

Mr. Harry Warner, PE Region 7 Regional Remediation Engineer New York State Department of Environmental Conservation 615 Erie Boulevard West Syracuse, New York 13204

Subject: Northern Terminal Focused Investigation Summary Report Cold Springs Terminals Hillside Road, Lysander, New York

Dear Harry:

Enclosed you will find one hard copy of the above-referenced document. This document summarizes the findings generated as a result of the execution of the previously approved field work plan pertaining to the subject site. This Summary Report is submitted as required by Section I and Exhibit B of the October 19, 2017 Order on Consent.

Once you have had a chance to review the document, I would be more than happy to meet in person and discuss the findings and conclusions. I will be in touch in early October to discuss a possible meeting.

If you have any questions or require additional information before that time, please call me at 315.671.9256.

Sincerely,

Arcadis of New York, Inc.

Vincent S. Maresco, PG Principal Geologist/Project Manager

Copies: Michael Belveg, NYSDEC (hard copy) Krista Manley, Buckeye (electronic copy) Stephen Gonzalski, BP (electronic copy) Michael Teeling, PG, Woodard & Curran (electronic copy)

Enclosure: Northern Terminal Focused Investigation Summary Report Arcadis of New York, Inc. One Lincoln Center 110 West Fayette Street Suite 300 Syracuse New York 13202 Tel 315 446 9120 Fax 315 449 0017 www.arcadis.com

ENVIRONMENT

Date: September 28, 2018

Contact: Vin Maresco

Phone: 315 671 9256

Email: vin.maresco@arcadis.com

Our ref: B0090004.0008

NORTHERN TERMINAL FOCUSED INVESTIGATION SUMMARY REPORT

Northern Cold Springs Terminal Lysander, New York

September 28, 2018

Nicholle R. Griffith Geologist

Vincent S. Maresco Project Manager

NORTHERN TERMINAL FOCUSED INVESTIGATION SUMMARY REPORT

Northern Cold Springs Terminal Lysander, New York

Prepared for: *Outside Counsel for* Buckeye Pipe Line Company, L.P. BP Products North America Inc.

Prepared by: Arcadis U.S., Inc. One Lincoln Center 110 West Fayette Street Suite 300 Syracuse New York 13202 Tel 315 446 9120 Fax 315 449 0017

Our Ref.: B0090004.0008

Date: September 28, 2018

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Acr	onyn	ns and a	Abbreviations	iv								
1	Intro	oductior	۱	1								
	1.1	Areas	of Investigation	1								
	1.2	Overv	iew and Summary	1								
2	Foc	used In	vestigation Field Activities and Methods	3								
	2.1	Site R	econnaissance and Pre-Investigation Activities	3								
	2.2	Soil B	oring and Sampling Activities	3								
		2.2.1	2016 Soil Boring and Sampling Activities	4								
		2.2.2	2018 Soil Boring and Sampling Activities	4								
	2.3	Groun	dwater Sampling Activities (Pre-Existing Wells)	5								
	2.4	Northe	ern Terminal Groundwater Monitoring Wells Installation Activities	5								
	2.5	Surve	y	6								
3	Soil	Boring	and Sampling Results	7								
	3.1	Study	Area Geology	7								
	3.2	Unsat	urated Zone Adsorbed Phase Results	7								
		3.2.1	Volatile Organic Compound Results 2016 Soil Borings	8								
		3.2.2	Semi-Volatile Organic Compound Results 2016 Soil Borings	8								
		3.2.3	Volatile Organic Compound Results 2018 Soil Borings	8								
		3.2.4	Semi-Volatile Organic Compound Results 2018 Soil Borings	8								
		3.2.5	Lead Results 2018 Soil Borings	8								
	3.3	Satura	ted Zone Adsorbed Phase Results	9								
		3.3.1	Volatile Organic Compound Results 2016 Soil Borings	9								
		3.3.2	Semi-Volatile Organic Compound Results 2016 Soil Borings	9								
		3.3.3	Volatile Organic Compound Results 2018 Soil Borings	9								
		3.3.4	Semi-Volatile Organic Compound Results 2018 Soil Borings	9								
4	Gro	undwat	er Analytical Sampling Results	.10								
	4.1	Northe	ern Terminal Groundwater Flow Pattern Data	.10								
	4.2	Dissol	ved Phase Northern Terminal Volatile Organic Compound Results	.10								
	4.3	 4.3 Dissolved Phase Northern Terminal Semi-Volatile Organic Compound Results										

Conclusions									
5.1 Adsorbed Phase Contaminant Distribution									
5.1.1 Unsaturated Zone Soil 2016 Data									
	5.1.2	Saturated Zone Soil 2016 Data	.13						
	5.1.3	Unsaturated Zone Soil 2018 Data	.14						
	5.1.4	Saturated Zone Soil 2018 Data	.14						
5.2	Groun	dwater Contaminant and Flow Pattern Conclusions	.14						
Ong	oing ac	tivites	.15						
References16									
	Con 5.1 5.2 Ong Refe	Conclusion 5.1 Adsort 5.1.1 5.1.2 5.1.3 5.1.4 5.2 Groun Ongoing ac References	 Conclusions 5.1 Adsorbed Phase Contaminant Distribution						

TABLES

Table 1	Soil Boring Locations
Table 2	Soil Boring Soil Analytical Results
Table 3	Soil Boring PID Field Results
Table 4	Monitoring Well Locations
Table 5	Monitoring Well Soil Analytical Results
Table 6	Monitoring Well PID Field Results
Table 7	Liquid Level Data – May 2018
Table 8	Groundwater Sampling Analytical Results

FIGURES

Figure 1	Site Location Map
Figure 2	Site Map with Soil Borings – B101 - 125
Figure 3	Site Map with Monitoring Wells
Figure 4	Maximum Total SVOCs (Soil) Unsaturated Zone – B101 - B125
Figure 5	Maximum Total VOCs (Soil) Saturated Zone – B101 - B125
Figure 6	Maximum Total SVOCs (Soil) Saturated Zone – B101 - B125
Figure 7	TCLP Lead (Soil) – B123 - B125
Figure 8	Maximum Total VOCs (Soil) Unsaturated Zone – B101 - B125
Figure 9	Maximum Total VOCs (Soil) Unsaturated Zone – MW201 - MW211

NORTHERN TERMINAL FOCUSED INVESTIGATION SUMMARY REPORT

- Figure 10 Maximum Total SVOCs (Soil) Unsaturated Zone MW201 MW211
- Figure 11 Maximum Total VOCs (Soil) Saturated Zone MW201 MW211
- Figure 12 Maximum Total SVOCs (Soil) Saturated Zone MW201 MW211
- Figure 13 Lead (Soil) MW201 MW211
- Figure 14 Groundwater Contour May 2018
- Figure 15 Total VOC and SVOC (Groundwater) May 2018

APPENDICES

- Appendix 1 February 2016 Focused Investigation Work Plan, February 2018 Supplemental Characterization and Interim Remedial Action Work Plan, and NYSDEC Approval of 2018 Work Plan
- Appendix 2 Boring Logs from 2016
- Appendix 3 Boring Logs from 2018
- Appendix 4 Laboratory Analytical Reports

ACRONYMS AND ABBREVIATIONS

Arcadis	Arcadis U.S., Inc.
AST	above ground storage tank
bgs	below ground surface
FISR	Northern Terminal Focused Investigation Summary Report
FIWP	Focused Investigation Work Plan
IDW	investigation derived waste
IRAWP	Interim Remedial Action Work Plan
Northern Terminal	Northern Cold Springs Terminal
NYSDEC	New York State Department of Environmental Conservation
PID	photo-ionization detector
ppb	parts per billion
ppmv	parts per million volume
PVC	polyvinyl chloride
SCGO	standards, criteria, guidance values, or objective
Southern Terminals	Southern Cold Springs Terminals
SVOCs	semi-volatile organic compounds
TCLP	toxicity characteristic leaching procedure
TOGS 1.1.1	Technical & Operational Guidance Series memo 1.1.1
VOCs	volatile organic compounds

1 INTRODUCTION

This Northern Terminal Focused Investigation Summary Report (FISR) summarizes the work performed and the findings of the Focused Investigation regarding samples taken from soil and groundwater from the Northern Cold Springs Terminal (Northern Terminal) north of Hillside Road, as well as soil samples collected along the right-of-way area between the Southern Cold Springs Terminals (Southern Terminals) containing three underground delivery lines which serviced the Northern Terminal, and soil samples along Hillside Road. The study area is located on Hillside Road, Hamlet of Cold Springs, Town of Lysander, New York (Figure 1). The Focused Investigation activities described in this document were performed in mobilizations in 2016 and 2018 by Arcadis U.S., Inc. (Arcadis) as detailed below.

The Focused Investigation consisted of:

- Advancing soil borings and collecting soil samples from borings B101 through B110, B112 through B121, and B123 through B125 to: (1) better define subsurface stratigraphy; and (2) assess the vertical and horizontal nature and extent of subsurface impacts within the area (Figure 2). (Note there are no locations B111 or B122.)
- The installation of groundwater wells and collection of samples to: (1) monitor existing water quality; and (2) assess current groundwater characteristics to better determine future remedial actions and options for the Northern Terminal (Figure 3).

The Focused Investigation was performed in accordance with the Focused Investigation Work Plan (Arcadis 2016) (FIWP) and the Supplemental Characterization and Interim Remedial Action Work Plan (Arcadis 2018a) (IRAWP). Both work plans were submitted to the New York State Department of Environmental Conservation (NYSDEC) for input, review, and approval prior to field implementation. However, at the time of the 2016 FIWP submission, the NYSDEC would not provide formal approval in the absence of a corresponding control document. The 2018 IRAWP was approved by the NYSDEC. Appendix 1 presents both work plans as well as the NYSDEC approval of the 2018 IRAWP.

1.1 Areas of Investigation

The area of the site that was investigated as part of these work scopes included soil borings distributed as follows:

- The Northern Terminal historical above ground storage tank (AST) operational area (MW201-211);
- The right-of-way between the two Southern Terminals where the delivery lines to the Northern Terminal exist (borings B112-113); and,
- The area along Hillside Road (borings B101 through B110 and B114 through 121).

1.2 Overview and Summary

This document presents the findings of soil data collected across the former operational area of the Northern Terminal, the right-of-way between the two Southern Terminals, and along Hillside Road between the Northern Terminal and the Southern Terminals. Soil data were further divided to evaluate samples collected in the unsaturated zone (above the water table) separate from those samples collected

in the saturated zone (within the water table). In addition to the soil data noted above this document also presents groundwater data from the former AST operational area of the Northern Terminal.

Although there were several borings where trace levels of soil impacts were detected in the unsaturated and saturated zones in the former operational area of the Northern Terminal, there were no CP-51 exceedances detected in any soil sample collected within the former Northern Terminal in either the unsaturated or saturated horizon for any compound.

Soil samples collected in the right-of-way between the two Southern Terminals suggest a spill source near B113. The vertical data profile indicated that the unsaturated zone exceedances occur in the sample collected at 2-4 feet below ground surface (bgs) and are vertically isolated from the lower exceedances found in the saturated zone at this boring location. Data collected from the 4-6 feet bgs horizon indicated no exceedances, the 6-8 ft bgs sample indicated one exceedance while samples collected from 8-14 feet below grade all indicated multiple compound exceedances. Table 2 presents the vertical profile sample results. It is also worth noting that the unsaturated zone samples from B112, also completed in the right-of-way do not indicate any exceedances.

Samples collected in the area along Hillside Road (between the Northern Terminal and the Southern Terminals) indicated localized unsaturated zone CP-51 exceedances in the study area at B102 and B118. However, saturated zone CP-51 exceedances have been detected at all soil borings except B115, B116, and B117. The data suggest that there is a spill source proximal to and likely south of the boring locations of B102 and B118 as well as impacts sourced from other areas effecting the saturated zone across this portion of the study area.

Groundwater sampling data from the former Northern Terminal indicated trace amounts of NAPL at BMW5 and dissolved exceedances at BMW13 and BMW14R. The remainder of the groundwater monitoring wells sampled as part of this investigation did not indicate dissolved phase exceedances.

The following conclusions are drawn from this data set:

- On the Northern Terminal, a spill source large enough to cause CP-51 range exceedances in soil or groundwater was not found as part of this investigation. There are no exceedances in any soil or groundwater sample collected within the historic AST operational area of the Northern Terminal.
- In the right-of-way area between the Southern Terminals, the unsaturated zone soil data collected from B112 and B113 suggest a spill source in one sample from B113. There were no unsaturated zone soil exceedances at B112. As noted above, the unsaturated zone exceedances at B113 are vertically isolated from saturated zone findings at this location.
- Along Hillside Road, a spill source is suggested in the area south of B102 and B118. This conclusion is further supported by the data set from borings B114 through B117.
- Widespread saturated zone impacts found across the area between the Northern Terminal and the Southern Terminals do not appear to be sourced from the Northern Terminal. This is based on the absence of soil or groundwater exceedances in historical AST operational area of the Northern Terminal as well as the findings from the Focused Groundwater Elevation Investigation Summary (Arcadis 2018b).

2 FOCUSED INVESTIGATION FIELD ACTIVITIES AND METHODS

Key work activities performed as part of the FIWP are described under the following subsections:

Subsection 2.1 – Pre-Investigation Activities

Subsection 2.2 - Soil Boring and Sampling Activities

Subsection 2.3 - Existing Monitoring Well Groundwater Sampling Activities

Subsection 2.4 - Installation of Northern Terminal Monitoring Wells

Subsection 2.5 – Survey

2.1 Site Reconnaissance and Pre-Investigation Activities

Tailgate pre-entry safety meetings and pre-entry site walks (reconnaissance) were conducted for each mobilization and were attended by personnel from Buckeye Pipeline Company, Arcadis, and relevant Arcadis subcontractors. The tailgate meetings were held to discuss the scope of work and coordinate logistics (site access, work hours, health and safety expectations, etc.). In each instance the meeting was followed by a reconnaissance site walk to observe infrastructure locations and assess the location of any utilities, obstructions, or other logistical challenges that would cause scope modifications or delays. In certain instances, some sample locations were adjusted accordingly to site conditions to ensure work was completed in an efficient and safe manner. All adjustments were considered minor and only field updates to the NYSDEC were required and provided.

Prior to each mobilization, Parratt-Wolff (drilling subcontractor) provided notification of ground disturbance as required by law to the New York Underground Facility Protection Organization (a.k.a. DigSafelyNY) for locating all subsurface utilities. Additionally, a private utility locator, Master Locators, used ground penetrating radar and electromagnetic detection tools to supplement utility mark outs in the proposed areas of investigation along Hillside Road and in the right-of-way between the Southern Terminals. Also, for each of these drilling locations, hand-clearing / soft digging methods were used to a minimum of 5 feet and a maximum of 8 feet bgs before deploying mechanical drilling tools.

Based on information learned from previous site investigations and available historic facility maps, there were three suspected distribution lines oriented north-south in the right-of-way between the Southern Terminals. These distribution lines were uncovered by hand and/or soft digging methods to approximately 8 feet bgs at three separate points (northern, middle, and southern regions) to visually verify their location, orientation, and direction. Sample locations were adjusted in an east/west direction based on proximity to utilities so as not to impact the existing infrastructure. The lines were observed to exist in this area at approximately 3.5 feet bgs.

2.2 Soil Boring and Sampling Activities

This FISR discusses a total of 20 soil borings (B101 through B110 and B112 through B121) advanced and sampled in 2016, and 11 soil borings (MW-201 through MW-211) advanced and sampled in 2018 throughout the investigation areas (Figures 2 and 3). Soil samples collected during the study period were

evaluated via USEPA Method numbers 8260 (Volatile Organic Compounds); 8270 (Semi-Volatile Organic Compounds); and 6010B (Lead).

2.2.1 2016 Soil Boring and Sampling Activities

Soil borings completed in 2016 were advanced using direct-push drilling methods. Table 1 provides the locations for all 2016 completed soil borings. Soil samples were continuously collected from grade to terminal depth using 2-inch diameter 4-foot long macro core liners. All collected soil samples were field screened for volatile organic compounds (VOCs) using a field photo-ionization detector (PID). Select soil samples were retained and submitted for laboratory analysis. Table 2 provides laboratory analytical data results while Table 3 presents PID results for soil samples. Soil characteristics were continuously logged by a geologist for texture, grainsize, moisture content, and the potential presence of impacts via field PID instrumentation. Each boring termination depth was determined in the field by the on-site Arcadis geologist. Termination depth was based on field indication of absence of impacts or 10 feet below first detection of the water table, whichever was shallower as discussed in the Work Plan (Appendix 1). For the purposes of this investigation, field determination of absence of impact was established at 50 parts per million volume (ppmv) on the field PID or less. However, at some locations these conditions were not met due to refusal at till. No borings penetrated the lower till unit. Total boring depths ranged from approximately 11.5 feet bgs to 27 feet bgs. All downhole tools were decontaminated by pressure washing between drilling locations on a temporary decontamination containment pad.

Soil samples collected for laboratory analysis were analyzed by PACE Analytical Services, Inc. of Greensburg, Pennsylvania, for constituents listed in NYSDEC Policy CP-51: Tables 3 and 4 (Soil Cleanup Levels for Gasoline and Fuel Oil Contaminated Soils, respectively). Samples were also analyzed for methyl-tert-butyl-ether and ethanol.

Soil borings were abandoned by backfilling each borehole with pelletized bentonite to above the water table and finished to ground surface with soil cuttings. Any remaining soil cuttings generated during soil sampling activities were temporally contained in properly labeled 55-gallon drums on site in the area near PZ106. Composite samples of generated waste material were collected for waste characterization analysis. All waste soil and investigation derived waste (IDW) was disposed of at Industrial Oil of Oriskany, New York.

2.2.2 2018 Soil Boring and Sampling Activities

Soil borings completed in 2018 were advanced using geoprobe and hollow stem auger drilling methods at locations for proposed monitoring wells MW-201 to MW-211 (Table 4). Soil samples were continuously collected from grade to terminal depth using 2-inch diameter 2-foot long split spoons. All collected soil samples were field screened for VOCs using a PID. Select soil samples, based on measurable PID readings, were retained and submitted for laboratory analysis in accordance with the approved 2018 IRAWP. Table 5 presents soil analytical results associated with samples collected during the advancement of borings for the monitoring wells while Table 6 provides the PID data from this group of borings. Soil characteristics were continuously logged by an Arcadis geologist for texture, grainsize, moisture content, and potential presence of impacts via field PID instrumentation. Each boring termination depth was determined in the field by the on-site geologist. Sample collection was terminated based on field indication of absence of impacts or 10 feet below first detection of the water table, or the occurrence

of a significantly different geologic unit, whichever was shallower. For the purposes of this investigation, field determination of absence of impact was established at 50 ppm on the field PID or less, as noted in the 2018 IRAWP. Total boring depths ranged from approximately 15 feet bgs to 24 feet bgs. As noted above, all downhole tools were decontaminated between boring locations by pressure washing on a temporary decontamination containment pad.

Soil samples collected for laboratory analysis were analyzed by PACE Analytical Services, Inc. of Greensburg, Pennsylvania, for constituents listed in NYSDEC Policy CP-51: Tables 3 and 4 (Soil Cleanup Levels for Gasoline and Fuel Oil Contaminated Soils, respectively).

Soil borings were subsequently converted to monitoring wells as described below in Section 2.4. Waste soil cuttings generated during soil sampling and well installation activities were temporally contained in a 20 yard roll off dumpster on the Northern Terminal site. Composite samples of generated waste material were collected for waste characterization analysis. All waste soil and solid IDW was disposed of at High Acres Landfill of Fairport, New York. Liquid IDW was transported to Covanta Environmental Solutions located in Oriskany, New York (formerly Industrial Oil, Inc.).

2.3 Groundwater Sampling Activities (Pre-Existing Wells)

This FISR presents the results of groundwater sampling collected from existing groundwater monitoring wells (BMW2, 3, 5 through 9 and 13) which was completed in May 2018. Prior to sampling activities, each well was inspected for current condition and redeveloped by a bailing and surging method to ensure sample integrity and enhance communication between the well and the water bearing unit. Two wells (BMW-1 and BMW-14) were found to be in disrepair based on age and condition and thus were not able to be developed or sampled. In consultation with the NYSDEC, both of these wells were abandoned and BMW-14R was reinstalled proximal to the former location of BMW-14.

At the time of sample collection, an oil water interface probe was used to gauge depth to liquid (Table 7) Groundwater sampling was conducted using a peristaltic pump to purge the wells of three times their water volume or if the wells ran dry during purging allowing them to recover sufficient volume before sample collection. All wells had a minimum of two total well volumes purged yielding 2.5 to 13.5 gallons removed per well based on length of water column and diameter of well casing. Sample collection was completed using a bailer. Groundwater sampling information were recorded by a field geologist for volume purged, rate purged and depth to water. The field staff used a multiprobe to measure pH, temperature, conductivity, dissolved oxygen and oxidation reeducation potential and turbidity.

Groundwater samples collected for laboratory analysis were analyzed by PACE Analytical Services, Inc. of Greensburg, Pennsylvania, via USEPA Methods 8260 and 8270 for petroleum related constituents (Table 8). Analytical results are also compared to these NYSDEC standards in Table 8.

2.4 Northern Terminal Groundwater Monitoring Wells Installation Activities

A total of eleven new monitoring wells (MW-201 through MW-211) were installed during the investigation data collection effort at the Northern Terminal locations shown on Figure 3. The new monitoring wells are designed and installed with screen across the water table within the upper unconsolidated unit.

As discussed above, the boreholes for these wells were all advanced using a hollow stem auger drilling methods to termination depths ranging from 15 feet bgs to 24 feet bgs.

Each well location was completed using either 10 or 15-foot-long screens of 2-inch-diameter, Schedule 40, 0.010-inch machine-slotted polyvinyl chloride (PVC) pipe and solid 2-inch-diameter to straddle the water table, and Schedule 40 PVC risers to extend above the ground surface. The annular space of each borehole was filled with #0 silica sand filter pack at least a foot above the top of the screen and a one-foot thick bentonite seal was installed above the filter pack. The borehole annulus was then grouted to the surface at all monitoring well locations. Each of these wells was completed above the ground surface with a protective stick up steel casing.

As discussed above in section 2.2.2, during monitoring well installation, soil samples were collected continuously for soil classification using split-spoon sampling from ground surface to the bottom of each boring to the extent practicable. A PID was used to obtain headspace readings of each sample interval as discussed above.

Monitoring wells were developed after completion to ensure communication between the screened interval and the aquifer by surge blocking and pumping. All fluids were managed as liquid IDW as noted above.

2.5 Survey

All soil boring locations, pre-existing monitoring wells sampled as part of this work scope, and newly installed monitoring wells were surveyed by C.T. Male & Associates of North Syracuse, New York, a New York State licensed surveyor. Survey information was used to convert depths to elevations at each new boring location along with confirming locations after well redevelopment. These surveyed locations are depicted on all figures represented in this document. Boring and well locational and elevation information are presented in Tables 1 and 4.

3 SOIL BORING AND SAMPLING RESULTS

This FISR separates the soil result findings into categories to better understand the different parameters and factors influencing data results. The four divisions of analytical results are the unsaturated zone, saturated zone, semi-volatile organic compounds (SVOCs) and VOCs. The two vertical zones, unsaturated and saturated, are established based on a vertical evaluation of the location of the water table. Each soil sample was determined as to being collected above or within the water table at each sample location.

Evaluating results in this manner can support and infer the spill history at each sampling location. Samples collected above the water table in the unsaturated zone are likely to demonstrate impact which is locally or proximally sourced while samples collected within the water table, within the saturated zone, have the potential to detect impacts that have migrated with groundwater flow to the sampling location.

As discussed in the work plans, PID field findings were utilized to select which samples were retained for laboratory analysis. Laboratory analytical samples were selected on a positive bias basis factoring in field water table indication as well as PID field data. Using this process, soil samples above the water table with PID detections less than 50 ppmv threshold were not universally retained for laboratory analysis. PID data is presented on Table 3.

3.1 Study Area Geology

The underlying site stratigraphy was found to be consistent with the project record documents. The 2016 borings advanced in the more northerly portion of the areas investigated generally encountered a sand dominated regime. Sand ranged from medium to fine and was present in all the borings completed in the northern areas investigated. Geologic information from the more southerly 2016 borings (B112-113) encountered a more complex interbedded sand-silt-clay subsurface. Borings completed in 2018 encountered similar geological information as the 2016 samples; mostly consisting of medium and fine sand. Borings in 2018 located in the most northern portion of the Northern Terminal, north of former AST tank, encountered a sand dominated geology with some additional components such as silty sand, silt, and gravel. Basil glacial till, when encountered, was dense and firm, poorly sorted, and highly compacted. The till was not penetrated at any location. All borings terminated at or above the basil till unit. Boring logs from 2016 and 2018 are included in Appendices 2 and 3, respectively.

3.2 Unsaturated Zone Adsorbed Phase Results

As stated above, the unsaturated zone consists of the soil and corresponding samples above the groundwater table. This zone was sampled in 2016 and in 2018 by soil borings (B101 through B110 and B112 through B121) along with 2018 borings for monitoring well installations on the Northern Terminal (MW-201 through MW-211). These borings were sampled for VOCs and SVOCs. See Appendix 4 for the associated laboratory analytical reports.

3.2.1 Volatile Organic Compound Results 2016 Soil Borings

Soil borings completed in 2016 in the area of Hillside Road and also along the right-of-way between the two Southern Terminals indicated limited unsaturated zone exceedances of CP-51 standards, criteria, guidance values, or objective (SCGO) for VOCs.

Specifically, only borings B102, B105, B113, and B118 had unsaturated SCGO exceedances. Total VOC concentrations were detected above SGCO ranged from 2 compounds exceeding SCGOs at 0-1 feet bgs at B105 with a total concentration of 19,571 parts per billion (ppb) to 6 compounds exceeding SCGOs with a total concentration of 57,501 ppb at 2-4 feet bgs at B113. None of the other borings completed in these areas of the site indicated above water table exceedances (Table 2 and Figure 4).

3.2.2 Semi-Volatile Organic Compound Results 2016 Soil Borings

In the Hillside Road and right-of-way areas of the site there were nine (9) soil boring locations where unsaturated zone soil samples indicated an exceedance of CP-51 SCGOs. The nine (9) borings B102, B105, B106, B107, B109, B112, B118, B119, B120 and indicated SCGO exceedances ranging from 1 compound with a total concentration of 773 ppb at 2-4 feet bgs at B119 to 11 compounds and a total concentration of 984,640 ppb at 0-1 feet bgs at B105 (Table 2 and Figure 5).

3.2.3 Volatile Organic Compound Results 2018 Soil Borings

As noted above, the soil borings executed in 2018 were completed in the former AST operational areas of the Northern Terminal. Data collected from the unsaturated zone soils from the 11 soil borings completed in advance of the installations of MW-201 through MW-211 did not indicate any CP-51 volatile range compound exceedances in any location from any sample. Table 5 and Figure 9 display these data. Data on Figure 9 that is represented by an NA* in the data box indicates there were no unsaturated zone soil samples with a field PID detection above 50 ppmv and thus no unsaturated zone sample was retained for laboratory analysis.

3.2.4 Semi-Volatile Organic Compound Results 2018 Soil Borings

Data collected from the unsaturated zone soils from the 11 soil borings completed in advance of the installations of MW-201 through MW-211 did not indicate any CP-51 volatile range compound exceedances in any location from any sample (Table 5 and Figure 10).

3.2.5 Lead Results 2018 Soil Borings

At the request of the NYSDEC, total lead was included in all the borings completed across the study area, and toxicity characteristic leaching procedure (TCLP) lead was completed at borings B123 through B125. At each soil boring the surface soil sample was retained for total lead. TCLP lead data was collected from the 0-2 foot bgs interval at the three noted borings and at the 2-4 foot sample at the B123 location. Lead concentration results for borings B123, B124, and B125 are reported in Table 2 and on Figure 7, while MW201 - MW-211 soil data are reported in Table 5 and on Figure 13. Total lead findings ranged from 3.9 ppm at MW-204 to 302 ppm at MW-207. All TCLP results were below method detection limits.

3.3 Saturated Zone Adsorbed Phase Results

As previously noted, saturated zone samples are those that are collected at or below the water table at any given boring location. For the purposes of this data evaluation, samples that were located immediately above the field indication of depth to water were included in the group of samples that were considered in the saturated zone (capillary fringe). This process was meant to include the samples that were affected by water table fluctuations based on seasonal conditions. See Appendix 4 for all laboratory analytical reports.

3.3.1 Volatile Organic Compound Results 2016 Soil Borings

Numerous boring locations and numerous saturated zone samples within the individual borings locations indicate SCGO exceedances across the borings completed as part of the 2016 mobilization. The maximum detection occurred at B120 where at 14-16 feet bgs a total volatile concentration of 3,169,000 ppb was recorded, and 11 individual compounds documented an exceedance of the CP-51 SCGO. In contrast to this saturated zone location, there were no saturated zone samples that indicated an SCGO exceedance at borings B115, B116, or B117 and only one compound was detected in exceedance of the SCGOs at B114 and B105. All of the remaining borings indicated saturated zone exceedances of CP-51 SCGOs. See Table 2 and Figure 6 for a presentation of these data findings.

3.3.2 Semi-Volatile Organic Compound Results 2016 Soil Borings

There are no detections of SVOCs above the CP-51 SCGOs at any borings location completed during the 2016 mobilization. See Table 2 and Figure 7 for a presentation of these data findings.

3.3.3 Volatile Organic Compound Results 2018 Soil Borings

As noted above the soil borings executed in 2018 were completed in the former AST operational areas of the Northern Terminal. Data collected from the saturated zone soils from the 11 soil borings completed in advance of the installations of MW-201 through MW-211 did not indicate any CP-51 volatile range compound exceedances in any location from any sample. See Table 5 and Figure 11 for a presentation of these data findings.

3.3.4 Semi-Volatile Organic Compound Results 2018 Soil Borings

Data collected from the saturated zone soils from the 11 soil borings completed in advance of the installations of MW-201 through MW-211 did not indicate any CP-51 semi-volatile range compound exceedances at any location from any sample. See Table 5 and Figure 12 for a presentation of these data findings.

4 GROUNDWATER ANALYTICAL SAMPLING RESULTS

The original scope of work for the initial groundwater sampling event was to collect samples from the 11 existing wells following a well head integrity evaluation. The target list of wells was all previously installed by others and are located on, or immediately adjacent to the former operational area of the Northern Terminal. Samples were successfully collected from eight (8) of the target 11 wells during the first groundwater sampling mobilization in May 2018. See Appendix 4 for all laboratory analytical reports.

The following wells were not sampled or had their sample not analyzed as follows:

BMW1: This well was found to be in un-usable condition during the well head inspection and redevelopment process. Redevelopment attempts indicated that the subsurface components of the well were broken at depth and thus not usable or repairable. With permission of the NYSDEC, this well was permanently abandoned on August 3, 2018.

BMW5: This well was in serviceable condition but was found to contain NAPL during initial gauging prior to redevelopment. The project historical record shows a history of intermittent NAPL detections at a wide range of thickness at this well location. Therefore, the detection of NAPL during development was consistent with existing historical data. The gauging event during sample collection did not indicate a measurable thickness of NAPL so a sample was collected following purging. However, upon arrival at the laboratory NAPL was visible in the sample and thus dissolved phase data is not available for this location. There were no other detections of NAPL on or adjacent to the Northern Terminal during the groundwater sampling scope of work (Table 7).

BMW14: This well was found to be un-usable condition during the wellhead inspection and development mobilization. With permission from the NYSDEC BMW14 was abandoned on August 3, 2018 and replaced with BMW14R as discussed below. The replacement well was sampled following installation, during a separate mobilization in August 2018.

4.1 Northern Terminal Groundwater Flow Pattern Data

Liquid level data collected as part of this investigation is presented in Table 7 and reduced in the form of a groundwater contour map on Figure 14. Data show that the northern parts of the Northern Terminal show the highest head values and the lowest heads proximal to Hillside Road demonstrating a clear flow pattern from the north to the south at the time of groundwater liquid level data collection. This data is consistent with the limited historical site data set for the Northern Terminal.

4.2 Dissolved Phase Northern Terminal Volatile Organic Compound Results

Concentrations of dissolved phase VOCs ranged from non-detect at BMW2, BMW3, BMW7, and BMW8 to a total volatiles concentration of 25,838 ppb at BMW13. It is worth noting that BMW13 had served as a NAPL only recovery well for many years in the project history. It is also worth noting that although there were volatile compound detections at BMW6 and BMW9 they were below the Technical & Operational Guidance Series memo 1.1.1 (TOGS 1.1.1) Ambient Water Quality Standard or Guidance Value for GA

class water. The only TOGS 1.1.1 exceedances were found at BMW13 and BMW14R. See Table 8 and Figure 15 for a presentation of these data findings.

4.3 Dissolved Phase Northern Terminal Semi-Volatile Organic Compound Results

There were no dissolved phase detections of SVOCs above TOGS 1.1.1 SCGO at the Northern Terminal wells that were sampled as part of this investigation. See Table 8 and Figure 15 for a presentation of these data findings.

5 CONCLUSIONS

As noted above, the soil findings have been divided up by compound class (VOC or SVOC) and vertical position with regard to the water table at each sampling location. Soil samples collected above the water table are described as unsaturated zone samples while soil samples collected within the water table are described as saturated zone samples. The reason for segregating the samples vertically with respect to the water table is to facilitate the ability to evaluate the samples with regard to likely spill history. Soils showing impact above the water table would have been impacted from a local or proximal source. This line of evidence of spill history is based on the concept that the major hydraulic transport mechanism for contaminants in the unsaturated soils is gravity. However, in the saturated zone there are more complex forces driving contaminant transport and migration, including the groundwater flow patterns and measurable NAPL thicknesses. Assessing the samples in this manner has the potential to allow for the interpretation of where there have been surface or near surface petroleum spills across the study area examined by this investigation.

5.1 Adsorbed Phase Contaminant Distribution

To assess contaminant distribution patterns, soil samples collected from selected soil samples were determined to be in either the saturated or unsaturated zones based on the location of the water table observed during drilling. Site-wide water table elevation was also considered when evaluating but the final determining factor was field evidence and observations during boring advancement.

All soil samples collected above the capillary fringe and water table are assessed to be in the unsaturated zone and not influenced by the water table or groundwater contaminant transport mechanisms. Soil samples collected in the capillary fringe and through the below the water table are anticipated to be influenced by the water table and are considered in the saturated zone and potentially subject to groundwater contaminant and NAPL transport mechanisms.

As discussed above, segregating the samples into unsaturated and saturated samples allowed for an assessment of the likely impact history at any given location. The premise being that when above water table impacts are detected then the boring is directly in or very close to the spill source. Conversely, samples collected in the unsaturated zone that are devoid of impacts above NYSDEC CP-51 SCGO indicate that there is no spill history at or near the subject location.

5.1.1 Unsaturated Zone Soil 2016 Data

An assessment of the shallow soil detections above the SCGO indicated there are four borings locations with SCGO exceedances and thus require discussion for proximity to a surface or near surface spill event as follows:

B102 and B118 located along Hillside Road: The data at these two borings suggest that they are located in a surface spill area of the site based on the vertical distribution of impacts above SCGOs. Sample intervals from one to 19 feet bgs and one to 18 feet bgs, respectively, at these locations indicate SCGO exceedances (Table 2). At B102, the vertical VOC maximum mass of impact occurring at three to five feet bgs and groundwater in the field was indicated in the range of nine feet bgs during boring advancement (Appendix 2). At B118, the vertical VOC maximum mass in the unsaturated zone

was detected at 4-6 feet bgs while the water table was field indicated at eight feet bgs. The location of these borings is proximal to the dispenser pad on the eastern side of the Southern Terminals. The borings completed north of B102 and B118 (which are B110, B114, B115, and B116) do not indicate any unsaturated zone exceedances of SCGOs and, therefore, a source to the north of B102 and B118 is not suggested by this data set.

B105: The unsaturated sample at this location at 0-1 feet bgs indicated limited VOC but several SVOC compounds in excess of the SCGOs. Upon review of the sample location, the remainder of the vertical results (no exceedance from any other vertical sample at this location for either VOC or SVOC range compounds), and the individual SVOC compounds above the SCGOs, it was concluded that a small amount of road pavement material was incorporated into the sample matrix. This location is not interpreted to be proximal to a near surface spill or spill source.

