

GEOLOGIC & ENVIRONMENTAL CONSULTANTS

October 30, 2017

Mr. Joshua Haugh Engineering Geologist Division of Environmental Remediation New York State Department of Environmental Conservation 1130 N. Westcott Road Schenectady, New York 12306

RE: Corrective Measures Work Plan Former Don's Laundry 1410 Curry Road Rotterdam, New York VCP # 00063

Dear Mr. Haugh:

Hanson Van Vleet, LLC was retained by Richbell Capital and Curry Road Development Partners, LLC to prepare this Corrective Measures Work Plan (CMWP), to be implemented during the excavation of an area of impacted soil, in accordance with the Excavation Work Plan included in the Site Management Plan (SMP) with respect to the Former Don's Laundry, Curry Road Shopping Center, 1410 Curry Road, Rotterdam, Schenectady County, NY, dated December 2011 (See Appendix A). The site location is shown on Figure 1.

1.0 BACKGROUND

The "site" is a 0.5-acre property containing the former location of Don's Laundry, a dry-cleaning establishment, which operated at the site from the middle 1960's through the 1980's. The 0.5-acre site, which is subject to this CMWP is shown on Figure 2.

The Curry Road Shopping Plaza was constructed in the middle 1960's. The 0.5-acre site is a portion of the former Curry Road Shopping Plaza that included the former location of Don's Laundry. The 0.5-acre site was remediated under the Voluntary Cleanup Program (VCP) # 00063, Voluntary Cleanup Agreement (VCA) #D4-0001-95-10, Site # 447024. The remediation took place from 1996 to 2010 and the NYSDEC classification was changed from Class 2 to Class 4. Remediation included the excavation of 120 cubic yards of contaminated soil, installation of 25 groundwater monitoring wells, the installation and operation of a pump and treat system and chemical injection of CL-OUT®. Residual contamination remains at the site. Engineering Controls (ECs) were incorporated into the site remedy to control exposure to remaining contamination during the future use of the site to ensure the protection of public health and the environment. Institutional Controls (ICs) were also incorporated into the remedy, which restrict the use of the site to commercial uses only and mandate the operation and maintenance, monitoring and reporting measures for all ECs and ICs. A deed restriction was placed on the

0.5-acre site, requiring compliance with the NYSDEC approved Site Management Plan and all ECs and ICs placed on the site.

The Site Management Plan describes the process required to "manage" the remaining contamination within the 0.5-acre portion of the property. The Site Management Plan includes physical (Engineering Controls) and non-physical (Institutional Controls) and a monitoring plan, required to be utilized at the property during future disturbance and/or development. One requirement of the Site Management Plan was the preparation and submittal of a work plan prior to performing any intrusive work within the 0.5-acre site.

The structure formerly containing Don's Laundry, among other former businesses was demolished in August and September 2017. The concrete slab and footings of the former building within the 0.5-acre site, were removed in accordance with the Site Management Plan and the NYSDEC approved Excavation and Soil Disturbance Work Plan dated July 26, 2017. The Excavation and Soil Disturbance Work Plan dated July 26, 2017 was prepared specifically for the removal of the concrete slab and footings within the 0.5-acre site.

Prior to demolition and removal of the slab foundation, two floor pit openings in the concrete slab floor at the former Don's Laundry were identified. The floor pits were approximately 12 by 18-inch openings in the concrete floor, approximately 1-foot in depth with exposed dirt bases. Subsequent collection and analysis of soil samples from the floor pits identified previously unknown "hot spot" contamination. The location of the floor pits is shown on Figure 3.

2.0 PRE-REDEVELOPMENT SAMPLING

2.1 Subsurface Soil Sampling

Pre-redevelopment sampling was performed on the site. Six shallow soil borings (Soil borings B-1 through B-6) were installed in the existing exterior areas of the site and four deeper soil borings (Interior soil borings IB-1 through IB-4) were installed through the concrete floor of the former Don's Laundry structure. All soil samples were screened in the field for visual staining, odors and for volatile organic compounds (VOCs) with a MiniRae photoionization detector (PID). One temporary monitoring well was installed in interior soil boring IB-2 to determine the depth to groundwater and for the collection of future groundwater samples as determined necessary. The location of the soil borings is shown on Figure 3.

The soil borings identified fine to medium sand to a depth of approximately 15-feet, where clay was encountered. Groundwater was encountered at a depth of approximately 5.5-feet on May 27, 2016. No evidence of staining, odors or PID detections were observed while screening any of the soil samples.

Laboratory analysis did not identify any metals, SVOCs, PCBs and Pesticides exceeding the 6 NYCRR Part 375-6.8(a) Unrestricted Soil Cleanup Objectives (SCO). Two samples, collected from the composited interior soil borings at depths of 14.0 and 15.0-feet, contained Tetrachloroethene (PERC) at concentrations of 7.1 and 36.0 parts per million (ppm) exceeding the 6 NYCRR Part 375-6.8(a) Unrestricted SCO. The two samples exhibiting elevated VOCs were collected immediately above the clay, encountered at a depth of approximately 15-feet. The VOC analytical results are summarized on Table 1 and area included in Appendix C.

2.2 Floor Pit Soil Sampling

Prior to initiating demolition of the slab within the 0.5-acre site, grab soil samples were collected from the two open floor pits within the former Don's Laundry. The samples were collected on July 19, 2017, directly from the pits using pre-cleaned stainless steel sampling equipment. The samples were submitted for analysis for VOCs by EPA Method 8260. The samples were screened for VOCs with a PID at the time of sample collection. The PID identified VOCs at 65 ppm in the southwestern pit and 130 ppm in the northeastern pit, indicating contaminated soil beneath the slab in the area of the pits. The analytical results identified a few VOCs below the 6 NYCRR Part 375-6.8(a) Unrestricted Use SCOs and PERC exceeding the 6 NYCRR Part 375-6.8(a) Unrestricted Use SCOs. PERC was identified at 100 and 200 ppm, in the samples collected from the southwestern and northeastern pits, respectively. The PERC identified at 100 ppm in the southwestern pit, exceeds the 6 NYCRR Part 375-6.8(b) Restricted Residential Use SCO, but is below the 6 NYCRR Part 375-6.8(b) Commercial Use SCO. The PERC identified at 200 ppm in the northeastern pit, exceeds the 6 NYCRR Part 375-6.8(b) Commercial Use SCO, and is below the 6 NYCRR Part 375-6.8(b) Industrial Use SCO. The analytical results are summarized on Table 1 and the laboratory report is included in Appendix D. The approximate location of the floor pits is shown on Figure 3.

2.3 Groundwater Sampling

Prior to initiating demolition of the slab within the 0.5-acre site, a groundwater sample was collected from the temporary monitoring well installed through the floor of the former Don's Laundry. The groundwater sample was analyzed for VOCs by EPA Method 8260, pH, Flash point, TAL Metals, Phenol, PCBs, Total Suspended Solids, Total Dissolved Solids, Total Nitrogen and CBOD (carbonaceous biochemical oxygen demand) in anticipation of future dewatering to the Town of Rotterdam sanitary sewer, if necessary. The samples were collected from the monitoring well using pre-cleaned PVC bailers and line following standard sampling procedures. Purge waters were containerized for later disposal. Turbidity appeared to impact the metals analysis. PERC, Trichloroethene (TCE) and cis-1,2-Dichloroethene (DCE) were detected at 130, 12 and 26 ppb, respectively, exceeding the NYSDEC groundwater standard. The analytical results are included in Appendix D.

3.0 PURPOSE

The purpose of this CMWP is to describe the specific procedures to be followed during the implementation of excavation activities associated with the excavation of the "hot spot" soil contamination within the 0.5-acre site. All intrusive excavation work on the site will be performed in accordance with the Site Management Plan's Excavation Work Plan (See Appendix A).

4.0 Anticipated Conditions

Based on the pre-construction sampling within the former Don's Laundry structure, it does not appear that soil contamination identified in the floor pits is laterally extensive. No contamination was identified within the soil borings within the structure until a depth of 14.0-feet.

On May 27, 2016, at the time the soil borings were installed, groundwater was encountered at a depth of approximately 5.5-feet. Follow up measurements on May 30, 2017, at the observation well installed through the floor of the former Don's Laundry, identified the groundwater approximately 2.6-feet below the slab floor. Current utility work being performed on the property, but outside the 0.5-acre site, has found groundwater at a depth of approximate 6 to 8-feet below grade. It is anticipated that dewatering will not be necessary during the excavation of the "hot spot" soil contamination area.

5.0 DESCRIPTION OF WORK TO BE PERFORMED

5.1 Excavation of Soil at Former Floor Pits

Soils at the location of the two former floor pits areas will excavated for off-site disposal. Soils will be screened in the field for visual evidence of contamination (staining), odors and with an 11.7eV photoionization detector (PID) in accordance with A-2 Soil Screening Methods in the SMP Excavation Work Plan (See Appendix A). Soils will be excavated to a minimum depth of 6-feet, which is below the level needed for the subsequent utility installation. If groundwater is not encountered at 6-feet, the excavation will be extended to the top of groundwater. The excavation will be extended laterally until no evidence of staining, odors or PID detections are observed. All soils exhibiting any evidence of contamination will be excavated and staged on a poly liner and covered with a poly tarp. Berms and/or silt fences will be used as necessary.

Since contaminated soils were not encountered in the four soil borings installed within the former Don's Laundry structure until a depth of 14-feet, it does not appear the "hot spot" contamination extends laterally any significant distance. Also during the original remediation, 120 cubic yards of contaminated soil was excavated at the rear of the former Don's Laundry. Soils will be excavated to a depth sufficient to remove obviously contaminated materials and to the extent necessary to avoid contact with the contaminated soils during utility installation and site redevelopment (Approximately 6.0 below grade). No structures will be installed on the 0.5-acre site, all residential structures on the overall property have no basements and have pre-installed as a precaution, sub-slab depressurization system piping. Based on the current groundwater levels, dewatering should not be necessary to excavate to a depth of approximately 6.0-feet below grade. If determined necessary at the time of the soil excavation, dewatering will be performed in order to excavate to a minimum depth of 6.0-feet. Initial dewatering will be attempted utilizing a vacuum truck.

Post excavation soil samples will be collected from four excavation sidewalls and from the base of the excavation. The post excavation soil samples will be analyzed for VOCs by EPA Method 8260. The post excavation samples will be analyzed under an expedited time frame. At this time, it is assumed that no fill will be brought onto the 0.5-acre site. Existing soil, within the 0.5-acre site, will be graded, to fill the excavation area and mitigate physical hazards, as necessary, immediately after completing the excavation. If necessary, the excavation will be re-opened after receipt of the analytical results to extend the excavation laterally as necessary.

The staged soil will be characterized as required by DER-10 and the receiving facility. TCLP samples will be collected to evaluate for "contained in" determination.

Hot spot excavation and soil transportation will be performed by:

Galusha & Sons, LLC 426 Dix Avenue Queensbury, NY 12804

Assuming "Contained In Determination", Contaminated soils will be disposed of at:

ESMI of NY 304 Towpath Ln Fort Edward, NY 12828

Vacuum Truck Dewatering will be performed by:

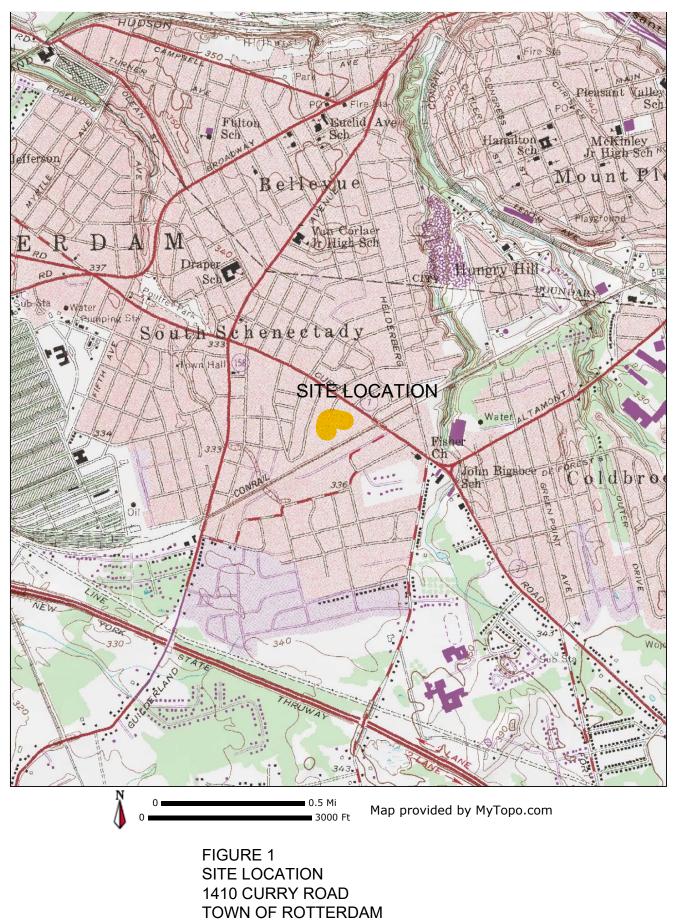
MC Environmental Services, Inc. 526 Queensbury Avenue Queensbury, NY 12804

6.0 HEALTH AND SAFETY

All intrusive work within the 0.5-acre site will be performed in accordance with 29 CFR 1910.120 (OSHA Hazardous Waste Operations Training) and the generic Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) included in the SMP. As required in the SMP the contractors have provided individual HASPs. Galusha and Son's, Inc HASP is included in Appendix E. MC Environmental Services Inc. HASP is included in Appendix F. All information contained in the Generic Health and Safety Plan is current with the exception of the Site Supervisor, Health and Safety Officer and NYSDEC project manager. Updated contacts and emergency contact numbers are included in Appendix G.

7.0 SCHEDULE

Excavation of the "hot spot" soils is anticipated to be performed the week of October 30, 2017. Staged soil will be characterized for subsequent disposal. Transport and disposal will be scheduled once waste characterization has been completed. It is anticipated that characterization of stage soil will take approximately 2-weeks, with transport and disposal within two weeks of soil characterization. NYSDEC and NYSDOH will be notified of the specific dates once the schedules are confirmed.


If you have any questions regarding this CMWP, please contact Hanson Van Vleet LLC at (518) 371-7940.

Very truly yours, Hanson Van Vleet, LLC

Hily Van Unt

Corrective Measures Work Plan Former Don's Laundry, Rotterdam, NY Page 6 of 6

Kirby Van Vleet Vice President Attachments

SCHENECTADY COUNTY, NEW YORK

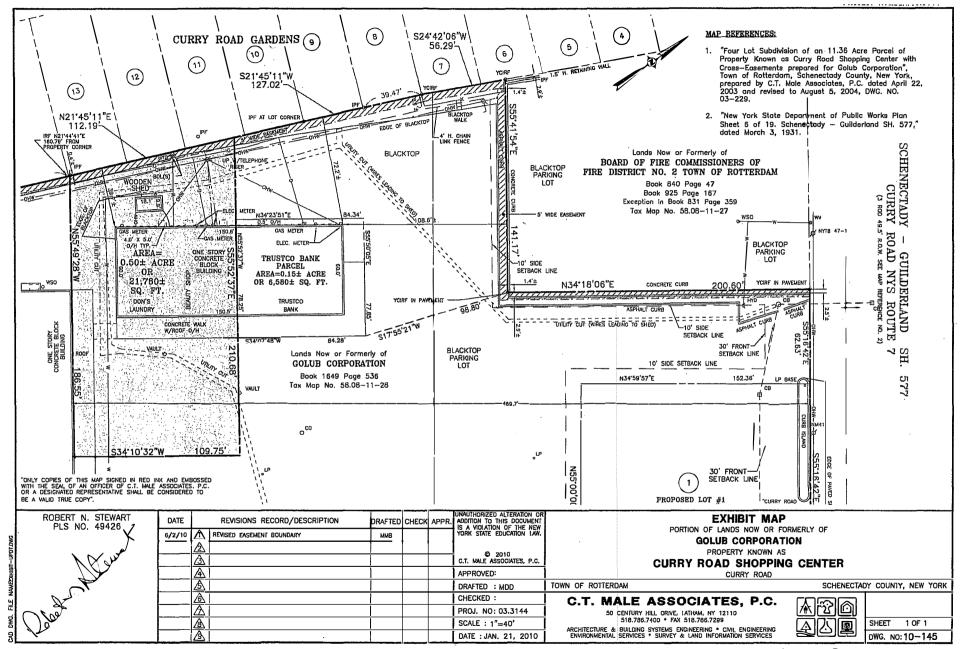


Figure 2

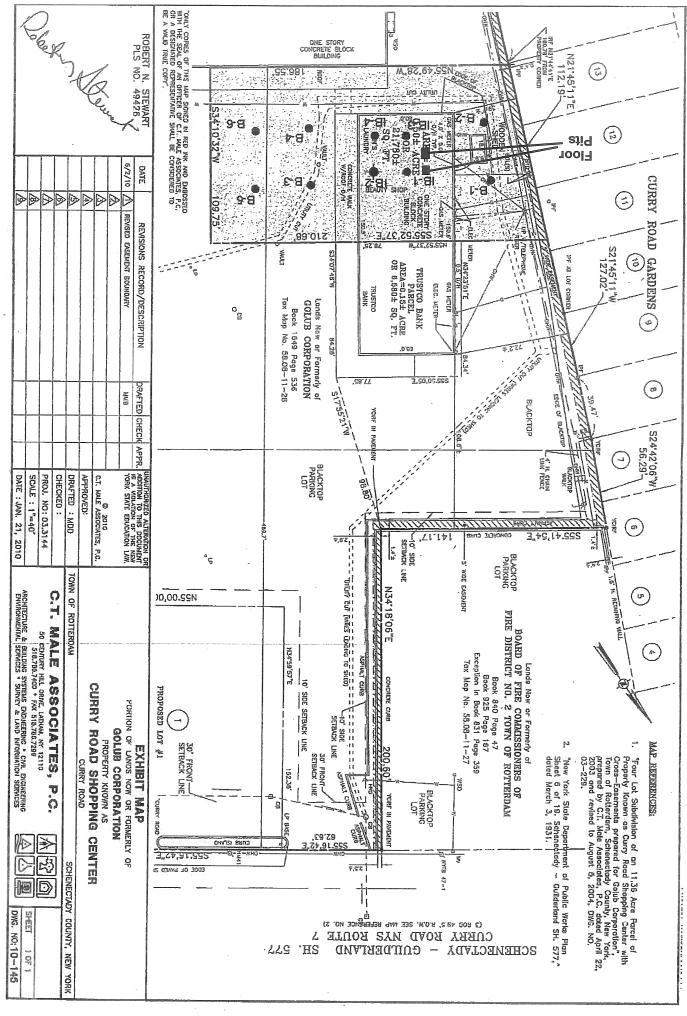


FIGURE 3

Table 1
Curry Plaza
VOC Concentrations in Soil Samples (PPM)

					VOC Co	oncentra	ations ir	n Soil S	amples ((PPM)					
Parameter	B-1 2.0'	B-2 2.0'	B-3 2.0'	B-4 2.0'	B-5 2.0'	B-6 2.0'	IB S-1C 3.0'	IB S-2C 6.0'	IB S-3C 12.0'	IB S-4C 14.0'	IB S-5C 15.0'	IB S-6C, 17.0' Dup of S- 2C, 6.0'	Pit NE	Pit SW	6 NYCRR Part 375-6.8(a) Unrestricted Use SCO
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20, 0.0 ND	ND	ND	0.68
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.27
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.33
1,2,3 Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.55
1,2,4 Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2-Dibromo-3-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
chloropropane 1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	1.1
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	0.02
1,3-Dichlorobenzene								-							
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4
2-Hexanone	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	0.011	ND ND	1.8
4-Methyl-2-pentanone	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Acetone	ND	ND	ND	0.0094	ND	ND	ND	0.034	ND	0.0068	ND	0.041JS	ND	ND	0.05
Benzene	ND	ND	ND	JS ND	ND	ND	ND	JS ND	ND	JS ND	ND	ND	ND	ND	
Bromochloromethane	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND			ND	0.06
Bromodichloromethane							ND					ND	ND		
Bromoform	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Carbon Disulfide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.70
Chlorobenzene	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	0.76
Chloroform	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1
Chloromethane	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND				0.37
cis-1,2-Dichloroethene	ND	ND	ND	0.0016J	ND	ND ND	ND	ND	0.00086	0.0016	ND	ND ND	ND	ND 0.039	0.05
·									J	J			0.040		0.25
Cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
m & p-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.26
Methyl ethyl ketone	ND	ND	ND	ND	ND	ND	ND	0.017 J	ND	ND	ND	ND	ND	ND	0.12
MTBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.93
Methylacetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Methylcyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Tetrachloroethene	0.0027 J	ND	0.005 1 J	0.084D	0.0036 J	0.0021 J	0.150 D	ND	0.110D	7.100 D	36.000 D	0.140D	220.0 L	100.0 L	1.3
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7
Total Xylenes	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.26
Trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.19
Trans-1,3- Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Trichloroethene	ND	ND	ND	0.00093 J	ND	ND	ND	ND	0.0014J	0.130	ND	ND	0.300 L	0.260 L	0.47
			1	, v				<u> </u>				ł		_	1
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Trichlorofluoromethane Trichlorofluoroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	

J-Estimated when compound is above MDL but below PQL(RL) Practical Quantitation Level or Reporting Level. S-Compound is a solvent used in laboratory. D- indicates compounds identified in an analysis at a secondary dilution factor. L-Biased Low, Shaded-detected above MDL, Bold-Exceeds 6 NYCRR Part 375-6.8(a) Unrestricted Use Soil Cleanup Objective, IB samples are composite samples combined from interior soil borings IB-1, IB-2, IB-3 and IB-4, Sample IB S-6C 17.0' is a blind duplicate of sample IB S-2C 6.0'.

APPENDIX A EXCAVATION WORK PLAN

APPENDIX C – EXCAVATION WORK PLAN

This Excavation Work Plan (EWP) is for the former Don's Laundry facility located at 1410 Curry Road in Rotterdam, Schenectady County, New York. The site is currently listed as a Class 4 site in the New York State Department of Environmental Conservation (NYSDEC) registry of Inactive Hazardous Waste Sites. The site is that portion of the shopping center that consisted of Don's Laundry and the area behind Don's Laundry. A survey showing the boundaries of the Don's Laundry site is attached as Figure 1 in the Site Management Plan (SMP). This EWP describes the procedures to be followed during implementation of foundation removal and excavation activities during any future construction at Don's Laundry at the Curry Road Shopping Center and it is consistent with the Declaration of Covenants and Deed Restrictions (Appendix A). Groundwater and soil vapor sampling indicate residual contamination of volatile organic compounds (VOCs).

The scope of work addresses the area containing the site. The scope of work will also address foundation removal and excavation of impacted media when and if the building is removed. Upon removal of the foundations, screening to identify environmentally impaired soil will be performed and any impacted soil handled in accordance with the Site Management Plan. Buried debris will be excavated and removed. The EWP describes the protocol and procedures to be followed to protect human health and the environment during foundation removal and excavation activities, and fulfills specific applicable requirements of the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH).

Components of the EWP address mitigation of human health and environmental risks from the potential emissions of VOCs as well as physical hazards resulting from the excavations. All work will be performed in accordance with the Site Health and Safety Plan (HASP, Appendix D of the SMP).

A-1 NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the site owner or their representative will notify the Department. Currently, this notification will be made to:

Christopher O'Neill, Environmental Engineer

Regional Environmental Engineer

NYSDEC Region 4 Headquarters 1130 North Westcott Road, Schenectady, NY 12306 Phone: (518) 357-2145

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent, plans for site re-grading, intrusive elements or utilities to be installed below the soil cover,
- A summary of environmental conditions anticipated in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work,
- A summary of the applicable components of this EWP,
- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120,
- A copy of the contractor's health and safety plan, in electronic format, if it differs from the HASP provided in Appendix D of the SMP,
- Identification of disposal facilities for potential waste streams,
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

A-2 SOIL SCREENING METHODS

Visual, olfactory and instrument-based soil screening will be performed by a qualified environmental professional during all remedial and development excavations into known or potentially contaminated material (remaining contamination). Soil screening will be performed regardless of when the invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the COC.

Soils will be segregated based on previous environmental data and screening results into material that requires off-site disposal, material that requires testing, material that can be returned to the subsurface.

A-3 STOCKPILE METHODS

Soil stockpiles will be placed on top of and covered with heavy duty plastic sheeting. Wherever possible, broken concrete and excavated soil will be stockpiled on areas with improved asphalt or concrete surface. Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Potentially hazardous waste will be stored in a Potentially Hazardous Waste Storage Area that will be specifically selected for each investigation area. The location of the Potentially Hazardous Waste Storage Area may change contingent upon the nature and location of field activities. Stockpile covering will be in good condition, joined at the seams, and securely anchored to minimize headspace where vapors may accumulate.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC.

A-4 MATERIALS EXCAVATION AND LOAD OUT

Excavations made for any reason will be graded and/or backfilled with clean imported soil to mitigate physical hazards and to prevent ponding of water during rainfall. As a temporary measure, the excavation sidewalls will be sloped to reduce personnel trip and fall hazards during work in the area. Backfill materials will be sampled in accordance with DER-10 to determine suitability for use on site. Coarse grained soils with a minor amount of fines to bind the soil are preferred for use as backfill as they are easier to compact and will allow water to more readily drain into surrounding soils. The excavation contractor will utilize compaction equipment suitable for use in the resulting excavations.

Parking areas, staging areas, and traffic pathways on the site shall be cleaned as necessary to control dust emissions. Adjacent public streets shall also be cleaned if necessary when soil material from the site is visible. In addition, excavation activities will be suspended when winds (instantaneous gusts) exceed 25 miles per hour.

A qualified environmental professional or person under their supervision will oversee all invasive work and the excavation and load-out of all excavated material.

The owner of the property and its contractors are solely responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under the SMP is posed by utilities or easements on the site.

Loaded vehicles leaving the site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements).

A truck wash will be operated on-site. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the site until the activities performed under this section are complete.

Locations where vehicles enter or exit the site shall be inspected daily for evidence of off-site soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the site are clean of dirt and other materials derived from the site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to site-derived materials.

A-5 MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

All trucks will be washed prior to leaving the site. Truck wash waters will be collected and disposed of off-site in an appropriate manner.

Truck transport routes are to be pre-approved mapped routes and all transporters are to follow the mapped route. All trucks loaded with site materials will exit the vicinity of the site using only these approved truck routes. This is the most appropriate route and takes into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport; [(g) community input [where necessary]]

Trucks will be prohibited from stopping and idling in the neighborhood outside the project site.

Egress points for truck and equipment transport from the site will be kept clean of dirt and other materials during site remediation and development.

Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Off-site queuing will be prohibited.

A-6 MATERIALS DISPOSAL OFF-SITE

All soil/fill/solid waste excavated and removed from the site will be treated as contaminated and regulated material and will be transported and disposed in accordance with all local, State (including 6NYCRR Part 360) and Federal regulations. If disposal of soil/fill from this site is proposed for unregulated off-site disposal (i.e. clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC. Unregulated off-site management of materials from this site will not occur without formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the preexcavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, i.e. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling facility, etc. Actual disposal quantities and associated documentation will be reported to the NYSDEC in the Periodic Review Report. This documentation will include: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-site will be handled, at minimum, as a Municipal Solid Waste per 6NYCRR Part 360-1.2. Material that does not meet Track 1 unrestricted SCOs is prohibited from being taken to a New York State recycling facility (6NYCRR Part 360-16 Registration Facility).

A-7 MATERIALS REUSE ON-SITE

The qualified environmental professional will ensure that procedures defined for materials reuse in this SMP are followed and that unacceptable material does not remain on-site. Contaminated on-site material, including historic fill and contaminated soil, that is acceptable for re-use on-site will be placed below the demarcation layer or impervious surface, and will not be reused within a cover soil layer, within landscaping berms, or as backfill for subsurface utility lines.

Any demolition material proposed for reuse on-site will be sampled for asbestos and the results will be reported to the NYSDEC for acceptance. Concrete crushing or processing on-site will not be performed without prior NYSDEC approval. Organic

matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the site will not be reused on-site.

A-8 FLUIDS MANAGEMENT

All liquids to be removed from the site, including excavation dewatering and groundwater monitoring well purge and development waters, will be handled, transported and disposed in accordance with applicable local, State, and Federal regulations. Dewatering, purge and development fluids will not be recharged back to the land surface or subsurface of the site, but will be managed off-site.

Discharge of water generated during large-scale construction activities to surface waters (i.e. a local pond, stream or river) will be performed under a SPDES permit.

A-9 BACKFILL FROM OFF-SITE SOURCES

All materials proposed for import onto the site will be approved by the qualified environmental professional and will be in compliance with provisions in this SMP prior to receipt at the site.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the site.

All imported soils will meet the backfill and cover soil quality guidance established in DER-10 Section 5.4(e). Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this site, will not be imported onto the site without prior approval by NYSDEC. Solid waste will not be imported onto the site.

Trucks entering the site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

A-12 CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for full a full list of analytes (TAL metals; TCL volatiles and semi-volatiles, TCL pesticides and PCBs), unless the site history and previous sampling results provide a sufficient justification to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC for approval prior to sampling.

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the periodic reports prepared pursuant to Section 4.3 of the SMP.

A-13 COMMUNITY AIR MONITORING PLAN

A generic Community Air Monitoring Plan (CAMP) that is consistent with DER-10, will be employed during any excavation activities.

• **Continuous monitoring** will be required for all ground intrusive activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.

2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.

3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.

4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

5. All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.

Fugitive Dust and Particulate Monitoring

A program for suppressing fugitive dust and particulate matter monitoring at hazardous waste sites is a responsibility on the remedial party performing the work. These procedures must be incorporated into appropriate intrusive work plans. The following fugitive dust suppression and particulate monitoring program should be employed at sites during construction and other intrusive activities which warrant its use:

- 1. Reasonable fugitive dust suppression techniques must be employed during all site activities which may generate fugitive dust.
- 2. Particulate monitoring must be employed during the handling of waste or contaminated soil or when activities on site may generate fugitive dust from exposed waste or contaminated soil. Remedial activities may also include the excavation, grading, or placement of clean fill. These control measures should not be considered necessary for these activities.
- 3. Particulate monitoring must be performed using real-time particulate monitors and shall monitor particulate matter less than ten microns (PM10) with the following minimum performance standards:

(a) Objects to be measured: Dust, mists or aerosols;

(b) Measurement Ranges: 0.001 to 400 mg/m3 (1 to 400,000 :ug/m3);

(c) Precision (2-sigma) at constant temperature: +/-10 :g/m3 for one second

averaging; and +/- 1.5 g/m3 for sixty second averaging;

(d) Accuracy: +/-5% of reading +/- precision (Referred to gravimetric calibration with SAE fine test dust (mmd= 2 to 3 :m, g= 2.5, as aerosolized);

(e) Resolution: 0.1% of reading or 1g/m3, whichever is larger;

(f) Particle Size Range of Maximum Response: 0.1-10;

(g) Total Number of Data Points in Memory: 10,000;

(h) Logged Data: Each data point with average concentration, time/date and data point number

(i) Run Summary: overall average, maximum concentrations, time/date of maximum, total number of logged points, start time/date, total elapsed time (run duration), STEL concentration and time/date occurrence, averaging (logging) period, calibration factor, and tag number;

(j) Alarm Averaging Time (user selectable): real-time (1-60 seconds) or STEL (15 minutes), alarms required;

(k) Operating Time: 48 hours (fully charged NiCd battery); continuously with charger;

(1) Operating Temperature: -10 to 50_{\circ} C (14 to 122_{\circ} F);

(m) Particulate levels will be monitored upwind and immediately downwind at the working site and integrated over a period not to exceed 15 minutes.

- 4. In order to ensure the validity of the fugitive dust measurements performed, there must be appropriate Quality Assurance/Quality Control (QA/QC). It is the responsibility of the remedial party to adequately supplement QA/QC Plans to include the following critical features: periodic instrument calibration, operator training, daily instrument performance (span) checks, and a record keeping plan.
- 5. The action level will be established at 150 ug/m3 (15 minutes average). While conservative, this short-term interval will provide a real-time assessment of onsite air quality to assure both health and safety. If particulate levels are detected in excess of 150 ug/m3, the upwind background level must be confirmed immediately. If the working site particulate measurement is greater than 100 ug/m3 above the background level, additional dust suppression techniques must be implemented to reduce the generation of fugitive dust and corrective action taken to protect site personnel and reduce the potential for contaminant migration. Corrective measures may include increasing the level of personal protection for on-site personnel and implementing additional dust suppression techniques (see paragraph 7). Should the action level of 150 ug/m3 continue to be exceeded work must stop and DER must be notified as provided in the site design or remedial work plan. The notification shall include a description of the control measures implemented to prevent further exceedances.
- 6. It must be recognized that the generation of dust from waste or contaminated soil that migrates off-site, has the potential for transporting contaminants off-site. There may be situations when dust is being generated and leaving the site and the monitoring equipment does not measure PM10 at or above the action level. Since this situation has the potential to allow for the migration of contaminants off-site, it is unacceptable. While it is not practical to quantify total suspended particulates on a real-time basis, it is appropriate to rely on visual observation. If dust is observed leaving the working site, additional dust suppression techniques must be employed. Activities that have a high dusting potential--such as solidification and treatment involving materials like kiln dust and lime--will require the need for special measures to be considered.
- 7. The following techniques have been shown to be effective for the controlling of the generation and migration of dust during construction activities:
 - (a) Applying water on haul roads;
 - (b) Wetting equipment and excavation faces;
 - (c) Spraying water on buckets during excavation and dumping;
 - (d) Hauling materials in properly tarped or watertight containers;
 - (e) Restricting vehicle speeds to 10 mph;
 - (f) Covering excavated areas and material after excavation activity ceases; and
 - (g) Reducing the excavation size and/or number of excavations.

Experience has shown that the chance of exceeding the 150ug/m3 action level is remote when the above-mentioned techniques are used. When techniques involving water application are used, care must be taken not to use excess water, which can result in unacceptably wet conditions. Using atomizing sprays will prevent overly wet conditions, conserve water, and provide an effective means of suppressing the fugitive dust.

8. The evaluation of weather conditions is necessary for proper fugitive dust control. When extreme wind conditions make dust control ineffective, as a last resort remedial actions may need to be suspended. There may be situations that require fugitive dust suppression and particulate monitoring requirements with action levels more stringent than those provided above. Under some circumstances, the contaminant concentration and/or toxicity may require additional monitoring to protect site personnel and the public. Additional integrated sampling and chemical analysis of the dust may also be in order. This must be evaluated when a health and safety plan is developed and when appropriate suppression and monitoring requirements are established for protection of health and the environment.

Exceedance of action levels listed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers.

APPENDIX B

PRE-CONSTRUCTION SOIL BORING LOGS

HANSO	N VAN V	LEET, LLC	902 Route	e 146, Clifton	Park, NY 120	65	BORING NO	Э. B-1
PROJECT	T: The Res	idences of Vista	Square				Sheet 1 of 1	
CLIENT:	Capital Dire	strict Properties/	RBC Cons	truction Inc			Job No.:	
DRILLING	CONTRA	CTOR: Aztech E	nvironmer	ntal			Meas.	
PURPOS	E: Subsurfa	ace Investigatior	า				Ground Elev.:	
DRILLING	METHOD:	: Direct Push		SAMPLE	CORE	CASING	Datum: GL	
DRILL RIC	G TYPE: G	eoprobe	TYPE	DP			Date Started:	5/27/16
	WATER D		DIAM.	2"			Date Finished:	5/27/16
	ING POINT		WEIGHT	NA			Driller:	
		MENT: 5/27/16		NA			Inspector: Lau	-
Depth Ft.	Sample No.	Blows on	Unified- Class	PID (ppm)	Ge	eologic Des	cription	Remarks
Γι.	S-1	Sample Spoon	Class	(ppm)	Asphalt			Cuttings
1			SP		Br m-f SAN	ID, tr \$ilt		DRY
	S-2							DRY
2			SP		Br m-f SAN	ND, tr Silt		Rec: 1.7'
3								1
4								
5								
6								
7								
8								
9								
5								
10								
11 —								
11								
12								
40								
13								
14								
15								
16								
								1
17								
18								
19								
20								
20	20							

HANSO	N VAN VI	LEET, LLC	902 Route	146, Clifton	Park, NY 120	65	BORING NO	D. B-2
PROJEC 1	: The Res	idences of Vista	Square				Sheet 1 of 1	
CLIENT:	Capital Dirs	strict Properties/	RBC Cons	truction Inc			Job No.:	
DRILLING	CONTRAC	CTOR: Aztech E	nvironmer	ntal			Meas.	
PURPOS	E: Subsurfa	ace Investigatior	า				Ground Elev.:	
DRILLING	METHOD:	Direct Push		SAMPLE	CORE	CASING	Datum: GL	
DRILL RIC	G TYPE: G	eoprobe	TYPE	DP			Date Started: 5	5/27/16
	WATER D		DIAM.	2"			Date Finished:	5/27/16
	ING POINT		WEIGHT	NA			Driller:	
		MENT: 5/27/16		NA			Inspector: Lau	-
Depth Ft.	Sample	Blows on	Unified- Class	PID	Ge	eologic Des	cription	Remarks
Γι.	No. S-1	Sample Spoon	Class	(ppm)	Fill-Br-Gr c	-f SAND. Lit	ttle f G, trace \$	Cuttings DRY
1			SP					
	S-2				Br m-f SAN	ID, tr \$ilt		DRY
2			SP					Rec: 1.6'
3								
4								
5								
6								
7								
8								
9								
5								
10								
11								
11								
12								
40								
13								
14								
15		ļ						
16								
17								
18					ļ			
10								
19								
20								

HANSO	N VAN V	LEET, LLC	902 Route	e 146, Clifton	Park, NY 120	65	BORING NO	О. B-3
PROJECT	T: The Res	idences of Vista	Square				Sheet 1 of 1	
CLIENT:	Capital Dirs	strict Properties/	RBC Cons	truction Inc			Job No.:	
DRILLING	CONTRAC	CTOR: Aztech E	nvironmer	ntal			Meas.	
PURPOS	E: Subsurfa	ace Investigatior	า				Ground Elev.:	
DRILLING	METHOD:	: Direct Push		SAMPLE	CORE	CASING	Datum: GL	
DRILL RIC	G TYPE: G	eoprobe	TYPE	DP			Date Started:	5/27/16
	WATER D		DIAM.	2"			Date Finished:	5/27/16
	ING POINT		WEIGHT	NA			Driller:	
		MENT: 5/27/16		NA			Inspector: Lau	-
Depth	Sample	Blows on	Unified-	PID (ppm)	Ge	eologic Des	cription	Remarks
Ft.	No. S-1	Sample Spoon	Class	(ppm)	Asphalt			Cuttings
1	0.		SP		Br m-f SAN	ID, tr \$ilt		DRY
	S-2		0.0					DRY
2			SP		Br m-f SAN	iD, tr Silt		Rec: 1.6'
3					ļ			
4								
5								
6								
7 -								
8								
9								
3								
10								
11								
12								1
10								
13								
14								
15								
16								
17								
18								
10								
19								
20								

HANSO		LEET, LLC			Park, NY 120		BORING N	О. B-4		
PROJECT	T: The Res	idences of Vista	Square				Sheet 1 of 1			
CLIENT:	Capital Dirs	strict Properties/	RBC Cons	truction Inc			Job No.:			
DRILLING	CONTRAC	CTOR: Aztech E	invironmer	ntal			Meas.			
PURPOS	E: Subsurfa	ace Investigatior	ו				Ground Elev.:			
DRILLING	METHOD:	Direct Push		SAMPLE	CORE	CASING	Datum: GL			
DRILL RIC	G TYPE: G	eoprobe	TYPE	DP			Date Started:	5/27/16		
	WATER D		DIAM.	2"			Date Finished:	5/27/16		
	ING POINT		WEIGHT	NA			Driller:			
		MENT: 5/27/16		NA			Inspector: Lau	-		
Depth Ft.	Sample	Blows on	Unified-	PID (ppm)	Ge	eologic Des	cription	Remarks		
Γι.	No. S-1	Sample Spoon	Class	(ppm)	Asphalt			Cuttings		
1 -	•		SP		Br m-f SAN			DRY		
	S-2		0.0			Br m-f SAND), tr Clay, tr	DRY		
2			SP		Organic mt	Iri		Rec: 1.6'		
3										
4										
5										
6										
7 —										
8										
9										
3										
10										
11										
11										
12										
10										
13										
14										
15										
16										
17										
18										
10										
19										
20										
20										

HANSO	N VAN V	LEET, LLC	902 Route	e 146, Clifton	Park, NY 120	65	BORING NO	O. B-5
PROJECT	T: The Res	idences of Vista	Square				Sheet 1 of 1	
CLIENT:	Capital Dirs	strict Properties/	RBC Cons	truction Inc			Job No.:	
DRILLING	CONTRAC	CTOR: Aztech E	Invironmer	ntal			Meas.	
PURPOS	E: Subsurfa	ace Investigatior	า				Ground Elev.:	
DRILLING	METHOD:	: Direct Push		SAMPLE	CORE	CASING	Datum: GL	
DRILL RIC	G TYPE: G	eoprobe	TYPE	DP			Date Started:	5/27/16
	WATER D		DIAM.	2"			Date Finished:	5/27/16
	ING POINT		WEIGHT	NA			Driller:	
		MENT: 5/27/16		NA			Inspector: Lau	-
Depth	Sample	Blows on	Unified-	PID (nnm)	Ge	eologic Des	cription	Remarks
Ft.	No. S-1	Sample Spoon	Class	(ppm)	Asphalt			Cuttings
1	0.		SP		Br m-f SAN	ID, tr \$ilt		DRY
_	S-2		0.5		5 (0))			DRY
2			SP		Br m-f SAN	ıD, tr Şilt		Rec: 1.8'
3					ļ			
4								
5								
6								
7 -								
8								
9								
3								
10								
11 —								
11								
12				1				
40								
13								
14								
15								
16								
				1				1
17								
18								
19								
20								
20	0							

HANSO	N VAN V	LEET, LLC	902 Route	e 146, Clifton	Park, NY 120	65	BORING N	Э. B-6		
PROJECT	T: The Res	idences of Vista	Square				Sheet 1 of 1			
CLIENT:	Capital Dirs	strict Properties/	RBC Cons	truction Inc			Job No.:			
DRILLING	CONTRAC	CTOR: Aztech E	nvironmer	ntal			Meas.			
PURPOS	E: Subsurfa	ace Investigatior	า				Ground Elev.:			
DRILLING	METHOD:	: Direct Push		SAMPLE	CORE	CASING	Datum: GL			
DRILL RIC	G TYPE: G	eoprobe	TYPE	DP			Date Started:	5/27/16		
	WATER D		DIAM.	2"			Date Finished	5/27/16		
	ING POINT		WEIGHT	NA			Driller:			
		MENT: 5/27/16		NA			Inspector: Lau	-		
Depth	Sample	Blows on	Unified-	PID (ppm)	Ge	eologic Des	cription	Remarks		
Ft.	No. S-1	Sample Spoon	Class	(ppm)	Asphalt			Cuttings		
1	0.		SP		Br m-f SAN	ID, tr \$ilt		DRY		
_	S-2					(04)		DRY		
2			SP		BIACK-DK E	Br m-f SAND organic m		Rec: 1.7'		
3					ļ	organic m				
				1						
4										
5										
-										
6										
7										
1										
8										
9										
10										
11										
12								1		
				1						
13										
14										
15										
16										
17				1						
10										
18								+		
19										
20										

HANSO	N VAN V	LEET, LLC	902 Route	e 146, Clifton	Park, NY 120	65	BORING N	O. IB-1		
PROJEC	T: The Res	idences of Vista	Square				Sheet 1 of 1			
CLIENT:	Capital Dire	strict Properties/	RBC Cons	truction Inc			Job No.:			
DRILLING	G CONTRA	CTOR: Aztech E	Invironmer	ntal			Meas.			
PURPOS	E: Subsurfa	ace Investigatio	า				Ground Elev.:			
DRILLING	G METHOD:	: Direct Push		SAMPLE	CORE	CASING	Datum: GL			
	G TYPE: G	•	TYPE	DP			Date Started:	5/27/16		
	WATER D		DIAM.	2"			Date Finished	: 5/27/16		
	ING POINT		WEIGHT	NA			Driller:			
	-	MENT: 5/27/16		NA			Inspector: Lau	-		
Depth Ft.	Sample No.	Blows on Sample Spoon	Unified- Class	PID (ppm)	Ge	eologic Des	cription	Remarks Cuttings		
Г.	S-1	Sample Spoon	Class	(ppm)				Cuttings		
1			SP		Br m-f SAN	ID, tr \$ilt		DRY		
2	S-2		SP		Drmf CAN	ال +- ¢:۱۰		DRY		
2	S-3		37		Br m-f SAN	יש, נו אוונ		DRY		
3			SP		occ layer c	SAND		Rec: 3.0'		
4										
5										
	S-4		SP		Same, occ	layer Dk Br	m-f SAND	DRY		
6	S-5		SP		Same			Wet @ 5.5'		
7 —	5-5		35		Same			Rec: 2.5'		
	S-6		SP		Same					
8										
9										
0										
10										
11	S-7				Br m-f SAN	ID, tr \$ilt		Wet		
	S-8									
12										
13	S-9				Dk Br m-f S	SAND		Wet		
15	S-10							+		
14								Wet		
15	S-11					@ 117		Wet		
15					Grey Clay	w 14./		Wet		
16								1		
4.7										
17										
18										
19										
20								┨─────┤		

HANSO	N VAN V	LEET, LLC	902 Route	e 146, Clifton	Park, NY 120	65	BORING N	0. IB-2
PROJEC	T: The Res	idences of Vista	Square				Sheet 1 of 1	
CLIENT:	Capital Dire	strict Properties/	RBC Cons	truction Inc			Job No.:	
DRILLING	G CONTRA	CTOR: Aztech E	Invironmer	ntal			Meas.	
PURPOS	E: Subsurfa	ace Investigation	า				Ground Elev.:	
DRILLING	G METHOD	: Direct Push		SAMPLE	CORE	Datum: GL		
DRILL RI	G TYPE: G	eoprobe	TYPE	DP			Date Started:	5/27/16
GROUNE) WATER D	EPTH: NA	DIAM.	2"			Date Finished	: 5/27/16
MEASUR	ING POINT	GL	WEIGHT	NA			Driller:	
DATE OF	MEASURE	EMENT: 5/27/16	FALL	NA			Inspector: Lau	ırie Williams
Depth	Sample	Blows on	Unified-	PID	G	eologic Des	cription	Remarks
Ft.	No.	Sample Spoon	Class	(ppm)		ee.eg.e 2 ee	• · · P · · • · ·	Cuttings
1	S-1		SP		Br m-f SAN	JD tr \$ilt		DRY
•	S-2		0.		Di ili i Gi a			DITI
2			SP	1	Br m-f SAN	ND, tr \$ilt		DRY
	S-3				Same			DRY
3	4							Rec: 2.8'
4								
5			0.5		_			
6	S-4		SP		Same			DRY Wet @ 5.0'
0	S-5		SP		Same			Wet @ 5.0
7								Rec: 5.0'
_	S-6		SP		Same			Wet
8	S-7				Same			
9	5-7				Same			
-	S-8				Dk Br m-f S	SAND		
10								
11	S-9				Dk Br m-f S	SAND, tr \$ili	t	Wet
11	S-10							
12	-							
10	S-11				Same			Wet
13	S-12				Grey Clay	@ 12 2'		Wet
14	3-12		ļ		Grey Clay	ലിര്.ര		VV EL
	S-13				Grey Clay			Wet
15]]				Rec: 5.0'
16	-							
16	1							
17	1							
				1				
18	4							
19	4							
10	1							
20				1				

HANSO	N VAN V	LEET, LLC	902 Route	e 146, Clifton	Park, NY 120	65	BORING N	O. IB-3	
PROJEC	T: The Res	idences of Vista	Square				Sheet 1 of 1		
CLIENT:	Capital Dire	strict Properties/	RBC Cons	truction Inc			Job No.:		
DRILLING	G CONTRA	CTOR: Aztech E	Invironmer	ntal			Meas.		
PURPOS	E: Subsurfa	ace Investigation	า				Ground Elev.:		
DRILLING	G METHOD:	: Direct Push		SAMPLE	CORE	CASING	Datum: GL		
DRILL RI	G TYPE: G	eoprobe	TYPE	DP			Date Started:	5/27/16	
GROUND	WATER D	EPTH: NA	DIAM.	2"			Date Finished	: 5/27/16	
	ING POINT	-	WEIGHT	NA			Driller:		
		MENT: 5/27/16		NA			Inspector: Lau		
Depth	Sample	Blows on	Unified-	PID (name)	Ge	eologic Des	cription	Remarks	
Ft.	No.	Sample Spoon	Class	(ppm)			-	Cuttings	
1	S-1		SP		Br m-f SAN	ID, tr \$ilt		DRY	
			0.0						
2	S-2		SP		Br m-f SAN	ND, tr Silt		DRY Rec: 2.2'	
3		1	ļ						
_									
4									
5									
	S-4		SP		Same			DRY	
6	0.5				0			Wet @ 5.6'	
7 -	S-5		SP		Same			Rec: 5.0'	
	S-6		SP		Same			Wet	
8									
9	S-7				Dk Br m-f \$	SAND			
3	S-8				Dk Br m-f S	SAND			
10									
11	S-9				Dk Br m-f \$	SAND, tr \$ilt	t	Wet	
11	S-10								
12									
10	S-11				Same			Wet	
13	S-12				Grey Clay	@ 13.5'		Wet	
14									
	S-13				Grey Clay			Wet	
15								Rec: 5.0'	
16									
	1								
17									
18									
	1								
19									
20								ļ	
20									

HANSO	N VAN V	LEET, LLC	902 Route	146, Clifton	Park, NY 120	65	BORING NO	D. IB-4		
PROJEC	T: The Res	idences of Vista	Square				Sheet 1 of 1			
CLIENT:	Capital Dirs	strict Properties/	RBC Cons	truction Inc			Job No.:			
DRILLING	G CONTRAG	CTOR: Aztech E	Invironmer	ntal			Meas.			
PURPOS	E: Subsurfa	ace Investigatio	า				Ground Elev.:			
DRILLING	G METHOD:	Direct Push		SAMPLE	CORE	CASING	Datum: GL			
DRILL RI	G TYPE: G	eoprobe	TYPE	DP			Date Started: 8	5/27/16		
GROUNE) WATER D	EPTH: NA	DIAM.	2"			Date Finished:	5/27/16		
MEASUR	ING POINT	: GL	WEIGHT	NA			Driller:			
	1	MENT: 5/27/16		NA			Inspector: Lau	1		
Depth	Sample	Blows on	Unified-	PID	Ge	eologic Des	cription	Remarks		
Ft.	No. S-1	Sample Spoon	Class	(ppm)		-	•	Cuttings		
1			SP		Br m-f SAN	ID, tr \$ilt		DRY		
	S-2		-							
2	S-3		SP		Same, Occ	layer Dk B	r f SAND, tr \$ilt	DRY DRY		
3	3-3		SP		Same. occ	layer Lt Br	f SAND	Rec: 3.0'		
4										
5										
5	S-4		SP		Same, occ	layer Dk Br	m-f SAND	DRY		
6						•		Wet @ 6.0'		
	S-5		SP		Same					
/	S-6		SP		Same			Rec: 5.0'		
8					Carrio					
	S-7				Same					
9	S-8				Same					
10	3-0				Same					
	S-9				Br m-f SAN	ID, tr \$ilt		Wet		
11	0.40									
12	S-10				Dk Br m-f S	SAND				
	S-11				Dk Br m-f S	SAND		Wet		
13										
14	S-12				Same			Wet		
14	S-13									
15					Grey Clay	@ 14.3'		Wet, Rec: 5.0'		
16	4									
17	1									
	1									
18]									
19	4									
13	1									
20	1									

APPENDIX C

PRE-CONSTRUCTION SOIL BORING ANALYTICAL RESULTS

Tuesday, June 14, 2016

Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Project ID: CAPITAL DIST PROPS Sample ID#s: BN45281 - BN45304

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Stille

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

SDG Comments

June 14, 2016

SDG I.D.: GBN45281

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Version 1: Analysis results minus raw data.

Version 2: Complete report with raw data.

