

H.B. FULLER COMPANY

SUPPLEMENTAL REMEDIAL INVESTIGATION FORMER MONARCH CHEMICALS FACILITY 61 GATES AVENUE GENEVA, NEW YORK VCP No. V00119-8

17 MARCH 2006

Prepared for:

H.B. Fuller Company P.O. Box 64683 St. Paul, MN 55164-0683

Prepared by:

Delta Environmental Consultants, Inc. 104 Jamesville Road Syracuse, NY 13214

Delta Project No. V004210-1

- -

H.B. FULLER COMPANY

SUPPLEMENTAL REMEDIAL INVESTIGATION FORMER MONARCH CHEMICALS FACILITY 61 GATES AVENUE GENEVA, NEW YORK VCP No. V00119-8

17 MARCH 2006

Prepared for:

H.B. Fuller Company P.O. Box 64683 St. Paul, MN 55164-0683

Prepared by:

Delta Environmental Consultants, Inc. 104 Jamesville Road Syracuse, NY 13214

Delta Project No. V004210-1

1.0	INT	RODUCT	ION	
	1.1	GENE	RAL	
	1.2	OBJE	CTIVES	
	1.3	REPO	RT ORGANIZATION	
	1.4		BACKGROUND	
		1.4.1	Physical Setting	
		1.4.2	Site History	
		1.4.3	Previous Assessments and Investigations	
2.0	SUP		TAL RI SCOPE OF WORK	
	2.1	SUBSU	URFACE SOIL INVESTIGATION	
		2.1.1	Soil Boring Installations	2-1
	2.2	HYDR	OGEOLOGIC INVESTIGATION	
		2.2.1	Monitoring Well Installations	2-1
		2.2.2	Well Development	
	,2.3		LING AND ANALYSIS	2-3
		2.3.1	Soil Sampling	
		2.3.2	Surface Water and Sediment Sampling	
		2.3.3	Groundwater Sampling	
	2.4		EYING	
	2.5		E MANAGEMENT	
3.0		RESULTS		
	3.1		EVALUATION	
	3.2		IRFACE SOIL INVESTIGATION RESULTS	
		3.2.1	Site Geology	
	3.3		OGEOLOGIC INVESTIGATION RESULTS	
		3.3.1	Site Hydrogeology	
	a (3.3.2	Surface Water	
	3.4		TICAL RESULTS	
		3.4.1	Soil Analytical Results	
		3.4.2	Sediment Analytical Results	
		3.4.3	Surface Water Analytical Results	
		3.4.4	Groundwater Analytical Results - October 2005	
10	CUL	3.4.5	Groundwater Analytical Results – January 2006	
4.0	SUM 4.1		ND CONCLUSIONS IRFACE SOIL INVESTIGATION	
	4.1 4.2		OGEOLOGIC INVESTIGATION	
	4.2 4.3		CE WATER INVESTIGATION	
	4.5 4.4		ENT INVESTIGATION	
	4.4 4.5		AMENDATIONS	
	7.5			

TABLE OF CONTENTS

Site Plan	
Sample Location Map	2-2
Cross Section Location Map	
Geologic Cross Section (West – East)	3-4
Geologic Cross Section (North – South)	3-5
Groundwater Elevation Contour Map (18 October 2005)	3-7
Groundwater Elevation Contour Map (11 January 2006)	3-8
Soil Analytical Data Comparison (CVOCs) Plot 1	
Round 1 Groundwater Sample Data – 18 October 2005	
Total VOC Isoconcentration Contour Map – Groundwater Round 1 – 18 October 2005	.4-11
Total VOC Isoconcentration Contour Map – Groundwater Round 2 – 11 January 2006	.4-12
Tetrachloroethene Isoconcentration Contour Map – Groundwater Round 1 – 18 October 2005	
Tetrachloroethene Isoconcentration Contour Map – Groundwater Round 2 – 11 January 2006	.4-15
Trichloroethene Isoconcentration Contour Map – Groundwater Round 1 – 18 October 2005	
Vinyl Chloride Isoconcentration Contour Map – Groundwater Round 1 – 18 October 2005	
Vinyl Chloride Isoconcentration Contour Map – Groundwater Round 2 – 11 January 2006	4-26
	Sample Location Map Cross Section Location Map

List of Figures

List of Tables

Table 3-1: Subsurface Soil Sample Analytical Results	<i>3-11</i>
Table 3-1 (continued): Subsurface Soil Sample Analytical Results	3-12
Table 3-2: Sediment Sample Analytical Results	3-14
Table 3-3: Surface Water Sample Analytical Results	
Table 3-4: Groundwater Sample Analytical Results – October 2005	3-17
Table 3-5: Groundwater Sample Analytical Results – January 2006	

List of Attachments

Attachment 1: Data Usability Summary Reports

Attachment 2: Analytical Data Summary Packages

Attachment 3: Soil Boring Logs and Groundwater Sampling Logs

Attachment 4: Support Documentation

ii

1.0 INTRODUCTION

1.1 GENERAL

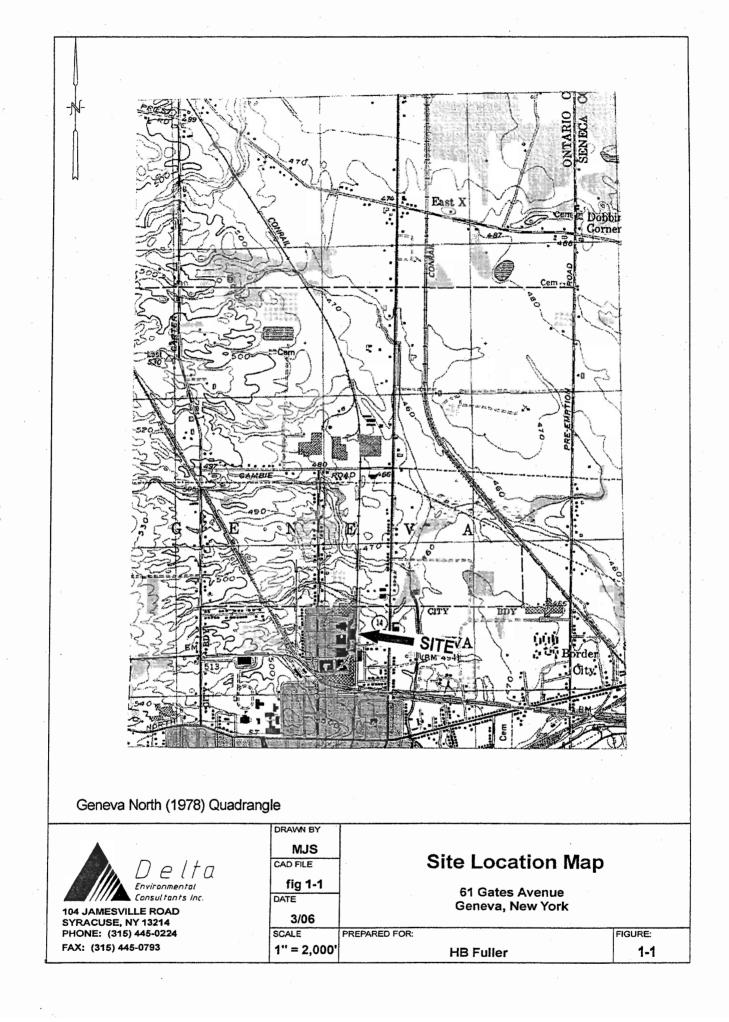
This report summarizes the activities performed and the results for the Supplemental Remedial Investigation (SRI) of the Former Monarch Chemicals Facility located in Geneva, New York (hereinafter the "Site"). The SRI was conducted by Delta Environmental Consultants (Delta) on behalf of the HB Fuller Company (HBF). Supplemental remedial investigation activities conducted at the Site (ID No. V00119-8) were performed under the New York State Department of Environmental Conservation (NYSDEC) Voluntary Cleanup Program (VCP) and in accordance with the NYSDECapproved Investigation Work Plan (IWP), dated July 2004. The Department approved the work plan on October 12, 2004.

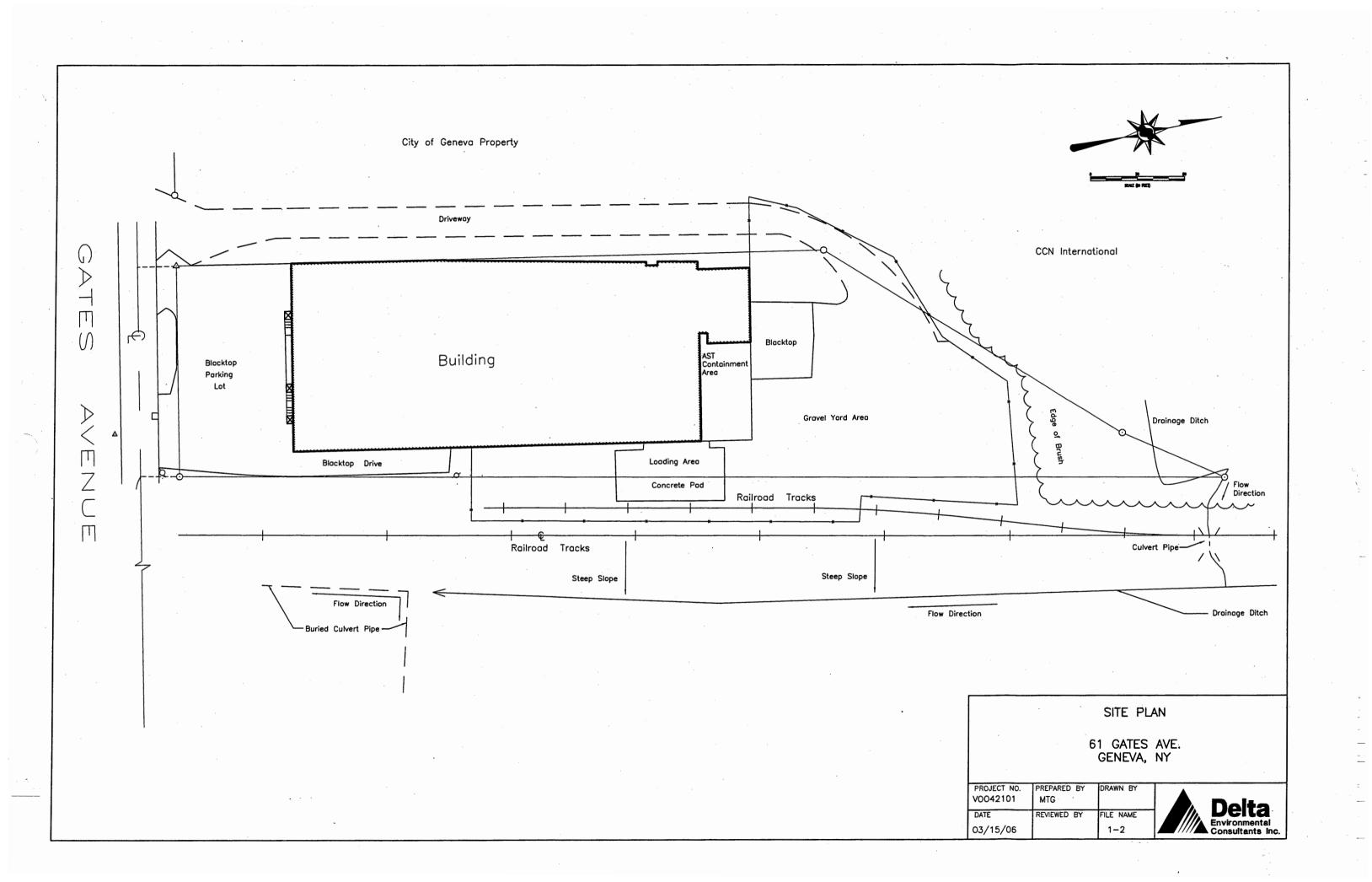
1.2 OBJECTIVES

The objectives of the SRI were to: 1) evaluate soil quality in areas that, based upon the results of a September 2003 soil gas survey, were suspected to have impacts; 2) collect groundwater quality data at the upgradient and downgradient property boundaries and beyond the downgradient property line; 3) collect groundwater quality data within suspected source areas; 4) evaluate the likelihood that any observed impact(s) are attributable to on-site releases, off-site releases, or a combination of both; and 5) to re-establish a permanent monitoring well network.

1.3 REPORT ORGANIZATION

This document presents the SRI Report, which is organized in the following sections:


 Section 1 – Introduction: Presents a summary of the Site location and physical setting, the Site background and history, results of previous investigations, and objectives of the SRI.


- Section 2 SRI Scope of Work: Describes the activities performed during the SRI, including the soils investigation, sediment investigation, surface water investigation, and hydrogeologic investigation.
- Section 3 SRI Results: Summarizes the results of the SRI investigation activities.
- Section 4 Summary and Conclusions: Summarizes the results of the SRI and presents conclusions supported by the data and recommendations for additional work, if any, which may be required to fill data gaps.

1.4 SITE BACKGROUND

1.4.1 Physical Setting

The Site is located at 61 Gates Avenue (Latitude 042° 52' 54" N, Longitude 076° 58' 52" W), in the City of Geneva, Ontario County, New York (Figure 1-1). The Site consists of an approximately 1.75 acre parcel of industrially developed land, which is occupied by an approximately 33,700 square foot building, an exterior bulk loading and unloading area, an above ground storage tank (AST) containment area and associated ASTs, and various parking areas (Figure 1-2). The Site and surrounding topography are generally flat; however, topography slopes steeply to the immediate east of the Site along the eastern bank of the adjacent Finger Lakes Railroad tracks. The Site is bounded to the north by industrial property owned by CCN International and undeveloped woods. Railroad tracks (owned by Finger Lakes Railroad) followed by a drainage ditch and a mixture of residential and commercial properties border the Site to the east. Gates Avenue followed by industrial property owned by the Ontario County Industrial Development Agency (OCIDA) followed by residential development borders the Site to the west.

In 1903, the Site was reportedly occupied by Vance Boiler Works, a manufacturer of boilers. In 1915, the name of the facility changed to Geneva Boiler Works and the original building was expanded. In 1947, the name of the facility changed to Burnham Boiler Corporation. Various additions to the building reportedly occurred between the 1930s and 1950s. In 1967, the Site was occupied by Magnetic Components, Inc. Between 1967 and 1979 the Site was reportedly occupied by Electronic Components (a circuit board manufacturer) and Anticel Chemicals, which manufactured cleaning products. In 1979, the facility was purchased by Monarch Chemical (Monarch), which was a former operating division of HBF. Monarch operations involved the manufacturer of food grade cleaners/sanitizers, which were employed in the dairy and related industries. In 1996, HBF sold the property and the business to Haltrachem, who engaged in similar production activities as Monarch. In 1999 Haltrachem was purchased by Basic Chemical Solutions (BCS), the current site owner and operator. Current site operations are similar in nature to those conducted historically by Monarch and Haltrachem.

Aerial photograph and Sanborn map reviews have indicated that the northern portions of the building were previously used for circuit board manufacturing and impregnation of capacitors and associated board components. The storage of miscellaneous materials in containers was also noted north of the building.

1.4.3 Previous Assessments and Investigations

A summary of the previous site investigations, which were conducted at the Site in the 1990's and in 2000 are described below. Information referenced in this section is not provided in this report.

Phase I Environmental Assessment of Monarch Facility, Geneva, New York -Environmental Strategies Corporation, May 1996.

In May 1996, Environmental Strategies Corporation (ESC) was retained by Ecolab, Inc.

to conduct a Phase I environmental review (Phase I) at the Site. Findings of the Phase I indicated the following environmental issues at the Site:

- In 1984, a fuel oil underground storage tank (UST) was removed from an area located near the northwest corner of the building. Impacted soils were observed during the removal activities and were subsequently removed from the tank excavation (approximately 20 to 25 cubic yards) and spread on the ground surface in the parking area located to the northwest of the building. Confirmation soil samples were not collected from the UST excavation; therefore, it was not determined if the soil cleanup met applicable NYSDEC cleanup objectives. Reportedly, NYSDEC verbally recommended spreading of the soil onsite; however, written documentation was not provided.
- In 1982, an estimated 347 gallons of acid product were spilled outside the building in a loading area. Reportedly, the spill was neutralized and the material was containerized and disposed offsite at a sanitary landfill. NYSDEC inspected the spill area and reportedly took no further action.
- In 1992, a wastewater sump inside the building was found to be leaking. As a result an unknown quantity of untreated wastewater consisting of dilute solutions of acids, bases, and surfactants was released to the underlying soils.

Based on the findings of the Phase I, ESC concluded that evidence was present which suggested that past activities at the Site may have created a threat to the environment within or surrounding the facility. ESC recommended that a Phase II investigation be conducted to determine if past site activities had affected onsite soil and groundwater.

Phase II Site Assessment, HB Fuller Company, Monarch Chemicals Division, Geneva, New York – Leggette, Brashears & Graham, Inc., July 1996.

In May 1996, HBF retained Leggette, Brashears & Graham, Inc. (LBG) to conduct a Phase II site assessment at the Site. The objectives of the Phase II were to assess potential onsite source areas of contamination and to assess the potential impacts to onsite soil and groundwater from both onsite and offsite sources of contamination, if any. As part of the investigation LBG installed a total of eight test borings, five of which were completed as monitoring wells. Soil and groundwater samples were also collected during the investigation and analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides, metals, polychlorinated biphenyls (PCBs), and petroleum hydrocarbons.

According to the LBG report, the soils beneath the Site consisted of a mixture of fine to very fine sand, silt and clay. Groundwater was observed in these materials at depths of between 4 feet and 7 feet below grade. Soil analytical data indicated that VOCs, PCBs, and pesticides were not detected in soil samples above NYSDEC recommended soil cleanup objectives. However, metals and SVOCs were detected in soils at concentrations exceeding recommended soil cleanup objectives. In addition, groundwater analytical data indicated that surfactants, VOCs (primarily chlorinated compounds), and metals were detected in groundwater samples at concentrations above NYSDEC Class GA water quality standards. Based on these findings, LBG recommended that further investigation work be performed onsite to delineate the extent of groundwater impacts onsite and to determine the source of the impacts.

Remedial Investigation Report, Former Monarch Chemicals Division, 61 Gates Avenue, Geneva, New York – Delta Environmental Consultants, December 1998.

In October 1996, HBF retained Delta to perform a Remedial Investigaton (RI) at the Site. The objectives of the RI were to identify if previous operational activities had impacted soil and groundwater, delineate the nature and extent of impacts to soil and groundwater, evaluate the risk to human health and the environment, and determine the potential and time required for chlorinated VOCs (CVOCs) to naturally attenuate. Activities conducted during the RI included the following:

• October 1996: Installation of 8 soil borings within the building, collection and analysis of soil and groundwater samples from the soil borings, and collection and analysis of groundwater samples from 5 existing onsite monitoring wells.

VCP Rpt Rev 4 3-15-06.doc

- July 1997: Installation of 3 additional shallow and 3 deep onsite monitoring wells, collection and analysis of groundwater samples from all onsite wells, and performance of field permeability tests on several onsite wells.
- *February 1998*: Installation of 3 soil borings and 3 more shallow monitoring wells, collection and analysis of groundwater samples from all onsite wells, and collection and analysis of 3 surface water samples from the offsite eastern drainage ditch.
- *May 1998*: Collection and analysis of groundwater samples from 3 onsite wells, and collection and analysis of 3 surface water samples from the offsite eastern drainage ditch.
- July 1998: Collection and analysis of groundwater samples from all onsite wells, and collection and analysis of 3 surface water samples from the offsite eastern drainage ditch.

Based on the results of the RI, Delta concluded that previous activities at the Site had impacted soil and groundwater quality at the Site. A summary of the RI findings and conclusions are detailed below:

- The onsite soils did not contain a large mass of CVOCs, and dense non-aqueous phase liquid (DNAPL) was not present in groundwater.
- The lateral and vertical extent of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1-trichloroethane (TCA), which are materials reported to have been used at the facility in the past, had been defined with the exception of limited areas to the north and east of the northernmost monitoring well.
- Dissolved phase VOCs discharges had occurred to the eastern drainage ditch.
- The presence of MBAS in environmental media located beneath the building is attributed to leakage through the wastewater sump or the floor.
- Analytical data suggests that biodegradation of chlorinated compounds is occurring by reductive dechlorination within the source area.
- Natural attenuation was suggested as the preferred, recommended remedial alternative.

Based on the conclusions above, Delta recommended that additional monitoring wells be installed onsite and offsite to delineate the extent CVOCs in groundwater. Additionally, triannual groundwater sampling was recommended to further define plume geometry and to evaluate the ongoing attenuation process.

Compilation of Site Data / Recommendations for No Further Action, Former Monarch Chemicals Division, 61 Gates Avenue, Geneva, New York – Delta Environmental Consultants, August 2000.

Following completion of the RI, Delta conducted additional remedial activities at the Site as recommended above. Activities conducted as part of the site work consisted of the following:

- *April 1999*: Installation of two additional monitoring wells between the railroad tracks and drainage ditch, collection and analysis of groundwater samples from all onsite wells, and collection and analysis of 3 surface water samples from the offsite eastern drainage ditch.
- *August 1999*: Collection and analysis of groundwater samples from 8 monitoring wells, collection and analysis of 3 surface water samples from the offsite eastern drainage ditch, and abandonment and replacement of 1 monitoring well.
- February 2000: Abandonment of all onsite and offsite monitoring wells.

Based on the results of the additional remedial activities, Delta concluded that: 1) the eastern drainage ditch was the consistent groundwater discharge point for both sides of the ditch; 2) the VOC plume had been delineated and did not extend beyond the drainage ditch and groundwater flow patterns were stable throughout yearly wet and dry cycles; and 3) evidence existed demonstrating strong and active bioattenuation of VOCs at the Site. Based on these findings, a decision was made to cease groundwater monitoring and abandon all monitoring wells¹.

¹HBF abandoned the previously installed monitoring wells prior to being notified by NYSDEC that sampling of these wells would be needed as part of the proposed MNA closure strategy for the Site.

Passive Soil Gas Survey Findings and Recommendations, Former Monarch Chemicals Division, 61 Gates Avenue, Geneva, New York – Delta Environmental Consultants, August 2003.

In June 2003, Delta conducted a passive soil gas survey at the Site as a means of evaluating the presence or absence of target VOCs beyond the former manufacturing areas of the facility, where soil and groundwater impacts were identified during previous investigation activities. The objectives of the survey were to screen the soil beneath the northern gravel driveway for the presence of CVOCs, and based on the presence or absence of target compounds in the survey area, to determine an appropriate scope and extent for a subsequent soil and groundwater assessment program.

Findings of the soil gas survey indicated that the highest mass of CVOCs was detected near the northeast end of the building in areas where previous investigations had documented VOC impacts to soils and groundwater. Other areas of CVOC impacts were also observed along the northeastern and northern fence lines. The presence of CVOCs in these areas was attributed to historic container storage in the area and/or migration of CVOCs in groundwater from sites located to the immediate west of the Site where CVOCs had been detected in groundwater. Based on the findings of the soil gas survey, a soil and groundwater assessment program was recommended to address the potential presence of CVOCs at various locations beneath the northern gravel driveway and parking areas.

Limited Site Investigation Report, 61 Gates Avenue, Geneva, New York – Delta Environmental Consultants, November 2005.

In October 2005, Delta conducted a Limited Site Investigation (LSI) at the Site to define the horizontal and vertical extent of petroleum-impacted soils encountered near the northwest building corner during the installation of soil boring MW-117 in July 2005. Work associated with the installation of MW-117 was conducted as part of SRI. Based on findings of petroleum-impacted soils during the SRI, a petroleum spill was reported to NYSDEC and a spill number assigned (Spill No. 0504324). Activities conducted as part of the LSI consisted of the installation of 10 soil borings and analysis of 8 soil samples for Total Petroleum Hydrocarbons (TPH), VOCs and STARS SVOCs.

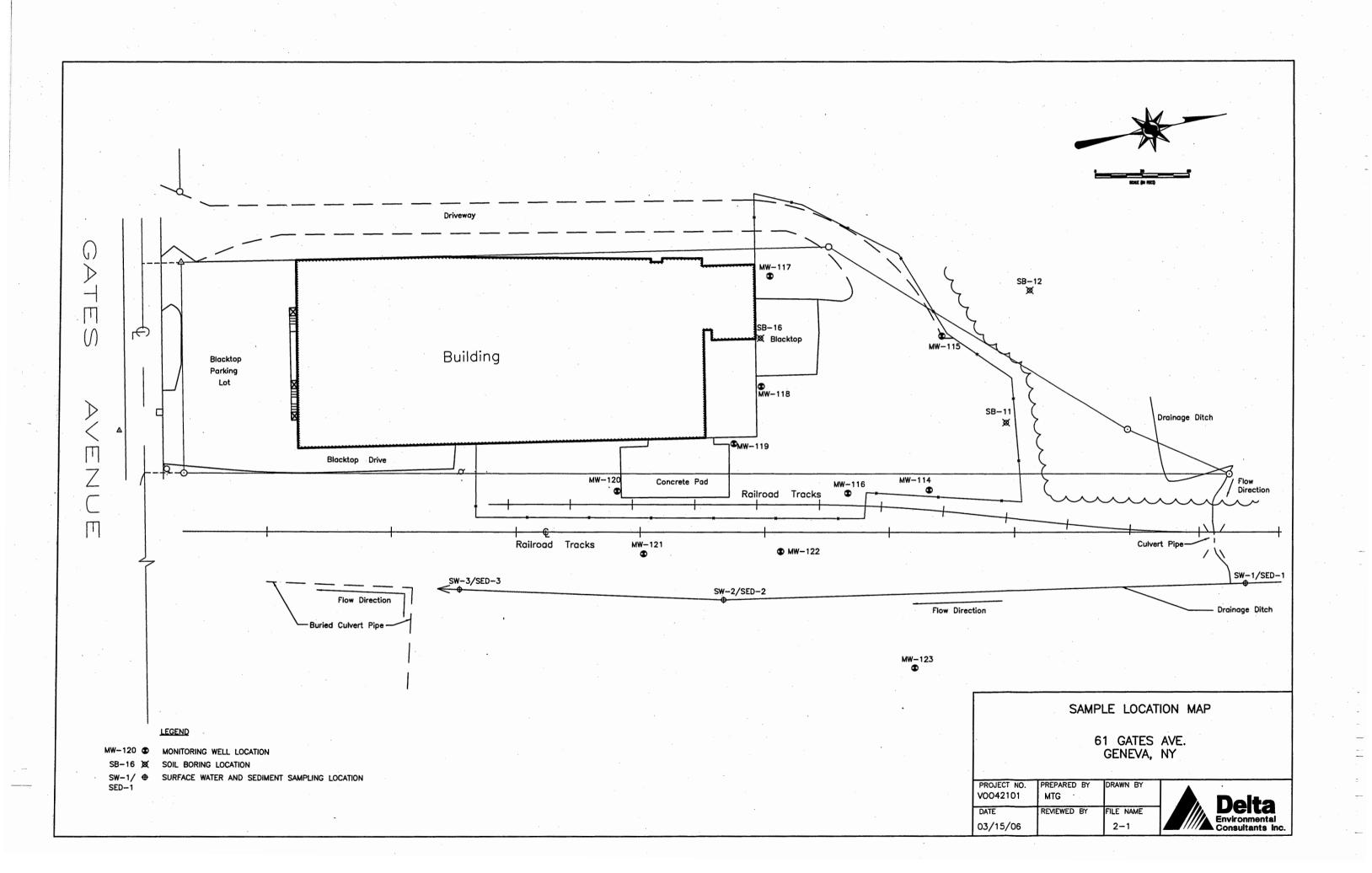
Findings of the LSI indicated that petroleum-impacted soils were observed across a limited area of the Site (area near MW-117) where a former 3,000-gallon UST had been located. Soil analytical data indicated that concentrations of VOCs and SVOCs detected in these impacted soils were below applicable NYSDEC TAGM 4046 recommended soil cleanup objectives. Based on these findings, Delta requested that NYSDEC issue a closure letter for the Site indicating that Spill No. 0504324 is "Closed" and "No Further Action is Required". Final spill closure from NYSDEC is still pending.

2.0 SUPPLEMENTAL RI SCOPE OF WORK

This section describes the tasks that were completed at the Site during the SRI. All activities were conducted in accordance with the NYSDEC-approved IWP.

2.1 SUBSURFACE SOIL INVESTIGATION

2.1.1 Soil Boring Installations


On 11 through 14 July 2005, thirteen soil borings (SB-11, SB-12, SB-16, and MW-114 through MW-123) were installed at the Site (Figure 2-1). Soil borings were installed to a maximum depth of approximately 16 feet below grade using direct-push drilling techniques. Soil samples were collected continuously from grade to the depth of completion in all soil borings. Upon extraction from the borehole, Delta's on-site geologist logged the soil samples and placed representative portions of each sample into a sealed sampling container to allow for field screening. After a period of approximately ten minutes, the headspace of the sampling container was scanned with a photonization detector (PID) to screen for the potential presence of VOCs. All generated wastes (i.e., soil cuttings) were containerized pending proper management (See Section 2.5).

2.2 HYDROGEOLOGIC INVESTIGATION

2.2.1 Monitoring Well Installations

On 11 through 15 July 2005, ten monitoring shallow wells (MW-114 through MW-123) were installed at the Site in the same locations where corresponding direct-push soil borings had been installed (Figure 2-1). Monitoring well borings were installed to a maximum depth of approximately 16 feet below grade using 4.25-inch inside diameter (ID) hollow stem auger (HSA) drilling techniques.

Upon completion of each well boring, monitoring wells, which were constructed of twoinch-diameter PVC riser and 10 feet of 0.01-inch slot PVC well screen were installed in

each boring. The well screen was installed to straddle the shallow water table. A sand pack was installed around the well screen and extended one to two feet above the top of the well screen. A one-foot-thick bentonite pellet seal was placed above the sand pack and a cement/bentonite grout was utilized to backfill the remainder of the annulus to grade. The wells were completed with steel protective guard pipes. Following installation, reference points were marked on the top of the well casing to allow for surveying. All generated wastes (i.e., soil cuttings) were containerized pending proper management.

2.2.2 Well Development

Low-flow purging and development techniques were used to develop each of the newly installed monitoring wells. Each well was developed, with a low-flow peristaltic pump and dedicated sample tubing, until the turbidity of the water was below 50 NTU, and/or field parameters (pH, conductivity, and temperature) stabilized (readings within 10% of each other). Development water from the wells was checked periodically for the presence of a sheen or free product. Development water was containerized pending proper management (See Section 2.5).

2.3 SAMPLING AND ANALYSIS

Environmental sampling during the SRI was conducted in accordance with the NYSDEC-approved IWP. Samples collected during the SRI were analyzed by Severn Trent Laboratories, Inc. (STL), which is an NYSDOH ELAP-certified laboratory that participates in the contract laboratory program (CLP). Laboratory analytical procedures adhered to NYS ASP 2000 methodologies and protocols.

Analytical results were reported by STL using NYSDEC ASP 2000 Category B deliverables. Site-specific quality assurance/quality control (QA/QC) samples, including matrix spike (MS)/matrix spike duplicate (MSD) samples and field duplicates were collected and analyzed, as appropriate.

2.3.1 Soil Sampling

Two soil samples from each soil boring were selected for laboratory analysis. Generally, one soil sample per boring was selected from shallow depths (between 2 feet to 4 feet below grade) to evaluate potential surficial VOC releases. The second sample was generally collected in the saturated zone at the water table interface, at the base of the boring, or at the depth interval with the highest PID reading. Soil samples were analyzed for VOCs (USEPA Method 8260).

2.3.2 Surface Water and Sediment Sampling

On 13 July 2005, three sediment samples (SED-1 to SED-3) were collected in the offsite eastern drainage ditch at locations proximal to the Site (Figure 2-1). On 18 October 2005, three surface water samples (SW-1 to SW-3) were collected in the offsite drainage ditch at the same locations where sediment samples were previously collected. Surface water and sediment samples were analyzed for VOCs (USEPA Method 8260).

2.3.3 Groundwater Sampling

On 18 October 2005 (Round 1) and 11 January 2006 (Round 2), groundwater samples were collected from each of the 10 existing monitoring wells located onsite and offsite (Figure 2-1). Prior to sampling, each monitoring well was purged, using low-flow purging techniques, until a minimum of at least three well volumes were removed and until the field parameters (pH, temperature, conductivity, and turbidity) stabilized. Following purging, groundwater samples were collected directly from dedicated low-flow sampling tubing. Field parameters and groundwater elevation data were collected from each monitoring well prior to purging (water level measurement) and during sampling (field parameters). Groundwater samples were analyzed for VOCs (USEPA Method 8260), TAL metals, and methylene blue active substances (MBAS).

During Round 1 sampling, one groundwater sample (MW-117) was also analyzed for STARS SVOCs (EPA Method 8270 base neutrals). In addition, during Round 1

sampling insufficient groundwater volume was recovered from well MW-121; therefore, samples for TAL metals and MBAS analyses were not collected from this well.

2.4 SURVEYING

Upon completion of all field tasks, the horizontal and vertical locations of all soil borings and monitoring wells were surveyed by Leonard O. Gardner, L.S., Geneva, New York, a New York State (NYS) licensed land surveyor. Vertical elevations were recorded to the nearest 0.01-foot. Top-of-PVC casing elevations for each monitoring well were also recorded to the nearest 0.01-foot to establish water table elevations and groundwater flow direction. In addition, all other sampling points (i.e., surface water and sediment, etc.) were surveyed and referenced to an onsite fixed datum point.

2.5 WASTE MANAGEMENT

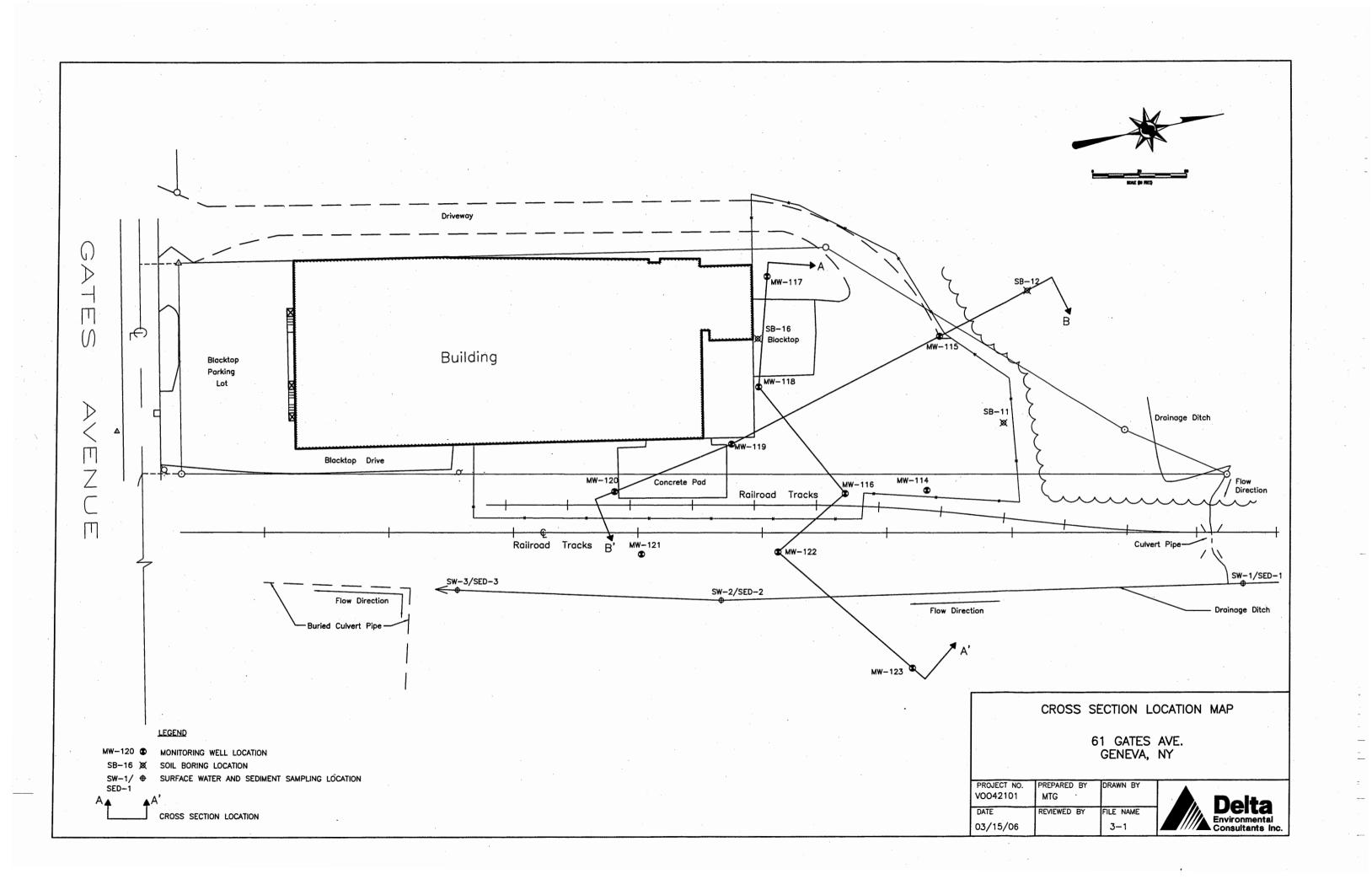
On 18 October, composite waste characterization samples were collected from the drummed solid and liquid wastes that were generated during the SRI activities. Liquid waste samples were analyzed for VOCs (EPA Method 8260) and SVOCs (EPA Method 8270 base neutral compounds). Solid waste samples were analyzed for TCLP VOCs (EPA Method 8260), TCLP SVOCs (EPA Method 8270), PCBs (EPA Method 8082), TCLP metals, pH, flash point and paint filter analyses. Waste characterization samples were analyzed by STL.

On 7 November 2005, six 55-gallon drums of liquid waste and seven 55-gallon drums of solid waste were picked up at the Site by Environmental Products and Services of Vermont (US EPA ID No. VTR000500090) and transported to their facility located in Syracuse, NY for disposal. Waste characterization data and the waste manifest are provided in Attachment 4.

3.0 SRI RESULTS

This section describes the results of the SRI activities and presents the validated analytical data for the samples, which were collected as part of the SRI.

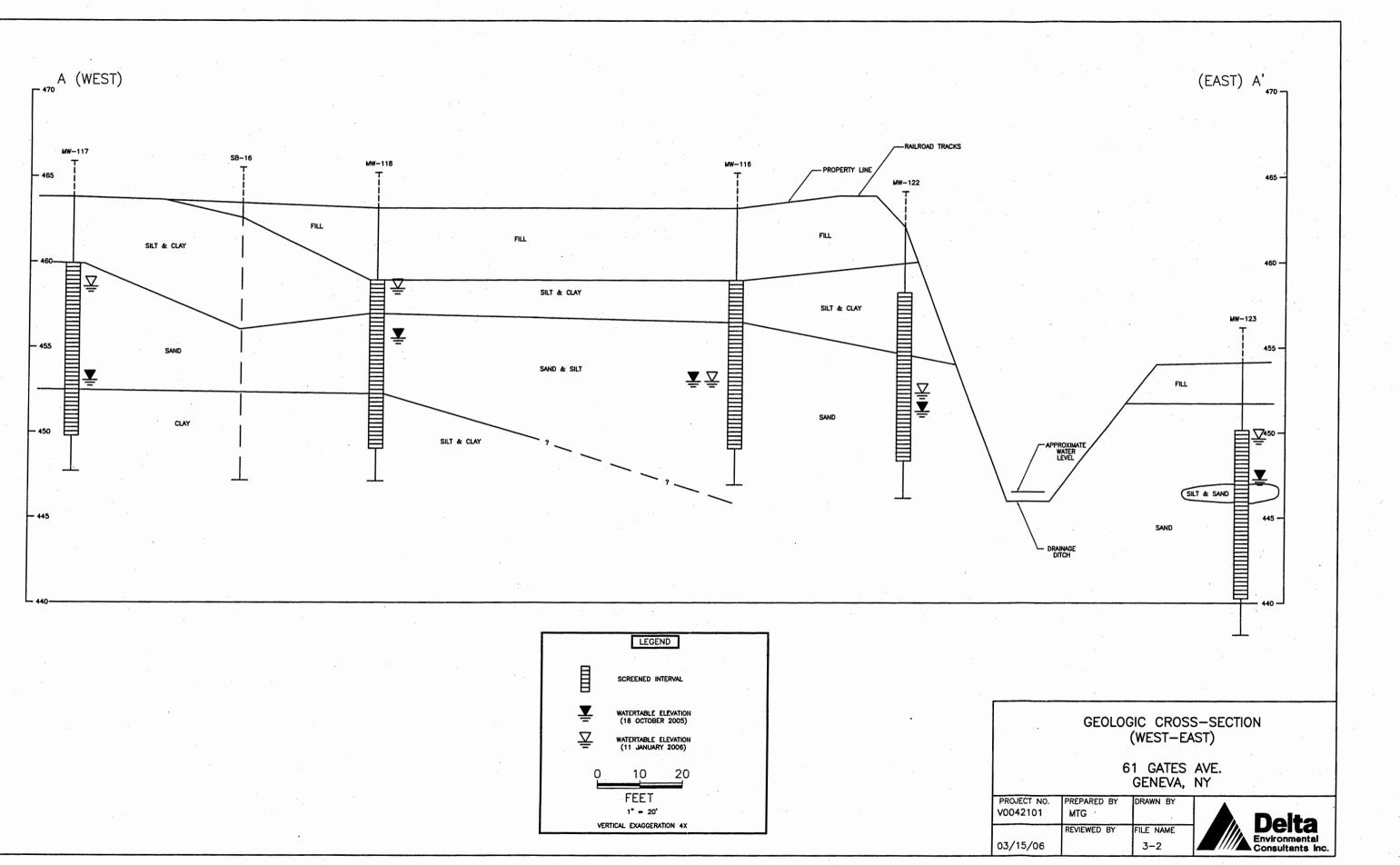
3.1 DATA EVALUATION

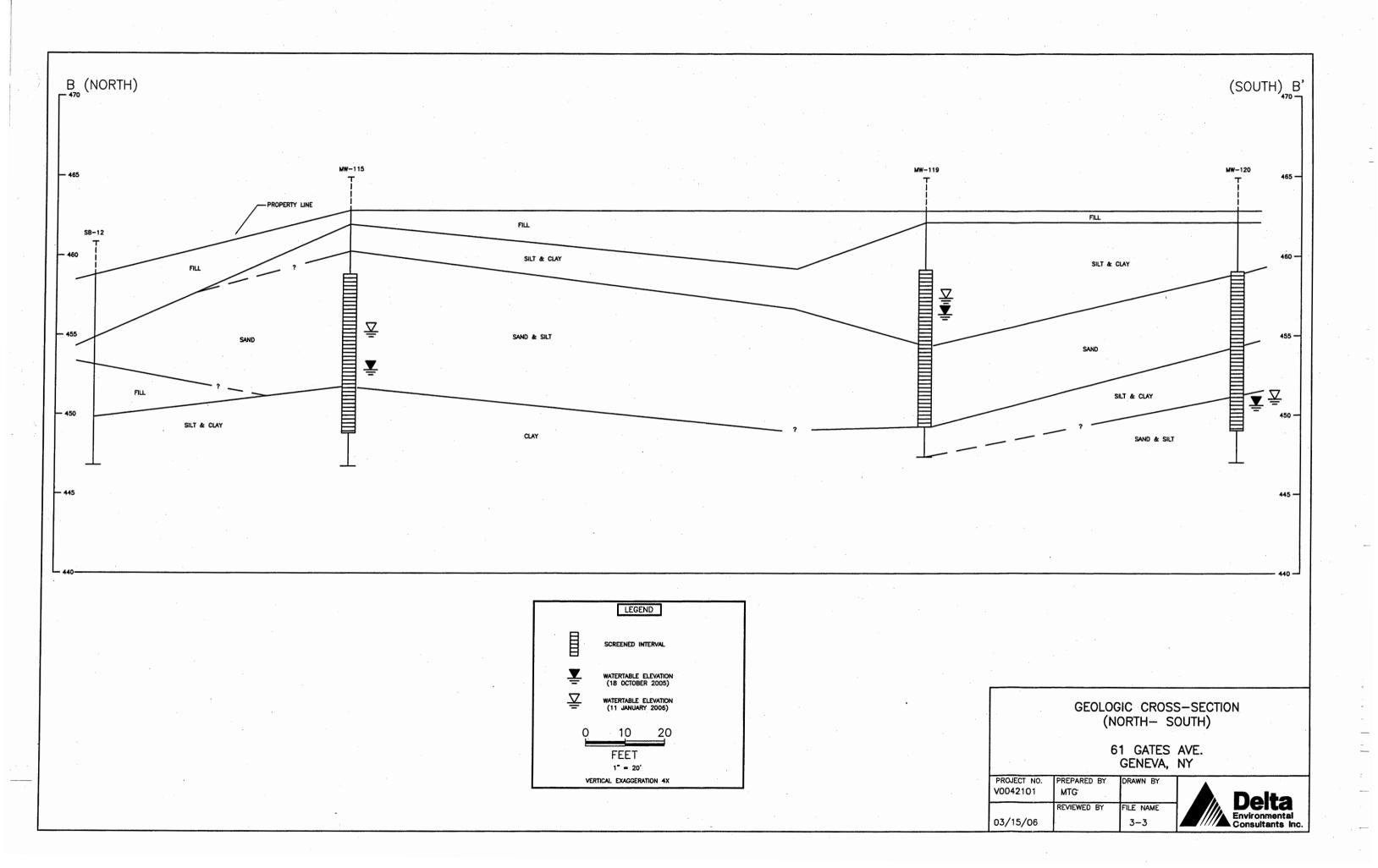

Following receipt, analytical data packages were first checked for completeness and accuracy; and were validated by Mr. Donald Anné, a NYSDEC-approved data validation chemist. The analytical results were determined to meet the project specific criteria for data quality and data use. Following validation, a Data Usability Summary Report (DUSR) was prepared for each data package. DUSRs are presented in Attachment 1. Analytical data summary reports are presented in Attachment 2. Analytical backup reports (including laboratory QA/QC, chromatographs, etc.) are not presented as part of this report; however, they will be made available upon request.

Analytical data for soil samples were compared to NYSDEC TAGM 4046 recommended soil cleanup objectives. Sediment analytical data were compared to NYSDEC Division of Fish, Wildlife and Marine Resources Technical Guidance for Screening Contaminated Sediments. Groundwater and surface water analytical data were compared to NYSDEC Division of Water Technical and Operational Guidance Series 1.1.1 (TOGS) ambient water quality standards and guidance values, which are derived from 6 NYCRR Parts 700-705, Water Quality Regulations.

3.2 SUBSURFACE SOIL INVESTIGATION RESULTS

3.2.1 Site Geology

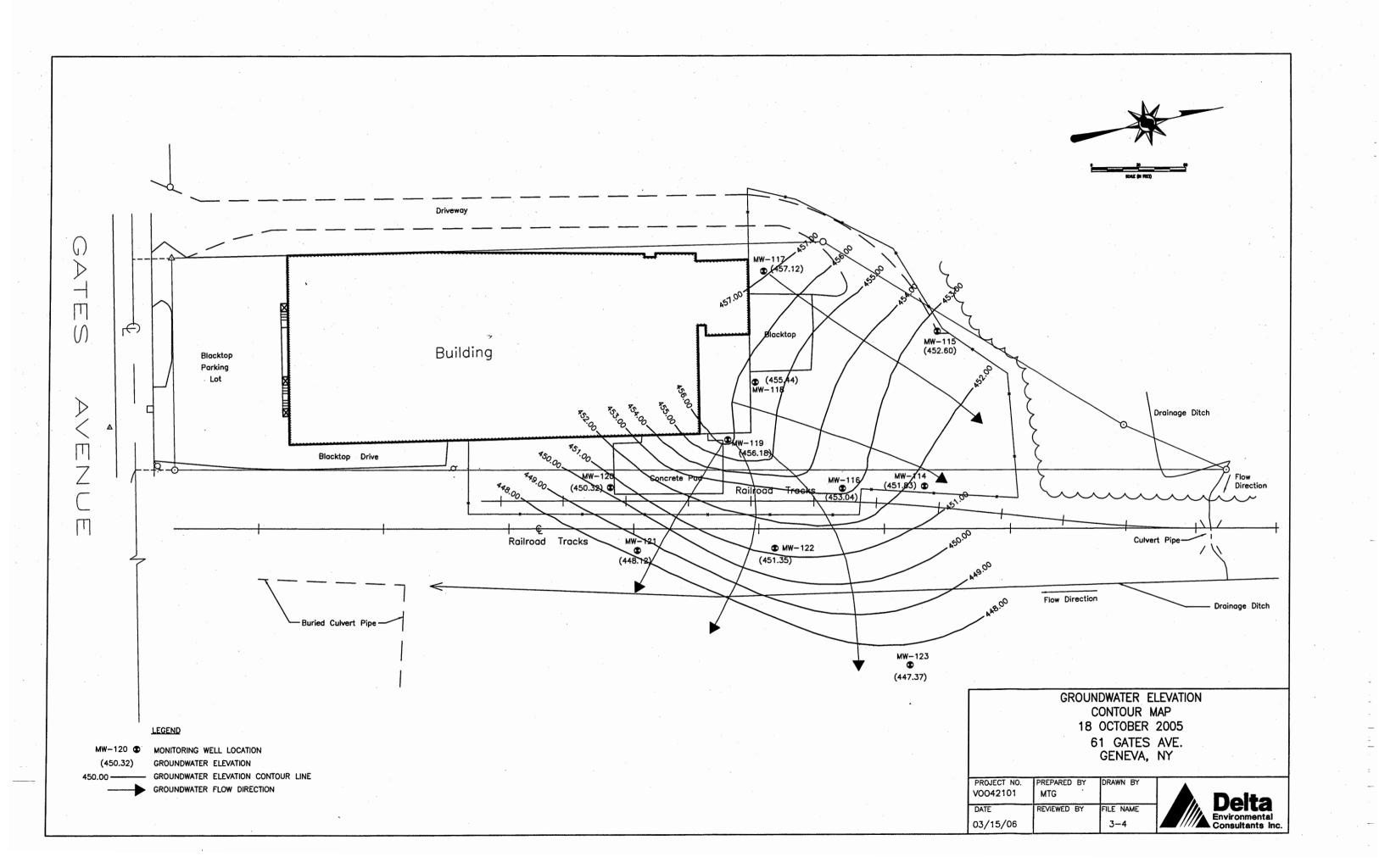

Site geology was characterized based on information obtained during the installation of 13 soil borings across the Site and from information obtained during Delta's previous investigation activities. The locations of the soil borings installed during the SRI are shown on Figure 3-1. Soil boring logs and well details are presented in Attachment 3.

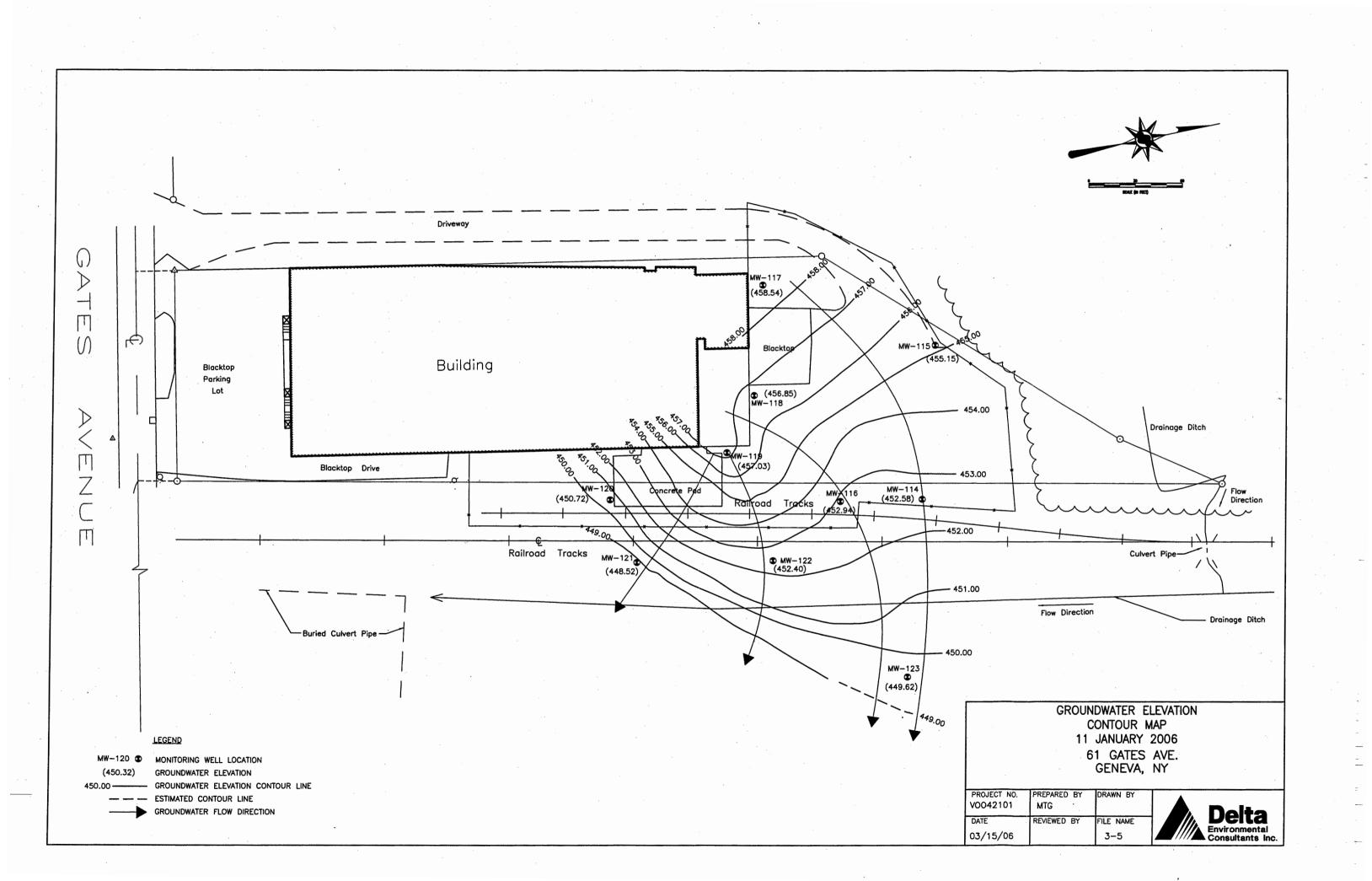

Based on geologic information obtained from soil borings installed as part of the SRI, two geologic cross sections were developed, which transect the Site from north to south and from east to west (Figures 3-1, 3-2, and 3-3). As shown on the cross sections, the Site is underlain by several unconsolidated units of varying composition and thickness. Generally, between 0 and 4 feet of a mixed fill (gravel, silt, and/or mixed debris) is located across the majority of the Site. This unit appears to have been placed onsite to build up areas of the Site and to provide base material for parking areas and roadways. The fill layer is underlain by a natural silt and clay unit, which ranges in thickness from 0 to 8 feet. A sand and mixed sand and silt unit underlies the silt and clay unit and ranges in thickness from approximately 2 feet to over 10 feet. In the central area of the investigation area this unit typically consists of mixed silt and sand layers, which are highly variable and interbedded at times. On the perimeter of the investigation area, this unit typically consists mainly of sand; however, interbedded silt layers are still present, but are less frequent. Finally, a clay and mixed silt and clay unit is present at depths of between 9 feet and 14 feet below grade. This unit was present in borings located from the western side of the Site (MW-117) up to the eastern area of the Site (MW-119). However, this unit was not encountered in borings located along the far eastern side of the Site (MW-116 and MW-120) and also was not present in offsite borings (MW-121, MW-122, and MW-123) indicating that the unit may have dipped below the bottom of soil borings installed during the SRI².

Field screening indicated that a ten-foot-thick layer of petroleum-impacted soils (4 feet to 14 feet below grade) was encountered in soil boring MW-117. Soils exhibited petroleum odors and black staining and PID readings ranged from 26 ppm to 138 ppm. Slightly elevated PID readings (up to 9.5 ppm) were also encountered in soil borings MW-118, MW-119 and MW-121 at depths near the water table interface. However, evidence of staining and odors were not observed in these borings. PID readings in the remainder of the soil borings were generally low (< 3 ppm) to non-detect.

² Previous investigation data indicate that this unit is present to the east of the Site at depths, which were below those of the soil borings installed during the SRI.

.


3.3 HYDROGEOLOGIC INVESTIGATION RESULTS


3.3.1 Site Hydrogeology

Groundwater conditions across the Site were evaluated on 18 October 2005 and 11 January 2006 and are illustrated on Figures 3-4 and 3-5, respectively. Groundwater elevation measurements indicated that groundwater was present in a shallow unconfined aquifer beneath the Site at depths of approximately 4.9 feet to 13.65 feet below grade (Attachment 3). A review of geologic cross sections, which illustrate geologic units with respect to water level elevations indicated that groundwater generally occurred in the sand and mixed silt and sand units underlying the Site. The data also indicated that fluctuations in groundwater elevations were generally minor (< 2 feet) along the eastern side of the Site. Towards the western area of the Site, the water level fluctuations were more pronounced and variable with seasons (2 feet to 3.3 feet). The greatest depth to groundwater at the Site tended to be along the eastern area of the Site near monitoring wells MW-114, MW-116, MW-120, MW-121, and MW-122. The greater depths to groundwater in this area appear to reflect topographic conditions where a steep embankment is located and where depth to groundwater increases as a function of the sloping ground surface.

Groundwater flow maps indicate that groundwater flow in the shallow water table aquifer across the Site was generally similar during October 2005 and January 2006. The groundwater flow maps indicate that groundwater flow across the northern yard area was to the northeast; however, as the eastern property line and railroad tracks are approached, groundwater flow direction is deflected and became more easterly. This variation in groundwater flow direction appears to be related and influenced by the presence of the steep embankment located on the eastern side of the adjacent railroad tracks. Groundwater flow near the northeast corner of the building was to the east to southeast and also appeared to be influenced and reflective of sloping topography along the adjacent railroad tracks and embankment. Groundwater elevation data indicate that groundwater flow across the Site is at gradients of approximately 0.032 feet/feet to 0.085 feet/feet.

VCP Rpt Rev 4 3-15-06.doc

A north to south trending intermittent drainage ditch is located offsite (east of the Site) at the base of the adjacent railroad track embankment (Figure 3-1). Observations indicate that the eastern drainage ditch appears to receive the majority of its flow from areas located to the north of the Site, which include the adjacent CCN International property. During the SRI, discharges were observed from a culvert pipe on the adjacent CCN International property. These discharges entered a drainage ditch that flowed to the east and entered a culvert pipe (east to west trending) that was located beneath the railroad tracks. Flow from this culvert pipe was then observed to discharge into the eastern drainage ditch at its head. The main source of flow into the eastern drainage ditch appeared to be coming from the CCN discharge point. During SRI fieldwork performed in July and October 2005 and January 2006, no surface water flow was observed to be entering the eastern drainage ditch north of the culvert pipe located beneath the railroad tracks. The nature and source of the discharge on the adjacent CCN property is unknown.

Once surface waters enter the eastern drainage ditch, flow is toward the south along the base of the railroad track embankment. Surface waters remain in the open drainage ditch until channelized into a buried culvert pipe near the south end of the ditch. Reportedly, surface water from the ditch flows into the City of Geneva storm water sewer system. Minimal flow was observed in the drainage ditch during the January 2006 groundwater monitoring event.

A review of groundwater elevation data for wells located to the east (MW-123) and west (MW-121 and MW-122) of the drainage ditch indicate that surface water elevations in the ditch are consistently lower than the water table elevations in these wells, which suggests that some limited groundwater discharge to the ditch may be occurring (Figure 3-2). Previous reports have suggested that the drainage feature is acting as a groundwater divide; however, based on available data, this assertion cannot be supported. Based on groundwater flow conditions in the area, groundwater flow gradients, and the presence of steeply sloping topography, it appears likely that the drainage ditch may receive a small

component of recharge from shallow groundwater flow. It does not appear that the drainage ditch is fully penetrating into the shallow water table and that this feature acts as a groundwater flow barrier or divide. The majority of flow in the ditch instead appears to originate from discharges on the adjacent CCN property.

3.4 ANALYTICAL RESULTS

3.4.1 Soil Analytical Results

Analytical results for subsurface soil samples are presented on Table 3-1. A review of the analytical data for surface soils collected at 13 locations (MW-114A through MW-123A, SB-11A, SB-12A, SB-16A, MW-114B through MW-123B, SB-11B, SB-12B, and SB-16B) across the Site indicated the following:

- VOCs were detected in all soil samples, with the exception of soil sample MW-115A. Concentrations of all VOCs detected were below NYSDEC TAGM 4046 recommended soil cleanup objectives.
- CVOCs, including vinyl chloride, 1,1-Dichloroethene (1,1-DCE), 1,1-Dichloroethane (1,1-DCA), cis-1,2-Dichloroethene (cis-1,2-DCE), 1,1,1-Trichloroethane (1,1,1-TCA), Trichloroethene (TCE), and Tetrachloroethene (PCE), were the predominant analytes detected in all soil samples, with the exception of soil sample MW-117A. In soil sample MW-117A, petroleum-based analytes, including ethylbenzene, xylenes, and isopropylbenzene, were the predominant VOCs detected.
- Concentrations of CVOCs detected in soils were the highest in soil samples MW-114A, MW-116A, MW-116B, MW-117B, MW-118A, MW-119A, MW-123A, MW-123B and SBA-11.
- Distribution of CVOCs in soil samples was variable with depth and location and appeared to be widespread across the Site. CVOCs were also detected on adjoining properties to the east; however, concentrations were generally lower than those detected in soil samples collected onsite.

TABLE 3-1 Subsurface Soil Sam alytical Results 61 Gates Ave .va, NY

	TAGM 4046	SAMPLE ID / Sample Depth (feet)													
PARAMETER	Soil Cleanup	MW-114A	MW-114B	MW-115A	MW-115B	MW-116A	MW-116B	MW-117A	MW-117B	MW-118A	MW-118B	MW-118C	MW-119A	MW-119B	
Volatile Organic Compounds (ppb)	Objectives (ppb)	(2.0'-4.0')	(8.0'-12.0')	(1.0'-4.0')	(8.0'-12.0')	(2.0'-4.0')	(8.0'-14.0')	(6.0'-10.0')	(12.0'-16.0')	(2.0'-4.0')	(6.0'-11.0')	(6.0'-11.0')	(2.0'-4.0')	(8.0'-12.0')	MW-120A (2.0'-4.0')
Vinyl Chloride									A, A, A, A				(2.0 - 4.0)	(0.0 -12.0)	
Chloroethane	200	ND	ND	ND	ND	3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1,900	ND	ND	ND	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	100	7 J	7 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	200	ND	ND	ND	3 J	70	5 J	15	7.1	4 J	8J	61			
Carbon Disulfide	2,700	ND	ND	ND	ND	4 J	ND	ND	ND	ND	ND		5 J	6 J	50
1,1-Dichloroethene	400	ND	ND	ND	ND	ND	ND	ND	100	ND		ND	ND	ND	ND
1,1-Dichloroethane	200	ND	ND	ND	ND	ND	ND	ND	93		ND	ND	ND	ND	ND
Chloroform	300	ND	ND	ND	ND	ND	ND	ND	ND	4 J	ND	ND	5 J	ND	4 J
2-Butanone	300	ND	ND	ND	ND	12	ND	ND		1J	ND	ND	ND	NĐ	ND
1,1,1-Trichloroethane	800	6 J	ND	ND	ND	71	11		ND	ND	ND	ND	ND	ND	14
Trichloroethene	700	160	51	ND	ND	ND		ND	ND	44	ND	ND	18	ND	ND
Benzene	60	ND	ND	ND	ND	16	ND	ND	ND	ND	ND	ND	180	ND	ND
Tetrachloroethene	1,400	51	81	ND	1.1	8J	ND	ND	1 J	ND	ND	ND	ND	ND	ND
Toluene	1,500	ND	ND	ND	ND	ND	66 ND	11	ND	75	8 J	12	18	5 J	ND
Ethylbenzene	5,500	ND	ND	ND	ND	9.1		ND	ND	ND	ND	ND	ND	ND	ND
Styrene	NS	ND	ND	ND	ND	31	ND	170	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	1,200	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	250	0	ND	ND	ND	22	ND	200	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	300	2 J	ND	ND	ND	53	2 J	ND	81	4 J	8 J	8 J	26	2 J	ND
Dichlorodifluoromethane	NS	ND	ND	ND	ND	4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	NS	ND	ND	ND	ND ND	4 J	ND	2 J	ND	2 J	ND	ND	2 J	. ND	ND
Methylcyclohexane	NS	ND	ND	ND ND		ND	ND	23	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	2,300	ND	ND	ND	ND ND	ND	ND	120	ND	ND	ND	ND	ND	ND	ND
Notes:				ND	ND	2 J	ND	200	2 J	ND	ND	ND	ND	ND	ND

Notes:

ND: Compound not detected.

J: Estimated Value.

MW-118C is a duplicate of MW-118B

1,200 Analyte detected at concentration in excess of NYSDEC TAGM 4046 recommended soil cleanup objective.

MDL: Method Detection Limit.

NS: No Standard.

Val Soil Data 2005 Table 3-1 Fig 4-1 Fig4-2.xls

TABLE 3-1 (continued) Subsurface Soil Sample An Results 61 Gates Ave, Gene

	TAGM 4046										<u> </u>			
PARAMETER	Soil Cleannp Objectives (ppb)	MW-120B (8.0'-12.0')	MW-121A (2.0'-4.0')	MW-121B (8.0'-12.0')	MW-122A (2.0'-4.0')	MW-122B (8.0'-12.0')	MW-123A (8.0'-12.0')	MW-123B (12.0'-16.0')	SB-12A (4.0'-8.0')	SB-12B (8.0'-12.0')	SBC-16A	SB-16B	SB-11A	SB-11B
Volatile Organic Compounds (ppb)					302		(0.0 12.0)		(4.0 -0.0)	(8.0-12.0)	(2.0'-4.0')	(8.0'-12.0')	(2.0'-4.0')	(8.0'-12.0')
Vinyl Chloride	200	ND	ND	ND	ND	ND	ND	ND	ND	10000000000000000000000000000000000000				
Chloroethane	1,900	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND
Methylene Chloride	100	ND	ND	8 J	11 J	12	61		ND	ND	ND	ND	ND	ND
Acetone	200	7 J	ND	ND	ND	4 J	ND	5 J	6J	8 J	ND	8 J	8 J	6 J
Carbon Disulfide	2,700	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	400	ND	ND	ND	ND		ND	ND	2 J	ND	ND	ND	ND	ND
1,1-Dichloroethane	200	ND	ND	2 J	ND	ND	35	21	ND	ND	ND	ND	ND	ND
Chloroform	300	ND	ND	ND		ND	160	140	ND	ND	ND	ND	ND	ND
2-Butanone	300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	800	ND	ND		ND	ND	ND	ND	ND	6 J	. 11 J	ND	ND	ND
Trichloroethene	700			ND	ND	ND	ND	ND	ND	ND	ND	2 J	ND	ND
Benzene	60	ND	ND	3 J	ND	ND	5 J	ND	ND	ND	ND	2 J	45	5 J
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,400	1.J	ND	ND	ND	ND	: 17	3 J	ND	ND	ND	4 J	2 J	ND
Ethylbenzene	1,500	ND .	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5,500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	1,200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	250	1 J	ND	3 J	ND	2 J	4 J	1 J	ND	ND	ND	2 J	ND	ND
trans-1,2-Dichloroethene	300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	NS	ND	2 J	ND	ND	ND	ND	ND	3.1	ND	ND	ND ND	2 J	ND
Cyclohexane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND		
Methylcyclohexane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND
Isopropylbenzene	2,300	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND
Notes:											ND	ND	ND	ND

Notes:

ND: Compound not detected.

MDL: Method Detection Limit.

J: Estimated Value.

MW-118C is a duplicate of MW-118B

1 0

1.1.1

1,200 Analyte detected at concentration in excess of NYSDEC TAGM 4046 recommended soil cleanup objective.

NS: No Standard.

3.4.2 Sediment Analytical Results

Analytical results for sediment samples are presented on Table 3-2. A review of the analytical data for sediment samples (SED-1 to SED-3) collected at three locations along the eastern offsite drainage ditch indicated the following:

- VOCs were detected in two downstream sediment samples (SED-2 and SED-3) at concentrations that were significantly below the applicable NYSDEC sediment screening values for the analytes detected.
- Concentrations of total VOCs detected in sediments increased from 0 ppb in the upstream sample (SED-1) to 38 ppb (SED-2) and 51 ppb (SED-3), respectively, in the downstream samples.
- CVOCs, including vinyl chloride, 1,1-DCA and cis-1,2-DCE, were the predominant analytes detected in sample SED-2. In sample SED-3, CVOCs (1,1-DCA, TCE, PCE, and cis-1,2-DCE) and non-CVOCs (carbon disulfide, methylene chloride, and 2-Butanone) were evenly distributed in the sample.

3.4.3 Surface Water Analytical Results

Analytical results for surface water samples are presented on Table 3-3. A review of the analytical data for surface water samples (SW-1 to SW-3) collected at three locations along the eastern drainage ditch indicated the following:

- VOCs were detected in all surface water samples at concentrations below NYSDEC Class D surface water standards or guidance values, with the exception of PCE, which was detected in sample SW-1 at a concentration (4 ppb) that was above the established guidance value of 1 ppb.
- Concentrations of total VOCs detected in surface water samples were the highest (25 ppb) in the upstream sample (SW-1) and were observed to decrease slightly in downstream samples SW-2 (11 ppb) and SW-3 (15 ppb), respectively.
- CVOCs, including 1,1-DCA, 1,1-DCE, TCE, PCE, and cis-1,2-DCE, were the predominant analytes detected in surface water samples.

ТАВЈ **Б** 3-2 Sediment Sample lytical Results 61 Gates Ave, Geneva, NY

	Human Health	Benthic Aquatic	Benthic Aquatic	Wildlife	SAMI	PLE ID / Sample Depth	(feet)
PARAMETER	Bioaccumulation Criteria (ppb)	Life Acute Toxicity (ppb)	Life Chronic Toxicity (ppb)	Bioaccumulation (ppb)	SED-1 (0' - 0.5')	SED-2 (0' - 0.5')	SED-3 (0' - 0.5')
Volatile Organic Compounds (ppb)							
Vinyl Chloride	70	NS	NS	NS	ND	2 J	ND
Acetone	NS	NS	NS	NS	ND	ND	ND
Carbon Disulfide	NS	NS	NS	NS	ND	ND	3 J
Methylene Chloride	NS	NS	NS	NS	ND	91	
1,1-Dichloroethane	NS	NS	NS	NS	ND		10 J
2-Butanone	NS	NS	NS	NS	ND	24	6 J
Trichloroethene	2,000	NS	NS	NS		ND	11 J
Tetrachloroethene	800	NS	NS	NS	ND	ND	5 J
cis-1,2-Dichloroethene	NS	NS	NS		ND	ND	4 J
Dichlorodifluoromethane	NS			NS	ND	3 J	10 J
Notes:		NS ·	NS	NS	ND	ND ·	2 J

Notes:

ND: Compound not detected.

NS: No Standard.

J: Estimated Value.

1,200

Analyte detected at concentration in excess of NYSDEC Technical Guidance for Screening Contaminated Sediments.

TABLer 3-3 Surface Water Sample Analytical Results 18 October 2005 61 Gates Ave, Geneva, NY

	NYSDEC Class D		SAMPLE ID					
PARAMETER	Surface Water Standard (ppb)	SW-1	SW-2	SW-3				
Volatile Organic Compounds (ppb)								
Acetone	NS	12	ND	ND				
1,1-Dichloroethene	NS	1 J	ND	ND				
1,1-Dichloroethane	NS	8 J	4 J	6 J				
Trichloroethene	40	ND	ND	1 J				
Tetrachloroethene	1 GV	4 J	ND	ND				
cis-1,2-Dichloroethene	NS	ND	7 J	8 J				

NS: No Standard.

Notes:

ND: Compound not detected.

J: Estimated Value.

1,200

1.0.1

1

Analyte detected at concentration in excess of NYSDEC Class D Surface Water Standard or Guidance Value.

GV: Guidance Value

3.4.4 Groundwater Analytical Results - October 2005

Analytical results for groundwater samples collected during the October 2005 sampling event are presented on Table 3-4. A review of the analytical data indicated the following:

- VOCs were detected in all groundwater samples at concentrations in excess of NYSDEC Class GA groundwater standards.
- CVOCs, including vinyl chloride, 1,1-DCE, 1,1-DCE, cis-1,2-DCE, 1,1,1-TCA, TCE and PCE, were the predominant analytes detected in all groundwater samples, with the exception of groundwater sample MW-117. In groundwater sample MW-117, petroleum-based analytes, including ethylbenzene, xylenes, and isopropylbenzene, were the predominant VOCs detected.
- Concentrations of CVOCs detected in groundwater samples were the highest in samples MW-116, MW-118, MW-122, and MW-123.
- Three SVOCs were detected in the one sample (MW-117) analyzed for SVOCs; however, concentrations were below NYSDEC Class GA groundwater standards.
- A minimum of one metal was detected in all groundwater samples at concentrations in excess of NYSDEC Class GA groundwater standards. Generally, in all groundwater samples, the analytes that were typically detected at concentrations above groundwater standards were iron, magnesium, manganese, and sodium. However, in three samples (MW-117, MW-118, and MW-117) several heavy metals, including antimony (MW-119), arsenic (MW-117), lead (MW-118) and nickel (MW-118), were detected at concentrations above groundwater standards.
- MBAS were detected in five groundwater samples (MW-115, MW-117, MW-118, MW-119, and MW-120). Of these samples, the concentration of MBAS in sample MW-118 (1,400 ppb) was the only sample which was detected in excess of groundwater standards.
- The presence of MBAS in groundwater appeared to be generally clustered in groundwater samples, which were collected from monitoring wells located along the northeastern corner and northern edge of the building.

----Groundwater San alytical Results 18 Oć .005 61 Gates Ave, Geneva, NY

	NYSDEC													
	Class GA Groundwater	MW-114	MW-115	MW-116	MW-117	MW-117A	SAMPLE ID MW-118	100		T	······			
PARAMETER	Standard (ppb)					(1)	MIW-118	MW-119	MW-120	MW-121	MW-122	MW-123		
Volatile Organic Compounds (ppb)					- 200303					(2)				
Vinyl Chloride	2	ND	8 J	11	ND	ND	510 D	8 J	4 J	3 J				
1,1-Dichloroethene	5	2 J	9 J	38	ND	ND	110	2 J	ND	and the owner with the owner of the owner owner owner owner	310 D	· 1J		
1,1-Dichloroethane	5	ND	50	11	ND	ND	250 D	44	Contraction of the local division of the loc	<u>6 J</u>	31	64 D		
Chloroform	7	ND	1.J	ND	ND	ND	10	Contraction of the local division of the loc	20	15	160 DJ	260 D		
2-Butanone	50	ND	ND	ND	2.1	2 J	ND	4 J	ND	ND	ND	ND		
1,1,1-Trichloroethane	5	7 3	38	440 D	ND	ND	Contraction of the local division of the loc	ND	ND	ND	ND	ND		
Trichloroethene	5	24	11	130	ND		530 D	73	11	4 J	170	6 D J		
1,1,2-Trichloroethane	1	ND	ND	ND	ND	ND	1,100 D	110	11	11	100	56 D		
Benzene	1	ND	ND	ND		ND	ND	11	ND	ND	2 J	ND		
4-Methyl-2-pentanone	NS	ND	ND		ND	ND	ND	11	ND	ND	2 J	ND		
Tetrachloroethene	5	37		ND	ND	ND	48	ND	ND	18	ND	ND		
1,1,2,2-Tetrachloroethane	5	the second s	34	1,100 D	11	11	1,800 D	34	6 J	7 J	10	230 D		
Ethylbenzene		ND	ND	ND	ND	ND	37 DJ	ND	ND	ND	ND	ND		
Total Xylenes	5	ND	ND	ND	69	68	ND	ND	ND	ND	ND	ND		
trans-1,2-Dichloroethene	5	ND	ND	ND	58	58	ND	ND	ND	ND	ND	ND		
cis-1,2-Dichloroethene	5	ND	ND	2 J .	ND	ND	14	2 J	ND	ND	36	ND		
	5	4 J .	15	140	3 J	3 J	1,400 D	91	26	24	1.400 D	18 DJ		
Cyclohexane	NS	ND	ND	ND	2 J	2 J	ND	ND	ND	ND	ND			
Methylcyclohexane	NS	ND	ND	ND	5 J	5 J .	ND	ND	ND	ND		ND		
Isopropylbenzene	5	ND	ND	ND	28	28	ND	ND	ND		ND	ND		
Semi-Volatile Organic Compounds (ppb)					•••••••••••••••••					ND	ND	ND		
Acenaphthene	20	NA	NA	NA	1.J	NA	NA			·····		····		
Bis(2-Ethylhexyl)phthalate	5	NA	• NA	NA	4 J	NA	NA	NA	NA	NA	NA	NA		
Naphthalene	10	NA	NA	NA	0.9 J			NA	NA	NA	NA	NA		
Metals (ppb)					0.93	NA	NA	NA	NA	NA	NA	NA		
Aluminum	NS	15.6 B	155 B	152 B	124 B	·····			<u></u>	<u></u>				
Antimony	3.0	ND	ND			122 B	6,180	5,630	209	NA	39.6 B	9,390		
Arsenic	25	ND	ND	ND	ND	ND	ND	3.6 B	ND	NA	ND	ND		
Barium	1,000	44.9 B	80.2 B	ND	42	46.8	6.2 B	6.8 B	5.1 B	NA	3.3 B	15.9		
Beryllium	3	44.9 B ND		60.3 B	118 B	125 B	130 B	42.1 B	63 B	NA	78.7 B	148 B		
Cadmium	5		ND	ND	ND	ND	ND	ND	ND	NA	ND	0.27 B		
Calcium	NS	ND	0.44 B	ND	ND	ND	0.39 B	ND,	ND	NA	ND	ND		
Chromium		116,000	157,000	181,000	164,000	171,000	181,000	91,900	91,700	NA	139,000	238,000		
Cobalt	50 NS	1 B	ND	ND	1.2 B	0.41 B	6.9 B	8.2 B	0.56 B	NA	ND	11		
Copper		31.4 B	69,9	12.5 B	1.2 B	1.1 B	714	5.7 B	4.1 B	NA	7.4 B	9.2 B		
	200	5.1 B	18.4 B	1.4 B	1.8 B	1.3 B	104	16.5 B	2.9 B	NA .	3.4 B	14.9 B		
Iron	300	ND	188	235	17,500	18,100	7,580	7,570	428	NA	42.6 B	17,400		
Lead	25	ND	ND	ND	ND	ND	32.1 J	6.9 J	NĎ	NA	ND	5.9		
Magnesium	35,000	33,300	39,200	_40,700	18,400	19,100	50,800	24,100	11,400	NA	27,500	89,200		
Manganese	300	9.6 B	699	1,030	1,750	1,810	2,580	379	4,720	NA	829	735		
Nickel	100	30.1 B	131	18.6 B	2 B	2.6 B	1,400	15.7 B	12.1 B	NA	17.2 B	42.6		
Potassium	NS	752 B	1,700 B	1,060 B	3,700 B	3,880 B	5,060	15,800	31,700	NA	990 B	4,480 B		
Selenium	10	4.1 B	4.2 B	ND	ND	3.3 B	3.9 B	9.9 B	4.7 B	NA	3.2 B	ND		
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND		
Мегсигу	0.7	ND N*	ND N*	ND N*	ND N*	ND N*	ND N*	ND N*	ND N*	NA	ND N*	ND N*		
Sodium	20,000	99,800	202,000	59,000	16,700	17,600	371,100	137.000	165,000	NA	30,200	38,300		
Thallium	0.5	ND	ND	ND	ND	ND	ND	137,000 ND	165,000 ND	NA NA		38,300 ND		
Vandium	NS	ND	0.54 B	ND	4.3 B	4.3 B	10.6 B	12.8 B			ND			
Zinc	2,000	4.7 B	13.7 B	3.1 B	4.3 B	4.3 B 6 B			1.2 B	NA	ND	20.2 B		
Other (ppb)			13,7 5	5.1 B	0.4 D	0 D	111	34.7	40	NA	2.1 B	42		
MBAS	500	ND	210	ND	460									
Notes:	500	עא	210	NU	450	420	1,400	80	40	NA	ND	ND		

Notes:

ND: Compound not detected. (1): MW-17A is a Duplicate of MW-17.

NS: No Standard. **Organic Data Qualifers:** J: Estimated Value. NA: Not Analyzed. (2): Metals and MBAS not collected due to insufficient volume.

D: Analyte detected in analysis at secondary dilution factor.

Inorganic Data Qualifers:

Spike sample recovery not within quality control limits.
 *: Correlation coefficient for the Method of Standard Addition is less than 0.995.

Analyte detected at concentration in excess of NYSDEC Class GA Groundwater Standard. 5

GW RD 1 Val 2005 Table 3-4 Figure 4-3.xls

3.4.5 Groundwater Analytical Results – January 2006

Analytical results for groundwater samples collected during the January 2006 sampling event are presented on Table 3-5. A review of the analytical data indicated the following:

- VOCs were detected in all groundwater samples, with the exception of samples MW-117 and MW-123, at concentrations in excess of NYSDEC Class GA groundwater standards.
- CVOCs, including vinyl chloride, 1,1-DCE, 1,1-DCE, cis-1,2-DCE, 1,1,1-TCA, TCE and PCE, were the predominant analytes detected in all groundwater samples.
- Concentrations of CVOCs detected in groundwater samples were the highest in samples MW-116, MW-118, and MW-122.
- A minimum of one metal was detected in all groundwater samples at concentrations in excess of NYSDEC Class GA groundwater standards. Generally, in all groundwater samples, the analytes that were typically detected at concentrations above groundwater standards were iron, magnesium, manganese, and sodium. Additionally, in sample MW-118, one heavy metal (nickel) was also detected at a concentration above groundwater standards.
- MBAS were detected in four groundwater samples (MW-117, MW-119, MW-120, and MW-121) at concentrations below groundwater standards.
- The presence of MBAS in groundwater appeared to be generally clustered in groundwater samples, which were collected from monitoring wells located along the northeastern corner and northern edge of the building.

IABLE 5-5 Groundwater Sam alytical Results 12 Jan 2006 61 Gates Ave, Geneva, NY

	NYSDEC	SAMPLE ID											
	Class GA Groundwater	MW-114	MW-115	MW-116	MW-117	MW-117A	MW-118	MW-119	MW-120	MW-121	MW-122	MW-123	
PARAMETER	Standard (ppb)					(1)			1111-120	MIW-121	141 44-122	WI W-125	
Volatile Organic Compounds (ppb)													
Vinyl Chloride	2	2 J	ND	ND	ND	ND	1,000	4 J -	9 J	2 J	450	ND	
Methylene Chloride	5	ND	ND	, ND	ND	ND	56 DJ	ND	ND	ND	ND	ND	
1,1-Dichloroethene	5	3 J	ND	14 J	ND	ND	240 J	1J	1 J	2 J	26 J	ND	
1,1-Dichloroethane	5	3 J	1 J	10 J	ND	ND	480	42	25	9 J	180	ND	
Chloroform	7	ND	ND	ND	ND	ND	ND	2 J	1 J	ND	ND	ND ND	
1,1,1-Trichloroethane	5	14	4 J	440 D	ND	ND	3,900	44	19	3 J	160	1	
Trichloroethene	5	33	ND	110 DJ	ND	ND	2,700	64	12	6J	79 J	ND ND	
Tetrachloroethene	5	98	42	1,100 D	3 J	3 J	4,900 DJ	21	4 J	3 J		ND	
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	1 J	ND ND	ND	11 J	1J	
cis-1,2-Dichloroethene	5	6 J	ND	110 DJ	ND	ND	3,600	56	36		27 J	ND	
Metals (ppb)									<u> </u>	11	1,600	ND	
Aluminum	NS	104 B	678	ND	162 B	131 B	1,650	1,210	ND				
Antimony	3.0	ND	ND	ND	ND	ND	ND	ND	ND	314	341	1,120	
Arsenic	25	ND	ND	ND	14.3 J*	9.3 B*J	ND	3.8 B*J	ND	ND	ND	ND	
Barium	1,000	41.6 B	36.4 B	52.9 B	69.6 B	67.6 B	84.8 B		ND	4.6 B*J	ND	ND	
Beryllium	3	ND	ND	ND	ND	ND	0.15 BJ	22 B	55.7 B	42.6 B	53.5 B	52.8 B	
Cadmium	5	ND	ND	ND	ND	ND		ND	ND	ND	0.23 BJ	ND	
Calcium	NS	108,000	162,000	176,000	81,600	79,900	1 B	0.72 B	ND	0.45 B	ND	ND	
Chromium	50	1.4 B	1.4 B	ND	0.81 B	79,900 ND	199,000	64,000	96,300	127,000	148,000	187,000	
Cobalt	NS	28 B	2.2 B	9 B	ND		2.9 B	2.2 B	0.56 B	1.4 B	1.3 B	2 B	
Copper	200	8.3 B	1.6 B	2.3 B	6.2 B	0.62 B	771	13.1 B	4.8 B	11.4 B	7.2 B	0.93 B	
Iron	300	114 NJ	860 NJ	ND R	0.2 B	5.2 B	155	16.2 B	1.4 B	9.1 B	4.1 B	3.2 B	
Lead	25	ND	ND	₽		1,810 NJ	2,450 NJ	1,410 NJ	88.2 BNJ	907 NJ	325 NJ	1,950 NJ	
Magnesium	35,000	32,300	48,000	ND 40.200	ND	ND	18	5.2	ND	3	ND	2.3 B	
Manganese	300	32,300 3.9 B	48,000	40,200	15,700	15,400	53,200	13,700	13,000	20,600	31,300	54,000	
Nickel	100			1,090	259	252	3,370	173	5,920	165	1,010	197	
Potassium	NS	35 B 631 B	10.6 B	12.6 B	1 B	1.2 B	1,670	33.2 B	12.8 B	37 B	18.6 B	1.7 B	
Selenium	10	ND	911 B	783 B	1,520 B	1,480 B	2,980 B	7,510	26,700	2,200 B	713 B	6,910	
Silver	50	ND ND	4.4 BJ	ND	4.6 BJ	ND	ND	ND	ND	ND	ND	ND	
Mercury	0.7	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Sodium	20,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Thallium	0.5	114,000	32,400	62,800	6,810	6,270	361,000	152,000	144,000	67,900	31,100	10,900	
Vandium		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Zinc	NS	0.72 B	1.5 B	ND	1.7 B	1.8 B	3.4 B	4.2 B	ND	2.2 B	1 B	2.6 B	
	2,000	6 B	7.6 B	2.6 B	6.6 B	3.5 B	107	29.2	7.3 B	9.7 B	4.7 B	8.3 B	
Other (ppb)			<u></u>		<u> </u>				<u> </u>				
MBAS	500	ND	ND	ND	190 J	190 J	ND	200 J	310 J	51 J	ND	ND	

ND: Compound not detected. (1): MW-17A is a Duplicate of MW-17.

1,200

of MW-17

NS: No Standard.Organic Data Qualifers:NA: Not Analyzed.J: Estimated Value.

Ł

D: Analyte detected in analysis at secondary dilution factor.

Inorganic Data Qualifers:

J or \vec{P} : Value greater than or equal to the instrument detection limit, but less than the quantitation limit. N: Spike sample recovery not within quality control limits.

*: Correlation coefficient for the Method of Standard Addition is less than 0.995.

Analyte detected at concentration in excess of NYSDEC Class GA Groundwater Standard.

4.0 SUMMARY AND CONCLUSIONS

This section summarizes the results of the SRI, presents conclusions supported by the data and recommendations for additional work, which may be required to fill data gaps.

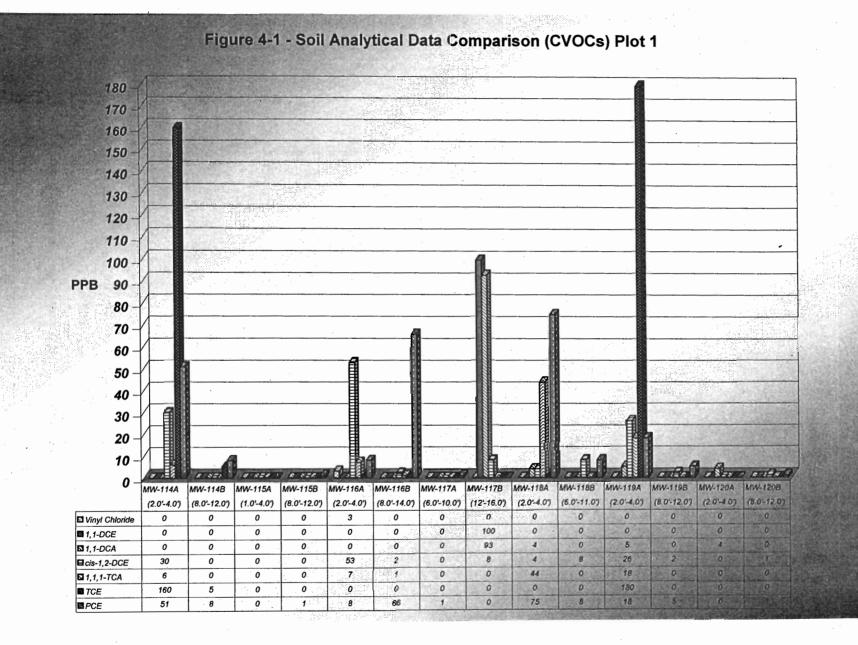
4.1 SUBSURFACE SOIL INVESTIGATION

The results obtained for subsurface soil investigation activities conducted during the SRI indicated the following:

The Site and offsite areas, which are located immediately to the east and west, are underlain by several unconsolidated geologic units of varying composition and thickness. Generally, between 0 and 4 feet of mixed fill (gravel, silt, and/or mixed debris) is located across the majority of the Site and offsite areas. This fill unit appears to have been placed in various areas as a means either to build up areas of the Site; provide base material for onsite parking areas and roadways; provide base materials for the adjacent railroad tracks; or as hard fill in offsite areas. The fill layer is underlain by a natural silt and clay unit, which ranges in thickness from 0 to 8 feet. A sand and mixed sand and silt unit underlies the silt and clay unit and ranges in thickness from approximately 2 feet to over 10 feet. In the central portion of the investigation area, this unit typically consists of mixed silt and sand layers, which are highly variable in thickness and interbedded at times. On the perimeter of the investigation area, this unit typically consists mainly of sand; however, interbedded silt layers are still present, but are less frequent. Finally, a clay and mixed silt and clay unit is present at depths of between 9 feet and 14 feet below grade. This unit was present in borings located from the western side of the Site (MW-117) up to the eastern area of the Site (MW-119). However, this unit was not encountered during the SRI in borings located along the far eastern side of the Site (MW-116 and MW-120) and it also was not present in offsite borings MW-121, MW-122, and MW-123. Soil boring data indicate that this unit is relatively flat in the area located between soil borings MW-117 and MW-118, but that further to the east, the unit begins to dip to the east until it is no longer intersected by soil borings installed during the SRI.

Dipping of the unit may be a function of and related to topographic variations, which are present along the adjacent eastern railroad track embankment. Previous investigation data indicate that this unit is present to the east of the Site at depths, which were below those of the soil borings installed during the SRI. Previous investigation data also suggests that this unit may act as a vertical barrier/confining layer.

Field screening indicated that a 10 foot-thick layer of petroleum-impacted soils (4 feet to 14 feet below grade) was encountered in soil boring MW-117. Soils in this boring exhibited petroleum odors and black staining and PID readings ranged from 26 ppm to 138 ppm. On 17 October 2005, Delta conducted a Limited Site Investigation (LSI) in the area surrounding boring MW-117 in an effort to define the horizontal and vertical extent of petroleum-impacted soils encountered in the boring. Findings of the LSI indicated that petroleum-impacted soils were observed across a limited area of the Site in the area near MW-117 where a former 3,000-gallon UST had reportedly been located (Attachment 4). Soil analytical data indicated that concentrations of VOCs and SVOCs detected in these impacted soils were below applicable NYSDEC TAGM 4046 recommended soil cleanup objectives and did not represent an issue at the Site. The LSI report (dated 29 November 2005) was submitted to NYSDEC with a request to close Spill No. 0504324. Final closure from NYSDEC is pending at this time.


- Slightly elevated PID readings (up to 9.5 ppm) were encountered in soil borings MW-118, MW-119 and MW-121 at depths near the water table interface, which indicate the potential presence of impacts in soils in these areas. Petroleum impacts were not observed in these borings; therefore, it can be assumed that these PID readings are related to the presence on non-petroleum based VOCs in soils in these areas.
- VOCs were detected in all soil samples, with the exception of soil sample MW-115A. Concentrations of all VOCs detected were below NYSDEC TAGM 4046 recommended soil cleanup objectives. Of the VOCs detected in soils, CVOCs, including vinyl chloride, 1,1-DCE, 1,1-DCA, cis-1,2-DCE, 1,1,1-TCA, TCE, and PCE, were the predominant analytes detected in all soil samples, with the exception of soil sample MW-117A where petroleum-based VOCs were

VCP Rpt Rev 4 3-15-06.doc

predominant. Concentrations of CVOCs detected in soils were the highest in soil samples MW-114A, MW-116A, MW-116B, MW-117B, MW-118A, MW-119A, MW-123A, MW-123B and SBA-11. Plots of CVOC concentrations with respect to soil borings location are illustrated on Figures 4-1 and 4-2.

- CVOCs were not detected in offsite soil boring SB-12.
- A review of the soil analytical data indicated that in the majority of onsite soil samples parent/source compounds (TCE, PCE, and 1,1,1-TCA), which are commonly associated with the manufacturing activities that were previously reported to have occurred at the Site, were detected at ratios that were greater than those of typically detected daughter/degradation compounds (vinyl chloride, 1,1-DCE, 1,1-DCA, and cis-1,2-DCE). The highest ratios of parent-to-daughter compounds were detected in samples collected from soil borings that were located near the northeast corner of the building, along the northern wall of the building, along the railroad spur line, and near the northern fence line. Based on these data, it appears that CVOCs in the majority of soils onsite consist of parent compounds and that source areas likely remain at the Site.
- The analytical data also indicated, that in soil samples collected from borings located to the east of the building along the railroad tracks and on offsite properties, the ratio of parent to daughter compounds was equal (1:1) and/or such that daughter compounds were more prevalent. Based on these data, it would appear that some degradation of CVOCs is occurring in impacted soils that are located downgradient to the east of the building and offsite.
- A review of CVOC distribution patterns in soils across the Site and offsite areas indicated that distribution of CVOCs in soil samples is variable with depth and location. Distribution of CVOCs onsite appeared to be widespread, with concentrations generally higher in onsite soils than those observed in offsite soils. The observed distribution patterns may be related to past operational history at the Site and/or influenced by the variable nature of geologic units beneath the Site. Additionally, the distribution of CVOCs in soils located within the shallow water bearing zone appears to be influenced by, and mirror groundwater flow conditions onsite and offsite, such that CVOC concentrations in saturated soil zones tend to be higher in areas downgradient of CVOCs "hot spots".

VCP Rpt Rev 4 3-15-06.doc

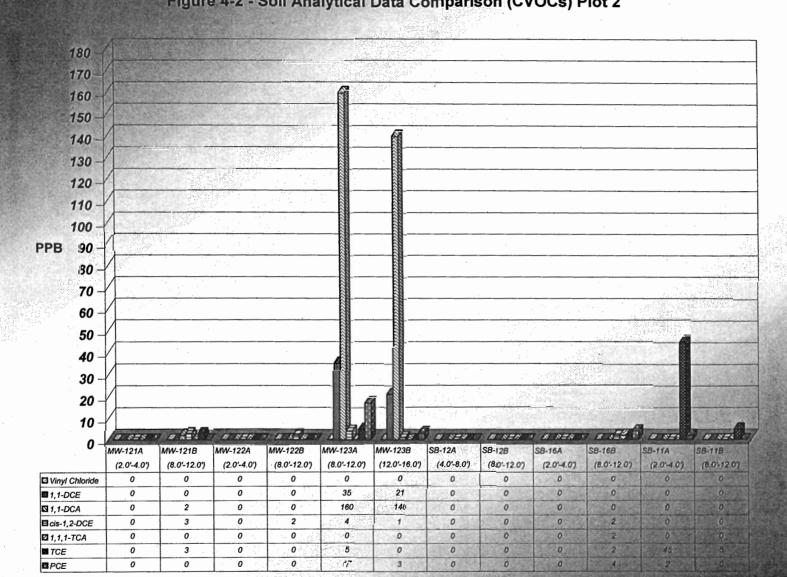
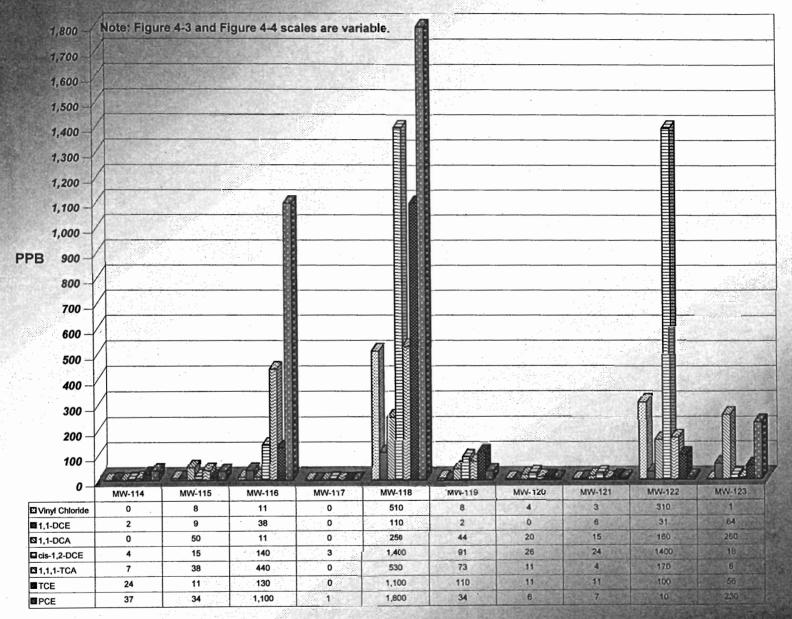


Figure 4-2 - Soil Analytical Data Comparison (CVOCs) Plot 2

1.0 1

- The soil analytical data also indicated that elevated concentrations of CVOCs were present in soils that were located near the northeast corner of the building, near the northwest corner of the building, along the eastern side of the Site near the railroad spur, near the northern fence line, and on an offsite property located to the east of the Site. A comparison with these data and results of the 2003 passive soil gas survey showed good correlation with respect to areas of elevated CVOCs that have been detected onsite. Together these data suggest the presence of a source area near the northeast corner of the building and near the northern fence line.
- Soil analytical data collected during the SRI indicate the nature and extent of VOC-impacted soils onsite and offsite have not been delineated and that the location of any source area(s) or hot-spot(s) have also not been delineated.
- Historic investigation results and results of the SRI suggest that a source area may be located near the northern end of the building and that source materials in this area may be contributing to VOC impacts detected in groundwater samples collected from wells in this portion of the Site.

4.2 HYDROGEOLOGIC INVESTIGATION


The results obtained for hydrogeologic investigation activities conducted during the SRI indicated the following:

- Groundwater generally occurs at shallow depths in the unconfined sand and mixed silt and sand units underlying the Site. The greatest depth to groundwater at the Site tended to be along the eastern side of the Site in monitoring wells MW-114, MW-116, MW-120, and along the railroad embankment in monitoring wells MW-121, and MW-122. The greater depths to groundwater in this area appear to reflect topographic conditions along the eastern side of the Site where a steep embankment is located and where depth to groundwater appears to increase as a function of the sloping ground surface.
- Groundwater flow conditions in the shallow water table aquifer were generally similar during October 2005 and January 2006. A review of groundwater flow

maps indicated that groundwater flow across the northern yard area was to the northeast; however, as the eastern property line and railroad tracks are approached groundwater flow direction deflected and became more easterly. This variation in groundwater flow direction appears to be related and influenced by the presence of the steep embankment located on the eastern side of the adjacent railroad tracks. Groundwater flow near the northeast corner of the building was to the east to southeast and also appeared to be influenced and reflective of sloping topography along the adjacent railroad tracks and embankment. Groundwater flow across the Site is at gradients of approximately 0.032 feet/feet to 0.085 feet/feet.

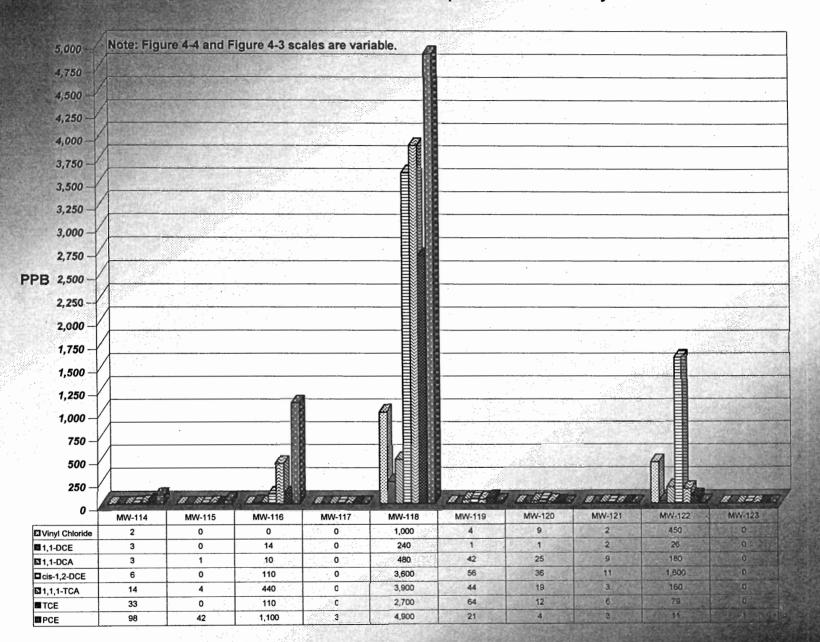
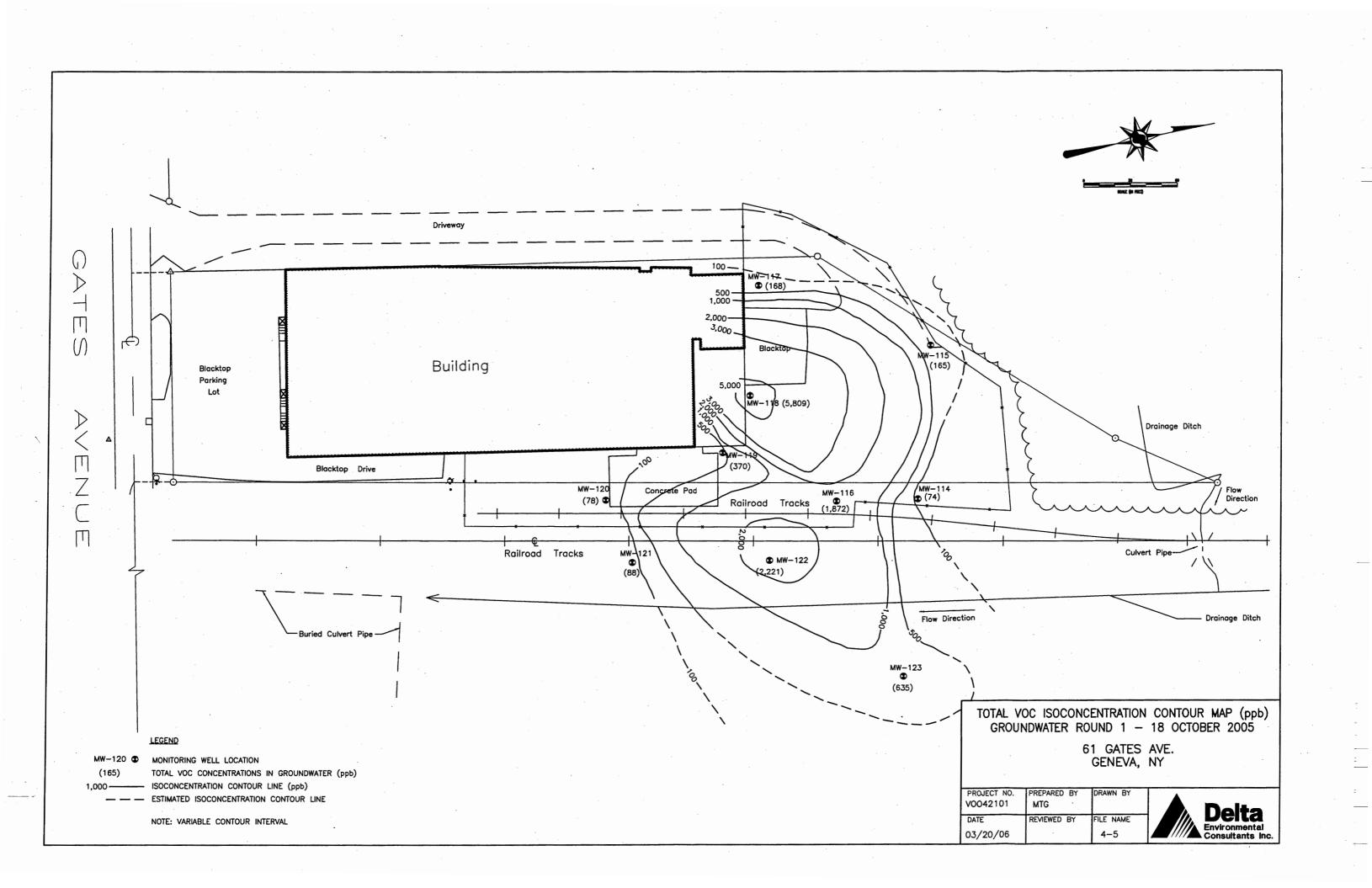
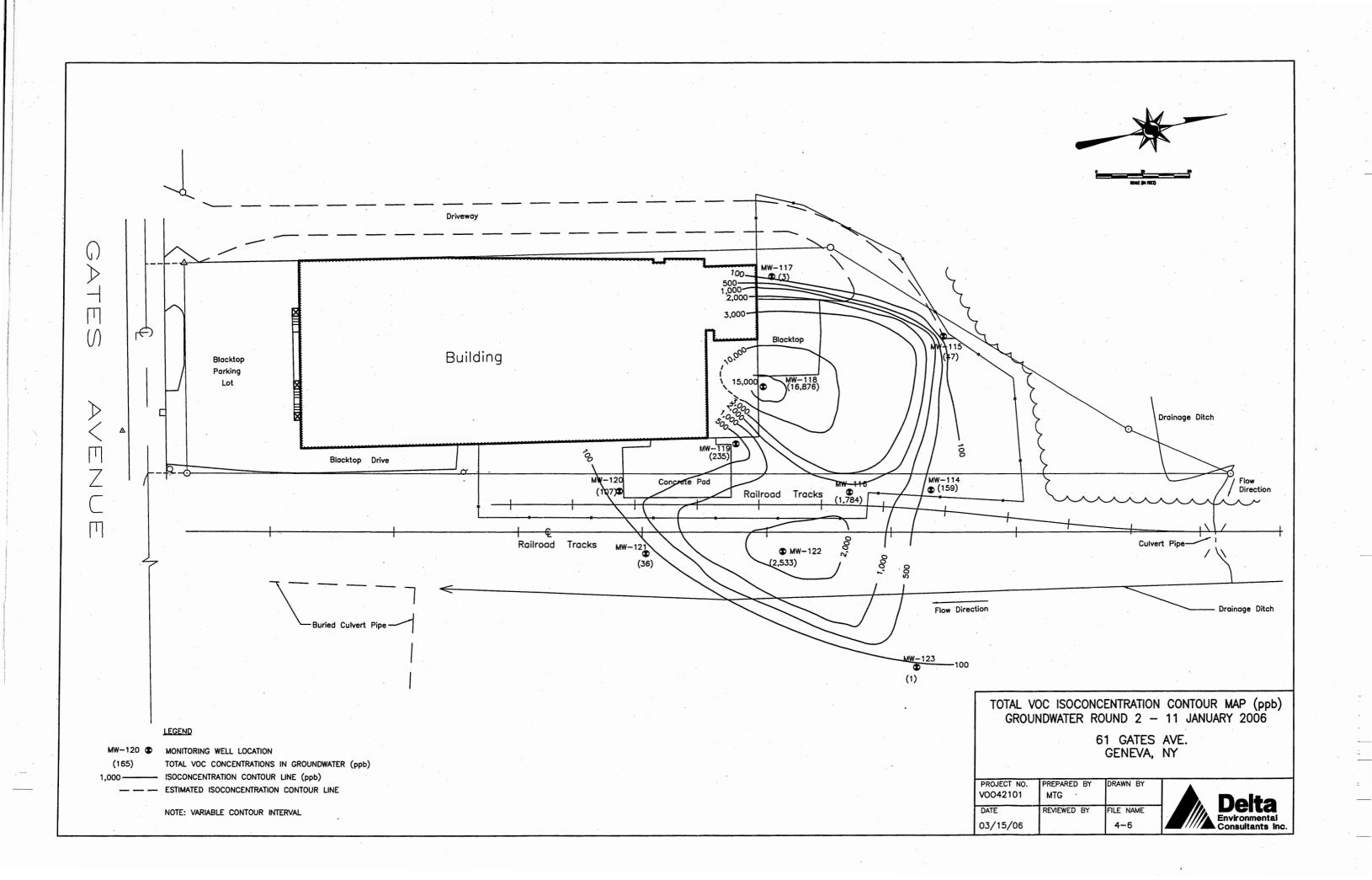

- VOCs were detected in all groundwater samples collected during the October 2005 sampling event and in all groundwater samples, with the exception of samples MW-117 and MW-123, collected during the January 2006 sampling event at concentrations in excess of NYSDEC Class GA groundwater standards.
- During the October 2005 sampling event, CVOCs (vinyl chloride, 1,1-DCE, 1,1-DCE, cis-1,2-DCE, 1,1,1-TCA, TCE and PCE) were the predominant analytes detected in all groundwater samples, with the exception of MW-117. In groundwater sample MW-117, petroleum-based analytes, including ethylbenzene, xylenes, and isopropylbenzene, were the predominant VOCs detected. During the January 2006 sampling event, CVOCs were the predominant analytes detected in all groundwater samples.
- During the October 2005 sampling event, concentrations of CVOCs detected in groundwater samples were the highest in samples MW-116, MW-118, MW-122, and MW-123. During the January 2006 sampling event, concentrations of CVOCs detected in groundwater samples were the highest in samples MW-116, MW-118, and MW-122. Plots of CVOC concentrations in groundwater with respect to monitoring well locations are illustrated on Figures 4-3 and 4-4 for the October 2005 and January 2006 sampling events, respectively.
- A review of the October 2005 groundwater analytical data from groundwater samples collected from five upgradient and mid-gradient wells (MW-114, MW-115, MW-116, MW-118 and MW-119) and one downgradient well (MW-123), indicated that parent/source compounds (TCE, PCE, and 1,1,1-TCA),

Figure 4-3 - Round 1 Groundwater Sample Data - 18 October 2005

1.11

h ga nga munuk

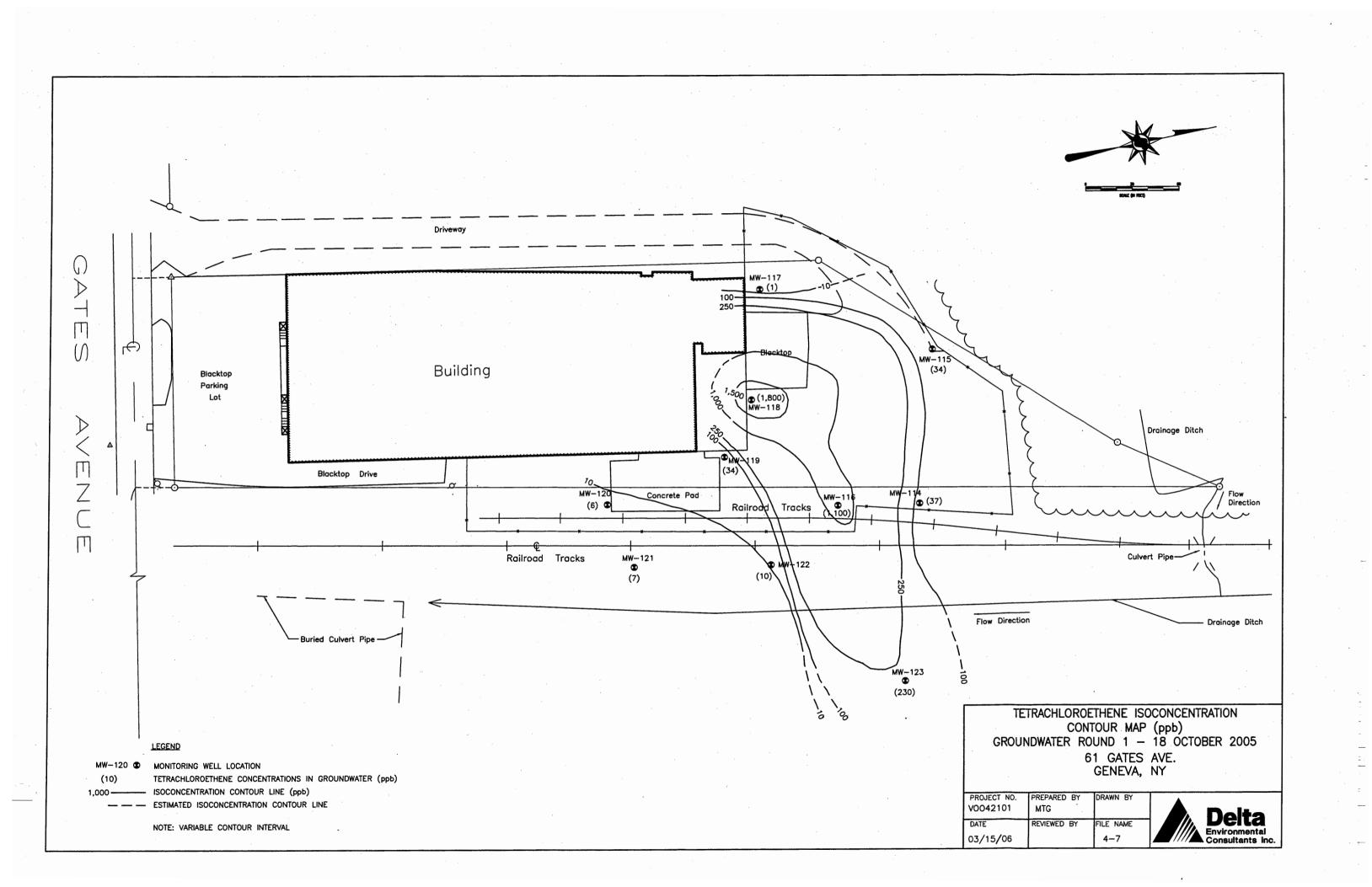

Figure 4-4 - Round 2 Groundwater Sample Data - 11 January 2006

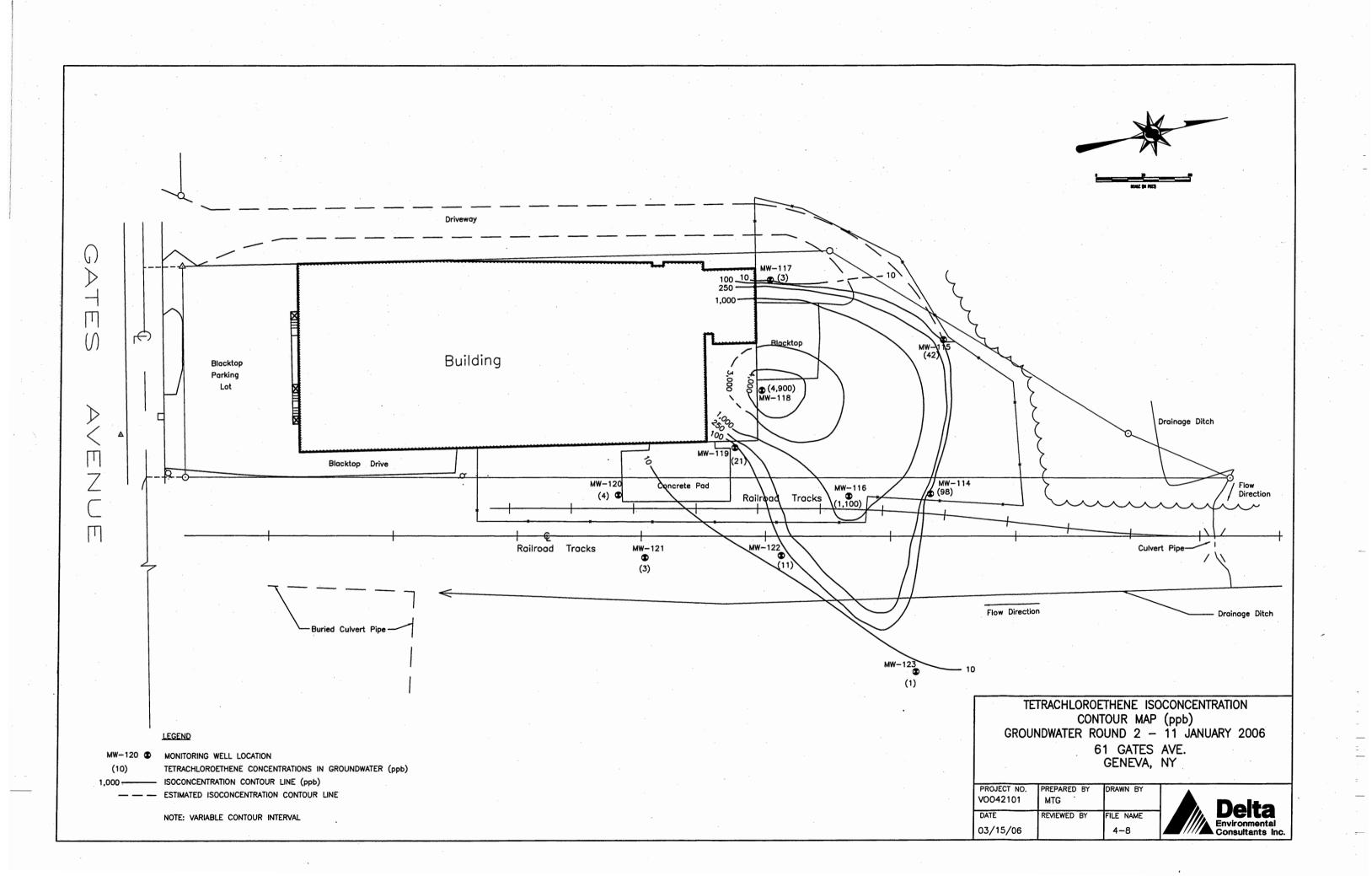

din trata an

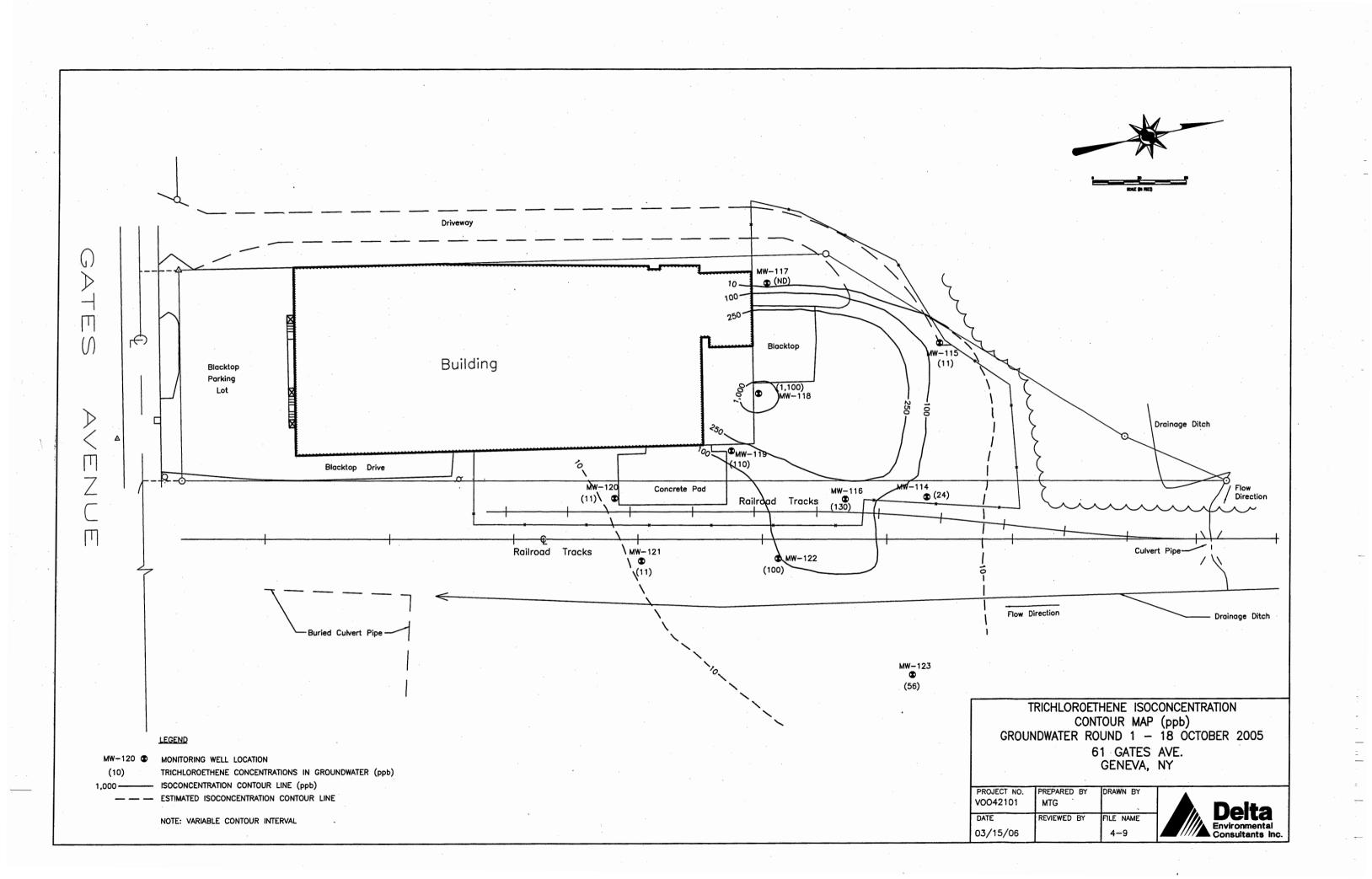
1

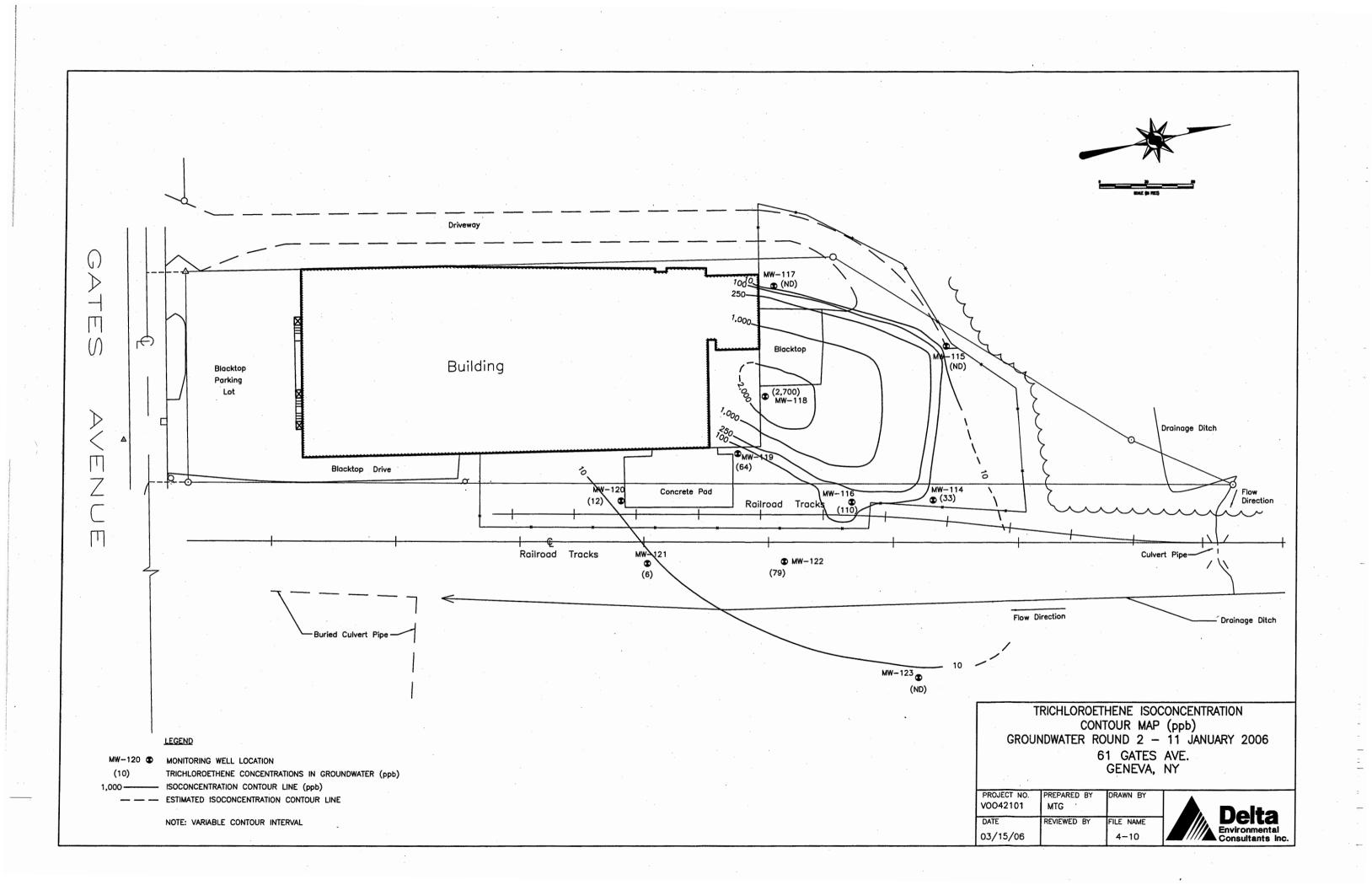
which are commonly associated with the manufacturing activities that were previously reported to have occurred at the Site, were detected at ratios that were greater than those of typically detected daughter degradation compounds (vinyl chloride, 1,1-DCE, 1,1-DCA, and cis-1,2-DCE). The highest ratios of parent-todaughter compounds were detected in samples collected from wells that were located near the northeast corner of the building, along the northern wall of the building, along the railroad spur line, and offsite to the east of the drainage ditch. Based on these data, it appears that source areas remain onsite.

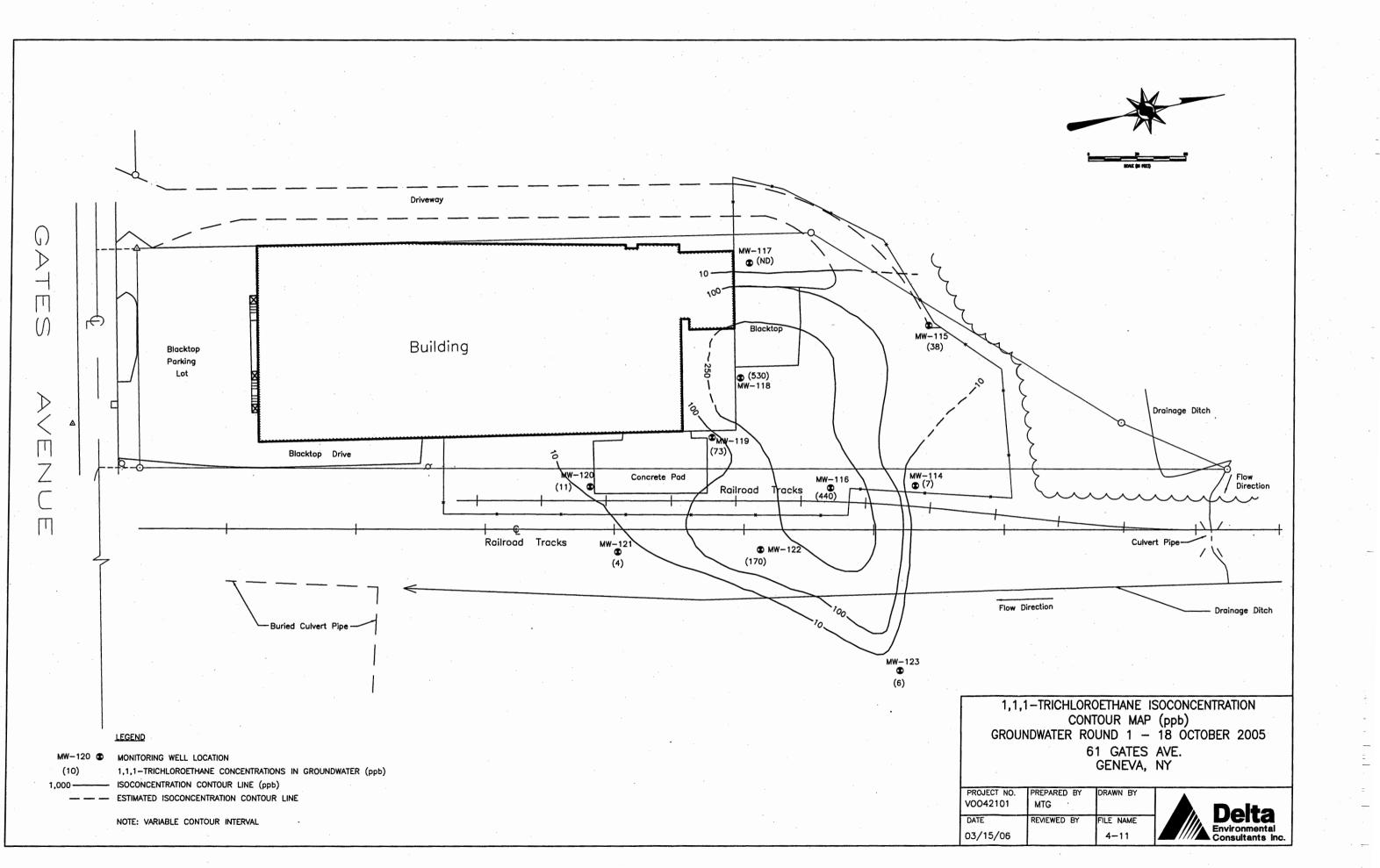
- A review of the January 2006 groundwater analytical data from groundwater samples collected from six upgradient and mid-gradient wells (MW-114 through MW-119) and one downgradient well (MW-123), indicated that parent/source compounds (TCE, PCE, and 1,1,1-TCA) were detected at ratios that were greater than those of typically detected daughter/degradation compounds (vinyl chloride, 1,1-DCE, 1,1-DCA, and cis-1,2-DCE). The highest ratios of parent-to-daughter compounds were detected in samples collected from wells that were located near the northeast corner of the building, along the northern wall of the building, and along the railroad spur line. Based on these data, it appears that source areas remain onsite.
- The groundwater analytical data for both sampling events also indicated, that in samples collected from downgradient wells (MW-120, MW-121, and MW-122), which are located along the east side of the Site and along the railroad tracks, that the ratio of parent-to-daughter compounds was equal (1:1) and/or such that daughter compounds were more prevalent. Based on these data, it would appear that some degradation of CVOCs is occurring in groundwater as it flows to the east and offsite.
- A review of the total VOC isoconcentration contour maps (Figures 4-5 and 4-6) indicated that the highest concentrations of total VOCs (16,876 ppb in January 2006 and 5,809 ppm in October 2005) were present in samples collected from monitoring well MW-118. Elevated concentrations of total VOCs were also detected in groundwater samples collected from wells MW-116, MW-119, MW-122, and MW-123 (during October 2005), which are located downgradient of well MW-118. Overall, the maps also indicate the distribution of VOCs in

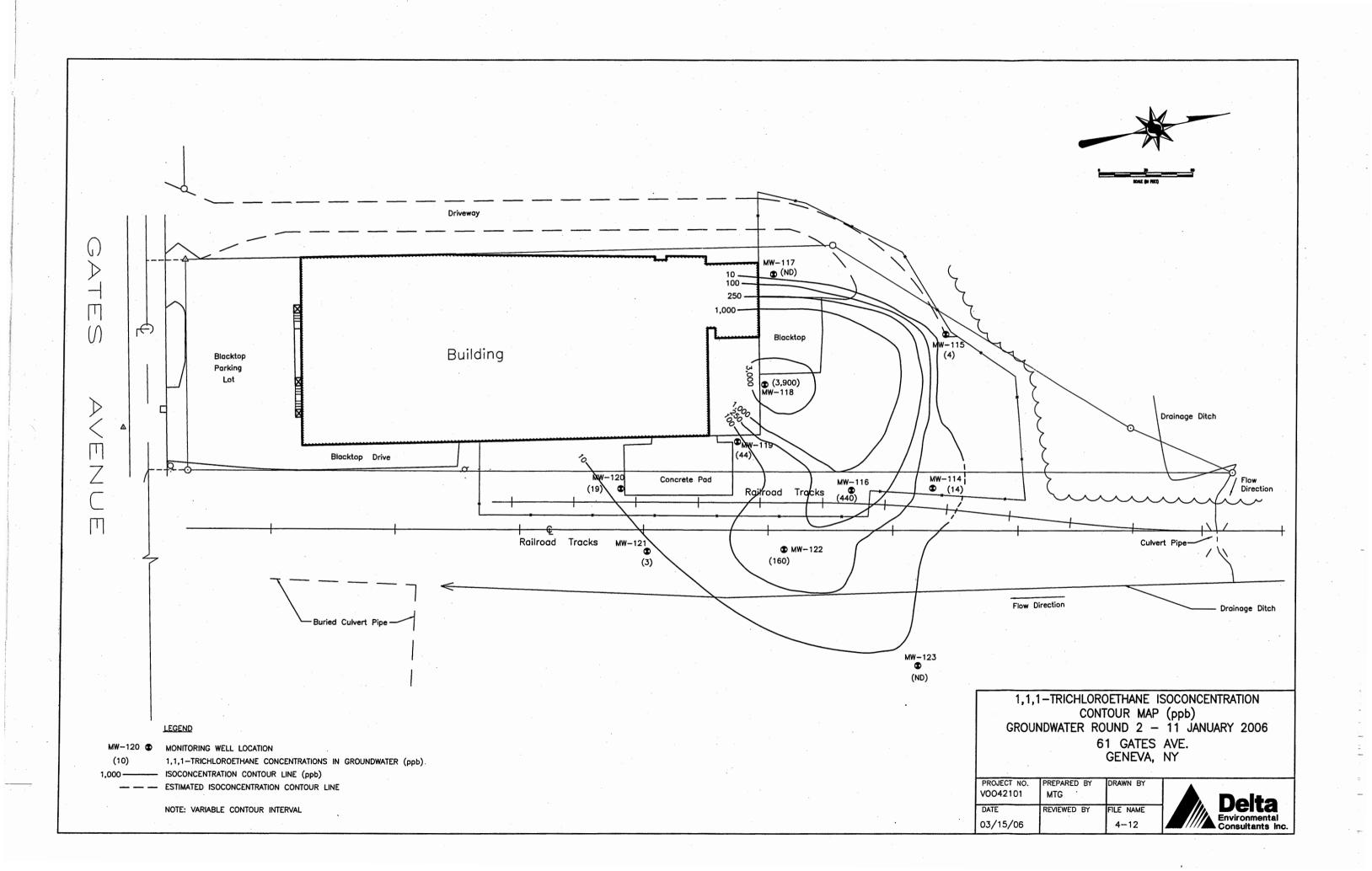


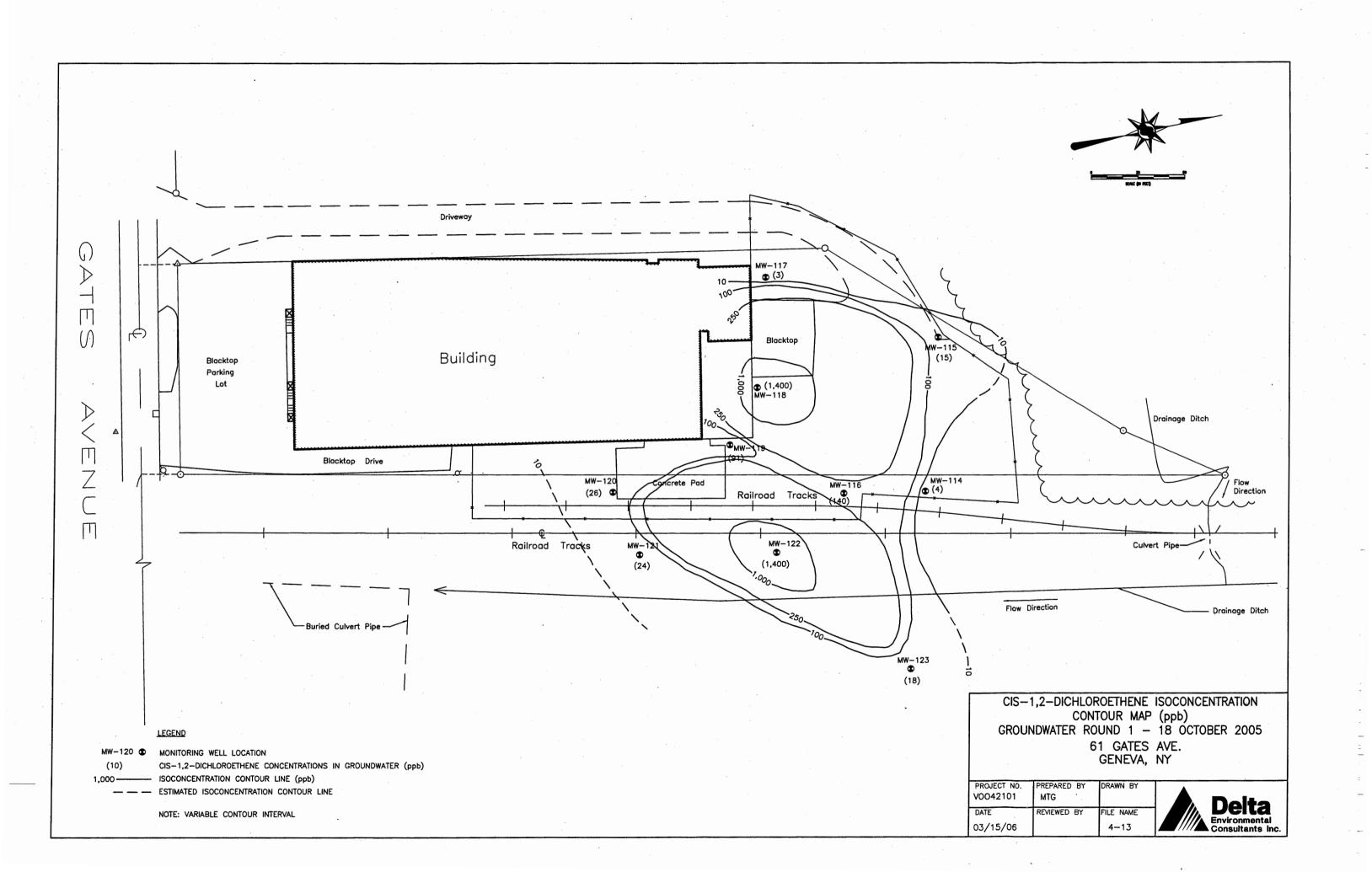


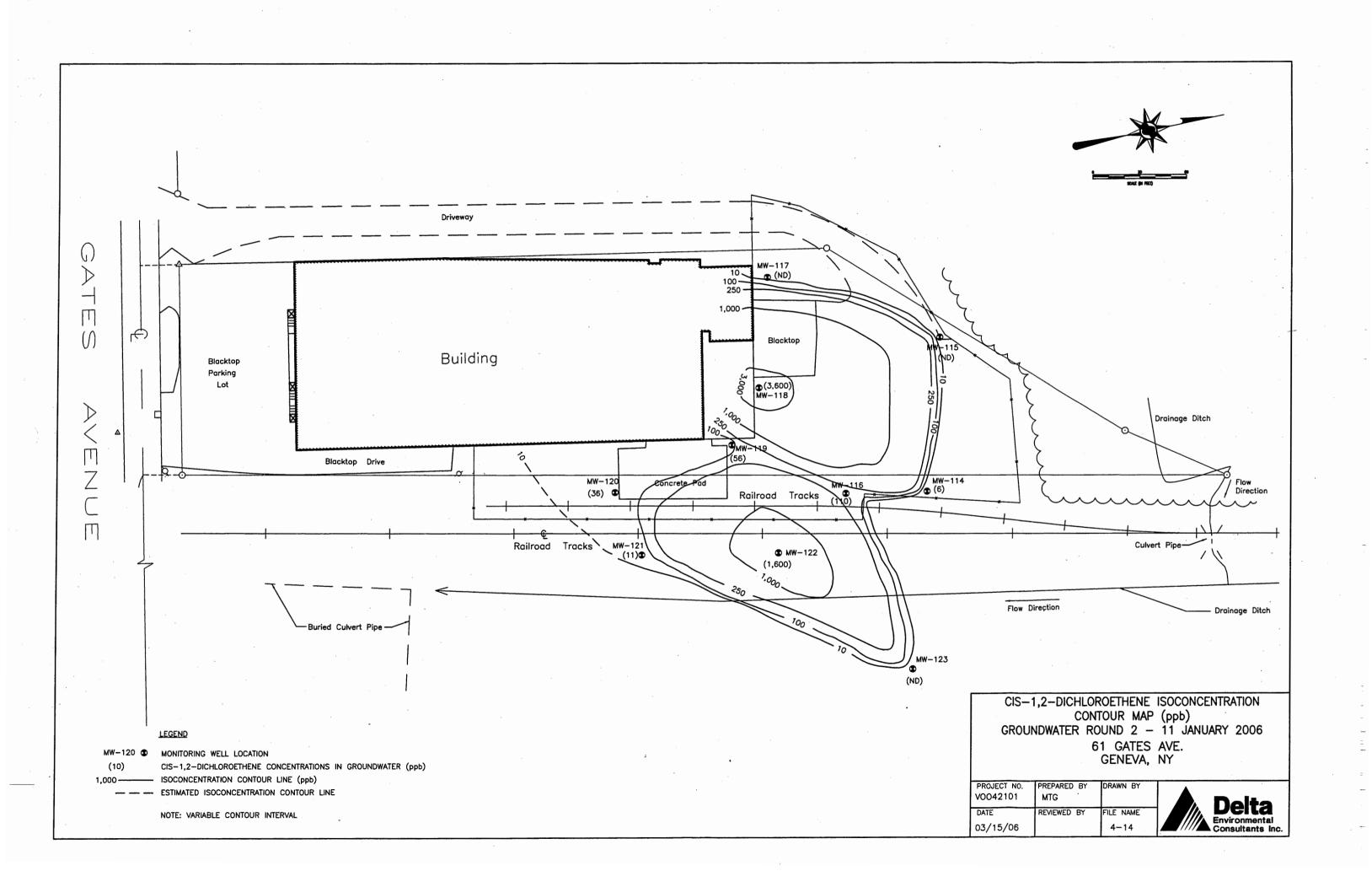

groundwater was similar during both sampling events; VOCs are migrating to the east; the extent of VOCs onsite and offsite is not defined; and the eastern drainage ditch is not acting as a barrier to contaminant migration.

