anthracene	0.33	0.21	0.020 J ND	0.002 J ND	0.030 J ND	0.120 J 0.033 J			0.120 J 0.033 J
Benzo(g,h,i)perylene	100	1.4	0.025 J	0.075 J	0.045 J	0.033 J 0.140 J	ND ND	0.596 2.35	0.033 J 0.014 J
PCBs	100	1.4	0.023 J	0.075 5	0.045 5	0.140 J	ND	2.33	0.014 J
Aroclor-1016	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1221	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1232	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1242	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1248	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1254	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1260	NC	ND	ND	ND	ND	ND	ND	ND	ND
Total PCBs	1	ND	ND	ND	ND	ND	ND	ND	ND
METALS		112	112	112	112	112	112	112	1.12
Aluminum	NC	2800 B	6100 B	6100 B	4700 B	4400 B	3800 B	2400 B	4500 B
Antimony	NC	ND	1.1 B	ND	.93 B	.58 BJ	ND	ND	.34 BJ
Arsenic	16	1.3 B	6.2	2.5 B	2.5	3.6	7.3	2.8	1.9
Barium	400	25	41	35	2.5	25	27	16	22
Beryllium	72	0.18	0.42 B	0.35	0.31 B	0.26	0.21 B	0.14 BJ	0.21 B
Cadmium	4.3	0.059 J	0.21 J	0.056 J	0.013 J	0.20	0.41	ND	0.034 J
Calcium	NC	22000	120000	59000	170000	140000 B	5100 B	170000 B	88000
Chromium	180	2.3	5.7	5.2	4	4.4	4.3	3.2	3.8
Cobalt	NC	2.2	3.4	3.4	1.7 J	1.8	2	1.3 J	1.4 J
Copper	270	7.4	8	58	5.7	7.8	4.9	4	4.1
Iron	NC	6600 B	18000 B	9000 B	5200 B	5700 B	6200 B	3800 B	4900 B
Mercury	0.81	ND	ND	ND	ND	ND	ND	ND	ND
Lead	400	7.6	4.3	4.5	2.9	5.5	2.3	3.9	2.6
Magnesium	NC	2200 B	18000	5500 B	65000	53000 B	3500 B	84000 B	24000
Manganese	2000	170	420 B	240	210 B	300	140	280	150
Nickel	310	6.0 B	9.5	11 B	5.7	4.8 B	5.2	3.5	3.5
Potassium	NC	220	490 B	810	460	610 B	870	520	360
Selenium	180	ND	1 J	ND	ND	ND	ND	ND	ND
Silver	180	0.066 J	0.12	0.075 J	ND	ND	ND	ND	ND
Sodium	NC	71	200 B	300	330 B	420 B	360	300	130 B
Thallium	NC	.54 J	ND	0.61	ND	1.1	ND	ND	ND
Vanadium	NC	3.4	7.4	7.6	5.8	6.6	6.8	4.6	5
Zinc	10000	42 B	150	54 B	28	230	14	15	19
Notes:									

Notes:

1) 6 NYCRR Part 375-6.8(b) Restricted

Residential Use Soil Cleanup Objectives (SCOs)