BN45302 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		05/27/16	9:00
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007	1 - 1			

Laboratory Data

SDG ID: GBN45281 Phoenix ID: BN45281

Project ID: CAPITAL DIST PROPS Client ID: B-1 1-2FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Aluminum	7290	33	6.6	mg/Kg	10	06/02/16	EK	SW6010C
	7290 ND	53 1.7	0.0 1.7	mg/Kg	1	06/02/16	EK	SW6010C
Antimony	2.7	0.7	0.66			06/02/16	EK	SW6010C SW6010C
Arsenic	2.7 26.4	0.7		mg/Kg	1	06/02/16	EK	SW6010C SW6010C
Barium	-	-	0.33	mg/Kg	1			
Beryllium	0.31	0.26	0.13	mg/Kg	1	06/02/16	EK	SW6010C
Calcium	686	N 3.3	3.0	mg/Kg	1	06/02/16	EK	SW6010C
Cadmium	ND	0.33	0.13	mg/Kg	1	06/02/16	EK	SW6010C
Chromium	6.52	0.33	0.33	mg/Kg	1	06/02/16	EK	SW6010C
Cobalt	3.37	0.33	0.33	mg/Kg	1	06/02/16	EK	SW6010C
Copper	6.50	0.33	0.33	mg/kg	1	06/02/16	EK	SW6010C
Iron	11200	33	33	mg/Kg	10	06/02/16	EK	SW6010C
Lead	3.3	0.7	0.33	mg/Kg	1	06/02/16	EK	SW6010C
Magnesium	1210	3.3	3.3	mg/Kg	1	06/02/16	EK	SW6010C
Manganese	180	3.3	3.3	mg/Kg	10	06/02/16	EK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	06/02/16	RS	SW7471B
Nickel	7.22	0.33	0.33	mg/Kg	1	06/02/16	EK	SW6010C
Potassium	480	N 7	2.6	mg/Kg	1	06/02/16	EK	SW6010C
Selenium	ND	1.3	1.1	mg/Kg	1	06/02/16	EK	SW6010C
Silver	ND	0.33	0.33	mg/Kg	1	06/02/16	EK	SW6010C
Sodium	52	N 7	2.8	mg/Kg	1	06/02/16	EK	SW6010C
Thallium	ND	1.3	1.3	mg/Kg	1	06/02/16	EK	SW6010C
Vanadium	14.1	0.3	0.33	mg/Kg	1	06/02/16	EK	SW6010C
Zinc	33.4	0.7	0.33	mg/Kg	1	06/02/16	EK	SW6010C
Percent Solid	90			%		06/01/16	W	SW846-%Solid
Soil Extraction for PCB	Completed	I				06/01/16	VC/CK	SW3545A
Soil Extraction for Pesticide	Completed	I				06/01/16	VC/CK	SW3545A
Soil Extraction for SVOA	Completed	I				06/01/16	VJ/VCK	SW3545A
Mercury Digestion	Completed	I				06/02/16	W/I	SW7471B

Client ID: B-1 1-2FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					06/01/16	G/AG	SW3050B
Polychlorinated Biphe	enyls							
PCB-1016	ND	73	73	ug/Kg	2	06/02/16	AW	SW8082A
PCB-1221	ND	73	73	ug/Kg	2	06/02/16	AW	SW8082A
PCB-1232	ND	73	73	ug/Kg	2	06/02/16	AW	SW8082A
PCB-1242	ND	73	73	ug/Kg	2	06/02/16	AW	SW8082A
PCB-1248	ND	73	73	ug/Kg	2	06/02/16	AW	SW8082A
PCB-1254	ND	73	73	ug/Kg	2	06/02/16	AW	SW8082A
PCB-1260	ND	73	73	ug/Kg	2	06/02/16	AW	SW8082A
PCB-1262	ND	73	73	ug/Kg	2	06/02/16	AW	SW8082A
PCB-1268	ND	73	73	ug/Kg	2	06/02/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	119			%	2	06/02/16	AW	40 - 140 %
% TCMX	97			%	2	06/02/16	AW	40 - 140 %
Doctinidan Sail								
Pesticides - Soil	ND	2.2	2.2	ua/Ka	n	06/03/16	CE	SW8081B
4,4' -DDD	ND	2.2 2.2	2.2	ug/Kg ug/Kg	2	06/03/16	CE	SW8081B SW8081B
4,4' -DDE		2.2 2.2			2			SW8081B SW8081B
1,4' -DDT	ND ND	2.2 7.3	2.2 7.3	ug/Kg ug/Kg	2 2	06/03/16 06/03/16	CE CE	SW8081B SW8081B
a-BHC	ND	7.5 3.7	7.3 3.7	ug/Kg ug/Kg		06/03/16	CE	SW8081B SW8081B
a-Chlordane					2			
Aldrin	ND	3.7	3.7	ug/Kg	2	06/03/16	CE	SW8081B
o-BHC	ND	7.3	7.3	ug/Kg	2	06/03/16	CE	SW8081B
Chlordane	ND	37	37	ug/Kg	2	06/03/16	CE	SW8081B
J-BHC	ND	7.3	7.3	ug/Kg	2	06/03/16	CE	SW8081B
Dieldrin	ND	3.7	3.7	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan I	ND	7.3	7.3	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan II	ND	7.3	7.3	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan sulfate	ND	7.3	7.3	ug/Kg	2	06/03/16	CE	SW8081B
Endrin	ND	7.3	7.3	ug/Kg	2	06/03/16	CE	SW8081B
Endrin aldehyde	ND	7.3	7.3	ug/Kg	2	06/03/16	CE	SW8081B
Endrin ketone	ND	7.3	7.3	ug/Kg	2	06/03/16	CE	SW8081B
g-BHC	ND	1.5	1.5	ug/Kg	2	06/03/16	CE	SW8081B
g-Chlordane	ND	3.7	3.7	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor	ND	7.3	7.3	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor epoxide	ND	7.3	7.3	ug/Kg	2	06/03/16	CE	SW8081B
Methoxychlor	ND	37	37	ug/Kg	2	06/03/16	CE	SW8081B
Toxaphene	ND	150	150	ug/Kg	2	06/03/16	CE	SW8081B
QA/QC Surrogates	- <i>i</i>			<i></i>	ā		67	
% DCBP	84			%	2	06/03/16	CE	40 - 140 %
% TCMX	73			%	2	06/03/16	CE	40 - 140 %
<u>Semivolatiles</u>								
1,1-Biphenyl	ND	260	110	ug/Kg	1	06/02/16	DD	SW8270D
I,2,4,5-Tetrachlorobenzene	ND	260	130	ug/Kg	1	06/02/16	DD	SW8270D
2,3,4,6-tetrachlorophenol	ND	260	170	ug/Kg	1	06/02/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	260	200	ug/Kg	1	06/02/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	150	120	ug/Kg	1	06/02/16	DD	SW8270D
2,4-Dichlorophenol	ND	150	130	ug/Kg	1	06/02/16	DD	SW8270D

Client ID: B-1 1-2FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
,4-Dimethylphenol	ND	260	90	ug/Kg	1	06/02/16	DD	SW8270D
,4-Dinitrophenol	ND	260	260	ug/Kg	1	06/02/16	DD	SW8270D
,4-Dinitrotoluene	ND	150	140	ug/Kg	1	06/02/16	DD	SW8270D
,6-Dinitrotoluene	ND	150	120	ug/Kg	1	06/02/16	DD	SW8270D
-Chloronaphthalene	ND	260	100	ug/Kg	1	06/02/16	DD	SW8270D
-Chlorophenol	ND	260	100	ug/Kg	1	06/02/16	DD	SW8270D
-Methylnaphthalene	ND	260	110	ug/Kg	1	06/02/16	DD	SW8270D
-Methylphenol (o-cresol)	ND	260	170	ug/Kg	1	06/02/16	DD	SW8270D
-Nitroaniline	ND	260	260	ug/Kg	1	06/02/16	DD	SW8270D
-Nitrophenol	ND	260	230	ug/Kg	1	06/02/16	DD	SW8270D
&4-Methylphenol (m&p-cresol)	ND	260	140	ug/Kg	1	06/02/16	DD	SW8270D
,3'-Dichlorobenzidine	ND	150	150	ug/Kg	1	06/02/16	DD	SW8270D
-Nitroaniline	ND	1800	790	ug/Kg	1	06/02/16	DD	SW8270D
,6-Dinitro-2-methylphenol	ND	260	260	ug/Kg	1	06/02/16	DD	SW8270D
-Bromophenyl phenyl ether	ND	260	110	ug/Kg	1	06/02/16	DD	SW8270D
-Chloro-3-methylphenol	ND	260	130	ug/Kg	1	06/02/16	DD	SW8270D
-Chloroaniline	ND	730	170	ug/Kg	1	06/02/16	DD	SW8270D
-Chlorophenyl phenyl ether	ND	260	120	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	1800	120	ug/Kg	1	06/02/16	DD	SW8270D
-Nitrophenol	ND	260	160	ug/Kg	1	06/02/16	DD	SW8270D
cenaphthene	ND	260	110	ug/Kg	1	06/02/16	DD	SW8270D
cenaphthylene	ND	150	100	ug/Kg	1	06/02/16	DD	SW8270D
cetophenone	ND	260	110	ug/Kg	1	06/02/16	DD	SW8270D
nthracene	ND	260	120	ug/Kg	1	06/02/16	DD	SW8270D
trazine	ND	150	150	ug/Kg	1	06/02/16	DD	SW8270D
enz(a)anthracene	ND	260	120	ug/Kg	1	06/02/16	DD	SW8270D
enzaldehyde	ND	260	110	ug/Kg	1	06/02/16	DD	SW8270D
enzo(a)pyrene	ND	150	120	ug/Kg	1	06/02/16	DD	SW8270D
enzo(b)fluoranthene	ND	260	120	ug/Kg	1	06/02/16	DD	SW8270D
enzo(ghi)perylene	ND	260	120	ug/Kg	1	06/02/16	DD	SW8270D
enzo(k)fluoranthene	ND	260	120	ug/Kg	1	06/02/16	DD	SW8270D
enzyl butyl phthalate	ND	260	94	ug/Kg	1	06/02/16	DD	SW8270D
is(2-chloroethoxy)methane	ND	260	100	ug/Kg	1	06/02/16	DD	SW8270D
is(2-chloroethyl)ether	ND	150	98	ug/Kg	1	06/02/16	DD	SW8270D
is(2-chloroisopropyl)ether	ND	260	100	ug/Kg	1	06/02/16	DD	SW8270D
is(2-ethylhexyl)phthalate	ND	260	100	ug/Kg	1	06/02/16	DD	SW8270D
aprolactam	ND	260	260	ug/Kg	1	06/02/16	DD	SW8270D
arbazole	ND	260	180	ug/Kg	1	06/02/16	DD	SW8270D
hrysene	ND	260	120	ug/Kg	1	06/02/16	DD	SW8270D
ibenz(a,h)anthracene	ND	150	120	ug/Kg	1	06/02/16	DD	SW8270D
ibenzofuran	ND	260	110	ug/Kg	1	06/02/16	DD	SW8270D
	ND	260	120	ug/Kg	1	06/02/16	DD	SW8270D
iethyl phthalate imethylphthalate	ND	260	120	ug/Kg ug/Kg	1	06/02/16	DD	SW8270D SW8270D
i-n-butylphthalate	ND	260	97	ug/Kg ug/Kg	1	06/02/16	DD	SW8270D SW8270D
	ND	260	97 94	ug/Kg ug/Kg	1	06/02/16	DD	SW8270D SW8270D
i-n-octylphthalate	ND	260	94 120	ug/Kg ug/Kg	1	06/02/16		SW8270D SW8270D
luoranthene	ND	260 260	120	ug/Kg ug/Kg	1	06/02/16	DD	SW8270D SW8270D
luorene Iexachlorobenzene	ND	260 150	120	ug/Kg ug/Kg	1	06/02/16	DD	SW8270D SW8270D
	שאו	100	110	uu/Nu		UU/UZ/10	1117	

Client ID: B-1 1-2FT

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference
Hexachlorocyclopentadiene	ND	260	110	ug/Kg	1	06/02/16	DD	SW8270D
Hexachloroethane	ND	150	110	ug/Kg	1	06/02/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	120	ug/Kg	1	06/02/16	DD	SW8270D
Isophorone	ND	150	100	ug/Kg	1	06/02/16	DD	SW8270D
Naphthalene	ND	260	100	ug/Kg	1	06/02/16	DD	SW8270D
Nitrobenzene	ND	150	130	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodimethylamine	ND	260	100	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	150	120	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	150	140	ug/Kg	1	06/02/16	DD	SW8270D
Pentachlorophenol	ND	260	140	ug/Kg	1	06/02/16	DD	SW8270D
Phenanthrene	ND	150	100	ug/Kg	1	06/02/16	DD	SW8270D
Phenol	ND	260	120	ug/Kg	1	06/02/16	DD	SW8270D
Pyrene	ND	260	130	ug/Kg	1	06/02/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	65			%	1	06/02/16	DD	30 - 130 %
% 2-Fluorobiphenyl	49			%	1	06/02/16	DD	30 - 130 %
% 2-Fluorophenol	48			%	1	06/02/16	DD	30 - 130 %
% Nitrobenzene-d5	43			%	1	06/02/16	DD	30 - 130 %
% Phenol-d5	50			%	1	06/02/16	DD	30 - 130 %
% Terphenyl-d14	61			%	1	06/02/16	DD	30 - 130 %
SVOA Library Search Top 15	Completed					06/02/16	DD	

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		05/27/16	9:00
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007				

Laboratory Data

SDG ID: GBN45281 Phoenix ID: BN45282

Project ID:	CAPITAL DIST PROPS
Client ID:	B-1 2.0FT

-		RL/	LOD/		D 11 - 11		_	. .
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	92			%		06/01/16	W	SW846-%Solid
<u>1,4-dioxane</u>								
1,4-dioxane	ND	100	44	ug/kg	1	06/02/16	JLI	SW8260C
<u>Volatiles</u>								
1,1,1-Trichloroethane	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1-Dichloroethene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dibromoethane	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichloroethane	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichloropropane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
2-Hexanone	ND	27	5.5	ug/Kg	1	06/02/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	27	5.5	ug/Kg	1	06/02/16	JLI	SW8260C
Acetone	ND	55	5.5	ug/Kg	1	06/02/16	JLI	SW8260C
Benzene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Bromochloromethane	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Bromodichloromethane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Bromoform	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Bromomethane	ND	5.5	2.2	ug/Kg	1	06/02/16	JLI	SW8260C

Client ID: B-1 2.0FT

Deserveter	Decult	RL/	LOD/	Linite	Dilution	Data /Tima	Dv	Deference
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Carbon Disulfide	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Carbon tetrachloride	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Chlorobenzene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroethane	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroform	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Chloromethane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Cyclohexane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dibromochloromethane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Ethylbenzene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Isopropylbenzene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
m&p-Xylene	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl ethyl ketone	ND	33	5.5	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	11	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylacetate	ND	5.5	2.7	ug/Kg	1	06/02/16	JLI	SW8260C
Methylcyclohexane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylene chloride	ND	5.5	5.5	ug/Kg	1	06/02/16	JLI	SW8260C
o-Xylene	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Styrene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Tetrachloroethene	2.7	J 5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Toluene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Total Xylenes	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Trichloroethene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Vinyl chloride	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	101			%	1	06/02/16	JLI	70 - 130 %
% Bromofluorobenzene	93			%	1	06/02/16	JLI	70 - 130 %
% Dibromofluoromethane	100			%	1	06/02/16	JLI	70 - 130 %
% Toluene-d8	96			%	1	06/02/16	JLI	70 - 130 %
Volatile Library Search Top 10	Completed					06/03/16	JLI	

Project ID: CAPITAL DIST PROPS Client ID: B-1 2.0FT RL/ LOD/ Parameter Result PQL MDL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		05/27/16	9:15
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007	I showstow			

Laboratory Data

SDG ID: GBN45281 Phoenix ID: BN45283

Project ID: CAPITAL DIST PROPS Client ID: B-2 1.2-2FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Aluminum	7520	35	7.1	mg/Kg	10	06/02/16	EK	SW6010C
Antimony	ND	1.8	1.8	mg/Kg	1	06/02/16	EK	SW6010C
Arsenic	2.8	0.7	0.71	mg/Kg	1	06/02/16	EK	SW6010C
Barium	21.5	0.7	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Beryllium	0.35	0.28	0.14	mg/Kg	1	06/02/16	EK	SW6010C
Calcium	958	N 3.5	3.2	mg/Kg	1	06/02/16	EK	SW6010C
Cadmium	ND	0.35	0.14	mg/Kg	1	06/02/16	EK	SW6010C
Chromium	7.19	0.35	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Cobalt	3.93	0.35	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Copper	8.03	0.35	0.35	mg/kg	1	06/02/16	EK	SW6010C
ron	12000	35	35	mg/Kg	10	06/02/16	EK	SW6010C
_ead	2.6	0.7	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Magnesium	1500	3.5	3.5	mg/Kg	1	06/02/16	EK	SW6010C
Vanganese	145	3.5	3.5	mg/Kg	10	06/02/16	EK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	06/02/16	RS	SW7471B
Nickel	8.35	0.35	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Potassium	563	N 7	2.8	mg/Kg	1	06/02/16	EK	SW6010C
Selenium	ND	1.4	1.2	mg/Kg	1	06/02/16	EK	SW6010C
Silver	ND	0.35	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Sodium	79	N 7	3.0	mg/Kg	1	06/02/16	EK	SW6010C
Thallium	ND	1.4	1.4	mg/Kg	1	06/02/16	EK	SW6010C
Vanadium	15.3	0.4	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Zinc	24.4	0.7	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Percent Solid	92			%		06/01/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					06/06/16	BB	SW3545A
Soil Extraction for Pesticide	Completed					06/06/16	BB/V	SW3545A
Soil Extraction for SVOA	Completed					06/01/16	VJ/VCK	SW3545A
Mercury Digestion	Completed					06/02/16	W/I	SW7471B

Client ID: B-2 1.2-2FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Total Metals Digest	Completed					06/01/16	G/AG	SW3050B	
Polychlorinated Biphen	yls								
PCB-1016	ND	71	71	ug/Kg	2	06/02/16	AW	SW8082A	
PCB-1221	ND	71	71	ug/Kg	2	06/02/16	AW	SW8082A	
PCB-1232	ND	71	71	ug/Kg	2	06/02/16	AW	SW8082A	
PCB-1242	ND	71	71	ug/Kg	2	06/02/16	AW	SW8082A	
PCB-1248	ND	71	71	ug/Kg	2	06/02/16	AW	SW8082A	
PCB-1254	ND	71	71	ug/Kg	2	06/02/16	AW	SW8082A	
PCB-1260	ND	71	71	ug/Kg	2	06/02/16	AW	SW8082A	
PCB-1262	ND	71	71	ug/Kg	2	06/02/16	AW	SW8082A	
PCB-1268	ND	71	71	ug/Kg	2	06/02/16	AW	SW8082A	
QA/QC Surrogates				0 0					
% DCBP	166			%	2	06/02/16	AW	40 - 140 %	3
% TCMX	136			%	2	06/02/16	AW	40 - 140 %	
Pesticides - Soil		0.4	2.4		0	00/07/10	05	SW0004D	
4,4' -DDD	ND	2.1	2.1	ug/Kg	2	06/07/16	CE	SW8081B	
4,4' -DDE	ND	2.1	2.1	ug/Kg	2	06/07/16	CE	SW8081B	
4,4' -DDT	ND	2.1	2.1	ug/Kg	2	06/07/16	CE	SW8081B	
a-BHC	ND	7.1	7.1	ug/Kg	2	06/07/16	CE	SW8081B	
a-Chlordane	ND	3.6	3.6	ug/Kg	2	06/07/16	CE	SW8081B	
Aldrin	ND	3.6	3.6	ug/Kg	2	06/07/16	CE	SW8081B	
b-BHC	ND	7.1	7.1	ug/Kg	2	06/07/16	CE	SW8081B	
Chlordane	ND	36	36	ug/Kg	2	06/07/16	CE	SW8081B	
d-BHC	ND	7.1	7.1	ug/Kg	2	06/07/16	CE	SW8081B	
Dieldrin	ND	3.6	3.6	ug/Kg	2	06/07/16	CE	SW8081B	
Endosulfan I	ND	7.1	7.1	ug/Kg	2	06/07/16	CE	SW8081B	
Endosulfan II	ND	7.1	7.1	ug/Kg	2	06/07/16	CE	SW8081B	
Endosulfan sulfate	ND	7.1	7.1	ug/Kg	2	06/07/16	CE	SW8081B	
Endrin	ND	7.1	7.1	ug/Kg	2	06/07/16	CE	SW8081B	
Endrin aldehyde	ND	7.1	7.1	ug/Kg	2	06/07/16	CE	SW8081B	
Endrin ketone	ND	7.1	7.1	ug/Kg	2	06/07/16	CE	SW8081B	
g-BHC	ND	1.4	1.4	ug/Kg	2	06/07/16	CE	SW8081B	
g-Chlordane	ND	3.6	3.6	ug/Kg	2	06/07/16	CE	SW8081B	
Heptachlor	ND	7.1	7.1	ug/Kg	2	06/07/16	CE	SW8081B	
Heptachlor epoxide	ND	7.1	7.1	ug/Kg	2	06/07/16	CE	SW8081B	
Methoxychlor	ND	36	36	ug/Kg	2	06/07/16	CE	SW8081B	
Toxaphene	ND	140	140	ug/Kg	2	06/07/16	CE	SW8081B	
QA/QC Surrogates									
% DCBP	105			%	2	06/07/16	CE	40 - 140 %	
% TCMX	73			%	2	06/07/16	CE	40 - 140 %	
<u>Semivolatiles</u>									
1,1-Biphenyl	ND	250	110	ug/Kg	1	06/02/16	DD	SW8270D	
1,2,4,5-Tetrachlorobenzene	ND	250	130	ug/Kg	1	06/02/16	DD	SW8270D	
2,3,4,6-tetrachlorophenol	ND	250	170	ug/Kg	1	06/02/16	DD	SW8270D	
2,4,5-Trichlorophenol	ND	250	200	ug/Kg	1	06/02/16	DD	SW8270D	
2,4,6-Trichlorophenol	ND	140	110	ug/Kg	1	06/02/16	DD	SW8270D	
_, .,			-		-				

Client ID: B-2 1.2-2FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
2,4-Dimethylphenol	ND	250	89	ug/Kg	1	06/02/16	DD	SW8270D
,4-Dinitrophenol	ND	250	250	ug/Kg	1	06/02/16	DD	SW8270D
,4-Dinitrotoluene	ND	140	140	ug/Kg	1	06/02/16	DD	SW8270D
,6-Dinitrotoluene	ND	140	110	ug/Kg	1	06/02/16	DD	SW8270D
-Chloronaphthalene	ND	250	100	ug/Kg	1	06/02/16	DD	SW8270D
-Chlorophenol	ND	250	100	ug/Kg	1	06/02/16	DD	SW8270D
-Methylnaphthalene	ND	250	110	ug/Kg	1	06/02/16	DD	SW8270D
Methylphenol (o-cresol)	ND	250	170	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	250	250	ug/Kg	1	06/02/16	DD	SW8270D
Nitrophenol	ND	250	230	ug/Kg	1	06/02/16	DD	SW8270D
4-Methylphenol (m&p-cresol)	ND	250	140	ug/Kg	1	06/02/16	DD	SW8270D
3'-Dichlorobenzidine	ND	140	140	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	1800	780	ug/Kg	1	06/02/16	DD	SW8270D
6-Dinitro-2-methylphenol	ND	250	250	ug/Kg	1	06/02/16	DD	SW8270D
Bromophenyl phenyl ether	ND	250	110	ug/Kg	1	06/02/16	DD	SW8270D
Chloro-3-methylphenol	ND	250	130	ug/Kg	1	06/02/16	DD	SW8270D
Chloroaniline	ND	720	170	ug/Kg	1	06/02/16	DD	SW8270D
Chlorophenyl phenyl ether	ND	250	120	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	1800	120	ug/Kg	1	06/02/16	DD	SW8270D
Nitrophenol	ND	250	160	ug/Kg	1	06/02/16	DD	SW8270D
cenaphthene	ND	250	110	ug/Kg	1	06/02/16	DD	SW8270D
cenaphthylene	ND	140	100	ug/Kg	1	06/02/16	DD	SW8270D
cetophenone	ND	250	110	ug/Kg	1	06/02/16	DD	SW8270D
nthracene	ND	250	120	ug/Kg	1	06/02/16	DD	SW8270D
razine	ND	140	140	ug/Kg	1	06/02/16	DD	SW8270D
	ND	250	120	ug/Kg	1	06/02/16	DD	SW8270D
enz(a)anthracene enzaldehyde	ND	250 250	110	ug/Kg	1	06/02/16	DD	SW8270D
-	ND	140	120	ug/Kg	1	06/02/16	DD	SW8270D
enzo(a)pyrene	ND	250	120		1	06/02/16	DD	SW8270D SW8270D
enzo(b)fluoranthene				ug/Kg			DD	
enzo(ghi)perylene	ND	250	120	ug/Kg	1	06/02/16		SW8270D
enzo(k)fluoranthene	ND	250	120	ug/Kg	1	06/02/16	DD	SW8270D
enzyl butyl phthalate	ND	250	92	ug/Kg	1	06/02/16	DD	SW8270D
is(2-chloroethoxy)methane	ND	250	99 07	ug/Kg	1	06/02/16	DD	SW8270D
is(2-chloroethyl)ether	ND	140	97 00	ug/Kg	1	06/02/16	DD	SW8270D
is(2-chloroisopropyl)ether	ND	250	99 100	ug/Kg	1	06/02/16	DD	SW8270D
is(2-ethylhexyl)phthalate	ND	250	100	ug/Kg	1	06/02/16	DD	SW8270D
aprolactam	ND	250	250	ug/Kg	1	06/02/16	DD	SW8270D
arbazole	ND	250	180	ug/Kg	1	06/02/16	DD	SW8270D
hrysene	ND	250	120	ug/Kg	1	06/02/16	DD	SW8270D
ibenz(a,h)anthracene	ND	140	120	ug/Kg	1	06/02/16	DD	SW8270D
benzofuran	ND	250	100	ug/Kg	1	06/02/16	DD	SW8270D
ethyl phthalate	ND	250	110	ug/Kg	1	06/02/16	DD	SW8270D
imethylphthalate	ND	250	110	ug/Kg	1	06/02/16	DD	SW8270D
i-n-butylphthalate	ND	250	95	ug/Kg	1	06/02/16	DD	SW8270D
i-n-octylphthalate	ND	250	92	ug/Kg	1	06/02/16	DD	SW8270D
uoranthene	ND	250	120	ug/Kg	1	06/02/16	DD	SW8270D
luorene	ND	250	120	ug/Kg	1	06/02/16	DD	SW8270D
exachlorobenzene	ND	140	100	ug/Kg	1	06/02/16	DD	SW8270D
exachlorobutadiene	ND	250	130	ug/Kg	1	06/02/16	DD	SW8270D

Client ID: B-2 1.2-2FT

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference
Hexachlorocyclopentadiene	ND	250	110	ug/Kg	1	06/02/16	DD	SW8270D
Hexachloroethane	ND	140	110	ug/Kg	1	06/02/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	120	ug/Kg	1	06/02/16	DD	SW8270D
Isophorone	ND	140	100	ug/Kg	1	06/02/16	DD	SW8270D
Naphthalene	ND	250	100	ug/Kg	1	06/02/16	DD	SW8270D
Nitrobenzene	ND	140	130	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodimethylamine	ND	250	100	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	140	120	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	140	140	ug/Kg	1	06/02/16	DD	SW8270D
Pentachlorophenol	ND	250	140	ug/Kg	1	06/02/16	DD	SW8270D
Phenanthrene	ND	140	100	ug/Kg	1	06/02/16	DD	SW8270D
Phenol	ND	250	110	ug/Kg	1	06/02/16	DD	SW8270D
Pyrene	ND	250	120	ug/Kg	1	06/02/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	74			%	1	06/02/16	DD	30 - 130 %
% 2-Fluorobiphenyl	63			%	1	06/02/16	DD	30 - 130 %
% 2-Fluorophenol	51			%	1	06/02/16	DD	30 - 130 %
% Nitrobenzene-d5	48			%	1	06/02/16	DD	30 - 130 %
% Phenol-d5	47			%	1	06/02/16	DD	30 - 130 %
% Terphenyl-d14	63			%	1	06/02/16	DD	30 - 130 %
SVOA Library Search Top 15	Completed					06/02/16	DD	

3 = This parameter exceeds laboratory specified limits.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment: For PCBs, Surrogate recoveries were >150%. Sample was non detect.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inforn	Custody Information					
Matrix:	SOIL	Collected by:		05/27/16	9:15			
Location Code:	HANSONV	Received by:	В	06/01/16	18:13			
Rush Request:	Standard	Analyzed by:	see "By" below					
P.O.#:	67100.95007	l ab anatam						

Laboratory Data

SDG ID: GBN45281 Phoenix ID: BN45284

Project ID:	CAPITAL DIST PROPS
Client ID:	B-2 2.0FT

Parameter	Deput	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	D.	Reference
Parameter	Result	PQL	MDL		Dilution	Date/Time	Ву	Reference
Percent Solid	91			%		06/01/16	W	SW846-%Solid
<u>1,4-dioxane</u>								
1,4-dioxane	ND	100	44	ug/kg	1	06/02/16	JLI	SW8260C
<u>Volatiles</u>								
1,1,1-Trichloroethane	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1-Dichloroethene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dibromoethane	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichloroethane	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichloropropane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
2-Hexanone	ND	27	5.4	ug/Kg	1	06/02/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	27	5.4	ug/Kg	1	06/02/16	JLI	SW8260C
Acetone	ND	54	5.4	ug/Kg	1	06/02/16	JLI	SW8260C
Benzene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Bromochloromethane	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Bromodichloromethane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Bromoform	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Bromomethane	ND	5.4	2.2	ug/Kg	1	06/02/16	JLI	SW8260C

Client ID: B-2 2.0FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Carbon Disulfide	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Carbon tetrachloride	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Chlorobenzene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroethane	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroform	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Chloromethane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Cyclohexane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dibromochloromethane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Ethylbenzene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Isopropylbenzene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
m&p-Xylene	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl ethyl ketone	ND	33	5.4	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	11	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylacetate	ND	5.4	2.7	ug/Kg	1	06/02/16	JLI	SW8260C
Methylcyclohexane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylene chloride	ND	5.4	5.4	ug/Kg	1	06/02/16	JLI	SW8260C
o-Xylene	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Styrene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Tetrachloroethene	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Toluene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Total Xylenes	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Trichloroethene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Vinyl chloride	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	06/02/16	JLI	70 - 130 %
% Bromofluorobenzene	96			%	1	06/02/16	JLI	70 - 130 %
% Dibromofluoromethane	99			%	1	06/02/16	JLI	70 - 130 %
% Toluene-d8	95			%	1	06/02/16	JLI	70 - 130 %
Volatile Library Search Top 10	Completed					06/03/16	JLI	

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

Attn: Mr. Kirby VanVleet FOR: Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		05/27/16	9:30
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007	1 - 1			

Laboratory Data

SDG ID: GBN45281 Phoenix ID: BN45285

CAPITAL DIST PROPS Project ID: B-3 1-2FT Client ID:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Aluminum	4010	35	7.0	mg/Kg	10	06/02/16	EK	SW6010C
Antimony	ND	1.7	1.7	mg/Kg	1	06/02/16	EK	SW6010C
Arsenic	2.5	0.7	0.70	mg/Kg	1	06/02/16	EK	SW6010C
Barium	13.6	0.7	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Beryllium	0.23	B 0.28	0.14	mg/Kg	1	06/02/16	EK	SW6010C
Calcium	3530	N 3.5	3.2	mg/Kg	1	06/02/16	EK	SW6010C
Cadmium	0.15	B 0.35	0.14	mg/Kg	1	06/02/16	EK	SW6010C
Chromium	4.96	0.35	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Cobalt	3.37	0.35	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Copper	7.63	0.35	0.35	mg/kg	1	06/02/16	EK	SW6010C
Iron	10600	35	35	mg/Kg	10	06/02/16	EK	SW6010C
Lead	2.6	0.7	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Magnesium	1430	3.5	3.5	mg/Kg	1	06/02/16	EK	SW6010C
Manganese	224	3.5	3.5	mg/Kg	10	06/02/16	EK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	06/02/16	RS	SW7471B
Nickel	7.00	0.35	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Potassium	548	N 7	2.7	mg/Kg	1	06/02/16	EK	SW6010C
Selenium	ND	1.4	1.2	mg/Kg	1	06/02/16	EK	SW6010C
Silver	ND	0.35	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Sodium	140	N 7	3.0	mg/Kg	1	06/02/16	EK	SW6010C
Thallium	ND	1.4	1.4	mg/Kg	1	06/02/16	EK	SW6010C
Vanadium	12.0	0.3	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Zinc	21.1	0.7	0.35	mg/Kg	1	06/02/16	EK	SW6010C
Percent Solid	94			%		06/01/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					06/01/16	VC/CK	SW3545A
Soil Extraction for Pesticide	Completed					06/01/16	VC/CK	SW3545A
Soil Extraction for SVOA	Completed	l				06/01/16	VJ/VCK	SW3545A
Mercury Digestion	Completed					06/02/16	W/I	SW7471B

Client ID: B-3 1-2FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Total Metals Digest	Completed					06/01/16	G/AG	SW3050B
Polychlorinated Bipher	nyls							
PCB-1016	ND	69	69	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1221	ND	69	69	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1232	ND	69	69	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1242	ND	69	69	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1248	ND	69	69	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1254	ND	69	69	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1260	ND	69	69	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1262	ND	69	69	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1268	ND	69	69	ug/Kg	2	06/03/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	111			%	2	06/03/16	AW	40 - 140 %
% TCMX	90			%	2	06/03/16	AW	40 - 140 %
Pesticides - Soil								
4,4' -DDD	ND	2.1	2.1	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDE	ND	2.1	2.1	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDT	ND	2.1	2.1	ug/Kg	2	06/03/16	CE	SW8081B
a-BHC	ND	6.9	6.9	ug/Kg	2	06/03/16	CE	SW8081B
a-Chlordane	ND	3.4	3.4	ug/Kg	2	06/03/16	CE	SW8081B
Aldrin	ND	3.4	3.4	ug/Kg	2	06/03/16	CE	SW8081B
p-BHC	ND	6.9	6.9	ug/Kg	2	06/03/16	CE	SW8081B
Chlordane	ND	34	34	ug/Kg	2	06/03/16	CE	SW8081B
d-BHC	ND	6.9	6.9	ug/Kg	2	06/03/16	CE	SW8081B
Dieldrin	ND	3.4	3.4	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan I	ND	6.9	6.9	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan II	ND	6.9	6.9	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan sulfate	ND	6.9	6.9	ug/Kg	2	06/03/16	CE	SW8081B
Endrin	ND	6.9	6.9	ug/Kg	2	06/03/16	CE	SW8081B
Endrin aldehyde	ND	6.9	6.9	ug/Kg	2	06/03/16	CE	SW8081B
Endrin ketone	ND	6.9	6.9	ug/Kg	2	06/03/16	CE	SW8081B
g-BHC	ND	1.4	1.4	ug/Kg	2	06/03/16	CE	SW8081B
g-Chlordane	ND	3.4	3.4	ug/Kg	2	06/03/16	CE	SW8081B
- Heptachlor	ND	6.9	6.9	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor epoxide	ND	6.9	6.9	ug/Kg	2	06/03/16	CE	SW8081B
Vethoxychlor	ND	34	34	ug/Kg	2	06/03/16	CE	SW8081B
Toxaphene	ND	140	140	ug/Kg	2	06/03/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	93			%	2	06/03/16	CE	40 - 140 %
% TCMX	74			%	2	06/03/16	CE	40 - 140 %
Semivolatiles								
1,1-Biphenyl	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
1,2,4,5-Tetrachlorobenzene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
2,3,4,6-tetrachlorophenol	ND	250	160	ug/Kg	1	06/01/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	250	190	ug/Kg	1	06/01/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	140	110	ug/Kg	1	06/01/16	DD	SW8270D
2,4-Dichlorophenol	ND	140	120	ug/Kg	1	06/01/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
2,4-Dimethylphenol	ND	250	87	ug/Kg	1	06/01/16	DD	SW8270D
,4-Dinitrophenol	ND	250	250	ug/Kg	1	06/01/16	DD	SW8270D
,4-Dinitrotoluene	ND	140	140	ug/Kg	1	06/01/16	DD	SW8270D
,6-Dinitrotoluene	ND	140	110	ug/Kg	1	06/01/16	DD	SW8270D
-Chloronaphthalene	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
-Chlorophenol	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
-Methylnaphthalene	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
Methylphenol (o-cresol)	ND	250	170	ug/Kg	1	06/01/16	DD	SW8270D
Nitroaniline	ND	250	250	ug/Kg	1	06/01/16	DD	SW8270D
Nitrophenol	ND	250	220	ug/Kg	1	06/01/16	DD	SW8270D
4-Methylphenol (m&p-cresol)	ND	250	140	ug/Kg	1	06/01/16	DD	SW8270D
3'-Dichlorobenzidine	ND	140	140	ug/Kg	1	06/01/16	DD	SW8270D
Nitroaniline	ND	1800	760	ug/Kg	1	06/01/16	DD	SW8270D
6-Dinitro-2-methylphenol	ND	250	250	ug/Kg	1	06/01/16	DD	SW8270D
Bromophenyl phenyl ether	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
Chloro-3-methylphenol	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
Chloroaniline	ND	700	160	ug/Kg	1	06/01/16	DD	SW8270D
Chlorophenyl phenyl ether	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
Nitroaniline	ND	1800	120	ug/Kg	1	06/01/16	DD	SW8270D
Nitrophenol	ND	250	160	ug/Kg	1	06/01/16	DD	SW8270D
cenaphthene	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
cenaphthylene	ND	140	98	ug/Kg	1	06/01/16	DD	SW8270D
cetophenone	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
nthracene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
razine	ND	140	140	ug/Kg	1	06/01/16	DD	SW8270D
enz(a)anthracene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
enzaldehyde	ND	250 250	100	ug/Kg ug/Kg	1	06/01/16	DD	SW8270D
-	ND	140	110	ug/Kg ug/Kg	1	06/01/16	DD	SW8270D
enzo(a)pyrene	ND	250	120			06/01/16	DD	SW8270D
enzo(b)fluoranthene	ND	250 250	120	ug/Kg	1 1	06/01/16		SW8270D SW8270D
enzo(ghi)perylene	ND	250 250	120	ug/Kg		06/01/16		SW8270D SW8270D
enzo(k)fluoranthene				ug/Kg	1			
enzyl butyl phthalate	ND	250	91 07	ug/Kg	1	06/01/16 06/01/16	DD	SW8270D
s(2-chloroethoxy)methane	ND	250	97	ug/Kg	1		DD	SW8270D
s(2-chloroethyl)ether	ND	140	95	ug/Kg	1	06/01/16	DD	SW8270D
s(2-chloroisopropyl)ether	ND	250	98	ug/Kg	1	06/01/16	DD	SW8270D
s(2-ethylhexyl)phthalate	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
aprolactam	ND	250	250	ug/Kg	1	06/01/16	DD	SW8270D
arbazole	ND	250	180	ug/Kg	1	06/01/16	DD	SW8270D
hrysene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
ibenz(a,h)anthracene	ND	140	110	ug/Kg	1	06/01/16	DD	SW8270D
benzofuran	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
ethyl phthalate	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
methylphthalate	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
-n-butylphthalate	ND	250	93	ug/Kg	1	06/01/16	DD	SW8270D
-n-octylphthalate	ND	250	91	ug/Kg	1	06/01/16	DD	SW8270D
uoranthene	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
luorene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
exachlorobenzene	ND	140	100	ug/Kg	1	06/01/16	DD	SW8270D
exachlorobutadiene	ND	250	130	ug/Kg	1	06/01/16	DD	SW8270D

Client ID: B-3 1-2FT

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference
Hexachlorocyclopentadiene	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
Hexachloroethane	ND	140	110	ug/Kg	1	06/01/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
Isophorone	ND	140	98	ug/Kg	1	06/01/16	DD	SW8270D
Naphthalene	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
Nitrobenzene	ND	140	120	ug/Kg	1	06/01/16	DD	SW8270D
N-Nitrosodimethylamine	ND	250	99	ug/Kg	1	06/01/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	140	110	ug/Kg	1	06/01/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	140	130	ug/Kg	1	06/01/16	DD	SW8270D
Pentachlorophenol	ND	250	130	ug/Kg	1	06/01/16	DD	SW8270D
Phenanthrene	ND	140	100	ug/Kg	1	06/01/16	DD	SW8270D
Phenol	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
Pyrene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	53			%	1	06/01/16	DD	30 - 130 %
% 2-Fluorobiphenyl	47			%	1	06/01/16	DD	30 - 130 %
% 2-Fluorophenol	48			%	1	06/01/16	DD	30 - 130 %
% Nitrobenzene-d5	46			%	1	06/01/16	DD	30 - 130 %
% Phenol-d5	49			%	1	06/01/16	DD	30 - 130 %
% Terphenyl-d14	51			%	1	06/01/16	DD	30 - 130 %
SVOA Library Search Top 15	Completed					06/02/16	DD	

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	Custody Information					
Matrix:	SOIL	Collected by:		05/27/16	9:30			
Location Code:	HANSONV	Received by:	В	06/01/16	18:13			
Rush Request:	Standard	Analyzed by:	see "By" below					
P.O.#:	67100.95007	1 - 1						

Laboratory Data

SDG ID: GBN45281 Phoenix ID: BN45286

Project ID:	CAPITAL DIST PROPS
Client ID:	B-3 2.0FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
		FQL	NIDL		Dilution			
Percent Solid	94			%		06/01/16	W	SW846-%Solid
<u>1,4-dioxane</u>								
1,4-dioxane	ND	100	42	ug/kg	1	06/02/16	JLI	SW8260C
<u>Volatiles</u>								
1,1,1-Trichloroethane	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1-Dichloroethene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dibromoethane	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichloroethane	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichloropropane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
2-Hexanone	ND	26	5.3	ug/Kg	1	06/02/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	26	5.3	ug/Kg	1	06/02/16	JLI	SW8260C
Acetone	ND	53	5.3	ug/Kg	1	06/02/16	JLI	SW8260C
Benzene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Bromochloromethane	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Bromodichloromethane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Bromoform	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Bromomethane	ND	5.3	2.1	ug/Kg	1	06/02/16	JLI	SW8260C

Client ID: B-3 2.0FT

Deservator	Decult	RL/	LOD/	Linita	Dilution	Data (Times	D	Defense
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference
Carbon Disulfide	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Carbon tetrachloride	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Chlorobenzene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroethane	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroform	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Chloromethane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Cyclohexane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dibromochloromethane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Ethylbenzene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Isopropylbenzene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
m&p-Xylene	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl ethyl ketone	ND	32	5.3	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	11	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylacetate	ND	5.3	2.6	ug/Kg	1	06/02/16	JLI	SW8260C
Methylcyclohexane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylene chloride	ND	5.3	5.3	ug/Kg	1	06/02/16	JLI	SW8260C
o-Xylene	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Styrene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Tetrachloroethene	5.1	J 5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Toluene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Total Xylenes	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Trichloroethene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Vinyl chloride	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	06/02/16	JLI	70 - 130 %
% Bromofluorobenzene	95			%	1	06/02/16	JLI	70 - 130 %
% Dibromofluoromethane	104			%	1	06/02/16	JLI	70 - 130 %
% Toluene-d8	96			%	1	06/02/16	JLI	70 - 130 %
Volatile Library Search Top 10	Completed					06/03/16	JLI	

Project ID: CAPITAL DIST PROPS Client ID: B-3 2.0FT RL/ LOD/ Parameter Result PQL MDL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		05/27/16	9:38
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007	1 - 1			

Laboratory Data

SDG ID: GBN45281 Phoenix ID: BN45287

Project ID: CAPITAL DIST PROPS Client ID: B-4 1-2FT

Mercury Digestion

Client ID:	3-4 1-2FT								
Parameter		Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Aluminum		3950	37	7.4	mg/Kg	10	06/02/16	EK	SW6010C
Antimony		ND	1.8	1.8	mg/Kg	1	06/02/16	EK	SW6010C
Arsenic		2.4	0.7	0.74	mg/Kg	1	06/02/16	EK	SW6010C
Barium		14.0	0.7	0.37	mg/Kg	1	06/02/16	EK	SW6010C
Beryllium		0.25	B 0.30	0.15	mg/Kg	1	06/02/16	EK	SW6010C
Calcium		8370	N 3.7	3.4	mg/Kg	1	06/02/16	EK	SW6010C
Cadmium		ND	0.37	0.15	mg/Kg	1	06/02/16	EK	SW6010C
Chromium		5.01	0.37	0.37	mg/Kg	1	06/02/16	EK	SW6010C
Cobalt		3.18	0.37	0.37	mg/Kg	1	06/02/16	EK	SW6010C
Copper		7.65	0.37	0.37	mg/kg	1	06/02/16	EK	SW6010C
Iron		10000	37	37	mg/Kg	10	06/02/16	EK	SW6010C
Lead		3.6	0.7	0.37	mg/Kg	1	06/02/16	EK	SW6010C
Magnesium		1450	3.7	3.7	mg/Kg	1	06/02/16	EK	SW6010C
Manganese		199	3.7	3.7	mg/Kg	10	06/02/16	EK	SW6010C
Mercury		ND	0.03	0.02	mg/Kg	1	06/02/16	RS	SW7471B
Nickel		6.80	0.37	0.37	mg/Kg	1	06/02/16	EK	SW6010C
Potassium		559	N 7	2.9	mg/Kg	1	06/02/16	EK	SW6010C
Selenium		ND	1.5	1.3	mg/Kg	1	06/02/16	EK	SW6010C
Silver		ND	0.37	0.37	mg/Kg	1	06/02/16	EK	SW6010C
Sodium		124	N 7	3.2	mg/Kg	1	06/02/16	EK	SW6010C
Thallium		ND	1.5	1.5	mg/Kg	1	06/02/16	EK	SW6010C
Vanadium		10.9	0.4	0.37	mg/Kg	1	06/02/16	EK	SW6010C
Zinc		22.0	0.7	0.37	mg/Kg	1	06/02/16	EK	SW6010C
Percent Solid		88			%		06/01/16	W	SW846-%Solid
Soil Extraction for I	РСВ	Completed	I				06/01/16	VC/CK	SW3545A
Soil Extraction for Pes	ticide	Completed	I				06/01/16	VC/CK	SW3545A
Soil Extraction for S	SVOA	Completed	I				06/01/16	VJ/VCK	SW3545A

06/02/16

Completed

W/I SW7471B

Client ID: B-4 1-2FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					06/01/16	G/AG	SW3050B
Polychlorinated Biphe	enyls							
PCB-1016	ND	75	75	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1221	ND	75	75	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1232	ND	75	75	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1242	ND	75	75	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1248	ND	75	75	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1254	ND	75	75	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1260	ND	75	75	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1262	ND	75	75	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1268	ND	75	75	ug/Kg	2	06/03/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	100			%	2	06/03/16	AW	40 - 140 %
% TCMX	76			%	2	06/03/16	AW	40 - 140 %
Posticidos - Soil								
Pesticides - Soil 4,4' -DDD	ND	2.3	2.3	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDE	ND	2.3	2.3	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDT	ND	2.3	2.3	ug/Kg	2	06/03/16	CE	SW8081B
a-BHC	ND	7.5	7.5	ug/Kg	2	06/03/16	CE	SW8081B
a-Chlordane	ND	3.8	3.8	ug/Kg	2	06/03/16	CE	SW8081B
Aldrin	ND	3.8	3.8	ug/Kg	2	06/03/16	CE	SW8081B
b-BHC	ND	7.5	7.5	ug/Kg	2	06/03/16	CE	SW8081B
Chlordane	ND	38	38	ug/Kg	2	06/03/16	CE	SW8081B
d-BHC	ND	7.5	7.5	ug/Kg ug/Kg	2	06/03/16	CE	SW8081B
Dieldrin	ND	3.8	3.8	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan I	ND	7.5	5.6 7.5	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan II	ND	7.5	7.5	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan sulfate	ND	7.5	7.5	ug/Kg	2	06/03/16	CE	SW8081B
Endrin	ND	7.5	7.5	ug/Kg	2	06/03/16	CE	SW8081B
Endrin aldehyde	ND	7.5	7.5	ug/Kg	2	06/03/16	CE	SW8081B
Endrin ketone	ND	7.5	7.5	ug/Kg		06/03/16	CE	SW8081B SW8081B
g-BHC	ND	1.5	7.5 1.5	ug/Kg ug/Kg	2 2	06/03/16	CE	SW8081B SW8081B
-	ND	3.8	3.8	ug/Kg ug/Kg	2	06/03/16	CE	SW8081B
g-Chlordane	ND	5.6 7.5	3.8 7.5	ug/Kg ug/Kg	2	06/03/16	CE	SW8081B SW8081B
Heptachlor	ND	7.5	7.5	ug/Kg ug/Kg	2	06/03/16	CE	SW8081B SW8081B
Heptachlor epoxide	ND	7.5 38	38	ug/Kg ug/Kg		06/03/16	CE	SW8081B SW8081B
Methoxychlor	ND	30 150	38 150	ug/Kg ug/Kg	2	06/03/16	CE	SW8081B SW8081B
Toxaphene	ND	150	150	ug/Kg	2	00/03/10	CE	3000010
QA/QC Surrogates % DCBP	90			%	2	06/03/16	CE	40 - 140 %
% DCBP % TCMX	90 64			%	2	06/03/16	CE	40 - 140 %
Semivolatiles		260	100		4	06/01/16	20	SW/8070D
1,1-Biphenyl	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
1,2,4,5-Tetrachlorobenzene	ND	260	130	ug/Kg	1	06/01/16	DD	SW8270D
2,3,4,6-tetrachlorophenol	ND	260	180	ug/Kg	1	06/01/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	260	210	ug/Kg	1	06/01/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	150	120	ug/Kg	1	06/01/16	DD	SW8270D
2,4-Dichlorophenol	ND	150	130	ug/Kg	1	06/01/16	DD	SW8270D

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
2,4-Dimethylphenol	ND	260	94	ug/Kg	1	06/01/16	DD	SW8270D
,4-Dinitrophenol	ND	260	260	ug/Kg	1	06/01/16	DD	SW8270D
,4-Dinitrotoluene	ND	150	150	ug/Kg	1	06/01/16	DD	SW8270D
,6-Dinitrotoluene	ND	150	120	ug/Kg	1	06/01/16	DD	SW8270D
-Chloronaphthalene	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
-Chlorophenol	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
-Methylnaphthalene	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
-Methylphenol (o-cresol)	ND	260	180	ug/Kg	1	06/01/16	DD	SW8270D
-Nitroaniline	ND	260	260	ug/Kg	1	06/01/16	DD	SW8270D
-Nitrophenol	ND	260	240	ug/Kg	1	06/01/16	DD	SW8270D
&4-Methylphenol (m&p-cresol)	ND	260	150	ug/Kg	1	06/01/16	DD	SW8270D
,3'-Dichlorobenzidine	ND	150	150	ug/Kg	1	06/01/16	DD	SW8270D
Nitroaniline	ND	1900	820	ug/Kg	1	06/01/16	DD	SW8270D
6-Dinitro-2-methylphenol	ND	260	260	ug/Kg	1	06/01/16	DD	SW8270D
Bromophenyl phenyl ether	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
-Chloro-3-methylphenol	ND	260	130	ug/Kg	1	06/01/16	DD	SW8270D
-Chloroaniline	ND	760	180	ug/Kg	1	06/01/16	DD	SW8270D
-Chlorophenyl phenyl ether	ND	260	130	ug/Kg	1	06/01/16	DD	SW8270D
Nitroaniline	ND	1900	130	ug/Kg	1	06/01/16	DD	SW8270D
-Nitrophenol	ND	260	170	ug/Kg	1	06/01/16	DD	SW8270D
cenaphthene	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
cenaphthylene	ND	150	110	ug/Kg	1	06/01/16	DD	SW8270D
cetophenone	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
nthracene	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
trazine	ND	150	150	ug/Kg	1	06/01/16	DD	SW8270D
enz(a)anthracene	ND	260	130	ug/Kg	1	06/01/16	DD	SW8270D
enzaldehyde	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
enzo(a)pyrene	ND	150	120	ug/Kg	1	06/01/16	DD	SW8270D
enzo(b)fluoranthene	ND	260	130	ug/Kg	1	06/01/16	DD	SW8270D
enzo(ghi)perylene	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
enzo(k)fluoranthene	ND	260	130	ug/Kg	1	06/01/16	DD	SW8270D
enzyl butyl phthalate	ND	260	98	ug/Kg	1	06/01/16	DD	SW8270D
is(2-chloroethoxy)methane	ND	260	100	ug/Kg	1	06/01/16	DD	SW8270D
is(2-chloroethyl)ether	ND	150	100	ug/Kg	1	06/01/16	DD	SW8270D
is(2-chloroisopropyl)ether	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
is(2-ethylhexyl)phthalate	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
aprolactam	ND	260	260	ug/Kg	1	06/01/16	DD	SW8270D
	ND	260	190	ug/Kg	1	06/01/16	DD	SW8270D
arbazole	ND	260 260	130	ug/Kg ug/Kg	1	06/01/16	DD	SW8270D SW8270D
hrysene	ND	260 150	120	ug/Kg ug/Kg		06/01/16	DD	SW8270D SW8270D
ibenz(a,h)anthracene					1			
ibenzofuran	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
iethyl phthalate	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
imethylphthalate	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
i-n-butylphthalate	ND	260	100	ug/Kg	1	06/01/16	DD	SW8270D
i-n-octylphthalate	ND	260	98	ug/Kg	1	06/01/16	DD	SW8270D
luoranthene	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
luorene	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
exachlorobenzene	ND	150	110	ug/Kg	1	06/01/16	DD	SW8270D
exachlorobutadiene	ND	260	140	ug/Kg	1	06/01/16	DD	SW8270D

Client ID: B-4 1-2FT

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorocyclopentadiene	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
Hexachloroethane	ND	150	110	ug/Kg	1	06/01/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	130	ug/Kg	1	06/01/16	DD	SW8270D
Isophorone	ND	150	110	ug/Kg	1	06/01/16	DD	SW8270D
Naphthalene	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
Nitrobenzene	ND	150	130	ug/Kg	1	06/01/16	DD	SW8270D
N-Nitrosodimethylamine	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	150	120	ug/Kg	1	06/01/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	150	150	ug/Kg	1	06/01/16	DD	SW8270D
Pentachlorophenol	ND	260	140	ug/Kg	1	06/01/16	DD	SW8270D
Phenanthrene	ND	150	110	ug/Kg	1	06/01/16	DD	SW8270D
Phenol	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
Pyrene	ND	260	130	ug/Kg	1	06/01/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	50			%	1	06/01/16	DD	30 - 130 %
% 2-Fluorobiphenyl	36			%	1	06/01/16	DD	30 - 130 %
% 2-Fluorophenol	35			%	1	06/01/16	DD	30 - 130 %
% Nitrobenzene-d5	32			%	1	06/01/16	DD	30 - 130 %
% Phenol-d5	36			%	1	06/01/16	DD	30 - 130 %
% Terphenyl-d14	47			%	1	06/01/16	DD	30 - 130 %
SVOA Library Search Top 15	Completed					06/02/16	DD	

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		05/27/16	9:38
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007	l ab anatam			CDN//500

Laboratory Data

SDG ID: GBN45281 Phoenix ID: BN45288

Project ID:	CAPITAL DIST PROPS
Client ID:	B-4 2.0FT

_		RL/	LOD/				_	
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	88			%		06/01/16	W	SW846-%Solid
1,4-dioxane								
1,4-dioxane	ND	100	44	ug/kg	1	06/02/16	JLI	SW8260C
<u>Volatiles</u>								
1,1,1-Trichloroethane	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1-Dichloroethene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dibromoethane	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichloroethane	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichloropropane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
2-Hexanone	ND	28	5.5	ug/Kg	1	06/02/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	28	5.5	ug/Kg	1	06/02/16	JLI	SW8260C
Acetone	9.4	JS 50	5.5	ug/Kg	1	06/02/16	JLI	SW8260C
Benzene	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Bromochloromethane	ND	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Bromodichloromethane	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Bromoform	ND	5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Bromomethane	ND	5.5	2.2	ug/Kg	1	06/02/16	JLI	SW8260C

Client ID: B-4 2.0FT

Deremeter	Decult		RL/ PQL	LOD/ MDL	Linito	Dilution	Date/Time	D.	Deference
Parameter	Result				Units	Dilution		By	Reference
Carbon Disulfide	ND		5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Carbon tetrachloride	ND		5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Chlorobenzene	ND		5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroethane	ND		5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroform	ND		5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Chloromethane	ND		5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,2-Dichloroethene	1.6	J	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND		5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Cyclohexane	ND		5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dibromochloromethane	ND		5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dichlorodifluoromethane	ND		5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Ethylbenzene	ND		5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Isopropylbenzene	ND		5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
m&p-Xylene	ND		5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl ethyl ketone	ND		33	5.5	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND		11	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylacetate	ND		5.5	2.8	ug/Kg	1	06/02/16	JLI	SW8260C
Methylcyclohexane	ND		5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylene chloride	ND		5.5	5.5	ug/Kg	1	06/02/16	JLI	SW8260C
o-Xylene	ND		5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Styrene	ND		5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Tetrachloroethene	84	D	310	63	ug/Kg	50	06/02/16	JLI	SW8260C
Toluene	ND		5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Total Xylenes	ND		5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND		5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND		5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Trichloroethene	0.93	J	5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorofluoromethane	ND		5.5	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorotrifluoroethane	ND		5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
Vinyl chloride	ND		5.5	0.55	ug/Kg	1	06/02/16	JLI	SW8260C
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	103				%	1	06/02/16	JLI	70 - 130 %
% Bromofluorobenzene	84				%	1	06/02/16	JLI	70 - 130 %
% Dibromofluoromethane	103				%	1	06/02/16	JLI	70 - 130 %
% Toluene-d8	94				%	1	06/02/16	JLI	70 - 130 %
Volatile Library Search Top 10	Completed	ł					06/03/16	JLI	

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Information		Custody Inform	Date	<u>Time</u>	
Matrix:	SOIL	Collected by:		05/27/16	9:50
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007	1 - 1			