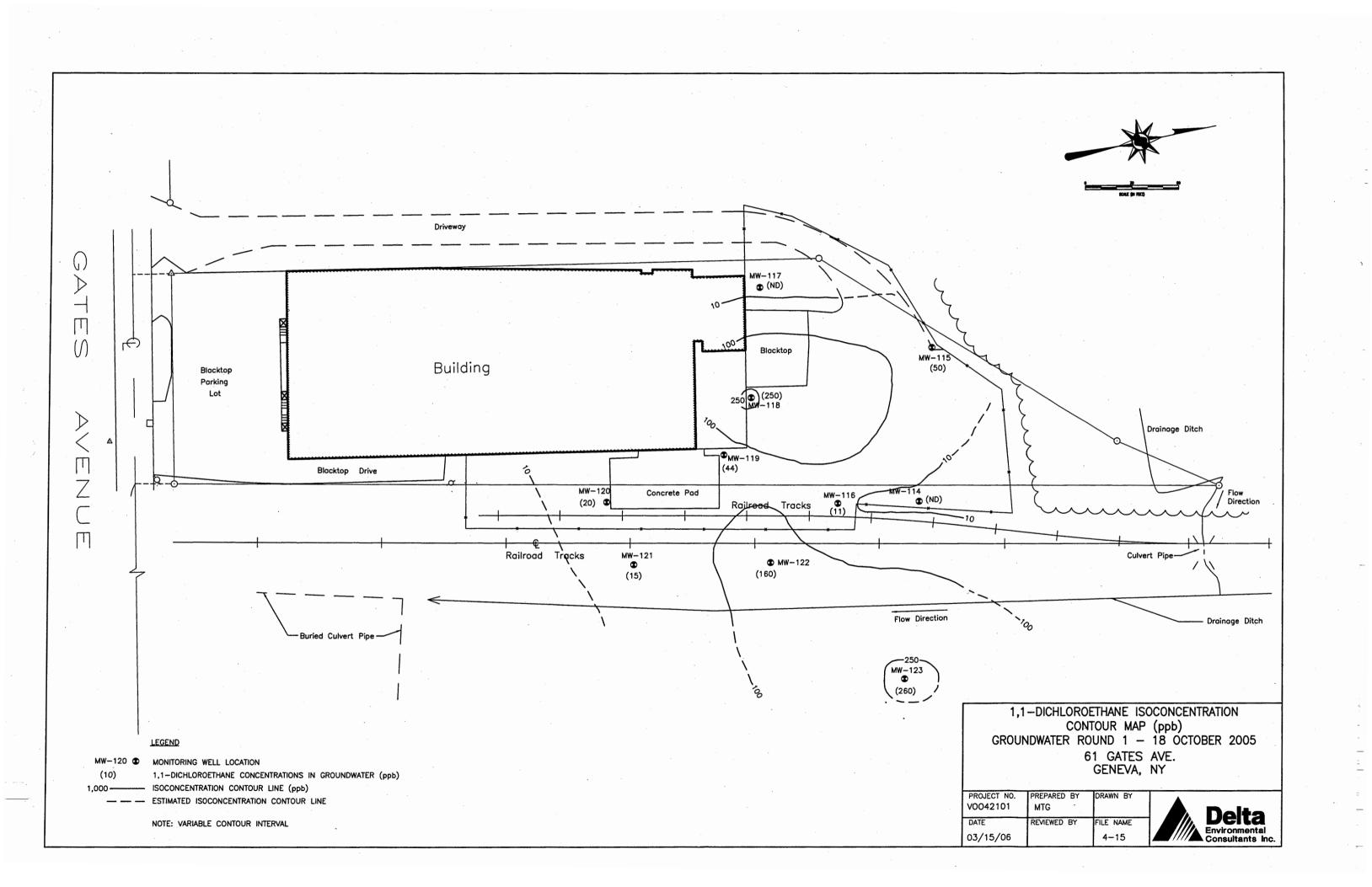

- A review of the PCE isoconcentration contour maps (Figures 4-7 and 4-8) indicated that the highest concentrations of PCE were present in samples collected from monitoring well MW-118. Elevated concentrations of PCE were also detected in groundwater samples collected from wells MW-116 and MW-123 (during October 2005), which are located downgradient of well MW-118. Overall, the maps also indicate the distribution of TCE in groundwater was similar during both sampling events; elevated concentrations of PCE are narrowly constrained in the center of an easterly migrating PCE plume; the extent of the plume onsite and offsite is not defined; and the eastern drainage ditch is not acting as a barrier to contaminant migration.
- A review of the TCE isoconcentration contour maps (Figures 4-9 and 4-10) indicated that the highest concentrations of TCE were present in samples collected from monitoring well MW-118. Elevated concentrations of TCE were also detected in groundwater samples collected from wells MW-116, MW-119, and MW-122, which are located downgradient of well MW-118. Overall, the maps also indicate the distribution of TCE in groundwater was similar during both sampling events; elevated concentrations of TCE are narrowly constrained in the center of an easterly migrating TCE plume; the extent of the plume onsite and offsite is not defined; and the eastern drainage ditch is not acting as a barrier to contaminant migration.
- A review of the 1,1,1-TCA isoconcentration contour maps (Figures 4-11 and 4-12) indicated that the highest concentrations of 1,1,1-TCA were present in samples collected from monitoring well MW-118. Elevated concentrations of 1,1,1-TCA were also detected in groundwater samples collected from wells MW-116, MW-119, and MW-122, which are located downgradient of well MW-118. Overall, the maps also indicate distribution of 1,1,1-TCA in groundwater was similar during both sampling events; elevated concentrations of 1,1,1-TCA are narrowly constrained in the center of an easterly migrating 1,1,1-TCA

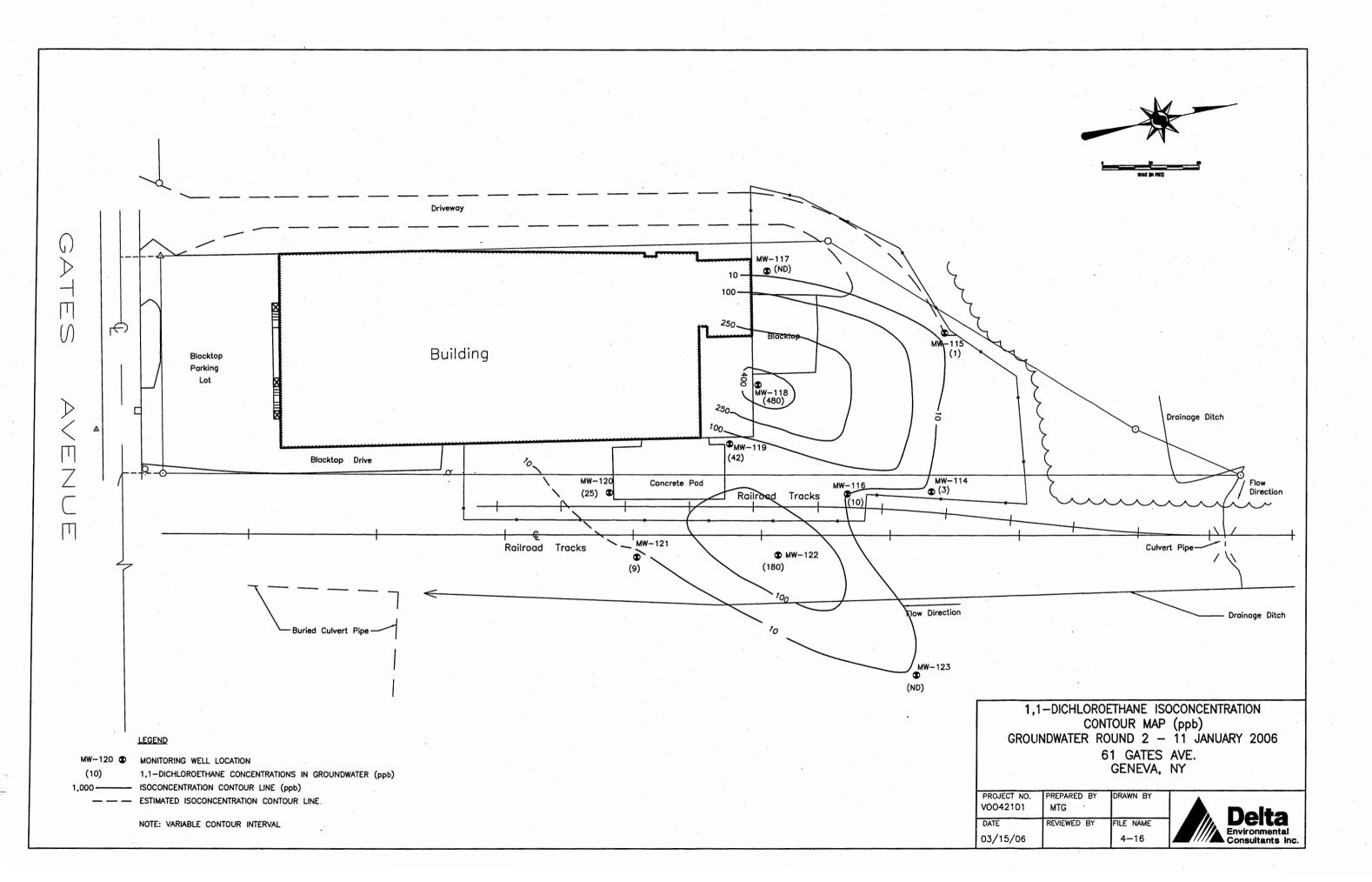

VCP Rpt Rev 4 3-15-06.doc

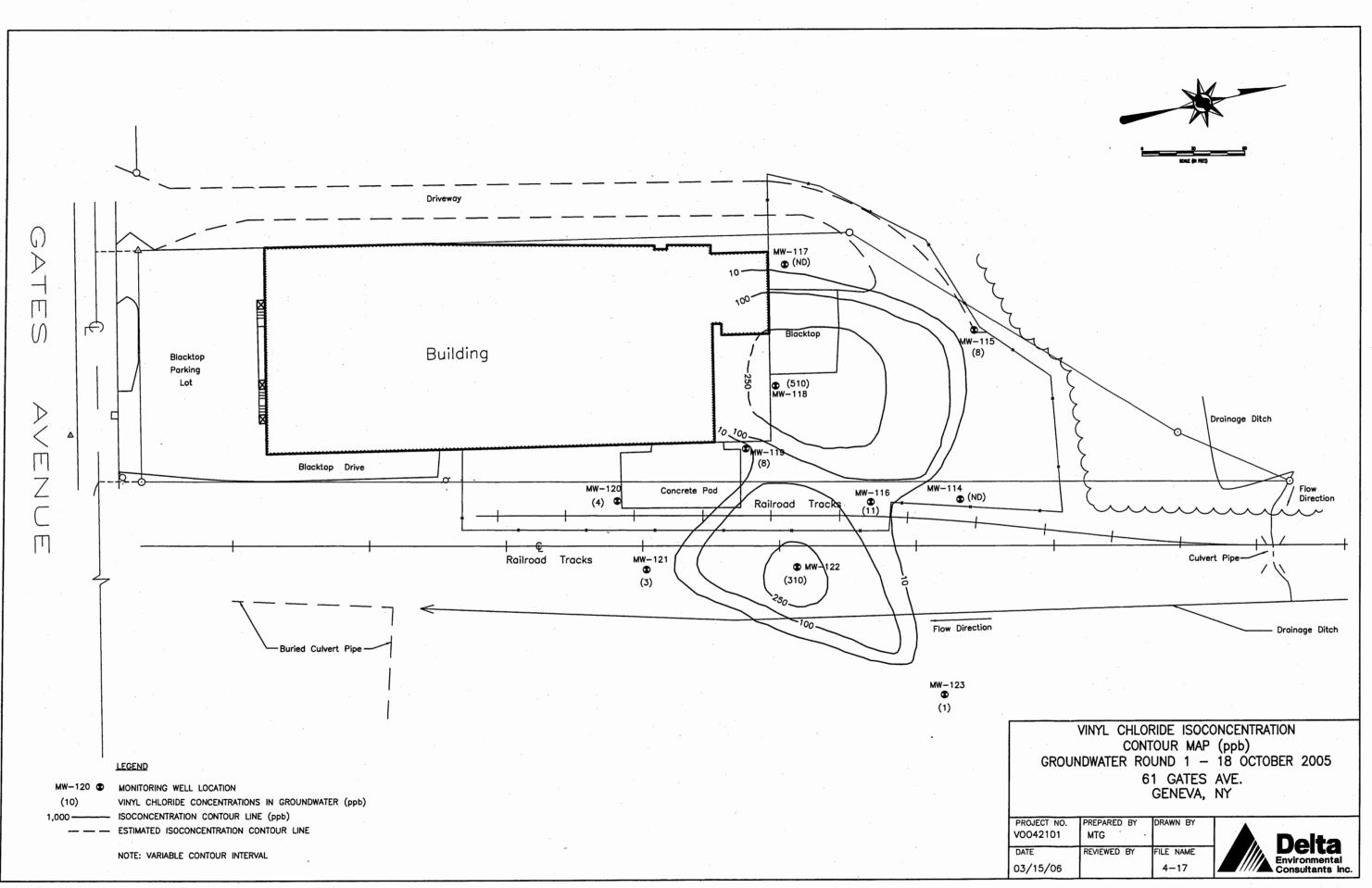


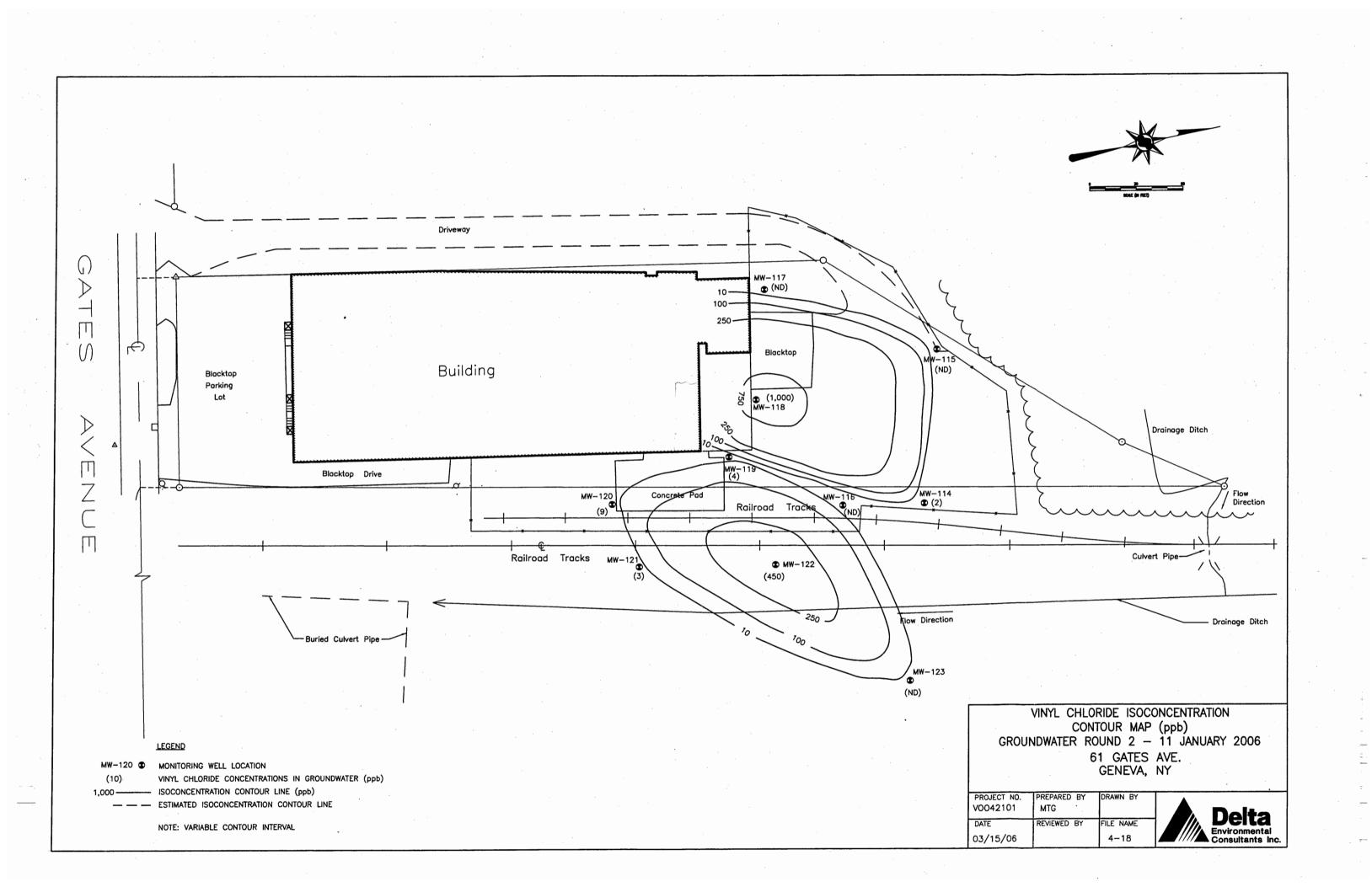





plume; the extent of the plume onsite and offsite is not defined; and the eastern drainage ditch is not acting as a barrier to contaminant migration.


- A review of the cis-1,2-DCE isoconcentration contour maps (Figures 4-13 and 4-14) indicated that the highest concentrations of cis-1,2-DCE were present in samples collected from monitoring well MW-118. Elevated concentrations of cis-1,2-DCE were also detected in groundwater samples collected from wells MW-116 and MW-122, which are located downgradient of well MW-118. Overall, the maps also indicate the distribution of cis-1,2-DCE in groundwater was similar during both sampling events; elevated concentrations of cis-1,2-DCE are present at the center of two separate wide lobes of impacted groundwater that are migrating to the east; the extent of the plume onsite and offsite is not defined; and the eastern drainage ditch is not acting as a barrier to contaminant migration.
- A review of the 1,1-DCA isoconcentration contour maps (Figures 4-15 and 4-16) indicated that the highest concentrations of 1,1-DCA were present in samples collected from monitoring well MW-118. Elevated concentrations of 1,1-DCA were also detected in groundwater samples collected from wells MW-122 and MW-123 (October 2005), which are located downgradient of well MW-118. Overall, the maps also indicate the distribution of 1,1-DCA in groundwater was similar during both sampling events; elevated concentrations of 1,1-DCA are present at the center of two separate lobes of impacted groundwater that are migrating to the east; the extent of the plume onsite and offsite is not defined; and the eastern drainage ditch is not acting as a barrier to contaminant migration.
- A review of the vinyl chloride isoconcentration contour maps (Figures 4-17 and 4-18) indicated that the highest concentrations of vinyl chloride were present in samples collected from monitoring well MW-118. Elevated concentrations of vinyl chloride were also detected in groundwater samples collected from well MW-122, which is located downgradient of well MW-118. Overall, the maps also indicate the distribution of vinyl chloride in groundwater was similar during both sampling events; the elevated concentrations of vinyl chloride are present at the center of two, separate lobes of impacted groundwater that are migrating to the east; the extent of the plume onsite and offsite is not defined; and the eastern


VCP Rpt Rev 4 3-15-06.doc



drainage ditch is not acting as a barrier to contaminant migration.

- Isoconcentration contour maps indicated that the highest concentrations of VOCs, and specifically parent CVOCs (PCE, TCE and 1,1,1-TCA), were located in groundwater samples collected from monitoring well MW-118. The maps also indicated the plume(s) of parent compounds are singular in nature; the areas of highest concentrations within the plume(s) are typically narrow in extent onsite and widen somewhat as they move offsite; the distribution of all parent compounds in groundwater is similar in extent; the plume(s) are migrating to the east and have migrated beyond the eastern Site boundary; the extent of the plume(s) onsite and offsite is not defined; and the eastern drainage ditch is not acting as a complete barrier to contaminant migration. Distribution patterns shown on the maps also indicate a source area is likely present in the area located near the northeast corner of the building; and there does not appear to be an upgradient contribution of VOCs migrating to the Site from impacted properties located to the west of the Site.
- Isoconcentration contour maps of daughter CVOCs (cis-1,2-DCE, 1,1-DCA, and vinyl chloride) indicated that the highest concentrations of these compounds were located in monitoring well MW-118. Generally, distribution patterns for these compounds in groundwater indicated the compounds are distributed in plumes that have two lobes, which are divided from each other by lower concentration gradients. While the plumes mirror the plumes of parent compounds, the lateral extent for these daughter compounds is wider than that observed for parent compound plumes; the plumes are migrating to the east and have migrated beyond the eastern Site boundary; the extent of the plume onsite and offsite is not defined; and the eastern drainage ditch is not acting as a barrier to contaminant migration. The maps for these daughter compounds also indicate there does not appear to be any significant impacts to groundwater migrating from offsite, upgradient properties located to the west of the Site.
- Groundwater flow maps indicated that groundwater flow is generally to the east across the Site. When compared with isoconcentration contour maps of VOCs, the distribution patterns show that it is evident that VOCs are migrating to the east across the Site and to offsite properties along the mapped groundwater flow paths.

In particular, it is notable that the highest concentrations of VOCs follows a plume that runs to the east from well MW-118 to MW-119, MW-116, MW-122 and MW-123. Additionally, when compared with the 2003 soil gas survey, a strong correlation is noted between the VOC distribution in soil gas and groundwater and groundwater flow patterns.

- Concentrations of CVOCs detected in groundwater samples during October 2005 and January 2006 do not suggest the presence of DNAPLs in groundwater at the Site. In addition, field observations made during low-flow development, purging, and sampling of wells did not note the presence of any LNAPL or DNAPL layers in the groundwater column. These findings are consistent with findings of the previous site investigation activities conducted by Delta and others.
- During the October 2005 sampling event, three SVOCs were detected in the one sample (MW-117) analyzed for SVOCs; however, concentrations were below NYSDEC Class GA groundwater standards.
- A minimum of one metal was detected in all groundwater samples collected during the October 2005 and January 2006 sampling events at concentrations in excess of NYSDEC Class GA groundwater standards. Generally, in all groundwater samples the analytes that were typically detected at concentrations above groundwater standards were iron, magnesium, manganese, and sodium. However, several heavy metals including; antimony (MW-119 in October 2005), arsenic (MW-117 in October 2005), lead (MW-118 in October 2005) and nickel (MW-118 in October 2005 and January 2006) were detected at concentrations above groundwater standards.
- MBAS were detected in five groundwater samples (MW-115, MW-117, MW-118, MW-119, and MW-120) during the October 2005 sampling event. Of these samples, the concentration of MBAS in sample MW-118 (1,400 ppb) was the only one which was detected in excess of NYSDEC Class GA groundwater standards. During the January 2006 sampling event, MBAS were detected in four groundwater samples (MW-117, MW-119, MW-120, and MW-121) at concentrations that were all below groundwater standards.
- The presence of MBAS in groundwater appeared to be generally clustered in groundwater samples, which were collected from monitoring wells located along

the northeastern corner and northern edge of the building. These wells are all located in the area where in 1992 an interior wastewater sump had been found to be leaking. As a result of the leak, an unknown quantity of untreated wastewater consisting of dilute solutions of acids, bases, and surfactants was released to the underlying soils. The presence of MBAS in groundwater samples in the area near the building and downgradient of the building suggests that a source of surfactants is present in the area of the sump and that the surfactants are migrating downgradient via groundwater flow paths. However, groundwater analytical data indicate that the presence of surfactants in groundwater does not appear to pose a threat to groundwater quality onsite and/or offsite.

4.3 SURFACE WATER INVESTIGATION

The results obtained for surface water investigation activities conducted during the SRI indicated the following:

A north to south trending intermittent drainage ditch is located offsite (east of the • Site) at the base of the adjacent railroad track embankment. Observations indicate that the eastern drainage ditch appears to receive the majority of its flow from areas located to the north of the Site, which include the adjacent CCN International property. During the SRI, discharges were observed from a culvert pipe on the adjacent CCN International property. These discharges entered a drainage ditch that flowed to the east and entered a culvert pipe (east to west trending) that was located beneath the railroad tracks. Flow from this culvert pipe was then observed to discharge into the eastern drainage ditch at its head. Once surface waters enter the eastern drainage ditch, flow is to the south along the base of the railroad track embankment. Surface waters remain in the open drainage ditch until channelized into a buried culvert pipe near the south end of the ditch. Reportedly, surface water from the ditch flows into the City of Geneva storm water sewer system. During SRI fieldwork performed in July and October 2005 and January 2006, no surface water flow was observed to be entering the eastern drainage ditch north of the culvert pipe located beneath the railroad tracks. The

VCP Rpt Rev 4 3-15-06.doc

main source of flow into the eastern drainage ditch appeared to be coming from the CCN discharge point. The nature and source of the discharge on the adjacent CCN property is uncharacterized.

- A review of groundwater elevation data for wells located to the east (MW-123) and west (MW-121 and MW-122) of the drainage ditch indicate that surface water elevations in the drainage ditch are consistently lower than the water table elevations in these wells, which suggests that some limited groundwater discharge to the ditch may be occurring. Based on groundwater flow conditions in the area, groundwater flow gradients, and the presence of steeply sloping topography, it appears likely that the drainage ditch may receive a small component of recharge from shallow groundwater flow; however, it does not appear that the drainage ditch is fully penetrating into the shallow water table and that this feature acts as a groundwater flow barrier or groundwater divide.
- VOCs were detected in all surface water samples at concentrations below NYSDEC Class D surface water standards or guidance values, with the exception of PCE, which was detected in sample SW-1 at a concentration (4 ppb) that was above the established guidance value of 1 ppb. CVOCs were the predominant analytes detected in surface water samples.
- Concentrations of total VOCs detected in surface water samples were the highest (25 ppb) in the upstream sample (SW-1) and were observed to decrease slightly in downstream samples SW-2 (11 ppb) and SW-3 (15 ppb), respectively. These data suggest that the presence of VOCs in surface waters may be attributable at least in part to upstream discharges, which originate on the CCN International property. Groundwater discharges of VOC-impacted groundwater to the drainage ditch may also contribute to impacts detected in surface waters located within the drainage ditch.

4.4 SEDIMENT INVESTIGATION

The results obtained for sediment investigation activities conducted during the SRI indicated the following:

- VOCs were detected in two, downstream sediment samples (SED-2 and SED-3) at concentrations that were significantly below the applicable NYSDEC sediment screening values for the analytes detected.
- Concentrations of total VOCs detected in sediments increased from 0 ppb in the upstream sample (SED-1) to 38 ppb (SED-2) and 51 ppb (SED-3), respectively, in the downstream samples. CVOCs were the predominant analytes detected in sample SED-2. In sample SED-3, CVOCs and non-CVOCs (carbon disulfide, methylene chloride, and 2-Butanone) were evenly distributed in the sample.
- Analytes detected in the sediment samples are similar in nature to those detected in surface waters and groundwater; therefore, it is likely that impacts in sediments are attributable to the Site and/or offsite sources, which provide discharge to the drainage ditch.

4.5 RECOMMENDATIONS

Based on findings of the SRI, several additional investigation and sampling activities are recommended to address data gaps:

While concentrations of VOCs in soils did not exceed NYSDEC TAGM 4046
recommended soil cleanup objectives, the extent of VOC impacts in soils onsite
and offsite to the east were not fully determined during the SRI. Available data
and historic reports suggest that past operations at the facility, which utilized
CVOCs, are the likely source of these materials in soils. However, available data
indicates that distribution of these compounds onsite is variable in extent and
magnitude. The SRI data indicate that a potential source area is located near the
northeast corner of the building. Soil gas data also suggest that potential source
areas of lesser magnitude may also be located throughout the northern parking lot.
Additionally, analytical data from soil borings installed offsite indicate that VOC
impacts are also present in these areas and that the impacts may be related to
former Site operations. Therefore, additional soil borings should be installed
onsite and offsite to delineate the extent of VOCs in soils and to identify potential

VCP Rpt Rev 4 3-15-06.doc

source areas. Installation of soil borings within AST containment areas and/or within the building may be necessary to delineate source areas.

- Groundwater analytical data indicate that a plume of VOC-impacted groundwater is migrating to the east from the northeast corner of the building and that the plume has migrated offsite to downgradient properties. Isoconcentration contour maps indicate the extent of the impacted groundwater plume both onsite and offsite has not been determined during the SRI. The groundwater analytical data also indicate the majority of CVOCs in the plume are parent compounds, which have minimally degraded. Therefore, additional groundwater monitoring wells should be installed onsite and offsite to delineate the extent of VOCs in groundwater. Additional upgradient wells and potentially wells within the building interior should also be considered to verify the nature of upgradient groundwater quality, and to monitor groundwater quality beneath the building, if data suggests a source area is present beneath the building.
- Monitoring wells installed along the eastern side of the Site and on offsite properties to the east are screened across the water table interface. Geologic information obtained during the SRI indicate that the bottom of these wells do not intersect the clay unit, which was observed in wells located in the center and western areas of the Site. Therefore, the potential exists that the eastern wells may not fully penetrate the impacted groundwater zone along the eastern side of the Site. Therefore, additional deep monitoring wells may be required onsite and offsite to evaluate the full vertical extent of groundwater impacts at the Site.
- Groundwater sampling (3 events per year) is recommended to monitor groundwater quality on a seasonal basis for VOCs and MBAS. No additional monitoring for metals is recommended given the nature of metals detected in the groundwater samples and the limited occurrence of RCRA metals in the samples collected.
- Surface water analytical data suggests that an upstream source may be contributing to impacts observed in surface waters along the eastern offsite drainage ditch. Additional surface water sampling should be conducted in the drainage ditch at locations previously sampled and at locations upstream to the

property boundaries of the Site (61 Gates Avenue) in an effort to establish the impacts of offsite sources on surface water quality.

- Installation of stream gauges should be considered in several areas of the ditch to monitor surface water elevations in the ditch. Cross sections of the ditch in these locations should also be established to determine flow volumes in the ditch.
- Sediment analytical data indicate that VOCs are present in sediment samples in the eastern drainage ditch at concentrations below applicable sediment screening criteria. Based on these data, additional sampling is not recommended. However, in an effort to determine if an upstream source area is present, additional sediment samples should be collected from the ditch upstream of SED-1 at locations which are located to the property boundaries of the Site (61 Gates Avenue).
- Evaluation of interim remedial measures, which would address the widespread distribution of CVOCs in soils and groundwater are also recommended.

ATTACHMENT 1

DATA USABILITY SUMMARY REPORT

December 19, 2005

Mr. Mark Schumacher Delta Environmental Consultants, Inc. 104 Jamesville Road Syracuse, New York 13204

Re: Data Validation Report HB Fuller VCP Site Delta Project No. V004210-1

Dear Mr. Schumacher:

The data validation summaries are attached to this letter for HB Fuller VCP Site, data for July 2004 soil and sediment sampling, and October 2005 ground water sampling events. The data for STL Buffalo, Job Nos. A05-7310, A05-7481, and A05-B766 were mostly acceptable with one issue that is identified and discussed in the validation summary. STL data pack A05-B766 contained "not detected" volatile data for one compound that were qualified unusable (R). The individual QA/QC review for volatiles contains the explanation for rejecting the data, based solely on the validation guidance criteria. The rejected data may be determined to be acceptable to the user based on additional information that is not contained in the data validation criteria.

A list of common data validation acronyms is attached to this letter to assist you interpreting the validation summaries. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Delta Environmental Consultants, Inc.

Sincerely, Alpha Environmental Consultants, Inc.

Donald Amé

Donald Anné Senior Chemist

DCA:dca attachments

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\hb fuller-1.ltr.wpd

Data Validation Acronyms

AA	Atomic absorption, flame technique
BHC	Hexachlorocyclohexane
BFB	Bromofluorobenzene
CCB	Continuing calibration blank
CCC	Calibration check compound
CCV	Continuing calibration verification
CN	Cyanide
CRDL	Contract required detection limit
CRQL	Contract required quantitation limit
CVAA	Atomic adsorption, cold vapor technique
DCAA	2,4-Dichlophenylacetic acid
DCB	Decachlorobiphenyl
DFTPP	Decafluorotriphenyl phosphine
ECD	Electron capture detector
FAA	Atomic absorption, furnace technique
FID	Flame ionization detector
FNP	1-Fluoronaphthalene
GC	Gas chromatography
GC/MS	Gas chromatography/mass spectrometry
GPC	Gel permeation chromatography
ICB	Initial calibration blank
ICB	
ICP	Inductively coupled plasma-atomic emission spectrometer Initial calibration verification
IDL	Instrument detection limit
IS	Internal standard
LCS	Laboratory control sample
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate
MSA	Method of standard additions
MS/MSD	Matrix spike/matrix spike duplicate
PID	Photo ionization detector
PCB	Polychlorinated biphenyl
PCDD	Polychlorinated dibenzodioxins
PCDF	Polychlorinated dibenzofurans
QA	Quality assurance
QC	Quality control
RF	Response factor
RPD	Relative percent difference
RRF	Relative response factor
RRF(number)	Relative response factor at concentration of the number following
RT	Retention time
RRT	Relative retention time
SDG	Sample delivery group
SPCC	System performance check compound
TCX	Tetrachloro-m-xylene
%D	Percent difference
%R	Percent recovery
%RSD	Percent relative standard deviation
,	

Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

- U = Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.
- R = Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N = Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

Data Usability Summary Report for STL Buffalo, Job #: A05-7310

13 Soil Samples Collected July 11 and 12, 2005

Prepared by: Donald Anné December 19, 2005

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 13 soil samples analyzed for volatiles.

The overall performances of the analyses are acceptable. STL Buffalo did fulfill the requirements of the analytical methods.

The data are acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

- The positive results for methylene chloride were flagged as "not detected" (U) in the 13 soil samples because the concentrations of methylene chloride in the samples were not significantly greater (more than ten times) than the highest level in the associated blanks.
- The positive results for trichloroethene were flagged as "not detected" (U) in the following samples because the concentrations of trichloroethene in the samples were not significantly greater (more than five times) than the level in the associated holding blank.

MW-116A	MW-116B	MW-117B	MW-118A
MW-118B	MW-118C	MW-119B	MW-120B

• The positive result for toluene was flagged as "not detected" (U) in sample MW-116A because the concentration of toluene in the sample was not significantly greater (more than five times) than the level in the associated holding blank.

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\a05-7310.dus.wpd

Environmental Chemistry

Lab and Field Audits Sampling Plans QA/QC Review of Volatiles Data for STL Buffalo, Job #: A05-7310

13 Soil Samples Collected July 11 and 12, 2005

Prepared by: Donald Anné December 19, 2005

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The compounds with RRF and %RSD requirements for ASP met those criteria.

The average RRFs for target compounds were above the allowable minimum (0.050) and the %RSDs were below the allowable maximum (30%), as required.

<u>Continuing Calibration</u>: The %D for bromoform (25.4%) was above the ASP required maximum (25%), but was less than 40% on 07-20-05 (O6556.RR). The %D for 1,2,4-trichlorobenzene (25.7%) was above the ASP required maximum (25%), but was less than 40% on 07-21-05 (O6579.RR). No action is taken when two or fewer compounds per calibration do not meet ASP criteria, provided that the %Ds are less than 40% and RRF50s are greater than 0.010.

The RRF50s for target compounds were above the allowable minimum (0.050), as required. The %D for bromoform (25.4%) was above the allowable maximum (25%) on 07-20-05 (O6556.RR). The %D for 1,2,4-trichlorobenzene (25.7%) was above the allowable maximum (25%) on 07-21-05 (O6579.RR). Positive results for these two compounds should be considered estimates (J) in associated samples.

<u>Blanks</u>: Method blank VBLK08 contained a trace of methylene chloride (2 ug/kg). Volatile holding blank VHB contained traces of methylene chloride (5 ug/L), trichloroethene (6 ug/L), and toluene (18 ug/L). Results for methylene chloride that are less than ten times the highest blank level should be reported as not detected (U) in associated samples. Results for trichloroethene and toluene that are less than five times the highest blank level should be reported as not detected (U) in associated samples.

Volatiles Data Job #: A05-7310

Internal Standard Area Summary: The internal standard areas and retention times were within control limits.

Surrogate Recovery: The surrogate recoveries were within control limits for environmental samples.

- <u>Matrix Spike/Matrix Spike Duplicate</u>: The relative percent differences were below the allowable maximums and the percent recoveries were within control limits for the MS/MSD sample MW-115B.
- Matrix Spike Blank: The percent recoveries were within QC limits for samples VBLK08 and VBLK09.
- <u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\a05-7310.vol.wpd

Sampling Plans

Data Usability Summary Report for STL Buffalo, Job #: A05-7481

14 Soil and 3 Sediment Samples Collected July 13 and 14, 2005

Prepared by: Donald Anné December 19, 2005

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 14 soil and 3 sediment samples analyzed for volatiles.

The overall performances of the analyses are acceptable. STL Buffalo did fulfill the requirements of the analytical methods.

The data are acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

• The positive results for acetone were flagged as "not detected" (U) in the following samples because the concentrations of acetone in the samples were not significantly greater (more than ten times) than the level in the associated method blank.

MW-114B	MW-121B	MW-123A	MW-123B	SBA-12A
SBA-12B	SBC-16B	SBE-11B	SED-3	

Positive results for dichlorodifluoromethane were flagged as "estimated" (J) in samples SBA-12A and SED-3 because the %D for dichlorodifluoromethane was above the allowable maximum for the associated continuing calibration.

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\a05-7481.dus.wpd

Data Validation

Environmental Chemistry

Lab and Field Audits

Sampling Plans

QA/QC Review of Volatiles Data for STL Buffalo, Job #: A05-7481

14 Soil and 3 Sediment Samples Collected July 13 and 14, 2005

Prepared by: Donald Anné December 19, 2005

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The compounds with RRF and %RSD requirements for ASP met those criteria.

The average RRFs for target compounds were above the allowable minimum (0.050) and the %RSDs were below the allowable maximum (30%), as required.

<u>Continuing Calibration</u>: The %Ds for bromomethane (26.3%) and 1,2,4-trichlorobenzene (29.9%) were above the ASP required maximum (25%), but were less than 40% on 07-22-05 (O6603.RR). No action is taken when two or fewer compounds per calibration do not meet ASP criteria, provided that the %Ds are less than 40% and RRF50s are greater than 0.010.

The RRF50s for target compounds were above the allowable minimum (0.050), as required. The %Ds for chloromethane (31.7%), bromomethane (26.3%), chloroethane (30.8%), dichlorodifluoromethane (51.8%), trichlorofluoromethane (37.4%), and 1,2,4-trichlorobenzene (29.9%) were above the allowable maximum (25%) on 07-22-05 (O6603.RR). The %Ds for carbon disulfide (32.7%) and cyclohexane (27.4%) were above the allowable maximum (25%) on 07-22-05 (O6603.RR). The %Ds for carbon disulfide (32.7%) and cyclohexane (27.4%) were above the allowable maximum (25%) on 07-22-05 (O6627.RR). Positive results for these compounds should be considered estimates (J) in associated samples.

- <u>Blanks</u>: Method blank VBLK10 contained a trace of acetone (2 ug/kg). Results for acetone that are less than ten times the method blank level should be reported as not detected (U) in associated samples.
- Internal Standard Area Summary: The internal standard areas and retention times were within control limits.

Volatiles Data Job #: A05-7481

Surrogate Recovery: The surrogate recoveries were within control limits for environmental samples.

- Matrix Spike/Matrix Spike Duplicate: The relative percent differences were below the allowable maximums and the percent recoveries were within control limits for the MS/MSD sample MW-114B.
- Matrix Spike Blank: The percent recoveries were within QC limits for samples VBLK10 and VBLK11.
- <u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

-

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\a05-7481.vol.wpd

Data Validation

Environmental Chemistry

Lab and Field Audits

Sampling Plans

Data Usability Summary Report for STL Buffalo, Job #: A05-B766

11 Ground Water and 3 Surface Water Samples Collected October 18, 2005

> Prepared by: Donald Anné December 19, 2005

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 11 ground water and 3 surface water samples analyzed for volatiles, one ground water sample analyzed for semi-volatiles, and 10 ground water samples analyzed for TAL metals and methyl blue active substances (MBAS).

The overall performances of the analyses are acceptable. STL Buffalo did fulfill the requirements of the analytical methods.

The data are acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

Results reported as "not detected" for dichlorodifluoromethane were flagged as "unusable"
 (R) in the following samples because the RRF50 for dichlorodifluoromethane was below the allowable minimum for the associated continuing calibration.

		0		
MW-114	MW-116	MW-117	MW-117A	MW-118
MW-119	MW-120	MW-121	MW-122	MW-123
	141 44 -120			101 00 -125
SW-1	SW-2	C111 2		
5 W-1	5w-2	SW-3		

- The results for several volatile compounds in samples MW-116, MW-118, MW-122, and MW-123 were flagged as "estimated" (J), because the results for those compounds were quantitated by extrapolating data above the highest calibration standard.
- All results for lead were flagged as "estimated" (J) in the following samples because the percent recovery for lead was below the EPA region II control in the associated CRDL standard, CRI.

MW-114	MW-115	MW-116	MW-117	MW-117A
MW-119	MW-120	MW-122	MW-123	

DUSR Job #: A05-B766

Positive results for arsenic were flagged as "estimated" (J) in the following samples because the percent recovery for arsenic was above the EPA region II control in the associated CRDL standard, CRI.

MW-118 MW-119 MW-120 MW-122 MW-123

All results for mercury were flagged as "estimated" (J) in all ten ground water samples because the 1 of 2 %Rs for mercury was below control limits (75-125%) in MS/MSD sample MW-117.

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Page 2 of 2

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\a05-b766.dus.wpd

Data Validation

Environmental Chemistry

Lab and Field Audits Sampling Plans

QA/QC Review of Volatiles Data for STL Buffalo, Job #: A05-B766

11 Ground Water and 3 Surface Water Samples Collected October 18, 2005

Prepared by: Donald Anné December 19, 2005

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The compounds with RRF and %RSD requirements for ASP met those criteria.

The average RRFs for target compounds were above the allowable minimum (0.050) and the %RSDs were below the allowable maximum (30%), as required.

<u>Continuing Calibration</u>: The RRF50 for 1,1,2,2-tetrachloroethane (0.2988) was below the ASP required maximum (0.300), but was greater than 0.010 on 10-22-05 (O8348.RR). No action is taken when two or fewer compounds per calibration do not meet ASP criteria, provided that the %Ds are less than 40% and RRF50s are greater than 0.010.

The RRF50 for dichlorodifluoromethane (0.0061) was below the allowable minimum (0.050) on 10-22-05 (O8348.RR). Positive results for dichlorodifluoromethane should be considered estimates (J) and negative results unusable (R) in associated samples.

The %Ds for dichlorodifluoromethane (97.8%) and trichlorofluoromethane (33.2%) were above the allowable maximum (25%) on 10-22-05 (O8348.RR). Positive results for these two compounds should be considered estimates (J) in associated samples.

Blanks: The analyses of method and holding blanks reported target compounds as not detected.

Internal Standard Area Summary: The internal standard areas and retention times were within control limits.

Volatiles Data Job #: A05-B766

Surrogate Recovery: The surrogate recoveries were within control limits for environmental samples.

- <u>Matrix Spike/Matrix Spike Duplicate</u>: The relative percent differences were below the allowable maximums and the percent recoveries were within control limits for the MS/MSD sample MW-117.
- Matrix Spike Blank: The percent recoveries were within QC limits for samples VBLK91 and VBLK92.
- <u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

The results for several volatile compounds in samples MW-116, MW-118, MW-122, and MW-123 were quantitated by extrapolating data above the highest calibration standard and marked 'E' by the laboratory. The samples were diluted by the laboratory and re-analyzed; therefore, the results for these compounds that are flagged as 'E' in the undiluted samples should be considered estimated (J) and the use of the diluted results for these compounds is recommended. It is recommended that the undiluted results be used for all other compounds.

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\a05-b766.vol.wpd

Sampling Plans

QA/QC Review of TCL Semi-Volatiles Data for STL Buffalo, Job #: A05-B766

One Ground Water Sample Collected October 18, 2005

Prepared by: Donald Anné December 19, 2005

Holding Times: Sample MW-117 was extracted and analyzed within EPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within control limits for method 8270C.

The average RRFs for target compounds were above the allowable minimum (0.050) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within control limits for method 8270C.

The RRF50s for target compounds were above the allowable minimum (0.050) and the %Ds were below the allowable maximum (25%), as required.

Blanks: The analysis of the method blank reported target compounds as not detected.

Internal Standard Area Summary: The internal standard areas and retention times were within control limits.

Surrogate Recovery: The surrogate recoveries were within control limits for sample MW-117.

<u>Matrix Spike/Matrix Spike Duplicate</u>: MS/MSD data was not provided in this data pack. No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.

Semi-Volatiles Data Job #: A05-B766

Matrix Spike Blank: The percent recoveries were within QC limits for aqueous sample "S Blank".

<u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

Page 2 of 2

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\a05-b766.svl.wpd

Data Validation

Environmental Chemistry

Lab and Field Audits

Sampling Plans

QA/QC Review of TAL Metals Data for STL Buffalo, Job #: A05-B766

10 Ground Water Samples Collected October 18, 2005

Prepared by: Donald Anné December 19, 2005

Holding Times: Samples were analyzed within SW-846 holding times.

- Initial and Continuing Calibration Verification: The percent recoveries for TAL metals were within control limits (80-120% for mercury and 90-110% for all other metals).
- <u>CRDL Standard for AA & ICP</u>: The percent recoveries for arsenic (134.3%) and lead (74.2%) were outside EPA Region II QC limits (80-120%) in the standard, CRI. Positive results for arsenic that are less than 20 ug/L should be considered estimates in associated samples. All results for lead that are less than 10 ug/L should be considered estimates in associated samples
- <u>Blanks</u>: The analyses of initial and continuing calibration, preparation, and equipment blanks reported TAL metals as less than the CRDLs, as required.
- <u>ICP Interference Check Sample</u>: The percent recoveries for applicable TAL metals were within control limits (80-120%).
- Spike Sample Recovery: One of two percent recoveries for mercury was below control limits (75-125%) for MS/MSD sample MW-117. All results for mercury should be considered estimates (J).
- <u>Lab Duplicates</u>: The relative percent difference for mercury was above the allowable maximum (20%) for MS/MSD sample MW-117. Positive results for mercury should be considered estimates (J).
- Laboratory Control Sample: The percent recoveries for TAL metals were within control limits (80-120%) for the aqueous LCSs.

TAL Metals Data Job #: A05-B766

<u>ICP Serial Dilution</u>: The %Ds for applicable metals were below the allowable maximum (10%) for serial dilution sample MW-117, as required.

Instrument Detection Limits: The IDLs for target metals were at or below the CRDLs, as required.

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\a05-b766.met.wpd

Environmental Chemistry

Lab and Field Audits Sampling Plans QA/QC Review of Methyl Blue Active Substances (MBAS) Data for STL Buffalo, Job #: A05-9426

> 10 Ground Water Samples Collected October 18, 2005

Prepared by: Donald Anné December 19, 2005

Holding Times: Samples were analyzed within EPA holding times.

Initial Calibration: The correlation coefficient for the MBAS curve (0.99525) was above the allowable minimum (0.995), as required.

Blanks: The analysis of the method blank reported MBAS as not detected.

Spike Sample Recovery: The percent recoveries for MBAS were within control limits (75-125%) for MS/MSD sample MW-117.

<u>Duplicates</u>: The relative percent difference for MBAS (2%) was below the allowable maximum (20%) for MS/MSD sample MW-117, as required.

Laboratory Control Sample: The percent recovery (95%) for MBAS was within control limits (80-120%) for the aqueous LCSs.

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\a05-b766.mbs.wpd

February 20, 2006

Mr. Mark Schumacher Delta Environmental Consultants, Inc. 104 Jamesville Road Syracuse, New York 13204

Re: Data Validation Report HB Fuller VCP Site Delta Project No. V004210-1

Dear Mr. Schumacher:

The data validation summaries are attached to this letter for the HB Fuller VCP Site, data for the January 2006 ground water sampling event. The data for STL Buffalo, combined Job Nos. A06-0397 and A06-0438 were mostly acceptable with one issue that is identified and discussed in the validation summary. The data pack contained one "not detected" result for iron that was qualified as unusable (R). The individual QA/QC review for metals contains the explanation for rejecting the data, and is based solely on the validation guidance criteria. The rejected data may be determined to be acceptable to the user based on additional information that is not contained in the data validation criteria.

A list of common data validation acronyms is attached to this letter to assist you interpreting the validation summaries. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Delta Environmental Consultants, Inc.

Sincerely, Alpha Environmental Consultants, Inc.

Donald Anné Senior Chemist

DCA:dca attachments

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\hb fuller-2.ltr.wpd

SAMPLE SUMMARY

		SAMP	LED	RECEIV	ED	
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A6039708	MW-114	WATER	01/11/2006	14:15	01/12/2006	14:00
A6039704	MW-115	WATER	01/11/2006	11:30	01/12/2006	14:00
A6039707	MW-116	WATER	01/11/2006	13:30	01/12/2006	14:00
A6039702	MW-117	WATER	01/11/2006	11:05	01/12/2006	14:00
A6039702MS	MW-117 MS	WATER	01/11/2006	11:05	01/12/2006	14:00
A6039702SD	MW-117 SD	WATER	01/11/2006	11:05	01/12/2006	14:00
A6039703	MW-117A	WATER	01/11/2006	11:05	01/12/2006	14:00
A6039705	MW-118	WATER	01/11/2006	12:15	01/12/2006	14:00
A6039706	MW-119	WATER	01/11/2006	13:00	01/12/2006	14:00
A6043803	MW-120	WATER	01/12/2006	11:30	01/13/2006	08:50
A6043802	MW-121	WATER	01/12/2006	10:30	01/13/2006	08:50
A6039701	MW-122	WATER	01/11/2006	10:15	01/12/2006	14:00
A6043801	MW-123	WATER	01/12/2006	09:45	01/13/2006	08:50
A6043804	TRIP BLANK	WATER	01/12/2006		01/13/2006	08:50

Data Validation Acronyms

	A A	
	AA	Atomic absorption, flame technique
	BHC	Hexachlorocyclohexane
	BFB	Bromofluorobenzene
	CCB	Continuing calibration blank
	CCC	Calibration check compound
	CCV	Continuing calibration verification
	CN	Cyanide
	CRDL	Contract required detection limit
	CRQL	Contract required quantitation limit
	CVAA	Atomic adsorption, cold vapor technique
	DCAA	2,4-Dichlophenylacetic acid
	DCB	Decachlorobiphenyl
	DFTPP	Decafluorotriphenyl phosphine
	ECD	Electron capture detector
	FAA	Atomic absorption, furnace technique
	FID	Flame ionization detector
	FNP	1-Fluoronaphthalene
	GĊ	Gas chromatography
	GC/MS	Gas chromatography/mass spectrometry
	GPC	Gel permeation chromatography
	ICB	Initial calibration blank
	ICP	Inductively coupled plasma-atomic emission spectrometer
	ICV	Initial calibration verification
	IDL	Instrument detection limit
	IS	Internal standard
	LCS	Laboratory control sample
	LCS/LCSD	Laboratory control sample/laboratory control sample duplicate
	MSA	Method of standard additions
	MS/MSD	Matrix spike/matrix spike duplicate
	PID	Photo ionization detector
	PCB	Polychlorinated biphenyl
	PCDD	Polychlorinated dibenzodioxins
	PCDF	Polychlorinated dibenzofurans
•	QA	Quality assurance
	QC	Quality control
	RF	Response factor
	RPD	Relative percent difference
	RRF	Relative response factor
	RRF(number)	Relative response factor at concentration of the number following
	RT	Retention time
	RRT	Relative retention time
	SDG	Sample delivery group
	SPCC	System performance check compound
	TCX	Tetrachloro-m-xylene
	%D	Percent difference
	%R	Percent recovery
	%RSD	Percent relative standard deviation

-

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\ACRONYMS.WPD

Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

U = Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.

- R = Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N = Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

Data Usability Summary Report for STL Buffalo, Job #: A06-0397, A06-0438

11 Ground Water Samples and 1 Trip Blank Collected January 11 and 12, 2006

Prepared by: Donald Anné February 20, 2006

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 11 ground water samples analyzed for volatiles, TAL metals and methyl blue active substances (MBAS), and one trip blank analyzed for volatiles only.

The overall performances of the analyses are acceptable. STL Buffalo did fulfill the requirements of the analytical methods.

The data are acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

- Results for samples MW-116 and MW118DL were flagged as "estimates" (J) because the samples were analyzed beyond NYSDEC ASP holding times.
- The result for tetrachloroethene in sample MW-118 was flagged as "estimated" (J), because the result for tetrachloroethene was quantitated by extrapolating data above the highest calibration standard.
- All results for beryllium and selenium were flagged as "estimated" (J) in all 11 ground water samples because the percent recoveries for beryllium and selenium were below the EPA Region II control criteria in the associated CRDL standard, CRI.
- The "not detected" results for mercury were flagged as "estimated" (J) in samples MW-120, MW-121, and MW-123 because the percent recovery for mercury was below the EPA Region II control criteria in the associated CRDL standard, CRA #2.
- Positive results for arsenic were flagged as "estimated" (J) in samples MW-117, MW-117A, MW-119, and MW-121 because the relative percent difference for arsenic was above the allowable maximum (20%) in duplicate sample MW-117.

DUSR Job #: A06-0397, A06-0438

- Positive results for iron were flagged as "estimated" (J) in all 11 ground water samples except MW-116 because the percent recoveries for iron were below control limits (75-125%), and below 30% in MS/MSD sample MW-117.
- The "not detected" result for iron was flagged as "unusable" (R) in sample MW-116 because the percent recoveries for iron were below control limits (75-125%), and below 30% in MS/MSD sample MW-117.
- Positive results for MBAS were flagged as "estimated" (J) in the following samples because the percent recoveries for MBAS were above control limits (75-125%) in MS/MSD sample MW-117.

MW-117 MW-117A MW-119 MW-120 MW-121

All data that are not flagged rejected (R) are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Page 2 of 2

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\a06-0397.dus.wpd

Environmental Chemistry Lab and Field Audits

Sampling Plans

QA/QC Review of Volatiles Data for STL Buffalo, Job #: A06-0397, A06-0438

11 Ground Water Samples and 1 Trip Blank Collected January 11 and 12, 2006

> Prepared by: Donald Anné February 20, 2006

Holding Times: Samples MW-116 and MW-118DL were analyzed beyond NYSDEC ASP holding times. Results for samples MW-116 and MW-118DL should be considered estimates (J).

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The %RSD for bromomethane was above the ASP maximum, but was not greater than 40% for HP5973Q on 01-18-06. The %RSD for bromomethane was above the ASP maximum, but was not greater than 40% for HP5973Q on 01-23-06. No action is taken when two or fewer compounds per calibration do not meet ASP criteria, provided that the %RSDs are less than 40% and RRFs are greater than 0.010.

The average RRFs for target compounds were above the allowable minimum (0.050), as required.

The %RSD for bromomethane (30.7%) was above the allowable maximum (30%) for HP5973Q on 01-18-06. Positive results for bromomethane should be considered estimates (J) in associated samples.

Continuing Calibration: The compounds with RRF50 and %D requirements for ASP met those criteria.

The RRF50s for target compounds were above the allowable minimum (0.050) and the %Ds were below the allowable maximum (30%), as required.

Blanks: The analyses of method, holding, and trip blanks reported target compounds as not detected.

Internal Standard Area Summary: The internal standard areas and retention times were within control limits.

Volatiles Data Job #: A06-0397

Surrogate Recovery: The surrogate recoveries were within control limits for environmental samples.

- <u>Matrix Spike/Matrix Spike Duplicate</u>: The relative percent differences were below the allowable maximums and the percent recoveries were within control limits for the MS/MSD sample MW-117.
- Matrix Spike Blank: The percent recoveries were within QC limits for samples VBLK59, VBLK60, VBLK61, and VBLK63.
- <u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

The result for tetrachloroethene in sample MW-118 was quantitated by extrapolating data above the highest calibration standard and marked 'E' by the laboratory. The sample was diluted by the laboratory and re-analyzed; therefore, the result for tetrachloroethene that is flagged as 'E' in the undiluted sample should be considered estimated (J) and the use of the diluted result for tetrachloroethene is recommended. It is recommended that the undiluted results be used for all other compounds.

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\a06-0397.vol.wpd

QA/QC Review of TAL Metals Data for STL Buffalo, Job #: A06-0397, A06-0438

11 Ground Water Samples Collected January 11 and 12, 2006

> Prepared by: Donald Anné February 20, 2006

Holding Times: Samples were analyzed within SW-846 holding times.

- <u>Initial and Continuing Calibration Verification</u>: The percent recoveries for TAL metals were within control limits (80-120% for mercury and 90-110% for all other metals).
- <u>CRDL Standard for AA & ICP</u>: The percent recoveries for beryllium (73.5%) and selenium (75.3%) were below EPA Region II QC limits (80-120%) in the standard, CRI. All results for beryllium that are less than 4 ug/L and selenium that are less than 30 ug/L should be considered estimates (J) in associated samples.

The percent recovery for mercury (75.3%) was below EPA Region II QC limits (80-120%) in the standard, CRA #2. All results for mercury that are less than 0.4 ug/L should be considered estimates (J) in associated samples.

- <u>Blanks</u>: The analyses of initial and continuing calibration, preparation, and equipment blanks reported TAL metals as less than the CRDLs, as required.
- <u>ICP Interference Check Sample</u>: The percent recoveries for applicable TAL metals were within control limits (80-120%).
- Spike Sample Recovery: The percent recoveries for iron (-1.5% and 15.2%) were below control limits (75-125%) and below 30% for MS/MSD sample MW-117. Positive results for iron should be considered estimates (J) and negative results unusable (R).
- <u>Lab Duplicates</u>: The relative percent difference for arsenic (21.0%) was above the allowable maximum (20%) for MS/MSD sample MW-117. Positive results for arsenic should be considered estimates (J).

TAL Metals Data Job #: A06-0397

Laboratory Control Sample: The percent recoveries for TAL metals were within control limits (80-120%) for the aqueous LCSs.

<u>ICP Serial Dilution</u>: The %Ds for applicable metals were below the allowable maximum (10%) for serial dilution sample MW-117, as required.

Instrument Detection Limits: The IDLs for target metals were at or below the CRDLs, as required.

Page 2 of 2

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\a06-0397.met.wpd

QA/QC Review of Methyl Blue Active Substances (MBAS) Data for STL Buffalo, Job #: A06-0397, A06-0438

> 11 Ground Water Samples Collected January 11 and 12, 2006

> > Prepared by: Donald Anné February 20, 2006

Holding Times: Samples were analyzed within EPA holding times.

Initial Calibration: The correlation coefficient for the MBAS curve (0.99617) was above the allowable minimum (0.995), as required.

Blanks: The analyses of the method blanks reported MBAS as not detected.

- Spike Sample Recovery: The percent recoveries for MBAS (172% and 162%) were above control limits (75-125%) for MS/MSD sample MW-117. Positive results for MBAS should be considered estimates (J).
- <u>Duplicates</u>: The relative percent difference for MBAS (6%) was below the allowable maximum (20%) for MS/MSD sample MW-117, as required.

Laboratory Control Sample: The percent recovery (106%) for MBAS was within control limits (80-120%) for the aqueous LCSs.

E:\Alpha E\dataval projects\2005 Projects\05519-hb fuller\a06-0397.mbs.wpd

ATTACHMENT 2

ANALYTICAL DATA SUMMARY PACKAGES

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A05-7310

STL Project#: NY4A9341

Site Name: <u>Delta Environmental Consultants, Inc.</u> Task: Geneva Site - soils

Mark Schumacher Delta Environmental 104 Jamesville Rd. Syracuse, NY 13214

STL Buffalo

Brian J/Fischer Project Manager

08/08/2005

_

STL Buffalo Current Certifications

STATE	Program	Cert #/Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	03-054-0/88-0586
California	NELAP SDWA, CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP RCRA	E87672
Georgia	SDWA	956
llinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
Vew Jersey	SDWA, CWA, RCRA, CLP	NY455
Vew York	NELAP, AIR, SDWA, CWA, RCRA	10026
North Carolina	CWA	411
North Dakota	SDWA, CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Pennsylvania	Env. Lab Reg.	68-281
South Carolina	RCRA	91013
USDA	FOREIGN SOIL PERMIT	S-41579
/irginia	SDWA	278
Vashington	CWA	· C254
Vest Virginia	CWA	252
Visconsin	CWA	998310390

Sample Data Summary Package

SAMPLE SUMMARY

				SAMP	ED	RECEIVE	ED .
LAB SAMPLE ID	CLIENT	SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A5731010	MW-115A		SOIL			07/13/2005	
A5731011	MW-115B		SOIL			07/13/2005	
A5731011MS	MW-115B		SOIL			07/13/2005	
A5731011SD	MW-115B	• .	SOIL			07/13/2005	
A5731012	MW-116A		SOIL			07/13/2005	
A5731013	MW-116B		SOIL			07/13/2005	
A5731008	MW-117A		SOIL			07/13/2005	
A5731009	MW-117B		SOIL			07/13/2005	
A5731005	MW-118A		SOIL	07/12/2005	08:00	07/13/2005	07:45
A5731006	MW-118B		SOIL	07/12/2005	08:10	07/13/2005	07:45
A5731007	MW-118C		SOIL			07/13/2005	
A5731003	MW-119A		SOIL			07/13/2005	
A5731004	MW-119B		SOIL	07/11/2005	14:10	07/13/2005	07:45
A5731001	MW-120A		SOIL			07/13/2005	
A5731002	MW-120B		SOIL	07/11/2005	10:40	07/13/2005	07:45

_

METHODS SUMMARY

Job#: <u>A05-7310</u>

SIL Project#: <u>NY4A9341</u> Site Name: <u>Delta Environmental Consultants, Inc.</u>

	ANALYTICAL
PARAMETER	METHOD
DELTA - AQ - ASP 2000/8260 - TCL VOLATILES	ASP00 8260/5ML
DELTA - SOIL ASP 2000/8260 - TCL VOLATILES	ASP00 8260

ASP00 "Analytical Services Protocol", New York State Department of Conservation, June 2000.

NON-CONFORMANCE SUMMARY

Job#: <u>A05-7310</u>

SIL Project#: <u>NY4A9341</u> Site Name: <u>Delta Environmental Consultants</u>, Inc.

General Comments

The enclosed data have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A05-7310

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC/MS Volatile Data

The analyte Methylene Chloride was detected in Method Blank VBLK08 (A5B1105903) at a level below the project established reporting limit. No corrective action is necessary for any values in Method Blanks that are below the requested reporting limits.

The analyte Toluene was detected in the Volatile Holding Blank at a level above the project established reporting limit. With the exception of sample MW-116A, Toluene was not detected in the associated samples.

The analytes Methylene Chloride and Trichloroethene were detected in the Volatile Holding Blank at a level below the project established reporting limit. The VHB was preserved to a PH less than 2.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Brian J. Fischer Project Manager

39-05

Date

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID	ANALYTICAL REQUIREMENTS						
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
MW-115A	A5731010	ASP00		-	-	-	-	-
MW-115B	A5731011	ASP00	-	-	-	-	-	-
MW-116A	A5731012	ASP00	_ 1	-	-	-	-	-
MW-116B	A5731013	ASP00	-	-	-	-	-	-
MW-117A	A5731008	ASP00	-	-	-	-	-	-
MW-117B	A5731009	ASP00	-	-	-	-	-	- .
MW-118A	A5731005	ASP00	<u>-</u>	-	-	-	-	
MW-118B	A5731006	ASP00	-	-	· _ ·	-	-	-
MW-118C	A5731007	ASP00	-	-	-	-	-	-
MW-119A	A5731003	ASP00	-	-	- '.	-	-	-
MW-119B	A5731004	ASP00	•	-	-	-	-	-
MW-120A	A5731001	ASP00	-	-	-	-	-	-
MW-120B	A5731002	ASP00	- .	-	-		-	-

NYSDEC-1

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE ANALYSIS

SAMPLE MATRIX DATE DATE DATE DATE **IDENTIFICATION** COLLECTED RECEIVED EXTRACTED ANALYZED AT LAB MW-115A SOIL 07/12/2005 07/13/2005 07/22/2005 -MW-115B SOIL 07/12/2005 07/13/2005 07/22/2005 -MW-116A SOIL 07/12/2005 07/13/2005 07/21/2005 -MW-116B SOIL 07/12/2005 07/13/2005 07/21/2005 -MW-117A SOIL 07/12/2005 07/13/2005 07/20/2005 -MW-117B SOIL 07/12/2005 07/13/2005 07/20/2005 -MW-118A SOIL 07/12/2005 07/13/2005 07/20/2005 -MW-118B SOIL 07/12/2005 07/13/2005 07/20/2005 -MW-118C SOIL 07/13/2005 07/12/2005 07/20/2005 -MW-119A SOIL 07/11/2005 07/13/2005 07/20/2005 -MW-119B SOIL 07/11/2005 07/13/2005 07/20/2005 -MW-120A SOIL 07/11/2005 07/13/2005 07/20/2005 -MW-120B SOIL 07/11/2005 07/13/2005 -07/20/2005

LAB NAME: SEVERN TRENT LABORATORIES, INC.

NYSDEC-2

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

SAMPLE	MATRIX	ANALYTICAL	EXTRACTION	AUXILIARY	DIL/CONC
IDENTIFICATION	3	PROTOCOL	METHOD	CLEAN UP	FACTOR
MW-115A	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-115B	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-116A	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-116B	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-117A	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-117B	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-118A	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-118B	SOIL	ASP00		AS REQUIRED	AS REQUIRED
MW-118C	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-119A	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-119B	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-120A	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-120B	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED

NYSDEC-6

DATA COMMENT PAGE

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected at or above the reporting limit.

- J indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample guantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- ¹ indicates coelution.
- Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected at or above the reporting limit.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- K Indicates the post digestion spike recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- M Indicates duplicate injection results exceeded quality control limits.
- W Post digestion spike for Furnace AA analysis is out of quality control limits (85-115%) while sample absorbance is less than 50% of spike absorbance.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- Indicates analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Client No.

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

b Name: <u>STL Buffalo</u> Contract:	MW-115A	
Lab Code: <u>RECINY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: A5731010	
Sample wt/vol: (g/mL) G	Lab File ID: <u>Q6584.RR</u>	
Level: (low/med) LOW	Date Samp/Recv: 07/12/2005 07/13/	2005
% Moisture: not dec. <u>15</u> Heated Purge: \underline{Y}	Date Analyzed: 07/22/2005	
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00	
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)	1 A.
	CONTENTEDATION INTING.	

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/KG

Q

_

74-87-3Chloromethane	12	U
74-83-9Bromomethane	12	U
75-01-4Vinyl chloride	12	U
75-00-3Chloroethane	12	U
75-09-2Methylene chloride	6	JU
67-64-1Acetone	12	U
75-15-0Carbon Disulfide	12	U
75-35-41,1-Dichloroethene	12	υ
75-34-31,1-Dichloroethane	12	U
67-66-3Chloroform	12	U
107-06-21,2-Dichloroethane	12	U
78-93-32-Butanone	12	U
71-55-61,1,1-Trichloroethane	12	U
56-23-5Carbon Tetrachloride	12	U
75-27-4Bromodichloromethane	12	U
78-87-51,2-Dichloropropane	12	U
10061-01-5cis-1,3-Dichloropropene	12	U
79-01-6Trichloroethene	12	υ
124-48-1Dibromochloromethane	12	U
79-00-51,1,2-Trichloroethane	12	U
71-43-2Benzene	12	U
10061-02-6trans-1,3-Dichloropropene	12	U
75-25-2Bromoform	12	U
108-10-14-Methyl-2-pentanone	12	U
591-78-62-Hexanone	12	U
127-18-4Tetrachloroethene	12	U
108-88-3Toluene	12	U
79-34-51,1,2,2-Tetrachloroethane	12	U
108-90-7Chlorobenzene	12	U
100-41-4Ethylbenzene	12	U
100-42-5Styrene	12	U
1330-20-7Total Xylenes	12	υ
76-13-11,1,2-Trichloro-1,2,2-trifluoroethane	12	U
		1
156-59-2cis-1,2-Dichloroethene	12	Ŭ

FORM I - GC/MS VOA

Client No.

-

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

		•	MW-115A
س Name: <u>STL Buffalo</u> O	ontract:		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL		Lab Sample ID:	<u>A5731010</u>
Sample wt/vol: (g/mL) G	<u> </u>	Lab File ID:	<u>Q6584.RR</u>
Level: (low/med) LOW		Date Samp/Recv:	07/12/2005 07/13/2005
* Moisture: not dec. <u>15</u> Heated	Purge: <u>Y</u>	Date Analyzed:	07/22/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm))	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND	(ug/L or ug/Kg) <u>UG/KG</u>	Q
	trans-1,2-Dichloroethene		12	ប
75-71-8	Dichlorodifluoromethane		12	υ
75-69-4	Trichlorofluoromethane		12	υ
	Methyl acetate		12	ប
1634-04-4	Methyl-t-Butyl Ether (MIBE)		12	U
	Cyclohexane		12	U
108-87-2	Methylcyclohexane		12	U
106-93-4	1,2-Dibromoethane		12	υ
98-82-8	Isopropylbenzene		12	U
541-73-1	1,3-Dichlorobenzene		12	υ
106-46-7	1,4-Dichlorobenzene		12	υ
95-50-1	1,2-Dichlorobenzene		12	υ
	1,2-Dibromo-3-chloropropane	3	12	υ
120-82-1	1,2,4-Trichlorobenzene		12	υ

Client No.

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

MW-115A b Name: STL Buffalo Contract: Lab Code: RECNY Case No.: _____ SAS No.: _____ SDG No.: Matrix: (soil/water) SOIL Lab Sample ID: A5731010 Sample wt/vol: _______ (g/mL) G_____ Lab File ID: <u>Q6584.RR</u> Level: (low/med) LOW Date Samp/Recv: 07/12/2005 07/13/2005 % Moisture: not dec. 14.8 Date Analyzed: 07/22/2005 GC Column: <u>DB-624</u> ID: 0.25 (mm) Dilution Factor: _____1.00 Soil Aliquot Volume: _____ (uL) Soil Extract Volume: (uL)

Number TICs found: __1

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	3.95	14	JN

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

	· ·	MW-115B
Name: <u>STL Buffalo</u> Contract:		
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A5731011</u>
Sample wt/vol: 5.20 (g/mL) G	Lab File ID:	Q6585.RR
Level: (low/med) LOW	Date Samp/Recv:	07/12/2005 07/13/2005
% Moisture: not dec. <u>20</u> Heated Purge: \underline{Y}	Date Analyzed:	07/22/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Volu	me: (uL)

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

Q	

-

			00/100	¥ .
	Chloromethane		12	U
	Bromomethane		12	U
	Vinyl chloride		12	U
	Chloroethane		12	U
75-09-2	Methylene chloride		· 7	30
67-64-1			3	J
75-15-0	Carbon Disulfide		12	U
	1,1-Dichloroethene		12	U
75-34-3	1,1-Dichloroethane		12	U
	Chloroform		12	U
107-06-2	1,2-Dichloroethane		12	U
	2-Butanone		12	U
71-55-6	1,1,1-Trichloroethane		12	U
56-23-5	Carbon Tetrachloride		12	U
75-27-4	Bromodichloromethane		12	U
78-87-5	1,2-Dichloropropane		12	U
	cis-1,3-Dichloropropene		12	ש
	Trichloroethene		12	U
124-48-1	Dibromochloromethane		12	U
	1,1,2-Trichloroethane		12	U
71-43-2			12	υ
10061-02-6	trans-1,3-Dichloropropene		12	U
	Brompform		12	υ
	4-Methyl-2-pentanone		12	U
	2-Hexanone		12	U
	Tetrachloroethene		1	J
108-88-3			12	Ū
	1,1,2,2-Tetrachloroethane		12	Ū
108-90-7	Chlorobenzene		12	U
	Ethylbenzene		12	U
100-42-5			12	U
	Total Xylenes		12	υ
	1,1,2-Trichloro-1,2,2-trifluoro	thane	12	U
	cis-1,2-Dichloroethene		12	UU
120-22-2			12	

12

12

12

12

12

ប U

υ

U

U

Ń

Client No.

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

	· · · · · · · · · · · · · · · · · · ·	MW-115	B	
b Name: <u>STL Buffalo</u> Contract:		L		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:			•
Matrix: (soil/water) SOIL	Lab Sample II	: <u>A573101</u>	1	
Sample wt/vol: (g/mL) G	Lab File ID:	<u>Q6585.</u>	R	•
Level: (low/med) LOW	Date Samp/Rec	w: <u>07/12/2</u>	2005 07/	13/2005
% Moisture: not dec. <u>20</u> Heated Purge: \underline{Y}	Date Analyzed	l: <u>07/22/2</u>	2005	
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Fact	or: <u>1.(</u>	00	
Soil Extract Volume: (uL)	Soil Aliquot	Volume:		(uL)
CAS NO. COMPOUND	CONCENTRATION UNI (ug/L or ug/Kg)		Q	
156-60-5trans-1,2-Dichloroethene 75-71-8Dichlorodifluoromethane		12 12	U U	
75-69-4Trichlorofluoromethane		12 12	U U	
1634-04-4Methyl-t-Butyl Ether (MIBE)		12	U	
110-82-7Cyclohexane	· · · · · · · · · · · · · · · · · · ·	12	U	
108-87-2Methylcyclohexane		12	υ	
106-93-41,2-Dibromoethane		12	U	
98-82-8Isopropylbenzene		12	U	

98-82-8-----Isopropylbenzene 541-73-1----1,3-Dichlorobenzene

106-46-7----1,4-Dichlorobenzene

95-50-1-----1,2-Dichlorobenzene

120-82-1----1,2,4-Trichlorobenzene

96-12-8-----1,2-Dibromo-3-chloropropane

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

			C	lient No.
			MW-115B	
سر Name: <u>STL Buffalo</u> Cor	ntract:			T
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:		
Matrix: (soil/water) SOIL		Lab Sample ID:	A5731011	
Sample wt/vol: <u>5.20</u> (g/mL) <u>G</u>	-	Lab File ID:	06585.RR	
Level: (low/med) LOW		Date Samp/Recv:	07/12/2005	07/13/2005
% Moisture: not dec. <u>19.8</u>		Date Analyzed:	07/22/2005	· · ·
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)		Dilution Factor:	1.00	
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume:	(uL)

Number TICs found: __1

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	3.94	10	JN

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

	Client No.
	MW-116A
b Name: <u>STL Buffalo</u> Contract:	
Lab Code: <u>REONY</u> Case No.: SAS No.: _	SDG No.:
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: A5731012
Sample wt/vol: 5.18 (g/mL) G	Lab File ID: <u>Q6582.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: 07/12/2005 07/13/2005
% Moisture: not dec. <u>16</u> Heated Purge: \underline{Y}	Date Analyzed: 07/21/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: <u>1.00</u>
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
74-87-3Chloromethane 74-83-9Bromomethane 75-01-4Vinyl chloride 75-00-3Chloroethane 75-09-2Methylene chloride 67-64-1Acetone 75-15-0Carbon Disulfide 75-35-41,1-Dichloroethene 75-34-31,1-Dichloroethene 67-66-31,2-Dichloroethane 78-93-32-Butanone	2 J 10 J 70 J 4 J 11 U 10 J 11 U 11 U

75-54-51,1-DIGIDOIOEUDADE	. 10	ບ	
67-66-3Chloroform	.11	ប	
107-06-21,2-Dichloroethane	11	ប	
78-93-32-Butanone	12		
71-55-61,1,1-Trichloroethane	7	J	
56-23-5Carbon Tetrachloride	11	ប	
75-27-4Bromodichloromethane	11	ប	
78-87-51,2-Dichloropropane	11	ប	
10061-01-5cis-1,3-Dichloropropene	11	U	
79-01-6Trichloroethene	10	JU	
124-48-1Dibromochloromethane	11	U	
79-00-51,1,2-Trichloroethane	11	U J	
71-43-2Benzene	16		
10061-02-6trans-1,3-Dichloropropene	11	ប	
75-25-2Bromoform	11	ប	
108-10-14-Methyl-2-pentanone	11	ប	
591-78-62-Hexanone	11	ប	
127-18-4Tetrachloroethene	8	J	
108-88-3Toluene	2	JU	
79-34-51,1,2,2-Tetrachloroethane	11	ບັ	
108-90-7Chlorobenzene	11	ប	
100-41-4Ethylbenzene	9	J	
100-42-5Styrene	3	J	
1330-20-7Total Xylenes	22		
76-13-11,1,2-Trichloro-1,2,2-trifluoroethane	11	บ่	
156-59-2cis-1,2-Dichloroethene	53		
• • • • • • • • • • • • • • • • • • • •			

Client No.

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

				_
			MW-116A	
ی Name: <u>STL Buffalo</u>	Contract:		L	٢
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:		
Matrix: (soil/water) SOIL		Lab Sample ID:	<u>A5731012</u>	
Sample wt/vol:5.18 (g/mL)	<u>G</u>	Lab File ID:	06582.RR	
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	07/12/2005 07/13/2005	ž
% Moisture: not dec. <u>16</u> Heate	d Purge: <u>Y</u>	Date Analyzed:	07/21/2005	
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume: (uL)	

CONCENTRATION UNITS: (ug/L or ug/Kg) U

CAS NO.	COMPOUND	(ug/L or ug/Kg) <u>UG/KG</u>	Q
156-60-5	trans-1,2-Dichloroet	hene	4	J
75-71-8	Dichlorodifluorometh	lane	4	J
75-69-4	Trichlorofluorometha	ane	11	U
79-20-9	Methyl acetate		11	U
1634-04-4	Methyl-t-Butyl Ether	(MIBE)	11	U
110-82-7	Cyclohexane		11	U
108-87-2	Methylcyclohexane		11	U
106-93-4	1,2-Dibromoethane		11	U
98-82-8	Isopropylbenzene		2	J
541-73-1	1,3-Dichlorobenzene		11	ប
106-46-7	1,4-Dichlorobenzene		11	U
95-50-1	1,2-Dichlorobenzene		11	U
96-12-8	1,2-Dibrano-3-chloro	propane	11	U
	1,2,4-Trichlorobenze		11	ប

.

DELTA - SOIL ASP 2000/8260 - TCL VOLATTLES TENIATIVELY IDENTIFIED COMPOUNDS

Client No.

		<u>MW-116A</u>
Lab Code: <u>RECNY</u> Case No.: SAS No.:	- SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID:	<u>A5731012</u>
Sample wt/vol: <u>5.18</u> (g/mL) <u>G</u>	Lab File ID:	<u>Q6582.RR</u>
Level: (low/med) LOW	Date Samp/Recv:	07/12/2005 07/13/2005
% Moisture: not dec. <u>15.5</u>	Date Analyzed:	07/21/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	lume: (uL)

Number TICs found: __3

CONCENTRATION UNITS: (Ug/L or Ug/Kg) <u>UG/KG</u>

	CAS NO.	Compound Name	RT	Est. Conc.	Q
1		UNKNOWN ALCOHOL HEXANE UNKNOWN SILANOL	3.66 3.94 4.52	28 23 6	J ML J

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

-

o Name: <u>STL_Buffalo</u> Contract:		MW-116B
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	•
Matrix: (soil/water) SOIL	Lab Sample ID:	<u>A5731013</u>
Sample wt/vol: 5.10 (g/mL) G	Lab File ID:	Q6583.RR
Level: (low/med) LOW	Date Samp/Recv:	07/12/2005 07/13/2005
% Moisture: not dec. <u>14</u> Heated Purge: <u>Y</u>	Date Analyzed:	07/21/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)
C	ONCENTRATION UNITS:	

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	· Q
	Chloromethane		11	U
	Bromomethane		11	U
	Vinyl chloride		11	U
	Chloroethane	· · ·	11	U
	Methylene chloride		14	U
	Acetone		5	J
75-15-0	Carbon Disulfide		11	U .
75-35-4	1,1-Dichloroethene		11	υ
75-34-3	1,1-Dichloroethane		11	U
	Chloroform		11	U
107-06-2-	1,2-Dichloroethane		11	U
	2-Butanone		11	U
71-55-6	1,1,1-Trichloroethane		1	J
	Carbon Tetrachloride		11	Ū
75-27-4	Bromodichloromethane		11	U
	1,2-Dichloropropane		11	U
	-5cis-1,3-Dichloropropene	······	11	Ū
	Trichloroethene	· · · · · · · · · · · · · · · · · · ·	2	JU
	Dibromochloromethane		11	υ
	1,1,2-Trichloroethane		11	Ū
	Benzene		11	U
	6trans-1,3-Dichloropropene		11	U
	Bromoform		11	U
	4-Methyl-2-pentanone		11	U
	2-Hexanone		11	U
	Tetrachloroethene		66	Ŭ
	Toluene		11	υ
	1,1,2,2-Tetrachloroethane		11	U
	Chlorobenzene		11	U
	Ethylbenzene		11	U
	Styrene		11	U
	Total Xylenes		11	UU
76-13-1	1,1,2-Trichloro-1,2,2-trifluoro	othano	11	U
	cis-1,2-Dichloroethene		2	J
130-39-2-			4	U

FORM I - GC/MS VOA

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

				Client No.
			MW-116B	
ے Name: <u>STL Buffalo</u> Cont:	ract:		L	
Lab Code: <u>RECNY</u> Case No.: S	AS No.:	SDG No.:	-	
Matrix: (soil/water) SOIL		Lab Sample ID:	A5731013	
Sample wt/vol: (g/mL) G		Lab File ID:	06583.RR	· ·
Level: (low/med) LOW		Date Samp/Recv:	07/12/2005 0	7/13/2005
% Moisture: not dec. <u>14</u> Heated Pure	ge: <u>Y</u>	Date Analyzed:	07/21/2005	
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	с. С	Dilution Factor	1.00	
Soil Extract Volume: (uL)		Soil Aliquot Vol	lume:	(uL)
CAS NO. COMPOUND		CENTRATION UNITS: g/L or ug/Kg)		ана ал

156-60-5trans-1,2-Dichloroethene	11	U
75-71-8Dichlorodifluoromethane	11	ប
75-69-4Trichlorofluoromethane	11	U
79-20-9Methyl acetate	11	U
1634-04-4Methyl-t-Butyl Ether (MIBE)	11	υ
110-82-7Cyclohexane	11	υ
108-87-2Methylcyclohexane	11	U
106-93-41,2-Dibromoethane	11	U
98-82-8Isopropylbenzene	11	U
541-73-11,3-Dichlorobenzene	11	U
106-46-71,4-Dichlorobenzene	11	U
95-50-11,2-Dichlorobenzene	11	υ
96-12-81,2-Dibromo-3-chloropropane	11	U
120-82-11,2,4-Trichlorobenzene	11	υ

Client No.

DELITA - SOIL ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

MW-116B > Name: <u>STL Buffalo</u> Contract: ____ Lab Code: RECNY Case No.: _____ SAS No.: _____ SDG No.: _____ Matrix: (soil/water) SOIL Lab Sample ID: A5731013 Sample wt/vol: _____5.10 (g/mL) G____ Lab File ID: Q6583.RR Level: (low/med) LOW Date Samp/Recv: 07/12/2005 07/13/2005 % Moisture: not dec. 14.5 Date Analyzed: 07/21/2005 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: _____1.00 Soil Extract Volume: ____ (uL) Soil Aliquot Volume: _____ (uL)

Number TICs found: <u>1</u>

CONCENTRATION UNITS: (Ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est.	Conc.	Q
1. 110-54-3	HEXANE	3.95	· · ·	25	JN

Client No.

-

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

en e	MW-117A
ab Name: <u>STL Buffalo</u> Contract:	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) SOIL	Lab Sample ID: A5731008
Sample wt/vol: <u>5.13</u> (g/mL) <u>G</u>	Lab File ID: <u>Q6570.RR</u>
Level: (low/med) LOW	Date Samp/Recv: 07/12/2005 07/13/2005
% Moisture: not dec. <u>22</u> Heated Purge: \underline{Y}	Date Analyzed: 07/20/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00
Soil Extract Volume:(uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
74-87-3Chloromethane 74-83-9Bromomethane	12 U 12 U

74-87-3Chloromethane	1 12	10
74-83-9Bromomethane	12	U
75-01-4Vinyl chloride	12	U
75-00-3Chloroethane	12	υ
75-09-2Methylene chloride	16	U
67-64-1Acetone	15	
75-15-0Carbon Disulfide	12	υ
75-35-41,1-Dichloroethene	12	U
75-34-31,1-Dichloroethane	12	U
67-66-3Chloroform	12	U
107-06-21,2-Dichloroethane	12	U
78-93-32-Butanone	12	U
71-55-61,1,1-Trichloroethane	12	U
56-23-5Carbon Tetrachloride	12	U
75-27-4Bromodichloromethane	12	U
78-87-51,2-Dichloropropane	12	U
10061-01-5cis-1,3-Dichloropropene	12	U
79-01-6Trichloroethene	12	U
124-48-1Dibromochloromethane	12	U
79-00-51,1,2-Trichloroethane	12	U
71-43-2Benzene	12	U
10061-02-6trans-1,3-Dichloropropene	12	U
75-25-2Bromoform	12	U
108-10-14-Methyl-2-pentanone	12	U
591-78-62-Hexanone	12	U
127-18-4Tetrachloroethene	1	J
108-88-3Toluene	12	U
79-34-51,1,2,2-Tetrachloroethane	12	υ
108-90-7Chlorobenzene	12	U
100-41-4Ethylbenzene	170	
100-42-5Styrene	12	U
1330-20-7Total Xylenes	200	
76-13-11,1,2-Trichloro-1,2,2-trifluoroethane	12	U
156-59-2cis-1,2-Dichloroethene	12	υ

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

			MW-117A	
د Name: <u>STL Buffalo</u> (Contract:			
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:		
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	<u>A5731008</u>	
Sample wt/vol: 5.13 (g/mL) (g/mL)	3	Lab File ID:	Q6570.RR	
Level: (low/med) LOW		Date Samp/Recv:	07/12/2005 07/13/2005	
% Moisture: not dec. <u>22</u> Heated	Purge: Y	Date Analyzed:	07/20/2005	
GC Column: <u>DB-624</u> ID: <u>0.25</u> (m	n)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)		Soil Aliquot Volu	ume: (uL)	

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

	CAS NO. COMPOL	ND.	(ug/L or ug/K	g) <u>UG/KG</u>	Q	
	156-60-5trans-	1,2-Dichloroethene		12	U]
	75-71-8Dichlo	rodifluoromethane	·	2	J	
	75-69-4Trichl	orofluoromethane		12	U	
:	79-20-9Methy]	acetate		12	U	1
	1634-04-4Methyl	-t-Butyl Ether (MIBE)	12	U	
	110-82-7Cyclot	exane		23		
	108-87-2Methyl	cyclohexane		120		1.
	106-93-41,2-Di			12	U	١.
	98-82-8Isopro	pylbenzene	·····	200		
	541-73-11,3-Di			12	U	1
	106-46-71,4-Di	chlorobenzene		12	U	1
	95-50-11,2-Di	chlorobenzene		12	U	
	96-12-81,2-Di	bromo-3-chloropropan	3	12	U	
	120-82-11,2,4-			12	U	
	L			· · · · · · · · · · · · · · · · · · ·		1

Client No.

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

MW-117A b Name: <u>SIL Buffalo</u> Contract: Lab Code: RECNY Case No.: _____ SAS No.: ____ SDG No.: Matrix: (soil/water) SOIL Lab Sample ID: A5731008 Sample wt/vol: <u>5.13</u> (g/mL) <u>G</u> Lab File ID: Q6570.RR Level: (low/med) LOW Date Samp/Recv: 07/12/2005 07/13/2005 % Moisture: not dec. 21.9 Date Analyzed: 07/20/2005 GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: _____1.00 Soil Extract Volume: ____ (uL) Soil Aliquot Volume: _____ (uL)

Number TICs found: 10

CONCENTRATION UNITS: UG/KG (ug/L or ug/Kg)

CAS NO.	Compound Name	RT	Est. Conc.	Q
1.	ALKYLBENZENE DERIVATIVE	9.00	2200	J
2.	ALKYLBENZENE DERIVATIVE	9.23	2500	J
3.	TRIMETHYLBENZENE ISOMER	9.36	2500	J
4.	ALKYLBENZENE DERIVATIVE	9.62	1500	J
5.	TRIMETHYLBENZENE ISOMER	9.73	2000	J
6.	METHYLPROPYLBENZENE ISOMER	9.88	1900	J
7.	ALKYLBENZENE DERIVATIVE	10.24	1700	J
8.	UNKNOWN	10.35	2100	J
9.	UNKNOWN	10.48	2500	J
10.	TETRAMETHYLBENZENE ISOMER	10.91	2000	J

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

-

) Name: <u>STL Buffalo</u> Contract:	MW-117	B	
		• •	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:		
Matrix: (soil/water) SOIL	Lab Sample ID: A573100	9	
Sample wt/vol: 5.17 (g/mL) G	Lab File ID: <u>Q6571.R</u>	R	
Level: (low/med) LOW	Date Samp/Recv: 07/12/2	<u>005 07/13/2005</u>	
% Moisture: not dec. <u>17</u> Heated Purge: \underline{Y}	Date Analyzed: 07/20/2	005	
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.0	0	
Soil Extract Volume: (uL)	Soil Aliquot Volume:	(uL)	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>	Q	

	u 10.	041040			00/10	*
	74-87-3	Chloromethane			12	U
	74-83-9	-Bromomethane			12	U
		Vinyl chloride			12	U
		Chloroethane			12	U
	75-09-2	-Methylene chloride		4	12	U
	67-64-1				7	J
	75-15-0	-Carbon Disulfide	· · · · · ·		12	ប
	75-35-4	-1,1-Dichloroethene			100	
	75-34-3	-1,1-Dichloroethane			93	
	67-66-3	-Chloroform			12	U
	107-06-2	-1,2-Dichloroethane			12	U
	78-93-3				12	U
	71-55-6	-1,1,1-Trichloroethane	······		12	U
	56-23-5	-Carbon Tetrachloride			12	υ
	75-27-4	-Bromodichloromethane			12	υ
	78-87-5	-1,2-Dichloropropane			12	U
		-cis-1,3-Dichloropropene			12	U
		-Trichloroethene			2	JJU
	124-48-1	-Dibromochloromethane			12	U
	79-00-5	-1,1,2-Trichloroethane	· · · · ·		12	υ
	71-43-2				1	J
	10061-02-6	-trans-1,3-Dichloropropene			12	U
1	75-25-2				12	U
	108-10-1	-4-Methyl-2-pentanone			12	U
	591-78-6				12	U
		-Tetrachloroethene		1.1	12	U
	108-88-3				12	U
		-1,1,2,2-Tetrachloroethane			12	U
		-Chlorobenzene			12	U
		-Ethylbenzene			12	U
	100-42-5				12	U
		-Total Xylenes	······		12	U
		-1,1,2-Trichloro-1,2,2-trifluo	roethane		12	υ
		-cis-1,2-Dichloroethene			8	J
					~	1

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

> Name: STL Buffalo Contract:	· · · · · · · · · · · · · · · · · · ·	MW-117B
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A5731009</u>
Sample wt/vol: 5.17 (g/mL) G	Lab File ID:	Q6571.RR
Level: (low/med) LOW	Date Samp/Recv:	07/12/2005 07/13/2005
% Moisture: not dec. <u>17</u> Heated Purge: <u>Y</u>	Date Analyzed:	07/20/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
156-60-5	trans-1,2-Dichloroethene		12	υ
75-71-8	Dichlorodifluoromethane		12	U
75-69-4	Trichlorofluoromethane		12	U
79-20-9	Methyl acetate		12	U
1634-04-4	Methyl-t-Butyl Ether (MIBE)		12	U
110-82-7	Cyclohexane		12	U
108-87-2	Methylcyclohexane		12	U
106-93-4	1,2-Dibromoethane		12	U
98-82-8	Isopropylbenzene		2	J
	1,3-Dichlorobenzene		12	U
106-46-7	1,4-Dichlorobenzene		12	U
	1,2-Dichlorobenzene		12	U
96-12-8	1,2-Dibromo-3-chloropropane		12	U
	1,2,4-Trichlorobenzene		12	U

FORM I - GC/MS VOA

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

			MW-117B	
	ontract:			
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:		
Matrix: (soil/water) SOIL		Lab Sample ID:	A5731009	
Sample wt/vol: (g/mL)	<u>G</u>	Lab File ID:	06571.RR	
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	07/12/2005 07/13/20	005
% Moisture: not dec. <u>16.9</u>		Date Analyzed:	07/20/2005	
GC Column: <u>DB-624</u> ID: <u>0.25</u> (m	m)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)		Soil Aliquot Vol	.ume: (uL)	•.

Number TICs found: <u>10</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3 2. 3. 4. 5. 6. 7. 8. 9.	HEXANE UNKNOWN SATURATED HYDROCARBON UNKNOWN AROMATIC DERIVATIVE UNKNOWN AROMATIC DERIVATIVE METHYLNAPHTHALENE ISOMER	3.94 10.90 11.25 11.31 11.63 11.77 12.02 12.14 12.21	21 46 27 24 16 20 26 17 22	BJN J J J J J J J J J J
10.	METHYLNAPHIHALENE ISOMER	12.37	47	J

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

		Client No.
internet and an and a second of the second o		MW-118A
Name: <u>STL Buffalo</u> Contract:		· · · · · · · · · · · · · · · · · · ·
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A5731005
Sample wt/vol: 5.15 (g/mL) G	Lab File ID:	06567.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/12/2005 07/13/2005
% Moisture: not dec. <u>18</u> Heated Purge: \underline{Y}	Date Analyzed:	07/20/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	<u>UG/KG</u> Q
74-87-3Chloromethane 74-83-9Bromomethane 75-01-4Vinyl chloride 75-00-3Chloroethane		12 U 12 U 12 U 12 U 12 U

75-01-4Vinyl chloride	12	U
75-00-3Chloroethane	12	υ
75-09-2Methylene chloride	7	BU
67-64-1Acetone	4	J
75-15-0Carbon Disulfide	12	U
75-35-41,1-Dichloroethene	12	U
75-34-31,1-Dichloroethane	4	J
67-66-3Chloroform	1	J
107-06-21,2-Dichloroethane	12	υ
78-93-32-Butanone	12	υ
71-55-61,1,1-Trichloroethane	44	
56-23-5Carbon Tetrachloride	12	υ
75-27-4Bromodichloromethane	12	υ
78-87-51,2-Dichloropropane	12	U
10061-01-5cis-1,3-Dichloropropene	12	υ
79-01-6Trichloroethene	5	3U
124-48-1Dibromochloromethane	12	U
79-00-51,1,2-Trichloroethane	12	υ
71-43-2Benzene	12	U
10061-02-6trans-1,3-Dichloropropene	12	U
75-25-2Bromoform	12	υ
108-10-14-Methyl-2-pentanone	12	U
591-78-62-Hexanone	12	υ
127-18-4Tetrachloroethene	75	
108-88-3Toluene	12	U
79-34-51,1,2,2-Tetrachloroethane	12	U
108-90-7Chlorobenzene	12	U
100-41-4Ethylbenzene	12	U
100-42-5Styrene	12	U
1330-20-7Total Xylenes	12	U
76-13-11,1,2-Trichloro-1,2,2-trifluoroethane	12	U
156-59-2cis-1,2-Dichloroethene	4	J

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

		MW-118A	
Name: <u>STL Buffalo</u> Contract:	-		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:		
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A5731005	
Sample wt/vol: 5.15 (g/mL) G	Lab File ID:	06567.RR	
Level: (low/med) LOW	Date Samp/Recv:	<u>07/12/2005</u> <u>07/13/2005</u>	
% Moisture: not dec. <u>18</u> Heated Purge: <u>Y</u>	Date Analyzed:	07/20/2005	
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)	Soil Aliquot Volu	me: (uL)	

CONCENTRATION UNITS:

CAS NO. COMPOUND	(ug/L or ug/K	(g) <u>UG/KG</u>	Q
156-60-5trans-1,2-Dichloroethene		12	- U
75-71-8Dichlorodifluoromethane		2	J
75-69-4Trichlorofluoromethane		12	U
79-20-9Methyl acetate		12	U
1634-04-4Methyl-t-Butyl Ether (MIB	E)	12	U
110-82-7Cyclohexane		12	U
108-87-2Methylcyclohexane		12	U
106-93-41,2-Dibromoethane		12	U
98-82-8Isopropylbenzene		12	U
541-73-11,3-Dichlorobenzene		12	U
106-46-71,4-Dichlorobenzene		12	U
95-50-11,2-Dichlorobenzene		12	U
96-12-81,2-Dibromo-3-chloropropa	ne internet interne	12	υ
120-82-11,2,4-Trichlorobenzene		12	ប

DELITA - SOIL ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

Client No.

Name: STL Buffalo Contract:	· ·····	<u>MW-118A</u>
Lab Code: RECINY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A5731005
Sample wt/vol: (g/mL) G	Lab File ID:	06567.RR
Level: (low/med) LOW	Date Samp/Recv:	07/12/2005 07/13/2005
% Moisture: not dec. <u>17.5</u>	Date Analyzed:	07/20/2005
GC Column: <u>DB-624</u> ID: 0.25 (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)
	CONCENTRATION UNIT	S:

Number TICs found: <u>1</u>

(ug/L or ug/Kg) UG/KG

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	3.95	24	BJN

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

-

> Name: <u>STL Buffalo</u> Contract:		MW-118B	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:		
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A5731006	
Sample wt/vol:5.06 (g/mL) G	Lab File ID:	Q6568.RR	
Level: (low/med) LOW	Date Samp/Recv:	07/12/2005 07/13/2005	
% Moisture: not dec. <u>18</u> Heated Purge: \underline{Y}	Date Analyzed:	07/20/2005	
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)	Soil Aliquot Volu	ume: (uL)	

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
	-Chloromethane		12	ប
	-Bronomethane		12	ប
	-Vinyl chloride		12	ប
	-Chloroethane		12	U
75-09-2	-Methylene chloride		16	U
67-64-1			8	J
	-Carbon Disulfide		12	ប .
75-35-4	-1,1-Dichloroethene		12	U
75-34-3	-1,1-Dichloroethane		12	υ
67-66-3	-Chloroform		12	ប
107~06-2	-1,2-Dichloroethane		12	υ
78-93-3	-2-Butanone		12	U
71-55-6	-1,1,1-Trichloroethane		12	ប
56-23-5	-Carbon Tetrachloride		12	U
75-27-4	-Bronodichloromethane		12	υ
78-87-5	-1,2-Dichloropropane		12	U
	-cis-1,3-Dichloropropene		12	ប
79-01-6	-Trichloroethene		5	JU
124-48-1	-Dibromochloromethane		12	υ
79-00-5	-1,1,2-Trichloroethane		12	U
71-43-2	-Benzene		12	υ
10061-02-6	-trans-1,3-Dichloropropene		12	ប
75-25-2	-Bromoform		12	υ
108-10-1	-4-Methyl-2-pentanone		12	υ
591-78-6	-2-Hexanone	······································	12	U
127-18-4	-Tetrachloroethene		8	J
108-88-3	-Toluene		12	υ
79-34-5	-1,1,2,2-Tetrachloroethane		12	υ
	-Chlorobenzene		12	ប
100-41-4			12	U
100-42-5			12	U
	-Total Xylenes		12	U
	-1,1,2-Trichloro-1,2,2-trifluo	proethane	12	U
	-cis-1,2-Dichloroethene		8	J
			. •	1

DELTA - SOIL ASP 2000/8260 - TCL VOLATTLES ANALYSIS DATA SHEET

Client No.

b Name: <u>STL Buffalo</u> Contract:	MW-118B
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) SOIL	Lab Sample ID: A5731006
Sample wt/vol: 5.06 (g/mL) G	Lab File ID: <u>Q6568.RR</u>
Level: (low/med) LOW	Date Samp/Recv: 07/12/2005 07/13/2005
% Moisture: not dec. <u>18</u> Heated Purge: <u>Y</u>	Date Analyzed: 07/20/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO. COMPOUND	(ug/L or ug/Kg) <u>UG/KG</u>	Q
156-60-5trans-1,2-Dichloroethene		12	U
75-71-8Dichlorodifluoromethane		12	U
75-69-4Trichlorofluoromethane		12	U
79-20-9Methyl acetate		12	υ
1634-04-4Methyl-t-Butyl Ether (MIB	E)	12	U
110-82-7Cyclohexane		12	U
108-87-2Methylcyclohexane		12	υ
106-93-41,2-Dibromoethane		12	U
98-82-8Isopropylbenzene		12	U
541-73-11,3-Dichlorobenzene		12	U
106-46-71,4-Dichlorobenzene		12	U
95-50-11,2-Dichlorobenzene		12	U
96-12-81, 2-Dibromo-3-chloropropa	ne	12	U
120-82-11,2,4-Trichlorobenzene		12	ប

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

-

			MW-118B
o Name: STL Buffalo	Contract:	I	-
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL		Lab Sample ID:	A5731006
Sample wt/vol:5.06 (g/mL)	G	Lab File ID:	Q6568.RR
Level: (low/med) LOW		Date Samp/Recv:	07/12/2005 07/13/2005
% Moisture: not dec. <u>18.0</u>		Date Analyzed:	07/20/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (r	(mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume: (uL)

Number TICs found: <u>1</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	3.95	23	BJN

Client No.

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

o Name: <u>STL Buffalo</u> Contract:		MW-118C
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID:	A5731007
Sample wt/vol: 5.03 (g/mL) G	Lab File ID:	Q6569.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/12/2005 07/13/2005
% Moisture: not dec. <u>16</u> Heated Purge: \underline{Y}	Date Analyzed:	07/20/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)
m	NTENTONTION INTTO.	

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

0

· _ · · · · · · · · · · · · · · · · · ·		
74-87-3Chloromethane	12	ט
74-83-9Bromomethane	12	υ
75-01-4Vinyl chloride	12	U
75-00-3Chloroethane	12	U
75-09-2Methylene chloride	16	U
67-64-1Acetone	6	J
75-15-0Carbon Disulfide	12	U
75-35-41,1-Dichloroethene	12	U
75-34-31,1-Dichloroethane	12	U
67-66-3Chloroform	12	U
107-06-21,2-Dichloroethane	12	U
78-93-32-Butanone	12	U
71-55-61,1,1-Trichloroethane	12	U
56-23-5Carbon Tetrachloride	12	U
75-27-4Bromodichloromethane	12	U
78-87-51,2-Dichloropropane	12	U
10061-01-5cis-1,3-Dichloropropene	12	U
79-01-6Trichloroethene	8	JU
124-48-1Dibromochloromethane	12	υ
79-00-51,1,2-Trichloroethane	12	U
71-43-2Benzene	12	U
10061-02-6trans-1,3-Dichloropropene	12	U
75-25-2Bromoform	12	U
108-10-14-Methyl-2-pentanone	12	U
591-78-62-Hexanone	12	U
127-18-4Tetrachloroethene	12	1
108-88-3Toluene	12	υ
79-34-51,1,2,2-Tetrachloroethane	12	U
108-90-7Chlorobenzene	12	U
100-41-4Ethylbenzene	12	U
100-42-5Styrene	12	U
1330-20-7Total Xylenes	12	U
76-13-11,1,2-Trichloro-1,2,2-trifluoroethane	12	U
156-59-2cis-1,2-Dichloroethene	8	J
	~	Ĩ

FORM I - GC/MS VOA

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

-

) Name: <u>STL Buffalo</u> Contract:	MW-118C	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID: A5731007	
Sample wt/vol: 5.03 (g/mL) G	Lab File ID: <u>Q6569.RR</u>	
Level: (low/med) LOW	Date Samp/Recv: 07/12/2005 07/13/2005	
% Moisture: not dec. <u>16</u> Heated Purge: \underline{Y}	Date Analyzed: 07/20/2005	
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00	
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)	• .
	CONCENTRATION UNITS:	

(ug/L or ug/Kg)	UG/KG	Q
	12	U
	12	ប
	12	U
	12	U
3	12	U
	12	υ
		12 12

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

Client No.

	-		MW-118C
5 Name: <u>STL Buffalo</u> Cont	:ract:	L	
Lab Code: <u>REONY</u> Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL		Lab Sample ID:	<u>A5731007</u>
Sample wt/vol: (g/mL) G		Lab File ID:	Q6569.RR
Level: (low/med) LOW		Date Samp/Recv:	07/12/2005 07/13/2005
<pre>% Moisture: not dec. <u>16.1</u></pre>		Date Analyzed:	07/20/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)		Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume: (uL)

Number TICs found: __2

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	·Q
	HEXANE UNKNOWN SILANOL	3.94 4.52	24 8	BJN J

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

.

-

					CT1	lent No.	
				MW-1194	L		
o Name:	STL Buffalo	Contract:		1	··	l	
Lab Code:	<u>RECNY</u> Ca	se No.: SAS No.:	SDG No.:				
Matrix: (a	soil/water)	SOIL	Lab Sample ID:	A5731003	<u>} -</u>		
Sample wt	/vol:	<u>5.13</u> (g/mL) <u>G</u>	Lab File ID:	06565.RF	<u>}</u>		
Level:	(low/med)	LOW	Date Samp/Recv	r: <u>07/11/20</u>	05 07/2	<u>13/2005</u>	
* Moisture	e: not dec.	22 Heated Purge: Y	Date Analyzed:	07/20/20	005	•	
GC Column	<u>DB-624</u>	ID: <u>0.25</u> (mm)	Dilution Facto	or: <u>1.00</u>	2		
Soil Extra	act Volume:	(uL)	Soil Aliquot V	olume:		ıL)	
•			CONCENTRATION UNIT	φ.			
·	CAS NO.	COMPOUND	(ug/L or ug/Kg)		Q		
	74-87-3	Chloromethane		12	U		
		Bromomethane		12	U		
17	75-01-4	Vinyl chloride		12	U I		
17	75-00-3	Chloroethane		12	U		
		Methylene chloride		13	Ŭ		
le	57-64-1	Acetone		5	J		
		Carbon Disulfide		12	U		
1. I I I I I I I I I I I I I I I I I I I		1,1-Dichloroethene		12	ប		
		1,1-Dichloroethane		5	J		
E	57-66-3	Chloroform		12	υ		
		1,2-Dichloroethane		12	U		
	/8-93-3			12	U		
		1,1,1-Trichloroethane		18			
		Carbon Tetrachloride		18	υ		
		Bromodichloromethane		12	υ		
		1,2-Dichloropropane		12	υ		
		cis-1,3-Dichloropropene		12	U		
		Trichloroethene		180			
		Dibromochloromethane		12	υ		
		1,1,2-Trichloroethane		12	U		
	1-43-2			12	υ		
		trans-1,3-Dichloropropene		12	υ		
	5-25-2			12	υ		
		-4-Methyl-2-pentanone		12	UUU		
	91-78-6				1 -		
		Z-nexanone		12	υ		
	27-18-4 08-88-3+			18			
		-1,1,2,2-Tetrachloroethane		12	ប		
		Chlorobenzene		12	U		
		Ethylbenzene		12	ប		
	00-41-4			12	U		
				12	U		
		-Total Xylenes	······································	12	U		
		-1,1,2-Trichloro-1,2,2-trifluo	proetnane	12	ប		
. 11	56-59-2	-cis-1,2-Dichloroethene		26			

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

o Name: <u>STL Buffalo</u> Contract:		MW-119A
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A5731003</u>
Sample wt/vol: (g/mL) G	Lab File ID:	Q6565.RR
Level: (low/med) LOW	Date Samp/Recv:	07/11/2005 07/13/2005
% Moisture: not dec. <u>22</u> Heated Purge: \underline{Y}	Date Analyzed:	07/20/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Volu	me: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND	(ug/L or ug/K	(g) <u>UG/KG</u>	Q
156-60-5trans-1,2-Dichloroethene		12	U
75-71-8Dichlorodifluoromethane		2	J
75-69-4Trichlorofluoromethane		12	U
79-20-9Methyl acetate		12	U
1634-04-4Methyl-t-Butyl Ether (MI	BE)	12	U
110-82-7Cyclohexane		12	U
108-87-2Methylcyclohexane		12	U
106-93-41,2-Dibromoethane		12	U -
98-82-8Isopropylbenzene		12	U
541-73-11,3-Dichlorobenzene		12	U
106-46-71,4-Dichlorobenzene		12	U
95-50-11,2-Dichlorobenzene		12	U
96-12-81,2-Dibrom-3-chloroprop	ane	12	υ
120-82-11,2,4-Trichlorobenzene		12	ប

FORM I - GC/MS VOA

DELITA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

-

> Name: <u>STL Buffalo</u> Contract:		MW-119A
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID:	A5731003
Sample wt/vol: (g/mL) G	Lab File ID:	Q6565.RR
Level: (low/med) LOW	Date Samp/Recv:	<u>07/11/2005</u> 07/13/2005
% Moisture: not dec. <u>21.7</u>	Date Analyzed:	07/20/2005
GC Column: <u>DB-624</u> ID: 0.25 (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)
	CONSCIENTING TRATE	P .

Number TICs found: __2

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

	CAS NO.	Compound Name	RT .	Est. Conc.	Q	
4		HEXANE UNKNOWN SILANOL	3.95 4.52	26 14	BJN J	

-

DELTA - SOIL ASP 2000/8260 - TCL VOLATTLES ANALYSIS DATA SHEET

	Client No.
b Name: STL Buffalo Contract:	MW-119B
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) SOIL	Lab Sample ID: A5731004
Sample wt/vol:5.08 (g/mL) G	Lab File ID: <u>Q6566.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: 07/11/2005 07/13/2005
% Moisture: not dec. <u>14</u> Heated Purge: \underline{Y}	Date Analyzed: 07/20/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
74-87-3Chloromethane 74-83-9Bromomethane 75-01-4Vinyl chloride 75-00-3Chloroethane	11 U 11 U 11 U 11 U

74-85-9BLOIDIECHAIE		10
75-01-4Vinyl chloride	11	ប
75-00-3Chloroethane	11	U
75-09-2Methylene chloride	18	U
67-64-1Acetone	6	J
75-15-0Carbon Disulfide	11	ប
75-35-41,1-Dichloroethene	11	U
75-34-31,1-Dichloroethane	11	U
67-66-3Chloroform	11	υ
107-06-21,2-Dichloroethane	11	U
78-93-32-Butanone	11	U
71-55-61,1,1-Trichloroethane	11	U
56-23-5Carbon Tetrachloride	11	U
75-27-4Bromodichloromethane	11	U
78-87-51,2-Dichloropropane	11	U
10061-01-5cis-1,3-Dichloropropene	11	U
79-01-6Trichloroethene	4	30
124-48-1Dibromochloromethane	11	U
79-00-51,1,2-Trichloroethane	11	U
71-43-2Benzene	11	U
10061-02-6trans-1,3-Dichloropropene	11	υ
75-25-2Bromoform	11	υ
108-10-14-Methyl-2-pentanone	11	U
591-78-62-Hexanone	1 11	U
127-18-4Tetrachloroethene	5	J
108-88-3Toluene	11	U
79-34-51,1,2,2-Tetrachloroethane	11	UU
108-90-7Chlorobenzene	- 11	U
100-41-4Ethylbenzene	1 11	ไบ
100-42-5Styrene	- 11	U
1330-20-7Total Xylenes	- 11	U
76-13-11,1,2-Trichloro-1,2,2-trifluoroethane	1 11	U
156-59-2cis-1,2-Dichloroethene	2	J

FORM I - GC/MS VOA

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

~ <u></u>			MW-119B
b Name: <u>SIL Buffalo</u>	Contract:		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	- · · · · · · · ·
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	A5731004
Sample wt/vol:5.08 (g/mL)	G	Lab File ID:	Q6566.RR
Level: (low/med) LOW		Date Samp/Recv:	07/11/2005 07/13/2005
% Moisture: not dec. <u>14</u> Heate	d Purge: Y	Date Analyzed:	07/20/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	lume: (uL)
CAS NO. COMPOUND		CONCENTRATION UNITS: (ug/L or ug/Kg)	

	(ug/L	or ug/Kg)	UG/KG
--	-------	-----------	-------

156-60-5trans-1,2-Dichloroethene	11	U
75-71-8Dichlorodifluoromethane	11	υ
75-69-4Trichlorofluoromethane	11	ט
79-20-9Methyl acetate	11	UU.
1634-04-4Methyl-t-Butyl Ether (MIBE)	11	U
110-82-7Cyclohexane	11	U
108-87-2Methylcyclohexane	11	υ
106-93-41,2-Dibromoethane	11	JU
98-82-8Isopropylbenzene	11	U
541-73-11,3-Dichlorobenzene	11	U
106-46-71,4-Dichlorobenzene	11	U
95-50-11,2-Dichlorobenzene	11	U
96-12-81,2-Dibromo-3-chloropropane	11	JŪ
120-82-11,2,4-Trichlorobenzene		U

Client No.

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Number TICs found: <u>2</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
	HEXANE UNKNOWN SILANOL	3.95 4.52	26 8	BJN J

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

-

Name: STL Buffalo Contract:		MW-120A
Lab Code: REONY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A5731001</u>
Sample wt/vol: <u>5.18</u> (g/mL) <u>G</u>	Lab File ID:	Q6563.RR
Level: (low/med) LOW	Date Samp/Recv:	07/11/2005 07/13/2005
% Moisture: not dec. <u>21</u> Heated Purge: \underline{Y}	Date Analyzed:	07/20/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)
œ	NCENTRATION UNITS:	

CAS	NO. COMPOUND (1	ug/L or ug/Kg)	<u>UG/KG</u>	Q
	87-3Chloromethane		12	U
	83-9Bromomethane		12	υ .
75-	01-4Vinyl chloride		12	U
	00-3Chloroethane		12	U
75-0	09-2Methylene chloride		12	U
	64-1Acetone		50	
75-:	15-0Carbon Disulfide		12	υ
75-3	35-41,1-Dichloroethene		12	U
75-3	34-31,1-Dichloroethane		4	J
67-6	56-3Chloroform		12	U
107-	-06-21,2-Dichloroethane		12	U
78-9	93-32-Butanone		14	{
71-5	55-61,1,1-Trichloroethane		12	υ
56-2	23-5Carbon Tetrachloride		12	υ
75-2	27-4Bromodichloromethane		12	U
78-8	37-51,2-Dichloropropane		12	U
1006	51-01-5cis-1,3-Dichloropropene		12	U
)1-6Trichloroethene		12	U
124-	-48-1Dibromochloromethane		. 12	U
79-0	0-51,1,2-Trichloroethane		12	U
71-4	13-2Benzene		12	υ
1006	51-02-6trans-1,3-Dichloropropene		12	U
	25-2Bromoform		12	U
108-	10-14-Methyl-2-pentanone		12	U
	-78-62-Hexanone		12	U
127-	18-4Tetrachloroethene		12	U
	-88-3Toluene		12	U
79-3	4-51,1,2,2-Tetrachloroethane		12	U
	90-7Chlorobenzene		12	U
100-	41-4Ethylbenzene		12	U
	42-5Styrene		12	U
	-20-7Total Xylenes		12	U
	3-11,1,2-Trichloro-1,2,2-trifluoroe	thane	12	U
	59-2cis-1,2-Dichloroethene		12	U

Client No.

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

		······
		MW-120A
b Name: <u>SIL Buffalo</u> Contract:		[]
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID:	<u>A5731001</u>
Sample wt/vol:5.18 (g/mL) G	Lab File ID:	<u>Q6563.RR</u>
Level: (low/med) LOW	Date Samp/Recv:	<u>07/11/2005</u> 07/13/2005
% Moisture: not dec. <u>21</u> Heated Purge: \underline{Y}	Date Analyzed:	07/20/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Volu	ume: (uL)

CONCENTRATION UNITS: בא/צת

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
156-60-5	trans-1,2-Dichloroeth	nene	12	U
75-71-8	Dichlorodifluorometha	ane	12	U
75-69-4	Trichlorofluoromethan	ne	12	υ
79-20-9	Methyl acetate		12	υ
1634-04-4	Methyl-t-Butyl Ether	(MTBE)	12	υ
110-82-7	Cyclohexane		12	υ
108-87-2	Methylcyclohexane		12	U
106-93-4	1,2-Dibromoethane		12.	U
98-82-8	Isopropylbenzene		12	υ
541-73-1	1,3-Dichlorobenzene		12	υ
106-46-7	1,4-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	12	υ
	1,2-Dichlorobenzene		12	U
96-12-8		propane	12	U
120-82-1	1,2,4-Trichlorobenzer		12	ប

FORM I - GC/MS VOA

DELITA - SOIL ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

Client No.

_

			MW-120A
) Name: <u>STL Buffalo</u>	Contract:		J
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL		Lab Sample ID:	<u>A5731001</u>
Sample wt/vol:5.18 (g/mL	л) <u>G</u>	Lab File ID:	Q6563.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	<u>07/11/2005</u> 07/13/2005
% Moisture: not dec. <u>21.2</u>		Date Analyzed:	07/20/2005
GC Column: <u>DB-624</u> ID: 0.25	(nm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume: (uL)

Number TICs found: __1

CONCENTRATION UNITS: (Ug/L or Ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	3.95	24	BJN

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

	MW-120B	
b Name: <u>STL Buffalo</u> Contract:		1
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID: A5731002	
Sample wt/vol: (g/mL) G	Lab File ID: <u>Q6564.RR</u>	
Level: (low/med) LOW	Date Samp/Recv: 07/11/2005 07/13/2005	
% Moisture: not dec. <u>15</u> Heated Purge: Y	Date Analyzed: 07/20/2005	
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00	
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)	
	CONCENTRATION UNITS:	

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

Q

-

_

74-87-3Chloromethane	11	U
74-83-9Bromomethane	11	U
75-01-4Vinyl chloride	11	U.
75-00-3Chloroethane	11	U
75-09-2Methylene chloride	16	U
67-64-1Acetone	7	J
75-15-0Carbon Disulfide	11	U
75-35-41,1-Dichloroethene	11	ប
75-34-31,1-Dichloroethane	11	U
67-66-3Chloroform	11	U
107-06-21,2-Dichloroethane	11	U
78-93-32-Butanone	11	U
71-55-61,1,1-Trichloroethane	11	ប
56-23-5Carbon Tetrachloride	11	U
75-27-4Bromodichloromethane	11	U
78-87-51,2-Dichloropropane	11	U
10061-01-5cis-1,3-Dichloropropene	11	U
79-01-6Trichloroethene	1	JU
124-48-1Dibromochloromethane	11	ប
79-00-51,1,2-Trichloroethane	11	U
71-43-2Benzene	11	U
10061-02-6trans-1,3-Dichloropropene	11	U
75-25-2Bromoform	11	U
108-10-14-Methyl-2-pentanone	11	U
591-78-62-Hexanone	11	U
127-18-4Tetrachloroethene	1	J
108-88-3Toluene	11	U
79-34-51,1,2,2-Tetrachloroethane	11	U
108-90-7Chlorobenzene	11	U
100-41-4Ethylbenzene	11	U
100-42-5Styrene	11	U
1330-20-7Total Xylenes	11	U
76-13-11,1,2-Trichloro-1,2,2-trifluoroethane	11	U
156-59-2cis-1,2-Dichloroethene	1	J
		1

FORM I - GC/MS VOA

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

,	سین اسرار اسرارین انداز دیرویی در بار بازی این ا		MW-120B
o Name: <u>STL Buffalo</u>	Contract:		L
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	<u>A5731002</u>
Sample wt/vol:5.19 (g/mL)	G	Lab File ID:	<u>Q6564.RR</u>
Level: (low/med) LOW		Date Samp/Recv:	07/11/2005 07/13/2005
% Moisture: not dec. <u>15</u> Heater	d Purge: <u>Y</u>	Date Analyzed:	07/20/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (r	m)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND)	(ug/L or ug/Kg) <u>UG/KG</u>	Q
156-60-5trans-1,	2-Dichloroethene		11 '	U
75-71-8Dichloro	difluoromethane T		11	U
75-69-4Trichlor	ofluoromethane		11	U
79-20-9Methyl a	cetate		11	U
1634-04-4Methyl-t	-Butyl Ether (MIBE	E)	11	U
110-82-7Cyclohex	ane		11	U
108-87-2Methylcy	clohexane		11	U
106-93-41,2-Dibr	omethane		11	U
98-82-8Isopropy	lbenzene		11	U
541-73-11,3-Dich	lorobenzene		11	U
106-46-71,4-Dich	lorobenzene		11	U
95-50-11,2-Dich	lorobenzene		11	U
96-12-81,2-Dibr	om-3-chloropropar	e	11	υ
120-82-11,2,4-Tr	ichlorobenzene		11	ប

Client No.

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

MW-120B b Name: <u>STL Buffalo</u> Contract: _____ Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: Matrix: (soil/water) SOIL Lab Sample ID: A5731002 Sample wt/vol: Lab File ID: <u>Q6564.RR</u> <u>5.19</u> (g/mL) <u>G</u> Level: (low/med) LOW Date Samp/Recv: 07/11/2005 07/13/2005 % Moisture: not dec. 14.7 Date Analyzed: 07/20/2005 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: ____1.00 Soil Aliquot Volume: _____ (uL) Soil Extract Volume: ____ (uL)

Number TICs found: __1

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	3.94	24	BJN

_

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES SOIL SURROGATE RECOVERY

Lab Name: STL Buffalo

Contract: _

Lab Code: RECNY ----- Case No.: _____SAS-No.:-___

Level (low/med): LOW

	Client Sample ID	Lab Sample ID	%REC #		TOL %REC #						tot Out
		*********			2222222	2222222	2022220	2222252		*******	
1	MSB08	A5B1105902	96	100	101						0
2	MSB09	A5B1111401	103	105	104	· · ·					0
3	MW-115A	A5731010	101	103	99						0
4	MW-115B	A5731011	102	104	103						0
5	MW-115B	A5731011MS	102	105	102						0
6	MW-115B	A5731011SD	105	111	105						0
7	MW-116A	A5731012	102	106	105						0
8	MW-116B	A5731013	100	108	103						0
9	MW-117A	A5731008	89	86	87	1. A.					0
10	MW-117B	A5731009	82	82	85						0
11	MW-118A	A5731005	80	89	91						0
12	MW-1188	A5731006	80	85	85				ł .		0
13	MW-118C	A5731007	81	86	84						0
14	MW-119A	A5731003	87	90	92						0
15	MW-119B	A5731004	89	89	91						0
16	MW-120A	A5731001	89	92	95						0
17	MW-120B	A5731002	89 -	91	92						0
18	VBLK08	A5B1105904	95	100	99					1	0
19	VBLK09	A5B1111402	101	104	104						0

QC LIMITS

(59-113) (70-121) (84-138)

------SDG No.--

 p-Bromofluorobenzene
 1,2-Dichloroethane-D4
 Toluene-D8 BFB

DCE

TOL

Column to be used to flag recovery values
* Values outside of contract required QC limits

D Surrogates diluted out

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A05-7481

SIL Project#: NY4A9341 Site Name: <u>Delta Environmental Consultants, Inc.</u> Task: Geneva Site - soils

> Mark Schumacher Delta Environmental 104 Jamesville Rd. Syracuse, NY 13214

> > STL Buffalo

Brian J. Fischer Project Manager

.

08/09/2005

_

STL Buffalo Current Certifications

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	03-054-D/88-0686
California	NELAP SDWA, CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP RCRA	E87672
Georgia	SDWA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kanses	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA	10026
North Carolina	CWA	411
North Dakota	SDWA, CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Pennsylvania	Env. Lab Reg.	68-281
South Carolina	RCRA	91013
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington	CWA	· C254
West Virginia	CWA	252
Wisconsin	CWA	998310390

SAMPLE SUMMARY

			SAMPI	LED	RECEIV	Ð
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A5748106	MW-114A	SOIL			07/15/2005	
A5748107	MW-114B	SOIL	07/14/2005	10:40	07/15/2005	16:25
A5748107MS	MW-114B	SOIL			07/15/2005	
A5748107SD	MW-114B	SOIL			07/15/2005	
A5748101	MW-121A	SOIL			07/15/2005	
A5748102	MW-121B	SOIL	07/13/2005	10:50	07/15/2005	
A5748116	MW-122A	SOIL	07/13/2005			
A5748117	MW-122B	SOIL	07/13/2005		07/15/2005	
A5748108	MW-123A	SOL			07/15/2005	
A5748109	MW-123B	SOIL			07/15/2005	
A5748114	SBA-12A	SOIL			07/15/2005	
A5748115	SBA-12B	SOIL			07/15/2005	
A5748110	SBC-16A	SOIL			07/15/2005	
A5748111	SBC-16B	SOIL			07/15/2005	
A5748112	SBE-11A	SOIL			07/15/2005	
A5748113	SBE-11B	SOIL			07/15/2005	
A5748103	SED-1	SOIL			07/15/2005	
A5748104	SED-2	SOIL			07/15/2005	
A5748105	SED-3	SOIL	07/13/2005	11:00	07/15/2005	16:25

METHODS SUMMARY

Job#: A05-7481

STL Project#: <u>NY4A9341</u> Site Name: <u>Delta Environmental Consultants, Inc.</u>

	ANALYTICAL
PARAMETER	METHOD
DELTA - SOIL ASP 2000/8260 - TCL VOLATILES	ASP00 8260

ASP00

"Analytical Services Protocol", New York State Department of Conservation, June 2000.

NON-CONFORMANCE SUMMARY

Job#: A05-7481

SIL Project#: <u>NY4A9341</u> Site Name: <u>Delta Environmental Consultants, Inc.</u>

General Comments

The enclosed data have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A05-7481

Sample Cooler(s) were received at the following temperature(s); 2.0 °C Volumes for MW-122A and MW-122B (7/13/05) were received but do not appear on the Chain of Custody.

