April 11, 2025 Ms. Marlen Salazar New York State Department of Environmental Conservation (NYSDEC) Region 2 Division of Environmental Remediation 47-40 21st Street Long Island City, NY 11101 RE: Tenth Quarter Groundwater Monitoring Report 27-01 Jackson Avenue Long Island City, New York NYSDEC Order on Consent No. S241209 Langan Project No.: 170472002 Dear Ms. Salazar: In accordance with the January 23, 2020 Off-Site In-Situ Treatment Remedial Design Plan (RDP) and the December 12, 2022 NYSDEC-approved Off-Site Site Management Plan (OSMP), Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan) conducted groundwater sampling within the public right-of-way and sidewalks adjacent to the 27-01 Jackson Avenue site located in the Long Island City neighborhood of Queens, New York (Brownfield Cleanup Program [BCP] Site No. C241209). The south- and west-adjoining sidewalks are subject to the April 20, 2022 Order on Consent and Administrative Settlement (CO), Index No. S241209-08-09 and hereinafter referred to as the "CO site". A site location map is provided as Figure 1. This was the tenth quarterly sampling event completed following implementation of the off-site in-situ groundwater treatment program between October 20 and November 11, 2021. # **Project Background** The CO site is an approximately 2,750-square-foot area that spans sections of the Jackson Avenue and 43rd Avenue sidewalks adjoining the BCP site located at 27-01 Jackson Avenue in the Long Island City neighborhood of Queens, New York (identified as Block 432, Lot 21 on the Queens County Tax Map). A site layout plan is presented on Figure 2. Light non-aqueous phase liquid (LNAPL), and petroleum-impacted soil, groundwater, and soil vapor were identified on- and off-site during a Remedial Investigation (RI) and supplemental sampling events performed between October 2018 and July 2020. To address the impacts, NYSDEC approved the RDP and the Remedial Action Work Plan (RAWP) on January 23, 2020 and January 9, 2021, respectively. A Track 1 remedy was achieved at the BCP site and a certificate of completion (COC) was issued on December 23, 2022. Pursuant to the RAWP, a CO was executed on April 20, 2022, which requires compliance with the NYSDEC-approved December 12, 2022 OSMP. The intent of the CO is to monitor off-site conditions in groundwater following off-site groundwater treatment and on-site dewatering. The OSMP addresses the means for implementing, monitoring, and reporting on the Engineering and Institutional Controls (ECs/ICs) that are required by the CO for the off-site areas adjacent to the BCP site. #### In-Situ Groundwater Treatment An off-site in-situ groundwater treatment program was implemented to treat remaining petroleum-related VOCs beneath the CO site, which were initially identified during the RI. Targeted petroleum-related VOCs included benzene, toluene, ethylbenzene, and xylenes (BTEX), and their breakdown products. Impacted groundwater was treated using an activated carbon solution (PetroFixTM) via direct-push injection points located in a rough grid pattern to spread chemicals evenly within the off-site, south- and west-adjoining sidewalks comprising the CO site. The injection program was carried out by Clean Harbors of Norwell, Massachusetts and Aquifer Drilling and Testing (ADT) of Mineola, New York, under the oversight of Langan, between October 20 and November 11, 2021. Injection point locations are shown on Figure 3. At each injection point, a hollow steel injection rod was advanced to depths ranging from about 15 to 30 feet below grade surface (bgs). Injections were made using a "bottom-up" approach, beginning at the deepest 2-foot interval, and raised from the bottom depth in 2-foot intervals to approximately 15 feet bgs. Approximately 14,400 pounds of Petrofix® and 720 pounds of electron acceptor blend were applied via direct-push drill rig between October 20 and November 11, 2021. Between 664 and 976 pounds of Petrofix® were applied to each point. #### **Performance Monitoring Methodology** The RDP and OSMP included baseline sampling and quarterly post-injection groundwater monitoring to evaluate the efficacy of the CO site remedy. Baseline groundwater sampling was conducted from existing monitoring wells MW-3 and MW-4 and temporary monitoring wells MW-1 and MW-2 on October 7 and 19, 2021. Monitoring wells MW-3 and MW-4 were compromised during installation of the support of excavation, and the four monitoring wells were reinstalled for post-remediation groundwater monitoring on August 22, 2022 and October 13 and 14, 2022. Post-injection monitoring well locations are shown on Figure 3. Post-injection groundwater monitoring was not conducted between November 2021 and October 2022 due to remediation efforts and active dewatering at the BCP site. Ten post-injection quarterly sampling events have been completed at the CO site in October 2022, January 2023, April 2023, July 2023, October 2023, January 2024, April 2024, July 2024, October 2024, and January 2025. Between the third and fourth quarter sampling events, monitoring well MW-3 was compromised during the installation of utilities beneath the 43rd Avenue sidewalk. Considering VOCs were non-detect in MW-3 during the previous three quarters of sampling, NYSDEC allowed the discontinuation of sampling of MW-3 via email correspondence on August 8th, 2023. The Fourth Quarter Groundwater Monitoring Report, dated September 15, 2023, indicated that VOCs were also non-detect in monitoring well MW-4 during the previous four quarters; therefore, NYSDEC allowed the discontinuation of sampling of MW-4 via email correspondence on October 13th, 2023. NYSDEC correspondence is included as Attachment A. # Well Purging and Sampling Monitoring well sampling was conducted for monitoring wells MW-1 and MW-2 on January 24, 2025. Before sampling, each well was purged using the low-flow method developed by the United States Environmental Protection Agency (USEPA) "Low-Flow [Minimal Drawdown] Ground-Water Sampling Procedures," EPA/540/S-95/504, April 1996) and accepted by the NYSDEC. Purging was performed using a peristaltic pump fitted with dedicated tubing at each well. During purging of MW-2, the turbidity, pH, temperature, conductivity, oxidation-reduction potential (ORP), and dissolved oxygen (DO) were monitored using a Horiba U-52 water quality meter with a flow-through cell. Due to poor recharge, groundwater quality parameters for MW-1 were not recorded. Purged groundwater was containerized in 55-gallon drums during each event. The daily site observation report is included in Attachment B. The groundwater quality parameters for MW-2 are recorded in the Well Purging and Sampling Logs provided in Attachment C. As a general rule, groundwater is purged until water quality parameters stabilized, after an hour of continuous purging, or after three well volumes of groundwater had been removed from the well. Due to poor recharge in both wells, groundwater samples were collected from MW-1 and MW-2 after purging three well volumes from each well. After purging each well, a groundwater sample was collected directly from the pump discharge line using USEPA low-flow techniques. For quality assurance and quality control, one field blank sample and one duplicate sample were collected. A trip blank was included in each shipment for quality control during transport. All samples were analyzed for Part 375/Target Compound List (TCL) VOCs via USEPA SW-846 method 8260C by Pace Analytical, a New York State Department of Environmental Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-accredited laboratory in Westborough, Massachusetts. The laboratory analytical results for the baseline sampling event, the previous quarterly sampling events, and the January 2025 sampling event are summarized in Table 1. The laboratory analytical report from the January 2025 sampling event is provided as Attachment D. Groundwater analytical results were compared to the NYSDEC Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical & Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA drinking water (herein collectively referenced as the NYSDEC SGVs). Analytical results from the first quarterly sampling event are discussed in the NYSDEC-approved December 2022 Final Engineering Report (FER), and analytical results from subsequent quarters are discussed in their respective quarterly monitoring reports. Langan Project No.: 170472002 # **January 2025 Performance Monitoring Analytical Results** Analytical results from the January 2025 performance monitoring are summarized as follows: - MW-1: No VOCs were detected above the NYSDEC SGVs. In comparison to baseline analytical results, total VOC and total BTEX concentrations have decreased by 100%. - <u>MW-2:</u> 1,2,4,5-Tetramethylbenzene, 1,2,4-trimethylbenzene, isopropylbenzene (cumene), m,p-xylene, n-propylbenzene, and total xylenes were detected above the NYSDEC SGVs. In comparison to baseline analytical results, total VOC and total BTEX concentrations have decreased by 98.5% and 99.5%, respectively. Six VOCs were detected above the NYSDEC SGVs in groundwater samples collected during the January 2025 monitoring event. Total VOC concentrations have decreased by 100% (MW-1) and 98.7% (MW-2), and total BTEX concentrations have decreased by 100% (MW-1) and 99.5% (MW-2) when compared to baseline concentrations. In comparison to the ninth quarterly sampling event, analyte concentrations detected above the NYSDEC SGVs in MW-1 and MW-2 are generally within the same order of magnitude. Analytical data are shown on Figure 4 and result trends are shown on Figure 5. Comparison of overall result trends for each monitoring well show a bulk reduction in petroleum-related VOCs to asymptotic levels over the course of the monitoring
program. Based on the post-remedy sampling results and trends, the off-site remedy appears to have been effective; further significant decline of contaminant of concern concentrations in the near term is not anticipated. #### **Data Validation** A copy of the Analytical Services Protocol (ASP) Category B laboratory report was submitted to Langan's data validation department for review in accordance with the USEPA validation guidelines for organic and inorganic data. The data were found to be 100% acceptable. The Data Usability Summary Report (DUSR) is included in Attachment E. Langan Project No.: 170472002 #### Closure Targeted petroleum-related VOC concentrations exceeded the NYSDEC SGVs in MW-2, but have been reduced by one to three orders of magnitude relative to baseline concentrations, indicating that bulk reduction has been observed. VOCs were not detected above the NYSDEC SGVs in MW-1 during the January 2025 monitoring event. Based on the overall sampling event results trends, asymptotic levels have been achieved over the ten monitoring events, indicating that the off-site remedy has been effective. Further significant decline of concentrations of contaminants of concern in the near term is not anticipated; however, as requested by NYSDEC in their correspondence dated September 19, 2024 (see Attachment A), Langan will conduct one additional quarterly groundwater monitoring events at the CO site prior to re-evaluating discontinuation of the monitoring program. Should you have any questions, please call the undersigned at 212-479-5427. Sincerely, Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C. Jason Hayes, P.E. Senior Principal #### Enclosures: Attachment D Attachment E | Figure 1 | Site Location Map | |--------------|--| | Figure 2 | Site Layout Plan | | Figure 3 | In-Situ Groundwater Treatment Injection Plan | | Figure 4 | Groundwater Sample Analytical Results | | Figure 5 | Groundwater Sample Analytical Results Trends | | Table 1 | Groundwater Sample Analytical Results | | Attachment A | NYSDEC Correspondence | | Attachment B | Daily Site Observation Report | | Attachment C | Well Purging and Sampling Logs | Laboratory Analytical Report Data Usability Summary Report Figure 5 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results Trends MW-1 Groundwater Trends - VOCs Figure 5 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results Trends MW-2 Groundwater Trends - VOCs Figure 5 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results Trends MW-3 Groundwater Trends - VOCs # Figure 5 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results Trends MW-4 Groundwater Trends - VOCs | | | | | , | | • | | | 1 | | _ | | | • | | | | | |--|------------------------|----------------|----------------------------|----------------------|-------------------|-------------------------|-------------------|----------------------|-------------------|------------------------|----------------------|-------------------------|------------------------|------------------------|-------------------|-------------------|--------------------|--------------------| | | | | Sampling Event
Location | Baseline
MW-1 | Quarter 1
MW-1 | Quarter 2
MW-1 | Quarter 3
MW-1 | Quarter 4
MW-1 | Quarter 4
MW-1 | Quarter 5
MW-1 | Quarter 5
MW-1 | Quarter 6
MW-1 | Quarter 7
MW-1 | Quarter 7
MW-1 | Quarter 8
MW-1 | Quarter 9
MW-1 | Quarter 10
MW-1 | Quarter 10
MW-1 | | Analyte | CAS
Number | NYSDEC | Sample Name | MW01_101921 | MW-1_102122 | MW-1_012623 | MW-1_042623 | MW-1_072723 | DUP01_072723 | MW-1_102323 | DUP01_102323 | MW-1_013124 | MW-1_042524 | DUP01_042524 | MW-1_072924 | MW-1_102924 | MW-1_012425 | DUP01_012425 | | | Number | SGVs | Sample Date | 10/19/2021 | 10/21/2022 | 01/26/2023 | 04/26/2023 | 07/27/2023 | 07/27/2023 | 10/23/2023 | 10/23/2023 | 01/31/2024 | 04/25/2024 | 04/25/2024 | 07/29/2024 | 10/29/2024 | 01/24/2025 | 01/24/2025 | | Volatile Organic Compounds | | | Unit | Result | 1,1,1,2-Tetrachloroethane | 630-20-6 | 5 | ug/l | <2.5 U | 1,1,1-Trichloroethane | 71-55-6 | 5 | ug/l | <2.5 U | 1,1,2,2-Tetrachloroethane
1,1,2-Trichloroethane | 79-34-5
79-00-5 | 5
1 | ug/l
ug/l | <0.5 U
<1.5 U | 1,1-Dichloroethane | 75-34-3 | 5 | ug/l | <2.5 U | 1,1-Dichloroethene | 75-35-4 | 5 | ug/l | <0.5 U | 1,1-Dichloropropene
1,2,3-Trichlorobenzene | 563-58-6
87-61-6 | 5 | ug/l
ug/l | <2.5 U
<2.5 U | 1,2,3-Trichloropropane | 96-18-4 | 0.04 | ug/l | <2.5 U | 1,2,4,5-Tetramethylbenzene | 95-93-2 | 5 | ug/l | 12 | 1.9 J | 8.9 | 1.7 J | <2 U | <2 U | 7.6 | 8.4 | 8 | 11 | 11 | 7.4 | <2 U | <2 U | <2 U | | 1,2,4-Trichlorobenzene
1,2,4-Trimethylbenzene | 120-82-1
95-63-6 | 5
5 | ug/l | <2.5 U
11 | <2.5 U
0.77 J | <2.5 U
0.74 J | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
7.2 | <2.5 U
7.5 | <2.5 U
<2.5 U | <2.5 U
2.6 | <2.5 U
2.6 | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | | 1,2-Dibromo-3-Chloropropane | 96-12-8 | 0.04 | ug/l
ug/l | <2.5 U | 1,2-Dibromoethane (Ethylene Dibromide) | 106-93-4 | 0.0006 | ug/l | <2 U | 1,2-Dichlorobenzene | 95-50-1 | 3 | ug/l | <2.5 U | 1,2-Dichloroethane 1,2-Dichloropropane | 107-06-2
78-87-5 | 0.6
1 | ug/l
ug/l | <0.5 U
<1 U | 1,3,5-Trimethylbenzene (Mesitylene) | 108-67-8 | 5 | ug/l | 7.8 | 4 | 1.7 J | <2.5 U | <2.5 U | <2.5 U | 5.3 | 5.6 | <2.5 U | 1,3-Dichlorobenzene | 541-73-1 | 3 | ug/l | <2.5 U | 1,3-Dichloropropane
1,4-Dichlorobenzene | 142-28-9
106-46-7 | 5
3 | ug/l | <2.5 U
<2.5 U | 1,4-Dictiorobenzene 1,4-Diethyl Benzene | 105-46-7 | NS | ug/l
ug/l | 26 | 4 | 4.9 | <2.5 U | <2.5 U
<2 U | <2.5 U
<2 U | <2.5 U | <2.5 U
1.7 J | 3.9 | 3.5 | 3.5 | 2.3 | <2.5 U
<2 U | <2.5 U
<2 U | <2.5 U
<2 U | | 1,4-Dioxane (P-Dioxane) | 123-91-1 | 0.35 | ug/l | <250 U | 2,2-Dichloropropane | 594-20-7 | 5 | ug/l | <2.5 U
<2.5 U | <2.5 | 2-Chlorotoluene
2-Hexanone (MBK) | 95-49-8
591-78-6 | 50 | ug/l
ug/l | <5 U | <2.5 U
<5 | 4-Chlorotoluene | 106-43-4 | 5 | ug/l | <2.5 U | 4-Ethyltoluene | 622-96-8 | NS
E0 | ug/l | 6.1 | 1.5 J | 1.4 J | <2 U | <2 U | <2 U | 4 | 4.3 | <2 U | Acetone
Acrylonitrile | 67-64-1
107-13-1 | 50 | ug/l
ug/l | 4.5 J
<5 U | 25
<5 ∪ | <5 U
<5 U | <5 U
<5 U | 2.5 J
<5 ∪ | <5 U
<5 U UJ
<5 U | <5 U
<5 U | 1.7 J
<5 U | | Benzene | 71-43-2 | 1 | ug/l | 17 | <0.5 U | 0.22 J | <0.5 U | Bromobenzene | 108-86-1 | 5 | ug/l | <2.5 U | Bromochloromethane Bromodichloromethane | 74-97-5
75-27-4 | 5
50 | ug/l
ug/l | <2.5 U
<0.5 U | Bromoform | 75-25-2 | 50 | ug/l | <2 U | Bromomethane | 74-83-9 | 5 | ug/l | <2.5 U | <2.5 UJ | <2.5 UJ | <2.5 U | <2.5 U | <2.5 U | <2.5 U | <2.5 UJ | <2.5 U | <2.5 U | | Carbon Disulfide Carbon Tetrachloride | 75-15-0
56-23-5 | 60
5 | ug/l
ug/l | 1.2 J
<0.5 U | <5 U