B113: This location was completed in right-of-way between the two Southern Terminals. This area of the site contains three underground pipelines historically part of the Northern Terminal infrastructure and used to convey petroleum products. The data from this location indicated a discontinuous pattern between unsaturated and saturated zone impacts above SCGO. The sample interval from 2-4 feet bgs indicates the presence of 6 compounds above the SCGOs and a total VOC concentration of 57,501 ppb. However, the samples above and below this interval indicated no SCGO exceedances. The samples collected in the saturated zone at this location indicate impact with the 10-11.1 feet bgs sample indicating a total VOC concentration of 194,150 ppb. These data suggest that the saturated zone impacts at this location are not continuous with the unsaturated zone impacts as they are separated by two vertical samples with either no exceedances of SCGO or only one exceedance (4-6 feet bgs no exceedances and total VOC concentration of 4,442 ppb, 6-8 feet bgs one exceedance and total VOC concentration of 14,604 ppb). (Table 2).

5.1.2 Saturated Zone Soil 2016 Data

An examination of the saturated zone soil sample results suggests that there is a mass of petroleum contaminants throughout the investigation area within the water table. The exception to this broad conclusion is the data collected in the northeast corner of the study area and is comprised of B114, B115, B116, and B117. (Table 2 and Figures 6 and 7).

As noted above, data collected from the saturated zone that indicated impacts detected above the SCGOs must be compared to the unsaturated zone samples from the same locations in order to draw conclusions on likely spill history. Comparing saturated zone and unsaturated zone samples at the same boring location allows for an interpretation as to the potential source for the impacts. Impacts at the water table that are not connected to shallow impacts at the same or immediately proximal locations are not likely locally sourced. This suggests that the mass has been transported from a more distal spill location to the location where they have been detected. This is the case with the vast majority of the 2016 saturated soil data.

The presence of unsaturated zone impacts only in the areas discussed above at B102 and B118, and lack of distinct connection between impacts present in the saturated and unsaturated zones in other locations of the study area supports the conclusion that the remainder of the impacts in the saturated zone were transported via the water table. Figures 6 and 7 present this data visually. Table 2 presents the soil data analytical results.

5.1.3 Unsaturated Zone Soil 2018 Data

As discussed above, the 2018 soil data collection event focused on the Northern Terminal historical AST operational area. Samples from this area were evaluated via field PID and in some locations by laboratory analysis. In accordance with the IRAWP, in the event that there was no field evidence of impact above the water table then a sample at or just above the water table would be retained for laboratory analysis. There were no exceedances of SCGO found in any of the unsaturated soil samples evaluated on the Northern Terminal. This suggests there is no history of spills or releases at the Northern Terminal of a magnitude large enough to indicate an SCGO exceedance.

5.1.4 Saturated Zone Soil 2018 Data

In alignment with the absence of SCGO exceedances in the unsaturated zone soil samples, there are no SCGO exceedances in the saturated zone samples collected in the Northern Terminal historical AST operational area (Table 5 and Figures 11 and 12).

5.2 Groundwater Contaminant and Flow Pattern Conclusions

As discussed in Section 4 above, the only exceedances in the dissolved phase groundwater samples collected as part of this investigation are located at BMW13 and BMW14R. The head data collected as part of this study would suggest that these locations are downgradient of the historical AST infrastructure previously located and operated on the Northern Terminal. However, there are several lines of evidence as follows indicating that these dissolved phase impacts are sourced from the Southern Terminals:

- 1. The conclusions reached in the Focused Groundwater Elevation Investigation Summary Report (Arcadis 2018b) for the subject site indicate that there are times when groundwater flow is from the south to the north across the river terrace portion of the site.
- There are no unsaturated zone soil SCGO exceedances or field PID data elevated responses found in any of the unsaturated zone soil samples from the Northern Terminal historic AST operational area boring locations (MW-201-MW-211) indicative of spill events large enough to cause groundwater impacts above standards in any portion of the Northern Terminal.
- There are no saturated zone soil SCGO exceedances or field PID data elevated responses found in any of the saturated zone soil samples from the Northern Terminal historic AST operational area boring locations (MW-201 - MW-211) suggesting that there is no spill history proximal or distal to any of these locations on the Northern Terminal.

Based on these lines of evidence there is a high likelihood that the NAPL found at BMW5 is not sourced from the Northern Terminal.

6 ONGOING ACTIVITES

In accordance with the IRAWP and in alignment with discussion with NYSDEC, third quarter groundwater samples will be collected from the newly installed wells (MW-201-MW-211) and the wells sampled as part of this study. Groundwater samples will be analyzed for petroleum-related compounds for VOCs and SVOC via USEPA Method 8260 and 8270. Sampling activities will continue in 2019 on a quarterly basis, with a data evaluation planned following the completion of the 2019 sampling events.

7 REFERENCES

Arcadis. 2016. Focused Investigation Work Plan. February.

Arcadis. 2018a. Supplemental Characterization and Interim Remedial Action Work Plan. February.

Arcadis. 2018b. Focused Groundwater Elevation Investigation Summary Report. June 15.

TABLES

Table 1Soil Boring Locations

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Boring ID	Northing	Easting	Ground Surface Elevation
B101	1141246.01	908795.81	386.79
B102	1141236.02	909155.78	373.94
B103	1141207.22	908844.08	379.79
B104	1141193.88	908869.76	379.38
B105	1141180.91	908788.05	378.91
B106	1141228.82	908812.97	384.45
B107	1141227.38	908949.15	381.35
B108	1141238.56	909060.36	379.74
B109	1141188.58	908970.87	378.37
B110	1141245.18	909083.59	379.01
B112	1141144.29	909019.63	375.44
B113	1141085.25	909026.70	373.81
B114	1141257.50	909120.38	374.86
B115	1141263.95	909168.02	373.98
B116	1141267.35	909198.23	373.89
B117	1141263.78	909219.02	374.58
B118	1141231.97	909122.81	374.18
B119	1141227.21	908996.59	380.28
B120	1141236.42	908995.74	380.63
B121	1141237.92	909003.71	380.01
B123	1141176.42	909019.89	376.62
B124	1141084.20	909028.46	373.87
B125	1141044.87	909047.83	371.98

Notes:

1. The coordinates are based on the New York State Plane Coordinate System, NAD 83 (North American Datum of 1983).

							VOCs (El	PA 8260C)					
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Ethylbenzene	lsopropyl- benzene	Naphthalene	n-Propyl- benzene	Xylene (Total)	Total VOCs	SVOCs (EPA 8270D by SIM)	Total SVOCs
B101	0 - 2	04/20/16	386.78-384.78	6 U	6 U	6 U	6 U	6 U	6 U	12 U	240 U	No	7.8 U
B101	2 - 4	04/05/16	384.78-382.78	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	11.6 U	232 U	Exceedances	7.7 U
B101	2 - 4	04/20/16	384.78-382.78	6 U	6 U	6 U	6 U	6 U	6 U	11.9 U	239 U	1	257
B101	4 - 6	04/20/16	382.78-380.78	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	11.9 U	238 U		8.4 U
B101	16 - 18	04/25/16	370.78-368.78	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	11.5 U	231 U	1	7.6 U
B101	18 - 20	04/25/16	368.78-366.78	274 U	274 U	274 U	274 U	274 U	274 U	549 U	11,000 U	1	26.5
B101	20 - 21.8	04/25/16	366.78-364.98	112,000	36,600	13,900	3,160	14,300	11,700	115,400	315,680		120.8
B101	21.8 - 24	04/25/16	364.98-362.78	15.5	5.9	5.5 U	5.5 U	5.5 U	5.5 U	11 U	21.4	1	8.6 U
B101	24 - 26	04/25/16	362.78-360.78	6.8	6.8 U	6.8 U	6.8 U	6.8 U	6.8 U	13.6 U	6.8		8.5 U
	Number o	f Exceedanc	ces	1	1	1	1	1	1	1	NA	0	NA

								VC	DCs (EPA 82600	;)				
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Benzene	Ethylbenzene	lsopropyl- benzene	Naphthalene	n-Butyl- benzene	n-Propyl- benzene	Toluene	Xylene (Total)	Total VOCs
B102	1.1 - 1.5	04/06/16	372.83-372.43	1,270	473	395	276	262 U	19,700	262 U	262 U	262 U	523 U	22,114
B102	1.5 - 2.7	04/06/16	372.43-371.23	107	45.8	379	2,950	241	524	106	1,010	25.3	753.1	6,230.9
B102	3 - 5	04/06/16	370.93-368.93	264,000	90,900	11,300	112,000	15,300	57,800	20,600	54,900	8,900	389,900	1,036,520
B102	4 - 6	04/20/16	369.93-367.93	196,000	61,600	15,000	84,600	8,990	33,300	10,500	32,800	19,500	432,000	905,330
B102	6 - 6.4	04/20/16	367.93-367.53	35,500	10,600	8,610	16,000	1,530	5,590	1,800	5,440	72,100	91,000	250,071
B102	8 - 9.6	04/20/16	365.93-364.33	137,000	45,800	16,200	66,600	5,790	18,000	6,380	20,000	155,000	326,500	804,420
B102	16 - 18	04/20/16	357.93-355.93	21,700	7,080	275 U	4,450	1,000	3,220	1,110	3,580	580	11,100	54,877
B102	18 - 19	04/20/16	355.93-354.93	40,700	10,700	282 U	7,960	1,550	4,750	1,670	5,510	688	19,640	94,876
	Number o	f Exceedanc	ces	6	5	6	7	3	4	1	5	4	7	NA

							SVOCs (EPA 8	270D by SIM)			
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	Benz (a) Anthracene	Benzo(a) Pyrene	Benzo (b) Fluoranthene	Benzo (k) Fluoranthene	Chrysene	Dibenzo(a,h) Anthracene	Indeno (1,2,3-cd) Pyrene	Total SVOCs
B102	1.1 - 1.5	04/06/16	372.83-372.43	26,900	12,000	33,900	23,200	12,200	2,180	4,300	315,690
B102	1.5 - 2.7	04/06/16	372.43-371.23	64	64.3	126	125	60.9	12.8	26.2	1,111.4
B102	3 - 5	04/06/16	370.93-368.93	12.8	9.1 U	23.6	23.4	17	9.1 U	9.1 U	1,034.9
B102	4 - 6	04/20/16	369.93-367.93	7.7 U	7.7 U	7.7 U	7.7 U	7.7 U	7.7 U	7.7 U	58.6
B102	6 - 6.4	04/20/16	367.93-367.53	390	393	516	190	317	45.6	125	6,737.3
B102	8 - 9.6	04/20/16	365.93-364.33	13.5	9.5	18.2	15.4	10.5	8.1 U	8.1 U	379.7
B102	16 - 18	04/20/16	357.93-355.93	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	10
B102	18 - 19	04/20/16	355.93-354.93	8.8 U	8.8 U	8.8 U	8.8 U	8.8 U	8.8 U	8.8 U	66.6
	Number o	f Exceedanc	ces	1	1	1	1	1	1	1	NA

					VOCs (EPA 8260C)												
				1,2,4-	1,3,5-							p-				SVOCs	
	Sample	Date	Corrected	Trimethyl-	Trimethyl-		Ethyl-	Isopropyl-	Naph-	n-Butyl-	n-Propyl-	Isopropyl-		Xylene	Total	(EPA 8270D	Total
Location ID	Depth (ft)	Collected	Elevation Range	benzene	benzene	Benzene	benzene	benzene	thalene	benzene	benzene	toluene	Toluene	(Total)	VOCs	by SIM)	SVOCs
B103	1 - 3	04/05/16	378.79-376.79	6.7 U	6.7 U	6.7 U	6.7 U	6.7 U	6.7 U	6.7 U	6.7 U	6.7 U	6.7 U	13.4 U	269 U	No	150.5
B103	4 - 5.6	04/25/16	375.79-374.19	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	10.4 U	208 U	Exceedances	8.1 U
B103	5.6 - 6.6	04/25/16	374.19-373.19	6.1 U	6.1 U	6.1 U	6.1 U	6.1 U	6.1 U	6.1 U	6.1 U	6.1 U	6.1 U	12.2 U	244 U		7.8 U
B103	8 - 9.5	04/25/16	371.79-370.29	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	11.7 U	235 U		7.5 U
B103	9.5 - 10.1	04/25/16	370.29-369.69	106,000	34,700	2,660 U	9,570	2,980	24,900	7,750	10,500	5,770	11,200	115,100	328,470		68.9
B103	12 - 13	04/25/16	367.79-366.79	402,000	147,000	3,070 U	82,800	14,400	101,000	26,800	54,300	21,600	136,000	661,000	1,654,240		1,228.8
B103	13 - 14.8	04/25/16	366.79-364.99	447,000	154,000	8,760	108,000	15,200	99,300	25,600	51,900	22,000	332,000	932,000	2,202,890		2,219.3
B103	16 - 18	04/25/16	363.79-361.79	76,300	24,400	2,170	25,600	3,030	17,500	4,600	11,400	3,520	99,800	174,900	444,370		213.1
B103	18 - 20	04/25/16	361.79-359.79	121	33	17.7	76.9	5.4 U	57.1	5.4 U	10.3	5.4 U	495	690	1,501		8.6 U
B103	20 - 21.5	04/25/16	359.79-358.29	13.1	5.1 U	5.1 U	14.1	5.1 U	6.9	5.1 U	5.1 U	5.1 U	5.1 U	34.7	68.8		8.4 U
B103	21.5 - 24	04/25/16	358.29-355.79	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	8 U	160 U		7.5 U
	Number of Exceedances				4	2	4	4	4	2	4	2	4	5	NA	0	NA

								VC	Cs (EPA 8260	C)						
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Benzene	Ethyl- benzene	lsopropyl- benzene	Naphthalene	n-Butyl- benzene	n-Propyl- benzene	Toluene	Xylene (Total)	Total VOCs	SVOCs (EPA 8270D by SIM)	Total SVOCs
B104	3 - 5	04/05/16	376.38-374.38	6.7 U	6.7 U	6.7 U	6.7 U	6.7 U	6.7 U	6.7 U	6.7 U	6.7 U	13.3 U	267 U	No	712.4
B104	4 - 6	04/25/16	375.38-373.38	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	12.9 U	257 U	Exceedances	664.7
B104	6 - 8	04/25/16	373.38-371.38	7 U	7 U	7 U	7 U	7 U	7 U	7 U	7 U	7 U	14.1 U	281 U		853
B104	8 - 8.8	04/25/16	371.38-370.58	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	12.9 U	257 U		8.3 U
B104	8.8 - 10.3	04/25/16	370.58-369.08	25,700	8,280	279 U	1,370	484	3,480	1,930	2,090	279 U	13,420	58,925		159.5
B104	12 - 13.7	04/25/16	367.38-365.68	463,000	185,000	14,400	175,000	24,400	114,000	37,200	88,900	480,000	1,042,000	2,640,970		1,249.6
B104	16 - 18	04/25/16	363.38-361.38	4,120	1,310	1,080	1,620	329 U	1,110	329 U	643	6,100	9,710	25,693		8.6 U
B104	18 - 20	04/25/16	361.38-359.38	108	30.8	378	110	6.3 U	20.7	6.3 U	14.3	1,010	581	2,252.8		8.5 U
B104	20 - 21	04/25/16	359.38-358.38	90.4	27.6	24.2	23.4	5.3 U	23.6	5.4	11.9	78.8	142.4	427.7		7.5 U
B104	21 - 23	04/25/16	358.38-356.38	8.5	5.6 U	5.6 U	5.6 U	5.6 U	8.7	5.6 U	5.6 U	5.6 U	11.2 U	17.2		7.4 U
	Number o	f Exceedanc	ces	3	1	3	3	1	1	1	1	3	4	NA	0	NA

					VOCs (EPA 8260C)	SVOCs (EPA 8270D by SIM)						
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	Naphthalene	Xylene (Total)	Total VOCs	Benz (a) Anthracene	Benzo(a) Pyrene	Benzo (b) Fluoranthene	Benzo (k) Fluoranthene	Chrysene		
B105	0 - 1	04/06/16	378.9-377.9	14,600	911	19,571	52,100	44,800	77,100	12,800	43,800		
B105	1 - 3	04/06/16	377.9-375.9	22	10.9 U	22	278	212	363	360	240		
B105	3 - 5	04/06/16	375.9-373.9	8.4	13.9 U	8.4	8.1 U	8.1 U	9.8	9.7	8.1 U		
B105	8 - 8.9	04/25/16	370.9-370	5.7 U	11.5 U	230 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U		
B105	8.9 - 10.9	04/25/16	370-368	19.6	23.5	275.7	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U		
B105	16 - 18	04/25/16	362.9-360.9	14.5	107.1	230.5	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U		
B105	18 - 20	04/25/16	360.9-358.9	94.5	511	912.4	8.4 U	8.4 U	8.4 U	8.4 U	8.4 U		
B105	20 - 22	04/25/16	358.9-356.9	5.9 U	11.8 U	235 U	8 U	8 U	8 U	8 U	8 U		
	Number o	f Exceedand	ces	1	2	NA	1	1	1	1	1		

					SVOCs (EPA 8270D by SIM)									
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	Dibenzo(a,h) Anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd) Pyrene	Phenanthrene	Pyrene	Total SVOCs				
B105	0 - 1	04/06/16	378.9-377.9	4,570	219,000	46,500	9,350	300,000	108,000	984,640				
B105	1 - 3	04/06/16	377.9-375.9	38.4	600	146	88.3	626	496	3,783.6				
B105	3 - 5	04/06/16	375.9-373.9	8.1 U	11	8.1 U	8.1 U	8.9	9.7	49.1				
B105	8 - 8.9	04/25/16	370.9-370	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U				
B105	8.9 - 10.9	04/25/16	370-368	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U				
B105	16 - 18	04/25/16	362.9-360.9	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U				
B105	18 - 20	04/25/16	360.9-358.9	8.4 U	8.4 U	8.4 U	8.4 U	8.4 U	8.4 U	8.4 U				
B105	20 - 22	04/25/16	358.9-356.9	8 U	8 U	8 U	8 U	8 U	8 U	8 U				
	Number of Exceedances		ces	1	1	1	1	1	1	NA				

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

					VOCs (EPA 8260C)								
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Ethylbenzene	lsopropyl- benzene	Naphthalene	n-Propyl- benzene	Toluene	Xylene (Total)	Total VOCs	
B106	0 - 2	04/20/16	384.44-382.44	6.3 U	6.3 U	6.3 U	6.3 U	6.3 U	6.3 U	6.3 U	12.5 U	250 U	
B106	1 - 3	04/06/16	383.44-381.44	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	12.9 U	258 U	
B106	2 - 4	04/20/16	382.44-380.44	8.2	6.4 U	6.4 U	6.4 U	29.8	6.4 U	6.4 U	12.9 U	38	
B106	4 - 6	04/20/16	380.44-378.44	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	11.4 U	228 U	
B106	14 - 15.5	04/25/16	370.44-368.94	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	11.5 U	229 U	
B106	16 - 17	04/25/16	368.44-367.44	3,470	6,750	276 U	276 U	276 U	276 U	276 U	351	11,440	
B106	17 - 19	04/25/16	367.44-365.44	178,000	62,500	22,200	4,950	36,700	18,000	5,460	253,000	598,380	
B106	22 - 24	04/25/16	362.44-360.44	72.3	22.9	35.6	5.8 U	18.5	11.1	62.5	191.2	414.1	
	Nu	umber of Exc	eedances	1	1	1	1	1	1	1	2	NA	

					SVO	Cs (EPA 8270D b	y SIM)	
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	Benz(a) Anthracene	Benzo(a) Pyrene	Benzo(b) Fluoranthene	Chrysene	Total SVOCs
B106	0 - 2	04/20/16	384.44-382.44	1,190	1,170	2,090	1,090	13,974.9
B106	1 - 3	04/06/16	383.44-381.44	71.2	101	205	96.5	1,206.2
B106	2 - 4	04/20/16	382.44-380.44	15.3	19.3	49.5	21.3	233.7
B106	4 - 6	04/20/16	380.44-378.44	8 U	8 U	8 U	8 U	8 U
B106	14 - 15.5	04/25/16	370.44-368.94	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U
B106	16 - 17	04/25/16	368.44-367.44	7.8 U	7.8 U	7.8 U	7.8 U	8.7
B106	17 - 19	04/25/16	367.44-365.44	18.5	8 U	15.2	15.1	773.9
B106	22 - 24	04/25/16	362.44-360.44	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U
	Nu	umber of Exe	ceedances	1	1	1	1	NA

See Notes on Page 24.

					VOCs (EPA 8260C)										
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Benzene	Ethyl- benzene	lsopropyl- benzene	Naphthalene	n-Butyl- benzene	n-Propyl- benzene	p-lsopropyl- toluene	Toluene	Xylene (Total)	Total VOCs
B107	0 - 1	04/08/16	381.35-380.35	5.6 U	5.6 U	5.6 U	5.6 U	5.6 U	5.9 U	5.6 U	5.6 U	5.6 U	5.6 U	11.2 U	223 U
B107	1 - 3	04/08/16	380.35-378.35	6.3 U	6.3 U	6.3 U	6.3 U	6.3 U	4.9 U	6.3 U	6.3 U	6.3 U	6.3 U	12.6 U	253 U
B107	3 - 5	04/08/16	378.35-376.35	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	10.7 U	215 U
B107	8 - 9.3	04/22/16	373.35-372.05	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	10.2 U	7.8 U	7.8 U	205 U
B107	9.3 - 11.3	04/22/16	372.05-370.05	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	13.9 U	278 U
B107	12 - 14	04/22/16	369.35-367.35	42,700	21,000	1,060	12,100	2,070	3,180	2,180	6,070	716	23,800	82,600	198,299
B107	14 - 14.7	04/22/16	367.35-366.65	544,000	205,000	26,100	172,000	22,500	64,600	33,700	64,000	30,000	589,000	1,053,000	2,814,000
B107	16 - 18	04/22/16	365.35-363.35	179,000	57,700	20,400	73,900	7,490	37,400	9,770	27,800	7,490	173,000	412,000	1,005,950
B107	18 - 20	04/22/16	363.35-361.35	4,030	1,220	1,270	1,550	265 U	1,340	265 U	566	265 U	8,520	8,990	27,486
B107	20 - 22	04/22/16	361.35-359.35	425	123	427	437	18.8	165	9.2	50.7	10.1	4,030	1,932	7,627.8
B107	22 - 24	04/22/16	359.35-357.35	309 U	309 U	309 U	309 U	309 U	309 U	309 U	309 U	309 U	1,390	618 U	1,390
	Number of Exceedances				3	5	4	2	2	1	3	1	6	5	NA

				SVOCs (EPA 8270D by SIM)										
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	Benz(a) Anthracene	Benzo(a) Pyrene	Benzo(b) Fluoranthene	Benzo (k) Fluoranthene	Chrysene	Dibenzo(a,h) Anthracene	Indeno (1,2,3-cd) Pyrene	Total SVOCs			
B107	0 - 1	04/08/16	381.35-380.35	718	961	1,810	1,400	796	189	574	10,857.3			
B107	1 - 3	04/08/16	380.35-378.35	6,210	8,790	12,500	5,420	7,240	1,860	6,190	88,571.9			
B107	3 - 5	04/08/16	378.35-376.35	396	652	1,230	1,220	483	143	505	7,069.2			
B107	8 - 9.3	04/22/16	373.35-372.05	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U			
B107	9.3 - 11.3	04/22/16	372.05-370.05	8.6 U	8.6 U	8.6 U	8.6 U	8.6 U	8.6 U	8.6 U	8.6 U			
B107	12 - 14	04/22/16	369.35-367.35	8.8 U	8.8 U	8.8 U	8.8 U	8.8 U	8.8 U	8.8 U	9.9			
B107	14 - 14.7	04/22/16	367.35-366.65	18.2	8.2 U	16.6	13.9	14.7	8.2 U	8.2 U	1,056.2			
B107	16 - 18	04/22/16	365.35-363.35	12.7	8.1 U	12.3	10.1	10.3	8.1 U	8.1 U	802			
B107	18 - 20	04/22/16	363.35-361.35	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U			
B107	20 - 22	04/22/16	361.35-359.35	8.5 U	8.5 U	8.5 U	8.5 U	8.5 U	8.5 U	8.5 U	8.5 U			
B107	22 - 24	04/22/16	359.35-357.35	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U			
	Number o	f Exceedanc	ces	1	1	3	3	1	1	3	NA			

				VOCs (EPA 8260C)								
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Benzene	Ethyl- benzene	lsopropyl- benzene	Naphthalene	n-Butyl- benzene		
B108	0 - 1	04/08/16	379.73-378.73	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	5.8 U	4.9 U		
B108	1 - 3	04/08/16	378.73-376.73	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.6 U	5.8 U		
B108	3 - 5	04/08/16	376.73-374.73	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.1 U	5.9 U		
B108	8 - 8.7	04/20/16	371.73-371.03	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U		
B108	8.7 - 10.6	04/20/16	371.03-369.13	22,000	9,700	287 U	4,050	1,010	749	1,710		
B108	12 - 14	04/20/16	367.73-365.73	273,000	87,400	17,200	104,000	12,400	39,000	15,500		
B108	14 - 16	04/20/16	365.73-363.73	190,000	63,600	21,000	74,900	8,820	40,400	13,500		
B108	16 - 18	04/20/16	363.73-361.73	140,000	46,300	39,800	60,300	6,780	35,600	11,100		
B108	18 - 20	04/20/16	361.73-359.73	65,900	20,300	11,100	20,100	2,980	14,100	5,160		
B108	20 - 22	04/20/16	359.73-357.73	51.7	14.5	276	29.8	6.5 U	42.8	6.5 U		
B108	22 - 24	04/20/16	357.73-355.73	30.5	7.9	17.2	15.9	5.7 U	40.1	5.7 U		
	Number o	f Exceedanc	es	5	5	5	5	4	4	2		

					V					
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	n-Propyl- benzene	p-lsopropyl- toluene	Toluene	Xylene (Total)	Total VOCs	SVOCs (EPA 8270D by SIM)	Total SVOCs
B108	0 - 1	04/08/16	379.73-378.73	4.9 U	4.9 U	4.9 U	9.7 U	195 U	No	1,631.4
B108	1 - 3	04/08/16	378.73-376.73	5.8 U	5.8 U	5.8 U	11.7 U	234 U	Exceedances	17.9
B108	3 - 5	04/08/16	376.73-374.73	5.9 U	5.9 U	5.9 U	11.8 U	237 U		195.6
B108	8 - 8.7	04/20/16	371.73-371.03	5.4 U	5.4 U	5.4 U	10.8 U	215 U		8.1 U
B108	8.7 - 10.6	04/20/16	371.03-369.13	3,240	1,790	2,950	30,250	78,131		110.3
B108	12 - 14	04/20/16	367.73-365.73	42,000	13,000	340,000	628,000	1,576,850		1,573.4
B108	14 - 16	04/20/16	365.73-363.73	28,900	4,180	245,000	433,000	1,128,400		8.7 U
B108	16 - 18	04/20/16	363.73-361.73	22,200	4,120	172,000	326,200	870,030		2,031.8
B108	18 - 20	04/20/16	361.73-359.73	9,830	5,440	101,000	128,100	386,370		720
B108	20 - 22	04/20/16	359.73-357.73	6.5 U	6.5 U	297	174.3	886.1		7.8 U
B108	22 - 24	04/20/16	357.73-355.73	5.7 U	5.7 U	105	79.7	296.3		7.9 U
	Number of Exceedances			4	1	5	5	NA	0	NA

					VOCs (EPA 8260C)										
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Benzene	Ethylbenzene	lsopropyl- benzene	Naphthalene	n-Propyl- benzene	Toluene	Xylene (Total)	Total VOCs		
B109	0 - 2	04/08/16	378.36-376.36	5 U	5 U	5 U	5 U	5 U	5.2 U	5 U	5 U	10 U	200 U		
B109	2 - 4	04/08/16	376.36-374.36	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	7.4 U	5.7 U	5.7 U	11.4 U	228 U		
B109	4 - 6	04/08/16	374.36-372.36	6.8 U	6.8 U	6.8 U	6.8 U	6.8 U	6.4 U	6.8 U	6.8 U	13.5 U	270 U		
B109	6 - 8	04/08/16	372.36-370.36	6.8 U	6.8 U	6.8 U	6.8 U	6.8 U	6.2 U	6.8 U	6.8 U	13.6 U	273 U		
B109	8 - 8.8	04/22/16	370.36-369.56	72,800	24,800	341 U	8,940	2,240	16,600	7,680	11,200	111,000	266,810		
B109	8.8 - 11	04/22/16	369.56-367.36	76,700	25,000	2,710 U	30,800	3,370	14,900	12,000	99,200	184,000	454,270		
B109	12 - 14	04/22/16	366.36-364.36	17,400	5,560	2,280	6,980	725	4,290	2,640	22,600	38,920	103,590		
B109	14 - 15.8	04/22/16	364.36-362.56	331	308 U	607	308 U	308 U	308 U	308 U	1,040	988	2,966		
B109	16 - 18	04/22/16	362.36-360.36	277	80.6	2,490	363	12.8	123	32.7	1,960	2,062	7,406.8		
B109	18 - 20	04/22/16	360.36-358.36	101	24.9	371	73.5	5.7 U	88.1	9.2	431	452	1,550.7		
B109	20 - 22	04/22/16	358.36-356.36	377	109	818	438	17.7	182	49	913	682 U	2,909.4		
B109	22 - 22.8	04/22/16	356.36-355.56	121	33.1	1,370	168	5.6	70.4	13.1	630	798	3,209.2		
B109	24 - 26	04/22/16	354.36-352.36	30.4	6.4	10.8	8.6	5.6 U	8.1	6.5	5.8	19.1	95.7		
	Number o	f Exceedanc	ces	3	2	6	3	1	2	2	6	7	NA		

				SVOCs (EPA 8270D by SIM)								
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	Benz(a) Anthracene	Benzo(a) Pyrene	Benzo(b) Fluoranthene	Benzo(k) Fluoranthene	Chrysene	Dibenzo(a,h) Anthracene	Indeno (1,2,3-cd) Pyrene	Total SVOCs	
B109	0 - 2	04/08/16	378.36-376.36	2,940	4,870	8,450	8,380	2,690	1,290	2,990	44,892.4	
B109	2 - 4	04/08/16	376.36-374.36	8.8 U	8.8 U	13.4	13.5	8.8 U	8.8 U	8.8 U	26.9	
B109	4 - 6	04/08/16	374.36-372.36	9.8 U	9.8 U	9.8 U	9.8 U	9.8 U	9.8 U	9.8 U	9.8 U	
B109	6 - 8	04/08/16	372.36-370.36	12.1	21.6	38.5	38.2	8.4 U	8.4 U	12.6	148.6	
B109	8 - 8.8	04/22/16	370.36-369.56	8.9 U	8.9 U	8.9 U	8.9 U	8.9 U	8.9 U	8.9 U	196	
B109	8.8 - 11	04/22/16	369.56-367.36	11.2	8.7 U	11.6	9.7	9.2	8.7 U	8.7 U	457.4	
B109	12 - 14	04/22/16	366.36-364.36	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U	
B109	14 - 15.8	04/22/16	364.36-362.56	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	
B109	16 - 18	04/22/16	362.36-360.36	8.8 U	8.8 U	13.9	11.6	8.8 U	8.8 U	8.8 U	45.5	
B109	18 - 20	04/22/16	360.36-358.36	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U	8.2 U	
B109	20 - 22	04/22/16	358.36-356.36	8.9 U	8.9 U	8.9 U	8.9 U	8.9 U	8.9 U	8.9 U	8.9 U	
B109	22 - 22.8	04/22/16	356.36-355.56	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	8.7 U	
B109	24 - 26	04/22/16	354.36-352.36	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	7.4 U	
	Number o	f Exceedand	ces	1	1	1	1	1	1	1	NA	

				VOCs (EPA 8260C)														
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Benzene	Ethyl- benzene	lsopropyl- benzene	Naph- thalene	n-Butyl- benzene	n-Propyl- benzene	p- Isopropyl- toluene	sec-Butyl benzene	Toluene	Xylene (Total)	Total VOCs	SVOCs (EPA 8270D by SIM)	Total SVOCs
B110	0 - 2	04/20/16	379-377	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	12.9 U	259 U	No	3,152
B110	2 - 4	04/20/16	377-375	7.3 U	7.3 U	7.3 U	7.3 U	7.3 U	7.3 U	7.3 U	7.3 U	7.3 U	7.3 U	7.3 U	14.6 U	292 U	Exceedances	163.4
B110	4 - 6	04/20/16	375-373	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	11.8 U	237 U		8.9 U
B110	6 - 8	04/20/16	373-371	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	11.6 U	232 U		8.1 U
B110	8 - 10	04/25/16	371-369	5,050	2,090	279 U	279 U	279 U	812	279 U	279 U	279 U	279 U	279 U	2,870	10,822		153.2
B110	10 - 12	04/25/16	369-367	189,000	67,300	4,430	16,300	3,360	27,600	7,240	6,760	11,900	3,570	48,400	339,600	725,460		2,488
B110	12 - 13.1	04/25/16	367-365.9	231,000	88,300	19,000	117,000	12,700	65,500	17,500	42,900	17,300	7,270	125,000	459,000	1,202,470		2,519
B110	13.1 - 14.9	04/25/16	365.9-364.1	328,000	132,000	47,500	148,000	19,600	81,900	27,100	63,600	9,180	11,400	337,000	718,000	1,923,280		1,834.5
B110	16 - 18	04/25/16	363-361	56,800	24,500	3,230	28,200	3,780	16,300	6,130	12,800	2,240	2,820	45,200	118,700	320,700		1,705.6
B110	18 - 20	04/25/16	361-359	156,000	52,600	17,200	54,500	7,010	42,800	11,100	24,500	4,140	4,810	149,000	309,700	833,360		1,181.6
B110	20 - 22	04/25/16	359-357	169	58.3	6.5 U	7.9	6.5 U	140	15.8	12.1	6.5 U	6.5 U	9.7	80.3	493.1		8.6 U
B110	24 - 26	04/25/16	355-353	926	373	31.6 U	31.6 U	36	31.6 U	40.8	40	31.6 U	31.6 U	31.6 U	994	2,409.8		48 U
	Number of E	Exceedances	3	6	5	5	5	5	5	2	5	2	1	5	7	NA	0	NA

							SVOCs (EPA	8270D by SIM)			
Location ID	Sample	Date	Corrected	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Ethylbenzene	n-Pronylbenzene	Xylene (Total)	Total VOCs	Benzo(k)	Total SVOCs
Location ID	Deptil (It)	Collected	Lievation Range	Thineurybenzene	Trimetryibenzene	Linyibenzene	пчторушениене	Aylene (Total)		Tiuorantinene	Total Svocs
B112	0 - 2	04/21/16	375.43-373.43	5.3 U	5.3 U	5.3 U	5.3 U	10.6 U	212 U	805	6,029.5
B112	2 - 4	04/21/16	373.43-371.43	5.8 U	5.8 U	5.8 U	5.8 U	11.7 U	234 U	12.5	49.7
B112	4 - 6	04/21/16	371.43-369.43	6.1 U	6.1 U	6.1 U	6.1 U	12.2 U	243 U	8.4 U	17.7
B112	6 - 8	04/21/16	369.43-367.43	2,860	957	329	464	655 U	4,610	9.6	142
B112	8 - 10	04/21/16	367.43-365.43	23,700	8,720	4,970	3,720	22,450	73,797	10.6	646
B112	10 - 11.7	04/21/16	365.43-363.73	40,800	14,600	4,340	6,480	16,040	97,590	8.5 U	81.7
B112	12 - 14	04/21/16	363.43-361.43	9,180	3,650	839	1,670	3,101	23,071	8.5 U	8.5 U
B112	14 - 15	04/21/16	361.43-360.43	4,760	1,920	454	926	1,580	11,949	8.6 U	8.6 U
	Number of Exceedances			4 2 2 1 4				NA	1	NA	

Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Benzene	Ethylbenzene	n-Propyl- benzene	Toluene	Xylene (Total)	Total VOCs	SVOCs (EPA 8270D by SIM)	Total SVOCs
B113	0 - 2	04/21/16	373.8-371.8	5.5 U	5.5 U	5.5 U	5.5 U	5.5 U	5.5 U	11 U	219 U	No	2,041.7
B113	2 - 4	04/21/16	371.8-369.8	19,900	8,450	528	2,830	5,490	304 U	8,783	57,501	Exceedances	12,919
B113	4 - 6	04/21/16	369.8-367.8	712	270 U	270 U	270 U	1,380	270 U	540 U	4,442]	2,811.2
B113	6 - 8	04/21/16	367.8-365.8	5,680	2,630	335 U	466	2,360	335 U	670 U	14,604		3,071.6
B113	8 - 10	04/21/16	365.8-363.8	48,200	12,500	646	16,200	7,020	8,440	69,200	179,356	1	8,273.1
B113	10 - 11.1	04/21/16	363.8-362.7	38,400	12,100	1,730	16,900	6,190	16,600	83,200	194,150]	1,646.5
B113	12 - 14	04/21/16	361.8-359.8	6,000	1,850	284 U	2,110	1,080	2,290	9,910	25,500		20.6
B113	14 - 15	04/21/16	359.8-358.8	88.3	24.1	34.9	101	11.2	101	488	900.3	1	14.1
B113	16 - 18	04/21/16	357.8-355.8	202	54.7	15.8	159	40.3	67	388	1,067.7		31.3
	Number o	f Exceedance	ces	5	3	3	4	3	3	6	NA	0	NA

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

	Sample	Date	Corrected	VOCs (EF	PA 8260C)	SVOCs	
Location ID	Depth (ft)	Collected	Elevation Range	Xylene (Total)	Total VOCs	(EPA 8270D by SIM)	Total SVOCs
B114	1 - 3	04/05/16	373.86-371.86	11.1 U	223 U	No Exceedances	99.7
B114	6 - 6.9	04/20/16	368.86-367.96	542 U	1,151		8.4 U
B114	8 - 10	04/20/16	366.86-364.86	551 U	1,498		457.1
B114	10 - 10.5	04/20/16	364.86-364.36	10.7 U	2,196.8		36.3
B114	16 - 18	04/20/16	358.86-356.86	722.7	2,328.2		8.9 U
B114	18 - 20	04/20/16	356.86-354.86	1,160	5,582		8.8 U
	Number o	of Exceedance	ces	2	NA	0	NA

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	VOCs (EPA 8260C)	Total VOCs	SVOCs (EPA 8270D by SIM)	Total SVOCs
B115	1.5 - 2	04/05/16	372.47-371.97	No Exceedances	10.1	No Exceedances	65.4
B115	8 - 10	04/20/16	365.97-363.97		266 U		8.7 U
	Number of Exceedances			0	NA	0	NA

Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	VOCs (EPA 8260C)	Total VOCs	SVOCs (EPA 8270D by SIM)	Total SVOCs
B116	4 - 5	04/05/16	369.88-368.88	No Exceedances	235 U	No Exceedances	8.4 U
B116	8 - 10	04/20/16	365.88-363.88		294 U		8.7 U
	Number of Exceedances			0	NA	0	NA

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	VOCs (EPA 8260C)	Total VOCs	SVOCs (EPA 8270D by SIM)	Total SVOCs
B117	2.5 - 3	04/05/16	372.08-371.58	No Exceedances	249 U	No Exceedances	8.3 U
B117	8 - 10	04/20/16	366.58-364.58		296 U		9 U
Number of Exceedances				0	NA	0	NA

				VOCs (EPA 8260C)									
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Benzene	Ethylbenzene	lsopropyl- benzene	Naphthalene	n-Propyl- benzene	Toluene	Xylene (Total)	Total VOCs
B118	1 - 3	04/05/16	373.17-371.17	2,780	81	31.3	1,830	129	3,190	440	18.9	564.9	9,234.4
B118	3 - 5	04/05/16	371.17-369.17	1,020	320 U	320 U	819	320 U	5,050	509	320 U	639 U	7,398
B118	4 - 6	04/20/16	370.17-368.17	23,000	7,390	3,450	10,300	1,020	4,500	3,720	23,800	54,300	134,434
B118	6 - 7.4	04/20/16	368.17-366.77	15,600	4,860	3,360 U	6,640	3,360 U	4,260	3,360 U	24,200	35,810	91,370
B118	8 - 9.5	04/20/16	366.17-364.67	175,000	54,800	16,900	86,300	8,160	35,700	29,200	204,000	443,000	1,077,030
B118	12 - 14	04/20/16	362.17-360.17	2,520	162	1,290	465	25.7	210	78.2	2,730	6,640	14,168.4
B118	14 - 16	04/20/16	360.17-358.17	188	48.3	939	265	8.7	108	22.4	206	1,576	3,361.4
B118	16 - 18	04/20/16	358.17-356.17	140	59	361	276	9.6	56.4	23.8	247	1,151	2,323.8
	Number o	f Exceedand	ces	3	1	5	4	1	1	1	4	7	NA

				SVOCs (EPA 8270D by SIM)							
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	Benz(a) Anthracene	Benzo(a) Pyrene	Benzo(b) Fluoranthene	Benzo(k) Fluoranthene	Chrysene	Dibenzo(a,h) Anthracene	Indeno (1,2,3-cd) Pyrene	Total SVOCs
B118	1 - 3	04/05/16	373.17-371.17	8,820	10,100	11,000	5,330	7,950	1,300	3,910	112,741
B118	3 - 5	04/05/16	371.17-369.17	13,200	13,600	16,900	8,360	11,200	1,420	4,870	160,820
B118	4 - 6	04/20/16	370.17-368.17	8.5 U	8.5 U	8.5 U	8.5 U	8.5 U	8.5 U	8.5 U	354
B118	6 - 7.4	04/20/16	368.17-366.77	13.2	8.2 U	12.8	10.4	10.8	8.2 U	8.2 U	706.8
B118	8 - 9.5	04/20/16	366.17-364.67	25.1	15.6	30.6	24.9	23.4	8.2 U	8.2 U	1,081.3
B118	12 - 14	04/20/16	362.17-360.17	11.8	8.9 U	16.7	13.9	12.3	8.9 U	8.9 U	132.4
B118	14 - 16	04/20/16	360.17-358.17	8.6 U	8.6 U	8.6 U	8.6 U	8.6 U	8.6 U	8.6 U	8.6 U
B118	16 - 18	04/20/16	358.17-356.17	13	8.7 U	17.1	13.8	10.3	8.7 U	8.7 U	122
	Number o	f Exceedand	ces	2	2	2	2	2	2	2	NA

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

				VOCs (EPA 8260C)											SVOCs (EPA 8270D by SIM)			
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Benzene	Ethyl- benzene	lsopropyl- benzene	m&p- Xylene	Naph- thalene	n-Butyl- benzene	n-Propyl- benzene	p- Isopropyl- toluene	Toluene	Xylene (Total)	Total VOCs	Acenaph- thene	Acenaph- thylene
B119	0 - 2	08/23/16	380.276-378.276	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	10.7 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	10.7 U	242 U	7.8 U	7.8 U
B119	2 - 4	08/23/16	378.276-376.276	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	11.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	11.9 U	243 U	7.4 U	7.4 U
B119	4 - 6	08/23/16	376.276-374.276	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	11.6 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	11.6 U	247 U	7.7 U	7.7 U
B119	6 - 8	08/23/16	374.276-372.276	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	12.8 U	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	12.8 U	223 U	7.8 U	7.8 U
B119	8 - 10	08/23/16	372.276-370.276	6 U	6 U	6 U	6 U	6 U	12 U	6 U	6 U	6 U	6 U	6 U	12 U	219 U	7.6 U	7.6 U
B119	10 - 12	08/23/16	370.276-368.276	11,800	9,350	282 U	2,210	751	5,450	433	2,640	2,570	1,140	668	6,161	32,534	29.4	7.9 U
B119	12 - 14	08/23/16	368.276-366.276	147,000	69,100	2,700 U	29,300	8,950	130,000	6,060	14,700	29,400	3,930	29,700	169,500	343,040	42.1	21.1
B119	14 - 16	08/23/16	366.276-364.276	397,000	131,000	11,200	130,000	22,200	464,000	79,500	19,200	88,200	18,800	319,000	609,000	1,221,810	190	130
B119	16 - 18	08/23/16	364.276-362.276	268,000	86,300	46,100	103,000	12,300	416,000	50,900	15,000	44,000	14,200	396,000	562,000	1,040,890	326	236
B119	18 - 20	08/23/16	362.276-360.276	2,170	341	1,290	415	40.1	3,260	582	29.3	5.4 U	37.7	4,910	4,640	9,826.2	8.1 U	8.1 U
B119	20 - 22	08/23/16	360.276-358.276	75	19.2	145	60.7	5.2 U	241	61.6	5.2 U	5.2 U	5.2 U	916	368	1,277.5	8 U	8 U
B119	22 - 24	08/23/16	358.276-356.276	144	37.2	9	10.3	5.3 U	566	70.5	5.3 U	5.3 U	5.3 U	5.3 U	864	271	8.1 U	8.1 U
B119	24 - 26	08/23/16	356.276-354.276	61.9	29.4	6.5	5 U	5 U	10.1 U	5 U	5 U	5 U	5 U	8.4	10.1 U	106.2	7.9 U	7.9 U
Numbe	er of Excee	edances		4	4	4	4	3	0	2	3	3	2	5	7	NA	0	0

					SVOCs (EPA 8270D by SIM)												
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	Anthra- cene	Benz(a) Anthrace ne	Benzo(a) Pyrene	Benzo(b) Fluor- anthene	Benzo (g,h,i) Perylene	Benzo(k) Fluor- anthene	Chrysene	Dibenzo (a,h) Anthracene	Fluor- anthene	Fluorene	Indeno (1,2,3-cd) Pyrene	Phenan- threne	Pyrene	Total SVOCs
B119	0 - 2	08/23/16	380.276-378.276	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	10	7.8 U	7.8 U	10.3	8.1	28.4
B119	2 - 4	08/23/16	378.276-376.276	7.4 U	78.6	79.7	133	48.6	132	81	13.3	79.4	7.4 U	40.2	10.1	77.1	773
B119	4 - 6	08/23/16	376.276-374.276	7.7 U	7.7 U	7.7 U	7.7 U	7.7 U	7.7 U	7.7 U	7.7 U	7.7 U	7.7 U	7.7 U	7.7 U	7.7 U	7.7 U
B119	6 - 8	08/23/16	374.276-372.276	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U	7.8 U
B119	8 - 10	08/23/16	372.276-370.276	7.6 U	7.6 U	7.6 U	7.6 U	7.6 U	7.6 U	7.6 U	7.6 U	7.6 U	7.6 U	7.6 U	7.6 U	7.6 U	7.6 U
B119	10 - 12	08/23/16	370.276-368.276	12.4	7.9 U	7.9 U	7.9 U	7.9 U	7.9 U	7.9 U	7.9 U	9	24.1	7.9 U	20.1	13.4	108.4
B119	12 - 14	08/23/16	368.276-366.276	25.4	8.6 U	8.6 U	8.6 U	8.6 U	8.6 U	8.6 U	8.6 U	16.2	50.6	8.6 U	57.1	22.3	234.8
B119	14 - 16	08/23/16	366.276-364.276	95.3	79.4 U	79.4 U	79.4 U	79.4 U	79.4 U	79.4 U	79.4 U	79.4 U	307	79.4 U	399	86.1	1,207.4
B119	16 - 18	08/23/16	364.276-362.276	151	81.8 U	81.8 U	81.8 U	81.8 U	81.8 U	81.8 U	81.8 U	96.1	552	81.8 U	680	137	2,178.1
B119	18 - 20	08/23/16	362.276-360.276	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.5	8.1 U	8.5
B119	20 - 22	08/23/16	360.276-358.276	8 U	8 U	8 U	8 U	8 U	8 U	8 U	8 U	8 U	8 U	8 U	8 U	8 U	8 U
B119	22 - 24	08/23/16	358.276-356.276	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U	8.1 U
B119	24 - 26	08/23/16	356.276-354.276	7.9 U	7.9 U	7.9 U	7.9 U	7.9 U	7.9 U	7.9 U	7.9 U	7.9 U	7.9 U	7.9 U	7.9 U	7.9 U	7.9 U
Numbe	r of Excee	edances		0	0	0	0	0	0	0	0	0	0	0	0	0	NA

					VOCs (EPA 8260C)								
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Benzene	Ethylbenzene	lsopropyl- benzene	Naphthalene	n-Butylbenzene	n-Propylbenzene		
B120	0 - 2	08/23/16	380.628-378.628	5.6 U	5.6 U	5.6 U	5.6 U	5.6 U	5.6 U	5.6 U	5.6 U		
B120	2 - 4	08/23/16	378.628-376.628	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U		
B120	4 - 6	08/23/16	376.628-374.628	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U		
B120	6 - 8	08/23/16	374.628-372.628	5.6 U	5.6 U	5.6 U	5.6 U	5.6 U	5.6 U	5.6 U	5.6 U		
B120	8 - 10	08/23/16	372.628-370.628	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U		
B120	10 - 12	08/23/16	370.628-368.628	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U		
B120	12 - 14	08/23/16	368.628-366.628	81,600	32,800	3,330 U	9,570	3,330 U	7,540	5,600	7,220		
B120	14 - 16	08/23/16	366.628-364.628	965,000	316,000	60,800	275,000	33,900	163,000	52,900	117,000		
B120	16 - 18	08/23/16	364.628-362.628	771,000	95,600	22,100	124,000	14,500	74,200	15,400	63,300		
B120	18 - 20	08/23/16	362.628-360.628	180,000	57,300	21,400	77,300	8,230	31,500	10,000	29,900		
B120	20 - 22	08/23/16	360.628-358.628	12	21	21.7	50	6.1 U	84.6	6.1 U	6.1 U		
B120	22 - 24	08/23/16	358.628-356.628	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U		
B120	24 - 26	08/23/16	356.628-354.628	102	40.5	6 U	6 U	6 U	7.7	6 U	6 U		
Numbe	r of Exceeda	ances		4	4	3	4	3	3	2	4		

					· · · · · · · · · · · · · · · · · · ·		SVOCs (EPA	8270D by SIM)		
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	p-lsopropyl- toluene	Tert- Butylbenzene	Toluene	Xylene (Total)	Total VOCs	Benzo(k) Fluoranthene	Total SVOCs
B120	0 - 2	08/23/16	380.628-378.628	5.6 U	5.6 U	5.6 U	11.3 U	232 U	74.7	440
B120	2 - 4	08/23/16	378.628-376.628	5.9 U	5.9 U	5.9 U	11.9 U	212 U	962	7,486.6
B120	4 - 6	08/23/16	376.628-374.628	5.9 U	5.9 U	5.9 U	11.9 U	252 U	20.6	384.6
B120	6 - 8	08/23/16	374.628-372.628	5.6 U	5.6 U	5.6 U	11.2 U	208 U	25.5	163.4
B120	8 - 10	08/23/16	372.628-370.628	5.9 U	5.9 U	5.9 U	11.7 U	233 U	7.5 U	7.5 U
B120	10 - 12	08/23/16	370.628-368.628	5.9 U	5.9 U	5.9 U	11.8 U	213 U	7.4 U	7.4 U
B120	12 - 14	08/23/16	368.628-366.628	5,630	3,330 U	20,600	110,400	170,560	18.9	183.1
B120	14 - 16	08/23/16	366.628-364.628	45,400	28,000 U	1,140,000	2,177,000	3,169,000	79.7 U	1,972
B120	16 - 18	08/23/16	364.628-362.628	13,000	2,660 U	849,000	1,290,000	2,046,190	112	1,343
B120	18 - 20	08/23/16	362.628-360.628	8,030	25,800	233,000	423,000	685,690	8.3 U	338.3
B120	20 - 22	08/23/16	360.628-358.628	6.1 U	6.1 U	45.4	184	234.7	7.9 U	7.9 U
B120	22 - 24	08/23/16	358.628-356.628	5.7 U	5.7 U	5.7 U	11.4 U	219 U	44.7	1,546.4
B120	24 - 26	08/23/16	356.628-354.628	6 U	6 U	9.6	47.3	159.8	7.6 U	7.6 U
Numbe	r of Exceeda	ances		2	1	4	4	NA	1	NA

					VOCs (EPA 8260C)								
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Benzene	Ethylbenzene	lsopropyl- benzene	Naphthalene	n-Butylbenzene			
B121	0 - 2	08/23/16	380.009-378.009	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U			
B121	2 - 4	08/23/16	378.009-376.009	6.2 U	6.2 U	6.2 U	6.2 U	6.2 U	6.2 U	6.2 U			
B121	4 - 6	08/23/16	376.009-374.009	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U			
B121	6 - 8	08/23/16	374.009-372.009	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U			
B121	8 - 10	08/23/16	372.009-370.009	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U	5.7 U			
B121	10 - 12	08/23/16	370.009-368.009	43,100	19,600	2,730 U	5,470	2,730 U	3,260	3,120			
B121	12 - 14	08/23/16	368.009-366.009	123,000	47,800	2,660 U	29,700	5,380	9,980	9,690			
B121	14 - 16	08/23/16	366.009-364.009	227,000	89,300	22,500	102,000	14,000	33,000	17,100			
B121	16 - 18	08/23/16	364.009-362.009	485,000	166,000	62,600	173,000	30,800 U	102,000	35,900			
B121	18 - 20	08/23/16	362.009-360.009	157,000	52,000	21,400	55,400	7,430	33,500	11,600			
B121	20 - 22	08/23/16	360.009-358.009	364	296 U	1,150	296 U	296 U	296 U	296 U			
B121	22 - 24	08/23/16	358.009-356.009	111	30.8	421	90.9	6.2 U	73.8	6.2 U			
B121	24 - 26	08/23/16	356.009-354.009	344	125	5.6 U	108	14.7	33.6	6.5			
Number	r of Exceeda	nces		5	5	5	5	3	3	2			

						VOCs (EPA 8260C)			
Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	n-Propylbenzene	p-lsopropyl- toluene	Toluene	Xylene (Total)	Total VOCs	SVOCs (EPA 8270D by SIM)	Total SVOCs
B121	0 - 2	08/23/16	380.009-378.009	5.8 U	5.8 U	5.8 U	11.7 U	212 U	No	2,978.9
B121	2 - 4	08/23/16	378.009-376.009	6.2 U	6.2 U	6.2 U	12.4 U	224 U	Exceedances	25.3
B121	4 - 6	08/23/16	376.009-374.009	5.4 U	5.4 U	5.4 U	10.7 U	242 U		7.5 U
B121	6 - 8	08/23/16	374.009-372.009	5.4 U	5.4 U	5.4 U	10.8 U	252 U		7.6 U
B121	8 - 10	08/23/16	372.009-370.009	5.7 U	5.7 U	5.7 U	11.5 U	217 U		7.7 U
B121	10 - 12	08/23/16	370.009-368.009	2,800	4,680	8,340	43,500	90,370		600.1
B121	12 - 14	08/23/16	368.009-366.009	15,800	3,380	59,800	210,300	308,590		2,512.6
B121	14 - 16	08/23/16	366.009-364.009	47,000	17,900	273,000	519,000	849,810		1,476.4
B121	16 - 18	08/23/16	364.009-362.009	79,500	30,800 U	570,000	988,000	1,674,000		4,208.2
B121	18 - 20	08/23/16	362.009-360.009	25,800	4,610	174,000	300,800	547,990		1,104
B121	20 - 22	08/23/16	360.009-358.009	296 U	296 U	1,650	1,219	3,164		8 U
B121	22 - 24	08/23/16	358.009-356.009	14.1	6.2 U	187	499	928.6		8.1 U
B121	24 - 26	08/23/16	356.009-354.009	43.7	12.1	11.5	150.9	699.1		8.3 U
Numbe	r of Exceeda	ances		4	1	6	7	NA	0	NA

	Sample	Date	Corrected Elevetion		
Location ID	Depth (ft)	Collected	Range	Lead (mg/kg)	TCLP Lead (mg/L)
B123	0 - 2	6/5/2018	376.6169-374.6169	12.2	0.025 U
B123	2 - 4	6/5/2018	374.6169-372.6169	6.6	0.025 U

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	Lead (mg/kg)	TCLP Lead (mg/L)
B124	0 - 1	6/5/2018	373.8686-372.8686	48.8	0.025 U

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Location ID	Sample Depth (ft)	Date Collected	Corrected Elevation Range	Lead (mg/kg)	TCLP Lead (mg/L)
B125	0 - 2	6/5/2018	371.9756-369.9756	9.6	0.025 U

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Notes:

- 1. Concentrations are presented in micrograms per kilogram, which is equivalent to part per billion except where otherwise noted.
- 2. Shaded and bold values indicate a soil clean up level exceedance.
- 3. Field duplicate sample results are presented in brackets.

Lab Qualifiers Definition

- 1c A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- ML Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.
- U Indicates the compound was analyzed for, but not detected.
- U1c Indicates the compound was analyzed for, but not detected. A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- NA Not analyzed/Not applicable
- VOC Volatile organic compounds
- SVOC Semivolatile organic compounds
- ft feet

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Location ID	Depth (ft bgs)	PID (ppm)
	0-5	0.0
	5-8	0.0
	5-0	1.6
	8-12	1.4
B101	12-16	0.9
	16-20	1069
	20-24	1651
	20 24	535.1
	24-27	15.4
		58.7
	0-4	169.6
		>15,000
B102	4-8	1781
	8-12	1532
	12-16	NA
	16-19	358.7
	0-4	0.0
		0.0
	4-8	18.7
		453.4
	8-12	583.8
B103	0.12	1702
	12-16	1693
	12 10	1107
	16-20	1380
	20-24	180.1
	20 24	159.1
		0.0
	0-4	0.0
	01	0.1
		0.5
	4-8	63.5
		67.8
	8-12	293.1
B104	0.12	2117
	12-16	2110
	12 10	2007
	16-20	2220
	10 20	537.1
		186.7
	20-24	294
		7.1
		0.0
	0-4	38.4
		0.2
		3.0
R105	4-8	0.1
5100	8-12	11.5
	0.12	268.8
	12-16	NA
	16_20	186.1
	10-20	208.4

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Location ID	Depth (ft bgs)	PID (ppm)
B105	20.23	18.4
(cont.)	20-23	0.6
		0.0
	0-4	0.2
		0.4
	4.0	0.6
D400	4-8	0.6
B106	8-12	0.7
	12-16	0.8
	40.00	743.1
	16-20	1601
	20-24	44.9
		0.0
	0-4	0.1
		0.0
	4-8	0.5
		18.5
B107	8-12	201.6
2.0.		2093
	12-16	1147
		2008
	16-20	697.7
	20-24	NA
	20-24	0.0
	0-4	0.0
	0 4	0.0
		0.1
	4-8	0.0
		0.0
	Q 10	3.3 10 /
P109	0-12	10.4
DIUO		1019
	12-16	1020
		1321
	16-20	1808
		211.5
	20.24	/5
	20-24	/2.9
		40.3
		0.0
		0.2
	0-8	0.1
		0.1
		2.3
D400		2.3
B109	8-12	1635
		1940
	12-16	1235
	16-20	240.2
		178.3
	20-24	57.5
		119.2

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Location ID	Depth (ft bgs)	PID (ppm)
B109	24_27.1	37.3
(cont.)	24-27.1	37.3
		0.0
	0.0	0.0
	0-0	0.1
		0.9
	8-12	810.2
B110	10.10	1787
	12-10	1788
	10.00	871.4
	10-20	1602
	20-24	74.2
	24-27	181.7
		0.6
		0.5
	0-8	53.1
5449		163.3
B112		604.1
	8-12	826.4
	10.10	773.9
	12-16	47.1
		1.1
		1.1
	0-8	957.8
		715.8
B113		535.1
	8-12	876.4
		511.3
	12-16	107.8
	16-19.5	37.1
		0.0
		0.0
	0-4	0.0
		0.0
		2.3
B114	4-8	337.5
		822.4
	8-12	893.4
	12-16	NA
	12 10	108.7
	16-19.6	363.5
		0.0
	0-4	0.0
		35.0
		5 1
B115	4-8	0.7
		0.0
	8-12	8.1
	0.12	0.7
	12-16	0.0

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Location ID	Depth (ft bgs)	PID (ppm)
		0.0
	0-4	1.2
B116		5.6
DIIO	4-8	7.1
	8-11 6	0.7
	0 11.0	1.1
		0.0
	0-4	0.0
		0.0
	4-8	0.0
B117	8-12	0.0
		0.0
		0.1
	12-15.2	0.1
		0.1
		0.0
	0-4	181.7
		27.1
	4-8	1560
B118		1749
	8-12	1688
	12-16	73.9
		102.1
	16-20	37.3
	0-2	0.0
	2-4	0.0
	4-6	0.0
	6-8	0.0
	8-10	13.1
5440	10-12	505.4
B119	12-14	154.3
	14-16	1565
	16-18	1516
	18-20	1495
	20-22	157.1
	22-24	190.7
	24-26	0.5
	0-2	0.0
	2-4	0.0
	4-6	0.0
	6-8	0.0
	8-10	27.5
D400	10-12	557.9
B120	12-14	18/2
	14-16	1697
	16-18	1526
	18-20	954.8
	20-22	144.5
	22-24	134.3
	24-26	24.4

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Location ID	Depth (ft bgs)	PID (ppm)
	0-2	0.0
	2-4	0.0
	4-6	0.7
	6-8	0.0
	8-10	43.6
	10-12	1366
B121	12-14	1657
	14-16	1302
	16-18	889.7
	18-20	970.6
	20-22	68.2
	22-24	58.3
	24-26	23.6

Notes:

ft bgs feet below ground surface NA not applicable

ppm parts per million

Table 4Monitoring Well Locations

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Well ID	Northing	Easting	Ground Surface Elevation
MW-201	1141290.74	908861.62	392.62
MW-202	1141329.17	908898.17	393.22
MW-203	1141307.55	909013.86	392.27
MW-204	1141427.24	908980.08	392.71
MW-205	1141543.83	908866.84	395.00
MW-206	1141541.04	908921.18	395.17
MW-207	1141519.38	908997.73	395.72
MW-208	1141526.88	909080.26	394.31
MW-209	1141600.72	909076.11	395.01
MW-210	1141345.09	909129.64	384.53
MW-211	1141377.65	909200.72	384.48

Notes:

1. The coordinates are based on the New York State Plane Coordinate System, NAD 83 (North American Datum of 1983.)

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

	CP51 Table 2	CP51 Table 3												
Location ID:	Gasoline	Fuel Oil		MW-201	MW-201	MW-201	MW-202	MW-202	MW-203	MW-203	MW-203	MW-204	MW-204	MW-204
Sample Depth(ft):	Contaminated	Contaminated		0 - 2	6 - 8	18 - 20	0 - 2	10 - 12	0 - 2	8 - 10	10 - 12	0 - 2	6 - 8	12 - 14
Date Collected:	Soils	Soils	Units	05/18/18	05/18/18	05/18/18	05/21/18	05/21/18	05/21/18	05/21/18	05/21/18	05/22/18	05/22/18	05/22/18
VOCs (EPA 8260C)														
1,2,4-Trimethylbenzene	3,600	3,600	ug/kg	NA	4.2 U1c	4.7 U1c	5 U1c	4.7 U1c	NA	5.3 U1c	5 U1c	NA	4.1 U	27.3
1,3,5-Trimethylbenzene	8,400	8,400	ug/kg	NA	4.2 U1c	4.7 U1c	5 U1c	4.7 U1c	NA	5.3 U1c	5 U1c	NA	4.1 U	10.9
Benzene	60	60	ug/kg	NA	4.2 U1c	5.7 1c	5 U1c	4.7 U1c	NA	5.3 UIS1c	5 UIS1c	NA	25.3 ML	5.7
Ethanol			ug/kg	NA	170 U1c	189 U1c	200 U1c	188 U1c	NA	212 U1c	199 U1c	NA	163 UCV1c	177 UCV1c
Ethylbenzene	1,000	1,000	ug/kg	NA	4.2 U1c	4.7 U1c	5 U1c	4.7 U1c	NA	5.3 U1c	5 U1c	NA	4.1 U	4.4 U
Isopropylbenzene	2,300	2,300	ug/kg	NA	4.2 U1c	4.7 U1c	5 U1c	4.7 U1c	NA	5.3 U1c	5 U1c	NA	4.1 U	4.4 U
m&p-Xylene			ug/kg	NA	8.5 U1c	11.1 1c	10 U1c	9.4 U1c	NA	10.6 U1c	9.9 U1c	NA	8.2 U	31.9
Methyl-Tert-Butyl-Ether	930		ug/kg	NA	4.2 U1c	4.7 U1c	5 U1c	4.7 U1c	NA	5.3 UIS1c	5 UIS1c	NA	4.1 U	4.4 U
Naphthalene	12,000	12,000	ug/kg	NA	4.2 U1c	4.7 U1c	5 U1c	4.7 U1c	NA	5.3 U1c	5 U1c	NA	4.1 UR1	4.4 U
n-Butylbenzene	12,000	12,000	ug/kg	NA	4.2 U1c	4.7 U1c	5 U1c	4.7 U1c	NA	58.7 1c	152 1c	NA	4.1 U	4.4 U
n-Propylbenzene	3,900	3,900	ug/kg	NA	4.2 U1c	4.7 U1c	5 U1c	4.7 U1c	NA	5.3 U1c	14.8 1c	NA	4.1 U	13.7
o-Xylene			ug/kg	NA	4.2 U1c	4.7 U1c	5 U1c	4.7 U1c	NA	5.3 U1c	9.9 1c	NA	4.1 U	4.8
p-Isopropyltoluene	10,000	10,000	ug/kg	NA	4.2 U1c	4.7 U1c	5 U1c	4.7 U1c	NA	5.3 U1c	5 U1c	NA	4.1 U	4.4 U
sec-Butylbenzene	11,000	11,000	ug/kg	NA	4.2 U1c	4.7 U1c	5 U1c	4.7 U1c	NA	39.5 1c	171 1c	NA	4.1 U	4.4 U
Tert-Butylbenzene	5,900	5,900	ug/kg	NA	4.2 U1c	4.7 U1c	5 U1c	4.7 U1c	NA	5.3 U1c	15.8 1c	NA	4.1 U	4.4 U
Toluene	700	700	ug/kg	NA	4.2 U1c	12.9 1c	5 U1c	4.7 U1c	NA	5.3 U1c	5 U1c	NA	5.4	7.4
Xylene (Total)	260	260	ug/kg	NA	8.5 U	11.1	10 U	9.4 U	NA	10.6 U	9.9	NA	8.2 U	36.7
Total VOCs			ug/kg	NA	170 U	18.6	200 U	188 U	NA	98.2	353.6	NA	30.7	65
SVOCs (EPA 8270D by S	IM)													
Acenaphthene		20,000	ug/kg	NA	7.9 U	8.1 U	7.7 U	8 U	NA	2,780 M6R1	2,200	NA	23.8 UP1	8 U
Acenaphthylene		100,000	ug/kg	NA	7.9 U	8.1 U	7.7 U	8 U	NA	650 M6R1	473	NA	23.8 UP1	8 U
Anthracene	р	100,000	ug/kg	NA	7.9 U	8.1 U	7.7 U	8 U	NA	836 M6R1	533	NA	23.8 UP1	8 U
Benz(a)Anthracene		1,000	ug/kg	NA	7.9 U	8.1 U	7.7 U	8 U	NA	92.1 UR1	82.2 U	NA	23.8 UP1	8 U
Benzo(a)Pyrene		1,000	ug/kg	NA	7.9 U	8.1 U	9.7	8 U	NA	92.1 UR1	82.2 U	NA	23.8 UP1	8 U
Benzo(b)Fluoranthene		1,000	ug/kg	NA	7.9 U	8.1 U	16.1	8 U	NA	92.1 UR1	82.2 Uip	NA	23.8 UP1	8 U
Benzo(g,h,i)Perylene		100,000	ug/kg	NA	7.9 U	8.1 U	8.2	8 U	NA	92.1 U	82.2 U	NA	23.8 UP1	8 U
Benzo(k)Fluoranthene		800	ug/kg	NA	7.9 U	8.1 U	7.7 U	8 U	NA	92.1 UR1	82.2 Uip	NA	23.8 UP1	8 U
Chrysene		1,000	ug/kg	NA	7.9 U	8.1 U	8.7	8 U	NA	92.1 UM6R1	82.2 U	NA	23.8 UP1	8 U
Dibenzo(a,h)Anthracene		330	ug/kg	NA	7.9 U	8.1 U	7.7 U	8 U	NA	92.1 U	82.2 U	NA	23.8 UP1	8 U
Fluoranthene		100,000	ug/kg	NA	7.9 U	8.1 U	16.7	8 U	NA	243 M6R1	150	NA	23.8 UP1	8 U
Fluorene		30,000	ug/kg	NA	7.9 U	8.1 U	7.7 U	8 U	NA	4,240 M6R1	3,070	NA	23.8 UP1	8 U
Indeno(1,2,3-cd)Pyrene		500	ug/kg	NA	7.9 U	8.1 U	7.7 U	8 U	NA	92.1 U	82.2 U	NA	23.8 UP1	8 U
Phenanthrene		100,000	ug/kg	NA	7.9 U	8.1 U	15.9	8 U	NA	946 M6R1	5,820	NA	23.8 UP1	8 U
Pyrene		100,000	ug/kg	NA	7.9 U	8.1 U	16	8 U	NA	1,600 M6R1	941	NA	23.8 UP1	8 U
Total SVOCs			ug/kg	NA	7.9 U	8.1 U	91.3	8 U	NA	0	13,187	NA	23.8 U	8 U
Metals (EPA 6010B)														
Lead			mg/kg	8.5	NA	NA	9.7	NA	41.4	NA	NA	3.9	NA	NA
General Chemistry														
Percent Moisture			%	8.6	16.9	18.7	16	18.6	19.3	28.3	19.8	17.7	16	16.5

