

April 11, 2023

Mr. Shaun Bollers New York State Department of Environmental Conservation (NYSDEC) Region 2 Division of Environmental Remediation 625 Broadway Albany, NY 12207

RE: Second Quarter Groundwater Monitoring Report

27-01 Jackson Avenue
Long Island City, New York
NYSDEC Order on Consent No. S241209
Langan Project No.: 170472002

Dear Mr. Bollers:

In accordance with the January 23, 2020 Off-Site In-Situ Treatment Remedial Design Plan (RDP) and the December 12, 2022 NYSDEC-approved Off-Site Site Management Plan (OSMP), Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan) conducted groundwater sampling within the public right-of-way and sidewalks adjacent to the 27-01 Jackson Avenue site located in the Long Island City neighborhood of Queens, New York (Brownfield Cleanup Program [BCP] Site No. C241209). The south- and west-adjoining sidewalks are subject to the Order on Consent and Administrative Settlement (CO), Index No. S241209-08-09, dated April 20, 2022, hereinafter referred to as the "CO site". A site location map is provided as Figure 1. This was the second quarterly sampling event completed following implementation of the off-site in-situ groundwater treatment program between October 20 and November 11, 2021.

Project Background

The CO site is an approximately 2,750-square-foot area that spans sections of the Jackson Avenue and 43rd Avenue sidewalks adjoining the BCP site located at 27-01 Jackson Avenue in the Long Island City neighborhood of Queens, New York (identified as Block 432, Lot 21 on the Queens County Tax Map). A site layout plan is presented on Figure 2.

Light non-aqueous phase liquid (LNAPL), and petroleum-impacted soil, groundwater, and soil vapor were identified on- and off-site during a Remedial Investigation (RI) and supplemental sampling events performed between October 2018 and July 2020. To address the impacts, NYSDEC approved the RDP and the Remedial Action Work Plan (RAWP) on January 23, 2020 and January 9, 2021, respectively. A Track 1 remedy was achieved at the BCP site and a certificate of completion (COC) was issued on December 23, 2022. Pursuant to the RAWP, a

CO was executed on April 20, 2022, which requires compliance with the NYSDEC-approved December 12, 2022 OSMP. The intent of the CO is to monitor off-site conditions in groundwater following off-site groundwater treatment and on-site dewatering. The OSMP addresses the means for implementing, monitoring, and reporting on the Engineering and Institutional Controls (ECs/ICs) that are required by the CO for the off-site areas adjacent to the BCP site.

In-Situ Groundwater Treatment

An off-site in-situ groundwater treatment program was implemented to treat remaining petroleum-related VOCs beneath the CO site, which were initially identified during the RI. Targeted petroleum-related VOCs included benzene, toluene, ethylbenzene, and xylenes (BTEX), and their breakdown products. Impacted groundwater was treated using an activated carbon solution (PetroFixTM) via direct-push injection points located in a rough grid pattern to spread chemicals evenly within the off-site, south- and west-adjoining sidewalks comprising the CO site.

The injection program was carried out by Clean Harbors of Norwell, Massachusetts and Aquifer Drilling and Testing (ADT) of Mineola, New York, under the oversight of Langan, between October 20 and November 11, 2021. Injection point locations are shown on Figure 3. At each injection point, a hollow steel injection rod was advanced to depths ranging from about 15 to 30 feet bgs. Injections were made using a "bottom-up" approach, beginning at the deepest 2-foot interval, and raised from the bottom depth in 2-foot intervals to approximately 15 feet bgs. Approximately 14,400 pounds of Petrofix® and 720 pounds of electron acceptor blend were applied via direct-push drill rig between October 20 and November 11, 2021. Between 664 and 976 pounds of Petrofix® were applied to each point.

Performance Monitoring Methodology

The RDP and OSMP included baseline sampling and quarterly post-injection groundwater monitoring to evaluate the efficacy of the CO site remedy. Baseline groundwater sampling was conducted from existing monitoring wells MW-3 and MW-4 and temporary monitoring wells MW-1 and MW-2 on October 7 and 19, 2021. Monitoring wells MW-3 and MW-4 were compromised during installation of the support of excavation, and the four monitoring wells were reinstalled for post-remediation groundwater monitoring on August 22, 2022 and October 13 and 14, 2022. Post-injection monitoring well locations are shown on Figure 4.

Post-injection groundwater monitoring was not conducted between November 2021 and October 2022 due to remediation efforts and active dewatering at the BCP site. Two post-injection quarterly sampling events were completed at the CO site in October 2022 and January 2023.

Well Purging and Sampling

Monitoring well sampling was conducted on January 26, 2023. Before sampling, each well was purged using the low-flow method developed by the USEPA ("Low-Flow [Minimal Drawdown] Ground-Water Sampling Procedures," EPA/540/S-95/504, April 1996) and accepted by the NYSDEC. Purging was performed using a peristaltic pump fitted with dedicated tubing at all wells. During purging, the turbidity, pH, temperature, conductivity, oxidation-reduction potential

(ORP), and dissolved oxygen (DO) were monitored using a Horiba U-52 water quality meter with a flow-through cell. Purged groundwater was containerized in 55-gallon drums during each event. Daily field reports are included in Attachment A. The groundwater quality parameters were recorded on the Well Purging and Sampling Logs provided in Attachment B.

As a general rule, groundwater was purged until water quality parameters stabilized and the turbidity was below 50 Nephelometric Turbidity Units (NTUs), or after one hour of purging. Groundwater quality parameters stabilized in MW-3 and MW-4 prior to sampling. Parameters did not stabilize in MW-1; however, a groundwater sample was collected after one hour of purging. Parameters did not stabilize in MW-2 due to low recharge; however, a sample was collected after purging three well volumes.

After purging each well, a groundwater sample was collected directly from the pump discharge line using USEPA low-flow techniques. For quality assurance and quality control, one field blank sample and one duplicate sample were collected. A trip blank was included in each shipment for quality control during transport. All samples were analyzed for Part 375/Target Compound List (TCL) VOCs via USEPA SW-846 method 8260C by Alpha Analytical Laboratories, a NYSDOH Environmental Laboratory Approval Program (ELAP)-accredited laboratory in Westborough, Massachusetts.

The laboratory analytical results for the baseline sampling event, the previous quarterly sampling event, and the January 2023 sampling event are summarized in Table 1 and illustrated on Figure 4. Laboratory analytical reports are provided as Attachment C. Groundwater analytical results were compared to the NYSDEC Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical & Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA drinking water (herein collectively referenced as NYSDEC SGVs). Analytical results from the first quarterly sampling event are discussed in the NYSDEC-approved December 2022 Final Engineering Report (FER).

January 2023 Performance Monitoring Analytical Results

Analytical results from the January 2023 performance monitoring are summarized as follows:

- <u>MW-1:</u> 1,2,4,5-Tetramethylbenzebe, ethylbenzene, isopropylbenzene, and n-propylbenzene were detected above the NYSDEC SGVs. In comparison to baseline analytical results, total VOC and total BTEX concentrations decreased by 78% and 93%, respectively.
- MW-2: 1,2,4-Trimethylbenzebe, ethylbenzene, m,p-xylene, and total xylenes were detected above the NYSDEC SGVs. The concentration of total xylenes has a "J" qualifier, indicating that the analyte was detected but the numerical value is an approximation. In comparison to baseline analytical results, total VOC and total BTEX concentrations decreased by 99%.
- MW-3: VOCs were not detected above the NYSDEC SGVs.

• MW-4: VOCs were not detected above the NYSDEC SGVs.

VOCs were not detected above the NYSDEC SGVs in MW-3 and MW-4 during the January 2023 monitoring event. Total VOC concentrations have decreased by 78% (MW-1) and 99% (MW-2), respectively, when compared to baseline concentrations and total BTEX concentrations have decreased by 93% (MW-1) and 99% (MW-2) when compared to baseline concentrations. Although residual petroleum impacts remain, continued degradation is anticipated. Some rebound was detected in MW-1 during this quarter, which may be due to the discontinuation of dewatering associated with site development. Based on the post-remedy sampling results thus far, the off-site remedy appears to have been effective

Analytical data is shown on Figure 4 and result trends are shown on Figure 5.

Data Validation

Copies of the Analytical Services Protocol (ASP) Category B laboratory reports were submitted to Langan's data validation department for review in accordance with the USEPA validation guidelines for organic and inorganic data. The data were found to be 100% acceptable. The Data Usability Summary Report (DUSR) is included in Attachment D.

Closure

Targeted petroleum-related VOC concentrations exceeded the NYSDEC SGVs in MW-1 and MW-2, but have been reduced by one to two orders of magnitude relative to baseline concentrations, therefore consistent reduction has been observed. VOCs were not detected above the NYSDEC SGVs in MW-3 and MW-4 during the January 2023 monitoring event. Based on the January 2023 sampling and previous sampling event results, the off-site remedy appears to have been effective in all post-remedy monitoring wells. We recommend continued monitoring to document achievement of asymptotic conditions, and further reduction trends in contaminant degradation.

Should you have any questions, please call the undersigned at 212-479-5427.

Sincerely,

Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C.

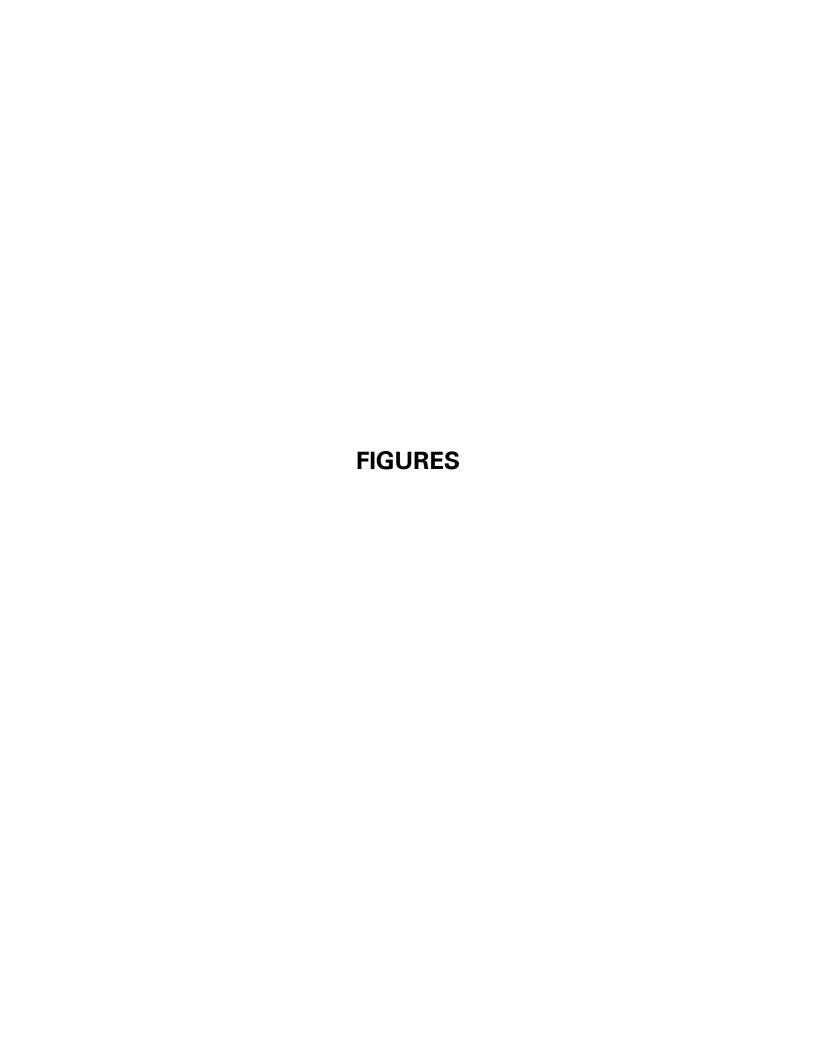
Jason Hayes, P.E.