<0.5 | Chlorobenzene | 108-90-7 | 5 | ug/l | <2.5 U | Chloroethane | 75-00-3 | 5 | ug/l | <2.5 U UJ | <2.5 U | <2.5 U | | Chloroform
Chloromethane | 67-66-3
74-87-3 | 7
5 | ug/l
ug/l | <2.5 U
<2.5 U | Cis-1,2-Dichloroethene | 156-59-2 | 5 | ug/l | <2.5 U | Cis-1,3-Dichloropropene | 10061-01-5 | 0.4 | ug/l | <0.5 U | Cymene | 99-87-6 | 5
50 | ug/l | 1.4 J
<0.5 U | <2.5 U
<0.5 U | <2.5 | Dibromochloromethane Dibromomethane | 124-48-1
74-95-3 | 5 | ug/l
ug/l | <5 U | <5 U | <0.5 U
<5 | Dichlorodifluoromethane | 75-71-8 | 5 | ug/l | <5 U | Diethyl Ether (Ethyl Ether) | 60-29-7 | NS
5 | ug/l | <2.5 U | <2.5 U
4.7 | <2.5 U
5 | <2.5 U | <2.5 U | <2.5 U | <2.5 U | <2.5 UJ | <2.5 U | <2.5 U | | Ethylbenzene
Hexachlorobutadiene | 100-41-4
87-68-3 | 0.5 | ug/l
ug/l | 54
<2.5 U | <2.5 U
<2.5 U | 5.4
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | 4.7
<2.5 U | <2.5 U | 1. 9 J
<2.5 U | 1.5 J
<2.5 ∪ | 1.5 J
<2.5 ∪ | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | | Isopropylbenzene (Cumene) | 98-82-8 | 5 | ug/l | 10 | <2.5 U | 9.1 | <2.5 U | <2.5 U | <2.5 U | 3.9 | 4.2 | 5.6 | 2.1 J | 2.1 J | <2.5 U | <2.5 U | <2.5 U | <2.5 U | | M,P-Xylene | 179601-23-1 | 5 | ug/l | 11 | 1.3 J | 0.88 J | <2.5 U | <2.5 U | <2.5 U | 3.7 | 4 | <2.5 U | Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) | 78-93-3
108-10-1 | 50
NS | ug/l
ug/l | <5 U
<5 U | <5 UJ
<5 U | <5 U
<5 | Methylene Chloride | 75-09-2 | 5 | ug/l | <2.5 U | Naphthalene | 91-20-3 | 10 | ug/l | 3.4 J | <2.5 U | 2.2 J | 2 J | <2.5 U | <2.5 U | <2.5 U | <2.5 U | <2.5 UJ | <2.5 U | <2.5 U | | n-Butylbenzene
n-Propylbenzene | 104-51-8
103-65-1 | 5
5 | ug/l
ug/l | 5.6
17 | <2.5 U
<2.5 U | 2.2 J
11 | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | 1.4 J
7.1 | 1.6 J
7.7 | 1.7 J
5.7 | 0.87 J
1.5 J | 0.81 J
1.6 J | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | | o-Xylene (1,2-Dimethylbenzene) | 95-47-6 | 5 | ug/l | 9.1 | <2.5 U | 0.98 J | 1 J | <2.5 U | Sec-Butylbenzene | 135-98-8 | 5 | ug/l | 4.6 | <2.5 U | 2.7 | 0.87 J | <2.5 U | <2.5 U | 0.9 J | 1 J | 1.9 J | 1.2 J | 1.1 J | 0.85 J | <2.5 U | <2.5 U | <2.5 U | | Styrene
T-Butylbenzene | 100-42-5
98-06-6 | 5
5 | ug/l
ug/l | <2.5 U
<2.5 U 1. 2 J
<2.5 U | <2.5 U
<2.5 U | | Tert-Butyl Methyl Ether | 1634-04-4 | 10 | ug/l | <2.5 U 0.21 J | <2.5 U | | Tetrachloroethene (PCE) | 127-18-4 | 5 | ug/l | <0.5 U | Toluene | 108-88-3 | S
NS | ug/l | 5.3
<2.5 U | <2.5 U
<2.5 U | <2.5 U | | Total 1,2-Dichloroethene (Cis and
Trans) Total Xylenes | 540-59-0
1330-20-7 | NS
5 | ug/l
ug/l | <2.5 U | <2.5 U
1.3 J | <2.5 U
0.88 J | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
4.7 J | <2.5 U
5 J | <2.5 U
<2.5 U | Total, 1,3-Dichloropropene (Cis And Trans) | 542-75-6 | 0.4 | ug/l | <0.5 U | Trans-1,2-Dichloroethene | 156-60-5 | 5 | ug/l | <2.5 U | Trans-1,3-Dichloropropene Trans-1,4-Dichloro-2-Butene | 10061-02-6
110-57-6 | 0.4
5 | ug/l
ug/l | <0.5 U
<2.5 U UJ | <0.5 U
<2.5 UJ | | Trichloroethene (TCE) | 79-01-6 | 5 | ug/l | <0.5 U | Trichlorofluoromethane | 75-69-4 | 5 | ug/l | <2.5 U UJ | <2.5 U | <2.5 U | | Vinyl Acetate
Vinyl Chloride | 108-05-4
75-01-4 | NS
2 | ug/l | <5 U
<1 U | viriyi Cilionae | / U=U 1=4 | ۷ | ug/l | < I U | <1 U | <1 U | < I U | < I U | < I U | < I U | < I U | < I U | < I U | <1 U | <1 U | <1 U | < I U | < I U | | | | -1 | | | | | | | | | | | | | | | | | |--|------------------------|-----------------|----------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|----------------------|----------------------|-----------------------|----------------------|------------------------|-------------------------|------------------------|----------------------|----------------------| | | | | Sampling Event
Location | Baseline
MW-2 | Quarter 1
MW-2 | Quarter 1
MW-2 | Quarter 2
MW-2 | Quarter 3
MW-2 | Quarter 4
MW-2 | Quarter 5
MW-2 | Quarter 6
MW-2 | Quarter 6
MW-2 | Quarter 7
MW-2 | Quarter 8
MW-2 | Quarter 8
MW-2 | Quarter 9
MW-2 | Quarter 9
MW-2 | Quarter 10
MW-2 | | Analyte | CAS
Number | NYSDEC
SGVs | Sample Name | MW02_101921 | MW-2_102022 | DUP01_102022 | MW-2_012623 | MW-2_042623 | MW-2_072723 | MW-2_102323 | MW-2_013124 | DUP01_013124 | MW-2_042524 | MW-2_072924 | DUP01_072924 | MW-2_102924 | DUP01_102924 | MW-2_012425 | | | Number | SGVS | Sample Date | 10/19/2021 | 10/20/2022 | 10/20/2022 | 01/26/2023 | 04/26/2023 | 07/27/2023 | 10/23/2023 | 01/31/2024 | 01/31/2024 | 04/25/2024 | 07/29/2024 | 07/29/2024 | 10/29/2024 | 10/29/2024 | 01/24/2025 | | Volatile Organic Compounds | | | Unit | Result | 1,1,1,2-Tetrachloroethane | 630-20-6 | 5 | ug/l | <25 U | <2.5 | 1,1,1-Trichloroethane | 71-55-6 | 5 | ug/l | <25 U | <2.5 | 1,1,2,2-Tetrachloroethane
1,1,2-Trichloroethane | 79-34-5
79-00-5 | 5
1 | ug/l
ug/l | <5 U
<15 U | <0.5 U
<1.5 | 1,1-Dichloroethane | 75-34-3 | 5 | ug/l | <25 U | <2.5 | 1,1-Dichloroethene | 75-35-4 | 5 | ug/l | <5 U | <0.5 | 1,1-Dichloropropene 1,2,3-Trichlorobenzene | 563-58-6
87-61-6 | 5
5 | ug/l
ug/l | <25 U
<25 U | <2.5 U
<2.5 | 1,2,3-Trichloropropane | 96-18-4 | 0.04 | ug/l | <25 U | <2.5 | 1,2,4,5-Tetramethylbenzene | 95-93-2 | 5 | ug/l | 130 | 1.4 J | 4.2 J | <2 U | <2 ∪ | 2.6 | 6.2 | 6.1 J | 1.3 J | 28 | 8.5 | 7 | 9.6 | 11 | 5.7 | | 1,2,4-Trichlorobenzene
1,2,4-Trimethylbenzene | 120-82-1
95-63-6 | 5
5 | ug/l | <25 U
1,900 | <2.5 U
10 J | <2.5 U
34 J | <2.5 U | <2.5 U
15 | <2.5 U
80 | <2.5 U
37 | <2.5 U
110 J | <2.5 U
52 J | <2.5 U
97 | <2.5 U | <2.5 U
15 | <2.5 U
34 | <2.5 U
32 | <2.5 U
37 | | 1,2-Dibromo-3-Chloropropane | 96-12-8 | 0.04 | ug/l
ug/l | <25 U | <2.5 | 1,2-Dibromoethane (Ethylene Dibromide) | 106-93-4 | 0.0006 | ug/l | <20 U | <2 U | <2 ∪ | <2 U | 1,2-Dichlorobenzene | 95-50-1 | 3 | ug/l | <25 U | <2.5 | 1,2-Dichloroethane
1,2-Dichloropropane | 107-06-2
78-87-5 | 0.6
1 | ug/l
ug/l | <5 U
<10 U | <0.5 U
<1 | 1,3,5-Trimethylbenzene (Mesitylene) | 108-67-8 | 5 | ug/l | 540 | 3.5 J | 8 J | 2.5 | 2.4 J | 11 | 2.5 | 11 J | 6.9 J | 3.2 | 0.79 J | 0.72 J | 3.8 | 3.4 | 4.6 | | 1,3-Dichlorobenzene | 541-73-1 | 3 | ug/l | <25 U | <2.5 | 1,3-Dichloropropane | 142-28-9
106-46-7 | 5
3 | ug/l | <25 U
<25 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U | <2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U | | 1,4-Dichlorobenzene
1,4-Diethyl Benzene | 105-46-7 | NS | ug/l
ug/l | 270 | <2.5 U | 0.72 J | 1.4 J | <2.5 U
0.85 J | <2.5 U
1.4 J | 0.91 J | 2.5 | <2.5 U | <2.5 U
7 | 1.3 J | <2.5 U | 2.1 | 2.2 | <2.5 U
1.5 J | | 1,4-Dioxane (P-Dioxane) | 123-91-1 | 0.35 | ug/l | <2,500 U | <250 UJ | <250 UJ | <250 U | | 2,2-Dichloropropane | 594-20-7 | 5 | ug/l | <25 U | <2.5 | 2-Chlorotoluene
2-Hexanone (MBK) | 95-49-8
591-78-6 | 50
50 | ug/l
ug/l | <25 U
<50 U | <2.5 U
<5 | 4-Chlorotoluene | 106-43-4 | 5 | ug/l | <25 U | <2.5 | 4-Ethyltoluene | 622-96-8 | NS | ug/l | 800 | 7.4 J | 15 J | 6.2 | 9.7 | 44 | 13 | 51 J | 30 J | 38 | 5.6 | 5.3 | 16 | 15 | 18 | | Acetone
Acrylonitrile | 67-64-1
107-13-1 | 50 | ug/l
ug/l | <50 U
<50 U | 56
<5 ∪ | 63
<5 U | 4.4 J
<5 ∪ | 12 J
<5 ∪ | 37
<5 ∪ | 3.8 J
<5 U | <5 UJ
<5 U | 19 J
<5 U | 12
<5 ∪ | 21 J
<5 ∪ | 27 J
<5 ∪ | 12
<5 ∪ | 10
<5 ∪ | 19
<5 ∪ | | Benzene | 71-43-2 | 1 | ug/l | 2.1 J | 0.69 | 0.35 J | 0.51 | 0.82 | 0.6 | <0.5 U | 0.18 J | 0.31 J | <0.5 U | <0.5 U | <0.5 U | 0.21 J | 0.19 J | <0.5 U | | Bromobenzene | 108-86-1 | 5 | ug/l | <25 U | <2.5 | Bromochloromethane Bromodichloromethane | 74-97-5
75-27-4 | 5
50 | ug/l
ug/l | <25 U
<5 U | <2.5 U
<0.5 | Bromoform | 75-25-2 | 50 | ug/l | <20 U | <2 | Bromomethane | 74-83-9 | 5 | ug/l | <25 U | <2.5 U | <2.5 U | <2.5 U | <2.5 U | 1.3 J | 2.6 J | 0.85 J | 1.2 J | 1.1 J | <2.5 U | <2.5 U | <2.5 UJ | <2.5 UJ | <2.5 U | | Carbon Disulfide Carbon Tetrachloride | 75-15-0
56-23-5 | 60
5 | ug/l
ug/l | <50 U
<5 U | <5 U
<0.5 | Chlorobenzene | 108-90-7 | 5 | ug/l | <25 U | <2.5 | Chloroethane | 75-00-3 | 5 | ug/l | <25 U | <2.5 UJ | <2.5 UJ | <2.5 U | | Chloroform | 67-66-3
74-87-3 | 7
5 | ug/l | <25 U | <2.5 U | <2.5 U
<2.5 U | <2.5 | Chloromethane Cis-1,2-Dichloroethene | 156-59-2 | 5 | ug/l
ug/l | <25 U
<25 U | <2.5 U
<2.5 U | <2.5 U | <2.5 U
<2.5 | Cis-1,3-Dichloropropene | 10061-01-5 | 0.4 | ug/l | <5 U | <0.5 | Cymene | 99-87-6 | 5 | ug/l | <25 U | <2.5 U | 0.7 J | <2.5 U | <2.5 U | <2.5 U | <2.5 U | 1.2 J | <2.5 U | 2 J | <2.5 U | <2.5 U | 0.76 J | 0.86 J | 0.71 J | | Dibromochloromethane Dibromomethane | 124-48-1
74-95-3 | 50
5 | ug/l
ug/l | <5 U
<50 U | <0.5 U
<5 | Dichlorodifluoromethane | 75-71-8 | 5 | ug/l | <50 U | <5 | Diethyl Ether (Ethyl Ether) | 60-29-7 | NS | ug/l | <25 U | <2.5 UJ | <2.5 UJ | <2.5 U | | Ethylbenzene
Hexachlorobutadiene | 100-41-4
87-68-3 | 5
0.5 | ug/l
ug/l | 890
<25 U | 5.9
<2.5 U | 4
<2.5 U | 5.8
<2.5 U | 11
<2.5 U | 41
<2.5 U | 3.2
<2.5 U | 16
<2.5 U | 19
<2.5 U | 6.3
<2.5 U | 1.2 J
<2.5 ∪ | 1.1 J
<2.5 U | 5.5
<2.5 U | 4.8
<2.5 U | 4.9
<2.5 U | | Isopropylbenzene (Cumene) | 98-82-8 | 5 | ug/l | 190 | 3 | 3.5 | 3.2 | 5.2 | 22 | 8.3 | 26 J | 18 J | 17 | 2.4 J | 2.1 J | 6 | 5.8 | 7.1 | | M,P-Xylene | 179601-23-1 | 5 | ug/l | 2,300 | 16 | 14 | 12 | 19 | 70 | 2.3 J | 32 | 36 | 2 J | 1.1 J | 0.92 J | 7.3 | 5.9 | 12 | | Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) | 78-93-3
108-10-1 | 50
NS | ug/l
ug/l | <50 U
<50 U | <5 UJ
1.5 J | 21 J
<5 U | <5 U
<5 U | <5 U
1.7 J | 27
<5 ∪ | <5 U
<5 U | <5 UJ
<5 U | 13 J
<5 U | <5 U
<5 U | 4.6 J
<5 ∪ | 4.7 J
<5 U | <5 U
<5 U | <5 U
<5 U | <5 U
<5 U | | Methylene Chloride | 75-09-2 | 5 | ug/l | <25 U | 1 J | <2.5 U | 0.92 J | <2.5 U | <2.5 U | <2.5 U | <2.5 U | 0.79 J | <2.5 U | <2.5 U | <2.5 U | 1.1 J | 0.88 J | <2.5 U | | Naphthalene | 91-20-3 | 10 | ug/l | 460 J | <2.5 U | 3 | <2.5 U | <2.5 U | 1.4 J | <2.5 U | 1.6 J | 0.86 J | 1 J | 0.96 J | 0.87 J | 0.77 J | 0.91 J | 0.99 J | | n-Butylbenzene
n-Propylbenzene | 104-51-8
103-65-1 | 5
5 | ug/l
ug/l | 25
370 | <2.5 U
2.8 J | 0.93 J
5.7 J | <2.5 U
2.7 | <2.5 U
4.5 | 0.7 J
23 | <2.5 U
9.5 | 1.4 J
37 J | <2.5 U
19 J | 3.2
40 | 0.94 J
6.5 | 0.91 J
6.1 | 1 J
13 | 1.2 J
13 | 0.71 J
13 | | o-Xylene (1,2-Dimethylbenzene) | 95-47-6 | 5 | ug/l | 410 | 2.83
2 J | 1.9 J | 1.5 J | 2.1 J | 7.5 | <2.5 U | 3.7 | 4.2 | <2.5 U | <2.5 U | <2.5 U | 0.78 J | <2.5 U | 1.3 J | | Sec-Butylbenzene | 135-98-8 | 5 | ug/l | 18 J | <2.5 U | 0.83 J | <2.5 U | <2.5 U | 0.93 J | 0.84 J | 1.9 J | <2.5 U | 3.5 | 0.92 J | 0.86 J | 1.4 J | 1.6 J | 1.1 J | | Styrene
T-Butylbenzene | 100-42-5
98-06-6 | 5
5 | ug/l | <25 U
<25 U | <2.5 U
<2.5 | Tert-Butyl Methyl Ether | 1634-04-4 | 5
10 | ug/l
ug/l | <25 U | <2.5 | Tetrachloroethene (PCE) | 127-18-4 | 5 | ug/l | <5 U | <0.5 | Toluene | 108-88-3 | 5
NC | ug/l | 130 | 0.7 J | 1 J | <2.5 U | 0.79 J | 1.2 J | <2.5 U | <2.5 U | 0.74 J | <2.5 U | | Total 1,2-Dichloroethene (Cis and Trans) Total Xylenes | 540-59-0
1330-20-7 | NS
5 | ug/l
ug/l | <25 U
2,700 | <2.5 U
18 J | <2.5 U
16 J | <2.5 U
14 J | <2.5 U
21 J | <2.5 U 78 | <2.5 U
2.3 J | <2.5 U
36 | <2.5 U
40 | <2.5 U
2 J | <2.5 U
1.1 J | <2.5 U
0.92 J | <2.5 U
8.1 J | <2.5 U
5.9 | <2.5 U
13 J | | Total, 1,3-Dichloropropene (Cis And Trans) | 542-75-6 | 0.4 | ug/l | <5 U | <0.5 |
Trans-1,2-Dichloroethene | 156-60-5 | 5 | ug/l | <25 U | <2.5 | Trans-1,3-Dichloropropene Trans-1,4-Dichloro-2-Butene | 10061-02-6
110-57-6 | 0.4 | ug/l | <5 U
<25 U | <0.5 U
<2.5 UJ | | Trichloroethene (TCE) | 79-01-6 | 5
5 | ug/l
ug/l | <5 U | <2.5 U | <2.5 U
<0.5 U | <2.5 U | <2.5 U
<0.5 U | <2.5 U
<0.5 U | <2.5 U
<0.5 U | <2.5 U
<0.5 U | <2.5 U | <2.5 UJ
<0.5 U | | Trichlorofluoromethane | 75-69-4 | 5 | ug/l | <25 U | <2.5 UJ | <2.5 UJ | <2.5 U | | Vinyl Acetate | 108-05-4 | NS
2 | ug/l | <50 U | <5 | Vinyl Chloride | 75-01-4 | 2 | ug/l | <10 U | <1 | | | | | | | g. | an Project No.: 170 | | | | | | | | | |--|------------------------|----------------|-------------------------|----------------------|---------------------|---------------------|---------------------|----------------------|---------------------|------------------------|---------------------|---------------------|----------------------|---------------------|---------------------| | | | | Sampling Event | Baseline | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 3 | Baseline | Baseline | Quarter 1 | Quarter 2 | Quarter 2 | Quarter 3 | Quarter 4 | | Analyte | CAS | NYSDEC | Location
Sample Name | MW-3
MW03_100721 | MW-3
MW-3_102122 | MW-3
MW-3_012623 | MW-3
MW-3_042623 | MW-3
DUP01 042623 | MW-4
MW04_100721 | MW-4
GWDUP01_100721 | MW-4
MW-4_102122 | MW-4
MW-4 012623 | MW-4
DUP01_012623 | MW-4
MW-4 042623 | MW-4
MW-4_072723 | | Analyte | Number | SGVs | Sample Date | 10/07/2021 | 10/21/2022 | 01/26/2023 | 04/26/2023 | 04/26/2023 | 10/07/2021 | 10/07/2021 | 10/21/2022 | 01/26/2023 | 01/26/2023 | 04/26/2023 | 07/27/2023 | | | | | Unit | Result | Volatile Organic Compounds | 620.20.6 | | | -2.5.11 | -2.5.11 | -0.511 | -0.511 | -0.511 | -0.E.U | -0.511 | .0.5.11 | -2.5.11 | -0.511 | -2.5.11 | -2.5.11 | | 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane | 630-20-6
71-55-6 | 5
5 | ug/l
ug/l | <2.5 U
<2.5 U | 1,1,2,2-Tetrachloroethane | 79-34-5 | 5 | ug/l | <0.5 U | 1,1,2-Trichloroethane | 79-00-5 | 1 | ug/l | <1.5 U | 1,1-Dichloroethane
1,1-Dichloroethene | 75-34-3
75-35-4 | 5
5 | ug/l
ug/l | <2.5 U
<0.5 U | 1,1-Dichloropropene | 563-58-6 | 5 | ug/l | <2.5 U | 1,2,3-Trichlorobenzene | 87-61-6 | 5 | ug/l | <2.5 U | 1,2,3-Trichloropropane | 96-18-4 | 0.04 | ug/l | <2.5 U | 1,2,4,5-Tetramethylbenzene
1,2,4-Trichlorobenzene | 95-93-2
120-82-1 | 5 | ug/l
ug/l | 2
<2.5 ∪ | <2 U
<2.5 U | 1,2,4-Trimethylbenzene | 95-63-6 | 5 | ug/l | <2.5 U | 1,2-Dibromo-3-Chloropropane | 96-12-8 | 0.04 | ug/l | <2.5 U | 1,2-Dibromoethane (Ethylene Dibromide) | 106-93-4 | 0.0006 | ug/l | <2 U | 1,2-Dichlorobenzene
1,2-Dichloroethane | 95-50-1
107-06-2 | 3
0.6 | ug/l
ug/l | <2.5 U
<0.5 U | 1,2-Dichloropropane | 78-87-5 | 1 | ug/l | <1 U | 1,3,5-Trimethylbenzene (Mesitylene) | 108-67-8 | 5 | ug/l | <2.5 U | 1,3-Dichlorobenzene
1,3-Dichloropropane | 541-73-1
142-28-9 | 3
5 | ug/l | <2.5 U
<2.5 U | 1,4-Dichlorobenzene | 142-28-9 | 3 | ug/l
ug/l | <2.5 U | <2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U | <2.5 U
<2.5 U | | 1,4-Diethyl Benzene | 105-05-5 | NS | ug/l | 2.1 J | <2 U | <2 U | <2 U | <2 U | 5.3 | 5.3 J | <2 U | | 1,4-Dioxane (P-Dioxane) | 123-91-1 | 0.35 | ug/l | <250 UJ | <250 U | <250 U | <250 U | <250 U | <250 UJ | <250 UJ | <250 U | | 2,2-Dichloropropane
2-Chlorotoluene | 594-20-7
95-49-8 | 5
5 | ug/l
ug/l | <2.5 U
<2.5 U | 2-Hexanone (MBK) | 591-78-6 | 50 | ug/l | <5 UJ | <5 U | <5 U | <5 U | <5 U | <5 UJ | <5 UJ | <5 U | | 4-Chlorotoluene | 106-43-4 | 5 | ug/l | <2.5 U | 4-Ethyltoluene | 622-96-8 | NS | ug/l | 0.9 J | <2 U | Acetone
Acrylonitrile | 67-64-1
107-13-1 | 50 | ug/l
ug/l | 2.9 J
<5 UJ | 1.8 J
<5 U | <5 U
<5 U | <5 U
<5 U | <5 U
<5 U | <5 U
<5 UJ | <5 U
<5 UJ | <5 U
<5 U | | Benzene | 71-43-2 | 1 | ug/l | 0.16 J | <0.5 U | <0.5 U | <0.5 U | <0.5 U | 0.17 J | 0.2 J | <0.5 U | | Bromobenzene | 108-86-1 | 5 | ug/l | <2.5 U | Bromochloromethane | 74-97-5 | 5 | ug/l | <2.5 U | Bromodichloromethane
Bromoform | 75-27-4
75-25-2 | 50
50 | ug/l
ug/l | <0.5 U
<2 U | Bromomethane | 74-83-9 | 5 | ug/l | <2.5 U | Carbon Disulfide | 75-15-0 | 60 | ug/l | <5 U | Carbon Tetrachloride
Chlorobenzene | 56-23-5
108-90-7 | 5
5 | ug/l
ug/l | <0.5 U
<2.5 U | Chloroethane | 75-00-3 | 5 | ug/l | <2.5 U | Chloroform | 67-66-3 | 7 | ug/l | <2.5 U | Chloromethane | 74-87-3 | 5 | ug/l | <2.5 U | Cis-1,2-Dichloroethene
Cis-1,3-Dichloropropene | 156-59-2
10061-01-5 | 5
0.4 | ug/l
ug/l | <2.5 U
<0.5 U | Cymene | 99-87-6 | 5 | ug/l | <2.5 U | Dibromochloromethane | 124-48-1 | 50 | ug/l | <0.5 U | Dibromomethane | 74-95-3
75-71-8 | 5
5 | ug/l | <5 U
<5 U | <5 U
<5 U | <5 U
<5 U | <5 U | <5 U
<5 U | <5 U
<5 U | <5 U | <5 U
<5 U | | Dichlorodifluoromethane Diethyl Ether (Ethyl Ether) | 60-29-7 | NS | ug/l
ug/l | <2.5 U | <2.5 U | <2.5 U | <5 U
<2.5 U | <2.5 U | <2.5 U | <5 U
<2.5 U | <2.5 U | | Ethylbenzene | 100-41-4 | 5 | ug/l | 4.8 | <2.5 U | Hexachlorobutadiene | 87-68-3 | 0.5 | ug/l | <2.5 U | Isopropylbenzene (Cumene)
M,P-Xylene | 98-82-8
179601-23-1 | 5
5 | ug/l
ug/l | 3.8
<2.5 ∪ | <2.5 U
<2.5 U | Methyl Ethyl Ketone (2-Butanone) | 78-93-3 | 50 | ug/l | <5 U | <5 UJ | <5 U | <5 UJ | <5 U | <5 U | <5 U | <5 U | | Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) | 108-10-1 | NS | ug/l | <5 U | Methylene Chloride
Naphthalene | 75-09-2
91-20-3 | 5
10 | ug/l
ug/l | <2.5 U
2 J | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
<2.5 U | <2.5 U
0.95 J | <2.5 U