2) mg/kg = milligrams per kilogram
3) N/A = Not Applicable

			Concrete						
SAMPLE ID	Restricted	Pile # 6	Pile # 7	Pile # 8	Pile # 9	Pile # 10	Pile # 11	Pile # 12	Pile # 13
DATE SAMPLED	Residential	04/13/10	04/16/10	04/16/10	04/19/10	04/19/10	04/20/10	04/26/10	04/26/10
Units	SCOs	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs									
1-Methylnaphthalene	NC	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol	NC	ND	0.089 J	0.56 J	ND	ND	ND	ND	ND
4-Methylphenol	NC	ND	0.24	2.1	0.018 J	ND	ND	ND	ND
Naphthalene	100	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	NC	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	100	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	100	0.03 J	ND	ND	ND	ND	ND	0.0759	ND
Dibenzofuran	NC 100	0.023 J 0.035 J	ND ND	ND	ND	ND	ND	0.0481	ND
Fluorene		0.035 J ND	ND ND	ND ND	ND ND	ND	ND		ND
Pentachlorophenol	NC					ND	ND	ND	ND
Phenanthrene	100	0.28	0.045 J	ND	ND	0.037 J	ND	0.624	ND
Phenol	100		0.47	9.1	0.13 J	ND	ND	ND	ND
Anthracene	100	0.078 J	ND	ND	ND	ND	ND	0.147	ND
Carbazole	NC	ND	ND	ND	ND	ND	ND	ND	ND
Di-N-butyphthalate	NC 100	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100	0.32	0.039 J	ND	ND	0.049 J	0.020 J	0.829	ND
Pyrene	100	0.27	0.045 J	ND	ND	0.038 J	ND	0.604	ND
Benzo(a)anthracene	1	0.15 J	0.023 J	ND	ND	0.027 J	ND	0.316	ND
Chrysene	3.9	0.14 J	0.024 J	ND	ND	0.023 J	ND	0.308	ND
Benzo(b)fluoranthene	1	0.13 J	ND	ND	ND	ND	ND	0.27	ND
Benzo(k)fluoranthene	1	0.041 J	ND	ND	ND	ND	ND	0.24	ND
Benzo(a)pyrene	1	0.087 J	ND	ND	ND	ND	ND	0.293	ND
Indeno(1,2,3-cd)pyrene	0.5	0.046 J	ND	ND	ND	ND	ND	0.185	ND
Dibenzo(a,h)anthracene	0.33	ND	ND	ND	ND	ND	ND	0.042	ND
Benzo(g,h,i)perylene	100	0.06 J	ND	ND	ND	ND	ND	0.163	ND
PCBs	NG	NID	NID	NID	ND	NID	NID	ND	NID
Aroclor-1016	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1221 Aroclor-1232	NC NC	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Aroclor-1242	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1248	NC	ND ND	ND	ND	ND	ND ND	ND	0.0126	ND ND
Aroclor-1254	NC		ND	ND	ND		ND	ND ND	
Aroclor-1260 Total PCBs	NC 1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0126	ND ND
	1	ND	ND	ND	ND	ND	ND	0.0120	ND
METALS	NC	5500 D	4700 D	5200 D	5200	4200	5700	0.51	7720
Aluminum	NC NC	5500 B	4700 B	5200 B ND	5200	4200 .16 BJ	5700 ND	8.51 ND	7720 ND
Antimony		.43 BJ	ND		.17 BJ				
Arsenic	16	2.1	3.7	3.3	4.2	2.2	6.5	ND	ND 48
Barium Beryllium	400 72	29 0.27 B	29 0.24 B	35 0.25 B	20 0.23	36 0.19 J	45 0.13 J	38.7 0.303	48 0.421
Cadmium	4.3	0.27 B 0.063 J	0.24 B 0.064 J	0.25 B 0.094 J	0.23 0.045 J	0.19 J ND	0.13 J 0.016 J	0.303	0.421
Calcium	4.3 NC	110000	45000	0.094 J 150000	81000	80000	120000	0.253	155000
Chromium	180	6.9	45000	6.6	5.6	3.7	6.1	8.43	9.22
Cobalt	180 NC	2.1	2.9	2.8	2.4	2.3	4.3	2.74	2.87
Copper	270	7.8	7.8	<u> </u>	4.5	8.3	<u>4.3</u> 9.5	8.97	15.6
Iron	NC NC	6400 B	8600 B	9.8 8400 B	6600	5300	9.3 7400	8130	8740
Mercury	0.81	ND	ND	8400 B ND	ND	ND	7400 ND	0.0269	0.0093
Lead	400	2.2	3.5	11	4.9	1.5	2.5	4.61	4.76
Magnesium	400 NC	2.2	3700 B	66000 B	26000	4700	4600	26900	36100
Magnesium	2000	180	210	240	160	260	310	26900	328
Nickel	310	4.7	7.7	7.3	5.9	5.6	9	7.05	7.6
Potassium	NC	510	320 B	1800 B	920	540	1400	681	1520
Selenium	180	ND	ND	ND	920 ND	ND	1400 ND	ND	0.37
Silver	180	ND ND	0.092 BJ	ND ND	ND	ND	ND ND	ND	0.37 ND
Sodium	NC	140 B	110 B	470 B	450 B	330 B	400 B	366	549
Thallium	NC	ND	0.54 J	0.36 J	ASU B ND	ND	400 B ND	300 ND	
Vanadium	NC	9 9	0.34 J 5.7	9.2	7.8	ND 7.9	ND 11	ND 14	12.3
	10000	29	26 B	9.2 210 B	7.8 19 B	22 B	35 B	14	39.1
Zinc Notes:	10000	29	20 D	210 D	17 D	22 D	33 D	101	39.1