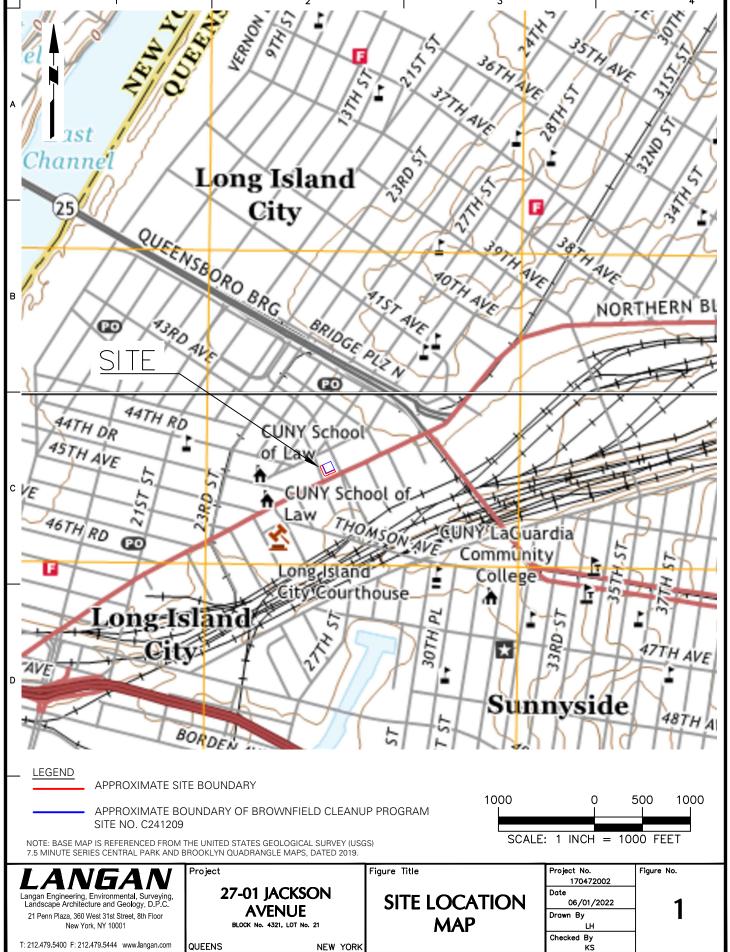
Principal/Vice President

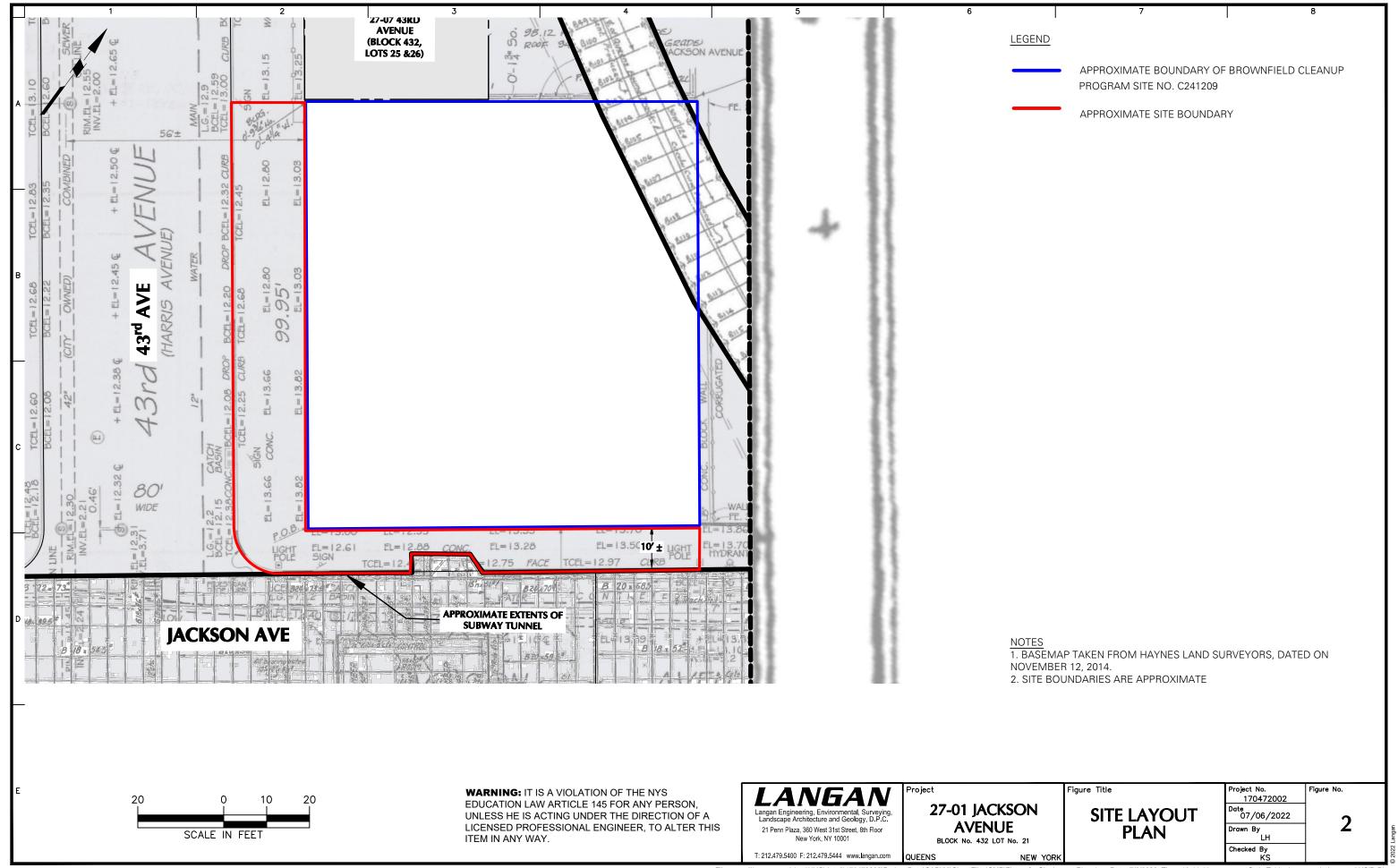
Enclosures:

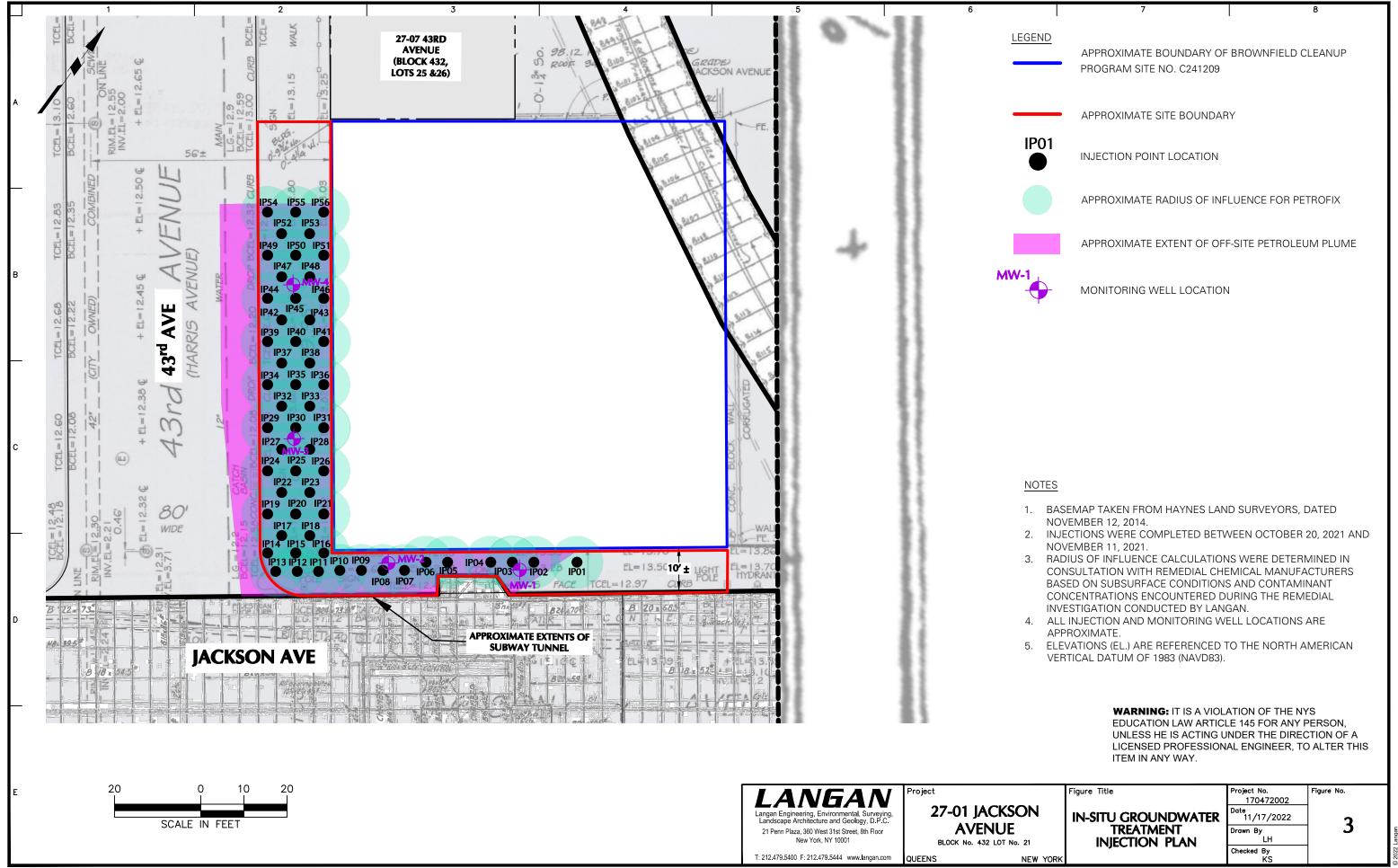
Figure 1	Site Location Map
Figure 2	Site Layout Plan

Figure 3 In-Situ Groundwater Treatment Injection Plan


Figure 4 Groundwater Sample Analytical Results


Figure 5 Groundwater Sample Analytical Results Trends


Table 1 Groundwater Sample Analytical Results


Attachment A Daily Site Observation Reports
Attachment B Well Purging and Sampling Logs
Attachment C Laboratory Analytical Reports
Attachment D Data Usability Summary Reports

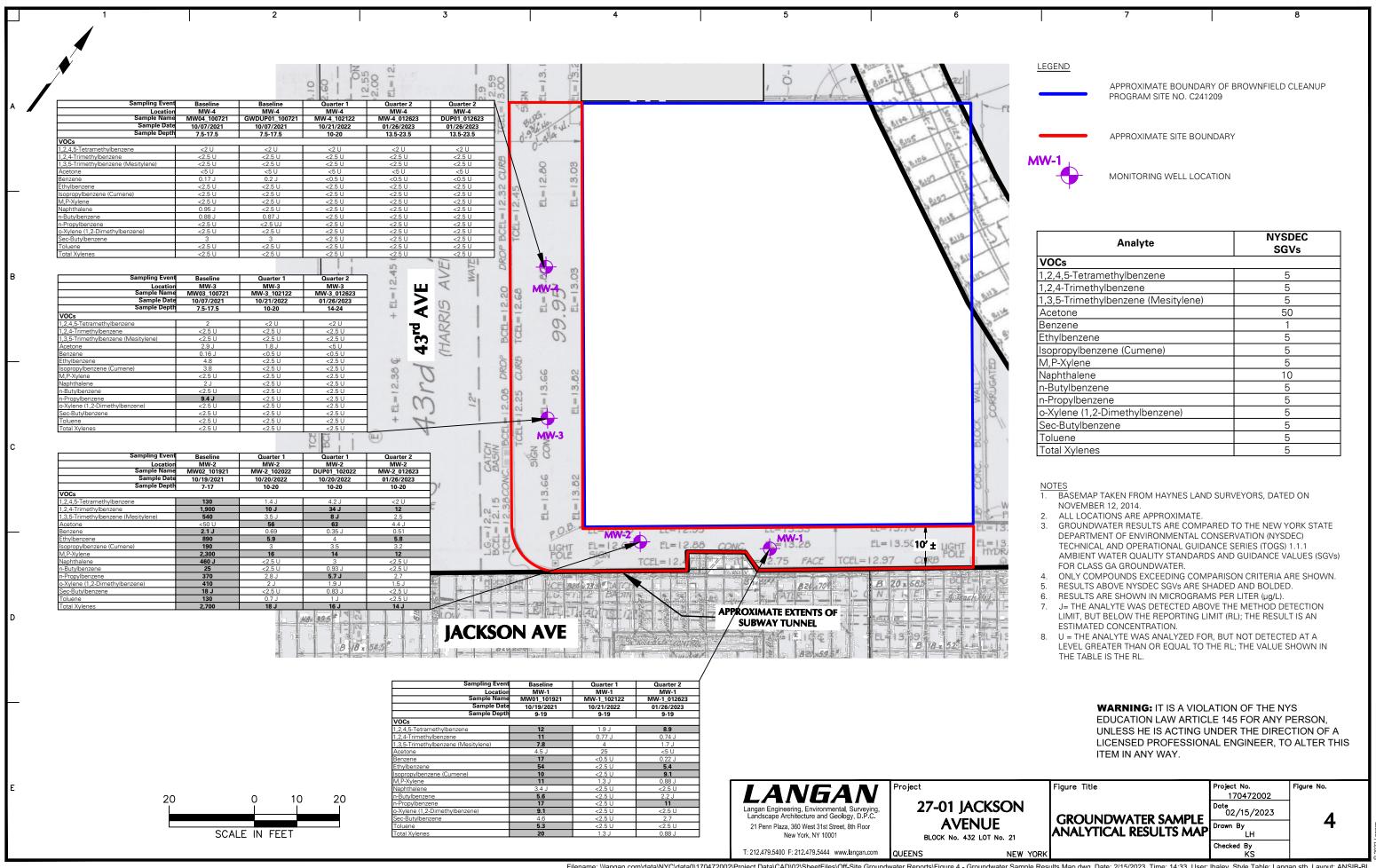


Figure 5

Quarterly Groundwater Monitoring Report
Groundwater Sample Analytical Results Trends

