PERIODIC REVIEW REPORT NEW PALTZ PLAZA VCP SITE TOWN OF NEW PALTZ ULSTER CO., NEW YORK Site #V00087

Prepared for:

New Paltz Plaza Properties, LP New Paltz Plaza, Inc. 257 Mamaroneck Avenue White Plains, New York 10605

Geology

Hydrology

Remediation

Water Supply

Periodic Review Report New Paltz Plaza VCP Site Town of New Paltz Ulster Co., New York Site #V00087

Prepared for:

New Paltz Plaza Properties, LP New Paltz Plaza, Inc. 257 Mamaroneck Avenue White Plains, New York 10605

Prepared by:

Alpha Geoscience 679 Plank Road Clifton Park, New York 12065

April 30, 2013

TABLE OF CONTENTS

1.0		INTRODUCTION	. 1
	1.1	Summary of Site Remediation and Documents	.1
	1.2	Extent of Impacted Area	.2
	1.3	Effectiveness and Compliance	.2
	1.4	Recommendations	.3
2.0		SITE OVERVIEW	. 3
	2.1	Remedial History	.4
3.0		EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS	6
	3.1	Performance	.6
	3.2	Effectiveness	.6
	3.3	Protectiveness	.7
4.0		IC/EC COMPLIANCE REPORT	8
	4.1	Institutional Control	.8
	4.2	Engineering Control	.8
	4.3	Continuing Obligations	.8
5.0		MONITORING PLAN COMPLIANCE REPORT	9
6.0		OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS1	0
7.0		IC AND EC CERTIFICATION FORM	11

LIST OF TABLES, FIGURES, AND APPENDICES

TABLES:

Table 2: Summary of Ground Water Sampling; Well MW-1 Table 3: Summary of Ground Water Sampling; Well MW-2 Table 4: Summary of Ground Water Sampling; Well MW-3 Table 5: Summary of Ground Water Sampling; Well MW-4 Table 6: Summary of Ground Water Sampling; Well MW-6 Table 7: Summary of Ground Water Sampling; Well MW-7 Table 8: Summary of Ground Water Sampling; Well MW-9 Table 9: Summary of Ground Water Sampling; Well MW-10 Table 10: Summary of Ground Water Sampling; Well MW-11 Table 11: Summary of Ground Water Sampling; Well MW-12 Table 12: Summary of Ground Water Sampling; Well BR-1 Table 13: Summary of Ground Water Sampling; Well BR-1 Table 14: Summary of Ground Water Sampling; Well BR-2 Table 14: Summary of Ground Water Sampling; Well BR-4	Table 1:	Water Level Elevations
Table 4: Summary of Ground Water Sampling; Well MW-3 Table 5: Summary of Ground Water Sampling; Well MW-4 Table 6: Summary of Ground Water Sampling; Well MW-6 Table 7: Summary of Ground Water Sampling; Well MW-7 Table 8: Summary of Ground Water Sampling; Well MW-9 Table 9: Summary of Ground Water Sampling; Well MW-10 Table 10: Summary of Ground Water Sampling; Well MW-11 Table 11: Summary of Ground Water Sampling; Well MW-12 Table 12: Summary of Ground Water Sampling; Well BR-1 Table 13: Summary of Ground Water Sampling; Well BR-1	Table 2:	Summary of Ground Water Sampling; Well MW-1
Table 5: Summary of Ground Water Sampling; Well MW-4 Table 6: Summary of Ground Water Sampling; Well MW-6 Table 7: Summary of Ground Water Sampling; Well MW-7 Table 8: Summary of Ground Water Sampling; Well MW-9 Table 9: Summary of Ground Water Sampling; Well MW-10 Table 10: Summary of Ground Water Sampling; Well MW-11 Table 11: Summary of Ground Water Sampling; Well MW-12 Table 12: Summary of Ground Water Sampling; Well BR-1 Table 13: Summary of Ground Water Sampling; Well BR-1	Table 3:	Summary of Ground Water Sampling; Well MW-2
Table 6: Summary of Ground Water Sampling; Well MW-6 Table 7: Summary of Ground Water Sampling; Well MW-7 Table 8: Summary of Ground Water Sampling; Well MW-9 Table 9: Summary of Ground Water Sampling; Well MW-10 Table 10: Summary of Ground Water Sampling; Well MW-11 Table 11: Summary of Ground Water Sampling; Well MW-12 Table 12: Summary of Ground Water Sampling; Well BR-1 Table 13: Summary of Ground Water Sampling; Well BR-2	Table 4:	Summary of Ground Water Sampling; Well MW-3
Table 7: Summary of Ground Water Sampling; Well MW-7 Table 8: Summary of Ground Water Sampling; Well MW-9 Table 9: Summary of Ground Water Sampling; Well MW-10 Table 10: Summary of Ground Water Sampling; Well MW-11 Table 11: Summary of Ground Water Sampling; Well MW-12 Table 12: Summary of Ground Water Sampling; Well BR-1 Table 13: Summary of Ground Water Sampling; Well BR-2	Table 5:	Summary of Ground Water Sampling; Well MW-4
Table 8: Summary of Ground Water Sampling; Well MW-9 Table 9: Summary of Ground Water Sampling; Well MW-10 Table 10: Summary of Ground Water Sampling; Well MW-11 Table 11: Summary of Ground Water Sampling; Well MW-12 Table 12: Summary of Ground Water Sampling; Well BR-1 Table 13: Summary of Ground Water Sampling; Well BR-2	Table 6:	Summary of Ground Water Sampling; Well MW-6
Table 9: Summary of Ground Water Sampling; Well MW-10 Table 10: Summary of Ground Water Sampling; Well MW-11 Table 11: Summary of Ground Water Sampling; Well MW-12 Table 12: Summary of Ground Water Sampling; Well BR-1 Table 13: Summary of Ground Water Sampling; Well BR-2	Table 7:	Summary of Ground Water Sampling; Well MW-7
 Table 10: Summary of Ground Water Sampling; Well MW-11 Table 11: Summary of Ground Water Sampling; Well MW-12 Table 12: Summary of Ground Water Sampling; Well BR-1 Table 13: Summary of Ground Water Sampling; Well BR-2 	Table 8:	Summary of Ground Water Sampling; Well MW-9
Table 11: Summary of Ground Water Sampling; Well MW-12 Table 12: Summary of Ground Water Sampling; Well BR-1 Table 13: Summary of Ground Water Sampling; Well BR-2	Table 9:	Summary of Ground Water Sampling; Well MW-10
Table 12: Summary of Ground Water Sampling; Well BR-1 Summary of Ground Water Sampling; Well BR-2	Table 10:	Summary of Ground Water Sampling; Well MW-11
Table 13: Summary of Ground Water Sampling; Well BR-2	Table 11:	Summary of Ground Water Sampling; Well MW-12
	Table 12:	Summary of Ground Water Sampling; Well BR-1
Table 14: Summary of Ground Water Sampling; Well BR-4	Table 13:	Summary of Ground Water Sampling; Well BR-2
	Table 14:	Summary of Ground Water Sampling; Well BR-4

FIGURES:

Figure 1:	Site Location Map
rigule 1.	Site Location Mad

Figure 2: Site Map and Well Locations

Figure 3: Overburden Ground Water Contour Map; April 3, 2013 Figure 4: Bedrock Ground Water Contour Map; April 3, 2013

Figure 5: Monitoring Well Location Map

Figure 6: Graph of PCE and Total VOCs; MW-2 Figure 7: Graph of PCE and Total VOCs; MW-9 Figure 8: Graph of PCE and Total VOCs; MW-10

APPENDICES:

Appendix A: Release letter

Appendix B: Report of Vapor Mitigation System Inspection, Alpine Environmental, Inc.

Appendix C: Subslab Ventilation System Inspection Report, Langan Engineering

Appendix D: Laboratory Report for April 3, 3013 ground water samples

Appendix E: NYSDEC Institutional and Engineering Control Certification Form

1.0 INTRODUCTION

Alpha Geoscience (Alpha) has prepared this Site Management Plan (SMP) on behalf of New Paltz Plaza Properties, LP and New Paltz Plaza Inc. (collectively "Volunteer") for the Voluntary Cleanup Program (VCP) Site No. V00087 ("the Site"). The subject of this PRR is the New Paltz Plaza located on Route 299 in New Paltz, Ulster County, New York, which includes the former Revonak Dry Cleaners site (the site). The location of the site is shown in Figure 1. The Site has been investigated and remediated under the New York State Department of Environmental Conservation's (NYSDEC) VCP. Under the VCP, the Volunteer, as an Innocent Owner, elected to address groundwater and soil contamination beyond the boundary of the former Revonak Dry Cleaners, inactive hazardous waste disposal Site No. 356021 (former Revonak Dry Cleaners). Thus, the VCP Site is a portion of the New Paltz Plaza Shopping Center property including the former Revonak Dry Cleaners.

The former Revonak Dry Cleaners is the source of the contamination associated with the Site. New Paltz Plaza Associates ("Prior Owner") entered into Consent Order No. W3-0667-93-11, Site No. 356021, with the New York State Department of Environmental Conservation (NYSDEC) on February 24, 1995, which required the prior owner to conduct a remedial investigation (RI) and any necessary remedial actions. The prior owner initiated the RI, but did not conduct any interim remedial measures (IRMs), before transferring ownership to the Volunteer. The Volunteer entered into a Voluntary Cleanup Agreement (VCA) for investigation (No. W3-0782-96-12, Site No. V00087) and completed the RI. The Volunteer entered into a second VCA (No. W3-0782-97-10, Site No. V00087) on December 17, 1997 to conduct IRMs and to remediate the Site. The work was performed with the approval and oversight of the NYSDEC.

A Site Management Plan, dated July 6, 2011, is in place for ongoing remedial activities. This PRR presents the results of monitoring activities outlined in the Site Management Plan. The NYSDEC issued a release to New Paltz Plaza, Inc. and New Paltz Plaza Properties, L.P. on May 30, 2012 indicating that "no further investigation or response will be required at the Site respecting existing contamination to render the site safe to be used for the contemplated use". The release letter is provided in Appendix A.

1.1 Summary of Site Remediation and Documents

Site remedial activities consisted soil and ground water removal in 1997 and 1998; injections of hydrogen releasing compounds (HRC) in 2003 and 2006; installation and operation of a sub-slab depressurization system (SSDS) beneath the Stop & Shop building in December 2006, and

installation and operation of a SSDS consisting of 8 subsystems beneath the eastern portion of the plaza in 2005; and planting hybrid poplar trees in 2007 for the purpose of phytoremediation. Ground water monitoring has been performed to assess the effectiveness of the implemented remedies. The details of these remedial actions were presented in the April 25, 2008 Final Engineering Report. A Site Management Plan (SMP), dated July 6, 2011, was submitted to the NYSDEC and approved on November 29, 2011. The purpose of the Site Management Plan is to establish the environmental monitoring that is to be performed until NYSDEC agrees that some or all monitoring activities may be discontinued.

1.2 Extent of Impacted Area

Ground water quality investigations and analytical data document that the area of impact is local and that ground water quality is stable or improving within the area of concern. Concentrations of total VOCs in well MW-2, where the highest concentrations have historically been measured, increased within the range of previously reported concentrations from 665 ug/L to 1875 ug/L between the June 2011 and April 2013 sampling events, but remain substantially below historical levels. Concentrations of total VOCs in downdradient monitoring wells remained stable (MW-10) or decreased (MW-11, MW-12, and BR-4) between the June 2011 and April 2013 monitoring events.

1.3 Effectiveness and Compliance

The remedial activities completed at the site appear to have been effective, based on the results of ground water monitoring. The primary elements of the Site Management Plan are operation of the SSDSs and ground water monitoring. The SSDS beneath the eastern portion of the plaza was inspected on April 23, 2013 and ground water samples were collected from the site monitoring wells on April 3, 2013. The SSDS beneath the Stop & Shop store was inspected monthly and a summary report was prepared by Stop & Shop's consultant for inclusion in this report.

The SSDS for the eastern portion of the plaza was inspected by Alpine Environmental Services, Inc., the contractor that installed the system. The inspection report is included in Appendix B. Results of the inspection indicated that all systems were operating properly with no deficiencies, with the exception of subsystem No. 4 (Peter Harris store). Apparently, subsystem No. 4 was off during the inspection due to a water leakage problem in the store. The store manager did not restart the system because of the unknown nature or source of the water leak. The owner reports that the water leak has since been addressed and has arranged for subsystem No. 4 to be restarted.

The SSDS at the Stop & Shop store is inspected regularly and has remained in proper operating condition. The inspection report provided by Langan Engineering for that system is provided in Appendix C. Langan's report states that "the results of confirmatory air sampling indicate the continued presence of PCE and the chemical breakdown products, including TCE, in the subsurface beneath the building". Based on this finding, Langan recommends the continued operation of the SSV blower. The results of ground water sampling indicate that the ground water plume primarily is located east of the Stop & Shop building. On this basis, Alpha suggests that an explanation for detection of VOCs beneath the Stop & Shop is that the vacuum created by the Stop & Shop SSDS draws vapor phase VOCs laterally through the unsaturated subsurface to the system.

Ground water samples were collected on April 3, 2013 to evaluate ground water quality. The results are presented and discussed in Section 5.0 and generally indicate relatively stable or decreasing concentrations of VOCs in the ground water.

1.4 Recommendations

No changes to the primary elements of the Site Management Plan or to the frequency for submitting this Periodic Review Report are recommended at this time. Monitoring will continue according to the requirements of the Site Management Plan.

2.0 SITE OVERVIEW

New Paltz Plaza is located approximately 0.3 miles west of the New York State Thruway on Route 299 (Main Street) in New Paltz, Ulster County, New York (Figure 1). The New Paltz Plaza lies within an area of commercial business within the Town of New Paltz. Several commercial establishments are present south of the plaza. A medical office building and the New York State Thruway are located east of the plaza. Residential portions of the Village of New Paltz are present to the west, and an apartment complex is located adjacent to the plaza to the north. The Plaza consists of single story concrete block buildings and adjacent asphalt covered parking areas. Most of the area beyond the site buildings is paved asphalt parking, access roads and delivery areas for the plaza.

Figure 2 is a map showing the location of the components of the selected remedy for the site, including the subslab depressurization systems, phytoremediation area, HRC injection area, and area where soil and impacted groundwater removal was performed.

The contaminants of concern at the site is tetrachloroethylene (PCE) associated with the former dry cleaning store and its degradation compounds, as described further in Section 5.0. The nature and extent of the impacted area before completion of remedial activities was similar to the area described in Section 1.2. The concentration of total VOCs in ground water have decreased in most wells as a result of the source removal remedial activities.

2.1 Remedial History

Alpha has been involved in the environmental matters at this site since 1995 on behalf of the current site owner to investigate, remediate, and monitor the site environmental conditions. The following list provides a chronological overview of the significant events and work that have occurred at the site since 1991.

- Site Investigation was conducted from 1991 through 1996 and has included historical review, floor drain investigation, soil gas survey, soil borings and sampling, ground water sampling, sewer survey, test pit investigation, and geoprobe investigation. A summary of this work, was included in NYSDEC's April 1997 Fact Sheet, Remedial Response Proposed to Address Contamination at New Paltz Plaza.
- The NYSDEC-approved a Remedial Plan on October 27, 1997 based on the extensive site investigations. The public comment period for the Remedial Plan was April to May 1997.
- The Remedial Plan was implemented in December 1997 and a Remediation Report was submitted to NYSDEC on June 17, 1998. Remediation included removal and disposal of 223 tons of soil as hazardous waste and 10,000 gallons of contaminated ground water. The Remediation Report was certified by a New York State Professional Engineer.
- A soil gas investigation was conducted and completed in April 1999 at the request of the NYSDEC and New York State Department of Health (NYSDOH). The results of the investigation showed no risk to potential offsite, downgradient receptors from vapors generated from contaminated ground water.
- One year of post-remediation ground water monitoring was conducted from February 1998 through February 1999 in accordance with the NYSDEC-approved Remediation Plan. Quarterly ground water monitoring reports were submitted to NYSDEC in accordance with the approved Remediation Plan.

- A Ground Water Monitoring Plan for continued post-remediation ground water monitoring and a Contingency Plan was implemented and approved by the NYSDEC in 2001. Annual ground water monitoring and reporting continued in compliance with the NYSDEC - approved Plans.
- The investigative phase of the Contingency Plan was conducted in January, 2003 and an additional remedial measure (Hydrogen Releasing Compounds (HRC) injection) was performed in November 2003. Ground water monitoring indicated that the HRC injection substantially reduced the concentration of contaminants in ground water.
- A conceptual plan for expanded site remediation using HRCs was submitted to the NYSDEC in December 2005, approved in January 2006, and subsequently implemented in September 2006.
- A sub-slab depressurization system was installed in June 2005 beneath the eastern portion of the plaza, with the exception of the cinema. Pressure field extension measurements and sub-slab soil vapor samples collected before and after system start-up indicate the system is effective. The NYSDEC and NYSDOH agreed that a sub-slab depressurization system was not necessary beneath the Cinema based on the results of a vapor sample collected from beneath that building.
- A sub-slab depressurization system was installed beneath the Stop & Shop store during construction of that building in the Spring-Summer 2006.
- Phytoremediation (planting poplar trees for ground water and contaminant uptake) was performed in the spring of 2007.
- The NYSDEC issued a Record of Decision (ROD) for this site in March 2010. A ROD is the NYSDEC's definitive record of the remedy selection process for the site and presents the final remedial action plan approved by the NYSDEC and the New York State Departments of Health and Law.
- The NYSDEC issued a "release letter" to the volunteer owner on May 30, 2012 a letter indicating that No Further Action is necessary after the ROD for the site is issued. The letter constitutes a release of environmental liability for the owner, its successors an assigns, under the Volunteer Cleanup Program.

There have not been changes to the selected remedy and there have not been substantive changes in site conditions since the remedy selection and implementation of remedial measures.

3.0 EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

This section provides an evaluation of the extent to which the implemented remedy meets the remedial objective to minimize or eliminate exposure pathways or significant risks to the public or the environment under the conditions of the contemplated use of the site (i.e. Restricted Commercial; shopping center). The implemented remedy includes source removal, in-situ remediation (HRC injection), phytoremediation, installation of sub-slab depressurization systems, and ground water monitoring.

3.1 Performance

The results of analysis of soil samples collected during the source removal action indicate that soil impacted with VOCs and petroleum was excavated and disposed, thereby removing a potential continuing source of ground water contamination. Injection of HRCs provided a means of continued, long-term degradation of residual VOCs in ground water. The majority of the volatile organic compounds analyzed in ground water samples meet the applicable ground water SCGs, as described in Section 5.0. The area of ground water that exceeds the SCGs is well defined by 22 years of ground water quality data. The installation and operation of the sub-slab depressurization system has prevented human exposure to the sub-slab VOC vapors and is expected to have reduced the concentrations over time.

3.2 Effectiveness

The selected remedy (source removal, in-situ remediation (HRC injection), phytoremediation, installation of sub-slab depressurization systems, and ground water monitoring) is an effective short-term remedial measure. The remedy immediately removed contaminants from the site environment and eliminated the potential for human exposure. Ground water sampling and analysis monitors the effectiveness of the remedy and impacts from residual contaminants. There are no known risks to workers, the community, or the environment from the selected remedy.

The soil removal action, injection of HRCs, installation of the sub-slab depressurization system, phytoremediation, and ground water monitoring are effective long-term remedial measures. The soil

removal action permanently removed contaminants from the environment. HRC is a long term remedy that is designed to remain active and continue to degrade chlorinated compounds throughout a period of several years. The long-term effect of the HRC is to eliminate or reduce the concentration of VOCs in the ground water. Ground water monitoring is an accepted method of monitoring the long-term effectiveness of remediation. Phytoremdiation is a long term, relatively permanent remedy. The processes of phytotransformation, phytostimulation, and the uptake of ground water will continue to occur as long as the hybrid poplar trees exist.

The sub-slab depressurization systems also are a permanent remedy for as long as it continues to operate. The SSD system is subject to a Site Management Plan that specifies continued operation of the system and the criteria under which operation may be discontinued. The continued operation of the SSD system eliminates the only identified potential exposure pathway. There are no significant threats, exposure pathways, or risks to the public or environment from remaining VOCs in the ground water on this basis.

3.3 Protectiveness

The implemented remedy achieves the remedial action objective to protect human health and the environment. The impacted soil and liquid removed during the source removal action were transported offsite for disposal at a secure hazardous waste disposal facility. This source removal action effectively removed the source of contamination from the environment and eliminated human exposure by removing the impacted material from the site.

The sub-slab depressurization systems create a negative pressure beneath the slab of the eastern portion of the plaza and beneath the Stop & Shop building. The SSDS removes the vapors from beneath the slab and prevents potential intrusion of the vapors into the buildings. The vapors are vented to the atmosphere in an acceptable manner that prevents human exposure to elevated concentrations of VOCs.

Ground water sampling and analysis is performed to monitor the concentration of residual compounds in ground water at the site. The results of the sampling and analysis indicate that the area of contamination is localized to the site, and that the residual compounds in the ground water are not a threat to off site receptors. The results further indicate that the concentrations of VOCs in ground water have been substantially reduced compared to historical levels. These conditions indicate that it is unlikely that VOCs have migrated, or will migrate off site. Human exposure is not an issue because there is no pathway for human contact with, or use of, the impacted ground water under the conditions of the contemplated restricted commercial use of the site.

4.0 IC/EC COMPLIANCE REPORT

4.1 Institutional Control

The institutional control for the site consists of a Declaration of Covenants and Restrictions that includes ground water use restrictions, land use restrictions, a Site Management Plan, and certification reporting. The deed restriction prohibits the use of the property for any means other than the contemplated restricted commercial use of the site. The deed restriction also restricts ground water use and requires that any impacted soil encountered during future intrusive activities be managed and disposed according to state regulations. Finally, the deed restriction requires compliance with the Site Management Plan, including the periodic reporting covered by this report. The deed restriction for the property that outlines these use restrictions was filed in Ulster County (Document No. 2012-00005593).

4.2 Engineering Control

The engineering control at the site consists of a SSDS under the eastern portion of the plaza which is comprised of 8 subsystems, and a SSDS beneath the Stop & Shop building, as described in Section 1.3. The SSDS beneath the eastern portion of the plaza was inspected most recently on April 23, 2013 by the company that installed the system, Alpine Environmental Services, Inc. An inspection report for the Stop & Shop SSDS was completed by Langan Engineering and is presented in Appendix C. The results of the inspection reports for the SSDSs are discussed in Section 1.3 of this report.

4.3 Continuing Obligations

A list of continuing obligations of the owner is part of the Declaration of Covenants and Restrictions. The list of continuing obligations includes the following:

- Restrictions on new construction,
- Requirement not to interfere with engineering controls required for the remedy,
- Restriction of property use to commercial or industrial purposes,
- Restrictions on ground water use,
- Requirement to provide periodic annual certification the continuation of institutional and engineering controls,
- Maintenance of engineering controls, and

• Obligation to comply with the Site Management Plan.

These obligations continue until such time as permission is requested and received from the NYSDEC or relevant agency to discontinue such obligations.

5.0 MONITORING PLAN COMPLIANCE REPORT

The Site Management Plan includes provisions to collect ground water samples on an annual basis. According to the Plan, water levels are to be measured and ground water samples are to be collected and analyzed from wells MW-1, MW-2, MW-3, MW-4, MW-6, MW-7, MW-9, MW-10, MW-11, MW-12, BR-1, BR-2, and BR-4 until such time as the NYSDEC approves discontinued monitoring based on analytical results. Samples are to be analyzed for VOCs by EPA Method 8260.

Historical ground water level measurements are presented in Table 1. The ground water occurs at shallow depths beneath the site and ground water flow is toward the north-northwest. Figures 3 and 4 show ground water contours in the overburden and shallow bedrock water-bearing zones, respectively, prepared using water levels measured on April 3, 2013. Historical ground water levels measurements indicate that ground water flow is similar to that shown on Figures 3 and 4. The locations of the monitoring wells are shown on Figure 5.

Ground water samples were collected consistent with the procedures in the Site Management Plan on April 3, 2013. No sample was collected from monitoring well MW-3 because the well was found to be obstructed at a depth of approximately 4 feet below ground surface. The historical analytical results are tabulated for wells MW-1, MW-2, MW-3, MW-4, MW-6, MW-7, MW-9, MW-10, MW-11, MW-12, BR-1, BR-2, and BR-4 and are presented on Tables 2 through 14, respectively. The laboratory analytical report for the samples collected on April 3, 2013 is presented in Appendix D. Graphs prepared for wells MW-2, MW-9, and MW-10, showing the concentration of PCE and total VOCs in each well, are presented as Figures 6 through 8, respectively. Review of the graphs indicates that the concentration of PCE in the ground water is relatively stable or decreasing since circa 2003.

The highest concentrations of total VOCs have historically been detected in well MW-2. The concentration of total VOCs in well MW-2 increased from 665 ug/L to 1,875 ug/L between the June 2011 and April 2013 sampling events, but remains substantially below historical concentrations detected in this well. The concentration of the PCE breakdown product, cis-1,2-dichloroethene, increased from 300 ppb to 1,200 ppb and accounts for most of the increase in total VOCs from June 2011 to April 2013. The increase in cis-1,2-dichloroethene suggests that degradation associated with

the HRC remediation may be continuing. The highest concentration of total VOCs in well MW-2 was 31,750 ppb in March 1996. The current concentration of total VOCs in well MW-2 (1,875 ppb) is approximately 94 percent lower than the historical high value. The concentration of total VOCs in the other wells was lower, ranging from non-detectable levels in wells BR-4 to 407.6 ppb in well MW-10.

The concentration of PCE is slightly greater in wells MW-2 (220 to 460 ppb), MW-11 (3.5 to 10 ppb), and well BR-2 (28 to 48 ppb) in the April 2013 samples compared to the June 2011 samples. These slight increases are not considered significant. Concentrations of PCE decreased or remained stable in the remaining monitoring wells. The data from this sampling event suggest that the overall ground water quality at the site continues to improve.