GC/MS Volatile Data

The analyte Acetone was detected in Method Blank VBLK10 (A5B1112502) at a level below the project established reporting limit. No corrective action is necessary for any values in Method Blanks that are below the requested reporting limits. *******

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Brian J. Fischer Project Manager

Date

8-9-05

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: SEVERN TRENT LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID		ANALYTICAL REQUIREMENTS					
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
MW-114A	A5748106	ASP00	-	-	-	-	-	-
MW-114B	A5748107	ASP00	-	-	-	-	-	-
MW-121A	A5748101	ASP00	-		· -	-		-
MW-121B	A5748102	ASP00	· _	-	-	-	-	-
MW-122A	A5748116	ASP00	-		-	-	-	-
MW-122B	A5748117	ASP00	-	-	-	-	-	-
MW-123A	A5748108	ASP00	-	-	-	-	-	- ·
MW-123B	A5748109	ASP00	-	-	-	-	-	-
SBA-12A	A5748114	ASP00	-		-	-	-	-
SBA-12B	A5748115	ASP00	-	-	-	-	-	-
SBC-16A	A5748110	ASP00	-	-	-	-	-	-
SBC-16B	A5748111	ASP00	-	-	-	-	-	
SBE-11A	A5748112	ASP00	-		-	-	-	-
SBE-11B	A5748113	ASP00	-	-	-	-	-	-
SED-1	A5748103	ASP00	-	-	-	-	· -	-
SED-2	A5748104	ASP00	-	-	-	-	-	-
SED-3	A5748105	ASP00	-	-	-	-	-	

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

LAB NAME: SEVERN TREN	LADONAI	ORIES, INC.			
SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
MW-114A	SOIL	07/14/2005	07/15/2005	-	07/22/2005
MW-114B	SOIL	07/14/2005	07/15/2005	-	07/22/2005
MW-121A	SOIL	07/13/2005	07/15/2005	-	07/22/2005
MW-121B	SOIL	07/13/2005	07/15/2005	-	07/22/2005
MW-122A	SOIL	07/13/2005	07/15/2005	_	07/23/2005
MW-122B	SOIL	07/13/2005	07/15/2005	-	07/23/2005
MW-123A	SOIL	07/14/2005	07/15/2005	-	07/22/2005
MW-123B	SOIL	07/14/2005	07/15/2005	-	07/22/2005
SBA-12A	SOIL	07/14/2005	07/15/2005	-	07/22/2005
SBA-12B	SOIL	07/14/2005	07/15/2005	-	07/22/2005
SBC-16A	SOIL	07/14/2005	07/15/2005	-	07/22/2005
SBC-16B	SOIL	07/14/2005	07/15/2005	-	07/22/2005
SBE-11A	SOIL	07/14/2005	07/15/2005	-	07/22/2005
SBE-11B	SOIL	07/14/2005	07/15/2005	•	07/22/2005
SED-1	SOIL	07/13/2005	07/15/2005	-	07/22/2005
SED-2	SOIL	07/13/2005	07/15/2005	-	07/22/2005
SED-3	SOIL	07/13/2005	07/15/2005	-	07/22/2005

NYSDEC-2

8\411

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

AD NAME. SEVENN TREN	1 12/12/01/01/11	orabo, 110.			
SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
MW-114A	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-114B	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-121A	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-121B	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-122A	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-122B	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-123A	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
MW-123B	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
SBA-12A	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
SBA-12B	SOIL	ASP00	. .	AS REQUIRED	AS REQUIRED
SBC-16A	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
SBC-16B	SOIL	ASP00	· _	AS REQUIRED	AS REQUIRED
SBE-11A	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
SBE-11B	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
SED-1	SOIL	ASP00	- ·	AS REQUIRED	AS REQUIRED
SED-2	SOIL	ASP00	-	AS REQUIRED	AS REQUIRED
SED-3	SOIL	ASP00	•	AS REQUIRED	AS REQUIRED

NYSDEC-6

Sample Data Summary Package

DATA COMMENT PAGE

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected at or above the reporting limit.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS,
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for a pesticide/Arocior target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- 1 Indicates coelution.
- Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected at or above the reporting limit.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- K Indicates the post digestion spike recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- M Indicates duplicate injection results exceeded quality control limits.
- W Post digestion spike for Furnace AA analysis is out of quality control limits (85-115%) while sample absorbance is less than 50% of spike absorbance.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- Indicates analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

11\411

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

-

		MW-114A
D Name: STL Buffalo Contract:		·
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A5748106</u>
Sample wt/vol:5.09 (g/mL) G	Lab File ID:	Q6612.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/14/2005 07/15/2005
% Moisture: not dec. <u>25</u> Heated Purge: \underline{Y}	Date Analyzed:	07/22/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Volu	me:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

MPOUND	(ug/L or ug/Kg)		Q
loromethane		13	U
onomethane	•	13	U
nyl chloride		13	U
loroethane		13	U
thylene chloride		7	J
etone		13	U
rbon Disulfide		13	U
1-Dichloroethene		13	U
1-Dichloroethane		13	U
loroform		13	υ
2-Dichloroethane		13	U
Butanone		13	U
1,1-Trichloroethane		6	J
rbon Tetrachloride		13	υ
omodichloromethane		13	U
2-Dichloropropane		13	υ
		13	U
ichloroethene		160	-
bromochloromethane			U
1.2-Trichloroethane			U.
			U
			U
moform			U
			U
			U
	1		υ
			U
			U
			U
			U
			U
	methane		U
s-1,2-Dichloroethene		30	
	loromethane omomethane myl chloride loroethane thylene chloride etone rbon Disulfide 1-Dichloroethane 1-Dichloroethane 1-Dichloroethane 2-Dichloroethane 2-Dichloroethane 2-Dichloropropane 3-1,3-Dichloropropene ichloroethene Dromochloromethane 1,2-Trichloroethane 1,2-Trichloroethane mas-1,3-Dichloropropene moform /ethyl-2-pentanone lexanone .,2,2-Tetrachloroethane .,2,2-Tetrachloroethane .,2,2-Trichloroethane .,2,2-Trichloroethane .,2,2-Trichloroethane .,2,2-Trichloroethane .,2,2-Trichloroethane .,2,2-Trichloroethane .,2,2-Trichloroethane .,2,2-Trichloroethane .,2,2-Trichloroethane .,2,2-Trichloroethane .,2,2-Trichloroethane .,2,2-Trichloroethane .,2,2-Trichloroethane	MPOUND (ug/L or ug/Kg) loromethane onomethane myl chloride loroethane thylene chloride etone thylene chloride etone thylene chloride etone thylene chloride etone thon Disulfide 1-Dichloroethane loroform 2-Dichloroethane Butanone 1,1-Trichloroethane 2-Dichloropropane s-1,3-Dichloropropene ichloroethene promochloromethane 1,2-Trichloroethane mylenzene trachloroethene uene 1,2,2-Tetrachloroethane texanone t	MPOUND (ug/L or ug/Kg) UE/KG loromethane 13 oromethane 13 nyl chloride 13 loroethane 13 loroethane 13 thylene chloride 7 etone 13 thylene chloride 7 etone 13 thoroethane 13 1-Dichloroethane 13 loroform 13 2-Dichloroethane 13 loroform 13 2-Dichloroethane 13 2-Dichloroethane 13 2-Dichloropropane 13 2-Dichloropropane 13 2-Dichloropropane 13 2-Dichloropropane 13 ichloroethane 13 1, 2-Trichloroethane 13 ichloropropane 13 ichloropropane 13 ichloropthane 13 ichloroethane 13 ichloroethane 13 ichloroethane 13

DELITA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

-

o Name: <u>STL Buffalo</u>	Contract:		MW-114A
Lab Code: <u>RECNY</u> Case No.:			
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	A5748106
Sample wt/vol: (g/mL) <u>G</u>	Lab File ID:	06612.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	07/14/2005 07/15/2005
% Moisture: not dec. <u>25</u>	Heated Purge: Y	Date Analyzed:	07/22/2005
GC Column: <u>DB-624</u> ID: <u>0</u>	.25 (mm)	Dilution Factor:	1.00
Soil Extract Volume: (1	uL)	Soil Aliquot Vol	ume: (uL)
CAS NO. COMPOU		ONCENTRATION UNITS: (ug/L or ug/Kg)	

	(43) 2 02 43, 13,	00/100	*
156-60-5trans-1,2-Dichloroethene		2	J
75-71-8Dichlorodifluoromethane		13	U
75-69-4Trichlorofluoromethane		13	U
79-20-9Methyl acetate		13	U
1634-04-4Methyl-t-Butyl Ether (MIBE	E)	13	U
110-82-7Cyclohexane		13	U
108-87-2Methylcyclohexane		13	U
106-93-41,2-Dibromoethane		13	U
98-82-8Isopropylbenzene		13	U
541-73-11,3-Dichlorobenzene		13	U
106-46-71,4-Dichlorobenzene		13	U
95-50-11,2-Dichlorobenzene		13	U
96-12-81,2-Dibromo-3-chloropropan	le	13	U
120-82-11,2,4-Trichlorobenzene		13	U

FORM I - GC/MS VOA

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

7.5	· · · · · ·		MW-114A	
o Name: STL Buffalo	Contract:			
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:		
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	A5748106	
Sample wt/vol: (g/mL)) <u>G</u>	Lab File ID:	Q6612.RR	
Level: (low/med) LOW	•	Date Samp/Recv:	07/14/2005 07/15/2005	ī
% Moisture: not dec. <u>25.3</u>		Date Analyzed:	07/22/2005	
GC Column: <u>DB-624</u> ID: <u>0.25</u>	(mm)	Dilution Factor	:1.00	
Soil Extract Volume: (uL)		Soil Aliquot Vo	lume: (uL)	
			· · ·	

Number TICs found: <u>2</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
21 220 01 0	HEXANE UNKNOWN SILICON COMPOUND	3.94 10.22		BJN · BJ

U

U

U

12

12

12

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

							Cli	ent No.
etter a					M	W-114B		
) Name:	<u>STL Buffalo</u>		Contract:		L	- <u> </u>		··
Lab Code: j	<u>RECNY</u> Cas	se No.:	SAS No.:	SDG No.:	————————————————————————————————————			
Matrix: (s	oil/water) <u>s</u>	<u>XIII</u>		Lab Sample	e ID: A5	5748107	_	
Sample wt/	vol:	<u>5.05</u> (g/mL)	G	Lab File I	D: <u>0</u>	613.RR		
Level: (low/med) <u>I</u>	<u>.OW</u>		Date Samp	/Recv: 07	1/14/200	<u>5 07/1</u>	5/2005
% Moisture	: not dec	<u>17</u> Heated	l Purge: Y	Date Analy	zed: 07	1/22/200	5	
GC Column:	DB-624	ID: <u>0.25</u> (n	m)	Dilution H	Factor:	1.00		• .
Soil Extra	ct Volume: _	(uL)		Soil Aliq	iot Volume	3:	(1)	L)
				CONCENTRATION	UNITES			
C	AS NO.	COMPOUND		(ug/L or ug/I		KG	Q	
74	4-87-3	-Chloromethar	1e		12	2	υ	
74	4-83-9	-Bromomethane	3		12	2	ט ו	
7	5-01-4	-Vinvl chlori	ide		12	2	ບ [
174	5-00-3	-Chloroethane	ć.		12		ט ו	
7	5-09-2	-Methylene ch	loride		-		J	
6	7-64-1	-Acetone			2		BJU	
		-Carbon Disul	fide		12		υ	
7	5-35-4	-1 1-Dichlor	pethene	· · · · · · · · · · · · · · · · · · ·	12		บ	
7	5-34-3	-1,1-Dichlor	ethane		12		ΰ	
	7-66-3	-1,1-Diamore			12		บ	
			othano				U U	
			ethane		12		U U	
		-2-Butanone				1		
/_	1-55-6	-1,1,1-Trichl	.oroetnane		12		U	
-		-Carbon Tetra			12		U	
		-Bronodichlor			12		ט	
178	8-87-5	-1,2-Dichlorc	propane		12		ប ប	
			loropropene		12	- 1		
		-Trichloroeth			. 5		J	
		-Dibromochlor		· · · · · · · · · · · · · · · · · · ·	12		U	
		-1,1,2-Trichl	oroethane		12		U	
	1-43-2				12		U	
		•	chloropropene		12)	U	
	5-25-2				12		υ	
		-4-Methyl-2-p	entanone		12		υ	
	91-78-6				12		U	
		-Tetrachloroe	thene				J	
	08-88-3				12		υ	
			achloroethane		12		υ	
		-Chlorobenzen			12		U	
		-Ethylbenzene			12		ប	
10	00-42-5	-Styrene			12	2	ប	

1330-20-7----Total Xylenes

156-59-2----cis-1,2-Dichloroethene

76-13-1-----1,1,2-Trichloro-1,2,2-trifluoroethane

-

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

	•						Client	No.
			· · ·			MW-114B	-	
D Name:	: SIL BUITALO	Co	ntract:		. L			
Lab Code:	: <u>RECNY</u> Cas	e No.:	SAS No.:	SDG No.:				
Matrix:	(soil/water) <u>s</u>	OIL		Lab Sample	E ID: A	5748107	-	
Sample wt	-/vol:	<u>5.05</u> (g/mL) <u>G</u>		Lab File I	D: <u>C</u>	6613.RR		
Level:	(low/med) <u>I</u>	OW		Date Samp/	Recv: 0	7/14/2005	5 07/15/2	005
% Moistur	re: not dec	<u>17</u> Heated P	urge: <u>Y</u>	Date Analy	zed: <u>0</u>	7/22/200	5	• •
GC Colum	n: <u>DB-624</u>	ID: <u>0.25</u> (mm)		Dilution F	actor: _	1.00		
Soil Extr	act Volume: _	(uL)		Soil Aliqu	ot Volum	e:	(uL)	
	CAS NO.	COMPOUND		CONCENTRATION (ug/L or ug/K		KG	Q	
	156-60-5	-trans-1,2-Dich	loroethene		1	2 1	J	

110-82-7Cyclohexane 108-87-2Methylcyclohexane 106-93-41,2-Dibromoethane 98-82-8Isopropylbenzene 541-73-11,3-Dichlorobenzene	12 12 12 12	ប ប ប
106-46-71,4-Dichlorobenzene 95-50-11,2-Dichlorobenzene 96-12-81,2-Dibramo-3-chloropropane 120-82-11,2,4-Trichlorobenzene	12 12 12 12 12 12 12 12 12 12 12	บ บ บ บ บ บ บ บ

Client No.

DELIA - SOIL ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

MW-114B
 D Name: STL Buffalo
 Contract: _____
 Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: _____ SDG No.: Matrix: (soil/water) SOIL Lab Sample ID: A5748107 Sample wt/vol: ______5.05 (g/mL) G_____ Lab File ID: 06613.RR Level: (low/med) LOW Date Samp/Recv: 07/14/2005 07/15/2005 % Moisture: not dec. 16.8 Date Analyzed: 07/22/2005 GC Column: <u>DB-624</u> ID: 0.25 (mm) Dilution Factor: ____1.00 Soil Aliquot Volume: _____ (uL) Soil Extract Volume: ____ (uL)

Number TICs found: <u>1</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	3.94	22	BJN

FORM IE - GC/MS VOA TIC

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

		•		Client No.
en e			MW-121A	
D Name: STL Buf	falo Contract:	· · · ·	L	
Lab Code: <u>RECNY</u>	Case No.: SAS No.:	SDG No.:		
Matrix: (soil/wate	er) <u>SOIL</u>	Lab Sample ID:	A5748101	
Sample wt/vol:	<u>5.02</u> (g/mL) <u>G</u>	Lab File ID:	Q6607.RR	
Level: (low/med)	LOW	Date Samp/Recv:	<u>07/13/2005</u>	7/15/2005
% Moisture: not de	ec. <u>14</u> Heated Purge: <u>Y</u>	Date Analyzed:	07/22/2005	
GC Column: DB-624	ID: <u>0.25</u> (mm)	Dilution Factor	:1.00	
Soil Extract Volum	ne:(uL)	Soil Aliquot Vo	olume:	(uL)
CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg)		2
74-87-3	Chloromethane		12 U	
74-83-9	Bromomethane		12 U	
	Vinyl chloride		12 U	
75-00-3	Chlomothana		12 U	
75-09-2	Methylene chloride		12 U	
67-64-1	Acetone		12 U	
	Carbon Disulfide			1
	1,1-Dichloroethene		12 U	
/5-34-3	1,1-Dichloroethane		12 U	
67-66-3	Chloroform		12 U	
107-06-2-	1,2-Dichloroethane		12 U	
78-93-3	2-Butanone		12 U	· · ·
71-55-6	1,1,1-Trichloroethane		12 U	
56-23-5	Carbon Tetrachloride		12 U	
75-27-4	Bronodichloromethane		12 U	
78-87-5	1,2-Dichloropropane	-	12 U	1
10061-01-	5cis-1,3-Dichloropropene		12 U	
79-01-6	Trichloroethene		12 U	
124-48-1-	Dibromochloromethane		12 U	
79-00-5	1,1,2-Trichloroethane		12 U	1
71-43-2	Benzene		12 U	[.
	6trans-1,3-Dichloropropene		12 U	1.1
	Bramoform		12 U	
	4-Methyl-2-pentanone		12 U	
	2-Hexanone		12 U	
	Tetrachloroethene		12 U	
	Toluene		12 U	
	1,1,2,2-Tetrachloroethane	i	12 U	
	Chlorobenzene		12 U	
	Ethylbenzene		12 U	
	Styrene		12 U	
	Total Xylenes		12 U	
	1,1,2-Trichloro-1,2,2-trifl	uoroetnane	12 U	
156-59-2-	cis-1,2-Dichloroethene		12 U	

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

-

	Gaughan at		MW-121A
) Name: <u>STL Buffalo</u>	Contract:		· · · · · · · · · · · · · · · · · · ·
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL		Lab Sample ID:	<u>A5748101</u>
Sample wt/vol: _5.02 (g/mL)	G	Lab File ID:	Q6607.RR
Level: (low/med) LOW		Date Samp/Recv:	07/13/2005 07/15/2005
% Moisture: not dec. <u>14</u> Heater	d Purge: Y	Date Analyzed:	07/22/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (1	mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vola	.me: (uL)
	car	CENTRATION UNITS:	

(ug/L or ug/Kg)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
156-60-5	trans-1,2-Dichloroethene		12	- U
75-71-8	Dichlorodifluoromethane		2	J
75-69-4	Trichlorofluoromethane	· · ·	12	U
79-20-9	Methyl acetate		12	U
1634-04-4-	Methyl-t-Butyl Ether (MIBE)		12	U
110-82-7	Cyclohexane		12	U
108-87-2	Methylcyclohexane		12	U
106-93-4	1,2-Dibromoethane		12	U
98-82-8	Isopropylbenzene		12	U
	1,3-Dichlorobenzene		12	U
106-46-7	1,4-Dichlorobenzene		12	U
95-50-1	1,2-Dichlorobenzene		12	U
96-12-8	1,2-Dibromo-3-chloropropane		12	U
	1,2,4-Trichlorobenzene		12	υ

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

-

			MW-121A
b Name: STL Buffalo	Contract:		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>		Lab Sample ID:	<u>A5748101</u>
Sample wt/vol: (g/mL)	G	Lab File ID:	Q6607.RR
Level: (low/med) LOW		Date Samp/Recv:	07/13/2005 07/15/2005
% Moisture: not dec. <u>13.8</u>		Date Analyzed:	07/22/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (r	nm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	lume: (uL)

Number TICs found: __1

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	3.94	19	BJN

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

		MW-121B
Name: SIL Buffalo Contract:		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A5748102</u>
Sample wt/vol: 5.06 (g/mL) G	Lab File ID:	Q6608 .RR
Level: (low/med) LOW	Date Samp/Recv:	07/13/2005 07/15/2005
% Moisture: not dec. <u>21</u> Heated Purge: Y	Date Analyzed:	07/22/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Volu	.me: (uL)
	CENTRATION UNITS:	

CAS NO.	COMPOUND	ug/L or ug/Kg)	<u>UG/KG</u>	Q
74-87-3	Chloromethane		12	U
	Bromomethane		12	ប
75-01-4	Vinyl chloride		12	U .
75-00-3	Chloroethane	,	12	ប
75-09-2	Methylene chloride		8	J
67-64-1		· · · ·	4	BerU
75-15-0	Carbon Disulfide		12	U .
75-35-4	1,1-Dichloroethene		12	U
75-34-3	1,1-Dichloroethane		2	J
67-66-3	Chloroform		12	U
107-06-2	1,2-Dichloroethane		12	U
78-93-3	2-Butanone		12	U
71-55-6	1,1,1-Trichloroethane		12	U
56-23-5	Carbon Tetrachloride		12	U
75-27-4	Bromodichloromethane		12	U
78-87-5	1,2-Dichloropropane		12	U
	cis-1,3-Dichloropropene		12	U
	Trichloroethene		3	JJ
124-48-1	Dibromochloromethane		12	υ
79-00-5	1,1,2-Trichloroethane		12	U
71-43-2	Benzene		12	υ
10061-02-6-	trans-1,3-Dichloropropene		12	U
75-25-2	Bromoform		12	υ
108-10-1	4-Methyl-2-pentanone		12	U
	2-Hexanone		12	υ
127-18-4	Tetrachloroethene		12	U
108-88-3	Toluene		12	U
79-34-5	1,1,2,2-Tetrachloroethane		12	U
	Chlorobenzene		12	U
100-41-4	Ethylbenzene		12	U
100-42-5			12	U
	Total Xylenes		12	U
	1,1,2-Trichloro-1,2,2-trifluoro	ethane	12	U
	cis-1,2-Dichloroethene		3	J

Client No.

-

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

		MW-121B
_ab Name: <u>STL Buffalo</u> Contract:		·
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID:	<u>A5748102</u>
Sample wt/vol: 5.06 (g/mL) G	Lab File ID:	Q6608.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/13/2005 07/15/2005
% Moisture: not dec. <u>21</u> Heated Purge: \underline{Y}	Date Analyzed:	07/22/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Volu	me: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>I</u>	<u>JG/KG</u> Q

156-60-5trans-1,2-Dichloroethene	12	U
75-71-8Dichlorodifluoromethane	12	U
75-69-4Trichlorofluoromethane	12	U
79-20-9Methyl acetate	12	U
1634-04-4Methyl-t-Butyl Ether (MIBE)	12	U
110-82-7Cyclohexane	12	U
108-87-2Methylcyclohexane	12	U
106-93-41,2-Dibromoethane	12	U
98-82-8Isopropylbenzene	12	U
541-73-11,3-Dichlorobenzene	12	U
106-46-71,4-Dichlorobenzene	12	U
95-50-11,2-Dichlorobenzene	12	U
96-12-81,2-Dibromo-3-chloropropane	12	U
120-82-11,2,4-Trichlorobenzene	12	U

Client No.

-

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

		MW-121B
معد Name: <u>STL Buffalo</u> Contract:	- -	· · · · ·
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID:	A5748102
Sample wt/vol:5.06 (g/mL) G	Lab File ID:	Q6608.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	<u>07/13/2005</u> 07/15/2005
* Moisture: not dec. <u>21.3</u>	Date Analyzed:	07/22/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor	:1.00
Soil Extract Volume: (uL)	Soil Aliquot Vo	lume: (uL)
	CONTOCENTED & FUT ON T & INTE	

Number TICs found: <u>2</u>

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
	HEXANE UNKNOWN SILICON COMPOUND	3.94 10.22		BJN BJ

FORM IE - GC/MS VOA TIC

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

b Name: <u>STL Buffalo</u> Contract:		MW-122A
D Mane. <u>SID Duttato</u> Contract.		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID:	<u>A5748116</u>
Sample wt/vol: 5.03 (g/mL) G	Lab File ID:	Q6634.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/13/2005 07/15/2005
% Moisture: not dec. <u>17</u> Heated Purge: \underline{Y}	Date Analyzed:	07/23/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	
74-87-3Chloromethane 74-83-9Bromomethane 75-01-4Vinyl chloride 75-00-3Chloroethane 75-09-2Methylene chloride 67-64-1Acetone 75-15-0Carbon Disulfide		12 U 12 U 12 U 12 U 12 U 11 J 12 U 12 U

67-64-1Acetone	12	U
75-15-0Carbon Disulfide	12	U
75-35-41,1-Dichloroethene	12	U
75-34-31,1-Dichloroethane	12	U
67-66-3Chloroform	12	U
107-06-21,2-Dichloroethane	12	υ
78-93-32-Butanone	12	υ
71-55-61,1,1-Trichloroethane	12	U
56-23-5Carbon Tetrachloride	12	U
75-27-4Bromodichloromethane	12	U
78-87-51,2-Dichloropropane	12	U
10061-01-5cis-1,3-Dichloropropene	12	U
79-01-6Trichloroethene	12	U
124-48-1Dibromochloromethane	12	υ
79-00-51,1,2-Trichloroethane	12	U
71-43-2Benzene	12	U
10061-02-6trans-1,3-Dichloropropene	12	U
75-25-2Bromoform	12	U
108-10-14-Methyl-2-pentanone	12	U
591-78-62-Hexanone	12	U
127-18-4Tetrachloroethene	12	υ
108-88-3Toluene	12	U
79-34-51,1,2,2-Tetrachloroethane	12	U
108-90-7Chlorobenzene	12	U
100-41-4Ethylbenzene	12	U
100-42-5Styrene	12	U
1330-20-7Total Xylenes	12	U
76-13-11,1,2-Trichloro-1,2,2-trifluoroethane	12	U
156-59-2cis-1,2-Dichloroethene	12	U
		_

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No. MW-122A Contract: _ Name: STL Buffalo Lab Code: RECNY Case No.: _____ SAS No.: _____ SDG No.: _____ Matrix: (soil/water) SOIL Lab Sample ID: A5748116 Sample wt/vol: _______ (g/mL) G_ Lab File ID: Q6634.RR Level: (low/med) LOW Date Samp/Recv: 07/13/2005 07/15/2005 % Moisture: not dec. <u>17</u> Heated Purge: Y Date Analyzed: <u>07/23/2005</u> GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: ____1.00 Soil Extract Volume: ____ (uL) Soil Aliquot Volume: _____ (uL) CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
156-60-5	trans-1,2-Dichloroethene		12	U :
75-71-8	Dichlorodifluoromethane		12	U
75-69-4	Trichlorofluoromethane		12	U
79-20-9	Methyl acetate		12	U
1634-04-4-	Methyl-t-Butyl Ether (MI	BE)	12	U
110-82-7			12	ប
108-87-2	Methylcyclohexane		12	ីប
106-93-4	1,2-Dibromoethane		12	U
98-82-8	Isopropylbenzene		12	U
541-73-1	1,3-Dichlorobenzene		12	U
106-46-7	1,4-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	12	U
95-50-1	1,2-Dichlorobenzene		12	U
96-12-8	1,2-Dibromo-3-chloroprop	ane	12	U
120-82-1	1,2,4-Trichlorobenzene		12	ប
L	مستقلع این می همین کا مستقلات کی معرف می وجود این با مطالب بر می از مشاور و معنوبی می مستقل می و م			

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

		MW-122A
Name: <u>SIL Buffalo</u> Contract:	· · · · ·	
Lab Code: RECINY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID:	<u>A5748116</u>
Sample wt/vol: (g/mL) G	Lab File ID:	06634.RR
Level: (low/med) LOW	Date Samp/Recv:	07/13/2005 07/15/2005
% Moisture: not dec. <u>16.9</u>	Date Analyzed:	07/23/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	lume: (uL)

Number TICs found: <u>1</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	3.95	17	BJN

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

÷..

	MW-122B
b Name: <u>STL Buffalo</u> Contract:	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) SOIL	Lab Sample ID: A5748117
Sample wt/vol: 5.17 (g/mL) G	Lab File ID: <u>Q6635.RR</u>
Level: (low/med) LOW	Date Samp/Recv: 07/13/2005 07/15/2005
% Moisture: not dec. <u>17</u> Heated Purge: \underline{Y}	Date Analyzed: 07/23/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: <u>1.00</u>
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
	CONCENTRATION UNITS:

CAS NO.	COMPOUND	ONCENTRATION UNI: (ug/L or ug/Kg)	rs: <u>UG/KG</u>	Q
74-87-3	Chloromethane		12	U
74-83-9	Bronomethane		12	U
75-01-4	Vinyl chloride		12	U
75-00-3	Chloroethane		12	U
75-09-2	Methylene chloride		12	
67-64-1			4	J
75-15-0	Carbon Disulfide		12	U
75-35-4	1,1-Dichloroethene		12	U
75-34-3	1,1-Dichloroethane		12	U
67-66-3	Chloroform		12	U
107-06-2	1,2-Dichloroethane		12	U
78-93-3	2-Butanone		12	U
71-55-6	1,1,1-Trichloroethane		12	υ
56-23-5	Carbon Tetrachloride		12	ប
75-27-4	Bromodichloromethane		12	U
78-87-5	1,2-Dichloropropane		12	U
	cis-1,3-Dichloropropene		12	U
	Trichloroethene		12	U
124-48-1	Dibromochloromethane		12	U
79-00-5	1,1,2-Trichloroethane		12	U
71-43-2	Benzene		12	U
10061-02-6	trans-1,3-Dichloropropene		12	U
	Bromoform		12	U
108-10-1	4-Methyl-2-pentanone		12	U
	2-Hexanone		12	U
127-18-4	Tetrachloroethene		12	υ
108-88-3			12	U
	1,1,2,2-Tetrachloroethane		12	U
	Chlorobenzene		12	U
	Ethylbenzene		12	υ
100-42-5			12	U
	Total Xylenes		12	U
	1,1,2-Trichloro-1,2,2-trifluor	bethane	12	U
	cis-1,2-Dichloroethene		2	J

,

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

28\411

Client No.

	M₩-122B
Name: <u>SIL Buffalo</u> Contract:	
Lab Code: RECINY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: A5748117
Sample wt/vol: 5.17 (g/mL) G	Lab File ID: <u>Q6635.RR</u>
Level: (low/med) LOW	Date Samp/Recv: 07/13/2005 07/15/2005
% Moisture: not dec. <u>17</u> Heated Purge: \underline{Y}	Date Analyzed: 07/23/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/Lorug/Kg) <u>UG/KG</u> Q
156-60-5trans-1,2-Dichloroethene	12 U

156-60-5trans-1,2-Dichloroethene 75-71-8Dichlorodifluoromethane 75-69-4Trichlorofluoromethane 79-20-9Methyl acetate 1634-04-4Methyl-t-Butyl Ether (MIBE) 110-82-7Cyclohexane	12 12 12 12 12 12 12 12	ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט
108-87-2Methylcyclohexane 106-93-41,2-Dibromoethane	12 12	די זי
98-82-8Isopropylbenzene	12	U
541-73-11,3-Dichlorobenzene	12 12	U U
95-50-11,2-Dichlorobenzene 96-12-81,2-Dibromo-3-chloropropane	12 12	ប ប
120-82-11,2,4-Trichlorobenzene	12	ប

FORM I - GC/MS VOA

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

Client No.

		MW-122B
Name: STL Buffalo Contract:		
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	· · · · · · · · · · · · · · · · · · ·
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A5748117</u>
Sample wt/vol: (g/mL) G	Lab File ID:	06635.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/13/2005 07/15/2005
% Moisture: not dec. <u>17.5</u>	Date Analyzed:	07/23/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor	:1.00
Soil Extract Volume: (uL)	Soil Aliquot Vo	lume: (uL)
		

Number TICs found: <u>1</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

[CAS NO.	Compound Name	RT	Est. Conc.	Q
	1. 110-54-3	HEXANE	3.95	18	BJN

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALVETS DATA SHEET

			la ondei		Client
				MW-123	<u>.</u>
b Nan	me: <u>SIL Buffa</u>	do Contract:		[
Lab Cod	le: <u>RECNY</u>	Case No.: SAS No.:	SDG No.:		
Matrix:	: (soil/water	r) <u>SOIL</u>	Lab Sample ID:	<u>A574810</u>	8
Sample	wt/vol:	<u>5.15</u> (g/mL) <u>G</u>	Lab File ID:	<u>Q6616.R</u>	R
Level:	(low/med)	LOW	Date Samp/Recv	r: <u>07/14/2</u>	005 07/15/20
% Moist	ture: not dec	. <u>21</u> Heated Purge: <u>Y</u>	Date Analyzed:	07/22/2	005
GC Colu	mn: <u>DB-624</u>	ID: <u>0.25</u> (mm)	Dilution Facto	r: <u>1.0</u>	0
Soil Ex	tract Volume	:: (uL)	Soil Aliquot V	olume:	(uL)
	CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)		Q
	74-83-9 75-01-4 75-09-2 67-64-1 75-15-0 75-35-4 75-34-3 67-66-3 107-06-2 78-93-3 71-55-6 56-23-5 75-27-4 78-87-5 10061-01-5- 79-01-6	Chloromethane Bromomethane Vinyl chloride Chloroethane Chloroethane Carbon Disulfide 1,1-Dichloroethane Chloroform 1,2-Dichloroethane 2-Butanone 		12 12 12 12 6 4 12 35 160 12 12 12 12 12 12 12 12 12 12 5 12	U U U U J J J E E U U U U U U U U U U U
	79-00-5 71-43-2 10061-02-6- 75-25-2 108-10-1 591-78-6 127-18-4 108-88-3 79-34-5 108-90-7 100-41-4 100-42-5 1330-20-7	1,1,2-Trichloroethane Benzene Bromoform Bromoform 		12 12 12 12 12 12 12 17 12 12 12 12 12 12 12	บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ
-		1,1,2-Trichloro-1,2,2-trifl	uoroetnane	12 4	U J

76-13-1-----1,1,2-Trichloro-1,2,2-trifluoroethane 156-59-2----cis-1,2-Dichloroethene

Client No.

-

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

	MW-123A
د Name: <u>STL Buffalo</u> Contract:	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) SOIL	Lab Sample ID: A5748108
Sample wt/vol: 5.15 (g/mL) <u>G</u>	Lab File ID: <u>Q6616.RR</u>
Level: (low/med) LOW	Date Samp/Recv: 07/14/2005 07/15/2005
% Moisture: not dec. <u>21</u> Heated Purge: <u>Y</u>	Date Analyzed: 07/22/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: <u>1.00</u>
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q

5	NO.	COMPOUND

(ug/L or ug/Kg) <u>UG/KG</u>

156-60-5trans-1,2-Dichlorcethene	12	U
75-71-8Dichlorodifluoromethane	12	U
75-69-4Trichlorofluoromethane	12	U
79-20-9Methyl acetate	12	U
1634-04-4Methyl-t-Butyl Ether (MIBE)	12	<u></u> ד
110-82-7Cyclohexane	12	U
108-87-2Methylcyclohexane	12	U
105-93-41,2-Dibromoethane	12	υ
98-82-8Isopropylbenzene	12	U
541-73-11,3-Dichlorobenzene	12	U
105-46-71,4-Dichlorobenzene	12	υ
95-50-11,2-Dichlorobenzene	12	U
96-12-81,2-Dibromo-3-chloropropane	12	U
120-82-11,2,4-Trichlorobenzene	12	υ

Client No.

-

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

		MW-123A
ab Name: <u>STL Buffalo</u> Contract:	-	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID:	<u>A5748108</u>
Sample wt/vol:5.15 (g/mL) G	Lab File ID:	06616.RR
Level: (low/med) LOW	Date Samp/Recv:	<u>07/14/2005</u> <u>07/15/2005</u>
% Moisture: not dec. <u>21.4</u>	Date Analyzed:	07/22/2005
GC Column: <u>DB-624</u> ID: 0.25 (mm)	Dilution Factor	:1.00
Soil Extract Volume: (uL)	Soil Aliquot Vo	lume: (uL)
	CONTREMETED ANTICAL LINET	TC .

Number TICs found: <u>1</u>

ONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	3.94	20	BJN

FORM IE - GC/MS VOA TIC

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

		Client No.
J Name: <u>STL Buffalo</u> Contract:		MW-123B
Lab Code: <u>RECINY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) SOIL	Lab Sample ID:	<u>A5748109</u>
Sample wt/vol:5.10 (g/mL) G	Lab File ID:	06617.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	07/14/2005 07/15/2005
% Moisture: not dec. <u>17</u> Heated Purge: \underline{Y}	Date Analyzed:	07/22/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	<u>UG/KG</u> Q
74-07-2 Chiommethana		10 11

74-87-3Chloromethane	12	ប
74-83-9Bromomethane	12	U
75-01-4Vinyl chloride	12	U
75-00-3Chloroethane	12	ប
75-09-2Methylene chloride	5	J
67-64-1Acetone	4	BJ
75-15-0Carbon Disulfide	12	U
75-35-41,1-Dichloroethene	21	
75-34-31,1-Dichloroethane	140	
67-66-3Chloroform	12	U
107-06-21,2-Dichloroethane	12	U
78-93-32-Butanone	12	U
71-55-61,1,1-Trichloroethane	12	U
56-23-5Carbon Tetrachloride	12	U
75-27-4Bromodichloromethane	12	U
78-87-51,2-Dichloropropane	12	U
10061-01-5cis-1,3-Dichloropropene	12	U
79-01-6Trichloroethene	12	U
124-48-1Dibromochloromethane	12	ט
79-00-51,1,2-Trichloroethane	12	U
71-43-2Benzene	12	U
10061-02-6trans-1,3-Dichloropropene	12	υ
75-25-2Bromoform	12	ט
108-10-14-Methyl-2-pentanone	12	U
591-78-62-Hexanone	12	U
127-18-4Tetrachloroethene	3	J
108-88-3Toluene	12	U
79-34-51,1,2,2-Tetrachloroethane	12	U
108-90-7Chlorobenzene	12	U
100-41-4Ethylbenzene	12	U
100-42-5Styrene	12	U
1330-20-7Total Xylenes	12	U
76-13-11,1,2-Trichloro-1,2,2-trifluoroethane	12	U
156-59-2cis-1,2-Dichloroethene	1	J
	1	

υ

υ

U

ប ប

U

U

U

Ū

U

12

12

12

12

12

12

12

12

12

12

Client No.

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

	MW-123B
b Name: <u>STL Buffalo</u> Contract:	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: A5748109
Sample wt/vol: (g/mL) G	Lab File ID: <u>Q6617.RR</u>
Level: (low/med) LOW	Date Samp/Recv: 07/14/2005 07/15/2005
% Moisture: not dec. <u>17</u> Heated Purge: <u>Y</u>	Date Analyzed: 07/22/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q
156-60-5trans-1,2-Dichloroethene 75-71-8Dichlorodifluoromethane 75-69-4Trichlorofluoromethane 79-20-9Methyl acetate	12 U

1634-04-4----Methyl-t-Butyl Ether (MIBE)

96-12-8-----1,2-Dibromo-3-chloropropane

110-82-7----Cyclohexane

108-87-2----Methylcyclohexane

106-93-4----1,2-Dibromoethane

541-73-1----1,3-Dichlorobenzene

106-46-7----1,4-Dichlorobenzene 95-50-1-----1,2-Dichlorobenzene

120-82-1----1,2,4-Trichlorobenzene

98-82-8-----Isopropylbenzene

FORM I - GC/MS VOA

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

.....

en tra			MW-123B	
) Name: STL Buffalo	Contract:			
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:		
Matrix: (soil/water) SOIL		Lab Sample ID:	A5748109	
Sample wt/vol: (g/mL)	G	Lab File ID:	<u>Q6617.RR</u>	
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	07/14/2005 07/15/2005	2
% Moisture: not dec. <u>16.9</u>		Date Analyzed:	07/22/2005	
GC Column: <u>DB-624</u> ID: <u>0.25</u>	(mm)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)		Soil Aliquot Vol	lume: (uL)	

Number TICs found: <u>1</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	Compound Name	RT	Est. Conc.	Q
1. 110-54-3	HEXANE	3.94	15	BJN

Client No.

-

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

	Contract:		SBA-12A
Lab Code: <u>RECNY</u> Case No.:	SAS NO.:	SDG NO.:	•
Matrix: (soil/water) SOIL		Lab Sample ID:	<u>A5748114</u>
Sample wt/vol: (g/mL)	G	Lab File ID:	Q6622.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	07/14/2005 07/15/2005
% Moisture: not dec. <u>19</u> Heater	d Purge: <u>Y</u>	Date Analyzed:	07/22/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (n	nn)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume: (uL)

CONCENTRATION UNITS:

ONCENTRA.	LICH UNI.	12:	
(ug/L or	ug/Kg)	UG/KG	

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
	Chloromethane		12	U
	Bromomethane		12	U
75-01-4	Vinyl chloride	· · · · · · · · · · · · · · · · · · ·	12	υ
75-00-3	Chloroethane		12	υ
75-09-2	Methylene chloride		6	J
67-64-1			2	₽₽U
	Carbon Disulfide		2	J
	1,1-Dichloroethene		12	U
75-34-3	1,1-Dichloroethane		12	U
	Chloroform		12	U
107-06-2	1,2-Dichloroethane		12	υ
	2-Butanone		12	U
71-55-6	1,1,1-Trichloroethane		12	υ
56-23-5	Carbon Tetrachloride		12	U
75-27-4	Bromodichloromethane		12	U
78-87-5	1,2-Dichloropropane		12	U
10061-01-5-	cis-1,3-Dichloropropene		12	U
79-01-6	Trichloroethene		12	U
124-48-1	Dibromochloromethane		12	U
79-00-5	1,1,2-Trichloroethane		12	U
71-43-2	Benzene		12	υ
10061-02-6-	trans-1,3-Dichloropropene		12	υ
75-25-2	Bromoform		12	υ
108-10-1	4-Methyl-2-pentanone		12	U
	2-Hexanone		12	υ
127-18-4	Tetrachloroethene		12	U
108-88-3			12	U
79-34-5	1,1,2,2-Tetrachloroethane		12	U
	Chlorobenzene		12	U
	Ethylbenzene		12	U
100-42-5			12	U
	Total Xylenes		12	U
	1,1,2-Trichloro-1,2,2-trifluoro	ethane	12	U
	cis-1,2-Dichloroethene		12	U
L				Ĩ