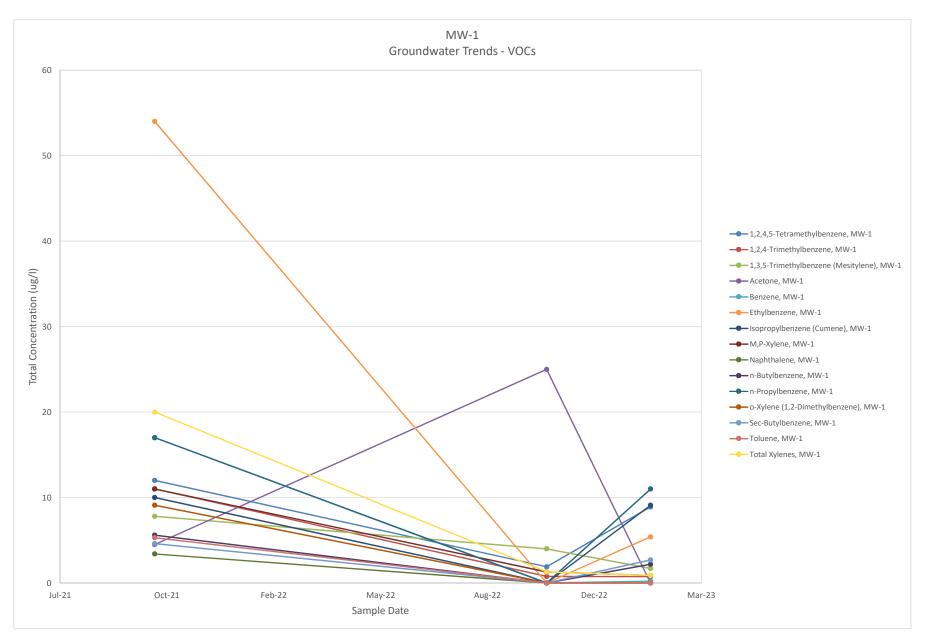


Figure 5 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results Trends

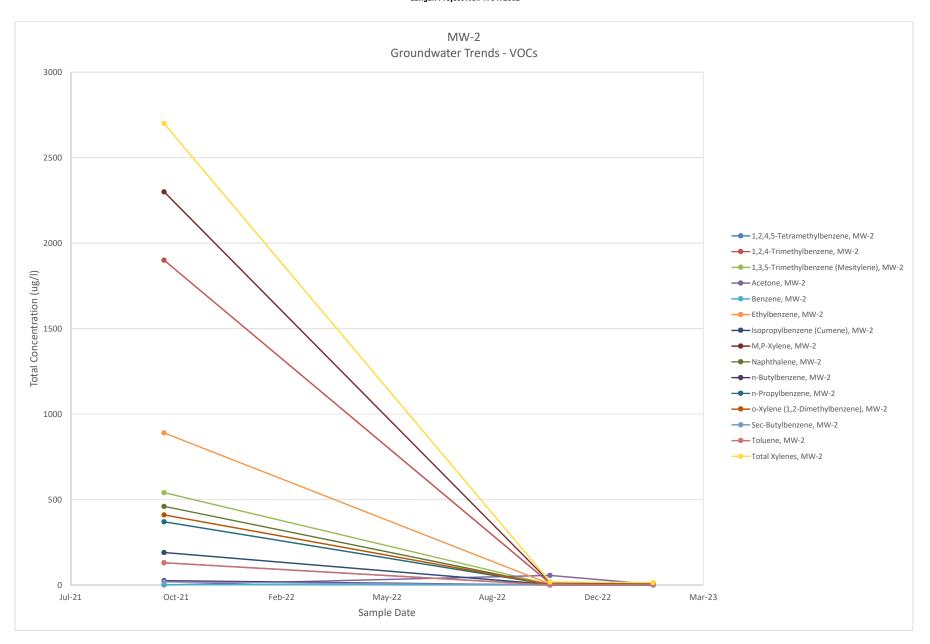


Figure 5
Quarterly Groundwater Monitoring Report
Groundwater Sample Analytical Results Trends

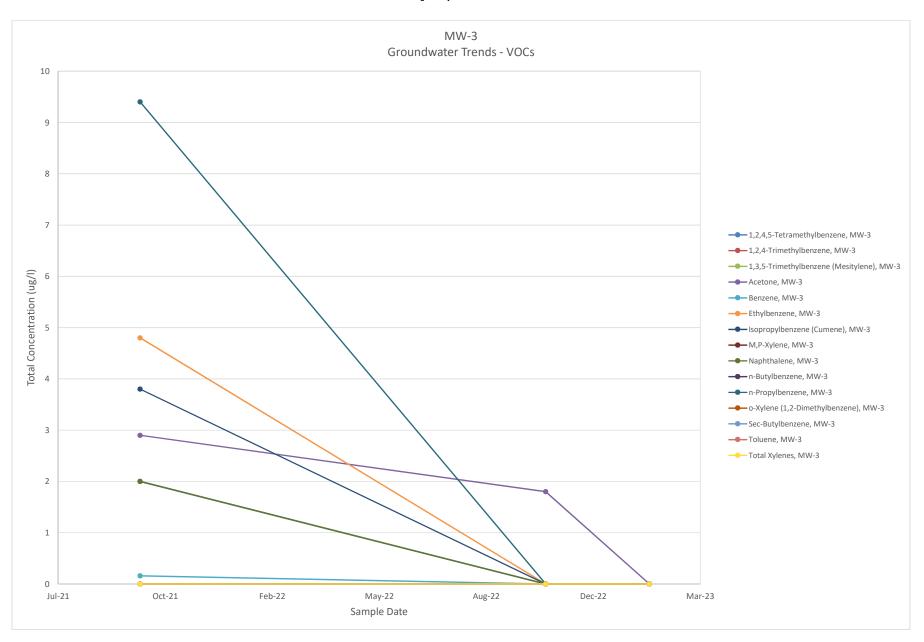
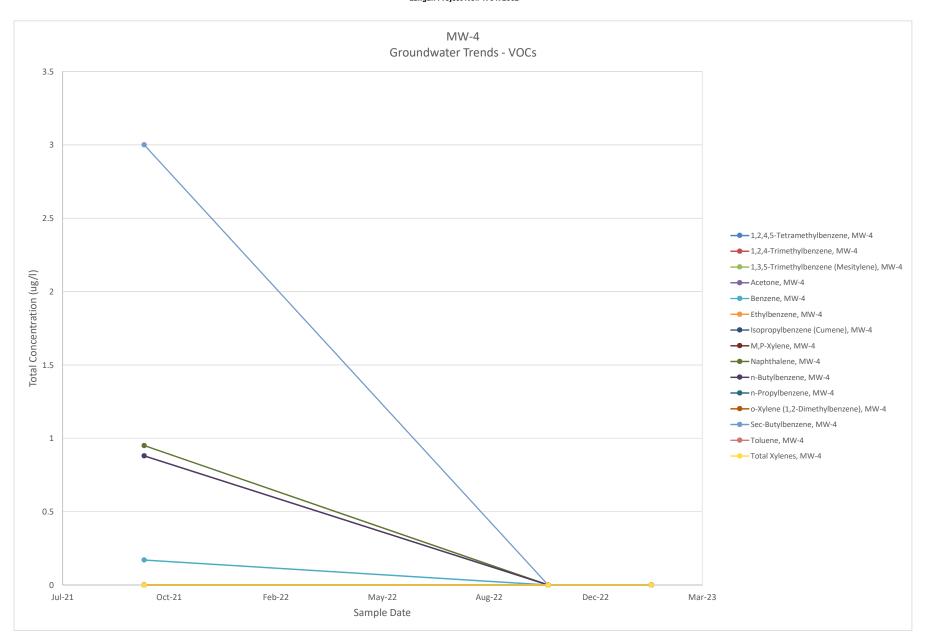
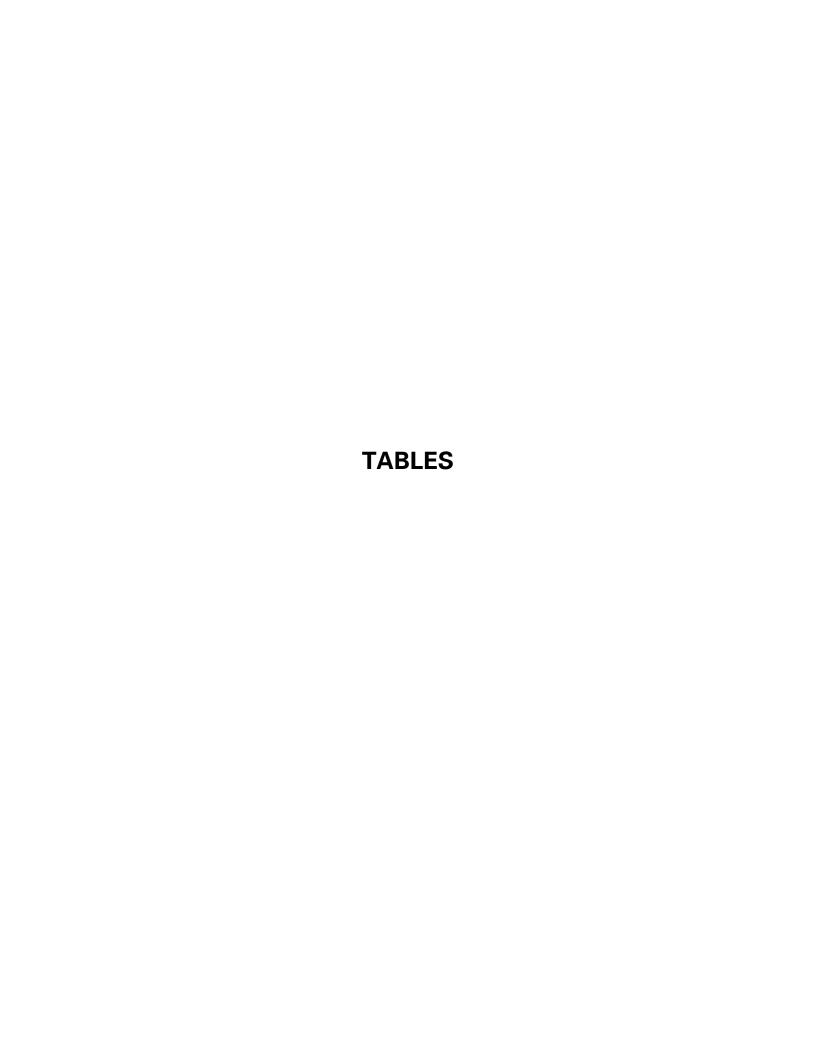




Figure 5
Quarterly Groundwater Monitoring Report
Groundwater Sample Analytical Results Trends

