2024-2025 OFF-SITE PERIODIC REVIEW REPORT

for

27-01 Jackson Avenue Long Island City, Queens NYSDEC Order on Consent No. S241209

Prepared For:

2701 JACKSON LLC 2701 Jackson Property Owner LLC 11 Grace Avenue #401 Great Neck, NY 11021

Prepared By:

www.langan.com

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 368 Ninth Avenue, 8th Floor New York, New York 10001

> July 1, 2025 Langan Project No. 170472002

368 Ninth Avenue, 8th Floor

New York, NY 10001

T: 212.479.5400

F: 212.479.5444

New Jersey • New York • Connecticut • Massachusetts • Pennsylvania • Ohio • Illinois • North Carolina • Virginia • Washington, DC California • Texas • Arizona • Utah • Colorado • Washington • Tennessee • Florida I Athens • Calgary • Dubai • London • Panama

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1 1.2	General Site Location and Background	
2.0	PERIODIC REVIEW REPORT CERTIFICATION	
2.1 2.2 2.3 3.0	Institutional Controls Engineering Control Institutional/Engineering Controls Certificate OFF-SITE PERIODIC REVIEW REPORT – QUARTERLY GROUNDWATER	4
	TORING, WELL DECOMMISSIONING, AND ANNUAL SITE INSPECTION	5
3	Quarterly Groundwater Monitoring	5 6 7 9
4.0	COMPLIANCE WITH OSMP1	0
4.1 4.2	Construction Health and Safety Plan1 Deviations from the Site Management Plan1	
5.0	OSMP OPERATION DESCRIPTION	1
	Site Controls	1
6.0	RECOMMENDATIONS1	2
61	Amendments to the Frequency of Off-Site PRR Submissions	\mathbf{c}
6.2	Proposed Discontinuation of OSMP1	
6.2 7.0		2

Tables

 Table 1
 Groundwater Sample Analytical Results

Figures

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Monitoring Well Location Plan
Figure 4	Groundwater Sample Analytical Results Map
Figure 5	Groundwater Sample Analytical Results Trends

Appendices

Appendix A	Consent Order
Appendix B	IC and EC Certification Forms
Appendix C	NYSDEC Correspondence
Appendix D	Quarterly Groundwater Monitoring Letter Reports
Appendix E	Well Decommissioning Log
Appendix F	Photograph Log
Appendix G	Site Inspection Forms
Appendix H	Drum Disposal Documentation

1.0 Introduction

1.1 General

This Off-Site Periodic Review Report (PRR) was prepared in accordance with the New York State Department of Environmental Conservation (NYSDEC)-approved December 12, 2022 Off-Site Site Management Plan (OSMP) and Section 6.3 of NYSDEC Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10), dated May 3, 2010. This report documents quarterly groundwater sampling, well decommissioning, and the annual site inspection performed on April 16, 2025 for the off-site areas within the public right-of-way and sidewalks adjacent to the 27-01 Jackson Avenue site located in the Long Island City neighborhood of Queens, New York (Brownfield Cleanup Program [BCP] Site No. C241209), and subject to the Consent Order (CO) Index No. S241209-08-09 (referred to as the "CO site"). The BCP site was remediated pursuant to the September 17, 2018 Brownfield Cleanup Agreement (BCA), Index No. C241209-08-09, between the NYSDEC and 2701 Jackson Avenue LLC (the Participant) for New York State BCP Site No. C241209. Implementation of the remedy is described in detail in the December 13, 2022 Final Engineering Report (FER) and OSMP. A Certificate of Completion (COC) was issued by the NYSDEC on December 23, 2022.

The BCP site was remediated to meet Track 1 Unrestricted Use (UU) cleanup objectives and is not subject to any future institutional or engineering controls (ICs and ECs). Only the off-site sidewalk areas that adjoin the BCP site to the southeast and southwest are subject to the CO. The intent of the CO is to monitor off-site groundwater conditions following off-site groundwater treatment and on-site dewatering. A site location map is provided as Figure 1 and a site plan is provided as Figure 2. The CO is provided in Appendix A.

This report is organized as follows:

- <u>Periodic Review Report Certification (Section 2)</u> Summarizes the annual certifications documenting that ICs and ECs were operated, maintained, and monitored in accordance with the OSMP.
- <u>Periodic Review Report Quarterly Groundwater Monitoring, Well Decommissioning, and</u> <u>Annual Site Inspection (Sections 3, 4 and 5)</u> – Describes the quarterly groundwater monitoring, well decommissioning, and annual site inspection completed during this reporting period, in accordance with the OSMP.
- <u>Recommendations (Section 6)</u> Summarizes recommendations based on the results of quarterly groundwater monitoring.

 <u>Division of Environmental Remediation Green Remediation Policy (DER-31) (Section 7)</u> – Discusses and evaluates environmental impacts associated with site management activities.

1.2 Site Location and Background

The off-site area within the public right-of-way and sidewalks subject to the CO is an approximately 2,750-square-foot area that spans sections of the Jackson Avenue and 43rd Avenue sidewalks adjoining the BCP site located at 27-01 Jackson Avenue in the Long Island City neighborhood of Queens, New York, identified as Block 432, Lot 21 on the Queens County Tax Map. The BCP site itself is approximately 9,200 square feet and is bound by a multi-story commercial use building and parking lot followed by Hunter Street to the north; vacant land and the Ed Koch Queensboro Bridge on-ramp and upper roadway followed by a multi-story commercial use building to the east; Jackson Avenue followed by a multi-story mixed-use building, a multi-story residential and commercial use building (BCP Site No. C241217), and vacant land and the Ed Koch Queensboro Bridge on-ramp to the south; and 43rd Avenue followed by a multi-story (MTA) "E" and "M" subway lines are located beneath Jackson Avenue directly south of the BCP site. Prior to redevelopment, the BCP site operated a gas station with petroleum bulk storage and an auto repair shop.

Between July 20, 2021 and March 29, 2022, the BCP site was remediated pursuant to the BCA and amendments. ICs and ECs have been incorporated into the OSMP to control exposure to the remaining contamination beneath the CO site and provide measures for protection of public health and the environment.

2.0 Periodic Review Report Certification

2.1 Institutional Controls

The IC for the site is a CO that is used to 1) require compliance with the Department approved OSMP; and 2) require the remedial party to complete and submit to NYSDEC a periodic certification of ICs in accordance with Part 375-1.8(h). These ICs are:

- Environmental monitoring (i.e., groundwater sampling) must be performed as defined in the OSMP.
- The use of groundwater underlying the CO site is prohibited without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH) or New York City Department of Health (NYCDOH) to render it safe for use as drinking water or for industrial purposes, and the Participant must first notify and obtain written approval to do so from the NYSDOH or NYCDOH;
- Data and information pertinent to site management must be reported at the frequency and in the manner specified in the OSMP;
- Groundwater monitoring wells must be protected and replaced as necessary to ensure proper functioning in the manner specified in the OSMP;
- Groundwater monitoring may not be discontinued without an amendment or extinguishment of the CO - The CO may be extinguished only by release by the Commissioner of the NYSDEC, or the Commissioner's designee;
- Compliance with the CO by the Participant and the Participant's successors and adherence of all elements of the OSMP is required;
- All future activities that will disturb remaining contaminated groundwater must be conducted in accordance with the OSMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as specified in the OSMP; and
- Participant must provide all persons who undertake responsibility for the implementation of the CO site remedy a complete copy of the OSMP that the NYSDEC approves for the CO site and all NYSDEC-approved amendments to the OSMP.

There have been no changes or actions since the NYSDEC issued the COC that would require modification to the CO. A copy of the CO is included as Appendix A.

2.2 Engineering Control

The EC for the site includes quarterly groundwater monitoring from a monitoring well network comprised of four post-remedy performance monitoring wells (MW-1 through MW-4), two wells located on each sidewalk (Jackson Avenue and 43rd Avenue), to monitor the treatment and reduction of petroleum contaminants in off-site groundwater. As discussed in Sections 3.1 and 3.2, NYSDEC allowed the discontinuation of groundwater monitoring at the post-remedy performance monitoring wells along 43rd Avenue (MW-3 and MW-4) on August 8 and October 13, 2023.

Four quarters of groundwater monitoring have been completed during this reporting period. The monitoring well network was inspected during the annual site inspection on April 16, 2025. Observations and results of the groundwater monitoring are described in Section 3. Monitoring well locations are shown on Figure 3.

2.3 Institutional/Engineering Controls Certificate

The certification period covered by this report is April 30, 2024 to April 30, 2025. OSMP operations, including the annual inspection, were completed in accordance with the requirements of the CO, as certified by the owner and Qualified Environmental Professional (QEP) in the IC/EC Certification Forms. The IC/EC Certification Forms are provided in Appendix B.

3.0 Off-Site Periodic Review Report – Quarterly Groundwater Monitoring, Well Decommissioning, and Annual Site Inspection

In accordance with the OSMP, Langan completed and/or documented the following activities during this reporting period: 1) four quarterly groundwater monitoring events, 2) decommissioning of monitoring well MW-4, and 3) an annual site inspection. These activities are described in the following sections.

3.1 Quarterly Groundwater Monitoring

3.1.1 Groundwater Remedy – Background

An off-site in-situ groundwater treatment program was implemented to treat remaining petroleum-related volatile organic compounds (VOC) beneath the CO site, which were initially identified during the RI. Targeted petroleum-related VOCs included benzene, toluene, ethylbenzene, and xylenes (BTEX), and their breakdown products. Impacted groundwater was treated using an activated carbon solution (PetroFix[™]) via direct-push injection points located in a rough grid pattern to spread chemicals evenly within the off-site, south- and west-adjoining sidewalks comprising the CO site.

The injection program was carried out by Clean Harbors of Norwell, Massachusetts and Aquifer Drilling and Testing (ADT) of Mineola, New York, under the oversight of Langan, between October 20 and November 11, 2021. Approximately 14,400 pounds of Petrofix® and 720 pounds of electron acceptor blend were applied at depths ranging to 15 to 30 feet below grade surface (bgs) via direct-push drill rig between October 20 and November 11, 2021. Between 664 and 976 pounds of Petrofix® were applied to each point.

Monitoring Well Network Description

During installation of SOE for the BCP site, the four off-site monitoring wells were compromised and subsequently removed. Monitoring wells MW-1 through MW-4 were reinstalled on August 22, 2022 and October 13 and 14, 2022; two monitoring wells were installed on each sidewalk (Jackson Avenue and 43rd Avenue). Beginning in October 2022, monitoring wells MW-1 through MW-4 were sampled on a quarterly basis. Post-injection groundwater monitoring was not conducted between November 2021 and October 2022 due to remediation efforts and active dewatering at the BCP site. Eleven post-injection quarterly sampling events have been completed at the CO site in October 2022, January 2023, April 2023, July 2023, October 2023, January 2024, April 2024, July 2024, October 2024, January 2025, and April 2025.

Monitoring well locations are shown on Figure 3. Results of the baseline monitoring event performed on October 7 and 19, 2021 are summarized in Section 4.6 of the FER.

Between the third and fourth quarter sampling events, monitoring well MW-3 was compromised during utility installation in the 43rd Avenue sidewalk. VOCs were non-detect in MW-3 during the previous three quarters of sampling; therefore, NYSDEC allowed the discontinuation of sampling of MW-3 via email correspondence on August 8, 2023. Based on the results provided in the Fourth Quarter Groundwater Monitoring Report, dated September 15, 2023, VOCs were non-detect in monitoring well MW-4 for four consecutive quarters; therefore, NYSDEC allowed the discontinuation of sampling of MW-4 via email correspondence on October 13, 2023. Copies of NYSDEC correspondence are provided in Appendix C. As discussed in Section 3.2, monitoring well MW-4 was decommissioned in accordance with NYSDEC Commissioner Policy 43 (CP-43) on May 8, 2024.

3.1.2 Post-Remedy Groundwater Sampling and Analysis

In accordance with the OSMP, groundwater monitoring was required on a quarterly basis for a period of two years following the injection program. In correspondence dated September 19, 2024, NYSDEC requested three additional quarters of groundwater monitoring be conducted to further document asymptotic reduction of petroleum-related VOCs in groundwater. The eighth quarterly sampling event was performed in July 2024; the subsequent groundwater monitoring events were performed in October 2024, January 2025, and April 2025. Observations and results from these quarterly events are summarized in quarterly groundwater monitoring reports submitted to NYSDEC for review. A copy of the NYSDEC correspondence requesting additional quarterly groundwater monitoring is provided in Appendix C. Copies of the quarterly groundwater monitoring reports are provided in Appendix D. A summary of the sampling methodology and chemical analysis performed is provided below:

Groundwater Sampling Methodology

Prior to sampling, each monitoring well was visually inspected to confirm there was no evidence of tampering or damage, an initial headspace VOC reading was recorded (in parts per million [ppm]), and the depth to groundwater was measured using a Solinst[®] oil/water interface probe.

Before sampling, each monitoring well was purged using the low-flow method developed by the United States Environmental Protection Agency (USEPA) ("Low-Flow [Minimal Drawdown] Ground-Water Sampling Procedures," EPA/540/S-95/504, April 1996) and accepted by the NYSDEC. Purging was performed using a peristaltic pump fitted with dedicated tubing at all wells. During purging, the turbidity, pH, temperature, conductivity, oxidation-reduction potential (ORP), and dissolved oxygen (DO) were monitored using a Horiba U-52 water quality meter with a flow-through cell. As a general rule, groundwater was purged until water quality parameters stabilized, after an hour of continuous purging, or after three well volumes of groundwater had been removed from the well. Purged groundwater was containerized in 55-gallon drums during each event.

Groundwater Sampling Chemical Analysis

Monitoring wells were sampled with a peristaltic pump and dedicated tubing immediately following purging. Groundwater samples were collected into laboratory-prepared containers, tightly sealed, uniquely labeled, stored on ice for transport under standard chain-of-custody procedures and analyzed by Pace Analytical (Pace), a New York State Department of Environmental Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-accredited laboratory in Westborough, Massachusetts. One trip blank, one field blank, one duplicate sample, and one matrix spike/matrix spike duplicate (MS/MSD) sample were included for quality assurance/quality control (QA/QC) purposes. All samples were analyzed for Part 375/Target Compound List (TCL) VOCs via United Stated Environmental Protection Agency (USEPA) SW-846 method 8260C.

3.1.3 Groundwater Results

Groundwater sample results were compared to the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Class GA (drinking water) Ambient Water Quality Standards (herein collectively referenced as the NYSDEC SGVs). The following tables summarize groundwater results (provided in micrograms per liter [µg/L]) during the most recent sampling events from each well in comparison to their baseline sample results:

		Sampling Event	Baseline	Quarter 8	Quarter 9	Quarter 10	Quarter 10	Quarter 11	Quarter 11	
		Location				MW-1				
Analyte	NYSDEC SGVs	Sample Name	MW01_101921	MW-1_072924	MW-1_102924	MW-1_012425	DUP01_012425	MW-1_041625	DUP01_041625	
		Sample Date	10/19/2021	07/29/2024	10/29/2024	01/24/2025	01/24/2025	04/16/2025	04/16/2025	
		Unit	Result	Result	Result	Result	Result	Result	Result	
VOCs										
1,2,4,5-Tetramethylbenzene	5	ug/l	12	7.4	<2 U	<2 U	<2 U	<2 U	<2 U	
1,2,4-Trimethylbenzene	5	ug/l	11	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
1,3,5-Trimethylbenzene (Mesitylene)	5	ug/l	7.8	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
Benzene	1	ug/l	17	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	
Ethylbenzene	5	ug/l	54	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
Isopropylbenzene (Cumene)	5	ug/l	10	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
M,P-Xylene	5	ug/l	11	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
Naphthalene	10	ug/l	3.4 J	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
n-Butvlbenzene	5	ug/l	5.6	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
n-Propylbenzene	5	ug/l	17	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
o-Xylene (1,2-Dimethylbenzene)	5	ug/l	9.1	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
Sec-Butylbenzene	5	ug/l	4.6	0.85 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
Toluene	5	ug/l	5.3	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
Total Xylenes	5	uq/l	20	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	

	1	Sampling Event	Baseline	Quarter 8	Quarter 8	Quarter 9	Quarter 9	Quarter 10	Quarter 11
		Location	Dusenne	Quarter o	addition o	MW-2	addition o	additor to	Quarter II
Analyte	NYSDEC SGVs	Sample Name	MW02_101921	MW-2_072924	DUP01_072924	MW-2_102924	DUP01_102924	MW-2_012425	MW-2_041625
-		Sample Date	10/19/2021	07/29/2024	07/29/2024	10/29/2024	10/29/2024	01/24/2025	04/16/2025
		Unit	Result	Result	Result	Result	Result	Result	Result
VOCs									
1,2,4,5-Tetramethylbenzene	5	ug/l	130	8.5	7	9.6	11	5.7	5
1,2,4-Trimethylbenzene	5	ug/l	1,900	16	15	34	32	37	21
1,3,5-Trimethylbenzene (Mesitylene)	5	ug/l	540	0.79 J	0.72 J	3.8	3.4	4.6	2.3 J
Benzene	1	ug/l	2.1 J	<0.5 U	<0.5 U	0.21 J	0.19 J	<0.5 U	<0.5 U
Ethylbenzene	5	ug/l	890	1.2 J	1.1 J	5.5	4.8	4.9	2.7
Isopropylbenzene (Cumene)	5	ug/l	190	2.4 J	2.1 J	6	5.8	7.1	3.2
M,P-Xylene	5	ug/l	2,300	1.1 J	0.92 J	7.3	5.9	12	5.2
Naphthalene	10	ug/l	460 J	0.96 J	0.87 J	0.77 J	0.91 J	0.99 J	0.92 J
n-Butylbenzene	5	ug/l	25	0.94 J	0.91 J	1 J	1.2 J	0.71 J	<2.5 U
n-Propylbenzene	5	ug/l	370	6.5	6.1	13	13	13	6.2
o-Xylene (1,2-Dimethylbenzene)	5	ug/l	410	<2.5 U	<2.5 U	0.78 J	<2.5 U	1.3 J	<2.5 U
Sec-Butylbenzene	5	ug/l	18 J	0.92 J	0.86 J	1.4 J	1.6 J	1.1 J	0.7 J
Toluene	5	ug/l	130	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Total Xylenes	5	ug/l	2,700	1.1 J	0.92 J	8.1 J	5.9	13 J	5.2

		Sampling Event	Baseline	Quarter 1	Quarter 2	Quarter 3	Quarter 3
		Location			MW-3		
Analyte	NYSDEC SGVS	Sample Name	MW03_100721	MW-3_102122	MW-3_012623	MW-3_042623	DUP01_042623
		Sample Date	10/07/2021	10/21/2022	01/26/2023	04/26/2023	04/26/2023
		Unit	Result	Result	Result	Result	Result
VOCs							
1,2,4,5-Tetramethylbenzene	5	ug/l	2	<2 U	<2 U	<2 U	<2 U
1,2,4-Trimethylbenzene	5	ug/l	<2.5 U				
,3,5-Trimethylbenzene (Mesitylene)	5	ug/l	<2.5 U				
Benzene	1	uq/l	0.16 J	<0.5 U	<0.5 U	<0.5 U	<0.5 U
thylbenzene	5	ug/l	4.8	<2.5 U	<2.5 U	<2.5 U	<2.5 U
sopropylbenzene (Cumene)	5	ug/l	3.8	<2.5 U	<2.5 U	<2.5 U	<2.5 U
M,P-Xylene	5	ug/l	<2.5 U				
Naphthalene	10	ug/l	2 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U
n-Butylbenzene	5	ug/l	<2.5 U				
n-Propylbenzene	5	ug/l	9.4 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U
-Xylene (1,2-Dimethylbenzene)	5	ug/l	<2.5 U				
Sec-Butylbenzene	5	ug/l	<2.5 U				
oluene	5	ug/l	<2.5 U				
Total Xylenes	5	ua/l	<2.5 U				

		Sampling Event	Baseline	Baseline	Quarter 1	Quarter 2	Quarter 2	Quarter 3	Quarter 4				
		Location				MW-4							
Analyte	NYSDEC SGVS	Sample Name	MW04_100721	GWDUP01_100721	MW-4_102122	MW-4_012623	DUP01_012623	MW-4_042623	MW-4_072723				
		Sample Date	10/07/2021	10/07/2021	10/21/2022	01/26/2023	01/26/2023	04/26/2023	07/27/2023				
		Unit	Result	Result	Result	Result	Result	Result	Result				
VOCs													
1.2.4.5-Tetramethylbenzene	5	ua/l	<2 U	<2.5 U	<2 U	<2 U	<2 U	<2 U	<2 U				
1,2,4-Trimethylbenzene	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
1,3,5-Trimethylbenzene (Mesitylene)	5	ug/l	<2.5 U	<5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Benzene	1	ua/l	0.17 J	0.2 J	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U				
Ethylbenzene	5	uq/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Isopropylbenzene (Cumene)	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
M.P-Xvlene	5	ua/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Naphthalene	10	ua/l	0.95 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
n-Butylbenzene	5	ug/l	0.88 J	0.87 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
n-Propylbenzene	5	ua/l	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
o-Xylene (1,2-Dimethylbenzene)	5	ua/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Sec-Butylbenzene	5	ug/l	3	3	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Toluene	5	ua/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Total Xylenes	5	ua/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				

Analytical results from the most recent performance monitoring at each well are summarized as follows:

- <u>MW-1:</u> VOCs were not detected above the NYSDEC SGVs. In comparison to baseline analytical results, total VOC and total BTEX concentrations have decreased by 100%.
- <u>MW-2:</u> 1,2,4-trimethylbenzene, m/p-xylene, n-propylbenzene, and total xylenes were detected above the NYSDEC SGVs. In comparison to baseline analytical results, total VOC and total BTEX concentrations have decreased by 99.2% and 99.8%, respectively.
- <u>MW-3:</u> VOCs were not detected above the NYSDEC SGVs.
- <u>MW-4:</u> VOCs were not detected above the NYSDEC SGVs.

As discussed in Section 3.1.1, VOCs were non-detect in monitoring wells MW-3 and MW-4 for three and four quarters of sampling, respectively. Four VOCs were detected above the NYSDEC SGVs in monitoring well MW-2 during the eleventh quarterly monitoring event (April 2025); VOCs were non-detect in monitoring well MW-1. Total VOC concentrations have decreased by 100% (MW-1) and 99.2% (MW-2), and total BTEX concentrations have decreased by 100% (MW-1) and 99.8% (MW-2) when compared to baseline concentrations. In comparison to the tenth quarterly sampling event, analyte concentrations detected above the NYSDEC SGVs in MW-2 are generally within the same order of magnitude or one order of magnitude lower. Overall, target petroleum

VOC concentrations have been reduced by one to three orders of magnitude relative to baseline concentrations. Based on the post-remedy sampling results and trends, the off-site remedy appears to have been effective; further significant decline of contaminant of concern concentrations in the near term is not anticipated.

Analytical data is presented in Table 1 and shown on Figure 4. Result trends for each monitoring well are shown on Figure 5.

3.2 Well Decommissioning

As discussed in Section 3.2.1, NYSDEC allowed the discontinuation of groundwater monitoring at post-remedy performance monitoring well MW-3 and MW-4 (along 43rd Avenue) on August 8 and October 13, 2023. On May 8, 2024, Langan documented the decommissioning of the MW-4 in accordance with NYSDEC Commissioner Policy 43 (CP-43); MW-3 was compromised during construction and could not be decommissioned. The monitoring well was grouted in-place with bentonite and Portland cement from a depth of about 24 feet bgs to surface grade. The well was decommissioned by Lakewood Environmental Services Corp. of Smithtown, New York under the oversight of a Langan field staff. A well decommissioning log is provided in Appendix E. Photo documentation for the well decommissioning activities is provided in Appendix F. Well locations are shown on Figure 3.

3.3 Site Inspection

In accordance with the OSMP, Langan conducted an annual inspection on April 16, 2025 to document the following:

- Compliance with all ICs, including site usage
- General site conditions at the time of the inspection
- The site management activities being conducted
- If these controls continue to be protective of human health and the environment
- Compliance with requirements of this OSMP and the CO

The site was in compliance with the OSMP and CO during this reporting period. A photograph log showing site conditions during the annual site inspection is included as Appendix F. A completed site inspection form is included as Appendix G.

4.0 Compliance with OSMP

Specific OSMP measures are described in the following sections.

4.1 Construction Health and Safety Plan

The quarterly groundwater monitoring events, well decommissioning, and annual site inspection were performed in compliance with the site-specific Construction Health and Safety Plan (CHASP) and applicable laws and regulations. The health and safety program manager for Langan was William Bohrer, PG.

4.2 Deviations from the Site Management Plan

The ICs have remained fully in place at the site for the April 30, 2024 to April 30, 2025 reporting period and remain effective. There were no IC deviations during the reporting period.

5.0 **OSMP** Operation Description

The following sections describe OSMP operations performed during this reporting period.

5.1 Site Controls

5.1.1 Reporting

Langan performed the annual site inspection. Observations were recorded in a field book that included a project number and a summary of locations where inspection was performed. A photograph log documenting the annual inspection is provided in Appendix F.

Groundwater monitoring reports were provided to NYSDEC on a quarterly basis and are appended to this Off-Site PRR as Appendix D.

5.2 Transport and Off-Site Disposal

One 55-gallon drum containing drill cuttings from the October 2022 monitoring well installation and one 55-gallon drum containing non-hazardous purged groundwater generated during the reporting period were staged on-site pending disposal to a facility permitted to receive the non-hazardous waste. On May 5, 2025, the 55-gallon drums were transported for off-site disposal by AARCO Environmental Services Inc. (AARCO) of Lindenhurst, New York to the Dale Transfer Corp. facility in West Babylon, New York (an NYSDEC-permitted facility). Drum disposal documentation is provided in Appendix H.

6.0 Recommendations

6.1 Amendments to the Frequency of Off-Site PRR Submissions

VOCs were not detected above the NYSDEC SGVs in MW-1 during the last two quarterly monitoring events, and in comparison to baseline results, total VOC and total BTEX concentrations have decreased in MW-2 by 99.2% and 99.8%, respectively. As requested by NYSDEC in correspondence dated September 19, 2024 (Appendix C), three additional quarters of groundwater monitoring were conducted by Langan upon completion of the two-year quarterly monitoring program outlined in the OSMP. Based on a review of the overall analytical data generated over the course of the eleven quarterly monitoring events, it appears that the remedy was effective in demonstrating a bulk reduction of targeted petroleum-related VOCs. As evidenced by the three additional quarters, asymptotic reduction of VOC concentrations in MW-1 and MW-2 appear to have been achieved, and further decline of contaminant of concern concentrations is not anticipated. Therefore, Langan is requesting to discontinue groundwater monitoring and extinguish the off-site CO.

6.2 Proposed Discontinuation of OSMP

Based on the overall results of the groundwater monitoring program, Langan proposes discontinuation of OSMP obligations at the site, and subsequent extinguishment of the CO and OSMP.

7.0 Division of Environmental Remediation Green Remediation Evaluation

The NYSDEC DER Green Remediation Policy (DER-31) requires that green remediation concepts and techniques be considered during all stages of the remedial program, including site management, with the goal of improving the sustainability of the cleanup and summarizing the net environmental benefit of any implemented green technology. A summary of green remediation metrics for site management during the reporting period is included in Appendix G. Goals for the project to incorporate green remediation principles and techniques during the next reporting period include use of public transit by personnel when possible during annual site inspections.

Langan will continue to evaluate green remediation concepts and techniques for inclusion in site management, as applicable.

8.0 Certification

For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- The inspection of the CO site to confirm the effectiveness of the ICs required by the remedial program was performed under my direction;
- The ICs employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the CO site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- Use of the CO site is compliant with the CO;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the CO site remedial program and generally accepted engineering practices; and
- No new information has come to my attention, including groundwater monitoring data from wells located at the CO site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid; and
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Brian Gochenaur, QEP, of Langan, Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C., have been authorized and designated by the site owner to sign this certification for the site.

Brian Hakum QEP

07/01/2025 DATE

TABLES

LANGAN

Table 1 Periodic Review Report Groundwater Sample Analytical Results 27-01 Jackson Avenue

Long Island City, New York
NYSDEC BCP Site No.: C241209
Langan Project No.: 170472002

			Sampling Event Location	Baseline MW-1	Quarter 1 MW-1	Quarter 2 MW-1	Quarter 3 MW-1	Quarter 4 MW-1	Quarter 4 MW-1	Quarter 5 MW-1	Quarter 5 MW-1	Quarter 6 MW-1	Quarter 7 MW-1	Quarter 7 MW-1	Quarter 8 MW-1	Quarter 9 MW-1	Quarter 10 MW-1	Quarter 10 MW-1	Quarter 11 MW-1	Quarter 11 MW-1
	CAS	NYSDEC	Depth to Groundwater	16.82	17.50	15.60	18.45	13.75	13.75	10.95	10.95	13.31	11.69	11.69	14.50	17.30	18.50	18.50	15.30	15.30
Analyte	Number	SGVs	(feet bgs) Sample Name	MW01 101921	MW-1_102122	MW-1_012623	MW-1_042623	MW-1_072723	DUP01 072723	MW-1_102323	DUP01 102323		MW-1_042524	DUP01_042524		MW-1_102924	MW-1_012425	DUP01 012425	MW-1 041625	DUP01_041625
			Sample Date Unit	10/19/2021 Result	10/21/2022 Result	01/26/2023 Result	04/26/2023 Result	07/27/2023 Result	07/27/2023 Result	10/23/2023 Result	10/23/2023 Result	01/31/2024 Result	04/25/2024 Result	04/25/2024 Result	07/29/2024 Result	10/29/2024 Result	01/24/2025 Result	01/24/2025 Result	04/16/2025 Result	04/16/2025 Result
Volatile Organic Compounds																				
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	630-20-6 71-55-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U <2.5 U		<2.5 U	<2.5 U		<2.5 U <2.5 U	<2.5 U		<2.5 U <2.5 U	<2.5 U		<2.5 U		<2.5 U	<2.5 U
1,1,1-i richloroethane 1,1,2,2-Tetrachloroethane	79-34-5	5	uq/l uq/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U		<2.5 U <0.5 U	<2.5 U <0.5 U		<2.5 U <0.5 U			<2.5 U <0.5 U			<2.5 U <0.5 U			<2.5 U <0.5 U
1,1,2-Trichloroethane	79-00-5	1	ug/I	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U												
1,1-Dichloroethane	75-34-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U												
1,1-Dichloroethene 1,1-Dichloropropene	75-35-4 563-58-6	5	ug/l ug/l	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U
1,2,3-Trichlorobenzene	87-61-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U												
1,2,3-Trichloropropane	96-18-4	0.04	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U												
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene	95-93-2 120-82-1	5	ug/l	12	1.9 J	8.9 ≪2.5 U	1.7 J ≼2 5 U	<2 U <2 5 U	<2 U <2 5 U	7.6	8.4	8 ≼2.5 U	11 <2.5.U	11 <25U	7.4	<2 U <2 5 U	<2 U <2 5 U	<2 U <2 5 U	<2 U <2 5 U	<2 U <2 5 U
1,2,4-Trimethylbenzene	95-63-6	5	ug/l ug/l	11	0.77 J	<2.8 U 0.74 J	<2.5 U	<2.5 U	<2.5 U	7.2	7.5	<2.5 U	2.6	2.6	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	ug/	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U												
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	0.0006	ug/l	<2 U	<2 U	<2 U	<2 U	<2 U												
1,2-Dichlorobenzene 1,2-Dichloroethane	95-50-1 107-06-2	3 0.6	ug/	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U												
1,2-Dichloropropane	78-87-5	1	ug/l	<0.8 0	<0.80	<1.0	<1 U	<0.8 0 <1 U	<1 U	<0.8 0	<0.8 0	<1 U	<0.8 0	<0.8 U <1 U	<1 U	<0.8 0	<1 U	<1 U	<0.8 U	<0.8 U <1 U
1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	5	ug/l	7.8	4	1.7 J	<2.5 U	<2.5 U	<2.5 U	5.3	5.6	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
1,3-Dichlorobenzene	541-73-1	3	ug/l		<2.5 U			<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U								
1,3-Dichloropropane	142-28-9	5	ug/l																	<2.5 U
1,4-Dichlorobenzene 1,4-Diethyl Benzene	106-46-7 105-05-5	3 NS	uq/1 uq/1	<2.5 U 26	<2.5 U 4	<2.5 U 4.9	<2.5 U 1.7 J	<2.5 U <2 U	<2.5 U <2 U	<2.5 U 1.6 J	<2.5 U 1.7 J	<2.5 U 3.9	<2.5 U 3.5	<2.5 U 3.5	<2.5 U 2.3	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U
1,4-Dioxane (P-Dioxane)	123-91-1	0.35	ug/l	<250 U		<250 U	<250 U			<250 U					<250 U					
2,2-Dichloropropane	594-20-7	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U												
2-Chlorotoluene	95-49-8	5	ug/	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U												
2-Hexanone (MBK) 4-Chlorotoluene	591-78-6 106-43-4	50 5	ug/l	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U												
4-Ethyltoluene	622-96-8	NS	ua/	6.1	1.5 J	1.4 J				4	4.3									<2 U
Acetone	67-64-1	50	ug/	4.5 J	25	<5 U	<5 U	2.5 J	<5 U	<5 UJ	<5 U	1.7 J	<5 U	<5 U						
Acrylonitrile	107-13-1	5	ug/	<5 U	<5 U	<5 U	<5 U	<5 U												
Benzene Bromobenzene	71-43-2 108-86-1	1	ug/l ug/l	17 <2.5 U	<0.5 U <2.5 U	0.22 J <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U									
Bromochloromethane	74-97-5	5	ug/																	<2.5 U
Bromodichloromethane	75-27-4	50	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U												
Bromoform	75-25-2	50	ug/			<2 U	<2 U		<2 U		<2 U	<2 U	<2 U		<2 U	<2 U	<2 U	<2 U	<2 U	<2 U
Bromomethane Carbon Disulfide	74-83-9 75-15-0	5 60	ug/l ug/l	<2.5 U 1.2 J	<2.5 U <5 U	<2.5 UJ <5 U	<2.5 UJ <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 UJ <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U				
Carbon Tetrachloride	56-23-5	5	ug/l	<0.5 U																<0.5 U
Chlorobenzene	108-90-7	5	ug/	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U												
Chloroethane	75-00-3 67-66-3	5	uq/	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U											
Chloroform Chloromethane	67-66-3 74-87-3	5	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U
Cis-1,2-Dichloroethene	156-59-2	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U												
Cis-1,3-Dichloropropene	10061-01-5	0.4	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U												
Cymene	99-87-6	5	ug/	1.4 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U											
Dibromochloromethane Dibromomethane	124-48-1 74-95-3	50	ug/l ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U <5 U	<0.5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U <5 U	<0.5 U	<0.5 U	<0.5 U <5 U	<0.5 U	<0.5 U
Dichlorodifluoromethane	75-71-8	5	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U												
Diethyl Ether (Ethyl Ether)	60-29-7	NS	ug/l	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U											
Ethylbenzene Hexachlorobutadiene	100-41-4 87-68-3	5 0.5	ug/l	54	<2.5 U <2.5 U	5.4	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	4.7 <2.5 U	5 <2.5 U	1.9 J	1.5 J <2.5 U	1.5 J <2 5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Hexachlorobutadiene Isopropylbenzene (Cumene)	87-68-3 98-82-8	5	ug/l	<2.5 U 10	<2.5 U	<2.5 U 9.1	<2.5 U	<2.5 U <2.5 U	<2.5 U	3.9	<2.5 U 4.2	<2.5 U 5.6	<2.5 U	<2.5 U 2.1 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
M,P-Xylene	179601-23-	1 5	ug/	11	1.3 J	0.88 J	<2.5 U	<2.5 U	<2.5 U	3.7	4		<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Methyl Ethyl Ketone (2-Butanone)	78-93-3	50	ug/l		<5 UJ	<5 U	<5 U	<5 U	<5 U	<5 U										
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) Methylene Chloride	108-10-1 75-09-2	NS	ug/l	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U												
Naphthalene	91-20-3	10	ug/l	3.4 J						2.2 J	2 J									<2.5 U
n-Butylbenzene	104-51-8	5	ug/l	5.6	<2.5 U	2.2 J	<2.5 U	<2.5 U	<2.5 U	1.4 J	1.6 J	1.7 J	0.87 J	0.81 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
n-Propylbenzene	103-65-1 95-47-6	5	uq/	17 9.1	<2.5 U	11	<2.5 U	<2.5 U	<2.5 U	7.1 0.98.1	7.7 1.1	5.7	1.5 J	1.6 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U
o-Xylene (1,2-Dimethylbenzene) Sec-Butylbenzene	95-47-6 135-98-8	5	ug/l ug/l	9.1 4.6	<2.5 U	<2.5 U 2.7	<2.5 U 0.87 J	<2.5 U <2.5 U	<2.5 U	0.98 J	1 J	<2.5 U 1.9 J	<2.5 U 1.2 J	<2.5 U 1.1 J	<2.5 U 0.85 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U
Styrene	100-42-5	5	ug/I	<2.5 U	1.2 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U							
T-Butylbenzene	98-06-6	5	ug/	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U												
Tert-Butyl Methyl Ether	1634-04-4	10	uq/l	<2.5 U	0.21 J	<2.5 U	<2.5 U	<2.5 U												
Tetrachloroethene (PCE) Toluene	127-18-4 108-88-3	5	uq/l ug/l	<0.5 U 5.3	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U											
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l		<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U											
Total Xylenes	1330-20-7		ug/l	20	1.3 J	0.88 J	<2.5 U	<2.5 U	<2.5 U	4.7 J	5 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Total, 1,3-Dichloropropene (Cis And Trans)	542-75-6	0.4	ug/l		<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U											
Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	156-60-5 10061-02-6	5 i 0.4	ug/l ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U												
Trans-1,3-Dichloropropene Trans-1,4-Dichloro-2-Butene	110-57-6	5	ug/l	<2.5 U	<2.5 U	<0.5 U	<2.5 U	<0.8 U <2.5 U	<2.5 U	<2.5 U	<0.5 U	<2.5 U	<2.5 U	<0.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<0.5 U
Trichloroethene (TCE)	79-01-6	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U												
Trichlorofluoromethane Vinyl Acetate	75-69-4 108-05-4	5 NS	ug/l	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U											
Vinyl Acetate Vinyl Chloride	108-05-4 75-01-4	2	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U												
vinyi chionde	/5-01-4	4	ug/i	<1.U	STU	SIU	SLU	<1 U	<1 U	STU	STU	SIU	STU	STU	<1 U	<l th="" u<=""><th><1 U</th><th>STU</th><th><i th="" u<=""><th>< I U</th></i></th></l>	<1 U	STU	<i th="" u<=""><th>< I U</th></i>	< I U

Table 1 Periodic Review Report Groundwater Sample Analytical Results 27-01 Jackson Avenue Long Island City, New York NYSDEC GC 95 its No.: C241209 Langan Project No.: 170472002

			Sampling Event	Baseline	Quarter 1	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Quarter 5	Quarter 6	Quarter 6	Quarter 7	Quarter 8	Quarter 8	Quarter 9	Quarter 9	Quarter 10	Quarter 11
			Location Depth to	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2
Analyte	CAS Number	NYSDEC SGVs	Groundwater (feet bgs)	14.41	14.50	14.50	14.81	15.94	13.75	11.51	12.21	12.21	12.30	12.42	12.42	14.18	14.18	14.01	13.85
			Sample Name Sample Date	MW02_101921 10/19/2021	MW-2_102022 10/20/2022	DUP01_102022 10/20/2022	MW-2_012623 01/26/2023	MW-2_042623 04/26/2023	MW-2_072723 07/27/2023	MW-2_102323 10/23/2023	MW-2_013124 01/31/2024	DUP01_013124 01/31/2024	MW-2_042524 04/25/2024	MW-2_072924 07/29/2024	DUP01_072924 07/29/2024	MW-2_102924 10/29/2024	DUP01_102924 10/29/2024	MW-2_012425 01/24/2025	MW-2_041625 04/16/2025
			Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds 1,1,1,2-Tetrachloroethane	630-20-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1,1-Trichloroethane	71-55-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1,2,2-Tetrachloroethane 1.1,2-Trichloroethane	79-34-5 79-00-5	5	ug/l ug/l	<5 U <15 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U				<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	
1,1-Dichloroethane	75-34-3	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1-Dichloroethene	75-35-4	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
1,1-Dichloropropene 1,2,3-Trichlorobenzene	563-58-6 87-61-6	5	ug/l ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
1,2,3-Trichloropropane	96-18-4	0.04	ug/l		<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U			<2.5 U							<2.5 U
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene	95-93-2 120-82-1	5	ug/l ug/l	130	1.4 J	4.2 J	<2 U <2 5 U		2.6	6.2	6.1 J	1.3 J	28	8.5	7 ≪2.5 U	9.6	11	5.7	5
1,2,4-Trimethylbenzene	95-63-6	5	ug/l	1,900	10 J	34 J	12	15	80	37	110 J	52 J	97	16	15	34	32	37	21
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene	106-93-4 95-50-1	0.0006	ug/l ug/l																
1,2-Dichloroethane	107-06-2	0.6	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
1,2-Dichloropropane	78-87-5	1	ug/I	<10 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U 6.9 J	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U
1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene	108-67-8 541-73-1	5 3	ug/l ug/l	540 <25 U	3.5 J <2.5 U	8 J <2.5 U	2.5 <2.5 U	2.4 J <2.5 U	11 <2.5 U	2.5 <2.5 U	11 J <2.5 U	6.9 J <2.5 U	3.2 <2.5 U	0.79 J <2.5 U	0.72 J <2.5 U	3.8 <2.5 U	3.4 <2.5 U	4.6 <2.5 U	2.3 J <2.5 U
1,3-Dichloropropane	142-28-9	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,4-Dichlorobenzene 1,4-Diethyl Benzene	106-46-7 105-05-5	3 NS	uq/l ug/l	<25 U 270	<2.5 U <2 U	<2.5 U 0.72 J	<2.5 U 1.4 J	<2.5 U 0.85 J	<2.5 U 1.4 J	<2.5 U 0.91 J	<2.5 U 2.5	<2.5 U 1.1 J	<2.5 U 7	<2.5 U 1.3 J	<2.5 U 1.2 J	<2.5 U 2.1	<2.5 U 2.2	<2.5 U 1.5 J	<2.5 U 3.3
1.4-Dietriyi Berzene 1.4-Dioxane (P-Dioxane)	123-91-1	0.35	ug/i	<2.500 U		<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 UJ	<250 UJ	<250 U	<250 U
2,2-Dichloropropane	594-20-7	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
2-Chlorotoluene 2-Hexanone (MBK)	95-49-8 591-78-6	5 50	ug/l ug/l	<25 U <50 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U
4-Chlorotoluene	106-43-4	5	ug/i																
4-Ethyltoluene	622-96-8	NS	ug/l	800	7.4 J	15 J	6.2	9.7	44	13	51 J	30 J	38	5.6	5.3	16	15	18	7.4
Acetone Acrylonitrile	67-64-1 107-13-1	50	ug/l ug/l	<50 U	56	63	4.4 J <5 U	12 J	37 <5 U	3.8 J	<5 UJ <5 U	19 J <5 U	12 <5 U	21 J <5 U	27 J <5 U	12 <5 U	10 <5.U	19 <5 U	9.3 <5 U
Benzene	71-43-2	1	ug/l	2.1 J	0.69	0.35 J	0.51	0.82	0.6	<0.5 U	0.18 J	0.31 J	<0.5 U			0.21 J	0.19 J		
Bromobenzene Bromochloromethane	108-86-1 74-97-5	5	ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Bromodichloromethane	75-27-4	50	ug/l ug/l				<0.5 U	<2.5 U	<0.5 U	<2.5 U						<2.5 U	<2.5 U	<2.5 U	
Bromoform	75-25-2	50	ug/l	<20 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U		<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U
Bromomethane Carbon Disulfide	74-83-9 75-15-0	5 60	ug/l ug/l	<25 U <50 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	1.3 J <5 U	2.6 J <5 U	0.85 J <5 U	1.2 J <5 U	1.1 J <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 UJ <5 U	<2.5 UJ <5 U	<2.5 U <5 U	<2.5 U <5 U
Carbon Tetrachloride	56-23-5	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Chlorobenzene	108-90-7	5	uq/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Chloroethane Chloroform	75-00-3 67-66-3	7	ug/l ug/l		<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 UJ <2.5 U	<2.5 UJ <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Chloromethane	74-87-3	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene	156-59-2 10061-01-5	5	ug/l ug/l	<25 U <5 U	<2.5 U	<2.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U	<2.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Cymene	99-87-6	5	ug/l			0.7 J					1.2 J		2 J			0.76 J	0.86 J	0.71 J	
Dibromochloromethane	124-48-1	50	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Dibromomethane Dichlorodifluoromethane	74-95-3 75-71-8	5	ug/l ug/l	<50 U <50 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U
Diethyl Ether (Ethyl Ether)	60-29-7	NS	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Ethylbenzene Hexachlorobutadiene	100-41-4 87-68-3	5 0.5	ug/l	890	5.9	4 ≪2.5.U	5.8	11	41	3.2	16	19	6.3	1.2 J	1.1 J <2.5 U	5.5	4.8	4.9	2.7 <2.5 U
Isopropylbenzene (Cumene)	98-82-8	5	ug/l ug/l	190	<2.5 U 3	3.5	<2.5 U 3.2	5.2	22.8 0	8.3	26 J	18 J	17	2.4 J	2.1 J	6	5.8	7.1	3.2
M,P-Xylene	179601-23-		ug/l	2,300	16	14	12	19	70	2.3 J	32	36	2 J	1.1 J	0.92 J	7.3	5.9	12	5.2
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	78-93-3 108-10-1	50 NS	ug/l ug/l		<5 UJ 1.5 J	21 J <5 U	<5 U <5 U	<5 U 1.7 J	27 <5 U		<5 UJ <5 U	13 J <5 U	<5 U <5 U	4.6 J <5 U	4.7 J <5 U	<5 U <5 U	<5 U <5 U		
Methylene Chloride	75-09-2	5	ug/l		1 J	<2.5 U	0.92 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	0.79 J	<2.5 U	<2.5 U	<2.5 U	1.1 J	0.88 J	<2.5 U	<2.5 U
Naphthalene	91-20-3 104-51-8	10	ug/I	460 J 25	<2.5 U	3 0.93.1	<2.5 U	<2.5 U	1.4 J 0.7 J	<2.5 U	1.6 J	0.86 J	1 J	0.96 J	0.87 J	0.77 J	0.91 J 1 2 J	0.99 J	0.92 J
n-Butylbenzene n-Propylbenzene	104-51-8 103-65-1	5	ug/l	370	<2.5 U 2.8 J	0.93 J 5.7 J	<2.5 U 2.7	<2.5 U 4 5	0.7 J	<2.5 U 9.5	1.4 J 37 J	<2.5 U 19 J	3.2 40	0.94 J 6.5	0.91 J 6.1	1 J 13	1.2 J 13	0.71 J 13	<2.5 U
o-Xylene (1,2-Dimethylbenzene)	95-47-6	5	ug/l	410	2 J	1.9 J	1.5 J	2.1 J	7.5	<2.5 U	3.7	4.2	<2.5 U			0.78 J	<2.5 U	1.3 J	
Sec-Butylbenzene Styrene	135-98-8 100-42-5	5	ug/l	18 J <25 U	<2.5 U <2.5 U	0.83 J <2.5 U			0.93 J <2.5 U	0.84 J <2.5 U	1.9 J <2.5 U		3.5 <2.5 U	0.92 J <2.5 U	0.86 J <2.5 U	1.4 J <2.5 U	1.6 J <2.5 U	1.1 J <2.5 U	0.7 J <2.5 U
T-Butylbenzene	98-06-6	5	ug/l ug/l		<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
Tert-Butyl Methyl Ether	1634-04-4	10	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Tetrachloroethene (PCE) Toluene	127-18-4 108-88-3	5	uq/l ug/l	<5 U 130	<0.5 U 0.7 J	<0.5 U 1 J	<0.5 U <2.5 U	<0.5 U 0.79 J	<0.5 U 1.2 J			<0.5 U 0.74 J	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U		
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Total Xylenes		5	ug/l	2,700	18 J	16 J	14 J	21 J	78	2.3 J	36	40	2 J	1.1 J	0.92 J	8.1 J	5.9	13 J	5.2
Total, 1,3-Dichloropropene (Cis And Trans) Trans-1,2-Dichloroethene	542-75-6 156-60-5	0.4	ug/l ug/l	<5 U <25 U									<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U				
Trans-1,3-Dichloropropene	10061-02-6		ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Trans-1,4-Dichloro-2-Butene	110-57-6 79-01-6	5	ug/l	<25 U <5 U	<2.5 U	<2.5 U <0.5 U	<2.5 U	<2.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <0.5 U	<2.5 U	<2.5 UJ	<2.5 U
Trichloroethene (TCE) Trichlorofluoromethane	79-01-6 75-69-4	5	ug/l ug/l		<0.5 U <2.5 U		<0.5 U <2.5 U	<0.5 U <2.5 U				<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U		<0.5 U <2.5 UJ	<0.5 U <2.5 U	<0.5 U <2.5 U
Vinyl Acetate	108-05-4	NS	ug/l	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Vinyl Chloride	75-01-4	2	ug/l	<10 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U

	Table 1
	Periodic Review Report
G	roundwater Sample Analytical Results
	27-01 Jackson Avenue
	Long Island City, New York
	NYSDEC BCP Site No.: C241209
	Langan Project No.: 170472002

			Sampling Event	Baseline	Quarter 1	Quarter 2	Quarter 3	Quarter 3	Baseline	Baseline	Quarter 1	Quarter 2	Quarter 2	Quarter 3	Quarter 4
			Location Depth to	MW-3	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4
Analyte	CAS Number	NYSDEC SGVs	Groundwater (feet bgs)	-	14.80	15.1	16.12	16.12	-	-	14.90	14.70	14.70	16.18	14.08
		-	Sample Name Sample Date	MW03_100721 10/07/2021	MW-3_102122 10/21/2022	MW-3_012623 01/26/2023	MW-3_042623 04/26/2023	DUP01_042623 04/26/2023	MW04_100721 10/07/2021	GWDUP01_100721 10/07/2021	MW-4_102122 10/21/2022	MW-4_012623 01/26/2023	DUP01_012623 01/26/2023	MW-4_042623 04/26/2023	MW-4_072723 07/27/2023
			Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds 1.1.1.2-Tetrachloroethane	630-20-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
1.1.1-Trichloroethane	71-55-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
1,1,2,2-Tetrachloroethane	79-34-5	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U				
1,1,2-Trichloroethane	79-00-5	1	ug/l	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U				
1,1-Dichloroethane	75-34-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
1,1-Dichloroethene 1,1-Dichloropropene	75-35-4 563-58-6	5	ug/l ug/l												
1.2.3-Trichlorobenzene	87-61-6	5	ua/	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5.U	<2.5 U				
1,2,3-Trichloropropane	96-18-4	0.04	ug/l	<2.5 U									<2.5 U		<2.5 U
1,2,4,5-Tetramethylbenzene	95-93-2	5	ug/l	2	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U
1,2,4-Trichlorobenzene	120-82-1	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane	95-63-6 96-12-8	5 0.04	ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U				
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	0.0006	ug/l ug/l												
1.2-Dichlorobenzene	95-50-1	3	uq/												
1,2-Dichloroethane	107-06-2	0.6	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U				
1,2-Dichloropropane	78-87-5	1	ug/l	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U				
1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U	<2.5 U
1,3-Dichlorobenzene 1,3-Dichloropropane	541-73-1 142-28-9	3	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U							<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
1.4-Dichlorobenzene	106-46-7	3	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
1,4-Diethyl Benzene	105-05-5	NS	ug/l	2.1 J	<2 U	<2 U	<2 U	<2 U	5.3	5.3 J	<2 U	<2 U	<2 U	<2 U	<2 U
1,4-Dioxane (P-Dioxane)	123-91-1	0.35	ug/l	<250 UJ	<250 U	<250 U	<250 U	<250 U	<250 UJ	<250 UJ	<250 U	<250 U	<250 U	<250 U	<250 U
2,2-Dichloropropane 2-Chlorotoluene	594-20-7 95-49-8	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
2-Uniorotoluene 2-Hexanone (MBK)	95-49-8 591-78-6	50	ug/l ug/l	<2.5 U <5 UJ			<2.5 U <5 U		<2.5 U <5 UJ	<2.5 U <5 UJ		<2.5 U <5 U	<2.5 U <5 U		
4-Chlorotoluene	106-43-4	5	ug/l		<2.5 U	<2.5 U	<2.5.U	<2.5 U			<2.5.U	<2.5 U	<2.5 U	<2.5.U	<2.5 U
4-Ethyltoluene	622-96-8	NS	ug/l	0.9 J											
Acetone	67-64-1	50	ug/l	2.9 J	1.8 J	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Acrylonitrile	107-13-1	5	ug/l	<5 UJ	<5 U	<5 U	<5 U	<5 U	<5 UJ	<5 UJ	<5 U	<5 U	<5 U	<5 U	<5 U
Benzene Bromobenzene	71-43-2 108-86-1	1 5	ug/l ug/l	0.16 J	<0.5 U	<0.5 U	<0.5 U	<0.5 U	0.17 J	0.2 J	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Bromochloromethane	74-97-5	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Bromodichloromethane	75-27-4	50	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U				
Bromoform	75-25-2	50	ug/l	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U				
Bromomethane Carbon Disulfide	74-83-9 75-15-0	5 60	ug/l	<2.5 U <5 U	<2.5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U	<2.5 U <5 U
Carbon Disulide Carbon Tetrachloride	56-23-5	5	ug/l ug/l		<5 U <0.5 U				<5 U <0.5 U					<5 U <0.5 U	
Chlorobenzene	108-90-7	5	ug/l												
Chloroethane	75-00-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Chloroform	67-66-3	7	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Chloromethane Cis-1,2-Dichloroethene	74-87-3 156-59-2	5	ug/l ug/l			<2.5 U <2.5 U									<2.5 U <2.5 U
Cis-1,3-Dichloropropene	10061-01-5	0.4	ug/l												
Cymene	99-87-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Dibromochloromethane	124-48-1	50	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U				
Dibromomethane Dichlorodifluoromethane	74-95-3 75-71-8	5	ug/l ug/l	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U				
Diethyl Ether (Ethyl Ether)	60-29-7	NS	ug/l	<2.5.U			<2.5.U	<2.5.U	<2.5.U	<2.5.U	<2.5.U	<2.5.U	<2.5.U	<2.5.U	
Ethylbenzene	100-41-4	5	ug/l	4.8	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Hexachlorobutadiene	87-68-3	0.5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Isopropylbenzene (Curnene) M.P-Xvlene	98-82-8 179601-23-1	5	uq/l uq/l	3.8 <2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U
M,P-Xylene Methyl Ethyl Ketone (2-Butanone)	78-93-3	50	uq/l	<2.5 U <5 U	<2.5 U <5 UJ	<2.5 U <5 U	<2.5 U <5 U		<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 UJ	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	NS	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U				
Methylene Chloride	75-09-2	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Naphthalene	91-20-3 104-51-8	10 5	ug/l	2 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	0.95 J 0.88 J	<2.5 U 0.87 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
n-Butylbenzene n-Propylbenzene	104-51-8	5	ug/l	<2.5 U 9.4 J	<2.5 U	<2.5 U <2.5 U			<2.5 U	<2.5 UJ				<2.5 U <2.5 U	
o-Xylene (1.2-Dimethylbenzene)	95-47-6	5	ug/l	<2.5 U	<2.5 U		<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Sec-Butylbenzene	135-98-8	5	ug/l	<2.5 U	3	3	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Styrene	100-42-5	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
T-Butylbenzene	98-06-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Tert-Butyl Methyl Ether Tetrachloroethene (PCE)	1634-04-4 127-18-4	10	uq/l uq/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Toluene	108-88-3	5	ug/l												
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Total Xylenes	1330-20-7	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Total, 1,3-Dichloropropene (Cis And Trans)	542-75-6	0.4	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U				
Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	156-60-5 10061-02-6	5	ug/l ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U				
Trans-1,3-Dichloropropene Trans-1.4-Dichloro-2-Butene	110-57-6	0.4	uq/i uq/i												
Trichloroethene (TCE)	79-01-6	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U				
Trichlorofluoromethane	75-69-4	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Vinyl Acetate	108-05-4	NS	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U				
/inyl Chloride	75-01-4	2	ug/l	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U				

Page 4 of 4

Table 1 Periodic Review Report Groundwater Sample Analytical Results

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002

Notes:

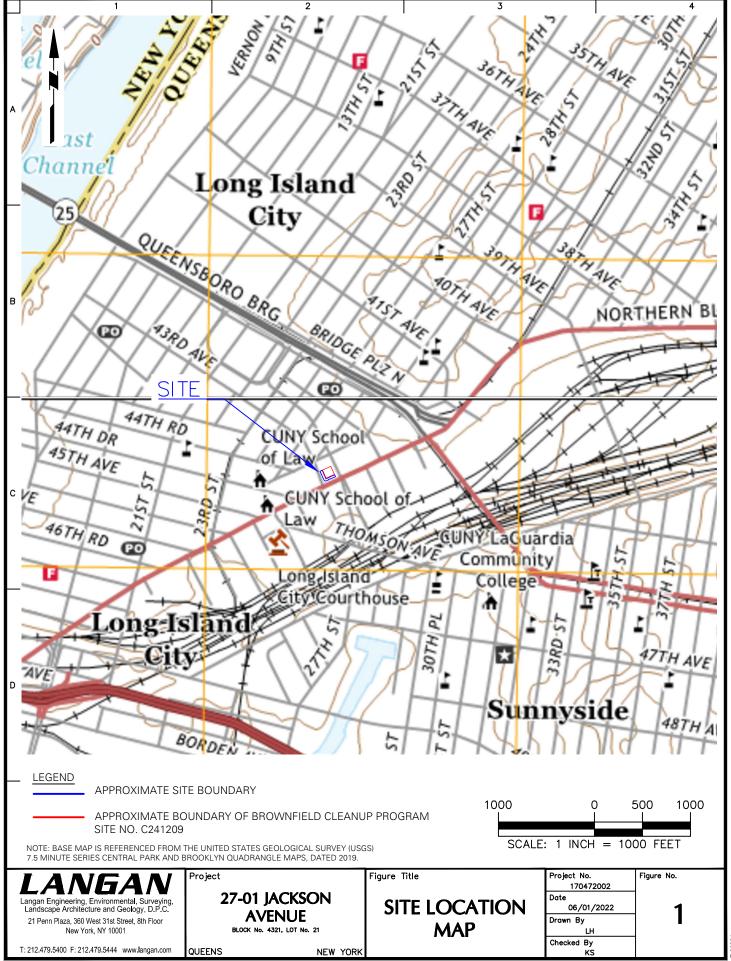
CAS - Chemical Abstract Service bgs - below grade surface NS - No standard ug/I - microgram per liter NA - Not analyzed RL - Reporting limit <RL - Not detected

Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operation Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water and published addenda (herein collectively referenced as "NYSDEC SGVs").

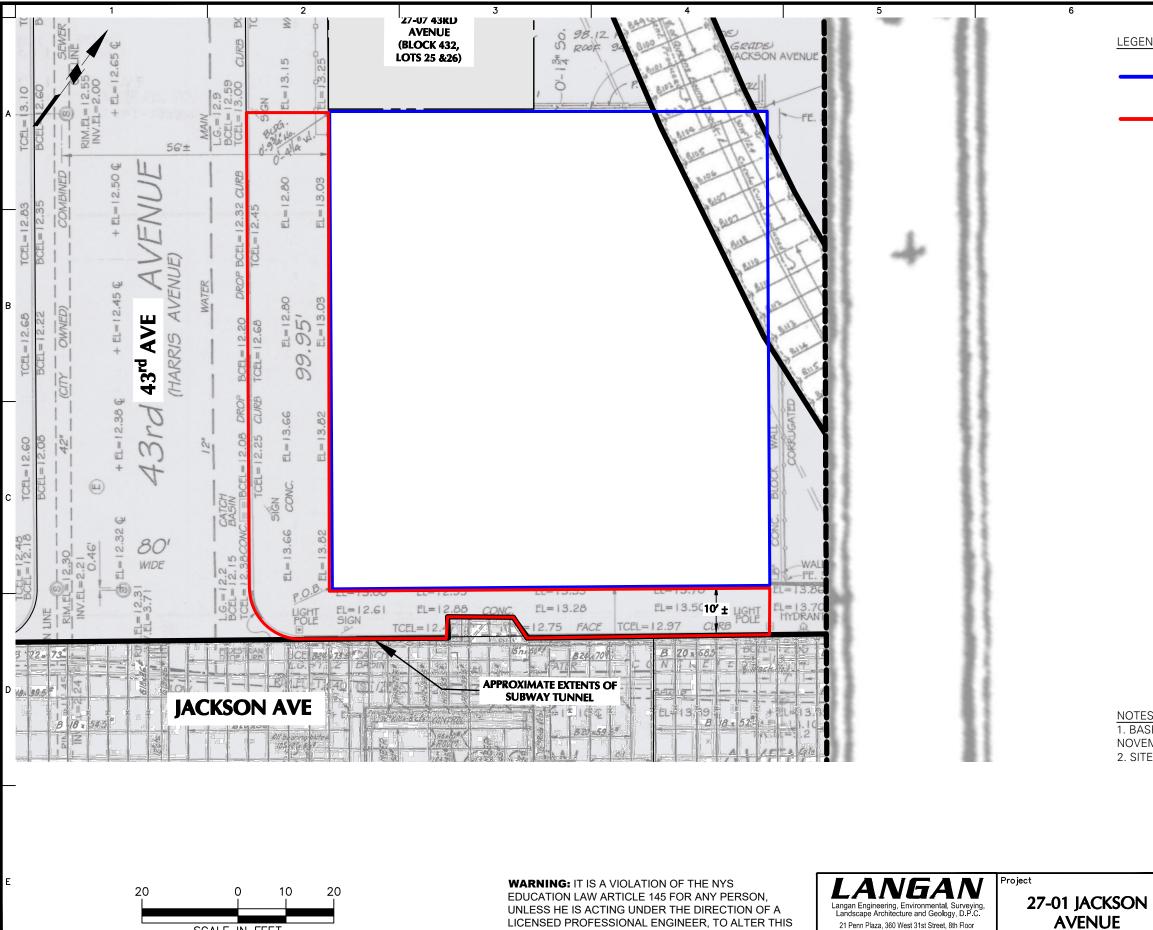
Qualifiers:

J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.


U - The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Exceedance Summary:


10 - Result exceeds NYSDEC SGVs

FIGURES

LANGAN

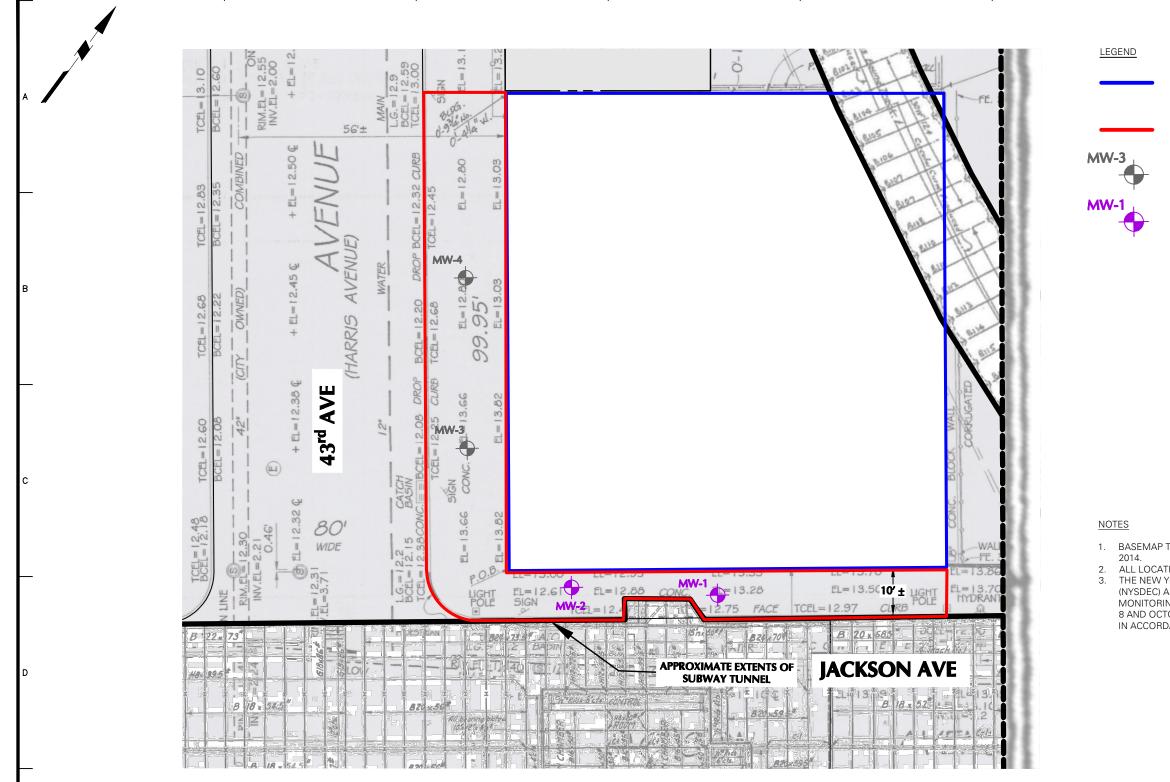
Filename: \llangan.com\data\NYC\data0\170472002\Project Data\CAD\02\SheetFiles\SMP\Figure 1 - Site Location Map.dwg Date: 6/1/2022 Time: 16:11 User: Ihaley Style Table: Langan.stb Layout: F1 - SITE LCO MAP

LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS

ITEM IN ANY WAY.

SCALE IN FEET

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001


T: 212.479.5400 F: 212.479.5444 www.langan.com

Filename: \\langan.com\data\NYC\data0\170472002\Project Data\CAD\02\SheetFiles\SMP\Figure 2 - Site Layout Plan.dwg Date: 7/6/2022 Time: 13:44 User: eseery Style Table: Langan.stb Layout: ANSIB-BL

BLOCK No. 432 LOT No. 21

QUEENS

		1	
 . <u>EGEND</u>	7	I	8
	APPROXIMATE BOUNDARY OF PROGRAM SITE NO. C241209	BROWNFIELD C	LEANUP
	APPROXIMATE SITE BOUNDAF	ťΥ	
IOVEMBE	AP TAKEN FROM HAYNES LAND SU R 12, 2014.	RVEYORS, DATE	NO CN
2. SITE BO	UNDARIES ARE APPROXIMATE		
ON		Project No. 170472002 Date	Figure No.
UN 5. 21	SITE LAYOUT PLAN	07/06/2022 Drawn By LH	2
NEW YORK		Checked By KS	

20 0 10 20 SCALE IN FEET

7	8

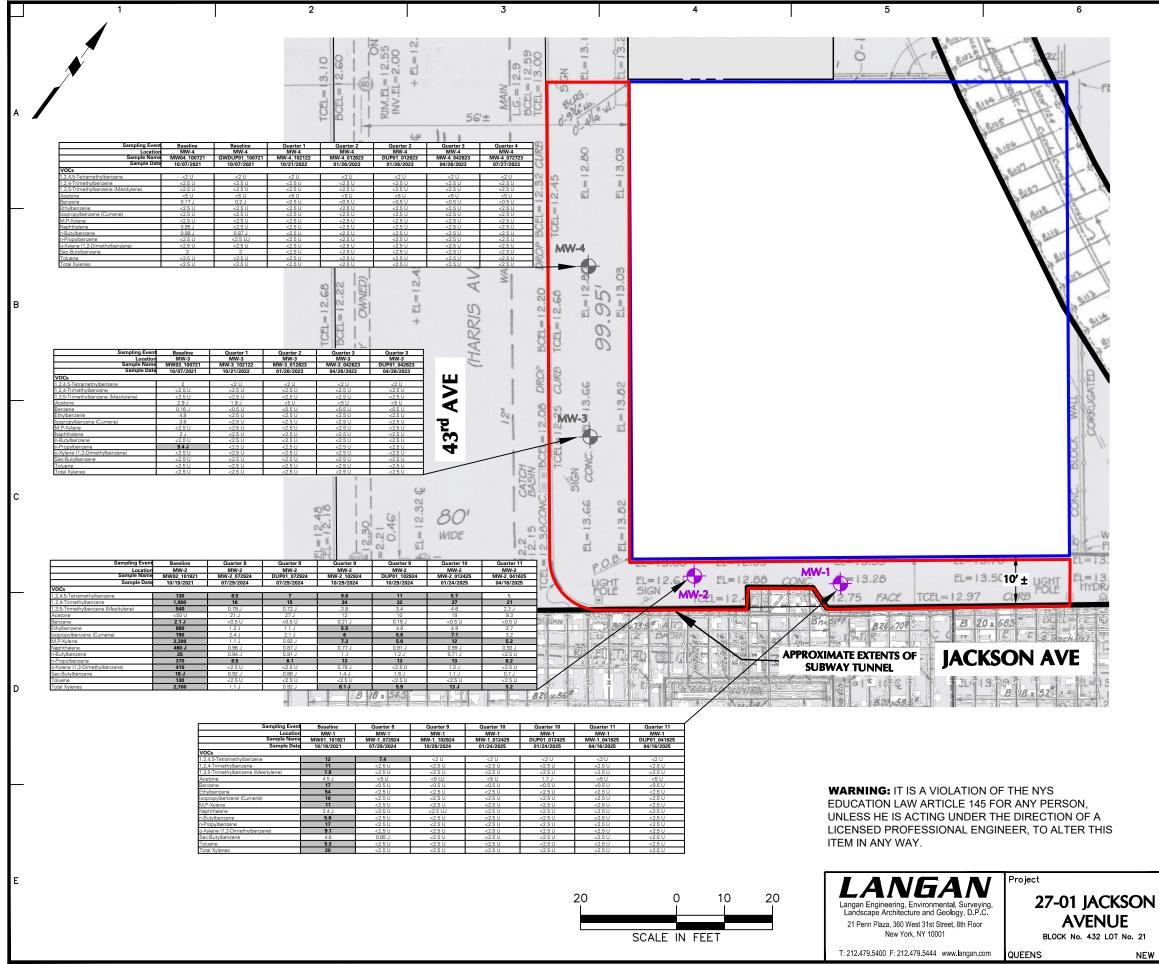
APPROXIMATE BOUNDARY OF BROWNFIELD CLEANUP PROGRAM SITE NO. C241209

APPROXIMATE SITE BOUNDARY

6

FORMER MONITORING WELL LOCATION

MONITORING WELL LOCATION


1. BASEMAP TAKEN FROM HAYNES LAND SURVEYORS, DATED ON NOVEMBER 12,

2. ALL LOCATIONS ARE APPROXIMATE.

3. THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) ALLOWED THE DISCONTINUATION OF GROUNDWATER SAMPLING AT MONITORING WELLS MW-3 AND MW-4 VIA EMAIL CORRESPONDENCE ON AUGUST 8 AND OCTOBER 13, 2023. THE WELLS WERE DECOMMISSIONED ON MAY 8, 2024 IN ACCORDANCE WITH NYSDEC COMMISSIONER POLICY 43 (CP-43).

> WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

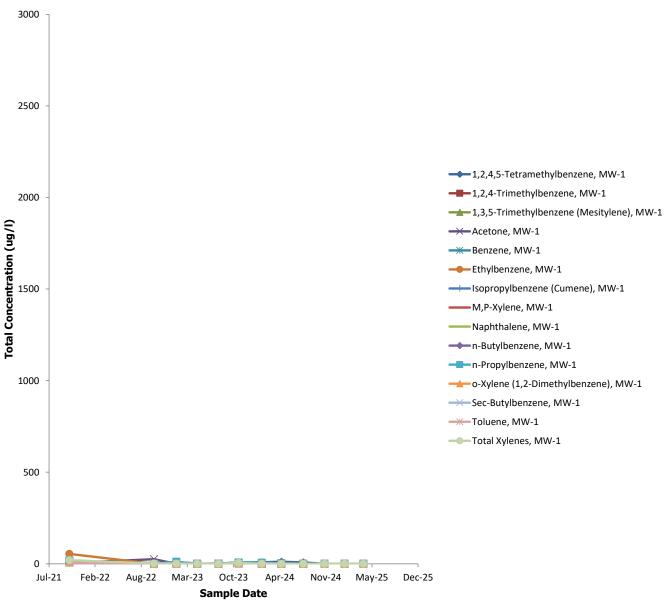
	Figure Title	Project No. 170472002	Figure No.
	MONITORING WELL	Date 05/27/2025	2
	LOCATION PLAN	Drawn By LH	5
YORK		Checked By KS	

LEGEND

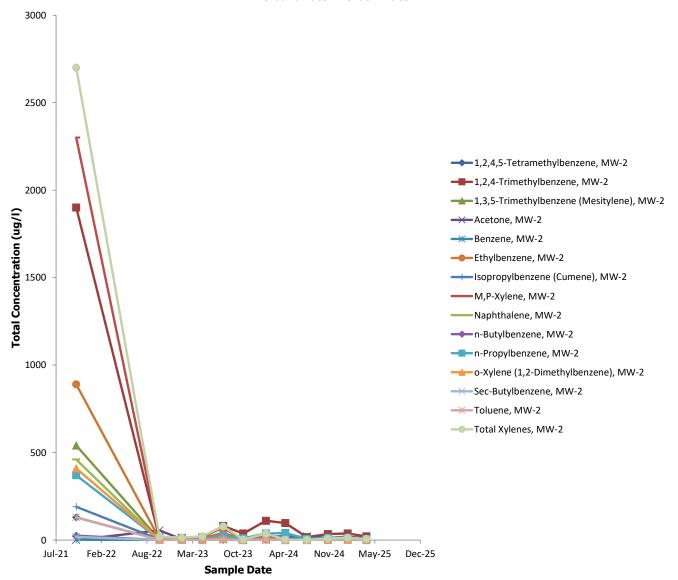
APPROXIMATE BOUNDARY OF BROWNFIELD CLEANUP PROGRAM SITE NO. C241209

APPROXIMATE SITE BOUNDARY

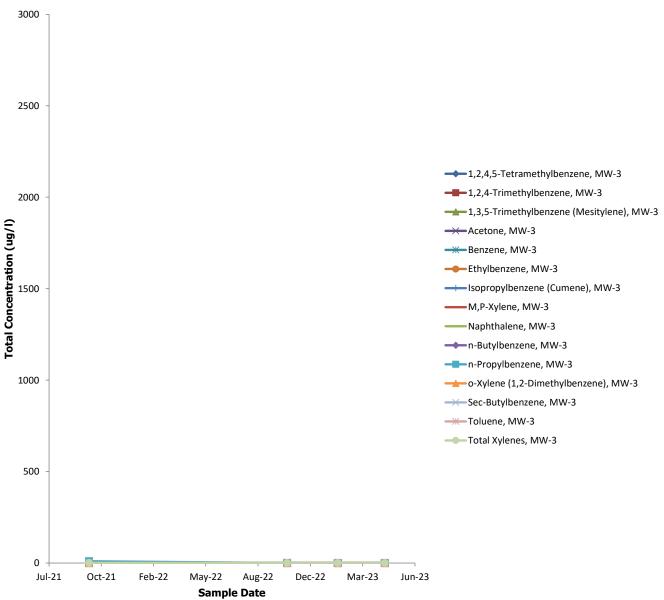
FORMER MONITORING WELL LOCATION


MONITORING WELL LOCATION

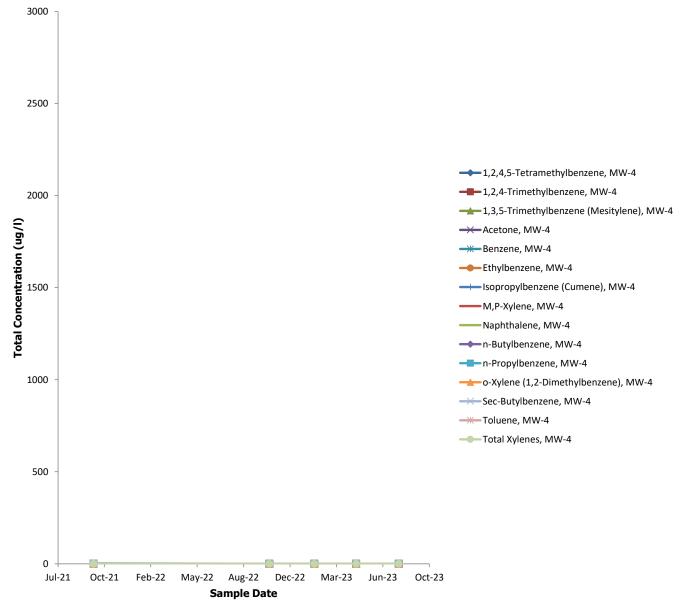
Analyte	NYSDEC SGVs
VOCs	
1,2,4,5-Tetramethylbenzene	5
1,2,4-Trimethylbenzene	5
1,3,5-Trimethylbenzene (Mesitylene)	5
Acetone	50
Benzene	1
Ethylbenzene	5
Isopropylbenzene (Cumene)	5
M,P-Xylene	5
Naphthalene	10
n-Butylbenzene	5
n-Propylbenzene	5
o-Xylene (1,2-Dimethylbenzene)	5
Sec-Butylbenzene	5
Toluene	5
Total Xylenes	5


NOTES

- 1. BASEMAP TAKEN FROM HAYNES LAND SURVEYORS, DATED ON NOVEMBER 12, 2014.
- ALL LOCATIONS ARE APPROXIMATE. 2.
- THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 3. (NYSDEC) ALLOWED THE DISCONTINUATION OF GROUNDWATER SAMPLING AT MONITORING WELLS MW-3 AND MW-4 VIA EMAIL CORRESPONDENCE ON AUGUST 8 AND OCTOBER 13, 2023. THE WELLS WERE DECOMMISSIONED ON MAY 8, 2024 IN ACCORDANCE WITH NYSDEC COMMISSIONER POLICY 43 (CP-43).
- GROUNDWATER RESULTS ARE COMPARED TO THE NEW YORK STATE 4. DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS GA GROUNDWATER.
- THIS FIGURE COMPARES BASELINE ANALYTICAL DATA TO THE FOUR MOST RECENT QUARTERS OF ANALYTICAL DATA FOR EACH WELL. ALL ANALYTICAL DATA FROM THE BASELINE AND QUARTERLY SAMPLING EVENTS ARE PROVIDED IN THE QUARTERLY GROUNDWATER MONITORING REPORT TABLES.
- ONLY COMPOUNDS EXCEEDING COMPARISON CRITERIA ARE SHOWN. 6.
- RESULTS ABOVE NYSDEC SGVs ARE SHADED AND BOLDED. 7
- 8.
- RESULTS ARE SHOWN IN MICROGRAMS PER LITER (μ g/L). J= THE ANALYTE WAS DETECTED ABOVE THE METHOD DETECTION LIMIT, BUT 9. BELOW THE REPORTING LIMIT (RL); THE RESULT IS AN ESTIMATED CONCENTRATION.
- 10. U = THE ANALYTE WAS ANALYZED FOR, BUT NOT DETECTED AT A LEVEL GREATER THAN OR EQUAL TO THE RL; THE VALUE SHOWN IN THE TABLE IS THE RL.


				ė.,
	Figure Title	Project No. 170472002	Figure No.	
	GROUNDWATER SAMPLE	Date 05/27/2025	1	
	ANALYTICAL RESULTS MAP	Drawn By LH	4	
YORK		Checked By KS		0000

MW-1 Groundwater Trends - VOCs



MW-2 Groundwater Trends - VOCs

MW-3 Groundwater Trends - VOCs

APPENDIX A CONSENT ORDER

LANGAN

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION STATE SUPERFUND PROGRAM ECL §27-1301 et seq.

In the Matter a Remedial Program for

ORDER ON CONSENT AND ADMINISTRATIVE SETTLEMENT Index No. S241209-08-09

DEC Site Name: 27-01 Jackson Avenue

DEC Site No.: S241209 Site Address: 27-01 Jackson Avenue, Long Island City, New York 11101

Hereinafter referred to as "Site"

by: 2701 Jackson LLC 2701 Property Owner LLC RESPONDENT

Hereinafter referred to as "Respondent"

1. A. The New York State Department of Environmental Conservation ("Department") is responsible for inactive hazardous waste disposal site remedial programs pursuant to Article 27, Title 13 of the Environmental Conservation Law ("ECL") and Part 375 of Title 6 of the Official Compilation of Codes, Rules and Regulations ("6 NYCRR") and may issue orders consistent with the authority granted to the Commissioner by such statute.

B. The Department is responsible for carrying out the policy of the State of New York to conserve, improve and protect its natural resources and environment and control water, land, and air pollution consistent with the authority granted to the Department and the Commissioner by Article 1, Title 3 of the ECL.

C. This Order is issued pursuant to the Department's authority under, *inter alia*, ECL Article 27, Title 13 and ECL 3-0301, and resolves Respondent's liability to the State as provided at 6 NYCRR 375-1.5(b)(5).

2. 2701 Jackson LLC and 2701 Property Owner LLC (collectively, "Respondent") are applicants in the Brownfield Cleanup Program ("BCP" or the "Program") for the site located at 27-01 Jackson Avenue, Long Island City, NY 11101, Queens County Tax Block 432, Lot 21 (hereinafter the "BCP Site"). Exhibit "A" is a map of the BCP Site showing its general location. The BCP Site is currently not listed in the Registry of Inactive Hazardous Waste Disposal Sites in New York State, but is identified as BCP Site Number C241209 with a Classification A pursuant to ECL § 27-1305. Upon the

issuance of a Certificate of Completion ("COC"), the BCP Site will be reclassified as a Class C Site. The off-Site area subject to this Order is currently not listed in the Registry of Inactive Hazardous Waste Disposal Sites, but is identified by the Department as Site Number S241209 with a Classification A pursuant to ECL § 27-1305.

3. Respondent is a "Participant" in the Program, and there is off-site contamination for which Respondent is responsible.

4. Respondent has achieved a Track 1 Unrestricted Use cleanup on the BCP Site, and the Department intends to issue a Track 1 COC.

5. Respondent has achieved the remedial action objectives for the BCP Site by demonstrating a bulk reduction in on-site groundwater contamination to asymptotic levels without meeting drinking water standards; there is a restriction on groundwater use for the on-site area under NYC Health Code Article 141.

6. Respondent consents to the issuance of this Order without (i) an admission or finding of liability, fault, wrongdoing, or violation of any law, regulation, permit, order, requirement, or standard of care of any kind whatsoever; (ii) an acknowledgment that there has been a release or threatened release of hazardous waste at or from the BCP site; and/or (iii) an acknowledgment that a release or threatened release of hazardous waste at or from the Site constitutes a significant threat to the public health or environment.

7. Respondent and the Department agree that the primary goals of this Order are to provide a mechanism for Respondent to implement any necessary off-site groundwater remedial measures and associated site management and to memorialize Respondent's continuing obligation to address the off-site contamination through compliance with the Site Management Plan ("SMP").

8. Solely with regard to the matters set forth below, Respondent hereby waives any right to a hearing as may be provided by law, consents to the issuance and entry of this Order, and agrees to be bound by its terms. Respondent consents to and agrees not to contest the authority or jurisdiction of the Department to issue or enforce this Order and agrees not to contest the validity of this Order or its terms or the validity of data submitted to the Department by Respondent pursuant to this Order.

NOW, having considered this matter and being duly advised, **IT IS ORDERED THAT**:

I. Real Property

The off-Site contamination subject to this Order has been assigned number S241209, and consists of the area adjacent and downgradient from the BCP Site described as:

Subject Property Description (A Map of the BCP Site and the area of off-Site contamination is attached as Exhibit "A")

Tax Map/Parcel No.: Block 432, Lot 21 27-01 Jackson Avenue Long Island City, NY, 11101 Owner: 2701 Property Owner LLC

II. Site Management Plan

The applicant will submit a draft SMP before or together with a draft Final Engineering Report.

III. Payment of State Costs

Invoices shall be sent to Respondent at the following address:

Aaron Shirian 2701 Jackson LLC 425 Northern Boulevard, Suite #6 Great Neck, NY 11021

Albert Shirian, Hal Fetner 2701 Property Owner LLC 675 Third Avenue New York, NY 10017

IV. Communications

A. All written communications required by this Consent Order shall be transmitted by United States Postal Service, by private courier service, by hand delivery, or by electronic mail.

1. Communication from Respondent shall be sent to:

Shaun Bollers (1 hard copy (unbound for work plans) & 1 electronic copy) New York State Department of Environmental Conservation Division of Environmental Remediation 47-40 21st Street Long Island City, New York, 11101 Shaun.bollers@dec.ny.gov

Julia Kenney (electronic copy only) New York State Department of Health Bureau of Environmental Exposure Investigation Empire State Plaza Corning Tower Room 1787 Albany, NY 12237 julia.kenney@health.ny.gov

2. Communication from the Department to Respondent shall be sent to:

Aaron Shirian 2701 Jackson LLC 425 Northern Boulevard, Suite #6 Great Neck, NY 11021 aaron.shirian@lionsgroupnyc.com

B. The Department and Respondent reserve the right to designate additional or different addressees for communication on written notice to the other. Additionally, the Department reserves the right to request that the Respondent provide more than one paper copy of any work plan or report.

C. Each party shall notify the other within ninety (90) days after any change in the addresses listed in this paragraph or in Paragraph I.

