

PERIODIC REVIEW REPORT October 30, 2013 – October 30, 2014 New Paltz Plaza VCP Site

Town of New Paltz Ulster Co., New York VCP Site #V00087

Prepared for:

New Paltz Plaza Properties, LP New Paltz Plaza, Inc. 257 Mamaroneck Avenue White Plains, New York 10605

Prepared by:

Sterling Environmental Engineering, P.C. 24 Wade Road Latham, New York 12110

March 11, 2015

TABLE OF CONTENTS

1.0		INTRODUCTION	. 1
	1.1	Summary of Site Remediation and Documents	. 1
	1.2	Extent of Impacted Area	2
	1.3	Effectiveness and Compliance	2
	1.4	Recommendations	3
2.0		SITE OVERVIEW	. 3
	2.1	Remedial History	4
3.0		EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS	. 6
	3.1	Performance	6
	3.2	Effectiveness	6
	3.3	Protectiveness	7
4.0		IC/EC COMPLIANCE REPORT	. 8
	4.1	Institutional Control	8
	4.2	Engineering Control	8
	4.3	Continuing Obligations.	8
5.0		MONITORING PLAN COMPLIANCE REPORT	9
6.0		OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS1	0
7.0		IC AND EC CERTIFICATION FORM	11

LIST OF TABLES, FIGURES, AND APPENDICES

TABLES:

Table 1:	Groundwater Elevations
Table 2:	Summary of Groundwater Sampling; Well MW-2
Table 3:	Summary of Groundwater Sampling; Well MW-9
Table 4:	Summary of Groundwater Sampling; Well MW-10
Table 5:	Summary of Groundwater Sampling; Well MW-11

Table 6: Summary of Groundwater Sampling; Well BR-2

FIGURES:

Figure 1: Site Location Map
Figure 2: Subject Property Map

Figure 3: Overburden Groundwater Contour Map; December 4, 2014

Figure 4: Monitoring Well Location Map

Figure 5: Graph of PCE and Total VOCs; MW-2 Figure 6: Graph of PCE and Total VOCs; MW-9 Figure 7: Graph of PCE and Total VOCs; MW-10

APPENDICES:

Appendix A: Release letter

Appendix B: Report of Vapor Mitigation System Inspection, Alpine Environmental Services, Inc.

January 9, 2015

Appendix C: Subslab Ventilation System Periodic Review Report, Stop & Shop at New Paltz

Plaza, Langan Engineering, February 9, 2015

Appendix D: Historical Groundwater Analytical Results for Abandoned Wells
Appendix E: Laboratory Report for December 4, 2014 Groundwater Samples
Appendix F: NYSDEC Institutional and Engineering Control Certification Form

1.0 INTRODUCTION

Sterling Environmental Engineering, P.C. (STERLING) has prepared this Periodic Review Report (PRR) on behalf of New Paltz Plaza Properties, LP and New Paltz Plaza Inc. (collectively "Volunteer") for the Voluntary Cleanup Program (VCP) Site No. V00087 ("the Site"). The subject of this PRR is the New Paltz Plaza located on Route 299 in New Paltz, Ulster County, New York, which includes the former Revonak Dry Cleaners. The location of the site is shown in Figure 1. The Site has been investigated and remediated under the New York State Department of Environmental Conservation's (NYSDEC) VCP. Under the VCP, the Volunteer, as an Innocent Owner, elected to address groundwater and soil contamination beyond the boundary of the former Revonak Dry Cleaners, inactive hazardous waste disposal Site No. 356021 (former Revonak Dry Cleaners). Thus, the VCP Site is a portion of the New Paltz Plaza Shopping Center property including the former Revonak Dry Cleaners.

The former Revonak Dry Cleaners is the source of the contamination associated with the Site. New Paltz Plaza Associates ("Prior Owner") entered into Consent Order No. W3-0667-93-11, Site No. 356021, with the NYSDEC on February 24, 1995, which required the Prior Owner to conduct a remedial investigation (RI) and any necessary remedial actions. The Prior Owner initiated the RI, but did not conduct any interim remedial measures (IRMs), before transferring ownership to the Volunteer. The Volunteer entered into a Voluntary Cleanup Agreement (VCA) for investigation (No. W3-0782-96-12, Site No. V00087) and completed the RI. The Volunteer entered into a second VCA (No. W3-0782-97-10, Site No. V00087) on December 17, 1997 to conduct IRMs and to remediate the Site. The work was performed with the approval and oversight of the NYSDEC.

A revised Site Management Plan (SMP), dated October 16, 2014, is in place for ongoing remedial activities. This PRR presents the results of monitoring activities outlined in the revised SMP. The NYSDEC issued a release to New Paltz Plaza, Inc. and New Paltz Plaza Properties, L.P. on May 30, 2012 indicating that "no further investigation or response will be required at the Site respecting existing contamination to render the Site safe to be used for the contemplated use". The release letter is provided in Appendix A.

1.1 Summary of Site Remediation and Documents

Site remedial activities consisted of soil and groundwater removal in 1997 and 1998; injections of hydrogen releasing compounds (HRC) in 2003 and 2006; installation and operation of a sub-slab depressurization system (SSDS) beneath the Stop & Shop building in December 2006, and installation and operation of a SSDS consisting of eight (8) subsystems beneath the eastern portion

of the Plaza in 2005; and planting hybrid poplar trees in 2007 for the purpose of phytoremediation. Groundwater monitoring has been performed to assess the effectiveness of the implemented remedies. The details of these remedial actions were presented in the April 25, 2008 Final Engineering Report. A SMP, dated July 6, 2011, was submitted to the NYSDEC and approved on November 29, 2011. A revised SMP, dated October 16, 2014, is in place for ongoing remedial activities. The purpose of the SMP is to establish the environmental monitoring that is to be performed until NYSDEC agrees that some or all monitoring activities may be discontinued. A PRR dated April 2013 (revised October 2013) was previously submitted to the NYSDEC to document site environmental conditions and on-going monitoring.

1.2 Extent of Impacted Area

Groundwater quality investigations and analytical data document that the area of impact is local and that groundwater quality is stable or improving within the area of concern. Concentrations of total volatile organic compounds (VOCs) in well MW-2, where the highest concentrations have historically been measured, decreased from 1,875 ug/L to 1,601 ug/L between the April 2013 and December 4, 2014 sampling events, and remain substantially below historical levels. Concentrations of total VOCs in downgradient monitoring wells MW-9, MW-10 MW-11, and BR-2 decreased between the April 2013 and December 2014 monitoring events.

1.3 Effectiveness and Compliance

The remedial activities completed at the Site appear to have been effective, based on the results of groundwater monitoring. The elements of the SMP are operation of the SSDSs and groundwater monitoring. The SSDS beneath the eastern portion of the Plaza was inspected on December 23, 2014 and groundwater samples were collected from the site monitoring wells on December 4, 2014. The SSDS beneath the Stop & Shop store was inspected monthly by Langan Engineering and Environmental Services, Inc. (Langan) and a summary report was prepared by Stop & Shop's consultant for inclusion in this report.

The SSDS for the eastern portion of the Plaza was inspected on December 23, 2014 by Alpine Environmental Services, Inc. (Alpine), the contractor that installed the system. The inspection report is included in Appendix B. Results of the inspection indicated that all systems were operating properly with no deficiencies, with the exception of subsystem No. 7 (Bagel Shop). The fan for this system failed and the fan was replaced on January 5, 2015 and the system was restarted.

The SSDS at the Stop & Shop store is inspected regularly as documented by Langan in the February 9, 2015 Periodic Review Report prepared by Langan (Appendix C). That report states that "although PCE continues to be present in the subsurface beneath the building, PCE concentrations have generally decreased within the sampling ports since 2010". Notably, no PCE degradation compounds were detected in the annual air samples collected from the system in March 2014. Based on its findings, Langan recommends continued monthly inspection and operation of the system.

Groundwater samples were collected on December 4, 2014 to evaluate groundwater quality. The results are presented and discussed in Section 5.0 and generally indicate relatively stable or decreasing concentrations of VOCs in the groundwater.

1.4 Recommendations

No changes to the elements of the SMP or to the frequency for submitting this Periodic Review Report are recommended at this time. Monitoring will continue according to the requirements of the SMP.

2.0 SITE OVERVIEW

New Paltz Plaza is located approximately 0.3 miles west of the New York State Thruway on NYS Route 299 (Main Street) in New Paltz, Ulster County, New York (Figure 1). The New Paltz Plaza is in an area of commercial business within the Town of New Paltz. Several commercial establishments are present south of the Plaza. A medical office building and the New York State Thruway are located east of the Plaza. Residential portions of the Village of New Paltz are present to the west, and an apartment complex is located adjacent to the Plaza to the north. The Plaza consists of single story concrete block buildings and adjacent asphalt covered parking areas. Most of the area beyond the site buildings is paved asphalt parking, access roads and delivery areas for the Plaza.

Figure 2 is a map showing the location of the components of the selected remedy for the site, including the SSDS, phytoremediation area, HRC injection area, and area where soil and impacted groundwater removal was performed.

The contaminants of concern at the site is tetrachloroethylene (PCE) associated with the former dry cleaning store and its degradation compounds, as described further in Section 5.0. The nature and extent of the impacted area before completion of remedial activities was similar to the area described

in Section 1.2. The concentration of total VOCs in groundwater have decreased in most wells as a result of the source removal remedial activities.

2.1 Remedial History

The following list provides a chronological overview of the significant events and work that have occurred at the site since 1991.

- A Site Investigation was conducted from 1991 through 1996 and has included historical review, floor drain investigation, soil gas survey, soil borings and sampling, groundwater sampling, sewer survey, test pit investigation, and geoprobe investigation. A summary of this work, was included in NYSDEC's April 1997 Fact Sheet, Remedial Response Proposed to Address Contamination at New Paltz Plaza.
- The NYSDEC-approved a Remedial Plan on October 27, 1997 based on the extensive site investigations. The public comment period for the Remedial Plan was April to May 1997.
- The Remedial Plan was implemented in December 1997 and a Remediation Report was submitted to NYSDEC on June 17, 1998. Remediation included removal and disposal of 223 tons of soil as hazardous waste and 10,000 gallons of contaminated groundwater. The Remediation Report was certified by a New York State Professional Engineer.
- One year of post-remediation groundwater monitoring was conducted from February 1998 through February 1999 in accordance with the NYSDEC-approved Remediation Plan.
 Quarterly groundwater monitoring reports were submitted to NYSDEC in accordance with the approved Remediation Plan.
- A soil gas investigation was conducted and completed in April 1999 at the request of the NYSDEC and New York State Department of Health (NYSDOH). The results of the investigation showed no risk to potential offsite, downgradient receptors from vapors generated from contaminated groundwater.
- A Groundwater Monitoring Plan for continued post-remediation groundwater monitoring and a Contingency Plan was implemented and approved by the NYSDEC in 2001. Annual groundwater monitoring and reporting continued in compliance with the NYSDEC approved Plans.

- The investigative phase of the Contingency Plan was conducted in January 2003 and an additional remedial measure (HRC injection) was performed in November 2003. Groundwater monitoring indicated that the HRC injection substantially reduced the concentration of contaminants in groundwater.
- A SSDS was installed in June 2005 beneath the eastern portion of the Plaza, with the exception of the cinema. Pressure field extension measurements and sub-slab soil vapor samples collected before and after system start-up indicate the system is effective. The NYSDEC and NYSDOH agreed that a SSDS was not necessary beneath the Cinema based on the results of a vapor sample collected from beneath that building.
- A conceptual plan for expanded site remediation using HRCs was submitted to the NYSDEC in December 2005, approved in January 2006, and subsequently implemented in September 2006.
- A SSDS was installed beneath the Stop & Shop store during construction of that building in the Spring-Summer 2006.
- Phytoremediation (planting poplar trees for groundwater and contaminant uptake) was performed in the spring of 2007.
- The NYSDEC issued a Record of Decision (ROD) for this site in March 2010. A ROD is the NYSDEC's definitive record of the remedy selection process for the site and presents the final remedial action plan approved by the NYSDEC, NYSDOH, and the New York State Department of Law.
- The NYSDEC issued a "release letter" to the Volunteer owner on May 30, 2012 indicating that No Further Action is necessary after the ROD for the site is issued. The letter constitutes a release of environmental liability for the owner, its successors an assigns, under the Volunteer Cleanup Program.
- A SMP, dated July 6, 2011, was submitted to the NYSDEC and approved on November 29, 2011. A revised SMP, dated October 16, 2014, is in place for ongoing remedial activities.
- A PRR dated April 2013 (revised October 2013) was submitted to the NYSDEC to document site environmental conditions and on-going monitoring.

There have been no changes to the selected remedy and there have been no substantive changes in site conditions since the remedy selection and implementation of remedial measures.

3.0 **EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS**

This section provides an evaluation of the extent to which the implemented remedy meets the remedial objective to minimize or eliminate exposure pathways or significant risks to the public or the environment under the conditions of the contemplated use of the site (i.e. Restricted Commercial; shopping center). The implemented remedy includes source removal, in-situ remediation (HRC injection), phytoremediation, installation of SSDSs, and groundwater monitoring.

3.1 **Performance**

The results of analysis of soil samples collected during the source removal action indicate that soil impacted with VOCs and petroleum was excavated and disposed, thereby removing a potential continuing source of groundwater contamination. Injection of HRCs provided a means of continued, long-term degradation of residual VOCs in groundwater. The majority of the volatile organic compounds analyzed in groundwater samples meet the applicable groundwater Standards, Critera and Guidance (SCG), as described in Section 5.0. The area of groundwater that exceeds the SCGs is well defined by 23 years of groundwater quality data. The installation and operation of the SSDS has prevented human exposure to the sub-slab VOC vapors and is expected to have reduced the concentrations over time.

3.2 **Effectiveness**

The selected remedy (source removal, in-situ remediation (HRC injection), phytoremediation, installation of SSDSs, and groundwater monitoring) is an effective short-term remedial measure. The remedy immediately removed contaminants from the site environment and eliminated the potential for human exposure. Groundwater sampling and analysis monitors the effectiveness of the remedy and impacts from residual contaminants. There are no known risks to workers, the community, or the environment from the selected remedy.

The soil removal action, injection of HRCs, installation of the SSDS, phytoremediation, and groundwater monitoring are effective long-term remedial measures. The soil removal action permanently removed contaminants from the environment. HRC is a long term remedy designed to remain active and continue to degrade chlorinated compounds throughout a period of several years.

The long-term effect of the HRC is to eliminate or reduce the concentration of VOCs in the groundwater. Groundwater monitoring is an accepted method of monitoring the long-term effectiveness of remediation. Phytoremediation is a long term, relatively permanent remedy. The processes of phytotransformation, phytostimulation, and the uptake of groundwater will continue to occur as long as the hybrid poplar trees exist.

The SSDSs also are a permanent remedy for as long as it continues to operate. The SSD system is subject to a SMP that specifies continued operation of the system and the criteria under which operation may be discontinued. The continued operation of the SSDS eliminates the only identified potential exposure pathway. There are no significant threats, exposure pathways, or risks to the public or environment from remaining VOCs in the groundwater on this basis.

3.3 Protectiveness

The implemented remedy achieves the remedial action objective to protect human health and the environment. The impacted soil and liquid removed during the source removal action were transported offsite for disposal at a secure hazardous waste disposal facility. This source removal action effectively removed the source of contamination from the environment and eliminated human exposure by removing the impacted material from the site.

The SSDSs create a negative pressure beneath the slab of the eastern portion of the Plaza and beneath the Stop & Shop building. The SSDS removes the vapors from beneath the slab and prevents potential intrusion of the vapors into the buildings. The vapors are vented to the atmosphere in an acceptable manner that prevents human exposure to elevated concentrations of VOCs.

Groundwater sampling and analysis is performed to monitor the concentration of residual compounds in groundwater at the site. The results of the sampling and analysis indicate that the area of contamination is localized to the site, and that the residual compounds in the groundwater are not a threat to off site receptors. The results further indicate that the concentrations of VOCs in groundwater have been substantially reduced compared to historical levels. These conditions indicate it is unlikely that VOCs have migrated, or will migrate offsite. Human exposure is not an issue because there is no pathway for human contact with, or use of, the impacted groundwater under the conditions of the contemplated restricted commercial use of the site.

4.0 IC/EC COMPLIANCE REPORT

4.1 Institutional Control

The institutional control for the site consists of a Declaration of Covenants and Restrictions that includes groundwater use restrictions, land use restrictions, a SMP, and certification reporting. The deed restriction prohibits the use of the property for any means other than the contemplated restricted commercial use of the site. The deed restriction also restricts groundwater use and requires that any impacted soil encountered during future intrusive activities be managed and disposed according to State regulations. Finally, the deed restriction requires compliance with the SMP, including the periodic reporting covered by this report. The deed restriction for the property that outlines these use restrictions was filed in Ulster County (Document No. 2012-00005593).

4.2 Engineering Control

The engineering control at the site consists of a SSDS under the eastern portion of the Plaza which is comprised of eight (8) subsystems, and a SSDS beneath the Stop & Shop building, as described in Section 1.3. The SSDS beneath the eastern portion of the Plaza was inspected on December 23, 2014 by the company that installed the system. The systems were found to be operating as designed, with the exception of sub-system No. 7. The fan for sub-system No. 7 was not operating and was replaced on January 5, 2015 and the system was restarted.

A PRR for the Stop & Shop SSDS, dated February 9, 2015, was completed by Langan and is presented in Appendix C. The results of the inspection by Langan for the Stop & Shop SSDS are discussed in Section 1.3 of this report.

4.3 Continuing Obligations

A list of continuing obligations of the owner is part of the Declaration of Covenants and Restrictions. The list of continuing obligations includes the following:

- Restrictions on new construction.
- Requirement not to interfere with engineering controls required for the remedy,
- Restriction of property use to commercial or industrial purposes,
- Restrictions on groundwater use,
- Requirement to provide periodic annual certification the continuation of institutional and engineering controls,

- Maintenance of engineering controls, and
- Obligation to comply with the SMP.

These obligations continue until such time as permission is requested and received from the NYSDEC or relevant agency to discontinue such obligations.

5.0 MONITORING PLAN COMPLIANCE REPORT

The revised SMP includes provisions to collect groundwater samples on an annual basis. According to the revised Plan, water levels are to be measured and groundwater samples are to be collected and analyzed annually from five (5) wells. The NYSDEC approved abandoning eight (8) of the thirteen (13) previously monitored wells that comprised the monitoring well network in its letter dated September 2, 2014. Wells MW-1, MW-3, MW-4, MW-6, MW-7, MW-12, BR-1 and BR-4 were abandoned in accordance with NYSDEC well decommissioning criteria (CP-43) for inplace abandonment on December 4, 2014. Wells MW-2, MW-9, MW-10, MW-11 and BR-2 remain in place for continued monitoring, until such time as the NYSDEC approves discontinued monitoring of individual wells or all wells, based on analytical results. Samples are analyzed for VOCs by EPA Method 8260.

The method used for well abandonment consisted of removing the flush mount protective casing or stand pipe, cutting the riser pipe below grade, filling the well with cement-bentonite grout using the tremie method, topping off with a 2 to 3 foot plug at the surface, and restoring the asphalt surface. Wells with a standpipe were filled with grout before removing the standpipe. The grout consisted of a standard mix of one 94-pound bag Type I Portland cement; 3.9 pounds powdered bentonite; and 7.8 gallons potable water.

The groundwater levels measured during the December 4, 2015 sampling event are presented in Table 1. The groundwater occurs at shallow depths beneath the site and groundwater flow is toward the north-northwest. Figure 3 shows groundwater contours in the overburden water-bearing zone prepared using the groundwater levels measured on December 4, 2014. Historical groundwater levels measurements indicate that groundwater flow is similar to that shown on Figures 3. The locations of the monitoring wells comprising the current monitoring network are shown on Figure 4.

The historical groundwater analytical results are tabulated for abandoned wells MW-1, MW-3, MW-4, MW-6, MW-7, MW-12, BR-1, and BR-4 and are presented in Appendix D. Groundwater samples were collected from wells MW-2, MW-9, MW-10, MW-11 and BR-2 on December 4, 2014, consistent with the procedures in the SMP. A summary of the laboratory analytical results for the

samples collected on December 4, 2014 from wells MW-2, MW-9, MW-10, MW-11 and BR-2 is provided in Tables 2 through 6, respectively. The laboratory analytical report for the samples collected on December 4, 2014 is presented in Appendix E. Graphs prepared for wells MW-2, MW-9, and MW-10, showing the concentration of PCE and total VOCs in each well, are presented as Figures 5 through 7, respectively. Review of the graphs indicates that the concentration of PCE in the groundwater is relatively stable or decreasing since circa 2003.

The highest concentrations of total VOCs have historically been detected in well MW-2. The concentration of total VOCs in well MW-2 decreased from 1,875 ug/L to 1,601 ug/L between the April 2013 and December 2014 sampling events and remains substantially below historical concentrations detected in this well. The concentration of the PCE breakdown product, cis-1,2-dichloroethene, remained constant at 1,200 ppb and accounts for most of the total VOCs in the December 2014 sample from MW-2. The continued elevated concentration of cis-1,2-dichloroethene suggests that degradation associated with the HRC remediation may be continuing. The highest concentration of total VOCs in well MW-2 was 31,750 ppb in March 1996. The current concentration of total VOCs in well MW-2 (1,601 ppb) is approximately 95 percent lower than the historical high value. The concentration of total VOCs in the other wells that were sampled was lower, ranging from 26.7 ppb in well BR-2 to 226.0 ppb in well MW-10.

The concentration of PCE decreased slightly (MW-2, MW-9 MW-10, and BR-2) and remained stable in well MW-11, based on the December 2014 sampling results. The data from this sampling event suggest that the overall groundwater quality at the site continues to improve.

The relatively stable or decreasing concentrations of VOCs in the groundwater (Tables 2 through 6 and Appendix D) have defined the area of impact and documented improvements in the groundwater quality. The area of contamination is localized to the site, and the residual compounds in the groundwater are not a threat to offsite receptors.

6.0 OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS

The results of the groundwater monitoring suggest that overall groundwater quality is improving and that concentrations of VOCs are decreasing with time. The data indicate that concentrations of VOCs decreased substantially in the source area as indicated by the monitoring at well MW-2. Concentrations of VOCs have remained relatively low and generally have decreased from the historically higher concentrations since approximately 2004. These groundwater analytical results further suggest that the remedial objective to minimize or eliminate exposure pathways or significant risks to the public or the environment under the conditions of the contemplated use of the site (i.e.

Restricted Commercial; shopping center) is being met. The results of the SSDS inspection indicate that the systems continue to operate, with maintenance being performed, as needed.

Groundwater quality generally has improved at the site as a result of the implemented remedy, as described in previous sections of this PRR. The SSDSs were installed in 2005 and 2006 and have operated more or less continuously since that time.

7.0 IC AND EC CERTIFICATION FORM

The NYSDEC Institutional and Engineering Control Certification Form for Site No. V00087, New Paltz Plaza/Revonak Dry Cleaners, is presented in Appendix F.

 $S:\Sterling\Projects\2014\ Projects\New\ Paltz\ Plaza\ -\ 2014-45\Reports\Periodic\ Review\ Report\March\ 2015\Periodic\ Review\ Report\ Periodic\ Review\ Report\New\ Paltz\ Plaza\ -\ 2014-45\Reports\Periodic\ Review\ Report\New\ Report\ Periodic\ Review\ Report\New\ Report\ Periodic\ Review\ Report\ Periodic\ Review\ Report\New\ Report\ Periodic\ Review\ Report\New\ Report\ Periodic\ Review\ Report\ Periodic\ Review\ Report\New\ Report\ Periodic\ Review\ Report\New\ Report\ Periodic\ Review\ Report\ Revi$

TABLE 1 Ground Water Elevations Ground Water Monitoring Program New Paltz Plaza

		<u>December 4, 2014</u>						
Well ID	Measuring Point	Depth to	Water Level					
	Elevation	Water (ft.)	Elevation					
MW-1	97.90	Abandoned 3.06	NA					
MW-2	97.31		94.25					
MW-3	97.62	Abandoned	NA					
MW-4	95.70	Abandoned	NA					
MW-6	96.90	Abandoned	NA					
MW-7	94.95	Abandoned	NA					
MW-8	92.40	Destroyed	NA					
MW-9	92.04	2.73	89.31					
MW-10	91.50	7.60	83.90					
MW-11	92.52	9.35	83.17					
MW-12	91.54	Abandoned	NA					
BR-1	96.78	Abandoned	NA					
BR-2	94.95	2.63	92.32					
BR-3	91.77	Abandoned	NM					
BR-4	91.37	Abandoned	NA					

- 1. Measuring point elevations are from 1/20/98 survey data, except for MW-11 and MW-12. MW-11 and MW-12 were surveyed on 8/30/2007. Elevations are relative to an arbitrary site datum of 100 feet.
- 2. NM = Not Measured.
- 3. Wells MW 1, MW-3, MW 4, MW 6, MW 7, MW 12, BR 1 and BR-4 were abandoned on December 4, 2014. Wells MW-2, MW-9, MW-10, MW-11 and BR-2 remain in place for continued monitoring.

