

ATLANTIC TESTING LABORATORIES

Utica

301 St. Anthony Street Utica, NY 13501 315-735-3309 (T) 315-735-0742 (F)

October 14, 2021

Hamilton College 198 College Hill Road Clinton, New York 13323

Attn: Barry Rivet

Re: Soil Stockpile Sampling and Analysis

Peter's Lane Stockpile

Hamilton, Oneida County, New York ATL Report No. UT5550CE-01-10-21

Ladies/Gentlemen:

Enclosed is a copy of the Soil Stockpile Sampling and Analysis Report prepared for the referenced site. This project was completed in accordance with the scope of work outlined in our contract (ATL No. UT5998-589-10-21).

Please contact our office should you have any questions, or if we may be of further assistance.

Sincerely,

ATLANTIC TESTING LABORATORIES, Limited

Matthew A. Clum, MBA, CHMM

Project Manager

MAC/CJD/mac

Enclosures

SOIL STOCKPILE SAMPLING AND ANALYSIS REPORT STOCKPILE AT PETER'S LANE SITE

HAMILTON COLLEGE
BOATHOUSE TOPSOIL PROJECT
CLINTON, ONEIDA COUNTY, NEW YORK

PREPARED FOR:

Hamilton College 198 College Hill Road Clinton, New York 13323

PREPARED BY:

Atlantic Testing Laboratories, Limited 301 St. Anthony Street Utica, New York 13501

ATL REPORT No. UT5550CE-01-10-21

October 14, 2021

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
1.1	Purpose	. 1
1.2	Site Description	. 1
	SOIL SAMPLING AND ANALYSIS	
2.1	Sample Locations and Sampling Methodology	. 1
2.2	Summary of Soil Sampling and Laboratory Analysis Data	. 1
3.0	SUMMARY OF FINDINGS	. 2
APF	PENDICES	
San	nple Location Plan	Α.
Sun	nary of Soil Sampling and Laboratory Analysis Results	В
	oratory Report and Associated Sample Custody Documentation	

1.0 INTRODUCTION

1.1 Purpose

Atlantic Testing Laboratories, Limited (ATL) was retained to provide soil stockpile sampling and analysis associated with the Hamilton College Peter's Lane site. The purpose of this report is to provide a summary of the sampling activities performed at the site on October 4, 2021, and associated laboratory analysis data.

1.2 Site Description

The subject property is the area bounded by a storage area with athletic fields beyond to the east, forested land to the west, storage areas and forested land to the south, and Peter's Lane to the north, in Clinton, Oneida County, New York. The soil stockpile was stored in the center of the storage area.

2.0 SOIL SAMPLING AND ANALYSIS

2.1 Sample Locations and Sampling Methodology

The soil stockpile is proposed to be transported off-site in support of the Hamilton College Boathouse Project. Approximately 1,500 cubic yards of fill were excavated and placed in an on-site stockpile. In accordance with the site Soil Management Plan and direction from Schumaker Consulting Engineering and Land Surveying, D.PC., 1 composite soil sample (comprised of 4 grab samples) was collected and submitted for subsequent laboratory analysis. A Sample Location Plan, depicting approximate sample locations, is included in Appendix A. In conjunction with soil sampling, a RAE Systems MiniRAE 3000 photoionization detector (PID), with a range of up to 15,000 parts per million (ppm), was utilized to screen soil samples for the measurable presence of volatile organic compounds (VOC).

The sample submitted for laboratory analysis was collected in clean laboratory glassware, with Teflon-lined lids, in accordance with industry standard protocol. Disposable sampling equipment (i.e., plastic bags and nitrile gloves) was utilized to collect and homogenize the samples. The sample was stored in a cooler with ice during storage and delivery to the laboratory. The sample for this project was submitted to Alpha Analytical located in Westborough, Massachusetts, a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) approved laboratory (ELAP No. 11148). The composite soil sample was laboratory analyzed for VOC, semi-VOC, pesticides, cyanide, target analyte list (TAL) metals, and polychlorinated biphenyls (PCB). A summary of the ambient and headspace PID readings and soil analysis results are contained in Appendix B, and a copy of the laboratory report and associated sample custody documentation is contained in Appendix C.

2.2 Summary of Soil Sampling and Laboratory Analysis Data

The PID did not detect a measureable concentration of VOC during the soil sampling event, as shown in Table B-1 of Appendix B. As indicated in Table B-2 of Appendix B, laboratory analysis of the composite soil sample identified detectable concentrations of various target semi-VOC, pesticides, and metals, some of which exceeded the NYSDEC Unrestricted Use Soil Cleanup Objectives (SCO) per 6 NYCRR Part 375 or NYSDEC CP-51, but did not exceed the 6 NYCRR Part 375/NYSDEC CP-360 Commercial or Industrial

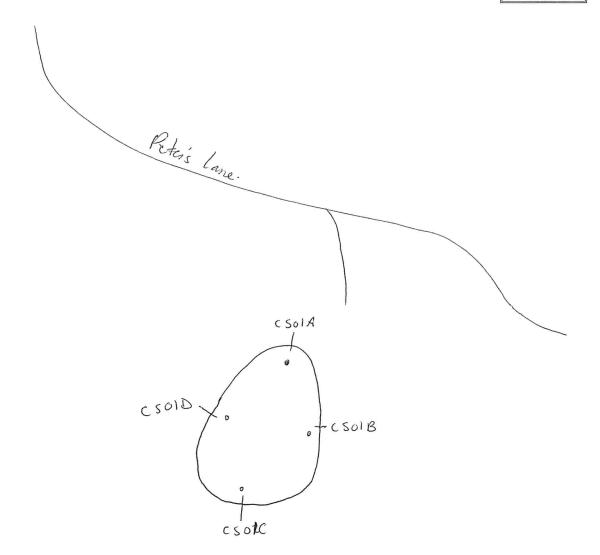
Soil Cleanup Levels. VOC, PCB, and cyanide were not detected in the sample analyzed. As compared to the 6 NYCRR Part 360 fill material beneficial use criteria, all detectable compounds satisfied the limits for the general fill, restricted-use fill, and limited-use fill.

3.0 SUMMARY OF FINDINGS

Information provided to ATL indicates the target stockpile was proposed for transport off-site for future use. The laboratory analysis results for the soil sample collected indicate that the soil does not contain significant levels of the target VOC, semi-VOC, PCB, or cyanide, as all target compounds for these analyses were non-detect or below the Unrestricted Use SCO per 6 NYCRR Part 375 or NYSDEC CP-51. Target metals and pesticides were also below the NYSDEC Unrestricted Use SCO, with the exception of cis-Chlordane, Trans-Chlordane, Iron, and Mercury. For the detected compounds, all reported concentrations satisfy the 6 NYCRR Part 360 criteria for general fill, restricted-use fill, and limited-use fill.

APPENDIX A

SAMPLE LOCATION PLAN


ATL Project No.: 115550 Location: Retris Care Contractor: Hamilton College

Date: 10/4 Representative: M. Clum

Weather:

NORTH

FIELD SKETCH

		REMARKS	:		
Reported	original sonace	: Sports	Sieldo	on (ampho.	
,	J	J			

Appendix B

SUMMARY OF SOIL SAMPLING AND LABORATORY ANALYSIS RESULTS

Table B-1 Summary of Photoionization Detector Readings Obtained During Soil Sampling Event on October 4, 2021

Sample ID	UT5550CS01							
PID Ambient Reading (ppm)	ND							
PID Headspace Reading (ppm)	ND							
ND = Not detected	ppm = parts per million, or mg/kg. ND = Not detected PID= Photoionization detector							
Sample is composite grab samples of the								

Table B-2 Summary of Laboratory Analysis Results- VOC, Semi-VOC, PCB, Cyanide, Pesticides, and Metals Soil Sample Collected October 4, 2021

Sample Location	Peter's Lane Stockpile	6NYCRR Part 375/NYSDEC CP-51	6NYCRR Part 375/NYSDEC CP-360	6NYCRR Part 375/NYSDEC CP-360	6 NYCRR Part	360 Fill Material Criteria	Beneficial Use
Sample ID	UT5550 CS01	Unrestricted Use Soil Cleanup Levels	Commercial Soil Cleanup Level	Industrial Soil Cleanup Level	General Fill	Restricted- Use Fill	Limited-Use Fill
			VOC (ppm)			
All Target Compounds	ND						
			Semi-VOC (p	pm)			
Indeno(1,2,3-cd)pyrene	0.052	0.5	5.6	11	0.5		
All Other Target Compounds	ND						
	l		PCB (ppm)			I
Total PCB	ND	0.1	1	25	1	1	1
		U	Cyanide (pp	m)	L	L	·!
Cyanide	ND	27	27	10.000	27	27	27
Cyaniac	ND	Li	Pesticides (p	-,	Li	Li	
4,4'-DDE	0.00294	0.0033	62	120	1.8	1.8	1.8
4.4'-DDT	0.00294	0.0033	47	94	1.7	1.7	1.7
cis-Chlordane	0.00758	0.005	1.4	2.8	0.039	0.039	0.039
Trans-Chlordane	0.00412	0.0033	62	120	1.8	1.8	1.8
All Other Target		0.0000		120		1.0	1.0
Compounds	ND						
Compounds	<u>I</u>	<u> </u>	TAL Metals (p	nm)			1
Aluminum	7,630	10,000					
Antimony	0.993	12					
Arsenic	8.69	13	16	16	16	16	16
Barium	69.9	350	400	10,000	350	350	400
Beryllium	0.453	7.2	590	2,700	14	14	590
Cadmium	0.868	2.5	9.3	60	2.5	2.5	2.5
Calcium	2,980	10,000					
Chromium	10.1	30	1,500	6,800	NS	NS	1,500
Cobalt	8.95	20					
Copper	23.2	50	270	10,000	270	270	270
Iron	22,500	2,000					
Lead	22.2	63	1,000	3,900	400	400	1,000
Magnesium	2,510						
Manganese	940	1,600	10,000	10,000	2,000	2,000	10,000
Mercury	0.181	0.18	2.8	5.7	0.73	0.73	2.8
Nickel	13.7	30	310	10,000	130	130	310
Potassium	570						
Selenium	ND	3.9	1,500	6,800	4	4	1,500
Silver	ND	2	1,500	6,800	8.3	8.3	1,500
Sodium	23.7						
Thallium	ND	5					
Vanadium	15.3	39					
Zinc	52.3	109	10,000	10,000	2,200	2,200	10,000
All Other Target Metals	ND						

Sample collected as composite comprised of 4 grab samples from the soil stockpile.