1) 6 NYCRR Part 375-6.8(b) Restricted

Residential Use Soil Cleanup Objectives (SCOs)

2) mg/kg = milligrams per kilogram
3) N/A = Not Applicable

Out Clushed Concrete Dackini Anarytical Results									
SAMPLE ID	Restricted	Pile Uncruhshe	Pile # 14	Pile # 15	Pile # 16	Pile # 17	Pile # 18	Pile # 19	Pile # 20
DATE SAMPLED	Residential	04/26/10	04/28/10	04/28/10	05/07/10	05/07/10	05/07/10	05/19/10	05/25/10
Units	SCOs	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs									
1-Methylnaphthalene	NC	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	100	ND	ND	ND	ND	ND	0.317	ND	ND
2-Methylnaphthalene	NC	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	100	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	100	0.1	ND	ND	ND	ND	0.473	ND	ND
Dibenzofuran	NC	0.0703	ND	ND	ND	ND	0.352	ND	ND
Fluorene	100	0.122	ND	ND	ND	ND	0.655	ND	ND
Pentachlorophenol	NC	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	100	0.847	ND	0.118	ND	ND	3.36	0.0324	ND
Phenol	100	ND	ND	ND	ND	ND	ND	ND	1.02
Anthracene	100	0.214	ND	ND	ND	ND	0.987	ND	ND
Carbazole	NC	ND	ND	ND	ND	ND	ND	ND	ND
Di-N-butyphthalate	NC	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100	1.15	ND	0.102	ND	ND	3.81	0.0448	ND
Pyrene	100	0.817	ND	0.0661	ND	ND	2.59	0.0293	ND
Benzo(a)anthracene	1	0.433	ND	ND	ND	ND	1.48	ND	ND
Chrysene	3.9	0.43	ND	ND	ND	ND	1.41	0.0186	ND
Benzo(b)fluoranthene	1	0.4	ND	ND	ND	ND	1.13	ND	ND
Benzo(k)fluoranthene	1	0.29	ND	ND	ND	ND	1.31	ND	ND
Benzo(a)pyrene	1	0.391 0.242	ND	ND	ND	ND	1.37	ND	ND
Indeno(1,2,3-cd)pyrene	0.5		ND	ND	ND	ND	0.679	ND	ND
Dibenzo(a,h)anthracene	0.33	0.0599 0.206	ND ND	ND ND	ND ND	ND ND	0.161 0.54	ND ND	ND ND
Benzo(g,h,i)perylene PCBs	100	0.206	ND	ND	ND	ND	0.34	ND	ND
Aroclor-1016	NC	ND	ND	ND	ND	ND	ND	ND	ND
	NC	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND
Aroclor-1221 Aroclor-1232	NC NC	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Aroclor-1242	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1242 Aroclor-1248	NC	0.0291	ND	ND	ND	ND	ND	ND	ND
Aroclor-1254	NC	0.0291 ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1260	NC	ND	ND	ND	ND	ND	ND	ND	ND
Total PCBs	1	0.0291	ND	ND	ND	ND	ND	ND	ND
METALS	1	0.0271	ND	ND	ND	ND	ND	ND	TLD .
Aluminum	NC	10300	6860	ND	10300	8130	6930	6.81	6920
Antimony	NC	0.907	ND	ND	ND	ND	ND	ND	ND
Arsenic	16	2.25	0.564	ND	8.41	6.78	1.48	6.41	ND
Barium	400	75.2	39.2	38	64.4	61	62.3	99.8	37.8
Beryllium	72	0.718	0.235	0.24	0.413	0.374 J	0.427	0.312	ND
Cadmium	4.3	1.67	0.235	0.664	ND	ND	0.357	ND	ND
Calcium	NC	115000	107000	108000	134000	96400	88000	115000	188000
Chromium	180	14.4	7.24	7.26	10.3	7.6	9.47	8.3	ND
Cobalt	NC	4.35	2.68	2.12	3.58	3.36	3.28	3.01	2.92
Copper	270	46.3	16.4	10.5	24.3	31.7	40.4	7.33	10.8
Iron	NC	13800	7200	6.1	10700	9.21	10700	9.28	7650
Mercury	0.81	0.0541	0.0103	0.0161	0.0293	0.0293	0.0942	0.0152	ND
Lead	400	40.6	6.28	11.7	12.1	56.1	25.9	4.56	4.29
Magnesium	NC	20400	13100	14600	15200	11600	11700	11800	42500
Manganese	2000	403	254	212	399	352	440	432	276
Nickel	310	11.4	6.71	4.85	9.67	8.78	7.89	7.6	7.95
Potassium	NC	1530	563	932	660	654	612	781	1080
Selenium	180	0.807	0.319	ND	0.329	ND	ND	ND	ND
Silver	180	ND	ND	ND	0.439	0.398	0.332	0.259	ND
Sodium	NC	278	318	255	320	292	179	696	383
Thallium	NC	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	17.3	11	9.42	16	14.1	10.5	11.1	17.5
Zinc	10000	5.57	102	4.35	640	2230	1950	86.7	37.9
Notes:				•	•	•	•	•	