V. No Further Action/Satisfactory Completion

The Department will not issue a Certificate of Completion ("COC") but rather will issue a No Further Action/Satisfactory Completion Letter ("Letter") to Respondent upon Respondent's demonstration that no further monitoring or treatment is required to address off-site groundwater contamination, and the Department agrees to terminate the SMP. The Letter's form and substance shall be materially similar to the attached Exhibit B.

VI. <u>Compliance</u>

Failure to comply with a required SMP is a violation of this Order and/or any COC issued by the Department. Respondent acknowledges that a violation of the Order is grounds for revocation of any Department-issued COC.

VII. Miscellaneous

A. Appendix A - "Standard Clauses for All New York State, State Superfund Orders" is attached to and hereby made a part of this Order as if set forth fully herein, with the exception of the requirement to submit a Citizen Participation Plan.

B. In the event of a conflict between the terms of this Order (including any and all attachments thereto and amendments thereof) and the terms of Appendix A, the terms of this Order shall control.

C. The effective date of this Order is the 10th day after it is signed by the Commissioner or the Commissioner's designee.

DATED: April 20, 2022

BASIL SEGGOS COMMISSIONER NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

By: Susan Edwards

Susan Edwards, P.E., Acting Director Division of Environmental Remediation

CONSENT BY RESPONDENT

Respondent hereby consents to the issuing and entering of this Consent Order, waives Respondent's right to a hearing herein as provided by law, and agrees to be bound by this Consent Order.

	2701 Jackson LLC
· · · ·	By: Title: $Acrospective Shiring Date: 2/24/22$
STATE OF NEW YORK)) ss: COUNTY OF <u>MA 51A0</u>)	
<i>name)</i> personally known to me or prove be the individual whose name is subscr to me that he/she executed the same in	in the year 2022, before me, the <u>tor</u> <u>shira</u> <u>(full</u> ed to me on the basis of satisfactory evidence to ibed to the within instrument and acknowledged his/her capacity, and that by his/her signature person upon behalf of which the individual
Acknowledgment by a corporation, in N	lew York State:
On the day of undersigned, personally appeared <i>name</i>) personally known to me who, be he/she/they reside at and that he/she/they is (are) the	in the year 20, before me, the (full bing duly sworn, did depose and say that (full mailing address) (president or other
officer or director or attorney in fact dul	
(full legal name of corporation), the above instrument; and that he/she/i authority of the board of directors of sa	the corporation described in and which executed they signed his/her/their name(s) thereto by the id corporation.
	Notary Public, State of New York
F	Page 6 of 21 RAY R MOMANY Notary Public, State of New York No. 01MO6323505 Qualified in Nassau County

CONSENT BY RESPONDENT

Respondent hereby consents to the issuing and entering of this Consent Order, waives Respondent's right to a hearing herein as provided by law, and agrees to be bound by this Consent Order.

2701 Property Owner LLC By: Title: Date:

RAY R MOMANY Notary Public, State of New York

No. 01MO6323505 Qualified in Nassau County

20ô

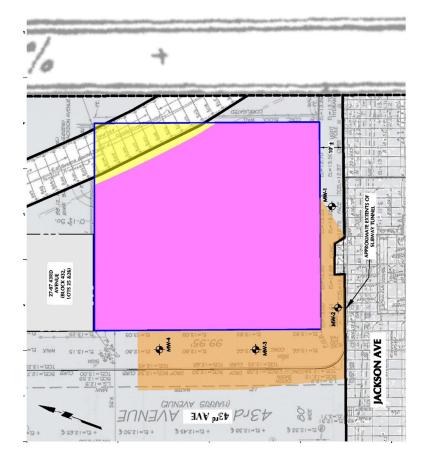
STATE OF NEW YORK)) ss: COUNTY OF //155A4)

On the <u>24</u> day of <u>1-blaumy</u> in the year 2023, before me, the undersigned, personally appeared <u>11BEET Shinnow</u> (full name) personally known to me or proved to me on the basis of satisfactory evidence to be the individual whose name is subscribed to the within instrument and acknowledged to me that he/she executed the same in his/her capacity, and that by his/her signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Acknowledgment by a corporation, in New York State:

On the day of	in the year 20, before me, the
undersigned, personally appear	ared(full
name) personally known to me	e who, being duly sworn, did depose and say that
he/she/they reside at	(full mailing address)
and that he/she/they is (are) the	10
	(president or other

officer or director or attorney in fact duly appointed) of the


(full legal name of corporation), the corporation described in and which executed the above instrument; and that he/she/they signed his/her/their name(s) thereto by the authority of the board of directors of said corporation.

Page 7 of 21

EXHIBIT "A"

Page **8** of **21**

EXHIBIT "B"

DATE

Aaron Shirian 2701 Jackson LLC 425 Northern Boulevard, Suite #6 Great Neck, NY 11021

Albert Shirian, Hal Fetner 2701 Property Owner LLC 675 Third Avenue New York, NY 10017

RE:Satisfactory Completion Letter/No Further Action LetterSite No.:S241209Site Name:27-01 Jackson Avenue

Dear Respondent:

This letter is sent to notify Respondent that it has satisfactorily completed all site management activities for the remediation project that Respondent undertook under the Consent Order Index No. S241209-08-09 for the off-site contamination affiliated with the 27-01 Jackson Avenue, Long Island City, NY site (Tax Block 432, Lot 21) ("Site"). As such, the Department has determined, subject to the Department's reservation of rights outlined below, contained in the Consent Order, or existing at law, based upon our inspection of the above-referenced Site and upon our review of the documents you have submitted, that you completed the project in accordance with the terms and conditions of the above-referenced Order and no further remedial action is necessary. As a result, the Department is issuing this Satisfactory Completion/No Further Action Letter for the project.

Notwithstanding that the Department has determined that no further remedial action is necessary with the respect to the off-site contamination affiliated with the Site, the Department reserves any and all rights and authority, including rights concerning any claim for natural resource damages or the authority to engage in or require any further investigation or remediation the Department deems necessary. The Department retains all its respective rights concerning circumstances where Respondent, their lessees, sublessees, successors, or assigns cause or permit a Release or threat of

Release at the site of any hazardous substance (as that term is defined at 42 USC 9601[14]) or petroleum (as that term is defined in Navigation Law § 172[15]).

Additionally, with respect to the off-site contamination, nothing contained in this letter shall be construed to:

- preclude the State of New York on behalf of the New York State Environmental Protection and Spill Compensation Fund from recovering a claim of any kind or nature against any party;
- prejudice any rights of the Department to take any investigatory action or remediation or corrective measures it may deem necessary if Respondent fails to comply with the Order or if contamination other than contamination within the present knowledge of the Department is encountered;
- prohibit the Commissioner or his duly authorized representative from exercising any summary abatement powers.

If you have any questions, please do not hesitate to contact Shaun Bollers, site project manager, at 718-482-4096.

Sincerely,

Susan Edwards, P.E., Acting Director Division of Environmental Remediation

Department's Copies:

ec: Gerard Burke Jane O'Connell Jennifer Andaloro Kelly Lewandowski Shaun Bollers Grace Nam

Applicant's Copies:

ec: Aaron Shirian (<u>aaron.shirian@lionsgroupnyc.com</u>) Albert Shirian (<u>albert.shirian@lionsgroupnyc.com</u>) Hal Fetner (<u>hal@fetner.com</u>) Michael Bogin (<u>mbogin@sprlaw.com</u>) Mimi Raygorodetsky (<u>mraygorodetsky@langan.com</u>)

Page 10 of 21

APPENDIX "A"

STANDARD CLAUSES FOR ALL NEW YORK STATE STATE SUPERFUND ORDERS

The parties to the State Superfund Order (hereinafter "Order") agree to be bound by the following clauses which are hereby made a part of the Order. The word "Respondent" herein refers to any party to the Order, other than the New York State Department of Environmental Conservation (hereinafter "Department").

I. <u>Citizen Participation Plan</u>

Within twenty (20) days after the effective date of this Order, Respondent shall submit for review and approval a written citizen participation plan prepared in accordance with the requirements of ECL §27-1417 and 6 NYCRR sections 375-1.10 and 375-3.10. Upon approval, the Citizen Participation Plan shall be deemed to be incorporated into and made a part of this Order.

II. Initial Submittal

Within thirty (30) days after the effective date of this Order, Respondent shall submit to the Department a Records Search Report prepared in accordance with Exhibit "B" attached to the Order. The Records Search Report can be limited if the Department notifies Respondent that prior submissions satisfy specific items required for the Records Search Report.

III. Development, Performance, and Reporting of Work Plans

A. Work Plan Requirements

All activities at the Site that comprise any element of an Inactive Hazardous Waste Disposal Site Remedial Program shall be conducted pursuant to one or more Department-approved work plans ("Work Plan" or "Work Plans") and this Order and all activities shall be consistent with the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), 40 C.F.R. Part 300, as required under CERCLA, 42 U.S.C. § 9600 *et seq.* The Work Plan(s) under this Order shall address both on-Site and off-Site conditions and shall be developed and implemented in accordance with 6 NYCRR § 375-1.6(a), 375-3.6, and 375-6. All Department-approved Work Plans shall be incorporated into and become enforceable parts of this Order. Upon approval of a Work Plan by the Department, Respondent shall implement such Work Plan in accordance with the schedule contained therein. Nothing in this Subparagraph shall mandate that any particular Work Plan be submitted.

The Work Plans shall be captioned as follows:

1. Site Characterization ("SC") Work Plan: a Work Plan which provides for the identification of the presence of any hazardous waste disposal at the Site;

2. Remedial Investigation/Feasibility Study ("RI/FS") Work Plan: a Work Plan which provides for the investigation of the nature and extent of contamination within the boundaries of the Site and emanating from such Site and a study of remedial alternatives to address such on-site and off-site contamination;

3. Remedial Design/Remedial Action ("RD/RA") Work Plan: a Work Plan which provides for the development and implementation of final plans and specifications for implementing the remedial alternative set forth in the ROD;

4. "IRM Work Plan" if the Work Plan provides for an interim remedial measure;

5. "Site Management Plan" if the Work Plan provides for the identification and implementation of institutional and/or engineering controls as well as any necessary monitoring and/or operation and maintenance of the remedy; or

6. "Supplemental" if additional work plans other than those set forth in II.A.1-5 are required to be prepared and implemented.

B. Submission/Implementation of Work Plans

1. Respondent may opt to propose one or more additional or supplemental Work Plans (including one or more IRM Work Plans) at any time, which the Department shall review for appropriateness and technical sufficiency.

2. Any proposed Work Plan shall be submitted for the Department's review and approval and shall include, at a minimum, a chronological description of the anticipated activities, a schedule for performance of those activities, and sufficient detail to allow the Department to evaluate that Work Plan.

i. The Department shall notify Respondent in writing if the Department determines that any element of a Department-approved Work Plan needs to be modified in order to achieve the objectives of the Work Plan as set forth in Subparagraph III.A or to ensure that the Remedial Program otherwise protects human health and the environment. Upon receipt of such notification, Respondent shall, subject to dispute resolution pursuant to Paragraph XV, modify the Work Plan.

ii. The Department may request, subject to dispute resolution pursuant to Paragraph XV, that Respondent submit additional or supplemental Work Plans for the Site to complete the current remedial phase within thirty (30) Days after the Department's written request.

3. A Site Management Plan, if necessary, shall be submitted in accordance with the schedule set forth in the IRM Work Plan or Remedial Work Plan.

4. During all field activities conducted under a Department-approved Work Plan, Respondent shall have on-Site a representative who is qualified to supervise the activities undertaken in accordance with the provisions of 6 NYCRR 375-1.6(a)(3).

5. A Professional Engineer must stamp and sign all Work Plans other than SC or RI/FS Work Plans.

C. <u>Submission of Final Reports and Periodic Reports</u>

1. In accordance with the schedule contained in a Work Plan, Respondent shall submit a final report as provided at 6 NYCRR 375-1.6(b) and a final engineering report as provided at 6 NYCRR 375-1.6(c).

2. Any final report or final engineering report that includes construction activities shall include "as built" drawings showing any changes made to the remedial design or the IRM.

3. In the event that the final engineering report for the Site requires Site management, Respondent shall submit an initial periodic report by in accordance with the schedule in the Site Management Plan and thereafter in accordance with a schedule determined by the Department. Such periodic report shall be signed by a Professional Engineer or by such other qualified environmental professional as the Department may find acceptable and shall contain a certification as provided at 6 NYCRR 375-1.8(h)(3). Respondent may petition the Department for a determination that the institutional and/or engineering controls may be terminated. Such petition must be supported by a statement by a Professional Engineer that such controls are no longer necessary for the protection of public health and the environment. The Department shall not unreasonably withhold its approval of such petition. 4. Within sixty (60) days of the Department's approval of a Final Report, Respondent shall submit such additional Work Plans as is required by the Department in its approval letter of such Final Report. Failure to submit any additional Work Plans within such period shall be a violation of this Order.

D. <u>Review of Submittals</u>

1. The Department shall make a good faith effort to review and respond in writing to each submittal Respondent makes pursuant to this Order within sixty (60) Days. The Department's response shall include, in accordance with 6 NYCRR 375-1.6(d), an approval, modification request, or disapproval of the submittal, in whole or in part.

i. Upon the Department's written approval of a Work Plan, such Department-approved Work Plan shall be deemed to be incorporated into and made a part of this Order and shall be implemented in accordance with the schedule contained therein.

ii. If the Department modifies or requests modifications to a submittal, it shall specify the reasons for such modification(s). Within fifteen (15) Days after the date of the Department's written notice that Respondent's submittal has been disapproved, Respondent shall notify the Department of its election in accordance with 6 NYCRR 375-1.6(d)(3). If Respondent elects to modify or accept the Department's modifications to the submittal, Respondent shall make a revised submittal that incorporates all of the Department's modifications to the first submittal in accordance with the time period set forth in 6 NYCRR 375-1.6(d)(3). In the event that Respondent's revised submittal is disapproved, the Department shall set forth its reasons for such disapproval in writing and Respondent shall be in violation of this Order unless it invokes dispute resolution pursuant to Paragraph XV and its position prevails. Failure to make an election or failure to comply with the election is a violation of this Order.

iii. If the Department disapproves a submittal, it shall specify the reasons for its disapproval. Within fifteen (15) Days after the date of the Department's written notice that Respondent's submittal has been disapproved, Respondent shall notify the Department of its election in accordance with 6 NYCRR 375-1.6(d)(4). If Respondent elects to modify the submittal, Respondent shall make a revised submittal that addresses all of the Department's stated reasons for disapproving the first submittal in accordance with the time period set forth in 6 NYCRR 375-1.6(d)(4). In the event that Respondent's revised submittal is disapproved, the Department shall set forth its reasons for such disapproval in writing and Respondent shall be in violation of this Order unless it invokes dispute resolution pursuant to Paragraph XV and its position prevails. Failure to make an election or failure to comply with the election is a violation of this Order.

2. Within thirty (30) Days after the Department's approval of a final report, Respondent shall submit such final report, as well as all data gathered and drawings and submittals made pursuant to such Work Plan, in an electronic format acceptable to the Department. If any document cannot be converted into electronic format, Respondent shall submit such document in an alternative format acceptable to the Department.

E. <u>Department's Issuance of a ROD</u>

1. Respondent shall cooperate with the Department and provide reasonable assistance, consistent with the Citizen Participation Plan, in soliciting public comment on the proposed remedial action plan ("PRAP"), if any. After the close of the public comment period, the Department shall select a final remedial alternative for the Site in a ROD. Nothing in this Order shall be construed to abridge any rights of Respondent, as provided by law, to judicially challenge the Department's ROD.

2. Respondent shall have 60 days from the date of the Department's issuance of the ROD to notify the Department in writing whether it will implement the remedial activities required by such ROD. If

the Respondent elects not to implement the required remedial activities, then this order shall terminate in accordance with Paragraph XIV.A. Failure to make an election or failure to comply with the election is a violation of this Order.

F. Institutional/Engineering Control Certification

In the event that the remedy for the Site, if any, or any Work Plan for the Site, requires institutional or engineering controls, Respondent shall submit a written certification in accordance with 6 NYCRR 375-1.8(h)(3) and 375-3.8(h)(2).

IV. <u>Penalties</u>

A. 1. Respondent's failure to comply with any term of this Order constitutes a violation of this Order, the ECL, and 6 NYCRR 375-2.11(a)(4). Nothing herein abridges Respondent's right to contest any allegation that it has failed to comply with this Order.

2. Payment of any penalties shall not in any way alter Respondent's obligations under this Order.

B. 1. Respondent shall not suffer any penalty or be subject to any proceeding or action in the event it cannot comply with any requirement of this Order as a result of any Force Majeure Event as provided at 6 NYCRR 375-1.5(b)(4). Respondent must use best efforts to anticipate the potential Force Majeure Event, best efforts to address any such event as it is occurring, and best efforts following the Force Majeure Event to minimize delay to the greatest extent possible. "Force Majeure" does not include Respondent's economic inability to comply with any obligation, the failure of Respondent to make complete and timely application for any required approval or permit, and non-attainment of the goals, standards, and requirements of this Order.

2. Respondent shall notify the Department in writing within five (5) Days of the onset of any Force Majeure Event. Failure to give such notice within such five (5) Day period constitutes a waiver of any claim that a delay is not subject to penalties. Respondent shall be deemed to know of any circumstance which it, any entity controlled by it, or its contractors knew or should have known.

3. Respondent shall have the burden of proving by a preponderance of the evidence that (i) the delay or anticipated delay has been or will be caused by a Force Majeure Event; (ii) the duration of the delay or the extension sought is warranted under the circumstances; (iii) best efforts were exercised to avoid and mitigate the effects of the delay; and (iv) Respondent complied with the requirements of Subparagraph IV.B.2 regarding timely notification.

4. If the Department agrees that the delay or anticipated delay is attributable to a Force Majeure Event, the time for performance of the obligations that are affected by the Force Majeure Event shall be extended for a period of time equivalent to the time lost because of the Force Majuere event, in accordance with 375-1.5(4).

5. If the Department rejects Respondent's assertion that an event provides a defense to noncompliance with this Order pursuant to Subparagraph IV.B, Respondent shall be in violation of this Order unless it invokes dispute resolution pursuant to Paragraph XV and Respondent's position prevails.

V. Entry upon Site

A. Respondent hereby consents, upon reasonable notice under the circumstances presented, to entry upon the Site (or areas in the vicinity of the Site which may be under the control of Respondent) by any duly designated officer or employee of the Department or any State agency having jurisdiction with

respect to matters addressed pursuant to this Order, and by any agent, consultant, contractor, or other person so authorized by the Commissioner, all of whom shall abide by the health and safety rules in effect for the Site, for inspecting, sampling, copying records related to the contamination at the Site, testing, and any other activities necessary to ensure Respondent's compliance with this Order. Upon request, Respondent shall (i) provide the Department with suitable work space at the Site, including access to a telephone, to the extent available, and (ii) permit the Department full access to all non-privileged records relating to matters addressed by this Order. Raw data is not considered privileged and that portion of any privileged document containing raw data must be provided to the Department. In the event Respondent is unable to obtain any authorization from third-party property owners necessary to perform its obligations under this Order, the Department may, consistent with its legal authority, assist in obtaining such authorizations.

B. The Department shall have the right to take its own samples and scientific measurements and the Department and Respondent shall each have the right to obtain split samples, duplicate samples, or both, of all substances and materials sampled. The Department shall make the results of any such sampling and scientific measurements available to Respondent.

VI. Payment of State Costs

A. Within forty-five (45) days after receipt of an itemized invoice from the Department, Respondent shall pay to the Department a sum of money which shall represent reimbursement for State Costs as provided by 6 NYCRR 375-1.5 (b)(3)(i). Failure to timely pay any invoice will be subject to late payment charge and interest at a rate of 9% from the date the payment is due until the date the payment is made.

B. Costs shall be documented as provided by 6 NYCRR 375-1.5(b)(3). The Department shall not be required to provide any other documentation of costs, provided however, that the Department's records shall be available consistent with, and in accordance with, Article 6 of the Public Officers Law.

C. Each such payment shall be made payable to the New York State Department of Environmental Conservation and shall be sent to:

Director, Bureau of Program Management Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233-7012

D. The Department shall provide written notification to the Respondent of any change in the foregoing addresses.

E. If Respondent objects to any invoiced costs under this Order, the provisions of 6 NYCRR 375-1.5 (b)(3)(v) and (vi) shall apply. Objections shall be sent to the Department as provided under subparagraph VI.C above.

F. In the event of non-payment of any invoice within the 45 days provided herein, the Department may seek enforcement of this provision pursuant to Paragraph IV or the Department may commence an enforcement action for non-compliance with ECL '27-1423 and ECL 71-4003.

VII. Release and Covenant Not to Sue

Upon the Department's issuance of a Certificate of Completion as provided at 6 NYCRR 375-1.9 and 375-2.9, Respondent shall obtain the benefits conferred by such provisions, subject to the terms and conditions described therein.

VIII. Reservation of Rights

A. Except as provided at 6 NYCRR 375-1.9 and 375-2.9, nothing contained in this Order shall be construed as barring, diminishing, adjudicating, or in any way affecting any of the Department's rights or authorities, including, but not limited to, the right to require performance of further investigations and/or response action(s), to recover natural resource damages, and/or to exercise any summary abatement powers with respect to any person, including Respondent.

B. Except as otherwise provided in this Order, Respondent specifically reserves all rights and defenses under applicable law respecting any Departmental assertion of remedial liability and/or natural resource damages against Respondent, and further reserves all rights respecting the enforcement of this Order, including the rights to notice, to be heard, to appeal, and to any other due process. The existence of this Order or Respondent's compliance with it shall not be construed as an admission of liability, fault, wrongdoing, or breach of standard of care by Respondent, and shall not give rise to any presumption of law or finding of fact, or create any rights, or grant any cause of action, which shall inure to the benefit of any third party. Further, Respondent reserves such rights as it may have to seek and obtain contribution, indemnification, and/or any other form of recovery from its insurers and from other potentially responsible parties or their insurers for past or future response and/or cleanup costs or such other costs or damages arising from the contamination at the Site as may be provided by law, including but not limited to rights of contribution under section 113(f)(3)(B) of CERCLA, 42 U.S.C. § 9613(f)(3)(B).

IX. Indemnification

Respondent shall indemnify and hold the Department, the State of New York, the Trustee of the State's natural resources, and their representatives and employees harmless as provided by 6 NYCRR 375-2.5(a)(3)(i).

X. Public Notice

A. Within thirty (30) Days after the effective date of this Order, Respondent shall provide notice as required by 6 NYCRR 375-1.5(a). Within sixty (60) Days of such filing, Respondent shall provide the Department with a copy of such instrument certified by the recording officer to be a true and faithful copy.

B. If Respondent proposes to transfer by sale or lease the whole or any part of Respondent's interest in the Site, or becomes aware of such transfer, Respondent shall, not fewer than forty-five (45) Days before the date of transfer, or within forty-five (45) Days after becoming aware of such conveyance, notify the Department in writing of the identity of the transferee and of the nature and proposed or actual date of the conveyance, and shall notify the transferee in writing, with a copy to the Department, of the applicability of this Order. However, such obligation shall not extend to a conveyance by means of a corporate reorganization or merger or the granting of any rights under any mortgage, deed, trust, assignment, judgment, lien, pledge, security agreement, lease, or any other right accruing to a person not affiliated with Respondent to secure the repayment of money or the performance of a duty or obligation.

XI. Change of Use

Applicant shall notify the Department at least sixty (60) days in advance of any change of use, as defined in 6 NYCRR 375-2.2(a), which is proposed for the Site, in accordance with the provisions of 6 NYCRR 375-1.11(d). In the event the Department determines that the proposed change of use is prohibited, the Department shall notify Applicant of such determination within forty-five (45) days of receipt of such notice.

XII. Environmental Easement

A. If a Record of Decision for the Site relies upon one or more institutional and/or engineering controls, Respondent (or the owner of the Site) shall submit to the Department for approval an Environmental Easement to run with the land in favor of the State which complies with the requirements of ECL Article 71, Title 36, and 6 NYCRR 375-1.8(h)(2). Upon acceptance of the Environmental Easement by the State, Respondent shall comply with the requirements of 6 NYCRR 375-1.8(h)(2).

B. If the ROD provides for no action other than implementation of one or more institutional controls, Respondent shall cause an environmental easement to be recorded under the provisions of Subparagraph XII.A.

C. If Respondent does not cause such environmental easement to be recorded in accordance with 6 NYCRR 375-1.8(h)(2), Respondent will not be entitled to the benefits conferred by 6 NYCRR 375-1.9 and 375-2.9 and the Department may file an Environmental Notice on the site.

XIII. Progress Reports

Respondent shall submit a written progress report of its actions under this Order to the parties identified in Subparagraph IV.A.1 of the Order by the 10th day of each month commencing with the month subsequent to the approval of the first Work Plan and ending with the Termination date as set forth in Paragraph XIV, unless a different frequency is set forth in a Work Plan. Such reports shall, at a minimum, include: all actions relative to the Site during the previous reporting period and those anticipated for the next reporting period; all approved activity modifications (changes of work scope and/or schedule); all results of sampling and tests and all other data received or generated by or on behalf of Respondent in connection with this Site, whether under this Order or otherwise, in the previous reporting period, including quality assurance/quality control information; information regarding percentage of completion; unresolved delays encountered or anticipated that may affect the future schedule and efforts made to mitigate such delays; and information regarding activities undertaken in support of the Citizen Participation Plan during the previous reporting period and those anticipated for the next reporting period.

XIV. Termination of Order

A. This Order will terminate upon the earlier of the following events:

1. Respondent's election in accordance with Paragraph III.E.2 not to implement the remedial activities required pursuant to the ROD. In the event of termination in accordance with this Subparagraph, this Order shall terminate effective the 5th Day after the Department's receipt of the written notification, provided, however, that if there are one or more Work Plan(s) for which a final report has not been approved at the time of Respondent's notification of its election not to implement the remedial activities in accordance with the ROD, Respondent shall complete the activities required by such previously approved Work Plan(s) consistent with the schedules contained therein. Thereafter, this Order shall terminate effective the 5th Day after the Department's approval of the final report for all previously approved Work Plans; or

2. The Department's written determination that Respondent has completed all phases of the Remedial Program (including Site Management), in which event the termination shall be effective on the 5th Day after the date of the Department's letter stating that all phases of the remedial program have been completed.

B. Notwithstanding the foregoing, the provisions contained in Paragraphs VI and IX shall survive the termination of this Order and any violation of such surviving Paragraphs shall be a violation of this Order, the ECL, and 6 NYCRR 375-2.11(a)(4), subjecting Respondent to penalties as provided under Paragraph IV so long as such obligations accrued on or prior to the Termination Date.

C. If the Order is terminated pursuant to Subparagraph XIV.A.1, neither this Order nor its termination shall affect any liability of Respondent for remediation of the Site and/or for payment of State Costs, including implementation of removal and remedial actions, interest, enforcement, and any and all other response costs as defined under CERCLA, nor shall it affect any defenses to such liability that may be asserted by Respondent. Respondent shall also ensure that it does not leave the Site in a condition, from the perspective of human health and environmental protection, worse than that which existed before any activities under this Order were commenced. Further, the Department's efforts in obtaining and overseeing compliance with this Order shall constitute reasonable efforts under law to obtain a voluntary commitment from Respondent for any further activities to be undertaken as part of a Remedial Program for the Site.

XV. Dispute Resolution

A. In the event disputes arise under this Order, Respondent may, within fifteen (15) Days after Respondent knew or should have known of the facts which are the basis of the dispute, initiate dispute resolution in accordance with the provisions of 6 NYCRR 375-1.5(b)(2).

B. All cost incurred by the Department associated with dispute resolution are State costs subject to reimbursement pursuant to this Order.

C. Nothing contained in this Order shall be construed to authorize Respondent to invoke dispute resolution with respect to the remedy selected by the Department in the ROD or any element of such remedy, nor to impair any right of Respondent to seek judicial review of the Department's selection of any remedy.

XVI. Miscellaneous

A. Respondent agrees to comply with and be bound by the provisions of 6 NYCRR Subparts 375-1 and 375-2; the provisions of such Subparts that are referenced herein are referenced for clarity and convenience only and the failure of this Order to specifically reference any particular regulatory provision is not intended to imply that such provision is not applicable to activities performed under this Order.

B. The Department may exempt Respondent from the requirement to obtain any state or local permit or other authorization for any activity conducted pursuant to this Order in accordance with 6 NYCRR 375-1.12(b), (c), and (d).

C. 1. Respondent shall use best efforts to obtain all Site access, permits, easements, approvals, institutional controls, and/or authorizations necessary to perform Respondent's obligations under this Order, including all Department-approved Work Plans and the schedules contained therein. If, despite Respondent's best efforts, any access, permits, easements, approvals, institutional controls, or authorizations cannot be obtained, Respondent shall promptly notify the Department and include a summary of the steps taken. The Department may, as it deems appropriate and within its authority, assist Respondent in obtaining same.

2. If an interest in property is needed to implement an institutional control required by a Work Plan and such interest cannot be obtained, the Department may require Respondent to modify the Work Plan pursuant to 6 NYCRR 375-1.6(d)(3) to reflect changes necessitated by Respondent's inability to obtain such interest.

D. The paragraph headings set forth in this Order are included for convenience of reference only and shall be disregarded in the construction and interpretation of any provisions of this Order.

E. 1. The terms of this Order shall constitute the complete and entire agreement between the Department and Respondent concerning the implementation of the activities required by this Order. No term, condition, understanding, or agreement purporting to modify or vary any term of this Order shall be binding unless made in writing and subscribed by the party to be bound. No informal advice, guidance, suggestion, or comment by the Department shall be construed as relieving Respondent of Respondent's obligation to obtain such formal approvals as may be required by this Order. In the event of a conflict between the terms of this Order and any Work Plan submitted pursuant to this Order, the terms of this Order shall control over the terms of the Work Plan(s). Respondent consents to and agrees not to contest the authority and jurisdiction of the Department to enter into or enforce this Order.

2. i. Except as set forth herein, if Respondent desires that any provision of this Order be changed, Respondent shall make timely written application to the Commissioner with copies to the parties listed in Subparagraph IV.A.1.

ii. If Respondent seeks to modify an approved Work Plan, a written request shall be made to the Department's project manager, with copies to the parties listed in Subparagraph IV.A.1.

iii. Requests for a change to a time frame set forth in this Order shall be made in writing to the Department's project attorney and project manager; such requests shall not be unreasonably denied and a written response to such requests shall be sent to Respondent promptly.

F. 1. If there are multiple parties signing this Order, the term "Respondent" shall be read in the plural, the obligations of each such party under this Order are joint and several, and the insolvency of or failure by any Respondent to implement any obligations under this Order shall not affect the obligations of the remaining Respondent(s) under this Order.

2. If Respondent is a partnership, the obligations of all general partners (including limited partners who act as general partners) under this Order are joint and several and the insolvency or failure of any general partner to implement any obligations under this Order shall not affect the obligations of the remaining partner(s) under this Order.

3. Notwithstanding the foregoing Subparagraphs XVI.F.1 and 2, if multiple parties sign this Order as Respondents but not all of the signing parties elect to implement a Work Plan, all Respondents are jointly and severally liable for each and every obligation under this Order through the completion of activities in such Work Plan that all such parties consented to; thereafter, only those Respondents electing to perform additional work shall be jointly and severally liable under this Order for the obligations and activities under such additional Work Plan(s). The parties electing not to implement the additional Work Plan(s) shall have no obligations under this Order relative to the activities set forth in such Work Plan(s). Further, only those Respondents electing to implement such additional Work Plan(s) shall be eligible to receive the release and covenant not to sue referenced in Paragraph VII.

G. Respondent shall be entitled to receive contribution protection and/or to seek contribution to the extent authorized by ECL 27-1421(6) and 6 NYCRR 375-1.5(b)(5).

H. Unless otherwise expressly provided herein, terms used in this Order which are defined in ECL Article 27 or in regulations promulgated thereunder shall have the meaning assigned to them under said statute or regulations.

I. Respondent's obligations under this Order represent payment for or reimbursement of response costs, and shall not be deemed to constitute any type of fine or penalty.

J. Respondent and Respondent's successors and assigns shall be bound by this Order. Any change in ownership or corporate status of Respondent shall in no way alter Respondent's responsibilities under this Order.

K. This Order may be executed for the convenience of the parties hereto, individually or in combination, in one or more counterparts, each of which shall be deemed to have the status of an executed original and all of which shall together constitute one and the same.

APPENDIX B IC AND EC CERTIFICATION FORMS

LANGAN

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	S241209	Site Details	Box 1	
		-01 Jackson Avenue - Off	-Site		
Site City Co	e Address: 2	27-01 JACKSON AVENUE ng Island City s			
Re	porting Perio	od: April 30, 2024 to April 3	30, 2025		
				YES	NO
1.	Is the inform	mation above correct?		X	
	lf NO, inclu	de handwritten above or o	n a separate sheet.		
2.		or all of the site property be nendment during this Repo	een sold, subdivided, merged, or undergor orting Period?	ne a	X
3.		been any change of use at RR 375-1.11(d))?	the site during this Reporting Period		X
4.	•	ederal, state, and/or local p property during this Repo	permits (e.g., building, discharge) been iss orting Period?	ued	X
			2 thru 4, include documentation or evide to a second t		
5.	Is the site o	currently undergoing develo	opment?		X
				Box 2	
				YES	NO
6.	Is the curre	nt site use consistent with	the use(s) listed below?	X	
7.	Are all ICs	in place and functioning as	s designed?	X	
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.				
AC	A Corrective Measures Work Plan must be submitted along with this form to address these issues.				
Sig	nature of Ow	ner, Remedial Party or Des	ignated Representative Da	ate	

			Box 2	Α
8 Has any new information	revealed that assumptions m	ade in the Qualitative Exposure	YES	NO
	ffsite contamination are no lon			X
	o question 8, include docume s been previously submitted			
-	he Qualitative Exposure Asses re Assessment must be certifie		X	
	question 9, the Periodic Rev posure Assessment based o			
SITE NO. S241209			Вох	c 3
Description of Institutio	nal Controls			
-)wner	Institutional Contro	<u>) </u>	
	City of New York		_	
		Monitoring Plan		
		Site Management I	Plan	
(OSMP) - Environmental monitoring (i.e. - The use of groundwater under treatment as determined by the Department of Health (NYCDO the Participant must first notify - Groundwater monitoring well in the manner specified in the O - Data and information pertinent manner defined in the OSMP. - Groundwater monitoring may Consent Order. The Consent O or the Commissioner's designe - Compliance with the Consen adherence to all elements of th - All future activities that will di with the OSMP. - Monitoring to assess the perf with the OSMP.	A., groundwater sampling) must relying the off-site area is prohi New York State Department of H) to render it safe for use as of and obtain written approval to s must be protected and replace OSMP. In to the off-site area managem not be discontinued without an order may be extinguished only e. Order by the Participant and the e OSMP is required. Sturb remaining contaminated is ormance and effectiveness of the ersons who acquire any interest	e with the Off-Site Site Managem to be performed as defined in the O pited without necessary water qua f Health (NYSDOH) or New York drinking water or for industrial pur do so from the NYSDOH or NYCE and as necessary to ensure prope nent must be reported at a frequer in amendment or extinguishment of by release by the Commissioner he Participant's successors and a material must be conducted in acc the remedy must be conducted in acc the remedy must be conducted in st in the off-site area a complete of ments to the OSMP.	DSMP. ality City poses, a DOH. r functio ncy and of the of NYSI assigns a cordance accorda	ind ning in a DEC, and e ance he
	• • • •		207	-
Description of Engineer	-			
Parcel	Engineering Control			
432-21	Monitoring Wells			
Wells will be monitored quarter monitoring frequency or to disc	y for two years. If warranted b	y results, a request to decrease nitted to NYSDEC.		

		Box 5
Periodic Review Report (PRR) Certification Statements		
I certify by checking "YES" below that:		
a) the Periodic Review report and all attachments were prepared under the dire reviewed by, the party making the Engineering Control certification;	ction of,	and
b) to the best of my knowledge and belief, the work and conclusions described are in accordance with the requirements of the site remedial program, and gene		
engineering practices; and the information presented is accurate and compete.	YES	NO
	X	
For each Engineering control listed in Box 4, I certify by checking "YES" below that all following statements are true:	of the	
(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the De	partmer	ıt;
(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	ealth an
(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control		
(d) nothing has occurred that would constitute a violation or failure to comply wi Site Management Plan for this Control; and	th the	
(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the		
	YES	NO
	X	
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
A Corrective Measures Work Plan must be submitted along with this form to address t	hese iss	sues.
Signature of Owner, Remedial Party or Designated Representative Date		

Γ

IC CERTIFICATIONS SITE NO. S241209

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Aaron Shirian	at	11 Grace Aver Great Neck, N	,
print name		print business ad	dress
am certifying as	Owner		(Owner or Remedial Party)
for the Site named in the Site I Signature of Owner, Remedial Rendering Certification	5		S/6/LS

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

	368 Ninth Ave	nue, 8th Floor	
I Brian Gochenaur, QEP at	New York, NY	10001	1
print name	print busin	ess address	
am certifying as a Qualified Environmental P	Professional for the	Owne	er
	-	(Owner or Rem	edial Party)
Brian Hakum			
			5/27/2025
Signature of Qualified Environmental Profes		amp	Date
the Owner or Remedial Party, Rendering Ce	ertification (R	equired for PE)	

APPENDIX C NYSDEC CORRESPONDENCE

LANGAN

Caroline Devin

From:	Caroline Devin
Sent:	Wednesday, November 8, 2023 5:18 PM
То:	Caroline Devin
Subject:	FW: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

From: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Sent: Friday, October 13, 2023 10:10 AM
To: Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>; Obligado, Andre A (DEC) <<u>andre.obligado@dec.ny.gov</u>>
Subject: [External] RE: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

Good Morning Lexi: NYSDEC has no objections to this change in the sampling protocol as the MW-4 groundwater samples have shown non-detect for 4 consecutive quarters.

BTW How far has the on-site construction progressed?

Regards, Shaun Shaun Bollers Assistant Environmental Engineer, Division of Environmental Remediation New York State Department of Environmental Conservation 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | <u>shaun.bollers@dec.ny.gov</u>

www.dec.ny.gov

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Wednesday, October 11, 2023 3:12 PM
To: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: RE: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon Shaun,

I hope you are doing well!

We are planning to schedule the next quarterly sampling event at 27-01 Jackson Avenue for the week of October 23rd. As noted in the Q4 Off-Site Quarterly GW Monitoring Report, groundwater results from MW-4

have been non-detect for consecutive quarters and we are requesting to conduct further monitoring only in MW-1 and MW-2.

Please let us know if you have any objections to this plan.

Thank you,

Lexi Haley Senior Staff Engineer

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

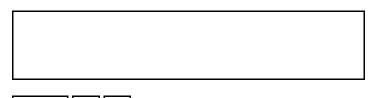
From: Lexi Haley
Sent: Friday, September 15, 2023 1:58 PM
To: 'Bollers, Shaun (DEC)' <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

Good afternoon Shaun,

Please see below for a link to the quarterly sampling report for 27-01 Jackson Avenue. Please note that, since groundwater results from MW-4 have been non-detect for consecutive quarters, we are requesting to conduct further monitoring only in MW-1 and MW-2.

https://clients.langan.com/Sharing/filesharing/ViewPosted?transactionHash=1122680310

Let us know if you have any questions.


Have a great weekend,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u>

Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

Ali Reach

To: Subject: Lexi Haley RE: 27-01 Jackson Avenue Off-site (S241209) - Off-Site Well Monitoring Program Meeting

From: Bollers, Shaun (DEC) < shaun.bollers@dec.ny.gov</pre>

Sent: Tuesday, August 8, 2023 10:30 AM

To: Lexi Haley <<u>lhaley@langan.com</u>>

Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Obligado, Andre A (DEC) <<u>andre.obligado@dec.ny.gov</u>>; Kenney, Julia M (HEALTH) <<u>julia.kenney@health.ny.gov</u>>

Subject: [External] RE: 27-01 Jackson Avenue Off-site (S241209) - Off-Site Well Monitoring Program Meeting

Lexi:

As discussed during our telecon last Friday 8/5 this change in sampling protocol for the 27-01 Jackson Avenue Off-site site S241209 is acceptable. There is no need to replace MW-3.

Thanks,

Shaun Bollers

Assistant Environmental Engineer, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | <u>shaun.bollers@dec.ny.gov</u>

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Tuesday, August 8, 2023 9:34 AM
To: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good morning Shaun,

As discussed during our call on Friday, monitoring well MW-3 (located along 43rd Avenue) was destroyed during installation of utilities beneath the sidewalk and was not able to be sampled from during the Q4 event. In

the previous three quarters of groundwater monitoring, VOC concentrations were non-detect in samples collected from MW-3. As such, we are requesting to stop monitoring at MW-3.

We will continue to monitor VOC concentrations in groundwater from monitoring wells MW-1, MW-2, and MW-4 on a quarterly basis.

Thank you,

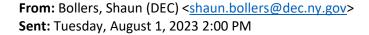
Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> <u>www.langan.com</u>

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

From: Lexi Haley
Sent: Tuesday, August 1, 2023 2:13 PM
To: 'Bollers, Shaun (DEC)' <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting


Thanks Shaun – I will send out the meeting invite for Friday.

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

To: Lexi Haley <<u>lhaley@langan.com</u>> Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>> Subject: [External] RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

Hi Lexy: Friday 8/4 would be fine.

Shaun

Shaun Bollers

Assistant Environmental Engineer, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | <u>shaun.bollers@dec.ny.gov</u>

www.dec.ny.gov | III | III

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Tuesday, August 1, 2023 11:38 AM
To: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

Hi

Good morning Shaun,

Brian and I would like to set up a call with you to discuss the off-site well monitoring program at 27-01 Jackson Avenue (BCP Site No. C241209). We are available between 12 pm and 2:30 pm on Thursday (8/3) and between 11 am and 12 pm on Friday (8/4). Do either of these time slots work for you? If not, we can schedule something for next week.

Thank you,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u>

Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor New York, NY 10001-2727 www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

Lexi Haley

From:	Salazar, Marlen C (DEC) <marlen.salazar@dec.ny.gov></marlen.salazar@dec.ny.gov>
Sent:	Thursday, September 19, 2024 2:52 PM
То:	Lexi Haley; Kimberly Semon; Brian Gochenaur
Cc:	aaron.shirian@lionsgroupnyc.com; O'Connell, Jane H (DEC); Maycock, Cris-Sandra (DEC); McLaughlin,
	Scarlett E (HEALTH); Kenney, Julia M (HEALTH)
Subject:	[External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report

Hi Langan Team,

I am reiterating here what was discussed in today's meeting re: the request to discontinue groundwater monitoring at the referenced site.

NYSDEC has denied the request to discontinue quarterly groundwater monitoring. Groundwater monitoring must continue at the stated frequency of the OSMP, i.e. quarterly. While the data that you have shown us appears satisfactory, we do not have enough data to be confident that these numbers will not rebound and spike in subsequent quarters. It is for that reason that groundwater monitoring is to continue. As mentioned in the email below denying the request, this request can be re-evaluated again at the time of submission of the 2024-2025 PRR in late May. This allows for three more quarters of groundwater sampling events to show asymptotic reduction in groundwater concentrations of VOCs.

Please reach out if you have further questions.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

From: Salazar, Marlen C (DEC)

Sent: Thursday, September 12, 2024 1:14 PM

To: Lexi Haley < Ihaley@langan.com>

Cc: aaron.shirian@lionsgroupnyc.com; Kimberly Semon <ksemon@langan.com>; Brian Gochenaur <bgochenaur@Langan.com>; O'Connell, Jane H (DEC) <jane.oconnell@dec.ny.gov>; Maycock, Cris-Sandra (DEC) <crissandra.maycock@dec.ny.gov>; McLaughlin, Scarlett E (HEALTH) <scarlett.mclaughlin@health.ny.gov>; Kenney, Julia M (HEALTH) <julia.kenney@health.ny.gov>

Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report

Hi Lexi,

The New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) have reviewed the 8th quarterly groundwater sampling report for 27-01 Jackson Avenue – Off-site (site no. S241209) prepared by Langan Engineering, Environmental Surveying, Landscape Architecture and Geology D.P.C. on behalf of 2701 Jackson Avenue LLC. The request to terminate the groundwater monitoring program at the site has been **denied** for the following reasons:

- 1. Groundwater VOC concentrations in MW-1 and MW-2 are still consistently above AWQSGVs
- 2. NYSDEC and NYSDOH would like to see at least two consecutive quarters of non-detect concentrations or concentrations below the AWQSGVs before considering termination of the groundwater monitoring program.
 - a. Additionally, NYSDEC and NYSDOH would like to continue monitoring until the 2024-2025 PRR is submitted after which Langan may again request to terminate the groundwater monitoring program with supporting data as part of the PRR conclusion for NYSDEC and NYSDOH review.

Please let me know if you have any questions.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

Conservation

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Tuesday, September 10, 2024 5:55 PM
To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>; Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon Marlen,

Please see below for a link to the 8th quarterly sampling report for 27-01 Jackson Avenue. As discussed in our previous conversation, overall result trends for each monitoring well show bulk reduction in petroleum-related VOCs, and asymptotic levels appear to have been achieved. Further decline of contaminant of concern concentrations is not anticipated; therefore, as part of the 8th quarterly groundwater monitoring report, Langan is requesting the discontinuation of groundwater monitoring at the site.

https://clients.langan.com/Sharing/filesharing/ViewPosted?transactionHash=-1672278986

Name	Туре	Size

2024-08 - Q8 Groundwater	.pdf	12.76 MB
Monitoring Letter		
Report.pdf		

Let us know if you have any questions.

Thank you,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> <u>www.langan.com</u>

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

From: Lexi Haley
Sent: Thursday, August 22, 2024 9:56 AM
To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>; Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

Understood, thank you Marlen. We anticipate having the report ready for your review by the end of next week.

Best,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA From: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Sent: Thursday, August 22, 2024 7:43 AM
To: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: [External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

You could do both honestly (like a zoom-in on one of the scales), but don't worry about it too much I suppose. The tables will have all the data regardless which I can refer to.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

Conservation

From: Brian Gochenaur <<u>bgochenaur@Langan.com</u>> Sent: Thursday, August 22, 2024 7:40 AM To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>; Lexi Haley <<u>lhaley@langan.com</u>> Cc: Kimberly Semon <<u>ksemon@langan.com</u>> Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

```
ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or
unexpected emails.
```

Hi Marlen – We typically show the wells on different scales in the report, we just wanted to show all the graphs on the same scale to demonstrate that asymptotic levels were achieved. I felt like the zoomed in scale on some and not others illustrated a skewed perspective, but we can change it back for the report. Thx

Brian Gochenaur, QEP Associate Principal

LANGAN

Direct: 212.479.5479 Mobile: 347.320.2756 <u>File Sharing Link</u> www.langan.com

From: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Sent: Thursday, August 22, 2024 7:35 AM
To: Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: [External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

Hi Lexi,

I'll wait to receive the Q4 groundwater monitoring report. For the graphs, is it possible to use a smaller scale on the yaxis for all wells except MW-2? The concentrations of MW-1, MW-3, and MW-4 are all much less than 500 ug/L so the large y-axis scale makes getting any sort of visual information from the graphs a bit difficult.

Roughly around when can I expect to receive this report too? I'll keep an eye out for it.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation 47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Wednesday, August 21, 2024 3:36 PM
To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

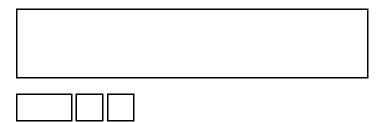
ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon Marlen,

We have completed Q8 of groundwater sampling at the 27-01 Jackson Avenue site. The overall result trends for each monitoring well are attached for your review, which show a bulk reduction in petroleum-related VOCs to asymptotic levels over the course of the monitoring program. The trends will be included in the forthcoming quarterly report for the site.

Considering VOCs were non-detect in wells MW-3 and MW-4 for consecutive quarters, DEC previously approved the discontinuation of groundwater monitoring at these locations. Groundwater monitoring has continued at MW-1 and MW-2. Based on the Q8 analytical data, total VOCs and total BTEX concentrations have decreased by 95% and 100%, respectively, in MW-1 and by over 99% in MW-2. Based on review of the overall analytical data provided over the course of the monitoring program, it appears that the remedy was effective in demonstrating a bulk reduction of these contaminants. Asymptotic levels appear to have been achieved, and further decline of contaminant of concern concentrations is not anticipated. Therefore, as part of our forthcoming quarterly groundwater monitoring report, Langan will be requesting the discontinuation of groundwater monitoring at the site.

Thank you,


Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u>

Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor New York, NY 10001-2727 www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender instance or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender instance or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying

of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

APPENDIX D

QUARTERLY GROUNDWATER MONITORING REPORTS

LANGAN

Technical Excellence Practical Experience Client Responsiveness

September 10, 2024

Ms. Marlen Salazar New York State Department of Environmental Conservation (NYSDEC) Region 2 Division of Environmental Remediation 47-40 21st Street Long Island City, NY 11101

RE: Eighth Quarter Groundwater Monitoring Report 27-01 Jackson Avenue Long Island City, New York NYSDEC Order on Consent No. S241209 Langan Project No.: 170472002

Dear Ms. Salazar:

In accordance with the January 23, 2020 Off-Site In-Situ Treatment Remedial Design Plan (RDP) and the December 12, 2022 NYSDEC-approved Off-Site Site Management Plan (OSMP), Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan) conducted groundwater sampling within the public right-of-way and sidewalks adjacent to the 27-01 Jackson Avenue site located in the Long Island City neighborhood of Queens, New York (Brownfield Cleanup Program [BCP] Site No. C241209). The south- and west-adjoining sidewalks are subject to the April 20, 2022 Order on Consent and Administrative Settlement (CO), Index No. S241209-08-09 and hereinafter referred to as the "CO site". A site location map is provided as Figure 1. This was the eighth quarterly sampling event completed following implementation of the off-site in-situ groundwater treatment program between October 20 and November 11, 2021.

Project Background

The CO site is an approximately 2,750-square-foot area that spans sections of the Jackson Avenue and 43rd Avenue sidewalks adjoining the BCP site located at 27-01 Jackson Avenue in the Long Island City neighborhood of Queens, New York (identified as Block 432, Lot 21 on the Queens County Tax Map). A site layout plan is presented on Figure 2.

Light non-aqueous phase liquid (LNAPL), and petroleum-impacted soil, groundwater, and soil vapor were identified on- and off-site during a Remedial Investigation (RI) and supplemental sampling events performed between October 2018 and July 2020. To address the impacts, NYSDEC approved the RDP and the Remedial Action Work Plan (RAWP) on January 23, 2020 and January 9, 2021, respectively. A Track 1 remedy was achieved at the BCP site and a certificate of completion (COC) was issued on December 23, 2022. Pursuant to the RAWP, a CO

was executed on April 20, 2022, which requires compliance with the NYSDEC-approved December 12, 2022 OSMP. The intent of the CO is to monitor off-site conditions in groundwater following off-site groundwater treatment and on-site dewatering. The OSMP addresses the means for implementing, monitoring, and reporting on the Engineering and Institutional Controls (ECs/ICs) that are required by the CO for the off-site areas adjacent to the BCP site.

In-Situ Groundwater Treatment

An off-site in-situ groundwater treatment program was implemented to treat remaining petroleum-related VOCs beneath the CO site, which were initially identified during the RI. Targeted petroleum-related VOCs included benzene, toluene, ethylbenzene, and xylenes (BTEX), and their breakdown products. Impacted groundwater was treated using an activated carbon solution (PetroFix[™]) via direct-push injection points located in a rough grid pattern to spread chemicals evenly within the off-site, south- and west-adjoining sidewalks comprising the CO site.

The injection program was carried out by Clean Harbors of Norwell, Massachusetts and Aquifer Drilling and Testing (ADT) of Mineola, New York, under the oversight of Langan, between October 20 and November 11, 2021. Injection point locations are shown on Figure 3. At each injection point, a hollow steel injection rod was advanced to depths ranging from about 15 to 30 feet below grade surface (bgs). Injections were made using a "bottom-up" approach, beginning at the deepest 2-foot interval, and raised from the bottom depth in 2-foot intervals to approximately 15 feet bgs. Approximately 14,400 pounds of Petrofix® and 720 pounds of electron acceptor blend were applied via direct-push drill rig between October 20 and November 11, 2021. Between 664 and 976 pounds of Petrofix® were applied to each point.

Performance Monitoring Methodology

The RDP and OSMP included baseline sampling and quarterly post-injection groundwater monitoring to evaluate the efficacy of the CO site remedy. Baseline groundwater sampling was conducted from existing monitoring wells MW-3 and MW-4 and temporary monitoring wells MW-1 and MW-2 on October 7 and 19, 2021. Monitoring wells MW-3 and MW-4 were compromised during installation of the support of excavation, and the four monitoring wells were reinstalled for post-remediation groundwater monitoring on August 22, 2022 and October 13 and 14, 2022. Post-injection monitoring well locations are shown on Figure 3.

Post-injection groundwater monitoring was not conducted between November 2021 and October 2022 due to remediation efforts and active dewatering at the BCP site. Eight post-injection quarterly sampling events have been completed at the CO site in October 2022, January 2023, April 2023, July 2023, October 2023, January 2024, April 2024, and July 2024.

Between the third and fourth quarter sampling events, monitoring well MW-3 was compromised during the installation of utilities beneath the 43rd Avenue sidewalk. Considering VOCs were nondetect in MW-3 during the previous three quarters of sampling, NYSDEC allowed the discontinuation of sampling of MW-3 via email correspondence on August 8th, 2023. The Fourth Quarter Groundwater Monitoring Report, dated September 15, 2023, indicated that VOCs were

also non-detect in monitoring well MW-4 during the previous four quarters; therefore, NYSDEC allowed the discontinuation of sampling of MW-4 via email correspondence on October 13th, 2023. NYSDEC correspondence is included as Attachment A.

Well Purging and Sampling

Monitoring well sampling was conducted for monitoring wells MW-1 and MW-2 on July 29, 2024. Before sampling, each well was purged using the low-flow method developed by the United States Environmental Protection Agency (USEPA) "Low-Flow [Minimal Drawdown] Ground-Water Sampling Procedures," EPA/540/S-95/504, April 1996) and accepted by the NYSDEC. purging was performed using a peristaltic pump fitted with dedicated tubing at each well. During purging, the turbidity, pH, temperature, conductivity, oxidation-reduction potential (ORP), and dissolved oxygen (DO) were monitored using a Horiba U-52 water quality meter with a flow-through cell. Purged groundwater was containerized in 55-gallon drums during each event. The daily site observation report is included in Attachment B. The groundwater quality parameters were recorded in the Well Purging and Sampling Logs provided in Attachment C.

As a general rule, groundwater was purged until water quality parameters stabilized, after an hour of continuous purging, or after three well volumes of groundwater had been removed from the well. Groundwater quality parameters stabilized in MW-2 prior to sampling, and a groundwater sample was collected from MW-1 after purging three well volumes.

After purging each well, a groundwater sample was collected directly from the pump discharge line using USEPA low-flow techniques. For quality assurance and quality control, one field blank sample and one duplicate sample were collected. A trip blank was included in each shipment for quality control during transport. All samples were analyzed for Part 375/Target Compound List (TCL) VOCs via USEPA SW-846 method 8260C by Alpha Analytical Laboratories, a NYSDOH Environmental Laboratory Approval Program (ELAP)-accredited laboratory in Westborough, Massachusetts.

The laboratory analytical results for the baseline sampling event, the previous quarterly sampling events, and the July 2024 sampling event are summarized in Table 1 and illustrated on Figure 4. The laboratory analytical report from the July 2024 sampling event is provided as Attachment D. Groundwater analytical results were compared to the NYSDEC Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical & Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA drinking water (herein collectively referenced as the NYSDEC SGVs). Analytical results from the first quarterly sampling event are discussed in the NYSDEC-approved December 2022 Final Engineering Report (FER), and analytical results from subsequent quarters are discussed in their respective quarterly monitoring reports.

July 2024 Performance Monitoring Analytical Results

Analytical results from the July 2024 performance monitoring are summarized as follows:

- <u>MW-1:</u> 1,2,4,5-Tetramethylbenzene was detected above the NYSDEC SGVs. In comparison to baseline analytical results, total VOC and total BTEX concentrations have decreased by 95% and 100%, respectively.
- <u>MW-2:</u> 1,2,4,5-Tetramethylbenzene, 1,2,4-trimethylbenzene, and n-propylbenzene were detected above the NYSDEC SGVs. In comparison to baseline analytical results, total VOC and total BTEX concentrations have decreased by 99.4% and 99.9%, respectively.

Three VOCs were detected above the NYSDEC SGVs in groundwater samples collected during the July 2024 monitoring event. Total VOC concentrations have decreased by over 95% (MW-1) and 99% (MW-2), and total BTEX concentrations have decreased by 100% (MW-1) and 99.9% (MW-2) when compared to baseline concentrations. In comparison to the seventh quarterly sampling event, analyte concentrations detected above the NYSDEC SGVs in MW-1 and MW-2 are within the same order of magnitude or one order of magnitude lower.

Analytical data are shown on Figure 4 and result trends are shown on Figure 5. Comparison of overall result trends for each monitoring well show a bulk reduction in petroleum-related VOCs to asymptotic levels over the course of the monitoring program. Based on the post-remedy sampling results and trends, the off-site remedy appears to have been effective; further decline of contaminant of concern concentrations is not anticipated.

Data Validation

A copy of the Analytical Services Protocol (ASP) Category B laboratory report was submitted to Langan's data validation department for review in accordance with the USEPA validation guidelines for organic and inorganic data. The data were found to be 100% acceptable. The Data Usability Summary Report (DUSR) is included in Attachment E.

Closure

Targeted petroleum-related VOC concentrations exceeded the NYSDEC SGVs in MW-1 and MW-2 but have been reduced by one to four orders of magnitude relative to baseline concentrations, indicating that bulk reduction has been observed. Based on the overall sampling event results trends, asymptotic levels have been achieved over the eight monitoring events, indicating that the off-site remedy has been effective. Further significant decline of concentrations of contaminants of concern is not anticipated; therefore, Langan requests discontinuation of groundwater monitoring at the CO site.

Should you have any questions, please call the undersigned at 212-479-5427.

Sincerely,

Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C.

Jason Hayes, P.E. Principal/Vice President

Enclosures:

Figure 1	Site Location Map
Figure 2	Site Layout Plan
Figure 3	In-Situ Groundwater Treatment Injection Plan
Figure 4	Groundwater Sample Analytical Results
Figure 5	Groundwater Sample Analytical Results Trends
Table 1	Groundwater Sample Analytical Results
Attachment A	NYSDEC Correspondence for MW-3 and MW-4 Monitoring
Attachment B	Daily Site Observation Report
Attachment C	Well Purging and Sampling Logs
Attachment D	Laboratory Analytical Report
Attachment E	Data Usability Summary Report

LANGAN

TABLES

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 I angan Project No.: 170472002

						Langan	Project No.: 1704720	002							
Analyte	CAS Number	NYSDEC SGVs	Sampling Event Location Sample Name Sample Date	Baseline MW-1 MW01_101921 10/19/2021	Quarter 1 MW-1 MW-1_102122 10/21/2022	Quarter 2 MW-1 MW-1_012623 01/26/2023	Quarter 3 MW-1 MW-1_042623 04/26/2023	Quarter 4 MW-1 MW-1_072723 07/27/2023	Quarter 4 MW-1 DUP01_072723 07/27/2023	Quarter 5 MW-1 MW-1_102323 10/23/2023	Quarter 5 MW-1 DUP01_102323 10/23/2023	Quarter 6 MW-1 MW-1_013124 01/31/2024	Quarter 7 MW-1 MW-1_042524 04/25/2024	Quarter 7 MW-1 DUP01_042524 04/25/2024	Quarter 8 MW-1 MW-1_072924 07/29/2024
Volatile Organic Compounds			Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1,2-Tetrachloroethane	630-20-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1,1-Trichloroethane	71-55-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1,2,2-Tetrachloroethane	79-34-5	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
1,1,2-Trichloroethane	79-00-5	1	ug/l	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U
1,1-Dichloroethane 1,1-Dichloroethene	75-34-3 75-35-4	5	ug/l ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
1,1-Dichloropropene	563-58-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,3-Trichlorobenzene	87-61-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,3-Trichloropropane	96-18-4	0.04	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,4,5-Tetramethylbenzene 1,2.4-Trichlorobenzene	95-93-2 120-82-1	5	ug/l	12 <2.5 U	1.9 J <2.5 ∪	8.9 <2.5 U	1.7 J <2.5 U	<2 U <2.5 U	<2 U <2.5 U	7.6 <2.5 U	8.4 <2.5 U	8 <2.5 U	11 <2.5 U	11 <2.5 U	7.4 <2.5 U
1,2,4-Trimethylbenzene	95-63-6	5	ug/l ug/l	11	0.77 J	0.74 J	<2.5 U	<2.5 U	<2.5 U	7.2	7.5	<2.5 U	2.6	2.6	<2.5 U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	0.0006	ug/l	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U
1,2-Dichlorobenzene	95-50-1	3	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2-Dichloroethane 1,2-Dichloropropane	107-06-2 78-87-5	0.6	ug/l ug/l	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U
1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	5	ug/l	7.8	4	1.7 J	<2.5 U	<2.5 U	<2.5 U	5.3	5.6	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,3-Dichlorobenzene	541-73-1	3	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,3-Dichloropropane	142-28-9	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,4-Dichlorobenzene 1,4-Diethyl Benzene	106-46-7 105-05-5	3 NS	ug/l ug/l	<2.5 U 26	<2.5 U 4	<2.5 U 4.9	<2.5 U 1.7 J	<2.5 U <2 U	<2.5 U <2 U	<2.5 U 1.6 J	<2.5 U 1.7 J	<2.5 U 3.9	<2.5 U 3.5	<2.5 U 3.5	<2.5 U 2.3
1,4-Dioxane (P-Dioxane)	123-91-1	0.35	ug/l	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U
2,2-Dichloropropane	594-20-7	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
2-Chlorotoluene	95-49-8	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
2-Hexanone (MBK) 4-Chlorotoluene	591-78-6 106-43-4	50 5	ug/l ug/l	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U
4-Ethyltoluene	622-96-8	NS	ug/l	6.1	1.5 J	1.4 J	<2.5 U	<2 U	<2 U	4	4.3	<2 U	<2.0 U	<2 U	<2 U
Acetone	67-64-1	50	ug/l	4.5 J	25	<5 U	<5 U	2.5 J	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Acrylonitrile	107-13-1	5	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Benzene Bromobenzene	71-43-2 108-86-1	1 5	ug/l ug/l	17 <2.5 ∪	<0.5 U <2.5 U	0.22 J <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U
Bromochloromethane	74-97-5	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Bromodichloromethane	75-27-4	50	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Bromoform	75-25-2	50	ug/l	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U
Bromomethane Carbon Disulfide	74-83-9 75-15-0	5 60	ug/l	<2.5 U 1.2 J	<2.5 U <5 U	<2.5 UJ <5 U	<2.5 UJ <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U				
Carbon Tetrachloride	56-23-5	5	ug/l ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Chlorobenzene	108-90-7	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Chloroethane	75-00-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Chloroform Chloromethane	67-66-3 74-87-3	7	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Cis-1,2-Dichloroethene	156-59-2	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Cis-1,3-Dichloropropene	10061-01-5	0.4	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Cymene	99-87-6	5	ug/l	1.4 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Dibromochloromethane Dibromomethane	124-48-1 74-95-3	50 5	ug/l	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U
Dichlorodifluoromethane	75-71-8	5	ug/l ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Diethyl Ether (Ethyl Ether)	60-29-7	NS	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Ethylbenzene	100-41-4	5	ug/l	54	<2.5 U	5.4	<2.5 U	<2.5 U	<2.5 U	4.7	5	1.9 J	1.5 J	1.5 J	<2.5 U
Hexachlorobutadiene Isopropylbenzene (Cumene)	87-68-3 98-82-8	0.5 5	ug/l ug/l	<2.5 U 10	<2.5 U <2.5 U	<2.5 U 9.1	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U 3.9	<2.5 U 4.2	<2.5 U 5.6	<2.5 U 2.1 J	<2.5 U 2.1 J	<2.5 U <2.5 U
M,P-Xylene	179601-23-1	5	ug/l	11	1.3 J	0.88 J	<2.5 U	<2.5 U	<2.5 U	3.7	4	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Methyl Ethyl Ketone (2-Butanone)	78-93-3	50	ug/l	<5 U	<5 UJ	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	NS	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Methylene Chloride Naphthalene	75-09-2 91-20-3	5 10	ug/l ug/l	<2.5 U 3.4 J	<2.5 U <2.5 U	<2.5 U 2.2 J	<2.5 U 2 J	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U				
n-Butylbenzene	104-51-8	5	ug/l	5.6	<2.5 U	2.2 J	<2.5 U	<2.5 U	<2.5 U	1.4 J	1.6 J	1.7 J	0.87 J	0.81 J	<2.5 U
n-Propylbenzene	103-65-1	5	ug/l	17	<2.5 U	11	<2.5 U	<2.5 U	<2.5 U	7.1	7.7	5.7	1.5 J	1.6 J	<2.5 U
o-Xylene (1,2-Dimethylbenzene)	95-47-6	5	ug/l	9.1	<2.5 U	0.98 J	1 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Sec-Butylbenzene Styrene	135-98-8 100-42-5	5	ug/l	4.6 <2.5 ∪	<2.5 U <2.5 U	2.7 <2.5 ∪	0.87 J <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	0.9 J <2.5 ∪	1 J <2.5 U	1.9 J 1.2 J	1.2 J <2.5 U	1.1 J <2.5 ∪	0.85 J <2.5 ∪
T-Butylbenzene	98-06-6	5	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Tert-Butyl Methyl Ether	1634-04-4	10	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Tetrachloroethene (PCE)	127-18-4	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Toluene Total 1,2-Dichloroethene (Cis and Trans)	108-88-3 540-59-0	5 NS	ug/l	5.3 <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Total Xylenes	540-59-0 1330-20-7	5	ug/l ug/l	20	<2.5 U 1.3 J	<2.5 U 0.88 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U 4.7 J	<2.5 U 5 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Total, 1,3-Dichloropropene (Cis And Trans)	542-75-6	0.4	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Trans-1,2-Dichloroethene	156-60-5	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Trans-1,3-Dichloropropene	10061-02-6	0.4 5	ug/l	<0.5 U <2.5 U	<0.5 U	<0.5 U	<0.5 U <2.5 U	<0.5 U	<0.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U
Trans-1,4-Dichloro-2-Butene Trichloroethene (TCE)	110-57-6 79-01-6	5	ug/l ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
Trichlorofluoromethane	75-69-4	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Vinyl Acetate	108-05-4	NS	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Vinyl Chloride	75-01-4	2	ug/l	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002

						Langan	Project No.: 170472	002							
Analyte	CAS Number	NYSDEC SGVs	Sampling Event Location Sample Name Sample Date	Baseline MW-2 MW02_101921 10/19/2021	Quarter 1 MW-2 MW-2_102022 10/20/2022	Quarter 1 MW-2 DUP01_102022 10/20/2022	Quarter 2 MW-2 MW-2_012623 01/26/2023	Quarter 3 MW-2 MW-2_042623 04/26/2023	Quarter 4 MW-2 MW-2_072723 07/27/2023	Quarter 5 MW-2 MW-2_102323 10/23/2023	Quarter 6 MW-2 MW-2_013124 01/31/2024	Quarter 6 MW-2 DUP01_013124 01/31/2024	Quarter 7 MW-2 MW-2_042524 04/25/2024	Quarter 8 MW-2 MW-2_072924 07/29/2024	Quarter 8 MW-2 DUP01_072924 07/29/2024
			Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds 1,1,1,2-Tetrachloroethane	630-20-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1,1-Trichloroethane	71-55-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1,2,2-Tetrachloroethane	79-34-5	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
1,1,2-Trichloroethane	79-00-5	1	ug/l	<15 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U
1,1-Dichloroethane	75-34-3	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1-Dichloroethene 1,1-Dichloropropene	75-35-4 563-58-6	5	ug/l ug/l	<5 U <25 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U
1,2,3-Trichlorobenzene	87-61-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,3-Trichloropropane	96-18-4	0.04	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,4,5-Tetramethylbenzene	95-93-2	5	ug/l	130	1.4 J	4.2 J	<2 U	<2 U	2.6	6.2	6.1 J	1.3 J	28	8.5	7
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	120-82-1 95-63-6	5	ug/l ug/l	<25 U 1.900	<2.5 U 10 J	<2.5 U 34 J	<2.5 U 12	<2.5 U 15	<2.5 U 80	<2.5 U 37	<2.5 U 110 J	<2.5 U 52 J	<2.5 U 97	<2.5 U 16	<2.5 U 15
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	0.0006	ug/l	<20 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U
1,2-Dichlorobenzene	95-50-1	3	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2-Dichloroethane	107-06-2 78-87-5	0.6	ug/l	<5 U <10 U	<0.5 U	<0.5 U <1 U	<0.5 U	<0.5 U	<0.5 U <1 U	<0.5 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U	<0.5 U	<0.5 U
1,2-Dichloropropane 1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	5	ug/l ug/l	540	<1 U 3.5 J	<10 8 J	<1 U 2.5	<1 U 2.4 J	11	<1 U 2.5	11 J	6.9 J	<1 U 3.2	<1 U 0.79 J	<1 U 0.72 J
1,3-Dichlorobenzene	541-73-1	3	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,3-Dichloropropane	142-28-9	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,4-Dichlorobenzene 1,4-Diethyl Benzene	106-46-7 105-05-5	3 NS	ug/l	<25 U 270	<2.5 U <2 U	<2.5 U 0.72 J	<2.5 U 1.4 J	<2.5 U 0.85 J	<2.5 U 1.4 J	<2.5 U 0.91 J	<2.5 U 2.5	<2.5 U 1.1 J	<2.5 U 7	<2.5 U 1.3 J	<2.5 U 1.2 J
1,4-Dietnyi Benzene 1,4-Dioxane (P-Dioxane)	123-91-1	0.35	ug/l ug/l	<2,500 U	<2 0 <250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U
2,2-Dichloropropane	594-20-7	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
2-Chlorotoluene	95-49-8	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
2-Hexanone (MBK)	591-78-6	50	ug/l	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
4-Chlorotoluene 4-Ethyltoluene	106-43-4 622-96-8	5 NS	ug/l ug/l	<25 U 800	<2.5 U 7.4 J	<2.5 U 15 J	<2.5 U 6.2	<2.5 U 9.7	<2.5 U 44	<2.5 U 13	<2.5 U 51 J	<2.5 U 30 J	<2.5 U 38	<2.5 U 5.6	<2.5 U 5.3
Acetone	67-64-1	50	ug/l	<50 U	56	63	4.4 J	12 J	37	3.8 J	<5 UJ	19 J	12	21 J	27 J
Acrylonitrile	107-13-1	5	ug/l	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Benzene	71-43-2	1 5	ug/l	2.1 J	0.69	0.35 J	0.51	0.82	0.6	<0.5 U	0.18 J	0.31 J	<0.5 U	<0.5 U	<0.5 U
Bromobenzene Bromochloromethane	108-86-1 74-97-5	5	ug/l ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Bromodichloromethane	75-27-4	50	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Bromoform	75-25-2	50	ug/l	<20 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U
Bromomethane	74-83-9	5 60	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	1.3 J	2.6 J	0.85 J	1.2 J	1.1 J	<2.5 U	<2.5 U
Carbon Disulfide Carbon Tetrachloride	75-15-0 56-23-5	5	ug/l ug/l	<50 U <5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U
Chlorobenzene	108-90-7	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Chloroethane	75-00-3	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Chloroform Chloromethane	67-66-3 74-87-3	/	ug/l ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Cis-1,2-Dichloroethene	156-59-2	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Cis-1,3-Dichloropropene	10061-01-5	0.4	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Cymene	99-87-6	5	ug/l	<25 U	<2.5 U	0.7 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	1.2 J	<2.5 U	2 J	<2.5 U	<2.5 U
Dibromochloromethane Dibromomethane	124-48-1 74-95-3	50	ug/l ug/l	<5 U <50 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U	<0.5 U <5 U
Dichlorodifluoromethane	75-71-8	5	ug/l	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Diethyl Ether (Ethyl Ether)	60-29-7	NS	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Ethylbenzene	100-41-4	5	ug/l	890	5.9	4	5.8	11	41	3.2 <2.5 U	16	19	6.3	1.2 J	1.1 J
Hexachlorobutadiene Isopropylbenzene (Cumene)	87-68-3 98-82-8	0.5 5	ug/l	<25 U 190	<2.5 U 3	<2.5 U 3.5	<2.5 U 3.2	<2.5 U 5.2	<2.5 U 22	<2.5 U 8.3	<2.5 U 26 J	<2.5 U 18 J	<2.5 U 17	<2.5 U 2.4 J	<2.5 U 2.1 J
M,P-Xylene	179601-23-1	5	ug/l	2,300	16	14	12	19	70	2.3 J	32	36	2 J	1.1 J	0.92 J
Methyl Ethyl Ketone (2-Butanone)	78-93-3	50	ug/l	<50 U	<5 UJ	21 J	<5 U	<5 U	27	<5 U	<5 UJ	13 J	<5 U	4.6 J	4.7 J
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) Methylene Chloride	108-10-1 75-09-2	NS 5	ug/l	<50 U <25 U	1.5 J 1 J	<5 U <2.5 U	<5 U 0.92 J	1.7 J <2.5 ∪	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U 0.79 J	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U
Naphthalene	91-20-3	10	ug/l ug/l	460 J	<2.5 U	3	<2.5 U	<2.5 U	<2.5 U 1.4 J	<2.5 U	<2.5 U	0.79 J 0.86 J	<2.5 U	<2.5 U 0.96 J	<2.5 U 0.87 J
n-Butylbenzene	104-51-8	5	ug/l	25	<2.5 U	0.93 J	<2.5 U	<2.5 U	0.7 J	<2.5 U	1.4 J	<2.5 U	3.2	0.94 J	0.91 J
n-Propylbenzene	103-65-1	5	ug/l	370	2.8 J	5.7 J	2.7	4.5	23	9.5	37 J	19 J	40	6.5	6.1
o-Xylene (1,2-Dimethylbenzene)	95-47-6	5	ug/l	410 18 J	2 J	1.9 J	1.5 J	2.1 J	7.5	<2.5 U	3.7	4.2	<2.5 U	<2.5 U	<2.5 U
Sec-Butylbenzene Styrene	135-98-8 100-42-5	5	ug/l ug/l	<25 U	<2.5 U <2.5 U	0.83 J <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	0.93 J <2.5 U	0.84 J <2.5 U	1.9 J <2.5 ∪	<2.5 U <2.5 U	3.5 <2.5 ∪	0.92 J <2.5 ∪	0.86 J <2.5 ∪
T-Butylbenzene	98-06-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Tert-Butyl Methyl Ether	1634-04-4	10	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Tetrachloroethene (PCE)	127-18-4	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Toluene Total 1,2-Dichloroethene (Cis and Trans)	108-88-3 540-59-0	5 NS	ug/l ug/l	130 <25 U	0.7 J <2.5 ∪	1 J <2.5 U	<2.5 U <2.5 U	0.79 J <2.5 ∪	1.2 J <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	0.74 J <2.5 ∪	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Total Xylenes	1330-20-7	5	ug/l	2,700	18 J	16 J	14 J	21 J	78	2.3 J	36	40	2.5 U	1.1 J	0.92 J
Total, 1,3-Dichloropropene (Cis And Trans)	542-75-6	0.4	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Trans-1,2-Dichloroethene	156-60-5	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Trans-1,3-Dichloropropene Trans-1,4-Dichloro-2-Butene	10061-02-6 110-57-6	0.4 5	ug/l ug/l	<5 U <25 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U
Trichloroethene (TCE)	79-01-6	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Trichlorofluoromethane	75-69-4	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Vinyl Acetate	108-05-4	NS 2	ug/l	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Vinyl Chloride	75-01-4	2	ug/l	<10 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209

							Project No.: 1704720								
			Sampling Event	Baseline	Quarter 1	Quarter 2	Quarter 3	Quarter 3	Baseline	Baseline	Quarter 1	Quarter 2	Quarter 2	Quarter 3	Quarter 4
	CAS	NYSDEC	Location	MW-3	MW-3	MW-3	MW-3	MW-3	MW-4						
Analyte	Number	SGVs	Sample Name	MW03_100721	MW-3_102122	MW-3_012623	MW-3_042623	DUP01_042623	MW04_100721	GWDUP01_100721	MW-4_102122	MW-4_012623	DUP01_012623	MW-4_042623	MW-4_072723
			Sample Date Unit	10/07/2021 Result	10/21/2022 Result	01/26/2023 Result	04/26/2023 Result	04/26/2023 Result	10/07/2021 Result	10/07/2021 Result	10/21/2022 Result	01/26/2023 Result	01/26/2023 Result	04/26/2023 Result	07/27/2023 Result
Volatile Organic Compounds	1		Onit	Hoodit	noodit	Hoodit	Hostit	nosur	Hoodit	Hoodit	Hoodit	noodit	Hobalt	Hoburt	Hostin
1,1,1,2-Tetrachloroethane	630-20-6	5	ug/l	<2.5 U											
1,1,1-Trichloroethane	71-55-6	5	ug/l	<2.5 U											
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	79-34-5 79-00-5	5 1	ug/l ug/l	<0.5 U <1.5 U											
1,1-Dichloroethane	75-34-3	5	ug/l	<2.5 U											
1,1-Dichloroethene	75-35-4	5	ug/l	<0.5 U											
1,1-Dichloropropene	563-58-6	5	ug/l	<2.5 U											
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	87-61-6 96-18-4	0.04	ug/l ug/l	<2.5 U <2.5 U											
1,2,4,5-Tetramethylbenzene	95-93-2	5	ug/l	2	<2 U										
1,2,4-Trichlorobenzene	120-82-1	5	ug/l	<2.5 U											
1,2,4-Trimethylbenzene	95-63-6	5	ug/l	<2.5 U											
1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane (Ethylene Dibromide)	96-12-8 106-93-4	0.04 0.0006	ug/l ug/l	<2.5 U <2 U											
1,2-Dichlorobenzene	95-50-1	3	ug/l	<2.5 U											
1,2-Dichloroethane	107-06-2	0.6	ug/l	<0.5 U											
1,2-Dichloropropane	78-87-5	1	ug/l	<1 U											
1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene	108-67-8 541-73-1	5	ug/l ug/l	<2.5 U <2.5 U											
1,3-Dichloropropane	142-28-9	5	ug/l	<2.5 U											
1,4-Dichlorobenzene	106-46-7	3	ug/l	<2.5 U											
1,4-Diethyl Benzene	105-05-5	NS	ug/l	2.1 J	<2 U	<2 U	<2 U	<2 U	5.3	5.3 J	<2 U				
1,4-Dioxane (P-Dioxane) 2,2-Dichloropropane	123-91-1 594-20-7	0.35 5	ug/l ug/l	<250 UJ <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 UJ <2.5 U	<250 UJ <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U
2-Chlorotoluene	95-49-8	5	ug/l	<2.5 U											
2-Hexanone (MBK)	591-78-6	50	ug/l	<5 UJ	<5 U	<5 U	<5 U	<5 U	<5 UJ	<5 UJ	<5 U				
4-Chlorotoluene	106-43-4	5	ug/l	<2.5 U											
4-Ethyltoluene Acetone	622-96-8 67-64-1	NS 50	ug/l ug/l	0.9 J 2.9 J	<2 U 1.8 J	<2 U <5 U									
Acrylonitrile	107-13-1	5	ug/l	<5 UJ	<5 U	<5 U	<5 U	<5 U	<5 UJ	<5 UJ	<5 U				
Benzene	71-43-2	1	ug/l	0.16 J	<0.5 U	<0.5 U	<0.5 U	<0.5 U	0.17 J	0.2 J	<0.5 U				
Bromobenzene	108-86-1	5	ug/l	<2.5 U											
Bromochloromethane Bromodichloromethane	74-97-5 75-27-4	5 50	ug/l ug/l	<2.5 U <0.5 U											
Bromoform	75-25-2	50	ug/l	<2 U	<2 U	<0.5 U	<2 U	<2 U	<2 U	<2 U	<2 U	<0.5 U	<2 U	<2 U	<2 U
Bromomethane	74-83-9	5	ug/l	<2.5 U											
Carbon Disulfide	75-15-0	60	ug/l	<5 U											
Carbon Tetrachloride Chlorobenzene	56-23-5 108-90-7	5	ug/l ug/l	<0.5 U <2.5 U											
Chloroethane	75-00-3	5	ug/l	<2.5 U											
Chloroform	67-66-3	7	ug/l	<2.5 U											
Chloromethane	74-87-3	5	ug/l	<2.5 U											
Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene	156-59-2 10061-01-5	5 0.4	ug/l ug/l	<2.5 U <0.5 U											
Cymene	99-87-6	5	ug/l	<2.5 U											
Dibromochloromethane	124-48-1	50	ug/l	<0.5 U											
Dibromomethane	74-95-3	5	ug/l	<5 U											
Dichlorodifluoromethane Diethyl Ether (Ethyl Ether)	75-71-8 60-29-7	5 NS	ug/l ug/l	<5 U <2.5 U											
Ethylbenzene	100-41-4	5	ug/l	4.8	<2.5 U										
Hexachlorobutadiene	87-68-3	0.5	ug/l	<2.5 U											
Isopropylbenzene (Cumene)	98-82-8	5	ug/l	3.8	<2.5 U										
M,P-Xylene Methyl Ethyl Ketone (2-Butanone)	179601-23-1 78-93-3	5	ug/l ug/l	<2.5 U <5 U	<2.5 U <5 UJ	<2.5 U <5 U	<2.5 U <5 UJ	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U				
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	NS	ug/l	<5 U											
Methylene Chloride	75-09-2	5	ug/l	<2.5 U											
Naphthalene n-Butylbenzene	91-20-3 104-51-8	10	ug/l	2 J <2.5 ∪	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	0.95 J 0.88 J	<2.5 U 0.87 J	<2.5 U <2.5 U				
n-Propylbenzene	103-65-1	5	ug/l ug/l	<2.5 0 9.4 J	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U				
o-Xylene (1,2-Dimethylbenzene)	95-47-6	5	ug/l	<2.5 U											
Sec-Butylbenzene	135-98-8	5	ug/l	<2.5 U	3	3	<2.5 U								
	100-42-5	5	ug/l	<2.5 U											
T-Butylbenzene Tert-Butyl Methyl Ether	98-06-6 1634-04-4	5 10	ug/l ug/l	<2.5 U <2.5 U											
Tetrachloroethene (PCE)	127-18-4	5	ug/l	<0.5 U											
Toluene	108-88-3	5	ug/l	<2.5 U											
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l	<2.5 U											
Total Xylenes Total, 1,3-Dichloropropene (Cis And Trans)	1330-20-7 542-75-6	5 0.4	ug/l ug/l	<2.5 U <0.5 U											
Trans-1,2-Dichloroethene	156-60-5	5	ug/l	<2.5 U											
Trans-1,3-Dichloropropene	10061-02-6	0.4	ug/l	<0.5 U											
Trans-1,4-Dichloro-2-Butene	110-57-6	5	ug/l	<2.5 U											
Trichloroethene (TCE) Trichlorofluoromethane	79-01-6 75-69-4	5 5	ug/l ug/l	<0.5 U <2.5 U											
Vinyl Acetate															
	108-05-4	NS	ug/l	<5 U											

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002

Notes:

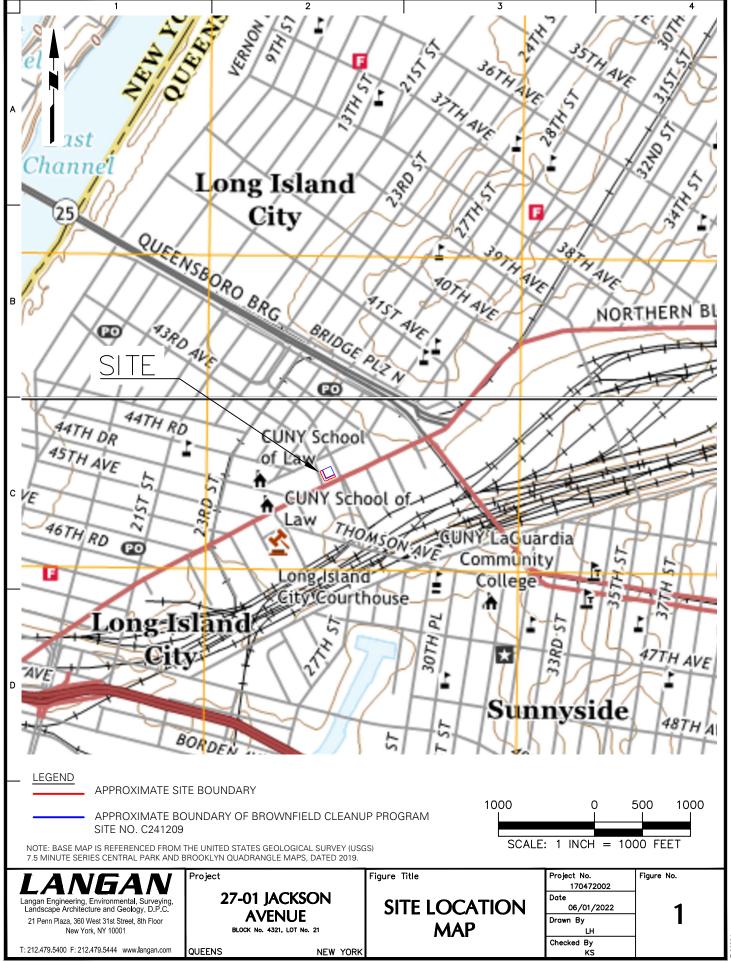
CAS - Chemical Abstract Service NS - No standard ug/l - microgram per liter NA - Not analyzed RL - Reporting limit

<RL - Not detected

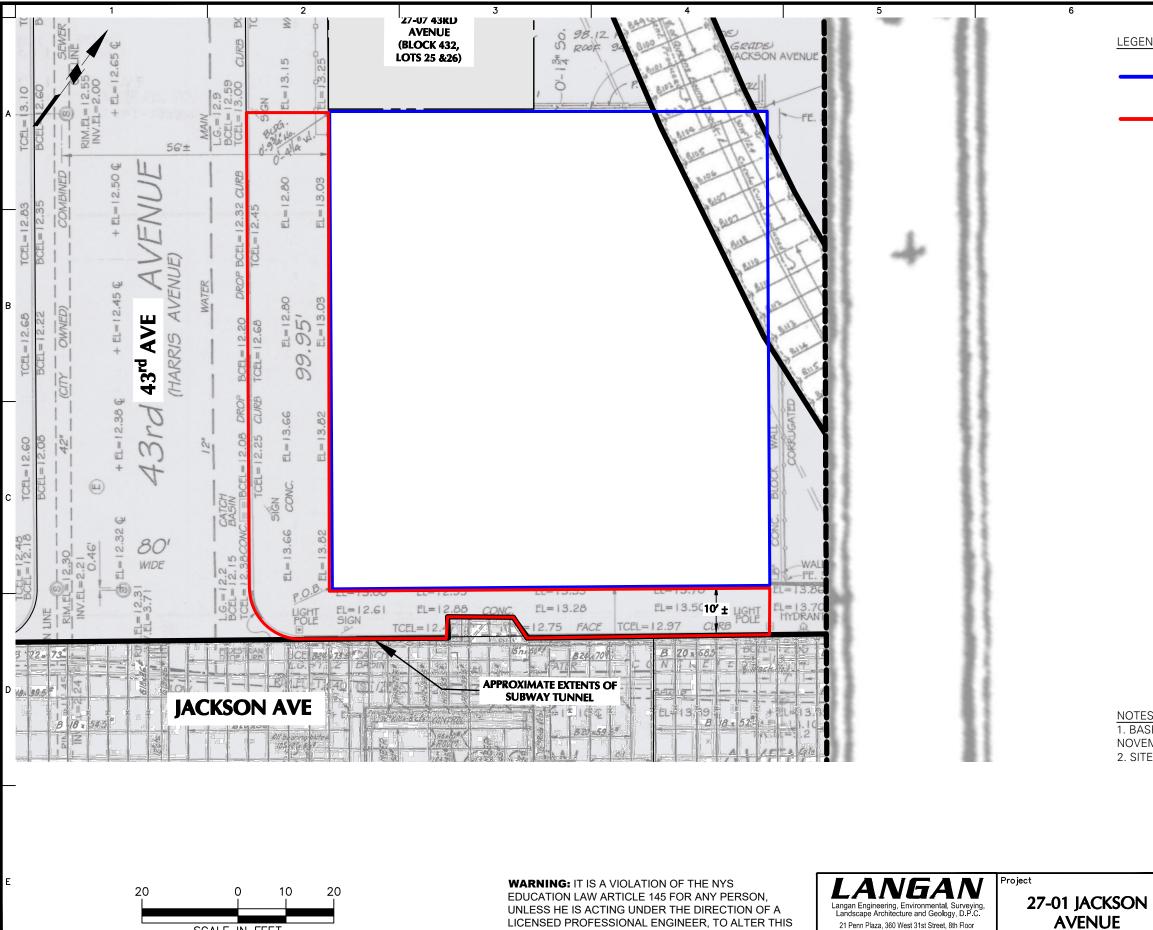
Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operation Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water and published addenda (herein collectively referenced as "NYSDEC SGVs").

