

Environmental and Planning Consultants

440 Park Avenue South 7th Floor New York, NY 10016 tel: 212 696-0670 fax: 212 213-3191 www.akrf.com

March 10, 2010

Mr. Jack Aversa, P.E.
Section Chief - Remedial Bureau B
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway
Albany, NY 12233-7010

Ms. Bridget Callaghan Bureau of Environmental Exposure Assessment New York State Department of Health 547 River Street Troy, NY 12180

Re: February 2010 Progress Report

Home Depot Woodhaven Blvd., Rego Park, NY Voluntary Cleanup Program Site #V00095

Dear Mr. Aversa and Ms. Callaghan:

Remedial activities are being performed at the Home Depot Woodhaven Boulevard site in accordance with a Voluntary Cleanup Agreement (#V00095) entered into in 1997. The site is located on the east side of Woodhaven Boulevard just north of the Long Island Railroad tracks in Glendale/Rego Park, Queens and comprises the southern portion of the Home Depot property, including the store building and the immediately surrounding areas, corresponding to two industrial/commercial properties that formerly occupied the site. Remedial work is being performed in accordance with the New York State Department of Environmental Conservation Department (NYSDEC)-approved Remedial Work Plan, ADI and Glendale Properties, Rego Park, Queens, New York, dated May 1997 (RWP). Prior remedial activities conducted on the site included:

- Supplemental testing following demolition of the former on-site buildings to identify areas of contaminated surface soil:
- Excavation and removal of over 1,000 tons of tetrachloroethene (PCE)-contaminated soil from two source areas within the footprint of the former ADI building adjacent to Woodhaven Boulevard; and
- Construction and operation of an air sparging/soil vapor extraction (AS/SVE) system covering the source areas, the area immediately downgradient of the source area, and the downgradient boundary of the site.

This report summarizes the activities conducted at the site in February 2010 pursuant to the Voluntary Cleanup Agreement and the RWP.

January 2010 Quarterly Groundwater Sampling Event

The first 2010 quarterly groundwater sampling event was conducted between January 29 and February 8, 2010. Well AMW-5 was not sampled due to the obstruction noted in the previous sampling event. See Figure 1 for well locations.

Groundwater samples were collected using low-flow sampling techniques. Groundwater samples were analyzed for Target Compound List (TCL) volatile organic compounds (VOCs) by TestAmerica, Inc. of Shelton, Connecticut. Laboratory analytical results for the sampling event are provided as Appendix A. The laboratory analytical results for this sampling event are provided in Table 1 and historical PCE concentrations are summarized in Table 2.

Concentrations were generally lower [ranging from 3.1 to 6,100 parts per billion (ppb)] in wells screened at or near the water table and gradually decrease with depth, with concentrations ranging from 1.4 to 400 ppb in samples collected from wells screened at the confining clay layer which is located about 134 to 146 feet below surface grade (approximately 85 to 95 feet below the water table). Most samples contained PCE levels similar to or lower than those detected in the previous round of sampling or within historic ranges. The PCE concentration detected at monitoring well AMW-1 (where a PCE concentration of 47,000 ppb was recorded during the previous round of sampling) was 2,600 ppb, much lower than the previous round and consistent with historic data. The PCE concentrations detected in monitoring wells P-2, P-9, P-10 and P-20 were higher than previous sampling events, but with no trend apparent due to limited data.

Air Sparging/Soil Vapor Extraction (AS/SVE) System Operation

The AS/SVE system was inspected on February 9 and 19, 2010 and found to be operating with no water in the moisture separation tank. The SVE lines were operating within expected pressure ranges. The AS system was shut down in its entirety on February 8, 2010 after positive pressure was observed in groundwater monitoring well AMW-4. The positive pressure is being evaluated as discussed below. Regular system inspection, consisting of confirming SVE pressures are as expected, field screening effluent concentrations using a photoionization detector (PID), and checking for buildup of moisture and particulate, will continue as part of the monthly system checks.

Carbon within the two 2,000-pound (lbs) vapor treatment units was replaced on January 6, 2010, with spent carbon containerized in 55-gallon drums pending acceptance from the disposal facility. The acceptance is expected by April 2010. Following the carbon replacement, a confirmatory air sample was collected to evaluate the effluent VOC concentrations. The sample was collected from the system effluent over an approximately 1-hour sampling period and analyzed for VOCs by EPA Method TO-15 by York Analytical Laboratories, Inc. of Stratford, Connecticut. The laboratory analytical data report for the effluent sample is provided in Appendix B. The laboratory analytical results indicate that detectable concentrations of acetone and toluene are present in the effluent sample, with no detections for any other VOCs. All detected VOC concentrations were well below the NYSDEC Division of Air Resources (DAR)-1 Short-term Guideline Concentrations (SGC).

Indoor Air Sampling

During groundwater sampling on February 8, 2010, positive air pressure was observed in monitoring well AMW-4. In response, the air sparge system was shut down while the SVE was continued in operation. The air pressure in AMW-4 and surrounding wells was monitored on February 9 and 19, 2010. The pressure in AMW-4 was observed to be 49.5 and 53 inches of water and the pressure in P-12 was observed to be 2.0 and 2.5 inches of water on February 9 and 19, 2010, respectively. No pressure was observed in any other monitoring wells in the area. Similar pressure was noted in monitoring well AMW-4 in 2004 and was reported at the time. Response actions, including off-gassing pressure of the well through carbon canisters, were implemented but the pressure dissipated before the issue was fully assessed.

In response to the pressurized well, air samples were collected inside the store at well location for AMW-4 and two other locations to give wider representation of indoor air quality throughout the store. The objective of the indoor air sampling was to determine whether the positive pressure in the well or vapor intrusion has affected indoor air quality at the site. The scope of work included a site inspection, collection of indoor and ambient air samples, and laboratory analysis for select parameters. The field activities were completed in accordance with indoor air sampling procedures described in New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 (NYSDOH, 2006).

The inventory of on-site chemicals used and stored in the vicinity of each sampling location was logged on the sampling forms provided as Appendix C. The air samples were collected over an approximately 8-hour sampling period and analyzed for chlorinated volatile organic compounds (CVOCs) by EPA Method TO-15 by York Analytical Laboratories, Inc. of Stratford, Connecticut. During sampling, the air was field screened using a PID and the general conditions were documented at each sample locations. Copies of the indoor air sampling logs are provided in Appendix C.

Analytical results for VOCs in the indoor and ambient air samples are summarized in Table 3 and laboratory analytical data reports are provided in Appendix B. Table 3 also lists the NYSDOH Air Guideline Values (AGVs) for comparison.

The laboratory analytical results indicated that detectable concentrations of CVOCs were present in all of the indoor and ambient air samples. Five (5) of the 8 VOCs analyzed for were detected in the indoor air samples, including 1,1,1-trichloroethane, 1,2-dichloroethane, carbon tetrachloride, tetrachloroethene (PCE), and trichloroethene (TCE). Two (2) of these compounds (carbon tetrachloride and PCE) were detected in the ambient air sample. All detected VOC concentrations were well below the NYSDOH AGVs. These results indicate that the overall indoor air quality in the building has not been adversely affected by the pressurized well or vapor intrusion.

We will continue to monitor the pressure in the well and evaluate site conditions to determine the source of the pressure detected and appropriate corrective measures.

AS/SVE System Expansion

Preliminary design of the AS/SVE expansion was presented to NYSDEC and NYSDOH in correspondence dated February 3, 2010. NYSDEC accepted the preliminary design with comments on February 12, 2010. The AS/SVE Expansion Work Plan was submitted to NYSDEC and NYSDOH on February 16, 2010. On February 24, 2010, AKRF and Warren George, Inc. of Jersey City, New Jersey began AS and SVE well installation activities at the site.

Please feel free to contact Kate at (646) 388-9525 or Marc at (914) 922-2356 with any questions.

Sincerely, AKRF, Inc.

Kathleen M. Brunner Technical Director Marc S. Godick, LEP Senior Vice President

cc hardcopy:

Sadique Ahmed, Michael Lesser – NYSDEC

cc via email:

John Patton, Theresa Brophy Home Depot

Mark Chertok, Jennifer Coghlan - Sive Paget & Riesel

Attachments:

Figure 1 – Site Plan

Tables 1 and 2 – Groundwater Sampling Results Summary

Table 3 – Indoor Air Sampling Results

Appendix A – Groundwater Sampling Laboratory Analytical Results

Appendix B Indoor Air and Effluent Sampling Laboratory Analytical Results

Appendix C – Indoor Air Sampling Logs

Table 1

Home Depot - Rego Park, NY
Groundwater Analytical Results
Volaile Organic Compounds

			Wells screer	ned across the groundwate	Wells screened across the groundwater surface (about 50 feet below grade)	low grade)	
Sample ID		p-1	P-2	P-3	P-4	P-5	P-7
Lab Sample Number	NYSDEC Class	220-10551-2	220-10559-2	220-10604-1	220-10588-9	220-10588-2	220-10574-2
Sampling Date	GA Water Quality	10/26/2009	10/27/2009	11/2/2009	10/30/2009	10/29/2009	10/29/2009
Dilution Factor	Standards	400	1	10	5	1	1
Units		ng/L	T/Gn	ng/L	ng/L	ng/L	ng/L
1.1.1-Trichloroethane	2	17 U	U 69:0	3.4 U	2.8 U	U 69:0	U 69.0
1,1,2,2-Tetrachloroethane	2				3.2 U	0.81 U	0.81 U
1,1,2-Trichloroethane			0.65 U	3.2 U		0.65 U	0.65 U
1,1-Dichloroethane	2			5.2 U	4.1 U	1.0 U	1.0 U
1,1-Dichloroethene	2		0.83 U				0.83 U
1,2-Dichloroethane	9.0		0.72 U	3.6 U	2.9 U	0.72 U	0,72 U
1,2-Dichloropropane			U 17.0		2.8 U	U 17.0	0.77 U
2-Hexanone	20		U 1.1 U		4.4 U	1.1 U	1.1 U
Acetone	20	130	U 0.1	5.2 U		1.0 U	1.0 U
Benzene	1		0.74 U		3.0 U	0.74 U	0.74 U
Bromodichloromethane	50					0.48 U	0.48 U
Bromoform	20		0.46 U		1.8 U	0.46 U	0.46 U
Bromomethane	5		2.1 U			2.1 U	2.1 U
Carbon disulfide	9						0.90 U
Carbon tetrachloride	5		ш		4.3 U	1.1 U	1.1 U
Chiorobenzene	2		0.72 U				0.72 U
Chloroethane	5		1.1 U		4.2 U	1.1 U	1.1 U
Chloroform			0.67 U				0.67 U
Chloromethane	2	27 U	1.1 U	5.4 U	4.4 U		1,1 U
cis-1,2-Dichloroethene	2		O 66:0				O 66:0
cis-1,3-Dichloropropene	0.4		0.28 U			0.28 U	0.28 U
Dibromochloromethane	50			2.8 U			0.55 U
Ethylbenzene	2		U 78.0				0.87 U
Methyl Ethyl Ketone	2		1.1 U		4.4 U		1.1 U
methyl isobutyl ketone	2			1.9 U		0.38 U	0.38 U
Methylene Chloride	2						0.78 U
Styrene	5		0.64 U		2.6 U	0.64 U	0.64 U
Tetrachloroethene	5	2600	36	550	400	6.8	3.1 J
Toluene	22	18 U	0.72 U	3.6 U	2.9 U	7	0.72 U
Irans-1,2-Dichloroethene	2		U 9/10	3.8 U	3.0 U	0.76 U	0.76 U
trans-1,3-Dichloropropene	0.4		U 75.0	2.8 U			0.57 U
Trichloroethene	2		0.62 U				0.62 U
Vinyl acetate		41 U	1.6 U	8.2 U	6.5 U	1.6 U	1.6 U
Vinyl chloride	2	25 U	U 66.0	5.0 U	4.0 U		0.99 U
Xylenes, Total	2		2.3 U	11 U	9.1 U	2.3 U	Z3 U

- QUALIFIERS

 *: LCS or LCSD exceeds the control limits

 B: The analyte was found in an associated blank, as well as in the sample.

 H: Sample was prepped or analyzed beyond the specified holding time

 J: Indicates an estimated value.

 U: Analyzed for but not detected.

Table 1
Home Depot - Rego Park, NY
Groundwater Analytical Results
Volaile Organic Compounds

	Wells screened across the groundwater surface (a 50 feet below grade)	proundwater surface (about ow grade)	bout Wells screened across the groundwater surface (about 50 feet below grade)	groundwater surface elow grade)		Wells screened across the groundwater surface (about 50 feet below grade)	out 50 feet below grade)
Sample ID	P-10	P-12	P-14	P-16	AMW-2	AMW-3	AMW-4
Lab Sample Number	220-10574-1	220-10588-1	220-10588-10	220-10604-3	220-10559-5	220-10559-6	220-10559-4
Sampling Date	10/28/2009	10/29/2009	10/30/2009	11/2/2009	10/28/2009	10/28/2009	10/28/2009
Dilution Factor	20	50	1		5	25	20
Units	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
1,1,1-Trichloroethane	O 69	3.4 U	U 69:0	U 69:0	U 69.0	14 U	2.8 U
1,1,2,2-Tetrachloroethane	81 U	4.0 U	0.81 U	U 181 U	0.81 U	16 U	3.2 U
1,1,2-Trichloroethane	65 U		0.65 U	0.65 U		13 U	2.6 U
1,1-Dichloroethane	100 U	5.2 U	1.0 U	U 0.1	1.0 U	21 U	4.1 U
1,1-Dichloroethene	83 U		0.83 U	0.83 U	0.83 U	U 71	3.3 U
1,2-Dichloroethane	72 U	3.6 U	0.72 U	0.72 U		14 U	2.9 U
1,2-Dichloropropane	71 U	1	0.71 U	U 17.0	0.71 U	14 U	2.8 U
2-Hexanone	110 U	5.4 U*		1.1 U	1.1 U	22 U	4.4 U
Acetone	ر 100	5.2 U		U 0.1	J. 0.L	21 U	4.1 U
Benzene	74 U			0.74 U	0.74 U	15 U	3.0 U
Bromodichloromethane	48 U			0.48 U	0.48 U	N 9.6	J. 6.1
Bromoform	46 U	2.3 U		0.46 U		9.2 U	1.8 U
Bromomethane	210 U		2.1 U	2.1 U	2.1 U	42 U	8.5 U
Carbon disulfide	n 06			U 06.0	n 06:0	18 U	3.6 U
Carbon tetrachloride	110 U	5.4 U				21 U	4.3 U
Chlorobenzene	72 U		0.72 U	0.72 U	0.72 U		2.9 U
Chloroethane	110 U	5.3 U	1,1 U	1.1 U		21 U	4.2 U
Chloroform	U 79		U 79:0	U 79.0	U 79.0	13 U	2.7 U
Chloromethane	110 U	5.4 U	1.1 U	1.1 U		22 U	4.4 U
cis-1,2-Dichloroethene	N 66	5.0 U	U 66.0	O 66'0	U 66.0	20 U	ر 16
cis-1,3-Dichloropropene	28 U		0.28 U	0.28 U		5.6 U	1.1 U
Dibromochloromethane	55 U		0.55 ປ	0.55 U		11 U	2.2 U
Ethylbenzene	lu 78	4.4 U	U 28.0	0.87 U	U 287 U	17 U	3.5 U
Methyl Ethyl Ketone	110 U			1.1 U		22 U	4.4 U
methyl isobutyl ketone	38 U	1.9 U*		0.38 U		7.6 U	1.5 U
Methylene Chloride	360 JB		0.78 U	0.78 U		16 U	۷.4
Styrene	64 U	3.2 U	0.64 U	0.64 U	0.64 U	13 U	2.6 U
Tetrachloroethene	6100	250	4.3 J	L 4.4 J	08	2000	089
Toluene	72 U		0.72 U	0.72 U	0.72 U	14 U	2.9 U
trans-1,2-Dichloroethene	U 97	3.8 U	U 97.0	0.76 U	U 92.0	15 U	8.7
trans-1,3-Dichloropropene	N 25		U 75.0	0.57 U		11 U	2.3 U
Trichloroethene	62 U		L 56.0	0.62 U	0.62 U	Z6 J	15
Vinyl acetate	160 U	8.2 U	1.6 U	1.6 U		33 U	6.5 U
Vinyl chloride	U 66	5.0 U	U 66.0	U 66.0	N 66:0	20 U	4.0 U
Xylenes, Total	230 U	11 U	2.3 U	2.3 U	2.3 U	45 U	9.1 L

Table 1

Home Depot - Rego Park, NY
Groundwater Analytical Results
Volaile Organic Compounds

	wens sciented to test below groundwater surface (about 60 feet below grade)	v groundwater surface low grade)	Wells screened 20 feet below groundwater surface (about 70 feet below grade)	low groundwater surtace below grade)	Wells screened 30 feet below groundwater surface (about 80 feet below grade)	low grauriawater surrac below grade)
Sample (D	P-9	P-11	P-8R	AMW-6	P-13	P-15
Lab Sample Number	220-10559-1	220-10574-4	220-10574-3	220-10588-8	220-10588-12	220-10604-2
Sampling Date	10/28/2009	10/29/2009	10/29/2009	10/30/2009	10/30/2009	11/2/2009
Dilution Factor	2	-	L	5	1	4
Units	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
1,1,1-Trichloroethane	17 U	1,4 U	O 69:0	3.4 U	1,4 U	0.69
1,1,2,2-Tetrachloroethane	20 U	1.6 U	0.81 U		1.6 U	0.81
1,1,2-Trichloroethane	16 U	1.3 U	0.65 U			0.65
1,1-Dichloroethane	26 U			5.2 U		1.0
1,1-Dichloroethene	21 U	U 7.1		4.2 U	1.7 U	0.83
1,2-Dichloroethane	18 U	1,4 U			1.4 U	0.72
1,2-Dichloropropane	18 U	1.4 U	U 17.0			0.71
2-Hexanone	27 U	2.2 U	1.1 U			1.1
Acetone	26 U	4,2 J	1.0 U	100		1.0
Benzene	18 U	1.5 U	0.74 U	3.7 U		0.74
Bromodichloromethane	12 U	0.96 U	0.48 U	2.4 U		0.48
Bromoform	12 U	0.92 U				0.46
Bromomethane	53 U	4.2 U				2.1
Carbon disulfide	22 U	1.8 U	U 06.0	4.5 U		06'0
Carbon tetrachloride	27 U	2.1 U				1.1
Chlorobenzene	18 U	1.4 U				0.72
Chloroethane	26 U	2.1 U	1.1 U			F-1
Chloroform	U 71	1.3 U				29.0
Chloromethane	27 U	2.2 U	1.1 U	5.4 U	2.2 U	1.1
cis-1,2-Dichloroethene	25 U	2.0 U	6.4	11.30		0.99
cis-1,3-Dichloropropene	J.0 U	0.56 U	0.28 U			0.28
Dibromochloromethane	14 U	U 1.1	0.55 U	****		0.55
Ethylbenzene	22 U				1.7 U	0.87
Methyl Ethyl Ketone	27 U	2.2 U	1.1 U	5.4 U		1(1)
methyl isobutyl ketone	9.5 U	0.76 U	0.38 U	U 6.1		0.38
Methylene Chioride	83 JB			5.4 J	1.6 U	0.78
Styrene	16 U	1.3 U	0.64 U			0.64
Tetrachloroethene	1200	150	39	730	280	120
Toluene	18 U	1.4 U	0,72 U	3.6 U		0.72
trans-1.2-Dichloroethene	19 U	1.5 U	9.3	3.8 U		97.0
trans-1,3-Dichloropropene	14 U		U 75.0	2.8 U		0.57
Trichloroethene	16 U	1.2 U	14		1,2 U	0.74
Vinyi acetate	41 U	3.3 U				1.6
Vinyl chloride	25 U	2.0 U		5.0 U	2.0 U	0.99
Xylenes, Total	D 25 U	4.5 U	2.3 U	11 U		2.3

