

February 10, 2025

Ms. Marlen Salazar
New York State Department of Environmental Conservation (NYSDEC) Region 2
Division of Environmental Remediation
47-40 21st Street
Long Island City, NY 11101

RE: Ninth Quarter Groundwater Monitoring Report 27-01 Jackson Avenue
Long Island City, New York
NYSDEC Order on Consent No. S241209
Langan Project No.: 170472002

Dear Ms. Salazar:

In accordance with the January 23, 2020 Off-Site In-Situ Treatment Remedial Design Plan (RDP) and the December 12, 2022 NYSDEC-approved Off-Site Site Management Plan (OSMP), Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan) conducted groundwater sampling within the public right-of-way and sidewalks adjacent to the 27-01 Jackson Avenue site located in the Long Island City neighborhood of Queens, New York (Brownfield Cleanup Program [BCP] Site No. C241209). The south- and west-adjoining sidewalks are subject to the April 20, 2022 Order on Consent and Administrative Settlement (CO), Index No. S241209-08-09 and hereinafter referred to as the "CO site". A site location map is provided as Figure 1. This was the ninth quarterly sampling event completed following implementation of the off-site in-situ groundwater treatment program between October 20 and November 11, 2021.

Project Background

The CO site is an approximately 2,750-square-foot area that spans sections of the Jackson Avenue and 43rd Avenue sidewalks adjoining the BCP site located at 27-01 Jackson Avenue in the Long Island City neighborhood of Queens, New York (identified as Block 432, Lot 21 on the Queens County Tax Map). A site layout plan is presented on Figure 2.

Light non-aqueous phase liquid (LNAPL), and petroleum-impacted soil, groundwater, and soil vapor were identified on- and off-site during a Remedial Investigation (RI) and supplemental sampling events performed between October 2018 and July 2020. To address the impacts, NYSDEC approved the RDP and the Remedial Action Work Plan (RAWP) on January 23, 2020 and January 9, 2021, respectively. A Track 1 remedy was achieved at the BCP site and a certificate of completion (COC) was issued on December 23, 2022. Pursuant to the RAWP, a CO was executed on April 20, 2022, which requires compliance with the NYSDEC-approved

December 12, 2022 OSMP. The intent of the CO is to monitor off-site conditions in groundwater following off-site groundwater treatment and on-site dewatering. The OSMP addresses the means for implementing, monitoring, and reporting on the Engineering and Institutional Controls (ECs/ICs) that are required by the CO for the off-site areas adjacent to the BCP site.

In-Situ Groundwater Treatment

An off-site in-situ groundwater treatment program was implemented to treat remaining petroleum-related VOCs beneath the CO site, which were initially identified during the RI. Targeted petroleum-related VOCs included benzene, toluene, ethylbenzene, and xylenes (BTEX), and their breakdown products. Impacted groundwater was treated using an activated carbon solution (PetroFixTM) via direct-push injection points located in a rough grid pattern to spread chemicals evenly within the off-site, south- and west-adjoining sidewalks comprising the CO site.

The injection program was carried out by Clean Harbors of Norwell, Massachusetts and Aquifer Drilling and Testing (ADT) of Mineola, New York, under the oversight of Langan, between October 20 and November 11, 2021. Injection point locations are shown on Figure 3. At each injection point, a hollow steel injection rod was advanced to depths ranging from about 15 to 30 feet below grade surface (bgs). Injections were made using a "bottom-up" approach, beginning at the deepest 2-foot interval, and raised from the bottom depth in 2-foot intervals to approximately 15 feet bgs. Approximately 14,400 pounds of Petrofix® and 720 pounds of electron acceptor blend were applied via direct-push drill rig between October 20 and November 11, 2021. Between 664 and 976 pounds of Petrofix® were applied to each point.

Performance Monitoring Methodology

The RDP and OSMP included baseline sampling and quarterly post-injection groundwater monitoring to evaluate the efficacy of the CO site remedy. Baseline groundwater sampling was conducted from existing monitoring wells MW-3 and MW-4 and temporary monitoring wells MW-1 and MW-2 on October 7 and 19, 2021. Monitoring wells MW-3 and MW-4 were compromised during installation of the support of excavation, and the four monitoring wells were reinstalled for post-remediation groundwater monitoring on August 22, 2022 and October 13 and 14, 2022. Post-injection monitoring well locations are shown on Figure 3.

Post-injection groundwater monitoring was not conducted between November 2021 and October 2022 due to remediation efforts and active dewatering at the BCP site. Nine post-injection quarterly sampling events have been completed at the CO site in October 2022, January 2023, April 2023, July 2023, October 2023, January 2024, April 2024, July 2024, and October 2024.

Between the third and fourth quarter sampling events, monitoring well MW-3 was compromised during the installation of utilities beneath the 43rd Avenue sidewalk. Considering VOCs were non-detect in MW-3 during the previous three quarters of sampling, NYSDEC allowed the discontinuation of sampling of MW-3 via email correspondence on August 8th, 2023. The Fourth Quarter Groundwater Monitoring Report, dated September 15, 2023, indicated that VOCs were also non-detect in monitoring well MW-4 during the previous four quarters; therefore, NYSDEC

allowed the discontinuation of sampling of MW-4 via email correspondence on October 13th, 2023. NYSDEC correspondence is included as Attachment A.

Well Purging and Sampling

Monitoring well sampling was conducted for monitoring wells MW-1 and MW-2 on October 29, 2024. Before sampling, each well was purged using the low-flow method developed by the United States Environmental Protection Agency (USEPA) "Low-Flow [Minimal Drawdown] Ground-Water Sampling Procedures," EPA/540/S-95/504, April 1996) and accepted by the NYSDEC. purging was performed using a peristaltic pump fitted with dedicated tubing at each well. During purging, the turbidity, pH, temperature, conductivity, oxidation-reduction potential (ORP), and dissolved oxygen (DO) were monitored using a Horiba U-52 water quality meter with a flow-through cell. Purged groundwater was containerized in 55-gallon drums during each event. The daily site observation report is included in Attachment B. The groundwater quality parameters were recorded in the Well Purging and Sampling Logs provided in Attachment C.

As a general rule, groundwater is purged until water quality parameters stabilized, after an hour of continuous purging, or after three well volumes of groundwater had been removed from the well. Due to poor recharge in both wells, groundwater samples were collected from MW-1 and MW-2 after purging three well volumes from each well.

After purging each well, a groundwater sample was collected directly from the pump discharge line using USEPA low-flow techniques. For quality assurance and quality control, one field blank sample and one duplicate sample were collected. A trip blank was included in each shipment for quality control during transport. All samples were analyzed for Part 375/Target Compound List (TCL) VOCs via USEPA SW-846 method 8260C by Pace Analytical, a NYSDOH Environmental Laboratory Approval Program (ELAP)-accredited laboratory in Westborough, Massachusetts.

The laboratory analytical results for the baseline sampling event, the previous quarterly sampling events, and the October 2024 sampling event are summarized in Table 1. The laboratory analytical report from the October 2024 sampling event is provided as Attachment D. Groundwater analytical results were compared to the NYSDEC Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical & Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA drinking water (herein collectively referenced as the NYSDEC SGVs). Analytical results from the first quarterly sampling event are discussed in the NYSDEC-approved December 2022 Final Engineering Report (FER), and analytical results from subsequent quarters are discussed in their respective quarterly monitoring reports.

October 2024 Performance Monitoring Analytical Results

Analytical results from the October 2024 performance monitoring are summarized as follows:

• MW-1: No VOCs were detected above the NYSDEC SGVs. In comparison to baseline analytical results, total VOC and total BTEX concentrations have decreased by 100%.

• MW-2:

1,2,4,5-Tetramethylbenzene, 1,2,4-trimethylbenzene, ethylbenzene isopropylbenzene (cumene), m,p-xylene, n-propylbenzene, and total xylenes were detected above the NYSDEC SGVs. In comparison to baseline analytical results, total VOC and total BTEX concentrations have decreased by 98.7% and 99.7%, respectively.

Seven VOCs were detected above the NYSDEC SGVs in groundwater samples collected during the October 2024 monitoring event. Total VOC concentrations have decreased by 100% (MW-1) and 98.7% (MW-2), and total BTEX concentrations have decreased by 100% (MW-1) and 99.7% (MW-2) when compared to baseline concentrations. In comparison to the eighth quarterly sampling event, analyte concentrations detected above the NYSDEC SGVs in MW-1 and MW-2 are generally within the same order of magnitude.

Analytical data are shown on Figure 4 and result trends are shown on Figure 5. Comparison of overall result trends for each monitoring well show a bulk reduction in petroleum-related VOCs to asymptotic levels over the course of the monitoring program. Based on the post-remedy sampling results and trends, the off-site remedy appears to have been effective; further significant decline of contaminant of concern concentrations in the near term is not anticipated.

Data Validation

A copy of the Analytical Services Protocol (ASP) Category B laboratory report was submitted to Langan's data validation department for review in accordance with the USEPA validation guidelines for organic and inorganic data. The data were found to be 100% acceptable. The Data Usability Summary Report (DUSR) is included in Attachment E.

Langan Project No.: 170472002

Closure

Targeted petroleum-related VOC concentrations exceeded the NYSDEC SGVs in MW-2, but have been reduced by one to three orders of magnitude relative to baseline concentrations, indicating that bulk reduction has been observed. VOCs were not detected above the NYSDEC SGVs in MW-1 during the October 2024 monitoring event. Based on the overall sampling event results trends, asymptotic levels have been achieved over the nine monitoring events, indicating that the off-site remedy has been effective. Further significant decline of concentrations of contaminants of concern in the near term is not anticipated; however, as requested by NYSDEC in their correspondence dated September 19, 2024 (see Attachment A), Langan will conduct two additional quarterly groundwater monitoring events at the CO site prior to re-evaluating discontinuation of the monitoring program.

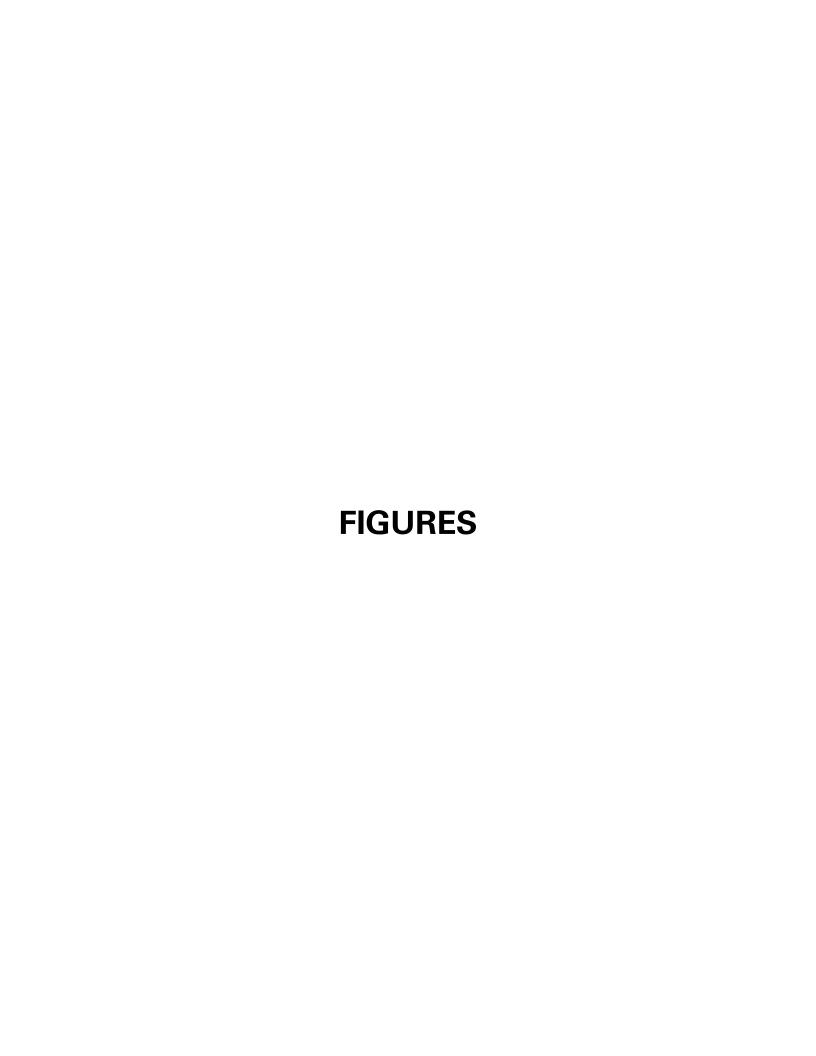
Should you have any questions, please call the undersigned at 212-479-5427.