Sample collected by representatives of Atlantic Testing Laboratories, Limited on October 4, 2021 and analyzed by Alpha Analytical, Inc. (NYSDOH ELAP No. 11148).

Copies of the laboratory report and sample custody documentation are contained in Appendix C. Semi-VOC= semi-volatile organic compounds

PCB= polychlorinated biphenyls

TAL Metals= Target Analyte List Metals

ppm = parts per million, or mg/kg.
ND = Not detected above laboratory method detection limit

ND = Not detected above laboratory method detection limit
NA = Not Applicable Regulated Level Under 6 NYCRR PART 375
NYSDEC Unrestricted Use Soil Cleanup Devels were obtained from 6 NYCRR Part 375 (Unrestricted Use Soil Cleanup Objectives) or the NYSDEC Final Commissioner Policy,
CP-51, dated October 21, 2010 (most restrictive of available standards for Supplemental Soil Cleanup Objectives). NYSDEC Commercial Soil Cleanup Levels and Industrial Soil
Cleanup Levels were obtained from the corresponding standards listed in 6 NYCRR Part 375 or NYSDEC CP-51.
6 NYCRR Part 360 Fill Material Beneficial Criteria were obtained from the Maximum Contaminant Levels description in Table 2 of 6 NYCRR Part 360.13(f).

Appendix C

LABORATORY REPORT AND ASSOCIATED SAMPLE CUSTODY DOCUMENTATION

ANALYTICAL REPORT

Lab Number: L2153828

Client: Atlantic Testing Laboratories, Limited

301 St. Anthony Street

Utica, NY 13501

ATTN: Matt Clum

Phone: (315) 735-3309

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550
Report Date: 10/08/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number:

L2153828

Report Date:

10/08/21

Alpha Sample ID	Client ID Matrix		Sample Location	Collection Date/Time	Receive Date	
L2153828-01	UT5550CS01	SOIL	CLINTON, NY	10/04/21 13:00	10/04/21	

Project Name: BOATHOUSE- TOPSOIL Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number:

L2153828

Report Date:

10/08/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

Total Metals

L2153828-01: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

Cyanide, Total

The WG1555209-2/-3 LCS/LCSD recoveries for cyanide, total (56%/66%), associated with L2153828-01, are outside our in-house acceptance criteria, but within the vendor-certified acceptance limits. The results of the original analyses are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 10/08/21

ORGANICS

VOLATILES

10/04/21 13:00

Project Name: BOATHOUSE-TOPSOIL

Project Number: UT5550

SAMPLE RESULTS

Lab Number: L2153828

Date Collected:

Report Date: 10/08/21

Lab ID: L2153828-01

Client ID: UT5550CS01 Sample Location: CLINTON, NY Date Received: 10/04/21 Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 10/07/21 17:11

JC Analyst: 80% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/kg	5.9	2.7	1
1,1-Dichloroethane	ND		ug/kg	1.2	0.17	1
Chloroform	ND		ug/kg	1.8	0.16	1
Carbon tetrachloride	ND		ug/kg	1.2	0.27	1
1,2-Dichloropropane	ND		ug/kg	1.2	0.15	1
Dibromochloromethane	ND		ug/kg	1.2	0.16	1
1,1,2-Trichloroethane	ND		ug/kg	1.2	0.31	1
Tetrachloroethene	ND		ug/kg	0.59	0.23	1
Chlorobenzene	ND		ug/kg	0.59	0.15	1
Trichlorofluoromethane	ND		ug/kg	4.7	0.81	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.30	1
1,1,1-Trichloroethane	ND		ug/kg	0.59	0.20	1
Bromodichloromethane	ND		ug/kg	0.59	0.13	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.32	1
cis-1,3-Dichloropropene	ND		ug/kg	0.59	0.18	1
1,3-Dichloropropene, Total	ND		ug/kg	0.59	0.18	1
Bromoform	ND		ug/kg	4.7	0.29	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.59	0.19	1
Benzene	ND		ug/kg	0.59	0.19	1
Toluene	ND		ug/kg	1.2	0.64	1
Ethylbenzene	ND		ug/kg	1.2	0.16	1
Chloromethane	ND		ug/kg	4.7	1.1	1
Bromomethane	ND		ug/kg	2.3	0.68	1
Vinyl chloride	ND		ug/kg	1.2	0.39	1
Chloroethane	ND		ug/kg	2.3	0.53	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.28	1
trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.16	1
Trichloroethene	ND		ug/kg	0.59	0.16	1

Project Name: BOATHOUSE- TOPSOIL Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

SAMPLE RESULTS

Lab ID: L2153828-01 Date Collected: 10/04/21 13:00

Client ID: UT5550CS01 Date Received: 10/04/21 Sample Location: CLINTON, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
1,2-Dichlorobenzene	ND		ug/kg	2.3	0.17	1
1,3-Dichlorobenzene	ND		ug/kg	2.3	0.17	1
1,4-Dichlorobenzene	ND		ug/kg	2.3	0.20	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.24	1
p/m-Xylene	ND		ug/kg	2.3	0.66	1
o-Xylene	ND		ug/kg	1.2	0.34	1
Xylenes, Total	ND		ug/kg	1.2	0.34	1
cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.20	1
1,2-Dichloroethene, Total	ND		ug/kg	1.2	0.16	1
Styrene	ND		ug/kg	1.2	0.23	1
Dichlorodifluoromethane	ND		ug/kg	12	1.1	1
Acetone	ND		ug/kg	12	5.6	1
Carbon disulfide	ND		ug/kg	12	5.3	1
2-Butanone	ND		ug/kg	12	2.6	1
4-Methyl-2-pentanone	ND		ug/kg	12	1.5	1
2-Hexanone	ND		ug/kg	12	1.4	1
Bromochloromethane	ND		ug/kg	2.3	0.24	1
1,2-Dibromoethane	ND		ug/kg	1.2	0.33	1
n-Butylbenzene	ND		ug/kg	1.2	0.20	1
sec-Butylbenzene	ND		ug/kg	1.2	0.17	1
tert-Butylbenzene	ND		ug/kg	2.3	0.14	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.5	1.2	1
Isopropylbenzene	ND		ug/kg	1.2	0.13	1
p-Isopropyltoluene	ND		ug/kg	1.2	0.13	1
Naphthalene	ND		ug/kg	4.7	0.76	1
n-Propylbenzene	ND		ug/kg	1.2	0.20	1
1,2,3-Trichlorobenzene	ND		ug/kg	2.3	0.38	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.3	0.32	1
1,3,5-Trimethylbenzene	ND		ug/kg	2.3	0.23	1
1,2,4-Trimethylbenzene	ND		ug/kg	2.3	0.39	1
Methyl Acetate	ND		ug/kg	4.7	1.1	1
Cyclohexane	ND		ug/kg	12	0.64	1
1,4-Dioxane	ND		ug/kg	94	41.	1
Freon-113	ND		ug/kg	4.7	0.81	1
Methyl cyclohexane	ND		ug/kg	4.7	0.71	1

Project Name: BOATHOUSE- TOPSOIL Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

SAMPLE RESULTS

Lab ID: L2153828-01 Date Collected: 10/04/21 13:00

Client ID: UT5550CS01 Date Received: 10/04/21 Sample Location: CLINTON, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	104	70-130	

Project Name: BOATHOUSE- TOPSOIL Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/07/21 09:38

Analyst: MKS

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035	Low - Westboro	ugh Lab fo	or sample(s):	01	Batch:	WG1556132-5
Methylene chloride	ND		ug/kg	5.0		2.3
1,1-Dichloroethane	ND		ug/kg	1.0		0.14
Chloroform	ND		ug/kg	1.5		0.14
Carbon tetrachloride	ND		ug/kg	1.0		0.23
1,2-Dichloropropane	ND		ug/kg	1.0		0.12
Dibromochloromethane	ND		ug/kg	1.0		0.14
1,1,2-Trichloroethane	ND		ug/kg	1.0		0.27
Tetrachloroethene	ND		ug/kg	0.50		0.20
Chlorobenzene	ND		ug/kg	0.50		0.13
Trichlorofluoromethane	ND		ug/kg	4.0		0.70
1,2-Dichloroethane	ND		ug/kg	1.0		0.26
1,1,1-Trichloroethane	ND		ug/kg	0.50		0.17
Bromodichloromethane	ND		ug/kg	0.50		0.11
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.27
cis-1,3-Dichloropropene	ND		ug/kg	0.50		0.16
1,3-Dichloropropene, Total	ND		ug/kg	0.50		0.16
Bromoform	ND		ug/kg	4.0		0.25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		0.17
Benzene	ND		ug/kg	0.50		0.17
Toluene	ND		ug/kg	1.0		0.54
Ethylbenzene	ND		ug/kg	1.0		0.14
Chloromethane	2.2	J	ug/kg	4.0		0.93
Bromomethane	ND		ug/kg	2.0		0.58
Vinyl chloride	ND		ug/kg	1.0		0.34
Chloroethane	ND		ug/kg	2.0		0.45
1,1-Dichloroethene	ND		ug/kg	1.0		0.24
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.14
Trichloroethene	ND		ug/kg	0.50		0.14
1,2-Dichlorobenzene	ND		ug/kg	2.0		0.14