<2.5 U | | n-Butylbenzene | 104-51-8 | 5 | ug/l | <2.5 U | 0.88 J | 0.87 J | <2.5 U | | n-Propylbenzene | 103-65-1 | 5 | ug/l | 9.4 J | <2.5 U | <2.5 UJ | <2.5 U | | o-Xylene (1,2-Dimethylbenzene) | 95-47-6 | 5 | ug/l | <2.5 U | Sec-Butylbenzene
Styrene | 135-98-8
100-42-5 | 5 | ug/l
ug/l | <2.5 U
<2.5 U | 3
<2.5 U | 3
<2.5 U | <2.5 U
<2.5 U | | T-Butylbenzene | 98-06-6 | 5 | ug/l | <2.5 U | Tert-Butyl Methyl Ether | 1634-04-4 | 10 | ug/l | <2.5 U | Tetrachloroethene (PCE) | 127-18-4 | 5 | ug/l | <0.5 U | Toluene Total 1,2-Dichloroethene (Cis and Trans) | 108-88-3
540-59-0 | 5
NS | ug/l
ug/l | <2.5 U
<2.5 U | Total Xylenes | 1330-20-7 | 5 | ug/l | <2.5 U | Total, 1,3-Dichloropropene (Cis And Trans) | 542-75-6 | 0.4 | ug/l | <0.5 U | Trans-1,2-Dichloroethene | 156-60-5 | 5 | ug/l | <2.5 U | Trans-1,3-Dichloropropene
Trans-1,4-Dichloro-2-Butene | 10061-02-6
110-57-6 | 0.4
5 | ug/l
ug/l | <0.5 U
<2.5 U | Trichloroethene (TCE) | 79-01-6 | 5 | ug/l | <0.5 U | Trichlorofluoromethane | 75-69-4 | 5 | ug/l | <2.5 U | Vinyl Acetate
Vinyl Chloride | 108-05-4
75-01-4 | NS
2 | ug/l
ug/l | <5 U
<1 U | viriyi oriiotido | / U=U 1=4 | | uy/i | \ 1 U | \ I U | \ 1 U | <1 U | \ I U | \ I U | \ I U | \ 1 U | < I U | \ 1 U | \1 U | \ I U | 27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002 #### Notes: CAS - Chemical Abstract Service NS - No standard ug/l - microgram per liter NA - Not analyzed RL - Reporting limit <RL - Not detected Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operation Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water and published addenda (herein collectively referenced as "NYSDEC SGVs"). #### **Qualifiers:** - J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample. - UJ The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise. - U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination. #### **Exceedance Summary:** 10 - Result exceeds NYSDEC SGVs # ATTACHMENT A NYSDEC Correspondence #### **Caroline Devin** From: Caroline Devin Sent: Wednesday, November 8, 2023 5:18 PM To: Caroline Devin **Subject:** FW: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report From: Bollers, Shaun (DEC) <shaun.bollers@dec.ny.gov> Sent: Friday, October 13, 2023 10:10 AM To: Lexi Haley < lhaley@langan.com> Cc: Kimberly Semon < ksemon@langan.com >; Obligado, Andre A (DEC) < andre.obligado@dec.ny.gov > Subject: [External] RE: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report #### Good Morning Lexi: NYSDEC has no objections to this change in the sampling protocol as the MW-4 groundwater samples have shown non-detect for 4 consecutive quarters. BTW How far has the on-site construction progressed? Regards, Shaun #### **Shaun Bollers** Assistant Environmental Engineer, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | shaun.bollers@dec.ny.gov www.dec.ny.gov | III | From: Lexi Haley < lhaley@langan.com> Sent: Wednesday, October 11, 2023 3:12 PM To: Bollers, Shaun (DEC) < shaun.bollers@dec.ny.gov > Cc: Kimberly Semon <ksemon@langan.com> Subject: RE: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report Good afternoon Shaun, I hope you are doing well! We are planning to schedule the next quarterly sampling event at 27-01 Jackson Avenue for the week of October 23rd. As noted in the Q4 Off-Site Quarterly GW Monitoring Report, groundwater results from MW-4 have
been non-detect for consecutive quarters and we are requesting to conduct further monitoring only in MW-1 and MW-2. Please let us know if you have any objections to this plan. Thank you, Lexi Haley Senior Staff Engineer # LANGAN Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link www.langan.com NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA From: Lexi Haley Sent: Friday, September 15, 2023 1:58 PM **To:** 'Bollers, Shaun (DEC)' < shaun.bollers@dec.ny.gov **Cc:** Brian Gochenaur bgochenaur@Langan.com Subject: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report Good afternoon Shaun, Please see below for a link to the quarterly sampling report for 27-01 Jackson Avenue. Please note that, since groundwater results from MW-4 have been non-detect for consecutive quarters, we are requesting to conduct further monitoring only in MW-1 and MW-2. https://clients.langan.com/Sharing/filesharing/ViewPosted?transactionHash=1122680310 Let us know if you have any questions. Have a great weekend, Lexi Haley Senior Staff Engineer # LANGAN Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor New York, NY 10001-2727 www.langan.com | OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA | |---| | ATTENS CALGARY DOBAL CONDON FANAMA | | | | | | | | | | | | | | | | | | This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended | This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. #### Ali Reach To: Lexi Haley **Subject:** RE: 27-01 Jackson Avenue Off-site (S241209) - Off-Site Well Monitoring Program Meeting From: Bollers, Shaun (DEC) <shaun.bollers@dec.ny.gov> **Sent:** Tuesday, August 8, 2023 10:30 AM **To:** Lexi Haley < lhaley@langan.com> **Cc:** Brian Gochenaur < <u>bgochenaur@Langan.com</u>>; Obligado, Andre A (DEC) < <u>andre.obligado@dec.ny.gov</u>>; Kenney, Julia M (HEALTH) < julia.kenney@health.ny.gov> Subject: [External] RE: 27-01 Jackson Avenue Off-site (S241209) - Off-Site Well Monitoring Program Meeting #### Lexi: As discussed during our telecon last Friday 8/5 this change in sampling protocol for the 27-01 Jackson Avenue Off-site site S241209 is acceptable. There is no need to replace MW-3. Thanks, #### Shaun #### Shaun Bollers Assistant Environmental Engineer, Division of Environmental Remediation New York State Department of Environmental Conservation 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | shaun.bollers@dec.ny.gov www.dec.ny.gov From: Lexi Haley < lhaley@langan.com Sent: Tuesday, August 8, 2023 9:34 AM **To:** Bollers, Shaun (DEC) < <u>shaun.bollers@dec.ny.gov</u>> **Cc:** Brian Gochenaur < <u>bgochenaur@Langan.com</u>> Subject: RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails. #### Good morning Shaun, As discussed during our call on Friday, monitoring well MW-3 (located along 43rd Avenue) was destroyed during installation of utilities beneath the sidewalk and was not able to be sampled from during the Q4 event. In the previous three quarters of groundwater monitoring, VOC concentrations were non-detect in samples collected from MW-3. As such, we are requesting to stop monitoring at MW-3. We will continue to monitor VOC concentrations in groundwater from monitoring wells MW-1, MW-2, and MW-4 on a quarterly basis. Thank you, Lexi Haley Senior Staff Engineer # LANGAN Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link www.langan.com | NEW YORK NEW JERSEY CONNECTICUT MASSA
OHIO ILLINOIS NORTH CAROLINA TENNESSEE I
ATHENS CALGARY DUBAI LONDON PANAMA | • | CALIFORNIA | |---|---|------------| | | | | From: Lexi Haley Sent: Tuesday, August 1, 2023 2:13 PM **To:** 'Bollers, Shaun (DEC)' < shaun.bollers@dec.ny.gov **Cc:** Brian Gochenaur bgochenaur@Langan.com Subject: RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting Thanks Shaun – I will send out the meeting invite for Friday. Lexi Haley Senior Staff Engineer # *LANGAN* Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link www.langan.com NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA | ı | | | | |---|--|--|--| | ı | | | | | ı | | | | | ı | | | | | ı | | | | | ı | | | | | ı | | | | | ı | | | | | ı | | | | From: Bollers, Shaun (DEC) < shaun.bollers@dec.ny.gov> Sent: Tuesday, August 1, 2023 2:00 PM To: Lexi Haley < lhaley@langan.com> Cc: Brian Gochenaur <bgochenaur@Langan.com> Subject: [External] RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting Hi Lexy: Friday 8/4 would be fine. Shaun #### Shaun Bollers Assistant Environmental Engineer, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | shaun.bollers@dec.ny.gov www.dec.ny.gov | IIII | From: Lexi Haley < lhaley@langan.com> Sent: Tuesday, August 1, 2023 11:38 AM To: Bollers, Shaun (DEC) <shaun.bollers@dec.ny.gov> Cc: Brian Gochenaur <bgochenaur@Langan.com> Subject: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting Ηi Good morning Shaun, Brian and I would like to set up a call with you to discuss the off-site well monitoring program at 27-01 Jackson Avenue (BCP Site No. C241209). We are available between 12 pm and 2:30 pm on Thursday (8/3) and between 11 am and 12 pm on Friday (8/4). Do either of these time slots work for you? If not, we can schedule something for next week. Thank you, Lexi Haley Senior Staff Engineer # LANGAN Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor New York, NY 10001-2727 www.langan.com | NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC
OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA
ATHENS CALGARY DUBAI LONDON PANAMA | |--| | | | | | This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended | | to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the | | sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying | | of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. | | This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended | to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. # Lexi Haley From: Salazar, Marlen C (DEC) < Marlen.Salazar@dec.ny.gov> Sent: Thursday, September 19, 2024 2:52 PM To: Lexi Haley; Kimberly Semon; Brian Gochenaur Cc: aaron.shirian@lionsgroupnyc.com; O'Connell, Jane H (DEC); Maycock, Cris-Sandra (DEC); McLaughlin, Scarlett E (HEALTH); Kenney, Julia M (HEALTH) [External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report Subject: Hi Langan Team, I am reiterating here what was discussed in today's meeting re: the request to discontinue groundwater monitoring at the referenced site. NYSDEC has denied the request to discontinue quarterly groundwater monitoring. Groundwater monitoring must continue at the stated frequency of the OSMP, i.e. quarterly. While the data that you have shown us appears satisfactory, we do not have enough data to be confident that these numbers will not rebound and spike in subsequent quarters. It is for that reason that groundwater monitoring is to continue. As mentioned in the email below denying the request, this request can be re-evaluated again at the time of submission of the 2024-2025 PRR in late May. This allows for three more quarters of groundwater sampling events to show asymptotic reduction in groundwater
concentrations of VOCs. Please reach out if you have further questions. Best, Marlen #### Marlen Salazar Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov From: Salazar, Marlen C (DEC) Sent: Thursday, September 12, 2024 1:14 PM To: Lexi Haley < lhaley@langan.com> Cc: aaron.shirian@lionsgroupnyc.com; Kimberly Semon <ksemon@langan.com>; Brian Gochenaur <bgochenaur@Langan.com>; O'Connell, Jane H (DEC) <jane.oconnell@dec.ny.gov>; Maycock, Cris-Sandra (DEC) <cris-</p> sandra.maycock@dec.ny.gov>; McLaughlin, Scarlett E (HEALTH) <scarlett.mclaughlin@health.ny.gov>; Kenney, Julia M (HEALTH) < julia.kenney@health.ny.gov> Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report Hi Lexi, The New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) have reviewed the 8th quarterly groundwater sampling report for 27-01 Jackson Avenue – Off-site (site no. S241209) prepared by Langan Engineering, Environmental Surveying, Landscape Architecture and Geology D.P.C. on behalf of 2701 Jackson Avenue LLC. The request to terminate the groundwater monitoring program at the site has been **denied** for the following reasons: - Groundwater VOC concentrations in MW-1 and MW-2 are still consistently above AWQSGVs - 2. NYSDEC and NYSDOH would like to see at least two consecutive quarters of non-detect concentrations or concentrations below the AWQSGVs before considering termination of the groundwater monitoring program. - a. Additionally, NYSDEC and NYSDOH would like to continue monitoring until the 2024-2025 PRR is submitted after which Langan may again request to terminate the groundwater monitoring program with supporting data as part of the PRR conclusion for NYSDEC and NYSDOH review. Please let me know if you have any questions. Best, Marlen #### Marlen Salazar Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov www.dec.ny.gov | 🚮 | 🔯 | 🧓 | From: Lexi Haley < lhaley@langan.com> Sent: Tuesday, September 10, 2024 5:55 PM To: Salazar, Marlen C (DEC) < Marlen. Salazar@dec.ny.gov> Cc: Kimberly Semon <ksemon@langan.com>; Brian Gochenaur <bgochenaur@Langan.com> Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails. ### Good afternoon Marlen, Please see below for a link to the 8th quarterly sampling report for 27-01 Jackson Avenue. As discussed in our previous conversation, overall result trends for each monitoring well show bulk reduction in petroleum-related VOCs, and asymptotic levels appear to have been achieved. Further decline of contaminant of concern concentrations is not anticipated; therefore, as part of the 8th quarterly groundwater monitoring report, Langan is requesting the discontinuation of groundwater monitoring at the site. https://clients.langan.com/Sharing/filesharing/ViewPosted?transactionHash=-1672278986 | 2024-08 - Q8 Groundwater
Monitoring Letter
Report.pdf | .pdf | 12.76 MB | |--|--|---| | Let us know if you have any que | estions. | | | Thank you, | | | | Lexi Haley
Senior Staff Engineer | | | | LANGAN | | | | Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link www.langan.com NEW YORK NEW JERSEY CONNECTICUT OHIO ILLINOIS NORTH CAROLINA TENN ATHENS CALGARY DUBAI LONDON PA | IESSEE FLORIDA TEXAS ARIZONA CO | RGINIA WASHINGTON, DC
LORADO UTAH WASHINGTON CALIFORNIA | | Cc: Kimberly Semon < ksemon@langubject: RE: 27-01 Jackson Avenue Understood, thank you Marlen. N Best, | n.Salazar@dec.ny.gov>; Brian Goch
gan.com>
- Off-Site (S241209) - Q8 Results | enaur < bgochenaur@Langan.com > eady for your review by the end of next week. | | Lexi Haley
Senior Staff Engineer | | | | LANGAN | | | | Direct: 212.479.5499 x5656
Mobile: 332.208.2127
File Sharing Link
www.langan.com | | | | NEW YORK NEW JERSEY CONNECTICUT
OHIO ILLINOIS NORTH CAROLINA TENN
ATHENS CALGARY DUBAI LONDON PA | IESSEE FLORIDA TEXAS ARIZONA CO | RGINIA WASHINGTON, DC
LORADO UTAH WASHINGTON CALIFORNIA | | | | | From: Salazar, Marlen C (DEC) < Marlen. Salazar@dec.ny.gov> Sent: Thursday, August 22, 2024 7:43 AM To: Brian Gochenaur
 logochenaur@Langan.com; Lexi Haley href="mailto:logochenaur@Langan.com">logoc Cc: Kimberly Semon <ksemon@langan.com> Subject: [External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results You could do both honestly (like a zoom-in on one of the scales), but don't worry about it too much I suppose. The tables will have all the data regardless which I can refer to. Best, Marlen #### Marlen Salazar Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation #### **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov From: Brian Gochenaur <bgochenaur@Langan.com> Sent: Thursday, August 22, 2024 7:40 AM To: Salazar, Marlen C (DEC) < Marlen.Salazar@dec.ny.gov >; Lexi Haley < lhaley@langan.com > Cc: Kimberly Semon <ksemon@langan.com> Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results unexpected emails Hi Marlen – We typically show the wells on different scales in the report, we just wanted to show all the graphs on the same scale to demonstrate that asymptotic levels were achieved. I felt like the zoomed in scale on some and not others illustrated a skewed perspective, but we can change it back for the report. Thx Brian Gochenaur, QEP **Associate Principal** # LANGAN Direct: 212.479.5479 Mobile: 347.320.2756 File Sharing Link www.langan.com NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA From: Salazar, Marlen C (DEC) < Marlen. Salazar@dec.ny.gov> Sent: Thursday, August 22, 2024 7:35 AM To: Lexi Haley < lhaley@langan.com> Cc: Brian Gochenaur <bgochenaur@Langan.com>; Kimberly Semon <ksemon@langan.com> Subject: [External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results Hi Lexi. I'll wait to receive the Q4 groundwater monitoring report. For the graphs, is it possible to use a smaller scale on the yaxis for all wells except MW-2? The concentrations of MW-1, MW-3, and MW-4 are all much less than 500 ug/L so the large y-axis scale makes getting any sort of visual information from the graphs a bit difficult. Roughly around when can I expect to receive this report too? I'll keep an eye out for it. Best, Marlen #### Marlen Salazar Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation #### **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov www.dec.ny.gov | ff | X | @ | From: Lexi Haley < lhaley@langan.com> Sent: Wednesday, August 21, 2024 3:36 PM To: Salazar, Marlen C (DEC) < Marlen. Salazar@dec.ny.gov> Cc: Brian Gochenaur <bgochenaur@Langan.com>; Kimberly Semon <ksemon@langan.com> Subject: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails Good afternoon Marlen, We have completed Q8 of groundwater sampling at the 27-01 Jackson Avenue site. The overall result trends for each monitoring well are attached for your review, which show a bulk reduction in petroleum-related VOCs to asymptotic levels over the course of the monitoring program. The trends will be included in the forthcoming quarterly report for the site. Considering VOCs were non-detect in wells MW-3 and MW-4 for consecutive quarters, DEC previously approved the discontinuation of groundwater monitoring at these locations. Groundwater monitoring has continued at MW-1 and MW-2. Based on the Q8 analytical data, total VOCs and total BTEX concentrations have decreased by 95% and 100%, respectively, in MW-1 and by over 99% in MW-2. Based on review of the overall analytical data provided over the course of the monitoring program, it appears that the remedy was effective in demonstrating a bulk reduction of these contaminants. Asymptotic levels appear to have been achieved, and further decline of contaminant of concern concentrations is not anticipated. Therefore, as part of our forthcoming quarterly groundwater monitoring report, Langan will be requesting the discontinuation of groundwater monitoring at the site. Thank you, Lexi Haley Senior Staff Engineer # *LANGAN* Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor New York, NY 10001-2727 www.langan.com NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA This