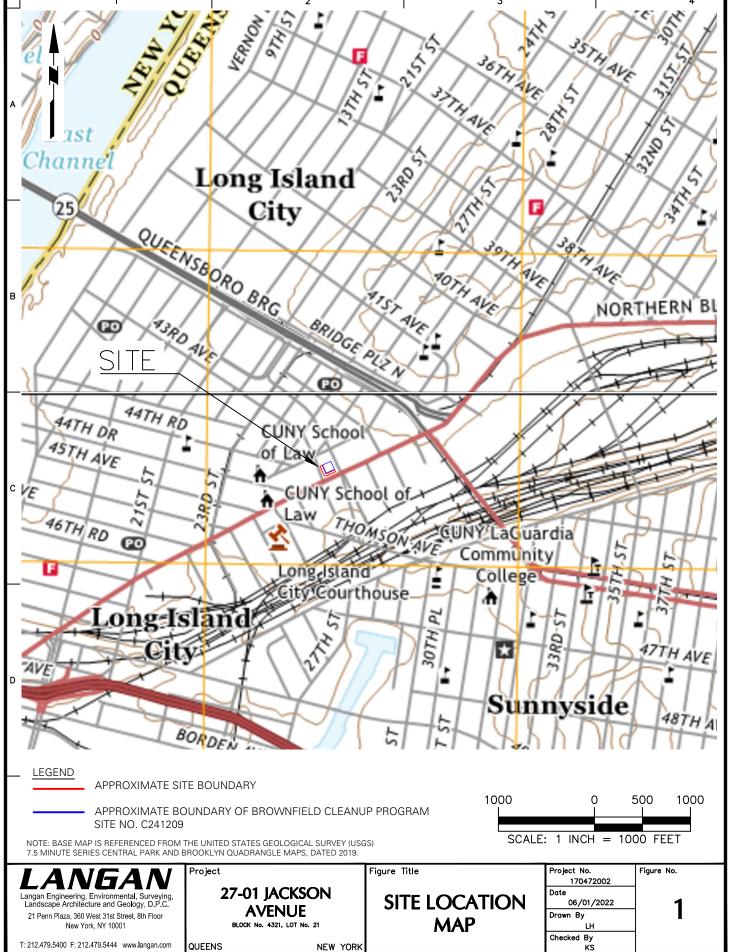
Sincerely,

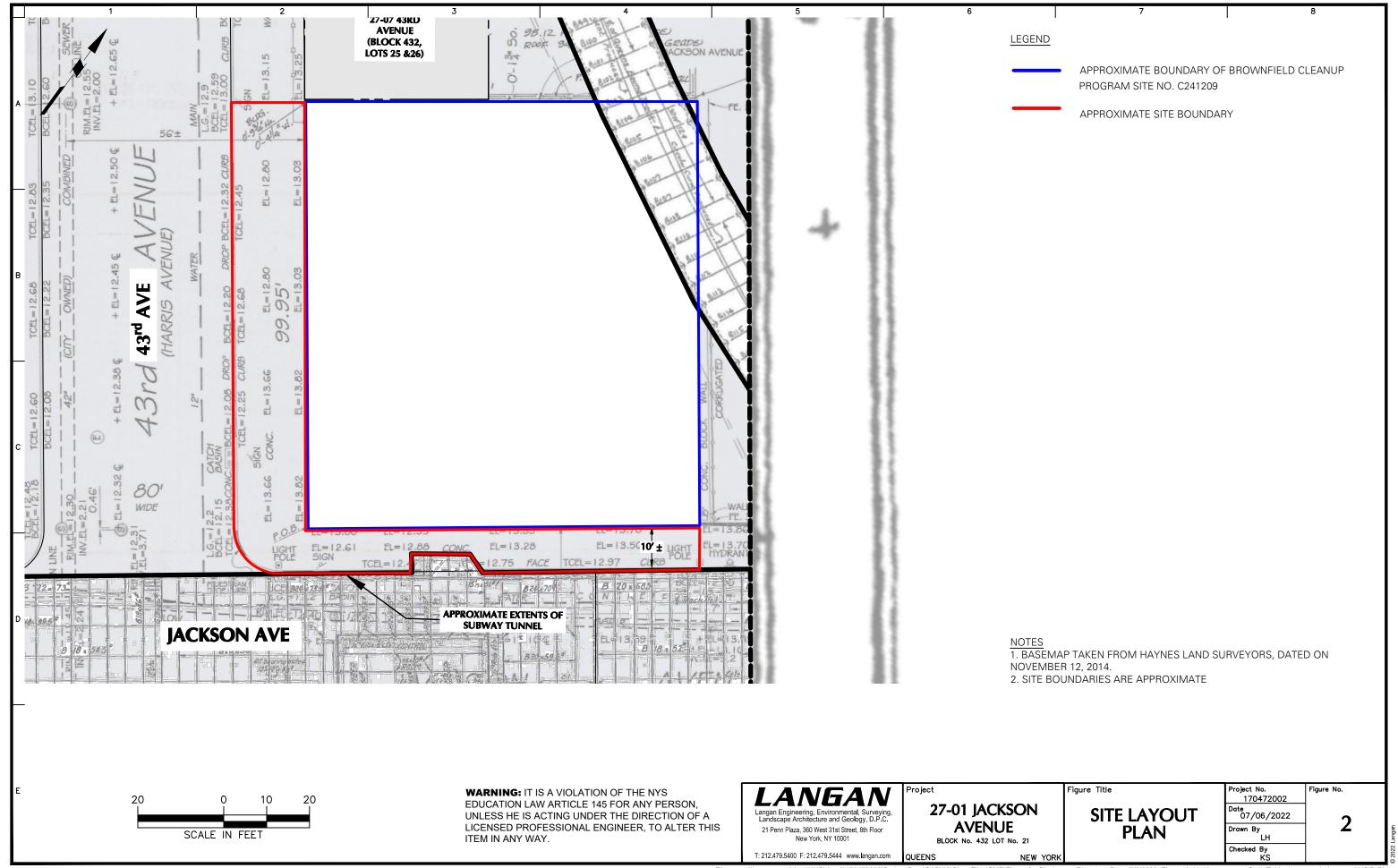
Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C.

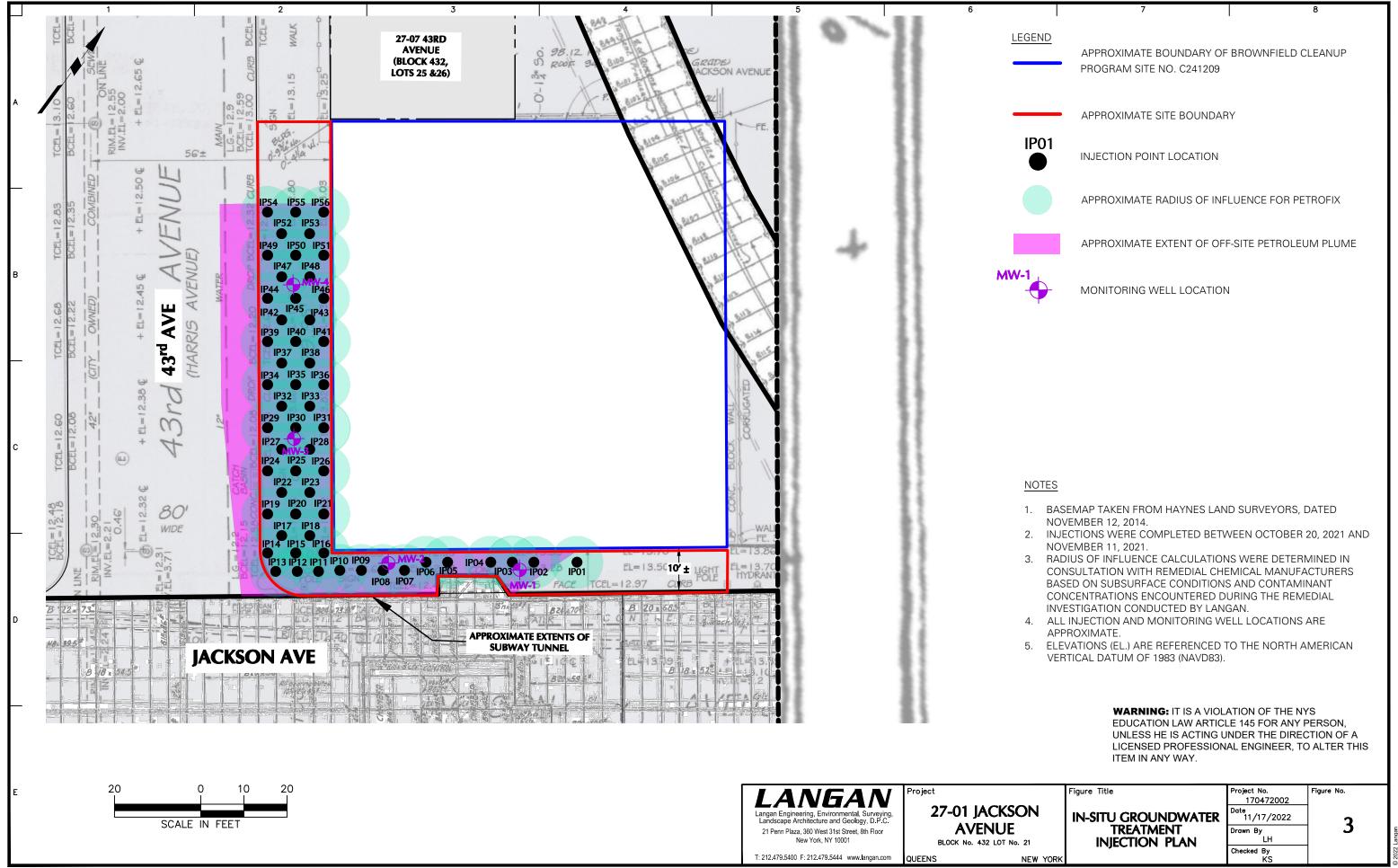
Jason Hayes, P.E. Senior Principal

Enclosures:


Table 1


Site Location Map
Site Layout Plan
In-Situ Groundwater Treatment Injection Plan
Groundwater Sample Analytical Results
Groundwater Sample Analytical Results Trends


Groundwater Sample Analytical Results


Attachment A NYSDEC Correspondence
Attachment B Daily Site Observation Report
Attachment C Well Purging and Sampling Logs
Attachment D Laboratory Analytical Report
Attachment E Data Usability Summary Report