Project Name: BOATHOUSE- TOPSOIL Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/07/21 09:38

Analyst: MKS

Parameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 Low	- Westborou	ugh Lab fo	r sample(s):	01	Batch:	WG1556132-5
1,3-Dichlorobenzene	ND		ug/kg	2.0		0.15
1,4-Dichlorobenzene	0.17	J	ug/kg	2.0		0.17
Methyl tert butyl ether	ND		ug/kg	2.0		0.20
p/m-Xylene	ND		ug/kg	2.0		0.56
o-Xylene	ND		ug/kg	1.0		0.29
Xylenes, Total	ND		ug/kg	1.0		0.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0		0.18
1,2-Dichloroethene, Total	ND		ug/kg	1.0		0.14
Styrene	0.21	J	ug/kg	1.0		0.20
Dichlorodifluoromethane	ND		ug/kg	10		0.92
Acetone	ND		ug/kg	10		4.8
Carbon disulfide	ND		ug/kg	10		4.6
2-Butanone	ND		ug/kg	10		2.2
4-Methyl-2-pentanone	ND		ug/kg	10		1.3
2-Hexanone	ND		ug/kg	10		1.2
Bromochloromethane	ND		ug/kg	2.0		0.20
1,2-Dibromoethane	ND		ug/kg	1.0		0.28
n-Butylbenzene	ND		ug/kg	1.0		0.17
sec-Butylbenzene	ND		ug/kg	1.0		0.15
tert-Butylbenzene	ND		ug/kg	2.0		0.12
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0
Isopropylbenzene	ND		ug/kg	1.0		0.11
p-Isopropyltoluene	ND		ug/kg	1.0		0.11
Naphthalene	ND		ug/kg	4.0		0.65
n-Propylbenzene	ND		ug/kg	1.0		0.17
1,2,3-Trichlorobenzene	ND		ug/kg	2.0		0.32
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		0.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		0.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		0.33

Project Name: BOATHOUSE- TOPSOIL Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/07/21 09:38

Analyst: MKS

WG1556132-5
0.95
0.54
35.
0.69
0.60

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	110		70-130	

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number: L2153828

Parameter	LCS %Recovery	LCS Qual %Reco		%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 Low - Westh	oorough Lab Ass	ociated sample(s): 01	Batch: WG15561	132-3 WG155613	2-4	
Methylene chloride	102	10	03	70-130	1	30
1,1-Dichloroethane	95	94	4	70-130	1	30
Chloroform	90	9	0	70-130	0	30
Carbon tetrachloride	103	10	03	70-130	0	30
1,2-Dichloropropane	100	10	03	70-130	3	30
Dibromochloromethane	94	10	02	70-130	8	30
1,1,2-Trichloroethane	90	9	8	70-130	9	30
Tetrachloroethene	106	10	08	70-130	2	30
Chlorobenzene	99	10	03	70-130	4	30
Trichlorofluoromethane	100	9:	9	70-139	1	30
1,2-Dichloroethane	93	9:	5	70-130	2	30
1,1,1-Trichloroethane	96	9	7	70-130	1	30
Bromodichloromethane	87	8	9	70-130	2	30
trans-1,3-Dichloropropene	96	10	03	70-130	7	30
cis-1,3-Dichloropropene	101	10)4	70-130	3	30
Bromoform	92	9:	9	70-130	7	30
1,1,2,2-Tetrachloroethane	83	9.	4	70-130	12	30
Benzene	98	9:	9	70-130	1	30
Toluene	98	10)1	70-130	3	30
Ethylbenzene	101	10	03	70-130	2	30
Chloromethane	98	9	6	52-130	2	30
Bromomethane	102	10)1	57-147	1	30
Vinyl chloride	100	9:	9	67-130	1	30

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number: L2153828

Parameter	LCS %Recovery	LCSD Qual %Recove		RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - Westh	oorough Lab Ass	ociated sample(s): 01	Batch: WG1556132-3 WG155	6132-4	
Chloroethane	82	82	50-151	0	30
1,1-Dichloroethene	92	92	65-135	0	30
trans-1,2-Dichloroethene	88	88	70-130	0	30
Trichloroethene	97	98	70-130	1	30
1,2-Dichlorobenzene	96	99	70-130	3	30
1,3-Dichlorobenzene	98	100	70-130	2	30
1,4-Dichlorobenzene	97	99	70-130	2	30
Methyl tert butyl ether	87	96	66-130	10	30
p/m-Xylene	98	99	70-130	1	30
o-Xylene	97	99	70-130	2	30
cis-1,2-Dichloroethene	89	91	70-130	2	30
Styrene	96	98	70-130	2	30
Dichlorodifluoromethane	95	94	30-146	1	30
Acetone	64	74	54-140	14	30
Carbon disulfide	95	94	59-130	1	30
2-Butanone	74	87	70-130	16	30
4-Methyl-2-pentanone	83	97	70-130	16	30
2-Hexanone	73	88	70-130	19	30
Bromochloromethane	90	90	70-130	0	30
1,2-Dibromoethane	97	108	70-130	11	30
n-Butylbenzene	102	103	70-130	1	30
sec-Butylbenzene	101	102	70-130	1	30
tert-Butylbenzene	103	104	70-130	1	30

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number: L2153828

rameter	LCS %Recovery	Qual %	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 Low - Westbo	rough Lab Asso	ociated sample(s): 01 Bat	ch: WG1556	6132-3 WG15561	32-4		
1,2-Dibromo-3-chloropropane	84		96		68-130	13		30
Isopropylbenzene	103		102		70-130	1		30
p-Isopropyltoluene	102		102		70-130	0		30
Naphthalene	89		99		70-130	11		30
n-Propylbenzene	102		102		70-130	0		30
1,2,3-Trichlorobenzene	92		98		70-130	6		30
1,2,4-Trichlorobenzene	93		98		70-130	5		30
1,3,5-Trimethylbenzene	101		101		70-130	0		30
1,2,4-Trimethylbenzene	99		99		70-130	0		30
Methyl Acetate	83		94		51-146	12		30
Cyclohexane	107		108		59-142	1		30
1,4-Dioxane	83		94		65-136	12		30
Freon-113	101		100		50-139	1		30
Methyl cyclohexane	96		99		70-130	3		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	94	94	70-130
Toluene-d8	102	103	70-130
4-Bromofluorobenzene	99	99	70-130
Dibromofluoromethane	91	92	70-130

SEMIVOLATILES

L2153828

10/04/21 13:00

Project Name: BOATHOUSE-TOPSOIL

10/06/21 05:09

Project Number: UT5550

SAMPLE RESULTS

Report Date: 10/08/21

Lab Number:

Date Collected:

Lab ID: L2153828-01

Date Received: Client ID: UT5550CS01 10/04/21 Sample Location: Field Prep: CLINTON, NY Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 10/05/21 13:40 Analytical Method: 1,8270D

Analyst: CMM 80% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/kg	160	21.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	200	24.	1	
Hexachlorobenzene	ND		ug/kg	120	23.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	180	28.	1	
2-Chloronaphthalene	ND		ug/kg	200	20.	1	
1,2-Dichlorobenzene	ND		ug/kg	200	37.	1	
1,3-Dichlorobenzene	ND		ug/kg	200	35.	1	
1,4-Dichlorobenzene	ND		ug/kg	200	36.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	200	55.	1	
2,4-Dinitrotoluene	ND		ug/kg	200	41.	1	
2,6-Dinitrotoluene	ND		ug/kg	200	35.	1	
Fluoranthene	ND		ug/kg	120	24.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	200	22.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	200	31.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	250	35.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	220	21.	1	
Hexachlorobutadiene	ND		ug/kg	200	30.	1	
Hexachlorocyclopentadiene	ND		ug/kg	590	190	1	
Hexachloroethane	ND		ug/kg	160	33.	1	
Isophorone	ND		ug/kg	180	27.	1	
Naphthalene	ND		ug/kg	200	25.	1	
Nitrobenzene	ND		ug/kg	180	30.	1	
NDPA/DPA	ND		ug/kg	160	23.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	200	32.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	200	71.	1	
Butyl benzyl phthalate	ND		ug/kg	200	52.	1	
Di-n-butylphthalate	ND		ug/kg	200	39.	1	
Di-n-octylphthalate	ND		ug/kg	200	70.	1	

Project Name: BOATHOUSE- TOPSOIL Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