message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. # ATTACHMENT B Daily Site Observation Report ### SITE OBSERVATION REPORT **PROJECT No.**: 170472002 CLIENT: DATE: PROJECT: 27-01 Jackson Avenue 2701 Jackson Avenue LLC 01/24/2025 LOCATION: Long Island City, NY LANGAN **CONTRACTOR:** Lions Group NYC Loagan Clements REP.: **CONTRACTOR'S EQUIPMENT:** PRESENT AT SITE: Loagan Clements - Langan N/A Loagan Clem Michael Capozzoli- Lions Group NYC (Construction Manager) #### OBSERVATIONS, DISCUSSIONS, TEST RESULTS, ETC.: Langan was present to observe environmental protocols in accordance with the January 2021 NYSDEC approved Off-Site Site Management Plan (OSMP) for BCP site C241209 at 27-01 Jackson Avenue (Block 432, Lot 21). Observed activities were as follows: #### **Site Activities** • Langan used a peristaltic pump to purge and sample groundwater monitoring wells MW-1 and MW-2 along the Jackson Avenue sidewalk. Purged groundwater was screened for odors, sheen, and organic vapors using a photoionization detector (PID). Odors, sheen or PID readings above background levels were not observed in MW-2. A maximum PID reading of 1.5 parts per million (ppm) was detected beneath the well cap at MW-1; however, no odors or sheen was observed in the purged groundwater. Purged groundwater was containerized in a 55-gallon New York State Department of Transportation (NYSDOT)-approved drum for future disposal. #### Sampling Langan collected two groundwater samples (plus quality assurance/quality control [QA/QC] samples) for laboratory analysis of NYSDEC Part 375/target compound list (TCL) volatile organic compounds (VOCs). The samples were submitted to Pace Analytical (Pace) of Westborough, Massachusetts, a New York State Department of Health (NYSDOH) Environmental Laboratory Accredited Program (ELAP)-certified laboratory under standard chain-of-custody protocols. #### **Anticipated Activities** Further assessment of groundwater sample analytical results will determine future site activities, if required by the NYSDEC. | Cc: | L. Haley, K. Semon, B. Gochenaur, M. | Ву: | Loagan Clements | |-----|--------------------------------------|-----|-----------------| | | Raygorodetsky (Langan) | | LANGAN | Langan PN: 170472002 01/24/2025 Page 2 of 3 # SITE OBSERVATION REPORT Langan PN: 170472002 01/24/2025 Page 3 of 3 ## SITE OBSERVATION REPORT ## **SITE PHOTOGRAPHS** Photo 1: View of Langan purging monitoring well MW-1 along the Jackson Avenue sidewalk (facing south). | Cc: | L. Haley, K. Semon, B. Gochenaur, M. | By: | Loagan Clements | |-----|--------------------------------------|-----|-----------------| | | Raygorodetsky (Langan) | | LANGAN | | | | | | # ATTACHMENT C Well Purging and Sampling Logs | Projec | t Information | Well Info | rmation | Eq | uipment Informati | on | S | ampling Condition | s | Sampling Informa | ntion | |-----------------|----------------------|---------------------|-------------------|---------------------|-------------------------|---------------------|-------------------|---------------------|-------------------|---|---------------| | Project Name: | 27-01 Jackson Ave | Well No: | MW-1 | Water Qua | lity Device Model: | Horiba U-52 | | Weather: | Sunny, 23°F | | MW-1 012425 & | | Project Number: | 170472002 | Well Depth: | 19 ft | | Pine Number: | 48988 | Backg | round PID (ppm): | 0.0 | Sample(s): | DUP01 012425 | | Site Location: | Long Island City, NY | Well Diameter: | 2-inch | Pump | Make and Model: | Peristaltic Pump | | Inner Cap (ppm): | 1.5 | | | | Sampling | Loagan Clements | Well Screen | 9 ft | | Pine Number: | 38156 | Pu | ımp Intake Depth: | 18.75 ft | Sample Date: | 1/24/2025 | | | Loagair Clerrierits | Interval: | 19 ft | | Tubing Diameter: | 3/8-inch OD | | ater Before Purge: | 18.50 ft | Sample Time: | 13:40 | | | | | | STABILIZATIOI | V = 3 successive rea | adings within limit | ts | | | | | | | TEMP | PH | ORP | CONDUCTIVITY | TURBIDITY | DO | DTW | Flow Rate | Cumulative | NOTES | | | | °Celsius | | mV | mS/cm | ntu | mg/l | ft | (gpm) | | | Stabilized? | | | | | | | (+/- 10%) above 5 | (+/- 10%) above | Drawdown < 0.33 | | Discharge | | Stabilized? | | TIME | (+/- 3%) | (+/- 0.1) | (+/- 10mV) | (+/- 3%) | NTU | 0.5 mg/l | ft | <0.13 gpm) | Volume (Gal) | color, odor etc. | | | | | | | | BEGIN | PURGING | | | | | | | NA 0.50 | Clear to gray color, odorless;
high turbidity/black particulates
in purged water; poor recharge.
Purged three well volumes prior
to sampling. | N | | | w | ater quality parame | eters were not mo | onitored due to poo | or recharge of the v | vell. Groundwater | sample was collec | ted after purging a | bout three well v | olumes. | | ### Notes: - 1. Well depths and groundwater depths were measured in feet below the top of well casing. - 2. Well and tubing diameters are measured in inches. - 3. PID = Photoionization Detector - 4. PPM = Parts per million - 5. pH = Hydrogen ion concentration - 6. ORP = Oxidation-reduction potential, measured in millivolts (mV) - 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L) - 8. DTW = Depth to water - 9. mS/cm = milli-Siemens per centimeter - 10. NTU = Nephelometric Turbidity Unit - 11. NA = Not Applicable LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 368 Ninth Avenue, 8th Floor, New York | Project Name: | 27-01 Jackson Ave | Well No: | MW-2 | Water Qua | lity Device Model: | Horiba U-52 | | Weather: | Sunny, 23°∗F | | MW-2 012425 | |-----------------|----------------------|--------------------|------------------|-------------------|-------------------------|-----------------------|-----------------|---------------------|--------------------|---|-------------| | Project Number: | 170472002 | Well Depth: | 20 ft | | Pine Number: | 48988 | Back | ground PID (ppm): | 0.0 | Sample(s): | MS/MSD | | Site Location: | Long Island City, NY | Well Diameter: | 1-inch | Pump | Make and Model: | Peristaltic Pump | PID Beneatl | h Inner Cap (ppm): | 0.0 | | IVIO/IVIOD | | Sampling | Loagan Clements | Well Screen | 10 ft | | Pine Number: | 38156 | Pt | ump Intake Depth: | 17.00 ft | Sample Date: | 1/24/2025 | | | Loagan Clements | Interval: | 20 ft | | Tubing Diameter: | 3/8-inch OD | Depth to W | ater Before Purge: | 14.01 ft | Sample Time: | 11:40 | | | | | | STABILI | IZATION = 3 succes | ssive readings within | limits | | | | | | | TEMP | PH | ORP | CONDUCTIVITY | TURBIDITY | DO | DTW | Flow Rate | | NOTES | | | | °Celsius | | mV | mS/cm | ntu | mg/l | ft | (gpm) | Cumulative | | | | | | | | | (+/- 10%) above | (+/- 10%) above | Drawdown | (31) | Discharge | | Stabilized? | | TIME | (+/- 3%) | (+/- 0.1) | (+/- 10mV) | (+/- 3%) | 5 NTU | 0.5 mg/l | < 0.33 ft | (<0.13 gpm) | Volume (Gal) | color, odor etc. | | | | | | | | | BEGIN PURGING | | | | | | | 11:00 | 4.59 | 5.20 | 140 | 17.80 | 119.0 | 1.98 | NA | - | 0.10 | Clear to gray color, odorless; high | N | | 11:05 | 5.97 | 5.44 | 120 | 16.20 | 76.6 | 3.33 | NA | 0.02 | 0.2 | turbidity/black particulates in purged water; | N | | 11:10 | NA - | NA | poor recharge. Purged three well volumes | N | | 11:15 | 5.63 | 5.77 | 137 | 16.99 | 65.7 | 1.80 | NA | 0.03 | 0.5 | prior to sampling. | N | | | | dditional water au | ality narameters | were not monitore | d due to noor rech | arge of the well. Gro | undwater cample | was collected after | r nurging shout th | ree well volumes | | Sampling Conditions Sampling Information Equipment Information . Well depths and groundwater depths were measured in feet below the top of well casing. Well Information Well and tubing diameters are measured in inches. PID = Photoionization Detector Project Information - 4. PPM = Parts per million - 5. pH = Hydrogen ion concentration - Do = Oxidation-reduction potential, measured in millivolts (mV) DO = Dissolved Oxygen, measured in milligrams per liter (mg/L) - 8. DTW = Depth to water - 9. mS/cm = milli-Siemens per centimeter - 10. NTU = Nephelometric Turbidity Unit - 11. NA = Not Applicable LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 368 Ninth Avenue, 8th Floor, New York # ATTACHMENT D Laboratory Analytical Report ## ANALYTICAL REPORT Lab Number: L2504229 Client: Langan Engineering & Environmental 21 Penn Plaza 360 W. 31st Street, 8th Floor New York, NY 10001-2727 ATTN: Kimberly Semon Phone: (212) 479-5486 Project Name: 27-01 JACKSON AVE Project Number: 170472002
Report Date: 01/29/25 The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original. Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1). **Project Name:** 27-01 JACKSON AVE Project Number: 170472002 **Lab Number:** L2504229 **Report Date:** 01/29/25 | Lab
Sample ID | Client ID | Matrix | Sample
Location | Collection Date/Time | Receive Date | |------------------|--------------|--------|--------------------|----------------------|--------------| | L2504229-01 | MW-1_012425 | WATER | LONG ISLAND CITY | 01/24/25 13:40 | 01/24/25 | | L2504229-02 | MW-2_012425 | WATER | LONG ISLAND CITY | 01/24/25 11:40 | 01/24/25 | | L2504229-03 | DUP01_012425 | WATER | LONG ISLAND CITY | 01/24/25 00:00 | 01/24/25 | | L2504229-04 | FB01_012425 | WATER | LONG ISLAND CITY | 01/24/25 13:55 | 01/24/25 | | L2504229-05 | TB01_012425 | WATER | LONG ISLAND CITY | 01/24/25 00:00 | 01/24/25 | L2504229 Lab Number: Project Name: 27-01 JACKSON AVE **Project Number:** 170472002 **Report Date:** 01/29/25 ### **Case Narrative** The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report. Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications. Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report. HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed. Please contact Project Management at 800-624-9220 with any questions. Project Name: 27-01 JACKSON AVE Lab Number: L2504229 **Project Number:** 170472002 **Report Date:** 01/29/25 ## **Case Narrative (continued)** Report Submission All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column. I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report. Authorized Signature: Title: Technical Director/Representative Date: 01/29/25 Jufani Morrissey-Tiffani Morrissey Pace # **ORGANICS** ## **VOLATILES** 01/24/25 13:40 **Project Name:** 27-01 JACKSON AVE **Project Number:** 170472002 **SAMPLE RESULTS** Lab Number: L2504229 Report Date: 01/29/25 Lab ID: L2504229-01 Client ID: MW-1_012425 Sample Location: LONG ISLAND CITY Date Received: 01/24/25 Field Prep: Not Specified Date Collected: Sample Depth: Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/28/25 17:23 Analyst: MJV | Volatile Organics by GC/MS - Westborough Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane | ND N | ug/l
ug/l
ug/l
ug/l
ug/l | 2.5
2.5
2.5
0.50
1.0
0.50 | 0.70
0.70
0.70
0.13
0.14
0.15 | 1
1
1
1 | |--|--|--------------------------------------|--|--|------------------| | 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane | ND ND ND ND ND ND ND | ug/l
ug/l
ug/l
ug/l
ug/l | 2.5
2.5
0.50
1.0 | 0.70
0.70
0.13
0.14 | 1
1
1 | | Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane | ND
ND
ND
ND | ug/l
ug/l
ug/l
ug/l | 2.5
0.50
1.0 | 0.70
0.13
0.14 | 1 | | Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane | ND
ND
ND
ND | ug/l
ug/l
ug/l | 0.50
1.0 | 0.13
0.14 | 1 | | 1,2-Dichloropropane Dibromochloromethane | ND
ND
ND | ug/l
ug/l | 1.0 | 0.14 | | | Dibromochloromethane | ND
ND | ug/l | | | 1 | | | ND | | 0.50 | 0.15 | | | 1.1.2 Trichloroothono | | | | 0 | 1 | | 1, 1,2-1110100001111110 | ND | ug/l | 1.5 | 0.50 | 1 | | Tetrachloroethene | | ug/l | 0.50 | 0.18 | 1 | | Chlorobenzene | ND | ug/l | 2.5 | 0.70 | 1 | | Trichlorofluoromethane | ND | ug/l | 2.5 | 0.70 | 1 | | 1,2-Dichloroethane | ND | ug/l | 0.50 | 0.13 | 1 | | 1,1,1-Trichloroethane | ND | ug/l | 2.5 | 0.70 | 1 | | Bromodichloromethane | ND | ug/l | 0.50 | 0.19 | 1 | | trans-1,3-Dichloropropene | ND | ug/l | 0.50 | 0.16 | 1 | | cis-1,3-Dichloropropene | ND | ug/l | 0.50 | 0.14 | 1 | | 1,3-Dichloropropene, Total | ND | ug/l | 0.50 | 0.14 | 1 | | 1,1-Dichloropropene | ND | ug/l | 2.5 | 0.70 | 1 | | Bromoform | ND | ug/l | 2.0 | 0.65 | 1 | | 1,1,2,2-Tetrachloroethane | ND | ug/l | 0.50 | 0.17 | 1 | | Benzene | ND | ug/l | 0.50 | 0.16 | 1 | | Toluene | ND | ug/l | 2.5 | 0.70 | 1 | | Ethylbenzene | ND | ug/l | 2.5 | 0.70 | 1 | | Chloromethane | ND | ug/l | 2.5 | 0.70 | 1 | | Bromomethane | ND | ug/l | 2.5 | 0.70 | 1 | | Vinyl chloride | ND | ug/l | 1.0 | 0.07 | 1 | | Chloroethane | ND | ug/l | 2.5 | 0.70 | 1 | | 1,1-Dichloroethene | ND | ug/l | 0.50 | 0.17 | 1 | | trans-1,2-Dichloroethene | ND | ug/l | 2.5 | 0.70 | 1 | L2504229 01/29/25 **Project Name:** 27-01 JACKSON AVE L2504229-01 MW-1_012425 **Project Number:** 170472002 **SAMPLE RESULTS** Date Collected: 01/24/25 13:40 Lab Number: Report Date: Date Received: 01/24/25 Field Prep: Not Specified Sample Location: LONG ISLAND CITY Sample Depth: Lab ID: Client ID: | Parameter Result Qualifier Units RL MDL Dilution Volatile Organics by GC/MS - Westborough Lab Trichloroethene ND ug/l 0.50 0.18 1 1,2-Dichlorobenzene ND ug/l 2.5 0.70 1 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether 0.21 J ug/l 2.5 0.70 1 Methyl tert butyl ether 0.21 J ug/l 2.5 0.70 1 Methyl tert butyl ether 0.21 J ug/l 2.5 0.70 1 Methyl tert butyl ether 0.21 J ug/l 2.5 0.70 1 Methyl tert butyl ether 0.21 J ug/l 2.5 0.70 1 Methyl tert butyl ether 0.21 J ug/l 2.5 0.70 1 Viplene< | |