TABLE 2

Well MW-2 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds

Revonak Dry Cleaners Site No. 356021

Halogenated Volatile Organic: Vinyl Chloride cis-1,2-Dichloroethene 1,1,1-Trichloroethane Trichloroethene	<1000 <500 <500 1,400	9/94 U 600 <500 <500	2/5/1996 <500 <500 550 <500	3/7/1996 <500 <500 750 <500	3/19/1996 <200 420 590 <200	3/19/1996 <2,000 <1,000 <1,000 <1,000	3/22/1996 <500 260 270 160	4/26/1996 <1,000 280 300 <200	:	2/7/1997 21 160 160 120	1/20/1998 20 200 130 140	5/14/1998 <10 100 20 53	8/27/1998 10 150 47 150	12/4/1998 13 150 30 150		<10 120 18 87	2/26/1999 <10 120 18 87	2/26/1999 11 130 20 86
Tetrachloroethene 1, 1-Dichloroethane 1, 1-Dichloroethene trans-1, 2-Dichloroethene 1,1,1,2-Tetrachloroethane Chloroethane TOTAL VOCs	3,100 <500 <500 <500 NA <u>NA</u> 4500	7,600 U U U U U <u>NA</u> 8200	21,000 <500 <500 <500 NA <u>NA</u> 21550	31,000 U U U U U <u>NA</u> 31750	21,000 U U U U NA 22010	21,000 U U U U <u>NA</u> 21000	13,000 <100 <100 <100 NA <u>NA</u> 13690	15,000 <200 <200 <200 NA <u>NA</u> 15580		9,100 6 12 <1.0 4.1 <u>NA</u> 9583.1	5,600 4.0 7.0 2.0 <1.0 <u>NA</u> 6103	2,100 <10 <10 <10 <10 <10 <u>NA</u> 2273	4,500 5.1J <10 <10 <10 <u>NA</u> 4862.1	3,600 <10 <10 <10 <10 NA 3943		2,700 <10 <10 <10 <10 <10 NA 2925	2,700 <10 <10 <10 <10 <10 <210 <21.0 2925	2,700 2.3 1.5 1.0 <1.0 <1.0 2951.8
Halogenated Volatile Organic	8/2/2001 s	(Dup) 8/2/2001	11/6/2001	(Dup) 11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003	2003	5/19/2004	11/16/2004	2/21/2005	8/30/2005	8/31/2006	. 2006	12/14/2006	3/28/2007	6/21/2007
Vinyl Chloride cis-1,2-Dichloroethene 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene 1, 1-Dichloroethane 1, 1-Dichloroethene trans-1, 2-Dichloroethene 1,1,1,2-Tetrachloroethane Chloroethane TOTAL VOCs	31 440 26 320 4,700 <10 <10 <10 <1.0 5517	25 370 29 340 5,500 3.6 3.5 <10 <1.0 6274.6	<10 260 7.8J 130 2,300 <10 <10 <10 <10 <1.0 2697.8	<10 240 7.1J 120 2,300 <10 <10 <10 <10 <10 2067.1	<10 140 5.2J 67 1,300 <10 <10 <10 <10 <10 5.10	5.5 110 20 34 670 1.2J <2.0 <2.0 <2.0 <1.0 840.7	<10 500 13 180 2,500 <10 <10 <10 <10 <1.0 3193	5.6 290 29 170 3,900 <10 <10 <10 <1.0 4394.6	HRC Injection; November	60 5200 20 170 58 14 7.0 34 <1.0 <1.0 5563	19 53 <1.0 8.9 33 5.6 <1.0 8.6 <1.0 24	37 87 2.0 13 84 7.9 <1.0 8.2 <1.0 20 259.1	110 370 1.0 19 100 9.4 0.51J 14 <1.0 14 637.9	620 1400 <1.0 24 110 9 <1.0 24 <1.0 2.0J 2189	HRC Injection; September	40 130 1.0J 23 220 6 <5.0 9 <5.0 7	37 110 <5.0 12 270 <5.0 <5.0 6 <5.0 7	67 210 <5.0 20 270 5 <5.0 7 <5.0 18 597
Halogenated Volatile Organic	8/30/2007 s	3/7/2008	9/25/2008	6/10/2009	6/9/2011	4/3/2013	12/4/2014											
Vinyl Chloride cis-1,2-Dichloroethene 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene 1, 1-Dichloroethane 1, 1-Dichloroethene trans-1,2-Dichloroethene	56 250 <5.0 31 330 10 <5.0	20 60 <5.0 9 84 <5.0 <5.0 <5.0	300 900 <25.0 <25.0 480 <25.0 <25.0 <25.0	11 35 <5.0 <5.0 5.3 <5.0 <5.0 <5.0	120 300 <5.0 16 220 2.9J <5.0	160 1200 <50.0 55 460 <50.0 <10.0 <50.0	240 1200 <18 41 120 <18 <3.6 <18											

Notes:

Chloroethane

TOTAL VOCs

1,1,1,2-Tetrachloroethane

1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).

<5.0

<10.0

51.3

<5.0

<5.0

664.8

<50.0

<50.0

1875

<3.6

<18

1601

<25.0

<25.0

1680

- 2. U = Indicates the compound was analyzed, but not detected.
- 3. J = Indicates an estimated value less than the lowest standard.

< 5.0

16

703

<5.0

<u>13</u>

186

- 4. NA = Sample not analyzed for indicated compound.
- 5. All results are in micrograms per liter (ug/l, ppb).
- 6. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).

TABLE 3

Well MW-9 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

Halogenated Volatile Organics	1/20/1998	5/13/1998	8/26/1998	(Dup) 8/26/1998	12/3/1998	2/25/1999	8/2/2001	11/6/2001	2/19/2002	5/15/2002	8/15/2002
Vinyl Chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,1,1-Tichloroethane Trichloroethene Tetrachloroethene Methylene Chloride Chloroethane 1,1-Dichloroethene TOTAL VOCs	41 3.0 700 1.0 150 1,000 <1.0 <1.0 0.8J 1895.8	9.1 2.9 420 <1.0 130 1,100 <1.0 <1.0 1662	3.8 3.2 340 0.6J 140 980 <1.0 <1.0 <1.0 1467.6	4.2 3.2 360 <1.0 150 1100 1.0J <1.0 <1.0 1618.4	51 2.3 410 1.0J 110 870 <1.0 2.1 <1.0 1446.4	18 2.4 480 0.7J 110 870 <1.0 <1.0 ≤1.0 1481.1	<1.0 2.3 220 <1.0 120 830 <1.0 <1.0 <1.0 <1.10 1172.3	13 2.0 160 0.71J 99 890 <1.0 <1.0 1164.7	6.1 1.1 89 <1.0 59 460 <1.0 <1.0 <u><1.0</u> 615.2	4.8 1.1 130 <1.0 58 400 <1.0 <1.0 <1.0 593.9	5.1 1.9 140 <1.0 62 350 <1.0 <1.0 ≤1.0 559.0
Halogenated Volatile Organics	8/21/2003	8/18/2004	2/21/2005	8/30/2005	8/31/2006	12/14/2006	3/28/2007	6/21/2007	8/30/2007	3/7/2008	9/25/2008
Vinyl Chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene Methylene Chloride Chloroethane 1,1-Dichloroethene TOTAL VOCs	6.4 2.2 260 <1.0 98 630 <1.0 <1.0 <1.0 91.0	1.7 1.2 99 <1.0 62 430 <1.0 <1.0 <1.0 594	3.3 0.65J 70 <1.0 36 220 1.2 <1.0 <1.0 331	1.0 0.76 74 <1.0 51 210 <1.0 <1.0 <1.0 337	2.0J 2.0J 200 <1.0 48 280 <5.0 <1.0 <u><1.0</u> 532	HRC Injection; 16 2.0J 180 2.0J 180 2.0J 180 2.0J 2.0J 2.0J 2.0J 2.0J 2.0J 2.0J 2.0	5.0 <5.0 140 <5.0 30 230 <5.0 <5.0 < <u>45.0</u> 405	8 <5.0 110 <5.0 28 210 <5.0 <5.0 <5.0 <5.0 356	12 <5.0 120 <5.0 42 300 <5.0 <5.0 <5.0 474	<5.0 <5.0 110 <5.0 24 180 <5.0 <5.0 <5.0 314	<10 <10 69 <10 22 150 <10 <10 <10 <410 <410 <410 <410 <410 <
Halogenated Volatile Organics	6/10/2009	6/9/2011	4/3/2013	12/4/2014							
Vinyl Chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene Methylene Chloride Chloroethane 1,1-Dichloroethene TOTAL VOCs	<20 <10 76 <10 24 190 <10 <20 <10 290	2.0J <5.0 170 <5.0 17 140 2.8J,B <5.0 < <u>5.0</u> 331.8	1.2 <2.5 17 <2.5 11 95 <2.5 <2.5 <0.5 124.2	3.2 <0.7 18 <0.7 8.7 31 <0.7 <0.7 <0.7							

- Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
 J = Indicates an estimated value less than the lowest standard.
- 3. All results are in micrograms per liter (ug/l, ppb).
- The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).
 B = Indicates the compound was detected in the field blank sample or associated analysis batch blank.

TABLE 4

Well MW-10 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

Halogenated Volatile Organics	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003	8/18/2004	2/21/2005	8/30/2005	_	12/1 900 700 700	4/2006	3/28/2007	6/21/2007	8/30/2007	8/30/2007 (duplicate)	3/7/2008
Vinyl Chloride	2	1.5	0.9J	<1.0	0.8J	1.2	1.9	1.7			31	24	29	53	56	<5.0
trans-1,2-Dichloroethene	2.4	1.8	1.6	3.5	2.3	2.8	2.7	2.3	<1.0	<u>ĕ</u>	6	< 5.0	<5.0	< 5.0	<25	<5.0
cis-1,2-Dichloroethene	410	250	370	500	370	490	360	420	140	teu	690	220	330	550	580	35
1,1,1-Trichloroethane	0.93 J	0.91J	0.7J	<1.0	<1.0	0.6J	<1.0	0.59J	<1.0	September	5.0	< 5.0	<5.0	<5.0	<25	<5.0
Trichloroethene	63	57	53	64	70	61	55	66			23	13	23	<5.0	<25	<5.0
Tetrachloroethene	620	420	450	470	460	600	350	380	97	įį	70	66	67	80	75	11
1,1-Dichloroethene	0.63 J	<1.0	<1.0	<1.0	<1.0	0.6J	0.53J	<1.0	<1.0	Injection;	<5.0	< 5.0	<5.0	<5.0	<25	<5.0
Chloroethane	<1.0	<1.0	0.5J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	፭ .	5.0	7	29	<5.0	<25	<5.0
Aromatic Volatile Organics										HRC						
MTBE	<u>NA</u>	<u>NA</u>	<u>1.1</u>	<u><1.0</u>	<1.0	<1.0	<1.0	<u>NA</u>	<1.0	I	<u> </u>	<u><5.0</u>	<u><5.0</u>	<u><5.0</u>	<u><25</u>	<u><5.0</u>
TOTAL VOCs	1099.0	731.2	877.8	1037.5	903.1	1156.2	770.1	870.6	250		320	330	478	683	711	46
Halogenated Volatile Organics	9/25/2008	(Dup) 9/25/2008	6/10/2009	6/9/2011	4/3/2013	12/4/2014										
Vinyl Chloride	<50	<25	96	26	6.6	5										
trans-1,2-Dichloroethene	<50	<25	<25	3.1J	<12	<1.8										
cis-1,2-Dichloroethene	890	800	930	240	320	160										
1,1,1-Trichloroethane	<50	<25	<25	<5.0	<12	<1.8										
Trichloroethene	<50	26	30	15	15	14										
Tetrachloroethene	84	90	130	78	66	47										
1,1-Dichloroethene	<50	<25	<25	<5.0	<2.5	< 0.36										
Chloroethane	<50	<25	<50	<5.0	<12	<1.8										
Aromatic Volatile Organics																
MTBE	<u><50</u>	<25	<25	<5.0	<12	<1.8										
TOTAL VOCs	974.0	916.0	1186	362.1	407.6	226.0										

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. J = Indicates an estimated value less than the lowest standard.
- 3. All results are in micrograms per liter (ug/l, ppb).
- 4. NA = Compound not analyzed.
- 5. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).

TABLE 5

Well MW-11 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

	- /- / / T			- / /	- /- / /	- / /		- / /		- /- /			DUP
Halogenated Volatile Organics	8/31/2006	2006	12/14/2006	3/28/2007	6/21/2007	8/30/2007	3/7/2008	9/25/2008	6/10/2009	6/9/2011	4/3/2013	12/4/2014	12/4/2014
Vinyl Chloride	8.0	ember	3.0J	8	<5.0	5	16	17	<10	6.9	1.2	2.7	2.6
trans-1,2-Dichloroethene	NA	ept	1.0J	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	1.1J	0.78 J	1.3 J	1.2 J
cis-1,2-Dichloroethene	140	n; S	35	54	16	17	84	140	160	240	130 E	110	110
Trichloroethene	6	ctio	3.0J	<5.0	<5.0	<5.0	5	6	9.1	4.7J	2.8	2.8	2.7
Tetrachloroethene	37	Inje	7	14	6	<5.0	18	14	17	3.5J	10	10	10
Methylene Chloride	<u><14</u>	RC	<u>2JB</u>	<5.0	<5.0	<5.0	<5.0	<5.0	<u><5.0</u>	2.5J,B	<2. <u>5</u>	< 0.70	< 0.7
TOTAL VOCs	191	Ī	51	76	22	22	123	177	186.1	258.7	144.8	126.8	126.5

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 3. All results are in micrograms per liter (ug/l, ppb).
- 4. NA = Compound not analyzed.
- 5. B = Indicates the compound was detected in the field blank sample or associated analysis batch blank.
- 6. J = Indicates an estimated value less than the lowest standard.

TABLE 6

Well BR-2
Summary of Ground Water Sampling Analytical Results
Volatile Organic Compounds
Revonak Dry Cleaners Site No. 356021

	1/20/1998	5/13/1998	8/26/1998	12/3/1998	2/25/1999	8/2/2001	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003
Halogenated Volatile Organics											
Vinyl Chloride	13	6.1	10	12	5.2	3.8	6.6	5	3.4	4.1	2.3
cis-1,2-Dichloroethene	65	64	100	100	63	55	71	57	48	63	43
Trichloroethene	19	21	27	26	20	20	24	18	17	20	21
Tetrachloroethene	130E	200	210	230	180	200	230	170	170	200	150
Chloroethane	<1.0	<1.0	0.9J	1.0	<1.0	<1.0	1.2	0.97J	0.5J	<1.0	<1.0
trans-1,2-Dichloroethylene	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<1.0	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<u>0.37J</u>	<1.0
TOTAL VOCs	97	291.1	347.9	369	268.2	278.8	332.8	251.0	238.9	287.5	216.3
	8/18/2004	8/30/2005	8/31/2006	8/30/2007	9/25/2008	6/10/2009	6/9/2011	4/3/2013	12/4/2014		
Halogenated Volatile Organics	8/18/2004	8/30/2005	8/31/2006	8/30/2007	9/25/2008	6/10/2009	6/9/2011	4/3/2013	12/4/2014		
Halogenated Volatile Organics Vinyl Chloride	8/18/2004 4.1	8/30/2005 4.1	8/31/2006 4.0J	8/30/2007 <5.0	9/25/2008	6/10/2009 <10	6/9/2011 1.2J	4/3/2013 2.8	12/4/2014 2.4		
Vinyl Chloride	4.1	4.1	4.0J	<5.0	<5.0	<10	1.2J	2.8	2.4		
Vinyl Chloride cis-1,2-Dichloroethene	4.1 48	4.1 66	4.0J 56	<5.0 62	<5.0 65	<10 <5.0	1.2J 13	2.8 13	2.4 7.4		
Vinyl Chloride cis-1,2-Dichloroethene Trichloroethene	4.1 48 20	4.1 66 22	4.0J 56 18	<5.0 62 14	<5.0 65 11	<10 <5.0 <5.0	1.2J 13 3.5J	2.8 13 5.7	2.4 7.4 2.9		
Vinyl Chloride cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	4.1 48 20 220	4.1 66 22 170	4.0J 56 18 160	<5.0 62 14 140	<5.0 65 11 110	<10 <5.0 <5.0 <5.0	1.2J 13 3.5J 28	2.8 13 5.7 48	2.4 7.4 2.9 14		

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. J = Indicates an estimated value less than the lowest standard.
- 3. E = Indicates an estimated value greater than the highest standard.
- 4. All results are in micrograms per liter (ug/l, ppb).
- 5. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).
- 6. Chloroform, Dibromochloromethane and Bromodichloromethane were detected in the sample collected on December 4, 2014 at 23 ppb, 0.58 ppb and 4.6 ppb, respectively. These compounds were not previously detected.

SERLING

Sterling Environmental Engineering, P.C.

24 Wade Road • Latham, New York 12110

SITE LOCATION MAP NEW PALTZ PLAZA NYS ROUTE 299

TOWN OF NEW PALTZ

ULSTER CO., N.Y.

PROJ. No.: 2014-45 DATE: 1/7/15 SCALE: 1" = 2000' DWG. NO. 2014-45001 FIGURE

LEGEND:

APPROXIMATE PROPERTY BOUNDARY

SUB-SLAB DEPRESSURIZATION SYSTEM

HRC TREATMENT AREA

PHYTOREMEDIATION AREA

FORMER REVONAK DRY CLEANERS

GENERALIZED GROUNDWATER FLOW DIRECTION

Sterling Environmental Engineering, P.C.

24 Wade Road • Latham, New York 12110

SITE REMEDY MAP NEW PALTZ PLAZA NYS ROUTE 299

TOWN OF NEW PALTZ

ULSTER CO., N.Y.

 $1" = 200' \parallel DWG. NO. 2014-45006 \parallel FIGURE$ 2014-45 | DATE: 5/16/2016 SCALE: PROJ. No.:

LEGEND:

♠ MW-2 MONITORING WELL

GW. EL. = 94.25' GROUNDWATER ELEVATION DECEMBER 4, 2014

——92' GROUNDWATER CONTOURS

→ INFERRED GROUNDWATER FLOW DIRECTION

APPROXIMATE PROPERTY BOUNDARY

MAP REFERENCE: NEW YORK STATEWIDE DIGITAL ORTHOIMAGERY PROGRAM, PHOTOGRAPHY CIRCA 2013

SERLING

Sterling Environmental Engineering, P.C.

24 Wade Road • Latham, New York 12110

OVERBURDEN GROUNDWATER CONTOUR MAP DECEMBER 4, 2014

1 inch = 100 ft.

NEW PALTZ PLAZA NYS ROUTE 299

TOWN OF NEW PALTZ

ULSTER CO., N.Y.

200

PROJ. No.: 2014-45 DATE: 2/26/15 SCALE: 1" = 100' DWG. NO. 2014-45003 FIGURE

♠ MW-2 MONITORING WELL

--- APPROXIMATE PROPERTY BOUNDARY

1 inch = 100 ft.

MAP REFERENCE: NEW YORK STATEWIDE DIGITAL ORTHOIMAGERY PROGRAM, PHOTOGRAPHY CIRCA 2013

SERLING

Sterling Environmental Engineering, P.C.

24 Wade Road • Latham, New York 12110

MONITORING WELL LOCATION MAP NEW PALTZ PLAZA NYS ROUTE 299

TOWN OF NEW PALTZ

ULSTER CO., N.Y.

PROJ. No.: 2014-45 DATE: 2/26/15 SCALE: 1" = 100' DWG. NO. 2014-45004 FIGURE

APPENDIX A

Release Letter

New York State Department of Environmental Conservation Office of General Counsel, 14th Floor

625 Broadway, Albany, New York 12233-1500

Fax: (518) 402-9018 or (518) 402-9019

Website: www.dec.ny.gov

May 30, 2012

New Paltz Plaza Properties L.P. New Platz Plaza, Inc. % The Kempner Corporation 257 Mamaroneck Avenue White Plains, NY 10605

RE: New Paltz Plaza Properties, L.P. and New Paltz Plaza, Inc.

Index No. W3-0782-97-10

Site No. V00087

To whom it may concern:

Unless otherwise specified in this letter, all terms used herein shall have the meaning assigned to them under the terms of the Voluntary Agreement entered into between the New York State Department of Environmental Conservation (the "Department") and New Paltz Plaza Properties, L.P. and its general partner, New Paltz Plaza, Inc., (collectively "Volunteer"), Index No. W3-0782-97-10 (the "Agreement").

The Department is pleased to report that the Department is satisfied that the Department-approved Work Plan to implement a response program at the parcel of land located at on State Route 299 in the Town of New Paltz, County of Ulster, State of New York, Tax Map Parcel No. 86.12-6-5.1, a map of which is attached hereto as Appendix "A" (the "Site"), Site # V00087, has been successfully implemented. So long as no information has been withheld from the Department or mistake made as to the hazard posed by any Site-related compound or analyte of concern, the Department believes that no further investigation or response will be required at the Site respecting the Existing Contamination to render the Site safe to be used for the Contemplated Use.

Assignable Release and Covenant Not To Sue:

The Department and the Trustee of New York State's natural resources ("Trustee"), therefore, hereby release, covenant not to sue, and shall forbear from bringing any action, proceeding, or suit against Volunteer and Volunteer's lessees and sublessees and Volunteer's successors and assigns and their respective secured creditors, for the further investigation and remediation of the Site, or for natural resources damages, based upon the release or threatened release of Existing Contamination, provided that (a) timely payments of the amounts specified in Paragraph VI of the Agreement continue to be or have been made to the Department, (b)

appropriate notices and deed restrictions have been recorded in accordance with Paragraphs IX and X of the Agreement, and Volunteer and/or its lessees, sublessees, successors, or assigns promptly commence and diligently pursue to completion the Department-approved Site Management Plan, if any. Nonetheless, the Department and the Trustee hereby reserve all of their respective rights concerning, and such release, covenant not to sue, and forbearance shall not extend to, any further investigation or remedial action the Department deems necessary:

- due to off-Site migration of contaminants other than petroleum resulting in impacts to
 environmental resources, to human health, or to other biota that are not inconsequential
 and to off-Site migration of petroleum, irrespective of whether the information available
 to Volunteer and the Department at the time of the development of the Work Plan
 disclosed the existence of potential existence of such off-Site migration;
- due to environmental conditions related to the Site that were unknown to the Department
 at the time of its approval of the Work Plan which indicate that Site conditions are not
 sufficiently protective of human health and the environment for the Contemplated Use;
- due to information received, in whole or in part, after the Department's approval of the
 final engineering report and certification, which indicates that the activities carried out in
 accordance with the Work Plan are not sufficiently protective of human health and the
 environment for the Contemplated Use;
- due to Volunteer's failure to implement the Agreement to the Department's satisfaction;
 or
- due to fraud or mistake committed by 'Volunteer' in demonstrating that the Site-specific cleanup levels identified in, or to be identified in accordance with, the Work Plan were reached.

Additionally, the Department and the Trustee hereby reserve all of their respective rights concerning, and any such release, covenant not to sue, and forbearance shall not extend to:

- Volunteer if it causes a, or suffers the, release or threat of release, at the Site of any hazardous substance (as that term is deemed at 42 USC 9601[14]) or petroleum (as that term is defined in Navigation Law §172[15]), other than Existing Contamination; or if it causes a, or suffers the use of the Site to, change from the Contemplated Use to one requiring a lower level of residual contamination before that use can be implemented with sufficient protection of human health and the environment; nor to
- any of Volunteer's lessees, sublessees, successors, or assigns who causes a, or suffers the, release or threat of release, at the Site of any hazardous substance (as that term is defined at 42 USC 9601[14]) or petroleum (as that term is defined in Navigation Law §172[151), other than Existing Contamination, after the effective date of the Agreement; who causes a, or suffers the use of the Site to, change from the Contemplated Use to one requiring a lower level of residual contamination before that use can be implemented with sufficient protection of human health and the environment; or who is otherwise a patty responsible

under law for the remediation of the Existing Contamination independent of any obligation that party may have respecting same established resulting solely from the Agreements execution.

Notwithstanding the above, however, with respect to any claim or cause of action asserted by the Department, the one seeking the benefit of this release shall bear the burden of proving that the claim or cause of action, or any part thereof, is attributable solely to Existing Contamination.

Notwithstanding any other provision in this release, if, with respect to the Site there exists or may exist a claim of any kind or nature on the part of the New York State, Environmental Protection and Spill Compensation Fund against any patty, nothing in this release shall be construed, or deemed, to preclude the State of New York from recovering such claim.

In conclusion, the Department is pleased to be part of this effort to return the Site to productive use of benefit to the entire community.

> NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION AND TRUSTEE OF NEW YORK STATE'S NATURAL RESOURCES

Its: Burn' Chirf

APPENDIX B

Report of Vapor Mitigation System Inspection Alpine Environmental Services, Inc. January 9, 2015

REPORT OF VAPOR MITIGATION SYSTEM INSPECTION

New Paltz Plaza Route 299, New Paltz, New York

Prepared by:

438 New Karner Road Albany, New York 12205

Table of Contents Page 1			Page
1.0	INTR	ODUCTION	1
2.0	INSP	ECTION PROCEDURES	2
3.0	INSP	ECTION RESULTS	3
	3.1	Sub-system 1: Liquor Store	3
	3.2	Sub-system 2: Laundromat	3
	3.3	Sub-system 3: Dry Cleaner	4
	3.4	Sub-system 4: Peter Harris	5
	3.5	Sub-system 5: PDQ Print	6
	3.6	Sub-system 6: Jewelry Store	6
	3.7	Sub-system 7: Bagel Shop	7
	3.8	Sub-system 8: Dollar Store	8
4.0	SUMI	MARY OF INSPECTION & CONDITIONS	9

APPENDICES

None

1.0 INTRODUCTION

This report describes the inspection of the vapor mitigation system (VMS) performed on December 23, 2014 at the New Paltz Plaza, New Paltz, New York. A portion of the site was historically operated as a dry cleaning facility. The site has documented chlorinated volatile organic compound (CVOC) contamination in the soil, groundwater, and soil gas. Additionally, vapor intrusion, or an increased potential for vapor intrusion, of the CVOC soil gas was identified in the building.

The Vapor Mitigation System (VMS) extracts soil vapor and air from below the concrete floor slab in the buildings and discharges the soil vapor and air into the atmosphere above the roof of the building. Extracted soil vapor and air travel through sealed negatively pressurized piping and through a fan to a positively pressurized exhaust at or above the roof line of the building.

The VMS was installed in 2005 to reduce the potential for occupant exposure to CVOCs entering through vapor intrusion. This report describes the methodology of the inspection, the operating conditions observed during the inspection, and maintains a log of service performed on the VMS.

2.0 INSPECTION PROCEDURES

Annual inspection procedures for the VMS and remedies to observed deficiencies are outlined below:

2.1 System Fan

Observe the fan during operation. If abnormal noises (i.e. scraping, buzzing, cyclical pointed sounds, or no operational sound at all, etc.) are observed, replace fan (There are no field serviceable parts in the fan). Observe the exhaust stack for possible obstructions.

2.2 System Piping and Connections

Inspect the exposed system piping and connections for any breach or damage. Repair or replace any observed damage effecting system operation.

2.3 Slab/System Interface Seals

Inspect the seal at each accessible extraction point. If breech is observed, caulk with polyurethane caulk

2.4 Electrical

Observe electrical components for damage. Test system electrical disconnects / switches for functionality. Repair/replace damaged components and malfunctioning items.

2.5 Pressure Gauges

Test system differential pressure gauges for functionality. Remove input line or shut down sub-system to verify differential pressure gauges return to a zero reading. Replace any dysfunctional differential pressure gauges and restore sub-system operation.

2.6 Low Pressure Alarm

Test system low pressure alarm for functionality. Remove input line or shut down sub-system to verify alarm sounds and alarm light illuminates. Replace any dysfunctional alarm and restore sub-system operation.

