New York State Department of Environmental Conservation Division of Environmental Remediation, Region 8

6274 East Avon-Lima Road, Avon, New York 14414-9519

Phone: (585) 226-5353 • Fax: (585) 226-8139

Website: www.dec.ny.gov

February 16, 2011

Mr. Ricky A. Ryan, P.E. Senior Principal Engineer/Project Manager MACTEC Engineering and Consulting, Inc 9725 Cogdill Road Knoxville, TN 37932

Dear Mr. Ryan:

Subject: Former Taylor Instruments Site, Site #V00144-8

Addendum to Vapor Mitigation Measure Work Plan

Sub-Slab Vapor and Indoor Air Sampling at 7 Lynchford Park B Residence

January 17, 2011

City of Rochester, Monroe County

The New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) have completed their review of the above-referenced Addendum to Vapor Mitigation Measure Work Plan Sub-Slab Vapor and Indoor Air Sampling at 7 Lynchford Park B Residence dated January 17, 2011 (the Report) and prepared by MACTEC Engineering and Consulting, Inc (MACTEC) for the former Taylor Instruments site. The Report provides the vapor intrusion sampling results for the off-site property located at 7 Lynchford Park B. Based upon the information and representations made in the Report, the Report is hereby approved.

Please contact me at 585-226-5357 if you have any questions about this project.

Sincerely,

Frank Sowers, P.E.

Environmental Engineer 2

ec:

B. Putzig

K. Comerford

J. Kosmala

J. McCreary

L. Ford

J. Conant

January 17, 2011

Mr. Frank Sowers, P.E. Environmental Engineer 2 New York State Department of Environmental Conservation Region 8 – Division of Environmental Remediation 6274 East Avon-Lima Road Avon, NY 14414

Subject:

Addendum to Vapor Mitigation Measure Work Plan

Sub-Slab Vapor and Indoor Air Sampling at 7 Lynchford Park B Residence

Former Taylor Instruments Site #V00144-8

Rochester, New York VCA Index #B8-0508-97-02

MACTEC Project Number 3031052006/12

Dear Mr. Sowers:

On behalf of ABB, Inc. (ABB), MACTEC Engineering and Consulting, Inc. (MACTEC) has prepared this letter which serves as an addendum to MACTEC's July 2010 *Vapor Mitigation Measure Work Plan for 80 Ames Street and 215 Danforth Street* (MACTEC, 2010a). Included in that Work Plan were the results of a sub-slab vapor and indoor air (SSIA) investigation performed at six houses (seven residences) near the Former Taylor Instruments Site (the Site) located at 95 Ames Street in Rochester, New York. One additional residence, 7 Lynchford Park B, was also proposed for the SSIA investigation; however, ABB and MACTEC did not receive a signed access agreement from the owner until late May 2010, after completion of the SSIA investigation and outside of the heating season. After consultation with the New York State Department of Health (NYSDOH), it was decided that 7 Lynchford Park B would be sampled after the start of the subsequent heating season in November 2010 (MACTEC, 2010b), with results submitted via an addendum letter (MACTEC, 2010a). This addendum letter presents the results of a SSIA investigation performed at the 7 Lynchford Park B residence during November 15 and 16, 2010. The results contained herein indicate that no further action is required.

Sub-Slab Vapor and Indoor Air Sampling

MACTEC collected sub-slab vapor and indoor air samples at 7 Lynchford Park B near the Site during November 15 and 16, 2010. The residence is shown on Figure 1 (Attachment A). The air samples were collected consistent with the procedures and techniques described in the NYSDOH *Guidance* for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, 2006).

The targeted sampling approach for the residence included:

- Completion of the NYSDOH Indoor Air Quality Questionnaire and Building Inventory (Attachment B),
- Collection of one sub-slab vapor and one indoor air sample from the residence basement,
- Collection of an outdoor ambient air sample during the sampling event for comparison to the indoor air sample.

Pre-Sampling Inspection and Collection of Samples

The pre-sampling inspection and sample collection procedures followed those detailed in the *Vapor Mitigation Measure Work Plan* (MACTEC, 2010a). One sub-slab vapor sample, one indoor air sample, and one outdoor ambient air sample were collected. Selected photographs of the residence basement, including the floor slab, household products, and sample locations are provided in Attachment C. The residence was a two-story, wood-frame house with an unfinished basement.

The basement at 7 Lynchford Park B is used primarily for laundry and storage. The basement slab was in overall good condition, though much of the slab could not be viewed due to stored items. Limited containers of cleaning products (e.g., disinfectants, bleach) were observed in the corner of the basement on top of the dryer. Ambient photoionization detector (PID) readings throughout the basement ranged from 50 to 95 parts per billion (ppb); when the PID was held near the household cleaning products it read similar concentrations (55 to 122 ppb). Because the source of the ambient indoor PID readings was not directly identified, and because none of the chemicals had any contaminants of concern (COCs) listed as ingredients, MACTEC proceeded with the sampling.

During helium leak tests before and after sampling, helium was not detected in the sample port. Consistent with the NYSDOH Guidance (NYSDOH, 2006), the helium leak tests results were judged acceptable.

Quality Assurance

Concurrent with sub-slab vapor and indoor air sample collection, an outdoor ambient air sample was collected during the 24-hour indoor sampling activity to evaluate the potential influence, if any, of outdoor air on indoor air quality. The outdoor air sample was collected by staging a clean-certified SUMMA® canister with a certified 24-hour flow regulator at an interpreted upwind location on the porch of 7 Lynchford Park B. The outdoor ambient PID readings measured during outdoor air sampling were less than 0.1 ppb. The weather was cool to cold, and no unusual odors were noted. The sampling procedures, including flow rates and volume determination, followed those for indoor air sampling.

One duplicate indoor air samples (IA-08 Dup) was collected to assess the precision of the sampling methods as well as laboratory data. The duplicate sample was collected in accordance with the indoor air sampling procedures.

For all samples, pertinent information including the time of sample collection, starting and ending canister vacuum (inches mercury [in/Hg]), PID measurements, etc., was recorded in a field log book and on sampling record forms (Attachment D).

Laboratory Analytical Testing

Vacuum measurements were collected from each sample canister upon retrieval in the field and receipt by the project laboratory. Zero-vacuum was not observed in any of the canisters.

All vapor samples were submitted to Con-Test Analytical Laboratory under chain-of-custody protocol for analyses of the four volatile organic compound (VOC) COCs using United States Environmental Protection Agency (EPA) Method TO-15. The selected VOCs are as follows:

- Tetrachloroethene (PCE):
- Trichloroethene (TCE);
- cis-1,2-dichloroethene (DCE); and
- Vinyl chloride (VC).

For undiluted samples using EPA Method TO-15 for VOCs, Con-Test has standard reporting limits of 1 microgram per cubic meter ($\mu g/m^3$) or less for sub-slab vapor and 0.25 $\mu g/m^3$ or less for indoor air and outdoor ambient air. The analytical results were used in conjunction with the Soil Vapor/Indoor Air

Matrix tables in the NYSDOH 2006 Guidance document (NYSDOH, 2006) to aid in the assessment of soil vapor intrusion at the residences. In accordance a June 25, 2007 NYSDOH letter (NYSDOH, 2007), TCE and VC concentrations were evaluated by using Matrix 1 guidance values, while PCE and DCE were evaluated using Matrix 2 guidance values.

Data Usability Assessment

MACTEC reviewed the laboratory results from the sampling event to establish that the results met data quality objectives. The project chemists' review was completed based on New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for Data Usability Summary Reports* (DUSR) (NYSDEC, 2002). The review included evaluations of sample collection, data package completeness, holding times, quality control data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification.

One sub-slab vapor sample (SS-08), one indoor air sample (IA-08), one outdoor ambient air sample (AA-06), and one duplicate indoor air sample (IA-08 Dup) were analyzed by Con-Test Analytical Laboratory for Site COCs by EPA Method TO-15. Con-Test provided Category B deliverables as defined in the NYSDEC *Analytical Services Protocols* (NYSDEC, 2005), copies of which are provided in Attachment E.

The DUSRs are provided in Attachment F. The results are interpreted to be usable as reported by the laboratory.

Vapor Investigation Results

The analytical results for all samples are presented in Table 1 and are summarized afterward. ABB has provided these results to the appropriate property owners and tenants.

Low concentrations of PCE were detected in sub-slab vapor (1.0 μ g/m³) and in the indoor air (0.24J μ g/m³) at 7 Lynchford Park B. The detected PCE concentrations are well below the NYSDOH air guidance value of 100 μ g/m³ for PCE. TCE was detected in sub-slab vapor at a concentration of 2.9 μ g/m³; below the NYSDOH air guidance value of 5 μ g/m³ for TCE. TCE was not detected in the indoor air sample at this residence, and no other COCs were detected in the sub-slab vapor or indoor air samples. The NYSDOH Matrix Table guidance for this residence is no further action.

Prepared by/Date: KJD/12-15-10

Checked by/Date: CRW/12-16-10

A low concentration of TCE (0.88 $\mu g/m^3$) was reported in the ambient air sample (AA-06) collected during the indoor air sampling period. No other COCs were detected in the ambient air samples. The presence of TCE in the ambient outdoor air may be attributable to nearby industries.

TCE was reported in the field duplicate (IA-08 DUP) but not in the primary indoor air sample (IA-08), while PCE was reported in the primary sample but not in the field duplicate. In both cases the concentrations detected were at or near the reporting limit, and as detailed in the DUSR the differences in the results are not interpreted to indicate a significant precision problem with the data set. Results for TCE and PCE in the primary indoor air sample (IA-08) were qualified estimated in the DUSR.

Table 1
Sub-Slab Vapor and Indoor Air Analytical Results and NYSDOH Matrix Guidance
7 Lynchford Park B Residence in Rochester, New York

Sample ID/Location	PCE (μg/m³)	TCE (µg/m³)	cis-1,2- DCE (μg/m³)	VC (μg/m³)	NYSDOH Matrix Table I Guidance (TCE and VC)	NYSDOH Matrix Table 2 Guidance (PCE and DCE)	
SS-08/7 Lynchford Park B Sub-Slab	1.0	2.9	0.40 U	0.26 U	NITTA	N.17. A	
IA-08/7 Lynchford Park B Indoor Air	0.24 J	0.19 UJ	0.14 U	0.09 U	NFA	NFA	
IA-08 DUP (Duplicate Indoor Air)	0.24 UJ	0.21 J	0.14 U	0.09 U	NA		
AA-06/Ambient (Outdoor) Air	0.24 U	0.88	0.14 U	0.09 U	NA		

Notes: $\mu g/m^3 = micrograms per cubic meter$

cis-1,2-DCE = cis-,1,2-dichloroethene

ID = identification

J = estimated (qualifier applied by project chemist)

NA = not applicable

NFA = no further action NYSDOH = New York State Department of Health

PCE = tetrachloroethene
TCE = trichloroethene

U = not detected VC = vinyl chloride

Conclusions and Recommendations

The primary goal of this SSIA investigation was to determine whether selected VOCs (i.e., PCE, TCE, cis-1,2-DCE, and VC) are present at levels requiring further investigation or mitigation in the sub-slab vapor or indoor air at 7 Lynchford Park B. Based on the review of results from this investigation, the NYSDOH Soil Vapor/Indoor Air Matrix tables indicate that no further action is warranted at this residence. Therefore, the sampling of 7 Lynchford Park B concludes the SSIA investigation at the off-Site residences.

Mr. Sowers, should you have any questions regarding this addendum, please contact one of us at (865) 588-8544 (ext. 1113 or 1149), or via email at raryan@mactec.com.

Sincerely,

MACTEC Engineering and Consulting, Inc.

Ricky A. Ryan, P.E.

Senior Principal/Project Manager

[1032]

cc w/ enc;

Bart Putzig, NYSDEC (electronic) James D. Charles, NYSDEC

Katherine Comerford, NYSDOH (electronic)

Jeffrey Kosmala, MCHD

K. Joe Deatherage

Senior Environmental Engineer

Jean McCreary, Nixon Peabody LLP (*electronic*) Libby Ford, Nixon Peabody LLP (*electronic*)

Nelson Walter, MACTEC (electronic)

Melody Christopher, ABB (electronic + hard copy)

References

- MACTEC, 2010a. Vapor Mitigation Measure Work Plan for 80 Ames Street and 215 Danforth Street. Former Taylor Instruments Site, Rochester, New York. Prepared for ABB, Inc. July.
- MACTEC, 2010b. Email from Mr. Ricky A. Ryan with MACTEC Engineering and Consulting, Inc., to Mr. Frank Sowers with the New York State Department of Environmental Conservation and Ms. Katherine Comerford with the New York State Department of Health. May 28.
- NYSDEC, 2002. Guidance for the Development of Data Usability Reports. Prepared by the New York State Department of Environmental Conservation Division of Environmental Remediation.
- NYSDEC, 2005. *Analytical Services Protocols*. Prepared by the New York State Department of Environmental Conservation. July.
- NYSDOH, 2006. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. Prepared by the New York State Department of Health. October.
- NYSDOH, 2007. Letter from Mr. Gary A. Litwin to Mr. Dale Desnoyers with the New York State Department of Environmental Conservation. June 25.

ACRONYM LIST

μg/m³ microgram per cubic meter

ABB ABB, Inc.

COC contaminant of concern

DCE dichloroethene

DUSR Data Usability Summary Reports

EPA Environmental Protection Agency (United States)

in/Hg inches mercury

MACTEC Engineering and Consulting, Inc.

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

PCE tetrachloroethene

PID photoionization detector

ppb parts per billion

Site Former Taylor Instruments Site SSIA sub-slab vapor and indoor air

TCE trichloroethene

VC vinyl chloride

VOC volatile organic compound

ATTACHMENT A
FIGURE

NFA = no further action warranted SSD = sub-slab depressurization system installed

Note: Results from other residences previously sampled are also depicted.