The relatively stable or decreasing concentrations of VOCs in the ground water (Tables 2 through 14) have defined the area of impact and documented improvements in the ground water quality. The area of contamination is localized to the site, and the residual compounds in the ground water are not a threat to offsite receptors.

6.0 OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS

The results of the ground water monitoring suggest that overall ground water quality is improving and that concentrations of VOCs are decreasing with time. The data indicate that concentrations of VOCs decreased substantially in the source area as indicated by the monitoring at well MW-2. Concentrations of VOCs have remained relatively low and generally have decreased from the historically higher concentrations since about 2004 (Figure 6). These ground water analytical results further suggest that the remedial objective to minimize or eliminate exposure pathways or significant risks to the public or the environment under the conditions of the contemplated use of the site (i.e. Restricted Commercial; shopping center) is being met.

The results of the SSDS inspection indicate that the systems continue to operate properly, with the exception of subsystem No. 4 beneath a portion of the eastern side of the plaza. As explained in Section 1.3, arrangements have been made by the owner for subsystem No.4 to be restarted.

Ground water quality generally has improved at the site as a result of the implemented remedy, as described in previous sections of this Periodic Review Report. The SSDSs were installed in 2005 and 2006 and have operated more or less continuously since that time.

7.0 IC AND EC CERTIFICATION FORM

The NYSDEC Institutional and Engineering Control Certification Form for Site No. V00087, New Paltz Plaza/Revonak Dry Cleaners, is presented in Appendix E.

TABLE 1 **Ground Water Elevations Ground Water Monitoring Program** New Paltz Plaza

		<u>13-l</u>	May-98	26-4	Aug-98	<u>3-D</u>	ec-98	<u>25-</u>	Feb-99	<u>30-</u>	May-01	<u>6-N</u>	lov-01	<u>19-</u>	Feb-02	<u>15-l</u>	May-02	<u>15-7</u>	Aug-02	<u>21-A</u>	Aug-03
Well ID	Measuring Point Elevation	Depth to Water (ft.)	Water Level Elevation																		
MW-1	97.90	1.25	96.65	2.54	95.36	2.30	95.60	1.81	96.09	1.78	96.12	3.50	94.40	1.90	96.00	1.31	96.59	3.32	94.58	1.88	96.02
MW-2	97.31	2.88	94.43	4.57	92.74	4.25	93.06	3.58	93.73	3.71	93.60	4.88	92.43	3.90	93.41	3.23	94.08	4.96	92.35	3.69	93.62
MW-3	97.62	2.20	95.42	4.39	93.23	3.54	94.08	2.96	94.66	3.03	94.59	4.63	92.99	3.43	94.19	2.65	94.97	4.97	92.65	3.32	94.30
MW-4	95.70	1.67	94.03	5.26	90.44	3.80	91.90	2.91	92.79	2.92	92.78	5.31	90.39	3.66	92.04	1.97	93.73	5.80	89.90	3.44	92.26
MW-6	96.90	2.96	93.94	5.22	91.68	4.83	92.07	3.91	92.99	4.13	92.77	5.82	91.08	4.70	92.20	3.38	93.52	5.77	91.13	4.25	92.65
MW-7	94.95	1.79	93.16	5.32	89.63	3.47	91.48	2.25	92.70	2.31	92.64	5.20	89.75	3.24	91.71	1.59	93.36	5.97	88.98	2.87	92.08
MW-8	92.40	2.71	89.69	5.50	86.90	4.85	87.55	3.89	88.51	3.57	88.83	6.21	86.19	4.52	87.88	3.20	89.20	7.45	84.95	3.61	88.79
MW-9	92.04	3.18	88.86	6.78	85.26	5.11	86.93	3.80	88.24	3.88	88.16	6.33	85.71	4.64	87.40	4.29	87.75	7.33	84.71	3.76	88.28
MW-10	91.50	NM	NM	9.71	81.79	8.63	82.87	7.35	84.15	11.31	80.19	8.38	83.12								
BR-1	96.78	2.55	94.23	5.24	91.54	4.47	92.31	3.51	93.27	3.48	93.30	5.42	91.36	4.23	92.55	3.04	93.74	5.28	91.50	3.47	93.31
BR-2	94.95	1.44	93.51	5.56	89.39	3.75	91.20	2.43	92.52	2.39	92.56	5.24	89.71	3.40	91.55	1.63	93.32	6.06	88.89	2.90	92.05
BR-3	91.77	2.57	89.20	6.66	85.11	4.97	86.80	3.81	87.96	3.45	88.32	6.03	85.74	4.43	87.34	2.81	88.96	6.98	84.79	3.48	88.29
BR-4	91.37	NM	NM	12.57	78.80	11.35	80.02	10.31	81.06	13.51	77.86	11.87	79.50								
GPW-1	90.26	NM	NM	NM	NM	NM	NM	NM	NM	4.16	86.10	6.06	84.20	4.70	85.56	3.51	86.75	6.86	83.40	4.12	86.14
GPW-2	89.11	NM	NM	NM	NM	NM	NM	NM	NM	4.43	84.68	6.95	82.16	NM	NM	NM	NM	NM	NM	NM	NM
GPW-3	92.83	NM	NM	NM	NM	NM	NM	NM	NM	3.42	89.41	NM	NM	NM	NM	3.10	89.73	7.73	85.10	NM	NM
GPW-4	88.93	NM	NM	NM	NM	NM	NM	NM	NM	4.49	84.44	NM	NM	4.96	83.97	4.14	84.79	8.04	80.89	4.88	84.05
GPW-6	89.53	NM	NM	6.56	82.97	5.52	84.01	4.30	85.23	6.83	82.70	4.81	84.72								
GPW-8	89.79	NM	NM	9.73	80.06	8.39	81.40	6.64	83.15	10.61	79.18	8.01	81.78								
GPW-9	90.92	NM	NM	9.11	81.81	7.75	83.17	6.32	84.60	10.21	80.71	7.71	83.21								
GPW-11	88.7	NM	NM	8.59	80.11	7.13	81.57	4.59	84.11	9.05	79.65	6.72	81.98								
GPW-12	88.98	NM	NM	6.09	82.89	4.75	84.23	3.52	85.46	6.94	82.04	4.26	84.72								

		<u>18-7</u>	Aug-04	<u>30-A</u>	\ug-05	<u>31-A</u>	ug-06	<u>28-</u>	<u>Mar-07</u>	<u>21-</u>	Jun-07	<u>30-A</u>	Nug-07	<u>7-M</u>	lar-08	<u>25-9</u>	Sep-08	<u>9-J</u>	<u>un-11</u>	<u>3-A</u>	pr-13
Well ID	Measuring Point Elevation	Depth to Water (ft.)	Water Level Elevation	Depth to Water (ft.)	Water Level Elevation	Depth to Water (ft.)	Water Level Elevation	Depth to Water (ft.)		Depth to Water (ft.)	Water Level Elevation	Depth to Water (ft.)	Water Level Elevation	Depth to Water (ft.)	Water Level Elevation	Depth to Water (ft.)		Depth to Water (ft.)	Water Level Elevation	Depth to Water (ft.)	Water Level Elevation
MW-1	97.90	1.80	96.10	2.18	95.72	1.51	96.39	1.17	96.73	1.99	95.91	2.58	95.32	1.12	96.78	2.33	95.57	2.18	93.39	1.18	92.21
MW-2	97.31	3.26	94.05	3.95	93.72	3.19	96.39	2.92	94.39	3.46	93.85	3.93	93.38	2.77	94.54	3.99	93.32	3.72	89.60	3.55	86.05
MW-3	97.62	3.18	94.44	3.94	93.68	2.61	95.01	1.99	95.63	3.40	94.39	3.56	94.06	2.45	95.17	3.71	93.91	Full of HRC	69.00	Obstructed	NM
MW-4	95.70	3.10	92.58	5.12	90.58	1.79	93.91	1.55	94.15	3.23	91.89	4.07	91.63	1.37	94.33	4.05	91.65	2.99	88.66	2.95	85.71
MW-6	96.90	3.87	93.03	4.83	92.07	3.39	93.51	3.39	93.51	4.13	92.77	4.78	92.12	3.11	93.79	4.83	92.07	4.51	87.56	4.21	83.35
MW-7	94.95	2.67	92.28	5.51	89.44	1.80	93.15	1.38	93.57	3.87	91.08	4.00	90.95	1.04	93.91	3.95	91.00	2.30	88.70	2.67	86.03
MW-8	92.40	3.51	88.89	6.51	85.89	Destroyed	NM	Destroyed	NM	Destroyed	NM	Destroyed	NM	Destroyed	NM	Destroyed	NM	Destroyed	NM	Destroyed	NM
MW-9	92.04	3.47	88.57	7.11	84.93	3.46	88.58	2.33	89.71	4.64	87.40	4.22	87.82	2.02	90.02	4.16	87.88	2.93	84.95	2.68	82.27
MW-10	91.50	8.03	83.47	11.10	80.40	7.29	84.21	7.42	84.08	9.59	81.91	9.52	81.98	7.08	84.42	9.41	82.09	9.19	72.90	8.35	64.55
MW-11	92.52	NM	NM	NM	NM	9.26	NM	9.29	83.23	10.99	81.53	11.06	81.46	9.27	83.25	11.07	81.45	10.62	70.83	10.19	60.64
MW-12	91.54	NM	NM	NM	NM	7.87	NM	7.33	84.21	9.70	81.84	9.36	82.18	7.38	84.16	9.16	82.38	8.99	73.39	7.28	66.11
BR-1	96.78	3.40	93.38	4.98	91.80	3.11	93.67	2.61	94.17	4.10	92.68	4.02	92.76	1.93	94.85	4.22	92.56	3.77	88.79	3.48	85.31
BR-2	94.95	2.85	92.10	5.55	89.40	1.92	93.03	1.40	93.55	3.93	91.02	4.03	90.92	0.70	94.25	3.98	90.97	2.23	88.74	2.66	86.08
BR-3	91.77	Abandoned	NM	Abandoned	NM	Abandoned	NM	Abandoned	NM	Abandoned	NM	Abandoned	NM	Abandoned	NM	Abandoned	NM	Abandoned	NM	Abandoned	NM
BR-4	91.37	11.59	79.78	14.19	77.18	11.53	79.84	11.10	80.27	13.07	78.30	12.76	78.61	10.90	80.47	12.91	78.46	13.39	65.07	11.95	53.12
GPW-1	90.26	3.76	86.50	6.25	84.01									ļ							
GPW-2	89.11	NM	NM	destroyed	NM																
GPW-3	92.83	NM	NM	destroyed	NM																
GPW-4	88.93	4.58	84.35	destroyed	NM																
OBMA	00.50	4.50	04.07		N IN A					T	ODM/ M/-II										

Temporary GPW Wells are not part of the monitoring network and were abandoned during site construction

GPW-11 GPW-12

GPW-6

GPW-8

GPW-9

84.97

85.65

83.74

87.35

85.42

destroyed

10.45

destroyed

8.42

plugged

NM

79.34

NM

80.28

NM

4.56

4.14

7.18

1.35

3.56

89.53

89.79

90.92

88.7

88.98

Notes:
1. Measuring point elevations are from 1/20/98 survey data, using an arbitrary site datum of 100 feet.
2. NM = Not Measured.

TABLE 2

Well MW-1 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

	12/91	9/94	2/21/1996	3/7/1996	3/19/1996	2/7/1997	1/20/1998	5/14/1998	8/27/1998	12/4/1998	2/26/1999	8/2/2001
Halogenated Volatile Organics												
Vinyl Chloride	<10.0	U	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.81J
cis-1,2-Dichloroethene	< 5.0	5.5	<1.0	<1.0	<1.0	7.7	4.0	5.0	6.1	2.5	1.7	0.92J
Trichloroethene	16.0	7.1	<1.0	<1.0	<1.0	9.3	5.0	7.1	15	3.9	2.8	4.3
Tetrachloroethene	65	39	<1.0	1.1	2.6	57	28	38	62	23	19	12
Methylene Chloride	<5.0	<u>NR</u>	<u><1.0</u>	<u>U</u>	<u>U</u>	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<u>2</u>	<u><1.0</u>	<u><1.0</u>	<1.0
TOTAL VOCs	81.0	51.6	ND	1.1	2.6	74.0	37.0	50.1	85.1	29.4	23.5	18.0
	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003	8/18/2004	8/30/2005	8/31/2006	8/30/2007	9/25/2008	6/10/2009	6/9/2011
Halogenated Volatile Organics	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003	8/18/2004	8/30/2005	8/31/2006	8/30/2007	9/25/2008	6/10/2009	6/9/2011
Halogenated Volatile Organics Vinyl Chloride	11/6/2001 0.99J	2/19/2002 0.60J	5/15/2002	8/15/2002 2.5	8/21/2003 2.8	8/18/2004 <1.0	8/30/2005	8/31/2006 <1.0	8/30/2007 <5.0	9/25/2008	6/10/2009	6/9/2011 <5.0
Vinyl Chloride	0.99J	0.60J	1.8	2.5	2.8	<1.0	1.4	<1.0	<5.0	<5.0	<10.0	<5.0
Vinyl Chloride cis-1,2-Dichloroethene	0.99J <1.0	0.60J 1.1	1.8 4	2.5 1.0J	2.8 2.8	<1.0 2	1.4 2.7	<1.0 5.0J	<5.0 <5.0	<5.0 <5.0	<10.0 <5.0	<5.0 <5.0
Vinyl Chloride cis-1,2-Dichloroethene Trichloroethene	0.99J <1.0 1.9	0.60J 1.1 2.2	1.8 4 8.7	2.5 1.0J	2.8 2.8 6.9	<1.0 2 4.6	1.4 2.7 5.3	<1.0 5.0J 5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<10.0 <5.0 <5.0	<5.0 <5.0 <5.0

4/3/2013

Halogenated Volatile Organics

TOTAL VOCs	6.8
Methylene Chloride	<2.5
Tetrachloroethene	3.8
Trichloroethene	1.9
cis-1,2-Dichloroethene	1.1 J
Vinyl Chloride	<1.0

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. U = Indicates the compound was analyzed, but not detected.
- 3. J = Indicates an estimated value less than the lowest standard.
- 4. NR = result not reported for indicated compound.
- 5. All results are in micrograms per liter (ug/l, ppb).
- 6. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).
- 7. B = Indicates the compound was detected in the field blank sample or associated batch blank.

TABLE 3

Well MW-2 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds

Revonak Dry Cleaners Site No. 356021

Halogenated Volatile Organics	12/91	9/94	2/5/1996	3/7/1996	3/19/1996	3/19/1996	3/22/1996	4/26/1996		2/7/1997	1/20/1998	5/14/1998	8/27/1998	12/4/1998	2	2/26/1999	2/26/1999	2/26/1999
nalogenated volatile Organics	5																	
Vinyl Chloride	<1000	U	<500	<500	<200	<2,000	<500	<1,000		21	20	<10	10	13		<10	<10	11
cis-1,2-Dichloroethene	<500	600	<500	<500	420	<1,000	260	280		160	200	100	150	150		120	120	130
1,1,1-Trichloroethane	<500	<500	550	750	590	<1,000	270	300		160	130	20	47	30		18	18	20
Trichloroethene	1,400	<500	<500	<500	<200	<1,000	160	<200		120	140	53	150	150		87	87	86
Tetrachloroethene	3,100	7,600	21,000	31,000	21,000	21,000	13,000	15,000		9,100	5,600	2,100	4,500	3,600		2,700	2,700	2,700
1, 1-Dichloroethane	<500	U	<500	U	U	U	<100	<200		6	4.0	<10	5.1J	<10		<10	<10	2.3
1, 1-Dichloroethene	<500	U	<500	U	U	U	<100	<200		12	7.0	<10	<10	<10		<10	<10	1.5
trans-1, 2-Dichloroethene	<500	U	<500	U	U	U	<100	<200		<1.0	2.0	<10	<10	<10		<10	<10	1.0
1,1,1,2-Tetrachloroethane	NA	U	NA	U	U	U	NA	NA		4.1	<1.0	<10	<10	<10		<10	<10	<1.0
Chloroethane	NA	NA	NA	NA	NA	NA	NA	NA		NA	<u>NA</u>	<u>NA</u>	<u>NA</u>	NA		<u>NA</u>	<1.0	<1.0
TOTAL VOCs	4500	8200	21550	31750	22010	21000	13690	15580		9583.1	6103	2273	4862.1	3943		2925	2925	2951.8
		(Dup)		(Dup)						_						_		
	8/2/2001	8/2/2001	11/6/2001	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003	~	5/19/2004	11/16/2004	2/21/2005	8/30/2005	8/31/2006	(O	12/14/2006	3/28/2007	6/21/2007
Halogenated Volatile Organics	S								2003						2006			
Vinyl Chloride	31	25	<10	<10	<10	5.5	<10	5.6	November	60	19	37	110	620	September	40	37	67
cis-1,2-Dichloroethene	440	370	260	240	140	110	500	290	/en	5200	53	87	370	1400	Ę	130	110	210
1,1,1-Trichloroethane	26	29	7.8J	7.1J	5.2J	20	13	29	Š	20	<1.0	2.0	1.0	<1.0	Sep	1.0J	<5.0	<5.0
Trichloroethene	320	340	130	120	67	34	180	170		170	8.9	13	19	24		23	12	20
Tetrachloroethene	4,700	5,500	2,300	2,300	1,300	670	2,500	3,900	cţi	58	33	84	100	110	읋	220	270	270
1, 1-Dichloroethane	<10	3.6	<10	<10	<10	1.2J	<10	<10	Injection;	14	5.6	7.9	9.4	9	Je.	6	<5.0	5
1, 1-Dichloroethene	<10	3.5	<10	<10	<10	<2.0	<10	<10	- -	7.0	<1.0	<1.0	0.51J	<1.0	<u>-</u>	<5.0	<5.0	<5.0
trans-1, 2-Dichloroethene	<10	3.5	<10	<10	<10	<2.0	<10	<10	HRC	34	8.6	8.2	14	24	HRC Injection;	9	6	7
1,1,1,2-Tetrachloroethane	<10	<10	<10	<10	<10	<2.0	<10	<10		<1.0	<1.0	<1.0	<1.0	<1.0		<5.0	<5	<5.0
Chloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<u>24</u>	<u>20</u>	<u>14</u>	2.0J		<u>7</u>	<u>7</u>	<u>18</u>
TOTAL VOCs	5517	6274.6	2697.8	2667.1	1512.2	840.7	3193	4394.6		5563	152.1	259.1	637.9	2189		436	442	597
	8/30/2007	3/7/2008	9/25/2008	6/10/2009	6/9/2011	4/3/2013												
Halogenated Volatile Organics	8																	
Vinyl Chloride	56	20	300	11	120	160												
cis-1.2-Dichloroethene	250	60	900	35	300	1200												
1.1.1-Trichloroethane	<5.0	<5.0	<25.0	<5.0	<5.0	<50.0												
	-0.0	-0.0	~20.0	~0.0	-0.0	~00.0												

Notes:

Trichloroethene

Chloroethane

TOTAL VOCs

Tetrachloroethene

1, 1-Dichloroethane

1, 1-Dichloroethene

trans-1, 2-Dichloroethene

1,1,1,2-Tetrachloroethane

1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).

<25.0

480

<25.0

<25.0

<25.0

<25.0

<25.0

1680

<5.0

5.3

<5.0

<5.0

<5.0

<5.0

<10.0

51.3

16

220

2.9J

<5.0

5.9

<5.0

<5.0

664.8

55

460

<50.0

<10.0

<50.0

<50.0

<50.0

1875

- 2. U = Indicates the compound was analyzed, but not detected.
- 3. J = Indicates an estimated value less than the lowest standard.

31

330

10

<5.0

10

< 5.0

16

703

9

84

<5.0

<5.0

<5.0

<5.0

13

186

- 4. NA = Sample not analyzed for indicated compound.
- 5. All results are in micrograms per liter (ug/l, ppb).
- 6. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).

TABLE 4 Well MW-3 **Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds**

Revonak Dry Cleaners Site No. 356021

	12/91	9/94	2/5/1996	3/7/1996	3/19/1996	2/7/1997	1/20/1998	5/14/1998	8/27/1998	12/4/1998	2/26/1999	8/2/2001	11/6/2001
Halogenated Volatile Organics													
Vinyl Chloride	<10.0	U	1.8	1.4	2.2	<1.0	1	<1.0	<1.0	<1.0	<1.0	<1.0	0.69J
cis-1,2-Dichloroethene	< 5.0	10	7.0	7.9	12	3.8	7.0	7.2	11	10	6.4	12	9.3
1,1,1-Trichloroethane	<5.0	U	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene	3.0	<5.0	<1.0	<1.0	<1.0	<1.0	0.8J	0.8J	1.2	1.2	0.7J	1.1	1.1
Tetrachloroethene	15	< 5.0	2.9	<1.0	8.6	0.5	0.7J	0.6J	1J	0.7J	0.5J	0.77J	<1.0
Aromatic Volatile Organics													
sec-Butylbenzene	NA	NA	NA	NA	NA	NA	<1.0	1.0	<1.0	<1.0	0.7J	<1.0	<1.0
Benzene	<u><5.0</u>	<u>U</u>	<u><0.5</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<u>0.5J</u>	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>
TOTAL VOCs	18	10	11.7	9.3	22.8	4.3	9.5	9.6	13.2	11.9	8.3	0.8	11.09
										(DUP)			
	2/19/2002	5/15/2002	8/15/2002	8/21/2003	_ຫ 5/19/2004	8/18/2004	11/16/2004	2/21/2005	8/30/2005	8/30/2005	8/31/2006	ထ္	
Halogenated Volatile Organics					5003							2006	
Vinyl Chloride	<1.0	1.2	<1.0	1.7	គ្គ 1.8	2.9	3.0	2.0	2	1.4	1.0J	per	
cis-1,2-Dichloroethene	6.1	6.4	17	12	1.8 7.9 <1.0	12	7.2	4.5	9.8	9.6	5.0	September	
1,1,1-Trichloroethane	<1.0	<1.0	<1.0	<1.0	호 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	Sept	
Trichloroethene	0.78J	0.7J	1.2	1.2	1.4 0.6J	1.3	1.0	0.56J	1.0	0.97J	<1.0		
Tetrachloroethene	<1.0	<1.0	0.7J	<1.0	ਹ.6J	0.6J	0.6J	<1.0	<1.0	<1.0	<1.0	Injection;	
Aromatic Volatile Organics					<u>=</u>							ī	
sec-Butylbenzene	<1.0	<1.0	<1.0	<1.0	○ ≤ ≤ 1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	HRC	
Benzene	<u><1.0</u>	<u>0.6J</u>	<u>0.9J</u>	<u><1.0</u>	0.6J,B	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<u>0.53J</u>	<u><1.0</u>		
TOTAL VOCs	6.9	8.3	19.8	14.9	12.3	16.8	11.8	7.06	12.8	12.5	6.0		

Notes:

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. U = Indicates the compound was analyzed, but not detected.
- 3. J = Indicates an estimated value less than the lowest standard.
- 4. NA = Sample not analyzed for the indicated compound.
- 5. All results are in micrograms per liter (ug/l, ppb).
- 6. B = Indicates the compound was detected in the field blank sample.

- 7. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).
- 8. MW-3 was not sampled on 12/14/06,3/28/07, 6/21/07, 8/30/07, 3/7/08, or 9/25/08 due to the presence of HRC in the well.

TABLE 5

Well MW-4 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

									(Dup)				
	12/91	9/94	02/05/96	03/07/96	03/19/96	02/07/97	01/20/98	05/14/98	05/14/98	08/27/98	12/04/98	02/26/99	8/2/2001
Halogenated Volatile Organics													
Vinyl Chloride	<10.0	U	10	<2.0	<5.0	2.2	39	5.5	5.7	70	43	17	14
cis-1,2-Dichloroethene	<5.0	36	240	46	220	120	120E	88	87	310	220	120	130
1,1,1-Trichloroethane	<5.0	U	<10.0	<2.0	<5.0	6.8	0.8J	<1.0	<1.0	2.6	1.1	<1.0	0.84J
Trichloroethene	8.0	18	32	10	26	24	35	30	31	48	46	25	27
Tetrachloroethene	178	200	310	110	290	88	210	190	180	230	210	130	130
Chloroethane	<10.0	U	<10.0	U	U	<1	2.0	<1.0	<1.0	2.6	6.3	2.0	<1.0
1. 1-Dichloroethene	< 5.0	U	<10.0	U	U	<1	<1.0	<1.0	<1.0	0.6J	<1.0	<1.0	<1.0
trans 1,2-Dichloroethene	< 5.0	Ü	<10.0	Ü	Ü	<1	<1.0	<1.0	<1.0	0.9J	0.8J	0.5J	0.83J
Chloroform	< 5.0	<u>U</u>	<10.0	<u>U</u>	<u>U</u>	<1	<1.0	<1.0	<1.0	<1.0	<1.0	0.6J	0.94J
TOTAL VOCs	186.0	254	592	166	536	241.0	286.8	313.5	303.7	663.2	527.2	295.1	303.6
			(Dup)		(Dup)			(Dup)		(Dup)			
	11/6/2001	2/19/2002		5/15/2002	5/15/2002	8/15/2002	8/21/2003	8/21/2003	8/18/2004	8/18/2004	8/30/2005	8/31/2006	8/30/2007
						0, 10, 200	0, = 1, = 0.00	0,, _ 0			0,00,00		
Vinyl Chloride	31	28	28	5.5	5.1	36	6.1	6.5	8.0	6.3	24	1.0J	27
cis-1.2-Dichloroethene	140	88	80	28	28	150	55	61	66	60	140	23	110
1,1,1-Trichloroethane	1.4	0.79J	0.71J	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0
Trichloroethene	39	25	23	14	14	40	29	31	29	25	23	8.0	23.0
Tetrachloroethene	180	110	120	86	88	170	130	160	170	170	90	67	110
Chloroethane	4.4	6.7	6.2	1.7	1.6	9.9	<1.0	1.4	<1.0	1.4	4.5	<1.0	<5.0
1. 1-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0
trans 1,2-Dichloroethene	1.2	0.68J	0.65J	<1.0	<1.0	1.4	0.7J	0.8J	0.7J	0.6J	<1.0	<1.0	<5.0
Chloroform	1.1	0.78J	0.69J	0.9J	0.9J	1.2	1.0J	1.1	0.73 0.9J	<1.0	<1.0	<1.0	<5.0 <5.0
TOTAL VOCs	398.1	260.0	259.3	136.1	137.6	409.7	221.8	261.8	274.6	263.3	281.5	99.0	270.0
TOTAL VOUS	330.1	200.0	233.3	130.1	137.0	403.7	221.0	201.0	274.0	203.3	201.5	33.0	270.0
	9/25/2008	6/10/2009	6/9/2011	4/3/2013									
	3/23/2000	0/10/2003	0/3/2011	4/3/2013									
Vinvl Chloride	21	<10.0	1.2J	<1.0									
cis-1.2-Dichloroethene	98	<5.0	26	13									
1,1,1-Trichloroethane	<5.0	<5.0	<5.0	<2.5									
Trichloroethene	15	<5.0	5.8	4.5									
Tetrachloroethene	67	6.6	58	41									
Chloroethane	<5.0	<10.0	<5.0	<2.5									
1. 1-Dichloroethene	<5.0 <5.0	<5.0	<5.0 <5.0	<0.5									
trans 1,2-Dichloroethene	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<0.5 <2.5									
Chloroform	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<2.5 <2.5									
TOTAL VOCs	201	6.6	91.0	58.5									
IOTAL VOCS	201	0.0	31.0	30.3									

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
 2. U = Indicates the compound was analyzed, but not detected.
- 3. J = Indicates an estimated value less than the lowest standard.
- 4. E = Indicates an estimated value greater than the highest standard.
- 5. All results are in micrograms per liter (ug/l, ppb).
- 6. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).