2.7 System Pressure

Observe the operating pressure differential readings on the pressure gauge for each sub-system. Compare the operating pressure in the sub-system to the indicated operating pressure range. If operating pressure is outside the normal range, evaluate the fan for problems. If no problems are identified with the fan, perform sub-slab pressure testing at representative location(s) to verify the sub-slab pressure field extension (PFE) is sufficient under the "new" operating pressure. Adjust system ball valves as needed to redistribute PFE. If acceptable PFE is achieved, the "new" operating pressure becomes the "baseline" pressure. If acceptable PFE cannot be achieved, replace the system fan.

2.8 Inspection Documentation

Document the inspection and any repairs or modifications made. Maintain a logbook of the inspections for the life of the VMS.

3.0 INSPECTION RESULTS

3.1 Sub-system #1, Fox & Hound Liquor Store (former Pharmacy)

3.1.1 Equipment and Material Observations

Table 3.1A

Item	Observation
System Fan	No Deficiencies observed
System Piping and Connections	No Deficiencies observed
Slab/System Interface Seals	No Deficiencies observed
Electrical Components	No Deficiencies observed
Pressure Gauges	No Deficiencies observed
Low Pressure Alarm	No Deficiencies observed

3.1.2 Pressure Readings

Table 3.1B

Liquor Store				
Sub	Baseline	Pressure	Pressure	
System ID	Pressure	Reading	Reading	
Fan Model	*9/26/2011	12/23/2014	4/23/2013	
	Normal Range			
1	15.0 "WC	14.0"WC	14.0"WC	
HS5000	7.5 - 22.5"WC			

[&]quot;WC - Inches of Water Column

3.1.3 Conclusion

Sub-system is operating as designed.

3.2 Sub-system #2, Laundromat

3.2.1 Equipment and Material Observations

^{*} New Fan Installed 9/26/2011

Table 3.2A

Item	Observation
System Fan	No Deficiencies observed
System Piping and Connections	No Deficiencies observed
Slab/System Interface Seals	No Deficiencies observed
Electrical Components	No Deficiencies observed
Pressure Gauges	No Deficiencies observed
Low Pressure Alarm	No Access. In locked office.

3.2.2 Pressure Readings

Table 3.2B

Laundromat					
Sub	Baseline	Pressure	Pressure	Pressure	
System ID	Pressure	Reading	Reading	Reading	
Fan Model	2005	12/23/2014	4/23/2013	6/23/2011	
	Normal Range				
2	5.0 "WC	4.6 "WC *	5.0 "WC	N	
HS5000	2.5 -7.5"WC				

[&]quot;WC - Inches of Water Column

3.2.3 Conclusion

Sub-system is operating as designed.

3.3 Sub-system #3, Dry Cleaner

3.3.1 Equipment and Material Observations

Table 3.3A

Item	Observation
System Fan	No Deficiencies observed
System Piping and Connections	No Deficiencies observed
Slab/System Interface Seals	No Deficiencies observed
Electrical Components	No Deficiencies observed
Pressure Gauges	No Deficiencies observed
Low Pressure Alarm	No Deficiencies observed

N - No Access to Gauge, Office door locked.

3.3.2 Pressure Readings

Table 3.3B

Dry Cleaner					
Sub	Baseline	Pressure	Pressure	Pressure	
System ID	Pressure	Reading	Reading	Reading	
Fan Model	1/10/2011	12/23/2014	4/23/2013	6/23/2011	
	Normal Range				
3	25.0 "WC	24.0 "WC	24.0 "WC	25.0"WC	
HS5000	12.5 - 37.5"WC				

"WC - Inches of Water Column

3.3.3 Conclusion

Sub-system is operating as designed.

3.4 Sub-system #4, Peter Harris

3.4.1 Equipment and Material Observations

Table 3.4A

Item	Observation
System Fan	No Deficiencies observed
System Piping and Connections	No Deficiencies observed
Slab/System Interface Seals	No Deficiencies observed
Electrical Components	No Deficiencies observed
Pressure Gauges	No Deficiencies observed
Low Pressure Alarm	No Deficiencies observed

3.4.2 Pressure Readings

Table 3.4B

Peter Harris				
Sub	Baseline	Pressure	Pressure	
System ID	Pressure	Reading	Reading	
Fan Model	9/17/2013*	12/23/2014	9/17/2013	
	Normal Range			
4	26.0 "WC	35"WC	26"WC	
HS5000	13.0 - 39.0"WC			

"WC - Inches of Water Column

^{*} New Fan Installed 1/10/2011

^{*} New Fan Installed 9/17/2013

3.4.3 Conclusion

Sub-system is operating as designed.

3.5 Sub-system #5, PDQ Print

3.5.1 Equipment and Material Observations

Table 3.5A

Item	Observation
System Fan	No Deficiencies observed
System Piping and Connections	No Deficiencies observed
Slab/System Interface Seals	No Deficiencies observed
Electrical Components	No Deficiencies observed
Pressure Gauges	No Deficiencies observed
Low Pressure Alarm	No Deficiencies observed

3.5.2 Pressure Readings

Table 3.5B

PDQ Print				
Sub	Baseline	Pressure	Pressure	
System ID	Pressure	Reading	Reading	
Fan Model	*2/12/2012	12/23/2014	4/23/2013	
	Normal Range			
5	5.0 "WC	2.5 "WC	4.0 "WC	
HS5000	2.5 - 7.5"WC			

[&]quot;WC - Inches of Water Column

3.5.3 Conclusion

Sub-system is operating as designed.

3.6 Sub-system #6, Jewelry Store

3.6.1 Equipment and Material Observations

Table 3.6A

Item	Observation
System Fan	No Deficiencies observed
System Piping and Connections	No Deficiencies observed
Slab/System Interface Seals	No Deficiencies observed
Electrical Components	No Deficiencies observed
Pressure Gauges	No Deficiencies observed
Low Pressure Alarm	No Deficiencies observed

^{*} New Fan Installed 2/12/2012

3.6.2 Pressure Readings

Table 3.6B

Jewelry	Store			
Sub	Baseline	Pressure	Pressure	Pressure
System ID	Pressure	Reading	Reading	Reading
Fan Model	2005	2005 12/23/2014		6/23/2011
	Normal Range			
6	30.0 "WC	29.0 "WC	29.0 "WC	30.0 "WC
HS5000	15.0 - 40.0"WC			

[&]quot;WC - Inches of Water Column

3.6.3 Conclusion

Sub-system is operating as designed.

3.7 Sub-system #7, Bagel Shop

3.7.1 Equipment and Material Observations

Table 3.7A

Item	Observation
System Fan	Fan failure, not running.
System Piping and Connections	No Deficiencies observed
Slab/System Interface Seals	No Deficiencies observed
Electrical Components	No Deficiencies observed
Pressure Gauges	No Deficiencies observed
Low Pressure Alarm	Unplugged.

3.7.2 Pressure Readings

Table 3.7B

Bagel Sh	пор	
Sub	Baseline	
System ID	Pressure	
Fan Model	*1/5/2015	
	Normal Range	
7	13.0 "WC	
HS5000	7.0 - 21.0"WC	

[&]quot;WC - Inches of Water Column

^{*} New Fan Installed 1/5/2015

3.7.3 Conclusion

The fan for sub-system 7 failed and was replaced on January 5, 2015. The alarm was plugged in. The new fan operating pressure was 13 inches of water at the time of installation. Sub-system is operating as designed.

3.8 Sub-system #8, Dollar Store

3.8.1 Equipment and Material Observations

Table 3.8A

Item	Observation
System Fan	No Deficiencies observed
System Piping and Connections	No Deficiencies observed
Slab/System Interface Seals	No Deficiencies observed
Electrical Components	No Deficiencies observed
Pressure Gauges	No Deficiencies observed
Low Pressure Alarm	No Deficiencies observed

3.8.2 Pressure Readings

Table 3.8B

Dollar St	ore				
Sub	Baseline	Pressure	Pressure	Pressure	
System ID	Pressure	Reading	Reading	Reading	
Fan Model	2005	12/23/2014	4/23/2013	6/23/2011	
	Normal Range				
8	0.6 "WC	0.5 "WC	0.6 "WC	0.6 "WC	
GP501	0.9 - 0.3"WC				

[&]quot;WC - Inches of Water Column

3.8.3 Conclusion

Sub-system is operating as designed.

4.0 SUMMARY OF INSPECTION & CONDITIONS

Sub System ID	Most Recent	Current	Normal	Current
oub Gystein ib				0.000
	Fan install	Pressure	Pressure	Deficiencies
	Date	("WC)	Range ("WC)	
1	9/26/2011	14.0	7.5 - 22.5	None
Liquor Store				
2	2005 (Original)	4.6	2.5 -7.5	None
Laundromat				
3	12/30/2010	35.0	12.5 - 37.5	None
Dry Cleaner				
4	9/17/2013	35.0	13.0 - 39.0	None
Peter Harris				
5	2/12/2012	2.5	2.5 - 7.5	None
PDQ Print				
6	2005 (Original)	29.0	15.0 - 40.0	None
Jewelry Store				
7	1/5/2015	13.0	7.0 - 21.0	None
Bagel Shop[
8	2005 (Original)	0.5	0.3 - 0.9	None
Dollar Store				

APPENDIX C

Subslab Ventilation System Periodic Review Report Stop & Shop at New Paltz Plaza Langan Engineering and Environmental Services, Inc. February 9, 2015

9 February 2015

Matthew S. Hubicki New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 11th Floor New York, NY 12233-7014

Re: Sub-Slab Ventilation System Periodic Review Report Stop & Shop at New Paltz Plaza Site (ID#V000873) 271 Main Street (State Route 299) New Paltz, New York 12561 Langan Project No. 007618220

Dear Mr. Hubicki:

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. (Langan) has prepared this letter to document the ongoing operation and maintenance of the sub-slab ventilation (SSV) system installed at the Stop & Shop in New Paltz, New York, for the period April 2013 to November 2014. Activities performed during this period consisted of monthly SSV system inspections, maintenance, and confirmatory air sampling. Details of these activities are provided below.

System Inspections

The SSV system is inspected monthly by Langan. Each inspection consists of field measurements and maintenance. Air samples for laboratory analysis are collected annually as discussed below. Monthly monitoring inspections are also conducted which generally consist of the following activities:

- Measuring total volatile organic compounds (VOCs) with a photoionization detector (PID) and vacuum from the six monitoring ports in front of the store;
- Measuring vacuum from the six monitoring ports in the manifold at the rear of the store;
- Measuring total VOCs with a PID, vacuum, and air velocity from the exhaust on the roof of the building; and,
- Inspecting and emptying the knockout tank.

Between April 2013 and November 2014, system operation was generally consistent with design parameters with the exception of electrical problems causing the system to shut down in November 2014 (discussed below). As documented in the July 2013 SSV system update letter, the six front monitoring ports were removed prior to the September 2012 monitoring

River Drive Center 1 619 River Drive Elmwood Park, NJ 07407 T: 201.794.6900 F: 201.794.0366 www.langan.com

Sub-Slab Ventilation System Periodic Review Report Stop & Shop at New Paltz Plaza Site (ID#V000873) 271 Main Street (State Route 299) New Paltz, New York 12561 Langan Project No. 007618220

event and were replaced in May 2013; therefore, no measurements were collected from these ports between September 2012 and May 2013. Following the repair of the front ports, VOC readings were not collected from the front ports until July 2013 due to high VOC readings caused by the pipe glue used to install the ports. Additionally, VOC readings from the front ports were not completed December 2013 through February 2014 due to large amounts of snow stockpiled on the landscaped islands. VOC readings front the front ports and the system exhaust were not completed during the November 2014 inspection as the system was observed to be non-operational and the readings would not have accurately reflected subsurface conditions with an active system. Collection of VOC readings will resume when the system is repaired.

VOC readings are measured using a Thermo 580B OVM PID with an 11.8 eV lamp. A RAE Systems MiniRAE 3000 with an 11.7 eV lamp is occasionally substituted for the Thermo PID. VOC readings from the sampling ports and blower exhaust are provided in Table 1. The maximum VOC readings observed at the front monitoring ports between April 2013 and 4 November 2014 occurred at Port 6. Readings obtained between July 2013 and September 2013 are considered to be biased high and not representative of sub-slab conditions because of influences from the pipe glue which was used during the re-installation of the front ports. Elevated readings above those normally observed were also detected in July 2014. The highest normal readings, indicative of subsurface conditions and not PVC pipe glue off-gassing, occurred in October 2013 and September 2014. The highest values detected in these two months were 22 ppm and 162 ppm, respectively, at Port 6. In contrast, VOC readings collected from the SSV system exhaust between April 2013 and 4 November 2014 were generally less than 1 ppm, with the notable exception of the readings collected in May and June 2013 following the re-installation of the front ports and the associated use of the pipe glue. The results indicate that the SSV system is drawing in a significant amount of makeup air and lowering contaminant concentrations in the exhaust.

Vacuum readings collected between April 2013 and 4 November 2014 at the monitoring ports in the manifold at the rear of the building measured on average between -3.64 and -4.31 inches water. Vacuum readings collected between April 2013 and November 2014 at the monitoring ports in front of the building (excluding the months during which the front ports were inaccessible) measured on average between -0.102 and -0.465 inches water. Monthly vacuum readings collected from the ports at the rear of the store are provided in Table 2A, and vacuum readings collected from ports at the front of the store are provided in Table 2B.

Maintenance Activities

During the 4 October 2010 inspection, dripping or running water was heard in the piping manifold at the rear of the building. A tap was drilled into the underside of each of the six manifold pipes on 21 November 2011 to allow for drainage of accumulated water during each monthly inspection. Approximately one gallon of water was typically removed from the pipes during each inspection between April 2013 and March 2014.

Langan Project No. 007618220

During the 14 September 2012 inspection, the vacuum monitoring ports in front of the building were found to have been inadvertently removed by the building's maintenance crew when they were mistaken for a former sprinkler system. Langan retained Groundwater Treatment & Technology of Denville, New Jersey to repair the monitoring ports and complete each port with an artificial rock enclosure. The repair work was completed on 10 May 2013.

During the 24 November 2014 inspection, the system was observed to be non-operational. It was determined that a fuse in the control box required replacement. The fuse was replaced on 30 December 2014; however, the system still would not run when powered. Evaluation with an electronic multimeter concluded that the electrical relay that activates the motor is receiving power but is not transmitting power to activate the motor. Coordination with a subcontractor to repair the system is currently underway.

System Winterization

Because of occasional freezing of water within the knockout tank causing automatic system shutdowns, insulation was installed around the knockout tank on 25 October 2011. The insulation consisted of a 100-foot length of 4-inch diameter Heat-Flex® model CW-325 1-ply acrylic flexible exhaust hose. During the winter months, the hose is attached to the exhaust pipe so that the warm air being expelled from the system can travel through the hose and insulate the knockout tank against the colder ambient air. The winterization system is typically attached to the exhaust between October and April and is disconnected and capped during the remainder of the year. In addition, temperature monitoring has been incorporated into the monthly inspections.

Confirmatory Air Sampling

Confirmatory air sampling was performed in March 2014. Results of this confirmatory air sampling event are discussed below.

On 7 March 2014, five Summa canister air samples were collected during SSV operation consisting of ambient air, blower exhaust, two vacuum monitoring ports (Ports 3 and 6), and Port 6 duplicate. The samples were analyzed for VOCs by Accutest Laboratories, a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-certified laboratory. Analytical results are summarized in Table 3. The table presents only the data for tetrachloroethylene (PCE) and its breakdown products, as these are the site-specific contaminants of concern.

The March 2014 air sampling data show that PCE was detected in samples collected from the blower exhaust (1.9 ug/m³), vacuum monitoring Port 6 (1.9 ug/m³), and the Port 6 duplicate (2.1 ug/m³).

Conclusions

Although PCE continues to be present in the subsurface beneath the building, PCE concentrations have generally decreased within the sampling ports since 2010. The blower system was designed to draw between three and four pore volumes of soil gas from the treatment zone beneath the building. Based on the size of the building and the treatment zone which consists of 0.5 feet of gravel and 3.5 feet of subbase, flow rates between 191 and 255 cfm would provide the required number of pore changes per day beneath the footprint of the store. The blower assembly installed at the site is capable of providing 190 cfm at 70 inches of water column to 210 cfm at 25 inches of water column which corresponds to three to four pore changes per day. Based on these calculations, it is reasonable to conclude that the SSV system is not drawing vapors from beyond the footprint of the Stop & Shop building. As such, Langan recommends the continued operation of the SSV blower. Langan will continue monthly inspections of the SSV system with annual air sampling to evaluate the status of the SSV system and future requirements for continued system operation.

If you have any questions or concerns in connection with the SSV system, please contact us at 201-794-6900.

Sincerely,

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C.

Elana L. Seelman, P.E. Senior Project Manager,

Steven A. Ciambruschini, P.G., L.E.P.

Principal / Vice President

ELS:AMF:kn Enclosures

cc: Tom Johnson – Sterling Environmental Jeff Morgan – Ahold Joseph Salvetti – Norfolk Ram Ron Ruth - Sherin & Lodgen, LLP Amanda Forsburg - Langan

\Langan.com\data\PAR\data2\7618201\Engineering Data\Environmenta\Remediation System\2015-01_ NYSDEC SSV Update 2014\NYSDEC SSV Update (Final 2015-02-09; Revised 2016-05-11).docx

TABLES

TABLE 1 **Subslab Ventilation System PID Readings Summary** April 2013 - March 2014 **Stop and Shop** New Paltz, New York

PID Readings Collected at the Exhaust and Front Monitoring Ports

				PID Re	eadings (ppm)				
Date	3/17/2009	4/27/2009	5/13/2009	6/12/2009	8/31/2009	9/10/2009	10/16/2009	11/23/2009	12/17/2009
Port 1	247	260	253	26	775	21	33	7.2	18.4
Port 2	0	17	3	0	98	1	5	0	0
Port 3	202	884	1224	315	4381	24	41	9	12.5
Port 4	17	18	26	267	237	2	11	3.6	0
Port 5	412	2252	1119	149	761	1	36	7.2	0
Port 6	8	22.8	122	0	2117	0	61	9.9	12.3
Blower Exhaust	0	0	0	0	0	0	0	0	0

					PID Readings	(ppm)				
Date	1/14/2010	2/9/2010	4/13/2010	5/17/2010	6/21/2010	8/11/2010	8/27/2010	10/4/2010	10/27/2010	12/17/2010
Port 1	0	0	3.7	0.1		0		0	0	3.2
Port 2	0	0	0	0.8		0		13	1.5	4.8
Port 3	0	0	74	19.2		109		15.2	0.3	0
Port 4	0	0	0	2.9		0		0	0	0
Port 5	0	0	19.1	20.6		122.6		7.9	9.1	3.2
Port 6	0	0	18.2	14		0		30.6	61.3	10.4
Blower Exhaust	0	0	0	0		0		0	0	0

			PID	Readings (ppi	m)		
Date	4/21/2011*	6/7/2011	8/10/2011	9/22/2011	10/25/2011*	11/21/2011	12/20/2011
Port 1	0.3	6.4	3.3	0	0.9		0
Port 2	0	1.4	0	0	0.6		0
Port 3	0	4	4.9	0	1.5		0
Port 4	0	1.9	0	0	0.5		0
Port 5	0	1.4	13.8	0	25		0
Port 6	2.5	0.9	56	0	3.6		0
Blower Exhaust	0	0		0	0		0

		PID Readings (ppm)										
Date	1/30/2012	3/2/2012*	3/23/2012*	5/23/2012	6/19/2012	9/14/2012	11/12/2012	11/28/2012	12/26/2012			
Port 1		0	0.9	0	0							
Port 2		0.4	0	0	0							
Port 3		0	0.2	0	0.4							
Port 4		0	0	0	0							
Port 5		2.6	2.5	0	0							
Port 6		6.6	3.8	1.4	0							
Blower Exhaust		0	0	0	0	0	0	0	0			

					PID Read	dings (ppm)					
Date	1/11/2013	2/7/2013	3/26/2013	4/29/2013	5/10/2013	6/7/2013	7/5/2013	8/13/2013	9/25/2013	10/31/2013	12/20/2013
Port 1							234	352	37	6	
Port 2							212	97.8	22.1	2.5	
Port 3							39	15.2	1.3	0	
Port 4							83.2	31.7	100	1	
Port 5							263	79.9	1,212	21	
Port 6							749	684	>4,000	22	
Blower Exhaust	1.2	0	0	0	9.1	776**	0	0	13	0	0

				PID Read	dings (ppm)					
1/21/2014	3/7/2014	3/27/2014	5/2/2014	5/23/2014	6/18/2014	7/31/2014	8/26/2014	9/29/2014	11/4/2014	11/24/2014
		53	0	0	0.3	75000	6	151	NA	NA
		1.8	0	0	6.4	6681	1.9	14.6	NA	NA
		0.5	0	0	3.3	550	0	0	NA	NA
		0.1	0	0	11.9	8050	2.5	8.5	NA	NA
		21	0	0	4.4	16.8	0.6	2.2	NA	NA
		126.9	0	0	31	767	58	162	NA	NA
0	0	0.1	0	2	0	0	0	0	NA	NA
			53 1.8 0.5 0.1 21	53 0 1.8 0 0.5 0 0.1 0 21 0	1/21/2014 3/7/2014 3/27/2014 5/2/2014 5/2/2014 5/2/2014 53 0 0 1.8 0 0 0.5 0 0 0.1 0 0 21 0 0	53 0 0 0 0.3 1.8 0 0 6.4 0.5 0 0 3.3 0.1 0 0 11.9 21 0 0 4.4	1/21/2014 3/7/2014 3/27/2014 5/2/2014 5/23/2014 6/18/2014 7/31/2014 53 0 0 0.3 75000 1.8 0 0 6.4 6681 0.5 0 0 3.3 550 0.1 0 0 11.9 8050 21 0 0 4.4 16.8	1/21/2014 3/7/2014 3/27/2014 5/2/2014 5/23/2014 6/18/2014 7/31/2014 8/26/2014 53 0 0 0.3 75000 6 1.8 0 0 6.4 6681 1.9 0.5 0 0 3.3 550 0 0.1 0 0 11.9 8050 2.5 21 0 0 4.4 16.8 0.6	1/21/2014 3/7/2014 5/2/2014 5/23/2014 6/18/2014 7/31/2014 8/26/2014 9/29/2014 53 0 0 0.3 75000 6 151 1.8 0 0 6.4 6681 1.9 14.6 0.5 0 0 3.3 550 0 0 0.1 0 0 11.9 8050 2.5 8.5 21 0 0 4.4 16.8 0.6 2.2	1/21/2014 3/7/2014 3/27/2014 5/2/2014 5/23/2014 6/18/2014 7/31/2014 8/26/2014 9/29/2014 11/4/2014 53 0 0 0.3 75000 6 151 NA 1.8 0 0 6.4 6681 1.9 14.6 NA 0.5 0 0 3.3 550 0 0 NA 0.1 0 0 11.9 8050 2.5 8.5 NA 21 0 0 4.4 16.8 0.6 2.2 NA 126.9 0 0 31 767 58 162 NA

Notes
1. PID measurements were made using a Thermo 580B OVM PID analyzer with 11.8 eV lamp.