SAMPLE RESULTS

Lab ID: Date Collected: 10/04/21 13:00

Client ID: UT5550CS01 Date Received: 10/04/21 Sample Location: CLINTON, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Westborough Lab					
Diethyl phthalate	ND		ug/kg	200	19.	1
Dimethyl phthalate	ND		ug/kg	200	43.	1
Benzo(a)anthracene	ND		ug/kg	120	23.	1
Benzo(a)pyrene	ND		ug/kg	160	50.	1
Benzo(b)fluoranthene	ND		ug/kg	120	35.	1
Benzo(k)fluoranthene	ND		ug/kg	120	33.	1
Chrysene	ND		ug/kg	120	21.	1
Acenaphthylene	ND		ug/kg	160	32.	1
Anthracene	ND		ug/kg	120	40.	1
Benzo(ghi)perylene	ND		ug/kg	160	24.	1
Fluorene	ND		ug/kg	200	20.	1
Phenanthrene	ND		ug/kg	120	25.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	24.	1
Indeno(1,2,3-cd)pyrene	52	J	ug/kg	160	29.	1
Pyrene	ND		ug/kg	120	20.	1
Biphenyl	ND		ug/kg	470	48.	1
4-Chloroaniline	ND		ug/kg	200	37.	1
2-Nitroaniline	ND		ug/kg	200	40.	1
3-Nitroaniline	ND		ug/kg	200	39.	1
4-Nitroaniline	ND		ug/kg	200	85.	1
Dibenzofuran	ND		ug/kg	200	19.	1
2-Methylnaphthalene	ND		ug/kg	250	25.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	200	21.	1
Acetophenone	ND		ug/kg	200	25.	1
Benzyl Alcohol	ND		ug/kg	200	63.	1
Carbazole	ND		ug/kg	200	20.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	68	25-120
Phenol-d6	72	10-120
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	73	30-120
2,4,6-Tribromophenol	94	10-136
4-Terphenyl-d14	60	18-120

Project Name: BOATHOUSE- TOPSOIL **Lab Number:** L2153828

Project Number: UT5550 Report Date: 10/08/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 10/06/21 03:16 Extraction Date: 10/05/21 13:40

Analyst: CMM

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01 Batch	: WG1554713-1
Acenaphthene	ND		ug/kg	130	17.
1,2,4-Trichlorobenzene	ND		ug/kg	160	19.
Hexachlorobenzene	ND		ug/kg	99	18.
Bis(2-chloroethyl)ether	ND		ug/kg	150	22.
2-Chloronaphthalene	ND		ug/kg	160	16.
1,2-Dichlorobenzene	ND		ug/kg	160	30.
1,3-Dichlorobenzene	ND		ug/kg	160	28.
1,4-Dichlorobenzene	ND		ug/kg	160	29.
3,3'-Dichlorobenzidine	ND		ug/kg	160	44.
2,4-Dinitrotoluene	ND		ug/kg	160	33.
2,6-Dinitrotoluene	ND		ug/kg	160	28.
Fluoranthene	ND		ug/kg	99	19.
4-Chlorophenyl phenyl ether	ND		ug/kg	160	18.
4-Bromophenyl phenyl ether	ND		ug/kg	160	25.
Bis(2-chloroisopropyl)ether	ND		ug/kg	200	28.
Bis(2-chloroethoxy)methane	ND		ug/kg	180	16.
Hexachlorobutadiene	ND		ug/kg	160	24.
Hexachlorocyclopentadiene	ND		ug/kg	470	150
Hexachloroethane	ND		ug/kg	130	27.
Isophorone	ND		ug/kg	150	21.
Naphthalene	ND		ug/kg	160	20.
Nitrobenzene	ND		ug/kg	150	24.
NDPA/DPA	ND		ug/kg	130	19.
n-Nitrosodi-n-propylamine	ND		ug/kg	160	25.
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160	57.
Butyl benzyl phthalate	ND		ug/kg	160	42.
Di-n-butylphthalate	ND		ug/kg	160	31.
Di-n-octylphthalate	ND		ug/kg	160	56.
Diethyl phthalate	ND		ug/kg	160	15.

Project Name: BOATHOUSE-TOPSOIL Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 10/06/21 03:16 Extraction Date: 10/05/21 13:40

Analyst: CMM

arameter	Result	Qualifier	Units		RL	MDL	
emivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG1554713-1	
Dimethyl phthalate	ND		ug/kg		160	35.	
Benzo(a)anthracene	ND		ug/kg		99	18.	
Benzo(a)pyrene	ND		ug/kg		130	40.	
Benzo(b)fluoranthene	ND		ug/kg		99	28.	
Benzo(k)fluoranthene	ND		ug/kg		99	26.	
Chrysene	ND		ug/kg		99	17.	
Acenaphthylene	ND		ug/kg		130	25.	
Anthracene	ND		ug/kg		99	32.	
Benzo(ghi)perylene	ND		ug/kg		130	19.	
Fluorene	ND		ug/kg		160	16.	
Phenanthrene	ND		ug/kg		99	20.	
Dibenzo(a,h)anthracene	ND		ug/kg		99	19.	
Indeno(1,2,3-cd)pyrene	ND		ug/kg		130	23.	
Pyrene	ND		ug/kg		99	16.	
Biphenyl	ND		ug/kg		380	38.	
4-Chloroaniline	ND		ug/kg		160	30.	
2-Nitroaniline	ND		ug/kg		160	32.	
3-Nitroaniline	ND		ug/kg		160	31.	
4-Nitroaniline	ND		ug/kg		160	68.	
Dibenzofuran	ND		ug/kg		160	16.	
2-Methylnaphthalene	ND		ug/kg		200	20.	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg		160	17.	
Acetophenone	ND		ug/kg		160	20.	
Benzyl Alcohol	ND		ug/kg		160	50.	
Carbazole	ND		ug/kg		160	16.	

Project Name: BOATHOUSE- TOPSOIL Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 10/06/21 03:16 Extraction Date: 10/05/21 13:40

Analyst: CMM

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1554713-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	73	25-120
Phenol-d6	77	10-120
Nitrobenzene-d5	67	23-120
2-Fluorobiphenyl	79	30-120
2,4,6-Tribromophenol	97	10-136
4-Terphenyl-d14	95	18-120

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number: L2153828

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbore	ough Lab Associ	ated sample(s):	01 Batch:	WG1554713-2	2 WG1554713-3			
Acenaphthene	82		77		31-137	6	50	
1,2,4-Trichlorobenzene	84		78		38-107	7	50	
Hexachlorobenzene	100		93		40-140	7	50	
Bis(2-chloroethyl)ether	70		64		40-140	9	50	
2-Chloronaphthalene	86		81		40-140	6	50	
1,2-Dichlorobenzene	78		73		40-140	7	50	
1,3-Dichlorobenzene	76		71		40-140	7	50	
1,4-Dichlorobenzene	77		72		28-104	7	50	
3,3'-Dichlorobenzidine	70		66		40-140	6	50	
2,4-Dinitrotoluene	97		88		40-132	10	50	
2,6-Dinitrotoluene	96		90		40-140	6	50	
Fluoranthene	93		87		40-140	7	50	
4-Chlorophenyl phenyl ether	88		82		40-140	7	50	
4-Bromophenyl phenyl ether	97		90		40-140	7	50	
Bis(2-chloroisopropyl)ether	55		52		40-140	6	50	
Bis(2-chloroethoxy)methane	69		65		40-117	6	50	
Hexachlorobutadiene	91		87		40-140	4	50	
Hexachlorocyclopentadiene	89		82		40-140	8	50	
Hexachloroethane	73		68		40-140	7	50	
Isophorone	72		67		40-140	7	50	
Naphthalene	81		75		40-140	8	50	
Nitrobenzene	73		68		40-140	7	50	
NDPA/DPA	89		81		36-157	9	50	

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number: L2153828

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westh	borough Lab Associ	ated sample(s):	01 Batch:	WG1554713-2	2 WG1554713-3		
n-Nitrosodi-n-propylamine	70		66		32-121	6	50
Bis(2-ethylhexyl)phthalate	85		79		40-140	7	50
Butyl benzyl phthalate	89		82		40-140	8	50
Di-n-butylphthalate	86		80		40-140	7	50
Di-n-octylphthalate	86		79		40-140	8	50
Diethyl phthalate	85		78		40-140	9	50
Dimethyl phthalate	89		83		40-140	7	50
Benzo(a)anthracene	90		85		40-140	6	50
Benzo(a)pyrene	104		98		40-140	6	50
Benzo(b)fluoranthene	100		95		40-140	5	50
Benzo(k)fluoranthene	99		90		40-140	10	50
Chrysene	89		83		40-140	7	50
Acenaphthylene	88		82		40-140	7	50
Anthracene	88		82		40-140	7	50
Benzo(ghi)perylene	106		100		40-140	6	50
Fluorene	87		81		40-140	7	50
Phenanthrene	84		80		40-140	5	50
Dibenzo(a,h)anthracene	106		99		40-140	7	50
Indeno(1,2,3-cd)pyrene	93		88		40-140	6	50
Pyrene	92		86		35-142	7	50
Biphenyl	88		83		37-127	6	50
4-Chloroaniline	61		56		40-140	9	50
2-Nitroaniline	95		88		47-134	8	50

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number: L2153828

nrameter	LCS %Recovery Qu	LCSD al %Recovery	9 Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - W	•	ample(s): 01 Batch:	WG1554713-2	WG1554713-	3		
3-Nitroaniline	74	68		26-129	8		50
4-Nitroaniline	83	77		41-125	8		50
Dibenzofuran	84	78		40-140	7		50
2-Methylnaphthalene	84	79		40-140	6		50
1,2,4,5-Tetrachlorobenzene	96	90		40-117	6		50
Acetophenone	80	75		14-144	6		50
Benzyl Alcohol	81	75		40-140	8		50
Carbazole	89	83		54-128	7		50