Notes:

1) 6 NYCRR Part 375-6.8(b) Restricted

Residential Use Soil Cleanup Objectives (SCOs)

2) mg/kg = milligrams per kilogram
3) N/A = Not Applicable

SAMPLE ID	Restricted	Pile # 21	Pile # 22	Pile # 23	Pile # 24	Pile # 25	Pile # 26	Pile # 27	Pile # 28
DATE SAMPLED	Residential	05/27/10	05/27/10	05/28/10	06/03/10	06/03/10	06/18/10	06/25/10	06/29/10
Units	SCOs	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs									
1-Methylnaphthalene	NC	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	100	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	NC	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	100	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	100	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	NC 100	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Fluorene Pentachlorophenol	NC	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	100	ND	ND	ND	0.119	0.0407	0.0444	0.0227	ND
Phenanthrene Phenol	100	ND ND	ND	ND	0.119 ND	0.0407 ND	0.0444 ND	0.0227 ND	ND
Anthracene	100	ND	ND	ND	0.0249	ND	ND	ND	ND
Carbazole	NC	ND	ND	ND	0.0249 ND	ND	ND	ND	ND
Di-N-butyphthalate	NC	ND ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100	ND ND	0.0188	ND	0.183	0.0449	0.0409	0.0217	0.0235
Pyrene	100	ND	0.0188 ND	ND	0.185	0.0449	0.0409	0.0217 ND	0.0235 ND
Benzo(a)anthracene	100	ND	ND	ND	0.0763	0.0505 ND	0.0303	ND	ND
Chrysene	3.9	ND	ND	ND	0.0829	ND	0.022	ND	ND
Benzo(b)fluoranthene	1	ND	ND	ND	0.0584	ND	0.023 ND	ND	ND
Benzo(k)fluoranthene	1	ND	ND	ND	0.068	ND	ND	ND	ND
Benzo(a)pyrene	1	ND	ND	ND	0.0591	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.5	ND	ND	ND	0.038	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.33	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	100	ND	ND	ND	0.0383	ND	ND	ND	ND
PCBs									
Aroclor-1016	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1221	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1232	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1242	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1248	NC	ND	0.0329	0.0198	0.0557	0.269	0.0713	0.0348	ND
Aroclor-1254	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1260	NC	ND	ND	ND	ND	ND	ND	ND	ND
Total PCBs	1	ND	0.0329	0.0198	0.0557	0.269	0.0713	0.0348	ND
METALS									
Aluminum	NC	6.09	6420	4940	8980	8470	7610	6150	6930
Antimony	NC	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	16	4.16	0.696	4.34	0.388	1.45	4.52	2.53	7.09
Barium	400	69.5	37.5	61	46.7	75.5	47.6	33.5	43
Beryllium	72	0.231	0.31	0.209	0.383	0.521	0.335	0.208	0.351
Cadmium	4.3	0.21	0.186	0.269	ND	ND	0.343	ND	0.297
Calcium	NC	145000	134000	145000	166000	156000	140000	73400	149000
Chromium	180	8.38	10.2	7.08	11	9.82	10.2	6.66	8.23
Cobalt	NC	3.68	2.11	2.73	2.77	2.78	3.46	2.37	2.71
Copper	270	8.21	9.17	7.86	10.9	9.86	10.5	4.08	11.9
Iron	NC	7900	7.96	7780	9020	7760	8850	7450	7890
Mercury	0.81	ND	0.0055	ND	ND	0.0066	ND	ND	ND
Lead	400	4.86	4.52	5.42	4.52	13	5.24	2.67	3.46
Magnesium	NC	16500	22800	51600	18400	24500	5820	13400	11100
Manganese	2000	477	346	432	294	481	273	266	254
Nickel	310	9.18	7.48	6.17	9.27	9.74	10.3	5.95	7.7
Potassium	NC	1060	1080	1480	765	966	1060	1100	663
Selenium	180	0.275	ND	ND	ND	0.328	0.364	ND	0.442
Silver	180	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	NC	342	286	415	268	393	311	348	281
Thallium	NC	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	14	14.8	10.7	17.3	17.7	14.8	11.8	13.7
Zinc	10000	48.7	58.2	36.3	48.6	68	10.4	47.1	226
Notes:									