FORM I - GC/MS VOA

~

DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

		SBA-12A
Name: <u>STL Buffalo</u> Contract:		· · · · · · · · · · · · · · · · · · ·
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	<u>A5748114</u>
Sample wt/vol: 5.15 (g/mL) G	Lab File ID:	06622.RR
Level: (low/med) LOW	Date Samp/Recv:	07/14/2005 07/15/2005
% Moisture: not dec. <u>19</u> Heated Purge: <u>Y</u>	Date Analyzed:	07/22/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO. COMPOUND	(ug/L or ug/kg)	UG/KG	Q
156-60-5trans-1,2-Dichloroethene		12	- U
75-71-8Dichlorodifluoromethane		3	25
75-69-4Trichlorofluoromethane		12	ប
79-20-9Methyl acetate		12	U
1634-04-4Methyl-t-Butyl Ether (MI	BE)	12	ប
110-82-7Cyclohexane		12	U
108-87-2Methylcyclohexane		12	U
106-93-41,2-Dibromoethane		12	U
98-82-8Isopropylbenzene		12	υ
541-73-11,3-Dichlorobenzene		12	U
106-46-71,4-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	12	υ
95-50-11,2-Dichlorobenzene		12	U
96-12-81,2-Dibromo-3-chloroprop	ane	12	U
120-82-11,2,4-Trichlorobenzene		12	υ

~~~

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

Client No.

-

|                                          |            |                  | SBA-12A             |    |
|------------------------------------------|------------|------------------|---------------------|----|
| b Name: <u>STL Buffalo</u>               | Contract:  | '                |                     | J  |
| Lab Code: <u>RECNY</u> Case No.:         | SAS No.:   | SDG No.:         |                     |    |
| Matrix: (soil/water) <u>SOIL</u>         |            | Lab Sample ID:   | <u>A5748114</u>     |    |
| Sample wt/vol: (g/mL                     | ) <u>G</u> | Lab File ID:     | <u>06622.RR</u>     |    |
| Level: (low/med) <u>LOW</u>              |            | Date Samp/Recv:  | 07/14/2005 07/15/20 | 05 |
| % Moisture: not dec. <u>18.8</u>         |            | Date Analyzed:   | 07/22/2005          |    |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> | (mm)       | Dilution Factor: | :1.00               |    |
| Soil Extract Volume: (uL)                |            | Soil Aliquot Vol | lume: (uL)          |    |
|                                          |            |                  |                     |    |

Number TICs found: <u>1</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

| CAS NO.     | Compound Name | RT   | Est. Conc. | Q   |
|-------------|---------------|------|------------|-----|
| 1. 110-54-3 | HEXANE        | 3.94 | 21         | BJN |

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

#### SBA-12B b Name: <u>STL Buffalo</u> Contract: Lab Code: RECINY Case No.: \_\_\_\_\_ SAS No.: \_\_\_\_\_ SDG No.: \_\_\_\_\_ Matrix: (soil/water) SOIL Lab Sample ID: A5748115 Sample wt/vol: 5.02 (g/mL) G Lab File ID: Q6623.RR Level: (low/med) LOW Date Samp/Recv: 07/14/2005 07/15/2005 % Moisture: not dec. <u>25</u> Heated Purge: Y Date Analyzed: 07/22/2005 GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: \_\_\_\_\_1.00 Soil Extract Volume: \_\_\_\_\_ (uL) Soil Aliquot Volume: \_\_\_\_\_ (uL)

#### CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG 0

|     | CAS NO.    | COMPOUND                      | (ug/L or ug/K | <br><u>G/KG</u> | Q   |
|-----|------------|-------------------------------|---------------|-----------------|-----|
|     |            | -Chloromethane                |               | 13              | ប   |
|     | 74-83-9    | -Bronomethane                 |               | 13              | U   |
|     | 75-01-4    | -Vinyl chloride               |               | 13              | U   |
|     |            | -Chloroethane                 |               | 13              | ប   |
|     |            | -Methylene chloride           |               | 8               | J   |
|     | 67-64-1    |                               |               | 19              | BU  |
|     |            | -Carbon Disulfide             |               | 13              | U   |
|     |            | -1,1-Dichloroethene           |               | 13              | U   |
|     |            | -1,1-Dichloroethane           |               | 13              | ט ו |
|     | 67-66-3    |                               |               | 13              | U   |
|     | 107-06-2   | -1,2-Dichloroethane           |               | 13              | U   |
|     | 78-93-3    |                               |               | 6               | J   |
|     |            | -1,1,1-Trichloroethane        |               | 13              | U   |
|     |            | -Carbon Tetrachloride         |               | 13              | U   |
|     |            | -Bromodichloromethane         |               | 13              | ט ו |
|     |            | -1,2-Dichloropropane          |               | 13              | ט ו |
|     | 10061-01-5 | -cis-1,3-Dichloropropene      |               | 13              | υ   |
|     |            | -Trichloroethene              |               | 13              | ប   |
|     |            | -Dibromochloromethane         |               | 13              | υ   |
|     | 79-00-5    | -1,1,2-Trichloroethane        |               | 13              | ט   |
|     | 71-43-2    |                               |               | 13              | U   |
|     | 10061-02-6 | -trans-1,3-Dichloropropene    |               | 13              | U   |
|     | 75-25-2    |                               |               | 13              | υ   |
|     | 108-10-1   | -4-Methyl-2-pentanone         |               | 13              | U   |
|     | 591-78-6   |                               |               | 13              | U   |
|     | 127-18-4   | Tetrachloroethene             |               | 13              | ט ו |
|     | 108-88-3   | Toluene                       |               | 13              | υ   |
| -   |            | -1,1,2,2-Tetrachloroethane    |               | 13              | U   |
|     | 108-90-7   | -Chlorobenzene                |               | 13              | U   |
| · 1 | 100-41-4   | -Ethylbenzene                 |               | 13              | υ   |
|     | 100-42-5   |                               |               | 13              | ט ו |
|     |            | -Total Xylenes                |               | 13              | ע   |
|     |            | 1,1,2-Trichloro-1,2,2-triflue | proethane     | 13              | U   |
|     |            | cis-1,2-Dichloroethene        |               | 13              | υ   |
| - 1 |            |                               |               | <br>            |     |

#### FORM I - GC/MS VOA

#### 39\411

Client No.

Client No.

-

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

|                                                              |                   | SBA-12B               |
|--------------------------------------------------------------|-------------------|-----------------------|
| b Name: <u>STL Buffalo</u> Contract:                         | -                 |                       |
| Lab Code: RECNY Case No.: SAS No.:                           | SDG No.:          |                       |
| Matrix: (soil/water) SOIL                                    | Lab Sample ID:    | <u>A5748115</u>       |
| Sample wt/vol: $5.02$ (g/mL) G                               | Lab File ID:      | 06623.RR              |
| Level: (low/med) LOW                                         | Date Samp/Recv:   | 07/14/2005 07/15/2005 |
| % Moisture: not dec. <u>25</u> Heated Purge: $\underline{Y}$ | Date Analyzed:    | 07/22/2005            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)                | Dilution Factor:  | 1.00                  |
| Soil Extract Volume: (uL)                                    | Soil Aliquot Volu | me:(uL)               |

#### CONCENTRATION UNITS: (ug/L or ug/Kg) UK

| CAS NO. COMPOUND                    | (ug/L or ug/Kg | ) <u>UG/KG</u> | Q |
|-------------------------------------|----------------|----------------|---|
| 156-60-5trans-1,2-Dichloroethene    |                | 13             | U |
| 75-71-8Dichlorodifluoromethane      |                | 13             | U |
| 75-69-4Trichlorofluoromethane       |                | 13             | υ |
| 79-20-9Methyl acetate               |                | 13             | U |
| 1634-04-4Methyl-t-Butyl Ether (MIBE | 3)             | 13             | U |
| 110-82-7Cyclohexane                 |                | 13             | U |
| 108-87-2Methylcyclohexane           |                | 13             | U |
| 106-93-41,2-Dibrompethane           |                | 13             | U |
| 98-82-8Isopropylbenzene             |                | 13             | U |
| 541-73-11,3-Dichlorobenzene         |                | 13             | υ |
| 106-46-71,4-Dichlorobenzene         |                | 13             | U |
| 95-50-11,2-Dichlorobenzene          |                | 13             | U |
| 96-12-81,2-Dibromo-3-chloropropar   | e              | 13             | U |
| 120-82-11,2,4-Trichlorobenzene      |                | 13             | U |

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

Client No.

-

|                                          |             |                  | SBA-12B               |
|------------------------------------------|-------------|------------------|-----------------------|
| o Name: <u>STL Buffalo</u>               | Contract:   |                  |                       |
| Lab Code: <u>RECNY</u> Case No.:         | SAS No.:    | SDG No.:         |                       |
| Matrix: (soil/water) SOIL                |             | Lab Sample ID:   | <u>A5748115</u>       |
| Sample wt/vol: (g/mL                     | u) <u>G</u> | Lab File ID:     | 06623.RR              |
| Level: (low/med) LOW                     |             | Date Samp/Recv:  | 07/14/2005 07/15/2005 |
| % Moisture: not dec. <u>24.6</u>         |             | Date Analyzed:   | 07/22/2005            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> | (mm)        | Dilution Factor  | 1.00                  |
| Soil Extract Volume: (uL)                |             | Soil Aliquot Vol | lume: (uL)            |
|                                          |             |                  | -                     |

Number TICs found: <u>1</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

| CAS NO.     | Compound Name | RT   | Est. Conc. | Q   |
|-------------|---------------|------|------------|-----|
| 1. 110-54-3 | HEXANE        | 3.95 | 19         | BJN |

-

\_\_\_\_

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

|                                                       |                                         |            | Client No. |
|-------------------------------------------------------|-----------------------------------------|------------|------------|
|                                                       |                                         | SBC-16A    |            |
| b Name: STL Buffalo Contract:                         |                                         |            |            |
| Lab Code: RECNY Case No.: SAS No.:                    | SDG No.:                                | - ,        |            |
| Matrix: (soil/water) SOIL                             | Lab Sample ID:                          | A5748110   | <b>.</b> . |
| Sample wt/vol: $5.17$ (g/mL) G                        | Lab File ID:                            | 06618.RR   |            |
| Level: (low/med) <u>LOW</u>                           | Date Samp/Recv:                         | 07/14/2005 | 07/15/2005 |
| % Moisture: not dec. <u>25</u> Heated Purge: <u>Y</u> | Date Analyzed:                          | 07/22/2005 |            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)         | Dilution Factor:                        | 1.00       |            |
| Soil Extract Volume: (uL)                             | Soil Aliquot Vol                        | umé:       | (uL)       |
| CAS NO. COMPOUND                                      | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) |            | Q          |
| 74-87-3Chloromethane                                  |                                         | 13 U       | r l        |
| 74-83-9Bromomethane                                   |                                         | 13 U       |            |
| 75-01-4Vinyl chloride                                 |                                         | 13 U       | n na h     |
|                                                       |                                         | 13 U       | r l        |
| 75-09-2Methylene chloride                             |                                         | 13 U       |            |
|                                                       |                                         | 39 B       |            |
| 67-64-1Acetone<br>75-15-0Carbon Disulfide             |                                         | 13 U       | r Į        |
| /5-35-41, I-Dichloroethene                            |                                         | 13 U       | r l        |
| 75-34-31,1-Dichloroethane                             |                                         | 13 U       | r i -      |
| 67-66-3Chloroform                                     |                                         | 13 U       | r I        |
| 107-06-21,2-Dichloroethane                            | · · ·                                   | 13 U       | r i        |
| 78-93-32-Butanone                                     |                                         | 11 J       |            |
| 71-55-61,1,1-Trichloroethane                          |                                         | 13 U       |            |
| 56-23-5Carbon Tetrachloride                           |                                         | 13 U       |            |
| 75-27-4Bromodichloromethane                           |                                         | 13 U       |            |
| 78-87-51,2-Dichloropropane                            |                                         | 13 U       |            |
| 10061-01-5cis-1,3-Dichloropropene                     |                                         | 13 U       |            |
| 79-01-6Trichloroethene                                |                                         | 13 U       |            |
| 124-48-1Dibromochloromethane                          |                                         | 13 U       |            |
| 79-00-51,1,2-Trichloroethane                          |                                         | 13 U       |            |
| 71-43-2Benzene                                        |                                         | 13 U       |            |
| 10061-02-6trans-1,3-Dichloropropene                   |                                         | 13 U       |            |
| 75-25-2Bromoform                                      |                                         | 13 U       |            |
| 108-10-14-Methyl-2-pentanone                          |                                         | 13 U       |            |
| 591-78-62-Hexanone                                    |                                         | 13 U       |            |
| 127-18-4Tetrachloroethene                             | · · · · · · · · · · · · · · · · · · ·   | 13 U       | <b>L</b> . |
| 108-88-3Toluene                                       |                                         | 13 U       |            |
| 79-34-51,1,2,2-Tetrachloroethane                      |                                         | 13 U       |            |
| 108-90-7Chlorobenzene                                 |                                         | 13 U       |            |
| 100-41-4Ethylbenzene                                  |                                         | 13 U       |            |
| 100-42-5Styrene                                       |                                         | 13 U       |            |
| 1330-20-7Total Xylenes                                |                                         | 13 U       |            |
| 76-13-11,1,2-Trichloro-1,2,2-triflux                  | methane                                 | 13 U       |            |
| 156-59-2cis-1,2-Dichloroethene                        |                                         | 13 U       |            |
|                                                       |                                         |            |            |

# DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

43\411

|                                               |                  | Client No.                                                                                                       |
|-----------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------|
| ی Name: <u>STL Buffalo</u> Contract           | •                | SBC-16A                                                                                                          |
| Lab Code: <u>RECNY</u> Case No.: SAS N        | 6.: SDG No.:     | -                                                                                                                |
| Matrix: (soil/water) SOIL                     | Lab Sample ID:   | <u>A5748110</u>                                                                                                  |
| Sample wt/vol: $5.17$ (g/mL) <u>G</u>         | Lab File ID:     | Q6618.RR                                                                                                         |
| Level: (low/med) LOW                          | Date Samp/Recv:  | 07/14/2005 07/15/2005                                                                                            |
| % Moisture: not dec. <u>25</u> Heated Purge:  | Y Date Analyzed: | 07/22/2005                                                                                                       |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor: | 1.00                                                                                                             |
| Soil Extract Volume: (uL)                     | Soil Aliquot Vol | ume: (uL)                                                                                                        |
|                                               |                  | and the second |

#### CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

| CAS NO.   | COMPOUND               | (ug/L or ug/Kg                        | () <u>UG/KG</u> | Q |
|-----------|------------------------|---------------------------------------|-----------------|---|
| 156-60-5  |                        |                                       | 13              | U |
| 75-71-8   | Dichlorodifluorometha  | ne                                    | 13              | U |
| 75-69-4   | Trichlorofluoromethan  | 9                                     | 13              | U |
| 79-20-9   | Methyl acetate         |                                       | 13              | U |
| 1634-04-4 | Methyl-t-Butyl Ether   | (MIBE)                                | 13              | U |
| 110-82-7  | Cyclohexane            |                                       | 13              | ש |
| 108-87-2  | Methylcyclohexane      | · · · · · · · · · · · · · · · · · · · | 13              | U |
| 106-93-4  | 1,2-Dibromoethane      |                                       | 13              | U |
|           | Isopropylbenzene       |                                       | 13              | U |
| 541-73-1  | 1,3-Dichlorobenzene    |                                       | 13              | υ |
| 106-46-7  | 1,4-Dichlorobenzene    | · · · · · · · · · · · · · · · · · · · | 13              | U |
|           | 1,2-Dichlorobenzene    |                                       | 13              | U |
| 96-12-8   | 1,2-Dibromo-3-chloropi | ropane                                | 13              | U |
|           | 1,2,4-Trichlorobenzene |                                       | 13              | ប |

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

| b Name: <u>STL Buffalo</u> Contract:          | SBC-16A                               |
|-----------------------------------------------|---------------------------------------|
| Lab Code: RECNY Case No.: SAS No.:            | SDG No.:                              |
| Matrix: (soil/water) <u>SOIL</u>              | Lab Sample ID: A5748110               |
| Sample wt/vol: $5.17$ (g/mL) G                | Lab File ID: <u>Q6618.RR</u>          |
| Level: (low/med) <u>LOW</u>                   | Date Samp/Recv: 07/14/2005 07/15/2005 |
| % Moisture: not dec. 25.5                     | Date Analyzed: <u>07/22/2005</u>      |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor: <u>1.00</u>          |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volume: (uL)             |
|                                               |                                       |

Number TICs found: \_\_1

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

S., .

| CAS NO.     | Compound Name | RT   | Est. Conc. | Q   |
|-------------|---------------|------|------------|-----|
| 1. 110-54-3 | HEXANE        | 3.94 | 19         | BJN |

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

45\411

|                                               |               |                   | Client No.            |
|-----------------------------------------------|---------------|-------------------|-----------------------|
| o Name: <u>SIL Buffalo</u> Cont               | cract:        |                   | SBC-16B               |
| Lab Code: <u>RECNY</u> Case No.: S            | SAS No.:      | SDG No.:          |                       |
| Matrix: (soil/water) SOIL                     |               | Lab Sample ID:    | <u>A5748111</u>       |
| Sample wt/vol: <u>5.08</u> (g/mL) <u>G</u>    |               | Lab File ID:      | 06619.RR              |
| Level: (low/med) LOW                          |               | Date Samp/Recv:   | 07/14/2005 07/15/2005 |
| % Moisture: not dec. <u>20</u> Heated Pur     | rge: <u>Y</u> | Date Analyzed:    | 07/22/2005            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) |               | Dilution Factor:  | 1.00                  |
| Soil Extract Volume: (uL)                     |               | Soil Aliquot Volu | ume: (uL)             |
|                                               |               |                   |                       |

CAS NO.

COMPOUND

#### CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

|  | -  |
|--|----|
|  | Q. |

|                                    |               |     | · 2  |
|------------------------------------|---------------|-----|------|
| 74-87-3Chloromethane               |               | 12  | U    |
| 74-83-9Bromomethane                |               | 12  | ប    |
| 75-01-4Vinyl chloride              |               | 12  | U    |
| 75-00-3Chloroethane                |               | 12  | U    |
| 75-09-2Methylene chloride          |               | 8   | J    |
| 67-64-1Acetone                     |               | 7 . | BOIL |
| 75-15-0Carbon Disulfide            |               | 12  | υ    |
| 75-35-41,1-Dichloroethene          |               | 12  | U    |
| 75-34-31,1-Dichloroethane          |               | 12  | υ    |
| 67-66-3Chloroform                  |               | 12  | U    |
| 107-06-21,2-Dichloroethane         |               | 12  | U    |
| 78-93-32-Butanone                  |               | 12  | U    |
| 71-55-61,1,1-Trichloroethane       |               | 2   | J    |
| 56-23-5Carbon Tetrachloride        |               | 12  | Ū    |
| 75-27-4Bromodichloromethane        |               | 12  | U    |
| 78-87-51,2-Dichloropropane         |               | 12  | U    |
| 10061-01-5cis-1,3-Dichloropropene  | ·····         | 12  | U    |
| 79-01-6Trichloroethene             |               | 2   | J    |
| 124-48-1Dibromochloromethane       |               | 12  | υ    |
| 79-00-51,1,2-Trichloroethane       |               | 12  | U    |
| 71-43-2Benzene                     |               | 12  | U    |
| L0061-02-6trans-1,3-Dichloropropen | a             | 12  | U    |
| 75-25-2Bromoform                   | ~             | 12  | U    |
| 108-10-14-Methyl-2-pentanone       |               | 12  | U    |
| 591-78-62-Hexanone                 |               | 12  | υ    |
| 127-18-4Tetrachloroethene          |               | 4   | J    |
| L08-88-3Toluene                    |               | 12  | U    |
| 79-34-51,1,2,2-Tetrachloroethan    |               | 12  | U    |
| 108-90-7Chlorobenzene              | =             |     |      |
|                                    |               | 12  | U    |
| 100-41-4Ethylbenzene               |               | 12  | U    |
| L00-42-5Styrene                    |               | 12  | U    |
| 1330-20-7Total Xylenes             | 6             | 12  | U    |
| 76-13-11,1,2-Trichloro-1,2,2-tr    | IIIuoroethane | 12  | υ    |
| 156-59-2cis-1,2-Dichloroethene     |               | 2   | J    |

FORM I - GC/MS VOA

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

46\411

|                                                              |                                                                                                                                                                                                                                                                                                                                                       | Client No.            |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| b Name: STL Buffalo Contract:                                | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - | SBC-16B               |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:                    | SDG No.:                                                                                                                                                                                                                                                                                                                                              |                       |
| Matrix: (soil/water) <u>SOIL</u>                             | Lab Sample ID:                                                                                                                                                                                                                                                                                                                                        | <u>A5748111</u>       |
| Sample wt/vol: $5.08$ (g/mL) G                               | Lab File ID:                                                                                                                                                                                                                                                                                                                                          | 06619.RR              |
| Level: (low/med) LOW                                         | Date Samp/Recv:                                                                                                                                                                                                                                                                                                                                       | 07/14/2005 07/15/2005 |
| % Moisture: not dec. <u>20</u> Heated Purge: $\underline{Y}$ | Date Analyzed:                                                                                                                                                                                                                                                                                                                                        | 07/22/2005            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)                | Dilution Factor:                                                                                                                                                                                                                                                                                                                                      | 1.00                  |
| Soil Extract Volume: (uL)                                    | Soil Aliquot Volu                                                                                                                                                                                                                                                                                                                                     | ume: (uL)             |

#### CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

| CAS NO. COMPOUND                     | (ug/L or ug/Kg) | UG/KG | Q  |
|--------------------------------------|-----------------|-------|----|
| 156-60-5trans-1,2-Dichloroethene     |                 | 12    | U  |
| 75-71-8Dichlorodifluoromethane       |                 | 12    | U  |
| 75-69-4Trichlorofluoromethane        |                 | 12    | U  |
| 79-20-9Methyl acetate                |                 | 12    | U  |
| 1634-04-4Methyl-t-Butyl Ether (MIBE) |                 | 12    | U  |
| 110-82-7Cyclohexane                  |                 | 12    | U  |
| 108-87-2Methylcyclohexane            |                 | 12    | U  |
| 106-93-41,2-Dibromoethane            |                 | 12    | U  |
| 98-82-8Isopropylbenzene              |                 | 12    | U  |
| 541-73-11,3-Dichlorobenzene          |                 | 12    | U  |
| 106-46-71,4-Dichlorobenzene          |                 | 12    | U  |
| 95-50-11,2-Dichlorobenzene           |                 | 12    | U. |
| 96-12-81,2-Dibromo-3-chloropropane   |                 | 12    | U  |
| 120-82-11,2,4-Trichlorobenzene       |                 | 12    | U  |
|                                      |                 |       |    |

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

|                                          | Construments of |                  | SBC-16B               |
|------------------------------------------|-----------------|------------------|-----------------------|
| b Name: <u>STL Buffalo</u>               | Contract:       |                  |                       |
| Lab Code: <u>RECNY</u> Case No.:         | SAS No.:        | SDG No.:         |                       |
| Matrix: (soil/water) SOIL                |                 | Lab Sample ID:   | <u>A5748111</u>       |
| Sample wt/vol:5.08 (g/mL)                | ) <u>G</u>      | Lab File ID:     | <u>Q6619.RR</u>       |
| Level: (low/med) LOW                     |                 | Date Samp/Recv:  | 07/14/2005 07/15/2005 |
| % Moisture: not dec. <u>20.1</u>         |                 | Date Analyzed:   | 07/22/2005            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> | (mm)            | Dilution Factor: | 1.00                  |
| Soil Extract Volume: (uL)                |                 | Soil Aliquot Vol | ume:(uL)              |
|                                          |                 | CONCENTION INTO  |                       |

Number TICs found: <u>2</u>

(ug/Lorug/Kg) UG/KG

| CAS NO. | Compound Name                      | RT            | Est. Conc. | Q         |
|---------|------------------------------------|---------------|------------|-----------|
|         | HEXANE<br>UNKNOWN SILICON COMPOUND | 3.94<br>10.22 |            | BJN<br>BJ |

Client No.

# DELTA - SOIL ASP 2000/8260 - TCL VOLATTLES ANALYSIS DATA SHEET

| b Name: <u>STL Buffalo</u> Contract:                  |                   | SBE-11A               |
|-------------------------------------------------------|-------------------|-----------------------|
|                                                       |                   |                       |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:             | SDG No.:          |                       |
| Matrix: (soil/water) SOIL                             | Lab Sample ID:    | A5748112              |
| Sample wt/vol: <u>5.08</u> (g/mL) <u>G</u>            | Lab File ID:      | 06620.RR              |
| Level: (low/med) LOW                                  | Date Samp/Recv:   | 07/14/2005 07/15/2005 |
| % Moisture: not dec. <u>18</u> Heated Purge: <u>Y</u> | Date Analyzed:    | 07/22/2005            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)         | Dilution Factor:  | 1.00                  |
| Soil Extract Volume: (uL)                             | Soil Aliquot Volu | me: (uL)              |

# CONCENTRATION UNITS: (ug/L or ug/Kg)

| CAS NO.    | COMPOUND                     | (ug/L or ug/Kg) | UG/KG | Q |
|------------|------------------------------|-----------------|-------|---|
| 74-87-3    | Chloromethane                |                 | 12    | U |
| 74-83-9    | Bromomethane                 |                 | 12    | U |
| 75-01-4    | Vinyl chloride               |                 | 12    | U |
| 75-00-3    | Chloroethane                 |                 | 12    | U |
| 75-09-2    | Methylene chloride           |                 | 8     | J |
| 67-64-1    |                              |                 | 12    | U |
| 75-15-0    | Carbon Disulfide             |                 | 12    | U |
| 75-35-4    | 1,1-Dichloroethene           |                 | 12    | U |
| 75-34-3    | 1,1-Dichloroethane           |                 | 12    | U |
| 57-66-3    | Chloroform                   |                 | 12    | U |
| 107-06-2   | 1,2-Dichloroethane           |                 | 12    | U |
|            | 2-Butanone                   |                 | 12    | Ū |
| 71-55-6    | 1,1,1-Trichloroethane        |                 | 12    | U |
|            | Carbon Tetrachloride         |                 | 12    | U |
|            | Bromodichloromethane         |                 | 12    | Ū |
| 78-87-5    | 1,2-Dichloropropane          |                 | 12    | U |
| 0061-01-5- | cis-1,3-Dichloropropene      |                 | 12    | U |
|            | Trichloroethene              |                 | 45    |   |
| 24-48-1    | Dibromochloromethane         |                 | 12    | U |
| 9-00-5     | 1,1,2-Trichloroethane        |                 | 12    | U |
| 1-43-2     |                              |                 | 12    | U |
|            | trans-1,3-Dichloropropene    |                 | 12    | U |
|            | Bromoform                    |                 | 12    | Ū |
| .08-10-1   | 4-Methyl-2-pentanone         |                 | 12    | U |
|            | 2-Hexanone                   |                 | 12    | U |
|            | Tetrachloroethene            |                 | 2     | J |
| .08-88-3   |                              |                 | 12    | U |
|            | 1,1,2,2-Tetrachloroethane    |                 | 12    | U |
|            | Chlorobenzene                |                 | 12    | U |
|            | Ethylbenzene                 | ······          | 12    | U |
| .00-42-5   |                              |                 | 12    | U |
|            | Total Xylenes                |                 | 12    | U |
|            | 1,1,2-Trichloro-1,2,2-triflu | oroethane       | 12    | U |
|            | cis-1,2-Dichloroethene       |                 | 12    | U |
|            |                              |                 |       |   |

0

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

|                                                              | SBE-11A                               |
|--------------------------------------------------------------|---------------------------------------|
| b Name: <u>STL Buffalo</u> Contract:                         |                                       |
| Lab Code: RECINY Case No.: SAS No.:                          | SDG No.:                              |
| Matrix: (soil/water) SOIL                                    | Lab Sample ID: A5748112               |
| Sample wt/vol: $5.08$ (g/mL) G                               | Lab File ID: <u>Q6620.RR</u>          |
| Level: (low/med) LOW                                         | Date Samp/Recv: 07/14/2005 07/15/2005 |
| % Moisture: not dec. <u>18</u> Heated Purge: $\underline{Y}$ | Date Analyzed: 07/22/2005             |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)                | Dilution Factor:1.00                  |
| Soil Extract Volume: (uL)                                    | Soil Aliquot Volume: (uL)             |
|                                                              | CONCENTRATION UNITS:                  |

CAS NO. COMPOUND

### (ug/L or ug/Kg) UG/KG

| 156-60-5trans-1,2-Dichloroethene     | 12 | U |
|--------------------------------------|----|---|
| 75-71-8Dichlorodifluoromethane       | 2  | J |
| 75-69-4Trichlorofluoromethane        | 12 | U |
| 79-20-9Methyl acetate                | 12 | U |
| 1634-04-4Methyl-t-Butyl Ether (MIBE) | 12 | ប |
| 110-82-7Cyclohexane                  | 12 | U |
| 108-87-2Methylcyclohexane            | 12 | υ |
| 106-93-41,2-Dibromoethane            | 12 | U |
| 98-82-8Isopropylbenzene              | 12 | υ |
| 541-73-11,3-Dichlorobenzene          | 12 | U |
| 106-46-71,4-Dichlorobenzene          | 12 | U |
| 95-50-11,2-Dichlorobenzene           | 12 | U |
| 96-12-81,2-Dibromo-3-chloropropane   | 12 | U |
| 120-82-11,2,4-Trichlorobenzene       | 12 | υ |
|                                      |    |   |

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

Client No.

-

|                                          |            |                  | SBE-11A               |
|------------------------------------------|------------|------------------|-----------------------|
| b Name: STL Buffalo                      | Contract:  | -                |                       |
| Lab Code: <u>RECNY</u> Case No.:         | SAS No.:   | SDG No.:         |                       |
| Matrix: (soil/water) SOIL                |            | Lab Sample ID:   | <u>A5748112</u>       |
| Sample wt/vol:5.08 (g/mL)                | ) <u>G</u> | Lab File ID:     | 06620.RR              |
| Level: (low/med) LOW                     |            | Date Samp/Recv:  | 07/14/2005 07/15/2005 |
| % Moisture: not dec. <u>17.9</u>         |            | Date Analyzed:   | 07/22/2005            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> | (mm)       | Dilution Factor: | 1.00                  |
| Soil Extract Volume: (uL)                |            | Soil Aliquot Vol | lume: (uL)            |
|                                          |            |                  |                       |

#### Number TICs found: <u>1</u>

#### CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

| CAS NO.     | Compound Name | RT   | Est. Conc. | Q.  |
|-------------|---------------|------|------------|-----|
| 1. 110-54-3 | HEXANE        | 3.94 | 15         | BJN |

#### FORM IE - GC/MS VOA TIC

Q

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

٦

| b Name: <u>STL Buffalo</u> Contract:                         | SBE-11B                               |
|--------------------------------------------------------------|---------------------------------------|
| Lab Code: <u>RECNY</u> Case No.: SAS No.:                    | SDG No.:                              |
| Matrix: (soil/water) SOIL                                    | Lab Sample ID: A5748113               |
| Sample wt/vol: $5.13$ (g/mL) G                               | Lab File ID: <u>Q6621.RR</u>          |
| Level: (low/med) LOW                                         | Date Samp/Recv: 07/14/2005 07/15/2005 |
| % Moisture: not dec. <u>11</u> Heated Purge: $\underline{Y}$ | Date Analyzed: 07/22/2005             |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)                | Dilution Factor:1.00                  |
| Soil Extract Volume: (uL)                                    | Soil Aliquot Volume: (uL)             |
|                                                              | CONCENTRATION UNITS:                  |

CAS NO.

COMPOUND

(ug/Lorug/Kg) UG/KG

|   | 74-87-3Chloromethane                         |   | 11 | <b>U</b> . |
|---|----------------------------------------------|---|----|------------|
|   | 74-83-9Bromomethane                          | 1 | 11 | U          |
|   | 75-01-4Vinyl chloride                        |   | 11 | U          |
| : | 75-00-3Chloroethane                          |   | 11 | U          |
|   | 75-09-2Methylene chloride                    | ł | 6  | J          |
|   | 67-64-1Acetone                               |   | 3  | BOU        |
|   | 75-15-0Carbon Disulfide                      |   | 11 | U          |
|   | 75-35-41,1-Dichloroethene                    | { | 11 | U          |
|   | 75-34-31,1-Dichloroethane                    |   | 11 | U          |
|   | 67-66-3Chloroform                            |   | 11 | U          |
|   | 107-06-21,2-Dichloroethane                   |   | 11 | U          |
|   | 78-93-32-Butanone                            |   | 11 | U          |
|   | 71-55-61,1,1-Trichloroethane                 |   | 11 | U          |
|   | 56-23-5Carbon Tetrachloride                  |   | 11 | Ū          |
|   | 75-27-4Bromodichloromethane                  |   | 11 | U          |
|   | 78-87-51,2-Dichloropropane                   |   | 11 | U          |
|   | 10061-01-5cis-1,3-Dichloropropene            |   | 11 | U          |
|   | 79-01-6Trichloroethene                       |   | 5  | J          |
|   | 124-48-1Dibromochloromethane                 |   | 11 | υ          |
|   | 79-00-51,1,2-Trichloroethane                 |   | 11 | U          |
|   | 71-43-2Benzene                               |   | 11 | U          |
|   | 10061-02-6trans-1,3-Dichloropropene          |   | 11 | UU         |
|   | 75-25-2Bromoform                             |   | 11 | UU         |
|   | 108-10-14-Methyl-2-pentanone                 |   | 11 | υ          |
|   |                                              |   |    | -          |
|   | 591-78-62-Hexanone                           |   | 11 | U          |
|   | 127-18-4Tetrachloroethene                    |   | 11 | U          |
|   | 108-88-3Toluene                              |   | 11 | U          |
|   | 79-34-51,1,2,2-Tetrachloroethane             |   | 11 | U          |
|   | 108-90-7Chlorobenzene                        |   | 11 | U          |
|   | 100-41-4Ethylbenzene                         |   | 11 | U          |
|   | 100-42-5Styrene                              |   | 11 | U          |
|   | 1330-20-7Total Xylenes                       |   | 11 | U          |
|   | 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane |   | 11 | U          |
|   | 156-59-2cis-1,2-Dichloroethene               |   | 11 | U          |
|   |                                              |   |    |            |

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

-

| b Name: <u>STL Buffalo</u> Contract:                         | <u>.</u>          | SBE-11B               |
|--------------------------------------------------------------|-------------------|-----------------------|
| Lab Code: <u>RECNY</u> Case No.: SAS No.:                    | SDG No.:          |                       |
| Matrix: (soil/water) SOIL                                    | Lab Sample ID:    | <u>A5748113</u>       |
| Sample wt/vol: $5.13$ (g/mL) G                               | Lab File ID:      | <u>Q6621.RR</u>       |
| Level: (low/med) LOW                                         | Date Samp/Recv:   | 07/14/2005 07/15/2005 |
| % Moisture: not dec. <u>11</u> Heated Purge: $\underline{Y}$ | Date Analyzed:    | 07/22/2005            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)                | Dilution Factor:  | 1.00                  |
| Soil Extract Volume: (uL)                                    | Soil Aliquot Volu | ume:(uL)              |

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

| 0   |  |
|-----|--|
| ~ ~ |  |

| 156-60-5trans-1,2-Dichloroethene     | 11     | U |
|--------------------------------------|--------|---|
| 75-71-8Dichlorodifluoromethane       | 11     | U |
| 75-69-4Trichlorofluoromethane        | <br>11 | U |
| 79-20-9Methyl acetate                | <br>11 | U |
| 1634-04-4Methyl-t-Butyl Ether (MIBE) | 11     | U |
| 110-82-7Cyclohexane                  | <br>11 | U |
| 108-87-2Methylcyclohexane            | <br>11 | U |
| 106-93-41,2-Dibromoethane            | <br>11 | U |
| 98-82-8Isopropylbenzene              | <br>11 | U |
| 541-73-11,3-Dichlorobenzene          | 11     | U |
| 106-46-71,4-Dichlorobenzene          | <br>11 | U |
| 95-50-11,2-Dichlorobenzene           | 11     | U |
| 96-12-81,2-Dibromo-3-chloropropane   | <br>11 | U |
| 20-82-11,2,4-Trichlorobenzene        | <br>11 | U |

CAS NO.

COMPOUND

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

Client No.

| b Name: <u>STL Buffalo</u>               | Contract:  |                  | SBE-11B         |            |
|------------------------------------------|------------|------------------|-----------------|------------|
| D Nale. SIL Barraio                      |            |                  |                 |            |
| Lab Code: <u>RECNY</u> Case No.:         | SAS No.:   | SDG No.:         |                 |            |
| Matrix: (soil/water) <u>SOIL</u>         |            | Lab Sample ID:   | <u>A5748113</u> |            |
| Sample wt/vol: (g/mL                     | ) <u>G</u> | Lab File ID:     | 06621.RR        |            |
| Level: (low/med) LOW                     |            | Date Samp/Recv:  | 07/14/2005      | 07/15/2005 |
| % Moisture: not dec. <u>10.9</u>         |            | Date Analyzed:   | 07/22/2005      |            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> | (mm)       | Dilution Factor: | 1.00            | -          |
| Soil Extract Volume: (uL)                |            | Soil Aliquot Vol | lume:           | _ (uL)     |
|                                          |            |                  |                 |            |

Number TICs found: <u>1</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

| CAS NO.     | Compound Name | RT   | Est. Conc. | Q   |  |
|-------------|---------------|------|------------|-----|--|
| 1. 110-54-3 | HEXANE        | 3.94 | 16         | BJN |  |

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

|                                                              |                   | SED-1                 |
|--------------------------------------------------------------|-------------------|-----------------------|
| b Name: <u>STL Buffalo</u> Contract:                         |                   |                       |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:                    | SDG No.:          |                       |
| Matrix: (soil/water) SOIL                                    | Lab Sample ID:    | <u>A5748103</u>       |
| Sample wt/vol: $5.18$ (g/mL) G                               | Lab File ID:      | Q6609.RR              |
| Level: (low/med) LOW                                         | Date Samp/Recv:   | 07/13/2005 07/15/2005 |
| % Moisture: not dec. <u>51</u> Heated Purge: $\underline{Y}$ | Date Analyzed:    | 07/22/2005            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)                | Dilution Factor:  | 1.00                  |
| Soil Extract Volume: (uL)                                    | Soil Aliquot Volu | ume: (uL)             |

#### CONCENTRATION UNITS: (ug/L or ug/Kg) IIG/KG

| CAS NO.     | COMPOUND                      | (ug/L or ug/Kg) | UG/KG | Q   |
|-------------|-------------------------------|-----------------|-------|-----|
|             | Chloromethane                 |                 | 20    | U   |
| 74-83-9     | Bromomethane                  |                 | 20    | U   |
|             | Vinyl chloride                |                 | 20    | U   |
|             | Chloroethane                  |                 | 20    | U   |
| 75-09-2     | Methylene chloride            |                 | 20    | ប   |
|             | Acetone                       |                 | 20    | U   |
|             | Carbon Disulfide              |                 | 20    | U   |
| 75-35-4     | 1,1-Dichloroethene            |                 | 20    | U   |
| 75-34-3     | 1,1-Dichloroethane            |                 | 20    | U . |
| 67-66-3     | Chloroform                    |                 | 20    | U   |
|             | 1,2-Dichloroethane            |                 | 20    | U   |
| 78-93-3     | 2-Butanone                    |                 | 20    | υ   |
| 71-55-6     | 1,1,1-Trichloroethane         |                 | 20    | U   |
| 56-23-5     | Carbon Tetrachloride          |                 | 20    | U   |
| 75-27-4     | Bromodichloromethane          |                 | 20    | U   |
| 78-87-5     | 1,2-Dichloropropane           |                 | 20    | U   |
| 10061-01-5  | cis-1,3-Dichloropropene       |                 | 20    | U   |
| 79-01-6     | Trichloroethene               |                 | 20    | U   |
| 124-48-1    | Dibromochloromethane          |                 | 20    | U   |
| 79-00-5     | 1,1,2-Trichloroethane         |                 | 20    | U   |
| 71-43-2     | Benzene                       |                 | 20    | U   |
| 10061-02-6- | trans-1,3-Dichloropropene     |                 | 20    | U   |
| 75-25-2     | Bromoform                     |                 | 20    | U   |
| 108-10-1    | 4-Methyl-2-pentanone          |                 | 20    | U   |
|             | 2-Hexanone                    |                 | 20    | U   |
| 127-18-4    | Tetrachloroethene             |                 | 20    | U   |
| 108-88-3    | Toluene                       |                 | 20    | U   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane     |                 | 20    | Ŭ   |
|             | Chlorobenzene                 | ·····           | 20    | U   |
|             | Ethylbenzene                  |                 | 20    | U   |
| 100-42-5    |                               |                 | 20    | U   |
|             | Total Xylenes                 |                 | 20    | U   |
|             | 1,1,2-Trichloro-1,2,2-trifluo | roethane        | 20    | U   |
|             | cis-1,2-Dichloroethene        |                 | 20    | U   |
|             |                               |                 |       | 1-  |

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

|                                              | · ·             |                  | SED-1                 |
|----------------------------------------------|-----------------|------------------|-----------------------|
| ۵ Name: <u>STL Buffalo</u> C                 | Contract:       |                  | L                     |
| Lab Code: <u>RECNY</u> Case No.:             | SAS No.:        | SDG No.:         |                       |
| Matrix: (soil/water) SOIL                    |                 | Lab Sample ID:   | <u>A5748103</u>       |
| Sample wt/vol:5.18 (g/mL) G                  | 3               | Lab File ID:     | <u>Q6609.RR</u>       |
| Level: (low/med) LOW                         |                 | Date Samp/Recv:  | 07/13/2005 07/15/2005 |
| % Moisture: not dec. 51 Heated               | Purge: <u>Y</u> | Date Analyzed:   | 07/22/2005            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm | ı)              | Dilution Factor: | 1.00                  |
| Soil Extract Volume: (uL)                    |                 | Soil Aliquot Vol | ume: (uL)             |

# CONCENTRATION UNITS:

| CAS NO.   | COMPOUND                    | (ug/L or ug/Kg) | <u>UG/KG</u> | Q   |
|-----------|-----------------------------|-----------------|--------------|-----|
| 156-60-5  | trans-1,2-Dichloroethene    |                 | 20           | - U |
| 75-71-8   | Dichlorodifluoromethane     |                 | 20           | U   |
| 75-69-4   | Trichlorofluoromethane      |                 | 20           | U   |
| 79-20-9   | Methyl acetate              |                 | 20           | U   |
| 1634-04-4 | Methyl-t-Butyl Ether (MTBE) |                 | 20           | U   |
| 110-82-7  | Cyclohexane                 |                 | 20           | U   |
| 108-87-2  | Methylcyclohexane           |                 | 20           | U   |
| 106-93-4  | 1,2-Dibromoethane           |                 | 20           | U   |
| 98-82-8   | Isopropylbenzene            |                 | 20           | U   |
| 541-73-1  | 1,3-Dichlorobenzene         |                 | 20           | U   |
| 106-46-7  | 1,4-Dichlorobenzene         |                 | 20           | U   |
| 95-50-1   | 1,2-Dichlorobenzene         | ·····           | 20           | U   |
| 96-12-8   | 1,2-Dibromo-3-chloropropane |                 | 20           | U   |
| 120-82-1  | 1,2,4-Trichlorobenzene      |                 | 20           | υ   |

#### FORM I - GC/MS VOA

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

-----

| b Name: STL Buffalo Contract:                 |                    | SED-1                        |
|-----------------------------------------------|--------------------|------------------------------|
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     | SDG No.:           |                              |
| Matrix: (soil/water) SOIL                     | Lab Sample ID:     | <u>A5748103</u>              |
| Sample wt/vol:5.18 (g/mL) G                   | Lab File ID:       | 06609.RR                     |
| Level: (low/med) <u>LOW</u>                   | Date Samp/Recv:    | <u>07/13/2005</u> 07/15/2005 |
| % Moisture: not dec. <u>51.1</u>              | Date Analyzed:     | 07/22/2005                   |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor    | :1.00                        |
| Soil Extract Volume: (uL)                     | Soil Aliquot Voi   | lume: (uL)                   |
|                                               | CONCENTRATION UNIT | rs:                          |

Number TICs found: <u>2</u>

(ug/L or ug/Kg) <u>UG/KG</u>

| CAS NO.     | Compound Name            | RT    | Est. Conc. | Q   |
|-------------|--------------------------|-------|------------|-----|
| 1. 110-54-3 | HEXANE                   | 3.94  | 30         | BJN |
| 2.          | UNKNOWN SILICON COMPOUND | 10.22 | 20         | BJ  |

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

|                                                              | SED-2                                 |
|--------------------------------------------------------------|---------------------------------------|
| © Name: <u>STL Buffalo</u> Contract:                         |                                       |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:                    | SDG No.:                              |
| Matrix: (soil/water) SOIL                                    | Lab Sample ID: A5748104               |
| Sample wt/vol:5.03 (g/mL) G                                  | Lab File ID: <u>Q6610.RR</u>          |
| Level: (low/med) LOW                                         | Date Samp/Recv: 07/13/2005 07/15/2005 |
| % Moisture: not dec. <u>34</u> Heated Purge: $\underline{Y}$ | Date Analyzed: 07/22/2005             |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)                | Dilution Factor:1.00                  |
| Soil Extract Volume: (uL)                                    | Soil Aliquot Volume: (uL)             |
|                                                              | CONCENTRATION UNITS:                  |

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/KG

Q

| 74-87-3-  | Chloromethane                        | 15 | U 1 |
|-----------|--------------------------------------|----|-----|
| 74-83-9-  | Bromomethane                         | 15 | U   |
| 75-01-4-  | Vinyl chloride                       | 2  | J.  |
| 75-00-3-  | Chloroethane                         | 15 | U   |
| 75-09-2-  | Methylene chloride                   | 9  | J   |
| 67-64-1-  | Acetone                              | 15 | U   |
| 75-15-0-  | Carbon Disulfide                     | 15 | U   |
| 75-35-4-  | 1,1-Dichloroethene                   | 15 | U   |
| 75-34-3-  | 1,1-Dichloroethane                   | 24 | 1   |
| 67-66-3-  | Chloroform                           | 15 | U   |
| 107-06-2  | 1,2-Dichloroethane                   | 15 | U   |
| 78-93-3-  | 2-Butanone                           | 15 | U   |
| 71-55-6-  | 1,1,1-Trichloroethane                | 15 | U   |
|           | Carbon Tetrachloride                 | 15 | U   |
| 75-27-4-  | Bromodichloromethane                 | 15 | U   |
| 78-87-5-  | 1,2-Dichloropropane                  | 15 | U   |
| 10061-01  | -5cis-1,3-Dichloropropene            | 15 | U   |
|           | Trichloroethene                      | 15 | U   |
| 124-48-1  | Dibromochloromethane                 | 15 | U   |
| 79-00-5-  | 1,1,2-Trichloroethane                | 15 | U   |
| 71-43-2-  | Benzene                              | 15 | U   |
| 10061-02- | -6trans-1,3-Dichloropropene          | 15 | υ   |
| 75-25-2   | Bromoform                            | 15 | U   |
| 108-10-1- | 4-Methyl-2-pentanone                 | 15 | U   |
| 1         | 2-Hexanone                           | 15 | U   |
| 127-18-4- | Tetrachloroethene                    | 15 | υ   |
| 108-88-3- | Toluene                              | 15 | U   |
| 79-34-5   | 1,1,2,2-Tetrachloroethane            | 15 | U   |
| 108-90-7- | Chlorobenzene                        | 15 | U   |
| 100-41-4- | Ethylbenzene                         | 15 | U   |
|           | Styrene                              | 15 | υ   |
|           | Total Xylenes                        | 15 | U   |
| 76-13-1   | 1,1,2-Trichloro-1,2,2-trifluoroethan |    | U   |
|           | cis-1,2-Dichloroethene               | 3  | J   |

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

|           |                        |                             |             |                                                                                                                                                                                                                                    |          | SED-2       |            |
|-----------|------------------------|-----------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|------------|
| jb Name   | : STL Buffalo          | C                           | ontract:    | ن المراجع المر<br>المحمد المراجع ا |          |             |            |
| Lab Code  | : <u>RECNY</u> Case    | No.:                        | SAS No.:    | SDG No.:                                                                                                                                                                                                                           |          |             |            |
| Matrix:   | (soil/water) <u>SC</u> | <u>)IL</u>                  |             | Lab Sample I                                                                                                                                                                                                                       | D: 1     | A5748104    |            |
| Sample w  | t/vol:                 | <u>5.03</u> (g/mL) <u>G</u> | <u>}_</u> . | Lab File ID:                                                                                                                                                                                                                       | <u>(</u> | 06610.RR    |            |
| Level:    | (low/med) <u>LC</u>    | W                           |             | Date Samp/Re                                                                                                                                                                                                                       | cv:      | 07/13/2005  | 07/15/2005 |
| % Moistu  | re: not dec            | 34 Heated                   | Purge: Y    | Date Analyze                                                                                                                                                                                                                       | d: (     | 07/22/2005  |            |
| GC Colum  | n: <u>DB-624</u>       | ID: <u>0.25</u> (mm         | )           | Dilution Fac                                                                                                                                                                                                                       | tor:     | 1.00        |            |
| Soil Extr | ract Volume:           | (uL)                        | · · · · · · | Soil Aliquot                                                                                                                                                                                                                       | Volu     | me:         | (uL)       |
| :         | CAS NO.                | COMPOUND                    | ·           | CONCENTRATION UN<br>(ug/L or ug/Kg)                                                                                                                                                                                                |          | <u>G/KG</u> | Q          |
|           | 156-60-5               | trang_1 2_Did               | hlomethere  |                                                                                                                                                                                                                                    |          | 15 11       | · · · ·    |

| 156-60-5trans-1,2-Dichloroethene<br>75-71-8Dichlorodifluoromethane<br>75-69-4Trichlorofluoromethane<br>79-20-9Methyl acetate<br>1634-04-4Methyl-t-Butyl Ether (MIBE)<br>110-82-7Cyclohexane | 15<br>15<br>15<br>15<br>15<br>15 | บ<br>บ<br>บ<br>บ<br>บ<br>บ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|
| 110-82-7Cyclohexane                                                                                                                                                                         |                                  | ប<br>ប                     |
| 108-87-2Methylcyclohexane<br>106-93-41,2-Dibromoethane                                                                                                                                      | 15<br>15                         | ប<br>ប                     |
| 98-82-8Isopropylbenzene<br>541-73-11,3-Dichlorobenzene<br>106-46-71,4-Dichlorobenzene                                                                                                       | 15<br>15                         | ט<br>ש<br>ע                |
| 95-50-11,2-Dichlorobenzene<br>96-12-81,2-Dibromo-3-chloropropane                                                                                                                            | 15<br>15<br>15                   | บ<br>บ                     |
| 120-82-11,2,4-Trichlorobenzene                                                                                                                                                              | 15                               | υ                          |

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

\_\_\_\_

| Do Name: STL Buffalo Contract:                |                  | SED-2                                 |
|-----------------------------------------------|------------------|---------------------------------------|
| D Nale: <u>Stil Builato</u> Contract:         | •                | · · · · · · · · · · · · · · · · · · · |
| Lab Code: RECNY Case No.: SAS No.:            | SDG No.:         |                                       |
| Matrix: (soil/water) <u>SOIL</u>              | Lab Sample ID:   | <u>A5748104</u>                       |
| Sample wt/vol:5.03 (g/mL) G                   | Lab File ID:     | Q6610.RR                              |
| Level: (low/med) <u>LOW</u>                   | Date Samp/Recv:  | 07/13/2005 07/15/2005                 |
| % Moisture: not dec. <u>34.3</u>              | Date Analyzed:   | 07/22/2005                            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor  | 1.00                                  |
| Soil Extract Volume: (uL)                     | Soil Aliquot Vol | lume: (uL)                            |
|                                               |                  |                                       |

Number TICs found: <u>2</u>

CONCENTRATION UNITS: (Ug/L or Ug/Kg) <u>UG/KG</u>

| CAS NO.     | Compound Name            | RT    | Est. Conc. | Q   |
|-------------|--------------------------|-------|------------|-----|
| 1. 110-54-3 | HEXANE                   | 3.94  | 26         | BJN |
| 2.          | UNKNOWN SILICON COMPOUND | 10.22 | 23         | BJ  |

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

|                                             |           |                   | SED-3                 |
|---------------------------------------------|-----------|-------------------|-----------------------|
| ab Name: STL Buffalo                        | Contract: |                   |                       |
| Lab Code: <u>RECNY</u> Case No.:            | SAS No.:  | SDG No.:          |                       |
| Matrix: (soil/water) SOIL                   |           | Lab Sample ID:    | <u>A5748105</u>       |
| Sample wt/vol: $5.05$ (g/mL)                | G         | Lab File ID:      | 06611.RR              |
| Level: (low/med) <u>LOW</u>                 |           | Date Samp/Recv:   | 07/13/2005 07/15/2005 |
| % Moisture: not dec. <u>40</u> Heated       | Purge: Y  | Date Analyzed:    | 07/22/2005            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (m | m)        | Dilution Factor:  | 1.00                  |
| Soil Extract Volume: (uL)                   |           | Soil Aliquot Volu | ume: (uL)             |

CAS NO.

COMPOUND

#### CONCENTRATION UNITS: (ug/L oi

|   |                                                                                                                | OTITIO | •            |
|---|----------------------------------------------------------------------------------------------------------------|--------|--------------|
| r | ug/H                                                                                                           | (g)    | <u>UG/KG</u> |
| _ | the second s |        |              |

| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|-----------------------------------------|
|-----------------------------------------|

\_ -

|   |                               |                                           | -5/ -2 |    | ×  |
|---|-------------------------------|-------------------------------------------|--------|----|----|
|   | 74-87-3Chloromethane          |                                           |        | 16 | U  |
|   | 74-83-9Bromomethane           |                                           |        | 16 | υ  |
|   | 75-01-4Vinyl chloride         |                                           |        | 16 | U  |
|   | 75-00-3Chloroethane           |                                           |        | 16 | U  |
|   | 75-09-2Methylene chloride     |                                           |        | 10 | J  |
|   | 67-64-1Acetone                |                                           |        | 31 | BU |
|   | 75-15-0Carbon Disulfide       |                                           |        | 3  | J  |
|   | 75-35-41,1-Dichloroethene     |                                           |        | 16 | υ  |
|   | 75-34-31,1-Dichloroethane     |                                           |        | 6  | J  |
|   | 67-66-3Chloroform             |                                           |        | 16 | υ  |
|   | 107-06-21,2-Dichloroethane    |                                           |        | 16 | υ  |
|   | 78-93-32-Butanone             |                                           |        | 11 | J  |
|   | 71-55-61,1,1-Trichloroeth     | ane                                       |        | 16 | υ  |
|   | 56-23-5Carbon Tetrachloric    | de                                        |        | 16 | υ  |
|   | 75-27-4Bromodichloromethan    | ne                                        |        | 16 | υ  |
|   | 78-87-51,2-Dichloropropan     | e                                         |        | 16 | U  |
|   | 10061-01-5cis-1,3-Dichloropn  | pene                                      |        | 16 | U  |
|   | 79-01-6Trichloroethene        |                                           |        | 5  | J  |
|   | 124-48-1Dibromochloromethan   |                                           |        | 16 | U  |
|   | 79-00-51,1,2-Trichloroeth     | ane                                       |        | 16 | U  |
| 1 | 71-43-2Benzene                |                                           |        | 16 | U  |
|   | 10061-02-6trans-1,3-Dichlorog | propene                                   |        | 16 | U  |
|   | 75-25-2Bromoform              |                                           |        | 16 | υ  |
|   | 108-10-14-Methyl-2-pentanor   | De la |        | 16 | υ  |
| ł | 591-78-62-Hexanone            |                                           |        | 16 | U  |
| 1 | 127-18-4Tetrachloroethene     |                                           |        | 4  | J  |
|   | 108-88-3Toluene               | · · · · · · · · · · · · · · · · · · ·     |        | 16 | U  |
|   | 79-34-51,1,2,2-Tetrachloro    | ethane                                    |        | 16 | U  |
|   | 108-90-7Chlorobenzene         |                                           |        | 16 | U  |
|   | 100-41-4Ethylbenzene          |                                           |        | 16 | U  |
|   | 100-42-5Styrene               |                                           |        | 16 | U  |
|   | 1330-20-7Total Xylenes        |                                           |        | 16 | U  |
|   | 76-13-11,1,2-Trichloro-1,2    | 2-trifluoroethane                         |        | 16 | U  |
|   | 156-59-2cis-1,2-Dichloroeth   |                                           |        | 10 | J  |
| L |                               |                                           |        |    | -  |

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATTLES ANALYSIS DATA SHEET

|           |                                                                                                                                         |                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Client No.                            |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| o Name    | : STL Buffalo                                                                                                                           | Contract:                   |                                         | SED-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · · |
|           |                                                                                                                                         | se No.: SAS No.:            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| Matrix:   | (soil/water)                                                                                                                            | SOIL                        | Lab Sample ID:                          | <u>A5748105</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| Sample w  | t/vol:                                                                                                                                  | <u>5.05</u> (g/mL) <u>G</u> | Lab File ID:                            | <u>Q6611.RR</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| Level:    | (low/med)                                                                                                                               | LOW                         | Date Samp/Recv:                         | 07/13/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07/15/2005                            |
| * Moistu  | re: not dec.                                                                                                                            | 40 Heated Purge: Y          | Date Analyzed:                          | 07/22/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| GC Colum  | n: <u>DB-624</u>                                                                                                                        | ID: <u>0.25</u> (mm)        | Dilution Factor:                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Soil Ext: | ract Volume:                                                                                                                            | (uL)                        | Soil Aliquot Volu                       | ume:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (വL)                                  |
|           | CAS NO.                                                                                                                                 | COMPOUND                    | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) | UG/KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q                                     |
|           | 75-71-8<br>75-69-4<br>79-20-9<br>1634-04-4<br>110-82-7<br>108-87-2<br>106-93-4<br>98-82-8<br>541-73-1<br>106-46-7<br>95-50-1<br>96-12-8 | Mathulaulohavana            | )                                       | 16       U         2       J         16       U         16       U | 2                                     |

## 62\411

#### DELTA - SOIL ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

-

|                                               | SED-3                                 |
|-----------------------------------------------|---------------------------------------|
| س Name: <u>STL Buffalo</u> Contract:          | _                                     |
| Lab Code: <u>RECINY</u> Case No.: SAS No.:    | SDG No.:                              |
| Matrix: (soil/water) <u>SOIL</u>              | Lab Sample ID: A5748105               |
| Sample wt/vol: <u>5.05</u> (g/mL) <u>G</u>    | Lab File ID: <u>Q6611.RR</u>          |
| Level: (low/med) LOW                          | Date Samp/Recv: 07/13/2005 07/15/2005 |
| % Moisture: not dec. <u>39.5</u>              | Date Analyzed: 07/22/2005             |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor:1.00                  |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volume: (uL)             |
|                                               | CONCENTRATION UNITS.                  |

Number TICs found: <u>2</u>

(ug/L or ug/Kg) <u>UG/KG</u>

| CAS NO. | Compound Name                      | RT            | Est. Conc. | Q         |
|---------|------------------------------------|---------------|------------|-----------|
|         | HEXANE<br>UNKNOWN SILICON COMPOUND | 3.95<br>10.22 |            | BJN<br>BJ |

# DELTA - SOIL ASP 2000/8260 - TCL VOLATILES SOIL SURROGATE RECOVERY

### Lab Name: STL Buffalo

Contract: \_\_\_\_

Lab Code: RECNY

SAS No.:

Case No.: \_

Level (low/med): LOW

|     | Client Sample ID | Lab Sample ID | BFB<br>%REC # | DCE<br>%REC # | TOL<br>%REC # | <br> | <br> | TOT<br>OUT |
|-----|------------------|---------------|---------------|---------------|---------------|------|------|------------|
| 1   | MSB10            | A5B1112501    | 97            | 99            | 101           |      | <br> | <br>0      |
| 2   | MSB11            | A5B1115501    | 98            | 104           | 101           |      |      | O I        |
| 3   | MW-114A          | A5748106      | 97            | 103           | 102           |      |      | 0          |
| 4   | MW-114B          | A5748107      | 93            | 100           | 100           |      |      | 0          |
| 5   | MW-114B          | A5748107MS    | 95            | 100           | -97           |      |      |            |
| 6   | MW-114B          | A5748107SD    | 101           | 104           | 102           |      | , t. | 0          |
| 7   | MW-121A          | A5748101      | 96            | 101           | 100           |      |      | 0          |
| 8   | MW-121B          | A5748102      | 99            | 102           | 102           |      |      | 0          |
| . 9 | MW-122A          | A5748116      | 95            | 104           | 97            |      |      | 0          |
| 10  | MW-122B          | A5748117      | 98            | 103           | 101           |      |      | 0          |
| 11  | MW-123A          | A5748108      | 97            | 103           | 100           |      |      | 0          |
| 12  | MW-123B          | A5748109      | 96            | 105           | 100           |      |      | 0          |
| 13  | SBA-12A          | A5748114      | - 91          | 101           | 99            |      |      | 0          |
| 14  | SBA-12B          | A5748115      | 94            | 103           | 94            |      |      | 0          |
|     | SBC-16A          | A5748110      | 96            | 102           | 100           |      |      | 0          |
| 16  | SBC-16B          | A5748111      | 100           | 103           | 99            |      |      | 0          |
| 17  | SBE-11A          | A5748112      | 97            | 102           | 98            |      |      | 0          |
|     | SBE-11B          | A5748113      | 95            | 98            | 96            |      |      | 0          |
| 19  | SED-1            | A5748103      | 99            | 106           | 106           |      |      | 0          |
| 20  | SED-2            | A5748104      | 93            | 99            | 103           |      |      | 0          |
| 21  | SED-3            | A5748105      | 96            | 101           | 102           |      |      | 0          |
| 22  | VBLK10           | A5B1112502    | 100           | 100           | 101           |      |      | 0          |
| 23  | VBLK11           | A5B1115502    | 94            | 102           | 99            |      |      | 0          |

QC LIMITS

SDG No.:

63\411

-

| BFB = | p-Bromofluoroben | zene |
|-------|------------------|------|
|-------|------------------|------|

DCE = 1,2-Dichloroethane-D4

= Toluene-D8 TOL

( 59-113) ( 70-121) ( 84-138)

# Column to be used to flag recovery values
\* Values outside of contract required QC limits
D Surrogates diluted out



STL Buffalo

10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

#### ANALYTICAL REPORT

Job#: A05-B766

STL Project#: NY4A9341

Site Name: <u>Delta Environmental Consultants, Inc.</u> Task: Geneva Site - water

Mark Schumacher Delta Environmental 104 Jamesville Rd. Syracuse, NY 13214

SIL Buffalo Brian J. (Fischer Project Manager

11/01/2005

-

# STL Buffalo Current Certifications

| TE                                      | Program                     | Cert # / Lab ID  |
|-----------------------------------------|-----------------------------|------------------|
| nsas                                    | SDWA, CWA, RCRA, SOIL       | 03-054-D/88-0686 |
| ornia                                   | NELAP SDWA, CWA, RCRA       | 01169CA          |
| ecticut                                 | SDWA, CWA, RCRA, SOIL       | PH-0568          |
| Ja                                      | NELAP RCRA                  | E87672           |
| gia                                     | SDWA                        | 986              |
| is                                      | NELAP SOWA, CWA, RCRA       | 200003           |
|                                         | SW/CS                       | 374              |
| 25                                      | NELAP SDWA, CWA, RCRA       | E-10187          |
| Joky                                    | SDWA                        | 90029            |
| ucky UST                                | UST                         | 30               |
| iana                                    | NELAP CWA, RCRA             | 2031             |
| ) · · · · · · · · · · · · · · · · · · · | SDWA, CWA                   | NY044            |
| and .                                   | SDWA                        | 294              |
| achusetts                               | SDWA, CWA                   | M-NY044          |
| gan                                     | SDWA                        | 9937             |
| esota                                   | · CWA, RCRA                 | 036-999-337      |
| lampshire                               | NELAP SOWA, CWA             | 233701           |
| lersey                                  | SDWA, CWA, RCRA, CLP        | NY455            |
| (ork                                    | NELAP, AIR, SDWA, CWA, RCRA | 10026            |
| Carolina                                | CWA                         | 411              |
| Dakota                                  | SDWA, CWA, RCRA             | R-176            |
| oma                                     | CWA, RCRA                   | 9421             |
| ylvania                                 | Env. Lab Reg.               | 68-281           |
| Carolina                                | RCRA                        | 91013            |
|                                         | FOREIGN SOIL PERMIT         | S-41579          |
| ia                                      | SDWA                        | 278              |
| ngton                                   | CWA                         | C254             |
| /irginia                                | CWA                         | 252              |
| nsin                                    | CWA                         | 998310390        |
|                                         |                             |                  |
|                                         |                             |                  |
|                                         |                             |                  |

Sample Data Summary Package

# 4/864

#### SAMPLE SUMMARY

|               |                  |        | SAMP       | LED   | RECEIVE    | Ð     |
|---------------|------------------|--------|------------|-------|------------|-------|
| LAB SAMPLE ID | CLIENT SAMPLE ID | MATRIX | DATE       | TIME  | DATE       | TIME  |
| A5B76605      | MW-114           | WATER  |            |       | 10/20/2005 |       |
| A5B76604      | MW-115           | WATER  |            |       | 10/20/2005 |       |
| A5B76606      | MW-116           | WATER  |            |       | 10/20/2005 |       |
| A5B76601      | MW-117           | WATER  |            |       | 10/20/2005 |       |
| A5B76601MS    | MW-117           | WATER  |            |       | 10/20/2005 |       |
| A5B76601SD    | MW-117           | WATER  |            |       | 10/20/2005 |       |
| A5B76602      | MW-117A          | WATER  |            |       | 10/20/2005 |       |
| A5B76603      | MW-118           | WATER  |            |       | 10/20/2005 |       |
| A5B76607      | MW-119           | WATER  |            |       | 10/20/2005 |       |
| A5B76608      | MW-120           | WATER  |            |       | 10/20/2005 |       |
| A5B76609      | MW-121           | WATER  |            |       | 10/20/2005 |       |
| A5B76610      | MW-122           | WATER  |            |       | 10/20/2005 |       |
| A5B76611      | MW-123           | WATER  |            |       | 10/20/2005 |       |
| A5B76612      | SW-1             | WATER  |            |       | 10/20/2005 |       |
| A5B76613      | SW-2             | WATER  |            |       | 10/20/2005 |       |
| A5B76614      | <i>S</i> W-3     | WATER  | 10/18/2005 | 14:15 | 10/20/2005 | 07:15 |
|               |                  |        |            |       |            |       |

#### METHODS SUMMARY

#### Job#: A05-B766

STL Project#: <u>NY4A9341</u>

Site Name: Delta Environmental Consultants, Inc.

|                                                 | AN             | ALYTICAL |
|-------------------------------------------------|----------------|----------|
| PARAMETER                                       | 1              | METHOD   |
| DELITA - AQ - ASP 2000/8260 - TCL VOLATILES     | ASP00          | 8260     |
| DELTA-METHOD 8270 - TCL BASE NEUTRALS COMPOUNDS | <i>S</i> W8463 | 8270     |
| Aluminum - Total                                | ASP00          |          |
| Antimony - Total                                | ASP00          |          |
| Arsenic - Total                                 | ASP00          | 6010     |
| Barium - Total                                  | ASP00          | 6010     |
| Beryllium - Total                               | ASP00          | 6010     |
| Cadmium - Total                                 | ASP00          | 6010     |
| Calcium - Total                                 | ASP00          | 6010     |
| Chromium - Total                                | ASP00          | 6010     |
| Cobalt - Total                                  | ASP00          | 6010     |
| Copper - Total                                  | ASP00          | 6010     |
| Iron - Total                                    | ASP00          | 6010     |
| Lead - Total                                    | ASP00          | 6010     |
| Magnesium - Total                               | ASP00          | 6010     |
| Manganese - Total                               | ASP00          | 6010     |
| Mercury - Total                                 | ASP00          | 7470     |
| Nickel - Total                                  | ASP00          | 6010     |
| Potassium - Total                               | ASP00          | 6010     |
| Selenium - Total                                | ASP00          | 6010     |
| Silver - Total                                  | ASP00          | 6010     |
| Sodium - Total                                  | ASP00          | 6010     |
| Thallium - Total                                | ASP00          | 6010     |
| Vanadium - Total                                | ASP00          | 6010     |
| Zinc - Total                                    | ASP00          | 6010     |
| MBAS - Surfactants                              | ASP00          | 425.1    |

ASP00

"Analytical Services Protocol", New York State Department of Conservation, June 2000.

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

#### NON-CONFORMANCE SUMMARY

#### Job#: A05-B766

#### SIL Project#: <u>NY4A9341</u> Site Name: <u>Delta Environmental Consultants, Inc.</u>

#### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

#### Sample Receipt Comments

#### A05-B766

Sample Cooler(s) were received at the following temperature(s); 4@2.0 °C All samples were received in good condition.

#### GC/MS Volatile Data

No deviations from protocol were encountered during the analytical procedures.

#### GC/MS Semivolatile Data

No deviations from protocol were encountered during the analytical procedures.

#### Metals Data

The recovery of sample MW-117 Matrix Spike exhibited results below the quality control limits for Mercury. Sample matrix is suspect. The RPD between sample MW-117 Matrix Spike and Matrix Spike Duplicate exceeded quality control limits for Mercury. However, the LCS was acceptable.

The recovery of sample MW-117 Matrix Spike and Matrix Spike Duplicate exhibited results above the quality control limits for Iron. The sample result is more than four times greater than the spike added. The LFB is acceptable.

#### Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

#### \*\*\*\*\*\*\*

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Brian J. Fischer Project Manager

11-2-05 Date



These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

#### ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Arocior target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

#### INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- \* Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Date: 11/01/2005 Time: 13:54:59

#### Dilution Log w/Code Information For Job A05-B766

| Client Sample ID | Lab Sample ID | Parameter (Inorganic)/Method (Organic) | Dilution | Code |
|------------------|---------------|----------------------------------------|----------|------|
| MW-117           | A5B76601      | MBAS - Surfactants                     | 4.00     | 010  |
| MW-117           | A5B76601MS    | MBAS - Surfactants                     | 4.00     | 010  |
| MW-117           | A5B76601SD    | MBAS - Surfactants                     | 4.00     | 010  |
| MW-117A          | A5876602      | MBAS - Surfactants                     | 4.00     | 010  |
| MW-118           | A5B76603      | MBAS - Surfactants                     | 10.00    | 800  |
| MW-118           | A5B76603DL    | 8260                                   | 25.00    | 008  |
| MW-116           | A58766060L    | 8260                                   | 25.00    | 008  |
| MW-122           | A5876610DL    | 8260                                   | 25.00    | 800  |
| MW-123           | A5B76611DL    | 8260                                   | 2.00     | 008  |
|                  |               |                                        |          |      |

Dilution Code Definition:

- 002 sample matrix effects
- 003 excessive foaming
- 004 high levels of non-target compounds
- 005 sample matrix resulted in method non-compliance for an Internal Standard
- 006 sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

- 009 sample turbidity
- 010 sample color
- 011 insufficient volume for lower dilution

012 - sample viscosity

013 - other

## 10/864

Client No.

| Jame: <u>STL Buffalo</u> Contract        |         |              | MW-114      |     |        |
|------------------------------------------|---------|--------------|-------------|-----|--------|
| code: <u>RECNY</u> Case No.: SAS No      | .:SDG   | No.:         |             |     |        |
| x: (soil/water) <u>WATER</u>             |         | Sample ID:   |             | 5   |        |
| e wt/vol: (g/mL) <u>ML</u>               |         | File ID:     |             |     |        |
|                                          |         |              |             |     |        |
| : (low/med) <u>LOW</u>                   |         | e Samp/Recv: |             |     | 20/200 |
| sture: not dec Heated Purge: 1           | Date    | Analyzed:    | 10/22/20    | 005 |        |
| lumn: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilu    | tion Factor  | :1.00       | 2   |        |
| Extract Volume: (uL)                     | Soil    | Aliquot Voi  | lume:       |     | uL)    |
|                                          |         | ATION UNITS  |             |     |        |
| CAS NO. COMPOUND                         | (ug/L с | r ug/Kg)     | <u>UG/L</u> | Q . | T      |
| 74-87-3Chloromethane                     |         |              | 10          | υ   |        |
| 74-83-9Bromomethane                      |         |              | 10          | U   |        |
| 75-01-4Vinyl chloride                    | · · ·   |              | 10          | U   |        |
| 75-00-3Chloroethane                      |         |              | 10          | υ   |        |
| 75-09-2Methylene chloride                |         |              | 10          | U   |        |
| 67-64-1Acetone                           |         |              | 10          | U   |        |
| 75-15-0Carbon Disulfide                  |         |              | 10          | U   |        |
| 75-35-41,1-Dichloroethene                |         |              | 10          | υ   |        |
| 75-34-31,1-Dichloroethane                |         |              | 2           | J   |        |
| 67-66-3Chloroform                        |         |              | 10          | U   |        |
| 107-06-21,2-Dichloroethane               |         |              | 10          | υ   |        |
| 78-93-32-Butanone                        |         |              | 10          | U   |        |
| 71-55-61,1,1-Trichloroethane             |         |              | 7           | J   | 1      |
| 56-23-5Carbon Tetrachloride              |         |              | 10          | U   |        |
| 75-27-4Bromodichloromethane              |         |              | 10          | U   | j      |
| 78-87-51,2-Dichloropropane               |         |              | 10          | U   |        |
| 10061-01-5cis-1,3-Dichloroprope          | ne      |              | 10          | U   |        |
| 79-01-6Trichloroethene                   |         |              | 24          |     |        |
| 124-48-1Dibromochloromethane             |         |              | 10          | U   |        |
| 79-00-51,1,2-Trichloroethane             |         |              | 10          | U . |        |
| 71-43-2Benzene                           |         |              | 10          | U   |        |
| 10061-02-6trans-1,3-Dichloropro          |         |              | 10          | U   |        |
| 75-25-2Bromoform                         |         |              | 10          | U   |        |
| 108-10-14-Methyl-2-pentanone             |         |              | 10          | U   |        |
| 591-78-62-Hexanone                       |         |              | 10          | U   |        |
| 127-18-4Tetrachloroethene                | W       |              |             | 0   |        |
| 108-88-3Toluene                          |         | ·            | 37          | 1   |        |
| 79-34-51,1,2,2-Tetrachloroet             |         |              | 10          | U   |        |
| 108-90-7Chlorobenzene                    |         |              | 10          | U   | 1      |
|                                          |         |              | 10          | υ   |        |
| 100-41-4Ethylbenzene                     |         |              | 10          | υ   | I      |
| 100-42-5Styrene                          | ·       |              | 10          | U   |        |
| 1330-20-7Total Xylenes                   |         |              | 10          | U   |        |
| 75-71-8Dichlorodifluoromethan            | le      |              | 10          | υR  |        |
| 75-69-4Trichlorofluoromethan             |         |              | 10          | U   |        |

FORM I - GC/MS VOA

# 11/864

Client No.

.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | MW-114                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b Name: <u>STL Buffalo</u> Contract:                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | L                                                                                                                                                                                                                                                                                                    |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:                                                                                                                                                                                                                                                                                                                                                                                                                    | SDG No.:                                         |                                                                                                                                                                                                                                                                                                      |
| Matrix: (soil/water) <u>WATER</u>                                                                                                                                                                                                                                                                                                                                                                                                                            | Lab Sample ID:                                   | A5B76605                                                                                                                                                                                                                                                                                             |
| Sample wt/vol:5.00 (g/mL) ML                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lab File ID:                                     | Q8357.RR                                                                                                                                                                                                                                                                                             |
| Level: (low/med) <u>LOW</u>                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date Samp/Recv:                                  | 10/18/2005 10/20/2005                                                                                                                                                                                                                                                                                |
| % Moisture: not dec Heated Purge: $\underline{N}$                                                                                                                                                                                                                                                                                                                                                                                                            | Date Analyzed:                                   | 10/22/2005                                                                                                                                                                                                                                                                                           |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                | Dilution Factor:                                 | 1.00                                                                                                                                                                                                                                                                                                 |
| Soil Extract Volume: (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                    | Soil Aliquot Volu                                | me:(uL)                                                                                                                                                                                                                                                                                              |
| CAS NO. COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                             | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>U</u> | <u>G/L</u> Q                                                                                                                                                                                                                                                                                         |
| 76-13-11,1,2-Trichloro-1,2,2-triflux         156-60-5trans-1,2-Dichloroethene         1634-04-4Methyl-t-Butyl Ether (MIBE)_         156-59-2cis-1,2-Dichloroethene         110-82-7Cyclohexane         108-87-2Methylcyclohexane         106-93-41,2-Dibromoethane         98-82-8Isopropylbenzene         541-73-11,3-Dichlorobenzene         106-46-71,4-Dichlorobenzene         95-50-11,2-Dibromo-3-chloropropane         120-82-11,2,4-Trichlorobenzene |                                                  | 10     U       10     U       10     U       4     J       10     U       10     U |

### DELITA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

## 12/864

Client No.

| ab Name: <u>STL Buffalo</u> Contract:         | MW-114                                              |
|-----------------------------------------------|-----------------------------------------------------|
| Lab Code: RECNY Case No.: SAS No.:            | SDG No.:                                            |
| Matrix: (soil/water) WATER                    | Lab Sample ID: <u>A5B76605</u>                      |
| Sample wt/vol: (g/mL) ML                      | Lab File ID: <u>Q8357.RR</u>                        |
| Level: (low/med) LOW                          | Date Samp/Recv: <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec.                          | Date Analyzed: <u>10/22/2005</u>                    |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor: <u>1.00</u>                        |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volume: (uL)                           |
| Number TICs found: <u>0</u>                   | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> |

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

### FORM IE - GC/MS VOA TIC

## 13/864

|                           |                              |                                       | 4                 | CLI       | ent No.   |
|---------------------------|------------------------------|---------------------------------------|-------------------|-----------|-----------|
|                           |                              |                                       | MW-11             | .5        |           |
| b Name: STL Buffalo       | Contract:                    | · · · · · · · · · · · · · · · · · · · | L                 |           | J         |
| Lab Code: <u>RECNY</u> Ca | ase No.: SAS No.:            | SDG No.:                              | ·                 |           | •         |
| Matrix: (soil/water)      | WATER                        | Lab Sample I                          | D: <u>A5B766</u>  | 04        |           |
| Sample wt/vol:            | <u>5.00</u> (g/mL) <u>ML</u> | Lab File ID:                          | <u>08376.</u>     | RR        |           |
| Level: (low/med)          | LOW                          | Date Samp/Re                          | cv: <u>10/18/</u> | 2005 10/2 | 20/2005   |
| % Moisture: not dec.      | Heated Purge: N              | Date Analyze                          | d: <u>10/24/</u>  | 2005      |           |
| GC Column: <u>DB-624</u>  | ID: <u>0.25</u> (mm)         | Dilution Fac                          | tor: <u>1</u> .   | 00        |           |
| Soil Extract Volume:      | (uL)                         | Soil Aliquot                          | Volume:           | (ı        | <b>止)</b> |
|                           |                              | CONCENTRATION UN                      | TTS.              |           | · · ·     |
| CAS NO.                   | COMPOUND                     | (ug/L or ug/Kg)                       |                   | Q         |           |
| 74-87-3                   | Chloromethane                |                                       | 10                | U         |           |
| 1/4-83-9                  | Bromomethane                 |                                       | 10                |           |           |
| 75-01-4                   | Vinyl chloride               |                                       | 8                 | J         | -         |
| 1/5-00-3                  |                              |                                       | 10                | U         |           |
| 75-09-2                   | Methylene chloride           |                                       | 10                | U         |           |
| 67-64-1                   | Acetone                      |                                       | 10                | υ         |           |
|                           | Carbon Disulfide             |                                       | 10                | U         |           |
| 75-15-0                   | 1 1 Dishlemethens            |                                       |                   | J         |           |
| 75-35-4                   | 1,1-Dichloroethene           |                                       | 9                 | J         |           |
| /5-34-3                   | 1, 1-Dichloroethane          |                                       | 50                | -         |           |
| 67-66-3                   | Chloroform                   | · · · · · · · · · · · · · · · · · · · | 1                 | J         |           |
| 10/-06-2                  | 1,2-Dichloroethane           |                                       | 10                | υ         |           |
| 78-93-3                   | 2-Butanone                   |                                       | 10                | υ         |           |
| 71-55-6                   | 1,1,1-Trichloroethane        |                                       | 38                |           |           |
| 56-23-5                   | Carbon Tetrachloride         |                                       | 10                | U         |           |
| 75-27-4                   | Bromodichloromethane         |                                       | 10                | ប         |           |
| 78-87-5                   | 1,2-Dichloropropane          |                                       | 10                | U         |           |
| 10061-01-5                | cis-1,3-Dichloropropene      |                                       | 10                | U         |           |
|                           | Trichloroethene              |                                       | 11                |           |           |
| 124-48-1                  | Dibromochloromethane         |                                       | 10                | U         |           |
| 79-00-5                   | 1,1,2-Trichloroethane        |                                       | 10                | U         |           |
| 71-43-2                   | Benzene                      |                                       | 10                | U         |           |
| 10061-02-6                | trans-1,3-Dichloropropene    |                                       | 10                | U         |           |
| 75-25-2                   |                              |                                       | 10                | U         |           |
|                           | 4-Methyl-2-pentanone         |                                       | 10                | Ū         |           |
| 591-78-6                  |                              |                                       | 10                | U         |           |
|                           | Tetrachloroethene            |                                       | 34                | -         |           |
| 108-88-3                  |                              |                                       | 10                | υ         |           |
|                           | 1,1,2,2-Tetrachloroethane    |                                       | 10                | υ         |           |
|                           | Chlorobenzene                |                                       | 10                | υ         |           |
|                           | Ethylbenzene                 |                                       | 10                | υ         |           |
|                           |                              |                                       |                   |           |           |
| 100-42-5                  |                              |                                       | 10                | U         |           |
|                           | Total Xylenes                |                                       | 10                | U         |           |
|                           | Dichlorodifluoromethane      |                                       | 10                | U         |           |
| 75-69-4                   | Trichlorofluoromethane       |                                       | 10                | U         |           |

## 14/864

Client No.

----

| b Name: <u>STL Buffalo</u> Co                 | ontract.        |                                                 | MW-115                |
|-----------------------------------------------|-----------------|-------------------------------------------------|-----------------------|
| b Mare. <u>Stil Bullaro</u> (C                | Antact:         |                                                 |                       |
| Lab Code: <u>RECNY</u> Case No.:              | SAS No.:        | SDG No.:                                        |                       |
| Matrix: (soil/water) <u>WATER</u>             |                 | Lab Sample ID:                                  | A5B76604              |
| Sample wt/vol: (g/mL) MI                      |                 | Lab File ID:                                    | Q8376.RR              |
| Level: (low/med) <u>LOW</u>                   |                 | Date Samp/Recv:                                 | 10/18/2005 10/20/2005 |
| % Moisture: not dec Heated F                  | Purge: <u>N</u> | Date Analyzed:                                  | 10/24/2005            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) |                 | Dilution Factor:                                | 1.00                  |
| Soil Extract Volume: (uL)                     |                 | Soil Aliquot Volu                               | me: (uL)              |
| CAS NO. COMPOUND                              | C               | ONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>L</u> | G/LQ                  |

|                                   |     |    | × |
|-----------------------------------|-----|----|---|
| 76-13-11,1,2-Trichloro-1,2,2-tr   |     | 10 | U |
| 156-60-5trans-1,2-Dichloroethene  |     | 10 | U |
| 1634-04-4Methyl-t-Butyl Ether (MI | BE) | 10 | U |
| 156-59-2cis-1,2-Dichloroethene    |     | 15 |   |
| 110-82-7Cyclohexane               |     | 10 | υ |
| 108-87-2Methylcyclohexane         |     | 10 | U |
| 106-93-41,2-Dibromoethane         |     | 10 | U |
| 98-82-8Isopropylbenzene           |     | 10 | υ |
| 541-73-11,3-Dichlorobenzene       |     | 10 | υ |
| 106-46-71,4-Dichlorobenzene       |     | 10 | U |
| 95-50-11,2-Dichlorobenzene        |     | 10 | U |
| 96-12-81,2-Dibromo-3-chloroprop   | ane | 10 | U |
| 120-82-11,2,4-Trichlorobenzene    |     | 10 | U |
| 79-20-9Methyl acetate             |     | 10 | U |

FORM I - GC/MS VOA

# 15/864

#### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

-

|                                     |           |                                       | MW-115                              |
|-------------------------------------|-----------|---------------------------------------|-------------------------------------|
| ab Name: <u>STL Buffalo</u>         | Contract: |                                       |                                     |
| Lab Code: <u>RECNY</u> Case No.:    | SAS No.:  | SDG No.:                              |                                     |
| Matrix: (soil/water) <u>WATER</u>   |           | Lab Sample ID:                        | <u>A5B76604</u>                     |
| Sample wt/vol: (g/mL)               | <u>ML</u> | Lab File ID:                          | Q8376.RR                            |
| Level: (low/med) LOW                |           | Date Samp/Recv:                       | <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec.                |           | Date Analyzed:                        | 10/24/2005                          |
| GC Column: <u>DB-624</u> ID: 0.25 ( | (mm)      | Dilution Factor                       | 1.00                                |
| Soil Extract Volume: (uL)           |           | Soil Aliquot Vol                      | lume: (uL)                          |
| Number TICs found: <u>0</u>         |           | CONCENTRATION UNIT<br>(ug/L or ug/Kg) |                                     |

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

### FORM IE - GC/MS VOA TIC

## 16/864

Client No.

----

|        |                       |                              |                                        |                    | CII                     |        |
|--------|-----------------------|------------------------------|----------------------------------------|--------------------|-------------------------|--------|
| `L **: |                       |                              |                                        | MW-110             | 5                       |        |
| b Na   | me: <u>STL Buffal</u> | <u>o</u> Contract:           | ······································ |                    | <del></del>             |        |
| Lab Co | de: <u>RECNY</u> C    | Case No.: SAS No.:           | SDG No.:                               |                    |                         |        |
| Matrix | : (soil/water)        | WATER                        | Lab Sample II                          | D: <u>A5B766</u>   | 06                      |        |
| Sample | wt/vol:               | <u>5.00</u> (g/mL) <u>ML</u> | Lab File ID:                           | <u>08358.</u> ]    | R                       |        |
| Level: | (low/med)             | LOW                          | Date Samp/Rec                          | ev: <u>10/18/</u>  | <u>2005</u> <u>10/2</u> | 0/2005 |
| % Mois | ture: not dec.        | Heated Purge: <u>N</u>       | Date Analyzed                          | d: <u>10/22/</u> 2 | 2005                    |        |
| GC Col | umn: <u>DB-624</u>    | ID: (mm)                     | Dilution Fact                          | tor: <u>1.(</u>    | <u>00</u>               |        |
| Soil E | xtract Volume:        | (uL)                         | Soil Aliquot                           | Volume:            | (u                      | L)     |
|        |                       |                              | CONCENTRATION UNI                      | ITS:               |                         |        |
|        | CAS NO.               | COMPOUND                     | (ug/L or ug/Kg)                        | <u>UG/L</u>        | Q                       |        |
|        | 74-87-3               | Chloromethane                |                                        | 10                 | U                       |        |
|        | 1/4-83-9              | Bromomethane                 |                                        | 10                 | U                       |        |
|        | 75-01-4               | Vinyl chloride               |                                        | 11                 | -                       |        |
|        | 1/5-00-3              |                              |                                        | 10                 | υ                       |        |
|        | 75-09-2               | Methylene chloride           |                                        | 10                 | υ                       |        |
|        | 67-64-1               | Acetone                      |                                        | 10                 | υ                       | •      |
|        |                       | Carbon Disulfide             |                                        | 10                 | U                       |        |
| N 1    | 75-35-4               | 1,1-Dichloroethene           |                                        | 38                 |                         |        |
| 7      | 75-34-3               | 1,1-Dichlemethane            |                                        | 11                 |                         |        |
|        | 67.66.2               | 1,1-Dichloroethane           |                                        |                    | -   <sub>11</sub>       |        |
|        |                       |                              |                                        | 10                 | U                       |        |
|        |                       | 1,2-Dichloroethane           |                                        | 10                 | U                       |        |
|        | /8-93-3               | 2-Butanone                   |                                        | 10                 | U                       |        |
|        | 71-55-6               | 1,1,1-Trichloroethane        |                                        | 630                | EJ                      |        |
|        |                       | Carbon Tetrachloride         |                                        | 10                 | U                       |        |
|        |                       | Bromodichloromethane         |                                        | 10                 | U                       |        |
|        |                       | 1,2-Dichloropropane          |                                        | 10                 | υ                       |        |
|        | 10061-01-5            | cis-1,3-Dichloropropene      |                                        | 10                 | U                       |        |
|        |                       | Trichloroethene              |                                        | 130                |                         |        |
|        |                       | Dibromochloromethane         |                                        | 10                 | υ                       |        |
|        |                       | 1,1,2-Trichloroethane        |                                        | 10                 | ע ו                     |        |
|        | 71-43-2               |                              |                                        | 10                 | ש                       |        |
|        | 10061-02-6            | trans-1,3-Dichloropropene    | · · ·                                  | 10                 | U                       | ÷.,    |
|        | 75-25-2               | Bromoform                    |                                        | 10                 | υ                       |        |
|        | 108-10-1              | 4-Methyl-2-pentanone         |                                        | 10                 | ש                       |        |
|        |                       | 2-Hexanone                   |                                        | 10                 | U                       |        |
|        | 127-18-4              | Tetrachloroethene            |                                        | 1600               | EJ                      |        |
|        | 108-88-3              |                              | l                                      | 10                 | บิ                      |        |
|        |                       | 1,1,2,2-Tetrachloroethane    |                                        | 10                 | U                       |        |
|        |                       | Chlorobenzene                |                                        | 10                 | U                       |        |
|        |                       | Ethylbenzene                 |                                        | 10                 | υ                       |        |
|        | 100-41-4              |                              |                                        | 10                 | U<br>U                  |        |
|        |                       |                              |                                        |                    | 1 1                     |        |
|        | 12220-20-/            | Total Xylenes                |                                        | 10                 | U                       |        |
|        | 12-11-8               | Dichlorodifluoromethane      |                                        | 10                 | UR                      |        |
| 2      | /5-69-4               | Trichlorofluoromethane       |                                        | 10                 | U                       |        |

## 17/864

Client No.

| h Name, OTT Duffale                                                                                                                                  | Contract                                                                                                                       |                                   | MW-11                                                                            | 6                                                                                                |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------|
| b Name: STL Buffalo                                                                                                                                  | contract:                                                                                                                      |                                   | <b>L</b>                                                                         |                                                                                                  |         |
| Lab Code: <u>RECNY</u> Case No.                                                                                                                      | SAS No.:                                                                                                                       | SDG No.:                          |                                                                                  |                                                                                                  |         |
| Matrix: (soil/water) <u>WATER</u>                                                                                                                    |                                                                                                                                | Lab Sample                        | ID: <u>A5</u> B766                                                               | 06                                                                                               |         |
| Sample wt/vol:5.00                                                                                                                                   | (g/mL) <u>ML</u>                                                                                                               | Lab File ID                       | : <u>Q8358</u> .                                                                 | RR                                                                                               |         |
| Level: (low/med) <u>LOW</u>                                                                                                                          |                                                                                                                                | Date Samp/R                       | ecv: <u>10/18/</u>                                                               | 2005 10/                                                                                         | 20/2005 |
| % Moisture: not dec                                                                                                                                  | Heated Purge: N                                                                                                                | Date Analyz                       | ed: <u>10/22/</u>                                                                | 2005                                                                                             |         |
| GC Column: <u>DB-624</u> ID: _                                                                                                                       | <u>0.25</u> (mm)                                                                                                               | Dilution Fa                       | ctor: <u>1</u> .                                                                 | 00                                                                                               |         |
| Soil Extract Volume:                                                                                                                                 | (uL)                                                                                                                           | Soil Aliquo                       | t Volume:                                                                        |                                                                                                  | (uL)    |
| CAS NO. COMPO                                                                                                                                        | UND                                                                                                                            | CONCENTRATION U<br>(ug/L or ug/Kg |                                                                                  | Q                                                                                                | .*      |
| 156-60-5trans<br>1634-04-4Methy<br>156-59-2Cyclo<br>108-87-2Methy<br>106-93-41,2-D<br>98-82-8Isopr<br>541-73-11,3-D<br>106-46-71,4-D<br>95-50-11,2-D | lcyclohexane<br>ibromoethane<br>opylbenzene<br>ichlorobenzene<br>ichlorobenzene<br>ibromo-3-chloropropane<br>-Trichlorobenzene |                                   | 10<br>2<br>10<br>140<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | บ<br>ม<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ |         |

96-12-8-----1,2-Dibromo-3-chloropropane\_ 120-82-1-----1,2,4-Trichlorobenzene\_\_\_\_\_ 79-20-9-----Methyl acetate\_\_\_\_\_

### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

## 18/864

Client No.

|                                               |                                       | MW-116                            |    |
|-----------------------------------------------|---------------------------------------|-----------------------------------|----|
| b Name: <u>SIL Buffalo</u> Contract:          | -                                     |                                   | i  |
| Lab Code: RECNY Case No.: SAS No.:            | SDG No.:                              |                                   |    |
| Matrix: (soil/water) WATER                    | Lab Sample ID:                        | A5B76606                          |    |
| Sample wt/vol: (g/mL) ML                      | Lab File ID:                          | Q8358.RR                          |    |
| Level: (low/med) LOW                          | Date Samp/Recv:                       | <u>10/18/2005</u> <u>10/20/20</u> | 05 |
| % Moisture: not dec.                          | Date Analyzed:                        | 10/22/2005                        |    |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor                       | :1.00                             |    |
| Soil Extract Volume: (uL)                     | Soil Aliquot Vo                       | lume: (uL)                        |    |
| Number TICs found: <u>0</u>                   | CONCENTRATION UNIT<br>(ug/L or ug/Kg) |                                   |    |

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

## FORM IE - GC/MS VOA TIC

## 19/864

|                                                   | Client No.                                          |
|---------------------------------------------------|-----------------------------------------------------|
|                                                   | MW-116 D-                                           |
| b Name: <u>STL Buffalo</u> Contract:              |                                                     |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:         | SDG No.:                                            |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID: A5B76606DL                           |
| Sample wt/vol: (g/mL) ML                          | Lab File ID: <u>Q8377.RR</u>                        |
| Level: (low/med) LOW                              | Date Samp/Recv: <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed: <u>10/24/2005</u>                    |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor: <u>25.00</u>                       |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volume: (uL)                           |
|                                                   | CONCENTRATION UNITS:                                |
| CAS NO. COMPOUND                                  | (ug/Lorug/Kg) <u>UG/L</u> Q                         |
| 74-87-3Chloromethane                              | 250 U                                               |
| 74-83-9Bromomethane                               | 250 U                                               |
| 75-01-4Vinyl chloride                             | 250 U                                               |
| 75-00-3Chloroethane                               | 250 U                                               |
| 75-09-2Methylene chloride                         | 250 U                                               |
|                                                   | 250 U                                               |
| 67-64-1Acetone                                    |                                                     |
| 75-15-0Carbon Disulfide                           | 250 U                                               |
| 75-35-41,1-Dichloroethene                         | 250 U                                               |
| 75-34-31,1-Dichloroethane                         | 250 U                                               |
| 67-66-3Chloroform                                 | 250 U                                               |
| 107-06-21,2-Dichloroethane                        | 250 U                                               |
| 78-93-32-Butanone                                 | 250 U                                               |
| 71-55-61,1,1-Trichloroethane                      | 440 D                                               |
| 56-23-5Carbon Tetrachloride                       | 250 U                                               |
| 75-27-4Bromodichloromethane                       | 250 U                                               |
| 78-87-51,2-Dichloropropane                        | 250 U                                               |
| 10061-01-5cis-1,3-Dichloropropene                 | 250 U                                               |
| 79-01-6Trichloroethene                            | 84 DJ                                               |
| 124-48-1Dibromochloromethane                      | 250 U                                               |
| 79-00-51,1,2-Trichloroethane                      | 250 U                                               |
| 71-43-2Benzene                                    | 250 U                                               |
| 10061-02-6trans-1,3-Dichloropropene               |                                                     |
| 75-25-2Bromoform                                  | 250 U                                               |
| 108-10-14-Methyl-2-pentanone                      | 250 U                                               |
| 591-78-62-Hexanone                                | 250 U                                               |
| 127-18-4Tetrachloroethene                         | 1100 D                                              |
| 108-88-3Toluene                                   | 1100 B<br>250 U                                     |
| 79-34-51,1,2,2-Tetrachloroethane                  |                                                     |
| 108-90-7Chlorobenzene                             | 250 U                                               |
| 100-41-4Ethylbenzene                              | 250 U                                               |
| 100-42-5Styrene                                   | 250 U                                               |
|                                                   |                                                     |
| 1330-20-7Total Xylenes                            | 250 U                                               |
| 75-71-8Dichlorodifluoromethane                    | 250 U                                               |

250

U

75-69-4----Trichlorofluoromethane

## 20/864

Client No.

|                                             | Garatana I        |                   | MW-116DL              |
|---------------------------------------------|-------------------|-------------------|-----------------------|
| b Name: SIL Buffalo                         | Contract:         |                   |                       |
| Lab Code: <u>RECNY</u> Case No.:            | SAS No.:          | SDG No.:          |                       |
| Matrix: (soil/water) <u>WATER</u>           |                   | Lab Sample ID:    | A5B76606DL            |
| Sample wt/vol: $5.00$ (g/mL)                | ML                | Lab File ID:      | <u>Q8377.RR</u>       |
| Level: (low/med) <u>LOW</u>                 |                   | Date Samp/Recv:   | 10/18/2005 10/20/2005 |
| % Moisture: not dec Heated                  | l Purge: <u>N</u> | Date Analyzed:    | 10/24/2005            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (m | m)                | Dilution Factor:  | 25.00                 |
| Soil Extract Volume: (uL)                   |                   | Soil Aliquot Volu | me: (uL)              |
|                                             |                   |                   |                       |

# CONCENTRATION UNITS:

| CAS NO. COMPOUND                   | (ug/L or ug/kg) |     | Q  |
|------------------------------------|-----------------|-----|----|
| 76-13-11,1,2-Trichloro-1,2,2-tri   | fluoroethane    | 250 | U  |
| 156-60-5trans-1,2-Dichloroethene   |                 | 250 | U  |
| 1634-04-4Methyl-t-Butyl Ether (MIB | Ξ)              | 250 | U  |
| 156-59-2cis-1,2-Dichloroethene     |                 | 100 | τα |
| 110-82-7Cyclohexane                |                 | 250 | U  |
| 108-87-2Methylcyclohexane          |                 | 250 | U  |
| 106-93-41,2-Dibromoethane          |                 | 250 | υ  |
| 98-82-8Isopropylbenzene            |                 | 250 | U  |
| 541-73-11,3-Dichlorobenzene        |                 | 250 | U  |
| 106-46-71,4-Dichlorobenzene        |                 | 250 | U  |
| 95-50-11,2-Dichlorobenzene         |                 | 250 | U  |
| 96-12-81,2-Dibromo-3-chloropropar  | le              | 250 | U  |
| 120-82-11,2,4-Trichlorobenzene     |                 | 250 | U  |
| 79-20-9Methyl acetate              |                 | 250 | υ  |

## 21/864

### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

Client No.

| ) Name: STL Buffalo                 | Contract: |                                       | MW-116i)-                           |
|-------------------------------------|-----------|---------------------------------------|-------------------------------------|
| Lab Code: <u>RECNY</u> Case No.:    |           | SDG No.:                              |                                     |
| Matrix: (soil/water) <u>WATER</u>   |           | Lab Sample ID:                        | A5B76606DL                          |
| Sample wt/vol: (g/mL)               | ML        | Lab File ID:                          | <u>08377.RR</u>                     |
| Level: (low/med) <u>LOW</u>         |           | Date Samp/Recv:                       | <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec.                |           | Date Analyzed:                        | 10/24/2005                          |
| GC Column: <u>DB-624</u> ID: 0.25 ( | (mm)      | Dilution Factor:                      | 25.00                               |
| Soil Extract Volume: (uL)           |           | Soil Aliquot Vol                      | ume: (uL)                           |
| Number TICs found: <u>0</u>         |           | CONCENTRATION UNIT<br>(ug/L or ug/Kg) |                                     |

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

22/864

Client No.

\_ -

+

| b Name: <u>STL Buffalo</u> Contract:              |                    | MW-11           | 7         |         |
|---------------------------------------------------|--------------------|-----------------|-----------|---------|
| Lab Code: RECNY Case No.: SAS No.:                |                    |                 |           |         |
|                                                   |                    |                 |           |         |
| Matrix: (soil/water) WATER                        | Lab Sample ID:     | <u>A5B766</u>   | 01        |         |
| Sample wt/vol: (g/mL) ML                          | Lab File ID:       | <u>Q8351.</u>   | RR        |         |
| Level: (low/med) <u>LOW</u>                       | Date Samp/Recv     | : <u>10/18/</u> | 2005 10/2 | 20/2005 |
| % Moisture: not dec Heated Purge: N               | Date Analyzed:     | <u>10/22/</u>   | 2005      |         |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Facto     | r: <u>1.</u>    | 00        |         |
| Soil Extract Volume: (uL)                         | Soil Aliquot V     | olume:          |           | 止)      |
|                                                   | CONCENTRATION UNIT | s.              |           |         |
| CAS NO. COMPOUND                                  | (ug/L or ug/Kg)    |                 | Q         | _       |
| 74-87-3Chloromethane                              |                    | 10              | U         |         |
| 74-83-9Bromomethane                               |                    | 10              | Ū         |         |
| 75-01-4Vinyl chloride                             |                    | 10              | U.        |         |
| 175-00-3Chloroethane                              |                    | 10              | U         |         |
| 75-09-2Methylene chloride                         |                    | 10              | U         |         |
| 67-64-1Acetone                                    |                    | 10              | U         |         |
| 75-15-0Carbon Disulfide                           |                    | 10              | U         |         |
| 75-35-41,1-Dichloroethene                         |                    | 10              | U         |         |
| 75-34-31,1-Dichloroethane                         |                    | 10              | U         |         |
| 67-66-3Chloroform                                 |                    | 10              | U         | {       |
| 107-06-21,2-Dichloroethane                        |                    | 10              | U         | ļ       |
|                                                   |                    | 2               | J         |         |
| 78-93-32-Butanone<br>71-55-61,1,1-Trichloroethane |                    | 10              | U         |         |
| 56-23-5Carbon Tetrachloride                       |                    | 10              | U         |         |
| 75-27-4Bromodichloromethane                       |                    | 10              | U         |         |
| 78-87-51,2-Dichloropropane                        |                    | 10              | U         |         |
| 10061-01-5cis-1,3-Dichloropropene                 |                    | 10              | U         |         |
| 79-01-6Trichloroethene                            |                    | 10              | U         |         |
| 124-48-1Dibromochloromethane                      |                    | 10              | U         | 1       |
| 79-00-51,1,2-Trichloroethane                      |                    | 10              | U         |         |
| 79-00-51,1,2-11101000etrane                       |                    | 10              | U         | 1       |
| 10061-02-6trans-1,3-Dichloropropene               |                    | 10              | υ         | [       |
| 75-25-2Bromoform                                  |                    | 10              | U         |         |
| 108-10-14-Methyl-2-pentanone                      |                    | 10              | υ         |         |
|                                                   |                    |                 |           |         |
| 591-78-62-Hexanone                                |                    | 10              | U<br>J    |         |
| 127-18-4Tetrachloroethene                         |                    | 1               | U         |         |
| 108-88-3Toluene                                   |                    | 10              |           |         |
| 79-34-51,1,2,2-Tetrachloroethane                  |                    | 10              | ប<br>ប    |         |
| 108-90-7Chlorobenzene                             |                    | 10              |           |         |
| 100-41-4Ethylbenzene                              |                    | 69<br>10        |           |         |
| 100-42-5Styrene                                   |                    | 10              | υ         |         |
| 1330-20-7Total Xylenes                            |                    | 58              | 110       |         |
| 75-71-8Dichlorodifluoromethane                    |                    | 10              | UR        |         |
| 75-69-4Trichlorofluoromethane                     |                    | 10              | U         |         |

1

## 23/864

U

U

U

U

U

10

10

10

10

10

Client No.

| ab Name: <u>STL Buffalo</u> Contract:                                  |                                                | MW-117                       |         |
|------------------------------------------------------------------------|------------------------------------------------|------------------------------|---------|
| au wane: <u>Sili pullato</u> Williact:                                 |                                                |                              |         |
| Lab Code: RECNY Case No.: SAS No.:                                     | SDG No.:                                       |                              |         |
| Matrix: (soil/water) WATER                                             | Lab Sample ID:                                 | A5B76601                     |         |
| Sample wt/vol: (g/mL) ML                                               | Lab File ID:                                   | Q8351.RR                     |         |
| Level: (low/med) LOW                                                   | Date Samp/Recv:                                | <u>10/18/2005</u> <u>10/</u> | 20/2005 |
| % Moisture: not dec Heated Purge: $\underline{N}$                      | Date Analyzed:                                 | 10/22/2005                   |         |
| GC Column: $\underline{DB-624}$ ID: $\underline{0.25}$ (mm)            | Dilution Factor:                               | 1.00                         |         |
| Soil Extract Volume: (uL)                                              | Soil Aliquot Volu                              | ume:(                        | սե)     |
| CAS NO. COMPOUND                                                       | CONCENTRATION UNITS:<br>(ug/Lorug/Kg) <u>I</u> | <u>rc/l</u> q                |         |
| 76-13-11,1,2-Trichloro-1,2,2-triflu                                    | oroethane                                      | 10 U                         |         |
| 156-60-5trans-1,2-Dichloroethene                                       |                                                | 10 U                         |         |
| 1634-04-4Methyl-t-Butyl Ether (MIBE)<br>156-59-2cis-1,2-Dichloroethene |                                                | 10 U<br>3 J                  |         |
| 110-82-7Cyral observation                                              |                                                | 2 J                          |         |
| 108-87-2Methylcyclohexane                                              |                                                | 2 0<br>5 J                   |         |
| 106-93-41,2-Dibromoethane                                              |                                                | 10 U                         |         |
| 98-82-8Isopropylbenzene                                                |                                                | 28                           |         |
| 541-73-11,3-Dichlorobenzene                                            |                                                | 10 U                         |         |

106-46-7----1,4-Dichlorobenzene

95-50-1-----1,2-Dichlorobenzene

120-82-1----1,2,4-Trichlorobenzene\_ 79-20-9-----Methyl acetate\_\_\_\_

96-12-8-----1,2-Dibromo-3-chloropropane

### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

24/864

Client No.

| ab Name: STL Buffalo                     | Contract:      |                  | MW-117               |   |
|------------------------------------------|----------------|------------------|----------------------|---|
| Lab Code: <u>RECNY</u> Case No.:         |                | SDG No.:         |                      |   |
| Matrix: (soil/water) WATER               |                | Lab Sample ID:   | A5B76601             |   |
| Sample wt/vol: (g/mL                     | י <u>אד</u> (י | Lab File ID:     | Q8351.RR             |   |
| Level: (low/med) LOW                     |                | Date Samp/Recv:  | 10/18/2005 10/20/200 | 5 |
| % Moisture: not dec.                     |                | Date Analyzed:   | 10/22/2005           |   |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> | (mm)           | Dilution Factor: | 1.00                 |   |
| Soil Extract Volume: (uL)                |                | Soil Aliquot Vol | lume: (uL)           |   |
|                                          |                |                  |                      |   |

Number TICs found: 10

CONCENTRATION UNITS: (ug/L or ug/Kg) 1

|  | or | ug/Kg) | UG/L |
|--|----|--------|------|
|--|----|--------|------|

| CAS NO.                                                        | Compound Name                                                                                                                                                                                | RT                                                                 | Est. Conc.                                       | Q                                                        |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|
| 1.<br>2.<br>3.<br>4.<br>5.<br>6. 496-11-7<br>7.<br>8. 119-64-2 | UNKNOWN BENZENE DERIVATIVE<br>UNKNOWN BENZENE DERIVATIVE<br>UNKNOWN BENZENE DERIVATIVE<br>UNKNOWN BENZENE DERIVATIVE<br>INDANE<br>UNKNOWN BENZENE DERIVATIVE<br>1,2,3,4-TETRAHYDRONAPHIHALEN | 9.79<br>9.86<br>10.05<br>10.21<br>10.58<br>10.76<br>11.79<br>11.95 | 97<br>61<br>140<br>250<br>130<br>150<br>89<br>58 | J<br>J<br>J<br>J<br>J<br>J<br>J<br>N<br>J<br>N<br>J<br>N |
| 9.91-20-3<br>10.                                               | NAPHTHALENE<br>UNKNOWN                                                                                                                                                                       | 12.30<br>13.28                                                     | 110<br>130                                       | JN<br>J                                                  |

### FORM IE - GC/MS VOA TIC

## 25/864

Client No.

-----

|          |                     |                              |                  | NO.7 111            |           |         |
|----------|---------------------|------------------------------|------------------|---------------------|-----------|---------|
| ab Name  | : <u>STL Buffal</u> | o Contract:                  |                  | MW-11               | /A        |         |
| Lab Code | e: <u>RECNY</u> C   | ase No.: SAS No.:            | SDG No.:         |                     | •         |         |
| Matrix:  | (soil/water)        | WATER                        | Lab Sample II    | D: <u>A5B7660</u>   | 02        |         |
| Sample w | rt/vol:             | <u>5.00</u> (g/mL) <u>ML</u> | Lab File ID:     | <u>Q8354.1</u>      | RR        |         |
| Level:   | (low/med)           | LOW                          | Date Samp/Red    | cv: <u>10/18/</u> 2 | 2005 10/  | 20/2005 |
| % Moistu | ire: not dec.       | Heated Purge: N              | Date Analyzed    | d: <u>10/22/2</u>   | 2005      |         |
| GC Colum | n: <u>DB-624</u>    | ID: (mm)                     | Dilution Fact    | tor: <u>1.0</u>     | <u>00</u> |         |
| Soil Ext | ract Volume:        | (uL)                         | Soil Aliquot     | Volume:             |           | uL)     |
|          |                     |                              | CONCENTRATION UN |                     |           |         |
|          | CAS NO.             | COMPOUND                     | (ug/L or ug/Kg)  | UG/L                | Q         |         |
|          | 74-87-3             | Chloromethane                |                  | 10                  | U         |         |
|          | 74-83-9             | Bromomethane                 |                  | 10                  | U         | 1       |
|          | 75-01-4             | Vinyl chloride               |                  | 10                  | U         |         |
|          | 175-00-3            | Chloroethane                 |                  | 10                  | U         |         |
|          | 75-09-2             | Methylene chloride           |                  | 10                  | U         |         |
|          | 167-64-7            | Acetone                      |                  | 10                  | U         |         |
|          | 75-15-0             | Carbon Disulfide             |                  | 10                  | U         |         |
| N        | 175-35-4            | 1,1-Dichloroethene           |                  | 10                  | U         | 1       |
|          | 75-34-3             | 1,1-Dichloroethane           |                  | 10                  | U         |         |
|          | 67-66-3             | Chloroform                   |                  | 10                  | U         | 1       |
|          | 107-06-2            | 1,2-Dichloroethane           |                  | 10                  | U         |         |
|          | 78-93-3             | 2-Butanone                   |                  | 2                   | J         |         |
|          | 71-55-6             | 1,1,1-Trichloroethane        |                  | 10                  | U         |         |
|          | 56-23-5             | Carbon Tetrachloride         | 1                | 10                  | U         |         |
|          | 75-27-4             | Bromodichloromethane         | · ·              | 10                  | U U       |         |
|          | 78-87-5             | 1,2-Dichloropropane          |                  | 10                  | U         |         |
|          |                     | cis-1,3-Dichloropropene      |                  | 10                  | U         |         |
|          |                     | Trichloroethene              |                  | 10                  | U         |         |
|          | 124-48-1            | Dibromochloromethane         |                  | 10                  | υ         |         |
|          | 79-00-5             | 1,1,2-Trichloroethane        |                  | 10                  | U         |         |
|          | 71-43-2             |                              |                  | 10                  | U         |         |
|          |                     | trans-1,3-Dichloropropene    |                  | 10                  | U         | 1 A.    |
|          | 75-25-2             |                              |                  | 10                  | U         |         |
|          |                     | 4-Methyl-2-pentanone         |                  | 10                  | U         |         |
|          |                     | 2-Hexanone                   |                  | 10                  | υ         |         |
|          |                     | Tetrachloroethene            |                  | 1                   | J         |         |
|          | 108-88-3            |                              |                  | 10                  | U         |         |
|          |                     | 1,1,2,2-Tetrachloroethane    |                  | 10                  | U         |         |
|          |                     | Chlorobenzene                |                  | 10                  | U         |         |
|          |                     | Ethylbenzene                 |                  | 68                  | Ŭ         |         |
|          | 100-41-4            |                              |                  | 10                  | υ         |         |
|          |                     | Total Xylenes                | ······           | 58                  | Ĭ         |         |
|          |                     | Dichlorodifluoromethane      |                  | 10                  | UR        |         |
|          |                     | Trichlorofluoromethane       |                  | 10                  | U         |         |
| -        |                     |                              |                  |                     |           | 1       |

### 26/864

J

J

J

U

U

U

U

U

U

U

3

2

5

10

28

10

10

10

10

10

10

Client No.

|                                                                                                | MW-117A                                             |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| ab Name: <u>STL Buffalo</u> Contract                                                           | 1                                                   |
| Lab Code: <u>RECNY</u> Case No.: SAS N                                                         | D.: SDG No.:                                        |
| Matrix: (soil/water) <u>WATER</u>                                                              | Lab Sample ID: A5B76602                             |
| Sample wt/vol: (g/mL) ML                                                                       | Lab File ID: <u>Q8354.RR</u>                        |
| Level: (low/med) LOW                                                                           | Date Samp/Recv: <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec Heated Purge: 1                                                            | Date Analyzed: <u>10/22/2005</u>                    |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)                                                  | Dilution Factor:1.00                                |
| Soil Extract Volume: (uL)                                                                      | Soil Aliquot Volume: (uL)                           |
| CAS NO. COMPOUND                                                                               | CONCENTRATION UNITS:<br>(ug/Lorug/Kg) <u>UG/L</u> Q |
| 76-13-11,1,2-Trichloro-1,2,2<br>156-60-5trans-1,2-Dichloroeth<br>1634-04-4Methyl-t-Butyl Ether | nene10 U                                            |

156-59-2----cis-1,2-Dichloroethene

108-87-2----Methylcyclohexane

106-93-4----1,2-Dibromoethane

541-73-1----1,3-Dichlorobenzene

106-46-7----1,4-Dichlorobenzene

95-50-1-----1,2-Dichlorobenzene

79-20-9-----Methyl acetate

120-82-1-----1,2,4-Trichlorobenzene

96-12-8-----1,2-Dibromo-3-chloropropane

98-82-8-----Isopropylbenzene

110-82-7----Cyclohexane

### DELITA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

## 27/864

Client No.

|                                     |           | · · · ·         | MW-117A                            |   |
|-------------------------------------|-----------|-----------------|------------------------------------|---|
| ab Name: <u>SIL Buffalo</u>         | Contract: | - : ·           |                                    |   |
| Lab Code: <u>RECNY</u> Case No.:    | SAS No.:  | SDG No.:        |                                    |   |
| Matrix: (soil/water) <u>WATER</u>   |           | Lab Sample ID:  | A5B76602                           |   |
| Sample wt/vol: (g/mL)               | ML        | Lab File ID:    | Q8354.RR                           |   |
| Level: (low/med) LOW                |           | Date Samp/Recv: | <u>10/18/2005</u> <u>10/20/200</u> | 5 |
| % Moisture: not dec.                | · · ·     | Date Analyzed:  | 10/22/2005                         |   |
| GC Column: <u>DB-624</u> ID: 0.25 ( | (mm)      | Dilution Factor | :1.00                              |   |
| Soil Extract Volume: (uL)           |           | Soil Aliquot Vo | lume: (uL)                         |   |
|                                     |           |                 |                                    |   |

Number TICs found: <u>10</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

| CAS NO.                                                                    | Compound Name                                                                                                                                                                                                                          | RT                                                                                   | Est. Conc.                                                     | Q                                                                                           |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1.<br>2.<br>3.<br>4.<br>5.<br>6. 496-11-7<br>7.<br>8.<br>9. 91-20-3<br>10. | UNKNOWN BENZENE DERIVATIVE<br>UNKNOWN BENZENE DERIVATIVE<br>UNKNOWN BENZENE DERIVATIVE<br>UNKNOWN BENZENE DERIVATIVE<br>UNKNOWN BENZENE DERIVATIVE<br>INDANE<br>UNKNOWN BENZENE DERIVATIVE<br>UNKNOWN ARKANE<br>NAPHTHALENE<br>UNKNOWN | 9.79<br>9.86<br>10.06<br>10.21<br>10.58<br>10.76<br>11.79<br>11.81<br>12.30<br>13.28 | 71<br>60<br>160<br>250<br>130<br>140<br>82<br>66<br>110<br>130 | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |

# ES 28/864

DELTA - AQ - ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

-----

| ab Name: <u>SIL Buffalo</u> Contract:                                                                                                                                                                                                 |                                                | MW-118                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lab Code: RECNY Case No.: SAS No.:                                                                                                                                                                                                    | SDG No.:                                       |                                                                                                                                                                                                                |
| Matrix: (soil/water) WATER                                                                                                                                                                                                            | Lab Sample ID:                                 | A5B76603                                                                                                                                                                                                       |
| Sample wt/vol: (g/mL) ML                                                                                                                                                                                                              | Lab File ID:                                   | Q8355.RR                                                                                                                                                                                                       |
| Level: (low/med) <u>LOW</u>                                                                                                                                                                                                           | Date Samp/Recv:                                | 10/18/2005 10/20/2005                                                                                                                                                                                          |
| % Moisture: not dec Heated Purge: N                                                                                                                                                                                                   | Date Analyzed:                                 | 10/22/2005                                                                                                                                                                                                     |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)                                                                                                                                                                                         | Dilution Factor:                               | 1.00                                                                                                                                                                                                           |
| Soil Extract Volume: (uL)                                                                                                                                                                                                             | Soil Aliquot Volu                              | me: (uL)                                                                                                                                                                                                       |
| CAS NO. COMPOUND                                                                                                                                                                                                                      | CONCENTRATION UNITS:<br>(ug/Lorug/Kg) <u>U</u> | <u>G/L</u> Q                                                                                                                                                                                                   |
| 74-87-3Chloromethane         74-83-9Bromomethane         75-01-4Vinyl chloride         75-00-3Chloroethane         75-09-2Methylene chloride         67-64-1Acetone         75-15-0Carbon Disulfide         75-35-41,1-Dichloroethene | 5                                              | 10     U       10     U       10     U       570     E T       10     U       10     U |

| 75-15-0Carbon Disulfide             | 10   | U   |
|-------------------------------------|------|-----|
| 75-35-41,1-Dichloroethene           | 110  |     |
| 75-34-31,1-Dichloroethane           | 280  | 臣之  |
| 67-66-3Chloroform                   | 10   |     |
| 107-06-21,2-Dichloroethane          | 10   | U   |
| 78-93-32-Butanone                   | 10   | ប   |
| 71-55-61,1,1-Trichloroethane        | 510  | EJ  |
| 56-23-5Carbon Tetrachloride         | 10   | U   |
| 75-27-4Bromodichloromethane         | 10   | υ   |
| 78-87-51,2-Dichloropropane          | 10   | U   |
| 10061-01-5cis-1,3-Dichloropropene   | 10   | υ   |
| 79-01-6Trichloroethene              | 1100 | EJ  |
| 124-48-1Dibromochloromethane        | 10   | U   |
| 79-00-51,1,2-Trichloroethane        | 10   | υ   |
| 71-43-2Benzene                      | 10   | υ   |
| 10061-02-6trans-1,3-Dichloropropene | 10   | U   |
| 75-25-2Bromoform                    | 10   | υ   |
| 108-10-14-Methyl-2-pentanone        | 48   |     |
| 591-78-62-Hexanone                  | 10   | υ   |
| 127-18-4Tetrachloroethene           | 1700 | E.Z |
| 108-88-3Toluene                     | 10   | U   |
| 79-34-51,1,2,2-Tetrachloroethane    | 10   | U   |
| 108-90-7Chlorobenzene               | 10   | ប   |
| 100-41-4Ethylbenzene                | 10   | U   |
| 100-42-5Styrene                     | 10   | U   |
| 1330-20-7Total Xylenes              | 10   | U   |
| 75-71-8Dichlorodifluoromethane      | 10   | UR  |
| 75-69-4Trichlorofluoromethane       | 10   | U   |
|                                     |      |     |

FORM I - GC/MS VOA

### 29/864

10

14

10

10

10

10

10

10

10

10

10

10

10

1400

U

U E U

U

U

U

U

U

U

U

U

U

Client No.

| h Marra (TTT Diffe]a                    | Contract              |                                                | MW-118                |
|-----------------------------------------|-----------------------|------------------------------------------------|-----------------------|
| b Name: <u>STL Buffalo</u>              |                       |                                                |                       |
| Lab Code: <u>RECNY</u> Case No.:        | SAS No.:              | SDG No.:                                       |                       |
| Matrix: (soil/water) WATER              |                       | Lab Sample ID:                                 | A5B76603              |
| Sample wt/vol: (g/                      | mL) <u>ML</u>         | Lab File ID:                                   | Q8355.RR              |
| Level: (low/med) <u>LOW</u>             |                       | Date Samp/Recv:                                | 10/18/2005 10/20/2005 |
| % Moisture: not dec He                  | eated Purge: <u>N</u> | Date Analyzed:                                 | 10/22/2005            |
| GC Column: <u>DB-624</u> ID: <u>0.2</u> | <u>15</u> (mm)        | Dilution Factor:                               | 1.00                  |
| Soil Extract Volume: (uL                | .)                    | Soil Aliquot Volu                              | me: (uL)              |
| CAS NO. COMPOUND                        |                       | CONCENTRATION UNITS:<br>(ug/Lorug/Kg) <u>(</u> | <u>g/l</u> Q          |

76-13-1-----1,1,2-Trichloro-1,2,2-trifluoroethane

156-60-5----trans-1,2-Dichloroethene

156-59-2----cis-1,2-Dichloroethene

110-82-7----Cyclohexane

108-87-2----Methylcyclohexane

106-93-4----1,2-Dibromoethane

98-82-8-----Isopropylbenzene

79-20-9-----Methyl acetate

541-73-1----1,3-Dichlorobenzene

106-46-7----1,4-Dichlorobenzene

95-50-1-----1,2-Dichlorobenzene

120-82-1----1,2,4-Trichlorobenzene

1634-04-4----Methyl-t-Butyl Ether (MIBE)

96-12-8-----1,2-Dibromo-3-chloropropane

## 30/864

#### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

|                                          |                                       |                 | MW-118                              |
|------------------------------------------|---------------------------------------|-----------------|-------------------------------------|
| ab Name: <u>STL Buffalo</u>              | Contract:                             | -               |                                     |
| Lab Code: <u>RECNY</u> Case No.:         | SAS No.:                              | SDG No.:        |                                     |
| Matrix: (soil/water) <u>WATER</u>        |                                       | Lab Sample ID:  | A5B76603                            |
| Sample wt/vol: (g/mL)                    | ) <u>ML</u>                           | Lab File ID:    | 08355.RR                            |
| Level: (low/med) LOW                     |                                       | Date Samp/Recv: | <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec.                     | · · · · · · · · · · · · · · · · · · · | Date Analyzed:  | 10/22/2005                          |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> | (mm)                                  | Dilution Factor | 1.00                                |
| Soil Extract Volume: (uL)                |                                       | Soil Aliquot Vo | lume: (uL)                          |
|                                          |                                       | CONTRACTOR INTT | PC.                                 |

Number TICs found: <u>1</u>

#### CONCENTRATION UNITS: (ug/Lorug/Kg) <u>UG/L</u>

| CAS NO. | Compound Name | RT    | Est. Conc. | Q |
|---------|---------------|-------|------------|---|
| 1.      | UNKNOWN       | 10.01 | 30         | J |

## 31/864

Client No.

-

| · · · · · · · · · · · · · · · · · · · |                                       |                                                                                                                  | MW-118            | 3 Di     |         |
|---------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------|----------|---------|
| b Name: <u>STL Bu</u>                 | ffalo Contract:                       |                                                                                                                  | <b>L</b>          |          |         |
| Lab Code: <u>RECNY</u>                | Case No.: SAS No.:                    | SDG No.:                                                                                                         |                   |          | •       |
| Matrix: (soil/wa                      | ater) <u>WATER</u>                    | Lab Sample II                                                                                                    | : <u>A5B7660</u>  | 03DL     |         |
| Sample wt/vol:                        | <u>5.00</u> (g/mL) <u>ML</u>          | Lab File ID:                                                                                                     | <u>Q8375.</u>     | <u> </u> |         |
| Level: (low/me                        | ed) <u>LOW</u>                        | Date Samp/Rec                                                                                                    | w: <u>10/18/2</u> | 2005 10/ | 20/2005 |
| % Moisture: not                       | dec Heated Purge: <u>N</u>            | Date Analyzed                                                                                                    | l: <u>10/24/2</u> | 2005     |         |
| GC Column: <u>DB-62</u>               | 4 ID: <u>0.25</u> (mm)                | Dilution Fact                                                                                                    | or:25.0           | 00       |         |
| Soil Extract Vol                      | ume: (uL)                             | Soil Aliquot                                                                                                     | Volume:           | (        | uL)     |
|                                       |                                       | CONCENTRATION UNI                                                                                                | TS:               |          |         |
| CAS NO.                               | COMPOUND                              | (ug/L or ug/Kg)                                                                                                  |                   | Q        |         |
| 74-87-3                               | Chloromethane                         |                                                                                                                  | 250               | U        |         |
| 74-83-9                               | Bromomethane                          |                                                                                                                  | 250               | U        |         |
| 75-01-4                               | Vinyl chloride                        | and the second | 510               | D        | 1       |
| 75-00-3                               | Chloroethane                          |                                                                                                                  | 250               | U        |         |
| 75-09-2                               | Methylene chloride                    |                                                                                                                  | 250               | U        | 1       |
| 67-64-1                               | Acetone                               |                                                                                                                  | 250               | U U      |         |
| 75-15-0                               | Acetone<br>Carbon Disulfide           |                                                                                                                  | 250               | υ        | 1       |
| 15-35-4                               | i, I-Dichiotoeulene                   |                                                                                                                  | 90                | נמ       |         |
| 75-34-3                               | 1,1-Dichloroethane                    |                                                                                                                  | 250               | D        |         |
| 67-66-3                               | Chloroform                            |                                                                                                                  | 250               | U        |         |
| 107-06-2                              | 21,2-Dichloroethane                   |                                                                                                                  | 250               | υ        |         |
| 78-93-3                               | 2-Butanone                            |                                                                                                                  | 250               | υ        |         |
| 71-55-6                               | 1,1,1-Trichloroethane                 |                                                                                                                  | 530               | D        |         |
| 56-23-5                               | Carbon Tetrachloride                  |                                                                                                                  | 250               | U        |         |
| 75-27-4                               | Bromodichloromethane                  |                                                                                                                  | 250               | U        |         |
| 78-87-5                               | 1,2-Dichloropropane                   |                                                                                                                  | 250               | U        |         |
| 10061-01                              | 1-5cis-1,3-Dichloropropene            |                                                                                                                  | 250               | U        |         |
| 79-01-6                               | Trichloroethene                       |                                                                                                                  | 1100              | D        |         |
| 124-48-1                              | 1Dibromochloromethane                 |                                                                                                                  | 250               | U        |         |
|                                       | 1,1,2-Trichloroethane                 |                                                                                                                  | 250               | U        |         |
|                                       | Benzene                               |                                                                                                                  | 250               | U        |         |
|                                       | 2-6trans-1,3-Dichloropropene          |                                                                                                                  | 250               | U        |         |
|                                       | Bromoform                             |                                                                                                                  | 250               | U        |         |
| 108-10-1                              | 14-Methyl-2-pentanone                 |                                                                                                                  | 250               | U        |         |
|                                       | 52-Hexanone                           |                                                                                                                  | 250               | U        |         |
|                                       | 4Tetrachloroethene                    |                                                                                                                  | 1800              | D        |         |
| 108-88-3                              | BToluene                              |                                                                                                                  | 250               | U        |         |
|                                       | 1,1,2,2-Tetrachloroethane             |                                                                                                                  | 37                | U        | 1       |
|                                       | 7Chlorobenzene                        |                                                                                                                  | 250               | U        |         |
|                                       | 4Ethylbenzene                         |                                                                                                                  | 250               | υ        |         |
|                                       | 5Styrene                              |                                                                                                                  | 250               | U        |         |
|                                       | -7Total Xylenes                       |                                                                                                                  | 250               | U        |         |
|                                       | Dichlorodifluoromethane               |                                                                                                                  | 250               | U        |         |
|                                       | Trichlorofluoromethane                |                                                                                                                  | 250               | U        |         |
| -                                     | · · · · · · · · · · · · · · · · · · · |                                                                                                                  |                   |          |         |

FORM I - GC/MS VOA

32/864

Client No.

| b Name: <u>STL Buffalo</u>                   | Contract:       |                  | MW-118 <b>Di</b>                    |
|----------------------------------------------|-----------------|------------------|-------------------------------------|
| Lab Code: <u>RECNY</u> Case No.:             | SAS No.:        | SDG No.:         | •                                   |
| Matrix: (soil/water) <u>WATER</u>            |                 | Lab Sample ID:   | A5B76603DL                          |
| Sample wt/vol: $5.00$ (g/mL) <u>N</u>        | <u>∕IL</u>      | Lab File ID:     | Q8375.RR                            |
| Level: (low/med) LOW                         |                 | Date Samp/Recv:  | <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec Heated                   | Purge: <u>N</u> | Date Analyzed:   | 10/24/2005                          |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm | n)              | Dilution Factor: | 25.00                               |
| Soil Extract Volume: (uL)                    |                 | Soil Aliquot Vol | ume: (uL)                           |

#### CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L 0

| CAS NO. COMPOUND (ug/L or                                                                                                                                                                                                                                                                                                                                       | ug/Kg) <u>UG/L</u>                                                                | Q                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| CAS NO.       COMPOUND       (ug/L or         76-13-11,1,2-Trichloro-1,2,2-trifluoroethane_       156-60-5trans-1,2-Dichloroethene       156-60-5trans-1,2-Dichloroethene         1634-04-4Methyl-t-Butyl Ether (MIBE)       156-59-2cis-1,2-Dichloroethene       100-82-7Cyclohexane         106-93-4Cyclohexane       106-93-41,2-Dibromoethane       98-82-8 | 250<br>250<br>250<br>1400<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250 | Q<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A |
| 120-82-11,2,4-Trichlorobenzene<br>79-20-9Methyl acetate                                                                                                                                                                                                                                                                                                         | 250<br>250<br>250                                                                 | ប<br>ប<br>ប                                                                                      |

## 33/864

## DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

-

|                                               |                    | MW-1180-                            |
|-----------------------------------------------|--------------------|-------------------------------------|
| b Name: <u>SIL Buffalo</u> Contract:          |                    |                                     |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     | SDG No.:           |                                     |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID:     | A5B76603DL                          |
| Sample wt/vol: (g/mL) ML                      | Lab File ID:       | Q8375.RR                            |
| Level: (low/med) LOW                          | Date Samp/Recv:    | <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec.                          | Date Analyzed:     | 10/24/2005                          |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor    | :25.00                              |
| Soil Extract Volume: (uL)                     | Soil Aliquot Vo    | lume: (uL)                          |
| Number TICs found: 0                          | CONCENTRATION UNIT |                                     |

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

### FORM IE - GC/MS VOA TIC

## 34/864

Client No.

| b Name: <u>STL Buffalo</u> Contract:              |                                       | MW-119           | )         |         |
|---------------------------------------------------|---------------------------------------|------------------|-----------|---------|
| D Maile: DILI DULLATO                             |                                       |                  |           |         |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:         | SDG No.:                              |                  |           |         |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID:                        | A5B7660          | )7        |         |
| Sample wt/vol: (g/mL) ML                          | Lab File ID:                          | <u>Q8359.1</u>   | R         |         |
| Level: (low/med) <u>LOW</u>                       | Date Samp/Recv                        | : <u>10/18/2</u> | 2005 10/2 | 20/2005 |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed:                        | 10/22/2          | 2005      |         |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Facto                        | r: <u>1.(</u>    | 00        |         |
| Soil Extract Volume: (uL)                         | Soil Aliquot V                        | olume:           |           | JL)     |
| CAS NO. COMPOUND                                  | CONCENTRATION UNIT<br>(ug/L or ug/Kg) |                  | Q         |         |
| 74-87-3Chloromethane<br>74-83-9Bromomethane       |                                       | 10               | U         |         |
| 75-01-4Vinyl chloride                             |                                       | 10<br>8          | U<br>J    |         |
| 75-00-3Chloroethane                               |                                       | 10               | U         |         |
| 75-09-2Methylene chloride                         | ·····                                 | 10               | U         |         |
| 67-64-1Acotopo                                    |                                       | 10               | U         |         |
| 75-15-0Carbon Disulfide                           |                                       | 10               | U         |         |
| 75-35-41,1-Dichloroethene                         |                                       | 2                | J         |         |
| 75-34-31,1-Dichloroethane                         |                                       | 44               | -         |         |
| 67-66-3Chloroform                                 |                                       | 4                | J         |         |
| 107-06-21,2-Dichloroethane                        |                                       | 10               | U         |         |
| 78-93-32-Butanone                                 |                                       | 10               | U         |         |
| 71-55-61,1,1-Trichloroethane                      |                                       | 73               |           |         |
| 56-23-5Carbon Tetrachloride                       |                                       | 10               | U         |         |
| 75-27-4Bromodichloromethane                       |                                       | 10               | U         |         |
| 78-87-51,2-Dichloropropane                        |                                       | 10               | U         |         |
| 10061-01-5cis-1,3-Dichloropropene                 |                                       | 10               | U         | 1       |
| 79-01-6Trichloroethene                            |                                       | 110              |           |         |
| 124-48-1Dibromochloromethane                      |                                       | 10               | U         |         |
| 79-00-51,1,2-Trichloroethane                      |                                       | 1                | J         |         |
| 71-43-2Benzene                                    |                                       | 1                | J         |         |
| 10061-02-6trans-1,3-Dichloropropene               |                                       | 10               | U         |         |
| 75-25-2Bromoform                                  |                                       | 10               | U         |         |
| 108-10-14-Methyl-2-pentanone                      |                                       | 10               | U         |         |
| 591-78-62-Hexanone                                |                                       | 10               | U         |         |
| 127-18-4Tetrachloroethene                         |                                       | 34               |           |         |
| 108-88-3Toluene                                   |                                       | 10               | υ         |         |
| 79-34-51,1,2,2-Tetrachloroethane                  |                                       | 10               | υ         |         |
| 108-90-7Chlorobenzene                             |                                       | 10               | U         |         |
| 100-41-4Ethylbenzene                              |                                       | 10               | U         |         |
| 100-42-5Styrene                                   |                                       | 10               | U         |         |
| 1330-20-7Total Xylenes                            |                                       | 10               | UU        |         |
| 75-71-8Dichlorodifluoromethane                    |                                       | 10               | UR        |         |
| 75-69-4Trichlorofluoromethane                     |                                       | 10               | UN        |         |
|                                                   | ·····                                 |                  |           | ]       |

FORM I - GC/MS VOA

## 35/864

Client No.

|                                         |                      |                      | MW-119                |
|-----------------------------------------|----------------------|----------------------|-----------------------|
| b Name: <u>STL Buffalo</u>              | Contract:            |                      |                       |
| Lab Code: <u>RECNY</u> Case No.:        | SAS No.:             | SDG No.:             |                       |
| Matrix: (soil/water) <u>WATER</u>       |                      | Lab Sample ID:       | A5B76607              |
| Sample wt/vol: (g/                      | mL) <u>ML</u>        | Lab File ID:         | <u>08359.RR</u>       |
| Level: (low/med) <u>LOW</u>             |                      | Date Samp/Recv:      | 10/18/2005 10/20/2005 |
| % Moisture: not dec He                  | ated Purge: <u>N</u> | Date Analyzed:       | 10/22/2005            |
| GC Column: <u>DB-624</u> ID: <u>0.2</u> | <u>5</u> (mm)        | Dilution Factor:     | 1.00                  |
| Soil Extract Volume: (uL                | )                    | Soil Aliquot Volu    | me: (uL)              |
|                                         |                      | CONCENTRATION UNITS: |                       |

| CAS NO.   |                             |            |    | Ŷ, |
|-----------|-----------------------------|------------|----|----|
| 76-13-1   | 1,1,2-Trichloro-1,2,2-trifl | uoroethane | 10 | υ  |
|           | trans-1,2-Dichloroethene    |            | 2  | J  |
| 1634-04-4 | Methyl-t-Butyl Ether (MIBE) |            | 10 | U  |
| 156-59-2  | cis-1,2-Dichloroethene      |            | 91 |    |
| 110-82-7  | Cyclohexane                 |            | 10 | U  |
| 108-87-2  | Methylcyclohexane           |            | 10 | U  |
| 106-93-4  | 1,2-Dibromoethane           |            | 10 | U  |
| 98-82-8   | Isopropylbenzene            |            | 10 | U  |
|           | 1,3-Dichlorobenzene         |            | 10 | U  |
| 106-46-7  | 1,4-Dichlorobenzene         |            | 10 | U  |
| 95-50-1   | 1,2-Dichlorobenzene         |            | 10 | U  |
| 96-12-8   | 1,2-Dibromo-3-chloropropane |            | 10 | U  |
| 120-82-1  | 1,2,4-Trichlorobenzene      |            | 10 | U  |
| 79-20-9   | Methyl acetate              |            | 10 | U  |

## 36/864

### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

| b Name: STL Buffalo Contract:          | MW-119                                              |
|----------------------------------------|-----------------------------------------------------|
| Lab Code: RECNY Case No.: SAS No.:     | SDG No.:                                            |
| Matrix: (soil/water) <u>WATER</u>      | Lab Sample ID: A5B76607                             |
| Sample wt/vol: (g/mL) ML               | Lab File ID: <u>Q8359.RR</u>                        |
| Level: (low/med) LOW                   | Date Samp/Recv: <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec.                   | Date Analyzed: <u>10/22/2005</u>                    |
| GC Column: <u>DB-624</u> ID: 0.25 (mm) | Dilution Factor: 1.00                               |
| Soil Extract Volume: (uL)              | Soil Aliquot Volume: (uL)                           |
| Number TICs found: <u>0</u>            | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> |

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

## 37/864

|                                        |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | CL        | ient No. |
|----------------------------------------|-------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------|----------|
| ······································ |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW-120                                | )         |          |
| D Name                                 | e: SIL BUITAL     | Contract:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |           |          |
| Lab Code                               | e: <u>REONY</u> C | ase No.: SAS No.: _          | SDG No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |           |          |
| Matrix:                                | (soil/water)      | WATER                        | Lab Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e ID: <u>A5B7660</u>                  | 08        |          |
| Sample v                               | wt/vol:           | <u>5.00</u> (g/mL) <u>ML</u> | Lab File I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D: <u>Q8360.</u> F                    | R.        |          |
| Level:                                 | (low/med)         | LOW                          | Date Samp,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /Recv: <u>10/18/2</u>                 | 2005 10/2 | 20/2005  |
| % Moisti                               | ure: not dec.     | Heated Purge: <u>N</u>       | Date Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | yzed: <u>10/22/2</u>                  | 2005      |          |
| GC Colum                               | m: <u>DB-624</u>  | ID: <u>0.25</u> (mm)         | Dilution H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Factor:1.(                            | 00        |          |
| Soil Ext                               | ract Volume:      | (uL)                         | Soil Aliqu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uot Volume:                           | (         | uL)      |
|                                        | CAS NO.           | COMPOUND                     | CONCENTRATION<br>(ug/L or ug/H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | Q         |          |
|                                        |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |           | ]        |
|                                        | 74-87-3           | Chloromethane                | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                    | U         |          |
|                                        | 74-83-9           | Bromomethane                 | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                    | U         | 1.1.1    |
|                                        | 75-01-4           | Vinyl chloride               | and a state of the | 4                                     | J         |          |
|                                        | 175-00-3          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        | 75-09-2           | Methylene chloride           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | υ         |          |
|                                        | 67-64-1           | Acetone                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        | 75-15-0           | Acetone<br>Carbon Disulfide  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        | /5-35-4           | 1,1-DICILIOIOELIEIE          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        | 75-34-3           | 1,1-Dichloroethane           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                    |           |          |
|                                        | 67-66-3           | Chlomform                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         | 1        |
|                                        |                   | 1,2-Dichloroethane           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | υ         |          |
|                                        | 78-93-3           | 2-Butanone                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        | 71-55-6           | 1,1,1-Trichloroethane        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                    | -         |          |
|                                        | 56-23-5           | Carbon Tetrachloride         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        | 75-27-4           | Bromodichloromethane         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        |                   | 1,2-Dichloropropane          | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                    | U         |          |
|                                        | 10061-01-5        | cis-1,3-Dichloropropene      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | Ū         |          |
|                                        | 79-01-6           | Trichloroethene              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                    | ľ         |          |
|                                        |                   | Dibromochloromethane         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        |                   | 1,1,2-Trichloroethane        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        | 71-43-2           |                              | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                    | U         | 1        |
|                                        |                   | trans-1,3-Dichloropropene    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
| ·                                      | 75-25-2           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | υ         |          |
|                                        |                   | 4-Methyl-2-pentanone         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    |           |          |
|                                        |                   | 2-Hexanone                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        |                   | Tetrachloroethene            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                     | J         | · .      |
|                                        | 108-88-3          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        |                   | 1,1,2,2-Tetrachloroethane    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        |                   | Chlorobenzene                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        |                   | Ethylbenzene                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         | · ·      |
|                                        | 100-42-5          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        |                   | Total Xylenes                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |
|                                        |                   | Dichlorodifluoromethane      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | UR        |          |
| -                                      | 75-69-4           | Trichlorofluoromethane       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | U         |          |

#### 38/864

U

U

U

U

U

U

ប ប

υ

U

υ

U

10 10

26

10

10

10

10

10

10

10

10

10

10

Client No.

| b Name: STL Buffalo               | Contract:               |                                         | ₩-120                               |
|-----------------------------------|-------------------------|-----------------------------------------|-------------------------------------|
| Lab Code: <u>RECNY</u> Case No.   | : SAS No.:              | SDG No.:                                |                                     |
| Matrix: (soil/water) <u>WATER</u> |                         | Lab Sample ID:                          | A5B76608                            |
| Sample wt/vol:5.00                | (g/mL) <u>ML</u>        | Lab File ID:                            | Q8360.RR                            |
| Level: (low/med) LOW              |                         | Date Samp/Recv:                         | <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec.              | Heated Purge: N         | Date Analyzed:                          | 10/22/2005                          |
| GC Column: <u>DB-624</u> ID: _    | <u>0.25</u> (mm)        | Dilution Factor:                        | 1.00                                |
| Soil Extract Volume:              | (uL)                    | Soil Aliquot Vol                        | ume: (uL)                           |
| CAS NO. COMPC                     | UND                     | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) |                                     |
| 76-13-11,1,2                      | -Trichloro-1,2,2-trifly | uoroethane                              | 10 U                                |

156-60-5----trans-1,2-Dichloroethene

110-82-7----Cyclohexane

108-87-2----Methylcyclohexane

106-93-4----1,2-Dibromoethane

98-82-8-----Isopropylbenzene

541-73-1----1, 3-Dichlorobenzene

106-46-7----1,4-Dichlorobenzene

95-50-1----1,2-Dichlorobenzene

79-20-9-----Methyl acetate

120-82-1-----1,2,4-Trichlorobenzene

1634-04-4----Methyl-t-Butyl Ether (MIBE) 156-59-2----cis-1,2-Dichloroethene

96-12-8-----1,2-Dibromo-3-chloropropane

FORM I - GC/MS VOA

#### DELITA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

39/864

Client No.

|                                            | <b>a</b>  |                                       | MW-120                           |     |
|--------------------------------------------|-----------|---------------------------------------|----------------------------------|-----|
| b Name: <u>STL Buffalo</u>                 | Contract: | <del>.</del> .                        |                                  |     |
| Lab Code: <u>RECNY</u> Case No.:           | SAS No.:  | SDG No.:                              |                                  |     |
| Matrix: (soil/water) <u>WATER</u>          |           | Lab Sample ID:                        | <u>A5B76608</u>                  |     |
| Sample wt/vol: (g/mL)                      | <u>ML</u> | Lab File ID:                          | Q8360.RR                         |     |
| Level: (low/med) LOW                       |           | Date Samp/Recv:                       | <u>10/18/2005</u> <u>10/20/2</u> | 005 |
| % Moisture: not dec.                       |           | Date Analyzed:                        | 10/22/2005                       |     |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> ( | (mm)      | Dilution Factor                       | :1.00                            |     |
| Soil Extract Volume: (uL)                  |           | Soil Aliquot Vol                      | lume: (uL)                       |     |
| Number TICs found: <u>0</u>                |           | CONCENTRATION UNIT<br>(ug/L or ug/Kg) |                                  |     |

| CAS NO. | Compound Name | <br>RT | Est. Conc. | Q |
|---------|---------------|--------|------------|---|
|         |               |        |            |   |

## 40/864

Client No.

.....

----

|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |          |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|
| b Name: <u>STL Buffalo</u> Contract:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW-121                                |          |
| Wille. Stil Bullato Willact:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |          |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:         | SDG No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |          |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A5B76609                              |          |
| Sample wt/vol: (g/mL) ML                          | Lab File ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q8361.RR                              | _        |
| Level: (low/med) LOW                              | Date Samp/Recv:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/18/2005 10                         | /20/2005 |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10/22/2005                            |          |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00                                  |          |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | me:                                   | (uL)     |
|                                                   | CONCENTRATION UNITS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |          |
| CAS NO. COMPOUND                                  | (ug/L or ug/Kg) <u>U</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G/L Q                                 |          |
|                                                   | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |          |
| 74-87-3Chloromethane<br>74-83-9Bromomethane       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 74-83-9Biolibilethane                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 75-01-4Vinyl chloride                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 J                                   |          |
| 75-00-3Chloroethane                               | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 U                                  |          |
| 75-09-2Methylene chloride                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 67-64-1Acetone                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 75-15-0Carbon Disulfide                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 75-35-41,1-Dichloroethene                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 J                                   |          |
| /5-34-31,1-Dichloroethane                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                    |          |
| 67-66-3Chloroform                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 107-06-21,2-Dichloroethane                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 178-93-32-Butanone                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 71-55-61,1,1-Trichloroethane                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 J                                   |          |
| 156-23-5Carbon Tetrachloride                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 75-27-4Bromodichloromethane                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 78-87-51,2-Dichloropropane                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  | 1        |
| 10061-01-5cis-1,3-Dichloropropene                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 79-01-6Trichloroethene                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |          |
| 124-48-1Dibromochloromethane                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 79-00-51,1,2-Trichloroethane                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 71-43-2Benzene                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |          |
| 10061-02-6trans-1,3-Dichloropropene               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |          |
| 75-25-2Bromoform                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  | *<br>    |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 108-10-14-Methyl-2-pentanone                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                                    |          |
| 591-78-62-Hexanone                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 127-18-4Tetrachloroethene                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 J                                   | · · · ·  |
| 108-88-3Toluene                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 79-34-51,1,2,2-Tetrachloroethane                  | and the second design of the s | 10 U                                  |          |
| 108-90-7Chlorobenzene                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 100-41-4Ethylbenzene                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 100-42-5Styrene                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 1330-20-7Total Xylenes                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
| 75-71-8Dichlorodifluoromethane                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 UR                                 |          |
| 75-69-4Trichlorofluoromethane                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U                                  |          |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1        |

FORM I - GC/MS VOA

## 41/864

Client No.

\_\_\_\_

|                                                   |                      | MW-121                                |
|---------------------------------------------------|----------------------|---------------------------------------|
| b Name: <u>STL Buffalo</u> Contract:              |                      | · · · · · · · · · · · · · · · · · · · |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:         | SDG No.:             |                                       |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID:       | <u>A5B76609</u>                       |
| Sample wt/vol: <u>5.00</u> (g/mL) ML              | Lab File ID:         | Q8361.RR                              |
| Level: (low/med) <u>LOW</u>                       | Date Samp/Recv:      | 10/18/2005 10/20/2005                 |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed:       | 10/22/2005                            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor:     | 1.00                                  |
| Soil Extract Volume: (uL)                         | Soil Aliquot Vol     | ume: (uL)                             |
| CAS NO. COMPOUND                                  | CONCENTRATION UNITS: | ug/L o                                |

|                                    | (-3) = -3, -3,                        |    | *     |
|------------------------------------|---------------------------------------|----|-------|
| 76-13-11,1,2-Trichloro-1,2,2-tri   | fluoroethane                          | 10 | U     |
| 156-60-5trans-1,2-Dichloroethene   |                                       | 10 | U     |
| 1634-04-4Methyl-t-Butyl Ether (MIB | Ξ)                                    | 10 | U     |
| 156-59-2cis-1,2-Dichloroethene     |                                       | 24 |       |
| 110-82-7Cyclohexane                |                                       | 10 | U     |
| 108-87-2Methylcyclohexane          | · · · · · · · · · · · · · · · · · · · | 10 | ี บ . |
| 106-93-41,2-Dibromoethane          |                                       | 10 | υ     |
| 98-82-8Isopropylbenzene            |                                       | 10 | U     |
| 541-73-11,3-Dichlorobenzene        |                                       | 10 | U     |
| 106-46-71,4-Dichlorobenzene        |                                       | 10 | U     |
| 95-50-11,2-Dichlorobenzene         |                                       | 10 | U     |
| 96-12-81,2-Dibromo-3-chloropropar  | ne                                    | 10 | U     |
| 120-82-11,2,4-Trichlorobenzene     |                                       | 10 | U     |
| 79-20-9Methyl acetate              |                                       | 10 | U     |
|                                    |                                       |    |       |

#### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

## 42/864

Client No.

| ab Name: STL Buffalo              | Contract:   |                                       | MW-121                                |
|-----------------------------------|-------------|---------------------------------------|---------------------------------------|
| Lab Code: <u>RECNY</u> Case No.:  | SAS No.:    | SDG No.:                              | · · · · · · · · · · · · · · · · · · · |
| Matrix: (soil/water) <u>WATER</u> |             | Lab Sample ID:                        | A5B76609                              |
| Sample wt/vol: (g/mL)             | ) <u>ML</u> | Lab File ID:                          | Q8361.RR                              |
| Level: (low/med) <u>LOW</u>       |             | Date Samp/Recv:                       | <u>10/18/2005</u> <u>10/20/2005</u>   |
| % Moisture: not dec.              |             | Date Analyzed:                        | 10/22/2005                            |
| GC Column: <u>DB-624</u> ID: 0.25 | (mm)        | Dilution Factor:                      | 1.00                                  |
| Soil Extract Volume: (uL)         | •           | Soil Aliquot Vol                      | ume: (uL)                             |
| Number TICs found: <u>0</u>       |             | CONCENTRATION UNIT<br>(ug/L or ug/Kg) |                                       |

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

## 43/864

Client No.

-

-----

| b Name: <u>STL Buffalo</u> Cont               | ract:                   | MW-122                |                |
|-----------------------------------------------|-------------------------|-----------------------|----------------|
|                                               |                         |                       |                |
| Lab Code: <u>RECNY</u> Case No.: S            | AS No.: SDG No.:        |                       |                |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample              | e ID: <u>A5B7661</u>  | 0              |
| Sample wt/vol: (g/mL) ML                      | Lab File 1              | ID: <u>Q8362.R</u>    | R              |
| Level: (low/med) <u>LOW</u>                   | Date Samp,              | /Recv: <u>10/18/2</u> | 005 10/20/2005 |
| % Moisture: not dec Heated Pur                | ge: <u>N</u> Date Analy | yzed: <u>10/22/2</u>  | 005            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution I              | Factor:1.0            | 0              |
| Soil Extract Volume: (uL)                     | Soil Aliq               | uot Volume:           | (uL)           |
|                                               | CONCENTRATION           | UNTTS:                |                |
| CAS NO. COMPOUND                              |                         | (g) <u>UG/L</u>       | Q              |
| 74-87-3Chloromethane                          |                         | 10                    | υ              |
| 74-83-9Bromomethane                           |                         | 10                    | U              |
| 75-01-4Vinyl chloride                         |                         | 420                   | E              |
| 75-00-3Chloroethane                           |                         | 10                    | U              |
| 75-09-2Methylene chlori                       | de                      | 10                    | ט              |
| 67-64-1Acetone                                | · · ·                   | 10                    | U              |
| 75-15-0Carbon Disulfide                       |                         | 10                    | U              |
| 75-35-41,1-Dichloroethe                       |                         | 31                    |                |
| 75-34-31,1-Dichloroetha                       |                         | 210                   | EJ             |
| 67-66-3Chloroform                             |                         | 10                    | U              |
| 107-06-21,2-Dichloroetha                      | ne                      | 10                    | U              |
| 78-93-32-Butanone                             |                         | 10                    | U              |
| 71-55-61,1,1-Trichlorce                       | thane                   | 170                   |                |
| 56-23-5Carbon Tetrachlo                       |                         | 10                    | U              |
| 75-27-4Bromodichloromet                       |                         | 10                    | υ              |
| 78-87-51,2-Dichloroprop                       |                         | 10                    | U              |
| 10061-01-5cis-1,3-Dichloro                    |                         | 10                    | U              |
| 79-01-6Trichloroethene                        |                         | 100                   |                |
| 124-48-1Dibromochloromet                      | lane                    | 10                    | υ              |
| 79-00-51,1,2-Trichlorce                       |                         | 2                     | J              |
| 71-43-2Benzene                                |                         | 2                     | J              |
| 10061-02-6trans-1,3-Dichlo                    | copropene               | 10                    | U              |
| 75-25-2Bromoform                              |                         | 10                    | U              |
| 108-10-14-Methyl-2-pentar                     | lone                    | 10                    | U              |
| 591-78-62-Hexanone                            |                         | 10                    | U              |
| 127-18-4Tetrachloroethen                      | 2                       | 10                    |                |
| 108-88-3Toluene                               |                         | 10                    | U              |
| 79-34-51,1,2,2-Tetrachle                      | proethane               | 10                    | U              |
| 108-90-7Chlorobenzene                         |                         | 10                    | U              |
| 100-41-4Ethylbenzene                          |                         | 10                    | U              |
| 100-42-5Styrene                               |                         | 10                    | U              |
| 1330-20-7Total Xylenes                        |                         | 10                    | U              |
| 75-71-8Dichlorodifluoror                      | ethane                  | 10                    | UR             |
| 75-69-4Trichlorofluorom                       |                         | 10                    | U              |
|                                               |                         | 10                    |                |

FORM I - GC/MS VOA

### 44/864

10

10

10

10

10

10

10

10

10

10

U

U

U

U

U

U

U

U

U

U

Client No.

| b Name: <u>STL Buffalo</u> Contract:                                                                                                       | MW-122                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Lab Code: <u>RECNY</u> Case No.: SAS No.:                                                                                                  | SDG No.:                                            |
| Matrix: (soil/water) <u>WATER</u>                                                                                                          | Lab Sample ID: A5B76610                             |
| Sample wt/vol: (g/mL) ML                                                                                                                   | Lab File ID: <u>Q8362.RR</u>                        |
| Level: (low/med) LOW                                                                                                                       | Date Samp/Recv: <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec Heated Purge: $\underline{N}$                                                                                          | Date Analyzed: <u>10/22/2005</u>                    |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)                                                                                              | Dilution Factor:1.00                                |
| Soil Extract Volume: (uL)                                                                                                                  | Soil Aliquot Volume: (uL)                           |
| CAS NO. COMPOUND                                                                                                                           | CONCENTRATION UNITS:<br>(ug/Lorug/Kg) <u>UG/L</u> Q |
| 76-13-11,1,2-Trichloro-1,2,2-tr<br>156-60-5trans-1,2-Dichloroethene<br>1634-04-4Methyl-t-Butyl Ether (MI<br>156-59-2cis-1,2-Dichloroethene | BE) 36 U                                            |

108-87-2----Methylcyclohexane

106-93-4----1,2-Dibromoethane

541-73-1----1,3-Dichlorobenzene

106-46-7----1, 4-Dichlorobenzene

95-50-1-----1,2-Dichlorobenzene

120-82-1-----1,2,4-Trichlorobenzene

96-12-8-----1,2-Dibromo-3-chloropropane

98-82-8-----Isopropylbenzene

79-20-9-----Methyl acetate

110-82-7----Cyclohexane

### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

45/864

Client No.

|                                          |             |                                       | MW-122                             |           |
|------------------------------------------|-------------|---------------------------------------|------------------------------------|-----------|
| b Name: <u>SIL Buffalo</u>               | Contract:   |                                       | L                                  | ļ         |
| Lab Code: <u>RECNY</u> Case No.:         | SAS No.:    | SDG No.:                              | •                                  |           |
| Matrix: (soil/water) <u>WATER</u>        |             | Lab Sample ID:                        | A5B76610                           |           |
| Sample wt/vol: (g/mL                     | ) <u>ML</u> | Lab File ID:                          | <u>08362.RR</u>                    |           |
| Level: (low/med) LOW                     |             | Date Samp/Recv:                       | <u>10/18/2005</u> <u>10/20/200</u> | <u>)5</u> |
| % Moisture: not dec.                     | ,           | Date Analyzed:                        | 10/22/2005                         |           |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> | (mm)        | Dilution Factor                       | :1.00                              |           |
| Soil Extract Volume: (uL)                |             | Soil Aliquot Vo                       | lume: (uL)                         |           |
| Number TICs found: <u>0</u>              |             | CONCENTRATION UNIT<br>(ug/L or ug/Kg) |                                    |           |

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

## 46/864

Client No.

-

| o Name: <u>STL Buffalo</u> Contract:              | MW-122 JL                                             |
|---------------------------------------------------|-------------------------------------------------------|
| Lab Code: <u>RECNY</u> Case No.: SAS No.:         | SDG No.:                                              |
| Matrix: (soil/water) WATER                        | Lab Sample ID: A5B76610DL                             |
| Sample wt/vol: (g/mL) ML                          | Lab File ID: <u>Q8379.RR</u>                          |
| Level: (low/med) LOW                              | Date Samp/Recv: <u>10/18/2005</u> <u>10/20/2005</u>   |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed: <u>10/24/2005</u>                      |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor:25.00                                 |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volume: (uL)                             |
| CAS NO. COMPOUND                                  | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> Q |

| 74-87-3Chloromethane                | 250 | υ        |
|-------------------------------------|-----|----------|
| 74-83-9Bromomethane                 | 250 | υ        |
| 75-01-4Vinyl chloride               | 310 | D        |
| 75-00-3Chloroethane                 | 250 | υ        |
| 75-09-2Methylene chloride           | 250 | υ        |
| 67-64-1Acetone                      | 250 | υ        |
| 75-15-0Carbon Disulfide             | 250 | υ        |
| 75-35-41,1-Dichloroethene           | 25  | UJ       |
| 75-34-31,1-Dichloroethane           | 160 | U        |
| 67-66-3Chloroform                   | 250 | ី        |
| 107-06-21,2-Dichloroethane          | 250 | υ        |
| 78-93-32-Butanone                   | 250 | υ        |
| 71-55-61,1,1-Trichloroethane        | 150 | DJ       |
| 56-23-5Carbon Tetrachloride         | 250 | U        |
| 75-27-4Bromodichloromethane         | 250 | υ        |
| 78-87-51,2-Dichloropropane          | 250 | υ        |
| 10061-01-5cis-1,3-Dichloropropene   | 250 | U        |
| 79-01-6Trichloroethene              | 82  | <b>T</b> |
| 124-48-1Dibromochloromethane        | 250 | U        |
| 79-00-51,1,2-Trichloroethane        | 250 | U        |
| 71-43-2Benzene                      | 250 | U        |
| 10061-02-6trans-1,3-Dichloropropene | 250 | U        |
| 75-25-2Bromoform                    | 250 | U        |
| 108-10-14-Methyl-2-pentanone        | 250 | U        |
| 591-78-62-Hexanone                  | 250 | U        |
| 127-18-4Tetrachloroethene           | 250 | U        |
| 108-88-3Toluene                     | 250 | U        |
| 79-34-51,1,2,2-Tetrachloroethane    | 250 | U        |
| 108-90-7Chlorobenzene               | 250 | U        |
| 100-41-4Ethylbenzene                | 250 | U        |
| 100-42-5Styrene                     | 250 | υ        |
| 1330-20-7Total Xylenes              | 250 | υ        |
| 75-71-8Dichlorodifluoromethane      | 250 | υ        |
| 75-69-4Trichlorofluoromethane       | 250 | U        |

## 47/864

Client No.

\_\_\_\_

|                                                   | MW-122DL                                              |
|---------------------------------------------------|-------------------------------------------------------|
| b Name: <u>STL Buffalo</u> Contract:              | · .                                                   |
| Lab Code: RECNY Case No.: SAS No.:                | SDG No.:                                              |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID: A5B76610DL                             |
| Sample wt/vol: (g/mL) ML                          | Lab File ID: <u>Q8379.RR</u>                          |
| Level: (low/med) <u>LOW</u>                       | Date Samp/Recv: <u>10/18/2005</u> <u>10/20/2005</u>   |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed: <u>10/24/2005</u>                      |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor: <u>25.00</u>                         |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volume: (uL)                             |
| CAS NO. COMPOUND                                  | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> Q |

| 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane | 250  | U  |
|----------------------------------------------|------|----|
| 156-60-5trans-1,2-Dichloroethene             | 28   | IJ |
| 1634-04-4Methyl-t-Butyl Ether (MIBE)         | 250  | U  |
| 156-59-2cis-1,2-Dichloroethene               | 1400 | D  |
| 110-82-7Cyclohexane                          | 250  | U  |
| 108-87-2Methylcyclohexane                    | 250  | U  |
| 106-93-41,2-Dibrompethane                    | 250  | U  |
| 98-82-8Isopropylbenzene                      | 250  | υ  |
| 541-73-11,3-Dichlorobenzene                  | 250  | U  |
| 106-46-71,4-Dichlorobenzene                  | 250  | U  |
| 95-50-11,2-Dichlorobenzene                   | 250  | U  |
| 96-12-81,2-Dibromo-3-chloropropane           | 250  | υ  |
| 120-82-11,2,4-Trichlorobenzene               | 250  | U  |
| 79-20-9Methyl acetate                        | 250  | U  |
|                                              |      | 1  |

FORM I - GC/MS VOA

## 48/864

#### DELTA - AQ - ASP 2000/8260 - TCL VOLATTLES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

| ab Name: <u>STL Buffalo</u>              | Contract:   | · · · · · · · · · · · · · · · · · · · | MW-1220L                            |
|------------------------------------------|-------------|---------------------------------------|-------------------------------------|
| Lab Code: <u>RECNY</u> Case No.:         | SAS No.:    | SDG No.:                              |                                     |
| Matrix: (soil/water) <u>WATER</u>        |             | Lab Sample ID:                        | A5B76610DL                          |
| Sample wt/vol: (g/mL                     | ) <u>ML</u> | Lab File ID:                          | 08379.RR                            |
| Level: (low/med) <u>LOW</u>              |             | Date Samp/Recv:                       | <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec.                     |             | Date Analyzed:                        | 10/24/2005                          |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> | (mm)        | Dilution Factor                       | :25.00                              |
| Soil Extract Volume: (uL)                |             | Soil Aliquot Vo                       | olume: (uL)                         |
|                                          |             | CONCENTRATION UNI                     | TS:                                 |

Number TICs found: \_\_0

(ug/L or ug/Kg) <u>UG/L</u>

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

## 49/864

Client No.

|                                               |                                       | MW-123          |                      |
|-----------------------------------------------|---------------------------------------|-----------------|----------------------|
| b Name: <u>STL Buffalo</u> Contract:          | · · · · · · · · · · · · · · · · · · · | ·               |                      |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     | SDG No.:                              |                 |                      |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID:                        | <u>A5B76611</u> | <u> </u>             |