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	79	73	25-120
Phenol-d6	80	74	10-120
Nitrobenzene-d5	73	68	23-120
2-Fluorobiphenyl	82	77	30-120
2,4,6-Tribromophenol	102	94	10-136
4-Terphenyl-d14	94	86	18-120

PCBS

Project Name: BOATHOUSE- TOPSOIL Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

SAMPLE RESULTS

Lab ID: Date Collected: 10/04/21 13:00

Client ID: UT5550CS01 Date Received: 10/04/21 Sample Location: CLINTON, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 10/06/21 17:40

Analytical Date: 10/07/21 10:18 Cleanup Method: EPA 3665A
Analyst: JM Cleanup Date: 10/07/21
Percent Solids: 80% Cleanup Method: EPA 3660B

Cleanup Date: 10/07/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - West	borough Lab						
Aroclor 1016	ND		mg/kg	0.0394	0.00350	1	Α
Aroclor 1221	ND		mg/kg	0.0394	0.00395	1	Α
Aroclor 1232	ND		mg/kg	0.0394	0.00835	1	Α
Aroclor 1242	ND		mg/kg	0.0394	0.00531	1	Α
Aroclor 1248	ND		mg/kg	0.0394	0.00591	1	Α
Aroclor 1254	ND		mg/kg	0.0394	0.00431	1	Α
Aroclor 1260	ND		mg/kg	0.0394	0.00728	1	Α
Aroclor 1262	ND		mg/kg	0.0394	0.00500	1	Α
Aroclor 1268	ND		mg/kg	0.0394	0.00408	1	Α
PCBs, Total	ND		mg/kg	0.0394	0.00350	1	Α

			Acceptance		
Surrogate	% Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	41		30-150	Α	
Decachlorobiphenyl	44		30-150	Α	
2,4,5,6-Tetrachloro-m-xylene	43		30-150	В	
Decachlorobiphenyl	50		30-150	В	

Project Name: BOATHOUSE-TOPSOIL Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 10/07/21 09:54

Analyst: JM

Extraction Method: EPA 3546
Extraction Date: 10/06/21 17:40
Cleanup Method: EPA 3665A
Cleanup Date: 10/07/21
Cleanup Method: EPA 3660B
Cleanup Date: 10/07/21

Parameter	Result	Qualifier	Units		RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	Lab for sa	mple(s):	01	Batch:	WG1555341	-1
Aroclor 1016	ND		mg/kg	0.	0329	0.00292	Α
Aroclor 1221	ND		mg/kg	0.	0329	0.00329	Α
Aroclor 1232	ND		mg/kg	0.	0329	0.00697	Α
Aroclor 1242	ND		mg/kg	0.	0329	0.00443	Α
Aroclor 1248	ND		mg/kg	0.	0329	0.00493	Α
Aroclor 1254	ND		mg/kg	0.	0329	0.00360	А
Aroclor 1260	ND		mg/kg	0.	0329	0.00607	Α
Aroclor 1262	ND		mg/kg	0.	0329	0.00417	Α
Aroclor 1268	ND		mg/kg	0.	0329	0.00340	Α
PCBs, Total	ND		mg/kg	0.	0329	0.00292	А

		Acceptance	1Ce	
Surrogate	%Recovery Qualifie	r Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	66	30-150	Α	
Decachlorobiphenyl	84	30-150	Α	
2,4,5,6-Tetrachloro-m-xylene	68	30-150	В	
Decachlorobiphenyl	91	30-150	В	

Lab Control Sample Analysis Batch Quality Control

Project Name: BOATHOUSE-TOPSOIL

Lab Number:

L2153828

Project Number: UT5550

	LCS		LCSD	%	6Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westbo	rough Lab Associa	ted sample(s):	01 Batch:	WG1555341-2	WG1555341-3	•			
Aroclor 1016	77		71		40-140	8		50	Α
Aroclor 1260	79		74		40-140	7		50	Α

Surrogate	LCS %Recovery 0	LCSD Qual %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	71	66	30-150 A
Decachlorobiphenyl	84	75	30-150 A
2,4,5,6-Tetrachloro-m-xylene	72	68	30-150 B
Decachlorobiphenyl	91	87	30-150 B

PESTICIDES

Project Name: BOATHOUSE- TOPSOIL Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

SAMPLE RESULTS

Lab ID: L2153828-01 Date Collected: 10/04/21 13:00

Client ID: UT5550CS01 Date Received: 10/04/21 Sample Location: CLINTON, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 10/05/21 11:45
Analytical Date: 10/06/21 14:14 Cleanup Method: EPA 3620B

Analytical Date: 10/06/21 14:14 Cleanup Method: EPA 36208
Analyst: JAW Cleanup Date: 10/06/21

Percent Solids: 80%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - Westl	oorough Lab						
Delta-BHC	ND		ug/kg	1.91	0.374	1	А
Lindane	ND		ug/kg	0.797	0.356	1	A
Alpha-BHC	ND		ug/kg	0.797	0.226	1	Α
Beta-BHC	ND		ug/kg	1.91	0.725	1	Α
Heptachlor	ND		ug/kg	0.956	0.429	1	Α
Aldrin	ND		ug/kg	1.91	0.673	1	Α
Heptachlor epoxide	ND		ug/kg	3.58	1.08	1	Α
Endrin	ND		ug/kg	0.797	0.327	1	Α
Endrin aldehyde	ND		ug/kg	2.39	0.836	1	Α
Endrin ketone	ND		ug/kg	1.91	0.492	1	Α
Dieldrin	ND		ug/kg	1.20	0.598	1	А
4,4'-DDE	2.94		ug/kg	1.91	0.442	1	А
4,4'-DDD	ND		ug/kg	1.91	0.682	1	А
4,4'-DDT	1.79	JP	ug/kg	3.58	1.54	1	Α
Endosulfan I	ND		ug/kg	1.91	0.452	1	Α
Endosulfan II	ND		ug/kg	1.91	0.639	1	Α
Endosulfan sulfate	ND		ug/kg	0.797	0.379	1	Α
Methoxychlor	ND		ug/kg	3.58	1.12	1	Α
Toxaphene	ND		ug/kg	35.8	10.0	1	Α
cis-Chlordane	7.58	IP	ug/kg	2.39	0.666	1	В
trans-Chlordane	4.12		ug/kg	2.39	0.631	1	Α
Chlordane	ND		ug/kg	15.9	6.33	1	Α

Project Name: Lab Number: **BOATHOUSE-TOPSOIL** L2153828

Project Number: Report Date: UT5550 10/08/21

SAMPLE RESULTS

Lab ID: Date Collected: 10/04/21 13:00 L2153828-01

Date Received: Client ID: 10/04/21 UT5550CS01 Sample Location: Field Prep: CLINTON, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Column Parameter

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	104		30-150	Α
Decachlorobiphenyl	134		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	87		30-150	В
Decachlorobiphenyl	109		30-150	В

Project Name: BOATHOUSE-TOPSOIL Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8081B Analytical Date: 10/06/21 13:40

Analyst: JAW

Extraction Method: EPA 3546
Extraction Date: 10/05/21 10:21
Cleanup Method: EPA 3620B
Cleanup Date: 10/06/21

Parameter	Result	Qualifier	Units	R	L	MDL	Column
Organochlorine Pesticides by GC	- Westboroug	h Lab for	sample(s):	01	Batch:	WG15	54539-1
Delta-BHC	ND		ug/kg	1.	54	0.30)1 A
Lindane	ND		ug/kg	0.6	641	0.28	36 A
Alpha-BHC	ND		ug/kg	0.6	641	0.18	32 A
Beta-BHC	ND		ug/kg	1.	54	0.58	33 A
Heptachlor	ND		ug/kg	0.7	769	0.34	15 A
Aldrin	ND		ug/kg	1.	54	0.54	12 A
Heptachlor epoxide	ND		ug/kg	2.	88	0.86	65 A
Endrin	ND		ug/kg	0.6	641	0.26	63 A
Endrin aldehyde	ND		ug/kg	1.	92	0.67	73 A
Endrin ketone	ND		ug/kg	1.	54	0.39	96 A
Dieldrin	ND		ug/kg	0.9	962	0.48	31 A
4,4'-DDE	ND		ug/kg	1.	54	0.35	66 A
4,4'-DDD	ND		ug/kg	1.	54	0.54	19 A
4,4'-DDT	ND		ug/kg	2.	88	1.2	4 A
Endosulfan I	ND		ug/kg	1.	54	0.36	3 A
Endosulfan II	ND		ug/kg	1.	54	0.51	4 A
Endosulfan sulfate	ND		ug/kg	0.6	641	0.30	05 A
Methoxychlor	ND		ug/kg	2.	88	0.89	97 A
Toxaphene	ND		ug/kg	28	3.8	8.08	8 A
cis-Chlordane	ND		ug/kg	1.	92	0.53	86 A
trans-Chlordane	ND		ug/kg	1.	92	0.50	08 A
Chlordane	ND		ug/kg	12	2.8	5.10	0 A

Project Name: BOATHOUSE- TOPSOIL **Lab Number:** L2153828

Project Number: UT5550 Report Date: 10/08/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8081B Analytical Date: 10/06/21 13:40