Prepared by: KJD 12/15/2010 Checked by: CRW 12/13/2010

Figure 1 - Sub-Slab Vapor and Indoor Air Sampling Residence at 7 Lynchford Park B

Former Taylor Instruments Site Rochester, New York

Project 3031052006-12

ATTACHMENT D

SUB-SLAB VAPOR AND INDOOR AIR SAMPLING RECORDS

		INDOOR	AIR SAN	APLING RECO	R D						
PROJECT NAME:	AB	B Former Taylor Site	and the state of t	LOCATION ID:	Structure	08 DATE: 11/	15/2010				
PROJECT NO./TAS	K NO.:	3031052006-12		CLIENT:	ABB						
PROJECT LOCATI	ON:	Rochester, New York		SAMPLER NAME: Brandon Shaw							
WEATHER CONDI	TIONS:	30 F, dark, windy,	cold	SAMPLER SION	ATUR						
				CHECKED BY:	Ksp	DATE: /ネー	7-10				
SUMMA Canister Record Information											
SUB-SLAB SOIL SAMPLI		INDOOR AIR - BA	SEMENT	INDOOR AIR - BA	ASSOCIATED A AIR	MBIENT					
Flow Regulator Number:	3352	Flow Regulator Number:	3079	Flow Regulator Number:	3417	Flow Regulator Number:	3433				
Flow Rate (mL/min):	~ 4	Flow Rate (mL/min):	~ 4	Flow Rate (mL/min):	~ 4	Flow Rate (mL/min):	~ 4				
Canister Serial Number:	1259	Canister Serial Number:	1661	Canister Serial Number:	1036	Canister Serial Number:	1283				
Start Time: 11/15/2010	0 @ 1907	Start Time: 11/15/2010	0 @ 1910	Start Time: 11/15/2010	0 @ 1910	Start Time: 11/15/2010	0 @ 1923				
Start Pressure ("Hg):	-30	Start Pressure ("Hg):	-29	Start Pressure ("Hg):	- 30+	Start Pressure ("Hg):	-30				
Stop Time: 11/16/2010	0 @ 1815	Stop Time: 11/16/2010	@ 1815	Stop Time: 11/16/2010	0@1815	Stop Time: 11/16/2010	0 @ 1839				
Stop Pressure ("Hg):	-10	Stop Pressure ("Hg):	-10	Stop Pressure ("Hg):	-11	Stop Pressure ("Hg):	-ll .				
Sample ID:	SS-08	Sample ID:	IA-08	Sample ID:	ia-08dup	Sample ID:	AA-06				
		Otl	ier Samplir	ig Information:							
: Basement Type	Unfinished	Story/Level:	Basement	Story/Level:	Basement	Direction from Building:	East				
Floor Slab Thickness:	~5 inches	Room:	Storage	Room:	Storage	Distance from Building:	20'				
Potential Vapor Entry Points:	NA	Potential Vapor Entry Points:	Sump	Potential Vapor Entry Points:	Sump	Distance from Roadway;	~ 100'				
Floor Surface:	Concrete	Floor Surface:	Concrete	Floor Surface:	Concrete	Ground Surface:	Grass				
Noticable Odor:	ΝΛ	Noticable Odor:	Smoke	Noticable Odor:	Smoke	Noticable Odor:	None				
PID Reading (ppb):	3,100	PID Reading (ppb):	80	PID Reading (ppb):	80	PID Reading (ppb):	< 0.1				
Intake Depth/Height:	~9 inches	Intake Height:	~ 5'	Intake Height:	~ 5'	Intake Height Above Ground Surface:	~ 6'				
Helium Test Conducted?	Yes	Indoor Air Temp:	68 F	Indoor Air Temp:	68 F	Intake Tubing Used?	Yes				
Comments/Locatio	n Sketch:										
				•							
				•							
#M	AC'	ГЕС									
511 Congress St				,							

ATTACHMENT E LABORATORY CATEGORY B ANALYTICAL REPORTS . (SEE ENCLOSED CD)

ENHANCED DATA PACKAGE

WORK ORDER# 10K0616

Client: Mactec, Inc. - TN Project Location: Rochester - NY

Con-Test Analytical Laboratory 39 Spruce Street East Longmeadow, MA 01028

> Phone: 413.525.2332 Fax: 413.525.6405

Email: info@contestlabs.com www.contestlabs.com

TABLE OF CONTENTS

Modified TO-15 WORK ORDER# 10K0616 CLIENT: Mactec, Inc. - TN

	Page No	umbers
	From	To
1. Analytical Summary	1	3
a. Narrative		
2. Analytical Results (PPBv followed by Ug/M3)	4	8
a. TO-15 Prep		
3. QC Summary Report	9	11
a. Surrogate Recovery		
b. Method Blank		
c. Second Source LCS		
d. Flag/Qualifier Summary		
e. Certifications and Accreditations		
4. Raw Data (ICAL) (05-24-10) standard compound list	12	50
a. GCMS Sequence Summary		
b. Autosampler Sequence Summary		
c. Non-Conformance Form		
d. BFB		
e. Method Blank Raw Data		
f. ICAL Summary Table		
g. Linear Regression Plots		
h. Curve - Raw Data		
i. Second Source Table and Raw Data		
5. Raw Data (Samples) 11-21-10	51	124
a. GCMS Sequence Summary		
b. Autosampler Sequence Summary		
c. IS Summary		
d. Non-Conformance Form		
e. BFB		
f. Continuting Table and Raw Data		
g. Second Source Table and Raw		
h. Method Blank Raw Data		
i. Sample Raw Data		
6. Shipping/Receiving Documents	125	127
a. Login Receipt Summary Sheet		
b. Chain-of-Custody Records		
c. Shipping Documents		
Comments:		

Tod Kopyscinski/Air Lab Manager 12-02-10
Signature (Print Name / Title) Date

November 24, 2010

Joe Deatherage Mactec, Inc - TN 9725 Cogdill Road Knoxville, TN 37932

Project Location: Rochester, NY

Client Job Number:

Project Number: 3031052006.12

Laboratory Work Order Number: 10K0616

Holy L. Tolson

Enclosed are results of analyses for samples received by the laboratory on November 17, 2010. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Holly L. Folsom Project Manager

Mactec, Inc - TN REPORT DATE: 11/24/2010

9725 Cogdill Road

ATTN: Joe Deatherage

Knoxville, TN 37932 PURCHASE ORDER NUMBER: 201015552

PROJECT NUMBER: 3031052006.12

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 10K0616

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Rochester, NY

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
SS-08	10K0616-01	Air		EPA TO-15	
IA-08	10K0616-02	Air		EPA TO-15	
IA-08 DUP	10K0616-03	Air		EPA TO-15	
AA-06	10K0616-04	Air		EPA TO-15	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

 $The \ results \ of \ analyses \ reported \ only \ relate \ to \ samples \ submitted \ to \ the \ Con-Test \ Analytical \ Laboratory \ for \ testing.$

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Daren J. Damboragian Laboratory Manager

ANALYTICAL RESULTS

Project Location: Rochester, NY Date Received: 11/17/2010 Field Sample #: SS-08 Sample ID: 10K0616-01 Sample Matrix: Air

Sampled: 11/16/2010 00:00

Sample Description/Location: Sub Description/Location: Canister ID: 1259 Canister Size: 6 liter Flow Controller ID: 3352 Sample Type: 24 hr Work Order: 10K0616

Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -10 Receipt Vacuum(in Hg): -10 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling:

	ppbv			ug/m3			Date/Time		
Analyte	Results	RL	Flag	Results	RL	Dilut	on Analyzed	Analyst	
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	11/22/10 9:34	WSD	
Tetrachloroethylene	0.15	0.10		1.0	0.68	2	11/22/10 9:34	WSD	
Trichloroethylene	0.55	0.10		2.9	0.54	2	11/22/10 9:34	WSD	
Vinyl Chloride	ND	0.10		ND	0.26	2	11/22/10 9:34	WSD	
Surrogates	% Recovery			% REC Limits					
4-Bromofluorobenzene (1)		94.1	70-130			11/22/10 9:34			

ANALYTICAL RESULTS

Project Location: Rochester, NY Date Received: 11/17/2010 Field Sample #: IA-08 Sample ID: 10K0616-02 Sample Matrix: Air

Sampled: 11/16/2010 00:00

Sample Description/Location: Sub Description/Location: Canister ID: 1661 Canister Size: 6 liter Flow Controller ID: 3079 Sample Type: 24 hr Work Order: 10K0616 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -10 Receipt Vacuum(in Hg): -11 Flow Controller Type: Fixed-Orifice Flow Controller Calibration

RPD Pre and Post-Sampling:

	ppbv			ug/ı	m3	Date/T	ime
Analyte	Results	RL	Flag	Results	RL	Dilution Analyz	zed Analyst
cis-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702 11/22/10	2:45 WSD
Tetrachloroethylene	0.035	0.035		0.24	0.24	0.702 11/22/10	2:45 WSD
Trichloroethylene	ND	0.035		ND	0.19	0.702 11/22/10	2:45 WSD
Vinyl Chloride	ND	0.035		ND	0.090	0.702 11/22/10	2:45 WSD
Surrogates	% Recov	% Recovery		% REC	C Limits		
4-Bromofluorobenzene (1)		92.2	70-130		11/22/10	2:45	

ANALYTICAL RESULTS

Project Location: Rochester, NY Date Received: 11/17/2010 Field Sample #: IA-08 DUP Sample ID: 10K0616-03 Sample Matrix: Air

Sampled: 11/16/2010 00:00

Sample Description/Location: Sub Description/Location: Canister ID: 1036 Canister Size: 6 liter Flow Controller ID: 3417 Sample Type: 24 hr Work Order: 10K0616 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -11 Receipt Vacuum(in Hg): -11 Flow Controller Type: Fixed-Orifice Flow Controller Calibration

Flow Controller Calibration RPD Pre and Post-Sampling:

	ppbv			ug/m3			Date/Time	
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
cis-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	11/22/10 1:56	WSD
Tetrachloroethylene	ND	0.035		ND	0.24	0.702	11/22/10 1:56	WSD
Trichloroethylene	0.039	0.035		0.21	0.19	0.702	11/22/10 1:56	WSD
Vinyl Chloride	ND	0.035		ND	0.090	0.702	11/22/10 1:56	WSD
Surrogates	% Recov	very		% REC	C Limits			
4-Bromofluorobenzene (1)		93.0		70-	-130		11/22/10 1:56	

ANALYTICAL RESULTS

Project Location: Rochester, NY Date Received: 11/17/2010 Field Sample #: AA-06 Sample ID: 10K0616-04 Sample Matrix: Air

Sampled: 11/16/2010 00:00

Sample Description/Location: Sub Description/Location: Canister ID: 1283 Canister Size: 6 liter Flow Controller ID: 3433 Sample Type: 24 hr Work Order: 10K0616 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -11 Receipt Vacuum(in Hg): -10 Flow Controller Type: Fixed-Orifice Flow Controller Calibration

RPD Pre and Post-Sampling:

	ppl	ppbv		ug/m3			Date/Time		
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst	
cis-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	11/22/10 1:09	WSD	
Tetrachloroethylene	ND	0.035		ND	0.24	0.702	11/22/10 1:09	WSD	
Trichloroethylene	0.16	0.035		0.88	0.19	0.702	11/22/10 1:09	WSD	
Vinyl Chloride	ND	0.035		ND	0.090	0.702	11/22/10 1:09	WSD	
Surrogates	% Recov	% Recovery		% REC Limits					
4-Bromofluorobenzene (1)		91.9 70-130			11/22/10 1:09				

Sample Extraction Data

Prep Method: TO-15 Prep-EPA TO-15			Pre-Dil	Pre-Dil	Default	Actual		
Lab Number [Field ID]	Batch	Pressure Dilution	Pre Dilution	Initial mL	Final mL	Injection mL	Injection mL	Date
10K0616-01 [SS-08]	B022792	1.5	1	N/A	1000	400	300	11/21/10
10K0616-02 [IA-08]	B022792	1.5	1	N/A	1000	400	855	11/21/10
10K0616-03 [IA-08 DUP]	B022792	1.5	1	N/A	1000	400	855	11/21/10
10K0616-04 [AA-06]	B022792	1.5	1	N/A	1000	400	855	11/21/10

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

	ppl		ug/n		Spike Level	Source		%REC		RPD	
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag
Batch B022792 - TO-15 Prep											
Blank (B022792-BLK1)		Prepared & Analyzed: 11/21/10									
cis-1,2-Dichloroethylene	ND	0.025									
Tetrachloroethylene	ND	0.025									
Trichloroethylene	ND	0.025									
Vinyl Chloride	ND	0.025									
Surrogate: 4-Bromofluorobenzene (1)	7.33				8.00		91.6	70-130			
LCS (B022792-BS1)					Prepared & A	Analyzed: 11	/21/10				
cis-1,2-Dichloroethylene	4.64				5.00		92.8	70-130			
Tetrachloroethylene	4.32				5.00		86.5	70-130			
Trichloroethylene	4.69				5.00		93.8	70-130			
Vinyl Chloride	4.01				5.00		80.3	70-130			
Surrogate: 4-Bromofluorobenzene (1)	7.59				8.00		94.8	70-130			

FLAG/QUALIFIER SUMMARY

- QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

EPA TO-15 in Air

cis-1,2-Dichloroethylene AIHA,FL,NY
Tetrachloroethylene AIHA,FL,NJ,NY
Trichloroethylene AIHA,FL,NJ,NY
Vinyl Chloride AIHA,FL,NJ,NY

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	American Industrial Hygiene Association	100033	01/1/2012
MA	Massachusetts DEP	M-MA100	06/30/2011
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2011
NY	New York State Department of Health	10899 NELAP	04/1/2011
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2011
RI	Rhode Island Department of Health	LAO00112	12/30/2010
NC	North Carolina Div. of Water Quality	652	12/31/2010
NJ	New Jersey DEP	MA007 NELAP	06/30/2011
FL	Florida Department of Health	E871027 NELAP	06/30/2011
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2011
WA	State of Washington Department of Ecology	C2065	02/23/2011

Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1 2 3 4 5 6 7 8 9	445111112	B052401.d B052402.d B052403.d B052404.d B052405.d B052406.d B052407.d B052408.d B052409.d B052410.d	1. 1. 1. 1. 1.	BFB 9.38PPBv CCV 9.38PPBv LCS CLUP * 0.025PPBv STD 0.05PPBv STD 0.1PPBv STD 0.2PPBv STD 0.5PPBv STD 0.5PPBv STD 0.5PPBv STD	CTWS-2519 CTWS-2517 CTWS-2518 CTWS-2513 CTWS-2513 CTWS-2513 CTWS-2513 CTWS-2513 CTWS-2513	24 May 2010 12:26 24 May 2010 13:05 24 May 2010 13:45 24 May 2010 14:26 24 May 2010 15:06 24 May 2010 15:46 24 May 2010 16:26 24 May 2010 17:06 24 May 2010 17:46 24 May 2010 18:27
11 12 13 14 15 16 17 18 19	2 2 2 2 3 21 21 1.2	B052411.d B052412.d B052413.d B052414.d B052415.d B052416.d B052417.d B052418.d B052419.d	1. 1. 1. 1. 1. 1. 1.	5.0PPBv STD 10PPBv STD 20PPBv STD 50PPBv STD 5.0PPBv LCS CLUP * MBL 0.5X 0.05PPBv STD	CTWS-2514 CTWS-2514 CTWS-2514 CTWS-2514 CTWS-2513 CTWS-2514	24 May 2010 19:10 24 May 2010 19:52 24 May 2010 20:34 24 May 2010 21:21 24 May 2010 23:32 25 May 2010 00:13 25 May 2010 00:57 25 May 2010 12:40 25 May 2010 13:20

Re-ran data points to achieve better & NOT USED results, however they did not work due to possible contamination as the MBL before pirts was

- Re-ran data points to confirm that the multi-conster calibration levels were correct. Original multi-conster calibration acceptance criteria. Analyses calibration was within acceptance criteria. not used and not needed. B052418.2 and B052419.2

Sequence Name: C:\SMART\052410.SEQ

Date: 07-12-2010 Time: 15:40:50 Int. Std Volume: 100 cc

	Inlet	Auto	Samp	Cal Std		
Sample Name	#	Pos	Vol.	Vol.	Method	Time
BFE	3 1	4	100	0	C:\SMART\051010.CTD	12:00
9.38PPBv CCV	7 1	4	100	0	$C:\SMART\051010.CTD$	12:00
9.38PPBv LCS	3 1	5	100	0	$C:\SMART\051010.CTD$	12:00
CLUE	2 1	1	10	0	$C:\SMART\051010.CTD$	12:00
0.05PPBv STI) 1	1	20	0	$C:\SMART\051010.CTD$	12:00
0.1PPBv STI) 1	1	40	0	C:\SMART\051010.CTD	12:00
0.2PPBv STI) 1	1	80	0	C:\SMART\051010.CTD	12:00
0.5PPBv STI) 1	1	200	0	C:\SMART\051010.CTD	12:00
2.0PPBv STI		2	40	0	C:\SMART\051010.CTD	12:00
5.0PPBv ST	1	2	100	0	C:\SMART\051010.CTD	12:00
10PPBv STI	1	2	200	0	C:\SMART\051010.CTD	12:00
20PPBv STI) 1	2	400	0	C:\SMART\051010.CTD	12:00
50PPBv STI	0 1	2	1000	0	C:\SMART\051010.CTD	12:00
5.0PPBv LCS	5 1	3	100	0	C:\SMART\051010.CTD	12:00
CLUI		1	100	0	C:\SMART\051010.CTD	12:00
MBL 0.5		1	800	0	C:\SMART\051010.CTD	12:00
0.05PPBv STI	0 1	1	20	0	C:\SMART\051010.CTD	12:00
0.5PPBv STI		2	10	0	C:\SMART\051010.CTD	12:00

Calibration Table Report

Method: T0052410.M Title: QUANT FILE FOR T0-14/T0-15 Last Calibration: Tue Jun 01 13:53:16 2010

Calibration Files

Calibration Files												
	1 9052466 D	2 R052407 C	3 9052408 D	4 8062489 D	6 B052416 D	6 B052411 D	7 8052412.0	8 8952413 D	9 9057414 D			
Compound	0,05	0.1	0.2	0.5	2	5	10	20	50	Avg	%RSD	
Composition	0,00	0.1	٧		-							
BROMOCHLOROMETHANE (1)	ISTD											
PROPENE	х.	Хý	0.678 .	0.548	0.443	0.401	0.378	0.381		0.456	25.518 18.939	P. P. Carlot
DICHLORODIFLUOROMETHANE	1,920	1.624	1.584	1.549	1.376	1.332	1.268	1.209	1.002	1.430	18.939	
CHLOROMETHANE	0.789	0.635	0.568	0.545	0.486	0.448	0.482	0.473	0.449	0.542	20.515	
FREON 114	2.184	1.881	1.854	1.788	1.610	1.524	1.551	1.497	1.282	1.686	15.879	
VINYL CHLORIDE	0.772	0.610	0.592	0.593	0.543	0.493	0.544	0.540	0.496	0.576	14.623	
1,3-BOTADIENB	0.474	0.408	0.376	0.367	0.342	0.310	0.345	0.339	0.308	0.363	14.385	
BROMOMETHANE	1.035	0.783	0.718	0.675	0,628	0.561	0.604	0.596	0.550	0.683	22.232	
CHLOROETHANE	0.315	0.287	0.284	0.288	0.273	0.239	0.278	0.282	0.255	0.278	7.737	
ACROLEIN	х	0.280	0.250	0.219	0.167	0.151	0.171	0.178	0.164	0.197	23.698	
ACETONE	х	X	x	1.461	0.736	0.672	0.731	0.693	0.678	0.828	37.545	< 50%
TRICHLOROFLUOROMETHANE	1.659	1.360	1.341	1.337	1.207	1.126	1.126	1.054	1.030	1.249	15.889	
ETHANOL	х	х	Х	0.303	0.163	0.154	0.167	0.159	0,146	0.182	32.817	< 50%
1,1-DICHLOROETHENE	1.237	1.040	1.015	0.998	0.919	0.856	0.830	0.844	0.811	0.950	14.506	
METHYLENE CHLORIDE	Х	1.284	1.053	0.903	0.759	0.699	0.673	0.673	0.639	0.836	27.486	
FREON 113	1.335	1.156	1.111	1.058	0.968	0.925	0.923	0.964	0.959	1.044	13.122	
CARBON DISULFIDE	2.262	1.963	1.915	1.845	1.689	1.607	1.591	1.626	1,593	1.788	12.808	
TRANS-1,2-DICHLOROETHENE	1.072	0.915	0.912	0.918	0.856	0.802	0.784	0.793	0.759	0.868	11.319	
1, 1-dichloroethane	1.379	1.189	1.156	1.120	1.043	0.971	0.948	0.955	0.934	1,077	13.765	
MTBE	2.009	1.696	1.543	1.554	1.379	1.354	1.312	0.639	1.319	1,500	15.527	
IPA	х	1.036	0.927	0.876	0.762	0.720	0.799		0.689	0.806	16.470	
2 - BUTANONE (MBK)	Х	2.251	1.956	1.705	1.325	1.323	1.275	1,284 Q.741	1.243	1.545	24.728	
CIS-1,2-DICHLOROETHENE	1.083	0.867	0.881	0.855	0.786	0.755	0.739	1.686	0.709	0.824 1.995	14.030 23.567	
VINYL ACETATE	х	2.868	2.575	2.024	1,760	1.740	1.673	0.593	1.635	0.706	20.946	
HEXANE	X	0.943	0.864	0.788	0.698	0.642	0.620	0.186	0.169	0.189	4.870	
ETHYL ACETATE	0.187	0.189	0.200	0.200	0.192 1.108	1.067	1.042	1.065	1.069	1,186	13.708	
CHLOROFORM	1.536	0.250	1.272	0,269	0.248	0.247	0.242	0.247	0.246	0.256	5.998	
TETRAHYDROFURAN	0.289	0.250	0.843	0.821	0.751	0.721	0.695	0.700	0.661	0.780	12.939	
1,2-DICHLOROETHANE	ISTD	0.001	0.043	V.621	0.751	0.721	0.033	0.700	0.001	0.700	42.303	
1,4-DIFLUOROBENZENE (1) 1,1,1-TRICHLOROETHANE	0.673	0.579	0.566	0.539	0.498	0.482	0.468	0.479	0.482	0.529	12.697	
BENZENE	1.241	1.004	0.943	0.892	0.803	0.774	0.757	0.766	0.755	0.882	18.398	
CARBON TETRACHLORIDE	0.635	0.553	0.559 /	0.542			0.490		0.507	0.531	8.902	. 1
CYCLOHEXANE	0.497	0.403	0.407	0.380	0.506	0.321	0.313	0.320	0.330		16.559	Mon
1,2-DICHLOROPROPANE	0.470	0.380	0.384	0.362	0.330	0.326	0.316	0.318	0.310	0.355	14.483	R
BROMODICHLOROMETHANE	0.808	0.724	0.712	0.696	0.641	0.646	0.631	0.648	0.634	0.682	8.643	
TRICHLOROETHENE	0.443	0.397	0.383	0.379	0.341	0.342	0.335	0.348	0.337	0,367	9.992	
1,4-DIOXANE	0.243	0.205	0.208	0.194	0.182	0.187	0.179	0.176	0.171	0.194	11.342	
METHYLMETHA CRYLATE	0.378	0.343	0,314	0.321	0.307	0.314	0.308	0.312	0.310	0.323	7.171	
HEPTANE	0.385	0.314	0.295	0.287	0.259	0.253	0.247	0.240	0.224	0.278	17.720	
MIBK	1.214	0.963	0.936	0.912	0.848	0.873	0.846	0.839	0.755	0.909	14.226	
CIS-1,3DICHLOROPROPENE	0.627	0.545	0.520	0.528	0.489	0.490	0.481	0.492	0.491	0.518	8.922	
TRANS-1, 3-DICHLOROPROPENE	0.541	0.481	0.487	0.493	0.476	0.482	0.476	0.488	0.479	0.489	4.151	
CHLOROBENZENE-D5 (1)	ISTD											
1,1,2-TRICHLOROETHANE	0.431	0.395	0.395	0.382	0.348	0.341	0.337	0.344	0.343	0.368	9.046	
TOLUENE	1.358	1.052	1.018	0.961	0.873	0.854	0.837	0.846	0.821	0.958	17.942	
2-HEXANONE (MBK)	1.417	1.063	0.998	1.007	0.869	0.899	0.868	0.854	0.755	0.970	19.831	
DIBROMOCHLOROMETHANE	0.876	0.764	0.750	0.735	0.692	0.702	0.701	0.724	0.716	0.740	7,594	
1,2-dibromoethane	0.795	0,678	0.687	0.666	0.610	0.615	0.600	0.616	0.604	0.652	9.727	
TETRA CHLOROETHENE	0.539	0.472	0.459	0.444	0.413	0.419	0.413	0.438	0.442	0.450	8.869	
CHLOROBENZEME	0.951	0.813	0.783	0.756	0.703	0.692	0.681	0.698	0,681	0.751	11.836	
ETHYLBENZENE	1.693	1.380	1.274	1.245	1.150	1.137	1.115	1.131	1.063	1.243	15.675	
M/P-XYLENE	1.317	1.091	1.050	1.024	0.958	0.951	0.940	0.951	0.840	1.014	13.322	
BROMOFORM	0.735	0.612	0.623	0.613	0.614	0.637	0.641	0.676	0.653	0.645	6.172	
STYRENE	0.778	0.685	0,662	0.656	0.633	0.649	0.642	0.666	0.641	0.668	6,589	
O-XYLENE	1.310	1.029	0.998	0.953	0.882	0.891	0.866	0.886	0.816	0.959	15.399	
1,1,2,2-TETRACHLOROETHANE	1.159	0.966	0.966	0.945	0.874	0.898	0.873	0.893	0.777	0.928	11.278	
4-BROMOPLUOROBENZENE (1)	0,528	0.527	0.527	0.523	0.540	0.549	0.544	0.545	0.545	0.536	1.904	
4-ETHYLTOLUENE	1.440	1.212	1.178	1.171	1.100	1.160	1.111	1.152	1.061	1.176	9.263	
1,3,5-TRIMETHYLBENZENE	1.266	0.969	0.957	0.941	0.876	0.901	0.892	0.914	0.853	0.952	12.991	
1,2,4-TRIMETHYLBENZENE	1.063	0.975	0.931	0.927	0.873	0.903	0.896 0.681	0.721	0.859	0.927	6.610 8.385	
1,3-DICHLOROBENZENE	0.846	0.690	0.705	0.689	0.644 0.890	0.678 0.961	0.958	0.721	0.660	0.702	5.886	
BENZYL CHLORIDE	1.038	0.919 0.724	0.908 0.715	0.690	0.650	0.961	0.958	0.965	0.683	0.710	8.584	
1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE	0.860 0.784	0.724	0.715	0.634	0.586	0.614	0.614	0.638	0.637	0.648	8.925	
1,2-Dichlorobenzene 1,2,4-Trichlorobenzene	0.784	0.452	0.637	0.436	0.378	0.412	0.424	0.469	0.460	0.448	11.734	
1,2,4-TRICHLOROBENZENE NAPHTHALENE	2.112	1.447	1.299	1.210	0.959	1.031	1.034	1.065	1.039	1.246	28.899	
HEXACHLOROBUTADIENE	0.477	0.403	0.376	0.356	0.331	0.357	0.387	0.437	0.361	0.387	11.908	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V - W - 1 - 1		+									

Tue Jun 01 14:02:18 2010

NON-CONFORMANCE FORM

ANALYTICAL METHOD: TO 14/15

BUSTRUMENT DESIGNATOR/SERVAL MUNISER: S.Y.S.B./

15

15

LIMSBAT:

ANALYSIS DATE: SAMPLE NUMBERS:

DEFAULT RANGE:

T0052410.D

5-24-10 ICAL DATE OUANT METHOD NAME:

0.05 - 50 PPBV

MASSACHUSETTS and ALL OTHERS (SW848 8000) ALL 625 ALL TO-14 ALL 10-15 524.2 8260 8270 8270 8260 and GCC+ 1. Gudenstablers, Chandrigh 12-2 distinguisms, Phones Elaborator Not Children distinguisms, Phones Elaborator Not Children 1220 GCC - Accomptions John Chronic Phones Parabolisms and Children Chronic Phones Parabolisms and 2 Shaphara Phones 2 Children Phones 2 Children Children Children Children 2 Children Children Children Children 2 Children Children Children Children Children Children 2 Children Children Children Children Children Children Children 2 Children Child HITML CALIBRATION CRITERIA MUST BE <= 30% OR R>=0 99 EXCEPT CCC % RSD <=15% OR R>=0 99 EXCEPT CCC % RED 7=15% OR RS=0.98 EXCEPT CCC % RSD <=15% OR R>×0.59 EXCEP™ CCC RSD +/- 35% WASD --36%/--56% FOR DIFFICULT %RSD <= 30% OR R>=0 99 %RSD <=30% or R>= 0.99 %RSD <=20% or R >=0 99 (R <0.99; LESS THAN A 5 POINT
CURVE, RESPONSE FACTORS 10.93 (F CRITERIA ARE NOT MET.
10.93 (F CRITERIA ARE NOT MET.
10.95 (F CRITERIA ALCONG WITH NEW UPPER END OF ENTERED ALONG WITH NEW PIL LISTED
10.95 (F CRITERIA ARE NOT MET.
10.95 (F CRITERIA INITIAL CALIBRATION INTIAL CALIBRATION COMPOUNDS ADJUSTMENT TO HIGHEST ADJUSTMENT TO REPORTING LIHIT IN Muthylans Chiloride Acolein Propense ETHOR Aceton TPA MEX Viny Butok ريُ Ö 0 0 0. 0 0 0 ٦ CONTINUING CALIBRATION CRITERIA. FILE NUMBER: %D FOR CCC+*20%, ALL OTHERS %D FOR CCC<=20%, ALL OTHERS \$40 <=20% XD < 20% %D <=20% WD <=30%, FOR OFFUCULT WD <= 10% LCS can be used as %D <= 30%, none over 50% W CRYERIA ARE NOT MET, LIST COMPOUNDS, DATA MUST BE FLAGGED AS ESTIMATED WITH NOTE: ECALOUT NOT

16

MS Integration Params: 11095INT.P

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15

AutoFind: Scans 2165, 2166, 2167; Background Corrected with Scan 2155

Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	20.0	24309	PASS
75	95	30	66	47.8	58136	PASS
95	95	1.00	100	100.0	121675	PASS
96	95	5	9	6.6	8026	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	120	79.1	96203	PASS
175	174	4	9	7.3	7025	PASS
176	174	93	101	96.6	92925	PASS
177	176	5	9	6.7	6196	PASS

(QT Reviewed)

Vial: 1 Data File : D:\HPCHEM\1\DATA\B052410\B052406.D Acq On : 24 May 2010 3:46 pm Operator: TPH Sample : 0.05PPBv STD Misc : CTWS-2513 Inst : SYSB Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Results File: TO052410.RES Quant Time: May 25 17:33 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Tue May 25 17:32:49 2010

Response via : Initial Calibration

DataAcq Meth: TO060909

Inte	rnal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
1)	BROMOCHLOROMETHANE (1)	8.28	49	247542	8.00	PPBv		0.00
30)	1,4-DIFLUOROBENZENE (1)	10.17	114	468694 V	8.00	PPBv		0.00
	CHLOROBENZENE-D5 (1)	14.95	117	427734 🗸	8.00	PPBv		0.00
Syst	em Monitoring Compounds			,				
	4-BROMOFLUOROBENZENE (1)	16.89	174	225651 🗸	7.87	PPBv		0.00
Sp	iked Amount 8.000 R	ange 70	- 130	Recover	c.	98.	38%	ĭ
Targ	et Compounds						Qv	alue
	PROPENE	4.08	41	1738%	0.123	- PPBv	r #	55
3)	DICHLORODIFLUOROMETHANE	4.15	85	2971√	0.067	PPBv	r	97
4)	CHLOROMETHANE	4.30	50	1220	0.073	PPBv	r	96
5)	FREON 114	4.39	85	3379√	0.065	PPBv	r	91
6)	VINYL CHLORIDE	4.51	62	1194 🗸	0.067	' PPBv	r	85
7)	1,3-BUTADIENE	4.62	54	734	0.065	PPBv	7	93
	BROMOMETHANE	4.86	94	1601 🗹	0.076	PPBv	r #	79
	CHLOROETHANE	5.01	64	487√	0.057	PPBv	r	82
10)	ACROLEIN	5.42	56	654 _%	$\theta - 1.07$	PPBv	#	9
-	ACETONE	5.55	43	5422 x		PPBv	r	72
12)	TRICHLOROFLUOROMETHANE	5.69	101	2567		PPBv	r	95
	ETHANOL	5.12	45	2473%		₽PBv	r	76
	1,1-DICHLOROETHENE	6.24	61	1914				93
	METHYLENE CHLORIDE	6.33	49	2795%	0.108			93
16)	FREON 113	6.59	101	2065				95
	CARBON DISULFIDE	6.62	76	3499	0.063			95
18)	TRANS-1,2-DICHLOROETHENE	7.18	61	1658 🗸				66
19)	1,1-DICHLOROETHANE	7.36	63	2133 1/	0.064			95
	MTBE	7.45	73	3108				95
21)	IPA	5.75	45	2005∜				76
22)	2-BUTANONE (MEK)	7.74	43	4729%	0-099			97
	CIS-1,2-DICHLOROETHENE	8.14	61	1676 🕊				94
	VINYL ACETATE	7.50	43	5869 X				92
25)	HEXANE	8.35	41	2050×				55
26)	ETHYL ACETATE	8.35	61	289 √				78
27)	CHLOROFORM	8.41	83	2376				93
28)	TETRAHYDROFURAN	8.83	71	447 6				98
29)	1,2-DICHLOROETHANE	9.12	62	1512		PPBv		93
31)	1,1,1-TRICHLOROETHANE	9.38	97	p ⁿ				94
32)	BENZENE	9.82	78	3634				96
	CARBON TETRACHLORIDE	9.98	117	1861		PPBv		100
	CYCLOHEXANE	10.11	84	1457		PPBv		74
	1,2-DICHLOROPROPANE	10.65	63	1378√.		PPBv		89
	BROMODICHLOROMETHANE	10.84	83	2367		PPBv		94
		10.90	95	1299		PPBv		91
37)	TRICHLOROETHENE 1,4-DIOXANE	10.90	88	707		PPBv		56
	•		69	1106		PPBv		93
39) 40)	METHYLMETHACRYLATE	11.10 11.23	57	1128 🗸		PPBv		89
40)	HEPTANE		43	3555		PPBv		94
	MIBK	11.86	43 75	1836		PPBv		90
	CIS-1,3DICHLOROPROPENE	11.80 12.37	75 75	1586	0.055			87
	TRANS-1,3-DICHLOROPROPENE	12.56	75 97	1153		PPBv		83
45)	1,1,2-TRICHLOROETHANE		<i>31</i> 					

17

^{(#) =} qualifier out of range (m) = manual integration B052406.D T0052410.M Tue Jun 01 13:55:10 2010

Vial: 1

Data File : D:\HPCHEM\1\DATA\B052410\B052406.D

Operator: TPH Acq On : 24 May 2010 3:46 pm Sample : 0.05PPBv STD Inst : SYSB Misc : CTWS-2513 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: May 25 17:33 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

: QUANT FILE FOR TO-14/TO-15 Title Last Update : Tue May 25 17:32:49 2010

Response via : Initial Calibration

DataAcq Meth : T0060909

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	TOLUENE	12.88	91	3630	0.071 PPBv	100
47)	2-HEXANONE (MBK)	13.19	43	3789	0.073 PPBv	79
48)	DIBROMOCHLOROMETHANE	13.34	129	2341	0.059 PPBv	97
49)	1,2-DIBROMOETHANE	13.63	107	2126 🇸	0.061 PPBv	97
50)	TETRACHLOROETHENE	14.19	166	1441	0.060 PPBv	
51)	CHLOROBENZENE	15.00	112	2542	0.063 PPBv	
52)	ETHYLBENZENE	15.48	91	4526	0.068 PPBv	
53)	M/P-XYLENE	15.70	91	7040 🔧	0.119 PPBv	
54)	BROMOFORM	15.76	173	1964	0.057 PPBv	
55)	STYRENE	16.16	104	2079√	0.058 PPBv	
56)	O-XYLENE	16.30	91	3501√	0.068 PPBv	
57)	1,1,2,2-TETRACHLOROETHANE	16.27	83	3099 🎻	0.062 PPBv	
59)	4-ETHYLTOLUENE	18.03	105	3849 🥙	0.061 PPBv	
60)	1,3,5-TRIMETHYLBENZENE	18.15	105	3385 🛫	0.067 PPBv	
61)	1,2,4-TRIMETHYLBENZENE	18.76	105	2843√	0.057 PPBv	
62)	1,3-DICHLOROBENZENE	18.97	146	2262	0.060 PPBv	
63)	BENZYL CHLORIDE	18.95	91	2774	0.055 PPBv	
64)	1,4-DICHLOROBENZENE	19.08	146	2298 🗸	0.061 PPBv	
65)	1,2-DICHLOROBENZENE	19.63	146	2095 √	0.060 PPBv	
66)	1,2,4-TRICHLOROBENZENE	22.43	180	1518/	0.063 PPBv	
67)	NAPHTHALENE	22.57		5647√	0.102 PPBv	
68)	HEXACHLOROBUTADIENE	23.11	225	1276 🏑	0.062 PPBv	# 47

18

0.\HPCHEM\1\DATA\B052410\B052406.D Vial: 1

MS Integration Params: 11095INT.P

Quant Time: May 25 17:33 2010 Quant Results File: T0052410.RES

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Tue Jun 01 13:53:16 2010

Data File : D:\HPCHEM\1\DATA\B052410\B052407.D

Vial: 1 Operator: TPH Acq On : 24 May 2010 4:26 pm Sample : 0.1PPBv STD Inst : SYSB Misc : CTWS-2513 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: May 25 17:34 2010

Quant Method: D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Tue May 25 17:32:49 2010

Response via : Initial Calibration

DataAcq Meth: T0060909

Internal Standards	R.T.	QIon	Response	Conc Uni	ts D	ev(Min)
1) BROMOCHLOROMETHANE (1)		10	242396	.d.d. b.b.	 Bxr	0.00
30) 1,4-DIFLUOROBENZENE (1)	10 17	114	451737	8 00 PP	Bv Bv	0.00
			412390			
44) CHECKODHANDAD D3 (1)	11,55		12200	0,00 12.		
System Monitoring Compounds						
58) 4-BROMOFLUOROBENZENE (1)	16.89	174	217142 📈	7.85 PP	3ν	0.00
Spiked Amount 8.000 Ra	nge 70	- 130	Recover	xy =	98.13	3 %
						_
Target Compounds			0.00			Qvalue
2) PROPENE	4.08	41		0.175 P		85
3) DICHLORODIFLUOROMETHANE	4.15	85	4921	0.114 P.	BRA BRA	97
4) CHLOROMETHANE	4.29	50	1923 - 5699 -	0.11/ P.	BBA.	98 91
5) FREON 114	4.39	85 62	1848	0.112 P.	DD-*	99
6) VINYL CHLORIDE	4.49					
7) 1,3-BUTADIENE	4.62		1235 √ 2371 √	0.11Z P.		
8) BROMOMETHANE	4.86	94	at the second se	0.115 P		
9) CHLOROETHANE	5.42	64	848	0.103 P	ייים א מייי	
10) ACROLEIN	5.55		6517 X			72
11) ACETONE 12) TRICHLOROFLUOROMETHANE	5.69	101	0017 ∧ 4100 √	O I O D	r D V D D TT	99
	5.11	101	4122 × 1989 ¥ 3151 ×	0.109 P	E D V DD vr	100
13) ETHANOL	6.24	4.5 6.1	2151	0 100 P	DERT	94
14) 1,1-DICHLOROETHENE 15) METHYLENE CHLORIDE	6.33	V C	3891	0.100 F	DBzz	99
	~ - ~	404	2502	0 3 3 3 10	nn	89
16) FREON 113 17) CARBON DISULFIDE 18) TRANS-1,2-DICHLOROETHENE 19) 1,1-DICHLOROETHANE	6.63	76	5947.	0.110 P	DRV	97
10) TRANC 1 2.DICULODOFTHENE	7 10	7 G	2772	0.105 P	PBv :	
16) 1 1 DICULOPOETHERE	7,10	63	3603	0.105 F	PRv.	99
20) MTBE	7.45	73	5139	0.113 P	PBv	94
21) IPA	5.75	45	3139	0.120 P	PBv :	
22) 2-BUTANONE (MEK)	7.73	43	5139 3139 6819	0.146 P	PBv	97
23) CIS-1,2-DICHLOROETHENE	8.13	61	2626	0.105 P	PBv	98
24) VINYL ACETATE	7.49	43	8689	0.144 P	PBv	93
25) HEXANE	8.35	41	2857	0.134 P	PBv :	# 62
26) ETHYL ACETATE	8.35	61	572	0.134 P	PBv i	# 84
27) CHLOROFORM	8.41	83	3911	0.109 P		98
28) TETRAHYDROFURAN	8.83	71	759 🎻	0.098 P	PBv	97
29) 1,2-DICHLOROETHANE	9.12	62	2580√	0.109 P	PBv :	# 93
31) 1,1,1-TRICHLOROETHANE	9.38	97	3267√	0.109 P	PBv	97
32) BENZENE	9.83	78	3267√ 5668√	0.114 P	PBv	97
33) CARBON TETRACHLORIDE	9.97	117		0.104 P		99
34) CYCLOHEXANE	10.11	84	2277√	0.110 P	PBv	90
35) 1,2-DICHLOROPROPANE	10.66	63	2145	0.107 P	PBv i	# 96
36) BROMODICHLOROMETHANE	10.84	83	4089	0.106 P	PBv	95
37) TRICHLOROETHENE	10.90	95		0.108 P	PBv	93
38) 1,4-DIOXANE	10.91	88	1156 🏑	0.106 P	PBv a	# 76
39) METHYLMETHACRYLATE	11.10	69	1934√	0.106 P	PBv ;	# 83
40) HEPTANE	11.22	57		0.113 P		89
41) MIBK	11.85	43				99
42) CIS-1,3DICHLOROPROPENE	11.80		3076 🗸	0.105 P		90
43) TRANS-1,3-DICHLOROPROPENE	12.36 12.55	75	8	0.098 P	PBv	95
45) 1,1,2-TRICHLOROETHANE	12.55	97				90