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

									No.: 170472002									
			Sampling Event	Baseline	Quarter 1	Quarter 2	Baseline	Quarter 1	Quarter 1	Quarter 2	Baseline	Quarter 1	Quarter 2	Baseline	Baseline	Quarter 1	Quarter 2	Quarter 2
	CAS	NYSDEC	Location	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4	MW-4
Analyte	Number	SGVs	Sample Name	MW01_101921	MW-1_102122	MW-1_012623	MW02_101921	MW-2_102022	DUP01_102022	MW-2_012623	MW03_100721	MW-3_102122	MW-3_012623	MW04_100721	GWDUP01_100721	MW-4_102122	MW-4_012623	DUP01_012623
			Sample Date Unit	10/19/2021 Result	10/21/2022 Result	01/26/2023 Result	10/19/2021 Result	10/20/2022 Result	10/20/2022 Result	01/26/2023 Result	10/07/2021 Result	10/21/2022 Result	01/26/2023 Result	10/07/2021 Result	10/07/2021 Result	10/21/2022 Result	01/26/2023 Result	01/26/2023 Result
Volatile Organic Compounds			Onic	Hodait	Tiodaic	ricodic	riodat	ricount	1100011	1100010	riodait	1100011	riocuit	1100011	Tiodaic	riodaic	Tiodaic	Hodait
1,1,1,2-Tetrachloroethane	630-20-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1,1-Trichloroethane	71-55-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	79-34-5 79-00-5	5	ug/l	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<5 U <15 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U
1,1-Dichloroethane	75-34-3	1 5	ug/l ug/l	<1.5 U	<1.5 U <2.5 U	< 1.5 U < 2.5 U	<15 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U
1,1-Dichloroethene	75-35-4	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
1,1-Dichloropropene	563-58-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,3-Trichlorobenzene	87-61-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,3-Trichloropropane	96-18-4	0.04	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene	95-93-2 120-82-1	5	ug/l	12 <2.5 U	1.9 J	8.9 <2.5 U	130 <25 U	1.4 J <2.5 ∪	4.2 J <2.5 ∪	<2 U <2.5 U	2	<2 U	<2 U	<2 U <2.5 U	<2 U	<2 U	<2 U <2.5 U	<2 U
1,2,4-Trimethylbenzene	95-63-6	5	ug/l ug/l	11	<2.5 U 0.77 J	0.74 J	1,900	10 J	34 J	12	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U <2.5 U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	0.0006	ug/l	<2 U	<2 U	<2 U	<20 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U
1,2-Dichlorobenzene	95-50-1	3	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2-Dichloroethane	107-06-2	0.6	ug/l	<0.5 U	<0.5 U	<0.5 U	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
1,2-Dichloropropane	78-87-5 108-67-8	1	ug/l	<1 U 7.8	<1 U 4	<1 U	<10 U	<1 U	<1 U	<1 U	<1 U <2.5 U	<1 U <2.5 U	<1 U	<1 U <2.5 U	<1 U <2.5 U	<1 U <2.5 U	<1 U <2.5 U	<1 U
1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene	541-73-1	5	ug/l ug/l	<2.5 U	<2.5 U	1.7 J <2.5 U	540 <25 ∪	3.5 J <2.5 ∪	8 J <2.5 U	2.5 <2.5 ∪	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U
1,3-Dichloropropane	142-28-9	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,4-Dichlorobenzene	106-46-7	3	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,4-Diethyl Benzene	105-05-5	NS	ug/l	26	4	4.9	270	<2 U	0.72 J	1.4 J	2.1 J	<2 U	<2 U	5.3	5.3 J	<2 U	<2 U	<2 U
1,4-Dioxane (P-Dioxane)	123-91-1	NS	ug/l	<250 U	<250 U	<250 U	<2,500 U	<250 U	<250 U	<250 U	<250 UJ	<250 U	<250 U	<250 UJ	<250 UJ	<250 U	<250 U	<250 U
2,2-Dichloropropane 2-Chlorotoluene	594-20-7 95-49-8	5 5	ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
2-Hexanone (MBK)	591-78-6	50	ug/l ug/l	<5 U	<5 U	<5 U	<50 U	<5 U	<5 U	<5 U	<2.5 UJ	<5 U	<5 U	<5 UJ	<5 UJ	<5 U	<5 U	<5 U
4-Chlorotoluene	106-43-4	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
4-Ethyltoluene	622-96-8	NS	ug/l	6.1	1.5 J	1.4 J	800	7.4 J	15 J	6.2	0.9 J	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U
Acetone	67-64-1	50	ug/l	4.5 J	25	<5 U	<50 U	56	63	4.4 J	2.9 J	1.8 J	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Acrylonitrile	107-13-1	5	ug/l	<5 U	<5 U	<5 U	<50 U	<5 U	<5 U	<5 U	<5 UJ	<5 U	<5 U	<5 UJ	<5 UJ	<5 U	<5 U	<5 U
Benzene Bromobenzene	71-43-2 108-86-1	5	ug/l	17 <2.5 ∪	<0.5 U <2.5 U	0.22 J <2.5 U	2.1 J <25 ∪	0.69 <2.5 ∪	0.35 J <2.5 ∪	0.51 <2.5 U	0.16 J <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	0.17 J <2.5 ∪	0.2 J <2.5 ∪	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U
Bromochloromethane	74-97-5	5	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Bromodichloromethane	75-27-4	50	ug/l	<0.5 U	<0.5 U	<0.5 U	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Bromoform	75-25-2	50	ug/l	<2 U	<2 U	<2 U	<20 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U
Bromomethane	74-83-9	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Carbon Disulfide	75-15-0	60	ug/l	1.2 J	<5 U	<5 U	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Carbon Tetrachloride Chlorobenzene	56-23-5 108-90-7	5 5	ug/l ug/l	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<5 U <25 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U
Chloroethane	75-00-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Chloroform	67-66-3	7	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Chloromethane	74-87-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Cis-1,2-Dichloroethene	156-59-2	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Cis-1,3-Dichloropropene Cymene	10061-01-5 99-87-6	0.4	ug/l	<0.5 U 1.4 J	<0.5 U <2.5 U	<0.5 U <2.5 U	<5 U <25 U	<0.5 U <2.5 U	<0.5 U 0.7 J	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U
Dibromochloromethane	124-48-1	50	ug/l ug/l	<0.5 U	<0.5 U	<0.5 U	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Dibromomethane	74-95-3	5	ug/l	<5 U	<5 U	<5 U	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Dichlorodifluoromethane	75-71-8	5	ug/l	<5 U	<5 U	<5 U	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Diethyl Ether (Ethyl Ether)	60-29-7	NS	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Ethylbenzene	100-41-4	5	ug/l	54	<2.5 U	5.4	890	5.9	4	5.8	4.8	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Hexachlorobutadiene Isopropylbenzene (Cumene)	87-68-3 98-82-8	0.5 5	ug/l ug/l	<2.5 U	<2.5 U <2.5 U	<2.5 U 9.1	<25 U 190	<2.5 U	<2.5 ∪ 3.5	<2.5 U 3.2	<2.5 U 3.8	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
M,P-Xylene	179601-23-1	5	ug/l	11	1.3 J	0.88 J	2,300	16	14	12	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Methyl Ethyl Ketone (2-Butanone)	78-93-3	50	ug/l	<5 U	<5 UJ	<5 U	<50 U	<5 UJ	21 J	<5 U	<5 U	<5 UJ	<5 U	<5 U	<5 U	<5 UJ	<5 U	<5 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	NS	ug/l	<5 U	<5 U	<5 U	<50 U	1.5 J	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Methylene Chloride	75-09-2	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	1 J	<2.5 U	0.92 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Naphthalene n-Butylbenzene	91-20-3 104-51-8	10	ug/l	3.4 J 5.6	<2.5 U <2.5 U	<2.5 U 2.2 J	460 J 25	<2.5 U <2.5 U	3 0.93 J	<2.5 U <2.5 U	2 J <2.5 ∪	<2.5 U <2.5 U	<2.5 U <2.5 U	0.95 J 0.88 J	<2.5 U 0.87 J	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
n-Propylbenzene	103-65-1	5	ug/l ug/l	17	<2.5 U	11	370	2.8 J	5.7 J	2.7	9.4 J	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U
o-Xylene (1,2-Dimethylbenzene)	95-47-6	5	ug/l	9.1	<2.5 U	<2.5 U	410	2.5 J	1.9 J	1.5 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Sec-Butylbenzene	135-98-8	5	ug/l	4.6	<2.5 U	2.7	18 J	<2.5 U	0.83 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	3	3	<2.5 U	<2.5 U	<2.5 U
Styrene	100-42-5	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
T-Butylbenzene	98-06-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Tert-Butyl Methyl Ether Tetrachloroethene (PCE)	1634-04-4	10 5	ug/l	<2.5 U <0.5 U	<2.5 U	<2.5 U	<25 U <5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Toluene	127-18-4 108-88-3	5	ug/l ug/l	<0.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	130	<0.5 U 0.7 J	<0.5 U 1 J	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Total Xylenes	1330-20-7	5	ug/l	20	1.3 J	0.88 J	2,700	18 J	16 J	14 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Total, 1,3-Dichloropropene (Cis And Trans)	542-75-6	0.4	ug/l	<0.5 U	<0.5 U	<0.5 U	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Trans-1,2-Dichloroethene	156-60-5	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Trans-1,3-Dichloropropene	10061-02-6	0.4	ug/l	<0.5 U	<0.5 U	<0.5 U	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Trans-1,4-Dichloro-2-Butene Trichloroethene (TCE)	110-57-6 79-01-6	5 5	ug/l ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<25 U <5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
Trichlorofluoromethane	75-69-4	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Vinyl Acetate	108-05-4	NS	ug/l	<5 U	<5 U	<5 U	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Vinyl Chloride	75-01-4	2	ug/l	<1 U	<1 U	<1 U	<10 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U
Total BTEX	BTEX	NS	ug/l	96.3	1.3	6.5	3,722.1	25.29	21.35	20.31	4.96	ND	ND	0.17	0.2	ND	ND	ND

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002

Notes:

CAS - Chemical Abstract Service
NS - No standard
ug/l - microgram per liter
RL - Reporting limit
<RL - Not detected

Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (herein collectively referenced as "NYSDEC SGVs").

Qualifiers:

- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Exceedance Summary:

- Result exceeds NYSDEC SGVs

ATTACHMENT A Daily Site Observation Reports

SITE OBSERVATION REPORT

PROJECT No.: 170472002

PROJECT: 27-01 Jackson Avenue

LOCATION: Long Island City, NY

CONTRACTOR: Lions Group NYC

CLIENT: 2701 Jackson Avenue LLC

DATE: 01/26/2023

LANGAN REP.: Jack Frey

CONTRACTOR'S EQUIPMENT: PRESENT AT SITE:

N/A Jack Frey – Langan

Michael Capozzoli- Lions Group NYC (Construction Manager)

OBSERVATIONS, DISCUSSIONS, TEST RESULTS, ETC.:

Langan was present to observe environmental protocols in accordance with the January 2021 New York Department of Environmental Conversation (NYSDEC) approved Off-Site Management Plan (OSMP) for BCP site C241209 at 27-01 Jackson Avenue (Block 432, Lot 21). Observed activities were as follows:

Site Activities

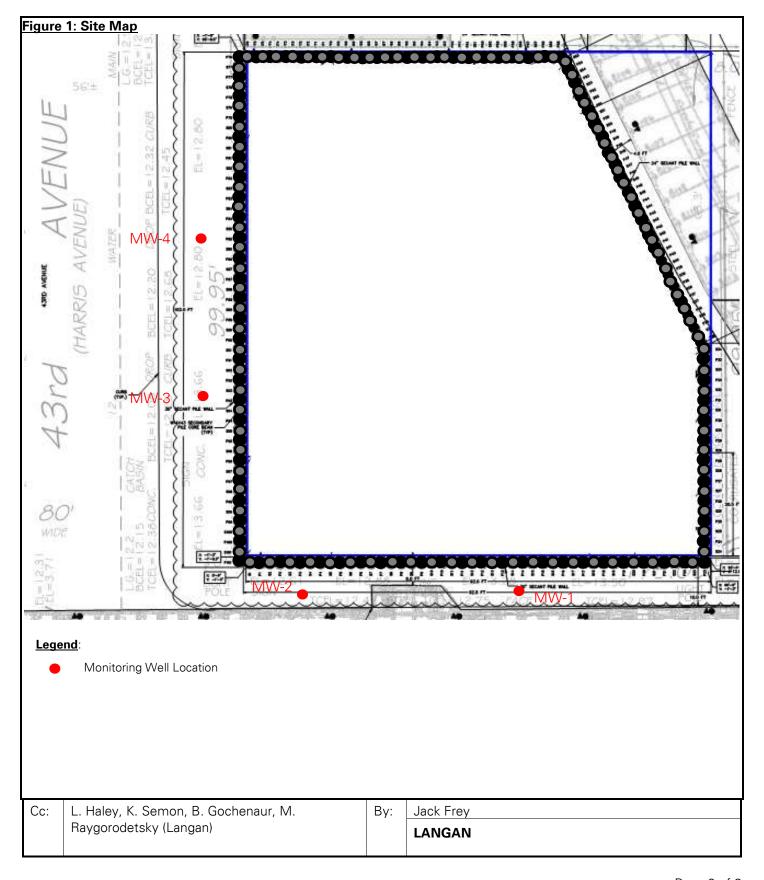
• Langan used a peristaltic pump to purge and sample groundwater monitoring wells MW-1, MW-2, MW-3 and MW-4 along the Jackson Avenue and 43rd Avenue sidewalks, respectively. Purged groundwater was screened for odors, sheen, and organic vapors using a photoionization detector (PID). Odors, sheen or PID readings above background levels were not observed in MW-2, MW-3 or MW-4. Petroleum-like odors and a maximum PID reading of 223.8 parts per million (ppm) was detected beneath the well cap at MW-1; however, no sheen was observed. Purged groundwater was containerized in a 55-gallon New York State Department of Transportation (NYSDOT)-approved drum for future disposal.