Qualifiers:

J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.


UJ - The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.

U - The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.


Exceedance Summary:

10 - Result exceeds NYSDEC SGVs

FIGURES

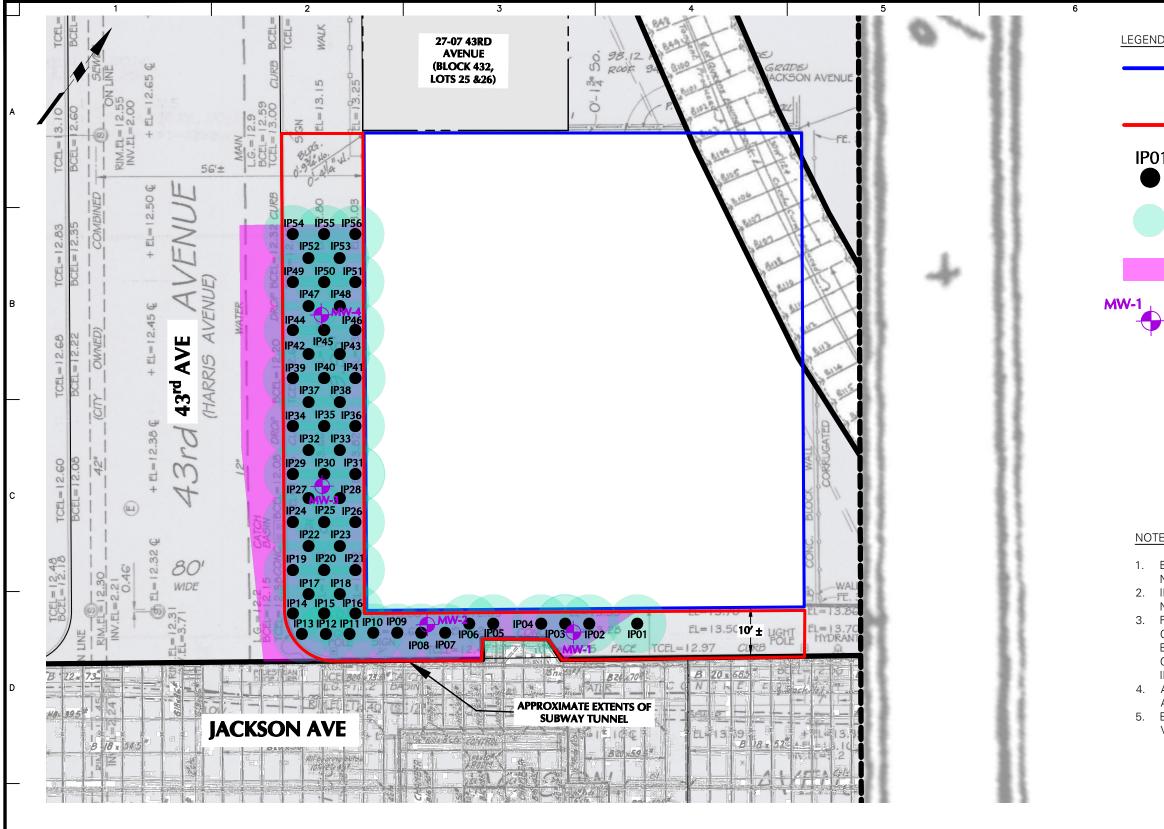
Filename: Wangan.com/datai/NYC/data0/170472002/Project DataiCAD/02/SheetFiles/OSMP/Figure 1 - Site Location Map.dwg Date: 2/14/2023 Time: 22:25 User: Ihaley Style Table: Langan.stb Layout: F1 - SITE LCO MAP

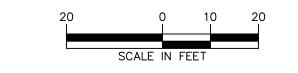
LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS

ITEM IN ANY WAY.

SCALE IN FEET

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

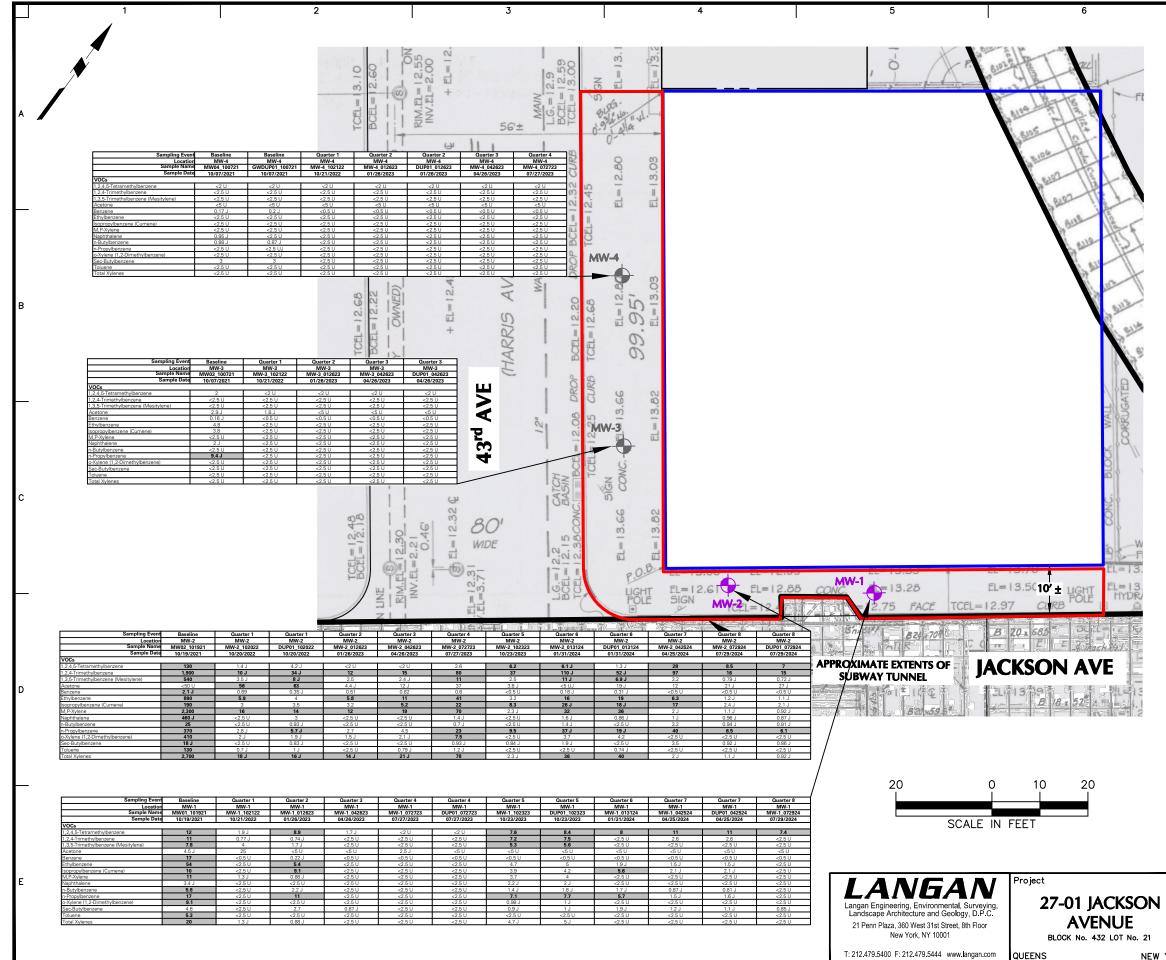

T: 212.479.5400 F: 212.479.5444 www.langan.com


Filename: \\langan.com\data\NYC\data0\170472002\Project Data\CAD\02\SheetFiles\SMP\Figure 2 - Site Layout Plan.dwg Date: 7/6/2022 Time: 13:44 User: eseery Style Table: Langan.stb Layout: ANSIB-BL

BLOCK No. 432 LOT No. 21

QUEENS

			_
egend	7	I	8
	APPROXIMATE BOUNDARY OF PROGRAM SITE NO. C241209	BROWNFIELD C	LEANUP
	APPROXIMATE SITE BOUNDAF	ťΥ	
	AP TAKEN FROM HAYNES LAND SU R 12, 2014.	RVEYORS, DATEI	D ON
	UNDARIES ARE APPROXIMATE		
	Figure Title	Project No. 170472002	Figure No.
ON	SITE LAYOUT PLAN	Date 07/06/2022 Drawn By	2
o. 21 NEW YORK		LH Checked By KS	



Filename: \\langan.com\data\NYC\data0\170472002\Project Data\CAD\02\SheetFiles\OSMP\Figure 3 - In-Situ Groundwater Treatment Injection Plan.dwg Date: 11/17/2022 Time: 22:22 User: Ihaley Style Table: Langan.stb Layout: ANSIB-BL

 I <u>D</u>	7		8					
	APPROXIMATE BOUNDARY OF PROGRAM SITE NO. C241209	BROWNFIELD C	LEANUP					
_	APPROXIMATE SITE BOUNDARY							
01	INJECTION POINT LOCATION							
	APPROXIMATE RADIUS OF INFLUENCE FOR PETROFIX							
	AI FROMIVIATE RADIUS OF INFLUENCE FUR PETRUFIX							
	APPROXIMATE EXTENT OF OF	F-SITE PETROLEU	IM PLUME					
	MONITORING WELL LOCATION	Ν						
TES								
BAS		ID SURVEYORS, D	DATED					
INJE	/EMBER 12, 2014. ECTIONS WERE COMPLETED BET\ /EMBER 11, 2021.	WEEN OCTOBER 2	20, 2021 AND					
RAD CON	IUS OF INFLUENCE CALCULATION	EMICAL MANUFA	CTURERS					
CON	ED ON SUBSURFACE CONDITION ICENTRATIONS ENCOUNTERED D ESTIGATION CONDUCTED BY LAN	URING THE REME						
ALL	INJECTION AND MONITORING W ROXIMATE.		ARE					
	ELEVATIONS (EL.) ARE REFERENCED TO THE NORTH AMERICAN VERTICAL DATUM OF 1983 (NAVD83).							
	WARNING: IT IS A VIOL	ΔΤΙΩΝ ΩΕ ΤΗΕ ΝΥ	r c					
	EDUCATION LAW ARTIC UNLESS HE IS ACTING U	LE 145 FOR ANY P	PERSON,					
	LICENSED PROFESSION ITEM IN ANY WAY.	IAL ENGINEER, TC	ALTER THIS					
	Figure Title	Project No. 170472002	Figure No.					
	IN-SITU GROUNDWATER	Date 11/17/2022	2					
	TREATMENT INJECTION PLAN	Drawn By LH	3					

INJECTION PLAN

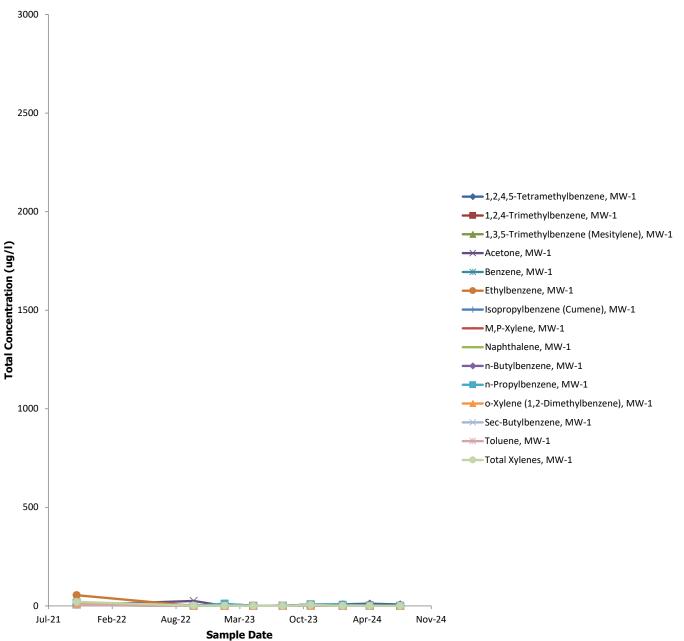
Checked By KS

	7	8
LEGEND		
	APPROXIMATE BOUNDAR PROGRAM SITE NO. C2412	Y OF BROWNFIELD CLEANUP 209
	APPROXIMATE SITE BOUN	NDARY
MW-3	MONITORING WELL LOCA DISCONTINUED 2023)	TION (GROUNDWATER SAMPLING

MONITORING WELL LOCATION

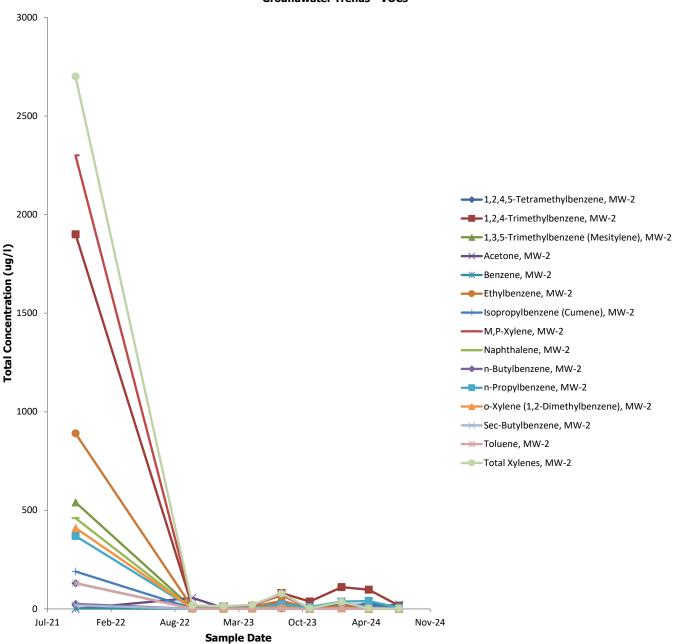
Analyte	NYSDEC SGVs		
VOCs			
1,2,4,5-Tetramethylbenzene	5		
1,2,4-Trimethylbenzene	5		
1,3,5-Trimethylbenzene (Mesitylene)	5		
Acetone	50		
Benzene	1		
Ethylbenzene	5		
Isopropylbenzene (Cumene)	5		
M,P-Xylene	5		
Naphthalene	10		
n-Butylbenzene	5		
n-Propylbenzene	5		
o-Xylene (1,2-Dimethylbenzene)	5		
Sec-Butylbenzene	5		
Toluene	5		
Total Xylenes	5		

NOTES

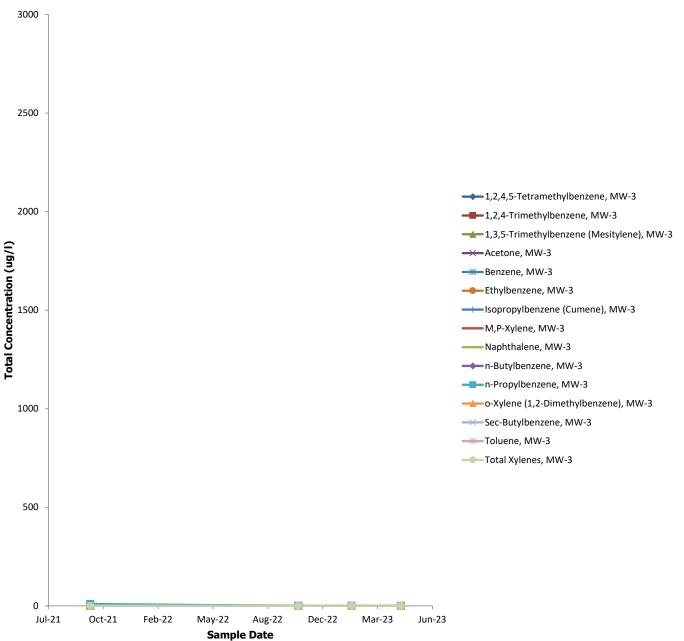

MW-1

- 1. BASEMAP TAKEN FROM HAYNES LAND SURVEYORS, DATED ON NOVEMBER 12, 2014.
- ALL LOCATIONS ARE APPROXIMATE. 2.
- THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) ALLOWED THE DISCONTINUATION OF GROUNDWATER SAMPLING 3. AT MONITORING WELLS MW-3 AND MW-4 VIA EMAIL CORRESPONDENCE ON AUGUST 8 AND OCTOBER 13, 2023.
- GROUNDWATER RESULTS ARE COMPARED TO THE NEW YORK STATE 4. DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS GA GROUNDWATER.
- ONLY COMPOUNDS EXCEEDING COMPARISON CRITERIA ARE SHOWN. 5
- RESULTS ABOVE NYSDEC SGVs ARE SHADED AND BOLDED. RESULTS ARE SHOWN IN MICROGRAMS PER LITER (µg/L). 6. 7.
- J= THE ANALYTE WAS DETECTED ABOVE THE METHOD DETECTION LIMIT, BUT 8. BELOW THE REPORTING LIMIT (RL); THE RESULT IS AN ESTIMATED CONCENTRATION.
- 9. U = THE ANALYTE WAS ANALYZED FOR, BUT NOT DETECTED AT A LEVEL GREATER THAN OR EQUAL TO THE RL; THE VALUE SHOWN IN THE TABLE IS THE RL.

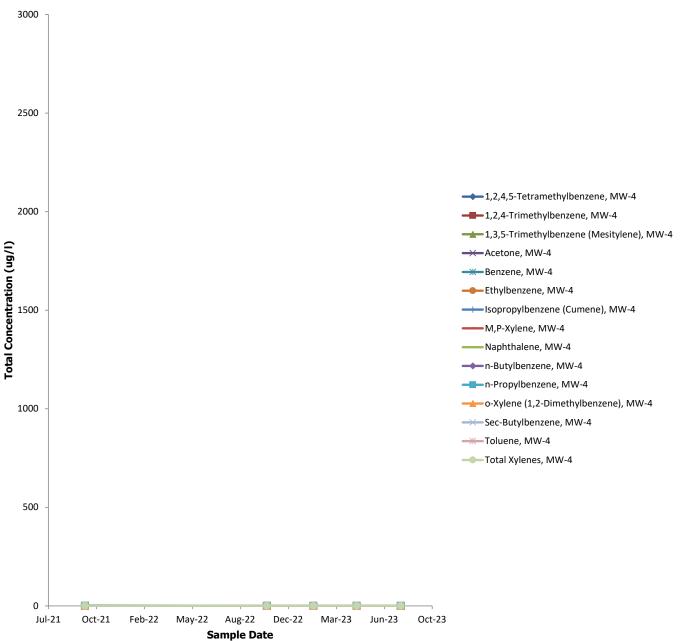
WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.


	Figure Title	Project No. 170472002	Figure No.	
	GROUNDWATER SAMPLE	Date 08/26/2024	Λ	
	ANALYTICAL RESULTS MAP	Drawn By LH	4	uppup
YORK		Checked By KS		0 2023

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002


MW-1 Groundwater Trends - VOCs

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002


MW-2 Groundwater Trends - VOCs

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002

MW-3 Groundwater Trends - VOCs

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002

MW-4 Groundwater Trends - VOCs

ATTACHMENT A

NYSDEC Correspondence for MW-3 and MW-4 Monitoring

Ali Reach

To: Subject: Lexi Haley RE: 27-01 Jackson Avenue Off-site (S241209) - Off-Site Well Monitoring Program Meeting

From: Bollers, Shaun (DEC) < shaun.bollers@dec.ny.gov</pre>

Sent: Tuesday, August 8, 2023 10:30 AM

To: Lexi Haley <<u>lhaley@langan.com</u>>

Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Obligado, Andre A (DEC) <<u>andre.obligado@dec.ny.gov</u>>; Kenney, Julia M (HEALTH) <<u>julia.kenney@health.ny.gov</u>>

Subject: [External] RE: 27-01 Jackson Avenue Off-site (S241209) - Off-Site Well Monitoring Program Meeting

Lexi:

As discussed during our telecon last Friday 8/5 this change in sampling protocol for the 27-01 Jackson Avenue Off-site site S241209 is acceptable. There is no need to replace MW-3.

Thanks,

Shaun Bollers

Assistant Environmental Engineer, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | <u>shaun.bollers@dec.ny.gov</u>

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Tuesday, August 8, 2023 9:34 AM
To: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good morning Shaun,

As discussed during our call on Friday, monitoring well MW-3 (located along 43rd Avenue) was destroyed during installation of utilities beneath the sidewalk and was not able to be sampled from during the Q4 event. In

the previous three quarters of groundwater monitoring, VOC concentrations were non-detect in samples collected from MW-3. As such, we are requesting to stop monitoring at MW-3.

We will continue to monitor VOC concentrations in groundwater from monitoring wells MW-1, MW-2, and MW-4 on a quarterly basis.

Thank you,

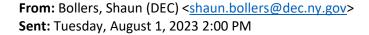
Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> <u>www.langan.com</u>

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

From: Lexi Haley
Sent: Tuesday, August 1, 2023 2:13 PM
To: 'Bollers, Shaun (DEC)' <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting


Thanks Shaun – I will send out the meeting invite for Friday.

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

To: Lexi Haley <<u>lhaley@langan.com</u>> Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>> Subject: [External] RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

Hi Lexy: Friday 8/4 would be fine.

Shaun

Shaun Bollers

Assistant Environmental Engineer, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | <u>shaun.bollers@dec.ny.gov</u>

www.dec.ny.gov | III | III

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Tuesday, August 1, 2023 11:38 AM
To: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

Hi

Good morning Shaun,

Brian and I would like to set up a call with you to discuss the off-site well monitoring program at 27-01 Jackson Avenue (BCP Site No. C241209). We are available between 12 pm and 2:30 pm on Thursday (8/3) and between 11 am and 12 pm on Friday (8/4). Do either of these time slots work for you? If not, we can schedule something for next week.

Thank you,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u>

Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor New York, NY 10001-2727 www.langan.com

Caroline Devin

From:	Caroline Devin
Sent:	Wednesday, November 8, 2023 5:18 PM
То:	Caroline Devin
Subject:	FW: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

From: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Sent: Friday, October 13, 2023 10:10 AM
To: Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>; Obligado, Andre A (DEC) <<u>andre.obligado@dec.ny.gov</u>>
Subject: [External] RE: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

Good Morning Lexi: NYSDEC has no objections to this change in the sampling protocol as the MW-4 groundwater samples have shown non-detect for 4 consecutive quarters.

BTW How far has the on-site construction progressed?

Regards, Shaun Shaun Bollers Assistant Environmental Engineer, Division of Environmental Remediation New York State Department of Environmental Conservation 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | <u>shaun.bollers@dec.ny.gov</u>

www.dec.ny.gov

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Wednesday, October 11, 2023 3:12 PM
To: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: RE: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon Shaun,

I hope you are doing well!

We are planning to schedule the next quarterly sampling event at 27-01 Jackson Avenue for the week of October 23rd. As noted in the Q4 Off-Site Quarterly GW Monitoring Report, groundwater results from MW-4

have been non-detect for consecutive quarters and we are requesting to conduct further monitoring only in MW-1 and MW-2.

Please let us know if you have any objections to this plan.

Thank you,

Lexi Haley Senior Staff Engineer

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

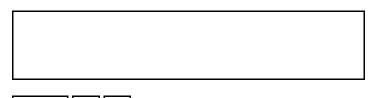
From: Lexi Haley
Sent: Friday, September 15, 2023 1:58 PM
To: 'Bollers, Shaun (DEC)' <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

Good afternoon Shaun,

Please see below for a link to the quarterly sampling report for 27-01 Jackson Avenue. Please note that, since groundwater results from MW-4 have been non-detect for consecutive quarters, we are requesting to conduct further monitoring only in MW-1 and MW-2.

https://clients.langan.com/Sharing/filesharing/ViewPosted?transactionHash=1122680310

Let us know if you have any questions.


Have a great weekend,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u>

Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

ATTACHMENT B

Daily Site Observation Report

SITE OBSERVATION REPORT

PROJECT No.:	170472002		
PROJECT:	27-01 Jackson Avenue	CLIENT: 2701 Jackson Avenue LLC	DATE: 07/29/24
LOCATION:	Long Island City, NY		
CONTRACTOR:	Lions Group NYC		LANGAN REP. : Ali Reach
CONTRACTOR' N/A	S EQUIPMENT:	PRESENT AT SITE: Ali Reach and Mike Pinnella – La Michael Capozzoli– Lions Group	-

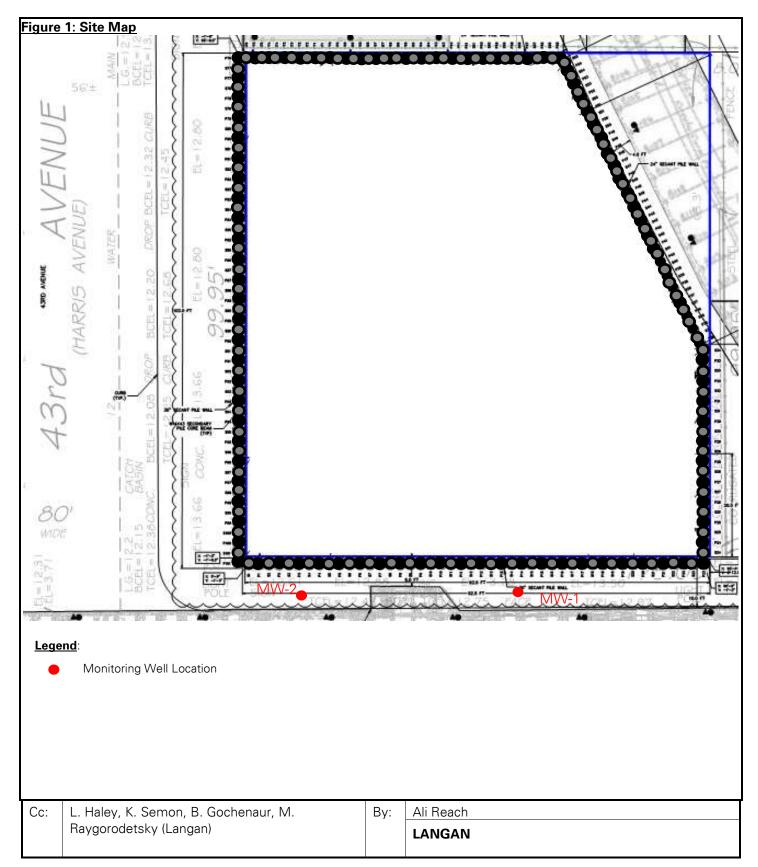
OBSERVATIONS, DISCUSSIONS, TEST RESULTS, ETC.:

Langan was present to observe environmental protocols in accordance with the January 2021 NYSDEC approved Off-Site Site Management Plan (OSMP) for BCP site C241209 at 27-01 Jackson Avenue (Block 432, Lot 21). Observed activities were as follows:

Site Activities

 Langan used a peristaltic pump to purge and sample groundwater monitoring wells MW-1 and MW-2 along the Jackson Avenue sidewalk. Purged groundwater was screened for odors, sheen, and organic vapors using a photoionization detector (PID). Odors, sheen or PID readings above background levels were not observed in MW-2. A maximum PID reading of 147.0 parts per million (ppm) was detected beneath the well cap at MW-1; however, no odors or sheen was observed in the purged groundwater. Purged groundwater was containerized in a 55-gallon New York State Department of Transportation (NYSDOT)-approved drum for future disposal.

Sampling


 Langan collected two groundwater samples (plus quality assurance/quality control [QA/QC] samples) for laboratory analysis of NYSDEC Part 375/target compound list (TCL) volatile organic compounds (VOCs). The samples were submitted to Alpha Analytical Inc. (Alpha) of Mahwah, New Jersey, a New York State Department of Health (NYSDOH) Environmental Laboratory Accredited Program (ELAP)-certified laboratory under standard chain-of-custody protocols.

Anticipated Activities

• Further assessment of groundwater sample analytical results will determine future site activities, if required by the NYSDEC.

Cc:	L. Haley, K. Semon, B. Gochenaur, M.	By:	Ali Reach
	Raygorodetsky (Langan)		LANGAN

SITE OBSERVATION REPORT

SITE OBSERVATION REPORT

SITE PHOTOGRAPHS

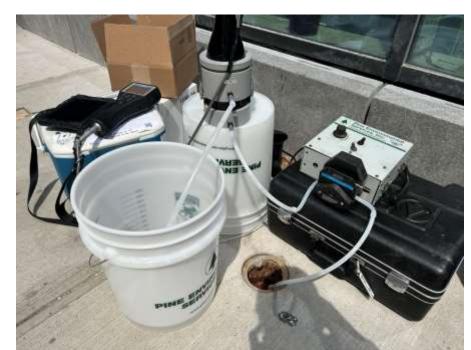


Photo 1: View of Langan purging monitoring well MW-2 along the Jackson Avenue sidewalk (facing northwest).

Cc:	L. Haley, K. Semon, B. Gochenaur, M.	By:	Ali Reach
	Raygorodetsky (Langan)		LANGAN

ATTACHMENT C

Well Purging and Sampling Logs

Troject Name, 27.01 Jackson Ava Weil Nei Mel Na Mel	Project Information		Well Information		Equipment Information			S	ampling Condition	s	Sampling Information		
Privet Number: Unit D47/0002 Well Begin: 11 31 Pure Markes and Model: Persister States for und PU Jopni: 0.01 12.7 Sampleing und MS//NSD Site Lossition: Long Isian Chy, Well Screet B tr. Fine Summission 01118 Pure privates Capity for Using Sampleing 12.7 202.02 12.3 Sampleing 14.3 Sampleing 77.202.024 Personal: TEMP PH OP CONDUCTIVITY Pure Summission 10.118 Pure privates Capity for Using Sampleing 14.3 Sampleing 77.202.024 TIME TEMP PH OP OP OP OP OP OP OP OP Stabilized7 Stabilized7<	Project Name:	27-01 Jackson Ave	Well No:	MW-1	Water Quality Device Model:		Horiba U-52	Weather:		Cloudy, 69-84 °F			
Subscription Long Logitude Long Logitude Long Logitude Long Logitude Long Logitude Long Logitude Logitude <thlogitude< th=""> Logitude <thlogitude< th=""></thlogitude<></thlogitude<>	Project Number:	170472002	Well Depth:	19 ft			Background PID (ppm):		0.0	Sample(s):	—		
Personality Intervality 19 fty Tubing Damset 38 then Ob Deptite Water Before Purge: 14.5 Sample Time: 14.15 Intervality Intervality 19 fty Tubing Damset 38 then Ob Deptite Water Before Purge: 14.5 Sample Time: 14.15 Intervality Intervality Intervality Tubing Damset Before Purge: 14.5 Sample Time: 14.15 Intervality Intervality Intervality Intervality Intervality Intervality Intervality NOTES Intervality Note Intervality Note Intervality Note Intervality Intervality Note Intervality Intervality Note Intervality Intervality Intervality Intervality Intervality Intervality Intervality Intervality <	Site Location:	Long Island City, NY	Well Diameter:	2-inch	Pump	p Make and Model: Peristaltic Pump		PID Beneath Inner Cap (ppm):		147			
Personnel Interval: 19 If: Tubing Danafer: 38 rich CO Depth to Water Before Purge: 14-15 Sample Time: 14-15 STABLIZATION # Successive readings within limits with a standing of the standin	Sampling	Ali Beach	Well Screen					Pu	mp Intake Depth:		Sample Date:		
TEMP PH ORP CONDUTVITY mS/cm TUME D0 DTW Flow Rate (gr) Cumulative (gr) NOTES TIME (+/-3%) (+/-0.1) (+/-10%) (v/-10%) boxe 5 boxe 5 (v/-10%) boxe 5 b	Personnel:	Air Heach	Interval:	19 ft					ater Before Purge:	14.5	Sample Time:	14:15	
nm nm<							•						
Vertice vertice <t< td=""><td></td><td>TEMP</td><td>PH</td><td>ORP</td><td>CONDUCTIVITY</td><td>TURBIDITY</td><td>DO</td><td>DTW</td><td>Flow Rate</td><td>Cumulativa</td><td>NOTES</td><td></td></t<>		TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulativa	NOTES		
TIME (+/-03%) (+/-01%) (+/-10%) (+/-03%) (+/-10%) <th< td=""><td></td><td>°Celsius</td><td></td><td>mV</td><td>mS/cm</td><td>ntu</td><td>mg/l</td><td>ft</td><td>(gpm)</td><td></td><td></td><td>Ctabilized 2</td></th<>		°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)			Ctabilized 2	
TME (4/-3%) (4/-0.1) (4/-3%) NU 0.5 mg/l tt 0.013 gml 0.006r, odor etc. 12:35 24.89 7.41 -64 3.090 24.0 0.34 14.50 NA 0.00 orange-beige material N 12:40 22.73 6.88 -65 3.100 20.5 0.00 18.00 0.05 0.50 clear, no odor N 13:20 24.16 6.72 -70 2.910 26.88 0.00 18.00 0.05 0.50 clear, no odor N 13:25 2.252 6.62 4.82 2.420 39.1 6.48 17.40 0.05 1.50 well dry, wait for recharge N 13:35 2.206 6.76 480 2.440 39.1 6.48 0.74 1.90 clear, no odor N 13:35 2.2.91 6.87 110 2.640 57.2 0.000 18.40 0.09 1.20 clear, no odor N 13:45 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>(+/- 10%) above 5</td><td>-</td><td>Drawdown < 0.33</td><td></td><td>•</td><td></td><td>Stabilized?</td></td<>						(+/- 10%) above 5	-	Drawdown < 0.33		•		Stabilized?	
BEGIN PURGING BEGIN PURGING 12:35 24.89 7.41 6.46 3.000 24.0 0.34 14.50 N/A 0.00 orange-beige material N 12:40 22.73 6.98 -66 3.100 20.6 0.00 16.10 0.06 0.25 orange-beige material N 12:45 21.49 6.79 -70 2.910 26.8 0.00 16.02 0.05 0.75 Well are, no cdor N 13:20 24.16 6.74 -73 2.620 25.3 0.32 16.02 0.05 1.00 clear, no cdor N 13:20 22.52 6.82 -82 2.420 39.1 6.48 17.40 0.06 1.00 clear, no cdor N 13:35 22.06 6.76 -80 2.540 63.4 0.14 18.90 0.06 1.50 well dry, wait for recharge N 13:40 22.89 7.11 -100 2.640 67.2 0.00 <	TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	ft	<0.13 gpm)	volume (Gal)	color, odor etc.		
12:40 22.73 6.98 -65 3.100 20.5 0.00 16.10 0.05 0.25 orange-leging matrix N 12:45 21.49 6.73 -70 2.910 26.8 0.00 18.00 0.05 0.50 clear, no odor N 13:20 24.16 6.74 -78 2.620 25.3 0.32 16.02 0.05 0.75 well dry, wait for recharge N 13:30 21.99 6.78 -80 2.410 39.4 6.62 1.79 0.05 1.00 clear, no odor N 13:30 21.99 6.76 -80 2.540 65.7 0.00 18.40 0.05 1.50 well dry, wait for recharge N 13:45 22.91 6.85 -113 2.641 43.0 0.00 18.90 0.04 1.20 well dry, wait for recharge N 13:45 22.91 6.85 -113 2.641 43.0 0.00 18.90 0.04 1.20	<u>I</u>	. ,	<u> </u>		<u> </u>	BEGIN		ļļ			<u> </u>		
1240 22.73 6.38 -65 3.100 20.5 0.00 16.10 0.05 0.25 1 N 12.45 21.49 6.73 -70 2.910 26.8 0.00 18.00 0.05 0.75 well dry. wait for recharge N 13.25 22.52 6.82 +32 2.420 39.1 6.48 17.40 0.065 1.25 clear, no ador N 13.35 22.96 6.78 +80 2.410 39.4 6.02 17.90 0.06 1.25 clear, no ador N 13.40 22.89 7.10 -100 2.640 65.4 0.14 18.90 0.06 1.50 well dry. wait for recharge N 13.45 22.91 6.85 -113 2.641 43.0 0.00 18.90 0.04 1.20 well dry. wait for recharge N 13.45 22.91 6.85 -113 2.641 43.0 0.00 18.90 0.04 1.20 well dry. wai	12:35	24.89	7.41	-64	3.090	24.0	0.34	14.50	N/A	0.00		Ν	
13:20 24.16 6.74 -78 2.80 25.3 0.32 16.02 0.05 0.75 well dy. wait for recharge N 13:25 22.52 6.82 .82 2.420 39.1 6.48 17.40 0.05 1.00 clear, no odor N 13:30 21.99 6.76 .80 2.410 39.4 6.02 17.80 0.05 1.20 clear, no odor N 13:34 22.08 6.76 .80 2.540 63.4 0.14 18.90 0.05 1.50 well dy. wait for recharge N 13:45 22.91 6.85 .110 2.640 57.2 0.00 18.40 0.09 1.20 well dy. wait for recharge N 13:45 22.91 6.85 .110 2.640 57.2 0.00 18.40 0.09 1.20 well dy. wait for recharge N Additional water quality parameters were not monitored due to poor recharge of the well. Groundwater sample was collected after purging about three well volumes. <td colspa<="" td=""><td>12:40</td><td>22.73</td><td>6.98</td><td>-65</td><td>3.100</td><td>20.5</td><td>0.00</td><td>16.10</td><td>0.05</td><td>0.25</td><td>orange-beige material</td><td>Ν</td></td>	<td>12:40</td> <td>22.73</td> <td>6.98</td> <td>-65</td> <td>3.100</td> <td>20.5</td> <td>0.00</td> <td>16.10</td> <td>0.05</td> <td>0.25</td> <td>orange-beige material</td> <td>Ν</td>	12:40	22.73	6.98	-65	3.100	20.5	0.00	16.10	0.05	0.25	orange-beige material	Ν
13:25 22.52 6.62 +82 2.420 39.1 6.48 17.40 0.05 1.00 Clear, no odor N 13:30 21.99 6.78 -80 2.410 39.4 6.02 17.90 0.05 1.25 clear, no odor N 13:35 22.06 6.76 -80 2.540 63.4 0.14 18.90 0.05 1.50 well dry. wait for recharge N 13:40 22.89 7.10 -100 2.640 57.2 0.00 18.40 0.09 1.20 well dry. wait for recharge N Additional water quality parameters were not monitored due to poor recharge of the well. Groundwater sample was collected after purging about three well volumes. Votes: Negation additional water quality parameters were not monitored due to poor recharge of the well. Groundwater sample was collected after purging about three well volumes. Votes: Negation addition potential, measured in inches. Negation addition potential, measured in milliorens. Negation addition additon potential, measured in milliorens potenon potenti	12:45	21.49	6.79	-70	2.910	26.8	0.00	18.00	0.05	0.50	clear, no odor	Ν	
13:30 21.99 6.78 -80 2.410 33.4 6.02 17.90 0.05 1.25 clear, no odor N 13:35 22.06 6.76 -80 2.540 63.4 0.14 18.90 0.05 1.50 well dry. wait for recharge N 13:40 22.89 7.10 -100 2.640 57.2 0.00 18.90 0.04 1.20 well dry. wait for recharge N 13:45 22.91 6.85 -113 2.641 43.0 0.00 18.90 0.04 1.20 well dry. wait for recharge N Additional water quality parameters were not monitored due to poor recharge of the well. Groundwater sample was collected after purging about three well volumes. Votes: Veldiaphi and groundwater depths were measured in fielt below the top of well casing. Veldiaphi and groundwater depths were measured in millionts (mV) PTD = Photoionization Detector PRIMeters PRIMeters PRIMeters PRI well wolspan= for conintaion<	13:20	24.16	6.74	-78	2.620	25.3	0.32	16.02	0.05	0.75	well dry. wait for recharge	Ν	
13:30 21:99 6.78 -80 2.410 39.4 6.02 17.90 0.05 1.25 4.14 N 13:35 22.06 6.76 -80 2.540 63.4 0.14 18.90 0.05 1.50 well dry. wait for recharge N 13:40 22.89 7.10 -100 2.640 57.2 0.00 18.40 0.09 1.20 clear, no ador N Additional water quality parameters were not monitored due to poor recharge of the well. Groundwater sample was collected after purging about three well volumes. Notes: 1. Well depths and groundwater depths were measured in feet below the top of well casing. N <td>13:25</td> <td>22.52</td> <td>6.82</td> <td>-82</td> <td>2.420</td> <td>39.1</td> <td>6.48</td> <td>17.40</td> <td>0.05</td> <td>1.00</td> <td>alaar na adar</td> <td>Ν</td>	13:25	22.52	6.82	-82	2.420	39.1	6.48	17.40	0.05	1.00	alaar na adar	Ν	
13:40 22.89 7.10 -100 2.640 57.2 0.00 18.40 0.09 1.20 clear, no odor N 13:45 22.91 6.85 -113 2.641 43.0 0.00 18.90 0.04 1.20 well dry. wait for recharge N Additional water quality parameters were not monitored due to poor recharge of the well. Groundwater sample was collected after purging about three well volumes. Notes: 1. Well depts and groundwater depths were measured in feet below the top of well casing. Well dry. wait for recharge N 2. Well and tubing diameters are measured in incles. S. PID = Photoionization Detector S. PID = Photoionization Detector S. PID = Photoionization Detector S. PID = Photoionization measured in millivolts (mV) 3. DP = Oxidation-reduction potential, measured in millivolts (mV) S. ORP = Oxidation-reduction potential, measured in milligrams per liter (mg/L) S. DTW = Depth to water S. ORP = mill-Siemens per centimeter S. ORP = mill-Siemens per centimeter S. ORP = Monometric Turbidity Unit S. Turbidity Unit S. PID = Photometric Turbidity Unit S. ORP = Monometric Turbidity Unit S. ORP = Mon		21.99	6.78	-80	2.410	39.4	6.02	17.90			clear, no odor	Ν	
13:45 22.91 6.85 -113 2.641 43.0 0.00 18.90 0.04 1.20 well dry. wait for recharge N Additional water quality parameters were not monitored due to poor recharge of the well. Groundwater sample was collected after purging about three well volumes. Votes: 1. Well depths and groundwater depths were measured in feet below the top of well casing. .					2.540			18.90			well dry. wait for recharge	Ν	
Additional water quality parameters were not monitored due to poor recharge of the well. Groundwater sample was collected after purging about three well volumes. Votes: I. Well depths and groundwater depths were measured in feet below the top of well casing. 2. Well and tubing diameters are measured in inches. 3. PID = Photoionization Detector 3. PID = Photoionization Detector 5. pH = Hydrogen ion concentration 5. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L) 3. DTW = Depth to water 9. mS/cm = milli-Siemens per centimeter 10. NTU = Nephelometric Turbidity Unit 11. N/A = Not Applicable													
Notes: 1. Well depths and groundwater depths were measured in feet below the top of well casing. 2. Well and tubing diameters are measured in inches. 3. 3. PID = Photoionization Detector 4. 4. PPM = Parts per million 5. 5. pH = Hydrogen ion concentration 5. 0. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L) 8. DTW = Depth to water 9. mS/cm = milli-Siemens per centimeter 10. NTU = Nephelometric Turbidity Unit 11. N/A = Not Applicable	13:45											N	
I. Wel ^I depths and groundwater depths were measured in feet below the top of well casing. 2. Well and tubing diameters are measured in inches. 3. PID = Photoionization Detector 4. PPM = Parts per million 5. pH = Hydrogen ion concentration 5. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L) 8. DTW = Depth to water 9. mS/cm = milli-Siemens per centimeter 10. NTU = Nephelometric Turbidity Unit 11. N/A = Not Applicable		Additio	nal water quality pa	arameters were n	ot monitored due t	o poor recharge of	the well. Ground	water sample was c	ollected after purg	jing about three w	vell volumes.		
2. Well and tubing diameters are measured in inches. 3. PID = Photoionization Detector 4. PPM = Parts per million 5. pH = Hydrogen ion concentration 5. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L) 8. DTW = Depth to water 9. mS/cm = milli-Siemens per centimeter 10. NTU = Nephelometric Turbidity Unit 11. N/A = Not Applicable LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.	<u>Notes:</u>												
 B. PID = Photoionization Detector PPM = Parts per million pH = Hydrogen ion concentration ORP = Oxidation-reduction potential, measured in millivolts (mV) DO = Dissolved Oxygen, measured in milligrams per liter (mg/L) DTW = Depth to water mS/cm = milli-Siemens per centimeter NTU = Nephelometric Turbidity Unit I. N/A = Not Applicable 		-		w the top of well c	asing.								
4. PPM = Parts per million 5. pH = Hydrogen ion concentration 6. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L) 8. DTW = Depth to water 9. mS/cm = milli-Siemens per centimeter 10. NTU = Nephelometric Turbidity Unit 11. N/A = Not Applicable LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.	Ŭ		iches.										
5. pH = Hydrogen ion concentration 6. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L) 8. DTW = Depth to water 9. mS/cm = milli-Siemens per centimeter 10. NTU = Nephelometric Turbidity Unit 11. N/A = Not Applicable LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.													
S. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L) 8. DTW = Depth to water 9. mS/cm = milli-Siemens per centimeter 10. NTU = Nephelometric Turbidity Unit 11. N/A = Not Applicable LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.													
7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L) 3. DTW = Depth to water 5. mS/cm = milli-Siemens per centimeter 10. NTU = Nephelometric Turbidity Unit 11. N/A = Not Applicable LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.													
3. DTW = Depth to water 9. mS/cm = milli-Siemens per centimeter 10. NTU = Nephelometric Turbidity Unit 11. N/A = Not Applicable LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.		•											
9. mS/cm = milli-Siemens per centimeter 10. NTU = Nephelometric Turbidity Unit 11. N/A = Not Applicable LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.			ams per liter (mg/L)										
10. NTU = Nephelometric Turbidity Unit 11. N/A = Not Applicable LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.													
11. N/A = Not Applicable LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.	-	•											
LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.		•											
				LANGA	N Engineering, Env	/ironmental, Surve	ving, Landscape A	rchitecture and Geo	ology, D.P.C.				
							•						

Project Information		Well Information Equipment Inform				tion Sampling Conditions			S	Sampling Information	
Project Name:	27-01 Jackson Ave	Well No:	MW-2	Water Quality Device Model:		Horiba U-52	Weather: Cloudy, 69-84 °F			MW-2_072924	
Project Number:	170472002	Well Depth:	20 ft	Pine Number: 25355		25355	Background PID (ppm): 0.0			Sample(s):	and
Site Location:	Long Island City, NY	Well Diameter:	1-inch	Pump	Make and Model:	Peristaltic Pump	PID Beneath Inner Cap (ppm):		0.0		DUP01_072924
Sampling	Ali Reach	Well Screen	10 ft		Pine Number:	01118	P	ump Intake Depth:	16.5 ft	Sample Date:	7/29/2024
Personnel:	Air Neach	Interval:	20 ft		Tubing Diameter:	3/8-inch OD	Depth to W	ater Before Purge:	12.42 ft	Sample Time:	11:30
					ć	3					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulativa	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		04-1-11-1-12
					(+/- 10%) above	(+/- 10%) above	Drawdown		Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	< 0.33 ft	(<0.13 gpm)	Volume (Gal)	color, odor etc.	
					•	BEGIN PURGING					
10:40	24.78	9.60	-2	1.21	84.0	5.08	N/A	N/A	0.0		N
10:45	24.76	9.63	-6	1.20	69.0	5.09	N/A	0.05	0.25	clear water, no odors/sheen	N
10:50	24.77	9.64	-7	1.21	63.0	5.09	N/A	0.05	0.5		N
10:55	24.77	9.69	-13	1.18	50.0	5.23	N/A	0.05	0.75		N
11:00	25.15	9.72	-25	1.16	28.5	6.04	N/A	0.05	1		N
11:05	25.20	9.85	-24	1.14	24.6	6.06	N/A	0.05	1.25		N
11:10	25.18	9.91	-29	1.15	23.2	6.10	N/A	0.05	1.50		N
11:15	25.11	9.92	-31	1.14	22.9	6.07	N/A	0.05	1.75		Y
Well and tubing d PID = Photoioniza PPM = Parts per pH = Hydrogen ic ORP = Oxidation- DO = Dissolved C DTW = Depth to mS/cm = milli-Sie	million on concentration -reduction potential, measure Dxygen, measured in milligra water emens per centimeter metric Turbidity Unit	iches. ed in millivolts (mV)	w the top of well	casing.							

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

ATTACHMENT D

Laboratory Analytical Report

ANALYTICAL REPORT

Lab Number:	L2442518
Client:	Langan Engineering & Environmental
	21 Penn Plaza
	360 W. 31st Street, 8th Floor
	New York, NY 10001-2727
ATTN:	Kimberly Semon
Phone:	(212) 479-5486
Project Name:	27-01 JACKSON AVENUE
Project Number:	170472002
Report Date:	08/02/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:08022419:18

Project Name:27-01 JACKSON AVENUEProject Number:170472002

 Lab Number:
 L2442518

 Report Date:
 08/02/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2442518-01	MW-1_072924	WATER	LONG ISLAND CITY, QUEENS	07/29/24 14:15	07/29/24
L2442518-02	MW-2_072924	WATER	LONG ISLAND CITY, QUEENS	07/29/24 11:30	07/29/24
L2442518-03	DUP01_072924	WATER	LONG ISLAND CITY, QUEENS	07/29/24 00:00	07/29/24
L2442518-04	FB01_072924	WATER	LONG ISLAND CITY, QUEENS	07/29/24 14:40	07/29/24
L2442518-05	TB01_072924	WATER	LONG ISLAND CITY, QUEENS	07/29/24 00:00	07/29/24

Project Name:27-01 JACKSON AVENUEProject Number:170472002

Lab Number: L2442518 Report Date: 08/02/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:27-01 JACKSON AVENUEProject Number:170472002

 Lab Number:
 L2442518

 Report Date:
 08/02/24

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 08/02/24

ORGANICS

VOLATILES

		Serial_N	o:08022419:18
Project Name:	27-01 JACKSON AVENUE	Lab Number:	L2442518
Project Number:	170472002	Report Date:	08/02/24
	SAMPLE RESULTS		
Lab ID:	L2442518-01	Date Collected:	07/29/24 14:15
Client ID:	MW-1_072924	Date Received:	07/29/24
Sample Location:	LONG ISLAND CITY, QUEENS	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260D		
Analytical Date:	08/01/24 11:57		
Analyst:	KJD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Number: 170472002 Report Date: 08/02/24 SAMPLE RESULTS Date Collected: 07/29/24 14:15 Lab ID: L2442518-01 Date Collected: 07/29/24 14:15 Client ID: MW-1_072924 Date Received: 07/29/24						:	Serial_No	0:08022419:18
Lab ID: L2442518-01 Lab ID: L2442518-01 CONG ISLAND CITY, QUEENS Sample Location: MV-1 072924 Sample Location: LONG ISLAND CITY, QUEENS Sample Location: MV-1 072924 Sample Location: MV-1 072924 Sample Location: MV-1 072924 Field Prep: Sample Location: MV-1 072924 Field Prep: Sample Location: MV-1 072924 Sample Location: MV-1 0729 Sample Locatio: MV-1 0729 Sample Location: MV-1 072	Project Name:	27-01 JACKSON AVENU	Ε			Lab Nu	ımber:	L2442518
SAMPLE RESULTSLab IC:L2422518-01 CUNG ISLAND CITY QUEENSSample Location:MY29/24 14:15 Data Receive: Not SpecifiedSample Location:MY29/24 14:15 Data Receive: Not SpecifiedSample Location:Not SpecifiedSample Location:MY29/24 14:15 Data Receive: Not SpecifiedNot SpecifiedNot SpecifiedSample Location:MellineNot SpecifiedNot SpecifiedNot SpecifiedSample Location:Not SpecifiedNot SpecifiedNot SpecifiedValue Construction:Not SpecifiedNot SpecifiedNot Specified14-DehotochervineNot SpecifiedNot SpecifiedNot Specified14-Dehotochervine<	Project Number:	170472002				Report	Date:	08/02/24
Number of the second			SAMP	LE RESULTS	6			
ParameterResultValitieNuR.Mbito PactorVolatile Organics by GC/MS - Westborough LawNDugl0.00.1811.4DehotocherzeneNDugl0.250.7011.4DehotocherzeneNDugl2.50.7011.4DehotocherzeneNDugl2.50.7011.4DehotocherzeneNDugl2.50.7011.4DehotocherzeneNDugl2.50.701AmytonNDugl2.50.701OrganizationNDugl2.50.701OybersentialNDugl2.50.701Sylanes, TotalNDugl2.50.7011.2DehotocherzeneNDugl2.50.7011.2DehotocherzeneNDugl2.50.7011.2DehotocherzeneNDugl2.50.7011.2DehotocherzeneNDugl2.50.7011.2DehotocherzeneNDugl2.50.7011.2DehotocherzeneNDugl2.50.7011.2DehotocherzeneNDugl2.50.7011.2DehotocherzeneNDugl2.50.7011.2DehotocherzeneNDugl2.50.7011.2DehotocherzeneNDugl2.50.7012DehotocherzeneNDugl2.50.70 </td <td>Lab ID: Client ID: Sample Location:</td> <td>MW-1_072924</td> <td>UEENS</td> <td></td> <td></td> <td>Date Re</td> <td>ceived:</td> <td>07/29/24</td>	Lab ID: Client ID: Sample Location:	MW-1_072924	UEENS			Date Re	ceived:	07/29/24
Antimication Antimication Antimication Antimication Antimication Antimication Volatile ND ugit 0.50 0.18 1 1.2-Dichlorobenzene ND ugit 2.5 0.70 1 1.3-Dichlorobenzene ND ugit 2.5 0.70 1 1.4-Dichlorobenzene ND ugit 2.5 0.70 1 Mehyt ter buyt efter ND ugit 2.5 0.70 1 o/kytene ND ugit 2.5 0.70 1 o/kytene ND ugit 2.5 0.70 1 o/kytene ND ugit 2.5 0.70 1 1.2-Dichlorobenzene, Total ND ugit 5.0 1.0 1 1.2-Dichlorobenzene, Total ND ugit 5.0 1.0 1 1.2-Dichlorobenzene, Total ND ugit 5.0 1.0 1 1.2-Dichlorobenzene, Total ND ugit 5.			Result	Qualifier	Units	RI	MDL	Dilution Factor
ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70 1 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 pim-Xytene ND ug/l 2.5 0.70 1 pim-Xytene ND ug/l 2.5 0.70 1 ci-Xytenes ND ug/l 2.5 0.70 1 ci-L-Dichforoethene, Total ND ug/l 2.5 0.70 1 Li-Zotchoroethene, Total ND ug/l 5.0 1.0 1 Li-Zotchoroethene, Total ND ug/l 5.0 1.0 1 Dichoroetherene, Total ND ug/l 5.0 1.0 1 Actyrichtrig ND ug/l 5.0 1.0 1 Li-Zotthoroethen		w GC/MS - Westborough L		qualifier				
L2-bichlorobenzene ND ug1 2.5 0.70 1 1.3-Dichlorobenzene ND ug1 2.5 0.70 1 1.4-Dichlorobenzene ND ug1 2.5 0.70 1 hehry lerb buyl eher ND ug1 2.5 0.70 1 oxlytene ND ug1 2.5 0.70 1 oxlytene ND ug1 2.5 0.70 1 oxlytene ND ug1 2.5 0.70 1 1.2-Dichtorobenen, Total ND ug1 2.5 0.70 1 1.2-Dichtorobenen, Total ND ug1 5.0 1.0 1 1.2-Dichtorobenen, Total ND ug1 5.0 1.0 1 Dichtorobenzene ND ug1 5.0 1.0 1 Styrene ND ug1 5.0 1.0 1 Dichtorobinzenzene ND ug1 5.0 1.0 1	volatile Organies i		40					
A-bchlorobenzene ND ug1 2.5 0.70 1 1.4-bchlorobenzene ND ug1 2.5 0.70 1 Methyl ether ND ug1 2.5 0.70 1 pm:Xylene ND ug1 2.5 0.70 1 o-Xylene ND ug1 2.5 0.70 1 obschlorobethene ND ug1 2.5 0.70 1 1.2.0-Inforcethene. ND ug1 5.0 1.0 1 1.2.3-Trichoropropane ND ug1 5.0 1.0 1 2.5 0.70 1 1 1 1 2.5 0.70 1 1 1 1 2.5 0.70 1 1 1 1 2.5 0.70 1 1 1 1 2.5 0.70 1 1 1 1 2.6 1.0 1 1 1 1 <	Trichloroethene		ND		ug/l	0.50	0.18	1
ND ug1 2.5 0.70 1 Metryl tert bulyl ether ND ug1 2.5 0.17 1 p/m-Xylene ND ug1 2.5 0.70 1 o-Xylene ND ug1 2.5 0.70 1 o-Xylenes ND ug1 2.5 0.70 1 cis-12-Dichioroethene ND ug1 2.5 0.70 1 1.2-Dichioroethene ND ug1 2.5 0.70 1 1.2-Dichioroethene ND ug1 2.5 0.70 1 1.2-Dichioroethene ND ug1 5.0 1.0 1 1.2-Dichioroethene ND ug1 5.0 1.0 1 Acryontride ND ug1 5.0 1.0 1 Acryontride ND ug1 5.0 1.0 1 Dicharodifuoromethane ND ug1 5.0 1.0 1 2-Buronone ND	1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
ND ug1 2.5 0.17 1 pim-Xytene ND ug1 2.5 0.70 1 o-Xytene ND ug1 2.5 0.70 1 o-Xytene ND ug1 2.5 0.70 1 o-Xytene ND ug1 2.5 0.70 1 cis1-2-Dichorothene ND ug1 2.5 0.70 1 1.2-Dichorothene, Total ND ug1 5.0 1.0 1 1.2-Dichorothene, Total ND ug1 5.0 1.0 1 Acrytonitrile ND ug1 5.0 1.0 1 Styrene ND ug1 5.0 1.0 1 Actone ND ug1 5.0 1.0 1 Actone ND ug1 5.0 1.0 1 4Methyl-2-pantanone ND ug1 5.0 1.0 1 4Methyl-2-pantanone ND ug1	1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
ND Ug1 2.5 0.70 1 o-Xylene ND Ug1 2.5 0.70 1 Xylene ND Ug1 2.5 0.70 1 Xylene ND Ug1 2.5 0.70 1 Cis-1.2-Dichloroethene ND Ug1 2.5 0.70 1 1.2-Dichloroethene. Total ND Ug1 5.0 1.0 1 1.2-Dichloroethene. Total ND Ug1 5.0 1.0 1 Acrylonithie ND Ug1 5.0 1.5 1 Acrylonithie ND Ug1 5.0 1.0 1 Actylonithie ND Ug1 5.0 1.0 1 Actylonithie ND Ug1 5.0 1.0 1 Actylonithie ND Ug1 5.0 1.0 1 Acton Ug1 5.0 1.0 1 1 Acton Ug1 5.0 1.0	1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
o-Xylene ND ug1 2.5 0.70 1 Xylenes, Total ND ug1 2.5 0.70 1 cis1_2-Dichloroethene, Total ND ug1 2.5 0.70 1 1_2-Dichloroethene, Total ND ug1 2.5 0.70 1 1_2-Dichloroethene, Total ND ug1 2.5 0.70 1 1_2-Dichloroethene, Total ND ug1 2.5 0.70 1 1_2-Strichloroethene, Total ND ug1 5.0 1.5 1 1_2-Strichloroethene ND ug1 5.0 1.0 1 1_2-Strichloroethene ND ug1 5.0 1.0 1 1_2-Strichloroethene ND ug1 5.0 1.0 1 Carbon disulifde ND ug1 5.0 1.0 1 2-Bitanone ND ug1 5.0 1.0 1 2-Hexanone ND ug1 2.5 0.70 <td< td=""><td>Methyl tert butyl ether</td><td></td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.17</td><td>1</td></td<>	Methyl tert butyl ether		ND		ug/l	2.5	0.17	1
ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dbromomethane ND ug/l 2.5 0.70 1 Acylonitrilio ND ug/l 5.0 1.0 1 Acylonitrilio ND ug/l 5.0 1.0 1 Acylonitrilio ND ug/l 5.0 1.0 1 Dichlorodifluoronethane ND ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 1<	p/m-Xylene		ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 1.2-Dichloroethene, Total ND ug/l 2.5 0.70 1 1.2-Dichloroptopane ND ug/l 5.0 1.0 1 1.2.3-Tichloroptopane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 1.5 1 Dictorodiflucromethane ND ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 1 2-Butanone ND ug/l 5.0 1.0 1 1 4-Hetryl-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dichloropropane ND ug/l 2.5 0.70 1	o-Xylene		ND		ug/l	2.5	0.70	1
J.2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1.2.3-Trichloropropane ND ug/l 2.5 0.70 1 Acrytonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.6 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 1 2-Butanone ND ug/l 5.0 1.0 1 1 2-Hoxanone ND ug/l 5.0 1.0 1 1 2-Dichloropropane ND ug/l 2.5 0.70 1 1.2-Dibromomethane ND ug/l 2.5 0.70 1 1.2-Dibromorpane ND ug/l 2.5<	Xylenes, Total		ND		ug/l	2.5	0.70	1
ND ug/l 5.0 1.0 1 1.2.3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichloroffluoromethane ND ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 1 Acetone ND ug/l 2.0 0.70 1 1 Acetone ND ug/l 2.5 0.70	cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1.2.3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.0 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dioromethane ND ug/l 2.5 0.70 1 1.1,1-2-Tetrach	1,2-Dichloroethene, Tota		ND		ug/l	2.5	0.70	1
Acylonitrife ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 2-Lexanone ND ug/l 2.5 0.70 1 2-Lexanone ND ug/l 2.5 0.70 1 2-Lexanone ND ug/l 2.5 0.70 1 1.2-Dichoromethane ND ug/l 2.5 0.70 1 1.1,1_2-Tetracholroethan	Dibromomethane		ND		ug/l	5.0	1.0	1
ND ug/l 2.5 0.70 1 Dichlorodflluoromethane ND ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hokanone ND ug/l 5.0 1.0 1 2-Hokanone ND ug/l 2.5 0.70 1 2.2-Dichloropropane ND ug/l 2.5 0.70 1 1.3-Dichloropropane ND ug/l 2.5 0.70 1 1.1,1.2-Tetrachloroethane ND ug/l 2.5 0.70 1 sec-Butylbenzene<	1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Dicklorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 1.8 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1.2-Dichloropropane ND ug/l 2.5 0.70 1 1.3-Dichloropropane ND ug/l 2.5 0.70 1 1.1.1.2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 <td>Acrylonitrile</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.5</td> <td>1</td>	Acrylonitrile		ND		ug/l	5.0	1.5	1
Action 1.8 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 1/m lacetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Dichloropropane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.1,1,2-Tetrachloropethane ND ug/l 2.5 0.70 1 1.1,1,2-Tetrachloropethane ND ug/l 2.5 0.70 1 n-Butylbenzene 0.85 J ug/l 2.5 0.70	Styrene		ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 2-Lexanone ND ug/l 2.5 0.70 1 2-Dicholropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 ec-Butylbenzene 0.85 J ug/l 2.5 0.70 1	Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene 0.85 J ug/l 2.5 0.70 1 et-Butylbenzene ND ug/l 2.5 0.70 1 1 o-Chlorotoluene ND ug/l 2.5 0.70	Acetone		1.8	J	ug/l	5.0	1.5	1
ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2.2-Dichloropropane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.3-Dichloropropane ND ug/l 2.5 0.70 1 1.1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1.1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 o-Chlo	Carbon disulfide		ND		ug/l	5.0	1.0	1
4Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 ec-Butylbenzene 0.85 J ug/l 2.5 0.70 1 ec-Butylbenzene ND ug/l 2.5 0.70 1 ec-Butylbenzene ND ug/l 2.5 0.70 1 ec-Butylbenzene ND ug/l 2.5 0.70	2-Butanone		ND		ug/l	5.0	1.9	1
ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 ec-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 <t< td=""><td>Vinyl acetate</td><td></td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.0</td><td>1</td></t<>	Vinyl acetate		ND		ug/l	5.0	1.0	1
ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene 0.85 J ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 j.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 j.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70	4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 oc-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1	2-Hexanone		ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene 0.85 J ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 j-Chlorotoluene ND ug/l 2.5 0.70 1 j-Chlorotoluene ND ug/l 2.5 0.70 1 j-2-Dibromo-3-chloropropane ND ug	Bromochloromethane		ND		ug/l	2.5	0.70	1
1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene 0.85 J ug/l 2.5 0.70 1 tert-Butylbenzene 0.85 J ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 j-Chlorotoluene ND ug/l 2.5 0.70 1 j-Chlorotoluene ND ug/l 2.5 0.70 1 j-Chlorotoluene ND ug/l 2.5 0.70 1 j-Subromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1	2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene 0.85 J ug/l 2.5 0.70 1 tert-Butylbenzene 0.85 J ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 j.Chlorotoluene ND ug/l 2.5 0.70 1 j.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1	1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene 0.85 J ug/l 2.5 0.70 1 tert-Butylbenzene 0.85 J ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 isopropylbenzene ND ug/l 2.5 0.70 1	1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene 0.85 J ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	1,1,1,2-Tetrachloroethan	9	ND		ug/l	2.5	0.70	1
sec-Butylbenzene 0.85 J ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	Bromobenzene		ND		ug/l	2.5	0.70	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	n-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	sec-Butylbenzene		0.85	J	ug/l	2.5	0.70	1
p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	tert-Butylbenzene		ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	o-Chlorotoluene		ND		ug/l	2.5	0.70	1
HexachlorobutadieneNDug/l2.50.701IsopropylbenzeneNDug/l2.50.701	p-Chlorotoluene		ND		ug/l	2.5	0.70	1
Isopropylbenzene ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropro	bane	ND		ug/l	2.5	0.70	1
· · · · · · · · · · · · · · · · · · ·	Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/I 2.5 0.70 1	Isopropylbenzene		ND		ug/l	2.5	0.70	1
	p-Isopropyltoluene		ND		ug/l	2.5	0.70	1

ug/l

2.5

0.70

ND

1

Naphthalene

		Serial_No:08022419:18
Project Name:	27-01 JACKSON AVENUE	Lab Number: L2442518
Project Number:	170472002	Report Date: 08/02/24
	SAMPLE RESULTS	
Lab ID:	L2442518-01	Date Collected: 07/29/24 14:15
Client ID:	MW-1_072924	Date Received: 07/29/24
Sample Location:	LONG ISLAND CITY, QUEENS	Field Prep: Not Specified

Lab					
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	250	61.	1
2.3		ug/l	2.0	0.70	1
ND		ug/l	2.0	0.70	1
7.4		ug/l	2.0	0.54	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
	ND ND ND ND 2.3 ND 7.4 ND	ND ND ND ND ND 2.3 ND 7.4 ND	ND ug/l 7.4 ug/l ND ug/l	ND ug/l 2.5 ND ug/l 2.0 2.3 ug/l 2.0 ND ug/l 2.0	ND ug/l 2.5 0.70 ND ug/l 2.0 0.54 ND ug/l 2.5 0.70

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	104	70-130	

		Serial_N	0:08022419:18
Project Name:	27-01 JACKSON AVENUE	Lab Number:	L2442518
Project Number:	170472002	Report Date:	08/02/24
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2442518-02 MW-2_072924 LONG ISLAND CITY, QUEENS	Date Collected: Date Received: Field Prep:	07/29/24 11:30 07/29/24 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260D 08/01/24 12:23 KJD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	1.2	J	ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					ç	Serial_No	:08022419:18	
Project Name:	27-01 JACKSON AVE	NUE			Lab Nu	mber:	L2442518	
Project Number:	170472002				Report	Date:	08/02/24	
··· , ·····	110112002	SAMPL	E RESULTS	6			00/02/24	
Lab ID:	L2442518-02				Date Col	lected:	07/29/24 11:30	
Client ID:	MW-2_072924				Date Rec		07/29/24	
Sample Location:	LONG ISLAND CITY	, QUEENS			Field Pre		Not Specified	
·						•	·	
Sample Depth:								
Parameter	00/140	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westboroug	h Lab						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1	
p/m-Xylene		1.1	J	ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		1.1	J	ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		21		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		4.6	J	ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	e	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		0.94	J	ug/l	2.5	0.70	1	
sec-Butylbenzene		0.92	J	ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		2.4	J	ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		0.96	J	ug/l	2.5	0.70	1	

	Serial_No:08022419:18
27-01 JACKSON AVENUE	Lab Number: L2442518
170472002	Report Date: 08/02/24
SAMPLE RESULTS	
L2442518-02	Date Collected: 07/29/24 11:30
MW-2_072924	Date Received: 07/29/24
LONG ISLAND CITY, QUEENS	Field Prep: Not Specified
	170472002 SAMPLE RESULTS L2442518-02 MW-2_072924

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
/olatile Organics by GC/MS - Westborough Lab								
n Bronylhonzono	6.5			2.5	0.70	1		
n-Propylbenzene			ug/l					
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	0.79	J	ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	16		ug/l	2.5	0.70	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
p-Diethylbenzene	1.3	J	ug/l	2.0	0.70	1		
p-Ethyltoluene	5.6		ug/l	2.0	0.70	1		
1,2,4,5-Tetramethylbenzene	8.5		ug/l	2.0	0.54	1		
Ethyl ether	ND		ug/l	2.5	0.70	1		
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	104	70-130	

		Serial_N	0:08022419:18
Project Name:	27-01 JACKSON AVENUE	Lab Number:	L2442518
Project Number:	170472002	Report Date:	08/02/24
	SAMPLE RESULTS		
Lab ID:	L2442518-03	Date Collected:	07/29/24 00:00
Client ID:	DUP01_072924	Date Received:	07/29/24
Sample Location:	LONG ISLAND CITY, QUEENS	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260D		
Analytical Date:	08/01/24 12:48		
Analyst:	KJD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	1.1	J	ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					S	Serial No	:08022419:18
Project Name:	27-01 JACKSON AVENU	JE			Lab Nu	mber:	L2442518
Project Number:	170472002				Report	Date:	08/02/24
		SAMP	LE RESULTS	5			00/02/21
Lab ID:	L2442518-03				Date Coll	ected.	07/29/24 00:00
Client ID:	DUP01_072924				Date Rec		07/29/24
Sample Location:	LONG ISLAND CITY, C	UEENS			Field Pre	p:	Not Specified
Sample Depth:							-
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough L	.ab					
Trichloroethene		ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1
p/m-Xylene		0.92	J	ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		0.92	J	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		27		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		4.7	J	ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		0.91	J	ug/l	2.5	0.70	1
sec-Butylbenzene		0.86	J	ug/l	2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
p-Chlorotoluene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
Isopropylbenzene		2.1	J	ug/l	2.5	0.70	1
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1
Naphthalene		0.87	J	ug/l	2.5	0.70	1

			Serial_No:08022419:18			
Project Name:	27-01 JACKSON AVENUE		Lab Number:	L2442518		
Project Number:	170472002		Report Date:	08/02/24		
	SAMP	LE RESULTS				
Lab ID:	L2442518-03		Date Collected:	07/29/24 00:00		
Client ID:	DUP01_072924		Date Received:	07/29/24		
Sample Location:	LONG ISLAND CITY, QUEENS		Field Prep:	Not Specified		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
n-Propylbenzene	6.1		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	0.72	J	ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	15		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	1.2	J	ug/l	2.0	0.70	1
p-Ethyltoluene	5.3		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	7.0		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	104	70-130	

		Serial_No	o:08022419:18
Project Name:	27-01 JACKSON AVENUE	Lab Number:	L2442518
Project Number:	170472002	Report Date:	08/02/24
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2442518-04 FB01_072924 LONG ISLAND CITY, QUEENS	Date Collected: Date Received: Field Prep:	07/29/24 14:40 07/29/24 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260D 08/01/24 13:15 KJD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					Serial_No	:08022419:18
Project Name:	27-01 JACKSON AVENUE			Lab Nu	mber:	L2442518
Project Number:	170472002			Report	Date:	08/02/24
•		SAMPLE RESUL	TS	•		00,02,21
Lab ID: Client ID: Sample Location:	L2442518-04 FB01_072924 LONG ISLAND CITY, QUE	ENS		Date Col Date Rec Field Pre	ceived:	07/29/24 14:40 07/29/24 Not Specified
Sample Depth:	_					
Parameter		sult Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough Lab					
Trichloroethene	Ν	ID	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	Ν	ID	ug/l	2.5	0.70	1
1,3-Dichlorobenzene	Ν	ID	ug/l	2.5	0.70	1
1,4-Dichlorobenzene	Ν	ID	ug/l	2.5	0.70	1
Methyl tert butyl ether	Ν	ID	ug/l	2.5	0.17	1
p/m-Xylene	Ν	ID	ug/l	2.5	0.70	1
o-Xylene	Ν	ID	ug/l	2.5	0.70	1
Xylenes, Total	Ν	ID	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	Ν	ID	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	Ν	ID	ug/l	2.5	0.70	1
Dibromomethane	Ν	ID	ug/l	5.0	1.0	1
1,2,3-Trichloropropane	Ν	ID	ug/l	2.5	0.70	1
Acrylonitrile		ID	ug/l	5.0	1.5	1
Styrene		ID	ug/l	2.5	0.70	1
Dichlorodifluoromethane		ID	ug/l	5.0	1.0	1
Acetone		.5 J	ug/l	5.0	1.5	1
Carbon disulfide		ID	ug/l	5.0	1.0	1
2-Butanone		ID	ug/l	5.0	1.9	1
Vinyl acetate		ID	ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ID	ug/l	5.0	1.0	1
2-Hexanone		ID ID	ug/l	5.0	1.0	1
Bromochloromethane		ID	ug/l	2.5	0.70	1
2,2-Dichloropropane 1,2-Dibromoethane		ID	ug/l	2.5	0.70	1
1,3-Dichloropropane		ID	ug/l ug/l	2.0	0.05	1
1,1,1,2-Tetrachloroethane		ID	ug/l	2.5	0.70	1
Bromobenzene		ID	ug/l	2.5	0.70	1
n-Butylbenzene		ID	ug/l	2.5	0.70	1
sec-Butylbenzene		ID	ug/l	2.5	0.70	1
tert-Butylbenzene		ID	ug/l	2.5	0.70	1
o-Chlorotoluene		ID	ug/l	2.5	0.70	1
p-Chlorotoluene		ID	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloroprop		ID	ug/l	2.5	0.70	1
Hexachlorobutadiene	Ν	ID	ug/l	2.5	0.70	1
Isopropylbenzene	Ν	ID	ug/l	2.5	0.70	1
			~		0.70	

ND

ND

1 1

0.70

0.70

2.5

2.5

ug/l

ug/l

p-Isopropyltoluene

Naphthalene

	Serial_No:0802241			
Project Name:	27-01 JACKSON AVENUE	Lab Number: L2442518		
Project Number:	170472002	Report Date: 08/02/24		
	SAMPLE RESULTS			
Lab ID:	L2442518-04	Date Collected: 07/29/24 14:40		
Client ID:	FB01_072924	Date Received: 07/29/24		
Sample Location:	LONG ISLAND CITY, QUEENS	Field Prep: Not Specified		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
n-Propylbenzene	ND			2.5	0.70	1		
			ug/l			I		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
p-Diethylbenzene	ND		ug/l	2.0	0.70	1		
p-Ethyltoluene	ND		ug/l	2.0	0.70	1		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1		
Ethyl ether	ND		ug/l	2.5	0.70	1		
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	105	70-130	

		Serial_N	o:08022419:18
Project Name:	27-01 JACKSON AVENUE	Lab Number:	L2442518
Project Number:	170472002	Report Date:	08/02/24
	SAMPLE RESULTS		
Lab ID:	L2442518-05	Date Collected:	07/29/24 00:00
Client ID:	TB01_072924	Date Received:	07/29/24
Sample Location:	LONG ISLAND CITY, QUEENS	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260D		
Analytical Date:	08/01/24 13:41		
Analyst:	KJD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		

					Serial_No:08022419:18			
Project Name:	27-01 JACKSON AVENUE				Lab Number:		L2442518	
Project Number:	170472002				Report	Date:	08/02/24	
-		SAMPL	E RESULTS	5				
Lab ID: Client ID: Sample Location:	L2442518-05 TB01_072924 LONG ISLAND CITY, QU	TY, QUEENS			Date Collected: Date Received: Field Prep:		07/29/24 00:00 07/29/24 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough La	b						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Tota		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethan	9	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropro	bane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	

ug/l

2.5

0.70

ND

1

Naphthalene

	Serial_No:08022419:18						
Project Name:	27-01 JACKSON AVENUE	Lab Number: L2442518					
Project Number:	170472002	Report Date: 08/02/24					
SAMPLE RESULTS							
Lab ID:	L2442518-05	Date Collected: 07/29/24 00:00					
Client ID:	TB01_072924	Date Received: 07/29/24					
Sample Location:	LONG ISLAND CITY, QUEENS	Field Prep: Not Specified					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
n-Propylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
p-Diethylbenzene	ND		ug/l	2.0	0.70	1		
p-Ethyltoluene	ND		ug/l	2.0	0.70	1		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1		
Ethyl ether	ND		ug/l	2.5	0.70	1		
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1		
trans-1,4-Dichloro-2-butene	ND		ug/i	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	105	70-130	

L2442518

08/02/24

Lab Number:

Report Date:

Project Name: 27-01 JACKSON AVENUE

Project Number: 170472002

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/01/24 08:10 Analyst: PID

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	01-05 Batch:	WG1954197-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name: 27-01 JACKSON AVENUE

Project Number: 170472002

470000

 Lab Number:
 L2442518

 Report Date:
 08/02/24

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:08/01/24 08:10Analyst:PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - We	estborough Lab	or sample(s): 01-05	Batch:	WG1954197-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

L2442518

08/02/24

Lab Number:

Report Date:

Project Name: 27-01 JACKSON AVENUE

Project Number: 170472002

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:08/01/24 08:10Analyst:PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 01-	05 Batch:	WG1954197-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
	100		70.400	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	105		70-130	

Project Number: 170472002 Lab Number: L2442518 08/02/24

Report Date:

Parameter	LCS %Recovery	Qual %	LCSD &Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated sa	ample(s): 01-0	5 Batch:	WG1954197-3	WG1954197-4				
Methylene chloride	96		96		70-130	0		20	
1,1-Dichloroethane	100		100		70-130	0		20	
Chloroform	100		99		70-130	1		20	
Carbon tetrachloride	100		110		63-132	10		20	
1,2-Dichloropropane	100		100		70-130	0		20	
Dibromochloromethane	88		90		63-130	2		20	
1,1,2-Trichloroethane	93		96		70-130	3		20	
Tetrachloroethene	100		100		70-130	0		20	
Chlorobenzene	98		99		75-130	1		20	
Trichlorofluoromethane	100		100		62-150	0		20	
1,2-Dichloroethane	97		100		70-130	3		20	
1,1,1-Trichloroethane	100		100		67-130	0		20	
Bromodichloromethane	95		98		67-130	3		20	
trans-1,3-Dichloropropene	85		89		70-130	5		20	
cis-1,3-Dichloropropene	100		100		70-130	0		20	
1,1-Dichloropropene	100		100		70-130	0		20	
Bromoform	92		97		54-136	5		20	
1,1,2,2-Tetrachloroethane	94		99		67-130	5		20	
Benzene	100		100		70-130	0		20	
Toluene	99		98		70-130	1		20	
Ethylbenzene	100		100		70-130	0		20	
Chloromethane	110		110		64-130	0		20	
Bromomethane	80		82		39-139	2		20	

Project Number: 170472002 Lab Number: L2442518 08/02/24

Report Date:

Parameter	LCS %Recovery Q	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated sam	ple(s): 01-05 Batch:	WG1954197-3 WG1954197-4			
Vinyl chloride	110	100	55-140	10	20	
Chloroethane	100	99	55-138	1	20	
1,1-Dichloroethene	110	100	61-145	10	20	
trans-1,2-Dichloroethene	99	99	70-130	0	20	
Trichloroethene	93	96	70-130	3	20	
1,2-Dichlorobenzene	99	100	70-130	1	20	
1,3-Dichlorobenzene	100	100	70-130	0	20	
1,4-Dichlorobenzene	98	100	70-130	2	20	
Methyl tert butyl ether	96	100	63-130	4	20	
p/m-Xylene	105	105	70-130	0	20	
o-Xylene	105	100	70-130	5	20	
cis-1,2-Dichloroethene	100	100	70-130	0	20	
Dibromomethane	97	99	70-130	2	20	
1,2,3-Trichloropropane	96	100	64-130	4	20	
Acrylonitrile	110	110	70-130	0	20	
Styrene	105	105	70-130	0	20	
Dichlorodifluoromethane	100	100	36-147	0	20	
Acetone	110	110	58-148	0	20	
Carbon disulfide	100	100	51-130	0	20	
2-Butanone	100	110	63-138	10	20	
Vinyl acetate	96	100	70-130	4	20	
4-Methyl-2-pentanone	91	96	59-130	5	20	
2-Hexanone	94	100	57-130	6	20	

Project Number: 170472002 Lab Number: L2442518 08/02/24

Report Date:

Parameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-05	Batch:	WG1954197-3	WG1954197-4			
Bromochloromethane	100			100		70-130	0		20
2,2-Dichloropropane	110			100		63-133	10		20
1,2-Dibromoethane	99			100		70-130	1		20
1,3-Dichloropropane	98			100		70-130	2		20
1,1,1,2-Tetrachloroethane	95			96		64-130	1		20
Bromobenzene	97			98		70-130	1		20
n-Butylbenzene	100			100		53-136	0		20
sec-Butylbenzene	100			100		70-130	0		20
tert-Butylbenzene	100			100		70-130	0		20
o-Chlorotoluene	98			100		70-130	2		20
p-Chlorotoluene	99			100		70-130	1		20
1,2-Dibromo-3-chloropropane	91			95		41-144	4		20
Hexachlorobutadiene	94			96		63-130	2		20
Isopropylbenzene	100			100		70-130	0		20
p-Isopropyltoluene	99			99		70-130	0		20
Naphthalene	95			99		70-130	4		20
n-Propylbenzene	100			100		69-130	0		20
1,2,3-Trichlorobenzene	100			100		70-130	0		20
1,2,4-Trichlorobenzene	100			100		70-130	0		20
1,3,5-Trimethylbenzene	100			100		64-130	0		20
1,2,4-Trimethylbenzene	100			99		70-130	1		20
1,4-Dioxane	132			126		56-162	5		20
p-Diethylbenzene	99			100		70-130	1		20