^{(#) =} qualifier out of range (m) = manual integration B052407.D T0052410.M Tue Jun 01 13:55:14 2010

Operator: TPH Inst : SYSB Acq On : 24 May 2010 4:26 pm Sample : 0.1PPBv STD Misc : CTWS-2513 Multiplr: 1.00 Misc

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: May 25 17:34 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Tue May 25 17:32:49 2010
Response via : Initial Calibration
DataAcq Meth : T0060909

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	TOLUENE	12.89	91	5425	0.110 PPBv	97
47)	2-HEXANONE (MBK)	13.19	43	5478 V	0.110 PPBv	85
48)	DIBROMOCHLOROMETHANE	13.34	129	3940√	0.103 PPBv	96
49)	1,2-DIBROMOETHANE	13.63	107	3496√	0.104 PPBv	99
50)	TETRACHLOROETHENE	14.19	166	2432 🎺	0.105 PPBv	
51)	CHLOROBENZENE	15.00	112	4193 √	0.108 PPBv	95
52)	ETHYLBENZENE	15.48	91	7116 🎻	0.111 PPBv	
53)	M/P-XYLENE	15.69	91	11249 🗸	0.197 PPBv	93
54)	BROMOFORM	15.75	173	3157 🗸	0.095 PPBv	
55)	STYRENE	16.15	104	3531 🗸	0.103 PPBv	92
56)	O-XYLENE	16.30	91	5306 🎻	0.107 PPBv	
57)	1,1,2,2-TETRACHLOROETHANE	16.27	83	4978 √	0.104 PPBv	
59)	4-ETHYLTOLUENE	18.03	105	6246√	0.103 PPBv	— " -
60)	1,3,5-TRIMETHYLBENZENE	18.15	105	4993 🛒	0.102 PPBv	
61)	1,2,4-TRIMETHYLBENZENE	18.76	105	5024 🗸	0.105 PPBv	
62)	1,3-DICHLOROBENZENE	18.97	146	3555√∫	0.098 PPBv	
63)	BENZYL CHLORIDE	18.95	91	4738	0,098 PPBv	
64)	1,4-DICHLOROBENZENE	19.08	146	3734 👟	0.102 PPBv	
65)	1,2-DICHLOROBENZENE	19.62	146	3553 🦿	0.106 PPBv	
66)	1,2,4-TRICHLOROBENZENE	22.42	180	2329 🥕	0.101 PPBv	
67)	NAPHTHALENE	22.57	128	7461 🖖	0.139 PPBv	
68)	HEXACHLOROBUTADIENE	23.10	225	2077	0.104 PPBv	66

Data File : D:\HPCHEM\1\DATA\B052410\B052407.D Vial: 1 22

 Acq On : 24 May 2010 4:26 pm
 Operator: TPH

 Sample : 0.1PPBv STD
 Inst : SYSB

 Misc : CTWS-2513
 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Time: May 25 17:34 2010 Quant Results File: T0052410.RES

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Tue Jun 01 13:53:16 2010

Data File : D:\HPCHEM\1\DATA\B052410\B052408.D

Vial: 1 Operator: TPH Acq On : 24 May 2010 5:06 pm Inst : SYSB Sample : 0.2PPBv STD Multiplr: 1.00 Misc : CTWS-2513

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: May 25 17:34 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Tue May 25 17:32:49 2010 Response via : Initial Calibration

DataAcq Meth: T0060909

Internal Standards	R.T.	QIon	Response	Conc Units	3 Dev	/(Min)
1) BROMOCHLOROMETHANE		49	242047	8.00 PPB7	7	0.00
30) 1,4-DIFLUOROBENZEN			448593	8.00 PPBv	I	0.00
44) CHLOROBENZENE-D5 (117		8.00 PPBv		0.00
22/ 0210021022010100100100100100100100100100						
System Monitoring Compo	unds		7			
58) 4-BROMOFLUOROBENZE	NE (1) 16.89	174	215262 🖟	7.86 PPB		0.00
Spiked Amount 8.	000 Range 70	- 130	Recover	cy = 98	3.25%	5
						_
Target Compounds			/			zalue
2) PROPENE	4.08			0.297 PPF		91
3) DICHLORODIFLUOROME		85	9584	0.222 PPI		100
4) CHLOROMETHANE	4.29		3439	0.210 PPE 0.220 PPE	3V	94
5) FREON 114	4.39		11217	0.220 PPF	30	90
6) VINYL CHLORIDE	4.50	62	3584 🟏	0.206 PPF	30	94
7) 1,3-BUTADIENE	4.62	54	2275 × 4343 ×	0.207 PPF	30	96
8) BROMOMETHANE	4.86	94	4343	0.210 PPE	3V	91
9) CHLOROETHANE	5.01	64	1721	0.205 PPF	3V	
10) ACROLEIN	5.42	56	1513	0.253 PPI	3V #	60
11) ACETONE	5.54	43	10753 📉	0.429 PPI	3V	70
12) TRICHLOROFLUOROMET		101	10753 X 8116 ⁄ 3479 X	0.215 PPI	3V	99
13) ETHANOL	5.11	45	3479 %	0.589 PPI		
14) 1,1-DICHLOROETHENE		61	6142 🎻	0.214 PPF		
15) METHYLENE CHLORIDE			6374 🐇	0.252 PPI		98
16) FREON 113	6.59	101	6725	0.213 PPF		92
17) CARBON DISULFIDE	6.62	76	11587 🗹	0.214 PPI	3v	
18) TRANS-1,2-DICHLORC		61	5516 🗳	0.210 PP		68
19) 1,1-DICHLOROETHANE	7.36	63	6993√	0.215 PPI		99
20) MTBE	7.44	73	9338 √ 5608 √	0.206 PPI		95
21) IPA	5.74		5608	0.216 PPI	3∨r	99
22) 2-BUTANONE (MEK)	7.73	43	11838 🗸	0.253 PPI		
23) CIS-1,2-DICHLOROET	HENE 8.13	61	5329 🦟	0.214 PPF		
24) VINYL ACETATE	7.49	43	15580 ∀	0.258 PPF		97
25) HEXANE	8.35	· 4:1	DZ4/60.	0.245 PPF		60
26) ETHYL ACETATE	8.35		1211			91
27) CHLOROFORM	8.40	83	7696√	0.215 PPE		96
28) TETRAHYDROFURAN	8.82			0.208 PPF		98
29) 1,2-DICHLOROETHANE		62	5100	0.216 PPF	3∿	97
31) 1,1,1-TRICHLOROETH	ANE 9.38		6347∜			
32) BENZENE	9.83			0.214 PPF		96
33) CARBON TETRACHLORI			6264			97
34) CYCLOHEXANE	10.11	. 84	4563	0.221 PPE		84
35) 1,2-DICHLOROPROPAN	E 10.65	63	4310	0.216 PPE		98
36) BROMODICHLOROMETHA	NE 10.83	83	7980 🌖			96
37) TRICHLOROETHENE	10.89	95	4296√	0.209 PPE	3 V	90
38) 1,4-DIOXANE	10.91	. 88	2336 🐔	0.215 PPE		86
39) METHYLMETHACRYLATE	11.10	69	3524√	0.195 PPF	3v #	87
40) HEPTANE	11.22	57	3310 √			89
41) MIBK	11.85		10494 🎻			93
42) CIS-1,3DICHLOROPRO	PENE 11.79		5837 ∜	0.201 PPI		100
43) TRANS-1,3-DICHLORO						97
45) 1,1,2-TRICHLOROETH	IANE 12.56	97	4032 🗸	0.214 PPF	3∨	92

^{(#) =} qualifier out of range (m) = manual integration B052408.D T0052410.M Tue Jun 01 13:55:20 2010

Data File : D:\HPCHEM\1\DATA\B052410\B052408.D

Vial: 1 Operator: TPH Acq On : 24 May 2010 5:06 pm Sample : 0.2PPBv STD Inst : SYSB Multiplr: 1.00 Misc : CTWS-2513

MS Integration Params: 11095INT.P

Quant Results File: TO052410.RES Quant Time: May 25 17:34 2010

Quant Method: D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

: QUANT FILE FOR TO-14/TO-15 Title Last Update : Tue May 25 17:32:49 2010

Response via : Initial Calibration

DataAcq Meth: T0060909

	Compound	R.T.	QIon	Response	Conc Uni	t Qvalue
46)	TOLUENE	12.89	 91	10394	0.213 P	PBv 99
47)	2-HEXANONE (MBK)	13.19		10191 🞷	0.206 P	PBv 87
48)	DIBROMOCHLOROMETHANE	13.34	129	7663 ∜	0.203 P	PBv 97
49)	1,2-DIBROMOETHANE	13.63	107	7014 🎻	0.211 P	PBv 98
50)	TETRACHLOROETHENE	14.19	166	4788	0.208 P	PBv 96
51)	CHLOROBENZENE	15.00	112	7992 🎻	0.208 P	PBv 99
52)	ETHYLBENZENE	15.48	91	13015 🗸	0.205 P	PBv 100
53)	M/P-XYLENE	15.70	91	21451	0.380 P	PBv 93
54)	BROMOFORM	15.76	173	6367	0.193 P	PBv 99
55)	STYRENE	16.16	104	6758√	0.198 P	PBv 93
56)	O-XYLENE	16.29	91	10194 🚿	0.208 P	PBv 97
57)	1,1,2,2-TETRACHLOROETHANE	16.26	83	9869 🎻	0.208 P	PBv 98
59)	4-ETHYLTOLUENE	18.02	105	12035∜	0.200 P	PBv 97
60)	1,3,5-TRIMETHYLBENZENE	18.14	105	9771√_	0.201 P	PBv 97
61)	1,2,4-TRIMETHYLBENZENE	18.76	105	9511 √	0.201 P	PBv 97
62)	1,3-DICHLOROBENZENE	18.97	146	7204	0.201 P	PBv 99
63)	BENZYL CHLORIDE	18.95	91	9272 🖖	0.194 P	PBv 96
64)	1,4-DICHLOROBENZENE	19.08	146	7304 🎺	0.202 P	PBv 98
65)	1,2-DICHLOROBENZENE	19.62	146	6505 <i>=</i> /_	0.197 P	PBv 98
66)	1,2,4-TRICHLOROBENZENE	22.43	180	4420 🛫	0.193 P	PBv 99
67)	NAPHTHALENE	22.56	128	13261 √	0.250 P	PBv 100
68)	HEXACHLOROBUTADIENE	23.11	225	3843	0.194 P	PBv # 47

Data File : D:\HPCHEM\1\DATA\B052410\B052408.D Vial: 1 25

 Acq On : 24 May 2010 5:06 pm
 Operator: TPH

 Sample : 0.2PPBv STD
 Inst : SYSB

 Misc : CTWS-2513
 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Time: May 25 17:34 2010 Quant Results File: T0052410.RES

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Tue Jun 01 13:53:16 2010

Data File : D:\HPCHEM\1\DATA\B052410\B052409.D

Vial: 1

Operator: TPH Inst : SYSB Acq On : 24 May 2010 5:46 pm Sample : 0.5PPBv STD Misc : CTWS-2513 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: May 25 17:36 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Tue May 25 17:32:49 2010
Response via : Initial Calibration

DataAcq Meth: T0060909

Internal Standards	R.T.	QIon	Response	Conc Unit	s De	v(Min)
1) BROMOCHLOROMETHANE (1)	8.28	49	240066	8.00 PPF	βV	0.00
30) 1,4-DIFLUOROBENZENE (1)			446020			0.00
44) CHLOROBENZENE-D5 (1)	14.95		402462	8.00 PPF	V	0.00
System Monitoring Compounds 58) 4-BROMOFLUOROBENZENE (1)	16 00	174	210458	7.80 PPE	137	0.00
	Range 70				7.50	
Spiked Amount 8.000	Range 70	- 130	Recover		7.50	•
Target Compounds					Ç	value
2) PROPENE	4.08	41	8215√			87
3) DICHLORODIFLUOROMETHANE	4.15	85	23243 🗸	0.542 PI		99
4) CHLOROMETHANE	4.29		8180 🎸	0.503 PI	Bv	97
5) FREON 114	4.39	85	26834	0.530 PI		91
6) VINYL CHLORIDE	4.50	62	8892 🗸	0.515 PI	Bv	96
7) 1,3-BUTADIENE	4.62	54	5509	0 505 PI	'Bv	97
8) BROMOMETHANE	4.86	94	10124	0.494 PI	Βv	94
9) CHLOROETHANE	5.02	64	4325 🗸	0.519 PF	Bv	90
10) ACROLEIN	5.42	56	3285 √	0.554 PI	Bv	85
11) ACETONE	5.54		21919	0.882 PI	Βv	70
12) TRICHLOROFLUOROMETHANE	5.69	101	20062	0.535 PI	Βv	98
13) ETHANOL	5,11		4548m	[©] 0.777 PI	Bv	
14) 1,1-DICHLOROETHENE	6.24		14979	0.525 PI	Bv	90
15) METHYLENE CHLORIDE	6.34		13551	0.540 PI	Bv	98
16) FREON 113	6.59		15872	0.506 PI	Βv	92
17) CARBON DISULFIDE	6.62			0.516 PI		98
18) TRANS-1,2-DICHLOROETHENE	7.18		13776			67
19) 1,1-DICHLOROETHANE	7.36		16800 🗹	0.520 PI		98
20) MTBE	7,44		23310 🗸	0.518 PF		94
21) IPA	5.74		13149	0.509 PI		98
22) 2-BUTANONE (MEK)	7.73		25587√	0.551 PH		94
23) CIS-1,2-DICHLOROETHENE	8.13		12830 🗸	0.519 PI		98
24) VINYL ACETATE	7.49		30370 🗸			96
25) HEXANE	8.35		11820√	0.558 PI		
26) ETHYL ACETATE	8.34	61	3003	0.530 PI		94
27) CHLOROFORM	8.41		18311 🐇	0.515 PI		98
28) TETRAHYDROFURAN	8.82					96
29) 1,2-DICHLOROETHANE	9.12			0.526 PI		98
31) 1,1,1-TRICHLOROETHANE	9.38		15036 W	0.509 PI		97
32) BENZENE	9.83			0.506 PI		97
33) CARBON TETRACHLORIDE	9.98	117	15117√	0.511 PE		98
34) CYCLOHEXANE	10.11	84	10581	0.517 PI		
35) 1,2-DICHLOROPROPANE	10.65	63	10081	0.509 PH		
36) BROMODICHLOROMETHANE	10.83		19401	0.510 PI		97
37) TRICHLOROETHENE	10.89		10555	0.516 PH		93
38) 1,4-DIOXANE	10.90		5395 √	0.500 PI		94
39) METHYLMETHACRYLATE	11.10		8944 √,	0.497 PI		
40) HEPTANE	11.22		7989	0.515 PI		89
41) MIBK	11.85		25418	0.501 PH		92
42) CIS-1,3DICHLOROPROPENE	11.80		14719	0.510 PI		99
43) TRANS-1,3-DICHLOROPROPEN				0.504 PI		97
45) 1,1,2-TRICHLOROETHANE	12.56			0.518 PI		89
45/ 1,1,2-1RICHBOROBIAND						