Sampling

 Langan collected four groundwater samples (plus quality assurance/quality control [QA/QC] samples) for laboratory analysis of NYSDEC Part 375/target compound list (TCL) volatile organic compounds (VOCs). The samples were submitted to Alpha Analytical Inc. (Alpha) of Mahwah, New Jersey, a New York State Department of Health (NYSDOH) Environmental Laboratory Accredited Program (ELAP)-certified laboratory under standard chain-of-custody protocols.

Anticipated Activities

The next groundwater sampling event will take place in April 2023.


Cc:	L. Haley, K. Semon, B. Gochenaur, M.	Ву:	Jack Frey
	Raygorodetsky (Langan)		LANGAN

Langan PN: 170472002 01/26/2023

Page 2 of 3

SITE OBSERVATION REPORT

Langan PN: 170472002

01/26/2023 Page 3 of 3

SITE OBSERVATION REPORT

SITE PHOTOGRAPHS

Photo 1: View of Langan purging monitoring well MW-3 along the 43rd Avenue sidewalk (facing northeast).

Cc:	L. Haley, K. Semon, B. Gochenaur, M.	Ву:	Jack Frey
	Raygorodetsky (Langan)		LANGAN

ATTACHMENT B

Well Purging and Sampling Logs

Project	t Information	Well Info	rmation	Ec	quipment Informati	on	S	ampling Condition	s	Sampling Informa	ition
Project Name:	27-01 Jackson Ave	Well No:	MW-1	Water Qua	ality Device Model:	Horiba U-52		Weather:	Sunny, 38-45 °F		
Project Number:	170472002	Well Depth:	19 ft		Pine Number:	51666	Backg	round PID (ppm):	0.0	Sample(s):	MW-1_012623
Site Location:	Long Island City, NY	Well Diameter:	2-inch	Pump	Make and Model:	Peristaltic Pump	PID Beneath Inner Cap (ppm): 223.8		223.8		
Sampling	Jack Frey	Well Screen	9 ft		Pine Number:	51859	Pu	mp Intake Depth:	17.5 ft	Sample Date:	1/26/2023
Personnel:	Jack Fley	Interval:	19 ft		Tubing Diameter:	3/8-inch	Depth to Wa	ter Before Purge:	15.6 ft	Sample Time:	13:25
				STABILIZATIO	V = 3 successive rea	adings within limit	s				
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	0 1	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		0. 1.11. 12
					(+/- 10%) above 5		Drawdown < 0.33	.5.	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
					BEGIN	PURGING					
12:25	10.13	7.58	-37	7.810	48.1	2.22	15.60	N/A	0.00		N/A
12:30	11.25	7.43	-30	7.950	73.7	0.37	15.80	0.05	0.25		N/A
12:35	11.34	7.28	-30	8.240	94.2	0.00	16.80	0.05	0.50		N
12:40	11.48	7.24	-30	8.400	120.0	0.00	17.50	0.06	0.80	Cloudy, petroleum-like odor	N
12:45	11.23	7.23	-32	8.580	197.0	0.00	18.10	0.04	1.00	Cloudy, petroleum-like odol	N
12:50	10.81	7.23	-35	8.570	281.0	0.00	18.20	0.05	1.25		N
12:55	10.78	7.25	-35	8.180	204.0	0.00	19.40	0.05	1.50		N
13:00	10.58	7.26	-39	7.930	161.0	0.00	19.50	0.2	2.50		N
13:05	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.02	2.60		N
13:10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.00	2.60	Well ran dry	N
13:15	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.00	2.60		N
13:20	9.91	7.25	-39	7.810	86.9	0.00	16.40	0.04	2.80	Cloudy, petroleum-like odor	N
13:25	9.20	7.25	-41	7.920	35.5	0.00	16.80	0.04	3.00	Cioudy, petiolediff-like odol	N

Notes

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemens per centimeter
- 10. NTU = Nephelometric Turbidity Unit
- 11. N/A = Not Applicable

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

Project	t Information	Well Info	rmation		Equipment Informa	ition	S	ampling Condition	ıs	Sampling Informa	ition
Project Name:	27-01 Jackson Ave	Well No:	MW-2	Water Qua	lity Device Model:	Horiba U-52			Sunny, 38-45 °F		
Project Number:	170472002	Well Depth:	20 ft		Pine Number:	51666	Background PID (ppm):		0.0	Sample(s):	MW-2_012623
Site Location:	Long Island City, NY	Well Diameter:	1-inch	Pump	Make and Model:	Peristaltic Pump	PID Beneath	Inner Cap (ppm):	0.0		
Sampling	Jack Frey	Well Screen	10 ft		Pine Number:	51859	Pı	ımp Intake Depth:	16.5 ft	Sample Date:	1/26/2023
Personnel:	Jack Fley	Interval:	20 ft		Tubing Diameter:	3/8-inch	Depth to W	ater Before Purge:	14.81 ft	Sample Time:	14:10
				STABILIZATIO	ON = 3 successive i	eadings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate		NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		
					(+/- 10%) above	(+/- 10%) above	Drawdown	.51 ,	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	< 0.33 ft	(<0.13 gpm)	Volume (Gal)	color, odor etc.	
		-			BEG	IN PURGING					
10:00	N/A	N/A	N/A	N/A	N/A	N/A	14.81	N/A	0.0	Black color, no odor	N/A
10:05	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.02	0.1	Well ran dry	N/A
13:50	10.01	10.78	-161	3.570	1000	0.00	17.50	0.02	0.2	Black color, no odor	N
13:55	10.51	10.77	-161	3.560	1000	0.00	17.50	0.02	0.3	Black color, no odor	N
14:00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.00	0.3	Well ran dry	N
14:05	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.00	0.3	Sampled well after recharge	N

Notes:

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemens per centimeter
- 10. NTU = Nephelometric Turbidity Unit
- 11. N/A = Not Applicable

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.
21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

Project	t Information	Well Info	rmation		Equipment Inform	ation	Sampling Conditions		ıs	Sampling Informa	tion
Project Name:	27-01 Jackson Ave	Well No:	MW-3	Water Qua	lity Device Model:	Horiba U-52		Weather:	Sunny, 38-45 °F		
Project Number:	170472002	Well Depth:	24 ft		Pine Number:	51666	Backg	round PID (ppm):	0.0	Sample(s):	MW-3_012623
Site Location:	Long Island City, NY	Well Diameter:	1-inch	Pump	Make and Model:	Peristaltic Pump	PID Beneath	Inner Cap (ppm):	0.0		
Sampling	Jack Frey	Well Screen	14 ft		Pine Number:	51859	Pu	mp Intake Depth:	19.5 ft	Sample Date:	1/26/2023
Personnel:	Jack Fley	Interval:	24 ft		Tubing Diameter:	3/8-inch	Depth to Wa	ter Before Purge:	15.1 ft	Sample Time:	12:15
				STABILIZATI	ION = 3 successive	readings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate		NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		
			•		(+/- 10%) above	(+/- 10%) above 0.5	Drawdown <	(35)	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
	, , , , , , , , , , , , , , , , , , , ,				BEC	GIN PURGING		U		· · ·	
11:30	14.21	7.41	-91	3.600	59.3	0.67	15.10	N/A	0.0	N/A	N/A
11:35	14.34	7.41	-102	3.510	47.7	0.00	15.15	0.12	0.6	N/A	N/A
11:40	14.15	7.41	-104	3.500	35.9	0.00	15.17	0.12	1.2	N/A	N
11:45	14.20	7.42	-106	3.480	24.7	0.00	15.19	0.26	2.5	N/A	N
11:50	14.27	7.42	-108	3.470	15.5	0.00	15.28	0.00	2.9	N/A	N
11:55	14.14	7.42	-108	3.450	14.5	0.00	15.28	0.00	3.5	N/A	N
12:00	14.09										

Notes:

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemens per centimeter
- 10. NTU = Nephelometric Turbidity Unit
- 11. N/A = Not Applicable

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

Project	Information	Well Info	rmation	Eq	uipment Informati	on	S	ampling Condition	s	Sampling Informa	tion
Project Name:	27-01 Jackson Ave	Well No:	MW-4	Water Qua	lity Device Model:	Horiba U-52		Weather:	Sunny, 38-45 °F		MW-4 012623
Project Number:	170472002	Well Depth:	23.5 ft		Pine Number:	51666	Backg	round PID (ppm):	0.0	Sample(s):	DUP01_012623
Site Location:	Long Island City, NY	Well Diameter:	2 inch	Pump	Make and Model:	Peristaltic Pump	PID Beneath	Inner Cap (ppm):	0.0		
Sampling	Jack Frey	Well Screen	13.5 ft		Pine Number:	51859	Pu	mp Intake Depth:	19.5 ft	Sample Date:	1/26/2023
Personnel:	Sacking	Interval:	23.5 ft		Tubing Diameter:	3/8-inch	Depth to Wa	ter Before Purge:	14.7 ft	Sample Time:	9:45
•				STABILIZATION	I = 3 successive rea	ndings within limit	ts				
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Communications	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		01.1.1112
					(+/- 10%) above 5		Drawdown < 0.33		Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
					BEGIN	PURGING		'			
8:55	14.61	7.36	171	3.900	33.3	2.77	14.70	N/A	0.00	N/A	N/A
9:00	14.75	7.21	178	3.850	20.5	0.54	14.74	0.1	0.50	N/A	N/A
9:05	14.94	7.00	185	3.820	19.6	0.28	14.74	0.1	1.00	N/A	N
9:10	14.89	6.98	187	3.800	16.3	0.11	14.78	0.10	1.50	N/A	N
9:15	14.81	6.94	191	3.790	10.8	0.00	14.81	0.00	1.75	N/A	N
9:20	14.69	6.92	195	3.750	9.1	0.00	14.82	0.00	2.00	N/A	N
9:25	14.65	6.90	197	3.730	5.6	0.00	14.84	0.05	2.25	N/A	N
9:30	15.27	6.89	199	3.690	4.5	0.00	14.88	0.05	2.50	N/A	N
9:35	15.33	6.88	199	3.700	3.7	0.00	14.90	0.05	2.75	N/A	N
9:40	15.34	6.88	199	3.710	3.4	0.00	14.91	0.05	3.00	N/A	Υ

Notes:

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemens per centimeter
- 10. NTU = Nephelometric Turbidity Unit
- 11. N/A = Not Applicable

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

ATTACHMENT C Laboratory Analytical Reports

ANALYTICAL REPORT

Lab Number: L2304549

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor

New York, NY 10001-2727

ATTN: Kimberly Semon Phone: (212) 479-5486

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Report Date: 01/31/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2304549 **Report Date:** 01/31/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2304549-01	MW-4_012623	WATER	QUEENS, NY	01/26/23 09:45	01/26/23
L2304549-02	MW-2_012623	WATER	QUEENS, NY	01/26/23 14:10	01/26/23
L2304549-03	MW-3_012623	WATER	QUEENS, NY	01/26/23 12:15	01/26/23
L2304549-04	MW-1_012623	WATER	QUEENS, NY	01/26/23 13:25	01/26/23
L2304549-05	DUP01_012623	WATER	QUEENS, NY	01/26/23 00:00	01/26/23
L2304549-06	FB01_012623	WATER	QUEENS, NY	01/26/23 14:05	01/26/23
L2304549-07	TB01_012623	WATER	QUEENS, NY	01/26/23 00:00	01/26/23

L2304549

Lab Number:

Project Name: 27-01 JACKSON AVE

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

L2304549

Project Name: 27-01 JACKSON AVE Lab Number:

Project Number: 170472002 **Report Date:** 01/31/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2304549-01, -03, -05, -06, and -07: The client ID was specified by the client.