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

	CP51 Table 2	CP51 Table 3											
Location ID:	Gasoline	Fuel Oil		MW-205	MW-205	MW-205	MW-205	MW-206	MW-206	MW-207	MW-207	MW-208	MW-208
Sample Depth(ft):	Contaminated	Contaminated		0 - 2	2 - 4	4 - 6	12 - 14	0 - 2	12 - 14	0 - 2	12 - 14	0 - 2	12 - 14
Date Collected:	Soils	Soils	Units	05/17/18	05/17/18	05/17/18	05/18/18	05/16/18	05/17/18	05/15/18	05/16/18	05/15/18	05/15/18
VOCs (EPA 8260C)													
1,2,4-Trimethylbenzene	3,600	3,600	ug/kg	NA	10.7 1c	98.8 1c	3.6 U1c	NA	3.7 UIS1c	NA	3.9 UIS1c	NA	5.2 U1c
1,3,5-Trimethylbenzene	8,400	8,400	ug/kg	NA	75.6 1c	186 1c	3.6 U1c	NA	3.7 UIS1c	NA	3.9 UIS1c	NA	5.2 U1c
Benzene	60	60	ug/kg	NA	3.8 U1c	3.6 U1c	3.6 U1c	NA	3.7 U1c	NA	3.9 U1c	NA	5.2 U1c
Ethanol			ug/kg	NA	151 U1c	145 U1c	145 U1c	NA	147 UIS1c	NA	157 UIS1c	NA	192 U1c2c
Ethylbenzene	1,000	1,000	ug/kg	NA	3.8 U1c	5.3 1c	3.6 U1c	NA	3.7 U1c	NA	3.9 U1c	NA	5.2 U1c
Isopropylbenzene	2,300	2,300	ug/kg	NA	3.8 U1c	18.4 1c	3.6 U1c	NA	3.7 UIS1c	NA	3.9 UIS1c	NA	5.2 U1c
m&p-Xylene			ug/kg	NA	7.6 U1c	7.3 U1c	7.2 U1c	NA	7.3 U1c	NA	7.8 U1c	NA	10.4 U1c
Methyl-Tert-Butyl-Ether	930		ug/kg	NA	3.8 U1c	3.6 U1c	3.6 U1c	NA	3.7 U1c	NA	3.9 U1c	NA	5.2 U1c
Naphthalene	12,000	12,000	ug/kg	NA	21.9 1c	116 1c	3.6 U1c	NA	3.7 UIS1c	NA	3.9 UIS1c	NA	5.2 U1c
n-Butylbenzene	12,000	12,000	ug/kg	NA	3.8 U1c	37.9 1c	3.6 U1c	NA	3.7 UIS1c	NA	3.9 UIS1c	NA	5.2 U1c
n-Propylbenzene	3,900	3,900	ug/kg	NA	3.8 U1c	46.9 1c	3.6 U1c	NA	3.7 UIS1c	NA	3.9 UIS1c	NA	5.2 U1c
o-Xylene			ug/kg	NA	3.8 U1c	3.6 U1c	3.6 U1c	NA	3.7 U1c	NA	3.9 U1c	NA	5.2 U1c
p-Isopropyltoluene	10,000	10,000	ug/kg	NA	10.2 1c	40.5 1c	3.6 U1c	NA	3.7 UIS1c	NA	3.9 UIS1c	NA	5.2 U1c
sec-Butylbenzene	11,000	11,000	ug/kg	NA	3.8 U1c	24.8 1c	3.6 U1c	NA	3.7 UIS1c	NA	3.9 UIS1c	NA	5.2 U1c
Tert-Butylbenzene	5,900	5,900	ug/kg	NA	3.9 1c	5.5 1c	3.6 U1c	NA	3.7 UIS1c	NA	3.9 UIS1c	NA	5.2 U1c
Toluene	700	700	ug/kg	NA	3.8 U1c	3.6 U1c	3.6 U1c	NA	3.7 U1c	NA	3.9 U1c	NA	9 1c
Xylene (Total)	260	260	ug/kg	NA	7.6 U	7.3 U	7.2 U	NA	7.3 U	NA	7.8 U	NA	10.4 U
Total VOCs			ug/kg	NA	122.3	580.1	145 U	NA	147 U	NA	157 U	NA	9
SVOCs (EPA 8270D by SI	M)												
Acenaphthene		20,000	ug/kg	NA	791	521 MHM1MLR1	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Acenaphthylene		100,000	ug/kg	NA	160	106 R1	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Anthracene	р	100,000	ug/kg	NA	550	131 MHM1R1	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Benz(a)Anthracene		1,000	ug/kg	NA	73.4 U	7.4 U	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Benzo(a)Pyrene		1,000	ug/kg	NA	73.4 U	7.4 U	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Benzo(b)Fluoranthene		1,000	ug/kg	NA	73.4 U	7.4 U	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Benzo(g,h,i)Perylene		100,000	ug/kg	NA	73.4 U	7.4 U	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Benzo(k)Fluoranthene		800	ug/kg	NA	73.4 U	7.4 U	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Chrysene		1,000	ug/kg	NA	73.4 U	7.8	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Dibenzo(a,h)Anthracene		330	ug/kg	NA	73.4 U	7.4 U	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Fluoranthene		100,000	ug/kg	NA	73.4 U	32.4	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Fluorene		30,000	ug/kg	NA	652	454 MHM1MLR1	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Indeno(1,2,3-cd)Pyrene		500	ug/kg	NA	73.4 U	7.4 U	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Phenanthrene		100,000	ug/kg	NA	1,270	1,130 MLM6	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Pyrene		100,000	ug/kg	NA	272	152 MHM1R1	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Total SVOCs			ug/kg	NA	3,695	1,170.2	7 U	NA	7.1 U	NA	7.1 U	NA	8.1 U
Metals (EPA 6010B)													
Lead			mg/kg	86.5	NA	NA	NA	13.4	NA	302	NA	38.2	NA
General Chemistry													
Percent Moisture			%	15.1	9.7	10.1	6.5	22.6	7	17.6	6.8	20.5	18.9

ARCADIS Design & Consultancy for natural and built assets

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

	CP51 Table 2	CP51 Table 3								
Location ID:	Gasoline	Fuel Oil		MW-209	MW-209	MW-209	MW-210	MW-210	MW-211	MW-211
Sample Depth(ft):	Contaminated	Contaminated		0 - 2	6 - 8	10 - 12	0 - 2	10 - 12	0 - 2	6 - 8
Date Collected:	Soils	Soils	Units	05/14/18	05/14/18	05/14/18	05/22/18	05/22/18	05/23/18	05/23/18
VOCs (EPA 8260C)										
1,2,4-Trimethylbenzene	3,600	3,600	ug/kg	NA	4.3 U1c	3.9 U1c	NA	4.2 U	NA	4.8 U
1,3,5-Trimethylbenzene	8,400	8,400	ug/kg	NA	4.3 U1c	3.9 U1c	NA	4.2 U	NA	4.8 U
Benzene	60	60	ug/kg	NA	4.3 U1c	3.9 U1c	NA	4.2 U	NA	4.8 U
Ethanol			ug/kg	NA	170 U1c	154 U1c	NA	169 UCV1c	NA	193 UCV1c
Ethylbenzene	1,000	1,000	ug/kg	NA	4.3 U1c	3.9 U1c	NA	4.2 U	NA	4.8 U
Isopropylbenzene	2,300	2,300	ug/kg	NA	4.3 U1c	3.9 U1c	NA	4.2 U	NA	4.8 U
m&p-Xylene			ug/kg	NA	8.5 U1c	7.7 U1c	NA	8.4 U	NA	9.7 U
Methyl-Tert-Butyl-Ether	930		ug/kg	NA	4.3 U1c	3.9 U1c	NA	4.2 U	NA	4.8 U
Naphthalene	12,000	12,000	ug/kg	NA	4.3 U1c	3.9 U1c	NA	4.2 U	NA	4.8 U
n-Butylbenzene	12,000	12,000	ug/kg	NA	4.3 U1c	3.9 U1c	NA	4.2 U	NA	4.8 U
n-Propylbenzene	3,900	3,900	ug/kg	NA	4.3 U1c	3.9 U1c	NA	4.2 U	NA	4.8 U
o-Xylene			ug/kg	NA	4.3 U1c	3.9 U1c	NA	4.2 U	NA	4.8 U
p-Isopropyltoluene	10,000	10,000	ug/kg	NA	4.3 U1c	3.9 U1c	NA	4.2 U	NA	4.8 U
sec-Butylbenzene	11,000	11,000	ug/kg	NA	4.3 U1c	3.9 U1c	NA	4.2 U	NA	4.8 U
Tert-Butylbenzene	5,900	5,900	ug/kg	NA	4.3 U1c	3.9 U1c	NA	4.2 U	NA	4.8 U
Toluene	700	700	ug/kg	NA	4.3 U1c	3.9 U1c	NA	4.2 U	NA	4.8 U
Xylene (Total)	260	260	ug/kg	NA	8.5 U	7.7 U	NA	8.4 U	NA	9.7 U
Total VOCs			ug/kg	NA	170 U	154 U	NA	169 U	NA	193 U
SVOCs (EPA 8270D by S	IM)									
Acenaphthene		20,000	ug/kg	NA	7 U	7.5 U	NA	8.3 U	NA	8.1 U
Acenaphthylene		100,000	ug/kg	NA	7 U	7.5 U	NA	8.3 U	NA	8.1 U
Anthracene	р	100,000	ug/kg	NA	7 U	7.5 U	NA	8.3 U	NA	8.1 U
Benz(a)Anthracene		1,000	ug/kg	NA	7 U	7.5 U	NA	8.3 U	NA	8.1 U
Benzo(a)Pyrene		1,000	ug/kg	NA	7 U3c	7.5 U3c	NA	8.3 U	NA	8.1 U
Benzo(b)Fluoranthene		1,000	ug/kg	NA	7.6 lp3c	7.8 lp3c	NA	8.3 U	NA	8.1 U
Benzo(g,h,i)Perylene		100,000	ug/kg	NA	7 U	7.5 U	NA	8.3 U	NA	8.1 U
Benzo(k)Fluoranthene		800	ug/kg	NA	7 Ulp	7.5 Ulp	NA	8.3 U	NA	8.1 U
Chrysene		1,000	ug/kg	NA	7 U	7.5 U	NA	8.3 U	NA	8.1 U
Dibenzo(a,h)Anthracene		330	ug/kg	NA	7 UL1	7.5 UL1	NA	8.3 U	NA	8.1 U
Fluoranthene		100,000	ug/kg	NA	7 U	7.5 U	NA	8.3 U	NA	8.1 U
Fluorene		30,000	ug/kg	NA	7 U	7.5 U	NA	8.3 U	NA	8.1 U
Indeno(1,2,3-cd)Pyrene		500	ug/kg	NA	7 UL1	7.5 UL1	NA	8.3 U	NA	8.1 U
Phenanthrene		100,000	ug/kg	NA	7 U	7.5 U	NA	8.3 U	NA	8.1 U
Pyrene		100,000	ug/kg	NA	7 U	7.5 U	NA	8.3 U	NA	8.1 U
Total SVOCs			ug/kg	NA	7.6	7.8	NA	8.3 U	NA	8.1 U
Metals (EPA 6010B)										
Lead			mg/kg	51.7	NA	NA	4.6	NA	22.2	NA
General Chemistry										
Percent Moisture			%	18.1	6.9	12.7	11.3	20.8	25.8	19.1

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Notes:

- 1. Concentrations are presented in micrograms per kilogram, which is equivalent to part per billion except where otherwise noted.
- 2. Shaded and bold values indicate a criteria exceedance.
- 3. Field duplicate sample results are presented in brackets.

Lab Qualifiers Definition

- 1c A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- Ip3c The sample was reextracted beyond the method recommended holding time due to low terphenyl recovery. Recovery of terphenyl was within limits in the reextracted sample, and results for target analytes were similar to those for the original in hold sample extract. Results are reported from the original in hold sample extract analysis. The sample was reextracted beyond the method recommended holding time due to low terphenyl recovery. Recovery of terphenyl was within limits in the reextracted sample, and results for target analytes were similar to those for the original in hold sample extract. Results are reported from the original in hold sample extract. Results are reported from the original in hold sample extract. Results are reported from the original in hold sample extract. Results are reported from the original in hold sample extract. Results are reported from the original in hold sample extract analysis.
- M6R1 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution. RPD value was outside control limits.
- MHM1MLR1 Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low. RPD value was outside control limits.
- MHM1R1 Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. RPD value was outside control limits.
- ML Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.
- MLM6 Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low. Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
- R1 RPD value was outside control limits.
- U Indicates the compound was analyzed for, but not detected.
- U1c Indicates the compound was analyzed for, but not detected. A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- U1c2c Indicates the compound was analyzed for, but not detected. A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume. The analyte did not meet the method recommended minimum RF.
- U3c Indicates the compound was analyzed for, but not detected. RF below method recommended limit.
- UCV1c Indicates the compound was analyzed for, but not detected. This compound was outside of the 20% difference criteria but was not detected in any of the associated samples. A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- Uip Indicates the compound was analyzed for, but not detected. Benzo(b)fluoranthene and benzo(k)fluoranthene were separated in the check standard but did not meet the resolution criteria in SW846 Method 8270D. Whereas sample results included are reported as individual isomers, the lab and the customer must recognize them as an isomeric pair.
- UIS1c Indicates the compound was analyzed for, but not detected. The internal standard response is below criteria. Results may be biased high. A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- UL1 Indicates the compound was analyzed for, but not detected. Analyte recovery in the laboratory control sample (LCS) was above QC limits.
- UM6R1 Indicates the compound was analyzed for, but not detected. Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution. RPD value was outside control limits.
- UP1 Indicates the compound was analyzed for, but not detected. Routine initial sample volume or weight was not used for extraction, resulting in elevated reporting limits.
- UR1 Indicates the compound was analyzed for, but not detected. RPD value was outside control limits.
- NA Not analyzed.
- VOC Volatile organic compounds.
- SVOC Semivolatile organic compounds.
- ug/kg micrograms per kilogram.
- mg/kg milligrams per kilogram.

Table 6Monitoring Well PID Field Results

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Location ID	Depth (ft bgs)	PID (ppm)
	0-2	0.0
	2-4	0.0
	4-6	0.0
	6-8	0.0
	8-10	0.0
	10-12	0.0
MW-201	12-14	0.0
	14-16	0.0
	16-18	0.0
	18-20	0.0
	20-22	0.0
	22-24	0.0
	0-2	2.7
	2-4	0.0
	4-6	0.0
	6-8	0.0
MW-202	8-10	NA
	10-12	0.0
	12-14	0.0
	14-16	0.0
	16-16.5	0.0
	0-2	0.0
	2-4	0.0
	4-6	0.0
	6-8	0.0
	8-10	12.0
MW-203	10-12	45.7
	12-14	39.2
	14-16	12.1
	16-18	NA
	18-20	1.8
	0-2	0.0
	2-4	0.0
	4-6	0.0
	6-8	0.5
	8-10	2.1
MW-204	10-12	4.7
	12-14	13.7
	14-16	0.6
	16-18	1.0
	18-20	0.2
	0-2	0.0
	2-4	60.5
	4-6	133.9
	6-8	17.2
N/N/ 005	8-10	3.4
IVIVV-205	10-12	0.6
	12-14	1.3
	14-16	0.0
	16-18	0.0
	18-20	0.0

Table 6Monitoring Well PID Field Results

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Location ID	Depth (ft bgs)	PID (ppm)
	0-2	0.0
	2-4	0.0
	4-6	0.0
	6-8	0.0
	8-10	0.0
11111-206	10-12	0.0
	12-14	0.0
	14-16	0.0
	16-18	0.0
	18-20	0.0
	0-2	0.0
	2-4	0.0
	4-6	0.0
	6-8	0.0
	8-10	0.0
10100-207	10-12	0.0
	12-14	0.0
	14-16	0.0
	16-18	0.0
	18-20	0.0
	0-2	0.0
	2-4	0.0
	4-6	0.0
	6-8	0.0
	8-10	0.0
MW-208	10-12	0.0
	12-14	0.2
	44.40	7.1
	14-10	1.4
	16-18	3.5
	18-20	4.1
	0-2	0.0
	2-4	0.0
	4-6	0.3
	6-8	0.6
MW 200	8-10	0.4
10100-209	10-12	0.3
	12-14	0.0
	14-16	0.0
	16-18	0.0
	18-20	0.0
	0-2	0.0
	2-4	0.0
	4-6	0.0
	6-8	0.0
MW-210	8-10	0.0
	10-12	0.0
	12-14	0.0
	14-16	0.0
	16-18	0.0

Table 6Monitoring Well PID Field Results

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Location ID	Depth (ft bgs)	PID (ppm)
	0-2	0.0
MM 211	2-4	0.0
	4-6	0.0
	6-8	0.0
	8-10	0.0
	10-12	0.0
	12-14	0.0
	14-16	0.0

Notes:

ft bgs feet below ground surface

NA not applicable

ppm parts per million

Table 7Liquid Level Data - May 2018

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Location ID	Diameter (inches)	DTB (ft bgs)	TOS (ft bgs)	DTP (TOC)	DTW (TOC)	GW Elev (ft)
BMW1*	2	15.0	5.3	NA	NA	NA
BMW2	2	34.8	15.3	ND	8.29	390.52
BMW3	2	29.7	3.5	ND	14.95	380.55
BMW5	2	30.0	10.0	ND ¹	23.59	365.91
BMW6	2	30.0	10.0	ND	27.42	367.58
BMW7	2	15.0	5.0	ND	9.05	388.76
BMW8	2	20.0	5.0	ND	8.7	391.39
BMW9	2	15.0	5.0	ND	3.82	376.47
BMW13	2	UK	UK	ND	18.19	364.37
BMW14*	2	UK	UK	NA	NA	NA
BMW14R ²	2	20.0	5.0	ND	16.45	363.58
PZ106S	2	15.5	5.5	ND	3.64	370.87

Notes:

DTB depth to bottom

DTP depth to product

DTW depth to water

ft bgs feet below ground surface

GW Elev groundwater elevation

NA not applicable

ND not detected

TOC top of casing

TOS top of screen

UK unknown

* decommissioned

¹ No product was detected in the field using an interface probe but the lab indicated petroleum was found in sample and it could not be analyzed.

² BMW14R was gauged August 6, 2018.

Table 8 Groundwater Sampling Analytical Results

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Location D: DGS 1.1.1 BMW2 BMW3 BMW3 BMW6 BMW7 BMW3 BMW3 BMW14R P2106s VOCs (EPA 3280C) -<		NYSDEC										
Date Collected; VOCs (EPA 3280C) Units 05/17/18 05/14/18 05/14/18 05/14/18 05/17/18	Location ID:	TOGS 1.1.1		BMW2	BMW3	BMW6	BMW7	BMW8	BMW9	BMW13	BMW14R	PZ106S
VOCs (EPA 8280C) 1.2.4-Trimethylenzene 5 ug/L 1 U <th1 th="" u<=""> <th1 th="" u<=""> <th1< th=""><th>Date Collected:</th><th>(GA Groundwater)</th><th>Units</th><th>05/17/18</th><th>05/15/18</th><th>05/16/18</th><th>05/14/18</th><th>05/14/18</th><th>05/17/18</th><th>05/17/18</th><th>08/06/18</th><th>05/17/18</th></th1<></th1></th1>	Date Collected:	(GA Groundwater)	Units	05/17/18	05/15/18	05/16/18	05/14/18	05/14/18	05/17/18	05/17/18	08/06/18	05/17/18
12.4-Timethybenzene 5 ug/L 1 <th colspan="10"></th>												
13.5-Trimethybenzene 5 ug/L 1U 1U <t< td=""><td>1 2 4-Trimethylbenzene</td><td>5</td><td>ua/l</td><td>1 U</td><td>1 U</td><td>1 U</td><td>1 U</td><td>1 U</td><td>13</td><td>2,140</td><td>1.510</td><td>1 U</td></t<>	1 2 4-Trimethylbenzene	5	ua/l	1 U	1 U	1 U	1 U	1 U	13	2,140	1.510	1 U
Benzene 1 ug/L 1U <	1 3 5-Trimethylbenzene	5	ug/L	10	10	10	10	10	1.0	573	403	10
Ethanol ug/L 200 UI 1 CL2c 20	Benzene	1	ug/L	10	10	10	10	10	10	4,890	1 U	10
Ethylbenzene 5 ug/L 1 U 1	Ethanol		ug/L	200 UL1CL2c	200 UCL1c	200 UL1CL4c	200 UCL1c	200 UCL1c	200 UL1CL2c	200 UL1CL2c	200 U	200 UL1CL2c
Isopropylbenzene 5 ug/L 1	Ethylbenzene	5	ua/L	10	1 U	10	1 U	10	10	1.390	229	1 U
m&p-Xylene 5 ug/L 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 1	Isopropylbenzene	5	ua/L	10	1 U	10	1 U	10	10	71.5	80.6	1 U
Methyl-Tert-Butyl-Ether 10 ug/L 1<	m&p-Xylene	5	ua/L	2 U	2 U	2 U	2 U	2 U	2 U	7.340	843	2 U
Naphthalene 10 ug/L 2 U 2 U 2.6 2 U 2 U 2,130 537 2 U n-Butylbenzene 5 ug/L 1 U	Methyl-Tert-Butyl-Ether	10	ug/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
n-Butylbenzene 5 ug/L 1 U <	Naphthalene	10	ug/L	2 U	2 U	2.6	2 U	2 U	2 U	2,130	537	2 U
n-Propylbenzene 5 ug/L 1 U	n-Butylbenzene	5	ug/L	1 U	1 U	1 U	1 U	1 U	1 U	21.1	1 U	1 U
o-Xylene 5 ug/L 1 U 1 U 1 U 1 U 1 U 1 U 1 U 2,950 5.4 1 U p-Isopropyltoluene 5 ug/L 1 U	n-Propylbenzene	5	ug/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	196	1 U
p-Isopropyltoluene 5 ug/L 1 U	o-Xylene	5	ug/L	1 U	1 U	1 U	1 U	1 U	1 U	2.950	5.4	1 U
Sec-Butylbenzene 5 ug/L 1 U	p-lsopropyltoluene	5	ug/L	1 U	1 U	1 U	1 U	1 U	1 U	11.3	9.9	1 U
Tert-Bulylbenzene 5 ug/L 1	sec-Butvlbenzene	5	ua/L	10	1 U	10	1 U	10	10	11.1	11.4	1 U
Toluene 5 ug/L 1 U 1 U 2.2 1 U<	Tert-Butylbenzene	5	ua/L	10	10	10	1 U	10	10	10	1.6	1 U
Xylene (Total) 5 ug/L 2 U 2 U 2 U 2 U 2 U 2 U 10,290 848.4 2 U Total VOCs ug/L 200 U 200 U 4.8 200 U 200 U 1.3 25,838 2,979.7 200 U SVOCs (EPA 8270D by SIM) Acenaphthene 20 ug/L 0.099 U1c 0.099 U 6.5 1c 0.099 U 0.097 U1c 3.1 1c 0.38 1c 0.097 U1c Acenaphthylene ug/L 0.099 U1c 0.099 U 0.099 U 0.097 U1c 0.98 U1c 0.2 1c 0.097 U1c Anthracene 50 ug/L 0.099 U1c 0.099 U1 1.9 1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benz(a)Anthracene 0.002 ug/L 0.099 U1c 0.099 U11 1.0 1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(a)Pyrene ug/L 0.099 U1c 0.099 U1c 0.099 U1 0.099 U 0.097 U1c 0.9	Toluene	5	ua/L	10	10	2.2	1 U	10	10	14.600	1.2	1 U
Total VOCs ug/L 200 U 200 U 4.8 200 U 200 U 1.3 25,838 2,979.7 200 U SVOCs (EPA 8270D by SIM) Acenaphthene 20 ug/L 0.099 U1c 0.099 U 6.5 1c 0.099 U 0.097 U1c 3.1 1c 0.38 1c 0.097 U1c Acenaphthylene ug/L 0.099 U1c 0.099 U 1.9 1c 0.099 U 0.097 U1c 0.98 U1c 0.2 1c 0.097 U1c Anthracene 50 ug/L 0.099 U1c 0.099 U1 1.0 1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benz(a)Anthracene 0.002 ug/L 0.099 U1c 0.099 U1 1.0 1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(a)Pyrene ug/L 0.099 U1c 0.099 U1 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(b)Fluoranthene 0.002 ug/L 0.099 U1c 0.099 U1c 0.099 U1 0.099 U 0.097 U1	Xylene (Total)	5	ug/L	2 U	2 U	2 U	2 U	2 U	2 U	10,290	848.4	2 U
SVOCs (EPA 8270D by SIM) Acenaphthene 20 ug/L 0.099 U1c 0.099 U 6.5 1c 0.099 U 0.097 U1c 3.1 1c 0.38 1c 0.097 U1c Acenaphthylene ug/L 0.099 U1c 0.099 U 1.9 1c 0.099 U 0.097 U1c 0.98 U1c 0.2 1c 0.097 U1c Anthracene 50 ug/L 0.099 U1c 0.099 U1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benz(a)Anthracene 0.002 ug/L 0.099 U1c 0.099 U1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(a)Pyrene ug/L 0.099 U1c 0.099 U1 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(b)Fluoranthene 0.002 ug/L 0.099 U1c 0.099 U1c 0.099 U1 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(b)Fluoranthene 0.002 ug/L 0.099 U1c 0.099 U1c 0.099 U1 0.099 U	Total VOCs		ug/L	200 U	200 U	4.8	200 U	200 U	1.3	25,838	2,979.7	200 U
Acenaphthene 20 ug/L 0.099 U1c 0.099 U 6.5 1c 0.099 U 0.099 U 0.097 U1c 3.1 1c 0.38 1c 0.097 U1c Acenaphthylene ug/L 0.099 U1c 0.099 U 1.9 1c 0.099 U 0.097 U1c 0.98 U1c 0.2 1c 0.097 U1c Anthracene 50 ug/L 0.099 U1c 0.099 U1c 0.099 U1 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(a)Anthracene 0.002 ug/L 0.099 U1c 0.099 U1c 0.099 U1 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(a)Pyrene ug/L 0.099 U1c 0.099 U1c 0.099 U1 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(b)Fluoranthene 0.002 ug/L 0.099 U1c 0.099 U1c 0.099 U1 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(b)Fluoranthene 0.002 ug/L 0.099 U1c 0.099 U1c 0.099 U1 0.099 U	SVOCs (EPA 8270D by SIM)		Ū							,	,	
Acenaphthylene ug/L 0.099 U1c 0.099 U 1.9 1c 0.099 U 0.099 U 0.097 U1c 0.98 U1c 0.2 1c 0.097 U1c Anthracene 50 ug/L 0.099 U1c 0.099 U1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benz(a)Anthracene 0.002 ug/L 0.099 U1c 0.099 U11 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benz(a)Anthracene 0.002 ug/L 0.099 U1c 0.099 U11 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(a)Pyrene ug/L 0.099 U1c 0.099 U11 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(b)Fluoranthene 0.002 ug/L 0.099 U1c 0.099 U11 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(g,h,i)Perylene ug/L 0.099 U1c 0.099 U1c 0.099 U1c 0.099 U1c	Acenaphthene	20	ua/L	0.099 U1c	0.099 U	6.5 1c	0.099 U	0.099 U	0.097 U1c	3.1 1c	0.38 1c	0.097 U1c
Anthracene 50 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benz(a)Anthracene 0.002 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benz(a)Anthracene 0.002 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(a)Pyrene ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(b)Fluoranthene 0.002 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(g,h,i)Perylene ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(k)Fluoranthene 0.002 ug/L 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c	Acenaphthylene		ug/L	0.099 U1c	0.099 U	1.9 1c	0.099 U	0.099 U	0.097 U1c	0.98 U1c	0.2 1c	0.097 U1c
Benz(a)Anthracene 0.002 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(a)Pyrene ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(b)Fluoranthene 0.002 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(b)Fluoranthene 0.002 ug/L 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(g,h,i)Perylene ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(k)Fluoranthene 0.002 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Chrysene 0.002 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c <td>Anthracene</td> <td>50</td> <td>ua/L</td> <td>0.099 U1c</td> <td>0.099 UR1</td> <td>1 U1c</td> <td>0.099 U</td> <td>0.099 U</td> <td>0.097 U1c</td> <td>0.98 U1c</td> <td>0.1 U1c</td> <td>0.097 U1c</td>	Anthracene	50	ua/L	0.099 U1c	0.099 UR1	1 U1c	0.099 U	0.099 U	0.097 U1c	0.98 U1c	0.1 U1c	0.097 U1c
Benzo(a)Pyrene ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.099 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(b)Fluoranthene 0.002 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(b)Fluoranthene 0.002 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(g,h,i)Perylene ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(k)Fluoranthene 0.002 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Chrysene 0.002 ug/L 0.099 U1c 0.099 U1 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Diberzo(a b) Anthracence ug/L 0.090 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c <t< td=""><td>Benz(a)Anthracene</td><td>0.002</td><td>ua/L</td><td>0.099 U1c</td><td>0.099 UR1</td><td>1 U1c</td><td>0.099 U</td><td>0.099 U</td><td>0.097 U1c</td><td>0.98 U1c</td><td>0.1 U1c</td><td>0.097 U1c</td></t<>	Benz(a)Anthracene	0.002	ua/L	0.099 U1c	0.099 UR1	1 U1c	0.099 U	0.099 U	0.097 U1c	0.98 U1c	0.1 U1c	0.097 U1c
Benzo(b)Fluoranthene 0.002 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.099 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(g,h,i)Perylene ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(g,h,i)Perylene ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(k)Fluoranthene 0.002 ug/L 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Chrysene 0.002 ug/L 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Diberzo(a b) Attracence 0.002 ug/L 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c	Benzo(a)Pvrene		ua/L	0.099 U1c	0.099 UR1	1 U1c	0.099 U	0.099 U	0.097 U1c	0.98 U1c	0.1 U1c	0.097 U1c
Benzo(g,h,i)Perylene ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.099 U1c 0.98 U1c 0.1 U1c 0.097 U1c Benzo(k)Fluoranthene 0.002 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Chrysene 0.002 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Chrysene 0.002 ug/L 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Diberze(a b)Apthracene 0.002 ug/L 0.090 U1c 0.090 U 0.090 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c	Benzo(b)Fluoranthene	0.002	ua/L	0.099 U1c	0.099 UR1	1 U1c	0.099 U	0.099 U	0.097 U1c	0.98 U1c	0.1 U1c	0.097 U1c
Benzo(k)Fluoranthene 0.002 ug/L 0.099 U1c 0.099 U1 1 U1c 0.099 U 0.099 U1c 0.98 U1c 0.1 U1c 0.097 U1c Chrysene 0.002 ug/L 0.099 U1c 0.099 U1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Diberzo(a b)Apthracene 0.002 ug/L 0.090 U1c 0.090 U1c 0.090 U1c 0.090 U1c 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c	Benzo(g,h,i)Pervlene		ua/L	0.099 U1c	0.099 UR1	1 U1c	0.099 U	0.099 U	0.097 U1c	0.98 U1c	0.1 U1c	0.097 U1c
Chrysene 0.002 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c Dibersold b)Apthracene ug/L 0.099 U1c 0.090 U1c 0.099 U1c 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c	Benzo(k)Fluoranthene	0.002	ua/L	0.099 U1c	0.099 UR1	1 U1c	0.099 U	0.099 U	0.097 U1c	0.98 U1c	0.1 U1c	0.097 U1c
	Chrysene	0.002	ug/L	0.099 U1c	0.099 UR1	1 U1c	0.099 U	0.099 U	0.097 U1c	0.98 U1c	0.1 U1c	0.097 U1c
	Dibenzo(a,h)Anthracene		ug/L	0.099 U1c	0.099 UR1	1 U1c	0.099 U	0.099 U	0.097 U1c	0.98 U1c	0.1 U1c	0.097 U1c
Fluoranthene 50 ug/L 0.099 U1c 0.099 UR1 1.5 1c 0.099 U 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c	Fluoranthene	50	ug/L	0.099 U1c	0.099 UR1	1.5 1c	0.099 U	0.099 U	0.097 U1c	0.98 U1c	0.1 U1c	0.097 U1c
Fluorene 50 ug/L 0.099 U1c 0.099 UR1 5.9 1c 0.099 U 0.099 U 0.097 U1c 3.2 1c 0.65 1c 0.097 U1c	Fluorene	50	ug/L	0.099 U1c	0.099 UR1	5.9 1c	0.099 U	0.099 U	0.097 U1c	3.2 1c	0.65 1c	0.097 U1c
Indeno(1,2,3-cd)Pyrene 0.002 ug/L 0.099 U1c 0.099 UR1 1 U1c 0.099 U 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c	Indeno(1,2,3-cd)Pyrene	0.002	ug/L	0.099 U1c	0.099 UR1	1 U1c	0.099 U	0.099 U	0.097 U1c	0.98 U1c	0.1 U1c	0.097 U1c
Phenanthrene 50 ug/L 0.099 U1c 0.099 UR1 8.1 1c 0.099 U 0.099 U1c 2.5 1c 0.3 1c 0.097 U1c	Phenanthrene	50	ug/L	0.099 U1c	0.099 UR1	8.1 1c	0.099 U	0.099 U	0.097 U1c	2.5 1c	0.3 1c	0.097 U1c
Pyrene 50 ug/L 0.099 U1c 0.099 UR1 2.3 1c 0.099 U 0.099 U 0.097 U1c 0.98 U1c 0.1 U1c 0.097 U1c	Pyrene	50	ug/L	0.099 U1c	0.099 UR1	2.3 1c	0.099 U	0.099 U	0.097 U1c	0.98 U1c	0.1 U1c	0.097 U1c
Total SVOCs ug/L 0.099 U 0.099 U 0.099 U 0.099 U 0.099 U 0.097 U 8.8 1.53 0.097 U	Total SVOCs		ug/L	0.099 U	0.099 U	26.2	0.099 U	0.099 U	0.097 U	8.8	1.53	0.097 U
Metals (EPA 6010B)	Metals (EPA 6010B)											
Manganese 300 ug/L 453 2,840 MLR1 925 66.9 1,310 79 9,330 658 52	Manganese	300	ug/L	453	2,840 MLR1	925	66.9	1,310	79	9,330	658	52
Dissolved Metals	Dissolved Metals		Ū		,					,		
Manganese 300 ug/L 103 518 212 8.8 1.250 60.9 7.030 602 5 U	Manganese	300	ug/L	103	518	212	8.8	1.250	60.9	7.030	602	5 U
General Chemistry	General Chemistry		Ū							,		
Alkalinity, Carbonate (pH4.5) mg/L 10 U 10	Alkalinity, Carbonate (pH4.5)		mg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Alkalinity,Bicarbonate (pH4.5) mg/L NA NA NA NA NA NA NA A06 NA	Alkalinity, Bicarbonate (pH4.5)		mg/L	NA	NA	NA	NA	NA	NA	NA	406	NA
Alkalinity, Total (CaCO3 pH4.5) mg/L NA M1ML NA ML NA NA 406 NA	Alkalinity, Total (CaCO3 pH4.5)		mg/L	NA	M1ML	NA	ML	NA	NA	NA	406	NA
Iron, Ferrous mg/L 0.1 UH6H1 0.1 UH6H1 0.1 UH6H1 0.1 UH6H1 0.1 UH6H1 1.2 H6H1 0.1 UH6H1 13.2 H6H1 0.1 UH6H1 0.1 UH6H1 0.1 UH6H1	Iron, Ferrous		mg/L	0.1 UH6H1	0.1 UH6H1	0.1 UH6H1	0.1 UH6H1	1.2 H6H1	0.1 UH6H1	13.2 H6H1	0.1 UH6H1	0.1 UH6H1
Nitrogen, NO2 plus NO3 mg/L 0.1 U 0.1 0.1 U 0.44	Nitrogen, NO2 plus NO3		mg/L	0.1 U	0.1	0.1 U	0.1 UML	0.1 U	0.1 U	0.1 U	0.1 U	0.44
Sulfate mg/L 50 UD3 173 MH 424 67.4 109 53.7 100 UD3 43.6 50 UD3	Sulfate		mg/L	50 UD3	173 MH	424	67.4	109	53.7	100 UD3	43.6	50 UD3

Table 8 Groundwater Sampling Analytical Results

Northern Terminal Focused Investigation Summary Report Northern Cold Springs Terminal Lysander, New York

Notes:

- 1. Concentrations are presented in micrograms per kilogram, which is equivalent to part per billion except where otherwise noted
- 2. Shaded and bold values indicate a criteria exceedance.
- 3. Field duplicate sample results are presented in brackets.

Lab Qualifiers Definition

- 1c A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- 1c2c A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume. The analyte did not meet the method recommended minimum RF.
- H6H1 Analysis initiated outside of the 15 minute EPA required holding time. Analysis conducted outside the EPA method holding time.
- M1ML Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.
- MH Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high.
- ML Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.
- MLR1 Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low. RPD value was outside control limits.
- U Indicates the compound was analyzed for, but not detected.
- U1c Indicates the compound was analyzed for, but not detected. A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- U1c2c Indicates the compound was analyzed for, but not detected. A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume. The analyte did not meet the method recommended minimum RF.
- UCL1c Indicates the compound was analyzed for, but not detected. The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low. A matrix spike/matrix spike duplicate was not performed for this batch.
- UD3 Indicates the compound was analyzed for, but not detected. Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- UH6H1 Indicates the compound was analyzed for, but not detected. Analysis initiated outside of the 15 minute EPA required holding time. Analysis conducted outside the EPA method holding time.
- UL1CL2c Indicates the compound was analyzed for, but not detected. Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low. The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low. The read back of the low concentration calibration standard for this compound is not within 30% of the true value. The results may be biased low and should be considered estimated.
- UL1CL4c Indicates the compound was analyzed for, but not detected. Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low. The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low. The sample was reextracted beyond the method recommended holding time due to low terphenyl recovery. Recovery of terphenyl was within limits in the reextracted sample, and results for target analytes were similar to those for the original in hold sample extract. Results are reported from the original in hold sample extract analysis.
- UML Indicates the compound was analyzed for, but not detected. Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.
- UR1 Indicates the compound was analyzed for, but not detected. RPD value was outside control limits.

FIGURES

*;OFF=*REF* -DWG\N-FISR Ξ PM: V. MARE DRATION/Bud AMMER

Dpt)ON=*;OFF=*REF 3/N-FISR_Fig3-Site N TM: PM: V. MARE S B AHMER

LEGEND:

SOIL BORING
 SOIL BORING
 FORMER SITE FEATURE
 FENCE
 RETAINING WALL
 EDGE OF WATER
 EDGE OF BANK

NOTES:

- BASE MAP REFERENCE: "SITE MAP MONITORING WELLS" BY GROUNDWATER & ENVIRONMENTAL SERVICES, INC. (GES), DATED 9-30-2015.
- LOCATION OF SOIL BORINGS (B101-B110 AND B112-B118) WERE SURVEYED ON APRIL 26, 2016 AND SOIL BORINGS (B119-B121) WERE SURVEYED ON AUGUST 29, 2016 BY C.T. MALE. LOCATION OF SOIL BORINGS (B122-B125) WERE SURVEYED ON JUNE 7, 2018.
- 3. NO LOCATION B111 AND B122.
- ALL CONCENTRATIONS ARE PRESENTED IN MICROGRAMS PER KILOGRAM (μg/kg), WHICH IS EQUIVALENT TO PARTS PER BILLION (ppb).
- 5. ALL SAMPLE DEPTHS ARE PRESENTED IN FEET BELOW GROUND SURFACE.