Laboratory Data

SDG ID: GBN45281 Phoenix ID: BN45289

Project ID: CAPITAL DIST PROPS Client ID: B-5 1-2FT

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Aluminum	5030	34	6.8	mg/Kg	10	06/02/16	EK	SW6010C
Antimony	ND	1.7	1.7	mg/Kg	1	06/02/16	ΕK	SW6010C
Arsenic	2.6	0.7	0.68	mg/Kg	1	06/02/16	ΕK	SW6010C
Barium	20.3	0.7	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Beryllium	0.28	0.27	0.14	mg/Kg	1	06/02/16	EK	SW6010C
Calcium	12800	N 34	31	mg/Kg	10	06/02/16	EK	SW6010C
Cadmium	0.19	B 0.34	0.14	mg/Kg	1	06/02/16	EK	SW6010C
Chromium	6.72	0.34	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Cobalt	3.66	0.34	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Copper	9.34	0.34	0.34	mg/kg	1	06/02/16	EK	SW6010C
Iron	12400	34	34	mg/Kg	10	06/02/16	EK	SW6010C
Lead	11.8	0.7	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Magnesium	1850	3.4	3.4	mg/Kg	1	06/02/16	EK	SW6010C
Manganese	188	3.4	3.4	mg/Kg	10	06/02/16	EK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	06/02/16	RS	SW7471B
Nickel	7.59	0.34	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Potassium	686	N 7	2.6	mg/Kg	1	06/02/16	EK	SW6010C
Selenium	ND	1.4	1.2	mg/Kg	1	06/02/16	EK	SW6010C
Silver	ND	0.34	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Sodium	317	N 7	2.9	mg/Kg	1	06/02/16	EK	SW6010C
Thallium	ND	1.4	1.4	mg/Kg	1	06/02/16	EK	SW6010C
Vanadium	15.8	0.3	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Zinc	31.0	0.7	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Percent Solid	91			%		06/01/16	W	SW846-%Solid
Soil Extraction for PCB	Completed	I				06/01/16	VC/CK	SW3545A
Soil Extraction for Pesticide	Completed	I				06/01/16	VC/CK	SW3545A
Soil Extraction for SVOA	Completed	l				06/01/16	VJ/VCK	SW3545A
Mercury Digestion	Completed	I				06/02/16	W/I	SW7471B

Client ID: B-5 1-2FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					06/01/16	G/AG	SW3050B
Polychlorinated Biphe	enyls_							
PCB-1016	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1221	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1232	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1242	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1248	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1254	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1260	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1262	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1268	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	103			%	2	06/03/16	AW	40 - 140 %
% TCMX	90			%	2	06/03/16	AW	40 - 140 %
Pesticides - Soil					_			
4,4' -DDD	18	2.2	2.2	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDE	13	2.2	2.2	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDT	ND	2.2	2.2	ug/Kg	2	06/03/16	CE	SW8081B
a-BHC	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
a-Chlordane	ND	3.6	3.6	ug/Kg	2	06/03/16	CE	SW8081B
Aldrin	ND	3.6	3.6	ug/Kg	2	06/03/16	CE	SW8081B
o-BHC	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Chlordane	ND	36	36	ug/Kg	2	06/03/16	CE	SW8081B
J-BHC	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Dieldrin	ND	3.6	3.6	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan I	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan II	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan sulfate	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Endrin	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Endrin aldehyde	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Endrin ketone	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
g-BHC	ND	1.4	1.4	ug/Kg	2	06/03/16	CE	SW8081B
g-Chlordane	ND	3.6	3.6	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor epoxide	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Vlethoxychlor	ND	36	36	ug/Kg	2	06/03/16	CE	SW8081B
Toxaphene	ND	140	140	ug/Kg	2	06/03/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	85			%	2	06/03/16	CE	40 - 140 %
% TCMX	66			%	2	06/03/16	CE	40 - 140 %
<u>Semivolatiles</u>								
1,1-Biphenyl	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
1,2,4,5-Tetrachlorobenzene	ND	250	130	ug/Kg	1	06/01/16	DD	SW8270D
2,3,4,6-tetrachlorophenol	ND	250	170	ug/Kg	1	06/01/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	250	200	ug/Kg	1	06/01/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	140	120	ug/Kg	1	06/01/16	DD	SW8270D
2,4,0-mcmorophenol	ND	140	130	ug/Kg	1	06/01/16	DD	SW8270D
		140	150	uy/rty	I I	00/01/10	00	0002700

arameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
,4-Dimethylphenol	ND	250	90	ug/Kg	1	06/01/16	DD	SW8270D
,4-Dinitrophenol	ND	250	250	ug/Kg	1	06/01/16	DD	SW8270D
,4-Dinitrotoluene	ND	140	140	ug/Kg	1	06/01/16	DD	SW8270D
,6-Dinitrotoluene	ND	140	110	ug/Kg	1	06/01/16	DD	SW8270D
-Chloronaphthalene	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
-Chlorophenol	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
Methylnaphthalene	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
Methylphenol (o-cresol)	ND	250	170	ug/Kg	1	06/01/16	DD	SW8270D
Nitroaniline	ND	250	250	ug/Kg	1	06/01/16	DD	SW8270D
Nitrophenol	ND	250	230	ug/Kg	1	06/01/16	DD	SW8270D
4-Methylphenol (m&p-cresol)	ND	250	140	ug/Kg	1	06/01/16	DD	SW8270D
3'-Dichlorobenzidine	ND	140	140	ug/Kg	1	06/01/16	DD	SW8270D
Nitroaniline	ND	1800	790	ug/Kg	1	06/01/16	DD	SW8270D
6-Dinitro-2-methylphenol	ND	250	250	ug/Kg	1	06/01/16	DD	SW8270D
Bromophenyl phenyl ether	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
Chloro-3-methylphenol	ND	250	130	ug/Kg	1	06/01/16	DD	SW8270D
Chloroaniline	ND	720	170	ug/Kg	1	06/01/16	DD	SW8270D
Chlorophenyl phenyl ether	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
Nitroaniline	ND	1800	120	ug/Kg	1	06/01/16	DD	SW8270D
Nitrophenol	ND	250	160	ug/Kg	1	06/01/16	DD	SW8270D
cenaphthene	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
cenaphthylene	ND	140	100	ug/Kg	1	06/01/16	DD	SW8270D
cetophenone	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
nthracene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
razine	ND	140	140	ug/Kg	1	06/01/16	DD	SW8270D
enz(a)anthracene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
enzaldehyde	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
enzo(a)pyrene	ND	140	120	ug/Kg	1	06/01/16	DD	SW8270D
enzo(b)fluoranthene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
enzo(ghi)perylene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
enzo(k)fluoranthene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
enzyl butyl phthalate	ND	250	93	ug/Kg	1	06/01/16	DD	SW8270D
s(2-chloroethoxy)methane	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
s(2-chloroethyl)ether	ND	140	98	ug/Kg	1	06/01/16	DD	SW8270D
s(2-chloroisopropyl)ether	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
s(2-ethylhexyl)phthalate	ND	250 250	100	ug/Kg	1	06/01/16	DD	SW8270D
aprolactam	ND	250	250	ug/Kg	1	06/01/16	DD	SW8270D
arbazole	ND	250 250	180	ug/Kg	1	06/01/16	DD	SW8270D
hrysene	ND	250 250	120	ug/Kg	1	06/01/16	DD	SW8270D
ibenz(a,h)anthracene	ND	140	120	ug/Kg	1	06/01/16	DD	SW8270D
benzofuran	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
ethyl phthalate	ND	250 250	110	ug/Kg	1	06/01/16	DD	SW8270D
methylphthalate	ND	250 250	110	ug/Kg ug/Kg	1	06/01/16		SW8270D
	ND	250	96	ug/Kg ug/Kg	1	06/01/16	DD	SW8270D
-n-butylphthalate	ND	250 250	90 93	ug/Kg ug/Kg	1	06/01/16		SW8270D SW8270D
i-n-octylphthalate	ND	250 250	93 120	ug/Kg ug/Kg	1	06/01/16		SW8270D SW8270D
uoranthene	ND	250 250	120			06/01/16		SW8270D SW8270D
uorene	ND	250 140	120	ug/Kg ug/Kg	1 1	06/01/16	DD	SW8270D SW8270D
exachlorobenzene		140	110	uu/r\u		(((((((((((((((((((((((((((((((((((((((1117	~~~~

Client ID: B-5 1-2FT

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference
Hexachlorocyclopentadiene	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
Hexachloroethane	ND	140	110	ug/Kg	1	06/01/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
Isophorone	ND	140	100	ug/Kg	1	06/01/16	DD	SW8270D
Naphthalene	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
Nitrobenzene	ND	140	130	ug/Kg	1	06/01/16	DD	SW8270D
N-Nitrosodimethylamine	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	140	120	ug/Kg	1	06/01/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	140	140	ug/Kg	1	06/01/16	DD	SW8270D
Pentachlorophenol	ND	250	140	ug/Kg	1	06/01/16	DD	SW8270D
Phenanthrene	ND	140	100	ug/Kg	1	06/01/16	DD	SW8270D
Phenol	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
Pyrene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	70			%	1	06/01/16	DD	30 - 130 %
% 2-Fluorobiphenyl	59			%	1	06/01/16	DD	30 - 130 %
% 2-Fluorophenol	60			%	1	06/01/16	DD	30 - 130 %
% Nitrobenzene-d5	55			%	1	06/01/16	DD	30 - 130 %
% Phenol-d5	62			%	1	06/01/16	DD	30 - 130 %
% Terphenyl-d14	67			%	1	06/01/16	DD	30 - 130 %
SVOA Library Search Top 15	Completed					06/02/16	DD	

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Information		Custody Inform	nation	<u>Date</u>	<u>Time</u>	
Matrix:	SOIL	Collected by:		05/27/16	9:50	
Location Code:	HANSONV	Received by:	В	06/01/16	18:13	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	67100.95007					

Laboratory Data

SDG ID: GBN45281 Phoenix ID: BN45290

Project ID:	CAPITAL DIST PROPS
Client ID:	B-5 2.0FT

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	94			%		06/01/16	W	SW846-%Solid
1,4-dioxane								
1,4-dioxane	ND	100	43	ug/kg	1	06/02/16	JLI	SW8260C
<u>Volatiles</u>								
1,1,1-Trichloroethane	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1-Dichloroethene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dibromoethane	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichloroethane	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichloropropane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
2-Hexanone	ND	27	5.3	ug/Kg	1	06/02/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	27	5.3	ug/Kg	1	06/02/16	JLI	SW8260C
Acetone	ND	50	5.3	ug/Kg	1	06/02/16	JLI	SW8260C
Benzene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Bromochloromethane	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Bromodichloromethane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Bromoform	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Bromomethane	ND	5.3	2.1	ug/Kg	1	06/02/16	JLI	SW8260C

Client ID: B-5 2.0FT

Deremeter	Decult	RL/ PQL	LOD/ MDL	Linita	Dilution	Date/Time	D./	Deference
Parameter	Result			Units	Dilution		By	Reference
Carbon Disulfide	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Carbon tetrachloride	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Chlorobenzene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroethane	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroform	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Chloromethane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Cyclohexane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dibromochloromethane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Ethylbenzene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Isopropylbenzene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
m&p-Xylene	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl ethyl ketone	ND	32	5.3	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	11	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylacetate	ND	5.3	2.7	ug/Kg	1	06/02/16	JLI	SW8260C
Methylcyclohexane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylene chloride	ND	5.3	5.3	ug/Kg	1	06/02/16	JLI	SW8260C
o-Xylene	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Styrene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Tetrachloroethene	3.6	J 5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Toluene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Total Xylenes	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Trichloroethene	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.3	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
Vinyl chloride	ND	5.3	0.53	ug/Kg	1	06/02/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	1	06/02/16	JLI	70 - 130 %
% Bromofluorobenzene	95			%	1	06/02/16	JLI	70 - 130 %
% Dibromofluoromethane	103			%	1	06/02/16	JLI	70 - 130 %
% Toluene-d8	96			%	1	06/02/16	JLI	70 - 130 %
Volatile Library Search Top 10	Completed					06/03/16	JLI	

Project ID: CAPITAL DIST PROPS Client ID: B-5 2.0FT RL/ LOD/ Parameter Result PQL MDL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		05/27/16	10:05
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007	1 - 1			

Laboratory Data

SDG ID: GBN45281 Phoenix ID: BN45291

Project ID: CAPITAL DIST PROPS Client ID: B-6 1-2FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Aluminum	4260	34	6.9	mg/Kg	10	06/02/16	EK	SW6010C
Antimony	ND	1.7	1.7	mg/Kg	1	06/02/16	EK	SW6010C
Arsenic	2.4	0.7	0.69	mg/Kg	1	06/02/16	EK	SW6010C
Barium	14.0	0.7	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Beryllium	0.26	B 0.28	0.14	mg/Kg	1	06/02/16	EK	SW6010C
Calcium	3680	N 3.4	3.2	mg/Kg	1	06/02/16	EK	SW6010C
Cadmium	0.19	B 0.34	0.14	mg/Kg	1	06/02/16	EK	SW6010C
Chromium	5.41	0.34	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Cobalt	3.71	0.34	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Copper	8.39	0.34	0.34	mg/kg	1	06/02/16	EK	SW6010C
Iron	12000	34	34	mg/Kg	10	06/02/16	EK	SW6010C
Lead	3.1	0.7	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Magnesium	1360	3.4	3.4	mg/Kg	1	06/02/16	EK	SW6010C
Manganese	236	3.4	3.4	mg/Kg	10	06/02/16	EK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	06/02/16	RS	SW7471B
Nickel	7.19	0.34	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Potassium	631	N 7	2.7	mg/Kg	1	06/02/16	EK	SW6010C
Selenium	ND	1.4	1.2	mg/Kg	1	06/02/16	EK	SW6010C
Silver	ND	0.34	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Sodium	95	N 7	3.0	mg/Kg	1	06/02/16	EK	SW6010C
Thallium	ND	1.4	1.4	mg/Kg	1	06/02/16	EK	SW6010C
Vanadium	13.7	0.3	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Zinc	24.0	0.7	0.34	mg/Kg	1	06/02/16	EK	SW6010C
Percent Solid	92			%		06/01/16	W	SW846-%Solid
Soil Extraction for PCB	Completed					06/01/16	VC/CK	SW3545A
Soil Extraction for Pesticide	Completed					06/01/16	VC/CK	SW3545A
Soil Extraction for SVOA	Completed	l				06/01/16	VJ/VCK	SW3545A
Mercury Digestion	Completed	l				06/02/16	W/I	SW7471B

Client ID: B-6 1-2FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Total Metals Digest	Completed					06/01/16	G/AG	SW3050B
-								
Polychlorinated Biphen								
PCB-1016	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1221	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1232	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1242	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1248	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1254	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1260	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1262	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1268	ND	72	72	ug/Kg	2	06/03/16	AW	SW8082A
QA/QC Surrogates					_			
% DCBP	133			%	2	06/03/16	AW	40 - 140 %
% TCMX	112			%	2	06/03/16	AW	40 - 140 %
Pesticides - Soil								
4,4' -DDD	ND	2.2	2.2	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDE	ND	2.2	2.2	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDT	ND	2.2	2.2	ug/Kg	2	06/03/16	CE	SW8081B
a-BHC	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
a-Chlordane	ND	3.6	3.6	ug/Kg	2	06/03/16	CE	SW8081B
Aldrin	ND	3.6	3.6	ug/Kg	2	06/03/16	CE	SW8081B
b-BHC	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Chlordane	ND	36	36	ug/Kg	2	06/03/16	CE	SW8081B
d-BHC	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Dieldrin	ND	3.6	3.6	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan I	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan II	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan sulfate	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Endrin	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Endrin aldehyde	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Endrin ketone	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
g-BHC	ND	1.4	1.4	ug/Kg	2	06/03/16	CE	SW8081B
g-Chlordane	ND	3.6	3.6	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor epoxide	ND	7.2	7.2	ug/Kg	2	06/03/16	CE	SW8081B
Methoxychlor	ND	36	36	ug/Kg	2	06/03/16	CE	SW8081B
Toxaphene	ND	140	140	ug/Kg	2	06/03/16	CE	SW8081B
QA/QC Surrogates								40 440 04
% DCBP	94			%	2	06/03/16	CE	40 - 140 %
% TCMX	79			%	2	06/03/16	CE	40 - 140 %
<u>Semivolatiles</u>								
1,1-Biphenyl	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
1,2,4,5-Tetrachlorobenzene	ND	250	130	ug/Kg	1	06/01/16	DD	SW8270D
2,3,4,6-tetrachlorophenol	ND	250	170	ug/Kg	1	06/01/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	250	200	ug/Kg	1	06/01/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	140	110	ug/Kg	1	06/01/16	DD	SW8270D
2,4-Dichlorophenol	ND	140	130	ug/Kg	1	06/01/16	DD	SW8270D

4-Dinitrophenol ND 250 250 ug/Kg 1 06/01/16 DD SW8270D 4-Dinitrotoluene ND 140 140 ug/Kg 1 06/01/16 DD SW8270D 6-Dinitrotoluene ND 140 110 ug/Kg 1 06/01/16 DD SW8270D Chloronaphthalene ND 250 100 ug/Kg 1 06/01/16 DD SW8270D Chlorophenol ND 250 100 ug/Kg 1 06/01/16 DD SW8270D Methylphenol (o-cresol) ND 250 170 ug/Kg 1 06/01/16 DD SW8270D Nitroaniline ND 250 170 ug/Kg 1 06/01/16 DD SW8270D Nitroaniline ND 250 230 ug/Kg 1 06/01/16 DD SW8270D Sitrophenol MD 250 140 ug/Kg 1 06/01/16 DD SW8270D	Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
4-Dinktrobuene ND 140 140 ug/Kg 1 0.6011/16 DD SW2270D 6-Dinktrobuene ND 100 ug/Kg 1 06/01/16 DD SW8270D Chloropaphinal ND 250 100 ug/Kg 1 06/01/16 DD SW8270D Methylaphenal ND 250 100 ug/Kg 1 06/01/16 DD SW8270D Methylaphenal ND 250 250 ug/Kg 1 06/01/16 DD SW8270D Nitroaniline ND 250 230 ug/Kg 1 06/01/16 DD SW8270D Silchiorobendine ND 250 140 ug/Kg 1 06/01/16 DD SW8270D Silchiorobendine ND 250 130 ug/Kg 1 06/01/16 DD SW8270D Chlora-sinitine ND 250 130 ug/Kg 1 06/01/16 DD SW8270D Chlora-s	2,4-Dimethylphenol	ND	250	89	ug/Kg	1	06/01/16	DD	SW8270D
B-Dinitroluene ND 140 110 ug/Kg 1 6601/16 DD SW8270D Chloropaphthalene ND 250 100 ug/Kg 1 0601/16 DD SW8270D Methylpaphthalene ND 250 110 ug/Kg 1 0601/16 DD SW8270D Nitropanline ND 250 720 ug/Kg 1 0601/16 DD SW8270D Nitropanline ND 250 230 ug/Kg 1 0601/16 DD SW8270D 4-Methylphenol ND 250 140 ug/Kg 1 0601/16 DD SW8270D 5-Dichtor2-methylphenol ND 250 10 ug/Kg 1 0601/16 DD SW8270D Chloroa-methylphenol ND 250 130 ug/Kg 1 0601/16 DD SW8270D Chloroanethylphenol ND 250 100 ug/Kg 1 0601/16 DD SW8270D <td>2,4-Dinitrophenol</td> <td>ND</td> <td>250</td> <td>250</td> <td>ug/Kg</td> <td>1</td> <td>06/01/16</td> <td>DD</td> <td>SW8270D</td>	2,4-Dinitrophenol	ND	250	250	ug/Kg	1	06/01/16	DD	SW8270D
Chloronaphthalene ND 250 100 ug/Kg 1 0601/16 DD SW8270D Chlorophenol ND 250 100 ug/Kg 1 0601/16 DD SW8270D Methylphenol (o-cresol) ND 250 170 ug/Kg 1 0601/16 DD SW8270D Nitrophenol ND 250 120 ug/Kg 1 0601/16 DD SW8270D A-Methylphenol (mSp-cresol) ND 250 140 ug/Kg 1 0601/16 DD SW8270D STDchlorobenzidne ND 140 ug/Kg 1 0601/16 DD SW8270D STDchlorobenzidne ND 250 130 ug/Kg 1 0601/16 DD SW8270D Chlorobarijhphenol ND 250 130 ug/Kg 1 0601/16 DD SW8270D Chlorobarijhphenol ND 250 130 ug/Kg 1 0601/16 DD SW8270D <t< td=""><td>,4-Dinitrotoluene</td><td>ND</td><td>140</td><td>140</td><td>ug/Kg</td><td>1</td><td>06/01/16</td><td>DD</td><td>SW8270D</td></t<>	,4-Dinitrotoluene	ND	140	140	ug/Kg	1	06/01/16	DD	SW8270D
Chiorophenol ND 250 100 ug/Kg 1 6601/16 DD SW8270D Methylphenol (c-cresol) ND 250 170 ug/Kg 1 0601/16 DD SW8270D Nitrophenol ND 250 170 ug/Kg 1 0601/16 DD SW8270D Althrhytphenol ND 250 140 ug/Kg 1 0601/16 DD SW8270D 3'Dichlorobenzidine ND 140 140 ug/Kg 1 0601/16 DD SW8270D 6'Dinitro-2-methylphenol ND 250 100 ug/Kg 1 0601/16 DD SW8270D 6'Dinorobenzidine ND 250 100 ug/Kg 1 0601/16 DD SW8270D Chioro-S-methylphenol ND 250 100 ug/Kg 1 0601/16 DD SW8270D Nitrophinol ND 250 100 ug/Kg 1 0601/16 DD SW8270D	,6-Dinitrotoluene	ND	140	110	ug/Kg	1	06/01/16	DD	SW8270D
Methylnaphthalene ND 250 110 ug/Kg 1 06/01/16 DD S/W827D0 Methylphenol (-c-cresol) ND 250 250 ug/Kg 1 06/01/16 DD S/W827D0 Nitrophenol ND 250 250 ug/Kg 1 06/01/16 DD S/W827D0 3'Dichlorbenzidine ND 140 140 ug/Kg 1 06/01/16 DD S/W827D0 SiDichlorbenzidine ND 1800 780 ug/Kg 1 06/01/16 DD S/W827D0 SiDintro-2-methylphenol ND 250 130 ug/Kg 1 06/01/16 DD S/W827D0 Chloroa-inithe ND 250 120 ug/Kg 1 06/01/16 DD S/W827D0 Chloroa-inithe ND 250 120 ug/Kg 1 06/01/16 DD S/W827D0 Sintrophenyl ether ND 250 120 ug/Kg 1 06/01/16 DD	-Chloronaphthalene	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
Methylphenol (o-cresol) ND 250 170 ug/Kg 1 06/01/16 DD SW8270D Nitrophenol ND 250 250 ug/Kg 1 06/01/16 DD SW8270D 4-Methylphenol (m&p-cresol) ND 250 140 ug/Kg 1 06/01/16 DD SW8270D 3'Dichlorobenzidine ND 140 140 ug/Kg 1 06/01/16 DD SW8270D 3'Dichlorobenzidine ND 140 140 ug/Kg 1 06/01/16 DD SW8270D 6'Dinitro-2-methylphenol ND 250 130 ug/Kg 1 06/01/16 DD SW8270D Chloro-3-methylphenol ND 250 130 ug/Kg 1 06/01/16 DD SW8270D Chloro-shmethylphenol ND 250 120 ug/Kg 1 06/01/16 DD SW8270D Sw8270D 250 120 ug/Kg 1 06/01/16 DD SW8270D	-Chlorophenol	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
Nitrophenol ND 250 250 ug/Kg 1 06/01/16 DD SW8270D Nitrophenol ND 250 230 ug/Kg 1 06/01/16 DD SW8270D 3'-Dichlorobenzidine ND 140 140 ug/Kg 1 06/01/16 DD SW8270D 3'-Dichlorobenzidine ND 140 140 ug/Kg 1 06/01/16 DD SW8270D Si-Dintro-2-methylphenol ND 250 110 ug/Kg 1 06/01/16 DD SW8270D Chloroa-smethylphenol ND 250 120 ug/Kg 1 06/01/16 DD SW8270D Chloroa-smethylphenol ND 250 120 ug/Kg 1 06/01/16 DD SW8270D Nitrophenol ND 250 110 ug/Kg 1 06/01/16 DD SW8270D Swazrob Swazrob 250 110 ug/Kg 1 06/01/16 DD SW8270D<	-Methylnaphthalene	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
Nitrophenol ND 250 230 ug/Kg 1 06/01/16 DD SW8270D A-Mettylphenol (m&p-creat) ND 250 140 ug/Kg 1 06/01/16 DD SW8270D Sibchorobenciaine ND 140 140 ug/Kg 1 06/01/16 DD SW8270D Sibchorobenciaine ND 250 130 ug/Kg 1 06/01/16 DD SW8270D Sibchorobenciainine ND 250 130 ug/Kg 1 06/01/16 DD SW8270D Chioroaniline ND 250 130 ug/Kg 1 06/01/16 DD SW8270D Nitrophenol ND 250 160 ug/Kg 1 06/01/16 DD SW8270D Senaphthone ND 250 160 ug/Kg 1 06/01/16 DD SW8270D Senaphthone ND 250 120 ug/Kg 1 06/01/16 DD SW8270D	Methylphenol (o-cresol)	ND	250	170	ug/Kg	1	06/01/16	DD	SW8270D
ai-Methylphenol (m&p-cresol) ND 250 140 ug/Kg 1 06/01/16 DD SW8270D 3'Dichlorobenzidine ND 140 140 ug/Kg 1 06/01/16 DD SW8270D 6'Dinitro-2-methylphenol ND 250 250 ug/Kg 1 06/01/16 DD SW8270D 6'Dinitro-2-methylphenol ND 250 130 ug/Kg 1 06/01/16 DD SW8270D Chloro-3-methylphenol ND 250 120 ug/Kg 1 06/01/16 DD SW8270D Chloro-shiline ND 120 ug/Kg 1 06/01/16 DD SW8270D Nitroaniline ND 250 110 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 250 110 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D	Nitroaniline	ND	250	250	ug/Kg	1	06/01/16	DD	SW8270D
3'-Dichlorobenzidine ND 140 140 ug/Kg 1 06/01/16 DD SW8270D Nitroaniline ND 1800 780 ug/Kg 1 06/01/16 DD SW8270D Bromophenyl phenyl ether ND 250 100 ug/Kg 1 06/01/16 DD SW8270D Chloro-3-methylphenol ND 250 130 ug/Kg 1 06/01/16 DD SW8270D Chloro-3-methylphenol ND 250 120 ug/Kg 1 06/01/16 DD SW8270D Nitroaniline ND 120 ug/Kg 1 06/01/16 DD SW8270D Sw8270D senaphthene ND 250 110 ug/Kg 1 06/01/16 DD SW8270D senaphthene ND 250 110 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D </td <td>Nitrophenol</td> <td>ND</td> <td>250</td> <td>230</td> <td>ug/Kg</td> <td>1</td> <td>06/01/16</td> <td>DD</td> <td>SW8270D</td>	Nitrophenol	ND	250	230	ug/Kg	1	06/01/16	DD	SW8270D
Nitroaniline ND 1800 780 ug/Kg 1 06/01/16 DD SW8270D 6-Dintro-2-methylphenol ND 250 250 ug/Kg 1 06/01/16 DD SW8270D Bromophenyl phenyl ether ND 250 130 ug/Kg 1 06/01/16 DD SW8270D Chloroa-methylphenol ND 250 120 ug/Kg 1 06/01/16 DD SW8270D Chloroahenyl phenyl ether ND 250 120 ug/Kg 1 06/01/16 DD SW8270D Nitroaniline ND 120 ug/Kg 1 06/01/16 DD SW8270D Steanaphthylene ND 140 ug/Kg 1 06/01/16 DD SW8270D steanaphthylene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D steanaphthylene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D	&4-Methylphenol (m&p-cresol)	ND	250	140	ug/Kg	1	06/01/16	DD	SW8270D
S-Dinitro-2-methylphenol ND 250 250 ug/Kg 1 06/01/16 DD SW8270D Bromophenyl phenyl ether ND 250 110 ug/Kg 1 06/01/16 DD SW8270D Chloroa-3methylphenol ND 250 130 ug/Kg 1 06/01/16 DD SW8270D Chlorophenyl phenyl ether ND 250 120 ug/Kg 1 06/01/16 DD SW8270D Nitrophenol ND 250 120 ug/Kg 1 06/01/16 DD SW8270D senaphthene ND 250 110 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 250 110 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 250 120 ug/Kg 1 06/01/16 DD SW82	3'-Dichlorobenzidine	ND	140	140	ug/Kg	1	06/01/16	DD	SW8270D
Bromophenyl phenyl ether ND 250 110 ug/Kg 1 06/01/16 DD SW8270D Chloro-3-methylphenol ND 250 130 ug/Kg 1 06/01/16 DD SW8270D Chloro-3-methylphenol ND 720 170 ug/Kg 1 06/01/16 DD SW8270D Chlorophenyl phenyl ether ND 1800 120 ug/Kg 1 06/01/16 DD SW8270D Nitroaniline ND 1800 120 ug/Kg 1 06/01/16 DD SW8270D senaphthene ND 250 110 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 250 120 ug/Kg 1 06/01/16 DD SW82	Nitroaniline	ND	1800	780	ug/Kg	1	06/01/16	DD	SW8270D
Bromophenyl phenyl ether ND 250 110 ug/Kg 1 06/01/16 DD SW8270D Chloro-3-methylphenol ND 250 130 ug/Kg 1 06/01/16 DD SW8270D Chloro-3-methylphenol ND 720 170 ug/Kg 1 06/01/16 DD SW8270D Chlorophenyl phenyl ether ND 1800 120 ug/Kg 1 06/01/16 DD SW8270D Nitroaniline ND 1800 120 ug/Kg 1 06/01/16 DD SW8270D senaphthene ND 250 110 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 250 120 ug/Kg 1 06/01/16 DD SW82	6-Dinitro-2-methylphenol	ND	250	250		1	06/01/16	DD	SW8270D
Chloro-3-methylphenol ND 250 130 ug/Kg 1 06/01/16 DD SW8270D Chloroanline ND 720 170 ug/Kg 1 06/01/16 DD SW8270D Chlorophenyl phenyl ether ND 1800 120 ug/Kg 1 06/01/16 DD SW8270D Nitroanline ND 120 ug/Kg 1 06/01/16 DD SW8270D Nitrophenol ND 250 160 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D razine ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anz(a)anthracene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anz(b)fluoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D an	Bromophenyl phenyl ether	ND	250	110		1	06/01/16	DD	SW8270D
Chloroaniline ND 720 170 ug/kg 1 06/01/16 DD SW8270D Chlorophenyl phenyl ether ND 250 120 ug/kg 1 06/01/16 DD SW8270D Nitroaniline ND 1800 120 ug/kg 1 06/01/16 DD SW8270D senaphthene ND 250 110 ug/kg 1 06/01/16 DD SW8270D senaphthylene ND 140 100 ug/kg 1 06/01/16 DD SW8270D setophenone ND 250 120 ug/kg 1 06/01/16 DD SW8270D razine ND 140 140 ug/kg 1 06/01/16 DD SW8270D anzo(a)pyrene ND 140 120 ug/kg 1 06/01/16 DD SW8270D anzo(b)fluoranthene ND 250 120 ug/kg 1 06/01/16 DD SW8270D	Chloro-3-methylphenol	ND	250	130		1	06/01/16	DD	SW8270D
Chlorophenyl phenyl ether ND 250 120 ug/Kg 1 06/01/16 DD SW8270D Nitroaniline ND 1800 120 ug/Kg 1 06/01/16 DD SW8270D Nitrophenol ND 250 110 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 250 110 ug/Kg 1 06/01/16 DD SW8270D arazine ND 140 140 ug/Kg 1 06/01/16 DD SW8270D anza(a)pyrene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anza(b)fluoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D	Chloroaniline	ND	720	170	ug/Kg	1	06/01/16	DD	SW8270D
Nitropaniline ND 1800 120 ug/Kg 1 06/01/16 DD SW8270D Nitrophenol ND 250 160 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 250 110 ug/Kg 1 06/01/16 DD SW8270D senaphthylene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D reazine ND 140 100 ug/Kg 1 06/01/16 DD SW8270D anz(a)anthracene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anz(a)anthracene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anza(bifuoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anzo(kjifuoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D s	Chlorophenyl phenyl ether	ND	250	120		1	06/01/16	DD	SW8270D
Nitrophenol ND 250 160 ug/kg 1 06/01/16 DD SW8270D senaphthene ND 250 110 ug/kg 1 06/01/16 DD SW8270D senaphthylene ND 140 100 ug/kg 1 06/01/16 DD SW8270D setophenone ND 250 120 ug/kg 1 06/01/16 DD SW8270D razine ND 140 140 ug/kg 1 06/01/16 DD SW8270D anz(a)pyrene ND 250 120 ug/kg 1 06/01/16 DD SW8270D anzo(a)pyrene ND 250 120 ug/kg 1 06/01/16 DD SW8270D anzo(b)fluoranthene ND 250 120 ug/kg 1 06/01/16 DD SW8270D s(2-chlorothysy)methane ND 250 93 ug/kg 1 06/01/16 DD SW8270D <	Nitroaniline	ND	1800	120	ug/Kg	1	06/01/16	DD	SW8270D
benaphthene ND 250 110 ug/Kg 1 06/01/16 DD SW8270D enaphthylene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D benophenone ND 250 110 ug/Kg 1 06/01/16 DD SW8270D thracene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anz(a)anthracene ND 140 140 ug/Kg 1 06/01/16 DD SW8270D anz(b)fluoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anz(b)fluoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anz(b)fluoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D s(2-chlorosthy)methane ND 250 93 ug/Kg 1 06/01/16 DD SW8270D	Nitrophenol	ND	250	160		1	06/01/16	DD	SW8270D
benaphthylene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D betophenone ND 250 110 ug/Kg 1 06/01/16 DD SW8270D razine ND 120 ug/Kg 1 06/01/16 DD SW8270D naziae ND 140 140 ug/Kg 1 06/01/16 DD SW8270D anz(a)anthracene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anza(a)pyrene ND 140 120 ug/Kg 1 06/01/16 DD SW8270D anzo(b/litoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anzo(k/litoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anzo(k/litoranthene ND 250 93 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroethy)	•	ND	250	110		1	06/01/16	DD	SW8270D
betophenone ND 250 110 ug/Kg 1 06/01/16 DD SW8270D nthracene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D arazine ND 140 140 ug/Kg 1 06/01/16 DD SW8270D anz(a)anthracene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anz(a)pyrene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anzo(a)fjyrene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anzo(a)fjuoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anzy (bujly phthalate ND 250 93 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroethyl)ether ND 250 93 ug/Kg 1 06/01/16 DD SW8270D		ND	140	100		1	06/01/16	DD	SW8270D
nthracene ND 250 120 ug/kg 1 06/01/16 DD SW8270D razine ND 140 140 ug/kg 1 06/01/16 DD SW8270D anz(a)anthracene ND 250 120 ug/kg 1 06/01/16 DD SW8270D anzo(a)pyrene ND 140 120 ug/kg 1 06/01/16 DD SW8270D anzo(b)fluoranthene ND 250 120 ug/kg 1 06/01/16 DD SW8270D anzo(b/fluoranthene ND 250 120 ug/kg 1 06/01/16 DD SW8270D anzo(b/fluoranthene ND 250 120 ug/kg 1 06/01/16 DD SW8270D s(2-chlorethxy)methane ND 250 93 ug/kg 1 06/01/16 DD SW8270D s(2-chlorethy)lether ND 250 100 ug/kg 1 06/01/16 DD SW8270D			250			1		DD	
razine ND 140 140 ug/Kg 1 06/01/16 DD SW8270D anz(a)anthracene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anz(a)anthracene ND 250 110 ug/Kg 1 06/01/16 DD SW8270D anzo(a)pyrene ND 140 120 ug/Kg 1 06/01/16 DD SW8270D anzo(b/liporanthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anzo(k/lifuoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anzo(k/lifuoranthene ND 250 93 ug/Kg 1 06/01/16 DD SW8270D set2c-hlorosthypymethane ND 250 93 ug/Kg 1 06/01/16 DD SW8270D s(2-chlorosethyl)phthalate ND 250 100 ug/Kg 1 06/01/16 DD S	-			120		1	06/01/16	DD	SW8270D
enc (a) anthracene ND 250 120 ug/kg 1 06/01/16 DD SW8270D anzaldehyde ND 250 110 ug/kg 1 06/01/16 DD SW8270D anzo(a)pyrene ND 140 120 ug/kg 1 06/01/16 DD SW8270D anzo(b)fluoranthene ND 250 120 ug/kg 1 06/01/16 DD SW8270D anzo(b)fluoranthene ND 250 120 ug/kg 1 06/01/16 DD SW8270D anzo(k)fluoranthene ND 250 120 ug/kg 1 06/01/16 DD SW8270D anzo(k)fluoranthene ND 250 120 ug/kg 1 06/01/16 DD SW8270D serzo(k)fluoranthene ND 250 100 ug/kg 1 06/01/16 DD SW8270D serzo(k)fluoranthene ND 250 100 ug/kg 1 06/01/16 DD S									
Anzaldehyde ND 250 110 ug/Kg 1 06/01/16 DD SW8270D anzo(a)pyrene ND 140 120 ug/Kg 1 06/01/16 DD SW8270D anzo(b)fluoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anzo(b)fluoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anzo(k)fluoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anzy (k)fluoranthene ND 250 93 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroethoxy)methane ND 250 99 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroethyl)ether ND 250 100 ug/Kg 1 06/01/16 DD SW8270D s(2-chlylhexyl)phthalate ND 250 100 ug/Kg 1 06/01/16 DD									
anzo(a)pyrene ND 140 120 ug/Kg 1 06/01/16 DD SW8270D anzo(b)fluoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anzo(ghi)perylene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anzo(k)fluoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D anzyl butyl phthalate ND 250 93 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroethoxy)methane ND 250 93 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroethoxy)methane ND 250 100 ug/Kg 1 06/01/16 DD SW8270D s(2-chlylhexyl)phthalate ND 250 100 ug/Kg 1 06/01/16 DD SW8270D aprolactam ND 250 120 ug/Kg 1 06/01/16 DD									
Banzo(b)fluoranthene ND 250 120 ug/kg 1 06/01/16 DD SW8270D Banzo(ghi)perylene ND 250 120 ug/kg 1 06/01/16 DD SW8270D Banzo(k)fluoranthene ND 250 120 ug/kg 1 06/01/16 DD SW8270D Banzo(k)fluoranthene ND 250 93 ug/kg 1 06/01/16 DD SW8270D Banzo(k)fluoranthene ND 250 93 ug/kg 1 06/01/16 DD SW8270D S(2-chloroethoxy)methane ND 250 99 ug/kg 1 06/01/16 DD SW8270D s(2-chloroisopropyl)ether ND 250 100 ug/kg 1 06/01/16 DD SW8270D s(2-ethylhexyl)phthalate ND 250 100 ug/kg 1 06/01/16 DD SW8270D stolactam ND 250 180 ug/kg 1 06/01/16 DD									
nzo(ghi)perylene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D nzo(k)fluoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D nzo(k)fluoranthene ND 250 93 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroethoxy)methane ND 250 99 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroethoxy)methane ND 140 97 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroethoxy)methane ND 250 100 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroisopropyl)ether ND 250 100 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroisopropyl)ether ND 250 180 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroisopropyl)ether ND 250 120 ug/Kg 1 06/01/16<									
enzo(k)fluoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D enzyl butyl phthalate ND 250 93 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroethoxy)methane ND 250 99 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroethyl)ether ND 140 97 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroethyl)ether ND 250 100 ug/Kg 1 06/01/16 DD SW8270D s(2-chtylexyl)phthalate ND 250 100 ug/Kg 1 06/01/16 DD SW8270D aprolactam ND 250 180 ug/Kg 1 06/01/16 DD SW8270D arbazole ND 250 180 ug/Kg 1 06/01/16 DD SW8270D benz(a,h)anthracene ND 250 100 ug/Kg 1 06/01/16 DD									
Bartyl butyl phthalate ND 250 93 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroethoxy)methane ND 250 99 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroethyl)ether ND 140 97 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroisopropyl)ether ND 250 100 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroisopropyl)ether ND 250 100 ug/Kg 1 06/01/16 DD SW8270D s(2-ethylhexyl)phthalate ND 250 100 ug/Kg 1 06/01/16 DD SW8270D aprolactam ND 250 180 ug/Kg 1 06/01/16 DD SW8270D arbazole ND 250 180 ug/Kg 1 06/01/16 DD SW8270D benz(a,h)anthracene ND 250 100 ug/Kg 1 06/01/16 DD </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
s(2-chloroethoxy)methane ND 250 99 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroethyl)ether ND 140 97 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroisopropyl)ether ND 250 100 ug/Kg 1 06/01/16 DD SW8270D s(2-chloroisopropyl)ether ND 250 100 ug/Kg 1 06/01/16 DD SW8270D aprolactam ND 250 250 ug/Kg 1 06/01/16 DD SW8270D arbazole ND 250 180 ug/Kg 1 06/01/16 DD SW8270D hrysene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D benz(a,h)anthracene ND 140 120 ug/Kg 1 06/01/16 DD SW8270D ethyl phthalate ND 250 100 ug/Kg 1 06/01/16 DD SW8270D									
s(2-chloroethyl)etherND14097ug/Kg106/01/16DDSW8270Ds(2-chloroisopropyl)etherND250100ug/Kg106/01/16DDSW8270Ds(2-ethylhexyl)phthalateND250100ug/Kg106/01/16DDSW8270DaprolactamND250250ug/Kg106/01/16DDSW8270DarbazoleND250180ug/Kg106/01/16DDSW8270DonryseneND250120ug/Kg106/01/16DDSW8270Dbenz(a,h)anthraceneND140120ug/Kg106/01/16DDSW8270DbenzofuranND250100ug/Kg106/01/16DDSW8270Dethyl phthalateND250110ug/Kg106/01/16DDSW8270Dorthyl phthalateND250110ug/Kg106/01/16DDSW8270Dorthyl phthalateND250110ug/Kg106/01/16DDSW8270Dorthyl phthalateND25093ug/Kg106/01/16DDSW8270DourantheneND250120ug/Kg106/01/16DDSW8270DourantheneND250120ug/Kg106/01/16DDSW8270DourantheneND250120ug/Kg106/01/16DDSW8270D <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
s(2-chloroisopropyl)ether ND 250 100 ug/Kg 1 06/01/16 DD SW8270D s(2-ethylhexyl)phthalate ND 250 100 ug/Kg 1 06/01/16 DD SW8270D aprolactam ND 250 250 ug/Kg 1 06/01/16 DD SW8270D arbazole ND 250 180 ug/Kg 1 06/01/16 DD SW8270D arbazole ND 250 180 ug/Kg 1 06/01/16 DD SW8270D arbazole ND 250 120 ug/Kg 1 06/01/16 DD SW8270D benz(a,h)anthracene ND 140 120 ug/Kg 1 06/01/16 DD SW8270D benzofuran ND 250 110 ug/Kg 1 06/01/16 DD SW8270D ethyl phthalate ND 250 110 ug/Kg 1 06/01/16 DD SW8270D -n-butylphthalate ND 250 93 ug/Kg 1 06/01/16									
S(2-ethylhexyl)phthalate ND 250 100 ug/Kg 1 06/01/16 DD SW8270D aprolactam ND 250 250 ug/Kg 1 06/01/16 DD SW8270D arbazole ND 250 180 ug/Kg 1 06/01/16 DD SW8270D arbazole ND 250 120 ug/Kg 1 06/01/16 DD SW8270D benz(a,h)anthracene ND 140 120 ug/Kg 1 06/01/16 DD SW8270D benzofuran ND 250 100 ug/Kg 1 06/01/16 DD SW8270D ethyl phthalate ND 250 100 ug/Kg 1 06/01/16 DD SW8270D -n-butylphthalate ND 250 110 ug/Kg 1 06/01/16 DD SW8270D -n-octylphthalate ND 250 95 ug/Kg 1 06/01/16 DD SW8270D uoranthene ND 250 93 ug/Kg 1 06/01/16 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
ND 250 250 ug/Kg 1 06/01/16 DD SW8270D arbazole ND 250 180 ug/Kg 1 06/01/16 DD SW8270D hrysene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D benz(a,h)anthracene ND 140 120 ug/Kg 1 06/01/16 DD SW8270D benzofuran ND 250 120 ug/Kg 1 06/01/16 DD SW8270D ethyl phthalate ND 250 100 ug/Kg 1 06/01/16 DD SW8270D methylphthalate ND 250 110 ug/Kg 1 06/01/16 DD SW8270D -n-butylphthalate ND 250 110 ug/Kg 1 06/01/16 DD SW8270D -n-octylphthalate ND 250 93 ug/Kg 1 06/01/16 DD SW8270D uoranthene <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
arbazoleND250180ug/Kg106/01/16DDSW8270DnryseneND250120ug/Kg106/01/16DDSW8270Dbenz(a,h)anthraceneND140120ug/Kg106/01/16DDSW8270DbenzofuranND250100ug/Kg106/01/16DDSW8270Dethyl phthalateND250110ug/Kg106/01/16DDSW8270D-n-butylphthalateND250110ug/Kg106/01/16DDSW8270D-n-octylphthalateND25093ug/Kg106/01/16DDSW8270DuorantheneND250120ug/Kg106/01/16DDSW8270DuorantheneND250120ug/Kg106/01/16DDSW8270DuorantheneND250120ug/Kg106/01/16DDSW8270DuorantheneND250120ug/Kg106/01/16DDSW8270DuorantheneND250120ug/Kg106/01/16DDSW8270DuorantheneND250120ug/Kg106/01/16DDSW8270DuorantheneND250120ug/Kg106/01/16DDSW8270DuorantheneND250120ug/Kg106/01/16DDSW8270DuorantheneND2501									
nryseneND250120ug/Kg106/01/16DDSW8270Dbenz(a,h)anthraceneND140120ug/Kg106/01/16DDSW8270DbenzofuranND250100ug/Kg106/01/16DDSW8270Dethyl phthalateND250110ug/Kg106/01/16DDSW8270D-n-butylphthalateND250110ug/Kg106/01/16DDSW8270D-n-butylphthalateND25095ug/Kg106/01/16DDSW8270D-n-octylphthalateND25093ug/Kg106/01/16DDSW8270DuorantheneND250120ug/Kg106/01/16DDSW8270DuorantheneND250120ug/Kg106/01/16DDSW8270DuorantheneND250120ug/Kg106/01/16DDSW8270DuorantheneND250120ug/Kg106/01/16DDSW8270DuorantheneND250120ug/Kg106/01/16DDSW8270DuorantheneND140100ug/Kg106/01/16DDSW8270DuorantheneND140100ug/Kg106/01/16DDSW8270D	•								
benz(a,h)anthraceneND140120ug/Kg106/01/16DDSW8270DbenzofuranND250100ug/Kg106/01/16DDSW8270Dethyl phthalateND250110ug/Kg106/01/16DDSW8270Dmethyl phthalateND250110ug/Kg106/01/16DDSW8270D-n-butyl phthalateND25095ug/Kg106/01/16DDSW8270D-n-octyl phthalateND25093ug/Kg106/01/16DDSW8270DuorantheneND250120ug/Kg106/01/16DDSW8270DuoreneND250120ug/Kg106/01/16DDSW8270DexachlorobenzeneND140100ug/Kg106/01/16DDSW8270D									
benzofuran ND 250 100 ug/Kg 1 06/01/16 DD SW8270D ethyl phthalate ND 250 110 ug/Kg 1 06/01/16 DD SW8270D methyl phthalate ND 250 110 ug/Kg 1 06/01/16 DD SW8270D -n-butylphthalate ND 250 95 ug/Kg 1 06/01/16 DD SW8270D -n-octylphthalate ND 250 95 ug/Kg 1 06/01/16 DD SW8270D uoranthene ND 250 93 ug/Kg 1 06/01/16 DD SW8270D uoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D uorene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D uorene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D	-								
ethyl phthalate ND 250 110 ug/Kg 1 06/01/16 DD SW8270D methylphthalate ND 250 110 ug/Kg 1 06/01/16 DD SW8270D -n-butylphthalate ND 250 95 ug/Kg 1 06/01/16 DD SW8270D -n-octylphthalate ND 250 93 ug/Kg 1 06/01/16 DD SW8270D uoranthene ND 250 93 ug/Kg 1 06/01/16 DD SW8270D uoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D uorene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D exachlorobenzene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D									
ND 250 110 ug/Kg 1 06/01/16 DD SW8270D -n-butylphthalate ND 250 95 ug/Kg 1 06/01/16 DD SW8270D -n-octylphthalate ND 250 93 ug/Kg 1 06/01/16 DD SW8270D uoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D uoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D uorene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D uorene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D exachlorobenzene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D									
n-butylphthalate ND 250 95 ug/Kg 1 06/01/16 DD SW8270D -n-octylphthalate ND 250 93 ug/Kg 1 06/01/16 DD SW8270D uoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D uoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D uorene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D exachlorobenzene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D									
n-octylphthalate ND 250 93 ug/Kg 1 06/01/16 DD SW8270D uoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D uoranthene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D uorene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D exachlorobenzene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D									
ND 250 120 ug/Kg 1 06/01/16 DD SW8270D uorene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D exachlorobenzene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D									
uorene ND 250 120 ug/Kg 1 06/01/16 DD SW8270D exachlorobenzene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D									
exachlorobenzene ND 140 100 ug/Kg 1 06/01/16 DD SW8270D									
exachlorobutadiene ND 250 130 ug/Kg 1 06/01/16 DD SW8270D									
	exachlorobutadiene	NĎ	250	130	ug/Kg	1	06/01/16	DD	SW8270D

Client ID: B-6 1-2FT

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorocyclopentadiene	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
Hexachloroethane	ND	140	110	ug/Kg	1	06/01/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
Isophorone	ND	140	100	ug/Kg	1	06/01/16	DD	SW8270D
Naphthalene	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
Nitrobenzene	ND	140	130	ug/Kg	1	06/01/16	DD	SW8270D
N-Nitrosodimethylamine	ND	250	100	ug/Kg	1	06/01/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	140	120	ug/Kg	1	06/01/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	140	140	ug/Kg	1	06/01/16	DD	SW8270D
Pentachlorophenol	ND	250	140	ug/Kg	1	06/01/16	DD	SW8270D
Phenanthrene	ND	140	100	ug/Kg	1	06/01/16	DD	SW8270D
Phenol	ND	250	110	ug/Kg	1	06/01/16	DD	SW8270D
Pyrene	ND	250	120	ug/Kg	1	06/01/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	84			%	1	06/01/16	DD	30 - 130 %
% 2-Fluorobiphenyl	71			%	1	06/01/16	DD	30 - 130 %
% 2-Fluorophenol	74			%	1	06/01/16	DD	30 - 130 %
% Nitrobenzene-d5	68			%	1	06/01/16	DD	30 - 130 %
% Phenol-d5	74			%	1	06/01/16	DD	30 - 130 %
% Terphenyl-d14	78			%	1	06/01/16	DD	30 - 130 %
SVOA Library Search Top 15	Completed					06/02/16	DD	

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		05/27/16	10:05
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007	1 - 1			

Laboratory Data

Project ID:	CAPITAL DIST PROPS
Client ID:	B-6 2.0FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Farameter		FQL	MDL		Dilution		,	
Percent Solid	92			%		06/01/16	W	SW846-%Solid
1,4-dioxane								
1,4-dioxane	ND	100	43	ug/kg	1	06/02/16	JLI	SW8260C
<u>Volatiles</u>								
1,1,1-Trichloroethane	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1-Dichloroethane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1-Dichloroethene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dibromoethane	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichloroethane	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichloropropane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
2-Hexanone	ND	27	5.4	ug/Kg	1	06/02/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	27	5.4	ug/Kg	1	06/02/16	JLI	SW8260C
Acetone	ND	50	5.4	ug/Kg	1	06/02/16	JLI	SW8260C
Benzene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Bromochloromethane	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Bromodichloromethane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Bromoform	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Bromomethane	ND	5.4	2.2	ug/Kg	1	06/02/16	JLI	SW8260C

Client ID: B-6 2.0FT

Decementar	Decult	RL/	LOD/	Linite	Dilution	Dete/Time		Deference
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference
Carbon Disulfide	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Carbon tetrachloride	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Chlorobenzene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroethane	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroform	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Chloromethane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Cyclohexane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dibromochloromethane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Ethylbenzene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Isopropylbenzene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
m&p-Xylene	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl ethyl ketone	ND	33	5.4	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	11	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylacetate	ND	5.4	2.7	ug/Kg	1	06/02/16	JLI	SW8260C
Methylcyclohexane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylene chloride	ND	5.4	5.4	ug/Kg	1	06/02/16	JLI	SW8260C
o-Xylene	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Styrene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Tetrachloroethene	2.1	J 5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Toluene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Total Xylenes	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Trichloroethene	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.4	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
Vinyl chloride	ND	5.4	0.54	ug/Kg	1	06/02/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	06/02/16	JLI	70 - 130 %
% Bromofluorobenzene	96			%	1	06/02/16	JLI	70 - 130 %
% Dibromofluoromethane	102			%	1	06/02/16	JLI	70 - 130 %
% Toluene-d8	96			%	1	06/02/16	JLI	70 - 130 %
Volatile Library Search Top 10	Completed					06/03/16	JLI	

Project ID: CAPITAL DIST PROPS Client ID: B-6 2.0FT RL/ LOD/ Parameter Result PQL MDL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		05/27/16	13:30
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007				

Laboratory Data

Project ID:	CAPITAL DIST PROPS
Client ID:	IB,S 1C 2-3FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Aluminum	7310	40	7.9	mg/Kg	10	06/02/16	EK	SW6010C
Antimony	ND	2.0	2.0	mg/Kg	1	06/02/16	EK	SW6010C
Arsenic	2.7	0.8	0.79	mg/Kg	1	06/02/16	EK	SW6010C
Barium	16.5	0.8	0.40	mg/Kg	1	06/02/16	EK	SW6010C
Beryllium	0.38	0.32	0.16	mg/Kg	1	06/02/16	ΕK	SW6010C
Calcium	296	N 4.0	3.6	mg/Kg	1	06/02/16	ΕK	SW6010C
Cadmium	ND	0.40	0.16	mg/Kg	1	06/02/16	EK	SW6010C
Chromium	7.28	0.40	0.40	mg/Kg	1	06/02/16	EK	SW6010C
Cobalt	5.19	0.40	0.40	mg/Kg	1	06/02/16	EK	SW6010C
Copper	8.30	0.40	0.40	mg/kg	1	06/02/16	EK	SW6010C
Iron	11900	40	40	mg/Kg	10	06/02/16	EK	SW6010C
Lead	2.2	0.8	0.40	mg/Kg	1	06/02/16	EK	SW6010C
Magnesium	1390	4.0	4.0	mg/Kg	1	06/02/16	EK	SW6010C
Manganese	280	4.0	4.0	mg/Kg	10	06/02/16	EK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	06/02/16	RS	SW7471B
Nickel	9.33	0.40	0.40	mg/Kg	1	06/02/16	EK	SW6010C
Potassium	606	N 8	3.1	mg/Kg	1	06/02/16	EK	SW6010C
Selenium	ND	1.6	1.3	mg/Kg	1	06/02/16	EK	SW6010C
Silver	ND	0.40	0.40	mg/Kg	1	06/02/16	EK	SW6010C
Sodium	52	N 8	3.4	mg/Kg	1	06/02/16	EK	SW6010C
Thallium	ND	1.6	1.6	mg/Kg	1	06/02/16	EK	SW6010C
Vanadium	14.9	0.4	0.40	mg/Kg	1	06/02/16	EK	SW6010C
Zinc	21.3	0.8	0.40	mg/Kg	1	06/02/16	EK	SW6010C
Percent Solid	89			%		06/01/16	W	SW846-%Solid
Soil Extraction for PCB	Completed	ł				06/01/16	VC/CK	SW3545A
Soil Extraction for Pesticide	Completed	ł				06/01/16	VC/CK	SW3545A
Soil Extraction for SVOA	Completed	ł				06/01/16	VJ/VCK	SW3545A
Mercury Digestion	Completed	1				06/02/16	W/I	SW7471B