Volatile Organics

L2304549-02: The pH was greater than two; however, the sample was analyzed within the method required holding time.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 01/31/23

Melissa Sturgis Melissa Sturgis

ORGANICS

VOLATILES

01/26/23 09:45

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

SAMPLE RESULTS

Lab Number: L2304549

Report Date: 01/31/23

Date Collected:

Lab ID: L2304549-01

Client ID: MW-4_012623 Sample Location: QUEENS, NY

Date Received: 01/26/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/28/23 08:34

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

L2304549

Project Name: Lab Number: 27-01 JACKSON AVE

Project Number: Report Date: 170472002 01/31/23

SAMPLE RESULTS

Lab ID: L2304549-01 Date Collected: 01/26/23 09:45

MW-4_012623 Client ID: Date Received: 01/26/23 Sample Location: Field Prep: Not Specified QUEENS, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 27-01 JACKSON AVE **Lab Number:** L2304549

Project Number: 170472002 **Report Date:** 01/31/23

SAMPLE RESULTS

Lab ID: L2304549-01 Date Collected: 01/26/23 09:45

Client ID: MW-4_012623 Date Received: 01/26/23 Sample Location: QUEENS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	106	70-130	

01/26/23 14:10

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

SAMPLE RESULTS

Lab Number: L2304549

Report Date: 01/31/23

Lab ID: L2304549-02

Client ID: MW-2_012623 Sample Location: QUEENS, NY

Date Received: 01/26/23 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/28/23 08:57

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
		Qualifier	Units	NL	WIDE	Dilution Factor
Volatile Organics by GC/MS - Wes	aborough Lab					
Methylene chloride	0.92	J	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.51		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	5.8		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2304549

01/31/23

Project Name: 27-01 JACKSON AVE

L2304549-02

MW-2_012623

QUEENS, NY

Project Number: 170472002

SAMPLE RESULTS

Date Collected: 01/26/23 14:10

Date Received: 01/26/23 14.

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	 1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	<u>.</u> 1
p/m-Xylene	12		ug/l	2.5	0.70	<u>.</u> 1
o-Xylene	1.5	J	ug/l	2.5	0.70	 1
Xylenes, Total	14	J	ug/l	2.5	0.70	 1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	 1
Dibromomethane	ND		ug/l	5.0	1.0	 1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	 1
Acrylonitrile	ND		ug/l	5.0	1.5	<u>.</u> 1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.4	J	ug/l	5.0	1.5	 1
Carbon disulfide	ND	•	ug/l	5.0	1.0	<u>.</u> 1
2-Butanone	ND		ug/l	5.0	1.9	 1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	 1
Bromochloromethane	ND		ug/l	2.5	0.70	 1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	3.2		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
•						

Project Name: 27-01 JACKSON AVE **Lab Number:** L2304549

Project Number: 170472002 **Report Date:** 01/31/23

SAMPLE RESULTS

Lab ID: L2304549-02 Date Collected: 01/26/23 14:10

Client ID: MW-2_012623 Date Received: 01/26/23 Sample Location: QUEENS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
n-Propylbenzene	2.7		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	2.5		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	12		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	1.4	J	ug/l	2.0	0.70	1	
p-Ethyltoluene	6.2		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	101	70-130	

Project Name: 27-01 JACKSON AVE

QUEENS, NY

Project Number: 170472002

SAMPLE RESULTS

Lab Number: L2304549

Report Date: 01/31/23

Lab ID: L2304549-03 Date Collected: Client ID: Date Received: MW-3_012623 Sample Location:

01/26/23 Field Prep: Not Specified

01/26/23 12:15

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/28/23 09:20

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2304549

01/31/23

Project Name: 27-01 JACKSON AVE

L2304549-03

MW-3_012623

QUEENS, NY

Project Number: 170472002

SAMPLE RESULTS

Date Collected: 01/26/23 12:15

Date Received: 01/26/23

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 27-01 JACKSON AVE **Lab Number:** L2304549

Project Number: 170472002 **Report Date:** 01/31/23

SAMPLE RESULTS

Lab ID: L2304549-03 Date Collected: 01/26/23 12:15

Client ID: MW-3_012623 Date Received: 01/26/23 Sample Location: QUEENS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	106	70-130	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

SAMPLE RESULTS

Lab Number: L2304549

Report Date: 01/31/23

Lab ID: L2304549-04 Date Collected: 01/26/23 13:25

Client ID: Date Received: 01/26/23 MW-1_012623 Field Prep: Sample Location: Not Specified QUEENS, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/28/23 09:43

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.22	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	5.4		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2304549

Project Name: 27-01 JACKSON AVE Lab Number:

Project Number: 170472002 **Report Date:** 01/31/23

SAMPLE RESULTS

Lab ID: L2304549-04 Date Collected: 01/26/23 13:25

Client ID: MW-1_012623 Date Received: 01/26/23 Sample Location: QUEENS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Trichloroethene	ND		ua/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	0.88		ug/l	2.5	0.70	1
p/m-Xylene	0.00 ND	J	ug/l	2.5	0.70	1
o-Xylene	0.88	1	ug/l	2.5	0.70	1
Xylenes, Total		J	ug/l			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	<u> </u>
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	2.2	J	ug/l	2.5	0.70	1
sec-Butylbenzene	2.7		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	9.1		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
			-			

Project Name: 27-01 JACKSON AVE **Lab Number:** L2304549

Project Number: 170472002 **Report Date:** 01/31/23

SAMPLE RESULTS

Lab ID: L2304549-04 Date Collected: 01/26/23 13:25

Client ID: MW-1_012623 Date Received: 01/26/23 Sample Location: QUEENS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	11		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	1.7	J	ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	0.74	J	ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	4.9		ug/l	2.0	0.70	1	
p-Ethyltoluene	1.4	J	ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	8.9		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	100	70-130	

01/26/23 00:00

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

SAMPLE RESULTS

Lab Number: L2304549

Report Date: 01/31/23

Lab ID: L2304549-05 Date Collected:

Client ID: Date Received: 01/26/23 DUP01_012623 Field Prep: Sample Location: QUEENS, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/28/23 10:06

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2304549

01/31/23

Project Name: 27-01 JACKSON AVE

L2304549-05

QUEENS, NY

DUP01_012623

Project Number: 170472002

SAMPLE RESULTS

Date Collected: 01/26/23 00:00

Lab Number:

Report Date:

Date Received: 01/26/23 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 27-01 JACKSON AVE **Lab Number:** L2304549

Project Number: 170472002 **Report Date:** 01/31/23

SAMPLE RESULTS

Lab ID: L2304549-05 Date Collected: 01/26/23 00:00

Client ID: DUP01_012623 Date Received: 01/26/23 Sample Location: QUEENS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westh	orough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	108	70-130	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

SAMPLE RESULTS

Lab Number: L2304549

Report Date: 01/31/23

Lab ID: L2304549-06

Client ID: FB01_012623 Sample Location: QUEENS, NY

01/26/23 14:05 Date Received: 01/26/23 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/27/23 14:04

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

L2304549

01/31/23

Project Name: 27-01 JACKSON AVE

L2304549-06

FB01_012623

QUEENS, NY

Project Number: 170472002

SAMPLE RESULTS

Date Collected: 01/26/23 14:05

Date Received: 01/26/23

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 27-01 JACKSON AVE **Lab Number:** L2304549

Project Number: 170472002 **Report Date:** 01/31/23

SAMPLE RESULTS

Lab ID: L2304549-06 Date Collected: 01/26/23 14:05

Client ID: FB01_012623 Date Received: 01/26/23 Sample Location: QUEENS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	94	70-130	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

SAMPLE RESULTS

Lab Number: L2304549

Report Date: 01/31/23

Lab ID: L2304549-07 Date Collected: 01/26/23 00:00

Client ID: Date Received: 01/26/23 TB01_012623 Field Prep: Sample Location: QUEENS, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/27/23 14:25

Analyst: LAC

	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2304549

01/31/23

Project Name: 27-01 JACKSON AVE

L2304549-07

TB01_012623

QUEENS, NY

Project Number: 170472002

SAMPLE RESULTS

Date Collected: 01/26/23 00:00

Date Received: 01/26/23

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	· Westborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 27-01 JACKSON AVE **Lab Number:** L2304549

Project Number: 170472002 **Report Date:** 01/31/23

SAMPLE RESULTS

Lab ID: L2304549-07 Date Collected: 01/26/23 00:00

Client ID: TB01_012623 Date Received: 01/26/23 Sample Location: QUEENS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westh	orough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	98	70-130	

Project Name: 27-01 JACKSON AVE **Lab Number:** L2304549

Project Number: 170472002 **Report Date:** 01/31/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/27/23 08:15

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	06-07 Batch:	WG1738191-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

L2304549

Project Name: 27-01 JACKSON AVE Lab Number:

Project Number: 170472002 **Report Date:** 01/31/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/27/23 08:15

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s): 0	6-07 Batch:	WG1738191-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2304549

Report Date: 01/31/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/27/23 08:15

Analyst: PID

Parameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - Wes	stborough Lab	for sample(s):	06-07 Batch:	WG1738191-5
o-Chlorotoluene	ND	ug/	2.5	0.70
p-Chlorotoluene	ND	ug/	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/	1 2.5	0.70
Hexachlorobutadiene	ND	ug/	2.5	0.70
Isopropylbenzene	ND	ug/	2.5	0.70
p-Isopropyltoluene	ND	ug/	2.5	0.70
Naphthalene	ND	ug/	2.5	0.70
n-Propylbenzene	ND	ug/	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/	2.5	0.70
1,4-Dioxane	ND	ug/	250	61.
p-Diethylbenzene	ND	ug/	2.0	0.70
p-Ethyltoluene	ND	ug/	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/	2.0	0.54
Ethyl ether	ND	ug/	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/	2.5	0.70

	Acceptance
%Recovery Qua	-
83	70-130
95	70-130
98	70-130
93	70-130
	83 95 98

Project Name: 27-01 JACKSON AVE **Lab Number:** L2304549

Project Number: 170472002 **Report Date:** 01/31/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/28/23 07:08

Analyst: TMS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	01-05 Batch:	WG1739096-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name: 27-01 JACKSON AVE **Lab Number:** L2304549

Project Number: 170472002 **Report Date:** 01/31/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/28/23 07:08

Analyst: TMS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-05 Batch:	WG1739096-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2304549

Report Date: 01/31/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/28/23 07:08

Analyst: TMS

Parameter	Result C	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - W	estborough Lab fo	or sample(s): 01-0	5 Batch:	WG1739096-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

	Acceptance
%Recovery Qu	ıalifier Criteria
101	70-130
97	70-130
95	70-130
107	70-130
	101 97 95