Table 1
Home Depot - Rego Park, NY
Groundwater Analytical Results
Volaile Organic Compounds

out 134 to 146'	P-22	220-10551-5	10/26/2009		ng/L	O 69:0	0.81 U	0.65 U	1.0 U	0.83 U	0.72 U	0.77 U	1.1 U	1.0 U	0.74 U	0.48 U	0.46 U	2.1 U	0.90 U	1.1 U	0.72 U	1.1 U	7.3	1.1 U	0.99 U	0.28 U	0.55 U	0.87 U	1.1 U	0.38 U	-	0.78 U	0.78 U 0.64 U	0.78 U 0.64 U 38	0.78 U 0.64 U 38 0.72 U				
Wells screened just above the clay confining layer (identified about 134 to 146' below grade)	P-20		10/30/2009 1	-	ng/L	2.8 U	3.2 U	2.6 U	4.1 U	3.3 U	2.9 U	2.8 U	4.4 U	4.1 U	3.0 U	1.9 U	1.8 U	8.5 U		4.3 U	2.9 U		2.7 U	4.4 U							3.1 U		2.6 U						
ust above the clay confining below grade)	P-18	2	8	-	ng/L	U 69:0	0.81 U			0.83 U		0.71 U	1.1 U	1.0 U		0.48 U			0.90 U	1.1 U	0.72 U		0.67 U		n 66		0.55 U			0.38 U									
Wells screened j	ď	220-10588-4	10/29/2009		6n	00	0	0		0	0	0	8						0						0	0	0	0.		0	0	0			0.	0.	0.0	0.00	0 0 0 0
Wells screened about 70 feet below groundwater surface (but above clay	P-21	220-10551-4	10/26/2009	10	ng/L	U 69:0	0.81 U	0.65 U		0.83 U			1.1			0.48 U			0.90 U		0.72 U	1.1 U	1.1		U 66:0	0.28 U		0.87 U			0.78 U	0.64 U	03	00					
		220-10588-6	10/30/2009	4	ng/L	0.69 U	0.81 U	0.65 U		0.83 U	0.72 U	0.71 U	1.1 U			0.48 U		2.1 U				1.1 U	U 29.0				0.555 U					0.64 U	0.84		-2.0	200000			
oelow groundwater surface grade)	P-17	220-10588-3	10/29/2009	1	ng/L	U 69:0	U 1810	0.65 U	1.0 U	0.83 U	0.72 U	U 17.0	1.1 U	1.0 U	0.74 U	0.48 U	0.46 U	2.1 U	U 06:0	1.1	0.72 U	1.1 U	U 20.0	1.1 U	0.99 U	0.28 U	0.55 U	U 78.0	1.1 U	0.38 U	0.89	0.64 U	0.81 U		0.72 U				
Wells screened about 50 feet below groundwater surface (about 100 feet below grade)	AMW-1	220-10551-3	10/26/2009		ng/L	0.69 U	0.81 U	0.65 U	1.0 U	0.83 U	0.72 U	0.71 U	1.1 U	J. 0.1	0.74 U	0.48 U	0.46 U	2.1 U	0.90 U	1.1 U	0.72 U	1.1 U	0.67 U	1.1 U	0.99 U	0.28 U	0.55 U	0.87 U	1.1 U	0.38 U	0.78 U	0.64 U	69	i i i i i i i i i i i i i i i i i i i	0.72 U				
	Sample ID	Lab Sample Number	Sampling Date	Dilution Factor	Units	1,1-Trichloroethane	1,2,2-Tetrachloroethane	1,2-Trichloroethane	,1-Dichloroethane	1-Dichloroethene	,2-Dichloroethane	,2-Dichloropropane	2-Hexanone	Acetone	Benzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane	Ethylbenzene	Methyl Ethyl Ketone	methyl isobutyl ketone	Methylene Chloride	Styrene	Tetrachloroethene		oluene	Toluene trans-1,2-Dichloroethene	Toluene Irans-1,2-Dichloroethene Irans-1,3-Dichloropropene	oluene rans-1.2-Dichloroethene rans-1.3-Dichloropropene richloroethene	Toluene trans-1.2-Dichloroethene trans-1.3-Dichloropropene Trichloroethene Vinyl acetate

Groundwater Analytical Results Historic Tetrachloroethene (PCE) Concentrations **Table 2** Home Depot - Rego Park, NY

	Т									٦	B		Γ	7	7		m						I						
	P-8		19	9	10	9	ည	4	9	2	က	9	ည	1.4	1.6	6.1	8.4	110	220	760	210	49	77	240	42	NA	NA	Ą	
rade)	P-7		41	51	20	19	15	13	34	9	7 B	14	13	16	21	10	9.2 B	6.5	5.5	4.1 J	9.9	3.4 J	9.2	2.2 J	6.2	6.3	7.8	3.1	
out 50 feet below g	P-5		3	က	2	13	4	1	2	2 J	2 JB	က	က	1.6 J	1.2 J	0.84 J	2.3	1.5 J	3.1	2.9 J	3.7 J	7	2.2 JH	3.9 J	2.3	5.5	5.2	6.8	
Wells screened across the groundwater surface (about 50 feet below grade)	P-4		170	460	170	130	160	220	1700	180 D	160 B	930	1000	580	260	510	480 B	350	330	330	790	160	360 H	290	510	290	610	400	
ed across the grour	P-3		2200	390	2000	26	70	1400	3700	1300 D	820 B	1200	1700	1200	1300	1300	1400	1200	1200	069	099	750	780	620	630	740	550	550	
Wells screen	P-2		160	099	220	009	1500	1000	1600	66	380 B	18	100	8.1	7.8	52	9.4	7.5	009	4.6 ل	5.9	8.7	7.9	12	6	6.8	6.9	36	OTTON
	P-1		24000	18000	26000	17000	14000	23000	22000	7700	15000 B	20000	5200	5300	0029	5100	6500	3500	2200	3400	4500	5900	4600 H	5100	6400	4500	47000	2600	2
	Sample ID	Tetrachloroethene (in ug/L)	Jan-01	Mar-01	Apr-01	Aug-01	Nov-01	Mar-02	Jul-02	Nov-02	Feb-03	Sep-03	Feb-04	Feb-06	90-unf	Sep-06	Jan-07	Apr-07	Jul-07	Oct-07	May-08	Sep-08	Dec-08	Jan/Feb-08	Mar/Apr-09	Jun-09	Sep-09	Jan-10	

NOTES

J: Indicates an estimated value.U: Analyzed for but not detected.NA: Not Analyzed

Table 2

Home Depot - Rego Park, NY
Groundwater Analytical Results
Historic Tetrachloroethene (PCE) Concentrations

creened acro	ed acros	s the grou	ndwater surface	(about 50 feet be	ow grade)	
	P-12	P-14	P-16	AMW-2	AMW-3	AMW-4
	ĄZ	A A	Ą Z	3100	9400	2900
	NA	AN	AN	4300	4300	5800
	NA	NA	NA	4700	7100	5400
	NA	NA	NA	4000	9400	3800
	NA	NA	NA	4300	4300	009
	NA	NA	NA	2100	12000	3500
	NA	AN	NA	2200	6200	0099
	ΑΝ	AN	NA	2800 D	3600 D	3800
	NA	NA	NA	3800	4400	2800
	NA	NA	NA	1800	3800	1900
	NA	NA	NA	2000	6500	2600
	NA	NA	NA	250	3600	1700
	NA	NA	NA	160	4600	0069
	NA	NA	NA	930	2500	3700
	NA	AN	NA	710	1100	2000
	NA	NA	NA	480	3400	830
	NA	AN	NA	770	2900	1400
	NA	NA	NA	550	2900	1600
	NA	NA	NA	200	3400	1900
	NA	NA	NA	120	4000	2600
	2700 H	80	3 J	H 62	3700 H	2800
	Ϋ́	AN	NA	270	3500	1000
	0069	9.9	2 J	210	3400	3900
	5300	7.8	6.7	NA	3700	3600
	4300	8.4	9.9	650	3700	2600
	750	- 67	- 77	00	0000	680

Table 2Home Depot - Rego Park, NY
Groundwater Analytical Results

Come) Concentrations
inaly usai is	PCE
	Tetrachloroethene
	Historic

	Wells screened 10 feet below groundwater surface (about 60 feet below grade)) feet below ce (about 60 rade)	Wells screened (abo	Wells screened 20 feet below groundwater surface (about 70 feet below grade)	dwater surface de)	Wells screened 30 feet below groundwater surface (about 80 feet below grade)	1 30 feet below ace (about 80 feel grade)
Sample ID	P-9	P-11	P-8R	AMW-5	AMW-6	P-13	P-15
Tetrachloroethene (in ug/L)					2		
Jan-01	NA	NA	NA	NA	NA.	NA	NA
Mar-01	AN	AN	NA	NA	ΑN	NA	NA
Apr-01	AN	NA	NA	NA	ΑN	NA	NA
Aug-01	AN	AN	AN	NA	ΑN	NA	NA
Nov-01	AN	A V	AN	AN	Ϋ́	AN	NA
Mar-02	AN	AN	NA	NA	ΝΑ	NA	NA
Jul-02	ΑΝ	ΑΝ	NA	NA	ΝΑ	NA	AN
Nov-02	A	AN A	NA	NA	ΑN	NA	NA
Feb-03	ΑN	Ϋ́	NA	AN	Ϋ́	ΑN	ΑN
Sep-03	ΝΑ	AN A	AN	AN	Ϋ́	Ą	NA
Feb-04	ΑN	ΑN	AN	2800	730	AN	NA
Feb-06	Ą	AN	NA	340	089	NA	NA
Jun-06	ΑN	Ϋ́	NA	3000	720	AN	AN
Sep-06	NA	AN	NA	3000	490	NA	NA
Jan-07	AN	AN A	NA	8700 B	ΑN	NA	AN
Apr-07	NA	AN	NA	3000	300	NA	NA
Jul-07	N A	NA	NA	15000	240	NA	NA
Oct-07	ΑN	ΑN	AN	2200	230	NA	NA
May-08	NA	AN	NA	5400	320	NA	NA
Sep-08	NA	AN	NA	3900	870	NA	AN
Dec-08	Н 099	160	NA	410 H	1400 H	4 320 H	190
Jan/Feb-08	AN	ΑΝ	NA	0092	250	NA	Ϋ́
Mar/Apr-09	790	110	NA	440	420	68	33
Jun-09	370	180	NA	2000	1000	220	150
Sep-09	210	110	170	AN	1000	200	230
lan-10	1200	150	39	AN	730	280	120

Page 4 of 4

Table 2
Home Depot - Rego Park, NY
Groundwater Analytical Results
Historic Tetrachloroethene (PCE) Concentrations

81-48 AN A		Wells screened 50 feet below gr (about 100 feet below	ened 50 feet below groundwa (about 100 feet below grade)	ater _	Well screened 70 feet below groundwater	Wells screened (identified abo	Wells screened just above the clay confining layer (identified about 134 feet to 146' below grade)	confining layer oelow grade)
NA	Sample ID	AMW-1	P-17	P-19	P-21	P-18	P-20	P-22
NA NA<	Tetrachloroethene (in ug/L)							
NA NA<	Jan-01	ΑΝ						
NA NA NA NA NA	Mar-01	NA	NA	NA	NA	NA	NA	NA
NA NA<	Apr-01	AN	NA	NA	AN	AN	NA	NA
NA NA NA NA NA 120 NA NA NA NA 121 NA NA NA NA 122 NA NA NA NA 123 NA NA NA NA 124 NA NA NA NA 124 NA NA NA NA 125 NA NA NA NA 1	Aug-01	AN	NA	NA	ΑN	¥	AN	NA
NA NA NA NA NA 310 NA NA NA NA 420 NA NA NA NA 92 NA NA NA NA 92 NA NA NA NA 85 NA NA NA NA 85 NA NA NA NA 54 NA NA NA NA 43 NA NA NA NA 54 NA NA NA NA 54 NA NA NA NA 64 99 350 1000 0.95	Nov-01	AN	AN	AN	AN	AN	AN	NA
NA NA<	Mar-02	AN	NA	NA	NA	NA	NA	NA
NA NA NA NA NA NA NA NA NA NA NA 310 NA NA NA NA 240 NA NA NA NA 220 NA NA NA NA 85 NA NA NA NA 27 NA NA NA NA 52 NA NA NA NA 54 NA NA NA NA 43 NA NA NA NA 54 NA NA NA NA 54 NA NA NA NA 54 NA NA NA NA 64 NA NA NA NA 74 NA NA NA NA 84 NA NA NA NA 84 NA NA NA NA <th>Jul-02</th> <th>AN</th> <th>NA</th> <th>NA</th> <th>NA</th> <th>NA</th> <th>NA</th> <th>NA</th>	Jul-02	AN	NA	NA	NA	NA	NA	NA
NA NA NA NA NA 310 NA NA NA NA 310 NA NA NA NA 220 NA NA NA NA 85 NA NA NA NA 27 NA NA NA NA 54 NA NA NA NA 43 NA NA NA NA 54 NA NA NA NA 54 NA NA NA NA 54 NA NA NA NA 55 NA NA NA NA 54 NA NA NA NA 55 NA NA NA NA 64 NA NA NA NA 74 NA NA NA 84 NA NA NA 84 NA <	Nov-02	NA	NA	NA	NA	NA	NA	NA
NA NA NA NA NA 310 NA NA NA NA 240 NA NA NA NA 120 NA NA NA NA 85 NA NA NA NA 54 NA NA NA NA 52 NA NA NA NA 49 NA NA NA NA 54 NA NA NA NA 49 NA NA NA NA 54 NA NA NA NA 54 NA NA NA NA 54 NA NA NA NA 44 NA NA NA NA 54 NA NA NA NA 54 NA NA NA NA 54 NA NA NA NA <	Feb-03	AN	NA	NA	NA	NA	NA	NA
310 NA NA NA NA 240 NA NA NA NA 120 NA NA NA NA 92 NA NA NA NA 85 NA NA NA NA 27 NA NA NA NA 52 NA NA NA NA 43 NA NA NA NA 449 NA NA NA NA 52 NA NA NA NA 52 NA NA NA NA 54 NA NA NA NA 44 NA NA NA NA 54 NA NA NA NA	Sep-03	AN	AN	NA	NA	AN	NA	NA
240 NA NA NA NA 120 NA NA NA NA 85 NA NA NA NA 27 NA NA NA NA 54 NA NA NA NA 43 NA NA NA NA 49 NA NA NA NA 52 NA NA NA NA 54 NA NA NA NA 52 NA NA NA NA 54 NA NA NA NA 44 NA NA NA NA 44 NA NA NA NA 54 NA NA NA NA 699 350 1000 0.955	Feb-04	310	AN	NA	NA	Ą	AN	NA
120 NA NA NA NA 92 NA NA NA NA 27 NA NA NA NA 54 NA NA NA NA 43 NA NA NA NA 49 NA NA NA NA 52 NA NA NA NA 54 NA NA NA NA 55 NA NA NA NA 54 NA NA NA NA 54 NA NA NA NA 44 NA NA NA NA 54 NA NA NA NA 54 99 350 1000 0.955	Feb-06	240	NA	NA	NA	NA	NA	NA
92 NA NA NA NA 85 NA NA NA NA 27 NA NA NA NA 54 NA NA NA NA 43 NA NA NA NA 49 NA NA NA NA 54 NA NA NA NA 55 NA NA NA NA 44 NA NA NA NA 44 NA NA NA NA 54 NA NA NA NA 55 NA NA NA NA 44 NA NA NA NA 54 NA NA NA NA	90-unf	120	NA	NA	NA	NA	NA	NA
85 NA NA NA NA 27 NA NA NA NA 54 NA NA NA NA 52 NA NA NA NA 43 NA NA NA NA 49 NA NA NA NA 54 NA NA NA NA 55 NA NA NA NA 44 NA NA NA NA 44 NA NA NA NA 54 NA NA NA NA 44 NA NA NA NA 54 NA NA NA NA	Sep-06	92	NA	NA	NA	N AN	NA	NA
27 NA NA NA NA 54 NA NA NA NA 52 NA NA NA NA 43 NA NA NA NA 54 NA NA NA NA 52 NA NA NA NA 52 NA NA NA NA 44 NA NA NA NA 44 NA NA NA NA 54 NA NA NA NA	Jan-07	85	NA	NA	NA	NA	NA	NA
54 NA NA NA NA 43 NA NA NA NA 43 NA NA NA NA 49 NA NA NA NA 52 NA NA NA NA 44 NA NA NA NA 44 NA NA NA NA 54 NA NA NA NA	Apr-07	27	NA	NA	NA	NA	NA	NA
52 NA NA NA NA 43 NA NA NA NA 49 NA NA NA NA 52 NA NA NA NA 34 NA NA NA NA 44 NA NA NA NA 54 99 350 1000 0.95	Jul-07	54	NA	NA	NA	NA	NA	NA
43 NA NA NA NA 49 NA NA NA NA 54 NA NA NA NA 52 NA NA NA NA 44 NA NA NA NA 44 NA NA NA NA 54 99 350 1000 0.95	Oct-07	52	NA	NA	NA	NA	NA	NA
49 NA NA NA NA 54 NA NA NA NA 52 NA NA NA NA 34 NA NA NA NA 44 NA NA NA NA 54 99 350 1000 0.95	May-08	43	NA	NA	NA	NA	NA	NA
54 NA NA NA NA 52 NA NA NA NA 34 NA NA NA NA 44 NA NA NA NA 54 99 350 1000 0.95	Sep-08	49	NA	NA	NA	NA	NA	NA
52 NA NA NA NA 34 NA NA NA NA 44 NA NA NA NA 54 99 350 1000 0.95	Dec-08	54	NA	NA	NA	NA	NA	NA
34 NA NA NA NA 44 NA NA NA NA 54 99 350 1000 0.95	Jan/Feb-08	52	AN	AN	NA	NA	NA	NA
44 NA NA NA NA 54 99 350 1000 0.95	Mar/Apr-09	34	AN	NA	NA	NA	NA	NA
54 99 350 1000 0.95	90-unf	44	NA	NA	NA	NA	NA	ΝΑ
	Sep-09	54	66	350	1000		4.8 J	100
Jan-10 69 0.81 U 0.81 J 68 1.4 J	Jan-10	69			89		400	38

Table 3

Home Depot - Rego Park, NY Indoor Air Analytical Results Chlorinated Volatile Organic Compound Concentrations

	DOH Guideline	IAS-1	IAS-2	IAS-3	AA
Compound	μg/m³				
1,1,1-TCA	NS	0.13	0.11	0.12	ND
1,1-Dichloroethene	NS	ND	ND	ND	ND
1,2-Dichloroethane	NS	5,1	8.5	1,1	ND
Carbon tetrachloride	NS	0.74	0.66	0.55	0.43
cis-1,2-Dichloroethene	NS	ND	ND	ND	ND
Tetrachloroethene	100	4.5	1.8	3.9	0.35
Trichloroethene	5	0.76	0.34	0.35	ND
Vinyl Chloride	NS	ND	ND	ND	ND

APPENDIX A GROUNDWATER SAMPLING LABORATORY ANALYTICAL RESULTS

APPENDIX B AIR SAMPLING LABORATORY ANALYTICAL RESULTS

York Analytical Laboratories, Inc.