Analyst: JAW

Extraction Method: EPA 3546
Extraction Date: 10/05/21 10:21
Cleanup Method: EPA 3620B
Cleanup Date: 10/06/21

ParameterResultQualifierUnitsRLMDLColumnOrganochlorine Pesticides by GC - Westborough Lab for sample(s):01Batch:WG1554539-1

		Acceptance				
Surrogate	%Recovery Qual	ifier Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	103	30-150	Δ			
•			A			
Decachlorobiphenyl	142	30-150	Α			
2,4,5,6-Tetrachloro-m-xylene	89	30-150	В			
Decachlorobiphenyl	97	30-150	В			

Lab Control Sample Analysis Batch Quality Control

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number: L2153828

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
organochlorine Pesticides by GC - Westborou	ugh Lab Assoc	iated sample(s	s): 01 Batch:	WG1554539-2	2 WG1554539-3				
Delta-BHC	87		90		30-150	3		30	Α
Lindane	91		96		30-150	5		30	А
Alpha-BHC	85		88		30-150	3		30	А
Beta-BHC	89		89		30-150	0		30	А
Heptachlor	102		102		30-150	0		30	А
Aldrin	94		100		30-150	6		30	А
Heptachlor epoxide	83		91		30-150	9		30	А
Endrin	100		104		30-150	4		30	А
Endrin aldehyde	61		72		30-150	17		30	А
Endrin ketone	86		92		30-150	7		30	А
Dieldrin	104		110		30-150	6		30	А
4,4'-DDE	95		101		30-150	6		30	А
4,4'-DDD	104		110		30-150	6		30	А
4,4'-DDT	104		110		30-150	6		30	А
Endosulfan I	92		95		30-150	3		30	А
Endosulfan II	94		100		30-150	6		30	А
Endosulfan sulfate	87		93		30-150	7		30	А
Methoxychlor	93		107		30-150	14		30	А
cis-Chlordane	77		80		30-150	4		30	А
trans-Chlordane	113		116		30-150	3		30	Α

L2153828

Lab Control Sample Analysis

Project Name: BOATHOUSE- TOPSOIL

Batch Quality Control Lab Number:

Project Number: UT5550 Report Date: 10/08/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 Batch: WG1554539-2 WG1554539-3

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	97	101	30-150 A
Decachlorobiphenyl	143	150	30-150 A
2,4,5,6-Tetrachloro-m-xylene	87	85	30-150 B
Decachlorobiphenyl	108	105	30-150 B

METALS

Project Name: BOATHOUSE- TOPSOIL Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

SAMPLE RESULTS

Lab ID:L2153828-01Date Collected:10/04/21 13:00Client ID:UT5550CS01Date Received:10/04/21Sample Location:CLINTON, NYField Prep:Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 80%

Dilution Date Date Prep **Analytical** Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst Total Metals - Mansfield Lab Aluminum, Total 7630 mg/kg 9.64 2.60 2 10/05/21 16:30 10/06/21 11:48 EPA 3050B 1,6010D GD J 4.82 2 1,6010D Antimony, Total 0.993 mg/kg 0.366 10/05/21 16:30 10/06/21 11:48 EPA 3050B GD 2 Arsenic, Total 8.69 mg/kg 0.964 0.201 10/05/21 16:30 10/06/21 11:48 EPA 3050B 1,6010D GD 2 Barium, Total 69.9 0.964 0.168 10/05/21 16:30 10/06/21 11:48 EPA 3050B 1,6010D GD mg/kg J 0.032 2 1,6010D Beryllium, Total 0.453 mg/kg 0.482 10/05/21 16:30 10/06/21 11:48 EPA 3050B GD J 2 0.095 1,6010D GD Cadmium, Total 0.868 mg/kg 0.964 10/05/21 16:30 10/06/21 11:48 EPA 3050B Calcium, Total 2980 9.64 3.38 2 1,6010D mg/kg 10/05/21 16:30 10/06/21 11:48 EPA 3050B GD 2 1,6010D 10.1 0.964 0.093 10/05/21 16:30 10/06/21 11:48 EPA 3050B GD Chromium, Total mg/kg 2 8.95 1,6010D Cobalt, Total mg/kg 1.93 0.160 10/05/21 16:30 10/06/21 11:48 EPA 3050B GD 2 1,6010D Copper, Total 23.2 0.964 0.249 10/05/21 16:30 10/06/21 11:48 EPA 3050B GD mg/kg 22500 2 1,6010D Iron, Total 4.82 0.871 10/05/21 16:30 10/06/21 11:48 EPA 3050B GD mg/kg 22.2 2 Lead, Total mg/kg 4.82 0.258 10/05/21 16:30 10/06/21 11:48 EPA 3050B 1,6010D GD Magnesium, Total 2510 9.64 1.48 2 10/05/21 16:30 10/06/21 11:48 EPA 3050B 1,6010D GD mg/kg 940 0.964 0.153 2 1,6010D GD Manganese, Total mg/kg 10/05/21 16:30 10/06/21 11:48 EPA 3050B Mercury, Total 0.181 mg/kg 0.096 0.063 1 10/05/21 16:47 10/06/21 09:08 EPA 7471B 1,7471B AC Nickel, Total 13.7 2.41 0.233 2 10/05/21 16:30 10/06/21 11:48 EPA 3050B 1,6010D GD mg/kg 570 2 1,6010D Potassium, Total mg/kg 241 13.9 10/05/21 16:30 10/06/21 11:48 EPA 3050B GD Selenium, Total ND mg/kg 1.93 0.249 2 10/05/21 16:30 10/06/21 11:48 EPA 3050B 1,6010D GD Silver, Total ND mg/kg 0.964 0.273 2 10/05/21 16:30 10/06/21 11:48 EPA 3050B 1,6010D GD J Sodium, Total 23.7 mg/kg 193 3.04 2 10/05/21 16:30 10/06/21 11:48 EPA 3050B 1,6010D GD Thallium, Total ND mg/kg 1.93 0.304 2 10/05/21 16:30 10/06/21 11:48 EPA 3050B 1,6010D GD Vanadium, Total 15.3 0.964 0.196 2 10/05/21 16:30 10/06/21 11:48 EPA 3050B 1,6010D mg/kg GD 2 1,6010D 52.3 4.82 0.283 GD Zinc, Total mg/kg 10/05/21 16:30 10/06/21 11:48 EPA 3050B

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number:

L2153828

Report Date: 10/08/21

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sar	nple(s):	01 Batch	n: WG1	554605-	1				
Aluminum, Total	ND		mg/kg	4.00	1.08	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Antimony, Total	ND		mg/kg	2.00	0.152	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Arsenic, Total	ND		mg/kg	0.400	0.083	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Barium, Total	ND		mg/kg	0.400	0.070	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Beryllium, Total	ND		mg/kg	0.200	0.013	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Cadmium, Total	ND		mg/kg	0.400	0.039	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Calcium, Total	ND		mg/kg	4.00	1.40	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Chromium, Total	0.052	J	mg/kg	0.400	0.038	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Cobalt, Total	ND		mg/kg	0.800	0.066	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Copper, Total	ND		mg/kg	0.400	0.103	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Iron, Total	1.40	J	mg/kg	2.00	0.361	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Lead, Total	ND		mg/kg	2.00	0.107	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Magnesium, Total	ND		mg/kg	4.00	0.616	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Manganese, Total	0.064	J	mg/kg	0.400	0.064	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Nickel, Total	ND		mg/kg	1.00	0.097	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Potassium, Total	ND		mg/kg	100	5.76	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Selenium, Total	ND		mg/kg	0.800	0.103	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Silver, Total	ND		mg/kg	0.400	0.113	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Sodium, Total	12.2	J	mg/kg	80.0	1.26	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Thallium, Total	ND		mg/kg	0.800	0.126	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Vanadium, Total	ND		mg/kg	0.400	0.081	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD
Zinc, Total	ND		mg/kg	2.00	0.117	1	10/05/21 16:30	10/06/21 10:26	1,6010D	GD

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab for sample(s):	01 Batch	n: WG15	554606-	1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	10/05/21 15:39	10/06/21 08:03	1,7471B	AC

Project Name: BOATHOUSE-TOPSOIL **Lab Number:** L2153828

Project Number: UT5550 Report Date: 10/08/21

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number: L2153828

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG1554605-2	SRM Lot N	lumber: D10	09-540			
Aluminum, Total	63		-		50-150	-		
Antimony, Total	158		-		19-250	-		
Arsenic, Total	92		-		70-130	-		
Barium, Total	91		-		75-125	-		
Beryllium, Total	98		-		75-125	-		
Cadmium, Total	100		-		75-125	-		
Calcium, Total	92		-		73-128	-		
Chromium, Total	94		-		70-130	-		
Cobalt, Total	101		-		75-125	-		
Copper, Total	92		-		75-125	-		
Iron, Total	82		-		35-165	-		
Lead, Total	88		-		72-128	-		
Magnesium, Total	78		-		62-138	-		
Manganese, Total	86		-		74-126	-		
Nickel, Total	98		-		70-130	-		
Potassium, Total	74		-		59-141	-		
Selenium, Total	90		-		68-132	-		
Silver, Total	90		-		68-131	-		
Sodium, Total	96		-		35-165	-		
Thallium, Total	93		-		68-131	-		
Vanadium, Total	90		-		59-141	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number: L2153828

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sam	ple(s): 01 Batch: WG15	54605-2 SRM Lot Number	: D109-540		
Zinc, Total	89	-	70-130	-	
Total Metals - Mansfield Lab Associated sam	ple(s): 01 Batch: WG15	54606-2 SRM Lot Number	: D109-540		
Mercury, Total	111	-	60-140	-	