6. ABBREVIATIONS:

6.4.

- 6.1. AST = ABOVE GROUND STORAGE TANK 6.2. CoVOCs Ex = COUNT OF VOCs
- EXCEEDANCES 6.3. NA = NOT ANALYZED/NOT APPL
 - NA = NOT ANALYZED/NOT APPLICABLE (B123-B125 WERE ANALYZED FOR LEAD ONLY)
 - U = INDICATES COMPOUND WAS ANALYZED FOR, BUT NOT DETECTED. VALUE SHOWN IS THE SUM OF THE REPORTING LIMIT.

LEGEND:

S S	OIL BORING
F0	ORMER SITE FEATURE
× × FI	ENCE
	ETAINING WALL
— — — — — EI	DGE OF WATER
El	DGE OF BANK

NOTES:

- 1. BASE MAP REFERENCE: "SITE MAP MONITORING WELLS" BY GROUNDWATER & ENVIRONMENTAL SERVICES, INC. (GES), DATED 9-30-2015.
- 2. LOCATION OF SOIL BORINGS (B101-B110 AND B112-B118) WERE SURVEYED ON APRIL 26, 2016 AND SOIL BORINGS (B119-B121) WERE SURVEYED ON AUGUST 29, 2016 BY C.T. MALE. LOCATION OF SOIL BORINGS (B122-B125) WERE SURVEYED ON JUNE 7, 2018.
- 3. NO LOCATION B111 AND B122.
- 4. ALL CONCENTRATIONS ARE PRESENTED IN MICROGRAMS PER KILOGRAM (µg/kg), WHICH IS EQUIVALENT TO PARTS PER BILLION (ppb).
- 5. ALL SAMPLE DEPTHS ARE PRESENTED IN FEET BELOW GROUND SURFACE.
- 6. ABBREVIATIONS:

6.3.

6.4.

6.5.

(APPROX.)

- AST = ABOVE GROUND STORAGE TANK 6.1. CoSVOCs Ex = COUNT OF SVOCs 6.2.
 - EXCEEDANCES NA = NOT ANALYZED/NOT APPLICABLE SVOC = SEMIVOLATILE ORGANIC COMPOUND
 - U = INDICATES COMPOUND WAS ANALYZED FOR, BUT NOT DETECTED. VALUE SHOWN IS THE SUM OF THE REPORTING LIMIT.

160' 80' **GRAPHIC SCALE** NORTHERN COLD SPRINGS TERMINAL LYSANDER, NEW YORK NORTHERN TERMINAL FOCUSED INVESTIGATION SUMMARY REPORT

MAXIMUM TOTAL SVOCs (SOIL) UNSATURATED ZONE -B101 - B125

LEGEND:

	SOIL BORING
	FORMER SITE FEATURE
x x	FENCE
	RETAINING WALL
	EDGE OF WATER
	EDGE OF BANK

NOTES:

- 1. BASE MAP REFERENCE: "SITE MAP MONITORING WELLS" BY GROUNDWATER & ENVIRONMENTAL SERVICES, INC. (GES), DATED 9-30-2015.
- 2. LOCATION OF SOIL BORINGS (B101-B110 AND B112-B118) WERE SURVEYED ON APRIL 26, 2016 AND SOIL BORINGS (B119-B121) WERE SURVEYED ON AUGUST 29, 2016 BY C.T. MALE. LOCATIONS OF SOIL BORINGS (B122-B125) WERE SURVEYED ON JUNE 7, 2018.
- 3. NO LOCATION B111 AND B122.
- 4. ALL CONCENTRATIONS ARE PRESENTED IN MICROGRAMS PER KILOGRAM (µg/kg), WHICH IS EQUIVALENT TO PARTS PER BILLION (ppb).
- 5. ALL SAMPLE DEPTHS ARE PRESENTED IN FEET BELOW GROUND SURFACE.
- 6. ABBREVIATIONS:

\$ 6.4.

- AST = ABOVE GROUND STORAGE TANK 6.1. CoVOCs Ex = COUNT OF VOCs 6.2.
- EXCEEDANCES NA = NOT ANALYZED/NOT APPLICABLE - 6.3.
 - U = INDICATES COMPOUND WAS ANALYZED FOR, BUT NOT DETECTED. VALUE SHOWN IS THE SUM OF THE REPORTING LIMIT.
 - VOC = VOLATILE ORGANIC COMPOUND

6.5. 160' 80 GRAPHIC SCALE NORTHERN COLD SPRINGS TERMINAL LYSANDER, NEW YORK NORTHERN TERMINAL FOCUSED INVESTIGATION SUMMARY REPORT MAXIMUM TOTAL VOCs

(SOIL) SATURATED ZONE -B101 - B125

FIGURE

6

	SOIL BORING
	FORMER SITE FEATURE
x x	FENCE
	RETAINING WALL
	EDGE OF WATER
	EDGE OF BANK

NOTES:

- BASE MAP REFERENCE: "SITE MAP MONITORING WELLS" BY GROUNDWATER & ENVIRONMENTAL SERVICES, INC. (GES), DATED 9-30-2015.
- LOCATION OF SOIL BORINGS (B101-B110 AND B112-B118) WERE SURVEYED ON APRIL 26, 2016 AND SOIL BORINGS (B119-B121) WERE SURVEYED ON AUGUST 29, 2016 BY C.T. MALE. LOCATIONS OF SOIL BORINGS (B122-B125) WERE SURVEYED ON JUNE 7, 2018.
- 3. NO LOCATION B111 AND B122.
- ALL CONCENTRATIONS ARE PRESENTED IN MICROGRAMS PER KILOGRAM (μg/kg), WHICH IS EQUIVALENT TO PARTS PER BILLION (ppb).
- 5. ALL SAMPLE DEPTHS ARE PRESENTED IN FEET BELOW GROUND SURFACE.
- 6. ABBREVIATIONS:

- 6.3.

6.4.

6.5.

- 6.1. AST = ABOVE GROUND STORAGE TANK 6.2. CoSVOCs Ex = COUNT OF SVOCs
 - EXCEEDANCES NA = NOT ANALYZED/NOT APPLICABLE
 - SVOC = SEMIVOLATILE ORGANIC COMPOUND
 - U = INDICATES COMPOUND WAS ANALYZED FOR, BUT NOT DETECTED. VALUE SHOWN IS THE SUM OF THE REPORTING LIMIT.

1999	Conservation of the second sec	0	80'	160'	
		GR/	APHIC SCALE	E	
	۲ N	NORTHERN CO LYSAN NORTHERN VESTIGATIC	old spring Ider, New Y TERMINAL DN SUMMA	IS TERMINAL ORK FOCUSEE ARY REPOR) RT
		MAXIMUI (SOIL) SA B1	M TOTAL TURATE 101 - B12	- SVOCs D ZONE - 5	1
	A	RCAD	DIS built as	& Consultancy walant ^e sets	FIGURE

	SOIL BORING
	FORMER SITE FEATURE
x x	FENCE
	RETAINING WALL
	EDGE OF WATER
	EDGE OF BANK

NOTES:

CATCH BASIN (APPROX.)

- 1. BASE MAP REFERENCE: "SITE MAP MONITORING WELLS" BY GROUNDWATER & ENVIRONMENTAL SERVICES, INC. (GES), DATED 9-30-2015.
- LOCATION OF SOIL BORINGS (B101-B110 AND B112-B118) WERE SURVEYED ON APRIL 26, 2016 AND SOIL BORINGS (B119-B121) WERE SURVEYED ON AUGUST 29, 2016 BY C.T. MALE. LOCATIONS OF SOIL BORINGS (B123-B125) WERE SURVEYED ON JUNE 7, 2018.
- 3. NO LOCATION B111 AND B122.
- 4. ALL CONCENTRATIONS ARE PRESENTED IN MILLIGRAMS PER LITER (mg/L).
- 5. ALL SAMPLE DEPTHS ARE PRESENTED IN FEET BELOW GROUND SURFACE.
- 6. AST = ABOVE GROUND STORAGE TANK

NOTES:

- 1. BASE MAP REFERENCE: "SITE MAP MONITORING WELLS" BY GROUNDWATER & ENVIRONMENTAL SERVICES, INC. (GES), DATED 9-30-2015.
- 2. LOCATION OF MONITORING WELLS (MW-201-MW-210) WERE SURVEYED ON JUNE 7, 2018.
- 3. AST = ABOVE GROUND STORAGE TANK.
- ALL CONCENTRATIONS ARE PRESENTED IN MICROGRAMS PER KILOGRAM (μg/kg), WHICH IS EQUIVALENT TO PARTS PER BILLION (ppb).
- 5. ALL SAMPLE DEPTHS ARE PRESENTED IN FEET BELOW GROUND SURFACE.
- 6. ABBREVIATIONS:
- 6.1. AST = ABOVE GROUND STORAGE TANK6.2. CoVOCs Ex = COUNT OF VOCs
- EXCEEDANCES
- 6.3. NA = NOT ANALYZED/NOT APPLICABLE
- 6.4. NA* = UNSATURATED ZONE SAMPLE NOT COLLECTED BASED ON FIELD PID SCREENING RESULTS INDICATING NO EVIDENCE OF IMPACTS ABOVE 50 ppmv.
- 6.5. U = INDICATES COMPOUND WAS ANALYZED FOR, BUT NOT DETECTED. VALUE SHOWN IS THE SUM OF THE REPORTING LIMIT.
- 6.6. VOC = VOLATILE ORGANIC COMPOUND

0 I	100'	200'

GRAPHIC SCALE

NORTHERN COLD SPRINGS TERMINAL LYSANDER, NEW YORK NORTHERN TERMINAL FOCUSED INVESTIGATION SUMMARY REPORT

MAXIMUM TOTAL VOCs (SOIL) UNSATURATED ZONE -MW-201 - MW-211

NOTES:

- 1. BASE MAP REFERENCE: "SITE MAP MONITORING WELLS" BY GROUNDWATER & ENVIRONMENTAL SERVICES, INC. (GES), DATED 9-30-2015.
- 2. LOCATION OF MONITORING WELLS (MW-201-MW-210) WERE SURVEYED ON JUNE 7, 2018.
- 3. AST = ABOVE GROUND STORAGE TANK.
- ALL CONCENTRATIONS ARE PRESENTED IN MICROGRAMS PER KILOGRAM (μg/kg), WHICH IS EQUIVALENT TO PARTS PER BILLION (ppb).
- 5. ALL SAMPLE DEPTHS ARE PRESENTED IN FEET BELOW GROUND SURFACE.
- 6. ABBREVIATIONS:
- 6.1. AST = ABOVE GROUND STORAGE TANK6.2. CoSVOCs Ex = COUNT OF SVOCs
- EXCEEDANCES
- 6.3. NA = NOT ANALYZED/NOT APPLICABLE
- 6.4. NA* = UNSATURATED ZONE SAMPLE NOT COLLECTED BASED ON FIELD PID SCREENING RESULTS INDICATING NO EVIDENCE OF IMPACTS ABOVE 50 ppmv.
 6.5. SVOC = SEMI-VOLATILE ORGANIC
- COMPOUND
 COMPOUND
 U = INDICATES COMPOUND WAS ANALYZED FOR, BUT NOT DETECTED.
- VALUE SHOWN IS THE SUM OF THE REPORTING LIMIT.

0 100' 200'

GRAPHIC SCALE

NORTHERN COLD SPRINGS TERMINAL LYSANDER, NEW YORK NORTHERN TERMINAL FOCUSED INVESTIGATION SUMMARY REPORT

MAXIMUM TOTAL SVOCs (SOIL) UNSATURATED ZONE -MW-201 - MW-211

NOTES:

- 1. BASE MAP REFERENCE: "SITE MAP MONITORING WELLS" BY GROUNDWATER & ENVIRONMENTAL SERVICES, INC. (GES), DATED 9-30-2015.
- 2. LOCATION OF MONITORING WELLS (MW-201-MW-210) WERE SURVEYED ON JUNE 7, 2018.
- 3. AST = ABOVE GROUND STORAGE TANK.
- 4. ALL CONCENTRATIONS ARE PRESENTED IN MICROGRAMS PER KILOGRAM (µg/kg), WHICH IS EQUIVALENT TO PARTS PER BILLION (ppb).
- 5. ALL SAMPLE DEPTHS ARE PRESENTED IN FEET BELOW GROUND SURFACE.
- 6. ABBREVIATIONS:
- 6.1. AST = ABOVE GROUND STORAGE TANK
- CoVOCs Ex = COUNT OF VOCs 6.2. EXCEEDANCES
- NA = NOT ANALYZED/NOT APPLICABLE 6.3.
- U = INDICATES COMPOUND WAS 6.4. ANALYZED FOR, BUT NOT DETECTED. VALUE SHOWN IS THE SUM OF THE REPORTING LIMIT.
- 6.5. VOC = VOLATILE ORGANIC COMPOUND

0	100'	200'

GRAPHIC SCALE

NORTHERN COLD SPRINGS TERMINAL LYSANDER, NEW YORK NORTHERN TERMINAL FOCUSED

INVESTIGATION SUMMARY REPORT MAXIMUM TOTAL VOCs (SOIL) SATURATED ZONE -

MW-201 - MW-211

NOTES:

- 1. BASE MAP REFERENCE: "SITE MAP MONITORING WELLS" BY GROUNDWATER & ENVIRONMENTAL SERVICES, INC. (GES), DATED 9-30-2015.
- 2. LOCATION OF MONITORING WELLS (MW-201-MW-210) WERE SURVEYED ON JUNE 7, 2018.
- 3. AST = ABOVE GROUND STORAGE TANK.
- ALL CONCENTRATIONS ARE PRESENTED IN MICROGRAMS PER KILOGRAM (μg/kg), WHICH IS EQUIVALENT TO PARTS PER BILLION (ppb).
- 5. ALL SAMPLE DEPTHS ARE PRESENTED IN FEET BELOW GROUND SURFACE.
- 6. ABBREVIATIONS:

6.1. AST = ABOVE GROUND STORAGE TANK

- 6.2. CoSVOCs Ex = COUNT OF SVOCs EXCEEDANCES
- 6.3. NA = NOT ANALYZED/NOT APPLICABLE
- 6.4. SVOC = SEMI-VOLATILE ORGANIC
- COMPOUND 6.5. U = INDICATES COMPOUND WAS
- ANALYZED FOR, BUT NOT DETECTED. VALUE SHOWN IS THE SUM OF THE REPORTING LIMIT.

GRAPHIC SCALE

NORTHERN COLD SPRINGS TERMINAL LYSANDER, NEW YORK NORTHERN TERMINAL FOCUSED INVESTIGATION SUMMARY REPORT

- 1. BASE MAP REFERENCE: "SITE MAP MONITORING WELLS" BY GROUNDWATER & ENVIRONMENTAL SERVICES, INC. (GES), DATED 9-30-2015.
- 2. LOCATION OF MONITORING WELLS (MW-201-MW-210) WERE SURVEYED ON JUNE 7, 2018.
- 3. ALL CONCENTRATIONS ARE PRESENTED IN MILLIGRAMS PER KILOGRAM (mg/kg).
- 4. ALL SAMPLE DEPTHS ARE PRESENTED IN FEET BELOW GROUND SURFACE.
- 5. AST = ABOVE GROUND STORAGE TANK

0 100' 200' GRAPHIC SCALE			
NORTHERN COLD SPRINGS TERMINAL LYSANDER, NEW YORK NORTHERN TERMINAL FOCUSED INVESTIGATION SUMMARY REPORT			
LEAD (SOIL) - MW-201 - MW-211			
ARCADIS Marcana 13			

NOTES:

- 1. BASE MAP REFERENCE: "SITE MAP MONITORING WELLS" BY GROUNDWATER & ENVIRONMENTAL SERVICES, INC. (GES), DATED 9-30-2015.
- LOCATION OF SOIL BORINGS (B101-B110 AND B112-B118) AND PIEZOMETERS (PZ101-PZ106) WERE SURVEYED ON APRIL 26, 2016 AND SOIL BORINGS (B119-B121) WERE SURVEYED ON AUGUST 29, 2016 BY C.T. MALE. LOCATION OF MONITORING WELLS (MW-201-MW-210), AND SOIL BORINGS (B122-B125) WERE SURVEYED ON JUNE 7, 2018.
- 3. NO LOCATION B111 AND B122.
- 4. AST = ABOVE GROUND STORAGE TANK.
- 5. BMW14R GAUGED AND SAMPLED AUGUST 6, 2018.

NORTHERN COLD SPRINGS TERMINAL LYSANDER, NEW YORK NORTHERN TERMINAL FOCUSED INVESTIGATION SUMMARY REPORT GROUNDWATER CONTOUR -MAY 2018

APPENDIX 1

February 2016 Focused Investigation Work Plan, February 2018 Supplemental Characterization and Interim Remedial Action Work Plan, and NYSDEC Approval of 2018 Work Plan

February 2016 Focused Investigation Work Plan

ARCADIS Design & Consultancy for natural and built assets

Richard Brazell, PE Region 7 Regional Spill Engineer New York State Department of Environmental Conservation 615 Erie Blvd. West Syracuse, New York 13204

Subject:

Focused Investigation Work Plan Hillside Road, Northern Terminal Study Area, Lysander, New York

Dear Mr. Brazell:

Arcadis U.S., Inc. (Arcadis) has prepared this Focused Investigation Work Plan (Work Plan) for the Northern Cold Springs Terminal (the Northern Terminal) on behalf of Buckeye and BP. The purpose of this Work Plan is to collect and evaluate data to assist in determining remedial options and strategies for the Northern Terminal. The specific objective of the work described in this Work Plan is to better define subsurface stratigraphy, assess the nature and extent subsurface impacts within these focus areas, and study the groundwater-surface water interaction at the Site. This work plan proposes drilling soil borings and collecting soil samples for analytical testing, installing nested discretely-screened piezometers, and water-level monitoring. A detailed description of these activities is provided below. The activities will be conducted in accordance with New York State Department of Environmental Conservation (NYSDEC) Department of Environmental Remediation DER-10 (May 2010).

Areas of Investigation

To facilitate a focused remedial effort, the Work Plan has been broken into four distinctive study areas based on the location of known spills and the results of previous investigations (see Figure 1). These areas are as follows:

- Area 1 Area proximal to monitoring well BMW5
- Area 2 Former transfer pump area
- Area 3 Delivery line right of way (ROW) between the two southern terminals
- Area 4 Area proximal to monitoring well B18

Arcadis of New York, Inc. 6723 Towpath Road PO Box 66 Syracuse New York 13214-0066 Tel 315 446 9120 Fax 315 449 0017 www.arcadis.com

ENVIRONMENT

Date: February 22, 2016

Contact: Vin Maresco

Phone: 315 671 9256

Email: vin.maresco@arcadis.com

Our ref: B0090004.0001

1. Pre-Investigation Activities

Prior to initiating drilling activities public utilities will be marked out by contacting Dig Safely New York to locate and mark all utilities near the areas of investigation. A private utility locator will be also be contracted to provide additional utility mark out in the proposed areas of investigation. In accordance with Arcadis subsurface clearance policy, each drilling location will also be hand-cleared to a minimum of 5 feet below ground surface (bgs) before drilling.

Based on information learned from previous site investigations and available historic facility maps, there are three suspected distributions lines that run north-south though Area 3. These distribution lines will be uncovered by hand or soft digging methods at three separate points (northern, middle and southern regions) to visually verify their location, orientation, and direction. Proposed sample locations may be adjusted in an east/west direction based on proximity to utilities.

2. Soil Boring and Sampling Activities

This Work Plan proposes a total of 18 soil borings and installation of 6 nested piezometer pairs (B-101 through B-118 and PZ-101S/D though PZ-106S/D) throughout the four areas proposed for investigation (see Figure 2). Soil borings will be advanced using direct-push drilling methods. Soil samples will be continuously collected from grade to terminal depth using 2-inch diameter 4 or 5foot long macrocores liners. Representative soils samples will be collected approximately every 2-feet and screened for volatile organic compounds (VOC) using a photo-ionization detector (PID). Soil characteristics will be logged continuously by a geologist for texture, grains size, moisture content, geologic origin, and the potential presence of impacts via field instrumentation. Each boring termination depth will be determined in the field by the on-site geologist and will be based on field indication of absence of impacts or 10 feet below first detection of the water table, whichever is shallower. For the purposes of this investigation field determination of absence of impact will be a detection of 50ppm on a field PID or less. Based on a review of historical data the anticipated terminal depth of each boring is estimated as follows:

- Area 1 Seven total soil borings, four in the northern portion to approximately 30 feet bgs and three in the southern portion to approximately 20 feet bgs
- Area 2 Six soil borings to approximately 18 to 20 feet bgs
- Area 3 Five soil borings to approximately 18 to 20 feet bgs
- Area 4 Six soil borings to approximately 22 feet bgs

Soil samples will be collected from each interval and analyzed by PACE Analytical Services, Inc. in Pittsburgh PA for constituents listed in NYSDEC Policy CP-51: Tables 2 and 3 (Soil Cleanup Levels for Gasoline and Fuel Oil Contaminated Soils, respectively). Samples will also be analyzed for methyl-tertbutyl-ether (MTBE) and ethanol.

Soil borings will be abandoned by backfilling each borehole with pelletized bentonite while removing the drilling tools. Soil cuttings generated during soil sampling activities will be temporally contained in 55-gallon drums on site in the northern portion of investigation Area 4. Composite samples of generated waste material will be collected for waste characterization analysis in accordance with applicable laws and regulations. All waste will be disposed of at an off-site location based on the results of laboratory analytical testing.

3. Groundwater/Surface water Interaction Activities

Six pairs of nested piezometers (PZ-101S/D through PZ-106S/D, 12 total piezometers) will be installed starting on the north side of Hillside Drive (Area 1, Area 2 and Area 4) and progressing into the ROW (Area 3), towards the Seneca River. These proposed locations are shown on Figure 3. Water-levels will be measured in the piezometers to better understand the groundwater-to-surface water interaction.

The soil borings for each of the piezometers will be drilled using the direct-push drilling procedure described above or a hollow stem auger rotary method. Piezometers will be constructed using 2-inch inside diameter (ID) schedule 40 polyvinyl chloride (PVC) material. Shallow piezometers (PZ-101S though PZ-106S) will extend to approximately 20 feet bgs and will be constructed with a 15 foot screen intended to straddle the water table (i.e., 10 feet below the average water table elevation and 5 feet above the average water table elevation). Deeper piezometers (PZ-101D though PZ-106D) will extend to the top of the glacial till or an elevation of 345 feet above mean sea level (amsl) (whichever is shallower). The deeper piezometers will be constructed using 2-foot long screens utilizing standard well construction methods with appropriately sized clean sand pack. An approximate 5-foot bentonite seal will be placed starting at approximately 1 foot above the piezometer screen.

Automatic pressure transducers will be installed inside each piezometer and in the two staff gauges installed in the Seneca River. One staff gauge will be installed along the nearby boat dock and the other along the bulk head near Area 3. Pressure transducers will allow collection of relatively continuous water levels over a several month period. Water levels will be evaluated to assess the magnitude and direction of hydraulic gradients (i.e., groundwater flow direction) in the horizontal and vertical direction. Measure groundwater levels at the same time as the surface water level in Seneca River will enable an evaluation of groundwater interaction with the river. Transducers will be installed in the piezometers and river gauges approximately one month prior to the opening of the NYS Barge Canal system and will collect data over the course of approximately three months.

Manual water-level measurements will be obtained at piezometers and river gauges once at the beginning of the study every week thereafter. All transducers will be inspected and data will be downloaded during the manual gauging events.

4. Survey

All soil borings, piezometers, and surface water measurement locations will be surveyed by a NYS licensed surveyor relative to the datum that has been established for the site. Survey information will be used to convert depths to elevations at each boring location and to establish reference elevations for each piezometer.

5. Reporting

The results of the activities described in this Work Plan will be presented in one final report which will summarize soil boring, sampling activities, and the groundwater-surface water interaction study. The report is anticipated to include, at a minimum, the following:

- Brief narrative describing the field activities, observations, and results
- Updated site plan showing the actual locations of all soil borings and/or piezometer locations
- Soil boring and piezometer logs
- Copies of laboratory testing reports
- Hydrographs of the transducer and manual water-level measurements (groundwater-surface water interaction report, only)

6. Schedule

Ideally field activities described herein will be initiated no later than March 2016, approximately one month prior to the target NYS Canal system opening in April 2016. The installation of piezometers, transducers and initiation of the groundwater-surface water interaction study will immediately follow the completion of the drilling activities. Groundwater and surface water monitoring activities will continue for a minimum of two months after the transducers are installed. The report discussed in Section 5 above will be submitted within approximately 60 days after completion of all field activities.

If you have any questions or require additional information, please call me at 315.671.9256.

Sincerely,

Arcadis of New York, Inc.

Vincent S. Maresco Principal Geologist

Enclosures:

Figures

- 1 Northern Terminal Areas of Investigation
- 2 Proposed Soil Boring Locations
- 3 Proposed Piezometer Locations

PM: V. MARESCO TM: TR: R. HENSEL LYR: (Opt)ON=*, OFF=*REF* LAYOUT: 3 SAVED: 1/22/2016 12:51 PM ACADVER: 19.15 (LMS TECF PIC: 3ROUP: ENVCAD DB: E. KRAHMER (B0090004/0001/00001/DWG\90004P02 ž

February 2018 Supplemental Characterization and Interim Remedial Action Work Plan

Northern Terminal Group

SUPPLEMENTAL CHARACTERIZATION AND INTERIM REMEDIAL ACTION WORK PLAN

Hillside Road, Cold Springs Terminals Lysander, New York

February 21, 2018

NA2.mm

Vincent S. Maresco, PG Principal Geologist

SUPPLEMENTAL CHARACTERIZATION AND INTERIM REMEDIAL ACTION WORK PLAN

Hillside Road, Cold Springs Terminals, Lysander, New York

Prepared for: Northern Terminal Group

Prepared by: Arcadis U.S., Inc. One Lincoln Center 110 West Fayette Street Suite 300 Syracuse New York 13202 Tel 315 446 9120 Fax 315 449 0017

Our Ref.: B0090004.0006

Date: February 21, 2018

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Acr	onym	ns and Abbreviations	iii
1	Intro	duction	.1
2	Nort	hern Terminal Investigation Activities	2
	2.1	Monitoring Well Integrity Assessment	.2
	2.2	Northern Terminal Existing Wells Groundwater Gauging and Sampling Event	.2
	2.3	Northern Terminal Utility Mark Out	.3
	2.4	Northern Terminal Soil Boring and Soil Sampling Activities	.3
	2.5	Northern Terminal Monitoring Well Installation	.4
	2.6	Northern Terminal Comprehensive Groundwater Sampling Event	.4
	2.7	Northern Terminal Reporting	.4
3	Sou	thern Terminals Investigation Activities	.5
	3.1	Southern Terminal Utility Mark Out	.5
	3.2	Southern Terminal Data Gap Area Assessment	.5
	3.3	Soil Boring and Sampling Activities	.5
	3.4	Southern Terminal Monitoring Well Network	.6
	3.5	Southern Terminal Reporting	.6
4	Refe	erences	.7

TABLES

- Table 1. Northern Terminal Area Monitoring Wells
- Table 2. Sitewide Remedial Performance Monitoring Wells

- Figure 1. Site Layout and Historically Existing Monitoring Wells
- Figure 2. Northern Terminal Existing Monitoring Wells
- Figure 3. Proposed Northern Area Additional Wells
- Figure 4. Remedial Performance Monitoring Wells (per October 2015 RAWP)
- Figure 5. Proposed LIF Locations

ATTACHMENTS

Attachment 1. Monitoring Well Integrity Assessment Form

ACRONYMS AND ABBREVIATIONS

Arcadis	Arcadis U.S., Inc.
DER-10	Department of Environmental Remediation, Technical Guidance for Site Investigation and Remediation
fbgs	feet below ground surface
LIF	Laser Induced Florescence
LNAPL	light non-aqueous phase liquid
MNA	Monitored Natural Attenuation
NAPL	non-aqueous phase liquid
NYSDEC	New York State Department of Environmental Conservation
PACE	PACE Analytical Services, Inc., Greensburg, Pennsylvania
PID	photo-ionization detector
QAPP	Quality Assurance Project Plan
VOCs	volatile organic compounds
Work Plan	Groundwater and Soil Impact Investigation Work Plan
NYS DOH	New York State Department of Health
ELAP	Environmental Laboratory Accreditation Program
TCLP	toxicity characteristic leaching procedure

1 INTRODUCTION

Arcadis U.S., Inc. (Arcadis) has prepared this Supplemental Characterization and Interim Remedial Action Work Plan (Work Plan) for the Cold Springs Terminals Site (Figure 1), on behalf of the Northern Terminal Group, in accordance with the Order on Consent effective October 19, 2017. The Work Plan also accounts for the recent demolition activities on the Southern Terminals, including the removal of aboveground tanks and piping, which now allows for further assessment of the surface and subsurface conditions in previously inaccessible areas.

The specific objectives of the work scope detailed in this Work Plan are as follows:

- Evaluate soil in areas previously unassessed.
- Provide the additional data to allow for the refining and updating of the scope of the October 1, 2015 Cold Springs Terminal Mutual Defense Group Remedial Action Work Plan (October 2015 RAWP).
- Conduct a site assessment of the Northern Terminal

To accomplish these goals, this Work Plan proposes the following tasks across both the Northern and the Southern Terminals:

Northern Terminal:

- Perform a monitoring well integrity survey on existing wells that are being used as part of the proposed site investigation activities and make repairs as needed based on findings;
- Conduct a groundwater sampling event using the existing wells;
- Installation of additional groundwater monitoring wells as proposed below;
- Completing an elevation survey of new wells;
- Conduct a comprehensive groundwater sampling event on the Northern Terminal; and,
- Data compilation, interpretation, and presentation.

Southern Terminals:

- Collect soil quality data via Laser Induced Fluorescence (LIF);
- Advance soil borings to correlate LIF findings to direct laboratory analytical samples;
- After the STG re-establishment of the performance monitoring well network, commence groundwater sampling in accordance with the October 2015 RAWP; and,
- Data compilation, interpretation, and presentation.

A detailed description of these activities is provided below. The activities will be conducted in accordance with New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation-10 (DER-10, Technical Guidance for Site Investigation and Remediation) (NYSDEC, 2010a) and, in the case of the Southern Terminal area groundwater monitoring program, per the October 2015 RAWP (Cold Springs Terminal Mutual Defense Group, 2015).

2 NORTHERN TERMINAL INVESTIGATION ACTIVITIES

2.1 Monitoring Well Integrity Assessment

A group of 11 wells currently existing on the Northern Terminal will be useful in understanding the current groundwater conditions of the Northern Terminal. These wells are listed on Table 1 and are depicted on Figure 2.

The first field action will be a monitoring well integrity survey of all existing Northern Terminal wells. This will be performed to assess the need for monitoring well repair, development, or replacement. The integrity survey will include the following:

- The overall condition of the well (labeled; condition of the well protective casing or well head and well pad; integrity of the surface seals; presence of the bolting or locking well cap, J-plug inner lockable cap, inner well riser casing, and survey mark)
- The comparison of measurable quantities (e.g., riser stickup relative to grade and well total depth)
- An assessment of the bottom sediment condition via probe feel and or bailer inspection
- Confirmation that each well listed in Table 1 is part of a survey data set and has known survey coordinates and elevation
- An initial measurement of the depth to liquid in each well

A monitoring well integrity assessment form, provided as Attachment 1, will be completed for each of the existing monitoring wells in this group.

2.2 Northern Terminal Existing Wells Groundwater Gauging and Sampling Event

The Table 1-listed wells are existing wells that have been selected to assist in assessing groundwater conditions on the Northern Terminal. Following integrity inspection and any needed repairs these wells will be gauged with an interface probe. The depth to water and, if detected, non-aqueous phase liquid (NAPL) thickness will be recorded and reported. Monitoring wells that are part of the sampling program and are free of NAPL will be purged of three well volumes and subsequently sampled using disposable bailers. The groundwater quality in each well will be evaluated using a multi-parameter water quality meter for temperature (degrees Celsius), pH (Standard Units), conductivity (milli-Siemens per centimeter), DO (milligrams per liter), and ORP (milli-Volts) and will be recorded to evaluate Monitored Natural Attenuation (MNA) indicators on site.

Groundwater samples will be collected from each of the well locations in accordance with DER-10 guidelines. Samples will be analyzed for NYSDEC STARS-listed volatile organic compounds (VOCs) via EPA Method Number 8260 including oxygenates, and ethanol and for semi-volatile organic compounds (SVOC) via EPA Method 8270. In addition, collected samples will be analyzed for selected MNA indicators, including nitrate/nitrite, sulfate, dissolved methane, alkalinity, dissolved ferrous iron, dissolved manganese, and carbon dioxide. Chain-of-custody documentation will be maintained for all collected samples. Collected groundwater samples will be analyzed by PACE Analytical Services, Inc., in

Greensburg, Pennsylvania (PACE), a New York State Department of Health (NYSDOH) Environmental Laboratory Accreditation Program-certified (ELAP) laboratory.

One set of quality assurance/quality control samples, including a blind duplicate, matrix spike, matrix spike duplicate, and trip blanks, will be collected at a frequency of one per 20 and submitted for laboratory analysis. Purge water and any NAPL generated by the monitoring activities will be containerized in properly labeled steel 55-gallon drums for off-site disposal.

2.3 Northern Terminal Utility Mark Out

Prior to initiating subsurface disturbance activities, public utilities will be marked out by contacting Dig Safely New York to locate and mark all utilities near the areas of investigation. A private utility locator will also be contracted to provide additional utility mark out in the proposed areas of investigation. In accordance with Arcadis' subsurface clearance policy, unless variances are agreed to between various parties, each drilling location will also be hand cleared to a minimum of 5 feet below ground surface before drilling.

2.4 Northern Terminal Soil Boring and Soil Sampling Activities

Areas of the Northern Terminal will be assessed via a direct-push or hollow stem auger soil boring program followed by installation of groundwater monitoring wells, as discussed in Section 2.5 below. The locations for these proposed boring locations coincide with the proposed 11 groundwater monitoring wells proposed for the Northern Terminal, as discussed below and shown on Figure 3.

Soil borings will be advanced using direct-push or hollow stem auger sample collection methods (either macro core or split spoon methods). Soil samples will be continuously collected from grade to terminal depth using 2-inch-diameter sampling tools. Representative soils samples will be collected approximately every 2 feet and screened for VOCs using a properly calibrated photo-ionization detector (PID). Soil characteristics will be logged continuously by an Arcadis geologist for texture, grain size, moisture content, geologic description, and the potential presence of impacts as detected via field PID instrumentation. Each boring termination depth will be determined in the field by the on-site geologist and will be based on the field indication of absence of impacts or 10 feet below the first detection of the water table, whichever is shallower. For the purposes of this investigation, field determination of absence of impact will be a detection of 50 parts per million (PPM) on a field PID or less. Based on a review of historical data, the anticipated terminal depth of each boring is estimated to be less than 25 feet.

Soil samples will be collected, at a minimum, from the interval with the highest PID reading above the water table and at the water table. Additionally, depending on field conditions and observations, samples may also be collected from additional intervals at each boring. All retained samples will be analyzed by PACE for constituents listed in NYSDEC Policy CP-51: Tables 2 and 3 (Soil Cleanup Levels for Gasoline and Fuel Oil Contaminated Soils, respectively) (NYSDEC, 2010b). Samples will also be analyzed for oxygenates and ethanol. Additionally, samples from the ground surface to 2 feet below ground surface will be analyzed for total lead.

Soil cuttings generated during soil sampling activities will be temporarily contained on and covered with plastic sheeting. Composite samples of the material will be collected for characterization analysis in

accordance with applicable laws and regulations. All materials will be disposed of at an off-site location based on the results of laboratory analytical testing.