Data File : D:\HPCHEM\1\DATA\B052410\B052409.D Acq On : 24 May 2010 5:46 pm

Vial: 1 Operator: TPH Inst : SYSB Multiplr: 1.00

27

Sample : 0.5PPBv STD Misc : CTWS-2513

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: May 25 17:36 2010

Quant Method: D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

: QUANT FILE FOR TO-14/TO-15 Title Last Update : Tue May 25 17:32:49 2010

Response via : Initial Calibration

DataAcq Meth: TO060909

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	TOLUENE	12.89	91	24175	0.502 PPBv	99
47)	2-HEXANONE (MBK)	13.18	43	25339 🔧	0.519 PPBv	87
48)	DIBROMOCHLOROMETHANE	13.35	129	18497	0.497 PPBv	99
49)	1,2-DIBROMOETHANE	13.63	107	16748 🇸	0.510 PPBv	98
50)	TETRACHLOROETHENE	14.19	166	11163 🧳	0.493 PPBv	96
51)	CHLOROBENZENE	15.00	112	19009 🐇	0.503 PPBv	98
52)	ETHYLBENZENE	15.47	91	31304	0.501 PPBv	100
53)	M/P-XYLENE	15.71	91	51506 🗸	0.925 PPBv	93
54)	BROMOFORM	15.76	173	15418 🗹	0.475 PPBv	96
55)	STYRENE	16.16	104	16504 🗸	0.491 PPBv	93
56)	O-XYLENE	16.30	91	23967 🗹	0.497 PPBv	98
57)	1,1,2,2-TETRACHLOROETHANE	16.26	83	23775	0.509 PPBv	98
59)	4-ETHYLTOLUENE	18.03	105	29444	0.498 PPBv	98
60)	1,3,5-TRIMETHYLBENZENE	18.14	105	23671 🏑	0.494 PPBv	98
61)	1,2,4-TRIMETHYLBENZENE	18.76	105	23316 🎻	0.500 PPBv	97
62)	1,3-DICHLOROBENZENE	18.97	146	17330	0.491 PPBv	100
63)	BENZYL CHLORIDE	18.94	91	23816 🗸	0.505 PPBv	99
64)	1,4-DICHLOROBENZENE	19.08	146	17368 🎺	0.487 PPBv	99
65)	1,2-DICHLOROBENZENE	19.62	146	15939√_	0.489 PPBv	97
66)	1,2,4-TRICHLOROBENZENE	22.42	180	10965 🐔	0.487 PPBv	98
67)	NAPHTHALENE	22.57	128	30438 ₩	0.583 PPBv	100
68)	HEXACHLOROBUTADIENE	23.11	225	8954 🎻	0.460 PPBv	. 88

10\R052409 D Vial· 1 28

MS Integration Params: 11095INT.P

Quant Time: May 25 17:36 2010 Quant Results File: TO052410.RES

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Tue Jun 01 13:53:16 2010

Data File: D:\HPCHEM\1\DATA\B052410\B052409.D

Vial: 1 Operator: TPH : 24 May 2010 Acq On : SYSB Inst Sample : 0.5PPBv STD Multiplr: 1.00 Misc : CTWS-2513

MS Integration Params: 11095INT.P

Quant Results File: temp.res Quant Time: May 25 17:34 2010

Method : D:\HPCHEM\1\METHODS\TO052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Tue May 25 17:35:22 2010 Response via : Multiple Level Calibration

Data File : D:\HPCHEM\1\DATA\B052410\B052409.D

Acq On : 24 May 2010 5:46 pm

Operator: TPH
Inst : SYSB
Multiplr: 1.00

Vial: 1

MS Integration Params: 11095INT.P

: 0.5PPBv STD

: CTWS-2513

Sample

Misc

Quant Time: May 25 17:36 2010 Quant Results File: temp.res

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Tue May 25 17:35:22 2010 Response via : Multiple Level Calibration

Data File : D:\HPCHEM\1\DATA\B052410\B052410.D Vial: 2 Operator: TPH Acq On : 24 May 2010 6:27 pm Inst : SYSB Sample : 2.0PPBv STD Misc : CTWS-2514 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: May 25 17:34 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Tue May 25 17:32:49 2010
Response via : Initial Calibration
DataAcq Meth : T0060909

Internal Standards	R.T.	QIon	Response		nits :	Dev	(Min)
1) BROMOCHLOROMETHANE (1)	8.28			8.00	DDBzz		0.00
30) 1,4-DIFLUOROBENZENE (1)	10.20	114	443861		PPBv		0.00
44) CHLOROBENZENE (1)			404055				0.00
44) CHIORODENALME DO (I)	14,55		101000	0.00	·		0.00
System Monitoring Compounds			/				
58) 4-BROMOFLUOROBENZENE (1)				8.06			0.00
Spiked Amount 8.000	Range 70	- 130	Recover	= =	100.	75%	
Target Compounds						Οv	alue
2) PROPENE	4.07	41	26684 🗹	1,940	PPBv	~	100
3) DICHLORODIFLUOROMETHANE	4.15	85			PPBv		98
4) CHLOROMETHANE	4.29	50	29282 💉				100
5) FREON 114	4.39	50 85	96945	1,910	PPBv		92
6) VINYL CHLORIDE	4.50	62	32673	1.884	PPBv		95
7) 1,3-BUTADIENE	4.62	54	20617	1.885	PPBv		95
8) BROMOMETHANE	4.86	94	37839	1.839	PPBv		96
9) CHLOROETHANE	5.01	64	16411	1 961	PPRv		93
10) ACROLEIN	5.42	94 64 56	10044	1.689	PPRv		97
11) ACETONE	5.53	4.3	44319	1 777	PPRv		86
12) TRICHLOROFLUOROMETHANE	5.68	101	72657 9826 55312	1 932	PPBv		99
13) ETHANOL	5.10	45	9826	1.673	PPBv		99
14) 1,1-DICHLOROETHENE	6.24	61	55312	1.934	PPRV		
15) METHYLENE CHLORIDE	6.33	40	4 E 7 2 Q 🗸	1 010	DDDzz		98
16) FREON 113	6.59			1 05/	DDBA		93
•	6.62	101 76 61	101719	1 888	DDBv		97
17) CARBON DISULFIDE		/ O	51563	1.973	DDDar	#	68
18) TRANS-1,2-DICHLOROETHENE 19) 1,1-DICHLOROETHANE	7.10	6.3	62808	1 026	DDD	11	99
	7.43	73	02000	1 020	FEDV		93
20) MTBE	7.43 5.73	/ J	83037 45865 79812	1,000	DDD**		97
21) IPA	7.73	4.0	79812	1.714	PEDV		94
22) 2-BUTANONE (MEK)	8.13	43 61	47318	1 000	DDDv		98
23) CIS-1,2-DICHLOROETHENE	7.49	43	105995	1 765	PPBv		97
24) VINYL ACETATE	8.35						62
25) HEXANE		4 L	11554	1,2/0	PPBv		99
26) ETHYL ACETATE	8.35	83	42028 */ 11554 */ 66752 */	1 070	DDD**		99
27) CHLOROFORM	8.40 8.81	77	14961	1.070	DDD**		97
28) TETRAHYDROFURAN		71	45040	1.737	DDDvv		98
29) 1,2-DICHLOROETHANE	9.11	62 97 78	45240 / 55311	1.920	DDD		98
31) 1,1,1-TRICHLOROETHANE	9.38	7/	89066 🗹	1.003	PPDV		97
32) BENZENE	9.82	78	89066				97
33) CARBON TETRACHLORIDE		117					
34) CYCLOHEXANE	10.11	84	37202		PPBv		85
35) 1,2-DICHLOROPROPANE	10.65	63	36631		PPBv		99
36) BROMODICHLOROMETHANE	10.84	83	71091		PPBv		96
37) TRICHLOROETHENE	10.90	95	37870		PPBv		90
38) 1,4-DIOXANE	10.90	88	20170		PPBv		95
39) METHYLMETHACRYLATE	11.10	69	34046 €		PPBv		82
40) HEPTANE	11.22	57	28795		PPBv		88
41) MIBK	11.85	43	94097		PPBv		92
42) CIS-1,3DICHLOROPROPENE	11.80	75	54220		PPBv		100
43) TRANS-1,3-DICHLOROPROPENI		75	52836		PPBv		98
45) 1,1,2-TRICHLOROETHANE	12.56	97	35133 💅	T.888	PPBv		90

32 Data File : D:\HPCHEM\1\DATA\B052410\B052410.D Vial: 2

Acq On : 24 May 2010 6:27 pm Operator: TPH Sample : 2.0PPBv STD Misc : CTWS-2514 Inst : SYSB Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Time: May 25 17:34 2010 Quant Results File: TO052410.RES

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Tue May 25 17:32:49 2010
Response via : Initial Calibration

DataAcq Meth: T0060909

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	TOLUENE	12.89	91	88172	1.823 PPBv	100
47)	2-HEXANONE (MBK)	13.18		87824	1.792 PPBv	
48)	DIBROMOCHLOROMETHANE	13.34		69875 🗹	1.869 PPBv	98
49)	1,2-DIBROMOETHANE	13.63	107	61609 🗹	1.870 PPBv	99
50)	TETRACHLOROETHENE	14.19	166	41676 🗸	1.835 PPBv	97
51)	CHLOROBENZENE	15.00	112	71048	1.873 PPBv	94
52)	ETHYLBENZENE	15.48	91	116151 🏏	1.850 PPBv	100
53)	M/P-XYLENE	15.70	91	193634 🎻		94
54)	BROMOFORM	15.76	173	62011		99
55)	STYRENE	16.15	104	63932	1.895 PPBv	94
56)	O-XYLENE	16.30	91	89123 🎸	1.840 PPBv	100
57)	1,1,2,2-TETRACHLOROETHANE	16.26	83	88297 🔨	1.884 PPBv	98
59)	4-ETHYLTOLUENE	18.03	105	111121 \checkmark	1.871 PPBv	
60)	1,3,5-TRIMETHYLBENZENE	18,15	105	88536 ₩		97
61)	1,2,4-TRIMETHYLBENZENE	18.76	105	88175 🗸	1.882 PPBv	94
62)	1,3-DICHLOROBENZENE	18.97	146	65004 🗸	1.835 PPBv	100
63)	BENZYL CHLORIDE	18.95	91	89933 🎻	1.901 PPBv	
64)	1,4-DICHLOROBENZENE	19.08	146	65625 🎺	1.832 PPBv	99
65)	1,2-DICHLOROBENZENE	19.63	146	59218 🎻	1,809 PPBv	97
66)	1,2,4-TRICHLOROBENZENE	22.43	180	38213 🐇	1.690 PPBv	98
67)	NAPHTHALENE	22.56	128	96856 🌖	1.847 PPBv	100
68)	HEXACHLOROBUTADIENE	23.10	225	33398	1.708 PPBv	98

Vial: 2 : 24 May 2010 Operator: TPH Acq On 6:27 pm : SYSB : 2.0PPBv STD Inst Sample Multiplr: 1.00 Misc : CTWS-2514

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: May 25 17:34 2010

: D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator) Method

: QUANT FILE FOR TO-14/TO-15 Title : Tue Jun 01 13:53:16 2010 Last Update

MS Integration Params: 11095INT.P

Quant Time: May 25 17:34 2010 Quant Results File: T0052410.RES

Quant Method: D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Tue May 25 17:32:49 2010