Client ID: IB,S 1C 2-3FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					06/01/16	G/AG	SW3050B
Polychlorinated Biphe	enyls							
PCB-1016	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1221	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1232	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1242	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1248	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1254	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1260	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1262	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1268	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	111			%	2	06/03/16	AW	40 - 140 %
% TCMX	96			%	2	06/03/16	AW	40 - 140 %
Pesticides - Soil		a -	• -		-	00/05/11-	e	0.1/2021-
4,4' -DDD	ND	2.2	2.2	ug/Kg	2	06/03/16	CE	SW8081B
1,4' -DDE	ND	2.2	2.2	ug/Kg	2	06/03/16	CE	SW8081B
1,4' -DDT	ND	2.2	2.2	ug/Kg	2	06/03/16	CE	SW8081B
a-BHC	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
a-Chlordane	ND	3.7	3.7	ug/Kg	2	06/03/16	CE	SW8081B
Aldrin	ND	3.7	3.7	ug/Kg	2	06/03/16	CE	SW8081B
o-BHC	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Chlordane	ND	37	37	ug/Kg	2	06/03/16	CE	SW8081B
I-BHC	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Dieldrin	ND	3.7	3.7	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan I	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan II	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan sulfate	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Endrin	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Endrin aldehyde	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Endrin ketone	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
g-BHC	ND	1.5	1.5	ug/Kg	2	06/03/16	CE	SW8081B
g-Chlordane	ND	3.7	3.7	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
leptachlor epoxide	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
/lethoxychlor	ND	37	37	ug/Kg	2	06/03/16	CE	SW8081B
Foxaphene	ND	150	150	ug/Kg	2	06/03/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	106			%	2	06/03/16	CE	40 - 140 %
6 TCMX	85			%	2	06/03/16	CE	40 - 140 %
<u>Semivolatiles</u>								
I,1-Biphenyl	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
I,2,4,5-Tetrachlorobenzene	ND	260	130	ug/Kg ug/Kg	1	06/01/16	DD	SW8270D SW8270D
	ND	260	130	ug/Kg ug/Kg	1	06/01/16	DD	SW8270D SW8270D
2,3,4,6-tetrachlorophenol	ND	260 260	200	ug/Kg ug/Kg		06/01/16	DD	SW8270D SW8270D
2,4,5-Trichlorophenol					1			
2,4,6-Trichlorophenol	ND	150	120	ug/Kg	1	06/01/16	DD	SW8270D
2,4-Dichlorophenol	ND	150	130	ug/Kg	1	06/01/16	DD	SW8270D

Client ID: IB,S 1C 2-3FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
2,4-Dimethylphenol	ND	260	92	ug/Kg	1	06/01/16	DD	SW8270D
,4-Dinitrophenol	ND	260	260	ug/Kg	1	06/01/16	DD	SW8270D
4-Dinitrotoluene	ND	150	150	ug/Kg	1	06/01/16	DD	SW8270D
6-Dinitrotoluene	ND	150	120	ug/Kg	1	06/01/16	DD	SW8270D
-Chloronaphthalene	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
-Chlorophenol	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
-Methylnaphthalene	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
Methylphenol (o-cresol)	ND	260	170	ug/Kg	1	06/01/16	DD	SW8270D
-Nitroaniline	ND	260	260	ug/Kg	1	06/01/16	DD	SW8270D
Nitrophenol	ND	260	240	ug/Kg	1	06/01/16	DD	SW8270D
&4-Methylphenol (m&p-cresol)	ND	260	150	ug/Kg	1	06/01/16	DD	SW8270D
3'-Dichlorobenzidine	ND	150	150	ug/Kg	1	06/01/16	DD	SW8270D
Nitroaniline	ND	1900	810	ug/Kg	1	06/01/16	DD	SW8270D
6-Dinitro-2-methylphenol	ND	260	260	ug/Kg	1	06/01/16	DD	SW8270D
Bromophenyl phenyl ether	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
Chloro-3-methylphenol	ND	260	130	ug/Kg	1	06/01/16	DD	SW8270D
Chloroaniline	ND	740	170	ug/Kg	1	06/01/16	DD	SW8270D
Chlorophenyl phenyl ether	ND	260	130	ug/Kg	1	06/01/16	DD	SW8270D
Nitroaniline	ND	1900	120	ug/Kg	1	06/01/16	DD	SW8270D
Nitrophenol	ND	260	170	ug/Kg	1	06/01/16	DD	SW8270D
cenaphthene	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
cenaphthylene	ND	150	100	ug/Kg	1	06/01/16	DD	SW8270D
cetophenone	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
nthracene	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
razine	ND	150	150	ug/Kg	1	06/01/16	DD	SW8270D
enz(a)anthracene	ND	260	130	ug/Kg	1	06/01/16	DD	SW8270D
enzaldehyde	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
enzo(a)pyrene	ND	150	120	ug/Kg	1	06/01/16	DD	SW8270D
enzo(b)fluoranthene	ND	260	130	ug/Kg	1	06/01/16	DD	SW8270D
enzo(ghi)perylene	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
enzo(k)fluoranthene	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
	ND	260	96		1	06/01/16	DD	SW8270D
enzyl butyl phthalate	ND	260 260	96 100	ug/Kg ug/Kg		06/01/16	DD	SW8270D SW8270D
is(2-chloroethoxy)methane	ND	260 150	100		1 1	06/01/16	DD	SW8270D SW8270D
is(2-chloroethyl)ether				ug/Kg				
is(2-chloroisopropyl)ether	ND	260 260	100 110	ug/Kg	1	06/01/16	DD	SW8270D SW8270D
is(2-ethylhexyl)phthalate	ND	260	110	ug/Kg	1	06/01/16	DD	
aprolactam	ND	260	260	ug/Kg	1	06/01/16	DD	SW8270D
arbazole	ND	260	190	ug/Kg	1	06/01/16	DD	SW8270D
hrysene	ND	260	130	ug/Kg	1	06/01/16	DD	SW8270D
ibenz(a,h)anthracene	ND	150	120	ug/Kg	1	06/01/16	DD	SW8270D
benzofuran	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
ethyl phthalate	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
methylphthalate	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
i-n-butylphthalate	ND	260	99	ug/Kg	1	06/01/16	DD	SW8270D
i-n-octylphthalate	ND	260	96	ug/Kg	1	06/01/16	DD	SW8270D
luoranthene	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
luorene	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
exachlorobenzene	ND	150	110	ug/Kg	1	06/01/16	DD	SW8270D
exachlorobutadiene	ND	260	130	ug/Kg	1	06/01/16	DD	SW8270D

Client ID: IB,S 1C 2-3FT

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference
Hexachlorocyclopentadiene	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
Hexachloroethane	ND	150	110	ug/Kg	1	06/01/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
Isophorone	ND	150	100	ug/Kg	1	06/01/16	DD	SW8270D
Naphthalene	ND	260	110	ug/Kg	1	06/01/16	DD	SW8270D
Nitrobenzene	ND	150	130	ug/Kg	1	06/01/16	DD	SW8270D
N-Nitrosodimethylamine	ND	260	100	ug/Kg	1	06/01/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	150	120	ug/Kg	1	06/01/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	150	140	ug/Kg	1	06/01/16	DD	SW8270D
Pentachlorophenol	ND	260	140	ug/Kg	1	06/01/16	DD	SW8270D
Phenanthrene	ND	150	110	ug/Kg	1	06/01/16	DD	SW8270D
Phenol	ND	260	120	ug/Kg	1	06/01/16	DD	SW8270D
Pyrene	ND	260	130	ug/Kg	1	06/01/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	58			%	1	06/01/16	DD	30 - 130 %
% 2-Fluorobiphenyl	45			%	1	06/01/16	DD	30 - 130 %
% 2-Fluorophenol	47			%	1	06/01/16	DD	30 - 130 %
% Nitrobenzene-d5	45			%	1	06/01/16	DD	30 - 130 %
% Phenol-d5	48			%	1	06/01/16	DD	30 - 130 %
% Terphenyl-d14	50			%	1	06/01/16	DD	30 - 130 %
SVOA Library Search Top 15	Completed					06/02/16	DD	

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	<u>ition</u>	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		05/27/16	13:30
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007	l oborotori	Data	SDG ID.	GRN/1528

Laboratory Data

Project ID:	CAPITAL DIST PROPS
Client ID:	IB,S-1C 3FT

	Desult	RL/	LOD/	l lucita	Dilution	Data /Time	Du	Deference	
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference	-
Percent Solid	90			%		06/01/16	W	SW846-%Solid	
1,4-dioxane									
1,4-dioxane	ND	100	45	ug/kg	1	06/02/16	JLI	SW8260C	
<u>Volatiles</u>									
1,1,1-Trichloroethane	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C	
1,1,2,2-Tetrachloroethane	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
1,1,2-Trichloroethane	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
1,1-Dichloroethane	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
1,1-Dichloroethene	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2,3-Trichlorobenzene	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2,4-Trichlorobenzene	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2-Dibromo-3-chloropropane	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2-Dibromoethane	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2-Dichlorobenzene	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2-Dichloroethane	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2-Dichloropropane	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
1,3-Dichlorobenzene	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C	
1,4-Dichlorobenzene	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C	
2-Hexanone	ND	28	5.6	ug/Kg	1	06/02/16	JLI	SW8260C	
4-Methyl-2-pentanone	ND	28	5.6	ug/Kg	1	06/02/16	JLI	SW8260C	
Acetone	ND	50	5.6	ug/Kg	1	06/02/16	JLI	SW8260C E	В
Benzene	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C	
Bromochloromethane	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C	
Bromodichloromethane	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
Bromoform	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
Bromomethane	ND	5.6	2.2	ug/Kg	1	06/02/16	JLI	SW8260C	

Client ID: IB,S-1C 3FT

Decomptor	Decult	RL/	LOD/	Linite	Dilution	Dete/Time	D. /	Deference
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference
Carbon Disulfide	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Carbon tetrachloride	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Chlorobenzene	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroethane	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroform	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C
Chloromethane	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C
Cyclohexane	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dibromochloromethane	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C
Ethylbenzene	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C
Isopropylbenzene	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C
m&p-Xylene	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl ethyl ketone	ND	34	5.6	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	11	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylacetate	ND	5.6	2.8	ug/Kg	1	06/02/16	JLI	SW8260C
Methylcyclohexane	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylene chloride	ND	5.6	5.6	ug/Kg	1	06/02/16	JLI	SW8260C
o-Xylene	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Styrene	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C
Tetrachloroethene	150	D 300	61	ug/Kg	50	06/03/16	JLI	SW8260C
Toluene	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C
Total Xylenes	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C
Trichloroethene	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.6	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C
Vinyl chloride	ND	5.6	0.56	ug/Kg	1	06/02/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	101			%	1	06/02/16	JLI	70 - 130 %
% Bromofluorobenzene	92			%	1	06/02/16	JLI	70 - 130 %
% Dibromofluoromethane	102			%	1	06/02/16	JLI	70 - 130 %
% Toluene-d8	96			%	1	06/02/16	JLI	70 - 130 %
Volatile Library Search Top 10	Completed	I				06/03/16	JLI	

Project ID: CAPITAL DIST PROPS Client ID: IB,S-1C 3FT RL/ LOD/ Parameter Result PQL MDL Units Dilution Date/Time By Reference

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	Date	<u>Time</u>	
Matrix:	SOIL	Collected by:		05/27/16	13:45
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007				

Laboratory Data

Project ID:	CAPITAL DIST PROPS
Client ID:	IB,S-2C 5-6FT

Aluminum6410AntimonyNDArsenic3.3Barium19.7Beryllium0.37Calcium9530Cadmium0.17Chromium10.1Cobalt7.65Copper11.3Iron15000Lead3.1Magnesium1940Marganese426Mercury0.06Nickel8.91Potassium779SeleniumNDSilverNDSodium126ThalliumND)	37 1.9 0.7 0.30 N 3.7 B 0.37 0.37 0.37 0.37 37 0.7	7.4 1.9 0.74 0.37 0.15 3.4 0.15 0.37 0.37 0.37 37	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	10 1 1 1 1 1 1 1 1	06/02/16 06/02/16 06/02/16 06/02/16 06/02/16 06/02/16 06/02/16 06/02/16	EK EK EK EK EK EK	SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C SW6010C
Arsenic3.3Barium19.7Beryllium0.37Calcium9530Cadmium0.17Chromium10.1Cobalt7.65Copper11.3Iron15000Lead3.1Magnesium1940Manganese426Mercury0.06Nickel8.91Potassium779SeleniumNDSilverNDSodium126)	0.7 0.30 N 3.7 B 0.37 0.37 0.37 0.37 37	0.74 0.37 0.15 3.4 0.15 0.37 0.37 0.37	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	1 1 1 1 1 1	06/02/16 06/02/16 06/02/16 06/02/16 06/02/16	EK EK EK EK EK	SW6010C SW6010C SW6010C SW6010C SW6010C
Barium19.7Beryllium0.37Calcium9530Cadmium0.17Chromium10.1Cobalt7.65Copper11.3Iron1500Lead3.1Magnesium1940Manganese426Mercury0.06Nickel8.91Potassium779SeleniumNDSilverNDSodium126)	0.7 0.30 N 3.7 B 0.37 0.37 0.37 0.37 37	0.37 0.15 3.4 0.15 0.37 0.37 0.37	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	1 1 1 1 1	06/02/16 06/02/16 06/02/16 06/02/16 06/02/16	EK EK EK EK	SW6010C SW6010C SW6010C SW6010C
Beryllium0.37Calcium9530Cadmium0.17Chromium10.1Cobalt7.65Copper11.3Iron15000Lead3.1Magnesium1940Manganese426Mercury0.06Nickel8.91Potassium779SeleniumNDSilverNDSodium126)	0.30 N 3.7 B 0.37 0.37 0.37 0.37 37	0.15 3.4 0.15 0.37 0.37 0.37	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/kg	1 1 1 1 1	06/02/16 06/02/16 06/02/16 06/02/16	EK EK EK	SW6010C SW6010C SW6010C
Calcium9530Cadmium0.17Chromium10.1Cobalt7.65Copper11.3Iron15000Lead3.1Magnesium1940Manganese426Mercury0.06Nickel8.91Potassium779SeleniumNDSilverNDSodium126)	N 3.7 B 0.37 0.37 0.37 0.37 37	3.4 0.15 0.37 0.37 0.37	mg/Kg mg/Kg mg/Kg mg/Kg mg/kg	1 1 1 1	06/02/16 06/02/16 06/02/16	EK EK EK	SW6010C SW6010C
Cadmium0.17Chromium10.1Cobalt7.65Copper11.3Iron15000Lead3.1Magnesium19400Manganese426Mercury0.06Nickel8.91Potassium779SeleniumNDSilverNDSodium126)	 B 0.37 0.37 0.37 0.37 37 	0.15 0.37 0.37 0.37	mg/Kg mg/Kg mg/Kg mg/kg	1 1 1	06/02/16 06/02/16	EK EK	SW6010C
Chromium10.1Cobalt7.65Copper11.3Iron15000Lead3.1Magnesium1940Manganese426Mercury0.06Nickel8.91Potassium779SeleniumNDSilverNDSodium126)	0.37 0.37 0.37 37	0.37 0.37 0.37	mg/Kg mg/Kg mg/kg	1 1	06/02/16	EK	
Cobalt7.65Copper11.3Iron15000Lead3.1Magnesium1940Manganese426Mercury0.06Nickel8.91Potassium779SeleniumNDSilverNDSodium126		0.37 0.37 37	0.37 0.37	mg/Kg mg/kg	1			SW6010C
Copper11.3Iron15000Lead3.1Magnesium1940Manganese426Mercury0.06Nickel8.91Potassium779SeleniumNDSilverNDSodium126		0.37 37	0.37	mg/kg		06/02/16	ГV	
Iron15000Lead3.1Magnesium19400Manganese426Mercury0.06Nickel8.91Potassium779SeleniumNDSilverNDSodium126		37			4		EK	SW6010C
Iron15000Lead3.1Magnesium1940Manganese426Mercury0.06Nickel8.91Potassium779SeleniumNDSilverNDSodium126			37		1	06/02/16	EK	SW6010C
Magnesium1940Manganese426Mercury0.06Nickel8.91Potassium779SeleniumNDSilverNDSodium126		07	-	mg/Kg	10	06/02/16	EK	SW6010C
Manganese426Mercury0.06Nickel8.91Potassium779SeleniumNDSilverNDSodium126		0.7	0.37	mg/Kg	1	06/02/16	EK	SW6010C
Manganese426Mercury0.06Nickel8.91Potassium779SeleniumNDSilverNDSodium126		3.7	3.7	mg/Kg	1	06/02/16	EK	SW6010C
Mercury0.06Nickel8.91Potassium779SeleniumNDSilverNDSodium126		3.7	3.7	mg/Kg	10	06/02/16	EK	SW6010C
Potassium779SeleniumNDSilverNDSodium126		0.03	0.02	mg/Kg	1	06/02/16	RS	SW7471B
SeleniumNDSilverNDSodium126		0.37	0.37	mg/Kg	1	06/02/16	EK	SW6010C
SilverNDSodium126		N 7	2.9	mg/Kg	1	06/02/16	EK	SW6010C
Sodium 126		1.5	1.3	mg/Kg	1	06/02/16	EK	SW6010C
obalam		0.37	0.37	mg/Kg	1	06/02/16	EK	SW6010C
Thellium		N 7	3.2	mg/Kg	1	06/02/16	EK	SW6010C
		1.5	1.5	mg/Kg	1	06/02/16	EK	SW6010C
Vanadium 13.5		0.4	0.37	mg/Kg	1	06/02/16	EK	SW6010C
Zinc 25.1		0.7	0.37	mg/Kg	1	06/02/16	EK	SW6010C
Percent Solid 84				%		06/01/16	W	SW846-%Solid
Soil Extraction for PCB Comple	ed					06/01/16	VC/CK	SW3545A
Soil Extraction for Pesticide Comple	ed					06/01/16	VC/CK	SW3545A
Soil Extraction for SVOA Comple	ted					06/01/16	VJ/VCK	SW3545A
Mercury Digestion Comple	ted					06/02/16	W/I	SW7471B

Client ID: IB,S-2C 5-6FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					06/01/16	G/AG	SW3050B
Polychlorinated Biphe	enyls							
PCB-1016	ND	79	79	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1221	ND	79	79	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1232	ND	79	79	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1242	ND	79	79	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1248	ND	79	79	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1254	ND	79	79	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1260	ND	79	79	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1262	ND	79	79	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1268	ND	79	79	ug/Kg	2	06/03/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	92			%	2	06/03/16	AW	40 - 140 %
% TCMX	75			%	2	06/03/16	AW	40 - 140 %
Pesticides - Soil			<i>_</i> .		-			0.110.0-1-5
4,4' -DDD	ND	2.4	2.4	ug/Kg	2	06/03/16	CE	SW8081B
1,4' -DDE	ND	2.4	2.4	ug/Kg	2	06/03/16	CE	SW8081B
1,4' -DDT	ND	2.4	2.4	ug/Kg	2	06/03/16	CE	SW8081B
a-BHC	ND	7.9	7.9	ug/Kg	2	06/03/16	CE	SW8081B
a-Chlordane	ND	3.9	3.9	ug/Kg	2	06/03/16	CE	SW8081B
Aldrin	ND	3.9	3.9	ug/Kg	2	06/03/16	CE	SW8081B
o-BHC	ND	7.9	7.9	ug/Kg	2	06/03/16	CE	SW8081B
Chlordane	ND	39	39	ug/Kg	2	06/03/16	CE	SW8081B
I-BHC	ND	7.9	7.9	ug/Kg	2	06/03/16	CE	SW8081B
Dieldrin	ND	3.9	3.9	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan I	ND	7.9	7.9	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan II	ND	7.9	7.9	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan sulfate	ND	7.9	7.9	ug/Kg	2	06/03/16	CE	SW8081B
Endrin	ND	7.9	7.9	ug/Kg	2	06/03/16	CE	SW8081B
Endrin aldehyde	ND	7.9	7.9	ug/Kg	2	06/03/16	CE	SW8081B
Endrin ketone	ND	7.9	7.9	ug/Kg	2	06/03/16	CE	SW8081B
g-BHC	ND	1.6	1.6	ug/Kg	2	06/03/16	CE	SW8081B
g-Chlordane	ND	3.9	3.9	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor	ND	7.9	7.9	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor epoxide	ND	7.9	7.9	ug/Kg	2	06/03/16	CE	SW8081B
Methoxychlor	ND	39	39	ug/Kg	2	06/03/16	CE	SW8081B
Toxaphene	ND	160	160	ug/Kg	2	06/03/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	92			%	2	06/03/16	CE	40 - 140 %
% TCMX	70			%	2	06/03/16	CE	40 - 140 %
<u>Semivolatiles</u>								
1,1-Biphenyl	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
1,2,4,5-Tetrachlorobenzene	ND	270	140	ug/Kg ug/Kg	1	06/02/16	DD	SW8270D SW8270D
	ND	270	140	ug/Kg ug/Kg	1	06/02/16	DD	SW8270D SW8270D
2,3,4,6-tetrachlorophenol	ND	270	210	ug/Kg ug/Kg		06/02/16	DD	SW8270D SW8270D
2,4,5-Trichlorophenol					1			
2,4,6-Trichlorophenol	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
2,4-Dichlorophenol	ND	160	140	ug/Kg	1	06/02/16	DD	SW8270D

Client ID: IB,S-2C 5-6FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
,4-Dimethylphenol	ND	270	97	ug/Kg	1	06/02/16	DD	SW8270D
,4-Dinitrophenol	ND	270	270	ug/Kg	1	06/02/16	DD	SW8270D
,4-Dinitrotoluene	ND	160	150	ug/Kg	1	06/02/16	DD	SW8270D
,6-Dinitrotoluene	ND	160	120	ug/Kg	1	06/02/16	DD	SW8270D
-Chloronaphthalene	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
-Chlorophenol	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
-Methylnaphthalene	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
Methylphenol (o-cresol)	ND	270	180	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	270	270	ug/Kg	1	06/02/16	DD	SW8270D
Nitrophenol	ND	270	250	ug/Kg	1	06/02/16	DD	SW8270D
&4-Methylphenol (m&p-cresol)	ND	270	150	ug/Kg	1	06/02/16	DD	SW8270D
3'-Dichlorobenzidine	ND	160	160	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	2000	850	ug/Kg	1	06/02/16	DD	SW8270D
6-Dinitro-2-methylphenol	ND	270	270	ug/Kg	1	06/02/16	DD	SW8270D
Bromophenyl phenyl ether	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
Chloro-3-methylphenol	ND	270	140	ug/Kg	1	06/02/16	DD	SW8270D
Chloroaniline	ND	780	180	ug/Kg	1	06/02/16	DD	SW8270D
Chlorophenyl phenyl ether	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	2000	130	ug/Kg	1	06/02/16	DD	SW8270D
Nitrophenol	ND	270	180	ug/Kg	1	06/02/16	DD	SW8270D
cenaphthene	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
cenaphthylene	ND	160	110	ug/Kg	1	06/02/16	DD	SW8270D
cetophenone	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
nthracene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
razine	ND	160	160	ug/Kg	1	06/02/16	DD	SW8270D
enz(a)anthracene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
enzaldehyde	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
enzo(a)pyrene	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
enzo(b)fluoranthene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
enzo(ghi)perylene enzo(k)fluoranthene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
()	ND	270	100	ug/Kg ug/Kg	1	06/02/16	DD	SW8270D
enzyl butyl phthalate s(2-chloroethoxy)methane	ND	270	110	ug/Kg ug/Kg		06/02/16		SW8270D
					1	06/02/16		
s(2-chloroethyl)ether	ND	160 270	110 110	ug/Kg	1		DD	SW8270D
s(2-chloroisopropyl)ether	ND	270 270	110	ug/Kg	1	06/02/16	DD	SW8270D
s(2-ethylhexyl)phthalate	ND	270 270	110	ug/Kg	1	06/02/16	DD	SW8270D
aprolactam	ND	270	270	ug/Kg	1	06/02/16	DD	SW8270D
arbazole	ND	270	200	ug/Kg	1	06/02/16	DD	SW8270D
hrysene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
ibenz(a,h)anthracene	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
benzofuran	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
ethyl phthalate	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
methylphthalate	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
-n-butylphthalate	ND	270	100	ug/Kg	1	06/02/16	DD	SW8270D
i-n-octylphthalate	ND	270	100	ug/Kg	1	06/02/16	DD	SW8270D
uoranthene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
luorene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
exachlorobenzene	ND	160	110	ug/Kg	1	06/02/16	DD	SW8270D
exachlorobutadiene	ND	270	140	ug/Kg	1	06/02/16	DD	SW8270D

Client ID: IB,S-2C 5-6FT

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference
Hexachlorocyclopentadiene	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
Hexachloroethane	ND	160	120	ug/Kg	1	06/02/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
Isophorone	ND	160	110	ug/Kg	1	06/02/16	DD	SW8270D
Naphthalene	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
Nitrobenzene	ND	160	140	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodimethylamine	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	160	150	ug/Kg	1	06/02/16	DD	SW8270D
Pentachlorophenol	ND	270	150	ug/Kg	1	06/02/16	DD	SW8270D
Phenanthrene	ND	160	110	ug/Kg	1	06/02/16	DD	SW8270D
Phenol	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
Pyrene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	57			%	1	06/02/16	DD	30 - 130 %
% 2-Fluorobiphenyl	53			%	1	06/02/16	DD	30 - 130 %
% 2-Fluorophenol	53			%	1	06/02/16	DD	30 - 130 %
% Nitrobenzene-d5	50			%	1	06/02/16	DD	30 - 130 %
% Phenol-d5	54			%	1	06/02/16	DD	30 - 130 %
% Terphenyl-d14	57			%	1	06/02/16	DD	30 - 130 %
SVOA Library Search Top 15	Completed					06/02/16	DD	

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	<u>Date</u>	<u>Time</u>	
Matrix:	SOIL	Collected by:		05/27/16	13:45
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007	Labaratary	Data	SDG ID.	GRN/1528

Laboratory Data

Project ID:	CAPITAL DIST PROPS
Client ID:	IB,S-2C 6FT

Parameter Res		PQL	MDL	Units		απι τη αταί τη πα	B _V	Reference	
					Dilution	Date/Time	By		
Percent Solid 86				%		06/01/16	W	SW846-%Solid	
<u>1,4-dioxane</u>									
1,4-dioxane NE)	100	46	ug/kg	1	06/02/16	JLI	SW8260C	
<u>Volatiles</u>									
1,1,1-Trichloroethane NE)	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C	
1,1,2,2-Tetrachloroethane NE)	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
1,1,2-Trichloroethane NE)	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
1,1-Dichloroethane NE)	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
1,1-Dichloroethene NE)	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2,3-Trichlorobenzene NE)	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2,4-Trichlorobenzene NE)	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2-Dibromo-3-chloropropane NE)	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2-Dibromoethane NE)	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2-Dichlorobenzene NI)	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2-Dichloroethane NI)	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2-Dichloropropane NI)	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
1,3-Dichlorobenzene NE)	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C	
1,4-Dichlorobenzene NI)	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C	
2-Hexanone NI)	28	5.7	ug/Kg	1	06/02/16	JLI	SW8260C	
4-Methyl-2-pentanone NI)	28	5.7	ug/Kg	1	06/02/16	JLI	SW8260C	
Acetone 34	. JS	S 50	5.7	ug/Kg	1	06/02/16	JLI	SW8260C	B*
Benzene NI)	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C	
Bromochloromethane NE)	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C	
Bromodichloromethane NI)	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
Bromoform NE)	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C	
Bromomethane NE)	5.7	2.3	ug/Kg	1	06/02/16	JLI	SW8260C	

Client ID: IB,S-2C 6FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Carbon Disulfide	ND	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Carbon tetrachloride	ND	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Chlorobenzene	ND	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroethane	ND	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroform	ND	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Chloromethane	ND	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Cyclohexane	ND	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dibromochloromethane	ND	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Ethylbenzene	ND	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Isopropylbenzene	ND	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
m&p-Xylene	ND	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl ethyl ketone	ND	34	5.7	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	11	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylacetate	ND	5.7	2.8	ug/Kg	1	06/02/16	JLI	SW8260C
Methylcyclohexane	ND	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylene chloride	ND	5.7	5.7	ug/Kg	1	06/02/16	JLI	SW8260C
o-Xylene	ND	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Styrene	ND	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Tetrachloroethene	92	D 330	66	ug/Kg	50	06/03/16	JLI	SW8260C
Toluene	ND	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Total Xylenes	ND	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Trichloroethene	ND	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Vinyl chloride	ND	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	98			%	1	06/02/16	JLI	70 - 130 %
% Bromofluorobenzene	95			%	1	06/02/16	JLI	70 - 130 %
% Dibromofluoromethane	83			%	1	06/02/16	JLI	70 - 130 %
% Toluene-d8	96			%	1	06/02/16	JLI	70 - 130 %
Volatile Library Search Top 10	Completed	I				06/03/16	JLI	

Project ID: CAPITAL DIST PROPS Client ID: IB,S-2C 6FT RL/ LOD/ Parameter Result PQL MDL Units Dilution Date/Time By Reference

B* = Present in blank, a bias is possible.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		05/27/16	13:50
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007				

Laboratory Data

Project ID:	CAPITAL DIST PROPS
Client ID:	IB,S-6C 16-17FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Aluminum	5130	39	7.8	mg/Kg	10	06/02/16	EK	SW6010C
Antimony	ND	1.9	1.9	mg/Kg	1	06/02/16	EK	SW6010C
Arsenic	2.9	0.8	0.78	mg/Kg	1	06/02/16	EK	SW6010C
Barium	20.4	0.8	0.39	mg/Kg	1	06/02/16	EK	SW6010C
Beryllium	0.32	0.31	0.16	mg/Kg	1	06/02/16	EK	SW6010C
Calcium	16200	N 39	36	mg/Kg	10	06/02/16	EK	SW6010C
Cadmium	ND	0.39	0.16	mg/Kg	1	06/02/16	EK	SW6010C
Chromium	8.26	0.39	0.39	mg/Kg	1	06/02/16	EK	SW6010C
Cobalt	4.59	0.39	0.39	mg/Kg	1	06/02/16	EK	SW6010C
Copper	9.81	0.39	0.39	mg/kg	1	06/02/16	EK	SW6010C
Iron	11800	39	39	mg/Kg	10	06/02/16	EK	SW6010C
Lead	2.8	0.8	0.39	mg/Kg	1	06/02/16	EK	SW6010C
Vagnesium	2860	3.9	3.9	mg/Kg	1	06/02/16	EK	SW6010C
Vanganese	221	3.9	3.9	mg/Kg	10	06/02/16	EK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	06/02/16	RS	SW7471B
Nickel	7.64	0.39	0.39	mg/Kg	1	06/02/16	EK	SW6010C
Potassium	755	N 8	3.0	mg/Kg	1	06/02/16	EK	SW6010C
Selenium	ND	1.6	1.3	mg/Kg	1	06/02/16	EK	SW6010C
Silver	ND	0.39	0.39	mg/Kg	1	06/02/16	EK	SW6010C
Sodium	142	N 8	3.3	mg/Kg	1	06/02/16	EK	SW6010C
Thallium	ND	1.6	1.6	mg/Kg	1	06/02/16	EK	SW6010C
Vanadium	12.2	0.4	0.39	mg/Kg	1	06/02/16	EK	SW6010C
Zinc	22.8	0.8	0.39	mg/Kg	1	06/02/16	EK	SW6010C
Percent Solid	87			%		06/01/16	W	SW846-%Solid
Soil Extraction for PCB	Completed	l				06/01/16	VC/CK	SW3545A
Soil Extraction for Pesticide	Completed	l				06/01/16	VC/CK	SW3545A
Soil Extraction for SVOA	Completed	l				06/01/16	VJ/VCK	SW3545A
Mercury Digestion	Completed					06/02/16	W/I	SW7471B

Client ID: IB,S-6C 16-17FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					06/01/16	G/AG	SW3050B
Polychlorinated Biphe	enyls							
PCB-1016	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1221	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1232	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1242	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1248	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1254	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1260	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1262	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1268	ND	74	74	ug/Kg	2	06/03/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	106			%	2	06/03/16	AW	40 - 140 %
% TCMX	86			%	2	06/03/16	AW	40 - 140 %
Pesticides - Soil 4,4' -DDD	ND	2.2	2.2	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDE	ND	2.2	2.2	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDT	ND	2.2	2.2	ug/Kg	2	06/03/16	CE	SW8081B
a-BHC	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
a-Chlordane	ND	3.7	3.7	ug/Kg	2	06/03/16	CE	SW8081B
Aldrin	ND	3.7	3.7	ug/Kg	2	06/03/16	CE	SW8081B
o-BHC	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Chlordane	ND	37	37	ug/Kg	2	06/03/16	CE	SW8081B
J-BHC	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Dieldrin	ND	3.7	3.7	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan I	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan II	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan sulfate	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Endrin	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Endrin aldehyde	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Endrin ketone	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
g-BHC	ND	1.5	1.5	ug/Kg	2	06/03/16	CE	SW8081B
g-Chlordane	ND	3.7	3.7	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor epoxide	ND	7.4	7.4	ug/Kg	2	06/03/16	CE	SW8081B
Vlethoxychlor	ND	37	37	ug/Kg	2	06/03/16	CE	SW8081B
Foxaphene	ND	150	150	ug/Kg	2	06/03/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	98			%	2	06/03/16	CE	40 - 140 %
% TCMX	81			%	2	06/03/16	CE	40 - 140 %
<u>Semivolatiles</u>								
1,1-Biphenyl	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
1,2,4,5-Tetrachlorobenzene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
2,3,4,6-tetrachlorophenol	ND	270	180	ug/Kg	1	06/02/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	270	210	ug/Kg	1	06/02/16	DD	SW8270D
-	ND	150	120	ug/Kg ug/Kg	1	06/02/16	DD	SW8270D SW8270D
2,4,6-Trichlorophenol								
2,4-Dichlorophenol	ND	150	130	ug/Kg	1	06/02/16	DD	SW8270D

Client ID: IB,S-6C 16-17FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
,4-Dimethylphenol	ND	270	95	ug/Kg	1	06/02/16	DD	SW8270D
,4-Dinitrophenol	ND	270	270	ug/Kg	1	06/02/16	DD	SW8270D
,4-Dinitrotoluene	ND	150	150	ug/Kg	1	06/02/16	DD	SW8270D
,6-Dinitrotoluene	ND	150	120	ug/Kg	1	06/02/16	DD	SW8270D
-Chloronaphthalene	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
Chlorophenol	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
Methylnaphthalene	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
Methylphenol (o-cresol)	ND	270	180	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	270	270	ug/Kg	1	06/02/16	DD	SW8270D
Nitrophenol	ND	270	240	ug/Kg	1	06/02/16	DD	SW8270D
4-Methylphenol (m&p-cresol)	ND	270	150	ug/Kg	1	06/02/16	DD	SW8270D
3'-Dichlorobenzidine	ND	150	150	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	1900	830	ug/Kg	1	06/02/16	DD	SW8270D
6-Dinitro-2-methylphenol	ND	270	270	ug/Kg	1	06/02/16	DD	SW8270D
Bromophenyl phenyl ether	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
Chloro-3-methylphenol	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
Chloroaniline	ND	770	180	ug/Kg	1	06/02/16	DD	SW8270D
Chlorophenyl phenyl ether	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	1900	130	ug/Kg	1	06/02/16	DD	SW8270D
Nitrophenol	ND	270	170	ug/Kg	1	06/02/16	DD	SW8270D
cenaphthene	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
cenaphthylene	ND	150	110	ug/Kg	1	06/02/16	DD	SW8270D
cetophenone	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
nthracene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
razine	ND	150	150	ug/Kg	1	06/02/16	DD	SW8270D
	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
enz(a)anthracene	ND	270	110	ug/Kg ug/Kg	1	06/02/16		SW8270D
enzaldehyde	ND	150	120	ug/Kg ug/Kg	1	06/02/16		SW8270D
enzo(a)pyrene								
enzo(b)fluoranthene	ND	270	130	ug/Kg	1	06/02/16	DD DD	SW8270D
enzo(ghi)perylene	ND	270	120	ug/Kg	1	06/02/16		SW8270D
enzo(k)fluoranthene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
enzyl butyl phthalate	ND	270	99	ug/Kg	1	06/02/16	DD	SW8270D
s(2-chloroethoxy)methane	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
s(2-chloroethyl)ether	ND	150	100	ug/Kg	1	06/02/16	DD	SW8270D
s(2-chloroisopropyl)ether	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
s(2-ethylhexyl)phthalate	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
aprolactam	ND	270	270	ug/Kg	1	06/02/16	DD	SW8270D
arbazole	ND	270	190	ug/Kg	1	06/02/16	DD	SW8270D
hrysene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
benz(a,h)anthracene	ND	150	120	ug/Kg	1	06/02/16	DD	SW8270D
benzofuran	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
ethyl phthalate	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
methylphthalate	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
-n-butylphthalate	ND	270	100	ug/Kg	1	06/02/16	DD	SW8270D
-n-octylphthalate	ND	270	99	ug/Kg	1	06/02/16	DD	SW8270D
uoranthene	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
uorene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
exachlorobenzene	ND	150	110	ug/Kg	1	06/02/16	DD	SW8270D
exachlorobutadiene	ND	270	140	ug/Kg	1	06/02/16	DD	SW8270D

Client ID: IB,S-6C 16-17FT

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference
Hexachlorocyclopentadiene	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
Hexachloroethane	ND	150	110	ug/Kg	1	06/02/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
Isophorone	ND	150	110	ug/Kg	1	06/02/16	DD	SW8270D
Naphthalene	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
Nitrobenzene	ND	150	130	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodimethylamine	ND	270	110	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	150	120	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	150	150	ug/Kg	1	06/02/16	DD	SW8270D
Pentachlorophenol	ND	270	140	ug/Kg	1	06/02/16	DD	SW8270D
Phenanthrene	ND	150	110	ug/Kg	1	06/02/16	DD	SW8270D
Phenol	ND	270	120	ug/Kg	1	06/02/16	DD	SW8270D
Pyrene	ND	270	130	ug/Kg	1	06/02/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	59			%	1	06/02/16	DD	30 - 130 %
% 2-Fluorobiphenyl	57			%	1	06/02/16	DD	30 - 130 %
% 2-Fluorophenol	56			%	1	06/02/16	DD	30 - 130 %
% Nitrobenzene-d5	53			%	1	06/02/16	DD	30 - 130 %
% Phenol-d5	59			%	1	06/02/16	DD	30 - 130 %
% Terphenyl-d14	62			%	1	06/02/16	DD	30 - 130 %
SVOA Library Search Top 15	Completed					06/02/16	DD	

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	<u>Date</u>	<u>Time</u>	
Matrix:	SOIL	Collected by:		05/27/16	13:50
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007	Labaratary	Data	SDG ID.	GRN/1528

Laboratory Data

Project ID:	CAPITAL DIST PROPS
Client ID:	IB,S-6C 17FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference	
Percent Solid	86	. 42	mbe	%	Diration	06/01/16	W	SW846-%Solid	
1,4-dioxane									
1,4-dioxane	ND	100	46	ug/kg	1	06/03/16	JLI	SW8260C	
<u>Volatiles</u>									
1,1,1-Trichloroethane	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C	
1,1,2,2-Tetrachloroethane	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C	
1,1,2-Trichloroethane	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C	
1,1-Dichloroethane	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C	
1,1-Dichloroethene	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C	
1,2,3-Trichlorobenzene	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C	
1,2,4-Trichlorobenzene	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C	
1,2-Dibromo-3-chloropropane	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C	
1,2-Dibromoethane	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C	
1,2-Dichlorobenzene	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C	
1,2-Dichloroethane	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C	
1,2-Dichloropropane	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C	
1,3-Dichlorobenzene	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C	
1,4-Dichlorobenzene	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C	
2-Hexanone	ND	28	5.7	ug/Kg	1	06/03/16	JLI	SW8260C	
4-Methyl-2-pentanone	ND	28	5.7	ug/Kg	1	06/03/16	JLI	SW8260C	
Acetone	41	JS 50	5.7	ug/Kg	1	06/03/16	JLI	SW8260C	B*
Benzene	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C	
Bromochloromethane	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C	
Bromodichloromethane	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C	
Bromoform	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C	
Bromomethane	ND	5.7	2.3	ug/Kg	1	06/03/16	JLI	SW8260C	

Client ID: IB,S-6C 17FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Carbon Disulfide	ND	5.7	1.1 1.1	ug/Kg	1	06/03/16	JLI	SW8260C
Carbon tetrachloride	ND	5.7		ug/Kg	1	06/03/16	JLI	SW8260C
Chlorobenzene	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C
Chloroethane	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C
Chloroform	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C
Chloromethane	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C
Cyclohexane	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C
Dibromochloromethane	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C
Ethylbenzene	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C
Isopropylbenzene	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C
m&p-Xylene	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C
Methyl ethyl ketone	ND	34	5.7	ug/Kg	1	06/03/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	11	1.1	ug/Kg	1	06/03/16	JLI	SW8260C
Methylacetate	ND	5.7	2.8	ug/Kg	1	06/03/16	JLI	SW8260C
Methylcyclohexane	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C
Methylene chloride	ND	5.7	5.7	ug/Kg	1	06/03/16	JLI	SW8260C
o-Xylene	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C
Styrene	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C
Tetrachloroethene	140	D 330	66	ug/Kg	50	06/03/16	JLI	SW8260C
Toluene	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C
Total Xylenes	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C
Trichloroethene	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.7	1.1	ug/Kg	1	06/03/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C
Vinyl chloride	ND	5.7	0.57	ug/Kg	1	06/03/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	06/03/16	JLI	70 - 130 %
% Bromofluorobenzene	95			%	1	06/03/16	JLI	70 - 130 %
% Dibromofluoromethane	80			%	1	06/03/16	JLI	70 - 130 %
% Toluene-d8	97			%	1	06/03/16	JLI	70 - 130 %
Volatile Library Search Top 10	Completed	1				06/03/16	JLI	

Project ID: CAPITAL DIST PROPS Client ID: IB,S-6C 17FT RL/ LOD/ Parameter Result PQL MDL Units Dilution Date/Time By Reference

 B^* = Present in blank, a bias is possible.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Information		Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		05/27/16	14:15
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007	Laboratory	Data	SDG ID.	GBN4528

Laboratory Data

Project ID:	CAPITAL DIST PROPS
Client ID:	IB,S-3C 11-12FT

			RL/	LOD/						
Parameter	Result		PQL	MDL	Units	Dilution	Date/Time	By	Reference	
Aluminum	4000		40	8.0	mg/Kg	10	06/03/16	EK	SW6010C	В
Antimony	ND		2.0	2.0	mg/Kg	1	06/03/16	EK	SW6010C	
Arsenic	2.2		0.8	0.80	mg/Kg	1	06/03/16	EK	SW6010C	
Barium	10.6		0.8	0.40	mg/Kg	1	06/03/16	EK	SW6010C	
Beryllium	0.31	В	0.32	0.16	mg/Kg	1	06/03/16	EK	SW6010C	
Calcium	637	Ν	4.0	3.7	mg/Kg	1	06/03/16	EK	SW6010C	
Cadmium	0.18	В	0.40	0.16	mg/Kg	1	06/03/16	EK	SW6010C	
Chromium	5.65		0.40	0.40	mg/Kg	1	06/03/16	EK	SW6010C	
Cobalt	2.92		0.40	0.40	mg/Kg	1	06/03/16	EK	SW6010C	
Copper	8.58		0.40	0.40	mg/kg	1	06/03/16	EK	SW6010C	
Iron	9820		4.0	4.0	mg/Kg	1	06/03/16	EK	SW6010C	
Lead	2.3		0.8	0.40	mg/Kg	1	06/03/16	EK	SW6010C	
Magnesium	1160		4.0	4.0	mg/Kg	1	06/03/16	EK	SW6010C	
Manganese	110	Ν	0.40	0.40	mg/Kg	1	06/03/16	EK	SW6010C	
Mercury	ND		0.03	0.02	mg/Kg	1	06/03/16	RS	SW7471B	
Nickel	7.07		0.40	0.40	mg/Kg	1	06/03/16	EK	SW6010C	
Potassium	597	Ν	8	3.1	mg/Kg	1	06/03/16	EK	SW6010C	
Selenium	ND		1.6	1.4	mg/Kg	1	06/03/16	EK	SW6010C	
Silver	ND		0.40	0.40	mg/Kg	1	06/03/16	EK	SW6010C	
Sodium	46	Ν	8	3.4	mg/Kg	1	06/03/16	EK	SW6010C	
Thallium	ND		1.6	1.6	mg/Kg	1	06/03/16	EK	SW6010C	
Vanadium	12.3		0.4	0.40	mg/Kg	1	06/03/16	EK	SW6010C	
Zinc	20.1		0.8	0.40	mg/Kg	1	06/03/16	EK	SW6010C	
Percent Solid	81				%		06/01/16	W	SW846-%Solid	
Soil Extraction for PCB	Completed	l					06/01/16	VC/CK	SW3545A	
Soil Extraction for Pesticide	Completed	l					06/01/16	VC/CK	SW3545A	
Soil Extraction for SVOA	Completed	l					06/01/16	VJ/VCK	SW3545A	
Mercury Digestion	Completed	I					06/03/16	W/W	SW7471B	

Client ID: IB,S-3C 11-12FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Total Metals Digest	Completed					06/02/16	N/AG	SW3050B
-	·							
Polychlorinated Biphen	<u>yls</u>							
PCB-1016	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1221	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1232	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1242	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1248	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1254	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1260	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1262	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1268	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
QA/QC Surrogates					_			
% DCBP	104			%	2	06/03/16	AW	40 - 140 %
% TCMX	83			%	2	06/03/16	AW	40 - 140 %
Pesticides - Soil								
4,4' -DDD	ND	2.4	2.4	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDE	ND	2.4	2.4	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDT	ND	2.4	2.4	ug/Kg	2	06/03/16	CE	SW8081B
a-BHC	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
a-Chlordane	ND	4.0	4.0	ug/Kg	2	06/03/16	CE	SW8081B
Aldrin	ND	4.0	4.0	ug/Kg	2	06/03/16	CE	SW8081B
b-BHC	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Chlordane	ND	40	40	ug/Kg	2	06/03/16	CE	SW8081B
d-BHC	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Dieldrin	ND	4.0	4.0	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan I	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan II	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan sulfate	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Endrin	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Endrin aldehyde	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Endrin ketone	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
g-BHC	ND	1.6	1.6	ug/Kg	2	06/03/16	CE	SW8081B
g-Chlordane	ND	4.0	4.0	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor epoxide	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Methoxychlor	ND	40	40	ug/Kg	2	06/03/16	CE	SW8081B
Toxaphene	ND	160	160	ug/Kg	2	06/03/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	88			%	2	06/03/16	CE	40 - 140 %
% TCMX	80			%	2	06/03/16	CE	40 - 140 %
Semivolatiles								
1,1-Biphenyl	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
1,2,4,5-Tetrachlorobenzene	ND	280	140	ug/Kg	1	06/02/16	DD	SW8270D
2,3,4,6-tetrachlorophenol	ND	280	190	ug/Kg	1	06/02/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	280	220	ug/Kg	1	06/02/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
2,4-Dichlorophenol	ND	160	140	ug/Kg	1	06/02/16	DD	SW8270D

Client ID: IB,S-3C 11-12FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
,4-Dimethylphenol	ND	280	100	ug/Kg	1	06/02/16	DD	SW8270D
,4-Dinitrophenol	ND	280	280	ug/Kg	1	06/02/16	DD	SW8270D
,4-Dinitrotoluene	ND	160	160	ug/Kg	1	06/02/16	DD	SW8270D
,6-Dinitrotoluene	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
-Chloronaphthalene	ND	280	110	ug/Kg	1	06/02/16	DD	SW8270D
Chlorophenol	ND	280	110	ug/Kg	1	06/02/16	DD	SW8270D
Methylnaphthalene	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
Methylphenol (o-cresol)	ND	280	190	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	280	280	ug/Kg	1	06/02/16	DD	SW8270D
Nitrophenol	ND	280	260	ug/Kg	1	06/02/16	DD	SW8270D
&4-Methylphenol (m&p-cresol)	ND	280	160	ug/Kg	1	06/02/16	DD	SW8270D
3'-Dichlorobenzidine	ND	160	160	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	2000	880	ug/Kg	1	06/02/16	DD	SW8270D
6-Dinitro-2-methylphenol	ND	280	280	ug/Kg	1	06/02/16	DD	SW8270D
Bromophenyl phenyl ether	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
Chloro-3-methylphenol	ND	280	140	ug/Kg	1	06/02/16	DD	SW8270D
Chloroaniline	ND	810	190	ug/Kg	1	06/02/16	DD	SW8270D
Chlorophenyl phenyl ether	ND	280	140	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	2000	140	ug/Kg	1	06/02/16	DD	SW8270D
Nitrophenol	ND	280	180	ug/Kg	1	06/02/16	DD	SW8270D
cenaphthene	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
cenaphthylene	ND	160	110	ug/Kg	1	06/02/16	DD	SW8270D
cetophenone	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
nthracene	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
razine	ND	160	160	ug/Kg	1	06/02/16	DD	SW8270D
enz(a)anthracene	ND	280	140	ug/Kg	1	06/02/16	DD	SW8270D
enzaldehyde	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
enzo(a)pyrene	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
enzo(b)fluoranthene	ND	280	140	ug/Kg	1	06/02/16	DD	SW8270D
enzo(ghi)perylene	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
enzo(k)fluoranthene	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
enzyl butyl phthalate	ND	280	100	ug/Kg	1	06/02/16	DD	SW8270D
s(2-chloroethoxy)methane	ND	280	110	ug/Kg	1	06/02/16	DD	SW8270D
s(2-chloroethyl)ether	ND	160	110	ug/Kg	1	06/02/16	DD	SW8270D
s(2-chloroisopropyl)ether	ND	280	110	ug/Kg ug/Kg	1	06/02/16		SW8270D SW8270D
	ND	280 280	120	ug/Kg ug/Kg	1	06/02/16		SW8270D SW8270D
s(2-ethylhexyl)phthalate	ND	280 280	280	ug/Kg ug/Kg	1	06/02/16	DD	SW8270D SW8270D
aprolactam								SW8270D SW8270D
arbazole	ND	280 280	200 140	ug/Kg	1	06/02/16	DD	
hrysene	ND	280	140 120	ug/Kg	1	06/02/16	DD	SW8270D
benz(a,h)anthracene	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
benzofuran	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
ethyl phthalate	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
methylphthalate	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
-n-butylphthalate	ND	280	110	ug/Kg	1	06/02/16	DD	SW8270D
i-n-octylphthalate	ND	280	100	ug/Kg	1	06/02/16	DD	SW8270D
uoranthene	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
uorene	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
exachlorobenzene	ND	160	120	ug/Kg	1	06/02/16	DD	SW8270D
exachlorobutadiene	ND	280	150	ug/Kg	1	06/02/16	DD	SW8270D

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Hexachlorocyclopentadiene	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
Hexachloroethane	ND	160	120	ug/Kg	1	06/02/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
Isophorone	ND	160	110	ug/Kg	1	06/02/16	DD	SW8270D
Naphthalene	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
Nitrobenzene	ND	160	140	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	160	160	ug/Kg	1	06/02/16	DD	SW8270D
Pentachlorophenol	ND	280	150	ug/Kg	1	06/02/16	DD	SW8270D
Phenanthrene	ND	160	120	ug/Kg	1	06/02/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	06/02/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	63			%	1	06/02/16	DD	30 - 130 %
% 2-Fluorobiphenyl	49			%	1	06/02/16	DD	30 - 130 %
% 2-Fluorophenol	51			%	1	06/02/16	DD	30 - 130 %
% Nitrobenzene-d5	47			%	1	06/02/16	DD	30 - 130 %
% Phenol-d5	51			%	1	06/02/16	DD	30 - 130 %
% Terphenyl-d14	56			%	1	06/02/16	DD	30 - 130 %
SVOA Library Search Top 15	Completed					06/02/16	DD	

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis, Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Information		Custody Inform	Custody Information					
Matrix:	SOIL	Collected by:		05/27/16	14:15			
Location Code:	HANSONV	Received by:	В	06/01/16	18:13			
Rush Request:	Standard	Analyzed by:	see "By" below					
P.O.#:	67100.95007	Labaratan	Data	SDG ID.	· CRN/528			

Laboratory Data

Project ID:	CAPITAL DIST PROPS
Client ID:	IB,S-3C 12FT

		RL/	LOD/	11.26			-	Defense	
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference	
Percent Solid	87			%		06/01/16	W	SW846-%Solid	
1,4-dioxane									
1,4-dioxane	ND	100	46	ug/kg	1	06/02/16	JLI	SW8260C	
<u>Volatiles</u>									
1,1,1-Trichloroethane	ND	5.8	0.58	ug/Kg	1	06/02/16	JLI	SW8260C	
1,1,2,2-Tetrachloroethane	ND	5.8	1.2	ug/Kg	1	06/02/16	JLI	SW8260C	
1,1,2-Trichloroethane	ND	5.8	1.2	ug/Kg	1	06/02/16	JLI	SW8260C	
1,1-Dichloroethane	ND	5.8	1.2	ug/Kg	1	06/02/16	JLI	SW8260C	
1,1-Dichloroethene	ND	5.8	0.58	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2,3-Trichlorobenzene	ND	5.8	1.2	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2,4-Trichlorobenzene	ND	5.8	1.2	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2-Dibromo-3-chloropropane	ND	5.8	1.2	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2-Dibromoethane	ND	5.8	0.58	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2-Dichlorobenzene	ND	5.8	0.58	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2-Dichloroethane	ND	5.8	0.58	ug/Kg	1	06/02/16	JLI	SW8260C	
1,2-Dichloropropane	ND	5.8	1.2	ug/Kg	1	06/02/16	JLI	SW8260C	
1,3-Dichlorobenzene	ND	5.8	0.58	ug/Kg	1	06/02/16	JLI	SW8260C	
1,4-Dichlorobenzene	ND	5.8	0.58	ug/Kg	1	06/02/16	JLI	SW8260C	
2-Hexanone	ND	29	5.8	ug/Kg	1	06/02/16	JLI	SW8260C	
4-Methyl-2-pentanone	ND	29	5.8	ug/Kg	1	06/02/16	JLI	SW8260C	
Acetone	ND	50	5.8	ug/Kg	1	06/02/16	JLI	SW8260C	в
Benzene	ND	5.8	0.58	ug/Kg	1	06/02/16	JLI	SW8260C	
Bromochloromethane	ND	5.8	0.58	ug/Kg	1	06/02/16	JLI	SW8260C	
Bromodichloromethane	ND	5.8	1.2	ug/Kg	1	06/02/16	JLI	SW8260C	
Bromoform	ND	5.8	1.2	ug/Kg	1	06/02/16	JLI	SW8260C	
Bromomethane	ND	5.8	2.3	ug/Kg	1	06/02/16	JLI	SW8260C	