^{*=}a MiniRae3000 was used rather than an OVM due to equipment availability at Pine Environmental

^{**=}New Front Ports were installed and pipe glue was used causing strong odors and VOC Readings

Table 2A Vacuum Readings At The Rear Of The Building Super Stop & Shop New Paltz, New York

	10/10/2225	1 /5 /0007	4/00/0007	E/4E/0007	0/40/0007	7/07/2227	0/00/0007	0/00/0007	11/00/000=		
Port 1	12/18/2006	1/5/2007	4/20/2007	5/15/2007	6/13/2007	7/27/2007	8/30/2007	9/26/2007	11/29/2007		
	-5	-8.1	-5	-8.1	-6.9	-6.6	-6.8	-6.8	-7.8		
2	-5	-7.9	-5	-7.9	-7.2	-6.8	-6.6	-6.8 -6.7	-7.6 -8.7		
4	-5 -5	-8.2 -7.9	-5 -5	-8.2 -7.9	-7 -7.1	-6.8 -6.8	-6.5 -6.8	-6.7 -7.1	-6.7 -7.6		
5	-5 -5	-7.5 -7.1	-5 -5	-7.5 -7.1	-6.8	-6.6	-6.5	-7.1 -6.7	-7.6 -7.6		
6	-5 -5	-8.1	-5 -5	-8.1	-0.8 -7	-6.6	-6.6	-6.6	-7.0 -7.3		
0	-5	-0.1	-5	-0.1	-7	-0.0	-0.0	-0.0	-7.5		
Port	1/24/2008	3/5/2008	4/3/2008	5/2/2008	6/5/2008	7/2/2008	8/22/2008	9/29/2008	ì		
1	-2.5	-7.2	-7	-7.6	-7.2	-6.6	-6.4	-7.1	i		
2	-7.8	-7.8	-7	-6.8	-6.6	-6.5	-6.6	-7.2			
3	-8	-7.7	-7.4	-7.4	-7	-6.8	-6.8	-7.3			
4	-2.5	-7.1	-7.4	-6.8	-7	-6.8	-6.8	-7.4			
5	-7.8	-6.6	-6.4	-7.2	-6.6	-6.6	-6.6	-7			
6	-7	-7.2	-7.4	-7.4	-7	-6.6	-6.6	-7			
									•	_	
Port	3/17/2009	4/27/2009	5/13/2009	6/12/2009	8/31/2009	9/10/2009	10/16/2009	11/23/2009	12/17/2009		
1	-7	-7.8	-7.3	-7.2	-6.8	-7	-7.7	-8.1	-8.3		
2	-6.9	-7.4	-7.1	-7	-6.8	-7	-7.5	-7.9	-8.2		
3	-7.1	-7.8	-7.4	-7.1	-7	-6.9	-7.8	-8	-8.3		
4	-7.2	-7.6	-7.4	-7.1	-6.8	-6.9	-7.4	-8	-8.4		
5	-6.8	-7.5	-7.1	-7	-6.7	-6.7	-7.5	-7.8	-8		
6	-6.8	-7.6	-7.2	-7	-6.6	-6.8	-7.5	-7.7	-8.1		
Port	1/14/2010	2/9/2010	4/13/2010	5/17/2010	8/11/2010	8/27/2010	10/4/2010	10/27/2010	12/17/2010		
1	-7.5	-3.156	-7.7	-7.1	-6.9	-6.9	-7.5	-7.6	-3		
2	-7.5	-8.263	-7.4	-7.1	-6.9	-6.9	-7.5	-7.5	-6.8		
3	-7.6	-8.419	-7.5	-7.3	-6.9	-6.8	-7.5	-7.5	-8.4		
4	-7.5	-3.24	-7.6	-7.3	-7	-7.1	-7.7	-7.8	-3.8		
5	-7.4	-8.189	-7.3	-6.9	-6.6	-6.6	-7.2	-7.4	-8.1		
6	-7.5	-7.243	-7.4	-7	-6.7	-6.8	-7.4	-7.5	-8.1		
Port	2/16/2011	4/21/2011	6/7/2011	7/15/2011	9/22/2011	10/25/2011	11/21/2011	12/20/2011	1		
Port 1	2/16/2011 -4.1	4/21/2011 -9.2	6/7/2011 -6.7	7/15/2011 -5.2	9/22/2011	10/25/2011	11/21/2011 -5.2	12/20/2011 -5.6			
1	-4.1	-9.2	-6.7	-5.2	-3.2	-3.4	-5.2	-5.6			
1 2	-4.1 -4	-9.2 -9	-6.7 -6.5	-5.2 -5.3	-3.2 -3.1	-3.4 -3.4	-5.2 -2.4	-5.6 -2.6			
1 2 3	-4.1 -4 -4.1	-9.2 -9 -8.9	-6.7 -6.5 -6.6	-5.2 -5.3 -5.2	-3.2 -3.1 -3.3	-3.4 -3.4 -3.6	-5.2 -2.4 -5	-5.6 -2.6 -6			
1 2 3 4	-4.1 -4 -4.1 -4.1	-9.2 -9 -8.9 -8.9	-6.7 -6.5 -6.6 -6.8	-5.2 -5.3 -5.2 -5	-3.2 -3.1 -3.3 -2.9	-3.4 -3.4 -3.6 -3.6	-5.2 -2.4 -5 0	-5.6 -2.6 -6 -5.8			
1 2 3 4 5	-4.1 -4 -4.1 -4.1 -4	-9.2 -9 -8.9 -8.9 -8.8 -8.8	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3	-5.2 -5.3 -5.2 -5 -5.2 -4.9	-3.2 -3.1 -3.3 -2.9 -2.7 -3	-3.4 -3.4 -3.6 -3.6 -3.2 -3.4	-5.2 -2.4 -5 0 -5.2 -5	-5.6 -2.6 -6 -5.8 -5.6 -5.6			
1 2 3 4 5 6	-4.1 -4 -4.1 -4.1 -4 -4 1/30/2012	-9.2 -9 -8.9 -8.9 -8.8 -8.8	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3	-5.2 -5.3 -5.2 -5 -5.2 -4.9	-3.2 -3.1 -3.3 -2.9 -2.7 -3	-3.4 -3.4 -3.6 -3.6 -3.2 -3.4	-5.2 -2.4 -5 0 -5.2 -5	-5.6 -2.6 -6 -5.8 -5.6 -5.6	12/26/2012	[
1 2 3 4 5 6	-4.1 -4 -4.1 -4.1 -4 -4 -4 -1/30/2012 -6.8	-9.2 -9 -8.9 -8.9 -8.8 -8.8 -8.8	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 3/23/2012 -2.2	-5.2 -5.3 -5.2 -5 -5 -5.2 -4.9 5/23/2012 -3.2	-3.2 -3.1 -3.3 -2.9 -2.7 -3 -3 -6/19/2012 -3.3	-3.4 -3.4 -3.6 -3.6 -3.2 -3.4	-5.2 -2.4 -5 0 -5.2 -5	-5.6 -2.6 -6 -5.8 -5.6 -5.6 -3.5	-5.8		
1 2 3 4 5 6 Port	-4.1 -4 -4.1 -4.1 -4 -4 -1/30/2012 -6.8 -4.3	-9.2 -9 -8.9 -8.9 -8.8 -8.8 -8.8	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 3/23/2012 -2.2 -1.5	-5.2 -5.3 -5.2 -5 -5.2 -4.9 5/23/2012 -3.2 -2.3	-3.2 -3.1 -3.3 -2.9 -2.7 -3 -3.3 -3.3	-3.4 -3.4 -3.6 -3.6 -3.2 -3.4 -4 -0.4	-5.2 -2.4 -5 0 -5.2 -5 11/12/2012 -3.4 -0.009	-5.6 -2.6 -6 -5.8 -5.6 -5.6 -11/28/2012 -3.5 >0.1	-5.8 -0.003		
1 2 3 4 5 6	-4.1 -4 -4.1 -4.1 -4 -4 -4 -1/30/2012 -6.8	-9.2 -9 -8.9 -8.9 -8.8 -8.8 -8.8	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 3/23/2012 -2.2	-5.2 -5.3 -5.2 -5 -5 -5.2 -4.9 5/23/2012 -3.2	-3.2 -3.1 -3.3 -2.9 -2.7 -3 -3 -6/19/2012 -3.3	-3.4 -3.4 -3.6 -3.6 -3.2 -3.4	-5.2 -2.4 -5 0 -5.2 -5	-5.6 -2.6 -6 -5.8 -5.6 -5.6 -3.5	-5.8		
1 2 3 4 5 6 Port 1 2 3 4	-4.1 -4 -4.1 -4.1 -4 -4 -4 -6.8 -6.8 -6.2 -7.2	-9.2 -9 -8.9 -8.8 -8.8 -8.8 -8.8 -6 -3.8 -5.4 -5.6	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -6.3 -2.2 -1.5 -3.2 -3	-5.2 -5.3 -5.2 -5 -5.2 -4.9 5/23/2012 -3.2 -2.3 -3.4 -3.4	-3.2 -3.1 -3.3 -2.9 -2.7 -3 -3.3 -3.3 -3.3 -3.4 -3.1	3.4 3.4 3.6 3.6 3.2 3.4 9/14/2012 -4 -0.4 -4 -4.2	-5.2 -2.4 -5 0 -5.2 -5 -5 -5 -3.4 -0.009 -3.2 -3.2	-5.6 -2.6 -6 -5.8 -5.6 -5.6 -1.728/2012 -3.5 >0.1 -3.7 -3.5	-5.8 -0.003 -5.2 -5.8		
1 2 3 4 5 6 Port 1 2 3	-4.1 -4 -4.1 -4.1 -4 -4 -4 -4 -6.8 -4.3 -6.2	-9.2 -9 -8.9 -8.8 -8.8 -3/2/2012 -6 -3.8 -5.4	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -6.2 -1.5 -2.2	-5.2 -5.3 -5.2 -5 -5.2 -4.9 5/23/2012 -3.2 -2.3 -3.4	-3.2 -3.1 -3.3 -2.9 -2.7 -3 -3.3 -3.3 -3.4	3.4 -3.4 -3.6 -3.6 -3.2 -3.4 -9/14/2012 -4 -0.4 -4	-5.2 -2.4 -5 0 -5.2 -5 -11/12/2012 -3.4 -0.009 -3.2	-5.6 -2.6 -6 -5.8 -5.6 -5.6 -11/28/2012 -3.5 >0.1 -3.7	-5.8 -0.003 -5.2		
1 2 3 4 5 6 Port 1 2 3 4 5 5	-4.1 -4 -4.1 -4.1 -4 -4 -4 -1/30/2012 -6.8 -4.3 -6.2 -7.2 -6.6 -6.6	-9.2 -9 -8.9 -8.8 -8.8 -8.8 -6 -3.8 -5.4 -5.6 -5.6	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -6.3 -7.2 -7.2 -7.5 -3.2 -3.2 -2.6 -2.8	-5.2 -5.3 -5.2 -5 -5.2 -4.9 -5/23/2012 -3.2 -2.3 -3.4 -3.4 -3.2 -3	3.2 -3.1 -3.3 -2.9 -2.7 -3 -3.3 -3.3 -3.4 -3.1 -2.7 -2.9	3.4 3.4 3.6 3.6 3.2 3.4 9/14/2012 4 -0.4 -4 4.2 4.2 -4	-5.2 -2.4 -5 0 -5.2 -5 11/12/2012 -3.4 -0.009 -3.2 -3.6	5.6 -2.6 -6 -5.8 -5.6 -5.6 -5.6 -3.5 >0.1 -3.7 -3.5 -3.8 -3.2	-5.8 -0.003 -5.2 -5.8 -5.6 -5		
1 2 3 4 5 6 6 Port 1 2 3 4 5 6 6	-4.1 -4 -4.1 -4.1 -4 -4 -4 -4 -4 -6.8 -6.2 -7.2 -6.6 -6.6	-9.2 -9 -8.9 -8.8 -8.8 -8.8 -6 -3.8 -5.4 -5.6 -5.6 -5	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -6.3 -7.2 -2.2 -1.5 -3.2 -3 -2.6 -2.8	-5.2 -5.3 -5.2 -5 -5.2 -4.9 -5/23/2012 -3.2 -2.3 -3.4 -3.4 -3.2 -3	3.2 -3.1 -3.3 -2.9 -2.7 -3 -3.3 -3.3 -3.4 -3.1 -2.7 -2.9	3.4 3.4 3.6 3.6 3.2 3.4 9/14/2012 4 -0.4 -4 -4.2 -4.2 -4.2 -4.2	-5.2 -2.4 -5 0 -5.2 -5 -5 -11/12/2012 -3.4 -0.009 -3.2 -3.2 -3.6 -4.8	-5.6 -2.6 -6 -5.8 -5.6 -5.6 -5.6 -5.6 -3.5 >0.1 -3.7 -3.5 -3.8 -3.2	-5.8 -0.003 -5.2 -5.8 -5.6 -5	10/31/2013	12/20/2013
1 2 3 4 5 6 6 Port 1 5 6 6 Port 1 1	-4.1 -4 -4.1 -4.1 -4 -4 -4.3 -6.2 -7.2 -6.6 -6.6 -1/11/2013 -6	-9.2 -9 -8.9 -8.9 -8.8 -8.8 -6 -3.8 -5.4 -5.6 -5.6 -5 -5	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -6.3 -6.3 -7.2 -2.2 -1.5 -3.2 -3 -2.6 -2.8 -2.8	-5.2 -5.3 -5.2 -5 -5.2 -4.9 -5/23/2012 -3.2 -2.3 -3.4 -3.4 -3.2 -3 -3 -4/29/2013 -2.2	3.2 -3.1 -3.3 -2.9 -2.7 -3 -3.3 -3.4 -3.1 -2.7 -2.9 -5/10/2013 -3.2	3.4 3.6 3.6 3.2 3.4 9/14/2012 -4 -0.4 -4 -4.2 -4.2 -4.2 -4.3 -4.2 -4.3	-5.2 -2.4 -5 0 -5.2 -5 -5 -11/12/2012 -3.4 -0.009 -3.2 -3.2 -3.2 -3.6 -4.8	5.6 -2.6 -6 -5.8 -5.6 -5.6 -5.6 -11/28/2012 -3.5 >0.1 -3.7 -3.5 -3.8 -3.2	-5.8 -0.003 -5.2 -5.8 -5.6 -5 -5	-3.5	-6.4
1 2 3 4 5 6 Port 1 2 3 4 5 6 Port 1 2 2 9 Port 1 2	-4.1 -4 -4.1 -4.1 -4 -4 -4 -6.8 -4.3 -6.2 -7.2 -6.6 -6.6 -1/1/2013 -6.5	9.2 -9 -8.9 -8.9 -8.8 -8.8 -6 -5.4 -5.6 -5.6 -5 -7.7	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -6.3 -7.2 -7.2 -7.2 -7.3 -7.2 -7.2 -7.2 -7.2 -7.2 -7.2 -7.2 -7.2	-5.2 -5.3 -5.2 -5 -5.2 -4.9 -5.2 -4.9 -3.2 -2.3 -3.4 -3.4 -3.2 -3 -3 -4/29/2013 -2.2 -0.18	3.2 -3.1 -3.3 -2.9 -2.7 -3 -3.3 -3.3 -3.4 -3.1 -2.7 -2.9 -5/10/2013 -3.2 -3	3.4 3.6 3.6 3.2 3.4 9/14/2012 -4 -0.4 -4.2 -4.2 -4.2 -4.2 -4.2 -4.2 -4.2 -4.2 -4.2	-5.2 -2.4 -5 0 -5.2 -5 -5 -11/12/2012 -3.4 -0.009 -3.2 -3.2 -3.6 -4.8 -7/5/2013 -2.9 -0.4175	-5.6 -2.6 -6 -5.8 -5.6 -5.6 -5.6 -5.6 -5.6 -3.5 >0.1 -3.7 -3.5 -3.5 -3.5 -3.2 -8/13/2013 -3.3 -3.3	-5.8 -0.003 -5.2 -5.8 -5.6 -5 -5 -5 -3.3 -2.6	-3.5 -3.5	-6.4 -5.9
1 2 3 4 5 6 Fort 1 2 3 4 4 5 6 Fort 1 2 3 4 4 5 6 6 Fort 1 2 3 3 4 5 6 6 Fort 1 2 3 3 6 Fort 1 2 3 6 Fort 1 2 3 6 Fort 1 2 2 5 6 Fort 1 2 5 6 Fort 1 2 2 5 6	-4.1 -4 -4.1 -4.1 -4 -4 -4 -4 -4 -4 -6.8 -6.3 -7.2 -6.6 -6.6 -5.8 -6.5	-9.2 -9 -8.9 -8.9 -8.8 -8.8 -8.8 -5.4 -5.6 -5.6 -5.6 -7.5 -7.5 -7.7 -5	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -6.3 -7 -7 -2.2 -1.5 -3.2 -3 -2.6 -2.8 -2.8	-5.2 -5.3 -5.2 -5 -5.2 -4.9 -5/23/2012 -3.2 -2.3 -3.4 -3.4 -3.2 -3 -3 -4/29/2013 -2.2 -0.18	3.2 -3.1 -3.3 -2.9 -2.7 -3 -3.3 -3.3 -3.4 -3.1 -2.7 -2.9 -5/10/2013 -3.2 -3 -4.2	3.4 -3.4 -3.6 -3.6 -3.2 -3.4 9/14/2012 -4 -0.4 -4 -4.2 -4.2 -4.2 -4.2 -3.4 -2.2 -3.2	-5.2 -2.4 -5 0 -5.2 -5 -5 -11/12/2012 -3.4 -0.009 -3.2 -3.2 -3.6 -4.8 -7/5/2013 -2.9 -0.4175 -2.55	5.6 -2.6 -6 -5.8 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.3 -5.3 -5.3 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.8 -3.2 -3.3 -3.3 -3.3 -3.3 -3.3 -3.3 -3.3	-5.8 -0.003 -5.2 -5.8 -5.6 -5 -5 -5 -5 -25/2013 -3.3 -2.6 -1.2	-3.5 -3.5 -3.8	-6.4 -5.9 -6.5
1 2 3 4 5 6 Port 1 2 3 4 5 6 6 Port 1 2 3 4 4 5 6 6	-4.1 -4 -4.1 -4.1 -4.1 -4.1 -4.1 -4.3 -6.2 -7.2 -6.6 -6.6 -5.8 -6.5 -7.1	-9.2 -9 -8.9 -8.9 -8.8 -8.8 -6 -3.8 -5.4 -5.6 -5.6 -5 -7.7 -7.7 -7.7	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -6.3 -7 -6.9 -2.8 -7 -6.8	-5.2 -5.3 -5.2 -5 -5.2 -4.9 -5/23/2012 -3.2 -2.3 -3.4 -3.4 -3.2 -3 -3 -2 -3 -3 -2 -3 -3 -3 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	3.2 -3.1 -3.3 -2.9 -2.7 -3 -3.3 -3.4 -3.1 -2.7 -2.9 -5/10/2013 -3.2 -3 -3.8	3.4 -3.6 -3.6 -3.2 -3.4 9/14/2012 -4 -0.4 -4 -4.2 -4.2 -4 -4.2 -4.2 -4.2 -3.4 -2.2 -3.4	-5.2 -2.4 -5 0 -5.2 -5 -5 -11/12/2012 -3.4 -0.009 -3.2 -3.6 -4.8 -7/6/2013 -2.9 -0.4175 -2.55 -3.1	5.6 -2.6 -6 -5.8 -5.6 -5.6 -5.6 -11/28/2012 -3.5 >0.1 -3.7 -3.5 -3.8 -3.2 -8/13/2013 -3.3 -3.3 -3.3 -3.3	-5.8 -0.003 -5.2 -5.8 -5.6 -5 -5 -5 -3.3 -2.6 -1.2 -3.3	-3.5 -3.5 -3.8 -3.6	-6.4 -5.9 -6.5 -6.3
1 2 3 4 5 6 Port 1 2 3 4 5 6 C Port 1 2 3 4 5 6 C Port 1 5 6 C Port 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-4.1 -4 -4.1 -4.1 -4 -4 -4 -1/30/2012 -6.8 -4.3 -6.2 -7.2 -6.6 -6.6 -5.8 -6.5 -7.1	9.2 -9.8.9 -8.9 -8.8 -8.8 -6.3.8 -5.4 -5.6 -5.6 -5.7.7 -7.7 -5.7.7 -7.7 -7.7 -7.7	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -2.2 -1.5 -3.2 -3 -2.6 -2.8 -2.8 -7 -6.9 -6.8 -6.8	-5.2 -5.3 -5.2 -5 -5.2 -4.9 -5.2 -4.9 -3.2 -2.3 -3.4 -3.4 -3.4 -3.2 -3 -3 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	3.2 -3.1 -3.3 -2.9 -2.7 -3 -3.3 -3.3 -3.4 -3.1 -2.7 -2.9 -5/10/2013 -3.2 -3 -4.2 -3.8 -3.8	3.4 3.6 3.6 3.2 3.4 9/14/2012 -4 -0.4 -4 -4.2 -4.2 -4.2 -4.2 -4.2 -4.2 -3.3	-5.2 -2.4 -5 0 -5.2 -5 -5 -11/12/2012 -3.4 -0.009 -3.2 -3.2 -3.6 -4.8 -7/5/2013 -2.9 -0.4175 -2.55 -3.1 -3.2	5.6 -2.6 -6 -5.8 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -3.5 >0.1 -3.7 -3.5 -3.	-5.8 -0.003 -5.2 -5.8 -5.6 -5 -5 -5 -2.6 -1.2 -3.3 -2.6 -1.2 -3.3 -3.4	-3.5 -3.5 -3.8 -3.6 -3.8	-6.4 -5.9 -6.5 -6.3 -6.2
1 2 3 4 5 6 Port 1 2 3 4 5 6 6 Port 1 2 3 4 4 5 6 6	-4.1 -4 -4.1 -4.1 -4.1 -4.1 -4.1 -4.3 -6.2 -7.2 -6.6 -6.6 -5.8 -6.5 -7.1	-9.2 -9 -8.9 -8.9 -8.8 -8.8 -6 -3.8 -5.4 -5.6 -5.6 -5 -7.7 -7.7 -7.7	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -6.3 -7 -6.9 -2.8 -7 -6.8	-5.2 -5.3 -5.2 -5 -5.2 -4.9 -5/23/2012 -3.2 -2.3 -3.4 -3.4 -3.2 -3 -3 -2 -3 -3 -2 -3 -3 -3 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	3.2 -3.1 -3.3 -2.9 -2.7 -3 -3.3 -3.4 -3.1 -2.7 -2.9 -5/10/2013 -3.2 -3 -3.8	3.4 -3.6 -3.6 -3.2 -3.4 9/14/2012 -4 -0.4 -4 -4.2 -4.2 -4 -4.2 -4.2 -4.2 -3.4 -2.2 -3.4	-5.2 -2.4 -5 0 -5.2 -5 -5 -11/12/2012 -3.4 -0.009 -3.2 -3.6 -4.8 -7/6/2013 -2.9 -0.4175 -2.55 -3.1	5.6 -2.6 -6 -5.8 -5.6 -5.6 -5.6 -11/28/2012 -3.5 >0.1 -3.7 -3.5 -3.8 -3.2 -8/13/2013 -3.3 -3.3 -3.3 -3.3	-5.8 -0.003 -5.2 -5.8 -5.6 -5 -5 -5 -3.3 -2.6 -1.2 -3.3	-3.5 -3.5 -3.8 -3.6	-6.4 -5.9 -6.5 -6.3
1 2 3 4 5 6 Port 1 2 3 4 5 6 C Port 1 2 3 4 5 5 6 C Port 5 5 6 C Port 5 5 6 C Port 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-4.1 -4 -4.1 -4.1 -4 -4 -4 -1/30/2012 -6.8 -4.3 -6.2 -7.2 -6.6 -6.6 -5.8 -6.5 -7.1	9.2 -9.8.9 -8.9 -8.8 -8.8 -6.3.8 -5.4 -5.6 -5.6 -5.7.7 -7.7 -5.7.7 -7.7 -7.7 -7.7	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -2.2 -1.5 -3.2 -3 -2.6 -2.8 -7 -6.9 -2.8 -6.3 -7 -6.8 -6.3	-5.2 -5.3 -5.2 -5 -5.2 -4.9 -5.2 -4.9 -3.2 -2.3 -3.4 -3.4 -3.4 -3.2 -3 -3 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	3.2 -3.1 -3.3 -2.9 -2.7 -3 -3.3 -3.3 -3.4 -3.1 -2.7 -2.9 -5/10/2013 -3.2 -3 -4.2 -3.8 -3.8	3.4 3.6 3.6 3.2 3.4 9/14/2012 -4 -0.4 -4 -4.2 -4.2 -4.2 -4.2 -4.2 -4.2 -3.3	-5.2 -2.4 -5 0 -5.2 -5 -5 -11/12/2012 -3.4 -0.009 -3.2 -3.2 -3.2 -3.6 -4.8 -7/5/2013 -2.9 -0.4175 -2.55 -3.1 -3.2 -2.9	5.6 -2.6 -6 -5.8 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -3.5 -3.7 -3.5 -3.8 -3.2 -3.3 -3.1 -3.3 -3.3 -3.1 -3.3 -3.1 -3.2 -3.2 -3.2 -3.2 -3.2 -3.3 -3.3 -3.1 -3.3 -3.3 -3.1 -3.3 -3.3 -3.1 -3.3 -3.3 -3.1 -3.3 -3.3 -3.1 -3.3 -3.3 -3.1 -3.3 -3.	-5.8 -0.003 -5.2 -5.8 -5.6 -5 -5 -5 -2.6 -1.2 -3.3 -2.6 -1.2 -3.3 -3.4	-3.5 -3.5 -3.8 -3.6 -3.8	-6.4 -5.9 -6.5 -6.3 -6.2
1 2 3 4 5 6 6 Port 1 2 2 3 4 5 6 6 Port 1 6 6	-4.1 -4 -4.1 -4.1 -4 -4 -4 -4 -6.8 -4.3 -6.2 -7.2 -6.6 -6.6 -5.8 -6.5 -7.1 -6 -6.4	9.2 -9 -8.9 -8.9 -8.8 -8.8 -8.8 -6.3 -5.4 -5.6 -5.6 -5.6 -5.7 -7.7 -5 -7.7 -7.1 -7.1	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -2.2 -1.5 -3.2 -3 -2.6 -2.8 -7 -6.8 -6.3 -6.8 -6.3	-5.2 -5.3 -5.2 -5 -5.2 -4.9 -5.2 -4.9 -5.2 -3.4 -3.4 -3.4 -3.2 -3 -3.2 -3.3 -4/29/2013 -2.2 -0.18 -1.7 -2.3 -3.1 -2.8	3.2 -3.1 -3.3 -2.9 -2.7 -3 -3.3 -3.3 -3.4 -3.1 -2.7 -2.9 5/10/2013 -3.2 -3 -4.2 -3.8 -3.8 -4.5	3.4 3.4 3.6 3.6 3.2 3.4 9/14/2012 -4 -0.4 -4.2 -4.2 -4.2 -4.2 -4.2 -4.2 -4.3 -3.4 -6/7/2013 -3.4 -2.2 -3.2 -3.2 -3.3 -3.1	-5.2 -2.4 -5 0 -5.2 -5 -5 -11/12/2012 -3.4 -0.009 -3.2 -3.2 -3.6 -4.8 -7/5/2013 -2.9 -0.4175 -2.55 -3.1 -3.2 -2.9	5.6 -2.6 -6 -5.8 -5.6 -5.7 -3.5 -3.7 -3.5 -3.5 -3.8 -3.2 -8 -8 -3.3 -	-5.8 -0.003 -5.2 -5.8 -5.6 -5 -5 -9/25/2013 -3.3 -2.6 -1.2 -3.3 -3.4 -3	-3.5 -3.5 -3.8 -3.6 -3.8 -3.5 -11/4/2014 -3.4	-6.4 -5.9 -6.5 -6.3 -6.2 -5.8
1 2 3 4 5 6 Port 1 2 3 4 5 6 9 Port 1 2 2 3 4 5 6 9 Port 1 2 2 3 4 5 5 6 9 Port 1 2 2 7 9 Port 1 2 2 9 Port 1 2	-4.1 -4 -4.1 -4.1 -4.1 -4.1 -4.1 -4 -4.1 -4.1	9.2 -9 -8.9 -8.9 -8.8 -8.8 -8.8 -5.4 -5.6 -5.6 -5.7.7 -7.7 -7.7 -7.1 -3.7/2014 -6 -9.9	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -6.2 -1.5 -3.2 -3 -2.6 -2.8 -2.8 -6.9 -2.8 -6.8 -6.8 -6.3 -6.8 -6.3	-5.2 -5.3 -5.2 -5 -5.2 -4.9 -5/23/2012 -3.2 -2.3 -3.4 -3.2 -3 -3.4 -3.2 -3 -3.4 -3.2 -3 -3.4 -3.2 -3.3 -2.2 -0.18 -1.7 -2.3 -3.1 -2.8 -5.2 -2.3 -3.1 -2.3 -3.1 -2.3 -3.1 -2.3 -3.1 -2.3 -3.1 -2.3 -3.1 -2.3 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -3	3.2 3.1 3.3 2.9 2.7 3.3 6/19/2012 3.3 3.4 3.1 2.7 2.9 5/10/2013 3.2 3.8 4.2 3.8 4.5 5/23/2014 3.2 3.2	3.4 3.6 3.6 3.2 3.4 9/14/2012 4 4.2 4.2 4.2 4.2 4.2 4.2 4.3 3.4 -2.2 3.3 3.1 6/18/2014 3.1 3.2	5.2 -2.4 -5 0 -5.2 -5 11/12/2012 -3.4 -0.009 -3.2 -3.6 -4.8 7/6/2013 -2.9 -0.4175 -2.55 -3.1 -3.2 -2.9 -3.4 -3.3 -3.6 -3.1 -3.2 -2.9 -3.1 -3.2 -3.3 -3.3 -3.3 -3.3 -3.3 -3.3 -3.3	5.6 -2.6 -6 -5.8 -5.6 -5.8 -5.6 -5.8 -5.6 -5.	-5.8 -0.003 -5.2 -5.8 -5.6 -5 -5 -9/25/2013 -3.3 -2.6 -1.2 -3.3 -3.4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	-3.5 -3.5 -3.8 -3.6 -3.8 -3.5 -3.5 -3.4 -1.3	-6.4 -5.9 -6.5 -6.3 -6.2 -5.8 -11/24/2014 NA NA
1 2 3 4 5 6 6 Port 1 2 3 3 4 4 5 6 6 Port 1 2 3 3 4 5 6 6 Port 1 2 3 3 4 5 6 6 Port 2 3 3 4 5 6 6 Port 3 2 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-4.1 -4 -4.1 -4.1 -4.1 -4.1 -4.1 -4.3 -6.2 -7.2 -6.6 -6.6 -5.8 -6.5 -7.1 -6 -6.4 -7.1 -6 -6.4 -7.1 -6 -7.1 -6 -7.1 -6 -7.1 -6 -7.1 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	9.2 -9 -8.9 -8.9 -8.8 -8.8 -5.4 -5.6 -5.6 -5 -7.7 -7.7 -7.1 -7.1 -7.1 -6 -9.9 -9.9	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -6.3 -3.2 -1.5 -3.2 -3 -2.6 -2.8 -7 -6.9 -2.8 -6.3 -6.3 -6.3 -6.3	-5.2 -5.3 -5.2 -5 -5.2 -4.9 -5.2 -4.9 -5.2 -2.3 -3.4 -3.4 -3.2 -3 -2.2 -0.18 -1.7 -2.3 -3.1 -2.8 -5.2 -5.2 -5.2 -5.3 -5.2 -5.2 -5.2 -5.2 -5.2 -6.2 -7.3 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4	3.2 -3.1 -3.3 -2.9 -2.7 -3.3 -3.3 -3.4 -3.1 -2.7 -2.9 5/10/2013 -3.2 -3.8 -3.8 -4.5 -5/23/2014 -3.2 -3.2 -3.3	3.4 -3.4 -3.6 -3.6 -3.2 -3.4 9/14/2012 -4 -0.4 -4 -4.2 -4 -4.2 -4 6/7/2013 -3.4 -2.2 -3.2 -3.3 -3.1 6/18/2014 -3.1 -3.1 -3.2 -3.3 -3.3	-5.2 -2.4 -5 0 -5.2 -5 -5 -11/12/2012 -3.4 -0.009 -3.2 -3.6 -4.8 -7/5/2013 -2.9 -0.4175 -2.55 -3.1 -3.2 -2.9 -3.2 -3.2 -3.2 -3.2 -3.6 -3.1 -3.2 -3.2 -3.2 -3.2 -3.3 -3.2 -3.2 -3.3 -3.2 -3.3 -3.3	5.6 -2.6 -6 -5.8 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.7 -3.5 -3.3 -3.3 -3.3 -3.3 -3.1 -3.3 -3.3 -3.1 -3.2 -3.0 -3.2 -3.0 -3.1	-5.8 -0.003 -5.2 -5.8 -5.6 -5 -5 -5 -9/25/2013 -3.3 -2.6 -1.2 -3.3 -3.4 -3 -3 -3.3 -3.4 -3 -3 -3.3 -3.	-3.5 -3.5 -3.8 -3.6 -3.8 -3.5 -3.5 -3.4 -1.3 -3.1	-6.4 -5.9 -6.5 -6.3 -6.2 -5.8 -11/24/2014 NA NA
1 2 3 4 5 6 6 Port 1 2 3 4 5 6 6 Port 1 2 3 4 5 6 6 Port 1 2 3 4 4 5 6 6 Port 1 2 3 4 4 5 6 6 Port 1 2 3 3 4 4 5 6 6 Port 1 2 3 3 4 4 6 6 Port 1 2 3 3 4 4 6 6 Port 1 2 3 3 4 4 6 6 Port 1 2 3 3 4 4 6 6 Port 1 2 3 3 4 4 6 6 Port 1 2 3 3 4 4 6 6 Port 1 2 3 3 4 4 9 Port 1 2 3 3 4	-4.1 -4 -4.1 -4.1 -4 -4.1 -4 -4.1 -4 -4 -4.1 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	9.2 -9.8.9 -8.9 -8.8 -8.8 -8.8 -6.3.8 -5.4 -5.6 -5.6 -5.7.7 -7.7 -5.7.7 -7.7 -7.1 -7.1 -6.9.9 -9.9 -9.9	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -2.2 -1.5 -3.2 -3 -2.6 -2.8 -7 -6.8 -6.3 -6.8 -6.3 -7 -8.8 -6.3 -7 -8.8 -6.3	-5.2 -5.3 -5.2 -5 -5.2 -4.9 -5.2 -4.9 -5.2 -2.3 -3.4 -3.4 -3.2 -3 -3.2 -3.3 -4/29/2013 -2.2 -0.18 -1.7 -2.8 -5.2 -5.1 -5.2 -5.1 -5.2 -5.1 -5.2 -5.3 -5.4	3.2 3.1 3.3 2.9 2.7 3.3 3.3 3.3 3.4 3.1 2.7 2.9 5/10/2013 3.2 3.8 4.5 5/23/2014 3.2 3.2 3.3 3.3 3.3	3.4 3.4 3.6 3.6 3.2 3.4 9/14/2012 -4 -0.4 -4 -4.2 -4.2 -4 -2.2 -3.2 -3.2 -3.3 -3.1 6/18/2014 3.1 -3.2 -3.3 -3.1	5.2 -2.4 -5 0 -5.2 -5 -5 -5 -11/12/2012 -3.4 -0.009 -3.2 -3.2 -3.6 -4.8 -7/5/2013 -2.99 -0.4175 -2.55 -3.1 -3.2 -2.9 -3.2 -3.3 -3.1 -3.2 -3.2 -3.3 -3.1 -3.2 -3.2 -3.2 -3.3 -3.3 -3.3 -3.3 -3.3	5.6 -2.6 -6 -5.8 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.7 -3.5 -3.7 -3.5 -3.2 -3.1 -3.3 -3.3 -3.1 -3.3 -3.1 -3.3 -3.1 -3.3 -3.1 -3.3 -3.1 -3.2 -3.0 -3.1 -3.2 -3.0 -3.3 -3.1 -3.2 -3.0 -3.	9/25/2013 -3.3 -3.2 -5.8 -5.6 -5 9/25/2013 -3.3 -2.6 -1.2 -3.3 -3.4 -3 -3.2 -3.3 -3.2 -3.3 -3.2 -3.3 -3.2	-3.5 -3.5 -3.8 -3.6 -3.8 -3.5 -3.5 -3.4 -1.3 -3.1 -3.6	-6.4 -5.9 -6.5 -6.3 -6.2 -5.8 -6.1 -6.2 -5.8 -6.2 -5.8
1 2 3 4 5 6 6 Port 1 2 3 4 4 5 6 6 Port 1 2 3 4 4 5 6 6 Port 1 2 3 3 4 4 5 6 6 Port 2 3 3 4 5 6 6 Port 3 2 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-4.1 -4 -4.1 -4.1 -4.1 -4.1 -4.1 -4.3 -6.2 -7.2 -6.6 -6.6 -5.8 -6.5 -7.1 -6 -6.4 -7.1 -6 -6.4 -7.1 -6 -7.1 -6 -7.1 -6 -7.1 -6 -7.1 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	9.2 -9 -8.9 -8.9 -8.8 -8.8 -5.4 -5.6 -5.6 -5 -7.7 -7.7 -7.1 -7.1 -7.1 -6 -9.9 -9.9	-6.7 -6.5 -6.6 -6.8 -6.2 -6.3 -6.3 -3.2 -1.5 -3.2 -3 -2.6 -2.8 -7 -6.9 -2.8 -6.3 -6.3 -6.3 -6.3	-5.2 -5.3 -5.2 -5 -5.2 -4.9 -5.2 -4.9 -5.2 -2.3 -3.4 -3.4 -3.2 -3 -2.2 -0.18 -1.7 -2.3 -3.1 -2.8 -5.2 -5.2 -5.2 -5.3 -5.2 -5.2 -5.2 -5.2 -5.2 -6.2 -7.3 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4	3.2 -3.1 -3.3 -2.9 -2.7 -3.3 -3.3 -3.4 -3.1 -2.7 -2.9 5/10/2013 -3.2 -3.8 -3.8 -4.5 -5/23/2014 -3.2 -3.2 -3.3	3.4 -3.4 -3.6 -3.6 -3.2 -3.4 9/14/2012 -4 -0.4 -4 -4.2 -4 -4.2 -4 6/7/2013 -3.4 -2.2 -3.2 -3.3 -3.1 6/18/2014 -3.1 -3.1 -3.2 -3.3 -3.3	-5.2 -2.4 -5 0 -5.2 -5 -5 -11/12/2012 -3.4 -0.009 -3.2 -3.6 -4.8 -7/5/2013 -2.9 -0.4175 -2.55 -3.1 -3.2 -2.9 -3.2 -3.2 -3.2 -3.2 -3.6 -3.1 -3.2 -3.2 -3.2 -3.2 -3.3 -3.2 -3.2 -3.3 -3.2 -3.3 -3.3	5.6 -2.6 -6 -5.8 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.6 -5.7 -3.5 -3.3 -3.3 -3.3 -3.3 -3.1 -3.3 -3.3 -3.1 -3.2 -3.0 -3.2 -3.0 -3.1	-5.8 -0.003 -5.2 -5.8 -5.6 -5 -5 -5 -9/25/2013 -3.3 -2.6 -1.2 -3.3 -3.4 -3 -3 -3.3 -3.4 -3 -3 -3.3 -3.	-3.5 -3.5 -3.8 -3.6 -3.8 -3.5 -3.5 -3.4 -1.3 -3.1	-6.4 -5.9 -6.5 -6.3 -6.2 -5.8 -11/24/2014 NA NA