Project Name: 27-01 JACKSON AVENUE

Project Number: 170472002

 Lab Number:
 L2442518

 Report Date:
 08/02/24

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-05 Batch:	WG1954197-3	WG1954197-4				
p-Ethyltoluene	100		100		70-130	0		20	
1,2,4,5-Tetramethylbenzene	96		98		70-130	2		20	
Ethyl ether	100		100		59-134	0		20	
trans-1,4-Dichloro-2-butene	100		100		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	101	102	70-130
Toluene-d8	98	99	70-130
4-Bromofluorobenzene	99	102	70-130
Dibromofluoromethane	101	100	70-130

Project Name:	27-01 JACKSON AVENUE	Batch Quality Control	Lab Number:	L2442518
Due is at Normalian			Dowowt Dotos	00/00/04

Project Number: 170472002

08/02/24 Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/M MW-1_072924	IS - Westborough	Lab Assoc	iated sample(s): 01-05 QC	Batch ID: WG19541	97-6 WG1954	4197-7 QC Sample	e: L244	2518-01 Client ID:
Methylene chloride	ND	10	9.3	93	9.0	90	70-130	3	20
1,1-Dichloroethane	ND	10	10	100	10	100	70-130	0	20
Chloroform	ND	10	9.9	99	9.8	98	70-130	1	20
Carbon tetrachloride	ND	10	11	110	11	110	63-132	0	20
1,2-Dichloropropane	ND	10	10	100	9.9	99	70-130	1	20
Dibromochloromethane	ND	10	8.9	89	8.8	88	63-130	1	20
1,1,2-Trichloroethane	ND	10	9.7	97	9.8	98	70-130	1	20
Tetrachloroethene	ND	10	10	100	9.9	99	70-130	1	20
Chlorobenzene	ND	10	9.4	94	9.3	93	75-130	1	20
Trichlorofluoromethane	ND	10	11	110	11	110	62-150	0	20
1,2-Dichloroethane	ND	10	10	100	10	100	70-130	0	20
1,1,1-Trichloroethane	ND	10	10	100	10	100	67-130	0	20
Bromodichloromethane	ND	10	10	100	9.9	99	67-130	1	20
trans-1,3-Dichloropropene	ND	10	7.9	79	8.0	80	70-130	1	20
cis-1,3-Dichloropropene	ND	10	9.2	92	9.2	92	70-130	0	20
1,1-Dichloropropene	ND	10	10	100	10	100	70-130	0	20
Bromoform	ND	10	9.1	91	9.0	90	54-136	1	20
1,1,2,2-Tetrachloroethane	ND	10	9.8	98	9.5	95	67-130	3	20
Benzene	ND	10	10	100	9.2	92	70-130	8	20
Toluene	ND	10	9.4	94	9.3	93	70-130	1	20
Ethylbenzene	ND	10	9.8	98	9.7	97	70-130	1	20
Chloromethane	ND	10	11	110	11	110	64-130	0	20
Bromomethane	ND	10	5.0	50	5.3	53	39-139	6	20

Project Name:	27-01 JACKSON AVENUE	Batch Quality Control	Lab Number:	L24
Drojoot Numbori				
Drainat Numbari	470 470000		Donart Datas	00//

Project Number: 170472002

442518 08/02/24 Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/I MW-1_072924	MS - Westborough	h Lab Assoc	iated sample((s): 01-05 QC	Batch ID: WG19541	197-6 WG195	4197-7 QC Sample	e: L244	2518-01 Client ID:
Vinyl chloride	ND	10	11	110	11	110	55-140	0	20
Chloroethane	ND	10	9.8	98	9.7	97	55-138	1	20
1,1-Dichloroethene	ND	10	11	110	11	110	61-145	0	20
trans-1,2-Dichloroethene	ND	10	10	100	10	100	70-130	0	20
Trichloroethene	ND	10	9.8	98	9.5	95	70-130	3	20
1,2-Dichlorobenzene	ND	10	9.4	94	9.5	95	70-130	1	20
1,3-Dichlorobenzene	ND	10	9.2	92	9.4	94	70-130	2	20
1,4-Dichlorobenzene	ND	10	9.1	91	9.2	92	70-130	1	20
Methyl tert butyl ether	ND	10	10	100	10	100	63-130	0	20
p/m-Xylene	ND	20	20	100	20	100	70-130	0	20
o-Xylene	ND	20	19	95	19	95	70-130	0	20
cis-1,2-Dichloroethene	ND	10	9.8	98	9.8	98	70-130	0	20
Dibromomethane	ND	10	9.8	98	9.9	99	70-130	1	20
1,2,3-Trichloropropane	ND	10	10	100	9.7	97	64-130	3	20
Acrylonitrile	ND	10	12	120	11	110	70-130	9	20
Styrene	ND	20	19	95	19	95	70-130	0	20
Dichlorodifluoromethane	ND	10	10	100	10	100	36-147	0	20
Acetone	1.8J	10	17	170	Q 14	140	58-148	19	20
Carbon disulfide	ND	10	10	100	10	100	51-130	0	20
2-Butanone	ND	10	12	120	12	120	63-138	0	20
Vinyl acetate	ND	10	9.9	99	9.8	98	70-130	1	20
4-Methyl-2-pentanone	ND	10	10	100	10	100	59-130	0	20
2-Hexanone	ND	10	12	120	11	110	57-130	9	20

Project Name:	27-01 JACKSON AVENUE	Batch Quality Control	Lab Number:	L2442518
Project Number:	170472002		Report Date:	08/02/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/M MW-1_072924	S - Westborough	Lab Assoc	iated sample(s): 01-05 Q0	C Batch ID: WG19541	97-6 WG195	4197-7 QC Sample	e: L244	2518-01 Client ID:
Bromochloromethane	ND	10	10	100	10	100	70-130	0	20
2,2-Dichloropropane	ND	10	7.3	73	7.1	71	63-133	3	20
1,2-Dibromoethane	ND	10	10	100	9.8	98	70-130	2	20
1,3-Dichloropropane	ND	10	9.8	98	9.8	98	70-130	0	20
1,1,1,2-Tetrachloroethane	ND	10	9.5	95	9.5	95	64-130	0	20
Bromobenzene	ND	10	9.1	91	9.2	92	70-130	1	20
n-Butylbenzene	ND	10	9.4	94	9.3	93	53-136	1	20
sec-Butylbenzene	0.85J	10	9.8	98	9.9	99	70-130	1	20
tert-Butylbenzene	ND	10	10	100	10	100	70-130	0	20
o-Chlorotoluene	ND	10	9.2	92	9.3	93	70-130	1	20
p-Chlorotoluene	ND	10	9.0	90	9.2	92	70-130	2	20
1,2-Dibromo-3-chloropropane	ND	10	9.3	93	9.2	92	41-144	1	20
Hexachlorobutadiene	ND	10	9.3	93	9.5	95	63-130	2	20
Isopropylbenzene	ND	10	10	100	10	100	70-130	0	20
p-Isopropyltoluene	ND	10	9.4	94	9.4	94	70-130	0	20
Naphthalene	ND	10	11	110	11	110	70-130	0	20
n-Propylbenzene	ND	10	9.7	97	9.8	98	69-130	1	20
1,2,3-Trichlorobenzene	ND	10	9.8	98	10	100	70-130	2	20
1,2,4-Trichlorobenzene	ND	10	9.7	97	9.8	98	70-130	1	20
1,3,5-Trimethylbenzene	ND	10	9.4	94	9.5	95	64-130	1	20
1,2,4-Trimethylbenzene	ND	10	10	100	10	100	70-130	0	20
1,4-Dioxane	ND	500	590	118	610	122	56-162	3	20
p-Diethylbenzene	2.3	10	11	87	11	87	70-130	0	20

Project Name: Project Number:	27-01 JACKSC 170472002	ON AVENUE		Batch Quality Control					Lab Num Report D	L2442518 08/02/24		
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits

Volatile Organics by GC/MS - MW-1_072924	- Westborough I	Lab Associ	ated sample(s): 01-05	QC Batch ID	: WG195419	97-6 WG1954	197-7 QC Sample	: L2442518-0	1 Client ID:
p-Ethyltoluene	ND	10	9.6	96		9.6	96	70-130	0	20
1,2,4,5-Tetramethylbenzene	7.4	10	14	66	Q	16	86	70-130	13	20
Ethyl ether	ND	10	10	100		10	100	59-134	0	20
trans-1,4-Dichloro-2-butene	ND	10	9.7	97		9.4	94	70-130	3	20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	109	107	70-130
4-Bromofluorobenzene	97	99	70-130
Dibromofluoromethane	102	101	70-130
Toluene-d8	98	98	70-130

Project Name: 27-01 JACKSON AVENUE **Project Number:** 170472002

Serial_No:08022419:18 Lab Number: L2442518 *Report Date:* 08/02/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal			
A	Absent			

Container Information

Container Information		rmation		Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2442518-01A	Vial HCI preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-01A1	Vial HCI preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-01A2	Vial HCI preserved	А	NA		3.8	Υ	Absent		NYTCL-8260(14)
	L2442518-01B	Vial HCI preserved	А	NA		3.8	Υ	Absent		NYTCL-8260(14)
	L2442518-01B1	Vial HCl preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-01B2	Vial HCl preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-01C	Vial HCl preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-01C1	Vial HCl preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-01C2	Vial HCl preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-02A	Vial HCl preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-02B	Vial HCl preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-02C	Vial HCl preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-03A	Vial HCl preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-03B	Vial HCl preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-03C	Vial HCl preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-04A	Vial HCl preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-04B	Vial HCl preserved	А	NA		3.8	Υ	Absent		NYTCL-8260(14)
	L2442518-04C	Vial HCl preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-05A	Vial HCI preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)
	L2442518-05B	Vial HCl preserved	А	NA		3.8	Y	Absent		NYTCL-8260(14)

ALPHA

Serial_No:08022419:18

Project Name: 27-01 JACKSON AVENUE

Project Number: 170472002

Lab Number: L2442518

Report Date: 08/02/24

GLOSSARY

Acronyms

Actoryms	
DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: 27-01 JACKSON AVENUE

Project Number: 170472002

Lab Number: L2442518 **Report Date:** 08/02/24

Footnotes

1			

- Tł
0.5

he reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: 27-01 JACKSON AVENUE

Project Number: 170472002

Lab Number: L2442518

Report Date: 08/02/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name:27-01 JACKSON AVENUEProject Number:170472002

 Lab Number:
 L2442518

 Report Date:
 08/02/24

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol EPA 8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Nonpotable Water: EPA RSK-175 Dissolved Gases Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo Project Information	ay	5	Page 1 of		D	ate Rec'd In Lab		Serial No:08022419:18 L2442518 05AUG24 LANGAN – NYC					
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	A REAL PROPERTY AND A REAL	OL Tech	500 AN	1.0.1	Statement of the local division of the local	Constantion of the	SP-A	X ASP	B	Billing Information				
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: LO	Telun	Jackson Avenue Estand city, Queens				QuIS (1 File)		IS (4 File)	PO#				
Client Information	COLUMN TWO IS	Project # 1704	72002	a aty, decens				ther		10 (41 10)					
Client: / ANGIAN	J	(Use Project name as Pro						tory Requirem	ent	14 T T T T	Disposal Site Information				
Address: 300 W		Project Manager:		0.0			No. of Concession, Name	Y TOGS	ANY P	art 375	Basilo and room and any state				
NYL, NY, 100		ALPHAQuote #:	- SCAR	014				WQ Standards	I NY C		Please identify below location of applicable disposal facilities.				
Phone: 212-47		Turn-Around Time	and the second second	Contraction in which	Contraction of the	ALC: NO.		Y Restricted Use			Disposal Facility:				
Fax: 212-47		Standard	X	Due Date:				Y Unrestricted U			Пиј Пиу				
Email: K-Semon (Rush (only if pre approved)		# of Days:				YC Sewer Disch	arge		Other				
These samples have be		ed by Alpha					ANAL				Sample Filtration				
Other project specific	and the second					_					Done				
Please specify Metals	amoinagment gan. (an, #R or TAL.	Changun. com a un MW-1-075			in. com and SD¥		375/251 VOCS				Lab to do a Preservation I Lab to do B (Please Specify below) t				
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	1.000	ection	Sample	Sampler's	まにす								
the state of the s	11.	1	Date Time		Matrix Initials		174				Sample Specific Comments				
42518-01	MW-1-07	2924	7/29/24	1415	Gw	AR	X				Runfor MS/MSD				
	MW -2-07			11:30	GTW	AR	×			+					
00	DUP01-07	2924		11.41	GW	PR	X								
-04	FB01_070	2924		1440	Aq	AFP	X								
105	TB01-072	929	~	PH P	MQ	AR	X								
				1420		<u></u>	\vdash								
						-									
										+					
B = HCl C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification N Mansfield: Certification N				tainer Type					Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not				
	B = Bacteria Cup										start until any ambiguities are				
1	C = Cube O = Other	Relinquished	1	Date/	and the second se		Receive	d By:		/Time	resolved. BY EXECUTING				
$H = Na_2S_2O_3$	E = Encore	aut Langin	7/24/24	1450	NIF	11	aco	and the second division of the	24 14	HAS READ AND AGREES					
K/E = Zn Ac/NaOH O = Other	D = BOD Bottle	WIFI (Pace)	0	7 29 24	2015	An	tho	ry gre	enjult	9 2024 200	TO BE BOUND BY ALPHA'S				
G - Onigi		Anthony	Green	11		1	-	3 1	21/	2015	TERMS & CONDITIONS.				
Form No: 01-25 HC (rev. 30	0-Sept-2013)	A	7/3	124	0270	Egl	erð	ODEAF	7/301	24	(See reverse side.)				

Page 39 of 39

02:20

ATTACHMENT E

Data Usability Summary Report

Technical Memorandum

1 University Square Drive Princeton, NJ 08540 T: 609.282.8000 Mailing Address: 1 University Square Drive Princeton, NJ 08540

To: Ali Reach, Langan Staff Geologist

From: Joe Conboy, Langan Project Chemist

Date: August 9, 2024

Re: Data Usability Summary Report For 27-01 Jackson Avenue July 2024 Groundwater Samples Langan Project No.: 170472002

This memorandum presents the findings of an analytical data validation from the analysis of groundwater samples collected in July 2024 by Langan Engineering and Environmental Services at 27-01 Jackson Avenue. The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) for volatile organic compounds (VOCs) by the methods specified below.

• VOCs by SW-846 Method 8260D

Table 1, attached, summarizes the laboratory and client sample identification numbers, sample collection dates, level of data validation, and analytical parameters subject to review.

Validation Overview

This data validation was performed in accordance with the following guidelines, where applicable:

- USEPA Region II Standard Operating Procedures (SOPs) for Data Validation
- USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020)
- USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020), and
- published analytical methodologies.

The following acronyms may be used in the discussion of data-quality issues:

%D	Percent Difference	MB	Method Blank
CCV	Continuing Calibration Verification	MDL	Method Detection Limit
FB	Field Blank	MS	Matrix Spike
FD	Field Duplicate	MSD	Matrix Spike Duplicate
ICAL	Initial Calibration	RF	Response Factor
ICV	Initial Calibration Verification	RL	Reporting Limit
ISTD	Internal Standard	RPD	Relative Percent Difference

LCL	Lower Control Limit	RSD	Relative Standard Deviation
LCS	Laboratory Control Sample	ТВ	Trip Blank
LCSD	Laboratory Control Sample Duplicate	UCL	Upper Control Limit

Tier 1 data validation is based on completeness and compliance checks of sample-related QC results including: sample receipt documentation; analytical holding times; sample preservation; blank results (method, field, and trip); surrogate recoveries; MS/MSD recoveries and RPDs values; field duplicate RPDs, laboratory duplicate RPDs, and LCS/LCSD recoveries and RPDs. All sample delivery groups underwent Tier 1 validation review.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA guidelines and our best professional judgment:

- R The sample results are unusable because certain criteria were not met when generating the data. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit; however, the reported reporting limit is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned, these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are considered invalid and are not technically usable for data interpretation. Data that is otherwise qualified because of minor data-quality anomalies are usable, as qualified in Table 2 (attached).

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by SW-846 Method 8260D

<u>L2442518</u>

The FB (FB01_072924) exhibited a detection of acetone (1.5 ug/l). The associated results <10X the contamination in sample MW-1_072924, MW-2_072924, and DUP01_072924 are qualified as U at the reporting limit because of potential blank contamination.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by SW-846 Method 8260D

<u>L2442518</u>

The MS/MSD performed on sample MW-1_072924 exhibited RPDs below the control limit for 1,2,4,5-tetramethylbenzene (66%) and above the control limit for acetone (170%). Organic results are not qualified on the basis of MS/MSD recoveries alone. No qualification is necessary.

FIELD DUPLICATE:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than ±1X the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 30% for groundwater. The following field duplicate and parent sample pair was compared to the precision criteria:

• DUP01_072924 and MW-2_072924

The field duplicate and parent sample (DUP01_072924 and MW-2_072924) exhibited an absolute difference above the RL for acetone (6 ug/l). The associated results are qualified as J because of potential indeterminate bias.

CONCLUSION:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Technical Memorandum

Data Usability Summary Report For 27-01 Jackson Avenue July 2024 Groundwater Samples Langan Project No.: 170472002 August 9, 2024 Page 4 of 4

Signed:

Joe Conboy Project Chemist

LANGAN

LANGAN

Technical Excellence Practical Experience Client Responsiveness

February 10, 2025

Ms. Marlen Salazar New York State Department of Environmental Conservation (NYSDEC) Region 2 Division of Environmental Remediation 47-40 21st Street Long Island City, NY 11101

RE: Ninth Quarter Groundwater Monitoring Report 27-01 Jackson Avenue Long Island City, New York NYSDEC Order on Consent No. S241209 Langan Project No.: 170472002

Dear Ms. Salazar:

In accordance with the January 23, 2020 Off-Site In-Situ Treatment Remedial Design Plan (RDP) and the December 12, 2022 NYSDEC-approved Off-Site Site Management Plan (OSMP), Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan) conducted groundwater sampling within the public right-of-way and sidewalks adjacent to the 27-01 Jackson Avenue site located in the Long Island City neighborhood of Queens, New York (Brownfield Cleanup Program [BCP] Site No. C241209). The south- and west-adjoining sidewalks are subject to the April 20, 2022 Order on Consent and Administrative Settlement (CO), Index No. S241209-08-09 and hereinafter referred to as the "CO site". A site location map is provided as Figure 1. This was the ninth quarterly sampling event completed following implementation of the off-site in-situ groundwater treatment program between October 20 and November 11, 2021.

Project Background

The CO site is an approximately 2,750-square-foot area that spans sections of the Jackson Avenue and 43rd Avenue sidewalks adjoining the BCP site located at 27-01 Jackson Avenue in the Long Island City neighborhood of Queens, New York (identified as Block 432, Lot 21 on the Queens County Tax Map). A site layout plan is presented on Figure 2.

Light non-aqueous phase liquid (LNAPL), and petroleum-impacted soil, groundwater, and soil vapor were identified on- and off-site during a Remedial Investigation (RI) and supplemental sampling events performed between October 2018 and July 2020. To address the impacts, NYSDEC approved the RDP and the Remedial Action Work Plan (RAWP) on January 23, 2020 and January 9, 2021, respectively. A Track 1 remedy was achieved at the BCP site and a certificate of completion (COC) was issued on December 23, 2022. Pursuant to the RAWP, a CO was executed on April 20, 2022, which requires compliance with the NYSDEC-approved

December 12, 2022 OSMP. The intent of the CO is to monitor off-site conditions in groundwater following off-site groundwater treatment and on-site dewatering. The OSMP addresses the means for implementing, monitoring, and reporting on the Engineering and Institutional Controls (ECs/ICs) that are required by the CO for the off-site areas adjacent to the BCP site.

In-Situ Groundwater Treatment

An off-site in-situ groundwater treatment program was implemented to treat remaining petroleum-related VOCs beneath the CO site, which were initially identified during the RI. Targeted petroleum-related VOCs included benzene, toluene, ethylbenzene, and xylenes (BTEX), and their breakdown products. Impacted groundwater was treated using an activated carbon solution (PetroFix[™]) via direct-push injection points located in a rough grid pattern to spread chemicals evenly within the off-site, south- and west-adjoining sidewalks comprising the CO site.

The injection program was carried out by Clean Harbors of Norwell, Massachusetts and Aquifer Drilling and Testing (ADT) of Mineola, New York, under the oversight of Langan, between October 20 and November 11, 2021. Injection point locations are shown on Figure 3. At each injection point, a hollow steel injection rod was advanced to depths ranging from about 15 to 30 feet below grade surface (bgs). Injections were made using a "bottom-up" approach, beginning at the deepest 2-foot interval, and raised from the bottom depth in 2-foot intervals to approximately 15 feet bgs. Approximately 14,400 pounds of Petrofix® and 720 pounds of electron acceptor blend were applied via direct-push drill rig between October 20 and November 11, 2021. Between 664 and 976 pounds of Petrofix® were applied to each point.

Performance Monitoring Methodology

The RDP and OSMP included baseline sampling and quarterly post-injection groundwater monitoring to evaluate the efficacy of the CO site remedy. Baseline groundwater sampling was conducted from existing monitoring wells MW-3 and MW-4 and temporary monitoring wells MW-1 and MW-2 on October 7 and 19, 2021. Monitoring wells MW-3 and MW-4 were compromised during installation of the support of excavation, and the four monitoring wells were reinstalled for post-remediation groundwater monitoring on August 22, 2022 and October 13 and 14, 2022. Post-injection monitoring well locations are shown on Figure 3.

Post-injection groundwater monitoring was not conducted between November 2021 and October 2022 due to remediation efforts and active dewatering at the BCP site. Nine post-injection quarterly sampling events have been completed at the CO site in October 2022, January 2023, April 2023, July 2023, October 2023, January 2024, April 2024, July 2024, and October 2024.

Between the third and fourth quarter sampling events, monitoring well MW-3 was compromised during the installation of utilities beneath the 43rd Avenue sidewalk. Considering VOCs were nondetect in MW-3 during the previous three quarters of sampling, NYSDEC allowed the discontinuation of sampling of MW-3 via email correspondence on August 8th, 2023. The Fourth Quarter Groundwater Monitoring Report, dated September 15, 2023, indicated that VOCs were also non-detect in monitoring well MW-4 during the previous four quarters; therefore, NYSDEC

allowed the discontinuation of sampling of MW-4 via email correspondence on October 13th, 2023. NYSDEC correspondence is included as Attachment A.

Well Purging and Sampling

Monitoring well sampling was conducted for monitoring wells MW-1 and MW-2 on October 29, 2024. Before sampling, each well was purged using the low-flow method developed by the United States Environmental Protection Agency (USEPA) "Low-Flow [Minimal Drawdown] Ground-Water Sampling Procedures," EPA/540/S-95/504, April 1996) and accepted by the NYSDEC. purging was performed using a peristaltic pump fitted with dedicated tubing at each well. During purging, the turbidity, pH, temperature, conductivity, oxidation-reduction potential (ORP), and dissolved oxygen (DO) were monitored using a Horiba U-52 water quality meter with a flow-through cell. Purged groundwater was containerized in 55-gallon drums during each event. The daily site observation report is included in Attachment B. The groundwater quality parameters were recorded in the Well Purging and Sampling Logs provided in Attachment C.

As a general rule, groundwater is purged until water quality parameters stabilized, after an hour of continuous purging, or after three well volumes of groundwater had been removed from the well. Due to poor recharge in both wells, groundwater samples were collected from MW-1 and MW-2 after purging three well volumes from each well.

After purging each well, a groundwater sample was collected directly from the pump discharge line using USEPA low-flow techniques. For quality assurance and quality control, one field blank sample and one duplicate sample were collected. A trip blank was included in each shipment for quality control during transport. All samples were analyzed for Part 375/Target Compound List (TCL) VOCs via USEPA SW-846 method 8260C by Pace Analytical, a NYSDOH Environmental Laboratory Approval Program (ELAP)-accredited laboratory in Westborough, Massachusetts.

The laboratory analytical results for the baseline sampling event, the previous quarterly sampling events, and the October 2024 sampling event are summarized in Table 1. The laboratory analytical report from the October 2024 sampling event is provided as Attachment D. Groundwater analytical results were compared to the NYSDEC Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical & Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA drinking water (herein collectively referenced as the NYSDEC SGVs). Analytical results from the first quarterly sampling event are discussed in the NYSDEC-approved December 2022 Final Engineering Report (FER), and analytical results from subsequent quarters are discussed in their respective quarterly monitoring reports.

October 2024 Performance Monitoring Analytical Results

Analytical results from the October 2024 performance monitoring are summarized as follows:

• <u>MW-1:</u> No VOCs were detected above the NYSDEC SGVs. In comparison to baseline analytical results, total VOC and total BTEX concentrations have decreased by 100%.

• <u>MW-2:</u> 1,2,4,5-Tetramethylbenzene, 1,2,4-trimethylbenzene, ethylbenzene isopropylbenzene (cumene), m,p-xylene, n-propylbenzene, and total xylenes were detected above the NYSDEC SGVs. In comparison to baseline analytical results, total VOC and total BTEX concentrations have decreased by 98.7% and 99.7%, respectively.

Seven VOCs were detected above the NYSDEC SGVs in groundwater samples collected during the October 2024 monitoring event. Total VOC concentrations have decreased by 100% (MW-1) and 98.7% (MW-2), and total BTEX concentrations have decreased by 100% (MW-1) and 99.7% (MW-2) when compared to baseline concentrations. In comparison to the eighth quarterly sampling event, analyte concentrations detected above the NYSDEC SGVs in MW-1 and MW-2 are generally within the same order of magnitude.

Analytical data are shown on Figure 4 and result trends are shown on Figure 5. Comparison of overall result trends for each monitoring well show a bulk reduction in petroleum-related VOCs to asymptotic levels over the course of the monitoring program. Based on the post-remedy sampling results and trends, the off-site remedy appears to have been effective; further significant decline of contaminant of concern concentrations in the near term is not anticipated.

Data Validation

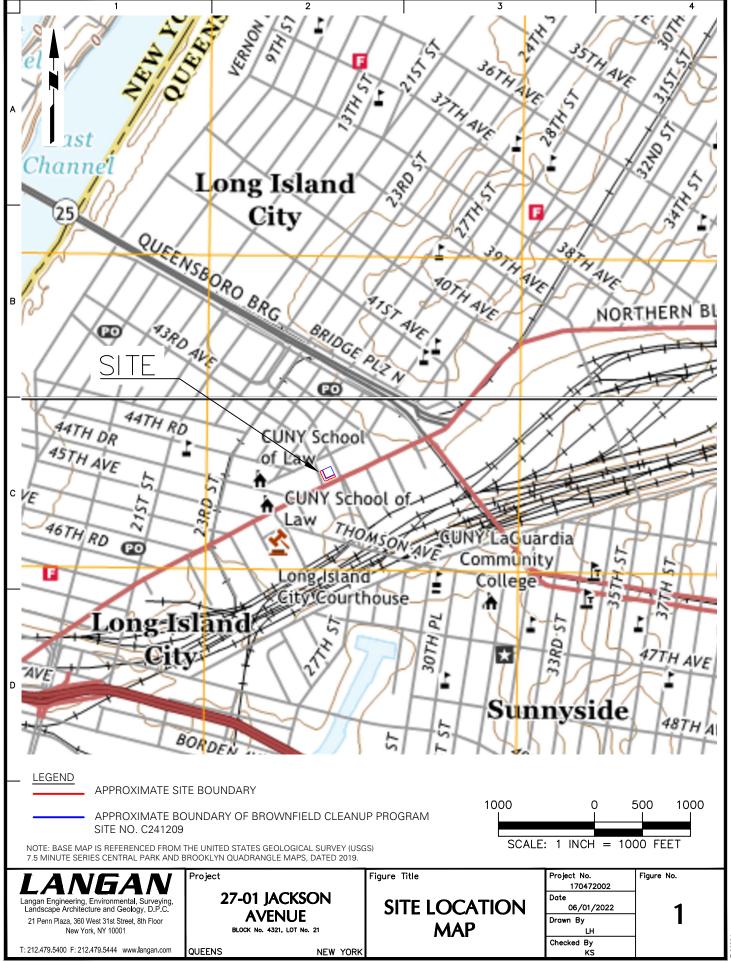
A copy of the Analytical Services Protocol (ASP) Category B laboratory report was submitted to Langan's data validation department for review in accordance with the USEPA validation guidelines for organic and inorganic data. The data were found to be 100% acceptable. The Data Usability Summary Report (DUSR) is included in Attachment E.

Closure

Targeted petroleum-related VOC concentrations exceeded the NYSDEC SGVs in MW-2, but have been reduced by one to three orders of magnitude relative to baseline concentrations, indicating that bulk reduction has been observed. VOCs were not detected above the NYSDEC SGVs in MW-1 during the October 2024 monitoring event. Based on the overall sampling event results trends, asymptotic levels have been achieved over the nine monitoring events, indicating that the off-site remedy has been effective. Further significant decline of concentrations of contaminants of concern in the near term is not anticipated; however, as requested by NYSDEC in their correspondence dated September 19, 2024 (see Attachment A), Langan will conduct two additional quarterly groundwater monitoring events at the CO site prior to re-evaluating discontinuation of the monitoring program.

Should you have any questions, please call the undersigned at 212-479-5427.

Sincerely,


Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C.

Jason Hayes, P.E. Senior Principal

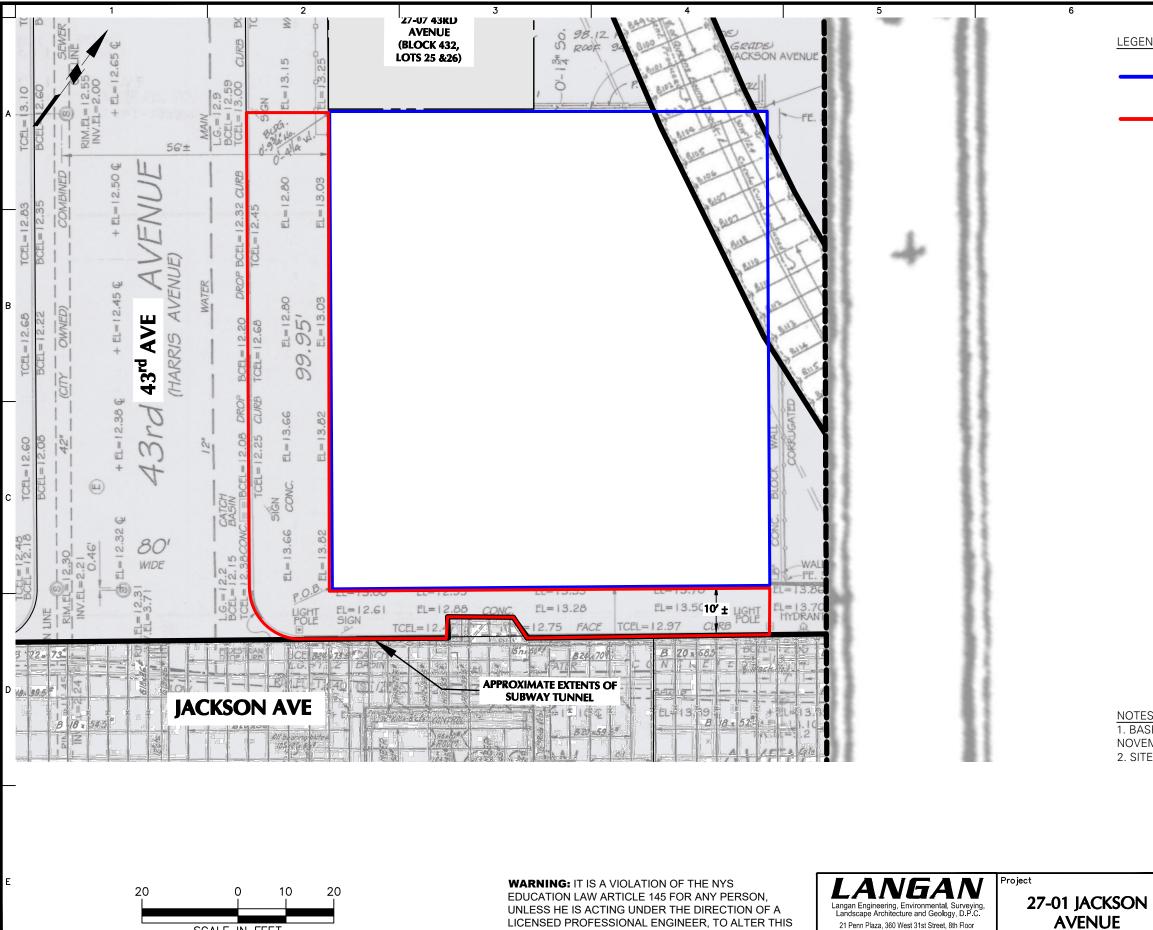

Enclosures:

Figure 1	Site Location Map
Figure 2	Site Layout Plan
Figure 3	In-Situ Groundwater Treatment Injection Plan
Figure 4	Groundwater Sample Analytical Results
Figure 5	Groundwater Sample Analytical Results Trends
Table 1	Groundwater Sample Analytical Results
Attachment A	NYSDEC Correspondence
Attachment B	Daily Site Observation Report
Attachment C	Well Purging and Sampling Logs
Attachment D	Laboratory Analytical Report
Attachment E	Data Usability Summary Report

FIGURES

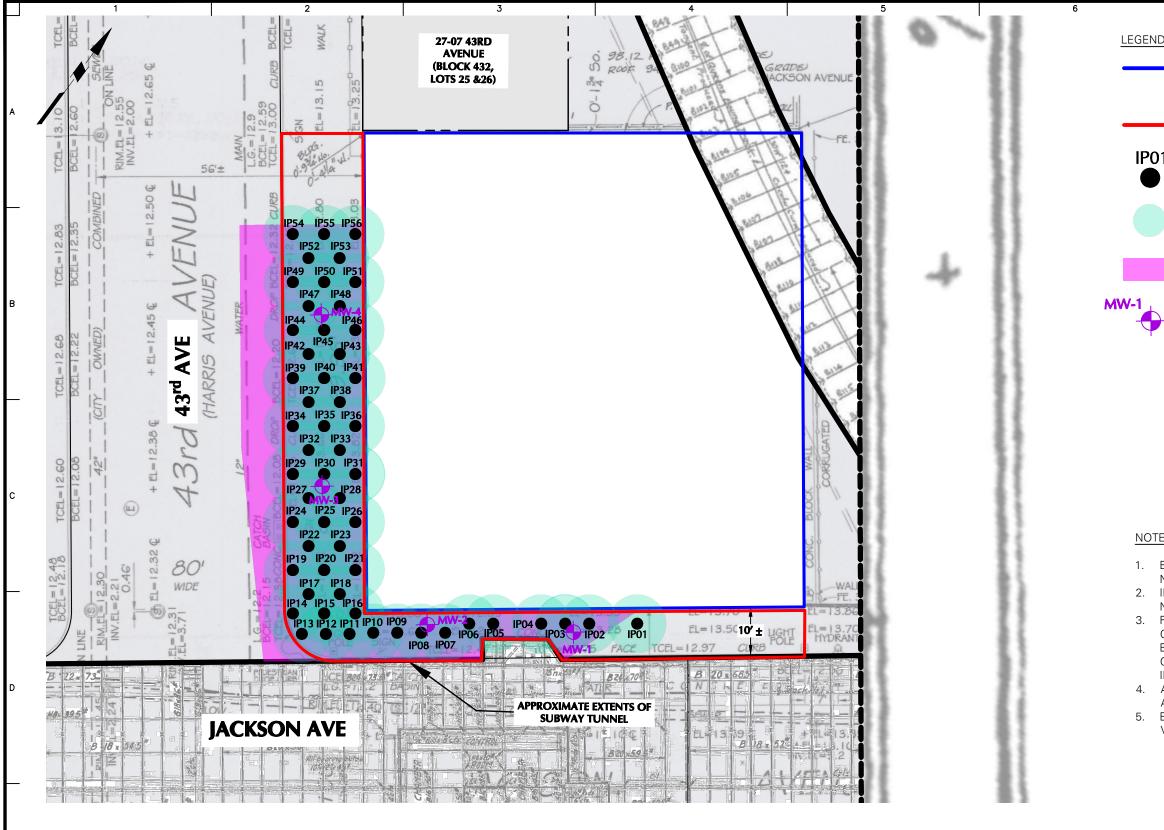
Filename: Wangan.com/datai/NYC/data0/170472002/Project DataiCAD/02/SheetFiles/OSMP/Figure 1 - Site Location Map.dwg Date: 2/14/2023 Time: 22:25 User: Ihaley Style Table: Langan.stb Layout: F1 - SITE LCO MAP

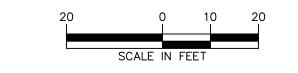
LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS

ITEM IN ANY WAY.

SCALE IN FEET

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

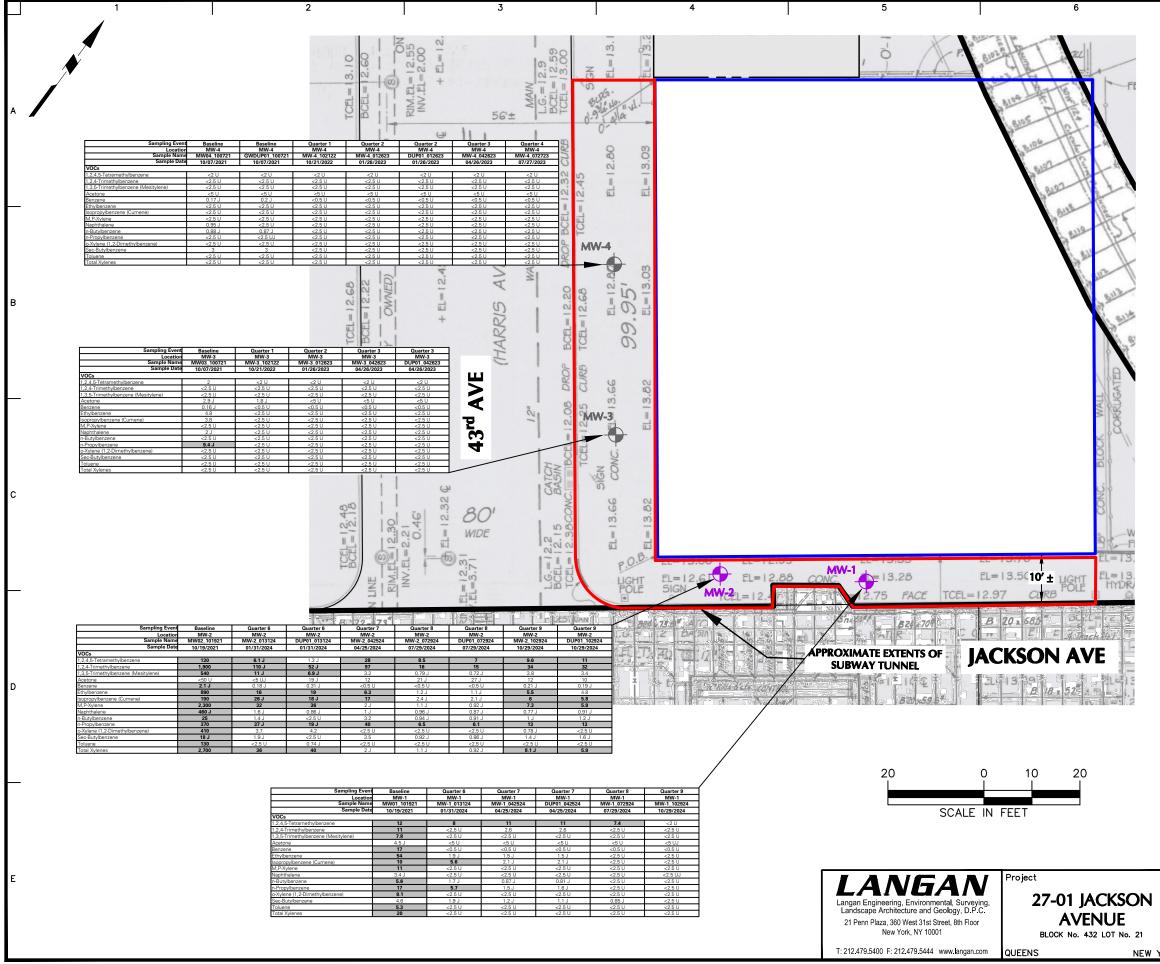

T: 212.479.5400 F: 212.479.5444 www.langan.com


Filename: \\langan.com\data\NYC\data0\170472002\Project Data\CAD\02\SheetFiles\SMP\Figure 2 - Site Layout Plan.dwg Date: 7/6/2022 Time: 13:44 User: eseery Style Table: Langan.stb Layout: ANSIB-BL

BLOCK No. 432 LOT No. 21

QUEENS

			_
egend	7	I	8
	APPROXIMATE BOUNDARY OF PROGRAM SITE NO. C241209	BROWNFIELD C	LEANUP
	APPROXIMATE SITE BOUNDAF	ťΥ	
	AP TAKEN FROM HAYNES LAND SU R 12, 2014.	RVEYORS, DATEI	D ON
	UNDARIES ARE APPROXIMATE		
	Figure Title	Project No. 170472002	Figure No.
ON	SITE LAYOUT PLAN	Date 07/06/2022 Drawn By	2
o. 21 NEW YORK		LH Checked By KS	



Filename: \\langan.com\data\NYC\data0\170472002\Project Data\CAD\02\SheetFiles\OSMP\Figure 3 - In-Situ Groundwater Treatment Injection Plan.dwg Date: 11/17/2022 Time: 22:22 User: Ihaley Style Table: Langan.stb Layout: ANSIB-BL

 I <u>D</u>	7		8							
	APPROXIMATE BOUNDARY OF PROGRAM SITE NO. C241209	BROWNFIELD C	LEANUP							
_	APPROXIMATE SITE BOUNDAF	Υ								
01	INJECTION POINT LOCATION									
	APPROXIMATE BADIUS OF INF	APPROXIMATE RADIUS OF INFLUENCE FOR PETROFIX								
	ALL HOMINIATE HADIOS OF INFEDENCE FOR FEITIOFIX									
	APPROXIMATE EXTENT OF OF	F-SITE PETROLEU	IM PLUME							
	MONITORING WELL LOCATION	Ν								
TES										
BAS		ID SURVEYORS, D	DATED							
INJE	/EMBER 12, 2014. ECTIONS WERE COMPLETED BET\ /EMBER 11, 2021.	WEEN OCTOBER 2	20, 2021 AND							
RAD CON	IUS OF INFLUENCE CALCULATION	EMICAL MANUFA	CTURERS							
CON	ED ON SUBSURFACE CONDITION ICENTRATIONS ENCOUNTERED D ESTIGATION CONDUCTED BY LAN	URING THE REME								
ALL	INJECTION AND MONITORING W ROXIMATE.		ARE							
	VATIONS (EL.) ARE REFERENCED TICAL DATUM OF 1983 (NAVD83).		MERICAN							
	WARNING: IT IS A VIOL	ΔΤΙΩΝ ΩΕ ΤΗΕ ΝΥ	r c							
	EDUCATION LAW ARTIC UNLESS HE IS ACTING U	LE 145 FOR ANY P	PERSON,							
	LICENSED PROFESSION ITEM IN ANY WAY.	IAL ENGINEER, TC	ALTER THIS							
	Figure Title	Project No. 170472002	Figure No.							
	IN-SITU GROUNDWATER	Date 11/17/2022	2							
	TREATMENT INJECTION PLAN	Drawn By LH	3							

INJECTION PLAN

Checked By KS

Filename: \\langan.com\data\NYC\data(\170472002\Project Data\CAD\02\SheetFiles\Off-Site Groundwater Reports\Figure 4 - Groundwater Sample Results Map.dwg Date: 2/5/2025 Time: 10:32 User: Ihaley Style Table: Langan.stb Layout: ANSIB-BL (2)

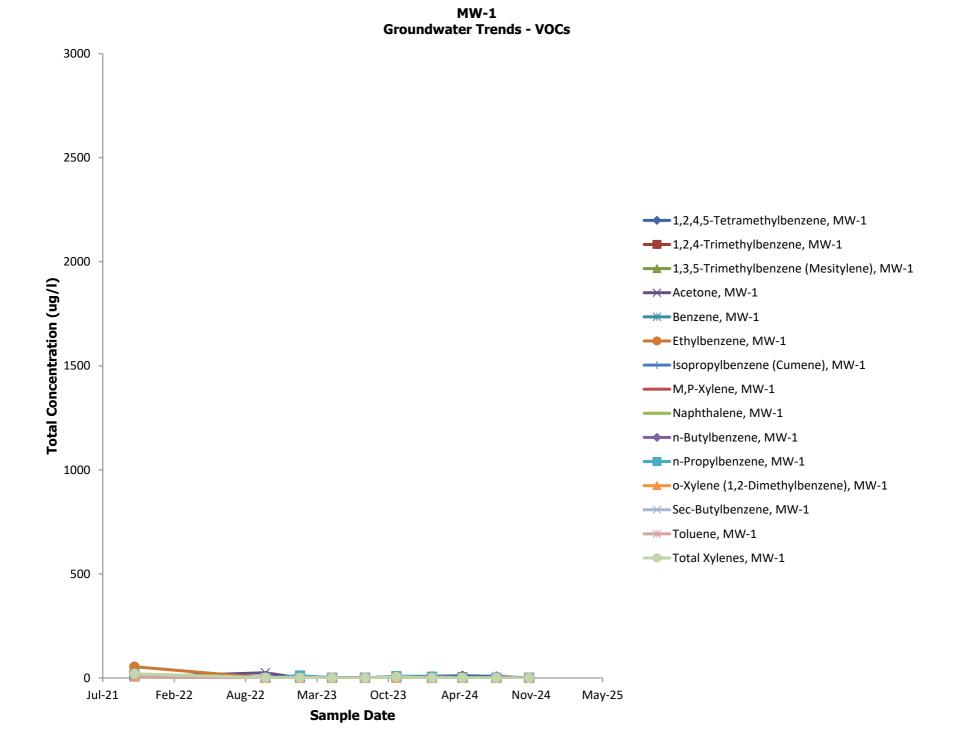
LEGEND

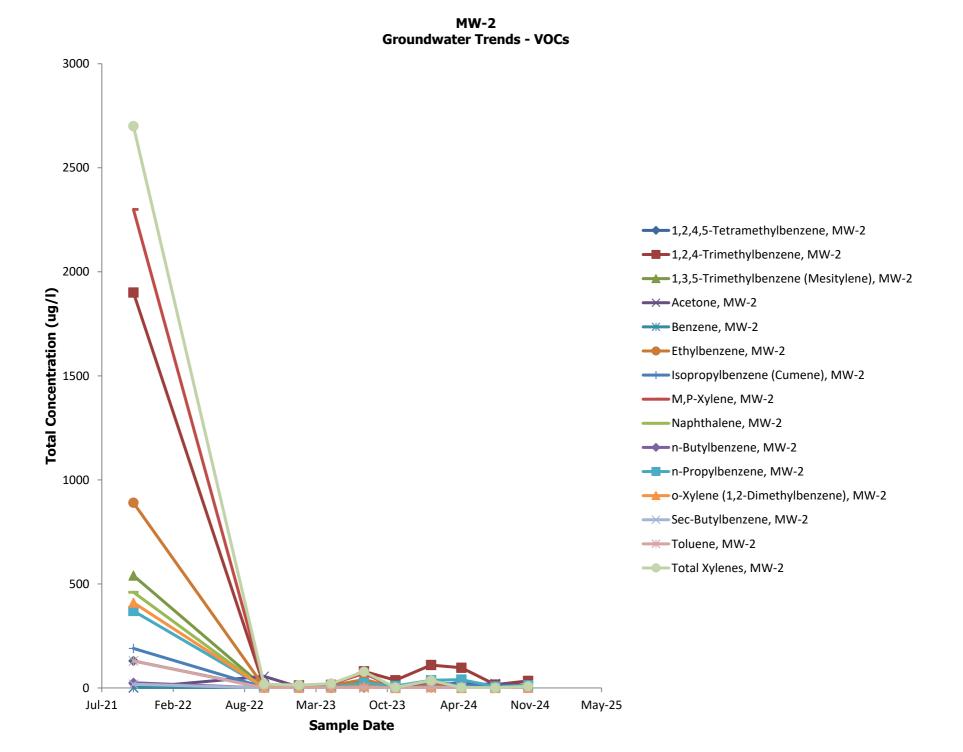
APPROXIMATE BOUNDARY OF BROWNFIELD CLEANUP PROGRAM SITE NO. C241209

APPROXIMATE SITE BOUNDARY

MONITORING WELL LOCATION (GROUNDWATER SAMPLING DISCONTINUED 2023)

MONITORING WELL LOCATION


Analyte	NYSDEC SGVs				
VOCs					
1,2,4,5-Tetramethylbenzene	5				
1,2,4-Trimethylbenzene	5				
1,3,5-Trimethylbenzene (Mesitylene)	5				
Acetone	50				
Benzene	1				
Ethylbenzene	5				
Isopropylbenzene (Cumene)	5				
M,P-Xylene	5				
Naphthalene	10				
n-Butylbenzene	5				
n-Propylbenzene	5				
o-Xylene (1,2-Dimethylbenzene)	5				
Sec-Butylbenzene	5				
Toluene	5				
Total Xylenes	5				


NOTES

- 1. BASEMAP TAKEN FROM HAYNES LAND SURVEYORS, DATED ON NOVEMBER 12, 2014.
- 2.
- ALL LOCATIONS ARE APPROXIMATE. THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 3. (NYSDEC) ALLOWED THE DISCONTINUATION OF GROUNDWATER SAMPLING AT MONITORING WELLS MW-3 AND MW-4 VIA EMAIL CORRESPONDENCE ON AUGUST 8 AND OCTOBER 13, 2023.
- GROUNDWATER RESULTS ARE COMPARED TO THE NEW YORK STATE 4 DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS GA GROUNDWATER.
- THIS FIGURE COMPARES BASELINE ANALYTICAL DATA TO THE FOUR MOST 5. RECENT QUARTERS OF ANALYTICAL DATA FOR EACH WELL. ALL ANALYTICAL DATA FROM THE BASELINE AND QUARTERLY SAMPLING EVENTS ARE PROVIDED IN THE QUARTERLY GROUNDWATER MONITORING REPORT TABLES.
- ONLY COMPOUNDS EXCEEDING COMPARISON CRITERIA ARE SHOWN. 6
- RESULTS ABOVE NYSDEC SGVs ARE SHADED AND BOLDED.
- RESULTS ARE SHOWN IN MICROGRAMS PER LITER (µg/L). 8
- J= THE ANALYTE WAS DETECTED ABOVE THE METHOD DETECTION LIMIT, BUT 9 BELOW THE REPORTING LIMIT (RL); THE RESULT IS AN ESTIMATED CONCENTRATION.
- 10. U = THE ANALYTE WAS ANALYZED FOR, BUT NOT DETECTED AT A LEVEL GREATER THAN OR EQUAL TO THE RL; THE VALUE SHOWN IN THE TABLE IS THE RL.

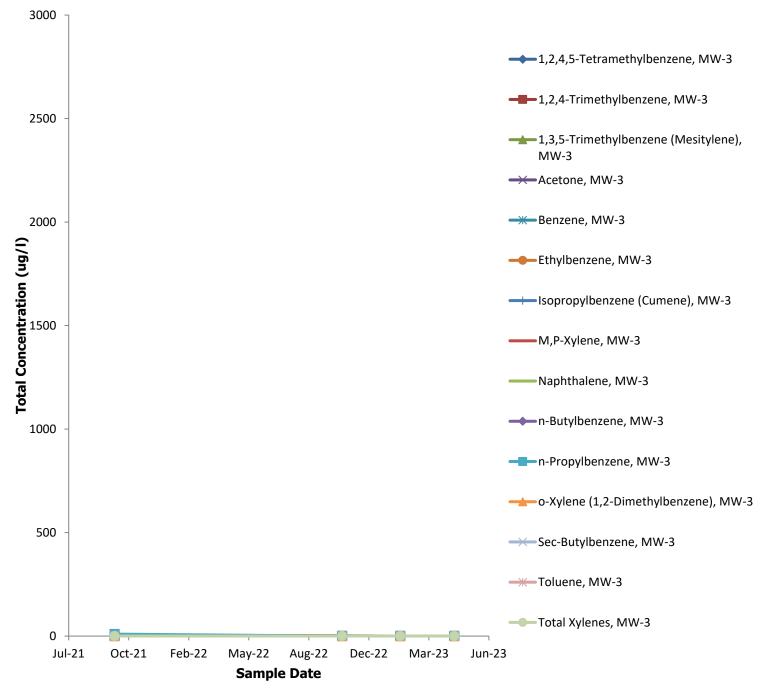
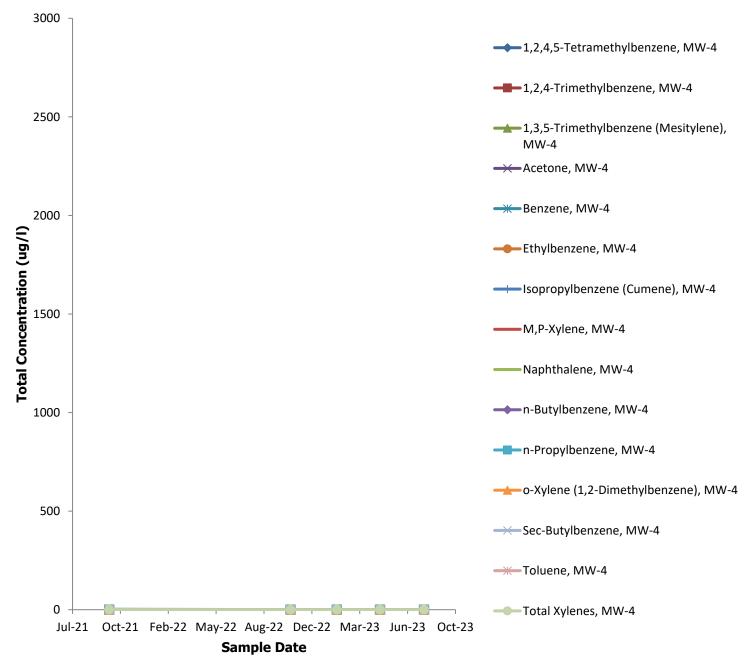

WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

	Figure Title	Project No. 170472002	Figure No.
	GROUNDWATER SAMPLE	Date 02/05/2025	
	ANALYTICAL RESULTS MAP	Drawn By LH	4
ORK		Checked By KS	



27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002

MW-4 Groundwater Trends - VOCs

TABLES

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

			Sampling Event	Baseline	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Quarter 4	Quarter 5	Quarter 5	Quarter 6	Quarter 7	Quarter 7	Quarter 8	Quarter 9
	CAS	NYSDEC	Location	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1
Analyte	Number	SGVs	Sample Name Sample Date	MW01_101921 10/19/2021	MW-1_102122 10/21/2022	MW-1_012623 01/26/2023	MW-1_042623 04/26/2023	MW-1_072723 07/27/2023	DUP01_072723 07/27/2023	MW-1_102323 10/23/2023	DUP01_102323 10/23/2023	MW-1_013124 01/31/2024	MW-1_042524 04/25/2024	DUP01_042524 04/25/2024	MW-1_072924 07/29/2024	MW-1_102924 10/29/2024
			Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds																
1,1,1,2-Tetrachloroethane	630-20-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	71-55-6 79-34-5	5 5	ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U					
1,1,2,2-Trichloroethane	79-00-5	1	ug/l ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
1,1-Dichloroethane	75-34-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
1,1-Dichloroethene	75-35-4	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
1,1-Dichloropropene	563-58-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	87-61-6 96-18-4	0.04	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U					
1,2,4,5-Tetramethylbenzene	95-93-2	5	ug/l	12	1.9 J	8.9	1.7 J	<2 U	<2 U	7.6	8.4	8	11	11	7.4	<2 U
1,2,4-Trichlorobenzene	120-82-1	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
1,2,4-Trimethylbenzene	95-63-6	5	ug/l	11	0.77 J	0.74 J	<2.5 U	<2.5 U	<2.5 U	7.2	7.5	<2.5 U	2.6	2.6	<2.5 U	<2.5 U
1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane (Ethylene Dibromide)	96-12-8 106-93-4	0.04 0.0006	ug/l ug/l	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U					
1,2-Dichlorobenzene	95-50-1	3	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
1,2-Dichloroethane	107-06-2	0.6	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
1,2-Dichloropropane	78-87-5	1	ug/l	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U					
1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene	108-67-8 541-73-1	5 3	ug/l	7.8 <2.5 ∪	4 <2.5 ∪	1.7 J <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	5.3 <2.5 U	5.6 <2.5 ∪	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
1,3-Dichloropropane	142-28-9	5	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
1,4-Dichlorobenzene	106-46-7	3	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
1,4-Diethyl Benzene	105-05-5	NS	ug/l	26	4	4.9	1.7 J	<2 U	<2 U	1.6 J	1.7 J	3.9	3.5	3.5	2.3	<2 U
1,4-Dioxane (P-Dioxane)	123-91-1	0.35	ug/l	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U	<250 U					
2,2-Dichloropropane 2-Chlorotoluene	594-20-7 95-49-8	5 5	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U					
2-Hexanone (MBK)	591-78-6	50	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U					
4-Chlorotoluene	106-43-4	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
4-Ethyltoluene	622-96-8	NS	ug/l	6.1	1.5 J	1.4 J	<2 U	<2 U	<2 U	4	4.3	<2 U	<2 U	<2 U	<2 U	<2 U
Acetone Acrylonitrile	67-64-1 107-13-1	50	ug/l	4.5 J ⊲5 U	25 <5 ∪	<5 U <5 U	<5 U <5 U	2.5 J <5 ∪	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 UJ <5 U
Benzene	71-43-2	1	ug/l ug/l	17	<0.5 U	0.22 J	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Bromobenzene	108-86-1	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
Bromochloromethane	74-97-5	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
Bromodichloromethane Bromoform	75-27-4 75-25-2	50 50	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
Bromomethane	74-83-9	5	ug/l ug/l	<2 U <2.5 U	<2 U <2.5 UJ	<2 U <2.5 UJ	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 UJ					
Carbon Disulfide	75-15-0	60	ug/l	1.2 J	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U				
Carbon Tetrachloride	56-23-5	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
Chlorobenzene	108-90-7	5 5	ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 UJ					
Chloroethane Chloroform	75-00-3 67-66-3	5	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U
Chloromethane	74-87-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
Cis-1,2-Dichloroethene	156-59-2	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
Cis-1,3-Dichloropropene	10061-01-5 99-87-6	0.4 5	ug/l	<0.5 U 1.4 J	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U				
Cymene Dibromochloromethane	124-48-1	50	ug/l ug/l	<0.5 U	<2.5 U	<2.5 U	<0.5 U	<2.5 U	<0.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<0.5 U	<2.5 U	<2.5 U
Dibromomethane	74-95-3	5	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U					
Dichlorodifluoromethane	75-71-8	5	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U					
Diethyl Ether (Ethyl Ether) Ethylbenzene	60-29-7 100-41-4	NS 5	ug/l	<2.5 U 54	<2.5 U <2.5 U	<2.5 U 5.4	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U 4.7	<2.5 U 5	<2.5 U 1.9 J	<2.5 U 1.5 J	<2.5 U 1.5 J	<2.5 U <2.5 U	<2.5 UJ <2.5 U
Hexachlorobutadiene	87-68-3	0.5	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
Isopropylbenzene (Cumene)	98-82-8	5	ug/l	10	<2.5 U	9.1	<2.5 U	<2.5 U	<2.5 U	3.9	4.2	5.6	2.1 J	2.1 J	<2.5 U	<2.5 U
M,P-Xylene	179601-23-1	5	ug/l	11	1.3 J	0.88 J	<2.5 U	<2.5 U	<2.5 U	3.7	4	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	78-93-3 108-10-1	50 NS	ug/l	<5 U <5 U	<5 UJ <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U
Methylene Chloride	75-09-2	5	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
Naphthalene	91-20-3	10	ug/l	3.4 J	<2.5 U	2.2 J	2 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ				
n-Butylbenzene	104-51-8	5	ug/l	5.6	<2.5 U	2.2 J	<2.5 U	<2.5 U	<2.5 U	1.4 J	1.6 J	1.7 J	0.87 J	0.81 J	<2.5 U	<2.5 U
n-Propylbenzene	103-65-1 95-47-6	5	ug/l	17 9.1	<2.5 U <2.5 U	11 <2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U	7.1 0.98 J	7.7	5.7 <2.5 U	1.5 J	1.6 J	<2.5 U	<2.5 U
o-Xylene (1,2-Dimethylbenzene) Sec-Butylbenzene	135-98-8	5	ug/l ug/l	4.6	<2.5 U	2.7	<2.5 U 0.87 J	<2.5 U <2.5 U	<2.5 U	0.98 J	1 J 1 J	<2.5 U 1.9 J	<2.5 U 1.2 J	<2.5 U 1.1 J	<2.5 U 0.85 J	<2.5 U <2.5 U
Styrene	100-42-5	5	ug/l	<2.5 U	<2.5 U	<2.5 U	1.2 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
T-Butylbenzene	98-06-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
Tert-Butyl Methyl Ether	1634-04-4	10	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
Tetrachloroethene (PCE) Toluene	127-18-4 108-88-3	5 5	ug/l ug/l	<0.5 U 5.3	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U				
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
Total Xylenes	1330-20-7	5	ug/l	20	1.3 J	0.88 J	<2.5 U	<2.5 U	<2.5 U	4.7 J	5 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Total, 1,3-Dichloropropene (Cis And Trans)	542-75-6	0.4	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	156-60-5 10061-02-6	5 0.4	ug/l ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U					
Trans-1,4-Dichloro-2-Butene	110-57-6	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
Trichloroethene (TCE)	79-01-6	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
Trichlorofluoromethane	75-69-4	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ					
Vinyl Acetate	108-05-4 75-01-4	NS 2	ug/l	<5 U <1 U	<5 U <1 U	<5 U	<5 U <1 U	<5 U <1 U	<5 U <1 U	<5 U <1 U	<5 U <1 U	<5 U <1 U	<5 U <1 U	<5 U <1 U	<5 U	<5 U
Vinyl Chloride	/5-01-4	2	ug/l	<10	<1 U	<1 U	<1 U	<10	<1 U	<1 U	< 1 U	<1 U	<1 U	<1 U	<1 U	<1 U

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

			Sampling Event	Baseline	Quarter 1	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Quarter 5	Quarter 6	Quarter 6	Quarter 7	Quarter 8	Quarter 8	Quarter 9	Quarter 9
Analyte	CAS	NYSDEC	Location Sample Name	MW-2 MW02 101921	MW-2 MW-2 102022	MW-2 DUP01 102022	MW-2 MW-2 012623	MW-2 MW-2 042623	MW-2 MW-2 072723	MW-2 MW-2 102323	MW-2 MW-2 013124	MW-2 DUP01 013124	MW-2 MW-2 042524	MW-2 MW-2 072924	MW-2 DUP01 072924	MW-2 MW-2 102924	MW-2 DUP01 102924
Analyte	Number	SGVs	Sample Date	10/19/2021	10/20/2022	10/20/2022	01/26/2023	04/26/2023	07/27/2023	10/23/2023	01/31/2024	01/31/2024	04/25/2024	07/29/2024	07/29/2024	10/29/2024	10/29/2024
			Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
/olatile Organic Compounds	620.20.6	F		-25.11	-2.5.11	-2.5.11	-2 E I I	-2 E U	-2 E I I	-2 E I I	-2 E I I	-2.5.U	-2.5.11	-2 E U	-2 E I I	-2.5.11	-2.5.U
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	630-20-6 71-55-6	5	ug/l ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
1,1,2,2-Tetrachloroethane	79-34-5	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
1,1,2-Trichloroethane	79-00-5	1	ug/l	<15 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U
1,1-Dichloroethane 1,1-Dichloroethene	75-34-3 75-35-4	5	ug/l ug/l	<25 U <5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
1,1-Dichloropropene	563-58-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,3-Trichlorobenzene	87-61-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene	96-18-4 95-93-2	0.04 5	ug/l	<25 U 130	<2.5 U 1.4 J	<2.5 U 4.2 J	<2.5 U <2 U	<2.5 U <2 U	<2.5 U 2.6	<2.5 U 6.2	<2.5 U 6.1 J	<2.5 U 1.3 J	<2.5 U 28	<2.5 U 8.5	<2.5 U 7	<2.5 U 9.6	<2.5 U 11
1,2,4-Trichlorobenzene	120-82-1	5	ug/l ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,4-Trimethylbenzene	95-63-6	5	ug/l	1,900	10 J	34 J	12	15	80	37	110 J	52 J	97	16	15	34	32
1,2-Dibromo-3-Chloropropane	96-12-8 106-93-4	0.04	ug/l	<25 U <20 U	<2.5 U <2 U	<2.5 U <2 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2 U	<2.5 U	<2.5 U <2 U	<2.5 U	<2.5 U <2 U	<2.5 U
1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene	95-50-1	0.0006 3	ug/l ug/l	<20 U	<2.5 U	<2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2.5 U	<2 U <2.5 U	<2.5 U	<2 U <2.5 U	<2.5 U	<2 U <2.5 U
1,2-Dichloroethane	107-06-2	0.6	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
1,2-Dichloropropane	78-87-5	1	ug/l	<10 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U
1,3,5-Trimethylbenzene (Mesitylene) 1,3-Dichlorobenzene	108-67-8 541-73-1	5	ug/l ug/l	540 <25 U	3.5 J <2.5 ∪	8 J <2.5 U	2.5 <2.5 ∪	2.4 J <2.5 ∪	11 <2.5 U	2.5 <2.5 ∪	11 J <2.5 ∪	6.9 J <2.5 U	3.2 <2.5 U	0.79 J <2.5 ∪	0.72 J <2.5 U	3.8 <2.5 ∪	3.4 <2.5 ∪
1,3-Dichloropropane	142-28-9	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,4-Dichlorobenzene	106-46-7	3	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,4-Diethyl Benzene 1.4-Dioxane (P-Dioxane)	105-05-5 123-91-1	NS 0.35	ug/l ug/l	270 <2,500 U	<2 U <250 U	0.72 J <250 U	1.4 J <250 U	0.85 J <250 U	1.4 J <250 ∪	0.91 J <250 U	2.5 <250 ∪	1.1 J <250 U	7 <250 U	1.3 J <250 ∪	1.2 J <250 U	2.1 <250 UJ	2.2 <250 UJ
2,2-Dichloropropane	594-20-7	5	ug/l	<2,500 0 <25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
2-Chlorotoluene	95-49-8	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
2-Hexanone (MBK) 4-Chlorotoluene	591-78-6 106-43-4	50 5	ug/l	<50 U <25 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U
4-Ethyltoluene	622-96-8	NS	ug/l ug/l	800	<2.5 U 7.4 J	<2.5 U 15 J	6.2	9.7	<2.5 U 44	13	<2.5 U 51 J	<2.5 U 30 J	38	<2.5 U 5.6	5.3	<2.5 U 16	15
Acetone	67-64-1	50	ug/l	<50 U	56	63	4.4 J	12 J	37	3.8 J	<5 UJ	19 J	12	21 J	27 J	12	10
Acrylonitrile	107-13-1	5	ug/l	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Benzene Bromobenzene	71-43-2 108-86-1	1 5	ug/l ug/l	2.1 J <25 U	0.69 <2.5 ∪	0.35 J <2.5 U	0.51 <2.5 U	0.82 <2.5 ∪	0.6 <2.5 ∪	<0.5 U <2.5 U	0.18 J <2.5 ∪	0.31 J <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	0.21 J <2.5 U	0.19 J <2.5 ∪
Bromochloromethane	74-97-5	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Bromodichloromethane	75-27-4	50	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Bromoform Bromomethane	75-25-2 74-83-9	50 5	ug/l ug/l	<20 U <25 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U 1.3 J	<2 ∪ 2.6 J	<2 ∪ 0.85 J	<2 U 1.2 J	<2 U 1.1 J	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 UJ	<2 U <2.5 UJ
Carbon Disulfide	75-15-0	60	ug/l	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Carbon Tetrachloride	56-23-5	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Chlorobenzene Chloroethane	108-90-7 75-00-3	5	ug/l ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 UJ	<2.5 U <2.5 UJ
Chloroform	67-66-3	7	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Chloromethane	74-87-3	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene	156-59-2 10061-01-5	5 0.4	ug/l ug/l	<25 U <5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
Cymene	99-87-6	5	ug/l	<25 U	<2.5 U	0.7 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	1.2 J	<2.5 U	2 J	<2.5 U	<2.5 U	0.76 J	0.86 J
Dibromochloromethane	124-48-1	50	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Dibromomethane Dichlorodifluoromethane	74-95-3 75-71-8	5	ug/l ug/l	<50 U <50 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U
Diethyl Ether (Ethyl Ether)	60-29-7	NS	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ
Ethylbenzene	100-41-4	5	ug/l	890	5.9	4	5.8	11	41	3.2	16	19	6.3	1.2 J	1.1 J	5.5	4.8
Hexachlorobutadiene Isopropylbenzene (Cumene)	87-68-3 98-82-8	0.5	ug/l ug/l	<25 U 190	<2.5 U	<2.5 U 3.5	<2.5 U 3.2	<2.5 U 5.2	<2.5 U 22	<2.5 U 8.3	<2.5 U 26 J	<2.5 U 18 J	<2.5 U 17	<2.5 U 2.4 J	<2.5 U 2.1 J	<2.5 U	<2.5 U 5.8
M,P-Xylene	179601-23-1	5	ug/l	2,300	16	14	12	19	70	2.3 J	32	36	2 J	1.1 J	0.92 J	7.3	5.9
Methyl Ethyl Ketone (2-Butanone)	78-93-3	50	ug/l	<50 U	<5 UJ	21 J	<5 U	<5 U	27	<5 U	<5 UJ	13 J	<5 U	4.6 J	4.7 J	<5 U	<5 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) Methylene Chloride	108-10-1 75-09-2	NS 5	ug/l ug/l	<50 U <25 U	1.5 J 1 J	<5 U <2.5 U	<5 U 0.92 J	1.7 J <2.5 ∪	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U 0.79 J	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U 1.1 J	<5 U 0.88 J
Naphthalene	91-20-3	10	ug/l	460 J	<2.5 U	3	<2.5 U	<2.5 U	1.4 J	<2.5 U	1.6 J	0.86 J	1 J	0.96 J	0.87 J	0.77 J	0.91 J
n-Butylbenzene	104-51-8	5	ug/l	25	<2.5 U	0.93 J	<2.5 U	<2.5 U	0.7 J	<2.5 U	1.4 J	<2.5 U	3.2	0.94 J	0.91 J	1 J	1.2 J
n-Propylbenzene o-Xylene (1,2-Dimethylbenzene)	103-65-1 95-47-6	5	ug/l	370 410	2.8 J 2 J	5.7 J 1.9 J	2.7 1.5 J	4.5 2.1 J	23 7.5	9.5 <2.5 U	37 J 3.7	19 J 4.2	40 <2.5 U	6.5 <2.5 ∪	6.1 <2.5 U	13 0.78 J	13 <2.5 U
Sec-Butylbenzene	95-47-6 135-98-8	5	ug/l	410 18 J	<2.5 U	0.83 J	<2.5 U	<2.5 U	0.93 J	<2.5 U 0.84 J	3.7 1.9 J	4.2 <2.5 U	3.5	<2.5 U 0.92 J	<2.5 U 0.86 J	0.78 J 1.4 J	<2.5 U 1.6 J
Styrene	100-42-5	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
T-Butylbenzene Tert Rutyl Motbyl Ethor	98-06-6 1624.04.4	5 10	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Tert-Butyl Methyl Ether Tetrachloroethene (PCE)	1634-04-4 127-18-4	5	ug/l ug/l	<25 U <5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
Toluene	108-88-3	5	ug/l	130	0.7 J	1 J	<2.5 U	0.79 J	1.2 J	<2.5 U	<2.5 U	0.74 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Total Xylenes Total, 1,3-Dichloropropene (Cis And Trans)	1330-20-7 542-75-6	5 0.4	ug/l ug/l	2,700 <5 U	18 J <0.5 U	16 J <0.5 U	14 J <0.5 U	21 J <0.5 U	78 <0.5 U	2.3 J <0.5 ∪	36 <0.5 U	40 <0.5 U	2 J <0.5 U	1.1 J <0.5 ∪	0.92 J <0.5 ∪	8.1 J <0.5 U	5.9 <0.5 U
Trans-1,2-Dichloroethene	156-60-5	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Trans-1,3-Dichloropropene	10061-02-6	0.4	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Trans-1,4-Dichloro-2-Butene Trichloroethene (TCE)	110-57-6 79-01-6	5	ug/l	<25 U <5 U	<2.5 U <0.5 U	<2.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U	<2.5 U
Trichlorofluoromethane	79-01-6 75-69-4	5 5	ug/l ug/l	<5 U <25 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 UJ	<0.5 U <2.5 UJ
Vinyl Acetate	108-05-4	NS	ug/l	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Vinyl Chloride	75-01-4	2	ug/l	<10 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

			Sampling Event	Baseline	Quarter 1	Quarter 2	Quarter 3	Quarter 3	Baseline	Baseline	Quarter 1	Quarter 2	Quarter 2	Quarter 3	Quarter 4
	CAS	NYSDEC	Location	MW-3	MW-3	MW-3	MW-3	MW-3	MW-4						
Analyte	Number	SGVs	Sample Name	MW03_100721	MW-3_102122	MW-3_012623	MW-3_042623	DUP01_042623	MW04_100721	GWDUP01_100721	MW-4_102122	MW-4_012623	DUP01_012623	MW-4_042623	MW-4_072723
			Sample Date Unit	10/07/2021 Result	10/21/2022 Result	01/26/2023 Result	04/26/2023 Result	04/26/2023 Result	10/07/2021 Result	10/07/2021 Result	10/21/2022 Result	01/26/2023 Result	01/26/2023 Result	04/26/2023 Result	07/27/2023 Result
Volatile Organic Compounds			onic	Hoodit		Hoodit									
1,1,1,2-Tetrachloroethane	630-20-6	5	ug/l	<2.5 U											
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	71-55-6 79-34-5	5	ug/l ug/l	<2.5 U <0.5 U											
1,1,2-Trichloroethane	79-00-5	1	ug/l	<1.5 U											
1,1-Dichloroethane	75-34-3	5	ug/l	<2.5 U											
1,1-Dichloroethene 1,1-Dichloropropene	75-35-4 563-58-6	5	ug/l ug/l	<0.5 U <2.5 U											
1,2,3-Trichlorobenzene	87-61-6	5	ug/l	<2.5 U											
1,2,3-Trichloropropane	96-18-4	0.04	ug/l	<2.5 U											
1,2,4,5-Tetramethylbenzene	95-93-2	5	ug/l	2	<2 U										
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	120-82-1 95-63-6	5	ug/l ug/l	<2.5 U <2.5 U											
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	ug/l	<2.5 U											
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	0.0006	ug/l	<2 U											
1,2-Dichlorobenzene	95-50-1 107-06-2	3	ug/l	<2.5 U	<2.5 U <0.5 U										
1,2-Dichloroethane 1,2-Dichloropropane	78-87-5	0.6 1	ug/l ug/l	<0.5 U <1 U											
1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	5	ug/l	<2.5 U											
1,3-Dichlorobenzene	541-73-1	3	ug/l	<2.5 U											
1,3-Dichloropropane 1,4-Dichlorobenzene	142-28-9 106-46-7	5	ug/l ug/l	<2.5 U <2.5 U											
1,4-Diethyl Benzene	105-05-5	NS	ug/l	2.1 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	5.3	5.3 J	<2.0 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,4-Dioxane (P-Dioxane)	123-91-1	0.35	ug/l	<250 UJ	<250 U	<250 U	<250 U	<250 U	<250 UJ	<250 UJ	<250 U				
2,2-Dichloropropane	594-20-7	5	ug/l	<2.5 U											
2-Chlorotoluene 2-Hexanone (MBK)	95-49-8 591-78-6	5	ug/l ug/l	<2.5 U <5 UJ	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 UJ	<2.5 U <5 UJ	<2.5 U <5 U				
4-Chlorotoluene	106-43-4	5	ug/l	<2.5 U											
4-Ethyltoluene	622-96-8	NS	ug/l	0.9 J	<2 U										
Acetone Acrylonitrile	67-64-1 107-13-1	50	ug/l ug/l	2.9 J <5 UJ	1.8 J <5 ∪	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 UJ	<5 U <5 UJ	<5 U <5 U				
Benzene	71-43-2	1	ug/l	0.16 J	<0.5 U	<0.5 U	<0.5 U	<0.5 U	0.17 J	0.2 J	<0.5 U				
Bromobenzene	108-86-1	5	ug/l	<2.5 U											
Bromochloromethane Bromodichloromethane	74-97-5 75-27-4	5 50	ug/l	<2.5 U <0.5 U											
Bromoform	75-25-2	50	ug/l ug/l	<0.5 U <2 U											
Bromomethane	74-83-9	5	ug/l	<2.5 U											
Carbon Disulfide	75-15-0	60	ug/l	<5 U											
Carbon Tetrachloride Chlorobenzene	56-23-5 108-90-7	5	ug/l ug/l	<0.5 U <2.5 U											
Chloroethane	75-00-3	5	ug/l	<2.5 U											
Chloroform	67-66-3	7	ug/l	<2.5 U											
Chloromethane Cis-1,2-Dichloroethene	74-87-3 156-59-2	5	ug/l ug/l	<2.5 U <2.5 U											
Cis-1,3-Dichloropropene	10061-01-5	0.4	ug/l	<0.5 U											
Cymene	99-87-6	5	ug/l	<2.5 U											
Dibromochloromethane Dibromomethane	124-48-1 74-95-3	50 5	ug/l ug/l	<0.5 U <5 U											
Dichlorodifluoromethane	75-71-8	5	ug/l	<5 U											
Diethyl Ether (Ethyl Ether)	60-29-7	NS	ug/l	<2.5 U											
Ethylbenzene Hexachlorobutadiene	100-41-4 87-68-3	5 0.5	ug/l	4.8 <2.5 ∪	<2.5 U <2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Isopropylbenzene (Cumene)	98-82-8	5	ug/l ug/l	3.8	<2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
M,P-Xylene	179601-23-1	5	ug/l	<2.5 U											
Methyl Ethyl Ketone (2-Butanone)	78-93-3	50	ug/l	<5 U	<5 UJ	<5 U	<5 UJ	<5 U	<5 U	<5 U	<5 U				
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) Methylene Chloride	108-10-1 75-09-2	NS 5	ug/l ug/l	<5 U <2.5 U											
Naphthalene	91-20-3	10	ug/l	2 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	0.95 J	<2.5 U					
n-Butylbenzene	104-51-8	5	ug/l	<2.5 U	0.88 J	0.87 J	<2.5 U								
n-Propylbenzene o-Xylene (1,2-Dimethylbenzene)	103-65-1 95-47-6	5	ug/l ug/l	9.4 J <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 UJ <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Sec-Butylbenzene	135-98-8	5	ug/l	<2.5 U	3	3	<2.5 U								
Styrene	100-42-5	5	ug/l	<2.5 U											
T-Butylbenzene Tort Rutyl Mothyl Ethor	98-06-6 1624 04 4	5 10	ug/l	<2.5 U											
Tert-Butyl Methyl Ether Tetrachloroethene (PCE)	1634-04-4 127-18-4	5	ug/l ug/l	<2.5 U <0.5 U											
Toluene	108-88-3	5	ug/l	<2.5 U											
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l	<2.5 U											
Total Xylenes Total, 1,3-Dichloropropene (Cis And Trans)	1330-20-7 542-75-6	5 0.4	ug/l ug/l	<2.5 U <0.5 U											
Trans-1,2-Dichloroethene	156-60-5	5	ug/l	<0.5 U											
Trans-1,3-Dichloropropene	10061-02-6	0.4	ug/l	<0.5 U											
Trans-1,4-Dichloro-2-Butene	110-57-6	5	ug/l	<2.5 U											
Trichloroethene (TCE) Trichlorofluoromethane	79-01-6 75-69-4	5	ug/l ug/l	<0.5 U <2.5 U											
Vinyl Acetate	108-05-4	NS	ug/l	<5 U											
Vinyl Chloride	75-01-4	2	ug/l	<1 U											

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002

Notes:

CAS - Chemical Abstract Service NS - No standard ug/l - microgram per liter NA - Not analyzed RL - Reporting limit

<RL - Not detected

Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operation Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water and published addenda (herein collectively referenced as "NYSDEC SGVs").

Qualifiers:

J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.

U - The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Exceedance Summary:

10 - Result exceeds NYSDEC SGVs

ATTACHMENT A

NYSDEC Correspondence

Caroline Devin

From:	Caroline Devin
Sent:	Wednesday, November 8, 2023 5:18 PM
То:	Caroline Devin
Subject:	FW: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

From: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Sent: Friday, October 13, 2023 10:10 AM
To: Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>; Obligado, Andre A (DEC) <<u>andre.obligado@dec.ny.gov</u>>
Subject: [External] RE: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

Good Morning Lexi: NYSDEC has no objections to this change in the sampling protocol as the MW-4 groundwater samples have shown non-detect for 4 consecutive quarters.

BTW How far has the on-site construction progressed?

Regards, Shaun Shaun Bollers Assistant Environmental Engineer, Division of Environmental Remediation New York State Department of Environmental Conservation 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | <u>shaun.bollers@dec.ny.gov</u>

www.dec.ny.gov

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Wednesday, October 11, 2023 3:12 PM
To: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: RE: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon Shaun,

I hope you are doing well!

We are planning to schedule the next quarterly sampling event at 27-01 Jackson Avenue for the week of October 23rd. As noted in the Q4 Off-Site Quarterly GW Monitoring Report, groundwater results from MW-4

have been non-detect for consecutive quarters and we are requesting to conduct further monitoring only in MW-1 and MW-2.

Please let us know if you have any objections to this plan.

Thank you,

Lexi Haley Senior Staff Engineer

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

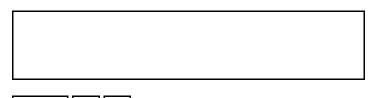
From: Lexi Haley
Sent: Friday, September 15, 2023 1:58 PM
To: 'Bollers, Shaun (DEC)' <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

Good afternoon Shaun,

Please see below for a link to the quarterly sampling report for 27-01 Jackson Avenue. Please note that, since groundwater results from MW-4 have been non-detect for consecutive quarters, we are requesting to conduct further monitoring only in MW-1 and MW-2.

https://clients.langan.com/Sharing/filesharing/ViewPosted?transactionHash=1122680310

Let us know if you have any questions.


Have a great weekend,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u>

Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

Ali Reach

To: Subject: Lexi Haley RE: 27-01 Jackson Avenue Off-site (S241209) - Off-Site Well Monitoring Program Meeting

From: Bollers, Shaun (DEC) < shaun.bollers@dec.ny.gov</pre>

Sent: Tuesday, August 8, 2023 10:30 AM

To: Lexi Haley <<u>lhaley@langan.com</u>>

Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Obligado, Andre A (DEC) <<u>andre.obligado@dec.ny.gov</u>>; Kenney, Julia M (HEALTH) <<u>julia.kenney@health.ny.gov</u>>

Subject: [External] RE: 27-01 Jackson Avenue Off-site (S241209) - Off-Site Well Monitoring Program Meeting

Lexi:

As discussed during our telecon last Friday 8/5 this change in sampling protocol for the 27-01 Jackson Avenue Off-site site S241209 is acceptable. There is no need to replace MW-3.

Thanks,

Shaun Bollers

Assistant Environmental Engineer, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | <u>shaun.bollers@dec.ny.gov</u>

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Tuesday, August 8, 2023 9:34 AM
To: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good morning Shaun,

As discussed during our call on Friday, monitoring well MW-3 (located along 43rd Avenue) was destroyed during installation of utilities beneath the sidewalk and was not able to be sampled from during the Q4 event. In

the previous three quarters of groundwater monitoring, VOC concentrations were non-detect in samples collected from MW-3. As such, we are requesting to stop monitoring at MW-3.

We will continue to monitor VOC concentrations in groundwater from monitoring wells MW-1, MW-2, and MW-4 on a quarterly basis.

Thank you,

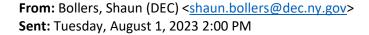
Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> <u>www.langan.com</u>

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

From: Lexi Haley
Sent: Tuesday, August 1, 2023 2:13 PM
To: 'Bollers, Shaun (DEC)' <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting


Thanks Shaun – I will send out the meeting invite for Friday.

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

To: Lexi Haley <<u>lhaley@langan.com</u>> Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>> Subject: [External] RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

Hi Lexy: Friday 8/4 would be fine.

Shaun

Shaun Bollers

Assistant Environmental Engineer, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | <u>shaun.bollers@dec.ny.gov</u>

www.dec.ny.gov | III | III

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Tuesday, August 1, 2023 11:38 AM
To: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

Hi

Good morning Shaun,

Brian and I would like to set up a call with you to discuss the off-site well monitoring program at 27-01 Jackson Avenue (BCP Site No. C241209). We are available between 12 pm and 2:30 pm on Thursday (8/3) and between 11 am and 12 pm on Friday (8/4). Do either of these time slots work for you? If not, we can schedule something for next week.