---|--| | 1,2-Dichlorobenzene ND ug/l 2.5 0.70 1 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether 0.21 J ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 c-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1 Dibromomethane ND ug/l 5.0 1.0 1 Acylonitrile ND ug/l 5.0 1.5 1 | | | 1,2-Dichlorobenzene ND ug/l 2.5 0.70 1 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether 0.21 J ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 c-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1 Dibromomethane ND ug/l 5.0 1.0 1 Acylonitrile ND ug/l 5.0 1.5 1 | | | 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether 0.21 J ug/l 2.5 0.70 1 Methyl tert butyl ether 0.21 J ug/l 2.5 0.70 1 Methyl tert butyl ether 0.21 J ug/l 2.5 0.70 1 Methyl tert butyl ether 0.21 J ug/l 2.5 0.70 1 Methyl tert butyl ether 0.21 J ug/l 2.5 0.70 1 Cxylene ND ug/l 2.5 0.70 1 1 Xylenes, Total ND ug/l 2.5 0.70 1 1 Xylenes, Total ND ug/l 2.5 0.70 1 1 1,2-Dichloroethene ND ug/l 5.0 1.0 1 1,2-Dichloroethene, Total ND ug/l 5.0 <td< td=""><td></td></td<> | | | 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether 0.21 J ug/l 2.5 0.17 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 xylenes, Total ND ug/l 2.5 0.70 1 1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 5.0 1.5 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.5 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 <t< td=""><td></td></t<> | | | Methyl tert butyl ether 0.21 J ug/l 2.5 0.17 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1 1,2-S-Trichloropropane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 5.0 1.5 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.5 1 Acetone ND ug/l 5.0 1.0 1 | | | p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 xylenes, Total ND ug/l 2.5 0.70 1 1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 5.0 1.0 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.5 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Buta | | | o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.5 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Me | | | Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 | | | cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 | | | 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 | | | Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 | | | 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 | | | Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 | | | Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 | | | Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 | | | Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 | | | Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 | | | 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 | | | Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 | | | 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 | | | 2-Hexanone ND ug/l 5.0 1.0 1 | | | · · | | | Bromochloromethane ND ug/l 2.5 0.70 1 | | | | | | 2,2-Dichloropropane ND ug/l 2.5 0.70 1 | | | 1,2-Dibromoethane ND ug/l 2.0 0.65 1 | | | 1,3-Dichloropropane ND ug/l 2.5 0.70 1 | | | 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 | | | Bromobenzene ND ug/l 2.5 0.70 1 | | | n-Butylbenzene ND ug/l 2.5 0.70 1 | | | sec-Butylbenzene ND ug/l 2.5 0.70 1 | | | tert-Butylbenzene ND ug/l 2.5 0.70 1 | | | o-Chlorotoluene ND ug/l 2.5 0.70 1 | | | p-Chlorotoluene ND ug/l 2.5 0.70 1 | | | 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 | | | Hexachlorobutadiene ND ug/l 2.5 0.70 1 | | | Isopropylbenzene ND ug/l 2.5 0.70 1 | | | p-Isopropyltoluene ND ug/l 2.5 0.70 1 | | | Naphthalene ND ug/l 2.5 0.70 1 | | Project Name: 27-01 JACKSON AVE Lab Number: L2504229 **Project Number:** 170472002 **Report Date:** 01/29/25 **SAMPLE RESULTS** Lab ID: L2504229-01 Date Collected: 01/24/25 13:40 Client ID: MW-1_012425 Date Received: 01/24/25 Sample Location: LONG ISLAND CITY Field Prep: Not Specified Sample Depth: | Parameter | Result | Qualifier | Units | RL | MDL | Dilution Factor | | |-----------------------------------|-------------|-----------|-------|-----|------|-----------------|--| | Volatile Organics by GC/MS - West | borough Lab | | | | | | | | n-Propylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,2,3-Trichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,2,4-Trichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,3,5-Trimethylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,2,4-Trimethylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,4-Dioxane | ND | | ug/l | 250 | 61. | 1 | | | p-Diethylbenzene | ND | | ug/l | 2.0 | 0.70 | 1 | | | p-Ethyltoluene | ND | | ug/l | 2.0 | 0.70 | 1 | | | 1,2,4,5-Tetramethylbenzene | ND | | ug/l | 2.0 | 0.54 | 1 | | | Ethyl ether | ND | | ug/l | 2.5 | 0.70 | 1 | | | trans-1,4-Dichloro-2-butene | ND | | ug/l | 2.5 | 0.70 | 1 | | | Surrogate
| % Recovery | Acceptance
Qualifier Criteria | | |-----------------------|------------|----------------------------------|--| | 1,2-Dichloroethane-d4 | 116 | 70-130 | | | Toluene-d8 | 97 | 70-130 | | | 4-Bromofluorobenzene | 96 | 70-130 | | | Dibromofluoromethane | 104 | 70-130 | | **Project Name:** 27-01 JACKSON AVE **Project Number:** 170472002 **SAMPLE RESULTS** Lab Number: L2504229 Report Date: 01/29/25 Lab ID: L2504229-02 Date Collected: 01/24/25 11:40 Client ID: Date Received: 01/24/25 MW-2_012425 Field Prep: Sample Location: LONG ISLAND CITY Not Specified Sample Depth: Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/28/25 17:49 Analyst: MJV | Parameter | Result | Qualifier | Units | RL | MDL | Dilution Factor | |-----------------------------------|-------------|-----------|-------|------|------|-----------------| | Volatile Organics by GC/MS - West | borough Lab | | | | | | | Methylene chloride | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,1-Dichloroethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Chloroform | ND | | ug/l | 2.5 | 0.70 | 1 | | Carbon tetrachloride | ND | | ug/l | 0.50 | 0.13 | 1 | | 1,2-Dichloropropane | ND | | ug/l | 1.0 | 0.14 | 1 | | Dibromochloromethane | ND | | ug/l | 0.50 | 0.15 | 1 | | 1,1,2-Trichloroethane | ND | | ug/l | 1.5 | 0.50 | 1 | | Tetrachloroethene | ND | | ug/l | 0.50 | 0.18 | 1 | | Chlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | Trichlorofluoromethane | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,2-Dichloroethane | ND | | ug/l | 0.50 | 0.13 | 1 | | 1,1,1-Trichloroethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Bromodichloromethane | ND | | ug/l | 0.50 | 0.19 | 1 | | trans-1,3-Dichloropropene | ND | | ug/l | 0.50 | 0.16 | 1 | | cis-1,3-Dichloropropene | ND | | ug/l | 0.50 | 0.14 | 1 | | 1,3-Dichloropropene, Total | ND | | ug/l | 0.50 | 0.14 | 1 | | 1,1-Dichloropropene | ND | | ug/l | 2.5 | 0.70 | 1 | | Bromoform | ND | | ug/l | 2.0 | 0.65 | 1 | | 1,1,2,2-Tetrachloroethane | ND | | ug/l | 0.50 | 0.17 | 1 | | Benzene | ND | | ug/l | 0.50 | 0.16 | 1 | | Toluene | ND | | ug/l | 2.5 | 0.70 | 1 | | Ethylbenzene | 4.9 | | ug/l | 2.5 | 0.70 | 1 | | Chloromethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Bromomethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Vinyl chloride | ND | | ug/l | 1.0 | 0.07 | 1 | | Chloroethane | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,1-Dichloroethene | ND | | ug/l | 0.50 | 0.17 | 1 | | trans-1,2-Dichloroethene | ND | | ug/l | 2.5 | 0.70 | 1 | | | | | | | | | L2504229 01/29/25 Project Name: 27-01 JACKSON AVE L2504229-02 MW-2_012425 LONG ISLAND CITY Project Number: 170472002 **SAMPLE RESULTS** Date Collected: 01/24/25 11:40 Date Received: 01/24/25 Lab Number: Report Date: Field Prep: Not Specified Sample Depth: Sample Location: Lab ID: Client ID: | Parameter | Result | Qualifier | Units | RL | MDL | Dilution Factor | |---------------------------------------|----------|-----------|-------|------|------|-----------------| | Volatile Organics by GC/MS - Westbord | ough Lab | | | | | | | Trichloroethene | ND | | ug/l | 0.50 | 0.18 | 1 | | 1,2-Dichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,3-Dichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,4-Dichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | Methyl tert butyl ether | ND | | ug/l | 2.5 | 0.17 | 1 | | p/m-Xylene | 12 | | ug/l | 2.5 | 0.70 | 1 | | o-Xylene | 1.3 | J | ug/l | 2.5 | 0.70 | 1 | | Xylenes, Total | 13 | J | ug/l | 2.5 | 0.70 | 1 | | cis-1,2-Dichloroethene | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,2-Dichloroethene, Total | ND | | ug/l | 2.5 | 0.70 | 1 | | Dibromomethane | ND | | ug/l | 5.0 | 1.0 | 1 | | 1,2,3-Trichloropropane | ND | | ug/l | 2.5 | 0.70 | 1 | | Acrylonitrile | ND | | ug/l | 5.0 | 1.5 | 1 | | Styrene | ND | | ug/l | 2.5 | 0.70 | 1 | | Dichlorodifluoromethane | ND | | ug/l | 5.0 | 1.0 | 1 | | Acetone | 19 | | ug/l | 5.0 | 1.5 | 1 | | Carbon disulfide | ND | | ug/l | 5.0 | 1.0 | 1 | | 2-Butanone | ND | | ug/l | 5.0 | 1.9 | 1 | | Vinyl acetate | ND | | ug/l | 5.0 | 1.0 | 1 | | 4-Methyl-2-pentanone | ND | | ug/l | 5.0 | 1.0 | 1 | | 2-Hexanone | ND | | ug/l | 5.0 | 1.0 | 1 | | Bromochloromethane | ND | | ug/l | 2.5 | 0.70 | 1 | | 2,2-Dichloropropane | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,2-Dibromoethane | ND | | ug/l | 2.0 | 0.65 | 1 | | 1,3-Dichloropropane | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,1,1,2-Tetrachloroethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Bromobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | n-Butylbenzene | 0.71 | J | ug/l | 2.5 | 0.70 | 1 | | sec-Butylbenzene | 1.1 | J | ug/l | 2.5 | 0.70 | 1 | | tert-Butylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | o-Chlorotoluene | ND | | ug/l | 2.5 | 0.70 | 1 | | p-Chlorotoluene | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,2-Dibromo-3-chloropropane | ND | | ug/l | 2.5 | 0.70 | 1 | | Hexachlorobutadiene | ND | | ug/l | 2.5 | 0.70 | 1 | | Isopropylbenzene | 7.1 | | ug/l | 2.5 | 0.70 | 1 | | p-Isopropyltoluene | 0.71 | J | ug/l | 2.5 | 0.70 | 1 | | Naphthalene | 0.99 | J | ug/l | 2.5 | 0.70 | 1 | Project Name: 27-01 JACKSON AVE Lab Number: L2504229 **Project Number:** 170472002 **Report Date:** 01/29/25 **SAMPLE RESULTS** Lab ID: L2504229-02 Date Collected: 01/24/25 11:40 Client ID: MW-2_012425 Date Received: 01/24/25 Sample Location: LONG ISLAND CITY Field Prep: Not Specified Sample Depth: | Parameter | Result | Qualifier | Units | RL | MDL | Dilution Factor | | |------------------------------------|------------|-----------|-------|-----|------|-----------------|--| | Volatile Organics by GC/MS - Westb | orough Lab | | | | | | | | n-Propylbenzene | 13 | | ug/l | 2.5 | 0.70 | 1 | | | 1,2,3-Trichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,2,4-Trichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,3,5-Trimethylbenzene | 4.6 | | ug/l | 2.5 | 0.70 | 1 | | | 1,2,4-Trimethylbenzene | 37 | | ug/l | 2.5 | 0.70 | 1 | | | 1,4-Dioxane | ND | | ug/l | 250 | 61. | 1 | | | p-Diethylbenzene | 1.5 | J | ug/l | 2.0 | 0.70 | 1 | | | p-Ethyltoluene | 18 | | ug/l | 2.0 | 0.70 | 1 | | | 1,2,4,5-Tetramethylbenzene | 5.7 | | ug/l | 2.0 | 0.54 | 1 | | | Ethyl ether | ND | | ug/l | 2.5 | 0.70 | 1 | | | trans-1,4-Dichloro-2-butene | ND | | ug/l | 2.5 | 0.70 | 1 | | | Surrogate | % Recovery | Acceptance
Qualifier Criteria | | |-----------------------|------------|----------------------------------|--| | 1,2-Dichloroethane-d4 | 116 | 70-130 | | | Toluene-d8 | 95 | 70-130 | | | 4-Bromofluorobenzene | 98 | 70-130 | | | Dibromofluoromethane | 102 | 70-130 | | 01/24/25 00:00 Not Specified 01/24/25 **Project Name:** 27-01 JACKSON AVE **Project Number:** 170472002 **SAMPLE RESULTS** Lab Number: L2504229 Report Date: 01/29/25 Date Collected: Lab ID: L2504229-03 Client ID: DUP01_012425 Sample Location: LONG ISLAND CITY Date Received: Field Prep: Sample Depth: Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/28/25 18:15 Analyst: MJV | Parameter | Result | Qualifier | Units | RL | MDL | Dilution Factor | |------------------------------------|-------------|-----------|-------|------|------|-----------------| | Volatile Organics by GC/MS - Westl | borough Lab | | | | | | | Methylene chloride | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,1-Dichloroethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Chloroform | ND | | ug/l | 2.5 | 0.70 | 1 | | Carbon tetrachloride | ND | | ug/l | 0.50 | 0.13 | 1 | | 1,2-Dichloropropane | ND | | ug/l | 1.0 | 0.14 | 1 | | Dibromochloromethane | ND | | ug/l | 0.50 | 0.15 | 1 | | 1,1,2-Trichloroethane | ND | | ug/l | 1.5 | 0.50 | 1 | | Tetrachloroethene | ND | | ug/l | 0.50 | 0.18 | 1 | | Chlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | Trichlorofluoromethane | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,2-Dichloroethane | ND | | ug/l | 0.50 | 0.13 | 1 | | 1,1,1-Trichloroethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Bromodichloromethane | ND | | ug/l | 0.50 | 0.19 | 1 | | trans-1,3-Dichloropropene | ND | | ug/l | 0.50 | 0.16 | 1 | | cis-1,3-Dichloropropene | ND | | ug/l | 0.50 | 0.14 | 1 | | 1,3-Dichloropropene, Total | ND | | ug/l | 0.50 | 0.14 | 1 | | 1,1-Dichloropropene | ND | | ug/l | 2.5 | 0.70 | 1 | | Bromoform | ND | | ug/l | 2.0 | 0.65 | 1 | | 1,1,2,2-Tetrachloroethane | ND | | ug/l | 0.50 | 0.17 | 1 | | Benzene | ND | | ug/l | 0.50 | 0.16 | 1 | | Toluene | ND | | ug/l | 2.5 | 0.70 | 1 | | Ethylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | Chloromethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Bromomethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Vinyl chloride | ND | | ug/l | 1.0 | 0.07 | 1 | | Chloroethane | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,1-Dichloroethene | ND | | ug/l | 0.50 | 0.17 | 1 | | trans-1,2-Dichloroethene | ND | | ug/l | 2.5 | 0.70 | 1 | | | | | | | | | L2504229 01/24/25 00:00 **Project Name:** 27-01 JACKSON AVE **Project Number:** 170472002 **SAMPLE RESULTS** Report Date: 01/29/25 Lab Number: Date Collected: Lab ID: L2504229-03 DUP01_012425 Client ID: Sample Location: LONG ISLAND CITY Date Received: 01/24/25 Field Prep: Not Specified Sample Depth: | Parameter | Result | Qualifier | Units | RL | MDL | Dilution Factor | |-----------------------------|-------------------|-----------|-------|------|------|-----------------| | Volatile Organics by GC/MS | - Westborough Lab | | | | | | | Trichloroethene | ND | | ug/l | 0.50 | 0.18 | 1 | | 1,2-Dichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,3-Dichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,4-Dichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | Methyl tert butyl ether | ND | | ug/l | 2.5 | 0.17 | 1 | | p/m-Xylene | ND | | ug/l | 2.5 | 0.70 | 1 | | o-Xylene | ND | | ug/l | 2.5 | 0.70 | 1 | | Xylenes, Total | ND | | ug/l | 2.5 | 0.70 | 1 | | cis-1,2-Dichloroethene | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,2-Dichloroethene, Total | ND | | ug/l | 2.5 | 0.70 | 1 | | Dibromomethane | ND | | ug/l | 5.0 | 1.0 | 1 | | 1,2,3-Trichloropropane | ND | | ug/l | 2.5 | 0.70 | 1 | | Acrylonitrile | ND | | ug/l | 5.0 | 1.5 | 1 | | Styrene | ND | | ug/l | 2.5 | 0.70 | 1 | | Dichlorodifluoromethane | ND | | ug/l | 5.0 | 1.0 | 1 | | Acetone | 1.7 | J | ug/l | 5.0 | 1.5 | 1 | | Carbon disulfide | ND | | ug/l | 5.0 | 1.0 | 1 | | 2-Butanone | ND | | ug/l | 5.0 | 1.9 | 1 |
| Vinyl acetate | ND | | ug/l | 5.0 | 1.0 | 1 | | 4-Methyl-2-pentanone | ND | | ug/l | 5.0 | 1.0 | 1 | | 2-Hexanone | ND | | ug/l | 5.0 | 1.0 | 1 | | Bromochloromethane | ND | | ug/l | 2.5 | 0.70 | 1 | | 2,2-Dichloropropane | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,2-Dibromoethane | ND | | ug/l | 2.0 | 0.65 | 1 | | 1,3-Dichloropropane | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,1,1,2-Tetrachloroethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Bromobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | n-Butylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | sec-Butylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | tert-Butylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | o-Chlorotoluene | ND | | ug/l | 2.5 | 0.70 | 1 | | p-Chlorotoluene | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,2-Dibromo-3-chloropropane | ND | | ug/l | 2.5 | 0.70 | 1 | | Hexachlorobutadiene | ND | | ug/l | 2.5 | 0.70 | 1 | | Isopropylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | p-Isopropyltoluene | ND | | ug/l | 2.5 | 0.70 | 1 | | Naphthalene | ND | | ug/l | 2.5 | 0.70 | 1 | Project Name: 27-01 JACKSON AVE Lab Number: L2504229 **Project Number:** 170472002 **Report Date:** 01/29/25 **SAMPLE RESULTS** Lab ID: L2504229-03 Date Collected: 01/24/25 00:00 Client ID: DUP01_012425 Date Received: 01/24/25 Sample Location: LONG ISLAND CITY Field Prep: Not Specified Sample Depth: | Parameter | Result | Qualifier | Units | RL | MDL | Dilution Factor | | |-----------------------------------|-------------|-----------|-------|-----|------|-----------------|--| | Volatile Organics by GC/MS - West | borough Lab | | | | | | | | n-Propylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,2,3-Trichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,2,4-Trichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,3,5-Trimethylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,2,4-Trimethylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,4-Dioxane | ND | | ug/l | 250 | 61. | 1 | | | p-Diethylbenzene | ND | | ug/l | 2.0 | 0.70 | 1 | | | p-Ethyltoluene | ND | | ug/l | 2.0 | 0.70 | 1 | | | 1,2,4,5-Tetramethylbenzene | ND | | ug/l | 2.0 | 0.54 | 1 | | | Ethyl ether | ND | | ug/l | 2.5 | 0.70 | 1 | | | trans-1,4-Dichloro-2-butene | ND | | ug/l | 2.5 | 0.70 | 1 | | | Surrogate | % Recovery | Acceptance