Client ID: IB,S-3C 12FT

Parameter	Result	R PC			Dilutic	n Date/Time	By	Reference
							,	
Carbon Disulfide	ND	5.		0 0	1	06/02/16	JLI	SW8260C
Carbon tetrachloride	ND	5.			1	06/02/16	JLI	SW8260C
Chlorobenzene	ND	5.			1	06/02/16	JLI	SW8260C
Chloroethane	ND	5.		0 0	1	06/02/16	JLI	SW8260C
Chloroform	ND	5.		0 0	1	06/02/16	JLI	SW8260C
Chloromethane	ND	5.			1	06/02/16	JLI	SW8260C
cis-1,2-Dichloroethene	0.86	J 5.			1	06/02/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.		0 0	1	06/02/16	JLI	SW8260C
Cyclohexane	ND	5.	31.	0 0	1	06/02/16	JLI	SW8260C
Dibromochloromethane	ND	5.	3 1.		1	06/02/16	JLI	SW8260C
Dichlorodifluoromethane	ND	5.	3 0.5	i8 ug/Kg	1	06/02/16	JLI	SW8260C
Ethylbenzene	ND	5.	3 0.5	i8 ug/Kg	1	06/02/16	JLI	SW8260C
Isopropylbenzene	ND	5.	3 0.5	i8 ug/Kg	1	06/02/16	JLI	SW8260C
m&p-Xylene	ND	5.	3 1.	2 ug/Kg	1	06/02/16	JLI	SW8260C
Methyl ethyl ketone	ND	3	5 5.	8 ug/Kg	1	06/02/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	1	2 1.:	2 ug/Kg	1	06/02/16	JLI	SW8260C
Methylacetate	ND	5.	3 2.	9 ug/Kg	1	06/02/16	JLI	SW8260C
Methylcyclohexane	ND	5.	3 1.:	2 ug/Kg	1	06/02/16	JLI	SW8260C
Methylene chloride	ND	5.	3 5.	B ug/Kg	1	06/02/16	JLI	SW8260C
o-Xylene	ND	5.	3 1.		1	06/02/16	JLI	SW8260C
Styrene	ND	5.	3 0.5	i8 ug/Kg	1	06/02/16	JLI	SW8260C
Tetrachloroethene	110	D 32	0 65	5 ug/Kg	50	06/03/16	JLI	SW8260C
Toluene	ND	5.	3 0.5	i8 ug/Kg	1	06/02/16	JLI	SW8260C
Total Xylenes	ND	5.	3 1.:	2 ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.	3 0.5		1	06/02/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.	3 0.5		1	06/02/16	JLI	SW8260C
Trichloroethene	1.4	J 5.	3 0.5		1	06/02/16	JLI	SW8260C
Trichlorofluoromethane	ND	5.	3 1.:		1	06/02/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.			1	06/02/16	JLI	SW8260C
Vinyl chloride	ND	5.			1	06/02/16	JLI	SW8260C
QA/QC Surrogates		0.			·			
% 1,2-dichlorobenzene-d4	99			%	1	06/02/16	JLI	70 - 130 %
% Bromofluorobenzene	94			%	1	06/02/16	JLI	70 - 130 %
% Dibromofluoromethane	102			%	1	06/02/16	JLI	70 - 130 %
% Toluene-d8	97			%	1	06/02/16	JLI	70 - 130 %
	51			70		00/02/10		10 100 /0
Volatile Library Search Top 10	Completed	ł				06/03/16	JLI	

Project ID: CAPITAL DIST	PROPS					Pł	noeni	x I.D.: BN45300
Client ID: IB,S-3C 12FT								
		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Information		Custody Inform	<u>Date</u>	<u>Time</u>	
Matrix:	SOIL	Collected by:		05/27/16	14:30
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007				

Laboratory Data

Project ID:	CAPITAL DIST PROPS
Client ID:	IB,S-4C 13-14FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Aluminum	2790	41	8.1	mg/Kg	10	06/03/16	EK	SW6010C
Antimony	ND	2.0	2.0	mg/Kg	1	06/03/16	EK	SW6010C
Arsenic	2.9	0.8	0.81	mg/Kg	1	06/03/16	EK	SW6010C
Barium	7.6	0.8	0.41	mg/Kg	1	06/03/16	EK	SW6010C
Beryllium	0.18	B 0.33	0.16	mg/Kg	1	06/03/16	EK	SW6010C
Calcium	11600	N 4.1	3.7	mg/Kg	1	06/03/16	EK	SW6010C
Cadmium	0.21	B 0.41	0.16	mg/Kg	1	06/03/16	EK	SW6010C
Chromium	5.00	0.41	0.41	mg/Kg	1	06/03/16	EK	SW6010C
Cobalt	2.78	0.41	0.41	mg/Kg	1	06/03/16	EK	SW6010C
Copper	6.58	0.41	0.41	mg/kg	1	06/03/16	EK	SW6010C
Iron	10300	41	41	mg/Kg	10	06/03/16	EK	SW6010C
Lead	2.1	0.8	0.41	mg/Kg	1	06/03/16	EK	SW6010C
Magnesium	2240	4.1	4.1	mg/Kg	1	06/03/16	EK	SW6010C
Manganese	114	N 0.41	0.41	mg/Kg	1	06/03/16	EK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	06/03/16	RS	SW7471B
Nickel	6.26	0.41	0.41	mg/Kg	1	06/03/16	EK	SW6010C
Potassium	590	N 8	3.2	mg/Kg	1	06/03/16	EK	SW6010C
Selenium	ND	1.6	1.4	mg/Kg	1	06/03/16	EK	SW6010C
Silver	ND	0.41	0.41	mg/Kg	1	06/03/16	EK	SW6010C
Sodium	82	N 8	3.5	mg/Kg	1	06/03/16	EK	SW6010C
Thallium	ND	1.6	1.6	mg/Kg	1	06/03/16	EK	SW6010C
Vanadium	13.0	0.4	0.41	mg/Kg	1	06/03/16	EK	SW6010C
Zinc	19.0	0.8	0.41	mg/Kg	1	06/03/16	EK	SW6010C
Percent Solid	82			%		06/01/16	W	SW846-%Solid
Soil Extraction for PCB	Completed	I				06/01/16	VC/CK	SW3545A
Soil Extraction for Pesticide	Completed	I				06/01/16	VC/CK	SW3545A
Soil Extraction for SVOA	Completed	I				06/01/16	VJ/VCK	SW3545A
Mercury Digestion	Completed	I				06/03/16	W/W	SW7471B

Client ID: IB,S-4C 13-14FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					06/02/16	N/AG	SW3050B
Polychlorinated Biph	enyls							
PCB-1016	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1221	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1232	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1242	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1248	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1254	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1260	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1262	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1268	ND	80	80	ug/Kg	2	06/03/16	AW	SW8082A
QA/QC Surrogates								
% DCBP	94			%	2	06/03/16	AW	40 - 140 %
% TCMX	76			%	2	06/03/16	AW	40 - 140 %
Pesticides - Soil		24	2 4	ug/Ka	n	06/02/16	CE	SW/2021P
4,4' -DDD	ND	2.4	2.4	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDE	ND	2.4	2.4	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDT	ND	2.4	2.4	ug/Kg	2	06/03/16	CE	SW8081B
a-BHC	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
a-Chlordane	ND	4.0	4.0	ug/Kg	2	06/03/16	CE	SW8081B
Aldrin	ND	4.0	4.0	ug/Kg	2	06/03/16	CE	SW8081B
D-BHC	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Chlordane	ND	40	40	ug/Kg	2	06/03/16	CE	SW8081B
d-BHC	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Dieldrin	ND	4.0	4.0	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan I	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan II	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan sulfate	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Endrin	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Endrin aldehyde	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Endrin ketone	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
g-BHC	ND	1.6	1.6	ug/Kg	2	06/03/16	CE	SW8081B
g-Chlordane	ND	4.0	4.0	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor epoxide	ND	8.0	8.0	ug/Kg	2	06/03/16	CE	SW8081B
Vethoxychlor	ND	40	40	ug/Kg	2	06/03/16	CE	SW8081B
Toxaphene	ND	160	160	ug/Kg	2	06/03/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	86			%	2	06/03/16	CE	40 - 140 %
% TCMX	76			%	2	06/03/16	CE	40 - 140 %
<u>Semivolatiles</u>								
1,1-Biphenyl	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
1,2,4,5-Tetrachlorobenzene	ND	280	140	ug/Kg	1	06/02/16	DD	SW8270D
2,3,4,6-tetrachlorophenol	ND	280	190	ug/Kg	1	06/02/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	280	220	ug/Kg	1	06/02/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
2,4-Dichlorophenol	ND	160	140	ug/Kg	1	06/02/16	DD	SW8270D

Client ID: IB,S-4C 13-14FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
2,4-Dimethylphenol	ND	280	98	ug/Kg	1	06/02/16	DD	SW8270D
,4-Dinitrophenol	ND	280	280	ug/Kg	1	06/02/16	DD	SW8270D
4-Dinitrotoluene	ND	160	160	ug/Kg	1	06/02/16	DD	SW8270D
6-Dinitrotoluene	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
Chloronaphthalene	ND	280	110	ug/Kg	1	06/02/16	DD	SW8270D
-Chlorophenol	ND	280	110	ug/Kg	1	06/02/16	DD	SW8270D
Methylnaphthalene	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
Methylphenol (o-cresol)	ND	280	190	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	280	280	ug/Kg	1	06/02/16	DD	SW8270D
Nitrophenol	ND	280	250	ug/Kg	1	06/02/16	DD	SW8270D
4-Methylphenol (m&p-cresol)	ND	280	160	ug/Kg	1	06/02/16	DD	SW8270D
3'-Dichlorobenzidine	ND	160	160	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	2000	860	ug/Kg	1	06/02/16	DD	SW8270D
6-Dinitro-2-methylphenol	ND	280	280	ug/Kg	1	06/02/16	DD	SW8270D
Bromophenyl phenyl ether	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
Chloro-3-methylphenol	ND	280	140	ug/Kg	1	06/02/16	DD	SW8270D
Chloroaniline	ND	790	180	ug/Kg	1	06/02/16	DD	SW8270D
Chlorophenyl phenyl ether	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	2000	130	ug/Kg	1	06/02/16	DD	SW8270D
Nitrophenol	ND	280	180	ug/Kg	1	06/02/16	DD	SW8270D
cenaphthene	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
cenaphthylene	ND	160	110	ug/Kg	1	06/02/16	DD	SW8270D
cetophenone	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
nthracene	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
razine	ND	160	160	ug/Kg	1	06/02/16	DD	SW8270D
enz(a)anthracene	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
enzaldehyde	ND	280	120	ug/Kg ug/Kg	1	06/02/16	DD	SW8270D
-	ND	160	130	ug/Kg ug/Kg	1	06/02/16	DD	SW8270D
enzo(a)pyrene	ND	280	140	ug/Kg ug/Kg	1	06/02/16	DD	SW8270D
enzo(b)fluoranthene								SW8270D
enzo(ghi)perylene	ND	280	130	ug/Kg	1	06/02/16	DD	
enzo(k)fluoranthene	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
enzyl butyl phthalate	ND	280	100	ug/Kg	1	06/02/16	DD	SW8270D
is(2-chloroethoxy)methane	ND	280	110	ug/Kg	1	06/02/16	DD	SW8270D
is(2-chloroethyl)ether	ND	160	110	ug/Kg	1	06/02/16	DD	SW8270D
is(2-chloroisopropyl)ether	ND	280	110	ug/Kg	1	06/02/16	DD	SW8270D
is(2-ethylhexyl)phthalate	ND	280	110	ug/Kg	1	06/02/16	DD	SW8270D
aprolactam	ND	280	280	ug/Kg	1	06/02/16	DD	SW8270D
arbazole	ND	280	200	ug/Kg	1	06/02/16	DD	SW8270D
hrysene	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
ibenz(a,h)anthracene	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
benzofuran	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
ethyl phthalate	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
methylphthalate	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
i-n-butylphthalate	ND	280	110	ug/Kg	1	06/02/16	DD	SW8270D
-n-octylphthalate	ND	280	100	ug/Kg	1	06/02/16	DD	SW8270D
uoranthene	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
luorene	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
exachlorobenzene	ND	160	120	ug/Kg	1	06/02/16	DD	SW8270D
exachlorobutadiene	ND	280	140	ug/Kg	1	06/02/16	DD	SW8270D

Client ID: IB,S-4C 13-14FT

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference
Hexachlorocyclopentadiene	ND	280	120	ug/Kg	1	06/02/16	DD	SW8270D
Hexachloroethane	ND	160	120	ug/Kg	1	06/02/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
Isophorone	ND	160	110	ug/Kg	1	06/02/16	DD	SW8270D
Naphthalene	ND	280	110	ug/Kg	1	06/02/16	DD	SW8270D
Nitrobenzene	ND	160	140	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodimethylamine	ND	280	110	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	160	150	ug/Kg	1	06/02/16	DD	SW8270D
Pentachlorophenol	ND	280	150	ug/Kg	1	06/02/16	DD	SW8270D
Phenanthrene	ND	160	110	ug/Kg	1	06/02/16	DD	SW8270D
Phenol	ND	280	130	ug/Kg	1	06/02/16	DD	SW8270D
Pyrene	ND	280	140	ug/Kg	1	06/02/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	68			%	1	06/02/16	DD	30 - 130 %
% 2-Fluorobiphenyl	56			%	1	06/02/16	DD	30 - 130 %
% 2-Fluorophenol	60			%	1	06/02/16	DD	30 - 130 %
% Nitrobenzene-d5	54			%	1	06/02/16	DD	30 - 130 %
% Phenol-d5	59			%	1	06/02/16	DD	30 - 130 %
% Terphenyl-d14	66			%	1	06/02/16	DD	30 - 130 %
SVOA Library Search Top 15	Completed					06/02/16	DD	

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis, Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inforn	Custody Information					
Matrix:	SOIL	Collected by:		05/27/16	14:30			
Location Code:	HANSONV	Received by:	В	06/01/16	18:13			
Rush Request:	Standard	Analyzed by:	see "By" below					
P.O.#:	67100.95007	1 - 1						

Laboratory Data

SDG ID: GBN45281 Phoenix ID: BN45302

Project ID:	CAPITAL DIST PROPS
Client ID:	IB,S-4C 14FT

Demonster	Desult		RL/	LOD/	l luite	Dilution	Data (Times	Du	Defenses
Parameter	Result		PQL	MDL	Units	Dilution	Date/Time	By	Reference
Percent Solid	86				%		06/01/16	W	SW846-%Solid
<u>1,4-dioxane</u>									
1,4-dioxane	ND		100	46	ug/kg	1	06/02/16	JLI	SW8260C
<u>Volatiles</u>									
1,1,1-Trichloroethane	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	D	330	66	ug/Kg	50	06/02/16	JLI	SW8260C
1,1,2-Trichloroethane	ND		5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1-Dichloroethane	ND		5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,1-Dichloroethene	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	D	330	66	ug/Kg	50	06/02/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	D	330	66	ug/Kg	50	06/02/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	D	330	66	ug/Kg	50	06/02/16	JLI	SW8260C
1,2-Dibromoethane	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	D	330	33	ug/Kg	50	06/02/16	JLI	SW8260C
1,2-Dichloroethane	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
1,2-Dichloropropane	ND		5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	D	330	33	ug/Kg	50	06/02/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	D	330	33	ug/Kg	50	06/02/16	JLI	SW8260C
2-Hexanone	ND		28	5.7	ug/Kg	1	06/02/16	JLI	SW8260C
4-Methyl-2-pentanone	ND		28	5.7	ug/Kg	1	06/02/16	JLI	SW8260C
Acetone	6.8	JS	50	5.7	ug/Kg	1	06/02/16	JLI	SW8260C
Benzene	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Bromochloromethane	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Bromodichloromethane	ND		5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Bromoform	ND		5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Bromomethane	ND		5.7	2.3	ug/Kg	1	06/02/16	JLI	SW8260C

Client ID: IB,S-4C 14FT

Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Carbon Disulfide	ND		5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Carbon tetrachloride	ND		5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Chlorobenzene	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroethane	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Chloroform	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Chloromethane	ND		5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,2-Dichloroethene	1.6	J	5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Cyclohexane	ND		5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dibromochloromethane	ND		5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Dichlorodifluoromethane	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Ethylbenzene	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Isopropylbenzene	ND	D	330	33	ug/Kg	50	06/02/16	JLI	SW8260C
m&p-Xylene	ND		5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl ethyl ketone	ND		34	5.7	ug/Kg	1	06/02/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND		11	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylacetate	ND		5.7	2.8	ug/Kg	1	06/02/16	JLI	SW8260C
Methylcyclohexane	ND		5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Methylene chloride	ND		5.7	5.7	ug/Kg	1	06/02/16	JLI	SW8260C
o-Xylene	ND		5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Styrene	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Tetrachloroethene	7100	D	330	66	ug/Kg	50	06/02/16	JLI	SW8260C
Toluene	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Total Xylenes	ND		5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Trichloroethene	130	D	330	33	ug/Kg	50	06/02/16	JLI	SW8260C
Trichlorofluoromethane	ND		5.7	1.1	ug/Kg	1	06/02/16	JLI	SW8260C
Trichlorotrifluoroethane	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
Vinyl chloride	ND		5.7	0.57	ug/Kg	1	06/02/16	JLI	SW8260C
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	99				%	50	06/02/16	JLI	70 - 130 %
% Bromofluorobenzene	96				%	50	06/02/16	JLI	70 - 130 %
% Dibromofluoromethane	126				%	1	06/02/16	JLI	70 - 130 %
% Toluene-d8	89				%	1	06/02/16	JLI	70 - 130 %
Volatile Library Search Top 10	Completed	d					06/03/16	JLI	

Project ID: CAPITAL DIST PROPS Client ID: IB,S-4C 14FT

		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	Custody Information						
Matrix:	SOIL	Collected by:		05/27/16	14:45				
Location Code:	HANSONV	Received by:	В	06/01/16	18:13				
Rush Request:	Standard	Analyzed by:	see "By" below						
P.O.#:	67100.95007								

Laboratory Data

SDG ID: GBN45281 Phoenix ID: BN45303

Project ID:	CAPITAL DIST PROPS
Client ID:	IB,S-5C 14-15FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Aluminum	7970	43	8.7	mg/Kg	10	06/03/16	EK	SW6010C B
Antimony	ND	2.2	2.2	mg/Kg	1	06/03/16	ΕK	SW6010C
Arsenic	4.7	0.9	0.87	mg/Kg	1	06/03/16	EK	SW6010C
Barium	33.1	0.9	0.43	mg/Kg	1	06/03/16	EK	SW6010C
Beryllium	0.40	0.35	0.17	mg/Kg	1	06/03/16	EK	SW6010C
Calcium	31300	N 43	40	mg/Kg	10	06/03/16	EK	SW6010C
Cadmium	0.27	B 0.43	0.17	mg/Kg	1	06/03/16	EK	SW6010C
Chromium	10.7	0.43	0.43	mg/Kg	1	06/03/16	EK	SW6010C
Cobalt	8.08	0.43	0.43	mg/Kg	1	06/03/16	EK	SW6010C
Copper	19.1	0.43	0.43	mg/kg	1	06/03/16	EK	SW6010C
Iron	19500	43	43	mg/Kg	10	06/03/16	EK	SW6010C
Lead	4.9	0.9	0.43	mg/Kg	1	06/03/16	EK	SW6010C
Magnesium	9260	43	43	mg/Kg	10	06/03/16	EK	SW6010C
Manganese	494	N 4.3	4.3	mg/Kg	10	06/03/16	EK	SW6010C
Mercury	ND	0.03	0.02	mg/Kg	1	06/03/16	RS	SW7471B
Nickel	15.8	0.43	0.43	mg/Kg	1	06/03/16	EK	SW6010C
Potassium	1480	N 9	3.4	mg/Kg	1	06/03/16	EK	SW6010C
Selenium	ND	1.7	1.5	mg/Kg	1	06/03/16	EK	SW6010C
Silver	ND	0.43	0.43	mg/Kg	1	06/03/16	EK	SW6010C
Sodium	233	N 9	3.7	mg/Kg	1	06/03/16	EK	SW6010C
Thallium	ND	1.7	1.7	mg/Kg	1	06/03/16	EK	SW6010C
Vanadium	16.3	0.4	0.43	mg/Kg	1	06/03/16	EK	SW6010C
Zinc	40.7	0.9	0.43	mg/Kg	1	06/03/16	EK	SW6010C
Percent Solid	80			%		06/01/16	W	SW846-%Solid
Soil Extraction for PCB	Completed	ł				06/01/16	VC/CK	SW3545A
Soil Extraction for Pesticide	Completed	ł				06/01/16	VC/CK	SW3545A
Soil Extraction for SVOA	Completed	ł				06/01/16	VJ/VCK	SW3545A
Mercury Digestion	Completed	I				06/03/16	W/W	SW7471B

Client ID: IB,S-5C 14-15FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Metals Digest	Completed					06/02/16	N/AG	SW3050B
-								
Polychlorinated Biphen	<u>yls</u>							
PCB-1016	ND	82	82	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1221	ND	82	82	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1232	ND	82	82	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1242	ND	82	82	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1248	ND	82	82	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1254	ND	82	82	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1260	ND	82	82	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1262	ND	82	82	ug/Kg	2	06/03/16	AW	SW8082A
PCB-1268	ND	82	82	ug/Kg	2	06/03/16	AW	SW8082A
QA/QC Surrogates					_			
% DCBP	86			%	2	06/03/16	AW	40 - 140 %
% TCMX	67			%	2	06/03/16	AW	40 - 140 %
Pesticides - Soil								
4,4' -DDD	ND	2.5	2.5	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDE	ND	2.5	2.5	ug/Kg	2	06/03/16	CE	SW8081B
4,4' -DDT	ND	2.5	2.5	ug/Kg	2	06/03/16	CE	SW8081B
a-BHC	ND	8.2	8.2	ug/Kg	2	06/03/16	CE	SW8081B
a-Chlordane	ND	4.1	4.1	ug/Kg	2	06/03/16	CE	SW8081B
Aldrin	ND	4.1	4.1	ug/Kg	2	06/03/16	CE	SW8081B
b-BHC	ND	8.2	8.2	ug/Kg	2	06/03/16	CE	SW8081B
Chlordane	ND	41	41	ug/Kg	2	06/03/16	CE	SW8081B
d-BHC	ND	8.2	8.2	ug/Kg	2	06/03/16	CE	SW8081B
Dieldrin	ND	4.1	4.1	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan I	ND	8.2	8.2	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan II	ND	8.2	8.2	ug/Kg	2	06/03/16	CE	SW8081B
Endosulfan sulfate	ND	8.2	8.2	ug/Kg	2	06/03/16	CE	SW8081B
Endrin	ND	8.2	8.2	ug/Kg	2	06/03/16	CE	SW8081B
Endrin aldehyde	ND	8.2	8.2	ug/Kg	2	06/03/16	CE	SW8081B
Endrin ketone	ND	8.2	8.2	ug/Kg	2	06/03/16	CE	SW8081B
g-BHC	ND	1.6	1.6	ug/Kg	2	06/03/16	CE	SW8081B
g-Chlordane	ND	4.1	4.1	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor	ND	8.2	8.2	ug/Kg	2	06/03/16	CE	SW8081B
Heptachlor epoxide	ND	8.2	8.2	ug/Kg	2	06/03/16	CE	SW8081B
Methoxychlor	ND	41	41	ug/Kg	2	06/03/16	CE	SW8081B
Toxaphene	ND	160	160	ug/Kg	2	06/03/16	CE	SW8081B
QA/QC Surrogates								
% DCBP	87			%	2	06/03/16	CE	40 - 140 %
% TCMX	67			%	2	06/03/16	CE	40 - 140 %
Semivolatiles								
1,1-Biphenyl	ND	290	130	ug/Kg	1	06/02/16	DD	SW8270D
1,2,4,5-Tetrachlorobenzene	ND	290	140	ug/Kg	1	06/02/16	DD	SW8270D
2,3,4,6-tetrachlorophenol	ND	290	190	ug/Kg	1	06/02/16	DD	SW8270D
2,4,5-Trichlorophenol	ND	290	220	ug/Kg	1	06/02/16	DD	SW8270D
2,4,6-Trichlorophenol	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
2,4-Dichlorophenol	ND	160	140	ug/Kg	1	06/02/16	DD	SW8270D

Client ID: IB,S-5C 14-15FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
,4-Dimethylphenol	ND	290	100	ug/Kg	1	06/02/16	DD	SW8270D
,4-Dinitrophenol	ND	290	290	ug/Kg	1	06/02/16	DD	SW8270D
,4-Dinitrotoluene	ND	160	160	ug/Kg	1	06/02/16	DD	SW8270D
,6-Dinitrotoluene	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
-Chloronaphthalene	ND	290	120	ug/Kg	1	06/02/16	DD	SW8270D
Chlorophenol	ND	290	120	ug/Kg	1	06/02/16	DD	SW8270D
Methylnaphthalene	ND	290	120	ug/Kg	1	06/02/16	DD	SW8270D
Methylphenol (o-cresol)	ND	290	190	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	290	290	ug/Kg	1	06/02/16	DD	SW8270D
Nitrophenol	ND	290	260	ug/Kg	1	06/02/16	DD	SW8270D
4-Methylphenol (m&p-cresol)	ND	290	160	ug/Kg	1	06/02/16	DD	SW8270D
3'-Dichlorobenzidine	ND	160	160	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	2000	890	ug/Kg	1	06/02/16	DD	SW8270D
6-Dinitro-2-methylphenol	ND	290	290	ug/Kg	1	06/02/16	DD	SW8270D
Bromophenyl phenyl ether	ND	290	120	ug/Kg	1	06/02/16	DD	SW8270D
Chloro-3-methylphenol	ND	290	140	ug/Kg	1	06/02/16	DD	SW8270D
Chloroaniline	ND	820	190	ug/Kg	1	06/02/16	DD	SW8270D
Chlorophenyl phenyl ether	ND	290	140	ug/Kg	1	06/02/16	DD	SW8270D
Nitroaniline	ND	2000	140	ug/Kg	1	06/02/16	DD	SW8270D
Nitrophenol	ND	290	190	ug/Kg	1	06/02/16	DD	SW8270D
cenaphthene	ND	290	120	ug/Kg	1	06/02/16	DD	SW8270D
cenaphthylene	ND	160	110	ug/Kg	1	06/02/16	DD	SW8270D
cetophenone	ND	290	130	ug/Kg	1	06/02/16	DD	SW8270D
nthracene	ND	290	130	ug/Kg	1	06/02/16	DD	SW8270D
razine	ND	290 160	160	ug/Kg	1	06/02/16	DD	SW8270D
	ND	290	140	ug/Kg	1	06/02/16	DD	SW8270D
enz(a)anthracene	ND	290 290	140	ug/Kg ug/Kg	1	06/02/16	DD	SW8270D
enzaldehyde	ND	290 160	130	ug/Kg ug/Kg	1	06/02/16	DD	SW8270D
enzo(a)pyrene	ND	290	130			06/02/16		SW8270D SW8270D
enzo(b)fluoranthene				ug/Kg	1		DD	
enzo(ghi)perylene	ND	290	130	ug/Kg	1	06/02/16		SW8270D
enzo(k)fluoranthene	ND	290	140	ug/Kg	1	06/02/16	DD	SW8270D
enzyl butyl phthalate	ND	290	110	ug/Kg	1	06/02/16	DD	SW8270D
s(2-chloroethoxy)methane	ND	290	110	ug/Kg	1	06/02/16	DD	SW8270D
s(2-chloroethyl)ether	ND	160	110	ug/Kg	1	06/02/16	DD	SW8270D
is(2-chloroisopropyl)ether	ND	290	110	ug/Kg	1	06/02/16	DD	SW8270D
s(2-ethylhexyl)phthalate	ND	290	120	ug/Kg	1	06/02/16	DD	SW8270D
aprolactam	ND	290	290	ug/Kg	1	06/02/16	DD	SW8270D
arbazole	ND	290	200	ug/Kg	1	06/02/16	DD	SW8270D
hrysene	ND	290	140	ug/Kg	1	06/02/16	DD	SW8270D
ibenz(a,h)anthracene	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
benzofuran	ND	290	120	ug/Kg	1	06/02/16	DD	SW8270D
ethyl phthalate	ND	290	130	ug/Kg	1	06/02/16	DD	SW8270D
methylphthalate	ND	290	130	ug/Kg	1	06/02/16	DD	SW8270D
-n-butylphthalate	ND	290	110	ug/Kg	1	06/02/16	DD	SW8270D
-n-octylphthalate	ND	290	110	ug/Kg	1	06/02/16	DD	SW8270D
uoranthene	ND	290	130	ug/Kg	1	06/02/16	DD	SW8270D
uorene	ND	290	140	ug/Kg	1	06/02/16	DD	SW8270D
exachlorobenzene	ND	160	120	ug/Kg	1	06/02/16	DD	SW8270D
exachlorobutadiene	ND	290	150	ug/Kg	1	06/02/16	DD	SW8270D

Client ID: IB,S-5C 14-15FT

	•							
Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Hexachlorocyclopentadiene	ND	290	130	ug/Kg	1	06/02/16	DD	SW8270D
Hexachloroethane	ND	160	120	ug/Kg	1	06/02/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	290	140	ug/Kg	1	06/02/16	DD	SW8270D
Isophorone	ND	160	110	ug/Kg	1	06/02/16	DD	SW8270D
Naphthalene	ND	290	120	ug/Kg	1	06/02/16	DD	SW8270D
Nitrobenzene	ND	160	140	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodimethylamine	ND	290	120	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	160	130	ug/Kg	1	06/02/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	160	160	ug/Kg	1	06/02/16	DD	SW8270D
Pentachlorophenol	ND	290	150	ug/Kg	1	06/02/16	DD	SW8270D
Phenanthrene	ND	160	120	ug/Kg	1	06/02/16	DD	SW8270D
Phenol	ND	290	130	ug/Kg	1	06/02/16	DD	SW8270D
Pyrene	ND	290	140	ug/Kg	1	06/02/16	DD	SW8270D
QA/QC Surrogates								
% 2,4,6-Tribromophenol	68			%	1	06/02/16	DD	30 - 130 %
% 2-Fluorobiphenyl	55			%	1	06/02/16	DD	30 - 130 %
% 2-Fluorophenol	58			%	1	06/02/16	DD	30 - 130 %
% Nitrobenzene-d5	54			%	1	06/02/16	DD	30 - 130 %
% Phenol-d5	57			%	1	06/02/16	DD	30 - 130 %
% Terphenyl-d14	65			%	1	06/02/16	DD	30 - 130 %
SVOA Library Search Top 15	Completed					06/02/16	DD	

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

June 14, 2016

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		05/27/16	14:45
Location Code:	HANSONV	Received by:	В	06/01/16	18:13
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	67100.95007	Labaratary	Data	SDG ID.	GBN//528

Laboratory Data

SDG ID: GBN45281 Phoenix ID: BN45304

Project ID:	CAPITAL DIST PROPS
Client ID:	IB,S-5C 15FT

	D It	RL/	LOD/	11.26			-	Defense
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference
Percent Solid	80			%		06/01/16	W	SW846-%Solid
1,4-dioxane								
1,4-dioxane	ND	7400	3000	ug/kg	50	06/02/16	JLI	SW8260C
<u>Volatiles</u>								
1,1,1-Trichloroethane	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
1,1,2-Trichloroethane	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
1,1-Dichloroethane	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
1,1-Dichloroethene	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
1,2-Dibromoethane	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
1,2-Dichlorobenzene	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
1,2-Dichloroethane	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
1,2-Dichloropropane	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
1,3-Dichlorobenzene	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
1,4-Dichlorobenzene	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
2-Hexanone	ND	1900	370	ug/Kg	50	06/02/16	JLI	SW8260C
4-Methyl-2-pentanone	ND	1900	370	ug/Kg	50	06/02/16	JLI	SW8260C
Acetone	ND	3700	370	ug/Kg	50	06/02/16	JLI	SW8260C
Benzene	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
Bromochloromethane	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
Bromodichloromethane	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
Bromoform	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
Bromomethane	ND	370	150	ug/Kg	50	06/02/16	JLI	SW8260C

Client ID: IB,S-5C 15FT

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Carbon Disulfide	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
Carbon tetrachloride	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
Chlorobenzene	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
Chloroethane	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
Chloroform	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
Chloromethane	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
cis-1,2-Dichloroethene	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
cis-1,3-Dichloropropene	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
Cyclohexane	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
Dibromochloromethane	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
Dichlorodifluoromethane	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
Ethylbenzene	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
Isopropylbenzene	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
m&p-Xylene	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
Methyl ethyl ketone	ND	2200	370	ug/Kg	50	06/02/16	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	740	74	ug/Kg	50	06/02/16	JLI	SW8260C
Methylacetate	ND	370	190	ug/Kg	50	06/02/16	JLI	SW8260C
Methylcyclohexane	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
Methylene chloride	ND	370	370	ug/Kg	50	06/02/16	JLI	SW8260C
o-Xylene	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
Styrene	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
Tetrachloroethene	36000	D 1900	370	ug/Kg	250	06/03/16	JLI	SW8260C
Toluene	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
Total Xylenes	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
trans-1,2-Dichloroethene	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
trans-1,3-Dichloropropene	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
Trichloroethene	1100	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
Trichlorofluoromethane	ND	370	74	ug/Kg	50	06/02/16	JLI	SW8260C
Trichlorotrifluoroethane	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
Vinyl chloride	ND	370	37	ug/Kg	50	06/02/16	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	50	06/02/16	JLI	70 - 130 %
% Bromofluorobenzene	97			%	50	06/02/16	JLI	70 - 130 %
% Dibromofluoromethane	99			%	50	06/02/16	JLI	70 - 130 %
% Toluene-d8	97			%	50	06/02/16	JLI	70 - 130 %
Volatile Library Search Top 10	Completed	i				06/03/16	JLI	

,								
		RL/	LOD/					
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	By	Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director June 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Tuesday, Ju	une 14, 2016		Sample Criter	ia Exceedences Report				Page 1 of 1
Criteria:			•	45281 - HANSONV				
State:	NY						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Analysis Comments

June 14, 2016

SDG I.D.: GBN49941

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

NY Temperature Narration

June 14, 2016

SDG I.D.: GBN45281

The samples in this delivery group were received at 4° C. (Note acceptance criteria is above freezing up to 6° C)

Temp U °C Pg of 3	Contact Uptions:	Cunny Project P.O.6 7100, 95007	Completed with completed with Bottle Quantities.	14.05-405-4		A LO A LO A LA A A A A A A A A A A A A A											Data Exemat				ntial NY Hazsite EDD NY EZ EDD (ASP)	Data Package
Temp	Fax: Phone: Email:	~			1000 100 1000 1	10 10 00 00 00 00 00 00 00 00 00 00 00 0	214	1 2	2 - 6	2	2 - -	<u>}</u>	21	•						NY375 Residential	Soul Restricted/Residential Commercial	
CORD	ır, СТ 06040 5-0823	At Propos (CDP)	t																Impact to GW Soil	Cleanup Criteria GW Criteria		State where samples were collected:
CUSTODY RECORD	587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Carter Dist	K.Van VI		2000 - 20 2000 - 20 2000 - 20 2000 - 20 2000 - 20 20 20 20 20 20 20 20 20 20 20 20 20 2						-						Turnaround.	İ.				State where s
//NJ CHAIN OF (East Middle Turnpike, P.O. Box Email: info@phoenixlabs.com Client Services(8	Project: Report to:		Analysis		UN CON	XXX	×	XXX	×	XXX	×	XXX		XXX	× × ×	Time	7/10 5000	C011 01	8110	6-1-10 18:13	
N/AN	587 East M Email	3777	12065	5/24/14	41	Date Time Sampled Sampled	21/1-2	9:00	9:15	9:15	9:30	9:30	9:38	7.38	9:50	4:50		ut 5/2	19		e.	
Q	es, Inc.	Van VI-		ion - Identificatio	⊨Surface Water V S=Soii SD=Solid	Sample Matrix S	- 01	S	-2' 5	~	S	S	S	Ś	Ś	vr	Þ.	Nd. 1	~	2	TA I	
	PHOENIX Structures, Inc.	Hanson 1	off)	Client Sample - Information - Identification	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquid	Customer Sample Identification	B-1, 1-2'	3-1,2.0'	B-2, 1,2-2	2 20	33,12'	3.3, 2,0'	8-4, 1-2'	-4 2	1-2	B-5, 2.0'		des Rue) true	Ů	Comments, special requirements of regulations:	
	PHO Environmen	Customer:	1	Sampler's	Matrix Code: DW=Drinking Water RW=Raw Water SE: OIL=Oil B=Bulk L=	PHOENIX USE ONLY SAMPLE #	18654	45983	45383	45084	SBESH	asesh	L&esh	4592	hzesh	19634	Relinquished by	am Un	Well la			

Coolant: IPKK ICE No No Temp V C Pg 2.0f 3	This section MUST be completed with Bottle Quantities.		02 12 12 12 12 12 12 12 12 12 12 12 12 12						Data Package NJ Reduced Deliv. * NY Enhanced (ASP B) * Other
		00000000000000000000000000000000000000	202 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	€ 10 10 10 10 10 10 10 10 10 10		 M N	 	NT TAGM 4046 GW TAGM 4046 SOIL NY375 Unrestricted Use Soil Soil Restricted/Residential Commercial	শ্ব
								■ Res. Criteria ■ Non-Res. Criteria ■ Impact to GW Soil Cleanup Criteria GW Criteria	State where samples were collected:
STODY (370, Man Fax (8 60) 645-	K. Van Vlei	63 53 50 63 63 65 60 50 5	3					Comparison Comparison Comparison Comparison Comparison Comparison Conter Cont	State where
Y/NJ CHAIN OF CU; ast Middle Turnpike, P.O. Box Email: info@phoenixlabs.com Client Services (8	Report to: Invoice to:			× × × × × ×	X X X X X	< <tr> X 7 X 2 X 2 X 2</tr>		5/27/4 5:00 6/1/4 5:00 6-1-10 18:13	
	2011 PI	un Date: 5127∫t,6 W=Waste Water W=Wipe	Date ampled	5124 10 1:30 51274 1:30 31214 1:45		512111 2.15 512111 2.15 51211 2.15		P C C	
SUBBUN		nation - Identification	Sample Matrix		<u>, (, , , , , , , , , , , , , , , , , , </u>				
PHOENIX Contents, Inc.	Children R	Client Sample - Information - Identification Signature Date: 5 27 / Signature Date: 5 27 / Matrix Code: Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OLL=Oil B=Bulk L=Liquid	ustomer Samp Identification	<u>TB5-167</u> TB5-167 TB5-20	i dat ⁱ	10 5 40 23, 5 -36 78, 5 -36	2 2 2 2 2 1 2	and the second sec	
PHO Environmen	Address:	Sampler's Sampler's Signature Signature Matrix Code: DW=Drinking Water RW=Raw Water SE RW=Raw Water SE	PHOENIX USE	ysgar.	1282 Sh	45300 45300 45300	US30 D		

Coolant: IPK C Pes No No Coolant: IPK C ICE No No Coolant: IPK C Pes No No Contact Options:	Completed Bottle Quan + + + + + + + + + + + + + + + + + + +		GW Data Format GW Data Format SOIL Excel stricted CIS/Key dential CIS/Key GIS/Key GIS/Key GIS/Key CIS/Key CIS/Key CIS/Key CIS/Key CIS/Key CIS/Key Data Package CIS/Key CIS/KEY
			NY TAGM 4046 GW TAGM 4046 SOIL NY375 Unrestricted Use Soil NY375 Residential Soil Restricted/Residential Commercial Industrial
	K. Van VLeest		Time: Turnaround: Nu Time: Turnaround: Na 1 D 1 1 D 3 1 D 3 1 D 5 1 D 10 1 Cleanup Criteria 1 Other 1 State where samples were collected:
587 East Middle Email: info tc. Cli	. <u> </u>	Sample Date Time Matrix Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled Y S S 127/L 2:45 X S S S S 127/L 2:45 X S S S S 127/L 2:45 X S S S S S S S S S S S S S S S S S S	2214 Date: 1274
DENIX nental Laboratories, 202 24 14	Clip to the second of the seco	Customer Sample Identification	by Accepted by:
PHH Environn Customer: Address:	Sampler's Signature Matrix Code: DW=Drinking RW=Raw Wat OIL=Oil B =B	PHOENIX USE ONLY SAMPLE US 304	Relinquished by

APPENDIX D

PRE-CONSTRUCTION ANALYTICAL RESULTS FLOOR PITS AND GROUNDWATER

Tuesday, August 01, 2017

Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Project ID: VISTA SQUARE Sample ID#s: BY70545 - BY70547

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

XI-lle

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

SDG Comments

August 01, 2017

SDG I.D.: GBY70545

BY70546 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.

BY70547 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035. Sample BY70545 was received past hold time for Carbonaceous BOD (SM5210B). Sample BY70545 was received past hold time for Nitrite-N (E353.2). Sample BY70545 was received past hold time for Nitrate-N (E353.2).

Analysis Report

August 01, 2017

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Information

Matrix:	GROUND WATER
Location Code:	HANSONV
Rush Request:	Standard
P.O.#:	

Collected by:	
Received by:	В
Analyzed by:	se

Custody Information

see "By" below

07/19/17 10:45 07/21/17 17:29

Date

Time

_aboratory Data

SDG ID: GBY70545 Phoenix ID: BY70545

Project ID:	
Client ID:	

VISTA SQUARE 1B-2

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Aluminum	713	1.0	mg/L	100	07/26/17	LK	SW6010C	
Antimony	< 0.050	0.050	mg/L	10	07/26/17	LK	SW6010C	
Arsenic	0.204	0.004	mg/L	1	07/25/17	LK	SW6010C	
Barium	1.61	0.002	mg/L	1	07/25/17	LK	SW6010C	
Beryllium	0.037	0.001	mg/L	1	07/25/17	LK	SW6010C	
Calcium	215	0.10	mg/L	10	07/26/17	LK	SW6010C	
Cadmium	0.034	0.001	mg/L	1	07/25/17	LK	SW6010C	
Chromium	0.632	0.001	mg/L	1	07/25/17	LK	SW6010C	
Cobalt	0.554	0.002	mg/L	1	07/25/17	LK	SW6010C	
Copper	1.33	0.005	mg/L	1	07/25/17	LK	SW6010C	
Iron	1520	1.0	mg/L	100	07/26/17	LK	SW6010C	
Lead	0.279	0.002	mg/L	1	07/25/17	LK	SW6010C	
Magnesium	124	0.10	mg/L	10	07/26/17	LK	SW6010C	
Manganese	52.6	0.10	mg/L	100	07/26/17	LK	SW6010C	
Mercury	< 0.0002	0.0002	mg/L	1	07/25/17	RS	SW7470A	
Nickel	0.750	0.001	mg/L	1	07/25/17	LK	SW6010C	
Potassium	37.5	0.1	mg/L	1	07/25/17	LK	SW6010C	
Selenium	< 0.10	0.10	mg/L	10	07/26/17	LK	SW6010C	
Silver	< 0.010	0.010	mg/L	10	07/26/17	LK	SW6010C	
Sodium	28.3	0.10	mg/L	1	07/25/17	LK	SW6010C	
Thallium	< 0.001	0.001	mg/L	1	07/25/17	RS	SM3113B/SW7010-04	
Vanadium	1.26	0.002	mg/L	1	07/25/17	LK	SW6010C	
Zinc	2.66	0.020	mg/L	10	07/26/17	LK	SW6010C	
Carbonaceous BOD	< 14	14	mg/L	10	07/21/17 17:29	RVM/RM	SM5210B-01,-11	
Flash Point	>200	200	Degree F	1	07/25/17	Y	SW1010A	
Ignitability	Passed	140	degree F	1	07/25/17	Y	SW846-Ignit	1
Nitrite-N	< 0.010	0.010	mg/L	1	07/21/17 19:00	MI	E353.2	
Nitrate-N	0.66	0.02	mg/L	1	07/21/17 19:00	MI	E353.2	

Project ID: VISTA SQUARE

Introduct Instruct Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
To. Dis. Solids 230 10 mg/L 1 07/24/17 CKSD SM24QC 97/-11 Nitrogen Tot Kjeldahl 47.0 2.50 mg/L 25 07/25/17 WHM E351.1 Total Nitrogen Tot Kjeldahl 47.7 0.10 mg/L 33 07/24/17 NM E351.1 Total Suspended Solids 22000 170 mg/L 33 07/24/17 N SW3510C Polstorin Completed 07/24/17 N SW3510C 07/24/17 N SW3510C POstorinated Biphenyls Completed 07/25/17 AW E608/SW8082A PCB-1221 ND 0.653 ug/L 1 07/25/17 AW E608/SW8082A PCB-1242 ND 0.653 ug/L 1 07/25/17 AW E608/SW8082A PCB-1248 ND 0.653 ug/L 1 07/25/17 AW E608/SW8082A PCB-126 ND 0.653 ug/L 1 07/25/17 AW E608/SW8082A PCB-126 ND 0.653 ug/L 1 07/25/17 <td>Phenolics</td> <td>< 0.015</td> <td>0.015</td> <td>mg/L</td> <td>1</td> <td>07/27/17</td> <td>BS</td> <td>E420.4</td>	Phenolics	< 0.015	0.015	mg/L	1	07/27/17	BS	E420.4
Nitrogen Tot Kjeldahi 47.0 2.50 mg/L 25 07.28/17 WHM ES1.1 Total Nitrogen 47.7 0.10 mg/L 1 07.28/17 WHM 5M.50.00-97 Mercury Digestion Completed 07.24/17 N SM.2640D-97,11 N SM.2640D-97,11 PCB Extraction (2 Liter) Completed 07.24/17 N SM.2640D-97,11 PCB Extraction (2 Liter) Completed 07.24/17 A E08.538082A PCB-1016 ND 0.053 ug/L 1 07.25/17 AW E08.5W.8082A PCB-1221 ND 0.053 ug/L 1 07.25/17 AW E08.5W.8082A PCB-1242 ND 0.053 ug/L 1 07.25/17 AW E08.5W.8082A PCB-1240 ND 0.053 ug/L 1 07.25/17 AW E08.5W.8082A PCB-1260 ND 0.053 ug/L 1 07.25/17 AW E08.5W.8082A PC	рН	7.60	1.00	pH Units	1	07/22/17 01:04	RR/EG	SM4500-H B-00 ¹
Total Ministry 1 07/22/17 With Suscended Solids 22:00 170 Total Suspended Solids 2000 170 mgL 33 07/24/17 SD SM2540D-97,111 Marcury Digastion Completed 07/21/17 WW SW7470A PCB Extraction (2 Lite) Completed 07/21/17 A SW2510C Total Metals Digestion Completed 07/21/17 AW E008/SW8082A PCB-1201 ND 0.053 ug/L 1 07/25/17 AW E008/SW8082A PCB-1221 ND 0.053 ug/L 1 07/25/17 AW E008/SW8082A PCB-1242 ND 0.053 ug/L 1 07/25/17 AW E008/SW8082A PCB-1254 ND 0.053 ug/L 1 07/25/17 AW E008/SW8082A PCB-1262 ND 0.053 ug/L 1 07/25/17 AW E008/SW8082A PCB-1262 ND 0.053 ug/L 1<	Tot. Diss. Solids	230	10	mg/L	1	07/24/17	CR/SD	SM2540C-97,-11
Total Sup_Anded Solids 22000 170 mg/L 33 0724/17 SD SM2640-97,11 Mercury Digestion Completed 0725/17 NN SV3510C PCBE Extraction (2 Liter) Completed 0725/17 NN SV3510C PCDE Intracted Biphenvis E	Nitrogen Tot Kjeldahl	47.0	2.50	mg/L	25	07/25/17	WHM	E351.1
Mercury Digestion Completed 07/25/17 WW SW7470A PCB Extraction (2 Liter) Completed 07/21/17 N SW3510C Total Metals Digestion Completed 07/21/17 AG POSChOrinated Biphenvis PCB-1016 ND 0.053 ug/L 1 07/25/17 AW E608/SW6082A PCB-1221 ND 0.053 ug/L 1 07/25/17 AW E608/SW6082A PCB-1242 ND 0.053 ug/L 1 07/25/17 AW E608/SW6082A PCB-1248 ND 0.053 ug/L 1 07/25/17 AW E608/SW6082A PCB-1260 ND 0.055 ug/L 1	Total Nitrogen	47.7	0.10	mg/L	1	07/25/17	WHM	SM4500NH3/E300.0-97 ¹
PCB Extraction (2 Liter) Completed Completed 07/21/17 N SW3510C POLAMERIAS Digestion Completed 07/24/17 AG SW3510C PCB-1016 ND 0.053 ug/L 1 07/25/17 AW E60alS/W8082A PCB-1221 ND 0.053 ug/L 1 07/25/17 AW E60alS/W8082A PCB-1232 ND 0.053 ug/L 1 07/25/17 AW E60alS/W8082A PCB-1248 ND 0.053 ug/L 1 07/25/17 AW E60alS/W8082A PCB-1260 ND 0.053 ug/L 1 07/25/17 AW E60alS/W8082A PCB-1262 ND 0.053 ug/L 1 07/25/17 AW E60alS/W8082A PCB-1262 ND 0.053 ug/L 1 07/25/17 AW E60alS/W8082A PCB-1262 ND 0.063 ug/L 1 07/25/17 AW E60alS/W8082A PCB-1262 ND 0.06 </td <td>Total Suspended Solids</td> <td>22000</td> <td>170</td> <td>mg/L</td> <td>33</td> <td>07/24/17</td> <td>SD</td> <td>SM2540D-97,-11</td>	Total Suspended Solids	22000	170	mg/L	33	07/24/17	SD	SM2540D-97,-11
Total Metals Digestion Completed 07/24/17 AG PCb-1016 ND 0.653 ug/L 1 07/25/17 AW E008/SW082A PCB-1221 ND 0.053 ug/L 1 07/25/17 AW E008/SW082A PCB-1232 ND 0.053 ug/L 1 07/25/17 AW E008/SW082A PCB-1242 ND 0.063 ug/L 1 07/25/17 AW E008/SW082A PCB-1280 ND 0.063 ug/L 1 07/25/17 AW E008/SW082A PCB-1280 ND 0.063 ug/L 1 07/25/17 AW E008/SW082A PCB-1280 ND 0.053 ug/L 1 07/25/17 AW E008/SW082A PCB-1288 ND 0.053 ug/L 1 07/25/17 AW E008/SW082A PCB-1286 27 % 1 07/25/17 AW 800/SW082A PCB-1286 27 % 1 <t< td=""><td>Mercury Digestion</td><td>Completed</td><td></td><td></td><td></td><td>07/25/17</td><td>W/W</td><td>SW7470A</td></t<>	Mercury Digestion	Completed				07/25/17	W/W	SW7470A
Polychonaced Biphenyls PCB-1016 ND 0.633 ug/L 1 07/25/17 AW E008/SW8082A PCB-1221 ND 0.663 ug/L 1 07/25/17 AW E008/SW8082A PCB-1232 ND 0.663 ug/L 1 07/25/17 AW E008/SW8082A PCB-1242 ND 0.663 ug/L 1 07/25/17 AW E008/SW8082A PCB-1248 ND 0.663 ug/L 1 07/25/17 AW E008/SW8082A PCB-1280 ND 0.663 ug/L 1 07/25/17 AW E008/SW8082A PCB-1282 ND 0.663 ug/L 1 07/25/17 AW E008/SW8082A PCB-1282 ND 0.653 ug/L 1 07/25/17 AW E008/SW8082A PCB-1282 ND 0.653 ug/L 1 07/21/17 AW 800 150 % TCMX 61 % 1 07/21/17 <td< td=""><td>PCB Extraction (2 Liter)</td><td>Completed</td><td></td><td></td><td></td><td>07/21/17</td><td>Ν</td><td>SW3510C</td></td<>	PCB Extraction (2 Liter)	Completed				07/21/17	Ν	SW3510C
PCB-1016 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1221 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1232 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1242 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1248 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1260 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1262 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A QACC Surrogates	Total Metals Digestion	Completed				07/24/17	AG	
PCB-1221 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1232 ND 0.063 ug/L 1 07/25/17 AW E608/SW8082A PCB-1242 ND 0.063 ug/L 1 07/25/17 AW E608/SW8082A PCB-1248 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1260 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1262 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1268 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1268 ND 0.053 ug/L 1 07/25/17 AW 500/SW8082A PCB-1268 ND 0.053 ug/L 1 07/25/17 AW 30-150 % X DCBP 27 % 1 07/25/17 AW 30-150 %	Polychlorinated Bipher	<u>nyls</u>						
PCB-1232 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1242 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1248 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1260 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1262 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1268 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1268 ND 0.053 ug/L 1 07/25/17 AW 50% & OCBP 27 % 1 07/25/17 AW 30 - 150 % % DCB 27 % 1 07/25/17 AW 30 - 150 % % DCB 27 % 1 07/21/17 MH SW8260C 1,1,2-Tetrachloroethane ND 1.0	PCB-1016	ND	0.053	ug/L	1	07/25/17	AW	E608/SW8082A
PCB-1242 ND 0.053 ug/L 1 07/25/17 AW E608/SW082A PCB-1248 ND 0.053 ug/L 1 07/25/17 AW E608/SW082A PCB-1260 ND 0.053 ug/L 1 07/25/17 AW E608/SW082A PCB-1262 ND 0.053 ug/L 1 07/25/17 AW E608/SW082A PCB-1262 ND 0.053 ug/L 1 07/25/17 AW E608/SW082A OA/OC Surrogates	PCB-1221	ND	0.053	ug/L	1	07/25/17	AW	E608/SW8082A
PCB-1248 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1254 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1260 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1262 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1268 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1268 ND 0.053 ug/L 1 07/25/17 AW 30 - 150 % MCGS MCM 61 % 1 07/21/17 AW 30 - 150 % Volatiles	PCB-1232	ND	0.053	ug/L	1	07/25/17	AW	E608/SW8082A
PCB-1254 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1260 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1262 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1268 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1268 ND 0.053 ug/L 1 07/25/17 AW 30-150 % & MCMX 61 % 1 07/25/17 AW 30-150 % VClattles	PCB-1242	ND	0.053	ug/L	1	07/25/17	AW	E608/SW8082A
PCB-1260 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1262 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1268 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A AMCC Surrogates " % 1 07/25/17 AW 30 - 150 % % DCBP 27 % 1 07/25/17 AW 30 - 150 % Y MCMX 61 % 1 07/21/17 AW SW8260C 1,1.1-Trichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1.2.2-Tetrachloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1.2.2-Tetrachloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2.3-Trichl	PCB-1248	ND	0.053	ug/L	1	07/25/17	AW	E608/SW8082A
PCB-1262 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A PCB-1268 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A QA/OC Surrogates	PCB-1254	ND	0.053	ug/L	1	07/25/17	AW	E608/SW8082A
PCB-1268 ND 0.053 ug/L 1 07/25/17 AW E608/SW8082A CACC Surrogates V 0 0 0 0 0 0 % DCBP 27 % 1 07/25/17 AW 30 - 150 % % TCMX 61 % 1 07/25/17 AW 30 - 150 % Volatiles V 1 07/21/17 MH SW8260C 1,1,2-Tetrachloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1,2-Trichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-2-Trichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-3-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichlorobenzene ND 1.0	PCB-1260	ND	0.053	ug/L	1	07/25/17	AW	E608/SW8082A
DAVACE Surrogates View of the system % DCBP 27 % 1 07/25/17 AW 30 - 150 % % TCMX 61 % 1 07/25/17 AW 30 - 150 % Volatiles 1 07/25/17 AW 30 - 150 % 1,1,12-Tetrachloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1,2-Tetrachloroethane ND 0.50 ug/L 1 07/21/17 MH SW8260C 1,1,2-Tetrachloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1,2-Tetrachloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-S-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trinethylbenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trinethylbenzene ND 1.0 ug/L	PCB-1262	ND	0.053	ug/L	1	07/25/17	AW	E608/SW8082A
% DCBP 27 % 1 07/25/17 AW 30 - 150 % % TCMX 61 % 1 07/25/17 AW 30 - 150 % Volatiles ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1,1-Trichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1,2-Tetrachloroethane ND 0.50 ug/L 1 07/21/17 MH SW8260C 1,1-2:Trichloroethane ND 0.50 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Strichloropenene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-A-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-3-Trichlorobenzene ND 1.0 ug/L 1 <th07 17<="" 21="" th=""> MH</th07>	PCB-1268	ND	0.053	ug/L	1	07/25/17	AW	E608/SW8082A
% DCBP 27 % 1 07/25/17 AW 30 - 150 % % TCMX 61 % 1 07/25/17 AW 30 - 150 % Volatiles ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1,1-Trichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1,2-Tetrachloroethane ND 0.50 ug/L 1 07/21/17 MH SW8260C 1,1-2-Trichloroethane ND 0.50 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroptopene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-3-Trichloropopane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-4-Trichloropopane ND 1.0 ug/L 1 07/21/17 MH	QA/QC Surrogates							
Volume Volume ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1,1-2-Tetrachloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1,2-2-Tetrachloroethane ND 0.50 ug/L 1 07/21/17 MH SW8260C 1,1,2-2-Tetrachloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroptopene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichorobenzene ND 1.0 ug/L		27		%	1	07/25/17	AW	30 - 150 % ³
1,1,1,2-Tetrachloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1,1-Trichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 1 07/21/17 MH SW8260C 1,1,2:Critchloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroptopene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichloroporpane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trimetrylbenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1	% TCMX	61		%	1	07/25/17	AW	30 - 150 %
1,1,1-Trichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 1 07/21/17 MH SW8260C 1,1,2-Trichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroptopene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichloroptopene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichloroptopane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trichloroptopane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichloropropane ND 1.0 </td <td><u>Volatiles</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<u>Volatiles</u>							
1,1,2,2-Tetrachloroethane ND 0.50 ug/L 1 07/21/17 MH SW8260C 1,1,2-Trichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroptopene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichloroptopane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichloroptopane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichlorobenzene ND 1.0	1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
1,1,2-Trichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloropropene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Jichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,3-Dichloropropane ND 1.0 ug/L	1,1,1-Trichloroethane	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
1,1,2-Trichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloroethene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloropropene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trinethylbenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,3-Dichloropropane ND 1.0		ND	0.50		1	07/21/17	MH	SW8260C
1,1-Dichloroethene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloropropene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trimethylbenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichloroptane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,3-5-Trimethylbenzene ND 1.0<	1,1,2-Trichloroethane	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
1,1-Dichloroethene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,1-Dichloropropene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trinchlybenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trimethylbenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichloroptonpane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,3-Dichloroptopane ND 1.0 </td <td>1,1-Dichloroethane</td> <td>ND</td> <td>1.0</td> <td>ug/L</td> <td>1</td> <td>07/21/17</td> <td>MH</td> <td>SW8260C</td>	1,1-Dichloroethane	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
1,1-Dichloropropene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trimethylbenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromoethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,3-Dichloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,3-Dichloropopane ND 1.0 <td></td> <td>ND</td> <td>1.0</td> <td></td> <td>1</td> <td>07/21/17</td> <td>MH</td> <td>SW8260C</td>		ND	1.0		1	07/21/17	MH	SW8260C
1,2,3-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,3-Trichloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trimethylbenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromoethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,3-5-Trimethylbenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,3-Dichlorobenzene ND 1.0	1,1-Dichloropropene	ND	1.0		1	07/21/17	MH	SW8260C
1,2,3-Trichloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2,4-Trimethylbenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromoethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichlorobenzene ND 0.60 ug/L 1 07/21/17 MH SW8260C 1,2-Dichloroptopane ND 0.60 ug/L 1 07/21/17 MH SW8260C 1,3-5-Trimethylbenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,3-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,4-Dichlorobenzene ND 1.0		ND	1.0		1	07/21/17	MH	SW8260C
1,2,4-TrichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,2,4-TrimethylbenzeneND1.0ug/L107/21/17MHSW8260C1,2-Dibromo-3-chloropropaneND1.0ug/L107/21/17MHSW8260C1,2-DibromoethaneND1.0ug/L107/21/17MHSW8260C1,2-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,2-DichlorobenzeneND0.60ug/L107/21/17MHSW8260C1,2-DichloropopaneND1.0ug/L107/21/17MHSW8260C1,3-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>					1			
1,2,4-Trimethylbenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dibromoethane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,2-Dichlorobenzene ND 0.60 ug/L 1 07/21/17 MH SW8260C 1,3-Dichloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,3-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,3-Dichloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,4-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 2,2-Dichloropropane ND 1.0 ug/		ND	1.0		1	07/21/17	MH	SW8260C
1,2-Dibromo-3-chloropropaneND1.0ug/L107/21/17MHSW8260C1,2-DibromoethaneND1.0ug/L107/21/17MHSW8260C1,2-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,2-DichlorobenzeneND0.60ug/L107/21/17MHSW8260C1,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C1,3-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,3,5-TrimethylbenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichloropropaneND1.0ug/L107/21/17MHSW8260C1,3-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,-HexanoneND5.0ug/L107/21/17MHSW8260C					1	07/21/17	MH	
1,2-DibromoethaneND1.0ug/L107/21/17MHSW8260C1,2-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,2-DichloroethaneND0.60ug/L107/21/17MHSW8260C1,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C1,3,5-TrimethylbenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichloropropaneND1.0ug/L107/21/17MHSW8260C1,4-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,-ChlorotolueneND1.0ug/L107/21/17MHSW8260C2-HexanoneND5.0ug/L107/21/17MHSW8260C2-IsopropyltolueneND1.0ug/L107/21/17MHSW8260C			1.0		1	07/21/17	MH	SW8260C
1,2-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,2-DichloroethaneND0.60ug/L107/21/17MHSW8260C1,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C1,3,5-TrimethylbenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichloropropaneND1.0ug/L107/21/17MHSW8260C1,3-DichloropropaneND1.0ug/L107/21/17MHSW8260C1,3-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2-ChlorotolueneND1.0ug/L107/21/17MHSW8260C2-HexanoneND5.0ug/L107/21/17MHSW8260C2-IsopropyltolueneND1.0ug/L107/21/17MHSW8260C				-	1			
1,2-DichloroethaneND0.60ug/L107/21/17MHSW8260C1,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C1,3,5-TrimethylbenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichloropropaneND1.0ug/L107/21/17MHSW8260C1,4-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2-ChlorotolueneND1.0ug/L107/21/17MHSW8260C2-HexanoneND5.0ug/L107/21/17MHSW8260C2-IsopropyltolueneND1.0ug/L107/21/17MHSW8260C					1			SW8260C
1,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C1,3,5-TrimethylbenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichloropropaneND1.0ug/L107/21/17MHSW8260C1,4-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2-ChlorotolueneND1.0ug/L107/21/17MHSW8260C2-HexanoneND5.0ug/L107/21/17MHSW8260C2-IsopropyltolueneND1.0ug/L107/21/17MHSW8260C					1			
1,3,5-TrimethylbenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C1,3-DichloropropaneND1.0ug/L107/21/17MHSW8260C1,4-DichlorobenzeneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2-ChlorotolueneND1.0ug/L107/21/17MHSW8260C2-HexanoneND5.0ug/L107/21/17MHSW8260C2-IsopropyltolueneND1.0ug/L107/21/17MHSW8260C		ND			1			
1,3-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,3-Dichloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,4-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 2,2-Dichloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 2,2-Dichloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 2-Chlorotoluene ND 1.0 ug/L 1 07/21/17 MH SW8260C 2-Hexanone ND 5.0 ug/L 1 07/21/17 MH SW8260C 2-Isopropyltoluene ND 1.0 ug/L 1 07/21/17 MH SW8260C					1	07/21/17	МН	SW8260C
ND 1.0 ug/L 1 07/21/17 MH SW8260C 1,4-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 2,2-Dichloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 2,2-Dichloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 2-Chlorotoluene ND 1.0 ug/L 1 07/21/17 MH SW8260C 2-Hexanone ND 5.0 ug/L 1 07/21/17 MH SW8260C 2-Isopropyltoluene ND 1.0 ug/L 1 07/21/17 MH SW8260C	•				1			
1,4-Dichlorobenzene ND 1.0 ug/L 1 07/21/17 MH SW8260C 2,2-Dichloropropane ND 1.0 ug/L 1 07/21/17 MH SW8260C 2-Chlorotoluene ND 1.0 ug/L 1 07/21/17 MH SW8260C 2-Chlorotoluene ND 1.0 ug/L 1 07/21/17 MH SW8260C 2-Hexanone ND 5.0 ug/L 1 07/21/17 MH SW8260C 2-Isopropyltoluene ND 1.0 ug/L 1 07/21/17 MH SW8260C					1			
2,2-DichloropropaneND1.0ug/L107/21/17MHSW8260C2-ChlorotolueneND1.0ug/L107/21/17MHSW8260C2-HexanoneND5.0ug/L107/21/17MHSW8260C2-IsopropyltolueneND1.0ug/L107/21/17MHSW8260C					1			
2-Chlorotoluene ND 1.0 ug/L 1 07/21/17 MH SW8260C 2-Hexanone ND 5.0 ug/L 1 07/21/17 MH SW8260C 2-Isopropyltoluene ND 1.0 ug/L 1 07/21/17 MH SW8260C					1			
2-Hexanone ND 5.0 ug/L 1 07/21/17 MH SW8260C 2-Isopropyltoluene ND 1.0 ug/L 1 07/21/17 MH SW8260C								
2-Isopropyltoluene ND 1.0 ug/L 1 07/21/17 MH SW8260C					-			
					-			
4-Chlorotoluene ND 1.0 ug/L 1 07/21/17 MH SW8260C		ND	1.0			07/21/17		SW8260C