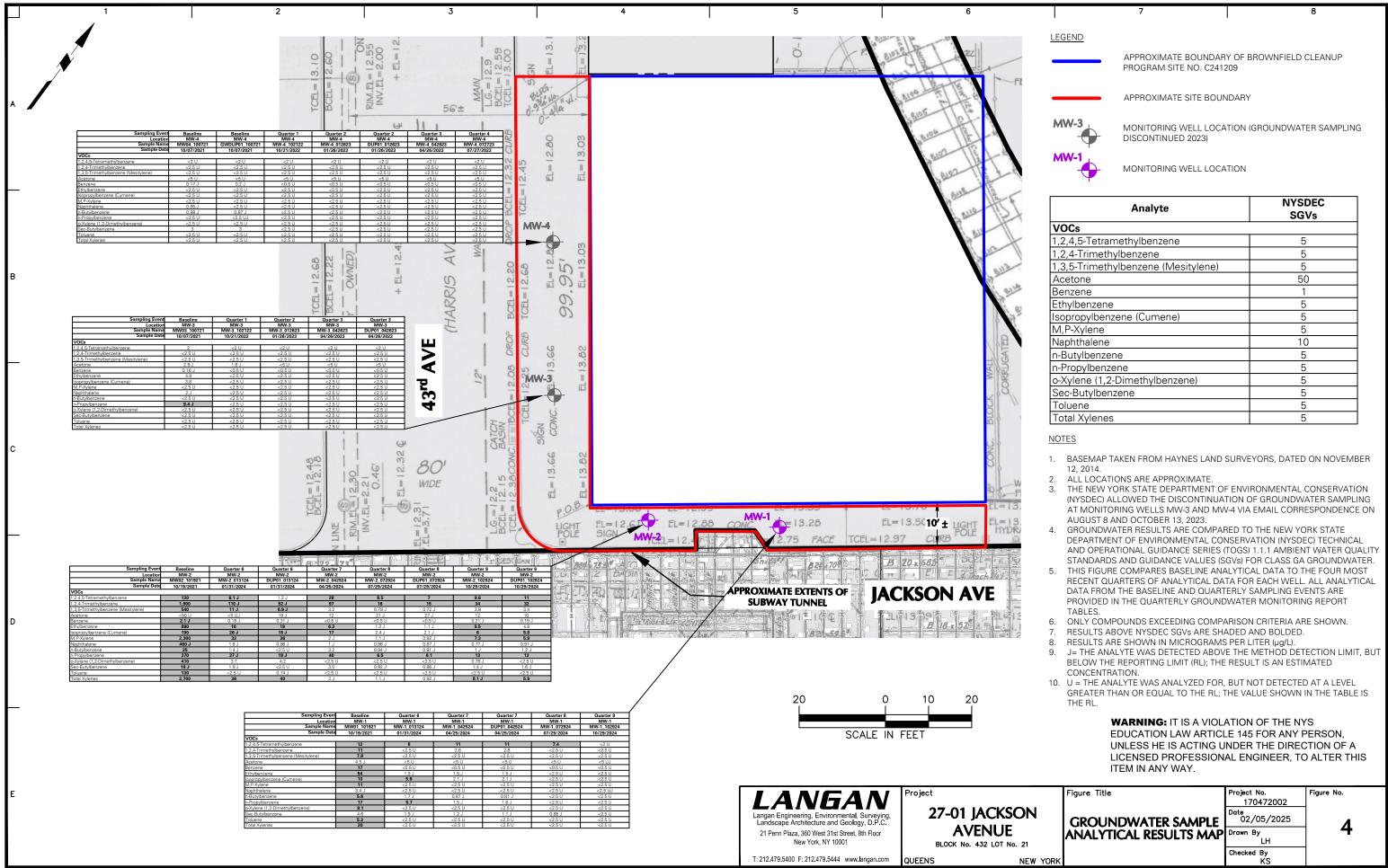


Figure 5 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results Trends

MW-1 Groundwater Trends - VOCs

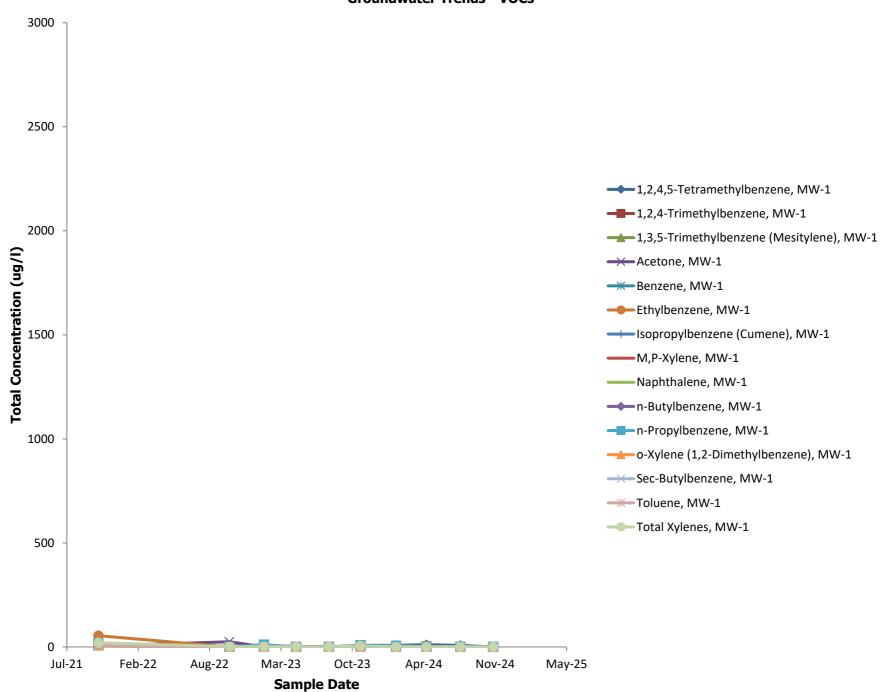


Figure 5 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results Trends

MW-2 Groundwater Trends - VOCs

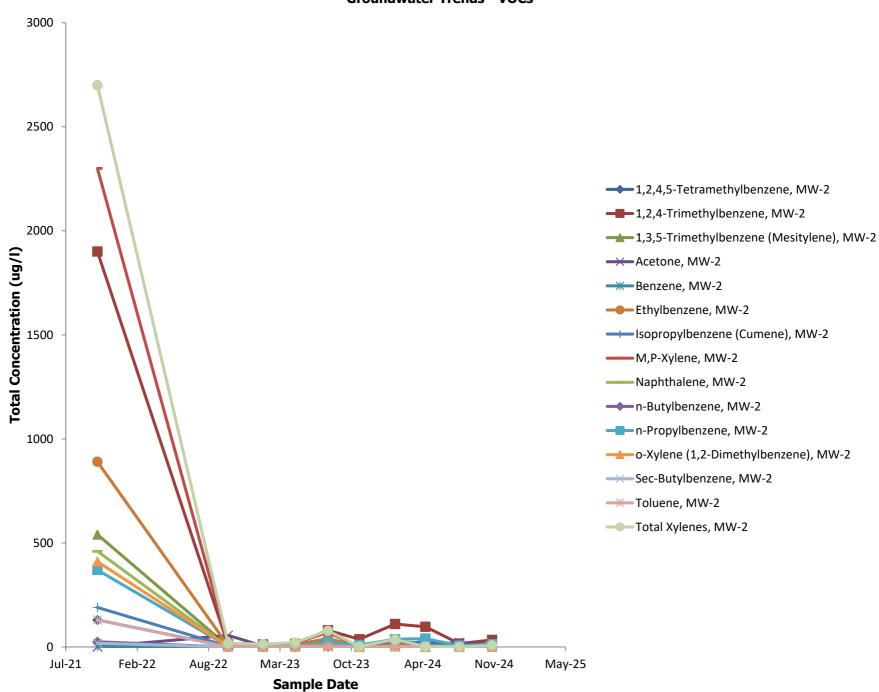


Figure 5 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results Trends

MW-3 Groundwater Trends - VOCs

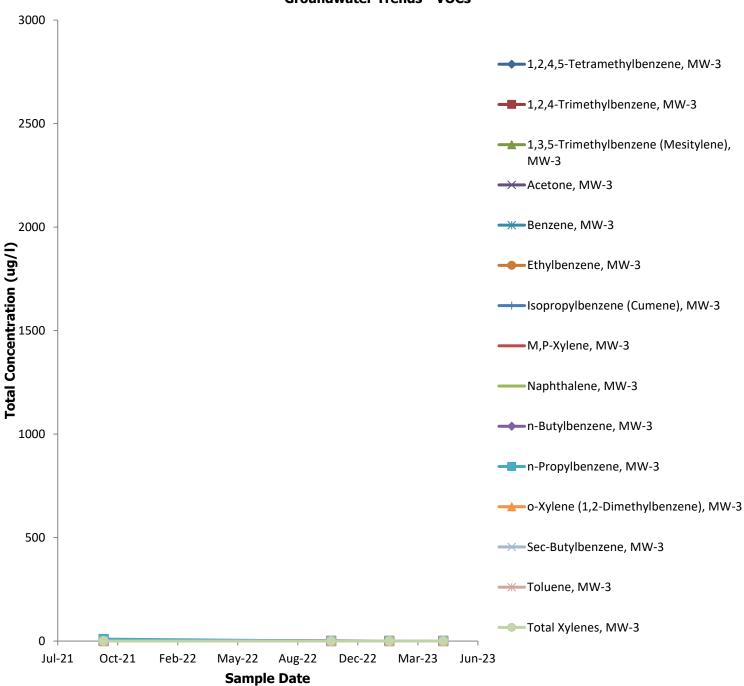
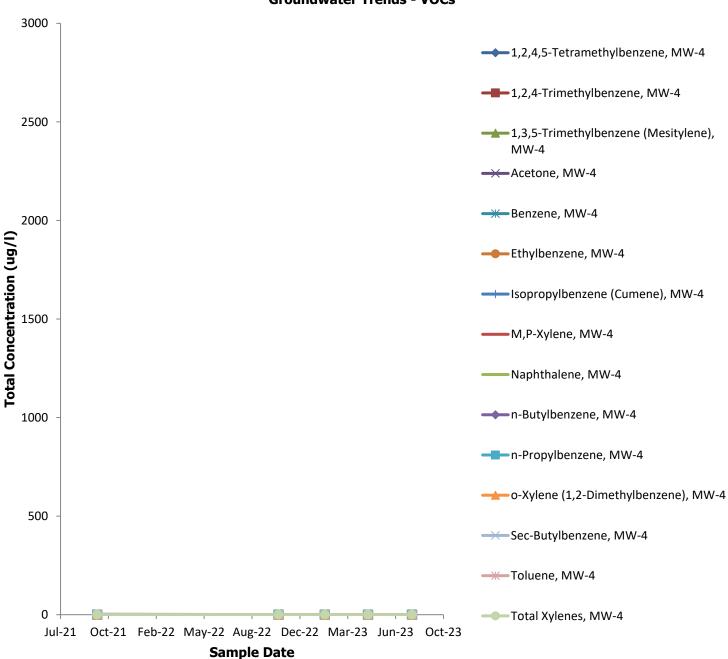
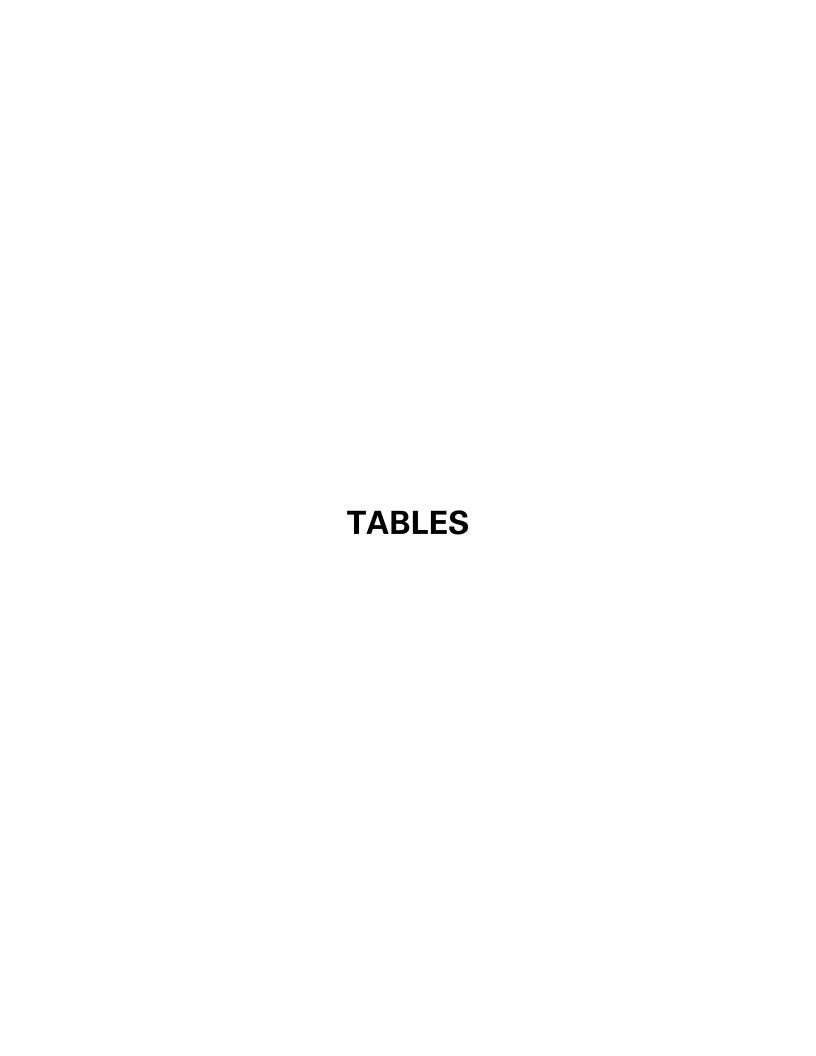




Figure 5 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results Trends

MW-4 Groundwater Trends - VOCs

3-500 merganger								Langan Project N	10 170472002								
Part				Sampling Event	Baseline	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Quarter 4	Quarter 5	Quarter 5	Quarter 6	Quarter 7	Quarter 7	Quarter 8	Quarter 9
Second Column	A l d .	CAS	NYSDEC														
The content	Analyte	Number	SGVs			_	_			_			_	_			
Color																	
15 Calestones 700 5		000.00.0			0.511	0.5.11	0.511	0.511	0.511	0.5.11	0.511	0.5.11	0.511	0.5.11	0.511	0.5.11	0.511
Color			-														
Advantage Appendix	,1,2,2-Tetrachloroethane		5														
			1														
**Schemen			5														
25-25-25-25-25-25-25-25-25-25-25-25-25-2			5														
Angle March Marc	,2,3-Trichlorobenzene	87-61-6	· ·						<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				<2.5 U
*** All Colons when *** 1924																	
2-Schreenspeeche Section 1			_														
Column	,2,4-Trimethylbenzene																
28 Debectors	,2-Dibromo-3-Chloropropane																
Wilson	· · · · · · · · · · · · · · · · · · ·																
Wilson			-														
All-Continues All-Continue	,2-Dichloropropane																
14 28	,3,5-Trimethylbenzene (Mesitylene)		-														
Scheroscherosche ** Order* 3			3 5														
Color Colo	,,3-Dichloropane ,,4-Dichlorobenzene		3														
2009 1200	1,4-Diethyl Benzene	105-05-5		ug/l	26	4	4.9	1.7 J	<2 U	<2 U	1.6 J	1.7 J	3.9	3.5	3.5	2.3	<2 U
Company Comp	1,4-Dioxane (P-Dioxane)																
Network 1967 197	· ·		o o														
Finishere 17-10-20 1	2-Hexanone (MBK)		-														
months	4-Chlorotoluene		· ·														
Comparison	· · · · · · · · · · · · · · · · · · ·																
more 71452 1 will 77 dells 527 dells 621 dells 621 dells 651 dells																	
March Marc	Benzene	71-43-2	1		17	<0.5 U		<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Part	Bromobenzene		-														
momentem			-														
A	Bromoform																
## 4550 ## 455	Bromomethane		5														
Nonembersone 198807 5			60 F														
Noncellane 76,003 6 190 45 45 45 45 45 45 45 4			5														
Information 74-873 5	Chloroethane		5														
is 4.70 informations 1669/2 5 ugil 2.5 U 2.5	Chloroform		7														
Section 100 101			5 5														
124481 50	Cis-1,3-Dichloropropene		0.4														
Page	Cymene		•														
insharodiffuscomethme			50 E														
Insert Ether Eth			5														
Second control processes Second S	Diethyl Ether (Ethyl Ether)	60-29-7	NS	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ
Compropherane (Currene) Sept. Se	Ethylbenzene																
P.Nylene 179801-22-1 5																	<2.5 U
Tethyl soburty Ketnoe (4-Nethyl-2-Pentanone) 108-10-1 NS ugf 45 U 4	M,P-Xylene					1.3 J	0.88 J	<2.5 U	<2.5 U	<2.5 U			<2.5 U			<2.5 U	<2.5 U
Tethylenechloride	Methyl Ethyl Ketone (2-Butanone)																
Septimen																	
Butylberane	Naphthalene																
Sylene (1,2-Dimethylbenzene 135-98-8 5 ug/l 4.6 <2.5 U	n-Butylbenzene			ug/l													
ee-Butylbenzene 138-98-8 5 ug/ 4.6 <2.5 U 2.7 0.87 J <2.5 U 2.5 U 2.5 U 0.9 J 1.J 1.9 J 1.2 J 1.1 0.85 J <2.5 U 1.9 U																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-														
ert-Butyl Methyl Ether 1634-04-4 10 ug/l < 2.5 U < 2.5	Styrene		5														
etrachloroethene (PCE) 127-18-4 5 ug/l < 0.5 U	-Butylbenzene																
Supple S																	
otal 1,2-Dichloroethene (Cis and Trans) 540-59-0 NS ug/l <2.5 U <	otrachioroethene (PCE) oluene		-														
otal, 1,3-Dichloropropene (Cis And Trans) 542-75-6 0.4 ug/l < 0.5 U <	otal 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
rans-1,2-Dichloroethene 156-60-5 5 ug/l <2.5 U <2.5	otal Xylenes																
rans-1,3-Dichloropropene 10061-02-6 0.4 ug/l <0.5 U																	
rans-1,4-Dichloro-2-Butene 110-57-6 5 ug/l <2.5 U <	rans-1,3-Dichloropropene																
richlorofluoromethane 75-69-4 5 ug/l <2.5U	Frans-1,4-Dichloro-2-Butene	110-57-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
inyl Acetate 108-05-4 NS ug/l <5U	Frighters (TCE)																
	Trichlorofluoromethane Vinyl Acetate		-														
	/inyl Chloride																