Final Technical Report

prepared for

AKRF, Inc. Ms. Kate Brunner

Re: The Home Depot 75-09 Woodhaven Blvd. Rego Park

York Project No. 10B0603

March 24, 2010

Volume 1 of 1

Table of Contents York Project/SDG No. 10B0603

TITLE PAGE	<u>Page Number</u> 001
TABLE OF CONTENTS	002
RESULTS SUMMARY	003 - 017
QUALITY CONTROL DATA	018 - 024
CHAIN-OF-CUSTODY DOCUMENTATION	025 - 027
APPENDIX A - SAMPLE DATA	028 - 251
CASE NARRATIVE AND SDG STATEMENT	029 - 030
TO-15 Volatiles Data: - FORMS 2,3,4,5,8 - FORM I's and Sample Data - Standards Initial Calibration - Standards Continuing Calibration - BFB Data - Blank Data - LCS and Duplicate Data - Summa Canister Entech 7000 Sample Log - Injection Log - Individually Certified Canister Data	031 - 045 046 - 144 145 - 177 178 - 185 186 - 189 190 - 209 210 - 224 225 226 - 227

Technical Report

prepared for:

AKRF, Inc.
440 Park Avenue South, 7th Floor
New York NY, 10016
Attention: Kate Brunner

Report Date: 03/25/2010

Client Project ID: The Home Depot 75-09 Woodhaven Blvd. Rego Park

York Project (SDG) No.: 10B0603

CT License No. PH-0723

New Jersey License No. CT-005

New York License No. 10854

PA Reg. 68-04440

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

FAX (203) 357-0166

Page 1 of 24

YORK LABS1080603 :00003

Report Date: 03/25/2010

Client Project ID: The Home Depot 75-09 Woodhaven Blvd. Rego Park

York Project (SDG) No.: 10B0603

AKRF, Inc.

440 Park Avenue South, 7th Floor New York NY, 10016 Attention: Kate Brunner

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on February 22, 2010 and listed below. The project was identified as your project The Home Depot 75-09 Woodhaven Blvd. Rego Park.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
10B0603-01	IAS-1	Air	02/19/2010	02/22/2010
10B0603-02	IAS-2	Air	02/19/2010	02/22/2010
10B0603-03	IAS-3	Air	02/19/2010	02/22/2010
10B0603-04	AA	Air	02/19/2010	02/22/2010
10B0603-05	Trip Blank	Air	02/19/2010	02/22/2010
10B0603-06	Effluent	Air	02/19/2010	02/22/2010
10B0603-07	Canister Certification Y52	Air	02/16/2010	02/22/2010
10B0603-08	Canister Certification Y54	Air	02/16/2010	02/22/2010
10B0603-09	Canister Certification S26	Air	02/16/2010	02/22/2010
10B0603-10	Canister Certification Y43	Air	02/16/2010	02/22/2010
10B0603-11	Canister Certification Y55	Air	02/16/2010	02/22/2010
10B0603-12	Canister Certification Y42	Air	02/16/2010	02/22/2010

Notes for York Project (SDG) No.: 10B0603

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Notes section for further information.

7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.

Approved By:

but & feelly

Date:

03/25/2010

Robert Q. Bradley Managing Director

YORK

Page 3 of 24

YORK ANALYTICAL LABORATORIES, INC

Sample ID:

IAS-1

York ID:

10B0603-01 (Air)

Sampled: 02/19/2010

	-	ГО14А/Т										
Analyte	Result	RL PP	bv —— MDL	Units	Result	— ug/n RL	m³ MDL	Units	Dilution	Qualifiers	s Analyzed	Analy
	0.0232	0.116	0.0		0.13	0.64	0.068	11g/m³	2.32	J	02/25/2010	TD
1,1-Trichloroethane	0.0232 ND	0.116	0.0	ppbv	0.13 ND	0.47		ug/m³	2.32	ŭ	02/25/2010	TD
1-Dichloroethylene	1.24	0.116	0.1	ppbv	5.1	0.48		ug/m³	2.32		02/25/2010	TD
2-Dichloroethane	0.113	0.116	0.1	ppbv	0.72	0.74		ug/m³	2.32	J	02/25/2010	TD
arbon tetrachloride	ND	0.116	0.0	ppbv ppbv	ND	0.47		ug/m³	2.32	•	02/25/2010	TD
s-1,2-Dichloroethylene	0.650	0.116	0.1		4.5	0.8		ug/m³	2.32		02/25/2010	TD
etrachloroethylene	0.135	0.116	0.1	ppbv	0.74	0.63		ug/m³	2.32		02/25/2010	TD
richloroethylene	ND	0.116	0.0	ppbv ppbv	ND	0.03		ug/m³	2.32		02/25/2010	TD
inyl Chloride				ppov	ND	0.5	0.073	ug/III			02/20/2010	
arrogate Recovery	<u>Result</u>		ice Range								02/25/2010	TD
furrogate: p-Bromofluorobenzene	124 %	70-130	0.6	1	NID		2 2	/1	2.32			TD
1,1-Trichloroethane	ND	1.16	0.6	ppbv	ND	6.4	3.3	-	2.32		02/24/2010	TD
1,2,2-Tetrachloroethane	ND	1.16	0.5	ppbv	ND	8.1		ug/m³			02/24/2010	TD
1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)	ND	1.16	0.6	ppbv	ND	9	4.5	ug/m³	2.32		02/24/2010	
1,2-Trichloroethane	ND	1.16	0.6	ppbv	ND	6.4	3.6	ug/m³	2.32		02/24/2010	TD
1-Dichloroethane	ND	1.16	0.6	ppbv	ND	4.8	2.3	ug/m³	2.32		02/24/2010	TD
1-Dichloroethylene	ND	1.16	0.4	ppbv	ND	4.7	1.6	ug/m³	2.32		02/24/2010	TD
2,4-Trichlorobenzene	ND	1.16	0.4	ppbv	ND	8.8	2.8	ug/m³	2.32		02/24/2010	TD
2-Dichlorobenzene	ND	1.16	0.5	ppbv	ND	7.1	2.8	ug/m³	2.32		02/24/2010	TD
2-Dichloroethane	ND	1.16	0.4	ppbv	ND	4.8	1.7	ug/m³	2.32		02/24/2010	TD
2-Dichloropropane	ND	1.16	0.9	ppbv	ND	5.5	4	ug/m³	2.32		02/24/2010	TD
2-Dichlorotetrafluoroethane	ND	1.16	0.6	ppbv	ND	8.2	4.5	ug/m³	2.32		02/24/2010	TD
3-Dichlorobenzene	ND	1.16	0.5	ppbv	ND	7.1	3.3	ug/m³	2.32		02/24/2010	TD
4-Dichlorobenzene	ND	1.16	0.8	ppbv	ND	7.1	4.8	_	2.32		02/24/2010	TD
Chloro-1,3-Butadiene	ND	1.16	0.7	ppbv	ND	4.3	2.6		2.32		02/24/2010	TD
-Chloropropene	ND	1.16	0.3	ppbv	ND	3.7	0.81	-	2.32		02/24/2010	TD
enzyl chloride	ND	2.32	1.0	ppbv	ND	12	5.4	· ·	2.32		02/24/2010	TD
romodichloromethane	ND	1.16	0.4	ppbv	ND	7.3	2.6	- ·	2.32		02/24/2010	TD
	ND	1.16	0.3	ppbv	ND	3.7		ug/m³	2.32		02/24/2010	TD
arbon disulfide	ND	1.16	0.4		ND	7.4	2.8	_	2.32		02/24/2010	TD
arbon tetrachloride		1.16		ppbv		5.4	3.6	•	2.32		02/24/2010	TD
hlorobenzene	ND		0.8	ppbv	ND			U	2.32		02/24/2010	TD
hloroethane	ND	1.16	1.1	ppbv	ND	3.1	2.9	U	2.32			TD
hloroform	ND	1.16	0.5	ppbv	ND	5.8	2.4	_			02/24/2010	TD
hloromethane	ND	1.16	0.7	ppbv	ND	2.4		ug/m³	2.32		02/24/2010	
s-1,2-Dichloroethylene	ND	1.16	0.6	ppbv	ND	4.7		ug/m³	2.32		02/24/2010	TD
s-1,3-Dichloropropylene	ND	1.16	0.6	ppbv	ND	5.4		ug/m³	2.32		02/24/2010	TD
exachlorobutadiene	ND	1.16	0.6	ppbv	ND	13		ug/m³	2.32	*	02/24/2010	TD
lethylene chloride	11.3	1.16	0.7	ppbv	40	4.1		ug/m³	2.32		02/24/2010	TD
etrachloroethylene	ND	1.16	0.5	ppbv	ND	8		ug/m³	2.32		02/24/2010	TD
ans-1,2-Dichloroethylene	ND	1.16	0.7	ppbv	ND	4.7		ug/m³	2.32		02/24/2010	TD
ans-1,3-Dichloropropylene	ND	1.16	0.3	ppbv	ND	5.4	1.6	ug/m³	2.32		02/24/2010	TD
richloroethylene	ND	1.16	0.6	ppbv	ND	6.3	3	_	2.32		02/24/2010	TD
richtorofluoromethane (Freon 11)	ND	1.16	0.6	ppbv	ND	6.6	3.3	ug/m³	2.32		02/24/2010	TD
inyl Chloride	ND	1.16	0.8	ppbv	ND	3	2	ug/m³	2.32		02/24/2010	TD
	Result	Aggenta	nce Range									

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

FAX (203) 357-0166

Page 4 of 24

YORK

Sample ID:

IAS-2

York ID: 10B0603-02 (Air)

Sampled: 02/19/2010

		— рр	bv —			— ug/п	n³		1			
Analyte	Result	RL	MDL	Units	Result	RL	MDL	Units	Dilution	Qualifiers	Analyzed	Analys
1,1,1-Trichloroethane	ND	0.102	0.0	ppbv	ND	0.57	0.06	ug/m³	2.05		02/25/2010	TD
1,1-Dichloroethylene	ND	0.102	0.0	ppbv	ND	0.41	0.1	ug/m³	2.05		02/25/2010	TD
1,2-Dichloroethane	2.08	0.102	0.0	ppbv	8.6	0.42	0.2	ug/m³	2.05		02/25/2010	TD
Carbon tetrachloride	0.102	0.102	0.1	ppbv	0.66	0.66	0.37	ug/m³	2.05		02/25/2010	TD
cis-1,2-Dichloroethylene	ND	0.102	0.0	ppbv	ND	0.41	0.17	ug/m³	2.05		02/25/2010	TD
Tetrachloroethylene	0.266	0.102	0.0	ppbv	1.8	0.71	0.31	ug/m³	2.05		02/25/2010	TD
Frichloroethylene	0.0615	0.102	0.0	ppbv	0.34	0.56	0.25	ug/m³	2.05	J	02/25/2010	TD
Vinyl Chloride	ND	0.102	0.0	ppbv	ND	0.27	0.066	ug/m³	2.05	_	02/25/2010	TD
Surrogate Recovery	Result	Accepta	nce Range									
Surrogate: p-Bromofluorobenzene	126 %	70-130									02/25/2010	TD
1,1,1-Trichloroethane	ND	1.02	0.5	ppbv	ND	5.7	3	ug/m³	2.05		02/24/2010	TD
1,1,2,2-Tetrachloroethane	ND	1.02	0.5	ppbv	ND	7.2	3.3	ug/m³	2.05		02/24/2010	TD
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	1.02	0.5	ppbv	ND	8	4	ug/m³	2.05		02/24/2010	TD
113)				-•				-				
1,1,2-Trichloroethane	ND	1.02	0.6	ppbv	ND	5.7	3.2	ug/m³	2.05		02/24/2010	TD
1,1-Dichloroethane	ND	1.02	0.5	ppbv	ND	4.2	2	ug/m³	2.05		02/24/2010	TD
,1-Dichloroethylene	ND	1.02	0.3	ppbv	ND	4.1	1.4	ug/m³	2.05		02/24/2010	TD
,2,4-Trichlorobenzene	ND	1.02	0.3	ppbv	ND	7.7	2.5	ug/m³	2.05		02/24/2010	TD
,2-Dichlorobenzene	ND	1.02	0.4	ppbv	ND	6.3	2.5	ug/m³	2.05		02/24/2010	TD
,2-Dichloroethane	1.91	1.02	0.4	ppbv	7.8	4.2	1.5	ug/m³	2.05		02/24/2010	TD
,2-Dichloropropane	ND	1.02	0.8	ppbv	ND	4.8	3.6	ug/m³	2.05		02/24/2010	TD
,2-Dichlorotetrafluoroethane	ND	1.02	0.6	ppbv	ND	7.3	3.9	ug/m³	2.05		02/24/2010	TD
1,3-Dichlorobenzene	2.66	1.02	0.5	ppbv	16	6.3	2.9	ug/m³	2.05		02/24/2010	TD
,4-Dichlorobenzene	ND	1.02	0.7	ppbv	ND	6.3	4.3	ug/m³	2.05		02/24/2010	TD
2-Chloro-1,3-Butadiene	ND	1.02	0.6	ppbv	ND	3.8	2.3	ug/m³	2.05		02/24/2010	TD
3-Chloropropene	ND	1.02	0.2	ppbv	ND	3.3	0.72	ug/m³	2.05		02/24/2010	TD
Benzyl chloride	ND	2.05	0.9	ppbv	ND	11	4.7	ug/m³	2.05		02/24/2010	TD
Bromodichloromethane	ND	1.02	0.4	ppbv	ND	6.5	2.3	ug/m³	2.05		02/24/2010	TD
Carbon disulfide	ND	1.02	0.2	ppbv	ND	3.2	0.71	ug/m³	2.05		02/24/2010	TD
Carbon tetrachloride	ND	1.02	0.4	ppbv	ND	6.6	2.5	ug/m³	2.05		02/24/2010	TD
Chlorobenzene	ND	1.02	0.7	ppbv	ND	4.8		ug/m³	2.05		02/24/2010	TD
Chloroethane	ND	1.02	0.9	ppbv	ND	2.8		ug/m³	2.05		02/24/2010	TD
Chloroform	ND	1.02	0.4	ppbv	ND	5.1		ug/m³	2.05		02/24/2010	TD
Chloromethane	ND	1.02	0.6	ppbv	ND	2.2		ug/m³	2.05		02/24/2010	TD
cis-1,2-Dichloroethylene	ND	1.02	0.5	ppbv	ND	4.1	2.1	_	2.05		02/24/2010	TD
sis-1,3-Dichloropropylene	ND	1.02	0.5	ppbv	ND	4.7		ug/m³	2.05		02/24/2010	TD
	ND	1.02	0.6	ppbv	ND	11		ug/m³	2.05		02/24/2010	TD
Hexachlorobutadiene	1.99	1.02	0.6	ppbv	7	3.6		ug/m³	2.05		02/24/2010	TD
Methylene chloride	ND	1.02	0.6	ppov	ND	7.1		ug/m³	2.05		02/24/2010	TD
Tetrachloroethylene		1.02	0.4			4.1		ug/m³	2.05		02/24/2010	TD
rans-1,2-Dichloroethylene	ND ND			ppbv	ND			ug/m³	2.05		02/24/2010	TD
rans-1,3-Dichloropropylene	ND	1.02	0.3	ppbv	ND	4.7		-	2.05		02/24/2010	TD
Trichloroethylene	ND	1.02	0.5	ppbv	ND	5.6		ug/m³				TD
Frichlorofluoromethane (Freon 11)	ND	1.02	0.5	ppbv	ND	5.9		ug/m³	2.05		02/24/2010	
Vinyl Chloride	ND	1.02	0.7	ppbv	ND	2.7	1.8	ug/m³	2.05		02/24/2010	TD
<u>Surrogate Recovery</u>	<u>Result</u>		nce Range									
Surrogate: p-Bromofluorobenzene	127 %	70-130	ı								02/24/2010	TE

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

FAX (203) 357-0166

Page 5 of 24

YORK

Sample ID:

IAS-3

York ID: 10B0603-03 (Air)

Sampled: 02/19/2010 .