Table 2B Vacuum Readings At The Front Of The Building Super Stop & Shop New Paltz, New York

Port	1/16/2007	2/12/2007	3/20/2007	4/20/2007	5/15/2007	6/13/2007	7/27/2007	8/30/2007	9/26/2007	10/26/2007	11/29/2007	12/21/2007
1	-0.025	-0.015	-0.01	-0.01	-0.015	-0.01	-0.01	-0.01	-0.02	-0.005	-0.035	-0.02
2	-0.01	-0.025	-0.02	-0.03	-0.035	-0.035	-0.025	-0.025	-0.02	-0.02	-0.045	-0.01
3	-0.02	-0.02	-0.02	-0.035	-0.03	-0.015	-0.015	-0.01	-0.03	-0.005	-0.03	-0.01
4	-0.03	-0.03	-0.03	-0.03	-0.04	-0.045	-0.01	-0.03	-0.015	-0.01	-0.04	-0.015
5	-0.04	-0.06	-0.05	-0.045	-0.045	-0.05	-0.03	-0.025	-0.04	-0.005		-0.02
6	-0.02	-0.03	-0.03	-0.025	-0.03	-0.035	-0.015	-0.015	-0.03	-0.01	-0.055	-0.035
	1/01/0000	0/5/0000	4/0/0000	F (0 (0000	0/5/0000	7/0/0000	0/00/0000	0./00./0000	i			
Port	1/24/2008 -0.03	3/5/2008 -0.08	4/3/2008 -0.01	5/2/2008 -0.015	6/5/2008	7/2/2008 -0.02	<i>8/22/2008</i> -0.01	<i>9/28/2008</i> -0.01				
2	-0.03	-0.08	-0.01	-0.015	-0.02 -0.035	-0.02	-0.01	-0.01				
3	-0.04	-0.03	-0.02	-0.025	-0.035	-0.03	-0.025	-0.035				
4	-0.02	-0.03	-0.02	-0.025	-0.02	-0.01	-0.03	-0.02				
5	-0.04	-0.05	-0.03	-0.01	-0.035	-0.02	-0.02	-0.02				
6	-0.03	-0.08	-0.025	-0.025	-0.015	-0.015	-0.02	-0.035				
_							ı.		<u> </u>			
Port	3/17/2009	4/27/2009	5/13/2009	6/12/2009	8/31/2009	9/10/2009	10/16/2009	11/23/2009	12/17/2009			
1	-0.12	-0.012	-0.02	-0.011	-0.015	-0.011	-0.016	-0.015	-0.022			
2	-0.038	-0.032	-0.033	-0.023	-0.023	-0.025	-0.021	-0.018	-0.02			
3	-0.019	-0.01	-0.026	-0.013	-0.011	-0.009	-0.02	-0.014	-0.011			
4	-0.023	-0.019	-0.024	-0.013	-0.013	-0.012	-0.014	-0.023	-0.026			
5	-0.041	-0.025	-0.03	-0.024	-0.024	-0.029	-0.028	-0.035	-0.035			
6	-0.032	-0.014	-0.023	-0.015	-0.014	-0.01	-0.019	-0.016	-0.027			
Port	1/14/2010	2/9/2010	4/13/2010	5/17/2010	6/21/2010	8/11/2010	8/27/2010	10/4/2010	10/27/2010	12/17/2010	I	
1	-0.023	-0.012	-0.015	-0.01	-0.005	-0.003	-0.001	-0.007	0.002	0.035		
2	-0.023	-0.012	-0.013	-0.015	-0.003	-0.003	-0.012	-0.027	-0.014	-0.03		
3	-0.027	-0.02	-0.017	-0.013	-0.002	-0.01	-0.012	-0.006	-0.003	-0.007		
4	-0.028	-0.09	-0.015	-0.012	-0.01	-0.009	-0.013	-0.018	-0.01	-0.023		
5	-0.046	-0.031	-0.034	-0.018	-0.022	-0.017	-0.021	-0.025	-0.018	-0.029		
6	-0.024	-0.021	-0.016	-0.01	-0.004	-0.024	-0.01	-0.015	-0.004	-0.022		
			•	•	•	•				•	•	
Port	4/21/2011	6/7/2011	7/15/2011	9/22/2011	10/25/2011	11/21/2011	12/20/2011					
1	0.31	0.0007	0.005	0.047	0.021	0.02	0.03					
1 2	0.31 -0.05	0.0007 0	0.005 -0.007	0.047	0.021 -0.008	0.02 -0.022	0.03 -0.012					
1 2 3	0.31 -0.05 -0.02	0.0007 0 -0.011	0.005 -0.007 0.008	0.047 -0.005	0.021 -0.008 -0.021	0.02 -0.022 -0.02	0.03 -0.012 -0.016					
1 2 3 4	0.31 -0.05 -0.02 -0.03	0.0007 0 -0.011 -0.02	0.005 -0.007 0.008 -0.008	0.047 -0.005 -0.012	0.021 -0.008 -0.021 -0.042	0.02 -0.022 -0.02 -0.028	0.03 -0.012 -0.016 -0.017					
1 2 3 4 5	0.31 -0.05 -0.02 -0.03 -0.04	0.0007 0 -0.011 -0.02 -0.01	0.005 -0.007 0.008 -0.008 -0.027	0.047 -0.005 -0.012 -0.017	0.021 -0.008 -0.021 -0.042 -0.007	0.02 -0.022 -0.02 -0.028 -0.04	0.03 -0.012 -0.016 -0.017 -0.028					
1 2 3 4	0.31 -0.05 -0.02 -0.03	0.0007 0 -0.011 -0.02	0.005 -0.007 0.008 -0.008	0.047 -0.005 -0.012	0.021 -0.008 -0.021 -0.042	0.02 -0.022 -0.02 -0.028	0.03 -0.012 -0.016 -0.017					
1 2 3 4 5	0.31 -0.05 -0.02 -0.03 -0.04	0.0007 0 -0.011 -0.02 -0.01	0.005 -0.007 0.008 -0.008 -0.027	0.047 -0.005 -0.012 -0.017	0.021 -0.008 -0.021 -0.042 -0.007	0.02 -0.022 -0.02 -0.028 -0.04	0.03 -0.012 -0.016 -0.017 -0.028	11/28/2012	12/26/2012	I		
1 2 3 4 5 6 Port	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 -1/30/2012 -0.064	0.0007 0 -0.011 -0.02 -0.01 0 3/2/2012 0.059	0.005 -0.007 0.008 -0.008 -0.027 0.004 3/23/2012 -0.006	0.047 	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 6/19/2012 -0.015	0.02 -0.022 -0.02 -0.028 -0.04 -0.013 -0.013	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 11/12/2012 NA	NA	NA			
1 2 3 4 5 6	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 1/30/2012 -0.064 0.027	0.0007 0 -0.011 -0.02 -0.01 0 3/2/2012 0.059 -0.028	0.005 -0.007 0.008 -0.008 -0.027 0.004 3/23/2012 -0.006 -0.023	0.047 -0.005 -0.012 -0.017 0.013 5/23/2012 -0.015 -0.008	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 6/19/2012 -0.015 -0.05	0.02 -0.022 -0.02 -0.028 -0.04 -0.013 -0.013 -0.013	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 -11/12/2012 NA NA	NA NA	NA NA			
1 2 3 4 5 6 Port 1 2 3	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 1/30/2012 -0.064 0.027 -0.011	0.0007 0 -0.011 -0.02 -0.01 0 3/2/2012 0.059 -0.028 -0.012	0.005 -0.007 0.008 -0.008 -0.027 0.004 3/23/2012 -0.006 -0.023 -0.02	0.047 	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.015 -0.05 -0.03	0.02 -0.022 -0.02 -0.028 -0.04 -0.013 -0.013 -0.013 -0.013 NA NA	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 11/12/2012 NA NA NA	NA NA NA	NA NA NA			
1 2 3 4 5 6 Port 1 2 3 4	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 -0.064 0.027 -0.011 -0.021	0.0007 0 -0.011 -0.02 -0.01 0 3/2/2012 0.059 -0.028 -0.012 -0.016	0.005 -0.007 0.008 -0.008 -0.027 0.004 -0.024 -0.006 -0.023 -0.025	0.047 	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.015 -0.03 -0.03	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 -0.013 -0.013 -0.013 -0.013	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 11/12/2012 NA NA NA NA	NA NA NA NA	NA NA NA NA			
1 2 3 4 5 6 Port 1 2 3 4 5	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 1/30/2012 -0.064 0.027 -0.011 -0.021 -0.022	0.0007 0 -0.011 -0.02 -0.01 0 3/2/2012 0.059 -0.028 -0.012 -0.016 -0.023	0.005 -0.007 0.008 -0.008 -0.027 0.004 -0.027 -0.006 -0.023 -0.02 -0.025 -0.038	0.047	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.015 -0.03 -0.03 -0.07	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 9/14/2012 NA NA NA NA	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 -0.02 NA NA NA NA	NA NA NA NA	NA NA NA NA			
1 2 3 4 5 6 Port 1 2 3 4	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 -0.064 0.027 -0.011 -0.021	0.0007 0 -0.011 -0.02 -0.01 0 3/2/2012 0.059 -0.028 -0.012 -0.016	0.005 -0.007 0.008 -0.008 -0.027 0.004 -0.024 -0.006 -0.023 -0.025	0.047 	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.015 -0.03 -0.03	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 -0.013 -0.013 -0.013 -0.013	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 11/12/2012 NA NA NA NA	NA NA NA NA	NA NA NA NA			
1 2 3 4 5 6 Port 1 2 3 4 5 6	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 -0.064 -0.027 -0.011 -0.021 -0.022 -0.019	0.0007 0 -0.011 -0.02 -0.01 0 3/2/2012 0.059 -0.028 -0.012 -0.016 -0.023 -0.019	0.005 -0.007 0.008 -0.008 -0.027 0.004 -0.023 -0.023 -0.02 -0.025 -0.038 -0.026	0.047 	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.05 -0.03 -0.03 -0.07 -0.04	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 9/14/2012 NA NA NA NA NA	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 -0.02 -0.02 -0.02 -0.02	NA NA NA NA NA NA	NA NA NA NA NA NA	10/31/2013	12/20/2013	
1 2 3 4 5 6 Port 1 2 3 4 5	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 1/30/2012 -0.064 0.027 -0.011 -0.021 -0.022	0.0007 0 -0.011 -0.02 -0.01 0 3/2/2012 0.059 -0.028 -0.012 -0.016 -0.023	0.005 -0.007 0.008 -0.008 -0.027 0.004 -0.027 -0.006 -0.023 -0.02 -0.025 -0.038	0.047	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.015 -0.03 -0.03 -0.07	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 9/14/2012 NA NA NA NA	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 -0.02 NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA	10/31/2013 -0.11	12/20/2013 NA	
1 2 3 4 5 6 Port 1 2 3 4 5 6	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 1/30/2012 -0.064 0.027 -0.011 -0.021 -0.022 -0.019	0.0007 0 -0.011 -0.02 -0.01 0 3/2/2012 0.059 -0.028 -0.012 -0.016 -0.023 -0.019	0.005 -0.007 0.008 -0.008 -0.027 0.004 -0.023 -0.023 -0.022 -0.025 -0.038 -0.026	0.047	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.05 -0.03 -0.03 -0.07 -0.04	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 11/12/2012 NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA			
1 2 3 4 5 6 Port 1 2 3 4 5 6 Port 1	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 -0.064 -0.027 -0.011 -0.021 -0.021 -0.022 -0.019	0.0007 0 -0.011 -0.02 -0.01 0 0 3/2/2012 -0.059 -0.028 -0.012 -0.023 -0.019	0.005 -0.007 0.008 -0.008 -0.027 -0.004 -0.023 -0.023 -0.02 -0.025 -0.025 -0.038 -0.026	0.047 	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.05 -0.03 -0.03 -0.07 -0.04	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 9/14/2012 NA NA NA NA NA NA	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.	NA NA NA NA NA NA O.065 -0.062 -0.03	NA NA NA NA NA NA -0.004	-0.11	NA	
1 2 3 4 5 6 Port 1 2 3 4 5 6 Port 1 2 3 4 4 5 6	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 -0.064 0.027 -0.011 -0.021 -0.021 -0.022 -0.019 	0.0007 0 -0.011 -0.02 -0.01 0 0 0 3/2/2012 -0.059 -0.028 -0.012 -0.016 -0.023 -0.019 2/7/2013 NA NA NA	0.005 -0.007 0.008 -0.008 -0.008 -0.027 0.004 3/23/2012 -0.006 -0.023 -0.02 -0.025 -0.025 -0.038 -0.026 NA NA NA NA	0.047 	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.05 -0.03 -0.03 -0.07 -0.04 -0.05 -0.03 -0.07 -0.04	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 9/14/2012 NA NA NA NA NA NA -0.11 	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 -0.137 -0.024 -0.025	NA NA NA NA NA NA OO65 -0.065 -0.062 -0.03 -0.302	NA NA NA NA NA NA OO04 -0.02 -0.018 -0.011	-0.11 -0.021 -0.99 -0.89	NA NA NA NA	
1 2 3 4 5 6 Port 1 2 3 4 5 6 Port 1 2 3 4 5 5 6	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 -0.064 -0.027 -0.011 -0.021 -0.021 -0.019 -0.019 -0.019	0.0007 0 -0.011 -0.02 -0.01 0 -0.059 -0.059 -0.028 -0.012 -0.016 -0.023 -0.019 27/2013 NA NA NA NA	0.005 -0.007 -0.008 -0.008 -0.027 -0.004 3/23/2012 -0.006 -0.023 -0.02 -0.025 -0.025 -0.038 -0.026 3/26/2013 NA NA NA NA NA	0.047 	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.03 -0.03 -0.03 -0.07 -0.04 -0.08 -0.9 -0.6 -0.6	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 9/14/2012 NA NA NA NA NA NA O-0.1 -0.1 -0.1	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.137 -0.024 -0.116 -0.025 -0.024	NA NA NA NA NA NA -0.065 -0.062 -0.03 -0.302 -0.07	NA NA NA NA NA NA -0.004 -0.02 -0.018 -0.011 -0.013	-0.11 -0.021 -0.99 -0.89 -1.12	NA NA NA NA	
1 2 3 4 5 6 Port 1 2 3 4 5 6 Port 1 2 3 4 4 5 6	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 -0.064 0.027 -0.011 -0.021 -0.021 -0.022 -0.019 	0.0007 0 -0.011 -0.02 -0.01 0 0 0 3/2/2012 -0.059 -0.028 -0.012 -0.016 -0.023 -0.019 2/7/2013 NA NA NA	0.005 -0.007 0.008 -0.008 -0.008 -0.027 0.004 3/23/2012 -0.006 -0.023 -0.02 -0.025 -0.025 -0.038 -0.026 NA NA NA NA	0.047 	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.05 -0.03 -0.03 -0.07 -0.04 -0.05 -0.03 -0.07 -0.04	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 9/14/2012 NA NA NA NA NA NA -0.11 	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 -0.137 -0.024 -0.025	NA NA NA NA NA NA OO65 -0.065 -0.062 -0.03 -0.302	NA NA NA NA NA NA OO04 -0.02 -0.018 -0.011	-0.11 -0.021 -0.99 -0.89	NA NA NA NA	
1 2 3 4 5 6 6 Port 1 2 2 3 4 4 5 5 6 Port 1 2 3 4 5 6 6 Port 1 2 6 6 Port 1 7 2 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 -0.064 -0.064 -0.027 -0.011 -0.022 -0.019 	0.0007 0 -0.011 -0.02 -0.01 0 0 3/2/2012 0.059 -0.028 -0.012 -0.016 -0.023 -0.019 2/7/2013 NA NA NA NA	0.005 -0.007 -0.008 -0.008 -0.008 -0.027 -0.004 3/23/2012 -0.006 -0.023 -0.02 -0.025 -0.025 -0.026 3/26/2013 NA	0.047 	0.021 -0.008 -0.0021 -0.0042 -0.0042 -0.005 -0.005 -0.005 -0.003 -0.007 -0.004 5/10/2013 -0.8 -0.9 -0.6 -0.6 -0.95	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 9/14/2012 NA NA NA NA NA O-11 -0.1	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 -0.02 11/12/2012 NA NA NA NA NA NA -0.137 -0.024 -0.116 -0.025 -0.024 -0.012	NA NA NA NA NA NA NA -0.065 -0.062 -0.03 -0.302 -0.07 -0.047	NA NA NA NA NA NA -0.004 -0.02 -0.018 -0.011 -0.013 -0.009	-0.11 -0.021 -0.99 -0.89 -1.12 -0.082	NA NA NA NA NA NA	
Port 1 2 3 4 4 5 6 6 Port 1 2 3 4 4 5 6 6 Port 1 2 3 4 5 6 6 Port 1 5 Port	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 -0.064 -0.027 -0.011 -0.021 -0.021 -0.021 -0.019 -0.019 -0.019 -0.019	0.0007 0 -0.011 -0.02 -0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.005 -0.007 -0.008 -0.008 -0.027 -0.004 3/23/2012 -0.006 -0.023 -0.02 -0.025 -0.025 -0.026 3/26/2013 NA	0.047 	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.03 -0.03 -0.03 -0.07 -0.04 5/10/2013 -0.6 -0.6 -0.6 -0.95	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 9/14/2012 NA NA NA NA NA NA -0.11 -0.1 -0.1	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 -0.02 -0.02 -0.02 -0.03 -0.137 -0.024 -0.116 -0.025 -0.024 -0.012	NA NA NA NA NA NA NA -0.065 -0.062 -0.03 -0.302 -0.07 -0.047	NA NA NA NA NA NA NA -0.02 -0.013 -0.011 -0.013 -0.009	-0.11 -0.021 -0.99 -0.89 -1.12 -0.082	NA NA NA NA NA NA	
1 2 3 4 5 6 6 Port 1 2 3 4 4 5 6 6 Port 1 2 3 4 4 5 6 6 Port 1 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 -0.064 -0.027 -0.011 -0.021 -0.022 -0.019 -1/11/2013 NA NA NA NA	0.0007 0 -0.011 -0.02 -0.01 0 0 3/2/2012 0.059 -0.012 -0.016 -0.023 -0.019 2/7/2013 NA NA NA NA NA	0.005 -0.007 -0.008 -0.008 -0.027 -0.004 3/23/2012 -0.006 -0.023 -0.02 -0.025 -0.038 -0.026 3/26/2013 NA	0.047	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.015 -0.03 -0.03 -0.07 -0.04 5/10/2013 -0.6 -0.6 -0.95	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 -0.013 -0.13 -0.13 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.137 -0.024 -0.116 -0.025 -0.024 -0.012	NA NA NA NA NA NA NA -0.065 -0.03 -0.302 -0.07 -0.047 -0.047	NA NA NA NA NA NA O.004 -0.002 -0.018 -0.011 -0.013 -0.009	-0.11 -0.021 -0.99 -0.89 -1.12 -0.082 11/4/2014 -0.035	NA NA NA NA NA NA	
1 2 3 4 5 6 6 Port 1 2 3 4 5 5 6 9 Port 1 2 3 4 5 5 6 9 Port 1 2 9 7 9 Port 1 2 9 9 9 Port 1 2	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 -0.064 -0.027 -0.011 -0.022 -0.019 -1/11/2013 NA NA NA NA NA	0.0007 0 -0.011 -0.02 -0.010 0 0 3/2/2012 0.059 -0.028 -0.012 -0.016 -0.023 -0.019 2/7/2013 NA NA NA NA NA	0.005 -0.007 0.008 -0.008 -0.008 -0.0027 -0.004 3/23/2012 -0.006 -0.023 -0.02 -0.025 -0.038 -0.026 3/26/2013 NA	0.047	0.021 -0.008 -0.0021 -0.0042 -0.007 -0.0042 -0.005 -0.005 -0.003 -0.007 -0.004 5/10/2013 -0.6 -0.6 -0.6 -0.95 -0.995 -0.60 -0.60 -0.15	0.02 -0.022 -0.022 -0.04 -0.04 -0.013 -0.13 -0.13 -0.14/2012 NA NA NA NA NA -0.11 	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 -0.02 11/12/2012 NA NA NA NA NA NA -0.137 -0.024 -0.116 -0.025 -0.024 -0.012 7/31/2014 -0.02 -0.021	NA NA NA NA NA NA NA -0.065 -0.062 -0.03 -0.302 -0.07 -0.047 -0.047	NA NA NA NA NA NA NA -0.002 -0.018 -0.011 -0.009 -0.22 -0.018 -0.013 -0.009	-0.11 -0.021 -0.99 -0.89 -1.12 -0.082 11/4/2014 -0.035 -0.016	NA NA NA NA NA NA 11/24/2014 NA NA	
1 2 3 4 5 6 6 Port 1 2 3 4 4 5 6 6 Port 1 2 3 4 4 5 6 6 Port 1 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 -0.064 -0.027 -0.011 -0.021 -0.022 -0.019 -1/11/2013 NA NA NA NA	0.0007 0 -0.011 -0.02 -0.01 0 0 3/2/2012 0.059 -0.012 -0.016 -0.023 -0.019 2/7/2013 NA NA NA NA NA	0.005 -0.007 -0.008 -0.008 -0.027 -0.004 3/23/2012 -0.006 -0.023 -0.02 -0.025 -0.038 -0.026 3/26/2013 NA	0.047	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.015 -0.03 -0.03 -0.07 -0.04 5/10/2013 -0.6 -0.6 -0.95	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 -0.013 -0.13 -0.13 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.137 -0.024 -0.116 -0.025 -0.024 -0.012	NA NA NA NA NA NA NA -0.065 -0.03 -0.302 -0.07 -0.047 -0.047	NA NA NA NA NA NA O.004 -0.002 -0.018 -0.011 -0.013 -0.009	-0.11 -0.021 -0.99 -0.89 -1.12 -0.082 11/4/2014 -0.035	NA NA NA NA NA NA	
1 2 3 4 5 6 6 Port 1 2 3 4 4 5 6 6 Port 1 2 3 4 4 5 6 6 Port 1 2 3 3 4 5 6 6 Port 1 2 3 3 4 5 6 6 Port 1 2 3 3 4 5 6 6 Port 1 2 3 3 4 5 6 6 Port 1 2 3 3 4 5 6 6 Port 1 2 3 3 4 5 6 6 Port 1 2 3 3 4 5 6 6 Port 1 2 3 3 4 5 6 6 Port 1 2 3 3 4 5 6 6 Port 1 2 3 3 4 5 6 9 Port 1 2 3 3 6 9 Port 1 2 3 3 6 9 Port 1 2 3 3 6 9 Port 1 2 6 9 Port	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 1/30/2012 -0.064 0.027 -0.011 -0.021 -0.021 -0.021 -0.019 1/11/2013 NA	0.0007 0 -0.011 -0.02 -0.01 0 -0.059 -0.028 -0.012 -0.016 -0.023 -0.019 2/7/2013 NA NA NA NA NA NA NA	0.005 -0.007 -0.008 -0.008 -0.027 -0.004 3/23/2012 -0.006 -0.023 -0.02 -0.025 -0.025 -0.025 -0.026 3/26/2013 NA	0.047	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.03 -0.03 -0.03 -0.07 -0.04 5/10/2013 -0.6 -0.6 -0.6 -0.95 -0.05 -0.05 -0.06 -0.15 -0.05	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 9/14/2012 NA NA NA NA NA NA -0.11 -0.1 -0.1 -0.1 -0.023 	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 11/12/2012 NA NA NA NA NA NA -0.024 -0.137 -0.024 -0.012 -0.025 -0.024 -0.012 -0.022 -0.012	NA NA NA NA NA NA NA NA -0.065 -0.062 -0.03 -0.302 -0.07 -0.047 -0.343 -0.343 -0.09 -0.165	NA NA NA NA NA NA NA -0.004 -0.02 -0.011 -0.013 -0.009 -0.212 -0.313 -0.021 -0.021 -0.021	-0.11 -0.021 -0.99 -0.89 -1.12 -0.082 -1.14/2014 -0.035 -0.016 -0.022	NA NA NA NA NA NA NA NA	
Port 1 2 3 4 4 5 6 6 Port 1 2 3 4 4 5 6 6 Port 1 2 3 4 4 5 6 6 Port 1 2 3 4 4 5 6 6 Port 1 2 3 3 4 4 5 6 Port 1 2 3 3 4 4 9 Port 1 2 2 3 3 9 Port 1 2 2 2 3 3 9 Port 1 2 2 2 3 3 9 Port 1 2 2 2 3 9 Port 1 2 2 2 3 3 9 Port 1 2 2 2 3 9 Port 1 2 2 2 3 9 Port 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.31 -0.05 -0.02 -0.03 -0.04 -0.03 1/30/2012 -0.064 0.027 -0.011 -0.021 -0.021 -0.019 1/11/2013 NA	0.0007 0 -0.011 -0.02 -0.010 0 -0.011 -0.02 -0.059 -0.028 -0.012 -0.016 -0.023 -0.019 277/2013 NA NA NA NA NA NA NA NA NA	0.005 -0.007 -0.008 -0.008 -0.008 -0.008 -0.007 -0.004 3/23/2012 -0.006 -0.023 -0.02 -0.025 -0.025 -0.038 -0.026 3/26/2013 NA	0.047	0.021 -0.008 -0.021 -0.042 -0.007 -0.042 -0.015 -0.015 -0.03 -0.03 -0.03 -0.07 -0.04 5/10/2013 -0.6 -0.6 -0.95 -0.65 -0.95 -0.15 -0.09 -0.15 -0.09 -0.2	0.02 -0.022 -0.022 -0.028 -0.04 -0.013 9/14/2012 NA NA NA NA NA -0.1 -0.1 -0.1 -1 -0.1 -1 -0.1 -1 -0.1 -1 -0.1 -1 -0.1 -1 -0.1 -1 -0.1 -1 -0.1 -1 -0.1 -1 -0.1 -1 -0.1 -1 -1 -0.1 -1 -1 -0.1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.03 -0.012 -0.016 -0.017 -0.028 -0.02 11/12/2012 NA NA NA NA NA NA O-1.137 -0.024 -0.116 -0.025 -0.024 -0.012 7/31/2014 -0.02 -0.021 -0.027 -0.03	NA NA NA NA NA NA NA -0.065 -0.03 -0.302 -0.07 -0.047 -0.343 -0.009 -0.165 -0.023	NA NA NA NA NA NA NA -0.004 -0.013 -0.011 -0.013 -0.009 -0.313 -0.021 -0.021 -0.017 -0.003	-0.11 -0.021 -0.99 -0.89 -1.12 -0.082 -1.14/2014 -0.035 -0.016 -0.022 -0.015	NA NA NA NA NA NA NA NA NA NA	