							g	Project No.: 170472									
			Sampling Event	Baseline	Quarter 1	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Quarter 5	Quarter 6	Quarter 6	Quarter 7	Quarter 8	Quarter 8	Quarter 9	Quarter 9
	CAS	NYSDEC	Location	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2
Analyte	Number	SGVs	Sample Name	MW02_101921	MW-2_102022	DUP01_102022	MW-2_012623	MW-2_042623	MW-2_072723	MW-2_102323	MW-2_013124	DUP01_013124	MW-2_042524	MW-2_072924	DUP01_072924	MW-2_102924	DUP01_102924
			Sample Date	10/19/2021	10/20/2022	10/20/2022	01/26/2023	04/26/2023	07/27/2023	10/23/2023	01/31/2024	01/31/2024	04/25/2024	07/29/2024	07/29/2024	10/29/2024	10/29/2024
Volatile Organic Compounds			Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1,2-Tetrachloroethane	630-20-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1,1-Trichloroethane	71-55-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1,2,2-Tetrachloroethane	79-34-5	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
1,1,2-Trichloroethane 1,1-Dichloroethane	79-00-5 75-34-3	1 5	ug/l ug/l	<15 U <25 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U	<1.5 U <2.5 U
1,1-Dichloroethene	75-35-4	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
1,1-Dichloropropene	563-58-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,3-Trichlorobenzene	87-61-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene	96-18-4 95-93-2	0.04 5	ug/l ug/l	<25 U 130	<2.5 U 1.4 J	<2.5 U 4.2 J	<2.5 U <2 U	<2.5 U <2 U	<2.5 U 2.6	<2.5 U 6.2	<2.5 U 6.1 J	<2.5 U 1.3 J	<2.5 U 28	<2.5 U 8.5	<2.5 U	<2.5 U 9.6	<2.5 U
1,2,4-Trichlorobenzene	120-82-1	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,4-Trimethylbenzene	95-63-6	5	ug/l	1,900	10 J	34 J	12	15	80	37	110 J	52 J	97	16	15	34	32
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	0.0006	ug/l	<20 U	<2 U <2.5 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U
1,2-Dichlorobenzene 1,2-Dichloroethane	95-50-1 107-06-2	3 0.6	ug/l ug/l	<25 U <5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
1,2-Dichloropropane	78-87-5	1	ug/l	<10 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U
1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	5	ug/l	540	3.5 J	8 J	2.5	2.4 J	11	2.5	11 J	6.9 J	3.2	0.79 J	0.72 J	3.8	3.4
1,3-Dichlorobenzene	541-73-1	3	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,3-Dichloropropane 1,4-Dichlorobenzene	142-28-9 106-46-7	5 3	ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
1,4-Dichiorobenzene 1,4-Diethyl Benzene	105-46-7	NS	ug/l ug/l	270	<2.5 U	<2.5 U 0.72 J	<2.5 U	0.85 J	<2.5 U	0.91 J	2.5	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	2.2
1,4-Dioxane (P-Dioxane)	123-91-1	0.35	ug/l	<2,500 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 UJ	<250 UJ
2,2-Dichloropropane	594-20-7	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
2-Chlorotoluene	95-49-8	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
2-Hexanone (MBK) 4-Chlorotoluene	591-78-6 106-43-4	50 5	ug/l ug/l	<50 U <25 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U
4-Ethyltoluene	622-96-8	NS	ug/l	800	7.4 J	15 J	6.2	9.7	44	13	51 J	30 J	38	5.6	5.3	16	15
Acetone	67-64-1	50	ug/l	<50 U	56	63	4.4 J	12 J	37	3.8 J	<5 UJ	19 J	12	21 J	27 J	12	10
Acrylonitrile	107-13-1	5	ug/l	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Benzene	71-43-2 108-86-1	1 5	ug/l	2.1 J <25 U	0.69 <2.5 ∪	0.35 J <2.5 U	0.51 <2.5 ∪	0.82 <2.5 ∪	0.6 <2.5 ∪	<0.5 U <2.5 U	0.18 J <2.5 ∪	0.31 J <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	0.21 J <2.5 U	0.19 J <2.5 ∪
Bromobenzene Bromochloromethane	74-97-5	5	ug/l ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Bromodichloromethane	75-27-4	50	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Bromoform	75-25-2	50	ug/l	<20 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 ∪	<2 ∪	<2 U	<2 U
Bromomethane	74-83-9	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	1.3 J	2.6 J	0.85 J	1.2 J	1.1 J	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ
Carbon Disulfide Carbon Tetrachloride	75-15-0 56-23-5	60 5	ug/l ug/l	<50 U <5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U
Chlorobenzene	108-90-7	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Chloroethane	75-00-3	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ
Chloroform	67-66-3	7	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Chloromethane Cis-1,2-Dichloroethene	74-87-3 156-59-2	5	ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Cis-1,3-Dichloropropene	10061-01-5	0.4	ug/l ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<2.5 U
Cymene	99-87-6	5	ug/l	<25 U	<2.5 U	0.7 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	1.2 J	<2.5 U	2 J	<2.5 U	<2.5 U	0.76 J	0.86 J
Dibromochloromethane	124-48-1	50	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Dibromomethane	74-95-3	5 5	ug/l	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Dichlorodifluoromethane Diethyl Ether (Ethyl Ether)	75-71-8 60-29-7	NS	ug/l ug/l	<50 U <25 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 UJ	<5 U <2.5 UJ
Ethylbenzene	100-41-4	5	ug/l	890	5.9	4	5.8	11	41	3.2	16	19	6.3	1.2 J	1.1 J	5.5	4.8
Hexachlorobutadiene	87-68-3	0.5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Isopropylbenzene (Cumene)	98-82-8	5	ug/l	190	3	3.5	3.2	5.2	22	8.3	26 J	18 J	17	2.4 J	2.1 J	6	5.8
M,P-Xylene Methyl Ethyl Ketone (2-Butanone)	179601-23-1 78-93-3	50	ug/l ug/l	2,300 <50 U	16 <5 UJ	14 21 J	12 <5 ∪	19 <5 U	70 27	2.3 J <5 ∪	32 <5 UJ	36 13 J	2 J <5 ∪	1.1 J 4.6 J	0.92 J 4.7 J	7.3 <5 U	5.9 <5 ∪
Methyl Isobutyl Ketone (2-Butanone) Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	NS	ug/l	<50 U	1.5 J	<5 U	<5 U	1.7 J	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Methylene Chloride	75-09-2	5	ug/l	<25 U	_ 1 J	<2.5 U	0.92 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	0.79 J	<2.5 U	<2.5 U	<2.5 U	1.1 J	0.88 J
Naphthalene	91-20-3	10	ug/l	460 J	<2.5 U	3	<2.5 U	<2.5 U	1.4 J	<2.5 U	1.6 J	0.86 J	1 J	0.96 J	0.87 J	0.77 J	0.91 J
n-Butylbenzene n-Propylbenzene	104-51-8 103-65-1	5 5	ug/l	25 370	<2.5 U 2.8 J	0.93 J 5.7 J	<2.5 U 2.7	<2.5 U 4.5	0.7 J 23	<2.5 U 9.5	1.4 J 37 J	<2.5 U 19 J	3.2 40	0.94 J 6.5	0.91 J 6.1	1 J 13	1.2 J 13
o-Xylene (1,2-Dimethylbenzene)	95-47-6	5	ug/l ug/l	410	2.8 J 2 J	1.9 J	1.5 J	4.5 2.1 J	7.5	<2.5 U	3.7	4.2	<2.5 U	<2.5 U	<2.5 U	0.78 J	<2.5 U
Sec-Butylbenzene	135-98-8	5	ug/l	18 J	<2.5 U	0.83 J	<2.5 U	<2.5 U	0.93 J	0.84 J	1.9 J	<2.5 U	3.5	0.92 J	0.86 J	1.4 J	1.6 J
Styrene	100-42-5	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
T-Butylbenzene	98-06-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Tert-Butyl Methyl Ether	1634-04-4	10 5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Tetrachloroethene (PCE) Toluene	127-18-4 108-88-3	5	ug/l ug/l	<5 U 130	<0.5 U 0.7 J	<0.5 U 1 J	<0.5 U <2.5 U	<0.5 U 0.79 J	<0.5 U 1.2 J	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U 0.74 J	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Total Xylenes	1330-20-7	5	ug/l	2,700	18 J	16 J	14 J	21 J	78	2.3 J	36	40	2 J	1.1 J	0.92 J	8.1 J	5.9
Total, 1,3-Dichloropropene (Cis And Trans)	542-75-6	0.4	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	156-60-5 10061-02-6	5 0.4	ug/l	<25 U <5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
Trans-1,3-Dichloro-2-Butene	110-57-6	0.4 5	ug/l ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U <2.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Trichloroethene (TCE)	79-01-6	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Trichlorofluoromethane	75-69-4	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ
Vinyl Acetate	108-05-4	NS	ug/l	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Vinyl Chloride	75-01-4	2	ug/l	<10 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U

Section							Langar	n Project No.: 170472	2002							
March Marc		CAS	NVSDEC													
	Analyte															
Section																
. 2 September 1985 7.00 7.	Volatile Organic Compounds															
. 2.5 Services registered services (1.5 s) 400 400 400 400 400 400 400 400 400 40																
. 2 Calendarie 7000 1																
. Specimens 7.545	1,1,2-Trichloroethane		1													
Color	1,1-Dichloroethane	75-34-3	5		<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
2-50 controllers																
2.25 1.25																
2.45 Framewherene			-													
Column	1,2,4,5-Tetramethylbenzene															
28	1,2,4-Trichlorobenzene															
Column																
Company Comp	I															
Column																
22 Profession Membrane 1965	1,2-Dichloroethane		0.6													
2	1,2-Dichloropropane			ug/l												
12 POPE 12 P																
A CONTROMOREM 176 17			-													
A Service Processor 100	1,4-Dichlorobenzene															
Fig. Company	1,4-Diethyl Benzene			ug/l	2.1 J	<2 U	<2 U	<2 U	<2 U	5.3	5.3 J	<2 U	<2 U	<2 U	<2 ∪	<2 U
Composition of the Composition	1,4-Dioxane (P-Dioxane)															
Primary Prim																
Colorations																
Services 1974 50	4-Chlorotoluene															
Note	4-Ethyltoluene															
Processor 17-62	Acetone															
Internatione 100.867	157															
Proceedings	Bromobenzene															
Secondary 1955 19	Bromochloromethane	74-97-5	5		<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
International Process Page S	Bromodichloromethane															
Carbon Floring																
Commentation Security Secur																
Discontinum 75.003 5	Carbon Tetrachloride															
Discreption	Chlorobenzene															
Chemomethane			-													
18-12-Diffollocetheme			•													
1061-01-5 0.4	Cis-1,2-Dichloroethene		5													
Decompositions	Cis-1,3-Dichloropropene			ug/l												
Second Company	Cymene		-													
Debroodfuloromethane 75718 5																
Deby Effer (Ether) Ether (Ether) Ether) Ether) Ether (Ether) Ether) Eth																
	Diethyl Ether (Ethyl Ether)		NS													
September Sept	Ethylbenzene															
MPXylene 179801/221 5			U.5			0 = 11	0 = 11	0 = 11	0 = 11	0 = 11	0 = 11	0 = 11	0 = 11	0 = 11	0 = 11	0.511
Velty Methy Letty Astrone 2-Authorne 2-Author	M,P-Xylene		5													
Verby Sobury Katone (Anthryk-2-Pentanone) 108-10-1 NS ug/l 45 U	Methyl Ethyl Ketone (2-Butanone)	78-93-3			<5 U	<5 UJ	<5 U	<5 U	<5 U	<5 U	<5 U	<5 UJ	<5 U	<5 U	<5 U	<5 U
Septimber Sept	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)			ug/l												
Publipherane 104-51-8 5	*															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n-Butylbenzene															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n-Propylbenzene															
Styren 100-42-5 5 ug/l <2.5 U	o-Xylene (1,2-Dimethylbenzene)			ug/l												
Fully Methyle Ether 98-06-6 5 ug/l < 2.5 U	Sec-Butylbenzene															
Tert-Butyl Methyl Ether 1634-044 10 ug/l < 2.5 U <	*															
Fetrachloroethene (PCE) 127-18-4 5 ug/l <0.5 U	Tert-Butyl Methyl Ether															
Total 1,2-Dichloroethene (Cis and Trans)	Tetrachloroethene (PCE)		5	ug/l												
Total Xylenes 1330-20-7 5 ug/s <2.5 U	Toluene															
Cotal, 1,3-Dichloropropene (Cis And Trans) 542-75-6 0.4 ug/l <0.5 U <0.5																
Frans-1,2-Dichloroethene 156-60-5 5 ug/l <2.5 U	Total, 1,3-Dichloropropene (Cis And Trans)															
Frans-1,3-Dichloropropene 10061-02-6 0.4 ug/l < 0.5 U	Trans-1,2-Dichloroethene															
Frichloroethene (TCE) 79-01-6 5 ug/l <0.5 U <0.5	Trans-1,3-Dichloropropene			ug/l												
Frichlorofluoromethane 75-69-4 5 ug/l <2.5U <2.5	Trans-1,4-Dichloro-2-Butene															
/inyl Acetate 108-05-4 NS ug/l <5U																
	Vinyl Acetate															
	Vinyl Chloride															

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002

Notes:

CAS - Chemical Abstract Service

NS - No standard

ug/l - microgram per liter

NA - Not analyzed

RL - Reporting limit

<RL - Not detected

Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operation Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water and published addenda (herein collectively referenced as "NYSDEC SGVs").

Qualifiers:

- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Exceedance Summary:

- Result exceeds NYSDEC SGVs

ATTACHMENT A NYSDEC Correspondence

Caroline Devin

From: Caroline Devin

Sent: Wednesday, November 8, 2023 5:18 PM

To: Caroline Devin

Subject: FW: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

From: Bollers, Shaun (DEC) <shaun.bollers@dec.ny.gov>

Sent: Friday, October 13, 2023 10:10 AM To: Lexi Haley < lhaley@langan.com>

Cc: Kimberly Semon < ksemon@langan.com >; Obligado, Andre A (DEC) < andre.obligado@dec.ny.gov > Subject: [External] RE: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

Good Morning Lexi:

NYSDEC has no objections to this change in the sampling protocol as the MW-4 groundwater samples have shown non-detect for 4 consecutive quarters.

BTW How far has the on-site construction progressed?

Regards,

Shaun

Shaun Bollers

Assistant Environmental Engineer, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | shaun.bollers@dec.ny.gov

www.dec.ny.gov | III |

From: Lexi Haley < lhaley@langan.com> Sent: Wednesday, October 11, 2023 3:12 PM

To: Bollers, Shaun (DEC) < shaun.bollers@dec.ny.gov >

Cc: Kimberly Semon <ksemon@langan.com>

Subject: RE: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

Good afternoon Shaun,

I hope you are doing well!

We are planning to schedule the next quarterly sampling event at 27-01 Jackson Avenue for the week of October 23rd. As noted in the Q4 Off-Site Quarterly GW Monitoring Report, groundwater results from MW-4 have been non-detect for consecutive quarters and we are requesting to conduct further monitoring only in MW-1 and MW-2.

Please let us know if you have any objections to this plan.

Thank you,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC
OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA
ATHENS CALGARY DUBAI LONDON PANAMA

From: Lexi Haley

Sent: Friday, September 15, 2023 1:58 PM

To: 'Bollers, Shaun (DEC)' < shaun.bollers@dec.ny.gov **Cc:** Brian Gochenaur bgochenaur@Langan.com

Subject: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

Good afternoon Shaun,

Please see below for a link to the quarterly sampling report for 27-01 Jackson Avenue. Please note that, since groundwater results from MW-4 have been non-detect for consecutive quarters, we are requesting to conduct further monitoring only in MW-1 and MW-2.

https://clients.langan.com/Sharing/filesharing/ViewPosted?transactionHash=1122680310

Let us know if you have any questions.

Have a great weekend,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link

Phone: 212.479.5400 Fax: 212.479.5444

360 West 31st Street

8th Floor

New York, NY 10001-2727 www.langan.com

OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA
ATTENS CALGARY DOBAL CONDON FANAMA
This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

Ali Reach

To: Lexi Haley

Subject: RE: 27-01 Jackson Avenue Off-site (S241209) - Off-Site Well Monitoring Program

Meeting

From: Bollers, Shaun (DEC) <shaun.bollers@dec.ny.gov>

Sent: Tuesday, August 8, 2023 10:30 AM **To:** Lexi Haley < lhaley@langan.com>

Cc: Brian Gochenaur < <u>bgochenaur@Langan.com</u>>; Obligado, Andre A (DEC) < <u>andre.obligado@dec.ny.gov</u>>; Kenney, Julia

M (HEALTH) < julia.kenney@health.ny.gov>

Subject: [External] RE: 27-01 Jackson Avenue Off-site (S241209) - Off-Site Well Monitoring Program Meeting

Lexi:

As discussed during our telecon last Friday 8/5 this change in sampling protocol for the 27-01 Jackson Avenue Off-site site S241209 is acceptable. There is no need to replace MW-3.

Thanks,

Shaun

Shaun Bollers

Assistant Environmental Engineer, Division of Environmental Remediation New York State Department of Environmental Conservation 47-40 21st Street, Long Island City, NY 11101
P: (718) 482-4096 | F: (718) 482-6358 | shaun.bollers@dec.ny.gov

www.dec.ny.gov

From: Lexi Haley < lhaley@langan.com Sent: Tuesday, August 8, 2023 9:34 AM

To: Bollers, Shaun (DEC) < shaun.bollers@dec.ny.gov Cc: Brian Gochenaur@Langan.com Shaun.bollers@dec.ny.gov <a href="mailto:sha

Subject: RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good morning Shaun,

As discussed during our call on Friday, monitoring well MW-3 (located along 43rd Avenue) was destroyed during installation of utilities beneath the sidewalk and was not able to be sampled from during the Q4 event. In

the previous three quarters of groundwater monitoring, VOC concentrations were non-detect in samples collected from MW-3. As such, we are requesting to stop monitoring at MW-3.

We will continue to monitor VOC concentrations in groundwater from monitoring wells MW-1, MW-2, and MW-4 on a quarterly basis.

Thank you,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSA OHIO ILLINOIS NORTH CAROLINA TENNESSEE I ATHENS CALGARY DUBAI LONDON PANAMA	•	CALIFORNIA

From: Lexi Haley

Sent: Tuesday, August 1, 2023 2:13 PM

To: 'Bollers, Shaun (DEC)' < shaun.bollers@dec.ny.gov **Cc:** Brian Gochenaur bgochenaur@Langan.com

Subject: RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

Thanks Shaun – I will send out the meeting invite for Friday.

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			

From: Bollers, Shaun (DEC) < shaun.bollers@dec.ny.gov>

Sent: Tuesday, August 1, 2023 2:00 PM

To: Lexi Haley < lhaley@langan.com>

Cc: Brian Gochenaur <bgochenaur@Langan.com>

Subject: [External] RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

Hi Lexy:

Friday 8/4 would be fine.