	Result	— рр	MDL	Units	Result	— ug/r RL	MDL	Units	Dilution	Qualifiers	Analyzed	Analys
Analyte		RL		Units								
,1,1-Trichloroethane	0.0120	0.108	0.0	ppbv	0.067	0.6	0.063	•	2.15	J	02/25/2010	TD
,1-Dichloroethylene	ND	0.108	0.0	ppbv	ND	0.43		ug/m³	2.15		02/25/2010	TD
,2-Dichloroethane	0.267	0.108	0.1	ppbv	1.1	0.44		ug/m³	2.15	_	02/25/2010	TD
Carbon tetrachloride	0.0955	0.108	0.1	ppbv	0.61	0.69		ug/m³	2.15	J	02/25/2010	TD
is-1,2-Dichloroethylene	ND	0.108	0.0	ppbv	ND	0.43		ug/m³	2.15		02/25/2010	TD
etrachloroethylene	0.551	0.108	0.0	ppbv	3.8	0.74		ug/m³	2.15	_	02/25/2010	TD
richloroethylene	0.0542	0.108	0.0	ppbv	0.3	0.59		ug/m³	2.15	J	02/25/2010	TD TD
/inyl Chloride	ND	0.108	0.0	ppbv	ND	0.28	0.069	ug/m³	2.15		02/25/2010	
urrogate Recovery	<u>Result</u>	<u>Acceptar</u>	ice Range									m n
Surrogate: p-Bromofluorobenzene	128 %	70-130									02/25/2010	TD
,1,1-Trichloroethane	ND	1.08	0.6	ppbv	ND	6		ug/m³	2.15		02/24/2010	TD
,1,2,2-Tetrachloroethane	ND	1.08	0.5	ppbv	ND	7.5	3.5	ug/m³	2.15		02/24/2010	TD
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)	ND	1.08	0.5	ppbv	ND	8.4	4.2	ug/m³	2.15		02/24/2010	TD
,1,2-Trichloroethane	ND	1.08	0.6	ppbv	ND	6	3.3	ug/m³	2.15		02/24/2010	TD
,1-Dichloroethane	ND	1.08	0.5	ppbv	ND	4.4	2.1	ug/m³	2.15		02/24/2010	TD
,1-Dichloroethylene	ND	1.08	0.4	ppbv	ND	4.3	1.5	ug/m³	2.15		02/24/2010	TD
,2,4-Trichlorobenzene	ND	1.08	0.3	ppbv	ND	8.1	2.6	ug/m³	2.15		02/24/2010	TD
,2-Dichlorobenzene	ND	1.08	0.4	ppbv	ND	6.6	2.6	ug/m³	2.15		02/24/2010	TD
,2-Dichloroethane	ND	1.08	0.4	ppbv	ND	4.4	1.6	ug/m³	2.15		02/24/2010	TD
,2-Dichloropropane	ND	1.08	0.8	ppbv	ND	5.1	3.7	ug/m³	2.15		02/24/2010	TD
,2-Dichlorotetrafluoroethane	ND	1.08	0.6	ppbv	ND	7.6	4.1	ug/m³	2.15		02/24/2010	TD
,3-Dichlorobenzene	2.80	1.08	0.5	ppbv	17	6.6	3	ug/m³	2.15		02/24/2010	TD
,4-Dichlorobenzene	ND	1.08	0.7	ppbv	ND	6.6	4.5	ug/m³	2.15		02/24/2010	TD
-Chloro-1,3-Butadiene	ND	1.08	0.7	ppbv	ND	4	2.5	ug/m³	2.15		02/24/2010	TD
-Chloropropene	ND	1.08	0.2	ppbv	ND	3.4	0.75	ug/m³	2.15		02/24/2010	TD
Benzyl chloride	ND	2.15	0.9	ppbv	ND	11	5	ug/m³	2.15		02/24/2010	TD
Bromodichloromethane	ND	1.08	0.4	ppbv	ND	6.8	2.4	ug/m³	2.15		02/24/2010	TD
Carbon disulfide	ND	1.08	0.2	ppbv	ND	3.4	0.75	ug/m³	2.15		02/24/2010	TD
Carbon tetrachloride	ND	1.08	0.4	ppbv	ND	6.9	2.6	ug/m³	2.15		02/24/2010	TD
Chlorobenzene	ND	1.08	0.7	ppbv	ND	5	3.3	_	2.15		02/24/2010	TD
Chloroethane	ND	1.08	1.0	ppbv	ND	2.9	2.7	-	2.15		02/24/2010	TD
Chloroform	ND	1.08	0.5	ppbv	ND	5.3	2.2	~	2.15		02/24/2010	TD
Chloromethane	ND	1.08	0.6	ppbv	ND	2.3	1.3	•	2.15		02/24/2010	TD
is-1,2-Dichloroethylene	ND	1.08	0.5	ppbv	ND	4.3		ug/m³	2.15		02/24/2010	TD
is-1,3-Dichloropropylene	ND	1.08	0.6	ppbv	ND	5		ug/m³	2.15		02/24/2010	TD
Re-1,3-Dictioropyrene Hexachlorobutadiene	ND	1.08	0.6	ppbv	ND	12		ug/m³	2.15		02/24/2010	TD
Methylene chloride	1.36	1.08	0.7	ppbv	4.8	3.8		ug/m³	2.15		02/24/2010	TD
retrytene emortae etrachloroethylene	0.473	1.08	0.5	ppbv	3.3	7.4	3.1	•	2.15	J	02/24/2010	TD
rans-1,2-Dichloroethylene	ND	1.08	0.7	ppbv	ND	4.3	2.8		2.15		02/24/2010	TD
rans-1,3-Dichloropropylene	ND	1.08	0.3	ppbv	ND	5	1.5	-	2.15		02/24/2010	TD
richloroethylene	ND	1.08	0.5	ppbv	ND	5.9	2.8	_	2.15		02/24/2010	TD
richiorofluoromethane (Freon 11)	ND	1.08	0.5	ppbv	ND	6.1		ug/m³	2.15		02/24/2010	TD
/inyl Chloride	ND	1.08	0.7	ppbv	ND	2.8		ug/m³	2.15		02/24/2010	TD
myr Chloride	Result	Accepta		PP4.				-0		_		

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

FAX (203) 357-0166

Page 6 of 24

YORK ANALYTICAL LABORATORIES, INC.

Sample ID: York ID: $\mathbf{A}\mathbf{A}$

10B0603-04 (Air)

Sampled: 02/19/2010

Analyte	Result	ppl RL	MDL	Units	 Result	— ug/n RL	MDL	Units	Dilution	Qualifiers	Analyzed	Analys
,1,1-Trichloroethane	ND	0.0835	0.0	ppbv	ND	0.46	0.049	ug/m³	1.67		02/25/2010	TD
,1-Dichloroethylene	ND	0.0835	0.0	ppbv	ND	0.34	0.085	ug/m³	1.67		02/25/2010	TD
,2-Dichloroethane	ND	0.0835	0.0	ppbv	ND	0.34		ug/m³	1.67		02/25/2010	TD
Carbon tetrachloride	0.0668	0.0835	0.0	ppbv	0.43	0.53		ug/m³	1.67	J	02/25/2010	TD
is-1,2-Dichloroethylene	ND	0.0835	0.0	ppbv	ND	0.34		ug/m³	1.67		02/25/2010	TD
etrachloroethylene	0.0501	0.0835	0.0	ppbv	0.35	0.58		ug/m³	1.67	J	02/25/2010	TD
richloroethylene	ND	0.0835	0.0	ppbv	ND	0.46		ug/m³	1.67		02/25/2010	TD
'inyl Chloride	ND	0.0835	0.0	ppbv	ND	0.22	0.054	-	1.67		02/25/2010	TD
urrogate Recovery	Result	Acceptan	ce Range									
Surrogate: p-Bromofluorobenzene	126 %	70-130									02/25/2010	TD
1,1-Trichloroethane	ND	0.835	0.4	ppbv	ND	4.6	2.4	ug/m³	1.67		02/24/2010	TD
1,2,2-Tetrachloroethane	ND	0.835	0.4	ppbv	ND	5.8	2.7	-	1.67		02/24/2010	TD
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.835	0.4	ppbv	ND	6.5	3.3	Ū	1.67		02/24/2010	TD
13)	_			rr ·				~				
,1,2-Trichloroethane	ND	0.835	0.5	ppbv	ND	4.6	2.6	ug/m³	1.67		02/24/2010	TD
,1-Dichloroethane	ND	0.835	0.4	ppbv	ND	3.4	1.6	ug/m^3	1.67		02/24/2010	TD
,1-Dichloroethylene	ND	0.835	0.3	ppbv	ND	3.4	1.1	ug/m^3	1.67		02/24/2010	TD
,2,4-Trichlorobenzene	ND	0.835	0.3	ppbv	ND	6.3	2	ug/m³	1.67		02/24/2010	TD
,2-Dichlorobenzene	ND	0.835	0.3	ppbv	ND	5.1	2	ug/m³	1.67		02/24/2010	TD
2-Dichloroethane	ND	0.835	0.3	ppbv	ND	3.4	1.2	ug/m³	1.67		02/24/2010	TD
,2-Dichloropropane	ND	0.835	0.6	ppbv	ND	3.9	2.9	ug/m³	1.67		02/24/2010	TD
2-Dichlorotetrafluoroethane	ND	0.835	0.5	ppbv	ND	5.9	3.2	ug/m³	1.67		02/24/2010	TD
,3-Dichlorobenzene	1.07	0.835	0.4	ppbv	6.5	5.1	2.3	ug/m³	1.67		02/24/2010	TD
4-Dichlorobenzene	ND	0.835	0.6	ppbv	ND	5.1	3.5	ug/m³	1.67		02/24/2010	TD
-Chloro-1,3-Butadiene	ND	0.835	0.5	ppbv	ND	3.1	1.9	ug/m³	1.67		02/24/2010	TD
-Chloropropene	ND	0.835	0.2	ppbv	ND	2.7	0.58	ug/m³	1.67		02/24/2010	TD
enzyl chloride	ND	1.67	0.7	ppbv	ND	8.8	3.9	ug/m³	1.67		02/24/2010	TD
romodichloromethane	ND	0.835	0.3	ppbv	ND	5.3	1.9	ug/m³	1.67		02/24/2010	TD
Carbon disulfide	ND	0.835	0.2	ppbv	ND	2.6	0.58	ug/m³	1.67		02/24/2010	TD
arbon tetrachloride	ND	0.835	0.3	ppbv	ND	5.3	2	ug/m³	1.67		02/24/2010	TD
Chlorobenzene	ND	0.835	0.6	ppbv	ND	3.9	2.6	ug/m³	1.67		02/24/2010	TD
Thioroethane	ND	0.835	0.8	ppbv	ND	2.2	2.1	ug/m³	1.67		02/24/2010	TD
Chloroform	ND	0.835	0.4	ppbv	ND	4.1	1.7	ug/m³	1.67		02/24/2010	TD
Chloromethane	ND	0.835	0.5	ppbv	ND	1.8	1	ug/m³	1.67		02/24/2010	TD
is-1,2-Dichloroethylene	ND	0.835	0.4	ppbv	ND	3.4	1.7	ug/m³	1.67		02/24/2010	TD
is-1,3-Dichloropropylene	ND	0.835	0.4	ppbv	ND	3.9	2	ug/m³	1.67		02/24/2010	TD
[exachlorobutadiene	ND	0.835	0.5	ppbv	ND	9.1	5.1	ug/m³	1.67		02/24/2010	TD
lethylene chloride	ND	0.835	0.5	ppbv	ND	2.9	1.8	ug/m³	1.67		02/24/2010	TD
etrachloroethylene	ND	0.835	0.4	ppbv	ND	5.8	2.4	ug/m³	1.67		02/24/2010	TD
ans-1,2-Dichloroethylene	ND	0.835	0.5	ppbv	ND	3.4	2.2	ug/m³	1.67		02/24/2010	TD
ans-1,3-Dichloropropylene	ND	0.835	0.3	ppbv	ND	3.9	1.2	ug/m³	1.67		02/24/2010	TD
richloroethylene	ND	0.835	0.4	ppbv	ND	4.6	2.2	ug/m³	1.67		02/24/2010	TD
richlorofluoromethane (Freon 11)	ND	0.835	0.4	ppbv	ND	4.8	2.4	ug/m³	1.67		02/24/2010	TD
inyl Chloride	ND	0.835	0.6	ppbv	ND	2.2	1.4	ug/m³	1.67		02/24/2010	TE
			ce Range									

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

FAX (203) 357-0166

Page 7 of 24

YORK ANALYTICAL LABORATORIES, INC

Sample ID: York ID: Trip Blank

10B0603-05 (Air)

Sampled: 02/19/2010

			—— bb _l	bv —			ug/r			ļ			
	Analyte	Result	RL	MDL	Units	Result	RL	MDL	Units	Dilution	Qualifiers	Analyzed	Analys
Company Comp	,1,1-Trichloroethane	0.0200	0.0500	0.0	ppbv	0.11	0.28	0.029	ug/m³	1	J	02/25/2010	
Accordance No.	,1-Dichloroethylene	ND	0.0500	0.0	ppbv	ND	0.2	0.051	ug/m³	1		02/25/2010	TD
is-1,2-Dichloroethylene 0,0300 0,0500 0,0 pbv 0,12 0,22 0,1300 0,1500 0,0 pbv 0,12 0,27 0,12 0,17 0,1500	,2-Dichloroethane	0.0600	0.0500	0.0	ppbv	0.25	0.21	0.096	ug/m³	1		02/25/2010	
	Carbon tetrachloride	ND	0.0500	0.0	ppbv	ND	0.32	0.18	ug/m³	1		02/25/2010	TD
Trichlorechtylene (1,0440) 0.0550 0.0 ppbv (1,02) 0.22 0.27 0.12 0.37 0.12 0.37 0.12 0.37 0.12 0.37 0.12 0.37 0.12 0.37 0.12 0.37 0.12 0.37 0.12 0.37 0.12 0.37 0.12 0.37 0.12 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	is-1,2-Dichloroethylene	0.0300	0.0500	0.0	ppbv	0.12	0.2	0.083	ug/m³	1	J	02/25/2010	
inyl Chloride ND 0.0500 0.0 ppby ND 0.13 0.032 ug/m² 1 0.225/2010 TD	etrachloroethylene	0.0300	0.0500	0.0	ppbv	0.21	0.34	0.15	ug/m³	1	J	02/25/2010	
Margable Recoverty Remails Accounted States	richloroethylene	0.0400	0.0500	0.0	ppbv	0.22	0.27	0.12	ug/m³	1	J	02/25/2010	
1,1-Trichloroethane	/inyl Chloride	ND	0.0500	0.0	ppbv	ND	0.13	0.032	ug/m³	1		02/25/2010	TD
1.7-irichlorochane	urrogate Recovery	<u>Result</u>	<u>Acceptan</u>	<u>ce Range</u>									
1,1,2,1-Tertableoutane	Surrogate: p-Bromofluorobenzene	89.0 %	70-130									02/25/2010	TD
1,1,2-frichloro-tla,2-driftuoro-thane (From ND 0.500 0.3 ppbv ND 3.9 1.9 ug/m² 1 0.224/2010 TD 1,1,1,2-frichloro-thane ND 0.500 0.2 ppbv ND 2.8 1.6 ug/m² 1 0.224/2010 TD 1,1,1,2-frichloro-thane ND 0.500 0.2 ppbv ND 2.1 0.99 ug/m² 1 0.224/2010 TD 1,1,1,2-frichloro-thane ND 0.500 0.2 ppbv ND 2.1 0.99 ug/m² 1 0.224/2010 TD 1,1,1,2-frichloro-thane ND 0.500 0.2 ppbv ND 2.1 0.99 ug/m² 1 0.224/2010 TD 1,1,1,2-frichloro-thane ND 0.500 0.2 ppbv ND 3.8 1.2 ug/m² 1 0.224/2010 TD 2,2-frichloro-thane ND 0.500 0.2 ppbv ND 3.1 1.2 ug/m² 1 0.224/2010 TD 2,2-frichloro-thane ND 0.500 0.2 ppbv ND 3.1 1.2 ug/m² 1 0.224/2010 TD 2,2-frichloro-thane ND 0.500 0.3 ppbv ND 2.4 1.7 ug/m² 1 0.224/2010 TD 2,2-frichloro-thane ND 0.500 0.3 ppbv ND 3.6 1.9 ug/m² 1 0.224/2010 TD 2,2-frichloro-thane ND 0.500 0.3 ppbv ND 3.6 1.9 ug/m² 1 0.224/2010 TD 2,2-frichloro-thane ND 0.500 0.3 ppbv ND 3.1 1.4 ug/m² 1 0.224/2010 TD 3,2-frichloro-thane ND 0.500 0.3 ppbv ND 3.1 1.4 ug/m² 1 0.224/2010 TD 4,2-frichloro-thane ND 0.500 0.3 ppbv ND 3.1 1.1 ug/m² 1 0.224/2010 TD 4,2-frichloro-thane ND 0.500 0.3 ppbv ND 1.6 0.35 ug/m² 1 0.224/2010 TD 4,2-frichloro-thane ND 0.500 0.1 ppbv ND 1.6 0.35 ug/m² 1 0.224/2010 TD 4,2-frichloro-thane ND 0.500 0.1 ppbv ND 1.6 0.35 ug/m² 1 0.224/2010 TD 4,2-frichloro-thane ND 0.500 0.3 ppbv ND 1.5 0.35 ug/m² 1 0.224/2010 TD 4,2-frichloro-thane ND 0.500 0.3 ppbv ND 1.6 0.35 ug/m² 1 0.224/2010 TD 4,2-frichloro-thane ND 0.500 0.3 ppbv ND 1.3 1.2 ug/m² 1 0.224/2010 TD 4,2-frichloro-thane ND 0.500 0.3 ppbv ND	,1,1-Trichloroethane	ND	0.500	0.3	ppbv	ND	2.8	1.4	ug/m³	1		02/24/2010	TD
13 13 13 14 15 15 15 15 15 15 15	,1,2,2-Tetrachloroethane	ND	0.500	0.2	ppbv	ND	3.5	1.6	ug/m³	1		02/24/2010	TD
	,1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)	ND	0.500	0.3	ppbv	ND	3.9	1.9	ug/m³	1		02/24/2010	
The control of the	,1,2-Trichloroethane	ND	0.500	0.3	ppbv	ND	2.8	1.6	ug/m³	1		02/24/2010	
A-Trichlorobenzene ND	,1-Dichloroethane	ND	0.500	0.2	ppbv	ND	2.1	0.99	ug/m³	1		02/24/2010	
2,2-Dichloroenzene	,1-Dichloroethylene	ND	0.500	0.2	ppbv	ND	2	0.69	ug/m³	1		02/24/2010	TD
December	,2,4-Trichlorobenzene	ND	0.500	0.2	ppbv	ND	3.8	1.2	ug/m³	1		02/24/2010	TD
Description of the content of the	,2-Dichlorobenzene	ND	0.500	0.2	ppbv	ND	3.1	1.2	ug/m³	1		02/24/2010	TD
22-Dichloropropane	,2-Dichloroethane	ND	0.500	0.2	ppbv	ND	2.1	0.74	ug/m³	1		02/24/2010	TD
22-Dichlorotetrafluoroethane		ND	0.500	0.4	ppbv	ND	2.4	1.7	ug/m³	1		02/24/2010	TD
3-Dichlorobenzene ND 0.500 0.2 ppbv ND 3.1 1.4 ug/m³ 1 0.2/24/2010 TD	• •	ND	0.500	0.3	ppbv	ND	3.6	1.9	ug/m³	1		02/24/2010	TD
A-Dichlorobenzene ND 0.500 0.3 ppbv ND 3.1 2.1 ug/m³ 1 0224/2010 TD 0.501 0.500 0.3 ppbv ND 1.8 1.1 ug/m³ 1 0224/2010 TD 0.501 0.500 0.1 ppbv ND 1.6 0.53 ug/m³ 1 0224/2010 TD 0.501 0.501 0.500 0.2 ppbv ND 1.6 0.53 ug/m³ 1 0224/2010 TD 0.501 0.501 0.500 0.2 ppbv ND 3.2 0.1 ug/m³ 1 0224/2010 TD 0.501 0.501 0.500 0.2 ppbv ND 3.2 0.1 ug/m³ 1 0224/2010 TD 0.501 0.501 0.500 0.2 ppbv ND 3.2 0.1 ug/m³ 1 0224/2010 TD 0.501 0.501 0.500 0.2 ppbv ND 1.6 0.35 ug/m³ 1 0224/2010 TD 0.501 0.501 0.501 0.500 0.2 ppbv ND 1.6 0.503 ug/m³ 1 0224/2010 TD 0.501 0	,	ND	0.500	0.2		ND	3.1	1.4	ug/m³	1		02/24/2010	TD
Chloro-I,3-Butadiene	,	ND	0.500	0.3		ND	3.1	2.1	ug/m³	1		02/24/2010	TD
Chloropropene ND 0.500 0.1 ppbv ND 1.6 0.35 ug/m³ 1 02/24/2010 TD			0.500					1.1	-	1		02/24/2010	TD
Part	·		0.500						_	1		02/24/2010	TD
ND	• •								-	1		02/24/2010	TD
Acceptance of the control of the con	•								-	1		02/24/2010	TD
Arbon tetrachloride ND ND ND ND ND ND ND ND ND N										1			TD
Acceptance telescentic ND 0.500 0.3 ppbv ND 2.3 1.5 ug/m³ 1 02/24/2010 TD 0.500 0.5 ppbv ND 1.3 1.2 ug/m³ 1 02/24/2010 TD 0.500 0.2 ppbv ND 1.3 1.2 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 1.1 0.61 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 1.1 0.61 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 2 1 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 2 1 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 2 1 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 2.3 1.2 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 2.3 1.2 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 5.4 3 ug/m³ 1 02/24/2010 TD 0.500 0.500 0.3 ppbv ND 5.4 3 ug/m³ 1 02/24/2010 TD 0.500 0.500 0.500 0.3 ppbv ND 5.4 3 ug/m³ 1 02/24/2010 TD 0.500 0.500 0.500 0.3 ppbv ND 5.4 1.8 1.8 1.1 ug/m³ 1 02/24/2010 TD 0.500 0.500 0.2 ppbv ND 3.4 1.4 ug/m³ 1 02/24/2010 TD 0.500 0.500 0.2 ppbv ND 3.4 1.4 ug/m³ 1 02/24/2010 TD 0.500 0.500 0.3 ppbv ND 2 1.3 ug/m³ 1 02/24/2010 TD 0.500 0.500 0.3 ppbv ND 2 1.3 ug/m³ 1 02/24/2010 TD 0.500 0.500 0.2 ppbv ND 2 1.3 ug/m³ 1 02/24/2010 TD 0.500 0.500 0.2 ppbv ND 2.3 0.69 ug/m³ 1 02/24/2010 TD 0.500 0.500 0.2 ppbv ND 2.3 0.69 ug/m³ 1 02/24/2010 TD 0.500 0.500 0.2 ppbv ND 2.7 1.3 ug/m³ 1 02/24/2010 TD 0.500 0.2 ppbv ND 2.7 1.3 ug/m³ 1 02/24/2010 TD 0.500 0.2 ppbv ND 2.7 1.3 ug/m³ 1 02/24/2010 TD 0.500 0.2 ppbv ND 2.9 1.4 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 2.9 1.4 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 2.9 1.4 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 2.9 1.4 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 2.9 1.4 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 2.9 1.4 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 2.9 1.4 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 2.9 1.4 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 2.9 1.4 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD 0.500 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD 0.500 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD 0.500 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD 0.500 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD 0.5										1			TD
ND									_				TD
ND									-				
ND									-	1			TD
ND 0.500 0.3 ppbv ND 2 1 ug/m³ 1 02/24/2010 TD													
ND 0.500 0.3 ppbv ND 2.3 1.2 ug/m³ 1 02/24/2010 TD									-	1			
Exachlorobutadiene ND 0.500 0.3 ppbv ND 5.4 3 ug/m³ 1 02/24/2010 TD	•									1			
No.													
ND 0.500 0.2 ppbv ND 3.4 1.4 ug/m³ 1 02/24/2010 TD									U				
rans-1,2-Dichloroethylene ND 0.500 0.3 ppbv ND 2 1.3 ug/m³ 1 02/24/2010 TD rans-1,3-Dichloropropylene ND 0.500 0.2 ppbv ND 2.3 0.69 ug/m³ 1 02/24/2010 TD richloroethylene ND 0.500 0.2 ppbv ND 2.7 1.3 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 11) ND 0.500 0.3 ppbv ND 2.7 1.3 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 11) ND 0.500 0.3 ppbv ND 2.9 1.4 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 12) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 13) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 14) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv N	•								_				
rans-1,3-Dichloropropylene ND 0.500 0.2 ppbv ND 2.3 0.69 ug/m³ 1 02/24/2010 TD richloroethylene ND 0.500 0.2 ppbv ND 2.7 1.3 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 11) ND 0.500 0.3 ppbv ND 2.9 1.4 ug/m³ 1 02/24/2010 TD richlorofluoromethane ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 12) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 12) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 13) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 14) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD richlorofluoromethane (Freon 15) ND 0.500 0.3 ppbv ND 0.50									-				
Trichloroethylene	•								-				
Trichlorofluoromethane (Freon 11) ND 0.500 0.3 ppbv ND 2.9 1.4 ug/m³ 1 02/24/2010 TD Vinyl Chloride ND 0.500 0.3 ppbv ND 1.3 0.86 ug/m³ 1 02/24/2010 TD Vinyl Chloride Result Acceptance Range	• • •								-				
Vinyl Chloride	richloroethylene								-				
Surrogate Recovery Result Acceptance Range	richlorofluoromethane (Freon 11)								-				
	inyl Chloride	ND	0.500	0.3	ppbv	ND	1.3	0.86	ug/m³	I		02/24/2010	10
	urrogate <u>Recovery</u>	<u>Result</u>	<u>Acceptar</u>	<u>içe Range</u>									