TABLE 6

Well MW-6 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

	1/20/1998	5/14/1998	8/26/1998	12/3/1998	2/25/1999	8/	2/2001	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003	ള 5/19/2004
Halogenated Volatile Organics													200
Vinyl Chloride	5.0	1.4	12	3.6	12		13	24	2.5	<1.0	7.9	1.2	
cis-1,2-Dichloroethene	35	24	91	76	66		85	460	89	21	83	19	13 75 2.9 4.5
Trichloroethene	14	7.9	24	20	8.4		12	96	34	8.9	13	5.6	₹ 2.9
Tetrachloroethene	41	46	53	42	23		26	56	29	19	24	20	§ 4.5
Chloroethane	<1.0	<1.0	3.4	1.2	<1.0		<1.0	5.3	<1.0	<1.0	<1.0	<1.0	≥ <1.0
trans-1,2-Dichloroethene	<1.0	<1.0	1.1	1.0	1.0		0.94J	3.6	<1.0	<1.0	<1.0	<1.0	1.0 c1.0
1,1 Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	1.2	<1.0	<1.0	<1.0	<1.0	<u>.e</u> <1.0
Aromatic Volatile Organics													
Benzene	<1.0	<1.0	0.6J	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 = <1.0
sec-Butylbenzene	<1.0	<1.0	<u>1.3</u>	<1.0	<u><1.0</u>		<u>0.7J</u>	<u>1.1</u>	<1.0	<u><1.0</u>	<u>1.0</u>	<1.0	± <1.0
TOTAL VOCs	95	79.3	186.4	143.8	110.4		1.6	647.2	154.5	48.9	128.9	45.8	97.0
	0/40/0004	44/40/0004	0/04/0005	0/00/0005	0/04/0000	 .		0/00/0007	0/04/000=	0/00/0007	0/7/0000	0/05/0000	0/40/0000
	8/18/2004	11/16/2004	2/21/2005	8/30/2005	8/31/2006	900	12/14/2006	3/28/2007	6/21/2007	8/30/2007	3/7/2008	9/25/2008	6/10/2009
Halogenated Volatile Organics						200							
Vinyl Chloride	8.8	17	23	84	<1.0		1.0J	<5.0	<5.0	<5.0	6	10	<10
Vinyl Chloride cis-1,2-Dichloroethene	8.8 11	17 25	23 37	84 470	<1.0 7.0		1.0J 2.0J	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	6 <5.0	10 9	<10 <5.0
Vinyl Chloride cis-1,2-Dichloroethene Trichloroethene	8.8 11 1.9	17 25 1.3	23 37 1.3	84 470 3.7	<1.0 7.0 1.0J	otember	1.0J 2.0J <5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	6 <5.0 <5.0	10 9 <5.0	<10 <5.0 <5.0
Vinyl Chloride cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	8.8 11 1.9 4.9	17 25 1.3 1.1	23 37 1.3 1.0	84 470 3.7 2.3	<1.0 7.0 1.0J 2.0J	September	1.0J 2.0J <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	6 <5.0 <5.0 <5.0	10 9 <5.0 <5.0	<10 <5.0 <5.0 <5.0
Vinyl Chloride cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene Chloroethane	8.8 11 1.9 4.9 <1.0	17 25 1.3 1.1 1.3	23 37 1.3 1.0 0.55J	84 470 3.7 2.3 3.8	<1.0 7.0 1.0J 2.0J <1.0	September	1.0J 2.0J <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0	6 <5.0 <5.0 <5.0 <5.0	10 9 <5.0 <5.0 <5.0	<10 <5.0 <5.0 <5.0 <10
Vinyl Chloride cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene Chloroethane trans-1,2-Dichloroethene	8.8 11 1.9 4.9 <1.0 <1.0	17 25 1.3 1.1 1.3 0.88J	23 37 1.3 1.0 0.55J 0.77J	84 470 3.7 2.3 3.8 3.7	<1.0 7.0 1.0J 2.0J <1.0 <1.0	September	1.0J 2.0J <5.0 <5.0 <5.0 NA	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0	6 <5.0 <5.0 <5.0 <5.0 <5.0	10 9 <5.0 <5.0 <5.0 <5.0	<10 <5.0 <5.0 <5.0 <10 <5.0
Vinyl Chloride cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene Chloroethane trans-1,2-Dichloroethene 1,1 Dichloroethene	8.8 11 1.9 4.9 <1.0	17 25 1.3 1.1 1.3	23 37 1.3 1.0 0.55J	84 470 3.7 2.3 3.8	<1.0 7.0 1.0J 2.0J <1.0	ection; September	1.0J 2.0J <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0	6 <5.0 <5.0 <5.0 <5.0	10 9 <5.0 <5.0 <5.0	<10 <5.0 <5.0 <5.0 <10
Vinyl Chloride cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene Chloroethane trans-1,2-Dichloroethene 1,1 Dichloroethene Aromatic Volatile Organics	8.8 11 1.9 4.9 <1.0 <1.0	17 25 1.3 1.1 1.3 0.88J <1.0	23 37 1.3 1.0 0.55J 0.77J <1.0	84 470 3.7 2.3 3.8 3.7 0.77J	<1.0 7.0 1.0J 2.0J <1.0 <1.0	Injection; September	1.0J 2.0J <5.0 <5.0 <5.0 NA <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	6 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	10 9 <5.0 <5.0 <5.0 <5.0 <5.0	<10 <5.0 <5.0 <5.0 <10 <5.0 <5.0
Vinyl Chloride cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene Chloroethane trans-1,2-Dichloroethene 1,1 Dichloroethene Aromatic Volatile Organics Benzene	8.8 11 1.9 4.9 <1.0 <1.0 <1.0	17 25 1.3 1.1 1.3 0.88J <1.0	23 37 1.3 1.0 0.55J 0.77J <1.0	84 470 3.7 2.3 3.8 3.7 0.77J	<1.0 7.0 1.0J 2.0J <1.0 <1.0 <1.0 <1.0 <1.0	RC Injection; September	1.0J 2.0J <5.0 <5.0 <5.0 NA <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	6 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	10 9 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<10 <5.0 <5.0 <5.0 <5.0 <10 <5.0 <5.0
Vinyl Chloride cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene Chloroethane trans-1,2-Dichloroethene 1,1 Dichloroethene Aromatic Volatile Organics	8.8 11 1.9 4.9 <1.0 <1.0	17 25 1.3 1.1 1.3 0.88J <1.0	23 37 1.3 1.0 0.55J 0.77J <1.0	84 470 3.7 2.3 3.8 3.7 0.77J	<1.0 7.0 1.0J 2.0J <1.0 <1.0	Injection; September	1.0J 2.0J <5.0 <5.0 <5.0 NA <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	6 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	10 9 <5.0 <5.0 <5.0 <5.0 <5.0	<10 <5.0 <5.0 <5.0 <10 <5.0 <5.0

	6/9/2011	4/3/2013
Halogenated Volatile Organics		
Vinyl Chloride	15	1.8
cis-1,2-Dichloroethene	38	7.2
Trichloroethene	<5.0	0.47 J
Tetrachloroethene	< 5.0	1.0
Chloroethane	< 5.0	<2.5
trans-1,2-Dichloroethene	< 5.0	<2.5
1,1 Dichloroethene	<5.0	< 0.5
Aromatic Volatile Organics		
Benzene	<5.0	< 0.5
sec-Butylbenzene	<5.0	<2.5
TOTAL VOCs	53	10.47

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- J= Indicates an estimated value less than the lowest standard.
- 3. All results are in micrograms per liter (ug/l, ppb).
- 4. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).

TABLE 7

Well MW-7
Summary of Ground Water Sampling Analytical Results
Volatile Organic Compounds
Revonak Dry Cleaners Site No. 356021

	1/20/1998	5/14/1998	8/26/1998	12/4/1998	2/26/1999	8/2/2001	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003
Halogenated Volatile Organics											
Vinyl Chloride	4.0	1.4	4.3	3.6	<1.0	1.6	2.2	0.69J	0.6J	1.3	1.2
cis-1,2-Dichloroethene	32	28	58	43	24	18	22	13	8.2	16	12
Trichloroethene	18	20	27	23	17	16	17	11	11	14	15
Tetrachloroethene	<u>93</u>	<u>110</u>	<u>160</u>	<u>130</u>	<u>98</u>	<u>88</u>	<u>98</u>	<u>72</u>	<u>48</u>	<u>68</u>	<u>57</u>
TOTAL VOCs	147	159.4	249.3	199.6	139	123.6	139.2	96.7	67.8	99.3	85.2
	8/18/2004	8/30/2005	8/31/2006	8/30/2007	9/25/2008	6/10/2009	6/9/2011	4/3/2013			
Halogenated Volatile Organics											
Vinyl Chloride	0.9J	<1.0	<1.0	<5.0	<5.0	<10	<5.0	1.1			
cis-1,2-Dichloroethene	12	12	4.0J	27	24	< 5.0	8.8	2.0 J			
Trichloroethene	13	10	4.0J	6	5	< 5.0	2.9J	0.79			
Tetrachloroethene	<u>63</u>	<u>63</u>	<u>18</u>	<u>10</u>	<u>7</u>	<5.0	<u>5.0</u>	<u>0.96</u>			
TOTAL VOCs	88.9	85	26.0	43.0	36.0	ND	16.7	4.85			

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. All results are in micrograms per liter (ug/l, ppb).
- 3. J= Indicates an estimated value less than the lowest standard.
- 4. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).

TABLE 8

Well MW-9 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

Halogenated Volatile Organics	1/20/1998	5/13/1998	8/26/1998	(Dup) 8/26/1998	12/3/1998		2/25/1999	8/2/2001	11/6/2001	2/19/2002	5/15/2002	8/15/2002
Vinyl Chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene Methylene Chloride Chloroethane 1,1-Dichloroethene TOTAL VOCs	41 3.0 700 1.0 150 1,000 <1.0 <1.0 0.8J 1895.8	9.1 2.9 420 <1.0 130 1,100 <1.0 <1.0 <1.6	3.8 3.2 340 0.6J 140 980 <1.0 <1.0 <1.0 1467.6	4.2 3.2 360 <1.0 150 1100 1.0J <1.0 <1.0 1618.4	51 2.3 410 1.0J 110 870 <1.0 2.1 <1.0 1446.4		18 2.4 480 0.7J 110 870 <1.0 <1.0 1481.1	<1.0 2.3 220 <1.0 120 830 <1.0 <1.0 <1.0 172.3	13 2.0 160 0.71J 99 890 <1.0 <1.0 <1.0 1164.7	6.1 1.1 89 <1.0 59 460 <1.0 <1.0 <1.0 615.2	4.8 1.1 130 <1.0 58 400 <1.0 <1.0 <1.0 593.9	5.1 1.9 140 <1.0 62 350 <1.0 <1.0 <1.0 559.0
Halogenated Volatile Organics	8/21/2003	8/18/2004	2/21/2005	8/30/2005	8/31/2006	2006	12/14/2006	3/28/2007	6/21/2007	8/30/2007	3/7/2008	9/25/2008
Vinyl Chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene Methylene Chloride Chloroethane 1,1-Dichloroethene TOTAL VOCs	6.4 2.2 260 <1.0 98 630 <1.0 <1.0 997	1.7 1.2 99 <1.0 62 430 <1.0 <1.0 <1.0 594	3.3 0.65J 70 <1.0 36 220 1.2 <1.0 <1.0 331	1.0 0.76 74 <1.0 51 210 <1.0 <1.0 <1.0 337	2.0J 2.0J 200 <1.0 48 280 <5.0 <1.0 532	HRC Injection; September 20	16 2.0J 180 <5.0 47 210 2.0JB <5.0 <5.0 457	5.0 <5.0 140 <5.0 30 230 <5.0 <5.0 <5.0 405	8 <5.0 110 <5.0 28 210 <5.0 <5.0 <5.0 <55.0 356	12 <5.0 120 <5.0 42 300 <5.0 <5.0 <5.0	<5.0 <5.0 110 <5.0 24 180 <5.0 <5.0 <5.0 314	<10 <10 69 <10 22 150 <10 <10 <10 <10 <410
Halogenated Volatile Organics	6/10/2009	6/9/2011	4/3/2013									
Vinyl Chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene Methylene Chloride Chloroethane 1,1-Dichloroethene TOTAL VOCs	<20 <10 76 <10 24 190 <10 <20 <10 290	2.0J <5.0 170 <5.0 17 140 2.8J,B <5.0 <5.0 331.8	1.2 <2.5 17 <2.5 11 95 <2.5 <0.5 124.2									

- Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
 J = Indicates an estimated value less than the lowest standard.
- 3. All results are in micrograms per liter (ug/l, ppb).
- The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).
 B = Indicates the compound was detected in the field blank sample or associated analysis batch blank.

TABLE 9

Well MW-10 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

Halogenated Volatile Organics	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003	8/18/2004	2/21/2005	8/30/2005		September 2006	12/14/2006	3/28/2007	6/21/2007	8/30/2007	8/30/2007 (duplicate)	3/7/2008
Vinyl Chloride	2	1.5	0.9J	<1.0	0.8J	1.2	1.9	1.7	<1.0	er 2	31	24	29	53	56	<5.0
trans-1,2-Dichloroethene	2.4	1.8	1.6	3.5	2.3	2.8	2.7	2.3	<1.0	qu	6	<5.0	<5.0	<5.0	<25	<5.0
cis-1,2-Dichloroethene	410	250	370	500	370	490	360	420	140	ţe	690	220	330	550	580	35
1,1,1-Trichloroethane	0.93 J	0.91J	0.7J	<1.0	<1.0	0.6J	<1.0	0.59J	<1.0	Эeb	<5.0	<5.0	<5.0	<5.0	<25	<5.0
Trichloroethene	63	57	53	64	70	61	55	66			23	13	23	<5.0	<25	<5.0
Tetrachloroethene	620	420	450	470	460	600	350	380	97	Ę.	70	66	67	80	75	11
1,1-Dichloroethene	0.63 J	<1.0	<1.0	<1.0	<1.0	0.6J	0.53J	<1.0	<1.0	jec	<5.0	<5.0	<5.0	<5.0	<25	<5.0
Chloroethane	<1.0	<1.0	0.5J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	드	<5.0	7	29	<5.0	<25	<5.0
Aromatic Volatile Organics										HRC Injection;						
MTBE	<u>NA</u>	<u>NA</u>	<u>1.1</u>	<1.0	<u><1.0</u>	<u><1.0</u>	<1.0	<u>NA</u>	<u><1.0</u>	エ	<u><5.0</u>	<u><5.0</u>	<u><5.0</u>	<u><5.0</u>	<u><25</u>	<u><5.0</u>
TOTAL VOCs	1099.0	731.2	877.8	1037.5	903.1	1156.2	770.1	870.6	250		820	330	478	683	711	46
Halogenated Volatile Organics	9/25/2008	(Dup) 9/25/2008	6/10/2009	6/9/2011	4/3/2013											
Vinyl Chloride	<50	<25	96	26	6.6											
trans-1,2-Dichloroethene	<50	<25	<25	3.1J	<12											
cis-1,2-Dichloroethene	890	800	930	240	320											
1,1,1-Trichloroethane	<50	<25	<25	<5.0	<12											
Trichloroethene	<50	26	30	15	15											
Tetrachloroethene	84	90	130	78	66											
1,1-Dichloroethene	<50	<25	<25	<5.0	<2.5											
Chloroethane	<50	<25	<50	<5.0	<12											
Aromatic Volatile Organics																
MTBE	<u><50</u>	<u><25</u>	<u><25</u>	< 5.0	<12											
TOTAL VOCs	974.0	916.0	1186	362.1	407.6											

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. J = Indicates an estimated value less than the lowest standard.
- 3. All results are in micrograms per liter (ug/l, ppb).
- 4. NA = Compound not analyzed.
- 5. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).

TABLE 10

Well MW-11 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

	8/31/2006 g	12/14/2006	3/28/2007	6/21/2007	8/30/2007	3/7/2008	9/25/2008	6/10/2009	6/9/2011	4/3/2013
Halogenated Volatile Organics		<u> </u>								
Vinyl Chloride	8.0	3.0J	8	<5.0	5	16	17	<10	6.9	1.2
trans-1,2-Dichloroethene	NA L	ਜ਼ੇ 1.0J	< 5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	1.1J	0.78 J
cis-1,2-Dichloroethene	140	35	54	16	17	84	140	160	240	130 E
Trichloroethene	6	₹ 3.0J	<5.0	<5.0	<5.0	5	6	9.1	4.7J	2.8
Tetrachloroethene	[<u>₽</u>	14	6	<5.0	18	14	17	3.5J	10
Methylene Chloride	<u><14</u>		<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	2.5J,B	<2.5
TOTAL VOCs	191	51	76	22	22	123	177	186.1	258.7	144.8

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 3. All results are in micrograms per liter (ug/l, ppb).
- 4. NA = Compound not analyzed.
- 5. B = Indicates the compound was detected in the field blank sample or associated analysis batch blank.
- 6. J = Indicates an estimated value less than the lowest standard.

TABLE 11

Well MW-12 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

	8/31/2006	12/14/2006	3/28/2007	6/21/2007	8/30/2007	3/7/2008	9/25/2008	6/10/2009	6/9/2011	4/3/2013
Halogenated Volatile Organics	2006									
V. 1011 : 1	in in	5.0	5 0	5 0	50	_	50	00	4.0.1	4.0
Vinyl Chloride	5.0 J 문	5.0	<5.0	<5.0	56	5	<50	<20	4.8J	<1.0
trans-1,2-Dichloroethene	5.0 J 1.0 J	3.0 J	<5.0	<5.0	<5.0	<5.0	<50	<10	1.1J	<2.5
cis-1,2-Dichloroethene	230 တိ	580	400	670	850	24	620	380	170	39
Trichloroethene	80 <u>5</u>	81	34	43	48	21	<50	42	23	3.5
Tetrachloroethene	510	170	120	140	140	65	97	140	78	7.5
Methylene Chloride	<14		< 5.0	<5.0	< 5.0	<5.0	<50	<10	2.5J,B	<2.5
1,1-Dichloroethene	<u><5.0</u> 発	<u>1.0J</u>	<5.0	<u><5.0</u>	<5.0	<5.0	<u><50</u>	<u><10</u>	<5.0	< 0.5
TOTAL VOCs	826	840	554	853	1,038	110	717	562	279.4	50

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 3. All results are in micrograms per liter (ug/l, ppb).
- 4. B = Indicates the compound was detected in the field blank sample or associated analysis batch blank.

TABLE 12

Well BR-1
Summary of Ground Water Sampling Analytical Results

Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

Halogenated Volatile Organics	1/20/1998	5/14/1998	8/26/1998	12/3/1998	2/26/1999	8/2/2001	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003
Transgeriated Ferance Crigation											
Vinyl Chloride	4.0	1.5	0.9J	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene	20	11	9.6	11	6.6	3.4	3.9	2.5	3.4	3.8	3.5
Trichloroethene	2.0	0.8J	<1.0	0.7J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	<u>12</u>	<u>5.0</u>	<u>1.9</u>	<u>4.0</u>	<u>2.6</u>	<u>1.2</u>	<u>0.90J</u>	<u>0.74J</u>	<u>1.5</u>	<u>1.7</u>	<u>1.8</u>
TOTAL VOCs	38	18.3	12.4	16.8	9.2	4.6	4.8	3.2	4.9	5.5	5.3
	8/18/2004	8/30/2005	8/31/2006	8/30/2007	9/25/2008	6/10/2009	6/9/2011	4/3/2013			
Halogenated Volatile Organics											
Vinyl Chloride	<1.0	<1.0	<1.0	<5.0	<5.0	<10	<5.0	<1.0			
cis-1,2-Dichloroethene	2.5	3.2	1.0 J	6	6	5.9	1.4J	1.8 J			
Trichloroethene	<1.0	<1.0	<1.0	<5.0	< 5.0	<5.0	<5.0	0.18 J			
Tetrachloroethene	<u>1.4</u>	<u>2.2</u>	<u>1.0 J</u>	<5.0	<u><5.0</u>	<5.0	<5.0	<u>1.2</u>			
TOTAL VOCs	3.9	5.4	2.0	6.0	6.0	5.9	1.4	1.98			

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. J = Indicates an estimated value less than the lowest standard.
- 3. All results are in micrograms per liter (ug/l, ppb).
- 4. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).