TABLE 3

Subslab Ventilation System Air Sampling Analytical Results Summary April 2010 - March 2014 Stop and Shop New Paltz, New York

April 2010 Confirmatory Air Sampling

April 2010 Comminato	יו אַ אַיוי	Jan	ıbııııç	,																				
Sample ID	AN	IBIEN	T AIR		EXI	HΑ	AUST		F	POF	RT 6		POF	T (6 DUP		Р	OF	RT 3		TRI	PΕ	BLANK	
Lab İD	J	A4429	98-1		JA4	142	298-2		JA	44	298-4		JA	142	298-5		JA	442	298-3		JA	44	298-6	
Date	4	1/13/2	010		4/1	3/2	2010		4/	13/	2010		4/1	3/2	2010		4/	13/	2010		4/	13/	2010	
GC/MS Volatiles (TO-15)	ug/m3	Q	ppbv	Q	ug/m3	Q	ppbv	Q	ug/m3	Q	ppbv	Q	ug/m3	Q	ppbv	a	ug/m3	Q	ppbv	Q	ug/m3	Q	ppbv	Q
Chloroethane	< 0.53		< 0.20		< 0.53		< 0.20		< 0.53		<0.20		< 0.53		< 0.20		< 0.53		< 0.20		< 0.53		<0.2	
1,1-Dichloroethylene	< 0.79		< 0.20		< 0.79		< 0.20		< 0.79		<0.20		< 0.79		< 0.20		< 0.79		< 0.20		< 0.79		<0.2	
1,2-Dichloroethane	<0.81		< 0.20		<0.81		< 0.20		<0.81		<0.20		0.27		0.067	J	<0.81		< 0.20		<0.81		<0.2	
trans-1,2-Dichloroethylene	< 0.79		< 0.20		< 0.79		< 0.20		< 0.79		<0.20		< 0.79		< 0.20		< 0.79		< 0.20		< 0.79		<0.2	
cis-1,2-Dichloroethylene	< 0.79		< 0.20		< 0.79		< 0.20		< 0.79		<0.20		0.52		0.13	J	< 0.79		< 0.20		< 0.79		<0.2	
Tetrachloroethylene	0.23		0.034	J	3.3		0.49		134		19.7		5.7		0.84		1.6		0.24	J	< 0.27		< 0.04	
Trichloroethylene	<0.21		< 0.04		0.64		0.12		0.97		0.18		0.81		0.15		<0.21		< 0.04		0.22		0.41	
Vinyl chloride	< 0.51		< 0.20		< 0.51		< 0.20		<0.51		<0.20		< 0.51		< 0.20		< 0.51		< 0.20		< 0.51		<0.2	

August 2010 Confirmatory Air Sampling

August 2010 Committee	, ,	0	umpn	…ຮ	,																			
Sample ID	AM	IBIENT	ΓAIR		EXI	HΑ	AUST		F	POF	RT 6		P	OR	T 3		POF	₹Т	3 DUP		TRI	РΒ	LANK	
Lab ID	J	A5513	1-4		JA5	551	131-3		JA	55	131-2		JA:	551	31-1		JA	551	131-5		JΑ	55	131-6	
Date	8	3/27/20	010		8/2	7/2	2010		8/	27/	2010		8/2	27/2	2010		8/2	27/	2010		8/	27/	2010	
GC/MS Volatiles (TO-15)	ug/m3	Ö	ppbv	Q	ug/m3	Q	ppbv	Q	ug/m3	Q	ppbv	Q	ug/m3	Ø	ppbv	Q	ug/m3	ø	ppbv	ø	ug/m3	Q	ppbv	Q
Chloroethane	< 0.53		< 0.20		<2.1		<0.8		<2.1		<0.8		<2.1		<0.8		<2.1		<0.8		< 0.53		<0.2	
1,1-Dichloroethylene	< 0.79		<0.20		<3.2		<0.8		<3.2		<0.8		<3.2		<0.8		<3.2		<0.8		< 0.79		<0.2	
1,2-Dichloroethane	<0.81		<0.20		<3.2		<0.8		<3.2		<0.8		<3.2		<0.8		<3.2		<0.8		<0.81		<0.2	
trans-1,2-Dichloroethylene	< 0.79		<0.20		<3.2		<0.8		<3.2		<0.8		<3.2		<0.8		<3.2		<0.8		< 0.79		<0.2	
cis-1,2-Dichloroethylene	< 0.79		<0.20		<3.2		<0.8		<3.2		<0.8		<3.2		<0.8		<3.2		<0.8		< 0.79		<0.2	
Tetrachloroethylene	< 0.27		<0.040		3.9		0.57		7.5		1.1		1.2		0.18		1.6		0.24		< 0.27		< 0.04	
Trichloroethylene	<0.21		<0.040		<0.86		<0.16		<0.86		<0.16		<0.86		< 0.16		<0.86		< 0.16		<0.21		< 0.04	
Vinyl chloride	< 0.51		< 0.20		<2.0		<0.8		<2.0		<0.8		<2.0		<0.8		<2.0		<0.8		< 0.51		<0.2	

November 2012 Confirmatory Air Sampling

Sample ID	AM	BIEN	TAIR		EX	ΉA	UST		F	POF	RT 6		P	OR	T 3		POI	₹T	6 DUP	
Lab ID	J	B2114	5-4		JB	211	145-3		JE	321	145-2		JB:	211	45-1		JB	211	45-5	
Date	1	1/12/2	012		11/	12	2012		11	/12	/2012		11/	12/	2012		11/	12/	2012	
GC/MS Volatiles (TO-15)	ug/m3	Q	ppbv	ø	ug/m3	ø	ppbv	ø	ug/m3	Q	ppbv	Ø	ug/m3	ø	ppbv	ø	ug/m3	Q	ppbv	Q
Chloroethane	< 0.53		< 0.20		<2.1		<0.80		<2.1		<0.80		<2.1		<0.80		<2.1		<0.80	
1,1-Dichloroethylene	< 0.79		< 0.20		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80	
1,2-Dichloroethane	<0.81		< 0.20		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80	
trans-1,2-Dichloroethylene	< 0.79		< 0.20		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80	
cis-1,2-Dichloroethylene	< 0.79		< 0.20		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80	
Tetrachloroethylene	< 0.27		< 0.040		4.3		0.64		7.5		1.1		2.2		0.16		6.8		1.0	
Trichloroethylene	<0.21		< 0.040		<0.86		<0.16		<0.86		<0.16		<0.86		< 0.16		1.2		0.23	
Vinyl chloride	< 0.51		< 0.20		<2.0		<0.80		<2.0		<0.80		<2.0		<0.80		<2.0		<0.80	

March 2014 Confirmatory Air Sampling

March 2014 Commina	luiy A	11 Ja	ութու	ιy																
Sample ID	AN	IBIEN	TAIR		E)	(HA	UST		P	OF	RT 6		P	OF	T 3		POF	₹T	6 DUP	
Lab ID	J	B6142	26-4		JB	614	126-3		JB	614	426-2		JB	614	126-1		JB	614	126-5	
Date		3/7/20	14		3.	/7/2	014		3.	/7/2	2014		3/	7/2	014		3/	7/2	014	
GC/MS Volatiles (TO-15)	ug/m3	Q	ppbv	Q	ug/m3	Q	ppbv	Q	ug/m3	Q	ppbv	Q	ug/m3	a	ppbv	Q	ug/m3	Q	ppbv	Q
Chloroethane	< 0.53		<0.20		<2.1		<0.80		<2.1		<0.80		<2.1		<0.80		<2.1		<0.80	
1,1-Dichloroethylene	< 0.79		<0.20		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80	
1,2-Dichloroethane	<0.81		<0.20		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80	
trans-1,2-Dichloroethylene	< 0.79		< 0.20		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80	
cis-1,2-Dichloroethylene	< 0.79		< 0.20		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80		<3.2		<0.80	
Tetrachloroethylene	< 0.27		< 0.040		1.9		0.28		1.9		0.28		<1.1		< 0.16		2.1		0.31	
Trichloroethylene	<0.21		< 0.040		<0.86		< 0.16		<0.86		<0.16		<0.86		< 0.16		<0.86		< 0.16	
Vinyl chloride	< 0.51		<0.20		<2.0		<0.80		<2.0		<0.80		<2.0		<0.80		<2.0		<0.80	П

Notes

1. The sub slab venting (SSV) system has operated continuously since 18 December 2006. Initial confirmatory air sampling was conducted on 16 January 2007 and additional air sampling is conducted annually.

<u>Abbreviations</u>

Q: Qualifier

U: The compound was not detected at the indicated concentration.

J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value. ug/m³: micrograms per cubic meter ppbv: parts per billion by volume

FIGURES

APPENDIX D

Historical Groundwater Analytical Results for Abandoned Wells

Well MW-1 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

	12/91	9/94	2/21/1996	3/7/1996	3/19/1996	2/7/1997	1/20/1998	5/14/1998	8/27/1998	12/4/1998	2/26/1999	8/2/2001
Halogenated Volatile Organics												
Vinyl Chloride	<10.0	U	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.81J
cis-1,2-Dichloroethene	< 5.0	5.5	<1.0	<1.0	<1.0	7.7	4.0	5.0	6.1	2.5	1.7	0.92J
Trichloroethene	16.0	7.1	<1.0	<1.0	<1.0	9.3	5.0	7.1	15	3.9	2.8	4.3
Tetrachloroethene	65	39	<1.0	1.1	2.6	57	28	38	62	23	19	12
Methylene Chloride	<5.0	<u>NR</u>	<u><1.0</u>	<u>U</u>	<u>U</u>	<1.0	<u><1.0</u>	<u><1.0</u>	<u>2</u>	<1.0	<u><1.0</u>	<1.0
TOTAL VOCs	81.0	51.6	ND	1.1	2.6	74.0	37.0	50.1	85.1	29.4	23.5	18.0
	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003	8/18/2004	8/30/2005	8/31/2006	8/30/2007	9/25/2008	6/10/2009	6/9/2011
Halogenated Volatile Organics												
Vinyl Chloride	0.99J	0.60J	1.8	2.5	2.8	<1.0	1.4	<1.0	<5.0	<5.0	<10.0	<5.0
cis-1,2-Dichloroethene	4.0				0.0	•	0.7	501	- 0			- 0
	<1.0	1.1	4	1.0J	2.8	2	2.7	5.0J	<5.0	<5.0	<5.0	<5.0
Trichloroethene	1.9	1.1 2.2	4 8.7	1.0J 2.8	2.8 6.9	2 4.6	5.3	5.0J 5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0
•	_		-		_							
Trichloroethene	1.9	2.2	8.7		6.9	4.6	5.3	5.0	<5.0	<5.0	<5.0	<5.0

4/3/2013

Halogenated Volatile Organics

TOTAL VOCs	6.8
Methylene Chloride	<2.5
Tetrachloroethene	3.8
Trichloroethene	1.9
cis-1,2-Dichloroethene	1.1 J
Vinyl Chloride	<1.0

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. U = Indicates the compound was analyzed, but not detected.
- 3. J = Indicates an estimated value less than the lowest standard.
- 4. NR = result not reported for indicated compound.
- 5. All results are in micrograms per liter (ug/l, ppb).
- 6. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).
- 7. B = Indicates the compound was detected in the field blank sample or associated batch blank.

Well MW-3 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

	12/91	9/94	2/5/1996	3/7/1996	3/19/1996	2/7/1997	1/20/1998	5/14/1998	8/27/1998	12/4/1998	2/26/1999	8/2/2001	11/6/2001
Halogenated Volatile Organics													
Vinyl Chloride	<10.0	U	1.8	1.4	2.2	<1.0	1	<1.0	<1.0	<1.0	<1.0	<1.0	0.69J
cis-1,2-Dichloroethene	< 5.0	10	7.0	7.9	12	3.8	7.0	7.2	11	10	6.4	12	9.3
1,1,1-Trichloroethane	< 5.0	U	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene	3.0	< 5.0	<1.0	<1.0	<1.0	<1.0	0.8J	0.8J	1.2	1.2	0.7J	1.1	1.1
Tetrachloroethene	15	<5.0	2.9	<1.0	8.6	0.5	0.7J	0.6J	1J	0.7J	0.5J	0.77J	<1.0
Aromatic Volatile Organics													
sec-Butylbenzene	NA	NA	NA	NA	NA	NA	<1.0	1.0	<1.0	<1.0	0.7J	<1.0	<1.0
Benzene	<u><5.0</u>	<u>U</u>	<u><0.5</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<u>0.5J</u>	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>
TOTAL VOCs	18	10	11.7	9.3	22.8	4.3	9.5	9.6	13.2	11.9	8.3	0.8	11.09
										(DUP)			
	2/19/2002	5/15/2002	8/15/2002	8/21/2003	_m 5/19/2004	8/18/2004	11/16/2004	2/21/2005	8/30/2005	8/30/2005	8/31/2006	9	
Halogenated Volatile Organics					5/19/2004							2006	
Vinyl Chloride	<1.0	1.2	<1.0	1.7	គ្គ 1.8	2.9	3.0	2.0	2	1.4	1.0J		
cis-1,2-Dichloroethene	6.1	6.4	17	12	1.8 7.9 <1.0	12	7.2	4.5	9.8	9.6	5.0	September	
1,1,1-Trichloroethane	<1.0	<1.0	<1.0	<1.0	≥ <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ept	
Trichloroethene	0.78J	0.7J	1.2	1.2	<u>~</u> 1.4	1.3	1.0	0.56J	1.0	0.97J	<1.0		
Tetrachloroethene	<1.0	<1.0	0.7J	<1.0	਼ਿਲ੍ਹੇ 0.6J	0.6J	0.6J	<1.0	<1.0	<1.0	<1.0	ctio	
Aromatic Volatile Organics					1.4 0.6J							Injection;	
sec-Butylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0 E 0.61B	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	HRC	
Benzene	<u><1.0</u>	<u>0.6J</u>	<u>0.9J</u>	<u><1.0</u>	[±] 0.6J,B	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<u>0.53J</u>	<u><1.0</u>	五	
TOTAL VOCs	6.9	8.3	19.8	14.9	12.3	16.8	11.8	7.06	12.8	12.5	6.0		

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. U = Indicates the compound was analyzed, but not detected.
- 3. J = Indicates an estimated value less than the lowest standard.
- 4. NA = Sample not analyzed for the indicated compound.
- 5. All results are in micrograms per liter (ug/l, ppb).
- 6. B = Indicates the compound was detected in the field blank sample.
- 7. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).
- 8. MW-3 was not sampled on 12/14/06,3/28/07, 6/21/07, 8/30/07, 3/7/08, 9/25/08, 6/10/09, and 6/9/2011 due to the presence of HRC in the well. MW-3 was not sampled on 4/3/2013 due to blockage at a depth of 4 ft. (to be assessed during next sampling event)

TABLE 5

Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

				Kevon	ak Di y Cieai	ileis Site M	J. 33002 I						
	12/91	9/94	02/05/96	03/07/96	03/19/96	02/07/97	01/20/98	05/14/98	(Dup) 05/14/98	08/27/98	12/04/98	02/26/99	8/2/2001
Halogenated Volatile Organics	12/91	9/94	02/03/90	03/07/90	03/19/90	02/07/97	01/20/96	03/14/96	03/14/96	00/21/90	12/04/90	02/20/99	0/2/2001
Vinyl Chloride	<10.0	U	10	<2.0	<5.0	2.2	39	5.5	5.7	70	43	17	14
cis-1,2-Dichloroethene	<5.0	36	240	46	220	120	120E	88	87	310	220	120	130
1,1,1-Trichloroethane	<5.0	U	<10.0	<2.0	<5.0	6.8	0.8J	<1.0	<1.0	2.6	1.1	<1.0	0.84J
Trichloroethene	8.0	18	32	10	26	24	35	30	31	48	46	25	27
Tetrachloroethene	178	200	310	110	290	88	210	190	180	230	210	130	130
Chloroethane	<10.0	U	<10.0	U	U	<1	2.0	<1.0	<1.0	2.6	6.3	2.0	<1.0
1, 1-Dichloroethene	<5.0	U	<10.0	U	U	<1	<1.0	<1.0	<1.0	0.6J	<1.0	<1.0	<1.0
trans 1,2-Dichloroethene	<5.0	U	<10.0	U	U	<1	<1.0	<1.0	<1.0	0.9J	0.8J	0.5J	0.83J
Chloroform	< 5.0	<u>U</u>	<10.0	<u>U</u>	<u>U</u>	<1	<1.0	<1.0	<1.0	<1.0	<1.0	<u>0.6J</u>	<u>0.94J</u>
TOTAL VOCs	186.0	254	592	166	536	241.0	286.8	313.5	303.7	663.2	527.2	295.1	303.6
			(Dup)		(Dup)			(Dup)		(Dup)			
	11/6/2001	2/19/2002	2/19/2002	5/15/2002	5/15/2002	8/15/2002	8/21/2003	8/21/2003	8/18/2004	8/18/2004	8/30/2005	8/31/2006	8/30/2007
Vinyl Chloride	31	28	28	5.5	5.1	36	6.1	6.5	8.0	6.3	24	1.0J	27
cis-1,2-Dichloroethene	140	88	80	28	28	150	55	61	66	60	140	23	110
1,1,1-Trichloroethane	1.4	0.79J	0.71J	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0
Trichloroethene	39	25	23	14	14	40	29	31	29	25	23	8.0	23.0
Tetrachloroethene	180	110	120	86	88	170	130	160	170	170	90	67	110
Chloroethane	4.4	6.7	6.2	1.7	1.6	9.9	<1.0	1.4	<1.0	1.4	4.5	<1.0	<5.0
1, 1-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0
trans 1,2-Dichloroethene	1.2	0.68J	0.65J	<1.0	<1.0	1.4	0.7J	0.8J	0.7J	0.6J	<1.0	<1.0	<5.0
Chloroform	1.1	0.78J	0.69J	0.9J	0.9J	1.2	1.0J	1.1	0.9J	<1.0	<1.0	<1.0	<5.0
TOTAL VOCs	398.1	260.0	259.3	136.1	137.6	409.7	221.8	261.8	274.6	263.3	281.5	99.0	270.0
	9/25/2008	6/10/2009	6/9/2011	4/3/2013									
Vinyl Chloride	21	<10.0	1.2J	<1.0									
cis-1,2-Dichloroethene	98	< 5.0	26	13									
1,1,1-Trichloroethane	<5.0	< 5.0	<5.0	<2.5									
Trichloroethene	15	< 5.0	5.8	4.5									
Tetrachloroethene	67	6.6	58	41									
Chloroethane	<5.0	<10.0	<5.0	<2.5									
1, 1-Dichloroethene	<5.0	<5.0	<5.0	< 0.5									
trans 1,2-Dichloroethene	<5.0	<5.0	<5.0	<2.5									
Chloroform	<5.0	< 5.0	< 5.0	<2.5									
TOTAL VOCs	201	6.6	91.0	58.5									

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. U = Indicates the compound was analyzed, but not detected.
- 3. J = Indicates an estimated value less than the lowest standard.
- 4. E = Indicates an estimated value greater than the highest standard.
- 5. All results are in micrograms per liter (ug/l, ppb).
- 6. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).