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

FAX (203) 357-0166

Page 8 of 24

YORK ANALYTICAL LABORATORIES, INC.

Sample ID: York ID: Effluent

10B0603-06 (Air)

Sampled: 02/19/2010

	Result	RL	MDL	Units	Result	— ug/m RL	MDL	Units	Dilution	Qualifiers Analyzed	Analys
Analyte											
,1,1-Trichloroethane	ND	0.82	0.4	ppbv	ND	4.6		ug/m³	1.64	02/24/2010	TD
1,1,2,2-Tetrachloroethane	ND	0.82	0.4	ppbv	ND	5.7		ug/m³	1.64	02/24/2010	TD TD
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.82	0.4	ppbv	ND	6.4	3.2	ug/m³	1.64	02/24/2010	ID
13) ,1,2-Trichloroethane	ND	0.82	0.5	ppbv	ND	4.6	2.5	ug/m³	1.64	02/24/2010	TD
,1-Dichloroethane	ND	0.82	0.4	ppbv	ND	3.4		ug/m³	1.64	02/24/2010	TD
,1-Dichloroethylene	ND	0.82	0.3	ppbv	ND	3.3		ug/m³	1.64	02/24/2010	TD
,2,4-Trichlorobenzene	ND	0.82	0.3	ppbv	ND	6.2		ug/m³	1.64	02/24/2010	TD
,2,4-Trimethylbenzene	ND	0.82	0.5	ppbv	ND	4.1		ug/m³	1.64	02/24/2010	TD
,2-Dichlorobenzene	ND	0.82	0.3	ppbv	ND	5	2	ug/m³	1.64	02/24/2010	TD
,2-Dichloroethane	ND	0.82	0.3	ppbv	ND	3.4	1.2	ug/m³	1.64	02/24/2010	TD
,2-Dichloropropane	ND	0.82	0.6	ppbv	ND	3.9	2.9	ug/m³	1.64	02/24/2010	TD
,2-Dichlorotetrafluoroethane	ND	0.82	0.4	ppbv	ND	5.8	3.1	ug/m³	1.64	02/24/2010	TD
,3,5-Trimethylbenzene	ND	0.82	0.4	ppbv	ND	4.1	1.9	ug/m³	1.64	02/24/2010	TD
,3-Butadiene	ND	0.82	0.7	ppbv	ND	3.6	3	ug/m³	1.64	02/24/2010	TD
,3-Dichlorobenzene	ND	0.82	0.4	ppbv	ND	5	2.3	ug/m³	1.64	02/24/2010	TD
,4-Dichlorobenzene	ND	0.82	0.6	ppbv	ND	5	3.4	_	1.64	02/24/2010	TD
,4-Dioxane	ND	3.3	1.5	ppbv	ND	12	5.5	ug/m³	1.64	02/24/2010	TD
,2,4-Trimethylpentane	ND	0.82	0.3	ppbv	ND	3.9	1.6	ug/m³	1.64	02/24/2010	TD
-Butanone	ND	0.82	0.4	ppbv	ND	2.5	1.2	-	1.64	02/24/2010	TD
-Chloro-1,3-Butadiene	ND	0.82	0.5	ppbv	ND	3	1.9	ug/m³	1.64	02/24/2010	TD
-Hexanone	ND	1.6	0.8	ppbv	ND	6.8	3.5	ug/m³	1.64	02/24/2010	TD
-Chloropropene	ND	0.82	0.2	ppbv	ND	2.6	0.57	_	1.64	02/24/2010	TD
Acetone	7.2	0.82	0.3	ppbv	17	2	0.83	ug/m³	1.64	02/24/2010	TD
Benzene	ND	0.82	0.6	ppbv	ND	2.7	2	ug/m³	1.64	02/24/2010	TD
Benzyl chloride	ND	1.6	0.7	ppbv	ND	8.6	3.8	ug/m³	1.64	02/24/2010	TD
Bromodichloromethane	ND	0.82	0.3	ppbv	ND	5.2	1.9	ug/m³	1.64	02/24/2010	TD
Bromoform	ND	0.82	0.4	ppbv	ND	8.6	3.8	ug/m³	1.64	02/24/2010	TD
Bromomethane	ND	0.82	0.4	ppbv	ND	3.2	1.6	ug/m³	1.64	02/24/2010	TD
Carbon disulfide	ND	0.82	0.2	ppbv	ND	2.6	0.57	ug/m³	1.64	02/24/2010	TD
Carbon tetrachloride	ND	0.82	0.3	ppbv	ND	5.2	2	ug/m³	1.64	02/24/2010	TD
Chlorobenzene	ND	0.82	0.5	ppbv	ND	3.8	2.5	ug/m³	1.64	02/24/2010	TD
Chloroethane	ND	0.82	0.8	ppbv	ND	2.2	2	ug/m³	1.64	02/24/2010	TD
Chloroform	ND	0.82	0.3	ppbv	ND	4.1	1.7	ug/m³	1.64	02/24/2010	TD
Chloromethane	ND	0.82	0.5	ppbv	ND	1.7	1	ug/m³	1.64	02/24/2010	TD
is-1,2-Dichloroethylene	ND	0.82	0.4	ppbv	ND	3.3	1.7	ug/m³	1.64	02/24/2010	TD
is-1,3-Dichloropropylene	ND	0.82	0.4	ppbv	ND	3.8	2	ug/m³	1.64	02/24/2010	TD
Cyclohexane	ND	0.82	0.3	ppbv	ND	2.9	1	ug/m³	1.64	02/24/2010	TD
Ethyl acetate	ND	0.82	0.4	ppbv	ND	3	1.3	ug/m³	1.64	02/24/2010	TD
thyl Benzene	ND	0.82	0.5	ppbv	ND	3.6	2.2	ug/m³	1.64	02/24/2010	TD
lexachlorobutadiene	ND	0.82	0.5	ppbv	ND	8.9	5	ug/m³	1.64	02/24/2010	TD
sopropanol	ND	1.6	0.8	ppbv	ND	4.1	1.9	ug/m³	1.64	02/24/2010	TD
Aethyl isobutyl ketone	ND	1.6	0.8	ppbv	ND	6.8	3.4	ug/m³	1.64	02/24/2010	TD
Methyl tert-butyl ether (MTBE)	ND	0.82	0.4	ppbv	ND	3		ug/m³	1.64	02/24/2010	TD
Methylene chloride	ND	0.82	0.5	ppbv	ND	2.9	1.8	ug/m³	1.64	02/24/2010	TD
ı-Heptane	ND	0.82	0.3	ppbv	ND	3.4	1.4	ug/m³	1.64	02/24/2010	TD
-Hexane	ND	0.82	0.5	ppbv	ND	2.9	1.9	ug/m³	1.64	02/24/2010	TD
o-Xylene	ND	0.82	0.6	ppbv	ND	3.6		ug/m³	1.64	02/24/2010	TD

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

FAX (203) 357-0166

Page 9 of 24

YORK ANALYTICAL LABORATORIES, INC

Sample ID: York ID: **Effluent**

10B0603-06 (Air)

Sampled: 02/19/2010

Volatile Organic Compounds by EP	A Compendium	TO14A/	ГО15									
		— рі	pbv ——			ug/n	n³		1			
Analyte	Result	RL	MDL	Units	Result	RL	MDL	Units	Dilution	Qualifiers	Analyzed	Analyst
p- & m- Xylenes	ND	1.6	1.3	ppbv	ND	7.2	5.7	ug/m³	1.64		02/24/2010	TD
p-Ethyltoluene	ND	0.82	0.1	ppbv	ND	4.1	0.74	ug/m³	1.64		02/24/2010	TD
Propylene	ND	1.6	1.0	ppbv	ND	2.9	1.8	ug/m³	1.64		02/24/2010	TD
Styrene	ND	0.82	0.5	ppbv	ND	3.6	2.1	ug/m³	1.64		02/24/2010	TD
Tetrachloroethylene	ND	0.82	0.3	ppbv	ND	5.7	2.4	ug/m³	1.64		02/24/2010	TD
Tetrahydrofuran	ND	1.6	0.7	ppbv	ND	4.9	2	ug/m³	1.64		02/24/2010	TD
Toluene	ND	0.82	0.4	ppbv	2.1	3.1	1.7	ug/m³	1.64		02/24/2010	TD
trans-1,2-Dichloroethylene	ND	0.82	0.5	ppbv	ND	3.3	2.1	ug/m³	1.64		02/24/2010	TD
trans-1,3-Dichloropropylene	ND	0.82	0.2	ppbv	ND	3.8	1.1	ug/m³	1.64		02/24/2010	TD
Trichloroethylene	ND	0.82	0.4	ppbv	ND	4.5	2.2	ug/m³	1.64		02/24/2010	TD
Trichlorofluoromethane (Freon 11)	ND	0.82	0.4	ppbv	ND	4.7	2.3	ug/m³	1.64		02/24/2010	TD
Vinyl acetate	ND	0.82	0.2	ppbv	ND	2.9	0.76	ug/m³	1.64		02/24/2010	TD
Vinyl bromide	ND	0.82	0.4	ppbv	ND	3.6			1.64		02/24/2010	TD
Vinyl Chloride	ND	0.82	0.5	ppbv	ND	2.1		ug/m³	1.64	QM-07	02/24/2010	TD
Surrogate Recovery	<u>Result</u>	Accepto	ınce Range									
Surrogate: p-Bromofluorobenzene	119 %	70-130)								02/24/2010	TD

Sample ID:

Canister Certification Y52

York ID:

10B0603-07 (Air)

Sampled: 02/16/2010

		— рр	bv —			— ug/n	1 ³		1		
Analyte	Result	RL	MDL	Units	Result	RL	MDL	Units	Dilution	Qualifiers Analyzed	Analyst
1,1,1-Trichloroethane	ND	0.500	0.3	ppbv	ND	2.8	1.4	ug/m³	1	02/17/2010	TD
1,1,2,2-Tetrachloroethane	ND	0.500	0.2	ppbv	ND	3.5	1.6	ug/m³	I	02/17/2010	TD
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.500	0.3	ppbv	ND	3.9	1.9	ug/m³	1	02/17/2010	TD
1,1,2-Trichloroethane	ND	0.500	0.3	ppbv	ND	2.8	1.6	ug/m³	1	02/17/2010	TD
1,1-Dichloroethane	ND	0.500	0.2	ppbv	ND	2.1	0.99	ug/m³	1	02/17/2010	TD
1,1-Dichloroethylene	ND	0.500	0.2	ppbv	ND	2	0.69	ug/m³	1	02/17/2010	TD
1,2,4-Trichlorobenzene	ND	0.500	0.2	ppbv	ND	3.8	1.2	ug/m³	1	02/17/2010	TD
1,2-Dichlorobenzene	ND	0.500	0.2	ppbv	ND	3.1	1.2	ug/m³	1	02/17/2010	TD
1,2-Dichloroethane	ND	0.500	0.2	ppbv	ND	2.1	0.74	ug/m³	1	02/17/2010	TD
1,2-Dichloropropane	ND	0.500	0.4	ppbv	ND	2.4	1.7	ug/m³	1	02/17/2010	TD
1,2-Dichlorotetrafluoroethane	ND	0.500	0.3	ppbv	ND	3.6	1.9	ug/m³	1	02/17/2010	TD
1,3-Dichlorobenzene	ND	0.500	0.2	ppbv	ND	3.1	1.4	ug/m³	1	02/17/2010	TD
1,4-Dichlorobenzene	ND	0.500	0.3	ppbv	ND	3.1	2.1	ug/m³	1	02/17/2010	TD
2-Chloro-1,3-Butadiene	ND	0.500	0.3	ppbv	ND	1.8	1.1	ug/m³	1	02/17/2010	TD
3-Chloropropene	ND	0.500	0.1	ppbv	ND	1.6	0.35	ug/m³	1	02/17/2010	TD
Benzyl chloride	ND	1.00	0.4	ppbv	ND	5.3	2.3	ug/m³	I	02/17/2010	TD
Bromodichloromethane	ND	0.500	0.2	ppbv	ND	3.2	1.1	ug/m³	1	02/17/2010	TD
Carbon disulfide	ND	0.500	0.1	ppbv	ND	1.6	0.35	ug/m³	1	02/17/2010	TD
Carbon tetrachloride	ND	0.500	0.2	ppbv	ND	3.2	1.2	ug/m³	1	02/17/2010	TD
Chlorobenzene	ND	0.500	0.3	ppbv	ND	2.3	1.5	ug/m³	1	02/17/2010	TD
Chloroethane	ND	0.500	0.5	ppbv	ND	1.3	1.2	ug/m³	1	02/17/2010	TD
Chloroform	ND	0.500	0.2	ppbv	ND	2.5	1	ug/m³	1	02/17/2010	TD
Chloromethane	ND	0.500	0.3	ppbv	ND	1.1	0.61	ug/m³	1	02/17/2010	TD

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

FAX (203) 357-0166

Page 10 of 24

Sample ID:

Canister Certification Y52

Sampled: 02/16/2010

York ID:

10B0603-07 (Air)

Volatile Organic Compounds by EP	'A Compendium'	TO14A/7	TO15								
		— рр	bv —			— ug/n	n³		1		
Analyte	Result	RL	MDL	Units	Result	RL	MDL	Units	Dilution	Qualifiers Analyzed	Analyst
cis-1,2-Dichloroethylene	ND	0.500	0.3	ppbv	ND	2	1	ug/m³	1	02/17/2010	TD
cis-1,3-Dichloropropylene	ND	0.500	0.3	ppbv	ND	2.3	1.2	ug/m³	1	02/17/2010	TD
Hexachlorobutadiene	ND	0.500	0.3	ppbv	ND	5.4	3	ug/m³	1	02/17/2010	TD
Methylene chloride	ND	0.500	0.3	ppbv	ND	1.8	1.1	ug/m³	1	02/17/2010	TD
Tetrachloroethylene	ND	0.500	0.2	ppbv	ND	3.4	1.4	ug/m³	1	02/17/2010	TD
trans-1,2-Dichloroethylene	ND	0.500	0.3	ppbv	ND	2	1.3	ug/m³	1	02/17/2010	TD
trans-1,3-Dichloropropylene	ND	0.500	0.2	ppbv	ND	2.3	0.69	ug/m³	1	02/17/2010	TD
Trichloroethylene	ND	0.500	0.2	ppbv	ND	2.7	1.3	ug/m³	1	02/17/2010	TD
Trichlorofluoromethane (Freon 11)	ND	0.500	0.3	ppbv	ND	2.9	1.4	ug/m³	1	02/17/2010	TD
Vinyl Chloride	ND	0.500	0.3	ppbv	ND	1.3	0.86	ug/m³	1	02/17/2010	TD
Surrogate Recovery	Result	Accepta	nce Range				_				
Surrogate: n-Bromofluorobenzene	98.3 %	70-130								02/17/2010	TD

Sample ID:

Surrogate: p-Bromofluorobenzene

Canister Certification Y54

98.3 %

70-130

Sampled: 02/16/2010

02/17/2010

York ID:

10B0603-08 (Air)