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2304549

Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	06-07 Batch:	WG1738191-3	WG1738191-4			
Methylene chloride	100		120		70-130	18	20	
1,1-Dichloroethane	110		120		70-130	9	20	
Chloroform	97		100		70-130	3	20	
Carbon tetrachloride	95		100		63-132	5	20	
1,2-Dichloropropane	100		110		70-130	10	20	
Dibromochloromethane	76		80		63-130	5	20	
1,1,2-Trichloroethane	87		87		70-130	0	20	
Tetrachloroethene	93		98		70-130	5	20	
Chlorobenzene	100		99		75-130	1	20	
Trichlorofluoromethane	82		94		62-150	14	20	
1,2-Dichloroethane	90		98		70-130	9	20	
1,1,1-Trichloroethane	99		110		67-130	11	20	
Bromodichloromethane	89		93		67-130	4	20	
trans-1,3-Dichloropropene	74		73		70-130	1	20	
cis-1,3-Dichloropropene	87		92		70-130	6	20	
1,1-Dichloropropene	94		100		70-130	6	20	
Bromoform	82		82		54-136	0	20	
1,1,2,2-Tetrachloroethane	95		96		67-130	1	20	
Benzene	99		110		70-130	11	20	
Toluene	100		98		70-130	2	20	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	120		130		64-130	8	20	
Bromomethane	61		68		39-139	11	20	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2304549

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Wes	tborough Lab Associated	sample(s):	06-07 Batch: \	WG1738191-3	WG1738191-4			
Vinyl chloride	110		120		55-140	9	20	
Chloroethane	79		84		55-138	6	20	
1,1-Dichloroethene	95		99		61-145	4	20	
trans-1,2-Dichloroethene	100		110		70-130	10	20	
Trichloroethene	90		100		70-130	11	20	
1,2-Dichlorobenzene	99		100		70-130	1	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	100		98		70-130	2	20	
Methyl tert butyl ether	86		96		63-130	11	20	
p/m-Xylene	105		105		70-130	0	20	
o-Xylene	110		105		70-130	5	20	
cis-1,2-Dichloroethene	100		100		70-130	0	20	
Dibromomethane	86		95		70-130	10	20	
1,2,3-Trichloropropane	89		96		64-130	8	20	
Acrylonitrile	110		120		70-130	9	20	
Styrene	110		110		70-130	0	20	
Dichlorodifluoromethane	83		86		36-147	4	20	
Acetone	110		130		58-148	17	20	
Carbon disulfide	170	Q	170	Q	51-130	0	20	
2-Butanone	90		100		63-138	11	20	
Vinyl acetate	96		95		70-130	1	20	
4-Methyl-2-pentanone	97		100		59-130	3	20	
2-Hexanone	100		110		57-130	10	20	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2304549

Parameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - We	stborough Lab Associated	sample(s): 06	-07 Batch: Wo	G1738191-3	WG1738191-4		
Bromochloromethane	99		110		70-130	11	20
2,2-Dichloropropane	96		100		63-133	4	20
1,2-Dibromoethane	85		85		70-130	0	20
1,3-Dichloropropane	90		90		70-130	0	20
1,1,1,2-Tetrachloroethane	90		88		64-130	2	20
Bromobenzene	100		99		70-130	1	20
n-Butylbenzene	100		100		53-136	0	20
sec-Butylbenzene	100		110		70-130	10	20
tert-Butylbenzene	100		110		70-130	10	20
o-Chlorotoluene	110		110		70-130	0	20
p-Chlorotoluene	110		110		70-130	0	20
1,2-Dibromo-3-chloropropane	82		84		41-144	2	20
Hexachlorobutadiene	89		96		63-130	8	20
Isopropylbenzene	110		110		70-130	0	20
p-Isopropyltoluene	100		100		70-130	0	20
Naphthalene	93		99		70-130	6	20
n-Propylbenzene	110		110		69-130	0	20
1,2,3-Trichlorobenzene	92		95		70-130	3	20
1,2,4-Trichlorobenzene	98		100		70-130	2	20
1,3,5-Trimethylbenzene	100		110		64-130	10	20
1,2,4-Trimethylbenzene	100		100		70-130	0	20
1,4-Dioxane	98		108		56-162	10	20
p-Diethylbenzene	100		100		70-130	0	20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number:

L2304549

Report Date:

01/31/23

Parameter	LCS %Recovery	Qual	_	.CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	06-07	Batch:	WG1738191-3	WG1738191-4				
p-Ethyltoluene	110			110		70-130	0		20	
1,2,4,5-Tetramethylbenzene	100			100		70-130	0		20	
Ethyl ether	79			94		59-134	17		20	
trans-1,4-Dichloro-2-butene	95			94		70-130	1		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	88	89	70-130
Toluene-d8	98	96	70-130
4-Bromofluorobenzene	106	106	70-130
Dibromofluoromethane	98	97	70-130

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2304549

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-05 Batch:	WG1739096-3	WG1739096-4			
Methylene chloride	94		96		70-130	2	20	
1,1-Dichloroethane	95		95		70-130	0	20	
Chloroform	98		100		70-130	2	20	
Carbon tetrachloride	120		120		63-132	0	20	
1,2-Dichloropropane	91		91		70-130	0	20	
Dibromochloromethane	100		100		63-130	0	20	
1,1,2-Trichloroethane	90		93		70-130	3	20	
Tetrachloroethene	110		110		70-130	0	20	
Chlorobenzene	97		100		75-130	3	20	
Trichlorofluoromethane	110		120		62-150	9	20	
1,2-Dichloroethane	92		95		70-130	3	20	
1,1,1-Trichloroethane	110		110		67-130	0	20	
Bromodichloromethane	97		100		67-130	3	20	
trans-1,3-Dichloropropene	92		93		70-130	1	20	
cis-1,3-Dichloropropene	94		95		70-130	1	20	
1,1-Dichloropropene	100		100		70-130	0	20	
Bromoform	94		100		54-136	6	20	
1,1,2,2-Tetrachloroethane	81		86		67-130	6	20	
Benzene	95		96		70-130	1	20	
Toluene	96		96		70-130	0	20	
Ethylbenzene	94		98		70-130	4	20	
Chloromethane	93		90		64-130	3	20	
Bromomethane	79		87		39-139	10	20	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2304549

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-05 Batch: V	VG1739096-3	WG1739096-4			
Vinyl chloride	100		110		55-140	10	20	
Chloroethane	100		110		55-138	10	20	
1,1-Dichloroethene	100		110		61-145	10	20	
trans-1,2-Dichloroethene	100		100		70-130	0	20	
Trichloroethene	98		97		70-130	1	20	
1,2-Dichlorobenzene	97		100		70-130	3	20	
1,3-Dichlorobenzene	99		100		70-130	1	20	
1,4-Dichlorobenzene	98		100		70-130	2	20	
Methyl tert butyl ether	92		97		63-130	5	20	
p/m-Xylene	95		100		70-130	5	20	
o-Xylene	100		105		70-130	5	20	
cis-1,2-Dichloroethene	100		99		70-130	1	20	
Dibromomethane	95		99		70-130	4	20	
1,2,3-Trichloropropane	80		88		64-130	10	20	
Acrylonitrile	86		85		70-130	1	20	
Styrene	100		105		70-130	5	20	
Dichlorodifluoromethane	110		120		36-147	9	20	
Acetone	83		69		58-148	18	20	
Carbon disulfide	170	Q	170	Q	51-130	0	20	
2-Butanone	73		64		63-138	13	20	
Vinyl acetate	90		90		70-130	0	20	
4-Methyl-2-pentanone	83		86		59-130	4	20	
2-Hexanone	76		72		57-130	5	20	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2304549

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - V	Westborough Lab Associated	sample(s):	01-05 Batch: \	WG1739096-3	WG1739096-4				
Bromochloromethane	100		110		70-130	10		20	
2,2-Dichloropropane	110		110		63-133	0		20	
1,2-Dibromoethane	97		97		70-130	0		20	
1,3-Dichloropropane	90		92		70-130	2		20	
1,1,1,2-Tetrachloroethane	100		100		64-130	0		20	
Bromobenzene	96		99		70-130	3		20	
n-Butylbenzene	96		96		53-136	0		20	
sec-Butylbenzene	98		100		70-130	2		20	
tert-Butylbenzene	99		100		70-130	1		20	
o-Chlorotoluene	94		98		70-130	4		20	
p-Chlorotoluene	92		97		70-130	5		20	
1,2-Dibromo-3-chloropropane	86		91		41-144	6		20	
Hexachlorobutadiene	120		120		63-130	0		20	
Isopropylbenzene	94		98		70-130	4		20	
p-Isopropyltoluene	100		100		70-130	0		20	
Naphthalene	97		100		70-130	3		20	
n-Propylbenzene	93		96		69-130	3		20	
1,2,3-Trichlorobenzene	110		110		70-130	0		20	
1,2,4-Trichlorobenzene	100		110		70-130	10		20	
1,3,5-Trimethylbenzene	97		100		64-130	3		20	
1,2,4-Trimethylbenzene	97		99		70-130	2		20	
1,4-Dioxane	90		82		56-162	9		20	
p-Diethylbenzene	100		100		70-130	0		20	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number:

L2304549

Report Date:

01/31/23

Parameter	LCS %Recovery	Qual		.CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-05	Batch:	WG1739096-3	WG1739096-4				
p-Ethyltoluene	96			100		70-130	4		20	
1,2,4,5-Tetramethylbenzene	100			100		70-130	0		20	
Ethyl ether	95			110		59-134	15		20	
trans-1,4-Dichloro-2-butene	70			71		70-130	1		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	104	106	70-130	
Toluene-d8	104	102	70-130	
4-Bromofluorobenzene	96	97	70-130	
Dibromofluoromethane	106	107	70-130	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number:

L2304549

Report Date:

01/31/23

Parameter	Native Sample	MS Added	MS Found	MS %Recove	ry	MSL Qual Four		MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-4_012623	Westborough	Lab Ass	ociated sample(s): 01-05	QC B	atch ID: WG17	'3909	6-6 WG1739	0096-7	QC Sample	e: L2304	1549-01	Client ID:
Methylene chloride	ND	10	10	100		10		100		70-130	0		20
1,1-Dichloroethane	ND	10	11	110		11		110		70-130	0		20
Chloroform	ND	10	11	110		11		110		70-130	0		20
Carbon tetrachloride	ND	10	13	130		14		140	Q	63-132	7		20
1,2-Dichloropropane	ND	10	10	100		10		100		70-130	0		20
Dibromochloromethane	ND	10	11	110		11		110		63-130	0		20
1,1,2-Trichloroethane	ND	10	10	100		10		100		70-130	0		20
Tetrachloroethene	ND	10	12	120		13		130		70-130	8		20
Chlorobenzene	ND	10	11	110		11		110		75-130	0		20
Frichlorofluoromethane	ND	10	12	120		13		130		62-150	8		20
1,2-Dichloroethane	ND	10	10	100		10		100		70-130	0		20
1,1,1-Trichloroethane	ND	10	12	120		13		130		67-130	8		20
Bromodichloromethane	ND	10	11	110		11		110		67-130	0		20
rans-1,3-Dichloropropene	ND	10	9.6	96		10		100		70-130	4		20
cis-1,3-Dichloropropene	ND	10	9.7	97		10		100		70-130	3		20
1,1-Dichloropropene	ND	10	11	110		12		120		70-130	9		20
Bromoform	ND	10	10	100		11		110		54-136	10		20
1,1,2,2-Tetrachloroethane	ND	10	9.1	91		9.4		94		67-130	3		20
Benzene	ND	10	11	110		11		110		70-130	0		20
Toluene	ND	10	11	110		11		110		70-130	0		20
Ethylbenzene	ND	10	10	100		11		110		70-130	10		20
Chloromethane	ND	10	10	100		10		100		64-130	0		20
Bromomethane	ND	10	6.4	64		8.1		81		39-139	23	Q	20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number:

L2304549

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS MW-4_012623	- Westborough	Lab Asso	ciated sample((s): 01-05 Q(C Batch ID: WG17390	096-6 WG173	9096-7	QC Sample	e: L2304	4549-01 Client ID:
Vinyl chloride	ND	10	12	120	12	120		55-140	0	20
Chloroethane	ND	10	11	110	12	120		55-138	9	20
1,1-Dichloroethene	ND	10	12	120	12	120		61-145	0	20
trans-1,2-Dichloroethene	ND	10	12	120	12	120		70-130	0	20
Trichloroethene	ND	10	11	110	11	110		70-130	0	20
1,2-Dichlorobenzene	ND	10	10	100	11	110		70-130	10	20
1,3-Dichlorobenzene	ND	10	11	110	11	110		70-130	0	20
1,4-Dichlorobenzene	ND	10	10	100	11	110		70-130	10	20
Methyl tert butyl ether	ND	10	10	100	11	110		63-130	10	20
o/m-Xylene	ND	20	22	110	22	110		70-130	0	20
o-Xylene	ND	20	22	110	23	115		70-130	4	20
cis-1,2-Dichloroethene	ND	10	11	110	12	120		70-130	9	20
Dibromomethane	ND	10	11	110	11	110		70-130	0	20
1,2,3-Trichloropropane	ND	10	9.0	90	9.4	94		64-130	4	20
Acrylonitrile	ND	10	9.4	94	9.6	96		70-130	2	20
Styrene	ND	20	22	110	23	115		70-130	4	20
Dichlorodifluoromethane	ND	10	11	110	12	120		36-147	9	20
Acetone	ND	10	7.2	72	6.9	69		58-148	4	20
Carbon disulfide	ND	10	19	190	Q 20	200	Q	51-130	5	20
2-Butanone	ND	10	7.5	75	7.6	76		63-138	1	20
Vinyl acetate	ND	10	9.7	97	9.7	97		70-130	0	20
4-Methyl-2-pentanone	ND	10	8.6	86	8.9	89		59-130	3	20
2-Hexanone	ND	10	7.1	71	7.2	72		57-130	1	20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number:

L2304549

Report Date:

01/31/23

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-4_012623	Westborough	Lab Asso	ciated sample(s): 01-05 C	C Batch ID	: WG17390)96-6 WG173	9096-7	QC Sample	e: L2304	1549-01	Client ID:
Bromochloromethane	ND	10	11	110		12	120		70-130	9		20
2,2-Dichloropropane	ND	10	11	110		11	110		63-133	0		20
1,2-Dibromoethane	ND	10	11	110		11	110		70-130	0		20
1,3-Dichloropropane	ND	10	9.9	99		10	100		70-130	1		20
1,1,1,2-Tetrachloroethane	ND	10	11	110		12	120		64-130	9		20
Bromobenzene	ND	10	10	100		11	110		70-130	10		20
n-Butylbenzene	ND	10	10	100		10	100		53-136	0		20
sec-Butylbenzene	ND	10	10	100		11	110		70-130	10		20
ert-Butylbenzene	ND	10	11	110		11	110		70-130	0		20
o-Chlorotoluene	ND	10	12	120		12	120		70-130	0		20
o-Chlorotoluene	ND	10	10	100		10	100		70-130	0		20
1,2-Dibromo-3-chloropropane	ND	10	9.2	92		10	100		41-144	8		20
Hexachlorobutadiene	ND	10	12	120		12	120		63-130	0		20
sopropylbenzene	ND	10	10	100		11	110		70-130	10		20
o-Isopropyltoluene	ND	10	11	110		11	110		70-130	0		20
Naphthalene	ND	10	9.4	94		10	100		70-130	6		20
n-Propylbenzene	ND	10	10	100		10	100		69-130	0		20
1,2,3-Trichlorobenzene	ND	10	10	100		11	110		70-130	10		20
1,2,4-Trichlorobenzene	ND	10	11	110		11	110		70-130	0		20
1,3,5-Trimethylbenzene	ND	10	11	110		11	110		64-130	0		20
1,2,4-Trimethylbenzene	ND	10	10	100		11	110		70-130	10		20
1,4-Dioxane	ND	500	460	92		500	100		56-162	8		20
o-Diethylbenzene	ND	10	11	110		11	110		70-130	0		20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number:

L2304549

Report Date:

01/31/23

Parameter	Native Sample	M. Add	-	MS Found	MS %Recov	ery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-4_012623	- Westborough	Lab	Associa	ated sample(s): 01-05	QC	Batch ID:	WG17390	96-6 WG1739	9096-7	QC Sample	: L2304	1549-01	Client ID:
p-Ethyltoluene	ND		10	10	100			11	110		70-130	10		20
1,2,4,5-Tetramethylbenzene	ND		10	10	100			11	110		70-130	10		20
Ethyl ether	ND		10	9.8	98			10	100		59-134	2		20
trans-1,4-Dichloro-2-butene	ND		10	6.5	65		Q	6.9	69	Q	70-130	6		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	106	108	70-130
4-Bromofluorobenzene	93	95	70-130
Dibromofluoromethane	108	110	70-130
Toluene-d8	101	101	70-130

Serial_No:01312314:24 **Lab Number:** L2304549

Project Name: 27-01 JACKSON AVE

Project Number: 170472002 **Report Date:** 01/31/23

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2304549-01A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-01A1	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-01A2	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-01B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-01B1	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-01B2	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-01C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-01C1	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-01C2	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-02A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-02B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-02C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-03A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-03B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-03C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-04A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-04B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-04C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-05A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-05B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-05C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-06A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-06B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)

Serial_No:01312314:24

Lab Number: L2304549

Report Date: 01/31/23

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2304549-06C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-07A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)
L2304549-07B	Vial HCI preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260(14)

Project Name: Lab Number: 27-01 JACKSON AVE L2304549

Project Number: 170472002 **Report Date:** 01/31/23

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: 27-01 JACKSON AVE Lab Number: L2304549
Project Number: 170472002 Report Date: 01/31/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: 27-01 JACKSON AVE Lab Number: L2304549
Project Number: 170472002 Report Date: 01/31/23

Data Qualifiers

Identified Compounds (TICs).

- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:01312314:24

 Project Name:
 27-01 JACKSON AVE
 Lab Number:
 L2304549

 Project Number:
 170472002
 Report Date:
 01/31/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:01312314:24

Published Date: 4/2/2021 1:14:23 PM

ID No.:17873

Revision 19

Page 1 of 1

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg.

EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	05	Page		1	e Rec'd Lab /	1/26	12	3	ALPHA Job # L 2304549 Billing Information
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: 2	7-01	Jacks	do 1	Ave	ASI	P-A		ASP-	В	Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288		Pueens.	NY			☐ EQ	ulS (1 File)		EQui	S (4 File)	PO#
Client Information			2002				Oth	er				0.000414
Client: Lanc	dan	(Use Project name as Pr	- Insul				Regulato	y Requirer	nent	3	SCHOOL	Disposal Site Information
Address: 360 Y	N 315 51			semon			NY	rogs		Please identify below location of		
NY	NY	ALPHAQuote #:					☐ AW	2 Standards		applicable disposal facilities.		
Phone: 212-47	9-5 400	Turn-Around Time				-	☐ NY	Restricted Us	se 🗌	Other		Disposal Facility:
Fax: 212-47	19-5444	Standar	d I	Due Date:			☐ NY	Unrestricted	Use			□ NJ □ NY
	Q langencon			# of Days:			☐ NYC	Sewer Disc	harge			Other:
These samples have be							ANALYS	IS				Sample Filtration
Other project specific							17					Done
Please specify Metals	Langan con	n Statum	lange Mon	Q Lanc	jan co	m	OCS STREET					Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID		amala ID	Coll	ection	Sample	Sampler's	->					
(Lab Use Only)	36	ample ID	Date	Time	Matrix	Initials						Sample Specific Comments
04549-61	MWOU-0	12623	1/26/23	9:45	AQ	F	X					MS/MS1)
02	MW-2 -	012623		14:10	1		×					
03	MW-10	1-012623		12:15			X					
04	MW-1-	012623		13:25			x					
05	Dug - 0	12623		IN.			×					
06	FB-012	2623	4	14:05	V	1	×					
07	TB-012	623	1		V	V	X					
		A.										
A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification Mansfield: Certificati		*/		ntainer Type Preservative						Please print clearly, legibly and completely. Samples ca not be logged in and turnaround time clock will no start until any ambiguities ar
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Relinquished	- 46	Date	Time	ff)	received	1-26	73	Date	Time	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES
K/E = Zn Ac/NaOH O = Other	J - BOD BOILIE	July,	7 090	16/13	19:30		VC	1412	110	6/65	1700	TO BE BOUND BY ALPHAS TERMS & CONDITIONS.
		-/-	DITT	1176/25	2115	1111111					3 211	-/Saa rayaraa sida \
Form No: 01-25 HC (rev. 30	0-Sept-2013)		2	1/06/2	52305	Mud	yllon	enry	11/0	46/0	23 23/6	0

ATTACHMENT D Data Usability Summary Reports

Technical Memorandum

1 University Square Drive Princeton, NJ 08540 T: 609.282.8000 Mailing Address: 1 University Square Drive Princeton, NJ 08540

To: Lexi Haley, Langan Senior Staff Engineer

From: Joe Conboy, Langan Senior Staff Chemist

Date: February 14, 2023

Re: Data Usability Summary Report

For 27-01 Jackson Avenue

January 2023 Groundwater Samples Langan Project No.: 170472002

This memorandum presents the findings of an analytical data validation from the analysis of groundwater samples collected in January 2023 by Langan Engineering and Environmental Services at 27-01 Jackson Avenue. The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) for volatile organic compounds (VOCs) by the following method:

VOCs by SW-846 Method 8260D

Table 1, attached, summarizes the laboratory and client sample identification numbers, sample collection dates, level of data validation, and analytical parameters subject to review.

Validation Overview

This data validation was performed in accordance with the following guidelines, where applicable:

- USEPA Region II Standard Operating Procedures (SOPs) for Data Validation
- USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020)
- USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020), and
- published analytical methodologies.

The following acronyms may be used in the discussion of data-quality issues:

%D	Percent Difference	МВ	Method Blank
CCV	Continuing Calibration Verification	MDL	Method Detection Limit
FB	Field Blank	MS	Matrix Spike
FD	Field Duplicate	MSD	Matrix Spike Duplicate
ICAL	Initial Calibration	RF	Response Factor
ICV	Initial Calibration Verification	RL	Reporting Limit
ISTD	Internal Standard	RPD	Relative Percent Difference
LCL	Lower Control Limit	RSD	Relative Standard Deviation
LCS	Laboratory Control Sample	ТВ	Trip Blank

Technical Memorandum

Data Usability Summary Report For 27-01 Jackson Avenue January 2023 Groundwater Samples Langan Project No.: 170472002 February 14, 2023 Page 2 of 3

LCSD	Laboratory Control Sample Duplicate	UCL	Upper Control Limit
------	-------------------------------------	-----	---------------------

Tier 1 data validation is based on completeness and compliance checks of sample-related QC results including: sample receipt documentation; analytical holding times; sample preservation; blank results (method, field, and trip); surrogate recoveries; MS/MSD recoveries and RPDs values; field duplicate RPDs, laboratory duplicate RPDs, and LCS/LCSD recoveries and RPDs. All SDGs underwent Tier 1 validation review.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA guidelines and our best professional judgment:

- **R** The sample results are unusable because certain criteria were not met when generating the data. The analyte may or may not be present in the sample.
- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit; however, the reported reporting limit is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned, these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are considered invalid and are not technically usable for data interpretation. Data that is otherwise qualified because of minor data-quality anomalies are usable, as qualified in Table 2 (attached).

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. No minor deficiencies were identified.

Technical Memorandum

Data Usability Summary Report For 27-01 Jackson Avenue January 2023 Groundwater Samples Langan Project No.: 170472002

February 14, 2023 Page 3 of 3

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate

qualification. The section below describes the other deficiencies that were identified.

VOCs by SW-846 Method 8260D

L2304549

The LCS/LCSD for batch WG1739096 exhibited a percent recovery above the UCL for carbon disulfide

(170%, 170%). The associated results are non-detect. No qualification is necessary.

The MS/MSD performed on sample MW-4_012623 exhibited percent recoveries outside of control limits

for trans-1,4-dichloro-2-butene (65%, 65%), carbon disulfide (190%, 200%), and carbon tetrachloride

(140%) and an RPD outside of control limits for bromomethane (23%). Organic results are not qualified on

the basis of MS/MSD recoveries or RPDs alone. No qualification is necessary.

FIELD DUPLICATE:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less

than 5X the RL, analytes meet the precision criteria if the absolute difference is less than ±X the RL. For

results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 30%

for groundwater. The following field duplicate and parent sample pair was compared to and met the

precision criteria:

MW-4_012623 and DUP01_012623

CONCLUSION:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods

with the exception of errors discussed above. If a given fraction is not mentioned above, that means that

all specified criteria were met for that parameter. All of the data packages met ASP Category B

requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of

analytical results that are judged to be valid, is 100%.

Signed:

Joe Conboy

Senior Staff Chemist

LANGAN