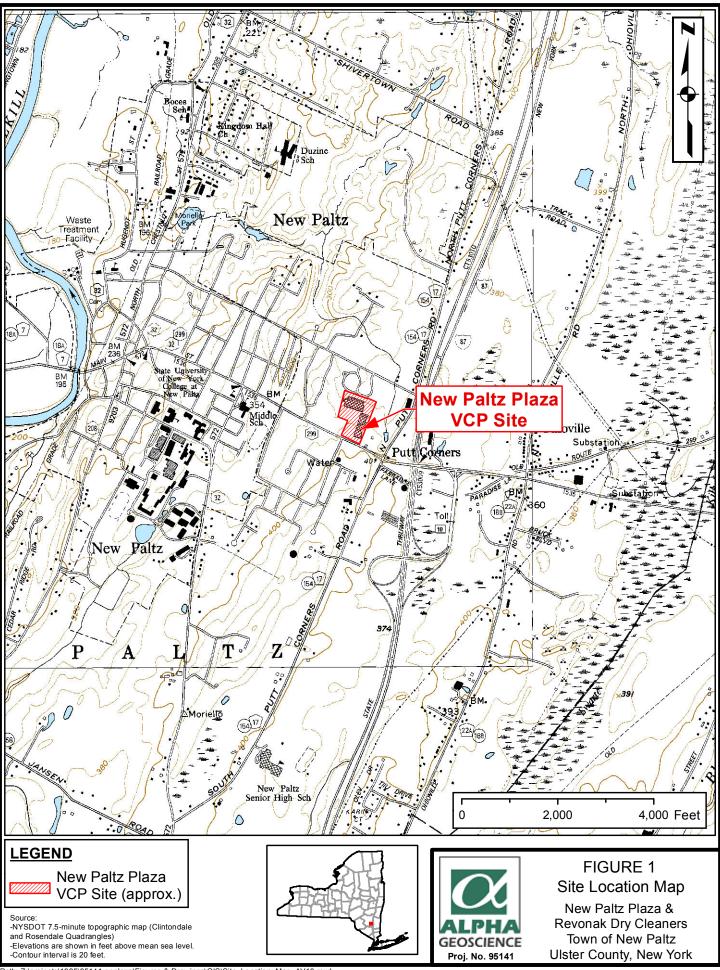
TABLE 13

Well BR-2 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds

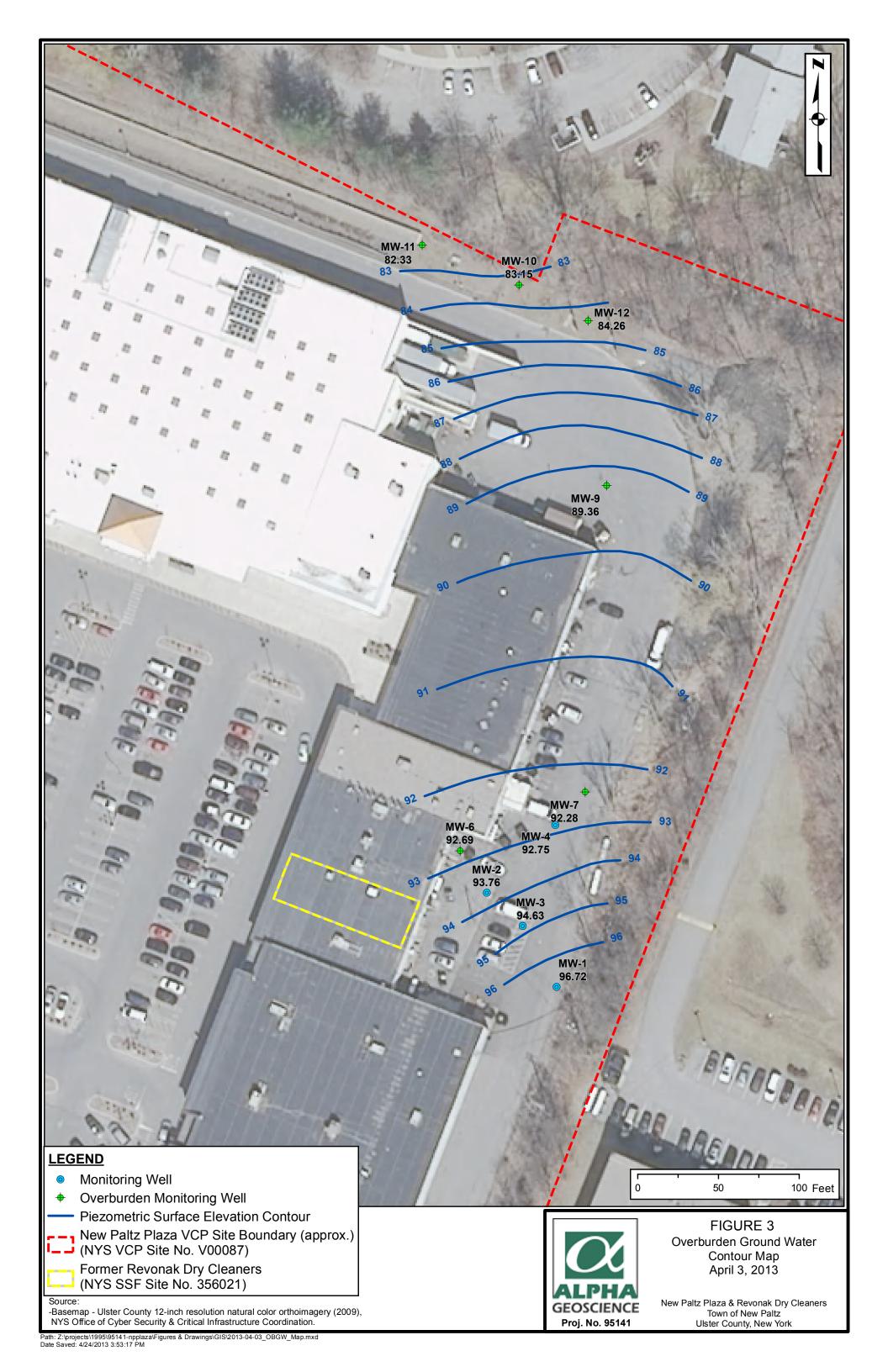
Revonak Dry Cleaners Site No. 356021

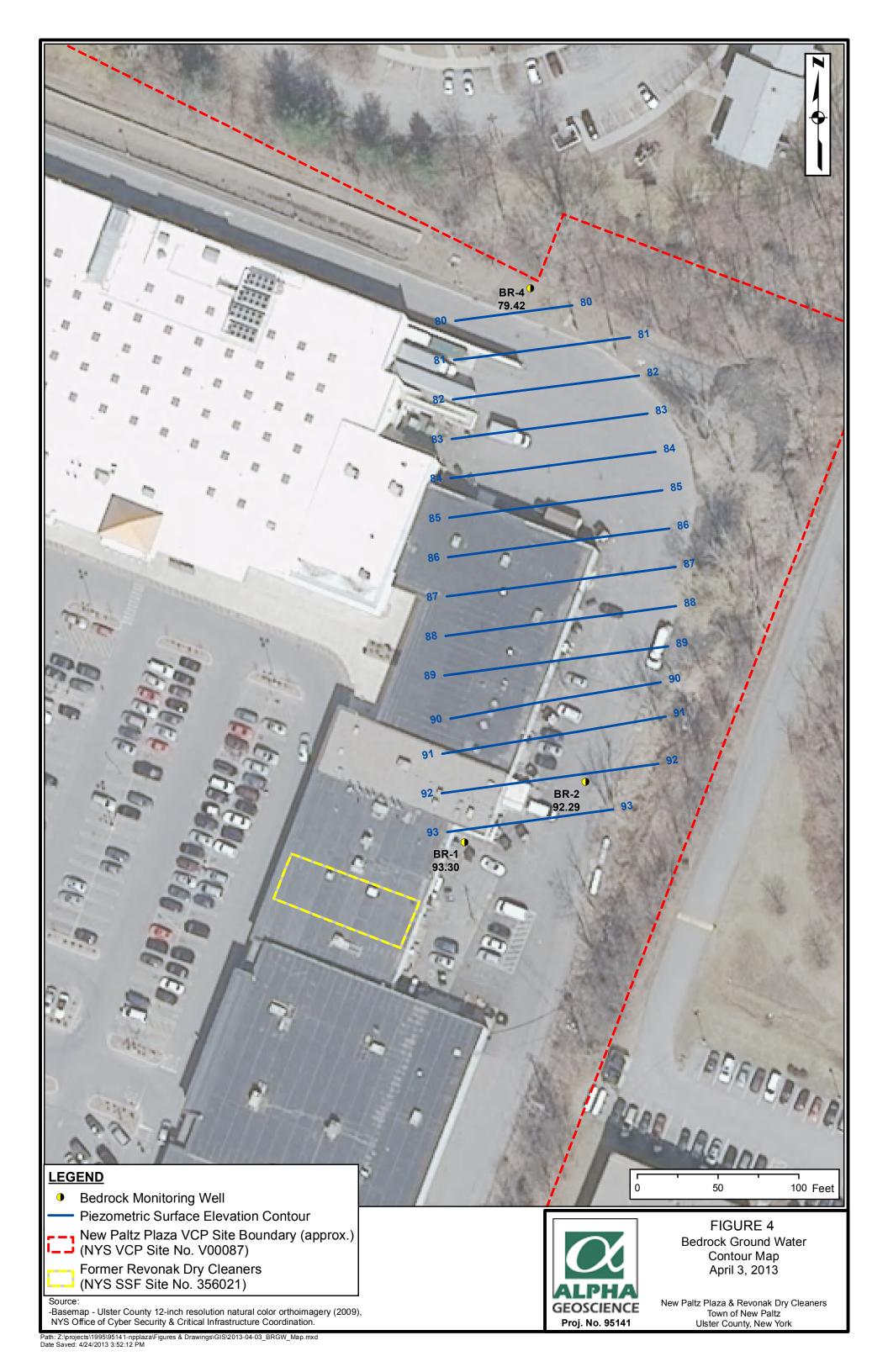
	1/20/1998	5/13/1998	8/26/1998	12/3/1998	2/25/1999	8/2/2001	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003
Halogenated Volatile Organics											
Vinyl Chloride	13	6.1	10	12	5.2	3.8	6.6	5	3.4	4.1	2.3
cis-1,2-Dichloroethene	65	64	100	100	63	55	71	57	48	63	43
Trichloroethene	19	21	27	26	20	20	24	18	17	20	21
Tetrachloroethene	130E	200	210	230	180	200	230	170	170	200	150
Chloroethane	<1.0	<1.0	0.9J	1.0	<1.0	<1.0	1.2	0.97J	0.5J	<1.0	<1.0
trans-1,2-Dichloroethylene	<1.0	<1.0	<1.0	<1.0	<u><1.0</u>	<1.0	<1.0	<1.0	<1.0	<u>0.37J</u>	<1.0
TOTAL VOCs	97	291.1	347.9	369	268.2	278.8	332.8	251.0	238.9	287.5	216.3
	8/18/2004	8/30/2005	8/31/2006	8/30/2007	9/25/2008	6/10/2009	6/9/2011	4/3/2013			
Halogenated Volatile Organics											
Vinyl Chloride	4.1	4.1	4.0J	<5.0	<5.0	<10	1.2J	2.8			
cis-1,2-Dichloroethene	48	66	56	62	65	< 5.0	13	13			
Trichloroethene	20	22	18	14	11	< 5.0	3.5J	5.7			
Tetrachloroethene	220	170	160	140	110	< 5.0	28	48			
Chloroethane	<1.0	<1.0	<1.0	<5.0	< 5.0	<10	<5.0	<2.5			
trana 1.2 Diablaraathylana											
trans-1,2-Dichloroethylene	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<u><5.0</u>	<5.0	<5.0	<u><5.0</u>	<u><2.5</u>			

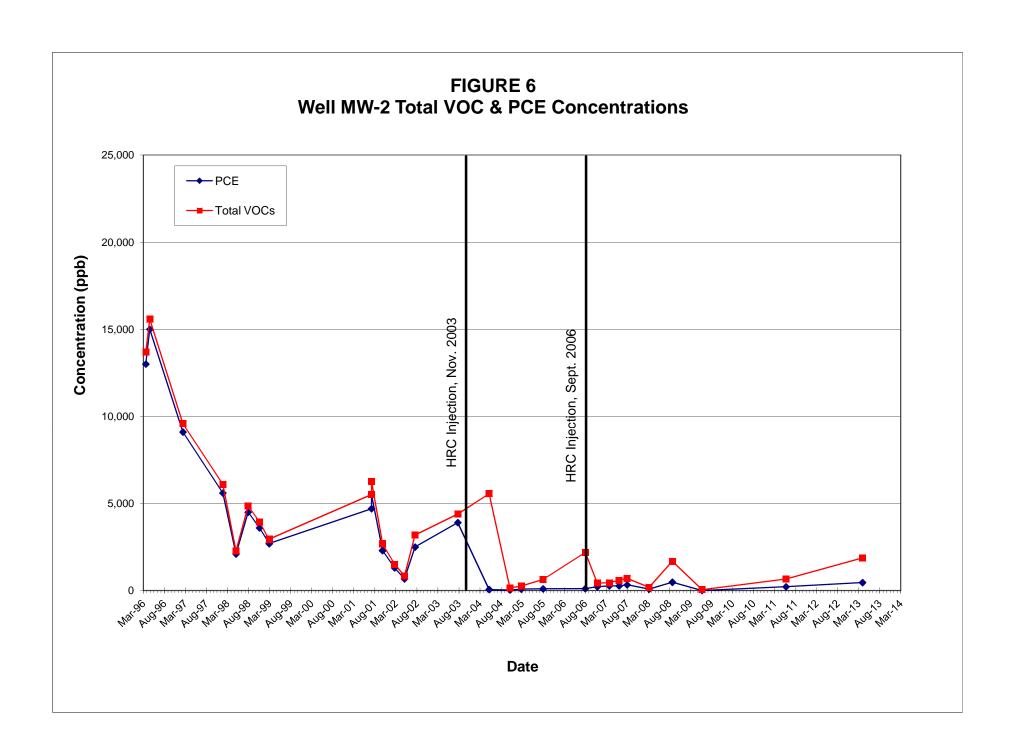
- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. J = Indicates an estimated value less than the lowest standard.
- 3. E = Indicates an estimated value greater than the highest standard.
- 4. All results are in micrograms per liter (ug/l, ppb).
- 5. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).


TABLE 14

Well BR-4 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021


	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003	8/18/2004	2/21/2005	8/30/2005	8/31/2006	8/30/2007	9/25/2008	6/10/2009
Halogenated Volatile Organics												
Vinyl Chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 5.0	< 5.0	<10
cis-1,2-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 5.0	< 5.0	11
Trichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 5.0	< 5.0	<5.0
Tetrachloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 5.0	< 5.0	<5.0
Aromatic Volatile Organics												
MTBE	<u>NA</u>	<u>NA</u> 0	<u><1.0</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u> 0	<u>NA</u>	<1.0 0	<u><5.0</u>	<u><5.0</u>	<u><5.0</u>
TOTAL VOCs	0	0	0	0	0	0	0	0	0	0	0	11
		(DUP)										
	6/9/2011	6/9/2011	4/3/2013									
Halogenated Volatile Organics												
\/invil Chlorida												
Vinyl Chloride	<5.0	<5.0	<1.0									
cis-1,2-Dichloroethene	<5.0 <5.0	<5.0 <5.0	<1.0 <2.5									
,												
cis-1,2-Dichloroethene	<5.0	<5.0	<2.5									
cis-1,2-Dichloroethene Trichloroethene	<5.0 <5.0	<5.0 <5.0	<2.5 <0.5									
cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	<5.0 <5.0	<5.0 <5.0	<2.5 <0.5									


- 1. J = Indicates an estimated value less than the lowest standard.
- 2. All results are in micrograms per liter (ug/l, ppb).
- 3. NA = Compound not analyzed.
- 4. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).



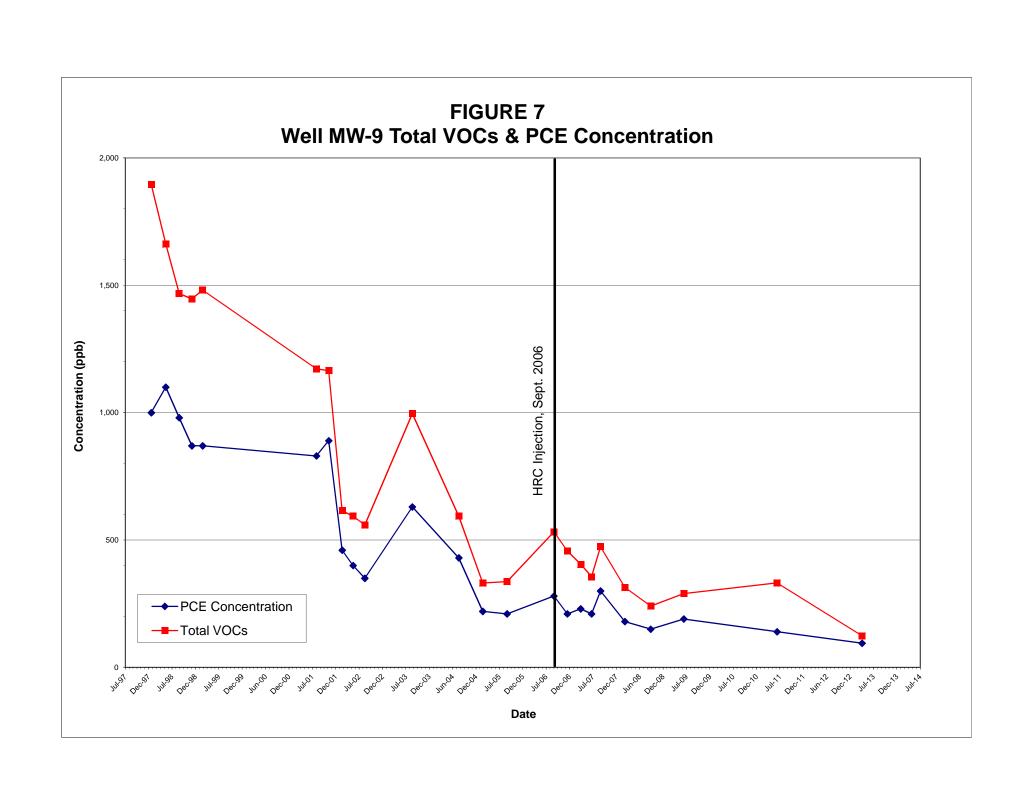


FIGURE 8 **Well MW-10 Total VOCs & PCE Concentrations** 6,000 5,500 5,000 → PCE Total VOCs 4,500 Concentration (ppb) 4,000 3,500 HRC Injection, Sept. 2006 3,000 2,500 2,000 1,500 1,000 500 0 in Operals 2717.0g JuloT , operal Jnu 08 ming beca, ming becag ming becag ming becag Thy bear Thy beay Thy bear Thy bear Date

APPENDIX A

Release Letter

New York State Department of Environmental Conservation Office of General Counsel, 14th Floor

625 Broadway, Albany, New York 12233-1500

Fax: (518) 402-9018 or (518) 402-9019

Website: www.dec.ny.gov

May 30, 2012

New Paltz Plaza Properties L.P. New Platz Plaza, Inc. % The Kempner Corporation 257 Mamaroneck Avenue White Plains, NY 10605

RE: New Paltz Plaza Properties, L.P. and New Paltz Plaza, Inc.

Index No. W3-0782-97-10

Site No. V00087

To whom it may concern:

Unless otherwise specified in this letter, all terms used herein shall have the meaning assigned to them under the terms of the Voluntary Agreement entered into between the New York State Department of Environmental Conservation (the "Department") and New Paltz Plaza Properties, L.P. and its general partner, New Paltz Plaza, Inc., (collectively "Volunteer"), Index No. W3-0782-97-10 (the "Agreement").

The Department is pleased to report that the Department is satisfied that the Department-approved Work Plan to implement a response program at the parcel of land located at on State Route 299 in the Town of New Paltz, County of Ulster, State of New York, Tax Map Parcel No. 86.12-6-5.1, a map of which is attached hereto as Appendix "A" (the "Site"), Site # V00087, has been successfully implemented. So long as no information has been withheld from the Department or mistake made as to the hazard posed by any Site-related compound or analyte of concern, the Department believes that no further investigation or response will be required at the Site respecting the Existing Contamination to render the Site safe to be used for the Contemplated Use.

Assignable Release and Covenant Not To Sue:

The Department and the Trustee of New York State's natural resources ("Trustee"), therefore, hereby release, covenant not to sue, and shall forbear from bringing any action, proceeding, or suit against Volunteer and Volunteer's lessees and sublessees and Volunteer's successors and assigns and their respective secured creditors, for the further investigation and remediation of the Site, or for natural resources damages, based upon the release or threatened release of Existing Contamination, provided that (a) timely payments of the amounts specified in Paragraph VI of the Agreement continue to be or have been made to the Department, (b)

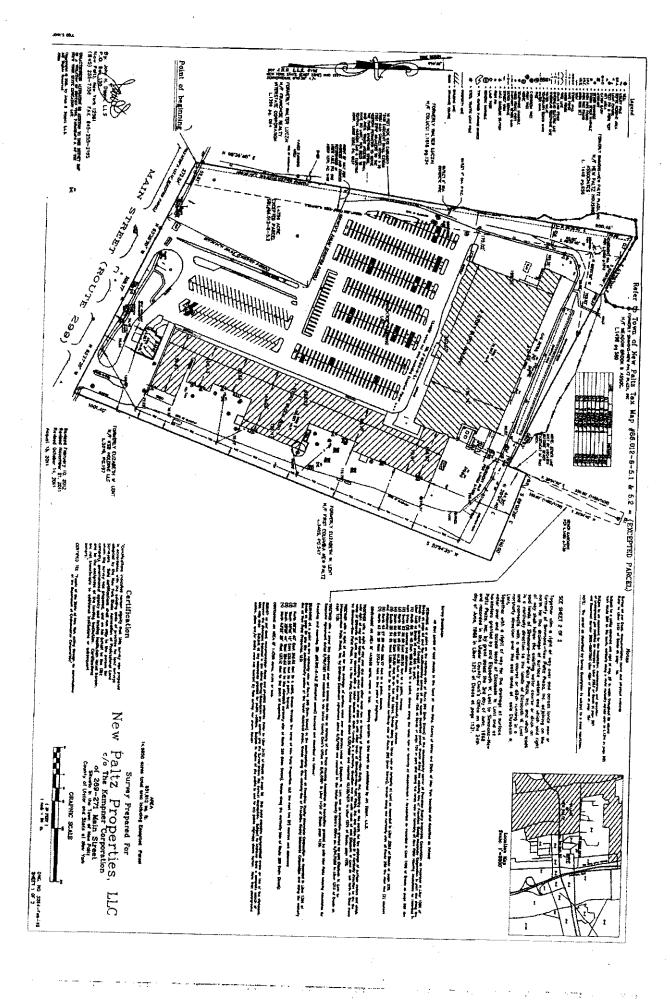
appropriate notices and deed restrictions have been recorded in accordance with Paragraphs IX and X of the Agreement, and Volunteer and/or its lessees, sublessees, successors, or assigns promptly commence and diligently pursue to completion the Department-approved Site Management Plan, if any. Nonetheless, the Department and the Trustee hereby reserve all of their respective rights concerning, and such release, covenant not to sue, and forbearance shall not extend to, any further investigation or remedial action the Department deems necessary:

- due to off-Site migration of contaminants other than petroleum resulting in impacts to
 environmental resources, to human health, or to other biota that are not inconsequential
 and to off-Site migration of petroleum, irrespective of whether the information available
 to Volunteer and the Department at the time of the development of the Work Plan
 disclosed the existence of potential existence of such off-Site migration;
- due to environmental conditions related to the Site that were unknown to the Department
 at the time of its approval of the Work Plan which indicate that Site conditions are not
 sufficiently protective of human health and the environment for the Contemplated Use;
- due to information received, in whole or in part, after the Department's approval of the
 final engineering report and certification, which indicates that the activities carried out in
 accordance with the Work Plan are not sufficiently protective of human health and the
 environment for the Contemplated Use;
- due to Volunteer's failure to implement the Agreement to the Department's satisfaction;
 or
- due to fraud or mistake committed by 'Volunteer' in demonstrating that the Site-specific cleanup levels identified in, or to be identified in accordance with, the Work Plan were reached.

Additionally, the Department and the Trustee hereby reserve all of their respective rights concerning, and any such release, covenant not to sue, and forbearance shall not extend to:

- Volunteer if it causes a, or suffers the, release or threat of release, at the Site of any hazardous substance (as that term is deemed at 42 USC 9601[14]) or petroleum (as that term is defined in Navigation Law §172[15]), other than Existing Contamination; or if it causes a, or suffers the use of the Site to, change from the Contemplated Use to one requiring a lower level of residual contamination before that use can be implemented with sufficient protection of human health and the environment; nor to
- any of Volunteer's lessees, sublessees, successors, or assigns who causes a, or suffers the, release or threat of release, at the Site of any hazardous substance (as that term is defined at 42 USC 9601[14]) or petroleum (as that term is defined in Navigation Law §172[151), other than Existing Contamination, after the effective date of the Agreement; who causes a, or suffers the use of the Site to, change from the Contemplated Use to one requiring a lower level of residual contamination before that use can be implemented with sufficient protection of human health and the environment; or who is otherwise a patty responsible

under law for the remediation of the Existing Contamination independent of any obligation that party may have respecting same established resulting solely from the Agreements execution.


Notwithstanding the above, however, with respect to any claim or cause of action asserted by the Department, the one seeking the benefit of this release shall bear the burden of proving that the claim or cause of action, or any part thereof, is attributable solely to Existing Contamination.

Notwithstanding any other provision in this release, if, with respect to the Site there exists or may exist a claim of any kind or nature on the part of the New York State, Environmental Protection and Spill Compensation Fund against any patty, nothing in this release shall be construed, or deemed, to preclude the State of New York from recovering such claim.

In conclusion, the Department is pleased to be part of this effort to return the Site to productive use of benefit to the entire community.

> NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION AND TRUSTEE OF NEW YORK STATE'S NATURAL RESOURCES

Its: Burn' Chirf

APPENDIX B

Report of Vapor Mitigation System Inspection Alpine Environmental, Inc.

REPORT OF VAPOR MITIGATION SYSTEM INSPECTION

New Paltz Plaza Route 299, New Paltz, New York

Prepared by:

1146 Central Avenue Albany, New York 12205

<u>Tabl</u>	Table of Contents Pa		
1.0	INTE	RODUCTION	1
2.0	INSF	PECTION PROCEDURES	2
3.0	INSF	PECTION RESULTS	3
	3.1	Sub-system 1: Liquor Store	3
	3.2	Sub-system 2: Laundromat	4
	3.3	Sub-system 3: Dry Cleaner	4
	3.4	Sub-system 4: Peter Harris	5
	3.5	Sub-system 5: PDQ Print	6
	3.6	Sub-system 6: Jewelry Store	7
	3.7	Sub-system 7: Bagel Shop	7
	3.8	Sub-system 8: Dollar Store	8
4.0	SUM	IMARY OF INSPECTION & CONDITIONS	9

APPENDICES

None

1.0 INTRODUCTION

This report describes the inspection of the vapor mitigation system (VMS) performed on April 23, 2013 at the New Paltz Plaza, New Paltz, New York.

A portion of the site was historically operated as a dry cleaning facility. The site has documented chlorinated volatile organic compound (CVOC) contamination in the soil, groundwater, and soil gas. Additionally, vapor intrusion or a high potential for vapor intrusion, of the CVOC soil gas was identified in the building.

The Vapor Mitigation System (VMS) extracts soil vapor and air from below the concrete floor slab in the buildings and discharges the soil vapor and air into the atmosphere above the roof of the building. Extracted soil vapor and air travel through sealed negatively pressurized piping and through a fan to a positively pressurized exhaust at or above the roof line of the building.

The VMS was installed in 2005 to reduce the potential for occupant exposure to CVOCs entering through vapor intrusion. This report describes the methodology of the inspection, the operating conditions observed during the inspection, and maintains a log of service performed on the VMS.

2.0 INSPECTION PROCEDURES

Annual inspection procedures for the VMS and remedies to observed deficiencies are outlined below:

2.1 System Fan

Observe the fan during operation. If abnormal noises (i.e. scraping, buzzing, cyclical pointed sounds, or no operational sound at all, etc.) are observed, replace fan (There are no field serviceable parts in the fan). Observe the exhaust stack for possible obstructions (i.e. tree branches, etc.).

2.2 System Piping and Connections

Inspect the exposed system piping and connections for any breach or damage. Repair or replace any observed damage effecting system operation.

2.3 Slab/System Interface Seals

Inspect the seal at each accessible extraction point. If breech is observed, caulk with polyurethane caulk

2.4 Electrical

Observe electrical components for damage. Test system electrical disconnects / switches for functionality. Repair/replace damaged components and malfunctioning items.

2.5 Pressure Gauges

Test system differential pressure gauges for functionality. Remove input line or shut down sub-system to verify differential pressure gauges return to a zero reading. Replace any dysfunctional differential pressure gauges and restore sub-system operation.