		— рр	bv —		r	— ug/m	ı³				
Analyte	Result	RL	MDL	Units	Result	RL	MDL	Units	Dilution	Qualifiers Analyzed	Analys
1,1,1-Trichloroethane	ND	0.500	0.3	ppbv	ND	2.8	1.4	ug/m³	1	02/17/2010	TD
1,1,2,2-Tetrachloroethane	ND	0.500	0.2	ppbv	ND	3.5	1.6	ug/m³	1	02/17/2010	TD
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.500	0.3	ppbv	ND	3.9	1.9	ug/m³	1	02/17/2010	TD
113)											
1,1,2-Trichloroethane	ND	0.500	0.3	ppbv	ND	2.8		ug/m³	1	02/17/2010	TD
1,1-Dichloroethane	ND	0.500	0.2	ppbv	ND	2.1	0.99	ug/m³	1	02/17/2010	TD
1,1-Dichloroethylene	ND	0.500	0.2	ppbv	ND	2	0.69	ug/m³	1	02/17/2010	TD
1,2,4-Trichlorobenzene	ND	0.500	0.2	ppbv	ND	3.8	1.2	ug/m³	1	02/17/2010	TD
1,2-Dichlorobenzene	ND	0.500	0.2	ppbv	ND	3.1	1.2	ug/m³	i	02/17/2010	TD
1,2-Dichloroethane	ND	0.500	0.2	ppbv	ND	2.1	0.74	ug/m³	1	02/17/2010	TD
1,2-Dichloropropane	ND	0.500	0.4	ppbv	ND	2.4	1.7	ug/m³	1	02/17/2010	TD
1,2-Dichlorotetrafluoroethane	ND	0.500	0.3	ppbv	ND	3.6	1.9	ug/m³	1	02/17/2010	TD
1,3-Dichlorobenzene	ND	0.500	0.2	ppbv	ND	3.1	1.4	ug/m³	1	02/17/2010	TD
1,4-Dichlorobenzene	ND	0.500	0.3	ppbv	ND	3.1	2.1	ug/m³	1	02/17/2010	TD
2-Chloro-1,3-Butadiene	ND	0.500	0.3	ppbv	ND	1.8	1.1	ug/m³	1	02/17/2010	TD
3-Chloropropene	ND	0.500	0.1	ppbv	ND	1.6	0.35	ug/m³	1	02/17/2010	TD
Benzyl chloride	ND	1.00	0.4	ppbv	ND	5.3	2.3	ug/m³	1	02/17/2010	TD
Bromodichloromethane	ND	0.500	0.2	ppbv	ND	3.2	1.1	ug/m³	1	02/17/2010	TD
Carbon disulfide	ND	0.500	0.1	ppbv	ND	1.6	0.35	ug/m³	1	02/17/2010	TD
Carbon tetrachloride	ND	0.500	0.2	ppbv	ND	3.2	1.2	ug/m³	1	02/17/2010	TD
Chlorobenzene	ND	0.500	0.3	ppbv	ND	2.3	1.5	ug/m³	1	02/17/2010	TD
Chloroethane	ND	0.500	0.5	ppbv	ND	1.3	1.2	ug/m³	1	02/17/2010	TD
Chloroform	ND	0.500	0.2	ppbv	ND	2.5	1	ug/m³	1	02/17/2010	TD
Chloromethane	ND	0.500	0.3	ppbv	ND	1.1	0.61	•	1	02/17/2010	TD
cis-1,2-Dichloroethylene	ND	0.500	0.3	ppbv	ND	2	1	ug/m³	1	02/17/2010	TD
cis-1,3-Dichloropropylene	ND	0.500	0.3	ppbv	ND	2.3	1.2	•	1	02/17/2010	TD
Hexachlorobutadiene	ND	0.500	0.3	ppbv	ND	5.4	3	-	1	02/17/2010	TD
Methylene chloride	ND	0.500	0.3	ppbv	ND	1.8		ug/m³	1	02/17/2010	TD

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

Page 11 of 24

YORK ANALYTICAL LABORATORIES, INC.

Sample ID: York ID: **Canister Certification Y54**

10B0603-08 (Air)

Sampled: 02/16/2010

Volatile Organic Compounds by	EPA Compendium TO14A/TO15
	ppbv —

		ppbv ———— ug/m²———									
Analyte	Result	RL	MDL	Units	Result	RL	MDL	Units	Dilution	Qualifiers Analyzed	Analyst
Tetrachloroethylene	ND	0.500	0.2	ppbv	ND	3.4	1.4	ug/m³	1	02/17/2010	TD
trans-1,2-Dichloroethylene	ND	0.500	0.3	ppbv	ND	2	1.3	ug/m³	1	02/17/2010	TD
trans-1,3-Dichloropropylene	ND	0.500	0.2	ppbv	ND	2.3	0.69	ug/m³	1	02/17/2010	TD
Trichloroethylene	ND	0.500	0.2	ppbv	ND	2.7	1.3	ug/m³	1	02/17/2010	TD
Trichlorofluoromethane (Freon 11)	ND	0.500	0.3	ppbv	ND	2.9	1.4	ug/m³	1	02/17/2010	TD
Vinyl Chloride	ND	0.500	0.3	ppbv	ND	1.3	0.86	ug/m³	1	02/17/2010	TD
Surrogate Recovery	<u>Result</u>	Accepta	nce Range								
Surrogate: p-Bromofluorobenzene	108 %	70-130								02/17/2010	TD

Sample ID:

Canister Certification S26

Sampled: 02/16/2010

York ID:

10B0603-09 (Air)

Volatile Organic Compounds by EPA	Compendium TO14A/TO15
-----------------------------------	-----------------------

Analyte	Result	RL	MDL	Units	Resu	lt RL	MDL	Units	Dilution	Qualifiers Analyzed	Analyst
1,1,1-Trichloroethane	ND	0.500	0.3	ppbv	ND	2.8	1.4	ug/m³	1	02/17/2010	TD
1,1,2,2-Tetrachloroethane	ND	0.500	0.2	ppbv	NE	3.5	1.6	ug/m³	i	02/17/2010	TD
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.500	0.3	ppbv	NE	3.9	1.9	ug/m³	1	02/17/2010	TD
1,1,2-Trichloroethane	ND	0.500	0.3	ppbv	NE	2.8	1.6	ug/m³	1	02/17/2010	TD
1,1-Dichloroethane	ND	0.500	0.2	ppbv	NE	2.1	0.99	ug/m³	1	02/17/2010	TD
1,1-Dichloroethylene	ND	0.500	0.2	ppbv	NE	2	0.69	ug/m³	1	02/17/2010	TD
1,2,4-Trichlorobenzene	ND	0.500	0.2	ppbv	NE	3.8	1.2	ug/m³	1	02/17/2010	TD
1,2-Dichlorobenzene	ND	0.500	0.2	ppbv	NE	3.1	1.2	ug/m³	1	02/17/2010	TD
1,2-Dichloroethane	ND	0.500	0.2	ppbv	NE	2.1	0.74	ug/m³	1	02/17/2010	TD
1,2-Dichloropropane	ND	0.500	0.4	ppbv	NE	2.4	1.7	ug/m³	1	02/17/2010	TD
1,2-Dichlorotetrafluoroethane	ND	0.500	0.3	ppbv	NE	3.6	1.9	ug/m³	1	02/17/2010	TD
1,3-Dichlorobenzene	ND	0.500	0.2	ppbv	NE	3.1	1.4	ug/m³	1	02/17/2010	TD
1,4-Dichlorobenzene	ND	0.500	0.3	ppbv	NE	3.1	2.1	ug/m³	1	02/17/2010	TD
2-Chloro-1,3-Butadiene	ND	0.500	0.3	ppbv	NE	1.8	1.1	ug/m³	1	02/17/2010	TD
3-Chloropropene	ND	0.500	1.0	ppbv	NE	1.6	0.35	ug/m³	1	02/17/2010	TD
Benzyl chloride	ND	1.00	0.4	ppbv	NE	5.3	2.3	ug/m³	1	02/17/2010	TD
Bromodichloromethane	ND	0.500	0.2	ppbv	NI	3.2	1.1	ug/m³	1	02/17/2010	TD
Carbon disulfide	ND	0.500	0.1	ppbv	NE	1.6	0.35	ug/m³	1	02/17/2010	TD
Carbon tetrachloride	ND	0.500	0.2	ppbv	NI	3.2	1.2	ug/m³	1	02/17/2010	TD
Chlorobenzene	ND	0.500	0.3	ppbv	NI	2.3	1.5	ug/m³	1	02/17/2010	TD
Chloroethane	ND	0.500	0.5	ppbv	NI	1.3	1.2	ug/m³	1	02/17/2010	TD
Chloroform	ND	0.500	0.2	ppbv	NI	2.5	1	ug/m³	1	02/17/2010	TD
Chloromethane	ND	0.500	0.3	ppbv	NI	1.1	0.61	ug/m³	1	02/17/2010	TD
cis-1,2-Dichloroethylene	ND	0.500	0.3	ppbv	NI	2	1	ug/m³	1	02/17/2010	TD
cis-1,3-Dichloropropylene	ND	0.500	0.3	ppbv	NI	2.3	1.2	ug/m³	1	02/17/2010	TĐ
Hexachlorobutadiene	ND	0.500	0.3	ppbv	NI	5.4	3	ug/m³	1	02/17/2010	TD
Methylene chloride	ND	0.500	0.3	ppbv	NI	1.8	1.1	ug/m³	1	02/17/2010	TD
Tetrachloroethylene	ND	0.500	0.2	ppbv	NI	3.4	1.4	ug/m³	1	02/17/2010	TD
trans-1,2-Dichloroethylene	ND	0.500	0.3	ppbv	NI	2	1.3	ug/m³	1	02/17/2010	TD
trans-1,3-Dichloropropylene	ND	0.500	0.2	ppbv	NI	2.3	0.69	ug/m³	1	02/17/2010	TD
Trichloroethylene	ND	0.500	0.2	ppbv	NI	2.7	1.3	ug/m³	1	02/17/2010	TD

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

– ug/m³–

FAX (203) 357-0166

Page 12 of 24

Sample ID: York ID:

Canister Certification S26

10B0603-09 (Air)

Sampled: 02/16/2010

Volatile Organic Compounds by EPA Compe	ndium TO14A/TO15
---	------------------

, oracine organice composition at a			_			,					
Analyte	Result	—— PI RL	MDL	Units	Result	— ug/n RL	MDL	Units	Dilution	Qualifiers Analyzed	Analyst
Trichlorofluoromethane (Freon 11)	ND	0.500	0.3	ppbv	ND	2.9	1.4	ug/m³	1	02/17/2010	TD
Vinyl Chloride	ND	0.500	0.3	ppbv	ND	1.3	0.86	ug/m³	1	02/17/2010	TD
Surrogate Recovery	Result	Accepta	nce Range								
Surrogate: p-Bromofluorobenzene	91.1 %	70-130	1							02/17/2010	TD

Sample ID:

Canister Certification Y43

Sampled: 02/16/2010

York ID:

10B0603-10 (Air)

	_	— рр	bv —		· · · · · ·	— ug/m			1			
Analyte	Result	RL	MDL	Units	Result	RL	MDL	Units	Dilution	Qualifiers A	nalyzed	Analys
1,1,1-Trichloroethane	ND	0.500	0.3	ppbv	ND	2.8	1.4	ug/m³	1	02/	/17/2010	TD
1,1,2,2-Tetrachloroethane	ND	0.500	0.2	ppbv	ND	3.5	1.6	ug/m³	1	02/	/17/2010	TD
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.500	0.3	ppbv	ND	3.9	1.9	ug/m³	1	02	/17/2010	TD
1,1,2-Trichloroethane	ND	0.500	0.3	ppbv	ND	2.8	1.6	ug/m³	1	02	/17/2010	TD
1,1-Dichloroethane	ND	0.500	0.2	ppbv	ND	2.1	0.99	ug/m³	1	02.	/17/2010	TD
1,1-Dichloroethylene	ND	0.500	0.2	ppbv	ND	2	0.69	ug/m³	1	02	/17/2010	TD
1,2,4-Trichlorobenzene	ND	0.500	0.2	ppbv	ND	3.8	1.2	ug/m³	1	02.	/17/2010	TD
1,2-Dichlorobenzene	ND	0.500	0.2	ppbv	ND	3.1	1.2	ug/m³	1	02.	/17/2010	TD
,2-Dichloroethane	ND	0.500	0.2	ppbv	ND	2.1	0.74	ug/m³	1	02	/17/2010	TD
1,2-Dichloropropane	ND	0.500	0.4	ppbv	ND	2.4	1.7	ug/m³	1	02	/17/2010	TD
1,2-Dichlorotetrafluoroethane	ND	0.500	0.3	ppbv	ND	3.6	1.9	ug/m³	1	02	/17/2010	TD
1,3-Dichlorobenzene	ND	0.500	0.2	ppbv	ND	3.1	1.4	ug/m³	1	02	/17/2010	TD
1,4-Dichlorobenzene	ND	0.500	0.3	ppbv	ND	3.1	2.1	ug/m³	1	02	/17/2010	TD
2-Chloro-1,3-Butadiene	ND	0.500	0.3	ppbv	ND	1.8	1.1	ug/m³	1	02	/17/2010	TD
3-Chloropropene	ND	0.500	0.1	ppbv	ND	1.6	0.35	ug/m³	1	02	/17/2010	TD
Benzyl chloride	ND	1.00	0.4	ppbv	ND	5.3	2.3	ug/m³	1	02	/17/2010	TD
Bromodichloromethane	ND	0.500	0.2	ppbv	ND	3.2	1.1	ug/m³	1	02	/17/2010	TD
Carbon disulfide	ND	0.500	0.1	ppbv	ND	1.6	0.35	ug/m³	1	02	/17/2010	TD
Carbon tetrachloride	ND	0.500	0.2	ppbv	ND	3.2	1.2	ug/m³	1	02	/17/2010	TD
Chlorobenzene	ND	0.500	0.3	ppbv	ND	2.3	1.5	ug/m³	1	02	2/17/2010	TD
Chloroethane	ND	0.500	0.5	ppbv	ND	1.3	1.2	ug/m³	1	02	2/17/2010	TD
Chloroform	ND	0.500	0.2	ppbv	ND	2.5	1	ug/m³	1	02	2/17/2010	TD
Chloromethane	ND	0.500	0.3	ppbv	ND	1.1	0.61	ug/m³	1	02	2/17/2010	TD
cis-1,2-Dichloroethylene	ND	0.500	0.3	ppbv	ND	2	1	ug/m³	i	02	2/17/2010	TD
cis-1,3-Dichloropropylene	ND	0.500	0.3	ppbv	ND	2.3	1.2	ug/m³	1	02	2/17/2010	TD
Hexachlorobutadiene	ND	0.500	0.3	ppbv	ND	5.4	3	ug/m³	1	02	2/17/2010	TD
Methylene chloride	ND	0.500	0.3	ppbv	ND	1.8	1.1	ug/m³	1	02	2/17/2010	TD
Tetrachloroethylene	ND	0.500	0.2	ppbv	ND	3.4	1.4	ug/m³	1	02	2/17/2010	TD
trans-1,2-Dichloroethylene	ND	0.500	0.3	ppbv	ND	2	1.3	ug/m³	1	02	2/17/2010	TD
trans-1,3-Dichloropropylene	ND	0.500	0.2	ppbv	ND	2.3	0.69	ug/m³	1	02	2/17/2010	TD
Trichloroethylene	ND	0.500	0.2	ppbv	ND	2.7	1.3	ug/m³	1	02	2/17/2010	TD
Trichlorofluoromethane (Freon 11)	ND	0.500	0.3	ppbv	ND	2.9	1.4	ug/m³	1	02	2/17/2010	TD
Vinyl Chloride	ND	0.500	0.3	ppbv	ND	1.3	0.86	ug/m³	1	02	2/17/2010	TD
Surrogate Recovery	<u>Result</u>	Accepta	nce Range									
	07.00/		-							0.	2/17/2010	TD

120 RESEARCH DRIVE

Surrogate: p-Bromofluorobenzene

70-130 STRATFORD, CT 06615

97.0 %

(203) 325-1371

FAX (203) 357-0166

Page 13 of 24

02/17/2010

TD

Sample ID:

Canister Certification Y55

York ID:

10B0603-11 (Air)

Sampled: 02/16/2010

	<u> </u>	— рр	hv			— ug/n	3				
Analyte	Result	RL	MDL	Units	Result	RL	MDL	Units	Dilution	Qualifiers Analyzed	Analyst
1,1,1-Trichloroethane	ND	0.500	0.3	ppbv	ND	2.8	1.4	ug/m³	1	02/17/2010	TD
1,1,2,2-Tetrachloroethane	ND	0.500	0.2	ppbv	ND	3.5	1.6	ug/m³	1	02/17/2010	TD
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.500	0.3	ppbv	ND	3.9	1.9	ug/m³	1	02/17/2010	TD
1,1,2-Trichloroethane	ND	0.500	0.3	ppbv	ND	2.8	1.6	ug/m³	1	02/17/2010	TD
1,1-Dichloroethane	ND	0.500	0.2	ppbv	ND	2.1	0.99	ug/m³	1	02/17/2010	TD
1,1-Dichloroethylene	ND	0.500	0.2	ppbv	ND	2	0.69	ug/m³	1	02/17/2010	TD
1,2,4-Trichlorobenzene	ND	0.500	0.2	ppbv	ND	3.8	1.2	ug/m³	1	02/17/2010	TD
1,2-Dichlorobenzene	ND	0.500	0.2	ppbv	ND	3.1	1.2	ug/m³	1	02/17/2010	TD
1,2-Dichloroethane	ND	0.500	0.2	ppbv	ND	2.1	0.74	ug/m³	1	02/17/2010	TD
1,2-Dichloropropane	ND	0.500	0.4	ppbv	ND	2.4	1.7	ug/m³	1	02/17/2010	TD
1,2-Dichlorotetrafluoroethane	ND	0.500	0.3	ppbv	ND	3.6	1.9	ug/m³	1	02/17/2010	TD
1,3-Dichlorobenzene	ND	0.500	0.2	ppbv	ND	3.1	1.4	ug/m³	1	02/17/2010	TD
1,4-Dichlorobenzene	ND	0.500	0.3	ppbv	ND	3.1	2.1	ug/m³	1	02/17/2010	TD
2-Chloro-1,3-Butadiene	ND	0.500	0.3	ppbv	ND	1.8	1.1	ug/m³	1	02/17/2010	TD
3-Chloropropene	ND	0.500	0.1	ppbv	ND	1.6	0.35	ug/m³	1	02/17/2010	TD
Benzyl chloride	ND	1.00	0.4	ppbv	ND	5.3	2.3	ug/m³	1	02/17/2010	TD
Bromodichloromethane	ND	0.500	0.2	ppbv	ND	3.2	1.1	ug/m³	1	02/17/2010	TD
Carbon disulfide	ND	0.500	0.1	ppbv	ND	1.6	0.35	ug/m³	1	02/17/2010	TD
Carbon tetrachloride	ND	0.500	0.2	ppbv	ND	3.2	1.2	ug/m³	1	02/17/2010	TD
Chlorobenzene	ND	0.500	0.3	ppbv	ND	2.3	1.5	ug/m³	1	02/17/2010	TD
Chloroethane	ND	0.500	0.5	ppbv	ND	1.3	1.2	ug/m³	1	02/17/2010	TD
Chloroform	ND	0.500	0.2	ppbv	ND	2.5	1	ug/m³	1	02/17/2010	TD
Chloromethane	ND	0.500	0.3	ppbv	ND	1.1	0.61	ug/m³	1	02/17/2010	TD
cis-1,2-Dichloroethylene	ND	0.500	0.3	ppbv	ND	2	1	ug/m³	1	02/17/2010	TD
cis-1,3-Dichloropropylene	ND	0.500	0.3	ppbv	ND	2.3	1.2	ug/m³	1	02/17/2010	TD
Hexachlorobutadiene	ND	0.500	0.3	ppbv	ND	5.4	3	ug/m³	1	02/17/2010	TD
Methylene chloride	ND	0.500	0.3	ppbv	ND	1.8	1.1	ug/m³	1	02/17/2010	TD
Tetrachloroethylene	ND	0.500	0.2	ppbv	ND	3.4	1.4	ug/m³	1	02/17/2010	TD
trans-1,2-Dichloroethylene	ND	0.500	0.3	ppbv	ND	2	1.3	ug/m³	1	02/17/2010	TD
trans-1,3-Dichloropropylene	ND	0.500	0.2	ppbv	ND	2.3	0.69	ug/m³	1	02/17/2010	TD
Trichloroethylene	ND	0.500	0.2	ppbv	ND	2.7	1.3	ug/m³	1	02/17/2010	TD
Trichlorofluoromethane (Freon 11)	ND	0.500	0.3	ppbv	ND	2.9	1.4	ug/m³	1	02/17/2010	TD
Vinyl Chloride	ND	0.500	0.3	ppbv	ND	1.3	0.86	ug/m³	1	02/17/2010	TD
Surrogate Recovery	Result	Acceptan	ce Range								
Surrogate: p-Bromofluorobenzene	95.1%	70-130								02/17/2010	TD