| Sample wt/vol:5.00 (g/mL) ML                  | Lab File ID:                          | <u>08363.RR</u> |                      |
| Level: (low/med) <u>LOW</u>                   | Date Samp/Recv:                       | 10/18/200       | <u>)5 10/20/2005</u> |
| % Moisture: not dec Heated Purge: N           | Date Analyzed:                        | 10/22/200       | <u>)5</u>            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor:                      | 1.00            |                      |
| Soil Extract Volume: (uL)                     | Soil Aliquot Vol                      | ume:            | (uL)                 |
|                                               | CONCENTRATION UNITS:                  |                 |                      |
|                                               | (ug/L or ug/Kg)                       |                 | Q                    |
|                                               |                                       |                 |                      |
| 74-87-3Chloromethane                          |                                       |                 | U                    |
| 74-83-9Bromomethane                           |                                       |                 | υ                    |
| 75-01-4Vinyl chloride                         |                                       | 1               | J                    |
| 75-00-3Chloroethane                           |                                       | 10              | υ.                   |
| 75-09-2Methylene chloride                     |                                       | 10              | ט                    |
| 67-64-1Acetone                                |                                       | 10              | ប                    |
| 75-15-0Carbon Disulfide                       |                                       | 10              | υ                    |
| 75-35-41,1-Dichloroethene                     |                                       | 52              |                      |
| 75-34-31,1-Dichloroethane                     |                                       |                 | ЕJ                   |
| 67-66-3Chloroform                             |                                       | 10              | ט                    |
| 107-06-21,2-Dichloroethane                    |                                       | 10              | υ                    |
| 78-93-32-Butanone                             |                                       | 10              | ט י                  |
| 71-55-61,1,1-Trichloroethane                  |                                       | 2               | J                    |
| 56-23-5Carbon Tetrachloride                   |                                       | 10              | υ.                   |
| 75-27-4Bromodichloromethane                   |                                       | 10              | υ                    |
| 78-87-51,2-Dichloropropane                    |                                       | 10              | U                    |
| 10061-01-5cis-1,3-Dichloropropene             |                                       | 10              | υ                    |
| 79-01-6Trichloroethene                        |                                       | 34              |                      |
| 124-48-1Dibromochloromethane                  |                                       |                 | U                    |
| 79-00-51,1,2-Trichloroethane                  |                                       | 10              | υ                    |
| 71-43-2Benzene                                |                                       | 10              | υ                    |
| 10061-02-6trans-1,3-Dichloropropene           |                                       | 10              | υ                    |
| 75-25-2Bromoform                              |                                       | 10              | U                    |
| 108-10-14-Methyl-2-pentanone                  |                                       | 10              | υ                    |
| 591-78-62-Hexanone                            |                                       | 10              | υ                    |
| 127-18-4Tetrachloroethene                     |                                       | 140             |                      |
| 108-88-3Toluene                               |                                       | 10              | υ                    |
| 79-34-51,1,2,2-Tetrachloroethane              |                                       | 10              | υ                    |
| 108-90-7Chlorobenzene                         |                                       | 10              | υ                    |
| 100-41-4Ethylbenzene                          |                                       | 10              | U                    |
| 100-42-5Styrene                               |                                       | 10              | υ                    |
| 1330-20-7Total Xylenes                        |                                       | 10              | U                    |
| 75-71-8Dichlorodifluoromethane                |                                       | 10              | UR                   |
| 75-69-4Trichlorofluoromethane                 |                                       | 10              | υ                    |
| -                                             |                                       |                 |                      |

FORM I - GC/MS VOA

## 50/864

Client No.

----

|                                                   | MW-123                                              |
|---------------------------------------------------|-----------------------------------------------------|
| ab Name: <u>STL Buffalo</u> Contract:             |                                                     |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:         | SDG No.:                                            |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID: A5B76611                             |
| Sample wt/vol: (g/mL) ML                          | Lab File ID: <u>Q8363.RR</u>                        |
| Level: (low/med) <u>LOW</u>                       | Date Samp/Recv: <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed: <u>10/22/2005</u>                    |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor: <u>1.00</u>                        |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volume: (uL)                           |
| CAS NO. COMPOUND                                  | CONCENTRATION UNITS:<br>(ug/Lorug/Kg) <u>UG/L</u> Q |
|                                                   |                                                     |

|                                              | the second s |   |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------|---|
| 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane | 10                                                                                                             | υ |
| 156-60-5trans-1,2-Dichloroethene             | 10                                                                                                             | U |
| 1634-04-4Methyl-t-Butyl Ether (MIBE)         | 10                                                                                                             | U |
| 156-59-2cis-1,2-Dichloroethene               | 13                                                                                                             |   |
| 110-82-7Cyclohexane                          | 10                                                                                                             | U |
| 108-87-2Methylcyclohexane                    | 10                                                                                                             | ប |
| 106-93-41,2-Dibromoethane                    | 10                                                                                                             | U |
| 98-82-8Isopropylbenzene                      | 10                                                                                                             | ប |
| 541-73-11,3-Dichlorobenzene                  | 10                                                                                                             | ប |
| 106-46-71,4-Dichlorobenzene                  | 10                                                                                                             | U |
| 95-50-11,2-Dichlorobenzene                   | 10                                                                                                             | U |
| 96-12-81,2-Dibromo-3-chloropropane           | 10                                                                                                             | U |
| 120-82-11,2,4-Trichlorobenzene               | 10                                                                                                             | U |
| 79-20-9Methyl acetate                        | 10                                                                                                             | U |
|                                              |                                                                                                                |   |

## FORM I - GC/MS VOA

## DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

## 51/864

Client No.

| b Name: <u>STL Buffalo</u>               | Contract.   |                                       | MW-123                              |
|------------------------------------------|-------------|---------------------------------------|-------------------------------------|
|                                          |             | -                                     |                                     |
| Lab Code: <u>RECNY</u> Case No.:         | SAS NO.:    | SDG No.:                              |                                     |
| Matrix: (soil/water) <u>WATER</u>        |             | Lab Sample ID:                        | A5B76611                            |
| Sample wt/vol: <u>5.00</u> (g/mL)        | ) <u>ML</u> | Lab File ID:                          | <u>08363.RR</u>                     |
| Level: (low/med) <u>LOW</u>              |             | Date Samp/Recv:                       | <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec.                     |             | Date Analyzed:                        | 10/22/2005                          |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> | (mn)        | Dilution Factor                       | :1.00                               |
| Soil Extract Volume: (uL)                |             | Soil Aliquot Vo                       | lume: (uL)                          |
| Number TICs found: <u>0</u>              |             | CONCENTRATION UNI:<br>(ug/L or ug/Kg) |                                     |

| CAS NO. | Compound Name | RT Est. Conc. |  | Q |
|---------|---------------|---------------|--|---|
|         |               |               |  |   |

52/864

Client No.

-

| ab Name: <u>9</u>  | STL Buffalo         | Cor                           | tract:        | · · ·                         |         | MW-123 D  | ·····          |        |
|--------------------|---------------------|-------------------------------|---------------|-------------------------------|---------|-----------|----------------|--------|
| Lab Code: <u>F</u> | RECNY Case          | e No.:                        | SAS No.:      | SDG No.:                      |         |           |                |        |
| Matrix: (so        | oil/water) <u>W</u> | ATER                          |               | Lab Sample                    | D:      | A5B76611I | L              |        |
| Sample wt/w        | vol:                | 5.00 (g/mL) ML                |               | Lab File I                    | D:      | Q8380.RR  |                |        |
| Level: (1          | low/med) <u>LC</u>  | W                             |               | Date Samp/                    | Recv:   | 10/18/200 | <u>)5 10/2</u> | 0/2005 |
| % Moisture:        | : not dec           | Heated Pu                     | rge: <u>N</u> | Date Analy                    | zed:    | 10/24/200 | <u>)5</u>      |        |
| GC Column:         | DB-624              | ID: <u>0.25</u> (mm)          |               | Dilution F                    | actor:  | 2.00      |                |        |
| Soil Extrac        | ct Volume:          | (uL)                          |               | Soil Aliqu                    | ot Volu | me:       | (u             | L)     |
| CA                 | AS NO.              | COMPOUND                      |               | ONCENTRATION<br>(ug/L or ug/K |         | G/L       | Q              | · · ·  |
| ,                  |                     | Chloromethane<br>Bromomethane |               |                               |         |           | ប<br>ប         |        |

| $74-83-9-\dots$ -Bronomethane       20       U $75-00-4-\dots$ -Vinyl chloride       20       U $75-00-3-\dots$ -Chloroethane       20       U $75-09-2-\dots$ -Methylene chloride       20       U $67-64-1-\dots$ -Acetone       20       U $75-35-0-\dots$ -Carbon Disulfide       20       U $75-35-4-\dots$ -1, 1-Dichloroethane       64       D $75-34-3-\dots-1, 1-Dichloroethane       20       U         107-06-2-\dots-1, 2-Dichloroethane       20       U         107-06-2-\dots-2-Butanone       20       U         75-34-3-\dots-2-Butanone       20       U         75-27-4-\dots-Dirohloroethane       20       U         75-27-4-\dots-Dichloropropane       20       U         75-27-4-\dots-Dichloropropane       20       U         79-01-6-\dots-Trichloroethane       20       U         79-01-6-\dots-Trichloroethane       20       U         79-00-5-\dots-1, 2-Dichloropropane       20       U         10061-02-6-\dots-Trichloroethane       20       U         79-00-5-\dots-1, 1, 2-Trichloroethane       20       U         79-00-5-\dots-1, 1, 2-Trichloropropane       20       U         100-10-2-6-\dots-Trichloroethane       20       <$ | 74-87-3Chloromethane                | 20  | υ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----|---|
| 75-00-3Chloroethane       20       U $75-09-2Methylene chloride       20       U         67-64-1Acetone       20       U         75-15-0Carbon Disulfide       20       U         75-35-4Carbon Disulfide       20       U         75-35-4Carbon Disulfide       20       U         75-34-3Chloroethane       64       D         75-34-3Chloroform       20       U         107-06-2Chloroethane       20       U         78-93-32-Butanone       20       U         71-55-61, 1, 1-Trichloroethane       6       DJ         75-27-4Bromodichloromethane       20       U         78-87-51, 2-Dichloropropane       20       U         10061-01-5cis-1, 3-Dichloropropane       20       U         10061-01-5Cis-1, 3-Dichloropropene       20       U         79-00-5$                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | 20  | υ |
| $75-09-2-\dots$ -Methylene chloride       20       U $67-64-1-\dots$ -Acetone       20       U $75-15-0-\dots$ -Carbon Disulfide       20       U $75-35-4-\dots$ -1, 1-Dichloroethene       64       D $75-34-3-\dots$ -1, 1-Dichloroethane       260       D $67-66-3-\dots$ -1, 2-Dichloroethane       20       U $107-06-2-\dots$ -1, 2-Dichloroethane       20       U $75-34-3-\dots$ -2-Butanone       20       U $71-55-6-\dots$ -1, 1, 1-Trichloroethane       20       U $75-27-4-\dots$ -Bromodichloromethane       20       U $75-27-4-\dots$ -Bromodichloromethane       20       U $79-01-5-\dots$ -Carbon Tetrachloride       20       U $79-01-6-\dots$ -Trichloropropene       20       U $10061-01-5-\dots$ -Cir, 1, 2-Dichloropropene       20       U $10061-02-6-\dots$ -Trichloroethane       20       U $1-4-48-1-\dots$ -Dibronochloromethane       20       U $10061-02-6-\dots$ -trishoropropene       20       U $100-10-5-\dots$ -cir, 3-Dichloropropene       20       U $100-10-1-\dots$ -thenyl 2-pentanone       20       U $100-10-1-\dots$ -thenyl 2-pentanone       20       U                                                              |                                     | 20  | υ |
| 67-64-1Acctone       20       U $75-15-0Carbon Disulfide$ 20       U $75-35-41, 1-Dichloroethene$ 64       D $75-34-31, 1-Dichloroethane$ 260       D $67-66-3Chloroform$ 20       U $107-06-21, 2-Dichloroethane$ 20       U $107-06-21, 2-Dichloroethane$ 20       U $75-34-3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | 20  |   |
| 75-15-0Carbon Disulfide       20       U $75-35-41, 1-Dichloroethene$ 64       D $75-34-31, 1-Dichloroethane$ 260       D $67-66-3Chloroform$ 20       U $107-06-21, 2-Dichloroethane$ 20       U $78-93-32$ -Butanone       20       U $71-55-61, 1, 1-Trichloroethane       6       DJ         56-23-5Carbon Tetrachloride       20       U         78-87-51, 2-Dichloropropane       20       U         78-87-51, 2-Dichloropropane       20       U         78-87-51, 2-Dichloropropane       20       U         79-01-6Trichloroethane       20       U         79-01-6Trichloroethane       20       U         79-00-5Trichloroethane       20       U         79-00-5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75-09-2Methylene chloride           | 20  | U |
| 75-35-41, 1-Dichloroethene       64       D $75-34-31, 1-Dichloroethane$ 260       D $67-66-31, 1-Dichloroethane$ 20       U $107-06-21, 2-Dichloroethane$ 20       U $78-93-32-Butanone$ 20       U $71-55-61, 1, 1-Trichloroethane$ 6       DJ $56-23-5Carbon Tetrachloride$ 20       U $78-87-5Carbon Tetrachloroethane$ 20       U $78-87-5Carbon Tetrachloropropane       20       U         10061-01-5Cis-1, 3-Dichloropropane       20       U         10061-01-5Trichloroethane       20       U         79-01-6Trichloroethane       20       U         124-48-1Dibromochloromethane       20       U         17-43-2Benzene       20       U         10061-02-6Trinchloroethane       20       U         10051-02-6$                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     | 20  | υ |
| 75-34-31, 1-Dichloroethane       260       D $67-66-3Chloroform$ 20       U $107-06-21, 2-Dichloroethane$ 20       U $78-93-32-Butanone$ 20       U $71-55-61, 1, 1-Trichloroethane$ 6       DJ $56-23-5Carbon Tetrachloride$ 20       U $75-27-4Bromodichloromethane$ 20       U $75-27-4Bromodichloropropane       20       U         75-27-4Bromodichloropropane       20       U         75-27-4Bromodichloropropane       20       U         75-27-4Bromodichloropropane       20       U         75-27-4Bromodichloropropane       20       U         10661-01-5Cis-1, 3-Dichloropropane       20       U         10661-01-5Trichloroethane       20       U         79-00-51, 1, 2-Trichloroethane       20       U         71-43-2Benzene       20       U         10061-02-6trans-1, 3-Dichloropropene       20       U         75-25-2Bromoform       20       U         108-10-14-Methyl-2-pentanone       20       U         108-10-14-Methyl-2-pentanone       20       U$                                                                                                                                                                                        |                                     | 20  | U |
| 67-66-3Chloroform       20       U $107-06-21, 2-Dichloroethane$ 20       U $78-93-32$ -Butanone       20       U $75-27-42$ -Butanone       20       U $75-27-42$ -Bromodichloroethane       20       U $10061-01-5cis-1, 3-Dichloropropane       20       U         10061-01-5cis-1, 3-Dichloropropene       20       U         79-00-51, 1, 2-Trichloroethane       20       U         10061-02-6trans-1, 3-Dichloropropene       20       U         10061-02-6trans-1, 3-Dichloropropene       20       U         108-10-14-Methyl-2-pentanone       20       U         108-10-14-Methyl-2-pentanone       20       U         108-88-3Toluene       20       U         79-34-5$                                                                                                                                                                                                                                                        |                                     | 64  | D |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | 260 | D |
| 78-93-32-Butanone       20       U         71-55-61,1,1-Trichloroethane       6       DJ         56-23-5Carbon Tetrachloride       20       U         75-27-4Bromodichloromethane       20       U         78-87-51,2-Dichloropropane       20       U         10061-01-5cis-1,3-Dichloropropane       20       U         10061-01-5cis-1,3-Dichloropropane       20       U         79-01-6Trichloroethane       20       U         79-00-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | 20  | ប |
| 71-55-61, 1, 1-Trichloroethane       6       DJ $56-23-5Carbon Tetrachloride$ 20       U $75-27-4Bromodichloropropane$ 20       U $10061-01-5cis-1, 3-Dichloropropane$ 20       U $10061-01-5cis-1, 3-Dichloropropane       20       U         10061-01-5cis-1, 3-Dichloropropane       20       U         124-48-1Dibromochloromethane       20       U         79-00-51, 1, 2-Trichloroethane       20       U         79-00-51, 1, 2-Trichloroethane       20       U         79-00-51, 1, 2-Trichloroethane       20       U         10061-02-6Trans-1, 3-Dichloropropene       20       U         10061-02-6trans-1, 3-Dichloropropene       20       U         10061-02-6trans-1, 3-Dichloropropene       20       U         108-10-14-Methyl-2-pentanone       20       U         108-88-370luene       20       U         108-88-370luene       20       U         100-41-4Ethylbenzene       20       U         100-42-5Styrene       20       U         130-20-7$                                                                                                                                                                                                    |                                     | 20  | υ |
| 56-23-5Carbon Tetrachloride       20       U         75-27-4Bromodichloromethane       20       U         78-87-51, 2-Dichloropropane       20       U         10061-01-5cis-1, 3-Dichloropropane       20       U         10061-01-5cis-1, 3-Dichloropropene       20       U         79-01-6Trichloroethene       56       D         124-48-1Dibromochloromethane       20       U         79-00-51, 1, 2-Trichloroethane       20       U         71-43-2Benzene       20       U         10061-02-6trans-1, 3-Dichloropropene       20       U         108-10-14-Methyl-2-pentanone       20       U         108-10-14-Methyl-2-pentanone       20       U         127-18-4Tetrachloroethene       20       U         108-88-3Toluene       20       U         108-90-7Chlorobenzene       20       U         100-41-4Ethylbenzene       20       U         100-42-5Styrene       20       U         130-20-7Total Xylenes       20       U         75-71-8Dichlorodifluoromethane       20       U                                                                                                                                                                        |                                     | 20  | ប |
| 75-27-4Bromodichloromethane       20       U         78-87-51,2-Dichloropropane       20       U         10061-01-5cis-1,3-Dichloropropene       20       U         79-01-6Trichloroethene       56       D         124-48-1Dibromochloromethane       20       U         79-00-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | 6   |   |
| 78-87-51,2-Dichloropropane       20       U         10061-01-5cis-1,3-Dichloropropene       20       U         79-01-6Trichloroethene       56       D         124-48-1Dibromochloromethane       20       U         79-00-51,1,2-Trichloroethane       20       U         71-43-2Benzene       20       U         10061-02-6trans-1,3-Dichloropropene       20       U         10061-02-6trans-1,3-Dichloropropene       20       U         108-10-14-Methyl-2-pentanone       20       U         108-10-14-Methyl-2-pentanone       20       U         108-10-1Bromoform       20       U         108-88-3Detrachloroethene       20       U         108-88-3Toluene       20       U         108-90-7Chlorobenzene       20       U         100-41-4Ethylbenzene       20       U         130-20-7Total Xylenes       20       U         1330-20-7Dichlorodifluoromethane <td></td> <td></td> <td>U</td>                                                                                        |                                     |     | U |
| 10061-01-5cis-1, 3-Dichloropropene       20       U         79-01-6Trichloroethene       56       D         124-48-1Dibromochloromethane       20       U         79-00-51, 1, 2-Trichloroethane       20       U         71-43-2Benzene       20       U         10061-02-6trans-1, 3-Dichloropropene       20       U         108-10-1Benzene       20       U         108-10-1Bromoform       20       U         108-10-1Bromoform       20       U         108-10-1Benzene       20       U         108-10-1Benzene       20       U         108-10-1Benzene       20       U         108-10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | 20  | U |
| 79-01-6Trichloroethene       56       D         124-48-1Dibromochloromethane       20       U         79-00-51,1,2-Trichloroethane       20       U         71-43-2Benzene       20       U         10061-02-6trans-1,3-Dichloropropene       20       U         75-25-2Bromoform       20       U         108-10-14-Methyl-2-pentanone       20       U         591-78-62-Hexanone       20       U         127-18-4Tetrachloroethene       20       U         108-88-3Toluene       20       U         108-90-7Chlorobenzene       20       U         100-41-4Ethylbenzene       20       U         100-42-5Styrene       20       U         130-20-7Total Xylenes       20       U         75-71-8Dichlorodifluoromethane       20       U                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78-87-51,2-Dichloropropane          | 20  |   |
| 124-48-1Dibromochloromethane       20       U         79-00-51,1,2-Trichloroethane       20       U         71-43-2Benzene       20       U         10061-02-6trans-1,3-Dichloropropene       20       U         108-10-1Bromoform       20       U         108-10-14-Methyl-2-pentanone       20       U         591-78-62-Hexanone       20       U         108-88-3Tetrachloroethene       20       U         108-90-7Chlorobenzene       20       U         100-41-4Ethylbenzene       20       U         100-42-5Styrene       20       U         130-20-7Total Xylenes       20       U         75-71-8Dichlorodifluoromethane       20       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10061-01-5cis-1,3-Dichloropropene   |     | ប |
| 79-00-51,1,2-Trichloroethane       20       U         71-43-2Benzene       20       U         10061-02-6trans-1,3-Dichloropropene       20       U         75-25-2Bromoform       20       U         108-10-14-Methyl-2-pentanone       20       U         591-78-62-Hexanone       20       U         127-18-4Tetrachloroethene       20       U         108-88-3Toluene       20       U         79-34-5Chlorobenzene       20       U         100-41-4Ethylbenzene       20       U         100-42-5Styrene       20       U         130-20-7Total Xylenes       20       U         75-71-8Dichlorodifluoromethane       20       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     | 56  | - |
| 71-43-2Benzene       20       U         10061-02-6trans-1,3-Dichloropropene       20       U         75-25-2Bromoform       20       U         108-10-14-Methyl-2-pentanone       20       U         591-78-62-Hexanone       20       U         127-18-4Tetrachloroethene       20       U         108-88-3Toluene       20       U         79-34-5Chlorobenzene       20       U         108-90-7Chlorobenzene       20       U         100-41-4Ethylbenzene       20       U         100-42-5Styrene       20       U         130-20-7Total Xylenes       20       U         75-71-8Dichlorodifluoromethane       20       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |     | U |
| 10061-02-6trans-1,3-Dichloropropene       20       U         75-25-2Bromoform       20       U         108-10-14-Methyl-2-pentanone       20       U         591-78-62-Hexanone       20       U         127-18-4Tetrachloroethene       20       U         108-88-3Toluene       20       U         79-34-5Chlorobenzene       20       U         108-90-7Chlorobenzene       20       U         100-41-4Ethylbenzene       20       U         100-42-5Styrene       20       U         1330-20-7Total Xylenes       20       U         75-71-8Dichlorodifluoromethane       20       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 20  | U |
| 75-25-2Bromoform       20       U         108-10-14-Methyl-2-pentanone       20       U         591-78-62-Hexanone       20       U         127-18-4Tetrachloroethene       230       D         108-88-3Toluene       20       U         79-34-51,1,2,2-Tetrachloroethane       20       U         108-90-7Chlorobenzene       20       U         100-41-4Ethylbenzene       20       U         100-42-5Styrene       20       U         1330-20-7Total Xylenes       20       U         75-71-8Dichlorodifluoromethane       20       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |     | U |
| 108-10-14-Methyl-2-pentanone       20       U         591-78-62-Hexanone       20       U         127-18-4Tetrachloroethene       230       D         108-88-3Toluene       20       U         79-34-51,1,2,2-Tetrachloroethane       20       U         108-90-7Chlorobenzene       20       U         100-41-4Ethylbenzene       20       U         100-42-5Styrene       20       U         1330-20-7Total Xylenes       20       U         75-71-8Dichlorodifluoromethane       20       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10061-02-6trans-1,3-Dichloropropene | 20  | - |
| 591-78-62-Hexanone       20       U         127-18-4Tetrachloroethene       230       D         108-88-3Toluene       20       U         79-34-5Toluene       20       U         108-90-7Chlorobenzene       20       U         100-41-4Ethylbenzene       20       U         100-42-5Styrene       20       U         1330-20-7Total Xylenes       20       U         75-71-8Dichlorodifluoromethane       20       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |     | υ |
| 127-18-4Tetrachloroethene       230       D         108-88-3Toluene       20       U         79-34-51,1,2,2-Tetrachloroethane       20       U         108-90-7Chlorobenzene       20       U         100-41-4Ethylbenzene       20       U         100-42-5Styrene       20       U         1330-20-7Total Xylenes       20       U         75-71-8Dichlorodifluoromethane       20       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108-10-14-Methyl-2-pentanone        | 20  | U |
| 108-88-3Toluene       20       U         79-34-51,1,2,2-Tetrachloroethane       20       U         108-90-7Chlorobenzene       20       U         100-41-4Ethylbenzene       20       U         100-42-5Styrene       20       U         1330-20-7Total Xylenes       20       U         75-71-8Dichlorodifluoromethane       20       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 20  | U |
| 79-34-51,1,2,2-Tetrachloroethane       20       U         108-90-7Chlorobenzene       20       U         100-41-4Ethylbenzene       20       U         100-42-5Styrene       20       U         1330-20-7Total Xylenes       20       U         75-71-8Dichlorodifluoromethane       20       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 230 | D |
| 108-90-7Chlorobenzene       20       U         100-41-4Ethylbenzene       20       U         100-42-5Styrene       20       U         1330-20-7Total Xylenes       20       U         75-71-8Dichlorodifluoromethane       20       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | 20  | U |
| 100-41-4Ethylbenzene       20       U         100-42-5Styrene       20       U         1330-20-7Total Xylenes       20       U         75-71-8Dichlorodifluoromethane       20       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     | 20  | U |
| 100-42-5Styrene       20       U         1330-20-7Total Xylenes       20       U         75-71-8Dichlorodifluoromethane       20       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 20  | U |
| 1330-20-7Total Xylenes20U75-71-8Dichlorodifluoromethane20U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |     | - |
| 75-71-8Dichlorodifluoromethane 20 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |     | U |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1330-20-7Total Xylenes              |     | U |
| 75-69-4Trichlorofluoromethane 20 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | 20  | υ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75-69-4Trichlorofluoromethane       | 20  | U |

## 53/864

20

20

20

20

20

20

20

20

20

IJ

ប ប

U

U

U

U

U

U

Client No.

|                                                                                                                                                                          |                                      | MW-123                     | 3 Di                  |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------|-----------------------|---------|
| b Name: <u>STL Buffalo</u> Contract:                                                                                                                                     |                                      | , <b>L</b>                 |                       |         |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:                                                                                                                                | SDG No.:                             |                            |                       |         |
| Matrix: (soil/water) <u>WATER</u>                                                                                                                                        | Lab Sample ID                        | : <u>A5B7661</u>           | LIDL                  |         |
| Sample wt/vol: (g/mL) ML                                                                                                                                                 | Lab File ID:                         | <u>Q8380.</u>              | R                     |         |
| Level: (low/med) <u>LOW</u>                                                                                                                                              | Date Samp/Rec                        | v: <u>10/18/</u> 2         | 2005 10/              | 20/2005 |
| % Moisture: not dec Heated Purge: $\underline{N}$                                                                                                                        | Date Analyzed                        | : <u>10/24/2</u>           | 2005                  |         |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)                                                                                                                            | Dilution Fact                        | or:2.(                     | 00                    |         |
| Soil Extract Volume: (uL)                                                                                                                                                | Soil Aliquot                         | Volume:                    | (                     | uL)     |
| CAS NO. COMPOUND                                                                                                                                                         | CONCENTRATION UNI<br>(ug/L or ug/Kg) |                            | Q                     | · · ·   |
| 76-13-11,1,2-Trichloro-1,2,2-triflu<br>156-60-5trans-1,2-Dichloroethene<br>1634-04-4Methyl-t-Butyl Ether (MIBE)<br>156-59-2cis-1,2-Dichloroethene<br>110-82-7Cyclohexane |                                      | 20<br>20<br>20<br>18<br>20 | ប<br>ប<br>ប<br>ប<br>ប |         |

108-87-2----Methylcyclohexane

106-93-4----1,2-Dibromoethane

541-73-1----1, 3-Dichlorobenzene

106-46-7----1,4-Dichlorobenzene

95-50-1-----1, 2-Dichlorobenzene

120-82-1----1,2,4-Trichlorobenzene

96-12-8-----1, 2-Dibromo-3-chloropropane

98-82-8-----Isopropylbenzene

79-20-9-----Methyl acetate

FORM I - GC/MS VOA

## DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

## 54/864

Client No.

|                                               | MN-123 DL                                           |
|-----------------------------------------------|-----------------------------------------------------|
| ab Name: <u>STL Buffalo</u> Contract:         |                                                     |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     | SDG No.:                                            |
| Matrix: (soil/water) WATER                    | Lab Sample ID: <u>A5B76611DL</u>                    |
| Sample wt/vol: $5.00$ (g/mL) <u>ML</u>        | Lab File ID: <u>Q8380.RR</u>                        |
| Level: (low/med) LOW                          | Date Samp/Recv: <u>10/18/2005</u> <u>10/20/2005</u> |
| * Moisture: not dec.                          | Date Analyzed: <u>10/24/2005</u>                    |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor: 2.00                               |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volume: (uL)                           |
| Number TICs found: <u>0</u>                   | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> |

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

## 55/864

Client No.

-

-

| h Nama, OTT Duffalo                           |                                       | SW-1             | -        |        |
|-----------------------------------------------|---------------------------------------|------------------|----------|--------|
| b Name: <u>STL Buffalo</u> Contract:          | · · · · ·                             | L                |          |        |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     | SDG No.:                              |                  |          |        |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID:                        | A5B7661          | 2        |        |
| Sample wt/vol: (g/mL) ML                      | Lab File ID:                          | <u>Q8364.R</u>   | <u>R</u> |        |
| Level: (low/med) LOW                          | Date Samp/Recv                        | : <u>10/18/2</u> | 005 10/2 | 0/2005 |
| % Moisture: not dec Heated Purge: N           | Date Analyzed:                        | 10/22/20         | 005      |        |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor                       | c: <u>1.0</u>    | <u>0</u> |        |
| Soil Extract Volume: (uL)                     | Soil Aliquot Vo                       | olume:           | (u       | L)     |
|                                               | ONCENTRATION UNITS<br>(ug/L or ug/Kg) |                  | 0        |        |
|                                               |                                       |                  |          |        |
| 74-87-3Chloromethane                          |                                       | 10               | υ        |        |
| 174-83-9Bromomethane                          |                                       | 10               | υ        |        |
| 75-01-4Vinyl chloride                         |                                       |                  | U        |        |
| 75-00-3Chloroethane                           |                                       | 10               | U        |        |
| 75-00-3Methylene chloride                     |                                       | 10               | υ        |        |
|                                               |                                       | 12               |          |        |
| 75-15-0Carbon Disulfide                       |                                       | 10               | U        |        |
| 175-35-41,1-Dichloroethene                    |                                       | 1                | J        |        |
| 75-34-31,1-Dichloroethane                     |                                       | 8                | J        |        |
| 67-66-3Chloroform                             |                                       | 10               | U        |        |
| 107-06-21,2-Dichloroethane                    |                                       | 10               | U        |        |
| 178-93-32-Butanone                            |                                       | 10               | U        |        |
| 71-55-61,1,1-Trichloroethane                  |                                       | 10               | U        |        |
| 56-23-5Carbon Tetrachloride                   |                                       | 10               | U        |        |
| 75-27-4Bromodichloromethane                   |                                       | 10               | U        |        |
| 78-87-51,2-Dichloropropane                    |                                       | 10               | U        |        |
| 10061-01-5cis-1,3-Dichloropropene             |                                       | 10               | U        |        |
| 79-01-6Trichloroethene                        |                                       | 10               | U        |        |
| 124-48-1Dibromochloromethane                  |                                       | 10               | U        |        |
| 79-00-51,1,2-Trichloroethane                  |                                       | 10               | U        |        |
| 71-43-2Benzene                                |                                       | 10               | U        |        |
| 10061-02-6trans-1,3-Dichloropropene           |                                       | 10               | U        |        |
| 75-25-2Bromoform                              |                                       | 10               | U        |        |
| 108-10-14-Methyl-2-pentanone                  |                                       | 10               | U        |        |
| 591-78-62-Hexanone                            |                                       | 10               | U        |        |
| 127-18-4Tetrachloroethene                     |                                       | 4                | J        |        |
| 108-88-3Toluene                               |                                       | 10               | U        |        |
| 79-34-51,1,2,2-Tetrachloroethane              |                                       | 10               | U        |        |
| 108-90-7Chlorobenzene                         |                                       | 10               | U        |        |
| 100-41-4Ethylbenzene                          |                                       | 10               | U        |        |
| 100-42-5Styrene                               |                                       | .10              | U        |        |
| 1330-20-7Total Xylenes                        |                                       | 10               | U        |        |
| 75-71-8Dichlorodifluoromethane                |                                       | 10               | UR       |        |
| 75-69-4Trichlorofluoromethane                 |                                       | 10               | υ        |        |
|                                               | · .                                   | 1                |          |        |

#### 56/864

10

10

10

10

10

10

10

10

10

10

10

U

U

U

U

U

U

U

U

U

U

U

Client No.

| b Name: <u>STL Buffalo</u> Contract:                                                                           | SW-1                                                  |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Lab Code: <u>RECNY</u> Case No.: SAS No.:                                                                      | SDG No.:                                              |
| Matrix: (soil/water) <u>WATER</u>                                                                              | Lab Sample ID: A5B76612                               |
| Sample wt/vol:5.00 (g/mL) ML                                                                                   | Lab File ID: <u>Q8364.RR</u>                          |
| Level: (low/med) <u>LOW</u>                                                                                    | Date Samp/Recv: <u>10/18/2005</u> <u>10/20/2005</u>   |
| % Moisture: not dec Heated Purge: $\underline{N}$                                                              | Date Analyzed: <u>10/22/2005</u>                      |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)                                                                  | Dilution Factor: <u>1.00</u>                          |
| Soil Extract Volume: (uL)                                                                                      | Soil Aliquot Volume: (uL)                             |
| CAS NO. COMPOUND                                                                                               | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> Q |
| 76-13-11,1,2-Trichloro-1,2,2-trifl<br>156-60-5trans-1,2-Dichloroethene<br>1634-04-4Methyl-t-Butyl Ether (MIBE) | 10 U                                                  |

156-59-2----cis-1,2-Dichloroethene

110-82-7----Cyclohexane

108-87-2----Methylcyclohexane

106-93-4----1,2-Dibromoethane

541-73-1----1,3-Dichlorobenzene

106-46-7----1,4-Dichlorobenzene

95-50-1-----1,2-Dichlorobenzene

120-82-1----1,2,4-Trichlorobenzene

96-12-8-----1,2-Dibromo-3-chloropropane

98-82-8-----Isopropylbenzene

79-20-9-----Methyl acetate

## DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

57/864

Client No.

|                                               | SW-1                                                |
|-----------------------------------------------|-----------------------------------------------------|
| b Name: <u>SIL Buffalo</u> Contract:          |                                                     |
| Lab Code: RECNY Case No.: SAS No.:            | SDG No.:                                            |
| Matrix: (soil/water) WATER                    | Lab Sample ID: <u>A5B76612</u>                      |
| Sample wt/vol: (g/mL) ML                      | Lab File ID: <u>Q8364.RR</u>                        |
| Level: (low/med) <u>LOW</u>                   | Date Samp/Recv: <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec.                          | Date Analyzed: <u>10/22/2005</u>                    |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor:1.00                                |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volume: (uL)                           |
| Number TICs found: <u>0</u>                   | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> |

| CAS NO. | Compound Name | RT | Est. Conc. | Q |  |
|---------|---------------|----|------------|---|--|
|         |               |    |            |   |  |

58/864

10

10

10

10

10

10

10

10

10

10

10

10

10

10

U

U

U

U

U

U

U

U U

U

U

U UR

U

|         |                     |                                                                                                                 |     | •                          |           | Clie    | nt No. |
|---------|---------------------|-----------------------------------------------------------------------------------------------------------------|-----|----------------------------|-----------|---------|--------|
| _       |                     |                                                                                                                 | · . |                            | SW-2      |         | ]      |
| ib Nam  | e: <u>STL Buffa</u> | lo Contract:                                                                                                    |     |                            |           |         |        |
| Lab Cod | e: <u>RECNY</u>     | Case No.: SAS No.:                                                                                              | S   | DG No.:                    | <b></b> . |         |        |
| Matrix: | (soil/water         | ) <u>WATER</u>                                                                                                  | La  | b Sample ID:               | A5B76613  |         |        |
| Sample  | wt/vol:             | <u>5.00</u> (g/mL) <u>ML</u>                                                                                    | La  | b File ID:                 | Q8365.RR  |         |        |
| Level:  | (low/med)           | LOW                                                                                                             | Dat | te Samp/Recv:              | 10/18/20  | 05 10/2 | )/2005 |
| % Moist | ure: not dec        | Heated Purge: <u>N</u>                                                                                          | Dat | te Analyzed:               | 10/22/20  | 05      |        |
| GC Colu | mn: <u>DB-624</u>   | ID: (mm)                                                                                                        | Di  | lution Factor              | :1.00     |         |        |
| Soil Ex | tract Volume        | : (uL)                                                                                                          | So  | il Aliquot Vo              | lume:     | (u      | L)     |
|         | CAS NO.             | COMPOUND                                                                                                        |     | TRATION UNITS<br>or ug/Kg) |           | Q       |        |
|         | · [                 | til and the second s |     |                            |           | 11      |        |
|         |                     | Chloromethane                                                                                                   |     |                            | 10        | U       |        |
|         | 74-83-9             | Bromomethane                                                                                                    |     |                            | 10        | U       |        |
|         | 75-01-4             | Vinyl chloride                                                                                                  |     |                            | 10        | U       |        |
|         | 75-00-3             | Chloroethane                                                                                                    |     |                            | 10        | U       |        |
|         | 75-09-2             | Methylene chloride                                                                                              |     |                            | 10        | U       |        |
|         | 67-64-1             | Acetone                                                                                                         |     |                            | 10        | U       |        |
|         | 75-15-0             | Carbon Disulfide                                                                                                |     |                            | 10        | U       |        |
| 1       | 75-35-4             | 1,1-Dichloroethene                                                                                              |     |                            | 10        | U       |        |
|         | 75-34-3             | 1,1-Dichloroethane                                                                                              | ·   |                            | 4         | J       |        |
|         | 67-66-3             | Chloroform                                                                                                      |     |                            | 10        | U       |        |
|         | 107-06-2            | 1,2-Dichloroethane                                                                                              |     | · · ·                      | 10        | U       |        |
|         | 78-93-3             | 2-Butanone                                                                                                      |     |                            | 10        | U       |        |
|         | 71-55-6             | 1,1,1-Trichloroethane                                                                                           |     |                            | 10        | υ       |        |
|         | 150-23-5            | Carbon Tetrachioride                                                                                            |     | 1                          | 10        | U       |        |
|         | 75-27-4             | Bromodichloromethane                                                                                            |     |                            | 10        | U       |        |
|         | 78-87-5             | 1,2-Dichloropropane                                                                                             |     |                            | 10        | ש       |        |
|         | 10061-01-5          | cis-1,3-Dichloropropene                                                                                         |     |                            | 10        | U       |        |
|         | 79-01-6             | Trichloroethene                                                                                                 |     |                            | 10        | U       |        |
|         |                     | Dibromochloromethane                                                                                            |     |                            | 10        | U       |        |
|         | 79-00-5             | 1,1,2-Trichloroethane                                                                                           |     |                            | 10        | U       |        |

71-43-2----Benzene

75-25-2-----Bromoform

591-78-6----2-Hexanone

108-90-7----Chlorobenzene 100-41-4----Ethylbenzene

1330-20-7----Total Xylenes

108-88-3----Toluene

100-42-5----Styrene

10061-02-6----trans-1,3-Dichloropropene

79-34-5-----1,1,2,2-Tetrachloroethane

75-71-8-----Dichlorodifluoromethane

75-69-4----Trichlorofluoromethane

108-10-1----4-Methyl-2-pentanone

127-18-4----Tetrachloroethene

## 59/864

10

10

10

Ū

U U

Client No.

|                                                   |                                           | SW-2                       |            |
|---------------------------------------------------|-------------------------------------------|----------------------------|------------|
| b Name: <u>STL Buffalo</u> Contract:              | ·····                                     | L                          |            |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:         | SDG No.:                                  |                            | -<br>-     |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID:                            | A5B76613                   |            |
| Sample wt/vol: (g/mL) ML                          | Lab File ID:                              | <u>Q8365.RR</u>            | . <u> </u> |
| Level: (low/med) <u>LOW</u>                       | Date Samp/Recv:                           | <u>10/18/2005</u> <u>1</u> | 0/20/2005  |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed:                            | 10/22/2005                 |            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor:                          | 1.00                       |            |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volu                         | ume:                       | (uL)       |
| CAS NO. COMPOUND                                  | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) ! | UG/L_Q                     |            |
| 76-13-11,1,2-Trichloro-1,2,2-triflue              | methana                                   | 10 U                       |            |
| 156-60-5trans-1,2-Dichloroethene                  |                                           | 10 U                       |            |
| 1634-04-4Methyl-t-Butyl Ether (MIBE)              |                                           | 10 U                       |            |
| 156-59-2cis-1,2-Dichloroethene                    |                                           | 7 J                        |            |
| 110-82-7Cyclonexane                               |                                           | 10 U                       |            |
| 108-87-2Methylcyclohexane                         |                                           | 10 U                       |            |
| 106-93-41,2-Dibromoethane                         |                                           | 10 U                       |            |
| 98-82-8Isopropylbenzene                           |                                           | 10 U                       |            |
| 541-73-11,3-Dichlorobenzene                       |                                           | 10 U                       |            |
| 106-46-71,4-Dichlorobenzene                       |                                           | 10 U                       | .          |
| 95-50-11,2-Dichlorobenzene                        |                                           | 10 U                       | 1          |

95-50-1-----1,2-Dichlorobenzene

120-82-1-----1,2,4-Trichlorobenzene 79-20-9-----Methyl acetate

96-12-8-----1,2-Dibromo-3-chloropropane

#### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

## 60/864

Client No.

|                                               | <b>S</b> W-2                                       |           |
|-----------------------------------------------|----------------------------------------------------|-----------|
| b Name: <u>STL Buffalo</u> Contract:          |                                                    |           |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     | SDG No.:                                           |           |
| Matrix: (soil/water) WATER                    | Lab Sample ID: <u>A5B76613</u>                     |           |
| Sample wt/vol: (g/mL) ML                      | Lab File ID: <u>08365.RR</u>                       |           |
| Level: (low/med) <u>LOW</u>                   | Date Samp/Recv: <u>10/18/2005</u> <u>10/20/200</u> | <u>)5</u> |
| * Moisture: not dec.                          | Date Analyzed: <u>10/22/2005</u>                   |           |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor: <u>1.00</u>                       |           |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volume: (uL)                          |           |
| Number TICs found: 0                          | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/L       |           |

CAS NO. Compound Name RT Est. Conc. Q

## 61/864

...

-

.

÷...

|                          |                      |                    |                                |                    | Client 1       | No. |
|--------------------------|----------------------|--------------------|--------------------------------|--------------------|----------------|-----|
|                          | 5-7-                 | ~                  |                                | SW-3               |                |     |
| b Name: <u>STL Buf</u>   | raio                 | Contract:          |                                | . •                |                |     |
| Lab Code: <u>RECNY</u>   | Case No.:            | SAS No.:           | SDG No.:                       |                    |                |     |
| Matrix: (soil/wat        | er) <u>WATER</u>     |                    | Lab Sample                     | e ID: <u>A5B76</u> | 614            |     |
| Sample wt/vol:           | <u>   5.00</u> (g/mI | ر) <u>MI</u>       | Lab File 1                     | D: <u>Q8366</u>    | .RR            |     |
| Level: (low/med          | ) <u>LOW</u>         |                    | Date Samp                      | Recv: <u>10/18</u> | /2005 10/20/20 | 05  |
| % Moisture: not de       | ec Heat              | ed Purge: <u>N</u> | Date Analy                     | vzed: <u>10/22</u> | /2005          |     |
| GC Column: <u>DB-624</u> | ID: <u>0.25</u>      | (mn)               | Dilution H                     | Factor:1           | .00            |     |
| Soil Extract Volu        | me: (uL)             | ·                  | Soil Aliqu                     | ot Volume:         | (uL)           |     |
| CAS NO.                  | COMPOUND             |                    | CONCENTRATION<br>(ug/L or ug/F |                    | Q              |     |
| 74-87-3                  | Chlorometh           | ane                |                                | 10                 | U              |     |
|                          | Bromometha           |                    |                                | 10                 | U              |     |
|                          |                      | ride               |                                | 10                 | U              |     |
| 75-00-3                  | Chloroetha           | ne                 |                                | 10                 | U              |     |
| 75-09-2                  | Methylene            | chloride           |                                | 10                 | U              |     |
| 67-64-1                  | Acetone              |                    |                                | 10                 | U              |     |
| 75-15-0                  | Carbon Dis           | ulfide             |                                | 10                 | U              |     |
|                          | 1,1-Dichlo           |                    |                                | 10                 | U              |     |
| 75-34-3                  | 1,1-Dichlo           | roethane           |                                | 6                  | J              |     |
| 67-66-3                  | Chloroform           |                    |                                | 10                 | U              |     |
| 107-06-2-                | 1,2-Dichlo           | roethane           |                                | 10                 | υ              |     |
| 78-93-3                  | 2-Butanone           |                    |                                | 10                 | υ              |     |
| 71-55-6                  | 1,1,1-Tric           | hloroethane        |                                | 10                 | υ              |     |
| 56-23-5                  | Carbon Tet:          | rachloride         |                                | 10                 | υ              |     |
| 75-27-4                  | Bromodichle          | oromethane         |                                | 10                 | υ              |     |
| 78-87-5                  | 1,2-Dichlor          | ropropane          |                                | 10                 | υ              |     |
| 10061-01-                | 5cis-1,3-Did         | chloropropene      |                                | 10                 | U              |     |
| 79-01-6                  | Trichloroet          | thene              |                                | 1                  | J              |     |
| 124-48-1-                | Dibromochle          | promethane         |                                | 10                 | U              |     |
|                          | 1,1,2-Tricl          | loroethane         |                                | 10                 | U              |     |
|                          | Benzene              |                    |                                | 10                 | U              |     |
|                          | 6trans-1,3-I         | Dichloropropene    |                                | 10                 | U              |     |
|                          | Bromoform_           |                    |                                | 10                 | υ              |     |
|                          | 4-Methyl-2-          | -pentanone         |                                | 10                 | U              |     |
|                          | 2-Hexanone           |                    |                                | 10                 | U              |     |
|                          | Tetrachlor           | ethene             |                                | 10                 | U              |     |
|                          | Toluene              |                    |                                | 10                 | υ              |     |
|                          | 1,1,2,2-Tet          |                    |                                | 10                 | υ              |     |
|                          | Chlorobenze          |                    |                                | 10                 | υ              |     |
|                          | Ethylbenzer          | je                 |                                | 10                 | υ              |     |
|                          | Styrene              |                    |                                | 10                 | U              |     |
|                          | Total Xyler          |                    |                                | 10                 | U              |     |
|                          | Dichlorodif          |                    |                                | 10                 | υR             |     |
| 75-69-4                  | Trichlorofl          | uoromethane        | · · · ·                        | 10                 | υ              |     |
|                          |                      |                    |                                |                    |                |     |

## 62/864

## DELTA - AQ - ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

| b Nome CTT Definite Contract                      | SW-3                                                  |
|---------------------------------------------------|-------------------------------------------------------|
| ab Name: <u>STL Buffalo</u> Contract:             |                                                       |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:         | SDG No.:                                              |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID: <u>A5B76614</u>                        |
| Sample wt/vol: (g/mL) ML                          | Lab File ID: <u>Q8366.RR</u>                          |
| Level: (low/med) LOW                              | Date Samp/Recv: <u>10/18/2005</u> <u>10/20/2005</u>   |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed: <u>10/22/2005</u>                      |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor: <u>1.00</u>                          |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volume: (uL)                             |
| CAS NO. COMPOUND                                  | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> Q |
| 76-13-11,1,2-Trichloro-1,2,2-trif                 | luoroethane 10 U                                      |

| 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane | 10     | υ |  |
|----------------------------------------------|--------|---|--|
| 156-60-5trans-1,2-Dichloroethene             | <br>10 | U |  |
| 1634-04-4Methyl-t-Butyl Ether (MIBE)         | <br>10 | U |  |
| 156-59-2cis-1,2-Dichloroethene               | <br>8  | J |  |
| 110-82-7Cyclohexane                          | <br>10 | U |  |
| 108-87-2Methylcyclohexane                    | <br>10 | U |  |
| 106-93-41,2-Dibromethane                     | <br>10 | U |  |
| 98-82-8Isopropylbenzene                      | <br>10 | U |  |
| 541-73-11,3-Dichlorobenzene                  | <br>10 | U |  |
| 106-46-71,4-Dichlorobenzene                  | <br>10 | Ū |  |
| 95-50-11,2-Dichlorobenzene                   | <br>10 | Ū |  |
| 96-12-81,2-Dibromo-3-chloropropane           | <br>10 | U |  |
| 120-82-11,2,4-Trichlorobenzene               | <br>10 | Ū |  |
| 79-20-9Methyl acetate                        | <br>10 | U |  |
|                                              |        |   |  |

## 63/864

### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

|                                               |                                      | SW-3                                |
|-----------------------------------------------|--------------------------------------|-------------------------------------|
| b Name: <u>STL Buffalo</u> Contract:          |                                      | L]                                  |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     | SDG No.:                             |                                     |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID:                       | A5B76614                            |
| Sample wt/vol: (g/mL) ML                      | Lab File ID:                         | <u>Q8366.RR</u>                     |
| Level: (low/med) LOW                          | Date Samp/Recv:                      | <u>10/18/2005</u> <u>10/20/2005</u> |
| % Moisture: not dec.                          | Date Analyzed:                       | 10/22/2005                          |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor                      | :1.00                               |
| Soil Extract Volume: (uL)                     | Soil Aliquot Vo                      | lume: (uL)                          |
| Number TICs found:0                           | CONCENTRATION UNI<br>(ug/L or ug/Kg) |                                     |

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |
|         |               |    |            |   |

#### DELTA-METHOD 8270 - TCL BASE NEUTRALS COMPOUNDS ANALYSIS DATA SHEET

## 64/864

Client No.

ċ

----

| ab Name: <u>STL Buffal</u> | o Contract:                    |                  | MW-117                |
|----------------------------|--------------------------------|------------------|-----------------------|
| Lab Code: <u>RECNY</u> C   | ase No.: SAS No.:              | SDG No.:         |                       |
| Matrix: (soil/water)       | WATER                          | Lab Sample ID:   | A5B76601              |
| Sample wt/vol:             | <u>1060.0</u> (g/mL) <u>ML</u> | Lab File ID:     | W06028.RR             |
| Level: (low/med)           | LOW                            | Date Samp/Recv:  | 10/18/2005 10/20/2005 |
| * Moisture:                | decanted: (Y/N) N              | Date Extracted:  | 10/20/2005            |
| Concentrated Extract       | Volume: <u>1000</u> (uL)       | Date Analyzed:   | 10/21/2005            |
| Injection Volume:          | 1.00 (uL)                      | Dilution Factor: | 1.00                  |

GPC Cleanup: (Y/N) <u>N</u> pH: <u>6.0</u>

| 208-96-8Acenaphthylene       10       1         120-12-7Anthracene       10       1         205-99-2Benzo (a) anthracene       10       1         207-08-9Benzo (b) fluoranthene       10       1         207-08-9Benzo (ch) fluoranthene       10       1         191-24-2Benzo (ch) fluoranthene       10       10         100-51-6Benzyl alcohol       20       10         111-91-1Bis (2-chloroethoxy) methane       10       10         108-60-12, 2'-Oxybis (1-Chloropropane)       10       10         111-44-4Bis (2-ethylhexyl) phthalate       4       4         106-47-84-Bromophenyl phenyl ether       10       10         106-47-84-Chlorophenyl phenyl ether       10       10         106-47-84-Chlorophenyl phenyl ether       10       10         105-68-72-Chloronaphthalene       10       10         105-72-34-Chlorophenyl phenyl ether       10       10         107-3Dibenzo (a, h) anthracene       10       10         107-3Dibenzo (a, h) anthracene       10       10         107-13                                                                                                                                                                                                                                           | Q |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| $120-12-7-\cdots$ -Anthracene       10       10 $56-55-3-\cdots$ -Benzo (a) anthracene       10       10 $205-99-2-\cdots$ -Benzo (b) fluoranthene       10       10 $207-08-9-\cdots$ -Benzo (c) fluoranthene       10       10 $207-08-9-\cdots$ -Benzo (k) fluoranthene       10       10 $191-24-2-\cdots$ -Benzo (k) fluoranthene       10       10 $191-24-2-\cdots$ -Benzo (k) pyrene       10       10 $100-51-6-\cdots$ -Benzyl alcohol       20       10 $111-91\cdots$ -Bis (2-chloroethoxy) methane       10       10 $111-44-4-\cdots$ -Bis (2-chloroethoxy) methane       10       10 $111-81-7-\cdots$ -Bis (2-chloroethoxy) methane       10       10 $108-60-1-\cdots-2, 2' - Oxybis (1-Chloropropane)       10       10         117-81-7-\cdots-Bis (2-chloroethoxy) phenyl ether       10       10         108-66-7-\cdots-2-Butyl benzyl phenyl ether       10       10         108-568-7-\cdots-Butyl benzyl phenyl ether       10       10         108-568-7-\cdots-9-Ditorophenyl phenyl ether       10       10         108-568-7-\cdots-0-Ditorophenyl phenyl ether       10       10         108-568-7-\cdots-0-Dibenzo (a, h) anthracene       10       10         128-01-9-\cdots-0-Dibenzo (a, h) anthracene       10       $ | J |
| 56-55-3Benzo (a) anthracene       10       1         205-99-2Benzo (b) fluoranthene       10       1         207-08-9Benzo (k) fluoranthene       10       10         191-24-2Benzo (ghi) perylene       10       10         50-32-8Benzo (a) pyrene       10       10         100-51-6Benzyl alcohol       20       10         111-91-1Bis (2-chloroethoxy) methane       10       10         111-44-4Bis (2-chloroethoxy) methane       10       10         111-44-4Bis (2-chloroethoxy) methane       10       10         111-81-7Bis (2-chloroethoxy) methane       10       10         117-81-7Bis (2-ethylhexyl) phthalate       4       4         101-55-34-Bromphenyl phenyl ether       10       10         106-47-82-Chloronaphthalene       10       10         107-58-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J |
| 205-99-2Benzo (b) fluoranthene       10       1         207-08-9Benzo (k) fluoranthene       10       10         191-24-2Benzo (chi) perylene       10       10         50-32-8Benzo (a) pyrene       10       10         100-51-6Benzyl alcohol       20       10         111-91-1Bis (2-chloroethoxy) methane       10       10         111-91-1Bis (2-chloroethyl) ether       10       10         108-60-12, 2'-Oxybis (1-Chloropropane)       10       10         117-81-7Bis (2-ethylhexyl) phthalate       4       4         106-47-8Bix (2-ethylhexyl) phthalate       10       10         106-47-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J |
| 207-08-9Benzo (k) fluoranthene       10       1         191-24-2Benzo (ghi) perylene       10       10         50-32-8Benzo (a) pyrene       10       10         100-51-6Benzyl al cohol       20       10         111-91-1Bis (2-chloroethoxy) methane       10       10         111-44-4Bis (2-chloroethoxy) methane       10       10         108-60-12, 2'-Oxybis (1-Chloropropane)       10       10         111-44-4Bis (2-ethylhexyl) phthalate       4       4         101-55-34-Bromophenyl phenyl ether       10       10         106-47-84-Chloroaniline       10       10         91-58-72-Chloroaphthalene       10       10         108-60-192-Chloroaphthalene       10       10         106-47-84-Chloroanphthalene       10       10         10705-72-34-Chloroaphthalene       10       10         112-64-9Dibenzofuran       10       10         12-64-9Dibenzofuran       10       10         108-46-71, 2-Dichlorobenzene       10       10         109-94-13, 3'-Dichlorobenzene       10       10         1010-46-71, 4-Dichlorobenzene       10       10         110-94-13, 3'-Dichlorobenzidine                                                                                                                                   | J |
| 191-24-2Benzo (ghi) perylene       10       1         50-32-8Benzo (a) pyrene       10       1         100-51-6Benzyl alcohol       20       10         111-91-1Bis (2-chloroethoxy) methane       10       10         111-91-1Bis (2-chloroethoxy) methane       10       10         108-60-12, 2'-Oxybis (1-Chloropropane)       10       10         107-55-34-Bromophenyl phenyl ether       10       10         107-55-34-Bromophenyl phenyl ether       10       10         106-47-8Butyl benzyl phthalate       10       10         106-47-8Butyl benzyl phthalate       10       10         107-57-34-Chlorophenyl phenyl ether       10       10         107-58-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J |
| 50-32-8Benzo (a) pyrene       10       10         100-51-6Benzyl alcohol       20       10         111-91-1Bis (2-chloroethoxy) methane       10       10         111-44-4Bis (2-chloroethoxy) methane       10       10         111-44-4Bis (2-chloroethoxy) methane       10       10         111-44-4Bis (2-chloroethyl) ether       10       10         108-60-12, 2'-0xybis (1-Chloropropane)       10       10         111-81-7Bis (2-ethylhexyl) phthalate       4       4         101-55-34-Bromophenyl phenyl ether       10       10         106-47-8Butyl benzyl phthalate       10       10         106-47-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J |
| 50-32-8Benzo (a) pyrene       10       10         100-51-6Benzyl alcohol       20       10         111-91-1Bis (2-chloroethoxy) methane       10       10         111-44-4Bis (2-chloroethoxy) methane       10       10         111-44-4Bis (2-chloroethoxy) methane       10       10         111-44-4Bis (2-chloroethyl) ether       10       10         108-60-12, 2'-0xybis (1-Chloropropane)       10       10         111-81-7Bis (2-ethylhexyl) phthalate       4       4         101-55-34-Bromophenyl phenyl ether       10       10         106-47-8Butyl benzyl phthalate       10       10         106-47-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J |
| 100-51-6Benzyl alcohol       20       1         111-91-1Bis(2-chloroethoxy) methane       10       10         111-44-4Bis(2-chloroethyl) ether       10       10         108-60-12,2'-Oxybis(1-Chloropropane)       10       10         117-81-7Bis(2-ethylhexyl) phthalate       4       4         101-55-34-Bromophenyl phenyl ether       10       10         106-47-8Butyl benzyl phthalate       10       10         106-47-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J |
| 111-91-1Bis (2-chloroethoxy) methane       10       10         111-44-4Bis (2-chloroethyl) ether       10       10         108-60-12,2'-Oxybis (1-Chloropropane)       10       10         111-81-7Bis (2-ethylhexyl) phthalate       4       4         101-55-34-Bromophenyl phenyl ether       10       10         106-47-84-Chloroaniline       10       10         106-47-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J |
| 111-44-4Bis (2-chloroethyl) ether       10       10         108-60-12,2'-Oxybis (1-Chloropropane)       10       10         117-81-7Bis (2-ethylhexyl) phthalate       4       4         101-55-34-Bromophenyl phenyl ether       10       10         106-47-84-Chloroaniline       10       10         106-47-84-Chloroaniline       10       10         106-47-84-Chloroaniline       10       10         107-58-72-Chloronaphthalene       10       10         107-58-72-Chloronaphthalene       10       10         107-58-72-Chloronaphthalene       10       10         108-01-9Chrysene       10       10         108-264-9Dibenzo (a, h) anthracene       10       10         103-764-9Dibenzo (a, h) anthracene       10       10         103-64-9Dibenzo (a, h) anthracene       10       10         104-74-2Di-n-butyl phthalate       10       10         105-50-11, 2-Dichlorobenzene       10       10         106-46-71, 4-Dichlorobenzene       10       10         107-94-13, 3'-Dichlorobenzidine       20       10         104-66-2Diethyl phthalate       10       10         107-94-10                                                                                                                                                | J |
| 108-60-12,2'-Oxybis (1-Chloropropane)       10       1         117-81-7Bis (2-ethylhexyl) phthalate       4         101-55-34-Bromophenyl phenyl ether       10       10         106-47-84-Chloroaniline       10       10         106-47-84-Chloroaniline       10       10         106-47-84-Chloroaniline       10       10         106-47-84-Chloroaniline       10       10         10705-72-34-Chlorophenyl phenyl ether       10       10         118-01-9Chrysene       10       10         1132-64-9Dibenzo (a, h) anthracene       10       10         123-64-9Dibenzofuran       10       10         124-74-2Di-n-butyl phthalate       10       10         123-64-9Dibenzofuran       10       10         124-74-2Di-n-butyl phthalate       10       10         124-74-2Di-n-butyl phthalate       10       10         124-74-2Di-n-butyl phthalate       10       10         124-74-2Di-n-butyl phthalate       10       10         107-94-13,3'-Dichlorobenzene       10       10         11-94-1Dimethyl phthalate       10       10         121-14-22,4-Dinitrotoluene       10       10                                                                                                                                                  |   |
| 117-81-7Bis (2-ethylhexyl) phthalate       4         101-55-34-Bromophenyl phenyl ether       10         35-68-7Butyl benzyl phthalate       10         106-47-84-Chloroaniline       10         91-58-72-Chloronaphthalene       10         7005-72-34-Chlorophenyl phenyl ether       10         10       10         113-01-9Chrysene       10         1132-64-9Dibenzo (a, h) anthracene       10         1132-64-9Dibenzo (a, h) anthracene       10         1132-64-9Dibenzo furan       10         1132-64-9Dibenzo furan       10         1132-64-9Dibenzo furan       10         1132-64-9Dibenzo furan       10         1132-64-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J |
| 101-55-34-Bromophenyl phenyl ether       10       U         35-68-7Butyl benzyl phthalate       10       U         106-47-84-Chloroaniline       10       U         91-58-72-Chloronaphthalene       10       U         7005-72-34-Chlorophenyl phenyl ether       10       U         218-01-9Chrysene       10       U         53-70-3Dibenzo (a, h) anthracene       10       U         132-64-9Dibenzo (a, h) anthracene       10       U         147-73-11, 2-Dichlorobenzene       10       U         106-46-71, 4-Dichlorobenzene       10       U         131-11-3Dimethyl phthalate       10       U         132-64-22, 4                                                                                                                                  |   |
| B5-68-7Butyl benzyl phthalate       10       I         106-47-84-Chloroaniline       10       I         91-58-72-Chloronaphthalene       10       I         7005-72-34-Chlorophenyl phenyl ether       10       I         7005-72-3Chrysene       10       I         132-64-9Dibenzofuran       10       I         34-74-2Di-n-butyl phthalate       10       I         95-50-11,2-Dichlorobenzene       10       I         92-94-13,3'-Dichlorobenzene       10       I         91-94-13,3'-Dichlorobenzidine       20       I         93-66-2Diethyl phthalate       10       I         131-11-3Dimethyl phthalate       10       I         141-22, 4-Dinitrotolue                                                                                                                                     |   |
| 106-47-84-Chloroaniline       10       U         91-58-72-Chloronaphthalene       10       U         7005-72-34-Chlorophenyl phenyl ether       10       U         218-01-9Chrysene       10       U         53-70-3Dibenzo (a, h) anthracene       10       U         132-64-9Dibenzofuran       10       U         34-74-2Di-n-butyl phthalate       10       U         95-50-11,2-Dichlorobenzene       10       U         541-73-11,3-Dichlorobenzene       10       U         106-46-71,4-Dichlorobenzene       10       U         106-46-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| 91-58-72-Chloronaphthalene       10       10         7005-72-34-Chlorophenyl phenyl ether       10       10         218-01-9Chrysene       10       10         53-70-3Dibenzo (a, h) anthracene       10       10         132-64-9Dibenzo (u, h) anthracene       10       10         132-64-9Dibenzo (u, h) anthracene       10       10         132-64-9Dibenzo furan       10       10         134-74-2Di-n-butyl phthalate       10       10         105-50-11, 2-Dichlorobenzene       10       10         106-46-71, 4-Dichlorobenzene       10       10         106-46-71, 4-Dichlorobenzene       10       10         107-94-13, 3'-Dichlorobenzidine       20       10         107-94-13, 3'-Dichlorobenzidine       10       10         101-11-3Dimethyl phthalate       10       10         101-11-3Dimethyl phthalate       10       10         101-11-3                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 7005-72-34-Chlorophenyl phenyl ether       10       U         218-01-9Chrysene       10       U         53-70-3Dibenzo (a, h) anthracene       10       U         132-64-9Dibenzo (a, h) anthracene       10       U         132-64-9Dibenzo furan       10       U         34-74-2Di-n-butyl phthalate       10       U         95-50-11, 2-Dichlorobenzene       10       U         541-73-11, 3-Dichlorobenzene       10       U         106-46-71, 4-Dichlorobenzene       10       U         91-94-13, 3'-Dichlorobenzene       10       U         91-94-1Diethyl phthalate       10       U         91-94-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 218-01-9Chrysene       10       10         53-70-3Dibenzo (a, h) anthracene       10       10         132-64-9Dibenzofuran       10       10         34-74-2Di-n-butyl phthalate       10       10         95-50-11, 2-Dichlorobenzene       10       10         541-73-11, 3-Dichlorobenzene       10       10         106-46-71, 4-Dichlorobenzene       10       10         91-94-13, 3'-Dichlorobenzene       10       10         93-66-2Diethyl phthalate       10       10         11-1-3Dimethyl phthalate       10       10         121-14-22, 4-Dinitrotoluene       10       10         106-20-2Dientyl phthalate       10       10         11-1-3Dimethyl phthalate       10       10         121-14-22, 6-Dinitrotoluene       10       10         117-84-0Di-n-octyl phthalate       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 53-70-3Dibenzo (a, h) anthracene       10       U         132-64-9Dibenzofuran       10       U         34-74-2Di-n-butyl phthalate       10       U         95-50-11,2-Dichlorobenzene       10       U         541-73-11,3-Dichlorobenzene       10       U         106-46-71,4-Dichlorobenzene       10       U         106-46-71,4-Dichlorobenzene       10       U         1091-94-13,3'-Dichlorobenzidine       20       U         110-1-3Diethyl phthalate       10       U         110-1-3Dimethyl phthalate       10       U         110-1-3Dimethyl phthalate       10       U         110-1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 132-64-9Dibenzofuran       10       U         34-74-2Di-n-butyl phthalate       10       U         95-50-11,2-Dichlorobenzene       10       U         541-73-11,3-Dichlorobenzene       10       U         106-46-71,4-Dichlorobenzene       10       U         10-94-13,3'-Dichlorobenzidine       20       U         10-94-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 34-74-2Di-n-butyl phthalate       10       U         95-50-11,2-Dichlorobenzene       10       U         541-73-11,3-Dichlorobenzene       10       U         106-46-71,4-Dichlorobenzene       10       U         10-94-13,3'-Dichlorobenzidine       20       U         11-94-1Diethyl phthalate       10       U         11-11-3Dimethyl phthalate       10       U         121-14-22,4-Dinitrotoluene       10       U         10-20-2Dientrotoluene       10       U         11-7-84-0Di-n-octyl phthalate       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| 95-50-11,2-Dichlorobenzene       10       U         541-73-11,3-Dichlorobenzene       10       U         106-46-71,4-Dichlorobenzene       10       U         10-94-13,3'-Dichlorobenzidine       20       U         10-94-66-2Diethyl phthalate       10       U         11-11-3Dimethyl phthalate       10       U         121-14-22,4-Dinitrotoluene       10       U         106-20-2Dienitrotoluene       10       U         117-84-0Di-n-octyl phthalate       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 541-73-11,3-Dichlorobenzene       10       U         106-46-71,4-Dichlorobenzene       10       U         21-94-13,3'-Dichlorobenzidine       20       U         34-66-2Diethyl phthalate       10       U         131-11-3Dimethyl phthalate       10       U         121-14-22,4-Dinitrotoluene       10       U         107-84-0Dienethyl phthalate       10       U         107-14-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 106-46-71,4-Dichlorobenzene       10       1         91-94-13,3'-Dichlorobenzidine       20       1         94-66-2Diethyl phthalate       10       1         131-11-3Dimethyl phthalate       10       1         121-14-22,4-Dinitrotoluene       10       1         506-20-22,6-Dinitrotoluene       10       1         117-84-0Dienetyl phthalate       10       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| 91-94-13,3'-Dichlorobenzidine       20       U         94-66-2Diethyl phthalate       10       U         131-11-3Dimethyl phthalate       10       U         121-14-22,4-Dinitrotoluene       10       U         506-20-22,6-Dinitrotoluene       10       U         117-84-0Di-n-octyl phthalate       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 34-66-2Diethyl phthalate       10       U         L31-11-3Dimethyl phthalate       10       U         L21-14-22,4-Dinitrotoluene       10       U         506-20-22,6-Dinitrotoluene       10       U         L17-84-0Di-n-octyl phthalate       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 131-11-3Dimethyl phthalate       10       U         121-14-22,4-Dinitrotoluene       10       U         506-20-22,6-Dinitrotoluene       10       U         117-84-0Di-n-octyl phthalate       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 121-14-22,4-Dinitrotoluene       10       U         506-20-22,6-Dinitrotoluene       10       U         L17-84-0Di-n-octyl phthalate       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| 506-20-22,6-Dinitrotoluene 10 U<br>L17-84-0Di-n-octyl phthalate 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 117-84-0Di-n-octyl phthalate 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 206-44-0Fluoranthene 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |

FORM I - GC/MS BNA

#### DELTA-METHOD 8270 - TCL BASE NEUTRALS COMPOUNDS ANALYSIS DATA SHEET

## 65/864

Client No.

-

| ン Name: <u>STL Buffal</u> | <u>o</u> Contract:             |                  | MW-117                |
|---------------------------|--------------------------------|------------------|-----------------------|
| Lab Code: <u>RECNY</u> C  | ase No.: SAS No.:              | SDG No.:         |                       |
| Matrix: (soil/water)      | WATER                          | Lab Sample ID:   | A5B76601              |
| Sample wt/vol:            | <u>1060.0</u> (g/mL) <u>ML</u> | Lab File ID:     | W06028.RR             |
| Level: (low/med)          | LOW                            | Date Samp/Recv:  | 10/18/2005 10/20/2005 |
| % Moisture:               | decanted: (Y/N) <u>N</u>       | Date Extracted:  | 10/20/2005            |
| Concentrated Extract      | Volume: 1000 (uL)              | Date Analyzed:   | <u>10/21/2005</u>     |
| Injection Volume:         | <u>1.00</u> (uL)               | Dilution Factor: | 1.00                  |

GPC Cleanup: (Y/N) <u>N</u> pH: <u>6.0</u>

| CAS NO. COMPOUND                                                        | ONCENTRATION UNI<br>(ug/L or ug/Kg) | TS:<br><u>UG/L</u> | Q <sup>.</sup>                                                                              |  |
|-------------------------------------------------------------------------|-------------------------------------|--------------------|---------------------------------------------------------------------------------------------|--|
|                                                                         |                                     |                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |  |
| 85-01-8Phenanthrene<br>129-00-0Pyrene<br>120-82-11,2,4-Trichlorobenzene |                                     | 10<br>10<br>10     | U<br>U<br>U                                                                                 |  |

|             |            | · · · · · |                                       |            | 66/864                                 |
|-------------|------------|-----------|---------------------------------------|------------|----------------------------------------|
| STL BUF     | FALO       |           | · · · · · · · · · · · · · · · · · · · |            |                                        |
|             |            | Delt      | a Environmental Consultants. Inc      | •          |                                        |
|             |            | IN        | -1-<br>ORGANIC ANALYSIS DATA SHEET    | SAMPLE     | NO.                                    |
|             |            |           |                                       | MW-114     |                                        |
| Contract:   | CN04-015   |           |                                       |            |                                        |
| Lab Code:   | STLBFLO    | Case No.: | SAS No.:                              | SDG NO.:   | A05-B766                               |
| Matrix (so: | il/water): | WATER     | Lab Sample ID:                        | AD560338   |                                        |
| Level (low, | /med): L(  | WC        | Date Received:                        | 10/20/2005 | ······································ |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| CAS No.         Analyte         Concentration         C         Q         M           7429-90-5         Aluminum         15.6         B         P           7440-36-0         Antimony         3.3         U         P           7440-38-2         Arsenic         2.3         U         P           7440-39-3         Barium         44.9         B         P           7440-41-7         Beryllium         0.07         U         P           7440-43-9         Cadmium         0.19         U         P           7440-43-9         Calcium         116000         P           7440-43-9         Calcium         116000         P           7440-48-4         Cobalt         21.4         B         P           7440-50-8         Copper         5.1         B         P           7439-89-6         Iron         14.1         U         P           7439-92-1         Lead         1.2         U         J         P           7439-95-4         Magnesium         33300         P         P           7440-02-0         Nickel         30.1         B         P           7440-02-0         Nickel         30.                |     |         | · · · · · · · · · · · · · · · · · |               |   | -   |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-----------------------------------|---------------|---|-----|----|
| 7440-36-0       Antimony       3.3       U       P         7440-38-2       Arsenic       2.3       U       P         7440-39-3       Barium       44.9       B       P         7440-41-7       Beryllium       0.07       U       P         7440-41-7       Beryllium       0.07       U       P         7440-43-9       Cadmium       0.19       U       P         7440-43-9       Cadmium       0.19       U       P         7440-47-3       Chromium       116000       P         7440-47-3       Chromium       1.0       B       P         7440-48-4       Cobalt       21.4       B       P         7439-89-6       Iron       14.1       U       P         7439-92-1       Lead       1.2       U       J       P         7439-95-4       Magnesium       33300       P       P         7440-02-0       Nickel       30.1       B       P         7440-02-0       Nickel       30.1       B       P         7440-02-4       Silver       0.66       U       P         7440-22-4       Silver       0.66       U <t< td=""><td>CA</td><td>SNO.</td><td>Analyte</td><td>Concentration</td><td>C</td><td>Q</td><td>м</td></t<> | CA  | SNO.    | Analyte                           | Concentration | C | Q   | м  |
| 7440-38-2       Arsenic       2.3       U       P         7440-39-3       Barium       44.9       B       P         7440-41-7       Beryllium       0.07       U       P         7440-43-9       Cadmium       0.19       U       P         7440-43-9       Calcium       116000       P         7440-43-9       Calcium       116000       P         7440-47-3       Chromium       1.0       B       P         7440-48-4       Cobalt       21.4       B       P         7440-50-8       Copper       5.1       B       P         7439-89-6       Iron       14.1       U       P         7439-92-1       Lead       1.2       U       J       P         7439-95-4       Magnesium       33300       P       P         7440-02-0       Nickel       30.1       B       P         7440-09-7       Potassium       752       B       P         7440-02-0       Nickel       30.1       P       P         7440-22-4       Silver       0.56       U       P         7440-22-5       Sodium       99800       P       P                                                                                                              | 742 | 29-90-5 | Aluminum                          | 15.6          | в |     | P  |
| 7440-39-3       Barium       44.9       B       P         7440-41-7       Beryllium       0.07       U       P         7440-41-7       Beryllium       0.19       U       P         7440-43-9       Cadmium       0.19       U       P         7440-43-9       Cadmium       0.19       U       P         7440-43-9       Calcium       116000       P         7440-43-3       Chromium       1.0       B       P         7440-48-4       Cobalt       21.4       B       P         7440-48-4       Cobalt       21.4       P       P         7440-50-8       Copper       5.1       B       P         7439-89-6       Iron       14.1       U       P         7439-92-1       Lead       1.2       U       J       P         7439-95-4       Magnesium       33300       P       P         7440-02-0       Nickel       30.1       B       P         7440-02-0       Nickel       30.1       B       P         7440-02-7       Potassium       752       B       P         7440-22-4       Silver       0.56       U <td< td=""><td>744</td><td>40-36-0</td><td>Antimony</td><td>3.3</td><td>U</td><td></td><td>P</td></td<>      | 744 | 40-36-0 | Antimony                          | 3.3           | U |     | P  |
| 7440-41-7       Beryllium       0.07       U       P         7440-43-9       Cadmium       0.19       U       P         7440-43-9       Calcium       116000       P         7440-43-9       Calcium       116000       P         7440-43-9       Calcium       116000       P         7440-47-3       Chromium       1.0       B       P         7440-48-4       Cobalt       21.4       B       P         7440-50-8       Copper       5.1       B       P         7439-89-6       Iron       14.1       U       P         7439-92-1       Lead       1.2       U       J       P         7439-95-4       Magnesium       33300       P       P         7440-02-0       Nickel       30.1       B       P         7440-02-0       Nickel       30.1       B       P         7440-02-7       Potassium       752       B       P         7440-22-4       Silver       0.56       U       P         7440-23-5       Sodium       99800       P       P         7440-23-5       Sodium       99800       P       P                                                                                                                  | 744 | 40-38-2 | Arsenic                           | 2.3           | υ |     | P  |
| 7440-43-9       Cadmium       0.19       U       P         7440-70-2       Calcium       116000       P         7440-47-3       Chromium       1.0       B       P         7440-48-4       Cobalt       21.4       B       P         7440-50-8       Copper       5.1       B       P         7439-89-6       Iron       14.1       U       P         7439-92-1       Lead       1.2       U       J       P         7439-92-1       Lead       1.2       U       J       P         7439-95-4       Magnesium       33300       P       P         7440-02-0       Nickel       30.1       B       P         7440-02-0       Nickel       30.1       B       P         7440-02-0       Nickel       30.1       B       P         7440-02-1       Selenium       4.1       B       P         7440-22-4       Silver       0.66       U       P         7440-22-5       Sodium       99800       P       P         7440-23-5       Sodium       99800       P       P         7440-23-5       Sodium       99800       P                                                                                                              | 744 | 40-39-3 | Barium                            | 44.9          | в |     | P  |
| 7440-70-2       Calcium       116000       P         7440-47-3       Chromium       1.0       B       P         7440-47-3       Chromium       1.0       B       P         7440-48-4       Cobalt       21.4       B       P         7440-50-8       Copper       5.1       B       P         7439-89-6       Iron       14.1       U       P         7439-92-1       Lead       1.2       U       J       P         7439-95-4       Magnesium       33300       P       P         7440-02-0       Nickel       30.1       P       P         7440-02-0       Nickel       30.1       P       P         7440-02-7       Potassium       752       P       P         7439-97-6       Mercury       0.047       P       P         7439-97-6       Mercury       0.047       P       P         7440-23-5       Sodium       99800       P       P         7440-23-5       Sodium       99800       P       P         7440-23-5       Vanadium       0.46       P       P                                                                                                                                                               | 744 | 40-41-7 | Beryllium                         | 0.07          | ט | 1   | P  |
| 7440-47-3       Chromium       1.0       B       P         7440-48-4       Cobalt       21.4       B       P         7440-50-8       Copper       5.1       B       P         7439-89-6       Iron       14.1       U       P         7439-92-1       Lead       1.2       U       J       P         7439-92-1       Lead       1.2       U       J       P         7439-92-1       Lead       1.2       U       J       P         7439-95-4       Magnesium       33300       P       P         7440-02-0       Nickel       30.1       B       P         7440-02-0       Nickel       30.1       B       P         7440-02-7       Potassium       752       B       P         7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       P       P         7440-23-5       Sodium       99800       P       P         7440-23-5       Sodium       99800       P       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium                                                                                                                   | 744 | 10-43-9 | Cadmium                           | 0.19          | U |     | P  |
| 7440-48-4       Cobalt       21.4       B       P         7440-50-8       Copper       5.1       B       P         7439-89-6       Iron       14.1       U       P         7439-92-1       Lead       1.2       U       J       P         7439-95-4       Magnesium       33300       P       P         7439-95-4       Magnesium       33300       P       P         7439-96-5       Manganese       9.6       B       P         7440-02-0       Nickel       30.1       B       P         7440-02-0       Nickel       30.1       B       P         7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       V       N* J       CV         7440-23-5       Sodium       99800       P       P         7440-23-5       Sodium       99800       P       P         7440-28-0       Thallium       5.6       U       P         7440-28-0       Thallium       5.6       U       P                                                                                                                                                                                                        | 744 | 0-70-2  | Calcium                           | 116000        | 1 |     | P  |
| 7440-50-8       Copper       5.1       B       P         7439-89-6       Iron       14.1       U       P         7439-92-1       Lead       1.2       U       J       P         7439-95-4       Magnesium       33300       P       P         7439-95-4       Magnesium       33300       P       P         7439-96-5       Manganese       9.6       B       P         7440-02-0       Nickel       30.1       B       P         7440-09-7       Potassium       752       B       P         7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       P       P         7440-23-5       Sodium       99800       P       P         7440-28-0       Thallium       5.6       U       P         7440-28-0       Vanadium       0.46       U       P                                                                                                                                                                                                                                                                                                                                      | 744 | 10-47-3 | Chromium                          | 1.0           | в |     | P  |
| 7439-89-6       Iron       14.1       U       P         7439-92-1       Lead       1.2       U       J       P         7439-92-1       Lead       33300       P       P         7439-95-4       Magnesium       33300       P       P         7440-02-0       Nickel       30.1       B       P         7440-09-7       Potassium       752       B       P         7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       V       N** J       CV         7440-23-5       Sodium       99800       P       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium       0.46       U       P                                                                                                                                                                                                                                                      | 744 | 10-48-4 | Cobalt                            | 21.4          | в |     | P  |
| 7439-92-1       Lead       1.2       U       J       P         7439-95-4       Magnesium       33300       P       P         7439-96-5       Manganese       9.6       B       P         7440-02-0       Nickel       30.1       B       P         7440-09-7       Potassium       752       B       P         7440-22-4       Selenium       4.1       B       P         7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       U       N* J       CV         7440-23-5       Sodium       99800       P       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium       0.46       U       P                                                                                                                                                                                                                                                                                                                                                                                                                                              | 744 | 10-50-8 | Copper                            | 5.1           | в | 1   | P  |
| 7439-95-4       Magnesium       33300       P         7439-96-5       Manganese       9.6       P         7440-02-0       Nickel       30.1       P         7440-09-7       Potassium       752       P         7440-22-4       Selenium       4.1       P         7439-97-6       Mercury       0.047       P         7439-97-6       Mercury       0.047       P         7440-23-5       Sodium       99800       P         7440-28-0       Thallium       5.6       U       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 743 | 89-89-6 | Iron                              | 14.1          | υ |     | P  |
| 7439-96-5       Manganese       9.6       B       P         7440-02-0       Nickel       30.1       B       P         7440-09-7       Potassium       752       B       P         7440-22-4       Selenium       4.1       B       P         7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       U       N* J       CV         7440-23-5       Sodium       99800       P       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium       0.46       U       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 743 | 9-92-1  | Lead                              | 1.2           | σ | J   | P  |
| 7440-02-0       Nickel       30.1       B       P         7440-09-7       Potassium       752       B       P         7782-49-2       Selenium       4.1       B       P         7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       U       N* J       CV         7440-23-5       Sodium       99800       P       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium       0.46       U       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 743 | 9-95-4  | Magnesium                         | 33300         |   |     | P  |
| 7440-09-7       Potassium       752       B       P         7782-49-2       Selenium       4.1       B       P         7440-22-4       Silver       0.56       U       P         7440-22-4       Silver       0.647       V       N* J       CV         7440-23-5       Sodium       99800       P       P         7440-28-0       Thallium       5.6       V       P         7440-62-2       Vanadium       0.46       V       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 743 | 9-96-5  | Manganese                         | 9.6           | в |     | P  |
| 7782-49-2       Selenium       4.1       B       P         7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       U       N* J       CV         7440-23-5       Sodium       99800       P       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium       0.46       U       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 744 | 0-02-0  | Nickel                            | 30.1          | в |     | P  |
| 7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       U       N* J       CV         7440-23-5       Sodium       99800       P       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium       0.46       U       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 744 | 0-09-7  | Potassium                         | 752           | В |     | P  |
| 7439-97-6       Mercury       0.047       U       W* J       CV         7440-23-5       Sodium       99800       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium       0.46       U       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 778 | 2-49-2  | Selenium                          | 4.1           | в |     | P  |
| 7440-23-5     Sodium     99800     P       7440-28-0     Thallium     5.6     V     P       7440-62-2     Vanadium     0.46     V     P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 744 | 0-22-4  | Silver                            | 0.56          | υ |     | P  |
| 7440-28-0         Thallium         5.6         U         P           7440-62-2         Vanadium         0.46         U         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 743 | 9-97-6  | Mercury                           | 0.047         | υ | N*J | cv |
| 7440-62-2   Vanadium 0.46   U   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 744 | 0-23-5  | Sodium                            | 99800         |   |     | P  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 744 | 0-28-0  | Thallium                          | 5.6           | υ |     | P  |
| 7440-66-6 Zinc 4.7 B P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 744 | 0-62-2  | Vanadium                          | 0.46          | υ |     | P  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 744 | 0-66-6  | Zinc                              | 4.7           | в |     | P  |

| Color Before: | COLORLESS | Clarity Before: | CLEAR | Texture:   | NONE |
|---------------|-----------|-----------------|-------|------------|------|
| Color After:  | COLORLESS | Clarity After:  | CLEAR | Artifacts: |      |
| omments:      |           |                 |       |            |      |
|               |           |                 |       |            |      |

## STL BUFFALO

## Delta Environmental Consultants. Inc.

-1-

OTTER

DIOD

|             |           |           | INORGANIC ANALISIS DATA SHEET |            | SAMPLE     | NO.                                   |   |
|-------------|-----------|-----------|-------------------------------|------------|------------|---------------------------------------|---|
|             |           |           |                               |            | MW-115     |                                       |   |
| Contract:   | CN04-015  |           |                               |            | L          | · · · · · · · · · · · · · · · · · · · |   |
| Lab Code:   | STLBFLO   | Case No.: | SAS No.:                      |            | SDG NO.:   | A05-B766                              | _ |
| Matrix (soi | 1/water): | WATER     | Lab                           | Sample ID: | AD560337   |                                       |   |
| Level (low/ | med): LO  | W         | Date                          | Received:  | 10/20/2005 |                                       |   |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| CAS No.   | Analyte   | Concentration | С | Q    | м  |
|-----------|-----------|---------------|---|------|----|
| 7429-90-5 | Aluminum  | 155           | в |      | P  |
| 7440-36-0 | Antimony  | 3.3           | ש |      | P  |
| 7440-38-2 | Arsenic   | 2.3           | U |      | P  |
| 7440-39-3 | Barium    | 80.2          | в |      | P  |
| 7440-41-7 | Beryllium | 0.07          | υ |      | P  |
| 7440-43-9 | Cadmium   | 0.44          | в |      | P  |
| 7440-70-2 | Calcium   | 157000        |   |      | P  |
| 7440-47-3 | Chromium  | 0.29          | ע |      | P  |
| 7440-48-4 | Cobalt    | 69.9          |   |      | P  |
| 7440-50-8 | Copper    | 18.4          | в |      | P  |
| 7439-89-6 | Iron      | 188           | 1 |      | Р  |
| 7439-92-1 | Lead      | 1.2           | υ | J    | P  |
| 7439-95-4 | Magnesium | 39200         |   |      | P  |
| 7439-96-5 | Manganese | 699           | 1 |      | P  |
| 7440-02-0 | Nickel    | 131           |   |      | P  |
| 7440-09-7 | Potassium | 1700          | в |      | P  |
| 7782-49-2 | Selenium  | 4.2           | в |      | P  |
| 7440-22-4 | Silver    | 0.56          | U |      | P  |
| 7439-97-6 | Mercury   | 0.047         | ע | N* J | cv |
| 7440-23-5 | Sodium    | 202000        |   |      | P  |
| 7440-28-0 | Thallium  | 5.6           | ט |      | P  |
| 7440-62-2 | Vanadium  | 0.54          | в |      | P  |
| 7440-66-6 | Zinc      | 13.7          | в |      | P  |

| Color Before: | COLORLESS | Clarity Before: | CLEAR | Texture:   | NONE |
|---------------|-----------|-----------------|-------|------------|------|
| Color After:  | COLORLESS | Clarity After:  | CLEAR | Artifacts: |      |
| ments:        |           |                 |       |            |      |
|               |           |                 |       |            |      |
|               |           |                 |       |            |      |

67/864

## STL BUFFALO

# 68/864

.

| -           |            |           | eita Environmental Consultants. Inc.<br>-1-<br>INORGANIC ANALYSIS DATA SHEET |            |                                       |
|-------------|------------|-----------|------------------------------------------------------------------------------|------------|---------------------------------------|
|             |            |           |                                                                              | SAMPLE     |                                       |
| Contract:   | CN04-015   |           |                                                                              | MW-116     | · · · · · · · · · · · · · · · · · · · |
| Lab Code:   | STLBFLO    | Case No.: | SAS No.:                                                                     | SDG NO.:   | A05-B766                              |
| Matrix (so  | il/water): | WATER     | Lab Sample ID:                                                               | AD560339   |                                       |
| Level (low, | (med): L(  | WC        | Date Received:                                                               | 10/20/2005 |                                       |
|             |            |           |                                                                              | · .        |                                       |

.

Concentration Units (ug/L or mg/kg dry weight): UG/L

| CAS No.   | Analyte   | Concentration | C | Q    | м  |
|-----------|-----------|---------------|---|------|----|
| 7429-90-5 | Aluminum  | 152           | в |      | P  |
| 7440-36-0 | Antimony  | 3.3           | Ū | 1    | P  |
| 7440-38-2 | Arsenic   | 2.3           | U | Î    | P  |
| 7440-39-3 | Barium    | 60.3          | В | I    | P  |
| 7440-41-7 | Beryllium | 0.07          | U | 1    | P  |
| 7440-43-9 | Cadmium   | 0.19          | σ | 1    | P  |
| 7440-70-2 | Calcium   | 181000        | Τ | ľ    | P. |
| 7440-47-3 | Chromium  | 0.29          | U | 1    | P  |
| 7440-48-4 | Cobalt    | 12.5          | в |      | P  |
| 7440-50-8 | Copper    | 1.4           | в |      | Р  |
| 7439-89-6 | Iron      | 235           | Ι | 1    | P  |
| 7439-92-1 | Lead      | 1.2           | ש | 12   | P  |
| 7439-95-4 | Magnesium | 40700         | 1 |      | P  |
| 7439-96-5 | Manganese | 1030          | Ι |      | P  |
| 7440-02-0 | Nickel    | 18.6          | в |      | P  |
| 7440-09-7 | Potassium | 1060          | в | 1    | P  |
| 7782-49-2 | Selenium  | 3.2           | σ |      | P· |
| 7440-22-4 | Silver    | 0.56          | ס | Ι.   | P  |
| 7439-97-6 | Mercury   | 0.047         | ס | JN#J | CV |
| 7440-23-5 | Sodium    | 59000         |   |      | P  |
| 7440-28-0 | Thallium  | 5.6           | ח |      | P  |
| 7440-62-2 | Vanadium  | 0.46          | σ |      | P  |
| 7440-66-6 | Zinc      | 3.1           | B |      | P  |

| Color Before: | COLORLESS | Clarity Before: | CLEAR | Texture:   | NONE |
|---------------|-----------|-----------------|-------|------------|------|
| Color After:  | COLORLESS | Clarity After:  | CLEAR | Artifacts: | . ·  |
| comments:     |           |                 | ·     |            |      |
|               |           |                 |       |            |      |

## 69/864

•

## STL BUFFALO

| Delta Environmental | Consultants. Inc. |
|---------------------|-------------------|
|---------------------|-------------------|

-1-

|             |            |           | INORGANIC ANALYSIS DATA SHEET | SAMPLE     | : NO.    |
|-------------|------------|-----------|-------------------------------|------------|----------|
|             |            |           |                               | MW-117     |          |
| Contract:   | CN04-015   |           |                               | L          |          |
| Lab Code:   | STLBFLO    | Case No.: | SAS No.:                      | SDG NO.:   | A05-B766 |
| Matrix (soi | il/water): | WATER     | Lab Sample ID:                | AD560331   |          |
| Level (low/ | /med): L   | OW        | Date Received:                | 10/20/2005 |          |
|             |            |           |                               |            |          |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| CAS No.   | Analyte   | Concentration | c | Q   | м  |
|-----------|-----------|---------------|---|-----|----|
| 7429-90-5 | Aluminum  | 124           | В |     | P  |
| 7440-36-0 | Antimony  | 3.3           | ש |     | P  |
| 7440-38-2 | Arsenic   | 42.0          |   |     | P  |
| 7440-39-3 | Barium    | 118           | В |     | P  |
| 7440-41-7 | Beryllium | 0.07          | ם |     | P  |
| 7440-43-9 | Cadmium   | 0.19          | σ |     | ₽  |
| 7440-70-2 | Calcium   | 164000        |   |     | P  |
| 7440-47-3 | Chromium  | 1.2           | в | ·   | P  |
| 7440-48-4 | Cobalt    | 1.2           | в |     | P  |
| 7440-50-8 | Copper    | 1.8           | в |     | P  |
| 7439-89-6 | Iron      | 17500         |   |     | P  |
| 7439-92-1 | Lead      | 1.2           | ש | 12  | ₽  |
| 7439-95-4 | Magnesium | 18400         |   |     | P  |
| 7439-96-5 | Manganese | 1750          |   |     | P  |
| 7440-02-0 | Nickel    | 2.0           | В |     | P  |
| 7440-09-7 | Potassium | 3700          | в |     | P  |
| 7782-49-2 | Selenium  | 3.2           | U | 1   | P  |
| 7440-22-4 | Silver    | 0.56          | U |     | P  |
| 7439-97-6 | Mercury   | 0.047         | ט | N*J | CV |
| 7440-23-5 | Sodium    | 16700         |   |     | P  |
| 7440-28-0 | Thallium  | 5.6           | מ |     | P  |
| 7440-62-2 | Vanadium  | 4.3           | В |     | P  |
| 7440-66-6 | Zinc      | 6.4           | В |     | P  |

| Color Before:                         | COLORLESS | Clarity Before: | CLEAR | Texture:   | NONE |
|---------------------------------------|-----------|-----------------|-------|------------|------|
| Color After:                          | COLORLESS | Clarity After:  | CLEAR | Artifacts: |      |
| comments:                             |           |                 |       | •          |      |
|                                       |           |                 |       |            |      |
|                                       |           |                 |       |            |      |
| · · · · · · · · · · · · · · · · · · · |           |                 |       |            |      |

| STL BUF     | FALO       |           |                                      |            | 10/004   |
|-------------|------------|-----------|--------------------------------------|------------|----------|
|             |            | Deita E   | nvironmental Consultants. Inc<br>-1- | •          |          |
|             |            | INOR      | GANIC ANALYSIS DATA SHEET            | SAMPLI     | E NO.    |
| Contract:   | CN04-015   |           |                                      | MW-117     | A        |
| Lab Code:   | STLBFLO    | Case No.: | SAS No.:                             | SDG NO.:   | A05-B766 |
| Matrix (so: | il/water): | WATER     | Lab Sample ID:                       | AD560335   |          |
| Level (low, | /med): L   | OW        | Date Received:                       | 10/20/2005 | · · · ·  |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| CAS No.   | Analyte   | Concentration | C  | Q         | M  |
|-----------|-----------|---------------|----|-----------|----|
| 7429-90-5 | Aluminum  | 122           | В  | 1         | P  |
| 7440-36-0 | Antimony  | 3.3           | Π  |           | P  |
| 7440-38-2 | Arsenic   | 46.8          |    |           | P  |
| 7440-39-3 | Barium    | 125           | В  | 1 · · · · | P  |
| 7440-41-7 | Beryllium | 0.07          | U  |           | P  |
| 7440-43-9 | Cadmium   | 0.19          | U  |           | P  |
| 7440-70-2 | Calcium   | 171000        | 1  | 1         | P  |
| 7440-47-3 | Chromium  | 0.41          | В  |           | P  |
| 7440-48-4 | Cobalt    | 1.1           | В  |           | P  |
| 7440-50-8 | Copper    | 1.3           | В  | 1         | P  |
| 7439-89-6 | Iron      | 18100         |    |           | P  |
| 7439-92-1 | Lead      | 1.2           | U  | 13        | P  |
| 7439-95-4 | Magnesium | 19100         |    |           | P  |
| 7439-96-5 | Manganese | 1810          |    | 1         | P  |
| 7440-02-0 | Nickel    | 2.6           | в  | 1         | P  |
| 7440-09-7 | Potassium | 3880          | в  | 1         | P  |
| 7782-49-2 | Selenium  | 3.3           | В  | 1         | P  |
| 7440-22-4 | Silver    | 0.56          | ש  |           | P  |
| 7439-97-6 | Mercury   | 0.047         | ען | N*J       | CV |
| 7440-23-5 | Sodium    | 17600         | 1  |           | P  |
| 7440-28-0 | Thallium  | 5.6           | ם  | [         | P  |
| 7440-62-2 | Vanadium  | 4.3           | В  |           | P  |
| 7440-66-6 | Zinc      | 6.0           | В  |           | P  |
|           |           |               |    |           |    |

| Color Before: | COLORLESS | Clarity Before: | CLEAR   | Texture:                              | NONE    |
|---------------|-----------|-----------------|---------|---------------------------------------|---------|
| Color After:  | COLORLESS | Clarity After:  | CLEAR   | Artifacts:                            | <u></u> |
| comments:     |           |                 |         |                                       |         |
|               |           |                 | ······· |                                       |         |
|               |           |                 |         | · · · · · · · · · · · · · · · · · · · |         |

70/864

## STL BUFFALO

## Delta Environmental Consultants. Inc.

-1-

|             |            |           | INORGANIC ANALYSIS DATA SHEET | SAMPLE     | NO.      |
|-------------|------------|-----------|-------------------------------|------------|----------|
| Contract:   | CN04-015   |           | ·                             | MW-118     |          |
| Lab Code:   | STLBFLO    | Case No.: | SAS No.:                      | SDG NO.:   | A05-B766 |
| Matrix (so  | il/water): | WATER     | Lab Sample ID:                | AD560336   |          |
| Level (low, | /med): L(  | WC        | Date Received:                | 10/20/2005 |          |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| CAS No.   | Analyte   | Concentration | c  | Q    | м          |
|-----------|-----------|---------------|----|------|------------|
| 7429-90-5 | Aluminum  | 6180          |    |      | Р          |
| 7440-36-0 | Antimony  | 3.3           | מן |      | P          |
| 7440-38-2 | Arsenic   | 6.2           | В  | 12   | P          |
| 7440-39-3 | Barium    | 130           | В  |      | P          |
| 7440-41-7 | Beryllium | 0.07          | ם  |      | P          |
| 7440-43-9 | Cadmium   | 0.39          | В  |      | <b>P</b> . |
| 7440-70-2 | Calcium   | 181000        |    | 1    | P          |
| 7440-47-3 | Chromium  | 6.9           | В  |      | P          |
| 7440-48-4 | Cobalt    | 714           |    |      | P          |
| 7440-50-8 | Copper    | 104           |    |      | P          |
| 7439-89-6 | Iron      | 7580          |    |      | P          |
| 7439-92-1 | Lead      | 32.1          |    |      | P          |
| 7439-95-4 | Magnesium | 50800         |    |      | P          |
| 7439-96-5 | Manganese | 2580          |    |      | P          |
| 7440-02-0 | Nickel    | 1400          |    |      | P          |
| 7440-09-7 | Potassium | 5060          |    |      | P          |
| 7782-49-2 | Selenium  | 3.9           | в  |      | P          |
| 7440-22-4 | Silver    | 0.56          | ש  |      | P          |
| 7439-97-6 | Mercury   | 0.047         | ען | HT J | CV         |
| 7440-23-5 | Sodium    | 371000        |    |      | P          |
| 7440-28-0 | Thallium  | 5.6           | ש  |      | ₽          |
| 7440-62-2 | Vanadium  | 10.6          | в  |      | P          |
| 7440-66-6 | Zinc      | 111           |    |      | P          |

| Color Before: | GRAY | Clarity Before: | CLOUDY | Texture:   | NONE                                  |
|---------------|------|-----------------|--------|------------|---------------------------------------|
| Color After:  | GRAY | Clarity After:  | CLOUDY | Artifacts: | · · · · · · · · · · · · · · · · · · · |
| mments:       |      |                 |        |            |                                       |
|               |      |                 |        |            |                                       |
|               |      |                 |        |            |                                       |
|               |      |                 |        |            |                                       |

-

71/864

89

### 72/864

#### STL BUFFALO Delta Environmental Consultants. Inc. -1-INORGANIC ANALYSIS DATA SHEET SAMPLE NO. MW-119 Contract: CN04-015 Lab Code: STLBFLO Case No.: SAS No.: SDG NO.: A05-B766 WATER AD560340 Matrix (soil/water): Lab Sample ID: Level (low/med): LOW Date Received: 10/20/2005

Concentration Units (ug/L or mg/kg dry weight): UG/L

| CAS No.       Analyte       Concentration       C       Q       M         7429-90-5       Aluminum       5630       P         7440-36-0       Antimony       3.6       B       P         7440-38-2       Arsenic       6.8       B       J       P         7440-39-3       Barium       42.1       B       P         7440-41-7       Beryllium       0.07       U       P         7440-43-9       Cadmium       0.19       U       P         7440-43-9       Calcium       91900       P         7440-47-3       Chromium       8.2       B       P         7440-48-4       Cobalt       5.7       B       P         7439-89-6       Iron       7570       P       P         7439-89-6       Iron       7570       P       P         7439-92-1       Lead       6.9       J       P         7439-95-4       Magnesium       24100       P       P         7440-02-0       Nickel       15.7       B       P         7440-02-0       Nickel       15.7       P       P         7440-02-0       Nickel       15.7       P                                                                                                     |      |        |           |               |     |          |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|-----------|---------------|-----|----------|----|
| 7440-36-0       Antimony       3.6       B       P         7440-38-2       Arsenic       6.8       B       J       P         7440-39-3       Barium       42.1       B       P         7440-41-7       Beryllium       0.07       U       P         7440-43-9       Cadmium       0.19       U       P         7440-43-9       Cadmium       91900       P         7440-43-9       Cadmium       91900       P         7440-47-3       Chromium       8.2       B       P         7440-48-4       Cobalt       5.7       B       P         7439-89-6       Iron       7570       P       P         7439-92-1       Lead       6.9       J       P         7439-95-4       Magnesium       24100       P         7440-02-0       Nickel       15.7       P       P         7440-02-0       Nickel       15.7       P       P <t< td=""><td>CAS</td><td>No.</td><td>Analyte</td><td>Concentration</td><td>C</td><td>Q.</td><td>M</td></t<>   | CAS  | No.    | Analyte   | Concentration | C   | Q.       | M  |
| 7440-38-2       Arsenic       6.8       B       J       P         7440-39-3       Barium       42.1       B       P         7440-41-7       Beryllium       0.07       U       P         7440-43-9       Cadmium       0.19       U       P         7440-43-9       Cadmium       0.19       U       P         7440-43-9       Calcium       91900       P         7440-47-3       Chromium       8.2       B       P         7440-48-4       Cobalt       5.7       B       P         7440-50-8       Copper       16.5       B       P         7439-89-6       Iron       7570       P         7439-92-1       Lead       6.9       J       P         7439-95-4       Magnesium       24100       P         7440-02-0       Nickel       15.7       B       P         7440-09-7       Potassium       15800       P         7440-09-7       Potassium       15800       P         7440-22-4       Silver       0.56       U       P         7440-23-5       Sodium       137000       P       P         7440-23-5       S                                                                                                 | 742  | 9-90-5 | Aluminum  | 5630          | 1   | 1        | P  |
| 7440-39-3       Barium       42.1       B       P         7440-41-7       Beryllium       0.07       U       P         7440-43-9       Cadmium       0.19       U       P         7440-43-9       Calcium       91900       P         7440-47-3       Chromium       8.2       B       P         7440-47-3       Chromium       8.2       B       P         7440-48-4       Cobalt       5.7       B       P         7440-50-8       Copper       16.5       B       P         7439-89-6       Iron       7570       P         7439-92-1       Lead       6.9       J       P         7439-95-4       Magnesium       24100       P         7440-02-0       Nickel       15.7       B       P         7440-02-0       Nickel       15.7       P       P         7440-02-0       Nickel       15.7       P       P         7440-02-0       Nickel       15.7       P       P         7440-02-7       Potassium       15800       P       P         7440-22-4       Silver       0.56       U       P         7440-23-5                                                                                                       | 744  | 0-36-0 | Antimony  | 3.6           | в   |          | P  |
| 7440-41-7       Beryllium       0.07       U       P         7440-43-9       Cadmium       0.19       U       P         7440-43-9       Calcium       91900       P         7440-43-9       Calcium       91900       P         7440-43-9       Calcium       91900       P         7440-47-3       Chromium       8.2       B       P         7440-48-4       Cobalt       5.7       B       P         7440-50-8       Copper       16.5       P       P         7439-89-6       Iron       7570       P         7439-92-1       Lead       6.9       J       P         7439-95-4       Magnesium       24100       P         7440-02-0       Nickel       15.7       P         7440-02-0       Nickel       15.7       P         7440-02-0       Nickel       15.7       P         7440-02-0       Nickel       15.7       P         7440-22-4       Silver       0.56       U       P         7440-22-4       Silver       0.56       U       P         7440-23-5       Sodium       137000       P         7440-28-0                                                                                                    | 744  | 0-38-2 | Arsenic   | 6.8           | в   | 12       | P  |
| 7440-43-9       Cadmium       0.19       U       P         7440-70-2       Calcium       91900       P         7440-47-3       Chromium       8.2       B       P         7440-48-4       Cobalt       5.7       B       P         7440-50-8       Copper       16.5       B       P         7439-89-6       Iron       7570       P         7439-92-1       Lead       6.9       J       P         7439-92-1       Lead       6.9       J       P         7439-95-4       Magnesium       24100       P         7440-02-0       Nickel       15.7       B       P         7440-02-0       Nickel       15.7       P       P         7440-22-4       Silver       0.56       U       P         7440-22-4       Silver       0.047       P       P         7440-23-5       Sodium       137000       P       P         7440-28-0 <td< td=""><td>744</td><td>0-39-3</td><td>Barium</td><td>42.1</td><td>в</td><td><b>]</b></td><td>P</td></td<> | 744  | 0-39-3 | Barium    | 42.1          | в   | <b>]</b> | P  |
| 7440-70-2       Calcium       91900       P         7440-47-3       Chromium       8.2       B       P         7440-48-4       Cobalt       5.7       B       P         7440-50-8       Copper       16.5       B       P         7439-89-6       Iron       7570       P         7439-92-1       Lead       6.9       J       P         7439-95-4       Magnesium       24100       P         7439-95-5       Manganese       379       P         7440-02-0       Nickel       15.7       B       P         7440-02-0       Nickel       15.7       B       P         7440-02-0       Nickel       15.7       P       P         7440-02-0       Nickel       15.7       P       P         7440-02-7       Potassium       15800       P       P         7440-22-4       Silver       0.047       P       P         7439-97-6       Mercury       0.047       P       P         7440-23-5       Sodium       137000       P       P         7440-28-0       Thallium       5.6       U       P         7440-28-0       Thall                                                                                                | 744  | 0-41-7 | Beryllium | 0.07          | U   |          | P  |
| 7440-47-3       Chromium       8.2       B       P         7440-48-4       Cobalt       5.7       B       P         7440-50-8       Copper       16.5       B       P         7439-89-6       Iron       7570       P         7439-92-1       Lead       6.9       J       P         7439-95-4       Magnesium       24100       P         7440-02-0       Nickel       15.7       B       P         7440-02-1       Selenium       9.9       B       P         7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       U       M* J       CV         7440-23-5       Sodium       137000       P       P         7440-28-0       Thallium       5.6       U       P         7440-28-0       Thallium       5.6       P       P                                                                                                                                                                   | 744  | 0-43-9 | Cadmium   | 0.19          | ם ו |          | P  |
| 7440-48-4       Cobalt       5.7       B       P         7440-50-8       Copper       16.5       B       P         7439-89-6       Iron       7570       P         7439-92-1       Lead       6.9       J       P         7439-92-1       Lead       6.9       J       P         7439-95-4       Magnesium       24100       P         7439-96-5       Manganese       379       P         7440-02-0       Nickel       15.7       B       P         7440-02-0       Nickel       15.7       B       P         7440-02-0       Nickel       15.7       P       P         7440-02-0       Nickel       15.7       P       P         7440-02-0       Nickel       15.7       P       P         7440-22-4       Selenium       9.9       B       P         7440-22-4       Silver       0.66       U       P         7440-23-5       Sodium       137000       P       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium       12.8       B       P                                                                                                                                | 744  | 0-70-2 | Calcium   | 91900         |     |          | P  |
| 7440-50-8       Copper       16.5       B       P         7439-89-6       Iron       7570       P         7439-92-1       Lead       6.9       J       P         7439-95-4       Magnesium       24100       P         7439-95-5       Manganese       379       P         7440-02-0       Nickel       15.7       B       P         7440-09-7       Potassium       15800       P         7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       P       P         7440-23-5       Sodium       137000       P       P         7440-28-0       Thallium       5.6       U       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 744  | 0-47-3 | Chromium  | 8.2           | В   |          | P  |
| 7439-89-6       Iron       7570       P         7439-92-1       Lead       6.9       J       P         7439-95-4       Magnesium       24100       P         7440-02-0       Nickel       15.7       B       P         7440-09-7       Potassium       15800       P         7782-49-2       Selenium       9.9       B       P         7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       V       N* J       CV         7440-23-5       Sodium       137000       P       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium       12.8       B       P                                                                                                                                                                                     | 7440 | 0-48-4 | Cobalt    | 5.7           | в   |          | P  |
| 7439-92-1       Lead       6.9       J       P         7439-95-4       Magnesium       24100       P         7439-95-4       Magnesium       24100       P         7439-95-5       Manganese       379       P         7440-02-0       Nickel       15.7       B       P         7440-09-7       Potassium       15800       P         7782-49-2       Selenium       9.9       B       P         7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       V       N** J       CV         7440-23-5       Sodium       137000       P       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium       12.8       B       P                                                                                                                                                                                                                                                                                                                                                                                                             | 7440 | 0-50-8 | Copper    | 16.5          | B   |          | P  |
| 7439-95-4       Magnesium       24100       P         7439-96-5       Manganese       379       P         7440-02-0       Nickel       15.7       P         7440-09-7       Potassium       15800       P         7440-22-4       Selenium       9.9       P         7439-97-6       Mercury       0.047       P         7440-23-5       Sodium       137000       P         7440-28-0       Thallium       5.6       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7439 | 9-89-6 | Iron      | 7570          |     |          | P  |
| 7439-96-5       Manganese       379       P         7440-02-0       Nickel       15.7       B       P         7440-09-7       Potassium       15800       P         7782-49-2       Selenium       9.9       B       P         7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       U       M* J       CV         7440-23-5       Sodium       137000       P       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium       12.8       B       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7439 | 9-92-1 | Lead      | 6.9           | 1   | 12       | P  |
| 7440-02-0       Nickel       15.7       B       P         7440-09-7       Potassium       15800       P         7782-49-2       Selenium       9.9       B       P         7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       U       N* J       CV         7440-23-5       Sodium       137000       P       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium       12.8       B       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7439 | 9-95-4 | Magnesium | 24100         |     |          | P  |
| 7440-09-7       Potassium       15800       P         7782-49-2       Selenium       9.9       P         7440-22-4       Silver       0.56       P         7439-97-6       Mercury       0.047       P         7440-23-5       Sodium       137000       P         7440-28-0       Thallium       5.6       P         7440-62-2       Vanadium       12.8       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7439 | 9-96-5 | Manganese | 379           |     |          | P  |
| 7782-49-2       Selenium       9.9       B       P         7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       U       N* J       CV         7440-23-5       Sodium       137000       P       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium       12.8       B       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7440 | 0-02-0 | Nickel    | 15.7          | в   |          | P  |
| 7440-22-4       Silver       0.56       U       P         7439-97-6       Mercury       0.047       U       M* J       CV         7440-23-5       Sodium       137000       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium       12.8       B       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7440 | )-09-7 | Potassium | 15800         |     |          | P  |
| 7439-97-6       Mercury       0.047       U       W* J       CV         7440-23-5       Sodium       137000       P         7440-28-0       Thallium       5.6       U       P         7440-62-2       Vanadium       12.8       B       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7782 | 2-49-2 | Selenium  | 9.9           | В   |          | P  |
| 7440-23-5       Sodium       137000       P         7440-28-0       Thallium       5.6       V       P         7440-62-2       Vanadium       12.8       B       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7440 | -22-4  | Silver    | 0.56          | υ   |          | P  |
| 7440-28-0         Thallium         5.6         U         P           7440-62-2         Vanadium         12.8         B         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7439 | 97-6   | Mercury   | 0.047         | υ   | ¥*.2     | CV |
| 7440-62-2   Vanadium   12.8   B   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7440 | -23-5  | Sodium    | 137000        |     |          | P  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7440 | -28-0  | Thallium  | 5.6           | υ   |          | P  |
| 7440-66-6 Zinc 34.7 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7440 | -62-2  | Vanadium  | 12.8          | В   |          | P  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7440 | -66-6  | Zinc      | 34.7          |     |          | P  |

| Color Before: | GRAY | Clarity Before: | CLOUDY                                | Texture:   | NONE |
|---------------|------|-----------------|---------------------------------------|------------|------|
| Color After:  | GRAY | Clarity After:  | CLOUDY                                | Artifacts: |      |
| Comments:     | · .  |                 | · · · · · · · · · · · · · · · · · · · |            |      |
|               |      |                 |                                       |            |      |

| STL BUF                                | FALO       | ÷ .       |                                             |            |          |
|----------------------------------------|------------|-----------|---------------------------------------------|------------|----------|
| ······································ |            | · ]       | Delta Environmental Consultants. Inc<br>-1- | 2.         |          |
|                                        |            |           | INORGANIC ANALYSIS DATA SHEET               | SAMPLE     | NO.      |
| Contract:                              | CN04-015   | · · · ·   |                                             | MW-120     |          |
| Lab Code:                              | STLBFLO    | Case No.: | SAS No.:                                    | SDG NO.:   | A05-B766 |
| Matrix (so                             | il/water): | WATER     | Lab Sample ID:                              | AD560341   |          |
| Level (low/                            | (med): L   | OW        | Date Received:                              | 10/20/2005 |          |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| Analyte   | Concentration                                                                                                                                                                                                                       | С                                                                                                                                                                                                                                                | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aluminum  | 209                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Antimony  | 3.3                                                                                                                                                                                                                                 | ט                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Arsenic   | 5.1                                                                                                                                                                                                                                 | в                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Barium    | 63.0                                                                                                                                                                                                                                | В                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Beryllium | 0.07                                                                                                                                                                                                                                | ט                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cadmium   | 0.19                                                                                                                                                                                                                                | טן                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calcium   | 91700                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chronium  | 0.56                                                                                                                                                                                                                                | в                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cobalt    | 4.1                                                                                                                                                                                                                                 | в                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Copper    | 2.9                                                                                                                                                                                                                                 | в                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Iron      | 428                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lead      | 1.2                                                                                                                                                                                                                                 | ס                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Magnesium | 11400                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Manganese | 4720                                                                                                                                                                                                                                | <b> </b>                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nickel    | 12.1                                                                                                                                                                                                                                | в                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Potassium | 31700                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Selenium  | 4.7                                                                                                                                                                                                                                 | в                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Silver    | 0.56                                                                                                                                                                                                                                | σ                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mercury   | 0.047                                                                                                                                                                                                                               | ש                                                                                                                                                                                                                                                | N*3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sodium    | 165000                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thallium  | 5.6                                                                                                                                                                                                                                 | υ                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vanadium  | 1.2                                                                                                                                                                                                                                 | в                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Zinc      | 40.0                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | Aluminum<br>Antimony<br>Arsenic<br>Barium<br>Beryllium<br>Cadmium<br>Calcium<br>Calcium<br>Cobalt<br>Copper<br>Iron<br>Lead<br>Magnesium<br>Manganese<br>Nickel<br>Potassium<br>Selenium<br>Silver<br>Mercury<br>Sodium<br>Thallium | Aluminum209Antimony3.3Arsenic5.1Barium63.0Beryllium0.07Cadmium0.19Calcium91700Chromium0.56Cobalt4.1Copper2.9Iron428Lead1.2Magnesium11400Manganese4720Nickel12.1Potassium31700Selenium4.7Silver0.56Mercury0.047Sodium165000Thallium5.6Vanadium1.2 | Aluminum       209         Antimony       3.3         Arsenic       5.1         Barium       63.0         Beryllium       0.07         Cadmium       0.19         Calcium       91700         Calcium       0.56         Cobalt       4.1         Copper       2.9         Iron       428         Lead       1.2         Magnesium       11400         Manganese       4720         Nickel       12.1         Potassium       31700         Selenium       4.7         Silver       0.56         Wercury       0.047         Marcury       2.9         Bilver       31700         Selenium       4.7         Bilver       0.56         Wercury       0.047         Vanadium       1.2 | Aluminum       209         Antimony       3.3       U         Antimony       3.3       U         Arsenic       5.1       B       )         Barium       63.0       B       )         Barium       0.07       U       )         Cadmium       0.19       U       )         Calcium       91700               )         Calcium       91700               )         Cobalt       4.1       B       )         Cobalt       4.1       B       )         Cobalt       4.1       B       )         Icobalt       1.2       U       )         Magnesium       11400       )       )         Manganese       4720       )       )         Selenium       4.7       B       ) |

| Color Before: | COLORLESS | Clarity Before: | CLEAR     | Texture:   | NONE |
|---------------|-----------|-----------------|-----------|------------|------|
| Color After:  | COLORLESS | Clarity After:  | CLEAR     | Artifacts: |      |
| ments:        |           | · .             | 4.<br>    |            |      |
| _             |           |                 | · · · · · |            |      |

-

73/864

٠

## 74/864

| STL BUFFALO | 5 | TL | BU | FF | A. | LO |  |
|-------------|---|----|----|----|----|----|--|
|-------------|---|----|----|----|----|----|--|

|          |                     | INORGANIC ANALYSIS DATA SHEET | <b>-</b> .                                                                    | SAMPLE                                                                                                            | NO.      |
|----------|---------------------|-------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------|
| CN04-015 |                     |                               |                                                                               | MW-122                                                                                                            |          |
| STLBFLO  | Case No.:           | SAS No.:                      | S                                                                             | DG NO.:                                                                                                           | A05-B766 |
| /water): | WATER               | Lab Sample ID:                | - AD56                                                                        | 0342                                                                                                              |          |
| ed): LO  | W                   | Date Received:                | : 10/2                                                                        | 0/2005                                                                                                            |          |
|          | STLBFLO<br>/water): | STLBFLO Case No.:             | STLBFLO     Case No.:     SAS No.:       /water):     WATER     Lab Sample ID | STLBFLO     Case No.:     SAS No.:     SAS No.:     SAS No.:       /water):     WATER     Lab Sample ID:     AD56 | CN04-015 |

| CAS No.   | Analyte   | Concentration | c | Q          | M  |
|-----------|-----------|---------------|---|------------|----|
| 7429-90-5 | Aluminum  | 39.6          | В | 1          | P  |
| 7440-36-0 | Antimony  | 3.3           | ח | 1          | P  |
| 7440-38-2 | Arsenic   | 3.3           | В | 17         | P  |
| 7440-39-3 | Barium    | 78.7          | в | 1          | P  |
| 7440-41-7 | Beryllium | 0.07          | ש | 1          | P  |
| 7440-43-9 | Cadmium   | 0.19          | D |            | P  |
| 7440-70-2 | Calcium   | 139000        |   |            | P  |
| 7440-47-3 | Chronium  | 0.29          | ש | ł          | P  |
| 7440-48-4 | Cobalt    | 7.4           | B | 1          | P  |
| 7440-50-8 | Copper    | 3.4           | В | 1          | P  |
| 7439-89-6 | Iron      | 42.6          | В |            | P  |
| 7439-92-1 | Lead      | 1.2           | D | 13         | P  |
| 7439-95-4 | Magnesium | 27500         |   | <b>I</b> . | P  |
| 7439-96-5 | Manganese | 829           |   |            | P  |
| 7440-02-0 | Nickel    | 17.2          | В |            | P  |
| 7440-09-7 | Potassium | 990           | B |            | P  |
| 7782-49-2 | Selenium  | 3.2           | B | 1          | P  |
| 7440-22-4 | Silver    | 0.56          | מ |            | P  |
| 7439-97-6 | Mercury   | 0.047         | σ | C *K       | CV |
| 7440-23-5 | Sodium    | 30200         |   |            | P  |
| 7440-28-0 | Thallium  | 5.6           | U |            | P  |
| 7440-62-2 | Vanadium  | 0.46          | σ |            | P  |
| 7440-66-6 | Zinc      | 2.1           | В |            | P  |

| Color Before: | COLORLESS | Clarity Before: | CLEAR   | Texture:   | NONE |
|---------------|-----------|-----------------|---------|------------|------|
| Color After:  | COLORLESS | Clarity After:  | CLEAR   | Artifacts: |      |
| comments:     |           |                 |         |            |      |
|               |           |                 | · · · · | ······     |      |

## 75/864

## STL BUFFALO

## Delta Environmental Consultants. Inc.

-1-

| · · · · · · · · · · · · · · · · · · · |           |           | INORGANIC ANALYSIS DATA | SHEET   | SAMPLE     | NO.      |
|---------------------------------------|-----------|-----------|-------------------------|---------|------------|----------|
| Contract:                             | CN04-015  |           |                         |         | MW-123     |          |
| Lab Code:                             | STLBFLO   | Case No.: | SAS No.:                |         | SDG NO.:   | A05-B766 |
| latrix (soi                           | 1/water): | WATER     | Lab Sam                 | ple ID: | AD560343   |          |
| Level (low/                           | /med): L( | WC        | Date Re                 | ceived: | 10/20/2005 |          |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| CAS No.   | Analyte   | Concentration | C  | Q    | M  |
|-----------|-----------|---------------|----|------|----|
| 7429-90-5 | Aluminum  | 9390          | 1  |      | P  |
| 7440-36-0 | Antimony  | 3.3           | סן | l    | P  |
| 7440-38-2 | Arsenic   | 15.9          | ·  | 17   | P  |
| 7440-39-3 | Barium    | 148           | в  |      | P  |
| 7440-41-7 | Beryllium | 0.27          | в  | J    | P  |
| 7440-43-9 | Cadmium   | 0.19          | σ  |      | P  |
| 7440-70-2 | Calcium   | 238000        |    |      | P  |
| 7440-47-3 | Chromium  | 11.0          |    |      | P  |
| 7440-48-4 | Cobalt    | 9.2           | в  |      | P  |
| 7440-50-8 | Copper    | 14.9          | в  |      | P  |
| 7439-89-6 | Iron      | 17400         | Γ  |      | P  |
| 7439-92-1 | Lead      | 5.9           |    | J    | P  |
| 7439-95-4 | Magnesium | 89200         |    |      | P  |
| 7439-96-5 | Manganese | 735           | ĺ  |      | P  |
| 7440-02-0 | Nickel    | 42.6          |    |      | P  |
| 7440-09-7 | Potassium | 4480          | В  |      | P  |
| 7782-49-2 | Selenium  | 3.2           | ס  |      | P  |
| 7440-22-4 | Silver    | 0.56          | σ  |      | P  |
| 7439-97-6 | Mercury   | 0.047         | ט  | NF J | CV |
| 7440-23-5 | Sodium    | 38300         |    |      | P  |
| 7440-28-0 | Thallium  | 5.6           | U  |      | P  |
| 7440-62-2 | Vanadium  | 20.2          | в  |      | P  |
| 7440-66-6 | Zinc      | 42.0          |    |      | P  |

| Color Before: | GRAY | Clarity Before: | CLOUDY | Texture:   | NONE |
|---------------|------|-----------------|--------|------------|------|
| Color After:  | GRAY | Clarity After:  | CLOUDY | Artifacts: |      |
| mments:       |      | · · ·           |        |            |      |
|               |      |                 |        |            |      |

10/20/2005

425.1

Client Sample No. MW-114 b Name: STL Buffalo Contract: \_\_\_\_\_ Case No.: \_\_\_\_ Lab Code: <u>RECNY</u> SAS No.: SDG No.: \_\_\_\_\_ Matrix (soil/water): WATER Lab Sample ID: A5B76605 % Solids: 0.0 Date Samp/Recv: 10/18/2005 10/20/2005 Units of Method Analyzed С Parameter Name Measure Result Q M Number Date

MG/L

0.030 U

Comments:

MBAS - Surfactants

77/864

|                                    |                     |          |     |       | (         | Client Samp      | le No.           |
|------------------------------------|---------------------|----------|-----|-------|-----------|------------------|------------------|
| ab Name: <u>STL Buffalo</u>        | Contract:           |          |     |       | []        | MW-115           |                  |
| Lab Code: <u>RECNY</u> Case No.: _ | SAS No.:            |          |     |       | ł         | SDG No.:         |                  |
| Matrix (soil/water): <u>WATER</u>  |                     | Lab Samp | ple | D:    | <u>A5</u> | B76604           |                  |
| % Solids:0.0                       |                     | Date San | np/ | Recv: | <u>10</u> | /18/2005 10      | /20/2005         |
| Parameter Name                     | Units of<br>Measure | Result   | с   | Q     | м         | Method<br>Number | Analyzed<br>Date |
| MBAS - Surfactants                 | MG/L                | 0.21     |     |       |           | 425.1            | 10/20/2005       |
|                                    |                     |          |     |       |           | · .              |                  |

Conments:

## 78/864

Client Sample No.

| h Mone OTT Duffe         |           | Contract |         |     |           | - 1       | MW-116      |          |
|--------------------------|-----------|----------|---------|-----|-----------|-----------|-------------|----------|
| b Name: <u>STL Buffa</u> | <u>10</u> | Contract |         |     | <b></b> . | _         |             |          |
| Lab Code: <u>RECNY</u>   | Case No.: | SAS No.  | ·       |     |           | 5         | SDG No.:    |          |
| Matrix (soil/water)      | : WATER   |          | Lab Sam | ple | e ID:     | <u>A5</u> | B76606      |          |
| % Solids:                | 0.0       |          | Date Sa | mp/ | Recv:     | <u>10</u> | /18/2005 10 | /20/2005 |
|                          |           | Units of |         |     |           |           | Method      | Analyzed |

| Parameter Name     | Measure | Result | С | Q | М | Number | Date       |  |
|--------------------|---------|--------|---|---|---|--------|------------|--|
| MBAS - Surfactants | MG/L    | 0.030  | σ |   |   | 425.1  | 10/20/2005 |  |

Comments:

|                         |                   | Wet (    | let Chemistry Analysis |         |     |       |             | 79<br>Client Samp         | /864<br>Le No.   |
|-------------------------|-------------------|----------|------------------------|---------|-----|-------|-------------|---------------------------|------------------|
| - b Name: <u>SIL Bu</u> | <u>ffalo</u>      |          | Contract               | t:      |     | -     | ľ           | W-117                     |                  |
| Lab Code: <u>RECNY</u>  | Case No.:         | <u> </u> | SAS No                 | .:      |     |       | 2           | SDG No.:                  |                  |
| Matrix (soil/wat        | er): <u>WATER</u> |          |                        | Lab Sam | ple | D:    | <u>A5</u> 1 | 376601                    |                  |
| % Solids:               | 0.0               |          | •                      | Date Sa | mp/ | Recv: | <u>10</u>   | /18/2005 10               | /20/2005         |
|                         | Parameter Name    |          | Units of<br>Measure    | Result  | с   | Q     | м           | Method<br>Number          | Analyzed<br>Date |
| MBAS - Surfacta         | nts               |          | MG/L                   | 0.45    |     |       |             | 425.1                     | 10/20/2005       |
| Comments:               |                   |          |                        |         |     |       |             | ана<br>1910 г.<br>1910 г. |                  |
|                         |                   |          | ·····                  |         |     |       |             |                           |                  |
|                         |                   | <br>     |                        |         |     |       |             |                           |                  |
|                         |                   |          |                        |         |     |       |             |                           |                  |
| ,                       |                   |          |                        |         |     |       |             |                           |                  |
|                         |                   |          |                        |         |     |       |             |                           | · · ·            |
|                         |                   |          |                        |         |     |       |             |                           |                  |
|                         |                   |          |                        |         |     |       |             | ,                         |                  |
|                         |                   |          |                        | · .     |     |       |             |                           |                  |
|                         | •                 |          |                        |         |     |       |             |                           |                  |

-

10/20/2005

-

425.1

|                            |           | -                   | -       |     |       | (         | Client Samp      | le No.                                |
|----------------------------|-----------|---------------------|---------|-----|-------|-----------|------------------|---------------------------------------|
| b Name: <u>STL Buffalo</u> |           | Contract            | t:      |     |       | [         | MW-117A          | · · · · · · · · · · · · · · · · · · · |
| Lab Code: <u>RECNY</u>     | Case No.: | SAS No              | .:      |     |       |           | SDG No.:         |                                       |
| Matrix (soil/water):       | WATER     |                     | Lab Sam | ple | e ID: | <u>A5</u> | B76602           |                                       |
| % Solids:                  | 0.0       |                     | Date Sa | ٣Þ  | Recv: | <u>10</u> | /18/2005 10      | /20/2005                              |
| Parama                     | eter Name | Units of<br>Measure | Result  | С   | Q     | м         | Method<br>Number | Analyzed<br>Date                      |

0.42

MG/L

Comments:

MBAS - Surfactants

## 81/864

-

Client Sample No.

| b Name: <u>STL Buffa</u> | 10        | Contract: |                 | MW-118               |                                        |
|--------------------------|-----------|-----------|-----------------|----------------------|----------------------------------------|
|                          |           |           |                 |                      |                                        |
| Lab Code: <u>RECNY</u>   | Case No.: | SAS No.:  |                 | SDG No.:             | ······································ |
| Matrix (soil/water)      | : WATER   |           | Lab Sample ID:  | A5B76603             |                                        |
| % Solids:                | 0.0       |           | Date Samp/Recv: | <u>10/18/2005 10</u> | /20/2005                               |
| ·                        |           |           |                 |                      | r                                      |
|                          |           | Units of  |                 | Method               | Analyz                                 |

| Parameter Name     | Units of<br>Measure | Result | с | Q | м | Method<br>Number | Analyzed<br>Date |
|--------------------|---------------------|--------|---|---|---|------------------|------------------|
| MBAS - Surfactants | MG/L                | 1.4    |   |   |   | 425.1            | 10/20/2005       |

Comments:

82/864

|                            |           |                     |          |     |       | (         | Client Samp      | le No.                                |
|----------------------------|-----------|---------------------|----------|-----|-------|-----------|------------------|---------------------------------------|
| b Name: <u>STL Buffalo</u> |           | Contract            | :        |     |       |           | MW-119           | · · · · · · · · · · · · · · · · · · · |
| Lab Code: <u>RECNY</u>     | Case No.: | SAS No              | .:       |     |       | 8         | SDG No.:         | -<br>-                                |
| Matrix (soil/water):       | WATER     |                     | Lab Samp | ple | e ID: | <u>A5</u> | B76607           |                                       |
| % Solids:                  | 0.0       |                     | Date Sar | πp/ | Recv: | <u>10</u> | /18/2005 10      | /20/2005                              |
| Param                      | eter Name | Units of<br>Measure | Result   | C   | Q     | м         | Method<br>Number | Analyzed<br>Date                      |
| MBAS - Surfactants         |           | MG/L                | 0.080    |     |       |           | 425.1            | 10/20/2005                            |

Comments:

## 83/864

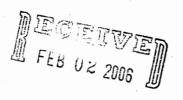
-

Client Sample No.

|                        |            | ÷ .                 |                                       |     |       | 6         | W-120            |                                       |
|------------------------|------------|---------------------|---------------------------------------|-----|-------|-----------|------------------|---------------------------------------|
| Tab Name: STL Buffalo  | 2          | Contract            | :                                     |     |       | . L       |                  |                                       |
| Lab Code: <u>RECNY</u> | Case No.:  | SAS No.             | :                                     |     |       | :         | SDG No.:         |                                       |
| Matrix (soil/water):   | WATER      |                     | Lab Sam                               | ple | e D:  | <u>A5</u> | B76608           |                                       |
| % Solids:              | 0.0        |                     | Date Sar                              | np/ | Recv: | <u>10</u> | /18/2005 10      | /20/2005                              |
| Param                  | neter Name | Units of<br>Measure | Result                                | с   | Q     | м         | Method<br>Number | Analyzed<br>Date                      |
| MBAS - Surfactants_    |            | MG/L                | 0.040                                 |     |       |           | 425.1            | 10/20/2005                            |
| Comments:              |            |                     |                                       |     | -     |           |                  |                                       |
|                        | ·          |                     | · · · · · · · · · · · · · · · · · · · |     |       |           |                  | · · · · · · · · · · · · · · · · · · · |
|                        |            |                     |                                       |     |       |           |                  | ······                                |
|                        |            |                     |                                       |     |       |           |                  |                                       |

## 84/864

Client Sample No.


| b Name: <u>SIL Buffa</u> | 10        | Contract:   |                | MW-122      |          |  |
|--------------------------|-----------|-------------|----------------|-------------|----------|--|
| Lab Code: RECNY          | Case No.: | SAS No.:    |                | SDG No.:    |          |  |
| Matrix (soil/water)      |           | Lab Sample  |                |             |          |  |
| % Solids:                | 0.0       | Date Samp/R | ecv: <u>10</u> | /18/2005 10 | /20/2005 |  |
|                          |           | Units of    | <u> </u>       | Method      | Analyzed |  |

| Parameter Name     | Units of<br>Measure | Result | с | Q | м | Method<br>Number | Analyzed<br>Date |
|--------------------|---------------------|--------|---|---|---|------------------|------------------|
| MBAS - Surfactants | MG/L                | 0.030  | ט |   |   | 425.1            | 10/20/2005       |

Comments:

## 85/864

|                                   |                     |          |         | (           | Client Samp      | ole No.          |
|-----------------------------------|---------------------|----------|---------|-------------|------------------|------------------|
| Tab Name: <u>SIL Buffalo</u>      | Contrac             | :t:      |         | 1           | MW-123           |                  |
| Lab Code: <u>RECNY</u> Case No.   | : SAS No            | ).:      |         | :           | SDG No.:         | •<br>•           |
| Matrix (soil/water): <u>WATER</u> |                     | Lab Samp | ole D:  | <u>A5</u>   | B76611           |                  |
| % Solids:0.0                      |                     | Date Sam | p/Recv: | : <u>10</u> | /18/2005 10      | )/20/2005        |
| Parameter Name                    | Units of<br>Measure |          | сQ      | м           | Method<br>Number | Analyzed<br>Date |
| MBAS - Surfactants                | MG/L                | 0.030    | υ       |             | 425.1            | 10/20/2005       |
| Comments:                         |                     |          |         |             | · · ·            |                  |
|                                   |                     |          |         |             |                  |                  |
|                                   |                     |          |         |             | •<br>•           |                  |
|                                   |                     |          |         |             |                  |                  |





STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A06-0397, A06-0438

STL Project#: NY4A9341 SDG#: 0397 Site Name: <u>Delta Environmental Consultants, Inc.</u> Task: Geneva Site - water

> Mark Schumacher Delta Environmental 104 Jamesville Rd. Syracuse, NY 13214

> > SIL Buffalo

Brian J, Fischer Project Manager Fischer

01/31/2006

## STL Buffalo Current Certifications

## As of 12/28/2005

| STATE          | Program                     | Cert # / Lab ID  |
|----------------|-----------------------------|------------------|
| AFCEE          | AFCEE                       |                  |
| Arkansas       | SDWA, CWA, RCRA, SOIL       | 03-054-D/88-0686 |
| California     | NELAP CWA, RCRA             | 01169CA          |
| Connecticut    | SDWA, CWA, RCRA, SOIL       | PH-0568          |
| Florida        | NELAP CWA, RCRA             | E87672           |
| Georgia        | SDWA                        | 956              |
| Illinois       | NELAP SDWA, CWA, RCRA       | 200003           |
| lowa           | SW/CS                       | 374              |
| Kansas         | NELAP SDWA, CWA, RCRA       | E-10187          |
| Kentucky       | SDWA                        | 90029            |
| Kentucky UST   | UST                         | 30               |
| Louisiana      | NELAP CWA, RCRA             | 2031             |
| Maine          | SDWA, CWA                   | NY044            |
| Maryland       | SDWA                        | 294              |
| Massachusetts  | SDWA, CWA                   | M-NY044          |
| Michigan       | SDWA                        | 9937             |
| Minnesota      | SDWA, CWA, RCRA             | 036-999-337      |
| New Hampshire  | NELAP SDWA, CWA             | 233701           |
| New Jersey     | SDWA, CWA, RCRA, CLP        | NY455            |
| New York       | NELAP, AIR, SDWA, CWA, RCRA | 10026            |
| Oklahoma       | CWA, RCRA                   | 9421             |
| Pennsylvania   | Env. Lab Reg.               | 68-281           |
| South Carolina | RCRA                        | 91013            |
| Tennessee      | SDWA                        | 02970            |
| USACE          | USACE                       |                  |
| USDA           | FOREIGN SOIL PERMIT         | S-41579          |
| USDOE          | Department of Energy        | DOECAP-STB       |
| Virginia       | SDWA                        | 278              |
| Washington     | CWA, RCRA                   | C254             |
| West Virginia  | CWA,RCRA                    | 252              |
| Wisconsin      | CWA                         | 998310390        |

;

# Sample Data Summary Package

## 4/826

### SAMPLE SUMMARY

|               |                  |        | SAMP       | LED   | RECEIVI    | SD ·  |
|---------------|------------------|--------|------------|-------|------------|-------|
| LAB SAMPLE ID | CLIENT SAMPLE ID | MATRIX | DATE       | TIME  | DATE       | TIME  |
| A6039708      | MW-114           | WATER  |            |       | 01/12/2006 |       |
| A6039704      | MW-115           | WATER  |            |       | 01/12/2006 |       |
| A6039707      | MW-116           | WATER  | 01/11/2006 | 13:30 | 01/12/2006 | 14:00 |
| A6039702      | MW-117           | WATER  |            |       | 01/12/2006 |       |
| A6039702MS    | MW-117 MS        | WATER  |            |       | 01/12/2006 |       |
| A6039702SD    | MW-117 SD        | WATER  |            |       | 01/12/2006 |       |
| A6039703      | MW-117A          | WATER  |            |       | 01/12/2006 |       |
| A6039705      | MW-118           | WATER  |            |       | 01/12/2006 |       |
| A6039706      | MW-119           | WATER  |            |       | 01/12/2006 |       |
| A6043803      | MW-120           | WATER  | 01/12/2006 | 11:30 | 01/13/2006 | 08:50 |
| A6043802      | MW-121           | WATER  | 01/12/2006 | 10:30 | 01/13/2006 | 08:50 |
| A6039701      | MW-122           | WATER  | 01/11/2006 | 10:15 | 01/12/2006 | 14:00 |
| A6043801      | MW-123           | WATER  | 01/12/2006 | 09:45 | 01/13/2006 | 08:50 |
| A6043804      | TRIP BLANK       | WATER  | 01/12/2006 |       | 01/13/2006 | 08:50 |
|               |                  |        |            |       |            |       |

### METHODS SUMMARY

## Job#: A06-0397,A06-0438

### SIL Project#: <u>NY4A9341</u> SDG#: <u>0397</u> Site Name: <u>Delta Environmental Consultants, Inc.</u>

| PARAMETER                                               |                                  | ALYTICAL<br>METHOD | <b>J</b> |
|---------------------------------------------------------|----------------------------------|--------------------|----------|
| DELTA - AQ - ASP 2000/8260 - TCL VOLATILES              | ASP00                            | 8260               |          |
| Aluminum - Total<br>Antimony - Total<br>Arsenic - Total | ASPO0<br>ASPO0<br>ASPO0          | 6010<br>6010       |          |
| Barium - Total<br>Beryllium - Total<br>Cadmium - Total  | ASPOO<br>ASPOO<br>ASPOO          | 6010               |          |
| Calcium - Total<br>Chromium - Total<br>Cobalt - Total   | ASPOO<br>ASPOO<br>ASPOO          | 6010               |          |
| Copper - Total<br>Iron - Total                          | ASP00<br>ASP00                   | 6010<br>6010       |          |
| Lead - Total<br>Magnesium - Total<br>Manganese - Total  | ASP00<br>ASP00<br>ASP00          | 6010<br>6010       |          |
| Mercury - Total<br>Nickel - Total<br>Potassium - Total  | ASP00<br>ASP00<br>ASP00          | 6010               |          |
| Selenium - Total<br>Silver - Total                      | ASP00<br>ASP00<br>ASP00          |                    |          |
| Sodium - Total<br>Thallium - Total<br>Vanadium - Total  | ASP00<br>ASP00<br>ASP00<br>ASP00 | 6010<br>6010       |          |
| Zinc - Total<br>MBAS - Surfactants                      | ASP00                            | 425.1              |          |

ASP00

"Analytical Services Protocol", New York State Department of Conservation, June 2000.

#### Job#: A06-0397, A06-0438

#### STL Project#: <u>NY4A9341</u> SDG#: <u>0397</u> Site Name: Delta Environmental Consultants, Inc.

#### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

#### Sample Receipt Comments

A06-0397

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

A06-0438

Sample Cooler(s) were received at the following temperature(s); 4@2.0 °C All samples were received in good condition.

#### GC/MS Volatile Data

Due to a required dilution, MW-118 (A6039705) was analyzed past the EPA-recommended holding time; the original analysis of the sample was performed within holding time. The out-of-hold, diluted result is confirmed by the undiluted result; both sets of data have been reported. There is no impact on data usability.

Sample MW-116 (A6039707DL) was initially analyzed at a dilution consistent with history, within holding times. Due to over-dilution, the sample was reanalyzed at a lesser dilution, past the EPA-recommended holding time. Both sets of data have been reported.

The Volatile Holding Blank, although analyzed after all samples, was analyzed outside of the analytical holding time.

All samples were preserved to a pH less than 2.

#### Metals Data

The recoveries of sample MW-117 Matrix Spike and Matrix Spike Duplicate exhibited results below the quality control limits for Iron. Sample matrix is suspect. However, the LFB was acceptable.

The recoveries of sample MW-117 Post Spike exhibited results below the quality control limits for Calcium and Silver. However, the LFB was acceptable.

The relative percent difference between sample MW-117 and Matrix Duplicate exceeded the quality control criteria for Arsenic. However, the LFB was acceptable.

#### Wet Chemistry Data

The recovery of sample MW-117 matrix spike and matrix spike duplicate exhibited results above the quality control limits for Surfactants. However, the LCS was acceptable.

Samples MW-115 and MW-118 for MBAS analysis were analyzed at the dilutions indicated via historic results. Results are reported as elevated non-detects. Due to holding time limitations, samples were not reanalyzed.

#### \*\*\*\*\*\*

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Brian J. Fischer Project Manager

1-31-01 Date

Date: 01/31/2006 Time: 17:27:18

| Client Sample ID | Lab Sample ID | Parameter (Inorganic)/Method (Organic) | Dilution | Code |
|------------------|---------------|----------------------------------------|----------|------|
| MW-122           | A6039701      | 8260                                   | 10.00    | 008  |
| MW-117           | A6039702      | MBAS - Surfactants                     | 4.00     | 008  |
| MW-117 MS        | A6039702MS    | MBAS - Surfactants                     | 4.00     | 008  |
| MW-117 SD        | A6039702SD    | MBAS - Surfactants                     | 4.00     | 008  |
| MW-117A          | A6039703      | MBAS - Surfactants                     | 4.00     | 008  |
| MW-115           | A6039704      | MBAS - Surfactants                     | 2.00     | 008  |
| MW-118           | A6039705      | 8260                                   | 25.00    | 008  |
| MW-118           | A6039705      | MBAS - Surfactants                     | 100.00   | 008  |
| MW-118           | A6039705DL    | 8260                                   | 50.00    | 008  |
| MW-116           | A6039707      | 8260                                   | 5.00     | 800  |
| MW-116           | A6039707DL    | 8260                                   | 25.00    | 008  |
| MW-120           | A6043803      | MBAS - Surfactants                     | 2.00     | 800  |
|                  |               |                                        |          |      |

Dilution Code Definition:

002 - sample matrix effects

003 - excessive foaming

004 - high levels of non-target compounds

005 - sample matrix resulted in method non-compliance for an Internal Standard

006 - sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

009 - sample turbidity

010 - sample color

011 - insufficient volume for lower dilution

012 - sample viscosity

013 - other

### SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

### LAB NAME: SEVERN TRENT LABORATORIES, INC.

| CUSTOMER<br>SAMPLE ID | LABORATORY<br>SAMPLE ID | ANALYTICAL REQUIREMENTS |              |            |             |        |              |                  |
|-----------------------|-------------------------|-------------------------|--------------|------------|-------------|--------|--------------|------------------|
|                       |                         | VOA<br>GC/MS            | BNA<br>GC/MS | VOA<br>GC  | PEST<br>PCB | METALS | TCLP<br>HERB | WATER<br>QUALITY |
| MW-114                | A6039708                | ASP00                   | -            | -          | -           | ASP00  | -            | ASP00            |
| MW-115                | A6039704                | ASP00                   | -            | -          | -           | ASP00  | · _          | ASP00            |
| MW-116                | A6039707                | ASP00                   | -            | -          | -           | ASP00  | -            | ASP00            |
| MW-117                | A6039702                | ASP00                   | -            | -          | -           | ASP00  | -            | ASP00            |
| MW-117A               | A6039703                | ASP00                   | -            | -          | -           | ASP00  | ·            | ASP00            |
| MW-118                | A6039705                | ASP00                   | -            | -          | -           | ASP00  | -            | ASP00            |
| MW-119                | A6039706                | ASP00                   | -            | -          | -           | ASP00  | •            | ASP00            |
| MW-120                | A6043803                | ASP00                   |              | <b>-</b> · | -           | ASP00  |              | ASP00            |
| MW-121                | A6043802                | ASP00                   | -            | -          | -           | ASP00  | -            | ASP00            |
| MW-122                | A6039701                | ASP00                   | -            | -          | -           | ASP00  |              | ASP00            |
| MW-123                | A6043801                | ASP00                   | -            | -          | -           | ASP00  | -            | ASP00            |

# SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE ANALYSIS

LAB NAME: SEVERN TRENT LABORATORIES, INC.

|                          | LAB NAME. SEVENN IKENI LABORATORIES, INC. |                   |                            |                   |                  |  |  |  |  |
|--------------------------|-------------------------------------------|-------------------|----------------------------|-------------------|------------------|--|--|--|--|
| SAMPLE<br>IDENTIFICATION | MATRIX                                    | DATE<br>COLLECTED | DATE<br>RECEIVED<br>AT LAB | DATE<br>EXTRACTED | DATE<br>ANALYZED |  |  |  |  |
| MW-114                   | WATER                                     | 01/11/2006        | 01/12/2006                 | -                 | 01/20/2006       |  |  |  |  |
| MW-115                   | WATER                                     | 01/11/2006        | 01/12/2006                 | -                 | 01/20/2006       |  |  |  |  |
| MW-116                   | WATER                                     | 01/11/2006        | 01/12/2006                 | -                 | 01/20 - 23/2006  |  |  |  |  |
| MW-117                   | WATER                                     | 01/11/2006        | 01/12/2006                 | -                 | 01/19/2006       |  |  |  |  |
| MW-117A                  | WATER                                     | 01/11/2006        | 01/12/2006                 | •                 | 01/19/2006       |  |  |  |  |
| MW-118                   | WATER                                     | 01/11/2006        | 01/12/2006                 | •                 | 01/20 - 23/2006  |  |  |  |  |
| MW-119                   | WATER                                     | 01/11/2006        | 01/12/2006                 | -                 | 01/20/2006       |  |  |  |  |
| MW-120                   | WATER                                     | 01/12/2006        | 01/13/2006                 | -                 | 01/19/2006       |  |  |  |  |
| MW-121                   | WATER                                     | 01/12/2006        | 01/13/2006                 | -                 | 01/19/2006       |  |  |  |  |
| MW-122                   | WATER                                     | 01/11/2006        | 01/12/2006                 | -                 | 01/20/2006       |  |  |  |  |
| MW-123                   | WATER                                     | 01/12/2006        | 01/13/2006                 | -                 | 01/20/2006       |  |  |  |  |

### SAMPLE PREPARATION AND ANALYTICAL SUMMARY INORGANIC ANALYSIS

### LAB NAME: SEVERN TRENT LABORATORIES, INC.

| SAMPLE<br>IDENTIFICATION | MATRIX | METALS<br>REQUESTED | DATE<br>RECEIVED<br>AT LAB | DATE<br>DIGESTED | DATE<br>ANALYZED |
|--------------------------|--------|---------------------|----------------------------|------------------|------------------|
| MW-114                   | WATER  | 23 metal            | 01/12/2006                 | 01/13 - 16/2006  | 01/13 - 17/2006  |
| MW-115                   | WATER  | 23 metal            | 01/12/2006                 | 01/13 - 16/2006  | 01/13 - 17/2006  |
| MW-116                   | WATER  | 23 metal            | 01/12/2006                 | 01/13 -16/2006   | 01/13 - 17/2006  |
| MW-117                   | WATER  | 23 metal            | 01/12/2006                 | 01/13 - 16/2006  | 01/13 - 17/2006  |
| MW-117A                  | WATER  | 23 metal            | 01/12/2006                 | 01/13 - 16/2006  | 01/13 - 17/2006  |
| MW-118                   | WATER  | 23 metal            | 01/12/2006                 | 01/13 - 16/2006  | 01/13 - 17/2006  |
| MW-119                   | WATER  | 23 metal            | 01/12/2006                 | 01/13 - 16/2006  | 01/13 - 17/2006  |
| MW-120                   | WATER  | 23 metal            | 01/13/2006                 | 01/16/2006       | 01/16 - 17/2006  |
| MW-121                   | WATER  | 23 metal            | 01/13/2006                 | 01/16/2006       | 01/16 - 17/2006  |
| MW-122                   | WATER  | 23 metal            | 01/12/2006                 | 01/13 - 16/2006  | 01/13 - 17/2006  |
| MW-123                   | WATER  | 23 metal            | 01/13/2006                 | 01/16/2006       | 01/16 - 17/2006  |

### SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

| LAB NAME: SEVERN TRENT LABORATORIES, INC. |        |                        |                      |                       |                    |  |  |  |  |  |
|-------------------------------------------|--------|------------------------|----------------------|-----------------------|--------------------|--|--|--|--|--|
| SAMPLE<br>IDENTIFICATION                  | MATRIX | ANALYTICAL<br>PROTOCOL | EXTRACTION<br>METHOD | AUXILIARY<br>CLEAN UP | DIL/CONC<br>FACTOR |  |  |  |  |  |
| MW-114                                    | WATER  | ASP00                  | -                    | AS REQUIRED           | AS REQUIRED        |  |  |  |  |  |
| MW-115                                    | WATER  | ASP00                  | -                    | AS REQUIRED           | AS REQUIRED        |  |  |  |  |  |
| MW-116                                    | WATER  | ASP00                  | -                    | AS REQUIRED           | AS REQUIRED        |  |  |  |  |  |
| MW-117                                    | WATER  | ASP00                  | -                    | AS REQUIRED           | AS REQUIRED        |  |  |  |  |  |
| MW-117A                                   | WATER  | ASP00                  |                      | AS REQUIRED           | AS REQUIRED        |  |  |  |  |  |
| MW-118                                    | WATER  | ASP00                  | -                    | AS REQUIRED           | AS REQUIRED        |  |  |  |  |  |
| MW-119                                    | WATER  | ASP00                  |                      | AS REQUIRED           | AS REQUIRED        |  |  |  |  |  |
| MW-120                                    | WATER  | ASP00                  | <u>-</u>             | AS REQUIRED           | AS REQUIRED        |  |  |  |  |  |
| MW-121                                    | WATER  | ASP00                  | -                    | AS REQUIRED           | AS REQUIRED        |  |  |  |  |  |
| MW-122                                    | WATER  | ASP00                  | -                    | AS REQUIRED           | AS REQUIRED        |  |  |  |  |  |
| MW-123                                    | WATER  | ASP00                  | -                    | AS REQUIRED           | AS REQUIRED        |  |  |  |  |  |

### SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSIS

## LAB NAME: SEVERN TRENT LABORATORIES, INC.

| LAB NAME. SEVEN TRE | MATRIX | ANALYTICAL<br>PROTOCOL | DIGESTION<br>PROCEDURE | MATRIX<br>MODIFIER | DIL/CONC<br>FACTOR |
|---------------------|--------|------------------------|------------------------|--------------------|--------------------|
| MW-114              | WATER  | ASP00                  | ASP00                  | AS REQUIRED        | AS REQUIRED        |
| MW-115              | WATER  | ASP00                  | ASP00                  | AS REQUIRED        | AS REQUIRED        |
| MW-116              | WATER  | ASP00                  | ASP00                  | AS REQUIRED        | AS REQUIRED        |
| MW-117              | WATER  | ASP00                  | ASP00                  | AS REQUIRED        | AS REQUIRED        |
| MW-117A             | WATER  | ASP00                  | ASP00                  | AS REQUIRED        | AS REQUIRED        |
| MW-118              | WATER  | ASP00                  | ASP00                  | AS REQUIRED        | AS REQUIRED        |
| IW-119              | WATER  | ASP00                  | ASP00                  | AS REQUIRED        | AS REQUIRED        |
| MW-120              | WATER  | ASP00                  | ASP00                  | AS REQUIRED        | AS REQUIRED        |
| MW-121              | WATER  | ASP00                  | ASP00                  | AS REQUIRED        | AS REQUIRED        |
| MW-122              | WATER  | ASP00                  | ASP00                  | AS REQUIRED        | AS REQUIRED        |
| MW-123              | WATER  | ASP00                  | ASP00                  | AS REQUIRED        | AS REQUIRED        |



## DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

#### ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- 1 Indicates coelution.
- Indicates analysis is not within the guality control limits.

#### INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- \* Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

## DELTA - AQ - ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

## 15/826

Client No.

|                           |                              |                                        |              | 011010        |             |
|---------------------------|------------------------------|----------------------------------------|--------------|---------------|-------------|
| D Name CTT Duffe          | le Contract.                 |                                        | MW-11-       | 4             |             |
| D Naile: <u>SIL Bulla</u> | lo Contract:                 | <u> </u>                               |              |               |             |
| Lab Code: <u>RECNY</u>    | Case No.: SAS No.:           | SDG No.: 0397                          |              | •             |             |
| Matrix: (soil/water       | ) <u>WATER</u>               | Lab Sample ID:                         | A60397       | 08            |             |
| Sample wt/vol:            | <u>5.00</u> (g/mL) <u>ML</u> | Lab File ID:                           | 09939.1      | RR            |             |
| Level: (low/med)          | LOW                          | Date Samp/Recv                         | 01/11/2      | 2006 01/12/20 | <u> 206</u> |
| % Moisture: not dec       | Heated Purge: <u>N</u>       | Date Analyzed:                         | 01/20/       | 2006          |             |
| GC Column: <u>DB-624</u>  | ID: <u>0.25</u> (mm)         | Dilution Factor                        | c: <u>1.</u> | 00            |             |
| Soil Extract Volume       | : (uL)                       | Soil Aliquot Vo                        | olume:       | (uL)          |             |
|                           |                              | CONCENTRATION UNITS                    | z.           |               |             |
| CAS NO.                   | COMPOUND                     | (ug/L or ug/Kg)                        |              | Q             |             |
| 74 07 2                   |                              |                                        | 10           | 111           |             |
|                           | Chloromethane                |                                        | 10           | U<br>U        |             |
|                           | Bromomethane                 |                                        | 10           | J             |             |
| 75-01-4                   | Vinyl chloride               | ······································ | 2            |               |             |
| 75-00-3                   | Chloroethane                 |                                        | 10           | U             |             |
| 75-09-2                   | Methylene chloride           |                                        | 10           | U             |             |
|                           | Acetone                      |                                        | 10           | U             |             |
|                           | Carbon Disulfide             |                                        | 10           | U             |             |
| 75-35-4                   | 1,1-Dichloroethene           |                                        | 3            | J             |             |
| 75-34-3                   | 1,1-Dichloroethane           |                                        | 3            | J             |             |
| 67-66-3                   | Chloroform                   |                                        | 10           | U             |             |
| 107-06-2                  | 1,2-Dichloroethane           |                                        | 10           | U             |             |
| 78-93-3                   | 2-Butanone                   |                                        | 10           | υ             |             |
|                           | 1,1,1-Trichloroethane        |                                        | 14           |               |             |
| 56-23-5                   | Carbon Tetrachloride         | · · · · · · · · · · · · · · · · · · ·  | 10           | U             |             |
| 75-27-4                   | Bromodichloromethane         |                                        | 10           | Ū             |             |
| 78-87-5                   | 1,2-Dichloropropane          |                                        | 10           | Ū             |             |
|                           | cis-1,3-Dichloropropene      |                                        | 10           | U             |             |
|                           | Trichloroethene              |                                        | 33           |               |             |
|                           | Dibromochloromethane         |                                        | 10           | U             |             |
|                           |                              |                                        |              | UUU           |             |
|                           | 1,1,2-Trichloroethane        |                                        | 10           | -             |             |
| 71-43-2                   |                              |                                        | 10           | U             |             |
|                           | trans-1,3-Dichloropropene    |                                        | 10           | U             |             |
|                           | Bromoform                    |                                        | 10           | Ų             |             |
|                           | 4-Methyl-2-pentanone         |                                        | 10           | U             |             |
|                           | 2-Hexanone                   |                                        | 10           | U             |             |
|                           | Tetrachloroethene            |                                        | 98           |               |             |
| 108-88-3                  |                              |                                        | 10           | U             |             |
| 79-34-5                   | 1,1,2,2-Tetrachloroethane    | • .                                    | 10           | U             |             |
|                           | Chlorobenzene                |                                        | 10           | U             |             |
| 100-41-4                  | Ethylbenzene                 |                                        | 10           | U             |             |
| 100-42-5                  |                              |                                        | 10           | U             |             |
|                           | Total Xylenes                |                                        | 10           | U             |             |
|                           | Dichlorodifluoromethane      |                                        | 10           | U             |             |
|                           | Trichlorofluoromethane       |                                        | 10           | υ             |             |
|                           |                              |                                        |              |               |             |

## DELTA - AQ - ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

## 16/826

## Client No.

| ab Name: <u>STL Buffalo</u> Contract:         | :<br>            | MW-114                |  |
|-----------------------------------------------|------------------|-----------------------|--|
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     |                  |                       |  |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID:   | A6039708              |  |
| Sample wt/vol: (g/mL) ML                      | Lab File ID:     | 09939.RR              |  |
| Level: (low/med) <u>LOW</u>                   | Date Samp/Recv:  | 01/11/2006 01/12/2006 |  |
| % Moisture: not dec Heated Purge: N           | Date Analyzed:   | 01/20/2006            |  |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor: | 1.00                  |  |
| Soil Extract Volume: (uL)                     | Soil Aliquot Vol | ume: (uL)             |  |

## CONCENTRATION UNITS:

| CAS NO. COMPOUND                | (ug/L or ug/Kg)                       | UG/L | Q. |
|---------------------------------|---------------------------------------|------|----|
| 76-13-11,1,2-Trichloro-1,2,2-   | trifluoroethane                       | 10   | U  |
| 156-60-5trans-1,2-Dichloroethe  | ne                                    | 10   | U  |
| 1634-04-4Methyl-t-Butyl Ether ( | (MTBE)                                | 10   | U  |
| 156-59-2cis-1,2-Dichloroethene  |                                       | 6    | J  |
| 110-82-7Cyclohexane             |                                       | 10   | U  |
| 108-87-2Methylcyclohexane       |                                       | 10   | υ  |
| 106-93-41,2-Dibromoethane       |                                       | 10   | U  |
| 98-82-8Isopropylbenzene         |                                       | 10 . | U  |
| 541-73-11,3-Dichlorobenzene     |                                       | 10   | υ  |
| 106-46-71,4-Dichlorobenzene     | · · · · · · · · · · · · · · · · · · · | 10   | υ  |
| 95-50-11,2-Dichlorobenzene      |                                       | 10   | υ  |
| 96-12-81,2-Dibromo-3-chloropr   | opane                                 | 10   | υ  |
| 120-82-11,2,4-Trichlorobenzene  |                                       | 10   | U  |
| 79-20-9Methyl acetate           |                                       | 10   | U  |

## DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

17/826

Client No.

| b Name: SIL Buffalo                 | Contract:  |    |                                      | MW-114          |           |
|-------------------------------------|------------|----|--------------------------------------|-----------------|-----------|
| Lab Code: <u>RECNY</u> Case No.:    | SAS No.:   | ·  | SDG No.: 0397                        | e gil and       |           |
| Matrix: (soil/water) <u>WATER</u>   |            |    | Lab Sample ID:                       | <u>A6039708</u> |           |
| Sample wt/vol: (g/mL)               | <u>ML</u>  |    | ab File ID:                          | 09939.RR        | ·         |
| Level: (low/med) <u>LOW</u>         |            | 1  | Date Samp/Recv:                      | 01/11/2006 0    | 1/12/2006 |
| * Moisture: not dec.                |            | •  | Date Analyzed:                       | 01/20/2006      |           |
| GC Column: <u>DB-624</u> ID: 0.25 ( | mm)        | •. | Dilution Factor:                     | 1.00            |           |
| Soil Extract Volume: (uL)           | ·<br>· · · |    | Soil Aliquot Vol                     | ume:            | (uL)      |
| Number TICs found: <u>0</u>         | ·          |    | ONCENIRATION UNIT<br>(ug/L or ug/Kg) |                 |           |

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

## FORM IE - GC/MS VOA TIC

### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

18/826

Client No.

|                                   |                    |                      | MW-115                |
|-----------------------------------|--------------------|----------------------|-----------------------|
| ab Name: STL Buffalo              | Contract:          | <u> </u>             |                       |
| Lab Code: <u>RECNY</u> Case No    | .: SAS No.:        | SDG No.: <u>0397</u> |                       |
| Matrix: (soil/water) <u>WATER</u> |                    | Lab Sample ID: 1     | 46039704              |
| Sample wt/vol:5.00                | 0 (g/mL) <u>ML</u> | Lab File ID:         | 29934.RR              |
| Level: (low/med) <u>LOW</u>       |                    | Date Samp/Recv: (    | 01/11/2006 01/12/2006 |
| % Moisture: not dec.              | Heated Purge: N    | Date Analyzed: (     | 01/20/2006            |
| GC Column: <u>DB-624</u> ID:      | <u>0.25</u> (mm)   | Dilution Factor: _   | 1.00                  |
| Soil Extract Volume:              | _ (uL)             | Soil Aliquot Volum   | ne: (uL)              |
|                                   |                    |                      |                       |

CONCENTRATION UNITS: (ug/L or ug/Kg)

| 74-83-9Bronomethane       10       U $75-01-4Vinyl chloride$ 10       U $75-00-3Chloroethane$ 10       U $75-09-2Methylene chloride$ 10       U $67-64-1Acetone$ 10       U $75-15-0Carbon Disulfide$ 10       U $75-35-41, 1-Dichloroethane$ 10       U $75-34-31, 1-Dichloroethane$ 10       U $75-34-31, 1-Dichloroethane$ 10       U $75-34-31, 1-Dichloroethane$ 10       U $75-34-31, 2-Dichloroethane$ 10       U $107-06-21, 2-Dichloroethane$ 10       U $107-06-21, 2-Dichloroethane       10       U         75-27-4Bromodichloropropane       10       U         75-27-4Bromodichloropropane       10       U         106-10-1Trichloroethane       10       U         79-01-6Trichloroethane       10       U         79-00-51, 1, 2-Trichloroethane       10       U         108-10-1Bromoform       10       U       U         108-10-1$                                                                                                                                                                                                                                                                                                        | CAS NO.    | COMPOUND                  | (ug/L or ug/Kg)                       | <u>UG/L</u> | Q |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------|---------------------------------------|-------------|---|
| 75-01-4Vinyl chloride       10       U         75-00-3Chloroethane       10       U         75-09-2Methylene chloride       10       U         75-09-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74-87-3    | Chloromethane             |                                       | 10          | U |
| $75-00-3-\dots$ 10       U $75-09-2-\dots$ Methylene chloride       10       U $67-64-1-\dots$ Actione       10       U $75-15-0-\dots$ Cathon Disulfide       10       U $75-35-4-\dots-1, 1-Dichloroetheme       10       U         75-34-3-\dots-1, 1-Dichloroetheme       10       U         75-34-3-\dots-1, 1-Dichloroetheme       10       U         75-34-3-\dots-1, 1-Dichloroethame       10       U         75-36-\dots-1, 2-Dichloroethame       10       U         78-93-3-\dots-2-Butanone       10       U         71-55-6-\dots-1, 1, 1-Trichloroethame       4       J         76-23-5-\dots-2-Butanone       10       U         78-93-3-\dots-2-Butanone       10       U         71-55-6-\dots-1, 1, 1-Trichloroethame       10       U         78-75-\dots-1, 2-Dichloropropane       10       U         1061-01-5-\dots-1, 1, 2-Dichloropropene       10       U         79-01-6-\dots-1, 1, 2-Trichloroethame       10       U         79-01-5-\dots-1, 1, 2-Trichloroethame       10       U         1061-02-6-\dots-1, 1, 2-Trichloroethame       10       U         1061-02-6-\dots-1, 1, 2-Dichloropropene       10       U        $ |            |                           |                                       | 10          | U |
| $75-09-2-\cdots$ -Methylene chloride       10       U $67-64-1-\cdots$ -Acetone       10       U $75-15-0-\cdots$ -Carbon Disulfide       10       U $75-35-4-\cdots$ -1, 1-Dichloroetheme       10       U $75-34-3-\cdots$ -1, 1-Dichloroetheme       10       U $75-34-3-\cdots$ -1, 1-Dichloroethane       10       U $75-34-3-\cdots$ -1, 1-Dichloroethane       10       U $10^{-}66-3-\cdots$ -1, 1, 1-Trichloroethane       10       U $10^{-}66-2-\cdots$ -1, 2-Dichloroethane       10       U $78-93-3-\cdots$ -2-Butanone       10       U $10^{-}2-5-2-$ -Bromodichloromethane       10       U $75-27-4-\cdots$ -Bromodichloropropane       10       U $10661-01-5-\cdots$ -cis-1, 3-Dichloropropane       10       U $10661-01-5-\cdots$ -cis-1, 3-Dichloropropene       10       U $10061-02-6-\cdots$ -Trichloroethane       10       U $17-43-2-\cdots$ -Benzene       10       U $1061-02-6-\cdots$ -trans-1, 3-Dichloropropene       10       U $1061-02-6-\cdots$ -trans-1, 3-Dichloropropene       10       U $1061-02-6-\cdots$ -trans-1, 3-Dichloropropene       10       U $107-43-2-\cdots$ -Benzene       10       U                | 75-01-4    | Vinyl chloride            | •                                     | 10          | U |
| 67-64-1Acetone       10       U         75-15-0Carbon Disulfide       10       U         75-35-41, 1-Dichloroethane       10       U         75-34-31, 1-Dichloroethane       1       J         76-66-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                           |                                       | 10          | U |
| 67-64-1Acetone       10       U         75-15-0Carbon Disulfide       10       U         75-35-41, 1-Dichloroethane       10       U         75-34-31, 1-Dichloroethane       1       J         76-66-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75-09-2    | Methylene chloride        | ·                                     | 10          | U |
| 75-35-41, 1-Dichloroethene       10       U $75-34-31, 1-Dichloroethane$ 1       J $67-66-31, 2-Dichloroethane$ 10       U $107-06-21, 2-Dichloroethane$ 10       U $107-06-21, 2-Dichloroethane$ 10       U $107-06-21, 2-Dichloroethane$ 10       U $175-5-61, 2-Dichloroethane$ 10       U $17-55-61, 2-Dichloropropane$ 10       U $106-10-5Carbon Tetrachloride       10       U         106-10-5Carbon Tetrachloropropane       10       U         106-10-5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57-64-1    | Acetone                   |                                       | 10          | U |
| 75-34-31,1-Dichloroethane       1       J         67-66-3Chloroform       10       U         107-06-2Chloroethane       10       U         75-34-3Cabtanone       10       U         78-93-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75-15-0    | Carbon Disulfide          |                                       | 10          | U |
| 67-66-3Chloroform       10       U         107-06-2Chloroethane       10       U         78-93-32-Butanone       10       U         71-55-61,1,1-Trichloroethane       4       J         56-23-5Carbon Tetrachloride       10       U         75-27-4Bromodichloromethane       10       U         78-87-51, 2-Dichloropropene       10       U         10061-01-5cis-1, 3-Dichloropropene       10       U         124-48-1Dibromochloromethane       10       U         124-48-1Benzene       10       U         10061-02-6trans-1, 3-Dichloropropene       10       U         10061-02-6trans-1, 3-Dichloropropene       10       U         10061-02-6trans-1, 3-Dichloropropene       10       U         100-102-6trans-1, 3-Dichloroethane       10       U         108-90-7Bromoform       10       U       U         108-88-3Thorethene       10       U                                                                            |            |                           |                                       | 10          | U |
| 67-66-3Chloroform       10       U         107-06-2Chloroethane       10       U         78-93-32-Butanone       10       U         71-55-61,1,1-Trichloroethane       4       J         56-23-5Carbon Tetrachloride       10       U         75-27-4Bromodichloromethane       10       U         78-87-51, 2-Dichloropropene       10       U         10061-01-5cis-1, 3-Dichloropropene       10       U         124-48-1Dibromochloromethane       10       U         124-48-1Benzene       10       U         10061-02-6trans-1, 3-Dichloropropene       10       U         10061-02-6trans-1, 3-Dichloropropene       10       U         10061-02-6trans-1, 3-Dichloropropene       10       U         100-102-6trans-1, 3-Dichloroethane       10       U         108-90-7Bromoform       10       U       U         108-88-3Thorethene       10       U                                                                            | 5-34-3     | 1,1-Dichloroethane        |                                       | 1           | J |
| 78-93-32-Butanone       10       U         71-55-61,1,1-Trichloroethane       4       J         56-23-5Carbon Tetrachloride       10       U         75-27-4Bromodichloromethane       10       U         78-87-51,2-Dichloropropane       10       U         10061-01-5cis-1,3-Dichloropropene       10       U         110001-01-5cis-1,3-Dichloropropene       10       U         110001-01-5cis-1,3-Dichloropropene       10       U         110102-6Trichloroethane       10       U         110102-6Trichloroethane       10       U         1101041-02-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-66-3     | Chloroform                |                                       | 10          | U |
| 71-55-61,1,1-Trichloroethane       4       J         56-23-5Carbon Tetrachloride       10       U         75-27-4Bromodichloromethane       10       U         78-87-51,2-Dichloropropane       10       U         10061-01-5cis-1,3-Dichloropropene       10       U         10061-01-5cis-1,3-Dichloropropene       10       U         124-48-1Dibromochloromethane       10       U         124-48-1Dibromochloromethane       10       U         124-48-1Benzene       10       U         10061-02-6trans-1,3-Dichloropropene       10       U         100-14-Methyl-2-pentanone       10       U         107-18-4Tetrachloroethene       42       10         108-88-3                                                                                                                                                                                                                                 | .07-06-2   | 1,2-Dichloroethane        |                                       | 10          | U |
| 56-23-5Carbon Tetrachloride       10       U         75-27-4Bromodichloromethane       10       U         78-87-51,2-Dichloropropane       10       U         10061-01-5cis-1,3-Dichloropropene       10       U         10061-01-5cis-1,3-Dichloropropene       10       U         124-48-1Dibromochloromethane       10       U         124-48-1Benzene       10       U         10061-02-6trans-1,3-Dichloropropene       10       U         1008-10-14-Methyl-2-pentanone       10       U         108-88-310       10       U         107-34-5Totuane       10       U         108-90-7Chlorobenzene       10       U         100-42-5Styrene       10       U         1030-20-7                                                                                            | 8-93-3     | 2-Butanone                |                                       | 10          | U |
| 56-23-5Carbon Tetrachloride       10       U         75-27-4Bromodichloromethane       10       U         78-87-51,2-Dichloropropane       10       U         10061-01-5cis-1,3-Dichloropropene       10       U         10061-01-5cis-1,3-Dichloropropene       10       U         101001-01-5cis-1,3-Dichloropropene       10       U         1024-48-1Dibromochloromethane       10       U         104-43-2Benzene       10       U         107-00-5trans-1,3-Dichloropropene       10       U         104-43-2Benzene       10       U         105-25-2Bromoform       10       U         106-102-6trans-1,3-Dichloropropene       10       U         107-25-2Bromoform       10       U         108-10-14-Methyl-2-pentanone       10       U         108-10-14-Methyl-2-pentanone       10       U         107-34-5Bromoform       10       U         108-88-3Bromoform       10       U         108-88-3                                                                                                                                                                                                                                               | 1-55-6     | 1,1,1-Trichloroethane     |                                       | 4           | J |
| 75-27-4Bromodichloromethane       10       U         78-87-51,2-Dichloropropane       10       U         10061-01-5cis-1,3-Dichloropropene       10       U         79-01-6Trichloroethene       10       U         124-48-1Dibromochloromethane       10       U         124-48-1Dibromochloromethane       10       U         124-48-1Benzene       10       U         104-43-2Benzene       10       U         105-25-2Bromoform       10       U         106-102-6trans-1,3-Dichloropropene       10       U         107-25-2Bromoform       10       U         108-10-14-Methyl-2-pentanone       10       U         109-78-62-Hexanone       10       U         109-78-62-Hexanone       10       U         109-78-67-Tetrachloroethene       42       0         108-88-3Toluene       10       U         109-34-5                                                                                                                                                                                                                                                                                                                                       |            |                           |                                       | 10          | U |
| 78-87-51, 2-Dichloropropane       10       U         10061-01-5cis-1, 3-Dichloropropene       10       U         79-01-6Trichloroethene       10       U         124-48-1Dibromochloromethane       10       U         124-48-1Dibromochloromethane       10       U         124-48-1Dibromochloromethane       10       U         124-48-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                           |                                       | 10          | U |
| 10061-01-5cis-1,3-Dichloropropene       10       U         79-01-6Trichloroethene       10       U         124-48-1Dibromochloromethane       10       U         124-43-2Benzene       10       U         10061-02-6trans-1,3-Dichloropropene       10       U         10061-02-6trans-1,3-Dichloropropene       10       U         10061-02-6trans-1,3-Dichloropropene       10       U         10075-25-2Bromoform       10       U         108-10-14-Methyl-2-pentanone       10       U         1091-78-62-Hexanone       10       U         107-18-4Tetrachloroethene       42       10         108-88-311,1,2,2-Tetrachloroethane       10       U         109-34-51,1,2,2-Tetrachloroethane       10       U         100-41-4Ethylbenzene       10       U         100-42-5Styrene       10       U         1030-20-7Total Xylenes       10       U                                                                             |            |                           |                                       | 10          | U |
| 79-01-6Trichloroethene       10       U         124-48-1Dibromochloromethane       10       U         79-00-51,1,2-Trichloroethane       10       U         79-00-51,1,2-Trichloroethane       10       U         104       U       U       U         105       U       U       U         106       U       U       U         107-02-6trans-1,3-Dichloropropene       10       U         107-25-2Bromoform       10       U         108-10-14-Methyl-2-pentanone       10       U         1091-78-62-Hexanone       10       U         109-34-51,1,2,2-Tetrachloroethane       10       U         108-88-3Toluene       10       U         108-90-7Chlorobenzene       10       U         100-41-4Ethylbenzene       10       U         1030-20-7Total Xylenes       10       U         10       U       U       10       U                                                                                                                                                | 0061-01-5- | cis-1,3-Dichloropropene   |                                       | 10          | U |
| 79-00-51,1,2-Trichloroethane       10       U         71-43-2Benzene       10       U         10061-02-6trans-1,3-Dichloropropene       10       U         10061-02-6trans-1,3-Dichloropropene       10       U         10075-25-2Bromoform       10       U         1008-10-14-Methyl-2-pentanone       10       U         101091-78-62-Hexanone       10       U         101001-27-18-4Tetrachloroethene       42       42         101001-27-18-4Toluene       10       U       U         10100-27-11,1,2,2-Tetrachloroethane       10       U       U         10100-41-4Ethylbenzene       10       U       U         10100-42-5Styrene       10       U       U         101000-7Total Xylenes       10       10       U                                                                                                                                                                                                   | 9-01-6     | Trichloroethene           |                                       | 10          | U |
| 79-00-51,1,2-Trichloroethane       10       U         71-43-2Benzene       10       U         .0061-02-6trans-1,3-Dichloropropene       10       U         .0061-02-6trans-1,3-Dichloropropene       10       U         .0061-02-6trans-1,3-Dichloropropene       10       U         .0061-02-6trans-1,3-Dichloropropene       10       U         .0052-2Bromoform       10       U         .08-10-14-Methyl-2-pentanone       10       U         .091-78-62-Hexanone       10       U         .091-78-62-Hexanone       10       U         .08-88-3Toluene       10       U         .08-88-3Toluene       10       U         .09-34-51,1,2,2-Tetrachloroethane       10       U         .08-90-7Chlorobenzene       10       U         .00-41-4Ethylbenzene       10       U         .00-42-5Styrene       10       U         .30-20-7Total Xylenes       10       U         .5-71-8Dichlorodifluoromethane       10       U                                                                                                                                                                                                                                  | 24~48-1    | Dibromochloromethane      | · · · · · · · · · · · · · · · · · · · | 10          | U |
| 1-43-2Benzene       10       U         .0061-02-6trans-1,3-Dichloropropene       10       U         .05-25-2Bromoform       10       U         .08-10-14-Methyl-2-pentanone       10       U         .091-78-62-Hexanone       10       U         .091-78-62-Hexanone       10       U         .091-78-62-Hexanone       10       U         .091-78-62-Hexanone       10       U         .092-718-4Tetrachloroethene       42       42         .08-88-3Toluene       10       U         .08-90-7Chlorobenzene       10       U         .00-41-4Ethylbenzene       10       U         .00-42-5Styrene       10       U         .30-20-7Total Xylenes       10       U         .5-71-8Dichlorodifluoromethane       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                           | · · · · · · · · · · · · · · · · · · · | 10          | υ |
| 0061-02-6trans-1,3-Dichloropropene       10       U         05-25-2Bromoform       10       U         08-10-14-Methyl-2-pentanone       10       U         091-78-62-Hexanone       10       U         27-18-4Tetrachloroethene       42       42         08-88-3Toluene       10       U         9-34-5Chlorobenzene       10       U         00-41-4Ethylbenzene       10       U         00-42-5Styrene       10       U         330-20-7Total Xylenes       10       U         5-71-8Dichlorodifluoromethane       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                           |                                       | 10          | U |
| 75-25-2Bromoform       10       U         .08-10-14-Methyl-2-pentanone       10       U         .91-78-62-Hexanone       10       U         .27-18-4Tetrachloroethene       42       42         .08-88-3Toluene       10       U         9-34-51,1,2,2-Tetrachloroethane       10       U         .08-90-7Chlorobenzene       10       U         .00-41-4Ethylbenzene       10       U         .00-42-5Styrene       10       U         .30-20-7Total Xylenes       10       U         5-71-8Dichlorodifluoromethane       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0061-02-6  | trans-1,3-Dichloropropene |                                       | 10          | υ |
| 91-78-62-Hexanone       10       U         27-18-4Tetrachloroethene       42         08-88-3Toluene       10       U         '9-34-51,1,2,2-Tetrachloroethane       10       U         08-90-7Chlorobenzene       10       U         00-41-4Ethylbenzene       10       U         30-20-7Total Xylenes       10       U         5-71-8Dichlorodifluoromethane       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                           |                                       | 10          | U |
| 591-78-62-Hexanone       10       U         .27-18-4Tetrachloroethene       42         .08-88-3Toluene       10       U         .09-34-51,1,2,2-Tetrachloroethane       10       U         .08-90-7Chlorobenzene       10       U         .00-41-4Ethylbenzene       10       U         .00-42-5Styrene       10       U         .30-20-7Total Xylenes       10       U         '5-71-8Dichlorodifluoromethane       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08-10-1    | 4-Methvl-2-pentanone      |                                       | 10          | U |
| 27-18-4Tetrachloroethene       42         .08-88-3Toluene       10       U         /9-34-5Toluene       10       U         .08-90-7Chlorobenzene       10       U         .00-41-4Ethylbenzene       10       U         .00-42-5Styrene       10       U         .330-20-7Total Xylenes       10       U         '5-71-8Dichlorodifluoromethane       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91-78-6    | 2-Hexanone                |                                       |             |   |