2.6 Low Pressure Alarm

Test system low pressure alarm for functionality. Remove input line or shut down sub-system to verify alarm sounds and alarm light illuminates. Replace any dysfunctional alarm and restore sub-system operation.

2.7 System Pressure

Observe the pressure differential readings on the pressure gauge for each sub-system. Compare the differential pressure in the sub-system exhaust stack to the indicated operating pressure range. If static pressure is outside the normal range, evaluate the fan for problems. If no problems are identified with the fan, perform sub-slab pressure testing at representative location(s) to verify the sub-slab pressure field extension (PFE) is sufficient under the "new" static operating pressure. Adjust system ball valves as needed to redistribute PFE. If acceptable PFE is achieved, the "new" operating pressure becomes the "baseline" pressure. If acceptable PFE cannot be achieved, replace the system fan.

2.8 Inspection Documentation

Document the inspection and any repairs or modifications made. Maintain a logbook of the inspections for the life of the VMS.

3.0 INSPECTION RESULTS

3.1 Sub-system #1, Fox & Hound Liquor Store (former Pharmacy)

3.1.1 Equipment and Material Observations

Table 3.1A

Item	Observation
System Fan	No Deficiencies observed
System Piping and Connections	No Deficiencies observed
Slab/System Interface Seals	No Deficiencies observed
Electrical Components	No Deficiencies observed
Pressure Gauges	No Deficiencies observed
Low Pressure Alarm	No Deficiencies observed

3.1.2 Pressure Readings

Table 3.1B

Liquor Store				
Sub	Baseline	Pressure		
System ID	Pressure	Reading		
Fan Model	*9/26/2011	4/23/2013		
	Normal Range			
1	15.0 "WC	14.0 "WC		
HS5000	7.5 - 22.5"WC			

"WC - Inches of Water Column

3.1.3 Conclusion

The fan for sub-system 1 failed and was replaced on September 26, 2011. The new fan operating pressure was 15 inches of water at the time of installation. Sub-system is operating as designed.

^{*} New Fan Installed 9/26/2011

3.2 Sub-system #2, Laundromat

3.2.1 Equipment and Material Observations

Table 3.2A

Item	Observation
System Fan	No Deficiencies observed
System Piping and Connections	No Deficiencies observed
Slab/System Interface Seals	No Deficiencies observed
Electrical Components	No Deficiencies observed
Pressure Gauges	No Deficiencies observed
Low Pressure Alarm	No Deficiencies observed

3.2.2 Pressure Readings

Table 3.2B

Laundro				
Sub	Baseline	Pressure	Pressure	Pressure
System ID	Pressure	Reading	Reading	Reading
Fan Model	2005	4/23/2013	6/23/2011	12/30/2010
	Normal Range			
2	5.0 "WC	5.0 "WC	N	5.0 "WC
HS5000	2.5 -7.5"WC			

[&]quot;WC - Inches of Water Column

3.2.3 Conclusion

The sub-system pressure gauge was moved outside of the office area for better access. Sub-system is operating as designed.

3.3 Sub-system #3, Dry Cleaner

3.3.1 Equipment and Material Observations

Table 3.3A

Item	Observation
System Fan	No Deficiencies observed
System Piping and Connections	No Deficiencies observed
Slab/System Interface Seals	No Deficiencies observed
Electrical Components	No Deficiencies observed
Pressure Gauges	No Deficiencies observed
Low Pressure Alarm	No Deficiencies observed

N - No Access to Gauge, Office door locked.

3.3.2 Pressure Readings

Table 3.3B

Dry Cleaner				
Sub	Baseline	Pressure	Pressure	
System ID	Pressure	Reading	Reading	
Fan Model	2005	4/23/2013	6/23/2011	
	Normal Range			
3	25.0 "WC	24.0 "WC	25.0"WC	
HS5000	12.5 - 37.5"WC			

"WC - Inches of Water Column

3.3.3 Conclusion

The fan for sub-system 3 failed and was replaced on January 10, 2011. The new fan operating pressure was 25 inches of water at the time of installation. The sub-system pressure gauge was moved outside of the office area for better access. Sub-system is operating as designed.

3.4 Sub-system #4, Peter Harris

3.4.1 Equipment and Material Observations

Table 3.4A

Item	Observation
System Fan	Not observed
System Piping and Connections	Not observed
Slab/System Interface Seals	Not observed
Electrical Components	Not observed
Pressure Gauges	Not observed
Low Pressure Alarm	Not observed

3.4.2 Pressure Readings

Table 3.4B

Peter Harris				
Sub	Baseline	Pressure	Pressure	
System ID	Pressure	Reading	Reading	
Fan Model	2005	4/23/2013	6/23/2011	
	Normal Range			
4	45.0 "WC	0.0"WC	48.0"WC	
HS5000	22.5 - 50.0"WC	System off		

^{*} New Fan Installed 1/10/2011

"WC - Inches of Water Column

3.4.3 Conclusion

The fan for sub-system 4 failed and was replaced on December 30, 2010. The new fan operating pressure was 45 inches of water at the time of installation.

Peter Harris Corporate Employee Judy Piurowski was at store during the inspection and stated she did not want the system to be turned on due to prior water damage. An incident occurred where water was present on the floor near system piping. Peter Harris employees and building owner representatives concluded that the VMS caused the water infiltration into the space, causing damage to merchandise. Sub-system is currently off.

3.5 Sub-system #5, PDQ Print

3.5.1 Equipment and Material Observations

Table 3.5A

Item	Observation
System Fan	No Deficiencies observed
System Piping and Connections	No Deficiencies observed
Slab/System Interface Seals	No Deficiencies observed
Electrical Components	No Deficiencies observed
Pressure Gauges	No Deficiencies observed
Low Pressure Alarm	No Deficiencies observed

3.5.2 Pressure Readings

Table 3.5B

PDQ Print				
Sub	Baseline	Pressure		
System ID	Pressure	Reading		
Fan Model	*2/12/2012	4/23/2013		
	Normal Range			
5	5.0 "WC	4.0 "WC		
HS5000	2.5 - 7.5"WC			

"WC - Inches of Water Column

^{*} New Fan Installed 12/30/2010

^{*} New Fan Installed 2/12/2012

3.5.3 Conclusion

The fan for sub-system 5 failed and was replaced on February 12, 2012. The new fan operating pressure was 5 inches of water at the time of installation. Sub-system is operating as designed.

3.6 Sub-system #6, Jewelry Store

3.6.1 Equipment and Material Observations

Table 3.6A

Item	Observation
System Fan	No Deficiencies observed
System Piping and Connections	No Deficiencies observed
Slab/System Interface Seals	No Deficiencies observed
Electrical Components	No Deficiencies observed
Pressure Gauges	No Deficiencies observed
Low Pressure Alarm	No Deficiencies observed

3.6.2 Pressure Readings

Table 3.6B

Jewelry				
Sub	Baseline	Pressure	Pressure	Pressure
System ID	Pressure	Reading	Reading	Reading
Fan Model	2005	4/23/2013	6/23/2011	12/30/2010
	Normal Range			
6	30.0 "WC	29.0 "WC	30.0 "WC	30.0 "WC
HS5000	15.0 - 45.0"WC			

[&]quot;WC - Inches of Water Column

3.6.3 Conclusion

Sub-system is operating as designed.

3.7 Sub-system #7, Bagel Shop

3.7.1 Equipment and Material Observations

Table 3.7A

Item	Observation
System Fan	No Deficiencies observed
System Piping and Connections	No Deficiencies observed
Slab/System Interface Seals	No Deficiencies observed
Electrical Components	No Deficiencies observed
Pressure Gauges	No Deficiencies observed
Low Pressure Alarm	No Deficiencies observed

3.7.2 Pressure Readings

Table 3.7B

Bagel Shop								
Sub	Baseline	Pressure						
System ID	Pressure	Reading						
Fan Model	*9/26/2011	4/23/2013						
	Normal Range							
7	14.0 "WC	14.0 "WC						
HS5000	7.0 - 21.0"WC							

[&]quot;WC - Inches of Water Column

3.7.3 Conclusion

The fan for sub-system 7 failed and was replaced on September 26, 2011. The new fan operating pressure was 15 inches of water at the time of installation. Sub-system is operating as designed.

3.8 Sub-system #8, Dollar Store

3.8.1 Equipment and Material Observations

Table 3.8A

Item	Observation
System Fan	No Deficiencies observed
System Piping and Connections	No Deficiencies observed
Slab/System Interface Seals	No Deficiencies observed
Electrical Components	No Deficiencies observed
Pressure Gauges	No Deficiencies observed
Low Pressure Alarm	No Deficiencies observed

3.8.2 Pressure Readings

^{*} New Fan Installed 9/26/2011

Table 3.8B

Dollar St	Dollar Store									
Sub	Baseline	Pressure	Pressure	Pressure						
System ID	Pressure	Reading	Reading	Reading						
Fan Model	2005	4/23/2013	6/23/2011	12/30/2010						
	Normal Range									
8	0.6 "WC	0.6 "WC	0.6 "WC	0.6 "WC						
GP501	0.9 - 0.3"WC									

"WC - Inches of Water Column

3.8.3 Conclusion

Sub-system is operating as designed.

4.0 SUMMARY OF INSPECTION & CONDITIONS

	Most Recent	Current	Normal	Current
	Fan install	Pressure	Pressure	Deficiencies
	Date	("WC)	Range ("WC)	
1	9/26/2011	14.0	7.5 - 22.5	None
Liquor Store				
2	2005	5.0	2.5 -7.5	None
Laundromat				
3	12/30/2010	24.0	12.5 - 37.5	None
Dry Cleaner				
4	1/10/2011	0.0	22.5 - 50.0	Sub system fan is
Peter Harris				off. See Section
				3.4 for details.
5	2/12/2012	4.0	2.5 - 7.5	None
PDQ Print				
6	2005	29.0	15.0 - 45.0	None
Jewelry Store				
7	9/26/2011	14.0	7.0 - 21.0	None
Bagel Shop[
8	2005	0.6	0.3 - 0.9	None
Dollar Store				

APPENDIX C Subslab Ventilation System Inspection Report Langan Engineering

23 April 2013

Matthew S. Hubicki
New York State Department of Environmental Conservation
Division of Environmental Remediation
625 Broadway, 11th Floor
New York, NY 12233-7014

Re: Sub-Slab Ventilation System Periodic Review Report Stop & Shop at New Paltz Plaza Site (ID#V000873) 271 Main Street (State Route 299) New Paltz, New York 12561 Langan Project No. 007618220

Dear Mr. Hubicki:

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. (Langan) has prepared this letter to document the ongoing operation and maintenance of the sub-slab ventilation (SSV) system installed at the Stop & Shop in New Paltz, New York, for the period October 2009 to March 2013. Activities performed during this period consisted of monthly SSV system inspections, maintenance, and confirmatory air sampling. Details of these activities are provided below.

System Inspections

This SSV system is inspected monthly by Langan. Each inspection consists of the following activities:

- Collecting photoionization detector (PID) data and vacuum readings from the six monitoring ports in front of the store;
- Collecting vacuum readings from the six monitoring ports in the manifold at the rear of the store;
- Collecting PID, vacuum, and air velocity readings from the exhaust on the roof of the building; and,
- Inspecting and emptying the knockout tank.

Between October 2009 and March 2013, system operation was generally consistent with few unusual observations and required repairs. Vacuum readings collected at the monitoring ports in front of the building measured on average between -0.013 and -0.029 inches water. Vacuum readings collected at the monitoring ports in the manifold at the rear of the building measured on average between -5.09 and -5.97 inches water.

River Drive Center 1 619 River Drive Elmwood Park, NJ 07407 T: 201.794.6900 F: 201.794.0366 www.langan.com

Sub-Slab Ventilation System Periodic Review Report Stop & Shop at New Paltz Plaza Site (ID#V000873) 271 Main Street (State Route 299) New Paltz, New York 12561 Langan Project No. 007618220

PID readings from the sampling ports and blower exhaust are provided in Table 1. The maximum PID reading observed at the front monitoring ports since October 2009 was 122 part per million (ppm) at Port 5 in August 2010, indicating that elevated levels of volatile organic contaminants are present in the subsurface. In contrast, PID readings collected from the SSV system exhaust were less than 1 ppm. The results indicate that the SSV system is drawing in a significant amount of make-up air and lowering contaminant concentrations sub-slab.

Maintenance Activities

During the 4 October 2010 inspection, dripping or running water was heard in the piping manifold at the rear of the building. A tap was drilled into the underside of each of the six manifold pipes on 21 November 2011 to allow for drainage of accumulated water during each monthly inspection. Less than two gallons of water is typically removed from the pipes during each inspection.

During the 14 September 2012 inspection, the vacuum monitoring ports in front of the building were found to have been inadvertently removed by the building's maintenance crew when they were mistaken for a former sprinkler system. These ports will be repaired as discussed below under Upcoming Maintenance.

The SSV system shut down several times during this monitoring period. The alarm light located in the store manager's office was reported to Langan by store management to be illuminated on 23 January 2010, 8 February 2010, and 14 February 2011. In addition, the system was observed to not be running during the monthly inspections on 14 January 2010 and 10 August 2011. The system shut down that was reported on 23 January 2010 occurred as the result of water frozen in the knockout tank. The system was successfully restarted by Langan on the same day. Langan arrived on site on 9 February 2011 to address the alarm light that had been reported the previous day; however, the system was found to be operating upon arrival and the alarm light was reset. The system shut down that was reported on 14 February 2011 occurred as the result of water frozen in the knockout tank. The system was successfully restarted by Langan on 16 February 2011. On 14 January 2010, the system was observed to not be running during the monthly inspection as a result of water frozen in the knockout tank. The system was successfully restarted during the inspection. On 10 August 2011, the system was observed to not be running during the monthly inspection as a result of a power outage that occurred at the store on 6 August 2011 during which an electrical coil in the system was damaged. The electrical coil was replaced by Black Electric of Poughkeepsie, New York, and the system was successfully restarted following the repair on 2 September 2011.

System Winterization

Because of occasional freezing of water within the knockout tank causing automatic system shutdowns, insulation was installed around the knockout tank on 25 October 2011. The insulation consisted of a 100-foot length of 4-inch diameter Heat-Flex® model CW-325 1-ply acrylic flexible exhaust hose. During the winter months, the hose is attached to the exhaust pipe so that the warm air being expelled from the system can travel through the hose and insulate the knockout tank against the colder ambient air. The winterization system is typically attached to the exhaust between October and April and is disconnected and capped during the remainder of the year. In addition, temperature monitoring has been incorporated into the monthly inspections.

Upcoming Maintenance

Langan Project No. 007618220

As discussed above, the vacuum monitoring ports in front of the building were found missing during the inspection completed on 14 September 2012. These ports were cut and capped by the building's maintenance crew when they were mistaken for a former sprinkler system. Langan has retained Groundwater Treatment & Technology of Denville, New Jersey, to repair the monitoring ports and complete each port with an artificial rock enclosure. This work is anticipated to be completed in May 2013 and will be documented in the next Periodic Review Report.

Confirmatory Air Sampling

Confirmatory air sampling was performed in April 2010, August 2010, and November 2012. Results of these confirmatory air sampling events are discussed below.

On 13 April 2010, six Summa canister air samples were collected during SSV operation consisting of ambient air, blower exhaust, two vacuum monitoring ports (Ports 3 and 6), Port 6 duplicate, and a trip blank. On 27 August 2010, six Summa canister air samples were collected during SSV operation consisting of ambient air, blower exhaust, two vacuum monitoring ports (Ports 3 and 6), Port 3 duplicate, and a trip blank. On 12 November 2012, five Summa canister air samples were collected during SSV operation consisting of ambient air, blower exhaust, two vacuum monitoring ports (Ports 3 and 6), and Port 6 duplicate. The samples were analyzed for volatile organic compounds by Accutest Laboratories, a New York State Department of Environmental Conservation (NYSDEC)-certified laboratory. Analytical results from the April and August 2010 and November 2012 air sampling events are summarized in Table 2. The table presents only the data for tetrachloroethylene (PCE) and its breakdown products, as these are the site-specific contaminants of concern. The analytical results are compared to background concentrations of VOCs in air from a New York State Department of Health (NYSDOH) air quality study referenced in the "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (NYSDOH 2006).

The April 2010 air sampling data show that PCE was detected in samples collected from the blower exhaust, vacuum monitoring Ports 3 and 6, the Port 6 duplicate, and the ambient air; however, PCE concentrations only exceeded the NYSDOH 2006 air background level at Port 6. Trichloroethylene (TCE) was detected in samples collected from Port 6, the Port 6 duplicate, the exhaust, and the trip blank. Additionally, 1,2-dichlorethane (DCA) and cis-1,2-dichlorethylene (DCE) were detected in the Port 6 duplicate sample. TCE, DCA and DCE concentrations did not exceed the NYSDOH 2006 air background levels in any of the samples collected.

The August 2010 air sampling data show that PCE was detected in samples collected from the blower exhaust, vacuum monitoring Ports 3 and 6, and the Port 3 duplicate; however, only PCE concentrations exceeded the NYSDOH 2006 air background level in Port 6. No other contaminants of concern were detected in any of the samples collected.

The November 2012 air sampling data show that PCE was detected in samples collected from the blower exhaust, vacuum monitoring Ports 3 and 6, and the Port 6 duplicate; however, the PCE only exceeded the NYSDOH 2006 air background level in Port 6 and the Port 6 duplicate. TCE was detected in samples collected from the Port 6 duplicate but below the NYSDOH 2006

air background level. No other exceedances of the NYSDOH 2006 air background levels were detected in any of the samples collected.

Conclusions

The results of the confirmatory air sampling indicate the continued presence of PCE and the chemical breakdown products, including TCE, in the subsurface beneath the building. Based on this finding, Langan recommends the continued operation of the SSV blower. Langan will continue conducting air sampling to evaluate the status of the SSV system and future requirements for continued system operation.

If you have any questions or concerns in connection with the SSV system, please contact us at 201-794-6900.

Sincerely,

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C.

Elana L. Seelman, P.E.

Senior Project Manager

Steven A. Ciambruschini, P.G., L.E.P.

lana Z. Seeln

Principal / Vice President

ELS:amf:kn Enclosures

cc: Tom Johnson - Alpha Geoscience

Jeff Morgan - Ahold

Joseph Salvetti – Norfolk Ram

\\langan.com\\data\EP\\data2\7618201\Engineering Data\Environmental\Remediation.System\2013-04_NYSDEC SSV Update 2013\2013-04-23_NYSDEC SSV Update 2013\docx

TABLES

TABLE 1 Subslab Ventilation System PID Readings Summary March 2009 - March 2013 Stop and Shop New Paltz, New York

PID Readings Collected at the Exhaust and Front Monitoring Ports

		PID Readings (ppm)								
Date	3/17/2009	4/27/2009	5/13/2009	6/12/2009	8/31/2009	9/10/2009	10/16/2009	11/23/2009	12/17/2009	
Port 1	247	260	253	26	775	21	33	7.2	18.4	
Port 2	0	17	3	0	98	1	5	0	0	
Port 3	202	884	1224	315	4381	24	41	9	12.5	
Port 4	17	18	26	267	237	2	11	3.6	0	
Port 5	412	2252	1119	149	761	1	36	7.2	0	
Port 6	8	22.8	122	0	2117	0	61	9.9	12.3	
Blower Exhaust	0	0	0	0	0	0	0	0	0	

		PID Readings (ppm)								
Date	1/14/2010	2/9/2010	4/13/2010	5/17/2010	6/21/2010	8/11/2010	8/27/2010	10/4/2010	10/27/2010	12/17/2010
Port 1	0	0	3.7	0.1		0		0	0	3.2
Port 2	0	0	0	0.8		0		13	1.5	4.8
Port 3	0	0	74	19.2		109		15.2	0.3	0
Port 4	0	0	0	2.9		0		0	0	0
Port 5	0	0	19.1	20.6		122.6		7.9	9.1	3.2
Port 6	0	0	18.2	14		0		30.6	61.3	10.4
Blower Exhaust	0	0	0	0		0		0	0	0

	PID Readings (ppm)									
Date	4/21/2011*	6/7/2011	8/10/2011	9/22/2011	10/25/2011*	11/21/2011	12/20/2011			
Port 1	0.3	6.4	3.3	0	0.9		0			
Port 2	0	1.4	0	0	0.6		0			
Port 3	0	4	4.9	0	1.5		0			
Port 4	0	1.9	0	0	0.5		0			
Port 5	0	1.4	13.8	0	25		0			
Port 6	2.5	0.9	56	0	3.6		0			
Blower Exhaust	0	0		0	0		0			

		PID Readings (ppm)										
Date	1/30/2012	3/2/2012*	3/23/2012*	5/23/2012	6/19/2012	9/14/2012	11/12/2012	11/28/2012	12/26/2012			
Port 1		0	0.9	0	0							
Port 2		0.4	0	0	0							
Port 3		0	0.2	0	0.4							
Port 4		0	0	0	0							
Port 5		2.6	2.5	0	0							
Port 6		6.6	3.8	1.4	0							
Blower Exhaust		0	0	0	0							

TABLE 1 **Subslab Ventilation System PID Readings Summary** March 2009 - March 2013 **Stop and Shop** New Paltz, New York

	PID Readings (ppm)						
Date	1/11/2013	2/7/2013	3/26/2013				
Port 1							
Port 2							
Port 3							
Port 4							
Port 5							
Port 6							
Blower Exhaust							

	Low Level PID Readings (ppb)									
Date	1/14/2010	2/9/2010	4/13/2010	5/17/2010	6/21/2010	8/11/2010	8/27/2010	10/4/2010	10/27/2010	12/17/2010
Port 1				11,040	3,940	5,618	23,700	0	1,567	0
Port 2				6,432	425	652	1,677	869	1,428	359
Port 3				42,000	28,200		20,700	4,737	1,345	11
Port 4				6,120	1,013	2,771	626	109	1,883	19
Port 5				45,000	19,400	44,900	18,300	22,200	30,500	10,100
Port 6				32,680	29,800	20,600	53,800	56,100		21,500
Blower Exhaust				0	0	20	7	0	0	0

		Low Level PID Readings (ppb)											
Date	4/21/2011*	6/7/2011	8/10/2011	9/22/2011	10/25/2011	11/21/2011	12/20/2011						
Port 1	389	1,108	596	364	249	1,284	40						
Port 2	90	274	678	796	368	270	0						
Port 3	778	457	1,319	1,186	568	1,463	121						
Port 4	0	988	2,289	965	175	0	0						
Port 5	13,300	3,205	2,930	3,200	27.3	5,269	0						
Port 6	15,200	21,600	24,600	32	5,017	25.6	210						
Blower Exhaust	0	0		0	0	0	0						

	Low Level PID Readings (ppb)												
Date	1/30/2012	3/2/2012	3/23/2012	5/23/2012	6/19/2012	9/14/2012	11/12/2012	11/28/2012	12/26/2012				
Port 1	0	50	2	0	635								
Port 2	454	66	0	0	0								
Port 3	442	87	0	0	127								
Port 4	218	252	0	0	278								
Port 5	2,431	6,300	7,600	13	0								
Port 6	9,500	10,000	18,000	859	9,500								
Blower Exhaust	0	57	0	0	52								

	Low Lev	el PID Readin	gs (ppb)
Date	1/11/2013	2/7/2013	3/26/2013
Port 1			
Port 2			
Port 3			
Port 4			
Port 5			
Port 6			
Blower Exhaust			

- Notes
 1. PID measurements were made using a Thermo 580B OVM PID analyzer with 11.8 eV lamp.
- 2. Low Level PID measurements were made using a RAE Systems ppbRAE PID analyzer with 10.2 eV lamp.