Response via : Initial Calibration

DataAcq Meth: T0060909

Internal Standards	R.T.	QIon	Response		nits I	Dev(Min)
1) BROMOCHLOROMETHANE (1)	8.28	49		8.00 E	PBv	0.00
30) 1,4-DIFLUOROBENZENE (1)	10 17	114	438709	8.00 E		0.00
44) CHLOROBENZENE-D5 (1)	14.95	117	404360			0.00
System Monitoring Compounds	•			-		
58) 4-BROMOFLUOROBENZENE (1)						
Spiked Amount 8.000 R	ange 70	- 130	Recover	= =	102.3	38%
						0
Target Compounds	4.07	41	60466√	4 30E	DDDvr	Qvalue 99
2) PROPENE	4.07	85	200960	4.658		
3) DICHLORODIFLUOROMETHANE 4) CHLOROMETHANE	4.14	50	67656			
5) FREON 114	4.38	85	229997	4 520	DDBv	91
6) VINYL CHLORIDE	4.49		74423			
	4.62	6.Z	14423 W	4 267	DDBar	95
7) 1,3-BUTADIENE	4.86	0.4	46758 84593 35995	4 102	DDBA	98
8) BROMOMETHANE 9) CHLOROETHANE	5.01	2 · 1	25005	4.103	LEDA	94
	5.41	E 6	22760	2 010	DDDAX	98
10) ACROLEIN	5.53	43	101337	4 054	PDD22	86
11) ACETONE	5.68	101	169845	4.507		
12) TRICHLOROFLUOROMETHANE	5.10	45	23267	3.953		
13) ETHANOL	6.24		100107	4 505	DDD**	0.1
14) 1,1-DICHLOROETHENE	6.33	49	105506 139504	4.505	DDD	98
15) METHYLENE CHLORIDE			130500*	4.100	DDD	94
16) FREON 113	6.59		242516	4.42/	EEDA	98
17) CARBON DISULFIDE	6.62 7.17		121013	4.493		
	7.17	63	146531	4.521		
19) 1,1-DICHLOROETHANE	7.30		204256	4.508		
20) MTBE 21) IPA	5.73		108618	4.185		
21) IPA 22) 2-BUTANONE(MEK)	7.72		199655	4.279		
23) CIS-1,2-DICHLOROETHENE	8.13	43 61	113847V	4.273	DDBv	98
	7.49	43	262496	4.361		
24) VINYL ACETATE	8.35					
25) HEXANE	8.34		96789 ∛ 28598√	5 010	DDB	π 02 99
26) ETHYL ACETATE 27) CHLOROFORM	8.41	83	160907	4.498		
28) TETRAHYDROFURAN	8.80	71	37247	4.817		
29) 1,2-DICHLOROETHANE	9.11					
31) 1,1,1-TRICHLOROETHANE	9.38	97	108844 ¥ 132116 √	4 550	PPRV	99
32) BENZENE	9.83	78	212242	4 390	PPRV	97
33) CARBON TETRACHLORIDE	9.98		135096			99
34) CYCLOHEXANE	10.11	84	88119	4.373		
35) 1,2-DICHLOROPROPANE	10.65	63	89258 🗸	4.582		
36) BROMODICHLOROMETHANE	10.84	83	177058	4.733		96
37) TRICHLOROETHENE	10.90	95	93715 🗸	4.654		89
38) 1,4-DIOXANE	10.89	88	51266 🗸	4.829		93
39) METHYLMETHACRYLATE	11.10	69	86031	4.858		
40) HEPTANE	11.22	57	69429			87
41) MIBK	11.85	43	239349			92
42) CIS-1,3DICHLOROPROPENE	11.80	75	134304			
43) TRANS-1,3-DICHLOROPROPENE		75	d.	4.920	PPBv	98
45) 1,1,2-TRICHLOROETHANE	12.56	97	86295 🖋	4.633	PPBv	89

(#) = qualifier out of range (m) = manual integration

(#) = qualifier out of range (#) = mandar integrationB052411.D T0052410.M Tue Jun 01 13:55:37 2010

Data File : D:\HPCHEM\1\DATA\B052410\B052411.D Operator: TPH Acq On : 24 May 2010 7:10 pm Inst : SYSB Sample : 5.0PPBv STD Misc : CTWS-2514 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: May 25 17:34 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Tue May 25 17:32:49 2010
Response via : Initial Calibration

DataAcq Meth: T0060909

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	TOLUENE	12.89	91	215876	4.459 PPBv	99
47)	2-HEXANONE (MBK)	13.18	43	227297	4.636 PPBv	88
48)	DIBROMOCHLOROMETHANE	13.34	129	177300 🗸	4.740 PPBv	98
49)	1,2-DIBROMOETHANE	13.63	107	155315 🗸	4.712 PPBv	100
50)	TETRACHLOROETHENE	14.20	166	105874	4.657 PPBv	97
51)	CHLOROBENZENE	15.00	112	174899 🗸	4.608 PPBv	97
52)	ETHYLBENZENE	15.48	91	287412 🎻	4.574 PPBv	100
53)	M/P-XYLENE	15.70	91	480842	8.595 PPBv	94
54)	BROMOFORM	15.76	173	160965 🗹	4.937 PPBv	99
55)	STYRENE	16.15	104	164043	4.859 PPBv	94
56)	O-XYLENE	16.30	91	225196	4.646 PPBv	100
57)	1,1,2,2-TETRACHLOROETHANE	16.27	83	226944	4.839 PPBv	98
59)	4-ETHYLTOLUENE	18.03	105			
60)	1,3,5-TRIMETHYLBENZENE	18.15	105	227614	4.731 PPBv	95
61)	1,2,4-TRIMETHYLBENZENE	18.76	105			94
62)	1,3-DICHLOROBENZENE	18.97	146	171412		
63)	BENZYL CHLORIDE	18.95	91		5.132 PPBv	
64)	1,4-DICHLOROBENZENE	19.08	146		4.779 PPBv	99
65)	1,2-DICHLOROBENZENE	19.63	146	155261 🚩	4.739 PPBv	96
66)	1,2,4-TRICHLOROBENZENE	22.43	180		4.598 PPBv	
67)	NAPHTHALENE	22.57	128	260486	4.964 PPBv	100
68)	HEXACHLOROBUTADIENE	23.10	225	90182 🗹	4.609 PPBv	95

Data File : D:\HPCHEM\1\DATA\B052410\B052411.D Vial: 2 36

MS Integration Params: 11095INT.P

Quant Time: May 25 17:34 2010 Quant Results File: T0052410.RES

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Tue Jun 01 13:53:16 2010

Vial: 2 Data File : D:\HPCHEM\1\DATA\B052410\B052412.D Operator: TPH Acq On : 24 May 2010 7:52 pm Sample : 10PPBv STD Inst : SYSB Multiplr: 1.00 Misc : CTWS-2514

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: May 25 17:34 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

: QUANT FILE FOR TO-14/TO-15 Title Last Update : Tue May 25 17:32:49 2010

Response via : Initial Calibration

DataAcq Meth : TO060909

Internal Standards	R.T.	QIon	Response	Conc U	Jnits	Dev	(Min)
1) BROMOCHLOROMETHANE (1)	8.28	49	241438	8.00	PPBv		0.00
30) 1,4-DIFLUOROBENZENE (1)	10.18	114	441068	8.00	PPBv		0.00
44) CHLOROBENZENE-D5 (1)	14.95		409826	8.00	PPBv		0.00
System Monitoring Compounds							
58) 4-BROMOFLUOROBENZENE (1)	16.89	174	223027 🗹	8.12	PPBv		0.00
·		- 130	Recover		101.		
***	. 3			•			
Target Compounds			,				alue
2) PROPENE	4.07	41	114063 🎺		. PPBv		98
3) DICHLORODIFLUOROMETHANE	4.14	85	382813		PPBv		99
4) CHLOROMETHANE	4.29	50	145612 🥌		2 PPBv		99
5) FREON 114	4.39	85	467986	9.196	PPBv		90
6) VINYL CHLORIDE	4.49	62	164261	9.451	. PPBv		97
7) 1,3-BUTADIENE	4.61		104018) PPBv		94
8) BROMOMETHANE	4.86	94	182158 🗸		PPBv		96
9) CHLOROETHANE	5.01	64	84018 🗹				95
10) ACROLEIN	5.41	56	51697		PPBv		97
11) ACETONE	5.52	43	220490) PPBv	r	83
12) TRICHLOROFLUOROMETHANE	5.68	101	339904 🗸		PPBv	r	99
13) ETHANOL	5.10	45	50419 🧹	8.565	PPBv	7	94
14) 1,1-DICHLOROETHENE	6.24	61	250509	8.737	7 PPBv	7	91
15) METHYLENE CHLORIDE	6.33	49	202973 🗸	8.049	PPBv	7	98
16) FREON 113	6.59	101	278436	8.835	PPBv	r	96
17) CARBON DISULFIDE	6.62	76	480110 🛩	8.897	PPBv	7	98
18) TRANS-1, 2-DICHLOROETHENE	7.18	61	236592 🗹	9.032	PPBv	r #	68
19) 1,1-DICHLOROETHANE	7.36	63	285965 📹	8.796	PPBv		98
20) MTBE	7.43	73	396027🛂	8.748	PPBv	r	93
21) IPA	5.73	45	241274	9.295	PPBv	7	95
22) 2-BUTANONE (MEK)	7.72	43	384835 🗸	8.246	PPBv	7	93
23) CIS-1,2-DICHLOROETHENE	8.13	61	2229854	8.968	PPBv	r	99
24) VINYL ACETATE	7.49	43	505002	8.388	PPBv	7	97
25) HEXANE	8.34	41	$187071 \checkmark$	8.777	PPBv	7 #	62
26) ETHYL ACETATE	8.34	61	56348	9.888	PPBv	7	99
27) CHLOROFORM	8.41	83	314405 🗸	8.787	PPBv	7	99
28) TETRAHYDROFURAN	8.80	71	73134	9.456	PPBv	r	96
29) 1,2-DICHLOROETHANE	9.11	62	209831 🗸	8.911	PPBv	r	98
31) 1,1,1-TRICHLOROETHANE	9.38		257957√	8.837	PPBv	7	99
32) BENZENE	9.83		417251	8.585	PPBv	r	97
33) CARBON TETRACHLORIDE	9.98	117	270388 🗸	9.236	PPBv	r	99
34) CYCLOHEXANE	10.11	84	172565 🏏	8.518	PPBv	7 #	82
35) 1,2-DICHLOROPROPANE	10.65	63	174495 🗸	8.910	PPBv	7 #	99
36) BROMODICHLOROMETHANE	10.84		348029√	9.254	PPBv	r	96
37) TRICHLOROETHENE	10.90		184552√	9.117	PPBv	r	87
38) 1,4-DIOXANE	10.89		98831		PPBv		91
39) METHYLMETHACRYLATE	11.10		170086		PPBv	r #	79
40) HEPTANE	11.23	57	136043) PPBv		86
41) MIBK	11.85		466350		PPBv		91
42) CIS-1,3DICHLOROPROPENE	11.80		265082√		PPBv		100
43) TRANS-1,3-DICHLOROPROPENE			· /				99
45) 1,1,2-TRICHLOROETHANE	12.56		172546 🗸		. PPBv		89

38 Data File : D:\HPCHEM\1\DATA\B052410\B052412.D Vial: 2

Operator: TPH Acq On : 24 May 2010 7:52 pm Inst : SYSB Sample : 10PPBv STD Misc : CTWS-2514 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: May 25 17:34 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Tue May 25 17:32:49 2010
Response via : Initial Calibration
DataAcq Meth : T0060909

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	TOLUENE	12.89	91	428978	8.742 PPBv	99
47)	2-HEXANONE (MBK)	13.18	43	444410 🗸	8.943 PPBv	89
48)	DIBROMOCHLOROMETHANE	13.35	129	359163 🗹		98
49)	1,2-DIBROMOETHANE	13.64	107	307115 🗹	9.193 PPBv	99
50)	TETRACHLOROETHENE	14.20	166	211622 🗸	9.185 PPBv	97
51)	CHLOROBENZENE	15.01	112	348826 🟏	9.068 PPBv	98
52)	ETHYLBENZENE	15.48	91	570952 🗸	8.966 PPBv	100
53)	M/P-XYLENE	15.72	91	962766√	16.979 PPBv	95
54)	BROMOFORM	15.76	173	328603√	9.944 PPBv	99
55)	STYRENE	16.16	104	328931√	9.612 PPBv	95
56)	O-XYLENE	16.30	91	443394 🗸	9.025 PPBv	99
57)	1,1,2,2-TETRACHLOROETHANE	16.27	83	447342	9.411 PPBv	98
59)	4-ETHYLTOLUENE	18.03	105	569271		95
60)	1,3,5-TRIMETHYLBENZENE	18.15	105	456729	9.367 PPBv	95
61)	1,2,4-TRIMETHYLBENZENE	18.77	105	458828 🗐	9.657 PPBv	93
62)	1,3-DICHLOROBENZENE	18.98	146	349041√	9.712 PPBv	99
63)	BENZYL CHLORIDE	18.95	91	490970 ⊮	10.232 PPBv	95
64)	1,4-DICHLOROBENZENE	19.08	146	345217 📉	9.501 PPBv	98
65)	1,2-DICHLOROBENZENE	19.63	146	314417	9.470 PPBv	96
66)	1,2,4-TRICHLOROBENZENE	22.43	180	217015 🏏	9.461 PPBv	98
67)	NAPHTHALENE	22.57	128	529665∞	9.960 PPBv	100
68)	HEXACHLOROBUTADIENE	23.11	225	198090 🎷	9.990 PPBv	94

Data File : D:\HPCHEM\1\DATA\B052410\B052412.D Vial: 2 39

 Acq On : 24 May 2010 7:52 pm
 Operator: TPH

 Sample : 10PPBv STD
 Inst : SYSB

 Misc : CTWS-2514
 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Time: May 25 17:34 2010 Quant Results File: T0052410.RES

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Tue Jun 01 13:53:16 2010

Data File : D:\HPCHEM\1\DATA\B052410\B052413.D Vial: 2 Operator: TPH Inst : SYSB Acq On : 24 May 2010 8:34 pm Sample : 20PPBv STD Misc : CTWS-2514 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: May 25 17:34 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Tue May 25 17:32:49 2010
Response via : Initial Calibration