Thank you,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u>

Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor New York, NY 10001-2727 www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

Lexi Haley

From:	Salazar, Marlen C (DEC) <marlen.salazar@dec.ny.gov></marlen.salazar@dec.ny.gov>
Sent:	Thursday, September 19, 2024 2:52 PM
То:	Lexi Haley; Kimberly Semon; Brian Gochenaur
Cc:	aaron.shirian@lionsgroupnyc.com; O'Connell, Jane H (DEC); Maycock, Cris-Sandra (DEC); McLaughlin,
	Scarlett E (HEALTH); Kenney, Julia M (HEALTH)
Subject:	[External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report

Hi Langan Team,

I am reiterating here what was discussed in today's meeting re: the request to discontinue groundwater monitoring at the referenced site.

NYSDEC has denied the request to discontinue quarterly groundwater monitoring. Groundwater monitoring must continue at the stated frequency of the OSMP, i.e. quarterly. While the data that you have shown us appears satisfactory, we do not have enough data to be confident that these numbers will not rebound and spike in subsequent quarters. It is for that reason that groundwater monitoring is to continue. As mentioned in the email below denying the request, this request can be re-evaluated again at the time of submission of the 2024-2025 PRR in late May. This allows for three more quarters of groundwater sampling events to show asymptotic reduction in groundwater concentrations of VOCs.

Please reach out if you have further questions.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

From: Salazar, Marlen C (DEC)

Sent: Thursday, September 12, 2024 1:14 PM

To: Lexi Haley < Ihaley@langan.com>

Cc: aaron.shirian@lionsgroupnyc.com; Kimberly Semon <ksemon@langan.com>; Brian Gochenaur <bgochenaur@Langan.com>; O'Connell, Jane H (DEC) <jane.oconnell@dec.ny.gov>; Maycock, Cris-Sandra (DEC) <crissandra.maycock@dec.ny.gov>; McLaughlin, Scarlett E (HEALTH) <scarlett.mclaughlin@health.ny.gov>; Kenney, Julia M (HEALTH) <julia.kenney@health.ny.gov>

Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report

Hi Lexi,

The New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) have reviewed the 8th quarterly groundwater sampling report for 27-01 Jackson Avenue – Off-site (site no. S241209) prepared by Langan Engineering, Environmental Surveying, Landscape Architecture and Geology D.P.C. on behalf of 2701 Jackson Avenue LLC. The request to terminate the groundwater monitoring program at the site has been **denied** for the following reasons:

- 1. Groundwater VOC concentrations in MW-1 and MW-2 are still consistently above AWQSGVs
- 2. NYSDEC and NYSDOH would like to see at least two consecutive quarters of non-detect concentrations or concentrations below the AWQSGVs before considering termination of the groundwater monitoring program.
 - a. Additionally, NYSDEC and NYSDOH would like to continue monitoring until the 2024-2025 PRR is submitted after which Langan may again request to terminate the groundwater monitoring program with supporting data as part of the PRR conclusion for NYSDEC and NYSDOH review.

Please let me know if you have any questions.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

Conservation

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Tuesday, September 10, 2024 5:55 PM
To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>; Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon Marlen,

Please see below for a link to the 8th quarterly sampling report for 27-01 Jackson Avenue. As discussed in our previous conversation, overall result trends for each monitoring well show bulk reduction in petroleum-related VOCs, and asymptotic levels appear to have been achieved. Further decline of contaminant of concern concentrations is not anticipated; therefore, as part of the 8th quarterly groundwater monitoring report, Langan is requesting the discontinuation of groundwater monitoring at the site.

https://clients.langan.com/Sharing/filesharing/ViewPosted?transactionHash=-1672278986

Name	Туре	Size

2024-08 - Q8 Groundwater	.pdf	12.76 MB
Monitoring Letter		
Report.pdf		

Let us know if you have any questions.

Thank you,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> <u>www.langan.com</u>

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

From: Lexi Haley
Sent: Thursday, August 22, 2024 9:56 AM
To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>; Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

Understood, thank you Marlen. We anticipate having the report ready for your review by the end of next week.

Best,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA From: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Sent: Thursday, August 22, 2024 7:43 AM
To: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: [External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

You could do both honestly (like a zoom-in on one of the scales), but don't worry about it too much I suppose. The tables will have all the data regardless which I can refer to.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

Conservation

From: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Sent: Thursday, August 22, 2024 7:40 AM
To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>; Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

```
ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or
unexpected emails.
```

Hi Marlen – We typically show the wells on different scales in the report, we just wanted to show all the graphs on the same scale to demonstrate that asymptotic levels were achieved. I felt like the zoomed in scale on some and not others illustrated a skewed perspective, but we can change it back for the report. Thx

Brian Gochenaur, QEP Associate Principal

LANGAN

Direct: 212.479.5479 Mobile: 347.320.2756 <u>File Sharing Link</u> www.langan.com

L		

From: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Sent: Thursday, August 22, 2024 7:35 AM
To: Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: [External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

Hi Lexi,

I'll wait to receive the Q4 groundwater monitoring report. For the graphs, is it possible to use a smaller scale on the yaxis for all wells except MW-2? The concentrations of MW-1, MW-3, and MW-4 are all much less than 500 ug/L so the large y-axis scale makes getting any sort of visual information from the graphs a bit difficult.

Roughly around when can I expect to receive this report too? I'll keep an eye out for it.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation 47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Wednesday, August 21, 2024 3:36 PM
To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

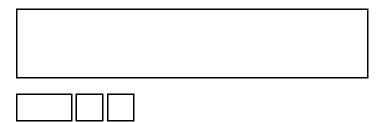
ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon Marlen,

We have completed Q8 of groundwater sampling at the 27-01 Jackson Avenue site. The overall result trends for each monitoring well are attached for your review, which show a bulk reduction in petroleum-related VOCs to asymptotic levels over the course of the monitoring program. The trends will be included in the forthcoming quarterly report for the site.

Considering VOCs were non-detect in wells MW-3 and MW-4 for consecutive quarters, DEC previously approved the discontinuation of groundwater monitoring at these locations. Groundwater monitoring has continued at MW-1 and MW-2. Based on the Q8 analytical data, total VOCs and total BTEX concentrations have decreased by 95% and 100%, respectively, in MW-1 and by over 99% in MW-2. Based on review of the overall analytical data provided over the course of the monitoring program, it appears that the remedy was effective in demonstrating a bulk reduction of these contaminants. Asymptotic levels appear to have been achieved, and further decline of contaminant of concern concentrations is not anticipated. Therefore, as part of our forthcoming quarterly groundwater monitoring report, Langan will be requesting the discontinuation of groundwater monitoring at the site.

Thank you,


Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u>

Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor New York, NY 10001-2727 www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender instance or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender instance or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying

of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

ATTACHMENT B

Daily Site Observation Report

LANGAN

SITE OBSERVATION REPORT

PROJECT No.:	170472002			
PROJECT:	27-01 Jackson Avenue	CLIENT: 2701 Jackson Avenue LLC	DATE: 10/29/2024	
LOCATION:	Long Island City, NY			
CONTRACTOR	Lions Group NYC		LANGAN REP. :	Loagan Clements
CONTRACTOR N/A	S EQUIPMENT:	PRESENT AT SITE: Loagan Clements – Langan Michael Capozzoli– Lions Group	NYC (Constructi	on Manager)

OBSERVATIONS, DISCUSSIONS, TEST RESULTS, ETC.:

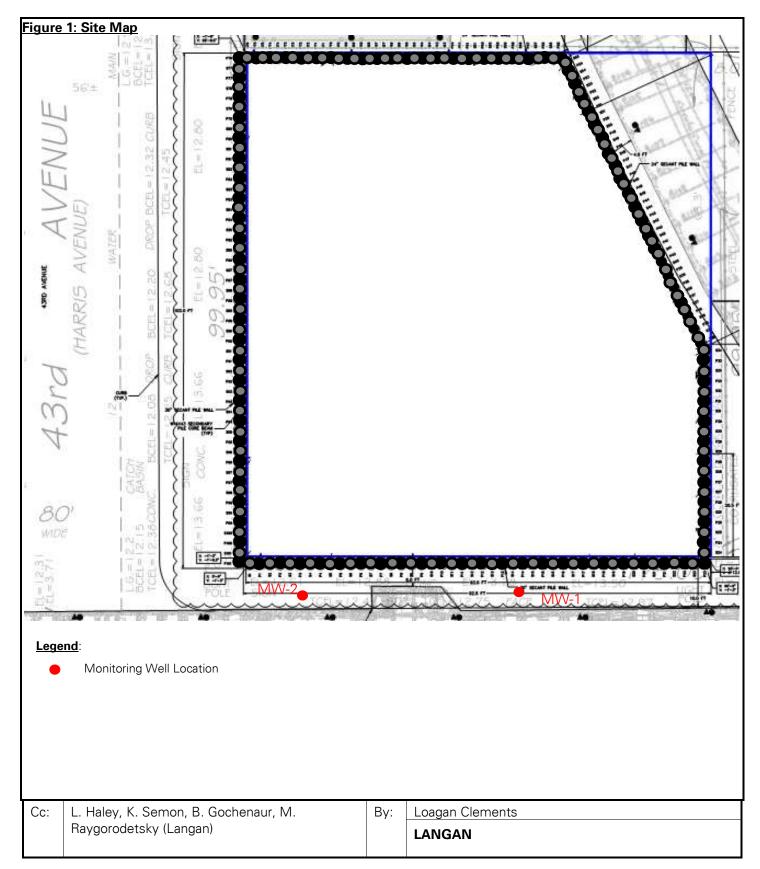
Langan was present to observe environmental protocols in accordance with the January 2021 NYSDEC approved Off-Site Site Management Plan (OSMP) for BCP site C241209 at 27-01 Jackson Avenue (Block 432, Lot 21). Observed activities were as follows:

Site Activities

 Langan used a peristaltic pump to purge and sample groundwater monitoring wells MW-1 and MW-2 along the Jackson Avenue sidewalk. Purged groundwater was screened for odors, sheen, and organic vapors using a photoionization detector (PID). Odors, sheen or PID readings above background levels were not observed in MW-2. A maximum PID reading of 0.2 parts per million (ppm) was detected beneath the well cap at MW-1; however, no odors or sheen was observed in the purged groundwater. Purged groundwater was containerized in a 55-gallon New York State Department of Transportation (NYSDOT)-approved drum for future disposal.

Sampling

 Langan collected two groundwater samples (plus quality assurance/quality control [QA/QC] samples) for laboratory analysis of NYSDEC Part 375/target compound list (TCL) volatile organic compounds (VOCs). The samples were submitted to Pace Analytical (Pace) of Westborough, Massachusetts, a New York State Department of Health (NYSDOH) Environmental Laboratory Accredited Program (ELAP)-certified laboratory under standard chain-of-custody protocols.


Anticipated Activities

• Further assessment of groundwater sample analytical results will determine future site activities, if required by the NYSDEC.

Cc:	L. Haley, K. Semon, B. Gochenaur, M. Raygorodetsky (Langan)	By:	Loagan Clements LANGAN

LANGAN

SITE OBSERVATION REPORT

LANGAN

SITE OBSERVATION REPORT

SITE PHOTOGRAPHS

Photo 1: View of Langan purging monitoring well MW-2 along the Jackson Avenue sidewalk (facing northwest).

Cc:	L. Haley, K. Semon, B. Gochenaur, M.	By:	Loagan Clements
	Raygorodetsky (Langan)		LANGAN

ATTACHMENT C

Well Purging and Sampling Logs

Projec	t Information	Well Info	rmation	Ec	uipment Informati	on	S	ampling Condition	s	Sampling Informa	tion
Project Name:	27-01 Jackson Ave	Well No:	MW-1	Water Qua	lity Device Model:	Horiba U-52		Weather:	Overcast, 63°F		MW-1 102924
Project Number:	170472002	Well Depth:	19 ft		Pine Number:		Back	ground PID (ppm):	0.0	Sample(s):	MS/MSD
Site Location:	Long Island City, NY	Well Diameter:	2-inch	Pump	Make and Model:			n Inner Cap (ppm):	0.2		
Sampling	Loagan Clements	Well Screen	9 ft		Pine Number:			ump Intake Depth:	18.00 ft	Sample Date:	10/29/2024
	Loagan clements	Interval:	19 ft		Tubing Diameter:			ater Before Purge:	17.30 ft	Sample Time:	14:20
					I = 3 successive real	<u> </u>					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
						(+/- 10%) above	Drawdown < 0.33		Volume (Gal)		otabilizeu:
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	ft	<0.13 gpm)	Volume (Gui)	color, odor etc.	
					BEGIN	I PURGING					
										Clear, gray, odorless; high	
										turbidity/black particulates in	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.25	purged water; poor recharge,	N
										purged three well volumes prior	
										to sampling.	
	w	ater quality parame	eters were not mo	nitored due to poo	or recharge of the v	vell. Groundwater	sample was colled	ted after purging a	bout three well v	olumes.	
Notes:											
	groundwater depths were m		v the top of well ca	asing.							
	liameters are measured in in	ches.									
PID = Photoioniza											
4. PPM = Parts per											
5. pH = Hydrogen ic											
	reduction potential, measure										
	Dxygen, measured in milligra	ims per liter (mg/L)									
8. DTW = Depth to											
9. mS/cm = milli-Siemens per centimeter											
10. NTU = Nephelometric Turbidity Unit 11. N/A = Not Applicable											
11. N/A = NOLAPPIN	1. N/A = Not Applicable										
			LANGA	N Engineering, Env	vironmental, Surve	ving, Landscape A	rchitecture and Ge	ology, D.P.C.			
					Plaza, 360 West 3						
-											

Projec	Project Information Wel		rmation	Equipment Information		tion	Sampling Conditions		Sampling Information		
Project Name:	27-01 Jackson Ave	Well No:	MW-2	Water Qua	lity Device Model:	Horiba U-52		Weather:	Overcast, 63°F		MW-2_102924
Project Number:	170472002	Well Depth:	20 ft		Pine Number:	48881	Back	ground PID (ppm):	0.0	Sample(s):	DUP01_102924
Site Location:	Long Island City, NY	Well Diameter:	1-inch	Pump	Make and Model:	Peristaltic Pump	PID Beneat	h Inner Cap (ppm):	0.0		
Sampling	Loagan Clements	Well Screen	10 ft		Pine Number:	A01801	P	ump Intake Depth:	16.50 ft	Sample Date:	10/29/2024
	Loagan Clernents	Interval:	20 ft		Tubing Diameter:	3/8-inch OD		ater Before Purge:	14.18 ft	Sample Time:	11:55
						ive readings within li					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown		Volume (Gal)		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	< 0.33 ft	(<0.13 gpm)	volume (Gal)	color, odor etc.	
E						BEGIN PURGING					
10:25	15.20	10.80	-17	1.54	420.0	7.52	NA	N/A	0.25	Clear to gray color, odorless; high	Ν
10:30	16.97	11.06	-29	1.45	259.0	8.88	NA	0.01	0.3	turbidity/black particulates in purged	Ν
10:35	18.45	11.14	-32	1.39	158.0	8.16	NA	0.02	0.4	water; poor recharge. Purged three well	Ν
10:40	17.94	11.24	-33	1.39	105.0	8.33	NA	0.02	0.5	volumes prior to sampling.	N
	Ad	lditional water qua	lity parameters w	/ere not monitored	due to poor recha	rge of the well. Grou	ndwater sample v	vas collected after	ourging about thr	ee well volumes.	
Notes:											
	groundwater depths were n		ow the top of well	casing.							
	liameters are measured in ir	nches.									
PID = Photoioniza											
 PPM = Parts per i 											
pH = Hydrogen io											
	reduction potential, measur										
	Oxygen, measured in milligr	ams per liter (mg/L)									
8. DTW = Depth to water											
9. mS/cm = milli-Siemens per centimeter											
10. NTU = Nephelometric Turbidity Unit											
11. N/A = Not Applic	cable										
1											

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor, New York

ATTACHMENT D

Laboratory Analytical Report

ANALYTICAL REPORT

Lab Nur	nber:	L2463005
Client:		Langan Engineering & Environmental 21 Penn Plaza 360 W. 31st Street, 8th Floor New York, NY 10001-2727
ATTN: Phone:		Kimberly Semon (212) 479-5486
Project I Project I Report I	Number:	27-01 JACKSON AVE 170472002 11/05/24
	2010.	1100/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:11052411:24

 Project Name:
 27-01 JACKSON AVE

 Project Number:
 170472002

 Lab Number:
 L2463005

 Report Date:
 11/05/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2463005-01	MW-1_102924	WATER	LONG ISLAND CITY	10/29/24 14:20	10/29/24
L2463005-02	MW-2_102924	WATER	LONG ISLAND CITY	10/29/24 11:55	10/29/24
L2463005-03	DUP01_102924	WATER	LONG ISLAND CITY	10/29/24 00:00	10/29/24
L2463005-04	FB01_102924	WATER	LONG ISLAND CITY	10/29/24 11:30	10/29/24
L2463005-05	TB01_102924	WATER	LONG ISLAND CITY	10/29/24 00:00	10/29/24

Project Name: 27-01 JACKSON AVE Project Number: 170472002 Lab Number: L2463005 Report Date: 11/05/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:27-01 JACKSON AVEProject Number:170472002

 Lab Number:
 L2463005

 Report Date:
 11/05/24

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2463005-01, -02 and -05: The Client ID was specified by the client.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Cattlin Wallen Caitlin Walukevich

Title: Technical Director/Representative

Date: 11/05/24

ORGANICS

VOLATILES

			Serial_N	o:11052411:24
Project Name:	27-01 JACKSON AVE		Lab Number:	L2463005
Project Number:	170472002		Report Date:	11/05/24
		SAMPLE RESULTS		
Lab ID:	L2463005-01		Date Collected:	10/29/24 14:20
Client ID:	MW-1_102924		Date Received:	10/29/24
Sample Location:	LONG ISLAND CITY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	11/01/24 18:44			
Analyst:	MJV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					ç	Serial No	:11052411:24	
Project Name:	27-01 JACKSON AVE				Lab Nu		L2463005	
Project Number:	170472002				Report	Date:	11/05/24	
		SAMP		5	•		11,00,21	
Lab ID:	L2463005-01				Date Col	lected:	10/29/24 14:20	
Client ID:	MW-1_102924				Date Red	ceived:	10/29/24	
Sample Location:	LONG ISLAND CITY				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough I	Lab						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	3	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND ND		ug/l	2.5 2.5	0.70	1	
tert-Butylbenzene				ug/l		0.70	1	
o-Chlorotoluene		ND ND		ug/l	2.5 2.5	0.70	1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-lsopropyltoluene		ND		ug/l ug/l	2.5	0.70	1	
Naphthalene		ND		-	2.5	0.70	1	
		שא		ug/l	2.0	0.70	I	

					Serial_No:11052411:24					
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2463005			
Project Number:	170472002				Report	Date:	11/05/24			
		SAMP		6						
Lab ID:	L2463005-01			Date Col	lected:	10/29/24 14:20				
Client ID:	MW-1_102924	Date Received:		10/29/24						
Sample Location:	LONG ISLAND CITY				Field Pre	ep:	Not Specified			
Sample Depth:										
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor			
Parameter	y GC/MS - Westborough I		Qualifier	Units	RL	MDL	Dilution Factor			
Parameter	y GC/MS - Westborough I		Qualifier	Units ug/l	RL 2.5	MDL 0.70	Dilution Factor			
Parameter Volatile Organics b	y GC/MS - Westborough I	Lab	Qualifier							
Parameter Volatile Organics b n-Propylbenzene	y GC/MS - Westborough I	Lab	Qualifier	ug/l	2.5	0.70				
Parameter Volatile Organics b n-Propylbenzene 1,2,3-Trichlorobenzene	y GC/MS - Westborough I	Lab ND ND	Qualifier	ug/l ug/l	2.5 2.5	0.70 0.70				

250

2.0

2.0

2.0

2.5

2.5

Qualifier

61.

0.70

0.70

0.54

0.70

0.70

Acceptance Criteria

> 70-130 70-130

> 70-130

70-130

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

% Recovery

96

105

98

107

ND

ND

ND

ND

ND

ND

1

1

1

1

1

1

1,4-Dioxane

p-Diethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Dibromofluoromethane

Surrogate

Toluene-d8

p-Ethyltoluene

			Serial_No:11052411:24			
Project Name:	27-01 JACKSON AVE		Lab Number:	L2463005		
Project Number:	170472002		Report Date:	11/05/24		
		SAMPLE RESULTS				
Lab ID: Client ID: Sample Location: Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	L2463005-02 MW-2_102924 LONG ISLAND CITY Water 1,8260D 11/02/24 21:00 MKS		Date Collected: Date Received: Field Prep:	10/29/24 11:55 10/29/24 Not Specified		
•						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	1.1	J	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.21	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	5.5		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					S	Serial_No	:11052411:24	
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2463005	
Project Number:	170472002				Report	Date:	11/05/24	
		SAMP	LE RESULTS	6			11/00/21	
Lab ID:	L2463005-02				Date Coll	lected:	10/29/24 11:55	
Client ID:	MW-2_102924				Date Rec		10/29/24	
Sample Location:	LONG ISLAND CITY				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1	
p/m-Xylene		7.3		ug/l	2.5	0.70	1	
o-Xylene		0.78	J	ug/l	2.5	0.70	1	
Xylenes, Total		8.1	J	ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		12		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		1.0	J	ug/l	2.5	0.70	1	
sec-Butylbenzene		1.4	J	ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		6.0		ug/l	2.5	0.70	1	
p-Isopropyltoluene		0.76	J	ug/l	2.5	0.70	1	
Naphthalene		0.77	J	ug/l	2.5	0.70	1	

						Serial_No	p:11052411:24
Project Name:	27-01 JACKSON AVE				Lab Nu	umber:	L2463005
Project Number:	170472002				Report	Date:	11/05/24
		SAMP	LE RESULTS	6			
Lab ID:	L2463005-02	Date Collected:			10/29/24 11:55		
Client ID:	MW-2_102924				Date Re	ceived:	10/29/24
Sample Location:	LONG ISLAND CITY		Field Prep:			Not Specified	
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westborough I	_ab					
n-Propylbenzene		13		ug/l	2.5	0.70	1
		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/i			
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1

2.5

250

2.0

2.0

2.0

2.5

2.5

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

0.70

61.

0.70

0.70

0.54

0.70

0.70

1

1

1

1

1

1

1

34

ND

2.1

16

9.6

ND

ND

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	104	70-130	

1,2,4-Trimethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

1,4-Dioxane

p-Diethylbenzene

p-Ethyltoluene

			Serial_No:11052411:24		
Project Name:	27-01 JACKSON AVE		Lab Number:	L2463005	
Project Number:	170472002		Report Date:	11/05/24	
		SAMPLE RESULTS			
Lab ID:	L2463005-03		Date Collected:	10/29/24 00:00	
Client ID:	DUP01_102924		Date Received:	10/29/24	
Sample Location:	LONG ISLAND CITY		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Water				
Analytical Method:	1,8260D				
Analytical Date:	11/02/24 21:26				
Analyst:	MKS				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	0.88	J	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.19	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	4.8		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					ç	Serial_No	:11052411:24
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2463005
Project Number:	170472002				Report	Date:	11/05/24
		SAMP		6			11/00/21
Lab ID:	L2463005-03				Date Col	lected:	10/29/24 00:00
Client ID:	DUP01_102924				Date Red		10/29/24
Sample Location:	LONG ISLAND CITY				Field Pre	p:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	Lab					
Trichloroethene		ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1
p/m-Xylene		5.9		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		5.9		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		10		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	9	ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		1.2	J	ug/l	2.5	0.70	1
sec-Butylbenzene		1.6	J	ug/l	2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
p-Chlorotoluene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
Isopropylbenzene		5.8		ug/l	2.5	0.70	1
p-Isopropyltoluene		0.86	J	ug/l	2.5	0.70	1
Naphthalene		0.91	J	ug/l	2.5	0.70	1

	Serial_No:11052411:24							
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2463005	
Project Number:	170472002				Report	Date:	11/05/24	
		SAMPI	E RESULTS	6				
Lab ID: Client ID: Sample Location:	L2463005-03 DUP01_102924 LONG ISLAND CITY				Date Col Date Rec Field Pre	ceived:	10/29/24 00:00 10/29/24 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough I	_ab						
n-Propylbenzene		13		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene		3.4		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene		32		ug/l	2.5	0.70	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
p-Diethylbenzene		2.2		ug/l	2.0	0.70	1	
p-Ethyltoluene		15		ug/l	2.0	0.70	1	

11

ND

ND

2.0

2.5

2.5

Qualifier

ug/l

ug/l

ug/l

% Recovery

91

106

100

103

0.54

0.70

0.70

Acceptance Criteria

> 70-130 70-130

> 70-130

70-130

1

1

1

4-Bromofluorobenzene Dibromofluoromethane

1,2-Dichloroethane-d4

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

Surrogate

Toluene-d8

			Serial_No	o:11052411:24
Project Name:	27-01 JACKSON AVE		Lab Number:	L2463005
Project Number:	170472002		Report Date:	11/05/24
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2463005-04 FB01_102924 LONG ISLAND CITY		Date Collected: Date Received: Field Prep:	10/29/24 11:30 10/29/24 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260D 11/02/24 21:52 MKS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					5	Serial_No	:11052411:24	
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2463005	
Project Number:	170472002				Report	Date:	11/05/24	
•		SAMP	LE RESULTS	6	•			
Lab ID:	L2463005-04				Date Coll	ected:	10/29/24 11:30	
Client ID:	FB01_102924				Date Rec		10/29/24	
Sample Location:	LONG ISLAND CITY				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough I	_ab						
	,							
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5 5.0	0.70	1	
Dibromomethane		ND		ug/l		1.0	1	
1,2,3-Trichloropropane		ND ND		ug/l	2.5 5.0	0.70 1.5	1	
Acrylonitrile Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	
				-				

						Serial_No	0:11052411:24
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2463005
Project Number:	170472002				Report	Date:	11/05/24
		SAMP	LE RESULTS	6			
Lab ID:	L2463005-04				Date Co	llected:	10/29/24 11:30
Client ID:	FB01_102924				Date Re	ceived:	10/29/24
Sample Location:	LONG ISLAND CITY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough I	_ab					
n-Propylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1

2.5

2.5

2.5

250

2.0

2.0

2.0

2.5

2.5

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

0.70

0.70

0.70

61.

0.70

0.70

0.54

0.70

0.70

1

1

1

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

ND

ND

ND

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	105	70-130
4-Bromofluorobenzene	97	70-130
Dibromofluoromethane	107	70-130

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

1,4-Dioxane

p-Diethylbenzene

p-Ethyltoluene

			Serial_N	p:11052411:24
Project Name:	27-01 JACKSON AVE		Lab Number:	L2463005
Project Number:	170472002		Report Date:	11/05/24
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	L2463005-05 TB01_102924 LONG ISLAND CITY Water 1,8260D 11/02/24 22:18 MKS		Date Collected: Date Received: Field Prep:	10/29/24 00:00 10/29/24 Not Specified
, maryou				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					5	Serial_No	:11052411:24	
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2463005	
Project Number:	170472002				Report	Date:	11/05/24	
-		SAMP		6	•			
Lab ID:	L2463005-05				Date Coll	ected:	10/29/24 00:00	
Client ID:	TB01_102924				Date Rec	eived:	10/29/24	
Sample Location:	LONG ISLAND CITY				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough I	_ab						
T		ND			0.50	0.40		
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
,		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1	
o-Xylene		ND		ug/l ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane)	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

					;	Serial_No	:11052411:24	
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2463005	
Project Number:	170472002				Report	Date:	11/05/24	
		SAMP		6				
Lab ID:	L2463005-05				Date Col	lected:	10/29/24 00:00	
Client ID:	TB01_102924				Date Ree	ceived:	10/29/24	
Sample Location:	LONG ISLAND CITY				Field Pre	ep:	Not Specified	
Sample Depth:								
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Parameter	y GC/MS - Westborough I		Qualifier	Units	RL	MDL	Dilution Factor	
Parameter	y GC/MS - Westborough I		Qualifier	Units ug/l	RL 2.5	MDL 0.70	Dilution Factor	
Parameter Volatile Organics b	y GC/MS - Westborough I	_ab	Qualifier					
Parameter Volatile Organics b n-Propylbenzene	y GC/MS - Westborough I	_ab ND	Qualifier	ug/l	2.5	0.70	1	
Parameter Volatile Organics b n-Propylbenzene 1,2,3-Trichlorobenzene	y GC/MS - Westborough I	_ab ND ND	Qualifier	ug/l ug/l	2.5 2.5	0.70 0.70	1	

250

2.0

2.0

2.0

2.5

2.5

Qualifier

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

% Recovery

96

104

97

108

61.

0.70

0.70

0.54

0.70

0.70

Acceptance Criteria

> 70-130 70-130

> 70-130

70-130

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

1,4-Dioxane

p-Diethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Dibromofluoromethane

Surrogate

Toluene-d8

p-Ethyltoluene

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

 Lab Number:
 L2463005

 Report Date:
 11/05/24

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:11/01/24 10:01Analyst:PID

arameter	Result	Qualifier Unit	s RL	MDL
olatile Organics by GC/MS - W	/estborough Lab	o for sample(s):	01 Batch:	WG1992626-5
Methylene chloride	ND	ug	/I 2.5	0.70
1,1-Dichloroethane	ND	ug	/I 2.5	0.70
Chloroform	ND	ug	/I 2.5	0.70
Carbon tetrachloride	ND	ug	/I 0.50	0.13
1,2-Dichloropropane	ND	ug	/I 1.0	0.14
Dibromochloromethane	ND	ug	/I 0.50	0.15
1,1,2-Trichloroethane	ND	ug	/I 1.5	0.50
Tetrachloroethene	ND	ug	/I 0.50	0.18
Chlorobenzene	ND	ug	/I 2.5	0.70
Trichlorofluoromethane	ND	ug	/I 2.5	0.70
1,2-Dichloroethane	ND	ug	/I 0.50	0.13
1,1,1-Trichloroethane	ND	ug	/I 2.5	0.70
Bromodichloromethane	ND	ug	/I 0.50	0.19
trans-1,3-Dichloropropene	ND	ug	/I 0.50	0.16
cis-1,3-Dichloropropene	ND	ug	/I 0.50	0.14
1,3-Dichloropropene, Total	ND	ug	/I 0.50	0.14
1,1-Dichloropropene	ND	ug	/I 2.5	0.70
Bromoform	ND	ug	/I 2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug	/I 0.50	0.17
Benzene	ND	ug	/I 0.50	0.16
Toluene	ND	ug	/I 2.5	0.70
Ethylbenzene	ND	ug	/I 2.5	0.70
Chloromethane	ND	ug	/I 2.5	0.70
Bromomethane	ND	ug	/I 2.5	0.70
Vinyl chloride	ND	ug	/I 1.0	0.07
Chloroethane	ND	ug	/I 2.5	0.70
1,1-Dichloroethene	ND	ug	/I 0.50	0.17
trans-1,2-Dichloroethene	ND	ug	/I 2.5	0.70
Trichloroethene	ND	ug	/I 0.50	0.18

170472002

 Lab Number:
 L2463005

 Report Date:
 11/05/24

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:11/01/24 10:01Analyst:PID

Project Number:

arameter	Result	Qualifier Unit	ts RL	MDL
olatile Organics by GC/MS - W	/estborough Lab	o for sample(s):	01 Batch:	WG1992626-5
1,2-Dichlorobenzene	ND	ug	/I 2.5	0.70
1,3-Dichlorobenzene	ND	ug	/l 2.5	0.70
1,4-Dichlorobenzene	ND	ug	/l 2.5	0.70
Methyl tert butyl ether	ND	ug	/l 2.5	0.17
p/m-Xylene	ND	ug	/l 2.5	0.70
o-Xylene	ND	ug	/l 2.5	0.70
Xylenes, Total	ND	ug	/l 2.5	0.70
cis-1,2-Dichloroethene	ND	ug	/l 2.5	0.70
1,2-Dichloroethene, Total	ND	ug	/l 2.5	0.70
Dibromomethane	ND	ug	/I 5.0	1.0
1,2,3-Trichloropropane	ND	ug	/l 2.5	0.70
Acrylonitrile	ND	ug	/I 5.0	1.5
Styrene	ND	ug	/l 2.5	0.70
Dichlorodifluoromethane	ND	ug	/I 5.0	1.0
Acetone	ND	ug	/I 5.0	1.5
Carbon disulfide	ND	ug	/I 5.0	1.0
2-Butanone	ND	ug	/I 5.0	1.9
Vinyl acetate	ND	ug	/I 5.0	1.0
4-Methyl-2-pentanone	ND	ug	/I 5.0	1.0
2-Hexanone	ND	ug	/I 5.0	1.0
Bromochloromethane	ND	ug	/l 2.5	0.70
2,2-Dichloropropane	ND	ug	/l 2.5	0.70
1,2-Dibromoethane	ND	ug	/l 2.0	0.65
1,3-Dichloropropane	ND	ug	/l 2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug	/l 2.5	0.70
Bromobenzene	ND	ug	/l 2.5	0.70
n-Butylbenzene	ND	ug	/l 2.5	0.70
sec-Butylbenzene	ND	ug	/l 2.5	0.70
tert-Butylbenzene	ND	ug	/l 2.5	0.70

170472002

 Lab Number:
 L2463005

 Report Date:
 11/05/24

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:11/01/24 10:01Analyst:PID

Project Number:

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	/estborough Lab	o for sample(s): 01	Batch:	WG1992626-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance		
Surrogate	%Recovery Qualifier	Criteria		
1,2-Dichloroethane-d4	92	70-130		
Toluene-d8	103	70-130		
4-Bromofluorobenzene	101	70-130		
Dibromofluoromethane	104	70-130		

Project Number: 170472002

 Lab Number:
 L2463005

 Report Date:
 11/05/24

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:11/02/24 14:27Analyst:LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Westborough Lab	for sample(s):	02-05 Batch:	WG1992852-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Number: 170472002

 Lab Number:
 L2463005

 Report Date:
 11/05/24

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:11/02/24 14:27Analyst:LAC

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	02-05 Batch:	WG1992852-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Number: 170472002

 Lab Number:
 L2463005

 Report Date:
 11/05/24

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:11/02/24 14:27Analyst:LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s):	02-05 Batch:	WG1992852-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	107		70-130	

Lab Control Sample Analysis

Batch Quality Control

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2463005 Report Date: 11/05/24

LCSD LCS RPD %Recovery %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1992626-3 WG1992626-4 Methylene chloride 100 97 70-130 3 20 1,1-Dichloroethane 110 110 70-130 0 20 Chloroform 98 92 70-130 6 20 Carbon tetrachloride 100 98 63-132 2 20 70-130 20 1,2-Dichloropropane 110 100 10 Dibromochloromethane 100 98 63-130 2 20 1.1.2-Trichloroethane 100 95 70-130 20 5 Tetrachloroethene 120 110 70-130 9 20 Chlorobenzene 100 98 75-130 2 20 Q Q Trichlorofluoromethane 45 62-150 4 20 47 1.2-Dichloroethane 98 93 70-130 5 20 1,1,1-Trichloroethane 99 94 67-130 5 20 Bromodichloromethane 98 92 67-130 6 20 95 70-130 20 trans-1,3-Dichloropropene 100 5 cis-1,3-Dichloropropene 96 91 70-130 5 20 1,1-Dichloropropene 99 94 70-130 5 20 Bromoform 90 88 54-136 2 20 1,1,2,2-Tetrachloroethane 67-130 20 86 2 88 70-130 20 Benzene 100 96 4 Toluene 100 99 70-130 20 1 Ethylbenzene 100 94 70-130 6 20 20 Chloromethane 100 98 64-130 2 Q Q 20 Bromomethane 31 30 39-139 3

Lab Control Sample Analysis

Batch Quality Control

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2463005 Report Date: 11/05/24

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1992626-3 WG1992626-4 Vinyl chloride 55-140 91 84 8 20 Q Q Chloroethane 54 52 55-138 4 20 1.1-Dichloroethene 100 98 61-145 2 20 trans-1.2-Dichloroethene 100 100 70-130 20 0 Trichloroethene 100 95 70-130 20 5 1.2-Dichlorobenzene 95 91 70-130 4 20 97 92 70-130 20 1.3-Dichlorobenzene 5 1,4-Dichlorobenzene 94 90 70-130 4 20 Methyl tert butyl ether 73 72 63-130 1 20 p/m-Xylene 95 90 70-130 5 20 o-Xylene 95 90 70-130 5 20 cis-1,2-Dichloroethene 100 98 70-130 2 20 Dibromomethane 91 87 70-130 20 4 64-130 20 1,2,3-Trichloropropane 79 76 4 Acrylonitrile 92 92 70-130 0 20 Styrene 95 90 70-130 5 20 Dichlorodifluoromethane 100 96 36-147 20 4 85 58-148 Q 20 Acetone 110 26 Carbon disulfide 20 110 99 51-130 11 2-Butanone 87 86 63-138 1 20 Vinyl acetate 130 120 70-130 8 20 4-Methyl-2-pentanone 20 92 84 59-130 9 2-Hexanone 20 75 73 57-130 3

Lab Control Sample Analysis

Batch Quality Control

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2463005 Report Date: 11/05/24

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1992626-3 WG1992626-4 Bromochloromethane 100 97 70-130 3 20 110 2,2-Dichloropropane 100 63-133 10 20 1.2-Dibromoethane 100 97 70-130 3 20 1,3-Dichloropropane 100 95 70-130 20 5 1,1,1,2-Tetrachloroethane 100 64-130 20 100 0 Bromobenzene 99 94 70-130 5 20 n-Butylbenzene 96 91 53-136 20 5 sec-Butylbenzene 93 88 70-130 6 20 tert-Butylbenzene 93 88 70-130 6 20 20 o-Chlorotoluene 97 92 70-130 5 20 p-Chlorotoluene 96 91 70-130 5 1,2-Dibromo-3-chloropropane 20 84 85 41-144 1 Hexachlorobutadiene 130 120 63-130 8 20 70-130 20 Isopropylbenzene 92 88 4 p-Isopropyltoluene 93 88 70-130 6 20 Q Naphthalene 72 70-130 4 20 69 n-Propylbenzene 94 88 69-130 7 20 1,2,3-Trichlorobenzene 99 70-130 20 96 3 1,2,4-Trichlorobenzene 70-130 20 98 98 0 1,3,5-Trimethylbenzene 92 87 64-130 6 20 1,2,4-Trimethylbenzene 92 88 70-130 4 20 1,4-Dioxane 70 56-162 20 60 15 20 p-Diethylbenzene 94 90 70-130 4

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2463005

Report Date: 11/05/24

Parameter	LCS %Recovery	Qual	LCSI %Recov		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01 Batch:	WG1992626-3	WG1992626-4				
p-Ethyltoluene	95		89		70-130	7		20	
1,2,4,5-Tetramethylbenzene	90		84		70-130	7		20	
Ethyl ether	43	Q	41	Q	59-134	5		20	
trans-1,4-Dichloro-2-butene	83		80		70-130	4		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria
1,2-Dichloroethane-d4	91	89	70-130
Toluene-d8	106	106	70-130
4-Bromofluorobenzene	104	100	70-130
Dibromofluoromethane	103	103	70-130

Project Name: 27-01 JACKSON AVE

Project Number: 170472002 Lab Number: L2463005 Report Date: 11/05/24

Parameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	ab Associated	sample(s):	02-05 Batch:	WG1992852-3	WG1992852-4			
Methylene chloride	100		97		70-130	3	20	
1,1-Dichloroethane	110		100		70-130	10	20	
Chloroform	96		94		70-130	2	20	
Carbon tetrachloride	96		94		63-132	2	20	
1,2-Dichloropropane	100		100		70-130	0	20	
Dibromochloromethane	100		100		63-130	0	20	
1,1,2-Trichloroethane	100		100		70-130	0	20	
Tetrachloroethene	110		110		70-130	0	20	
Chlorobenzene	99		96		75-130	3	20	
Trichlorofluoromethane	44	Q	42	Q	62-150	5	20	
1,2-Dichloroethane	97		96		70-130	1	20	
1,1,1-Trichloroethane	94		92		67-130	2	20	
Bromodichloromethane	96		93		67-130	3	20	
trans-1,3-Dichloropropene	98		98		70-130	0	20	
cis-1,3-Dichloropropene	91		89		70-130	2	20	
1,1-Dichloropropene	92		89		70-130	3	20	
Bromoform	89		92		54-136	3	20	
1,1,2,2-Tetrachloroethane	90		92		67-130	2	20	
Benzene	98		95		70-130	3	20	
Toluene	98		96		70-130	2	20	
Ethylbenzene	95		91		70-130	4	20	
Chloromethane	96		92		64-130	4	20	
Bromomethane	25	Q	24	Q	39-139	4	20	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2463005 Report Date: 11/05/24

rS0Q49Q1,1-Dichloroethene999595trans-1,2-Dichloroethene1009894Trichloroethene9894941,2-Dichloroethene9292921,3-Dichloroethene939111,4-Dichlorobenzene918911,4-Dichlorobenzene918911,4-Dichlorobenzene918910-Xylene9090900-Xylene908511,2,3-Trichloropopane74741,2,3-Trichloropopane7474Acryonitrile9398Styrene9085Dichlorodifluoromethane8785Acetone11091Carbon disulfide100952-Butanone9499	Recovery Limits	RPD	RPD Qual Limits
Chloroethane50Q49Q1,1-Dichloroethene999595trans-1,2-Dichloroethene1009894Trichloroethene9894941,2-Dichloroethene9292921,3-Dichlorobenzene939111,4-Dichloroethenzene9189911,4-Dichlorobenzene918911,4-Dichloroethenzene918911,4-Dichloroethenzene918911,4-Dichloroethenzene918911,4-Dichloroethenzene91891o-Xylene90851o-Xylene999610-Xylene999111,2,3-Trichloropropane7474Styrene90851Dichlorodifluoromethane8785Acetone11091Carbon disulfide100952-Butanone9494	WG1992852-4		
1,1-Dichloroethene 99 95 trans-1,2-Dichloroethene 100 98 Trichloroethene 98 94 1,2-Dichlorobenzene 92 92 1,3-Dichlorobenzene 93 91 1,4-Dichlorobenzene 93 91 1,4-Dichlorobenzene 91 89 1,4-Dichlorobenzene 91 89 1,4-Dichlorobenzene 91 89 1,4-Dichlorobenzene 91 89 Methyl tert butyl ether 72 75 p/m-Xylene 90 85 cis-1,2-Dichloroethene 99 96 Dibromomethane 92 91 1,2,3-Trichloropropane 74 74 Acrylonitrile 93 98 Styrene 90 85 Dichlorodifluoromethane 87 85 Dichlorodifluoromethane 87 85 Dichlorodifluoromethane 87 85 Dichlorodifluoromethane 91 91 Acetone 110 91 Carbon disulfide 100	55-140	5	20
trans-1,2-Dichloroethene 100 98 Trichloroethene 98 94 1,2-Dichlorobenzene 92 92 1,3-Dichlorobenzene 93 91 1,4-Dichlorobenzene 93 91 1,4-Dichlorobenzene 91 89 Methyl tert butyl ether 72 75 p/m-Xylene 90 90 o-Xylene 90 85 cis-1,2-Dichloroethene 99 96 Dibromomethane 92 91 1,2,3-Trichloropropane 74 74 Acrylonitrile 93 98 Styrene 90 85 Dichlorodethane 87 85 Acetone 110 91 Carbon disulfide 100 95 2-Butanone 94 99	55-138	2	20
Trichloroethene98941,2-Dichlorobenzene92921,3-Dichlorobenzene93911,4-Dichlorobenzene9189Methyl tert butyl ether7275p/m-Xylene9090o-Xylene9085cis-1,2-Dichloroethene9996Dibroromethane92911,2,3-Trichloropropane7474Acrylonitrile9398Styrene9085Dichloroethane8785Dichloroethane11091Carbon disulfide100952-Butanone9499	61-145	4	20
1,2-Dichlorobenzene92921,3-Dichlorobenzene93911,4-Dichlorobenzene9189Methyl tert butyl ether7275p/m-Xylene9090o-Xylene9085cis-1,2-Dichloroethene9996Dibromomethane92911,2,3-Trichloropropane7474Acrylonitrile9398Styrene9085Dichlorodifluoromethane8785Acetone11091Carbon disulfide904992-Butanone9499	70-130	2	20
1,3-Dichlorobenzene93911,4-Dichlorobenzene91891,4-Dichlorobenzene9189Methyl tert butyl ether7275p/m-Xylene9090o-Xylene9085cis-1,2-Dichloroethene9996Dibromomethane92911,2,3-Trichloropropane7474Acrylonitrile9398Styrene9085Dichlorodifluoromethane8785Acetone11091Carbon disulfide100952-Butanone9499	70-130	4	20
1,4-Dichlorobenzene91891,4-Dichlorobenzene9189Methyl tert butyl ether7275p/m-Xylene9090o-Xylene9085cis-1,2-Dichloroethene9996Dibromomethane92911,2,3-Trichloropropane7474Acrylonitrile9398Styrene9085Dichlorodifluoromethane8785Acetone11091Carbon disulfide90499	70-130	0	20
Methyl tert butyl ether7275p/m-Xylene9090o-Xylene9085cis-1,2-Dichloroethene9996Dibromomethane92911,2,3-Trichloropropane7474Acrylonitrile9398Styrene9085Dichlorodifluoromethane8785Acetone11091Carbon disulfide90499	70-130	2	20
p/m-Xylene9090o-Xylene9085cis-1,2-Dichloroethene9996Dibromomethane92911,2,3-Trichloropropane7474Acrylonitrile9398Styrene9085Dichlorodifluoromethane8785Acetone11091Carbon disulfide100952-Butanone9499	70-130	2	20
o-Xylene9085cis-1,2-Dichloroethene9996Dibromomethane92911,2,3-Trichloropropane7474Acrylonitrile9398Styrene9085Dichlorodifluoromethane8785Acetone11091Carbon disulfide100952-Butanone9499	63-130	4	20
cis-1,2-Dichloroethene9996Dibromomethane92911,2,3-Trichloropropane7474Acrylonitrile9398Styrene9085Dichlorodifluoromethane8785Acetone11091Carbon disulfide100952-Butanone9499	70-130	0	20
Dibromomethane92911,2,3-Trichloropropane7474Acrylonitrile9398Styrene9085Dichlorodifluoromethane8785Acetone11091Carbon disulfide100952-Butanone9499	70-130	6	20
1,2,3-Trichloropropane7474Acrylonitrile9398Styrene9085Dichlorodifluoromethane8785Acetone11091Carbon disulfide100952-Butanone9499	70-130	3	20
Acrylonitrile9398Styrene9085Dichlorodifluoromethane8785Acetone11091Carbon disulfide100952-Butanone9499	70-130	1	20
Styrene9085Dichlorodifluoromethane8785Acetone11091Carbon disulfide100952-Butanone9499	64-130	0	20
Dichlorodifluoromethane8785Acetone11091Carbon disulfide100952-Butanone9499	70-130	5	20
Acetone11091Carbon disulfide100952-Butanone9499	70-130	6	20
Carbon disulfide100952-Butanone9499	36-147	2	20
2-Butanone 94 99	58-148	19	20
	51-130	5	20
Vinyl acetate 120 130	63-138	5	20
	70-130	8	20
4-Methyl-2-pentanone 88 89	59-130	1	20
2-Hexanone 69 74	57-130	7	20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002 Lab Number: L2463005 Report Date: 11/05/24

Parameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	02-05 Batch	: WG1992852-3	3 WG1992852-4			
Bromochloromethane	100		100		70-130	0		20
2,2-Dichloropropane	110		100		63-133	10		20
1,2-Dibromoethane	100		100		70-130	0		20
1,3-Dichloropropane	99		98		70-130	1		20
1,1,1,2-Tetrachloroethane	100		100		64-130	0		20
Bromobenzene	96		94		70-130	2		20
n-Butylbenzene	89		88		53-136	1		20
sec-Butylbenzene	85		85		70-130	0		20
tert-Butylbenzene	84		84		70-130	0		20
o-Chlorotoluene	90		89		70-130	1		20
p-Chlorotoluene	90		88		70-130	2		20
1,2-Dibromo-3-chloropropane	88		94		41-144	7		20
Hexachlorobutadiene	130		130		63-130	0		20
Isopropylbenzene	84		84		70-130	0		20
p-Isopropyltoluene	86		85		70-130	1		20
Naphthalene	76		80		70-130	5		20
n-Propylbenzene	86		84		69-130	2		20
1,2,3-Trichlorobenzene	100		110		70-130	10		20
1,2,4-Trichlorobenzene	100		100		70-130	0		20
1,3,5-Trimethylbenzene	86		84		64-130	2		20
1,2,4-Trimethylbenzene	87		85		70-130	2		20
1,4-Dioxane	84		106		56-162	23	Q	20
p-Diethylbenzene	86		86		70-130	0		20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough I	ab Associated	sample(s):	02-05 Batch:	WG1992852-3	WG1992852-4				
p-Ethyltoluene	87		87		70-130	0		20	
1,2,4,5-Tetramethylbenzene	82		81		70-130	1		20	
Ethyl ether	44	Q	43	Q	59-134	2		20	
trans-1,4-Dichloro-2-butene	74		77		70-130	4		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	92	92	70-130
Toluene-d8	104	104	70-130
4-Bromofluorobenzene	102	100	70-130
Dibromofluoromethane	105	103	70-130

Matrix Spike Analysis Batch Quality Control

Project Name:	27-01 JACKSON AVE	

Project Number: 170472002

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Foun	-	Recovery y Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS 1_102924	- Westborough	Lab Assoc	ciated sample(s): 01 QC Ba	tch ID: WG19926	26-6 WG19926	26-7 QC Sample: I	_246300	05-01 Client ID: MW-
Methylene chloride	ND	10	11	110	11	110	70-130	0	20
1,1-Dichloroethane	ND	10	12	120	12	120	70-130	0	20
Chloroform	ND	10	10	100	10	100	70-130	0	20
Carbon tetrachloride	ND	10	10	100	11	110	63-132	10	20
1,2-Dichloropropane	ND	10	11	110	11	110	70-130	0	20
Dibromochloromethane	ND	10	11	110	11	110	63-130	0	20
1,1,2-Trichloroethane	ND	10	11	110	11	110	70-130	0	20
Tetrachloroethene	ND	10	12	120	12	120	70-130	0	20
Chlorobenzene	ND	10	10	100	10	100	75-130	0	20
Trichlorofluoromethane	ND	10	5.0	50	Q 5.1	51	Q 62-150	2	20
1,2-Dichloroethane	ND	10	10	100	10	100	70-130	0	20
1,1,1-Trichloroethane	ND	10	10	100	10	100	67-130	0	20
Bromodichloromethane	ND	10	10	100	10	100	67-130	0	20
trans-1,3-Dichloropropene	ND	10	10	100	9.9	99	70-130	1	20
cis-1,3-Dichloropropene	ND	10	9.1	91	9.2	92	70-130	1	20
1,1-Dichloropropene	ND	10	10	100	10	100	70-130	0	20
Bromoform	ND	10	9.5	95	9.5	95	54-136	0	20
1,1,2,2-Tetrachloroethane	ND	10	10	100	10	100	67-130	0	20
Benzene	ND	10	11	110	11	110	70-130	0	20
Toluene	ND	10	10	100	11	110	70-130	10	20
Ethylbenzene	ND	10	10	100	10	100	70-130	0	20
Chloromethane	ND	10	11	110	11	110	64-130	0	20
Bromomethane	ND	10	1.3J	13	Q 1.5J	15	Q 39-139	14	20

Matrix Spike Analysis Batch Quality Control

		Ba
Project Name:	27-01 JACKSON AVE	

Project Number: 170472002

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS 1_102924	S - Westborough	Lab Assoc	iated sample(s): 01 QC Ba	tch ID: WG1992626-	6 WG199262	6-7 QC Sample: L	.246300	5-01 Client ID: MW-
Vinyl chloride	ND	10	9.8	98	9.9	99	55-140	1	20
Chloroethane	ND	10	6.4	64	6.4	64	55-138	0	20
1,1-Dichloroethene	ND	10	11	110	11	110	61-145	0	20
trans-1,2-Dichloroethene	ND	10	11	110	11	110	70-130	0	20
Trichloroethene	ND	10	10	100	10	100	70-130	0	20
1,2-Dichlorobenzene	ND	10	9.5	95	9.7	97	70-130	2	20
1,3-Dichlorobenzene	ND	10	9.5	95	9.7	97	70-130	2	20
1,4-Dichlorobenzene	ND	10	9.4	94	9.6	96	70-130	2	20
Methyl tert butyl ether	ND	10	8.2	82	8.3	83	63-130	1	20
p/m-Xylene	ND	20	19	95	19	95	70-130	0	20
o-Xylene	ND	20	19	95	19	95	70-130	0	20
cis-1,2-Dichloroethene	ND	10	11	110	10	100	70-130	10	20
Dibromomethane	ND	10	10	100	9.8	98	70-130	2	20
1,2,3-Trichloropropane	ND	10	8.1	81	8.1	81	64-130	0	20
Acrylonitrile	ND	10	11	110	10	100	70-130	10	20
Styrene	ND	20	18	90	18	90	70-130	0	20
Dichlorodifluoromethane	ND	10	11	110	11	110	36-147	0	20
Acetone	ND	10	11	110	10	100	58-148	10	20
Carbon disulfide	ND	10	11	110	11	110	51-130	0	20
2-Butanone	ND	10	12	120	12	120	63-138	0	20
Vinyl acetate	ND	10	11	110	11	110	70-130	0	20
4-Methyl-2-pentanone	ND	10	10	100	10	100	59-130	0	20
2-Hexanone	ND	10	9.1	91	9.0	90	57-130	1	20

Matrix Spike Analysis Batch Quality Control

Project Name:	27-01 JACKSON AVE

Project Number: 170472002

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - 1_102924	· Westborough L	_ab Asso	ciated sample	(s): 01 QC Ba	tch ID: WG1992626-	6 WG199262	26-7 QC Sample: L	246300	5-01 Client ID: MW-
Bromochloromethane	ND	10	11	110	11	110	70-130	0	20
2,2-Dichloropropane	ND	10	9.8	98	9.7	97	63-133	1	20
1,2-Dibromoethane	ND	10	11	110	11	110	70-130	0	20
1,3-Dichloropropane	ND	10	11	110	10	100	70-130	10	20
1,1,1,2-Tetrachloroethane	ND	10	11	110	11	110	64-130	0	20
Bromobenzene	ND	10	9.9	99	10	100	70-130	1	20
n-Butylbenzene	ND	10	8.7	87	9.1	91	53-136	4	20
sec-Butylbenzene	ND	10	8.8	88	9.0	90	70-130	2	20
tert-Butylbenzene	ND	10	8.8	88	9.2	92	70-130	4	20
o-Chlorotoluene	ND	10	9.3	93	9.5	95	70-130	2	20
p-Chlorotoluene	ND	10	9.2	92	9.5	95	70-130	3	20
1,2-Dibromo-3-chloropropane	ND	10	9.8	98	10	100	41-144	2	20
Hexachlorobutadiene	ND	10	12	120	12	120	63-130	0	20
Isopropylbenzene	ND	10	8.9	89	9.1	91	70-130	2	20
p-Isopropyltoluene	ND	10	8.6	86	9.0	90	70-130	5	20
Naphthalene	ND	10	8.6	86	9.4	94	70-130	9	20
n-Propylbenzene	ND	10	8.8	88	9.0	90	69-130	2	20
1,2,3-Trichlorobenzene	ND	10	10	100	11	110	70-130	10	20
1,2,4-Trichlorobenzene	ND	10	10	100	11	110	70-130	10	20
1,3,5-Trimethylbenzene	ND	10	8.8	88	9.1	91	64-130	3	20
1,2,4-Trimethylbenzene	ND	10	8.9	89	9.2	92	70-130	3	20
1,4-Dioxane	ND	500	500	100	530	106	56-162	6	20
p-Diethylbenzene	ND	10	8.9	89	9.2	92	70-130	3	20

Matrix Spike Analysis

Project Name:	27-01 JACKSON AVE	Batch Quality Control	Lab Number:	L2463005
Project Number:	170472002		Report Date:	11/05/24

Parameter	Native Sample	MS Added	MS Found %	MS 6Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	, RPD	RPD Qual Limits	
Volatile Organics by GC/MS 1_102924	S - Westborough La	ab Assoc	ciated sample(s):	01 QC Ba	tch ID: W	G1992626	-6 WG1992620	6-7 QC	C Sample: I	L2463005	5-01 Client ID: M	W-
p-Ethyltoluene	ND	10	9.0	90		9.2	92		70-130	2	20	
1,2,4,5-Tetramethylbenzene	ND	10	8.5	85		8.8	88		70-130	3	20	
Ethyl ether	ND	10	4.6	46	Q	4.6	46	Q	59-134	0	20	
trans-1,4-Dichloro-2-butene	ND	10	6.0	60	Q	6.4	64	Q	70-130	6	20	

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	93	93	70-130
4-Bromofluorobenzene	99	100	70-130
Dibromofluoromethane	105	104	70-130
Toluene-d8	105	104	70-130

Project Name: 27-01 JACKSON AVE Project Number: 170472002

Serial_No:11052411:24 *Lab Number:* L2463005 *Report Date:* 11/05/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
Α	Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2463005-01A	Vial HCI preserved	А	NA		6.0	Y	Absent		NYTCL-8260(14)
L2463005-01A1	Vial HCI preserved	А	NA		6.0	Y	Absent		NYTCL-8260(14)
L2463005-01B	Vial HCI preserved	А	NA		6.0	Y	Absent		NYTCL-8260(14)
L2463005-01B1	Vial HCI preserved	А	NA		6.0	Y	Absent		NYTCL-8260(14)
L2463005-01C	Vial HCI preserved	А	NA		6.0	Y	Absent		NYTCL-8260(14)
L2463005-01C1	Vial HCI preserved	А	NA		6.0	Y	Absent		NYTCL-8260(14)
L2463005-02A	Vial HCI preserved	А	NA		6.0	Y	Absent		NYTCL-8260(14)
L2463005-02B	Vial HCI preserved	А	NA		6.0	Υ	Absent		NYTCL-8260(14)
L2463005-02C	Vial HCI preserved	А	NA		6.0	Y	Absent		NYTCL-8260(14)
L2463005-03A	Vial HCI preserved	А	NA		6.0	Y	Absent		NYTCL-8260(14)
L2463005-03B	Vial HCI preserved	А	NA		6.0	Y	Absent		NYTCL-8260(14)
L2463005-03C	Vial HCI preserved	А	NA		6.0	Y	Absent		NYTCL-8260(14)
L2463005-04A	Vial HCI preserved	А	NA		6.0	Y	Absent		NYTCL-8260(14)
L2463005-04B	Vial HCI preserved	А	NA		6.0	Y	Absent		NYTCL-8260(14)
L2463005-04C	Vial HCI preserved	А	NA		6.0	Υ	Absent		NYTCL-8260(14)
L2463005-05A	Vial HCI preserved	А	NA		6.0	Y	Absent		NYTCL-8260(14)
L2463005-05B	Vial HCI preserved	А	NA		6.0	Y	Absent		NYTCL-8260(14)

Project Number: 170472002

Lab Number: L2463005

Report Date: 11/05/24

GLOSSARY

Acronyms

Acronyins	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	 Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Number: 170472002

Lab Number: L2463005

Report Date: 11/05/24

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

¹

Project Number: 170472002

Lab Number: L2463005

Report Date: 11/05/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name:27-01 JACKSON AVEProject Number:170472002

 Lab Number:
 L2463005

 Report Date:
 11/05/24

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol EPA 8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine, 2,6-Dichlorophenol.

SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Nonpotable Water: EPA RSK-175 Dissolved Gases Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:11052411:24

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	ay	5	Page	e / f \		Date Rec'd in Lab	101	sloe	54	ALPHA JOB # 3005	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	C. S. C. C.	and the state	1 175	and the second second	Deliv	erables				Billing Information	
TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288		Project Name: 27-01 Jackson Ave				ASP-A	L	ASP-B		Same as Client Info			
		Project Location: Long	island	City				EQuIS (1 File)	EQuIS	(4 File)	PO#	
Client Information	and the second second second		72002					Other		_			
Client: Langar		(Use Project name as Project n	the local data in the local data when the local data in the local	a harris			Regu	latory Require		Jun -		Disposal Site Information	
Address: 368 Ni		Project Manager: Kim	berly?	Semon				NY TOGS	1	NY Part	375	Please identify below location of	
New Yo	12, NY 10001	ALPHAQuote #:			-			AWQ Standard	s [NY CP-	51	applicable disposal facilities.	
Phone: 212-479	-5400	Turn-Around Time	and and and					NY Restricted L	Jse [Other		Disposal Facility:	
Fax:		Standard		Due Date:				NY Unrestricted	i Use			NJ NY	
Email: KS Emon	Langan.com	Rush (only if pre approved)		# of Days:	_		NYC Sewer Discharge					Other:	
These samples have b	een previously analyze	ed by Alpha					ANA	LYSIS		1		Sample Filtration	
Other project specific	requirements/comm	nents:				10	3			T	-	Done	
please cc: D	F AREACH @ L	angan-com	(om) I	LHALEY	@lang	an.com	101 72					Lab to do	
Please specify Metals	or TAL.						S					B	
							55					(Please Specify below)	
ALPHA Lab ID	9	imple ID	Colle	ection	Sample	Sampler's	t						
(Lab Use Only) Sample ID		impie ito	Date Time		Matrix Initials	Pa					Sample Specific Comments		
1BCOS OL	MW-01-1029	124	10/29/24	14:20	GW	16	X					MSIMSD	
02	MW02-102		1	11:55	1		X						
DS	DUP01-1020						X						
OU	FB01-1029			11:30			X						
	TB44 - 1029		V	-	V	V	X						
~ ~ >							1						
and the second second													
Contraction of the second					1								
and the second second													
Preservative Code: A = None B = HCI C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification N Mansfield: Certification N	(2002)200000000000000000000000000000000		Co	ntainer Type						Please print clearly, legibly and completely. Samples can not be logged in and	
$D = H_2SO_4$	G = Glass					Preservative						turnaround time clock will not	
E = NaOH F = MeOH	B = Bacteria Cup C = Cube			1	L	1			_			start until any ambiguities are	
G = NaHSO4	O = Other Relinquisingd By.		the second se			Received By:			Date/Time		resolved. BY EXECUTING THIS COC, THE CLIENT		
$H = Na_2S_2O_3$	la2S203 E = Encore L Clivicity Climity 10.29.2			10.29.24	14:30 HORN		Har	App		10/29/24 14/30		HAS READ AND AGREES	
K/E = Zn Ac/NaOH O = Other		Man Denter	£.	10/29/2	418:46	49	Space=			10/29/29 1845		TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.	
		f91me	E	10/29/24	- (7	1	>16	AZ	4/4	2010	(See reverse side.)	
Form No: 01-25 HC (rev. 3	0-Sept-2013)	m	- 19	9.24	0145	T/ 10	M	1	10	1301	14 1-	13	
age 46 of 46										0 ·		2 C	

ATTACHMENT E

Data Usability Summary Report

Technical Memorandum

1 University Square Drive Princeton, NJ 08540 T: 609.282.8000 Mailing Address: 1 University Square Drive Princeton, NJ 08540

To: Kimberly Semon, Langan Senior Project Manager

From: Mariana Wissink, Langan Senior Staff Chemist

Date: December 18, 2024

Re: Data Usability Summary Report For 27-01 Jackson Avenue October 2024 Groundwater Samples Langan Project No.: 170472002

This memorandum presents the findings of an analytical data validation from the analysis of groundwater samples collected in October 2024 by Langan Engineering and Environmental Services at 27-01 Jackson Avenue. The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) for volatile organic compounds (VOCs) by the methods specified below.

• VOCs by SW-846 Method 8260D

Table 1, attached, summarizes the laboratory and client sample identification numbers, sample collection dates, level of data validation, and analytical parameters subject to review.

Validation Overview

This data validation was performed in accordance with the following guidelines, where applicable:

- USEPA Region II Standard Operating Procedures (SOPs) for Data Validation
- USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020)
- USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020), and
- published analytical methodologies.

The following acronyms may be used in the discussion of data-quality issues:

%D	Percent Difference	MB	Method Blank
CCV	Continuing Calibration Verification	MDL	Method Detection Limit
FB	Field Blank	MS	Matrix Spike
FD	Field Duplicate	MSD	Matrix Spike Duplicate
ICAL	Initial Calibration	RF	Response Factor
ICV	Initial Calibration Verification	RL	Reporting Limit

ISTD	Internal Standard	RPD	Relative Percent Difference
LCL	Lower Control Limit	RSD	Relative Standard Deviation
LCS	Laboratory Control Sample	ТВ	Trip Blank
LCSD	Laboratory Control Sample Duplicate	UCL	Upper Control Limit

Tier 1 data validation is based on completeness and compliance checks of sample-related QC results including: sample receipt documentation; analytical holding times; sample preservation; blank results (method, field, and trip); surrogate recoveries; MS/MSD recoveries and RPDs values; field duplicate RPDs, laboratory duplicate RPDs, and LCS/LCSD recoveries and RPDs. The sample delivery group L2463005 underwent Tier 1 validation review.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA guidelines and our best professional judgment:

- **R** The sample results are unusable because certain criteria were not met when generating the data. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit; however, the reported reporting limit is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned, these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are considered invalid and are not technically usable for data interpretation. Data that is otherwise qualified because of minor data-quality anomalies are usable, as qualified in Table 2 (attached).

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

IANGAN

VOCs by SW-846 Method 8260D

L2463005

The LCS/LCSD for batch WG1992626 exhibited percent recoveries below the LCL for bromomethane (31%, 30%), chloroethane (54%, 52%), diethyl ether (ethyl ether) (43%, 41%), naphthalene (69%), and trichlorofluoromethane (47%, 45%). The associated results in sample MW-1_102924 are qualified as UJ because of potential low bias.

The LCS/LCSD for batch WG1992626 exhibited a RPD above the control limit for acetone (26%). The associated results in sample MW-1_102924 are qualified as UJ because of potential indeterminate bias.

The LCS/LCSD for batch WG1992852 exhibited percent recoveries below the LCL for bromomethane (25%, 24%), chloroethane (50%, 49%), diethyl ether (ethyl ether) (44%, 43%), and trichlorofluoromethane (44%, 42%). The associated results in samples MW-2_102924 and DUP01_102924 are qualified as UJ because of potential low bias.

The LCS/LCSD for batch WG1992852 exhibited a RPD above the control limit for 1,4-dioxane (23%). The associated results in samples MW-2_102924 and DUP01_102924 are qualified as UJ because of potential indeterminate bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by SW-846 Method 8260D

L2463005

The MS and/or MSD performed on sample MW-1_102924 exhibited percent recoveries and/or RPDs outside of control limits for one or more analytes (). Organic results are not qualified on the basis of MS/MSD recoveries or RPDs alone. No qualification is necessary.

FIELD DUPLICATES:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than \pm X the RL. For results greater than 5X the RL, analytes meet the precision criteria if the

RPD is less than or equal to 30% for groundwater. The following field duplicate and parent sample pair was compared to and met the precision criteria:

• DUP01_102924 and MW-2_102924

CONCLUSION:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Mariana Wissink Senior Staff Chemist

LANGAN

LANGAN

April 11, 2025

Ms. Marlen Salazar New York State Department of Environmental Conservation (NYSDEC) Region 2 Division of Environmental Remediation 47-40 21st Street Long Island City, NY 11101

RE: Tenth Quarter Groundwater Monitoring Report 27-01 Jackson Avenue Long Island City, New York NYSDEC Order on Consent No. S241209 Langan Project No.: 170472002

Dear Ms. Salazar:

In accordance with the January 23, 2020 Off-Site In-Situ Treatment Remedial Design Plan (RDP) and the December 12, 2022 NYSDEC-approved Off-Site Site Management Plan (OSMP), Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan) conducted groundwater sampling within the public right-of-way and sidewalks adjacent to the 27-01 Jackson Avenue site located in the Long Island City neighborhood of Queens, New York (Brownfield Cleanup Program [BCP] Site No. C241209). The south- and west-adjoining sidewalks are subject to the April 20, 2022 Order on Consent and Administrative Settlement (CO), Index No. S241209-08-09 and hereinafter referred to as the "CO site". A site location map is provided as Figure 1. This was the tenth quarterly sampling event completed following implementation of the off-site in-situ groundwater treatment program between October 20 and November 11, 2021.

Project Background

The CO site is an approximately 2,750-square-foot area that spans sections of the Jackson Avenue and 43rd Avenue sidewalks adjoining the BCP site located at 27-01 Jackson Avenue in the Long Island City neighborhood of Queens, New York (identified as Block 432, Lot 21 on the Queens County Tax Map). A site layout plan is presented on Figure 2.

Light non-aqueous phase liquid (LNAPL), and petroleum-impacted soil, groundwater, and soil vapor were identified on- and off-site during a Remedial Investigation (RI) and supplemental sampling events performed between October 2018 and July 2020. To address the impacts, NYSDEC approved the RDP and the Remedial Action Work Plan (RAWP) on January 23, 2020 and January 9, 2021, respectively. A Track 1 remedy was achieved at the BCP site and a certificate of completion (COC) was issued on December 23, 2022. Pursuant to the RAWP, a CO was executed on April 20, 2022, which requires compliance with the NYSDEC-approved

December 12, 2022 OSMP. The intent of the CO is to monitor off-site conditions in groundwater following off-site groundwater treatment and on-site dewatering. The OSMP addresses the means for implementing, monitoring, and reporting on the Engineering and Institutional Controls (ECs/ICs) that are required by the CO for the off-site areas adjacent to the BCP site.

In-Situ Groundwater Treatment

An off-site in-situ groundwater treatment program was implemented to treat remaining petroleum-related VOCs beneath the CO site, which were initially identified during the RI. Targeted petroleum-related VOCs included benzene, toluene, ethylbenzene, and xylenes (BTEX), and their breakdown products. Impacted groundwater was treated using an activated carbon solution (PetroFix[™]) via direct-push injection points located in a rough grid pattern to spread chemicals evenly within the off-site, south- and west-adjoining sidewalks comprising the CO site.

The injection program was carried out by Clean Harbors of Norwell, Massachusetts and Aquifer Drilling and Testing (ADT) of Mineola, New York, under the oversight of Langan, between October 20 and November 11, 2021. Injection point locations are shown on Figure 3. At each injection point, a hollow steel injection rod was advanced to depths ranging from about 15 to 30 feet below grade surface (bgs). Injections were made using a "bottom-up" approach, beginning at the deepest 2-foot interval, and raised from the bottom depth in 2-foot intervals to approximately 15 feet bgs. Approximately 14,400 pounds of Petrofix® and 720 pounds of electron acceptor blend were applied via direct-push drill rig between October 20 and November 11, 2021. Between 664 and 976 pounds of Petrofix® were applied to each point.

Performance Monitoring Methodology

The RDP and OSMP included baseline sampling and quarterly post-injection groundwater monitoring to evaluate the efficacy of the CO site remedy. Baseline groundwater sampling was conducted from existing monitoring wells MW-3 and MW-4 and temporary monitoring wells MW-1 and MW-2 on October 7 and 19, 2021. Monitoring wells MW-3 and MW-4 were compromised during installation of the support of excavation, and the four monitoring wells were reinstalled for post-remediation groundwater monitoring on August 22, 2022 and October 13 and 14, 2022. Post-injection monitoring well locations are shown on Figure 3.

Post-injection groundwater monitoring was not conducted between November 2021 and October 2022 due to remediation efforts and active dewatering at the BCP site. Ten post-injection quarterly sampling events have been completed at the CO site in October 2022, January 2023, April 2023, July 2023, October 2023, January 2024, April 2024, July 2024, October 2024, and January 2025.

Between the third and fourth quarter sampling events, monitoring well MW-3 was compromised during the installation of utilities beneath the 43rd Avenue sidewalk. Considering VOCs were nondetect in MW-3 during the previous three quarters of sampling, NYSDEC allowed the discontinuation of sampling of MW-3 via email correspondence on August 8th, 2023. The Fourth Quarter Groundwater Monitoring Report, dated September 15, 2023, indicated that VOCs were

also non-detect in monitoring well MW-4 during the previous four quarters; therefore, NYSDEC allowed the discontinuation of sampling of MW-4 via email correspondence on October 13th, 2023. NYSDEC correspondence is included as Attachment A.

Well Purging and Sampling

Monitoring well sampling was conducted for monitoring wells MW-1 and MW-2 on January 24, 2025. Before sampling, each well was purged using the low-flow method developed by the United States Environmental Protection Agency (USEPA) "Low-Flow [Minimal Drawdown] Ground-Water Sampling Procedures," EPA/540/S-95/504, April 1996) and accepted by the NYSDEC. Purging was performed using a peristaltic pump fitted with dedicated tubing at each well. During purging of MW-2, the turbidity, pH, temperature, conductivity, oxidation-reduction potential (ORP), and dissolved oxygen (DO) were monitored using a Horiba U-52 water quality meter with a flow-through cell. Due to poor recharge, groundwater quality parameters for MW-1 were not recorded. Purged groundwater was containerized in 55-gallon drums during each event. The daily site observation report is included in Attachment B. The groundwater quality parameters for MW-2 are recorded in the Well Purging and Sampling Logs provided in Attachment C.

As a general rule, groundwater is purged until water quality parameters stabilized, after an hour of continuous purging, or after three well volumes of groundwater had been removed from the well. Due to poor recharge in both wells, groundwater samples were collected from MW-1 and MW-2 after purging three well volumes from each well.

After purging each well, a groundwater sample was collected directly from the pump discharge line using USEPA low-flow techniques. For quality assurance and quality control, one field blank sample and one duplicate sample were collected. A trip blank was included in each shipment for quality control during transport. All samples were analyzed for Part 375/Target Compound List (TCL) VOCs via USEPA SW-846 method 8260C by Pace Analytical, a New York State Department of Environmental Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-accredited laboratory in Westborough, Massachusetts.

The laboratory analytical results for the baseline sampling event, the previous quarterly sampling events, and the January 2025 sampling event are summarized in Table 1. The laboratory analytical report from the January 2025 sampling event is provided as Attachment D. Groundwater analytical results were compared to the NYSDEC Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical & Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA drinking water (herein collectively referenced as the NYSDEC SGVs). Analytical results from the first quarterly sampling event are discussed in the NYSDEC-approved December 2022 Final Engineering Report (FER), and analytical results from subsequent quarters are discussed in their respective quarterly monitoring reports.

January 2025 Performance Monitoring Analytical Results

Analytical results from the January 2025 performance monitoring are summarized as follows:

- <u>MW-1:</u> No VOCs were detected above the NYSDEC SGVs. In comparison to baseline analytical results, total VOC and total BTEX concentrations have decreased by 100%.
- <u>MW-2:</u> 1,2,4,5-Tetramethylbenzene, 1,2,4-trimethylbenzene, isopropylbenzene (cumene), m,p-xylene, n-propylbenzene, and total xylenes were detected above the NYSDEC SGVs. In comparison to baseline analytical results, total VOC and total BTEX concentrations have decreased by 98.5% and 99.5%, respectively.

Six VOCs were detected above the NYSDEC SGVs in groundwater samples collected during the January 2025 monitoring event. Total VOC concentrations have decreased by 100% (MW-1) and 98.7% (MW-2), and total BTEX concentrations have decreased by 100% (MW-1) and 99.5% (MW-2) when compared to baseline concentrations. In comparison to the ninth quarterly sampling event, analyte concentrations detected above the NYSDEC SGVs in MW-1 and MW-2 are generally within the same order of magnitude.

Analytical data are shown on Figure 4 and result trends are shown on Figure 5. Comparison of overall result trends for each monitoring well show a bulk reduction in petroleum-related VOCs to asymptotic levels over the course of the monitoring program. Based on the post-remedy sampling results and trends, the off-site remedy appears to have been effective; further significant decline of contaminant of concern concentrations in the near term is not anticipated.

Data Validation

A copy of the Analytical Services Protocol (ASP) Category B laboratory report was submitted to Langan's data validation department for review in accordance with the USEPA validation guidelines for organic and inorganic data. The data were found to be 100% acceptable. The Data Usability Summary Report (DUSR) is included in Attachment E.

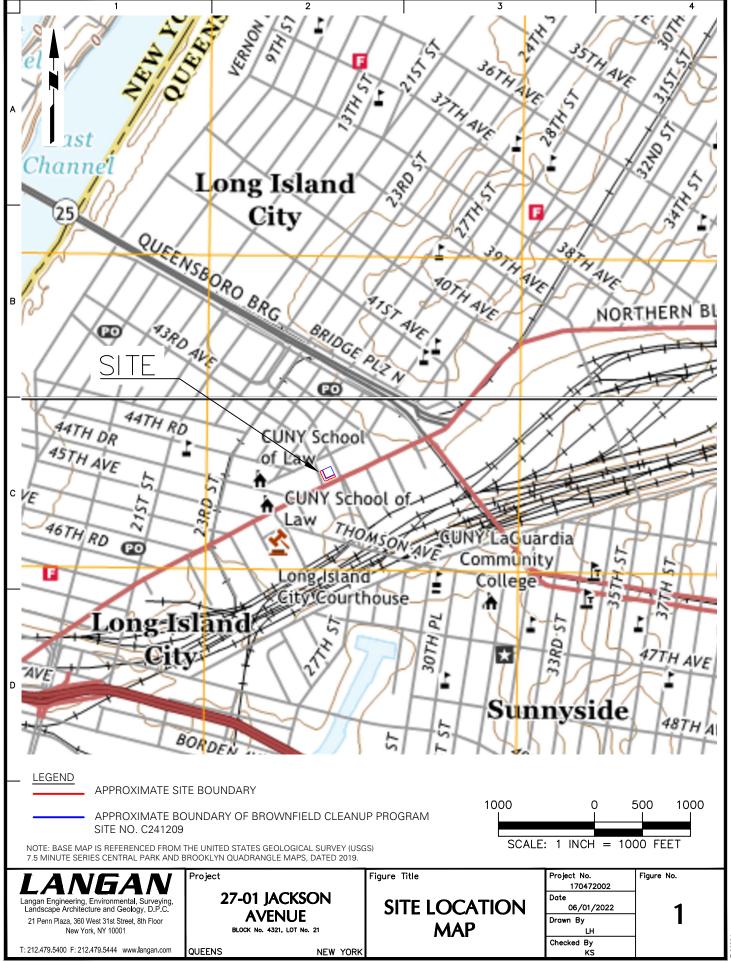
Closure

Targeted petroleum-related VOC concentrations exceeded the NYSDEC SGVs in MW-2, but have been reduced by one to three orders of magnitude relative to baseline concentrations, indicating that bulk reduction has been observed. VOCs were not detected above the NYSDEC SGVs in MW-1 during the January 2025 monitoring event. Based on the overall sampling event results trends, asymptotic levels have been achieved over the ten monitoring events, indicating that the off-site remedy has been effective. Further significant decline of concentrations of contaminants of concern in the near term is not anticipated; however, as requested by NYSDEC in their correspondence dated September 19, 2024 (see Attachment A), Langan will conduct one additional quarterly groundwater monitoring events at the CO site prior to re-evaluating discontinuation of the monitoring program.

Should you have any questions, please call the undersigned at 212-479-5427.

Sincerely,

Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C.


1/-4

Jason Hayes, P.E. Senior Principal

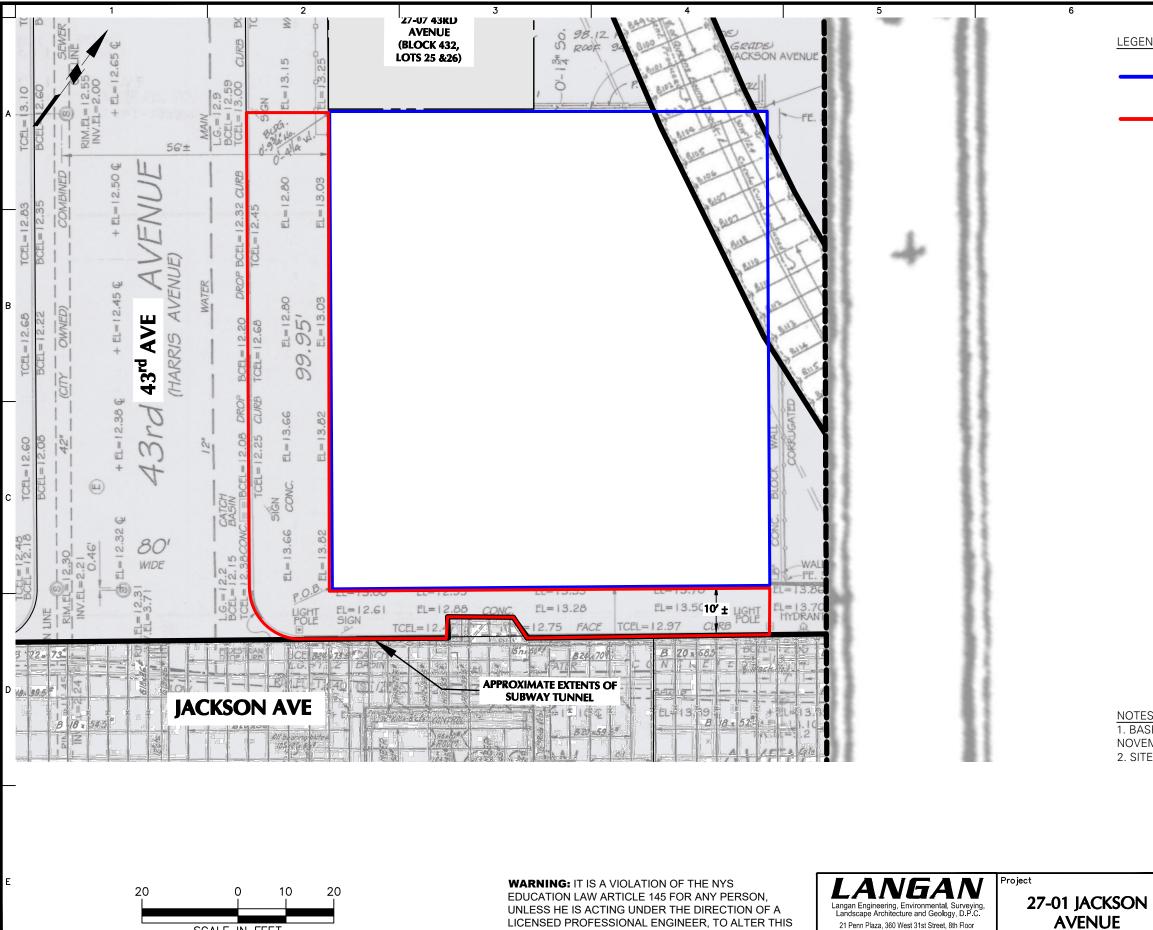

Enclosures:

Figure 1	Site Location Map
Figure 2	Site Layout Plan
Figure 3	In-Situ Groundwater Treatment Injection Plan
Figure 4	Groundwater Sample Analytical Results
Figure 5	Groundwater Sample Analytical Results Trends
Table 1	Groundwater Sample Analytical Results
Attachment A	NYSDEC Correspondence
Attachment B	Daily Site Observation Report
Attachment C	Well Purging and Sampling Logs
Attachment D	Laboratory Analytical Report
Attachment E	Data Usability Summary Report

FIGURES

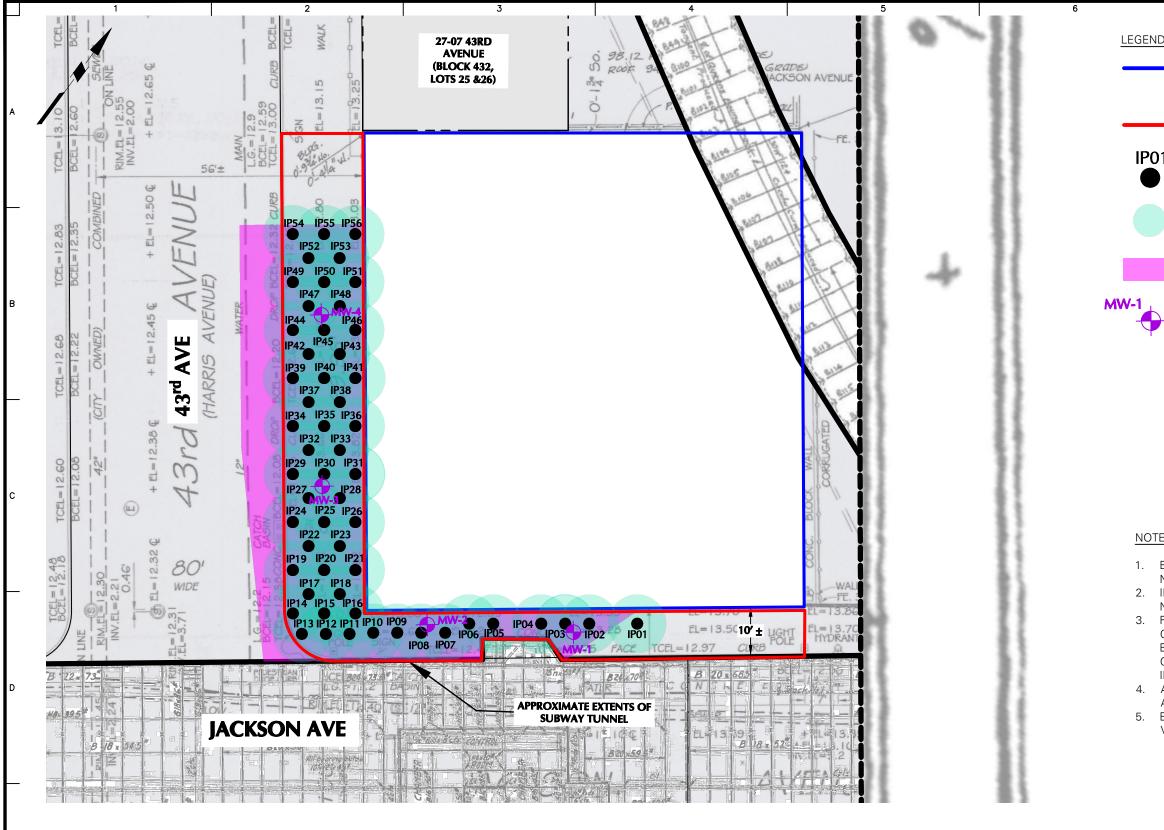
Filename: Wangan.com/datai/NYC/data0/170472002/Project DataiCAD/02/SheetFiles/OSMP/Figure 1 - Site Location Map.dwg Date: 2/14/2023 Time: 22:25 User: Ihaley Style Table: Langan.stb Layout: F1 - SITE LCO MAP

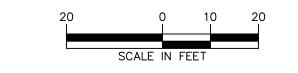
LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS

ITEM IN ANY WAY.