Shaun

Shaun Bollers

Assistant Environmental Engineer, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | shaun.bollers@dec.ny.gov

www.dec.ny.gov | IIII |

From: Lexi Haley < lhaley@langan.com> Sent: Tuesday, August 1, 2023 11:38 AM

To: Bollers, Shaun (DEC) <shaun.bollers@dec.ny.gov> Cc: Brian Gochenaur <bgochenaur@Langan.com>

Subject: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

Ηi

Good morning Shaun,

Brian and I would like to set up a call with you to discuss the off-site well monitoring program at 27-01 Jackson Avenue (BCP Site No. C241209). We are available between 12 pm and 2:30 pm on Thursday (8/3) and between 11 am and 12 pm on Friday (8/4). Do either of these time slots work for you? If not, we can schedule something for next week.

Thank you,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link

Phone: 212.479.5400 Fax: 212.479.5444

360 West 31st Street

8th Floor

New York, NY 10001-2727

www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA
This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended
to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the
sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying
of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.
This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended

to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying

of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

Lexi Haley

From: Salazar, Marlen C (DEC) < Marlen.Salazar@dec.ny.gov>

Sent: Thursday, September 19, 2024 2:52 PM To: Lexi Haley; Kimberly Semon; Brian Gochenaur

Cc: aaron.shirian@lionsgroupnyc.com; O'Connell, Jane H (DEC); Maycock, Cris-Sandra (DEC); McLaughlin,

Scarlett E (HEALTH); Kenney, Julia M (HEALTH)

[External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report Subject:

Hi Langan Team,

I am reiterating here what was discussed in today's meeting re: the request to discontinue groundwater monitoring at the referenced site.

NYSDEC has denied the request to discontinue quarterly groundwater monitoring. Groundwater monitoring must continue at the stated frequency of the OSMP, i.e. quarterly. While the data that you have shown us appears satisfactory, we do not have enough data to be confident that these numbers will not rebound and spike in subsequent quarters. It is for that reason that groundwater monitoring is to continue. As mentioned in the email below denying the request, this request can be re-evaluated again at the time of submission of the 2024-2025 PRR in late May. This allows for three more quarters of groundwater sampling events to show asymptotic reduction in groundwater concentrations of VOCs.

Please reach out if you have further questions.

Best,

Marlen

Marlen Salazar

Pronouns: She/her/hers

Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, New York 11101

P: 718-482-7129 | marlen.salazar@dec.ny.gov

From: Salazar, Marlen C (DEC)

Sent: Thursday, September 12, 2024 1:14 PM

To: Lexi Haley < lhaley@langan.com>

Cc: aaron.shirian@lionsgroupnyc.com; Kimberly Semon <ksemon@langan.com>; Brian Gochenaur

<bgochenaur@Langan.com>; O'Connell, Jane H (DEC) <jane.oconnell@dec.ny.gov>; Maycock, Cris-Sandra (DEC) <cris-</p> sandra.maycock@dec.ny.gov>; McLaughlin, Scarlett E (HEALTH) <scarlett.mclaughlin@health.ny.gov>; Kenney, Julia M (HEALTH) < julia.kenney@health.ny.gov>

Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report

Hi Lexi,

The New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) have reviewed the 8th quarterly groundwater sampling report for 27-01 Jackson Avenue – Off-site (site no. S241209) prepared by Langan Engineering, Environmental Surveying, Landscape Architecture and Geology D.P.C. on behalf of 2701 Jackson Avenue LLC. The request to terminate the groundwater monitoring program at the site has been **denied** for the following reasons:

- Groundwater VOC concentrations in MW-1 and MW-2 are still consistently above AWQSGVs
- 2. NYSDEC and NYSDOH would like to see at least two consecutive quarters of non-detect concentrations or concentrations below the AWQSGVs before considering termination of the groundwater monitoring program.
 - a. Additionally, NYSDEC and NYSDOH would like to continue monitoring until the 2024-2025 PRR is submitted after which Langan may again request to terminate the groundwater monitoring program with supporting data as part of the PRR conclusion for NYSDEC and NYSDOH review.

Please let me know if you have any questions.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers

Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation 47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

www.dec.ny.gov | 🚮 | 🔯 | 🧓 |

From: Lexi Haley < lhaley@langan.com> Sent: Tuesday, September 10, 2024 5:55 PM

To: Salazar, Marlen C (DEC) < Marlen. Salazar@dec.ny.gov>

Cc: Kimberly Semon <ksemon@langan.com>; Brian Gochenaur <bgochenaur@Langan.com> Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon Marlen,

Please see below for a link to the 8th quarterly sampling report for 27-01 Jackson Avenue. As discussed in our previous conversation, overall result trends for each monitoring well show bulk reduction in petroleum-related VOCs, and asymptotic levels appear to have been achieved. Further decline of contaminant of concern concentrations is not anticipated; therefore, as part of the 8th quarterly groundwater monitoring report, Langan is requesting the discontinuation of groundwater monitoring at the site.

https://clients.langan.com/Sharing/filesharing/ViewPosted?transactionHash=-1672278986

2024-08 - Q8 Groundwater Monitoring Letter Report.pdf	.pdf	12.76 MB
Let us know if you have any que	stions.	
Thank you,		
Lexi Haley Senior Staff Engineer		
LANGAN		
Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link www.langan.com NEW YORK NEW JERSEY CONNECTICUT OHIO ILLINOIS NORTH CAROLINA TENN ATHENS CALGARY DUBAI LONDON PA	IESSEE FLORIDA TEXAS ARIZONA CO	RGINIA WASHINGTON, DC LORADO UTAH WASHINGTON CALIFORNIA
Cc: Kimberly Semon < ksemon@lang Subject: RE: 27-01 Jackson Avenue Understood, thank you Marlen. \ Best, Lexi Haley	n.Salazar@dec.ny.gov>; Brian Goch gan.com> - Off-Site (S241209) - Q8 Results	nenaur < bgochenaur@Langan.com > ready for your review by the end of next week.
Senior Staff Engineer		
LANGAN		
Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link www.langan.com		
NEW YORK NEW JERSEY CONNECTICUT OHIO ILLINOIS NORTH CAROLINA TENN ATHENS CALGARY DUBAI LONDON PA	IESSEE FLORIDA TEXAS ARIZONA CO	RGINIA WASHINGTON, DC LORADO UTAH WASHINGTON CALIFORNIA

From: Salazar, Marlen C (DEC) < Marlen. Salazar@dec.ny.gov>

Sent: Thursday, August 22, 2024 7:43 AM

To: Brian Gochenaur

logochenaur@Langan.com; Lexi Haley logoc

Cc: Kimberly Semon <ksemon@langan.com>

Subject: [External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

You could do both honestly (like a zoom-in on one of the scales), but don't worry about it too much I suppose. The tables will have all the data regardless which I can refer to.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers

Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

From: Brian Gochenaur <bgochenaur@Langan.com>

Sent: Thursday, August 22, 2024 7:40 AM

To: Salazar, Marlen C (DEC) < Marlen.Salazar@dec.ny.gov >; Lexi Haley < lhaley@langan.com >

Cc: Kimberly Semon <ksemon@langan.com>

Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

unexpected emails

Hi Marlen – We typically show the wells on different scales in the report, we just wanted to show all the graphs on the same scale to demonstrate that asymptotic levels were achieved. I felt like the zoomed in scale on some and not others illustrated a skewed perspective, but we can change it back for the report. Thx

Brian Gochenaur, QEP **Associate Principal**

LANGAN

Direct: 212.479.5479 Mobile: 347.320.2756 File Sharing Link www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

From: Salazar, Marlen C (DEC) < Marlen. Salazar@dec.ny.gov>

Sent: Thursday, August 22, 2024 7:35 AM To: Lexi Haley < lhaley@langan.com>

Cc: Brian Gochenaur <bgochenaur@Langan.com>; Kimberly Semon <ksemon@langan.com>

Subject: [External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

Hi Lexi.

I'll wait to receive the Q4 groundwater monitoring report. For the graphs, is it possible to use a smaller scale on the yaxis for all wells except MW-2? The concentrations of MW-1, MW-3, and MW-4 are all much less than 500 ug/L so the large y-axis scale makes getting any sort of visual information from the graphs a bit difficult.

Roughly around when can I expect to receive this report too? I'll keep an eye out for it.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers

Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

www.dec.ny.gov | ff | X | @ | •

From: Lexi Haley < lhaley@langan.com> Sent: Wednesday, August 21, 2024 3:36 PM

To: Salazar, Marlen C (DEC) < Marlen. Salazar@dec.ny.gov>

Cc: Brian Gochenaur <bgochenaur@Langan.com>; Kimberly Semon <ksemon@langan.com>

Subject: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails

Good afternoon Marlen,

We have completed Q8 of groundwater sampling at the 27-01 Jackson Avenue site. The overall result trends for each monitoring well are attached for your review, which show a bulk reduction in petroleum-related VOCs to asymptotic levels over the course of the monitoring program. The trends will be included in the forthcoming quarterly report for the site.

Considering VOCs were non-detect in wells MW-3 and MW-4 for consecutive quarters, DEC previously approved the discontinuation of groundwater monitoring at these locations. Groundwater monitoring has continued at MW-1 and MW-2. Based on the Q8 analytical data, total VOCs and total BTEX concentrations have decreased by 95% and 100%, respectively, in MW-1 and by over 99% in MW-2. Based on review of the overall analytical data provided over the course of the monitoring program, it appears that the remedy was effective in demonstrating a bulk reduction of these contaminants. Asymptotic levels appear to have been achieved, and further decline of contaminant of concern concentrations is not anticipated. Therefore, as part of our forthcoming quarterly groundwater monitoring report, Langan will be requesting the discontinuation of groundwater monitoring at the site.

Thank you,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link

Phone: 212.479.5400 Fax: 212.479.5444

360 West 31st Street

8th Floor

New York, NY 10001-2727

www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC
OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA
ATHENS CALGARY DUBAI LONDON PANAMA

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

ATTACHMENT B Daily Site Observation Report

SITE OBSERVATION REPORT

PROJECT No.: 170472002

CLIENT: 2701 Jackson Avenue LLC

DATE:

PROJECT:

27-01 Jackson Avenue

10/29/2024

LOCATION:

N/A

Long Island City, NY

LANGAN REP.:

Loagan Clements

CONTRACTOR: Lions Group NYC

CONTRACTOR'S EQUIPMENT:

PRESENT AT SITE:

Loagan Clements - Langan

Michael Capozzoli- Lions Group NYC (Construction Manager)

OBSERVATIONS, DISCUSSIONS, TEST RESULTS, ETC.:

Langan was present to observe environmental protocols in accordance with the January 2021 NYSDEC approved Off-Site Site Management Plan (OSMP) for BCP site C241209 at 27-01 Jackson Avenue (Block 432, Lot 21). Observed activities were as follows:

Site Activities

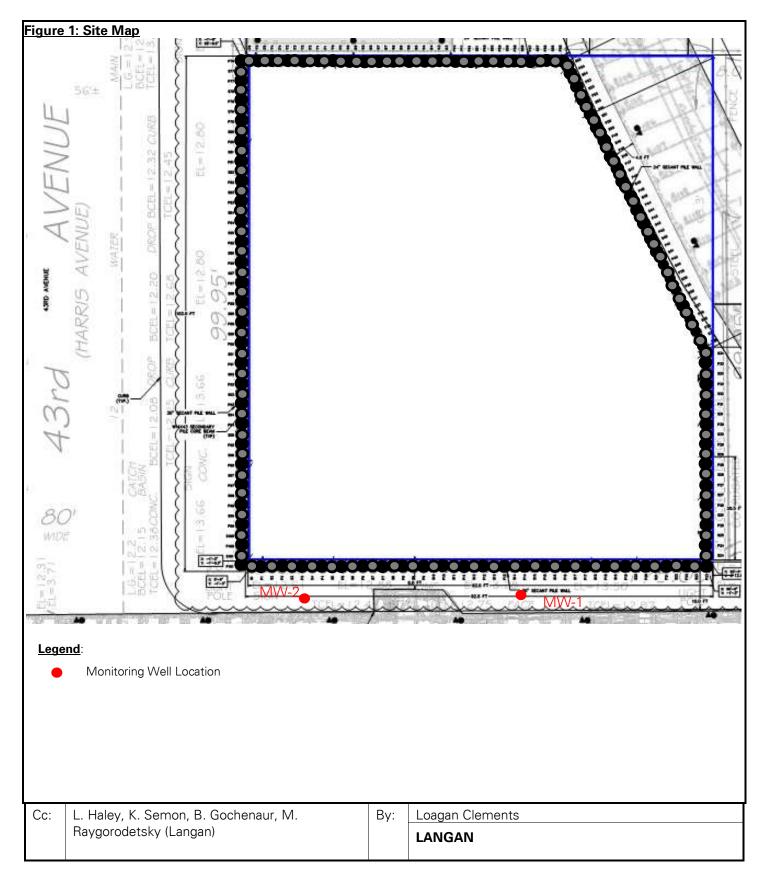
Langan used a peristaltic pump to purge and sample groundwater monitoring wells MW-1 and MW-2 along the Jackson Avenue sidewalk. Purged groundwater was screened for odors, sheen, and organic vapors using a photoionization detector (PID). Odors, sheen or PID readings above background levels were not observed in MW-2. A maximum PID reading of 0.2 parts per million (ppm) was detected beneath the well cap at MW-1; however, no odors or sheen was observed in the purged groundwater. Purged groundwater was containerized in a 55-gallon New York State Department of Transportation (NYSDOT)-approved drum for future disposal.

Sampling

Langan collected two groundwater samples (plus quality assurance/quality control [QA/QC] samples) for laboratory analysis of NYSDEC Part 375/target compound list (TCL) volatile organic compounds (VOCs). The samples were submitted to Pace Analytical (Pace) of Westborough, Massachusetts, a New York State Department of Health (NYSDOH) Environmental Laboratory Accredited Program (ELAP)-certified laboratory under standard chain-of-custody protocols.

Anticipated Activities

Further assessment of groundwater sample analytical results will determine future site activities, if required by the NYSDEC.


Cc:	L. Haley, K. Semon, B. Gochenaur, M.	Ву:	Loagan Clements
	Raygorodetsky (Langan)		LANGAN

Langan PN: 170472002 10/29/2024

Page 2 of 3

SITE OBSERVATION REPORT

Langan PN: 170472002

10/29/2024 Page 3 of 3

SITE OBSERVATION REPORT

SITE PHOTOGRAPHS

Photo 1: View of Langan purging monitoring well MW-2 along the Jackson Avenue sidewalk (facing northwest).