^{*=}a MiniRae3000 was used rather than an OVM due to equipment availability at Pine Environmental

TABLE 2

Subslab Ventilation System Air Sampling Analytical Results Summary April 2010 - November 2012 Stop and Shop New Paltz, New York

April 2010 Confirmatory Air Sampling

April 2010 Confirmatory Air Sampling																							
Sample ID	Air Backgrou	und Databases	AME	BIEN	IT AIR	E	XH/	UST		Р	ORT	6		POR	T 6 D	JP		PO	DRT 3	Т	RIP I	BLANK	
Langan Sample Number	NYSDOH 1997: Control	NYSDOH 1997: Control		#003	32		#00	33		#	#0035	5		#	0036			#0	0034		#00	037	
Lab ID	Home Database for	Home Database for	JA	442	98-1	J	A442	298-2		JA	4429	8-4		JA4	4298-	5		IA44	4298-3		JA44	298-6	
Date	Outdoor Air 75th	Indoor Air 75th Percentile	4/	13/2	010	4	/13/2	2010		4/1	13/20	10		4/1	3/201)		4/13	3/2010	4/13/2010		/2010	
	Percentile (ug/m ³) ¹	(ug/m ³) ¹																					
GC/MS Volatiles (TO-15)			ug/m3	Q	ppbv C	ug/m	g Q	ppbv	Q	ug/m3	Qp	opbv	Q	ug/m3	Q pp	bv (ug/m	3 (Q ppbv Q	ug/m	3 Q	ppbv	Q
Chloroethane	1	1	< 0.53		<0.20	< 0.53		<0.20		< 0.53	<	:0.20		< 0.53	<0	20	< 0.5	3	< 0.20	< 0.5	3	< 0.2	
1,1-Dichloroethylene	1	1	< 0.79		<0.20	< 0.79	1	<0.20		< 0.79	<	:0.20		<0.79	<0	20	< 0.7	9	<0.20	<0.7	э	<0.2	
1,2-Dichloroethane	10	10	<0.81		<0.20	<0.81		<0.20		<0.81	<	:0.20		0.27	0.0	67	<0.8	1	< 0.20	<0.8	1	< 0.2	
trans-1,2-Dichloroethylene	10	10	< 0.79		<0.20	< 0.79		<0.20		< 0.79	<	:0.20		<0.79	<0	20	< 0.7	9	<0.20	< 0.7	э	<0.2	
cis-1,2-Dichloroethylene	10	10	< 0.79		<0.20	< 0.79		<0.20		< 0.79	<	:0.20		0.52	0.	13	J <0.7	9	<0.20	< 0.7	э	<0.2	
Tetrachloroethylene	6.8	10	0.23		0.034	3.3		0.49		134		19.7		5.7	0.	34	1.6		0.24 J	<0.2	7	< 0.04	
Trichloroethylene	5.4	5.4	< 0.21		<0.04	0.64		0.12		0.97		0.18		0.81	0.	15	<0.2	1	< 0.04	0.22	:	0.41	
Vinyl chloride	1	1	< 0.51		<0.20	< 0.51		<0.20		< 0.51	<	<0.20		< 0.51	<0	20	< 0.5	1	< 0.20	<0.5	1	<0.2	

August 2010 Confirmatory Air Sampling

August 2010 Confirm	iatory Air Sampling																
Sample ID	Air Backgro	und Databases	AMB	ENT AIR	E	KHAUST		PC	ORT 6	F	ORT 3		PORT	3 DUP	TRIE	P BI	LANK
Langan Sample Number	NYSDOH 1997: Control	NYSDOH 1997: Control	#	0038		#0039		#	0040		#0041		#0	042	#	#004	43
Lab ID	Home Database for	Home Database for	JA5	5131-4	JA	55131-3		JA5	5131-2	JA	55131-1		JA55	5131-5	JA:	551	31-6
Date	Outdoor Air 75th	Indoor Air 75th Percentile	8/2	7/2010	8/	27/2010		8/2	7/2010	8/	27/2010		8/27	/2010	8/2	27/2	2010
	Percentile (ug/m ³) ¹	(ug/m ³) ¹															
GC/MS Volatiles (TO-15)			ug/m3	Q ppbv	Q ug/m3	Q ppbv	Q	ug/m3 (ppbv (ug/m3	Q ppb	ď	ug/m3 (ppbv C	ug/m3	Q	ppbv Q
Chloroethane	1	1	< 0.53	< 0.20	<2.1	<0.8		<2.1	<0.8	<2.1	<0.8		<2.1	<0.8	< 0.53		<0.2
1,1-Dichloroethylene	1	1	< 0.79	<0.20	<3.2	<0.8		<3.2	<0.8	<3.2	<0.8		<3.2	<0.8	< 0.79		<0.2
1,2-Dichloroethane	10	10	<0.81	< 0.20	<3.2	<0.8		<3.2	<0.8	<3.2	<0.8		<3.2	<0.8	<0.81		<0.2
trans-1,2-Dichloroethylene	10	10	< 0.79	<0.20	<3.2	<0.8		<3.2	<0.8	<3.2	<0.8	П	<3.2	<0.8	< 0.79		<0.2
cis-1,2-Dichloroethylene	10	10	< 0.79	<0.20	<3.2	<0.8		<3.2	<0.8	<3.2	<0.8	П	<3.2	<0.8	< 0.79		<0.2
Tetrachloroethylene	6.8	10	<0.27	< 0.040	3.9	0.57		7.5	1.1	1.2	0.18	П	1.6	0.24	<0.27	T	<0.04
Trichloroethylene	5.4	5.4	<0.21	< 0.040	<0.86	<0.16	6	<0.86	<0.16	<0.86	< 0.1	3	<0.86	<0.16	<0.21	T	<0.04
Vinvl chloride	1	1 1	<0.51	< 0.20	<2.0	<0.8		<2.0	<0.8	<2.0	<0.8		<2.0	<0.8	< 0.51	T	<0.2

November 2012 Confirmatory Air Sampling

Sample ID	Air Backgrou	und Databases	AME	IENT AIR		EX	(HA	UST		F	OF	T 6		P	OR	Г3		POF	T 6 E	DUP
Langan Sample Number	NYSDOH 1997: Control	NYSDOH 1997: Control		A450			A00	02			A10	38			A85	4		A	1051	
Lab ID	Home Database for	Home Database for	JB	21145-4		JB	211	45-3		JB	211	45-2		JB:	2114	15-1		JB2	21145	5-5
Date	Outdoor Air 75th	Indoor Air 75th Percentile	11/	12/2012		11/	/12/	2012		11	/12/	2012		11/	/12/2	2012		11/	12/20	12
	Percentile (ug/m3)1	(ug/m ³) ¹																		
GC/MS Volatiles (TO-15)			ug/m3	Q ppbv	Q	ug/m3	Q	ppbv	Q	ug/m3	Q	ppbv	Q	ug/m3	Q	ppbv	Q	ug/m3	Qp	pbv C
Chloroethane	1	1	< 0.53	< 0.20		<2.1		<0.80		<2.1		<0.80		<2.1		<0.80		<2.1	<(0.80
1,1-Dichloroethylene	1	1	< 0.79	<0.20		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80		<3.2	<(0.80
1,2-Dichloroethane	10	10	<0.81	<0.20		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80		<3.2	<(0.80
trans-1,2-Dichloroethylene	10	10	< 0.79	< 0.20		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80		<3.2	<(0.80
cis-1,2-Dichloroethylene	10	10	< 0.79	<0.20		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80		<3.2	<(0.80
Tetrachloroethylene	6.8	10	< 0.27	< 0.040		4.3		0.64		7.5	П	1.1		2.2	П	0.16		6.8		1.0
Trichloroethylene	5.4	5.4	<0.21	< 0.040		<0.86		< 0.16		<0.86		<0.16		< 0.86		<0.16		1.2	0).23
Vinyl chloride	1	1	< 0.51	<0.20		<2.0		<0.80		<2.0		<0.80		<2.0		<0.80		<2.0	<(0.80

Notes

1. New York State Department of Health. 1997. "Background Indoor/Outdoor Air Levels of Volatile Organic Compounds in Homes Sampled by the New York State Department of Health, 1989 - 1996." Bureau of Toxic Substance Assessment, Troy, NY.

2. The sub slab venting (SSV) system has operated continuously since 18 December 2006. Initial confirmatory air sampling was conducted on 16 January 2007 and additional air sampling is conducted semi-annually.

Abbreviations Q: Qualifier

U: The compound was not detected at the indicated concentration.

J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

RL: reporting limit

MDL: method detection limit

ug/m3: micrograms per cubic meter

ppbv: parts per billion by volume

APPENDIX D

Laboratory Report for April 3, 3013 ground water samples

ANALYTICAL REPORT

Lab Number: L1305712

Client: Alpha Geoscience

679 Plank Road

Clifton Park, NY 12065

ATTN: Tom Johnson
Phone: (518) 348-6995

Project Name: NEW PALTZ PLAZA

Project Number: 95141 Report Date: 04/12/13

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1305712-01	MW-1	NEW PALTZ, NY	04/03/13 15:36
L1305712-02	MW-2	NEW PALTZ, NY	04/03/13 15:42
L1305712-03	MW-4	NEW PALTZ, NY	04/03/13 15:50
L1305712-04	MW-6	NEW PALTZ, NY	04/03/13 15:25
L1305712-05	MW-7	NEW PALTZ, NY	04/03/13 15:55
L1305712-06	MW-9	NEW PALTZ, NY	04/03/13 16:05
L1305712-07	MW-10	NEW PALTZ, NY	04/03/13 16:18
L1305712-08	MW-11	NEW PALTZ, NY	04/03/13 16:25
L1305712-09	MW-12	NEW PALTZ, NY	04/03/13 16:10
L1305712-10	BR-1	NEW PALTZ, NY	04/03/13 15:30
L1305712-11	BR-2	NEW PALTZ, NY	04/03/13 15:59
L1305712-12	BR-4	NEW PALTZ, NY	04/03/13 16:15
L1305712-13	TRIP BLANK	NEW PALTZ, NY	04/03/13 00:00
L1305712-14	DUP	NEW PALTZ, NY	04/03/13 00:00

L1305712

Lab Number:

Project Name: NEW PALTZ PLAZA

Project Number: 95141 Report Date: 04/12/13

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated QC table. This information is also incorporated in the Data Usability format for our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples free of charge for 30 days from the date the project is completed. After 30 days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples.

Please contact Client Services at 800-624-9220 with any questions.

Serial_No:04121308:38

Project Name:NEW PALTZ PLAZALab Number:L1305712Project Number:95141Report Date:04/12/13

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/12/13

Cypthia fin Che. Cynthia McQueen

ALPHA

ORGANICS

VOLATILES

04/03/13

Not Specified

Date Received:

Field Prep:

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-01 Date Collected: 04/03/13 15:36

Client ID: MW-1

Sample Location: NEW PALTZ, NY

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/08/13 15:51

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.0	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	3.8		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	1.9		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-01 Date Collected: 04/03/13 15:36

Client ID: Date Received: 04/03/13

	• • •			1 101G 1 10p.		rtot opcomod	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbor	ough Lab						
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	1.1	J	ug/l	2.5	0.70	1	
Dibromomethane	ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1	
Acrylonitrile	ND		ug/l	5.0	1.5	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.0	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.0	1	
Vinyl acetate	ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1	
Bromobenzene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	1	
p-Chlorotoluene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	76.	1	
1,4-Diethylbenzene	ND		ug/l	2.0	0.70	1	
4-Ethyltoluene	ND		ug/l	2.0	0.70	1	
•							

0.70

1

2.5

ug/l

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-01 Date Collected: 04/03/13 15:36

Client ID: MW-1 Date Received: 04/03/13
Sample Location: NEW PALTZ, NY Field Prep: Not Specified

ND

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab ND 0.65 1,2,4,5-Tetramethylbenzene ug/l 2.0 1 2.5 ND Ethyl ether ug/l 0.70 1

Surrogate	% Recovery	Acceptanc Qualifier Criteria	e
1,2-Dichloroethane-d4	103	70-130	1
Toluene-d8	104	70-130	1
4-Bromofluorobenzene	102	70-130	1
Dibromofluoromethane	97	70-130	1

trans-1,4-Dichloro-2-butene

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Report Date: Project Number: 95141 04/12/13

SAMPLE RESULTS

D Lab ID: L1305712-02 Date Collected: 04/03/13 15:42

Client ID:

Sample Location: NEW PALTZ, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/08/13 18:49

Analyst: PD

MW-2 Date Received: 04/03/13 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND 50 14. 20 ug/l ND 1,1-Dichloroethane ug/l 50 14. 20 ND Chloroform 50 14. 20 ug/l Carbon tetrachloride ND ug/l 10 3.3 20 ND 20 1,2-Dichloropropane ug/l 20 5.9 ND Dibromochloromethane 10 3.8 20 ug/l 1,1,2-Trichloroethane ND 30 20 ug/l 10. 460 Tetrachloroethene ug/l 10 3.6 20 Chlorobenzene ND ug/l 50 14. 20 Trichlorofluoromethane ND ug/l 50 14. 20 ND 1,2-Dichloroethane ug/l 10 3.2 20 1,1,1-Trichloroethane ND ug/l 50 14. 20 Bromodichloromethane ND ug/l 10 3.8 20 trans-1,3-Dichloropropene ND ug/l 3.3 20 10 cis-1,3-Dichloropropene ND ug/l 10 2.9 20 1,1-Dichloropropene ND ug/l 50 14. 20 **Bromoform** ND ug/l 40 13. 20 1.1.2.2-Tetrachloroethane ND ug/l 10 3.8 20 Benzene ND ug/l 10 3.9 20 ND 50 20 Toluene ug/l 14. Ethylbenzene ND ug/l 50 14. 20 ND Chloromethane ug/l 50 14. 20 Bromomethane ND 50 14. 20 ug/l Vinyl chloride 160 ug/l 20 6.6 20 Chloroethane ND ug/l 50 14. 20 1,1-Dichloroethene ND ug/l 10 3.6 20 trans-1,2-Dichloroethene ND ug/l 50 14. 20 Trichloroethene 55 ug/l 10 3.5 20 1,2-Dichlorobenzene ND ug/l 50 14. 20 ND 50 20 1,3-Dichlorobenzene ug/l 14. 1,4-Dichlorobenzene ND ug/l 50 14. 20

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-02 D Date Collected: 04/03/13 15:42

Client ID: MW-2 Date Received: 04/03/13

oampio zoodaiom — 11211 1712	,			1 1014 1 10p.		riot opcomod	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methyl tert butyl ether	ND		ug/l	50	14.	20	
p/m-Xylene	ND		ug/l	50	14.	20	
o-Xylene	ND		ug/l	50	14.	20	
cis-1,2-Dichloroethene	1200		ug/l	50	14.	20	
Dibromomethane	ND		ug/l	100	20.	20	
1,2,3-Trichloropropane	ND		ug/l	50	14.	20	
Acrylonitrile	ND		ug/l	100	30.	20	
Styrene	ND		ug/l	50	14.	20	
Dichlorodifluoromethane	ND		ug/l	100	20.	20	
Acetone	ND		ug/l	100	20.	20	
Carbon disulfide	ND		ug/l	100	20.	20	
2-Butanone	ND		ug/l	100	20.	20	
Vinyl acetate	ND		ug/l	100	20.	20	
4-Methyl-2-pentanone	ND		ug/l	100	20.	20	
2-Hexanone	ND		ug/l	100	20.	20	
Bromochloromethane	ND		ug/l	50	14.	20	
2,2-Dichloropropane	ND		ug/l	50	14.	20	
1,2-Dibromoethane	ND		ug/l	40	13.	20	
1,3-Dichloropropane	ND		ug/l	50	14.	20	
1,1,1,2-Tetrachloroethane	ND		ug/l	50	14.	20	
Bromobenzene	ND		ug/l	50	14.	20	
n-Butylbenzene	ND		ug/l	50	14.	20	
sec-Butylbenzene	ND		ug/l	50	14.	20	
tert-Butylbenzene	ND		ug/l	50	14.	20	
o-Chlorotoluene	ND		ug/l	50	14.	20	
p-Chlorotoluene	ND		ug/l	50	14.	20	
1,2-Dibromo-3-chloropropane	ND		ug/l	50	14.	20	
Hexachlorobutadiene	ND		ug/l	50	14.	20	
Isopropylbenzene	ND		ug/l	50	14.	20	
p-Isopropyltoluene	ND		ug/l	50	14.	20	
Naphthalene	ND		ug/l	50	14.	20	
n-Propylbenzene	ND		ug/l	50	14.	20	
1,2,3-Trichlorobenzene	ND		ug/l	50	14.	20	
1,2,4-Trichlorobenzene	ND		ug/l	50	14.	20	
1,3,5-Trimethylbenzene	ND		ug/l	50	14.	20	
1,2,4-Trimethylbenzene	ND		ug/l	50	14.	20	
1,4-Dioxane	ND		ug/l	5000	1500	20	
1,4-Diethylbenzene	ND		ug/l	40	14.	20	
4-Ethyltoluene	ND		ug/l	40	14.	20	
•							

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-02 D Date Collected: 04/03/13 15:42

Client ID: MW-2 Date Received: 04/03/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
1,2,4,5-Tetramethylbenzene	ND		ug/l	40	13.	20
Ethyl ether	ND		ug/l	50	14.	20
trans-1,4-Dichloro-2-butene	ND		ug/l	50	14.	20

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	99		70-130	

04/03/13

Not Specified

Date Received:

Field Prep:

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-03 Date Collected: 04/03/13 15:50

Client ID: MW-4

Sample Location: NEW PALTZ, NY

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/08/13 16:17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.0	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	41		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	4.5		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-03 Date Collected: 04/03/13 15:50

Client ID: MW-4 Date Received: 04/03/13

Sample Location. INLVV I ALIZ, IVI			1 101	r leid r rep.		Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	jh Lab						
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	13		ug/l	2.5	0.70	1	
Dibromomethane	ND		ug/l	5.0	1.0	1	
I,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1	
Acrylonitrile	ND		ug/l	5.0	1.5	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.0	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.0	1	
Vinyl acetate	ND		ug/l	5.0	1.0	1	
1-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1	
,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1	
,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1	
Bromobenzene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
ert-Butylbenzene	ND		ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	1	
,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1	
sopropylbenzene	ND		ug/l	2.5	0.70	1	
o-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
,4-Dioxane	ND		ug/l	250	76.	1	
,4-Diethylbenzene	ND		ug/l	2.0	0.70	1	
1-Ethyltoluene	ND		ug/l	2.0	0.70	1	
			-				

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-03 Date Collected: 04/03/13 15:50

Client ID: MW-4 Date Received: 04/03/13
Sample Location: NEW PALTZ, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Facto

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab)					
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.65	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	97		70-130	

04/03/13

Not Specified

Date Received:

Field Prep:

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-04 Date Collected: 04/03/13 15:25

Client ID: MW-6

Sample Location: NEW PALTZ, NY

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/08/13 16:42

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.0	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	1.0		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	1.8		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.47	J	ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-04 Date Collected: 04/03/13 15:25

Client ID: MW-6 Date Received: 04/03/13

Sample Location.	INC VV I ACIZ, IN I			r leid r rep.		Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by G	C/MS - Westborough Lab						
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		7.2		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.0	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.0	1
/inyl acetate		ND		ug/l	5.0	1.0	1
I-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
,2-Dibromoethane		ND		ug/l	2.0	0.65	1
,3-Dichloropropane		ND		ug/l	2.5	0.70	1
,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
ert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
,2-Dibromo-3-chloropropar	ne	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
sopropylbenzene		ND		ug/l	2.5	0.70	1
o-Isopropyltoluene		ND		ug/l	2.5	0.70	1
Naphthalene		ND		ug/l	2.5	0.70	1
n-Propylbenzene		ND		ug/l	2.5	0.70	1
,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1
,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1
I,4-Dioxane		ND		ug/l	250	76.	1
,4-Diethylbenzene		ND		ug/l	2.0	0.70	1
I-Ethyltoluene		ND		ug/l	2.0	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-04 Date Collected: 04/03/13 15:25

Client ID: MW-6 Date Received: 04/03/13
Sample Location: NEW PALTZ, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab ND 0.65 1,2,4,5-Tetramethylbenzene ug/l 2.0 1 ND Ethyl ether ug/l 2.5 0.70 1 ND 2.5 1 trans-1,4-Dichloro-2-butene ug/l 0.70

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	98		70-130	

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-05 Date Collected: 04/03/13 15:55

Client ID: MW-7 Date Received: 04/03/13
Sample Location: NEW PALTZ, NY Field Prep: Not Specified

Matrix: Water

Analytical Method: 1,8260C

Analytical Date: 04/08/13 17:07

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbe	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.0	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.96		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	0.69		ug/l	0.50	0.19	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	1.1		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.79		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-05 Date Collected: 04/03/13 15:55

Client ID: MW-7 Date Received: 04/03/13

Jampio 2004	••			Opcomod		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	2.0	J	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.7	J	ug/l	5.0	1.0	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	1.2	J	ug/l	5.0	1.0	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	76.	1
1,4-Diethylbenzene	ND		ug/l	2.0	0.70	1
4-Ethyltoluene	ND		ug/l	2.0	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-05 Date Collected: 04/03/13 15:55

Client ID: MW-7 Date Received: 04/03/13 Sample Location: NEW PALTZ, NY Field Prep: Not Specific

Sample Location: NEW PALTZ, NY Field Prep: Not Specified

Parameter Result Qualifier Units RI MDI Dilution Factor

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough La	ab					
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.65	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	98		70-130	

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-06 Date Collected: 04/03/13 16:05

Client ID: MW-9 Date Received: 04/03/13
Sample Location: NEW PALTZ, NY Field Prep: Not Specified

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/08/13 17:33

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.0	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	95		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	1.2		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	11		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-06 Date Collected: 04/03/13 16:05

Client ID: MW-9 Date Received: 04/03/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	ab					
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	17		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.0	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.0	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	76.	1
1,4-Diethylbenzene	ND		ug/l	2.0	0.70	1
4-Ethyltoluene	ND		ug/l	2.0	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-06 Date Collected: 04/03/13 16:05

Client ID: MW-9 Date Received: 04/03/13 Sample Location: NEW PALTZ, NY Field Prep: Not Specific

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.65	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	98		70-130	

04/03/13

Not Specified

Date Received:

Field Prep:

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-07 D Date Collected: 04/03/13 16:18

Client ID: MW-10

Sample Location: NEW PALTZ, NY

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/08/13 19:14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westk	oorough Lab					
Methylene chloride	ND		ug/l	12	3.5	5
1,1-Dichloroethane	ND		ug/l	12	3.5	5
Chloroform	ND		ug/l	12	3.5	5
Carbon tetrachloride	ND		ug/l	2.5	0.83	5
1,2-Dichloropropane	ND		ug/l	5.0	1.5	5
Dibromochloromethane	ND		ug/l	2.5	0.95	5
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5
Tetrachloroethene	66		ug/l	2.5	0.91	5
Chlorobenzene	ND		ug/l	12	3.5	5
Trichlorofluoromethane	ND		ug/l	12	3.5	5
1,2-Dichloroethane	ND		ug/l	2.5	0.80	5
1,1,1-Trichloroethane	ND		ug/l	12	3.5	5
Bromodichloromethane	ND		ug/l	2.5	0.96	5
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5
1,1-Dichloropropene	ND		ug/l	12	3.5	5
Bromoform	ND		ug/l	10	3.2	5
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.96	5
Benzene	ND		ug/l	2.5	0.97	5
Toluene	ND		ug/l	12	3.5	5
Ethylbenzene	ND		ug/l	12	3.5	5
Chloromethane	ND		ug/l	12	3.5	5
Bromomethane	ND		ug/l	12	3.5	5
Vinyl chloride	6.6		ug/l	5.0	1.6	5
Chloroethane	ND		ug/l	12	3.5	5
1,1-Dichloroethene	ND		ug/l	2.5	0.90	5
trans-1,2-Dichloroethene	ND		ug/l	12	3.5	5
Trichloroethene	15		ug/l	2.5	0.87	5
1,2-Dichlorobenzene	ND		ug/l	12	3.5	5
1,3-Dichlorobenzene	ND		ug/l	12	3.5	5
1,4-Dichlorobenzene	ND		ug/l	12	3.5	5

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-07 D Date Collected: 04/03/13 16:18

Client ID: Date Received: 04/03/13

Sample Location. NEVV 1 AL12, N	· •		1 101	u i iep.	NOU	Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methyl tert butyl ether	ND		ug/l	12	3.5	5
p/m-Xylene	ND		ug/l	12	3.5	5
o-Xylene	ND		ug/l	12	3.5	5
cis-1,2-Dichloroethene	320		ug/l	12	3.5	5
Dibromomethane	ND		ug/l	25	5.0	5
I,2,3-Trichloropropane	ND		ug/l	12	3.5	5
Acrylonitrile	ND		ug/l	25	7.5	5
Styrene	ND		ug/l	12	3.5	5
Dichlorodifluoromethane	ND		ug/l	25	5.0	5
Acetone	ND		ug/l	25	5.0	5
Carbon disulfide	ND		ug/l	25	5.0	5
2-Butanone	ND		ug/l	25	5.0	5
/inyl acetate	ND		ug/l	25	5.0	5
1-Methyl-2-pentanone	ND		ug/l	25	5.0	5
2-Hexanone	ND		ug/l	25	5.0	5
Bromochloromethane	ND		ug/l	12	3.5	5
2,2-Dichloropropane	ND		ug/l	12	3.5	5
,2-Dibromoethane	ND		ug/l	10	3.2	5
,3-Dichloropropane	ND		ug/l	12	3.5	5
,1,1,2-Tetrachloroethane	ND		ug/l	12	3.5	5
Bromobenzene	ND		ug/l	12	3.5	5
n-Butylbenzene	ND		ug/l	12	3.5	5
sec-Butylbenzene	ND		ug/l	12	3.5	5
ert-Butylbenzene	ND		ug/l	12	3.5	5
o-Chlorotoluene	ND		ug/l	12	3.5	5
o-Chlorotoluene	ND		ug/l	12	3.5	5
,2-Dibromo-3-chloropropane	ND		ug/l	12	3.5	5
Hexachlorobutadiene	ND		ug/l	12	3.5	5
sopropylbenzene	ND		ug/l	12	3.5	5
o-Isopropyltoluene	ND		ug/l	12	3.5	5
Naphthalene	ND		ug/l	12	3.5	5
n-Propylbenzene	ND		ug/l	12	3.5	5
,2,3-Trichlorobenzene	ND		ug/l	12	3.5	5
,2,4-Trichlorobenzene	ND		ug/l	12	3.5	5
,3,5-Trimethylbenzene	ND		ug/l	12	3.5	5
,2,4-Trimethylbenzene	ND		ug/l	12	3.5	5
,4-Dioxane	ND		ug/l	1200	380	5
,4-Diethylbenzene	ND		ug/l	10	3.5	5
1-Ethyltoluene	ND		ug/l	10	3.5	5
			-			

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-07 D Date Collected: 04/03/13 16:18

Client ID: MW-10 Date Received: 04/03/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,2,4,5-Tetramethylbenzene	ND		ug/l	10	3.2	5
Ethyl ether	ND		ug/l	12	3.5	5
trans-1,4-Dichloro-2-butene	ND		ug/l	12	3.5	5

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	99		70-130	

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-08 Date Collected: 04/03/13 16:25

Client ID: MW-11 Date Received: 04/03/13

Sample Location: NEW PALTZ, NY Field Prep: Not Specified Matrix: Water

Analytical Method: 1,8260C Analytical Date: 04/08/13 17:58

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.0	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	10		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	1.2		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	0.78	J	ug/l	2.5	0.70	1
Trichloroethene	2.8		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-08 Date Collected: 04/03/13 16:25

Client ID: Date Received: 04/03/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough La	b					
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	130	E	ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.0	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.0	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	76.	1
1,4-Diethylbenzene	ND		ug/l	2.0	0.70	1
4-Ethyltoluene	ND		ug/l	2.0	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-08 Date Collected: 04/03/13 16:25