2.5 Northern Terminal Monitoring Well Installation

As discussed above, additional groundwater monitoring wells are proposed for the Northern Terminal. There are 11 monitoring wells proposed throughout the Northern Terminal study area at the locations shown on Figure 3 and coincide with the locations for the soil borings discussed in Section 2.4 above. The soil borings for each of the monitoring wells will be advanced using a hollow stem auger rotary method. Wells will be constructed using 2-inch inside-diameter, Schedule 40, polyvinyl chloride (PVC) material. Monitoring wells will be constructed with a 15-foot screen intended to straddle the water table (i.e., 10 feet below the estimated average water table elevation and 5 feet above the estimated average water table elevation).

2.6 Northern Terminal Comprehensive Groundwater Sampling Event

Once the Northern Terminal monitoring wells have been installed and developed, they will be surveyed for horizontal coordinate and vertical (elevation) control. These newly installed 11 wells, along with the wells listed in Table 1, will be gauged with an interface probe and sampled in accordance with Section 2.2 above. It is estimated that the comprehensive northern terminal sampling event will take place approximately one quarter after the initial northern terminal sampling event.

Once a minimum of two and a maximum of four events of quarterly groundwater sampling have been completed, the data set will be evaluated. This evaluation will be used to generate a groundwater monitoring program for the Northern Terminal, as Northern Terminal groundwater monitoring was not contemplated in the October 2015 RAWP document. Following this initial set of up to four comprehensive groundwater data collection events and data evaluation, an updated and revised groundwater monitoring program will be proposed to NYSDEC for their review and consideration. This updated program will include a revised list of monitoring wells and analytical parameters for future proposed monitoring.

2.7 Northern Terminal Reporting

A report of findings summarizing the initial groundwater sampling event of the existing wells, the soil data collection, and the first comprehensive groundwater sampling event will be issued. This report will contain all relevant data noted above along with supporting attachments such as boring logs, well construction details, liquid level data, laboratory analytical reports. Additionally, data collected at the site in 2016 will be presented in this report of findings.

3 SOUTHERN TERMINALS INVESTIGATION ACTIVITIES

3.1 Southern Terminal Utility Mark Out

Prior to initiating subsurface disturbance activities, public utilities will be marked out by contacting Dig Safely New York to locate and mark all utilities near the areas of investigation. A private utility locator will also be contracted to provide additional utility mark out in the proposed areas of investigation. In accordance with Arcadis' subsurface clearance policy, unless variances are agreed to between various parties, each drilling location will also be hand cleared to a minimum of 5 feet below ground surface before drilling.

3.2 Southern Terminal Data Gap Area Assessment

This Work Plan proposes installing direct push soil penetrations across the Southern Terminals where data gaps exist. These borings will be conducted via LIF-type technology akin to the impact assessment work completed by AECOM in 2013 at the site. This data will allow for a three-dimensional understanding of the locations, and relative magnitude, of impacts across the data gap areas. The proposed locations of the LIF points are shown on Figure 5. Based on input and comments from NYSDEC, proposed LIF location #8 has been adjusted to line up with the former oil water separator structure that the NYSDEC removed from site during December 2017 – January 2018.

3.3 Soil Boring and Sampling Activities

Following collection and interpretation of the LIF data a brief summary memo will be prepared that would include a proposal for confirmation sampling. The LIF locations would be confirmed by approximately five (5) borings via traditional direct push or hollow stem auger advanced locations and collection of soil samples. This would allow for a calibration from the relative impact mapping provided by the LIF technology and actual compound-specific detections relative to Standards, Criteria, or Guidance values per NYSDEC Guidance Document CP-51. The final soil boring correlation sampling frequency determination will be made based on the results of the LIF data in conjunction with input from the NYSDEC.

Soil samples will be collected, at a minimum, from the interval with the highest PID reading above the water table and at the water table. Additionally, depending on field conditions and observations, samples may also be collected from additional intervals at each boring. All collected samples will be analyzed by PACE for constituents listed in NYSDEC Policy CP-51: Tables 2 and 3 (Soil Cleanup Levels for Gasoline and Fuel Oil Contaminated Soils, respectively) (NYSDEC, 2010b). Samples will also be analyzed for oxygenates and ethanol. Additionally, samples from the ground surface to 2 feet below ground surface will be analyzed for total lead.

In addition to the confirmatory boring set proposed here, four additional soil borings will be executed at the request of the NYSDEC as follows (Figure 5):

A boring will be added east of the small building located on the South East terminal (Figure 5) to characterize the impacts observed by the NYSDEC in this area during their removal of a 500-gallon consumptive use underground heating oil tank. The removal of the tank was conducted in

January 2018. Data collected from this boring will be analyzed via the same methods as all confirmatory borings being proposed.

Three shallow soil borings will be installed in the pipeline right of way located between the eastern and western southern terminals to collect shallow TCLP lead soil data quality. The most northerly of these samples will have two samples collected as follows: 0-2 feet below ground surface (fbgs) and 2-4 fbgs. The remaining two locations will have only the 0-2 fbgs sample collected.

A NYS licensed surveyor will be used to locate the LIF points as well as the soil borings installed on the southern terminal.

The results of the follow up, confirmation soil sampling plan may also suggest the installation of additional groundwater monitoring wells. Furthermore, the extended characterization of these areas should also support reevaluating the existing system design and layout especially with respect to the recent and substantial changes to the site access caused by the removal of the historic terminal above-ground infrastructure.

3.4 Southern Terminal Monitoring Well Network

Of the historic wells previously installed across the Cold Springs Terminals Site, 29 were listed in the October 2015 RAWP as wells required for system performance monitoring by the Southern Terminals Group (STG). This group of wells is listed on Table 2 and shown on Figure 4. 22 of these wells were located on the Southern Terminal properties and, as a result of recent demolition activities, have likely been compromised or lost. The remaining 7 wells are also of unknown condition. As such, baseline sampling and subsequent groundwater monitoring, as outlined in the October 2015 RAWP, will be conducted once the STG has re-established the system performance well monitoring network.

3.5 Southern Terminal Reporting

All the results of the activities described in this Work Plan will be presented in two reports as follows:

The first deliverable will be a memo summary of the LIF findings and will include a proposal for the confirmatory sampling program.

The second and final report will summarize LIF soil confirmation sampling activities. The report is anticipated to include, at a minimum, the following:

- A brief narrative describing the field activities, observations, and results
- An updated Site Plan showing the actual locations of all new surveyed soil borings
- Soil boring logs
- Copies of laboratory testing reports

4 REFERENCES

Cold Springs Terminal Mutual Defense Group. 2015. Remedial Action Work Plan. October 1, 2015.

New York State Department of Environmental Conservation (NYSDEC). 2010a. Department of Environmental Remediation-10 (DER-10), Technical Guidance for Site Investigation and Remediation. May 2010.

NYSDEC. 2010b. Guidance Document CP-51. October 21, 2010.

TABLES

Table 1Northern Terminal Area Monitoring Wells

Cold Springs Terminals Hillside Road Lysander, New York

Well ID	Diameter (inches)	DTB (ft bgs)	TOS (ft bgs)
BMW1	2	15.0	5.3
BMW2	2	34.8	15.3
BMW3	2	29.7	3.5
BMW5	2	30.0	10.0
BMW6	2	30.0	10.0
BMW7	2	15.0	5.0
BMW8	2	20.0	5.0
BMW9	2	15.0	5.0
BMW13	2	UK	UK
BWM14	2	UK	UK
PZ106S	2	15.5	5.5

Notes:

DTB = depth to bottom ft bgs = feet below ground surface TOS = top of screen UK = Unknown

Table 2Sitewide Remedial Performance Monitoring Wells

Cold Springs Terminals Hillside Road Lysander, New York

Well ID*	Diameter (inches)	DTB (ft bgs)	TOS (ft bgs)
A1	2	12	7
A4	2	23	8
A6	2	12	7
A10	2	14	4
A13	4	19	4
A16	4	19	4
A20	4	15	5
A21	2	14	4
A23	2	12	7
A25	2	14	4
B4	4	24.5	9.5
B9	2	22	12
B15	2	17	7
BMW3	2	29.7	3.5
BMW4	2	12.5	2.75
BMW9	2	15	5
HD4A	2	12	2
S2	4	20	5
S4	4	20	5
S5	4	15.5	5.5
S10	4	19	4
S12	2	18	3
S13	4	20	5
S15	4	19	4
S21	2	18.5	3.5
S22	2	8	3
S23	2	8	3
S24	2	8	3
SMW3	2	15	5

Notes:

DTB = depth to bottom

ft bgs = feet below ground surface TOS = top of screen

*These monitoring wells are part of the monitoring program, per the October 2015 RAWP.

NOTE:

- 1. BASE MAP REFERENCE: "SITE MAP MONITORING WELLS" BY GROUNDWATER & ENVIRONMENTAL SERVICES, INC. (GES), DATED 9-30-2015.
- 2. LOCATION OF SOIL BORINGS (B101-B110 AND B112-B118) AND PIEZOMETERS (PZ101-PZ106) WERE SURVEYED ON APRIL 26, 2016 AND SOIL BORINGS (B119-B121) WERE SURVEYED ON AUGUST 29, 2016 BY C.T. MALE.
- 3. AST = ABOVE GROUND STORAGE TANK.

PROPOSED NORTHERN AREA ADDITIONAL WELLS

NOTE:

- BASE MAP REFERENCE: "SITE MAP SYSTEM PERFORMANCE WELLS" BY GROUNDWATER & ENVIRONMENTAL SERVICES, INC. (GES), DATED 9-30-2015.
- 2. AST = ABOVE GROUND STORAGE TANK.

Ι

LEGEND:

- **9** PROPOSED MONITORING WELL
- PROPOSED LASER INDUCED
 FLUORESCENT (LIF) LOCATION
- MONITORING WELL
- PIEZOMETER
- UVOST/CPT
- ▲ SOIL BORING
- PROPOSED SOIL BORING
- ----- FORMER AST
- ------ RETAINING WALL
- — — EDGE OF WATER
- ----- EDGE OF BANK

NOTES:

- 1. BASE MAP REFERENCE: "SITE MAP MONITORING WELLS" BY GROUNDWATER & ENVIRONMENTAL SERVICES, INC. (GES), DATED 9-30-2015.
- 2. LOCATION OF SOIL BORINGS (B101-B110 AND B112-B118) AND PIEZOMETERS (PZ101-PZ106) WERE SURVEYED ON APRIL 26, 2016 AND SOIL BORINGS (B119-B121) WERE SURVEYED ON AUGUST 29, 2016 BY C.T. MALE.
- 3. AST = ABOVE GROUND STORAGE TANK.

GRAPHIC SCALE

HILLSIDE ROAD, COLD SPRINGS TERMINALS LYSANDER, NEW YORK SUPPLEMENTAL CHARACTERIZATION AND

INTERIM REMEDIAL ACTION WORK PLAN

PROPOSED MONITORING WELL, SOIL BORING, AND LIF LOCATIONS

ATTACHMENT 1

Monitoring Well Integrity Assessment Form

Monitoring Well Integrity Assessment Form

(For each item, check appropriate response or fill in the blank)

		Date
Well ID	ID Clearly Marked?	Project Name
Photo filenam <u>e</u>		Project Number
Weather		Field Personnel
General Descriptio	n of Surroundings	
Well Condition:		Surface Condition:
Damaged?	Abandoned?	Damaged?
(Describe Below) Stick Up	Flush Mount	
Lockable cover?		Pad/cement intact?
Lock present?		Curb box/well cover present?
Key number:		Intact?
Stick up height		Seal condition
Casing material		All bolts present?
Well diameter		Ground surface slopes
Protective casing r	naterial:	away from well?
Protective casing c	diameter:	Location Sketch
Cap present? Type	e?	
Vented? If so, how	?	
Measuring point cle	early marked?	
Total depth reporte	ed:	
Total depth measu	red:	
DTW:		
Well obstructed? If	so, depth?	
Well bottom soft (s	ediment) or firm?	
Flush Mount Wells	Only	
Gasket present?		
Bolts present?		
Teflon washers pre	esent?	
Comments/Recon	nmendations:	
I		

NYSDEC Approval of 2018 Work Plan

From: Brazell, Richard J (DEC) <<u>richard.brazell@dec.ny.gov</u>>
Sent: Friday, February 23, 2018 9:43 AM
To: Hensel, Rebecca <<u>Rebecca.Hensel@arcadis.com</u>>
Cc: Maresco, Vin <<u>Vin.Maresco@arcadis.com</u>>; Conlon, Benjamin (DEC) <<u>benjamin.conlon@dec.ny.gov</u>>; Greg Boltus
<<u>gboltus@action-technical.com</u>>
Subject: RE: Report Submission on Behalf of Vin Maresco

Rebecca and Vin

I approve the Supplemental Characterization Interim Remedial Action Work Plan for the Cold Springs Terminal.

Currently the DEC, as part of the removal of the oil water separator on the southern terminal, continues to remove free product from the site. Two riser pipes have been installed that Action Technical is utilizing to remove the free product. I anticipate this activity to continue until there is no free product present or the Southern Terminal submits a revised work plan and commences work.

If you have any questions do not hesitate to contact me.

Richard J. Brazell P.E.

Regional Spill Engineer, NYS DEC Spill Response

New York State Department of Environmental Conservation

615 Erie Boulevard West, Syracuse, NY 13204-2400 P: 315-426-7523 | M: 315-447-8516 | <u>richard.brazell@dec.ny.gov</u> www.dec.ny.gov | **f** | **v** | **o**

From: Hensel, Rebecca [mailto:Rebecca.Hensel@arcadis.com]
Sent: Thursday, February 22, 2018 10:49 PM
To: Brazell, Richard J (DEC) <<u>richard.brazell@dec.ny.gov</u>>
Cc: Maresco, Vin <<u>Vin.Maresco@arcadis.com</u>>
Subject: Report Submission on Behalf of Vin Maresco

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or

unexpected emails.

Good Evening Richard,

On behalf of Vin Maresco, attached is the Supplemental Characterization Interim Remedial Action Work Plan for the Cold Springs Terminals. Additionally, a hard copy of the report is scheduled to arrive at your office Monday. Vin is on vacation and will be returning Monday morning, until then please feel free to reach out to me with any questions.

Thank you, Rebecca

Rebecca Hensel, EIT | Environmental Engineer | <u>rebecca.hensel@arcadis.com</u> Arcadis | U.S., Inc. 110 West Fayette Street Suite 300, Syracuse, NY | 13202 | USA T. +1 315.671.9296 C. +1 315.751.3069

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

APPENDIX 2

Boring Logs from 2016

Dat Dril Dril Dril San Rig	e Star ling C ler's I ling N npling Type	rt/Finis Compai Name: Method J Method : Geop	h: 4/5/ [/] ny: Par Mark E : Direct od: 4' × robe 782	16-4/25 ratt-Wc Eaves Push 2" Ace 22	/16 Iff etate Li	ner		Northing: 1141246.01 Easting: 908795.81 Casing Elevation: NA Borehole Depth: 27.0' bgs Surface Elevation: 386.79' AMSL Descriptions By: Ethan Ulm	Well/Boring Client: Col Location: (g ID: B101 d Springs Northern Terminal Lysander, NY			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Well/Bori Stratigraphic Description Construct					
-	-												
-		1	0-5	NA	0.0		Medium t wet. Light brov	orown SANDY SILT, trace Clayey Silt, grass, roots, topsoil,	medium brown,				
- 5	- 380 -	2	5-8	1.8	0.0		Light grey	y/brown fine SAND to Silty Sand. trace Silt, dry to moist.		X X X X X X X X X X X X X X X X X X X			
- 10	- - 375 -	3	8-12	3.2	1.4		Light grey	y/brown fine SAND to Silty Sand, trace Silt.		x with pelletized x bentonite and x bentonite and x native material. x x x x x x x x x x x x x			
- 15	-	4	12-16	3.4	0.9		N	floist to wet at 14.5' bgs.					
Proie	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level.												

Client: Cold Springs Northern Termina	al
---------------------------------------	----

Lysander, NY

Well/Boring ID: B101

Borehole Depth: 27.0' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction					
20	370 -	5	16-20	4.0	1069		Light grey/brown fine SAND to Silty Sand, trace Silt.						
-	- 365 - -	6	20-24	4.0	1651 535.1		Wet, sheen, odors, firm. Light to dark grey fine to medium SAND, wet, running sands, odors, sheen.	- X X X X X X X X X X X X X X					
- 25	- 360 -	7	24-27	2.0	15.4	0	Light to dark grey fine to medium SAND, wet, running sands, odors, sheen.						
- 30	- - 355 -						Boring terminated at 27' bgs.						
- 35	- 35 - 35												
Dreit	ot: Dr	00000	4	τ-	nlota	0.104		OT late Page: 2 of 2					

Dat Dril Dril Dril Sar Rig	e Star lling C ller's I lling N npling Type	rt/Finis Compar Name: Method g Metho g Geop	h: 4/6/ ny: Par Mark E : Direct od: 4'> robe 78	16-4/20 ratt-Wc aves Push 2" Ace 22)/16 blff etate Li	ner		Northing: 1141236.02 Easting: 909155.78 Casing Elevation: NA Borehole Depth: 19.0' bgs Surface Elevation: 373.94' AMSL Descriptions By: Ethan Ulm	Well/Boring Client: Col Location: (Well/Boring ID: B102 Client: Cold Springs Northern Terminal Location: Lysander, NY		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Stratigraphic Description	Well/Boring Construction			
-	- 375 -											
-	-	1	0-4	NA	58.7 169.6 >15000	00000000000000000000000000000000000000	Asphalt. Light grey odors, firr Medium to Dark brov slightly pla	v SILTY SAND to fine SAND, trace coarse Sand, fine angu n/dense. o dark brown SILTY SAND, trace angular fine Gravel, root wn/grey CLAYEY SILT, trace fine Sand, odor, staining, clur astic.	lar Gravel, dry, s, odor, moist. np, moist, firm,			
- 5	370 -	2	4-8	2.4	1781		Light grey	r fine SAND, trace Silt, odor, some dark staining, firm, dry t	o moist.	<pre>x x x x x x x x x x x x x x x x x x x</pre>		
- 10	365 - - -	3	8-12	1.6	1532		N	o staining below 9.0' bgs.		x with pelletized x bentonite and x x x x x x x x x x x x x x x		
	- 360 - -	4	12-16	NR	NA		Pom	arks: age - above ground surface: bgs -	below ground	x x x x x x x x x x x x x x x x x x x		
Proje	A ect: B(009000		DIS Ter	Design & for natu built ass mplate:	& Consultar ral and sets G:\Roo	ckware\L	ogPlot 2001\LogFiles\Templates\boring_wel	I geoprobe 20	07.ldfx Page: 1 of 2		

Client	Cold	Springs	Northern	Terminal
Client:	Colu	Springs	Normenn	renninai

Lysander, NY

Borehole Depth: 19.0' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction		
-	_	5	16-19	3.0	358.7		Light grey fine SAND, trace Silt, odor, some dark staining, firm, dry to moist. Till encountered at 19.0' bgs	× × × × × Borehole backfilled × with pelletized × bentonite and × x x		
- 20	<u>355 -</u> - -						Boring terminated at 19' bgs.			
- 25	- 350 - -									
- 30	- 345 - -									
35	- 340 -									
Project: B0090004 Template: G:\Rockware\LogPlot 2001\LogFiles\Templates\boring_well geoprobe 2007.ldfx Page: 2 of 2										

Dat Dril Dril Dril San Rig	e Star ling C ler's I ling N npling Type	rt/Finis Compar Name: Nethod Method Method Geop	h: 4/5/ ny: Par Mark E : Direct od: 4' > robe 78	16-4/25 ratt-Wo aves Push 22 22	i/16 olff	ner		Northing: 1141207.22 Easting: 908844.08 Casing Elevation: NA Borehole Depth: 23.9' bgs Surface Elevation: 379.79' AMSL Descriptions By: Ethan Ulm	Well/Borin Client: Col Location:	Well/Boring ID: B103 Client: Cold Springs Northen Terminal Location: Lysander, NY		
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Stratigraphic Description	Well/Boring Stratigraphic Description Construction			
-	- 375 -											
-	-	1	0-4	NA	0.0		Asphalt. Light brov wet, loose Light brov no odor, r	wn medium red/brown medium to fine SAND, trace Silt, no e to moderately firm. wn medium red/brown medium to fine SAND, little Silt, 15- noist to wet, firm, slightly plastic.	20% Clayey Silt,			
- 5	370 -	2	4-8	2.6	18.7 453.4		Light brov	wn SILTY SAND, moist, loose to moderately firm. //brown fine SAND, trace Silt, dry to moist, odors.				
- 10		3	8-12	2.1	583.8 1702		R	eddish hue to soil 9.5-10.1' bgs.		x Borehole backfilled x with pelletized x bentonite and x native material. x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x		
15	- 360 -	4	12-16	2.8	1693		Light brov	vn fine SAND, wet, running, sheen, odor.				
Proje	A A	.RC		DIS	Design 8 for natu built ass	Consultar ral and rets	Rem	ogPlot 2001\LogFiles\Templates\boring_we	below ground e Mean Sea L Il geoprobe 20	Image: 1 of 2		

Clie	ent:	Cold S	Springs	Northe	n Term	iinal	Well/Boring	ID: B103
Site	e Lo _ysar	cation nder, N	i: IY				Borehole De	epth: 23.9' bgs
						·		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
- 35	_ 55 _	5	16-20	4.0	1380		Light brown fine SAND, wet, running, sheen, odor.	× × × × × × × × × × × × × × × × × × ×
-	- - -	6	20-24	4.0	180.1	00000	Dark grey to black staining 20-21.5' bgs. Dark grey to black medium to fine SAND and fine angular to subangular GRAVEL, trace Silt, firm, dense, compact. [TILL]	x with pelletized x bentonite and x native material. x x x x x x x x x x x x x
- 33 - 25 - - - - 34 - - - - - - - - - - - - - - - - - - -	45						Refusal at 23.9'	
9	A	RC	AD	DIS	Design (for natu built as	& Consultant Iral and sets	Remarks: ags = above ground surface; bgs = below ground Applicable/Available; AMSL = Above Mean Sea Le	surface; NA = Not evel.

Dat Dril Dril Dril Sar Rig	te Star lling C ller's N lling M npling Type	rt/Finis Compar Name: Nethod I Method I Metho Coop	h: 4/5/ ny: Par Mark E : Direct od: 4'> robe 78	16-4/25 rratt-Wc Eaves t Push < 2" Ace 22	5/16 Diff etate Li	ner		Northing: 1141193.88 Easting: 908869.76 Casing Elevation: NA Borehole Depth: 23.0' bg Surface Elevation: 379.3 Descriptions By: Ethan U	is 8' AMSL Jlm	Well/Boring ID: B104 Client: Cold Springs Northen Terminal Location: Lysander, NY		
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Stratigraphic Des	cription			Well/Boring Construction
-	- 380 -											
-	-	1	0-4	NA	0.0 0.0 0.1 0.5		Asphalt. Dark brov Medium r Light grey	rn to grey SILTY SAND and subangul ed/brown SILTY SAND, compact, moi	lar fine GRAVEL, dry, ist to wet.	compact.		
- 5	- 375	2	4-8	4.0	63.5	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Light brow	vn to grey SILTY SAND, firm, moist.				
- 10	370 -	3	8-12	2.3	293.1 2117		C Light brov	dor at 8.0' bgs.				Borehole backfilled with pelletized bentonite and native material.
- 15	- 365 -	4	12-16	1.7	2110	-FF	Light to m	edium brown fine SAND, trace Silt, w	et, odor, loose, sheen	, running sand.	* * * * * * * * * * * * * * * * * * * *	₹.
Proje	A ect: B0			DIS	Design & for natu built ass mplate:	& Consultar ral and sets G:\Rot	Rem	arks: ags = above ground Applicable/Available	surface; bgs = b ; AMSL = Above	elow ground : Mean Sea Le geoprobe 200	surface; NA evel.	A = Not Page: 1 of 2

Client:	Cold	Springs	Northen	Terminal

Lysander, NY

Borehole Depth: 23.0' bgs

						·						
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction				
20	- - 360 -	5	16-20	4.0	2220 537.1		Light to medium brown fine SAND, trace Silt, wet, odor, loose, sheen, running sand.	X X X X X X X X X X X X X X				
-	-	6	20-24	3.0	186.7 294 7.1	0000	Dark grey to black medium to fine SAND and fine angular to subangular GRAVEL, trace Silt, firm, dense, compact. [TILL]	x native material.				
- 25	- 355 - - -						Refusal at 23.0' bgs.					
- 30	- 350 -											
35	- 345 - -											
Proje	Project: B0090004 Template: G:\Rockware\LogPlot 2001\LogFiles\Templates\boring_well geoprobe 2007.ldfx Page: 2 of 2 Pate File: B104 dat Date: 7/20/2016 Created/Edited by: NRG / IRO											

Dat Dril Dril Dril San Rig	e Stai lling C ller's I lling N npling Type	rt/Finis Compar Name: Method 9 Method 9 Ceop	h: 4/6/ [.] ny: Par Mark E : Direct od: 4' × robe 78:	16-4/25 ratt-Wc aves Push 2" Ace 22	/16 Iff etate Li	ner	Northing: 1 Easting: 90 Casing Ele Borehole D Surface Ele Descriptior	141180.91 8788.05 vation: NA epth: 23.0' bgs vation: 378.91' AMSL ns By: Ethan Ulm	Well/Boring ID: B105 Client: Cold Springs Northen Terminal Location: Lysander, NY		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Sti	ratigraphic Description	We Cor	II/Boring Istruction	
-	 380										
-		1	0-4	NA	0.0 38.4 0.2 3.0		Asphalt. Light grey-brown SILTY SA odor. Light to medium brown fine moist. Light to medium red/brown Light grey CLAYEY SILT, tr	ND, trace fine angular Gravel, dry, frozen SAND, trace Silt, trace subangular fine G SILTY SAND, firm, moist. ace fine Sand, firm, dense, moist.	a, dense, no		
- 5	-	2	4-8	2.9	0.1		Light to medium brown SIL	TY SAND, moist to wet, firm.			Borebole backfilled
- 10	370 -	3	8-12	2.7	11.5		Light-dark grey fine SAND,	staining, dry-moist, odor.			with pelletized bentonite and native material.
- 15	- 365 - -	4	12-16	0.0	NA		No recovery.			× × × × × × × × × × × × × × ×	
Proie	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level. Project: R0000004										

Client [.]	Cold	Springs	Northen	Terminal	
onent.	Oolu	Opinigs	Nonthon	ronnia	

Lysander, NY

Well/Boring ID: B105

Borehole Depth: 23.0' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction				
20	- 360 -	5	16-20	4.0	186.1 208.4		Light to dark grey fine SAND, wet, running sands, staining below 18.0' bgs.	× × × × × × × × × × × × × × × × × × ×				
-	-	6	20-23	2.6	18.4 0.6		Rust orange fine rounded GRAVEL, little fine to medium Sand, loose, wet. Rust orange fine rounded GRAVEL, little fine to medium Sand, wet, dense [TILL].	x native material.				
- 25	355 -											
- 30	- 350 -											
35	- 345 35											
Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level. Project: B0090004 Template: G:\Rockware\LogPlot 2001\LogFiles\Templates\boring_well geoprobe 2007.ldfx Page: 2 of 2 Project: B0090004 Template: G:\Rockware\LogPlot 2001\LogFiles\Templates\boring_well geoprobe 2007.ldfx Page: 2 of 2												

Date Dril Dril Dril San Rig	e Star ling C ler's N ling N npling Type	t/Finis compai Name: Nethod Metho Geop	h: 4/6/ ny: Par Mark E : Direct od: 4'⇒ robe 78	16-4/25 ratt-Wo Eaves t Push (2" Ace 22	/16 Iff etate Li	ner	Northing: 1141228.82 Easting: 908812.97 Casing Elevation: NA Borehole Depth: 24.0' bgs Surface Elevation: 384.45' AMSL Descriptions By: Ethan Ulm	Well/Borin Client: Col Location:	g ID: B106 Id Springs Northen Terminal Lysander, NY			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well/Boring Construction			
-	- - 385 -											
-	-	1	0-4	NA	0.0	4 H H H H H H H H H H H H H H H H H H	Grass, roots. Light to medium red/brown SILTY SAND, trace fine gravel, moist. Light grey CLAYEY SILT, trace fine Sand, firm, moist.	/				
- 5	380 -	2	4-8	2.9	0.6	H	Light grey SILTY SAND, trace Clayey Silt, firm, dry.					
- 10	375 -	3	8-12	2.7	0.7	1			X Borehole backfilled X bentonite and X bentonite and X native material. X X X X X X X X X X X X X			
15	- 370 -	4	12-16	0	0.8	╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌						
Proje	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available. Project: B0090004 Template: G:\Rockware\LogPlot 2001\LogFiles\Templates\boring_well geoprobe 2007.ldfx Page: 1 of 2											

	Client:	Cold	Springs	Northen	Termina
--	---------	------	---------	---------	---------

Lysander, NY

Borehole Depth: 24.0' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction		
	_				743.1	- + - + - H : H : H	Light grey SILTY SAND, firm, dry.	×××		
20	- 365 -	5	16-20	4.0	1601		White to light grey fine SAND, dry-moist, odor.	- × × × × × × × × × × × × × × × × × × ×		
-	-	6	20-24	2.6	44.9		Macrocore split in barrel upon encountering till interface.	X with pelletized X bentonite and X native material. X X X X X X X X X X X X X		
	360 -						Refusal at 24.0' bgs (possible Till).			
- 25	- - 355 -									
- 30										
-	-									
_	350 -									
- 35	-									
	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available.									

Dat Dril Dril Dril San Rig	e Star ling C ler's N ling N npling Type	t/Finis Compar Name: Nethod Method Geop	h: 4/8/ ny: Par Mark E : Direct od: 4'> robe 78	16-4/22 ratt-Wc aves Push 2" Ace 22	2/16 olff	ner	Northing: 1141227.38 Easting: 908949.15 Casing Elevation: NA Borehole Depth: 24.0' bgs Surface Elevation: 381.35' AMSL Descriptions By: Ethan Ulm	Well/Borin Client: Co Location:	Well/Boring ID: B107 Client: Cold Springs Northen Terminal Location: Lysander, NY			
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well/Boring Construction			
-	-											
-		1	0-4	NA	0.0		Grass, roots. Medium brown fine SAND, trace Silt, trace fine angular Gravel,	noist				
- 5	- 375 -	2	4-8	2.7	0.0		Light brown/tan fine SAND, trace Silt, firm, moist.	<i>л</i> эт.				
- 10	- - 370 -	3	8-12	3.3	18.5		Light grey/brown fine SAND, trace Silt, moist, odor.		Borehole backfilled			
- 15	-	4	12-16	2.7	2093 1147							
Proje	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available. Project: B0090004 Template: G:\Rockware\LogPlot 2001\LogFiles\Templates\boring_well geoprobe 2007.ldfx											

Lysander, NY

Borehole Depth: 24.0' bgs

Created/Edited by: NRG / JRO

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction				
- 20	365 -	5	16-20	4.0	2008	┙┙┙┙┙┙┙┙┙┙┙ ┙┝┝┝┝┝┝┝┝┝┝┝┝┝┝	Light grey/brown fine SAND, trace Silt, moist, odor.	X X X X X X X X X X X X X X				
-	_ 360 — _	6	20-24	4.0				<pre></pre>				
0.5	-						Refusal at 24.0' bgs (possible Till).					
- 25	- 355 - -											
- 30	-											
-	350 — — —											
— 35	-											
Proje	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available. Project: B0090004 Template: G:\Rockware\LogPlot 2001\LogFiles\Templates\boring_well geoprobe 2007.ldfx Page: 2 of 2											
Data	File:B	8107.da	ıt		-		Date: 7/20/2016 Created/Edited by: N	IRG / JRO				

Date Dril Dril Sar Rig	e Star ling C ler's N ling M npling Type:	t/Finis compar Name: Nethod Method : Geop	h: 4/8/ ny: Par Mark E : Direct od: 4'> robe 78	16-4/20 tratt-Wo Eaves t Push (2" Ace 22	/16 Iff etate Li	ner		Northing: 1141238.56 Easting: 909060.36 Casing Elevation: NA Borehole Depth: 24.0' Surface Elevation: 379 Descriptions By: Etha	bgs 9.74' AMSL n Ulm	Well/Boring ID: B108 Client: Cold Springs Northen Terminal Location: Lysander, NY		
DЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Stratigraphic D	Well/Boring Construction			
-	-	1	0-4	NA	0.0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Grass, ro Medium t Light grey	ots. rown fine SAND, trace Silt, trace //brown CLAYEY SILT, trace fine	fine angular Gravel, moist. Sand, firm, moist.	/		
- 5	375 -	2	4-8	3.5	0.0		Light grey	r fine SAND, 20% subangular fine lium brown/tan fine SAND, firm, d	Gravel, dry to moist. ry to moist.			
- 10	370 -	3	8-12	2.6	3.5 18.4 1019		Light mec	ium brown/tan fine SAND, firm, r	ooist, stained dark grey to l odor.	black.	× × × × × × × × × × × × × × × × × × ×	Borehole backfilled with pelletized bentonite and native material.
- 15	- 365 -	4	12-16	3.3	1525	$\begin{array}{c} \mathbf{H} = $	Light grey	/ SILTY SAND, wet, firm, odor.				₹.
Proje	Project: B0090004 Template: G:\Rockware\LogPlot 2001\LogFiles\Templates\boring_well geoprobe 2007.ldfx Page: 1 of 2											

Lysander, NY

Well/Boring ID: B108

Borehole Depth: 24.0' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction		
-	- - 360 -	5	16-20	4.0	1808 211.5	$\begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	Light grey SILTY SAND, wet, firm, odor (running sands).			
- 20 - -	-	6	20-24	4.0	75 72.9 40.3	- H.	Light brown/red medium to fine SAND, 10-15% fine angular Gravel, wet, odor. Light brown/red medium to fine SAND, wet, odor, stained black. Dark grey to black medium to fine SAND and fine angular to subangular GRAVEL, trace Silt, firm, dense, compact. [TILL]	X Borehole backfilled X bentonite and X native material. X X X X X X X X X X X X X X X		
- 25	355 -						Refusal at 24.0' bgs.			
- 30	350 -									
— 35	345 -									
Proje	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available. Project: B0090004 Template: G:\Rockware\LogPlot 2001\LogFiles\Templates\boring_well geoprobe 2007.ldfx Page: 2 of 2 Date: File:B108 det									

Dat Dril Dril Dril San Rig	te Star Iling C Iler's I Iling N npling Type	rt/Finis Compar Name: Method Method Geop	h: 4/8/ ny: Par Mark E : Direct od: 4' > robe 78	16-4/22 rratt-Wo Eaves t Push (2" Ace 22	/16 Iff etate Li	ner		Northing: 1141188.58 Easting: 908970.87 Casing Elevation: NA Borehole Depth: 27.1' b Surface Elevation: 378. Descriptions By: Ethan	ogs 37' AMSL Ulm	Well/Boring ID: B109 Client: Cold Springs Northen Terminal Location: Lysander, NY		
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Stratigraphic De		Well/Boring Construction		
-	- 380 - -											
-		1	0-8	NA	0.0		Asphalt. Medium t	vrown SILTY SAND, some fine angu vn fine SAND, trace Silt, firm, dry to	ılar Gravel, firm, dry to n moist.	/		
- 5	-				0.1 2.3 2.3		Light grey Light grey Light grey	/brown CLAYEY SILT, trace fine Sa fine SAND, trace Clayey Silt, moist fine SAND, trace Clayey Silt, moist	and, slightly plastic, firm. t to wet. t to wet, some dark grey	staining.		Borehole backfilled
- 10	370 -	2	8-12	3.0	1635	Η Η Horizon H H	Light to m	vn/ tan fine SAND, trace Silt, firm, moi	st, odor.			with pelletized bentonite and native material.
- 15	- 365	3	12-16	3.8	1235	ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅋㅋㅋㅋ	Light brov	vn/ tan fine SAND, trace Silt, firm, m	noist to wet, odor, sheen			
Proje	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available. Project: B0090004 Template: G:\Rockware\LogPlot 2001\LogFiles\Templates\boring_well geoprobe 2007.ldfx Page: 1 of 2											

Lysander, NY

Well/Boring ID: B109

Borehole Depth: 27.1' bgs

рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction		
20	- 360 -	4	16-20	4.0	240.2		Light brown/ tan fine SAND, trace Silt, firm, moist to wet, odor, sheen.	× × × × × × × × × × × × × × × × × × ×		
-	- - 355 -	5	20-24	2.8	57.5 119.2	$\begin{array}{c} \begin{array}{c} \\ \end{array} \end{array}$		× × × × × Borehole backfilled × bentonite and × native material. × ×		
- 25 -	-	6	24-27.1	3.1	37.3 37.3	00000	Coarse SAND and fine angular GRAVEL, wet, odor, black staining. Coarse SAND and fine angular GRAVEL, little fine Sand, wet, odor, black staining. Dark grey to black medium to fine SAND and fine angular to subangular GRAVEL, trace Silt, firm, dense, compact. [TILL]			
- 30							Kerusal at 27.1 bgs.			
- 35	345 -									
Proje	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available. Project: P0000004									

Dat Dril Dril Dril San Rig	e Stai ling C ler's I ling N npling Type	rt/Finis Compai Name: Method J Metho : Geop	h: 4/21 ny: Par Mark E : Direct od: 4'> robe 78	/16-4/2 ratt-Wc aves Push 2" Ace 22	5/16 Iff etate Liu	ner	Northing: 1141245.18 Easting: 909083.59 Casing Elevation: NA Borehole Depth: 27.0' bgs Surface Elevation: 379.01' AMSL Descriptions By: Ethan Ulm	Northing: 1141245.18 Well/Boring ID: B110 Easting: 909083.59 Client: Cold Springs Northen Terminal Borehole Depth: 27.0' bgs Location: Lysander, NY Surface Elevation: 379.01' AMSL Descriptions By: Ethan Ulm		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well/Boring Construction	
-	 380									
-	-				0.0		Grass and roots. Medium brown fine SAND, trace Silt, trace fine subangular Grav Light grey CLAYEY SILT, trace fine Sand, firm, moist.	el, moist.		
- 5	375 -	1	0-8	NA	0.1		Light grey fine SAND, trace Silt, trace subangular fine Gravel, fir	m, moist.		
- 10	- 370 - -	2	8-12	4.0	810.2		Light grey fine SAND, trace Silt, trace subangular fine Gravel, fir	m, moist, odor.	- Sorehole backfilled X with pelletized X bentonite and X native material. X X X X X X X X X X X X X X X	
- 15	- 365 - -	3	12-16	2.9	1787		Light grey fine SAND, trace Silt, trace subangular fine Gravel, fir (running sand).	m, wet, odor		
Prot	A			DIS	Design & for natu built ass	Consultar ral and sets	Remarks: ags = above ground surface; bgs Applicable/Available.	= below ground	surface; NA = Not	

Cliont.	Cold	Springs	Northen	Terminal	í
Cilent.	Colu	opiniya	NUTLIET	rennina	1

Lysander, NY

Borehole Depth: 27.0' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction			
	- 360 -	4	16-20	4.0	871.4		Light grey fine SAND, trace Silt, trace subangular fine Gravel, firm, wet, odor (running sand). Macrocore split in barrel.				
- 20		5	20-24	2.0	74.2		Light grey fine SAND, trace Silt, trace subangular fine Gravel, firm, wet, odor, dark staining (running sand).	x x x x x x x x x with pelletized x bentonite and x native material. x x x x			
- 25	-	6	24-27	2.4	181.7		Macrocore split in barrel. Dark grey to black medium to fine SAND and fine angular to subangular GRAVEL, trace Silt, firm, dense, compact. [TILL]				
- 30	- 350 - -						Refusal at 27.0' bgs.				
35	- 345 -										
9	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available.										