Project ID: VISTA SQUARE

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	5.0	ug/L	1	07/21/17	MH	SW8260C
Acetone	ND	25	ug/L	1	07/21/17	MH	SW8260C
Acrylonitrile	ND	5.0	ug/L	1	07/21/17	MH	SW8260C
Benzene	ND	0.70	ug/L	1	07/21/17	MH	SW8260C
Bromobenzene	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	07/21/17	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
arbon Disulfide	ND	5.0	ug/L	1	07/21/17	MH	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
Chloroethane	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
Chloroform	ND	1.0	ug/L	1	07/21/17	МН	SW8260C
Chloromethane	ND	1.0	ug/L	1	07/21/17	МН	SW8260C
is-1,2-Dichloroethene	36	10	ug/L	10	07/23/17	МН	SW8260C
is-1,3-Dichloropropene	ND	0.40	ug/L	1	07/21/17	МН	SW8260C
ibromochloromethane	ND	0.50	ug/L	1	07/21/17	МН	SW8260C
Vibromomethane	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
lichlorodifluoromethane	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
thylbenzene	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
exachlorobutadiene	ND	0.40	ug/L	1	07/21/17	MH	SW8260C
opropylbenzene	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
i&p-Xylene	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
lethyl ethyl ketone	ND	5.0	ug/L	1	07/21/17	MH	SW8260C
	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
lethyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
lethylene chloride	ND	1.0		1	07/21/17	MH	SW8260C
laphthalene Butulhanzana		1.0	ug/L				SW8260C
-Butylbenzene	ND		ug/L	1	07/21/17	MH	
-Propylbenzene	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
-Xylene	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
-Isopropyltoluene	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
ec-Butylbenzene	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
Styrene	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
ert-Butylbenzene	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
etrachloroethene	130	10	ug/L	10	07/23/17	MH	SW8260C
etrahydrofuran (THF)	ND	2.5	ug/L	1	07/21/17	MH	SW8260C
oluene	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
otal Xylenes	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
ans-1,2-Dichloroethene	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
ans-1,3-Dichloropropene	ND	0.40	ug/L	1	07/21/17	MH	SW8260C
ans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	07/21/17	MH	SW8260C
richloroethene	12	1.0	ug/L	1	07/21/17	MH	SW8260C
richlorofluoromethane	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
richlorotrifluoroethane	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
inyl chloride	ND	1.0	ug/L	1	07/21/17	MH	SW8260C
QA/QC Surrogates							
61,2-dichlorobenzene-d4	101		%	1	07/21/17	MH	70 - 130 %
6 Bromofluorobenzene	99		%	1	07/21/17	MH	70 - 130 %

Project ID: VISTA SQUARE

Client ID: 1B-2

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	102		%	1	07/21/17	MH	70 - 130 %
% Toluene-d8	98		%	1	07/21/17	MH	70 - 130 %

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. 3 = This parameter exceeds laboratory specified limits.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of holdtime.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

PCB Comment:

Poor surrogate recovery was observed for PCBs. Insufficient sample for re-extraction. Elevated metal reporting levels were required due to high levels of interfering substance(s) in the sample.

If there are any questions regarding this data, please call Phoenix Client Services. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director August 01, 2017 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

August 01, 2017

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		07/19/17	11:15
Location Code:	HANSONV	Received by:	В	07/21/17	17:29
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:					

Laboratory Data

SDG ID: GBY70545 Phoenix ID: BY70546

Project ID:	VISTA SQUARE
Client ID:	PIT NORTHEAST

Parameter	Decult	RL/ PQL	Units	Dilution	Date/Time	D./	Deference
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	63		%		07/21/17	ESG	SW846-%Solid
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,1,1-Trichloroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,1,2-Trichloroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,1-Dichloroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,1-Dichloroethene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,1-Dichloropropene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2,3-Trichloropropane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2-Dibromoethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2-Dichlorobenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2-Dichloroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2-Dichloropropane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,3-Dichlorobenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,3-Dichloropropane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,4-Dichlorobenzene	11	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
2,2-Dichloropropane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
2-Chlorotoluene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
2-Hexanone	ND	40	ug/Kg	1	07/23/17	JLI	SW8260C
2-Isopropyltoluene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C 1
4-Chlorotoluene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C

Project ID: VISTA SQUARE Client ID: PIT NORTHEAST

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	40	ug/Kg	1	07/23/17	JLI	SW8260C
Acetone	ND	40	ug/Kg	1	07/23/17	JLI	SW8260C
Acrylonitrile	ND	16	ug/Kg	1	07/23/17	JLI	SW8260C
Benzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Bromobenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Bromochloromethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Bromodichloromethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Bromoform	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Bromomethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Carbon Disulfide	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Carbon tetrachloride	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Chlorobenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Chloroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Chloroform	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Chloromethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
cis-1,2-Dichloroethene	40	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
cis-1,3-Dichloropropene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Dibromochloromethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Dibromomethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Dichlorodifluoromethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Ethylbenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
lexachlorobutadiene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
sopropylbenzene	+++IND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
n&p-Xylene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Aethyl Ethyl Ketone	ND	40	ug/Kg	1	07/23/17	JLI	SW8260C
Aethyl t-butyl ether (MTBE)	ND	16	ug/Kg	1	07/23/17	JLI	SW8260C
Aethylene chloride	ND	16	ug/Kg	1	07/23/17	JLI	SW8260C
Vaphthalene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
-	ND	7.9	ug/Kg ug/Kg	1	07/23/17	JLI	SW8260C
n-Butylbenzene	ND	7.9 7.9	ug/Kg ug/Kg	1	07/23/17	JLI	SW8260C
n-Propylbenzene		7.9 7.9					SW8260C
o-Xylene	ND		ug/Kg	1	07/23/17	JLI	
o-Isopropyltoluene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
sec-Butylbenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Styrene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
ert-Butylbenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Tetrachloroethene		L 11000	ug/Kg	1000	07/25/17	JLI	SW8260C
Tetrahydrofuran (THF)	ND	16	ug/Kg	1	07/23/17	JLI	SW8260C
oluene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Total Xylenes	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
rans-1,2-Dichloroethene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
rans-1,3-Dichloropropene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
rans-1,4-dichloro-2-butene	ND	16	ug/Kg	1	07/23/17	JLI	SW8260C
Frichloroethene		L 300	ug/Kg	50	07/24/17	JLI	SW8260C
Frichlorofluoromethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Frichlorotrifluoroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Vinyl chloride	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	88		%	1	07/23/17	JLI	70 - 130 %
% Bromofluorobenzene	82		%	1	07/23/17	JLI	70 - 130 %

Project ID: VISTA SQUARE Client ID: PIT NORTHEAST

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
% Dibromofluoromethane	108		%	1	07/23/17	JLI	70 - 130 %
% Toluene-d8	89		%	1	07/23/17	JLI	70 - 130 %

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director August 01, 2017 Reviewed and Released by: Bobbi Aloisa, Vice President

Analysis Report

August 01, 2017

FOR: Attn: Mr. Kirby VanVleet Hanson VanVleet LLC 902 Route 146 Clifton Park, NY 12065

Sample Informa	ation	Custody Inform	<u>Date</u>	<u>Time</u>	
Matrix:	SOIL	Collected by:		07/19/17	11:20
Location Code:	HANSONV	Received by:	В	07/21/17	17:29
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:		Laboratory	Data	SDG ID.	GBV7054

Laboratory Data

SDG ID: GBY70545 Phoenix ID: BY70547

Project ID:	VISTA SQUARE
Client ID:	PIT SOUTHEAST

Poromotor	Pooult	RL/ PQL	Units	Dilution	Date/Time	Dv/	Poforonoo
Parameter	Result	PQL		Dilution	Date/Time	By	Reference
Percent Solid	63		%		07/21/17	ESG	SW846-%Solid
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,1,1-Trichloroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,1,2-Trichloroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,1-Dichloroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,1-Dichloroethene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,1-Dichloropropene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2,3-Trichloropropane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2-Dibromoethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2-Dichlorobenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2-Dichloroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,2-Dichloropropane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,3-Dichlorobenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,3-Dichloropropane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
1,4-Dichlorobenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
2,2-Dichloropropane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
2-Chlorotoluene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
2-Hexanone	ND	39	ug/Kg	1	07/23/17	JLI	SW8260C
2-Isopropyltoluene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C 1
4-Chlorotoluene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C

Project ID: VISTA SQUARE Client ID: PIT SOUTHEAST

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	39	ug/Kg	1	07/23/17	JLI	SW8260C
Acetone	ND	39	ug/Kg	1	07/23/17	JLI	SW8260C
Acrylonitrile	ND	16	ug/Kg	1	07/23/17	JLI	SW8260C
Benzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Bromobenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Bromochloromethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Bromodichloromethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Bromoform	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Bromomethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Carbon Disulfide	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Carbon tetrachloride	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Chlorobenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Chloroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Chloroform	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Chloromethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
sis-1,2-Dichloroethene	39	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
cis-1,3-Dichloropropene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Dibromochloromethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Dibromomethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Dichlorodifluoromethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Ethylbenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
lexachlorobutadiene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
sopropylbenzene	+++IND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
n&p-Xylene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
lethyl Ethyl Ketone	ND	39	ug/Kg	1	07/23/17	JLI	SW8260C
Aethyl t-butyl ether (MTBE)	ND	16	ug/Kg	1	07/23/17	JLI	SW8260C
Aethylene chloride	ND	16	ug/Kg	1	07/23/17	JLI	SW8260C
Vaphthalene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
-	ND	7.9	ug/Kg ug/Kg	1	07/23/17	JLI	SW8260C
n-Butylbenzene	ND	7.9 7.9	ug/Kg ug/Kg	1	07/23/17	JLI	SW8260C
n-Propylbenzene	ND	7.9 7.9			07/23/17	JLI	SW8260C
o-Xylene	ND	7.9 7.9	ug/Kg	1		JLI	SW8260C
o-Isopropyltoluene			ug/Kg	1	07/23/17		
ec-Butylbenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Styrene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
ert-Butylbenzene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Tetrachloroethene		L 5400	ug/Kg	500	07/25/17	JLI	SW8260C
Tetrahydrofuran (THF)	ND	16	ug/Kg	1	07/23/17	JLI	SW8260C
oluene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Total Xylenes	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
rans-1,2-Dichloroethene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
rans-1,3-Dichloropropene	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
rans-1,4-dichloro-2-butene	ND	16	ug/Kg	1	07/23/17	JLI	SW8260C
Frichloroethene		L 200	ug/Kg	50	07/24/17	JLI	SW8260C
Frichlorofluoromethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
Frichlorotrifluoroethane	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
/inyl chloride	ND	7.9	ug/Kg	1	07/23/17	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	85		%	1	07/23/17	JLI	70 - 130 %
% Bromofluorobenzene	79		%	1	07/23/17	JLI	70 - 130 %

Project ID: VISTA SQUARE Client ID: PIT SOUTHEAST

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
% Dibromofluoromethane	112		%	1	07/23/17	JLI	70 - 130 %
% Toluene-d8	85		%	1	07/23/17	JLI	70 - 130 %

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director August 01, 2017 Reviewed and Released by: Bobbi Aloisa, Vice President

QA/QC Report August 01, 2017

QA/QC Data

SDG I.D.: GBY70545

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 394844 (mg/L), Q	C Sam	ole No: I	3Y68637	(BY7054	45)								
Thallium - Water	BRL	0.001	<0.001	<0.001	NC	105			106			75 - 125	20
QA/QC Batch 395025 (mg/L), Q	C Samp	ole No: I	3Y70077	(BY7054	45)								
ICP Metals - Aqueous													
Aluminum	BRL	0.010	0.027	0.024	NC	97.6			98.7			75 - 125	20
Antimony	BRL	0.005	0.005	<0.005	NC	99.3			100			75 - 125	20
Arsenic	BRL	0.004	<0.004	< 0.004	NC	96.3			96.4			75 - 125	20
Barium	BRL	0.002	0.014	0.014	0	101			100			75 - 125	20
Beryllium	BRL	0.001	<0.001	<0.001	NC	102			101			75 - 125	20
Cadmium	BRL	0.001	<0.001	<0.001	NC	99.3			97.2			75 - 125	20
Calcium	BRL	0.010	14.4	13.9	3.50	101			NC			75 - 125	20
Chromium	BRL	0.001	<0.001	<0.001	NC	100			99.1			75 - 125	20
Cobalt	BRL	0.002	<0.002	< 0.002	NC	101			100			75 - 125	20
Copper	BRL	0.005	<0.005	< 0.005	NC	102			102			75 - 125	20
Iron	BRL	0.010	0.239	0.229	4.30	102			101			75 - 125	20
Lead	BRL	0.002	<0.002	< 0.002	NC	99.6			99.0			75 - 125	20
Magnesium	BRL	0.010	4.73	4.59	3.00	98.9			95.4			75 - 125	20
Manganese	BRL	0.001	0.021	0.020	4.90	100			98.9			75 - 125	20
Nickel	BRL	0.001	0.003	0.002	NC	101			99.4			75 - 125	20
Potassium	BRL	0.1	2.9	2.8	3.50	104			109			75 - 125	20
Selenium	BRL	0.010	0.018	<0.010	NC	93.7			93.6			75 - 125	20
Silver	BRL	0.001	<0.001	<0.001	NC	94.5			94.5			75 - 125	20
Sodium	BRL	0.10	25.2	24.4	3.20	106			NC			75 - 125	20
Vanadium	BRL	0.002	<0.002	<0.002	NC	99.5			98.7			75 - 125	20
Zinc	BRL	0.002	0.004	0.003	NC	97.3			97.4			75 - 125	20
QA/QC Batch 395084 (mg/L), Q	C Samp	ole No: I	3Y70790	(BY7054	45)								
Mercury - Water	BRL	0.0002	<0.0002	< 0.0002	NC	93.1			92.2			80 - 120	20
Comment:													
Additional Mercury criteria: LCS ad	cceptanc	e range f	or waters	is 80-120°	% and fo	or soils i	s 70-130 ^o	%. MS a	cceptan	ce range	e is 75-1	25%.	

QA/QC Report

August 01, 2017

QA/QC Data

SDG I.D.: GBY70545

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 395071 (mg/L), C	C Sam	ole No: I	BY68416	(BY705-	45)									
Nitrogen Tot Kjeldahl	BRL	0.10	38.7	41.2	6.30	99.5			106			85 - 115	20	
QA/QC Batch 394977 (mg/L), C	C Sam	ole No: I	BY69175	(BY705-	45)									
Tot. Diss. Solids	BRL	10	150	150	0	99.0						85 - 115	20	
QA/QC Batch 394953 (mg/L), C	C Sam	ole No: I	BY69280	(BY705-	45)									
Phenolics	BRL	0.015	<0.015	<0.015	NC	97.7			89.0			90 - 110	20	m
QA/QC Batch 394878 (mg/L), C	C Sam	ole No: I	BY69281	(BY705-	45)									
Nitrate-N	BRL	0.02	<0.02	<0.02	NC	99.3			100			90 - 110	20	
Nitrite-N	BRL	0.01	<0.010	<0.01	NC	103			105			90 - 110	20	
QA/QC Batch 394858 (mg/L), C	C Sam	ble No: I	BY69306	(BY705-	45)									
B.O.D./5 day	BRL	2.0	<4.0	<4.0	NC	103			115			70 - 130	20	
QA/QC Batch 394985 (mg/L), C	C Sam	ole No: I	BY69308	(BY705-	45)									
Total Suspended Solids	BRL	5.0	<5.0	<5.0	NC	90.0						85 - 115	20	
QA/QC Batch 394907 (pH), QC	Sample	No: BY	′70137 (E	3Y70545)									
рН				7.98		98.5						85 - 115	20	
QA/QC Batch 395139 (Degree	F), QC S	Sample	No: BY70)570 (BY	′70545)									
Flash Point			>200	>200	NC	100						75 - 125	30	
Comment:														
Additional criteria matrix spike acc	eptance	range is	75-125%.											

m = This parameter is outside laboratory MS/MSD specified recovery limits.

QA/QC Report August 01, 2017

QA/QC Data

SDG I.D.: GBY70545

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 394849 (ug/L),	, QC Samp	ole No: BY64334 (BY70545)									
Polychlorinated Biphen	<u>yls - Gro</u>	ound Water									
PCB-1016	ND	0.050	45	80	56.0				40 - 140	20	r
PCB-1221	ND	0.050							40 - 140	20	
PCB-1232	ND	0.050							40 - 140	20	
PCB-1242	ND	0.050							40 - 140	20	
PCB-1248	ND	0.050							40 - 140	20	
PCB-1254	ND	0.050							40 - 140	20	
PCB-1260	ND	0.050	55	90	48.3				40 - 140	20	r
PCB-1262	ND	0.050							40 - 140	20	
PCB-1268	ND	0.050							40 - 140	20	
% DCBP (Surrogate Rec)	77	%	67	96	35.6				30 - 150	20	r
% TCMX (Surrogate Rec)	70	%	42	87	69.8				30 - 150	20	r
Comment:											

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Batch 394976 (ug/kg), QC Sample No: BY68498 (BY70546, BY70547)

Volatiles - Soil

1,1,1,2-Tetrachloroethane	ND	5.0	109	111	1.8	109	109	0.0	70 - 130	30
1,1,1-Trichloroethane	ND	5.0	109	111	1.8	115	113	1.8	70 - 130	30
1,1,2,2-Tetrachloroethane	ND	3.0	108	114	5.4	112	111	0.9	70 - 130	30
1,1,2-Trichloroethane	ND	5.0	109	114	4.5	108	108	0.0	70 - 130	30
1,1-Dichloroethane	ND	5.0	108	110	1.8	111	109	1.8	70 - 130	30
1,1-Dichloroethene	ND	5.0	114	120	5.1	111	108	2.7	70 - 130	30
1,1-Dichloropropene	ND	5.0	109	112	2.7	114	112	1.8	70 - 130	30
1,2,3-Trichlorobenzene	ND	5.0	111	114	2.7	106	104	1.9	70 - 130	30
1,2,3-Trichloropropane	ND	5.0	98	104	5.9	104	103	1.0	70 - 130	30
1,2,4-Trichlorobenzene	ND	5.0	108	109	0.9	102	98	4.0	70 - 130	30
1,2,4-Trimethylbenzene	ND	1.0	105	107	1.9	111	106	4.6	70 - 130	30
1,2-Dibromo-3-chloropropane	ND	5.0	110	120	8.7	102	102	0.0	70 - 130	30
1,2-Dibromoethane	ND	5.0	105	110	4.7	107	106	0.9	70 - 130	30
1,2-Dichlorobenzene	ND	5.0	111	114	2.7	114	109	4.5	70 - 130	30
1,2-Dichloroethane	ND	5.0	106	110	3.7	104	104	0.0	70 - 130	30
1,2-Dichloropropane	ND	5.0	105	109	3.7	108	106	1.9	70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	107	110	2.8	111	109	1.8	70 - 130	30
1,3-Dichlorobenzene	ND	5.0	108	110	1.8	107	105	1.9	70 - 130	30
1,3-Dichloropropane	ND	5.0	101	103	2.0	102	100	2.0	70 - 130	30
1,4-Dichlorobenzene	ND	5.0	110	112	1.8	112	109	2.7	70 - 130	30
2,2-Dichloropropane	ND	5.0	111	113	1.8	111	110	0.9	70 - 130	30
2-Chlorotoluene	ND	5.0	109	110	0.9	116	111	4.4	70 - 130	30
2-Hexanone	ND	25	77	82	6.3	77	81	5.1	70 - 130	30
2-Isopropyltoluene	ND	5.0	102	106	3.8	108	106	1.9	70 - 130	30
4-Chlorotoluene	ND	5.0	106	109	2.8	111	107	3.7	70 - 130	30

<u>QA/QC Data</u>

SDG I.D.: GBY70545

4-Methyl-2-pentanone Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	ND ND ND ND ND ND ND ND ND ND ND ND ND	25 10 5.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	83 78 91 105 112 109 113 107 119 115 114 110 114	87 80 95 110 116 113 115 111 121 117 117 113	4.7 2.5 4.3 4.7 3.5 3.6 1.8 3.7 1.7 1.7 2.6	83 71 93 109 118 109 111 101 92 107	86 70 96 108 113 108 110 103 96 106	3.6 1.4 3.2 0.9 4.3 0.9 0.9 2.0 4.3	70 - 130 70 - 130	30 30 30 30 30 30 30 30 30 30	
Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane	ND ND ND ND ND ND ND ND ND ND	5.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	91 105 112 109 113 107 119 115 114 110	95 110 116 113 115 111 121 117 117	4.3 4.7 3.5 3.6 1.8 3.7 1.7 1.7	93 109 118 109 111 101 92 107	96 108 113 108 110 103 96	 3.2 0.9 4.3 0.9 0.9 2.0 4.3 	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	30 30 30 30 30 30	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane	ND ND ND ND ND ND ND ND ND	1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	105 112 109 113 107 119 115 114 110	110 116 113 115 111 121 117 117	4.7 3.5 3.6 1.8 3.7 1.7 1.7	109 118 109 111 101 92 107	108 113 108 110 103 96	0.9 4.3 0.9 0.9 2.0 4.3	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	30 30 30 30 30	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane	ND ND ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	112 109 113 107 119 115 114 110	116 113 115 111 121 117 117	3.5 3.6 1.8 3.7 1.7 1.7	118 109 111 101 92 107	113 108 110 103 96	4.3 0.9 0.9 2.0 4.3	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	30 30 30 30	
Bromochloromethane Bromodichloromethane	ND ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	109 113 107 119 115 114 110	113 115 111 121 117 117	3.6 1.8 3.7 1.7 1.7	109 111 101 92 107	108 110 103 96	0.9 0.9 2.0 4.3	70 - 130 70 - 130 70 - 130	30 30 30	
Bromodichloromethane	ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0	113 107 119 115 114 110	113 115 111 121 117 117	3.6 1.8 3.7 1.7 1.7	109 111 101 92 107	108 110 103 96	0.9 0.9 2.0 4.3	70 - 130 70 - 130	30 30	
	ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0	107 119 115 114 110	111 121 117 117	3.7 1.7 1.7	101 92 107	103 96	2.0 4.3	70 - 130	30	
Dromoform	ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0	119 115 114 110	121 117 117	1.7 1.7	92 107	96	4.3			
BIOMOIOIM	ND ND ND ND	5.0 5.0 5.0 5.0	115 114 110	117 117	1.7	107			70 - 130	30	
Bromomethane	ND ND ND ND	5.0 5.0 5.0	114 110	117			106				
Carbon Disulfide	ND ND ND	5.0 5.0	110		2.6			0.9	70 - 130	30	
Carbon tetrachloride	ND ND	5.0		113		116	116	0.0	70 - 130	30	
Chlorobenzene	ND		114		2.7	111	111	0.0	70 - 130	30	
Chloroethane		5.0		113	0.9	34	34	0.0	70 - 130	30	m
Chloroform	ND		103	105	1.9	98	106	7.8	70 - 130	30	
Chloromethane		5.0	99	99	0.0	102	100	2.0	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	109	112	2.7	110	108	1.8	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	110	116	5.3	108	108	0.0	70 - 130	30	
Dibromochloromethane	ND	3.0	114	119	4.3	111	112	0.9	70 - 130	30	
Dibromomethane	ND	5.0	110	114	3.6	109	109	0.0	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	117	118	0.9	117	117	0.0	70 - 130	30	
Ethylbenzene	ND	1.0	108	111	2.7	112	110	1.8	70 - 130	30	
Hexachlorobutadiene	ND	5.0	119	120	0.8	108	103	4.7	70 - 130	30	
Isopropylbenzene	ND	1.0	108	111	2.7	117	113	3.5	70 - 130	30	
m&p-Xylene	ND	2.0	104	107	2.8	108	106	1.9	70 - 130	30	
Methyl ethyl ketone	ND	5.0	75	79	5.2	78	81	3.8	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	110	110	0.0	108	107	0.9	70 - 130	30	
Methylene chloride	ND	5.0	106	108	1.9	105	103	1.9	70 - 130	30	
Naphthalene	ND	5.0	107	113	5.5	107	107	0.0	70 - 130	30	
n-Butylbenzene	ND	1.0	112	115	2.6	119	114	4.3	70 - 130	30	
n-Propylbenzene	ND	1.0	111	114	2.7	121	114	6.0	70 - 130	30	
o-Xylene	ND	2.0	107	110	2.8	107	107	0.0	70 - 130	30	
p-Isopropyltoluene	ND	1.0	109	112	2.7	119	114	4.3	70 - 130	30	
sec-Butylbenzene	ND	1.0	112	115	2.6	121	116	4.2	70 - 130	30	
Styrene	ND	5.0	102	105	2.9	104	104	0.0	70 - 130	30	
tert-Butylbenzene	ND	1.0	109	112	2.7	119	114	4.3	70 - 130	30	
Tetrahydrofuran (THF)	ND	5.0	83	87	4.7	85	88	3.5	70 - 130	30	
Toluene	ND	1.0	112	117	4.4	116	115	0.9	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	112	115	2.6	114	112	1.8	70 - 130	30	
trans-1,3-Dichloropropene	ND	5.0	105	109	3.7	102	102	0.0	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	92	98	6.3	91	89	2.2	70 - 130	30	
Trichlorofluoromethane	ND	5.0	106	109	2.8	27	27	0.0	70 - 130	30	m
Trichlorotrifluoroethane	ND	5.0	109	111	1.8	105	101	3.9	70 - 130	30	
Vinyl chloride	ND	5.0	109	110	0.9	119	117	1.7	70 - 130	30	
% 1,2-dichlorobenzene-d4	93	%	101	102	1.0	103	100	3.0	70 - 130	30	
% Bromofluorobenzene	98	%	96	97	1.0	95	96	1.0	70 - 130	30	
% Dibromofluoromethane	106	%	100	97	3.0	98	98	0.0	70 - 130	30	
% Toluene-d8 Comment:	89	%	101	102	1.0	102	102	0.0	70 - 130	30	
Additional 8260 criteria: 10% of L	_CS/LCSD	compounds can be outside	of acceptance c	riteria as	long as	recover	y is 40-10	50%.			
QA/QC Batch 395002 (ug/L), C	2C Sampl	-	-		5.5		,				
Volatiles - Ground Water cis-1,2-Dichloroethene	<u> </u>	1.0	100	104	3.9				70 - 130	30	

QA/QC Data

Parameter	Blk Blank RL	%% LCS LCSD LCS MS MSD MS Rec RPD %% RPD %% RPD Limits Limits
Tetrachloroethene	ND 1.0	109 111 1.8 70-130 30

Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 394999 (ug/L), QC Sample No: BY70137 (BY70545)

Volatiles - Ground Water

1,1,1,2-Tetrachloroethane	ND	1.0	104	105	1.0	70 - 130	30
1,1,1-Trichloroethane	ND	1.0	96	99	3.1	70 - 130	30
1,1,2,2-Tetrachloroethane	ND	0.50	103	109	5.7	70 - 130	30
1,1,2-Trichloroethane	ND	1.0	89	99	10.6	70 - 130	30
1,1-Dichloroethane	ND	1.0	95	99	4.1	70 - 130	30
1,1-Dichloroethene	ND	1.0	95	99	4.1	70 - 130	30
1,1-Dichloropropene	ND	1.0	96	96	0.0	70 - 130	30
1,2,3-Trichlorobenzene	ND	1.0	92	102	10.3	70 - 130	30
1,2,3-Trichloropropane	ND	1.0	91	101	10.4	70 - 130	30
1,2,4-Trichlorobenzene	ND	1.0	96	105	9.0	70 - 130	30
1,2,4-Trimethylbenzene	ND	1.0	94	93	1.1	70 - 130	30
1,2-Dibromo-3-chloropropane	ND	1.0	100	107	6.8	70 - 130	30
1,2-Dibromoethane	ND	1.0	98	102	4.0	70 - 130	30
1,2-Dichlorobenzene	ND	1.0	96	100	4.1	70 - 130	30
1,2-Dichloroethane	ND	1.0	91	99	8.4	70 - 130	30
1,2-Dichloropropane	ND	1.0	93	99	6.3	70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	94	93	1.1	70 - 130	30
1,3-Dichlorobenzene	ND	1.0	97	99	2.0	70 - 130	30
1,3-Dichloropropane	ND	1.0	94	99	5.2	70 - 130	30
1,4-Dichlorobenzene	ND	1.0	97	98	1.0	70 - 130	30
2,2-Dichloropropane	ND	1.0	100	99	1.0	70 - 130	30
2-Chlorotoluene	ND	1.0	99	93	6.3	70 - 130	30
2-Hexanone	ND	5.0	86	101	16.0	70 - 130	30
2-Isopropyltoluene	ND	1.0	96	95	1.0	70 - 130	30
4-Chlorotoluene	ND	1.0	99	96	3.1	70 - 130	30
4-Methyl-2-pentanone	ND	5.0	85	98	14.2	70 - 130	30
Acetone	ND	5.0	86	109	23.6	70 - 130	30
Acrylonitrile	ND	5.0	81	98	19.0	70 - 130	30
Benzene	ND	0.70	93	96	3.2	70 - 130	30
Bromobenzene	ND	1.0	96	97	1.0	70 - 130	30
Bromochloromethane	ND	1.0	93	101	8.2	70 - 130	30
Bromodichloromethane	ND	0.50	92	101	9.3	70 - 130	30
Bromoform	ND	1.0	104	122	15.9	70 - 130	30
Bromomethane	ND	1.0	121	124	2.4	70 - 130	30
Carbon Disulfide	ND	1.0	106	107	0.9	70 - 130	30
Carbon tetrachloride	ND	1.0	99	102	3.0	70 - 130	30
Chlorobenzene	ND	1.0	98	98	0.0	70 - 130	30
Chloroethane	ND	1.0	101	101	0.0	70 - 130	30
Chloroform	ND	1.0	89	96	7.6	70 - 130	30
Chloromethane	ND	1.0	100	103	3.0	70 - 130	30
cis-1,3-Dichloropropene	ND	0.40	94	100	6.2	70 - 130	30
Dibromochloromethane	ND	0.50	106	117	9.9	70 - 130	30
Dibromomethane	ND	1.0	87	97	10.9	70 - 130	30
Dichlorodifluoromethane	ND	1.0	95	97 97	2.1	70 - 130 70 - 130	30 30
Ethylbenzene	ND	1.0	93 98	97 97	1.0	70 - 130 70 - 130	30 30
Hexachlorobutadiene	ND	0.40	103	104	1.0	70 - 130 70 - 130	30 30
	ND	0.70	103	104	1.0	70 - 130	30

QA/QC Data

				utu				5001.	D 0	01705	40
Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Isopropylbenzene	ND	1.0		96	95	1.0				70 - 130	30
m&p-Xylene	ND	1.0		97	97	0.0				70 - 130	30
Methyl ethyl ketone	ND	5.0		98	117	17.7				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0		89	103	14.6				70 - 130	30
Methylene chloride	ND	1.0		86	94	8.9				70 - 130	30
Naphthalene	ND	1.0		96	109	12.7				70 - 130	30
n-Butylbenzene	ND	1.0		93	95	2.1				70 - 130	30
n-Propylbenzene	ND	1.0		96	94	2.1				70 - 130	30
o-Xylene	ND	1.0		97	99	2.0				70 - 130	30
p-Isopropyltoluene	ND	1.0		94	96	2.1				70 - 130	30
sec-Butylbenzene	ND	1.0		97	100	3.0				70 - 130	30
Styrene	ND	1.0		99	101	2.0				70 - 130	30
tert-Butylbenzene	ND	1.0		93	94	1.1				70 - 130	30
Tetrahydrofuran (THF)	ND	2.5		88	105	17.6				70 - 130	30
Toluene	ND	1.0		92	92	0.0				70 - 130	30
rans-1,2-Dichloroethene	ND	1.0		94	96	2.1				70 - 130	30
rans-1,3-Dichloropropene	ND	0.40		92	98	6.3				70 - 130	30
rans-1,4-dichloro-2-butene	ND	5.0		103	113	9.3				70 - 130	30
Frichloroethene	ND	1.0		96	98	2.1				70 - 130	30
Frichlorofluoromethane	ND	1.0		96	98	2.1				70 - 130	30
Trichlorotrifluoroethane	ND	1.0		99	100	1.0				70 - 130	30
/inyl chloride	ND	1.0		101	102	1.0				70 - 130	30
% 1,2-dichlorobenzene-d4	99	%		100	100	0.0				70 - 130	30
% Bromofluorobenzene	97	%		100	103	3.0				70 - 130	30
% Dibromofluoromethane	99	%		96	100	4.1				70 - 130	30
% Toluene-d8 Comment:	98	%		99	97	2.0				70 - 130	30
A LCS and LCS Duplicate were Additional 8260 criteria: 10% o			·	-		long as	recover	y is 40-1	60%.		
⊇A/QC Batch 395115 (ug/kg <mark>Volatiles - Soil</mark>), QC Sam	ple No: BY7	70542 (BY70546 (50X	(), BY	70547 (5	50X))					
Trichloroethene Comment:	ND	5.0		113	110	2.7	123	125	1.6	70 - 130	30
Additional 8260 criteria: 10% o	f LCS/LCSD	compounds	can be outside of accep	tance c	riteria as	long as	recover	y is 40-1	60%.		
QA/QC Batch 395119 (ug/kg Volatiles - Soil		-				-					
Tetrachloroethene	ND	5.0		112	110	1.8	101	98	3.0	70 - 130	30

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

Comment:

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

by this

Phyllis/Shiller, Laboratory Director August 01, 2017

Tuesday, A	ugust 01, 2017		Sample Criteria	Exceedances Report				
Criteria: None GBY70545 - HANSONV								
State:	NY						RL	Analvsis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
*** Ne Dete	to Diamlau ***							

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

August 01, 2017

SDG I.D.: GBY70545

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

VOA Narration

CHEM17 07/21/17-2: BY70545

The following Initial Calibration compounds did not meet RSD% criteria: Bromomethane 29% (20%)

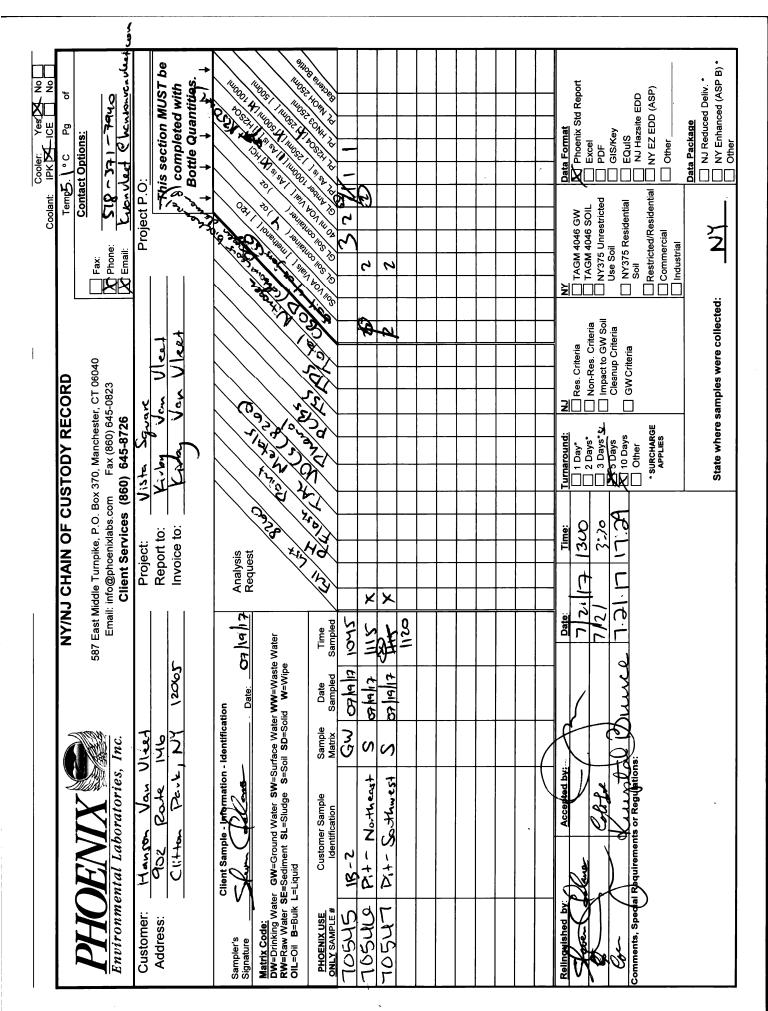
The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

The following Initial Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.030 (0.05), 2-Hexanone 0.071 (0.1), Acetone 0.055 (0.1), Bromoform 0.078 (0.1), Methyl ethyl ketone 0.061 (0.1), Tetrahydrofuran (THF) 0.043 (0.05) The following Initial Calibration compounds did not meet minimum response factors: None.

The following Continuing Calibration compounds did not meet recommended response factors: 1,1,2,2-Tetrachloroethane 0.292 (0.3), 1,2-Dibromo-3-chloropropane 0.032 (0.05), Bromoform 0.087 (0.1), Tetrahydrofuran (THF) 0.046 (0.05) The following Continuing Calibration compounds did not meet minimum response factors: None.

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823


NY Temperature Narration

August 01, 2017

SDG I.D.: GBY70545

The samples in this delivery group were received at 5.1° C. (Note acceptance criteria is above freezing up to 6° C)

Lisa Arnold

From: Sent: To: Subject: Kirby VanVleet <kvanvleet@hansonvanvleet.com> Tuesday, July 25, 2017 11:12 AM Lisa Arnold Re: Nitrite and Nitrate GBY 70545

Yes please run anyway

Kirby Van Vleet Vice President/Senior Hydrogeologist Hanson Van Vleet, LLC 902 Route 146 Clifton Park, NY 12065 Off: (518) 371-7940 ext 119 Cell: (518) 577-5291

> On Jul 25, 2017, at 11:04 AM, Lisa Arnold <<u>lisa@phoenixlabs.com</u>> wrote:

> Good morning,

>

>

> It was brought to my attention that the NO2 and NO3 tests were received past hold time.

> Please confirm if you still want the results reported.

>

- > Thank you,
- >
- > Lisa Arnold
- > Client Services
- > <GBY70545-ChainofCustody-1_1_1.pdf>

APPENDIX E GALUSHA & SON'S, INC

H & S PLAN

GALUSHA HEALTH AND SAFETY PLAN

FORMER DON'S LAUNDRY AT THE CURRY ROAD SHOPPING CENTER ROTTERDAM, NY 10017

Prepared October 2017

Prepared by:

Galusha & Sons LLC 426 Dix Avenue Queensbury, NY 12804

HAZARDS COMMUNICATION PROGRAM -1910.120

The MEA Inc. Hazards Communication Program is written to ensure that all hazards associated with projects are properly evaluated and that the information concerning the hazard is passed on to any affected employees or personnel associated with the project.

It must be noted that hazards may arise in the course of a regular work day which could not have been reasonably foreseen or expected to occur at the time of the preparation of this program. Each worker must exercise his/her best judgment in the performance of his/her specific craft in order to promote on-the-job safety.

This comprehensive program addresses levels of protection, a medical and health monitoring program, emergency response measures and basic employee training.

1.0 INTRODUCTION

This Health and Safety Plan (HASP) has been prepared to establish requirements and procedures for employee protection from health and safety hazards. By referencing the enclosed site-specific Health and Safety Plan, along with directives in the general Health and Safety Plan, this plan then meets or exceeds the requirements of Occupational Safety and Health Administration (OSHA), 29 CFR 1910.120. The main objective of the HASP is to educate workers on the health and safety risks present on-site, and the proper methods of protecting themselves from those risks. The key ingredient in maintaining a safe and healthy work site is the worker. Each worker must be fully aware of the risks associated with the work to be accomplished and be dedicated to completing that work in a safe and healthy way. This program was designed to reduce or eliminate any incidence of occupational illness or injury resulting from projects.

Standard practices and procedures of industrial hygiene, occupational health and safety, and environmental protection are prescribed in this plan which was prepared and reviewed by experienced occupational health and safety professionals, and environmental professionals.

This HASP will be readily available on-site so that workers can reference it when necessary. Personnel who cannot, or will not, comply with this HASP will be excluded from on-site activities. Violations of this HASP or any applicable federal, state, or local health and safety regulations should be reported to the on-site Health and Safety Officer immediately.

2.0 SITE SPECIFIC CONDITIONS

The former Don's Laundry facility was a dry cleaning operation, where perchloroethylene (PCE) was inadvertently disposed of directly to surface soil at the rear of the facility. This compound is hydrophobic and denser than water (referred to as a dense non-aqueous phase liquid, (DNAPL). PCE migrated through the overburden soils and the shallow aquifer until it reached a clay confining layer at about 12 ft. Wells were installed for monitoring and remediation. Post remedial sampling indicates that the concentration of PCE in the groundwater is over the 50 ppb site-specific action.

Subsurface vapors were also evaluated and analytical results indicated that PCE concentrations are above 100 mcg/m³ and trichloroethylene (TCE) concentrations are above 5.0 mcg/m^3 .

3.0 HEALTH AND SAFETY MANAGEMENT TEAM AND ORGANIZATIONAL STRUCTURE

The Health and Safety Management Team, consists of qualified environmental specialists, who are informed and aware of all health and safety concerns during hazardous materials operations on-site. Assessment and evaluation of site hazards will be done before work described in the site specific health and safety plan. Environmental monitoring data will be used to select appropriate engineering controls and/or personal protective equipment (PPE) for the hazards associated with the task being performed.

A Health and Safety Officer (HSO) will be responsible for implementing this HASP and verifying compliance with safety and health requirements. He/she will conduct an initial on-site hazard evaluation to ensure that plans are established for any existing hazards that are not covered in this plan. The HSO will make final determinations on control measures. He/she will also conduct on-site training as required. The HSO will work with the site supervisor to resolve any problems concerning health and safety issues that occur on-site.

A Health and Safety Supervisor (HSS) will assume the HSO's responsibilities in his/her absence. The HSS will conduct environmental monitoring on-site to make hazard assessments and recommend appropriate levels of personal protection. The HSS will report directly to the HSO regarding findings of environmental monitoring. Additional technical personnel will be assigned as needed to conduct the necessary environmental monitoring.

The names, work numbers and designations of key Health and Safety Management Team members assigned to projects are listed below:

POSITION/TITLE	NAME	WORK PHONE	CELL PHONE
President/Site Supervisor	Kirby VanVleet	518 371-7940	518 577-5291
Health & Safety Officer	James Leo	518 761-0400	518 361-1339

Supervisors and support agencies will report to the Health and Safety Officer when addressing health and safety issues or responding to emergencies on-site.

4.0 EMPLOYEE TRAINING/MEDICAL SURVEILLANCE REQUIREMENTS

General Training/Medical Surveillance Requirements

All personnel working on-site during hazardous materials operations have received proper training certification for Hazardous Waste Operations and Emergency Response (HAZWOPER) and are enrolled in a medical surveillance program in accordance with 29 CFR 1910.120 (e) and (f). In addition, personnel required to wear respirators per 29 CFR 1910.134 will need to be fit tested. Table 4.1 summarizes these training requirements. The HSO will verify that all personnel on-site have been properly trained and medically certified. Anyone not meeting these requirements will not be allowed on-site in areas where hazardous substances, health hazards, or safety hazards exist and exposures are possible. Training records will be made available upon request (see attachment #1).

5.0 INSTRUMENTATION

The direct-reading instrument listed below will be used at the site. Equipment will be calibrated by the supervisor in accordance with manufacturers' operating instructions.

6.0 ORGANIC VAPOR ANALYZERS

The organic vapor analyzer detects total concentrations of many organic gases and vapors using a photo ionization detector (PID). The PID will be used to screen the work area for volatile organic vapors and gases. The instrument measures the concentration of a vapor. The instrument is intrinsically safe and will be used to measure the atmosphere in the breathing zone.

7.0 MONITORING PROCEDURES

Initial monitoring will be conducted in the breathing zone. A Health and Safety Technician equipped with PID as described will conduct monitoring. The PID will be used to screen the atmosphere in the breathing zone. The atmosphere will be tested at the bottom, middle, and near the top of the breathing zone. All readings will be recorded. When initial testing indicates that atmospheric conditions are within the parameters for safe operations, the HSO or site supervisor will authorize work to continue. If atmospheric conditions deteriorate outside the ranges specified, personnel will be upgraded from level D to Level C PPE.

TABLE 4.1 GENERAL TRAINING REQUIREMENTS HAZWOPER 29 CFR 1910.120 (e)

POSITION

TRAINING REQUIREMENTS

All workers & supervisors on-site who may be exposed to hazardous substances

Workers regularly on-site in areas

Management and supervisors of hazardous waste operations

All workers & Supervisors on-site who may be exposed to hazardous substances 40 hours of initial classroom instruction and 3 days on-site supervised experience or equivalent. Refresher: 8 hours

24 hours of classroom instruction and 2 days on-site site supervised experience or equivalent. Refresher: None

40 hours of initial training as above and eight hours of classroom instruction for supervisor or equivalent Refresher: 8 Hours

CPR Training Refresher: Annually First Aid Refresher: Every 3 Years

8.0 CHEMICAL CHARACTERISTICS OF CONTAMINANTS AT CURRY ROAD

8.1 Fundamental Properties of DNAPLs

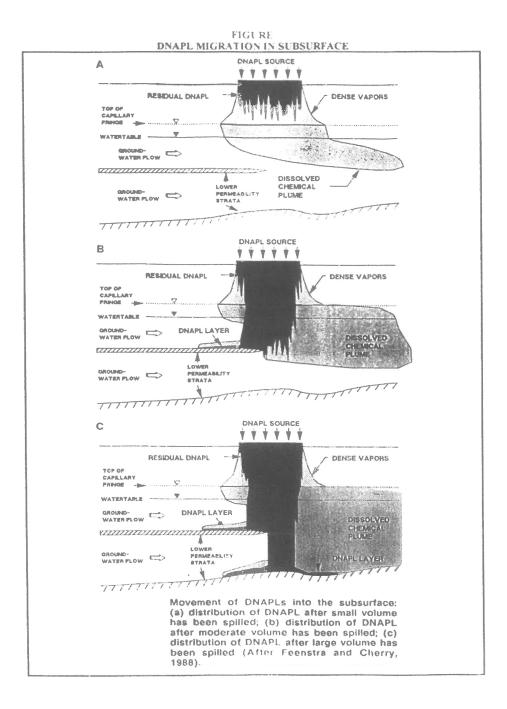

DNAPL compounds exhibit similar but fairly unique physical and chemical properties which influence the migration and fate of these compounds in the subsurface. Examples of these properties include: viscosity; low interfacial tensions; high volatility; weak adsorption; and perhaps most significantly, densities which are greater than water. DNAPLs such as chlorinated solvents, creosotes, and PCB oils are a common cause of groundwater contamination in many industrialized areas. DNAPLs are usually introduced into the subsurface environment as a separate liquid where they partition to the air, water, and solid phases, often resulting in groundwater plumes with dissolved concentrations which are orders of magnitude greater than drinking water standards.