Client ID: MW-11 Date Received: 04/03/13
Sample Location: NEW PALTZ, NY Field Prep: Not Specifi

Sample Location: NEW PALTZ, NY Field Prep: Not Specified

Parameter Qualifier Units Pl MDL Dilution Factor

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab)					
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.65	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	99		70-130	

Project Name: Lab Number: **NEW PALTZ PLAZA** L1305712

Project Number: Report Date: 95141 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-08 D Date Collected: 04/03/13 16:25

Client ID: MW-11

Date Received: 04/03/13 Field Prep: Sample Location: NEW PALTZ, NY Not Specified

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/09/13 10:21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
cis-1,2-Dichloroethene	110		ug/l	10	2.8	4

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	99		70-130	

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-09 Date Collected: 04/03/13 16:10

Client ID: MW-12 Date Received: 04/03/13
Sample Location: NEW PALTZ NV Field Prop: Net Specific Prop: New Palt Z NV

Sample Location: NEW PALTZ, NY Field Prep: Not Specified Matrix: Water

Analytical Method: 1,8260C

Analyst: PD

04/08/13 18:23

Analytical Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.0	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	7.5		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	3.5		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-09 Date Collected: 04/03/13 16:10

Client ID: Date Received: 04/03/13

Campio Ecodiioiii 11211 1712 12,	• • •		1 101G 1 10p.		rior opposition	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	39		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.0	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.0	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	76.	1
1,4-Diethylbenzene	ND		ug/l	2.0	0.70	1
4-Ethyltoluene	ND		ug/l	2.0	0.70	1

Project Name: Lab Number: NEW PALTZ PLAZA L1305712

Project Number: Report Date: 95141 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-09 Date Collected: 04/03/13 16:10

Client ID: MW-12 Date Received: 04/03/13 Sample Location: NEW PALTZ, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor**

		 •			
Volatile Organics by GC/MS - Westbo	rough Lab				
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.65	1
Ethyl ether	ND	ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	99		70-130	

04/03/13

Not Specified

Date Received:

Field Prep:

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-10 Date Collected: 04/03/13 15:30

Client ID: BR-1

Sample Location: NEW PALTZ, NY

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/09/13 10:46

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.0	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	1.2		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.18	J	ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-10 Date Collected: 04/03/13 15:30

Client ID: Date Received: 04/03/13

Sample Location.	INL VV I ALIZ, IN I			r leid r rep.		Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by G0	C/MS - Westborough Lab	b					
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		1.8	J	ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.0	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.0	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
I,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
ert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane)	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
sopropylbenzene		ND		ug/l	2.5	0.70	1
o-Isopropyltoluene		ND		ug/l	2.5	0.70	1
Naphthalene		ND		ug/l	2.5	0.70	1
n-Propylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,4-Dioxane		ND		ug/l	250	76.	1
1,4-Diethylbenzene		ND		ug/l	2.0	0.70	1
1-Ethyltoluene		ND		ug/l	2.0	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-10 Date Collected: 04/03/13 15:30

Client ID: Date Received: 04/03/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab)					
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.65	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	98		70-130	

04/03/13

Not Specified

Date Received:

Field Prep:

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-11 Date Collected: 04/03/13 15:59

Client ID: BR-2

Sample Location: NEW PALTZ, NY

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/09/13 11:12

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.0	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	48		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	2.8		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	5.7		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-11 Date Collected: 04/03/13 15:59

Client ID: Date Received: 04/03/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough I	_ab					
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	13		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.0	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.0	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	76.	1
1,4-Diethylbenzene	ND		ug/l	2.0	0.70	1
4-Ethyltoluene	ND		ug/l	2.0	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-11 Date Collected: 04/03/13 15:59

Client ID: Date Received: 04/03/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.65	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	98		70-130	

04/03/13

Not Specified

Date Received:

Field Prep:

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-12 Date Collected: 04/03/13 16:15

Client ID: BR-4

Sample Location: NEW PALTZ, NY

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/09/13 11:37

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.0	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-12 Date Collected: 04/03/13 16:15

Client ID: Date Received: 04/03/13

Campio Zocationi 11211 171211	_,	•		o.aop.		rtot opcomod	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	oorough Lab						
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Dibromomethane	ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1	
Acrylonitrile	ND		ug/l	5.0	1.5	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.0	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.0	1	
Vinyl acetate	ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1	
Bromobenzene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	1	
p-Chlorotoluene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	76.	1	
1,4-Diethylbenzene	ND		ug/l	2.0	0.70	1	
4-Ethyltoluene	ND		ug/l	2.0	0.70	1	

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-12 Date Collected: 04/03/13 16:15

Client ID: Date Received: 04/03/13

Sample Location: NEW PALTZ, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboron	ugh Lab					
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.65	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	99		70-130	

Not Specified

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

 Lab ID:
 L1305712-13
 Date Collected:
 04/03/13 00:00

 Client ID:
 TRIP BLANK
 Date Received:
 04/03/13

Client ID: TRIP BLANK Date Received: Sample Location: NEW PALTZ, NY Field Prep:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/09/13 12:02

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.0	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-13 Date Collected: 04/03/13 00:00

Client ID: TRIP BLANK Date Received: 04/03/13

Sample Location: NEW PALTZ, NY Field Prep: Not Specified

Sample Location. INLW I ALIZ, IN			r leid r rep.		Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.0	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.0	1
/inyl acetate	ND		ug/l	5.0	1.0	1
1-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
,2-Dibromoethane	ND		ug/l	2.0	0.65	1
I,3-Dichloropropane	ND		ug/l	2.5	0.70	1
I,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
ert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
sopropylbenzene	ND		ug/l	2.5	0.70	1
o-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
I,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
I,4-Dioxane	ND		ug/l	250	76.	1
I,4-Diethylbenzene	ND		ug/l	2.0	0.70	1
1-Ethyltoluene	ND		ug/l	2.0	0.70	1
<u> </u>						

Project Name: Lab Number: NEW PALTZ PLAZA L1305712

Project Number: Report Date: 95141 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-13 Date Collected: 04/03/13 00:00

Client ID: Date Received: 04/03/13 TRIP BLANK Sample Location: NEW PALTZ, NY Field Prep: Not Specified

Dilution Factor Parameter Result Qualifier Units

Parameter	Result	Qualifier	Units	KL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.65	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	99		70-130	

04/03/13

Not Specified

Date Received:

Field Prep:

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-14 Date Collected: 04/03/13 00:00

Client ID: DUP

Sample Location: NEW PALTZ, NY

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/09/13 12:27

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.0	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	8.4		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	2.3		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	1.1	J	ug/l	2.5	0.70	1
Trichloroethene	2.7		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-14 Date Collected: 04/03/13 00:00

Client ID: DUP Date Received: 04/03/13

Sample Location: NEW PALTZ, NY Field Prep: Not Specified

Sample Location. NEW I ALIZ, IN				r leid r rep.		Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by G	C/MS - Westborough La	b					
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		150	E	ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.0	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.0	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
I,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
ert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
,2-Dibromo-3-chloropropan	ie	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
sopropylbenzene		ND		ug/l	2.5	0.70	1
o-Isopropyltoluene		ND		ug/l	2.5	0.70	1
Naphthalene		ND		ug/l	2.5	0.70	1
n-Propylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,4-Dioxane		ND		ug/l	250	76.	1
1,4-Diethylbenzene		ND		ug/l	2.0	0.70	1
1-Ethyltoluene		ND		ug/l	2.0	0.70	1

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-14 Date Collected: 04/03/13 00:00

Client ID: DUP Date Received: 04/03/13

Sample Location: NEW PALTZ, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboron	ugh Lab					
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.65	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	101		70-130	

04/03/13

Not Specified

Date Received:

Field Prep:

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

SAMPLE RESULTS

Lab ID: L1305712-14 D Date Collected: 04/03/13 00:00

Client ID: DUP

Sample Location: NEW PALTZ, NY

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/10/13 10:29

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
cis-1.2-Dichloroethene	130		ua/l	12	3.5	5

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	99		70-130	

Project Name:NEW PALTZ PLAZALab Number:L1305712

Project Number: 95141 Report Date: 04/12/13

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/08/13 09:34

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-09	Batch: WG60	00313-3
Methylene chloride	ND		ug/l	2.5	0.70
1,1-Dichloroethane	ND		ug/l	2.5	0.70
Chloroform	ND		ug/l	2.5	0.70
Carbon tetrachloride	ND		ug/l	0.50	0.16
1,2-Dichloropropane	ND		ug/l	1.0	0.30
Dibromochloromethane	ND		ug/l	0.50	0.19
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50
Tetrachloroethene	ND		ug/l	0.50	0.18
Chlorobenzene	ND		ug/l	2.5	0.70
Trichlorofluoromethane	ND		ug/l	2.5	0.70
1,2-Dichloroethane	ND		ug/l	0.50	0.16
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70
Bromodichloromethane	ND		ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14
1,1-Dichloropropene	ND		ug/l	2.5	0.70
Bromoform	ND		ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19
Benzene	ND		ug/l	0.50	0.19
Toluene	ND		ug/l	2.5	0.70
Ethylbenzene	ND		ug/l	2.5	0.70
Chloromethane	ND		ug/l	2.5	0.70
Bromomethane	ND		ug/l	2.5	0.70
Vinyl chloride	ND		ug/l	1.0	0.33
Chloroethane	ND		ug/l	2.5	0.70
1,1-Dichloroethene	ND		ug/l	0.50	0.18
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Trichloroethene	ND		ug/l	0.50	0.17
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/08/13 09:34

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-09	Batch: WG60	00313-3
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Dibromomethane	ND		ug/l	5.0	1.0
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70
Acrylonitrile	ND		ug/l	5.0	1.5
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	ND		ug/l	5.0	1.0
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.0
Vinyl acetate	ND		ug/l	5.0	1.0
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
2,2-Dichloropropane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,3-Dichloropropane	ND		ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70
Bromobenzene	ND		ug/l	2.5	0.70
n-Butylbenzene	ND		ug/l	2.5	0.70
sec-Butylbenzene	ND		ug/l	2.5	0.70
tert-Butylbenzene	ND		ug/l	2.5	0.70
o-Chlorotoluene	ND		ug/l	2.5	0.70
p-Chlorotoluene	ND		ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70
Hexachlorobutadiene	ND		ug/l	2.5	0.70
Isopropylbenzene	ND		ug/l	2.5	0.70
p-Isopropyltoluene	ND		ug/l	2.5	0.70
Naphthalene	ND		ug/l	2.5	0.70

L1305712

Lab Number:

Project Name: NEW PALTZ PLAZA

Project Number: 95141 Report Date: 04/12/13

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/08/13 09:34

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - \	Westborough Lab	for sample(s	s): 01-09	Batch: WG60	00313-3
n-Propylbenzene	ND		ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70
1,4-Dioxane	ND		ug/l	250	76.
1,4-Diethylbenzene	ND		ug/l	2.0	0.70
4-Ethyltoluene	ND		ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.65
Ethyl ether	ND		ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70

	Acceptance						
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	101		70-130				
Toluene-d8	104		70-130				
4-Bromofluorobenzene	103		70-130				
Dibromofluoromethane	97		70-130				

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/09/13 09:31

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	08,10-14	Batch:	WG600313-6
Methylene chloride	ND		ug/l	2.5	0.70
1,1-Dichloroethane	ND		ug/l	2.5	0.70
Chloroform	ND		ug/l	2.5	0.70
Carbon tetrachloride	ND		ug/l	0.50	0.16
1,2-Dichloropropane	ND		ug/l	1.0	0.30
Dibromochloromethane	ND		ug/l	0.50	0.19
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50
Tetrachloroethene	ND		ug/l	0.50	0.18
Chlorobenzene	ND		ug/l	2.5	0.70
Trichlorofluoromethane	ND		ug/l	2.5	0.70
1,2-Dichloroethane	ND		ug/l	0.50	0.16
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70
Bromodichloromethane	ND		ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14
1,1-Dichloropropene	ND		ug/l	2.5	0.70
Bromoform	ND		ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19
Benzene	ND		ug/l	0.50	0.19
Toluene	ND		ug/l	2.5	0.70
Ethylbenzene	ND		ug/l	2.5	0.70
Chloromethane	ND		ug/l	2.5	0.70
Bromomethane	ND		ug/l	2.5	0.70
Vinyl chloride	ND		ug/l	1.0	0.33
Chloroethane	ND		ug/l	2.5	0.70
1,1-Dichloroethene	ND		ug/l	0.50	0.18
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Trichloroethene	ND		ug/l	0.50	0.17
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/09/13 09:31

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	08,10-14	Batch:	WG600313-6
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Dibromomethane	ND		ug/l	5.0	1.0
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70
Acrylonitrile	ND		ug/l	5.0	1.5
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	ND		ug/l	5.0	1.0
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.0
Vinyl acetate	ND		ug/l	5.0	1.0
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
2,2-Dichloropropane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,3-Dichloropropane	ND		ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70
Bromobenzene	ND		ug/l	2.5	0.70
n-Butylbenzene	ND		ug/l	2.5	0.70
sec-Butylbenzene	ND		ug/l	2.5	0.70
tert-Butylbenzene	ND		ug/l	2.5	0.70
o-Chlorotoluene	ND		ug/l	2.5	0.70
p-Chlorotoluene	ND		ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70
Hexachlorobutadiene	ND		ug/l	2.5	0.70
Isopropylbenzene	ND		ug/l	2.5	0.70
p-Isopropyltoluene	ND		ug/l	2.5	0.70
Naphthalene	ND		ug/l	2.5	0.70

L1305712

Lab Number:

Project Name: NEW PALTZ PLAZA

Project Number: 95141 Report Date: 04/12/13

Nepoli Date. 04/12/

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/09/13 09:31

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS -	· Westborough Lab fo	or sample(s):	08,10-14	Batch:	WG600313-6
n-Propylbenzene	ND		ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70
1,4-Dioxane	ND		ug/l	250	76.
1,4-Diethylbenzene	ND		ug/l	2.0	0.70
4-Ethyltoluene	ND		ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.65
Ethyl ether	ND		ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70

	Acceptance						
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	100		70-130				
Toluene-d8	103		70-130				
4-Bromofluorobenzene	102		70-130				
Dibromofluoromethane	97		70-130				

L1305712

Project Name: NEW PALTZ PLAZA Lab Number:

Project Number: 95141 Report Date: 04/12/13

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/10/13 10:04

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	14	Batch:	WG6003	13-9
Methylene chloride	ND		ug/l		2.5	0.70
1,1-Dichloroethane	ND		ug/l		2.5	0.70
Chloroform	ND		ug/l		2.5	0.70
Carbon tetrachloride	ND		ug/l		0.50	0.16
1,2-Dichloropropane	ND		ug/l		1.0	0.30
Dibromochloromethane	ND		ug/l		0.50	0.19
1,1,2-Trichloroethane	ND		ug/l		1.5	0.50
Tetrachloroethene	ND		ug/l		0.50	0.18
Chlorobenzene	ND		ug/l		2.5	0.70
Trichlorofluoromethane	ND		ug/l		2.5	0.70
1,2-Dichloroethane	ND		ug/l		0.50	0.16
1,1,1-Trichloroethane	ND		ug/l		2.5	0.70
Bromodichloromethane	ND		ug/l		0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l		0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l		0.50	0.14
1,1-Dichloropropene	ND		ug/l		2.5	0.70
Bromoform	ND		ug/l		2.0	0.65
1,1,2,2-Tetrachloroethane	ND		ug/l		0.50	0.19
Benzene	ND		ug/l		0.50	0.19
Toluene	ND		ug/l		2.5	0.70
Ethylbenzene	ND		ug/l		2.5	0.70
Chloromethane	ND		ug/l		2.5	0.70
Bromomethane	ND		ug/l		2.5	0.70
Vinyl chloride	ND		ug/l		1.0	0.33
Chloroethane	ND		ug/l		2.5	0.70
1,1-Dichloroethene	ND		ug/l		0.50	0.18
trans-1,2-Dichloroethene	ND		ug/l		2.5	0.70
Trichloroethene	ND		ug/l		0.50	0.17
1,2-Dichlorobenzene	ND		ug/l		2.5	0.70
1,3-Dichlorobenzene	ND		ug/l		2.5	0.70
1,4-Dichlorobenzene	ND		ug/l		2.5	0.70

Project Name:NEW PALTZ PLAZALab Number:L1305712

Project Number: 95141 Report Date: 04/12/13

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/10/13 10:04

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	14	Batch:	WG6003	313-9
Methyl tert butyl ether	ND		ug/l		2.5	0.70
p/m-Xylene	ND		ug/l		2.5	0.70
o-Xylene	ND		ug/l		2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l		2.5	0.70
Dibromomethane	ND		ug/l		5.0	1.0
1,2,3-Trichloropropane	ND		ug/l		2.5	0.70
Acrylonitrile	ND		ug/l		5.0	1.5
Styrene	ND		ug/l		2.5	0.70
Dichlorodifluoromethane	ND		ug/l		5.0	1.0
Acetone	ND		ug/l		5.0	1.0
Carbon disulfide	ND		ug/l		5.0	1.0
2-Butanone	ND		ug/l		5.0	1.0
Vinyl acetate	ND		ug/l		5.0	1.0
4-Methyl-2-pentanone	ND		ug/l		5.0	1.0
2-Hexanone	ND		ug/l		5.0	1.0
Bromochloromethane	ND		ug/l		2.5	0.70
2,2-Dichloropropane	ND		ug/l		2.5	0.70
1,2-Dibromoethane	ND		ug/l		2.0	0.65
1,3-Dichloropropane	ND		ug/l		2.5	0.70
1,1,1,2-Tetrachloroethane	ND		ug/l		2.5	0.70
Bromobenzene	ND		ug/l		2.5	0.70
n-Butylbenzene	ND		ug/l		2.5	0.70
sec-Butylbenzene	ND		ug/l		2.5	0.70
tert-Butylbenzene	ND		ug/l		2.5	0.70
o-Chlorotoluene	ND		ug/l		2.5	0.70
p-Chlorotoluene	ND		ug/l		2.5	0.70
1,2-Dibromo-3-chloropropane	ND		ug/l		2.5	0.70
Hexachlorobutadiene	ND		ug/l		2.5	0.70
Isopropylbenzene	ND		ug/l		2.5	0.70
p-Isopropyltoluene	ND		ug/l		2.5	0.70
Naphthalene	ND		ug/l		2.5	0.70

Project Name: NEW PALTZ PLAZA L1305712

Lab Number:

Project Number: Report Date: 95141 04/12/13

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/10/13 10:04

Parameter	Result	Qualifier	Units		RL	MDL
Volatile Organics by GC/MS - W	estborough Lab	for sample(s):	14	Batch:	WG600	0313-9
n-Propylbenzene	ND		ug/l		2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l		2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l		2.5	0.70
1,3,5-Trimethylbenzene	ND		ug/l		2.5	0.70
1,2,4-Trimethylbenzene	ND		ug/l		2.5	0.70
1,4-Dioxane	ND		ug/l		250	76.
1,4-Diethylbenzene	ND		ug/l		2.0	0.70
4-Ethyltoluene	ND		ug/l		2.0	0.70
1,2,4,5-Tetramethylbenzene	ND		ug/l		2.0	0.65
Ethyl ether	ND		ug/l		2.5	0.70
trans-1,4-Dichloro-2-butene	ND		ug/l		2.5	0.70

	Acceptance						
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	100		70-130				
Toluene-d8	103		70-130				
4-Bromofluorobenzene	100		70-130				
Dibromofluoromethane	97		70-130				

Project Name: NEW PALTZ PLAZA

Project Number: 95141

Lab Number: L1305712

arameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	6Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	h Lab Associated s	sample(s):	01-09 Bato	h: WG600313-1	WG600313-2			
Methylene chloride	86		86		70-130	0		20
1,1-Dichloroethane	93		93		70-130	0		20
Chloroform	95		94		70-130	1		20
Carbon tetrachloride	91		90		63-132	1		20
1,2-Dichloropropane	94		92		70-130	2		20
Dibromochloromethane	98		99		63-130	1		20
1,1,2-Trichloroethane	98		100		70-130	2		20
Tetrachloroethene	102		100		70-130	2		20
Chlorobenzene	101		99		75-130	2		20
Trichlorofluoromethane	95		91		62-150	4		20
1,2-Dichloroethane	91		93		70-130	2		20
1,1,1-Trichloroethane	94		91		67-130	3		20
Bromodichloromethane	92		92		67-130	0		20
trans-1,3-Dichloropropene	99		97		70-130	2		20
cis-1,3-Dichloropropene	93		93		70-130	0		20
1,1-Dichloropropene	94		91		70-130	3		20
Bromoform	94		93		54-136	1		20
1,1,2,2-Tetrachloroethane	102		101		67-130	1		20
Benzene	93		92		70-130	1		20
Toluene	102		99		70-130	3		20
Ethylbenzene	102		101		70-130	1		20

Project Name: NEW PALTZ PLAZA

Project Number: 95141

Lab Number: L1305712

Parameter	LCS %Recovery	Qual		CSD covery	% Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-09	Batch:	WG600313-1	WG600313-2			
Chloromethane	82			98		64-130	18		20
Bromomethane	81			83		39-139	2		20
Vinyl chloride	96			93		55-140	3		20
Chloroethane	106			106		55-138	0		20
1,1-Dichloroethene	94			91		61-145	3		20
trans-1,2-Dichloroethene	94			90		70-130	4		20
Trichloroethene	93			90		70-130	3		20
1,2-Dichlorobenzene	102			102		70-130	0		20
1,3-Dichlorobenzene	106			104		70-130	2		20
1,4-Dichlorobenzene	105			102		70-130	3		20
Methyl tert butyl ether	88			89		63-130	1		20
p/m-Xylene	102			101		70-130	1		20
o-Xylene	103			100		70-130	3		20
cis-1,2-Dichloroethene	93			90		70-130	3		20
Dibromomethane	93			92		70-130	1		20
1,2,3-Trichloropropane	104			104		64-130	0		20
Acrylonitrile	88			88		70-130	0		20
Styrene	100			101		70-130	1		20
Dichlorodifluoromethane	91			85		36-147	7		20
Acetone	84			97		58-148	14		20
Carbon disulfide	88			86		51-130	2		20

Project Name: NEW PALTZ PLAZA

Project Number: 95141

Lab Number: L1305712

arameter	LCS %Recovery	Qual		CSD covery	% Qual	Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-09	Batch:	WG600313-1	WG600313-2			
2-Butanone	76			82		63-138	8		20
Vinyl acetate	92			91		70-130	1		20
4-Methyl-2-pentanone	86			87		59-130	1		20
2-Hexanone	93			98		57-130	5		20
Bromochloromethane	93			92		70-130	1		20
2,2-Dichloropropane	97			95		63-133	2		20
1,2-Dibromoethane	98			98		70-130	0		20
1,3-Dichloropropane	100			99		70-130	1		20
1,1,1,2-Tetrachloroethane	100			98		64-130	2		20
Bromobenzene	104			103		70-130	1		20
n-Butylbenzene	106			105		53-136	1		20
sec-Butylbenzene	107			103		70-130	4		20
tert-Butylbenzene	107			103		70-130	4		20
o-Chlorotoluene	108			107		70-130	1		20
p-Chlorotoluene	107			103		70-130	4		20
1,2-Dibromo-3-chloropropane	101			101		41-144	0		20
Hexachlorobutadiene	102			102		63-130	0		20
Isopropylbenzene	108			104		70-130	4		20
p-Isopropyltoluene	107			104		70-130	3		20
Naphthalene	94			95		70-130	1		20
n-Propylbenzene	109			104		69-130	5		20

Project Name: NEW PALTZ PLAZA

Project Number: 95141

Lab Number: L1305712

arameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-09	Batch:	WG600313-1	WG600313-2			
1,2,3-Trichlorobenzene	97			97		70-130	0		20
1,2,4-Trichlorobenzene	100			99		70-130	1		20
1,3,5-Trimethylbenzene	107			105		64-130	2		20
1,2,4-Trimethylbenzene	108			105		70-130	3		20
1,4-Dioxane	84			89		56-162	6		20
1,4-Diethylbenzene	106			103		70-130	3		20
4-Ethyltoluene	107			104		70-130	3		20
1,2,4,5-Tetramethylbenzene	105			104		70-130	1		20
Ethyl ether	91			91		59-134	0		20
trans-1,4-Dichloro-2-butene	91			91		70-130	0		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
40 P: 11	00		400		70.400	
1,2-Dichloroethane-d4	99		100		70-130	
Toluene-d8	106		106		70-130	
4-Bromofluorobenzene	103		102		70-130	
Dibromofluoromethane	97		98		70-130	

Project Name: NEW PALTZ PLAZA

Project Number: 95141

Lab Number: L1305712

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	08,10-14 Batc	h: WG600313-4 WG600313	3-5		
Methylene chloride	86		86	70-130	0		20
1,1-Dichloroethane	94		92	70-130	2		20
Chloroform	96		92	70-130	4		20
Carbon tetrachloride	94		91	63-132	3		20
1,2-Dichloropropane	93		91	70-130	2		20
Dibromochloromethane	94		94	63-130	0		20
1,1,2-Trichloroethane	98		98	70-130	0		20
Tetrachloroethene	103		100	70-130	3		20
Chlorobenzene	101		99	75-130	2		20
Trichlorofluoromethane	98		93	62-150	5		20
1,2-Dichloroethane	92		91	70-130	1		20
1,1,1-Trichloroethane	95		91	67-130	4		20
Bromodichloromethane	92		91	67-130	1		20
trans-1,3-Dichloropropene	96		95	70-130	1		20
cis-1,3-Dichloropropene	92		92	70-130	0		20
1,1-Dichloropropene	94		91	70-130	3		20
Bromoform	87		90	54-136	3		20
1,1,2,2-Tetrachloroethane	96		98	67-130	2		20
Benzene	94		91	70-130	3		20
Toluene	101		98	70-130	3		20
Ethylbenzene	101		99	70-130	2		20