Qualifier Criteria | | |-----------------------|------------|----------------------------------|--| | 1,2-Dichloroethane-d4 | 117 | 70-130 | | | Toluene-d8 | 95 | 70-130 | | | 4-Bromofluorobenzene | 96 | 70-130 | | | Dibromofluoromethane | 105 | 70-130 | | **Project Name:** 27-01 JACKSON AVE **Project Number:** 170472002 Lab Number: L2504229 Report Date: 01/29/25 **SAMPLE RESULTS** Lab ID: L2504229-04 Date Collected: 01/24/25 13:55 Client ID: Date Received: 01/24/25 FB01_012425 Field Prep: Sample Location: LONG ISLAND CITY Not Specified Sample Depth: Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/28/25 11:45 Analyst: MJV | Parameter | Result | Qualifier | Units | RL | MDL | Dilution Factor | |-----------------------------------|-------------|-----------|-------|------|------|-----------------| | Volatile Organics by GC/MS - West | borough Lab | | | | | | | Methylene chloride | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,1-Dichloroethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Chloroform | ND | | ug/l | 2.5 | 0.70 | 1 | | Carbon tetrachloride | ND | | ug/l | 0.50 | 0.13 | 1 | | 1,2-Dichloropropane | ND | | ug/l | 1.0 | 0.14 | 1 | | Dibromochloromethane | ND | | ug/l | 0.50 | 0.15 | 1 | | 1,1,2-Trichloroethane | ND | | ug/l | 1.5 | 0.50 | 1 | | Tetrachloroethene | ND | | ug/l | 0.50 | 0.18 | 1 | | Chlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | Trichlorofluoromethane | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,2-Dichloroethane | ND | | ug/l | 0.50 | 0.13 | 1 | | 1,1,1-Trichloroethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Bromodichloromethane | ND | | ug/l | 0.50 | 0.19 | 1 | | trans-1,3-Dichloropropene | ND | | ug/l | 0.50 | 0.16 | 1 | | cis-1,3-Dichloropropene | ND | | ug/l | 0.50 | 0.14 | 1 | | 1,3-Dichloropropene, Total | ND | | ug/l | 0.50 | 0.14 | 1 | | 1,1-Dichloropropene | ND | | ug/l | 2.5 | 0.70 | 1 | | Bromoform | ND | | ug/l | 2.0 | 0.65 | 1 | | 1,1,2,2-Tetrachloroethane | ND | | ug/l | 0.50 | 0.17 | 1 | | Benzene | ND | | ug/l | 0.50 | 0.16 | 1 | | Toluene | ND | | ug/l | 2.5 | 0.70 | 1 | | Ethylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | Chloromethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Bromomethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Vinyl chloride | ND | | ug/l | 1.0 | 0.07 | 1 | | Chloroethane | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,1-Dichloroethene | ND | | ug/l | 0.50 | 0.17 | 1 | | trans-1,2-Dichloroethene | ND | | ug/l | 2.5 | 0.70 | 1 | | | | | | | | | Project Name: 27-01 JACKSON AVE Project Number: 170472002 **SAMPLE RESULTS** Report Date: 01/29/25 L2504229 Lab ID: L2504229-04 Client ID: FB01_012425 Date Received: Field Prep: Date Collected: Lab Number: 01/24/25 13:55 01/24/25 Sample Location: LONG ISLAND CITY Not Specified Sample Depth: Qualifier MDL **Parameter** Units RL**Dilution Factor** Result Volatile Organics by GC/MS - Westborough Lab ND 0.50 Trichloroethene ug/l 0.18 1 1,2-Dichlorobenzene ND ug/l 2.5 0.70 1 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 ND 1,4-Dichlorobenzene ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.17 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 ND 5.0 Acrylonitrile ug/l 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND 5.0 ug/l 1.0 1 Acetone ND 5.0 1.5 1 ug/l Carbon disulfide ND ug/l 5.0 1.0 1 ND 5.0 1 2-Butanone ug/l 1.9 ND Vinyl acetate ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 ND 5.0 2-Hexanone 1.0 1 ug/l Bromochloromethane ND 2.5 0.70 1 ug/l ND 2.5 0.70 2,2-Dichloropropane ug/l 1 1,2-Dibromoethane ND 2.0 0.65 1 ug/l 1,3-Dichloropropane ND 2.5 0.70 1 ug/l ND 2.5 1,1,1,2-Tetrachloroethane ug/l 0.70 1 ND 2.5 0.70 1 Bromobenzene ug/l n-Butylbenzene ND 2.5 0.70 ug/l ND 1 sec-Butylbenzene ug/l 2.5 0.70 ND tert-Butylbenzene 2.5 0.70 1 ug/l o-Chlorotoluene ND ug/l 2.5 0.70 1 ND 2.5 0.70 p-Chlorotoluene ug/l 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1 Hexachlorobutadiene ND ug/l 2.5 0.70 ND 1 Isopropylbenzene ug/l 2.5 0.70 ND 2.5 0.70 p-Isopropyltoluene ug/l 1 Naphthalene ND 2.5 0.70 ug/l Project Name: 27-01 JACKSON AVE Lab Number: L2504229 **Project Number:** 170472002 **Report Date:** 01/29/25 **SAMPLE RESULTS** Lab ID: L2504229-04 Date Collected: 01/24/25 13:55 Client ID: FB01_012425 Date Received: 01/24/25 Sample Location: LONG ISLAND CITY Field Prep: Not Specified Sample Depth: | Parameter | Result | Qualifier | Units | RL | MDL | Dilution Factor | | |-----------------------------------|-------------|-----------|-------|-----|------|-----------------|--| | Volatile Organics by GC/MS - West | borough Lab | | | | | | | | n-Propylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,2,3-Trichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,2,4-Trichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,3,5-Trimethylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,2,4-Trimethylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,4-Dioxane | ND | | ug/l | 250 | 61. | 1 | | | p-Diethylbenzene | ND | | ug/l | 2.0 | 0.70 | 1 | | | p-Ethyltoluene | ND | | ug/l | 2.0 | 0.70 | 1 | | | 1,2,4,5-Tetramethylbenzene | ND | | ug/l | 2.0 | 0.54 | 1 | | | Ethyl ether | ND | | ug/l | 2.5 | 0.70 | 1 | | | trans-1,4-Dichloro-2-butene | ND | | ug/l | 2.5 | 0.70 | 1 | | | Surrogate | % Recovery | Acceptance
Qualifier Criteria | | |-----------------------|------------|----------------------------------|--| | 1,2-Dichloroethane-d4 | 120 | 70-130 | | | Toluene-d8 | 94 | 70-130 | | | 4-Bromofluorobenzene | 96 | 70-130 | | | Dibromofluoromethane | 105 | 70-130 | | 01/24/25 00:00 Not Specified 01/24/25 **Project Name:** 27-01 JACKSON AVE **Project Number:** 170472002 **SAMPLE RESULTS** Lab Number: L2504229 Report Date: 01/29/25 Date Collected: Date Received: Field Prep: Lab ID: L2504229-05 Client ID: TB01_012425 Sample Location: LONG ISLAND CITY Sample Depth: Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/28/25 12:11 Analyst: MJV | Parameter | Result | Qualifier | Units | RL | MDL | Dilution Factor | |------------------------------------|-------------|-----------|-------|------|------|-----------------| | Volatile Organics by GC/MS - Westl | borough Lab | | | | | | | Methylene chloride | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,1-Dichloroethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Chloroform | ND | | ug/l | 2.5 | 0.70 | 1 | | Carbon tetrachloride | ND | | ug/l | 0.50 | 0.13 | 1 | | 1,2-Dichloropropane | ND | | ug/l | 1.0 | 0.14 | 1 | | Dibromochloromethane | ND | | ug/l | 0.50 | 0.15 | 1 | | 1,1,2-Trichloroethane | ND | | ug/l | 1.5 | 0.50 | 1 | | Tetrachloroethene | ND | | ug/l | 0.50 | 0.18 | 1 | | Chlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | Trichlorofluoromethane | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,2-Dichloroethane | ND | | ug/l | 0.50 | 0.13 | 1 | | 1,1,1-Trichloroethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Bromodichloromethane | ND | | ug/l | 0.50 | 0.19 | 1 | | trans-1,3-Dichloropropene | ND | | ug/l | 0.50 | 0.16 | 1 | | cis-1,3-Dichloropropene | ND | | ug/l | 0.50 | 0.14 | 1 | | 1,3-Dichloropropene, Total | ND | | ug/l | 0.50 | 0.14 | 1 | | 1,1-Dichloropropene | ND | | ug/l | 2.5 | 0.70 | 1 | | Bromoform | ND | | ug/l | 2.0 | 0.65 | 1 | | 1,1,2,2-Tetrachloroethane | ND | | ug/l | 0.50 | 0.17 | 1 | | Benzene | ND | | ug/l | 0.50 | 0.16 | 1 | | Toluene | ND | | ug/l | 2.5 | 0.70 | 1 | | Ethylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | Chloromethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Bromomethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Vinyl chloride | ND | | ug/l | 1.0 | 0.07 | 1 | | Chloroethane | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,1-Dichloroethene | ND | | ug/l | 0.50 | 0.17 | 1 | | trans-1,2-Dichloroethene | ND | | ug/l | 2.5 | 0.70 | 1 | | | | | | | | | L2504229 **Project Name:** Lab Number:
27-01 JACKSON AVE **Project Number:** Report Date: 170472002 01/29/25 **SAMPLE RESULTS** Lab ID: L2504229-05 Date Collected: 01/24/25 00:00 Client ID: Date Received: 01/24/25 TB01_012425 Sample Location: LONG ISLAND CITY Field Prep: Not Specified Sample Depth: | Parameter | Result | Qualifier | Units | RL | MDL | Dilution Factor | |---------------------------------|---------------|-----------|-------|------|------|-----------------| | Volatile Organics by GC/MS - We | stborough Lab | | | | | | | Trichloroethene | ND | | ug/l | 0.50 | 0.18 | 1 | | 1,2-Dichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,3-Dichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,4-Dichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | Methyl tert butyl ether | ND | | ug/l | 2.5 | 0.17 | 1 | | p/m-Xylene | ND | | ug/l | 2.5 | 0.70 | 1 | | o-Xylene | ND | | ug/l | 2.5 | 0.70 | 1 | | Xylenes, Total | ND | | ug/l | 2.5 | 0.70 | 1 | | cis-1,2-Dichloroethene | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,2-Dichloroethene, Total | ND | | ug/l | 2.5 | 0.70 | 1 | | Dibromomethane | ND | | ug/l | 5.0 | 1.0 | 1 | | 1,2,3-Trichloropropane | ND | | ug/l | 2.5 | 0.70 | 1 | | Acrylonitrile | ND | | ug/l | 5.0 | 1.5 | 1 | | Styrene | ND | | ug/l | 2.5 | 0.70 | 1 | | Dichlorodifluoromethane | ND | | ug/l | 5.0 | 1.0 | 1 | | Acetone | ND | | ug/l | 5.0 | 1.5 | 1 | | Carbon disulfide | ND | | ug/l | 5.0 | 1.0 | 1 | | 2-Butanone | ND | | ug/l | 5.0 | 1.9 | 1 | | Vinyl acetate | ND | | ug/l | 5.0 | 1.0 | 1 | | 4-Methyl-2-pentanone | ND | | ug/l | 5.0 | 1.0 | 1 | | 2-Hexanone | ND | | ug/l | 5.0 | 1.0 | 1 | | Bromochloromethane | ND | | ug/l | 2.5 | 0.70 | 1 | | 2,2-Dichloropropane | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,2-Dibromoethane | ND | | ug/l | 2.0 | 0.65 | 1 | | 1,3-Dichloropropane | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,1,1,2-Tetrachloroethane | ND | | ug/l | 2.5 | 0.70 | 1 | | Bromobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | n-Butylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | sec-Butylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | tert-Butylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | o-Chlorotoluene | ND | | ug/l | 2.5 | 0.70 | 1 | | p-Chlorotoluene | ND | | ug/l | 2.5 | 0.70 | 1 | | 1,2-Dibromo-3-chloropropane | ND | | ug/l | 2.5 | 0.70 | 1 | | Hexachlorobutadiene | ND | | ug/l | 2.5 | 0.70 | 1 | | Isopropylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | p-Isopropyltoluene | ND | | ug/l | 2.5 | 0.70 | 1 | | Naphthalene | ND | | ug/l | 2.5 | 0.70 | 1 | | | | | | | | | Project Name: 27-01 JACKSON AVE Lab Number: L2504229 **Project Number:** 170472002 **Report Date:** 01/29/25 **SAMPLE RESULTS** Lab ID: L2504229-05 Date Collected: 01/24/25 00:00 Client ID: TB01_012425 Date Received: 01/24/25 Sample Location: LONG ISLAND CITY Field Prep: Not Specified Sample Depth: | Parameter | Result | Qualifier | Units | RL | MDL | Dilution Factor | | |-------------------------------------|-----------|-----------|-------|-----|------|-----------------|--| | Volatile Organics by GC/MS - Westbo | rough Lab | | | | | | | | n-Propylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,2,3-Trichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,2,4-Trichlorobenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,3,5-Trimethylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,2,4-Trimethylbenzene | ND | | ug/l | 2.5 | 0.70 | 1 | | | 1,4-Dioxane | ND | | ug/l | 250 | 61. | 1 | | | p-Diethylbenzene | ND | | ug/l | 2.0 | 0.70 | 1 | | | p-Ethyltoluene | ND | | ug/l | 2.0 | 0.70 | 1 | | | 1,2,4,5-Tetramethylbenzene | ND | | ug/l | 2.0 | 0.54 | 1 | | | Ethyl ether | ND | | ug/l | 2.5 | 0.70 | 1 | | | trans-1,4-Dichloro-2-butene | ND | | ug/l | 2.5 | 0.70 | 1 | | | Surrogate | % Recovery | Acceptance
Qualifier Criteria | | |-----------------------|------------|----------------------------------|--| | 1,2-Dichloroethane-d4 | 118 | 70-130 | | | Toluene-d8 | 97 | 70-130 | | | 4-Bromofluorobenzene | 95 | 70-130 | | | Dibromofluoromethane | 107 | 70-130 | | Project Name: 27-01 JACKSON AVE Lab Number: L2504229 **Project Number:** 170472002 **Report Date:** 01/29/25 Method Blank Analysis Batch Quality Control Analytical Method: 1,8260D Analytical Date: 01/28/25 09:34 Analyst: PID | arameter | Result | Qualifier Units | RL | MDL | |-----------------------------|-------------------|-----------------|--------------|-------------| | olatile Organics by GC/MS - | · Westborough Lab | for sample(s): | 01-05 Batch: | WG2024777-5 | | Methylene chloride | ND | ug/l | 2.5 | 0.70 | | 1,1-Dichloroethane | ND | ug/l | 2.5 | 0.70 | | Chloroform | ND | ug/l | 2.5 | 0.70 | | Carbon tetrachloride | ND | ug/l | 0.50 | 0.13 | | 1,2-Dichloropropane | ND | ug/l | 1.0 | 0.14 | | Dibromochloromethane | ND | ug/l | 0.50 | 0.15 | | 1,1,2-Trichloroethane | ND | ug/l | 1.5 | 0.50 | | Tetrachloroethene | ND | ug/l | 0.50 | 0.18 | | Chlorobenzene | ND | ug/l | 2.5 | 0.70 | | Trichlorofluoromethane | ND | ug/l | 2.5 | 0.70 | | 1,2-Dichloroethane | ND | ug/l | 0.50 | 0.13 | | 1,1,1-Trichloroethane | ND | ug/l | 2.5 | 0.70 | | Bromodichloromethane | ND | ug/l | 0.50 | 0.19 | | trans-1,3-Dichloropropene | ND | ug/l | 0.50 | 0.16 | | cis-1,3-Dichloropropene | ND | ug/l | 0.50 | 0.14 | | 1,3-Dichloropropene, Total | ND | ug/l | 0.50 | 0.14 | | 1,1-Dichloropropene | ND | ug/l | 2.5 | 0.70 | | Bromoform | ND | ug/l | 2.0 | 0.65 | | 1,1,2,2-Tetrachloroethane | ND | ug/l | 0.50 | 0.17 | | Benzene | ND | ug/l | 0.50 | 0.16 | | Toluene | ND | ug/l | 2.5 | 0.70 | | Ethylbenzene | ND | ug/l | 2.5 | 0.70 | | Chloromethane | ND | ug/l | 2.5 | 0.70 | | Bromomethane | ND | ug/l | 2.5 | 0.70 | | Vinyl chloride | ND | ug/l | 1.0 | 0.07 | | Chloroethane | ND | ug/l | 2.5 | 0.70 | | 1,1-Dichloroethene | ND | ug/l | 0.50 | 0.17 | | trans-1,2-Dichloroethene | ND | ug/l | 2.5 | 0.70 | | Trichloroethene | ND | ug/l | 0.50 | 0.18 | L2504229 Project Name: 27-01 JACKSON AVE Lab Number: **Project Number:** 170472002 **Report Date:** 01/29/25 ## Method Blank Analysis Batch Quality Control Analytical Method: 1,8260D Analytical Date: 01/28/25 09:34 Analyst: PID | arameter | Result | Qualifier Units | RL | MDL | |-----------------------------|-----------------|-----------------|--------------|-------------| | olatile Organics by GC/MS - | Westborough Lab | for sample(s): | 01-05 Batch: | WG2024777-5 | | 1,2-Dichlorobenzene | ND | ug/l | 2.5 | 0.70 | | 1,3-Dichlorobenzene | ND | ug/l | 2.5 | 0.70 | | 1,4-Dichlorobenzene | ND | ug/l | 2.5 | 0.70 | | Methyl tert butyl ether | ND | ug/l | 2.5 | 0.17 | | p/m-Xylene | ND | ug/l | 2.5 | 0.70 | | o-Xylene | ND | ug/l | 2.5 | 0.70 | | Xylenes, Total | ND | ug/l | 2.5 | 0.70 | | cis-1,2-Dichloroethene | ND | ug/l | 2.5 | 0.70 | | 1,2-Dichloroethene, Total | ND | ug/l | 2.5 | 0.70 | | Dibromomethane | ND | ug/l | 5.0 | 1.0 | | 1,2,3-Trichloropropane | ND | ug/l | 2.5 | 0.70 | | Acrylonitrile | ND | ug/l | 5.0 | 1.5 | | Styrene | ND | ug/l | 2.5 | 0.70 | | Dichlorodifluoromethane | ND | ug/l | 5.0 | 1.0 | | Acetone | ND | ug/l | 5.0 | 1.5 | | Carbon disulfide | ND | ug/l | 5.0 | 1.0 | | 2-Butanone | ND | ug/l | 5.0 | 1.9 | | Vinyl acetate | ND | ug/l | 5.0 | 1.0 | | 4-Methyl-2-pentanone | ND | ug/l | 5.0 | 1.0 | | 2-Hexanone | ND | ug/l | 5.0 | 1.0 | | Bromochloromethane | ND | ug/l | 2.5 | 0.70 | | 2,2-Dichloropropane | ND | ug/l | 2.5 | 0.70 | | 1,2-Dibromoethane | ND | ug/l | 2.0 | 0.65 | | 1,3-Dichloropropane | ND | ug/l | 2.5 | 0.70 | | 1,1,1,2-Tetrachloroethane | ND | ug/l | 2.5 | 0.70 | | Bromobenzene | ND | ug/l | 2.5 | 0.70 | | n-Butylbenzene | ND | ug/l | 2.5 | 0.70 | | sec-Butylbenzene | ND | ug/l | 2.5 | 0.70 | | tert-Butylbenzene | ND | ug/l | 2.5 | 0.70 | **Project Name:** 27-01 JACKSON AVE Project Number: 170472002 Lab Number: L2504229 **Report Date:** 01/29/25 ## Method Blank Analysis Batch Quality Control Analytical Method: 1,8260D Analytical Date: 01/28/25 09:34 Analyst: PID | Parameter | Result | Qualifier Unit | s | RL | MDL | | |-----------------------------------|-------------|----------------|-------|--------|-------------|--| | Volatile Organics by GC/MS - West | borough Lab | for sample(s): | 01-05 | Batch: | WG2024777-5 | | | o-Chlorotoluene | ND | ug | /I | 2.5 | 0.70 | | | p-Chlorotoluene | ND | ug | /I | 2.5 | 0.70 | | | 1,2-Dibromo-3-chloropropane | ND | ug | /I | 2.5 | 0.70 | | | Hexachlorobutadiene | ND | ug | /I | 2.5 | 0.70 | | | Isopropylbenzene | ND | ug | /I | 2.5 | 0.70 | | | p-Isopropyltoluene | ND | ug | /I | 2.5 | 0.70 | | | Naphthalene | ND | ug | /I | 2.5 | 0.70 | | | n-Propylbenzene | ND | ug | /I | 2.5 | 0.70 | | | 1,2,3-Trichlorobenzene | ND | ug | /I | 2.5 | 0.70 | | | 1,2,4-Trichlorobenzene | ND | ug | /I | 2.5 | 0.70 | | | 1,3,5-Trimethylbenzene | ND | ug | /I | 2.5 | 0.70 | | | 1,2,4-Trimethylbenzene | ND | ug | /I | 2.5 | 0.70 | | | 1,4-Dioxane | ND | ug | /I | 250 | 61. | | | p-Diethylbenzene | ND | ug | /I | 2.0 | 0.70 | | | p-Ethyltoluene | ND | ug | /I | 2.0 | 0.70 | | | 1,2,4,5-Tetramethylbenzene | ND | ug | /I | 2.0 | 0.54 | | | Ethyl ether | ND | ug | /I | 2.5 | 0.70 | | | trans-1,4-Dichloro-2-butene | ND | ug | /I | 2.5 | 0.70 | | | Acceptance | | | | | | | | |-------------|-------------------|--|--|--|--|--|--| | %Recovery Q | ualifier Criteria | | | | | | | | 114 | 70-130 | | | | | | | | 95 | 70-130 | | | | | | | | 98 | 70-130 | | | | | | | | 104 | 70-130 | | | | | | | | | 114