Notes:

1) 6 NYCRR Part 375-6.8(b) Restricted

Residential Use Soil Cleanup Objectives (SCOs)

2) mg/kg = milligrams per kilogram
3) N/A = Not Applicable

SAMPLE ID	Restricted	Pile # 30	Pile # 30 B	Pile # 31	Pile # 31 B	Pile # 32	Pile # 33	Pile # 34	Pile # 35
DATE SAMPLED	Residential	07/26/10	07/26/10	07/26/10	07/26/10	07/26/10	07/28/10	07/28/10	07/28/10
Units	SCOs	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs									
1-Methylnaphthalene	NC	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	0.0227
Naphthalene	100	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	NC	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	100	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	100	ND	ND	ND	ND ND	ND	ND	ND	ND ND
Dibenzofuran Fluorene	NC 100	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Pentachlorophenol	NC	ND	ND ND	ND	ND	ND	ND	ND	ND
1	100	ND	0.0241	ND	ND	ND	0.0724	0.0371	ND
Phenanthrene Phenol	100	ND	0.0241 ND	ND	ND	ND	0.0724 ND	0.0371 ND	0.0644
Anthracene	100	ND	ND	ND	ND	ND	ND	ND	0.0044 ND
Carbazole	NC	ND	ND	ND	ND	ND	ND	ND	ND
Di-N-butyphthalate	NC	ND	ND ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100	ND	0.0446	ND	ND ND	ND	0.0791	ND	ND
Pyrene	100	ND	0.0440	ND	ND	ND	0.0791	0.0364	ND
Benzo(a)anthracene	100	ND	0.0333 ND	ND	ND	ND	0.0303	0.0304 ND	ND
Chrysene	3.9	ND	0.0208	ND	ND	ND	0.0250	0.0203	ND
Benzo(b)fluoranthene	1	ND	0.0200 ND	ND	ND	ND	0.0352	ND	ND
Benzo(k)fluoranthene	1	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	1	ND	ND	ND	ND	ND	0.0241	ND	ND
Indeno(1,2,3-cd)pyrene	0.5	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.33	ND	0.0221	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	100	ND	ND	ND	ND	ND	ND	ND	ND
PCBs									
Aroclor-1016	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1221	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1232	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1242	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1248	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1254	NC	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1260	NC	ND	ND	ND	ND	ND	ND	ND	ND
Total PCBs	1	ND	ND	ND	ND	ND	ND	ND	ND
METALS									
Aluminum	NC	7390	7200	7110	5760	8860	8300	8810	6770
Antimony	NC	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	16	4.24	7.15	5.83	4.8	4.38	1.95	3.61	4.28
Barium	400	39.7	46.2	44.2	31.8	56	174	53.6	35.9
Beryllium	72	0.324	0.336	0.31	0.228	0.302	0.309	0.334	0.263
Cadmium	4.3	ND	ND	ND	ND	ND	0.518	0.504	0.607
Calcium	NC	116000	143000	123000	76600	107000	117000	134000	130000
Chromium	180	6.41	7.53	8.13	5.38	9.74	8.2	7.74	6.5
Cobalt	NC	2.24	2.75	2.43	2.06	3.06	3.44	2.81	2.87
Copper	270	40.9	8.65	7.85	17.7	16.1	10	9.67	13
Iron	NC	6450	7680	9430	5980	7910	7510	7160	7910
Mercury	0.81	0.0097	0.0109	ND	0.0074	ND	ND	ND	ND
Lead	400	4.58	3.74	3.02	3.84	8.13	3.82	4.15	4.42
Magnesium	NC	28100	8150	20100	5330	13000	13800	12600	30800
Manganese	2000	237	255	325	167	346	432	278	213
Nickel	310	6.27	8.41	6.78	5.74	9	8.67	8.1	7.59
Potassium	NC	922	996	809	827	900	800	920	1000
Selenium	180	ND	ND	ND	ND	ND	ND	ND	ND
Silver	180	0.23	0.234	ND	0.2	0.456	ND	ND	ND
Sodium	NC	327	351	406	395	449	269	333	454
Thallium	NC	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	10.5	13.8	11.4	8.4	12.2	13.4	12.7	11
Zinc	10000	34.4	23.9	26.5	45.7	37.7	21	24.2	24.4
Notes:									