Table 1 below includes a list of the major factors which control DNAPL migration, and Figure 1 conceptually illustrates a migration scenario of DNAPL through the subsurface.

TABLE 1 MAJOR FACTORS WHICH CONTROL DNAPL MIGRATION

- The volume of DNAPL released;
- The area of infiltration at the DNAPL entry point to the subsurface;
- The duration of release;
- Properties of the DNAPL, such as density, viscosity, and interfacial tension;
- Properties of the soil/aquifer media, such as pore size and permeability;
- General stratigraphy, such as the location and topography of low permeability units; and,
- Micro-stratigraphic features, such as root holes, small fractures, and slickensides found in silt/clay layers.

FIGURE 1

Due to the density of DNAPL, it will tend to migrate downward through both the unsaturated and saturated zones where a physical pathway or opening exists. Once in the saturated zone, the pattern of groundwater flow has little or no impact on DNAPL migration. The migration of DNAPL is enhanced by the partitioning process which distributes the compound into various phases, thereby potentially forming a vapor and dissolved phase plume. Additionally, once DNAPL has passed through a section of geologic material (either saturated or unsaturated) a residual of the immiscible fluid is left behind in the pore spaces and/or fractures. This residual DNAPL is essentially immobile as a free product and continues to act as a long-term source as the chemicals slowly dissolve into the water and/or volatilize into the soil gas. In fractured media, the migration of DNAPL is further complicated because it has the potential to enter progressively smaller aperture fractures as it migrates downward. Figure 1 shows the migration of DNAPL through unconsolidated sediments and pooling of the DNAPL on the fractured clay unit. The conditions under which a DNAPL will enter a fracture are influenced by a complex series of physicochemical relationships between pool height, capillary pressure/entry pressure, fracture aperture, interfacial tension, and contact angle.

8.2 SUBSTANCE IDENTIFICATION (Tetrachloroethylene)

Synonyms: PCE

CAS Registry Number: 127-18-4

Molecular Formula: C₂C₄

Wiswesser line Notation: GYGUYGG

CHEMICAL AND PHYSICAL PROPERTIES

Boiling Point: 121°C at 760 mm Hg

Melting Point: -19°C

Molecular Weight: 165.82

Log Octanol/Water Partition Coefficient: 3.40

Water Solubility: 1503 mg/L at 25°C

Vapor Pressure: 18.49 mm Hg at 25°C

Henry's Law Constant: 1.49 x 10² atm-m³/mole

ENVIRONMENTAL FATE/EXPOSURE POTENTIAL

Summary: Tetrachloroethylene (PCE) is likely to enter the environment by fugitive air emissions from dry cleaning and metal degreasing industries and by spills or accidental releases to air, soil, or water. If PCE is released to soil, it will be subject to evaporation into the atmosphere and to leaching to the groundwater. Biodegradation may be an important process in anaerobic soils based on laboratory tests with methanogenic columns. Slow biodegradation may occur in groundwater where acclimated populations of microorganisms exist. If PCE is released to water, it will be subject to rapid volatilization with estimated half-lives ranging from < 1 day to several weeks. It will not be expected to significantly biodegrade, bioconcentrate in aquatic organisms, or adsorb to sediment. PCE will not be expected to significantly hydrolyze in soil or water under normal environmental conditions. If PCE is released to the atmosphere, it will exist mainly in the gas-phase and it will be subject to photooxidation with estimates of degradation time scales ranging from an approximate half-life of 2 months to complete degradation in an hour. Some of the PCE in the atmosphere may be subject to washout in rain based on the solubility of PCE in water; PCE has been detected in rain. Major human exposure is from inhalation of contaminated urban air, especially near point sources such as dry cleaners, drinking contaminated water from contaminated aquifers and drinking water distributed in pipelines with vinyl liners, and inhalation of contaminated occupational atmospheres in metal degreasing and dry cleaning industries.

Natural Sources: PCE is not known to occur in nature.

Artificial Sources: Vaporization losses from dry cleaning and industrial metal cleaning. Wastewater, particularly from metal finishing, laundries, aluminum forming, organic chemical/plastics manufacturing, and municipal treatment plants. It is also estimated that emissions account for approximately 90% of the PCE produced in the United States.

Terrestrial Fate: If PCE is released to soil, it will evaporate fairly rapidly into the atmosphere due to its high vapor pressure and low adsorption to soil. It can leach rapidly through sandy soil and therefore may reach groundwater. Biodegradation may be an important process in anaerobic soils based on laboratory tests with methanogenic columns. Slow biodegradation may occur in groundwater where acclimated populations of microorganisms exist. There is evidence of slow degradation in subsurface soils from a groundwater recharge project. PCE should not hydrolyze under normal environmental conditions.

Aquatic Fate: If PCE is released in water, the primary loss will be by evaporation. The half-life for evaporation from water will depend on wind and mixing conditions and is estimated to range from 3 hours to 14 days in rivers, lakes, and ponds. Chemical and biological degradation are expected to be very slow. PCE will not be expected to significantly bioconcentrate in aquatic organisms or to adsorb to sediment. A mesocosm experiment was conducted to simulate Narragansett Bay, Rohde Island, during different seasons. Volatilization was the major removal process during all seasons and seasonal differences can be explained by hydrodynamics. The measured half-lives were 25 days in spring, 11 days in winter, and 14 days in summer. In one study in which half-lives were calculated from concentration reduction between sampling points on the Rhine River and a lake in the Rhine basin, half-lives were 10 days and 32 days respectively. In a sea water aquarium, an 8-day half-life was demonstrated to be predominantly the result of evaporation. In a natural pond, PCE disappeared in 5 and 36 days at low (25 ppm) and high (250 ppm) dose levels, respectively.

Atmospheric Fate: If PCE is released to the atmosphere, it will be expected to exist in the vapor phase based on a reported vapor pressure of 18.47 mm Hg at 25°C. Vapor phase PCE will be expected to degrade by reaction with photochemically produced hydroxyl radicals or chlorine atoms produced by photooxidation of PCE. Estimated photooxidation time scales range from an approximate half-life of 2 months to complete degradation in an hour. Some of the PCE in the atmosphere may be subject to washout in rain, based on the solubility of PCE in water; PCE has been detected in rain.

Volatilization from Water/Soil: PCE will evaporate rapidly from water, ranging from fractions of an hour to several hours in laboratory experiments. Two values of the ratio of the volatilization rate constant relative to the reaeration rates of oxygen are 0.52 and 0.61 for various bodies of water, the half-lives for evaporation are as follows: pond 5-12 days; lake 3.6-14 days. Measured volatilization half-lives in a mesocosm simulating Narragansett Bay, RI were 11 days in winter, 25 days in spring and 14 days in summer. Due to its high vapor pressure and low adsorption to **s**oil, volatilization of PCE from dry soil should be rapid.

Occupational Exposures: Time-weighted average (8 hr) exposures to PCE in the dry cleaning industry are reported as high as 178 ppm in air. NIOSH (NOES Survey 1981-83) has statistically estimated that 536,688 workers are exposed to PCE in the US. NIOSH (NOHS Survey 1972-74) has statistically estimated that 1,597,072 workers are exposed to PCE in the US.

Body Burdens: Has been detected in 7 of 8 samples in human milk from four urban areas in the US. One hour after a visit to a dry cleaning plant, one sample of human milk contained 10 ppm PCE. This decreased to 3 ppm after 24 hr. Old Love Canal, NY -9 individuals: human breath 600-4500 ng/m³; Blood 0.35-260 ng/mL; urine 120-690 ng/mL: Human body fat (8 subjects) 0.4-29.2 ppb; various human organs less than 6 ng/g. Alveolar air geometric mean in 136 residents living near 12 dry-cleaning stores were: Living equal to <5 floors above the stores 5 mg/m³, adjacent houses 1 mg/m³, one house away 0.2 mg/m³. across street <0.1 mg/m³, whereas the mean concentration in 18 workers was 73 mg/m³. Whole blood, US survey of 250 (121 males, 129 females), 0.7-23 ppb, 2.4 ppb avg. Breath samples (ug/m³, weighted statistics), Elizabeth and Bayonne, NJ 1981, 295-339 samples, 93% pos, 280 max, 13.0 avg, 6.8 median. Alveolar air in children and teachers in school situated near factory were 24 ug/m³ avg for children and 11 and 47 ug/m³ for the teachers. The mean concentration of PCE in the classroom was 13 ug/m³. Alveolar air of residents of a nursing home situated near a former chemical waste dump averaged 7.8 ug/m³ first floor and 1.8 ug/m³ on the second floor, where ambient concentrations averaged 8.2 and 1.6 ug/m³, respectively. US FY82 National Human adipose Tissue Survey specimens, 46 composites, 61% pos (.3 ppb, wet tissue conc.), 94 ppb max.

9.0 GENERAL PPE REQUIREMENTS

A combination of PPE and engineering controls shall be implemented to protect site workers from the health and safety hazards of this type of clean-up activity. The objective is to maintain personal exposure levels to below the PEL and minimize or eliminate safety risks.

Equipment selection is based on the known or anticipated health risks for operations. Changes in the level of protection will be directed by the HSO or site supervisor if measurements of contaminants in the air or evaluation of existing hazards at the site requires it.

PPE will be maintained, stored and cleaned or disposed of by the individual user. It will ultimately be the individual user's responsibility to properly inspect their PPE.

Tyvek coveralls and safety glasses will be worn as necessary for certain tasks to prevent contact with hazardous substances or for dirty work. All areas on the site that require a higher level of personal protection will be posted.

10.0 SITE CONTROL PROGRAM

A site control program will be established to control access to the site, coordinate site activities, outline safe work practices, establish line of responsibility and communication and prepare for emergency response. The main purpose of site control is to control employees' exposures to hazardous substances and prevent the spread of contamination into unprotected populations.

10.1 SITE CONTROL ZONES

If needed, the project site will be divided into three control zones described as follows and identified at the tailgate safety meeting at the beginning of each day. The site will be clearly marked using highly visible safety tape or traffic cones. Access will be controlled at each zone boundary. Delineation of the three zones will be based on sampling and monitoring results and wind direction. Clean areas will be established upwind from the exclusion zone contamination source.

10.2 EXCLUSION ZONE

This is the active work area and the area of greatest potential for exposure to hazardous substances. It is considered a contaminated area. Personnel in this area must don the prescribed level of PPE before entering.

A cordon of approximately 25 ft. radius, marked with HIGHLY VISIBLE RED OR ORANGE safety tape will be established for the exclusion zone. This boundary will be known as the "hotline." There will be one access control point which will be clearly marked to identify the exclusion zone and the existing health hazards there.

If air monitoring in the area of the exclusion zone outside of the access indicates that respiratory protection is not necessary, the HSO may authorize the worker to doff his/her respirator.

10.3 CONTAMINATION REDUCTION ZONE

The contamination reduction zone (CRZ) is the transition area between the contaminated area and the clean area. Personnel leaving the exclusion zone must always exit through the CRZ and decon stations.

The outer boundary on the CRZ will be clearly marked with safety tape (different color than exclusion zone) or traffic cones. This boundary will be known as the contamination control line and its size will be determined as the project requires. No contaminated personnel or equipment will be allowed to pass beyond this line until they have been properly decontaminated and cleared by decon personnel. Entry access to the CRZ will be through a corridor on the side of the decon line.

10.4 SUPPORT ZONE

The support zone is the clean area surrounding the CRZ and exclusion zones where administrative and other project support functions are accomplished. Equipment will be staged in this area also. A central communications center, or command post, will be established in the support zone. The command post will also be the center for emergency response actions.

A visible boundary will be established encompassing the whole project site to control access and keep unauthorized personnel out. MEA Health and Safety Technicians will periodically monitor the environment in the support zone to ensure that it is not contaminated.

11.0 SITE SECURITY

General site security will be provided by fencing off the immediate area if applicable. All personnel in the support zone will be asked to be alert for unauthorized persons entering project sites. Authorized personnel in the support zone who see an unauthorized person on-site should escort that person to the HSO or site supervisor.

12.0 SITE COMMUNICATIONS

A communications network will be **es**tablished to coordinate on-site and off-site activities, including emergency response.

Direct verbal communications will be used. Each supervisor and the HSO will have a cell phone for use in emergencies or off site communications.

13.0 MEDICAL ASSISTANCE AND FIRST AID EQUIPMENT

First aid for minor injuries such as skin abrasions, minor cuts, etc., will be treated on-site using the "buddy system". All vehicles carry a first aid kit with the necessary supplies to treat minor injuries. Personnel should ensure they are properly decontaminated before treating open cuts or abrasions.

The emergency response plan will be activated for response to serious or life threatening injuries. At least one member of the Health and Safety Management Team will be trained in first aid and CPR. That person will render first aid to a seriously injured person until competent medical authorities arrive.

14.0 PERSONNEL AND EQUIPMENT DECONTAMINATION

14.1 Personnel Decontamination

- STATION 1 Discard tools and equipment in equipment decon line on plastic ground cover.
- STATION 2 Dispose of clothing: remove tape, remove boot covers, unzip Tyvek suit and roll it down, turning it inside out so that the contaminated surface does not contact the inner layer of clothing. Remove hands from gloves and sleeves. Roll the suit down to the feet, continuing to turn it inside out, and then slip it over the feet. Dispose of in marked waste containers.
- STATION 3 The respirator and apparatus will be hand wiped and rinsed by a decon team member and then removed. The respirator will be set aside for cleaning.
- STATION 4 Remove any of the inner clothing that shows signs of contamination. Wash face, hands and any other areas that have been contaminated with hot, soapy water. The site safety supervisor will conduct a visual inspection for contamination before the worker is released.

14.2 Equipment Decontamination

Equipment items will be decontaminated with a pressure washer or hand wiped and sprayed, with appropriate decon solution then air dried.

14.3 Decon Area Run-Off

Contaminated run-off will be collected and pumped into the waste collection vehicle or drummed.

14.4 Emergency Decon

In the event of a medical emergency, the victim will be safely removed from the confined space/ exclusion zone to the CRZ and stabilized by rendering appropriate first aid. Decon will be performed as quickly as possible so that the seriously injured patient can be transported by ambulance. Protective clothing should be cut off to expedite the decon on process.

15.0 EMERGENCY RESPONSE/CONTINGENCY PLANS

The following standard emergency procedures will be used by on-site personnel. The HSO or designated site supervisor will be notified of any site emergency. He/she will also be responsible for ensuring that all site personnel have been briefed and trained in these emergency response procedures and are aware of their individual roles.

Emergency situations as defined by this plan are those which involve serious medical problems (chemical exposure), personal protective equipment failure in the exclusion zone, physical injury, electrical hazards or injuries, fires/explosions, release of unknown toxic chemicals or vapors, or uncontrolled spills of hazardous substances.

Prior to beginning any operations on-site, a meeting will be held between the site supervisor, HSO and all on-site employees. The agenda of the meeting will address the contents of this ERP in order to review it for suitability and make responsibilities known. It will also be determined which off-site emergency response agencies will be contacted and briefed prior to activities beginning on-site.

15.1 Emergency Telephone Numbers

In case of an emergency, the local telephone numbers of the Police Department, Fire Department, Rescue Squad/Ambulance and Hospital should be recorded. These telephone numbers should be located in a centralized place and pointed out to all employees.

Medical, Fire, and Police:	911
One Call Center:	(800) 272-4480
	(3 day notice required for utility markout)
Poison Control Center:	(800) 222-1222
Pollution Toxic Chemical Oil Spills:	(800) 424-8802
NYSDEC Spills Hotline	(800) 457-7362
	Mr. Christopher O'Neill, P.E.
	Environmental Engineer
	NYSDEC
NYSDEC Project Manager	Region 4 Headquarters
	1130 North Westcott Road
	Schenectady, NY 12306
	Phone: (518) 357-2145
	Mr. Jayme Lahut.
Property Owner Representative	1100 Sunrise Boulevard Rotterdam, NY 12306 Phone: (518)-396-6932.

Additional telephone numbers which should be kept on-site are as follows:

15.2 Map and Directions to Nearest Health Facility

Site Location: 1410 Curry Road, Rotterdam, NY

Nearest Hospital Name: Ellis Health Center

Hospital Location: 600 McClellan Street, Schenectady, NY

Hospital Telephone: (518)-382-2000

Total Travel Estimate: 3.35 miles - about 10 minutes

Directions to the Hospital:

- 1. Start out going Southeast on CURRY RD/RT-7 toward PINELAWN AVE.
- 2. Keep LEFT at the fork to go on RT-911H
- 3. RT-911H becomes RT-146
- 4. Turn RIGHT onto S BRANDYWINE AVE/RT-146
- 5. Turn RIGHT onto BRADLEY ST.
- 6. Take the 1st LEFT onto MCCLELLAN ST.
- 7. 600 MCCLELLAN ST in on the RIGHT

16.0 PERSONNEL ROLES FOR EMERGENCY RESPONSE ACTIONS

16.1 Health and Safety Supervisor or Site Supervisor

- Direct emergency response operations.
- Serves as liaison with outside agencies responding to the site.
- Assesses the nature of spills of hazardous substances or release of unknown toxic vapors and plans response actions.
- Notifies other federal, state or local agencies if additional assistance is required.
- Sounds alarm signal when notified of an emergency as appropriate.
- Ensures proper emergency procedures are followed in evacuating personnel from the exclusion zone.

16.2 Off-Site Emergency Response Person (Fire, Ambulance)

- Respond to emergency upon notification by site personnel or through local public emergency network.
- Contacts HSO or site supervisor upon arrival for further instructions and information on hazards present.

16.3 Police

- Respond to emergency upon notification by site personnel or through local public emergency network to assist with security and traffic control around the site.
- Contacts HSO or site supervisor upon arrival for further instructions.

FEDERAL, STATE AND LOCAL RESPONSE AGENCIES

• Reports to HSO or site supervisor upon arrival at the site for information and hazard assessment.

16.4 Site Signals

An air horn will be used as an alarm device when an emergency occurs. When the alarm device is sounded, all operations will be suspended. Personnel should pay attention for further information. The alarm signals carry the following meanings:

One Blast General Warning -	Suspend work, alert to situation and await further instructions.
Two Blasts/Medical Emergency -	Standby rescue team dons P.P.E., prepare for evacuation (buddy system).
Two Blasts IDLH/Followed by Long Continuous Blast -	Emergency situation immediately dangerous to life and health (IDLH). Evacuate site safely and quickly. No immediate improvement in emergency situation which prompted two blast signal.

If the primary communication system is not feasible because of distance or background noise, a system of hand signals will be used. The following hand signals will be used to notify other personnel of an emergency, especially involving personnel in the confined space.

- ✤ Hand gripping throat -Out of air, can't breathe
- ✤ Grip partner's wrist or both around waist -Leave area immediately
- ✤ Hands on top of head -Need assistance
- Thumbs up -OK, understood, all right
- Thumbs down -No, negative, not working
- ✤ Hand cupped behind ear -Not understood, can't hear instructions
- Crossed forearm overhead -stop, work completed, prepare to exit
- Tug on retrieval lines -Problem outside of confined space, evacuate

16.5 Emergency Evacuation Plan

A severe emergency such as a fire or explosion or uncontrolled release of hazardous materials will require immediate evacuation of site personnel. Proper evacuation planning and training should decrease the incidence of additional personal injuries due to a chaotic retreat from the site. It is important that evacuation is done quickly, but more importantly, it must be done safely and efficiently, with each worker aware of their responsibilities. This section describes evacuation exercises and training, evacuation alarm signals, personnel accounting during evacuations, and evacuation routes and procedures.

All personnel will be briefed on-site in evacuation procedures during the site specific training given by the HSO/HSS.

During an evacuation personnel accounting is important so that rescues can be initiated for persons not accounted for. Personnel will evacuate the exclusion zone (area of greatest danger) in an orderly fashion through the decon stations, even if there is no time for decon. The standby attendant and members of the decon team will be responsible for taking a head count as personnel evacuate. A head count is sufficient initially, since names of all personnel in the exclusion zone were previously recorded. Personnel in the support zone will report to their supervisors immediately when the evacuation alarm is sounded so that a head count can be made. Personnel leaving the exclusion zone who were not decontaminated will report to a pre-determined location to limit the spread of contamination. An evacuation assembly area will be agreed upon during the pre-emergency planning meeting. Personnel will report to their supervisors before proceeding to the front gate evacuation assembly area.

Efforts should be made to shut down all equipment and machinery prior to evacuating the site under other than imminent danger conditions. The HSO or site supervisor will make a determination as to what actions, if any, are needed with regard to equipment and machinery on-site.

The emergency response notification process should take place as soon as possible after an incident prompting an evacuation occurs. The HSO will assess the situation and determine which agencies will be needed for response.

Once personnel have regrouped in the assembly area, plans can be formulated for effective response actions, and rescue of victims, if necessary. At this point, the HSO/HSS directs the emergency response as outlined in the beginning of this section.

17.0 DOCUMENTATION OF SITE ACTIVITIES/INVESTIGATIONS Site Entry Logs

A site entry log will be maintained to account for all personnel on-site. Names and entry/exit times will be maintained as a minimum.

17.1 RECORDS OF EMERGENCIES OR OCCUPATIONAL ILLNESS/INJURY

The HSO/HSS will document all emergencies or occupational illness/injuries that occur on-site in order to follow-up with an appropriate investigation.

18.0 HEALTH AND SAFETY PLAN REVIEWS

This Health and Safety Plan has been reviewed for accuracy and completeness, and for compliance with 29 CFR 1910.120. Any modifications to this plan will be approved by the HSO and included as an addendum. Handwritten changes are appropriate for on-site modifications to the plan.

18.1 Contingency Plan

Contingency plans will be developed on a separate page and will be posted in an appropriate area for utilization in emergency situations. On-site employees will be advised of the location of the plan prior to site mobilization. Contingency plans will include:

Local Sources of Assistance

- Hospital: Ellis Health Center (518)-382-2000
- Ambulance: (911)
- Fire: Fire Station District No 2(911)
- Local Police: Rotterdam Police (911)

National or Regional Sources of Assistance

er
62
46
er
00
02
4 0

APPENDIX F

MC ENVIRONMENTAL SERVICES, INC.

H & S PLAN

HEALTH AND SAFETY PROGRAM

M. C. Environmental Services Incorporated

INTRODUCTION

M. C. Environmental Services Incorporated will provide their employees with a safe work environment in accordance with applicable OSHA safety regulations. The mechanism to provide this is a health and safety policy which includes the following sections:

- Section 1 Hazard Communications Program
- Section 2 Confined Space Entry Program
- Section 3 LockOut/TagOut Program
- Section 4 Scaffolding/Staging Program
- Section 5 Fall Protection Program
- Section 6 Aerial Lifts
- Section 7 Cranes and Hoisting Equipment
- Section 8 Forklifts
- Section 9 Trenching and Shoring Program
- Section 10 Ladders
- Section 11 Personal Protective Equipment
- Section 12 Respiratory Protection Program
- Section 13 Special Hazards Program
- Section 14 Injury/Illness Recordkeeping
- Section 15 Job Site Safety Meetings
- Section 16 Work site inspection program
- Section 17 Safety Training Program
- Section 18 Waste Disposal
- Section 19 Vehicle Safety
- Section 20 Compressed Gas Cylinders
- Section 21 Power Tool Precautions
- Section 22 Bloodborne Pathogens 29 CFR 1910.130 Exposure Control Plan

The above program represents the primary safety areas that currently impact the company. As operations change and develop additional programs will be developed and implemented. The M. C. Environmental Services Incorporated health and safety policy receives management review and outside consultant review at least annually and where applicable specific programs will be developed for individual jobs.

Management responsibility will be to make sure that all employees have access to this policy, review this policy, and subsequently provide employees with the resources to ensure their safety. Management will provide trained supervisory staff to evaluate jobs and to make sure employees receive proper instruction on safety and follow prescribed company policies. In the event there are no employees involved in day to day construction activity, but M. C. Environmental Services Incorporated acts as a general contractor the subcontractor will be required to provide appropriate training and documentation and adhere to safe work practices.

Employee responsibility will be to conduct their work in a safe manner as instructed through the company policy and their safety training. Employees will be responsible for following safety procedures and wearing and using safety equipment when provided. Employees will be responsible for attending all safety meetings, and for attending company sponsored and paid for safety training. Employees who violate safety policies and procedures will be warned and where appropriate disciplined.

SECTION 1

HAZARD COMMUNICATIONS PROGRAM¹

All M. C. ENVIRONMENTAL SERVICES Incorporated employees will receive Hazard Communication Training upon initial hire. The training required of 29 CFR1910.1200 will consist of reviewing material safety data sheets (MSDS), labels and chemical specific hazards. All M. C. ENVIRONMENTAL SERVICES Incorporated subcontractors will be responsible for providing their own written Hazard Communications Programs and Training.

M. C. ENVIRONMENTAL SERVICES Incorporated project responsibilities:

- All chemicals used for construction projects must have accompanying material safety data sheets.
- All vendors, distributors etc. are required to provide material safety data sheets on individual chemicals.
- A binder with all material safety data sheets will be provided for each job containing material safety data sheets for that project.
- All employees and subcontractors will have access to the information contained in the material safety data sheets at any time.

LABELS

All chemical containers such as drums, bottles, jugs, dispensers, etc. will have their warning labels kept intact. Chemicals which are transferred to smaller containers or new containers will have their label information transferred.

HAZARD EVALUATION

Chemicals which are used in the construction process, while routine in nature may present unique hazards such as flammability or corrosivity. Prior to introducing these chemicals to any job a MSDS review will be conducted to evaluate chemical specific hazards. At this time any unique hazards requiring special personal protective equipment will be identified and employees using the chemical will be informed.

¹ 29 CFR 1910.1200

TRAINING

All employees will receive hazard communication training prior to job assignment. Training will constitute how to read a material safety data sheet, chemical hazards such as toxicity, flammability, reactivity, and corrosivity. Additional information would consist of personal protective equipment, first aid and medical treatment as well as emergency response and fire protection.

- ➢ M. C. ENVIRONMENTAL SERVICES Incorporated employees will be trained on the technical elements of 29 CFR 1910.1200 by a qualified individual.
- All subcontractors will be required to provide training documentation and written program.

SECTION 2

CONFINED SPACE ENTRY PROGRAM²

A confined space is an area which:

- 1. potentially contains a hazardous atmosphere or engulfment hazard;
- 2. has limited means of entry or exit;
- 3. is not designed for human occupancy.

Common confined spaces are tanks and pits.

When you encounter a confined space, DO NOT ENTER IT, *not even to assist someone in trouble*. If you encounter someone in trouble inside a confined space, immediately call the trained emergency response team.

Confined spaces must be evaluated and may require special testing or permits to allow for entry. Heed all safety signs in the area.

Assume that every confined space is dangerous. This includes above ground as well as below ground areas. Before entering a confined space, the confined space entry procedure shall be followed and the proper permit filled out and posted.

CONFINED SPACE ENTRY PERMIT

A confined space entry permit is a check list which is used to evaluate specific confined space hazards. Depending on site requirements a M. C. Environmental Services Incorporated or facility permit will be utilized.

HOT-WORK

Hot-work areas are those areas where possible fires may be started by flame or electrical (welding, grinding, burning, sparks) work being performed in a hazardous area. A previous inspection by the facility should be performed to establish designated areas. As per specific facility requirements, hot work permits may be required prior to performing hot work. Such areas should be prominently marked and before hot-work is done within any such area, permit tags must be secured in order to help ensure that the area will be as free as possible from fire hazards and that proper precautions will have been taken.

AIR MONITORING

Air monitoring will be conducted to evaluate atmospheric hazards. Depending on site requirements air monitoring may be conducted by M.C. ENVIRONMENTAL SERVICES Incorporated employees, subcontractor, or facility health and safety personnel.

² 29 CFR 1910.146

ATTENDANT'S DUTIES

The individual acting as the attendant will be responsible for monitoring the entrance in the confined space, immediate conditions associated with the confined space, and potential surrounding conditions. The attendant is not to enter a confined space unless relieved by another trained attendant. Primary function of the attendant is to summon rescue services if they are needed and provide a comprehensive safety watch for the entrance.

ENTRANTS

The entrants must be aware of any hazards associated with the confined space he/she is working in. The entrant must be aware of the signs, symptoms, and over exposure of chemical hazards.

ENTRY SUPERVISOR

Confined Space Rescue

Confined space rescue requirements will vary from individual sites based on the type of entry and host employer requirements. All M. C. Environmental Services Incorporated employees are trained in self rescue techniques and non-entry rescue by use of a retrieval system. Technical rescue requirements such as high angle rescue will be conducted by the host employer. In the event technical rescue is not available other arrangements or specific training will be conducted prior to the project.

The entry supervisor is responsible for reviewing the confined space permit and ensuring the conditions of the permit are safely met prior to entry in the confined space.

TRAINING

- ➢ M. C. ENVIRONMENTAL SERVICES Incorporated employees will be trained on the technical elements of 29 CFR 1910.146 by a qualified individual.
- All subcontractors will be required to provide training documentation and written program.
- Depending on project requirements a site specific confined space program is provided in Appendix A.

LOCKOUT/TAGOUT PROGRAM³

LOCKOUT

This procedure establishes the requirements for the lockout of energy isolating devices whenever inspections are performed on machines or equipment. It shall be used to ensure that the machine or equipment is stopped, isolated from all potentially hazardous energy sources and locked out before employees perform any inspections where the unexpected energization or start-up of the machine, equipment or release of stored energy could cause injury.

Sequence of Lockout

- Notify employees and facility personnel when an inspection is required on a machine or equipment. Inform them the machine or equipment must be shut down and locked out to perform the inspection.
- The authorized employee shall identify the type and magnitude of the energy that the machine or equipment utilizes, understand the hazards of the energy and know the methods to control the energy.
- If the machine or equipment is operating, shut it down by the normal stopping procedure.
- Deactivate the energy isolating device(s) so that the machine or equipment is isolated from the energy source(s).
- Lock out the energy isolating device(s) with assigned individual lock(s).
- Stored or residual energy (such as capacitors, springs, elevated machine members, rotating flywheels, hydraulic systems and air-gas-steam-water pressure, etc.) must be dissipated or restrained by methods such as rounding, repositioning, blocking, bleeding down, etc.
- Ensure that the equipment is disconnected from the energy source(s) by first checking that no personnel is exposed. Then verify the isolation of the equipment by operating the push buttons or other normal operating control(s) or by testing to make certain the machine or equipment will not operate. Return operating control(s) to neutral or OFF position after verifying the isolation of the machine or equipment.
- The machine or equipment is now locked out.

³ 29 CFR 1910.147, 1926.417

When the inspection is completed and the machine or equipment is ready to return to normal operating condition, the following steps shall be taken:

- Check the machine or equipment and the immediate area to ensure that nonessential items have been removed and that the machine or equipment components are operationally intact.
- Check the work area to ensure that all employees and facility personnel have been safely positioned or removed from the area.
- Verify that the controls are in neutral or OFF position.
- Remove the lockout device(s) and reenergize the machine or equipment. The removal of some forms of lockout devices may require reenergization of the machine or equipment before safe removal.
- Notify affected employees and facility personnel that the inspection is completed and the machine or equipment is ready to use.

** Note: A lockout/tagout operation will require the on-site supervisor and/or employee to have the host facility personnel assist with performing lockout procedures. All host facility lockout procedures and tagging requirements will be observed and no M.C. ENVIRONMENTAL SERVICES Incorporated employee or subcontractor will remove or alter any locks or tagging systems.

Other requirements include:

- Lockout and tagout devices shall be durable, marked and colored for each facility. They should state: DO NOT START, DO NOT OPERATE or DO NOT OPEN or a similar message.
- If a group or number of employees are locked out, each employee shall have an individual keyed lock to do so.
- Tags will have individual and company name displayed.
 - Group operations may require clasps or lock boxes to allow for multiple energy source isolation.
 - When locks are unfeasible a tag system will be utilized. Employees will be trained on the tagging system procedures and the procedure will be communicated to appropriate facility personnel.
 - All tags and connections will be in accordance with 29 CFR 1910.147 requirements.
 - All employees will remove their locks and/or tags at the end of their shift.

TRAINING

- > M. C. ENVIRONMENTAL SERVICES Incorporated employees will be trained on the technical elements of 29 CFR 1910.147 by a qualified individual.
- > All subcontractors will be required to provide training documentation and written program.

SCAFFOLDING/STAGING PROGRAM⁴

SCAFFOLDING/STAGING

Scaffolding and staging structures comprise an elevated working platform for supporting both personnel and materials. It is a temporary structure to access inspection areas. Scaffolds are provided for all work, except that which can be done safely from the ground, permanent platforms or similar footing. All scaffolding used shall be erected following the manufacturer's guidelines for safety and scaffolding from different manufacturers shall not be interchanged.

- All scaffolds are designed, constructed and maintained in accordance with the manufacturer's instructions and the applicable industry standards. Scaffolds should be designed to support at least four (4) times the anticipated weight of the workers and materials that will be on them.
- Any part of the scaffolding structure and accessories, such as braces, brackets, trusses, screw legs, ladders, boards, etc., that are damaged or weakened by any cause shall be repaired or replaced immediately.
- Keep scaffolds, platforms, runways and floors free of any material or equipment that will make them unsafe or hazardous to persons using them. Where walkways and work surfaces are slippery, use abrasive material to assure safe footing.
- Determine the width of all scaffolds, ramps, runways and platforms by the purpose for which they are built. In no case should they be less than 18" wide. They should be wide enough for passage of materials and movement of personnel.
- The use of working scaffolds for the support of an outrigger boom, hoist, well pulley or any other device or equipment used for hoisting materials can be permitted. The scaffolding must be reinforced and braced to withstand the additional loads. Place the scaffolding on firm, smooth foundations that will prevent movement sideways. Do not use barrels, boxes, loose bricks or concrete blocks to support scaffolding or planks. Scaffolds should be level. The poles, legs or uprights of scaffolds should be plumb and securely braced to prevent swaying or displacement.
- Whenever work is being performed above other workers on a scaffold, provide overhead protection for those workers. This protection should be not more than 9' above the working platform and should be made of planking or other suitable strong material.
- Guardrails shall be installed on all open sides and ends of platforms more than 10' above the working surface. Standard railings consist of a top rail, intermediate rail and posts. They have a vertical height of approximately 42" from the upper surface of the top rail to the floor or platform. The intermediate rail should be approximately halfway between the top rail and the floor or platform. The ends of

⁴ 29 CFR 1926.451, 452, 453

the rails should not overhang the terminal posts except where such an overhang does not present a hazard.

- Posts and top and intermediate railings for pipe railings should be at least 1.5" in diameter, with posts spaced no more than 8' on center.
- Construct the anchoring of posts and framing of members for all railings so that the completed structure shall withstand a load of at least 200 pounds applied in any direction (except upwards) at any point on the top rail with a minimum of deflection. Provide additional strength for railings receiving heavy stress from employees trucking or handling materials. This includes heavier stock, closer spacing of posts, bracing, etc.
- M. C. ENVIRONMENTAL SERVICES Incorporated will assign a competent person to provide guidance in the assembly and safe work practices on scaffold. The competent person will determine the need for fall protection during scaffold erection. All scaffolding assembled by M. C. ENVIRONMENTAL SERVICES Incorporated or by a scaffolding vendor will be in compliance with 29 CFR 1926 scaffolding requirements.

TRAINING

- ➢ M. C. ENVIRONMENTAL SERVICES Incorporated employees will be trained on the technical elements of 29 CFR 1926.450 by a qualified individual.
- All subcontractors will be required to provide training documentation and written program.

FALL PROTECTION PROGRAM⁵

FALL PROTECTION

When working in elevated situations, approved fall protection systems shall be used.

- Fall Protection Systems consist of the following:
 - Full Body Harness
 - Fall Arresters and shock absorbers
 - Harnesses
 - Lifelines
 - Guardrails
 - Warning line systems
- One of the above systems shall be used when the work being performed requires the worker to be more than 6' above the ground or permanent platform.
- All projects on construction job sites will receive a hazard evaluation by a competent person prior to starting the job. A competent person will review job application, potential fall hazards, and evaluation of appropriate protective systems.
- If necessary, the services of a registered professional engineer may be required to evaluate anchorage points and feasibility of selected fall protection systems. All anchorage points must meet at a minimum a 5000lb load capacity.
- All equipment must meet the technical parameters and load requirements of 29 CFR 1926 sub part M. All equipment will be inspected by a competent person as per manufacturer's requirements.
- Fall protection training is essential for the safety of employees working at elevated positions. 29 CFR 1926 sub part M requires very specific training elements. Such topics include but are not limited to:
- Harness application
 - Lanyard application
 - Rope grab systems application
 - Anchorage points
 - Equipment inspection
 - Limitations of warning lines
 - > The role of the safety monitor
 - > Hazards associated with roof openings and skylights
 - > Working on elevated platforms such as lifts
 - > Equipment inspection procedures
 - Emergency procedures

⁵ 29 CFR 1926.500, 501, 502, 503, Appendices A through E

TRAINING

- > M. C. ENVIRONMENTAL SERVICES Incorporated employees will be trained on the technical elements of 29 CFR 1926 sub part M by a qualified individual.
- > Contractors must provide documentation of competent person, employee training and written program.

AERIAL LIFTS⁶

Aerial lifts used for construction and maintenance projects will typically be rented from a rental equipment company. Lifts will be provided in good working order from the vendor. The vendor will provide M. C. ENVIRONMENTAL SERVICES Incorporated with documentation of recent inspection and maintenance.

FALL PROTECTION

All employees will be secured in the aerial lift with a lanyard and harness attached to a pre-approved anchorage point.

TRAINING

All employees will receive lift operation training from the vendor. Employees will be instructed on all controls, safety mechanisms and inspection requirements. Only trained employees will operate aerial lifts.

CRANES AND HOISTING EQUIPMENT⁷

M. C. ENVIRONMENTAL SERVICES Incorporated will utilize contracted crane operators to conduct crane and hoisting operations. Operators will be in compliance with 29 CFR 1910 Subpart N "Materials Handling and Storage", 29 CFR 1926 Subpart N "Cranes, Derricks, Hoists, Elevators, and Conveyors". Operators will provide their own safety planning, training, certifications and licenses prior to the job.

FORKLIFTS⁸

Only trained personnel will operate powered industrial trucks on job sites. Powered industrial trucks, either rented or company owned, will be inspected and mechanically maintained as per 29 CFR 1910.178 Forklift Standard.

TRAINING

Employees will be trained in the site operations, material loading, inspections and driving skills required by the Standard.

- M. C. ENVIRONMENTAL SERVICES Incorporated employees will be trained and certified on the technical elements of 29 CFR 1910.178 by a qualified individual. Only certified employees will be allowed to operate forklifts.
- > Contractors must provide documentation of competent person, employee training and written program.

TRENCHING AND SHORING PROGRAM⁹

Excavations require excavators to provide protective systems.

The determination of appropriate protective systems and their application will be conducted by a competent person. M. C. ENVIRONMENTAL SERVICES INCORPORATED will provide a competent person for all excavation work. The duties of the competent person will include the following:

- > Job site hazard evaluation
- > Underground utility clearance
- Soil classification
- > Determination of protective systems such as benching, sloping, trench boxes, etc.
- Daily inspections
- > Ensuring proper positioning of soil piles
- > Providing appropriate employee egress
- > Determination of atmospheric hazards
- > Observations of potential water accumulation
- > Ensuring employees are wearing appropriate PPE.
- Providing tabulated data for protective systems.
- > Determine the need for atmospheric testing.

The on-site project manager or lead foreman will act as the competent person. Subcontractors will be required to provide their own competent person. The competent person will be trained in accordance with 29 CFR 1926 sup part P. The competent person will work with facility's engineering and operations personnel to ensure employee safety as well as the integrity of existing underground utilities. All employees entering trenches will be trained in the hazards associated with trench operations.

TRAINING

- > M. C. ENVIRONMENTAL SERVICES Incorporated employees will be trained on the technical elements of 29 CFR 1926.650 by a qualified individual.
- Contractors must provide documentation of competent person, employee training and written program.

The competent person will be responsible for soil classification, daily inspection, evaluating site conditions and hazards and will have the responsibility and authority to correct hazards.

⁹ 29 CFR 1926.650, 651, 652, Appendices A-F

LADDERS¹⁰

LADDERS

Ladders will conform to the provisions of the applicable state, provincial or local codes (facility), whichever are more restrictive. Workers should observe the following practices when placing ladders:

- Place the ladder so that the horizontal distance from the base to the vertical plane of the support is approximately one-fourth (1/4) the ladder's length between supports. For example, for an 8' ladder, the base shall not be greater than 2' away from the object it is leaning against.
- Do not use ladders in horizontal positions for runways or scaffolds. Single and extension ladders are designed for use in a nearly vertical position and cannot be used in a horizontal position or with the base at a greater distance from the support as indicated in the preceding paragraph.
- Never place a ladder in front of a door that opens toward the ladder unless the door is locked, blocked or guarded.
- Do not place a ladder against a window pane or sash. Securely fasten a board across the top of the ladder to give a bearing at each side of the window. On wide windows, the bearing may be across the mullions or between the window jambs.
- Place the ladder so that both side rails have secure footing. Provide solid footings on soft ground to prevent the ladder from sinking.
- Place the ladder's feet on a level, unmovable base.
- Never lean a ladder against an unsecured backing, such as boxes and barrels.
- When using a ladder for access to high places, securely fasten the ladder top and bottom to prevent it from slipping.
- Secure both the top and bottom to prevent displacement when using a ladder for access to scaffolding.
- Extend the ladder's side rails at least 3' above the top landing.
- Do not place a ladder close to electrical wiring or against any operational piping where damage may be done. In this case, use nonconductive plastic ladders.
- One (1) person at a time on a ladder, unless an emergency occurs where it is necessary for more than one person to be on the ladder.

¹⁰ 29 CFR 1926.1053, 1060 and Appendix A

- Do not overload or hit the ladder.
- Use ladders of sufficient length so that workers do not have to stretch or reach to access inspection areas.

Workers should observe the following practices when ascending or descending ladders:

- Hold on to ladder with both hands. If material must be handled, raise or lower it with a rope prior to climbing to the desired level.
- Always face the ladder.
- Never slide down a ladder.
- Be sure shoes are not greasy, muddy or slippery prior to climbing.
- Do not climb higher than the third rung from the top or second tread from the top on step ladders.
- Carry tools on a tool belt or in pockets, not in your hand.

Other recommended practices:

- Inspect ladders prior to use for defects. Never use defective ladders.
- Do not splice ladders together or use makeshift ladders.
- Make sure ladder is fully open and locked.
- Perform proper maintenance on ladders to keep clean and in proper working order.
- Do not use during a strong wind, except during an emergency. If used, make sure ladder is securely fastened.
- Never adjust a ladder when a worker is standing on it.

TRAINING

- > M. C. ENVIRONMENTAL SERVICES Incorporated employees will be trained on the technical elements of 29 CFR 1926.1053 by a qualified individual.
- > All subcontractors will be required to provide training documentation and written program.

PERSONAL PROTECTIVE EQUIPMENT¹¹

All personnel will wear the following equipment when and where required. Other PPE equipment used will be determined on a job-by-job basis.

EYE/FACE PROTECTION

Depending on the work, safety glasses with side shields shall be worn at all times. Other work may require the use of goggles, face shields or filters (welding).

- Lenses shall meet the latest ANSI Z87.1 standards.
- Photochromatic lenses are not allowed unless medically prescribed.
- Lenses having low luminous transmittance are not allowed indoors except in areas of ultraviolet rays or welding.
- Where face shields are used, they must be combined with the proper safety glasses.
- Contact lenses may be used provided they are combined with the proper safety glasses, face shields and goggles.

HEADWEAR

Workers will be encouraged to use proper headwear. When and where required, headwear must be worn.

- Headwear shall meet the latest ANSI Z89.1 standards.
- Helmets shall include the following identification and should not be more than five years old:
 - Manufacturer's name
 - ANSI standard design
 - . Class A, B or C

¹¹ 29 CFR 1910.132, 1926.100, 101, 102, 103

FOOT PROTECTION

All personnel shall wear approved footwear with steel toes (if required).

- Footwear with steel toes shall meet ANSI Z41, Class 75 standards.
- Open toe shoes, sandals, canvas or any other shoes not approved by the standard above, shall not be worn.

HEARING PROTECTION

All personnel shall wear hearing protection where and when required.

- All areas that exceed 85 dB.
- The type of hearing protection used shall be of the following types:
 - Enclosure (helmet)
 - Aural (ear insert)
 - Superaural (canal caps)
 - Circumaural (ear muffs)

A detailed hearing conservation program is found in Appendix B.

OTHER SPECIFIC EQUIPMENT

Where required specific personal protective equipment such as welding shields or chemical protective clothing may be required. In the event these specialty items are required specific regulations under 29 CFR 1910 will be followed in their selection and will be reviewed prior to issue to employees.

PPE HAZARD ANALYSIS

Prior to the commencement of a job the project manager will evaluate specific job hazards relating to impact, electrical, thermal, noise, and chemical hazards. Based on these hazard categories the project manager will evaluate specific PPE for specific job applications, with assistance from an outside consultant when necessary.

TRAINING

Employees will be informed of the job specific hazard analysis and assigned appropriate equipment for that job. Employees will then be trained on specific personal protective equipment with instruction on how to use, maintain, clean and repair their personal protective equipment. In the event personal protective equipment is damaged or lost, M. C. ENVIRONMENTAL SERVICES Incorporated www.will provide replacement safety equipment to the employees.

- ➢ M. C. ENVIRONMENTAL SERVICES Incorporated employees will be trained on the technical elements of 29 CFR 1910.132 by a qualified individual.
- All subcontractors will be required to provide training documentation and written program.

RESPIRATORY PROTECTION PROGRAM¹²

RESPIRATORY PROTECTION

Approved and certified respiratory protection shall be used when working areas are subject to health hazards. The type of health hazard will determine the type of respiratory protection to be used. An exposure assessment must be conducted to see if contaminants are present prior to starting work.

- 1. Respirator use is required when there is a potential likelihood of exposure to dangerous vapors or particles. Examples are atmospheres:
 - a. with low oxygen content
 - b. immediately dangerous to life/health
 - c. with non-toxic dusts, mists, vapors, fumes, fibers
 - d. with organic vapors/gases
 - e. with heavy metals (lead, cadmium, chromium, antimony, arsenic)
 - f. with asbestos
- 2. Types of Respirator Protective Equipment:
 - a. dust masks (single use)
 - b. cartridge masks (can be full face or half mask variety)
 - c. powered air purifying respirators
 - d. air-line (supplies air) respirators
 - e. self-contained breathing apparatus
- 3. Respirators must be cleaned after each use and placed in clean storage in a ready-to-use condition. Dust masks should be discarded.
- 4. Respirators are to be inspected before each use to assure ready-use condition.
- 5. Assure that respirator cartridges and canisters are changed as per area standards and are of the correct type for the work to be performed.
- 6. Employees <u>must be fit tested annually and trained prior to</u> using respiratory protective equipment.
- 7. <u>Employees must be medically evaluated on an annual basis</u> for ability to wear respiratory protection.
- 8. Employees wearing respirators <u>are not permitted to wear beards, long sideburns or other</u> <u>facial hair that interferes with a respirator-to-skin seal</u>. Shaved tracks are not allowed.
- 9. Employees should perform both a negative and positive pressure check each time they put on their respirators.

¹² 29 CFR 1910.134, 1926.103

10. The following are the types of cartridges to be used for specific materials. If you are not sure what type of cartridge to use, ask your supervisor.

Yellow	Organic Vapor/Acid Gas
Purple	Dusts and mists
Black	Organic Vapor
Purple & Yellow	Organic Vapor/Acid Gas/Dust/Mist
White ("pancake filters") with magenta lettering	Dust/Fumes/Mists

- 11. A cartridge change out procedure will be determined for the job based on manufacturer's requirements, exposure data and environmental conditions.
- 12. Compressed breathing air systems must contain certified grade "D" breathing air. Certification must be available on the job site.
- 13. A qualified person will be responsible for overseeing the respiratory protection program and ensuring compliance with 29 CFR 1910.134.

TRAINING

Employees will be trained on the proper selection and use of respirators. Respirator use may be job specific. Specific selection of respirators and supporting training may be assisted with the help of a qualified consultant.

- ➢ M. C. ENVIRONMENTAL SERVICES Incorporated employees will be trained on the technical elements of 29 CFR 1910.134 by a qualified individual.
- All subcontractors will be required to provide training documentation and written program.

SPECIAL HAZARDS PROGRAM

Construction industrial maintenance activities vary in scope and application. Performing work as a general contractor may require employees as well as subcontractors to be involved in activities which generate unique hazards. Examples of special hazards may consist of:

- Asbestos abatement
- Lead abatement
- Hazardous waste removal

سم ودم

Specialized structural assembly or demolition

The M. C. ENVIRONMENTAL SERVICES Incorporated process for handling unique hazards is to have the project manager evaluate the on-site project, and work with on-site engineering and safety personnel. Where applicable the resources of an outside safety consultant and/or professional engineer will be utilized. Also if necessary additional specific training or a specialty contractor may be used to conduct the work. Special hazards will receive thorough pre-planning, job hazard analysis, pre-job meetings and inspections.

Depending on site requirements a site specific Health and Safety Plan may need to be developed.

and the second secon

ACCIDENT REPORTING/DOCUMENTATION AND INVESTIGATION

All M. C. ENVIRONMENTAL SERVICES Incorporated employees will report any injuries they receive, immediately to their supervisor. The supervisor, where applicable, will direct the employee to receive on-site first aid, go to the doctor, or go to the emergency room. The supervisor will try to obtain as much information from the employee as possible and document the event on an accident form. This detailed information, which includes employee name, type of injury, type of medical assistance provided, and accident cause, will be documented. Injury information will then be transferred to the OSHA 200 Log. An accident 200 Log will be maintained at the job site.

All subcontractors will be responsible for maintaining their own 200 Log at the job site. M. C. ENVIRONMENTAL SERVICES Incorporated will post the 200 Log at respective job sites when applicable.

All accidents will be investigated as to their cause, and a write up of the incident will be performed by the employee's supervisor and forwarded to management.

JOB SITE SAFETY MEETINGS

Prior to the beginning of work each morning the lead foreman or on-site project manager will review upcoming daily job requirements and anticipated hazards. This review will be in the form of a safety meeting. At this meeting information such as personal protective equipment, site conditions, and emergency procedures and other applicable topics may be addressed. The meeting will be documented and every employee and/or subcontractor must attend and sign the acknowledgement form.

WORK SITE INSPECTION AND HOUSEKEEPING PROGRAM

Work site inspection will be conducted by the project supervisor or lead foreman. Job site inspection will be conducted daily and the nature of the inspections will vary depending on the type of job and the safety hazards. For example: scaffolding inspections will require a competent person to evaluate the structure and work practices on the scaffold. Fall protection will require a competent person to evaluate and inspect the types of fall protection equipment and the integrity of anchorages. Trenching and shoring requires a competent person to conduct daily inspections of protective systems, soil conditions, employee safety and other safety conditions.

General job site inspections, regardless of application, will require the project manager or lead foreman to inspect for personal protective equipment, housekeeping, appropriate work area protection such as signs, tape, barriers etc.

Fire extinguishers, first aid equipment, tools, and vehicles will receive daily inspection. Inspections which uncover deficiencies will be brought immediately to the employee's attention and corrective actions will be made.

Subcontractors must provide daily inspections of their own operations and equipment.

SAFETY TRAINING PROGRAM

Safety training requirements under 29 CFR 1910 and 1926 are extensive and varied. M. C. ENVIRONMENTAL SERVICES Incorporated will provide their employees with specific training requirements under such broad areas as hazard communications, confined space entry, lockout/tagout, scaffolding/staging, fall protection, trenching and shoring, ladders, personal protective equipment, and respiratory protection. To supplement this training employees and project managers will receive either 10-hour construction standards training, 30-hour construction standards training and/or other specific training elements such as lead, asbestos, and hazardous waste, where applicable. Project managers may receive more advanced training in hazard assessment and safety management. Training documentation will be maintained by M. C. ENVIRONMENTAL SERVICES Incorporated and will be made available for specific jobs at the request of facility safety personnel.

WASTE DISPOSAL

All waste handling of liquids and solid materials, hazardous and non-hazardous will be conducted to applicable local and facility guidelines. All waste contaminants will be properly labeled and covered. All M. C. Environmental Services Incorporated employees will observe any site specific handling and accumulation procedures. Specific waste disposal locations will be approved by the state and facility owner/representative prior to off site shipment.

All appropriate documents will be filled out and checked by the facility owner/representative prior to off site removal.

TRAINING

All M. C. Environmental Services Incorporated employees will be trained in drum handling, labeling, storage requirements and safety procedures.

VEHICLE SAFETY

All M. C. Environmental Services Incorporated employees will drive company vehicles, cars, trucks and construction vehicles in the safest possible manner. All vehicles will be maintained within DOT and manufacturer safety guidelines. Speed limits, parking requirements and other specific site requirements will be observed.

TRAINING

Where required specific licensing such as CDL or unique equipment training requirements will be provided.

COMPRESSED GAS CYLINDERS

All M. C. Environmental Services Incorporated employees will utilize safe handling practices relating to 29 CFR 1910.253 compressed gas cylinders.

Storage

- a. Cylinders shall be stored in well-ventilated locations.
- b. Cylinders containing the same gas shall be stored in a segregated group; empty cylinders shall be stored in the same manner.
- c. Cylinders in storage shall be separated from flammable or combustible liquids and from easily ignitable materials (such as wood, paper, packaging materials, oil and grease) by at least 12 m (40 ft) or by fire resistive partition having at least a one hour rating.
- d. Cylinders containing oxygen or oxidizing gases shall be separated from the cylinders in storage containing fuel gases by at least 6 m (20 ft) or by fire resistive partition , having at least a one hour rating.
- e. Areas containing hazardous gas in storage shall be appropriately placarded.

Smoking shall be prohibited wherever cylinders are stored, handled, or used.

Cylinders shall be protected from physical damage, electric current, and extremes of temperature: the temperature of cylinders shall not be allowed to exceed 54° C (130° F).

Cylinders containing oxygen and acetylene (or other fuel gas) shall not be taken into confined spaces.

Cylinder valves and valve caps.

- a. Cylinder valves shall be closed when cylinders are in storage, in transit, not in use or empty.
- b. Cylinder valve caps shall be in place when cylinders are in storage, in transit, or whenever the regulator is not in place.

All compressed gas cylinders in service shall be secured in substantial fixed or portable racks or hand trucks.

Compressed gas cylinders transported by crane, hoist, or derrick shall be securely transported in cradles, nets, or skip pans, and never directly by slings, chains or magnets.

Compressed gas cylinders shall be secured in an upright position at all times, except when being hoisted (except acetylene cylinders shall never be laid horizontal): horizontal storage configurations approved for transportation are permitted for cylinders other than acetylene. Valve wrench or wheel shall be in operating position when cylinder is in use.

- a. Valves shall be opened slowly.
- b. Quick closing valves on fuel gas cylinders shall not be opened more than 1-1/2 turns.

Cylinders shall be used only for their designed purpose of containing a specific compressed gas.

Cylinders shall be refilled only by qualified persons.

Cylinders shall be handled in a manner which will not weaken or damage the cylinder or valve.

Leaking cylinders shall be moved to an isolated location out of doors, the valve shall be cracked and gas allowed to escape slowly.