95
98 | | | | | | | **Project Name:** 27-01 JACKSON AVE Project Number: 170472002 Lab Number: L2 L2504229 Report Date: | arameter | LCS
%Recovery Qu | LCSD
ual %Recovery | %Recovery
Qual Limits | RPD | RPD
Qual Limits | |---------------------------------|-----------------------------|-----------------------|--------------------------|--------|--------------------| | olatile Organics by GC/MS - Wes | stborough Lab Associated sa | ample(s): 01-05 Bato | ch: WG2024777-3 WG2024 | 4777-4 | | | Methylene chloride | 98 | 100 | 70-130 | 2 | 20 | | 1,1-Dichloroethane | 100 | 100 | 70-130 | 0 | 20 | | Chloroform | 110 | 110 | 70-130 | 0 | 20 | | Carbon tetrachloride | 110 | 100 | 63-132 | 10 | 20 | |
1,2-Dichloropropane | 98 | 99 | 70-130 | 1 | 20 | | Dibromochloromethane | 96 | 97 | 63-130 | 1 | 20 | | 1,1,2-Trichloroethane | 93 | 96 | 70-130 | 3 | 20 | | Tetrachloroethene | 96 | 94 | 70-130 | 2 | 20 | | Chlorobenzene | 91 | 91 | 75-130 | 0 | 20 | | Trichlorofluoromethane | 150 | 150 | 62-150 | 0 | 20 | | 1,2-Dichloroethane | 110 | 110 | 70-130 | 0 | 20 | | 1,1,1-Trichloroethane | 110 | 110 | 67-130 | 0 | 20 | | Bromodichloromethane | 100 | 100 | 67-130 | 0 | 20 | | trans-1,3-Dichloropropene | 82 | 83 | 70-130 | 1 | 20 | | cis-1,3-Dichloropropene | 89 | 89 | 70-130 | 0 | 20 | | 1,1-Dichloropropene | 99 | 97 | 70-130 | 2 | 20 | | Bromoform | 94 | 90 | 54-136 | 4 | 20 | | 1,1,2,2-Tetrachloroethane | 87 | 88 | 67-130 | 1 | 20 | | Benzene | 100 | 100 | 70-130 | 0 | 20 | | Toluene | 89 | 91 | 70-130 | 2 | 20 | | Ethylbenzene | 91 | 90 | 70-130 | 1 | 20 | | Chloromethane | 120 | 120 | 64-130 | 0 | 20 | | Bromomethane | 85 | 84 | 39-139 | 1 | 20 | | | | | | | | **Project Name:** 27-01 JACKSON AVE Project Number: 170472002 Lab Number: L2504229 Report Date: | arameter | LCS
%Recovery | Qual | LCSD
%Recovery | Qual | %Recovery
Limits | RPD | RPD
Qual Limits | |----------------------------------|---------------------|---------------|-------------------|----------|---------------------|--------|--------------------| | olatile Organics by GC/MS - West | borough Lab Associa | ted sample(s) | : 01-05 Bat | ch: WG20 | 24777-3 WG202 | 4777-4 | | | Vinyl chloride | 130 | | 110 | | 55-140 | 17 | 20 | | Chloroethane | 190 | Q | 190 | Q | 55-138 | 0 | 20 | | 1,1-Dichloroethene | 96 | | 85 | | 61-145 | 12 | 20 | | trans-1,2-Dichloroethene | 98 | | 98 | | 70-130 | 0 | 20 | | Trichloroethene | 100 | | 100 | | 70-130 | 0 | 20 | | 1,2-Dichlorobenzene | 89 | | 89 | | 70-130 | 0 | 20 | | 1,3-Dichlorobenzene | 90 | | 87 | | 70-130 | 3 | 20 | | 1,4-Dichlorobenzene | 88 | | 87 | | 70-130 | 1 | 20 | | Methyl tert butyl ether | 110 | | 110 | | 63-130 | 0 | 20 | | p/m-Xylene | 90 | | 90 | | 70-130 | 0 | 20 | | o-Xylene | 90 | | 90 | | 70-130 | 0 | 20 | | cis-1,2-Dichloroethene | 100 | | 100 | | 70-130 | 0 | 20 | | Dibromomethane | 100 | | 100 | | 70-130 | 0 | 20 | | 1,2,3-Trichloropropane | 89 | | 91 | | 64-130 | 2 | 20 | | Acrylonitrile | 100 | | 99 | | 70-130 | 1 | 20 | | Styrene | 85 | | 85 | | 70-130 | 0 | 20 | | Dichlorodifluoromethane | 110 | | 100 | | 36-147 | 10 | 20 | | Acetone | 88 | | 87 | | 58-148 | 1 | 20 | | Carbon disulfide | 89 | | 89 | | 51-130 | 0 | 20 | | 2-Butanone | 83 | | 84 | | 63-138 | 1 | 20 | | Vinyl acetate | 110 | | 110 | | 70-130 | 0 | 20 | | 4-Methyl-2-pentanone | 79 | | 86 | | 59-130 | 8 | 20 | | 2-Hexanone | 80 | | 82 | | 57-130 | 2 | 20 | | | | | | | | | | **Project Name:** 27-01 JACKSON AVE Project Number: 170472002 Lab Number: L2504229 **Report Date:** 01/29/25 | Parameter | LCS
%Recovery C | LCSD
Qual %Recovery | %Recovery
Qual Limits | RPD | RPD
Qual Limits | |--------------------------------------|---------------------|------------------------|--------------------------|--------|--------------------| | Volatile Organics by GC/MS - Westbor | ough Lab Associated | sample(s): 01-05 Batch | : WG2024777-3 WG2024 | 1777-4 | | | Bromochloromethane | 95 | 96 | 70-130 | 1 | 20 | | 2,2-Dichloropropane | 110 | 100 | 63-133 | 10 | 20 | | 1,2-Dibromoethane | 91 | 91 | 70-130 | 0 | 20 | | 1,3-Dichloropropane | 95 | 97 | 70-130 | 2 | 20 | | 1,1,1,2-Tetrachloroethane | 97 | 97 | 64-130 | 0 | 20 | | Bromobenzene | 90 | 90 | 70-130 | 0 | 20 | | n-Butylbenzene | 84 | 82 | 53-136 | 2 | 20 | | sec-Butylbenzene | 83 | 81 | 70-130 | 2 | 20 | | tert-Butylbenzene | 86 | 85 | 70-130 | 1 | 20 | | o-Chlorotoluene | 90 | 88 | 70-130 | 2 | 20 | | p-Chlorotoluene | 88 | 88 | 70-130 | 0 | 20 | | 1,2-Dibromo-3-chloropropane | 87 | 90 | 41-144 | 3 | 20 | | Hexachlorobutadiene | 92 | 90 | 63-130 | 2 | 20 | | Isopropylbenzene | 84 | 83 | 70-130 | 1 | 20 | | p-Isopropyltoluene | 85 | 83 | 70-130 | 2 | 20 | | Naphthalene | 75 | 76 | 70-130 | 1 | 20 | | n-Propylbenzene | 84 | 84 | 69-130 | 0 | 20 | | 1,2,3-Trichlorobenzene | 85 | 85 | 70-130 | 0 | 20 | | 1,2,4-Trichlorobenzene | 85 | 84 | 70-130 | 1 | 20 | | 1,3,5-Trimethylbenzene | 84 | 83 | 64-130 | 1 | 20 | | 1,2,4-Trimethylbenzene | 84 | 83 | 70-130 | 1 | 20 | | 1,4-Dioxane | 104 | 114 | 56-162 | 9 | 20 | | p-Diethylbenzene | 85 | 83 | 70-130 | 2 | 20 | **Project Name:** 27-01 JACKSON AVE Project Number: 170472002 Lab Number: L2504229 Report Date: | Parameter | LCS
%Recovery | Qual | LCSD
%Recovery | Qual | %Recovery
Limits | RPD | Qual | RPD
Limits | | |--|------------------|--------------|-------------------|-----------|---------------------|--------|------|---------------|--| | Volatile Organics by GC/MS - Westboroo | ugh Lab Associat | ed sample(s) | : 01-05 Bato | ch: WG202 | 24777-3 WG202 | 4777-4 | | | | | p-Ethyltoluene | 85 | | 85 | | 70-130 | 0 | | 20 | | | 1,2,4,5-Tetramethylbenzene | 81 | | 81 | | 70-130 | 0 | | 20 | | | Ethyl ether | 170 | Q | 180 | Q | 59-134 | 6 | | 20 | | | trans-1,4-Dichloro-2-butene | 45 | Q | 50 | Q | 70-130 | 11 | | 20 | | | Surrogate | LCS
%Recovery Qual | LCSD
%Recovery Qual | Acceptance
Criteria | | |-----------------------|-----------------------|------------------------|------------------------|---| | 1,2-Dichloroethane-d4 | 111 | 110 | 70-130 | - | | Toluene-d8 | 95 | 97 | 70-130 | | | 4-Bromofluorobenzene | 97 | 99 | 70-130 | | | Dibromofluoromethane | 104 | 103 | 70-130 | | # Matrix Spike Analysis Batch Quality Control **Project Name:** 27-01 JACKSON AVE Project Number: 170472002 Lab Number: L2504229 Report Date: | Parameter | Native
Sample | MS
Added | MS
Found | MS
%Recovery | Qual | MSD
Found | MSD
%Recovery | Qual | Recovery
Limits | RPD | Qual | RPD
Limits | |--|------------------|-------------|---------------|-----------------|---|--------------|------------------|------|--------------------|-----|------|---------------| | Volatile Organics by GC/MS
Client ID: MW-2_012425 | - Westborou | ıgh Lab A | ssociated san | nple(s): 01-05 | 5 QC Batch ID: WG2024777-6 WG2024777-7 QC Sample: L2504229-02 | | | | | | | 4229-02 | | Methylene chloride | ND | 10 | 11 | 110 | | 11 | 110 | | 70-130 | 0 | | 20 | | 1,1-Dichloroethane | ND | 10 | 11 | 110 | | 11 | 110 | | 70-130 | 0 | | 20 | | Chloroform | ND | 10 | 11 | 110 | | 12 | 120 | | 70-130 | 9 | | 20 | | Carbon tetrachloride | ND | 10 | 10 | 100 | | 11 | 110 | | 63-132 | 10 | | 20 | | 1,2-Dichloropropane | ND | 10 | 10 | 100 | | 10 | 100 | | 70-130 | 0 | | 20 | | Dibromochloromethane | ND | 10 | 9.2 | 92 | | 9.4 | 94 | | 63-130 | 2 | | 20 | | 1,1,2-Trichloroethane | ND | 10 | 11 | 110 | | 11 | 110 | | 70-130 | 0 | | 20 | | Tetrachloroethene | ND | 10 | 8.5 | 85 | | 8.1 | 81 | | 70-130 | 5 | | 20 | | Chlorobenzene | ND | 10 | 8.0 | 80 | | 7.6 | 76 | | 75-130 | 5 | | 20 | | Trichlorofluoromethane | ND | 10 | 16 | 160 | Q | 17 | 170 | Q | 62-150 | 6 | | 20 | | 1,2-Dichloroethane | ND | 10 | 12 | 120 | | 12 | 120 | | 70-130 | 0 | | 20 | | 1,1,1-Trichloroethane | ND | 10 | 12 | 120 | | 12 | 120 | | 67-130 | 0 | | 20 | | Bromodichloromethane | ND | 10 | 11 | 110 | | 11 | 110 | | 67-130 | 0 | | 20 | | trans-1,3-Dichloropropene | ND | 10 | 7.4 | 74 | | 7.6 | 76 | | 70-130 | 3 | | 20 | | cis-1,3-Dichloropropene | ND | 10 | 8.2 | 82 | | 8.2 | 82 | | 70-130 | 0 | | 20 | | 1,1-Dichloropropene | ND | 10 | 9.9 | 99 | | 10 | 100 | | 70-130 | 1 | | 20 | | Bromoform | ND | 10 | 8.2 | 82 | | 8.3 | 83 | | 54-136 | 1 | | 20 | | 1,1,2,2-Tetrachloroethane | ND | 10 | 8.8 | 88 | | 8.7 | 87 | | 67-130 | 1 | | 20 | | Benzene | ND | 10 | 11 | 110 | | 10 | 100 | | 70-130 | 10 | | 20 | | Toluene | ND | 10 | 8.7 | 87 | | 8.6 | 86 | | 70-130 | 1 | | 20 | | Ethylbenzene | 4.9 | 10 | 13 | 81 | | 14 | 91 | | 70-130 | 7 | | 20 | | Chloromethane | ND | 10 | 13 | 130 | | 14 | 140 | Q | 64-130 | 7 | | 20 | | Bromomethane | ND | 10 | 7.8 | 78 | | 9.9 | 99 | | 39-139 | 24 | Q | 20 | # Matrix Spike Analysis Batch Quality Control **Project Name:** 27-01 JACKSON AVE Project Number: 170472002 Lab Number: L2504229 Report Date: | Parameter | Native
Sample | MS
Added | MS
Found | MS
%Recovery | Qual | MSD
Found | MSD
%Recovery | | Recovery
Limits | RPD | Qual | RPD
Limits | |---|------------------|-------------|----------------|-----------------|--------|--------------|------------------|--------|--------------------|------|----------|---------------| | Volatile Organics by GC/N
Client ID: MW-2_012425 | IS - Westborou | gh Lab A | Associated sar | mple(s): 01-05 | QC Bat | ch ID: WG | 32024777-6 V | VG2024 | 4777-7 QC | Samp | le: L250 | 4229-02 | | Vinyl chloride | ND | 10 | 9.4 | 94 | | 11 | 110 | | 55-140 | 16 | | 20 | | Chloroethane | ND | 10 | 20 | 200 | Q | 22 | 220 | Q | 55-138 | 10 | | 20 | | 1,1-Dichloroethene | ND | 10 | 9.1 | 91 | | 9.6 | 96 | | 61-145 | 5 | | 20 | | trans-1,2-Dichloroethene | ND | 10 | 10 | 100 | | 10 | 100 | | 70-130 | 0 | | 20 | | Trichloroethene | ND | 10 | 10 | 100 | | 10 | 100 | | 70-130 | 0 | | 20 | | 1,2-Dichlorobenzene | ND | 10 | 5.6 | 56 | Q | 5.2 | 52 | Q | 70-130 | 7 | | 20 | | 1,3-Dichlorobenzene | ND | 10 | 5.0 | 50 | Q | 4.5 | 45 | Q | 70-130 | 11 | | 20 | | 1,4-Dichlorobenzene | ND | 10 | 4.9 | 49 | Q | 4.5 | 45 | Q | 70-130 | 9 | | 20 | | Methyl tert butyl ether | ND | 10 | 12 | 120 | | 12 | 120 | | 63-130 | 0 | | 20 | | o/m-Xylene | 12 | 20 | 29 | 85 | | 32 | 100 | | 70-130 | 10 | | 20 | | o-Xylene | 1.3J | 20 | 16 | 80 | | 16 | 80 | | 70-130 | 0 | | 20 | | cis-1,2-Dichloroethene | ND | 10 | 10 | 100 | | 11 | 110 | | 70-130 | 10 | | 20 | | Dibromomethane | ND | 10 | 10 | 100 | | 11 | 110 | | 70-130 | 10 | | 20 | | 1,2,3-Trichloropropane | ND | 10 | 8.5 | 85 | | 8.4 | 84 | | 64-130 | 1 | | 20 | |
Acrylonitrile | ND | 10 | 15 | 150 | Q | 15 | 150 | Q | 70-130 | 0 | | 20 | | Styrene | ND | 20 | 12 | 60 | Q | 12 | 60 | Q | 70-130 | 0 | | 20 | | Dichlorodifluoromethane | ND | 10 | 11 | 110 | | 11 | 110 | | 36-147 | 0 | | 20 | | Acetone | 19 | 10 | 28 | 90 | | 32 | 130 | | 58-148 | 13 | | 20 | | Carbon disulfide | ND | 10 | 8.6 | 86 | | 8.4 | 84 | | 51-130 | 2 | | 20 | | 2-Butanone | ND | 10 | 19 | 190 | Q | 21 | 210 | Q | 63-138 | 10 | | 20 | | Vinyl acetate | ND | 10 | 8.9 | 89 | | 9.6 | 96 | | 70-130 | 8 | | 20 | | 4-Methyl-2-pentanone | ND | 10 | 10 | 100 | | 11 | 110 | | 59-130 | 10 | | 20 | | 2-Hexanone | ND | 10 | 10 | 100 | | 12 | 120 | | 57-130 | 18 | | 20 | # Matrix Spike Analysis Batch Quality Control **Project Name:** 27-01 JACKSON AVE Project Number: 170472002 Lab Number: L2504229 **Report Date:** 01/29/25 | Parameter | Native
Sample | MS
Added | MS
Found | MS
%Recovery | Qual | MSD
Found | MSD
%Recovery | Qual | Recovery
Limits | RPD | Qual | RPD
Limits | |--|------------------|-------------|---------------|-----------------|-------|--------------|------------------|-------|--------------------|------|----------|---------------| | Volatile Organics by GC/MS
Client ID: MW-2_012425 | S - Westborou | ıgh Lab A | ssociated sam | nple(s): 01-05 | QC Ba | tch ID: WG | 32024777-6 V | VG202 | 4777-7 QC | Samp | le: L250 |)4229-02 | | Bromochloromethane | ND | 10 | 10 | 100 | | 10 | 100 | | 70-130 | 0 | | 20 | | 2,2-Dichloropropane | ND | 10 | 9.0 | 90 | | 9.0 | 90 | | 63-133 | 0 | | 20 | | 1,2-Dibromoethane | ND | 10 | 9.2 | 92 | | 9.4 | 94 | | 70-130 | 2 | | 20 | | 1,3-Dichloropropane | ND | 10 | 9.9 | 99 | | 10 | 100 | | 70-130 | 1 | | 20 | | 1,1,1,2-Tetrachloroethane | ND | 10 | 9.6 | 96 | | 9.3 | 93 | | 64-130 | 3 | | 20 | | Bromobenzene | ND | 10 | 7.3 | 73 | | 6.8 | 68 | Q | 70-130 | 7 | | 20 | | n-Butylbenzene | 0.71J | 10 | 4.0 | 40 | Q | 3.0 | 30 | Q | 53-136 | 29 | Q | 20 | | sec-Butylbenzene | 1.1J | 10 | 5.9 | 59 | Q | 5.1 | 51 | Q | 70-130 | 15 | | 20 | | ert-Butylbenzene | ND | 10 | 6.5 | 65 | Q | 6.1 | 61 | Q | 70-130 | 6 | | 20 | | o-Chlorotoluene | ND | 10 | 5.6 | 56 | Q | 5.3 | 53 | Q | 70-130 | 6 | | 20 | | o-Chlorotoluene | ND | 10 | 5.4 | 54 | Q | 5.0 | 50 | Q | 70-130 | 8 | | 20 | | 1,2-Dibromo-3-chloropropane | ND | 10 | 8.3 | 83 | | 8.5 | 85 | | 41-144 | 2 | | 20 | | Hexachlorobutadiene | ND | 10 | 4.4 | 44 | Q | 3.6 | 36 | Q | 63-130 | 20 | | 20 | | Isopropylbenzene | 7.1 | 10 | 14 | 69 | Q | 14 | 69 | Q | 70-130 | 0 | | 20 | | o-Isopropyltoluene | 0.71J | 10 | 5.7 | 57 | Q | 5.0 | 50 | Q | 70-130 | 13 | | 20 | | Naphthalene | 0.99J | 10 | 4.2 | 42 | Q | 3.7 | 37 | Q | 70-130 | 13 | | 20 | | n-Propylbenzene | 13 | 10 | 18 | 50 | Q | 16 | 30 | Q | 69-130 | 12 | | 20 | | 1,2,3-Trichlorobenzene | ND | 10 | 2.8 | 28 | Q | 2.3J | 23 | Q | 70-130 | 20 | | 20 | | 1,2,4-Trichlorobenzene | ND | 10 | 2.5 | 25 | Q | 1.8J | 18 | Q | 70-130 | 33 | Q | 20 | | 1,3,5-Trimethylbenzene | 4.6 | 10 | 11 | 64 | | 10 | 54 | Q | 64-130 | 10 | | 20 | | 1,2,4-Trimethylbenzene | 37 | 10 | 44 | 70 | | 42 | 50 | Q | 70-130 | 5 | | 20 | | 1,4-Dioxane | ND | 500 | 590 | 118 | | 650 | 130 | | 56-162 | 10 | | 20 | | p-Diethylbenzene | 1.5J | 10 | 9.1 | 91 | | 7.5 | 75 | | 70-130 | 19 | | 20 | ### Matrix Spike Analysis Batch Quality Control **Project Name:** 27-01 JACKSON AVE Project Number: 170472002 Lab Number: L2504229 Report Date: 01/29/25 | Parameter | Native
Sample | MS
Added | MS
Found | MS
%Recovery | Qual | MSD
Found | MSD
%Recovery | Qual | Recovery
Limits | RPD | Qual | RPD
Limits | |--|------------------|-------------|---------------|-----------------|--------|--------------|------------------|-------|--------------------|--------|----------|---------------| | Volatile Organics by GC/MS
Client ID: MW-2_012425 | S - Westborou | igh Lab As | ssociated sam | nple(s): 01-05 | QC Bat | ch ID: WG | 32024777-6 V | VG202 | 4777-7 QC | C Samp | le: L250 |)4229-02 | | p-Ethyltoluene | 18 | 10 | 25 | 70 | | 24 | 60 | Q | 70-130 | 4 | | 20 | | 1,2,4,5-Tetramethylbenzene | 5.7 | 10 | 8.0 | 23 | Q | 5.9 | 2 | Q | 70-130 | 30 | Q | 20 | | Ethyl ether | ND | 10 | 17 | 170 | Q | 17 | 170 | Q | 59-134 | 0 | | 20 | | trans-1,4-Dichloro-2-butene | ND | 10 | 2.8 | 28 | Q | 2.6 | 26 | Q | 70-130 | 7 | | 20 | | | MS | MSD | Acceptance | |-----------------------|----------------------|----------------------|------------| | Surrogate | % Recovery Qualifier | % Recovery Qualifier | Criteria | | 1,2-Dichloroethane-d4 | 114 | 115 | 70-130 | | 4-Bromofluorobenzene | 98 | 97 | 70-130 | | Dibromofluoromethane | 102 | 104 | 70-130 | | Toluene-d8 | 94 | 96 | 70-130 | Serial_No:01292517:51 *Lab Number:* L2504229 **Project Name:** 27-01 JACKSON AVE **Project Number:** 170472002 **Report Date:** 01/29/25 #### Sample Receipt and Container Information Were project specific reporting limits specified? **Cooler Information** Cooler Custody Seal A Absent | Container Information | | | Initial | Final | Temp | | | Frozen | | |-----------------------|--------------------|--------|---------|-------|-------|------|--------|-----------|----------------| | Container ID | Container Type | Cooler | рН | pН | deg C | Pres | Seal | Date/Time | Analysis(*) | | L2504229-01A | Vial HCl preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-01B | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-01C | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-02A | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-02A1 | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-02A2 | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-02B | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-02B1 | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-02B2 | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-02C | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-02C1 | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-02C2 | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-03A | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-03B | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-03C | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-04A | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-04B | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-04C | Vial HCI preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-05A | Vial HCl preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | | L2504229-05B | Vial HCl preserved | Α | NA | | 2.4 | Υ | Absent | | NYTCL-8260(14) | Project Name: 27-01 JACKSON AVE Lab Number: L2504229 **Project Number:** 170472002 **Report Date:** 01/29/25 #### **GLOSSARY** #### **Acronyms** **EPA** LOQ MS DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME). EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration. LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LCSD - Laboratory Control Sample Duplicate: Refer to LCS. Environmental Protection Agency. LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. Matrix Spike Sample: A sample
prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values. MSD - Matrix Spike Sample Duplicate: Refer to MS. NA - Not Applicable. NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine. NI - Not Ignitable. NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations. Report Format: DU Report with 'J' Qualifiers Project Name: 27-01 JACKSON AVE Lab Number: L2504229 Project Number: 170472002 Report Date: 01/29/25 #### **Footnotes** 1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method. #### **Terms** Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.) Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH. Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported. PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported. Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082. #### Data Qualifiers receipt, if applicable. - A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process. - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone). - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses. - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte. - E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument. - F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration. - G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated. - H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection. - I The lower value for the two columns has been reported due to obvious interference. - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Report Format: DU Report with 'J' Qualifiers Project Name: 27-01 JACKSON AVE Lab Number: L2504229 Project Number: 170472002 Report Date: 01/29/25 #### **Data Qualifiers** Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated. - M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte. - ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses. - **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search. - P The RPD between the results for the two columns exceeds the method-specified criteria. - Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.) - **R** Analytical results are from sample re-analysis. - **RE** Analytical results are from sample re-extraction. - S Analytical results are from modified screening analysis. - The surrogate associated with this target
analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.) - Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.) Report Format: DU Report with 'J' Qualifiers Serial_No:01292517:51 Project Name: 27-01 JACKSON AVE Lab Number: L2504229 **Project Number:** 170472002 **Report Date:** 01/29/25 #### **REFERENCES** Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018. #### **LIMITATION OF LIABILITIES** Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services. We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field. Serial_No:01292517:51 **Pace Analytical Services LLC** Facility: **Northeast** Department: Quality Assurance Title: Certificate/Approval Program Summary ID No.:**17873** Revision 27 Page 1 of 2 Published Date: 01/24/2025 #### **Certification Information** The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility - 8 Walkup Dr. Westborough, MA 01581 EPA 624.1: m/p-xylene, o-xylene, Naphthalene **EPA 625.1:** alpha-Terpineol **EPA 8260D:** NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270E:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3. Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048 SM 2540D: TSS. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. MADEP-APH. Nonpotable Water: EPA RSK-175 Dissolved Gases Biological Tissue Matrix: EPA 3050B Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048 EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Nonpotable Water: EPA RSK-175 Dissolved Gases The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation: Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048 Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528) The following analytes are included in our Massachusetts DEP Scope of Accreditation Westborough Facility - 8 Walkup Dr. Westborough, MA 01581 Drinking Water EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, ${\sf EPA~180.1, SM2130B, SM4500Cl-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B}$ EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D. Non-Potable Water SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables) Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D. Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048 **Drinking Water** EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1. Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B Document Type: Form Pre-Qualtrax Document ID: 08-113 Serial_No:01292517:51 **Pace Analytical Services LLC** Facility: Northeast Department: Quality Assurance Title: Certificate/Approval Program Summary Revision 27 Published Date: 01/24/2025 Page 2 of 2 ID No.:17873 #### **Certification IDs:** Westborough Facility - 8 Walkup Dr. Westborough, MA 01581 CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195 Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048 CT PH-0825, ANAB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954 Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048 ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104. For a complete listing of analytes and methods, please contact your Project Manager. Document Type: Form Pre-Qualtrax Document ID: 08-113 | Дерна | NEW YORK CHAIN OF CUSTODY Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 Page \ Of \textsquare | | - | Serial_No:01292517:51 L2504229 31JA LANGAN — NYC | | | | | | | | | | | |---|---
--|--|--|-------------|-------------|--|---------|-----------|--|---|---|---|--| | Westborough, MA 01581
8 Walkup Dr. | Mansfield, MA 02048
320 Forbes Blvd | Project Information | Section 2 | -1-00 | | | Delivera | - | - | No. | | | | | | TEL: 508-898-9220 | TEL: 508-822-9300 | Project Name: 2701 Jackson Ave | | | | | | SP-A | | 14 | ¥ Same as Grent mio | | | | | FAX: 508-898-9193 | FAX: 508-822-3288 | Project Location: Long Island City | | | | | | QuIS (1 | File) | | 4 File) | PO# | | | | Client Information | | Project# 1704 | | | | | - | ther | 1.1107 | hand | Eduio (| + i maj | 100 | | | Client: Langan | NYL | (Use Project name as P | | 125 | | | PARTITION OF THE PARTIT | | | | | Disposal Site Information | | | | Address: 308 N. | | Project Manager: V | the feet between the same of t | 50,100 | 00 | | NY TOGS NY Part 375 | | | | | | | | | New York, | | ALPHAQuote #: | mace .q | Sevvi | OFF | | | VQ Stan | | 11111 | NY CP-51 | | Please identify below location of applicable disposal facilities. | | | Phone: 212 - 479 | | Turn-Around Time | | | 100 | | THE RESERVE | | | | | | | | | Fax: | | Standar | 1X | Due Date | | | NY Restricted Use Other | | | | | | Disposal Facility: | | | Email: KSEMON | @larcan.tom | Rush (only if pre approved | | # of Days | | | NY Unrestricted Use NYC Sewer Discharge | | | | | | □ NJ □ NY | | | These samples have b | | | | iii oi bajo | | | ANALY | - | DISCHO | ige | | | Other: | | | Other project specific | requirements/comm | nents: | | | - | | 181 | 313 | 1 | T | | 1 | Sample Filtration | | | PLUME CO. DO | ment@i any a
avgarr.com | gan. com, LHaley 6 | | | Quarganion | | | | | | | □ Done t □ Lab to do Preservation □ Lab to do | | | | rease specify metals | OI TAL. | | | | | | 5 | | | | | | cab to do | | | | | | | | | | 50 | | | | | | (Please Specify below) | | | ALPHA Lab ID
(Lab Use Only) | | imple ID | | lection Sam | | | 1 2 | t | | | | | | | | | | TOTAL SECTION AND ADDRESS OF THE PARTY TH | Date | Time | Matrix | Initials | V _Q | | | | | | Sample Specific Comments | | | 04229-01 | MW-1-0121 | 125 | 1/24/25 | 13:40 | CWJ | LC | 7 | | | | | | | | | -04 | MW-2-012
Dupo1-012 | 425 | | 11:40 | 1 | | | | | | | | MS/MSD | | | | - Contract of the | The state of s | | _ | 4 | | | | | | | | | | | | FB01-01242 | | 1 | 13:55 | AQ. | V | | | | | | | | | | -05 | TBOL 01242 | S | - | | AR | _ | - | + | - | | | - | - | | + | - | | - | | | | | | | | | | | | | + | 1 | | - | - | | | | Preservative Code:
A = None
B = HCI
C = HNO ₃ | Container Code P = Plastic A = Amber Glass V = Vial | Westboro: Certification N
Mansfield: Certification N | Con | | | | | | | Please print clearly, legibly
and completely. Samples can
not be logged in and | | | | | | : H ₂ SO ₄ G ≃ Glass NaOH B = Bacteria Cup | | | Preservative | | | reservative | | | | | | | turnaround time clock will not
start until any ambiguities are | | | F = MeOH
G = NaHSO ₄ | C = Cube
O = Other | Relinquished By: | | | | | | By: | | | Date/Tim | 10 | resolved. BY EXECUTING | | | G = NaHSO ₄ | | L. Clements | 1-24/25 | 1971 | IMI Pace 1- | | | | 4-21 1420 | | THIS COC, THE CLIENT
HAS READ AND AGREES | | | | | O = Other | | 0 | SME | 1/24/25 | 1.1.67 | 1 | 14 | 14 | 1/2 | 1/ | | 1940 | TO BE BOUND BY ALPHA'S
TERMS & CONDITIONS. | | | Form No: 01-25 HC (rev. 3 | 7.Sent.2013\ | The lim | 11 | 25/25 | 0150 | 2 | 224 | - | 15 | 7/2 | 5 2 | 350 | (See reverse side.) | | # ATTACHMENT E Data Usability Summary Report #### **Technical Memorandum** 1
University Square Drive Princeton, NJ 08540 T: 609.282.8000 Mailing Address: 1 University Square Drive Princeton, NJ 08540 To: Ali Reach, Langan Senior Staff Geologist From: Joe Conboy, Langan Project Chemist Date: February 20, 2025 Re: Data Usability Summary Report For 27-01 Jackson Avenue January 2025 Groundwater Samples Langan Project No.: 170472002 This memorandum presents the findings of an analytical data validation from the analysis of groundwater samples collected in January 2025 by Langan Engineering and Environmental Services at the 27-01 Jackson Avenue site. The samples were analyzed by Pace Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) for volatile organic compounds (VOCs) by the method specified below. VOCs by SW-846 Method 8260D Table 1, attached, summarizes the laboratory and client sample identification numbers, sample collection dates, level of data validation, and analytical parameters subject to review. #### **Validation Overview** This data validation was performed in accordance with the following guidelines, where applicable: - USEPA Region II Standard Operating Procedures (SOPs) for Data Validation - USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020) - USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020), and - published analytical methodologies. Tier 1 data validation is based on completeness and compliance checks of sample-related QC results including: sample receipt documentation; analytical holding times; sample preservation; blank results (method, field, and trip); surrogate recoveries; MS/MSD recoveries and RPDs values; field duplicate RPDs, laboratory duplicate RPDs, and LCS/LCSD recoveries and RPDs. All sample delivery groups underwent Tier 1 validation review. As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA guidelines and our best professional judgment: ## Technical Memorandum Data Usability Summary Report For 27-01 Jackson Avenue January 2025 Groundwater Samples Langan Project No.: 170472002 February 20, 2025 Page 2 of 4 - **R** The sample results are unusable. The results are rejected because of serious deficiencies in meeting quality control criteria in accordance with the applicable validation guidelines. The analyte may or may not be present in the sample. - **J** The analyte was positively identified above the quantitation limit, and the associated numerical value is the approximate concentration of the analyte in the sample. - **UJ** The analyte was not detected at or above the quantitation limit. The reported quantitation limit may be imprecise because of potential low or indeterminate bias. - U The analyte was not detected at or above the quantitation limit, or the analyte detection is impacted by blank contamination and qualified as non-detect in accordance with the applicable validation guidelines. If any validation qualifiers are assigned, these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are considered invalid and are not technically usable for data interpretation. Data that is otherwise qualified because of minor data-quality anomalies are usable, as qualified in Table 2 (attached). The following acronyms may be used in the discussion of data-quality issues: | %D | Percent Difference | MB | Method Blank | |------|-------------------------------------|-----|-----------------------------| | CCV | Continuing Calibration Verification | MDL | Method Detection Limit | | FB | Field Blank | MS | Matrix Spike | | FD | Field Duplicate | MSD | Matrix Spike Duplicate | | ICAL | Initial Calibration | RF | Response Factor | | ICV | Initial Calibration Verification | RL | Reporting Limit | | ISTD | Internal Standard | RPD | Relative Percent Difference | | LCL | Lower Control Limit | RSD | Relative Standard Deviation | | LCS | Laboratory Control Sample | ТВ | Trip Blank | | LCSD | Laboratory Control Sample Duplicate | UCL | Upper Control Limit | #### **MAJOR DEFICIENCIES:** Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified. #### **MINOR DEFICIENCIES:** Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified. Technical Memorandum Data Usability Summary Report For 27-01 Jackson Avenue January 2025 Groundwater Samples Langan Project No.: 170472002 February 20, 2025 Page 3 of 4 VOCs by SW-846 Method 8260D L2504229 The LCS/LCSD for batch WG2024777 exhibited a percent recovery below the LCL for trans-1,4-dichloro-2- butene (45%, 50%). The associated results in samples MW-1_012425, MW-2_012425, and DUP01_012425 are qualified as UJ because of potential low bias. **OTHER DEFICIENCIES:** Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified. VOCs by SW-846 Method 8260D L2504229 The LCS/LCSD for batch WG2024777 exhibited percent recoveries above the UCL for chloroethane (190%, 190%) and diethyl ether (ethyl ether) (170%, 180%). The associated results are non-detect. No qualification is necessary. The MS and/or MSD performed on sample MW-2 012425 exhibited percent recoveries and/or RPDs outside of control limits for one or more analytes (Recoveries = 2% - 220%, RPDs = 24% - 33%). Organic results are not qualified on the basis of MS/MSD recoveries or RPDs alone. No qualification is necessary. **FIELD DUPLICATE:** One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than ±1X the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 30% for groundwater. The following field duplicate and parent sample pair was compared to and met the precision criteria: DUP01 012425 and MW-1 012425 **CONCLUSION:** On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements. All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%. LANGAN ## Technical Memorandum Data Usability Summary Report For 27-01 Jackson Avenue January 2025 Groundwater Samples Langan Project No.: 170472002 February 20, 2025 Page 4 of 4 Signed: Joe Conboy Project Chemist