Date Dril Dril San Rig	e Star ling C ler's N ling M npling Type:	t/Finis compar Name: Nethod Method Geop	h: 4/21 ny: Par Mark E : Direct od: 4' > robe 78	I/16 Tratt-Wo Eaves t Push k 2" Ace 22	olff	ner		Northing: 1141144.29 Easting: 909019.63 Casing Elevation: NAWell/Boring Client: ColdBorehole Depth: 16.0' bgs Surface Elevation: 375.44' AMSLLocation: Ly Location: LyDescriptions By: Ethan UlmLocation: Ly Ly			J ID: B112 I Springs Northen Terminal ysander, NY	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Stratigraphic Desci	ription			Well/Boring Construction
- -												
	375	1	0-8	NA	0.6 0.5 53.1 163.3		Medium t Medium t Clayey S Light to n odor.	prown fine SAND, trace Silt, trace organ prown fine SAND, trace Silt, some light t It, firm, moist to dry.	ics (roots). o medium brown an	d light grey c, firm, moist,		z Borehole backfilled
- 10	- 365 - -	2	8-12	3.7	604.1 826.4						× × × × × × × × × × × × × × × × × × ×	with pelletized bentonite and native material.
- 15	- - 360 -	3	12-16	3.0	47.1		Tan/brow B	n fine SAND, very wet, stiff (running sar oring terminated at 16' bgs.	nd).			
Proje	Ct: B0	0090004		DIS Ter	Design & for natu built ass	Consultar ral and sets G:\Roo	Rem	a rks: ags = above ground s Applicable/Available.	urface; bgs = b tes\boring_well	geoprobe 20	07.ldfx	= Not Page: 1 of 1

Dat Dri Dri Dri Sar Rig	te Star Iling C Iler's I Iling N npling I Type	rt/Finis Compai Name: Method Metho : Geop	h: 4/21 ny: Par Mark E : Direct od: 4' > robe 78	I/16 rratt-Wo Eaves t Push k 2" Ace 22	lff	ner		Northing: 1141085.25 Easting: 909026.70 Casing Elevation: NA Borehole Depth: 19.5 Surface Elevation: 37 Descriptions By: Eth	5' bgs 73.81' AMSL an Ulm	Well/Borin Client: Col Location: [g ID: B113 d Springs No .ysander, N ¹	orthen Terminal Y
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Stratigraphic	Description			Well/Boring Construction
-	- 375 -											
- - - - - -	- - 370 - -	1	0-8	NA	1.1 1.1 957.8		Light grey	v SILTY SAND, some fine angula vn/tan fine SAND, trace Silt, trac	ar Gravel, trace organics (ro e fine angular Gravel, , firm, dry to moist, odor.	oots), firm.		z
- 	_ 365 _ _ _	2	8-12	3.1	715.8 535.1 876.4		Light grey	fine to medium SAND, wet, odd	r, grey staining (running sa	nd).		Borehole backfilled with pelletized bentonite and native material.
- - 15	- 360 - -	3	12-16	3.0	511.3							
Proje	ect: BC	0090004		DIS Ter	Design & for natu built ass	& Consultar ral and sets G:\Roo	ckware\L	ogPlot 2001\LogFiles\Te	emplates\boring_well	geoprobe 200	07.ldfx	= Not Page: 1 of 2

Client:	Cold	Sprinas	Northen	Terminal
onone.	0010	opinigo	1.0111011	1 Orininai

Lysander, NY

Borehole Depth: 19.5' bgs

рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction						
-	- 355 -	4	16-19.5	3.5	37.1		Light grey fine to medium SAND, wet, odor, grey staining (running sand).	x x x x x x x x x x x berehole backfilled x x bentonite and x x x x x x x x x x x x x						
- 20	-						Refusal at 19.5' bgs (possible Till).							
- 25 -	350 -													
- 30	- 345 - -													
35	- 340 - -													
Proje	-35 Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available. Project: B0090004 Template: G:\Rockware\LogPlot 2001\LogFiles\Templates\boring_well geoprobe 2007.ldfx Page: 2 of 2													

Dat Dril Dril Dril San Rig	e Star ling C ler's I ling N npling Type	rt/Finis Compa Name: Method Method Metho : Geop	h: 4/5/ ny: Par Mark E : Direct od: 4' > robe 78	16-4/20 ratt-Wc aves Push < 2" Ace 22	/16 olff	ner		Northing: 1141257.50 Easting: 909120.38 Casing Elevation: NAWell/Boring Client: ColdBorehole Depth: 19.6' bgs Surface Elevation: 374.86' AMSLLocation: LDescriptions By: Ethan UlmImage: Client in the second se			J ID: B114 d Springs Northen Terminal .ysander, NY		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Stratigraphic	Description			Well/Boring Construction	
-	- 375 -												
-	-	1	0-4	NA	0.0 0.0 0.0		ASPHAL ⁻ Medium t	Γ. prown/grey SILTY SAND, firm, d	ry to moist. Dist to wet.	/			
- 5		2	4-8	2.9	2.3 337.5		Light brow	vn/tan fine SAND, trace Silt, slig vn/tan fine SAND, trace Silt, slig	ht odor. ht odor, dark staining.				
- 10		3	8-12	2.5	822.4		Light brov	vn/tan fine SAND, trace Silt, slig	ht odor, moist to wet, dark s	taining.		Borehole backfilled with pelletized bentonite and native material.	
- 15	- 360 -	4	12-16	0.0	NA		No recove	ery, product on tooling.					
Proje	A ect: BC			DIS	Design & for natu built ass	& Consultar ral and sets G:\Roo	Rem	ogPlot 2001\LogFiles\Te	emplates\boring_well	elow ground geoprobe 20	07.ldfx	A = Not Page: 1 of 2	

	Client:	Cold	Springs	Northen	Termina
--	---------	------	---------	---------	---------

Lysander, NY

Borehole Depth: 19.6' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction				
-	-	5	16-19.6	3.6	108.7 363.5		Light brown/tan fine SAND, trace Silt, slight odor, moist to wet, dark staining.	X X X X X X X X X Borehole backfilled X With pelletized X bentonite and X N X X X X X X X X X X X X X				
- 20							Refusal at 19.6' bgs.					
- 25 -	350 -											
- 30 -												
- 35	- 340 -											
Proje	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available. Project: B0090004 Template: G:\Rockware\LogPlot 2001\LogFiles\Templates\boring_well geoprobe 2007.ldfx Page: 2 of 2											
Dat Dril Dril Dril San Rig	e Star ling C ler's N ling N npling Type	rt/Finis Compar Name: Nethod I Method I Method : Geop	h: 4/5/ ny: Par Mark E : Direct od: 4'> robe 78	16-4/20 rratt-Wo Eaves t Push k 2" Ace 22	/16 Iff etate Li	ner		Northing: 1141263.95 Easting: 909168.02 Casing Elevation: NA Borehole Depth: 15.0' bg Surface Elevation: 373.9 Descriptions By: Ethan U	js 8' AMSL Jlm	Well/Borin Client: Col Location:	g ID: B115B d Springs North ₋ ysander, NY	en Terminal
---	---	---	--	--	------------------------	---	----------------------------------	--	--	--	---	-----------------------------------
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Stratigraphic Des	cription		v C	/ell/Boring onstruction
- -	- 375 -											
-	-	1	0-4	NA	0.0 0.2 35.0	- H H H H H H H H H H H H H H H H H H H	ASPHAL Light to m Medium b	F. redium SILTY SAND and fine angular rown/ grey SILTY SAND, firm to loos	GRAVEL, dry to mois	.t. staining.		
- 5		2	4-8	3.0	5.1 0.7 0.0		Medium tr Light brov	o dark grey SILTY SAND, firm, moist. vn/tan fine SAND, trace Silt, dense, m vn/tan fine SAND, trace Silt, dense, m	noist to dry. noist to dry, grey staini	ng.		Borehole backfilled
- 10	 365 - -	3	8-12	2.5	8.1		Light brov	vn/tan fine SAND, trace Silt, dense, w	ret, grey staining.			bentonite and native material.
-	- 360 -	4	12-16	3.0	0.7	×	Light brov	vn/tan fine SAND, trace Silt, dense, w	vet, grey staining (runn	ing sand). Ilar GRAVEL,		
-15-			<u>`</u> ∧г		0.0	Consultan	Rem	firm, dense, compact. [TILL] efusal at 15.0' bgs. a rks: ags = above ground Applicable/Available	surface; bgs = b	elow ground	× [^] surface; NA = N	lot
Proje	ct: B0	009000		Ter	nplate:	G:\Ro	ckware\L	ogPlot 2001\LogFiles\Templ	ates\boring_well	geoprobe 20	07.ldfx	Page: 1 of 1

Dat Dril Dril Dril San Rig	e Star ling C ler's I ling N npling Type	rt/Finis Compar Name: Method 9 Method 9 Ceop	h: 4/5/ [·] ny: Par Mark E : Direct od: 4' × robe 78:	16-4/20 ratt-Wo aves Push 2" Ace	/16 Iff tate Li	ner	Northing: 1141267.35 Easting: 909198.23 Casing Elevation: NA Borehole Depth: 11.6' bgs Surface Elevation: 373.89' AMSL Descriptions By: Ethan Ulm	Well/Borin Client: Col Location:	ring ID: B116 Cold Springs Northen Terminal n: Lysander, NY				
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well/Boring Construction				
-	- 375 -												
-	-	1	0-4	NA	0.0	<u> </u>	Light brown SILTY SAND and fine angular GRAVEL, trace Silt, dr Light to medium SILTY SAND, trace Clayey Silt, slightly plastic, so Light to medium SILTY SAND, little Clayey Silt, slightly plastic, we	/ to moist. me staining. t, some staining.	* * * * * * * * * * * * * * * * * * *				
- 5	370 -	2	4-8	2.6	7.1	11111111111111111111111111111111111111			X X X X X X X X X X X X X X				
- 10	365 -	3	8-11.6	3.6	0.7		Grey fine SAND some fine angular Gravel, firm, moist to wet.						
- - 15	- 360 - -												
Proi	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available. ARCADIS Design & Consultancy for natural and built assets												

Dat Dril Dril San Rig	e Star ling C ler's N ling N npling Type	rt/Finis Compa Name: Nethod J Metho : Geop	sh: 4/5/1 ny: Part Mark E I: Direct od: 4' x robe 782	I6-4/20 ratt-Wo aves Push 2" Ace 22	/16 Iff	ner		Northing: 1141263.78 Easting: 909219.02 Casing Elevation: NA Borehole Depth: 15.2' bgs Surface Elevation: 374.58' AMS Descriptions By: Ethan Ulm	SL	Well/Borin Client: Col Location: (ng ID: B117 old Springs Northen Terminal Lysander, NY
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Stratigraphic Description	n		Well/Boring Construction
-	- 375 -										
-	-	1	0-4	NA	0.0 0.0 0.0	H H H H H H H 20000 H H H H H 100000	Medium b subround Light brov Light brov plastic, dr	rown fine to medium GRAVEL, some Sandy S ed Cobbles, dry to moist. wn/red SILTY SAND, trace fine to medium Gra wn/red SILTY SAND, trace Clay, trace fine to n y to moist.	Silt, trace suba	angular to ist. I, slightly	
- 5	370 -	2	4-8	2.7	0.0		Light to m moist.	edium brown SILTY SAND, trace fine to medi	um Sand inte	rbedded, firm,	- × × × × × × × × × × × × × × × × × × ×
- 10	- 365 - -	3	8-12	3.3	0.0		Light grey firm, wet,	to medium brown SILTY SAND, trace fine to (running sand).	medium Sand	l interbedded,	A with pelletized bentonite and native material.
-	- 360 -	4	12-15.2	3.2	0.1 0.1 0.1		Coarse S Dark grey	AND and fine angular GRAVEL, trace Silt, we to black medium to fine SAND and fine angul	t, dark stainin lar to subangu	g.	
- 15	-					0	King and the angle in the a				
Proje	A cct: B0	RC		DIS Ten	Design (for natu built as:	& Consultan Iral and sets G:\Roo	Rem	arks: ags = above ground surface Applicable/Available.	pe; bgs = b	elow ground	d surface; NA = Not

Dat Dril Dril Dril San Rig	e Star ling C ler's I ling N npling Type	rt/Finis Compa Name: Method Method Metho : Geop	h: 4/5/ ny: Par Mark E : Direct od: 4' > robe 78	16-4/20 ratt-Wo aves Push 22 Ace	/16 olff	ner		Northing: 1141231.97 Easting: 909122.81 Casing Elevation: NA Borehole Depth: 20.0' bgs Surface Elevation: 374.18' AM Descriptions By: Ethan Ulm	SL	Well/Borin Client: Col Location:	g ID: B118 d Springs N _ysander, N	} orthen Terminal Y
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Stratigraphic Descriptic	on			Well/Boring Construction
-	- 375 -											
-	-	1	0-4	NA	0.0 181.7 27.1	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ASPHAL ⁻ Light brov odor Brown to	r. vn SILTY SAND, little fine to medium Gravel, grey SILTY SAND, trace Clayey Silt, firm, mo	dry to moist, g	rey staining,		
- 5	370 -	2	4-8	3.4	1560		Brown to	grey SILTY SAND, trace Clayey Silt, firm, mo	oist, odor.			Borebole backfilled
- 10	- 365	3	8-12	1.5	1688	\overline{A}	Brown to	grey SILTY SAND, trace Clayey Silt, firm, we	ət, odor.			with pelletized bentonite and native material.
- 15		4	12-16	4.0	102.1		Light brov	vn/tan fine SAND, firm, wet, odor (running sa				
Proje	A ect: BC	009000		DIS	Design & for natu built ass	& Consultar ral and sets G:\Roo	Rem	ogPlot 2001\LogFiles\Templates\t	ce; bgs = b	elow ground geoprobe 20 (Edited by: N	07.ldfx	= Not Page: 1 of 2

Client:	Cold	Springs	Northen	Terminal
onone.	0010	opinigo	10101011	10111111

Lysander, NY

Borehole Depth: 20.0' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction				
	- 355 -	5	16-20	4.0	37.3		Light brown/tan fine SAND, firm, wet, odor (running sand).	× × × × × × × × × × × × × × × × × × ×				
-	-						Refusal at 20.0' bgs (possible Till).					
- 25	350 - -											
30	- 345 -											
-												
- 35												
Proje	Project: B0090004 Template: G:\Rockware\LogPlot 2001\LogFiles\Templates\boring_well geoprobe 2007.ldfx Page: 2 of 2											

Lysander, NY

Borehole Depth: 23.3' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
- 20	- - 360 -	5	16-20	2.0	NA	NA	1805		Light brown/grey fine SAND and SILT, red staining, odors.	#1 Silica Sand Pack (3-19' bgs) - Bentonite Seal (16-18' bgs) - 2" Sch 40 PVC - 0.010" Slot - Screen (4-19' - bgs) - 2" Sch 40 PVC - Screen (4-19' - bgs) - 2" Sch 40 PVC - Screen (4-19' - bgs) - 2" Sch 40 PVC - Siser (0.5'-20'
-		6	20- 23.3	3.3	NA	NA	20.9 2.1 0.4		Dark grey to black fine-medium SAND and coarse SAND to fine subangular Gravel, compact, stiff, wet. Red/brown CLAYEY SILT, trace fine Sand, stiff, dry.	
- 25									Boring terminated at 23.3' bgs.	
	- 350 -									
-	_									
- 25	- 345 -									

Dat Dri Dri Dri Rig Sar	te Sta Iling (Iler's Iling N ger Si Type npling	rt/Fii Comj Nam Meth ze: : CN g Me	nish: pany e: N od: 4.25" 4E-55 thod	4/4/ : Par /like E Hollov ID 5 : 2" ;	16 - 4/ ratt W vans w Sten x 2' Sp	'14/16 olff n Aug olit Spo	er oon			Northing: 1141209.64 Easting: 908965.29 Casing Elevation: D 3 Addit. Casing Elevatio Borehole Depth: 24.9 Surface Elevation: 37 Descriptions By: Etha	377.96' AMSL on:S 378.06' AMSL 9' bgs 78.52' AMSL an Ulm	Well/Borin Client: Col Location:	g ID: PZ102[d Springs Nortl Lysander, NY	D / PZ102S hern Terminal
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column		Stratigrap	hic Description		C	Vell/Boring Construction
-	- 380 - -													Concrete Pad (0- 0.5' bgs) Steel flushmount cover Locking J-Plug
-	- - 375 -	NA	NA	NA	NA	NA	0.0		ASPH Fine Light depth	HALT. to medium angular GRAVEL, ligit brown CLAYEY SILT with interb n, increase density.	ht grey Silty Sand, wet-moi bedded Silty Sand, increase	st (road base)		Sand Drain (0.5- 1' bgs) Bentonite Seal (1-3' bgs) 2" Sch 40 PVC Riser (0.5'-4' bgs)
-	-	2	5-6 6-8	0.3	4 3 3 3 3	7	17 210.2		Light odor.	brown CLAYEY SILT with interb	bedded Silty Sand, dry, incr	ease density,		
10	- 370 – - -	3	8-10	1.5	4 2 2 2 3	4	716.9		Light	to medium brown SILTY SAND,	trace Silt lenses, loose to f	firm, moist.		- 2" Sch 40 PVC Riser (0.5'-21' bgs) - Bentonite/concrete
-	-	4	10-12	1.6	3 3 2 4 2 4	5	1847	$\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array}$	wet a	t 12.5' bgs (running sand).	1005 On 101500, 10056 (0)	, moist (U		2" Sch 40 PVC 0.010" Slot Screen (4-19' bas)
- 15	365 - - -	5	12-14	1.5	4 4 4 5 4 5	8	2095		Colo	r change to brown below 14' bgs				
Proje					DIS	Des for bui	sign & Con natural an It assets	sultancy	Rem	arks: ags = above gro Applicable/Availa PZ102S was dril	und surface; bgs = b able; AMSL = Above lled and installed bas es\Templates\2007 T	elow ground Mean Sea Lu sed on inform	surface; NA = l evel; HSA = Hc ation collected	Not Not at PZ102D

Lysander, NY

Borehole Depth: 24.9' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	-	7	16-18	1.6	6 7 7 8	14	778.1	$\begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ $	Light to medium brown SILTY SAND, trace Silt lenses, loose to firm, moist to wet at 12.5' bgs (running sand).	#1 Silica Sand Pack (3-19' bgs) Bentonite/concrete Grout (1-17' bgs)
- 20	360 - -	8	18-20	1.5	2 2 4 6	6	112.5	H H H H H H H H H		2" Sch 40 PVC
-	-	9	20-22	1.3	2 1 21 11	22	136.5 136.5		Dark grey to black medium to fine SAND and fine angular to subangular GRAVEL, trace Silt.	Riser (0.5'-21' bgs)
-	 355	10	22-24	1.9	7 7 9 17	16	345.2 345.2	0000		- '9" Sch 40 PVC - 0.010" Slot - × × Screen (21-23' - × × - × × - × × - × ×
- 25	_	11	24- 24.9	0.9	50/0.9	NA	20.7	0	Dark grey to black medium to fine SAND and fine angular to subangular GRAVEL, trace Silt, firm, dense, compact. [TILL]	
- 25 - - - - 30 -	- - 350 - - -								Boring refusal at 24.9' bgs.	
-	345 -									

Lysander, NY

Borehole Depth: 26.0' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	-	7	16-18	2.0	5 5 7 7	12	571.8 7.1		Medium brown/grey fine SAND, moist to wet, odors. no staining, odors	#1 Silica Sand Pack (4-20' bgs)
- 20	360 =	8	18-20	1.4	wt wt 5 6	NA	42.7			Grout (1-20' Grout (1-20' Grout (1-20' Grout (1-20' Grout (1-20' Grout (1-20' Grout (1-20' Screen (5-20' bgs)
-	-	9	20-22	1.9	5 5 9 7	14	51.4		medium to dark staining, wet, odors	- 2" Sch 40 PVC Riser (0.5'-24' bgs) - Bentonite Seal (20-22' bgs)
-	355 -	10	22-24	1.5	8 8 19 14	27	29.2 5.7	000	Dark grey to black medium to fine SAND and fine angular to subangular GRAVEL, trace Silt, firm, dense, compact. [TILL]	- #1 Silica Sand - Pack (22-26' - bgs)
- 25	-	11	24-26	1.8	25 31 34 40	64	NA	0000		2" Sch 40 PVC
30	- 350 - -								Boring terminated at 26' bgs.	
-	- 345 -									

Dat Dril Dril Aug Rig Sar	te Star Iling C Iler's I Iling M ger Siz Type mpling	rt/Fii Comj Nam Meth ze: : CN g Me	hish: pany e: N od: 4.25" 4E-55 thod	4/7/ : Par /like E Hollov ID 5 : JR	16-4/1 ratt W vans w Sten O	1/16 ′olff n Aug	er			Northing: 1141108 Easting: 909024.68 Casing Elevation: Addit. Casing Elev Borehole Depth: 2 Surface Elevation Descriptions By:	8.91 5 D 373.98' AMSL vation:S 373.88' AMSL 26.7' bgs : 374.24' AMSL Ethan Ulm	Well/Borin Client: Col Location:	g ID: PZ d Spring: ∟ysander	2104D s Northe	/ PZ104S ern Terminal
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column		Stratiç	graphic Description			W Cc	ell/Boring Instruction
-	- 375 -														Concrete Pad (0- 0.5' bgs) Steel flushmount cover Locking J-Plug
5	_ _ 370 —	NA	0-8	NA	NA	NA	0.2 0.3 73.9		Gras suba Light Light slight fine t	s at surface, medium to ligh ongular to angular Gravel, v to medium brown CLAYEY to medium brown CLAYEY ly plastic, odor grey, CLAYEY SILT, trace o medium Gravel, moist, od	tt brown/grey SANDY SILT, little wet, firm SILT, very dense, dry to moist SILT, grey staining, very dense fine Sand, trace Organics, trac- fors.	e fine , slightly plastic. e, dry to moist, e subrounded			Sand Drain (0.5- 1' bgs) Bentonite Seal (1-4' bgs) 2" Sch 40 PVC Riser (0.5'-5' bgs)
-	-				2		NA		Light	grey SILTY SAND, trace fir	ne subangular Gravel, black sta	ining, odor.			2° Sch 40 PVC
	365 —	. 1	8-10	1.1	2 2 3 3	5	381.3	<u> </u>	wet,	dors.		, 10000, 110101 10			Riser (0.5'-23' bgs)
-	-	2	10-12	1.0	1 2 4 4	6	742.1 97.3	⊢ H	Light	grey fine SAND, trace Silt,	moist-wet, staining, odor.				Grout (1-19' bgs) #1 Silica Sand Pack (4-20' bgs) 2" Sch 40 PVC
-		. 3	12-14	1.3	6 4 4 5	8	238		Light	brown fine to medium SAN	D, wet, sheen at 12.9', loose, o	dors.			bgs)
- 15		. 4	14-16	1.3	2 3 3 5	6	0.3		Light	siown nine to medium SAN	μ, wei, iuuse.				
Proje		R	С (ГВ00			Des for bui	ign & Com natural an it assets	sultancy d	Rem	arks: ags = above Applicable/A PZ104S was	ground surface; bgs = vailable; AMSL = Above s drilled and installed ba gFiles\Templates\2007	below ground e Mean Sea Li sed on inform Templates\boo	surface; evel. ation coll ring_HSA	NA = Ne	ot t PZ104D dfx <i>Page: 1 of 2</i>

Lysander, NY

Borehole Depth: 26.7' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	-	. 5	16-18	1.6	4 5 5 7	10	0.0		Light brown fine to medium SAND, wet, loose.	#1 Silica Sand Pack (4-20' bgs) Bentonite/concrete Grout (1-19'
- 20	- 355 -	6	18-20	1.4	4 5 5 5	10	0.1			2" Sch 40 PVC 0.010" Slot Screen (5-20' bgs)
-	-	. 7	20-22	1.3	2 3 3 4	6	0.0		Medium brown fine to medium SAND, wet, moderately firm/dense.	- Bentonite Seal (19-21' bgs)
-	-	. 8	22-24	1.6	4 8 8 6	16	0.0	20	Medium brown fine to medium SAND, wet, moderately firm/dense. Fine to medium SAND and fine subrounded to subangular GRAVEL, firm, wet.	
— 25	350 -	9	24-26	1.2	10 8 20 30	28	5 NA		Medium brown fine to medium SAND, wet, moderately firm/dense (running sands). Dark black fine angular GRAVEL, odor.	Solution (23-25) Solu
	-	10	26- 26.7	0.7	46	NA	2.2 2.2	D.::	Fine to medium SAND and fine subrounded to subangular GRAVEL, firm, wet.	
- 30	- 345 -								Boring terminated at 26.7' bgs.	
-	- - 340 -									

Data File:boring HSA 2007 .dat

Template:G:\Rockware\LogPlot 2001\LogFiles\Templates\2007 Templates\boring_HSA 2007.ldfx Page: 1 of 2 Date:7/20/2016 NRG / JRO

Client: Cold Springs Northern Terminal

Site Location:

Lysander, NY

Well/Boring ID: PZ105D / PZ105S

Borehole Depth: 27.1' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
_	-	5	16-18	1.6	8 7 7 6	14	5.1		Light grey/brown fine to medium SAND, trace Clayey Silt, moist- wet, firm, odor.	#1 Silica Sand Pack (4-20' bgs)
- 20	355 -	6	18-20	1.4	5 7 9 8	16	1.3			Grout (1-20) Grout (1-20) Gr
_	-	7	20-22	1.2	7 6 8 8	14	2.7			- 2" Sch 40 PVC Riser (0.5'-24' bgs) - Bentonite Seal (20-22' bgs)
-	- 350 -	8	22-24	1.8	9 9 8 9	17	1.8			≠ #1 Silica Sand Pack (22-26' bgs)
- 25	-	9	24-26	1.5	6 7 10 9	17	3.2			2" Sch 40 PVC - 0.010" Slot - Screen (24-26" - 9gs)
	_	. 10	26- 27.1	1.1	6 21	NA	3.2 3.2	•••	Green/red/tan/grey medium to coarse SAND with subrounded clasts of coarse Sand/ fine Gravel.	× × × × × × × × × ×
- 30	- 345 - -								Boring terminated at 27.1' bgs.	
-	- 340 -									

Dat Dril Dril Dril Aug Rig San	e Star lling C ller's I lling M ger Si Type npling	rt/Fir Comp Nam Metho ze: 4 ze: 4 ze: 6 Metho g Metho g Metho	nish: bany e: N od: 4.25" 1E-55 thod	4/13 : Par /like E Hollov ID 5 : 2")	/16 ratt Wo vans v Sten < 2' Sp	olff n Auge olit Spo	er Don			Northing: 1141279.48 Easting: 909152.97 Casing Elevation: 374.02' AM Addit. Casing Elevation:NA Borehole Depth: 15.5' bgs Surface Elevation: 374.51' AM Descriptions By: Ethan Ulm	ISL MSL	Well/Boring Client: Col Location: [g ID: PZ d Springs ₋ysander	1 06S Northern Te	erminal
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column		Stratigraphic Desc	cription			Well/Bc Constru	oring ction
-															Steel flushmount cover Locking J-Plug
-	=	NA	0-5	NA	NA	NA	0.0	H H H H H D 2000 H H H H H 2000	Asph Light Light increa	alt. grey fine angular GRAVEL, some medium brown SILTY SAND, Organics (roots), thin ase Clayey Silt with depth, dry to moist, der	to coarse Sand, Imainations of li nse.	, moist to wet,			Concrete Pad (0- 0.5' bgs) Sand Drain (0.5- 1' bgs) Bentonito Soci
5	 370				6			-							(1-4.5' bgs)
_	-	1	5-6	1.0	6	NA	0.3								
	_	2	6-8	1.5	4 6 6	12	7.5 7.5		Light	brown fine SAND, trace Silt, moist-wet. brown fine SAND, trace Silty Sand, moist-v	wet, grey to blac	k staining, odor.			
-	- - 365 -	3	8-10	1.1	3 4 5 4	9	45								— Sand pack (4.5- 15.5' bgs)
- 10	-	4	10-12	1.5	2 6 9 8	15	9.4 9.4		Medi Light moist	um to dark grey SILTY SAND, loose to firm brown/tan fine SAND with coarse Sand, fin -dry.	, wet, trace NAF e angular Grave	PL/staining.			— Screen (5.5-15.5' bgs)
	-	5	12-14	2.0	8 8 10 10	18	0.4	-	Medi Light Grav	um to dark grey SILTY SAND, loose to firm brown/tan/ olive green fine SAND and SILT al, moist.	, wet, trace NAF	PL/staining.			
- 15	- 360	6	14- 15.5	1.5	6 8 20 36/0.0	28	0.0		Media	um to fine SAND, some fine subangular Gra	avel, dense, con	npact, dry-			
Proje			С г:В00			Des forr buit	i <mark>gn & Con</mark> natural an t assets emplat	sultancy d	Rem	arks: ags = above ground surf Applicable/Available; AM are\LogPlot 2001\LoaFiles\Temp	ace; bgs = t ISL = Above	pelow ground Mean Sea Lo Femplates\bor	L surface; l evel.	NA = Not	age: 1 of 1

APPENDIX 3

Boring Logs from 2018

Client: Cold Springs Northern Terminal Site Location:							Well/Boring	ID: BMW14R
	Site L	ocatio	ı:				Borehole De	epth: 20 feet bgs
	Lysa	ander, I	١Y					
		<u> </u>	1	1		i		
		umber	υ		e (ppm	u		
	NO	Sun Ni	nt/Typ	~	dspac	Colur	Stratigraphic Description	Well/Boring
EPTH	EVAT	mple F	ample/I	ecover	D Hea	sologic		Construction
B	Ē	Sa	S	Ř	Ā	Ğ	SAND, fine to medium; trace Clay and Silt; dark gray/black, odor, slight sheen.	
-	- 360 -	NA	NA	NA	NA			2" Sch 40 PVC 0.010" Slot Screen (5-20' bgs)
-	-	NA	NA	NA	NA			#0 Sand Pack (3- 20' bgs)
- 20-							End of boring at 20' bgs.	
-	-							
-	-							
-	355 -	-						
_	-	_						
- 25	-							
	-	-						
	-	-						
-	350 -	-						
-	_							
-								
- 30	-							
-	-							
-	-							
ŀ	345 -							
	-	-						
- 35	-	-						
	-							
							Remarks: Soil descriptions from auger cuttings.	
C	Δ	P	<u>`</u> ΔΓ	21	Design for natu	& Consultar	ags = above ground surface; bgs = below ground a NA = Not Applicable/Available; HSA = Hollow-ster	surface; n augers.
	, , –		/7L		built as	sets		
Brai	oct:	BUOOL	004.00	าย			Tompleto: boring well geographic left	Deres 0 - 50
Data	a File:	BMW	14R.dat	0			Date: 8/24/2018	Created/Edited by: NPS

Dat Drill Dril Dril San Rig	Date Star/Finish: 5/16/2016 Drilling Company: Parratt-Wolff, Inc. Driller's Name: Matt Carnie Drilling Method: Direct Push / HSA Sampling Method: 2' x 2" Split Spoon Rig Type: Truck-Mounted Geop						obe Rig	Northing: Easting: Casing Elevation Borehole Depth Surface Elevation Descriptions By	1141290.74 908861.62 n: 395.45 24 feet bgs n: 392.62 : Jeff Spradlin	Well/Boring Client: Location:	g ID: MV Colo Terr Lys	V-201 d Springs Northern minal ander, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Stratigra	phic Description			Well/Boring Construction
-	395 - -											2.5' PVC Stickup
	_						ORGANIC Fine SAN	CS (leaves, roots, grass) a	and fine SAND; dark brown, dry, d; trace Silt; loose, dry, light brov	no odor. vn, no odor.		
	_	1	0-2	1.5	0.0			2				
	390 -	2	2-4	1.7	0.0							
-5	-	3	4-6	1.5	0.0	1111111111111111111111111111111111111	Silty fine S brown, no	SAND, subangular to sub o odor.	ound; some Clay; medium plasti	city, moist, light		Grout (0-11' bgs) 2" Sch. 40 PVC
-	- 385 -	4	6-8	1.6	0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	Moisture i	increase.				Riser (-2.5' ags- 14' bgs)
- 10	-	5	8-10	1.7	0.0	1 						
-	-	6	10-12	1.4	0.0		SAND, fin odor.	ne to medium; little Silt; loo	ose, drier than previous samples,	light brown, no		Bentonite Seal (11-12' bgs)
-	380 -	7	12-14	1.3	0.0							#0 Sand Pack (12-24' bgs)
- 15	_	8	14-16	1.6	0.0		Moist, we	Il sorted.				2" Sch 40 PVC 0.010" Slot Screen (14-24' bgs)
Proje	ect: File:	B0090	0004.000 01.dat	DIS	Design of for nature built as	& Consultar Iral and Sets	Rem Temp Date	harks: ags = abov NA = Not A NA = Not A	e ground surface; bgs = pplicable/Available; HSA eoprobe.ldfx	below ground : = Hollow-sten	surface; n augers.	Page: 1 of 2 Created/Edited by: NPS