SCALE IN FEET

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

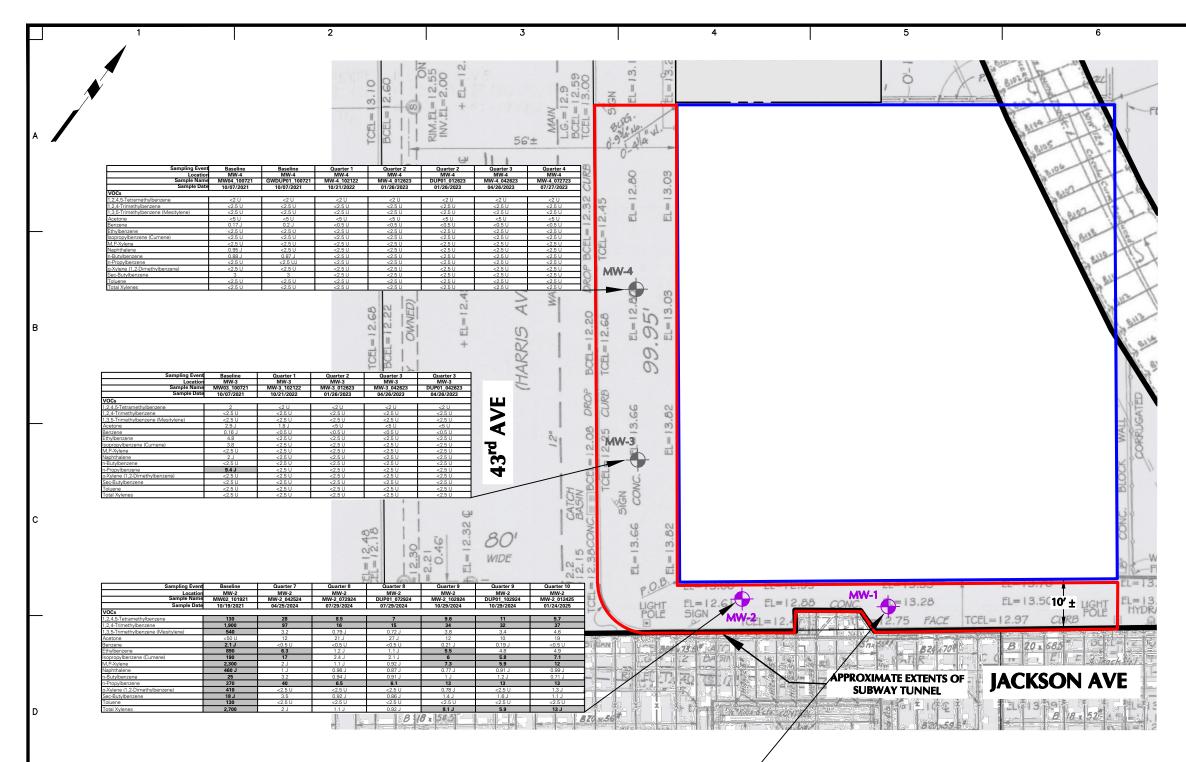

T: 212.479.5400 F: 212.479.5444 www.langan.com


Filename: \\langan.com\data\NYC\data0\170472002\Project Data\CAD\02\SheetFiles\SMP\Figure 2 - Site Layout Plan.dwg Date: 7/6/2022 Time: 13:44 User: eseery Style Table: Langan.stb Layout: ANSIB-BL

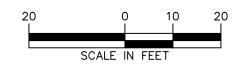
BLOCK No. 432 LOT No. 21

QUEENS

			_
 . <u>EGEND</u>	7	I	8
	APPROXIMATE BOUNDARY OF PROGRAM SITE NO. C241209	BROWNFIELD C	LEANUP
	APPROXIMATE SITE BOUNDAF	ťΥ	
	AP TAKEN FROM HAYNES LAND SU R 12, 2014.	RVEYORS, DATEI	D ON
	UNDARIES ARE APPROXIMATE		
	Figure Title	Project No. 170472002	Figure No.
ON	SITE LAYOUT PLAN	Date 07/06/2022 Drawn By	2
o. 21 NEW YORK		LH Checked By KS	



Filename: \\langan.com\data\NYC\data0\170472002\Project Data\CAD\02\SheetFiles\OSMP\Figure 3 - In-Situ Groundwater Treatment Injection Plan.dwg Date: 11/17/2022 Time: 22:22 User: Ihaley Style Table: Langan.stb Layout: ANSIB-BL


 I <u>D</u>	7		8						
	APPROXIMATE BOUNDARY OF PROGRAM SITE NO. C241209	BROWNFIELD C	LEANUP						
_	APPROXIMATE SITE BOUNDAF	Υ							
01	INJECTION POINT LOCATION								
	APPROXIMATE RADIUS OF INFLUENCE FOR PETROFIX								
	APPROXIMATE EXTENT OF OF	F-SITE PETROLEU	IM PLUME						
	MONITORING WELL LOCATION	Ν							
TES									
BAS		ID SURVEYORS, D	DATED						
INJE	/EMBER 12, 2014. ECTIONS WERE COMPLETED BET\ /EMBER 11, 2021.	WEEN OCTOBER 2	20, 2021 AND						
RAD CON	IUS OF INFLUENCE CALCULATION	EMICAL MANUFA	CTURERS						
CON	ED ON SUBSURFACE CONDITION ICENTRATIONS ENCOUNTERED D ESTIGATION CONDUCTED BY LAN	URING THE REME							
ALL	INJECTION AND MONITORING W ROXIMATE.		ARE						
	VATIONS (EL.) ARE REFERENCED TICAL DATUM OF 1983 (NAVD83).		MERICAN						
	WARNING: IT IS A VIOL	ΔΤΙΩΝ ΩΕ ΤΗΕ ΝΥ	r c						
	EDUCATION LAW ARTIC UNLESS HE IS ACTING U	LE 145 FOR ANY P	PERSON,						
	LICENSED PROFESSION ITEM IN ANY WAY.	IAL ENGINEER, TC	ALTER THIS						
	Figure Title	Project No. 170472002	Figure No.						
	IN-SITU GROUNDWATER	Date 11/17/2022	2						
	TREATMENT INJECTION PLAN	Drawn By LH	3						

INJECTION PLAN

Checked By KS

Sampling Event	Baseline	Quarter 7	Quarter 7	Quarter 8	Quarter 9	Quarter 10	Quarter 10	
Location	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	
Sample Name	MW01_101921	MW-1_042524	DUP01_042524	MW-1_072924	MW-1_102924	MW-1_012425	DUP01_012425	
Sample Date	10/19/2021	04/25/2024	04/25/2024	07/29/2024	10/29/2024	01/24/2025	01/24/2025	
VOCs								
1,2,4,5-Tetramethylbenzene	12	11	11	7.4	<2 U	<2 U	<2 U	
1,2,4-Trimethylbenzene	11	2.6	2.6	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
1,3,5-Trimethylbenzene (Mesitylene)	7.8	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
Acetone	4.5 J	<5 U	<5 U	<5 U	<5 UJ	<5 U	1.7 J	
Benzene	17	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	
Ethylbenzene	54	1.5 J	1.5 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
Isopropylbenzene (Cumene)	10	2.1 J	2.1 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
M,P-Xylene	11	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
Naphthalene	3.4 J	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U	
n-Butylbenzene	5.6	0.87 J	0.81 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
n-Propylbenzene	17	1.5 J	1.6 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
o-Xylene (1,2-Dimethylbenzene)	9.1	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
Sec-Butylbenzene	4.6	1.2 J	1.1 J	0.85 J	<2.5 U	<2.5 U	<2.5 U	
Toluene	5.3	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	
Total Xvlenes	20	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	

Filename: \\langan.com\data\NYC\data0\170472002\Project Data\CAD\02\SheetFiles\Off-Site Groundwater Reports\Figure 4 - Groundwater Sample Results Map.dwg Date: 3/14/2025 Time: 15:40 User: Ihaley Style Table: Langan.stb Layout: ANSIB-BL (2)

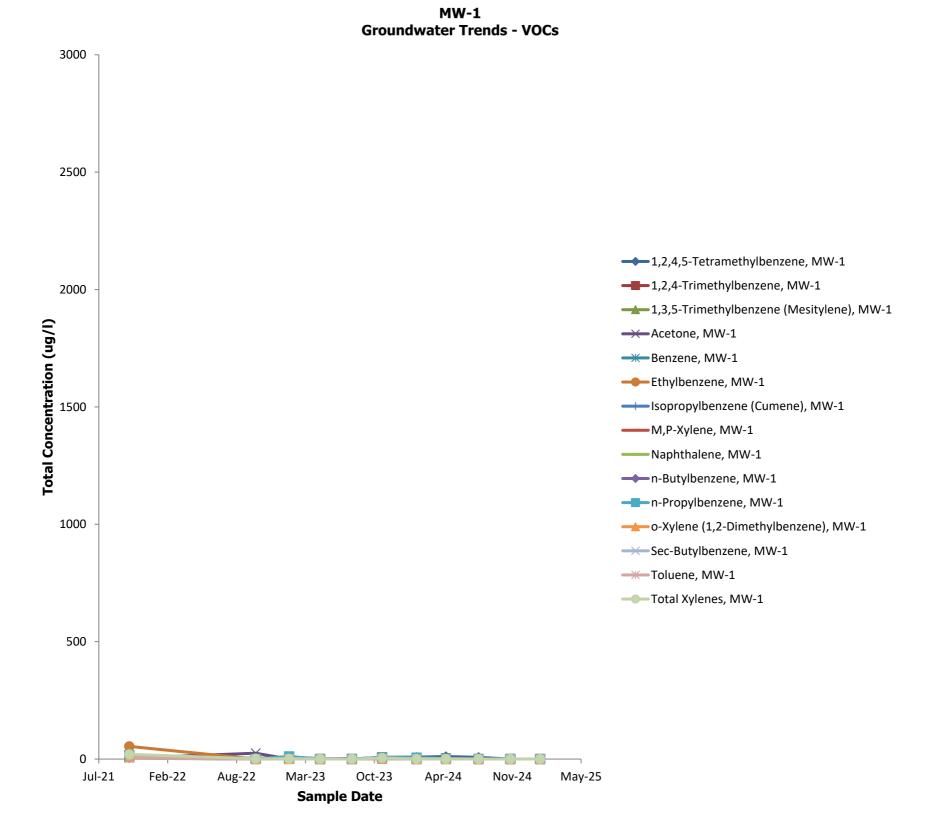
LEGEND

APPROXIMATE BOUNDARY OF BROWNFIELD CLEANUP PROGRAM SITE NO. C241209

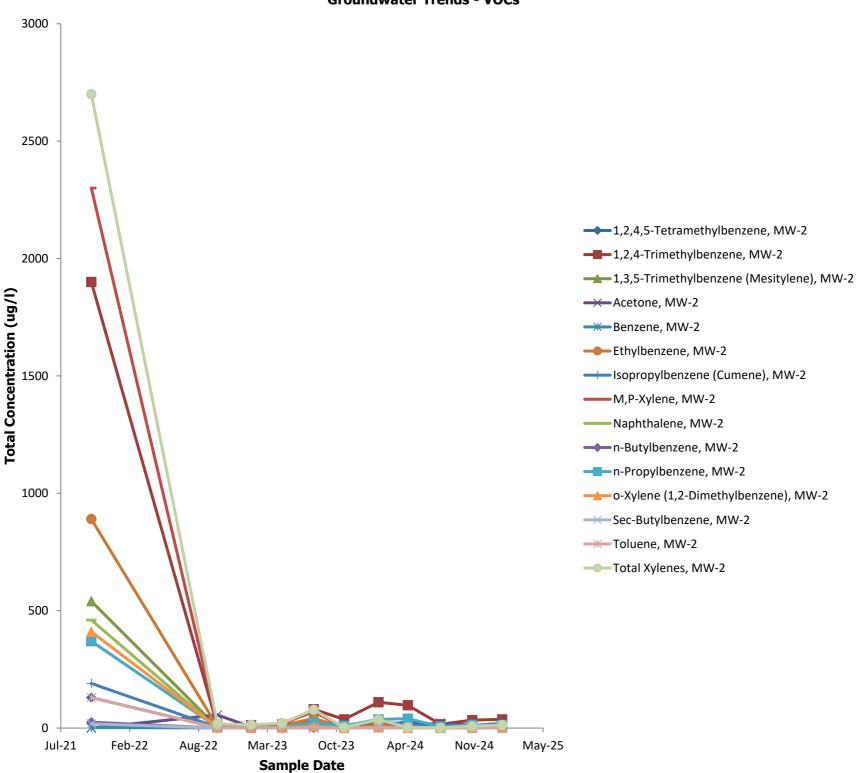
APPROXIMATE SITE BOUNDARY

MONITORING WELL LOCATION (GROUNDWATER SAMPLING DISCONTINUED 2023)

MONITORING WELL LOCATION

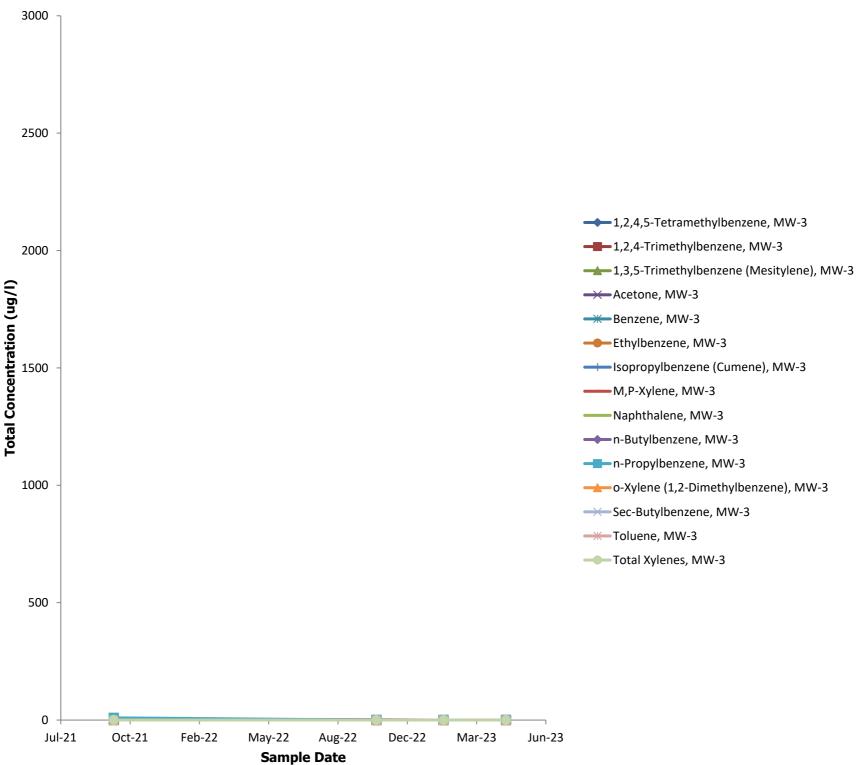

Analyte	NYSDEC SGVs
VOCs	
1,2,4,5-Tetramethylbenzene	5
1,2,4-Trimethylbenzene	5
1,3,5-Trimethylbenzene (Mesitylene)	5
Acetone	50
Benzene	1
Ethylbenzene	5
Isopropylbenzene (Cumene)	5
M,P-Xylene	5
Naphthalene	10
n-Butylbenzene	5
n-Propylbenzene	5
o-Xylene (1,2-Dimethylbenzene)	5
Sec-Butylbenzene	5
Toluene	5
Total Xylenes	5

NOTES

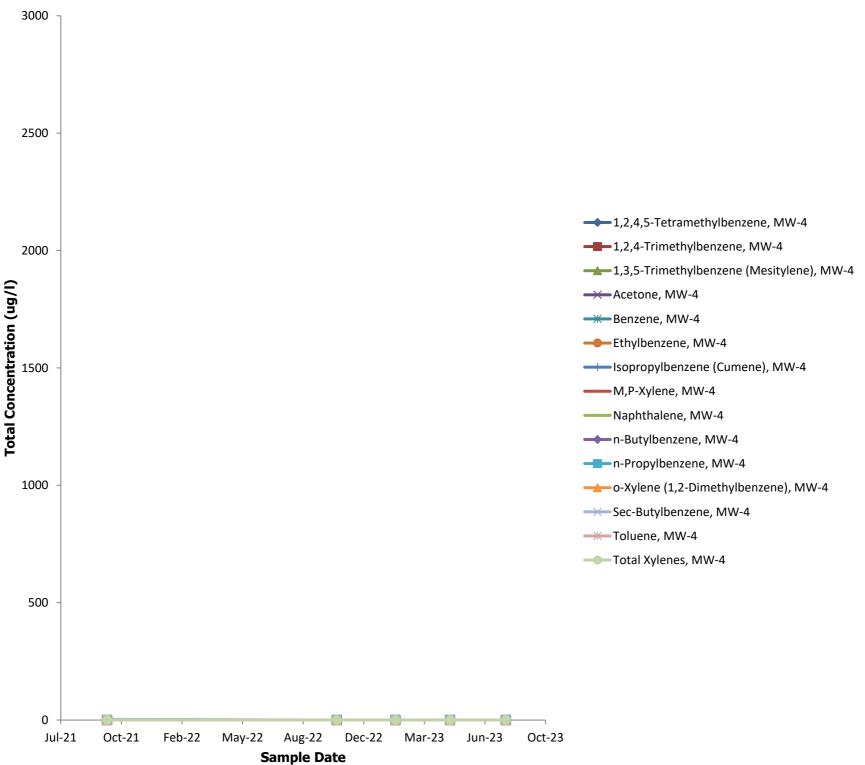

- 1. BASEMAP TAKEN FROM HAYNES LAND SURVEYORS, DATED ON NOVEMBER 12, 2014.
- ALL LOCATIONS ARE APPROXIMATE. 2.
- THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 3. (NYSDEC) ALLOWED THE DISCONTINUATION OF GROUNDWATER SAMPLING AT MONITORING WELLS MW-3 AND MW-4 VIA EMAIL CORRESPONDENCE ON AUGUST 8 AND OCTOBER 13, 2023.
- GROUNDWATER RESULTS ARE COMPARED TO THE NEW YORK STATE 4 DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS GA GROUNDWATER.
- THIS FIGURE COMPARES BASELINE ANALYTICAL DATA TO THE FOUR MOST 5. RECENT QUARTERS OF ANALYTICAL DATA FOR EACH WELL. ALL ANALYTICAL DATA FROM THE BASELINE AND QUARTERLY SAMPLING EVENTS ARE PROVIDED IN THE QUARTERLY GROUNDWATER MONITORING REPORT TABLES.
- ONLY COMPOUNDS EXCEEDING COMPARISON CRITERIA ARE SHOWN. 6
- RESULTS ABOVE NYSDEC SGVs ARE SHADED AND BOLDED.
- RESULTS ARE SHOWN IN MICROGRAMS PER LITER (µg/L). 8
- J= THE ANALYTE WAS DETECTED ABOVE THE METHOD DETECTION LIMIT, BUT 9 BELOW THE REPORTING LIMIT (RL); THE RESULT IS AN ESTIMATED CONCENTRATION.
- 10. U = THE ANALYTE WAS ANALYZED FOR, BUT NOT DETECTED AT A LEVEL GREATER THAN OR EQUAL TO THE RL; THE VALUE SHOWN IN THE TABLE IS THE RL.

WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

	Figure Title	Project No. 170472002	Figure No.
	GROUNDWATER SAMPLE	Date 03/14/2025	1
	ANALYTICAL RESULTS MAP	Drawn By LH	4
ORK		Checked By KS	



27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002


MW-2 Groundwater Trends - VOCs

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002

MW-3 Groundwater Trends - VOCs

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002

MW-4 Groundwater Trends - VOCs

TABLES

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

			Sampling Event	Baseline	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Quarter 4	Quarter 5	Quarter 5	Quarter 6	Quarter 7	Quarter 7	Quarter 8	Quarter 9	Quarter 10	Quarter 10
	CAS	NYSDEC	Location	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1
Analyte	Number	SGVs	Sample Name Sample Date	MW01_101921 10/19/2021	MW-1_102122 10/21/2022	MW-1_012623 01/26/2023	MW-1_042623 04/26/2023	MW-1_072723 07/27/2023	DUP01_072723 07/27/2023	MW-1_102323 10/23/2023	DUP01_102323 10/23/2023	MW-1_013124 01/31/2024	MW-1_042524 04/25/2024	DUP01_042524 04/25/2024	MW-1_072924 07/29/2024	MW-1_102924 10/29/2024	MW-1_012425 01/24/2025	DUP01_012425 01/24/2025
			Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds	620.20.6	E		-2 E U	-2.5.11	-2.5.11	-2.5.11	-2 5 11	-2.5.11	-2 E I I	-2 E U	-2 E I I	<2.5.11	-2 E U	-2.5.11	-2.5.11	-2.5.11	-2 E H
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	630-20-6 71-55-6	5	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U					
1,1,2,2-Tetrachloroethane	79-34-5	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
1,1,2-Trichloroethane	79-00-5	1	ug/l	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U					
1,1-Dichloroethane 1,1-Dichloroethene	75-34-3 75-35-4	5	ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U					
1,1-Dichloropropene	563-58-6	5	ug/l ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U <2.5 U					
1,2,3-Trichlorobenzene	87-61-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
1,2,3-Trichloropropane	96-18-4	0.04	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene	95-93-2 120-82-1	5	ug/l ug/l	12 <2.5 U	1.9 J <2.5 ∪	8.9 <2.5 U	1.7 J <2.5 ∪	<2 U <2.5 U	<2 U <2.5 U	7.6 <2.5 U	8.4 <2.5 U	8 <2.5 U	11 <2.5 U	11 <2.5 ∪	7.4 <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U
1,2,4-Trimethylbenzene	95-63-6	5	ug/l	11	0.77 J	0.74 J	<2.5 U	<2.5 U	<2.5 U	7.2	7.5	<2.5 U	2.6	2.6	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	0.0006 3	ug/l	<2 U <2.5 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U
1,2-Dichlorobenzene 1,2-Dichloroethane	95-50-1 107-06-2	0.6	ug/l ug/l	<2.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
1,2-Dichloropropane	78-87-5	1	ug/l	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U					
1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	5	ug/l	7.8	4	1.7 J	<2.5 U	<2.5 U	<2.5 U	5.3	5.6	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,3-Dichlorobenzene 1,3-Dichloropropane	541-73-1 142-28-9	3 5	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U					
1,4-Dichlorobenzene	106-46-7	3	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
1,4-Diethyl Benzene	105-05-5	NS	ug/l	26	4	4.9	1.7 J	<2 U	<2 U	1.6 J	1.7 J	3.9	3.5	3.5	2.3	<2 U	<2 U	<2 U
1,4-Dioxane (P-Dioxane)	123-91-1 594-20-7	0.35 5	ug/l	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U	<250 U <2.5 U					
2,2-Dichloropropane 2-Chlorotoluene	95-49-8	5	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U					
2-Hexanone (MBK)	591-78-6	50	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U					
4-Chlorotoluene	106-43-4	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
4-Ethyltoluene Acetone	622-96-8 67-64-1	NS 50	ug/l ug/l	6.1 4.5 J	1.5 J 25	1.4 J <5 ∪	<2 U <5 U	<2 ∪ 2.5 J	<2 U <5 U	4 <5 U	4.3 <5 ∪	<2 U <5 U	<2 U <5 U	<2 U <5 U	<2 U <5 U	<2 U <5 UJ	<2 U <5 U	<2 U 1.7 J
Acrylonitrile	107-13-1	5	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U					
Benzene	71-43-2	1	ug/l	17	<0.5 U	0.22 J	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
	108-86-1 74-97-5	5	ug/l	<2.5 U <2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U <2.5 U
Bromochloromethane Bromodichloromethane	75-27-4	50	ug/l ug/l	<0.5 U	<2.5 U <0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<2.5 U <0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<2.5 U <0.5 U	<0.5 U
Bromoform	75-25-2	50	ug/l	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U					
Bromomethane	74-83-9	5	ug/l	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U					
Carbon Disulfide Carbon Tetrachloride	75-15-0 56-23-5	60 5	ug/l ug/l	1.2 J <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U
Chlorobenzene	108-90-7	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
Chloroethane	75-00-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U					
Chloroform Chloromethane	67-66-3 74-87-3	7	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U					
Cis-1,2-Dichloroethene	156-59-2	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
Cis-1,3-Dichloropropene	10061-01-5	0.4	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
Cymene Dibramachlaramathana	99-87-6 124-48-1	5 50	ug/l	1.4 J <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
Dibromochloromethane Dibromomethane	74-95-3	5	ug/l ug/l	<5 U	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<5 U	<0.5 U	<0.5 U	<0.5 U	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Dichlorodifluoromethane	75-71-8	5	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U					
Diethyl Ether (Ethyl Ether)	60-29-7 100-41-4	NS 5	ug/l	<2.5 U 54	<2.5 U <2.5 U	<2.5 U 5.4	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U 4.7	<2.5 U 5	<2.5 U	<2.5 U	<2.5 U 1.5 J	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U
Ethylbenzene Hexachlorobutadiene	87-68-3	0.5	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U	1.9 J <2.5 U	1.5 J <2.5 ∪	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U					
Isopropylbenzene (Cumene)	98-82-8	5	ug/l	10	<2.5 U	9.1	<2.5 U	<2.5 U	<2.5 U	3.9	4.2	5.6	2.1 J	2.1 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U
M,P-Xylene	179601-23-1	5	ug/l	11	1.3 J	0.88 J	<2.5 U	<2.5 U	<2.5 U	3.7	4	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	78-93-3 108-10-1	50 NS	ug/l ug/l	<5 U <5 U	<5 UJ <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U
Methylene Chloride	75-09-2	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
Naphthalene	91-20-3	10	ug/l	3.4 J	<2.5 U	2.2 J	2 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U				
n-Butylbenzene n-Propylbenzene	104-51-8 103-65-1	5	ug/l ug/l	5.6 17	<2.5 U <2.5 U	2.2 J 11	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	1.4 J 7.1	1.6 J 7.7	1.7 J 5.7	0.87 J 1.5 J	0.81 J 1.6 J	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
o-Xylene (1,2-Dimethylbenzene)	95-47-6	5	ug/l	9.1	<2.5 U	0.98 J	1 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Sec-Butylbenzene	135-98-8	5	ug/l	4.6	<2.5 U	2.7	0.87 J	<2.5 U	<2.5 U	0.9 J	1 J	1.9 J	1.2 J	1.1 J	0.85 J	<2.5 U	<2.5 U	<2.5 U
Styrene T. Rutulhanzana	100-42-5	5	ug/l	<2.5 U	<2.5 U	<2.5 U	1.2 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
T-Butylbenzene Tert-Butyl Methyl Ether	98-06-6 1634-04-4	10	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U 0.21 J	<2.5 U <2.5 U					
Tetrachloroethene (PCE)	127-18-4	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
Toluene	108-88-3	5	ug/l	5.3	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Total 1,2-Dichloroethene (Cis and Trans) Total Xylenes	540-59-0 1330-20-7	NS 5	ug/l	<2.5 U 20	<2.5 U 1.3 J	<2.5 U 0.88 J	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U 4.7 J	<2.5 U 5 J	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Total, 1,3-Dichloropropene (Cis And Trans)	542-75-6	0.4	ug/l ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<2.5 U	<0.5 U	<0.5 U	<0.5 U	<2.5 U	<2.5 U	<2.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Trans-1,2-Dichloroethene	156-60-5	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
Trans-1,3-Dichloropropene	10061-02-6	0.4	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
Trans-1,4-Dichloro-2-Butene Trichloroethene (TCE)	110-57-6 79-01-6	5 5	ug/l ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 UJ <0.5 U	<2.5 UJ <0.5 U					
Trichlorofluoromethane	75-69-4	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<2.5 UJ	<0.5 U	<0.5 U					
Vinyl Acetate	108-05-4	NS	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U					
Vinyl Chloride	75-01-4	2	ug/l	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U					

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

			Sampling Event	Baseline	Quarter 1	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Quarter 5	Quarter 6	Quarter 6	Quarter 7	Quarter 8	Quarter 8	Quarter 9	Quarter 9	Quarter 10
Analyte	CAS	NYSDEC	Location Sample Name	MW-2 MW02 101921	MW-2 MW-2 102022	MW-2 DUP01 102022	MW-2 MW-2 012623	MW-2 MW-2 042623	MW-2 MW-2_072723	MW-2 MW-2_102323	MW-2 MW-2_013124	MW-2 DUP01 013124	MW-2 MW-2_042524	MW-2 MW-2_072924	MW-2 DUP01_072924	MW-2 MW-2 102924	MW-2 DUP01 102924	MW-2 MW-2_012425
Allalyte	Number	SGVs	Sample Date	10/19/2021	10/20/2022	10/20/2022	01/26/2023	04/26/2023	07/27/2023	10/23/2023	01/31/2024	01/31/2024	04/25/2024	07/29/2024	07/29/2024	10/29/2024	10/29/2024	01/24/2025
olatile Organic Compounds			Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
,1,1,2-Tetrachloroethane	630-20-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
,1,1-Trichloroethane	71-55-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
,1,2,2-Tetrachloroethane ,1,2-Trichloroethane	79-34-5 79-00-5	5	ug/l ug/l	<5 U <15 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U	<0.5 U <1.5 U
,1-Dichloroethane	75-34-3	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
,1-Dichloroethene	75-35-4	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
,1-Dichloropropene ,2,3-Trichlorobenzene	563-58-6 87-61-6	5 5	ug/l ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
,2,3-Trichloropropane	96-18-4	0.04	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
,2,4,5-Tetramethylbenzene	95-93-2	5	ug/l	130	1.4 J	4.2 J	<2 U	<2 U	2.6	6.2	6.1 J	1.3 J	28	8.5	7	9.6	11	5.7
,2,4-Trichlorobenzene ,2,4-Trimethylbenzene	120-82-1 95-63-6	5 5	ug/l ug/l	<25 U 1,900	<2.5 U 10 J	<2.5 U 34 J	<2.5 U 12	<2.5 U 15	<2.5 U 80	<2.5 U 37	<2.5 U 110 J	<2.5 U 52 J	<2.5 U 97	<2.5 U 16	<2.5 U 15	<2.5 U 34	<2.5 U 32	<2.5 U 37
,2-Dibromo-3-Chloropropane	96-12-8	0.04	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
,2-Dibromoethane (Ethylene Dibromide)	106-93-4 95-50-1	0.0006 3	ug/l	<20 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U	<2 U <2.5 U
,2-Dichlorobenzene ,2-Dichloroethane	107-06-2	3 0.6	ug/l ug/l	<25 U <5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U
,2-Dichloropropane	78-87-5	1	ug/l	<10 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U
,3,5-Trimethylbenzene (Mesitylene) ,3-Dichlorobenzene	108-67-8 541-73-1	5	ug/l	540 <25 U	3.5 J <2.5 ∪	8 J <2.5 U	2.5 <2.5 ∪	2.4 J <2.5 U	11 <2.5 U	2.5 <2.5 ∪	11 J <2.5 U	6.9 J <2.5 U	3.2 <2.5 ∪	0.79 J <2.5 U	0.72 J <2.5 U	3.8 <2.5 ∪	3.4 <2.5 ∪	4.6 <2.5 ∪
,3-Dichloropengane	142-28-9	5	ug/l ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
,4-Dichlorobenzene	106-46-7	3	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
,4-Diethyl Benzene ,4-Dioxane (P-Dioxane)	105-05-5 123-91-1	NS 0.35	ug/l ug/l	270 <2.500 U	<2 U <250 U	0.72 J <250 ∪	1.4 J <250 ∪	0.85 J <250 U	1.4 J <250 U	0.91 J <250 U	2.5 <250 ∪	1.1 J <250 U	7 <250 U	1.3 J <250 ∪	1.2 J <250 ∪	2.1 <250 UJ	2.2 <250 UJ	1.5 J <250 U
,2-Dichloropropane	594-20-7	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
-Chlorotoluene	95-49-8	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
-Hexanone (MBK) -Chlorotoluene	591-78-6 106-43-4	50 5	ug/l ug/l	<50 U <25 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U
Ethyltoluene	622-96-8	NS	ug/l	800	7.4 J	15 J	6.2	9.7	44	13	51 J	30 J	38	5.6	5.3	16	15	18
cetone	67-64-1	50	ug/l	<50 U	56	63	4.4 J	12 J	37	3.8 J	<5 UJ	19 J	12	21 J	27 J	12	10	19
crylonitrile enzene	107-13-1 71-43-2	5	ug/l ug/l	<50 U 2.1 J	<5 U 0.69	<5 U 0.35 J	<5 U 0.51	<5 ∪ 0.82	<5 U 0.6	<5 U <0.5 U	<5 U 0.18 J	<5 U 0.31 J	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U 0.21 J	<5 U 0.19 J	<5 U <0.5 U
romobenzene	108-86-1	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
romochloromethane romodichloromethane	74-97-5 75-27-4	5 50	ug/l ug/l	<25 U <5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
romotorm	75-25-2	50	ug/l	<20 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<0.5 U	<0.5 U	<2 U	<2 U	<2 U
romomethane	74-83-9	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	1.3 J	2.6 J	0.85 J	1.2 J	1.1 J	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U
arbon Disulfide arbon Tetrachloride	75-15-0 56-23-5	60 5	ug/l ug/l	<50 U <5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U
hlorobenzene	108-90-7	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
hloroethane hloroform	75-00-3 67-66-3	5	ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 UJ <2.5 U	<2.5 UJ <2.5 U	<2.5 U <2.5 U
hloromethane	74-87-3	5	ug/l ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
is-1,2-Dichloroethene	156-59-2	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
iis-1,3-Dichloropropene lymene	10061-01-5 99-87-6	0.4 5	ug/l ug/l	<5 U <25 U	<0.5 U <2.5 U	<0.5 U 0.7 J	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U 1.2 J	<0.5 U <2.5 U	<0.5 U 2 J	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U 0.76 J	<0.5 U 0.86 J	<0.5 U 0.71 J
hibromochloromethane	124-48-1	50	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
libromomethane	74-95-3	5	ug/l	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
vichlorodifluoromethane viethyl Ether (Ethyl Ether)	75-71-8 60-29-7	5 NS	ug/l ug/l	<50 U <25 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 UJ	<5 U <2.5 UJ	<5 U <2.5 U
thylbenzene	100-41-4	5	ug/l	890	5.9	4	5.8	11	41	3.2	16	19	6.3	1.2 J	1.1 J	5.5	4.8	4.9
lexachlorobutadiene sopropylbenzene (Cumene)	87-68-3 98-82-8	0.5 5	ug/l	<25 U 190	<2.5 U 3	<2.5 U 3.5	<2.5 U 3.2	<2.5 U 5.2	<2.5 U 22	<2.5 U 8.3	<2.5 U 26 J	<2.5 U 18 J	<2.5 U 17	<2.5 U 2.4 J	<2.5 U 2.1 J	<2.5 U	<2.5 U 5.8	<2.5 U 7.1
1,P-Xylene	179601-23-1	5	ug/l ug/l	2,300	16	14	12	19	70	2.3 J	32	36	2 J	2.4 J	0.92 J	7.3	5.9	12
lethyl Ethyl Ketone (2-Butanone)	78-93-3	50	ug/l	<50 U	<5 UJ	21 J	<5 U	<5 U	27	<5 U	<5 UJ	13 J	<5 U	4.6 J	4.7 J	<5 U	<5 U	<5 U
1ethyl Isobutyl Ketone (4-Methyl-2-Pentanone) 1ethylene Chloride	108-10-1 75-09-2	NS 5	ug/l ug/l	<50 U <25 U	1.5 J 1 J	<5 U <2.5 U	<5 U 0.92 J	1.7 J <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U 0.79 J	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U 1.1 J	<5 U 0.88 J	<5 U <2.5 U
laphthalene	91-20-3	10	ug/l	460 J	<2.5 U	3	<2.5 U	<2.5 U	1.4 J	<2.5 U	1.6 J	0.86 J	1 J	0.96 J	0.87 J	0.77 J	0.91 J	0.99 J
-Butylbenzene	104-51-8	5	ug/l	25	<2.5 U	0.93 J	<2.5 U	<2.5 U	0.7 J	<2.5 U	1.4 J	<2.5 U	3.2	0.94 J	0.91 J	1 J	1.2 J	0.71 J
-Propylbenzene -Xylene (1,2-Dimethylbenzene)	103-65-1 95-47-6	5 5	ug/l ug/l	370 410	2.8 J 2 J	5.7 J 1.9 J	2.7 1.5 J	4.5 2.1 J	23 7.5	9.5 <2.5 ∪	37 J 3.7	19 J 4.2	40 <2.5 U	6.5 <2.5 ∪	6.1 <2.5 ∪	13 0.78 J	13 <2.5 U	13 1.3 J
ec-Butylbenzene	135-98-8	5	ug/l	18 J	<2.5 U	0.83 J	<2.5 U	<2.5 U	0.93 J	0.84 J	1.9 J	<2.5 U	3.5	0.92 J	0.86 J	1.4 J	1.6 J	1.1 J
tyrene Rut (banzana	100-42-5	5 5	ug/l	<25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U
-Butylbenzene ert-Butyl Methyl Ether	98-06-6 1634-04-4	10	ug/l ug/l	<25 U <25 U	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U
etrachloroethene (PCE)	127-18-4	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
oluene otal 1,2-Dichloroethene (Cis and Trans)	108-88-3 540-59-0	5 NS	ug/l	130 <25 U	0.7 J <2.5 ∪	1 J <2.5 ∪	<2.5 U <2.5 U	0.79 J <2.5 U	1.2 J <2.5 ∪	<2.5 U <2.5 U	<2.5 U <2.5 U	0.74 J <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
otal 1,2-Dichloroethene (Cis and Trans) otal Xylenes	1330-20-7	5	ug/l ug/l	2,700	<2.5 U 18 J	<2.5 U 16 J	<2.5 U	<2.5 U 21 J	<2.5 U 78	<2.5 U 2.3 J	<2.5 U 36	<2.5 U 40	<2.5 U 2 J	<2.5 U 1.1 J	<2.5 U 0.92 J	<2.5 U 8.1 J	<2.5 U 5.9	<2.5 U
otal, 1,3-Dichloropropene (Cis And Trans)	542-75-6	0.4	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
rans-1,2-Dichloroethene rans-1,3-Dichloropropene	156-60-5 10061-02-6	5 0.4	ug/l	<25 U <5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
rans-1,4-Dichloro-2-Butene	110-57-6	5	ug/l ug/l	<25 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 UJ
richloroethene (TCE)	79-01-6	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
richlorofluoromethane inyl Acetate	75-69-4 108-05-4	5 NS	ug/l ug/l	<25 U <50 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 UJ <5 U	<2.5 UJ <5 U	<2.5 U <5 U
inyl Chloride	75-01-4	2	ug/l	<10 U	<5 0 <1 U	<5 0 <1 U	<5 0 <1 U	<5 0 <1 U	<5 0 <1 U	<3 0 <1 U	<5 0 <1 U	<5 0 <1 U	<5 U <1 U	<5 0 <1 U	<5 0 <1 U	<5 0 <1 U	<5 0 <1 U	<50 <1 U
,		~	- 3/ '															

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

			Sampling Event	Baseline	Quarter 1	Quarter 2	Quarter 3	Quarter 3	Baseline	Baseline	Quarter 1	Quarter 2	Quarter 2	Quarter 3	Quarter 4
	CAS	NYSDEC	Location	MW-3	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4
Analyte	Number	SGVs	Sample Name Sample Date	MW03_100721 10/07/2021	MW-3_102122 10/21/2022	MW-3_012623 01/26/2023	MW-3_042623 04/26/2023	DUP01_042623 04/26/2023	MW04_100721 10/07/2021	GWDUP01_100721 10/07/2021	MW-4_102122 10/21/2022	MW-4_012623 01/26/2023	DUP01_012623 01/26/2023	MW-4_042623 04/26/2023	MW-4_072723 07/27/2023
			Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds			. 0	0.5.11	0.5.11	0.5.11	0.5.11	0.5.11	0.5.11	0.5.11	0.5.11	0.5.11	0.5.11	0.5.11	0.5.11
I,1,1,2-Tetrachloroethane I,1,1-Trichloroethane	630-20-6 71-55-6	5 5	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U				
1,1,2,2-Tetrachloroethane	79-34-5	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U				
I,1,2-Trichloroethane	79-00-5	1	ug/l	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U				
I,1-Dichloroethane	75-34-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
I,1-Dichloroethene I,1-Dichloropropene	75-35-4 563-58-6	5 5	ug/l ug/l	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U				
I,2,3-Trichlorobenzene	87-61-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
1,2,3-Trichloropropane	96-18-4	0.04	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
I,2,4,5-Tetramethylbenzene	95-93-2	5	ug/l	2	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U
I,2,4-Trichlorobenzene I,2,4-Trimethylbenzene	120-82-1 95-63-6	5	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U				
I,2-Dibromo-3-Chloropropane	96-12-8	0.04	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
I,2-Dibromoethane (Ethylene Dibromide)	106-93-4	0.0006	ug/l	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U				
I,2-Dichlorobenzene	95-50-1	3	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
I,2-Dichloroethane	107-06-2	0.6	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U				
I,2-Dichloropropane	78-87-5 108-67-8	1	ug/l	<1 U <2.5 U	<1 U <2.5 U	<1 U <2.5 U	<1 U <2.5 U	<1 U <2.5 U	<1 U <2.5 U	<1 U <2.5 U	<1 U <2.5 U				
I,3,5-Trimethylbenzene (Mesitylene) I,3-Dichlorobenzene	541-73-1	3	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
I,3-Dichloropropane	142-28-9	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
I,4-Dichlorobenzene	106-46-7	3	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
I,4-Diethyl Benzene	105-05-5	NS	ug/l	2.1 J	<2 U	<2 U	<2 U	<2 U	5.3	5.3 J	<2 U	<2 U	<2 U	<2 U	<2 U
I,4-Dioxane (P-Dioxane) 2,2-Dichloropropane	123-91-1 594-20-7	0.35 5	ug/l ug/l	<250 UJ <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 UJ <2.5 U	<250 UJ <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U
2-Chlorotoluene	95-49-8	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
2-Hexanone (MBK)	591-78-6	50	ug/l	<5 UJ	<5 U	<5 U	<5 U	<5 U	<5 UJ	<5 UJ	<5 U	<5 U	<5 U	<5 U	<5 U
1-Chlorotoluene	106-43-4	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
1-Ethyltoluene	622-96-8	NS 50	ug/l	0.9 J	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U
Acetone Acrylonitrile	67-64-1 107-13-1	5	ug/l ug/l	2.9 J <5 UJ	1.8 J <5 ∪	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 UJ	<5 U <5 UJ	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U
Benzene	71-43-2	1	ug/l	0.16 J	<0.5 U	<0.5 U	<0.5 U	<0.5 U	0.17 J	0.2 J	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Bromobenzene	108-86-1	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Bromochloromethane	74-97-5	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Bromodichloromethane Bromoform	75-27-4 75-25-2	50 50	ug/l ug/l	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U				
Bromomethane	74-83-9	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Carbon Disulfide	75-15-0	60	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U				
Carbon Tetrachloride	56-23-5	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U				
Chlorobenzene	108-90-7	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Chloroethane Chloroform	75-00-3 67-66-3	5 7	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U				
Chloromethane	74-87-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Cis-1,2-Dichloroethene	156-59-2	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Cis-1,3-Dichloropropene	10061-01-5	0.4	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U				
	99-87-6 124-48-1	5 50	ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U				
Dibromochloromethane Dibromomethane	74-95-3	5	ug/l ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Dichlorodifluoromethane	75-71-8	5	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U				
Diethyl Ether (Ethyl Ether)	60-29-7	NS	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Ethylbenzene	100-41-4	5	ug/l	4.8	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Hexachlorobutadiene sopropylbenzene (Cumene)	87-68-3 98-82-8	0.5 5	ug/l ug/l	<2.5 U 3.8	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
V,P-Xylene	179601-23-1	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Vlethyl Ethyl Ketone (2-Butanone)	78-93-3	50	ug/l	<5 U	<5 UJ	<5 U	<5 U	<5 U	<5 U	<5 U	<5 UJ	<5 U	<5 U	<5 U	<5 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	NS	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U				
Vlethylene Chloride Naphthalene	75-09-2 91-20-3	5 10	ug/l ug/l	<2.5 U 2 J	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U 0.95 J	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
n-Butylbenzene	104-51-8	5	ug/l	<2.5 U	0.88 J	0.87 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
n-Propylbenzene	103-65-1	5	ug/l	9.4 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
-Xylene (1,2-Dimethylbenzene)	95-47-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Sec-Butylbenzene	135-98-8	5	ug/l	<2.5 U	3	3	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Styrene F-Butylbenzene	100-42-5 98-06-6	5 5	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U				
Fert-Butyl Methyl Ether	1634-04-4	10	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Fetrachloroethene (PCE)	127-18-4	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U				
Foluene	108-88-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Fotal 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Fotal Xylenes Fotal, 1,3-Dichloropropene (Cis And Trans)	1330-20-7 542-75-6	5 0.4	ug/l ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U				
Frans-1,2-Dichloroethene	542-75-6 156-60-5	5	ug/l	<0.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U	<0.5 U <2.5 U	<0.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U
Frans-1,3-Dichloropropene	10061-02-6	0.4	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U				
Frans-1,4-Dichloro-2-Butene	110-57-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
Trichloroethene (TCE)	79-01-6	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U				
Frichlorofluoromethane	75-69-4 108-05-4	5 NS	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
'inyl Acetate		N/S	ug/l	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U				

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002

Notes:

CAS - Chemical Abstract Service NS - No standard ug/l - microgram per liter NA - Not analyzed RL - Reporting limit

<RL - Not detected

Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operation Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water and published addenda (herein collectively referenced as "NYSDEC SGVs").

Qualifiers:

J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.

U - The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Exceedance Summary:

10 - Result exceeds NYSDEC SGVs

ATTACHMENT A

NYSDEC Correspondence

Caroline Devin

From:	Caroline Devin
Sent:	Wednesday, November 8, 2023 5:18 PM
То:	Caroline Devin
Subject:	FW: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

From: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Sent: Friday, October 13, 2023 10:10 AM
To: Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>; Obligado, Andre A (DEC) <<u>andre.obligado@dec.ny.gov</u>>
Subject: [External] RE: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

Good Morning Lexi: NYSDEC has no objections to this change in the sampling protocol as the MW-4 groundwater samples have shown non-detect for 4 consecutive quarters.

BTW How far has the on-site construction progressed?

Regards, Shaun Shaun Bollers Assistant Environmental Engineer, Division of Environmental Remediation New York State Department of Environmental Conservation 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | <u>shaun.bollers@dec.ny.gov</u>

www.dec.ny.gov

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Wednesday, October 11, 2023 3:12 PM
To: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: RE: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon Shaun,

I hope you are doing well!

We are planning to schedule the next quarterly sampling event at 27-01 Jackson Avenue for the week of October 23rd. As noted in the Q4 Off-Site Quarterly GW Monitoring Report, groundwater results from MW-4

have been non-detect for consecutive quarters and we are requesting to conduct further monitoring only in MW-1 and MW-2.

Please let us know if you have any objections to this plan.

Thank you,

Lexi Haley Senior Staff Engineer

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

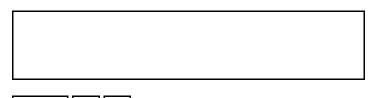
From: Lexi Haley
Sent: Friday, September 15, 2023 1:58 PM
To: 'Bollers, Shaun (DEC)' <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

Good afternoon Shaun,

Please see below for a link to the quarterly sampling report for 27-01 Jackson Avenue. Please note that, since groundwater results from MW-4 have been non-detect for consecutive quarters, we are requesting to conduct further monitoring only in MW-1 and MW-2.

https://clients.langan.com/Sharing/filesharing/ViewPosted?transactionHash=1122680310

Let us know if you have any questions.


Have a great weekend,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u>

Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

Ali Reach

To: Subject: Lexi Haley RE: 27-01 Jackson Avenue Off-site (S241209) - Off-Site Well Monitoring Program Meeting

From: Bollers, Shaun (DEC) < shaun.bollers@dec.ny.gov</pre>

Sent: Tuesday, August 8, 2023 10:30 AM

To: Lexi Haley <<u>lhaley@langan.com</u>>

Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Obligado, Andre A (DEC) <<u>andre.obligado@dec.ny.gov</u>>; Kenney, Julia M (HEALTH) <<u>julia.kenney@health.ny.gov</u>>

Subject: [External] RE: 27-01 Jackson Avenue Off-site (S241209) - Off-Site Well Monitoring Program Meeting

Lexi:

As discussed during our telecon last Friday 8/5 this change in sampling protocol for the 27-01 Jackson Avenue Off-site site S241209 is acceptable. There is no need to replace MW-3.

Thanks,

Shaun Bollers

Assistant Environmental Engineer, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | <u>shaun.bollers@dec.ny.gov</u>

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Tuesday, August 8, 2023 9:34 AM
To: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good morning Shaun,

As discussed during our call on Friday, monitoring well MW-3 (located along 43rd Avenue) was destroyed during installation of utilities beneath the sidewalk and was not able to be sampled from during the Q4 event. In

the previous three quarters of groundwater monitoring, VOC concentrations were non-detect in samples collected from MW-3. As such, we are requesting to stop monitoring at MW-3.

We will continue to monitor VOC concentrations in groundwater from monitoring wells MW-1, MW-2, and MW-4 on a quarterly basis.

Thank you,

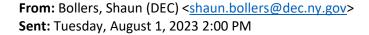
Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> <u>www.langan.com</u>

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

From: Lexi Haley
Sent: Tuesday, August 1, 2023 2:13 PM
To: 'Bollers, Shaun (DEC)' <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting


Thanks Shaun – I will send out the meeting invite for Friday.

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

To: Lexi Haley <<u>lhaley@langan.com</u>> Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>> Subject: [External] RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

Hi Lexy: Friday 8/4 would be fine.

Shaun

Shaun Bollers

Assistant Environmental Engineer, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | <u>shaun.bollers@dec.ny.gov</u>

www.dec.ny.gov | III | III

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Tuesday, August 1, 2023 11:38 AM
To: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

Hi

Good morning Shaun,

Brian and I would like to set up a call with you to discuss the off-site well monitoring program at 27-01 Jackson Avenue (BCP Site No. C241209). We are available between 12 pm and 2:30 pm on Thursday (8/3) and between 11 am and 12 pm on Friday (8/4). Do either of these time slots work for you? If not, we can schedule something for next week.

Thank you,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u>

Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor New York, NY 10001-2727 www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

Lexi Haley

From:	Salazar, Marlen C (DEC) <marlen.salazar@dec.ny.gov></marlen.salazar@dec.ny.gov>
Sent:	Thursday, September 19, 2024 2:52 PM
То:	Lexi Haley; Kimberly Semon; Brian Gochenaur
Cc:	aaron.shirian@lionsgroupnyc.com; O'Connell, Jane H (DEC); Maycock, Cris-Sandra (DEC); McLaughlin,
	Scarlett E (HEALTH); Kenney, Julia M (HEALTH)
Subject:	[External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report

Hi Langan Team,

I am reiterating here what was discussed in today's meeting re: the request to discontinue groundwater monitoring at the referenced site.

NYSDEC has denied the request to discontinue quarterly groundwater monitoring. Groundwater monitoring must continue at the stated frequency of the OSMP, i.e. quarterly. While the data that you have shown us appears satisfactory, we do not have enough data to be confident that these numbers will not rebound and spike in subsequent quarters. It is for that reason that groundwater monitoring is to continue. As mentioned in the email below denying the request, this request can be re-evaluated again at the time of submission of the 2024-2025 PRR in late May. This allows for three more quarters of groundwater sampling events to show asymptotic reduction in groundwater concentrations of VOCs.

Please reach out if you have further questions.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

From: Salazar, Marlen C (DEC)

Sent: Thursday, September 12, 2024 1:14 PM

To: Lexi Haley < Ihaley@langan.com>

Cc: aaron.shirian@lionsgroupnyc.com; Kimberly Semon <ksemon@langan.com>; Brian Gochenaur <bgochenaur@Langan.com>; O'Connell, Jane H (DEC) <jane.oconnell@dec.ny.gov>; Maycock, Cris-Sandra (DEC) <crissandra.maycock@dec.ny.gov>; McLaughlin, Scarlett E (HEALTH) <scarlett.mclaughlin@health.ny.gov>; Kenney, Julia M (HEALTH) <julia.kenney@health.ny.gov>

Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report

Hi Lexi,

The New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) have reviewed the 8th quarterly groundwater sampling report for 27-01 Jackson Avenue – Off-site (site no. S241209) prepared by Langan Engineering, Environmental Surveying, Landscape Architecture and Geology D.P.C. on behalf of 2701 Jackson Avenue LLC. The request to terminate the groundwater monitoring program at the site has been **denied** for the following reasons:

- 1. Groundwater VOC concentrations in MW-1 and MW-2 are still consistently above AWQSGVs
- 2. NYSDEC and NYSDOH would like to see at least two consecutive quarters of non-detect concentrations or concentrations below the AWQSGVs before considering termination of the groundwater monitoring program.
 - a. Additionally, NYSDEC and NYSDOH would like to continue monitoring until the 2024-2025 PRR is submitted after which Langan may again request to terminate the groundwater monitoring program with supporting data as part of the PRR conclusion for NYSDEC and NYSDOH review.

Please let me know if you have any questions.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

Conservation

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Tuesday, September 10, 2024 5:55 PM
To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>; Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon Marlen,

Please see below for a link to the 8th quarterly sampling report for 27-01 Jackson Avenue. As discussed in our previous conversation, overall result trends for each monitoring well show bulk reduction in petroleum-related VOCs, and asymptotic levels appear to have been achieved. Further decline of contaminant of concern concentrations is not anticipated; therefore, as part of the 8th quarterly groundwater monitoring report, Langan is requesting the discontinuation of groundwater monitoring at the site.

https://clients.langan.com/Sharing/filesharing/ViewPosted?transactionHash=-1672278986

Name	Туре	Size

2024-08 - Q8 Groundwater	.pdf	12.76 MB
Monitoring Letter		
Report.pdf		

Let us know if you have any questions.

Thank you,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> <u>www.langan.com</u>

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

From: Lexi Haley
Sent: Thursday, August 22, 2024 9:56 AM
To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>; Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

Understood, thank you Marlen. We anticipate having the report ready for your review by the end of next week.

Best,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA From: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Sent: Thursday, August 22, 2024 7:43 AM
To: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: [External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

You could do both honestly (like a zoom-in on one of the scales), but don't worry about it too much I suppose. The tables will have all the data regardless which I can refer to.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

Conservation

From: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Sent: Thursday, August 22, 2024 7:40 AM
To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>; Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

```
ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or
unexpected emails.
```

Hi Marlen – We typically show the wells on different scales in the report, we just wanted to show all the graphs on the same scale to demonstrate that asymptotic levels were achieved. I felt like the zoomed in scale on some and not others illustrated a skewed perspective, but we can change it back for the report. Thx

Brian Gochenaur, QEP Associate Principal

LANGAN

Direct: 212.479.5479 Mobile: 347.320.2756 <u>File Sharing Link</u> www.langan.com

From: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Sent: Thursday, August 22, 2024 7:35 AM
To: Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: [External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

Hi Lexi,

I'll wait to receive the Q4 groundwater monitoring report. For the graphs, is it possible to use a smaller scale on the yaxis for all wells except MW-2? The concentrations of MW-1, MW-3, and MW-4 are all much less than 500 ug/L so the large y-axis scale makes getting any sort of visual information from the graphs a bit difficult.

Roughly around when can I expect to receive this report too? I'll keep an eye out for it.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation 47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Wednesday, August 21, 2024 3:36 PM
To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

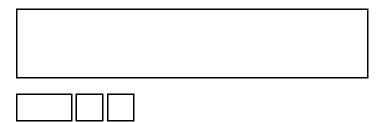
ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon Marlen,

We have completed Q8 of groundwater sampling at the 27-01 Jackson Avenue site. The overall result trends for each monitoring well are attached for your review, which show a bulk reduction in petroleum-related VOCs to asymptotic levels over the course of the monitoring program. The trends will be included in the forthcoming quarterly report for the site.

Considering VOCs were non-detect in wells MW-3 and MW-4 for consecutive quarters, DEC previously approved the discontinuation of groundwater monitoring at these locations. Groundwater monitoring has continued at MW-1 and MW-2. Based on the Q8 analytical data, total VOCs and total BTEX concentrations have decreased by 95% and 100%, respectively, in MW-1 and by over 99% in MW-2. Based on review of the overall analytical data provided over the course of the monitoring program, it appears that the remedy was effective in demonstrating a bulk reduction of these contaminants. Asymptotic levels appear to have been achieved, and further decline of contaminant of concern concentrations is not anticipated. Therefore, as part of our forthcoming quarterly groundwater monitoring report, Langan will be requesting the discontinuation of groundwater monitoring at the site.

Thank you,


Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u>

Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor New York, NY 10001-2727 www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender instance or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender instance or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying

of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

ATTACHMENT B

Daily Site Observation Report

LANGAN

SITE OBSERVATION REPORT

PROJECT No.:	170472002			
PROJECT:	27-01 Jackson Avenue	CLIENT: 2701 Jackson Avenue LLC	DATE: 01/24/2025	
LOCATION:	Long Island City, NY			
CONTRACTOR	Lions Group NYC		LANGAN REP. :	Loagan Clements
CONTRACTOR N/A	S EQUIPMENT:	PRESENT AT SITE: Loagan Clements – Langan Michael Capozzoli– Lions Group	NYC (Constructi	on Manager)

OBSERVATIONS, DISCUSSIONS, TEST RESULTS, ETC.:

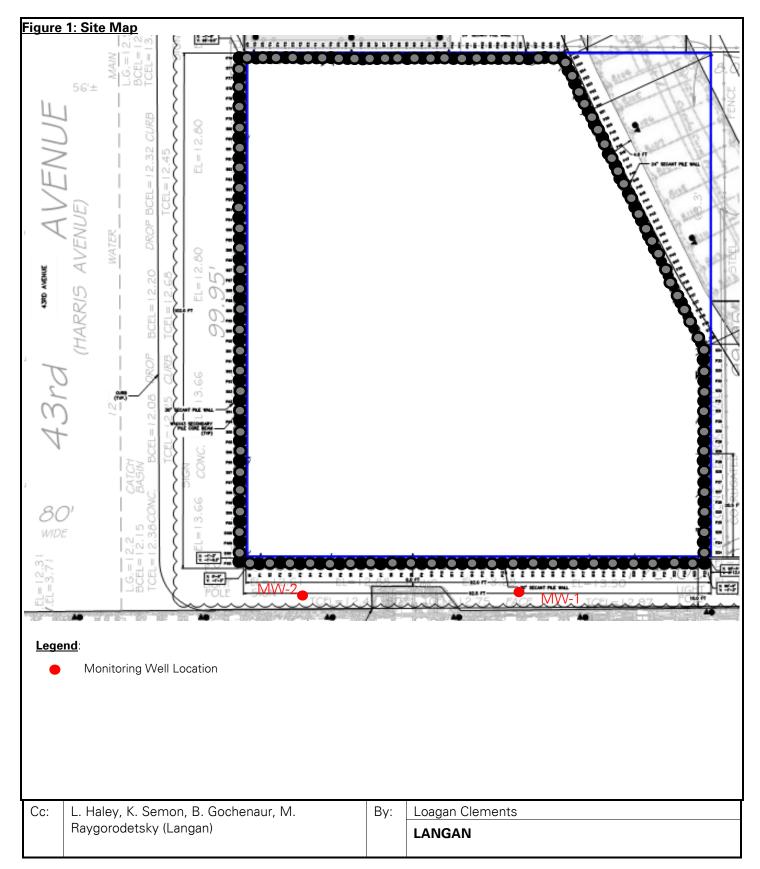
Langan was present to observe environmental protocols in accordance with the January 2021 NYSDEC approved Off-Site Site Management Plan (OSMP) for BCP site C241209 at 27-01 Jackson Avenue (Block 432, Lot 21). Observed activities were as follows:

Site Activities

 Langan used a peristaltic pump to purge and sample groundwater monitoring wells MW-1 and MW-2 along the Jackson Avenue sidewalk. Purged groundwater was screened for odors, sheen, and organic vapors using a photoionization detector (PID). Odors, sheen or PID readings above background levels were not observed in MW-2. A maximum PID reading of 1.5 parts per million (ppm) was detected beneath the well cap at MW-1; however, no odors or sheen was observed in the purged groundwater. Purged groundwater was containerized in a 55-gallon New York State Department of Transportation (NYSDOT)-approved drum for future disposal.

Sampling

 Langan collected two groundwater samples (plus quality assurance/quality control [QA/QC] samples) for laboratory analysis of NYSDEC Part 375/target compound list (TCL) volatile organic compounds (VOCs). The samples were submitted to Pace Analytical (Pace) of Westborough, Massachusetts, a New York State Department of Health (NYSDOH) Environmental Laboratory Accredited Program (ELAP)-certified laboratory under standard chain-of-custody protocols.


Anticipated Activities

• Further assessment of groundwater sample analytical results will determine future site activities, if required by the NYSDEC.

Cc:	L. Haley, K. Semon, B. Gochenaur, M. Raygorodetsky (Langan)	By:	Loagan Clements LANGAN

LANGAN

SITE OBSERVATION REPORT

LANGAN

SITE OBSERVATION REPORT

SITE PHOTOGRAPHS

Photo 1: View of Langan purging monitoring well MW-1 along the Jackson Avenue sidewalk (facing south).

Cc:	L. Haley, K. Semon, B. Gochenaur, M.	By:	Loagan Clements
	Raygorodetsky (Langan)		LANGAN

ATTACHMENT C

Well Purging and Sampling Logs

Projec	Project Information Well Information		Ec	Equipment Information			ampling Condition	s	Sampling Information		
Project Name:	27-01 Jackson Ave	Well No:	MW-1	Water Qua	ality Device Model:	Horiba U-52		Weather:	Sunny, 23°F	N/M	MW-1_012425 &
Project Number:	170472002	Well Depth:	19 ft		Pine Number:		Backg	Background PID (ppm): PID Beneath Inner Cap (ppm):			DUP01 012425 Q
Site Location:	Long Island City, NY	Well Diameter:	2-inch	Pump	Make and Model:						_
Sampling	Loagan Clements	Well Screen	9 ft		Pine Number:			mp Intake Depth:	18.75 ft	Sample Date:	1/24/2025
	Eolagan clementa	Interval:	19 ft		Tubing Diameter:			ater Before Purge:	18.50 ft	Sample Time:	13:40
STABILIZATION = 3 successive readings within limits											
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
							Drawdown < 0.33		Volume (Gal)		otabilizeu:
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	ft	<0.13 gpm)	Volume (Gui)	color, odor etc.	
					BEGIN	I PURGING					
NA	NA	NA	NA	NA	NA	NA	NA	NA	0.50	Clear to gray color, odorless; high turbidity/black particulates in purged water; poor recharge. Purged three well volumes prior to sampling.	N
	w	ater quality parame	eters were not mo	onitored due to poo	or recharge of the v	well. Groundwater	sample was collect	ted after purging a	bout three well v	olumes.	
Water quality parameters were not monitored due to poor recharge of the well. Groundwater sample was collected after purging about three well volumes. Notes: 1. Well depths and groundwater depths were measured in feet below the top of well casing. 2. Well and tubing diameters are measured in inches. 3. PID = Photoionization Detector 4. PPM = Parts per million 5. pH = Hydrogen ion concentration 0. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L) 8. DTW = Depth to water 9. mS/cm = milliSiemens per centimeter 10. NTU = Nephelometric Turbidity Unit 11. NA = Not Applicable											
	LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 368 Ninth Avenue, 8th Floor, New York										

Project Information		Well Info	rmation	Equipment Information		tion	Sampling Conditions			Sampling Information	
Project Name:	27-01 Jackson Ave	Well No:	MW-2	Water Qua	lity Device Model:	Horiba U-52		Weather:	Sunny, 23°*F		NAVA 010405
Project Number:	170472002	Well Depth:	20 ft		Pine Number:	48988	Background PID (ppm):		0.0	Sample(s):	MW-2_012425 MS/MSD
Site Location:	Long Island City, NY	Well Diameter:	1-inch	Pump	Make and Model:	Peristaltic Pump	PID Beneat	PID Beneath Inner Cap (ppm):			1013/1013D
Sampling	Loagan Clements	Well Screen	10 ft		Pine Number:	38156	Pi	ump Intake Depth:	17.00 ft	Sample Date:	1/24/2025
	Loagan Clements	Interval:	20 ft		Tubing Diameter:	3/8-inch OD		ater Before Purge:	14.01 ft	Sample Time:	11:40
STABILIZATION = 3 successive readings within limits											
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown		Volume (Gal)		Stabilizeur
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	< 0.33 ft	(<0.13 gpm)	volume (Gal)	color, odor etc.	
						BEGIN PURGING					
11:00	4.59	5.20	140	17.80	119.0	1.98	NA	-	0.10	Clear to gray color, odorless; high	Ν
11:05	5.97	5.44	120	16.20	76.6	3.33	NA	0.02	0.2	turbidity/black particulates in purged water;	N
11:10	NA	NA	NA	NA	NA	NA	NA	-	NA	poor recharge. Purged three well volumes	N
11:15	5.63	5.77	137	16.99	65.7	1.80	NA	0.03	0.5	prior to sampling.	N
	A	dditional water qua	ality parameters	were not monitore	ed due to poor rech	arge of the well. Gro	undwater sample	was collected after	purging about th	ree well volumes.	
Notes:											
	roundwater depths were n		w the top of well	casing.							
	iameters are measured in ir	nches.									
PID = Photoioniza											
PPM = Parts per r											
5. pH = Hydrogen io											
	reduction potential, measur										
	xygen, measured in milligr	ams per liter (mg/L)									
	8. DTW = Depth to water										
	D. mS/cm = milli-Siemens per centimeter										
	10. NTU = Nephelometric Turbidity Unit										
 NA = Not Applica 	11. NA = Not Applicable										
						Commentant London	A				
				LANGAN Engineer		, Surveying, Landsca Avenue, 8th Floor, N		ia Geology, D.P.C.			
					JUO INININ	Avenue, our FIUOF, N	CVV IUIK				

ATTACHMENT D

Laboratory Analytical Report

ANALYTICAL REPORT

Lab Number:	L2504229
Client:	Langan Engineering & Environmental 21 Penn Plaza 360 W. 31st Street, 8th Floor New York, NY 10001-2727
ATTN:	Kimberly Semon
Phone:	(212) 479-5486
Project Name:	27-01 JACKSON AVE
Project Number:	170472002
Report Date:	01/29/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

ace

Serial_No:01292517:51

Project Name:27-01 JACKSON AVEProject Number:170472002

 Lab Number:
 L2504229

 Report Date:
 01/29/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2504229-01	MW-1_012425	WATER	LONG ISLAND CITY	01/24/25 13:40	01/24/25
L2504229-02	MW-2_012425	WATER	LONG ISLAND CITY	01/24/25 11:40	01/24/25
L2504229-03	DUP01_012425	WATER	LONG ISLAND CITY	01/24/25 00:00	01/24/25
L2504229-04	FB01_012425	WATER	LONG ISLAND CITY	01/24/25 13:55	01/24/25
L2504229-05	TB01_012425	WATER	LONG ISLAND CITY	01/24/25 00:00	01/24/25

Project Name: 27-01 JACKSON AVE Project Number: 170472002
 Lab Number:
 L2504229

 Report Date:
 01/29/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:27-01 JACKSON AVEProject Number:170472002

 Lab Number:
 L2504229

 Report Date:
 01/29/25

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 01/29/25

, ace

ORGANICS

VOLATILES

			Serial_N	p:01292517:51
Project Name:	27-01 JACKSON AVE		Lab Number:	L2504229
Project Number:	170472002		Report Date:	01/29/25
		SAMPLE RESULTS		
Lab ID:	L2504229-01		Date Collected:	01/24/25 13:40
Client ID:	MW-1_012425		Date Received:	01/24/25
Sample Location:	LONG ISLAND CITY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	01/28/25 17:23			
Analyst:	MJV			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		

		Serial_No:01292517:					01292517:51	
Project Name:	ne: 27-01 JACKSON AVE				Lab Nu	mber:	L2504229	
Project Number:	170472002				Report	Date:	01/29/25	
•		SAMP		6	•		0.120120	
Lab ID: Client ID: Sample Location:	L2504229-01 MW-1_012425 LONG ISLAND CITY				Date Collected: Date Received: Field Prep:		01/24/25 13:40 01/24/25 Not Specified	
Sample Depth:			.					
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
volatile Organics b	y GC/MS - Westborough I	_ao						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		0.21	J	ug/l	2.5	0.17	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Tot	tal	ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethan	e	ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroetha	ine	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropr	opane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

Pace

		Serial_No:01292517:51					
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2504229
Project Number:	170472002				Report	Date:	01/29/25
		SAMP	LE RESULTS	6			
Lab ID: Client ID: Sample Location:	L2504229-01 MW-1_012425 LONG ISLAND CITY				Date Col Date Re Field Pre	ceived:	01/24/25 13:40 01/24/25 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough I	_ab					
n-Propylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,4-Dioxane		ND		ug/l	250	61.	1
p-Diethylbenzene		ND		ug/l	2.0	0.70	1
p-Ethyltoluene		ND		ug/l	2.0	0.70	1

ug/l

ug/l

% Recovery

116

97

96

104

ND

ND

ND

4-Bromofluorobenzene Dibromofluoromethane

1,2-Dichloroethane-d4

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

Surrogate

Toluene-d8

Ethyl ether

Pace

0.54

0.70

0.70

Acceptance Criteria

> 70-130 70-130

> 70-130

70-130

1

1

1

2.0

2.5

2.5

Qualifier

			Serial_N	o:01292517:51
Project Name:	27-01 JACKSON AVE		Lab Number:	L2504229
Project Number:	170472002		Report Date:	01/29/25
		SAMPLE RESULTS		
Lab ID:	L2504229-02		Date Collected:	01/24/25 11:40
Client ID:	MW-2_012425		Date Received:	01/24/25
Sample Location:	LONG ISLAND CITY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	01/28/25 17:49			
Analyst:	MJV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	4.9		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		

					Serial_No:01292517:51			
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2504229	
Project Number:	170472002				Report	Date:	01/29/25	
		SAMP		6			01/20/20	
Lab ID:	L2504229-02				Date Coll	ected.	01/24/25 11:40	
Client ID:	MW-2_012425				Date Rec		01/24/25	
Sample Location:	LONG ISLAND CITY				Field Pre		Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough I	Lab						
Tricklensethere		ND			0.50	0.40	4	
Trichloroethene		ND ND		ug/l	0.50	0.18 0.70	1	
1,2-Dichlorobenzene		ND		ug/l		0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5 2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether p/m-Xylene		12		ug/l	2.5	0.17	1	
o-Xylene		1.3	J	ug/l ug/l	2.5	0.70	1	
Xylenes, Total		13	J	ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND	0	ug/l	2.5	0.70	1	
1,2-Dichloroethene, Tot	al	ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethan	e	ND		ug/l	5.0	1.0	1	
Acetone		19		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroetha	ne	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		0.71	J	ug/l	2.5	0.70	1	
sec-Butylbenzene		1.1	J	ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropro	opane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		7.1		ug/l	2.5	0.70	1	
p-Isopropyltoluene		0.71	J	ug/l	2.5	0.70	1	
Naphthalene		0.99	J	ug/l	2.5	0.70	1	

		Serial_No:01292517:51					
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2504229
Project Number:	170472002				Report	Date:	01/29/25
		SAMPI	E RESULTS	6			
Lab ID:	L2504229-02				Date Col	llected:	01/24/25 11:40
Client ID:	MW-2_012425				Date Re	ceived:	01/24/25
Sample Location:	LONG ISLAND CITY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	Lab					
n-Propylbenzene		13		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene)	4.6		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	9	37		ug/l	2.5	0.70	1
1,4-Dioxane		ND		ug/l	250	61.	1
p-Diethylbenzene		1.5	J	ug/l	2.0	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	116		70-130
Toluene-d8	95		70-130
4-Bromofluorobenzene	98		70-130
Dibromofluoromethane	102		70-130

ug/l

ug/l

ug/l

18

5.7

ND

ND

Pace

0.70

0.54

0.70

0.70

1

1

1

1

2.0

2.0

2.5

2.5

p-Ethyltoluene

Ethyl ether

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

			Serial_N	o:01292517:51
Project Name:	27-01 JACKSON AVE		Lab Number:	L2504229
Project Number:	170472002		Report Date:	01/29/25
		SAMPLE RESULTS		
Lab ID:	L2504229-03		Date Collected:	01/24/25 00:00
Client ID:	DUP01_012425		Date Received:	01/24/25
Sample Location:	LONG ISLAND CITY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	01/28/25 18:15			
Analyst:	MJV			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					:	Serial_No	01292517:51
Project Name:	27-01 JACKSON AVE	7-01 JACKSON AVE		Lab Nu	mber:	L2504229	
Project Number:	170472002				Report	Date:	01/29/25
-		SAMP	LE RESULTS	6			
Lab ID: Client ID: Sample Location:	L2504229-03 DUP01_012425 LONG ISLAND CITY				Date Collected: Date Received: Field Prep:		01/24/25 00:00 01/24/25 Not Specified
Sample Depth:			•				
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics t	by GC/MS - Westborough I	Lab					
Trichloroethene		ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, To	tal	ND		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethan	ne	ND		ug/l	5.0	1.0	1
Acetone		1.7	J	ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroetha	ane	ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
p-Chlorotoluene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropi	ropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1
Naphthalene		ND		ug/l	2.5	0.70	1
				-			

Pace

					ç	Serial_No	:01292517:51
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2504229
Project Number:	170472002				Report	Date:	01/29/25
		SAMP	LE RESULTS	5			
Lab ID:	L2504229-03				Date Col	lected:	01/24/25 00:00
Client ID:	DUP01_012425				Date Red	ceived:	01/24/25
Sample Location:	LONG ISLAND CITY				Field Pre	p:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	Lab					
n-Propylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene)	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene)	ND		ug/l	2.5	0.70	1
1,4-Dioxane		ND		ug/l	250	61.	1
p-Diethylbenzene		ND		ug/l	2.0	0.70	1
p-Ethyltoluene		ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylben	zene	ND		ug/l	2.0	0.54	1
Ethyl ether		ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	105	70-130	

2.5

0.70

ND

Pace

1

trans-1,4-Dichloro-2-butene

			Serial_N	0:01292517:51
Project Name:	27-01 JACKSON AVE		Lab Number:	L2504229
Project Number:	170472002		Report Date:	01/29/25
		SAMPLE RESULTS		
Lab ID:	L2504229-04		Date Collected:	01/24/25 13:55
Client ID:	FB01_012425		Date Received:	01/24/25
Sample Location:	LONG ISLAND CITY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	01/28/25 11:45			
Analyst:	MJV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					Serial_No:01292517:51				
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2504229		
Project Number:	170472002				Report	Date:	01/29/25		
•		SAMP		5	•		0.120/20		
Lab ID: Client ID: Sample Location:	L2504229-04 FB01_012425 LONG ISLAND CITY				Date Col Date Re Field Pre	ceived:	01/24/25 13:55 01/24/25 Not Specified		
Sample Depth:									
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	y GC/MS - Westborough I	Lab							
Trichloroethene		ND		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1		
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1		
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1		
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1		
p/m-Xylene		ND		ug/l	2.5	0.70	1		
o-Xylene		ND		ug/l	2.5	0.70	1		
Xylenes, Total		ND		ug/l	2.5	0.70	1		
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1		
1,2-Dichloroethene, Tot	al	ND		ug/l	2.5	0.70	1		
Dibromomethane		ND		ug/l	5.0	1.0	1		
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1		
Acrylonitrile		ND		ug/l	5.0	1.5	1		
Styrene		ND		ug/l	2.5	0.70	1		
Dichlorodifluoromethan	e	ND		ug/l	5.0	1.0	1		
Acetone		ND		ug/l	5.0	1.5	1		
Carbon disulfide		ND		ug/l	5.0	1.0	1		
2-Butanone		ND		ug/l	5.0	1.9	1		
Vinyl acetate		ND		ug/l	5.0	1.0	1		
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1		
2-Hexanone		ND		ug/l	5.0	1.0	1		
Bromochloromethane		ND		ug/l	2.5	0.70	1		
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1		
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1		
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1		
1,1,1,2-Tetrachloroetha	ne	ND		ug/l	2.5	0.70	1		
Bromobenzene		ND		ug/l	2.5	0.70	1		
n-Butylbenzene		ND		ug/l	2.5	0.70	1		
sec-Butylbenzene		ND		ug/l	2.5	0.70	1		
tert-Butylbenzene		ND		ug/l	2.5	0.70	1		
o-Chlorotoluene		ND		ug/l	2.5	0.70	1		
p-Chlorotoluene		ND		ug/l	2.5	0.70	1		
1,2-Dibromo-3-chloropr	opane	ND		ug/l	2.5	0.70	1		
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1		
Isopropylbenzene		ND		ug/l	2.5	0.70	1		
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1		
Naphthalene		ND		ug/l	2.5	0.70	1		

Pace

					:	Serial_No	01292517:51	
Project Name:	27-01 JACKSON AVE				Lab Nu	imber:	L2504229	
Project Number:	170472002				Report	Date:	01/29/25	
		SAMPI		6				
Lab ID:	L2504229-04				Date Co	llected:	01/24/25 13:55	
Client ID:	FB01_012425				Date Re	ceived:	01/24/25	
Sample Location:	LONG ISLAND CITY				Field Pre	ep:	Not Specified	
Sample Depth:								
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Parameter	y GC/MS - Westborough I		Qualifier	Units	RL	MDL	Dilution Factor	
Parameter	y GC/MS - Westborough I		Qualifier	Units ug/l	RL 2.5	MDL 0.70	Dilution Factor	_
Parameter Volatile Organics b		_ab	Qualifier					
Parameter Volatile Organics b n-Propylbenzene		_ab ND	Qualifier	ug/l	2.5	0.70	1	
Parameter Volatile Organics b n-Propylbenzene 1,2,3-Trichlorobenzene		_ab ND ND	Qualifier	ug/l ug/l	2.5 2.5	0.70 0.70	1	

ND

ND

ND

ND

ND

s-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	1
Surrogate		% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4		120		70-130	
Toluene-d8		94		70-130	
4-Bromofluorobenzene		96		70-130	
Dibromofluoromethane		105		70-130	

250

2.0

2.0

2.0

2.5

61.