Sample ID:

York ID:

Canister Certification Y42

10B0603-12 (Air)

Sampled: 02/16/2010

Volatile Organic Compounds by EPA Compendium TO14A/TO15

		— рр	bv —			— ug∕n	1 3		1		
Analyte	Result	RL	MDL	Units	 Result	RL	MDL	Units	Dilution	Qualifiers Analyzed	Analyst
1,1,1-Trichloroethane	ND	0.500	0.3	ppbv	ND	2.8	1.4	ug/m³	1	02/17/2010	TD
1,1,2,2-Tetrachloroethane	ND	0.500	0.2	ppbv	ND	3.5	1.6	ug/m³	1	02/17/2010	TD
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.500	0.3	ppbv	ND	3.9	1.9	ug/m³	1	02/17/2010	TD
113)											

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

FAX (203) 357-0166

Page 14 of 24

Sample ID:

Canister Certification Y42

10B0603-12 (Air) York ID:

Sampled: 02/16/2010

							. 1				
Analyte	Result	—— pp RL	bv — MDL	Units	Result	— ug/m RL	MDL	Units	Dilution	Qualifiers Analyzed	Analy
1,1,2-Trichloroethane	ND	0.500	0.3	ppbv	ND	2.8	1.6	ug/m³	1	02/17/2010	TD
,1-Dichloroethane	ND	0.500	0.2	ppbv	ND	2.1	0.99	ug/m³	1	02/17/2010	TD
1,1-Dichloroethylene	ND	0.500	0.2	ppbv	ND	2	0.69	ug/m³	1	02/17/2010	TD
1,2,4-Trichlorobenzene	ND	0.500	0.2	ppbv	ND	3.8	1.2	ug/m³	1	02/17/2010	TD
,2-Dichlorobenzene	ND	0.500	0.2	ppbv	ND	3.1	1.2	ug/m³	1	02/17/2010	TD
1,2-Dichloroethane	ND	0.500	0.2	ppbv	ND	2.1	0.74	ug/m³	1	02/17/2010	TD
1,2-Dichloropropane	ND	0.500	0.4	ppbv	ND	2.4	1.7	ug/m³	l	02/17/2010	TD
,2-Dichlorotetrafluoroethane	ND	0.500	0.3	ppbv	ND	3.6	1.9	ug/m³	1	02/17/2010	TD
1,3-Dichlorobenzene	ND	0.500	0.2	ppbv	ND	3.1	1.4	ug/m³	1	02/17/2010	TD
,4-Dichlorobenzene	ND	0.500	0.3	ppbv	ND	3.1	2.1	ug/m³	1	02/17/2010	TD
2-Chloro-1,3-Butadiene	ND	0.500	0.3	ppbv	ND	1.8	1.1	ug/m³	1	02/17/2010	TD
3-Chloropropene	ND	0.500	0.1	ppbv	ND	1.6	0.35	ug/m³	1	02/17/2010	TD
Benzyl chloride	ND	1.00	0.4	ppbv	ND	5.3	2.3	ug/m³	1	02/17/2010	TD
Bromodichloromethane	ND	0.500	0.2	ppbv	ND	3.2	1.1	ug/m³	1	02/17/2010	TD
Carbon disulfide	ND	0.500	0.1	ppbv	ND	1.6	0.35	ug/m³	1	02/17/2010	TD
Carbon tetrachloride	ND	0.500	0.2	ppbv	ND	3.2	1.2	ug/m³	1	02/17/2010	TD
Chlorobenzene	ND	0.500	0.3	ppbv	ND	2.3	1.5	ug/m³	1	02/17/2010	TD
Chloroethane	ND	0.500	0.5	ppbv	ND	1.3	1.2	ug/m³	1	02/17/2010	TD
Chloroform	ND	0.500	0.2	ppbv	ND	2.5	1	ug/m³	1	02/17/2010	TD
Chloromethane	ND	0.500	0.3	ppbv	ND	1.1	0.61	ug/m³	1	02/17/2010	TD
cis-1,2-Dichloroethylene	ND	0.500	0.3	ppbv	ND	2	1	ug/m³	1	02/17/2010	TD
cis-1,3-Dichloropropylene	ND	0.500	0.3	ppbv	ND	2.3	1.2	ug/m³	1	02/17/2010	TD
Hexachlorobutadiene	ND	0.500	0.3	ppbv	ND	5.4	3	ug/m³	1	02/17/2010	TD
Methylene chloride	ND	0.500	0.3	ppbv	ND	1.8	1.1	ug/m³	1	02/17/2010	TD
Tetrachloroethylene	ND	0.500	0.2	ppbv	ND	3.4	1.4	ug/m³	1	02/17/2010	TD
rans-1,2-Dichloroethylene	ND	0.500	0.3	ppbv	ND	2	1.3	ug/m³	1	02/17/2010	TD
rans-1,3-Dichloropropylene	ND	0.500	0.2	ppbv	ND	2.3	0.69	ug/m³	1	02/17/2010	TD
Trichloroethylene	ND	0.500	0.2	ppbv	ND	2.7	1.3	ug/m³	1	02/17/2010	TD
Trichlorofluoromethane (Freon 11)	ND	0.500	0.3	ppbv	ND	2.9	1.4	ug/m³	1	02/17/2010	TD
Vinyl Chloride	ND	0.500	0.3	ppbv	ND	1.3	0.86	ug/m³	1	02/17/2010	TD
Surrogate Recovery	<u>Result</u>	Accepta	nce Range								
Surrogate: p-Bromofluorobenzene	86.6 %	70-130								02/17/2010	TD

Page 15 of 24

Analytical Batch Summary

Batch ID:	BB00687	Preparation Method:	EPA TO15 PREP	Prepared By:	SS
YORK Samp	ole ID	Client Sample ID		Preparation Date	
10B0603-07		Canister Certification Y52		02/17/10	
10B0603-08		Canister Certification Y54		02/17/10	
10B0603-09		Canister Certification S26		02/17/10	
10B0603-10		Canister Certification Y43		02/17/10	
10B0603-11		Canister Certification Y55		02/17/10	
10B0603-12		Canister Certification Y42		02/17/10	
Batch ID:	BB00689	Preparation Method:	EPA TO15 PREP	Prepared By:	SR
YORK Samp	ole ID	Client Sample ID		Preparation Date	
10B0603-01		IAS-1		02/24/10	
10B0603-02		IAS-2		02/24/10	
10B0603-03		IAS-3		02/24/10	
10B0603-04		AA		02/24/10	
10B0603-05		Trip Blank		02/24/10	
10B0603-06		Effluent		02/24/10	
BB00689-BL		Blank		02/24/10	
BB00689-BS	51	LCS		02/23/10	
BB00689-DU	JP1	Duplicate		02/24/10	
Batch ID:	BB00710	Preparation Method:	EPA TO15 PREP	Prepared By:	SR
YORK Samp	ole ID	Client Sample ID		Preparation Date	
10B0603-01		IAS-1		02/25/10	
10B0603-02		IAS-2		02/25/10	
10B0603-03		IAS-3		02/25/10	
10B0603-04		AA		02/25/10	
10B0603-05		Trip Blank		02/25/10	
BB00710-BL	.K1	Blank		02/25/10	
BB00710-BS	31	LCS		02/25/10	
BB00710-DU	JP1	Duplicate		02/25/10	

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

FAX (203) 357-0166

Page 16 of 24

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB00689 - EPA TO15 PREP											
Blank (BB00689-BLK1)						Prepare	1: 02/24/2010	Analyzed:	02/23/2010		
Vinyl Chloride	ND	0.50	ppbv					-			
Vinyl bromide	ND	0.50	"								
Vinyl acetate	ND	0.50	n								
Trichloroethylene	ND	0.50	u								
trans-1,3-Dichloropropylene	ND	0.50	**								
trans-1,2-Dichloroethylene	ND	0.50	*								
Toluene	ND	0.50	"								
Tetrahydrofuran	ND	1.0	11								
Tetrachloroethylene	ND	0.50	**								
Styrene	ND	0.50	"								
Propylene	ND	1.0	n								
p-Ethyltoluene	ND	0.50	"								
p- & m- Xylenes	ND	1.0	n								
o-Xylene	ND	0.50	11								
n-Hexane	ND	0.50	n								
n-Heptane	ND	0.50	н								
Methylene chloride	ND	0.50	11								
Methyl tert-butyl ether (MTBE)	ND	0.50	n								
Methyl isobutyl ketone	ND	1.0	"								
Isopropanol	ND	1.0	11								
Hexachlorobutadiene	ND	0.50	"								
Ethyl Benzene	ND	0.50	**								
Ethyl acetate	ND	0.50	#								
Cyclohexane	ND	0.50	"								
cis-1,3-Dichloropropylene	ND	0.50	н								
cis-1,2-Dichloroethylene	ND	0.50	"								
Chloromethane	ND	0.50	"								
Chloroform	ND	0.50	"								
Chloroethane	ND	0.50	Ħ								
Carbon tetrachloride	ND	0.50	"								
Carbon disulfide	ND	0.50	"								
Bromomethane	ND	0.50	"								
Bromoform	ND	0.50	"								
Bromodichloromethane	ND	0.50									
Benzyl chloride	ND	1.0	"								
Benzene	ND	0.50	,,								
Acetone	ND	0.50	,,								
3-Chloropropene	ND	0.50									
2-Hexanone	ND	1.0									
2-Chloro-1,3-Butadiene	ND	0.50	"								
2-Butanone	ND	0.50									
2,2,4-Trimethylpentane	ND	0.50	,,								
1,4-Dioxane	ND	2.0	n								
1,4-Dichlorobenzene	ND ND	0.50 0.50	,,								
1,3-Dichlorobenzene 1,3-Butadiene	ND ND	0.50									
1,3,5-Butadiene 1,3,5-Trimethylbenzene	ND ND	0.50	"								
1,2-Dichlorotetrafluoroethane	ND	0.50	**								
1,2-Dichloropropane	ND	0.50	**								
1,2-Dichloroethane	ND	0.50									
1,2-Dichlorobenzene	ND	0.50	11								
1,2,4-Trimethylbenzene	ND	0.50									
1,2,4-Trinlemytoenzene	ND	0.50	u								
Trichlorofluoromethane	ND	0.50	,,								
	112	0.20									
120 RESEARCH DRIVE	STRATFO	RD, CT 066	515		(203) 32	25-1371		FAX (2	203) 35	7-0166 200 17	

YORK LABS1080603 :00019

Page 17 of 24

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Reporting Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
						·					
Batch BB00689 - EPA TO15 PREP								<u> </u>	2/22/20:2		
Blank (BB00689-BLK1)						Prepared	1: 02/24/2010) Analyzed: 0	2/23/2010		
1,1-Dichloroethylene	ND	0.50	ppbv								
1,1-Dichloroethane	ND	0.50	"								
1,1,2-Trichloroethane	ND	0.50	H								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.50	**								
113)	ND	0.50	11								
1,1,2,2-Tetrachloroethane	ND ND	0.50									
1,1,1-Trichloroethane	ND ND	0.50									
Chlorobenzene		0.50		10.0		74.2	70-130				
Surrogate: p-Bromofluorobenzene	7.43		,,	10.0		74.3					
LCS (BB00689-BS1)								d: 02/23/2010			
Vinyl Chloride	8.7		ppbv	10.0		87.2	70-130				
Vinyl bromide	9.0		н	10.0		89.8	70-130				
Vinyl acetate	10		"	10.0		104	70-130				
Trichloroethylene	9.1			10.0		90.6	70-130				
trans-1,3-Dichloropropylene	10		,,	10.0		103	70-130				
trans-1,2-Dichloroethylene	9.2		"	10.0		91.9	70-130				
Toluene	9.1		"	10.0		91.1	70-130				
Tetrahydrofuran	9.0		"	10.0		90.4	70-130				
Tetrachloroethylene	9.1		"	10.0		91.3	70-130	Hist Disc			
Styrene	14		"	10.0		140	70-130	High Bias			
Propylene	8.6		"	10.0		86.2	70-130				
p-Ethyltoluene	12			10.0		124	70-130				
p- & m- Xylenes	24			20.0		120	70-130				
o-Xylene	12		"	10.0		124	70-130				
n-Hexane	8.5		,,	10.0		85.1	70-130				
n-Heptane	8.5		,,	10.0		84.8	70-130 70-130				
Methylene chloride	9.6			10.0		96.5 94.1	70-130				
Methyl tert-butyl ether (MTBE)	9.4			10.0		120	70-130				
Methyl isobutyl ketone	12			10.0 10.0		99.2	70-130				
Isopropanol	9.9		**	10.0		122	70-130				
Hexachlorobutadienc	12 12		н	10.0		122	70-130				
Ethyl Benzene	10		"	10.0		100	70-130				
Ethyl acetate	8.6		"	10.0		86.4	70-130				
Cyclohexane	10		ii	10.0		103	70-130				
cis-1,3-Dichloropropylene cis-1,2-Dichloroethylene	9.1		н	10.0		91.0	70-130				
Chloromethane	8.0		H	10.0		80.1	70-130				
Chloroform	8.6		**	10.0		86.1	70-130				
Chloroethane	8.8		"	10.0		87.9	70-130				
Carbon tetrachloride	8.6		"	10.0		85.8	70-130				
Carbon disulfide	9.0			10.0		90.5	70-130				
Bromomethane	8.9		u	10.0		88.7	70-130				
Bromoform	13		**	10.0		125	70-130				
Bromodichloromethane	9.1		11	10.0		91.2	70-130				
Benzyl chloride	12		н	10.0		125	70-130				
Benzene	8.8			10.0		87.5	70-130				
Acetone	9.4		"	10.0		94.5	70-130				
3-Chloropropene	2.9		Ħ	10.0		28.7	70-130	Low Bias			
2-Hexanone	10		**	10.0		104	70-130				
2-Butanone	10		**	10.0		105	70-130				
2,2,4-Trimethylpentane	8.7		"	10.0		87.0	70-130				
1,4-Dioxane	9.3			10.0		93.3	70-130				
1,4-Dichlorobenzene	12		"	10.0		119	70-130				
1,4-Dichiotopelizene	12			10.0		117	, 5-155				

STRATFORD, CT 06615

120 RESEARCH DRIVE

YORK LABS1080603 :00020

(203) 325-1371

FAX (203) 357-0166

Page 18 of 24

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Datal DD00400 ED4 TO45 DDDD										•	
Batch BB00689 - EPA TO15 PREP	•					D-0	1 & A = al 1	. 02/22/2010			
LCS (BB00689-BS1)						<u> </u>	l & Analyzed	: 02/23/2010			
i,3-Dichlorobenzenc	13		ppbv "	10.0		128	70-130				
,3-Butadiene	8.8			10.0		88.4	70-130				
,3,5-Trimethylbenzene	13		"	10.0		129	70-130				
1,2-Dichlorotetrafluoroethane	8.6			10.0		85.9	70-130				
,2-Dichloropropane	9.0			10.0		89.8	70-130				
1,2-Dichloroethane	9.2			10.0		91.8	70-130				
1,2-Dichlorobenzene	12		11	10.0		121	70-130				
,2,4-Trimethylbenzene	13		"	10.0		128	70-130				
,2,4-Trichlorobenzene	11		"	10.0		110	70-130				
,1-Dichloroethylene	8.6		"	10.0		86.4	70-130				
,1-Dichloroethane	8.7		"	10.0		86.9	70-130				
,1,2-Trichloroethane	9.8		"	10.0		98.0	70-130				
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)	8.6		n	10.0		86.1	70-130				
,1,2,2-Tetrachloroethane	13		n	10.0		126	70-130				
,1,1-Trichloroethane	8.5		"	10.0		85.1	70-130				
Chlorobenzene	12		"	10.0		117	70-130				
Surrogate: p-Bromofluorobenzene	11.2		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10.0		112	70-130				
Ouplicate (BB00689-DUP1)	*Source(Sample used f	or MS/MSD): 1	10B0603-0	5		Prepared	l & Analyzed	: 02/24/2010			
inyl Chloride	ND	0.82	ppbv		ND					25	
'inyl bromide	ND	0.82	Ħ		ND					25	
inyl acetate	ND	0.82	Ħ		ND					25	
richloroethylene	ND	0.82	**		ND					25	
rans-1,3-Dichloropropylene	ND	0.82	Ħ		ND					25	
ans-1,2-Dichloroethylene	ND	0.82	n		ND					25	
oluene	0.57	0.82	н		0.55				4.38	25	
etrahydrofuran	ND	1.6	11		ND					25	
etrachloroethylene	ND	0.82	"		ND					25	
tyrene	ND	0.82	er e		ND					25	
Propylene	ND	1.6	u		ND					25	
-Ethyltoluene	ND	0.82	u		ND					25	
- & m- Xylenes	ND	1.6	"		ND					25	
-Xylene	ND	0.82			ND					25	
-Hexane	ND	0.82			ND					25	
-Heptane	ND	0.82			ND					25	
1ethylene chloride	ND	0.82	п		ND					25	
fethyl tert-butyl ether (MTBE)	ND	0.82	"		ND					25	
lethyl isobutyl ketone	ND	1.6	"		ND					25	
sopropanol	ND	1.6	"		ND					25	
[exachlorobutadiene	ND	0.82			ND					25	
thyl Benzene	ND	0.82	"		ND					25	
thyl acetate	ND	0.82	"		ND					25	
cyclohexane	ND	0.82			ND					25	
is-1,3-Dichloropropylene	ND	0.82	"		ND					25	
is-1,2-Dichloroethylene	ND	0.82	"		ND					25	
Chloromethane	ND	0.82	"		ND					25	
Phloroform	ND	0.82	"		ND					25	
Chloroethane	ND ND	0.82	**		ND					25	
Carbon tetrachloride	ND	0.82	**		ND					25	
arbon tetracmonde arbon disulfide	ND ND	0.82	,,		ND ND			*		25	
arbon disumde Fromomethane			,,							25	
	ND	0.82			ND					25 25	
Bromoform	ND	0.82	"		ND						
romodichloromethane	ND	0.82			ND					25	