Client:	Cold	Springs	Northern	Terminal
---------	------	---------	----------	----------

Lysander, NY

Borehole Depth: 24 feet bgs

	,	,						
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
_	- 375 -	9	16-18	1.8	0.0		SAND, fine to medium; little Silt; loose, drier than previous samples, light brown, no odor.	#0 Sand Pack
- 20	-	10	18-20	1.9	0.0		SAND and SILT; fine to medium, loose, saturated at 19' bgs, light brown, no odor.	(12-24' bgs) 2" Sch 40 PVC 0.010" Slot Screen (14-24' bgs)
-	_	11	20-22	1.6	0.0	001111	Fine to medium SAND and GRAVEL, subangular and subround; some Silt, dense, reddish-brown, no odor. [TILL MATERIAL]	
-	370 -	12	22-24	1.1	0.0	0000		
- 25	- - 365 -						End of boring at 24' bgs.	
- 30	- - 360 -							
- 35							-	
Proje	A ct:	B0090		DIS 08	Design for natu built as	& Consultar Iral and sets	Remarks: ags = above ground surface; bgs = below ground NA = Not Applicable/Available; HSA = Hollow-ster cy Template: boring_well geoprobe.ldfx	surface; n augers. <i>Page:</i> 2 of 2
Proje Data	ct: File:	B0090 MW-2	0004.000 01.dat	DIS	Design for natu built as	& Consultar Iral and sets	Template: boring_well geoprobe.ldfx Date: 8/22/2018	Page Created/Edited by:

Dat Dril Dri Dri Sar Rig	Date Start/Finish: 5/21/2018 Drilling Company: Parratt-Wolff, Inc. Driller's Name: Matt Carnie Drilling Method: Direct Push / HSA Sampling Method: 2' x 2" Split Spoon Rig Type: Truck-Mounted Geop					nc. ISA oon I Geopr	obe Rig	Northing: Easting: Casing Elevation Borehole Depth: Surface Elevation Descriptions By:	1141329.17 908898.17 : 395.59 16.5 feet bgs n: 393.22 Jeff Spradlin	Well/Boring Client: Location:	g ID: M Co Te Ly:	W-202 old Spring: rrminal sander, N	s Northern Y
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Stratigra	ohic Description			Well/ Cons	'Boring truction
-	- 395 -												—— 2.5' PVC Stickup
-	_	1	0-2	1.0	2.7		ORGANIC SAND; fin trace odo	CS (leaves, roots, grass) a le to medium, subangular t r.	nd Silty fine SAND; dark brown, o o subround; trace Silt; loose, dry	dry, no odor. /, light brown,			Grout (0-3' bgs)
-	- 390 -	2	2-4	1.6	0.0		Increases	Silt, no odor.					Riser (-2.5' ags- 6' bgs) Bentonite Seal (3-4' bgs)
-5	-	3	4-6	1.1	0.0		Silty SAN moist, no	D; fine to medium, subang odor.	ular to subround, well sorted, loc	ose, light brown,			
-	-	4	6-8	1.2	0.0								
- 10	385 -	5	8-10	NA	NA								#0 Sand Pack (4-
-	-	6	10-12	1.2	0.0								16' bgs) 2" Sch 40 PVC 0.010" Slot Screen (6-16' bgs)
-	380 -	7	12-14	1.7	0.0	++D000	Fine to me brown, no	edium SAND and GRAVEI o odor. [TILL MATERIAL]	; subangular to subround, dense	e, reddish-			
- 15	_	8	14-16	1.6	0.0	0000	Large clas	sts at 15-16' bgs, dry.					
Project: B0090004.0008 T Data File: MW-202.dat								arks: ags = above NA = Not Ap NA = Not Ap Iate: boring_well ge 8/22/2018	ground surface; bgs = b pplicable/Available; HSA oprobe.ldfx	below ground s = Hollow-sten	surface; n augers.	Create	Page: 1 of 2 ed/Edited by: NPS

(Client	: Cold	Springs	Northe	m Tern	ninal	Well/Boring	ID: MW-202
							Borehole De	pth: 16.5 feet bgs
	Lysa	ocatioi ander, l	n: NY					
				-				
		er			(mq			
		lumb	be		d) ec	ш		
	N	⊿un	It/Ty		Ispa	Colu	Otratineau bia Description	Well/Boring
Ξ	ATI(le R	ole/Ir	very	leac	ogic		Construction
ЕРТ	ELEV	amp	Samp	Reco		Seold		
	-	9	16-16.5	0.5	0.0	0		
_							Split spoon refusal. [BASAL TILL]	
	_						End of boring at 16.5' bgs.	
F	375 -							
Ļ								
	-							
- 20	-							
ļ								
	-							
F	_							
	370 -							
F	_							
- 25								
	-							
F	_							
	-							
F	365 -							
	-							
- 30	-							
ļ								
	-							
F	-							
ļ								
	360 -							
F	-							
35								
	-							
							Pomarke: age - above ground surface: here - below ground -	urfaco:
1							NA = Not Applicable/Available; HSA = Hollow-stem	augers.
G	Λ		~^ r		Design &	& Consultar	су	
		RC	JAL	NO	built ass	racand sets		
1								
	-4	Dagas	004.000	20			Templeter beging well as smaller life	
Proje	ect:	R0080	0004.000	18 N			i emplate: boring_well geoprobe.ldfx	Page: 2 of 2

-

Dat Dril Dri Sar Rig	Date Start/Finish: 5/21/2018 Drilling Company: Parratt-Wolff, Inc. Driller's Name: Matt Carnie Drilling Method: Direct Push / HSA Sampling Method: 2' x 2" Split Spoon Rig Type: Truck-Mounted Geop				nc. ISA oon I Geop	robe Rig	Northing: Easting: Casing Elevatior Borehole Depth: Surface Elevatio Descriptions By:	1141307.55 909013.86 1: 394.58 20 feet bgs n: 392.27 Jeff Spradlin	Well/Boring Client: Location:	g ID: N C Tr Ly	IW-203 iold Springs erminal ysander, NY	Northern	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Stratigra	phic Description			Well/E Consti	Boring ruction
-	<u>395</u> – –												—— 2.5' PVC Stickup
							ORGANIC Silty SAN	CS (leaves, roots, grass) a	nd fine SAND; dark brown, dry,)rganics; well sorted, moist, light	no odor. brown, no odor.			Grout (0.2' boo)
	-	1	0-2	1.1	0.0								2" Sch. 40 PVC Riser (-2.5' ags- 5' bgs)
-	390 -	2	2-4	1.8	0.0								Bentonite Seal (2-3' bgs)
-5	-	3	4-6	1.4	0.0								
-	- 385 -	4	6-8	1.8	0.0		Silty SAN than previ	D, fine to medium, subanç ious spoon), light brown, r	ular to subround, well sorted, m o odor.	oist (less water			
- 10	-	5	8-10	1.8	12.0		Wet at 8' Black, hyd	bgs. drocarbon odor, no sheen,	wet.				
-	-	6	10-12	1.5	45.7								—— #0 Sand Pack (3- 20' bgs)
-	380 -	7	12-14	1.7	39.2								2" Sch 40 PVC 0.010" Slot Screen (5-20' bgs)
- 15	_	8	14-16	1.8	12.1		Silty SAN hydrocarb	ID; fine to medium, subanç bon odor.	jular to subround, well sorted, lig	ht gray, wet,			
Proje	ect:	B0090	0004.000 03.dat	DIS	Design for natu built as	& Consultar Iral and sets	Temp Date	NA = Not A NA = Not A	e ground surface; bgs = pplicable/Available; HSA coprobe.ldfx	below ground a = Hollow-ster	surface; n augers	created	Page: 1 of 2 d/Edited by: NPS

C	Client	: Cold	Springs	Northe	m Terr	ninal	Well/Boring	ID: MW-203
S	Site L o Lysa	ocatior ander, N	n: NY				Borehole Do	epth: 20 feet bgs
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	- 375 -	9	16-18	NA	NA		No recovery.	#0 Sand Pack (3- 20' bgs) 2' Sch 40 PVC
-	-	10	18-20	1.8	1.8		Fine to medium SAND and GRAVEL; subangular to subround; some Silty Clay, dense, reddish-brown, moist, no odor. [TILL MATERIAL]	0.010" Slot Screen (5-20' bgs)
- 25	- - - - - - - - - - - - - - - - - - -						End of boring at 20' bgs.	
- - 30 -	- - 360 -							
- 35	-							
9	Α	RC		DIS	Design for natu built as	& Consultar Iral and sets	Remarks: ags = above ground surface; bgs = below ground = NA = Not Applicable/Available; HSA = Hollow-ster	surface; n augers.

Dat Dril Dril Dril San Rig	Date Start/Finish: 5/22/2018 Drilling Company: Parratt-Wolff, Inc. Driller's Name: Matt Carnie Drilling Method: Direct Push / HSA Sampling Method: 2' x 2" Split Spoor Rig Type: Truck-Mounted G			nc. ISA oon I Geopr	robe Rig	Northing: Easting: Casing Elevation Borehole Depth: Surface Elevatio Descriptions By	1141427.24 908980.08 n: 395.19 20 feet bgs n: 392.71 : Jeff Spradlin	Well/Boring Client: Location:	g ID: MV Colo Terr Lysa	V-204 d Springs Northern minal ander, NY		
DEPTH	DEPTH ELEVATION Sample Run Number Sample/Int/Type Recovery PID Headspace (ppm Geologic Column							Stratigra	phic Description			Well/Boring Construction
-	395 - -											2.5' PVC Stickup
-	-	1	0-2	1.2	0.0	┥┥┤┤╫╞╞ ┙┤╢╎╢╞╞	ORGANIC Silty SAN	CS (leaves, roots, grass) a	and fine SAND. gular to subround, loose, moist, b	prown, no odor.		Grout (0-2' bgs) 2" Sch. 40 PVC Riser (-2.5' ags-
-	390 - -	2	2-4	0.5	0.0							Bentonite Seal (2-3' bgs)
-5	-	3	4-6	0.3	0.0		Low recov	very. Dark brown.				
-	- 385 -	4	6-8	2.0	0.5	0000	Fine to me light brow	edium SAND and GRAVE m/red, wet. [TILL]	L; subangular to subround, poor	ly sorted, loose,		
- 10	-	5	8-10	0.5	2.1	0000	Medium d	lense, gray/red.				
-	-	6	10-12	2.0	4.7	00000	SAND an gray, wet,	d GRAVEL, fine to mediu , slight odor.	n; some Silty Clay; poorly sorted	, medium dense,		#0 Sand Pack (3- 20' bgs)
-	380 -	7	12-14	2.0	13.7	0000						2" Sch 40 PVC 0.010" Slot Screen (5-20' bgs)
- 15	-	8	14-16	2.0	0.6	0000	Light brov	wn, no odor.				
Project: B0090004.0008 Data File: MW-204.dat							Temp Date:	NA = Not A NA = Not A	e ground surface; bgs = pplicable/Available; HSA eoprobe.ldfx	below ground s = Hollow-sten	surface; n augers.	Page: 1 of 2 Created/Edited by: NPS

	Client	: Cold	Springs	Northe	rn Terr	minal	Well/Boring	ID: MW-204			
;	Site L	ocatio	n:				Borehole De	epth: 20 feet bgs			
	Lysa	ander, I	NY								
			<u> </u>		Ê	İ					
		Numbei	ype		ace (ppr	umn					
т	ATION	e Run	e/Int/T	/ery	eadspa	gic Col	Stratigraphic Description	Well/Boring Construction			
DEPT	ELEV	Sampl	Sampl	Reco	H DIA	Geolo					
_	-		16 19	10	1.0	000	Reddish brown, no odor.	#0 Sand Pack (3-			
	375 -	9	10-16	1.2	1.0	00		20' bgs)			
-	-	10	18-20	1.0	0.2	000		0.010" Slot Screen (5-20' bgs)			
- 20-		-				0	End of having at 20 km				
-	-						End of boring at 20 bgs.				
-	-										
-	370 -										
-	-										
- 25	-										
-	-										
-	-										
-	365 -	-									
-	-	-									
- 30	-										
ŀ	-										
ŀ	-										
ŀ	360 -										
ŀ	_										
- 35	-										
		1					Remarks: ags = above ground surface; bgs = below ground	surface;			
	•		~~ ~		Design	& Consultar	NA = Not Applicable/Available; HSA = Hollow-ster	n augers.			
	//	RC	AL	ND	for natu built as	ural and isets					
Proj∉ Data	Dject: B0090004.0008 Template: boring_well geoprobe.ldfx Page: 2 of 2 ta File: MW-204.dat Date: 8/22/2018 Created/Edited by: NPS										

Date Start/Finish:5/17 - 5/18/2018Drilling Company:Parratt-Wolff, Inc.Driller's Name:Matt CarnieDrilling Method:Direct Push / HSASampling Method:2' x 2" Split SpoonRig Type:Truck-Mounted Geoprob							robe Rig	Northing: Easting: Casing Elevation Borehole Depth: Surface Elevatio Descriptions By	1141543.83 908866.84 n: 397.97 20 feet bgs n: 395.00 : Jeff Spradlin	Well/Boring ID:MW-205Client:Cold Springs Northern TerminalLocation:Lysander, NY			
DEPTH ELEVATION Sample Run Number Sample/Int/Type Recovery PID Headspace (ppm) Geologic Column						Geologic Column		Stratigra	phic Description	Well/Boring Construction			
-	_												— 2.5' PVC Stickup
_	- 299	1	0-2	0.9	0.0		ORGANIC odor. SAND, fir brown, nc	cS (leaves, roots, grass) a ne to medium; some Clay o odor.	and fine SAND; moist, loose, dark	e, moist, light			
_	-	2	2-4	1.7	60.5		SAND, fir moist, me	ne to medium, subangular dium dense, hydrocarbor	to subround; some Gravel and S odor, no staining.	ilt, light brown,			 Grout (0-7' bgs) 2" Sch. 40 PVC
5	390 -	3	4-6	1.7	133.9		Reduced	odor from 5 to 6' bgs and	PID readings.				Riser (-2.5' ags- 10' bgs)
-	-	4	6-8	1.6	17.2		SAND, fir dense, gr	ne to medium, subangular ayish brown, moist, trace	to subround; some fine Gravel a odor.	nd Silt; medium			— Bentonite Seal (7-8' bgs)
- 10	- 385 -	5	8-10	0.9	3.4		SAND, fir poorly sol	ne to medium, subangular rted, dry, gray, trace odor.	to subround; some Gravel and C [TILL MATERIAL]	lay; dense,			
-	_	6	10-12	1.0	0.6		Moist, no	odor.					
-	_	7	12-14	1.8	1.3		Wet.						— #0 Sand Pack (8-
- 15	380 -	8	14-16	0.8	0.0								20 pgs) - 2" Sch 40 PVC 0.010" Slot Screen (10-20' bgs)
Proje	ct: File:	B0090	0004.000 05.dat	DIS	Design for natu built ass	& Consultar Iral and sets	Temp Date	larks: ags = abov NA = Not A	e ground surface; bgs = l pplicable/Available; HSA eoprobe.ldfx	below ground s = Hollow-stem	surface; a augers.	Created/F	Page: 1 of 2

	Client	t: Cold	Springs	Northe	rn Terr	ninal	Well/Boring ID: MW-205					
;	Site L	ocatio	1:				Borehole Do	epth: 20 feet bgs				
	Lysa	ander, f	ΝΫ́									
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction				
-	-	9	16-18	0.9	0.0		SAND, fine, subangular, subround, some Gravel and Silty Clay, dense, poorly sorted, reddish-brown, wet, no odor. [TILL]	#0 Sand Pack (8- 20' bgs) 2' Sch 40 PVC				
-	-	10	18-20	1.5	0.0			0.010" Slot Screen (10-20' bgs)				
- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -						End of boring at 20' bgs.					
	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available; HSA = Hollow-stem augers. Image: Second surface; bgs = below ground surface; bgs = below grou											
Proje	ect:	B0090	0004.000	80			remplate: boring_well geoprobe.ldfx	Page: 2 of 2				

Date Start/Finish:5/16-5/17/2018Drilling Company:Parratt-Wolff, Inc.Driller's Name:Matt CarnieDrilling Method:Direct Push / HSASampling Method:2' x 2" Split SpoonRig Type:Truck-Mounted Geopro						3 nc. ISA oon d Geopt	robe Rig	Northing: Easting: Casing Elevatior Borehole Depth: Surface Elevatio Descriptions By:	1141541.04 908921.18 1: 398.01 20 feet bgs n: 395.17 : Jeff Spradlin	Well/Boring Client: Location:	ID: MW-206 Cold Springs Northern Terminal Lysander, NY			
DEPTH ELEVATION Sample Run Number Sample/Int/Type Recovery PID Headspace (ppm) Geologic Column								Well/Boring Stratigraphic Description Constructio						
-	_												— 2.5' PVC Stickup	
-	395 —	1	0-2	1.4	0.0		ORGANIC odor. SAND, fin brown, no	CS (leaves, roots, grass) a ne to medium; some Silt ar o odor.	nd fine SAND; moist, loose, dark nd Organics; poorly sorted, loose,	brown, no			 Grout (0-2' bgs) 2" Sch. 40 PVC Riser (-2.5' ags- Cher (-2.5' ags- 	
-	_	2	2-4	1.2	0.0		Silty SAN light brow	D, fine to medium, sub an n, no odor.	gular to subround; some Gravel,	loose, moist,			 Bentonite Seal (2-3' bgs) 	
-5	- 390 -	3	4-6	1.7	0.0		Fine SAN	D and GRAVEL; some Cli	ay; poorly sorted, dense, moist, g	ray, no odor.				
-	_	4	6-8	0.9	0.0	0000	Dense, m	oist, no odor. [TILL MATE	RIAL]					
	_	5	8-10	1.2	0.0	00000								
-	385 -	6	10-12	1.1	0.0	0.0	Larger Gr	ravel (1-3 cm). ery.					— #0 Sand Pack (3- 20' bgs)	
-	_	7	12-14	1.2	0.0		SAND, fin sorted, m	ne to medium, subangular nedium dense, wet at 12' b	to subround; some Gravel and C igs, no odor. [TILL MATERIAL]	lay, poorly			 — 2" Sch 40 PVC 0.010" Slot Screen (5-20' bgs) 	
- 15	380 -	8	14-16	1.9	0.0		Increased	I medium SAND, light brow	vn					
Proje	ect:	B0090 MW-2	0004.000 06.dat	DIS	Design for natu built as	& Consultar Iral and sets	Temp Date:	a rks: ags = above NA = Not A late: boring_well ge 8/22/2018	e ground surface; bgs = t pplicable/Available; HSA eoprobe.ldfx	elow ground s = Hollow-sten	surface; n augers.	Created/E	Page: 1 of 2 dited by: NPS	

(Client	: Cold	Springs	Northe	rn Terr	ninal	Well/Boring	ID: MW-206			
:	Site L e Lysa	ocatioi ander, N	n: NY				Borehole D	epth: 20 feet bgs			
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction			
-		. 9	16-18	1.5	0.0	>0000	SAND and GRAVEL, fine to medium; trace Clay; medium dense, poorly sorted, wet, reddish-brown, no odor. [TILL]	#0 Sand Pack (3- 20' bgs)			
-	_	10	18-20	1.6	0.0	00000	Fining downward.	2" Sch 40 PVC 0.010" Slot Screen (5-20' bgs)			
- 20- - -	375 -						End of boring at 20' bgs.				
- 25 - -	370 -										
30 - -	365										
— 35 _	360 -										
P	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available; HSA = Hollow-stem augers.										
Proje	ect:	B0090	004.000)8			Template: boring_well geoprobe.ldfx	Page: 2 of 2			

Date Start/Finish: Drilling Company: Driller's Name: Drilling Method: Sampling Method: Rig Type:			.h: 5 ny: F M : C od: 2	2'16/201 Parratt-\ Matt Ca Direct P 2' x 2" S Truck-M	Nolff, I Nolff, I ush / H plit Sp ounted	nc. ISA oon J Geopr	robe Rig	Northing: Easting: Casing Elevatior Borehole Depth: Surface Elevatio Descriptions By:	1141519.38 908997.73 a: 398.80 20 feet bgs n: 395.72 Jeff Spradlin	Well/Boring Client: Location:	g ID: M\ Co Tei Lys	W-207 Id Springs N rminal sander, NY	lorthern		
DEPTH ELEVATION Sample Run Number Sample/Int/Type Recovery PID Headspace (ppm) Geologic Column								Stratigraphic Description					Well/Boring Construction		
-	-												— 2.5' PVC Stickup		
-	395 - -	1	0-2	1.4	0.0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SAND an light brow	d ORGANICS (leaves and /n, moist, no odor.	stems); some Gravel and Clay;	medium dense,			 Grout (0-1' bgs) 2" Sch. 40 PVC Riser (-2.5' ags- 5' bgs) 		
-	_	2	2-4	2.0	0.0		SAND, fir moist, no	ne to medium, subangular odor.	to subround, well sorted; some S	ilt, light brown,			 Bentonite Seal (1-3' bgs) 		
5	- 390 -	3	4-6	1.5	0.0		SAND, m sorted, lo	edium, subangular to subr ose, moist, light brown, no	ound; some Gravel, round; little s odor.	Bilt; poorly					
-	-	4	6-8	2.0	0.0		SAND, fir moist, ligh	ne, subangular to subround ht gray, no odor.	l; some Gravel, round; poorly so	ted, dense,					
- 10	_	5	8-10	1.7	0.0		Silty SAN grayish-re	ID and CLAY, fine; and fine ed, no odor. [TILL]	e to coarse Gravel; extremely der	nse, moist,					
_	385 - -	6	10-12	1.9	0.0		Fining do	wnwards. Il fine SAND and CLAY, m	edium plasticity, no odor.				— #0 Sand Pack (3- 20' bgs)		
-	-	7	12-14	1.2	0.0		Silty SAN wet at 13.	ID, fine to medium; and GF .5-14' bgs.	RAVEL; some Clay; medium plas	ticity, no odor,			 — 2" Sch 40 PVC 0.010" Slot Screen (5-20' bgs) 		
- 15	- 380	8	14-16	0.0	0.0		No recove	ery.							
Proje	ect:	B009C	0004.000 07.dat	DIS	Design for natu built as	& Consultan Iral and sets	Rem Temp Date:	harks: ags = above NA = Not A NA = Not A	e ground surface; bgs = t pplicable/Available; HSA eoprobe.ldfx	elow ground s = Hollow-sten	n augers.	Created/	Page: 1 of 2 Edited by: NPS		

onent. Cold opinigo Northern Fernina	Client:	Cold	Springs	Northern	Terminal
--------------------------------------	---------	------	---------	----------	----------

Lysander, NY

Borehole Depth: 20 feet bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction			
-	-	9	16-18	1.5	0.0	<u></u>	Silty SAND, fine, subangular to subround; some Gravel, round; very dense, wet, grayish-red, no odor. [TILL]	#0 Sand Pack (3- 20' bgs)			
-	_	10	18-20	2.0	0.0		Reddish-brown.	2 Sch 40 PVC 0.010" Slot Screen (5-20' bgs)			
- 20	375 -						End of boring at 20' bgs.				
-	-										
- 25	- 370 -										
-	_										
- 30 -	- 365 -										
- 35	- - 360 -										
Proje	Project: B0090004.0008 Template: boring_well geoprobe.ldfx Page: 2 of 2										
Data	File:	MW-2	07.dat				Date: 8/22/2018	Created/Edited by: NPS			

Date Start/Finish:5/15/2018Drilling Company:Parratt-Wolff, Inc.Driller's Name:Matt CarnieDrilling Method:Direct Push / HSASampling Method:2' x 2" Split SpoonRig Type:Truck-Mounted Ge						nc. ISA oon I Geop	robe Rig	Northing: Easting: Casing Elevation Borehole Depth: Surface Elevation Descriptions By:	1141526.88 909080.26 : 397.34 20 feet bgs n: 394.31 Jeff Spradlin	Well/Boring Client: Location:	ng ID: MW-208 Cold Springs Northern Terminal Lysander, NY			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description					Well/Boring Construction		
-	- 395 -												2.5' PVC Stickup	
-	-	1	0-2	1.6	0.0	┥┥┥╫╞╒╒ ╡╡╡╬╎╎╎╎	SILT and Silty SAN	ORGANICS (roots, leaves). ight brown, no odor.				Grout (0-1' bgs) 2" Sch. 40 PVC Riser (-2.5' ags- 5' bgs)	
-	-	2	2-4	1.8	0.0	- H H H H H H H	Well-sorte	ed, subangular to subround	i.				Bentonite Seal (1-3' bgs)	
5	390 - -	3	4-6	1.4	0.0		Slightly co	parser (medium SAND).						
-	_	4	6-8	1.6	0.0		Silty SAN brown, mo	D, fine to medium, subang oist, no odor.	ular to subround; trace Clay and	Organics, light				
- 10	- 385 -	5	8-10	1.7	0.0									
-	-	6	10-12	1.8	0.0		Silty SAN	D, fine, subangular to subr	ound, well sorted, light brown, n	o odor.			#0 Sand Pack (3- 20' bgs)	
-	_	7	12-14	1.8	0.2		Wet at 12	' bgs.					2" Sch 40 PVC 0.010" Slot Screen (5-20' bgs)	
- 15	380 -	8	14-16	1.2	7.1		Silty SAN	D, fine to medium; some C	ilay; gray, wet, trace odor. avel; poorly sorted, dense, red, r	io odor.				
Proje	ect: File:	B0090	0004.000 08.dat	DIS	Design of for nature built as:	& Consultar Iral and sets	Temp Date:	arks: ags = above NA = Not Ag late: boring_well ge 8/22/2018	e ground surface; bgs = k oplicable/Available; HSA	below ground s = Hollow-sten	surface; n augers.	Cre	Page: 1 of 2 ated/Edited by: NPS	

Cli	ient:	Cold	Springs	Northe	rn Terr	minal	Well/Boring ID: MW-208					
Sit L	t e Lo Lysar	ocatior nder, N	n: JY				Borehole D	epth: 20 feet bgs				
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction				
-	_	9	16-18	2.0	3.5	- H.	Gray with additional Gravel throughout, no odor.	#0 Sand Pack (3- 20' bgs)				
- 31	75 -	10	18-20	2.0	4.1	- H.	Dense.	2 Sch 40 PVC 0.010" Stot Screen (5-20' bgs)				
- - - - - - - - - - - - - - - - - - -							End of boring at 20' bgs.					
35	60 -											
Project: R0000004 0008							Remarks: ags = above ground surface; bgs = below ground NA = Not Applicable/Available; HSA = Hollow-ster	surface; n augers. Page: 2 of 2				

Date Start/Finish:5/14/2018Drilling Company:Parratt-Wolff, Inc.Driller's Name:Matt CarnieDrilling Method:Direct Push / HSASampling Method:2' x 2" Split SpoonRig Type:Truck-Mounted Geopro							robe Rig	Northing: Easting: Casing Elevatior Borehole Depth: Surface Elevation Descriptions By:	1141600.72 909076.11 1: 397.85 20 feet bgs n: 395.01 Jeff Spradlin	Well/Boring Client: Location:	g ID: MV Cold Terr Lysa	V-209 d Springs Northern ninal ander, NY		
DEPTH ELEVATION Sample Run Number Sample/Int/Type Recovery PID Headspace (ppm) Geologic Column							Stratigraphic Description					Well/Boring Construction		
												2.5' PVC Stickup		
-	_	1	0-2	1.2	0.0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ORGANIC SAND. fin	CS (roots and leaves).	Clay, dense, dry, light brown no o	dor.		Grout (0-1' bgs) 2" Sch. 40 PVC Riser (-2.5' ags- 5' bds)		
-	-	2	2-4	2.0	0.0	<u> </u>	SAND, fin Silty SAN odor.	e to medium, subangular D, fine; trace Gravel and r	to subround; trace Silt; dry, no oc nottled Clay; low plasticity, moist	dor. , light brown, no		Benfonite Seal (1-3' bgs)		
-5		3	4-6	1.3	0.3		Silty SAN	D, fine; trace Gravel, fine;	moist, light brown, no odor.					
-	-	4	6-8	1.1	0.6	<u> </u>	Silty SAN odor.	D, fine; some Clay; trace (Gravel; medium plasticity, light gr	ay, moist, no				
- 10	-	5	8-10	1.7	0.4	-								
-	-	6	10-12	1.1	0.3		Wet at 10	' bgs.				#0 Sand Pack (3- 20' bgs)		
-	-	7	12-14	1.5	0.0	H H H H H H H H H H H H	Additional	l medium SAND, subangu	lar to subround.			2" Sch 40 PVC 0.010" Slot Screen (5-20' bgs)		
- 15	380 -	8	14-16	1.0	0.0		SAND, mo increasing	edium to coarse, subangu g Clay at 16' bgs, light brov	lar to subround; trace Silty Clay a wn, no odor.	and Gravel;				
Proje	Project: B0090004.0008 Template: boring_well geoprobe.ldfx Page: 1 of 2 Page: 1 of 2 Date 8/22/2018													
Client: Cold Springs Northern Terminal														
--	--													
--	--													

Site Location:

Lysander, NY

Well/Boring ID: MW-209

Borehole Depth: 20 feet bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction	
_	-	9	16-18	2.0	0.0		Silty SAND, fine; some Clay; trace Gravel; medium plasticity, light brown, no odor.	#0 Sand Pack (3- 20' bgs)	
		10	18-20	0.8	0.0	<u>+ + + + + + + +</u> + + + + + + + +	Dense at 20' bgs.	0.010" Slot Screen (5-20' bgs)	
-	-						End of boring at 20.1' bgs.		
-	-								
- 25	370 -								
-	-								
- 30	- 365 -								
-	-								
- 35	- 360 -								
9	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available; HSA = Hollow-stem augers.								
Proje Data	ect: File:	B0090 MW-2	0004.000 09.dat)8			Template: boring_well geoprobe.ldfx Date: 8/22/2018	Page: 2 of 2 Created/Edited by: NPS	

Date Start/Finish:5/22/2018Drilling Company:Parratt-Wolff, Inc.Driller's Name:Matt CarnieDrilling Method:Direct Push / HSASampling Method:2' x 2" Split SpoonRig Type:Truck-Mounted Geoprobe						nc. ISA oon d Geopt	robe Rig	Northing: Easting: Casing Elevation Borehole Depth: Surface Elevatior Descriptions By:	1141345.09 909129.64 : 386.85 18 feet bgs n: 384.53 Jeff Spradlin	Well/Boring Client: Location:	g ID: MV Colo Terr Lysa	V-210 d Springs Northern ninal ander, NY	
DEPTH	DEPTH ELEVATION Sample Run Number Sample/Int/Type Recovery PID Headspace (ppm) Geologic Column							Stratigraphic Description			Well/Boring Construction		
-	- 385 -											2.5' PVC Stickup	
_	-	1	0-2	0.8	0.0	+ + + + + + + + + + + + + + + + + + +	ORGANIO wet, no oo	CS (stems, roots, grass) ar dor.	d fine SAND; some Gravel; loos	e, light brown,			
_	-	2	2-4	0.8	0.0	×00000	SAND and	d GRAVEL; poorly sorted,	moist, reddish-brown, no odor.			Grout (0-5' bgs) 2" Sch. 40 PVC Riser (-2.5' ags- 8' bgs)	
-5	380 -	3	4-6	0.7	0.0	0000						Bentonite Seal (5-6' bgs)	
_	-	4	6-8	0.8	0.0	0.00.0	[LOOSE]	TILL]					
10	- 375 -	5	8-10	0.5	0.0	<u> </u>	Silty SAN dense, re	D, fine to medium; and GR ddish-brown/gray, no odor.	AVEL; trace Clay; poorly sorted,	medium			
-	-	6	10-12	1.3	0.0	<u> </u>	Silty SAN sorted, m	D, fine to medium, subang edium dense, wet, light bro	ular to subround; some Clay; tra wn, no odor.	ce Gravel; well		#0 Sand Pack (6-	
-	-	7	12-14	0.8	0.0	<u>+ + + + + + + +</u> - + + + + + + + + + + + + + + + + + + +	Increased	l Gravel content, reddish-b	rown. [TILL]			18' bgs) 2" Sch 40 PVC 0.010" Slot Screen (8-18' bgs)	
- 15	370 -	8	14-16	1.2	0.0		Silty SAN odor. [TIL	D, fine to medium; and GR L]	AVEL; very dense, moist, grayis	h brown, no			
Proje	Project: B0090004.0008 Template: boring_well geoprobe.ldfx Page: 1 of 2												

Site Location:

Lysander, NY

Borehole Depth: 18 feet bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction	
_	-	9	16-18	0.7	0.0		Silty SAND, fine to medium; and GRAVEL; very dense, moist, grayish brown, no odor. [TILL]	#0 Sand Pack (6- 18' bgs) 2" Sch 40 PVC 0.010" Slot Screen (8-18' bgs)	
- 20	_ 365 _ _						Refusal at 18' bgs. End of boring.		
- 25	_ 360 — _								
- 30									
- 35	- 350 - -						Remarks: ags = above ground surface; bgs = below ground s	surface;	
Proje	NA = Not Applicable/Available; HSA = Hollow-stem augers. Image: Account and built assets Project: B0090004.0008 Template: boring_well geoprobe.ldfx Page: 2 of 2 Data File: MW-210 dat Created/Edited by: NPS								

Date Start/Finish:5/23/2018Drilling Company:Parratt-Wolff, Inc.Driller's Name:Matt CarnieDrilling Method:Direct Push / HSASampling Method:2' x 2" Split SpoonRig Type:Truck-Mounted Geoprobe							obe Rig	Northing: Easting: Casing Elevatio Borehole Depth Surface Elevatic Descriptions By	1141377.65 909200.72 n: 387.68 : 15 feet bgs on: 384.48 : Jeff Spradlin	Well/Boring Client: Location:	g ID: M Ca Te Ly	I W-211 old Springs Northe erminal /sander, NY	m
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery	PID Headspace (ppm)	Geologic Column		Stratigra	aphic Description			Well/Boring Construction	
-	- 385 -											2.5	5' PVC Stickup
-	-	1	0-2	0.5	0.0	<pre></pre>	Silty SAN damp, loc	ID and ORGANICS (roots ose, no odor.	, leaves); fine to medium, light t	o dark brown,		Gr 2" Ris	out (0-2' bgs) Sch. 40 PVC ser (-2.5' ags-
-	-	2	2-4	1.1	0.0		SAND, fin loose, ligh	ne to medium, subangular ht brown, no odor.	to subround; and SILT; trace G	Gravel, fine; moist,		Be (2-	ntonite Seal 3' bgs)
-5	380 -	3	4-6	1.2	0.0								
-	-	4	6-8	0.9	0.0		Silty SAN wet, light	ID, fine to medium, suban brown, no odor.	gular to subround, well sorted, r	medium dense,			
- 10	- 375 -	5	8-10	1.5	0.0							#0 15	Sand Pack (3- bgs) Sch 40 PVC
-	-	6	10-12	1.5	0.0		SAND and red/brown	nd GRAVEL; fine to mediu n, no odor. [TILL]	m; some Clay, poorly sorted, m	edium dense,			110" Slot reen (5-15' s)
-	-	7	12-14	0.5	0.0	00000	Final 2-ind	iches: transitions to fine to	medium SAND and GRAVEL;	very dense, moist,			
15	370 -	8	14-16	0.5	0.0	ў.р О	Refusal a	at 15' bgs. End of borina.					
Proje	Remarks: ags = above ground surface; bgs = below ground surface; NA = Not Applicable/Available; HSA = Hollow-stem augers. Project: B0090004.0008												

APPENDIX 4

Laboratory Analytical Reports

Due to the large size of Appendix 4, the laboratory reports will be provided electronically to the agency only.

Arcadis U.S., Inc.

110 West Fayette Street Syracuse, New York 13202 Tel 315 446 9120 Fax 315 449 0017

www.arcadis.com