- a. Personnel and all sources of ignition shall be kept away.
- b. The cylinder shall be tagged **DEFECTIVE**.

Cylinders containing different gases shall not be bled simultaneously in close proximity of each other.

Bleeding of cylinders containing toxic gases shall be accomplished only under the direct supervision of qualified personnel.

Oxygen cylinders and fittings shall be kept away from oil or grease.

- a. Cylinders, cylinder valves, couplings, regulators, hose and apparatus shall be kept free from oil and greasy substance and shall not be handled with oily hands or gloves.
- b. Oxygen shall not be directed at oily surfaces, greasy cloths, or within a fuel oil or other storage tank or vessel.

Oxygen and fuel gas pressure regulators, including their related gauges, shall be in proper working order while in use.

All information from US Army Corps of Engineers Safety and Health Requirements Manual, September 1996

POWER TOOL PRECAUTIONS

All M. C. Environmental Services Incorporated employees will utilize safe handling practices relating to 29 CFR 1910.244 power tool precautions.

Power tools can be hazardous when improperly used. There are several types of power tools, based on the power source they use; electric, pneumatic, liquid fuel, hydraulic, and power actuated.

Employees should be trained in the use of all tools-not just power tools. They should understand the potential hazards as well as the safety precautions to prevent those hazards from occurring.

The following general precautions should be observed by power tool users:

- Never carry a tool by the cord or hose.
- Never yank the cord or the hose to disconnect it from the receptacle.
- Keep cords and hoses away from heat, oil, and sharp edges.
- Disconnect tools when not is use, before servicing, and when changing accessories such as blades, bits and cutters.
- All observers should be kept at a safe distance away from the work area.
- Secure work with clamps or a vise, freeing both hands to operate the tool.
- Avoid accidental starting. The worker should not hold a finger on the switch button while carrying a plugged-in tool.
- Tools should be maintained with care. They should be kept sharp and clean for the best performance. Follow instructions in the user's manual for lubricating and changing accessories.
- Be sure to keep good footing and maintain good balance.
- The proper apparel should be worn. Loose clothing, ties, or jewelry can become caught in moving parts.
- All portable electric tools that are damaged shall be removed from use and tagged "Do Not Use."

I. Guards

Hazardous moving parts of a power tool need to be safeguarded. For example, belts, gears, shafts, pulleys, sprockets, spindles, drums, fly wheels, chains or other reciprocating, rotating, or moving parts of equipment must be guarded if such parts are exposed to contact be employees.

Guards, as necessary, should be provided to protect the operator and others from the following:

- point of operation,
- in-running nip points,
- rotating parts, and
- flying chips and sparks.

Safety guards must never be removed when a tool is being used. For example, portable circular saws must be equipped with guards. An upper guard must cover the entire blade of the saw. A retractable lower guard must cover the teeth of the saw, except when it makes contact with the work material. The lower guard must automatically return to the covering position when the tool is withdrawn from the work.

A. Safety Switches

The following hand-held powered tools must be equipped with a momentary contact "on-off" control switch: drills, tappers, fastener drivers, horizontal, vertical and angle grinders with wheels larger than 2 inches in diameter, disc and belt sanders, reciprocating saws, and other similar tools. These tools may also be equipped with a lock-on control provided that turnoff can be accomplished by a single motion of the same finger or fingers that turn it on.

The following hand-held powered tools may be equipped with only a positive "on-off" control switch: platen sanders, disc sanders with discs 2 inches or less in diameter, grinders with wheels 2 inches or less in diameter; routers, planers, laminate trimmers, nibblers, shears, scroll saws and jigsaws with blade shanks 1/4 wide or less.

Other hand-held powered tools such as circular saws having a blade diameter greater than 2 inches, chain saws, and percussion tools without positive accessory holding means must be equipped with a constant pressure switch that will shut off the power when the pressure is released.

1. Electric Tools

Employees using electric tools must be aware of several dangers; the most serious is the possibility of electrocution.

Among the chief hazards of electric-powered tools are burns and slight shock which can lead to injuries or even heart failure. Under certain conditions, even a small amount of current can result in fibrillation of the heart and eventual death. A shock can also cause the user to fall off a ladder or other elevated work surface.

To protect user from shock, tools must either have a three-wire cord with ground and be grounded, be double insulated, or be powered by a low-voltage isolation transformer. Three-wire cords contain current-carrying conductors and a grounding conductor. One end of the grounding conductor connects to the tool's metal housing. The other end is grounded through a prong on the plug. Anytime an adapter is used to accommodate a two-hole receptacle, the adapter wire must be attached to a known ground. The third prong should never be removed from the plug.

Double insulation is more convenient. The user and the tools are protected in two ways: by normal insulation on the wires inside, and by a housing that cannot conduct electricity to the operator in the event of a malfunction.

These general practices should be followed when using electric tools:

- Electric tools should be operated within their design limitations.
- Gloves and safety footwear are recommended during use of electric tools.
- When not in use, tools should be stored in a dry place.
- Electric tools should not be used in damp or wet locations.
- Work areas should be well lighted.

a) Powered Abrasive Wheel Tools

Powered abrasive grinding, cutting, polishing, and wire buffing wheels create special safety problems because they may throw off flying fragments.

Before an abrasive wheel is mounted, it should be inspected closely and sound-or ring- tested to be sure that it is free from cracks or defects. To test, wheels should be tapped gently with a light non-metallic instrument. If they sound cracked or dead, they could fly apart in operation and so must not be used. A sound and undamaged wheel will give a clear metallic tone or "ring."

To prevent the wheel from cracking, the user should be sure it fits freely on the spindle. The spindle nut must be tightened enough to hold the wheel in place, without distorting the flange. Follow the manufacturer's recommendations. Care must be taken to assure that the spindle wheel will not exceed the abrasive wheel specifications.

Due to the possibility of a wheel disintegrating (exploding) during start-up, the employee should never stand directly in front of the wheel as it accelerates to full operating speed.

Portable grinding tools need to be equipped with safety guards to protect workers not only from the moving wheel surface, but also from flying fragments in case of breakage.

In addition, when using a powered grinder:

- Always use eye protection.
- Turn off the power when not in use.
- Never clamp a hand-held grinder in a vise.

b) Pneumatic Tools

Pneumatic tools are powered by compressed air and include chippers, drills, hammers and sanders.

There are several dangers encountered in the use of pneumatic tools. The main one is the danger of getting hit by one of the tool's attachments or by some kind of fastener the worker is using with the tool.

Eye protection is required and face protection is recommended for employees working with pneumatic tools.

Noise is another hazard. Working with noisy tools such as jackhammers requires proper, effective use of hearing protection.

When using pneumatic tools, employees must check to see that they are fastened securely to the hose to prevent them from becoming disconnected. A short wire or positive locking device attaching the air hose to the tool will serve as an added safeguard.

A safety clip or retainer must be installed to prevent attachments, such as chisels on a chipping hammer, from being unintentionally shot from the barrel.

Screens must be set up to protect nearby workers from being struck by flying fragments around chippers, riveting guns, staplers, or air drills.

Compressed air guns should never be pointed toward anyone. Users should never "dead-end" it against themselves or anyone else.

All information obtained from OSHA Compliance, Reference & Training Guide, 1993

BLOODBORNE PATHOGENS 29 CFR 1910.130 EXPOSURE CONTROL PLAN

All M C Environmental Services Incorporated employees who may encounter medical wastes or body fluids will participate in the Bloodborne Pathogens Program. The most probable occurrences in which employees may encounter bloodborne pathogens is by handling medical waste as a clean up activity or by providing emergency medical assistance.

Program Requirements

<u>Universal Precautions</u> – Gloves, face shields, clothing, disposable CPR masks, anti-septic pads, soap.

<u>Waste Handling</u> – Proper PPE Red Bags Labels Proper Containers Proper Clean Up of Spills

Training - All M C Environmental Services employees will trained in the elements of the Exposure Control Plan, PPE, and exposure information.

Hepatitis B Vaccination – All employees who may encounter bloodborne pathogens will be offered at no cost a Hepatitis B vaccination. Employees who decline the Hepatitis B vaccination must fill out a consent/refusal form.

Exposure Follow Up

Any employee who comes in contact with a bloodborne pathogen which contacts their skin, eyes, mouth, mucus membranes or is punctured by an object contaminated with a pathogen will be sent to a local medical provider for evaluation.

Procedures

Any project involving potential or known bloodborne pathogens will be reviewed by project and safety management prior to any activity. Specific client/project requirements will be addressed in project/site specific Health and Safety Plan.

Appendix A

PERMIT REQUIRED CONFINED SPACE PROGRAM

1. INTRODUCTION

The purpose of this program is to assist MC ENVIRONMENTAL SERVICES, INCORPORATED in complying with the Occupational Safety and Health (OHSA) regulation entitled Permit Required Confined Spaces, 29 CFR 1910.146 (see Appendix A).

Spaces are considered permit required confined spaces if they meet the following OSHA specific definitions:

- 1.1 Their size and shape allow a person to enter them
- 1.2 They have small or obstructed ways of getting in and out which require use of hands for entry or exit
- 1.3 They are not designed to be occupied continuously
- 1.4 They have one or more of the following characteristics:
 - 1.4.1 Contain or have a known potential to contain a hazardous atmosphere
 - 1.4.2 Contain a material with the potential for engulfing an entrant
 - 1.4.3 Have an internal configuration shaped in a way which could trap or asphyxiate an entrant
 - 1.4.4 Contain any other recognized serious safety or health hazard

Confined spaces may include storage tanks, ventilation ducts, sewers, tunnels, ovens, furnaces or other similar structures.

2. POTENTIAL HAZARDS

Working in confined spaces presents many hazards to MC ENVIRONMENTAL SERVICES, INCORPORATED employees. The confined space could have a hazardous atmosphere which would be caused from not containing enough oxygen or the air being flammable or toxic. Engulfment by liquid or solid materials is a potential hazard as is electrocution, heat stress, becoming wedged in small spaces or by tripping and falling from ladders.

3. PROGRAM REQUIREMENTS

In order to protect their employees and comply with the OSHA regulations, MC ENVIRONMENTAL SERVICES, INCORPORATED shall initiate a procedure for the following:

- 3.1 Confined Space Entry Permit Establish a written permit system for the proper preparation, issuance and implementation of entry permits.
- 3.2 Employee training Train employees, as provided by this standard so that attendants, authorized entrants and personnel authorizing or in charge of entry can work safely in and around the permit space.
- 3.3 Equipment Provide, maintain and ensure the proper use of the equipment necessary for safe entry, including testing, monitoring, communication and personal protective equipment.
- 3.4 Hazard identification Identify and evaluate each hazard of the permit spaces, including determination of severity.
- 3.5 Hazard control Establish and implement the means, procedures and practices by which the permit spaces can be entered safely.
- 3.6 Atmospheric Testing
- 3.7 Confined Space Entry Team Duties
- 3.8 Rescue Ensure that the procedure and equipment necessary to rescue entrants from permit spaces are implemented and provided.

4. CONFINED SPACE ENTRY PERMIT

MC ENVIRONMENTAL SERVICES, INCORPORATED has developed a "Confined Space Entry Permit" and a "Confined Space Entry Checklist" to document the procedures used during the entry of a confined space. Both a sample permit and a sample entry checklist are included as Appendix B.

5. **EMPLOYEE TRAINING**

MC ENVIRONMENTAL SERVICES, INCORPORATED shall ensure that employees receive the proper training as required in 29 CFR 1910.1456 (e), (f), (g) prior to any confined space entry.

6. EQUIPMENT

Specialized equipment must be available to ensure a safe confined space entry. The Entry Authority is responsible to ensure the following equipment is available prior to entry.

6.1 Atmospheric Testing Equipment: Prior to entry into a confined space, it is required that quality of air be ascertained. To accomplish this, a MSA Model #3210L, Passport Personal Alarm, 4 Gas is provided. The MSA Model #3210L is designed to detect the common hazards of combustible gas, oxygen deficiency, Hydrogen Sulfide (2S) and Carbon Monoxide (CO). If other contaminants are of concern (i.e., Sulfur Dioxide (SO2), Chlorine (CL2), Toxic Gas), additional equipment will be required.

These conditions can be life threatening. Be sure to read and understand the MSA Model #3210L Operators Manual which is provided in Appendix C.

- 6.2 Retrieval Equipment: In certain instances, a retrieval line will be required. In these cases, equipment will need to be either provided by the client or rented for the specific project.
- 6.3 Ventilation Equipment: Prior to entry into a confined space, it may be necessary to ventilate the space. To accomplish this, a Pilsue is available. Ancillary equipment includes flexible air ducts. An instruction manual for this equipment is included as Appendix D. Please remember it may be necessary to provide a portable generator to operate this piece of equipment.
- 6.4 Communications Equipment: If continuous voice communications between the attendant and entrant will be difficult or impossible, two-way radios shall be provided. These radios will be preferably provided by the client for site coordination.
- 6.5 Self Contained Breathing Apparatus (SCBA): During the course of work, it may be necessary to enter an atmosphere which is deficient in Oxygen or some other contaminant. In those cases, SCBAs will be provided either by the client or rented for the project. Appropriate training must be provided prior to issuance of the SCBAs.
- 6.6 Personal Protective Equipment (PPE): Proper PPE such as hard hats, face shields and encapsulated suites must be made available at the site and listed.
- 6.7 Respiratory Protection: Respiratory protection should be provided in accordance with MC ENVIRONMENTAL SERVICES INCORPORATED'S Respiratory Protection Program. Determination of necessary respiratory protection should be made by the Site Entry Supervisor.
- 6.8 Electrical tools and lighting: All electrical equipment shall be intrinsically safe. Ground fault circuit interrupters shall be used with all electrical equipment.
- 6.9 Tools: All tools shall be spark-proof.

7. HAZARD IDENTIFICATION

- 7.1 Oxygen-Deficient Atmospheres: An oxygen-deficient atmosphere has less than 19.5% available oxygen (O2). Any atmosphere with less than 19.5% oxygen should not be entered without an approved self-contained breathing apparatus (SCBA).
- 7.2 Flammable Atmospheres: Two things make an atmosphere flammable: (1) the oxygen in the air; and (2) a flammable gas, vapor or dust in proper mixture. Different gases have different flammable ranges. If a source of ignition (i.e.,

sparking or electrical tool) is introduced into a space containing a flammable atmosphere, an explosion will result.

- 7.3 Toxic Atmospheres: Most substances (liquids, vapors, gases, mists, solid materials and dusts) should be considered hazardous in a confined space. Toxic substances can come from the following:
 - 7.3.1 Product stored in the space: a produce can be absorbed into the walls and give off toxic gases when removed or when cleaning out the residue of a stored product.
 - 7.3.2 Work being performed in a confined space: examples of such include welding, brazing, painting, scraping, sanding, degreasing, etc. Toxic atmospheres are generated in various processes. For example, cleaning solvents are used in many industries for cleaning/degreasing. The vapors from these solvents are very toxic in a confined space.

8. HAZARD CONTROL

- 8.1 Site Control
 - 8.1.1 The area immediately outside of the permit space shall be cordoned off with high visibility barrier tape or other barriers.
 - 8.1.2 Signs warning against unauthorized entrance shall be conspicuously posted around the work area. Signs shall be visible from all sides.
 - 8.1.3 Ensure that all pedestrian, vehicle or other barriers necessary to protect entrants from external barriers are provided.
- 8.2 Area Isolation
 - 8.2.1 All electrical energy shall be locked or tagged out.
 - 8.2.2 All mechanical equipment shall be physically isolated by stops, pins or chocks.
 - 8.2.3 All lines leading to or from tanks shall be physically isolated to prevent the inflow of material. This may be accomplished by inserting blanks, locking valves or physically disconnecting the lines.
 - 8.2.4 The hazardous substances shall be removed from the space by vacuuming, draining or other effective means.
- 8.3 Ventilation shall be provided as necessary prior to entry of personnel.
- 8.4 Lighting shall be provided as necessary

9. ATMOSPHERIC TESTING

Test the air in all areas and levels of the space before entry. Monitor continuously or retest periodically for as long as the space is occupied and as is appropriate for the hazard involved.

For most items, allowable limits should be given on the permit. After tests are conducted, results are entered on the permit.

- 9.1 First, test to make sure oxygen content is between 19.5 and 23.5 percent.
- 9.2 Test the concentration of flammable gases which must be less than 10 percent of the lower flammable limit (LFL). If the space must be entered to determine air quality, the tester is required to wear respiratory protection.
- 9.3 Toxicity:
 - 9.3.1 List any toxic materials that could be present and their permissible exposure limits (PEL).
 - 9.3.2 Test to make sure none of these materials has a concentration greater than its PEL.
- 9.4 If the air is unsafe according to any of these tests, the hazard must be controlled before entry is allowed.
- 9.5 If the air becomes hazardous later on, the permit must be canceled and everyone must vacate the space.
- 9.6 Evaluate for heat stress potential:
 - 9.6.1 When testing is required, enter the degree reading according to the Wet Bulb Glove Thermometer. Note "F" for Fahrenheit or "C" for Centigrade.
- 9.7 The person performing the atmospheric tests signs or initials the permit after each test result.

10. CONFINED SPACE ENTRY TEAM DUTIES

A confined space entry team shall consist of a minimum of three members. The person authorizing the entry, the attendant and entrants.

- 10.1 Entry Authority
 - 10.1.1 Before entry, he or she sees that the permit is filled out completely and all safety steps listed on it are taken.

- 10.1.2 During entry, he or she checks conditions to make sure they stay safe throughout the work.
- 10.1.3 If conditions become unsafe, he or she cancels the permit and orders everyone out of the space.
- 10.1.4 He or she sees that any unauthorized people are removed.
- 10.1.5 When the work is completed, he or she cancels the permit and concludes the operation.
- 10.2 Attendant

The attendant stays at his/her post to observe conditions and support the entrant.

- 10.2.1 As an Attendant, he/she must know the hazards of the permit space and the signs of exposure.
- 10.2.2 Keep an exact count of the workers in the space.
- 10.2.3 Stay in continuous contact with the entrants.
- 10.2.4 Be sure only authorized people enter the space or the area surrounding the space.
- 10.2.5 Order all workers out of the space in any of these situations:
 - 10.2.5.1 They see a condition not allowed by the entry permit
 - 10.2.5.2 They notice signs of exposure in any Entrant
 - 10.2.5.3 They see something outside the permit space that could cause danger inside
- 10.2.6 In case of emergency, **do not enter the permit space** unless you are trained in confined space rescue, have proper emergency equipment and another Attendant is there to replace you.
- 10.3 Entrants

The permit space Entrants must do their part to control the hazards of confined space entry be:

- 10.3.1 As an Entrant, they know the hazards of the space and the signs of exposure. For example, lack of oxygen can cause:
 - 10.3.1.1Loss of muscle control
 - 10.3.1.2 Mental confusion

- 10.3.1.3 Breathing difficulty
- 10.3.1.4 Misguided feeling of well-being
- 10.3.1.5 Ringing in the ears
- 10.3.1.6 Death
- 10.3.2 Following their Personal Protective Equipment training carefully.
- 10.3.3 Keeping in contact with the Attendant and leave the space at once if you are ordered to evacuate.
- 10.3.4 Always be ready to evacuate quickly and, if possible, without help.
- 10.3.5 If you see that your are in danger, leave the space and tell the Attendant.

11. RESCUE TEAM

MC ENVIRONMENTAL SERVICES, INCORPORATED shall employ outside rescue teams from either the local communities in which the jobs are located or by utilizing the clients rescue teams available at the job site. The telephone numbers of local fire, police and rescue personnel, or client rescue team notifications procedures, shall be conspicuously posted and visible at all times.

The rescue team shall be briefed prior to project and upon arrival at the scene when needed, of all hazards present.

- 11.1 Emergency and Rescue Procedures
 - 11.1.1 The safest ways of leaving a space when conditions deteriorate are:
 - 11.1.1.1 Self-rescue, when an entrant evacuates the space with no help at the first sign of trouble.
 - 11.1.1.2 Non-entry rescue.
 - 11.1.2 Only workers trained in rescue can enter the space for the purpose of rescue.
 - 11.1.3 Your rescue service must be notified in advance of the entry, to ensure they are available for an emergency.
 - 11.1.4 List necessary equipment or devices such as rescue equipment, whistles, telephones and radios. Rescue equipment which may be required should be on the job site. Make sure it is in working order before entry begins.
 - 11.1.5 It is a safe practice to ensure that all affected employees review the company's written Emergency Response Plan before entry.
 - 11.1.6 Positive-pressure, self-contained breathing apparatus must be available on the site for rescuers if a respiratory hazard is potentially present.

11.1.7 It is a safe practice to wear an emergency escape breathing system, sometimes called an egress bottle, into a permit space whenever supplied air is required for entry. should be supplied air fail, your emergency breathing apparatus must provide enough air to allow you to escape to breathable air.

12. LOW HAZARD PERMIT SPACES

In certain instances, MC ENVIRONMENTAL SERVICES, INCORPORATED may require employees to enter permit spaces where there is an extremely low likelihood that an Immediately Dangerous to Life or Health (IDLH) or engulfment hazard could be present, and where all other serious hazards have been controlled.

Examples of low hazard spaces include routine entry to inspect or check meters or equipment and to perform minor maintenance work.

12.1 Testing

The spaces will first be tested for atmospheric conditions that are hazardous. Testing would be performed in the following sequence:

Oxygen concentration Combustible gas or vapor concentration Potential toxic contaminants

12.2 Minor Maintenance Work

The following procedures will be adhered to before and during minor maintenance work.

- 12.2.1 The permit space will be tested for atmospheric condition.
- 12.2.2 The space will be either mechanically ventilated during the work activities or mechanically ventilated and tested; or continuously tested for atmospheric conditions.

1910.146

Produced by USDOL OSHA - Directorate of Safety Standards & Directorate of Health Standards Maintained by USDOL OSHA - OCIS

(a) Scope and application.

This section contains requirements for practices and procedures to protect employees in general from the hazards of entry into permit-required confined spaces. This section does not apply to agriculture, to construction or to shipyard employment (Parts 1928, 1926, and 1915 of this chapter respectively).

(b) Definitions.

Acceptable entry conditions means "the conditions that must exist in a Permit space to allow entry and to ensure that employees involved with a permit-required confined space entry can safely enter into and work within the space.

"Attendant" means an individual stationed outside one or more permit spaces who monitors the authorized entrants and who performs all attendant's duties assigned in the employer's permit space program.

"Authorized entrant" means an employee who is authorized by the employer to enter a permit space.

"Blanking or blinding" means the absolute closure of a pipe, line or duct by the fastening of a solid plate (such as a spectacle blind or a skilled blind) that completely covers the bore and that is capable of withstanding the maximum pressure of the pipe, line or duct with not leakage beyond the plate.

"Confined space" means a space that:

- (1) is large enough and so configured that an employee can bodily enter and perform assigned work
- (2) has limited or restricted means for entry or exit (for example, tanks, vessels, silos, storage bins, hoppers, vaults and pits are spaces that may have limited means of entry)
- (3) is not designed for continuous employee occupancy

"Double block and bleed" means the closure of a line, duct or pipe by closing and locking or tagging two in-line valves and by opening and locking or tagging a drain or vent valve in the line between the two closed valves.

"Emergency" means any occurrence (including any failure of hazard control or monitoring equipment) or event internal or external to the permit space that could endanger entrants.

"Engulfment" means the surrounding and effective capture of a person by a liquid or finely divided (flowable) solid substance that can be aspirated to cause death by filling or plugging

the respiratory system or that can exert enough force on the body to cause death and strangulation, constriction or crushing.

"Entry" means the action by which a person passes through an opening into a permit-required confined space.

Entry includes ensuing work activities in that space and is considered to have occurred as soon as any part of the entrant's body breaks the plane of an opening into the space.

"Entry permit (permit)" means the written or printed document that is provided by the employer to allow and control entry into a permit space and that contains the information specified in paragraph (f) of this section.

"Entry supervisor" means the person (such as the employer, foreman or crew chief) responsible for determining if acceptable entry conditions are present at a permit space where entry is planned for authorizing entry and overseeing entry operations and for terminating entry as required by this section.

NOTE: An entry supervisor also may serve as an attendant or as an authorized entrant as long as that person is trained and equipped as required by this section for each role he or she fills. Also, the duties of entry supervisor may be passed from one individual to another during the course of an entry operation.

"Hazardous atmosphere" means an atmosphere that may expose employees to the risk of death, incapacitation, impairment of ability to self-rescue (that is, escape unaided form a permit space), injury or acute illness from one of more of the following causes:

- (1) Flammable gas, vapor or mist in excess of 10 percent of its lower flammable limit (LFL)
- (2) Airborne combustible dust at a concentration that meets or exceeds its LFL NOTE: This concentration may be approximated as a condition in which the dust obscures vision at a distance of five (5) feet (1.52M) or less
- (3) Atmospheric oxygen concentration below 19.5 percent or above 23.5 percent.
- (4) Atmospheric concentration of any substance for which a dose or a permissible exposure limit is published in Subpart G, Occupational Health and Environmental Control or in Subpart Z, Toxic Hazardous Substances of this Part and which could result in employee exposure in excess of its dose or permissible limit NOTE: An atmospheric concentration of any substance that is not capable of causing death, incapacitation, impairment of ability to self-rescue, injury or acute illness due to its health effects is not covered by this provision
- (5) Any other atmospheric condition that is immediately dangerous to life of health NOTE: For air contaminants for which OSHA has not determined a dose or permissible exposure limit, other sources of information, such as Material Safety Data Sheets that comply with the Hazard Communication Standard, Section1910.1200 of this Part, published information and internal documents can provide guidance in establishing acceptable atmospheric conditions.

"Hot work permit" means the employer's written authorization to perform operations (for example riveting, welding, cutting, burning and healing) capable of providing a source of ignition.

"Immediately dangerous to life or health (IDLH)" means any condition that poses an immediate or delayed threat to life or that would cause irreversible adverse health effects or that would interfere with an individual's ability to escape unaided from a permit space.

NOTE: Some materials - hydrogen fluoride gas and cadmium vapor, for example - may produce immediate transient effects that, even if severe, may pass without medical attention, but are followed by sudden, possibly fatal collapse 12 to 72 hours after exposure. The victim "feels normal" from recovery from transient effects until collapse. Such materials in hazardous quantities are considered to be "immediately" dangerous to life or health.

"Inerting" means the displacement of the atmosphere is a permit space by a non-combustible gas (such as nitrogen) to such an extent that the resulting atmosphere is non-combustible.

NOTE: this procedure produces an IDLH oxygen-deficient atmosphere.

"Isolation" means the process by which a permit space is removed from service and completely protected against the release of energy and material into the space by such means as: blanking or blinding; misaligning or removing sections or lines, pipes or ducts; a double block and bleed system; lockout or tagout of all sources of energy; or blocking or disconnection all mechanical linkages.

"Line breaking" means the intentional opening of a pipe, line or duct that is or has been carrying flammable, corrosive or toxic material, an inert gas or any fluid at a volume, pressure or temperature capable of causing injury.

"Non-permit confined space" means a confined space that does not contain or with respect to atmospheric hazards, have the potential to contain any hazard capable of causing death or serious physical harm.

"Oxygen deficient atmosphere" means an atmosphere containing less than 19.5 percent oxygen by volume.

"Oxygen enriched atmosphere" means an atmosphere containing more than 23.5 percent oxygen by volume.

"Permit-required confined space (permit space)" means a confined space that has one or more of the following characteristics:

- (1) contains or has a potential to contain a hazardous atmosphere
- (2) contains a material that has the potential for engulfing an entrant
- (3) has an internal configuration such that an entrant could be trapped or asphyxiated by inwardly covering walls or by a floor which slopes downward and tapers to a smaller cross-section
- (4) contains any other recognized serious safety or health hazard

"Permit-required confined space program (permit space program)" means the employer's overall program for controlling and, where appropriate, for protecting employees from permit space hazards and for regulating employee entry into permit spaces.

"Permit system" means the employer's written procedure for preparing and issuing permits and for returning the permit space to service following termination of entry.

"Prohibited condition" means the personnel designated to rescue employees from permit spaces.

"Rescue service" means the personnel designated to rescue employees from permit spaces.

"Retrieval system" means the equipment (including a retrieval line, chest or full-body harness, wristlets, if appropriate, and a lifting device or anchor) used for non-entry rescue of persons from permit spaces.

"Testing" means the process by which the hazards that may confront entrants of a permit space are identified and evaluated. Testing includes specifying the tests that are to be performed in the permit space.

NOTE: Testing enables employers both to devise and implement adequate control measures for the protection of authorized entrants and to determine if acceptable entry conditions are present immediately, prior to and during entry.

- (c) General requirements
 - (1) The employer shall evaluate the workplace to determine if any spaces are permit-required confined spaces.

NOTE: Proper application of the decision flow chart in Appendix A to section 1910.146 would facilitate compliance with this requirement.

(2) If the workplace contains permit spaces, the employer shall inform exposed employees by posting danger signs or by any other equally effective means of the existence and location of and the danger posed by the permit spaces.

NOTE: A sign reading DANGER - PERMIT-REQUIRED CONFINED SPACE, DO NOT ENTER or using other similar language would satisfy the requirement for a sign.

- (3) If the employer decides that its employees will not enter permit spaces, the employer shall take effective measures to prevent its employees from entering the permit spaces and shall comply with paragraphs (c)(1), (c)(2), (c)(6) and (c)(8) of this section.
- (4) If the employer decides that its employees will enter permit spaces, the employer shall develop and implement a written space program that complies

with this section. The written program shall be available for inspection by employees and their authorized representatives.

- (5) An employer may use the alternate procedures specified in paragraph (c)(5)(ii) of this section for entering a permit space under the conditions set forth in paragraph (c)(5)(l) if this section.
 - (i) An employer whose employees enter a permit space need not comply with paragraphs (d) through (f) and (h) through (k) of this section, provided that:
 - (A) The employer can demonstrate that the only hazard posed by the permit space is an actual or potential hazardous atmosphere
 - (B) The employer can demonstrate that continuous, forced air ventilation alone is sufficient to maintain that permit space safe for entry
 - (C) The employer develops monitoring and inspection data that supports the demonstrations required by paragraphs (c)(5)(I)(A) and (c)(5)(I)(B) of this section
 - (D) If an initial entry of the permit space is necessary to obtain the data required by paragraph (c)(5)(l)(C) of this section, the entry is performed in compliance with paragraphs (d) through (k) of this section
 - (E) The determinations and supporting data required by paragraphs (c)(5)(I)(A), (c)(5)(I)(B), and (c)(5)(I)(C) of this section are documented by the employer and are made available to each employee who enters the permit space under the terms of paragraph (c)(5) of this section
 - (F) Entry into the permit space under the terms of paragraph (c)(5)(l) of this section is performed in accordance with the requirements of paragraph (c)(5)(ii) of this section

NOTE: See paragraph (c)(7) of this section for reclassification of a permit space after all hazards within the space have been eliminated.

- (ii) The following requirements apply to entry into permit spaces that meet the conditions set forth in (c)(5)(I) of this section
 - (A) Any conditions making it unsafe to remove an entrance cover shall be eliminated before the cover is removed.
 - (B) When entrance covers are removed, the opening shall be promptly guarded by a railing, temporary cover or other temporary barrier that will prevent an accidental fall through the opening and that will

protect each employee working in the space from foreign objects entering the space.

- (C) Before an employee enters the space, the internal atmosphere shall be tested with a calibrated direct-reading instrument for the following conditions in the order given:
 - {1} Oxygen content
 - {2} Flammable gases and vapors
 - {3} Potential toxic air contaminants
- (D) There may be no hazardous atmosphere within the space whenever any employee is inside the space.
- (E) Continuous, forced air ventilation shall be used as follows:
 - {1} An employee may not enter the space until the forced air ventilation has eliminated any hazardous atmosphere
 - {2} The forced air ventilation shall be so directed as to ventilate the immediate area where an employee is or will be present within the space and shall continue until all employees have left the space
 - {3} The air supply for the forced air ventilation shall be from a clean source and may not increase the hazards in the space.
- (F) The atmosphere within the space shall be periodically tested as necessary to ensure that the continuous, forced air ventilation is preventing the accumulation of a hazardous atmosphere.
- (G) If a hazardous atmosphere is detected during entry:
 - {1} Each employee shall leave the space immediately
 - {2} The space shall be evaluated to determine how the hazardous atmosphere developed
 - {3} Measures shall be implemented to protect employees from the hazardous atmosphere before any subsequent entry takes place.
- (H) The employer shall verify that the space is safe for entry and that the pre-entry measures required by paragraph (c)(5)(ii) of this section have been taken through a written certification that contains the data, the location of the space and the signature of the person providing the certification. the certification shall be made before

entry and shall be made available to each employee entering the space.

- (6) When there are changes in the use or configuration of a non-permit confined space that might increase the hazards to entrants, the employer shall reevaluate that space and, if necessary, reclassify it as a permit-required confined space.
- (7) A space classified by the employer as a permit-required confined space may be reclassified as a non-permit confined space under the following procedures:
 - (i) If the permit space poses no actual or potential atmospheric hazards and if all hazards within the space are eliminated without entry into the space, the permit space may be reclassified as a non-permit confined space for as long as the non-atmospheric hazards remain eliminated.
 - (ii) If it is necessary to enter the permit space to eliminate hazards, such entry shall be performed under paragraphs (d) through (k) of this section. If testing and inspection during that entry demonstrate that the hazards within the permit space have been eliminated, the permit space may be reclassified as a non-permit confined space for as long as the hazards remain eliminated.

NOTE: Control of atmospheric hazards through forced air ventilation does not constitute elimination of the hazards. Paragraph (c)(5) covers permit space entry where the employer can demonstrate that forced air ventilation alone will control all hazards in the space.

- (iii) The employer shall document the basis for determining that all hazards in a permit space have been eliminated through a certification that contains the date, the location of the space and the signature of the person making the determination. The certification shall be made available to each employee entering the space.
- (iv) If hazards arise within a permit space that has been declassified to a non-permit space under paragraph (c)(7) of this section, each employee in the space shall exit the space. The employer shall then reevaluate the space and determine whether it must be reclassified as a permit space in accordance with other applicable provisions of this section.
- (8) When an employer (host employer) arranges to have employees of another employer (contractor) perform work that involves permit space entry, the host employer shall:
 - (i) Inform the contractor that the workplace contains permit spaces and that permit space entry is allowed only through compliance with a permit space program meeting the requirements of this section

- (ii) Apprise the contractor of the elements, including the hazards identified and the host employer's experience with the space, that make the space in question a permit space
- (iii) Apprise the contractor of any precautions or procedures that the host employer has implemented for the protection of employees in or near permit spaces where contractor personnel will be working
- (iv) Coordinate entry operations with the contractor when both host employer personnel and contractor personnel will be working in or near permit spaces as required by paragraph (d)(11) of this section
- (v) Debrief the contractor at the conclusion of the entry operations regarding the permit space program followed and regarding any hazards confronted or created in permit spaces during entry operations.
- (9) In addition to complying with the permit space requirements that apply to all employers, each contractor who is retained to perform permit space entry operations shall:
 - (i) Obtain any available information regarding permit space hazards and entry operations from the host employer
 - (ii) Coordinate entry operations with the host employer, when both host employer personnel and contractor personnel will be working in or near permit spaces as required by paragraph (d)(11) of this section
 - (iii) Inform the host employer of the permit space program that the contractor will follow and of any hazards confronted or created in permit spaces, either through a debriefing or during the entry operation
- (d) Permit-required confined space program (permit space program).

Under the permit space program required by paragraph (c)(4) of this section, the employer shall:

- (1) Implement the measures necessary to prevent authorized entry
- (2) Identify and evaluate the hazards of permit spaces before employees enter them
- (3) Develop and implement the means, procedures and practices necessary for safe permit space entry operations including, but not limited to, the following:
 - (I) Specifying acceptable entry conditions
 - (ii) Isolating the permit space

- (iii) Purging, inerting, flushing or ventilating the permit space as necessary to eliminate or control atmospheric hazards
- (iv) Providing pedestrian, vehicle or other barriers as necessary to protect entrants from external hazards
- (v) Verifying that conditions in the permit space are acceptable for entry throughout the duration of an authorized entry.
- Provide the following equipment (specified in paragraphs (d)(4)(l) through (d)(4)(ix) of this section) at no cost to employees, maintain that equipment properly and ensure that employees use that equipment properly:
 - (i) Testing and monitoring equipment needed to comply with paragraph (d)(5) of this section
 - (ii) Ventilating equipment needed to obtain acceptable entry conditions
 - (iii) Communications equipment necessary for compliance with paragraphs (h)(3) and (l)(5) of this section
 - (iv) Personal protective equipment insofar as feasible engineering and work practice controls do not adequately protect employees
 - (v) Lighting equipment needed to enable employees to see well enough to work safely and to exit the space quickly in an emergency
 - (vi) Barriers and shields are required by paragraph (d)(3)(iv) of this section
 - (vii) Equipment, such as ladders, needed for safe ingress and egress by authorized entrants
 - (viii) Rescue and emergency equipment needed to comply with paragraph (d)(9) of this section except to the extent that the equipment is provided by rescue services
 - (ix) Any other equipment necessary for safe entry into and rescue from permit spaces
- (5) Evaluate permit space conditions as follows when entry operations are conducted:
 - (i) Test conditions in the permit space to determine if acceptable entry conditions exist before entry is authorized to begin, except if isolation space is infeasible because the space is large or is part of a continuous system (such as a sewer), pre-entry testing shall be performed to the extent feasible before entry is authorized and if entry is authorized, entry

conditions shall be continuously monitored in the areas where authorized entrants are working

- (ii) Test or monitor the permit space as necessary to determine if acceptable entry conditions are being maintained during the course of entry operations
- (iii) When testing for atmospheric hazards, test first for oxygen, then for combustible gases and vapor, then for toxic gases and vapors effectively performed for each permit space that is monitored. Likewise, attendants may be stationed at any location outside the permit space to be monitored as long as the duties described in paragraph (I) of this section can be effectively performed for each permit space that is monitored.
- (7) If multiple spaces are to be monitored by a single attendant, include in the permit program the means and procedures to enable the attendant to respond to an emergency affecting one or more of the permit spaces being monitored as long as the duties described in paragraph (I) of this section
- (8) Designate the persons who are to have active roles (for example, authorized entrants, attendants, entry supervisors or persons who test or monitor the atmosphere in a permit space) in entry operations, identify the duties of each such employee and provide each such employee with the training required by paragraph (g) of this section
- (9) Develop and implement procedures for summoning rescue and emergency services for rescuing entrants from permit spaces, for providing necessary emergency services to rescued employees and for preventing unauthorized personnel from attempting a rescue
- (10) Develop and implement a system for the preparation, issuance, use and cancellation of entry permits as required by this section
- (11) Develop and implement procedures to coordinate entry operations when employees of more than one employer are working simultaneously as authorized entrants in permit space so that employees of one employer do not endanger the employees of another employer
- (12) Develop and implement procedures (such as closing off a permit space and canceling the permit) necessary for concluding the entry after entry operations have been completed
- (13) Review entry operations when the employer has reason to believe the measures taken under the permit space program may not protect employees and revise the program to correct deficiencies found to exist before subsequent entries are authorized

NOTE: Examples of circumstances requiring the review of the permit space program are: any unauthorized entry of a permit space, the detection of a permit space hazard not covered by the permit, the detection of a condition prohibited by the permit, the occurrence of any injury or near-miss during entry, a change in the use or configuration of a permit space and employee complaints about the effectiveness of the program.

(14) Review the permit space program, using the canceled permits retained under paragraph (e)(6) of this section within one (1) year after each entry and review the program as necessary to ensure that employees participating in entry operations are protected from permit space hazards.

NOTE: Employers may perform a single annual review covering all entries performed during a 12 month period. If no entry is performed during a 12 month period, no review is necessary.

- (e) Permit system
 - (1) Before entry is authorized, the employer shall document the completion of measures required by paragraph (d)(3) of this section by preparing an entry permit

NOTE: Appendix D to section 1910.146 presents examples of permits whose elements are considered to comply with the requirements of this section.

- (2) Before entry begins, the entry supervisor identified on the permit shall sign the entry permit to authorize entry
- (3) The completed permit shall be made available at the time of entry to all authorized entrants by posting it at the entry portal or by any other equally effective means so that the entrants can confirm that pre-entry on the permit in accordance with paragraph (f)(2) of this section
- (5) The entry supervisor shall terminate entry and cancel the entry permit when:
 - (i) The entry operations covered by the entry permit have been completed
 - (ii) A condition that is not allowed under the entry permit arises in or near the permit space
- (6) The employer shall retain each canceled entry permit for at least one (1) year to facilitate the review of the permit-required confined space program required by paragraph (d)(14) of this section. Any problems encountered during an entry operation shall be noted on the pertinent permit so that appropriate revisions to the permit space program can be made.
- (f) Entry permit.

The entry permit that documents compliance with this section and authorizes entry to a permit space shall identify:

- (1) The permit space to be entered
- (2) The purpose of the entry
- (3) The date and the authorized duration of the entry permit
- (4) The authorized entrants within the permit space, by name or by such other means (for example, through the use of rosters or tracking systems) as will enable the attendant to determine quickly and accurately, for the duration of the permit, which authorized entrants are inside the permit space

NOTE: This requirement may be met by inserting a reference on the entry permit as to the means used such as a roster or tracking system, to keep track of the authorized entrants within the permit space

- (5) The personnel, by name, currently serving as attendants
- (6) The individual, by name, currently serving as entry supervisor, with a space for the signature or initials of the entry supervisor who originally authorized entry
- (7) The hazards of the permit space to be entered
- (8) The measures used to isolate the permit space and to eliminate or control permit space hazards before entry

NOTE: Those measures can include the lockout or tagging of equipment and procedures for purging, inerting, ventilating and flushing permit spaces.

- (9) The acceptable entry conditions
- (10) The results of initial and periodic tests performed under paragraph (d)(5) of this section accompanies by the names or initials of the testers and by an indication of when the tests were performed
- (11) The rescue and emergency services that can be summoned and the means (such as the equipment use and the numbers to call) for summoning those services
- (12) The communication procedures used by authorized entrants and attendants to maintain contact during the entry
- (13) Equipment, such as personal protective equipment, testing equipment, communications equipment, alarm systems and rescue equipment to be provided for compliance with this section
- (14) Any other information whose inclusion is necessary, given the circumstances of the particular confined space, in order to ensure employee safety
- (15) Any additional permits, such as for hot work, that have been issued to authorize work in the permit space.
- (g) Training
 - (1) The employer shall provide training so that all employees whose work is regulated by this section acquire the understanding, knowledge and skills necessary for the safe performance of the duties assigned under this section

- (2) Training shall be provided to each affected employee
 - (i) Before the employee is first assigned duties under this section
 - (ii) Before there is a change in assigned duties
 - (iii) Whenever there is a change in permit space operations that presents a hazard about which an employee has not previously been trained
 - (iv) Whenever the employer has reason to believe either that there are deviations from the permit space entry procedures required by paragraph (d)(3) of this section or that there are inadequacies in the employee's knowledge or use of these procedures
- (3) The training shall establish employee proficiency in the duties required by this section and shall introduce new or revised procedures, as necessary, for compliance with this section
- (4) The employer shall certify that the training required by paragraphs (g)(1) through (g)(3) of this section has been accomplished. The certification shall contain each employee's name, the signatures or initials of the trainers and the dates of training. The certification shall be available for inspection by employees and their authorized representatives.
- (h) Duties of authorized entrants.

The employer shall ensure all authorized entrants:

- (1) Know the hazards that may be faced during entry, including information on the mode, signs or symptoms and consequences of the exposure
- (2) Properly use equipment as required by paragraph (d)(4) of this section
- (3) Communicate with the attendant as necessary to enable the attendant to monitor entrant status and to enable the attendant to alert entrants of the need to evacuate the space as required by paragraph (I)(6) of this section
- (4) Alert the attendant whenever:
 - {I} The entrant recognizes any warning sign or symptom of exposure to a dangerous situation
 - {ii} The entrant detects a prohibited condition
- (5) Exit from the permit space as quickly as possible whenever:
 - {i} An order to evacuate is given by the attendant or the entry supervisor

- {ii} The entrant recognizes any warning sign or symptom of exposure to a dangerous situation
- {iii} The entrant detects a prohibited condition
- {iv} An evacuation alarm is activated
- (i) Duties of attendants. The employer shall ensure each attendant:
 - (1) Knows the hazards that may be faced during entry, including information on the mode, signs or symptoms and consequences of the exposure
 - (2) Is aware of possible behavioral effects of hazard exposure in authorized entrants
 - (3) Continuously maintains an accurate count of authorized entrants in the permit space and ensures that the means used by identify authorized entrants under paragraph (f)(4) of this section accurately identifies who is in the permit space
 - (4) Remains outside the permit space during entry operations until relieved by another attendant

NOTE: When the employer's permit entry program allows attendant entry for rescue, attendants may enter a permit space to attempt a rescue if they have been trained and equipped for rescue operations as required by paragraph (k)(1) of this section and if they have been relieved as required by paragraph (l)(4) of this section

- (5) Communicates with authorized entrants as necessary to monitor entrant status and to alert entrants of the need to evacuate the space under paragraph (I)(6) of this section
- (6) Monitors activities inside and outside the space to determine if it is safe for entrants to remain in the space and orders the authorized entrants to evacuate the permit space immediately under any of the following conditions:
- (i) If the attendant detects a prohibited condition
 - (ii) If the attendant detects the behavioral effects of hazard exposure in an authorized entrants
 - (iii) If the attendant detects a situation outside the space that could endanger the authorized entrants
 - (iv) If the attendant cannot effectively and safely perform all the duties required under paragraph (I) of this section
- (7) Summon rescue and other emergency services as soon as the attendant determines that authorized entrants may need assistance to escape from permit space hazards

- (8) Takes the following actions when unauthorized persons approach or enter a permit space while entry is underway:
 - (i) Warn the unauthorized person(s) they must stay away from the permit space
 - (ii) Advise the unauthorized person(s) they must exit immediately if they have entered the permit space
 - (iii) Inform the authorized entrants and the entry supervisor if unauthorized persons have entered the permit space
- (9) Performs non-entry rescues as specified by the employer's rescue procedure
- (10) Performs no duties that might interfere with the attendant's primary duty to monitor and protect the authorized entrants
- (j) Duties of entry supervisors. The employer shall ensure each entry supervisor:
 - (1) Knows the hazards that may be faced during entry, including information on the mode, signs or symptoms and consequences of the exposure
 - (2) Verifies by checking the appropriate entries have been made on the permit that all tests specified by the permit have been conducted and that all procedures and equipment specified by the permit are in place before endorsing the permit and allowing entry to begin.
 - (3) Terminates the entry and cancels the permit as required by paragraph (e)(5) of this section
 - (4) Verifies that rescue services are available and the means for summoning them are operable
 - (5) Removes unauthorized individuals who enter or who attempt to enter the permit space during entry operations
 - (6) Determines, whenever responsibility for a permit space entry operation is transferred and at intervals dictated by the hazards and operations performed within the space, that entry operations remain consistent with terms of the entry permit and that acceptable entry conditions are maintained.

- (k) Rescue and emergency services.
 - (1) The following requirements apply to employers who have employees enter permit spaces to perform rescue services:
 - (i) The employer shall ensure each member of the rescue service is provided with and is trained to use properly, the personal protective equipment and rescue equipment necessary for making rescues from permit spaces
 - (ii) Each member of the rescue service shall be trained to perform the assigned rescue duties. Each member of the rescue service shall also receive the training required of authorized entrants under paragraph (g) of this section
 - (iii) Each member of the rescue service shall practice making permit space rescues at least once over 12 months by means of simulated rescue operations in which they remove dummies, mannequins or actual persons from the actual permit spaces or from representative permit spaces. Representative permit spaces shall, with respect to opening size, configuration and accessibility, simulate the types of permit spaces from which rescue is to be performed.
 - (iv) Each member of the rescue service shall be trained in basic first aid and in cardiopulmonary resuscitation (CPR). At least one member of the rescue service holding current certification in first aid and in CPR shall be available.
 - (2) When an employer (host employer) arranges to have persons other than the host employer's employees perform permit space rescue, the host employer shall:
 - (i) Inform the rescue service of the hazards they may confront when called on to perform rescue at the host employer's facility
 - (ii) Provide the rescue service with access to all permit spaces from which rescue may be necessary so that the rescue service can develop appropriate rescue plans and practice rescue operations
 - (3) To facilitate non-entry rescue, retrieval systems or methods shall be used whenever an authorized entrant enters a permit space, unless the retrieval equipment would increase the overall risk of entry or would not contribute to the rescue of the entrant. Retrieval systems shall meet the following requirements.
 - (i) Each authorized entrant shall use a chest or full body harness with a retrieval line attached at the center of the entrant's back near shoulder level or able the entrant's head. Wristlets may be used in lieu of the chest or full body harness if the employer can demonstrate that the use

of a chest or full body harness is infeasible or creates a greater hazard and that the use of wristlets is the safest and most effective alternative.

- (ii) The other end of the retrieval line shall be attached to a mechanical device or fixed point outside the permit space in such a manner that rescue can begin as soon as the rescuer becomes aware that rescue is necessary. A mechanical device shall be available to retrieve personnel from vertical type permit spaces more than five (5) feet (1.52m) deep.
- (4) If an injured entrant is exposed to a substance for which a Material Safety Data Sheet (MSDS) or other similar written information is required to be kept at the worksite, that MSDS or written information shall be made available to the medical facility treating the exposed entrant.

CONFINED SPACE ENTRY CHECKLIST

This Confined Space Entry Checklist, when properly authorized, allows the person to whom it is used, to enter the area specified. NO ONE shall enter the confined space without completing this checklist and posting the Confined Space Entry permit at the point of entry. This checklist shall be kept for proper documentation. CS refers to the <u>C</u>onfined <u>Space</u>. All applicable items shall be checked in the "YES" column for this permit to be valid.

<u>YES</u>	NO	<u>N/A</u>	1.		INTRY CHECKLIST reviewed and understood?
			2.	Authorized personn	el on site to enforce CS entry procedure?
			3.		
					t Work permit approved and posted?
			-	Power sources off a	
				Electrical sources is	55
				Rotating machinery	
			-	Contents of CS rem	
					erials to and from the CS blocked off?
					prepared and monitored?
				Continuous ventilat	
					oles, doors) opened?
			13.		le and toxic gases checked with calibrated
					ved for access to CS?
				Equipment and safe work area provided?	
				Fire extinguishers r	•
			16.		Watch attendant prepared with proper
				equipment and read	uy to respond?
PERSONAL	PROTECTIV	<u>E EQUIPME</u>	<u>nt f</u>	REQUIRED: (Y for	YES - N for NO)
SCBA	Esca	ape Respirato	or	Hard Hat	Safe Glasses
Goggl	esFace	e Shield		Ear Plugs	Steel Toed Shoes
Gloves	sSafe	e Belt		Harness	Other
OTHER:					

NOTE: This list is not intended to be inclusive of all items required to be checked prior to entering a CS. Specific jobs may require additional items to be checked.

MC Environmental Services, Inc. CONFINED SPACE ENTRY PERMIT

This permit must be properly completed prior to entering any confined space and is VALID ONLY FOR THE DATE AND TIME PERIOD STATED ON THIS FORM. All requirements and procedures contained in HS 1171 of the MC Environmental Services Health and Safety Manual must be followed.

	Lij se f	R. 4.7 1944 B		R 181. 693. 693.	adan'aa a				CONTAC	y Manual T NO.: _	must be i	onowed.		- 10/10		
CATION OF CONFIN	NED SPACE A	ND PURPO	OSE OF I	ENTRY/D	ESCRIPTIONO						DATE/TI	ME:				
					X				•	-	DURATI					
MOSPHERIC HAZA		gen Defici	ency (Flammah	le 🗂 Toxic											
	RDS: ID Oxygen Deficiency ID Flammable ID Toxic ID Mechanical ID Electrical ID Chemical ID Engulfment ID O						EXPIRES C					SON.	JN:			
TSICAL HAZARDS.																
NTR NO				<u></u>	E-ENTRY	REQUI						and a second second second	Fotosi ny gyddyddiain	-		
	Entry area is free of debris and objects. Varning barriers and signs are in place. Autospheric monitoring conducted. All hazardous lines have been isolated. Not work permitted (welding, cutting, grinding, etc.). All energy sources have been neutralized/locked out. The confined space has been drained and flushed. Forced air or exhaust ventilation is provided. Electrical equipment is properly grounded. Foround fault circuit interrupters (GFCI) provided.							 Low voltage (less than 25 v) lighting used. Electrical equipment rated for explosive atmospheres. No compressed gas cylinders in the confined space. Host employer and / or contractors notified. Entry and Emergency procedures have been reviewed. All personnel have been trained (classroom/exercise). All personnel have been informed of potential hazards. Attendant stationed at entrance and properly instructed. 								
and the second				P	ROTECTIV	/E EQU	IIPM	ENT								
	Iard Hat Sye / Face Prote Boots Hoves	e / Face ProtectionImage: Constraint of the sectorbotsImage: Constraint of the sectorImage: Constraint of t					YES	N/A	 Communications Equipment Respirator (type) Fire Extinguisher (type) 							
				AT	MOSPHER	IC MO	NITC	RIN	G			an a				
TEST(S) TO BE TAKEN*	YES	NO		CCEPTABI TWA••	E ENTRY COND	ITIONS OTHEF	2			ENTER	TIME ANI	D MEASUI	REMENT			
/gen					19.5 - 23.5%				-			1				
nbustible Gas			Below 10% LEL													
oon Monoxide			0–25 ppm 0–25 ppm													
trogen Sulfide			0–10 ppm 0–15 ppm													
monia			0-25	5 ppm	0–35 ppm											
- 															<u> </u>	
						ROVAL	<u> </u>			1			_1			
ERTIFY THAT ALL ESCRIBED WORK A					BEEN MET TO	O MAKE 1	THIS C			CE SAFE	FOR EN	TERING	AND CO	ONDUCTI	NG TH	
ry Supervisor's Signa	ture:									- Date:						
mit Prepared By	Prepared By						INITIAL					DATE				
nosphere Tester																
endant																
ponse Team Leader																
AVE BEEN PROPEI OCEDURES. (List ot		f form.)			TO THIS CONI	INED SP	ACE AI		NDERSTA . NO.	ND MY	DUTIES	AND EM	ERGEN		UATIC	
					**************************************							1	<u> </u>			
															·	
													·····	· · · · · · · · · · · · · · · · · · ·		

* = An evaluation should be performed to consider all potential air contaminants which could be present and represent a hazard.

** = ACGIH (1992–93) Threshold Limit Value

*** = ACGIH (1992–93) Short Term Exposure Limit (15 minute)

APPENDIX G

EMERGENCY CONTACT NUMBERS

EMERGENCY CONTACT NUMBERS

Medical, Fire, and Police:	911					
Dig Safely NY (UFPO):	(800) 962-7962 (3 day notice required for utility markout)					
Poison Control Center:	(800) 222-1222					
Pollution Toxic Chemical Oil Spills:	(800) 424-8802					
NYSDEC Spills Hotline	(800) 457-7362					
NYSDEC Project Manager	Mr. Josh Haugh Engineering Geologist Division of Environmental Remediation Region 4 Headquarters 1130 North Westcott Road Schenectady, NY 12306 Phone: (518) 357-2008					
Property Owner Representative	Mr. Rick Ehle RBC Construction, LLC 8 Paddocks Circle Saratoga Springs, NY 12866 Cell (518) 414-0466					
Environmental Consultant	Mr. Kirby Van Vleet Hanson Van Vleet, LLC 902 Route 146 Clifton Park, NY 12065 Cell: (518) 577-5291 Office: (518) 371-7940					

* Note: Contact numbers subject to change and should be updated as necessary