0.70

0.70

0.54

0.70

1

1

1

1

1

ug/l

ug/l

ug/l

ug/l

ug/l

Pace

1,4-Dioxane

p-Diethylbenzene

1,2,4,5-Tetramethylbenzene

p-Ethyltoluene

Ethyl ether

			Serial_N	p:01292517:51
Project Name:	27-01 JACKSON AVE		Lab Number:	L2504229
Project Number:	170472002		Report Date:	01/29/25
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	L2504229-05 TB01_012425 LONG ISLAND CITY Water 1,8260D 01/28/25 12:11 MJV		Date Collected: Date Received: Field Prep:	01/24/25 00:00 01/24/25 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					S	Serial No	:01292517:51	
Project Name:	27-01 JACKSON AVE				Lab Nu		L2504229	
Project Number:	170472002				Report	Date:	01/29/25	
		SAMPI		5	•		01120/20	
Lab ID:	L2504229-05				Date Coll	lected:	01/24/25 00:00	
Client ID:	TB01_012425				Date Rec	eived:	01/24/25	
Sample Location:	LONG ISLAND CITY				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Tot	al	ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethan	e	ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroetha	ne	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropr	opane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

Pace

					Ş	Serial_No	:01292517:51
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2504229
Project Number:	170472002				Report	Date:	01/29/25
		SAMPI	LE RESULTS	6			
Lab ID:	L2504229-05				Date Col	lected:	01/24/25 00:00
Client ID:	TB01_012425				Date Red	ceived:	01/24/25
Sample Location:	LONG ISLAND CITY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough I	Lab					
n-Propylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene 1,4-Dioxane		ND ND		ug/l ug/l	2.5 250	0.70 61.	1
							•

ug/l

ug/l

% Recovery

118

97

95

107

ND

ND

ND

4-Bromofluorobenzene Dibromofluoromethane

1,2-Dichloroethane-d4

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

Surrogate

Toluene-d8

Ethyl ether

Pace

0.54

0.70

0.70

Acceptance Criteria

> 70-130 70-130

> 70-130

70-130

1

1

1

2.0

2.5

2.5

Qualifier

Project Number: 170472002

 Lab Number:
 L2504229

 Report Date:
 01/29/25

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:01/28/25 09:34Analyst:PID

arameter	Result Q	ualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab fo	r sample(s): 01-05	Batch:	WG2024777-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Pace

Project Number: 170472002

472002

 Lab Number:
 L2504229

 Report Date:
 01/29/25

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:01/28/25 09:34Analyst:PID

arameter	Result	Qualifier Units	s RL	MDL
platile Organics by GC/MS -	Westborough Lab	for sample(s):	01-05 Batch:	WG2024777-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Pace

Project Number: 170472002

AVE

 Lab Number:
 L2504229

 Report Date:
 01/29/25

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:01/28/25 09:34Analyst:PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	/estborough Lab	for sample(s): 01-0	5 Batch:	WG2024777-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptanc		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	114		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	104		70-130	

Pace

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2504229

Report Date: 01/29/25

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-05 Batch: WG2024777-3 WG2024777-4 Methylene chloride 98 100 70-130 2 20 1.1-Dichloroethane 100 100 70-130 0 20 Chloroform 110 110 70-130 0 20 Chloroform 110 100 63-132 10 20 1.2-Dichloropopane 98 99 70-130 1 20 1.2-Dichloroethane 96 97 63-130 1 20 1.1.2-Trichloroethane 96 97 70-130 2 20 Chloroethane 96 94 70-130 2 20 Chloroethane 96 94 70-130 2 20 Chloroethane 110 110 70-130 2 20 Chloroethane 110 110 67-130 0 20 1.1-Dichloroethane 1100 100 67-130 <td< th=""><th>Parameter</th><th>LCS %Recovery</th><th>Qual</th><th>LCSD %Recovery</th><th>%Recovery Qual Limits</th><th>RPD</th><th>RPD Qual Limits</th><th></th></td<>	Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
1,1-Dichloroethane 100 100 70-130 0 20 Chloroform 110 110 70-130 0 20 Carbon tetrachloride 110 100 63-132 10 20 1,2-Dichloropropane 98 99 70-130 1 20 1,1/2-Trichloroethane 96 97 63-130 1 20 1,1/2-Trichloroethane 98 99 70-130 3 20 Tetrachloroethane 96 97 63-130 1 20 Chlorobenzene 98 94 70-130 3 20 Trichloroethane 150 150 62-150 0 20 1,1-1/1-richloroethane 110 110 70-130 0 20 1,1,1-Trichloroethane 100 100 67-130 0 20 1,1,1-Trichloroethane 100 100 67-130 0 20 1,1,1-Trichloroethane 100 100 67-130 0 <th>Volatile Organics by GC/MS - Westboroug</th> <th>h Lab Associat</th> <th>ed sample(s):</th> <th>: 01-05 Batc</th> <th>h: WG2024777-3 WG20</th> <th>24777-4</th> <th></th> <th></th>	Volatile Organics by GC/MS - Westboroug	h Lab Associat	ed sample(s):	: 01-05 Batc	h: WG2024777-3 WG20	24777-4		
Chloroform11011070-130020Carbon tetrachloride11010063-13210201,2-Dichloropropane989970-130120Dibromochloromethane969763-1301201,1,2-Trichloroethane939670-130320Tetrachloroethane969470-130220Chloromethane969470-130220Tetrachloroethane969470-130020Trichloroethane919175-130020Trichloroethane11011070-1300201,1-2.Trichloroethane11010067-1300201,1-1.Trichloroethane10010067-1300201,1.1.Trichloroethane10010067-130020Irans-1,3-Dichloropropene828370-130120is-1,3-Dichloropropene898970-130220Irans-1,3-Dichloropropene878867-130120Irans-1,3-Dichloropropene878867-130120Irans-1,3-Dichloropropene878867-130120Irans-1,3-Dichloropropene878867-130120Irans-1,3-Dichloropropene878867-130120Irans-1,3-Dichloropropene878867-130120 <t< td=""><td>Methylene chloride</td><td>98</td><td></td><td>100</td><td>70-130</td><td>2</td><td>20</td><td></td></t<>	Methylene chloride	98		100	70-130	2	20	
Carbon tetrachloride11010063-13210201,2-Dichloropropane989970-130120Dibromochloromethane969763-1301201,1,2-Trichloroethane939670-130320Tetrachloroethane969470-130220Chlorobenzene919175-130020Trichloroethane15062-150020Trichloroethane11011070-1300201,1.2-Trichloroethane11011067-1300201,1.2-Trichloroethane11010067-1300201,1.2-Trichloroethane10010067-1300201,1.1-Trichloroethane10010067-130020trans-1,3-Dichloropropene828370-130120cis-1,3-Dichloropropene898970-1300201,1.2-Tetrachloroethane919770-1302201,1.2-Tetrachloroethane898970-1301201,1.2-Tetrachloroethane898970-1300201,1.2-Tetrachloroethane899170-1302201,1.2-Tetrachloroethane899170-1300201,1.2-Tetrachloroethane899170-1300201,1.2-Tetrachloroethane899170-130020 <t< td=""><td>1,1-Dichloroethane</td><td>100</td><td></td><td>100</td><td>70-130</td><td>0</td><td>20</td><td></td></t<>	1,1-Dichloroethane	100		100	70-130	0	20	
1.2-Dichloropropane 98 99 70-130 1 20 Dibromochloromethane 96 97 63-130 1 20 1,1,2-Trichloroethane 93 96 70-130 3 20 Tetrachloroethane 96 94 70-130 2 20 Chlorobenzene 91 91 75-130 0 20 Trichloroftuoromethane 150 150 62-150 0 20 1,2-Dichloroethane 110 110 70-130 0 20 1,1-Trichloroethane 110 110 70-130 0 20 1,1,1-Trichloroethane 110 110 67-130 0 20 1,1,1-Trichloroethane 100 100 67-130 0 20 trans-1,3-Dichloropropene 82 83 70-130 1 20 trans-1,3-Dichloropropene 89 97 70-130 2 20 1,1-Dichloropropene 99 97 70-130 2 20 1,1,2,2-Tetrachloroethane 87 88 67-1	Chloroform	110		110	70-130	0	20	
Dibromochloromethane969763.1301201,1,2-Trichloroethane939670.130320Tetrachloroethene969470.130220Chlorobenzene919175.130020Trichloroftuoromethane15015062.1500201,2-Dichloroethane11011070.1300201,1.1-Trichloroethane11010067.1300201,1.1-Trichloroethane10010067.130020trans-1,3-Dichloropropene828370.130120trans-1,3-Dichloropropene899770.1302201,1.2.2-Tetrachloroethane9054.1364201,1.2.2-Tetrachloroethane899170.1302201,1.2.2-Tetrachloroethane899170.1302201,1.2.2-Tetrachloroethane899170.1301201,1.2.2-Tetrachloroethane899170.130220Toluene899170.13002020Ethylbenzene919070.13012020Chloromethane12012064.13002020	Carbon tetrachloride	110		100	63-132	10	20	
1,1,2-Trichloroethane 93 96 70-130 3 20 Tetrachloroethene 96 94 70-130 2 20 Chlorobenzene 91 91 75-130 00 20 Trichloroftuoromethane 150 150 62-150 00 20 1,2-Dichloroethane 110 110 70-130 0 20 1,1,1-Trichloroethane 110 110 67-130 0 20 Bromodichloropethane 100 100 67-130 0 20 trans-1,3-Dichloropropene 82 83 70-130 1 20 trans-1,3-Dichloropropene 89 97 70-130 2 20 1,1-Dichloropropene 89 97 70-130 2 20 1,1,2.2-Tetrachloroethane 87 88 67-130 1 20 1,1,2.2-Tetrachloroethane 89 91 70-130 2 20 I,1,2.2-Tetrachloroethane 89 91 70-130 1 20 Benzene 100 70-130 1	1,2-Dichloropropane	98		99	70-130	1	20	
Tetrachloroethene969470-130220Chlorobenzene919175-130020Trichlorofluoromethane15015062-1500201,2-Dichloroethane11011070-1300201,1,1-Trichloroethane11011067-130020Bromodichloromethane10010067-130020trans-1,3-Dichloropropene828370-130120cis-1,3-Dichloropropene899770-130220J,1-Dichloroptopene999770-130220Bromoform949054-1364201,1,2,2-Tetrachloroethane878867-130120Benzene10010070-130220Ethylbenzene919070-130120Chloromethane12012064-130020	Dibromochloromethane	96		97	63-130	1	20	
Chlorobenzene 91 91 75-130 0 20 Trichlorofluoromethane 150 150 62-150 0 20 1,2-Dichloroethane 110 110 70-130 0 20 1,1,1-Trichloroethane 110 110 67-130 0 20 1,1,1-Trichloroethane 110 100 67-130 0 20 Bromodichloromethane 100 100 67-130 0 20 trans-1,3-Dichloropropene 82 83 70-130 1 20 cis-1,3-Dichloropropene 89 97 70-130 2 20 1,1-Dichloropropene 99 97 70-130 2 20 Bromoform 94 90 54-136 4 20 1,1,2,2-Tetrachloroethane 87 88 67-130 1 20 Benzene 100 100 70-130 0 20 20 Toluene 89 91 70-130 <td< td=""><td>1,1,2-Trichloroethane</td><td>93</td><td></td><td>96</td><td>70-130</td><td>3</td><td>20</td><td></td></td<>	1,1,2-Trichloroethane	93		96	70-130	3	20	
Trichlorofluoromethane15015062-1500201,2-Dichloroethane11011070-1300201,1,1-Trichloroethane11011067-130020Bromodichloromethane10010067-130020trans-1,3-Dichloropropene828370-130120cis-1,3-Dichloropropene898970-1300201,1-Dichloropropene999770-130220Bromoform949054-1364201,1,2,2-Tetrachloroethane878867-130120Benzene10010070-130220Toluene899170-130120Ethylbenzene919070-130120Chloromethane12012064-130020	Tetrachloroethene	96		94	70-130	2	20	
1,2-Dichloroethane11011070-1300201,1,1-Trichloroethane11011067-130020Bromodichloromethane10010067-130020trans-1,3-Dichloropropene828370-130120cis-1,3-Dichloropropene898970-1300201,1-Dichloropropene899770-1302201,1-Dichloropropene999770-1302201,1,2,2-Tetrachloroethane878867-1301201,1,2,2-Tetrachloroethane899170-130220Denzene10010070-130220Ethylbenzene919070-130120Chloromethane12012064-130020	Chlorobenzene	91		91	75-130	0	20	
1,1,1-Trichloroethane11011067-130020Bromodichloromethane10010067-130020trans-1,3-Dichloropropene828370-130120cis-1,3-Dichloropropene898970-1300201,1-Dichloropropene999770-1302201,1-Dichloropropene999770-130220Bromoform949054-1364201,1,2,2-Tetrachloroethane878867-130120Benzene10010070-13002020Toluene899170-130120Ethylbenzene919070-130120Chloromethane12012064-130020	Trichlorofluoromethane	150		150	62-150	0	20	
Bromodichloromethane 100 100 67-130 0 20 trans-1,3-Dichloropropene 82 83 70-130 1 20 cis-1,3-Dichloropropene 89 89 70-130 0 20 1,1-Dichloropropene 89 97 70-130 2 20 1,1-Dichloropropene 99 97 70-130 2 20 Bromoform 94 90 54-136 4 20 1,1,2,2-Tetrachloroethane 87 88 67-130 1 20 Benzene 100 100 70-130 0 20 20 Toluene 89 91 70-130 1 20 20 Ethylbenzene 91 90 70-130 2 20 20 Chloromethane 120 120 64-130 0 20 20	1,2-Dichloroethane	110		110	70-130	0	20	
trans-1,3-Dichloropropene828370-130120cis-1,3-Dichloropropene898970-1300201,1-Dichloropropene999770-130220Bromoform949054-1364201,1,2,2-Tetrachloroethane878867-130120Benzene10010070-13002020Toluene899170-130220Ethylbenzene919070-130120Chloromethane12012064-130020	1,1,1-Trichloroethane	110		110	67-130	0	20	
cis-1,3-Dichloropropene898970-1300201,1-Dichloropropene999770-130220Bromoform949054-1364201,1,2,2-Tetrachloroethane878867-130120Benzene10010070-130020Toluene899170-130220Ethylbenzene919070-130120Chloromethane12012064-130020	Bromodichloromethane	100		100	67-130	0	20	
1,1-Dichloropropene999770-130220Bromoform949054-1364201,1,2,2-Tetrachloroethane878867-130120Benzene10010070-13002020Toluene899170-130220Ethylbenzene919070-130120Chloromethane12012064-130020	trans-1,3-Dichloropropene	82		83	70-130	1	20	
Bromoform 94 90 54-136 4 20 1,1,2,2-Tetrachloroethane 87 88 67-130 1 20 Benzene 100 100 70-130 0 20 Toluene 89 91 70-130 2 20 Ethylbenzene 91 90 70-130 1 20 Chloromethane 120 120 64-130 0 20	cis-1,3-Dichloropropene	89		89	70-130	0	20	
1,1,2,2-Tetrachloroethane 87 88 67-130 1 20 Benzene 100 100 70-130 0 20 Toluene 89 91 70-130 2 20 Ethylbenzene 91 90 70-130 1 20 Chloromethane 120 120 64-130 0 20	1,1-Dichloropropene	99		97	70-130	2	20	
Benzene 100 100 70-130 0 20 Toluene 89 91 70-130 2 20 Ethylbenzene 91 90 70-130 1 20 Chloromethane 120 120 64-130 0 20	Bromoform	94		90	54-136	4	20	
Toluene 89 91 70-130 2 20 Ethylbenzene 91 90 70-130 1 20 Chloromethane 120 120 64-130 0 20	1,1,2,2-Tetrachloroethane	87		88	67-130	1	20	
Ethylbenzene 91 90 70-130 1 20 Chloromethane 120 120 64-130 0 20	Benzene	100		100	70-130	0	20	
Chloromethane 120 120 64-130 0 20	Toluene	89		91	70-130	2	20	
	Ethylbenzene	91		90	70-130	1	20	
Bromomethane 85 84 39-139 1 20	Chloromethane	120		120	64-130	0	20	
	Bromomethane	85		84	39-139	1	20	

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2504229

Report Date: 01/29/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD mits
Volatile Organics by GC/MS - Westboroug	gh Lab Associa	ited sample(s)	: 01-05 Batc	h: WG20	24777-3 WG202	4777-4	
Vinyl chloride	130		110		55-140	17	20
Chloroethane	190	Q	190	Q	55-138	0	20
1,1-Dichloroethene	96		85		61-145	12	 20
trans-1,2-Dichloroethene	98		98		70-130	0	20
Trichloroethene	100		100		70-130	0	20
1,2-Dichlorobenzene	89		89		70-130	0	20
1,3-Dichlorobenzene	90		87		70-130	3	20
1,4-Dichlorobenzene	88		87		70-130	1	20
Methyl tert butyl ether	110		110		63-130	0	20
p/m-Xylene	90		90		70-130	0	20
o-Xylene	90		90		70-130	0	20
cis-1,2-Dichloroethene	100		100		70-130	0	20
Dibromomethane	100		100		70-130	0	20
1,2,3-Trichloropropane	89		91		64-130	2	20
Acrylonitrile	100		99		70-130	1	20
Styrene	85		85		70-130	0	20
Dichlorodifluoromethane	110		100		36-147	10	20
Acetone	88		87		58-148	1	20
Carbon disulfide	89		89		51-130	0	20
2-Butanone	83		84		63-138	1	20
Vinyl acetate	110		110		70-130	0	20
4-Methyl-2-pentanone	79		86		59-130	8	20
2-Hexanone	80		82		57-130	2	20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2504229

Report Date: 01/29/25

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westbo	rough Lab Associate	ed sample(s):	01-05 Bate	ch: WG2024777-3 WG20	24777-4	
Bromochloromethane	95		96	70-130	1	20
2,2-Dichloropropane	110		100	63-133	10	20
1,2-Dibromoethane	91		91	70-130	0	20
1,3-Dichloropropane	95		97	70-130	2	20
1,1,1,2-Tetrachloroethane	97		97	64-130	0	20
Bromobenzene	90		90	70-130	0	20
n-Butylbenzene	84		82	53-136	2	20
sec-Butylbenzene	83		81	70-130	2	20
tert-Butylbenzene	86		85	70-130	1	20
o-Chlorotoluene	90		88	70-130	2	20
p-Chlorotoluene	88		88	70-130	0	20
1,2-Dibromo-3-chloropropane	87		90	41-144	3	20
Hexachlorobutadiene	92		90	63-130	2	20
Isopropylbenzene	84		83	70-130	1	20
p-Isopropyltoluene	85		83	70-130	2	20
Naphthalene	75		76	70-130	1	20
n-Propylbenzene	84		84	69-130	0	20
1,2,3-Trichlorobenzene	85		85	70-130	0	20
1,2,4-Trichlorobenzene	85		84	70-130	1	20
1,3,5-Trimethylbenzene	84		83	64-130	1	20
1,2,4-Trimethylbenzene	84		83	70-130	1	20
1,4-Dioxane	104		114	56-162	9	20
p-Diethylbenzene	85		83	70-130	2	20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

 Lab Number:
 L2504229

 Report Date:
 01/29/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westboroug	h Lab Associa	ted sample(s)	: 01-05 Batch	n: WG202	4777-3 WG202	4777-4			
p-Ethyltoluene	85		85		70-130	0		20	
1,2,4,5-Tetramethylbenzene	81		81		70-130	0		20	
Ethyl ether	170	Q	180	Q	59-134	6		20	
trans-1,4-Dichloro-2-butene	45	Q	50	Q	70-130	11		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery G	Acceptance Qual Criteria
1,2-Dichloroethane-d4	111	110	70-130
Toluene-d8	95	97	70-130
4-Bromofluorobenzene	97	99	70-130
Dibromofluoromethane	104	103	70-130

Matrix Spike Analysis

Batch Quality Control

Project Name: 27-01 JACKSON AVE

Project Number: 170472002 Lab Number: L2504229 01/29/25

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS Client ID: MW-2_012425	- Westborou	ugh Lab As	sociated sam	ple(s): 01-05	QC Bate	ch ID: WG	G2024777-6 V	VG2024	1777-7 QC	Samp	le: L250)4229-02
Methylene chloride	ND	10	11	110		11	110		70-130	0		20
1,1-Dichloroethane	ND	10	11	110		11	110		70-130	0		20
Chloroform	ND	10	11	110		12	120		70-130	9		20
Carbon tetrachloride	ND	10	10	100		11	110		63-132	10		20
1,2-Dichloropropane	ND	10	10	100		10	100		70-130	0		20
Dibromochloromethane	ND	10	9.2	92		9.4	94		63-130	2		20
1,1,2-Trichloroethane	ND	10	11	110		11	110		70-130	0		20
Tetrachloroethene	ND	10	8.5	85		8.1	81		70-130	5		20
Chlorobenzene	ND	10	8.0	80		7.6	76		75-130	5		20
Trichlorofluoromethane	ND	10	16	160	Q	17	170	Q	62-150	6		20
1,2-Dichloroethane	ND	10	12	120		12	120		70-130	0		20
1,1,1-Trichloroethane	ND	10	12	120		12	120		67-130	0		20
Bromodichloromethane	ND	10	11	110		11	110		67-130	0		20
trans-1,3-Dichloropropene	ND	10	7.4	74		7.6	76		70-130	3		20
cis-1,3-Dichloropropene	ND	10	8.2	82		8.2	82		70-130	0		20
1,1-Dichloropropene	ND	10	9.9	99		10	100		70-130	1		20
Bromoform	ND	10	8.2	82		8.3	83		54-136	1		20
1,1,2,2-Tetrachloroethane	ND	10	8.8	88		8.7	87		67-130	1		20
Benzene	ND	10	11	110		10	100		70-130	10		20
Toluene	ND	10	8.7	87		8.6	86		70-130	1		20
Ethylbenzene	4.9	10	13	81		14	91		70-130	7		20
Chloromethane	ND	10	13	130		14	140	Q	64-130	7		20
Bromomethane	ND	10	7.8	78		9.9	99		39-139	24	Q	20

Matrix Spike Analysis Batch Quality Control

Project Name: 27-01 JACKSON AVE

Project Number: 170472002 Lab Number: L2504229 01/29/25

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS Client ID: MW-2_012425	- Westborou	ugh Lab 🛛 A	Associated san	nple(s): 01-05	QC Ba	tch ID: WG	62024777-6 V	VG202	4777-7 Q(C Samp	le: L2504229-02
Vinyl chloride	ND	10	9.4	94		11	110		55-140	16	20
Chloroethane	ND	10	20	200	Q	22	220	Q	55-138	10	20
1,1-Dichloroethene	ND	10	9.1	91		9.6	96		61-145	5	20
trans-1,2-Dichloroethene	ND	10	10	100		10	100		70-130	0	20
Trichloroethene	ND	10	10	100		10	100		70-130	0	20
1,2-Dichlorobenzene	ND	10	5.6	56	Q	5.2	52	Q	70-130	7	20
1,3-Dichlorobenzene	ND	10	5.0	50	Q	4.5	45	Q	70-130	11	20
1,4-Dichlorobenzene	ND	10	4.9	49	Q	4.5	45	Q	70-130	9	20
Methyl tert butyl ether	ND	10	12	120		12	120		63-130	0	20
o/m-Xylene	12	20	29	85		32	100		70-130	10	20
o-Xylene	1.3J	20	16	80		16	80		70-130	0	20
cis-1,2-Dichloroethene	ND	10	10	100		11	110		70-130	10	20
Dibromomethane	ND	10	10	100		11	110		70-130	10	20
1,2,3-Trichloropropane	ND	10	8.5	85		8.4	84		64-130	1	20
Acrylonitrile	ND	10	15	150	Q	15	150	Q	70-130	0	20
Styrene	ND	20	12	60	Q	12	60	Q	70-130	0	20
Dichlorodifluoromethane	ND	10	11	110		11	110		36-147	0	20
Acetone	19	10	28	90		32	130		58-148	13	20
Carbon disulfide	ND	10	8.6	86		8.4	84		51-130	2	20
2-Butanone	ND	10	19	190	Q	21	210	Q	63-138	10	20
Vinyl acetate	ND	10	8.9	89		9.6	96		70-130	8	20
4-Methyl-2-pentanone	ND	10	10	100		11	110		59-130	10	20
2-Hexanone	ND	10	10	100		12	120		57-130	18	20

Matrix Spike Analysis Batch Quality Control

Project Name: 27-01 JACKSON AVE

Project Number: 170472002 Lab Number: L2504229

Report Date: 01/29/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS Client ID: MW-2_012425	S - Westborou	igh Lab A	ssociated sam	nple(s): 01-05	QC Ba	tch ID: WG	2024777-6 V	VG202	4777-7 QC	C Samp	le: L250	4229-02
Bromochloromethane	ND	10	10	100		10	100		70-130	0		20
2,2-Dichloropropane	ND	10	9.0	90		9.0	90		63-133	0		20
1,2-Dibromoethane	ND	10	9.2	92		9.4	94		70-130	2		20
1,3-Dichloropropane	ND	10	9.9	99		10	100		70-130	1		20
1,1,1,2-Tetrachloroethane	ND	10	9.6	96		9.3	93		64-130	3		20
Bromobenzene	ND	10	7.3	73		6.8	68	Q	70-130	7		20
n-Butylbenzene	0.71J	10	4.0	40	Q	3.0	30	Q	53-136	29	Q	20
sec-Butylbenzene	1.1J	10	5.9	59	Q	5.1	51	Q	70-130	15		20
tert-Butylbenzene	ND	10	6.5	65	Q	6.1	61	Q	70-130	6		20
o-Chlorotoluene	ND	10	5.6	56	Q	5.3	53	Q	70-130	6		20
p-Chlorotoluene	ND	10	5.4	54	Q	5.0	50	Q	70-130	8		20
1,2-Dibromo-3-chloropropane	ND	10	8.3	83		8.5	85		41-144	2		20
Hexachlorobutadiene	ND	10	4.4	44	Q	3.6	36	Q	63-130	20		20
Isopropylbenzene	7.1	10	14	69	Q	14	69	Q	70-130	0		20
p-Isopropyltoluene	0.71J	10	5.7	57	Q	5.0	50	Q	70-130	13		20
Naphthalene	0.99J	10	4.2	42	Q	3.7	37	Q	70-130	13		20
n-Propylbenzene	13	10	18	50	Q	16	30	Q	69-130	12		20
1,2,3-Trichlorobenzene	ND	10	2.8	28	Q	2.3J	23	Q	70-130	20		20
1,2,4-Trichlorobenzene	ND	10	2.5	25	Q	1.8J	18	Q	70-130	33	Q	20
1,3,5-Trimethylbenzene	4.6	10	11	64		10	54	Q	64-130	10		20
1,2,4-Trimethylbenzene	37	10	44	70		42	50	Q	70-130	5		20
1,4-Dioxane	ND	500	590	118		650	130		56-162	10		20
p-Diethylbenzene	1.5J	10	9.1	91		7.5	75		70-130	19		20

Matrix Spike Analysis Batch Quality Control

Project Name:	27-01 JACKSON AVE	

Project Number: 170472002

```
        Lab Number:
        L2504229

        Report Date:
        01/29/25
```

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/M Client ID: MW-2_012425	S - Westborou	igh Lab As	ssociated sam	nple(s): 01-05	QC Bat	tch ID: WO	62024777-6 V	VG2024	4777-7 Q(C Samp	le: L250)4229-02
p-Ethyltoluene	18	10	25	70		24	60	Q	70-130	4		20
1,2,4,5-Tetramethylbenzene	5.7	10	8.0	23	Q	5.9	2	Q	70-130	30	Q	20
Ethyl ether	ND	10	17	170	Q	17	170	Q	59-134	0		20
trans-1,4-Dichloro-2-butene	ND	10	2.8	28	Q	2.6	26	Q	70-130	7		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	114	115	70-130
4-Bromofluorobenzene	98	97	70-130
Dibromofluoromethane	102	104	70-130
Toluene-d8	94	96	70-130

Project Name: 27-01 JACKSON AVE **Project Number:** 170472002

Serial_No:01292517:51 Lab Number: L2504229 *Report Date:* 01/29/25

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal					
A	Absent					

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler		рН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2504229-01A	Vial HCl preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-01B	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-01C	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-02A	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-02A1	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-02A2	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-02B	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-02B1	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-02B2	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-02C	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-02C1	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-02C2	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-03A	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-03B	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-03C	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-04A	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-04B	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-04C	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-05A	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	
L2504229-05B	Vial HCI preserved	А	NA		2.4	Y	Absent		NYTCL-8260(14)	

Page 33 of 40

Serial_No:01292517:51

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2504229

Report Date: 01/29/25

GLOSSARY

Acronyms

Acronying	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Number: 170472002

Lab Number: L2504229

Report Date: 01/29/25

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, (flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

¹

Project Number: 170472002

Lab Number: L2504229

Report Date: 01/29/25

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: 27-01 JACKSON AVE Project Number: 170472002
 Lab Number:
 L2504229

 Report Date:
 01/29/25

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. MADEP-APH. Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048 EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048 Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

Certification IDs:

Westborough Facility – 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANÅB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility – 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

~	NEW YORK	Service Centers			Pag	10)					erial_No:01292517:51 14229 31JAN2			
Διρήλ	CHAIN OF CUSTODY	Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	105		of	Da	te Rec'd	25/25	GAN — NYC				
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	Constanting of the local division of the loc	-		Concession in which the	Deliverables							
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: 27-0	Jace	ALL.			11110							
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: Lo	an Islam	d City			QuIS (1 File)	ASP.	IS (4 File)	Same as Gierra mo				
Client Information	Contraction of the local division of the loc	Project# 1704	72002	e city				her	[] E.GO	13 (4 FIR)	PO#			
Client: Langan	NVL	(Use Project name as I		No. 15	-		- termine	na pry Requirem	100	-				
Address: 308 N.		Project Manager:	constrain free lower to a constrain of phone do not seen to be	6	2.0	Concession of the local division of the loca	TOGS	NY P	1.326	Disposal Site Information				
New York,		ALPHAQuote #:	mberry	Servi	001		i hand	/Q Standards			Please identify below location of applicable disposal facilities,			
Phone: 212 - 479		Turn-Around Time	-	-	-		Restricted Use	NY CI						
Fax:	3100	Standa	N N	Due Date						Disposal Facility:				
NAME AND ADDRESS OF TAXABLE PARTY.	QLACE ON LUN	Rush (only if pre approve		Due Date			- Innered	Unrestricted U			U NJ U NY			
These samples have b				# of Days	0	_	and the second second	C Sewer Disch	arge		Other:			
Other project specific	the state of the second s					_	ANALYS	SIS			Sample Filtration			
Please co: Do	aturnamage P	augan. Low	wh. com	1 LHaley	Quan	gancom			-		Done t Lab to do			
Please specify Metals	NAME OF TAXABLE PARTY OF TAXABLE PARTY.						stru				Lab to do			
			-				1st				В			
ALPHA Lab ID			Col	ection	1	1	0				(Please Specify below)			
(Lab Use Only)	Sa	imple ID	Date	Time	Sample Matrix	Sampler's Initials	Part							
04229-01	N. 1 1 2121	12.6		-		1.011332					Sample Specific Comments			
and the second s	MW-1-012" MW-2-012		1104/2	13:40	GNU	LC	7							
23			++-	11:40	1	+					MS/MSD			
the second s	DUP01-012	the second s		-										
and the second se	FB01_01242			13:55	AQ.	V	14							
-05	TB0201242	2			AR	-								
						-								
			-											
Preservative Code:	Container Code													
A = None B = HCI C = HNO ₃	P = Plastic A = Amber Glass V = Vial	Westboro: Certification Mansfield: Certification			Cor	ntainer Type					Please print clearly, legibly and completely. Samples can			
D = H ₂ SO ₄ E = NaOH F = MeOH	G = Glass B = Bacteria Cup C = Cube	Defension in									not be logged in and turnaround time clock will not start until any ambiguities are			
G = NaHSO4	O = Other		Relinquished By: Date/Time					By:	Date/		resolved. BY EXECUTING			
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH	E = Encore D = BOD Bottle	and the second s	<u>Clements</u> SME	1-7-1-5	14:20	2	IME	Paul	1-24-2		THIS COC, THE CLIENT HAS READ AND AGREES			
0 = Other		and Da	2	12	Dats 1/2	1/24/25	1940	TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.						
Form No: 01-25 HC (rev. 3	0-Sept-2013)	1 the states	1/.	25/251	0150	7 1	eng	13	6125 0	1:50	(See reverse side.)			

ATTACHMENT E

Data Usability Summary Report

Technical Memorandum

1 University Square Drive Princeton, NJ 08540 T: 609.282.8000 Mailing Address: 1 University Square Drive Princeton, NJ 08540

То:	Ali Reach, Langan Senior Staff Geologist
From:	Joe Conboy, Langan Project Chemist
Date:	February 20, 2025
Re:	Data Usability Summary Report For 27-01 Jackson Avenue January 2025 Groundwater Samples Langan Project No.: 170472002

This memorandum presents the findings of an analytical data validation from the analysis of groundwater samples collected in January 2025 by Langan Engineering and Environmental Services at the 27-01 Jackson Avenue site. The samples were analyzed by Pace Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) for volatile organic compounds (VOCs) by the method specified below.

• VOCs by SW-846 Method 8260D

Table 1, attached, summarizes the laboratory and client sample identification numbers, sample collection dates, level of data validation, and analytical parameters subject to review.

Validation Overview

This data validation was performed in accordance with the following guidelines, where applicable:

- USEPA Region II Standard Operating Procedures (SOPs) for Data Validation
- USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020)
- USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020), and
- published analytical methodologies.

Tier 1 data validation is based on completeness and compliance checks of sample-related QC results including: sample receipt documentation; analytical holding times; sample preservation; blank results (method, field, and trip); surrogate recoveries; MS/MSD recoveries and RPDs values; field duplicate RPDs, laboratory duplicate RPDs, and LCS/LCSD recoveries and RPDs. All sample delivery groups underwent Tier 1 validation review.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA guidelines and our best professional judgment:

- R The sample results are unusable. The results are rejected because of serious deficiencies in meeting quality control criteria in accordance with the applicable validation guidelines. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified above the quantitation limit, and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at or above the quantitation limit. The reported quantitation limit may be imprecise because of potential low or indeterminate bias.
- U The analyte was not detected at or above the quantitation limit, or the analyte detection is impacted by blank contamination and qualified as non-detect in accordance with the applicable validation guidelines.

If any validation qualifiers are assigned, these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are considered invalid and are not technically usable for data interpretation. Data that is otherwise qualified because of minor data-quality anomalies are usable, as qualified in Table 2 (attached).

%D	Percent Difference	MB	Method Blank
CCV	Continuing Calibration Verification	MDL	Method Detection Limit
FB	Field Blank	MS	Matrix Spike
FD	Field Duplicate	MSD	Matrix Spike Duplicate
ICAL	Initial Calibration	RF	Response Factor
ICV	Initial Calibration Verification	RL	Reporting Limit
ISTD	Internal Standard	RPD	Relative Percent Difference
LCL	Lower Control Limit	RSD	Relative Standard Deviation
LCS	Laboratory Control Sample	ТВ	Trip Blank
LCSD	Laboratory Control Sample Duplicate	UCL	Upper Control Limit

The following acronyms may be used in the discussion of data-quality issues:

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by SW-846 Method 8260D

<u>L2504229</u>

The LCS/LCSD for batch WG2024777 exhibited a percent recovery below the LCL for trans-1,4-dichloro-2butene (45%, 50%). The associated results in samples MW-1_012425, MW-2_012425, and DUP01_012425 are qualified as UJ because of potential low bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by SW-846 Method 8260D

L2504229

The LCS/LCSD for batch WG2024777 exhibited percent recoveries above the UCL for chloroethane (190%, 190%) and diethyl ether (ethyl ether) (170%, 180%). The associated results are non-detect. No qualification is necessary.

The MS and/or MSD performed on sample MW-2_012425 exhibited percent recoveries and/or RPDs outside of control limits for one or more analytes (Recoveries = 2% - 220%, RPDs = 24% - 33%). Organic results are not qualified on the basis of MS/MSD recoveries or RPDs alone. No qualification is necessary.

FIELD DUPLICATE:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than ±1X the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 30% for groundwater. The following field duplicate and parent sample pair was compared to and met the precision criteria:

• DUP01_012425 and MW-1_012425

CONCLUSION:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Data Usability Summary Report For 27-01 Jackson Avenue January 2025 Groundwater Samples Langan Project No.: 170472002 February 20, 2025 Page 4 of 4

Signed:

Joe Conboy Project Chemist

LANGAN

LANGAN

Technical Excellence Practical Experience Client Responsiveness

May 30, 2025

Ms. Marlen Salazar New York State Department of Environmental Conservation (NYSDEC) Region 2 Division of Environmental Remediation 47-40 21st Street Long Island City, NY 11101

RE: Eleventh Quarter Groundwater Monitoring Report 27-01 Jackson Avenue Long Island City, New York NYSDEC Order on Consent No. S241209 Langan Project No.: 170472002

Dear Ms. Salazar:

In accordance with the January 23, 2020 Off-Site In-Situ Treatment Remedial Design Plan (RDP) and the December 12, 2022 NYSDEC-approved Off-Site Site Management Plan (OSMP), Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan) conducted groundwater sampling within the public right-of-way and sidewalks adjacent to the 27-01 Jackson Avenue site located in the Long Island City neighborhood of Queens, New York (Brownfield Cleanup Program [BCP] Site No. C241209). The south- and west-adjoining sidewalks are subject to the April 20, 2022 Order on Consent and Administrative Settlement (CO), Index No. S241209-08-09 and hereinafter referred to as the "CO site". A site location map is provided as Figure 1. This was the eleventh quarterly sampling event completed following implementation of the off-site in-situ groundwater treatment program between October 20 and November 11, 2021.

Project Background

The CO site is an approximately 2,750-square-foot area that spans sections of the Jackson Avenue and 43rd Avenue sidewalks adjoining the BCP site located at 27-01 Jackson Avenue in the Long Island City neighborhood of Queens, New York (identified as Block 432, Lot 21 on the Queens County Tax Map). A site layout plan is presented on Figure 2.

Light non-aqueous phase liquid (LNAPL), and petroleum-impacted soil, groundwater, and soil vapor were identified on- and off-site during a Remedial Investigation (RI) and supplemental sampling events performed between October 2018 and July 2020. To address the impacts, NYSDEC approved the RDP and the Remedial Action Work Plan (RAWP) on January 23, 2020 and January 9, 2021, respectively. A Track 1 remedy was achieved at the BCP site and a certificate of completion (COC) was issued on December 23, 2022. Pursuant to the RAWP, a CO

was executed on April 20, 2022, which requires compliance with the NYSDEC-approved December 12, 2022 OSMP. The intent of the CO is to monitor off-site conditions in groundwater following off-site groundwater treatment and on-site dewatering. The OSMP addresses the means for implementing, monitoring, and reporting on the Engineering and Institutional Controls (ECs/ICs) that are required by the CO for the off-site areas adjacent to the BCP site.

In-Situ Groundwater Treatment

An off-site in-situ groundwater treatment program was implemented to treat remaining petroleum-related VOCs beneath the CO site, which were initially identified during the RI. Targeted petroleum-related VOCs included benzene, toluene, ethylbenzene, and xylenes (BTEX), and their breakdown products. Impacted groundwater was treated using an activated carbon solution (PetroFix[™]) via direct-push injection points located in a rough grid pattern to spread chemicals evenly within the off-site, south- and west-adjoining sidewalks comprising the CO site.

The injection program was carried out by Clean Harbors of Norwell, Massachusetts and Aquifer Drilling and Testing (ADT) of Mineola, New York, under the oversight of Langan, between October 20 and November 11, 2021. Injection point locations are shown on Figure 3. At each injection point, a hollow steel injection rod was advanced to depths ranging from about 15 to 30 feet below grade surface (bgs). Injections were made using a "bottom-up" approach, beginning at the deepest 2-foot interval, and raised from the bottom depth in 2-foot intervals to approximately 15 feet bgs. Approximately 14,400 pounds of Petrofix® and 720 pounds of electron acceptor blend were applied via direct-push drill rig between October 20 and November 11, 2021. Between 664 and 976 pounds of Petrofix® were applied to each point.

Performance Monitoring Methodology

The RDP and OSMP included baseline sampling and quarterly post-injection groundwater monitoring to evaluate the efficacy of the CO site remedy. Baseline groundwater sampling was conducted from existing monitoring wells MW-3 and MW-4 and temporary monitoring wells MW-1 and MW-2 on October 7 and 19, 2021. Monitoring wells MW-3 and MW-4 were compromised during installation of the support of excavation, and the four monitoring wells were reinstalled for post-remediation groundwater monitoring on August 22, 2022 and October 13 and 14, 2022. Post-injection monitoring well locations are shown on Figure 3.

Post-injection groundwater monitoring was not conducted between November 2021 and October 2022 due to remediation efforts and active dewatering at the BCP site. Eleven post-injection quarterly sampling events have been completed at the CO site in October 2022, January 2023, April 2023, July 2023, October 2023, January 2024, April 2024, July 2024, October 2024, January 2025, and April 2025.

Between the third and fourth quarter sampling events, monitoring well MW-3 was compromised during the installation of utilities beneath the 43rd Avenue sidewalk. Considering VOCs were non-detect in MW-3 during the previous three quarters of sampling, NYSDEC allowed the discontinuation of sampling of MW-3 via email correspondence on August 8th, 2023. The Fourth

Quarter Groundwater Monitoring Report, dated September 15, 2023, indicated that VOCs were also non-detect in monitoring well MW-4 during the previous four quarters; therefore, NYSDEC allowed the discontinuation of sampling of MW-4 via email correspondence on October 13th, 2023. NYSDEC correspondence is included as Attachment A.

Well Purging and Sampling

Monitoring well sampling was conducted for monitoring wells MW-1 and MW-2 on April 16, 2025. Before sampling, each well was purged using the low-flow method developed by the United States Environmental Protection Agency (USEPA) "Low-Flow [Minimal Drawdown] Ground-Water Sampling Procedures," EPA/540/S-95/504, April 1996) and accepted by the NYSDEC. Purging was performed using a peristaltic pump fitted with dedicated tubing at each well. During purging of MW-1 and MW-2, the turbidity, pH, temperature, conductivity, oxidation-reduction potential (ORP), and dissolved oxygen (DO) were monitored using a Horiba U-52 water quality meter with a flow-through cell. Purged groundwater was containerized in 55-gallon drums during each event. The daily site observation report is included in Attachment B. The groundwater quality parameters for MW-1 and MW-2 are recorded in the Well Purging and Sampling Logs provided in Attachment C.

As a general rule, groundwater is purged until water quality parameters stabilized, after an hour of continuous purging, or after three well volumes of groundwater had been removed from the well. Groundwater samples were collected from MW-1 after water quality parameters stabilized, and from MW-2 after one hour of continuous purging.

After purging each well, a groundwater sample was collected directly from the pump discharge line using USEPA low-flow techniques. For quality assurance and quality control, one field blank sample and one duplicate sample were collected. A trip blank was included in each shipment for quality control during transport. All samples were analyzed for Part 375/Target Compound List (TCL) VOCs via USEPA SW-846 method 8260C by Pace Analytical, a New York State Department of Environmental Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-accredited laboratory in Westborough, Massachusetts.

The laboratory analytical results for the baseline sampling event, the previous quarterly sampling events, and the April 2025 sampling event are summarized in Table 1. The laboratory analytical report from the April 2025 sampling event is provided as Attachment D. Groundwater analytical results were compared to the NYSDEC Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical & Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA drinking water (herein collectively referenced as the NYSDEC SGVs). Analytical results from the first quarterly sampling event are discussed in the NYSDEC-approved December 2022 Final Engineering Report (FER), and analytical results from subsequent quarters are discussed in their respective quarterly monitoring reports.

April 2025 Performance Monitoring Analytical Results

Analytical results from the April 2025 performance monitoring are summarized as follows:

- <u>MW-1:</u> No VOCs were detected above the NYSDEC SGVs. In comparison to baseline analytical results, total VOC and total BTEX concentrations have decreased by 100%.
- <u>MW-2:</u> 1,2,4-trimethylbenzene, m/p-xylene, n-propylbenzene, and total xylenes were detected above the NYSDEC SGVs. In comparison to baseline analytical results, total VOC and total BTEX concentrations have decreased by 99.2% and 99.8%, respectively.

Four VOCs were detected above the NYSDEC SGVs in groundwater samples collected from one monitoring well (MW-2) during the April 2025 monitoring event. Total VOC concentrations have decreased by 100% (MW-1) and 99.2% (MW-2), and total BTEX concentrations have decreased by 100% (MW-1) and 99.8% (MW-2) when compared to baseline concentrations. In comparison to the tenth quarterly sampling event, analyte concentrations detected above the NYSDEC SGVs in MW-2 are generally within the same order of magnitude or one order of magnitude lower.

Analytical data are shown on Figure 4 and result trends are shown on Figure 5. Comparison of overall result trends for each monitoring well show a bulk reduction in petroleum-related VOCs to asymptotic levels over the course of the monitoring program. Based on the post-remedy sampling results and trends, the off-site remedy appears to have been effective; further significant decline of contaminant of concern concentrations in the near term is not anticipated.

Data Validation

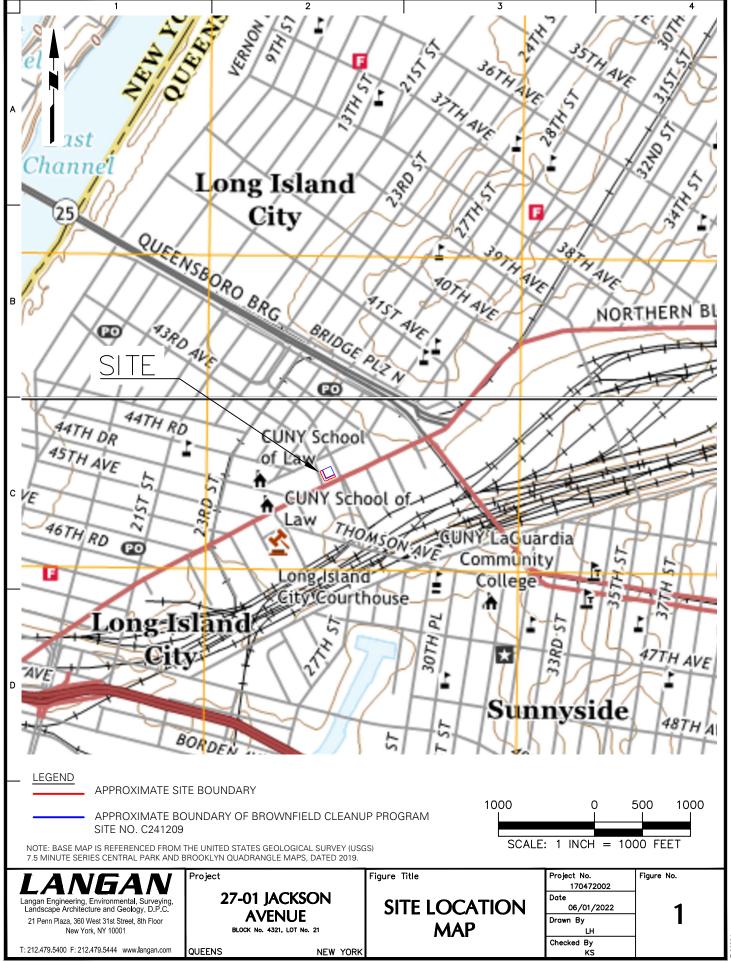
A copy of the Analytical Services Protocol (ASP) Category B laboratory report was submitted to Langan's data validation department for review in accordance with the USEPA validation guidelines for organic and inorganic data. The data were found to be 100% acceptable. The Data Usability Summary Report (DUSR) is included in Attachment E.

Closure

Targeted petroleum-related VOC concentrations exceeded the NYSDEC SGVs in MW-2, but have been reduced by one to three orders of magnitude relative to baseline concentrations, indicating that bulk reduction has been observed. VOCs were not detected above the NYSDEC SGVs in MW-1 during the last two quarterly monitoring events. As requested by NYSDEC in correspondence dated September 19, 2024 (see Attachment A), three additional quarters (Q9 through Q11) of groundwater monitoring were conducted by Langan. Based on review of the overall analytical data generated over the course of the monitoring program, it appears that the remedy was effective in demonstrating a bulk reduction of these contaminants. As evidenced by the three additional quarters, asymptotic reduction of VOC concentrations in MW-1 and MW-2 appear to have been achieved, and further decline of contaminant of concern concentrations is not anticipated. Therefore, Langan is requesting discontinuation of groundwater monitoring at the site.

Should you have any questions, please call the undersigned at 212-479-5427.

Sincerely,


Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C.

Jason Hayes, P.E. Senior Principal

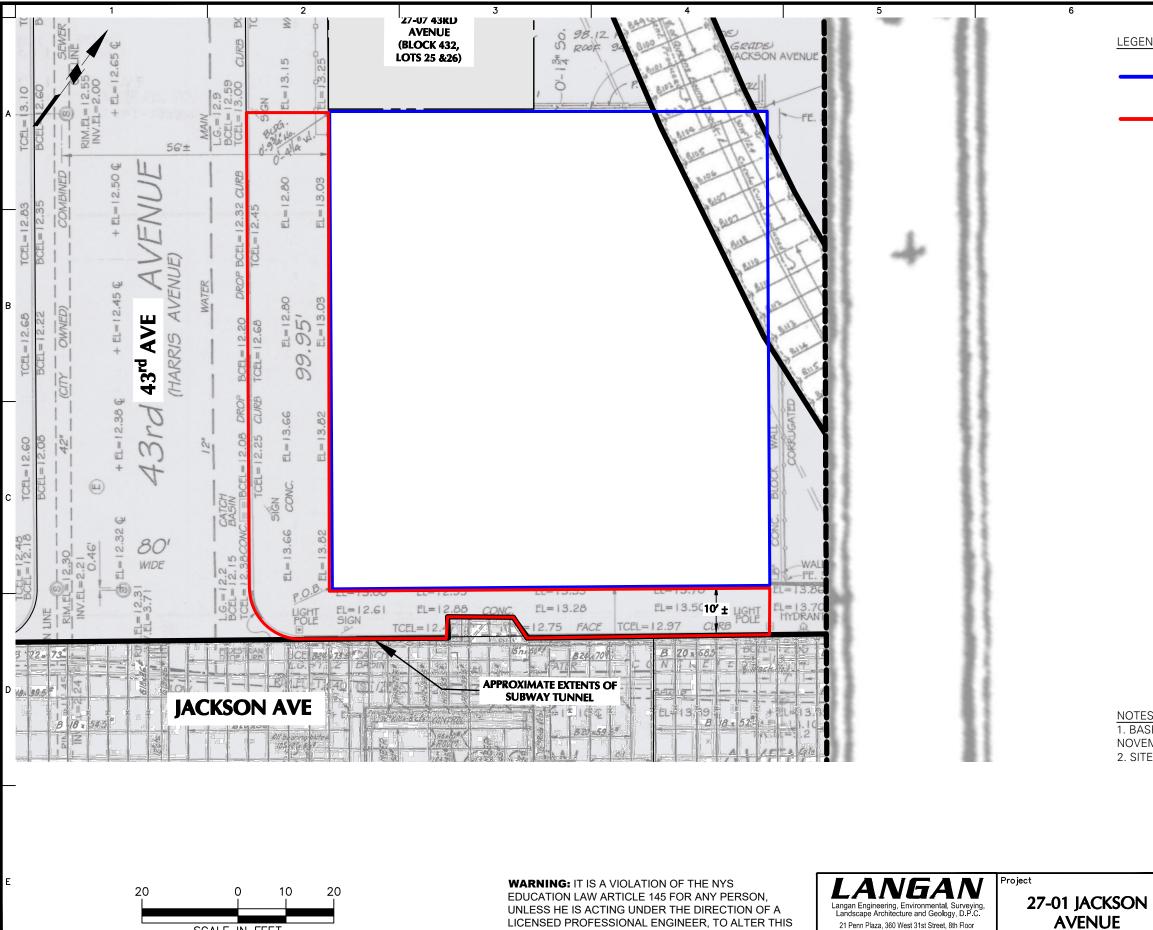

Enclosures:

Figure 1 Figure 2 Figure 3 Figure 4	Site Location Map Site Layout Plan In-Situ Groundwater Treatment Injection Plan Groundwater Sample Analytical Results
Figure 5	Groundwater Sample Analytical Results Trends
Table 1	Groundwater Sample Analytical Results
Attachment A	NYSDEC Correspondence
Attachment B	Daily Site Observation Report
Attachment C	Well Purging and Sampling Logs
Attachment D	Laboratory Analytical Report
Attachment E	Data Usability Summary Report

FIGURES

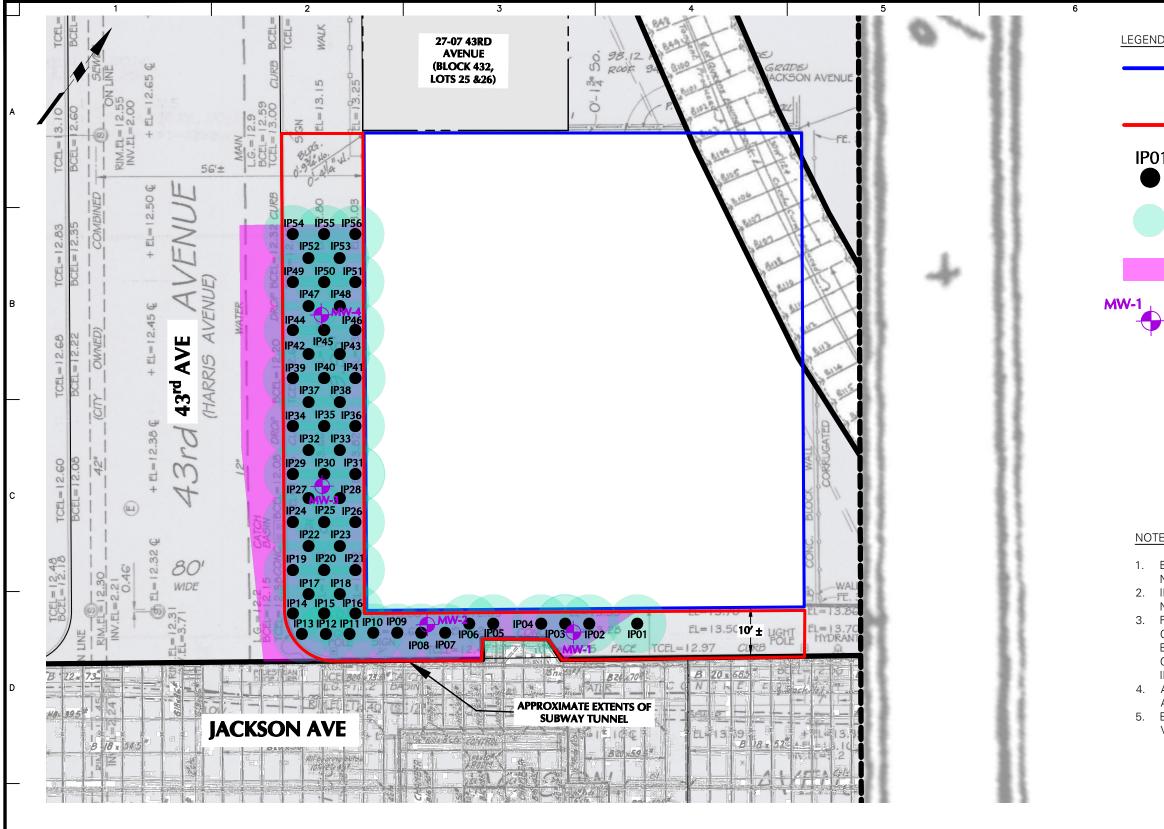
Filename: Wangan.com/datai/NYC/data0/170472002/Project DataiCAD/02/SheetFiles/OSMP/Figure 1 - Site Location Map.dwg Date: 2/14/2023 Time: 22:25 User: Ihaley Style Table: Langan.stb Layout: F1 - SITE LCO MAP

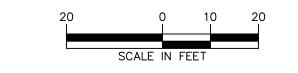
LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS

ITEM IN ANY WAY.

SCALE IN FEET

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001

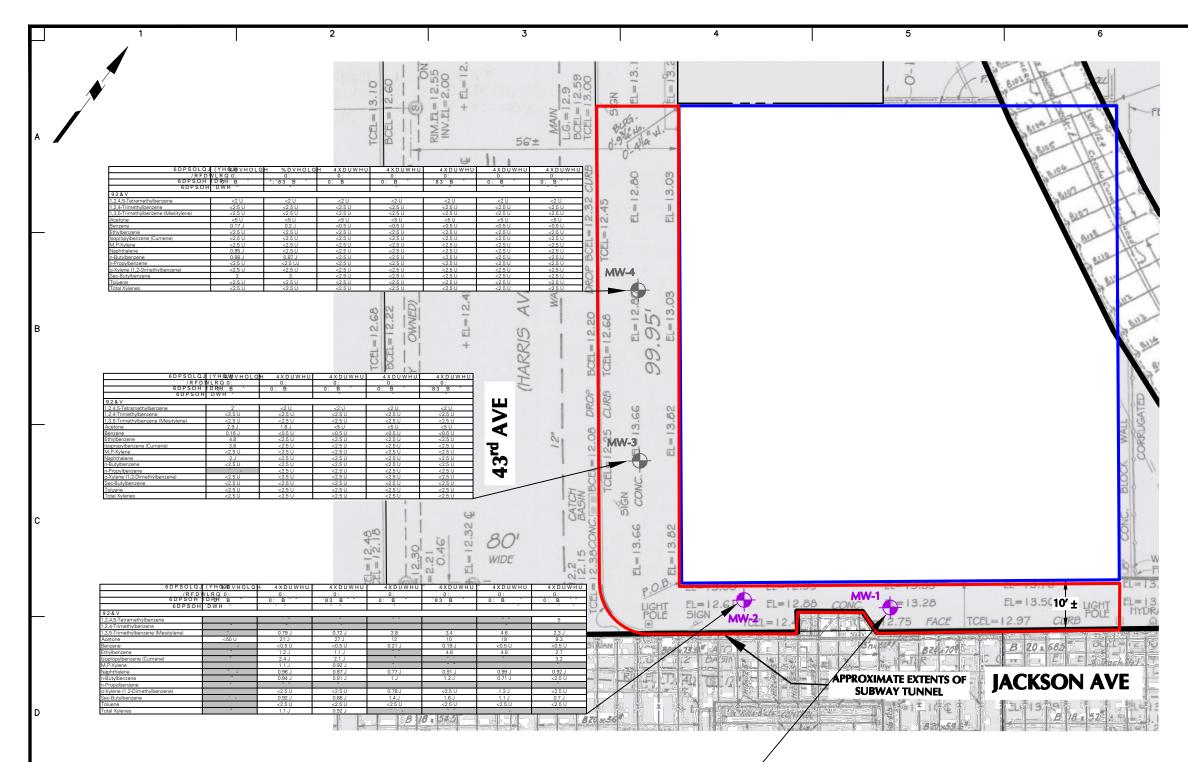

T: 212.479.5400 F: 212.479.5444 www.langan.com


Filename: \\langan.com\data\NYC\data0\170472002\Project Data\CAD\02\SheetFiles\SMP\Figure 2 - Site Layout Plan.dwg Date: 7/6/2022 Time: 13:44 User: eseery Style Table: Langan.stb Layout: ANSIB-BL

BLOCK No. 432 LOT No. 21

QUEENS

			_
 . <u>EGEND</u>	7	I	8
	APPROXIMATE BOUNDARY OF PROGRAM SITE NO. C241209	BROWNFIELD C	LEANUP
	APPROXIMATE SITE BOUNDAF	ťΥ	
	AP TAKEN FROM HAYNES LAND SU R 12, 2014.	RVEYORS, DATEI	D ON
	UNDARIES ARE APPROXIMATE		
	Figure Title	Project No. 170472002	Figure No.
ON	SITE LAYOUT PLAN	Date 07/06/2022 Drawn By	2
o. 21 NEW YORK		LH Checked By KS	



Filename: \\langan.com\data\NYC\data0\170472002\Project Data\CAD\02\SheetFiles\OSMP\Figure 3 - In-Situ Groundwater Treatment Injection Plan.dwg Date: 11/17/2022 Time: 22:22 User: Ihaley Style Table: Langan.stb Layout: ANSIB-BL

 I <u>D</u>	7		8
	APPROXIMATE BOUNDARY OF PROGRAM SITE NO. C241209	BROWNFIELD C	LEANUP
_	APPROXIMATE SITE BOUNDAF	Υ	
01	INJECTION POINT LOCATION		
	APPROXIMATE RADIUS OF INF		FROFIX
	APPROXIMATE EXTENT OF OF	F-SITE PETROLEU	IM PLUME
	MONITORING WELL LOCATION	Ν	
TES			
BAS		ID SURVEYORS, D	DATED
INJE	/EMBER 12, 2014. ECTIONS WERE COMPLETED BET\ /EMBER 11, 2021.	WEEN OCTOBER 2	20, 2021 AND
RAD CON	IUS OF INFLUENCE CALCULATION	EMICAL MANUFA	CTURERS
CON	ED ON SUBSURFACE CONDITION ICENTRATIONS ENCOUNTERED D ESTIGATION CONDUCTED BY LAN	URING THE REME	
ALL	INJECTION AND MONITORING W ROXIMATE.		ARE
	VATIONS (EL.) ARE REFERENCED TICAL DATUM OF 1983 (NAVD83).		MERICAN
	WARNING: IT IS A VIOL	ΔΤΙΩΝ ΩΕ ΤΗΕ ΝΥ	r c
	EDUCATION LAW ARTIC UNLESS HE IS ACTING U	LE 145 FOR ANY P	PERSON,
	LICENSED PROFESSION ITEM IN ANY WAY.	IAL ENGINEER, TC	ALTER THIS
	Figure Title	Project No. 170472002	Figure No.
	IN-SITU GROUNDWATER	Date 11/17/2022	2
	TREATMENT INJECTION PLAN	Drawn By LH	3

INJECTION PLAN

Checked By KS

6DPSOLQJ	(YHOKMOVHOLQ	H 4XDUWHU	4XDUWHU	4XDUWHU	4 X D U W H U	4 X D U W H U	4 X D U W H U
/ R F D '	VLRQ 0:	0:	0:	0:	0:	0:	0:
6 D P S O H	IDP0H B "	0: B * ~	0: B ″	0: B	'83 B	0: B	'83 B
6 D P S O H	'DWH ~	* "		÷	÷		
92&V							
1,2,4,5-Tetramethylbenzene		•	<2 U	<2 U	<2 U	<2 U	<2 U
1,2,4-Trimethylbenzene		<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,3,5-Trimethylbenzene (Mesitylene)	* ·	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Acetone	4.5 J	<5 U	<5 UJ	<5 U	1.7 J	<5 U	<5 U
Benzene	•	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Ethylbenzene	ř	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
sopropylbenzene (Cumene)		<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
VI,P-Xylene		<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Naphthalene	3.4 J	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U
n-Butylbenzene		<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
n-Propylbenzene	*	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
o-Xylene (1,2-Dimethylbenzene)		<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Sec-Butylbenzene	4.6	0.85 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Toluene	ž	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Total Xylenes		<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U

Filename: \\langan.com\data\NYC\data\170472002\Project Data\CAD\02\SheetFiles\Off-Site Groundwater Reports\Figure 4 - Groundwater Sample Results Map.dwg Date: 5/23/2025 Time: 15:22 User: Ihaley Style Table: Langan.stb Layout: ANSIB-BL (2)

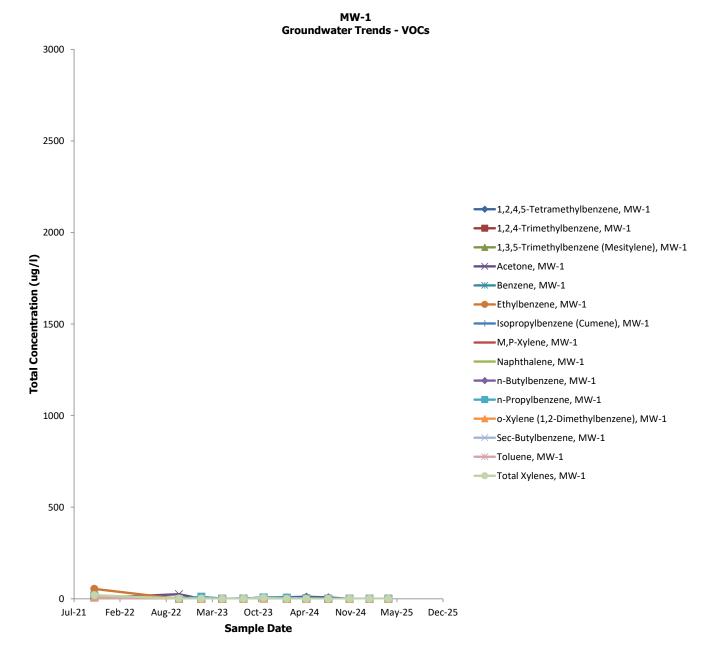
LEGEND

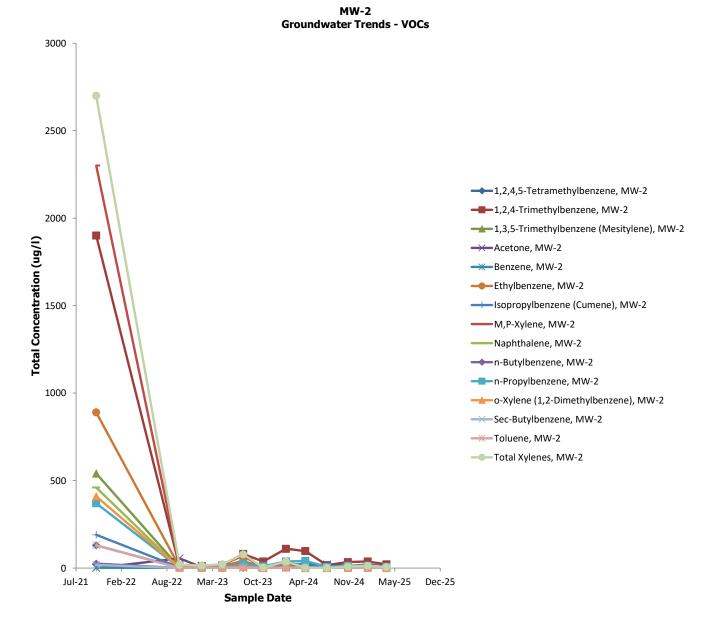
APPROXIMATE BOUNDARY OF BROWNFIELD CLEANUP PROGRAM SITE NO. C241209

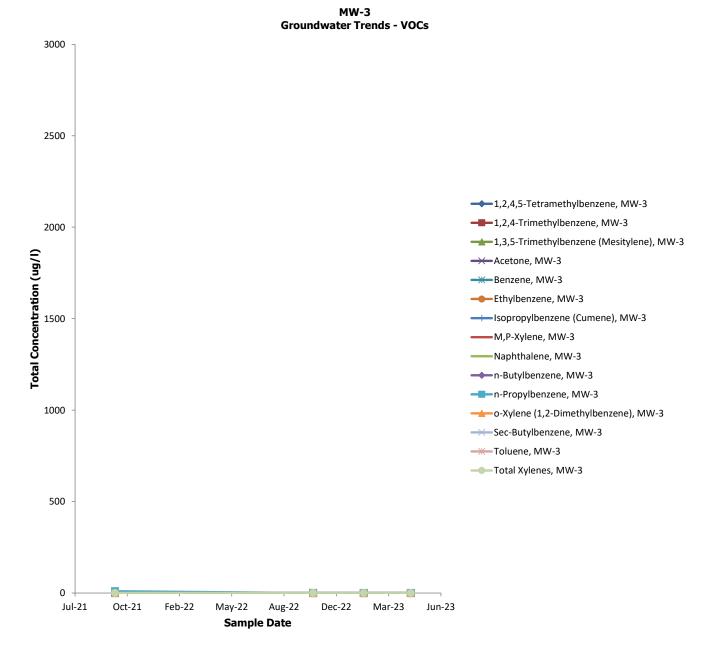
APPROXIMATE SITE BOUNDARY

MONITORING WELL LOCATION (GROUNDWATER SAMPLING DISCONTINUED 2023)

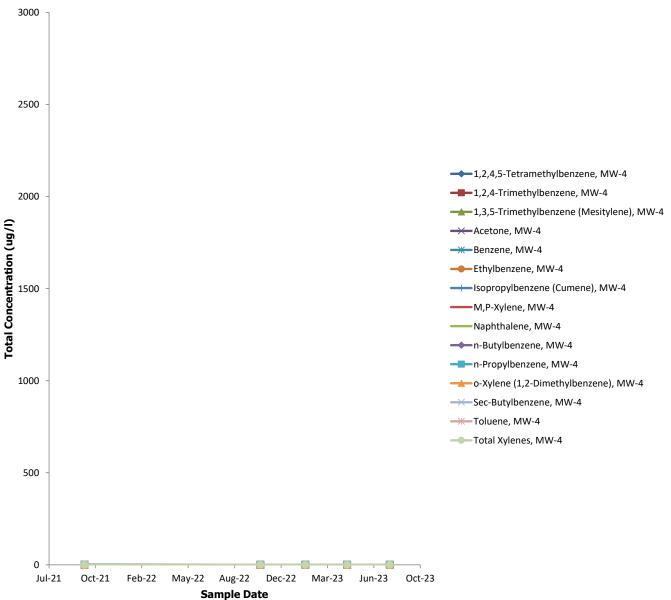
MONITORING WELL LOCATION


\$QDO\WH	1 < 6 ' (& 6 * 9 V
92&V	
1,2,4,5-Tetramethylbenzene	5
1,2,4-Trimethylbenzene	5
1,3,5-Trimethylbenzene (Mesitylene)	5
Acetone	50
Benzene	1
Ethylbenzene	5
Isopropylbenzene (Cumene)	5
M,P-Xylene	5
Naphthalene	10
n-Butylbenzene	5
n-Propylbenzene	5
o-Xylene (1,2-Dimethylbenzene)	5
Sec-Butylbenzene	5
Toluene	5
Total Xylenes	5


NOTES


- 1. BASEMAP TAKEN FROM HAYNES LAND SURVEYORS, DATED ON NOVEMBER 12, 2014.
- ALL LOCATIONS ARE APPROXIMATE. 2.
- THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 3. (NYSDEC) ALLOWED THE DISCONTINUATION OF GROUNDWATER SAMPLING AT MONITORING WELLS MW-3 AND MW-4 VIA EMAIL CORRESPONDENCE ON AUGUST 8 AND OCTOBER 13, 2023.
- GROUNDWATER RESULTS ARE COMPARED TO THE NEW YORK STATE 4 DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES (SGVs) FOR CLASS GA GROUNDWATER.
- THIS FIGURE COMPARES BASELINE ANALYTICAL DATA TO THE FOUR MOST 5. RECENT QUARTERS OF ANALYTICAL DATA FOR EACH WELL. ALL ANALYTICAL DATA FROM THE BASELINE AND QUARTERLY SAMPLING EVENTS ARE PROVIDED IN THE QUARTERLY GROUNDWATER MONITORING REPORT TABLES.
- ONLY COMPOUNDS EXCEEDING COMPARISON CRITERIA ARE SHOWN. 6
- RESULTS ABOVE NYSDEC SGVs ARE SHADED AND BOLDED.
- RESULTS ARE SHOWN IN MICROGRAMS PER LITER (µg/L). 8
- J= THE ANALYTE WAS DETECTED ABOVE THE METHOD DETECTION LIMIT, BUT 9 BELOW THE REPORTING LIMIT (RL); THE RESULT IS AN ESTIMATED CONCENTRATION.
- 10. U = THE ANALYTE WAS ANALYZED FOR, BUT NOT DETECTED AT A LEVEL GREATER THAN OR EQUAL TO THE RL; THE VALUE SHOWN IN THE TABLE IS THE RL.

WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.


	Figure Title	Project No. 170472002	Figure No.
	GROUNDWATER SAMPLE	Date 05/23/2025	
	ANALYTICAL RESULTS MAP	Drawn By LH	4
ORK		Checked By KS	

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002

MW-4 Groundwater Trends - VOCs

TABLES

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

			Sampling Event Location	Baseline MW-1	Quarter 1 MW-1	Quarter 2 MW-1	Quarter 3 MW-1	Quarter 4 MW-1	Quarter 4 MW-1	Quarter 5 MW-1	Quarter 5 MW-1	Quarter 6 MW-1	Quarter 7 MW-1	Quarter 7 MW-1	Quarter 8 MW-1	Quarter 9 MW-1	Quarter 10 MW-1	Quarter 10 MW-1	Quarter 11 MW-1	Quarter 11 MW-1
Analyte	CAS Number	NYSDEC SGVs	Sample Name Sample Date	MW01_101921 10/19/2021	MW-1_102122 10/21/2022	MW-1_012623 01/26/2023	MW-1_042623 04/26/2023	MW-1_072723 07/27/2023	DUP01_072723 07/27/2023	MW-1_102323 10/23/2023	DUP01_102323 10/23/2023	MW-1_013124 01/31/2024	MW-1_042524 04/25/2024	DUP01_042524 04/25/2024	MW-1_072924 07/29/2024	MW-1_102924 10/29/2024	MW-1_012425 01/24/2025	DUP01_012425 01/24/2025	MW-1_041625 04/16/2025	DUP01_041625 04/16/2025
olatile Organic Compounds			Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
,1,1,2-Tetrachloroethane	630-20-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
,1,1-Trichloroethane ,1,2,2-Tetrachloroethane	71-55-6 79-34-5	5 5	ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U					
,1,2,2-Trichloroethane	79-34-5 79-00-5	1	ug/l ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
,1-Dichloroethane	75-34-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
,1-Dichloroethene ,1-Dichloropropene	75-35-4 563-58-6	5 5	ug/l ug/l	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U					
,2,3-Trichlorobenzene	87-61-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
,2,3-Trichloropropane ,2,4,5-Tetramethylbenzene	96-18-4 95-93-2	0.04 5	ug/l ug/l	<2.5 U 12	<2.5 U 1.9 J	<2.5 U 8.9	<2.5 U 1.7 J	<2.5 U <2 U	<2.5 U <2 U	<2.5 U 7.6	<2.5 U 8.4	<2.5 U 8	<2.5 U 11	<2.5 U 11	<2.5 U 7.4	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U
,2,4-Trichlorobenzene	120-82-1	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
,2,4-Trimethylbenzene ,2-Dibromo-3-Chloropropane	95-63-6 96-12-8	5 0.04	ug/l	11 <2.5 U	0.77 J <2.5 U	0.74 J <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	7.2 <2.5 U	7.5 <2.5 U	<2.5 U <2.5 U	2.6 <2.5 ∪	2.6 <2.5 ∪	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
,2-Dibromoethane (Ethylene Dibromide)	106-93-4	0.004	ug/l ug/l	<2.5 U <2 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <2 U	<2.5 U	<2.5 U
,2-Dichlorobenzene	95-50-1	3	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
,2-Dichloroethane ,2-Dichloropropane	107-06-2 78-87-5	0.6 1	ug/l ug/l	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U					
,3,5-Trimethylbenzene (Mesitylene)	108-67-8	5	ug/l	7.8	4	1.7 J	<2.5 U	<2.5 U	<2.5 U	5.3	5.6	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
,3-Dichlorobenzene	541-73-1	3 5	ug/l	<2.5 U <2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U
,3-Dichloropropane ,4-Dichlorobenzene	142-28-9 106-46-7	3	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U					
,4-Diethyl Benzene	105-05-5	NS	ug/l	26	4	4.9	1.7 J	<2 U	<2 U	1.6 J	1.7 J	3.9	3.5	3.5	2.3	<2 U	<2 U	<2 U	<2 U	<2 U
,4-Dioxane (P-Dioxane) ,2-Dichloropropane	123-91-1 594-20-7	0.35 5	ug/l ug/l	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U					
-Chlorotoluene	95-49-8	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
-Hexanone (MBK) -Chlorotoluene	591-78-6 106-43-4	50 5	ug/l	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U					
-Ethyltoluene	622-96-8	NS	ug/l ug/l	6.1	1.5 J	1.4 J	<2 U	<2.5 U	<2 U	4	4.3	<2.5 U	<2.5 U	<2 U	<2.0 U	<2.5 U	<2.0 U	<2.5 U	<2.5 U	<2 U
cetone	67-64-1	50	ug/l	4.5 J	25	<5 U	<5 U	2.5 J	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 UJ	<5 U	1.7 J	<5 U	<5 U
crylonitrile enzene	107-13-1 71-43-2	5	ug/l ug/l	<5 U 17	<5 U <0.5 U	<5 U 0.22 J	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U
romobenzene	108-86-1	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
romochloromethane	74-97-5 75-27-4	5 50	ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U					
romodichloromethane romoform	75-25-2	50	ug/l ug/l	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U					
romomethane	74-83-9	5	ug/l	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
arbon Disulfide arbon Tetrachloride	75-15-0 56-23-5	60 5	ug/l ug/l	1.2 J <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U
hlorobenzene	108-90-7	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
hloroethane hloroform	75-00-3 67-66-3	5 7	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 UJ <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U					
hloromethane	74-87-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
iis-1,2-Dichloroethene iis-1,3-Dichloropropene	156-59-2 10061-01-5	5 0.4	ug/l	<2.5 U <0.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <0.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <0.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
ymene	99-87-6	5	ug/l ug/l	<0.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U	<0.5 U
libromochloromethane	124-48-1	50	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
libromomethane lichlorodifluoromethane	74-95-3 75-71-8	5 5	ug/l ug/l	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U					
liethyl Ether (Ethyl Ether)	60-29-7	NS	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
thylbenzene Iexachlorobutadiene	100-41-4 87-68-3	5 0.5	ug/l ug/l	54 <2.5 U	<2.5 U <2.5 U	5.4 <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	4.7 <2.5 ∪	5 <2.5 U	1.9 J <2.5 U	1.5 J <2.5 ∪	1.5 J <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
sopropylbenzene (Cumene)	98-82-8	5	ug/l	10	<2.5 U	9.1	<2.5 U	<2.5 U	<2.5 U	3.9	4.2	5.6	2.1 J	2.1 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,P-Xylene 1 1ethyl Ethyl Ketone (2-Butanone)	79601-23-1 78-93-3	5	ug/l	11	1.3 J <5 UJ	0.88 J <5 ∪	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	3.7 <5 ∪	4 <5 ∪	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U
fethyl Ethyl Ketone (2-Butanone) fethyl Isobutyl Ketone (4-Methyl-2-Pentanone)	78-93-3 108-10-1	NS	ug/l ug/l	<5 U <5 U	<5 UJ <5 U	<5 U <5 U	<5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U <5 U	<5 U	<5 U <5 U	<5 U <5 U
fethylene Chloride	75-09-2	5	ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
laphthalene -Butylbenzene	91-20-3 104-51-8	10 5	ug/l ug/l	3.4 J 5.6	<2.5 U <2.5 U	<2.5 U 2.2 J	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	2.2 J 1.4 J	2 J 1.6 J	<2.5 U 1.7 J	<2.5 U 0.87 J	<2.5 U 0.81 J	<2.5 U <2.5 U	<2.5 UJ <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Propylbenzene	103-65-1	5	ug/l	17	<2.5 U	11	<2.5 U	<2.5 U	<2.5 U	7.1	7.7	5.7	1.5 J	1.6 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
-Xylene (1,2-Dimethylbenzene) ec-Butylbenzene	95-47-6 135-98-8	5	ug/l ug/l	9.1 4.6	<2.5 U <2.5 U	<2.5 U 2.7	<2.5 U 0.87 J	<2.5 U <2.5 U	<2.5 U <2.5 U	0.98 J 0.9 J	1 J 1 J	<2.5 U 1.9 J	<2.5 U 1.2 J	<2.5 U 1.1 J	<2.5 U 0.85 J	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
tyrene	100-42-5	5	ug/l	<2.5 U	<2.5 U	<2.5 U	1.2 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U					
-Butylbenzene ert-Butyl Methyl Ether	98-06-6 1634-04-4	5 10	ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U	<2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U					
ert-Butyl Metnyl Etner etrachloroethene (PCE)	1634-04-4 127-18-4	5	ug/l ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	0.21 J <0.5 ∪	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U					
oluene	108-88-3		ug/l	5.3	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U				
otal 1,2-Dichloroethene (Cis and Trans) otal Xylenes	540-59-0 1330-20-7	NS 5	ug/l ug/l	<2.5 U 20	<2.5 U 1.3 J	<2.5 U 0.88 J	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U 4.7 J	<2.5 U 5 J	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
otal, 1,3-Dichloropropene (Cis And Trans)	542-75-6	0.4	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
rans-1,2-Dichloroethene rans-1,3-Dichloropropene	156-60-5 10061-02-6	5 0.4	ug/l ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U					
rans-1,4-Dichloro-2-Butene	110-57-6	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<2.5 UJ	<2.5 UJ	<0.5 U	<0.5 U					
richloroethene (TCE)	79-01-6	5	ug/l	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U					
richlorofluoromethane inyl Acetate	75-69-4 108-05-4	5 NS	ug/l ug/l	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 UJ <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U					
inyl Chloride	75-01-4	2	ug/l	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U					

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

			Sampling Event	Baseline	Quarter 1	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Quarter 5	Quarter 6	Quarter 6	Quarter 7	Quarter 8	Quarter 8	Quarter 9	Quarter 9	Quarter 10	Quarter 11
Analyte	CAS	NYSDEC	Location Sample Name	MW-2 MW02 101921	MW-2 MW-2 102022	MW-2 DUP01_102022	MW-2 MW-2 012623	MW-2 MW-2 042623	MW-2 MW-2 072723	MW-2 MW-2 102323	MW-2 MW-2 013124	MW-2 DUP01_013124	MW-2 MW-2 042524	MW-2 MW-2 072924	MW-2 DUP01 072924	MW-2 MW-2 102924	MW-2 DUP01_102924	MW-2 MW-2 012425	MW-2 MW-2 041625
	Number	SGVs	Sample Date	10/19/2021	10/20/2022	10/20/2022	01/26/2023	04/26/2023	07/27/2023	10/23/2023	01/31/2024	01/31/2024	04/25/2024	07/29/2024	07/29/2024	10/29/2024	10/29/2024	01/24/2025	04/16/2025
Volatile Organic Compounds			Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1,2-Tetrachloroethane	630-20-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	71-55-6 79-34-5	5	ug/l ug/l	<25 U <5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
1,1,2-Trichloroethane	79-00-5	1	ug/l	<15 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U	<1.5 U
1,1-Dichloroethane 1,1-Dichloroethene	75-34-3 75-35-4	5	ug/l ug/l	<25 U <5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
1,1-Dichloropropene	563-58-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,3-Trichlorobenzene	87-61-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene	96-18-4 95-93-2	0.04 5	ug/l ug/l	<25 U 130	<2.5 U 1.4 J	<2.5 U 4.2 J	<2.5 U <2 U	<2.5 U <2 U	<2.5 U 2.6	<2.5 U 6.2	<2.5 U 6.1 J	<2.5 U 1.3 J	<2.5 U 28	<2.5 U 8.5	<2.5 U 7	<2.5 U 9.6	<2.5 U 11	<2.5 U 5.7	<2.5 U 5
1,2,4-Trichlorobenzene	120-82-1	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane	95-63-6 96-12-8	5 0.04	ug/l ug/l	1,900 <25 U	10 J <2.5 U	34 J <2.5 U	12 <2.5 U	15 <2.5 U	80 <2.5 U	37 <2.5 U	110 J <2.5 U	52 J <2.5 U	97 <2.5 U	16 <2.5 U	15 <2.5 ∪	34 <2.5 U	32 <2.5 U	37 <2.5 U	21 <2.5 U
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	0.0006	ug/l	<20 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U	<2 U
1,2-Dichlorobenzene	95-50-1	3	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,2-Dichloroethane 1,2-Dichloropropane	107-06-2 78-87-5	0.6 1	ug/l ug/l	<5 U <10 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U	<0.5 U <1 U
1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	5	ug/l	540	3.5 J	8 J	2.5	2.4 J	11	2.5	11 J	6.9 J	3.2	0.79 J	0.72 J	3.8	3.4	4.6	2.3 J
1,3-Dichlorobenzene	541-73-1	3	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
1,3-Dichloropropane 1,4-Dichlorobenzene	142-28-9 106-46-7	5 3	ug/l ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
1,4-Diethyl Benzene	105-05-5	NS	ug/l	270	<2 U	0.72 J	1.4 J	0.85 J	1.4 J	0.91 J	2.5	1.1 J	7	1.3 J	1.2 J	2.1	2.2	1.5 J	3.3
1,4-Dioxane (P-Dioxane) 2,2-Dichloropropane	123-91-1 594-20-7	0.35	ug/l ug/l	<2,500 U <25 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 U <2.5 U	<250 UJ <2.5 U	<250 UJ <2.5 U	<250 U <2.5 U	<250 U <2.5 U
2-Chlorotoluene	95-49-8	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
2-Hexanone (MBK)	591-78-6	50	ug/l	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
4-Chlorotoluene 4-Ethyltoluene	106-43-4 622-96-8	5 NS	ug/l ug/l	<25 U 800	<2.5 U 7.4 J	<2.5 U 15 J	<2.5 U 6.2	<2.5 U 9.7	<2.5 U 44	<2.5 U 13	<2.5 U 51 J	<2.5 U 30 J	<2.5 U 38	<2.5 U 5.6	<2.5 U 5.3	<2.5 U 16	<2.5 U 15	<2.5 U 18	<2.5 U 7.4
Acetone	67-64-1	50	ug/l	<50 U	56	63	4.4 J	12 J	37	3.8 J	<5 UJ	19 J	12	21 J	27 J	12	10	19	9.3
Acrylonitrile	107-13-1 71-43-2	5	ug/l	<50 U	<5 U 0.69	<5 U 0.35 J	<5 U 0.51	<5 U 0.82	<5 U 0.6	<5 U	<5 U 0.18 J	<5 U 0.31 J	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U	<5 U	<5 U	<5 U <0.5 U	<5 U
Benzene Bromobenzene	108-86-1	1 5	ug/l ug/l	2.1 J <25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<0.5 U <2.5 U	<2.5 U	<2.5 U	<0.5 U	<0.5 U	<0.5 U	0.21 J <2.5 U	0.19 J <2.5 U	<0.5 U	<0.5 U <2.5 U
Bromochloromethane	74-97-5	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Bromodichloromethane Bromoform	75-27-4 75-25-2	50 50	ug/l ug/l	<5 U <20 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U	<0.5 U <2 U
Bromomethane	74-83-9	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	1.3 J	2.6 J	0.85 J	1.2 J	1.1 J	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Carbon Disulfide	75-15-0	60	ug/l	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Carbon Tetrachloride Chlorobenzene	56-23-5 108-90-7	5 5	ug/l ug/l	<5 U <25 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U
Chloroethane	75-00-3	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 UJ	<2.5 U	<2.5 U
Chloroform Chloromethane	67-66-3 74-87-3	7	ug/l ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Cis-1,2-Dichloroethene	156-59-2	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Cis-1,3-Dichloropropene	10061-01-5		ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Cymene Dibromochloromethane	99-87-6 124-48-1	5 50	ug/l ug/l	<25 U <5 U	<2.5 U <0.5 U	0.7 J <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	1.2 J <0.5 U	<2.5 U <0.5 U	2 J <0.5 ∪	<2.5 U <0.5 U	<2.5 U <0.5 U	0.76 J <0.5 ∪	0.86 J <0.5 U	0.71 J <0.5 ∪	<2.5 U <0.5 U
Dibromomethane	74-95-3	5	ug/l	<50 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Dichlorodifluoromethane Diethyl Ether (Ethyl Ether)	75-71-8 60-29-7	5 NS	ug/l	<50 U <25 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 U	<5 U <2.5 UJ	<5 U <2.5 UJ	<5 U <2.5 U	<5 U <2.5 U
Ethylbenzene	100-41-4	5	ug/l ug/l	890	<2.5 U	4	5.8	<2.5 U	<2.5 0 41	3.2	16	<2.5 U	<2.5 0 6.3	<2.5 U	<2.5 U	5.5	4.8	4.9	2.7
Hexachlorobutadiene	87-68-3	0.5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Isopropylbenzene (Cumene) M,P-Xylene	98-82-8 179601-23-	5 1 5	ug/l ug/l	190 2,300	3 16	3.5 14	3.2 12	5.2 19	22 70	8.3 2.3 J	26 J 32	18 J 36	17 2 J	2.4 J 1.1 J	2.1 J 0.92 J	6 7.3	5.8 5.9	7.1 12	3.2 5.2
Methyl Ethyl Ketone (2-Butanone)	78-93-3	50	ug/l	<50 U	<5 UJ	21 J	<5 U	<5 U	27	<5 U	<5 UJ	13 J	<5 U	4.6 J	4.7 J	<5 U	<5 U	<5 U	<5 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	NS 5	ug/l	<50 U <25 U	1.5 J	<5 U	<5 U	1.7 J	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U	<5 U
Methylene Chloride Naphthalene	75-09-2 91-20-3	5 10	ug/l ug/l	<26 U	1 J <2.5 U	<2.5 U 3	0.92 J <2.5 ∪	<2.5 U <2.5 U	<2.5 U 1.4 J	<2.5 U <2.5 U	<2.5 U 1.6 J	0.79 J 0.86 J	<2.5 U 1 J	<2.5 U 0.96 J	<2.5 U 0.87 J	1.1 J 0.77 J	0.88 J 0.91 J	<2.5 U 0.99 J	<2.5 U 0.92 J
n-Butylbenzene	104-51-8	5	ug/l	25	<2.5 U	0.93 J	<2.5 U	<2.5 U	0.7 J	<2.5 U	1.4 J	<2.5 U	3.2	0.94 J	0.91 J	1 J	1.2 J	0.71 J	<2.5 U
n-Propylbenzene o-Xylene (1,2-Dimethylbenzene)	103-65-1 95-47-6	5	ug/l ug/l	370 410	2.8 J 2 J	5.7 J 1.9 J	2.7 1.5 J	4.5 2.1 J	23 7.5	9.5 <2.5 U	37 J 3.7	19 J 4.2	40 <2.5 U	6.5 <2.5 ∪	6.1 <2.5 U	13 0.78 J	13 <2.5 U	13 1.3 J	6.2 <2.5 U
Sec-Butylbenzene	135-98-8	5	ug/l	18 J	<2.5 U	0.83 J	<2.5 U	<2.5 U	0.93 J	0.84 J	1.9 J	<2.5 U	3.5	0.92 J	0.86 J	1.4 J	1.6 J	1.0 J	0.7 J
Styrene	100-42-5	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U
T-Butylbenzene Tert-Butyl Methyl Ether	98-06-6 1634-04-4	5 10	ug/l ug/l	<25 U <25 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Tetrachloroethene (PCE)	127-18-4	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Toluene Total 1,2-Dichloroethene (Cis and Trans)	108-88-3 540-59-0	5 NS	ug/l	130 <25 U	0.7 J <2.5 U	1 J <2.5 U	<2.5 U <2.5 U	0.79 J <2.5 U	1.2 J <2.5 ∪	<2.5 U <2.5 U	<2.5 U <2.5 U	0.74 J <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Total Tylenes		NS 5	ug/l ug/l	25 0 2,700	<2.5 U 18 J	<2.5 U 16 J	<2.5 U 14 J	<2.5 U 21 J	<2.5 U 78	<2.5 U 2.3 J	<2.5 U 36	<2.5 U 40	<2.5 U 2 J	<2.5 U 1.1 J	<2.5 U 0.92 J	<2.5 U 8.1 J	<2.5 U 5.9	<2.5 U 13 J	<2.5 0 5.2
Total, 1,3-Dichloropropene (Cis And Trans)	542-75-6	0.4	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	156-60-5 10061-02-6	5 0.4	ug/l ug/l	<25 U <5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U
Trans-1,4-Dichloro-2-Butene	110-57-6	5	ug/l	<25 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 UJ	<2.5 U
Trichloroethene (TCE)	79-01-6	5	ug/l	<5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U	<0.5 U
Trichlorofluoromethane Vinyl Acetate	75-69-4 108-05-4	5 NS	ug/l ug/l	<25 U <50 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 U <5 U	<2.5 UJ <5 U	<2.5 UJ <5 U	<2.5 U <5 U	<2.5 U <5 U
Vinyl Chloride	75-01-4	2	ug/l	<10 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<5 0 <1 U	<1 U	<1 U	<1 U	<1 U	<1 U
			<u> </u>																

Table 1 Quarterly Groundwater Monitoring Report Groundwater Sample Analytical Results

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002

	Sampling Event Baseline Quarter 1 Quarter 2 Quarter 3 Quarter 3 Baseline Baseline Quarter 1 Quarter 2 Quarter 2 Quarter 3 Quarter 3 Auguster 3														
			Sampling Event	Baseline	Quarter 1	Quarter 2	Quarter 3	Quarter 3	Baseline	Baseline	Quarter 1	Quarter 2	Quarter 2	Quarter 3	Quarter 4
	CAS	NYSDEC	Location	MW-3	MW-3	MW-3	MW-3	MW-3	MW-4						
Analyte	Number	SGVs	Sample Name	MW03_100721	MW-3_102122	MW-3_012623	MW-3_042623	DUP01_042623	MW04_100721	GWDUP01_100721	MW-4_102122	MW-4_012623	DUP01_012623	MW-4_042623	MW-4_072723
			Sample Date Unit	10/07/2021 Result	10/21/2022 Result	01/26/2023 Result	04/26/2023 Result	04/26/2023 Result	10/07/2021 Result	10/07/2021 Result	10/21/2022 Result	01/26/2023 Result	01/26/2023 Result	04/26/2023 Result	07/27/2023 Result
Volatile Organic Compounds			Onit	ricourt	Hoodit	Hoodar	Hoodit	noour	Hobalt	nosur	Hobalt	Hobalt	ricourt	Hoodit	ricodit
1,1,1,2-Tetrachloroethane	630-20-6	5	ug/l	<2.5 U											
1,1,1-Trichloroethane	71-55-6	5	ug/l	<2.5 U											
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	79-34-5 79-00-5	5	ug/l	<0.5 U <1.5 U											
1,1-Dichloroethane	75-34-3	5	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<1.5 U	<1.5 U	<2.5 U	<1.5 U	<2.5 U	<1.5 U	<2.5 U	<2.5 U
1,1-Dichloroethene	75-35-4	5	ug/l	<0.5 U											
1,1-Dichloropropene	563-58-6	5	ug/l	<2.5 U											
1,2,3-Trichlorobenzene	87-61-6	5	ug/l	<2.5 U											
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene	96-18-4 95-93-2	0.04 5	ug/l ug/l	<2.5 U 2	<2.5 U <2 U										
1,2,4-Trichlorobenzene	120-82-1	5	ug/l	<2.5 U											
1,2,4-Trimethylbenzene	95-63-6	5	ug/l	<2.5 U											
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	ug/l	<2.5 U											
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	0.0006	ug/l	<2 U											
1,2-Dichlorobenzene 1,2-Dichloroethane	95-50-1 107-06-2	3 0.6	ug/l	<2.5 U <0.5 U											
1,2-Dichloropropane	78-87-5	1	ug/l ug/l	<1 U	<1 U	<1 U	<1 U	<0.5 U	<1 U	<1 U	<1 U	<0.5 U	<0.5 0 <1 U	<1 U	<0.5 0 <1 U
1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	5	ug/l	<2.5 U											
1,3-Dichlorobenzene	541-73-1	3	ug/l	<2.5 U											
1,3-Dichloropropane	142-28-9	5	ug/l	<2.5 U											
1,4-Dichlorobenzene 1,4-Diethyl Benzene	106-46-7 105-05-5	3 NS	ug/l	<2.5 U 2.1 J	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U	<2.5 U 5.3	<2.5 U 5.3 J	<2.5 U <2 U				
1,4-Dietnyl Benzene 1,4-Dioxane (P-Dioxane)	123-91-1	0.35	ug/l ug/l	<250 UJ	<2 0 <250 U	<2 0 <250 U	<2 U <250 U	<20 <250 U	5.3 <250 UJ	5.3 J <250 UJ	<2 0 <250 U	<2 U <250 U	<2 U <250 U	<2 U <250 U	<2 U <250 U
2,2-Dichloropropane	594-20-7	5	ug/l	<2.5 U											
2-Chlorotoluene	95-49-8	5	ug/l	<2.5 U											
2-Hexanone (MBK)	591-78-6	50	ug/l	<5 UJ	<5 U	<5 U	<5 U	<5 U	<5 UJ	<5 UJ	<5 U				
4-Chlorotoluene 4-Ethyltoluene	106-43-4 622-96-8	5 NS	ug/l	<2.5 U 0.9 J	<2.5 U <2 U	<2.5 U	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U						
Acetone	67-64-1	50	ug/l ug/l	0.9 J 2.9 J	<2 U 1.8 J	<2 U <5 U									
Acrylonitrile	107-13-1	5	ug/l	<5 UJ	<5 U	<5 U	<5 U	<5 U	<5 UJ	<5 UJ	<5 U				
Benzene	71-43-2	1	ug/l	0.16 J	<0.5 U	<0.5 U	<0.5 U	<0.5 U	0.17 J	0.2 J	<0.5 U				
Bromobenzene	108-86-1	5	ug/l	<2.5 U											
Bromochloromethane Bromodichloromethane	74-97-5	5 50	ug/l	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U	<2.5 U	<2.5 U <0.5 U	<2.5 U <0.5 U	<2.5 U
Bromoform	75-27-4 75-25-2	50	ug/l ug/l	<0.5 U <2 U	<0.5 U	<0.5 U <2 U									
Bromomethane	74-83-9	5	ug/l	<2.5 U											
Carbon Disulfide	75-15-0	60	ug/l	<5 U											
Carbon Tetrachloride	56-23-5	5	ug/l	<0.5 U											
Chlorobenzene Chloroethane	108-90-7 75-00-3	5 5	ug/l ug/l	<2.5 U <2.5 U											
Chloroform	67-66-3	7	ug/l	<2.5 U											
Chloromethane	74-87-3	5	ug/l	<2.5 U											
Cis-1,2-Dichloroethene	156-59-2	5	ug/l	<2.5 U											
Cis-1,3-Dichloropropene	10061-01-5 99-87-6	0.4 5	ug/l	<0.5 U <2.5 U											
Cymene Dibromochloromethane	124-48-1	50	ug/l ug/l	<0.5 U											
Dibromomethane	74-95-3	5	ug/l	<5 U											
Dichlorodifluoromethane	75-71-8	5	ug/l	<5 U											
Diethyl Ether (Ethyl Ether)	60-29-7	NS	ug/l	<2.5 U											
Ethylbenzene Hexachlorobutadiene	100-41-4 87-68-3	5 0.5	ug/l ug/l	4.8 <2.5 ∪	<2.5 U <2.5 U										
Isopropylbenzene (Cumene)	98-82-8	5	ug/l	3.8	<2.5 U										
M,P-Xylene	179601-23-1	5	ug/l	<2.5 U											
Methyl Ethyl Ketone (2-Butanone)	78-93-3	50	ug/l	<5 U	<5 UJ	<5 U	<5 UJ	<5 U	<5 U	<5 U	<5 U				
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	NS 5	ug/l	<5 U											
Methylene Chloride Naphthalene	75-09-2 91-20-3	10	ug/l ug/l	<2.5 U 2 J	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U 0.95 J	<2.5 U <2.5 U					
n-Butylbenzene	104-51-8	5	ug/l	<2.5 U	0.88 J	0.87 J	<2.5 U								
n-Propylbenzene	103-65-1	5	ug/l	9.4 J	<2.5 U	<2.5 UJ	<2.5 U								
o-Xylene (1,2-Dimethylbenzene)	95-47-6	5	ug/l	<2.5 U											
Sec-Butylbenzene	135-98-8	5	ug/l	<2.5 U	3	3	<2.5 U								
Styrene T-Butylbenzene	100-42-5 98-06-6	5 5	ug/l ug/l	<2.5 U <2.5 U											
Tert-Butyl Methyl Ether	1634-04-4	10	ug/l	<2.5 U											
Tetrachloroethene (PCE)	127-18-4	5	ug/l	<0.5 U											
Toluene	108-88-3	5	ug/l	<2.5 U											
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l	<2.5 U											
Total Xylenes Total, 1,3-Dichloropropene (Cis And Trans)	1330-20-7 542-75-6	5 0.4	ug/l ug/l	<2.5 U <0.5 U											
Trans-1,2-Dichloroethene	542-75-6 156-60-5	0.4 5	ug/l	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U
Trans-1,3-Dichloropropene	10061-02-6	0.4	ug/l	<0.5 U											
Trans-1,4-Dichloro-2-Butene	110-57-6	5	ug/l	<2.5 U											
Trichloroethene (TCE)	79-01-6	5	ug/l	<0.5 U											
Trichlorofluoromethane	75-69-4	5	ug/l	<2.5 U											
Vinyl Acetate Vinyl Chloride	108-05-4 75-01-4	NS 2	ug/l ug/l	<5 U <1 U											
they onlong	, 5-01-4	4	ugn	<1 U	~10	<1 U	<1 U	×10	<1 U	×10	×10	~1.0	×1 0	×1 U	~10

Page 3 of 4

ATTACHMENT A

NYSDEC Correspondence

27-01 Jackson Avenue Long Island City, New York NYSDEC BCP Site No.: C241209 Langan Project No.: 170472002

Notes:

CAS - Chemical Abstract Service NS - No standard ug/I - microgram per liter NA - Not analyzed RL - Reporting limit <RL - Not detected

Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operation Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water and published addenda (herein collectively referenced as "NYSDEC SGVs").