Cc:	L. Haley, K. Semon, B. Gochenaur, M.	Ву:	Loagan Clements
	Raygorodetsky (Langan)		LANGAN

ATTACHMENT C Well Purging and Sampling Logs

Project Information Well Information			rmation	Eq	uipment Informati	on	S	ampling Condition	s	Sampling Informa	tion	
Project Name:	27-01 Jackson Ave	Well No:	MW-1	Water Qua	lity Device Model:	Horiba U-52		Weather:	Overcast, 63°F		MW-1 102924	
Project Number:	170472002	Well Depth:	19 ft		Pine Number:	48881	Back	ground PID (ppm):	0.0	Sample(s):	MS/MSD	
Site Location:	Long Island City, NY	Well Diameter:	2-inch	Pump	Make and Model:	Peristaltic Pump	PID Beneatl	PID Beneath Inner Cap (ppm): 0.2			•	
Sampling	Loagan Clements	Well Screen	9 ft		Pine Number:	A01801	Pt	Pump Intake Depth: 18.00 ft		Sample Date:	10/29/2024	
	Loagair Cleirieitts	Interval:	19 ft		Tubing Diameter: 3		Depth to Water Before Purge:		17.30 ft	Sample Time:	14:20	
	STABILIZATION = 3 successive readings within limits											
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Commission	NOTES		
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		Stabilized?	
					(+/- 10%) above 5	(+/- 10%) above	Drawdown < 0.33		Discharge		Stabilized?	
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	ft	<0.13 gpm)	Volume (Gal)	color, odor etc.		
•					BEGIN	PURGING						
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.25	Clear, gray, odorless; high turbidity/black particulates in purged water; poor recharge, purged three well volumes prior to sampling.	N	
	W	ater quality parame	eters were not mo	onitored due to poo	or recharge of the v	vell. Groundwater	sample was collec	ted after purging a	bout three well v	olumes.		

Notes:

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemens per centimeter
- 10. NTU = Nephelometric Turbidity Unit
- 11. N/A = Not Applicable

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.
21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

Project Information		Well info	Well Information		Equipment Information		'n	ampling Condition	IS	Sampling Information		
Project Name:	27-01 Jackson Ave	Well No:	MW-2	Water Qua	lity Device Model:	Horiba U-52		Weather:	Overcast, 63°F		MW-2_102924	
Project Number:	170472002	Well Depth:	20 ft		Pine Number:	48881	Back	ground PID (ppm):	0.0	Sample(s):	DUP01_102924	
Site Location:	Long Island City, NY	Well Diameter:	1-inch	Pump	Make and Model:	Peristaltic Pump	PID Beneath	n Inner Cap (ppm):	0.0		DUFU1_102924	
Sampling	Sampling Loagan Clements Well Screen 10 ft Pine Number: A01801 Pump Intake Dept		ımp Intake Depth:	16.50 ft	Sample Date:	10/29/2024						
	Loagan Clements	Interval:	20 ft		Tubing Diameter:	3/8-inch OD	Depth to Water Before Purge:		14.18 ft	Sample Time:	11:55	
				STABILIZ	ATION = 3 success	ive readings within li	mits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	O DTW Flow Rate			NOTES		
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		0. 1 12	
					(+/- 10%) above	(+/- 10%) above	Drawdown	.51 /	Discharge		Stabilized?	
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	< 0.33 ft	(<0.13 gpm)	Volume (Gal)	color, odor etc.		
					E	BEGIN PURGING						
10:25	15.20	10.80	-17	1.54	420.0	7.52	NA	N/A	0.25	Clear to gray color, odorless; high	N	
10:30	16.97	11.06	-29	1.45	259.0	8.88	NA	NA 0.01		turbidity/black particulates in purged	N	
10:35	18.45	11.14	-32	1.39	158.0	8.16	NA 0.02		0.4	water; poor recharge. Purged three well	N	
10:40 17.94		11.24	-33	1.39	105.0	8.33	NA	0.02	0.5	volumes prior to sampling.	N	
	Ad	lditional water qua	lity parameters v	ere not monitored	due to poor recha	rge of the well. Grou	ndwater sample w	as collected after p	ourging about thro	ee well volumes.		

- . Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemens per centimeter
- 10. NTU = Nephelometric Turbidity Unit
- 11. N/A = Not Applicable

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.
21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

ATTACHMENT D Laboratory Analytical Report

ANALYTICAL REPORT

Lab Number: L2463005

Client: Langan Engineering & Environmental

21 Penn Plaza

360 W. 31st Street, 8th Floor New York, NY 10001-2727

ATTN: Kimberly Semon Phone: (212) 479-5486

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Report Date: 11/05/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2463005 **Report Date:** 11/05/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2463005-01	MW-1_102924	WATER	LONG ISLAND CITY	10/29/24 14:20	10/29/24
L2463005-02	MW-2_102924	WATER	LONG ISLAND CITY	10/29/24 11:55	10/29/24
L2463005-03	DUP01_102924	WATER	LONG ISLAND CITY	10/29/24 00:00	10/29/24
L2463005-04	FB01_102924	WATER	LONG ISLAND CITY	10/29/24 11:30	10/29/24
L2463005-05	TB01_102924	WATER	LONG ISLAND CITY	10/29/24 00:00	10/29/24

L2463005

Lab Number:

Project Name: 27-01 JACKSON AVE

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

L2463005

Lab Number:

Project Name: 27-01 JACKSON AVE

Project Number: 170472002 **Report Date:** 11/05/24

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2463005-01, -02 and -05: The Client ID was specified by the client.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 11/05/24

ORGANICS

VOLATILES

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

SAMPLE RESULTS

Lab Number: L2463005

Report Date: 11/05/24

Lab ID: L2463005-01 Date Collected: 10/29/24 14:20

Client ID: Date Received: 10/29/24 MW-1_102924 Sample Location: Field Prep: LONG ISLAND CITY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 11/01/24 18:44

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor					
Volatile Organics by GC/MS - Westborough	Volatile Organics by GC/MS - Westborough Lab										
Methylene chloride	ND		ug/l	2.5	0.70	1					
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1					
Chloroform	ND		ug/l	2.5	0.70	1					
Carbon tetrachloride	ND		ug/l	0.50	0.13	1					
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1					
Dibromochloromethane	ND		ug/l	0.50	0.15	1					
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1					
Tetrachloroethene	ND		ug/l	0.50	0.18	1					
Chlorobenzene	ND		ug/l	2.5	0.70	1					
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1					
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1					
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1					
Bromodichloromethane	ND		ug/l	0.50	0.19	1					
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1					
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1					
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1					
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1					
Bromoform	ND		ug/l	2.0	0.65	1					
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1					
Benzene	ND		ug/l	0.50	0.16	1					
Toluene	ND		ug/l	2.5	0.70	1					
Ethylbenzene	ND		ug/l	2.5	0.70	1					
Chloromethane	ND		ug/l	2.5	0.70	1					
Bromomethane	ND		ug/l	2.5	0.70	1					
Vinyl chloride	ND		ug/l	1.0	0.07	1					
Chloroethane	ND		ug/l	2.5	0.70	1					
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1					
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1					

Project Name: 27-01 JACKSON AVE Lab Number: L2463005

Project Number: 170472002 **Report Date:** 11/05/24

SAMPLE RESULTS

Lab ID: L2463005-01 Date Collected: 10/29/24 14:20

Client ID: MW-1_102924 Date Received: 10/29/24 Sample Location: LONG ISLAND CITY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 27-01 JACKSON AVE Lab Number: L2463005

Project Number: 170472002 **Report Date:** 11/05/24

SAMPLE RESULTS

Lab ID: L2463005-01 Date Collected: 10/29/24 14:20

Client ID: MW-1_102924 Date Received: 10/29/24 Sample Location: LONG ISLAND CITY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
n-Propylbenzene	ND		ug/l	2.5	0.70	1				
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1				
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1				
1,4-Dioxane	ND		ug/l	250	61.	1				
p-Diethylbenzene	ND		ug/l	2.0	0.70	1				
p-Ethyltoluene	ND		ug/l	2.0	0.70	1				
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1				
Ethyl ether	ND		ug/l	2.5	0.70	1				
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	107	70-130	

10/29/24 11:55

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

SAMPLE RESULTS

Lab Number: L2463005

Report Date: 11/05/24

Lab ID: L2463005-02

Client ID: MW-2_102924 Sample Location: LONG ISLAND CITY Date Received: 10/29/24 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 11/02/24 21:00

Analyst: MKS

Woltatile Organics by GC/MS - Westborough Lab Methylene chloride 1.1 J ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 Carbon tetrachloropropane ND ug/l 0.50 0.13 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,12-Trichloroethane ND ug/l 0.50 0.18 1 1,12-Trichloroethane ND ug/l 0.50 0.18 1 1,12-Dichloropthane ND ug/l 0.50 0.18 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloropthane ND ug/l 0.50 0.19 1 1,1-Dichloroptopopene ND ug/l 0.50 0.16 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon eterachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.13 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Trichloroethane ND ug/l 0.50 0.18 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.14 <td>Volatile Organics by GC/MS - Westb</td> <td>orough Lab</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Volatile Organics by GC/MS - Westb	orough Lab					
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.13 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene, Total ND ug/l 0.50	Methylene chloride	1.1	J	ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chiorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 tetras-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-1,2-Z-Tetrachloroethane ND ug/l <t< td=""><td>1,1-Dichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></t<>	1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
1,2-Dichloropropane ND ug/l 1.0 0.14 1	Chloroform	ND		ug/l	2.5	0.70	1
Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloropthane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1,1,2,2-Tetrachloroethane ND ug/l <td>Carbon tetrachloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.13</td> <td>1</td>	Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 0.50 0.17 1 Benzene 0.21 J ug/l	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene, Total ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Benzene 0.21 J ug/l 2.5	Dibromochloromethane	ND		ug/l	0.50	0.15	1
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Bromoform ND ug/l 0.50 0.17 1 Benzene 0.21 J ug/l 2.5 <	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene, Total ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 0.21 J ug/l 0.50 0.16 1 Toluene ND ug/l 2.5	Tetrachloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene 5.5 ug/l 2.5 0.70	Chlorobenzene	ND		ug/l	2.5	0.70	1
1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 0.21 J ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene 5.5 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Stormomethane ND ug/l 2.5 0.	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane ND	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 0.21 J ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene 5.5 ug/l 2.5 0.70 1 Ethylbenzene 5.5 ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Chlorotethane ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 Chlorotethane ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 Chlorotethane ND ug/l 2.5 0.70 1	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 0.21 J ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene 5.5 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.19</td> <td>1</td>	Bromodichloromethane	ND		ug/l	0.50	0.19	1
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 0.21 J ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene 5.5 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 2.5 0.70 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 0.21 J ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene 5.5 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Sromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 2.5 0.70 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 0.21 J ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene 5.5 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 0.21 J ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene 5.5 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Benzene 0.21 J ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene 5.5 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Bromoform	ND		ug/l	2.0	0.65	1
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene 5.5 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Ethylbenzene 5.5 ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Benzene	0.21	J	ug/l	0.50	0.16	1
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Toluene	ND		ug/l	2.5	0.70	1
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Ethylbenzene	5.5		ug/l	2.5	0.70	1
Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Chloromethane	ND		ug/l	2.5	0.70	1
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Bromomethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene ND ug/l 0.50 0.17 1	Vinyl chloride	ND		ug/l	1.0	0.07	1
	Chloroethane	ND		ug/l	2.5	0.70	1
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
~	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 27-01 JACKSON AVE Lab Number: L2463005

Project Number: 170472002 **Report Date:** 11/05/24

SAMPLE RESULTS

Lab ID: L2463005-02 Date Collected: 10/29/24 11:55

Client ID: MW-2_102924 Date Received: 10/29/24 Sample Location: LONG ISLAND CITY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	7.3		ug/l	2.5	0.70	1
o-Xylene	0.78	J	ug/l	2.5	0.70	1
Xylenes, Total	8.1	J	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	12		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	1.0	J	ug/l	2.5	0.70	1
sec-Butylbenzene	1.4	J	ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	6.0		ug/l	2.5	0.70	1
p-Isopropyltoluene	0.76	J	ug/l	2.5	0.70	1
Naphthalene	0.77	J	ug/l	2.5	0.70	1

Project Name: 27-01 JACKSON AVE Lab Number: L2463005

Project Number: 170472002 **Report Date:** 11/05/24

SAMPLE RESULTS

Lab ID: L2463005-02 Date Collected: 10/29/24 11:55

Client ID: MW-2_102924 Date Received: 10/29/24 Sample Location: LONG ISLAND CITY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
n-Propylbenzene	13		ug/l	2.5	0.70	1				
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
1,3,5-Trimethylbenzene	3.8		ug/l	2.5	0.70	1				
1,2,4-Trimethylbenzene	34		ug/l	2.5	0.70	1				
1,4-Dioxane	ND		ug/l	250	61.	1				
p-Diethylbenzene	2.1		ug/l	2.0	0.70	1				
p-Ethyltoluene	16		ug/l	2.0	0.70	1				
1,2,4,5-Tetramethylbenzene	9.6		ug/l	2.0	0.54	1				
Ethyl ether	ND		ug/l	2.5	0.70	1				
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	104	70-130	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

SAMPLE RESULTS

Lab Number: L2463005

Report Date: 11/05/24

Lab ID: L2463005-03 Date Collected: 10/29/24 00:00 Client ID: DUP01_102924

Date Received: 10/29/24 Field Prep: Not Specified

Sample Location: LONG ISLAND CITY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 11/02/24 21:26

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	0.88	J	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.19	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	4.8		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 27-01 JACKSON AVE Lab Number: L2463005

Project Number: 170472002 **Report Date:** 11/05/24

SAMPLE RESULTS

Lab ID: L2463005-03 Date Collected: 10/29/24 00:00

Client ID: DUP01_102924 Date Received: 10/29/24 Sample Location: LONG ISLAND CITY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	5.9		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	5.9		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	10		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	1.2	J	ug/l	2.5	0.70	1
sec-Butylbenzene	1.6	J	ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	5.8		ug/l	2.5	0.70	1
p-Isopropyltoluene	0.86	J	ug/l	2.5	0.70	1
Naphthalene	0.91	J	ug/l	2.5	0.70	1

Project Name: 27-01 JACKSON AVE Lab Number: L2463005

Project Number: 170472002 **Report Date:** 11/05/24

SAMPLE RESULTS

Lab ID: L2463005-03 Date Collected: 10/29/24 00:00

Client ID: DUP01_102924 Date Received: 10/29/24 Sample Location: LONG ISLAND CITY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
n-Propylbenzene	13		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	3.4		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	32		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	2.2		ug/l	2.0	0.70	1	
p-Ethyltoluene	15		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	11		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	91		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	103		70-130	

10/29/24 11:30

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

SAMPLE RESULTS

Lab Number: L2463005

Report Date: 11/05/24

Lab ID: L2463005-04 Date Collected:

Client ID: Date Received: 10/29/24 FB01_102924 Field Prep: Sample Location: LONG ISLAND CITY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 11/02/24 21:52

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 27-01 JACKSON AVE Lab Number: L2463005

Project Number: 170472002 **Report Date:** 11/05/24

SAMPLE RESULTS

Lab ID: L2463005-04 Date Collected: 10/29/24 11:30

Client ID: FB01_102924 Date Received: 10/29/24 Sample Location: LONG ISLAND CITY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Trichloroethene	ND		.ua/I	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	 1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND			2.5	0.70	1
o-Xylene	ND		ug/l ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND			2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l ug/l	2.5	0.70	1
Dibromomethane	ND			5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
			ug/l			
Acetone Carbon disulfide	ND		ug/l	5.0	1.5	1
	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	<u> </u>
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	<u> </u>
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 27-01 JACKSON AVE Lab Number: L2463005