| 08-88-3Toluene       10       U         9-34-5Toluene       10       U         08-90-7Chlorobenzene       10       U         00-41-4Ethylbenzene       10       U         00-42-5Styrene       10       U         330-20-7Total Xylenes       10       U         5-71-8Dichlorodifluoromethane       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           |                                       |             | 1 |
| 9-34-51,1,2,2-Tetrachloroethane       10       U         08-90-7Chlorobenzene       10       U         00-41-4Ethylbenzene       10       U         00-42-5Styrene       10       U         330-20-7Total Xylenes       10       U         5-71-8Dichlorodifluoromethane       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                           |                                       |             | υ |
| 08-90-7Chlorobenzene       10       U         00-41-4Ethylbenzene       10       U         00-42-5Styrene       10       U         330-20-7Total Xylenes       10       U         5-71-8Dichlorodifluoromethane       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                           |                                       |             |   |
| 00-41-4Ethylbenzene       10       U         .00-42-5Styrene       10       U         .330-20-7Total Xylenes       10       U         '5-71-8Dichlorodifluoromethane       10       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 08-90-7    | Chlorobenzene             | · · · · · · · · · · · · · · · · · · · |             |   |
| .00-42-5Styrene         10         U           .330-20-7Total Xylenes         10         U           '5-71-8Dichlorodifluoromethane         10         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00-41-4    | Ethylbenzene              |                                       |             |   |
| 330-20-7Total Xylenes10U'5-71-8Dichlorodifluoromethane10U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-42-5     | Styrene                   |                                       |             | 1 |
| 5-71-8Dichlorodifluoromethane 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 330-20-7   | Total Xylenes             |                                       |             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-71-8     | Dichlorodifluoromethane   |                                       |             | 1 |
| 5-69-4Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | Trichlorofluoromethane    |                                       | 10          | U |

## DELTA - AQ - ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

## 19/826

Client No.

| b Name: <u>STL Buffalo</u> Contract:          | MW-115                                                |
|-----------------------------------------------|-------------------------------------------------------|
| Lab Code: <u>RECNY</u> Case No.: SAS No.      | : SDG No.: 0397                                       |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID: A6039704                               |
| Sample wt/vol: (g/mL) ML                      | Lab File ID: <u>Q9934.RR</u>                          |
| Level: (low/med) <u>LOW</u>                   | Date Samp/Recv: 01/11/2006 01/12/2006                 |
| % Moisture: not dec Heated Purge: N           | Date Analyzed: 01/20/2006                             |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor: <u>1.00</u>                          |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volume: (uL)                             |
| CAS NO. COMPOUND                              | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> Q |

| 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane | 10 | U |
|----------------------------------------------|----|---|
| 156-60-5trans-1,2-Dichloroethene             | 10 | U |
| 1634-04-4Methyl-t-Butyl Ether (MIBE)         | 10 | U |
| 156-59-2cis-1,2-Dichloroethene               | 10 | U |
| 110-82-7Cyclohexane                          | 10 | Ū |
| 108-87-2Methylcyclohexane                    | 10 | υ |
| 106-93-41,2-Dibromoethane                    | 10 | U |
| 98-82-8Isopropylbenzene                      | 10 | υ |
| 541-73-11,3-Dichlorobenzene                  | 10 | U |
| 106-46-71,4-Dichlorobenzene                  | 10 | U |
| 95-50-11,2-Dichlorobenzene                   | 10 | U |
| 96-12-81,2-Dibromo-3-chloropropane           | 10 | U |
| 120-82-11,2,4-Trichlorobenzene               | 10 | υ |
| 79-20-9Methyl acetate                        | 10 | U |

### DELTA - AQ - ASP 2000/8260 - TCL VOLATTLES ANALYSIS DATA SHEET

## 21/826

Client No.

----

|                      |                            |                       |                                       |                    | CITEIC IN.            |
|----------------------|----------------------------|-----------------------|---------------------------------------|--------------------|-----------------------|
| ab Name: SIL         | Buffalo                    | Contract:             | •                                     | MW-1               | 16                    |
| •                    |                            | SAS No.:              |                                       | 0397               |                       |
| Matrix: (soil        | /water) <u>WATER</u>       |                       | Lab Sample                            | ID: <u>A6039</u>   | 707                   |
| Somolo ut (m)        | F 00 /~                    | /mat ) Mit            | Tab Dila T                            | D- 00000           |                       |
| salpre wc/vor        | : <u>5.00</u> (g,          |                       | Lad File 1                            | D: <u>09999</u>    | <u>.KR</u>            |
| Level: (low,         | /med) <u>LOW</u>           |                       | Date Samp/                            | Recv: <u>01/11</u> | /2006 01/12/2006      |
| % Moisture: na       | ot dec He                  | eated Purge: <u>N</u> | Date Analy                            | zed: 01/23         | /2006                 |
| GC Column: <u>DB</u> | <u>-624</u> ID: <u>0.2</u> | <u>25</u> (mm)        | Dilution F                            | actor: <u>5</u>    | .00                   |
| Soil Extract V       | Volume: (ul                | L)                    | Soil Alique                           | ot Volume: _       | (uL)                  |
|                      |                            |                       |                                       |                    |                       |
| CAS N                | IO. COMPOUNE               | ).                    | CONCENTRATION (<br>(ug/L or ug/Kg     |                    | Q                     |
| . [                  |                            |                       |                                       |                    |                       |
| 74-87                | -3Chlorome<br>-9Bromomet   | ethane                |                                       | 50                 | 1<br>U<br>U<br>U<br>U |
| 74-83                | -9Bronomet                 | inane                 |                                       | 50                 | υŢ                    |
| 75-01                |                            | loride                |                                       | 50                 | υJ                    |
| 175-00               | Chloroet                   | nane                  |                                       | 50                 | U J                   |
| 75-09                | -2Methylen                 | e chloride            |                                       | 50                 | U J                   |
| 67-64                | -1Acetone                  |                       |                                       | 50                 | U 3                   |
| 75-15                | -0Carbon D                 | visulfide             |                                       | 50                 | UJ                    |
| 75-35                | -41,1-Dich                 | loroethene            |                                       | 14                 | JJ                    |
| 75-34                | -31,1-Dich                 | loroethane            |                                       | 10                 | JJ                    |
| 67-66                | -3Chlomfo                  |                       |                                       | 50                 | UJ                    |
| 107-0                | 6-21.2-Dich                | loroethane            | ·                                     | 50                 | 1.7                   |
| 78-93                | -32-Butano                 | ne                    |                                       | 50                 | τ <sub>U</sub>        |
|                      |                            | ichloroethane         |                                       | 310                | 5                     |
| 56-22                |                            | etrachloride          |                                       | 50                 | UJ                    |
| 75 27                |                            |                       | · · · · · · · · · · · · · · · · · · · |                    | L L                   |
| 75-27                | -4BIOIDOIC                 | hloromethane          |                                       | 50                 |                       |
| 18-87                | -51,2-Dich                 | loropropane           |                                       | 50                 | UJ<br>UJ              |
| 10061                | -01-5cis-1,3-I             | Jichioropropene       |                                       | 50                 | 10-51                 |
|                      | -6Trichlor                 |                       |                                       | 76                 | 5                     |
|                      | 8-1Dibromoch               |                       |                                       | 50                 | U2                    |
| 79-00                | -51,1,2-Tri                | ichloroethane         | · .                                   | 50                 | U Z                   |
|                      | -2Benzene                  |                       |                                       | . 50               | UJ                    |
|                      |                            | 3-Dichloropropene     |                                       | 50                 | UZ                    |
|                      | -2Branoform                |                       |                                       | 50                 | <u>T</u> U            |
| 108-10               | )-14-Methyl-               | -2-pentanone          |                                       | 50                 |                       |
|                      | 3-62-Hexanor               |                       |                                       | 50                 |                       |
|                      | 8-4Tetrachlo               |                       |                                       | 730                | 5                     |
|                      | 3-3Toluene                 |                       |                                       | 50                 | UJ                    |
|                      | 51,1,2,2-1                 | etrachlomethane       |                                       | 50                 | UJ                    |
|                      | )-7Chlorober               |                       | ······                                | 50                 | τŪ                    |
|                      | -4Ethylbenz                |                       |                                       |                    | U 7                   |
|                      | Styrene                    | ~IE                   |                                       | 50                 | 0,2                   |
|                      |                            |                       |                                       | 50                 |                       |
|                      | 0-7Total Xyl               |                       |                                       | 50                 | U J                   |
|                      | 8Dichlorod                 |                       |                                       | 50                 | U I                   |
| 75-69-               | 4Trichloro                 | fluoromethane         |                                       | 50                 | U 2                   |

# DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

## 20/826

Client No.

----

| Lab Name: <u>STL Buffalo</u> Contract:                      | . • .                | MW-115                |
|-------------------------------------------------------------|----------------------|-----------------------|
| Lab Nale: <u>511 Bullato</u> Colulact:                      |                      |                       |
| Lab Code: RECNY Case No.: SAS No.:                          | SDG No.: <u>0397</u> |                       |
| Matrix: (soil/water) <u>WATER</u>                           | Lab Sample ID:       | <u>A6039704</u>       |
| Sample wt/vol: (g/mL) ML                                    | Lab File ID:         | 09934.RR              |
| Level: (low/med) LOW                                        | Date Samp/Recv:      | 01/11/2006 01/12/2006 |
| % Moisture: not dec.                                        | Date Analyzed:       | 01/20/2006            |
| GC Column: $\underline{DB-624}$ $\underline{ID: 0.25}$ (mm) | Dilution Factor      | :1.00                 |
| Soil Extract Volume: (uL)                                   | Soil Aliquot Vo      | lume: (uL)            |
|                                                             | CONCENTRATION UNI    |                       |

Number TICs found: \_\_0

(ug/L or ug/Kg) UG/L

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

## 22/826

# Client No.

|                                                   |                   | MW-116                |
|---------------------------------------------------|-------------------|-----------------------|
| ab Name: <u>STL Buffalo</u> Contract:             |                   | L                     |
| Lab Code: RECNY Case No.: SAS No.:                | SDG No.: 0397     |                       |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID:    | <u>A6039707</u>       |
| Sample wt/vol: (g/mL) ML                          | Lab File ID:      | 09999.RR              |
| Level: (low/med) LOW                              | Date Samp/Recv:   | 01/11/2006 01/12/2006 |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed:    | 01/23/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor:  | 5.00                  |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volu | ume: (uL)             |
|                                                   |                   |                       |

#### CONCENTRATION UNITS: (Ug/L or Ug/Kg) <u>UG/L</u>

| 76-13-11, 1, 2-Trichloro- $1, 2, 2$ -trifluoroethane $50$ $U$ $156-60-5trans-1, 2$ -Dichloroethene $50$ $U$ $1634-04-4Methyl-t-Butyl Ether (MIBE)$ $50$ $U$ $156-59-2cis-1, 2$ -Dichloroethene $93$ $7$ $110-82-7Cyclohexane$ $50$ $U$ $108-87-2Cyclohexane$ $50$ $U$ $106-93-41, 2$ -Dibromoethane $50$ $U$ $98-82-8Isopropylbenzene$ $50$ $U$ $106-46-71, 3$ -Dichlorobenzene $50$ $U$ $106-46-71, 4$ -Dichlorobenzene $50$ $U$ $106-46-71, 2$ -Dibromo-3-chloropropane $50$ $U$ $96-12-81, 2$ -Dibromo-3-chloropropane $50$ $U$ $120-82-11, 2, 4$ -Trichlorobenzene $50$ $U$ $79-20-9Methyl acetate$ $50$ $U$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $179-20-9Methyl acetate 50 U^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

23/826

Client No.

| b Name: STL Buffalo                        | Contract: | · · · · ·                            | MW-116                |
|--------------------------------------------|-----------|--------------------------------------|-----------------------|
| Lab Code: <u>RECNY</u> Case No.:           | 7         | SDG No.: <u>0397</u>                 |                       |
| Matrix: (soil/water) <u>WATER</u>          |           | Lab Sample ID:                       | A6039707              |
| Sample wt/vol: (g/mL)                      | <u>ML</u> | Lab File ID:                         | 09999.RR              |
| Level: (low/med) LOW                       |           | Date Samp/Recv:                      | 01/11/2006 01/12/2006 |
| % Moisture: not dec.                       |           | Date Analyzed:                       | 01/23/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> ( | (mm)      | Dilution Factor                      | :5.00                 |
| Soil Extract Volume: (uL)                  |           | Soil Aliquot Vo                      | lume: (uL)            |
| Number TICs found: <u>0</u>                |           | CONCENTRATION UNI<br>(ug/L or ug/Kg) | •                     |

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

### FORM IE - GC/MS VOA TIC

24/826

### Client No.

|                                             |                   |                   | MW-116 D_             |
|---------------------------------------------|-------------------|-------------------|-----------------------|
| Lab Name: STL Buffalo                       | Contract:         |                   |                       |
| Lab Code: <u>RECNY</u> Case No.:            | SAS No.:          | SDG No.: 0397     |                       |
| Matrix: (soil/water) <u>WATER</u>           |                   | Lab Sample ID:    | A6039707DL            |
| Sample wt/vol: <u>5.00</u> (g/mL)           | ML                | Lab File ID:      | 09938.RR              |
| Level: (low/med) LOW                        |                   | Date Samp/Recv:   | 01/11/2006 01/12/2006 |
| % Moisture: not dec Heated                  | l Purge: <u>N</u> | Date Analyzed:    | 01/20/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (m | m)                | Dilution Factor:  | 25.00                 |
| Soil Extract Volume: (uL)                   | · · · · · · ·     | Soil Aliquot Volu | ume: (uL)             |

CONCENTRATION UNITS: (ug/L or ug/Kg)

|   | • |      |
|---|---|------|
| ) |   | UG/L |

|             | COMPOUND                 | (ug/L or ug/Kg | ) <u>UG/L</u> | Q  |
|-------------|--------------------------|----------------|---------------|----|
| 74-87-3     | Chloromethane            |                | 250           | U  |
| 74-83-9     | Bromomethane             |                | 250           | U  |
| 75-01-4     | Vinyl chloride           |                | 250           | υ  |
| 75-00-3     |                          |                | 250           | U  |
| 75-09-2     | Methylene chloride       |                | 250           | U  |
| 67-64-1     | Acetone                  |                | 250           | U  |
| 75-15-0     | Carbon Disulfide         |                | 250           | U  |
| 75-35-4     | 1,1-Dichloroethene       |                | 250           | U  |
| 75-34-3     | 1,1-Dichloroethane       |                | 250           | U  |
| 67-66-3(    | Chloroform               |                | 250           | U  |
| 107-06-2    | 1,2-Dichloroethane       |                | 250           | U  |
| 78-93-32    | 2-Butanone               |                | 250           | U  |
| 71-55-6     | 1,1,1-Trichloroethane    |                | 440           | D  |
| 56-23-5(    | Carbon Tetrachloride     |                | 250           | U  |
| 75-27-4F    | Bromodichloromethane     |                | 250           | U  |
| 78-87-51    | 1,2-Dichloropropane      |                | 250           | U  |
| 10061-01-5( | cis-1,3-Dichloropropene  |                | 250           | U  |
|             | Trichloroethene          |                | 110           | τα |
| 124-48-1I   | Dibromochloromethane     |                | 250           | U  |
| 79-00-51    | 1,1,2-Trichloroethane    |                | 250           | U  |
| 71-43-2E    |                          |                | 250           | U  |
| 10061-02-6t | rans-1,3-Dichloropropene |                | 250           | U  |
| 75-25-2E    |                          |                | 250           | U  |
| 108-10-14   | -Methyl-2-pentanone      |                | 250           | U  |
| 591-78-62   |                          |                | 250           | U  |
| 127-18-4T   | 'etrachloroethene        |                | 1100          | D  |
| 108-88-3T   | oluene                   |                | 250           | U  |
| 79-34-51    | ,1,2,2-Tetrachloroethane |                | 250           | U  |
| 108-90-70   |                          |                | 250           | U  |
| 100-41-4E   | thylbenzene              |                | 250           | U  |
| 100-42-5S   |                          |                | 250           | U  |
| 1330-20-7T  |                          | · · ·          | 250           | U  |
|             | vichlorodifluoromethane  | -              | 250           | Ū  |
|             | richlorofluoromethane    | ······         | 250           | U  |

25/826

Client No.

-

| o Name: SIL Buffalo Contract:                     | MW-116 DL                                           |
|---------------------------------------------------|-----------------------------------------------------|
| Lab Code: <u>RECNY</u> Case No.: SAS No.:         | SDG No.: 0397                                       |
| Matrix: (soil/water) WATER                        | Lab Sample ID: A6039707DL                           |
| Sample wt/vol: (g/mL) ML                          | Lab File ID: 09938.RR                               |
| Level: (low/med) <u>LOW</u>                       | Date Samp/Recv: 01/11/2006 01/12/2006               |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed: 01/20/2006                           |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor: <u>25.00</u>                       |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volume: (uL)                           |
| CAS NO. COMPOUND                                  | CONCENTRATION UNITS:<br>(ug/Lorug/Kg) <u>UG/L</u> Q |

| 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane | 250                                   | U   |
|----------------------------------------------|---------------------------------------|-----|
| 156-60-5trans-1,2-Dichloroethene             | 250                                   | U   |
| 1634-04-4Methyl-t-Butyl Ether (MIBE)         | 250                                   | U   |
| 156-59-2cis-1,2-Dichloroethene               | 110                                   | τα  |
| 110-82-7Cyclohexane                          | 250                                   | ីប  |
| 108-87-2Methylcyclohexane                    | 250                                   | υ   |
| 106-93-41,2-Dibromoethane                    | 250                                   | ט ' |
| 98-82-8Isopropylbenzene                      | 250                                   | U   |
| 541-73-11,3-Dichlorobenzene                  | 250                                   | U   |
| 106-46-71,4-Dichlorobenzene                  | 250                                   | U   |
| 95-50-11,2-Dichlorobenzene                   | 250                                   | U   |
| 96-12-81,2-Dibromo-3-chloropropane           | 250                                   | U   |
| 120-82-11,2,4-Trichlorobenzene               | 250                                   | U   |
| 79-20-9Methyl acetate                        | 250                                   | υ   |
|                                              | · · · · · · · · · · · · · · · · · · · |     |

#### DELITA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

## 26/826

## Client No.

| b Name: <u>STL Buffalo</u> Contract:          |                                       | MW-116DL              |
|-----------------------------------------------|---------------------------------------|-----------------------|
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     | SDG No.: 0397                         |                       |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID:                        | A6039707DL            |
| Sample wt/vol: (g/mL) ML                      | Lab File ID:                          | 09938.RR              |
| Level: (low/med) <u>LOW</u>                   | Date Samp/Recv:                       | 01/11/2006 01/12/2006 |
| % Moisture: not dec.                          | Date Analyzed:                        | 01/20/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor                       | 25.00                 |
| Soil Extract Volume: (uL)                     | Soil Aliquot Vol                      | lume: (uL)            |
| Number TICs found: <u>0</u>                   | CONCENTRATION UNIT<br>(ug/L or ug/Kg) |                       |

| CAS NO. | Compound Name | RT | Est. Conc. | Q. |
|---------|---------------|----|------------|----|
|         |               |    |            |    |

#### FORM IE - GC/MS VOA TIC

## 27/826

Client No.

| b Name: <u>SIL Buffalo</u> Contract:                                 | MW-117                                                |
|----------------------------------------------------------------------|-------------------------------------------------------|
| ID Maile: <u>511 Builaio</u> Contract:                               |                                                       |
| Lab Code: RECNY Case No.: SAS No.:                                   | SDG No.: 0397                                         |
| Matrix: (soil/water) WATER                                           | Lab Sample ID: <u>A6039702</u>                        |
| Sample wt/vol: (g/mL) ML                                             | Lab File ID: <u>Q9917.RR</u>                          |
| Level: (low/med) <u>LOW</u>                                          | Date Samp/Recv: 01/11/2006 01/12/2006                 |
| % Moisture: not dec Heated Purge: $\underline{N}$                    | Date Analyzed: 01/19/2006                             |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)                        | Dilution Factor: <u>1.00</u>                          |
| Soil Extract Volume: (uL)                                            | Soil Aliquot Volume: (uL)                             |
| CAS NO. COMPOUND                                                     | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> Q |
| 74-87-3Chloromethane<br>74-83-9Bromomethane<br>75-01-4Vinyl chloride | 10 U<br>10 U<br>10 U<br>10 U                          |

|   | 14-87-3Chiloronechane               | 10   | 0  | 1  |
|---|-------------------------------------|------|----|----|
|   | 74-83-9Bromomethane                 | 10 - | U  |    |
|   | 75-01-4Vinyl chloride               | 10   | U  |    |
|   | 75-00-3Chloroethane                 | 10   | U  | ŀ  |
|   | 75-09-2Methylene chloride           | 10   | U  |    |
|   | 67-64-1Acetone                      | 10   | U  |    |
|   | 75-15-0Carbon Disulfide             | 10   | U  |    |
|   | 75-35-41,1-Dichloroethene           | 10   | U  | ŀ  |
|   | 75-34-31,1-Dichloroethane           | 10   | Ŭ  |    |
|   | 67-66-3Chloroform                   | 10   | U  |    |
|   | 107-06-21,2-Dichloroethane          | 10   | U  |    |
|   | 78-93-32-Butanone                   | 10   | υ  |    |
|   | 71-55-61,1,1-Trichloroethane        | 10   | U  |    |
|   | 56-23-5Carbon Tetrachloride         | 10   | U  |    |
|   | 75-27-4Bromodichloromethane         | 10   | U  |    |
|   | 78-87-51,2-Dichloropropane          | 10   | ប  |    |
|   | 10061-01-5cis-1,3-Dichloropropene   | 10   | υ  |    |
|   | 79-01-6Trichloroethene              | 10   | U  | İ. |
|   | 124-48-1Dibromochloromethane        | 10   | U  |    |
|   | 79-00-51,1,2-Trichloroethane        | 10   | U  |    |
|   | 71-43-2Benzene                      | 10   | U  |    |
|   | 10061-02-6trans-1,3-Dichloropropene | 10   | U  |    |
|   | 75-25-2Bromoform                    | 10   | U  |    |
|   | 108-10-14-Methyl-2-pentanone        | 10   | U  | į. |
| · | 591-78-62-Hexanone                  | 10   | υ  |    |
|   | 127-18-4Tetrachloroethene           | 3    | J  |    |
|   | 108-88-3Toluene                     | 10   | U  |    |
|   | 79-34-51,1,2,2-Tetrachloroethane    | 10   | U  |    |
|   | 108-90-7Chlorobenzene               | 10   | υ  |    |
|   | 100-41-4Ethylbenzene                | 10   | U  |    |
|   | 100-42-5Styrene                     | 10   | U  |    |
|   | 1330-20-7Total Xylenes              | 10   | υ. |    |
|   | 75-71-8Dichlorodifluoromethane      | 10   | U  |    |
|   | 75-69-4Trichlorofluoromethane       | 10   | U  | •. |
| L |                                     |      | L  |    |

## 28/826

Client No.

| ab Name: <u>STL Buffalo</u> Contract:         |                   | MW-117                |
|-----------------------------------------------|-------------------|-----------------------|
| Lab Code: RECNY Case No.: SAS No.:            |                   |                       |
| Matrix: (soil/water) WATER                    | Lab Sample ID:    | A6039702              |
| Sample wt/vol: (g/mL) ML                      | Lab File ID:      | Q9917.RR              |
| Level: (low/med) LOW                          | Date Samp/Recv:   | 01/11/2006 01/12/2006 |
| % Moisture: not dec Heated Purge: N           | Date Analyzed:    | 01/19/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor:  | 1.00                  |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volu | me: (uL)              |

# CONCENTRATION UNITS:

| CAS NO. COMPOUND                     | (ug/L or ug/Kg) | <u>UG/L</u> | Q |
|--------------------------------------|-----------------|-------------|---|
| 76-13-11,1,2-Trichloro-1,2,2-triflu  | oroethane       | 10          | υ |
| 156-60-5trans-1,2-Dichloroethene     |                 | 10          | U |
| 1634-04-4Methyl-t-Butyl Ether (MIBE) | • • •           | 10          | U |
| 156-59-2cis-1,2-Dichloroethene       |                 | 10          | U |
| 110-82-7Cyclohexane                  |                 | 10          | U |
| 108-87-2Methylcyclohexane            |                 | 10          | U |
| 106-93-41,2-Dibromoethane            |                 | 10          | U |
| 98-82-8Isopropylbenzene              |                 | 10          | U |
| 541-73-11,3-Dichlorobenzene          |                 | 10          | U |
| 106-46-71,4-Dichlorobenzene          |                 | 10          | U |
| 95-50-11,2-Dichlorobenzene           |                 | 10          | U |
| 96-12-81,2-Dibromo-3-chloropropane   |                 | 10          | U |
| 120-82-11,2,4-Trichlorobenzene       |                 | 10          | U |
| 79-20-9Methyl acetate                |                 | 10          | U |

#### DELIA - AQ - ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENTIFIED COMPOUNDS

## 29/826

Client No.

| b Name: <u>STL Buffalo</u> Contract:          | MW-117                                |
|-----------------------------------------------|---------------------------------------|
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     | SDG No.: 0397                         |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID: <u>A6039702</u>        |
| Sample wt/vol: (g/mL) ML                      | Lab File ID: <u>09917.RR</u>          |
| Level: (low/med) <u>LOW</u>                   | Date Samp/Recv: 01/11/2006 01/12/2006 |
| * Moisture: not dec.                          | Date Analyzed: <u>01/19/2006</u>      |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor:1.00                  |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volume: (uL)             |
|                                               | CONCENTRATION UNITS:                  |

Number TICs found: \_\_0

(ug/L or ug/Kg) <u>UG/L</u>

| • | CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---|---------|---------------|----|------------|---|
| : |         |               |    |            |   |

#### 30/826

Client No.

MW-117A b Name: STL Buffalo Contract: Lab Code: RECNY Case No.: SAS No.: SDG No.: 0397 A6039703 Matrix: (soil/water) WATER Lab Sample ID: Sample wt/vol: <u>5.00</u> (g/mL) ML Lab File ID: Q9918.RR Level: (low/med) LOW Date Samp/Recv: 01/11/2006 01/12/2006 % Moisture: not dec. \_\_\_\_\_ Heated Purge: N Date Analyzed: 01/19/2006 GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: 1.00 Soil Extract Volume: \_\_\_\_\_ (uL) Soil Aliquot Volume: \_\_\_\_\_ (uL)

CAC NO

CONCENTRATION UNITS:

| CAS NO.    | COMPOUND                   | (ug/L or ug/Kg)                        | <u>UG/L</u> | Q  |
|------------|----------------------------|----------------------------------------|-------------|----|
|            | Chloromethane              | ·                                      | 10          | υ  |
|            | Bromomethane               |                                        | 10          | υ  |
|            | Vinyl chloride             |                                        | 10          | U  |
|            | Chloroethane               |                                        | 10          | U  |
| 75-09-2    | Methylene chloride         |                                        | 10          | U  |
| 67-64-1    |                            |                                        | 10          | U. |
|            | Carbon Disulfide           |                                        | 10          | U  |
| 75-35-4    | 1,1-Dichloroethene         |                                        | 10          | U  |
| 75-34-3    | 1,1-Dichloroethane         |                                        | 10          | U  |
| 67-66-3    | Chloroform                 |                                        | 10          | U  |
| 107-06-2   | 1,2-Dichloroethane         |                                        | 10          | U  |
| 78-93-3    | 2-Butanone                 |                                        | 10          | U  |
|            | 1,1,1-Trichloroethane      |                                        | 10          | U  |
|            | Carbon Tetrachloride       |                                        | 10          | U  |
|            | Bromodichloromethane       | ······································ | 10          | U  |
| 78-87-5    | 1,2-Dichloropropane        |                                        | 10          | U  |
| 10061-01-5 | cis-1,3-Dichloropropene    |                                        | 10          | υ  |
|            | Trichloroethene            |                                        | 10          | U  |
| 124-48-1   | Dibromochloromethane       |                                        | 10          | U  |
|            | 1,1,2-Trichloroethane      |                                        | 10          | U  |
| 71-43-2    |                            |                                        | 10          | U  |
|            | trans-1,3-Dichloropropene  |                                        | 10          | U  |
| 75-25-2    |                            |                                        | 10          | U  |
| 108-10-1   | -4-Methyl-2-pentanone      |                                        | 10          | U  |
| 591-78-6   | -2-Hexanone                |                                        | 10          | U  |
| 127-18-4   | -Tetrachloroethene         |                                        | 3           | J  |
| 108-88-3   | Toluene                    |                                        | 10          | U  |
|            | -1,1,2,2-Tetrachloroethane |                                        | 10          | U  |
|            | Chlorobenzene              |                                        | 10          | U  |
|            | Ethylbenzene               |                                        | 10          | U  |
| 100-42-5   | Styrene                    |                                        | 10          | U  |
| 1330-20-7  | -Total Xylenes             |                                        | 10          | U  |
| 75-71-8    | -Dichlorodifluoromethane   |                                        | 10          | U  |
| 75-69-4    | -Trichlorofluoromethane    | · · · · ·                              | 10          | U  |
|            |                            |                                        |             | 1  |

## 31/826

|                                                   |                      | Client No.            |
|---------------------------------------------------|----------------------|-----------------------|
| Lab Name: <u>STL Buffalo</u> Contract:            |                      | MW-117A               |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:         | SDG No.: 0397        |                       |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID:       | A6039703              |
| Sample wt/vol: (g/mL) ML                          | Lab File ID:         | 09918.RR              |
| Level: (low/med) <u>LOW</u>                       | Date Samp/Recv:      | 01/11/2006 01/12/2006 |
| & Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed:       | 01/19/2006            |
| 3C Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor:     | 1.00                  |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volur   | ne: (uL)              |
|                                                   | CONCENTRATION UNITS: |                       |

1

| CAS NO.   | COMPOUND               | (ug/L or ug/Kg)  | UG/L | Q   |
|-----------|------------------------|------------------|------|-----|
| 76-13-1   | 1,1,2-Trichloro-1,2,2  | -trifluoroethane | 10   | U   |
| 156-60-5  | trans-1,2-Dichloroeth  | ene              | 10   | U   |
| 1634-04-4 | Methyl-t-Butyl Ether   | (MIBE)           | 10   | ע . |
| 156-59-2  | cis-1,2-Dichloroethen  | e                | 10   | U   |
| 110-82-7  | Cyclohexane            |                  | 10   | U   |
| 108-87-2  | Methylcyclohexane      |                  | 10   | U   |
| 106-93-4  | 1,2-Dibromoethane      |                  | 10   | U   |
| 98-82-8   | Isopropylbenzene       |                  | 10   | ע ' |
| 541-73-1  | 1,3-Dichlorobenzene    |                  | 10   | U   |
| 106-46-7  | 1,4-Dichlorobenzene    |                  | 10   | U   |
|           | 1,2-Dichlorobenzene    |                  | 10   | U   |
| 96-12-8   | 1,2-Dibromo-3-chloropi | ropane           | 10   | U   |
| 120-82-1  | 1,2,4-Trichlorobenzene | 3                | 10   | U   |
| 79-20-9   | Methyl acetate         |                  | 10   | υ   |

### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENIATIVELY IDENIIFIED COMPOUNDS

32/826

Client No.

| _ab Name: <u>STL Buffalo</u> Contract:        | MW-117A                                             |
|-----------------------------------------------|-----------------------------------------------------|
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     |                                                     |
| Matrix: (soil/water) WATER                    | Lab Sample ID: <u>A6039703</u>                      |
| Sample wt/vol: (g/mL) ML                      | Lab File ID: <u>O9918.RR</u>                        |
| Level: (low/med) LOW                          | Date Samp/Recv: 01/11/2006 01/12/2006               |
| % Moisture: not dec.                          | Date Analyzed: 01/19/2006                           |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor:1.00                                |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volume: (uL)                           |
| Number TICs found: <u>0</u>                   | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> |

| CAS NO. | Compound Name                         | RT | Est. Conc. | Q |
|---------|---------------------------------------|----|------------|---|
|         | · · · · · · · · · · · · · · · · · · · |    |            |   |

#### FORM IE - GC/MS VOA TIC

## 33/826

Client No.

| b Name: <u>SIL Buffalo</u> Contract:          |                      | MW-118                              |
|-----------------------------------------------|----------------------|-------------------------------------|
| Lab Code: RECNY Case No.: SAS No.:            | SDG No.: <u>0397</u> |                                     |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID:       | A6039705                            |
| Sample wt/vol: (g/mL) ML                      | Lab File ID:         | 09936.RR                            |
| Level: (low/med) <u>LOW</u>                   | Date Samp/Recv:      | <u>01/11/2006</u> <u>01/12/2006</u> |
| % Moisture: not dec Heated Purge: N           | Date Analyzed:       | 01/20/2006                          |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor:     | 25.00                               |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volu    | me: (uL)                            |

#### CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

|   | CAS NO. COMPOUND                    | (ug/L or ug/Kg) | UG/L | Q  |
|---|-------------------------------------|-----------------|------|----|
|   | 74-87-3Chloromethane                |                 | 250  | U  |
|   | 74-83-9Bromomethane                 |                 | 250  | U  |
|   | 75-01-4Vinyl chloride               |                 | 1000 |    |
|   | 75-00-3Chloroethane                 |                 | 250  | U  |
|   | 75-09-2Methylene chloride           |                 | 250  | U  |
|   | 67-64-1Acetone                      |                 | 250  | U  |
|   | 75-15-0Carbon Disulfide             |                 | 250  | U  |
|   | 75-35-41,1-Dichloroethene           |                 | 240  | J  |
|   | 75-34-31,1-Dichloroethane           |                 | 480  |    |
|   | 67-66-3Chloroform                   |                 | 250  | U  |
|   | 107-06-21,2-Dichloroethane          |                 | 250  | U  |
| , | 78-93-32-Butanone                   |                 | 250  | U  |
|   | 71-55-61,1,1-Trichloroethane        |                 | 3900 |    |
|   | 56-23-5Carbon Tetrachloride         |                 | 250  | U  |
|   | 75-27-4Bromodichloromethane         |                 | 250  | U  |
|   | 78-87-51,2-Dichloropropane          |                 | 250  | ប  |
|   | 10061-01-5cis-1,3-Dichloropropene   |                 | 250  | U  |
|   | 79-01-6Trichloroethene              |                 | 2700 |    |
|   | 124-48-1Dibromochloromethane        |                 | 250  | U  |
|   | 79-00-51,1,2-Trichloroethane        |                 | 250  | U  |
|   | 71-43-2Benzene                      |                 | 250  | U  |
|   | 10061-02-6trans-1,3-Dichloropropene |                 | 250  | U  |
|   | 75-25-2Bromoform                    |                 | 250  | U  |
|   | 108-10-14-Methyl-2-pentanone        |                 | 250  | U  |
|   | 591-78-62-Hexanone                  |                 | 250  | U  |
|   | 127-18-4Tetrachloroethene           |                 | 5400 | EJ |
|   | 108-88-3Toluene                     |                 | 250  | U  |
|   | 79-34-51,1,2,2-Tetrachloroethane    |                 | 250  | U  |
|   | 108-90-7Chlorobenzene               |                 | 250  | U  |
|   | 100-41-4Ethylbenzene                |                 | 250  | U  |
|   | 100-42-5Styrene                     |                 | 250  | U  |
|   | 1330-20-7Total Xylenes              |                 | 250  | U  |
|   | 75-71-8Dichlorodifluoromethane      |                 | 250  | U  |
|   | 75-69-4Trichlorofluoromethane       | 1.0             | 250  | U  |
|   |                                     |                 |      |    |

FORM I - GC/MS VOA

34/826

U

U

U

บ บ

U

U

U

U.

250

250

250

250

250

250

250

250

250

Client No.

| Lab Name  | : SIL Buff                         | alo                                    | Contract:                                                            |           |                          |              | MW-118          |                  |        |
|-----------|------------------------------------|----------------------------------------|----------------------------------------------------------------------|-----------|--------------------------|--------------|-----------------|------------------|--------|
|           |                                    |                                        | SAS No.:                                                             |           |                          | 0397         |                 |                  |        |
| Matrix:   | (soil/wate                         | r) <u>WATER</u>                        | · · · · · · · · · · · · · · · · · · ·                                | n da e tr | Lab Sample               | D:           | <u>A6039705</u> |                  |        |
| Sample w  | t/vol:                             | <u>   5.00</u> (g/m                    | L) <u>MI</u> ,                                                       |           | Lab File 1               | D:           | 09936.RR        |                  |        |
| Level:    | (low/med)                          | LOW                                    | ·                                                                    | •         | Date Samp                | Recv:        | 01/11/200       | 6 01/1           | 2/2006 |
| % Moistu  | re: not dec                        | e Heat                                 | ed Purge: N                                                          |           | Date Analy               | zed:         | 01/20/200       | <u>6</u>         | · ·    |
| GC Colum  | n: <u>DB-624</u>                   | 1D:5                                   | (mm)                                                                 |           | Dilution F               | actor:       | 25.00           |                  |        |
| Soil Exti | ract Volume                        | :: (uL)                                | · · · · · ·                                                          | •         | Soil Aliqu               | ot Volu      | me:             | (u               | L) :   |
|           | CAS NO.                            | COMPOUND                               |                                                                      |           | ENIRATION<br>g/L or ug/K |              | G/L             | Q                | · ·    |
|           | 156-60-5<br>1634-04-4-<br>156-59-2 | trans-1,2-<br>Methyl-t-B<br>cis-1,2-Di | hloro-1,2,2-tri<br>Dichloroethene<br>utyl Ether (MIE<br>chloroethene | E)        |                          | 2<br>2<br>36 | 50<br>50        | 0<br>0<br>0<br>0 |        |
|           | TT0-97-1                           | Cyclohexan                             |                                                                      |           |                          | 2            | 50              | 0 1              | · .    |

108-87-2----Methylcyclohexane

106-93-4----1,2-Dibromoethane

541-73-1----1,3-Dichlorobenzene

106-46-7----1,4-Dichlorobenzene

95-50-1-----1,2-Dichlorobenzene

79-20-9-----Methyl acetate

120-82-1----1,2,4-Trichlorobenzene

96-12-8-----1,2-Dibromo-3-chloropropane

98-82-8-----Isopropylbenzene

### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

35/826

Client No.

|                                               |                    | MW-118                |
|-----------------------------------------------|--------------------|-----------------------|
| _ab Name: <u>STL Buffalo</u> Contract:        |                    | IM-110                |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     | SDG No.: 0397      |                       |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID:     | <u>A6039705</u>       |
| Sample wt/vol: (g/mL) ML                      | Lab File ID:       | 09936.RR              |
| Level: (low/med) LOW                          | Date Samp/Recv:    | 01/11/2006 01/12/2006 |
| % Moisture: not dec.                          | Date Analyzed:     | 01/20/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor    | :25.00                |
| Soil Extract Volume: (uL)                     | Soil Aliquot Vo    | lume: (uL)            |
| Number TICs found: <u>1</u>                   | CONCENTRATION UNIT |                       |

| CAS NO.     | Compound Name            | RT   | Est. Conc. | Q  |
|-------------|--------------------------|------|------------|----|
| 1. 590-50-1 | 4,4-DIMETHYL-2-PENTANONE | 7.53 | 140        | JN |

## FORM IE - GC/MS VOA TIC

## 36/826

Client No.

|                                             |                   |                      | MW-118 DL             |
|---------------------------------------------|-------------------|----------------------|-----------------------|
| _ab Name: <u>STL Buffalo</u>                | Contract:         | <u>.</u>             |                       |
| Lab Code: <u>RECNY</u> Case No.:            | SAS No.:          | SDG No.: <u>0397</u> | • • • • •             |
| Matrix: (soil/water) <u>WATER</u>           | •                 | Lab Sample ID:       | A6039705DL            |
| Sample wt/vol: (g/mL)                       | ML                | Lab File ID:         | <u>09996.RR</u>       |
| Level: (low/med) <u>LOW</u>                 | · · ·             | Date Samp/Recv:      | 01/11/2006 01/12/2006 |
| % Moisture: not dec Heated                  | l Purge: <u>N</u> | Date Analyzed:       | 01/23/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (n | m)                | Dilution Factor:     | 50.00                 |
| Soil Extract Volume: (uL)                   |                   | Soil Aliquot Vol     | ume: (uL)             |

#### CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

|     | CAS NO.    | COMPOUND                  | (ug/L or ug/K |     | <u>5/L</u> | Q          |
|-----|------------|---------------------------|---------------|-----|------------|------------|
|     | 74-87-3    | -Chloromethane            |               | 50  | 00         | υJ         |
|     | 74-83-9    | -Bromomethane             |               | 50  | 00         | υσ         |
| • : | 75-01-4    | -Vinyl chloride           |               | 75  | 50         | DJ         |
|     | 75-00-3    |                           | ,             | 50  | 00         | דט         |
|     | 75-09-2    | -Methylene chloride       | ~             | . 5 | 6          | ΔZ         |
|     | 67-64-1    | -Acetone                  |               | 50  |            | UJ         |
|     | 75-15-0    | -Carbon Disulfide         |               | 50  | 0          | υσ         |
|     | 75-35-4    | -1,1-Dichloroethene       |               | 20  | 0          | ΩJ         |
|     | 75-34-3    | -1,1-Dichloroethane       |               | 43  | 0          | DJ J       |
|     | 67-66-3    | -Chloroform               |               | 50  | 0          | UJ         |
|     | 107-06-2   | -1,2-Dichloroethane       |               | 50  |            | UJ         |
|     | 78-93-3    |                           |               | 50  | 0          | υΣ         |
|     | 71-55-6    | -1,1,1-Trichloroethane    |               | 330 | 0          | DJ         |
|     |            | -Carbon Tetrachloride     |               | 50  | 0          | υΣ         |
|     |            | -Bromodichloromethane     | • *           | 50  |            | υσ         |
| ĺ   |            | -1,2-Dichloropropane      |               | 50  |            | בט         |
|     |            | -cis-1,3-Dichloropropene  |               | 50  |            | τυ         |
|     |            | Trichloroethene           |               | 250 |            | D2         |
|     | 124-48-1   | Dibromochloromethane      |               | 50  |            | υŢ         |
|     |            | 1,1,2-Trichloroethane     |               | 50  |            | υJ         |
|     | 71-43-2    |                           |               | 50  |            | υJ         |
|     | 10061-02-6 | trans-1,3-Dichloropropene |               | 50  | 0          | בט         |
|     | 75-25-2    |                           |               | 50  |            | τJ         |
|     | 108-10-1   | 4-Methyl-2-pentanone      |               | 50  | 0          | UJ         |
|     | 591-78-6   | 2-Hexanone                |               | 50  | 0          | $\tau_{U}$ |
|     | 127-18-4   | Tetrachloroethene         |               | 490 | 0          | DJ         |
|     | 108-88-3   |                           |               | 50  | 0          |            |
|     | 79-34-5    | 1,1,2,2-Tetrachloroethane |               | 50  | 0          | UJ         |
|     | 108-90-7   |                           |               | 50  | 0          | UJ         |
|     | 100-41-4   | Ethylbenzene              |               | 50  | 0          | υJ         |
|     | 100-42-5   |                           |               | 50  |            | υJ         |
|     | 1330-20-7  |                           |               | 50  |            | UJ         |
|     |            | Dichlorodifluoromethane   |               | 50  |            | UJ         |
|     |            | Trichlorofluoromethane    |               | 50  |            | υΣ         |
|     |            |                           | ·····         |     |            |            |

37/826

Client No.

|                                                   | MW-118 DL                                             |
|---------------------------------------------------|-------------------------------------------------------|
| b Name: <u>STL Buffalo</u> Contract:              |                                                       |
| Lab Code: REONY Case No.: SAS No.:                | SDG No.: <u>0397</u>                                  |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID: <u>A6039705DL</u>                      |
| Sample wt/vol: (g/mL) ML                          | Lab File ID: 099996.RR                                |
| Level: (low/med) <u>LOW</u>                       | Date Samp/Recv: 01/11/2006 01/12/2006                 |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed: 01/23/2006                             |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor:50.00                                 |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volume: (uL)                             |
| CAS NO. COMPOUND                                  | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> Q |

| 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane | 500   | UJ              |
|----------------------------------------------|-------|-----------------|
| 156-60-5trans-1,2-Dichloroethene             | 500   | $U\overline{2}$ |
| 1634-04-4Methyl-t-Butyl Ether (MIBE)         | 500   | U 2             |
| 156-59-2cis-1,2-Dichloroethene               | 3400  | DJ              |
| 110-82-7Cyclohexane                          | 500   | UJ              |
| 108-87-2Methylcyclohexane                    | 500   | $_{\rm U}$ J    |
| 106-93-41,2-Dibromoethane                    | 500   | UJ              |
| 98-82-8Isopropylbenzene                      | 500   | UJ              |
| 541-73-11,3-Dichlorobenzene                  | 500 - | U J             |
| 106-46-71,4-Dichlorobenzene                  | 500   | U J             |
| 95-50-11,2-Dichlorobenzene                   | 500   | UJ              |
| 96-12-81,2-Dibromo-3-chloropropane           | 500   | L 1             |
| 20-82-11,2,4-Trichlorobenzene                | 500   | U 7             |
| 79-20-9Methyl acetate                        | 500   | UJ              |

#### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

38/826

Client No.

|                                               |     | · ·                |                       |
|-----------------------------------------------|-----|--------------------|-----------------------|
| Lab Name: <u>STL Buffalo</u> Contract:        | •   |                    | MW-118                |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     |     | SDG No.: 0397      |                       |
| Matrix: (soil/water) <u>WATER</u>             | • • | Lab Sample ID:     | A6039705DL            |
| Sample wt/vol: (g/mL) ML                      |     | Lab File ID:       | 09996.RR              |
| Level: (low/med) <u>LOW</u>                   |     | Date Samp/Recv:    | 01/11/2006 01/12/2006 |
| % Moisture: not dec.                          |     | Date Analyzed:     | 01/23/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) |     | Dilution Factor    | :50.00                |
| Soil Extract Volume: (uL)                     |     | Soil Aliquot Vo    | lume: (uL)            |
| Number TTCs found: 0                          |     | CONCENTRATION UNIT |                       |

CAS NO. Compound Name RT Est. Conc. Q

FORM IE - GC/MS VOA TIC

39/826

Client No.

|                                                   |                                         | MW-119                |
|---------------------------------------------------|-----------------------------------------|-----------------------|
| Ab Name: <u>STL Buffalo</u> Contract:             |                                         | L                     |
| Lab Code: RECNY Case No.: SAS No.:                | SDG No.: 0397                           | •                     |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID:                          | <u>A6039706</u>       |
| Sample wt/vol: (g/mL) ML                          | Lab File ID;                            | 09937.RR              |
| Level: (low/med) LOW                              | Date Samp/Recv:                         | 01/11/2006 01/12/2006 |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed:                          | 01/20/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor:                        | 1.00                  |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volu                       | ume: (uL)             |
| Cas no. compound                                  | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) | UG/LQ                 |

|           |                           |                                        |    | ~  |
|-----------|---------------------------|----------------------------------------|----|----|
|           | Chloromethane             |                                        | 10 | U  |
|           | Bromomethane              |                                        | 10 | U  |
|           | Vinyl chloride            |                                        | 4  | J  |
|           | Chloroethane              |                                        | 10 | U  |
|           | Methylene chloride        |                                        | 10 | U  |
|           | Acetone                   |                                        | 10 | U  |
|           | Carbon Disulfide          |                                        | 10 | U  |
| 75-35-4   | 1,1-Dichloroethene        |                                        | 1  | J  |
| 75-34-3   | 1,1-Dichloroethane        |                                        | 42 |    |
| 67-66-3   | Chloroform                |                                        | 2  | J  |
| 107-06-2  | 1,2-Dichloroethane        |                                        | 10 | υ  |
|           | 2-Butanone                |                                        | 10 | U  |
| 71-55-6   | 1,1,1-Trichloroethane     |                                        | 44 |    |
|           | Carbon Tetrachloride      |                                        | 10 | U  |
|           | Bromodichloromethane      |                                        | 10 | U  |
| 78-87-5   | 1,2-Dichloropropane       |                                        | 10 | U  |
|           | cis-1,3-Dichloropropene   |                                        | 10 | U  |
|           | Trichloroethene           |                                        | 64 |    |
| 124-48-1  | Dibromochloromethane      |                                        | 10 | U  |
|           | 1,1,2-Trichloroethane     |                                        | 10 | U  |
|           | Benzene                   |                                        | 10 | U  |
|           | trans-1,3-Dichloropropene | ······································ | 10 | U  |
|           | Bromoform                 |                                        | 10 | U  |
|           | 4-Methyl-2-pentanone      |                                        | 10 | U  |
|           | 2-Hexanone                | · · ·                                  | 10 | U  |
|           | Tetrachloroethene         |                                        | 21 | 1  |
|           | Toluene                   |                                        | 10 | υ  |
|           | 1,1,2,2-Tetrachloroethane |                                        | 10 | υ  |
|           |                           |                                        | 10 | U  |
|           | Ethylbenzene              |                                        | 10 | U  |
|           | Styrene                   |                                        | 10 | U  |
| 1330-20-7 | Total Xylenes             |                                        | 10 | U  |
|           | Dichlorodifluoromethane   |                                        | 10 | U  |
|           | Trichlorofluoromethane    |                                        | 10 | U  |
| 15-05 -   |                           |                                        | TO | U. |

## 40/826

Ū

U

U

U

U

U

U

U

U

10

10

10

10

10

10

10

10

10

Client No.

| Lab Name: <u>STL Buffalo</u> Contract:                                                                                                                                    |                                                  | MW-119                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------|
| Lab Code: RECINY Case No.: SAS No.:                                                                                                                                       | SDG No.: 0397                                    |                                     |
| Matrix: (soil/water) WATER                                                                                                                                                | Lab Sample ID:                                   | <u>A6039706</u>                     |
| Sample wt/vol: (g/mL) ML                                                                                                                                                  | Lab File ID:                                     | 09937.RR                            |
| Level: (low/med) LOW                                                                                                                                                      | Date Samp/Recv:                                  | 01/11/2006 01/12/2006               |
| % Moisture: not dec Heated Purge: $\underline{N}$                                                                                                                         | Date Analyzed:                                   | 01/20/2006                          |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)                                                                                                                             | Dilution Factor:                                 | 1.00                                |
| Soil Extract Volume: (uL)                                                                                                                                                 | Soil Aliquot Volu                                | me: (uL)                            |
| CAS NO. COMPOUND                                                                                                                                                          | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>U</u> | <u>G/L</u> Q                        |
| 76-13-11,1,2-Trichloro-1,2,2-triflug<br>156-60-5trans-1,2-Dichloroethene<br>1634-04-4Methyl-t-Butyl Ether (MIBE)<br>156-59-2cis-1,2-Dichloroethene<br>110-82-7Cyclohexane |                                                  | 10 U<br>1 J<br>10 U<br>56 J<br>10 U |

108-87-2----Methylcyclohexane

106-93-4----1,2-Dibromoethane

541-73-1----1, 3-Dichlorobenzene

106-46-7-----1,4-Dichlorobenzene

95-50-1-----1,2-Dichlorobenzene

120-82-1----1,2,4-Trichlorobenzene

96-12-8-----1,2-Dibromo-3-chloropropane

98-82-8-----Isopropylbenzene

79-20-9-----Methyl acetate

## 41/826

#### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

|                                               |                    | MW-119                |
|-----------------------------------------------|--------------------|-----------------------|
| Lab Name: <u>STL Buffalo</u> Contract:        |                    |                       |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     | SDG No.: 0397      |                       |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID:     | <u>A6039706</u>       |
| Sample wt/vol:5.00 (g/mL) ML                  | Lab File ID:       | 09937.RR              |
| Level: (low/med) LOW                          | Date Samp/Recv:    | 01/11/2006 01/12/2006 |
| % Moisture: not dec.                          | Date Analyzed:     | 01/20/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor    | :1.00                 |
| Soil Extract Volume: (uL)                     | Soil Aliquot Vol   | lume: (uL)            |
|                                               | CONCENTRATION INTO | rs.                   |

Number TICs found: \_0

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            | : |

#### FORM IE - GC/MS VOA TIC

42/826

Client No.

\_

|                                                   | · ·                               | MW-120                |
|---------------------------------------------------|-----------------------------------|-----------------------|
| Lab Name: <u>STL Buffalo</u> Contract:            | · · · · · · · · · · · · · · · · · |                       |
| Lab Code: RECNY Case No.: SAS No.:                | SDG No.: 0397                     |                       |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID:                    | <u>A6043803</u>       |
| Sample wt/vol: (g/mL) ML                          | Lab File ID:                      | 09915.RR              |
| Level: (low/med) LOW                              | Date Samp/Recv:                   | 01/12/2006 01/13/2006 |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed:                    | 01/19/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor:                  | 1.00                  |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volu                 | ume: (uL)             |

CONCENTRATION UNITS:

| CAS NO.     | COMPOUND                  | (ug/L or ug/Kg) |      | Q  |
|-------------|---------------------------|-----------------|------|----|
| 74-87-3     | Chloromethane             |                 | 10   | υ· |
| 74-83-9     | Bromomethane              |                 | 10   | U  |
| 75-01-4     | Vinyl chloride            |                 | 9    | J  |
| 75-00-3     | Chloroethane              |                 | 10   | U  |
| 75-09-2     | Methylene chloride        |                 | 10   | U  |
| 67-64-1     | Acetone                   |                 | 10   | U  |
| 75-15-0     | Carbon Disulfide          |                 | 10   | U  |
| 75-35-4     | 1,1-Dichloroethene        |                 | 1    | J  |
| 75-34-3     | 1,1-Dichloroethane        |                 | 25   |    |
| 67-66-3     | Chloroform                |                 | 1    | J  |
| 107-06-2    | 1,2-Dichloroethane        |                 | 10   | U  |
|             | 2-Butanone                |                 | 10   | U  |
|             | 1,1,1-Trichloroethane     |                 | 19   |    |
| 56-23-5     | Carbon Tetrachloride      |                 | 10   | U  |
|             | Bromodichloromethane      |                 | 10   | U  |
| 78-87-5     | 1,2-Dichloropropane       |                 | 10   | U  |
| 10061-01-5- | cis-1,3-Dichloropropene   |                 | 10   | U  |
|             | Trichloroethene           |                 | . 12 |    |
| 124-48-1    | Dibromochloromethane      |                 | 10   | U  |
|             | 1,1,2-Trichloroethane     |                 | 10   | U  |
| 71-43-2     | Benzene                   |                 | 10   | U  |
| 10061-02-6- | trans-1,3-Dichloropropene | •               | 10   | U  |
| 75-25-2     | Bromoform                 |                 | 10   | U  |
| 108-10-1    | 4-Methyl-2-pentanone      |                 | 10   | U  |
| 591-78-6    | 2-Hexanone                |                 | 10   | U  |
| 127-18-4    | Tetrachloroethene         |                 | 4.   | J  |
| 108-88-3    |                           |                 | 10   | U  |
| 79-34-5     | 1,1,2,2-Tetrachloroethane |                 | 10   | U  |
|             | Chlorobenzene             |                 | 10   | U  |
| 100-41-4    | Ethylbenzene              |                 | 10   | U  |
| 100-42-5    |                           |                 | 10   | U  |
|             | Total Xylenes             |                 | 10   | U  |
|             | Dichlorodifluoromethane   |                 | 10   | U  |
|             | Trichlorofluoromethane    |                 | 10   | U  |
|             |                           |                 |      |    |

43/826

Client No.

| Lab Name: STL Buffalo       Contract:         Lab Code: RECNY       Case No.:       SAS No.:       SDG No.: 0397         Matrix: (soil/water)       WATER       Lab Sample ID: A6043803         Sample wt/vol:        5.00 (g/mL) ML       Lab File ID: 09915.RR         Level:       (low/med)       LOW       Date Samp/Recv: 01/12/2006 01/13/2006         % Moisture: not dec.        Heated Purge: N       Date Analyzed: 01/19/2006         GC Column:       DB-624       ID: 0.25 (mm)       Dilution Factor: |                                               | MW-120                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------|
| Matrix: (soil/water) WATER       Lab Sample ID: A6043803         Sample wt/vol:                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lab Name: <u>SIL Buffalo</u> Contract:        |                                       |
| Sample wt/vol:      5.00 (g/mL) ML       Lab File ID:       09915.RR         Level:       (low/med)       LOW       Date Samp/Recv:       01/12/2006 01/13/2006         % Moisture: not dec.        Heated Purge: N       Date Analyzed:       01/19/2006         GC Column:       DB-624       ID:       0.25 (mm)       Dilution Factor:                                                                                                                                                                           | Lab Code: RECNY Case No.: SAS No.:            | SDG No.: <u>0397</u>                  |
| Level:       (low/med)       LOW       Date Samp/Recv:       01/12/2006       01/13/2006         % Moisture:       not dec.        Heated Purge:       N       Date Analyzed:       01/19/2006         GC Column:       DB-624       ID:       0.25 (mm)       Dilution Factor:       1.00         Soil Extract Volume:                                                                                                                                                                                              | Matrix: (soil/water) WATER                    | Lab Sample ID: A6043803               |
| % Moisture: not dec Heated Purge: N       Date Analyzed: 01/19/2006         GC Column: DB-624 ID: 0.25 (mm)       Dilution Factor: 1.00         Soil Extract Volume: (uL)       Soil Aliquot Volume: (uL)         CONCENTRATION UNITS:                                                                                                                                                                                                                                                                               | Sample wt/vol: (g/mL) ML                      | Lab File ID: <u>Q9915.RR</u>          |
| GC Column: DB-624       ID: 0.25 (mm)       Dilution Factor: 1.00         Soil Extract Volume: (uL)       Soil Aliquot Volume: (uL)         CONCENTRATION UNITS:                                                                                                                                                                                                                                                                                                                                                     | Level: (low/med) LOW                          | Date Samp/Recv: 01/12/2006 01/13/2006 |
| Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS:                                                                                                                                                                                                                                                                                                                                                                                                                                             | % Moisture: not dec Heated Purge: N           | Date Analyzed: 01/19/2006             |
| CONCENTRATION UNITS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor: <u>1.00</u>          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Soil Extract Volume: (uL)                     | Soil Aliquot Volume: (uL)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CAS NO. COMPOUND                              |                                       |

| 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane | 10 | U     |
|----------------------------------------------|----|-------|
| 156-60-5trans-1,2-Dichloroethene             | 10 | U     |
| 1634-04-4Methyl-t-Butyl Ether (MIBE)         | 10 | U     |
| 156-59-2cis-1,2-Dichloroethene               | 36 |       |
| 110-82-7Cyclohexane                          | 10 | U     |
| 108-87-2Methylcyclohexane                    | 10 | U     |
| 106-93-41,2-Dibromoethane                    | 10 | υ     |
| 98-82-8Isopropylbenzene                      | 10 | U     |
| 541-73-11,3-Dichlorobenzene                  | 10 | U     |
| 106-46-71,4-Dichlorobenzene                  | 10 | U     |
| 95-50-11,2-Dichlorobenzene                   | 10 | U     |
| 96-12-81,2-Dibromo-3-chloropropane           | 10 | U     |
| 120-82-11,2,4-Trichlorobenzene               | 10 | U     |
| 79-20-9Methyl acetate                        | 10 | U     |
|                                              |    | · ] • |

# DELTA - AQ - ASP 2000/8260 - TCL VOLATTLES TENTATIVELY IDENTIFIED COMPOUNDS

## 44/826

Client No.

|                                               | MW-120                                |
|-----------------------------------------------|---------------------------------------|
| Lab Name: <u>STL Buffalo</u> Contract:        |                                       |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     | SDG No.: 0397                         |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID: <u>A6043803</u>        |
| Sample wt/vol: (g/mL) ML                      | Lab File ID: 09915.RR                 |
| Level: (low/med) <u>LOW</u>                   | Date Samp/Recv: 01/12/2006 01/13/2006 |
| % Moisture: not dec.                          | Date Analyzed: 01/19/2006             |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor: <u>1.00</u>          |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volume: (uL)             |
|                                               | CONCENTRATION UNITS:                  |

Number TICs found: 0

#### or uq/kg) 1/50

| CAS NO. | Compound Name | RT | Est. Conc. | Q |  |
|---------|---------------|----|------------|---|--|
|         |               |    |            |   |  |

45/826

Client No.

-

|                                             |                   |                      | MW-121                                |
|---------------------------------------------|-------------------|----------------------|---------------------------------------|
| b Name: <u>SIL Buffalo</u>                  | Contract:         | <u></u> **           | Ľ                                     |
| Lab Code: <u>RECNY</u> Case No.:            | SAS No.:          | SDG No.: <u>0397</u> | · · · · · · · · · · · · · · · · · · · |
| Matrix: (soil/water) <u>WATER</u>           |                   | Lab Sample ID:       | <u>A6043802</u>                       |
| Sample wt/vol: (g/mL)                       | <u>ML</u>         | Lab File ID:         | 09914.RR                              |
| Level: (low/med) <u>LOW</u>                 | •                 | Date Samp/Recv:      | 01/12/2006 01/13/2006                 |
| % Moisture: not dec Heater                  | d Purge: <u>N</u> | Date Analyzed:       | 01/19/2006                            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (n | m)                | Dilution Factor:     | 1.00                                  |
| Soil Extract Volume: (uL)                   |                   | Soil Aliquot Volu    | ume: (uL)                             |

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

| CAS NO.    | COMPOUND                  | (ug/L or ug/Kg                        |    | Q  |
|------------|---------------------------|---------------------------------------|----|----|
| 74-87-3    | Chloromethane             |                                       | 10 | U  |
| 74-83-9    | Bromomethane              |                                       | 10 | υ  |
| 75-01-4    | Vinyl chloride            |                                       | 2  | J  |
| 75-00-3    | Chloroethane              |                                       | 10 | U  |
| 75-09-2    | Methylene chloride        |                                       | 10 | U  |
| 67-64-1    | Acetone                   |                                       | 10 | U  |
| 75-15-0    | Carbon Disulfide          | · · · · · · · · · · · · · · · · · · · | 10 | U  |
| 75-35-4    | 1,1-Dichloroethene        |                                       | 2  | J  |
| 75-34-3    | 1,1-Dichloroethane        |                                       | 9  | J  |
| 67-66-3    | Chloroform                |                                       | 10 | U  |
| 107-06-2   | 1,2-Dichloroethane        |                                       | 10 | U  |
| 78-93-3    | 2-Butanone                |                                       | 10 | U  |
| 71-55-6    | 1,1,1-Trichloroethane     |                                       | 3  | J  |
| 56-23-5    | Carbon Tetrachloride      |                                       | 10 | U  |
|            | Bromodichloromethane      |                                       | 10 | U. |
| 78-87-5    | 1,2-Dichloropropane       |                                       | 10 | U  |
| 10061-01-5 | cis-1,3-Dichloropropene   |                                       | 10 | U  |
|            | Trichloroethene           |                                       | 6  | J. |
| 124-48-1   | Dibromochloromethane      |                                       | 10 | U  |
| 79-00-5    | 1,1,2-Trichloroethane     |                                       | 10 | U  |
| 71-43-2    | Benzene                   |                                       | 10 | U  |
| 10061-02-6 | trans-1,3-Dichloropropene |                                       | 10 | U  |
| 75-25-2    | Bromoform                 |                                       | 10 | U  |
| 108-10-1   | 4-Methyl-2-pentanone      |                                       | 10 | U  |
| 591-78-62  |                           | · · · · · · · · · · · · · · · · · · · | 10 | υ  |
| 127-18-4   | Tetrachloroethene         |                                       | 3  | J  |
| 108-88-3   | Coluene                   |                                       | 10 | Ŭ  |
| 79-34-5    | 1,1,2,2-Tetrachloroethane |                                       | 10 | U  |
| 108-90-70  | hlorobenzene              |                                       | 10 | υ  |
| 100-41-4E  | Sthylbenzene              |                                       | 10 | U  |
| 100-42-5   |                           |                                       | 10 | U  |
| 1330-20-77 |                           | ·                                     | 10 | υ  |
|            | Dichlorodifluoromethane   |                                       | 10 | U  |
|            | richlorofluoromethane     |                                       | 10 | U  |
|            |                           |                                       |    |    |

## 46/826

Client No.

|                                              | · · · · ·       | the second se |                       |
|----------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|
|                                              | <b>G</b>        | •<br>•                                                                                                          | MW-121                |
| Lab Name: <u>STL Buffalo</u> (               | contract:       |                                                                                                                 |                       |
| Lab Code: <u>RECNY</u> Case No.:             | SAS No.:        | SDG No.: <u>0397</u>                                                                                            |                       |
| Matrix: (soil/water) WATER                   | ·<br>·          | Lab Sample ID:                                                                                                  | <u>A6043802</u>       |
| Sample wt/vol: $5.00$ (g/mL) <u>N</u>        | ML              | Lab File ID:                                                                                                    | 09914.RR              |
| Level: (low/med) LOW                         |                 | Date Samp/Recv:                                                                                                 | 01/12/2006 01/13/2006 |
| % Moisture: not dec Heated                   | Purge: <u>N</u> | Date Analyzed:                                                                                                  | 01/19/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm | n)              | Dilution Factor:                                                                                                | 1.00                  |
| Soil Extract Volume: (uL)                    |                 | Soil Aliquot Volu                                                                                               | me: (uL)              |

#### CONCENTRATION UNITS: (ug/L or ug/Kg) Tr:/T.

| CAS NO. C  | OMPOUND                     | (ug/L or ug/Kg) | <u>wg/L</u> | Q   |
|------------|-----------------------------|-----------------|-------------|-----|
| 76-13-11   | ,1,2-Trichloro-1,2,2-triflu | oroethane       | 10          | U   |
|            | rans-1,2-Dichloroethene     |                 | 10          | U   |
| 1634-04-4M | ethyl-t-Butyl Ether (MIBE)  |                 | 10          | υ   |
| 156-59-2c  | is-1,2-Dichloroethene       |                 | 11          |     |
| 110-82-7C  | vclohexane                  |                 | 10          | ປີ  |
| 108-87-2M  | ethylcyclohexane            |                 | 10          | υ   |
| 106-93-41  | ,2-Dibromoethane            |                 | 10          | U   |
| 98-82-8I   | sopropylbenzene             |                 | 10          | U   |
| 541-73-11  | ,3-Dichlorobenzene          |                 | 10          | U . |
|            | ,4-Dichlorobenzene          |                 | 10          | υ   |
| 95-50-11   | 2-Dichlorobenzene           |                 | 10          | υ   |
| 96-12-81   | ,2-Dibromo-3-chloropropane  |                 | 10          | υ   |
|            | ,2,4-Trichlorobenzene       |                 | 10          | υ   |
|            | ethyl acetate               |                 | 10          | U   |

#### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

47/826

Client No.

|                                               | MW-121                                |
|-----------------------------------------------|---------------------------------------|
| b Name: <u>STL Buffalo</u> Contract:          | 1                                     |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     | SDG No.: 0397                         |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID: <u>A6043802</u>        |
| Sample wt/vol: (g/mL) ML                      | Lab File ID: 09914.RR                 |
| Level: (low/med) LOW                          | Date Samp/Recv: 01/12/2006 01/13/2006 |
| % Moisture: not dec.                          | Date Analyzed: 01/19/2006             |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor: 1.00                 |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volume: (uL)             |
|                                               | CONCENTRATION UNITS:                  |

Number TICs found: \_\_0

(ug/Lorug/Kg) <u>UG/L</u>

| CAS NO. | Compound Name | RT | Est. Conc. | Q. |
|---------|---------------|----|------------|----|
|         |               |    |            |    |

## 48/826

#### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES ANALYSIS DATA SHEET

Client No.

\_

|                                                   | •                                     | MW-122                |
|---------------------------------------------------|---------------------------------------|-----------------------|
| Lab Name: <u>SIL Buffalo</u> Contract:            | · · · · · · · · · · · · · · · · · · · | L                     |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:         | SDG No.: <u>0397</u>                  |                       |
| Matrix: (soil/water) WATER                        | Lab Sample ID:                        | <u>A6039701</u>       |
| Sample wt/vol: (g/mL) ML                          | Lab File ID:                          | 09935.RR              |
| Level: (low/med) <u>LOW</u>                       | Date Samp/Recv:                       | 01/11/2006 01/12/2006 |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed:                        | 01/20/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor:                      | 10.00                 |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volu                     | me: (uL)              |
|                                                   |                                       |                       |

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) ]

<u>UG/L</u>Q

|             |                           | (                                     | 5/   |             | ~ |   |
|-------------|---------------------------|---------------------------------------|------|-------------|---|---|
| 74-87-3     | Chloromethane             |                                       |      | 100         | U |   |
| 74-83-9     | Bromomethane              |                                       |      | 100         | U |   |
| 75-01-4     | Vinyl chloride            |                                       |      | 450         |   |   |
| 75-00-3     | Chloroethane              |                                       |      | 100         | U |   |
| 75-09-2     | Methylene chloride        |                                       |      | 100         | U |   |
| 67-64-1     | Acetone                   |                                       |      | 100         | U |   |
| 75-15-0     | Carbon Disulfide          |                                       |      | 100         | U |   |
| 75-35-4     | 1,1-Dichloroethene        |                                       |      | 26          | J |   |
|             | 1,1-Dichloroethane        |                                       |      | 180         | 1 |   |
| 67-66-3     | Chloroform                |                                       |      | 100         | U |   |
| 107-06-2    | 1,2-Dichloroethane        |                                       |      | 100         | U |   |
|             | 2-Butanone                |                                       |      | 100         | U |   |
| 71-55-6     | 1,1,1-Trichloroethane     | · · · · · · · · · · · · · · · · · · · |      | 160         |   |   |
| 56-23-5     | Carbon Tetrachloride      |                                       |      | 100         | U |   |
|             | Bromodichloromethane      |                                       |      | 100         | U | • |
| 78-87-5     | 1,2-Dichloropropane       |                                       |      | 100         | U |   |
|             | cis-1,3-Dichloropropene   |                                       |      | 100         | U |   |
|             | Trichloroethene           |                                       |      | <b>79</b> . | J |   |
| 124-48-1    | Dibromochloromethane      |                                       |      | 100         | U |   |
|             | 1,1,2-Trichloroethane     |                                       |      | 100         | U |   |
| 71-43-2     |                           |                                       |      | 100         | U |   |
| 10061-02-6- | trans-1,3-Dichloropropene |                                       |      | 100         | U |   |
|             | Bromoform                 |                                       |      | 100         | U | l |
| 108-10-1    | 4-Methyl-2-pentanone      |                                       |      | 100         | U |   |
|             | 2-Hexanone                |                                       |      | 100         | υ |   |
|             | Tetrachloroethene         |                                       |      | 11          | J |   |
| 108-88-3    |                           |                                       |      | 100         | U |   |
|             | 1,1,2,2-Tetrachloroethane |                                       |      | 100         | U |   |
|             | Chlorobenzene             |                                       |      | 100         | U |   |
|             | Ethylbenzene              |                                       |      | 100         | U |   |
| 100-42-5    |                           |                                       |      | 100         | U |   |
|             | Total Xylenes             |                                       |      | 100         | U |   |
|             | Dichlorodifluoromethane   |                                       |      | 100         | U |   |
|             | Trichlorofluoromethane    |                                       | . •. | 100         | U |   |
|             |                           |                                       |      |             |   |   |

49/826

Client No.

|                                                   |                                                                                                                | MW-122                |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|
| Lab Name: <u>STL Buffalo</u> Contract:            | en de la companya de |                       |
| Lab Code: RECNY Case No.: SAS No.:                | SDG No.: 0397                                                                                                  | <br>                  |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID:                                                                                                 | <u>A6039701</u>       |
| Sample wt/vol: (g/mL) ML                          | Lab File ID:                                                                                                   | 09935.RR              |
| Level: (low/med) <u>LOW</u>                       | Date Samp/Recv:                                                                                                | 01/11/2006 01/12/2006 |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed:                                                                                                 | 01/20/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor:                                                                                               | 10.00                 |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volu                                                                                              | me: (uL)              |

#### CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

| CAS NO. COMPOUND                | (ug/L or ug/Kg)                        | UG/L_ | Q |
|---------------------------------|----------------------------------------|-------|---|
| 76-13-11,1,2-Trichloro-1,2,2-   | trifluoroethane                        | 100   | U |
| 156-60-5trans-1,2-Dichloroethe  |                                        | 27    | J |
| 1634-04-4Methyl-t-Butyl Ether ( | MIBE)                                  | 100   | U |
| 156-59-2cis-1,2-Dichloroethene  |                                        | 1600  |   |
| 110-82-7Cyclohexane             |                                        | 100   | U |
| 108-87-2Methylcyclohexane       |                                        | 100   | U |
| 106-93-41,2-Dibromoethane       |                                        | 100   | U |
| 98-82-8Isopropylbenzene         |                                        | 100   | U |
| 541-73-11, 3-Dichlorobenzene    |                                        | 100   | U |
| 106-46-71,4-Dichlorobenzene     | ······································ | 100   | U |
| 95-50-11,2-Dichlorobenzene      |                                        | 100   | υ |
| 96-12-81,2-Dibromo-3-chloropro  | opane                                  | 100   | U |
| 120-82-11,2,4-Trichlorobenzene  | -                                      | 100   | U |
| 79-20-9Methyl acetate           |                                        | 100   | υ |

FORM I - GC/MS VOA

÷ `-

#### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

50/826

Client No.

|                                           |                      | MW-122                |
|-------------------------------------------|----------------------|-----------------------|
| Lab Name: <u>SIL Buffalo</u> Contract:    |                      | L                     |
| Lab Code: <u>RECNY</u> Case No.: SAS No.: | SDG No.: <u>0397</u> |                       |
| Matrix: (soil/water) <u>WATER</u>         | Lab Sample ID:       | <u>A6039701</u>       |
| Sample wt/vol: (g/mL) ML                  | Lab File ID:         | 09935.RR              |
| Level: (low/med) <u>LOW</u>               | Date Samp/Recv:      | 01/11/2006 01/12/2006 |
| % Moisture: not dec.                      | Date Analyzed:       | 01/20/2006            |
| GC Column: <u>DB-624</u> ID: 0.25 (mm)    | Dilution Factor      | :10.00                |
| Soil Extract Volume: (uL)                 | Soil Aliquot Vo      | lume: (uL)            |
|                                           | CONCENTRATION UNI    | IS:                   |

Number TICs found: \_\_0

# (ug/L or ug/Kg)

<u>UG/L</u>

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

## 51/826

Client No.

\_

|                                                   |                                                 | MW-123                |
|---------------------------------------------------|-------------------------------------------------|-----------------------|
| _ab Name: <u>STL Buffalo</u> Contract:            |                                                 | L]                    |
| Lab Code: RECNY Case No.: SAS No.:                | SDG No.: 0397                                   |                       |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID:                                  | <u>A6043801</u>       |
| Sample wt/vol: $5.00$ (g/mL) ML                   | Lab File ID:                                    | 09946.RR              |
| Level: (low/med) <u>LOW</u>                       | Date Samp/Recv:                                 | 01/12/2006 01/13/2006 |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed:                                  | 01/20/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor:                                | 1.00                  |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volu                               | ume: (uL)             |
|                                                   | ONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>[</u> | <u>IG/L</u> Q         |

| 74-87-3Chloromethane                | 10 | U |
|-------------------------------------|----|---|
| 74-83-9Bromomethane                 | 10 | U |
| 75-01-4Vinyl chloride               | 10 | U |
| 75-00-3Chloroethane                 | 10 | υ |
| 75-09-2Methylene chloride           | 10 | U |
| 67-64-1Acetone                      | 10 | U |
| 75-15-0Carbon Disulfide             | 10 | U |
| 75-35-41,1-Dichloroethene           | 10 | υ |
| 75-34-31,1-Dichloroethane           | 10 | U |
| 67-66-3Chloroform                   | 10 | U |
| 107-06-21,2-Dichloroethane          | 10 | υ |
| 78-93-32-Butanone                   | 10 | U |
| 71-55-61,1,1-Trichloroethane        | 10 | U |
| 56-23-5Carbon Tetrachloride         | 10 | U |
| 75-27-4Bromodichloromethane         | 10 | U |
| 78-87-51,2-Dichloropropane          | 10 | υ |
| 10061-01-5cis-1,3-Dichloropropene   | 10 | U |
| 79-01-6Trichloroethene              | 10 | U |
| 124-48-1Dibromochloromethane        | 10 | U |
| 79-00-51,1,2-Trichloroethane        | 10 | U |
| 71-43-2Benzene                      | 10 | U |
| 10061-02-6trans-1,3-Dichloropropene | 10 | U |
| 75-25-2Bromoform                    | 10 | U |
| 108-10-14-Methyl-2-pentanone        | 10 | U |
| 591-78-62-Hexanone                  | 10 | U |
| 127-18-4Tetrachloroethene           | 1  | J |
| 108-88-3Toluene                     | 10 | U |
| 79-34-51,1,2,2-Tetrachloroethane    | 10 | U |
| 108-90-7Chlorobenzene               | 10 | U |
| 100-41-4Ethylbenzene                | 10 | U |
| 100-42-5Styrene                     | 10 | U |
| 1330-20-7Total Xylenes              | 10 | U |
| 75-71-8Dichlorodifluoromethane      | 10 | U |
| 75-69-4Trichlorofluoromethane       | 10 | U |

## 52/826

Client No.

|                                                   | MW-123                                                |
|---------------------------------------------------|-------------------------------------------------------|
| Lab Name: <u>STL Buffalo</u> Contract:            |                                                       |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:         | SDG No.: <u>0397</u>                                  |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID: A6043801                               |
| Sample wt/vol: (g/mL) ML                          | Lab File ID: <u>09946.RR</u>                          |
| Level: (low/med) <u>LOW</u>                       | Date Samp/Recv: <u>01/12/2006</u> <u>01/13/2006</u>   |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed: <u>01/20/2006</u>                      |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor: <u>1.00</u>                          |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volume: (uL)                             |
| CAS NO. COMPOUND                                  | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> Q |
| 76-13-11,1,2-Trichloro-1,2,2-tr                   | rifluoroethane10U                                     |

| 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane | 10 | U     |     |
|----------------------------------------------|----|-------|-----|
| 156-60-5trans-1,2-Dichloroethene             | 10 | U     |     |
| 1634-04-4Methyl-t-Butyl Ether (MIBE)         | 10 | υ     |     |
| 156-59-2cis-1,2-Dichloroethene               | 10 | U     | Ι.  |
| 110-82-7Cyclohexane                          | 10 | U     |     |
| 108-87-2Methylcyclohexane                    | 10 | U     | İ.  |
| 106-93-41,2-Dibromoethane                    | 10 | υ     | ł   |
| 98-82-8Isopropylbenzene                      | 10 | υ     |     |
| 541-73-11,3-Dichlorobenzene                  | 10 | U · · |     |
| 106-46-71,4-Dichlorobenzene                  | 10 | U     | 1   |
| 95-50-11,2-Dichlorobenzene                   | 10 | U     |     |
| 96-12-81,2-Dibromo-3-chloropropane           | 10 | υ     |     |
| 120-82-11,2,4-Trichlorobenzene               | 10 | U     |     |
| 79-20-9Methyl acetate                        | 10 | U     |     |
|                                              |    |       | 1 - |

## DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

53/826

Client No.

|                                               | MW-123                                              |
|-----------------------------------------------|-----------------------------------------------------|
|                                               |                                                     |
| Lab Code: RECNY Case No.: SAS No.: _          | SDG No.: 0397                                       |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID: A6043801                             |
| Sample wt/vol: (g/mL) ML                      | Lab File ID: 09946.RR                               |
| Level: (low/med) <u>LOW</u>                   | Date Samp/Recv: 01/12/2006 01/13/2006               |
| % Moisture: not dec.                          | Date Analyzed: 01/20/2006                           |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor: <u>1.00</u>                        |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volume: (uL)                           |
| Number TICs found: <u>0</u>                   | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> |

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

### FORM IE - GC/MS VOA TIC

## 54/826

-

Client No.

|                                               |                      | TRIP BLANK            |
|-----------------------------------------------|----------------------|-----------------------|
| Ab Name: <u>STL Buffalo</u> Contract:         |                      |                       |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     | SDG No.: <u>0397</u> |                       |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID:       | <u>A6043804</u>       |
| Sample wt/vol: (g/mL) ML                      | Lab File ID:         | 09869.RR              |
| Level: (low/med) <u>LOW</u>                   | Date Samp/Recv:      | 01/12/2006 01/13/2006 |
| % Moisture: not dec Heated Purge: N           | Date Analyzed:       | 01/18/2006            |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor:     | 1.00                  |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volu    | me: (uL)              |

CONCENTRATION UNITS (ug/L or ug/Kg)

| TATTO | :    |
|-------|------|
| (ב    | UG/L |

| •     | CAS NO.    | COMPOUND                   | (ug/L or ug/Kg                        |    | Q   |
|-------|------------|----------------------------|---------------------------------------|----|-----|
|       | 74-87-3    | Chloromethane              |                                       | 10 | U   |
|       |            | Bromomethane               |                                       | 10 | U   |
| 1     | 75-01-4    | Vinyl chloride             |                                       | 10 | υ   |
|       | 75-00-3    | Chloroethane               |                                       | 10 | U   |
| ſ     | 75-09-2    | Methylene chloride         |                                       | 10 | U   |
|       | 67-64-1    |                            |                                       | 10 | U   |
|       | 75-15-0    | Carbon Disulfide           |                                       | 10 | U   |
|       |            | -1,1-Dichloroethene        |                                       | 10 | ប   |
|       | 75-34-3    | -1,1-Dichloroethane        |                                       | 10 | U   |
|       | 67-66-3    |                            |                                       | 10 | U   |
|       | 107-06-2   | -1,2-Dichloroethane        |                                       | 10 | U   |
|       | 78-93-3    |                            |                                       | 10 | υ   |
|       | 71-55-6    | -1,1,1-Trichloroethane     |                                       | 10 | U   |
|       |            | -Carbon Tetrachloride      |                                       | 10 | U   |
|       |            | -Bromodichloromethane      |                                       | 10 | U   |
|       | 78-87-5    | -1,2-Dichloropropane       |                                       | 10 | U   |
|       | 10061-01-5 | -cis-1,3-Dichloropropene   |                                       | 10 | υ   |
|       | 79-01-6    | -Trichloroethene           |                                       | 10 | U   |
|       | 124-48-1   | -Dibromochloromethane      | · .                                   | 10 | U.  |
|       |            | -1,1,2-Trichloroethane     |                                       | 10 | U   |
|       | 71-43-2    | -Benzene                   |                                       | 10 | ט   |
|       | 10061-02-6 | -trans-1,3-Dichloropropene |                                       | 10 | U   |
|       | 75-25-2    | -Bromoform                 |                                       | 10 | U   |
|       | 108-10-1   | -4-Methyl-2-pentanone      |                                       | 10 | U   |
|       | 591-78-6   | -2-Hexanone                |                                       | 10 | ע ו |
| -   : | 127-18-4   | -Tetrachloroethene         |                                       | 10 | U   |
|       | 108-88-3   | -Toluene                   |                                       | 10 | υ,  |
| ŀ     | 79-34-5    | -1,1,2,2-Tetrachloroethane |                                       | 10 | ប   |
|       |            | -Chlorobenzene             |                                       | 10 | υ   |
|       | 100-41-4   | -Ethylbenzene              | · · · · · · · · · · · · · · · · · · · | 10 | U U |
|       | 100-42-5   |                            |                                       | 10 | υ   |
|       | 1330-20-7  | -Total Xylenes             |                                       | 10 | U   |
|       |            | -Dichlorodifluoromethane   |                                       | 10 | υ   |
|       |            | -Trichlorofluoromethane    |                                       | 10 | U   |

55/826

Client No.

|                                                   | TRIP BLANK                                     |
|---------------------------------------------------|------------------------------------------------|
| ab Name: <u>STL Buffalo</u> Contract:             | L                                              |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:         | SDG No.: 0397                                  |
| Matrix: (soil/water) <u>WATER</u>                 | Lab Sample ID: A6043804                        |
| Sample wt/vol: (g/mL) ML                          | Lab File ID: <u>Q9869.RR</u>                   |
| Level: (low/med) <u>LOW</u>                       | Date Samp/Recv: 01/12/2006 01/13/2006          |
| % Moisture: not dec Heated Purge: $\underline{N}$ | Date Analyzed: 01/18/2006                      |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)     | Dilution Factor: <u>1.00</u>                   |
| Soil Extract Volume: (uL)                         | Soil Aliquot Volume: (uL)                      |
| CAS NO. COMPOUND                                  | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/L O |

| 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane | 10 | U |
|----------------------------------------------|----|---|
| 156-60-5trans-1,2-Dichloroethene             | 10 | U |
| 1634-04-4Methyl-t-Butyl Ether (MIBE)         | 10 | U |
| 156-59-2cis-1,2-Dichloroethene               | 10 | U |
| 110-82-7Cyclohexane                          | 10 | U |
| 108-87-2Methylcyclohexane                    | 10 | U |
| 106-93-41,2-Dibromoethane                    | 10 | U |
| 98-82-8Isopropylbenzene                      | 10 | U |
| 541-73-11,3-Dichlorobenzene                  | 10 | U |
| 106-46-71,4-Dichlorobenzene                  | 10 | U |
| 95-50-11,2-Dichlorobenzene                   | 10 | U |
| 96-12-81,2-Dibromo-3-chloropropane           | 10 | U |
| 120-82-11,2,4-Trichlorobenzene               | 10 | U |
| 79-20-9Methyl acetate                        | 10 | U |

## STL BUFFALO

|            |            |           | -1-<br>INORGANIC ANALYSIS DATA SHEET | SAMPLE    | NO.  |
|------------|------------|-----------|--------------------------------------|-----------|------|
| Contract:  | CN04-015   |           |                                      | MW-114    |      |
| Lab Code:  | STLBFLO    | Case No.: | SAS No.:                             | SDG NO.:  | 0397 |
| Matrix (so | il/water): | WATER     | Lab Sample ID:                       | AD601504  |      |
| Level (low | /med): L(  | W         | Date Received:                       | 1/12/2006 |      |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| CAS No.   | Analyte   | Concentration |   | Q  | м  |
|-----------|-----------|---------------|---|----|----|
| 7429-90-5 | Aluminum  | 104           | B |    | P  |
| 7440-36-0 | Antimony  | 5.2           | ש | 1  | P  |
| 7440-38-2 | Arsenic   | 3.6           | ש | *  | P  |
| 7440-39-3 | Barium    | 41.6          | B |    | P  |
| 7440-41-7 | Beryllium | 0.12          | ש | 12 | P  |
| 7440-43-9 | Cadmium   | 0.26          | ם |    | P  |
| 7440-70-2 | Calcium   | 108000        | 1 |    | P  |
| 7440-47-3 | Chromium  | 1.4           | В |    | P  |
| 7440-48-4 | Cobalt    | 28.0          | B |    | P  |
| 7440-50-8 | Copper    | 8.3           | B |    | P  |
| 7439-89-6 | Iron      | 114           |   | NJ | P  |
| 7439-92-1 | Lead      | 2.2           | σ | [  | P  |
| 7439-95-4 | Magnesium | 32300         |   |    | P  |
| 7439-96-5 | Manganese | 3.9           | B |    | P  |
| 7440-02-0 | Nickel    | 35.0          | в |    | ·P |
| 7440-09-7 | Potassium | 631           | В |    | P  |
| 7782-49-2 | Selenium  | 3.8           | Π | 17 | P  |
| 7439-97-6 | Mercury   | 0.029         | σ |    | cv |
| 7440-22-4 | Silver    | 0.76          | ש |    | P  |
| 7440-23-5 | Sodium    | 114000        |   |    | P  |
| 7440-28-0 | Thallium  | 4.4           | ם |    | P  |
| 7440-62-2 | Vanadium  | 0.72          | B |    | P  |
| 7440-66-6 | Zinc      | 6.0           | B |    | P  |

| Color Before: | COLORLESS | Clarity Before: | CLEAR | Texture:   | NONE |
|---------------|-----------|-----------------|-------|------------|------|
| Color After:  | COLORLESS | Clarity After:  | CLEAR | Artifacts: |      |
| Comments:     |           |                 |       |            |      |

- ---

#### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

56/826

Client No.

|                                               | TRIP BLANK                                          |
|-----------------------------------------------|-----------------------------------------------------|
| _ab Name: <u>STL Buffalo</u> Contract:        |                                                     |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:     | SDG No.: 0397                                       |
| Matrix: (soil/water) <u>WATER</u>             | Lab Sample ID: <u>A6043804</u>                      |
| Sample wt/vol: (g/mL) ML                      | Lab File ID: <u>09869.RR</u>                        |
| Level: (low/med) LOW                          | Date Samp/Recv: 01/12/2006 01/13/2006               |
| * Moisture: not dec.                          | Date Analyzed: 01/18/2006                           |
| GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) | Dilution Factor: <u>1.00</u>                        |
| Soil Extract Volume: (uL)                     | Soil Aliquot Volume: (uL)                           |
| Number TICs found: <u>0</u>                   | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> |

| CAS NO. | Compound Name | RT | Est. Conc. | Q |
|---------|---------------|----|------------|---|
|         |               |    |            |   |

### FORM IE - GC/MS VOA TIC

|            |            | De        | Ita Environmental Consultants. Inc<br>-1- | •         |      |
|------------|------------|-----------|-------------------------------------------|-----------|------|
|            |            |           | INORGANIC ANALYSIS DATA SHEET             | SAMPLE    | NO.  |
| Contract:  | CN04-015   |           |                                           | MW-115    |      |
| Lab Code:  | STLBFLO    | Case No.: | SAS No.:                                  | SDG NO.:  | 0397 |
| Matrix (so | il/water): | WATER     | Lab Sample ID:                            | AD601500  |      |
| Level (low | /med): 14  | OW        | Date Received:                            | 1/12/2006 |      |

| CAS No.         Analyte         Concentration         C         Q         M           7429-90-5         Aluminum         678         P           7440-36-0         Antimony         5.2         U         P           7440-38-2         Arsenic         3.6         U         *         P           7440-38-2         Arsenic         3.6.4         B         P           7440-39-3         Barium         36.4         B         P           7440-41-7         Beryllium         0.12         U         J         P           7440-43-9         Cadmium         0.26         U         P           7440-43-9         Cadmium         0.26         U         P           7440-43-9         Calcium         162000         P         P           7440-47-3         Chromium         1.4         B         P           7440-48-4         Cobalt         2.2         B         P           7440-50-8         Copper         1.6         B         P           7439-92-1         Lead         2.2         U         P           7439-95-4         Magnesium         48000         P           7440-02-0         Nickel< |           |                    |               |    |     |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|---------------|----|-----|----|
| 7440-36-0       Antimony       5.2       U       P         7440-38-2       Arsenic       3.6       U       *       P         7440-39-3       Barium       36.4       B       P         7440-41-7       Beryllium       0.12       U       J       P         7440-41-7       Beryllium       0.12       U       J       P         7440-43-9       Cadmium       0.26       U       P         7440-43-9       Calcium       162000       P         7440-47-3       Chromium       1.4       B       P         7440-48-4       Cobalt       2.2       B       P         7440-50-8       Copper       1.6       B       P         7439-89-6       Iron       860       MJ       P         7439-92-1       Lead       2.2       U       P         7439-95-4       Magnesium       48000       P       P         7440-02-0       Nickel       10.6       B       P         7440-02-0       Nickel       10.6       P       P         7440-09-7       Potassium       911       B       P         7440-09-7       Selenium       4                                                                                         | CAS No.   | Analyte            | Concentration | С  | Q   | м  |
| 7440-38-2       Arsenic       3.6       U       *       P         7440-39-3       Barium       36.4       B       P         7440-41-7       Beryllium       0.12       U       J       P         7440-43-9       Cadmium       0.26       U       P         7440-43-9       Calcium       162000       P         7440-47-3       Chromium       1.4       B       P         7440-48-4       Cobalt       2.2       B       P         7440-50-8       Copper       1.6       B       P         7439-89-6       Iron       860       MJ       P         7439-92-1       Lead       2.2       U       P         7439-95-4       Magnesium       48000       P       P         7440-02-0       Nickel       10.6       B       P         7440-23-5       Selenium       4.4       B <td>7429-90-5</td> <td>Aluminum</td> <td>678</td> <td>1</td> <td>1</td> <td>P</td>          | 7429-90-5 | Aluminum           | 678           | 1  | 1   | P  |
| 7440-39-3       Barium       36.4       B       P         7440-41-7       Beryllium       0.12       U       J       P         7440-43-9       Cadmium       0.26       U       P         7440-43-9       Calcium       162000       P         7440-47-3       Chromium       1.4       B       P         7440-48-4       Cobalt       2.2       B       P         7440-50-8       Copper       1.6       B       P         7439-89-6       Iron       860       MJ       P         7439-92-1       Lead       2.2       U       P         7439-95-4       Magnesium       48000       P       P         7440-02-0       Nickel       10.6       B       P         7440-02-0       Selenium       4.4       B       T       P         7439-97-6       Mercury       0.029       U       CV         7440-23-5       Sodium       32400       P                                                                                         | 7440-36-0 | Antimony           | 5.2           | שן |     | P  |
| 7440-41-7       Beryllium       0.12       U       J       P         7440-43-9       Cadmium       0.26       U       P         7440-43-9       Calcium       162000       P         7440-47-3       Chromium       1.4       B       P         7440-47-3       Chromium       1.4       B       P         7440-47-3       Chromium       1.4       B       P         7440-48-4       Cobalt       2.2       B       P         7440-50-8       Copper       1.6       B       P         7439-89-6       Iron       860       MJ       P         7439-92-1       Lead       2.2       U       P         7439-95-4       Magnesium       48000       P         7440-02-0       Nickel       10.6       B       P         7440-02-0       Nickel       10.6       B       P         7440-09-7       Potassium       911       B       P         7439-97-6       Mercury       0.029       U       CV         7440-22-4       Silver       0.76       U       P         7440-23-5       Sodium       32400       P       P <td>7440-38-2</td> <td>Arsenic</td> <td>3.6</td> <td>ם</td> <td> *</td> <td>P</td>           | 7440-38-2 | Arsenic            | 3.6           | ם  | *   | P  |
| 7440-43-9       Cadmium       0.26       U       P         7440-70-2       Calcium       162000       P         7440-47-3       Chromium       1.4       B       P         7440-48-4       Cobalt       2.2       B       P         7440-50-8       Copper       1.6       B       P         7439-89-6       Iron       860       MT       P         7439-92-1       Lead       2.2       U       P         7439-95-4       Magnesium       48000       P         7440-02-0       Nickel       10.6       P         7440-02-0       Nickel       10.6       P       P         7439-96-5       Manganese       41.8       P         7440-02-0       Nickel       10.6       P       P         7439-97-6       Mercury       0.029       U       CV         7440-22-4       Silver       0.76       U       P         7440-23-5       Sodium       32400       P       P         7440-28-0       Thallium       4.4       U       P         7440-28-0       Vanadium       1.5       B       P                                                                                                                        | 7440-39-3 | Barium             | 36.4          | В  | 1   | P  |
| 7440-70-2       Calcium       162000       P         7440-47-3       Chromium       1.4       B       P         7440-48-4       Cobalt       2.2       B       P         7440-50-8       Copper       1.6       B       P         7439-89-6       Iron       860       MJ       P         7439-92-1       Lead       2.2       U       P         7439-95-4       Magnesium       48000       P         7439-95-4       Magnesium       48000       P         7440-02-0       Nickel       10.6       P         7440-02-0       Nickel       10.6       P         7439-97-6       Mercury       0.029       U       CV         7440-22-4       Silver       0.76       P       P         7440-23-5       Sodium       32400       P       P         7440-28-0       Thallium       4.4       P       P         7440-28-0       Vanadium       1.5       B       P                                                                                                                                                                                                                                                    | 7440-41-7 | Beryllium          | 0.12          | ם  | 17  | P  |
| 7440-47-3       Chromium       1.4       B       P         7440-48-4       Cobalt       2.2       B       P         7440-50-8       Copper       1.6       B       P         7439-89-6       Iron       860       \$\$\psi_T\$       P         7439-92-1       Lead       2.2       V       P         7439-95-4       Magnesium       48000       \$\$\$P         7440-02-0       Nickel       10.6       B       \$\$P         7440-02-0       Nickel       10.6       B       \$\$P         7440-09-7       Potassium       911       B       \$\$P         7439-97-6       Mercury       0.029       \$\$U\$       CV         7440-22-4       Silver       0.76       \$\$V\$       \$\$P         7440-23-5       Sodium       32400       \$\$P         7440-28-0       Thallium       4.4       \$\$V\$       \$\$P         7440-28-0       Thallium       \$\$P\$       \$\$P                                                                                                                                                                                                                                 | 7440-43-9 | Cadmium            | 0.26          | שן |     | P  |
| 7440-48-4       Cobalt       2.2       B       P         7440-50-8       Copper       1.6       B       P         7439-89-6       Iron       860       MJ       P         7439-92-1       Lead       2.2       U       P         7439-95-4       Magnesium       48000       P         7439-95-5       Manganese       41.8       P         7440-02-0       Nickel       10.6       B       P         7440-09-7       Potassium       911       B       P         7439-97-6       Mercury       0.029       U       CV         7440-22-4       Silver       0.76       P       P         7440-23-5       Sodium       32400       P       P         7440-28-0       Thallium       4.4       P       P                                                                                                                                                                                                                                                                                                                                                                                                              | 7440-70-2 | Calcium            | 162000        | 1  | 1.  | P  |
| 7440-50-8       Copper       1.6       B       P         7439-89-6       Iron       860       MJ       P         7439-92-1       Lead       2.2       U       P         7439-95-4       Magnesium       48000       P         7439-95-4       Magnesium       48000       P         7439-95-4       Magnesium       48000       P         7440-02-0       Nickel       10.6       B       P         7440-02-0       Nickel       10.6       P       P         7440-09-7       Fotassium       911       B       P         7439-97-6       Mercury       0.029       U       CV         7440-22-4       Silver       0.76       P       P         7440-23-5       Sodium       32400       P       P         7440-28-0       Thallium       4.4       P       P         7440-28-0       Vanadium       1.5       B       P                                                                                                                                                                                                                                                                                           | 7440-47-3 | Chromium           | 1.4           | В  |     | P  |
| 7439-89-6       Iron       860       Mi )       P         7439-92-1       Lead       2.2       V       P         7439-95-4       Magnesium       48000       P         7439-96-5       Manganese       41.8       P         7440-02-0       Nickel       10.6       B       P         7440-09-7       Potassium       911       B       P         7439-97-6       Mercury       0.029       V       CV         7440-22-4       Silver       0.76       P       P         7440-23-5       Sodium       32400       P       P         7440-28-0       Thallium       4.4       V       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7440-48-4 | Cobalt             | 2.2           | B  |     | P  |
| 7439-92-1       Lead       2.2       U       P         7439-95-4       Magnesium       48000       P         7439-96-5       Manganese       41.8       P         7440-02-0       Nickel       10.6       B       P         7440-09-7       Potassium       911       B       P         7439-97-6       Mercury       0.029       U       CV         7440-22-4       Silver       0.76       P       P         7440-23-5       Sodium       32400       P       P         7440-28-0       Thallium       4.4       P       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7440-50-8 | Copper             | 1.6           | B  | ŀ   | P  |
| 7439-95-4       Magnesium       48000       P         7439-96-5       Manganese       41.8       P         7440-02-0       Nickel       10.6       B       P         7440-09-7       Fotassium       911       B       P         7439-97-6       Mercury       0.029       U       CV         7440-22-4       Silver       0.76       P       P         7440-23-5       Sodium       32400       P       P         7440-28-0       Thallium       4.4       P       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7439-89-6 | Iron               | 860           | 1  | 1xJ | P  |
| 7439-96-5       Manganese       41.8       P         7440-02-0       Nickel       10.6       B       P         7440-09-7       Potassium       911       B       P         7782-49-2       Selenium       4.4       B       F         7439-97-6       Mercury       0.029       U       CV         7440-22-4       Silver       0.76       U       P         7440-23-5       Sodium       32400       P         7440-28-0       Thallium       4.4       U       P         7440-62-2       Vanadium       1.5       B       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7439-92-1 | Lead               | 2.2           | סן |     | P  |
| 7440-02-0       Nickel       10.6       B       P         7440-09-7       Potassium       911       B       P         7782-49-2       Selenium       4.4       B       T       P         7439-97-6       Mercury       0.029       U       CV         7440-22-4       Silver       0.76       U       P         7440-23-5       Sodium       32400       P         7440-28-0       Thallium       4.4       U       P         7440-62-2       Vanadium       1.5       B       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7439-95-4 | <b> </b> Magnesium | 48000         | 1  | 1   | P  |
| 7440-09-7       Potassium       911       B       P         7782-49-2       Selenium       4.4       B       T       P         7439-97-6       Mercury       0.029       U       CV         7440-22-4       Silver       0.76       U       P         7440-23-5       Sodium       32400       P         7440-28-0       Thallium       4.4       U       P         7440-62-2       Vanadium       1.5       B       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7439-96-5 | Manganese          | 41.8          |    |     | P  |
| 7782-49-2       Selenium       4.4       B       P         7439-97-6       Mercury       0.029       U       CV         7440-22-4       Silver       0.76       U       P         7440-23-5       Sodium       32400       P         7440-28-0       Thallium       4.4       U       P         7440-62-2       Vanadium       1.5       B       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-02-0 | Nickel             | 10.6          | в  | 1   | P  |
| 7439-97-6     Mercury     0.029     U     CV       7440-22-4     Silver     0.76     U     P       7440-23-5     Sodium     32400     P       7440-28-0     Thallium     4.4     U     P       7440-62-2     Vanadium     1.5     B     P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7440-09-7 | Potassium          | 911           | в  |     | P  |
| 7440-22-4     Silver     0.76     U     P       7440-23-5     Sodium     32400     P       7440-28-0     Thallium     4.4     U     P       7440-62-2     Vanadium     1.5     B     P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7782-49-2 | Selenium           | 4.4           | В  | 15  | P  |
| 7440-23-5     Sodium     32400     P       7440-28-0     Thallium     4.4     V     P       7440-62-2     Vanadium     1.5     B     P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7439-97-6 | Mercury            | 0.029         | ש  |     | CV |
| 7440-28-0     Thallium     4.4     U     P       7440-62-2     Vanadium     1.5     B     P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7440-22-4 | Silver             | 0.76          | ם  |     | P  |
| 7440-62-2   Vanadium   1.5   B   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7440-23-5 | Sodium             | 32400         | 1  | I   | P  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7440-28-0 | Thallium           | 4.4           | ש  |     | P  |
| 7440-66-6 Zinc 7.6 B P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7440-62-2 | Vanadium           | 1,5           | В  |     | P  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7440-66-6 | Zinc               | 7.6           | в  |     | P  |

| Color Before: | COLORLESS | Clarity Before:                       | CLEAR | Texture:   | NONE |
|---------------|-----------|---------------------------------------|-------|------------|------|
| Color After:  | COLORLESS | Clarity After:                        | CLEAR | Artifacts: |      |
| Comments:     |           | · · · · · · · · · · · · · · · · · · · |       |            |      |

# STL BUFFALO

|             |                 |           | ta Environmental Consultants. Inc.<br>-1-<br>NORGANIC ANALYSIS DATA SHEET | SAMPLE    | : NO. |
|-------------|-----------------|-----------|---------------------------------------------------------------------------|-----------|-------|
| Contract:   | CN04-015        |           |                                                                           | MW-116    | ·     |
| Lab Code:   | STLBFLO         | Case No.: | SAS No.:                                                                  | SDG NO.:  | 0397  |
| Matrix (so  | il/water):      | WATER     | Lab Sample ID:                                                            | AD601503  |       |
| Level (low, | /med): <u>L</u> | DW        | Date Received:                                                            | 1/12/2006 |       |

| <u></u>   |           |               |   |      |    |
|-----------|-----------|---------------|---|------|----|
| CAS No.   | Analyte   | Concentration | C | Q    | м  |
| 7429-90-5 | Aluminum  | 10.9          | σ |      | P  |
| 7440-36-0 | Antimony  | 5.2           | ם | 1    | P  |
| 7440-38-2 | Arsenic   | 3.6           | ש | *    | P  |
| 7440-39-3 | Barium    | 52.9          | B | 1    | P  |
| 7440-41-7 | Beryllium | 0.12          | σ | 17   | P  |
| 7440-43-9 | Cadmium   | 0.26          | ש | l    | P  |
| 7440-70-2 | Calcium   | 176000        | 1 |      | P  |
| 7440-47-3 | Chromium  | 0.54          | D |      | P  |
| 7440-48-4 | Cobalt    | 9.0           | B |      | P  |
| 7440-50-8 | Copper    | 2.3           | В |      | P  |
| 7439-89-6 | Iron      | 13.5          | ם | IN R | P  |
| 7439-92-1 | Lead      | 2.2           | ם | ľ    | P  |
| 7439-95-4 | Magnesium | 40200         |   |      | P  |
| 7439-96-5 | Manganese | 1090          |   |      | P  |
| 7440-02-0 | Nickel    | 12.6          | В |      | P  |
| 7440-09-7 | Potassium | 783           | B |      | P  |
| 7782-49-2 | Selenium  | 3.8           | ם | 17   | P  |
| 7439-97-6 | Mercury   | 0.029         | ם | I .  | CV |
| 7440-22-4 | Silver    | 0.76          | ם |      | P  |
| 7440-23-5 | Sodium    | 62800         |   |      | P  |
| 7440-28-0 | Thallium  | 4.4           | ש |      | P  |
| 7440-62-2 | Vanadium  | 0.64          | ס |      | P  |
| 7440-66-6 | Zinc      | 2.6           | В |      | P  |

| Color Before: | COLORLESS | Clarity Before: | CLEAR | Texture:   | NONE |
|---------------|-----------|-----------------|-------|------------|------|
| Color After:  | COLORLESS | Clarity After:  | CLEAR | Artifacts: |      |
| Comments:     |           | · · ·           |       |            |      |

.

| SILBUF                                    |            |           |                                      |           |        |   |
|-------------------------------------------|------------|-----------|--------------------------------------|-----------|--------|---|
| 1. A. |            | 1         | Delta Environmental Consultants. Inc | •         |        |   |
| i -                                       |            |           | -1-                                  |           |        |   |
|                                           |            |           | INORGANIC ANALYSIS DATA SHEET        | SAMPLE    | NO.    |   |
|                                           |            |           |                                      | MW-117    |        |   |
| Contract:                                 | CN04-015   |           |                                      |           | ······ |   |
| Lab Code:                                 | STLBFLO    | Case No.: | SAS No.:                             | SDG NO .: | 0397   | _ |
| Matrix (so                                | il/water): | WATER     | Lab Sample ID:                       | AD601495  |        |   |
| Level (low                                | /med): L   | OW        | Date Received:                       | 1/12/2006 |        | • |

OTT

| CAS No.   | Analyte   | Concentration | C | Q          | м          |
|-----------|-----------|---------------|---|------------|------------|
| 7429-90-5 | Aluminum  | 162           | В | 1          | P          |
| 7440-36-0 | Antimony  | 5.2           | Π |            | P          |
| 7440-38-2 | Arsenic   | 14.3          |   | 13         | P          |
| 7440-39-3 | Barium    | 69.6          | В |            | P          |
| 7440-41-7 | Beryllium | 0.12          | ם | 17         | ₽          |
| 7440-43-9 | Cadmium   | 0.26          | ם |            | P          |
| 7440-70-2 | Calcium   | 81600         |   |            | P          |
| 7440-47-3 | Chromium  | 0.81          | B |            | P          |
| 7440-48-4 | Cobalt    | 0.47          | ם |            | P          |
| 7440-50-8 | Copper    | 6.2           | В |            | P          |
| 7439-89-6 | Iron      | 2810          | 1 | 1 J        | ·P         |
| 7439-92-1 | Lead      | 2.2           | ם | <b>[</b> ] | P          |
| 7439-95-4 | Magnesium | 15700         |   |            | P          |
| 7439-96-5 | Manganese | 259           |   |            | P          |
| 7440-02-0 | Nickel    | 1.0           | В |            | P          |
| 7440-09-7 | Potassium | 1520          | В |            | <b>P</b> . |
| 7782-49-2 | Selenium  | 4.6           | В | IT I       | P          |
| 7439-97-6 | Mercury   | 0.029         | σ |            | CV         |
| 7440-22-4 | Silver    | 0.76          | ם |            | P          |
| 7440-23-5 | Sodium    | 6810          |   |            | P          |
| 7440-28-0 | Thallium  | 4.4           | ם |            | P          |
| 7440-62-2 | Vanadium  | 1.7           | В |            | P          |
| 7440-66-6 | Zinc      | 6.6           | В |            | P          |

| Color Before: | COLORLESS | Clarity Before:                       | CLEAR | Texture:   | NONE |
|---------------|-----------|---------------------------------------|-------|------------|------|
| Color After:  | COLORLESS | Clarity After:                        | CLEAR | Artifacts: |      |
| Comments:     |           |                                       |       |            |      |
|               |           | · · · · · · · · · · · · · · · · · · · | ·     |            |      |

# STL BUFFALO

|             |            | Ι         | Delta Environmental Consultants. Inc.<br>-1-<br>INORGANIC ANALYSIS DATA SHEET | SAMPLI    | 2 NO. |
|-------------|------------|-----------|-------------------------------------------------------------------------------|-----------|-------|
| Contract:   | CN04-015   |           |                                                                               | MW-117    | A     |
| Lab Code:   | STLBFLO    | Case No.: | SAS No.:                                                                      | SDG NO.:  | 0397  |
| Matrix (so  | il/water): | WATER     | Lab Sample ID:                                                                | AD601499  |       |
| Level (low, | /med): L(  | W         | Date Received:                                                                | 1/12/2006 |       |

| CAS No.   | Analyte   | Concentration | С  | Q    | м  |
|-----------|-----------|---------------|----|------|----|
| 7429-90-5 | Aluminum  | 131           | В  |      | P  |
| 7440-36-0 | Antimony  | 5.2           | ש  | · ·  | P  |
| 7440-38-2 | Arsenic   | 9.3           | в  | より   | P  |
| 7440-39-3 | Barium    | 67.6          | в  |      | P  |
| 7440-41-7 | Beryllium | 0.12          | ם  | JJ   | P  |
| 7440-43-9 | Cadmium   | 0.26          | υ  |      | P  |
| 7440-70-2 | Calcium   | 79900         |    |      | P  |
| 7440-47-3 | Chromium  | 0.54          | מ  | 1    | P  |
| 7440-48-4 | Cobalt    | 0.62          | B  |      | P  |
| 7440-50-8 | Copper    | 5.2           | В  |      | P  |
| 7439-89-6 | Iron      | 1810          |    | IN J | P  |
| 7439-92-1 | Lead      | 2.2           | n  | ľ    | P  |
| 7439-95-4 | Magnesium | 15400         |    |      | P  |
| 7439-96-5 | Manganese | 252           |    |      | P  |
| 7440-02-0 | Nickel    | 1.2           | B  |      | P  |
| 7440-09-7 | Potassium | 1480          | в  |      | P  |
| 7782-49-2 | Selenium  | 3.8           | ש  | 5    | P  |
| 7439-97-6 | Mercury   | 0.029         | υ  |      | CV |
| 7440-22-4 | Silver    | 0.76          | σ  |      | P  |
| 7440-23-5 | Sodium    | 6270          | 1  |      | P  |
| 7440-28-0 | Thallium  | 4.4           | מן |      | P  |
| 7440-62-2 | Vanadium  | 1.8           | B  |      | P  |
| 7440-66-6 | Zinc      | 3.5           | в  |      | P  |

| Color Before: | COLORLESS | Clarity Before: | CLEAR | Texture:   | NONE |
|---------------|-----------|-----------------|-------|------------|------|
| Color After:  | COLORLESS | Clarity After:  | CLEAR | Artifacts: |      |
| Comments:     |           |                 |       |            |      |

# STL BUFFALO

| i .                  |            | n i n     | -1-<br>NORGANIC ANALYSIS DATA SHEET |        | SAMPLE | NO.  |
|----------------------|------------|-----------|-------------------------------------|--------|--------|------|
| Contract:            | CN04-015   |           |                                     | м      | W-118  |      |
| Lab Code:            | STLBFLO    | Case No.: | SAS No.:                            | SDG    | NO.:   | 0397 |
| Matri <b>x (</b> so: | il/water): | WATER     | Lab Sample ID:                      | AD6015 | 01     |      |
| Level (low,          | /med): L(  | <b>W</b>  | Date Received:                      | 1/12/2 | 006    |      |

|           | 1         |               |        |      |            |
|-----------|-----------|---------------|--------|------|------------|
| CAS No.   | Analyte   | Concentration | C      | Q    | M          |
| 7429-90-5 | Aluminum  | 1650          | I      |      | P          |
| 7440-36-0 | Antimony  | 5.2           | Π      |      | P          |
| 7440-38-2 | Arsenic   | 3.6           | σ      | *    | P          |
| 7440-39-3 | Barium    | 84.8          | В      | 1    | P          |
| 7440-41-7 | Beryllium | 0.15          | B      | 15   | P          |
| 7440-43-9 | Cadmium   | 1.0           | В      |      | P          |
| 7440-70-2 | Calcium   | 199000        |        |      | P          |
| 7440-47-3 | Chromium  | 2.9           | B      |      | P          |
| 7440-48-4 | Cobalt    | 771           |        |      | P          |
| 7440-50-8 | Copper    | 155           | 1      |      | P          |
| 7439-89-6 | Iron      | 2450          |        | [x ] | P          |
| 7439-92-1 | Lead      | 18.0          |        | ľ    | <b>P</b> . |
| 7439-95-4 | Magnesium | 53200         |        |      | P          |
| 7439-96-5 | Manganese | 3370          |        |      | P          |
| 7440-02-0 | Nickel    | 1670          |        |      | P          |
| 7440-09-7 | Potassium | 2980          | B      |      | P          |
| 7782-49-2 | Selenium  | 3.8           | ۳<br>ח | 17   | P          |
| 7439-97-6 | Mercury   | 0.029         | ם      |      | CV         |
| 7440-22-4 | Silver    | 0.76          | U      |      | P          |
| 7440-23-5 | Sodium    | 361000        |        |      | P          |
| 7440-28-0 | Thallium  | 4.4           | n      |      | P          |
| 7440-62-2 | Vanadium  | 3.4           | B      |      | P          |
| 7440-66-6 | Zinc      | 107           |        |      | P          |

| Color Before: | COLORLESS | Clarity Before: | CLEAR | Texture:   | NONE      |
|---------------|-----------|-----------------|-------|------------|-----------|
| Color After:  | COLORLESS | Clarity After:  | CLEAR | Artifacts: | - <u></u> |
| Comments:     |           |                 |       |            |           |

# STL BUFFALO

|             |            | D         | elta Environmental Consultants. Inc.<br>-1- |           |      |
|-------------|------------|-----------|---------------------------------------------|-----------|------|
| 7           |            |           | INORGANIC ANALYSIS DATA SHEET               | SAMPLE    | NO.  |
|             |            |           |                                             | MW-119    |      |
| Contract:   | CN04-015   |           | · · · · · · · · · · · · · · · · · · ·       | L         |      |
| Lab Code:   | STLBFLO    | Case No.: | SAS No.:                                    | SDG NO .: | 0397 |
| Matrix (so: | il/water): | WATER     | Lab Sample ID:                              | AD601502  |      |
| Level (low, | /med): L   | W         | Date Received:                              | 1/12/2006 |      |
|             |            |           |                                             | ·         |      |

| Analyte   | Concentration                                                                                                                                                                                                                                               | C                                                                                                                                                                                                                                                 | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aluminum  | 1210                                                                                                                                                                                                                                                        | Ť                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Antimony  | 5.2                                                                                                                                                                                                                                                         | ש                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Arsenic   | 3.8                                                                                                                                                                                                                                                         | B                                                                                                                                                                                                                                                 | オゴ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Barium    | 22.0                                                                                                                                                                                                                                                        | В                                                                                                                                                                                                                                                 | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Beryllium | 0.12                                                                                                                                                                                                                                                        | n                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cadmium   | 0.72                                                                                                                                                                                                                                                        | В                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Calcium   | 64000                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Chromium  | 2.2                                                                                                                                                                                                                                                         | В                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cobalt    | 13.1                                                                                                                                                                                                                                                        | В                                                                                                                                                                                                                                                 | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Copper    | 16.2                                                                                                                                                                                                                                                        | B                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Iron      | 1410                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   | L K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lead      | 5.2                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Magnesium | 13700                                                                                                                                                                                                                                                       | · ]                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Manganese | 173                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nickel    | 33.2                                                                                                                                                                                                                                                        | B                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Potassium | 7510                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Selenium  | 3.8                                                                                                                                                                                                                                                         | ש                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mercury   | 0.029                                                                                                                                                                                                                                                       | σ                                                                                                                                                                                                                                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Silver    | 0.76                                                                                                                                                                                                                                                        | ש                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sodium    | 152000                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Thallium  | 4.4                                                                                                                                                                                                                                                         | ש                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Vanadium  | 4.2                                                                                                                                                                                                                                                         | B                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Zinc      | 29.2                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ₽.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | Aluminum<br>Antimony<br>Arsenic<br>Barium<br>Beryllium<br>Cadmium<br>Calcium<br>Calcium<br>Chromium<br>Cobalt<br>Copper<br>Iron<br>Lead<br>Magnesium<br>Manganese<br>Nickel<br>Potassium<br>Selenium<br>Mercury<br>Silver<br>Sodium<br>Thallium<br>Vanadium | Aluminum1210Antimony5.2Arsenic3.8Barium22.0Beryllium0.12Cadmium0.72Calcium64000Chromium2.2Cobalt13.1Copper16.2Iron1410Lead5.2Magnesium13700Manganese173Nickel33.2Potassium7510Selenium3.8Mercury0.029Silver0.76Sodium152000Thallium4.4Vanadium4.2 | Aluminum       1210         Antimony       5.2       U         Arsenic       3.8       B         Barium       22.0       B         Beryllium       0.12       U         Cadmium       0.72       B         Calcium       64000       I         Chromium       2.2       B         Cobalt       13.1       B         Cobalt       13.1       B         Copper       16.2       B         Iron       1410       I         Lead       5.2       I         Magnesium       13700       I         Manganese       173       I         Nickel       33.2       B         Potassium       7510       I         Selenium       3.8       U         Mercury       0.029       U         Silver       0.76       U         Sodium       152000       I         Thallium       4.4       U | Aluminum       1210         Antimony       5.2       U         Arsenic       3.8       B       # J         Barium       22.0       B          Beryllium       0.12       U       J         Cadmium       0.72       B          Cadmium       0.72       B          Cadmium       0.72       B          Cadmium       0.72       B          Cadenium       0.72       B          Cadenium       0.72       B          Cadenium       0.72       B          Calcium       64000           Chromium       2.2       B           Cobalt       13.1       B           Cobalt       13.1       B           Iron       1410       M       J          Iron       1410       M       J          Magnesium       13700            Manganese       173            Nickel       3.8       U |

| Color Before: | COLORLESS | Clarity Before: | CLEAR | Texture:   | NONE |
|---------------|-----------|-----------------|-------|------------|------|
| Color After:  | COLORLESS | Clarity After:  | CLEAR | Artifacts: |      |
| Comments:     |           | <br>            | ·     |            |      |

| ×<br>7     |            | De        | lta Environmental Consultants. Inc<br>-1- | •         |      |
|------------|------------|-----------|-------------------------------------------|-----------|------|
|            |            |           | INORGANIC ANALYSIS DATA SHEET             | SAMPLE    | NO.  |
|            | m704 01 F  |           |                                           | MW-120    |      |
| Contract:  | CN04-015   |           |                                           |           |      |
| Lab Code:  | STLBFLO    | Case No.: | SAS No.:                                  | SDG NO.:  | 0397 |
| Matrix (so | il/water): | WATER     | Lab Sample ID:                            | AD601507  |      |
| Level (low | /med): L(  | W         | Date Received:                            | 1/13/2006 |      |

| CAS No.   | Analyte   | Concentration | C | 0   | M  |
|-----------|-----------|---------------|---|-----|----|
| 7429-90-5 | Aluminum  | 10.9          | D | 1   | P  |
| 7440-36-0 | Antimony  | 5.2           | ש | 1   | P  |
| 7440-38-2 | Arsenic   | 3.6           | ם | *   | P  |
| 7440-39-3 | Barium    | 55.7          | B | Γ   | P  |
| 7440-41-7 | Beryllium | 0.12          | α | ゴ   | P  |
| 7440-43-9 | Cadmium   | 0.26          | ש |     | P  |
| 7440-70-2 | Calcium   | 96300         | 1 |     | P  |
| 7440-47-3 | Chromium  | 0.56          | B | l   | P  |
| 7440-48-4 | Cobalt    | 4.8           | B | 1   | P  |
| 7440-50-8 | Copper    | 1.4           | B |     | P  |
| 7439-89-6 | Iron      | 88.2          | B | N J | P  |
| 7439-92-1 | Lead      | 2.2           | ש | ſ   | P  |
| 7439-95-4 | Magnesium | 13000         |   |     | P  |
| 7439-96-5 | Manganese | 5920          |   |     | P  |
| 7440-02-0 | Nickel    | 12.8          | В | · · | P  |
| 7440-09-7 | Potassium | 26700         |   | I   | P  |
| 7782-49-2 | Selenium  | 3.8           | σ | 17  | P  |
| 7440-22-4 | Silver    | 0.76          | ש |     | P  |
| 7439-97-6 | Mercury   | 0.029         | n | して  | CV |
| 7440-23-5 | Sodium    | 144000        |   |     | P  |
| 7440-28-0 | Thallium  | 4.4           | ם |     | P  |
| 7440-62-2 | Vanadium  | 0.64          | Δ |     | P  |
| 7440-66-6 | Zinc      | 7.3           | B | 1   | P  |

| Color Before: | COLORLESS | Clarity Before: | CLEAR | Texture:   | NONE                                  |
|---------------|-----------|-----------------|-------|------------|---------------------------------------|
| Color After:  | COLORLESS | Clarity After:  | CLEAR | Artifacts: | · · · · · · · · · · · · · · · · · · · |
| Comments:     |           |                 |       |            |                                       |

# STL BUFFALO

| · · · · · · · · · · · · · · · · · · · |            | U.        | eita Environmental Consultants, Inc.<br>-1-<br>INORGANIC ANALYSIS DATA SHEET | SAMPLI                                |      |
|---------------------------------------|------------|-----------|------------------------------------------------------------------------------|---------------------------------------|------|
|                                       |            |           |                                                                              | MW-121                                | •.   |
| Contract:                             | CN04-015   |           |                                                                              |                                       | ·    |
| Lab Code:                             | STLBFLO    | Case No.: | SAS No.:                                                                     | SDG NO.:                              | 0397 |
| Matrix (soi                           | il/water): | WATER     | Lab Sample ID:                                                               | AD601506                              | -    |
| Level (low/                           | /med): LO  | M .       | Date Received:                                                               | 1/13/2006                             |      |
|                                       |            |           |                                                                              | · · · · · · · · · · · · · · · · · · · |      |

.

| 1         | 1         |               | 1  | 1 .      | 1  |
|-----------|-----------|---------------|----|----------|----|
| CAS No.   | Analyte   | Concentration | C  | Q        | M  |
| 7429-90-5 | Aluminum  | 314           | 1  | 1        | P  |
| 7440-36-0 | Antimony  | 5.2           | σ  | 1        | P  |
| 7440-38-2 | Arsenic   | 4.6           | B  | 1/5      | P  |
| 7440-39-3 | Barium    | 42.6          | B  |          | P  |
| 7440-41-7 | Beryllium | 0.12          | σ  | 17       | P  |
| 7440-43-9 | Cadmium   | 0.45          | B  | <b>1</b> | P  |
| 7440-70-2 | Calcium   | 127000        |    |          | P  |
| 7440-47-3 | Chromium  | 1.4           | B  |          | P  |
| 7440-48-4 | Cobalt    | 11.4          | в  |          | P  |
| 7440-50-8 | Copper    | 9.1           | B  |          | P  |
| 7439-89-6 | Iron      | 907           |    | D M      | P  |
| 7439-92-1 | Lead      | 3.0           |    | ſ        | P  |
| 7439-95-4 | Magnesium | 20600         | 1  |          | P  |
| 7439-96-5 | Manganese | 165           | 1  |          | P  |
| 7440-02-0 | Nickel    | 37.0          | в  |          | P  |
| 7440-09-7 | Potassium | 2200          | В  |          | P  |
| 7782-49-2 | Selenium  | 3.8           | σ  | 17       | P  |
| 7440-22-4 | Silver    | 0.76          | שן |          | P  |
| 7439-97-6 | Mercury   | 0.029         | ש  | 17       | CV |
| 7440-23-5 | Sodium    | 67900         | Ι  |          | P  |
| 7440-28-0 | Thallium  | 4.4           | σ  |          | P  |
| 7440-62-2 | Vanadium  | 2.2           | В  |          | P  |
| 7440-66-6 | Zinc      | 9.7           | в  |          | P  |

| Color Before: | COLORLESS | Clarity Before: | CLEAR | Texture:   | NONE |
|---------------|-----------|-----------------|-------|------------|------|
| Color After:  | COLORLESS | Clarity After:  | CLEAR | Artifacts: |      |
| Comments:     |           |                 |       |            |      |

# STL BUFFALO

|             |            | 1         | Delta Environmental Consultants. Inc.<br>-1-<br>INORGANIC ANALYSIS DATA SHEET | SAMPLE    | : NO.        |
|-------------|------------|-----------|-------------------------------------------------------------------------------|-----------|--------------|
| Contract:   | CN04-015   |           |                                                                               | MW-122    |              |
| Lab Code:   | STLBFLO    | Case No.: | SAS No.:                                                                      | SDG NO .: | 0397         |
| Matrix (so  | il/water): | WATER     | Lab Sample ID:                                                                | AD601494  |              |
| Level (low, | /med): L(  | W         | Date Received:                                                                | 1/12/2006 |              |
|             |            | ·····     |                                                                               | ·         | ·<br>· · · · |

Concentration Units (ug/L or mg/kg dry weight): UG/L

| CAS No.   | Analyte   | Concentration | c | Q          | м          |
|-----------|-----------|---------------|---|------------|------------|
| 7429-90-5 | Aluminum  | 341           | 1 | 1          | P          |
| 7440-36-0 | Antimony  | 5.2           | ם |            | ₽          |
| 7440-38-2 | Arsenic   | 3.6           | ש | <b> </b> * | P          |
| 7440-39-3 | Barium    | 53.5          | в |            | P          |
| 7440-41-7 | Beryllium | 0.23          | В | 17         | P          |
| 7440-43-9 | Cadmium   | 0.26          | Δ |            | P          |
| 7440-70-2 | Calcium   | 148000        |   |            | P          |
| 7440-47-3 | Chromium  | 1.3           | В |            | P          |
| 7440-48-4 | Cobalt    | 7.2           | В | 1          | P          |
| 7440-50-8 | Copper    | 4.1           | В |            | P          |
| 7439-89-6 | Iron      | 325           |   | NJ         | P          |
| 7439-92-1 | Lead      | 2.2           | Π |            | P          |
| 7439-95-4 | Magnesium | 31300         |   |            | P          |
| 7439-96-5 | Manganese | 1010          |   |            | P          |
| 7440-02-0 | Nickel    | 18.6          | В |            | P          |
| 7440-09-7 | Potassium | 713           | В |            | P          |
| 7782-49-2 | Selenium  | 3.8           | ס | 12         | P          |
| 7439-97-6 | Mercury   | 0.029         | ס |            | CV         |
| 7440-22-4 | Silver    | 0.76          | ס |            | P          |
| 7440-23-5 | Sodium    | 31100         | 1 |            | P          |
| 7440-28-0 | Thallium  | 4.4           | ם |            | P          |
| 7440-62-2 | Vanadium  | 1.0           | B |            | P          |
| 7440-66-6 | Zinc      | 4.7           | В |            | <b>P</b> - |

| Color Before: | COLORLESS | Clarity Before: | CLEAR  | Texture:   | NONE                                  |
|---------------|-----------|-----------------|--------|------------|---------------------------------------|
| Color After:  | COLORLESS | Clarity After:  | CLEAR  | Artifacts: | · · · · · · · · · · · · · · · · · · · |
| Comments:     |           | · · ·           | ······ |            |                                       |
|               | ·         |                 |        |            |                                       |

.

# STL BUFFALO

|             |            |           | a Environmental Consultants. Inc.<br>-1-<br>NORGANIC ANALYSIS DATA SHEET | SAMPLI                                | ENO. |  |
|-------------|------------|-----------|--------------------------------------------------------------------------|---------------------------------------|------|--|
| Contract:   | CN04-015   |           |                                                                          | MW-123                                |      |  |
| Lab Code:   | STLBFLO    | Case No.: | SAS No.:                                                                 | SDG NO .:                             | 0397 |  |
| Matrix (so  | il/water): | WATER     | Lab Sample ID:                                                           | AD601505                              |      |  |
| Level (low, | /med): L   | WC        | Date Received:                                                           | 1/13/2006                             |      |  |
| · · ·       |            |           |                                                                          | · · · · · · · · · · · · · · · · · · · |      |  |

| nalyte   | Concentration                                                                                                                                                                                                   | C                                                                                                                                                                                                                         | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| luminum  | 1120                                                                                                                                                                                                            | 1                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ntimony  | 5.2                                                                                                                                                                                                             | Π                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| rsenic   | 3.6                                                                                                                                                                                                             | ש                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| arium    | 52.8                                                                                                                                                                                                            | B                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| eryllium | 0.12                                                                                                                                                                                                            | υ                                                                                                                                                                                                                         | <u>ר</u> ו                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| admium   | 0.26                                                                                                                                                                                                            | ש                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| alcium   | 187000                                                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| hromium  | 2.0                                                                                                                                                                                                             | В                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| obalt    | 0.93                                                                                                                                                                                                            | B                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| opper    | 3.2                                                                                                                                                                                                             | В                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ron      | 1950                                                                                                                                                                                                            |                                                                                                                                                                                                                           | NJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ead      | 2.3                                                                                                                                                                                                             | В                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| agnesium | 54500                                                                                                                                                                                                           |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| anganese | 197                                                                                                                                                                                                             |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ickel    | 1.7                                                                                                                                                                                                             | B                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| otassium | 6910                                                                                                                                                                                                            |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| elenium  | . 3.8                                                                                                                                                                                                           | ש                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ilver    | 0.76                                                                                                                                                                                                            | ប                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ercury   | 0.029                                                                                                                                                                                                           | ש                                                                                                                                                                                                                         | 12 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| odium    | 10900                                                                                                                                                                                                           |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| nallium  | 4.4                                                                                                                                                                                                             | ם                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| unadium  | 2.6                                                                                                                                                                                                             | В                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| nc       | 8.3                                                                                                                                                                                                             | В                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | luminum<br>ntimony<br>rsenic<br>arium<br>eryllium<br>admium<br>alcium<br>hromium<br>obalt<br>opper<br>ron<br>add<br>agnesium<br>anganese<br>ickel<br>otassium<br>alenium<br>ilver<br>ercury<br>odium<br>hallium | luminum1120ntimony5.2rsenic3.6arium52.8eryllium0.12admium0.26alcium187000hromium2.0obalt0.93opper3.2ron1950ead2.3agnesium54500anganese197ickel1.7otassium6910elenium3.8liver0.76ercury0.029odium10900hallium4.4anadium2.6 | luminum       1120         ntimony       5.2       U         rsenic       3.6       U         arium       52.8       B         eryllium       0.12       U         admium       0.26       U         alcium       187000       H         hromium       2.0       B         obalt       0.93       B         opper       3.2       B         opper       3.2       B         agnesium       54500       B         anganese       197       I         ickel       1.7       B         otassium       6910       B         alenium       3.8       U         urver       0.76       U         actum       10900       I         allium       4.4       U | luminum       1120         ntimony       5.2       U         rsenic       3.6       U       *         arium       52.8       B       *         eryllium       0.12       U       J         admium       0.26       U       *         alcium       187000       *       *         balt       0.93       B       *         opper       3.2       B       *         ron       1950       *       *         aggesium       54500       *       *         anganese       197       *       *         ickel       1.7       B       *         otassium       6910       *       *     < |

| Color Before: | COLORLESS | Clarity Before: | CLEAR | Texture:   | NONE |
|---------------|-----------|-----------------|-------|------------|------|
| Color After:  | COLORLESS | Clarity After:  | CLEAR | Artifacts: |      |
| Comments:     |           |                 |       |            |      |
|               |           |                 |       | ·          |      |

#### 68/826

Client Sample No.

 Jb Name: STL Buffalo
 Contract: \_\_\_\_\_\_
 MW-114

 Lab Code: REONY
 Case No.: \_\_\_\_\_
 SAS No.: \_\_\_\_\_\_
 SDG No.: 0397\_

 Matrix (soil/water): WATER
 Lab Sample ID: A6039708
 A6039708

 % Solids:
 \_\_\_\_\_\_\_
 Date Samp/Recv: 01/11/2006 01/12/2006

| Parameter Name     | Units of<br>Measure | Result | С | Q | м | Method<br>Number | Analyzed<br>Date |
|--------------------|---------------------|--------|---|---|---|------------------|------------------|
| MBAS - Surfactants | MG/L                | 0.030  | υ |   |   | 425.1            | 01/12/2006       |

69/826

|                           | nec       | Calciuscry An | arysra      |       | C          | lient Sampl         | le No.   |
|---------------------------|-----------|---------------|-------------|-------|------------|---------------------|----------|
| b Name: <u>STL Buffal</u> | Q         | Contract:     |             | _     | N          | W-115               |          |
| Lab Code: <u>RECNY</u>    | Case No.: | SAS No.:      |             |       | S          | SDG No.: <u>039</u> | 97       |
| Matrix (soil/water):      | WATER     |               | Lab Sample  | D:    | <u>A6(</u> | 39704               |          |
| % Solids:                 | 0.0       |               | Date Samp/H | Recv: | 01/        | /11/2006 01/        | /12/2006 |
|                           |           | Imits of      |             |       |            | Method              | Analyzed |

|                    | Units of<br>Measure | Result | С | Q | м | Method<br>Number | Analyzed<br>Date |  |
|--------------------|---------------------|--------|---|---|---|------------------|------------------|--|
| MBAS - Surfactants | MG/L                | 0.060  | σ | - |   | 425.1            | 01/12/2006       |  |

### 70/826

\_\_\_\_

Client Sample No.

| b Name: <u>SIL Buffa</u> | lo        | Contract:    | MW-116                     |
|--------------------------|-----------|--------------|----------------------------|
| Lab Code: <u>RECNY</u>   | Case No.: | SAS No.:     | SDG No.: <u>0397</u>       |
| Matrix (soil/water)      | WATER     | Lab Sample 1 | D: <u>A6039707</u>         |
| % Solids:                | 0.0       | Date Samp/Re | ecv: 01/11/2006 01/12/2006 |
| <b></b>                  |           |              | Mathad Janalamad           |

| Parameter Name     | Units of<br>Measure | Result | с | Q | м | Method<br>Number | Analyzed<br>Date |  |
|--------------------|---------------------|--------|---|---|---|------------------|------------------|--|
| MBAS - Surfactants | MG/L                | 0.030  | ט |   |   | 425.1            | 01/12/2006       |  |

#### 71/826

Client Sample No.

b Name: STL Buffalo

Contract: \_\_\_\_

MW-117

Lab Code: RECNY Case No.: \_\_\_\_ SAS No.: \_\_\_\_

SDG No.: 0397

Matrix (soil/water): WATER

Lab Sample ID: A6039702

% Solids:

0.0

Date Samp/Recv: 01/11/2006 01/12/2006

| Parameter Name     | Units of<br>Measure | Result | c | Q | м | Method<br>Number | Analyzed<br>Date |
|--------------------|---------------------|--------|---|---|---|------------------|------------------|
| MBAS - Surfactants | MG/L                | 0.19   |   | 2 |   | 425.1            | 01/12/2006       |

#### 72/826

01/12/2006

Client Sample No.

425.1

|                    |                                       | Combon of a            |         |      |       | N           | M-117A              |                  |
|--------------------|---------------------------------------|------------------------|---------|------|-------|-------------|---------------------|------------------|
| b Name: <u>STL</u> | · · · · · · · · · · · · · · · · · · · | Contract:              |         |      | -     | 2           | SDG No.: <u>039</u> | 97               |
| Matrix (soil/w     | ater): <u>WATER</u>                   | . I                    | ab Sam  | ple  | ID:   | <u>A6(</u>  | 039703              |                  |
| % Solids:          | 0.0                                   | I                      | Date Sa | mp/1 | Recv: | <u>01</u> / | /11/2006 01,        | /12/2006         |
|                    | Parameter Name                        | Units of<br>Measure Re | sult    | c    | Q     | м           | Method<br>Number    | Analyzed<br>Date |

MG/L

.

0.19

5

Comments:

MBAS - Surfactants

#### 73/826

Client Sample No.

|                          | MW-118         MW-118         O Code: <u>RECNY</u> Case No.:         SAS No.:       SDG No.: <u>0397</u> Crix (soil/water): <u>WATER</u> Lab Sample ID: <u>A6039705</u> |          |         |     |       |            |                    |          |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|-----|-------|------------|--------------------|----------|
| b Name: <u>STL Buffa</u> | <u>lo</u>                                                                                                                                                               | Contract |         |     |       | L.,        |                    |          |
| Lab Code: <u>RECNY</u>   | Case No.:                                                                                                                                                               | SAS No.  | :       |     |       | 5          | SDG No.: <u>03</u> | 97       |
| Matrix (soil/water)      | : WATER                                                                                                                                                                 |          | Lab Sam | ple | e ID: | <u>A6(</u> | 039705             |          |
| % Solids:                | 0.0                                                                                                                                                                     |          | Date Sa | mp/ | Recv: | 01/        | /11/2006 01        | /12/2006 |
|                          | omotor Nomo                                                                                                                                                             | Units of | Pogult  |     | 0     | м          | Method             | Analyzed |

| Parameter Name     | Measure | Result | C | Q | М | Number | Date       |  |
|--------------------|---------|--------|---|---|---|--------|------------|--|
| MBAS - Surfactants | MG/L    | 3.0    | ט |   |   | 425.1  | 01/12/2006 |  |

# 74/826

\_

Client Sample No.

.

| ab Name: <u>STL Buffal</u> | 2         | Contract:  | MW-119                       |
|----------------------------|-----------|------------|------------------------------|
| Lab Code: <u>RECNY</u>     | Case No.: | SAS No.:   | SDG No.: 0397                |
| Matrix (soil/water):       | WATER     | Lab Sample | e ID: <u>A6039706</u>        |
| % Solids:                  | 0.0       | Date Samp, | /Recv: 01/11/2006 01/12/2006 |
| Γ                          |           | ·····      | <u> </u>                     |

| Parameter Name     | Units of<br>Measure |      | С | Q | м | Method<br>Number | Analyzed<br>Date |
|--------------------|---------------------|------|---|---|---|------------------|------------------|
| MBAS - Surfactants | MG/L                | 0.20 |   | n |   | 425.1            | 01/12/2006       |

### 75/826

Client Sample No.

| ······································ |            | MW-120                                           |
|----------------------------------------|------------|--------------------------------------------------|
| ab Name: STL Buffalo                   | Contract:  |                                                  |
| Lab Code: <u>RECNY</u> Case No         | : SAS No.: | SDG No.: 0397                                    |
| Matrix (soil/water): <u>WATER</u>      | Lab        | Sample ID: A6043803                              |
| % Solids:0.0                           | Dat        | e Samp/Recv: <u>01/12/2006</u> <u>01/13/2006</u> |
|                                        | Units of   | Method Analyzed                                  |

|            | Parameter Name | Units of<br>Measure | Result | с | Q | м | Method<br>Number | Analyzed<br>Date |  |
|------------|----------------|---------------------|--------|---|---|---|------------------|------------------|--|
| MBAS - Sur | factants       | MG/L                | 0.31   |   | ק |   | 425.1            | 01/14/2006       |  |

76/826

Client Sample No.

| ab Name: STL Buffalo              | Contract:                             | MW-121                           |
|-----------------------------------|---------------------------------------|----------------------------------|
| Lab Code: <u>RECNY</u> Case No.:  | · · · · · · · · · · · · · · · · · · · | SDG No.: 0397                    |
| Matrix (soil/water): <u>WATER</u> | Lab S                                 | ample ID: <u>A6043802</u>        |
| % Solids:0.0                      | Date                                  | Samp/Recv: 01/12/2006 01/13/2006 |
|                                   | Units of                              | Method Analyzed                  |

| Parameter Name     | Units of<br>Measure | Result | с | Q | м | Method<br>Number | Analyzed<br>Date |  |
|--------------------|---------------------|--------|---|---|---|------------------|------------------|--|
| MBAS - Surfactants | MG/L                | 0.051  |   | τ |   | 425.1            | 01/14/2006       |  |

### 77/826

\_

Client Sample No.

| b Name: <u>STL Buffalo</u> |           | MW-122                               |           |
|----------------------------|-----------|--------------------------------------|-----------|
| D Name: SIL BUILLA         | <u>o</u>  | Contract:                            |           |
| Lab Code: <u>RECNY</u>     | Case No.: | SAS No.: SDG No.: 0397               |           |
| Matrix (soil/water):       | WATER     | Lab Sample ID: A6039701              |           |
| % Solids:                  | 0.0       | Date Samp/Recv: 01/11/2006 01/12/200 | <u>)6</u> |
| <b></b>                    |           | F                                    |           |

| Parameter Name     | Units of<br>Measure | Result | С | Q | м | Method<br>Number | Analyzed<br>Date |
|--------------------|---------------------|--------|---|---|---|------------------|------------------|
| MBAS - Surfactants | MG/L                | 0.030  | υ |   |   | 425.1            | 01/12/2006       |

78/826

 Lab Code: REONY
 Case No.:
 SAS No.:
 SDG No.: 0397

 Matrix (soil/water):
 WATER
 Lab Sample ID: A6043801

% Solids:

0.0

Date Samp/Recv: 01/12/2006 01/13/2006

|                    | Units of<br>Measure | Result | c | Q | м | Method<br>Number | Analyzed<br>Date |
|--------------------|---------------------|--------|---|---|---|------------------|------------------|
| MBAS - Surfactants | MG/L                | 0.030  | υ |   |   | 425.1            | 01/14/2006       |

#### DELTA - AQ - ASP 2000/8260 - TCL VOLATILES WATER SURROGATE RECOVERY

Contract:

# 79/826

#### Lab Name: STL Buffalo

Lab Code: RECNY

SAS No.: Case No.:

SDG No.: 0397

|            |                  | · · ·         |               |               |               |    |       |       |            |            |
|------------|------------------|---------------|---------------|---------------|---------------|----|-------|-------|------------|------------|
|            | Client Sample ID | Lab Sample ID | BFB<br>%REC # | DCE<br>%REC # | TOL<br>%REC # |    | <br>  |       |            | TOT<br>OUT |
| 1          | MSB59            | A6B1242001    | 94            | 101           | 98            |    | <br>  |       |            | 0          |
| ż          | MSB60            | A6B1251301    | 100           | 104           | 103           |    |       | 1 ·   | 1          | Ō          |
| 3          | msb61            | A6B1257401    | 95            | 100           | 100           |    | · .   |       |            | Ō          |
| - <b>5</b> | MSB63            | A6B1264101    | 97            | 104           | 101           |    | · · . |       | <b>I</b>   | Ō          |
| 5          | MW-114           | A6039708      | 96            | 105           | 100           |    | 1     | 1     |            | 0.         |
| 6          | MW-115           | A6039704      | 94            | 106           | 100           |    |       |       |            | Ō          |
| 7          | MW-116           | A6039707      | 98            | 111           | 102           | ĺ  |       |       |            | Ō          |
| 8          | MW-116           | A6039707DL    | 95            | 105           | 100           |    |       | 1     | 1 - 1      | 0          |
| ğ          | MW-117           | A6039702      | 99            | 109           | 101           |    |       |       |            | 0          |
| 10         | MW-117 MS        | A6039702MS    | 100           | 107           | 100           |    |       |       |            | 0          |
| 11         | MW-117 SD        | A6039702SD    | 99            | 107           | 99            |    |       |       |            | 0          |
| 12         | MW-117A          | A6039703      | 99            | 107           | 101           |    | l .   |       |            | 0          |
| 13         | MW-118           | A6039705      | 95            | 103           | 98            |    |       |       |            | 0          |
| 14         | MW-118           | A6039705DL    | 98            | 104           | 100           |    | · · . | · ·   | ł. /       | 0          |
| 15         | MW-119           | A6039706      | 96            | 106           | 100           | •• |       | 1     |            | 0          |
| 16         | MW-120           | A6043803      | 99            | 107           | 101           |    | . ·   |       |            | 0          |
| 17         | MW-121           | A6043802      | 98            | 106           | 101           |    |       | •     |            | 0          |
| 18         | MW-122           | A6039701      | 95            | 105           | . 99          |    |       |       | • •        | 0          |
| 19         | MW-123           | A6043801      | 96            | 107           | 99            |    |       | · · · |            | 0          |
| 20         | TRIP BLANK       | A6043804      | 95            | 102           | 99            |    |       |       | -          | 0          |
| 21         | VBLK59           | A6B1242002    | 96            | 104           | 101           |    |       |       |            | 0          |
| 22         | VBLK60           | A6B1251302    | 100           | 104           | 103           |    |       |       |            | 0          |
| 23         | VBLK61           | A6B1257402    | 96            | 102           | 99            |    |       | •     |            | 0          |
| 24         | VBLK63           | A6B1264102    | 96            | 104           | 100           |    |       |       |            | 0          |
| 25         | VHB              | A6039709      | 97            | 108           | 101           |    |       |       | **** · · · | 0          |
|            |                  |               |               |               |               |    |       |       | 1          | L          |

#### QC LIMITS

| ( | 86-115; |
|---|---------|
| ( | 76-114  |
| ( | 88-1103 |

= p-Bromofluorobenzene = 1,2-Dichloroethane-D4 BFB DCE

TOL = Toluene-D8

# Column to be used to flag recovery values \* Values outside of contract required QC limits D Surrogates diluted out

FORM II - GC/MS VOA

# **ATTACHMENT 3**

# SOIL BORING LOGS AND GROUNDWATER SAMPLING LOGS

| <u></u> |          |                                       |        |         | BORING NO.: MW-114                                                      |               |
|---------|----------|---------------------------------------|--------|---------|-------------------------------------------------------------------------|---------------|
|         | ECT: Ge  |                                       | Y      |         |                                                                         | Sheet 1 of 1  |
| CLIE    | NT: HB   | Fuller                                |        |         |                                                                         |               |
| DELT    | A PROJ   | ECT N                                 | 0: V00 | 04210-1 |                                                                         |               |
|         | ING ME   |                                       |        |         | SAMPLER BIT SIZE CORE CASING                                            |               |
| _       | ING RIC  |                                       |        |         | Split-Spoon NA NA NA                                                    | DATE: 7-14-05 |
|         | ER: Lyo  |                                       |        |         |                                                                         |               |
|         | SAMPLE   | BLOWS                                 | REC.   | PID     |                                                                         |               |
|         | NO.      | PER                                   | (ft.)  | (ppm)   |                                                                         |               |
|         |          | 6"                                    |        | 41-7    |                                                                         |               |
| 1       |          |                                       |        |         | SOIL DESCRIPTION                                                        | REMARKS       |
|         | 1        | NA                                    | 3.0    | 2.0     | Brn, Silt and Clay with little gravel and cinder fill, moist            |               |
| 1.0     |          |                                       | - 3.0  | 2.0     | Din, one and Only whith here graver and emach hin, moise                |               |
| 1.0     |          | · · · · · · · · · · · · · · · · · · · |        |         |                                                                         |               |
|         |          |                                       |        |         |                                                                         |               |
| 2.0     |          |                                       |        |         |                                                                         |               |
|         |          |                                       |        |         |                                                                         | Soil sample   |
| 3.0     |          |                                       |        |         |                                                                         | MW-114A       |
|         |          |                                       |        |         |                                                                         | at 2' to 4'   |
| 4.0     |          |                                       |        |         | 4.0                                                                     | · · ·         |
| 1.0     | 2        |                                       | 4.0    | 1.0     | Brn, Silt and Clay, damp                                                |               |
| 5.0     | <u> </u> |                                       | 7.0    | 1.0     |                                                                         |               |
| 5.0     |          |                                       |        |         | 5.2                                                                     |               |
|         |          |                                       |        |         |                                                                         |               |
| 6.0     |          |                                       |        | 1.0     | Brn, F. Sand, moist to vy moist                                         |               |
|         |          |                                       |        |         | 6.7                                                                     | "             |
| 7.0     |          |                                       |        |         | 1                                                                       | -             |
|         |          |                                       |        | 2.0     | Brn, Vy F. Sand with little silt, moist to vy moist                     |               |
| 8.0     |          |                                       |        |         |                                                                         |               |
| 0.0     | 3        |                                       | 4.0    | 3.0     | same as above, wet                                                      | Soil sample   |
| 00      |          |                                       | 4.0    | 5.0     | Same as above, wet                                                      |               |
| 9.0     |          |                                       |        |         |                                                                         | MW-114B       |
|         |          |                                       |        |         |                                                                         | at 8' to 12'  |
| 10.0    |          |                                       |        |         |                                                                         |               |
|         |          |                                       |        |         | · · · ·                                                                 |               |
| 11.0    |          |                                       |        |         |                                                                         |               |
|         |          |                                       |        |         |                                                                         |               |
| 12.0    |          |                                       |        |         | 12.0                                                                    | y             |
| -2.0    | 4        |                                       | 4.0    | 2.0     | Brn, F. Sand, wet                                                       | -             |
| 12.0    | 4        |                                       | 4.0    | 2.0     | Din, I. Bana, wei                                                       |               |
| 13.0    |          |                                       |        |         |                                                                         |               |
|         |          |                                       |        |         |                                                                         |               |
| 14.0    |          |                                       |        |         |                                                                         |               |
|         | T        |                                       |        |         |                                                                         |               |
| 15.0    |          |                                       |        |         | 14.9                                                                    | P             |
|         |          |                                       |        | 0.0     | Brn, Clay, wet                                                          | 1             |
| 16.0    |          |                                       |        | 0.0     | 16.0                                                                    |               |
| 10.0    |          |                                       |        |         |                                                                         | 4             |
|         |          |                                       |        |         | Boring terminated at 16'                                                |               |
| 17.0    |          |                                       |        |         | Monitoring well set at 14' BG. Well screen 4' to 14', sand pack         |               |
|         |          |                                       |        |         | 2.7' to 14', bentonite seal 1.2' to 2.7', grout 0' to 1.2', flush mount |               |
| 18.0    |          |                                       |        |         | casing                                                                  |               |

|        |         |        |       |                                       | BURING NU.                      | . IVI VV -11. | 5           |              |         |               |
|--------|---------|--------|-------|---------------------------------------|---------------------------------|---------------|-------------|--------------|---------|---------------|
|        | ECT: Ge |        | Y     |                                       |                                 |               |             |              |         | Sheet 1 of 1  |
| CLIE   | NT: HB  | Fuller |       |                                       |                                 |               |             |              |         |               |
| DELI   | A PROJ  | ECT N  | D: V0 | 04210-1                               |                                 |               |             |              |         |               |
|        | ING ME  |        |       |                                       | SAMPLER BIT                     | SIZE          | CORE        | CASING       |         |               |
|        | ING RIC |        |       |                                       |                                 | IA            | NA          | NA           |         | DATE: 7-12-05 |
|        | ER: Lyo |        |       |                                       |                                 |               |             |              |         |               |
| DEPTH  | SAMPLE  | BLOWS  | REC.  | PID                                   |                                 |               | ·····       |              |         |               |
| IN FT. | NO.     | PER    | (ft.) | (ppm)                                 |                                 |               |             |              |         |               |
|        |         | 6"     |       | (T)                                   |                                 |               |             |              |         |               |
|        |         |        |       |                                       | SOI                             | L DESCRI      | PTION       |              |         | REMARKS       |
|        | 1       | NA     | 3.5   | 0.0                                   | Gravel Fill, moist              | ×             |             |              |         |               |
| 1.0    |         |        |       |                                       | 1                               |               |             |              | 0.9'    |               |
| 1.0    |         |        |       | 0.0                                   | Pro Silt moist                  |               |             |              | 0.9     |               |
|        |         |        |       | 0.0                                   | Brn, Silt, moist                |               |             |              |         |               |
| 2.0    |         |        |       |                                       | 4                               |               |             |              |         |               |
|        |         |        |       |                                       |                                 |               |             |              | 2.5'    | Soil sample   |
| 3.0    |         |        |       | 0.0                                   | Brn, Vy F. Sand with little sil | lt, vy moist  |             |              |         | MW-115A       |
|        |         |        |       |                                       |                                 |               |             |              |         | at 1' to 4'   |
| 1.0    |         |        |       |                                       |                                 |               |             |              |         |               |
|        | 2       |        | 4.0   | 0.0                                   | same as above                   |               |             |              |         |               |
| 5.0    |         |        |       | 0.0                                   |                                 |               |             |              |         | -             |
| 5.0    |         |        |       |                                       |                                 |               |             |              |         |               |
|        |         |        |       | · · · · · · · · · · · · · · · · · · · |                                 |               |             |              |         |               |
| 5.0    |         |        |       |                                       |                                 |               |             |              |         |               |
|        |         |        |       |                                       |                                 |               |             |              |         |               |
| 7.0    |         |        |       |                                       |                                 |               |             |              |         |               |
|        |         |        |       |                                       |                                 |               |             |              |         |               |
| 3.0    |         |        |       |                                       |                                 |               |             |              |         |               |
|        | 3       |        | 4.0   | 0.0                                   | same as above                   |               | -           |              |         | Soil sample   |
| 9.0    |         |        |       |                                       |                                 |               |             |              |         | MW-115B       |
|        |         |        |       | 0.0                                   | Brn, Vy F. Sand, wet            |               |             |              | 0.9     | at 8' to 12'  |
| 0.0    |         |        |       | 0.0                                   | Din, vyr. Sanu, wei             |               |             |              |         | at o 10 12    |
| 0.0    |         |        |       |                                       |                                 |               |             |              |         |               |
|        |         |        |       |                                       |                                 |               |             |              |         |               |
| 1.0    |         |        |       |                                       |                                 |               |             |              | 11.0'   |               |
|        |         |        |       | 0.0                                   | Brn, Clay, stiff, moist         |               |             |              | · · · · |               |
| 2.0    |         |        |       |                                       |                                 |               |             |              |         |               |
|        | 4       |        | 4.0   | 0.0                                   | same as above                   |               |             |              |         |               |
| 3.0    |         |        |       | -                                     |                                 |               |             |              |         |               |
| 2.0    |         |        |       |                                       |                                 |               |             |              |         |               |
| 10     |         |        |       |                                       |                                 |               |             |              |         |               |
| 4.0    |         |        |       |                                       |                                 |               |             |              |         |               |
|        |         |        |       |                                       |                                 |               |             |              |         |               |
| 5.0    |         |        |       |                                       |                                 |               |             |              |         |               |
|        |         |        |       |                                       |                                 |               |             |              |         |               |
| 6.0    |         |        |       |                                       |                                 | •             |             | ,            | 16.0'   |               |
|        |         |        |       |                                       | Boring terminated at 16'        |               |             |              |         |               |
| 7.0    |         |        |       |                                       | Monitoring well set at 14' B    |               | reen A' to  | 14' cand no  | ~r ·    |               |
| 7.0    |         |        |       |                                       |                                 |               |             |              |         |               |
|        |         |        |       |                                       | 2.7' to 14', bentonite seal 1.2 | to 2.7, gl    | out 0' to 1 | .2, tiush mo | unt     |               |
| 8.0    |         |        |       |                                       | casing                          | •             | -           |              |         |               |

|          |          |       |       |         | BORING NU.                      | : IVI VV -11 | 0            |               |       |                                       |
|----------|----------|-------|-------|---------|---------------------------------|--------------|--------------|---------------|-------|---------------------------------------|
|          | ECT: Ge  |       | IY    |         |                                 |              |              |               |       | Sheet 1 of 1                          |
|          | NT: HB   |       |       |         |                                 |              |              |               |       |                                       |
| DELT     | A PROJ   | ECT N | O: V0 | 04210-1 |                                 |              |              |               |       |                                       |
|          | ING ME   |       |       | •       | SAMPLER BIT                     | SIZE         | CORE         | CASING        |       | · · · · · · · · · · · · · · · · · · · |
|          | ING RIG  |       |       |         |                                 | NA           | NA           | NA            |       | DATE: 7-12-05                         |
|          | ER: Lyon |       |       |         | 1                               |              |              |               |       |                                       |
|          | SAMPLE   | BLOWS | REC.  | PID     |                                 |              |              |               |       |                                       |
|          | NO.      | PER   | (ft.) | (ppm)   |                                 |              |              |               |       |                                       |
|          |          | 6"    |       | ,       |                                 |              |              |               |       |                                       |
|          |          |       |       |         | SOI                             | L DESCR      | PTION        |               |       | REMARKS                               |
|          | 1        | NA    | 1.4   | 0.0     | Gravel Fill and Silt, moist     |              |              |               |       |                                       |
| 1.0      | -        |       |       | 0.0     |                                 |              |              |               |       |                                       |
| 1.0      |          |       |       |         |                                 |              |              |               |       |                                       |
| •        |          |       |       |         |                                 |              |              |               |       |                                       |
| 2.0      |          |       |       |         |                                 |              |              |               |       |                                       |
|          |          |       |       |         |                                 |              |              |               |       | Soil sample                           |
| 3.0      |          |       |       |         |                                 |              |              |               |       | MW-116A                               |
|          |          |       |       |         |                                 |              |              |               |       | at 2' to 4'                           |
| 4.0      |          |       |       |         |                                 |              |              |               | 4.0'  |                                       |
|          | 2        |       | 4.0   | 0.0     | Brn, Silt and Clay, moist       |              |              |               |       |                                       |
| 5.0      | ~~~      |       |       |         |                                 |              |              |               |       |                                       |
| 5.0      |          |       |       |         |                                 |              |              |               |       |                                       |
| <u> </u> |          |       |       |         |                                 |              |              |               |       |                                       |
| 6.0      |          |       |       |         |                                 |              |              |               |       |                                       |
|          |          |       |       |         |                                 |              |              |               | 6.5'  |                                       |
| 7.0      |          |       |       | 0.0     | Brn, Vy F. Sand and Silt, we    | et           |              |               |       |                                       |
|          |          |       |       |         |                                 |              |              |               | 7.6'  |                                       |
| 8.0      |          |       |       | 0.0     | Brn, Clay, stiff, moist         |              |              |               | 8.0   |                                       |
|          | 3        |       | 4.0   | 0.0     | Brn, Silt with little vy f. san | id, vy moi   | st           |               |       | Soil sample                           |
| 9.0      |          |       |       |         |                                 |              |              |               |       | MW-116B                               |
|          |          |       |       |         |                                 |              |              |               |       | at 8' to 14'                          |
| 10.0     |          |       |       |         |                                 |              |              |               |       |                                       |
| 10.0     |          |       |       |         | -                               |              |              |               |       |                                       |
|          |          |       |       |         |                                 |              |              |               |       |                                       |
| 11.0     |          |       |       |         | •                               |              |              |               |       |                                       |
|          |          |       |       |         |                                 |              |              |               |       |                                       |
| 12.0     |          |       |       |         |                                 |              |              |               |       |                                       |
|          | 4        |       | 4.0   | 0.0     | same as above                   |              |              |               |       |                                       |
| 13.0     |          |       |       |         |                                 |              |              |               |       |                                       |
|          |          |       |       |         |                                 |              |              |               |       |                                       |
| 14.0     |          |       |       |         |                                 |              |              |               |       |                                       |
| . 4.0    |          |       |       |         |                                 |              |              |               |       |                                       |
| 5.0      |          |       |       |         |                                 |              |              |               |       |                                       |
| 5.0      |          |       |       |         |                                 |              |              |               |       |                                       |
|          |          |       |       |         |                                 |              |              |               |       |                                       |
| 6.0      |          |       |       |         |                                 |              |              |               | 16.0' |                                       |
|          |          |       |       |         | Boring terminated at 16'        |              |              |               |       |                                       |
| 7.0      |          |       |       |         | Monitoring well set at 14' B    | G. Well s    | screen 4' to | 14', sand pac | x k   |                                       |
|          |          |       |       |         | 2.7' to 14', bentonite seal 1.2 |              |              | -             |       |                                       |
| 8.0      |          |       |       |         | casing                          |              |              | ,             |       |                                       |
| 0.0      |          |       |       |         | Jaonig                          |              |              |               |       |                                       |

| /      |          |           |         |        | BURING NU.: MW-117                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|----------|-----------|---------|--------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJ   | ECT: HE  | 3 Fuller, | , Gener | va, NY |                                                               | Sheet 1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | NT: HB I |           |         |        |                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | A PROJ   |           | O: V0   | 042101 |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | ING ME   |           | _       |        | SAMPLER BIT SIZE CORE CASING                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | ING RIG  |           |         |        | Macro Core NA NA NA                                           | DATE: 7-12-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | ER: Lyor |           |         |        | INSPECTOR: Mark J Schumacher                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | SAMPLE   | BLOWS     | REC.    | PID    |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IN FT. | NO.      | PER       | (ft.)   | (ppm)  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |          | 6"        |         | 41>    |                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |          |           |         |        | SOIL DESCRIPTION                                              | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 1        | NA        | 1.3     | 0      | Brn., Silt and F. Gravel, damp, no odors                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.0    |          |           | 1.5     |        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.0    |          |           |         |        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |          |           |         |        |                                                               | 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec |
| 2.0    |          |           |         |        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |          |           |         |        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.0    |          |           |         |        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |          |           |         |        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.0    |          |           | ;       |        | 4.                                                            | 0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | 2        | · ·       | 2.5     | 138    | Black, F. Sand, moist, strong petroleum odor, black staining  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.0    |          |           | 2.5     | 150    |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.0    |          |           |         |        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |          |           |         |        | 4                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.0    | ·        |           |         |        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |          |           |         | 138    | wet at 6.0 feet                                               | Soil sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7.0    |          |           |         |        |                                                               | MW-117A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |          |           |         |        |                                                               | from depth of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8.0    |          |           |         |        |                                                               | 6.0' - 10.0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 3        |           | 4.0     | 138    | same as above                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9.0    |          |           |         | 150    |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.0    |          |           |         |        | 9.                                                            | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10.0   |          |           |         |        | 9.                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10.0   |          |           |         |        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |          |           |         | 68     | Brn., F. Sand, wet, light petroleum odor                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11.0   |          |           |         |        | 11.                                                           | 2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |          |           |         | 48     | Brn., Silt and Clay, wet, light petroleum odor                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12.0   |          |           |         |        | 12.                                                           | 0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | 4        |           | 4.0     | 26     | Brn., Clay, wet, trace petroleum odor                         | Soil sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3.0    |          |           |         |        |                                                               | MW-117B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |          |           |         |        |                                                               | from depth of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |          |           |         |        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.0    |          |           |         |        |                                                               | 12.0' - 16.0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |          | ·         |         | 0      | no odors                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.0    |          |           |         |        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |          |           |         |        |                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6.0    |          |           |         |        | 16.                                                           | D'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |          |           |         |        | Boring Terminated at 16.0'                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.0    |          |           |         |        | Well set to 14' with 10' of screen.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.0    |          |           |         |        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |          |           |         |        | Sand 2.6' to 14', Bentonite Seal 1.1' to 2.6', Grout 0 - 1.1' |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.0    |          |           |         |        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|        |          |            |        |         |                        | G NU.: MW-1        |               |                  |       |                                       |
|--------|----------|------------|--------|---------|------------------------|--------------------|---------------|------------------|-------|---------------------------------------|
|        | ECT: Ge  |            | Y      |         |                        |                    |               |                  |       | Sheet 1 of 1                          |
|        | NT: HB   |            |        |         |                        |                    |               |                  |       |                                       |
| DELT   | A PROJ   | ECT N      | O: V00 | 04210-1 |                        |                    |               |                  |       |                                       |
| DRILI  | LING ME  | THOD:      | H.S.A. |         | SAMPLER                | BIT SIZE           | CORE          | CASING           |       |                                       |
| DRILI  | LING RIG | : CME-     | 55     |         | Split-Spoon            | NA                 | NA            | NA               |       | DATE: 7-12-05                         |
| DRILI  | ER: Lyon | n Drilling | g      |         |                        |                    |               |                  |       | · · · · · · · · · · · · · · · · · · · |
| DEPTH  | SAMPLE   | BLOWS      | REC.   | PID     |                        |                    |               |                  |       |                                       |
| IN FT. | NO.      | PER        | (ft.)  | (ppm)   |                        |                    |               |                  |       |                                       |
|        | 1.0.     | 6"         | ()     | (pp)    |                        |                    |               |                  |       |                                       |
|        |          | Ů          | · ·    |         |                        | SOIL DESCI         | RIPTION       |                  |       | REMARKS                               |
|        | 1        | NA         | 1.7    | 1.8     | Gravel Fill with trad  |                    |               |                  |       |                                       |
| 1.0    |          | INA        | 1./    | 1.0     |                        | sin, moist         |               |                  |       |                                       |
| 1.0    |          |            |        |         |                        |                    |               |                  |       |                                       |
|        |          |            |        |         |                        |                    |               |                  |       |                                       |
| 2.0    |          |            |        |         |                        |                    |               |                  |       |                                       |
|        |          |            |        |         |                        |                    | -             |                  |       | Soil sample                           |
| 3.0    | · · ·    |            |        |         | 1                      |                    |               |                  |       | MW-118A                               |
|        |          |            |        |         | -                      |                    |               |                  |       | at 2' to 4'                           |
| 10     |          |            |        |         |                        |                    |               |                  | 4.01  | al 2 10 4                             |
| 4.0    |          |            |        | 4.0     |                        |                    |               |                  | 4.0'  |                                       |
|        | 2        |            | 4.0    | 1.8     | Brn, Silt and Clay, s  | tiff, moist        |               |                  |       |                                       |
| 5.0    |          |            |        |         |                        |                    |               |                  |       |                                       |
| _      |          |            |        |         |                        |                    |               |                  |       |                                       |
| 6.0    |          |            |        |         |                        |                    |               |                  | 6.1'  |                                       |
|        |          |            |        | 8.2     | Brn, Vy F. Sand, we    | t                  |               |                  |       | Soil sample                           |
| 7.0    |          |            |        | 0.2     |                        | •                  |               |                  |       | MW-118B                               |
| /.0    |          |            |        |         | 4                      |                    |               |                  |       |                                       |
|        |          |            |        |         |                        |                    | · ·           |                  |       | at 6' to 11'                          |
| 8.0    |          |            |        |         |                        |                    |               |                  |       |                                       |
|        | 3        |            | 4.0    | 8.2     | same as above          |                    |               |                  |       |                                       |
| 9.0    |          |            | 1      |         | ]                      |                    |               |                  |       |                                       |
|        |          |            |        |         |                        |                    |               |                  |       |                                       |
| 10.0   |          |            |        |         |                        |                    |               |                  |       |                                       |
| 10.0   |          |            |        |         |                        |                    |               |                  |       |                                       |
|        |          |            |        |         |                        |                    |               |                  |       |                                       |
| 1.0    |          |            |        |         |                        |                    |               |                  | 11.1' |                                       |
|        |          |            |        | 0.0     | Brn, Silt and Clay, vy | moist              |               |                  |       |                                       |
| 2.0    |          |            |        |         |                        |                    |               |                  |       |                                       |
|        | 4        |            | 4.0    | 0.0     | same as above          |                    |               |                  |       |                                       |