Qualifiers:

J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.

U - The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Exceedance Summary:

10 - Result exceeds NYSDEC SGVs

Caroline Devin

From:	Caroline Devin
Sent:	Wednesday, November 8, 2023 5:18 PM
То:	Caroline Devin
Subject:	FW: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

From: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Sent: Friday, October 13, 2023 10:10 AM
To: Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>; Obligado, Andre A (DEC) <<u>andre.obligado@dec.ny.gov</u>>
Subject: [External] RE: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

Good Morning Lexi: NYSDEC has no objections to this change in the sampling protocol as the MW-4 groundwater samples have shown non-detect for 4 consecutive quarters.

BTW How far has the on-site construction progressed?

Regards, Shaun Shaun Bollers Assistant Environmental Engineer, Division of Environmental Remediation New York State Department of Environmental Conservation 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | <u>shaun.bollers@dec.ny.gov</u>

www.dec.ny.gov

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Wednesday, October 11, 2023 3:12 PM
To: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: RE: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon Shaun,

I hope you are doing well!

We are planning to schedule the next quarterly sampling event at 27-01 Jackson Avenue for the week of October 23rd. As noted in the Q4 Off-Site Quarterly GW Monitoring Report, groundwater results from MW-4

have been non-detect for consecutive quarters and we are requesting to conduct further monitoring only in MW-1 and MW-2.

Please let us know if you have any objections to this plan.

Thank you,

Lexi Haley Senior Staff Engineer

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 File Sharing Link www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

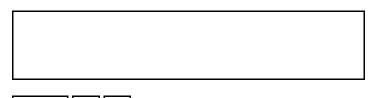
From: Lexi Haley
Sent: Friday, September 15, 2023 1:58 PM
To: 'Bollers, Shaun (DEC)' <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: 27-01 Jackson Avenue (C241209) - Q4 Off-Site Quarterly GW Monitoring Report

Good afternoon Shaun,

Please see below for a link to the quarterly sampling report for 27-01 Jackson Avenue. Please note that, since groundwater results from MW-4 have been non-detect for consecutive quarters, we are requesting to conduct further monitoring only in MW-1 and MW-2.

https://clients.langan.com/Sharing/filesharing/ViewPosted?transactionHash=1122680310

Let us know if you have any questions.


Have a great weekend,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u>

Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

Ali Reach

To: Subject: Lexi Haley RE: 27-01 Jackson Avenue Off-site (S241209) - Off-Site Well Monitoring Program Meeting

From: Bollers, Shaun (DEC) < shaun.bollers@dec.ny.gov</pre>

Sent: Tuesday, August 8, 2023 10:30 AM

To: Lexi Haley <<u>lhaley@langan.com</u>>

Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Obligado, Andre A (DEC) <<u>andre.obligado@dec.ny.gov</u>>; Kenney, Julia M (HEALTH) <<u>julia.kenney@health.ny.gov</u>>

Subject: [External] RE: 27-01 Jackson Avenue Off-site (S241209) - Off-Site Well Monitoring Program Meeting

Lexi:

As discussed during our telecon last Friday 8/5 this change in sampling protocol for the 27-01 Jackson Avenue Off-site site S241209 is acceptable. There is no need to replace MW-3.

Thanks,

Shaun Bollers

Assistant Environmental Engineer, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | <u>shaun.bollers@dec.ny.gov</u>

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Tuesday, August 8, 2023 9:34 AM
To: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good morning Shaun,

As discussed during our call on Friday, monitoring well MW-3 (located along 43rd Avenue) was destroyed during installation of utilities beneath the sidewalk and was not able to be sampled from during the Q4 event. In

the previous three quarters of groundwater monitoring, VOC concentrations were non-detect in samples collected from MW-3. As such, we are requesting to stop monitoring at MW-3.

We will continue to monitor VOC concentrations in groundwater from monitoring wells MW-1, MW-2, and MW-4 on a quarterly basis.

Thank you,

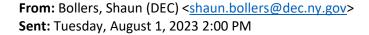
Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> <u>www.langan.com</u>

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

From: Lexi Haley
Sent: Tuesday, August 1, 2023 2:13 PM
To: 'Bollers, Shaun (DEC)' <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting


Thanks Shaun – I will send out the meeting invite for Friday.

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

To: Lexi Haley <<u>lhaley@langan.com</u>> Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>> Subject: [External] RE: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

Hi Lexy: Friday 8/4 would be fine.

Shaun

Shaun Bollers

Assistant Environmental Engineer, Division of Environmental Remediation **New York State Department of Environmental Conservation** 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4096 | F: (718) 482-6358 | <u>shaun.bollers@dec.ny.gov</u>

www.dec.ny.gov | III | III

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Tuesday, August 1, 2023 11:38 AM
To: Bollers, Shaun (DEC) <<u>shaun.bollers@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: 27-01 Jackson Avenue (C241209) - Off-Site Well Monitoring Program Meeting

Hi

Good morning Shaun,

Brian and I would like to set up a call with you to discuss the off-site well monitoring program at 27-01 Jackson Avenue (BCP Site No. C241209). We are available between 12 pm and 2:30 pm on Thursday (8/3) and between 11 am and 12 pm on Friday (8/4). Do either of these time slots work for you? If not, we can schedule something for next week.

Thank you,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u>

Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor New York, NY 10001-2727 www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

Lexi Haley

From:	Salazar, Marlen C (DEC) <marlen.salazar@dec.ny.gov></marlen.salazar@dec.ny.gov>
Sent:	Thursday, September 19, 2024 2:52 PM
То:	Lexi Haley; Kimberly Semon; Brian Gochenaur
Cc:	aaron.shirian@lionsgroupnyc.com; O'Connell, Jane H (DEC); Maycock, Cris-Sandra (DEC); McLaughlin,
	Scarlett E (HEALTH); Kenney, Julia M (HEALTH)
Subject:	[External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report

Hi Langan Team,

I am reiterating here what was discussed in today's meeting re: the request to discontinue groundwater monitoring at the referenced site.

NYSDEC has denied the request to discontinue quarterly groundwater monitoring. Groundwater monitoring must continue at the stated frequency of the OSMP, i.e. quarterly. While the data that you have shown us appears satisfactory, we do not have enough data to be confident that these numbers will not rebound and spike in subsequent quarters. It is for that reason that groundwater monitoring is to continue. As mentioned in the email below denying the request, this request can be re-evaluated again at the time of submission of the 2024-2025 PRR in late May. This allows for three more quarters of groundwater sampling events to show asymptotic reduction in groundwater concentrations of VOCs.

Please reach out if you have further questions.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

From: Salazar, Marlen C (DEC)

Sent: Thursday, September 12, 2024 1:14 PM

To: Lexi Haley < Ihaley@langan.com>

Cc: aaron.shirian@lionsgroupnyc.com; Kimberly Semon <ksemon@langan.com>; Brian Gochenaur <bgochenaur@Langan.com>; O'Connell, Jane H (DEC) <jane.oconnell@dec.ny.gov>; Maycock, Cris-Sandra (DEC) <crissandra.maycock@dec.ny.gov>; McLaughlin, Scarlett E (HEALTH) <scarlett.mclaughlin@health.ny.gov>; Kenney, Julia M (HEALTH) <julia.kenney@health.ny.gov>

Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report

Hi Lexi,

The New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) have reviewed the 8th quarterly groundwater sampling report for 27-01 Jackson Avenue – Off-site (site no. S241209) prepared by Langan Engineering, Environmental Surveying, Landscape Architecture and Geology D.P.C. on behalf of 2701 Jackson Avenue LLC. The request to terminate the groundwater monitoring program at the site has been **denied** for the following reasons:

- 1. Groundwater VOC concentrations in MW-1 and MW-2 are still consistently above AWQSGVs
- 2. NYSDEC and NYSDOH would like to see at least two consecutive quarters of non-detect concentrations or concentrations below the AWQSGVs before considering termination of the groundwater monitoring program.
 - a. Additionally, NYSDEC and NYSDOH would like to continue monitoring until the 2024-2025 PRR is submitted after which Langan may again request to terminate the groundwater monitoring program with supporting data as part of the PRR conclusion for NYSDEC and NYSDOH review.

Please let me know if you have any questions.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

Conservation

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Tuesday, September 10, 2024 5:55 PM
To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>; Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Groundwater Monitoring Report

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon Marlen,

Please see below for a link to the 8th quarterly sampling report for 27-01 Jackson Avenue. As discussed in our previous conversation, overall result trends for each monitoring well show bulk reduction in petroleum-related VOCs, and asymptotic levels appear to have been achieved. Further decline of contaminant of concern concentrations is not anticipated; therefore, as part of the 8th quarterly groundwater monitoring report, Langan is requesting the discontinuation of groundwater monitoring at the site.

https://clients.langan.com/Sharing/filesharing/ViewPosted?transactionHash=-1672278986

Name	Туре	Size

2024-08 - Q8 Groundwater	.pdf	12.76 MB
Monitoring Letter		
Report.pdf		

Let us know if you have any questions.

Thank you,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> <u>www.langan.com</u>

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

From: Lexi Haley
Sent: Thursday, August 22, 2024 9:56 AM
To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>; Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

Understood, thank you Marlen. We anticipate having the report ready for your review by the end of next week.

Best,

Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u> www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA From: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Sent: Thursday, August 22, 2024 7:43 AM
To: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: [External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

You could do both honestly (like a zoom-in on one of the scales), but don't worry about it too much I suppose. The tables will have all the data regardless which I can refer to.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

Conservation

From: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>
Sent: Thursday, August 22, 2024 7:40 AM
To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>; Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

```
ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or
unexpected emails.
```

Hi Marlen – We typically show the wells on different scales in the report, we just wanted to show all the graphs on the same scale to demonstrate that asymptotic levels were achieved. I felt like the zoomed in scale on some and not others illustrated a skewed perspective, but we can change it back for the report. Thx

Brian Gochenaur, QEP Associate Principal

LANGAN

Direct: 212.479.5479 Mobile: 347.320.2756 <u>File Sharing Link</u> www.langan.com

L		

From: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Sent: Thursday, August 22, 2024 7:35 AM
To: Lexi Haley <<u>lhaley@langan.com</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: [External] RE: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

Hi Lexi,

I'll wait to receive the Q4 groundwater monitoring report. For the graphs, is it possible to use a smaller scale on the yaxis for all wells except MW-2? The concentrations of MW-1, MW-3, and MW-4 are all much less than 500 ug/L so the large y-axis scale makes getting any sort of visual information from the graphs a bit difficult.

Roughly around when can I expect to receive this report too? I'll keep an eye out for it.

Best, Marlen

Marlen Salazar

Pronouns: She/her/hers Engineer Trainee, Superfund and Brownfield Cleanup Section A, Region 2, Division of Environmental Remediation

New York State Department of Environmental Conservation 47-40 21st Street, Long Island City, New York 11101 P: 718-482-7129 | marlen.salazar@dec.ny.gov

From: Lexi Haley <<u>lhaley@langan.com</u>>
Sent: Wednesday, August 21, 2024 3:36 PM
To: Salazar, Marlen C (DEC) <<u>Marlen.Salazar@dec.ny.gov</u>>
Cc: Brian Gochenaur <<u>bgochenaur@Langan.com</u>>; Kimberly Semon <<u>ksemon@langan.com</u>>
Subject: 27-01 Jackson Avenue - Off-Site (S241209) - Q8 Results

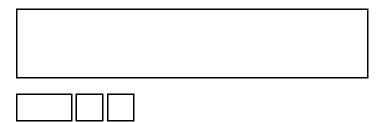
ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon Marlen,

We have completed Q8 of groundwater sampling at the 27-01 Jackson Avenue site. The overall result trends for each monitoring well are attached for your review, which show a bulk reduction in petroleum-related VOCs to asymptotic levels over the course of the monitoring program. The trends will be included in the forthcoming quarterly report for the site.

Considering VOCs were non-detect in wells MW-3 and MW-4 for consecutive quarters, DEC previously approved the discontinuation of groundwater monitoring at these locations. Groundwater monitoring has continued at MW-1 and MW-2. Based on the Q8 analytical data, total VOCs and total BTEX concentrations have decreased by 95% and 100%, respectively, in MW-1 and by over 99% in MW-2. Based on review of the overall analytical data provided over the course of the monitoring program, it appears that the remedy was effective in demonstrating a bulk reduction of these contaminants. Asymptotic levels appear to have been achieved, and further decline of contaminant of concern concentrations is not anticipated. Therefore, as part of our forthcoming quarterly groundwater monitoring report, Langan will be requesting the discontinuation of groundwater monitoring at the site.

Thank you,


Lexi Haley Senior Staff Engineer

LANGAN

Direct: 212.479.5499 x5656 Mobile: 332.208.2127 <u>File Sharing Link</u>

Phone: 212.479.5400 Fax: 212.479.5444 360 West 31st Street 8th Floor New York, NY 10001-2727 www.langan.com

NEW YORK NEW JERSEY CONNECTICUT MASSACHUSETTS PENNSYLVANIA VIRGINIA WASHINGTON, DC OHIO ILLINOIS NORTH CAROLINA TENNESSEE FLORIDA TEXAS ARIZONA COLORADO UTAH WASHINGTON CALIFORNIA ATHENS CALGARY DUBAI LONDON PANAMA

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited. This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender instance or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender instance or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying

of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

ATTACHMENT B

Daily Site Observation Report

LANGAN

PROJECT No.:	170472002			
PROJECT:	27-01 Jackson Avenue	CLIENT: 2701 Jackson Avenue LLC	DATE: 04/16/2025	
LOCATION:	Long Island City, NY			
CONTRACTOR	Lions Group NYC		LANGAN REP. :	Olivia O'Donnell
CONTRACTOR N/A	S EQUIPMENT:	PRESENT AT SITE: Olivia O'Donnell – Langan		

OBSERVATIONS, DISCUSSIONS, TEST RESULTS, ETC.:

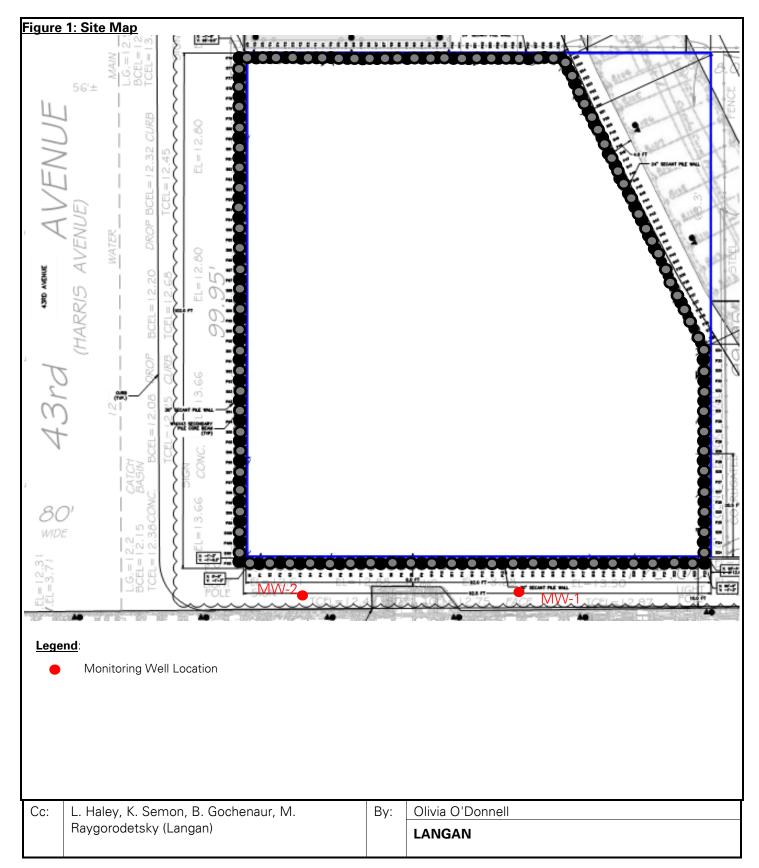
Langan was present to observe environmental protocols in accordance with the January 2021 NYSDEC approved Off-Site Site Management Plan (OSMP) for BCP site C241209 at 27-01 Jackson Avenue (Block 432, Lot 21). Observed activities were as follows:

Site Activities

 Langan used a peristaltic pump to purge and sample groundwater monitoring wells MW-1 and MW-2 along the Jackson Avenue sidewalk. Purged groundwater was screened for odors, sheen, and organic vapors using a photoionization detector (PID). Odors, sheen or PID readings above background levels were not observed in MW-1 and MW-2. Purged groundwater was containerized in a 55-gallon New York State Department of Transportation (NYSDOT)-approved drum for future disposal.

Sampling

 Langan collected two groundwater samples (plus quality assurance/quality control [QA/QC] samples) for laboratory analysis of NYSDEC Part 375/target compound list (TCL) volatile organic compounds (VOCs). The samples were submitted to Pace Analytical (Pace) of Westborough, Massachusetts, a New York State Department of Health (NYSDOH) Environmental Laboratory Accredited Program (ELAP)-certified laboratory under standard chain-of-custody protocols.


Anticipated Activities

• Further assessment of groundwater sample analytical results will determine future site activities, if required by the NYSDEC.

Cc:	L. Haley, K. Semon, B. Gochenaur, M. Raygorodetsky (Langan)	By:	Olivia O'Donnell LANGAN

LANGAN

SITE OBSERVATION REPORT

LANGAN

SITE OBSERVATION REPORT

SITE PHOTOGRAPHS

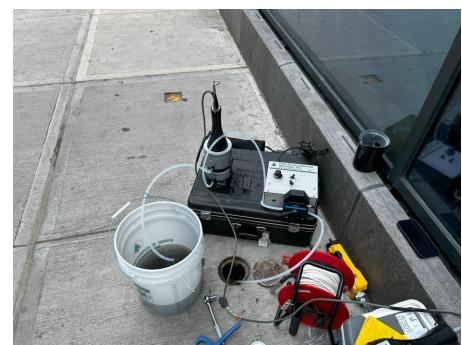


Photo 1: View of Langan purging monitoring well MW-2 along the Jackson Avenue sidewalk (facing east).

Cc:	L. Haley, K. Semon, B. Gochenaur, M.	By:	Olivia O'Donnell
	Raygorodetsky (Langan)		LANGAN

ATTACHMENT C

Well Purging and Sampling Logs

Project Information	1	Well Info	rmation	Eq	uipment Informati	ion		Sampling Condi	tions	Sampling Informa	ation
Project Name:	27-01 Jackson Ave	Well No:	MW-1	Water Qua	lity Device Model:	Horiba U-52		Weather:	Partly Cloudy, 48°F	• •	MW-1_041625
Project Number:	170472002	Well Depth:	19 ft		Pine Number:	216089	Backg	ground PID (ppm):	0.0	Sample(s):	DUP01_041625
Site Location:	Long Island City, NY	Well Diameter:	2-inch	Pump	Make and Model:	Peristaltic Pump	PID Beneath	n Inner Cap (ppm):	0.0		MS/MSD
Sampling	Olivia O'Donnell	Well Screen	9 ft		Pine Number:	23014	Ρι	Imp Intake Depth:	18.00	Sample Date:	4/16/2025
	Olivia O Donneli	Interval:	19 ft		Tubing Diameter:			ater Before Purge:	15.3	Sample Time:	11:20
				STABILIZAT	ION = 3 successive	e readings within l	imits				
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate		NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative Discharge		
						-			Volume (Gal)		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <		Volume (Gal)		
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/l	0.33 ft	<0.13 gpm)		color, odor etc.	
					BE	GIN PURGING					
10:45	15.32	6.47	21	1.830	35.9	0.00	15.70	N/A	0.25		N
10:50	15.60	6.65	20	1.820	31.7	0.00	16.30	0.05	0.50		Ν
10:55	16.01	6.89	-30	1.830	23.0	0.00	16.80	0.05	0.75		N
11:00	16.07	6.98	-37	1.860	22.1	0.00	17.00	0.05	1.00	Clear to gray color, odorless;	N
11:05	16.09	7.04	-45	1.860	31.9	0.00	18.70	0.05	1.25	poor recharge	N
11:10	16.10	7.04	-46	1.850	31.8	0.00	18.90	0.05	1.50		Ν
11:15	16.08	7.00	-46	1.840	32.8	0.00	19.00	0.05	1.75		Y
2. Well and tubing d 3. PID = Photoioniza 4. PPM = Parts per r 5. pH = Hydrogen io	million	nches.	ow the top of well	casing.							

6. OKP = Oxidation-reduction potential, measured in millivolts (mV)
7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
8. DTW = Depth to water
9. mS/cm = milli-Siemens per centimeter
10. NTU = Nephelometric Turbidity Unit
11. N/A = Not Applicable

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 368 Ninth Avenue, 8th Floor, New York

evice Model: ine Number: e and Model: Pine Number: ng Diameter: URBIDITY ntu 10%) above 5 NTU	Horiba U-52 216089 Peristaltic Pump 23014 3/8-inch OD a DO mg/l (+/- 10%) above	PID Beneath Pu	Weather: pround PID (ppm): Inner Cap (ppm): imp Intake Depth: ater Before Purge: Flow Rate (gpm)	Partly Cloudy, 48°F 0.0 0.0 16.5 ft 13.85	Sample(s): Sample Date: Sample Time: NOTES	MW-2_041625 4/16/2025 13:35
e and Model: Pine Number: ng Diameter: URBIDITY ntu 10%) above	Peristaltic Pump 23014 3/8-inch OD a DO mg/l (+/- 10%) above	PID Beneath Pu Depth to Wa	n Inner Cap (ppm): Imp Intake Depth: ater Before Purge: Flow Rate	0.0 16.5 ft 13.85	Sample Date: Sample Time:	4/16/2025
Pine Number: ng Diameter: URBIDITY ntu 10%) above	23014 3/8-inch OD a DO mg/l (+/- 10%) above	Pu Depth to Wa DTW	imp Intake Depth: ater Before Purge: Flow Rate	16.5 ft 13.85	Sample Time:	
ng Diameter: URBIDITY ntu 10%) above	3/8-inch OD a DO mg/l (+/- 10%) above	Depth to Wa	ater Before Purge: Flow Rate	13.85	Sample Time:	
URBIDITY ntu 10%) above	a DO mg/l (+/- 10%) above	DTW	Flow Rate		•	13:35
ntu 10%) above	mg/l (+/- 10%) above				NOTES	
ntu 10%) above	mg/l (+/- 10%) above				NOTES	
10%) above	(+/- 10%) above	ft	(gpm)			
10%) above	(+/- 10%) above	-				
				Cumulative Discharge		Stabilized?
5 NTU		Drawdown		Volume (Gal)		
	0.5 mg/l	< 0.33 ft	(<0.13 gpm)		color, odor etc.	
	BEGIN PURGING			I	·	
16.1	1.45	N/A	N/A	0.30		N
9.2	1.37	N/A	0.03	0.45	-	N
7.2	1.11	N/A	0.03	0.60	1	N
4.8	1.33	N/A	0.03	0.75	-	N
3.8	1.21	N/A	0.03	0.90		N
2.2	1.14	N/A	0.03	1.05	Character and a standard set black	N
0.0	1.87	N/A	0.03	1.20	particulates in purged water	N
0.0	2.11	N/A	0.03	1.35		Ν
1.7	2.02	N/A	0.03	1.50	-	N
1.9	1.89	N/A	0.03	1.65		N
2.1	1.85	N/A	0.03	1.80		N
1.7	1.71	N/A	0.03	1.95		N
2.3	1.60	N/A	0.03	2.10		N
	4.8 3.8 2.2 0.0 0.0 1.7 1.9 2.1	4.8 1.33 3.8 1.21 2.2 1.14 0.0 1.87 0.0 2.11 1.7 2.02 1.9 1.89 2.1 1.85 1.7 1.71	4.8 1.33 N/A 3.8 1.21 N/A 2.2 1.14 N/A 0.0 1.87 N/A 0.0 2.11 N/A 1.7 2.02 N/A 1.9 1.89 N/A 2.1 1.85 N/A	4.8 1.33 N/A 0.03 3.8 1.21 N/A 0.03 2.2 1.14 N/A 0.03 0.0 1.87 N/A 0.03 0.0 2.11 N/A 0.03 1.7 2.02 N/A 0.03 1.9 1.89 N/A 0.03 2.1 1.85 N/A 0.03 1.7 0.02 N/A 0.03	4.8 1.33 N/A 0.03 0.75 3.8 1.21 N/A 0.03 0.90 2.2 1.14 N/A 0.03 1.05 0.0 1.87 N/A 0.03 1.05 0.0 2.11 N/A 0.03 1.20 0.0 2.11 N/A 0.03 1.35 1.7 2.02 N/A 0.03 1.50 1.9 1.89 N/A 0.03 1.65 2.1 1.85 N/A 0.03 1.65 1.7 1.71 N/A 0.03 1.65	4.8 1.33 N/A 0.03 0.75 3.8 1.21 N/A 0.03 0.90 2.2 1.14 N/A 0.03 1.05 0.0 1.87 N/A 0.03 1.20 0.0 2.11 N/A 0.03 1.50 1.7 2.02 N/A 0.03 1.65 2.1 1.89 N/A 0.03 1.65 2.1 1.85 N/A 0.03 1.65 1.7 1.71 N/A 0.03 1.65 1.7 1.71 N/A 0.03 1.65

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 368 Ninth Avenue, 8th Floor, New York

ATTACHMENT D

Laboratory Analytical Report

ANALYTICAL REPORT

Lab Number:	L2523357
Client:	Langan Engineering & Environmental 21 Penn Plaza 360 W. 31st Street, 8th Floor New York, NY 10001-2727
ATTN:	Kimberly Semon
Phone:	(212) 479-5486
Project Name:	27-01 JACKSON AVE
Project Number:	170472002
Report Date:	04/23/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:04232511:50

Project Name:27-01 JACKSON AVEProject Number:170472002

 Lab Number:
 L2523357

 Report Date:
 04/23/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2523357-01	MW-1_041625	WATER	LONG ISLAND CITY, QUEENS	04/16/25 11:20	04/16/25
L2523357-02	MW-2_041625	WATER	LONG ISLAND CITY, QUEENS	04/16/25 13:35	04/16/25
L2523357-03	DUP01_041625	WATER	LONG ISLAND CITY, QUEENS	04/16/25 00:00	04/16/25
L2523357-04	FB01_041625	WATER	LONG ISLAND CITY, QUEENS	04/16/25 09:45	04/16/25
L2523357-05	TB01_041625	WATER	LONG ISLAND CITY, QUEENS	04/16/25 00:00	04/16/25

Project Name: 27-01 JACKSON AVE Project Number: 170472002 Lab Number: L2523357 Report Date: 04/23/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:27-01 JACKSON AVEProject Number:170472002

 Lab Number:
 L2523357

 Report Date:
 04/23/25

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Cattlin Wallen Caitlin Walukevich

Title: Technical Director/Representative

Date: 04/23/25

, ace

ORGANICS

VOLATILES

		Serial_No	0:04232511:50
Project Name:	27-01 JACKSON AVE	Lab Number:	L2523357
Project Number:	170472002	Report Date:	04/23/25
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2523357-01 MW-1_041625 LONG ISLAND CITY, QUEENS	Date Collected: Date Received: Field Prep:	04/16/25 11:20 04/16/25 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260D 04/23/25 01:56 MJV		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

						Serial_No	0:04232511:50
Project Name:	27-01 JACKSON AVE				Lab Nu		L2523357
Project Number:	170472002				Report	Date:	04/23/25
··· , ····		SAMPL	E RESULT	5			04/20/20
Lab ID: Client ID: Sample Location:	L2523357-01 MW-1_041625 LONG ISLAND CITY, 0	QUEENS			Date Col Date Rec Field Pre	ceived:	04/16/25 11:20 04/16/25 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	Lab					
Trichloroethene		ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Tot	tal	ND		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethan	е	ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone 2-Hexanone		ND ND		ug/l	5.0 5.0	1.0 1.0	1
Bromochloromethane		ND		ug/l ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroetha	ne	ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
p-Chlorotoluene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropr	opane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1

ND

ND

1

1

0.70

0.70

2.5

2.5

ug/l

ug/l

p-Isopropyltoluene

Naphthalene

		Serial_No:04232511:50			
Project Name:	27-01 JACKSON AVE	Lab Number:	L2523357		
Project Number:	170472002	Report Date:	04/23/25		
	SAMPLE RESULTS				
Lab ID:	L2523357-01	Date Collected:	04/16/25 11:20		
Client ID:	MW-1_041625	Date Received:	04/16/25		
Sample Location:	LONG ISLAND CITY, QUEENS	Field Prep:	Not Specified		

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	103	70-130	

Pace

	Serial_No:04232511:50				
Project Name:	27-01 JACKSON AVE	Lab Number:	L2523357		
Project Number:	170472002	Report Date:	04/23/25		
	SAMPLE RESULTS				
Lab ID: Client ID: Sample Location:	L2523357-02 MW-2_041625 LONG ISLAND CITY, QUEENS	Date Collected: Date Received: Field Prep:	04/16/25 13:35 04/16/25 Not Specified		
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260D 04/23/25 02:22 MJV				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	2.7		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

						Serial_No	0:04232511:50
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2523357
Project Number:	170472002				Report	Date:	04/23/25
	110412002	SAMPL		S	Report	Duit	04/20/20
Lab ID:	L2523357-02				Date Co	llected:	04/16/25 13:35
Client ID:	MW-2_041625				Date Re		04/16/25
Sample Location:	LONG ISLAND CITY,	QUEENS			Field Pre		Not Specified
						•	•
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westborough	Lab					
Trichloroethene		ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1
p/m-Xylene		5.2		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		5.2		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, To	tal	ND		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethan	e	ND		ug/l	5.0	1.0	1
Acetone		9.3		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroetha	ane	ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		0.70	J	ug/l	2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
p-Chlorotoluene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropr	ropane	ND		ug/l	2.5	0.70	1
Llovooblorobutodiono		ND		"	0.5	0.70	

ND

3.2

ND

0.92

ug/l

ug/l

ug/l

ug/l

J

1

1

1

1

0.70

0.70

0.70

0.70

2.5

2.5

2.5

2.5

Hexachlorobutadiene

Isopropylbenzene

p-Isopropyltoluene

Naphthalene

		Serial_No:04232511:50			
Project Name:	27-01 JACKSON AVE	Lab Number: L2523357			
Project Number:	170472002	Report Date: 04/23/25			
	SAMPLE RESULTS				
Lab ID:	L2523357-02	Date Collected: 04/16/25 13:35			
Client ID:	MW-2_041625	Date Received: 04/16/25			
Sample Location:	LONG ISLAND CITY, QUEENS	Field Prep: Not Specified			

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
/olatile Organics by GC/MS - Westborough Lab							
n-Propylbenzene	6.2		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	2.3	J	ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	21		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	3.3		ug/l	2.0	0.70	1	
p-Ethyltoluene	7.4		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	5.0		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	99	70-130	

Pace

		Serial_N	04232511:50
Project Name:	27-01 JACKSON AVE	Lab Number:	L2523357
Project Number:	170472002	Report Date:	04/23/25
	SAMPLE RESULTS		
Lab ID:	L2523357-03	Date Collected:	04/16/25 00:00
Client ID:	DUP01_041625	Date Received:	04/16/25
Sample Location:	LONG ISLAND CITY, QUEENS	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260D		
Analytical Date:	04/23/25 02:47		
Analyst:	MJV		
-			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					S	Serial_No	:04232511:50	
Project Name:	27-01 JACKSON AVE				Lab Nu	mber:	L2523357	
Project Number:	170472002				Report	Date:	04/23/25	
··· , ·····		SAMPL	E RESULTS	6			0-1/20/20	
Lab ID:	L2523357-03				Date Col	ected.	04/16/25 00:00	
Client ID:	DUP01_041625				Date Rec		04/16/25	
Sample Location:	LONG ISLAND CITY,	QUEENS			Field Pre		Not Specified	
	,					•		
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Tot	al	ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethan	e	ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroetha	ne	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropro	opane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

Pace

	Serial_No:0423			
Project Name:	27-01 JACKSON AVE	Lab Number: L2523357		
Project Number:	170472002	Report Date: 04/23/25		
	SAMPLE RESULTS			
Lab ID:	L2523357-03	Date Collected: 04/16/25 00:00		
Client ID:	DUP01_041625	Date Received: 04/16/25		
Sample Location:	LONG ISLAND CITY, QUEENS	Field Prep: Not Specified		

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
n-Propylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
p-Diethylbenzene	ND		ug/l	2.0	0.70	1		
p-Ethyltoluene	ND		ug/l	2.0	0.70	1		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1		
Ethyl ether	ND		ug/l	2.5	0.70	1		
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	101	70-130	

Pace

		Serial_N	0:04232511:50
Project Name:	27-01 JACKSON AVE	Lab Number:	L2523357
Project Number:	170472002	Report Date:	04/23/25
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2523357-04 FB01_041625 LONG ISLAND CITY, QUEENS	Date Collected: Date Received: Field Prep:	04/16/25 09:45 04/16/25 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260D 04/23/25 03:13 MJV		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		

			Serial_No:04232511:50			:04232511:50	
Project Name:	27-01 JACKSON AVE				Lab Nu	imber:	L2523357
Project Number:	170472002				Report	Date:	04/23/25
		SAMPI		S	Noport		07120120
Lab ID:	L2523357-04				Date Col	lloctod	04/16/25 09:45
Client ID:	FB01_041625				Date Col		04/16/25
Sample Location:	LONG ISLAND CITY,	QUEENS			Field Pre		Not Specified
Campio Locationi		4022.00				·P·	
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westborough	Lab					
Trichloroethene		ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, To	tal	ND		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethan	e	ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroetha	ane	ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
p-Chlorotoluene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropi	ropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
1							

ND

ND

ND

ug/l

ug/l

ug/l

2.5

2.5

2.5

0.70

0.70

0.70

1

1

1

Isopropylbenzene

p-Isopropyltoluene

Naphthalene

		Serial_No:04232511:50
Project Name:	27-01 JACKSON AVE	Lab Number: L2523357
Project Number:	170472002	Report Date: 04/23/25
	SAMPLE RESULTS	
Lab ID:	L2523357-04	Date Collected: 04/16/25 09:45
Client ID:	FB01_041625	Date Received: 04/16/25
Sample Location:	LONG ISLAND CITY, QUEENS	Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
n-Propylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
p-Diethylbenzene	ND		ug/l	2.0	0.70	1		
p-Ethyltoluene	ND		ug/l	2.0	0.70	1		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1		
Ethyl ether	ND		ug/l	2.5	0.70	1		
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	102	70-130	

Pace

		Serial_N	0:04232511:50
Project Name:	27-01 JACKSON AVE	Lab Number:	L2523357
Project Number:	170472002	Report Date:	04/23/25
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2523357-05 TB01_041625 LONG ISLAND CITY, QUEENS	Date Collected: Date Received: Field Prep:	04/16/25 00:00 04/16/25 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260D 04/23/25 03:38 MJV		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		

					Serial_No:04232511:50			
Project Name:	27-01 JACKSON AVE				Lab Nu	ımber:	L2523357	
Project Number:	170472002				Report	Date:	04/23/25	
-		SAMPI		5	•		0.,20,20	
Lab ID: Client ID:	L2523357-05 TB01_041625				Date Co Date Re		04/16/25 00:00 04/16/25	
Sample Location:	LONG ISLAND CITY, C	QUEENS			Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough I	_ab						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.17	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, To	tal	ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
- Dichlorodifluoromethan	e	ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroetha	ine	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropr	opane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	

ND

ug/l

2.5

0.70

1

Naphthalene

		Serial_No:04232511:50		
Project Name:	27-01 JACKSON AVE	Lab Number:	L2523357	
Project Number:	170472002	Report Date:	04/23/25	
	SAMPLE RESULTS			
Lab ID:	L2523357-05	Date Collected:	04/16/25 00:00	
Client ID:	TB01_041625	Date Received:	04/16/25	
Sample Location:	LONG ISLAND CITY, QUEENS	Field Prep:	Not Specified	

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
n-Propylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
p-Diethylbenzene	ND		ug/l	2.0	0.70	1		
p-Ethyltoluene	ND		ug/l	2.0	0.70	1		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1		
Ethyl ether	ND		ug/l	2.5	0.70	1		
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	103	70-130	

Pace

Project Name: 27-01 JACKSON AVE

Project Number: 170472002 Lab Number: L2523357 **Report Date:** 04/23/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: Analyst: TMS

04/22/25 22:46

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-05 Batch:	WG2057453-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Pace

Project Name: 27-01 JACKSON AVE

Project Number: 170472002 Lab Number: L2523357 **Report Date:** 04/23/25

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: Analyst: TMS

04/22/25 22:46

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s): 01-05	Batch:	WG2057453-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Pace

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

 Lab Number:
 L2523357

 Report Date:
 04/23/25

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:04/22/25 22:46Analyst:TMS

arameter	Result	Qualifier Units	s RL	MDL
platile Organics by GC/MS - W	estborough Lat	o for sample(s):	01-05 Batch	: WG2057453-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

	Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	102		70-130	

Pace

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2523357

Report Date: 04/23/25

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	/ RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborou	gh Lab Associa	ted sample(s):	01-05 Bat	ch: WG2057453-3 WG	2057453-4	
Methylene chloride	96		97	70-130	1	20
1,1-Dichloroethane	97		100	70-130	3	20
Chloroform	93		96	70-130	3	20
Carbon tetrachloride	85		89	63-132	5	20
1,2-Dichloropropane	95		97	70-130	2	20
Dibromochloromethane	83		84	63-130	1	20
1,1,2-Trichloroethane	92		91	70-130	1	20
Tetrachloroethene	99		100	70-130	1	20
Chlorobenzene	97		99	75-130	2	20
Trichlorofluoromethane	90		94	62-150	4	20
1,2-Dichloroethane	94		94	70-130	0	20
1,1,1-Trichloroethane	88		90	67-130	2	20
Bromodichloromethane	85		87	67-130	2	20
trans-1,3-Dichloropropene	78		78	70-130	0	20
cis-1,3-Dichloropropene	82		83	70-130	1	20
1,1-Dichloropropene	97		100	70-130	3	20
Bromoform	72		70	54-136	3	20
1,1,2,2-Tetrachloroethane	86		84	67-130	2	20
Benzene	96		99	70-130	3	20
Toluene	97		100	70-130	3	20
Ethylbenzene	95		98	70-130	3	20
Chloromethane	79		80	64-130	1	20
Bromomethane	80		86	39-139	7	20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2523357

Report Date: 04/23/25

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westbor	ough Lab Associate	ed sample(s):	01-05 Batc	h: WG2057453-3 WG208	57453-4	
Vinyl chloride	95		99	55-140	4	20
Chloroethane	100		100	55-138	0	20
1,1-Dichloroethene	90		93	61-145	3	20
trans-1,2-Dichloroethene	94		97	70-130	3	20
Trichloroethene	92		94	70-130	2	20
1,2-Dichlorobenzene	96		96	70-130	0	20
1,3-Dichlorobenzene	96		98	70-130	2	20
1,4-Dichlorobenzene	98		98	70-130	0	20
Methyl tert butyl ether	73		72	63-130	1	20
p/m-Xylene	100		100	70-130	0	20
o-Xylene	95		95	70-130	0	20
cis-1,2-Dichloroethene	94		98	70-130	4	20
Dibromomethane	90		90	70-130	0	20
1,2,3-Trichloropropane	93		89	64-130	4	20
Acrylonitrile	88		82	70-130	7	20
Styrene	95		95	70-130	0	20
Dichlorodifluoromethane	77		82	36-147	6	20
Acetone	77		77	58-148	0	20
Carbon disulfide	90		95	51-130	5	20
2-Butanone	86		81	63-138	6	20
Vinyl acetate	84		83	70-130	1	20
4-Methyl-2-pentanone	73		67	59-130	9	20
2-Hexanone	66		62	57-130	6	20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2523357

Report Date: 04/23/25

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recover Qual Limits	y RPD	RPD Qual Limits
olatile Organics by GC/MS - Westbord	ough Lab Associate	ed sample(s):	01-05 Batc	h: WG2057453-3 WC	G2057453-4	
Bromochloromethane	100		100	70-130	0	20
2,2-Dichloropropane	78		81	63-133	4	20
1,2-Dibromoethane	91		89	70-130	2	20
1,3-Dichloropropane	96		96	70-130	0	20
1,1,1,2-Tetrachloroethane	84		85	64-130	1	20
Bromobenzene	96		95	70-130	1	20
n-Butylbenzene	100		100	53-136	0	20
sec-Butylbenzene	100		100	70-130	0	20
tert-Butylbenzene	96		99	70-130	3	20
o-Chlorotoluene	99		100	70-130	1	20
p-Chlorotoluene	94		98	70-130	4	20
1,2-Dibromo-3-chloropropane	70		68	41-144	3	20
Hexachlorobutadiene	95		97	63-130	2	20
Isopropylbenzene	96		99	70-130	3	20
p-Isopropyltoluene	97		99	70-130	2	20
Naphthalene	82		81	70-130	1	20
n-Propylbenzene	98		100	69-130	2	20
1,2,3-Trichlorobenzene	90		90	70-130	0	20
1,2,4-Trichlorobenzene	91		92	70-130	1	20
1,3,5-Trimethylbenzene	97		98	64-130	1	20
1,2,4-Trimethylbenzene	95		97	70-130	2	20
1,4-Dioxane	62		58	56-162	7	20
p-Diethylbenzene	95		97	70-130	2	20

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

 Lab Number:
 L2523357

 Report Date:
 04/23/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westboroug	gh Lab Associat	ed sample(s)	: 01-05 Batch	n: WG2057453-3 WG2	2057453-4		
p-Ethyltoluene	98		100	70-130	2	20	
1,2,4,5-Tetramethylbenzene	87		88	70-130	1	20	
Ethyl ether	89		88	59-134	1	20	
trans-1,4-Dichloro-2-butene	79		75	70-130	5	20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	100	98	70-130
Toluene-d8	100	101	70-130
4-Bromofluorobenzene	94	94	70-130
Dibromofluoromethane	100	100	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: 27-01 JACKSON AVE

Project Number: 170472002 Lab Number: L2523357

Report Date: 04/23/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS Client ID: MW-1_041625	S - Westborou	ugh Lab A	ssociated sam	nple(s): 01-05	QC Batch ID: W	G2057453-6	WG2057453-7 Q0	C Samp	ble: L2523357-01
Methylene chloride	ND	10	11	110	10	100	70-130	10	20
1,1-Dichloroethane	ND	10	11	110	11	110	70-130	0	20
Chloroform	ND	10	11	110	10	100	70-130	10	20
Carbon tetrachloride	ND	10	10	100	9.8	98	63-132	2	20
1,2-Dichloropropane	ND	10	11	110	11	110	70-130	0	20
Dibromochloromethane	ND	10	9.3	93	9.0	90	63-130	3	20
1,1,2-Trichloroethane	ND	10	10	100	9.9	99	70-130	1	20
Tetrachloroethene	ND	10	11	110	11	110	70-130	0	20
Chlorobenzene	ND	10	11	110	11	110	75-130	0	20
Trichlorofluoromethane	ND	10	11	110	11	110	62-150	0	20
1,2-Dichloroethane	ND	10	10	100	10	100	70-130	0	20
1,1,1-Trichloroethane	ND	10	10	100	10	100	67-130	0	20
Bromodichloromethane	ND	10	9.9	99	9.7	97	67-130	2	20
trans-1,3-Dichloropropene	ND	10	8.9	89	8.6	86	70-130	3	20
cis-1,3-Dichloropropene	ND	10	9.0	90	8.8	88	70-130	2	20
1,1-Dichloropropene	ND	10	12	120	11	110	70-130	9	20
Bromoform	ND	10	8.0	80	8.1	81	54-136	1	20
1,1,2,2-Tetrachloroethane	ND	10	9.5	95	9.4	94	67-130	1	20
Benzene	ND	10	11	110	11	110	70-130	0	20
Toluene	ND	10	11	110	11	110	70-130	0	20
Ethylbenzene	ND	10	11	110	11	110	70-130	0	20
Chloromethane	ND	10	9.4	94	9.2	92	64-130	2	20
Bromomethane	ND	10	6.7	67	7.2	72	39-139	7	20

Matrix Spike Analysis

Batch Quality Control

Project Name: 27-01 JACKSON AVE

Project Number: 170472002 Lab Number: L2523357 04/23/25

Report Date:

Deremeter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Parameter	Sample	Auueu	Found	/aRecovery	Quai i Ounu	/%Recovery	Quai Liiiits	RPD	Quai	LIIIIIIS
Volatile Organics by GC/MS Client ID: MW-1_041625	- Westborou	igh Lab A	ssociated sam	ple(s): 01-05	QC Batch ID: WO	G2057453-6	WG2057453-7 Q0	C Samp	le: L252	23357-01
Vinyl chloride	ND	10	12	120	11	110	55-140	9		20
Chloroethane	ND	10	13	130	12	120	55-138	8		20
1,1-Dichloroethene	ND	10	11	110	10	100	61-145	10		20
trans-1,2-Dichloroethene	ND	10	11	110	11	110	70-130	0		20
Trichloroethene	ND	10	10	100	10	100	70-130	0		20
1,2-Dichlorobenzene	ND	10	11	110	10	100	70-130	10		20
1,3-Dichlorobenzene	ND	10	11	110	11	110	70-130	0		20
1,4-Dichlorobenzene	ND	10	11	110	11	110	70-130	0		20
Methyl tert butyl ether	ND	10	8.3	83	8.2	82	63-130	1		20
p/m-Xylene	ND	20	22	110	22	110	70-130	0		20
o-Xylene	ND	20	22	110	21	105	70-130	5		20
cis-1,2-Dichloroethene	ND	10	11	110	11	110	70-130	0		20
Dibromomethane	ND	10	10	100	9.9	99	70-130	1		20
1,2,3-Trichloropropane	ND	10	10	100	9.9	99	64-130	1		20
Acrylonitrile	ND	10	9.8	98	9.1	91	70-130	7		20
Styrene	ND	20	21	105	21	105	70-130	0		20
Dichlorodifluoromethane	ND	10	9.2	92	9.2	92	36-147	0		20
Acetone	ND	10	10	100	8.6	86	58-148	15		20
Carbon disulfide	ND	10	11	110	11	110	51-130	0		20
2-Butanone	ND	10	7.2	72	10	100	63-138	33	Q	20
Vinyl acetate	ND	10	9.1	91	8.8	88	70-130	3		20
4-Methyl-2-pentanone	ND	10	8.1	81	8.0	80	59-130	1		20
2-Hexanone	ND	10	7.5	75	7.2	72	57-130	4		20

_ _ _

Matrix Spike Analysis

Batch Quality Control

- - -

Project Name: 27-01 JACKSON AVE

Project Number: 170472002 Lab Number: L2523357 04/23/25

Report Date:

	Native	MS	MS	MS	MSD	MSD	Recovery		RPD
Parameter	Sample	Added	Found	%Recovery	Qual Found	%Recovery	' Qual Limits	RPD	Qual Limits
Volatile Organics by GC/MS Client ID: MW-1_041625	- Westborou	igh Lab A	ssociated sam	ple(s): 01-05	QC Batch ID: WO	32057453-6 V	WG2057453-7 Q0	C Samp	ole: L2523357-01
Bromochloromethane	ND	10	11	110	11	110	70-130	0	20
2,2-Dichloropropane	ND	10	8.9	89	8.8	88	63-133	1	20
1,2-Dibromoethane	ND	10	10	100	9.6	96	70-130	4	20
1,3-Dichloropropane	ND	10	11	110	10	100	70-130	10	20
1,1,1,2-Tetrachloroethane	ND	10	9.7	97	9.4	94	64-130	3	20
Bromobenzene	ND	10	10	100	10	100	70-130	0	20
n-Butylbenzene	ND	10	11	110	11	110	53-136	0	20
sec-Butylbenzene	ND	10	11	110	11	110	70-130	0	20
tert-Butylbenzene	ND	10	11	110	11	110	70-130	0	20
o-Chlorotoluene	ND	10	11	110	11	110	70-130	0	20
p-Chlorotoluene	ND	10	11	110	11	110	70-130	0	20
1,2-Dibromo-3-chloropropane	ND	10	8.0	80	7.7	77	41-144	4	20
Hexachlorobutadiene	ND	10	10	100	11	110	63-130	10	20
Isopropylbenzene	ND	10	11	110	11	110	70-130	0	20
p-Isopropyltoluene	ND	10	11	110	11	110	70-130	0	20
Naphthalene	ND	10	9.4	94	9.4	94	70-130	0	20
n-Propylbenzene	ND	10	11	110	11	110	69-130	0	20
1,2,3-Trichlorobenzene	ND	10	10	100	10	100	70-130	0	20
1,2,4-Trichlorobenzene	ND	10	10	100	10	100	70-130	0	20
1,3,5-Trimethylbenzene	ND	10	11	110	11	110	64-130	0	20
1,2,4-Trimethylbenzene	ND	10	11	110	10	100	70-130	10	20
1,4-Dioxane	ND	500	440	88	420	84	56-162	5	20
p-Diethylbenzene	ND	10	11	110	11	110	70-130	0	20

Matrix Spike Analysis

Project Name:	27-01 JACKSON AVE	Batch Quality Control
Project Number:	170472002	

 Lab Number:
 L2523357

 Report Date:
 04/23/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recove Qual Limit		RPD Qual Limits
Volatile Organics by GC/MS Client ID: MW-1_041625	- Westborou	igh Lab As	ssociated sam	ple(s): 01-05	QC Batc	h ID: WG	2057453-6 V	VG2057453-7	QC Samp	ole: L2523357-01
p-Ethyltoluene	ND	10	11	110		11	110	70-130	0	20
1,2,4,5-Tetramethylbenzene	ND	10	9.8	98		9.8	98	70-130	0	20
Ethyl ether	ND	10	9.9	99		9.7	97	59-134	2	20
trans-1,4-Dichloro-2-butene	ND	10	8.6	86		8.2	82	70-130) 5	20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	101	99	70-130
4-Bromofluorobenzene	95	96	70-130
Dibromofluoromethane	100	98	70-130
Toluene-d8	100	99	70-130

Project Name: 27-01 JACKSON AVE Project Number: 170472002

Serial_No:04232511:50 *Lab Number:* L2523357 *Report Date:* 04/23/25

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal				
A	Absent				

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2523357-01A	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-01A1	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-01A2	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-01B	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-01B1	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-01B2	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-01C	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-01C1	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-01C2	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-02A	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-02B	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-02C	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-03A	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-03B	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-03C	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-04A	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-04B	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-04C	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-05A	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)
L2523357-05B	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260(14)

Serial_No:04232511:50

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2523357

Report Date: 04/23/25

GLOSSARY

Acronyms

Acronyins	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: 27-01 JACKSON AVE

Project Number: 170472002

Lab Number: L2523357 Report Date: 04/23/25

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

^{.}

Project Name: 27-01 JACKSON AVE Lab Number: L2523357 Project Number: 170472002 Report Date: 04/23/25

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: 27-01 JACKSON AVE Project Number: 170472002
 Lab Number:
 L2523357

 Report Date:
 04/23/25

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. MADEP-APH. Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048 EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048 Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: AI, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: AI, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

Certification IDs:

Westborough Facility – 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANÁB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility – 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

Serial_No:04232511:50

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Co	Vay	95	Pag 0			10	1117	125	ALPHA JOB # 22523357
8 Walkup Dr.	320 Forbes Blvd	Project Information				1000	Delive	rables			Billing Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 27-0	1 Jack	son AL	12	_		ASP-A	9	ASP-B	Same as Client Info
	The out the only	Project Location: Law		a lity,	Queen			EQuIS (1 File)		EQuIS (4 File)	PO#
Client Information	1.00000000	Project # 17047200	12	1 -	10			Other			
Client: Langan	NYC	(Use Project name as Pr	roject#)			-	Regula	atory Requireme	ent	State of the local division of the	Disposal Site Information
Address: 34% 9	th Ave, Flour 9	Project Manager: Kiv	narly	Semon				NY TOGS	冈	NY Part 375	Please identify below location of
NY NY	10001	ALPHAQuote #:	(8 - P		WQ Standards		NY CP-51	applicable disposal facilities.
Phone: 212-4-	79-9400	Turn-Around Time	and the state of the	TE ST.		ALC: NO.		VY Restricted Use		Other	Disposal Facility:
Fax:		Standard	iX	Due Date:	2			Y Unrestricted U	se		Ги Ци
Email: SEMON	elamour. com	Rush (only if pre approved		# of Days:				YC Sewer Disch	arae		C Other:
These samples have	been previously analyz	ed by Alpha	North Street, St				ANAL	YSIS			Sample Filtration
President and the second se	c requirements/comn						35	1.1	TT		0
Please specify Metal	datame	v@langan.comy anagement@lango		Clanga	in.(04		375/762 000				Done t Lab to do l Preservation Lab to do B (Please Specify below)
ALPHA Lab ID	So	ample ID	Colle	ection	Sample	Sampler's	+				
(Lab Use Only)	00	ampie no	Date	Time	Matrix	Initials	Par				Sample Specific Comments
23357 -01	MW-1-041	625	4/14/25	11:20	AW	00	X				MS/MSD
02	MW-2-041	625	1	13:35	1W						
03	DVP01_04	1625		_	QW						
04	FB01-041	625		9:45	ag						
OS		1625		_	az	1	V				
a to a second	1								+		-
The second second									+		
						1			-		1
and the second							-		+		
			1						+		
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				itainer Type Preservative					Please print clearly, legibly and completely, Samples can not be logged in and turnaround time clock will not
F = MeOH	C = Cube	Relinquished	By:	Date/	Time		Receive	d By:		Date/Time	start until any ambiguities are resolved. BY EXECUTING
$G = NaHSO_4$ $H = Na_2S_2O_3$ $K/E = Zn Ac/NaOH$ $O = Other$	O = Other E = Encore D = BOD Bottle	Olivia O'Donn MO A Pace	:il	41612		Mo	AF	ace 13.43	APR	/25 1 6 2025 💬	THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S
Form No: 01-25 HC (rev.	30-Sept-2013)	1 la area	<u>neepn</u>	ulaho	0310	CT	~ #	The company	4)1-	15 0130	(See reverse side.)

ATTACHMENT E

Data Usability Summary Report

Technical Memorandum

1 University Square Drive Princeton, NJ 08540 T: 609.282.8000 Mailing Address: 1 University Square Drive Princeton, NJ 08540

To:Kimberly Semon, Langan Senior Project ManagerFrom:Mariana Wissink, Langan Senior Staff ChemistDate:April 30, 2025Re:Data Usability Summary Report
For 27-01 Jackson Avenue
April 2025 Groundwater Samples
Langan Project No.: 170472002

This memorandum presents the findings of an analytical data validation from the analysis of groundwater samples collected in April 2025 by Langan Engineering and Environmental Services at 27-01 Jackson Avenue. The samples were analyzed by Pace Analytical Laboratories, Inc. (NYSDOH NELAP registration # 11148) for volatile organic compounds (VOCs) by the methods specified below.

• VOCs by SW-846 Method 8260D

Table 1, attached, summarizes the laboratory and client sample identification numbers, sample collection dates, level of data validation, and analytical parameters subject to review.

Validation Overview

This data validation was performed in accordance with the following guidelines, where applicable:

- USEPA Region II Standard Operating Procedures (SOPs) for Data Validation
- USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020)
- USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA 540- R-20-005, November 2020), and
- published analytical methodologies.

Tier 1 data validation is based on completeness and compliance checks of sample-related QC results including: sample receipt documentation; analytical holding times; sample preservation; blank results (method, field, and trip); surrogate recoveries; MS/MSD recoveries and RPDs values; field duplicate RPDs, laboratory duplicate RPDs, and LCS/LCSD recoveries and RPDs. The L2523357 sample delivery groups underwent Tier 1 validation review.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA guidelines and our best professional judgment:

- R The sample results are unusable because certain criteria were not met when generating the data.
 The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit; however, the reported reporting limit is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

If any validation qualifiers are assigned, these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are considered invalid and are not technically usable for data interpretation. Data that is otherwise qualified because of minor data-quality anomalies are usable, as qualified in Table 2 (attached).

%D	Percent Difference	MB	Method Blank
CCV	Continuing Calibration Verification	MDL	Method Detection Limit
FB	Field Blank	MS	Matrix Spike
FD	Field Duplicate	MSD	Matrix Spike Duplicate
ICAL	Initial Calibration	RF	Response Factor
ICV	Initial Calibration Verification	RL	Reporting Limit
ISTD	Internal Standard	RPD	Relative Percent Difference
LCL	Lower Control Limit	RSD	Relative Standard Deviation
LCS	Laboratory Control Sample	ТВ	Trip Blank
LCSD	Laboratory Control Sample Duplicate	UCL	Upper Control Limit

The following acronyms may be used in the discussion of data-quality issues:

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. No minor deficiencies were identified.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by SW-846 Method 8260D

<u>L2523357</u>

The MS/MSD performed on sample MW-1_041625 exhibited a RPD above the control limit for 2butanone (33). Organic results are not qualified on the basis of MS/MSD recoveries alone. No qualification is necessary.

FIELD DUPLICATES:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than ±X the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 30% for groundwater. The following field duplicate and parent sample pair was compared to and met the precision criteria:

• DUP01_041625 and MW-1_041625

CONCLUSION:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Mariana Wissink Senior Staff Chemist

LANGAN

APPENDIX E WELL DECOMMISSIONING LOG

LANGAN

27-01 Jackson Avenue

WELL VISIBLE? (If not, provide directions below) WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)

WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:

SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)

MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES

MONITORING WELL FIELD INSPECTION LOG NYSDEC WELL DECOMMISSIONING PROGRAM

SITE ID.:	170472002
INSPECTOR:	Ali Reach
DATE/TIME:	5/8/2024
WELL ID	MW-4

YES	NO
\checkmark	
	\checkmark
\checkmark	

N/A NO YES

HEADSPACE READING (ppm) AND INSTRUMENT USED	0.0	ppm (M	iniRAE 3000)	1
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		N	J/A	
PROTECTIVE CASING MATERIAL TYPE:		N	J/A	-
MEASURE PROTECTIVE CASING INSIDE DIAMETER		N	J/A	_
	YES	NO	N/A	
LOCK PRESENT?		\checkmark		
LOCK FUNCTIONAL?			\checkmark	
DID YOU REPLACE THE LOCK?		\checkmark		
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)		\checkmark		
WELL MEASURING POINT VISIBLE?	\checkmark			
				-
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		23.	5 feet	

23.5 feet
15.5 feet
2-inch
PVC
Good
N/A
N/A

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF

On-site, flush mounted monitoring well, no natural obstructions

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

Located along sidewalk adjacent to 43rd Avenue and remediated construction site.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):

None

REMARKS:

WELL DECOMMISSIONING RECORD LOG

PROJEC 17047200 ELEVATI N/A DATE ST 5/8/2024 INSPECT Ali Reach	O2 ON AND DATUM ARTED	DATE FINISHED 5/8/2024 WELL SCHEMATIC*	
ELEVATI N/A DATE ST 5/8/2024 INSPECT	ON AND DATUM	5/8/2024	
N/A DATE ST 5/8/2024 INSPECT	ARTED OR	5/8/2024	
DATE ST 5/8/2024 INSPECT	OR	5/8/2024	
5/8/2024 INSPECT	OR	5/8/2024	
INSPECT			
Ali Reach			
	Depth (feet)	WELL SCHEMATIC*	
	Depth (feet)	WELL OUTEWAILU"	ŧ
		Diameter (in.):	2
		, ,	I
	0		
N/A			
N/A		1	
N/A			
N/A	_		
N/A			
N/A			grouted in place
N/A	_		
	<u> </u>		
N/A			
1			
-			
	00 E		
4 galions			
	* Sketch in all relevan	t decomissioning data, ir	ncluding:
	interval overdrilled, int	erval grouted, casing lef	t in hole,
	well stickup, etc.		
	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N/A S5 gal 4 gallons 23.5

LANGAN Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 368 Ninth Avenue, 8th Floor, New York

APPENDIX F PHOTOGRAPH LOG

LANGAN

PHOTOGRAPH LOG

Photo 1: View of Lakewood Environmental Services Corp. (Lakewood) decommissioning monitoring well MW-4, facing southeast. (Taken on 5/8/2024).

Photo 2: View of decommissioned monitoring well MW-4, facing southwest. (Taken on 5/8/2024).

Photo 3: View of the Jackson Avenue sidewalk and monitoring well MW-1, facing southeast. (Taken on 04/16/2025)

Photo 4: View of the Jackson Avenue sidewalk and monitoring well MW-2, facing west. (Taken on 04/16/2025)

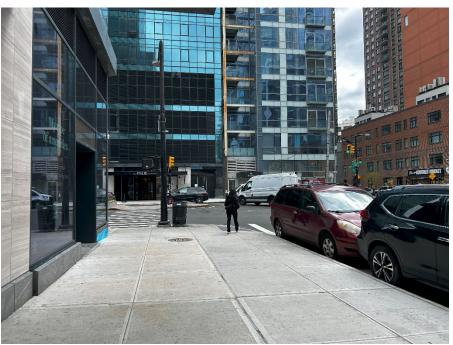


Photo 5: View of the 43rd Avenue sidewalk, facing south. (Taken on 04/16/2025)

Photo 6: View of typical quarterly groundwater sampling (Q11) at MW-2, facing east. (Taken on 04/16/2025).

APPENDIX G SITE INSPECTION FORMS

LANGAN

Summary of Green Remediation Metrics for Site Management

Site Name:	27-01 Jackson Avenu	e Site	Code:	S241209	
Address:	27-01 Jackson Aver	nue Ci	ity: <u>Lor</u>	ng Island City	
State:	NY	Zip Code: _	11101	County:	Queens
Initial Repo	ort Period (Start	Date of pe	riod cov	vered by the Ir	iitial Report submittal)
Start Date: _	December 12, 202	22			
Current Re	porting Period				
Reporting P	eriod From:	April 30, 2024		To:	April 30, 2025
Contact Inf	ormation				
Preparer's N	Name: Olivia ()'Donnell		Phone No.	212-479-5400 :
Preparer's A	Affiliation: La	angan			

I. Energy Usage: Quantify the amount of energy used directly on-site and the portion of that derived from renewable energy sources.

	Current Reporting Period	Total to Date
Fuel Type 1 (e.g. natural gas (cf))	N/A	N/A
Fuel Type 2 (e.g. fuel oil, propane (gals))	N/A	N/A
Electricity (kWh)	N/A	N/A
Of that Electric usage, provide quantity:		
Derived from renewable sources (e.g. solar, wind)	N/A	N/A

Other energy sources (e.g. geothermal, solar	N/A	N/A
thermal (Btu))		N/A

Provide a description of all energy usage reduction programs for the site in the space provided on Page 5.

II. Solid Waste Generation: Quantify the management of solid waste generated onsite.

	Current Reporting Period (tons)	Total to Date (tons)
Total waste generated on-site		
OM&M generated waste	N/A	N/A
Of that total amount, provide quantity:		
Transported off-site to landfills	N/A	N/A
Transported off-site to other disposal facilities	N/A	N/A
Transported off-site for recycling/reuse	N/A	N/A
Reused on-site	N/A	N/A

Provide a description of any implemented waste reduction programs for the site in the space provided on Page 5.

III. Transportation/Shipping: Quantify the distances travelled for delivery of supplies, shipping of laboratory samples, and the removal of waste.

	Current Reporting Period (miles)	Total to Date (miles)
Standby Engineer/Contractor	N/A	N/A
Laboratory Courier/Delivery Service	N/A	N/A
Waste Removal/Hauling	N/A	N/A

Provide a description of all mileage reduction programs for the site in the space provided on Page 5. Include specifically any local vendor/services utilized that are within 50 miles of the site.

IV. Water Usage: Quantify the volume of water used on-site from various sources.

	Current Reporting Period (gallons)	Total to Date (gallons)
Total quantity of water used on-site	N/A	N/A
Of that total amount, provide quantity:		
Public potable water supply usage	N/A	N/A
Surface water usage	N/A	N/A
On-site groundwater usage	N/A	N/A
Collected or diverted storm water usage	N/A	N/A

Provide a description of any implemented water consumption reduction programs for the site in the space provided on Page 5.

V. Land Use and Ecosystems: Quantify the amount of land and/or ecosystems disturbed and the area of land and/or ecosystems restored to a pre-development condition (i.e. Green Infrastructure).

	Current Reporting Period (acres)	Total to Date (acres)
Land disturbed	N/A	N/A
Land restored	N/A	N/A

Provide a description of any implemented land restoration/green infrastructure programs for the site in the space provided on Page 5.

Description of green remediation programs reported above
(Attach additional sheets if needed)
Energy Usage:
N/A
Waste Generation:
N/A
Transportation/Shipping:
N/A
Water usage:
N/A
Land Use and Ecosystems:
N/A
Other:

SITE WIDE INSPECTION CHECKLIST

Site Name: <u>27-01 Jackson Avenue</u> Location: <u>27-01 Jackson Avenue</u>, Long Island City, Queens, NY Project Number: <u>170472002</u>

Inspector Name: Olivia O'Donnell Date: 04/16/2025 Weather Conditions: Overcast, 45-60°F

Reason for Inspection (i.e., routine, maintenance, severe condition, etc.): Annual Inspection

Check one of the following: Y: Yes N: No NA: Not Applicable

					Normal	
		Y	Ν	NA	Situation	Remarks
	General					
1	What are the current site conditions?			х	-	The site is an approximately 2,750-square-foot area that spans sections of the Jackson Avenue and 43rd Avenue sidewalks adjoining the BCP site located at 27-01 Jackson Avenue in the Long Island City neighborhood of Queens, New York. Monitoring wells MW-1 and MW-2 were observed to be intact within the restored sidewalk along Jackson Avenue.
2	Are all applicable site records (e.g., documentation of construction activity, site cover system maintenance and repair, most current easement, etc.) complete and up to date?	x			Y	Langan retains copies of these documents.
-	Easement				-	
3	Has site use remained the same?	x			Y	
4	Does it appear that all environmental easement restrictions have been followed?	x			Y	
	Groundwater Monitoring Well Network					
5	Are all wells within the groundwater monitoring network intact and secured at the time of this inspection?	x			Y	Monitoring wells MW-1 and MW-2 were intact at the time of the inspection. NYSDEC allowed the discontinuation of sampling of MW-3 and MW-4 via email correspondence on August 8th, 2023 and October 13th, 2023, respectively. Between the third and fourth quarter sampling events, monitoring well MW-3 was compromised during the installation of utilities beneath the 43rd Avenue sidewalk. Decommissioning of monitoring well MW-4 occurred on May 8, 2024 by grouting in place in accordance with NYSDEC Commissioner Policy 43 (CP-43).
6	Have the minimum number of groundwater monitoring events been counducted for the certification year (i.e., quarterly for first two years)?	x			Y	

If the answer to any of the above questions indicate non-compliance with any IC/ECs for the site, additional remarks must be provided and, where applicable, documentation attached to this checklist detailing additional inspection and repair activities.

Additional remarks:

Minimum Inspection Schedule: Site-wide inspections will be conducted annually, per certification year, at a minimum. Additional inspections will also be conducted at times of severe condition events. All inspection events will utilize this checklist.

Summary of Green Remediation Metrics for Site Management

Site Name:	27-01 Jackson Avenu	e Site	Code:	S241209	
Address:	27-01 Jackson Aver	nue Ci	ity: <u>Lor</u>	ng Island City	
State:	NY	Zip Code: _	11101	County:	Queens
Initial Repo	ort Period (Start	Date of pe	riod cov	vered by the Ir	iitial Report submittal)
Start Date: _	December 12, 202	22			
Current Re	porting Period				
Reporting P	eriod From:	April 30, 2024		To:	April 30, 2025
Contact Inf	ormation				
Preparer's N	Name: Olivia ()'Donnell		Phone No.	212-479-5400 :
Preparer's A	Affiliation: La	angan			

I. Energy Usage: Quantify the amount of energy used directly on-site and the portion of that derived from renewable energy sources.

	Current Reporting Period	Total to Date
Fuel Type 1 (e.g. natural gas (cf))	N/A	N/A
Fuel Type 2 (e.g. fuel oil, propane (gals))	N/A	N/A
Electricity (kWh)	N/A	N/A
Of that Electric usage, provide quantity:		
Derived from renewable sources (e.g. solar, wind)	N/A	N/A

Other energy sources (e.g. geothermal, solar	N/A	N/A
thermal (Btu))		N/A

Provide a description of all energy usage reduction programs for the site in the space provided on Page 5.

II. Solid Waste Generation: Quantify the management of solid waste generated onsite.

	Current Reporting Period (tons)	Total to Date (tons)
Total waste generated on-site		
OM&M generated waste	0.15	1.15
Of that total amount, provide quantity:		
Transported off-site to landfills	N/A	N/A
Transported off-site to other disposal facilities	0.4	1.15
Transported off-site for recycling/reuse	N/A	N/A
Reused on-site	N/A	N/A

Provide a description of any implemented waste reduction programs for the site in the space provided on Page 5.

III. Transportation/Shipping: Quantify the distances travelled for delivery of supplies, shipping of laboratory samples, and the removal of waste.

	Current Reporting Period (miles)	Total to Date (miles)
Standby Engineer/Contractor	N/A	N/A
Laboratory Courier/Delivery Service	N/A	N/A
Waste Removal/Hauling	73	146

Provide a description of all mileage reduction programs for the site in the space provided on Page 5. Include specifically any local vendor/services utilized that are within 50 miles of the site.

IV. Water Usage: Quantify the volume of water used on-site from various sources.

	Current Reporting Period (gallons)	Total to Date (gallons)
Total quantity of water used on-site	N/A	N/A
Of that total amount, provide quantity:		
Public potable water supply usage	N/A	N/A
Surface water usage	N/A	N/A
On-site groundwater usage	N/A	N/A
Collected or diverted storm water usage	N/A	N/A

Provide a description of any implemented water consumption reduction programs for the site in the space provided on Page 5.

V. Land Use and Ecosystems: Quantify the amount of land and/or ecosystems disturbed and the area of land and/or ecosystems restored to a pre-development condition (i.e. Green Infrastructure).

	Current Reporting Period (acres)	Total to Date (acres)
Land disturbed	N/A	N/A
Land restored	N/A	N/A

Provide a description of any implemented land restoration/green infrastructure programs for the site in the space provided on Page 5.

Description of green remediation programs reported above

(Attach additional sheets if needed)

Energy Usage:

N/A

Waste Generation:

One drum each of purged groundwater and soil cuttings were transported in one round for off-site disposal, avoiding additional trips to the site which would increase fuel consumption for travel purposes.

Transportation/Shipping:

AARCO Environmental Services, Inc. (AARCO), a local environmental subcontractor, was the transporter of generated waste at the site. AARCO's office is located approximately 37 miles from the site. The generated waste was transported to the Dale Transfer Corp facility located approximately 36 miles from the site.

Water usage:

N/A

Land Use and Ecosystems:

N/A

Other:

APPENDIX H DRUM DISPOSAL DOCUMENTATION

LANGAN

Plea	ise print or type												
(For	NON-HAZARDOUS	ON-HAZARDOUS 1. Generator ID Number 2. Page 1 of 3. Emergency Response Phone			Phone	4. Waste Tracking Number							
	WASTE MANIFEST												
	5. Generator's Name and Mailir	WASTE MANIFEST 631-586-5900 NHTWM 2 2 5 4 2 5 Generator's Name and Mailing Address Generator's Site Address (if different than mailing address)											
4	2701 JACKS	2701 JACKSON LLC 11 GRACE AVENUE, #401 Senerato GREAT NECK, NY 11021											
を超ら	11 GRACE A												
191	6. Transporter 1 Company Name U.S. EPA ID Number												
1000	AARCO ENV	IRONMENTAL SE	20000002555										
	AARCO ENVIRONMENTAL SERVICES 7. Transporter 2 Company Name							U.S. EPA ID Number					
	8. Designated Facility Name an	d Site Address	U.S. EPA ID Number										
	DALE TRANSFER CORP.												
	DALE TRANSFER CORP. 129 DALE STREET, WEST BABYLON NY 11704												
Facility's Phone: 631-393-2882													
	9. Waste Shipping Name	and Description			ŀ	10. Conta No.	Type	11. Total Quantity	12. Unit Wt./Vol.				
I	1.					110.	туре	cuunny					
GENERATOR						01	DM	300	P				
ENE	2.												
0	NON-REC	JULATED SOLIDS	(SOIL)		1. Thursday	01	DM	500	P				
		8. V			San and San		CONTRACTOR OF CONTRACT	ananan sense s	CORRECT T				
	3.												
	4.												
1	7.												
	13. Special Handling Instruction	ns and Additional Information											
		OVAL # 2025-0758	11-85-										
	2. APPR	OVAL # 2025-0750	$(O \times S)$					3					
	2. APPROVAL # 2025-0757 (. 04x. 8.5g) JOB# 225425 TRUCK: B_507												
			ana ing mpangang ang sa	(
		TION: L cortifu the motoriale d	leasticed shows on this manifest	t are not aubias	t to fodor	l regulations for	reporting of	anar dianagal of L	lazardaua Maai	+a			
	14. GENERATOR'S CERTIFICA Generator's/Offeror's Printed/Ty	ped Name Finit K	vantes offe	ngen Sig	inature		reporting pr	oper disposar di H	azaruous was	Month Day Year			
*	Generator's/Offeror's Printed/Ty	edayen F.fo	127- FI Sack	son	Č.	.V.a	aut	>		15 105 25			
Ļ	15. International Shipments	Import to U.S.		Export from U	19	Port of er	atn/oxit:						
INT'L	Transporter Signature (for expo		L		0.3.	Date leav							
EB	16. Transporter Acknowledgmer												
TRANSPORTER	Transporter 1 Printed/Typed Na	ime	1	Sig	inature	1	1	C (Month Day Year			
ISP	Transporter 2 Printed/Typed Na	C. Aller				nex	rel	C.a	ller				
RAI	Transporter 2 Printed/Typed Na	line		Sig	nature					Month Day Year			
-	17. Discrepancy												
		Quantity	Туре			Residue		Partial Rej	ection	Full Rejection			
					Mani	fest Reference N	lumber:						
È	17b. Alternate Facility (or Gener	Tb. Alternate Facility (or Generator) U.S. EPA ID Number											
CIL													
Facility's Phone: 17c. Signature of Alternate Facility (or Generator)									Month Day Vaar				
ATE	TTC. Signature of Alternate Facil	itty (or Generator)		T					Month Day Year				
1/b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: 17c. Signature of Alternate Facility (or Generator)													
ī							-	~					
	18. Designated Facility Owner o	or Operator: Certification of rece	eipt of materials covered by the	manifest excep	ot as noted	l in Item 17a	()					
	Printed/Typed Name	<u> </u>	1	Sig	nature	, 1	>	<		Month Day Year			
۷	Frmand	5	Sonche.	2		CA	-6	2		5525			
	Printed in USA by GC Labels Reorder Part# MANIFEST-C6NHW												
	1-800-997-6	966	DESIGNATED F	ACILITY	100	ENERAT	OR		913-8	97-6966			