Project Number: 170472002 **Report Date:** 11/05/24

SAMPLE RESULTS

Lab ID: L2463005-04 Date Collected: 10/29/24 11:30

Client ID: FB01_102924 Date Received: 10/29/24 Sample Location: LONG ISLAND CITY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
n-Propylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
p-Diethylbenzene	ND		ug/l	2.0	0.70	1		
p-Ethyltoluene	ND		ug/l	2.0	0.70	1		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1		
Ethyl ether	ND		ug/l	2.5	0.70	1		
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	107	70-130	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

SAMPLE RESULTS

Lab Number: L2463005

Report Date: 11/05/24

Lab ID: L2463005-05 Date Collected: 10/29/24 00:00

Client ID: Date Received: 10/29/24 TB01_102924 Field Prep: Sample Location: LONG ISLAND CITY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 11/02/24 22:18

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Project Name: 27-01 JACKSON AVE Lab Number: L2463005

Project Number: 170472002 **Report Date:** 11/05/24

SAMPLE RESULTS

Lab ID: L2463005-05 Date Collected: 10/29/24 00:00

Client ID: TB01_102924 Date Received: 10/29/24 Sample Location: LONG ISLAND CITY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 27-01 JACKSON AVE Lab Number: L2463005

Project Number: 170472002 **Report Date:** 11/05/24

SAMPLE RESULTS

Lab ID: L2463005-05 Date Collected: 10/29/24 00:00

Client ID: TB01_102924 Date Received: 10/29/24 Sample Location: LONG ISLAND CITY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	108	70-130	

Project Name: 27-01 JACKSON AVE **Lab Number:** L2463005

Project Number: 170472002 **Report Date:** 11/05/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 11/01/24 10:01

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s): (01 Batch:	WG1992626-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

L2463005

Project Name: 27-01 JACKSON AVE Lab Number:

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 11/01/24 10:01

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01 Batch:	WG1992626-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

L2463005

Project Name: 27-01 JACKSON AVE Lab Number:

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 11/01/24 10:01

Analyst: PID

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s): 01	Batch:	WG1992626-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance
Surrogate	%Recovery Q	•
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	104	70-130

Project Name: 27-01 JACKSON AVE **Lab Number:** L2463005

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 11/02/24 14:27

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	02-05 Batch:	WG1992852-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name: 27-01 JACKSON AVE **Lab Number:** L2463005

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 11/02/24 14:27

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s): (02-05 Batch:	WG1992852-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

L2463005

Project Name: 27-01 JACKSON AVE Lab Number:

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 11/02/24 14:27

Analyst: LAC

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	02-05 Batch:	WG1992852-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

Acc					
%Recovery Qu	alifier Criteria				
96	70-130				
104	70-130				
99	70-130				
107	70-130				
	96 104 99				

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2463005

Report Date: 11/05/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westbor	ough Lab Associated	sample(s): 0	1 Batch: WG	1992626-3	WG1992626-4		
Methylene chloride	100		97		70-130	3	20
1,1-Dichloroethane	110		110		70-130	0	20
Chloroform	98		92		70-130	6	20
Carbon tetrachloride	100		98		63-132	2	20
1,2-Dichloropropane	110		100		70-130	10	20
Dibromochloromethane	100		98		63-130	2	20
1,1,2-Trichloroethane	100		95		70-130	5	20
Tetrachloroethene	120		110		70-130	9	20
Chlorobenzene	100		98		75-130	2	20
Trichlorofluoromethane	47	Q	45	Q	62-150	4	20
1,2-Dichloroethane	98		93		70-130	5	20
1,1,1-Trichloroethane	99		94		67-130	5	20
Bromodichloromethane	98		92		67-130	6	20
trans-1,3-Dichloropropene	100		95		70-130	5	20
cis-1,3-Dichloropropene	96		91		70-130	5	20
1,1-Dichloropropene	99		94		70-130	5	20
Bromoform	90		88		54-136	2	20
1,1,2,2-Tetrachloroethane	88		86		67-130	2	20
Benzene	100		96		70-130	4	20
Toluene	100		99		70-130	1	20
Ethylbenzene	100		94		70-130	6	20
Chloromethane	100		98		64-130	2	20
Bromomethane	31	Q	30	Q	39-139	3	20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2463005

Report Date: 11/05/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - Westborou	ugh Lab Associated	sample(s): 0	1 Batch: WG	1992626-3	WG1992626-4				
Vinyl chloride	91		84		55-140	8		20	
Chloroethane	54	Q	52	Q	55-138	4		20	
1,1-Dichloroethene	100		98		61-145	2		20	
trans-1,2-Dichloroethene	100		100		70-130	0		20	
Trichloroethene	100		95		70-130	5		20	
1,2-Dichlorobenzene	95		91		70-130	4		20	
1,3-Dichlorobenzene	97		92		70-130	5		20	
1,4-Dichlorobenzene	94		90		70-130	4		20	
Methyl tert butyl ether	73		72		63-130	1		20	
p/m-Xylene	95		90		70-130	5		20	
o-Xylene	95		90		70-130	5		20	
cis-1,2-Dichloroethene	100		98		70-130	2		20	
Dibromomethane	91		87		70-130	4		20	
1,2,3-Trichloropropane	79		76		64-130	4		20	
Acrylonitrile	92		92		70-130	0		20	
Styrene	95		90		70-130	5		20	
Dichlorodifluoromethane	100		96		36-147	4		20	
Acetone	110		85		58-148	26	Q	20	
Carbon disulfide	110		99		51-130	11		20	
2-Butanone	87		86		63-138	1		20	
Vinyl acetate	130		120		70-130	8		20	
4-Methyl-2-pentanone	92		84		59-130	9		20	
2-Hexanone	75		73		57-130	3		20	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2463005

Report Date: 11/05/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recove Qual Limits	ry RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	n Lab Associated	sample(s): 0	1 Batch: WG1	992626-3 WG199262	6-4	
Bromochloromethane	100		97	70-130	3	20
2,2-Dichloropropane	110		100	63-133	10	20
1,2-Dibromoethane	100		97	70-130	3	20
1,3-Dichloropropane	100		95	70-130	5	20
1,1,1,2-Tetrachloroethane	100		100	64-130	0	20
Bromobenzene	99		94	70-130	5	20
n-Butylbenzene	96		91	53-136	5	20
sec-Butylbenzene	93		88	70-130	6	20
tert-Butylbenzene	93		88	70-130	6	20
o-Chlorotoluene	97		92	70-130	5	20
p-Chlorotoluene	96		91	70-130	5	20
1,2-Dibromo-3-chloropropane	84		85	41-144	1	20
Hexachlorobutadiene	130		120	63-130	8	20
Isopropylbenzene	92		88	70-130	4	20
p-Isopropyltoluene	93		88	70-130	6	20
Naphthalene	69	Q	72	70-130	4	20
n-Propylbenzene	94		88	69-130	7	20
1,2,3-Trichlorobenzene	96		99	70-130	3	20
1,2,4-Trichlorobenzene	98		98	70-130	0	20
1,3,5-Trimethylbenzene	92		87	64-130	6	20
1,2,4-Trimethylbenzene	92		88	70-130	4	20
1,4-Dioxane	60		70	56-162	15	20
p-Diethylbenzene	94		90	70-130	4	20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number:

L2463005

11/05/24

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG	1992626-3	WG1992626-4			
p-Ethyltoluene	95		89		70-130	7	20	
1,2,4,5-Tetramethylbenzene	90		84		70-130	7	20	
Ethyl ether	43	Q	41	Q	59-134	5	20	
trans-1,4-Dichloro-2-butene	83		80		70-130	4	20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	91	89	70-130
Toluene-d8	106	106	70-130
4-Bromofluorobenzene	104	100	70-130
Dibromofluoromethane	103	103	70-130

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2463005

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborou	ugh Lab Associated	sample(s):	02-05 Batch:	WG1992852-3	WG1992852-4		
Methylene chloride	100		97		70-130	3	20
1,1-Dichloroethane	110		100		70-130	10	20
Chloroform	96		94		70-130	2	20
Carbon tetrachloride	96		94		63-132	2	20
1,2-Dichloropropane	100		100		70-130	0	20
Dibromochloromethane	100		100		63-130	0	20
1,1,2-Trichloroethane	100		100		70-130	0	20
Tetrachloroethene	110		110		70-130	0	20
Chlorobenzene	99		96		75-130	3	20
Trichlorofluoromethane	44	Q	42	Q	62-150	5	20
1,2-Dichloroethane	97		96		70-130	1	20
1,1,1-Trichloroethane	94		92		67-130	2	20
Bromodichloromethane	96		93		67-130	3	20
trans-1,3-Dichloropropene	98		98		70-130	0	20
cis-1,3-Dichloropropene	91		89		70-130	2	20
1,1-Dichloropropene	92		89		70-130	3	20
Bromoform	89		92		54-136	3	20
1,1,2,2-Tetrachloroethane	90		92		67-130	2	20
Benzene	98		95		70-130	3	20
Toluene	98		96		70-130	2	20
Ethylbenzene	95		91		70-130	4	20
Chloromethane	96		92		64-130	4	20
Bromomethane	25	Q	24	Q	39-139	4	20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2463005

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - We	estborough Lab Associated	sample(s):	02-05 Batch:	WG1992852-3	WG1992852-4			
Vinyl chloride	83		79		55-140	5		20
Chloroethane	50	Q	49	Q	55-138	2		20
1,1-Dichloroethene	99		95		61-145	4		20
trans-1,2-Dichloroethene	100		98		70-130	2		20
Trichloroethene	98		94		70-130	4		20
1,2-Dichlorobenzene	92		92		70-130	0		20
1,3-Dichlorobenzene	93		91		70-130	2		20
1,4-Dichlorobenzene	91		89		70-130	2		20
Methyl tert butyl ether	72		75		63-130	4		20
p/m-Xylene	90		90		70-130	0		20
o-Xylene	90		85		70-130	6		20
cis-1,2-Dichloroethene	99		96		70-130	3		20
Dibromomethane	92		91		70-130	1		20
1,2,3-Trichloropropane	74		74		64-130	0		20
Acrylonitrile	93		98		70-130	5		20
Styrene	90		85		70-130	6		20
Dichlorodifluoromethane	87		85		36-147	2		20
Acetone	110		91		58-148	19		20
Carbon disulfide	100		95		51-130	5		20
2-Butanone	94		99		63-138	5		20
Vinyl acetate	120		130		70-130	8		20
4-Methyl-2-pentanone	88		89		59-130	1		20
2-Hexanone	69		74		57-130	7		20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2463005

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS -	Westborough Lab Associated	sample(s):	02-05 Batch: \	WG1992852-3	WG1992852-4				
Bromochloromethane	100		100		70-130	0		20	
2,2-Dichloropropane	110		100		63-133	10		20	
1,2-Dibromoethane	100		100		70-130	0		20	
1,3-Dichloropropane	99		98		70-130	1		20	
1,1,1,2-Tetrachloroethane	100		100		64-130	0		20	
Bromobenzene	96		94		70-130	2		20	
n-Butylbenzene	89		88		53-136	1		20	
sec-Butylbenzene	85		85		70-130	0		20	
tert-Butylbenzene	84		84		70-130	0		20	
o-Chlorotoluene	90		89		70-130	1		20	
p-Chlorotoluene	90		88		70-130	2		20	
1,2-Dibromo-3-chloropropane	88		94		41-144	7		20	
Hexachlorobutadiene	130		130		63-130	0		20	
Isopropylbenzene	84		84		70-130	0		20	
p-Isopropyltoluene	86		85		70-130	1		20	
Naphthalene	76		80		70-130	5		20	
n-Propylbenzene	86		84		69-130	2		20	
1,2,3-Trichlorobenzene	100		110		70-130	10		20	
1,2,4-Trichlorobenzene	100		100		70-130	0		20	
1,3,5-Trimethylbenzene	86		84		64-130	2		20	
1,2,4-Trimethylbenzene	87		85		70-130	2		20	
1,4-Dioxane	84		106		56-162	23	Q	20	
p-Diethylbenzene	86		86		70-130	0		20	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2463005

Parameter	LCS %Recovery	Qual	LCSD %Recov		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	02-05 Bato	ch: WG1992852-3	3 WG1992852-4				
p-Ethyltoluene	87		87		70-130	0		20	
1,2,4,5-Tetramethylbenzene	82		81		70-130	1		20	
Ethyl ether	44	Q	43	Q	59-134	2		20	
trans-1,4-Dichloro-2-butene	74		77		70-130	4		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	92	92	70-130	
Toluene-d8	104	104	70-130	
4-Bromofluorobenzene	102	100	70-130	
Dibromofluoromethane	105	103	70-130	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number:

L2463005

Report Date:

11/05/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS 1_102924	- Westborough	Lab Asso	ciated sample(s): 01 QC Ba	tch ID: WG	1992626	-6 WG199262	:6-7 Q(C Sample: L	246300	5-01 Client ID: MW-
Methylene chloride	ND	10	11	110		11	110		70-130	0	20
1,1-Dichloroethane	ND	10	12	120		12	120		70-130	0	20
Chloroform	ND	10	10	100		10	100		70-130	0	20
Carbon tetrachloride	ND	10	10	100		11	110		63-132	10	20
1,2-Dichloropropane	ND	10	11	110		11	110		70-130	0	20
Dibromochloromethane	ND	10	11	110		11	110		63-130	0	20
1,1,2-Trichloroethane	ND	10	11	110		11	110		70-130	0	20
Tetrachloroethene	ND	10	12	120		12	120		70-130	0	20
Chlorobenzene	ND	10	10	100		10	100		75-130	0	20
Trichlorofluoromethane	ND	10	5.0	50	Q	5.1	51	Q	62-150	2	20
1,2-Dichloroethane	ND	10	10	100		10	100		70-130	0	20
1,1,1-Trichloroethane	ND	10	10	100		10	100		67-130	0	20
Bromodichloromethane	ND	10	10	100		10	100		67-130	0	20
trans-1,3-Dichloropropene	ND	10	10	100		9.9	99		70-130	1	20
cis-1,3-Dichloropropene	ND	10	9.1	91		9.2	92		70-130	1	20
1,1-Dichloropropene	ND	10	10	100		10	100		70-130	0	20
Bromoform	ND	10	9.5	95		9.5	95		54-136	0	20
1,1,2,2-Tetrachloroethane	ND	10	10	100		10	100		67-130	0	20
Benzene	ND	10	11	110		11	110		70-130	0	20
Toluene	ND	10	10	100		11	110		70-130	10	20
Ethylbenzene	ND	10	10	100		10	100		70-130	0	20
Chloromethane	ND	10	11	110		11	110		64-130	0	20
Bromomethane	ND	10	1.3J	13	Q	1.5J	15	Q	39-139	14	20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2463005