| 3.0    |          |            |        |         |                        |                    |               |                  |       |                                       |
| 5.0    |          |            |        |         |                        |                    |               |                  |       |                                       |
|        |          |            |        |         | · · · · ·              |                    |               | · ·              |       |                                       |
| 4.0    |          |            |        |         |                        |                    |               |                  |       |                                       |
|        |          |            |        |         |                        |                    |               |                  |       |                                       |
| 5.0    |          |            |        |         |                        |                    |               |                  |       |                                       |
|        |          |            |        |         |                        |                    |               |                  |       |                                       |
| 6.0    |          |            |        |         |                        |                    |               |                  | 16.0' |                                       |
| 0.0    | +        |            |        |         | Boring terminated at   | 16'                |               |                  | 10.0  |                                       |
|        |          |            |        |         |                        |                    |               | 141              |       |                                       |
| 7.0    |          |            |        |         | Monitoring well set    |                    |               |                  |       |                                       |
|        |          |            |        |         | 2.7' to 14', bentonite | seal 1.2' to 2.7', | grout 0' to ' | 1.2', flush mour | nt    |                                       |
| 8.0    |          |            |        |         | casing                 |                    |               |                  |       |                                       |

| ,        |           |         |       |         | DUNIN                                   | 5 NU.: MW-1        | .19          |                                        |       |               |
|----------|-----------|---------|-------|---------|-----------------------------------------|--------------------|--------------|----------------------------------------|-------|---------------|
| PROJ     | ECT: Ge   | neva, N | Y     |         |                                         |                    |              |                                        |       | Sheet 1 of 1  |
|          | NT: HB    |         |       |         | · · · · · · · · · · · · · · · · · · ·   |                    |              |                                        |       |               |
| DELT     | TA PROJ   | ECT NO  | D: V0 | 04210-1 |                                         |                    |              |                                        |       |               |
|          | LING ME   |         |       |         | SAMPLER                                 | BIT SIZE           | CORE         | CASING                                 |       |               |
|          | LING RIG  |         |       |         | Split-Spoon                             | NA                 | NA           | NA                                     |       | DATE: 7-11-05 |
|          | LER: Lyon |         |       |         |                                         |                    |              | ····· ····                             |       |               |
| DEPTH    | SAMPLE    | BLOWS   | REC.  | PID     |                                         |                    |              |                                        |       |               |
| IN FT.   | NO.       | PER     | (ft.) | (ppm)   |                                         |                    |              |                                        |       |               |
| IN F1.   | NO.       | 6"      | (11.) | (ppm)   |                                         | -                  |              |                                        |       |               |
|          |           | . °     |       |         |                                         | SOIL DESCI         | RIPTION      |                                        |       | REMARKS       |
|          | 1         | NA      | 2.5   | 0.0     | Gravel Fill, moist                      |                    |              |                                        |       |               |
| 10       | 1         |         | 2.5   | 0.0     |                                         |                    |              |                                        |       |               |
| 1.0      |           |         |       |         | 4                                       |                    |              |                                        |       |               |
|          |           |         |       |         |                                         |                    |              |                                        |       |               |
| 2.0      |           |         |       |         |                                         |                    |              |                                        | 2.1'  |               |
|          |           |         |       | 8.7     | Brn, Silt with some                     | gravel fill, mois  | st           |                                        |       | Soil sample   |
| 3.0      |           |         |       |         |                                         |                    |              |                                        |       | MW-119A       |
| <u> </u> |           |         |       |         | <b>1</b>                                |                    |              |                                        |       | at 2' to 4'   |
| 4.0      |           |         |       |         | 4                                       |                    |              |                                        | 4.0'  |               |
| 4.0      | 2         |         | 4.0   | 1.5     | Pro Cilt and Clay at                    | £                  |              |                                        | 4.0   | 1             |
|          | 2         |         | 4.0   | 1.5     | Brn, Silt and Clay, st                  | 118 .              |              |                                        |       |               |
| 5.0      |           |         |       |         | -                                       |                    |              |                                        |       |               |
|          |           |         |       |         |                                         |                    |              |                                        |       |               |
| 6.0      |           |         |       |         | water noted in boreh                    | ole                |              |                                        |       |               |
|          |           |         |       |         |                                         |                    |              |                                        |       |               |
| 7.0      |           |         |       |         | 1                                       |                    |              |                                        |       |               |
|          |           |         |       |         |                                         |                    |              |                                        |       |               |
| 8.0      |           |         |       |         | 4                                       |                    |              |                                        |       |               |
| 0.0      |           |         | 10    | 1.5     |                                         |                    |              |                                        | 0.01  |               |
|          | 3         |         | 4.0   | 1.5     | same as above                           |                    |              |                                        | 8.8   |               |
| 9.0      |           |         |       |         | ·                                       |                    |              |                                        |       |               |
|          |           |         |       | 3.7     | Brn, vy f. sand, wet                    |                    |              |                                        |       | Soil sample   |
| 10.0     |           |         |       |         |                                         |                    |              | •                                      |       | MW-119B       |
|          |           |         |       |         |                                         |                    |              |                                        |       | at 8' to 12'  |
| 11.0     |           |         |       |         |                                         |                    |              |                                        |       |               |
|          |           |         |       |         |                                         |                    |              |                                        | 11.4' |               |
| 12.0     |           |         |       | 3.7     | Brn, Silt and Clay, we                  |                    |              | ······································ | 12.0' |               |
| 12.0     |           |         |       |         |                                         |                    |              |                                        | 12.0  |               |
|          | 4         |         | 4.0   | 1.0     | Brn, Silt and F.Sand                    | (interbedded),     | wet          |                                        |       |               |
| 13.0     |           |         |       |         |                                         |                    |              |                                        |       |               |
| 1        |           |         |       |         |                                         |                    |              |                                        |       |               |
| 14.0     |           | T       |       |         |                                         |                    |              |                                        | 14.1' |               |
|          |           |         |       | 1.0     | Gray, Clay, moist                       |                    |              |                                        |       |               |
| 15.0     |           |         |       |         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                    |              |                                        |       |               |
| 15.0     |           |         |       |         |                                         |                    |              |                                        |       |               |
| 1(0)     |           |         |       |         |                                         |                    | 1            |                                        | 16.01 |               |
| 16.0     |           |         |       |         |                                         | 1.0                |              |                                        | 16.0' |               |
|          |           |         |       |         | Boring terminated at                    |                    |              |                                        |       |               |
| 17.0     |           |         | ·     |         | Monitoring well set a                   | at 14' BG. Well    | screen 4' to | o 14', sand pa                         | ck    |               |
|          |           |         |       |         | 2.7' to 14', bentonite s                | seal 1.2' to 2.7', | grout 0' to  | 1.2', flush mo                         | unt   |               |
| 18.0     |           |         |       |         | casing                                  |                    |              |                                        |       |               |
| 0.0      |           |         |       |         | Casing                                  |                    |              |                                        |       |               |

|        |          |         |        |         | BURING                     | i NO.: MW-1       | 20            |                | _     |               |
|--------|----------|---------|--------|---------|----------------------------|-------------------|---------------|----------------|-------|---------------|
|        | ECT: Ge  |         | Y      |         |                            |                   |               |                |       | Sheet 1 of 1  |
|        | NT: HB   |         |        |         |                            |                   |               |                |       |               |
| DELT   | A PROJ   | ECT NO  | D: V00 | 04210-1 |                            |                   |               |                |       |               |
| DRILI  | LING ME  | THOD: I | H.S.A. |         | SAMPLER                    | BIT SIZE          | CORE          | CASING         |       |               |
| DRILI  | ING RIG  | : CME-5 | 55     |         | Split-Spoon                | NA                | NA            | NA             |       | DATE: 7-11-05 |
|        | ER: Lyon |         |        |         |                            |                   |               |                |       |               |
| DEPTH  | SAMPLE   | BLOWS   | REC.   | PID     |                            | ··· ···           |               |                |       |               |
| IN FT. | NO.      | PER     | (ft.)  | (ppm)   |                            |                   |               |                |       |               |
|        |          | 6"      |        |         |                            |                   |               |                |       |               |
|        |          |         |        |         |                            | SOIL DESCR        | RIPTION       |                |       | REMARKS       |
|        | 1        | NA      | 3.1    | 0.0     | Gravel Fill with little    |                   |               |                |       |               |
| 1.0    |          |         |        |         |                            | ,                 |               |                | 1.0'  |               |
| 1.0    |          |         |        | 3.6     | Brn, Silt with trace g     | roval fill main   |               |                | 1.0   |               |
| 2.0    |          |         |        | 5.0     |                            | avei III, III0ISI | •             |                |       |               |
| 2.0    |          |         |        |         | -                          |                   |               |                |       |               |
|        |          |         |        |         | 4                          |                   |               | 1. S. S. S.    |       | Soil sample   |
| 3.0    |          |         |        |         |                            |                   |               |                |       | MW-120A       |
|        |          |         |        |         |                            |                   |               |                |       | at 2' to 4'   |
| 1.0    |          |         |        |         |                            |                   |               |                | 4.0'  |               |
|        | 2        |         | 3.5    | 2.2     | Brn, F. Sand, moist        |                   |               |                |       |               |
| 5.0    |          |         |        |         | 1                          |                   |               |                |       |               |
|        |          |         | i      |         | - ·                        |                   |               |                |       |               |
| 5.0    |          |         |        |         | wet @ 6.0'                 |                   |               |                |       |               |
| .0     |          |         |        |         |                            |                   |               |                |       |               |
|        |          |         |        |         |                            |                   |               |                |       |               |
| 7.0    |          |         |        |         | 4                          |                   |               |                |       |               |
|        |          |         |        |         |                            |                   | · · ·         |                |       |               |
| 3.0    |          |         |        |         |                            |                   |               |                |       |               |
|        | 3        |         | 4.0    | 2.2     | same as above              |                   |               |                | 8.7'  |               |
| 0.0    |          |         |        |         |                            |                   |               |                |       |               |
|        |          |         |        | 2.8     | Brn, Silt and Clay, tra    | ce f. sand, wet   |               |                |       | Soil sample   |
| 0.0    |          |         |        |         |                            |                   |               |                |       | MW-120B       |
|        |          |         |        |         |                            |                   |               |                |       | at 8' to 12'  |
| 1.0    |          |         | -+     |         |                            |                   |               |                |       |               |
| 1.0    |          |         | -+     |         |                            |                   |               |                |       |               |
|        |          |         |        |         |                            |                   |               |                | 10.01 |               |
| 2.0    |          |         |        | 0.0     |                            | ( 1 11 1)         |               |                | 12.0' |               |
|        | 4        |         | 4.0    | 0.0     | Brn, F. Sand and Silt      | (interbedded),    | wet           |                |       |               |
| 3.0    |          |         |        |         |                            |                   |               |                |       |               |
|        |          |         |        |         |                            |                   |               |                |       |               |
| 4.0    |          |         |        |         |                            |                   |               |                |       |               |
|        |          |         | · .    |         |                            |                   |               |                |       |               |
| 5.0    |          |         |        |         |                            |                   |               |                |       |               |
|        |          |         |        |         |                            |                   |               |                |       |               |
| 6.0    |          |         |        |         |                            |                   |               |                | 16.0' |               |
| 0.0    |          |         |        |         | Doming tomering to d = + 1 | 61                |               |                | 10.0  |               |
|        |          |         |        |         | Boring terminated at 1     |                   |               | 1.0. 1         |       |               |
| 7.0    |          |         |        |         | Monitoring well set at     |                   |               | •              |       |               |
|        |          |         |        |         | 2.7' to 14', bentonite s   | eal 1.2' to 2.7', | grout 0' to 1 | I.2', flush mo | unt   |               |
| 8.0    |          |         |        |         | casing                     |                   |               |                |       |               |

# DELTA ENVIRONMENTAL CONSULTANTS test boring log boring no.: mw-121

| i    |          |                                                                                                                |       |         | <b>DURING</b>                         | NO.: MW-L                         | 21            |                |       |               |
|------|----------|----------------------------------------------------------------------------------------------------------------|-------|---------|---------------------------------------|-----------------------------------|---------------|----------------|-------|---------------|
| PROJ | ECT: Ge  | eneva, N                                                                                                       | ΙY    |         |                                       |                                   |               |                |       | Sheet 1 of 1  |
|      | NT: HB   |                                                                                                                |       |         |                                       |                                   |               |                |       |               |
|      | A PROJ   |                                                                                                                | O: V0 | 04210-1 | · · · · · · · · · · · · · · · · · · · |                                   |               |                |       |               |
|      | ING ME   |                                                                                                                |       |         | SAMPLER                               | BIT SIZE                          | CORE          | CASING         |       |               |
|      | ING RIC  | the second second second second second second second second second second second second second second second s |       |         | Split-Spoon                           | NA                                | NA            | NA             |       | DATE: 7-13-05 |
|      | ER: Lyon |                                                                                                                | g     |         |                                       | · · · · · · · · · · · · · · · · · |               |                |       |               |
|      | SAMPLE   | BLOWS                                                                                                          | REC.  | PID     |                                       |                                   |               |                |       |               |
|      | NO.      | PER                                                                                                            | (ft.) | (ppm)   |                                       |                                   |               |                |       |               |
|      |          | 6"                                                                                                             | ()    | (John)  |                                       |                                   |               |                |       |               |
|      |          | Ĩ,                                                                                                             |       |         |                                       | SOIL DESCR                        | RIPTION       |                |       | REMARKS       |
|      | 1        | NA                                                                                                             | 1.7   | 0.0     | Railroad cinders                      |                                   |               |                |       |               |
| 1.0  |          |                                                                                                                | 1.7   | 0.0     |                                       |                                   |               |                | 1.1'  |               |
| 1.0  |          |                                                                                                                |       | 0.0     | Den E Cord der                        |                                   |               |                | 1.1   |               |
| • •  |          |                                                                                                                |       | 0.0     | Brn, F. Sand, dry                     |                                   |               |                |       |               |
| 2.0  |          |                                                                                                                |       |         | -                                     |                                   |               |                |       |               |
|      |          |                                                                                                                |       |         |                                       |                                   |               |                |       | Soil sample   |
| 3.0  |          |                                                                                                                |       |         | · · · · · ·                           |                                   |               |                | 3.1   | MW-121A       |
|      |          |                                                                                                                |       | 0.0     | Brn, Silt, damp                       |                                   |               |                |       | at 2' to 4'   |
| 4.0  |          |                                                                                                                |       |         | 1                                     |                                   |               |                | 4.0'  |               |
|      | 2        |                                                                                                                | 2.9   | 8.4     | Brn, F. Sand with some                | silt moist                        |               |                |       |               |
| 5.0  |          |                                                                                                                |       | 0.4     |                                       | <u> </u>                          |               |                |       |               |
| 5.0  |          |                                                                                                                |       |         | wat @ 5 5'                            |                                   |               |                |       |               |
|      |          |                                                                                                                |       |         | wet @ 5.5'                            |                                   |               |                |       |               |
| 6.0  |          |                                                                                                                |       |         |                                       |                                   |               |                |       |               |
|      |          |                                                                                                                |       |         |                                       |                                   |               |                |       |               |
| 7.0  |          |                                                                                                                |       |         |                                       | -                                 |               |                |       |               |
|      |          |                                                                                                                |       |         | ]                                     |                                   |               |                |       |               |
| 8.0  |          |                                                                                                                |       |         | 1                                     |                                   |               |                | 8.0'  |               |
|      | 3        |                                                                                                                | 4.0   | 9.5     | Brn, Silt and Clay, wet               |                                   |               |                |       | Soil sample   |
| 9.0  |          |                                                                                                                |       |         | , one and only, wet                   |                                   |               |                |       | MW-121B       |
| 2.0  |          |                                                                                                                |       |         |                                       |                                   |               |                |       | at 8' to 12'  |
|      |          |                                                                                                                |       |         |                                       |                                   |               |                |       | at o to 12    |
| 10.0 |          |                                                                                                                | · · · |         |                                       |                                   |               |                |       |               |
|      |          |                                                                                                                |       |         |                                       |                                   |               | 1. A.          |       |               |
| 11.0 |          |                                                                                                                |       |         |                                       |                                   |               |                |       |               |
|      |          |                                                                                                                |       |         |                                       |                                   |               |                | · · · |               |
| 12.0 |          |                                                                                                                |       |         |                                       |                                   |               |                | 12.0' |               |
|      | 4        |                                                                                                                | 4.0   | 2.0     | Brn, Silt, Clay and F. S              | and (interbed                     | ded), moist   | to wet         |       | 1. A.         |
| 13.0 |          |                                                                                                                |       |         | ,,                                    | (                                 | ,,            |                |       |               |
| 3.0  |          |                                                                                                                |       |         |                                       |                                   |               |                |       |               |
|      |          |                                                                                                                |       |         |                                       |                                   |               |                |       |               |
| 4.0  |          |                                                                                                                |       |         |                                       |                                   |               |                |       |               |
|      |          |                                                                                                                |       |         |                                       |                                   |               |                |       |               |
| 5.0  |          |                                                                                                                |       |         |                                       |                                   |               |                |       |               |
|      |          |                                                                                                                |       |         |                                       |                                   |               |                |       |               |
| 6.0  |          |                                                                                                                |       |         |                                       |                                   |               |                | 16.0' |               |
|      |          |                                                                                                                |       |         | Boring terminated at 16               | 1                                 |               |                | 10.0  |               |
| 70   |          |                                                                                                                |       |         | •                                     |                                   | annon Alt-    | 111 and        |       |               |
| 7.0  |          |                                                                                                                |       |         | Monitoring well set at 1              |                                   |               |                |       |               |
|      |          |                                                                                                                |       |         | 2.7' to 14', bentonite sea            | al 1.2' to 2.7',                  | grout 0' to 1 | .2', flush mor | unt   | · · · · ·     |
| 8.0  |          |                                                                                                                |       |         | casing                                |                                   |               |                |       |               |

# DELTA ENVIRONMENTAL CONSULTANTS test boring log boring no.: mw-122

|         |          |          |        |         | DOMIN                                | J NU.: MW-1        |             |                  |       |               |
|---------|----------|----------|--------|---------|--------------------------------------|--------------------|-------------|------------------|-------|---------------|
|         | ECT: Ge  |          | Y      |         |                                      |                    |             |                  |       | Sheet 1 of 1  |
|         | NT: HB I |          |        |         |                                      |                    |             |                  |       |               |
| DELT    | A PROJ   | ECT NO   | D: V0  | 04210-1 |                                      |                    |             |                  |       |               |
| DRILI   | ING ME   | THOD: H  | I.S.A. |         | SAMPLER                              | BIT SIZE           | CORE        | CASING           |       |               |
| DRILI   | ING RIG  | : LM-1   |        |         | Split-Spoon                          | NA                 | NA          | NA               |       | DATE: 7-13-05 |
| DRILL   | ER: Lyon | Drilling | ç.     |         |                                      |                    |             |                  |       |               |
| DEPTH   | SAMPLE   | BLOWS    | REC.   | PID     |                                      |                    |             |                  |       |               |
| IN FT.  | NO.      | PER      | (ft.)  | (ppm)   |                                      |                    |             |                  |       |               |
|         |          | 6"       |        |         |                                      |                    |             |                  |       |               |
|         |          |          |        |         |                                      | SOIL DESCH         | RIPTION     |                  |       | REMARKS       |
|         | 1        | NA       | 3.1    | 0.0     | Brn, F. Sand, dry                    |                    |             |                  |       | ·             |
| 1.0     |          |          |        |         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                    |             |                  |       |               |
| 1.0     |          |          |        |         |                                      |                    |             |                  | 1.4   | ,             |
| 2.0     |          |          |        | 1.0     | Den Cilt and Class d                 |                    | <u> </u>    |                  | 1.4   | 4.            |
| 2.0     |          |          |        | 1.0     | Brn, Silt and Clay, d                | ry                 |             |                  |       |               |
|         |          |          |        |         | _                                    |                    |             |                  |       | Soil sample   |
| 3.0     | · · · ·  |          |        |         |                                      |                    |             |                  |       | MW-122A       |
|         |          |          |        |         | ,                                    |                    |             |                  |       | at 2' to 4'   |
| 4.0     |          |          |        |         |                                      |                    |             |                  |       |               |
|         | 2        |          | 4.0    | 1.0     | same as above                        |                    |             |                  |       |               |
| 5.0     |          |          |        |         |                                      |                    |             |                  |       |               |
|         |          |          |        |         | 1                                    |                    |             |                  |       |               |
| 5.0     |          |          |        |         | · ·                                  |                    |             |                  |       |               |
| 5.0     |          |          |        |         | 4                                    |                    |             |                  |       |               |
|         |          |          |        |         |                                      |                    |             |                  |       |               |
| 7.0     |          |          |        |         |                                      |                    |             |                  |       |               |
|         |          |          |        |         |                                      |                    |             |                  | 7.7   |               |
| 3.0     |          |          |        |         |                                      |                    |             |                  |       | 1             |
|         | 3        |          | 4.0    | 4.0     | Brn, F. Sand, wet                    |                    |             |                  |       | Soil sample   |
| 9.0     |          | _        |        |         |                                      |                    |             |                  |       | MW-122B       |
| _       |          |          |        |         | <b>1</b> ·                           |                    |             |                  |       | at 8' to 12'  |
| 0.0     |          |          |        |         |                                      |                    |             |                  |       |               |
|         |          |          |        |         |                                      |                    |             |                  |       |               |
| 1.0     |          |          |        |         |                                      |                    |             |                  |       |               |
| 1.0     |          |          |        |         |                                      |                    |             |                  |       |               |
|         |          |          |        |         | ,                                    |                    |             |                  |       |               |
| 2.0     |          |          |        |         | _                                    |                    |             |                  |       | 1             |
|         | 4        |          | 4.0    | 2.0     | same as above                        |                    |             |                  |       |               |
| 3.0     |          |          |        |         |                                      |                    |             |                  |       |               |
|         |          |          |        |         |                                      |                    |             |                  |       |               |
| 4.0     |          |          |        |         |                                      |                    |             |                  | . •   |               |
|         |          | -        |        |         |                                      |                    |             |                  |       |               |
| 5.0     |          |          |        |         |                                      |                    |             |                  |       |               |
| 5.0     |          |          | _      |         |                                      |                    |             |                  |       |               |
| <u></u> |          |          |        |         |                                      |                    |             |                  | 16.01 | 1             |
| 6.0     |          |          |        |         |                                      | 1.0                |             |                  | 16.0' |               |
|         |          |          |        |         | Boring terminated at                 |                    |             |                  |       |               |
| 7.0     |          |          |        |         | Monitoring well set a                |                    |             |                  |       |               |
|         |          |          |        | ·       | 2.7' to 14', bentonite s             | seal 1.2' to 2.7', | grout 0' to | 1.2', flush moui | nt    |               |
| 8.0     |          |          |        |         | casing                               |                    |             |                  |       |               |

| <u> </u> |          |          |       |         | DOMINO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO.: MW-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123              |               |       |                                                                                                                 |
|----------|----------|----------|-------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|-------|-----------------------------------------------------------------------------------------------------------------|
| PRO.     | ECT: Ge  | eneva, N | IY    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       | Sheet 1 of 1                                                                                                    |
|          | NT: HB   |          |       |         | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
|          | TA PRO.  |          | O: V0 | 04210-1 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
|          | LING ME  |          |       |         | SAMPLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BIT SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CORE             | CASING        | ·     |                                                                                                                 |
|          | LING RIC |          |       |         | Split-Spoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA               | NA            |       | DATE: 7-14-05                                                                                                   |
|          | LER: Lyo |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1173             | INA .         |       | DATE. /-14-05                                                                                                   |
| _        |          | _        | T     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| DEPTH    | SAMPLE   | BLOWS    | REC.  | PID     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| IN FT.   | NO.      | PER      | (ft.) | (ppm)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               | :     |                                                                                                                 |
|          |          | 6"       | i i   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               | · · · |                                                                                                                 |
|          |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SOIL DESC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CRIPTION         |               |       | REMARKS                                                                                                         |
|          | 1        | NA       | 3.1   | 0.0     | Fill (brick and gravel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ), dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                |               |       |                                                                                                                 |
| 1.0      |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |               |       |                                                                                                                 |
|          |          |          |       |         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| 2.0      |          |          |       |         | - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| 2.0      | <u> </u> |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
|          |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               | 2.5'  |                                                                                                                 |
| 3.0      |          |          |       | 1.0     | Brn, F. Sand, dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
|          |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| 4.0      |          |          |       |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| 4.0      |          |          | 10    | 2.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
|          | 2        |          | 4.0   | 2.0     | same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| 5.0      |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
|          |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | ,             |       |                                                                                                                 |
| 6.0      |          |          |       |         | wet @ 6'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| 0.0      |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| <u> </u> |          |          |       |         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| 7.0      |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               | 7,2'  | 1.1                                                                                                             |
|          | •        |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| 8.0      |          |          |       | 2.0     | Brn, Silt and Vy F. Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd, wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |               | 8.0'  |                                                                                                                 |
|          | 3        |          | 4.0   | 3.0     | Brn, F. Sand, wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       | Soil sample                                                                                                     |
| 9.0      |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       | MW-123A                                                                                                         |
| 9.0      | · · ·    |          |       |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
|          |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       | at 8' to 12'                                                                                                    |
| 10.0     |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
|          |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| 11.0     |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
|          |          |          |       |         | gray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| 12.0     |          |          |       |         | 9.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| 12.0     | <u> </u> |          |       | • •     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       | ~                                                                                                               |
|          | 4        |          | 4.0   | 3.0     | same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       | Soil sample                                                                                                     |
| 13.0     |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       | MW-123B                                                                                                         |
|          |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec. 1. Sec |                  |               |       | at 12' to 16'                                                                                                   |
| 14.0     |          |          |       |         | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| . 1.0    |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
|          |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
| 15.0     |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       |                                                                                                                 |
|          |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |       | di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda d |
| 6.0      |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               | 16.0' |                                                                                                                 |
|          |          |          | -+    |         | Boring terminated at 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |               |       |                                                                                                                 |
| 70       |          |          |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11               | 141 and       |       |                                                                                                                 |
| 7.0      |          |          |       |         | Monitoring well set at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               | s.    |                                                                                                                 |
|          |          |          |       |         | 2.7' to 14', bentonite se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | al 1.2' to 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ', grout 0' to 1 | 1.2', stickup |       |                                                                                                                 |
| 8.0      |          |          |       |         | casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | -             |       |                                                                                                                 |

# DELTA ENVIRONMENTAL CONSULTANTS test boring log boring no.: sbe-11

|        |                 |          |       |                           | DOMIN                  | G NO .: SBF-1    | 11     |                                       |          |               |
|--------|-----------------|----------|-------|---------------------------|------------------------|------------------|--------|---------------------------------------|----------|---------------|
| PROJ   | ECT: Ge         | eneva, N | Y     |                           |                        |                  |        |                                       |          | Sheet 1 of 1  |
|        | NT: HB          |          |       |                           |                        |                  |        |                                       |          |               |
|        | TA PROJ         |          | D: V0 | 04210-1                   |                        |                  |        |                                       | <u> </u> |               |
|        | LING ME         |          |       | · · · ·                   | SAMPLER                | BIT SIZE         | CORE   | CASING                                |          |               |
|        | LING RIG        |          |       |                           | Split-Spoon            | NA               | NA     | NA                                    |          | DATE: 7-14-05 |
|        | LER: Lyon       |          |       |                           |                        |                  |        |                                       |          | DITIL: / 1100 |
| DEPTH  | SAMPLE          | BLOWS    | REC.  | PID                       |                        |                  |        |                                       |          |               |
| IN FT. | NO.             | PER      | (ft.) | (ppm)                     |                        |                  |        |                                       |          |               |
| INFI.  | NO.             | 6"       | (11.) | (ppm)                     |                        | •                |        |                                       |          |               |
|        |                 | 0        |       |                           |                        | SOIL DESCH       | IPTION |                                       |          | REMARKS       |
|        | 1               | NIA      | 2.2   | 0.0                       | Eill (group) air dans  |                  |        |                                       |          | REMARKS       |
|        | 1               | NA       | 2.2   | 0.0                       | Fill (gravel, cinders, | sand, brick), di | У      |                                       |          |               |
| 1.0    |                 |          |       | ·                         |                        |                  |        |                                       |          |               |
|        |                 |          |       |                           | · .                    |                  |        |                                       |          |               |
| 2.0    |                 |          |       |                           |                        |                  |        |                                       |          | Soil sample   |
|        |                 |          |       |                           | 1                      |                  |        |                                       |          | SBE-11A       |
| 3.0    |                 |          |       |                           | 1                      |                  |        |                                       |          | at 2' to 4'   |
| 5.0    |                 |          |       |                           | -                      |                  |        |                                       |          |               |
| 4.0    |                 |          |       |                           |                        |                  |        |                                       | 4.01     |               |
| 4.0    |                 |          |       |                           |                        |                  |        | · · · · · · · · · · · · · · · · · · · | 4.0'     |               |
|        | 2               |          | 4.0   | 0.0                       | Brn, Silt and Clay, m  | oist             |        |                                       |          |               |
| 5.0    |                 |          |       |                           |                        |                  |        |                                       |          |               |
|        |                 |          |       |                           | 1                      |                  |        |                                       |          |               |
| 6.0    |                 |          |       | · · · · · · · · · · · · · |                        |                  |        |                                       |          |               |
| 0.0    |                 |          |       |                           | -                      | •                |        |                                       |          |               |
| 7.0    |                 |          |       | · · ·                     | -                      |                  |        |                                       |          |               |
| 7.0    |                 |          |       |                           | -                      |                  |        |                                       |          |               |
|        |                 |          |       |                           |                        |                  |        |                                       |          |               |
| 8.0    |                 |          |       |                           |                        |                  |        |                                       | 8.0'     |               |
|        | 3               |          | 4.0   | 0.0                       | Brn, Vy F. Sand and    | Silt, wet        |        |                                       |          | Soil sample   |
| 9.0    | _               |          |       |                           |                        |                  |        |                                       |          | SBE-11B       |
|        |                 | -        |       |                           |                        |                  |        |                                       |          | at 8' to 12'  |
| 0.0    |                 |          |       |                           | -                      |                  |        |                                       |          | at 0 to 12    |
| 10.0   | · · · · · · · · |          |       |                           | ł                      |                  |        |                                       |          |               |
|        |                 |          |       |                           |                        |                  |        |                                       |          |               |
| 1.0    |                 |          |       |                           |                        |                  |        |                                       |          |               |
|        |                 |          |       |                           | · · ·                  |                  |        |                                       |          |               |
| 2.0    |                 |          |       |                           |                        |                  |        |                                       |          |               |
|        | 4               |          | 4.0   | 0.0                       | same as above          |                  |        |                                       |          |               |
| 3.0    |                 |          |       |                           |                        |                  |        |                                       |          |               |
| 5.0    |                 |          |       |                           | •                      |                  |        |                                       |          |               |
|        |                 |          |       |                           |                        |                  |        |                                       |          |               |
| 4.0    |                 |          |       |                           |                        |                  |        |                                       |          |               |
|        |                 |          |       |                           |                        |                  |        |                                       |          |               |
| 5.0    |                 |          |       |                           |                        |                  |        |                                       | 15.1'    |               |
|        |                 |          |       | 0.0                       | Gray, Clay, wet        |                  |        |                                       |          |               |
| 6.0    |                 |          |       |                           | , , ,                  |                  |        |                                       | 16.0'    |               |
| 0.0    |                 |          |       |                           | Doming tomating to day | 1.61             |        |                                       | 10.0     |               |
|        |                 | ·····    |       |                           | Boring terminated at   | 10               |        |                                       |          |               |
| 7.0    |                 |          |       |                           |                        |                  |        |                                       |          |               |
|        |                 |          |       | 1                         |                        |                  |        |                                       |          |               |
| 8.0    |                 |          |       |                           |                        |                  |        |                                       |          |               |

|        |          |        |       |         | BORING                                | U.: 5DA-1  |         |        |                            |               |
|--------|----------|--------|-------|---------|---------------------------------------|------------|---------|--------|----------------------------|---------------|
|        | ECT: Ge  |        | Y     |         |                                       |            |         |        |                            | Sheet 1 of 1  |
| CLIE   | NT: HB   | Fuller |       |         |                                       |            |         |        |                            |               |
| DELT   | A PROJ   | ECT NO | D: V0 | 04210-1 | · · · · · · · · · · · · · · · · · · · |            |         |        |                            |               |
|        | ING ME   |        |       |         | SAMPLER                               | BIT SIZE   | CORE    | CASING |                            |               |
|        | ING RIC  |        |       |         | Split-Spoon                           | NA         | NA      | NA     |                            | DATE: 7-14-05 |
|        | ER: Lyo  |        |       |         |                                       |            |         |        |                            |               |
| DEPTH  | SAMPLE   | BLOWS  | REC.  | PID     |                                       |            |         |        |                            |               |
| IN FT. | NO.      | PER    | (ft.) | (ppm)   |                                       |            |         |        | -                          |               |
|        |          | 6"     |       |         |                                       |            |         |        | · .                        |               |
| 1      |          |        |       |         | S                                     | SOIL DESCH | RIPTION |        |                            | REMARKS       |
|        | 1        | NA     | 0.2   | 0.0     | Fill (brick), dry                     |            |         |        |                            |               |
| 1.0    | <u> </u> |        |       |         |                                       |            |         |        |                            |               |
| 1.0    |          |        |       |         |                                       |            |         |        |                            |               |
|        |          |        |       |         | 4                                     |            |         |        |                            |               |
| 2.0    |          |        |       |         |                                       |            |         |        |                            |               |
|        | -        |        |       |         |                                       |            |         |        |                            |               |
| 3.0    |          |        |       |         | ·                                     |            |         |        |                            |               |
|        |          |        |       |         |                                       |            |         |        |                            |               |
| 4.0    |          |        |       |         |                                       |            |         |        | 4.0'                       | · .           |
| 1.0    | 2        |        | 3.2   | 1.0     | Brn, F. Sand, dry                     |            |         |        |                            | Soil sample   |
| 5.0    |          |        | J.2   | 1.0     |                                       |            |         |        |                            | SBA-12A       |
| 5.0    |          |        |       |         |                                       |            |         |        |                            |               |
|        |          |        |       |         |                                       |            |         |        | 5.6                        | at 4' to 8'   |
| 6.0    |          |        |       | 1.0     | Blk, Cinder Fill, dry                 |            |         |        |                            |               |
|        |          |        |       |         |                                       |            |         |        |                            |               |
| 7.0    |          |        |       |         | wet @ 7'                              |            |         |        |                            |               |
|        |          |        |       |         |                                       | • •        |         |        |                            |               |
| 8.0    |          |        |       |         | 1                                     |            |         |        |                            |               |
| 0.0    | 3        |        | 4.0   | 1.0     | same as above                         |            |         |        |                            | Soil sample   |
| 0.0    |          |        | 4.0   | 1.0     | same as above                         |            |         |        | 0.11                       | SBA-12B       |
| 9.0    |          |        |       |         | 0 0'11 1 01                           |            |         |        | 9.1                        |               |
|        |          |        |       | 0.0     | Gray, Silt and Clay, wet              |            |         |        |                            | at 8' to 12'  |
| 10.0   |          |        |       |         |                                       |            |         |        |                            |               |
|        |          |        |       |         |                                       |            |         |        |                            |               |
| 11.0   |          |        |       |         |                                       |            |         |        |                            |               |
|        |          |        |       |         |                                       |            |         |        | 1997 - 1997<br>1997 - 1997 |               |
| 12.0   |          |        |       |         |                                       |            |         |        | 12.0'                      |               |
| 12.0   |          |        |       |         | Boring terminated at 12'              |            |         |        |                            | · .           |
| 12.0   |          |        |       |         | Doring terminated at 12               |            |         |        |                            |               |
| 13.0   |          |        |       |         |                                       |            |         |        |                            |               |
|        |          |        |       | • .     | · · · · · · · · · · · · · · · · · · · |            |         |        |                            |               |
| 14.0   |          |        |       |         |                                       |            |         |        |                            |               |
|        |          |        |       |         |                                       |            |         |        |                            |               |
| 15.0   |          |        |       |         |                                       |            |         |        |                            |               |
|        |          |        | · · · |         |                                       |            |         |        |                            |               |
| 16.0   |          |        |       |         |                                       |            |         |        |                            |               |
| 10.0   |          |        |       |         |                                       |            |         |        |                            |               |
|        |          |        |       |         |                                       |            |         |        |                            |               |
| 17.0   |          |        |       |         |                                       |            |         |        |                            |               |
|        |          |        |       |         |                                       |            |         |        |                            |               |
| 18.0   |          |        |       |         |                                       |            |         |        |                            |               |

| 1          |          |        |        |          | BURING NU.: SBC-1                      | U       |        |       |               |
|------------|----------|--------|--------|----------|----------------------------------------|---------|--------|-------|---------------|
|            | ECT: Ge  |        | Y      |          |                                        |         |        |       | Sheet 1 of 1  |
| CLIE       | NT: HB   | Fuller |        |          |                                        |         |        |       |               |
|            | A PROJ   |        | D: V00 | 04210-1  |                                        |         |        |       |               |
|            | ING ME   |        |        |          | SAMPLER BIT SIZE                       | CORE    | CASING |       |               |
|            | ING RIC  |        |        |          | Split-Spoon NA                         | NA      | NA     |       | DATE: 7-14-05 |
|            | ER: Lyon |        |        |          |                                        |         |        |       |               |
| DEPTH      | SAMPLE   | BLOWS  | REC.   | PID      |                                        |         |        |       |               |
| IN FT.     | NO.      | PER    | (ft.)  | (ppm)    |                                        |         |        |       |               |
|            |          | 6"     | ()     | (J.b.ii) |                                        |         |        |       |               |
|            |          |        |        |          | SOIL DESCR                             | IPTION  |        |       | REMARKS       |
| <b>—</b> — | 1        | NA     | 3.0    | 0.0      | Gravel Fill beneath 0.1' of asphalt co |         | ···    |       |               |
| 1.0        | 1        |        | 5.0    | 0.0      | Shaver I in beneau 0.1 of aspirate co  |         |        |       |               |
| 1.0        | <b> </b> |        |        |          |                                        |         |        | 1 61  |               |
|            |          |        |        |          |                                        | <u></u> |        | 1.5'  |               |
| 2.0        |          |        |        | 3.0      | Brn, Silt and Clay, moist              |         |        |       | Soil sample   |
|            |          |        |        |          |                                        |         |        |       | SBC-16A       |
| 3.0        |          | -      |        |          | 1                                      |         |        |       | at 2' to 4'   |
|            |          |        |        |          |                                        |         |        |       |               |
| 4.0        |          |        |        |          |                                        |         |        |       |               |
| 4.0        |          |        | 10     | 2.0      | laoma ao ahava un maiat                |         |        |       | 1             |
|            | 2        |        | 4.0    | 3.0      | same as above, vy moist                |         |        |       |               |
| 5.0        |          |        |        |          |                                        |         |        |       |               |
|            |          |        |        |          |                                        |         |        |       |               |
| 6.0        |          |        |        |          |                                        |         |        |       |               |
|            |          |        |        |          |                                        |         |        |       |               |
| 7.0        |          |        |        |          |                                        |         |        | 7.1   |               |
| 7.0        |          |        |        | 2.0      | Brn, F. Sand, wet                      |         |        | 7.1   |               |
| 0.0        |          |        |        | 2.0      | Din, P. Sanu, wei                      |         |        |       |               |
| 8.0        |          |        |        |          |                                        |         |        |       |               |
|            | 3        |        | 4.0    | 3.0      | same as above with trace silt, wet     |         |        |       | Soil sample   |
| 9.0        |          |        |        |          |                                        |         |        |       | SBC-16C       |
|            |          |        |        |          |                                        |         |        |       | at 8' to 12'  |
| 10.0       |          |        |        |          |                                        |         |        |       |               |
|            |          |        |        |          |                                        |         |        |       |               |
| 11.0       |          |        |        |          |                                        |         |        | 11.0' |               |
| 11.0       |          |        |        | 2.0      | Pro Clay wat                           |         |        | 11.0  |               |
|            |          |        |        | 3.0      | Brn, Clay, wet                         |         |        |       |               |
| 12.0       |          |        |        |          |                                        |         |        |       | · · ·         |
|            | 4        |        | 4.0    | 1.0      | same as above                          |         |        |       |               |
| 13.0       |          |        |        |          |                                        |         |        | • •   |               |
|            |          |        |        |          |                                        |         |        |       |               |
| 14.0       |          |        |        |          |                                        |         | •      |       |               |
| 17.0       |          |        |        |          |                                        |         |        |       |               |
| 15.0       |          |        |        |          |                                        |         |        |       |               |
| 15.0       |          |        |        |          |                                        |         |        |       | •             |
|            |          |        |        |          |                                        |         |        |       |               |
| 16.0       |          |        |        |          |                                        |         |        | 16.0' |               |
|            |          |        |        |          | Boring terminated at 16'               |         |        |       |               |
| 17.0       |          |        |        |          |                                        |         |        |       |               |
| 1.0        |          |        |        |          |                                        |         |        |       |               |
| 10.0       |          |        |        |          |                                        |         |        |       |               |
| 18.0       |          |        |        |          |                                        |         |        |       |               |

# DELTA ENVIRONMENTAL CONSULTANTS FIELD OBSERVATION LOG GROUNDWATER SAMPLING RECORD

| Site:                      | 61 Gates Ave., G             | eneva, NY |                                       |        |                          |        |        |        | Date:            | 10/18/05   |                    |          |                   |    |
|----------------------------|------------------------------|-----------|---------------------------------------|--------|--------------------------|--------|--------|--------|------------------|------------|--------------------|----------|-------------------|----|
| Project No:                | V0042101                     |           | · · · · ·                             | -      |                          |        |        |        | Weather/         | Temp:      | Sunny, 50 degrees  |          |                   |    |
| Sampler:<br>Sampler:       | Mark J Schumach              | ner       | · · · · · · · · · · · · · · · · · · · |        | Signature:<br>Signature: |        |        |        | Time of A<br>830 | vrrival: T | ime of Dep<br>1630 | parture: |                   |    |
| Well No:                   |                              | MW-114    | MW-115                                | MW-116 | MW-117                   | MW-118 | MW-119 | MW-120 | MW-121           | MW-122     | MW-123             | -        | · · · · · ·       | 1  |
| Depth of We                | ell (TOC):                   | 14.00     | 14.00                                 | 13.90  | 13.70                    | 14.00  | 14.00  | 14.00  | 14.00            | 14.00      | 16.50              |          |                   |    |
| Depth to Gro               | oundwater (TOC):             | 10.20     | 9.65                                  | 9.40   | 6.32                     | 6.95   | 6.50   | 11.80  | 13.65            | 10.30      | 9.05               |          | · · · · · · · · · |    |
| Elevation at               | Top of PVC:                  | 462.03    | 462.25                                | 462.44 | 463.44                   | 462.40 | 462.68 | 462.12 | 461.77           | 461.65     | 456.42             |          |                   |    |
| Elevation at               | Top of Screen:               | 458.03    | 458.25                                | 458.54 | 459.74                   | 458.40 | 458.68 | 458.12 | 457.77           | 457.65     | 449.92             |          |                   | 1. |
| Water Level                | Elevation:                   | 451.83    | 452.60                                | 453.04 | 457.12                   | 455.45 | 456.18 | 450.32 | 448.12           | 451.35     | 447.37             |          |                   |    |
| Well Volume                | <b>):</b> '                  | 0.62      | 0.71                                  | 0.73   | 1.20                     | 1.15   | 1.22   | 0.36   | 0.06             | 0.60       | 1.21               | · .      |                   | 1  |
| Volume Bail                | ed (gallons):                | 1.86      | 2.13                                  | 2.20   | 3.61                     | 3.45   | 3.67   | 1.08   | 0.17             | 1.81       | 3.64               |          |                   |    |
| Purging Met<br>Observation |                              | Low flow  | pumps                                 | -      | · ·                      |        |        |        |                  |            |                    |          |                   |    |
| color                      |                              | Clear     | Clear                                 | Clear  | Clear                    | Clear  | Clear  | Clear  | Clear            | Clear      | Clear              | -        |                   | 1  |
| sheen                      |                              | None      | None                                  | None   | Lt Pet                   | None   | None   | None   | None             | None       | None               |          |                   |    |
| odor                       |                              | None      | None                                  | None   | Lt Pet                   | None   | None   | None   | None             | None       | None               |          |                   |    |
| pН                         |                              | 7.24      | 7.11                                  | 7.21   | 6.3                      | 6.95   | 7.34   | 7.16   | NA               | 7.3        | 7.4                |          |                   |    |
| temperature                | emperature (C.)              |           | 15.3                                  | 14.7   | 14.9                     | 15.3   | 16.1   | 15.5   | NA               | 15.2       | 14.5               |          |                   |    |
| conductivity               | conductivity (ms/cm) 0.87 1. |           |                                       | 0.65   | 1.02                     | 2.42   | 0.78   | 0.99   | NA               | 0.73       | 0.87               |          |                   |    |
| turbidity (NT              | U)                           | 7         | 183                                   | 52     | 49                       | 155    | 80     | 240    | NA               | 241        | 21                 |          |                   |    |
|                            | · ·                          |           |                                       |        | i i i                    |        |        |        |                  |            |                    |          |                   |    |

Comments:

Attach 3 gwlog 10-18-05.xls

# DELTA ENVIRONMENTAL CONSULTANTS FIELD OBSERVATION LOG GROUNDWATER SAMPLING RECORD

|                                              | · · · · · · · · · · · · · · · · · · · |        |                       | NOOND  | WAILN  | SAMEL  | NG RECO   |                                 |            |                    |          |        |   |
|----------------------------------------------|---------------------------------------|--------|-----------------------|--------|--------|--------|-----------|---------------------------------|------------|--------------------|----------|--------|---|
| Site: 61 Gates Ave.,                         | Geneva, NY                            |        |                       |        |        |        |           | Date:                           | 1/11/200   | 6-1/12/200         | 6        |        |   |
| Project No: V0042101                         |                                       |        |                       |        |        |        |           | Weather/Temp: Sunny, 40 degrees |            |                    |          |        |   |
| Sampler: <u>Jennifer L. Hull</u><br>Sampler: | · ·                                   |        | _Signature:Signature: |        |        |        | 1/11/2006 | Time of A<br>845                | Arrival: T | ime of Dep<br>1630 | parture: |        |   |
|                                              |                                       |        |                       |        |        |        | 1/12/2006 |                                 | -          | 1145               |          |        |   |
| Well No:                                     | MW-114                                | MW-115 | MW-116                | MW-117 | MW-118 | MW-119 | MW-120    | MW-121                          | MW-122     | MW-123             |          |        | r |
| Depth of Well (TOC):                         | 14.00                                 | 14.00  | 13.90                 | 13.70  | 14.00  | 14.00  | 14.00     | 14.00                           | 14.00      | 16.50              |          |        |   |
| Depth to Groundwater (TOC)                   | 9.45                                  | 7.10   | 9.50                  | 4.90   | 5.55   | 5.65   | 11.40     | 13.25                           | 9.25       | 6.80               |          | ······ |   |
| Elevation at Top of PVC:                     | Elevation at Top of PVC: 462.03       |        |                       | 463.44 | 462.40 | 462.68 | 462.12    | 461.77                          | 461.65     | 456.42             |          |        |   |
| Elevation at Top of Screen:                  | 458.03                                | 458.25 | 458.54                | 459.74 | 458.40 | 458.68 | 458.12    | 457.77                          | 457.65     | 449.92             |          |        |   |
| Water Level Elevation:                       | 452.58                                | 455.15 | 452.94                | 458.54 | 456.85 | 457.03 | 450.72    | 448.52                          | 452.40     | 449.62             |          | . *    |   |
| Well Volume:                                 | 0.74                                  | 1.12   | 0.72                  | 1.43   | 1.38   | 1.36   | 0.42      | 0.12                            | 0.77       | 1.58               |          |        |   |
| Volume Bailed (gallons):                     | 2.22                                  | 3.37   | 2.15                  | 4.30   | 4.13   | 4.08   | 1.27      | 0.37                            | 2.32       | 4.74               |          |        |   |
| Purging Method:                              | Low flow                              | pumps  | •                     |        |        |        |           | •                               |            |                    |          |        |   |
| Observations:                                |                                       |        |                       |        |        |        |           |                                 |            |                    |          |        |   |
| color                                        | Clear                                 | Clear  | Clear                 | Clear  | Clear  | Clear  | Clear     | Clear                           | Clear      | Clear              |          |        |   |
| sheen                                        | None                                  | None   | None                  | None   | None   | None   | None      | None                            | None       | None               |          |        |   |
| odor                                         | None                                  | None   | None                  | Lt Pet | None   | None   | None      | None                            | None       | None               |          |        |   |
| рH                                           | NA NA                                 |        | NA                    | NA     | NA     | NA     | NA        | NA                              | NA         | NA                 |          |        |   |
| temperature (C.)                             |                                       |        |                       | NA     | NA     | NA     | NA        | NA                              | NA         | NA                 |          |        |   |
| conductivity (ms/cm)                         |                                       |        |                       | NA     | NA     | NA     | NA        | NA                              | NA         | NA                 |          |        |   |
| turbidity (NTU)                              | 49                                    | 52     | 45                    | 67     | 57     | 30     | 52        | 60                              | 62         | 82                 |          |        |   |

# Comments:

Monitoring wells MW-114, MW-115, MW-116, MW-117, MW-118, MW-119, and MW-122 were sampled on 1/11/2006

Monitoring wells MW-120, MW-121 and MW-123 were sampled on 1/12/2006

All samples were analyzed for TCL 8260, TAL Metals and MBAs

1121 1 1

Attach 3gwlog 1-12-06.xls

# **ATTACHMENT 4**

# SUPPORT DOCUMENTS



Solving environment-related business problems worldwide

www.deltaenv.com

104 Jamesville Road Syracuse, New York 13214 USA

315.445.0224 800.477.7411 Fax 315.445.0793

29 November 2005

James H. Craft New York State Department of Environmental Conservation—Region 8 Division of Environmental Remediation 6274 East Avon-Lima Road Avon, NY 14414-9519

Re: Limited Site Investigation Report 61 Gates Avenue, Geneva, NY VCP No. V00119-8 NYSDEC Spill No. 0504324 Delta Project No. V004210-1

Dear Mr. Craft:

Delta Environmental Consultants, Inc. (Delta) conducted a Limited Site Investigation on behalf of the HB Fuller Company at the subject site to define the horizontal and vertical extent of petroleum-impacted soils encountered near the northwest building corner during the installation (July 2005) of soil boring MW-117. Work associated with the installation of MW-117 was conducted as part of investigation activities that were being performed at the site as part of the New York State Department of Environmental Conservation (NYSDEC) approved Voluntary Cleanup Program (VCP) investigation activities.

A work plan was submitted to the Department on 1 September 2005 for the performance of this Limited Site Investigation. NYSDEC approved the work plan on 14 September 2005 with minor modifications. This report describes the tasks performed consistent with the approved work plan, summarizes the analytical results of sampling activities, and provides a summary of findings and recommendations.

# SCOPE OF WORK

### Soil Boring Installations

On 17 October 2005, ten soil borings (B-1 to B-10) were installed at the site to evaluate subsurface soil conditions (Figure 1). Soil borings were installed to a maximum depth of 16 feet below grade using a direct-push drill rig. Soil samples were collected continuously from grade to completion at each boring location. Delta's on-site geologist visually inspected and screened all soil samples in the field with a Photoionization Detector (PID) to assess the potential presence of volatile organic compounds (VOCs).

Based on field screening data, visual observations, odors and soil boring location, Delta selected eight soil samples for laboratory analysis: B-1 (8'-12'), B-2 (12'-16'), B-3 (8'-11'), B-4 (8'-11'), B-5 (9'-11'), B-6

G:\Delta Environmental\Projects\HB Fuller\Pet Inv\LSI RPT Rev1 11-29-05.doc



29 November 2005 Limited Site Investigation Report Delta Project No. V004210P Page 2 of 3

(8'-12'), B-7 (8'-10') and B-8 (8'-12'). Soil samples were generally collected from depth intervals which exhibited petroleum impacts (elevated PID readings, staining, odors). Samples were also collected from zones that did not exhibit impacts to verify the vertical extent of impacts. Samples were analyzed for Total Petroleum Hydrocarbons (NYSDOH Method 310.13), VOCs (EPA Method 8260) and STARS SVOC (EPA Method 8270 base/neutrals). Soil samples were analyzed by Severn Trent Laboratories, Inc. (STL), located in Amherst, New York. STL is an NYSDOH ELAP certified analytical laboratory.

Upon completion of each soil boring, the borehole was backfilled with soil cuttings. Soil descriptions and field screening data for each boring are presented on soil boring logs (Attachment 1).

# Data Evaluation

The soil analytical data were reviewed and checked by Delta for completeness and accuracy. The soil analytical data were compared to NYSDEC TAGM 4046 recommended soil cleanup objectives.

### RESULTS

### Soil Sampling / Soil Boring Results

Soil boring data indicated that materials located beneath the investigation area consisted of a silt and clay unit with some interbedded sand layers of varying thickness at depths from 8 feet to 12 feet below grade. Groundwater was generally observed in borings at depths ranging from 8 feet to 12 feet below grade. Underlying materials consisted of a moist to dry, clay and/or silt and clay unit. Field screening indicated the presence of petroleum-impacted soils at the following locations and depths:

- A 10 foot-thick layer of petroleum-impacted soils (4 feet to 14 feet) was encountered in soil boring MW-117. Soils exhibited petroleum odors and black staining. PID readings ranged from 26 ppm to 138 ppm.
- A 5.5 foot-thick layer of petroleum-impacted soils (10 feet to 15.5 feet) was encountered in soil boring B-2. Soils exhibited petroleum odors. PID readings ranged from 2.4 ppm to 8.5 ppm.
- A 3.5 foot-thick layer of petroleum impacted soils (7 feet to 10.5 feet) was encountered in soil boring B-3. Soils exhibited petroleum odors. PID readings ranged from 1.5 ppm to 4.5 ppm.
- A 2 foot-thick layer of petroleum-impacted soils (9 feet to 11 feet) was encountered in soil boring B-5. Soils exhibited petroleum odors. PID readings were 9.5 ppm.
- A 4.5 foot-thick layer of petroleum-impacted soils (6 feet to 10.5 feet) was encountered in soil boring B-7. Soils exhibited petroleum odors and black staining. PID readings were 5.4 ppm.

No evidence of petroleum impacts were observed in borings B-1, B-4, B-6, B-8, B-9 and B-10.

# Soil Sampling / Analytical Results

A review of the soil analytical data indicated that VOCs and SVOCs were detected in the majority of soil borings at low concentrations. However, the data also indicated that concentrations of detected analytes did not exceed NYSDEC TAGM 4046 soil cleanup objectives in any of the soil samples (Table 1).

29 November 2005 Limited Site Investigation Report Delta Project No. V004210P Page 3 of 3

Petroleum hydrocarbons (No. 2 Fuel Oil) were only detected in soil boring B-3 at a low concentration. Laboratory analytical reports are provided in Attachment 2.

# **SUMMARY**

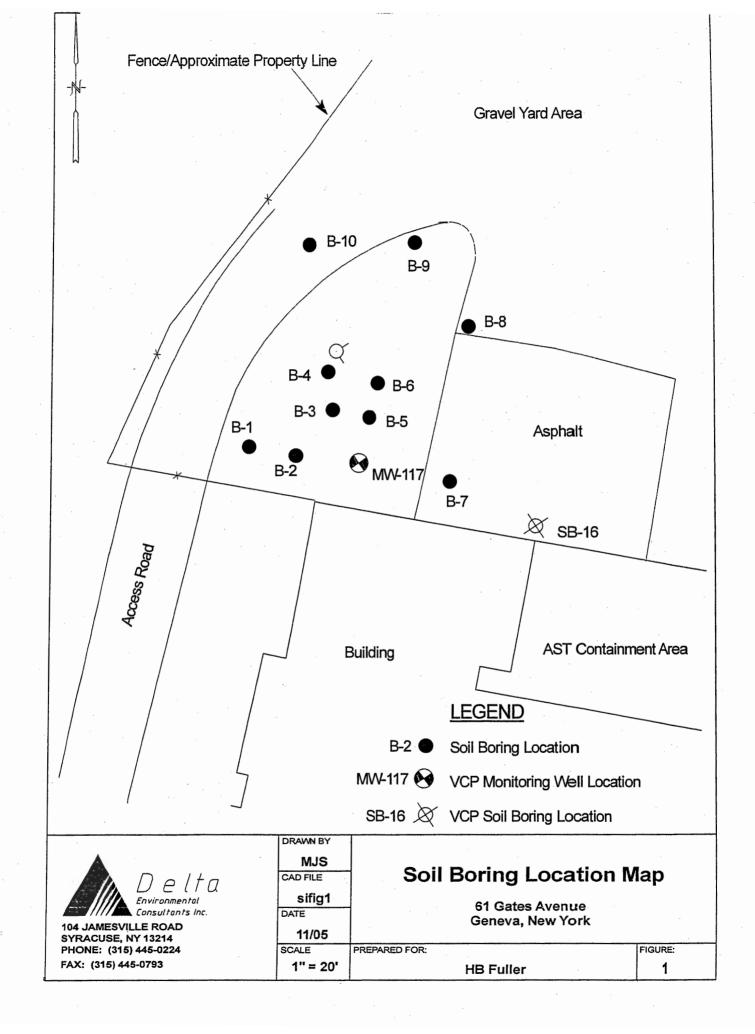
Field observations and soil analytical data indicated that petroleum impacts were present in soil boring MW-117 and the soil borings immediately surrounding MW-117 (B-2, B-3, B-5 and B-7) at depths of between 4 feet and 15.5 feet below grade. Petroleum impacts were generally observed across the saturated zone of the respective soil borings with limited impacts observed in the unsaturated zone. An underlying clay layer appears to have limited vertical migration in the area. Field observations and analytical data also indicated that petroleum-impacted soils were not observed in borings B-1, B-4, B-6, B-8, B-9, and B-10, which were located horizontally outward from borings where impacts were observed. This indicates that the nature and extent of petroleum-impacted soils have been adequately defined in this area of the site (impacted area of approximately 23 feet wide by 30 feet long).

Soil analytical data indicated that concentrations of VOCs and SVOCs detected in soil samples were significantly below the NYSDEC TAGM 4046 recommended soil cleanup objectives. The analytical data also indicated that No. 2 fuel oil was detected in one of the soil samples. This data correlates with findings of a 29 May 1996, Phase I Environmental Assessment conducted by Environmental Strategies Corporation (ECS), which indicated that a 3,000-gallon underground storage tank (UST) that was utilized for fuel oil storage had been previously located in the area of the site where the limited site investigation was conducted. According to available documentation (Attachment 3) a release was observed from the tank and reported to NYSDEC. Reportedly, the UST was removed in 1984 along with an estimated 20 to 25 cubic yards of petroleum-impacted soil, which was spread on the ground surface near the excavation.

### RECOMMENDATIONS

Field observations indicated that petroleum-impacted soils were observed across a limited area of the site where a former 3,000-gallon UST had been located. Soil analytical data indicated that concentrations of VOCs and SVOCs detected in these impacted soils were below applicable NYSDEC TAGM 4046 recommended soil cleanup objectives. Therefore, Delta requests that NYSDEC issue a closure letter for the site indicating that Spill No. 0504324 is "Closed" and "No Further Action is Required".

Delta appreciates the opportunity to present the findings of this Limited Soil Investigation. If you have any questions or comments concerning this submittal, feel free to contact the undersigned at (315) 445-0224 or by e-mail (mschumacher@deltaenv.com).


Sincerely, DELTA ENVIRONMENTAL CONSULTANTS, INC. man 0 8 chumanne

Mark J. Schumacher Project Manager

### Attachments

Cc: D. Crisman, HB Fuller Company A. Savino, Delta Environmental Consultants

G:\Delta Environmental\Projects\HB Fuller\Pet Inv\LSI RPT Rev1 11-29-05.doc



# TABLE 1Soil Analytical Data61 Gates Avenue, Geneva, NY

|                                       | TAGM 4046                 |         |          |         | SAMP       | LE ID / Sa | mple Dept  | h (feet) |         |         |          |
|---------------------------------------|---------------------------|---------|----------|---------|------------|------------|------------|----------|---------|---------|----------|
|                                       | <b>Recommended Soil</b>   |         |          |         |            |            |            |          |         |         |          |
|                                       | <b>Cleanup Objectives</b> | B-1     | B-2      | B-3     | <b>B-4</b> | B-5        | <b>B-6</b> | B-7      | B-8     | MW-117A | MW117B   |
| PARAMETER                             | (ppb)                     | (8-12') | (12-16') | (8-11') | (8-11')    | (9-11')    | (8-12')    | (8-10')  | (8-12') | (6-10') | (12-16') |
| Volatile Organic Compounds (ppb)      |                           |         |          |         |            |            |            |          |         | (0-10)  | (12-10)  |
| Acetone                               | 200                       | ND      | 8 J      | 7 J     | 3 J        | 7 J        | 2 J        | 9 J      | ND      | 15      | 7 J      |
| Benzene                               | 60                        | ND      | ND       | ND      | ND         | ND         | ND         | ND       | ND      | ND      | 1 J      |
| Cyclohexane                           | NS                        | ND      | ND       | ND      | ND         | ND         | ND         | ND       | ND      | 23      | ND       |
| Ethylbenzene                          | 5,500                     | ND      | ND       | ND      | ND         | ND         | ND         | 3 J      | ND      | 170     | ND       |
| 1,1 Dichloroethene                    | 400                       | ND      | ND       | ND      | ND         | ND         | ND         | ND       | ND      | ND      | 100      |
| 1,1 Dichloroethane                    | 200                       | ND      | ND       | ND      | ND         | ND         | ND         | ND       | ND      | ND      | 93       |
| cis-1,2 Dichloroethene                | NS                        | ND      | ND       | ND      | ND         | ND         | ND         | ND       | ND      | ND ND   | 8J       |
| Dichlorodiflouromethane               | NS                        | ND      | ND       | ND      | ND         | ND         | ND         | ND       | ND      | 2 J     | ND       |
| Isopropylbenzene                      | 2,300                     | ND      | 2 J      | ND      | ND         | ND         | ND         | 1J       | ND      | 200     | 2 J      |
| Methylene Chloride                    | 100                       | 5 J     | ND       | ND      | 5 J        | 5 J        | 5 J        | 5 J      | ND      | 16      | 12       |
| Methylcyclohexane                     | NS                        | ND      | ND       | ND      | ND         | ND         | ND         | ND       | ND      | 120     | ND       |
| Total Xylenes                         | 1,200                     | ND      | ND       | ND      | ND         | ND         | ND         | ND       | ND      | 200     | ND       |
| Trichloroethene                       | 700                       | ND      | ND       | ND      | ND         | 3 J        | ND         | ND       | ND      | ND      | 2 J      |
| Tetrachloroethene                     | 1,400                     | ND      | ND       | ND      | 7 J        | 14         | 11 J       | ND       | ND      | 1 J     | ND       |
| Semi-Volatile Organic Compounds (ppb) |                           |         |          |         |            |            |            |          |         |         |          |
| Anthracene                            | 50,000                    | ND      | ND       | ND      | ND         | 15 J       | ND         | ND       | ND      | NA      | NA       |
| Benzo(a)anthracene                    | 224 or MDL                | ND      | ND       | ND      | ND         | 4 ·J       | ND         | ND       | ND      | NA      | NA       |
| Benzo(b)fluoranthene                  | 1,100                     | ND      | ND       | ND      | ND         | 94 J       | ND         | ND       | 29 J    | NA      | NA       |
| Benzo(k)fluoranthene                  | 1,100                     | ND      | ND       | ND      | ND         | 26 J       | ND         | ND       | 28 J    | NA      | NA       |
| Benzo(ghi)perylene                    | 50,000                    | ND      | ND       | ND      | ND         | 1 J        | ND         | ND       | 13 J    | NA      | NA       |
| Benzo(a)pyrene                        | 61 or MDL                 | ND      | ND       | ND      | ND         | 27 J       | ND         | ND       | 13 J    | NA      | NA       |
| Chrysene                              | 400                       | ND      | ND       | ND      | ND         | 48J        | ND         | ND       | 13 J    | NA      | NA       |
| Fluoranthene                          | 50,000                    | ND      | ND       | ND      | ND         | 56 J       | ND         | ND       | 23 J    | NA      | NA       |
| Fluorene                              | 50,000                    | ND      | ND       | 23 J    | ND         | 17 J       | ND         | ND       | ND      | NA      | NA       |
| Indeno(1,2,3-cd)pyrene                | 3,200                     | ND      | ND       | ND      | ND         | 39 J       | ND         | ND       | ND      | NA      | NA       |
| Phenanthrene                          | 50,000                    | ND      | ND       | 47 J    | ND         | 27 J       | ND         | ND       | ND      | NA      | ŅA       |
| Pyrene                                | 50,000                    | ND      | ND       | ND      | ND         | 51 J       | ND         | ND       | 18 J    | NA      | NA       |
| Total Petroleum Hydrocarbons (ppb)    |                           |         |          |         |            |            |            |          |         |         |          |
| Fuel Oil #2                           | NS                        | ND      | ND       | 35      | ND         | ND         | ND         | ND       | ND      | NA      | NA       |

### Notes:

ND: Compound not detected.

NA: Not analyzed.

NS: No standard.

open of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product o

4

MDL: Method Detection Limit.

J: Indicates estimated value.

12,000

Analyte detected at concentration in excess of NYSDEC TAGM 4046 recommended soil cleanup objective.

# ATTACHMENT 1

# SOIL BORING LOGS

|                                                                                                                 |          |                                                                                                                |       |         | BORING NO.: MW-11/                                            |               |
|-----------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------|-------|---------|---------------------------------------------------------------|---------------|
| PROJ                                                                                                            | ECT: HE  | 3 Fuller,                                                                                                      | Genev | /a, NY  |                                                               | Sheet 1 of 1  |
|                                                                                                                 | NT: HB   |                                                                                                                |       |         |                                                               |               |
|                                                                                                                 | A PROJ   |                                                                                                                | D: V0 | 042101  |                                                               |               |
|                                                                                                                 | ING ME   |                                                                                                                |       |         | SAMPLER BIT SIZE CORE CASING                                  |               |
|                                                                                                                 | ING RIG  |                                                                                                                |       |         | Macro Core NA NA NA                                           | DATE: 7-12-05 |
| the second second second second second second second second second second second second second second second se | ER: Lyon | the second second second second second second second second second second second second second second second s |       |         | INSPECTOR: Mark J Schumacher                                  |               |
| The second second second second second second second second second second second second second second second se | SAMPLE   | BLOWS                                                                                                          | REC.  | PID     |                                                               |               |
|                                                                                                                 | NO.      | PER                                                                                                            | (ft.) |         |                                                               |               |
| IN FT.                                                                                                          | NU.      | 6"                                                                                                             | (n.)  | (ppm)   |                                                               |               |
|                                                                                                                 |          | 0"                                                                                                             |       |         | SOIL DESCRIPTION                                              | REMARKS       |
| <b></b>                                                                                                         |          |                                                                                                                | 1.2   |         |                                                               | INEWIARKS     |
|                                                                                                                 | 1        | NA                                                                                                             | 1.3   | 0       | Brn., Silt and F. Gravel, damp, no odors                      |               |
| 1.0                                                                                                             |          |                                                                                                                |       |         |                                                               |               |
|                                                                                                                 |          |                                                                                                                |       |         |                                                               |               |
| 2.0                                                                                                             |          |                                                                                                                |       |         |                                                               |               |
|                                                                                                                 |          |                                                                                                                |       |         |                                                               |               |
| 3.0                                                                                                             |          |                                                                                                                |       |         |                                                               |               |
| 5.0                                                                                                             |          |                                                                                                                |       |         | -                                                             |               |
|                                                                                                                 |          |                                                                                                                |       |         | 4                                                             |               |
| 4.0                                                                                                             |          |                                                                                                                |       |         |                                                               | .0'           |
|                                                                                                                 | 2        |                                                                                                                | 2.5   | 138     | Black, F. Sand, moist, strong petroleum odor, black staining  |               |
| 5.0                                                                                                             |          |                                                                                                                |       |         |                                                               |               |
|                                                                                                                 |          |                                                                                                                |       |         |                                                               |               |
| 6.0                                                                                                             |          |                                                                                                                |       |         |                                                               |               |
| 0.0                                                                                                             |          |                                                                                                                |       | 138     | wet at 6.0 feet                                               | Soil sample   |
| 7.0                                                                                                             |          |                                                                                                                |       | 158     |                                                               | MW-117A       |
| 7.0                                                                                                             |          |                                                                                                                |       |         | 4                                                             |               |
|                                                                                                                 |          |                                                                                                                |       |         |                                                               | from depth of |
| 8.0                                                                                                             |          |                                                                                                                |       |         |                                                               | 6.0' - 10.0'  |
|                                                                                                                 | 3        |                                                                                                                | 4.0   | 138     | same as above                                                 |               |
| 9.0                                                                                                             |          |                                                                                                                |       | <u></u> |                                                               |               |
|                                                                                                                 |          |                                                                                                                |       |         | 9                                                             | .8'           |
| 10.0                                                                                                            |          |                                                                                                                |       |         | 1                                                             |               |
| 10.0                                                                                                            |          |                                                                                                                |       | 68      | Den E Cand met light noteslammenden                           |               |
|                                                                                                                 | <u> </u> |                                                                                                                |       | 00      | Brn., F. Sand, wet, light petroleum odor                      |               |
| 11.0                                                                                                            |          |                                                                                                                |       |         | 11                                                            | 2             |
|                                                                                                                 |          |                                                                                                                |       | 48      | Brn., Silt and Clay, wet, light petroleum odor                |               |
| 12.0                                                                                                            |          |                                                                                                                |       |         | 12                                                            | .0'           |
|                                                                                                                 | .4       |                                                                                                                | 4.0   | 26      | Brn., Clay, wet, trace petroleum odor                         | Soil sample   |
| 13.0                                                                                                            |          |                                                                                                                |       |         |                                                               | MW-117B       |
|                                                                                                                 |          |                                                                                                                |       |         |                                                               | from depth of |
| 14.0                                                                                                            |          |                                                                                                                | ŀ     |         |                                                               | 12.0' - 16.0' |
| 14.0                                                                                                            |          |                                                                                                                |       |         |                                                               | 12.0 - 10.0   |
|                                                                                                                 |          |                                                                                                                |       | 0       | no odors                                                      |               |
| 15.0                                                                                                            |          |                                                                                                                |       |         |                                                               |               |
|                                                                                                                 |          |                                                                                                                |       |         |                                                               |               |
| 16.0                                                                                                            |          |                                                                                                                |       |         | 16                                                            | .0'           |
| 10.0                                                                                                            |          |                                                                                                                |       |         | Boring Terminated at 16.0'                                    |               |
| 17.0                                                                                                            |          |                                                                                                                |       |         | -                                                             |               |
| 17.0                                                                                                            |          |                                                                                                                |       |         | Well set to 14' with 10' of screen.                           |               |
|                                                                                                                 |          |                                                                                                                |       |         | Sand 2.6' to 14', Bentonite Seal 1.1' to 2.6', Grout 0 - 1.1' |               |
| 18.0                                                                                                            |          |                                                                                                                |       |         |                                                               |               |

|         |         |          |       |          | BURING NU.: B-I                                           |                |
|---------|---------|----------|-------|----------|-----------------------------------------------------------|----------------|
| PROJ    | ECT: Ge | eneva, N | ΙY    |          |                                                           | Sheet 1 of 1   |
|         | NT: HB  |          |       |          |                                                           |                |
|         |         |          | 0: V0 | 04210-1- | 0007                                                      |                |
|         | ING ME  |          |       |          | SAMPLER BIT SIZE CORE CASING                              |                |
|         | ING RIC |          |       |          | Macro Core NA NA NA                                       | DATE: 10-17-05 |
|         | ER: SEN |          |       |          | INSPECTOR: Jennifer L. Hull                               |                |
| DEPTH   | SAMPLE  | BLOWS    | REC.  | PID      |                                                           |                |
| IN FT.  | NO.     | PER      | (ft.) | (ppm)    |                                                           | · · · · · ·    |
|         | 110.    | 6"       | (,    | (ppm)    |                                                           |                |
|         |         | Ů        |       |          | SOIL DESCRIPTION                                          | REMARKS        |
|         | 1       | NA       | 3.0   | 0        | Brown, Top Soil with some asphalt fill                    | 0.5'           |
| 1.0     | 1       | INA      | 5.0   |          |                                                           | 0.5            |
| 1.0     |         |          |       | 0        | Black, medium Sand and Gravel, moist, no odors, no stains |                |
|         |         |          |       |          |                                                           |                |
| 2.0     |         |          |       |          |                                                           |                |
|         |         |          |       |          |                                                           |                |
| 3.0     |         |          | 1     |          |                                                           |                |
|         |         |          |       |          |                                                           |                |
| 4.0     |         |          |       |          |                                                           |                |
| 1.0     | 2       |          | 4.0   | 0        | same as above                                             |                |
| 5.0     |         |          |       | 0        |                                                           |                |
| 5.0     |         |          |       | · ·      | 4                                                         |                |
|         |         |          |       |          |                                                           |                |
| 5.0     |         |          |       |          |                                                           |                |
|         |         |          |       |          |                                                           |                |
| 7.0     |         |          |       |          | 7.0                                                       |                |
|         | 1       |          |       |          | Brown, Clay, dry, no odors, no stains                     | 1              |
| 8.0     |         |          |       |          |                                                           | Soil sample    |
|         | 3       |          | 4.0   | 0        | Saturated at 8'                                           | B-1 at 8'-12'  |
| 9.0     |         |          |       |          |                                                           | D-1 at 0-12    |
| <i></i> |         |          |       |          |                                                           |                |
|         |         |          |       |          | D                                                         |                |
| 10.0    |         |          |       | 0        | Dry at 10"                                                |                |
|         |         |          |       |          |                                                           |                |
| 1.0     |         |          |       |          |                                                           |                |
|         |         |          |       |          |                                                           |                |
| 2.0     | -       |          |       |          | 12'                                                       |                |
|         |         |          |       |          | Boring Terminated at 12.0'                                | 1              |
| 3.0     |         |          |       |          |                                                           |                |
|         |         |          |       |          |                                                           |                |
| 10      |         |          |       |          |                                                           |                |
| 4.0     |         |          |       |          |                                                           |                |
|         |         |          |       |          |                                                           |                |
| 5.0     |         | ·        |       |          |                                                           |                |
|         |         |          |       |          |                                                           |                |
| 6.0     |         |          |       |          |                                                           |                |
|         |         |          |       |          |                                                           |                |
| 7.0     |         |          |       |          |                                                           |                |
|         |         |          |       |          |                                                           |                |
| 00      |         |          |       |          |                                                           |                |
| 8.0     |         |          |       |          |                                                           |                |

| -      |          |          |         |          | DUKING NU.: D-2                                                  |                |
|--------|----------|----------|---------|----------|------------------------------------------------------------------|----------------|
|        | ECT: Ge  |          | ſΥ      |          |                                                                  | Sheet 1 of 1   |
|        | NT: HB   |          |         |          |                                                                  |                |
| DELT   | ra proj  | ECT N    | 0: V0(  | 04210-1- |                                                                  |                |
| DRIL   | LING ME  | THOD:    | Geoprol | be       | SAMPLER BIT SIZE CORE CASING                                     |                |
|        | LING RIC |          | obe     |          | Macro Core NA NA NA                                              | DATE: 10-17-05 |
| DRILI  | LER: SEN | 1        |         |          | INSPECTOR: Jennifer L. Hull                                      |                |
| DEPTH  | SAMPLE   | BLOWS    | REC.    | PID      |                                                                  |                |
| IN FT. | NO.      | PER      | (ft.)   | (ppm)    |                                                                  |                |
|        |          | 6"       |         |          |                                                                  |                |
|        |          |          |         |          | SOIL DESCRIPTION                                                 | REMARKS        |
|        | 1        | NA       | 2.0     | 0        | Brown, Top Soil                                                  | 0.5'           |
| 1.0    |          |          |         | 0        | Gray, medium Sand and Gravel, moist, no odors, no stains         |                |
|        |          |          |         |          |                                                                  |                |
| 2.0    |          |          |         |          | 2.0                                                              | )'             |
|        | 1        | <u> </u> |         | 0        | Brown Clay, dry, no odors, no stains                             |                |
| 3.0    |          |          |         |          |                                                                  |                |
| 5.0    |          |          |         |          |                                                                  |                |
| 4.0    |          |          |         |          | -                                                                |                |
| 4.0    |          |          | - 10    |          |                                                                  |                |
|        | 2        |          | 4.0     | 0        | same as above                                                    |                |
| 5.0    |          |          |         |          | 4<br>-                                                           |                |
|        |          |          |         |          |                                                                  |                |
| 6.0    |          |          |         | 0        | 6.0                                                              | <u>)'</u>      |
|        |          |          |         |          | Brown, medium to fine Sand, dry, no odors, no stains             |                |
| 7.0    |          |          |         |          |                                                                  |                |
|        |          |          |         |          | 1                                                                |                |
| 8.0    |          |          |         |          | 1 8.0                                                            | )'             |
|        | 3        |          | 4.0     | 0        | Brown, Clay and fine Sand, saturated, no odor, no stains         |                |
| 9.0    |          |          |         |          |                                                                  |                |
|        |          |          |         |          |                                                                  |                |
| 10.0   |          |          | · · ·   |          |                                                                  |                |
| 10.0   |          |          |         | 2.4      | Slight petroleum odor, no stains                                 |                |
| 11.0   |          |          |         | 2.4      |                                                                  |                |
| 11.0   |          |          |         |          |                                                                  |                |
| 10.0   |          |          |         |          |                                                                  |                |
| 12.0   |          |          |         |          |                                                                  | Soil sample    |
|        | 4        |          | 4.0     | 8.5      | Brown, Clay and Silt, saturated, trace petroleum odor, no stains | B-2 at 12-16'  |
| 13.0   |          |          |         |          |                                                                  |                |
|        |          |          |         |          |                                                                  |                |
| 14.0   |          |          |         |          |                                                                  |                |
|        |          | : .      | T       |          |                                                                  |                |
| 15.0   |          | ·        |         |          |                                                                  | 1              |
|        |          |          |         |          | 15.5                                                             | 1              |
| 16.0   |          |          |         | 0        | Brown, Clay, saturated, no odor, no stains                       | 16.0'          |
|        |          |          |         | ······   | Boring Terminated at 16 feet                                     | 4              |
| 7.0    |          |          |         |          | sound toumated at 10 loot                                        |                |
| 7.0    |          |          |         |          |                                                                  |                |
|        |          |          |         |          |                                                                  |                |
| 8.0    |          |          |         |          |                                                                  |                |

~

| _      |                                               |                                                                                                                |       |       | BURING NU.: B-3                                                    |                |
|--------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------------------------------------------------|----------------|
|        | JECT: Ge                                      |                                                                                                                | Υ     |       |                                                                    | Sheet 1 of 1   |
|        | NT: HB                                        |                                                                                                                |       |       |                                                                    |                |
|        | TA PROJ                                       |                                                                                                                |       |       | 0007                                                               |                |
|        | LING ME                                       | the second second second second second second second second second second second second second second second s | _     | be    | SAMPLER BIT SIZE CORE CASING                                       |                |
|        | LING RIG                                      |                                                                                                                | obe   |       | Macro Core NA NA NA                                                | DATE: 10-17-05 |
| DRIL   | LER: SEM                                      | 1                                                                                                              |       |       | INSPECTOR: Jennifer L. Hull                                        |                |
| DEPTH  | SAMPLE                                        | BLOWS                                                                                                          | REC.  | PID   |                                                                    |                |
| IN FT. | NO.                                           | PER                                                                                                            | (fl.) | (ppm) |                                                                    |                |
|        |                                               | 6"                                                                                                             |       |       |                                                                    |                |
|        | 1.1.1                                         |                                                                                                                |       |       | SOIL DESCRIPTION                                                   | REMARKS        |
|        | 1                                             | NA                                                                                                             | 3.0   | 0     | Brown, Top Soil w/ asphalt fill                                    |                |
| 1.0    |                                               |                                                                                                                |       |       | 1.0                                                                | o'l i i        |
|        |                                               |                                                                                                                |       | 0     | Brown, Clay, moist, no odors, no stains                            | -              |
| 2.0    |                                               |                                                                                                                |       |       |                                                                    |                |
|        |                                               |                                                                                                                |       |       | -                                                                  |                |
| 20     |                                               |                                                                                                                |       |       | -{                                                                 |                |
| 3.0    |                                               |                                                                                                                |       |       |                                                                    |                |
|        |                                               |                                                                                                                |       |       |                                                                    |                |
| 4.0    |                                               |                                                                                                                |       |       | 4.(                                                                | 2              |
|        | 2                                             |                                                                                                                | 4.0   | 0     | Brown, Clay with some fine sand, no odors, no stains               |                |
| 5.0    |                                               |                                                                                                                |       |       |                                                                    |                |
|        |                                               |                                                                                                                |       |       | 1                                                                  |                |
| 6.0    |                                               |                                                                                                                |       |       |                                                                    |                |
|        |                                               |                                                                                                                |       |       | <b>4</b>                                                           |                |
| 7.0    | <u>                                      </u> |                                                                                                                |       |       |                                                                    |                |
| 7.0    |                                               |                                                                                                                |       | 4.5   | Clight notroloum oder et 7                                         |                |
| 0.0    |                                               |                                                                                                                |       | 4.5   | Slight petroleum odor at 7'                                        |                |
| 8.0    |                                               |                                                                                                                |       |       |                                                                    | )' Soil Sample |
|        | 3                                             |                                                                                                                | 4.0   | 1.5   | Brown, interbedded Silt and fine Sand, saturated, slight petroleum | B-3 at 8'-11'  |
| 9.0    |                                               |                                                                                                                |       |       | odor, no stains                                                    |                |
|        |                                               |                                                                                                                |       |       |                                                                    |                |
| 10.0   |                                               |                                                                                                                |       |       |                                                                    |                |
|        |                                               |                                                                                                                |       |       |                                                                    |                |
| 11.0   |                                               |                                                                                                                |       |       | 11.0                                                               | bi             |
|        |                                               |                                                                                                                |       | 0     | Brown, Clay and Silt, moist, no odor, no stains                    | 4              |
| 12.0   |                                               |                                                                                                                |       |       | 12.0                                                               |                |
| 12.0   |                                               |                                                                                                                |       |       |                                                                    | 4              |
| 12.0   |                                               |                                                                                                                |       |       | Boring Terminated at 12 feet                                       |                |
| 13.0   |                                               |                                                                                                                |       |       |                                                                    | and the second |
|        |                                               |                                                                                                                |       |       |                                                                    |                |
| 14.0   |                                               |                                                                                                                |       |       |                                                                    |                |
|        |                                               |                                                                                                                |       |       |                                                                    |                |
| 15.0   |                                               |                                                                                                                |       |       |                                                                    |                |
|        |                                               |                                                                                                                |       |       |                                                                    |                |
| 16.0   |                                               |                                                                                                                |       |       |                                                                    |                |
|        |                                               |                                                                                                                |       |       |                                                                    |                |
| 7.0    |                                               |                                                                                                                |       |       |                                                                    |                |
| 7.0    |                                               |                                                                                                                |       |       | •                                                                  |                |
|        | 1                                             |                                                                                                                |       |       |                                                                    | ·              |
| 8.0    |                                               |                                                                                                                |       |       |                                                                    |                |

|        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | BURING NU.: B-4                                                   |                                                                                                                |
|--------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| PRO.   | ECT: Ge   | neva, N    | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                                                   | Sheet 1 of 1                                                                                                   |
|        | NT: HB    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
|        |           |            | ): V00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 04210-1-0 | 0007                                                              |                                                                                                                |
| _      | LING ME   |            | and the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of th |           | SAMPLER BIT SIZE CORE CASING                                      |                                                                                                                |
|        | LING RIC  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Macro Core NA NA NA                                               | DATE: 10-17-05                                                                                                 |
|        | LER: SEN  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | INSPECTOR: Jennifer L. Hull                                       | DAIL. 10-17-05                                                                                                 |
|        |           | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | HVSF ECTOR. Jeminier L. Hun                                       |                                                                                                                |
| DEPTH  | SAMPLE    | BLOWS      | REC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PID       |                                                                   |                                                                                                                |
| IN FT. | NO.       | PER        | (ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ppm)     |                                                                   |                                                                                                                |
| 1      |           | 6"         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
|        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | SOIL DESCRIPTION                                                  | REMARKS                                                                                                        |
|        | 1         | NA         | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0         | Brown, Top Soil                                                   | 0.5'                                                                                                           |
| 1.0    | 1         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         | Brown, Silt and Clay, moist, no odors, no staining                |                                                                                                                |
|        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
|        | · · · · · |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
| 2.0    |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | -                                                                 |                                                                                                                |
|        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
| 3.0    |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
|        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
| 4.0    |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 4.0                                                               |                                                                                                                |
| 4.0    | <u> </u>  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
|        | 2         |            | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0         | Gray, interbedded Silt and fine Sand w/ some clay, dry, no odors, |                                                                                                                |
| 5.0    |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | no stains                                                         |                                                                                                                |
|        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
| 6.0    |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
| 0.0    |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
|        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
| 7.0    |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
|        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | · · · · ·                                                         |                                                                                                                |
| 8.0    |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 8.0                                                               | Soil Sample                                                                                                    |
|        | 3         |            | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0         | Gray-Brown, Silt and fine Sand, no odors, no stains               | B-4 at 8'-11'                                                                                                  |
| 9.0    |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
| 9.0    |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
|        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
| 10.0   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 10.0                                                              |                                                                                                                |
|        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Brown, Silt and Clay, damp, no odors, no stains                   |                                                                                                                |
| 11.0   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
|        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
| 12.0   |           | <u> </u> - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
| 12.0   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   | and and an and a second second second second second second second second second second second second second se |
|        | 4         |            | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0       | Same as above, wet                                                |                                                                                                                |
| 13.0   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
|        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
| 14.0   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
| 14.0   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
|        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
| 15.0   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
|        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
| 16.0   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 16.0                                                              |                                                                                                                |
|        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Boring Terminated at 16.0'                                        |                                                                                                                |
| 17.0   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | bonng rommatod at 10.0                                            |                                                                                                                |
| 17.0   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |
|        |           |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                                                   |                                                                                                                |
| 18.0   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                   |                                                                                                                |

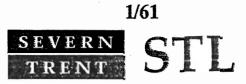
| DDOT        | ECT: Ge    | nove N    | v     |          | BORAING NO.: B-5                                             | Sheet 1 of 1                           |
|-------------|------------|-----------|-------|----------|--------------------------------------------------------------|----------------------------------------|
|             | NT: Bull   |           |       |          |                                                              |                                        |
|             |            |           |       | 04210-1- | 007                                                          |                                        |
|             | ING ME     |           |       |          | SAMPLER BIT SIZE CORE CASING                                 | ······································ |
|             | ING ME     |           |       |          | Macro Core NA NA NA                                          | DATE: 10-17-05                         |
|             | ER: SEM    |           |       |          | INSPECTOR: Jennifer L. Hull                                  | DATE. 10-17-05                         |
|             | SAMPLE     | BLOWS     | REC.  |          |                                                              |                                        |
|             |            |           |       | PID      |                                                              |                                        |
| IN FT.      | NO.        | PER<br>6" | (ft.) | (ppm)    |                                                              |                                        |
|             |            | o"        |       |          | SOIL DESCRIPTION                                             | REMARKS                                |
|             | . 1        | NA        | 0.5   | 0        | Brown, Top soil                                              | 0.5'                                   |
| 1.0         | · <b>1</b> | INA       | 0.5   |          |                                                              | 0.5                                    |
| 1.0         |            |           |       |          | 4                                                            |                                        |
|             |            |           |       |          |                                                              |                                        |
| 2.0         |            |           |       |          |                                                              |                                        |
|             |            |           |       |          |                                                              |                                        |
| 3.0         |            |           |       |          |                                                              |                                        |
|             |            |           |       |          |                                                              |                                        |
| 4.0         |            |           |       |          |                                                              |                                        |
|             | 2          |           | 1.0   | 0.9      | Brown, Clay and Silt , dry, slight petroleum odor, no stains |                                        |
| 5.0         |            |           |       |          | 1                                                            |                                        |
|             |            |           |       |          | <b>4</b> • • • • • • • • • • • • • • • • • • •               |                                        |
| 5.0         |            |           |       |          | d                                                            |                                        |
| 5.0         |            |           |       |          |                                                              |                                        |
|             |            |           |       |          |                                                              |                                        |
| 7.0         |            |           |       |          | 4                                                            |                                        |
|             |            |           |       |          |                                                              |                                        |
| 8.0         |            |           |       |          | 8.0                                                          |                                        |
|             | 3          |           | 4.0   | 0        | Brown, Clay and Silt with some fine Sand, moist, no odor, no |                                        |
| 9.0         |            |           |       |          | stains                                                       | Soil sample                            |
|             |            |           |       | 9.5      | Slight petroleum odor and some staining from 9'-11'          | B-5 at 9'-11'                          |
| 0.0         |            |           |       |          | Saturated from 9'-12'                                        |                                        |
|             |            |           |       |          |                                                              |                                        |
| 1.0         |            |           |       |          |                                                              |                                        |
|             |            |           |       |          |                                                              |                                        |
| 2.0         |            |           |       |          | 12.0                                                         |                                        |
| 2.0         |            |           |       |          | Boring Terminated at 12 feet                                 | -                                      |
| 20          |            |           |       |          | Doring rominated at 12 test                                  |                                        |
| 3.0         |            |           |       |          |                                                              |                                        |
|             |            |           |       |          |                                                              |                                        |
| 4.0         |            |           |       |          |                                                              |                                        |
|             |            |           |       |          |                                                              |                                        |
| 5.0         |            |           |       |          |                                                              |                                        |
|             |            |           |       |          |                                                              |                                        |
| 6.0         |            |           |       |          |                                                              | 1.                                     |
|             |            |           |       |          |                                                              |                                        |
| 7.0         |            |           |       |          |                                                              |                                        |
| <u>,,,,</u> |            |           |       |          |                                                              |                                        |
| 0 0         |            |           |       |          |                                                              |                                        |
| 8.0         |            |           |       |          |                                                              |                                        |

| PROJ   | ECT: Ge  | neva. N  | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BORING NO.: D-0                                              | Sheet 1 of 1   |
|--------|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------|
|        | NT: Bull |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
|        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04210-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 007                                                          |                |
|        | LING ME  |          | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | SAMPLER BIT SIZE CORE CASING                                 |                |
| DRIL   | LING RIG | : Geopro | be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Macro Core NA NA NA                                          | DATE: 10-17-05 |
|        | LER: SEM |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INSPECTOR: Jennifer L. Hull                                  |                |
| DEPTH  | SAMPLE   | BLOWS    | REC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                |
| IN FT. | NO.      | PER      | (ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                |
|        |          | 6"       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
|        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL DESCRIPTION                                             | REMARKS        |
|        | 1        | NA       | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Brown, Top soil w/ some brick and asphalt fill               | 0.5'           |
| 1.0    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Brown, Clay, moist, no odors, no stains                      |                |
|        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
| 2.0    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
|        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
| 3.0    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
| 5.0    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f                                                            |                |
| 4.0    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
| 4.0    | 2        |          | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | same as above                                                |                |
| 5.0    | 2        |          | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                |
| 5.0    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                            |                |
|        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                            |                |
| 6.0    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
|        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
| 7.0    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.0                                                          | '              |
|        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Brown, Silt and fine Sand, wet, no odors, no stains          |                |
| 8.0    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.0                                                          | 1              |
| -      | 3        |          | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Brown Clay and Silt with some fine sand, no odors, no stains |                |
| 9.0    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | Soil sample    |
|        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | B-6 at 8'-12'  |
| 10.0   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
|        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
| 11.0   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
| 11.0   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
| 12.0   |          |          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.0                                                         |                |
| 12.0   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Boring Terminated at 12 feet                                 | -              |
| 13.0   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
| 15.0   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
| 14.0   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
| 14.0   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
|        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
| 15.0   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
|        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
| 16.0   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
|        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | -              |
| 17.0   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
|        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                |
| 18.0   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                        |                |
|        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | I              |

| PROJ  | ECT: Ge   | neva, N | Y       |          |                                                                     | Sheet 1 of 1   |
|-------|-----------|---------|---------|----------|---------------------------------------------------------------------|----------------|
|       | NT: Bull  |         |         |          |                                                                     |                |
|       |           |         |         | 04210-1- | 007                                                                 |                |
| DRILI | ING ME    | THOD: C | Geoprol | be       | SAMPLER BIT SIZE CORE CASING                                        |                |
|       | ING RIG   |         |         |          | Macro Core NA NA NA                                                 | DATE: 10-17-05 |
|       | ER: SEM   |         |         |          | INSPECTOR: Jennifer L. Hull                                         |                |
| DEPTH | SAMPLE    | BLOWS   | REC.    | PID      |                                                                     |                |
| N FT. | NO.       | PER     | (ft.)   | (ppm)    |                                                                     | · · · ·        |
|       |           | 6"      | (,      | GP/      |                                                                     |                |
|       | 1 - 1 - 1 | Ů       |         |          | SOIL DESCRIPTION                                                    | REMARKS        |
|       | 1         | NA      | 1.0     | 0        | Concrete                                                            | 0.8'           |
| 1.0   |           |         | 1.0     |          | Grey-Brown, medium Sand and Gravel, moist, no odors, no stains      | 0.0            |
| 1.0   |           |         |         |          |                                                                     |                |
|       |           |         |         |          |                                                                     |                |
| 2.0   |           |         |         |          |                                                                     |                |
|       |           |         |         |          |                                                                     |                |
| 3.0   |           |         |         |          |                                                                     |                |
|       |           |         |         |          |                                                                     |                |
| 4.0   |           |         |         |          | 4.0                                                                 | ,              |
| 1.0   | 2         |         | 4.0     | 0        | Brown, Clay and Silt, dry, no odors, no stains                      | _              |
|       | <u> </u>  |         | 4.0     | U        | The states and sitt, dry, no buois, no states                       |                |
| 5.0   |           |         |         |          |                                                                     |                |
|       |           |         |         |          |                                                                     |                |
| 5.0   |           |         |         | 1 .      | 6.0                                                                 |                |
|       |           |         |         | 5.4      | Brown Silt and fine Sand, dry, slight petroleum odor, some staining | -              |
| 7.0   |           |         |         |          | 1                                                                   |                |
|       |           |         |         |          |                                                                     |                |
| 3.0   |           |         |         |          |                                                                     |                |
|       | 3         |         | 4.0     | 5.3      | same as above                                                       |                |
|       |           |         | 4.0     | 5.5      |                                                                     | 0 11           |
| 9.0   |           |         |         |          |                                                                     | Soil sample    |
|       |           |         |         |          | Wet at 9.5'                                                         | B-7 at 8'-10'  |
| 0.0   |           |         |         |          |                                                                     |                |
|       |           |         |         | 0        | 10.5                                                                |                |
| 1.0   |           |         |         |          | Brown, Clay, saturated, no odors, no staining                       |                |
|       |           |         |         |          | Dry at 11.0'                                                        |                |
| 2.0   |           |         |         |          | 12.0                                                                |                |
| 2.0   |           |         |         |          | Boring Terminated at 12 feet                                        | •              |
| 20    |           |         |         |          |                                                                     |                |
| 3.0   |           |         |         |          |                                                                     |                |
|       |           |         |         |          |                                                                     |                |
| 4.0   |           |         |         |          |                                                                     |                |
|       |           |         |         |          |                                                                     |                |
| 5.0   |           |         |         |          |                                                                     | 1              |
|       |           |         |         |          |                                                                     |                |
| 6.0   |           |         |         |          |                                                                     |                |
| 0.0   |           |         |         |          |                                                                     |                |
|       |           |         |         |          |                                                                     |                |
| 7.0   |           |         |         |          |                                                                     |                |
|       |           |         |         |          |                                                                     |                |
|       |           |         |         |          |                                                                     |                |

| PROJ   | ECT: Ge  | eneva, N | Y       |           |                                                                 | Sheet 1 of 1   |
|--------|----------|----------|---------|-----------|-----------------------------------------------------------------|----------------|
| CLIE   | NT: Bull | Brother  | s, Inc. |           | · · · · · · · · · · · · · · · · · · ·                           |                |
|        |          |          |         | 04210-1-( |                                                                 |                |
|        | LING ME  |          |         | be        | SAMPLER BIT SIZE CORE CASING                                    |                |
|        | ING RIC  |          | be      |           | Macro Core NA NA NA                                             | DATE: 10-17-05 |
| DRILI  | ER: SEN  |          |         |           | INSPECTOR: Jennifer L. Hull                                     |                |
| DEPTH  | SAMPLE   | BLOWS    | REC.    | PID       |                                                                 |                |
| IN FT. | NO.      | PER      | (fl.)   | (ppm)     |                                                                 |                |
|        | -        | 6"       |         |           | SOUL DESCRIPTION                                                | DEMARKS        |
|        |          |          |         |           | SOIL DESCRIPTION                                                | REMARKS        |
|        | 1        | NA       | 3.0     | 0         | Gray, Gravel                                                    | 0.2'           |
| 1.0    |          |          |         |           | Brown, Clay, dry, no odors, no stains                           |                |
|        |          |          |         |           |                                                                 |                |
| 2.0    |          |          |         |           |                                                                 |                |
|        |          |          |         |           |                                                                 |                |
| 3.0    |          |          |         |           |                                                                 |                |
|        |          |          |         |           |                                                                 |                |
| 4.0    |          |          |         |           | 4.                                                              | יכ             |
|        | 2        |          | 4.0     | 0         | Brown, Clay and Silt with little fine sand, no odors, no stains |                |
| 5.0    |          |          |         |           |                                                                 |                |
|        |          |          |         |           |                                                                 |                |
| 6.0    |          |          |         |           |                                                                 |                |
| 0.0    |          |          | i       |           |                                                                 |                |
| 7.0    |          |          |         |           |                                                                 |                |
| 7.0    |          |          |         |           |                                                                 |                |
| 8.0    |          |          |         |           |                                                                 |                |
| 0.0    | 3        |          | 3.5     | 0         | come on above seturated at 8.01                                 |                |
| 0.0    |          |          | 3.5     |           | same as above, saturated at 8.0'                                | Gail commis    |
| 9.0    |          |          |         |           |                                                                 | Soil sample    |
| 10.0   |          |          |         |           |                                                                 | B-7 at 8'-12'  |
| 10.0   |          |          |         |           |                                                                 |                |
|        |          |          |         |           |                                                                 | 4              |
| 11.0   |          |          |         |           |                                                                 |                |
|        |          |          |         |           |                                                                 |                |
| 12.0   |          |          |         |           | 12.0                                                            | <u>)'</u>      |
|        |          |          |         |           | Boring Terminated at 12.0'                                      |                |
| 13.0   |          |          |         |           |                                                                 |                |
|        |          |          |         |           |                                                                 |                |
| 14.0   |          |          |         |           |                                                                 |                |
|        |          |          |         |           |                                                                 |                |
| 15.0   |          |          |         |           |                                                                 |                |
|        |          |          |         |           |                                                                 |                |
| 16.0   |          |          |         |           |                                                                 |                |
|        |          |          |         |           |                                                                 |                |
| 17.0   |          |          |         |           |                                                                 |                |
| 17.0   |          |          |         |           | · · · · ·                                                       |                |
| 18.0   |          |          |         |           |                                                                 |                |
| 10.0   |          |          |         |           |                                                                 |                |

# DELTA ENVIRONMENTAL CONSULTANTS test boring log boring no.: B-9


| PROJ   | ECT: Ge                               | neva, N | Y      |          |                                  |                   |                    | Sheet 1 of 1   |
|--------|---------------------------------------|---------|--------|----------|----------------------------------|-------------------|--------------------|----------------|
|        | NT: Bull                              |         |        |          | ·                                |                   |                    |                |
| DELT   | 'A PROJ                               | ECT NO  | ): V00 | 4210-1-0 |                                  |                   |                    |                |
|        | ING ME                                |         |        | e        | SAMPLER BIT SIZE                 |                   | CASING             |                |
|        | ING RIG                               |         | be     |          | Macro Core NA                    | NA                | NA                 | DATE: 10-17-05 |
| DRILL  | ER: SEN                               | 1       |        |          | INSPECTOR: Jennifer L. Hull      |                   |                    |                |
| DEPTH  | SAMPLE                                | BLOWS   | REC.   | PID      |                                  |                   |                    |                |
| IN FT. | NO.                                   | PER     | (fl.)  | (ppm)    |                                  |                   |                    |                |
|        |                                       | 6"      |        |          |                                  |                   |                    |                |
|        |                                       |         |        |          |                                  | SCRIPTION         |                    | REMARKS        |
|        | - 1                                   | NA      | 3.0    | 0        | Brown medium Sand w/ little as   | phalt fill, moist | , no odors, no sta | ins            |
| 1.0    |                                       |         |        |          |                                  |                   |                    |                |
|        |                                       |         |        |          |                                  |                   |                    |                |
| 2.0    |                                       |         |        |          | · · ·                            |                   | 2                  | 2.0'           |
|        |                                       |         |        |          | Brown, Clay, dry, no odor, no st | aining            |                    |                |
| 3.0    |                                       |         |        |          |                                  | 8                 |                    |                |
| 5.0    |                                       |         |        |          |                                  |                   |                    |                |
| 4.0    |                                       |         |        |          |                                  |                   |                    | 4.0'           |
| 4.0    |                                       |         |        |          | Desing terminated at 4 0         |                   |                    |                |
| 5.0    |                                       |         |        |          | Boring terminated at 4.0'        |                   |                    |                |
| 5.0    |                                       |         |        | · .      |                                  |                   |                    |                |
|        |                                       |         |        |          |                                  |                   |                    |                |
| 6.0    |                                       |         |        |          |                                  |                   |                    |                |
|        |                                       |         |        |          |                                  |                   |                    |                |
| 7.0    |                                       |         |        |          |                                  |                   | •                  |                |
|        |                                       |         |        |          |                                  |                   |                    |                |
| 8.0    |                                       |         |        |          |                                  |                   |                    |                |
|        |                                       |         |        |          |                                  |                   |                    |                |
| 9.0    |                                       |         |        |          |                                  |                   |                    |                |
|        |                                       |         |        |          |                                  |                   |                    |                |
| 10.0   |                                       |         |        |          |                                  |                   |                    |                |
| 10.0   |                                       |         |        |          |                                  |                   |                    |                |
| 11.0   |                                       |         |        | A        |                                  |                   |                    | .1             |
| 11.0   |                                       |         |        |          |                                  |                   |                    |                |
|        |                                       |         |        |          |                                  |                   |                    |                |
| 12.0   |                                       |         |        |          |                                  |                   |                    |                |
|        |                                       |         |        |          |                                  |                   |                    |                |
| 13.0   |                                       |         |        |          |                                  |                   |                    |                |
|        |                                       |         |        |          |                                  |                   |                    |                |
| 14.0   |                                       |         |        |          |                                  |                   |                    |                |
|        |                                       |         |        |          |                                  |                   |                    |                |
| 15.0   |                                       |         |        |          |                                  |                   |                    |                |
|        |                                       |         |        |          | •                                |                   |                    |                |
| 16.0   |                                       |         |        |          |                                  |                   |                    |                |
| 10.0   |                                       |         |        |          |                                  |                   |                    |                |
| 170    | · · · · · · · · · · · · · · · · · · · |         |        |          |                                  |                   |                    |                |
| 17.0   |                                       |         |        |          |                                  |                   |                    |                |
| 10.0   |                                       |         |        |          |                                  |                   |                    |                |
| 18.0   |                                       |         |        |          |                                  |                   |                    |                |

| the second second second second second second second second second second second second second second second s |          |         |         |           | DOMING NO., D-10                                             |                                           |
|----------------------------------------------------------------------------------------------------------------|----------|---------|---------|-----------|--------------------------------------------------------------|-------------------------------------------|
| PROJ                                                                                                           | ECT: Ge  | neva, N | Y       |           |                                                              | Sheet 1 of 1                              |
| CLIE                                                                                                           | NT: Bull | Brother | s, Inc. |           | · · · · · · · · · · · · · · · · · · ·                        |                                           |
|                                                                                                                |          |         |         | 04210-1-0 | 007                                                          |                                           |
| DRILI                                                                                                          | LING ME  | THOD: O | Geoprol | be        | SAMPLER BIT SIZE CORE CASING                                 |                                           |
|                                                                                                                | ING RIG  |         |         |           | Macro Core NA NA NA                                          | DATE: 10-17-05                            |
|                                                                                                                | ER: SEM  |         |         |           | INSPECTOR: Jennifer L. Hull                                  |                                           |
| the second second second second second second second second second second second second second second second s | SAMPLE   | BLOWS   | REC.    | PID       |                                                              |                                           |
| IN FT.                                                                                                         | NO.      | PER     | (ft.)   | (ppm)     |                                                              |                                           |
|                                                                                                                |          | 6"      |         | 41-7      |                                                              |                                           |
|                                                                                                                |          | _       |         |           | SOIL DESCRIPTION                                             | REMARKS                                   |
|                                                                                                                | 1        | NA      | 2.0     | 0         | Brown, medium Sand w/ little asphalt fill and medium gravel, |                                           |
| 1.0                                                                                                            |          | 1111    | 2.0     |           | moist, no odors, no stains                                   |                                           |
| 1.0                                                                                                            |          |         |         |           | moist, no odors, no stams                                    |                                           |
|                                                                                                                |          |         |         |           |                                                              |                                           |
| 2.0                                                                                                            |          |         |         |           |                                                              |                                           |
|                                                                                                                |          |         |         |           |                                                              |                                           |
| 3.0                                                                                                            |          |         |         |           | 3.0                                                          | 1                                         |
|                                                                                                                |          |         |         |           | Brown, Clay, dry, no odors, no stains                        | ]                                         |
| 4.0                                                                                                            |          |         |         |           | 4.0                                                          | 1                                         |
|                                                                                                                |          |         |         |           | Boring terminated at 4.0'                                    |                                           |
| 5.0                                                                                                            |          |         |         |           |                                                              |                                           |
| 5.0                                                                                                            |          |         |         |           | • · · · ·                                                    |                                           |
|                                                                                                                |          |         |         |           |                                                              |                                           |
| 6.0                                                                                                            |          |         |         |           |                                                              |                                           |
|                                                                                                                |          |         |         |           |                                                              |                                           |
| 7.0                                                                                                            |          |         |         |           |                                                              |                                           |
|                                                                                                                |          |         |         |           |                                                              |                                           |
| 8.0                                                                                                            |          |         |         |           |                                                              |                                           |
|                                                                                                                |          |         |         |           |                                                              |                                           |
| 9.0                                                                                                            |          |         |         |           |                                                              |                                           |
| 2.0                                                                                                            |          |         |         |           |                                                              |                                           |
| 10.0                                                                                                           |          |         |         |           |                                                              |                                           |
| 10.0                                                                                                           |          |         |         |           |                                                              |                                           |
|                                                                                                                |          |         |         |           |                                                              | and the second second second              |
| 11.0                                                                                                           |          |         |         |           |                                                              |                                           |
|                                                                                                                |          |         |         |           |                                                              |                                           |
| 12.0                                                                                                           |          |         |         |           |                                                              | 1. C. |
|                                                                                                                |          |         |         |           |                                                              |                                           |
| 13.0                                                                                                           |          |         |         |           |                                                              |                                           |
|                                                                                                                |          |         |         |           |                                                              |                                           |
| 10                                                                                                             |          |         |         |           |                                                              |                                           |
| 14.0                                                                                                           |          |         |         |           |                                                              |                                           |
|                                                                                                                |          |         |         |           |                                                              |                                           |
| 15.0                                                                                                           |          |         |         |           |                                                              |                                           |
|                                                                                                                |          |         |         |           |                                                              |                                           |
| 16.0                                                                                                           |          |         |         |           |                                                              |                                           |
|                                                                                                                |          |         |         |           |                                                              |                                           |
| 17.0                                                                                                           |          |         |         |           |                                                              |                                           |
| 1.0                                                                                                            |          |         |         |           |                                                              |                                           |
|                                                                                                                |          |         |         |           |                                                              |                                           |
| 8.0                                                                                                            |          |         |         |           |                                                              |                                           |

# NON-HAZARDOUS WASTE MANIFEST

| Plea             | se print or type (Form designed for use on elite                                                                    |                                                              |                                |                        |                                       |                               | ·····                   |                                        |                         |
|------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------|------------------------|---------------------------------------|-------------------------------|-------------------------|----------------------------------------|-------------------------|
|                  | NON-HAZARDOUS<br>WASTE MANIFEST                                                                                     | 1. Generator's US EPA                                        |                                | BASI                   | CHEN                                  |                               | Manifest<br>Document No | 7826N                                  | 2. Page 1<br>of         |
| ANN'S            | 5. Generator's Name and Mailing Address 61                                                                          | GATES AVE.                                                   |                                | 212023                 |                                       | •                             | 1                       | ATES AVE.                              |                         |
|                  |                                                                                                                     | NEVA NY 1445                                                 | 6                              |                        |                                       |                               | GENI                    | WA NY 14455                            |                         |
| CAN'S            | 4. Generator's Phone (651) 236-307                                                                                  | 0                                                            |                                |                        |                                       |                               |                         |                                        |                         |
|                  | 5. Transporter 1 Company Name                                                                                       |                                                              | 6.<br>                         | US EPAI                | D Number<br>0 5 0 0                   | 0 0 0                         | A. State Trans          | sporter's ID 7RC                       | SO VT                   |
| CINEN            | ENVIRONMENTAL PROD & S                                                                                              | VCS OF VT,                                                   | VII                            | 200                    | 0 0 0 0                               | 0 8 0                         | B. Transporte           | r 1 Phone (000)                        | 062 1212                |
| (3)              | 7. Transporter 2 Company Name                                                                                       |                                                              | 8.                             | US EPA I               | D Number                              |                               | C. State Trans          | sporter's ID                           | 002 1012                |
|                  |                                                                                                                     |                                                              |                                |                        | ····                                  |                               | D. Transporte           | r 2 Phone                              |                         |
| 1. 2. 2.         | 9. Designated Facility Name and Site Address<br>ENVIRONMENTAL PROD & S                                              |                                                              | 10.<br>≹C.                     | US EPA                 | ID Number                             |                               | E. State Facili         | ty's ID                                |                         |
| P.L.             | 532 STATE FAIR BLVD.<br>SYRACUSE NY 13204                                                                           | ł .                                                          |                                |                        |                                       |                               | F. Facility's P         | 815) 451-6666                          |                         |
|                  | 11. WASTE DESCRIPTION                                                                                               |                                                              |                                |                        |                                       |                               | ontainers               | 13.<br>Total<br>Quantity               | 14.<br>Unit<br>Wt./Vol. |
|                  | · · · · · · · · · · · · · · · · · · ·                                                                               |                                                              |                                |                        |                                       | No.                           | Туре                    | Quantity                               |                         |
| KN 24            | WASTE NON-RCRA LIQUID,<br>CONTAMINATED WATER)                                                                       | N.O.S. (PETR                                                 | OLEUM                          |                        |                                       | 6                             | DM                      | 330                                    | G                       |
| G E N E R        | WASTE NON-RCRA SOLID, N<br>SOIL)                                                                                    | .O.S. (CONTA                                                 | MINATE                         | SD                     |                                       | 7                             | DM                      | 3,500                                  | Р                       |
| R<br>A<br>T<br>O | с.                                                                                                                  | · .                                                          |                                |                        |                                       |                               |                         |                                        |                         |
| R                | d.                                                                                                                  | · · ·                                                        |                                |                        | · · · · · · · ·                       |                               |                         | -                                      |                         |
| 资.               | G. Additional Descriptions for Materials Listed Abov                                                                |                                                              |                                |                        |                                       |                               | H. Handling C           | odes for Wastes Listed Abo             | ve                      |
| and and          | a.                                                                                                                  | с,                                                           |                                |                        | •                                     |                               | a.s01<br>b.S01          | с.<br>d.                               |                         |
|                  | b.                                                                                                                  | d.                                                           | •                              |                        |                                       |                               | -                       | . · ·                                  |                         |
|                  | · · · · · · · · · · · · · · · · · · ·                                                                               | · ·                                                          |                                |                        |                                       |                               |                         |                                        |                         |
| E.               | 15. Special Handling Instructions and Additional Info $J$                                                           | OB# N3876                                                    |                                |                        |                                       |                               |                         | France                                 | . Phone #               |
|                  |                                                                                                                     |                                                              |                                |                        | . •                                   |                               |                         |                                        | 862-1212                |
|                  | a.APPROVAL# 1105042<br>b.APPROVAL# 1105043                                                                          | · ·                                                          |                                |                        |                                       |                               |                         | (802)                                  | 002-1414                |
| And a state      |                                                                                                                     |                                                              |                                |                        |                                       |                               |                         |                                        | 國際                      |
| and the second   | <ol> <li>GENERATOR'S CERTIFICATION: I hereby cert<br/>in proper condition for transport. The materials d</li> </ol> | ify that the contents of this<br>escribed on this manifest a | shipment are<br>re not subject | fully and a to federal | ccurately describe<br>hazardous waste | ed and are in<br>regulations. | all respects            |                                        | •                       |
|                  |                                                                                                                     | -                                                            |                                |                        | *.                                    |                               |                         | Γ                                      | Date                    |
| Lister (1985)    | Printed/Typed Name                                                                                                  | , JFA                                                        | Sig                            | gnature                | a /                                   | 1                             |                         | Mor<br>1                               | nth Day Year            |
|                  | MARK SCHUMACH<br>17. Transporter 1 Acknowledgement of Receipt of M                                                  |                                                              |                                | <u> </u>               | 122                                   |                               |                         |                                        | Date                    |
|                  | Printed/Typed Name                                                                                                  |                                                              | Sig                            | nature                 | 11_                                   |                               | 111                     | 7 Mor                                  | nth Day Year            |
|                  | DONALD M. CA                                                                                                        | KD JR                                                        | <u> </u>                       | ha                     | uh -                                  | 1-1                           | nj                      |                                        | 0705                    |
| 2                | 18. Transporter 2 Acknowledgement of Receipt of M                                                                   | aterials                                                     |                                |                        |                                       |                               |                         |                                        | Date                    |
|                  | Printed/Typed Name                                                                                                  |                                                              | Sig                            | nature                 |                                       |                               |                         | Mor                                    | nth Day Year            |
| •                | 19. Discrepancy Indication Space                                                                                    |                                                              |                                |                        |                                       |                               |                         | ······································ | !                       |
| ;                |                                                                                                                     |                                                              |                                |                        |                                       |                               |                         |                                        |                         |
| ľ                | 20. Facility Owner or Operator, Certification of receip                                                             | t of the waste materials cov                                 | vered by this                  | manifest, e            | xcept as noted in                     | item 19.                      |                         |                                        |                         |
| -                |                                                                                                                     |                                                              |                                | natura /               | 1                                     |                               |                         |                                        | Date                    |
| 1                | Printed Typed Name                                                                                                  |                                                              | Sig                            | nature                 | <u>D</u>                              |                               |                         | Mor                                    | ath Day Year            |
| CF               | 14 0 2002 LABELMASTER ( (800) 621-5808 w                                                                            | w ishelmaster com                                            | /                              | 5                      |                                       |                               |                         | PRINTED ON                             | RECYCLED PAPER          |

NON-HAZARDOUS WACTE



STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A05-B179

STL Project#: NY4A9341 Site Name: Delta Environmental Consultants, Inc. Task: HB Fuller waste Project: Non-ASP deliverables

Mark Schumacher Delta Environmental 104 Jamesville Rd. Syracuse, NY 13214

STL Buffalo

Brian J. Fischer Project Manager

10/21/2005

# STL Buffalo Current Certifications

| STATE          | Program                     | Cert # / Lab ID  |
|----------------|-----------------------------|------------------|
| Arkansas       | SDWA, CWA, RCRA, SOIL       | 03-054-D/88-0686 |
| California     | NELAP SDWA, CWA, RCRA       | 01169CA          |
| Connecticut    | SDWA, CWA, RCRA, SOIL       | PH-0568          |
| Florida        | NELAP RCRA                  | E87672           |
| Georgia        | SDWA                        | 956              |
| Illinois       | NELAP SDWA, CWA, RCRA       | 200003           |
| lowa           | SW/CS                       | 374              |
| Kansas         | NELAP SDWA, CWA, RCRA       | E-10187          |
| Kentucky       | SDWA                        | 90029            |
| Kentucky UST   | UST                         | 30               |
| Louișiana      | NELAP CWA, RCRA             | 2031             |
| Maine          | SDWA, CWA                   | NY044            |
| Maryland       | SDWA                        | 294              |
| Massachusetts  | SDWA, CWA                   | M-NY044          |
| Michigan       | SDWA                        | 9937             |
| Minnesota      | CWA, RCRA                   | 036-999-337      |
| New Hampshire  | NELAP SDWA, CWA             | 233701           |
| New Jersey     | SDWA, CWA, RCRA, CLP        | NY455            |
| New York       | NELAP, AIR, SDWA, CWA, RCRA | 10026            |
| North Carolina | CWA                         | 411              |
| North Dakota   | SDWA, CWA, RCRA             | R-176            |
| Oklahoma       | CWA, RCRA                   | . 9421           |
| Pennsylvania   | Env. Lab Reg.               | 68-281           |
| South Carolina | RCRA                        | 91013            |
| USDA           | FOREIGN SOIL PERMIT         | S-41579          |