Well MW-6 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

	1/20/1998	5/14/1998	8/26/1998	12/3/1998	2/25/1999	8	3/2/2001	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003	თ 5/19/2004
Halogenated Volatile Organics													00
Vinyl Chloride	5.0	1.4	12	3.6	12		13	24	2.5	<1.0	7.9	1.2	13
cis-1,2-Dichloroethene	35	24	91	76	66		85	460	89	21	83	19	13 75 2.9 4.5
Trichloroethene	14	7.9	24	20	8.4		12	96	34	8.9	13	5.6	ē 2.9
Tetrachloroethene	41	46	53	42	23		26	56	29	19	24	20	∮ 4.5
Chloroethane	<1.0	<1.0	3.4	1.2	<1.0		<1.0	5.3	<1.0	<1.0	<1.0	<1.0	÷ <1.0
trans-1,2-Dichloroethene	<1.0	<1.0	1.1	1.0	1.0		0.94J	3.6	<1.0	<1.0	<1.0	<1.0	. <u>Ş</u> 1.6
1,1 Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	1.2	<1.0	<1.0	<1.0	<1.0	\(\) \(\
Aromatic Volatile Organics													<u>=</u>
Benzene	<1.0	<1.0	0.6J	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	인 도 (1.0 (1.0
sec-Butylbenzene	<1.0	<1.0	<u>1.3</u>	<1.0	<1.0		0.7J	<u>1.1</u>	<1.0	<1.0	<u>1.0</u>	<1.0	[⊥] <1.0
TOTAL VOCs	95	79.3	186.4	143.8	110.4		1.6	647.2	154.5	48.9	128.9	45.8	97.0
Halogenated Volatile Organics Vinyl Chloride	8/18/2004 8.8	11/16/2004	2/21/2005	8/30/2005 84	8/31/2006 <1.0	200	12/14/2006 1.0J	3/28/2007 <5.0	6/21/2007	8/30/2007 <5.0	3/7/2008	9/25/2008	6/10/2009 <10
cis-1.2-Dichloroethene	11	25	37	470	7.0	þe	2.0J	<5.0	<5.0	<5.0	<5.0	9	<5.0
Trichloroethene	1.9	1.3	1.3	3.7	1.0J	September	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Tetrachloroethene	4.9	1.1	1.0	2.3	2.0J	ebt	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chloroethane	<1.0	1.3	0.55J	3.8	<1.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
trans-1,2-Dichloroethene	<1.0	0.88J	0.77J	3.7	<1.0	Injection;	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1.1 Dichloroethene	<1.0	<1.0	<1.0	0.77J	<1.0	ect	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Aromatic Volatile Organics						īĒ							
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	HRC	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
sec-Butylbenzene	<1.0	<u><1.0</u>	<u>0.51J</u>	<1.0	<1.0	Ī	<5.0	<5.0	<5.0	<5.0	<5.0	< <u>5.0</u>	<5.0
TOTAL VOCs	26.6	46.6	64.1	568.3	10.0		3.0	ND	ND	ND	6	19	ND

	6/9/2011	4/3/2013
Halogenated Volatile Organics		
Vinyl Chloride	15	1.8
cis-1,2-Dichloroethene	38	7.2
Trichloroethene	<5.0	0.47 J
Tetrachloroethene	<5.0	1.0
Chloroethane	<5.0	<2.5
trans-1,2-Dichloroethene	<5.0	<2.5
1,1 Dichloroethene	<5.0	< 0.5
Aromatic Volatile Organics		
Benzene	<5.0	< 0.5
sec-Butylbenzene	<5.0	<2.5
TOTAL VOCs	53	10.47

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. J= Indicates an estimated value less than the lowest standard.
- 3. All results are in micrograms per liter (ug/l, ppb).
- 4. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).

Well MW-7
Summary of Ground Water Sampling Analytical Results
Volatile Organic Compounds
Revonak Dry Cleaners Site No. 356021

Halamanata I Valatila Omnasiaa	1/20/1998	5/14/1998	8/26/1998	12/4/1998	2/26/1999	8/2/2001	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003
Halogenated Volatile Organics											
Vinyl Chloride	4.0	1.4	4.3	3.6	<1.0	1.6	2.2	0.69J	0.6J	1.3	1.2
cis-1,2-Dichloroethene	32	28	58	43	24	18	22	13	8.2	16	12
Trichloroethene	18	20	27	23	17	16	17	11	11	14	15
Tetrachloroethene	<u>93</u>	<u>110</u>	<u>160</u>	<u>130</u>	<u>98</u>	<u>88</u>	<u>98</u>	<u>72</u>	<u>48</u>	<u>68</u>	<u>57</u>
TOTAL VOCs	147	159.4	249.3	199.6	139	123.6	139.2	96.7	67.8	99.3	85.2
	8/18/2004	8/30/2005	8/31/2006	8/30/2007	9/25/2008	6/10/2009	6/9/2011	4/3/2013			
Halogenated Volatile Organics											
Vinyl Chloride	0.9J	<1.0	<1.0	<5.0	<5.0	<10	<5.0	1.1			
cis-1,2-Dichloroethene	12	12	4.0J	27	24	<5.0	8.8	2.0 J			
Trichloroethene	13	10	4.0J	6	5	<5.0	2.9J	0.79			
Tetrachloroethene	<u>63</u>	<u>63</u>	<u>18</u>	<u>10</u>	<u>7</u>	<5.0	<u>5.0</u>	0.96			
TOTAL VOCs	88.9	85	26.0	43.0	36.0	ND	16.7	4.85			

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. All results are in micrograms per liter (ug/l, ppb).
- 3. J= Indicates an estimated value less than the lowest standard.
- 4. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).

Well MW-8
Summary of Ground Water Sampling Analytical Results
Volatile Organic Compounds
Revonak Dry Cleaners Site No. 356021

Halogenated Volatile Organics	1/20/1998	5/13/1998	8/26/1998	12/3/1998	(Dup) 12/3/1998	2/25/1999	8/2/2001	11/6/2001	2/19/2002	5/15/2002	8/15/2002
Vinyl Chloride	2.0	6.0	2.2	1.1	1.2	<1.0	<1.0	<1.0	<1.0	0.8J	<1.0
cis-1,2-Dichloroethene	3.0	7.4	9.4	6.1	6.2	2.3	6.1	6.4	3.6	4.3	7.0
Trichloroethene	0.8J	<1.0	3.3	2.2	2.4	0.9J	2.7	3.0	1.8	1.5	1.8
Tetrachloroethene	2.0	<1.0	20	9.9	10.0	<1.0	19	18	10	7.0	7.0
Methylene Chloride	<1.0	<u><1.0</u>	<u>1.0</u>	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
TOTAL VOCs	7.8	13.4	35.9	19.3	19.8	3.2	27.8	27.4	15.4	12.8	15.8

Halogenated Volatile Organics	8/21/2003	8/18/2004	8/30/2005
Vinyl Chloride	0.8J	<1.0	<1.0
cis-1,2-Dichloroethene	7.0	8.0	2.3
Trichloroethene	1.1	2.4	1.4
Tetrachloroethene	3.2	14	9.8
Methylene Chloride	<1.0	<1.0	<1.0
TOTAL VOCs	12.1	24.4	13.5

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. J = Indicates an estimated value less than the lowest standard.
- 3. All results are in micrograms per liter (ug/l, ppb).
- 4. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).

Well MW-12 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

	8/31/2006	12/14/2006	3/28/2007	6/21/2007	8/30/2007	3/7/2008	9/25/2008	6/10/2009	6/9/2011	4/3/2013
Halogenated Volatile Organics	2006									
V. 1011 : 1	ē		5 0	5 0	50	_	50	00	4.0.1	4.0
Vinyl Chloride	5.0 J 문	5.0	<5.0	<5.0	56	5	<50	<20	4.8J	<1.0
trans-1,2-Dichloroethene	5.0 J 1.0 J	3.0 J	<5.0	<5.0	<5.0	<5.0	<50	<10	1.1J	<2.5
cis-1,2-Dichloroethene	230 တိ	580	400	670	850	24	620	380	170	39
Trichloroethene	80 510 ection	81	34	43	48	21	<50	42	23	3.5
Tetrachloroethene	510 <u>8</u>	170	120	140	140	65	97	140	78	7.5
Methylene Chloride	<14	2JB	< 5.0	<5.0	<5.0	<5.0	<50	<10	2.5J,B	<2.5
1,1-Dichloroethene	< <u><5.0</u> 発	<u>1.0J</u>	<5.0	<5.0	<5.0	<5.0	<u><50</u>	<10	<5.0	< 0.5
TOTAL VOCs	826	840	554	853	1,038	110	717	562	279.4	50

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 3. All results are in micrograms per liter (ug/l, ppb).
- 4. B = Indicates the compound was detected in the field blank sample or associated analysis batch blank.

Well BR-1 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

Halogenated Volatile Organics	1/20/1998	5/14/1998	8/26/1998	12/3/1998	2/26/1999	8/2/2001	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003
Halogenated Volatile Organics											
Vinyl Chloride	4.0	1.5	0.9J	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene	20	11	9.6	11	6.6	3.4	3.9	2.5	3.4	3.8	3.5
Trichloroethene	2.0	0.8J	<1.0	0.7J	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	<u>12</u>	<u>5.0</u>	<u>1.9</u>	<u>4.0</u>	<u>2.6</u>	<u>1.2</u>	<u>0.90J</u>	<u>0.74J</u>	<u>1.5</u>	<u>1.7</u>	<u>1.8</u>
TOTAL VOCs	38	18.3	12.4	16.8	9.2	4.6	4.8	3.2	4.9	5.5	5.3
	8/18/2004	8/30/2005	8/31/2006	8/30/2007	9/25/2008	6/10/2009	6/9/2011	4/3/2013			
Halogenated Volatile Organics											
Vinyl Chloride	<1.0	<1.0	<1.0	<5.0	<5.0	<10	<5.0	<1.0			
cis-1,2-Dichloroethene	2.5	3.2	1.0 J	6	6	5.9	1.4J	1.8 J			
Trichloroethene	<1.0	<1.0	<1.0	<5.0	< 5.0	< 5.0	<5.0	0.18 J			
Tetrachloroethene	<u>1.4</u>	<u>2.2</u>	<u>1.0 J</u>	<5.0	<5.0	<5.0	<5.0	<u>1.2</u>			
TOTAL VOCs	3.9	5.4									

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. J = Indicates an estimated value less than the lowest standard.
- 3. All results are in micrograms per liter (ug/l, ppb).
- 4. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).

Well BR-3
Summary of Ground Water Sampling Analytical Results
Volatile Organic Compounds
Revonak Dry Cleaners Site No. 356021

	1/20/1998	5/14/1998	8/26/1998	12/3/1998	2/25/1999	8/2/2001	11/6/2001	2/19/2002	5/15/2002	8/15/2002
Halogenated Volatile Organics										
Vinyl Chloride	<1.0	<1.0	<1.0	1.6	<1.0	1.8	2.9	1.2	0.7J	2.6
cis-1,2-Dichloroethene	<1.0	4.2	8.3	26	15	54	100	32	16	91
Trichloroethene	<1.0	<1.0	<1.0	1.9	0.8J	6.7	19	3.2	2.0	12
Tetrachloroethene	0.6J	3.0	2.5	18	7.7	46	120	20	13	70
Methylene Chloride	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethene	<1.0	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<u><1.0</u>	<1.0	<u>0.76J</u>	<1.0	<u><1.0</u>	<u><1.0</u>
TOTAL VOCs	0.6	7.2	12.0	47.5	23.5	108.5	242.7	56.4	31.7	175.6

Well BR-3 was abandoned on August 21, 2003 in accordance with the NYSDEC-approved Contingency Plan Addendum dated October 3, 20

- 1. Results shown only for compounds which were historically detected at or above the laboratory practical quantitation limit (PQL).
- 2. J = Indicates an estimated value less than the lowest standard.
- 3. All results are in micrograms per liter (ug/l, ppb).

Well BR-4 Summary of Ground Water Sampling Analytical Results Volatile Organic Compounds Revonak Dry Cleaners Site No. 356021

	11/6/2001	2/19/2002	5/15/2002	8/15/2002	8/21/2003	8/18/2004	2/21/2005	8/30/2005	8/31/2006	8/30/2007	9/25/2008	6/10/2009
Halogenated Volatile Organics												
Vinyl Chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 5.0	< 5.0	<10
cis-1,2-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 5.0	< 5.0	11
Trichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 5.0	< 5.0	<5.0
Tetrachloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 5.0	<5.0	<5.0
Aromatic Volatile Organics												
MTBE	<u>NA</u>	<u>NA</u> 0	<1.0	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u> 0	<u>NA</u>	<1.0	<u><5.0</u>	<5.0	<5.0
TOTAL VOCs	0	0	0	0	0	0	0	0	0	0	0	11
		(DUP)										
	6/9/2011	6/9/2011	4/3/2013									
Halogenated Volatile Organics	6/9/2011	6/9/2011	4/3/2013									
Halogenated Volatile Organics Vinyl Chloride	6/9/2011 <5.0	6/9/2011 <5.0	4/3/2013 <1.0									
•												
Vinyl Chloride	<5.0	<5.0	<1.0									
Vinyl Chloride cis-1,2-Dichloroethene	<5.0 <5.0	<5.0 <5.0	<1.0 <2.5									
Vinyl Chloride cis-1,2-Dichloroethene Trichloroethene	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<1.0 <2.5 <0.5									
Vinyl Chloride cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<1.0 <2.5 <0.5									

- 1. J = Indicates an estimated value less than the lowest standard.
- 2. All results are in micrograms per liter (ug/l, ppb).
- 3. NA = Compound not analyzed.
- 4. The Sample Blank from August 18, 2004 sampling displayed an elevated level of Tetrachloroethane (2.1 ppb).

APPENDIX E

Laboratory Report for December 4, 2014 Groundwater Samples

ANALYTICAL REPORT

Lab Number: L1429205

Client: Sterling Environmental Eng

24 Wade Road Latham, NY 12110

ATTN: Cody Sargood Phone: (518) 456-4900

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45
Report Date: 12/11/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

Lab Number: L1429205 **Report Date:** 12/11/14

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1429205-01	MW-2	WATER	Not Specified	12/04/14 13:25	12/04/14
L1429205-02	MW-9	WATER	Not Specified	12/04/14 14:10	12/04/14
L1429205-03	MW-10	WATER	Not Specified	12/04/14 11:50	12/04/14
L1429205-04	MW-11	WATER	Not Specified	12/04/14 12:15	12/04/14
L1429205-05	BR-2	WATER	Not Specified	12/04/14 13:40	12/04/14
L1429205-06	DUPLICATE	WATER	Not Specified	12/04/14 00:00	12/04/14
L1429205-07	TRIP BLANK	WATER	Not Specified	12/04/14 00:00	12/04/14
L1429205-08	BR-2 FL	WATER	Not Specified	12/04/14 10:30	12/04/14

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number: L1429205

Project Number: 2014-45 Report Date: 12/11/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number: L1429205

Project Number: 2014-45 Report Date: 12/11/14

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/11/14

(6004 Skulow Kelly Stenstrom

ORGANICS

VOLATILES

L1429205

12/11/14

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

SAMPLE RESULTS

Date Collected: 12/04/14 13:25

Lab Number:

Report Date:

Lab ID: L1429205-01 D

Client ID: MW-2

Sample Location: Not Specified

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 12/07/14 18:42

	,
Date Received:	12/04/14
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	62	18.	25
1,1-Dichloroethane	ND		ug/l	62	18.	25
Chloroform	ND		ug/l	62	18.	25
Carbon tetrachloride	ND		ug/l	12	3.4	25
1,2-Dichloropropane	ND		ug/l	25	3.3	25
Dibromochloromethane	ND		ug/l	12	3.7	25
1,1,2-Trichloroethane	ND		ug/l	38	12.	25
Tetrachloroethene	120		ug/l	12	4.5	25
Chlorobenzene	ND		ug/l	62	18.	25
Trichlorofluoromethane	ND		ug/l	62	18.	25
1,2-Dichloroethane	ND		ug/l	12	3.3	25
1,1,1-Trichloroethane	ND		ug/l	62	18.	25
Bromodichloromethane	ND		ug/l	12	4.8	25
trans-1,3-Dichloropropene	ND		ug/l	12	4.1	25
cis-1,3-Dichloropropene	ND		ug/l	12	3.6	25
Bromoform	ND		ug/l	50	16.	25
1,1,2,2-Tetrachloroethane	ND		ug/l	12	3.6	25
Benzene	ND		ug/l	12	4.0	25
Toluene	ND		ug/l	62	18.	25
Ethylbenzene	ND		ug/l	62	18.	25
Chloromethane	ND		ug/l	62	18.	25
Bromomethane	ND		ug/l	62	18.	25
Vinyl chloride	240		ug/l	25	8.2	25
Chloroethane	ND		ug/l	62	18.	25
1,1-Dichloroethene	ND		ug/l	12	3.6	25
trans-1,2-Dichloroethene	ND		ug/l	62	18.	25
Trichloroethene	41		ug/l	12	4.4	25
1,2-Dichlorobenzene	ND		ug/l	62	18.	25
1,3-Dichlorobenzene	ND		ug/l	62	18.	25
1,4-Dichlorobenzene	ND		ug/l	62	18.	25

12/04/14 13:25

12/04/14

Date Collected:

Date Received:

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number: L1429205

Project Number: 2014-45 Report Date: 12/11/14

SAMPLE RESULTS

Lab ID: L1429205-01 D

Client ID: MW-2

Sample Location: Not Specified Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methyl tert butyl ether	ND		ug/l	62	18.	25	
p/m-Xylene	ND		ug/l	62	18.	25	
o-Xylene	ND		ug/l	62	18.	25	
cis-1,2-Dichloroethene	1200		ug/l	62	18.	25	
Styrene	ND		ug/l	62	18.	25	
Dichlorodifluoromethane	ND		ug/l	120	25.	25	
Acetone	ND		ug/l	120	36.	25	
Carbon disulfide	ND		ug/l	120	25.	25	
2-Butanone	ND		ug/l	120	48.	25	
4-Methyl-2-pentanone	ND		ug/l	120	25.	25	
2-Hexanone	ND		ug/l	120	25.	25	
Bromochloromethane	ND		ug/l	62	18.	25	
1,2-Dibromoethane	ND		ug/l	50	16.	25	
1,2-Dibromo-3-chloropropane	ND		ug/l	62	18.	25	
Isopropylbenzene	ND		ug/l	62	18.	25	
1,2,3-Trichlorobenzene	ND		ug/l	62	18.	25	
1,2,4-Trichlorobenzene	ND		ug/l	62	18.	25	
Methyl Acetate	ND		ug/l	50	5.8	25	
Cyclohexane	ND		ug/l	250	6.8	25	
1,4-Dioxane	ND		ug/l	6200	1000	25	
Freon-113	ND		ug/l	62	18.	25	
Methyl cyclohexane	ND		ug/l	250	9.9	25	

% Recovery	Qualifier	Acceptance Criteria	
111		70-130	
102		70-130	
110		70-130	
101		70-130	
	111 102 110	111 102 110	% Recovery Qualifier Criteria 111 70-130 102 70-130 110 70-130

L1429205

12/11/14

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

SAMPLE RESULTS

12/04/14 14:10

Date Collected: Date Received: 12/04/14

Lab Number:

Report Date:

Field Prep: Not Specified

Lab ID: L1429205-02

Client ID: MW-9

Sample Location: Not Specified

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 12/07/14 19:50

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	31		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	3.2		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	8.7		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L1429205

12/11/14

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number:

Project Number: 2014-45

L1429205-02

MW-9

Lab ID:

Client ID:

SAMPLE RESULTS

Date Collected: 12/04/14 14:10

Report Date:

Date Received: 12/04/14

Sample Location: Not Specified Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Parameter	Result	Qualifier	Units	KL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	18		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	41.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

% Recovery	Qualifier	Acceptance Criteria	
112		70-130	
93		70-130	
108		70-130	
102		70-130	
	112 93 108	112 93 108	% Recovery Qualifier Criteria 112 70-130 93 70-130 108 70-130

L1429205

12/11/14

12/04/14

Not Specified

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

SAMPLE RESULTS

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L1429205-03 D Date Collected: 12/04/14 11:50

Client ID: MW-10 Sample Location: Not Specified

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 12/07/14 19:16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethane	ND		ug/l	6.2	1.8	2.5
Chloroform	ND		ug/l	6.2	1.8	2.5
Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5
1,2-Dichloropropane	ND		ug/l	2.5	0.33	2.5
Dibromochloromethane	ND		ug/l	1.2	0.37	2.5
1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5
Tetrachloroethene	47		ug/l	1.2	0.45	2.5
Chlorobenzene	ND		ug/l	6.2	1.8	2.5
Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5
1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5
1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5
Bromoform	ND		ug/l	5.0	1.6	2.5
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.36	2.5
Benzene	ND		ug/l	1.2	0.40	2.5
Toluene	ND		ug/l	6.2	1.8	2.5
Ethylbenzene	ND		ug/l	6.2	1.8	2.5
Chloromethane	ND		ug/l	6.2	1.8	2.5
Bromomethane	ND		ug/l	6.2	1.8	2.5
Vinyl chloride	5.0		ug/l	2.5	0.82	2.5
Chloroethane	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethene	ND		ug/l	1.2	0.36	2.5
trans-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5
Trichloroethene	14		ug/l	1.2	0.44	2.5
1,2-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5
1,3-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5
1,4-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number: L1429205

Project Number: 2014-45 Report Date: 12/11/14

SAMPLE RESULTS

Lab ID: L1429205-03 D

Client ID: MW-10 Sample Location: Not Specified Date Collected: 12/04/14 11:50
Date Received: 12/04/14
Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 6.2 1.8 2.5 ug/l p/m-Xylene ND ug/l 6.2 1.8 2.5 o-Xylene ND 6.2 1.8 2.5 ug/l cis-1,2-Dichloroethene 160 6.2 2.5 1.8 ug/l Styrene ND ug/l 6.2 1.8 2.5 Dichlorodifluoromethane ND 2.5 12 2.5 ug/l ND Acetone 12 3.6 2.5 ug/l Carbon disulfide ND 12 2.5 2.5 ug/l ND 2-Butanone ug/l 12 4.8 2.5 4-Methyl-2-pentanone ND 12 2.5 2.5 ug/l ND 12 2.5 2.5 2-Hexanone ug/l Bromochloromethane ND 6.2 1.8 2.5 ug/l 1,2-Dibromoethane ND 5.0 1.6 2.5 ug/l ND 6.2 1.8 2.5 1,2-Dibromo-3-chloropropane ug/l Isopropylbenzene ND 6.2 1.8 2.5 ug/l 1,2,3-Trichlorobenzene ND 6.2 1.8 2.5 ug/l ND 1,2,4-Trichlorobenzene 6.2 1.8 2.5 ug/l Methyl Acetate ND 5.0 0.58 2.5 ug/l Cyclohexane ND 25 0.68 2.5 ug/l 1,4-Dioxane ND 100 2.5 620 ug/l Freon-113 ND 6.2 1.8 2.5 ug/l Methyl cyclohexane ND ug/l 25 0.99 2.5

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	109		70-130	
Dibromofluoromethane	100		70-130	
Toluene-d8 4-Bromofluorobenzene	102 109		70-130 70-130	

L1429205

12/11/14

Not Specified

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

SAMPLE RESULTS

Field Prep:

Lab Number:

Report Date:

Lab ID: L1429205-04 Date Collected: 12/04/14 12:15 Date Received: 12/04/14

Client ID: MW-11 Sample Location:

Not Specified

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/07/14 20:24

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	10		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	2.7		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	1.3	J	ug/l	2.5	0.70	1
Trichloroethene	2.8		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: NEW PALTZ PLAZA 2014-45 L1429205

Project Number: Report Date: 2014-45 12/11/14

SAMPLE RESULTS

Lab ID: L1429205-04 Date Collected: 12/04/14 12:15

Client ID: Date Received: MW-11 12/04/14 Sample Location: Field Prep: Not Specified Not Specified

•					•	•	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	110		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	41.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	101		70-130	
Toluene-d8 4-Bromofluorobenzene	102 110		70-130 70-130	

L1429205

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

SAMPLE RESULTS

Report Date: 12/11/14

Lab Number:

Lab ID: L1429205-05

Client ID: BR-2

Sample Location: Not Specified

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 12/09/14 12:31

Date Collected:	12/04/14 13:40
Date Received:	12/04/14
Field Prep	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	9.1		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	14		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	1.6		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	2.4		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	2.9		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number: L1429205

Project Number: 2014-45 Report Date: 12/11/14

SAMPLE RESULTS

Lab ID: Date Collected: 12/04/14 13:40

Client ID: BR-2 Date Received: 12/04/14 Sample Location: Not Specified Field Prep: Not Specified