Notes:

1) 6 NYCRR Part 375-6.8(b) Restricted

Residential Use Soil Cleanup Objectives (SCOs)

2) mg/kg = milligrams per kilogram
3) N/A = Not Applicable

SAMPLE ID	Restricted	Pile # 36	Pile # 37	Pile # 38	Pile # 39	Pile # 40	Pile # 41
DATE SAMPLED	Residential	07/28/10	08/02/10	08/02/10	08/02/10	08/02/10	08/04/10
Units	SCOs	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PAHs							
1-Methylnaphthalene	NC	ND	ND	ND	ND	ND	ND
2-Methylphenol	NC	ND	ND	ND	ND	ND	ND
4-Methylphenol	NC	ND	ND	ND	ND	ND	ND
Naphthalene	100	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	NC	ND	ND	ND	ND	ND	ND
Acenaphthylene	100	ND	ND	ND	ND	ND	ND
Acenaphthene	100	ND	ND	ND	ND	ND	ND
Dibenzofuran	NC	ND	ND	ND	ND	ND	ND
Fluorene	100	ND	ND	ND	ND	ND	ND
Pentachlorophenol	NC	ND	ND	ND	ND	ND	ND
Phenanthrene	100	ND	0.0179	0.0275	ND	0.0309	0.0349
Phenol	100	ND	ND	0.0275	ND	0.0509 ND	0.0349 ND
Anthracene	100	ND	ND	0.075 ND	ND	ND	ND
				ND			
Carbazole	NC	ND	ND		ND	ND	ND
Di-N-butyphthalate	NC 100	ND	ND	ND 0.0222	ND	ND	ND
Fluoranthene	100	ND	0.0231	0.0332	ND	0.0378	0.0692
Pyrene	100	ND	ND	0.0241	ND	0.0306	0.0555
Benzo(a)anthracene	1	ND	ND	ND	ND	ND	0.0366
Chrysene	3.9	ND	ND	ND	ND	0.019	0.0319
Benzo(b)fluoranthene	1	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	1	ND	ND	ND	ND	ND	0.0387
Benzo(a)pyrene	1	ND	ND	ND	ND	ND	0.0322
Indeno(1,2,3-cd)pyrene	0.5	ND	ND	ND	ND	ND	0.0178
Dibenzo(a,h)anthracene	0.33	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	100	ND	ND	ND	ND	ND	0.0202
PCBs							
Aroclor-1016	NC	ND	ND	ND	ND	ND	ND
Aroclor-1221	NC	ND	ND	ND	ND	ND	ND
Aroclor-1232	NC	ND	ND	ND	ND	ND	ND
Aroclor-1242	NC	ND	ND	ND	ND	ND	ND
Aroclor-1248	NC	ND	ND	ND	ND	ND	ND
Aroclor-1254	NC	ND	ND	ND	ND	ND	ND
Aroclor-1260	NC	ND	ND	ND	ND	ND	ND
Total PCBs	1	ND	ND	ND	ND	ND	ND
	1	ND	ND	ND	ND	ND	ND
METALS	NG	2220	6570	7200	70.40	(7(0)	7200
Aluminum	NC	3330	6570	7300	7040	6760	7380
Antimony	NC	ND	ND	ND	ND	ND	ND
Arsenic	16	ND	5.91	3.99	3.73	4	6
Barium	400	48	43.8	44.3	35.3	70.4	44.5
Beryllium	72	0.201	0.274	0.369	0.273	0.251	0.344
Cadmium	4.3	1.37	ND	ND	ND	ND	ND
Calcium	NC	155000	144000	123000	120000	95700	163000
Chromium	180	13.1	7.35	6.99	6.26	7	10.4
Cobalt	NC	1.96	2.61	2.32	2.32	2.57	2.21
Copper	270	11.4	9.99	9.78	10.1	15.8	6.05
Iron	NC	6660	7100	7210	6640	8840	6220
Mercury	0.81	0.0101	ND	0.006	ND	0.0227	ND
Lead	400	5.61	4.76	4.13	5.52	6.04	3.63
Magnesium	NC	27600	25800	28500	26900	12100	19300
Manganese	2000	286	346	575	283	380	266
Nickel	310	6.68	7.93	6.86	7.1	7.17	7.7
Potassium	NC	1020	853	1350	880	430	1070
Selenium	180	ND	ND	ND	ND	ND	ND
Silver	180	ND	0.402	0.442	0.345	0.44	0.281
Sodium	NC	526	282	325	322	187	367
Thallium	NC	ND 8.42	ND	ND 10.2	ND 10.6	ND	ND
Vanadium	NC 10000	8.42	12.7	10.3	10.6	9.6	14.3
Zinc Notes:	10000	339	76.9	29.3	40.1	80.7	28