| Virginia       | SDWA                        | 278              |
| Washington     | CWA                         | C254             |
| West Virginia  | CWA                         | 252              |
| Nisconsin      | CWA                         | 998310390        |
|                |                             |                  |

# SAMPLE SUMMARY

|               |         |           |        | SAMPI      | ED    | RECEIVE    | ED    |
|---------------|---------|-----------|--------|------------|-------|------------|-------|
| LAB SAMPLE ID | CLIENT  | SAMPLE ID | MATRIX | DATE       | TIME_ | DATE       | TIME  |
| A5B17902      | WASTE S |           | SOIL   | 10/03/2005 | 12:10 | 10/05/2005 | 07:45 |
| A5B17901      | WASTE W | . 1       | WATER  | 10/03/2005 | 12:00 | 10/05/2005 | 07:45 |
|               |         |           |        |            |       |            |       |

# METHODS SUMMARY

# Job#: <u>A05-B179</u>

# STL Project#: <u>NY4A9341</u> Site Name: <u>Delta Environmental Consultants, Inc.</u>

|                                                   | ANALYTICAL  |
|---------------------------------------------------|-------------|
| PARAMETER                                         | METHOD      |
| DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS | SW8463 8260 |
| DELTA-METHOD 8260 - TCL VOLATILE ORGANICS         | SW8463 8260 |
|                                                   |             |
| DELTA-METHOD 8270 - TCL BASE NEUTRALS COMPOUNDS   | SW8463 8270 |
| METHOD 8270 - TCL BASE NEUTRAL COMPOUNDS          | SW8463 8270 |
|                                                   |             |
| DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS   | SW8463 8082 |
|                                                   | •           |
| Arsenic - Total                                   | SW8463 6010 |
| Barium - Total                                    | SW8463 6010 |
| Cadmium - Total                                   | SW8463 6010 |
| Chromium - Total                                  | SW8463 6010 |
| Lead - Total                                      | SW8463 6010 |
| Mercury - Total                                   | SW8463 7470 |
| Selenium - Total                                  | SW8463 6010 |
| Silver - Total                                    | SW8463 6010 |
|                                                   |             |
| Corrosivity (pH)                                  | SW8463 9045 |
| Flashpoint                                        | SW8463 1010 |
| Paint Filter Test                                 | SW8463 9095 |
| Hq                                                | SW8463 9040 |
| Toxicity Characteristic Leaching Procedure        | SW8463 1311 |
| -                                                 |             |

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

### NON-CONFORMANCE SUMMARY

### Job#: <u>A05-B179</u>

# STL Project#: <u>NY4A9341</u> Site Name: <u>Delta Environmental Consultants, Inc.</u>

### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

### Sample Receipt Comments

### A05-B179

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

### GC/MS Volatile Data

Due to an instrument failure, WASTE S was analyzed past the EPA-recommended holding time. The sample results should be considered estimated.

### GC/MS Semivolatile Data

The analyte Bis(2-ethylhexyl) phthalate was detected in the Method Blank A5B1542502 at a level below the project established reporting limit. No corrective action is necessary for any values in Method Blanks that are below the requested reporting limits.

### GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

### Metals Data

The analyte Barium was detected in the TCLP Extractor Blank (A5B1557601) at a concentration above STL's standard quantitation limit. All samples associated with the blank were evaluated and determined to be at least five times less than the TCLP Regulatory Limit. The sample data was therefore accepted and no corrective action was performed.

The analyte Lead was detected in the Extractor Blank (A5B1557601) at a level above the project established reporting limit. All samples were non-detect for this analyte, therefore, no corrective action was necessary.

# Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Brian J. Fischer Project Manager

Date



# DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

### ORGANIC DATA QUALIFIERS

J

ND or U Indicates compound was analyzed for, but not detected.

- Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- <sup>1</sup> Indicates coelution.
- Indicates analysis is not within the quality control limits.

### **INORGANIC DATA QUALIFIERS**

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- \* Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

| MARTE 5<br>(027-8770)         ABITOR         Reporting         Sample         Reporting <t< th=""><th></th><th></th><th></th><th>DELTA-I</th><th>DELTA-METHOD 8260 - TC</th><th>TCL VOLATILE ORGANICS</th><th>CS</th><th></th><th></th><th></th></t<> |                                             |                 |                                   | DELTA-I            | DELTA-METHOD 8260 - TC | TCL VOLATILE ORGANICS | CS              |                    |                 |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------|-----------------------------------|--------------------|------------------------|-----------------------|-----------------|--------------------|-----------------|-----------|
| Initial         Sample         Reporting         Sample         Lisit         Value         Lisit         Value         Lisit         Value         Lisit         Value         Lisit         Value         Reporting         Value         Reporting         Value         Reporting         Value         Lisit         Value         Lisit         Value         Lisit         Value         Reporting         Value         Lisit         Value <thlisit< th=""> <thlisit< th="">         Value<th></th><th></th><th>WASTE S<br/>A05-B179<br/>10/03/2005</th><th>A5B17902</th><th></th><th></th><th></th><th></th><th></th><th></th></thlisit<></thlisit<>                                         |                                             |                 | WASTE S<br>A05-B179<br>10/03/2005 | A5B17902           |                        |                       |                 |                    |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyte                                     | Units           | Sample<br>Value                   | Reporting<br>Limit | Sample<br>Value        | Reporting<br>Limit    | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | etone                                       | UG/KG           | QN                                | 29                 | đN                     |                       |                 |                    |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nzene                                       | UG/KG           | 2                                 | ¢ (                | AN<br>AN               |                       | AN              |                    | AN              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | omodichloromethane<br>omoform               | UG/KG           | QN                                | · 0                | NA                     |                       | NA              |                    | AN              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | omome thane                                 | ug/kg           | ON ON                             | 9 Y                | AN                     |                       | NA              |                    | NA              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Butanone                                    | UG/KG           | Q                                 | 29                 | AN N                   | -                     | AN              |                    | NA              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rbon Disulfide                              | NG/KG           | QN                                | 6                  | NA                     |                       | AN<br>AN        |                    | AN              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rbon letrachloride<br>Lorobenzens           | UG/KG           | Q                                 | 9                  | NA                     |                       | NA              |                    | AN              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | loroe thane                                 | UG/KG<br>IIG/KG | ON CN                             | 9 9                | NA                     |                       | NA              |                    | NA              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | loroform                                    | VG/KG           | Q                                 | o vo               | AN N                   |                       | NA              |                    | NA              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lorome thane                                | UG/KG           | Q                                 | 6,0                | AN                     | -                     | AN              | -                  | AN              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | clohexane                                   | UG/KG           | UN .                              | 9                  | NA                     |                       | AN              |                    | AN              | -         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c-Ulbromoethane                             | 06/KG           | QN                                | · 0                | NA                     |                       | NA              |                    | AN N            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-Dibromo-3-chloropropane                   | ue/ke           | Q Q                               | <b>9 4</b>         | NA                     | -                     | NA              |                    | NA              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-Dichlorobenzene                           | ug/kg           | Q Q                               | o vo               | AN                     |                       | AN              |                    | NA              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5-Dichlorobenzene                           | UG/KG           | ND                                | 9                  | NA                     |                       | AN              |                    | Y Z             | -         |
| 00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076         00/076       00/076 <td< td=""><td>4-D1chlorobenzene</td><td>UG/KG</td><td>QN</td><td>· 0</td><td>NA</td><td></td><td>NA</td><td></td><td>NA</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-D1chlorobenzene                           | UG/KG           | QN                                | · 0                | NA                     |                       | NA              |                    | NA              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | incoro da incude thane                      | ue/ke           | - ND                              | 0 4                | AN                     |                       | NA              |                    | NA              |           |
| U6/K6       U6/K6       U6/K6         U6/K6       U6/K6       U         U6/K6       W       W         U       W       W         U       W       W         U       W       W         U       W       W         U       W       W         U       W       W         U       W       W         U       W       W         U       W       W         U       W       W         U       W       W         U       W       W         U       W       W         U       W       W         U       W       W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-Dichloroethane                            | ug/kg           | ,<br>DN                           | 9                  | AN<br>AN               |                       | NA              |                    | NA              |           |
| 16/5/56       16/5/56         16/5/56       16/5/56         16/5/56       16/5/56         16/5/56       10         10       13         10       13         10       13         10       13         10       13         10       13         10       13         10       13         10       13         10       13         10       13         10       13         10       13         11       14         12       14         13       15         14       16         15       16         16       16         16       16         16       16         16       16         17       16         16       16         17       16         16       16         16       16         16       16         16       16         16       16         16       16         16       16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-Dichloroethene                            | UG/KG           | <b>9</b>                          | 9                  | NA                     |                       | e N             |                    | AN<br>AN        | -         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s-1,2-Dichloroethene                        | UG/KG           | 15                                | 9                  | NA                     |                       | NA              | -                  | AN              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ans-1,∠-D1chloroethene<br>2-Dichloronronane | UG/KG           | QN                                | 9                  | NA                     | -                     | NA              |                    | NA              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s-1.3-Dichloropropene                       | 00/KG           |                                   |                    | AN N                   |                       | NA              |                    | NA              |           |
| Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg         Ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ans-1,3-Dichloropropene                     | UG/KG           | 2                                 | 0.0                | AN                     |                       | AN<br>AN        |                    | A N             |           |
| UG/KG       UG/KG         UG/KG       UG/KG         UG/KG       N N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N         N       N        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hylbenzene                                  | UG/KG           | ND                                | 9                  | NA                     |                       | AN              |                    |                 |           |
| UG/KG<br>UG/KG<br>KG<br>KG<br>KG<br>KG<br>KG<br>KG<br>KG<br>KG<br>KG<br>KG<br>KG<br>KG<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexanone                                    | uG/KG           | ND                                | 29                 | NA                     |                       | NA              | -                  | AN              |           |
| UG/KG<br>UG/KG<br>KG<br>KG<br>VG<br>VG<br>VG<br>VG<br>VG<br>VG<br>VG<br>VG<br>VG<br>VG<br>VG<br>VG<br>VG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | opropylbenzene                              | UG/KG           | QN                                | 9                  | NA                     |                       | NA              |                    | NA              |           |
| UG/K6       UG/K6       ND       UG/K6       ND         UG/K6       K6       K6       K6       ND       ND         UG/K6       K6       K6       K6       K7       ND         UG/K6       K6       K6       K7       ND       ND         UG/K6       K6       K6       K7       K7       ND         0       0       0       0       0       0       ND         0       0       0       0       0       0       ND         0       0       0       0       0       0       ND       ND         0       0       0       0       0       0       ND       ND       ND         0       0       0       0       ND       ND       ND       ND       ND         0       0       0       0       ND       ND       ND       ND       ND         0       0       0       0       0       0       0       ND       ND         0       0       0       0       0       0       0       ND         1       1       0       0       0 <t< td=""><td>thyl acetate</td><td>UG/KG</td><td>Q</td><td><b>vo</b> v</td><td>NA</td><td></td><td>NA</td><td></td><td>NA</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                     | thyl acetate                                | UG/KG           | Q                                 | <b>vo</b> v        | NA                     |                       | NA              |                    | NA              |           |
| 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | thylene chloride                            | 06/KG           | UN<br>ZF                          | 0 1                | A N                    |                       | NA              |                    | NA              |           |
| UG/KG G G M M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Methyl-2-pentanone                          |                 |                                   | 0 0                |                        |                       | NA              |                    | AN              |           |
| UG/KG ND<br>UG/KG ND<br>UG/KG ND<br>UG/KG ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | thyl-t-Butyl Ether (MTBE)                   | UG/KG           | QN                                | 6                  |                        |                       | AN .            |                    | N               | <u>.</u>  |
| bane<br>UG/KG ND<br>UG/KG ND<br>UG/KG ND<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | yrene                                       | UG/KG           | Q                                 | <b>· · 0</b>       | NA                     |                       | A N             | -                  |                 |           |
| ug/kg 100<br>Ug/kg ND 66 NA NA NA NA NA NA NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2,2-Tetrachloroethane                     | UG/KG           | QN                                | 9                  | NA                     |                       | NA              | -                  | AN              | -         |
| e UG/KG ND 6 NA NA NA NA NA NA NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | trachloroethene                             | UG/KG           | 100                               | 9                  | NA                     |                       | NA              |                    | NA              |           |
| e UG/KG ND 6 NA NA NA NA NA NA NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | luene                                       | UG/KG           | QN                                | 9                  | NA                     |                       | NA              |                    | NA              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <pre>// /-Trichlorobenzene</pre>            | UG/KG           | •                                 | ×0 ×               | NA                     |                       | NA              | -                  | NA              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1.2-Trichloroethane                       | טפ/אפ<br>וופ/אפ | -                                 | 0 4                | AN                     |                       | AN              |                    | A N             |           |

NA = Not Applicable ND = Not Detected

STL Buffalo

|          | -     |
|----------|-------|
| 10/21/20 | :00:2 |
| te       | Time: |

Delta Environment: sultants, Inc. HB Fuller waste Project Ann-ASP deliverables DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

t: AN0326

|                                           | Reporting<br>Limit |                                                                                                                                              |                                                                                                                                                       |
|-------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Sample<br>Value    | NA<br>NA<br>NA<br>NA                                                                                                                         | A N N N N N N N N N N N N N N N N N N N                                                                                                               |
|                                           | Reporting<br>Limit |                                                                                                                                              |                                                                                                                                                       |
|                                           | Sample<br>Value    | A N N A A A A A A A A A A A A A A A A A                                                                                                      | A A A A A A A A A A A A A A A A A A A                                                                                                                 |
|                                           | Reporting<br>Limit |                                                                                                                                              |                                                                                                                                                       |
|                                           | Sample<br>Value    | N N N N N N N N N N N N N N N N N N N                                                                                                        | A A A A A A A A A A A A A A A A A A A                                                                                                                 |
| A5B17902                                  | Reporting<br>Limit | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                      | 50-200<br>50-200<br>50-200<br>71-125<br>68-124<br>61-136                                                                                              |
| WASTE S<br>A05-B179<br>10/03/2005         | Sample<br>Value    | 0 N N 0<br>5 0 N N<br>0 N N N N N N N N N N N N N N N N                                                                                      | 91<br>92<br>105<br>100<br>100                                                                                                                         |
|                                           | Units              | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg                                                                                                             | ***                                                                                                                                                   |
| Client ID<br>Job No Lab ID<br>Sample Date | Analyte            | 1,1,2-Trichloro-1,2,2-trifluor UG/KG<br>Trichlorofluoromethane UG/KG<br>Trichloroethene UG/KG<br>Vinyl chloride UG/KG<br>Total Xylenes UG/KG | IS/ SURROGATE(S)<br>Chlorobenzene-D5<br>1,4-Difluorobenzene<br>1,4-Dichlorobenzene-D4<br>Toluene-D8<br>p-Bromofluorobenzene<br>1,2-Dichloroe thane-D4 |

| Ctient 1D         MSTE v         MSTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                 |                    |                 |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|--------------------|-----------------|-----------|
| Units         Sample         Reporting           Us/L         Value         Limit           Us/L         ND         1.0           Us/L         ND         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                 |                    |                 |           |
| 106/L         5.2         5.2         5.0           106/L         0.6/L         ND         106/L         5.2           106/L         ND         106/L         ND         106/L         5.2           106/L         ND         106/L         ND         100         100           106/L         ND         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reporting<br>Limit | sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting |
| chloromethane $06/LNO1.0m06/LNO1.0m06/LNO1.0thane06/LNO1.006/LNO1.01.0Tetrachloride06/LNO1.006/LNO1.01.0Tetrachloride06/LNO1.006/LNO1.01.006/LNO1.01.006/LNO1.01.006/LNO1.01.006/LNO1.01.006/LNO1.01.006/LNO1.01.006/LNO1.01.006/LNO1.01.006/LNO1.01.006/LNO1.01.006/LNO1.01.006/LNO1.01.006/LNO1.01.006/LNO1.01.00100000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | NA              |                    | NA              |           |
| 06/L       06/L         06/L       06/L         06/L       06/L         06/L       06/L         06/L       00         06/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | NA<br>NA        |                    | NA              |           |
| UG/L       UG/L         UG/L       UG/L         UG/L       N0         UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                  | NA              |                    | NA              |           |
| 06/L       06/L         06/L       06/L         06/L       06/L         06/L       06/L         06/L       00         06/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | NA              |                    | NA              |           |
| UG/L       UG/L       UG/L         UG/L       UG/L       UG/L         UG/L       UG/L       ND         UG/L       UG/L       ND         UG/L       ND       UG/L         UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | NA              |                    | NA              |           |
| 06/1       06/1         06/1       06/1         06/1       06/1         06/1       06/1         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0         06/1       0 <t< td=""><td></td><td>NA</td><td></td><td>NA</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | NA              |                    | NA              |           |
| 06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     ND       06/L     11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                  | A N<br>A N      |                    | NA              |           |
| 06/L     06/L       06/L     06/L       06/L     06/L       06/L     00       070     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | NA              |                    | NA              |           |
| Bane         UG/L         ND           UG/L         UG/L         ND           UG/L         ND         UG/L           UG/L         ND         1.00           UG/L         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | A N<br>A N      |                    | NA              |           |
| 06/L     06/L       06/L     06/L       06/L     06/L       06/L     00       0750     100       08/L     00       09/L     100       00     100       00     100       00     100       00     100       00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | NA              |                    | NA              |           |
| 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 10 |                    | NA<br>NA        |                    | NA              |           |
| 010/L 100 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/ |                    | AN              |                    | AN              | -         |
| Reference of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |                    | NA              |                    | NA              |           |
| 010/L 100 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 100/L 10 |                    | A N             |                    | NA              |           |
| Rev 100 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | NA              | -                  | NA              |           |
| e U6/L ND U6/L ND U6/L ND U6/L ND U6/L ND U6/L ND U6/L ND U6/L ND U6/L ND U6/L ND U6/L ND ND U6/L ND ND ND ND ND ND ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | NA              |                    | NA              |           |
| Rev 100/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | NA              |                    | NA              |           |
| Pe UG/L ND UG/L ND UG/L ND UG/L ND UG/L ND UG/L ND UG/L ND UG/L ND ND UG/L ND ND UG/L ND ND ND ND ND ND ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | NA              |                    | NA              |           |
| UG/L ND<br>UG/L ND<br>UG/L ND<br>UG/L ND<br>UG/L ND<br>UG/L ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | NA              |                    | NA              |           |
| UG/L ND<br>UG/L ND<br>UG/L ND<br>UG/L ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | NA              |                    | NA              |           |
| UG/L ND 1.0<br>UG/L ND 1.0<br>UG/L ND 1.0<br>UG/L ND 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | AN              |                    | AN<br>An        |           |
| UG/L ND 1.0<br>UG/L ND 1.0<br>UG/L ND 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | NA              |                    | NA              | -         |
| UG/L ND 1.0<br>UG/L ND 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | NA              |                    | NA              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | NA              |                    | NA              |           |
| (MTBE) UG/L ND 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                  | AN              |                    | NA              |           |
| UG/L ND 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | NA              |                    | NA              |           |
| roethane UG/L ND 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | NA              |                    | NA              |           |
| retrachtoroethene UG/L ND 1.0 NA<br>Toluene UG/L ND 1.0 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                  | NA              | •                  | AN<br>No        |           |
| richlorobenzene UG/L ND 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | AN              |                    | AN              |           |
| ND 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | NA              | -                  | NA              |           |

STL Buffalo

NA = Not Applicable ND = Not Detected

| - | 10/21/2 | 13:00:25 |
|---|---------|----------|
|   | Date:   | Time:    |

Delta Environment nsultants, Inc. HB Fuller waste Projectoron-ASP deliverables DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS

pt: AN0326

|                                           | Reporting<br>Limit |                                                                                                                                         |                                                                                                                                                     |
|-------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Sample<br>Value    | A A A A A A A A A A A A A A A A A A A                                                                                                   | A A A A A A A A A A A A A A A A A A A                                                                                                               |
|                                           | Reporting<br>Limit |                                                                                                                                         |                                                                                                                                                     |
|                                           | Sample<br>Value    | K K K K K<br>K K K K K<br>K K K K K<br>K K K K K                                                                                        | A N N N N N N N N N N N N N N N N N N N                                                                                                             |
|                                           | Reporting<br>Limit |                                                                                                                                         |                                                                                                                                                     |
|                                           | Sample<br>Value    | A A A A A A                                                                                                                             | A N N N N N N N N N N N N N N N N N N N                                                                                                             |
| A5817901                                  | Reporting<br>Limit |                                                                                                                                         | 50-200<br>50-200<br>50-200<br>76-122<br>73-120<br>73-120                                                                                            |
| WASTE W<br>A05-B179<br>10/03/2005         | Sample<br>Value    | <u>n n</u> n n                                                                                                                          | 97<br>97<br>94<br>102<br>119                                                                                                                        |
|                                           | Units              | 1/90/L<br>01/L<br>01/2/L<br>01/L                                                                                                        | ххххх                                                                                                                                               |
| Client ID<br>Job No Lab ID<br>Sample Date | Analyte            | 1,1,2-Trichloro-1,2,2-trifluor UG/L<br>Trichlorofluoromethane UG/L<br>Trichloroethene UG/L<br>Vinyl chloride UG/L<br>Total Xylenes UG/L | Is/SURROGATE(S)<br>Chlorobenzene-D5<br>1,4-Difluorobenzene<br>1,4-Dichlorobenzene-D4<br>Toluene-D8<br>P-Bromofluorobenzene<br>1,2-Dichloroethane-D4 |

|                                                 |                                           | Reporting<br>Limit    |                                                                          |                                                                          |                                                                 |                                                          |                                                      |                                                                      | -                                       |                                      |                                            |                                               |                    |                                          |                                      |                               |                      |                                                                                           |            | _1                                 | 2              |
|-------------------------------------------------|-------------------------------------------|-----------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------------|-----------------------------------------------|--------------------|------------------------------------------|--------------------------------------|-------------------------------|----------------------|-------------------------------------------------------------------------------------------|------------|------------------------------------|----------------|
|                                                 |                                           | Sample Rep<br>Value L | A A A A A A A A A A A A A A A A A A A                                    | NA<br>NA<br>NA                                                           | N N N<br>A N N                                                  | A N<br>A N                                               | A N<br>A N                                           | A A A                                                                | A N N N N N N N N N N N N N N N N N N N | A A A                                | E N N                                      | NA<br>NA                                      | NA                 | NA                                       | A N                                  | AN                            | NA                   | A N<br>A                                                                                  | NA         | NA                                 |                |
|                                                 |                                           | Reporting<br>Limit    |                                                                          |                                                                          |                                                                 | -<br>-<br>-                                              |                                                      |                                                                      | -                                       |                                      |                                            |                                               |                    |                                          |                                      |                               |                      |                                                                                           |            | • •                                | -              |
| SONUC                                           |                                           | Sample<br>Value       | A N N A A                                                                | 4 4 4 X                                                                  | A N N N                                                         | A N N<br>A N N                                           | A N N                                                | A A A                                                                | N N N N                                 | A A A                                | NA                                         | AN                                            | NA                 | AN                                       | A N                                  | A N                           | NA                   | N N<br>A                                                                                  | AN         | AN                                 |                |
| DELTA-METHOD 8270 - TCL BASE NEUTRALS COMPOUNDS |                                           | Reporting<br>Limit    |                                                                          |                                                                          |                                                                 |                                                          | •                                                    |                                                                      |                                         |                                      |                                            |                                               |                    |                                          |                                      |                               |                      |                                                                                           | -          |                                    |                |
| 100 8270 - TCL BA                               |                                           | Sample<br>Value       | A N N A A A A A A A A A A A A A A A A A                                  | A A A A                                                                  | C A A A                                                         | AN                                                       | NA                                                   | NA                                                                   | NA                                      | AN                                   | NA                                         | NA<br>NA                                      | NA<br>NA           | AN<br>NA                                 | AN                                   | AN                            | AN                   | NA                                                                                        | AN         | A N<br>A N                         |                |
| DELIA-METH                                      | A5B17901                                  | Reporting<br>Limit    | 6666                                                                     | 2 <u>0 0 6</u>                                                           | 20 0 0                                                          | 2 <u>5</u> 5                                             | 0 0 C                                                | 666                                                                  | 566                                     | <u>5 6 6</u>                         | 6 5                                        | 20                                            | <u></u>            | <b>5</b> 0                               | 6 0                                  | 2 9 9                         | 2 6 ;                | £6;                                                                                       | 2 6        | 6 6                                |                |
|                                                 | WASTE W<br>A05-B179<br>10/03/2005         | Sample<br>Value       |                                                                          | 2222                                                                     | 2222                                                            | 22                                                       |                                                      | QN QN                                                                |                                         | Q Q                                  | Q Q                                        | Q Q                                           | Q Q                | QN                                       | QN<br>QN                             | 22                            | Q                    | 2 2                                                                                       |            | Q Q                                |                |
|                                                 |                                           | Units                 | 1/90<br>06/L<br>06/L                                                     | ue/L<br>Ue/L                                                             | UG/L<br>UG/L<br>UG/L                                            | UG/L<br>UG/L                                             | ue/r<br>Ue/r                                         | 16/L<br>16/L                                                         | ue/L<br>Ue/L                            | UG/L<br>UG/L                         | ue/L<br>Ue/L                               | ue/r                                          | ue/r               | UG/L<br>UG/L                             | UG/L<br>UG/L                         |                               | 00/L<br>UG/L         | ue/r<br>Ue/r                                                                              | UG/L       | UG/L<br>UG/L                       | 1/511          |
|                                                 | client ID<br>Job No Lab ID<br>Sample Date | . Analyte             | Acenaph thene<br>Acenaph thy Lene<br>An thracene<br>Benzo(a) an thracene | Benzo(b) f luoran thene<br>Benzo(k) f luoran thene<br>Benzo(ghi)perylene | Benzo(a)pyrene<br>Benzyl alcohol<br>Bis(2-chloroethoxy) methane | Bis(2-chloroethyl) ether<br>2,2'-Oxybis(1-chloropropane) | 4-Bromophenyl phenyl ether<br>Butyl benzyl phthalate | 4-Chloroaniline<br>2-Chloronaphthalene<br>4-Chloronhanvl nenvl othor | Chrysene<br>Dibenzo(a,h)anthracene      | Dibenzofuran<br>Di-n-butyl phthalate | 1,Z-D1chlorobenzene<br>1,3-Dichlorobenzene | 1,4-01cntorobenzene<br>3,3'-Dichlorobenzidine | Dimethyl phthalate | 2,4-Dinitrotoluene<br>2,6-Dinitrotoluene | Di-n-octyl phthalate<br>Fluoranthene | Fluorene<br>Hexachlorobenzene | Hexach lorobutadiene | Hexacticol ou you ou per tag tene<br>Hexach lor oe thane<br>Trodeno (1 2 3 - od ) nurrent | Isophorone | ∠-metnytnapntnalene<br>Naphthalene | 2-Nitroaniline |

NA = Not Applicable ND = Not Detected

-

-

STL Buffalo

|     | :   |
|-----|-----|
| Ň   | 4   |
| 21/ | ë   |
| 10/ | 5   |
|     |     |
| ate | jie |
| õ   | ÷   |

# Delta Environment nsultants, Inc. HB Fuller waste Projector Non-ASP deliverables DELTA-METHOD 8270 - TCL BASE NEUTRALS COMPOUNDS

ot: AN0326

|                                           |       |                                   |                    |                 | ;                  |                 |                    |                 |                    |
|-------------------------------------------|-------|-----------------------------------|--------------------|-----------------|--------------------|-----------------|--------------------|-----------------|--------------------|
| client ID<br>Job No Lab ID<br>Sample Date |       | WASTE W<br>A05-B179<br>10/03/2005 | A5B17901           |                 |                    |                 |                    |                 |                    |
| Analyte                                   | Units | Sample<br>Value                   | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit |
| 4-Nitroaniline                            | ne/r  | ND                                | 50                 | NA              |                    | ΨN              |                    |                 |                    |
| NITrobenzene                              | NG/L  | QN                                | 10                 | NA              |                    | NA              |                    |                 |                    |
| N-nitrosodiphenylamine                    | NG/L  | ND                                | 10                 | NA              |                    |                 |                    | AN .            |                    |
| N-Nitroso-Di-n-propylamine                | 06/L  | QN                                | 6                  | AN              |                    |                 | -                  | AN              |                    |
| Phenanthrene                              | UG/L  | QN                                | 10                 | AN              |                    |                 |                    | AN              |                    |
| Pyrene                                    | UG/L  | QN                                | 10                 | NA              |                    |                 |                    | A N             |                    |
| 1,2,4-Trichlorobenzene                    | UG/L  | DN                                | 10                 | NA              |                    | AN              |                    | AN              |                    |
| 1.4-Dichlorohenzene.p.                    | ,     |                                   |                    |                 |                    |                 |                    |                 |                    |
|                                           | 2 3   |                                   | 007-05             | NA              |                    | NA              |                    | NA              |                    |
|                                           | 2     | 114                               | 50-200             | NA              |                    | NA              |                    |                 |                    |
| Acenaph thene-D10                         | *     | 112                               | 50-200             | NA              | -                  | AN A            |                    |                 |                    |
| Phenanthrene-D10                          | *     | 118                               | 50-200             | NA              |                    | AN N            |                    |                 |                    |
| Chrysene-D12                              | *     | 114                               | 50-200             | NA              |                    | <b>N</b>        |                    |                 |                    |
| Perylene-D12                              | ×     | 118                               | 50-200             | NA              |                    |                 |                    | AN .            |                    |
| Nitrobenzene-D5                           | *     | 71                                | 52-120             | NA              |                    |                 |                    | AN 2            |                    |
| 2-Fluorobiphenyl                          | *     | 92                                | 21-120             | NA              |                    |                 | -                  | AN              | -                  |
| p-Terphenyl-d14                           | ×     | 75                                | 36-138             | A N             |                    |                 | -                  | NA              |                    |
| Pheno L-D5                                | *     | 18                                | 13-120             | <b>d</b> N      |                    |                 |                    | N               | -                  |
| 2-Fluorophenol                            | ×     | 28                                | 21-120             | <b>VN</b>       |                    |                 |                    | N               |                    |
| 2,4,6-Tribromophenol                      | *     | 82                                | 62-133             |                 |                    | AN              | -                  | NA              |                    |
|                                           | -     |                                   | 25 123             |                 |                    | NA              |                    | NA              |                    |
|                                           |       |                                   |                    |                 |                    |                 |                    |                 |                    |

13/61

NA = Not Applicable ND = Not Detected

....

|                                                       |                |                                   | METHOD             | 82/U - TCL BASE | E NEUTRAL COMPOUNDS | S               |                    |                 |                    |
|-------------------------------------------------------|----------------|-----------------------------------|--------------------|-----------------|---------------------|-----------------|--------------------|-----------------|--------------------|
|                                                       |                |                                   |                    |                 |                     |                 |                    |                 |                    |
| client ID<br>Job No Lab ID<br>Sample Date             |                | WASTE S<br>A05-B179<br>10/03/2005 | A5B17902           |                 |                     |                 |                    |                 |                    |
| Analyte                                               | Units          | Sample<br>Value                   | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit  | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit |
| Acenaphthene                                          | ug/kg          | CN                                |                    | SN SN           |                     |                 |                    |                 |                    |
| Acenaphthylene                                        | NG/KG          | 0                                 | 400<br>400         | AN              |                     | AN              |                    | NA              |                    |
| Anthracene                                            | UG/KG          | QN                                | 007                | NA              |                     | AN              |                    | AN              |                    |
| Benzo(a)anthracene<br>Benzo(h)fluononthono            | UG/KG          |                                   | 400                | NA              |                     | NA              |                    | AN              | -                  |
| Benzo(b)fluoranthene<br>Benzo(k)fluoranthene          | UG/KG          |                                   | 007                | NA              | -                   | NA              |                    | NA              |                    |
| Benzo(ghi)perylene                                    | ug/kg          | 0 t 1<br>7 C F                    | 007                | A N             |                     | NA              |                    | NA              |                    |
| Benzo(a)pyrene                                        | uG/KG          |                                   | 007                | AN              |                     | AN              |                    | NA              |                    |
| Benzyl alcohol                                        | ng/kg          | QN                                | 700                | NA              |                     | NA              |                    | AN              |                    |
| BIS(Z-chloroethoxy) methane                           | UG/KG          | Q                                 | 400                | NA              |                     | NA              |                    | NA              |                    |
| BISKZ-GNLOFOEINYL) ETHER<br>2.2'-Oxvhis(1-rhloronson) |                | Q I                               | 007                | NA              |                     | NA              |                    | NA              |                    |
| Bis(2-ethylhexyl) phthalate                           | ne/ke          | UN - 27 -                         | 007                | A N             |                     | NA              |                    | NA              | •                  |
| 4-Bromophenyl phenyl ether                            | UG/KG          |                                   | 007                | AN              | -                   | AN              |                    | NA              | -                  |
| Butyl benzyl phthalate                                | UG/KG          | Q                                 | 400                | NA              |                     | AN              |                    | AN              |                    |
| 4-Chloroan1Line<br>2-Chloronan4thalono                | UG/KG          | 2                                 | 400                | AN              |                     | NA              |                    | N               |                    |
| 4-Chlorophenyl phenyl ether                           |                |                                   | 007                | A N             |                     | NA              |                    | NA              |                    |
| Chrysene                                              | UG/KG          | 43 J                              | 00 <del>1</del>    | AN<br>AN        |                     | A N             |                    | NA              |                    |
| Dibenzo(a,h)anthracene                                | UG/KG          |                                   | 400                | A N             |                     | AN              |                    | NA              |                    |
| Dibenzofuran                                          | UG/KG          | ND                                | 400                | NA              | -                   | NA              |                    | AN              |                    |
| 01-n-butyl phthalate                                  | UG/KG          | 9                                 | 400                | NA              | -                   | NA              |                    | NA              |                    |
| 1,3-Dichlorobenzene                                   | UG/KG<br>UG/KG |                                   | 007                | N N N           |                     | NA              |                    | NA              |                    |
| 1,4-Dichlorobenzene                                   | UG/KG          | 2                                 | 400                | AN              |                     | AN              |                    | AN              | -                  |
| 3,3'-Dichlorobenzidine                                | UG/KG          | Q                                 | 400                | NA              | -                   | NA              |                    | NA              |                    |
| Diethyl phthalate<br>Dimethyl chtholoto               | UG/KG          | 2                                 | 400                | NA              |                     | NA              |                    | NA              |                    |
| 2.4-Dinitrotoluene                                    | UG/KG          |                                   | 007                | AN              |                     | A N             |                    | NA              | -                  |
| 2,6-Dinitrotoluene                                    | UG/KG          | Q                                 | 007                | NA              |                     | NA N            |                    | AN              | -                  |
| Di-n-octyl phthalate                                  | NG/KG          | QN                                | 007                | NA              |                     | NA              |                    | NA              |                    |
| r Luoranthene                                         | UG/KG          | r 09                              | 400                | NA              |                     | NA              |                    | NA              | -                  |
| r tuorene<br>Hexach Lorobenzene                       | 06/KG          |                                   | 007                | NA              |                     | NA              |                    | NA              |                    |
| Hexachlorobutadiene                                   | UG/KG          | 2 2                               | 007                | άN<br>ΦN        | -                   |                 |                    | NA              |                    |
| <u>Hexachlorocyclopentadiene</u>                      | UG/KG          | 2                                 | 004                | NA              |                     | AN              |                    | AN A            |                    |
| Hexachloroethane                                      | UG/KG          | Q                                 | 400                | NA              |                     | NA              |                    | NA              |                    |
| Indeno(1,2,3-cd)pyrene                                | ne/ke          | 27 J                              | 400                | NA              |                     | NA              |                    | NA              |                    |
| 1Sopnorone<br>2-Methylnanhthalana                     | UG/KG          | 2 G                               | 007                | NA              | -                   | A N             |                    | NA              |                    |
| Naphthalene                                           | ng/kg          |                                   | 007                | AN              |                     | A N<br>D        |                    | AN              |                    |
| 2-Nitroaniline                                        | UG/KG          | QN                                | 1900               | NA              |                     | NA              |                    | NA              |                    |
| 3-Nitroaniline                                        | tic/vc         |                                   |                    |                 |                     |                 |                    |                 |                    |

NA = Not Applicable ND = Not Detected

STL Buffalo

Date: 10/21/2 Time: 13:00:41

Delta Environmen' msultants, Inc. HB Fuller waste Proje Non-ASP deliverables METHOD 8270 - TCL BASE NEUTRAL COMPOUNDS

pt: AN0326

| Client ID<br>Job NoLab ID<br>A05-B179WASTE S<br>A05-B179M5B17902<br>A05-B179M5B17902<br>A05-B179M5B17902<br>A05-B179M5B17902<br>A05-B179M5B17902Sample DateNalyteUnitsValueLimitValueLimitAnalyteUnitsValueLimitValueLimitAnalyteUnitsValueLimitValueLimitAnalyteUnitsValueLimitValueLimitAnalyteU6/KGND400NANAMontrobenzeneU6/KGND400NANAN-nitrosoofisheny lamineU6/KG34 J400NAN-nitrosoofisheny lamineU6/KG34 J400NAN-nitrosoofisheny lamineU6/KG34 J400NAN-nitrosoofisheny lamineU6/KG34 J400NAN-nitrosoofisheny lamineU6/KG34 J400NAPenanthreneU6/KG34 J400NAPrene11150-200NANAMaphthalene-D10X11150-200NAMaphthalene-D12X11150-200NAMaphthalene-D12X333Maphthalene-D12X11150-200NAMaphthalene-D12X341-120NAMaphthalene-D2X41NAMaphthalene-D5X350-200NAMaphthalene-D5X4170NAMa                                                                                                                                                                                                                                                                         |                                              |                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|
| Units         Sample         Reporting         Sample           Units         Value         Limit         Value           UG/KG         ND         1900         NA           UG/KG         ND         1900         NA           UG/KG         ND         400         NA           X         110         50-200         NA           X         111         50-200         NA           X         70         51-                     |                                              |                                                 |
| UG/KG     ND     1900       UG/KG     ND     400       UG/KG     ND     400       UG/KG     ND     400       UG/KG     34 J     400       UG/KG     34 J     400       UG/KG     34 J     400       UG/KG     ND     400       UG/KG     ND     400       UG/KG     ND     400       X     110     50-200       X     111     50-120       X     111     50-120       X     72     41-120       X     72     41-120       X     70     41-120       X     70     41-120                                                                                                                                                                                                                                                                                                                                                            | Sample Reporting Sample<br>Value Limit Value | Reporting Sample Reporting<br>Limit value Limit |
| UG/K6         ND         4.00           UG/K6         ND         4.00           UG/K6         34 J         4.00           UG/K6         54 J         4.00           UG/K6         55 J         4.00           UG/K6         55 J         4.00           UG/K6         55 J         4.00           X         109         55 J           X         110         50-200           X         111         50-200           X         70         41-120           X         70         41-120           X         70         41-120                                                                                                                                                                                                                                              |                                              | NA                                              |
| mine         UG/K6         ND         400           UG/K6         ND         34 J         400           UG/K6         34 J         400         400           UG/K6         34 J         400         400           UG/K6         55 J         400         400           UG/K6         ND         55 J         400           X         110         55 J         400           X         111         50-200         50-200           X         111         50-200         50-200           X         111         50-200         50-200           X         111         50-200         50-200           X         111         50-120         50-120           X         111         50-120         50-120           X         111         50-120         50-120           X         111         50-120         50-120           X         72         41-120         50-120           X         70         41-120         5137           X         70         41-120         5137                                                                               |                                              | NA                                              |
| -n-propylamine         UG/KG         34 J         400           UG/KG         34 J         400           UG/KG         34 J         400           UG/KG         55 J         400           UG/KG         ND         400           RR0GATE(S)         UG/KG         ND         400           RR0GATE(S)         UG/KG         ND         400           Denzene-D4         X         109         50-200           D10         X         111         50-200           D10         X         111         50-200           D10         X         111         50-200           D10         X         111         50-200           D11         X         111         50-200           D11         X         111         50-200           D11         X         111         50-200           D11         X         72         41-120           D11         X         72         41-120           D14         X         70         41-120           D14         X         70         41-120                                                                         | NA                                           | NA                                              |
| UG/KG         34 J         400           UG/KG         55 J         400           UG/KG         ND         400           RR0GATE(S)         UG/KG         ND         400           RR0GATE(S)         UG/KG         ND         400           DB         X         1109         50-200           D10         X         111         50-200           D10         X         111         50-200           D10         X         111         50-200           D11         X         72         41-120           X         111         50-120         50-120           D14         X         70         41-120           X         70         41-120         41-120           X         70         41-120         41-120 <td></td> <td>NA</td> |                                              | NA                                              |
| UG/KG 55 J 400<br>UG/KG ND 400<br>XX 1109 50-200<br>111 550-200<br>111 50-200<br>111 50-200<br>111 50-200<br>111 50-200<br>111 50-200<br>111 50-200<br>111 50-200<br>111 50-200<br>111 50-200<br>1138<br>72 41-120<br>72 41-120<br>73 71-120<br>73 71-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | NA                                              |
| UG/KG         ND         400           X         109         50-200           X         110         50-200           X         111         50-200           X         111         50-200           X         111         50-200           X         111         50-200           X         114         50-200           X         111         50-200           X         111         50-200           X         111         50-200           X         72         41-120           X         70         41-120           X         70         41-120           X         70         41-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | NA                                              |
| x     109     50-200       x     110     50-200       x     111     50-120       x     72     41-120       x     70     41-120       x     70     41-120       x     70     41-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | NA                                              |
| x     109     50-200       x     110     50-200       x     111     50-200       x     72     41-120       x     70     41-120       x     70     43-132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                                 |
| x     110     50-200       x     111     50-200       x     114     50-200       x     111     50-200       x     113     50-200       x     72     41-120       x     94     53-137       x     70     41-120       x     70     41-120       x     70     41-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | NA                                              |
| x     111     50-200       x     114     50-200       x     111     50-200       x     138     50-200       x     138     50-200       x     72     41-120       x     94     53-137       x     70     41-120       x     70     41-120       x     73     70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | NA                                              |
| x     114     50-200       x     111     50-200       x     138     50-200       x     72     41-120       x     81     55-120       x     94     53-137       x     70     41-120       x     70     41-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | NA                                              |
| 111     50-200       138     50-200       138     50-120       138     72       138     50-120       138     50-120       14     50-120       15     51-120       16     53-137       17     50       17     50       18     53-137       17     50       17     50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              | NA                                              |
| x     138     50-200       x     72     41-120       x     81     50-120       x     94     53-137       x     70     41-120       x     70     41-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                            |                                                 |
| ۲2 41-120<br>۲-120<br>۲3-137<br>۲0 41-120<br>۲3-137<br>۲0 41-120<br>۲3-137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | N                                               |
| L 81 50-120<br>24 53-137<br>20 41-120<br>25 55 55 55 55 55 55 55 55 55 55 55 55 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ·                                          | NA                                              |
| x 94 53-137<br>x 70 41-120<br>x 73-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | NA                                              |
| x 70 41-120<br>x 73-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | NA                                              |
| 2 23 120 24 25 120 24 25 25 25 25 25 25 25 25 25 25 25 25 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | NA                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA NA NA                                     | NA                                              |
| 53-132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | NA                                              |

15/61

STL Buffalo

| 10/21/7<br>13:00:4 |  |
|--------------------|--|
|                    |  |
| Date:<br>Time:     |  |
|                    |  |

Delta Environmen onsultants, Inc. HB Fuller waste Proje Non-ASP deliverables DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

spt: AN0326

| Client ID<br>Job No Lab ID<br>Sample Date | 2     | WASTE S<br>A05-B179<br>10/03/2005 | A5B17902           |                 |                    |                 |                    |                 |           |
|-------------------------------------------|-------|-----------------------------------|--------------------|-----------------|--------------------|-----------------|--------------------|-----------------|-----------|
| Analyte                                   | Units | Sample<br>Value                   | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting |
| Aroclor 1016                              | ug/kg | QN                                | 20                 | NA              |                    | NA              |                    | đN              |           |
| Aroclor 1221                              | UG/KG | QN                                | 20                 | NA              |                    | NA              |                    | NA              |           |
| roclor 1232                               | UG/KG | QN                                | 50                 | NA              |                    | NA              |                    | NA              |           |
| roclor 1242                               | UG/KG | QN                                | 20                 | NA              |                    | NA              |                    | NA              |           |
| Aroclor 1248                              | UG/KG | QN                                | 20                 | NA              |                    | AN              |                    | A N             |           |
| roclor 1254                               | UG/KG | QN                                | 20                 | NA              |                    | NA              |                    | NA              |           |
| Aroclor 1260                              | UG/KG | DN                                | 20                 | NA              |                    | NA              |                    | NA              |           |
| SURROGATE (S)                             |       |                                   |                    |                 |                    |                 |                    |                 | -         |
| Tetrachloro-m-xylene                      | ×     | 88                                | 32-148             | NA              |                    | NA              |                    | NA              |           |
| Decach lorob ipheny l                     | *     | 06                                | 36-153             | NA              |                    | NA              |                    | NA              |           |

16/61

STL Buffalo

ND = Not Detected

NA = Not Applicable

.....

|         | ÷        |
|---------|----------|
| 10/21/2 | 13:00:48 |
| Date:   | Time:    |

Delta Environmeni insultants, Inc. HB Fuller waste Projecov Non-ASP deliverables DELTA - SW8463-6010/7471-S-TCLP METALS

pt: AN0326

| client ID<br>Job No Lab ID<br>Sample Date | 9     | WASTE S<br>A05-B179<br>10/03/2005 | A5B17902           |                 |                    |                 |                    |                 |           |
|-------------------------------------------|-------|-----------------------------------|--------------------|-----------------|--------------------|-----------------|--------------------|-----------------|-----------|
| Analyte                                   | Units | Sample<br>Value                   | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting |
| Arsenic – Total                           | MG/L  | QN                                | 0.010              | NA              |                    | NA              |                    | NA              |           |
| Barium – Total                            | MG/L  | 0.43                              | 0.0020             | NA              |                    | NA              |                    | NA              | ;         |
| Cadmium - Total                           | MG/L  | 0.0016                            | 0.0010             | NA              |                    | NA              |                    | NA              |           |
| thromium – Total                          | MG/L  | ON .                              | 0,0040             | NA              |                    | NA              |                    | NA              |           |
| Mercury - Total                           | MG/L  | ND                                | 0.00020            | NA              |                    | NA              |                    | NA              |           |
| ead - Total                               | MG/L  | DN                                | 0.0050             | NA              |                    | NA              |                    | NA              |           |
| Selenium - Total                          | MG/L  | DN                                | 0.015              | NA              |                    | NA              |                    | NA              |           |
| Silver – Total                            | MG/L  | QN                                | 0.0030             | NA              |                    | NA              |                    | NA              |           |

STL Buffalo

| : 10/21/2<br>: 13:00:51 |         | -      |
|-------------------------|---------|--------|
|                         | 10/21/2 | 3:00:5 |
| Date                    | ĩ.      | Ē.     |

Delta Environmen onsultants, Inc. HB Fuller waste Projeun Non-ASP deliverables WET CHEMISTRY ANALYSIS

Pt: AN0326

| client ID<br>Job No Lab ID<br>Sample Date                 |                           | WASTE S<br>A05-B179<br>10/03/2005 | A5B17902           | WASTE W<br>A05-B179<br>10/03/2005 | A5B17901           |                           |                    |                                         |                    |
|-----------------------------------------------------------|---------------------------|-----------------------------------|--------------------|-----------------------------------|--------------------|---------------------------|--------------------|-----------------------------------------|--------------------|
| Analyte                                                   | Units                     | Sample<br>Value                   | Reporting<br>Limit | Sample<br>Value                   | Reporting<br>Limit | Sample<br>Value           | Reporting<br>Limit | Sample<br>Value                         | Reporting<br>Limit |
| corrosivity (pH)<br>pH<br>Flashpoint<br>Paint Filter Test | s.u.<br>s.u.<br>°F<br>P/F | 8.22<br>NA<br>>200<br>Passed      | 0 00               | NA<br>9.19<br>NA                  | 0                  | A N N<br>A A N<br>A A A A |                    | A N N A A A A A A A A A A A A A A A A A |                    |

## Chronology and QC Summary Package

|                                                                           |                                                                                                                               | VBLK08<br>A05-B179<br>A05-B179<br>A05-B179<br>A5B1610902<br>Sample<br>Reporting<br>Value<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                           | იი ი იი ი<br>გ გ გ გ გ გ გ გ გ გ გ<br>გ გ გ გ                                                                                 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -                                                                         | <u></u><br>м м                                                                                                                | 50 KN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                           | A5B1610902<br>Limit<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                             | VBLK08<br>A05-B179<br>A05-B179<br>Sample<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A581610902<br>Reporting<br>25<br>ערקעיעיעיעיעיעיעיעיעיעיעיעיעיעיעיעיעיעיע | <                                                                                                                             | VBLK08<br>VBLK08<br>A05-B179<br>Sample<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value<br>Value |
|                                                                           | VBLK08<br>A05-B179<br>Sample<br>Sample<br>Value<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | ₽ Q<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

the second second second second second second second second second second second second second second second se

-

| 5      | 3      |
|--------|--------|
| 0/21/  | 3:01:  |
| ate: 1 | ime: 1 |

Delta Environment nsultants, Inc. HB Fuller waste Projec Non-ASP deliverables DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

ot: AN0326

|                                           | Reporting<br>Limit |                                                                                                                                              |                                                                                                                               |
|-------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|                                           | Sample<br>Value    | NA<br>NA<br>NA<br>NA                                                                                                                         | A N N N N N N N N N N N N N N N N N N N                                                                                       |
|                                           | Reporting<br>Limit |                                                                                                                                              |                                                                                                                               |
|                                           | Sample<br>Value    | A A A A A A A A A A A A A A A A A A A                                                                                                        | NA<br>NA<br>NA<br>NA<br>NA                                                                                                    |
|                                           | Reporting<br>Limit |                                                                                                                                              |                                                                                                                               |
|                                           | Sample<br>Value    | N N N N N N N N N N N N N N N N N N N                                                                                                        | N N N N N N N N N N N N N N N N N N N                                                                                         |
| A5B1610902                                | Reporting<br>Limit | ៷៷៷៰៷                                                                                                                                        | 50-200<br>50-200<br>50-200<br>71-125<br>68-124<br>61-136                                                                      |
| VBLK08<br>A05-B179                        | Sample<br>Value    | 22222                                                                                                                                        | 92<br>93<br>108<br>102                                                                                                        |
|                                           | Units              | u6/k6<br>u6/k6<br>u6/k6<br>u6/k6<br>u6/k6                                                                                                    | жжжжж                                                                                                                         |
| Client ID<br>Job No Lab ID<br>Sample Date | Analyte            | 1,1,2-Trichloro-1,2,2-trifluor UG/KG<br>Trichlorofluoromethane UG/KG<br>Trichloroethene UG/KG<br>Vinyl chloride UG/KG<br>Total Xylenes UG/KG | Chlorobenzene-D5<br>1,4-Difluorobenzene<br>1,4-Dichlorobenzene<br>Toluene-D8<br>P-Bromofluorobenzene<br>1,2-Dichloroethane-D4 |

| Client ID<br>Job No Lab ID<br>Sample Date       |              | VBLK51<br>A05-B179 | A5B1593502         |                 |           |                 |           |                 |                    |
|-------------------------------------------------|--------------|--------------------|--------------------|-----------------|-----------|-----------------|-----------|-----------------|--------------------|
| Analyte                                         | Units        | Sample<br>Value    | Reporting<br>Limit | Sample<br>Value | Reporting | Sample<br>Value | Reporting | Sample<br>Value | Reporting<br>Limit |
| Ace tone<br>Benzene                             | u6/L<br>U6/L | Q Q                | 5.0                | NA              |           | NA              |           | NA              |                    |
| Bromodichloromethane<br>Bromoform               | UG/L         | Q                  |                    | A N             |           | AN<br>AN        |           | N N             |                    |
| Bromome thane                                   | u6/L         | 2 2                |                    | NA<br>NA        | -         | NA              |           | N A<br>N A      |                    |
| carbon Disulfide                                | UG/L         | Q Q                | 5.0                | AN<br>NA        |           | NA              |           | NA              |                    |
| Carbon Tetrachloride                            | UG/L         | Q                  | 1.0                | NA              |           | AN              |           | AN              |                    |
| Chloroe thane                                   | UG/L<br>UG/L | Q N                | 1.0                | NA<br>NA        |           | NA              |           | NA              |                    |
| Chloroform<br>Chloromethane                     |              | Q I                | 1.0                | NA              |           | NA              |           | NA              |                    |
| Cyclohexane                                     | Ve/L<br>Ve/L | N N                |                    | NA              |           | NA              |           | NA              |                    |
| 1,2-Dibromoethane<br> Dihromoch oromethane      |              | Q                  | 1.0                | NA              |           | A N             | -         | AN              | -                  |
| 1,2-Dibromo-3-chloropropane                     | ue/r         | 20                 | 0.0                | NA              |           | NA<br>NA        |           | NA              |                    |
| 1,2-Dichlorobenzene                             |              | Q                  | 1.0                | NA              |           | NA              |           | AN              |                    |
| 1,4-Dichlorobenzene                             | ue/ r        | N N                | 0.1                | NA              |           | NA<br>NA        |           | NA              |                    |
| Dichlorodifluoromethane                         |              | QN                 | 1.0                | NA              |           | NA              | -         | NA              |                    |
| 1,2-Dichloroethane                              | ue/L         | Q Q                | 0.1                | NA              |           | NA              |           | NA<br>NA        |                    |
| 1,1-Dichloroethene<br>cis-1,2-Dichloroethene    |              | QN                 | 1.0                | NA              |           | NA              |           | NA              |                    |
| trans-1,2-Dichloroethene                        | ue/r         | n n                |                    | N N             |           | A N<br>A N      |           | A N<br>M        |                    |
| 1,2-Dichloropropane                             | UG/L         | QN                 | 1.0                | NA              |           | NA              |           | NA              |                    |
| trans-1,3-Dichloropropene                       | UG/L<br>UG/L | QN QN              | 1.0                | A N<br>A N      |           | NA              |           | NA              |                    |
| Ethylbenzene                                    | UG/L         | QN                 | 1.0                | NA              |           | NA              |           | AN              |                    |
| Isopropylbenzene                                |              | ON ON              | 0.0                | NA              |           | AN              |           | NA              |                    |
| Methyl acetate                                  | UG/L         | DN                 | 1.0                | NA              |           | NA              |           | AN              |                    |
| Methylcyclohexane                               | NG/L         | QN                 | 1.0                | NA              |           | NA              |           | NA              |                    |
| Metnylene chloride<br>L-Methvl-2-nentanone      |              | Q Q                |                    | AN              |           | NA              |           | NA              |                    |
| Methyl-t-Butyl Ether (MTBE)                     | UG/L         | QN                 | 1.0                | AN              |           | AN<br>N         |           | A N             |                    |
| Styrene                                         | ∩G/L         | QN                 | 1.0                | NA              |           | NA              |           | NA              |                    |
| 1,1,4,4-Tetrachloroethane<br> Tetrachloroethene |              | 8                  | 0.0                | AN              |           | A N             |           | AN              |                    |
| Toluene                                         | ug/r         | QN<br>QN           | 1.0                | AN              |           | NA              |           | NA              |                    |
| 1,2,4-Trichlorobenzene                          | UG/L         | QN                 | 1.0                | NA              |           | NA              |           | NA              |                    |
| 1,1,1-1riculoroetnane                           | מפ/ ר        | ND                 | <b>D</b>           | AN              |           | AN              |           | AN              |                    |

-

| 1/2   | 1:03  |
|-------|-------|
| 10/2  | 3:0   |
| Date: | Time: |

## Delta Environmen pusultants, Inc. HB Fuller waste Project Non-ASP deliverables DELTA – METHOD 8260/25 ML – TCL VOLATILE ORGANICS

pt: AN0326

|                                           |       |                    | -                  |                 |                    |                 |                    |                 |                    |
|-------------------------------------------|-------|--------------------|--------------------|-----------------|--------------------|-----------------|--------------------|-----------------|--------------------|
| Client ID<br>Job No Lab ID<br>Sample Date |       | VBLK51<br>A05-B179 | A5B1593502         |                 |                    |                 |                    |                 |                    |
| Analyte                                   | Units | Sample<br>Value    | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit |
| trifluor                                  | ∩e/r  | ND                 | 1.0                | NA              |                    | NA              |                    | NA              |                    |
| ne thane                                  | UG/L  | ND                 | 1.0                | NA              |                    | NA              |                    | NA              |                    |
| Trichloroethene                           | UG/L  | ND                 | 1.0                | NA              |                    | NA              |                    | NA              |                    |
| Vinyl chloride                            | UG/L  | ND                 | 1.0                | NA              |                    | NA              |                    | NA              |                    |
| Total Xylenes                             | UG/L  | ND                 | 3.0                | NA              |                    | NA              |                    | NA              |                    |
| IS/ SURROGATE(S)                          |       |                    |                    |                 |                    |                 |                    |                 |                    |
| Chlorobenzene-D5                          | *     | 66                 | 50-200             | NA              |                    | NA              |                    | NA              |                    |
| 1,4-Difluorobenzene                       | *     | 101                | 50-200             | NA              |                    | NA              |                    | NA              |                    |
| 1,4-Dichlorobenzene-D4                    | *     | 95                 | 50-200             | NA              |                    | NA              |                    | NA              |                    |
| Toluene-D8                                | *     | 103                | 76-122             | NA              |                    | NA              |                    | NA              |                    |
| p-Bromofluorobenzene                      | *     | 95                 | 73-120             | NA              |                    | NA              |                    | NA              | -                  |
| 1,2-Dichloroethane-D4                     | *     | 118                | 72-143             | NA              |                    | NA              |                    | NA              |                    |
|                                           |       |                    |                    |                 |                    |                 |                    | L               | 1                  |

| A5B1610901         |
|--------------------|
| Reporting<br>Limit |
| 25                 |
| <u>п</u> ил        |
| <u>го п</u>        |
| 5                  |
| 5                  |
| <u>ы</u> п         |
| <b>n in</b>        |
| ŝ                  |
|                    |
| <u> </u>           |
|                    |
| 5                  |
| <b>ю</b> и         |
| <b>л I</b> Л       |
| ιΩ Ι               |
| ю и<br>            |
|                    |
|                    |
|                    |
|                    |
| 2                  |
| ľ, ř               |
| 0 5                |
| ы <b>Г</b> О       |
| ŝ                  |
| ς.                 |
| 25                 |
| 5                  |
| <u>г</u>           |
| <u> </u>           |
| <u>.</u>           |
| <b>^</b>           |
| ~ <b>"</b>         |
| <b>~ </b>          |
| •                  |

| 10/21/20 | 5     |
|----------|-------|
| Date:    | Time: |

Delta Environment nsultants, Inc. HB Fuller waste Projection-ASP deliverables DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

t: AN0326

|                                           | Reporting<br>Limit |                                                                                                                                              |                                                                                                                                                      |
|-------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Sample<br>Value    | A A A A A A A A A A A A A A A A A A A                                                                                                        | N N N N N N N N N N N N N N N N N N N                                                                                                                |
| A5B17902SD                                | Reporting<br>Limit | 2200                                                                                                                                         | 50-200<br>50-200<br>50-200<br>71-125<br>68-124<br>61-136                                                                                             |
| WASTE S<br>A05-B179<br>10/03/2005         | Sample<br>Value    | a a <sup>69</sup> a a                                                                                                                        | 85<br>88<br>7 7<br>9<br>7<br>9<br>8<br>8<br>3<br>8<br>8<br>9<br>3                                                                                    |
| A5B17902MS                                | Reporting<br>Limit | 2 2 0 0 0 5 5                                                                                                                                | 50-200<br>50-200<br>50-200<br>71-125<br>68-124<br>61-136                                                                                             |
| WASTE S<br>A05-B179<br>10/03/2005         | Sample<br>Value    | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N                                                              | 88<br>9 1<br>9 8<br>9 8<br>9 8<br>9 8<br>9 8                                                                                                         |
| A5B1610901                                | Reporting<br>Limit | νυνδύ                                                                                                                                        | 50-200<br>50-200<br>50-200<br>71-125<br>68-124<br>61-136                                                                                             |
| MSB08<br>A05-B179                         | Sample<br>Value    | 8 8 <sup>2</sup> 8 9                                                                                                                         | 98<br>94<br>106<br>100                                                                                                                               |
|                                           | Units              | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                                                                                             | *****                                                                                                                                                |
| Client ID<br>Job No Lab ID<br>Sample Date | Analyte            | 1,1,2-Trichloro-1,2,2-trifluor UG/KG<br>Trichlorofluoromethane UG/KG<br>Trichloroethene UG/KG<br>Vinyl chloride UG/KG<br>Total Xylenes UG/KG | LS/ SURKUGAIE(S)<br>Chlorobenzene-D5<br>1,4-Difluorobenzene<br>1,4-Dichlorobenzene-D4<br>Toluene-D8<br>P-Bromofluorobenzene<br>1,2-Dichloroethane-D4 |

STL Buffalo

NA = Not Applicable ND = Not Detected

| Client ID<br>Job No Lab ID<br>Sample Date         |       | MSB51<br>A05-B179 | A5B1593501         |                 |                    |                 |           |                 |                    |
|---------------------------------------------------|-------|-------------------|--------------------|-----------------|--------------------|-----------------|-----------|-----------------|--------------------|
| Analyte                                           | Units | Sample<br>Value   | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting | Sample<br>Value | Reporting<br>Limit |
| Aretone                                           | .,    |                   |                    |                 |                    |                 |           | ABLUE           |                    |
| Benzene                                           |       | 160               | 2.0                | NA              |                    | NA              |           | NA              |                    |
| Bromodichloromethane                              |       | 2 2               |                    | N               |                    | NA              | -         | NA              |                    |
| Bromoform                                         | UG/L  | 53 63             |                    | AN              |                    | AN              |           | AN              |                    |
| <b>Bromome thane</b>                              | UG/L  | ទ                 | 0.1                | AN<br>AN        |                    | AN<br>AN        |           | AN              |                    |
| 2-Butanone                                        | NG/L  | 170               | 5.0                | NA              |                    | AN              |           | AN              |                    |
| Carbon Disulfide                                  | UG/L  | 29                | 1.0                | NA              |                    | NA              |           | AN              |                    |
| carbon letrachloride                              |       | 29                | 1.0                | NA              | -                  | NA              |           | NA              |                    |
| ch lorge thane                                    | 1/9/1 | 5                 |                    | NA              |                    | NA              |           | NA              |                    |
| Chloroform                                        |       | ) F               |                    | AN .            |                    | NA              |           | NA              |                    |
| Chloromethane                                     |       | 24                | 20                 | d N             | -                  | AN              |           | NA              |                    |
| cyclohexane                                       | UG/L  | 52                | 1.0                | NA<br>NA        |                    | <b>AN</b>       | -         | AN              |                    |
| 1,2-Dibromoethane                                 | UG/L  | 26                | 1.0                | NA              |                    | AN              |           | AN              |                    |
| VIDTOWOCH LOFOME THANE                            | 16/L  | 5 22              | 1-0                | NA              | -                  | NA              | -         | AN              |                    |
| 1,2-Dichlorobenzene                               | 06/L  | 24                | 0.1                | AN              |                    | NA              |           | NA              |                    |
| 1,3-Dichlorobenzene                               |       | 24                | 0.                 | AN              |                    | AN              |           | AN              |                    |
| 1,4-Dichlorobenzene                               | NG/L  | 24                | 1.0                | NA              |                    | NA              |           | AN              |                    |
| Ulchlorod1fluoromethane                           | UG/L  | 52                | 1.0                | NA              |                    | NA              |           | NA              |                    |
| 1.2-Dichloroethane                                | 06/L  |                   | 0.1                | AN              |                    | NA              |           | NA              |                    |
| 1,1-Dichloroethene                                | UG/L  | 29                | 0.1                | AN              |                    | AN              |           | AN              |                    |
| cis-1,2-Dichloroethene                            | UG/L  | 56                | 1.0                | NA              |                    | AN              |           | AN<br>AN        |                    |
| trans-1,2-Dichloroethene                          | UG/L  | 29                | 1.0                | NA              |                    | NA              |           | AN              |                    |
| 1, Z-D1chloropropane                              | UG/L  | 30                | 1.0                | NA              | -                  | NA              |           | NA              |                    |
| cistication opropene<br>trans-1.3-Dichloronronene |       | 52                | 0.0                | AN              |                    | NA              |           | NA              |                    |
| Ethylbenzene                                      |       | 26                |                    | NA N            |                    | đN              | •.        | AN N            |                    |
| 2-Hexanone                                        |       | 160               | 5.0                | NA              |                    | NA              |           | NA              |                    |
| Isopropylbenzene                                  | NG/L  | 24                | 1.0                | NA              |                    | NA              |           | NA              |                    |
| metnyl acetate                                    | UG/L  | 33                | 1.0                | NA              |                    | NA              |           | NA              |                    |
| Methylene rhloride<br>Methylene rhloride          |       | 22                | 0.1                | AN              |                    | NA              |           | NA              |                    |
| 4-Methyl-2-nentanone                              | 00/ L | 150               |                    |                 |                    |                 |           |                 | -                  |
| Methyl-t-Butyl Ether (MTBE)                       |       | 32                | 0.1                | NA.             |                    | AN              | -         |                 |                    |
| Styrene                                           | UG/L  | 26                | 1.0                | NA              |                    | NA              |           | NA              |                    |
| 1,1,2,2-Tetrachloroethane                         | UG/L  | 24                | 1.0                | NA              |                    | NA              |           | NA              | -                  |
| Tetrachloroethene                                 | UG/L  | 50                | 1.0                | NA              |                    | NA              |           | A               |                    |
| louene<br>1 2 4-Trichlorohenzene                  |       | 07                |                    | AN              |                    | AN              |           | AN              |                    |
| 1,1,1-Trichloroethane                             |       | 30                | 0.1                | AN              |                    | AN              |           | A N             | -                  |
|                                                   |       |                   |                    |                 |                    |                 |           |                 |                    |

the and that the base b

-

STL Buffalo

.

| 10/21/2 |       |
|---------|-------|
| Date:   | Time: |

Delta Environmen Disultants, Inc. HB Fuller waste Proje Non-ASP deliverables DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS

pt: AN0326

|                                           | Reporting<br>Limit |                                                                                                                                         |                                                                                                                                     |
|-------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Repo               |                                                                                                                                         |                                                                                                                                     |
|                                           | Sample<br>Value    | A A A A A A A A A A A A A A A A A A A                                                                                                   | N N N N N N N N N N N N N N N N N N N                                                                                               |
|                                           | Reporting<br>Limit |                                                                                                                                         |                                                                                                                                     |
|                                           | Sample<br>Value    | A N<br>A N<br>A N<br>A N<br>A N<br>A N                                                                                                  | A N N N N N A N N A N N N N N N N N N N                                                                                             |
|                                           | Reporting<br>Limit |                                                                                                                                         |                                                                                                                                     |
|                                           | Sample<br>Value    | A N<br>A N<br>A N<br>A N<br>A N<br>A N<br>A N                                                                                           | 4 N<br>4 N<br>4 N<br>4 N<br>4 N<br>4 N<br>4 N<br>4 N<br>4 N<br>4 N                                                                  |
| A5B1593501                                | Reporting<br>Limit | 7.00<br>0.00<br>0.00<br>0.00                                                                                                            | 50-200<br>50-200<br>50-200<br>76-122<br>73-120<br>72-143                                                                            |
| MSB51<br>A05-B179                         | Sample<br>Value    | 30<br>33<br>34<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24                                            | 95<br>95<br>97<br>120                                                                                                               |
|                                           | Units              | u6/L<br>U6/L<br>U6/L<br>U6/L                                                                                                            | * * * * * * *                                                                                                                       |
| client ID<br>Job No Lab ID<br>Sample Date | Analyte            | 1,1,2-Trichloro-1,2,2-trifluor UG/L<br>Trichlorofluoromethane UG/L<br>Trichloroethene UG/L<br>Vinyl chloride UG/L<br>Total Xylenes UG/L | chlorobenzene-D5<br>1,4-Difluorobenzene-D4<br>1,4-Dichlorobenzene-D4<br>Toluene-D8<br>P-Bromofluorobenzene<br>1,2-Dichloroethane-D4 |

27/61

STL Buffalo

|                                                          |              |                     | DELTA-MET.         | DELTA-METHOD 8270 - TCL B | BASE NEUTRALS COMPOUNDS | SQNDO           | -                  |                 | i<br>T             |
|----------------------------------------------------------|--------------|---------------------|--------------------|---------------------------|-------------------------|-----------------|--------------------|-----------------|--------------------|
|                                                          |              |                     |                    |                           | -                       |                 |                    |                 |                    |
| client ID<br>Job No Lab ID<br>Sample Date                |              | s Blank<br>A05-B179 | A5B1542502         |                           |                         |                 |                    |                 |                    |
| Analyte                                                  | Units        | Sample<br>Value     | Reporting<br>Limit | Sample<br>Value           | Reporting<br>Limit      | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit |
| Acenaphthene                                             | U6/L         | QN                  | 10                 | NA                        |                         | <b>N</b>        |                    |                 |                    |
| Acenaphthylene<br>Anthracene                             |              | Q                   | 2                  | NA                        |                         | AN              |                    | NA              |                    |
| Benzo(a)anthracene                                       | UG/L         | ON ON               | <u></u>            | NA                        |                         | NA              |                    | NA              |                    |
| Benzo(b) f luoranthene                                   | ∩G∕L         | Q                   | 2 E                | AN                        |                         | AN              |                    | NA              |                    |
| Benzo(K)T Luoranthene<br>Benzo(ghi)nervlene              | UG/L         | 2                   | 99                 | NA                        |                         | NA              |                    | AN              |                    |
| Benzo(a)pyrene                                           | ug/L<br>UG/L | CN CN               | 2 5                | AN A                      |                         | NA              |                    | NA              |                    |
| Benzyl alcohol                                           | UG/L         | Ð                   | 20                 | AN<br>N                   |                         | NA              |                    | NA              |                    |
| Bls(Z-chloroethoxy) methane                              | UG/L         | Q.                  | 10                 | NA                        |                         | NA              |                    | AN              |                    |
| Bistc-cntoroetnyl) ether<br>2.2'-Oxybis(1-chloronronana) | 1/6/L        | 2 9                 | 5 6                | NA                        |                         | NA              |                    | AN              |                    |
| Bis(2-ethylhexyl) phthalate                              |              |                     | 2 6                | NA                        | -                       | NA              |                    | NA              |                    |
| 4-Bromophenyl phenyl ether                               | UG/L         |                     | 2 0                | AN                        |                         | AN              |                    | NA              |                    |
| nzyl phthalate                                           | n6∕L         | QN                  | 9                  | NA                        |                         | AN              |                    | AN              |                    |
| 4-un Loroan 1 Line<br>2-Ch Loronanh tha Lene             | 1/9/L        | <b>0</b>            | 5 č                | NA                        |                         | NA              |                    | NA              |                    |
| 4-Chlorophenyl phenyl ether                              | UG/L         | 2 Q                 | 2.0                | A N<br>A N                |                         | NA              | -                  | NA              |                    |
| Chrysene                                                 | UG/L         | <u>N</u>            | ę                  | NA                        | -                       | AN              |                    | NA              |                    |
| V1Denzo(a,h)anthracene<br>Dibenzofuran                   | UG/L         | 9                   | 6                  | NA                        |                         | NA              | • .                | NA              |                    |
| Di-n-butyl phthalate                                     | UG/L         |                     | <u> </u>           | AN                        |                         | AN              |                    | NA              |                    |
| 1,2-Dichlorobenzene                                      | ∩G∕L         | Q                   | 9                  | NA                        |                         | AN<br>AN        |                    | NA              |                    |
| 1,3-Ulchlorobenzene                                      | 1/9/L        | 2 1                 | 6 6                | NA                        |                         | NA              |                    | NA              |                    |
| 3,3'-Dichlorobenzidine                                   | 06/L         | 20                  | 202                | AN                        |                         | NA              |                    | NA              |                    |
| Diethyl phthalate                                        | n6∕́L        | Q                   | 9                  | NA                        |                         | NA              |                    | NA              |                    |
| Dimethyl phthalate<br>2 4-Divitrotoluana                 | 1/9/L        | 8                   | 6 6                | NA                        |                         | NA              |                    | NA              |                    |
| 2,6-Dinitrotoluene                                       | 00/L         | 2 2                 | 2 0                | AN                        |                         | AN              |                    | AA              |                    |
| Di-n-octyl phthalate                                     | uG/L         | QN                  | 10                 | NA                        |                         | NA              |                    | AN N            |                    |
| Fluoranthene                                             | UG/L         | ON                  | 10                 | NA                        |                         | NA              |                    | NA              |                    |
| F Luorene<br>Levach I arabarana                          | UG/L         | 2                   | 99                 | NA                        |                         | NA              |                    | NA              |                    |
| Hexachlorobutadiene                                      | 06/L         |                     | 2 6                | AN                        |                         | A N             |                    | NA              |                    |
| Hexachlorocyclopentadiene                                | UG/L         | 2 2                 | 45                 | AN                        |                         | AN              |                    | NA              |                    |
| Hexachloroethane                                         | uG/L         | QN                  | 10                 | NA                        |                         | AN              |                    | NA              |                    |
| Indeno(1,2,3-cd)pyrene                                   | ug/L         | 9                   | ę (                | NA                        |                         | NA              |                    | NA              |                    |
| Lsopnorone<br>2-Methylnaphthalene                        | UG/L         | Q N                 | <u></u>            | AN                        |                         | NA              |                    | NA              |                    |
| Naphthalene                                              | ug/L         | D D                 | 2 6                | AN                        |                         | AN              |                    | AN              |                    |
| Z-Nitroaniline                                           |              | Q<br>N              | 2 02               | NA                        |                         | NA              |                    | AN              |                    |
| 3-Nitroaniline                                           | 1/541        | CN                  | 2                  | NA                        |                         | NA              |                    | A M             |                    |

-

| 0/2   | 2     |
|-------|-------|
| Date: | Time: |

Delta Environment nsultants, Inc. HB Fuller waste Projection-ASP deliverables DELTA-METHOD 8270 - TCL BASE NEUTRALS COMPOUNDS

ot: AN0326

| Client ID<br>Job No Lab ID<br>Sample Date |       | s Blank<br>AO5-B179 | A5B1542502         |                 |                    |                 |                    |                 |                    |
|-------------------------------------------|-------|---------------------|--------------------|-----------------|--------------------|-----------------|--------------------|-----------------|--------------------|
| Analyte                                   | Units | Sample<br>Value     | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit |
| 4-Nitroaniline                            | 1/90  | QN                  | 20                 | NA              |                    | NA              |                    | NA              |                    |
| Nitrobenzene                              | UG/L  | QN                  | 10                 | NA              |                    | NA              | -                  | NA              |                    |
| N-nitrosodiphenylamine                    | UG/L  | DN                  | 9                  | NA              |                    | NA              |                    | NA              |                    |
| N-Nitroso-Di-n-propylamine                | UG/L  | QN                  | 9                  | NA              |                    | NA              |                    | NA              |                    |
| Phenanthrene                              | UG/L  | QN                  | 9                  | NA              |                    | NA              |                    | NA              |                    |
| Pyrene                                    | UG/L  | ND                  | 9                  | NA              |                    | NA              |                    | NA              |                    |
| 1,2,4-Trichlorobenzene                    | UG/L  | QN                  | 10                 | NA              |                    | NA              |                    | NA              |                    |
| IS/SURROGATE(S)                           |       |                     | 000                |                 |                    |                 |                    |                 |                    |
| 1,4-D1chlorobenzene-D4                    | ĸ     | 100                 | 002-05             | NA              |                    | NA              |                    | NA              |                    |
| Naph tha Lene-D8                          | *     | 106                 | 50-200             | NA              |                    | NA              |                    | NA              |                    |
| Acenaph thene-D10                         | ж     | 107                 | 50-200             | NA              |                    | NA              |                    | NA              |                    |
| Phenanthrene-D10                          | *     | 113                 | 50-200             | NA              |                    | NA              |                    | NA              |                    |
| Chrysene-D12                              | *     | 104                 | 50-200             | NA              |                    | NA              |                    | NA              |                    |
| Perylene-D12                              | ×     | 112                 | 50-200             | NA              |                    | NA              |                    | NA              |                    |
| Nitrobenzene-D5                           | ×     | 80                  | 52-120             | NA              |                    | NA              |                    | NA              |                    |
| 2-Fluorobiphenyl                          | *     | 85                  | 21-120             | NA              |                    | NA              |                    | NA              |                    |
| p-Terphenyl-d14                           | *     | 101                 | 36-138             | NA              |                    | NA              |                    | NA              |                    |
| Phenol-D5                                 | *     | 30                  | 13-120             | NA              |                    | NA              |                    | NA              |                    |
| 2-Fluorophenol                            | *     | 77                  | 21-120             | NA              |                    | NA              |                    | NA              |                    |
| 2,4,6-Tribromophenol                      | *     | 6                   | 62-133             | NA              |                    | NA              |                    | NA              |                    |

29/61

....

| client ID<br>Job No Lab ID<br>Sample Date                    |                | S Blank<br>A05-B179 | A581543303         |                 |                    |                 |                    |                 |                    |
|--------------------------------------------------------------|----------------|---------------------|--------------------|-----------------|--------------------|-----------------|--------------------|-----------------|--------------------|
| Analyte                                                      | Units          | Sample<br>Value     | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit |
| Acenaph thene<br>Acenaph thul and                            | UG/KG          | Q                   | 320                | NA              |                    | NA              |                    | NA              |                    |
| Authracene<br>Anthracene                                     | UG/KG          | ON ON               | 320                | NA              |                    | NA              |                    | NA              |                    |
| Benzo(a)anthracene                                           | UG/KG          | Q                   | 320                | NA              |                    | AN<br>AN        |                    | NA              |                    |
| Benzo(b)fluoranthene<br>Benzo(k)fluoranthene                 | UG/KG          | QN                  | 320                | NA              | -                  | NA              |                    | NA              |                    |
| Benzo(ghi)perylene                                           | UG/KG          |                     | 320                | NA              |                    | NA              |                    | NA              |                    |
| Benzo(a)pyrene                                               | UG/KG          | 2 2                 | 320                | AN              |                    | NA              |                    | AN              |                    |
| Benzyl alcohol                                               | NG/KG          | QN                  | 320                | A N             |                    | AN              |                    | NA              |                    |
| Bis(2-chloroethoxy) methane                                  | NG/KG          | ND                  | 320                | NA              |                    | AN<br>AN        |                    | NA              |                    |
| Bis(2-chloroethyl) ether                                     | UG/KG          | ND                  | 320                | NA              |                    | NA              |                    | AN              |                    |
| Bis(2-ethylbevvl) shthaleto                                  |                | QN I                | 320                | NA              |                    | NA              |                    | NA              |                    |
| 4-Bromobhenvi bhenvi ether                                   | 06/KG          |                     | 320                | NA              |                    | NA              |                    | NA              |                    |
| Butyl benzyl phthalate                                       |                | ON ON               | 025                | AN<br>AN        |                    | NA              |                    | NA              |                    |
| 4-Chloroaniline                                              | UG/KG          | Q                   | 320                | AN              |                    | AN              |                    | NA              |                    |
| 2-chloronaphthalene                                          | UG/KG          | ND                  | 320                | NA              |                    | AN              |                    | NA              |                    |
| 4-Chlorophenyl phenyl ether                                  | UG/KG          | QN                  | 320                | NA              |                    | AN              |                    | AN              |                    |
| un ysene<br>Dibenzo(a h)anthracene                           | UG/KG          | ON A                | 320                | NA              |                    | NA              |                    | NA              | -                  |
| Dibenzofuran                                                 | ug/kg          | D D                 | 025                | A N             |                    | NA              |                    | NA              |                    |
| Di-n-butyl phthalate                                         | UG/KG          | QN                  | 320                | AN              |                    | AN              |                    | NA              |                    |
| 1,2-Dichlorobenzene                                          | UG/KG          | Ŋ                   | 320                | AN              |                    | AN              |                    | AN              |                    |
| 1,3-Dichlorobenzene                                          | UG/KG          | ŊŊ                  | 320                | NA              |                    | NA              |                    | AN<br>AN        |                    |
| 1,4-V1chlorobenzene<br>3 3'-Dichlorobenzidioo                | UG/KG          | QN 1                | 320                | NA              |                    | NA              |                    | NA              |                    |
| Diethyl phthalate                                            | חפ/עפ<br>חפ/עפ |                     | 025                | NA              |                    | NA              |                    | NA              | -                  |
| Dimethyl phthalate                                           | UG/KG          | DN N                | 320                | AN              |                    | A N             |                    | NA              | -                  |
| 2,4-Dinitrotoluene                                           | UG/KG          | N                   | 320                | AN N            | -                  | AN<br>AN        |                    | AN<br>AN        |                    |
| 2,6-Dinitrotoluene                                           | UG/KG          | QN                  | 320                | NA              |                    | NA              |                    | AN AN           |                    |
| Di-n-octyl phthalate                                         | NG/KG          | N                   | 320                | NA              |                    | NA              |                    | NA              |                    |
| F Luoranthene                                                | UG/KG          | <b>DN</b>           | 320                | NA              |                    | NA              |                    | NA              |                    |
| F Luorene                                                    | UG/KG          | QN                  | 320                | NA              |                    | NA              |                    | NA              |                    |
| He Xach Loroben Zene<br>He Yach Lorobut adiana               | UG/KG          | ON A                | 320                | NA              |                    | AN              |                    | NA              |                    |
| Hexach Lorocyc Lopentad iene<br>Hexach Lorocyc Lopentad iene | 06/KG          | UN UN               | 320                | A N             |                    | NA              |                    | NA              |                    |
| Hexach Loroe thane                                           | UG/KG          |                     | 020                | NA              |                    | AN              |                    | NA              |                    |
| Indeno(1,2,3-cd)pyrene                                       | UG/KG          | QN<br>DN            | 320                | AN<br>NA        |                    | AN              |                    | AN              |                    |
| Isophorone                                                   | UG/KG          | Q.                  | 320                | AN              |                    | UN<br>N         |                    | AN<br>AN        |                    |
| 2-Me thy Lnaph tha lene                                      | UG/KG          | QN                  | 320                | NA              |                    | NA              |                    | UN<br>N         |                    |
| Naphthalene                                                  | UG/KG          | Ŋ                   | 320                | NA              |                    | NA              |                    | NA              |                    |
| 2-Nitroaniline                                               | NG/KG          | ND                  | 1600               | NA              |                    | NA              |                    | NA              |                    |
| alline                                                       | 2//21          |                     |                    |                 | -                  |                 | -                  |                 |                    |

-

STL Buffalo

|          | 1,    |
|----------|-------|
| 10/21/20 | :01:2 |
| Date:    | Time: |

Delta Environmenté isultants, Inc. HB Fuller waste Project.--Non-ASP deliverables METHOD 8270 - TCL BASE NEUTRAL COMPOUNDS

t: AN0326

|                                           | T                  | T                                  |                                         | 1                                       |                                                |                                                     |
|-------------------------------------------|--------------------|------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------|-----------------------------------------------------|
|                                           | Reporting          |                                    |                                         |                                         |                                                |                                                     |
|                                           | Sample<br>Value    | N N N<br>N N N                     | A N<br>A N<br>A N                       | A N N N N N N N N N N N N N N N N N N N | A A A A A A A A A A A A A A A A A A A          | A N N<br>A N N<br>A N N                             |
| · · ·                                     | Reporting<br>Limit |                                    |                                         |                                         |                                                |                                                     |
|                                           | Sample<br>Value    | A N N A N                          | A N N N N N N N N N N N N N N N N N N N | A A A A A A A A A A A A A A A A A A A   | A A A A A                                      | A N N N N N N N N N N N N N N N N N N N             |
|                                           | Reporting<br>Limit |                                    |                                         |                                         |                                                |                                                     |
|                                           | Sample<br>Value    | A A A A                            | K K K K                                 | द द द द<br>2 2 2 2                      | 4 4 4 4 4                                      | C C C C                                             |
| A5B1543303                                | Reporting<br>Limit | 1600<br>320<br>320                 | 320<br>320<br>320                       | 50-200<br>50-200<br>50-200              | 50-200<br>50-200<br>41-120<br>50-120<br>53-137 | 41-120<br>33-120<br>53-132                          |
| S Blank<br>AO5-B179                       | Sample<br>Value    |                                    | 8 9 9<br>2                              | 102<br>101<br>102                       | 8 5 2 2 8<br>2 8 9 8                           | 52<br>48<br>66                                      |
|                                           | Units              | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg   | ue/ke<br>ue/ke<br>ue/ke                 | ****                                    | ****                                           | ***                                                 |
| client ID<br>Job No Lab ID<br>Sample Date | Analyte            | ne<br>nenylamine<br>-n-propylamine |                                         |                                         | -D5<br>enyl<br>d14                             | Phenol-D5<br>2-Fluorophenol<br>2,4,6-Tribromophenol |

31/61

STL Buffalo

NA = Not Applicable ND = Not Detected

-

.....

|                                                           |                |                                   | DELTA-METHOD 8270   | - 1CL           | BASE NEUTRALS COMPOUNDS | ounds           |                    |                 |                    |
|-----------------------------------------------------------|----------------|-----------------------------------|---------------------|-----------------|-------------------------|-----------------|--------------------|-----------------|--------------------|
|                                                           |                |                                   |                     |                 |                         |                 |                    |                 |                    |
| client ID<br>Job No Lab ID<br>Sample Date                 |                | Matrix Spike Blank<br>A05-B179 A5 | Blank<br>A5B1542501 |                 |                         |                 |                    |                 |                    |
| Analyte                                                   | Units          | Sample<br>Value                   | Reporting<br>Limit  | Sample<br>Value | Reporting<br>Limit      | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit |
| Acenaphthene                                              | UG/L           | 88                                | 0,                  | MM              |                         |                 |                    |                 |                    |
| Acenaphthylene                                            |                | ND                                | 26                  | AN              |                         | AN              |                    | NA              |                    |
| Anthracene<br>Benzo(a)anthracene                          | U6/L           | QN .                              | 9                   | NA              |                         | NA              |                    | NA              |                    |
| Benzo(b) f luoran thene                                   |                | ON ON                             | 0 0                 | A N<br>A N      |                         | NA              |                    | NA              |                    |
| Benzo(k)fluoranthene                                      |                | Q                                 | 20                  | AN              |                         | AN              | -                  | NA              |                    |
| Benzo(ghi)perylene<br>Benzo(a)nvrene                      | U6/L           | Q                                 | 0                   | NA              |                         | NA              |                    | AN              |                    |
| Benzyt alcohol                                            | 16/1<br>116/1  | ON ON                             | 01                  | NA              |                         | NA              |                    | NA              |                    |
| Bis(2-chloroethoxy) methane                               | UG/L           | Q Q                               | 10                  | AN              |                         | AN              |                    | NA              |                    |
| Bis(2-chloroethyl) ether                                  | 0€/L           | ND                                | 10                  | NA              |                         | AN              |                    | AN              |                    |
| <pre>2,2'-Oxybis(1-chloropropane) Bic(2-othulburn)</pre>  | U6/L           |                                   | 10                  | NA              |                         | NA              |                    | AN              |                    |
| uistz-eunyunexyt/ pninalate<br>4-Bromonhenv  nhenv  ether | 1/9/1<br>116/1 | 3 BJ                              | 6 6                 | NA              |                         | NA              |                    | NA              |                    |
| Butyl benzyl phthalate                                    |                | N N                               | 2 0                 | AN              |                         | NA<br>NA        | -                  | NA              |                    |
| 4-Chloroaniline                                           | NG/L           | ND                                | 9                   | NA              | -                       | AN<br>AN        | -                  | AN              |                    |
| Z-Chloronaphthalene<br>4-Chloronhenvl nhenvl athar        | 1/9/1<br>1/9/1 | QN M                              | 6 6                 | NA              |                         | NA              |                    | AN              |                    |
|                                                           |                | ON ON                             | ₽€                  | AN              |                         | AN              |                    | NA              |                    |
| Dibenzo(a,h)anthracene                                    | U6/L           | QN                                | 9 0                 | NA              |                         | A N             | · .                | AN              |                    |
| Ulbenzofuran<br>Bi                                        | UG/L           | QN                                | 9                   | NA              | -                       | NA              |                    | NA              |                    |
| 01-n-butyl phthalate<br>1 2-nichlorohanzana               | N6/L           | ġ.                                | 9 9                 | NA              |                         | NA              |                    | NA              |                    |
| 1.3-Dichlorobenzene                                       |                | ON ON                             | 5 5                 | AN              |                         | NA              |                    | NA              |                    |
| 1,4-Dichlorobenzene                                       | UG/L           | 66                                | 2 6                 | NA              |                         | AN              |                    | AN              |                    |
| 3,3'-Dichlorobenzidine                                    | ∩e/r           | ND                                | 20                  | NA              |                         | NA              |                    | NA              |                    |
| vietnyt phthalate<br>Dimethvt phthalate                   | UG/L<br>116/1  | Q                                 | <u></u>             | AN              |                         | NA              |                    | NA              |                    |
| 2,4-Dinitrotoluene                                        | VG/L           | 94                                | 2 0                 | AN<br>AN        |                         | AN              |                    | AN<br>AN        |                    |
| 2,6-Dinitrotoluene                                        | UG/L           | ND                                | 10                  | NA              |                         | AN N            |                    | AN<br>AN        |                    |
| Di-n-octyl phthalate                                      | 06/L           | Q                                 | 9                   | NA              |                         | NA              |                    | NA              |                    |
| r tuorantnene<br>El increne                               |                | ON 1                              | 66                  | NA              |                         | NA              |                    | NA              |                    |
| Hexachlorobenzene                                         | 06/L           | ON ON                             | 2                   | AN              |                         | NA              |                    | NA              |                    |
| Hexachlorobutadiene                                       |                | R                                 | 2 2                 | NA              |                         | AN              |                    | AN              |                    |
| Hexachlorocyclopentadiene                                 | NG/L           | QN                                | 45                  | NA              |                         | NA              |                    | NA              |                    |
| Hexachloroethane<br>Indepo(1,2,3_od)                      | U6/L           | 9                                 | 6 8                 | NA              |                         | NA              |                    | NA              |                    |
| Isonhorone                                                | 1/90<br>116/1  |                                   | 5 5                 | AN              |                         | AN              |                    | NA              |                    |
| 2-Methylnaphthalene                                       | UG/L           | 2 2                               | <u>5</u> 6          | AN              |                         | AN<br>AN        |                    | NA              |                    |
| Naph tha Lene                                             | n€/L           | ND                                | 10                  | NA              |                         | NA              |                    | AN N            |                    |
| Z-Nitroaniline                                            | UG/L           | QN                                | 5                   | NA              |                         | NA              |                    | NA              |                    |
|                                                           |                |                                   |                     |                 |                         |                 |                    |                 |                    |

-

|                                           |       |                                   |                     |                 |                    | 67100           |                    |                 |           |         |
|-------------------------------------------|-------|-----------------------------------|---------------------|-----------------|--------------------|-----------------|--------------------|-----------------|-----------|---------|
| Client ID<br>Job No Lab ID<br>Sample Date |       | Matrix Spike Blank<br>A05-B179 A5 | 3lank<br>A5B1542501 |                 |                    |                 |                    |                 |           | <b></b> |
| Analyte                                   | Units | Sample<br>Value                   | Reporting<br>Limit  | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting |         |
| 4-Nitroaniline                            | UG/L  | QN                                | 50                  | NA              |                    | NA              |                    |                 |           |         |
| NTT FODENZENE                             | UG/L  | QN                                | 10                  | NA              |                    | NA              |                    | AN              |           |         |
| N-Nitroso-Di-n-propylamine                | 06/L  | UN<br>83                          | 6 6                 | NA              |                    | NA              |                    | NA              | -         |         |
| Phenanthrene                              | 00/L  | CP ON                             | <u> </u>            | AN<br>N         |                    | NA              |                    | NA              |           |         |
| Pyrene                                    | UG/L  | 100                               | 2 2                 | AN              |                    | E Z             |                    | NA              |           |         |
| 1,2,4-Trichlorobenzene<br>Is/supposite/si | UG/L  | 72                                | 10                  | NA              |                    | N               |                    | NA              |           |         |
| 1,4-Dichlorobenzene-D4                    | ×     | 102                               | 50-200              | NA              |                    | AN<br>M         |                    |                 |           |         |
| Naphtha Lene-D8                           | ×     | 104                               | 50-200              | NA              |                    | AN<br>AN        |                    | NA              |           |         |
| Acenaph thene-D10                         | ×     | 104                               | 50-200              | NA              |                    | AN AN           |                    | NA              |           |         |
| Prenanthrene-D10                          | ×     | 107                               | 50-200              | NA              | -                  | NA              | -                  |                 |           | _       |
| Unrysene-U12<br>Perviene-D12              | ~ `   | 100                               | 50-200              | NA              |                    | NA              |                    | AN              |           |         |
| Nitrobenzene_DS                           | ~ `   | 108                               | 50-200              | NA              |                    | NA              |                    | NA              |           |         |
|                                           |       | 6/                                | 52-120              | NA              |                    | NA              |                    | NA              |           |         |
| r tool ou prieny c                        | ~     | 81                                | 21-120              | NA              |                    | NA              |                    | MA              |           |         |
| Phenol-D5                                 | ~ >   | 106                               | 36-138              | NA              |                    | NA              |                    | NA              |           |         |
| 2-Fluorophenol                            | • •   |                                   | 021-01              | NA              |                    | NA              |                    | NA              |           |         |
| 2.4.6-Tribromonhenol                      | 2 >   | 7 5                               | 071-17              | NA              |                    | NA              |                    | NA              |           |         |
|                                           | •     | 76                                | CCL-20              | NA              |                    | NA              |                    | NA              |           |         |
|                                           |       |                                   |                     |                 |                    |                 |                    |                 |           | -       |

...

-

STL Buffalo

t: AN0326

Delta Environment asultants, Inc. HB Fuller waste Project. Mon-ASP deliverables DELTA-METHOD 8270 - TCL BASE NEUTRALS COMPOUNDS

Date: 10/21/20 Time: 13:01:20

| ID Lab ID<br>Date                            |                 |                                   |                     |                                       | NEUTRAL COMPOUNDS     | 6               |                    |                 |                    |
|----------------------------------------------|-----------------|-----------------------------------|---------------------|---------------------------------------|-----------------------|-----------------|--------------------|-----------------|--------------------|
| Lab ID                                       |                 |                                   |                     |                                       |                       |                 |                    |                 |                    |
|                                              |                 | Matrix Spike Blank<br>A05-B179 A5 | slank<br>A5B1543301 | Matrix Spike Blk Dup<br>A05-B179 A5B1 | Blk Dup<br>A5B1543302 |                 |                    |                 |                    |
| Analyte                                      | Units           | Sample<br>Value                   | Reporting<br>Limit  | Sample<br>Value                       | Reporting<br>Limit    | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit |
| Acenaph thene UG<br>Acenaph thy Lene         | UG/KG           | 2500                              | 330                 | 2800                                  | 320                   | NA              |                    | NA              |                    |
|                                              | ng/kg           | ON<br>ON                          | 330                 | Q N                                   | 320                   | NA              |                    | NA              |                    |
| Benzo(a)anthracene UG,                       | UG/KG           | QN                                | 330                 | QN                                    | 320                   | AN              |                    | AN              |                    |
|                                              | ug/kg<br>Ug/kg  | Q Q                               | 330                 | ON UN                                 | 320                   | NA              |                    | NA              |                    |
|                                              | /KG             | QN                                | 330                 | QN<br>QN                              | 320                   | NA              |                    | A N             |                    |
| Benzola Jpyrene UG                           | UG/KG           | Q                                 | 330                 | QN                                    | 320                   | NA              |                    | A N             |                    |
| ne                                           | UG/KG           | QN QN                             | 330                 | ON M                                  | 320                   | NA              |                    | NA              |                    |
|                                              | UG/KG           | QN                                | 330                 | Q                                     | 320                   | AN              |                    | NA              |                    |
| ~                                            | UG/KG           | QN                                | 330                 | ND                                    | 320                   | AN N            |                    | AN              |                    |
| 4-Bromophenyl phenyl ether 106               | UG/KG           | Q U                               | 330                 | QN                                    | 320                   | NA              |                    | NA              |                    |
|                                              | UG/KG           | 2 Q                               | 330                 | QN QN                                 | 320                   | A N             | *                  | NA              |                    |
|                                              | U6/KG           | QN                                | 330                 | QN                                    | 320                   | AN              | -                  | AN              |                    |
| 4-Chlorophenyl phenyl ether 106              | UG/KG           | Q Q                               | 330                 | Q I                                   | 320                   | NA              |                    | NA              |                    |
|                                              | ug/kg           | Q                                 | 230                 | QN QN                                 | 320                   | A N             |                    | NA              |                    |
| anthracene                                   | UG/KG           | Ŋ                                 | 330                 | QN                                    | 320                   | AN              | · .                | AN              |                    |
| Di-n-hutvl nhthalata<br>Di-n-hutvl nhthalata | UG/KG           | Q                                 | 330                 | ND                                    | 320                   | NA              |                    | NA              |                    |
|                                              | ue/ke           |                                   | 330<br>730          | Q                                     | 320                   | NA              |                    | NA              |                    |
|                                              | UG/KG           | Q                                 | 330                 | D D                                   | 320                   | NA              |                    | AN              |                    |
|                                              | UG/KG           | 1700                              | 330                 | 1900                                  | 320                   | AN              |                    | A N             |                    |
|                                              | UG/KG<br>LIG/KG | Q                                 | 330                 | Q                                     | 320                   | NA              | -                  | NA              |                    |
|                                              | /KG             | Q                                 | 330                 | UN N                                  | 320                   | AN              |                    | NA              |                    |
|                                              | uG/KG           | 2800                              | 330                 | 3000                                  | 320                   | AN              |                    | NA              |                    |
| 2,0-D1N1trotoluene UG                        | UG/KG           | Q                                 | 330                 | QN                                    | 320                   | NA              |                    | NA              |                    |
|                                              | 00/kg           | ON CN                             | 055                 | QN N                                  | 320                   | NA              |                    | NA              |                    |
|                                              | UG/KG           | QN                                | 330                 | Q Q                                   | 020                   | AN<br>M         |                    | ۲ a             |                    |
|                                              | /KG             | QN                                | 330                 | QN                                    | 320                   | AN N            | -                  | AN              |                    |
| Hexach I or obutadiene UG                    | UG/KG           | QN                                | 330                 | QN                                    | 320                   | NA              |                    | NA              |                    |
|                                              | ue/ke           | a a                               | 530                 | Q I                                   | 320                   | AN              |                    | NA              |                    |
| oyrene                                       | /KG             | Q                                 | 330                 | UN<br>DN                              | 026                   | AN              |                    | A A             |                    |
|                                              | UG/KG           | ND                                | 330                 | ND                                    | 320                   | NA              |                    | AN              |                    |
| z-metny Lnaphthalene UG/<br>Naphthalene      | UG/KG           | ON A                              | 330                 | Q. (                                  | 320                   | AN              | -                  | NA              |                    |
| ine                                          | ue/ke           | CIN I                             | 0091                |                                       | 220                   | A N             |                    | NA              |                    |
|                                              | ug/kg           | QN                                | 1600                | Q Q                                   | 1600                  | AN              |                    | A N<br>A N      |                    |

-

|          | •        |
|----------|----------|
| 10/21/20 | 13:01:20 |
| Date:    | Time:    |

Delta Environment nsultants, Inc. HB Fuller waste Projecc. Non-ASP deliverables METHOD 8270 - TCL BASE NEUTRAL COMPOUNDS

t: AN0326

| Client ID<br>Job No Lab ID<br>Sample Date |       | Matrix Spike Blank<br>A05-B179 A5 | Lank<br>A5B1543301 | Matrix Spike Blk Dup<br>A05-B179 A5B1543302 | 3lk Dup<br>A5B1543302 |                 |                    |                 |                    |
|-------------------------------------------|-------|-----------------------------------|--------------------|---------------------------------------------|-----------------------|-----------------|--------------------|-----------------|--------------------|
| Analyte                                   | Units | Sample<br>Value                   | Reporting<br>Limit | Sample<br>Value                             | Reporting<br>Limit    | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit |
| 4-Nitroaniline                            | UG/KG | QN                                | 1600               | Q                                           | 1600                  | NA              |                    | AA              |                    |
| Nitrobenzene                              | UG/KG | QN                                | 330                | QN                                          | 320                   | NA              |                    | NA              |                    |
| N-nitrosodiphenylamine                    | UG/KG | QN                                | 330                | QN                                          | 320                   | NA              |                    | NA              |                    |
| N-Nitroso-Di-n-propylamine                | UG/KG | 2300                              | 330                | 2700                                        | 320                   | NA              |                    | NA              |                    |
| Phenanthrene                              | UG/KG | QN                                | 330                | Ŋ                                           | 320                   | NA              |                    | NA              |                    |
| Pyrene                                    | UG/KG | 3000                              | 330                | 3400                                        | 320                   | NA              |                    | NA              |                    |
| 1,2,4-Trichlorobenzene                    | UG/KG | 1800                              | 330                | 2100                                        | 320                   | NA              |                    | NA              |                    |
| IS/SURROGATE(S)                           |       | 440                               | 2000               | , ce                                        | 200                   |                 |                    |                 |                    |
| 1,4-D1Chlorobenzene-D4                    | ×.    | 110                               | 007-05             | 104                                         |                       | A N             |                    | NA              |                    |
| Naphthalene-D8                            | *     | 110                               | 50-200             | 106                                         | 50-200                | NA              |                    | NA              |                    |
| Acenaph thene-D10                         | 2     | 108                               | 50-200             | 104                                         | 50-200                | NA              |                    | NA              |                    |
| Phenanthrene-D10                          | *     | 116                               | 50-200             | 108                                         | 50-200                | NA              |                    | NA              |                    |
| Chrysene-D12                              | *     | 104                               | 50-200             | 92                                          | 50-200                | NA              |                    | NA              |                    |
| Perylene-D12                              | ×     | 115                               | 50-200             | 101                                         | 50-200                | NA              |                    | NA              |                    |
| Nitrobenzene-D5                           | *     | 57                                | 41-120             | 89                                          | 41-120                | NA              |                    | NA              | -                  |
| 2-Fluorobiphenyl                          | ×     | 71                                | 50-120             | 82                                          | 50-120                | NA              |                    | NA              | -                  |
| p-Terphenyl-d14                           | ж     | 98                                | 53-137             | 112                                         | 53-137                | NA              |                    | NA              |                    |
| Pheno L-D5                                | ×     | 56                                | 41-120             | 99                                          | 41-120                | NA              |                    | NA              |                    |
| 2-Fluorophenol                            | *     | 50                                | 33-120             | 28                                          | 33-120                | NA              |                    | NA              |                    |
| 2,4,6-Tribromophenol                      | ×     | 80                                | 53-132             | 91                                          | 53-132                | NA              |                    | NA              |                    |

35/61

. . . . . .

----

| 10/21/20 | 13:01:24 |
|----------|----------|
| Date:    | Time:    |

Delta Environmenté isultants, Inc. HB Fuller waste Projec ... on-ASP deliverables DELTA – METHOD 8082 – POLYCHLORINATED BIPHENYLS

t: AN0326

|                                           | Reporting<br>Limit |                                                                                                              |                                            |
|-------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                           | Sample<br>Value    | A A A A A A A A A A A A A A A A A A A                                                                        | NA                                         |
|                                           | Reporting<br>Limit |                                                                                                              |                                            |
|                                           | Sample<br>Value    | A A A A A A A A A A A A A A A A A A A                                                                        | NA<br>NA                                   |
|                                           | Reporting<br>Limit |                                                                                                              |                                            |
|                                           | Sample<br>Value    | N N N N N N N N N N N N N N N N N N N                                                                        | NA                                         |
| A5B1543403                                | Reporting<br>Limit | 5555555<br>555555555555555555555555555555                                                                    | 32-148<br>36-153                           |
| Method Blank<br>A05-B179                  | Sample<br>Value    | <u>8 8 8 8 8 8 8</u>                                                                                         | 76<br>89                                   |
|                                           | Units              | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                                           | <u>~~~~</u>                                |
| Client ID<br>Job No Lab ID<br>Sample Date | Analyte            | Aroclor 1016<br>Aroclor 1221<br>Aroclor 1232<br>Aroclor 1242<br>Aroclor 1248<br>Aroclor 1254<br>Aroclor 1254 | Tetrachloro-m-xylene<br>Decachlorobiphenyl |

36/61

...

| 10/21/20 | 13:01:24 |
|----------|----------|
| ate:     | lime:    |

Delta Environment nsultants, Inc. HB fuller waste Projection-ASP deliverables DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS

pt: AN0326

| Client ID<br>Job No Lab ID<br>Sample Date |       | Matrix Spike Blank<br>A05-B179 A56 | lank<br>A5B1543401 | Matrix Spike I<br>A05-B179 | Matrix Spike Blk Dup<br>A05-B179 A5B1543402 |                 |                    |                 |                    |
|-------------------------------------------|-------|------------------------------------|--------------------|----------------------------|---------------------------------------------|-----------------|--------------------|-----------------|--------------------|
| Analyte                                   | Units | Sample<br>Value                    | Reporting<br>Limit | Sample<br>Value            | Reporting<br>Limit                          | Sample<br>Value | Reporting<br>Limit | Sample<br>Value | Reporting<br>Limit |
| Aroclor 1016                              | ue/ke | 150                                | 16                 | 140                        | 16                                          | NA              |                    | NA              |                    |
| Aroclor 1221                              | UG/KG | QN                                 | 16                 | QN                         | 16                                          | NA              |                    | NA              |                    |
| Aroclor 1232                              | U6/KG | QN                                 | 16                 | QN                         | 16                                          | NA              |                    | NA              |                    |
| Aroclor 1242                              | UG/KG | ND .                               | 16                 | QN                         | 16                                          | NA.             |                    | NA              |                    |
| Aroclor 1248                              | UG/KG | QN                                 | 16                 | DN                         | 16                                          | NA              |                    | NA              |                    |
| Aroclor 1254                              | UG/KG | QN                                 | . 16               | DN                         | 16                                          | NA              |                    | NA              |                    |
| Aroclor 1260                              | uG/KG | 160                                | 16                 | 160                        | 16                                          | NA              |                    | NA              |                    |
| Tetrachloro-m-xylene                      | ~     | 84                                 | 32-148             | 80                         | 32-148                                      | NA              |                    | NA              |                    |
| Decach lorob ipheny l                     | ×     | 96                                 | 36-153             | 93                         | 36-153                                      | NA              |                    | NA              |                    |
|                                           |       |                                    |                    |                            |                                             |                 |                    |                 |                    |

37/61

| /20   | :28   |
|-------|-------|
| 10/21 | 13:01 |
| Date: | Time: |

Delta Environment nsultants, Inc. HB Fuller waste Projection-ASP deliverables DELTA - SW8463-6010/7471-S-TCLP METALS

pt: AN0326

| client ID Lab ID<br>Job No Lab ID<br>Sample Date | Ĩ     | Extractor Blank<br>A05-B179 | ank<br>A5B1557601  | Extractor Blank<br>A05-B179 | ink<br>A5B1596701  | Method Blank<br>A05-B179 | A5B1557603         | Method Blank<br>A05-B179 | A5B1596716         |
|--------------------------------------------------|-------|-----------------------------|--------------------|-----------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|
| Analyte                                          | Units | Sample<br>Value             | Reporting<br>Limit | Sample<br>Value             | Reporting<br>Limit | Sample<br>Value          | Reporting<br>Limit | Sample<br>Value          | Reporting<br>Limit |
| Arsenic – Total                                  | MG/L  | Q                           | 0.010              | NA                          |                    | ND                       | 0.010              | NA                       |                    |
| Barium – Total                                   | MG/L  | 0.0044                      | 0.0020             | NA                          |                    | QN                       | 0.0020             | NA                       |                    |
| admium - Total                                   | MG/L  | QN                          | 0.0010             | NA                          |                    | QN                       | 0.0010             | NA                       |                    |
| Chromium – Total                                 | MG/L  | QN                          | 0,0040             | NA                          |                    | QN                       | 0*00*0             | NA                       |                    |
| Mercury - Total                                  | MG/L  | NA                          |                    | DN                          | 0.00020            | NA                       |                    | QN                       | 0.00020            |
| Lead - Total                                     | MG/L  | 0.032                       | 0.0050             | NA                          |                    | ND                       | 0.0050             | NA                       |                    |
| Selenium – Total                                 | MG/L  | DN                          | 0.015              | NA                          |                    | DN                       | 0.015              | NA                       |                    |
| Silver - Total                                   | MG/L  | DN                          | 0 0030             | NA                          |                    | Q                        | 0.0030             | NA                       |                    |

38/61

...

| :                   |  |
|---------------------|--|
| 10/21/2<br>13:01:25 |  |
| Date:<br>Time:      |  |
|                     |  |

Delta Environmen Smultants, Inc. HB Fuller waste Projection-ASP deliverables DELTA - SW8463-6010/7471-S-TCLP METALS

pt: AN0326

| Client ID<br>Job No Lab ID<br>Sample Date                                                                                                         |                                                      | LCS<br>A05-B179                                    | A5B1557602                                                       | LCS<br>A05-B179                        | A5B1596702         |                                       |                    |                                       |                    | ····· |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|----------------------------------------|--------------------|---------------------------------------|--------------------|---------------------------------------|--------------------|-------|
| Analyte                                                                                                                                           | Units                                                | Sample<br>Value                                    | Reporting<br>Limit                                               | Sample<br>Value                        | Reporting<br>Limit | Sample<br>Value                       | Reporting<br>Limit | Sample<br>Value                       | Reporting<br>Limit | TT    |
| Arsenic - Total<br>Cadmium - Total<br>Selenium - Total<br>Mercury - Total<br>Barium - Total<br>Chromium - Total<br>Lead - Total<br>Silver - Total | MG/L<br>MG/L<br>MG/L<br>MG/L<br>MG/L<br>MG/L<br>MG/L | 1.0<br>0.97<br>1.0<br>0.98<br>0.98<br>0.98<br>0.98 | 0.010<br>0.0010<br>0.015<br>0.0020<br>0.0020<br>0.0020<br>0.0030 | NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | 0.00020            | N N N N N N N N N N N N N N N N N N N |                    | A A A A A A A A A A A A A A A A A A A |                    |       |

39/61

THE REPORT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE

| 10/21/2 | 5     |
|---------|-------|
| Date:   | Time: |

Delta Environmen Dusultants, Inc. HB Fuller waste Project Non-ASP deliverables WET CHEMISTRY ANALYSIS

pt: AN0326

Reporting Limit Sample Value A N A N A N Reporting Limit A5B1560201 0 NA NA 7.00 LCS A05-B179 Sample Value Reporting Limit A5B1552801 0 NA 80.9 NA LCS A05-B179 Sample Value Reporting Limit A581544601 0 LCS A05-B179 7.00 NA NA Sample Value Units s.u. °F s.u. Lab ID Analyte pH Flashpoint Corrosivity (pH) Client ID Job No Sample Date

STL Buffalo

ND = Not Detected

NA = Not Applicable

41/61 Rept: AN0364 65-146 74-127 74-128 74-128 74-128 X Recovery QC Blank Spike LIMITS 50.0 50.0 50.0 Spike Amount Concentration 57.4 51.0 51.6 50.7 51.0 Blank Spike Units of Measure MSB08 A5B1610901 ug/kg ug/kg ug/kg ug/kg ug/kg DELTA-METHOD 8260 - TCL VOLATILE ORGANIC 1,1-Dichloroethene Trichloroethene 13:01:33 Client Sample ID: VBLK08 Lab Sample ID: A5B1610902 Toluene Chlorobenzene Date : 10/21/ Benzene Analyte

\* Indicates Result is outside QC Limits NC = Not Calculated ND = Not Detected

| 13:01:33 |
|----------|
|          |
| 5        |
| 10/21/   |
| ••       |
| Date     |

Rept: AN0364

| client Sample ID: VBLK51 MS<br>Lab Sample ID: A5B1593502 A5                                                              | MSB51<br>A5B1593501          |                                      |                              |                            |                                                |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------|------------------------------|----------------------------|------------------------------------------------|
| Analyte                                                                                                                  | Units of<br>Measure          | Concentration<br>Blank S<br>Spike A  | ration<br>Spike<br>Amount    | % Recovery<br>Blank Spike  | QC<br>LIMITS                                   |
| DELTA - METHOD 8260/25 ML - TCL VOLATILE<br>1,1-Dichloroethene<br>Trichloroethene<br>Benzene<br>Toluene<br>Chlorobenzene | ue/r<br>ue/r<br>ue/r<br>ue/r | 29.0<br>29.5<br>30.1<br>25.6<br>25.5 | 50.0<br>50.0<br>50.0<br>50.0 | 8.6.0.12.12<br>* * * * * * | 65-142<br>71-120<br>67-126<br>69-120<br>73-120 |

\* Indicates Result is outside QC Limits NC = Not Calculated ND = Not Detected

| 3:01:38   |
|-----------|
| : 10/21/2 |

Date

ept: AN0364

| LETTENT SAMPLE IV: S BLANK<br>Lab Sample ID: A5B1542502 | Matrix Spike Blank<br>A5B1542501 | Blank          |                 | -                                   |              |
|---------------------------------------------------------|----------------------------------|----------------|-----------------|-------------------------------------|--------------|
|                                                         |                                  | Concentration  | ration          |                                     |              |
| Analyte                                                 | Units of<br>Measure              | Blank<br>Spike | Spike<br>Amount | % Recovery QC<br>Blank Spike LIMITS | QC<br>LIMITS |
| DELTA-METHOD 8270 - TCL BASE NEUTRALS CO                |                                  |                |                 |                                     |              |
| 1,4-Dichlorobenzene                                     | UG/L                             | 66.2           | 100             | 66                                  | 28-120       |
| N-Nitroso-Di-n-propylamine                              | NG/L                             | 83.0           | 100             | 83                                  | 53-120       |
| 1,2,4-Trichlorobenzene                                  | UG/L                             | 72.2           | 100             | 72                                  | 36-120       |
| Acenaph thene                                           | NG/L                             | 87.8           | 100             | 88                                  | 55-120       |
| 2,4-Dinitrotoluene                                      | UG/L                             | 93.5           | 100             | 94                                  | 53-125       |
| Pyrene                                                  | UG/L                             | 102            | 100             | 102                                 | 50-151       |

\* Indicates Result is outside QC Limits NC = Not Calculated ND = Not Detected

Date : 10/21/ 13:01:38

Rept: AN0364

| utient sample IV: S blank<br>Lab Sample ID: A581543303 | ASB1543301 ASB1543301 |             | ASB1543302      |             |              |    |            |     |          |           |              |
|--------------------------------------------------------|-----------------------|-------------|-----------------|-------------|--------------|----|------------|-----|----------|-----------|--------------|
|                                                        | -                     | Conce       | Concentration   |             |              | *  | % Recover) |     |          |           |              |
| Analyte                                                | Units of<br>Measure   | Spike Blank | Spike Blank Dup | Spike<br>SB | Spike Amount | SB | SBD        | Avg | x<br>RPD | QC LIMITS | MITS<br>REC. |
| METHOD 8270 - TCL BASE NEUTRAL COMPOUNDS               | DS                    |             |                 |             |              |    |            |     |          |           |              |
| 1,4-Dichlorobenzene                                    | NG/KG                 | 1676        | 1928            | 3303        | 3276         | 5  | 59         | 22  | 14       | 30.0      | 30-120       |
| N-Nitroso-Di-n-propylamine                             | UG/KG                 | 2322        | 2676            | 3303        | 3276         | 20 | 82         | 76  | 16       | 20.0      | 52-120       |
| 1,2,4-Trichlorobenzene                                 | NG/KG                 | 1824        | 2104            | 3303        | 3276         | 55 | 64         | 60  | 15       | 24.0      | 42-120       |
| Acenaphthene                                           | UG/KG                 | 2507        | 2828            | 3303        | 3276         | 26 | 86         | 81  | 12       | 16.0      | 57-120       |
| 2,4-Dinitrotoluene                                     | UG/KG                 | 2760        | 3033            | 3303        | 3276         | 84 | 92         | 88  | 6        | 19.0      | 51-126       |
| Pyrene                                                 | UG/KG                 | 3007        | 3427            | 3303        | 3276         | 91 | 104        | 98  | 13       | 25.0      | 56-155       |

\* Indicates Result is outside QC Limits NC = Not Calculated ND = Not Detected

.

| 13:01:41 |
|----------|
| 10/21/   |
| Date :   |

Rept: AN0364

| Client Sample ID: Method Blank<br>Lab Sample ID: A5B1543403 | Matrix Spike Blank<br>A5B1543401 |            | Matrix Spik<br>A5B1543402 | Matrix spike Blk Dup<br>A5B1543402 |       |              |    |            |     |     |          |             |
|-------------------------------------------------------------|----------------------------------|------------|---------------------------|------------------------------------|-------|--------------|----|------------|-----|-----|----------|-------------|
|                                                             |                                  |            | Concentration             | ion.                               | -     |              | *  | % Recovery |     |     |          |             |
| -                                                           | Units of                         |            |                           |                                    | Spike | Spike Amount |    |            |     | *   | ac LI    | MITS        |
| Analyte                                                     | Measure                          | Spike Blan | ik spil                   | lank Spike Blank Dup               | SB    | SBD          | SB | SBD        | Avg | RPD | RPD REC. | REC.        |
| DELTA - METHOD 8082 - POLYCHLORINATED BI                    | -                                |            |                           |                                    |       |              |    |            |     |     |          |             |
| Aroclor 1260                                                | UG/KG                            | 163        |                           | 160                                | 165   | 164          | 98 | 26         | 98  | -   | 35.0     | 35.0 41-139 |
| Aroclor 1016                                                | UG/KG                            | 151        |                           | 144                                | 165   | 164          | 92 | 87         | 90  | 9   | 35.0     | 35.0 39-131 |

\* Indicates Result is outside QC Limits NC = Not Calculated ND = Not Detected

| 13:01:44 |  |
|----------|--|
| 10/21/   |  |
| Date :   |  |

Rept: AN0364

| Lab Sample ID: A581557601              | A581557602          |                                 |                          |                           |              |
|----------------------------------------|---------------------|---------------------------------|--------------------------|---------------------------|--------------|
| Analyte                                | Units of<br>Measure | Concentration<br>Blank<br>Spike | ation<br>Spike<br>Amount | % Recovery<br>Blank Spike | QC<br>LIMITS |
| DELTA - SW8463-6010/7471-S-TCLP METALS |                     |                                 |                          |                           |              |
| TCLP TOTAL ARSENIC                     | MG/L                | 1.03                            | 1.00                     | 103                       | 80-120       |
| TCLP TOTAL BARIUM                      | MG/L                | 0.982                           | 1.00                     | 98                        | 80-120       |
| TCLP TOTAL CADMIUM                     | MG/L                | 0.970                           | 1.00                     | 26                        | 80-120       |
| TCLP TOTAL CHROMIUM                    | MG/L                | 0.957                           | 1.00                     | 96                        | 80-120       |
| TCLP TOTAL LEAD                        | MG/L                | 1.02                            | 1.00                     | 100                       | 80-120       |
| TCLP TOTAL SELENIUM                    | MG/L                | 1.02                            | 1.00                     | 102                       | 80-120       |
|                                        | MG/L                | 0.978                           | 1.00                     | 98                        | 80-120       |

STL Buffalo

\* Indicates Result is outside QC Limits NC = Not Calculated ND = Not Detected

| 13:01:44 |
|----------|
| : 10/21/ |
| Date     |

Rept: AN0364

Client Sample ID: Extractor Blank LCS Lab Sample ID: A5B1596701 A5B1596702

|                                                              |                     | Concentration  | ation           |                                     |              |
|--------------------------------------------------------------|---------------------|----------------|-----------------|-------------------------------------|--------------|
| Analyte                                                      | Units of<br>Measure | Blank<br>Spike | Spike<br>Amount | % Recovery QC<br>Blank Spike LIMITS | QC<br>LIMITS |
| DELTA - SW8463-6010/7471-S-TCLP METALS<br>TCLP TOTAL MERCURY | MG/L                | 0.00615        | 0.00666         | 92                                  | 80-120       |

-

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

\* Indicates Result is outside QC Limits NC = Not Calculated ND = Not Detected

| Date: 10/21/2<br>Time: 13:01:5                                             |                                      | DELTA ENVIRONMEN<br>Sample           | NONSULTANTS, INC. |       | spt: ANO374<br>age: 1 |
|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|-------------------|-------|-----------------------|
| DELTA-METHOD 8260 - TCL VOLATILE ORGANICS                                  | OLATILE ORGANICS                     |                                      |                   |       |                       |
| Client Sample ID<br>Job No & Lab Sample ID                                 | WASTE S<br>A05-B179 A5B17902         | WASTE W<br>A05-B179 A5B17901         |                   |       |                       |
| Sample Date<br>Received Date<br>Extraction Date                            | 10/03/2005 12:10<br>10/05/2005 07:45 |                                      |                   |       |                       |
| Analysis Date<br>Extraction HT Met?<br>Analytical HT Met?<br>Sample Matrix | 10/18/2005 20:40<br>-<br>S01L LOW    | R N                                  |                   |       |                       |
| Dilution Factor<br>Sample wt/vol<br>X Dry                                  | 1.0<br>5.18 GRAMS<br>84.37           |                                      |                   |       |                       |
| DELTA - METHOD 8260/25 ML                                                  | - TCL VOLATILE ORGANICS              |                                      |                   | · · · |                       |
| client Sample ID<br>Job No & Lab Sample ID                                 | WASTE S<br>AO5-B179 A5B17902         | WASTE W<br>A05-B179 A5B17901         |                   |       |                       |
| Sample Date<br>Received Date<br>Extraction Date                            |                                      | 10/03/2005 12:00<br>10/05/2005 07:45 |                   |       |                       |
| Analysis Date<br>Extraction HT Met?                                        | NA                                   | 10/14/2005 23:05                     |                   |       |                       |
| Analytical HI Met?<br>Sample Matrix<br>Dilution Factor                     |                                      | YES<br>WATER<br>1 O                  |                   | •     |                       |
| Sample wt/vol<br>% Dry                                                     |                                      | 0.005 LITERS                         |                   |       |                       |
|                                                                            |                                      |                                      |                   |       |                       |

48/61

Date: 10/21/20 Time: 13:01:50

DELTA ENVIRONMENT NSULTANTS, INC. QC SAMPLE .....ÓNOLOGY

t: AN0374

DELTA-METHOD 8260 - TCL VOLATILE ORGANICS

| Client Sample ID MSB08<br>Job No & Lab Sample ID A05-B | MSBO8<br>A05-B179 A5B1610901 | MSB51<br>A05-B179 A5B1593501 | WASTE S<br>A05-B179 A5B17902MS       | WASTE S<br>A05-B179 A5B17902SD       |   |
|--------------------------------------------------------|------------------------------|------------------------------|--------------------------------------|--------------------------------------|---|
| Sample Date<br>Received Date                           |                              |                              | 10/03/2005 12:10<br>10/05/2005 07:45 | 10/03/2005 12:10<br>10/05/2005 07:45 |   |
| Extraction Date<br>Analysis Date                       | 10/18/2005 19:41             |                              | 10/18/2005 21:09                     | 10/18/2005 21:39                     |   |
| Extraction HT Met?<br>Analytical HT Met?               | 11                           | NA                           |                                      | - N                                  |   |
| Sample Matrix<br>Dilution Factor                       | Soil LOW                     |                              | SOIL LOW                             | Soil Low                             | • |
| Sample wt/vol<br>% Dry                                 | 5.0 GRAMS<br>100.00          |                              | 5.13 GRAMS<br>84.37                  | 5.17 GRAMS<br>84.37                  |   |

DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS

| Client Sample ID MSB08<br>Job No & Lab Sample ID A05-B' | MSB08<br>A05-B179 A5B1610901 | MSB51<br>A05-B179 A5B1593501 | WASTE S<br>AO5-B179 A5B17902MS | WASTE S<br>A05-B179 A5B17902SD |  |
|---------------------------------------------------------|------------------------------|------------------------------|--------------------------------|--------------------------------|--|
| Sample Date                                             |                              |                              |                                |                                |  |
| Received Date                                           |                              |                              |                                |                                |  |
| Extraction Date                                         |                              |                              |                                |                                |  |
| Analysis Date                                           |                              | 10/15/2005 01:30             |                                |                                |  |
| <b>Extraction HT Met?</b>                               | NA                           | 1                            | NA                             | NA                             |  |
| Analytical HT Met?                                      |                              | 1                            |                                |                                |  |
| Sample Matrix                                           |                              | WATER                        |                                |                                |  |
| Dilution Factor                                         |                              | 1.0                          |                                |                                |  |
| Sample wt/vol                                           |                              | 0.005 LITERS                 |                                |                                |  |
| X Dry                                                   |                              |                              |                                |                                |  |

|       | - 11 |
|-------|------|
| 1     | -    |
| Date: |      |

| DNSULTANTS, INC.  |           |
|-------------------|-----------|
| NC                | JMC       |
| DELTA ENVIRONMENT | OC SAMPLE |
| DELTA             |           |

VOLOGY GC SAMPLE

pt: AN0374 dge: 3

| DELTA-METHOD 8260 - TCL VOLATILE ORGANICS                                                                                                                                  | OLATILE ORGANICS                             |                                                       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|--|--|
| Client Sample ID<br>Job No & Lab Sample ID                                                                                                                                 | VBLK08<br>A05-B179 A5B1610902                | VBLK51<br>A05-B179 A5B1593502                         |  |  |
| <pre>Sample Date Received Date Extraction Date Analysis Date Extraction HT Met? Analytical HT Met? Sample Matrix Dilution Factor Sample wt/vol X Dry</pre>                 | 10/18/2005 20:10<br>-<br>5.0 GRAMS<br>100.00 | RA                                                    |  |  |
| DELTA - METHOD 8260/25 ML - TCL VOLATILE ORGANICS                                                                                                                          | - TCL VOLATILE ORGANICS                      |                                                       |  |  |
| Client Sample ID<br>Job No & Lab Sample ID                                                                                                                                 | VBLK08<br>A05-B179 A5B1610902                | VBLK51<br>A05-B179 A5B1593502                         |  |  |
| Sample Date<br>Received Date<br>Extraction Date<br>Analysis Date<br>Extraction HT Met?<br>Analytical HT Met?<br>Sample Matrix<br>Dilution Factor<br>Sample wt/vol<br>X Dry | Ř                                            | 10/14/2005 22:36<br>_<br>WATER<br>1.0<br>0.005 LITERS |  |  |

50/61

STL Buffalo

-

| Date: 10/21/2<br>Time: 13:01:5.                                                                                                                                            |                                                                                                                                      | DELTA ENVIRONMEN<br>SAMPLE                                                                                                | THE DISULTANTS, INC. | đ | pt: ANO374<br>Jge: 1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|---|----------------------|
| DELTA-METHOD 8270 - TCL BASE NEUTRALS COMPOUNDS                                                                                                                            | ASE NEUTRALS COMPOUNDS                                                                                                               |                                                                                                                           |                      |   |                      |
| Client Sample ID<br>Job No & Lab Sample ID                                                                                                                                 | WASTE S<br>A05-B179 A5B17902                                                                                                         | WASTE W<br>A05-B179 A5B17901                                                                                              |                      |   | []                   |
| Sample Date<br>Received Date<br>Extraction Date<br>Analysis Date<br>Extraction HT Met?<br>Analytical HT Met?<br>Sample Matrix<br>Dilution Factor<br>Sample wt/vol<br>% Dry | A                                                                                                                                    | 10/03/2005 12:00<br>10/05/2005 07:45<br>10/07/2005 07:00<br>10/13/2005 21:45<br>YES<br>YES<br>WATER<br>1.0<br>1.05 LITERS |                      |   |                      |
| METHOD 8270 - TCL BASE NEUTRAL COMPOUNDS                                                                                                                                   | EUTRAL COMPOUNDS                                                                                                                     |                                                                                                                           |                      |   | ]                    |
| Client Sample ID<br>Job No & Lab Sample ID                                                                                                                                 | WASTE S<br>A05-B179 A5B17902                                                                                                         | WASTE W<br>A05-B179 A5B17901                                                                                              |                      |   |                      |
| Sample Date<br>Received Date<br>Extraction Date<br>Analysis Date<br>Extraction HT Met?<br>Analytical HT Met?<br>Sample Matrix<br>Dilution Factor<br>Sample wt/vol<br>% Dry | 10/03/2005 12:10<br>10/05/2005 07:45<br>10/07/2005 07:00<br>10/14/2005 03:38<br>YES<br>YES<br>SOIL LOW<br>1.0<br>30.7 GRAMS<br>80.71 | Å                                                                                                                         |                      |   |                      |
|                                                                                                                                                                            |                                                                                                                                      |                                                                                                                           |                      |   |                      |

51/61

| Date: 10/21/2<br>Time: 13:01:55                                                                                                                                            |                                                                                 | DELTA ENVIRONMENT<br>QC SAMPLE                                                        | IENT NSULTANTS, INC.                                                                  |  | pt: ANO374<br>age: 2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|----------------------|
| DELTA-METHOD 8270 - TCL BASE NEUTRALS COMPOUNDS                                                                                                                            | ASE NEUTRALS COMPOUNDS                                                          |                                                                                       |                                                                                       |  |                      |
| Client Sample ID<br>Job No & Lab Sample ID                                                                                                                                 | Matrix Spike Blank<br>AO5-B179 A5B1542501                                       | Matrix Spike Blank<br>A05-B179 A5B1543301                                             | Matrix Spike Blk Dup<br>A05-B179 A5B1543302                                           |  |                      |
| Sample Date<br>Received Date<br>Extraction Date<br>Analysis Date<br>Extraction HT Met?<br>Analytical HT Met?<br>Sample Matrix<br>Dilution Factor<br>Sample wt/vol<br>% Dry | 10/07/2005 07:00<br>10/12/2005 00:05<br>-<br>-<br>MATER<br>1.0<br>1.0<br>LITERS | ۲<br>۲                                                                                | M                                                                                     |  |                      |
| METHOD 8270 - TCL BASE NEUTRAL COMPOUNDS                                                                                                                                   | UTRAL COMPOUNDS                                                                 |                                                                                       |                                                                                       |  |                      |
| Client Sample ID<br>Job No & Lab Sàmple ID                                                                                                                                 | Matrix Spike Blank<br>A05-B179 A5B1542501                                       | Matrix Spike Blank<br>AO5-B179 A5B1543301                                             | Matrix Spike Blk Dup<br>A05-B179 A5B1543302                                           |  |                      |
| Sample Date<br>Received Date<br>Extraction Date<br>Analysis Date<br>Extraction HT Met?<br>Analytical HT Met?<br>Sample Matrix<br>Dilution Factor<br>Sample wt/vol<br>X Dry | ¥<br>N                                                                          | 10/07/2005 07:00<br>10/14/2005 00:55<br>-<br>soil Low<br>1.0<br>30.27 GRAMS<br>100.00 | 10/07/2005 07:00<br>10/14/2005 01:22<br>-<br>501L LOW<br>1.0<br>30.52 GRAMS<br>100.00 |  |                      |

52/61

STL Buffalo

NA = Not Applicable

| 10/21/2<br>13:01:55 |  |
|---------------------|--|
| Date:<br>Time:      |  |

DELTA ENVIRONMENT INSULTANTS, INC. QC SAMPLE

DELTA-METHOD 8270 - TCL BASE NEUTRALS COMPOUNDS

| Client Sample ID<br>Job No & Lab Sample ID                       | Client Sample ID S Blank<br>Job No & Lab Sample ID A05-B179 A5B1542502 | s Blank<br>A05-B179 A5B1543303 |  |  |
|------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------|--|--|
| Sample Date<br>Received Date<br>Extraction Date<br>Analysis Date | 10/07/2005 07:00<br>10/12/2005 00:32                                   |                                |  |  |
| Extraction HT Met?<br>Analytical HT Met?                         | 1 1                                                                    | NA                             |  |  |
| Sample Matrix<br>Dilution Factor                                 | WATER<br>1.0                                                           |                                |  |  |
| <pre>Sample wt/vol % Dry</pre>                                   | 1.0 LITERS                                                             |                                |  |  |
| METHOD 8270 - TCL BASE NEUTRAL COMPOUNDS                         | EUTRAL COMPOUNDS                                                       |                                |  |  |
|                                                                  |                                                                        |                                |  |  |

| e<br>Met?<br>Met? | Client Sample ID S Blank<br>Job No & Lab Sample ID A05-B179                                                                                                                | S Blank<br>A05-B179 A5B1542502 | S Blank<br>A05–B179 A5B1543303 |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--|
|                   | Sample Date<br>Received Date<br>Extraction Date<br>Analysis Date<br>Extraction HT Met?<br>Analytical HT Met?<br>Sample Matrix<br>Dilution Factor<br>Sample wt/vol<br>% Dry | ¥                              |                                |  |

. . .

| Date: 10/21/20<br>Time: 13:01:58                |                                      | DELTA ENVIRONMENT NUSULTANTS, INC.<br>SAMPLE V | pt: AN0374 |
|-------------------------------------------------|--------------------------------------|------------------------------------------------|------------|
| DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS | LYCHLORINATED BIPHENYLS              |                                                |            |
| Client Sample ID<br>Job No & Lab Sample ID      | WASTE S<br>A05-B179 A5B17902         |                                                |            |
| Sample Date<br>Received Date                    | 10/03/2005 12:10<br>10/05/2005 07:45 |                                                |            |
| Extraction Date<br>Analysis Date                | 10/07/2005 07:00<br>10/12/2005 15:58 |                                                |            |
| Extraction HT Met?<br>Analytical HT Met?        | YES                                  |                                                |            |
| Sample Matrix<br>Dilution Factor                | SOIL LOW                             |                                                |            |
| Sample wt/vol<br>% Dry                          | 30.62 GRAMS<br>80.71                 |                                                |            |
|                                                 |                                      |                                                |            |

54/61

STL Buffalo

NA = Not Applicable

| Date: 10/21/2<br>Time: 13:01:5.                 |                                           | DELTA ENVIRONMEN<br>QC SAMPLE               | DNSULTANTS, INC. | pt: AN0374<br>age: 2 |
|-------------------------------------------------|-------------------------------------------|---------------------------------------------|------------------|----------------------|
| DELTA - METHOD 8082 - POLYCHLORINATED BIPHENYLS | YCHLORINATED BIPHENYLS                    |                                             |                  |                      |
| Client Sample ID<br>Job No & Lab Sample ID      | Matrix Spike Blank<br>AO5-B179 A5B1543401 | Matrix Spike Blk Dup<br>AO5-B179 A5B1543402 |                  |                      |
| Sample Date<br>Received Date                    |                                           |                                             |                  |                      |
| Extraction Date<br>Analysis Date                | 10/07/2005 07:00<br>10/12/2005 15:04      | 10/07/2005 07:00<br>10/12/2005 15:22        |                  |                      |
| Extraction HT Met?<br>Analytical HT Met?        | 1 1                                       |                                             |                  |                      |
| Sample Matrix                                   | Soil LOW                                  | SOIL LOW                                    |                  |                      |
| Sample wt/vol                                   | 30.16 GRAMS                               | 30.31 GRAMS                                 |                  |                      |
| A UTY                                           | 100-001                                   | 100.00                                      |                  |                      |
|                                                 |                                           |                                             |                  |                      |
|                                                 |                                           |                                             |                  |                      |
|                                                 |                                           |                                             |                  | •                    |
|                                                 |                                           |                                             |                  |                      |

| _ |          |          |
|---|----------|----------|
|   | 10/21/25 | 13:01:56 |
|   | Date:    | Time:    |

NSULTANTS, INC. DELTA ENVIRONMENT QC SAMPLE

pt: AN0374 Jge: 3

| DELTA - METHOD 8082 - POLYCHLORINATED BIPH                                                                                                                                 | YCHLORINATED BIPHENYLS                                                               | - |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---|--|--|
| Client Sample ID Method Blank<br>Job No & Lab Sample ID A05-B179 A5B15                                                                                                     | Method Blank<br>A05-B179 A5B1543403                                                  |   |  |  |
| Sample Date<br>Received Date<br>Extraction Date<br>Analysis Date<br>Extraction HT Met?<br>Analytical HT Met?<br>Sample Matrix<br>Dilution Factor<br>Sample wt/vol<br>X Dry | 10/07/2005 07:00<br>10/12/2005 15:40<br>-<br>soil Low<br>1.0<br>30.7 GRAMS<br>100.00 |   |  |  |

STL Buffalo

Date: 10/21/ 13:02:01 Jobno: A05-B1

DELTA ENVIRONMEN DNSULTANTS, INC. SAMPLE .....JNOLOGY

Rept: AN0369

|                  |           |                                                      |                                                                                                                                                   |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                                             |                                               |                                                                                                                                                                                              |                                                                      |                                                              |
|------------------|-----------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|
| Lab ID           | sample ID | Units                                                | Units Analyte                                                                                                                                     | Method                                                       | Dilution<br>Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample<br>Date                                                                                                                                                                                                                                                                                                                                       | Receive<br>Date                                                                                                      | TCLP<br>Date                                                | ТНТ                                           | Analysis<br>Date                                                                                                                                                                             | AHT                                                                  | AHT Matrix                                                   |
| A5B17902 WASTE S | WASTE S   | MG/L<br>MG/L<br>MG/L<br>MG/L<br>MG/L<br>MG/L<br>MG/L | Arsenic - Total<br>Barium - Total<br>Cadmium - Total<br>Chromium - Total<br>Mercury - Total<br>Lead - Total<br>Selenium - Total<br>Silver - Total | 6010<br>6010<br>6010<br>6010<br>6010<br>6010<br>6010<br>6010 | 21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21.00<br>21 | 1.00 10/03/2005 12:10 10/05 07:45 10/08<br>1.00 10/03/2005 12:10 10/05 07:45 10/08 | 10/05 07:45<br>10/05 07:45<br>10/05 07:45<br>10/05 07:45<br>10/05 07:45<br>10/05 07:45<br>10/05 07:45<br>10/05 07:45 | 10/08<br>10/08<br>10/08<br>10/08<br>10/08<br>10/08<br>10/08 | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 10/11 20:50 Yes Soll<br>10/11 20:50 Yes Soll | Yes S<br>Yes S<br>Yes S<br>Yes S<br>Yes S<br>Yes S<br>Yes S<br>Yes S | SULL<br>SULL<br>SULL<br>SULL<br>SULL<br>SULL<br>SULL<br>SULL |

AHT = Analysis Holding Time Met THT = TCLP Holding Time Met NA = Not Applicable

57/61

Date: 10/21/ 13:02:01 Jobno: A05-B1.

Rept: AN0369

-

|                 |                          |       |                  |        |                    | •              |                 |              |      |                      |        |        |
|-----------------|--------------------------|-------|------------------|--------|--------------------|----------------|-----------------|--------------|------|----------------------|--------|--------|
| Lab ID          | Sample ID                | Units | Analyte          | Method | Dilution<br>Factor | Sample<br>Date | Receive<br>Date | TCLP<br>Date | THT  | Analysis<br>Date AHT | IT Mai | Matrix |
| A5B1557603      | A5B1557603 Method Blank  | MG/L  | Arsenic – Total  | 6010   | 1.00               | 1              | - 07:45         | đN           |      | 10/11 20.27 Vec      |        | UATED  |
|                 |                          | MG/L  | Barium - Total   | 6010   | 1.00               | ı              | - 07.45         | dW           |      | 1 20.27              |        |        |
|                 |                          | MG/L  | cadmium - Total  | 6010   | 1.00               | ,              | - 07.45         |              |      | 11 20.27             |        |        |
|                 |                          | MG/L  | Chromium - Total | 6010   | 00-1               | ı              | - 07-15         |              |      | 11 20.05             | _      |        |
|                 |                          | _     | Lead - Total     | 6010   | 00-1               |                | - 07.45         |              |      | 22:02 11             | _      | WAIEK  |
|                 |                          | MG/L  | Selenium - Total | 6010   | 1.00               |                | - 07:45         | A N          |      | 11 20:27             |        | WATER  |
| A501502712      |                          | MG/L  | Silver - Total   | 6010   | 1.00               | ·              | - 07:45         | AN           | AN   | 11 20:27             |        | WATER  |
| A501557604      | ASPISEZENA FULL DI BLANK | M6/L  | Mercury - Total  | 7470   | 1.00               | ,              | - 07:45         | AN           | NA   | 17 15:40             |        | WATER  |
|                 | EXTRACTOR BLANK          | M6/L  | Arsenic - Total  | 6010   | 1.00               | ı              | - 07:45         | NA           | NA   | 11 20:36             |        | WATER  |
|                 |                          | MG/L  | Barium - Total   | 6010   | 1.00               | ı              | - 07:45         | NA           | AN   | 11 20:36             | -      | WATER  |
|                 |                          | MG/L  | Cadmium - Total  | 6010   | 1.00               | •              | - 07:45         | AN           | AN   | 11 20:36             |        | WATER  |
|                 |                          | MG/L  | Chromium - Total | 6010   | 1.00               | 1              | - 07:45         | AN           | AN   | 11 20:36             |        | WATER  |
|                 |                          | M6/L  | Lead - Total     | 6010   | 1.00               | 1              | - 07:45         | AN           | AN   | 11 20:36             |        | WATER  |
|                 |                          | MG/ L | Selenium - Total | 6010   | 1.00               | ,              | - 07:45         | AN           | AN   | 11 20:36             |        | WATER  |
| A501506704      |                          | MG/L  | Silver - Total   | 6010   | 1.00               | <b>I</b>       | - 07:45         | NA           | AN   | /11 20:36            |        | WATER  |
| A501557602 1 Co | EXTRACTOR BLANK          |       | mercury - Total  | 7470   | 1.00               | ı              | - 07:45         | NA           | NA 1 |                      |        | WATER  |
| זחה וררו מרע    | L L L S                  |       | Arsenic - Total  | 6010   | 1.00               | 1              | - 07:45         | NA           | NA 1 | 0/11 20:31 Ye        | Yes WA | WATER  |
|                 |                          |       | Barlum - Total   | 6010   | 1.00               | ,              | - 07:45         | AN           | NA 1 |                      | Yes WA | WATER  |
|                 |                          | MG/L  | Cadmium - Total  | 6010   | 1.00               | ,              | - 07:45         | AN           | NA   | 11 20:31             |        | WATER  |
|                 |                          | MG/L  | Chromium - Total | 6010   | 1.00               | 1              | - 07:45         | AN           | NA 1 |                      |        | WATER  |
|                 |                          | MG/L  | Lead - Total     | 6010   | 1.00               | 1              | - 07:45         | AN           | NA 1 |                      |        | WATER  |
|                 |                          | MG/L  | Selenium - Total | 6010   | 1.00               |                | - 07:45         | NA           | AN   | -                    | Yes WA | WATER  |
| 201101100       |                          | MG/L  | Silver - Total   | 6010   | 1.00               | 1              | - 07:45         | AN           | NA 1 |                      | _      | WATER  |
| 201 20104C1 BCV | LC 3                     | MG/L  | Mercury - Total  | 2470   | 1.00               | 1              | - 07:45         | NA           | NA L | 10/17 14:18 Ye       | Yes WA | WATER  |
|                 |                          |       |                  |        |                    |                |                 |              |      |                      |        |        |

58/61

STL Buffalo

AHT = Analysis Holding Time Met THT = TCLP Holding Time Met NA = Not Applicable

| 13:02:04 |        |
|----------|--------|
| 10/21/   | A05-B1 |
| Date:    | Jobno: |

DELTA ENVIRO

| 6                |     | -7 |
|------------------|-----|----|
| : AN0369         |     |    |
| : A              |     |    |
| Rept:            |     |    |
|                  | ×., |    |
|                  | j.  |    |
|                  |     |    |
|                  |     |    |
|                  |     |    |
|                  |     |    |
|                  |     |    |
|                  |     |    |
|                  |     |    |
|                  |     |    |
|                  |     |    |
|                  |     |    |
|                  |     |    |
|                  |     |    |
|                  |     |    |
|                  |     |    |
| DNSULTANTS, INC. |     |    |
| Ś                |     |    |
| TANT             |     |    |
| Isul             | βG  |    |
| 5                | Ę   |    |
| Z                | 3   |    |
| NME              | S   |    |
| 2                |     |    |

| Lab ID                                             | Sample ID         | Units              | Units Analyte                        | Method               | Dilution<br>Factor   | Sample<br>Date | Receive<br>Date               | TCLP<br>Date   | THT            | Analysis<br>Date                                                               | HT M                    | AHT Matrix         |
|----------------------------------------------------|-------------------|--------------------|--------------------------------------|----------------------|----------------------|----------------|-------------------------------|----------------|----------------|--------------------------------------------------------------------------------|-------------------------|--------------------|
| A5B1544601 LCS<br>A5B1552801 LCS<br>A5B1560201 LCS | SD1<br>CCS<br>CCS | s.u.<br>°F<br>s.u. | pH<br>Flashpoint<br>Corrosivity (pH) | 9040<br>1010<br>9045 | 1.00<br>1.00<br>1.00 | 1 1 1          | - 07:45<br>- 07:45<br>- 07:45 | N N N<br>N N N | NA<br>NA<br>NA | NA 10/06 16:30 Yes WATER<br>NA 10/08 08:00 Yes SOIL<br>NA 10/10 15:04 Yes SOIL | res w<br>res s<br>res s | ATER<br>OIL<br>OIL |

STL Buffalo

|                                                            | Chain of Custody Number<br>167694<br>Page of                                                                                                                                                                 | Conditions<br>Conditions<br>Conditions<br>Conditions<br>Conditions<br>Conditions<br>Conditions<br>Conditions<br>Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEVERN STL<br>TRENT STL<br>Severn Trent Laboratories, Inc. |                                                                                                                                                                                                              | MW 1721     X     Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s                                                                                                                                                                                                                                  | And Control of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| S Eve                                                      | RL SCHUMACH<br>NDBr (Area Code)/Fax Number<br>- 445 - 0224<br>- 145 - 0224<br>Lab Contact                                                                                                                    | Matrix Containers & Containers & Containers & Preservatives<br>X Aqueore 504 HKVO3<br>X Aqueore 5 | ate Time 1. Received by 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. Actual 1. |
| Chain of<br>Custody Record                                 | STL-4124 (1900))<br>Client<br>DECTA EXU/ROWNENTAC<br>Address<br>104 JANSU/LUN AN<br>Cliv JNACUSU<br>Project Name and Location (State)<br>Project Name and Location (State)<br>Cliv FULCUA<br>Carrier(Waybill | Combined on one line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of By D R L L L L L L L L L L L L L L L L L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

--

1 1 1