•					•	•	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westk	oorough Lab						
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	7.4		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	41.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	103		70-130	
Dibromofluoromethane	103		70-130	

L1429205

12/11/14

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1429205-06

Client ID: DUPLICATE Sample Location: Not Specified

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 12/07/14 20:58

Analyst: PD

Date Collected: 12/04/14 00:00
Date Received: 12/04/14
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	10		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	2.6		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	1.2	J	ug/l	2.5	0.70	1
Trichloroethene	2.7		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: NEW PALTZ PLAZA 2014-45 L1429205

Project Number: Report Date: 2014-45 12/11/14

SAMPLE RESULTS

Lab ID: L1429205-06 Date Collected: 12/04/14 00:00

Client ID: DUPLICATE Date Received: 12/04/14 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	rough Lab						
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	110		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	41.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

% Recovery	Qualifier	Acceptance Criteria	
112		70-130	
102		70-130	
110		70-130	
101		70-130	
	112 102 110	112 102 110	% Recovery Qualifier Criteria 112 70-130 102 70-130 110 70-130

L1429205

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

SAMPLE RESULTS

Report Date: 12/11/14

Lab Number:

Lab ID: L1429205-07

Client ID: TRIP BLANK Sample Location: Not Specified

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 12/07/14 22:06

Analyst: PD

Date Collected:	12/04/14 00:00
Date Received:	12/04/14

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L1429205

Project Name: Lab Number: NEW PALTZ PLAZA 2014-45

Project Number: Report Date: 2014-45 12/11/14

SAMPLE RESULTS

Lab ID: L1429205-07 Date Collected: 12/04/14 00:00

Client ID: TRIP BLANK Date Received: 12/04/14 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	41.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	98		70-130	
Toluene-d8 4-Bromofluorobenzene	102 110		70-130 70-130	

L1429205

12/11/14

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1429205-08

Client ID: BR-2 FL Sample Location: Not Specified

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 12/07/14 21:32

Analyst: PD

Date Collected:	12/04/14 10:30
Date Received:	12/04/14
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	23		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	0.58		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	4.6		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number: L1429205

Project Number: 2014-45 Report Date: 12/11/14

SAMPLE RESULTS

Lab ID: L1429205-08 Date Collected: 12/04/14 10:30

Client ID: BR-2 FL Date Received: 12/04/14
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	41.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	109		70-130	
Dibromofluoromethane	101		70-130	
Toluene-d8 4-Bromofluorobenzene	102 109		70-130 70-130	

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number: L1429205

Project Number: 2014-45 Report Date: 12/11/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C

Parameter	Result	Qualifier Uni	ts RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s):	01-04,06-08	Batch: WG746414-3
Methylene chloride	ND	ug	/I 2.5	0.70
1,1-Dichloroethane	ND	ug	/I 2.5	0.70
Chloroform	ND	ug	/l 2.5	0.70
Carbon tetrachloride	ND	ug	/I 0.50	0.13
1,2-Dichloropropane	ND	ug	/l 1.0	0.13
Dibromochloromethane	ND	ug	/I 0.50	0.15
1,1,2-Trichloroethane	ND	ug	/l 1.5	0.50
Tetrachloroethene	ND	ug	/I 0.50	0.18
Chlorobenzene	ND	ug	/I 2.5	0.70
Trichlorofluoromethane	ND	ug	/I 2.5	0.70
1,2-Dichloroethane	ND	ug	/I 0.50	0.13
1,1,1-Trichloroethane	ND	ug	/l 2.5	0.70
Bromodichloromethane	ND	ug	/I 0.50	0.19
trans-1,3-Dichloropropene	ND	ug	/I 0.50	0.16
cis-1,3-Dichloropropene	ND	ug	/I 0.50	0.14
Bromoform	ND	ug	/I 2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug	/I 0.50	0.14
Benzene	ND	ug	/I 0.50	0.16
Toluene	ND	ug	/I 2.5	0.70
Ethylbenzene	ND	ug	/I 2.5	0.70
Chloromethane	ND	ug	/I 2.5	0.70
Bromomethane	ND	ug	/I 2.5	0.70
Vinyl chloride	ND	ug	/l 1.0	0.33
Chloroethane	ND	ug	/I 2.5	0.70
1,1-Dichloroethene	ND	ug	/I 0.50	0.14
trans-1,2-Dichloroethene	ND	ug	/I 2.5	0.70
Trichloroethene	ND	ug	/I 0.50	0.18
1,2-Dichlorobenzene	ND	ug	/I 2.5	0.70
1,3-Dichlorobenzene	ND	ug	/I 2.5	0.70

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number: L1429205

Project Number: 2014-45 Report Date: 12/11/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-04,06-08	Batch: WG746414-3	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
Methyl Acetate	ND	ug/l	2.0	0.23	
Cyclohexane	ND	ug/l	10	0.27	
1,4-Dioxane	ND	ug/l	250	41.	
Freon-113	ND	ug/l	2.5	0.70	
Methyl cyclohexane	ND	ug/l	10	0.40	

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number: L1429205

Project Number: 2014-45 Report Date: 12/11/14

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS -	Westborough La	b for sampl	e(s):	01-04.06-08	Batch: WG746414-3

		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria				
•							
1,2-Dichloroethane-d4	109		70-130				
Toluene-d8	103		70-130				
4-Bromofluorobenzene	113		70-130				
Dibromofluoromethane	98		70-130				

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number: L1429205

Project Number: 2014-45 Report Date: 12/11/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 12/09/14 11:56

Parameter	Result	Qualifier	Units		RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sampl	e(s):	05	Batch:	WG746945-3
Methylene chloride	ND		ug/l		2.5	0.70
1,1-Dichloroethane	ND		ug/l		2.5	0.70
Chloroform	ND		ug/l		2.5	0.70
Carbon tetrachloride	ND		ug/l		0.50	0.13
1,2-Dichloropropane	ND		ug/l		1.0	0.13
Dibromochloromethane	ND		ug/l		0.50	0.15
1,1,2-Trichloroethane	ND		ug/l		1.5	0.50
Tetrachloroethene	ND		ug/l		0.50	0.18
Chlorobenzene	ND		ug/l		2.5	0.70
Trichlorofluoromethane	ND		ug/l		2.5	0.70
1,2-Dichloroethane	ND		ug/l		0.50	0.13
1,1,1-Trichloroethane	ND		ug/l		2.5	0.70
Bromodichloromethane	ND		ug/l		0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l		0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l		0.50	0.14
Bromoform	ND		ug/l		2.0	0.65
1,1,2,2-Tetrachloroethane	ND		ug/l		0.50	0.14
Benzene	ND		ug/l		0.50	0.16
Toluene	ND		ug/l		2.5	0.70
Ethylbenzene	ND		ug/l		2.5	0.70
Chloromethane	ND		ug/l		2.5	0.70
Bromomethane	ND		ug/l		2.5	0.70
Vinyl chloride	ND		ug/l		1.0	0.33
Chloroethane	ND		ug/l		2.5	0.70
1,1-Dichloroethene	ND		ug/l		0.50	0.14
trans-1,2-Dichloroethene	ND		ug/l		2.5	0.70
Trichloroethene	ND		ug/l		0.50	0.18
1,2-Dichlorobenzene	ND		ug/l		2.5	0.70
1,3-Dichlorobenzene	ND		ug/l		2.5	0.70

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number: L1429205

Project Number: 2014-45 Report Date: 12/11/14

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 12/09/14 11:56

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - W	estborough Lab	for sample(s): 05	Batch:	WG746945-3
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	41.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number: L1429205

Project Number: 2014-45 Report Date: 12/11/14

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/09/14 11:56

Analyst: PD

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Volatile Organics by GC/MS - Westborough Lab for sample(s): 05
 Batch: WG746945-3

			Acceptance		
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	117		70-130		
Toluene-d8	101		70-130		
4-Bromofluorobenzene	111		70-130		
Dibromofluoromethane	100		70-130		

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

Lab Number: L1429205

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04,06-08 Batcl	n: WG746414-1 WG74641	4-2	
Methylene chloride	93		81	70-130	14	20
1,1-Dichloroethane	102		88	70-130	15	20
Chloroform	97		84	70-130	14	20
Carbon tetrachloride	94		82	63-132	14	20
1,2-Dichloropropane	102		90	70-130	13	20
Dibromochloromethane	93		81	63-130	14	20
1,1,2-Trichloroethane	98		87	70-130	12	20
Tetrachloroethene	88		78	70-130	12	20
Chlorobenzene	96		84	75-130	13	20
Trichlorofluoromethane	92		81	62-150	13	20
1,2-Dichloroethane	101		87	70-130	15	20
1,1,1-Trichloroethane	97		85	67-130	13	20
Bromodichloromethane	100		85	67-130	16	20
trans-1,3-Dichloropropene	99		84	70-130	16	20
cis-1,3-Dichloropropene	97		83	70-130	16	20
1,1-Dichloropropene	98		85	70-130	14	20
Bromoform	94		82	54-136	14	20
1,1,2,2-Tetrachloroethane	104		92	67-130	12	20
Benzene	95		83	70-130	13	20
Toluene	99		87	70-130	13	20
Ethylbenzene	101		89	70-130	13	20

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

Lab Number: L1429205

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	01-04,06-08 Batc	h: WG746	414-1 WG74641	14-2	
Chloromethane	98		81		64-130	19	20
Bromomethane	103		86		39-139	18	20
Vinyl chloride	96		80		55-140	18	20
Chloroethane	90		77		55-138	16	20
1,1-Dichloroethene	86		75		61-145	14	20
trans-1,2-Dichloroethene	89		76		70-130	16	20
Trichloroethene	94		81		70-130	15	20
1,2-Dichlorobenzene	97		85		70-130	13	20
1,3-Dichlorobenzene	97		85		70-130	13	20
1,4-Dichlorobenzene	97		86		70-130	12	20
Methyl tert butyl ether	88		76		63-130	15	20
p/m-Xylene	100		88		70-130	13	20
o-Xylene	101		89		70-130	13	20
cis-1,2-Dichloroethene	87		76		70-130	13	20
Dibromomethane	92		82		70-130	11	20
1,2,3-Trichloropropane	101		90		64-130	12	20
Acrylonitrile	106		95		70-130	11	20
Isopropyl Ether	108		94		70-130	14	20
tert-Butyl Alcohol	66	Q	57	Q	70-130	15	20
Styrene	100		88		70-130	13	20
Dichlorodifluoromethane	67		57		36-147	16	20

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

Lab Number: L1429205

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	01-04,06-08 Batcl	h: WG746414-1 WG74641	4-2	
Acetone	62		67	58-148	8	20
Carbon disulfide	83		69	51-130	18	20
2-Butanone	88		82	63-138	7	20
Vinyl acetate	99		84	70-130	16	20
4-Methyl-2-pentanone	94		84	59-130	11	20
2-Hexanone	94		87	57-130	8	20
Acrolein	96		88	40-160	9	20
Bromochloromethane	91		77	70-130	17	20
2,2-Dichloropropane	95		81	63-133	16	20
1,2-Dibromoethane	93		82	70-130	13	20
1,3-Dichloropropane	100		88	70-130	13	20
1,1,1,2-Tetrachloroethane	98		86	64-130	13	20
Bromobenzene	96		84	70-130	13	20
n-Butylbenzene	109		95	53-136	14	20
sec-Butylbenzene	109		94	70-130	15	20
tert-Butylbenzene	106		93	70-130	13	20
o-Chlorotoluene	107		93	70-130	14	20
p-Chlorotoluene	107		95	70-130	12	20
1,2-Dibromo-3-chloropropane	102		92	41-144	10	20
Hexachlorobutadiene	94		80	63-130	16	20
Isopropylbenzene	100		88	70-130	13	20

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

Lab Number: L1429205

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Reco Qual Limit	-	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04,06-08 Bate	ch: WG746414-1 W	VG746414-2		
p-Isopropyltoluene	106		92	70-13	0 14	20	
Naphthalene	88		81	70-13	0 8	20	
n-Propylbenzene	108		95	69-13	0 13	20	
1,2,3-Trichlorobenzene	81		73	70-13	0 10	20	
1,2,4-Trichlorobenzene	87		76	70-13	0 13	20	
1,3,5-Trimethylbenzene	108		95	64-13	0 13	20	
1,2,4-Trimethylbenzene	110		95	70-13	0 15	20	
Methyl Acetate	84		77	70-13	0 9	20	
Ethyl Acetate	92		82	70-13	0 11	20	
Cyclohexane	105		91	70-13	0 14	20	
Ethyl-Tert-Butyl-Ether	95		82	70-13	0 15	20	
Tertiary-Amyl Methyl Ether	88		77	66-13	0 13	20	
1,4-Dioxane	76		64	56-16	2 17	20	
Freon-113	93		80	70-13	0 15	20	
1,4-Diethylbenzene	112		96	70-13	0 15	20	
4-Ethyltoluene	106		92	70-13	0 14	20	
1,2,4,5-Tetramethylbenzene	105		92	70-13	0 13	20	
Ethyl ether	89		79	59-13	4 12	20	
trans-1,4-Dichloro-2-butene	111		95	70-13	0 16	20	
lodomethane	104		108	70-13	0 4	20	
Methyl cyclohexane	103		90	70-13	0 13	20	

Project Name:

NEW PALTZ PLAZA 2014-45

L1429205

Project Number: 2014-45 Report Date:

Lab Number:

12/11/14

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04,06-08 Batch: WG746414-1 WG746414-2

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	105		105		70-130	
Toluene-d8	103		104		70-130	
4-Bromofluorobenzene	109		108		70-130	
Dibromofluoromethane	98		101		70-130	

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

Lab Number: L1429205

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	5 Batch: WG	746945-1	WG746945-2		
Methylene chloride	90		79		70-130	13	20
1,1-Dichloroethane	96		84		70-130	13	20
Chloroform	95		84		70-130	12	20
Carbon tetrachloride	90		80		63-132	12	20
1,2-Dichloropropane	97		84		70-130	14	20
Dibromochloromethane	91		78		63-130	15	20
1,1,2-Trichloroethane	94		82		70-130	14	20
Tetrachloroethene	88		76		70-130	15	20
Chlorobenzene	95		82		75-130	15	20
Trichlorofluoromethane	90		80		62-150	12	20
1,2-Dichloroethane	98		87		70-130	12	20
1,1,1-Trichloroethane	95		83		67-130	13	20
Bromodichloromethane	96		84		67-130	13	20
trans-1,3-Dichloropropene	95		80		70-130	17	20
cis-1,3-Dichloropropene	92		79		70-130	15	20
1,1-Dichloropropene	92		81		70-130	13	20
Bromoform	90		76		54-136	17	20
1,1,2,2-Tetrachloroethane	93		81		67-130	14	20
Benzene	91		81		70-130	12	20
Toluene	95		83		70-130	13	20
Ethylbenzene	98		85		70-130	14	20

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

Lab Number: L1429205

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough L	.ab Associated	sample(s):	05 Batch: W0	9746945-1	WG746945-2			
Chloromethane	107		89		64-130	18	20	
Bromomethane	119		102		39-139	15	20	
Vinyl chloride	93		80		55-140	15	20	
Chloroethane	89		75		55-138	17	20	
1,1-Dichloroethene	82		70		61-145	16	20	
trans-1,2-Dichloroethene	86		75		70-130	14	20	
Trichloroethene	91		80		70-130	13	20	
1,2-Dichlorobenzene	95		82		70-130	15	20	
1,3-Dichlorobenzene	95		83		70-130	13	20	
1,4-Dichlorobenzene	95		82		70-130	15	20	
Methyl tert butyl ether	84		75		63-130	11	20	
p/m-Xylene	98		85		70-130	14	20	
o-Xylene	99		86		70-130	14	20	
cis-1,2-Dichloroethene	88		77		70-130	13	20	
Dibromomethane	92		80		70-130	14	20	
1,2,3-Trichloropropane	92		82		64-130	11	20	
Acrylonitrile	88		73		70-130	19	20	
Isopropyl Ether	98		86		70-130	13	20	
tert-Butyl Alcohol	64	Q	58	Q	70-130	10	20	
Styrene	98		85		70-130	14	20	
Dichlorodifluoromethane	60		52		36-147	14	20	

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

Lab Number: L1429205

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s): (5 Batch: WG7	46945-1	WG746945-2			
Acetone	66		60		58-148	10		20
Carbon disulfide	76		63		51-130	19		20
2-Butanone	75		71		63-138	5		20
Vinyl acetate	89		75		70-130	17		20
4-Methyl-2-pentanone	86		77		59-130	11		20
2-Hexanone	83		74		57-130	11		20
Acrolein	87		70		40-160	22	Q	20
Bromochloromethane	90		78		70-130	14		20
2,2-Dichloropropane	91		78		63-133	15		20
1,2-Dibromoethane	91		80		70-130	13		20
1,3-Dichloropropane	95		84		70-130	12		20
1,1,1,2-Tetrachloroethane	98		85		64-130	14		20
Bromobenzene	94		81		70-130	15		20
n-Butylbenzene	100		88		53-136	13		20
sec-Butylbenzene	102		88		70-130	15		20
tert-Butylbenzene	102		88		70-130	15		20
o-Chlorotoluene	104		89		70-130	16		20
p-Chlorotoluene	104		89		70-130	16		20
1,2-Dibromo-3-chloropropane	94		79		41-144	17		20
Hexachlorobutadiene	97		81		63-130	18		20
Isopropylbenzene	99		85		70-130	15		20

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45

Lab Number: L1429205

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	05 Batch: WG7	46945-1	WG746945-2			
p-Isopropyltoluene	100		87		70-130	14		20
Naphthalene	84		74		70-130	13		20
n-Propylbenzene	102		88		69-130	15		20
1,2,3-Trichlorobenzene	81		70		70-130	15		20
1,2,4-Trichlorobenzene	85		74		70-130	14		20
1,3,5-Trimethylbenzene	103		91		64-130	12		20
1,2,4-Trimethylbenzene	102		89		70-130	14		20
Methyl Acetate	90		79		70-130	13		20
Ethyl Acetate	86		74		70-130	15		20
Cyclohexane	90		79		70-130	13		20
Ethyl-Tert-Butyl-Ether	90		79		70-130	13		20
Tertiary-Amyl Methyl Ether	83		73		66-130	13		20
1,4-Dioxane	76		52	Q	56-162	38	Q	20
Freon-113	84		75		70-130	11		20
1,4-Diethylbenzene	109		92		70-130	17		20
4-Ethyltoluene	100		87		70-130	14		20
1,2,4,5-Tetramethylbenzene	99		86		70-130	14		20
Ethyl ether	86		76		59-134	12		20
trans-1,4-Dichloro-2-butene	97		82		70-130	17		20
Iodomethane	103		110		70-130	7		20
Methyl cyclohexane	93		80		70-130	15		20

Lab Control Sample Analysis Batch Quality Control

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45 Lab Number:

L1429205

Report Date:

12/11/14

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 05 Batch: WG746945-1 WG746945-2

	LCS	LCSD		Acceptance		
Surrogate	%Recovery Qual		%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	105		105		70-130	
Toluene-d8	101		102		70-130	
4-Bromofluorobenzene	106		107		70-130	
Dibromofluoromethane	99		101		70-130	

Lab Number: L1429205

Project Name: NEW PALTZ PLAZA 2014-45

Project Number: 2014-45 Report Date: 12/11/14

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent

Container Information Temp									
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)		
L1429205-01A	Vial HCI preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-01B	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-01C	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-02A	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-02B	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-02C	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-03A	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-03B	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-03C	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-04A	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-04B	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-04C	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-05A	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-05B	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-05C	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-06A	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-06B	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-06C	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-07A	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-08A	Vial HCl preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-08B	Vial HCI preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		
L1429205-08C	Vial HCI preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260(14)		

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number: L1429205
Project Number: 2014-45 Report Date: 12/11/14

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

Report Format: DU Report with 'J' Qualifiers

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number: L1429205
Project Number: 2014-45 Report Date: 12/11/14

Data Qualifiers

- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: NEW PALTZ PLAZA 2014-45 Lab Number: L1429205
Project Number: 2014-45 Report Date: 12/11/14

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised April 15, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.

EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, lodomethane (methyl iodide), Methyl methacrylate,

Azobenzene.

EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.

EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 625: 4-Chloroaniline, 4-Methylphenol.

SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.

EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. EPA 2540D: TSS

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; **EPA 200.7**: Ba,Be,Ca,Cd,Cr,Cu,Na; **EPA 245.1**: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C,

SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mq,Mn,Mo,Ni,K,Se,Aq,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC,

SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4,

SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,

Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 Client Information	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo Project Information Project Name: Project Location: Project # 2014-4	fay oper Ave, Suite 10 New Paltz P	05 laza 2014-45	Page o		Delive	in I erable ASP-	A S (1 File)		ASP-	B S (4 File	e)	ALPHA Job # LIU Q Q Q S Billing Information Same as Client Info PO#
Client: Sterling En	vironmental Engineerii	(Use Project name as Pr	oject#)				Regu	latory	Requirem	ent				Disposal Site Information
Address: 24 Wade R	d	Project Manager:	Cody Sargo	od		· · · · · ·	X	NY TO	GS		NY Pa	ırt 375		Please identify below location of
Latham, NY 12110		ALPHAQuote #:					1 🗇	AWQ:	Standards		NY CF	P-51		applicable disposal facilities.
Phone: 518-456-49	00	Turn-Around Time						NY Re	stricted Use	,	Other			Disposal Facility:
Fax: 518-456-35	32	Standard	12/	Due Date:	12/11/1		1 🗇	NY Un	restricted U	se			ĺ	□NJ □NY
Email: cody.sargo	od@sterlingenvironme	Rush (only if pre approved)		# of Days:	12/11//	7		NYC S	Sewer Disch	arge				Other: NA
These samples have be							ANAL	YSIS.		-		•		Sample Filtration
Other project specific	requirements/comm		EN VI YOW	Mewla (,	com		VOCs 8260	<						Done Lab to do Preservation Lab to do B (Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sar	mple ID		ection	Sample Matrix	Sampler's Initials	1							
	B B B B B B B B B B B B B B B B B B B	-	Date	Time						+		/	_	Sample Specific Comments
W. 112012 11 2 2	MW-2		12/4/14	1:25 pm	1	(2)	X		9		+A			
	MW-9		ļ	2:10 m		CA	$\vdash \vdash \vdash$			1	X		_	
# -	MW-10	·		11:50 am		Ca				1 1	7	<u> </u>		
	MW-11			12:15 pm		(2)								
	BR-2		 	1:40 pm	Ť	(2				1 🚽				
	Duplicate		1,	· · · · · · · · · · · · · · · · · · ·	GW	02_			/_	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		1		
	Trip Blank				GW		Y'		_/_	1	\perp			
108	BR-2FL			10:30 am	GW	(2)	$ \Psi $				<u> </u>	1		
						<u> </u>		/			<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Broggruptive Code:	Cantainas Cada			<u> </u>				/		`~		Ì	1	
A = None B = HCl C = HNO ₃ D = H_2 SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification No Mansfield: Certification No				reservative	V							Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not
F = MeOH	C = Cube Relinquished By: Date/Time						ed Rv			Date	/Time		start until any ambiguities are	
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					2315		resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.						
Form No: 01-25 (rev. 30-Se	pt-2013) /	<u> </u>	.	<u> </u>	. 9	<u> </u>								

APPENDIX F

NYSDEC Institutional and Engineering Control Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	Site Details e No. V00087	Box 1	
Sit	e Name New Paltz Plaza/Revonak Dry Cleaners		
City	e Address: ROUTE 299 Zip Code: 12561 y/Town: New Paltz unty: Ulster e Acreage: 14.5		
Re	porting Period: October 30, 2013 to February 28, 2015		
		YES	NO
1.	Is the information above correct?	×	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		×
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		×
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		×
	If you answered YES to questions 2 thru 4, include documentation or evidence		
	that documentation has been previously submitted with this certification form		
5.			×
5.	that documentation has been previously submitted with this certification form	•	×
5.	that documentation has been previously submitted with this certification form		M NO
5. 6.	that documentation has been previously submitted with this certification form	Box 2	
	Is the site currently undergoing development? Is the current site use consistent with the use(s) listed below? Commercial and Industrial	Box 2	NO
6.	Is the site currently undergoing development? Is the current site use consistent with the use(s) listed below? Commercial and Industrial	Box 2 YES	NO 🗆
6. 7.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below:	Box 2 YES X' And	NO
6. 7.	Is the currently undergoing development? Is the current site use consistent with the use(s) listed below? Commercial and Industrial Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	Box 2 YES X' And	NO

SITE NO. V00087 Box 3

Description of Institutional Controls

<u>Parcel</u>

86.12-6-5.1

Owner

New Paltz Properties, LLC

Institutional Control

Site Management Plan Ground Water Use Restriction Landuse Restriction IC/EC Plan

- 1. Imposition of an institutional control in the form of a deed restriction on the 13.5-acre plaza property, including the former Revonak Dry Cleaners Site.
- 2. The property may not be used for a higher level of use, such as unrestricted residential use without additional remediation and amendment of the March 2010 Record of Decision, as approved by the NYSDEC.
- 3. All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the approved Site Management Plan (SMP).
- 4. Restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDEC, NYSDOH or Ulster County Department of Health.
- 5. The potential for vapor intrusion must be evaluated for any buildings developed in the New Paltz Plaza shopping center, and any potential impacts that are identified must be monitored or mitigated.
- 6. Vegetable gardens and farming on the property are prohibited.
- 7. New Paltz Plaza, future site owners, or the owner's representative will submit to NYSDEC a written statement that certifies, under penalty of perjury, that:
- (a) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (b) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

Box 4

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

86.12-6-5.1

Vapor Mitigation

- 1. A contingency plan that allows for further groundwater remediation via application of hydrgoen release compound (HRC)or other similar technology (e.g., in-situ chemical oxidation), in the event that tetrachloroethlene (PCE), volatile organics and/or their breakdown compounds remain consistently above groundwater standards or have not become asymptotic (i.e., the concentrations of volatile organics remain at their lowest without any further reduction in concentration) at an acceptable level over an extended period.
- 2. Operation and maintenance of the nine sub-slab depressurization (SSD) systems.

Box 5	
-------	--

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
	>> □
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	$oldsymbol{arkappa}$ \square
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. V00087

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Peter Kenps print name	4. C at _257	at 257 Manuroheck Ave. White Plains, NY /					
am certifying as	Owner		(Owner or Remedial Party)				
Sans .	e Site Details Section of this		2/28/15 Date				

IC/EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Sterling Environmental Engineering
at 24 Wale Road, Lethem, NY. 12110
print name print business address

am certifying as a Qualified Environmental Professional for the Owner (Owner or Remedial Party)

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification Stamp Date (Required for PE)