Notes:

1) 6 NYCRR Part 375-6.8(b) Restricted

Residential Use Soil Cleanup Objectives (SCOs)

2) mg/kg = milligrams per kilogram
3) N/A = Not Applicable

Table 15-2Spaulding Fibre Facility OU6Topsoil Backfill Soil Analytical Results

SAMPLE ID	NYSDEC	Top Soil	1-Topsoil Lancaster		
DATE SAMPLED	Part 375 SCOs ¹	03/11/10	09/15/10		
Units	mg/kg	mg/kg	mg/kg		
VOCs	N/A	ND	ND		
PAHs	N/A	ND	ND		
PCBs					
Aroclor-1016	NC	ND	ND		
Aroclor-1221	NC	ND	ND		
Aroclor-1232	NC	ND	ND		
Aroclor-1242	NC	ND	ND		
Aroclor-1248	NC	ND	ND		
Aroclor-1254	NC	ND	ND		
Aroclor-1260	NC	ND	ND		
Total PCBs	1	ND	ND		
METALS					
Aluminum	NC	8.47	12,300		
Antimony	NC	ND	ND		
Arsenic	16	0.0016	3.77		
Barium	400	0.08	76.2		
Beryllium	72	ND	0.52		
Cadmium	4.3	ND	0.498		
Calcium	NC	3.71	3,490		
Chromium	180	0.01	14.1		
Cobalt	NC	ND	6.79		
Copper	270	0.006	11.5		
Iron	NC	11.50	16,000		
Lead	400	0.031	26.1		
Mercury	0.81	ND	0.0562		
Magnesium	NC	2.16	2,960		
Manganese	2,000	0.12	513		
Nickel	310	ND	12.3		
Potassium	NC	0.53	1,380		
Selenium	180	ND	ND		
Silver	180	ND	ND		
Sodium	NC	ND	132		
Thallium	NC	ND	ND		
Vanadium	NC	ND	25.7		
Zinc	10,000	0.63	103		

Notes:

1) 6 NYCRR Part 375-6.8(b) Restricted Residential Use Soil Cleanup Objectives (SCOs)

2) mg/kg = milligrams per kilogram

3) VOCs analyzed by USEPA Method 8260, PAHs analysed by Method 8270, PCBs analyzed by USEPA Method 8082 and metals analyzed by USEPA Method 6010 and 7471.

4) NC = No criteria

5) ND = Not detected below laboratory limits

6) N/A = Not Applicable