Matrix Spike Analysis Batch Quality Control

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number: L2153828

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits		Qual	RPD Limits
Total Metals - Mansfield I	Lab Associated sar	mple(s): 01	QC Batch	ID: WG155460)5-3 (QC Sample	e: L2153840-02	Client ID: MS S	Sample		
Aluminum, Total	9130	178	10000	489	Q	-	-	75-125	-		20
Antimony, Total	ND	44.4	31.6	71	Q	-	-	75-125	-		20
Arsenic, Total	5.45	10.7	16.9	107		-	-	75-125	-		20
Barium, Total	106	178	257	85		-	-	75-125	-		20
Beryllium, Total	0.432J	4.44	4.04	91		-	-	75-125	-		20
Cadmium, Total	0.288J	4.71	3.94	84		-	-	75-125	-		20
Calcium, Total	88500	889	83300	0	Q	-	-	75-125	-		20
Chromium, Total	10.0	17.8	24.9	84		-	-	75-125	-		20
Cobalt, Total	5.21	44.4	37.8	73	Q	-	-	75-125	-		20
Copper, Total	17.0	22.2	35.5	83		-	-	75-125	-		20
Iron, Total	10200	88.9	11000	900	Q	-	-	75-125	-		20
Lead, Total	10.9	47.1	43.2	68	Q	-	-	75-125	-		20
Magnesium, Total	3570	889	5060	168	Q	-	-	75-125	-		20
Manganese, Total	103	44.4	143	90		-	-	75-125	-		20
Nickel, Total	10.0	44.4	41.1	70	Q	-	-	75-125	-		20
Potassium, Total	1380	889	2280	101		-	-	75-125	-		20
Selenium, Total	1.34J	10.7	10.2	96		-	-	75-125	-		20
Silver, Total	ND	26.7	24.3	91		-	-	75-125	-		20
Sodium, Total	245	889	1110	97		-	-	75-125	-		20
Thallium, Total	ND	10.7	6.93	65	Q	-	-	75-125	-		20
Vanadium, Total	18.1	44.4	55.6	84		-	-	75-125	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number:

L2153828

Report Date:

10/08/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch	ID: WG1554605-3	QC Sample	: L2153840-02	Client ID: MS Sa	mple	
Zinc, Total	9.87	44.4	46.5	82	-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch	ID: WG1554606-3	QC Sample	: L2153479-05	Client ID: MS Sa	mple	
Mercury, Total	ND	0.192	0.210	110	-	-	80-120	-	20

L2153828

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **BOATHOUSE-TOPSOIL**

Project Number: UT5550 Report Date: 10/08/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG15546	05-4 QC Sample: L2	2153840-02	Client ID: DI	JP Sample	
Calcium, Total	88500	58000	mg/kg	42	Q	20

Project Name:

Lab Duplicate Analysis Batch Quality Control

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number: L2153828

arameter	Native Sample Du	plicate Sample	Units	RPD		RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1554605-4	QC Sample:	L2153840-02	Client ID: D	UP Sample	
Aluminum, Total	9130	6680	mg/kg	31	Q	20
Antimony, Total	ND	ND	mg/kg	NC		20
Arsenic, Total	5.45	6.97	mg/kg	24	Q	20
Barium, Total	106	88.3	mg/kg	18		20
Beryllium, Total	0.432J	0.374J	mg/kg	NC		20
Cadmium, Total	0.288J	0.418J	mg/kg	NC		20
Chromium, Total	10.0	10.9	mg/kg	9		20
Cobalt, Total	5.21	4.63	mg/kg	12		20
Copper, Total	17.0	21.8	mg/kg	25	Q	20
Iron, Total	10200	14400	mg/kg	34	Q	20
Lead, Total	10.9	9.64	mg/kg	12		20
Magnesium, Total	3570	2890	mg/kg	21	Q	20
Manganese, Total	103	77.1	mg/kg	29	Q	20
Nickel, Total	10.0	9.98	mg/kg	0		20
Potassium, Total	1380	1770	mg/kg	25	Q	20
Selenium, Total	1.34J	0.952J	mg/kg	NC		20
Silver, Total	ND	ND	mg/kg	NC		20
Sodium, Total	245	392	mg/kg	46	Q	20
Thallium, Total	ND	ND	mg/kg	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number:

L2153828

Report Date:

10/08/21

Parameter	Native Sample Du	plicate Sample	Units	RPD		RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1554605-4	QC Sample:	L2153840-02	Client ID:	DUP Sample	
Vanadium, Total	18.1	18.0	mg/kg	1		20
Zinc, Total	9.87	7.93	mg/kg	22	Q	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1554606-4	QC Sample:	L2153479-05	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/kg	NC		20

Lab Serial Dilution Analysis Batch Quality Control

BOATHOUSE- TOPSOIL

Project Number: UT5550

Project Name:

Lab Number: L2153828 **Report Date:** 10/08/21

Parameter	Native Sample S	Serial Dilution	% D	Qual	RPD Limits	
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1554605-	6 QC Sample:	L2153840-02	Client ID:	DUP Sample	
Calcium, Total	88500	88000	mg/kg	1		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1554605-	6 QC Sample:	L2153840-02	Client ID:	DUP Sample	
Aluminum, Total	9130	11500	mg/kg	26	Q	20
Barium, Total	106	132	mg/kg	25	Q	20
Iron, Total	10200	13100	mg/kg	28	Q	20
Magnesium, Total	3570	4470	mg/kg	25	Q	20
Manganese, Total	103	132	mg/kg	28	Q	20

INORGANICS & MISCELLANEOUS

Project Name: BOATHOUSE-TOPSOIL Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

SAMPLE RESULTS

 Lab ID:
 L2153828-01
 Date Collected:
 10/04/21 13:00

 Client ID:
 UT5550CS01
 Date Received:
 10/04/21

 Sample Location:
 CLINTON, NY
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lal)								
Solids, Total	80.0		%	0.100	NA	1	-	10/05/21 07:16	121,2540G	RI
Cyanide, Total	ND		mg/kg	1.2	0.26	1	10/06/21 14:00	10/07/21 11:35	1,9010C/9012B	CR

Project Name: BOATHOUSE-TOPSOIL **Lab Number:** L2153828

Project Number: UT5550 Report Date: 10/08/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for san	nple(s): 01	Batch	: WG15	555209-1				
Cyanide, Total	ND	mg/kg	0.87	0.18	1	10/06/21 14:00	10/07/21 11:18	1,9010C/9012	2B CR

Lab Control Sample Analysis Batch Quality Control

Project Name: BOATHOUSE-TOPSOIL

Lab Number: L2153828

Project Number: UT5550

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual RPD Limits	
General Chemistry - Westborough Lab As	ssociated sample(s)	: 01 Ba	atch: WG1555209-2	2 WG1	555209-3			
Cyanide, Total	56	Q	66	Q	80-120	16	35	

Matrix Spike Analysis Batch Quality Control

Project Name: BOATHOUSE- TOPSOIL

Project Number: UT5550

Lab Number:

L2153828

Report Date:

10/08/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recover	Reco y Qual Lim	- ,	RPD Qual Limits
General Chemistry - Westboroug Sample	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1555	209-4 WG	61555209-5	QC Sample: L2	2153033-07	Client ID: MS
Cyanide, Total	ND	11	11	100		11	100	75-1	25 0	35

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name: BOATHOUSE-TOPSOIL** L2153828

Project Number: UT5550 Report Date: 10/08/21

Parameter	Native Sample	Duplicate Samp	ole Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sa	ample(s): 01 QC Batch ID:	WG1554410-1	QC Sample: L21538	328-01 C	Client ID: U	JT5550CS01
Solids, Total	80.0	82.4	%	3		20

Lab Number: L2153828

Project Number: UT5550 Report Date: 10/08/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