Project Name: NEW PALTZ PLAZA

Project Number: 95141

Lab Number: L1305712

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	08,10-14 Batch	n: WG600313-4 WG600313	3-5		
Chloromethane	97		82	64-130	17		20
Bromomethane	78		80	39-139	3		20
Vinyl chloride	95		93	55-140	2		20
Chloroethane	109		103	55-138	6		20
1,1-Dichloroethene	94		91	61-145	3		20
trans-1,2-Dichloroethene	93		91	70-130	2		20
Trichloroethene	93		91	70-130	2		20
1,2-Dichlorobenzene	102		102	70-130	0		20
1,3-Dichlorobenzene	103		105	70-130	2		20
1,4-Dichlorobenzene	102		103	70-130	1		20
Methyl tert butyl ether	85		85	63-130	0		20
p/m-Xylene	102		100	70-130	2		20
o-Xylene	102		100	70-130	2		20
cis-1,2-Dichloroethene	93		91	70-130	2		20
Dibromomethane	91		91	70-130	0		20
1,2,3-Trichloropropane	101		101	64-130	0		20
Acrylonitrile	85		84	70-130	1		20
Styrene	101		100	70-130	1		20
Dichlorodifluoromethane	91		86	36-147	6		20
Acetone	106		100	58-148	6		20
Carbon disulfide	90		85	51-130	6		20

Project Name: NEW PALTZ PLAZA

Project Number: 95141

Lab Number: L1305712

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	08,10-14 Batcl	n: WG600313-4 WG60031	3-5		
2-Butanone	82		80	63-138	2		20
Vinyl acetate	87		86	70-130	1		20
4-Methyl-2-pentanone	82		82	59-130	0		20
2-Hexanone	101		95	57-130	6		20
Bromochloromethane	94		92	70-130	2		20
2,2-Dichloropropane	98		95	63-133	3		20
1,2-Dibromoethane	95		95	70-130	0		20
1,3-Dichloropropane	97		96	70-130	1		20
1,1,1,2-Tetrachloroethane	98		97	64-130	1		20
Bromobenzene	102		102	70-130	0		20
n-Butylbenzene	105		104	53-136	1		20
sec-Butylbenzene	106		104	70-130	2		20
tert-Butylbenzene	104		104	70-130	0		20
o-Chlorotoluene	105		98	70-130	7		20
p-Chlorotoluene	105		104	70-130	1		20
1,2-Dibromo-3-chloropropane	98		99	41-144	1		20
Hexachlorobutadiene	104		100	63-130	4		20
Isopropylbenzene	106		105	70-130	1		20
p-Isopropyltoluene	106		103	70-130	3		20
Naphthalene	87		90	70-130	3		20
n-Propylbenzene	106		104	69-130	2		20

Project Name: NEW PALTZ PLAZA

Project Number: 95141

Lab Number: L1305712

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	08,10-14 Batch	: WG600313-4 WG6003 ²	13-5		
1,2,3-Trichlorobenzene	91		96	70-130	5		20
1,2,4-Trichlorobenzene	98		98	70-130	0		20
1,3,5-Trimethylbenzene	106		105	64-130	1		20
1,2,4-Trimethylbenzene	106		104	70-130	2		20
1,4-Dioxane	83		82	56-162	1		20
1,4-Diethylbenzene	103		103	70-130	0		20
4-Ethyltoluene	106		104	70-130	2		20
1,2,4,5-Tetramethylbenzene	103		102	70-130	1		20
Ethyl ether	87		86	59-134	1		20
trans-1,4-Dichloro-2-butene	85		86	70-130	1		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	99		98		70-130	
Toluene-d8	104		105		70-130	
4-Bromofluorobenzene	100		100		70-130	
Dibromofluoromethane	99		99		70-130	

Project Name: NEW PALTZ PLAZA

Project Number: 95141

Lab Number: L1305712

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	14 Batch: W	G600313-7	WG600313-8			
Methylene chloride	89		87		70-130	2		20
1,1-Dichloroethane	95		93		70-130	2		20
Chloroform	96		95		70-130	1		20
Carbon tetrachloride	95		92		63-132	3		20
1,2-Dichloropropane	94		92		70-130	2		20
Dibromochloromethane	94		96		63-130	2		20
1,1,2-Trichloroethane	98		100		70-130	2		20
Tetrachloroethene	102		102		70-130	0		20
Chlorobenzene	100		100		75-130	0		20
Trichlorofluoromethane	97		96		62-150	1		20
1,2-Dichloroethane	92		94		70-130	2		20
1,1,1-Trichloroethane	95		93		67-130	2		20
Bromodichloromethane	94		93		67-130	1		20
trans-1,3-Dichloropropene	96		97		70-130	1		20
cis-1,3-Dichloropropene	91		93		70-130	2		20
1,1-Dichloropropene	94		93		70-130	1		20
Bromoform	90		91		54-136	1		20
1,1,2,2-Tetrachloroethane	97		100		67-130	3		20
Benzene	95		92		70-130	3		20
Toluene	100		100		70-130	0		20
Ethylbenzene	101		100		70-130	1		20

Project Name: NEW PALTZ PLAZA

Project Number: 95141

Lab Number: L1305712

arameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough I	ab Associated	sample(s):	14 Batch:	WG600313-7	WG600313-8			
Chloromethane	83		82		64-130	1		20
Bromomethane	81		83		39-139	2		20
Vinyl chloride	97		94		55-140	3		20
Chloroethane	106		105		55-138	1		20
1,1-Dichloroethene	94		92		61-145	2		20
trans-1,2-Dichloroethene	93		92		70-130	1		20
Trichloroethene	94		93		70-130	1		20
1,2-Dichlorobenzene	103		104		70-130	1		20
1,3-Dichlorobenzene	104		105		70-130	1		20
1,4-Dichlorobenzene	103		104		70-130	1		20
Methyl tert butyl ether	87		89		63-130	2		20
p/m-Xylene	103		100		70-130	3		20
o-Xylene	103		102		70-130	1		20
cis-1,2-Dichloroethene	94		92		70-130	2		20
Dibromomethane	90		92		70-130	2		20
1,2,3-Trichloropropane	101		103		64-130	2		20
Acrylonitrile	88		89		70-130	1		20
Styrene	102		102		70-130	0		20
Dichlorodifluoromethane	90		88		36-147	2		20
Acetone	98		97		58-148	1		20
Carbon disulfide	89		87		51-130	2		20

Project Name: NEW PALTZ PLAZA

Project Number: 95141

Lab Number: L1305712

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	14 Batch: V	/G600313-7	WG600313-8			
2-Butanone	78		82		63-138	5		20
Vinyl acetate	86		86		70-130	0		20
4-Methyl-2-pentanone	82		87		59-130	6		20
2-Hexanone	90		94		57-130	4		20
Bromochloromethane	94		94		70-130	0		20
2,2-Dichloropropane	98		97		63-133	1		20
1,2-Dibromoethane	96		99		70-130	3		20
1,3-Dichloropropane	97		99		70-130	2		20
1,1,1,2-Tetrachloroethane	100		98		64-130	2		20
Bromobenzene	103		104		70-130	1		20
n-Butylbenzene	106		105		53-136	1		20
sec-Butylbenzene	105		105		70-130	0		20
tert-Butylbenzene	104		104		70-130	0		20
o-Chlorotoluene	108		106		70-130	2		20
p-Chlorotoluene	103		104		70-130	1		20
1,2-Dibromo-3-chloropropane	99		101		41-144	2		20
Hexachlorobutadiene	104		103		63-130	1		20
Isopropylbenzene	106		105		70-130	1		20
p-Isopropyltoluene	105		104		70-130	1		20
Naphthalene	90		93		70-130	3		20
n-Propylbenzene	106		104		69-130	2		20

Project Name: NEW PALTZ PLAZA

Project Number: 95141

Lab Number: L1305712

arameter	LCS %Recovery	/ Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - We	stborough Lab Associate	ed sample(s):	14 Batch: \	VG600313-7	WG600313-8			
1,2,3-Trichlorobenzene	95		97		70-130	2		20
1,2,4-Trichlorobenzene	97		100		70-130	3		20
1,3,5-Trimethylbenzene	105		106		64-130	1		20
1,2,4-Trimethylbenzene	105		105		70-130	0		20
1,4-Dioxane	83		86		56-162	4		20
1,4-Diethylbenzene	104		103		70-130	1		20
4-Ethyltoluene	105		105		70-130	0		20
1,2,4,5-Tetramethylbenzene	103		104		70-130	1		20
Ethyl ether	90		91		59-134	1		20
trans-1,4-Dichloro-2-butene	82		86		70-130	5		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
4.0 Dishlamathana d4	00		400		70.400	
1,2-Dichloroethane-d4	99		100		70-130	
Toluene-d8	105		106		70-130	
4-Bromofluorobenzene	100		101		70-130	
Dibromofluoromethane	98		98		70-130	

Project Name: **NEW PALTZ PLAZA**

Lab Number: L1305712 **Report Date:** 04/12/13 Project Number: 95141

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

Α Absent

Container Information					Temp			
	Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
	L1305712-01A	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-01B	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-01C	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-02A	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-02B	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-02C	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-03A	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-03B	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-03C	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-04A	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-04B	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-04C	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-05A	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-05B	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-05C	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-06A	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-06B	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-06C	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-07A	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-07B	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-07C	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-08A	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-08B	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-08C	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-09A	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-09B	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
	L1305712-09C	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

Container Information							
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1305712-10A	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
L1305712-10B	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
L1305712-10C	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
L1305712-11A	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
L1305712-11B	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
L1305712-11C	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
L1305712-12A	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
L1305712-12B	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
L1305712-12C	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
L1305712-13A	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
L1305712-14A	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
L1305712-14B	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)
L1305712-14C	Vial unpreserved	Α	N/A	2.1	Υ	Absent	NYTCL-8260(7)

Project Name: NEW PALTZ PLAZA Lab Number: L1305712

Project Number: 95141 Report Date: 04/12/13

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

SRM

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported

Report Format: DU Report with "J" Qualifiers

Project Name:NEW PALTZ PLAZALab Number:L1305712Project Number:95141Report Date:04/12/13

Data Qualifiers

due to obvious interference.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with "J" Qualifiers

Project Name:NEW PALTZ PLAZALab Number:L1305712Project Number:95141Report Date:04/12/13

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised December 19, 2012 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Nickel, Selenium, Silver, Sodium, Thallium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate, Organic Parameters: Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP) 504.1, Ethylene Dibromide (EDB) 504.1, 1,4-Dioxane (Mod 8270). Microbiology Parameters: Total Coliform-MF mEndo (SM9222B), Total Coliform - Colilert (SM9223, Enumeration and P/A), E. Coli. - Colilert (SM9223, Enumeration and P/A), HPC - Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform-EC Medium (SM 9221E).

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), CT-Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. Microbiology Parameters: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), E. Coli – Colilert (SM9223 Enumeration), HPC – Pour Plate (SM9215B), Fecal Coliform - MF m-FC (SM9222D), Fecal Coliform - A-1 Broth (SM9221E), Enterococcus - Enterolert.

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity, Organic Parameters; PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, CT-Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Dalapon, Volatile Organics (SW 8260), Acid Extractables (Phenols) (SW 8270), Benzidines (SW 8270), Phthalates (SW 8270), Nitrosamines (SW 8270), Nitroaromatics & Cyclic Ketones (SW 8270), PAHs (SW 8270), Haloethers (SW 8270), Chlorinated Hydrocarbons (SW 8270).)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 2540C, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. Organic Parameters: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5310C, 9010B, 9040B, 9030B, 7470A, 7196A, 2340B, EPA 200.7, 6010B, 6010C, 200.8, 6020, 245.1, 1311, 1312, 3005A, Enterolert, 9223B, 9222D. Organic Parameters: 608, 624, 625, 8081A, 8081B, 8082, 8082A, 8330, 8151A, 8260B, 8260C, 8270C, 8270D, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (Inorganic Parameters: 9010B, 9012A, 9014, 9030B, 9040B, 9045C, 6010B, 6010C, 6020, 6020A, 7471A, 7471B, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B. Organic Parameters: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260B, 8270C, 8270D, 8330, 8151A, 8081A, 8081B, 8082, 8082A, 3540C, 3546, 3580A, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1.2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; Page 77 of 82 Page 77 of 82

Non-Potable Water (Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn); (EPA 200.7 for: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn); 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. Microbiology Parameters: (ColilertQT SM9223B; Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. Organic Parameters: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, SW-846 6010C, 6020A, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 426C, 1664A, SW-846 9010B, 9010C, 9030, 9040B, 9040C, SM2120B, 2310B, 2320B, 2340B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 4500SO3-B, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D, 3060A. Organic Parameters: SW-846 3510C, 3630C, 5030B, 8260C, 8270D, 8330, EPA 624, 625, 608, SW-846 8082A, 8081B, 8015C, 8151A, 8330, 8270D-SIM.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010C, 6020A, 7196A, 7471B, 1010, 1010A, 1030, 9010C, 9012B, 9014, 9030B, 9040C, 9045C, 9045D, 9050, 9065, 9251, 1311, 1312, 3005A, 3050B, 3060A. Organic Parameters: SW-846 3540C, 3546, 3050B, 3580A, 3620D, 3630C, 5030B, 5035, 8260C, 8270D, 8270D-SIM, 8330, 8151A, 8015B, 8015C, 8082A, 8081B.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.1, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. Organic Parameters: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-E, EPA 300.0, SM2120B, 2340B, SM4500F-BC, EPA 200.7, 200.8, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM2520B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 7470A, 5540C, SM4500H-B, 4500SO3-B, SM3500Cr-D, 4500CN-CE, EPA 245.1, SW-846 9040B, 9040C, 3005A, 3015, EPA 6010B, 6010C, 6020, 6020A, 7196A, 3060A, SW-846 9010C, 9030B. Organic Parameters: SW-846 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8011, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 1,4-Dioxane by NJ Modified 8270, 8015B, NJ EPH.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 6010C, 6020, 6020A, 7196A, 3060A, 9030B, 1010, 1010A, 1030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9010C, 9012B, 9014, 9038, 9040B, 9040C, 9045C, 9045D, 9050A, 9065, 9251. Organic Parameters: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3546, 3580A, 3620C, 3630C, 5030B, 5035L, 5035H, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500NO3-F, 2540C, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6010C, 6020, 6020A, EPA 7196A, SM3500Cr-D, EPA 245.1, 7470A, SM2120B, LACHAT 10-204-00-1-A, 4500CN-CE, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 3015, 9010C, 9030B. Organic Parameters: EPA 624, 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 625, 608, 8081A, 8081B, 8151A, 8330, 8082, 8082A, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010A, 1030, EPA 6010B, 6010C, 7196A, 7471A, 7471B, 9012B, 9014, 9065, 9050A, EPA 1311, 1312, 3005A, 3050B, 9010C, 9030B, 9040C, 9045D. Organic Parameters: EPA 8260B, Page \$260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8015B, 8015C, 8081A, 8081B, 8151A, 8330, 8082 8082A, 3540C,

3546, 3580A, 5030B, 5035A-H, 5035A-L.)

North Carolina Department of the Environment and Natural Resources Certificate/Lab ID: 666. (Inorganic Parameters: SM2310B, 2320B, 4500Cl-E, 4500Cn-E, 9014, Lachat 10-204-00-1-X, 1010A, 1030, 4500NO3-F, 353.2, 4500P-E, 4500SO4-E, 300.0, 4500S-D, 5310B, 5310C, 6010C, 6020A, 200.7, 200.8, 3500Cr-B, 7196A, 245.1, 7470A, 7471B, 1311,1312. Organic Parameters: 608, 8081B, 8082A, 624, 8260B, 625, 8270D, 8151A, 8015C, 504.1, MA-EPH, MA-VPH.)

Drinking Water Program Certificate/Lab ID: 25700. (Inorganic Parameters: Chloride EPA 300.0. Organic Parameters: 524.2)

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-03671. *NELAP Accredited.*Drinking Water (Inorganic Parameters: 200.7, 200.8, 300.0, 332.0, 2120B, 2320B, 2510B, 2540C, 4500-CN-CE, 4500F-C, 4500H+-B, 4500NO3-F, 5310C. Organic Parameters: EPA 524.2, 504.1)

Non-Potable Water (Inorganic Parameters: EPA 120.1, 1312, 3005A, 3015, 3060A, 200.7, 200.8, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE, 245.1, 300.0, 350.1, 350.2, 351.1, 353.2, 420.1, 6010C, 6020A, 7196A, 7470A, 9030B, 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 3500Cr-D, 426C, 4500CN-CE, 4500Cl-E, 4500F-B, 4500F-C, 4500H+-B, 4500NH3-H, 4500NO2-B, 4500NO3-F, 4500S-D, 4500SO3-B, 5310BCD, 5540C, 9010C, 9040C. Organic Parameters: EPA 3510C, 3630C, 5030B, 625, 624, 608, 8081B, 8082A, 8151A, 8260C, 8270D, 8270D-SIM, 8330, 8015C, NJ-EPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3005A, 3050B, 3060A, 6010C, 6020A, 7196A, 7471B, 9010C, 9012B, 9014, 9040B, 9045D, 9050A, 9065, SM 4500NH3-BH, 9030B, 9038, 9251. Organic Parameters: 3540C, 3546, 3580A, 3620C, 3630C, 5035, 8015C, 8081B, 8082A, 8151A, 8260C, 8270D, 8270D-SIM, 8330, NJ-EPH.)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. *NELAP Accredited via NJ-DEP*. Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476. **NELAP Accredited.** *Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Virginia Division of Consolidated Laboratory Services Certificate/Lab ID: 460195. *NELAP Accredited. Drinking Water* (Inorganic Parameters: EPA 200.7, 200.8, 300.0, 2510B, 2120B, 2540C, 4500CN-CE, 245.2, 2320B, 4500F-C, 4500NO3-F, 5310C. Organic Parameters: EPA 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 200.7, 200.8, 245.1, 300.0, 3005A, 3015, 1312, 6010B, 6010C, 3060A, 353.2, 420.1, 6020, 6020A, SM4500S-D, SM4500-CN-CE, Lachat 10-204-00-1-X, 7196A, 7470A, 9010B, 9040B, 2310B, 2320B, 2510B, 2540B, 2540C, 3500Cr-D, 426C, 4500Cl-E, 4500F-B, 4500F-C, 4500PE, 510AC, 5210B, 5310B 5310C, 5540C. Organic Parameters: EPA 3510C, 3630C, 5030B, 8260B, 608, 624, 625, 8081A, 8081B, 8082, 8082A, 8151A, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330,)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010A, 1030, 3060A, 3050B, 1311, 1312, 6010B, 6010C, 6020, 7196A, 7471A, 7471B, 6020A, 9030B, 9010B, 9012A, 9014 9040B, 9045C, 9050A, 9065. Organic Parameters: EPA 5030B, 5035, 3540C, 3546, 355B0, 3580A, 3630C, 6020A, 8260B, 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330.)

Department of Defense, L-A-B Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6010C, 6020, 6020A, 245.1, 245.2, 7470A, 9040B, 9010B, 180.1. 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 4500CL-D, 5220D, 5310C, 2130B, 2320B, 2540C, 3005A, 3015, 9010B, 9056, 7196A, 3500-Cr-D. Organic Parameters: EPA 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330A, 8082, 8082A, 8081A, 8081B, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

8270D, 8270C-SIM, 8270D-SIM, 8330A/B-prep, 8082, 8082A, 8081A, 8081B, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix. **EPA 9071:** Total Petroleum Hydrocarbons, Oil & Grease.

FORM NO: 01-01 (rev. 14-OCT-07)
Page 81 of 82

Serial_No:04121308:38 CHAIN OF CUSTODY PAGE 2 OF 2 ALPHA Job #: 61305712 Date Rec'd in Lab: Report Information - Data Deliverables **Billing Information Project Information** WESTBORO, MA MANSFIELD, MA TEL: 508-898-9220 TEL: 508-822-9300 Project Name: New Paltz Plaza PO#: ☐ Same as Client info ☐ FAX □ EMAIL FAX: 508-898-9193 FAX: 508-822-3288 □ ADEx □ Add'I Deliverables Client Information Project Location: Regulatory Requirements/Report Limits Alpha Geoscience Project #: State /Fed Program Criteria Project Manager: Address: 201 3397 ALPHA Quote #: Phone: **Turn-Around Time** Fax: ☐XStandard ☐ RUSH (only confirmed if pre-approved!) Email: AMAL/SIS Date Due: 4/17/13 Time: SAMPLE HANDLING These samples have been previously analyzed by Alpha Filtration Other Project Specific Requirements/Comments/Detection Limits: □ Done ■ Not needed ☐ Lab to do Preservation ☐ Lab to do (Please specify below) ALPHA Lab ID Collection Sample Sampler's Sample ID (Lab Use Only) Matrix Initials Sample Specific Comments Date Time SMH BR-2, BW 05712 - 11 Smit 1615 TRIP Blank 1 GW SMH V43 Container Type Please print clearly, legibly and completely. Samples can not be logged Preservative me in and turnaround time clock will not start until any ambiguities are resolved Date/Time Date/Time Relinquished By: All samples submitted are subject to 4/3/1326:31 Alpha's Terms and Conditions. 4/4/13 00:50

See reverse side.

FORM NO: 01-01 (rev. 14-OCT-07)

Page 82 of 82

APPENDIX E IC/EC Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	V00087	Site Details	Box 1	
Sit	e Name N	ew Paltz Plaza/l	Revonak Dry Cleaners		
Cit Co	e Address: y/Town: N unty: Ulster e Acreage:	-	Zip Code: 12561		
Re	porting Per	riod: November 2	29, 2011 to April 30, 2013		
				YES	NO
1.	Is the info	rmation above o	orrect?	×	
	If NO, inc	lude handwritten	above or on a separate sheet.		
2.			property been sold, subdivided, merged, or ung g this Reporting Period?	dergone a	×
3.		been any chang CRR 375-1.11(d	ge of use at the site during this Reporting Period))?		X.
4.	•	·	nd/or local permits (e.g., building, discharge) be ig this Reporting Period?	een issued	X
					_
			questions 2 thru 4, include documentation o been previously submitted with this certifica		
5.	that doci	imentation has			×
5.	that doci	imentation has	been previously submitted with this certification	ation form.	×
5.	that doci	imentation has	been previously submitted with this certification	ation form.	×
5. 6.	Is the site	umentation has currently underg	been previously submitted with this certificate going development? sistent with the use(s) listed below?	ation form. Box 2	×
6.	Is the curr Commercia	currentiy undergonders rent site use consial and Industrial	been previously submitted with this certificate going development? sistent with the use(s) listed below?	Box 2 YES	₩ NO
6.	Is the curr Commercia	currentiy undergonders rent site use consial and Industrial	been previously submitted with this certificate going development? sistent with the use(s) listed below?	Box 2 YES	NO
6. 7.	Is the curred commerce Are all ICS	rent site use considered and Industrial s/ECs in place are stables of the ANSWER TO DO NOT COMP	sistent with the use(s) listed below? Ind functioning as designed? ### will be furned one, as discribed DEITHER QUESTION 6 OR 7 IS NO, sign and displace THE REST OF THIS FORM. Otherwise of	Box 2 YES	NO
6. 7.	Is the curred commerce Are all ICS	rent site use considered and Industrial s/ECs in place are stables of the ANSWER TO DO NOT COMP	sistent with the use(s) listed below? Ind functioning as designed? ### will be formed one, as discribed DEITHER QUESTION 6 OR 7 IS NO, sign and discrepance of the control of the contro	Box 2 YES	NO

SITE NO. V00087 Box 3

Description of Institutional Controls

<u>Parcel</u>

86.12-6-5.1

Owner

New Paltz Properties, LLC

Institutional Control

Site Management Plan Ground Water Use Restriction Landuse Restriction IC/EC Plan

1. Imposition of an institutional control in the form of a deed restriction on the 13.5-acre plaza property, including the former Revonak Dry Cleaners Site.

- 2. The property may not be used for a higher level of use, such as unrestricted residential use without additional remediation and amendment of the March 2010 Record of Decision, as approved by the NYSDEC.
- 3. All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the approved Site Management Plan (SMP).
- 4. Restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDEC, NYSDOH or Ulster County Department of Health.
- 5. The potential for vapor intrusion must be evaluated for any buildings developed in the New Paltz Plaza shopping center, and any potential impacts that are identified must be monitored or mitigated.
- 6. Vegetable gardens and farming on the property are prohibited.
- 7. New Paltz Plaza, future site owners, or the owner's representative will submit to NYSDEC a written statement that certifies, under penalty of perjury, that:
- (a) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (b) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

Box 4

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

86.12-6-5.1

Vapor Mitigation

- 1. A contingency plan that allows for further groundwater remediation via application of hydrgoen release compound (HRC)or other similar technology (e.g., in-situ chemical oxidation), in the event that tetrachloroethlene (PCE), volatile organics and/or their breakdown compounds remain consistently above groundwater standards or have not become asymptotic (i.e., the concentrations of volatile organics remain at their lowest without any further reduction in concentration) at an acceptable level over an extended period.
- 2. Operation and maintenance of the nine sub-slab depressurization (SSD) systems.

\mathbf{D}		-
0	OX	- 5

Periodic Review Report (PRR) Certification Statements

1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
	· · · · · · · · · · · · · · · · · · ·
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. V00087

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name

at 251 Man connect Duny White Main, 27 Man connection, 27

Signature of Owner, Remedial Party, or Designated Representative

for the Site named in the Site Details Section of this form.

Rendering Certification

IC/EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is

punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. Johnson at 679 Plank Rd, Cl. Fton Park, NY 1206,5 print business address am certifying as a Qualified Environmental Professional for the ___ (Owner or Remedial Party) 4/30/2013 Signature of Qualified Environmental Professional, for Stamp the Owner or Remedial Party, Rendering Certification (Required for PE)