STRATFORD, CT 06615

120 RESEARCH DRIVE

YORK LABS1080603 :00021

FAX (203) 357-0166

Page 19 of 24

(203) 325-1371

		Reporting	-	Spike	Source*	_	%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB00689 - EPA TO15 PRE	Р										
Duplicate (BB00689-DUP1)	*Source(Sample used f	or MS/MSD):	10B0603-06	_		Prepared	i & Analyzed	: 02/24/2010	1		
Benzyl chloride	ND	1.6	ppbv		ND					25	
Benzene	ND	0.82	u u		ND					25	
Acetone	7.3	0.82	п		7.2				1.36	25	
3-Chloropropene	ND	0.82	н		ND					25	
2-Hexanone	ND	1.6	"		ND					25	
2-Chloro-1,3-Butadiene	ND	0.82			ND					25	
2-Butanone	ND	0.82	**		ND					25	
2,2,4-Trimethylpentane	NĎ	0.82	Ħ		ND					25	
1,4-Dioxane	ND	3.3	"		ND					25	
1,4-Dichlorobenzene	ND	0.82	n		ND					25	
1,3-Dichlorobenzene	ND	0.82	II .		ND					25	
1,3-Butadiene	ND	0.82	11		ND					25	
1,3,5-Trimethylbenzene	ND	0.82	н		ND					25	
1,2-Dichlorotetrafluoroethane	ND	0.82	"		ND					25	
1,2-Dichloropropane	ND	0.82	u u		ND					25	
1,2-Dichloroethane	ND	0.82	"		ND					25	
1,2-Dichlorobenzene	ND	0.82	**		ND					25	
1,2,4-Trimethylbenzene	ND	0.82	"		ND					25	
1,2,4-Trichlorobenzene	ND	0.82			ND					25	
1,1-Dichloroethylene	ND	0.82	"		ND					25	
1,1-Dichloroethane	ND	0.82	Ħ		ND					25	
1,1,2-Trichloroethane	ND	0.82	н		ND					25	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.82	"		ND					25	
1,1,2,2-Tetrachlorocthane	ND	0.82	**		ND					25	
1,1,1-Trichloroethane	ND	0.82	Ħ		ND					25	
Chlorobenzene	ND	0.82	n		ND					25	
Trichlorofluoromethane (Freon 11)	ND	0.82	"		ND					25	
Surrogate: p-Bromofluorobenzene	10.8		"	10.0	_	108	70-130				

FAX (203) 357-0166

Page 20 of 24

	5 6	Reporting Limit	I Inita	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Analyte	Result	Limit	Units	Level	Vesuit	/OKEC	Pilling	6			
Batch BB00710 - EPA TO15 PR	EP										
Blank (BB00710-BLK1)						Prepared	& Analyzed	: 02/25/2010			
Vinyl Chloride	ND	0.0500	ppbv								
Trichloroethylene	ND	0.0500	**								
Tetrachloroethylene	ND	0.0500	**								
cis-1,2-Dichloroethylene	ND	0.0500	**								
Carbon tetrachloride	ND	0.0500	"								
1,2-Dichloroethane	ND	0.0500	"								
1,1-Dichloroethylene	ND	0.0500	*1								
1,1,1-Trichloroethane	ND	0.0500	**								
Surrogate: p-Bromofluorobenzene	0.810		"	1.00		81.0	70-130				
LCS (BB00710-BS1)						Prepare	1 & Analyzed	1: 02/25/2010			
Vinyl Chloride	0.290		ppbv	0.300		96.7	70-130				
Trichloroethylene	0.270		"	0.300		90.0	70-130				
Tetrachloroethylene	0.260		II .	0.300		86.7	70-130				
cis-1,2-Dichloroethylene	0.270		Ħ	0.300		90.0	70-130				
Carbon tetrachloride	0.280		**	0.300		93.3	70-130				
I,2-Dichloroethane	0.280		n	0.300		93.3	70-130				
1,1-Dichloroethylene	0.280		"	0.300		93.3	70-130				
1,1,1-Trichloroethane	0.280		tt	0.300		93.3	70-130				
Surrogate: p-Bromofluorobenzene	0.900		"	1.00		90.0	70-130				
Duplicate (BB00710-DUP1)	*Source(Sample used fo	r MS/MSD):	10B0603-0	4		Prepare	d & Analyzed	1: 02/25/2010			
Vinyl Chloride	ND	0.0835	ppbv		ND					25	
Trichloroethylene	ND	0.0835	"		ND					25	
Tetrachloroethylene	0.0501	0.0835	"		0.0501				0.00	25	
cis-1,2-Dichloroethylene	ND	0.0835	**		ND					25	
Carbon tetrachloride	0.0835	0.0835	**		0.0668				22.2	25	
1,2-Dichloroethane	ND	0.0835			ND					25	
1,1-Dichloroethylene	ND	0.0835	"		ND					25	
1,1,1-Trichloroethane	ND	0.0835	"		ND					25	
Surrogate: p-Bromofluorobenzene	1.27		"	1.00		127	70-130				

FAX (203) 357-0166

(203) 325-1371

STRATFORD, CT 06615

Page 21 of 24

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL); therefore, the result is an estimated concentration.
ND	Analyte NOT DETECTED at or above the Reporting Limit
RL	Reporting Limit-the minimum reportable value based upon the lowest point in the analyte calibration curve.
MDL	Method Detection Limit- The minimum concentration that can be measured and reported with 99 percent confidence that the concentration is greater than zero. If requested or required, a value reported below the RL and above the MDL is considered estimated and is noted with a "J"Flag.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

:00024

CHAIN OF CUSTODY DOCUMENTATION

jo	603	rbles		mary	60		Cates. B.	Special	Instructions	Field Filtered						Container Description(e)	1-112 Sum	1		}	7				1	on Receipt	N/A °C
Page [York Project No. Jo Bo60	Report Type/Deliverbles	0	QA/QC Summary	ASP B Pkg	Excel format	OTHER COR		Color	<u> </u>	Cyanide-A Lan BOD5	CBODS	80028 COD	TSS Total Solick	TOS		<u> </u>								NaOH	ं	,
	oject No.	eport Ty		Summary Results Only	RCP Package	ASP A Pkg	X	Miscellaneous Parameters	Nerate Right		Tot. Nitrogen Ammonia-N		Phosphate Tot. Phos.	C Oil&Grease		Be				,					H,SO N	01-77	Date/Time
	York Pr	-		Sumn	RCP	ASP/	EDD.	L	Comosivity		P Hash Point X Sieve Anal.		BTU/b.	A Public Tox		ve and I									7.0 V	(c))/25/c
p.	and your	Turn-Around Time					RSH	Org. Full Lists	to Pri.Poll.		8.1 Full App. IX	4	S Part 360-typester			enu Abo							-	+	0 4 Other	7 7 7	Samples Received By
eco/	document.	rn-Arou	24 hr	48 hr	72 hr	5 Dav	Standard	2	8 TPH GRO	CT ETPH	TPH 418.1	ved Air TO14A	India Mateir Air 1015	As, Cd Air VPH. R. Fe. Air TICs		m the M		<u> </u>							ر 20 30		
1y R	k side of this ith the analyserseded by w	Tu			ľ			Σ	PCB RCRA8	q	N Total	5	TCLP Pest Info Mesk	TCLP Herb Hg, Pb, As, Cd Chlordane Cr, Ni, Be, Fe		eded fro									HNO.	_	†
stoc	ed on the bac to proceed w ns unless sup	oject II	t Deart	Lybres 9	Order	-# L	71560		8270 or 625 8082PCB STARS 8081Pest	,	PAH App. IX	TAGM Site Spec.		×	∄≴	lyses Ned		l) - - -	2	
f-Cu	ditions are list ation to York is & Condition	Client Project ID	The BAR Deat	Ree Park, Bushaven, Blue	Purchase Order No.	Project #	3	П	TICs 827 Site Spec. STA	SPLP or TCLP BN	٥	Suffolk Co. TAC	s	TCLP list TICs 524.2 App. I	502.2 SPL 5035 TCI	ose Ana		i							ê ±	*	linguished
in-o	Ferms & Concited authorizate's Std. Term			12	7	\top		Ş	8260 full TI 624 Si	STARS ST		TCL list St.		Arom. To Halog. 52	App.IX 50 8021B list 50	Cho	TO-15	70-15	T0-15	70-15	70-15				4°C Frozen HCI Attech		Samples Relinguished By
Field Chain-of-Custody Record	NOTE: York's Std. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions unless superseded by written contract.	ice To:	AKAC, Inc. Company. AKEE, INC			ote Russe	اام	Toto	time	lved.	es			ater			7	t	A	4							(O)
-ield	NOTE: ocument serv signature bir	Invoice	Company:	Address:		Phone No.	E-Mail Address.	ust he co	rn-arour	rk are re	Matrix Codes	S - soil Other - snecifiveil 40)	WW - wastewater		Air-A - ambient air	Sample Matrix	Ar	7.₩	Air	ز ح					Preservation Check those Applic	० व्या ऽ	
	This d	To:	Pt. Inc.			Phone No.		ation m	d the tu	ns by Yo			(eur			mpled	12010	lo,	100	(ra						+ 500A	و٢
ü	16615 1166	Report To:					Address	II Inform	d in an	v questio			By (Signati	1 KARE		Date Sampled	2/19/2010	16/2	2/19	2/19/10						r.t.c.	doliverables
KTORIES, INC.	STRATFORD, CT 06615 FAX (203) 357-0166	=	Company:	Southdress		Phone No.	C.K. Friag	oibly A	be logge	until an	- 1	1	uthorized	Steve Grass - AKAR	Name (printed)	on Flora	5 X	/Stool	3)	\$30	٧				<u></u>	Chloris	
	. 1	ormatio	ARF I	Park Ar		P. P. T.	brune	and Le	I NOT	of begin	4	多	ollected/A	(b)	Name	entificati	1 182	-2 154	3 526	1 43	B Cak] { }	Categury B
Y ANALYTIGAL L	120 RESEARCH DR. (203) 325-1371	Client Information	Company: AKREITY	Address: 440 Dark Arson Address:	1 Eloc, N. N. 1001	'I 4	E-Mail Address: Kbrome Och Ethin Address:	Print Clearly and Legibly All Information must be come	Samples will NOT be logged in and the turn-around	clock will not begin until any questions by Tork are reso	7	>	Samples Collected/Authorized By (Signature)	t		Sample Identification Flou	-2月	IAS -	45.	AA	1000	-			Comments	** pepart all chloringted vocs for all samples!	Cates
٩	120	ပ	Com	Addr	7	. 790. Cont.	E-M	Prin	San	cloc			I		<u>'</u>	7,	П	Н	H		_			P.	O	∤ 23 o	• f 24

of	5090	rerbles	mmary		РКд		Career, B	Special	Instructions	Field Filtered	Lab to Filter						Container Description(s)	1-lite Summe	->						Temperature	on Receipt	% 4/ /∕	
Page	York Project No. 10 B 0 6 0 3	Report Type/Deliverbles	QA/QC Summary		geASP B PKg	Excel format	OTHER	Miscellaneous Parameters	ate Color	Cyanide-T	Tot Nitrogen Cyanide-A			Oil&Grease TSS		pH TDS MBAS TPH-IR	r Below								NaOH	Ş	Date/Time	Date/Time
	ork Proje	Repo	Summary	Results Only	KCP Fackage	ASP A Pkg	X Ga	Miscellane	Corrosavity Nitrate	(gritability	Flash Point Tot	Heterotrophs	_ •	<u>ğ</u>		Asbestos Silica	e and Ente								4°C H,SO, ZnAc Ascort	7	0/10	,
٦,		ind Time					RS#		XO Pri.Poll.		-13 Full TCLP			Part 360-curred Aquatic		NYSDBCsewer TAGM	enu Abov								1 4°C	13	Samples Received By	J Ø
Chain-of-Custody Record	this document. alyses requested y written contra	Turn-Around Time	24 hr	48 hr	72 hr	5 Day	Standard	2	RCRA8 TPH GRO		CT15 NY 310-13	lved		LIGHT, MEDIA ALL'S L'ARS HE, PD, As, Cd Air VPH		Se, Ti, Sb, Cu, Methane Na Mn Ag esc Helium	Choose Analyses Needed from the Menu Above and Enter Below								HNO 4°C	(2)		
ody	the back side of seed with the an	<u> </u>	thot Six.	, CA . 2.4	der No.			Pest/PCB/Herb	8082PCB	8151Herb	CT RCP		O.	TCLP Herb He	Chlordane	608 Pest 608 PCB	s Needed f					-			4°C	Medic	Date/Time	Date/Time
-Cust	ns are listed on on to York to proc	Client Project ID	The Hone Depot 75-9 weathous Blu	Rego Park Breens, NY	Purchase Order No.	03399	1	Semi-Vol	8270 or 625 STARS	A,	ne Acids Only		es CTRCP			TCLP BNA	e Analyses						!			a	quished By	quished By
in-of	erms & Condition tren authorization c's Std. Terms &	ؾٙٚ	\$ K	Resp	Purc	-,		Volatiles	8260 full TICs 624 Site Succ		BTEX Benzene			Aron. TCL.P list		App.IX 502.2 8021B list 5035	Choos			ļ 					4°C Frozen		Samples Relinquished By	Samples Relinquished By
Field Cha	NOTE: York's Std. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions unless superseded by written contract.	Invoice To:	Company: AKRE	Address:		Artention: K.t. R Vilose	E-Mail Address:	-					Other - specify(oil, etc.) T.	groundwater	<u></u>		Sample Matrix	A 7 A							Preservation 4			IS
	S)	Report To:	AKRE			Kute Bring	ddress.	I Information in	d in and the fin	anostions hy Vo			v (Cionoturo)	y (Signature)			Date Sampled	01/51/2								40 05 \$0, 6 55	sable 5	
YORK ANALYTICAL LABORATORIES, INC.	120 REBEARCH DR. STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166	Client Information	Company: AKRETAR. Company:	o Par An	N V N 108 16	Contact Person: Hote Brosse, Attention	E-Mail Address K Bronk & E-Mail Address	Print Clearly and Legible 41 Information must be complete	Somples will NOT be loaded in and the turn-ground time	clock will not begin until any questions by York are resolved			Construction (North Circustum)		Steve Gress	Name (printed)	Sample Identification Float	E FF 10en + 142 F6	Hair Branch (Se)						e Comments	*Report an chlorinte vocs to, Efflent simple	2 - Cortigory B seliverables	,

APPENDIX C INDOOR AIR SAMPLING LOGS

Date: 2/19/2010	o Park Sampled By: Sq
The state of the s	
Laboratory Sam	ple (Summa Canister)
Summa Gauge No. Y52 No	Flow Control No. 45
Serial # 4906 Sample ID:	AS-1
Time Started: 0645	Vacuum: ~29.5 In Hg
Time Stopped: 144	Vacuum: -12 In Hg
PID Readings Time 6649 Rea	ling O·6
Time 0749 Rea	ling 0.0
TimeOB4o Rea	ling 0.0 (ND)
Time 6939 Rea	ling ND
Timelo 40 Rea	ling ND
TimeRea	ling N S
Time 1255 Rea	ling ND
Time\3\46 Rea	ling NO
Potential VOC sources in vicinity: None	
Totalizar v 00 boarees in vienney.	
· Located in breathing zo.	of AMW-4 on Steel Shelving (465
. 0700-SG observes Cunty	of AMW-4 on Steel Shelving (4is exter Cleaning the interior floors oper. Home Depot employee informs in the autternoon (time unknown)
with the floor Stri	pper. Home Depot employed infrance

Job No: 03399-00	23		Client:	The Ho	me Depot
Project Location:	Home Depot,	Rego Park	Sampled	Ву:	SG
Date: 2/19/2010			=		
	Laboratory	Sample (Su	mma Canis	<u>ter)</u>	
Summa No. $\sqrt{54}$	Gauge		Flow Con	trol	5001
Δ	No		No.	5	Hoo rounde
\$	Sample ID:	IAS-	7		
Time Star	rted: O	650	Vacuum:	-29	In Hg
Time Sto	pped:14	51	Vacuum:	-6	In Hg
PID Readings					
Time 065 \		Reading	ND		
Time		Reading	ND	e .	
Time 0246		Reading	ND	ž.	
Time 0942		Reading	ND	-	
Time1043		Reading	ND	-	
Time	1	Reading 🔥	ND		
Time_1302	e .	Reading	ND		
Time 1348	x - 15	Reading	ND	-	
The state of the s		P.7			(or voc Sames)
in the immed	iate Avec	a Locat	ed in q	orden	Curniture Ection
on shelving,	bo' worth	of Aisle	6 F1000	ins.	e5 e

Job No: 03399-002	23		Client:	The Hon	ne Depot
Project Location:	Home Depot, R	lego Park	Sampled	Ву:	SK
Date: 2/19/2010					
	Laboratory Sa	ample (Sun	nma Canis	<u>ter)</u>	
Summa No. 5 U	Gauge No	 x	Flow Cor No.	itrol -	Ye
\$	Sample ID:	IAS-	-3		
Time Star	rted: 056	N V	Vacuum:	-29	In Hg
Time Stop	pped: 1453	<u> </u>	Vacuum:	-6	In Hg_
PID Readings	R	eading	CIN		
Time0754	R	eading	ND	<u> </u>	
Time0852	R	eading	ND	-	
Time 0948	R	eading	ND	=	
Time	R	eading	NO	-	
Time	R	eading	ND	-	
Time13 0 Y	Re	eading	ND	4	
Time_ 1350	R	eading	てり		
Potential VOC sources					
. Located in	aisle _	un s	shelving	, by 7	he convent board.
A pallet o	f Joint	Compound	d is 1	ucen Led	approximately
the words	Containers	(5-901	llon) an	e Clase	d. Located in
(closed) of	Juint co	mpand	locute	pant 1	ed. Lucuted in guillon containers

Job No: 03399-00	23		_ Client:	The Hor	ne Depot
Project Location:	Home Depo	t, Rego Park	Sampled	By:	54
Date: 2/19/2010			_		
	Laborator	y Sample (Su	mma Cani	ster)	
Summa No. Y43	Gauge No		Flow Co No.	ntrol 	5030
\$	Sample ID:	AA			
Time Sta	rted:	703	Vacuum:	-30	In Hg
Time Sto	pped:/\$	705	Vacuum:	2	In Hg
PID Readings		Reading	ND	=,	
Time OSOK		Reading	ND	_	
Time_ 09 0 3		Reading	ND	_	
Time 0958		Reading	NO	_	
Time 1057		Reading	ND	_	
Time 1201		Reading	NID	_	
Time_ 1307		Reading	ND	_	
Time1352		Reading	ND	_	
Potential VOC sources	s in vicinity	No 1	ode ato	l voc	Schreet
in imme	ے اوسامی		- 1.1		1 1 1
Pots on Perce) wall of outside of franks is local	Shelving gaze Le Home Let app	(in br (in br center. Depot.	Summ A care	Zone) Zone) a (au Se fill	close to northern mister is located with propere