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS 1_102924	- Westborough	Lab Assoc	ciated sample(s): 01 QC Ba	tch ID: WG1992626-	-6 WG199262	26-7 QC Sample: L2	246300	5-01 Client ID: MW-
Vinyl chloride	ND	10	9.8	98	9.9	99	55-140	1	20
Chloroethane	ND	10	6.4	64	6.4	64	55-138	0	20
1,1-Dichloroethene	ND	10	11	110	11	110	61-145	0	20
trans-1,2-Dichloroethene	ND	10	11	110	11	110	70-130	0	20
Trichloroethene	ND	10	10	100	10	100	70-130	0	20
1,2-Dichlorobenzene	ND	10	9.5	95	9.7	97	70-130	2	20
1,3-Dichlorobenzene	ND	10	9.5	95	9.7	97	70-130	2	20
1,4-Dichlorobenzene	ND	10	9.4	94	9.6	96	70-130	2	20
Methyl tert butyl ether	ND	10	8.2	82	8.3	83	63-130	1	20
o/m-Xylene	ND	20	19	95	19	95	70-130	0	20
o-Xylene	ND	20	19	95	19	95	70-130	0	20
cis-1,2-Dichloroethene	ND	10	11	110	10	100	70-130	10	20
Dibromomethane	ND	10	10	100	9.8	98	70-130	2	20
1,2,3-Trichloropropane	ND	10	8.1	81	8.1	81	64-130	0	20
Acrylonitrile	ND	10	11	110	10	100	70-130	10	20
Styrene	ND	20	18	90	18	90	70-130	0	20
Dichlorodifluoromethane	ND	10	11	110	11	110	36-147	0	20
Acetone	ND	10	11	110	10	100	58-148	10	20
Carbon disulfide	ND	10	11	110	11	110	51-130	0	20
2-Butanone	ND	10	12	120	12	120	63-138	0	20
Vinyl acetate	ND	10	11	110	11	110	70-130	0	20
4-Methyl-2-pentanone	ND	10	10	100	10	100	59-130	0	20
2-Hexanone	ND	10	9.1	91	9.0	90	57-130	1	20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number:

L2463005

Report Date:

11/05/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS 1_102924	S - Westborough	Lab Asso	ciated sample(s): 01 QC Ba	tch ID: WG1992626-	6 WG199262	26-7 QC Sample: L	246300	5-01 Client ID: MW-
Bromochloromethane	ND	10	11	110	11	110	70-130	0	20
2,2-Dichloropropane	ND	10	9.8	98	9.7	97	63-133	1	20
1,2-Dibromoethane	ND	10	11	110	11	110	70-130	0	20
1,3-Dichloropropane	ND	10	11	110	10	100	70-130	10	20
1,1,1,2-Tetrachloroethane	ND	10	11	110	11	110	64-130	0	20
Bromobenzene	ND	10	9.9	99	10	100	70-130	1	20
n-Butylbenzene	ND	10	8.7	87	9.1	91	53-136	4	20
sec-Butylbenzene	ND	10	8.8	88	9.0	90	70-130	2	20
ert-Butylbenzene	ND	10	8.8	88	9.2	92	70-130	4	20
o-Chlorotoluene	ND	10	9.3	93	9.5	95	70-130	2	20
o-Chlorotoluene	ND	10	9.2	92	9.5	95	70-130	3	20
1,2-Dibromo-3-chloropropane	ND	10	9.8	98	10	100	41-144	2	20
Hexachlorobutadiene	ND	10	12	120	12	120	63-130	0	20
sopropylbenzene	ND	10	8.9	89	9.1	91	70-130	2	20
o-Isopropyltoluene	ND	10	8.6	86	9.0	90	70-130	5	20
Naphthalene	ND	10	8.6	86	9.4	94	70-130	9	20
n-Propylbenzene	ND	10	8.8	88	9.0	90	69-130	2	20
1,2,3-Trichlorobenzene	ND	10	10	100	11	110	70-130	10	20
1,2,4-Trichlorobenzene	ND	10	10	100	11	110	70-130	10	20
1,3,5-Trimethylbenzene	ND	10	8.8	88	9.1	91	64-130	3	20
1,2,4-Trimethylbenzene	ND	10	8.9	89	9.2	92	70-130	3	20
1,4-Dioxane	ND	500	500	100	530	106	56-162	6	20
p-Diethylbenzene	ND	10	8.9	89	9.2	92	70-130	3	20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number:

L2463005

Report Date:

11/05/24

Parameter	Native Sample	MS Ada	-	MS Found	-	MS covery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	, RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - 1_102924	- Westborough	Lab	Associate	ed sample	(s): 01	QC Ba	tch ID: W	/G1992626-	6 WG199262	6-7 Q	C Sample:	L2463005	5-01 (Client ID:	MW-
p-Ethyltoluene	ND		10	9.0		90		9.2	92		70-130	2		20	
1,2,4,5-Tetramethylbenzene	ND	•	10	8.5		85		8.8	88		70-130	3		20	
Ethyl ether	ND	•	10	4.6		46	Q	4.6	46	Q	59-134	0		20	
trans-1,4-Dichloro-2-butene	ND	•	10	6.0		60	Q	6.4	64	Q	70-130	6		20	

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	93	93	70-130
4-Bromofluorobenzene	99	100	70-130
Dibromofluoromethane	105	104	70-130
Toluene-d8	105	104	70-130

Project Name: 27-01 JACKSON AVE

Lab Number: L2463005 Project Number: 170472002 Report Date: 11/05/24

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

ormation		Initial	Final	Temp			Frozen	
Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
Vial HCl preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCI preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCI preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCI preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCI preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCI preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCI preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCI preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
Vial HCl preserved	Α	NA		6.0	Υ	Absent		NYTCL-8260(14)
	Vial HCl preserved	Container TypeCoolerVial HCl preservedAVial HCl preservedA	Container Type Vial HCl preserved A NA Vial HCl preserved A NA	Container Type Vial HCl preserved A NA Vial HCl preserved A NA	Container Type Cooler pH Find pH Temp deg C Vial HCl preserved A NA 6.0 Vial HCl preserved A <	Container Type Cooler pH Initial pH Init	Container TypeCoolerpHHearth deg CPresSealVial HCl preservedANA6.0YAbsentVial HCl preservedANA6.0YAbsent	Container Type Cooler pH pH deg C Pres deg C Pres Seal Date/Time Vial HCl preserved A NA 6.0 Y Absent Vial HCl preserved A NA 6.0 Y A

Project Name: Lab Number: 27-01 JACKSON AVE L2463005

Project Number: 170472002 **Report Date:** 11/05/24

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 27-01 JACKSON AVE
 Lab Number:
 L2463005

 Project Number:
 170472002
 Report Date:
 11/05/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 27-01 JACKSON AVE
 Lab Number:
 L2463005

 Project Number:
 170472002
 Report Date:
 11/05/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: 27-01 JACKSON AVE Lab Number: L2463005

Project Number: 170472002 **Report Date:** 11/05/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, LLC

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision: 22

Published Date: 10/24/2024

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine, 2,6-

Dichlorophenol.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

	NEW YORK	Service Centers	and the same		Page	e /	900		F3300		The second second		
ΔLPHA	CHAIN OF	Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W	lay		0	f {		Date Rec'd in Lab	10/3	Pelo	ALPHA Job#	-	
	CUSTODY	Tonawanda, NY 14150: 275 Coo	oper Ave, Suite 10	0					100	0107	60 10000)	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blyd	Project Information		THE REAL PROPERTY.	1 193		Deliv	erables			Billing Information		
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 27 - 0			e		1 1	ASP-A		ASP-B	Same as Client Info		
		Project Location: Long	island	City			1 📙	EQuIS (1 File)		EQuIS (4 File)	PO#		
Client Information	CONTRACTOR OF STREET	Project# 1764	72002	'				Other					
Client: Langar	1	(Use Project name as Pr	And in column 2 is not a second	A. Karani			Regu	ulatory Requiren			Disposal Site Information		
Address: 368 Ni		Project Manager: Kirr	iberly !	semon				NY TOGS	1	NY Part 375	Please identify below location o	ıf.	
New Yo	12, NY 10001	ALPHAQuote #:						AWQ Standards		NY CP-51	applicable disposal facilities.		
Phone: 212-479		Turn-Around Time	Service II					NY Restricted Us	е 🔲 (Other	Disposal Facility:		
Fax:		Standard	X	Due Date:				NY Unrestricted I	lse		□ NJ □ NY		
Email: Ks emon @	Langan.com	Rush (only if pre approved		# of Days:				NYC Sewer Disc	narge		Other:		
These samples have b		ed by Alpha					ANA	LYSIS			Sample Filtration	J	
Other project specific	requirements/comm	nents:				111	3		T		Done	0	
please cc! p	ATAMANAGEN	ANT @ Langan.	(om)	LHALEY	@ Lang	an.lom	19		1 1		Lab to do	а	
<	T AREACH @ L	angan-com				No. 1 to 1	17.0	1 1 1	1 1		Preservation	33.	
Please specify Metals						D	1				Lab to do	В	
							620				(Please Specify below)	0	
ALPHA Lab ID			Colle	ection	Sample	Sampler's	T		1 1	1 1		1	
(Lab Use Only)	5	ampie ID	ple ID Date Time		Matrix Initials		Par				Sample Specific Comments	e	
1/3005 OI	MW-01-102	924	10/29/24	14:20	GW	L	X				MSIMSD		
09	MW& 02-102	924	1	11:55	1		X						
OS	DUP01-102						X					T	
Oll	FB01-1029			11:30			X						
05	TB49-1029		V	_	V	1	V						
7)							1						
CONTRACTOR OF THE PERSONS ASSESSMENT													
									+			+	
TO STREET SAN						1	T		+			+	
Preservative Code:	Container Code	Westboro: Certification N	lo: MA935				1		+		THE CONTRACTOR OF THE CONTRACT		
A = None B = HCI	P = Plastic A = Amber Glass	Mansfield: Certification N			Co	ntainer Type	1		1 1		Please print clearly, legit and completely. Samples		
C = HNO ₃	V = Vial	Mansilau, Catilication i	10, M/1010				+	+++	+		not be logged in and	J. 000	
$D = H_2SO_4$	H ₂ SO ₄ G = Glass					Preservative					turnaround time clock wi		
E = NaOH F = MeOH	C - D.to		D	Dete	(Cinna		Daniel	10	+-	Data (Flora	start until any ambiguitie		
G = NaHSO ₄	= NaHSO ₄ O = Other Relinquish		lener	The second desirable in the se	Time	00.4		ved By:		Date/Time	resolved. BY EXECUTING THIS COC, THE CLIENT		
H = Na ₂ S ₂ O ₃	D = DOD D-NI-			10.29.24	14:30	Mar				19/24 14/3	HAS READ AND AGREE	ES	
O = Other	E-21 ACMOON			P - 10/34/54/8/16/ A3					791 mes 10/29/24 1845				
		191'me	5 100	10/29/14		17	1.1	>10	12	25/24	TERMS & CONDITIONS (See reverse side.)	1.	
Form No: 01-25 HC (rev. 3	30-Sept-2013)		1.4	4.29	0145	1//	NU	u	10/	30/14	-75		
Page 46 of 46				37 27					(7)	1	8		

ATTACHMENT E Data Usability Summary Report

Technical Memorandum

1 University Square Drive Princeton, NJ 08540 T: 609.282.8000 Mailing Address: 1 University Square Drive Princeton, NJ 08540

To: Kimberly Semon, Langan Senior Project Manager

From: Mariana Wissink, Langan Senior Staff Chemist

Date: December 18, 2024

Re: Data Usability Summary Report

For 27-01 Jackson Avenue

October 2024 Groundwater Samples Langan Project No.: 170472002

This memorandum presents the findings of an analytical data validation from the analysis of groundwater samples collected in October 2024 by Langan Engineering and Environmental Services at 27-01 Jackson Avenue. The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) for volatile organic compounds (VOCs) by the methods specified below.

VOCs by SW-846 Method 8260D

Table 1, attached, summarizes the laboratory and client sample identification numbers, sample collection dates, level of data validation, and analytical parameters subject to review.

Validation Overview

This data validation was performed in accordance with the following guidelines, where applicable:

- USEPA Region II Standard Operating Procedures (SOPs) for Data Validation
- USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020)
- USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020), and
- published analytical methodologies.

The following acronyms may be used in the discussion of data-quality issues:

%D	Percent Difference	MB	Method Blank
CCV	Continuing Calibration Verification	MDL	Method Detection Limit
FB	Field Blank	MS	Matrix Spike
FD	Field Duplicate	MSD	Matrix Spike Duplicate
ICAL	Initial Calibration	RF	Response Factor
ICV	Initial Calibration Verification	RL	Reporting Limit

Technical Memorandum

Data Usability Summary Report For 27-01 Jackson Avenue October 2024 Groundwater Samples Langan Project No.: 170472002 December 18, 2024 Page 2 of 4

ISTD	Internal Standard	RPD	Relative Percent Difference
LCL	Lower Control Limit	RSD	Relative Standard Deviation
LCS	Laboratory Control Sample	TB	Trip Blank
LCSD	Laboratory Control Sample Duplicate	UCL	Upper Control Limit

Tier 1 data validation is based on completeness and compliance checks of sample-related QC results including: sample receipt documentation; analytical holding times; sample preservation; blank results (method, field, and trip); surrogate recoveries; MS/MSD recoveries and RPDs values; field duplicate RPDs, laboratory duplicate RPDs, and LCS/LCSD recoveries and RPDs. The sample delivery group L2463005 underwent Tier 1 validation review.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA guidelines and our best professional judgment:

- **R** The sample results are unusable because certain criteria were not met when generating the data. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit; however, the reported reporting limit is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned, these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are considered invalid and are not technically usable for data interpretation. Data that is otherwise qualified because of minor data-quality anomalies are usable, as qualified in Table 2 (attached).

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

Technical Memorandum

Data Usability Summary Report For 27-01 Jackson Avenue October 2024 Groundwater Samples Langan Project No.: 170472002 December 18, 2024 Page 3 of 4

VOCs by SW-846 Method 8260D

L2463005

The LCS/LCSD for batch WG1992626 exhibited percent recoveries below the LCL for bromomethane (31%, 30%), chloroethane (54%, 52%), diethyl ether (ethyl ether) (43%, 41%), naphthalene (69%), and trichlorofluoromethane (47%, 45%). The associated results in sample MW-1_102924 are qualified as UJ because of potential low bias.

The LCS/LCSD for batch WG1992626 exhibited a RPD above the control limit for acetone (26%). The associated results in sample MW-1_102924 are qualified as UJ because of potential indeterminate bias.

The LCS/LCSD for batch WG1992852 exhibited percent recoveries below the LCL for bromomethane (25%, 24%), chloroethane (50%, 49%), diethyl ether (ethyl ether) (44%, 43%), and trichlorofluoromethane (44%, 42%). The associated results in samples MW-2_102924 and DUP01_102924 are qualified as UJ because of potential low bias.

The LCS/LCSD for batch WG1992852 exhibited a RPD above the control limit for 1,4-dioxane (23%). The associated results in samples MW-2_102924 and DUP01_102924 are qualified as UJ because of potential indeterminate bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by SW-846 Method 8260D

L2463005

The MS and/or MSD performed on sample MW-1_102924 exhibited percent recoveries and/or RPDs outside of control limits for one or more analytes (). Organic results are not qualified on the basis of MS/MSD recoveries or RPDs alone. No qualification is necessary.

FIELD DUPLICATES:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than ±X the RL. For results greater than 5X the RL, analytes meet the precision criteria if the

Technical Memorandum

Data Usability Summary Report For 27-01 Jackson Avenue October 2024 Groundwater Samples Langan Project No.: 170472002 December 18, 2024 Page 4 of 4

RPD is less than or equal to 30% for groundwater. The following field duplicate and parent sample pair was compared to and met the precision criteria:

DUP01_102924 and MW-2_102924

CONCLUSION:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Mariana Wissink Senior Staff Chemist