BOATHOUSE-TOPSOIL

YES

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	•	Pres	Seal	Date/Time	Analysis(*)
L2153828-01A	Plastic 2oz unpreserved for TS	Α	NA		4.8	Υ	Absent		TS(7)
L2153828-01B	Glass 60mL/2oz unpreserved	Α	NA		4.8	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),SE-TI(180),SB-TI(180),CU-TI(180),PB-TI(180),ZN-TI(180),CO-TI(180),V-TI(180),FE-TI(180),MN-TI(180),MG-TI(180),HG-T(28),CA-TI(180),K-TI(180),NA-TI(180),CD-TI(180)
L2153828-01C	Vial Large Septa unpreserved (4oz)	Α	NA		4.8	Υ	Absent		NYTCL-8260-R2(14)
L2153828-01D	Glass 120ml/4oz unpreserved	Α	NA		4.8	Υ	Absent		NYTCL-8270(14),TCN-9010(14),NYTCL-8081(14),NYTCL-8082-PPM(365)
L2153828-01E	Glass 250ml/8oz unpreserved	Α	NA		4.8	Υ	Absent		NYTCL-8270(14),TCN-9010(14),NYTCL-8081(14),NYTCL-8082-PPM(365)
L2153828-01F	Glass 250ml/8oz unpreserved	Α	NA		4.8	Υ	Absent		NYTCL-8270(14),TCN-9010(14),NYTCL-8081(14),NYTCL-8082-PPM(365)
L2153828-01X	Vial MeOH preserved split	Α	NA		4.8	Υ	Absent		NYTCL-8260-R2(14)
L2153828-01Y	Vial Water preserved split	Α	NA		4.8	Υ	Absent	06-OCT-21 05:34	NYTCL-8260-R2(14)
L2153828-01Z	Vial Water preserved split	Α	NA		4.8	Υ	Absent	06-OCT-21 05:34	NYTCL-8260-R2(14)
	Container ID L2153828-01A L2153828-01B L2153828-01C L2153828-01D L2153828-01E L2153828-01F L2153828-01X L2153828-01Y	Container ID Container Type L2153828-01A Plastic 2oz unpreserved for TS L2153828-01B Glass 60mL/2oz unpreserved L2153828-01C Vial Large Septa unpreserved (4oz) L2153828-01D Glass 120ml/4oz unpreserved L2153828-01E Glass 250ml/8oz unpreserved L2153828-01F Glass 250ml/8oz unpreserved L2153828-01X Vial MeOH preserved split L2153828-01Y Vial Water preserved split	Container IDContainer TypeCoolerL2153828-01APlastic 2oz unpreserved for TSAL2153828-01BGlass 60mL/2oz unpreservedAL2153828-01CVial Large Septa unpreserved (4oz)AL2153828-01DGlass 120ml/4oz unpreservedAL2153828-01EGlass 250ml/8oz unpreservedAL2153828-01FGlass 250ml/8oz unpreservedAL2153828-01XVial MeOH preserved splitAL2153828-01YVial Water preserved splitA	Container ID Container Type Cooler PH L2153828-01A Plastic 2oz unpreserved for TS A NA L2153828-01B Glass 60mL/2oz unpreserved A NA L2153828-01C Vial Large Septa unpreserved (4oz) A NA L2153828-01D Glass 120ml/4oz unpreserved A NA L2153828-01E Glass 250ml/8oz unpreserved A NA L2153828-01F Glass 250ml/8oz unpreserved A NA L2153828-01X Vial MeOH preserved split A NA L2153828-01Y Vial Water preserved split A NA	Container ID Container Type Cooler nmtain pH rintal pH L2153828-01A Plastic 2oz unpreserved for TS A NA L2153828-01B Glass 60mL/2oz unpreserved A NA L2153828-01C Vial Large Septa unpreserved (4oz) A NA L2153828-01D Glass 120ml/4oz unpreserved A NA L2153828-01E Glass 250ml/8oz unpreserved A NA L2153828-01F Glass 250ml/8oz unpreserved A NA L2153828-01X Vial MeOH preserved split A NA L2153828-01Y Vial Water preserved split A NA	Container ID Container Type Cooler PH PH Title deg C L2153828-01A Plastic 2oz unpreserved for TS A NA 4.8 L2153828-01B Glass 60mL/2oz unpreserved A NA 4.8 L2153828-01C Vial Large Septa unpreserved (4oz) A NA 4.8 L2153828-01D Glass 120ml/4oz unpreserved A NA 4.8 L2153828-01E Glass 250ml/8oz unpreserved A NA 4.8 L2153828-01F Glass 250ml/8oz unpreserved A NA 4.8 L2153828-01X Vial MeOH preserved split A NA 4.8 L2153828-01Y Vial Water preserved split A NA 4.8	Container ID Container Type Cooler pH That pH Temp pH deg C Pres L2153828-01A Plastic 2oz unpreserved for TS A NA 4.8 Y L2153828-01B Glass 60mL/2oz unpreserved A NA 4.8 Y L2153828-01C Vial Large Septa unpreserved (4oz) A NA 4.8 Y L2153828-01D Glass 120ml/4oz unpreserved A NA 4.8 Y L2153828-01E Glass 250ml/8oz unpreserved A NA 4.8 Y L2153828-01F Glass 250ml/8oz unpreserved A NA 4.8 Y L2153828-01X Vial MeOH preserved split A NA 4.8 Y L2153828-01Y Vial Water preserved split A NA 4.8 Y	Container ID Container Type Cooler pH The pH Temp deg C Pres Seal L2153828-01A Plastic 2oz unpreserved for TS A NA 4.8 Y Absent L2153828-01B Glass 60mL/2oz unpreserved A NA 4.8 Y Absent L2153828-01C Vial Large Septa unpreserved (4oz) A NA 4.8 Y Absent L2153828-01D Glass 120ml/4oz unpreserved A NA 4.8 Y Absent L2153828-01E Glass 250ml/8oz unpreserved A NA 4.8 Y Absent L2153828-01F Glass 250ml/8oz unpreserved A NA 4.8 Y Absent L2153828-01X Vial MeOH preserved split A NA 4.8 Y Absent L2153828-01Y Vial Water preserved split A NA 4.8 Y Absent	Container ID Container Type Cooler pH PH deg C Pres Seal Date/Time L2153828-01A Plastic 2oz unpreserved for TS A NA 4.8 Y Absent L2153828-01B Glass 60mL/2oz unpreserved A NA 4.8 Y Absent L2153828-01C Vial Large Septa unpreserved (4oz) A NA 4.8 Y Absent L2153828-01D Glass 120ml/4oz unpreserved A NA 4.8 Y Absent L2153828-01E Glass 250ml/8oz unpreserved A NA 4.8 Y Absent L2153828-01F Glass 250ml/8oz unpreserved A NA 4.8 Y Absent L2153828-01X Vial MeOH preserved split A NA 4.8 Y Absent L2153828-01Y Vial Water preserved split A NA 4.8 Y Absent

Project Name:BOATHOUSE- TOPSOILLab Number:L2153828Project Number:UT5550Report Date:10/08/21

GLOSSARY

Acronyms

EDL

EMPC

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microsystraction (SPME)

of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

EPA - Environmental Protection Agency.

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

Limit of Detection: This value represents the level to which a target analyte can reliably

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

oniy.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:BOATHOUSE- TOPSOILLab Number:L2153828Project Number:UT5550Report Date:10/08/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:BOATHOUSE- TOPSOILLab Number:L2153828Project Number:UT5550Report Date:10/08/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:BOATHOUSE- TOPSOILLab Number:L2153828Project Number:UT5550Report Date:10/08/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10082112:00

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ATLANTIC TESTING LABORATORIES

No: 15202

Environmental Chain-Of-Custody Record L2153828

Albany 22 Corporate Drive Clifton Park, NY 12065 518/383-9144 (T) 518/383-9166 (F) labsAT@atlantictesting.com

Binghamton 126 Park Avenue Binghamton, NY 13903 607/773-1812 (T) 607/773-1835 (F) labsET@atlanticlesting.com

Canton 6431 U.S. Highway 11 Canton, NY 13617 315/386-4578 (T) 315/386-1012 (F) labsCT@attantictesting.com

Elmira 2330 Route 352 Elmira, NY 14903 607/737-0700 (T) 607/737-0714 (F) labsHT@attarrichesting.com

Plattsburgh 130 Arizona Ave Plattsburgh, NY 12903 518/563-5878 (T) 518/562-1321 (F) labsPt @atantictesting.com

Poughkeepsie 251 Upper North Road Highland, NY 12528 845/691-6098 (T) 845/691-6099 (F) labsPT@atlanticlesting.com

Rochester 3495 Winton Place Rochester, NY 14623 585/427-9020 (T) 585/427-9021 (F) tahsRT@attartictesting.com

Syracuse 6085 Court Street Road Syracuse, NY 13206 315/699-5281 (T) 315/699-3374 (F) labsBT@atlanticlesting.com

Utica 301 St. Anthony Street Utica, NY 13501 315/735-3309 (T) 315/735-0742 (F) lobsUT (Kattantictesting.com labsWT@atlanticlesting.com

Watertown 26581 NYS Route 283 Watertown, NY 13601 315/786-7887 (T) 315/786-2022 (F)

Pro	ject No.	Client Name					QA/QC Code Parameters							Report Distribution				
Page _	of _1	Hamilt	on Colle	ge		□ NYSDEC □ NYSDOH □ Other	□ NYSDOH □ CLP □ Other		()		2	-Vo	F	TAT Required:	6hr 12hr 24hr 48hr 72hr 55day 5			
ATL Pro	ject Contact:	Post	4 Clien			Project	Location	VOC 5260)	33	Cides	8082	metab	4	2 2	Other		Seal: X= intact	
Project Name:		Bouthone -	Clinton, NY			Semi USC	24.c.d			Czand	E-mail Results:	@atlantictesting.com						
Date	Time	Field Sample No.	San	nple Locat	ion	Sample Type	No. of Containers	(69)	(ep.	149	(600	164		Notes		aboratory mple ID No.	Custody	
10/4/21	105pm	UTSS\$6CSOI	Peters L	ane S	Hockpile	CS	6	X	×	×	×	×	X					
Sampler	Name:			Date:		Receive	ed for Name:							Date:			nt Rec'd ect?	
Samplers	Signature:			Time:		Laborat	ory Signature:							Time:		□ YES	□ NO	
		Samples Relinquished	Ву:			Sample	es Received By:					Sa	mple Typ	e Code Key		Laboratory	Remarks	
Nam Signatur Nam	e: A	Wholen	Time:	1455 1455	Name: Signature:	Right Mo	elin Au	141	Date:	10/41	G DW	Grat Drin Wat Grou	posite Ma	O QA/QCO O Other strix S Soil SL Studge WS Soild	e			
Signatur	e:	- Wholen	Time	1455	Signature:	MA	mang	/	Time:	0013	SM		mwater	B Bulk WP Wipe A Air				