DataAcq Meth: T0060909

Internal Standards			Response		Inits	Dev	(Min)
1) BROMOCHLOROMETHANE (1)	8.29		242463V		DDBv		0.01
30) 1,4-DIFLUOROBENZENE (1)	10.18		444235				0.01
44) CHLOROBENZENE-D5 (1)	14.95		413929				0.00
44) CHECKOBENZENE-DO (1)	14.73	<u></u> ,	********	0,00	1.10,		0.00
System Monitoring Compounds			<i></i>				
58) 4-BROMOFLUOROBENZENE (1)		174	225400 🗸			0	0.00
Spiked Amount 8.000 Ra	ange 70	- 130	Recove	ry =	101.	5,0 %	Ś
Constant Constant of the						Or	ralue
Target Compounds 2) PROPENE	4.07	41	230774	16.664	DDBv		99
3) DICHLORODIFLUOROMETHANE	4.15	85	733131				99
4) CHLOROMETHANE	4.30	50	286886				99
5) FREON 114	4.39	85	907695	17.762			91
6) VINYL CHLORIDE	4.49	62	327225				96
7) 1,3-BUTADIENE	4.62	54	205301				95
8) BROMOMETHANE	4.86		361379				97
9) CHLOROETHANE	5.02		170752				94
10) ACROLEIN	5.42	56	107894				97
11) ACETONE	5.53	43	419859				85
12) TRICHLOROFLUOROMETHANE	5.69		638986				99
13) ETHANOL	5.11	45	96520	16 327			94
14) 1,1-DICHLOROETHENE	6.24	61	511796				92
15) METHYLENE CHLORIDE	6.34		408079				98
	6.59		584280				97
16) FREON 113	6.62		985821				97
17) CARBON DISULFIDE	7.19		480586	18 270	DDRV	r ##	68
18) TRANS-1,2-DICHLOROETHENE	7.17		579134 V				98
19) 1,1-DICHLOROETHANE	7.44		808297				93
20) MTBE 21) IPA	5.74		387558				96
21) IPA 22) 2-BUTANONE (MEK)	7.73	43	778054				92
23) CIS-1,2-DICHLOROETHENE	8.13	61	449152				100
24) VINYL ACETATE	7.50	43	1022113				96
25) HEXANE	8.35	41	359233				65
26) ETHYL ACETATE	8.35	61	113022				96
27) CHLOROFORM	8.42		645509				99
28) TETRAHYDROFURAN	8.81		149905				97
29) 1,2-DICHLOROETHANE	9.13	62	424346				98
31) 1,1,1-TRICHLOROETHANE	9.38		531812				99
32) BENZENE	9.83		850242				98
33) CARBON TETRACHLORIDE	9.98		549603				99
34) CYCLOHEXANE	10.12	84	355724	17.434			80
35) 1,2-DICHLOROPROPANE	10.66	63	353225√	17.908			99
36) BROMODICHLOROMETHANE	10.84	83	719428	18,993			97
37) TRICHLOROETHENE	10.90	95	386530 🗸				86
38) 1,4-DIOXANE	10.89	88	195345 √				88
39) METHYLMETHACRYLATE	11.11	69	346734√	19.338			77
40) HEPTANE	11.23	57	266038				84
41) MIBK	11.85	43	931637	18.447			90
42) CIS-1,3DICHLOROPROPENE	11.80	75	546463 🗹				99
43) TRANS-1,3-DICHLOROPROPENE	12.37		541960				100
45) 1,1,2-TRICHLOROETHANE	12.57		356151√	18.680	PPBv	r	90
	- 						

^{(#) =} qualifier out of range (m) = manual integration

Operator: TPH Acq On : 24 May 2010 8:34 pm Inst : SYSB Sample : 20PPBv STD Misc : CTWS-2514 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Results File: TO052410.RES Quant Time: May 25 17:34 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Tue May 25 17:32:49 2010
Response via : Initial Calibration

DataAcq Meth: T0060909

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	TOLUENE	12.89	91	875173	17.659 PPBv	99
47)	2-HEXANONE (MBK)	13.19		883501	17.602 PPBv	90
48)	DIBROMOCHLOROMETHANE	13.35		749451~	19.572 PPBv	98
49)	1,2-DIBROMOETHANE	13.64	107	637117∜	18.881 PPBv	100
50)	TETRACHLOROETHENE	14.20		453460 🗸	19.486 PPBv	98
51)	CHLOROBENZENE	15.01	112	722233 🗸	18.589 PPBv	99
52)	ETHYLBENZENE	15.48	91	1170183	18.193 PPBv	98
53)	M/P-XYLENE	15.72	91	1967495	34.354 PPBv	97
54)	BROMOFORM	15,77	173	699686 💅	20.964 PPBv	98
55)	STYRENE	16.16	104	689425√	19.947 PPBv	97
56)	O-XYLENE	16.30	91	917120	18.483 PPBv	98
57)	1,1,2,2-TETRACHLOROETHANE	16.27	83	923987🗹	19.245 PPBv	98
59)	4-ETHYLTOLUENE	18.03	1.05	1191733√	19.584 PPBv	94
60)	1,3,5-TRIMETHYLBENZENE	18.15	105	945482 🗸	19.198 PPBv	94
61)	1,2,4-TRIMETHYLBENZENE	18.77	105	952346 🗹	19.846 PPBv	92
62)	1,3-DICHLOROBENZENE	18.98	146	746362 🗹	20.561 PPBv	98
63)	BENZYL CHLORIDE	18.95	91	998954	20.613 PPBv	93
64)	1,4-DICHLOROBENZENE	19.09	146	737378 🗹	20.093 PPBv	98
65)	1,2-DICHLOROBENZENE	19.63	146	660430 🗸	19.694 PPBv	96
66)	1,2,4-TRICHLOROBENZENE	22.43	180	485195	20.942 PPBv	98
67)	NAPHTHALENE	22.57	128	1122897 🗹	20.905 PPBv	100
68)	HEXACHLOROBUTADIENE	23.11	225	451853 🗸	22.561 PPBv	92

MS Integration Params: 11095INT.P

Quant Time: May 25 17:34 2010 Quant Results File: TO052410.RES

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Tue Jun 01 13:53:16 2010

B052413.D

Data File : D:\HPCHEM\1\DATA\B052410\B052414.D Vial: 2 Operator: TPH Inst : SYSB Acq On : 24 May 2010 9:21 pm Sample : 50PPBv STD Misc : CTWS-2514 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: May 25 17:34 2010

Quant Method: D:\HPCHEM\1\METHODS\TO052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Tue May 25 17:32:49 2010
Response via : Initial Calibration

DataAcq Meth: T0060909

Internal Standards	R.T.	QIon	Response	Conc (Jnits	Dev	(Min)
1) BROMOCHLOROMETHANE (1)	8.29	49	252557	8.00	PPBv		0.01
•	10.18			8.00			0.01
44) CHLOROBENZENE-D5 (1)	14.95		439619 🗹				0.00
,,							
System Monitoring Compounds			,				
58) 4-BROMOFLUOROBENZENE (1)		174					0.00
Spiked Amount 8.000 F	Range 70	- 130	Recover	= =	101.	63%	5
						Ο-	3
Target Compounds 2) PROPENE	4.08	41	572433	20 603	יים מומי		alue 99
3) DICHLORODIFLUOROMETHANE	4.15	85	1581595				100
4) CHLOROMETHANE	4.13		708860				99
5) FREON 114	4.39	85	2024316				95
6) VINYL CHLORIDE	4.50		782568				
7) 1,3-BUTADIENE	4.62	54	485504	40 345	DDBv		95
	4.86		867575				97
8) BROMOMETHANE	5.02	64	402875	45 000	L FEDV		94
9) CHLOROETHANE	5.02	6.C	258566W	43.344	C EEDV		
10) ACROLEIN			1070819				84
11) ACETONE	5.53	43	1625451				99
12) TRICHLOROFLUOROMETHANE	5.69		230016				94
13) ETHANOL	5.11		1279504				95
14) 1,1-DICHLOROETHENE	6.24	61	1008739	42,002	PPBV		94
15) METHYLENE CHLORIDE	6.34	49					95
16) FREON 113	6.59	101	1514017 V 2514837 V	45.924	F PERV		95 97
17) CARBON DISULFIDE	6.62						
18) TRANS-1,2-DICHLOROETHENE	7.19		1197875 V				67
19) 1,1-DICHLOROETHANE	7.37		1474553				98
20) MTBE	7.43	73	2082133				91 94
21) IPA	5.74	45	1087165				
22) 2-BUTANONE (MEK)	7.73	43	1962661				90
23) CIS-1,2-DICHLOROETHENE	8.14	61	1119099				94 94
24) VINYL ACETATE	7.51	43	2580104				
25) HEXANE	8.36		794880√ 266624 √	35.651	. PPDv	Ħ	66
26) ETHYL ACETATE	8.35						90
27) CHLOROFORM	8.42		388840×				100 96
28) TETRAHYDROFURAN	8.81						97
29) 1,2-DICHLOROETHANE	9.13 9.39			42.380	PPDV		97
31) 1,1,1-TRICHLOROETHANE							99
32) BENZENE	9.84	78	2183993				99
33) CARBON TETRACHLORIDE	9.99	117	1464653				
34) CYCLOHEXANE	10.12	84	954069	44.902			74
35) 1,2-DICHLOROPROPANE	10.66	63	897336√ 1832897 √	43.688			99 97
36) BROMODICHLOROMETHANE	10.85	83	972935∜	45.824			79
37) TRICHLOROETHENE	10.91	95					
38) 1,4-DIOXANE	10.89 11.11	88 69	492966 V	44.037			79 70
39) METHYLMETHACRYLATE	11.11	69 57	895453√ 647716√	40.266			70 79
40) HEPTANE			2184215	41.532			7 <i>9</i> 87
41) MIBK	11.86 11.81	43 75	1419880	47.399			97
42) CIS-1,3DICHLOROPROPENE		75 75	1385693	48.968			98
43) TRANS-1,3-DICHLOROPROPENE 45) 1,1,2-TRICHLOROETHANE	12.57		943654 🗸				91
45) 1,1,2°1RICHEOROSINANS							

^{(#) =} qualifier out of range (m) = manual integration B052414.D T0052410.M Tue Jun 01 13:55:54 2010

Data File: D:\HPCHEM\1\DATA\B052410\B052414.D Acq On : 24 May 2010 9:21 pm

Vial: 2 Operator: TPH Inst : SYSB 44

Sample : 50PPBv STD Misc : CTWS-2514

Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: May 25 17:34 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Tue May 25 17:32:49 2010
Response via : Initial Calibration

DataAcq Meth : TO060909

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	TOLUENE	12.90	91	2256395	42.869 PPBv	99
47)	2-HEXANONE (MBK)	13.19	43	2075397	38.932 PPBv	91
48)	DIBROMOCHLOROMETHANE	13.36	129	1967811√	48.387 PPBv	98
49)	1,2-DIBROMOETHANE	13.64	107	1658827 √	46.287 PPBv	99
50)	TETRACHLOROETHENE	14.20	166	1213601 🗸	49.102 PPBv	99
51)	CHLOROBENZENE	15.01	112	1871646 😾	45.359 PPBv	97
52)	ETHYLBENZENE	15.49	91	2920736 🛩	42.757 PPBv	97
53)	M/P-XYLENE	15.72	91	4615534 🛫	75.882 PPBv	97
54)	BROMOFORM	15.78	173	1795429√_		97
55)	STYRENE	16.17	104	1761203 🔨	47.980 PPBv	99
56)	O-XYLENE	16.32	91	2241527	42.535 PPBv	96
57)	1,1,2,2-TETRACHLOROETHANE	16.28	83	2133769 🌱	41.846 PPBv	99
59)	4-ETHYLTOLUENE	18.04	105	2914729	45.100 PPBv	92
60)	1,3,5-TRIMETHYLBENZENE	18.16	105	2344302	44.820 PPBv	93
61)	1,2,4-TRIMETHYLBENZENE	18.78	105	2360583 🗸	46.318 PPBv	91
62)	1,3-DICHLOROBENZENE	18.99	146	_1812317 √ __	47.009 PPBv	97
63)	BENZYL CHLORIDE	18.97	91	2315558 🎻	44.988 PPBv	91
64)	1,4-DICHLOROBENZENE	19.10	146	1877583 √	48.172 PPBv	96
65)	1,2-DICHLOROBENZENE	19.63	146	1750459 🐇	49.148 PPBv	94
66)	1,2,4-TRICHLOROBENZENE	22.43	180	1264732 💅	51.400 PPBv	97
67)	NAPHTHALENE	22.58	128	2854923 🎻	50.044 PPBv	
68)	HEXACHLOROBUTADIENE	23.11	225	991664	46.620 PPBv	91

52414 D Vial: 2 45

MS Integration Params: 11095INT.P

Quant Time: May 25 17:34 2010 Quant Results File: T0052410.RES

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Tue Jun 01 13:53:16 2010

Data File : D:\HPCHEM\1\DATA\B052410\B052415.D Vial: 3 Acq On : 24 May 2010 11:32 pm Operator: TPH Sample : 5.0PPBv LCS Inst : SYSB Multiplr: 1.00 Misc

MS Integration Params: 11095INT.P

: D:\HPCHEM\1\METHODS\TO052410.M (RTE Integrator)

: QUANT FILE FOR TO-14/TO-15 Last Update : Tue Jun 01 13:53:16 2010 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Dev Area%	Dev(min)
1. I	BROMOCHLOROMETHANE (1)				0.00
2	PROPENE	5.000	4.326	13.5 101	0.00
3	DICHLORODIFLUOROMETHANE	5.000	4.326 4.206 3.464	13.5 101 15.9 92 30.7# 86	0.00
4.	CHLOROMETHANE	5.000	3.464	30.7# 86	0.00
5	CHLOROMETHANE FREON 114 VINYL CHLORIDE	5.000	3.540	29.2 80	0.00
6	VINYL CHLORIDE		3.947		
7	1,3-BUTADIENE	5.000	3.962	20.8 95	0.00
8	1,3-BUTADIENE BROMOMETHANE CHLOROETHANE	5.000	3.962 3.809	20.8 95 23.8 95	0.00
9	CHLOROETHANE	5.000	4.685	6.3 112	
10	ACROLEIN	5,000	4.302	14.0 115	0.00
11	ACETONE	5.000	4.208 4.428 3.476	15.8 106	0.00
12	TRICHLOROFLUOROMETHANE	5.000	4.428	11.4 100	0.00
13	ETHANOL	5.000	3,476	30.5# 84	0.00
$\overline{14}$		5.000	4.706	5.9 107	0.00
15			4.324		0.00
16	FREON 113	5.000	4.740	5.2 109	0.00 0.00
17	CARBON DISULFIDE	5.000	4.740 4.716	5.7 107	0.00
18	TRANS-1,2-DICHLOROETHENE	5.000	4.814	3.7 106	0.00
19	1.1-DICHLOROETHANE	5.000	4.654	6.9 105	
20	MTBE	5.000	4.349	13.0 98	0.00
21	1,1-DICHLOROETHANE MTBE IPA	5.000	3.697	26.1 85	0.00
22	2-BUTANONE (MEK)	5.000	3.980	20.4 95	0.00
23	CIS-1.2-DICHLOROETHENE	5.000	4.729	5.4 106	0.00
24	VINYL ACETATE	5.000	3.998	20.0 94	0.00
25	CIS-1,2-DICHLOROETHENE VINYL ACETATE HEXANE ETHYL ACETATE	5.000	4,523	9.5 102	0.00
26	ETHYL ACETATE	5.000	4.767	4.7 97	0.00
27	CHLOROFORM	5.000	4.672	6.6 106	0.00
28	TETRAHYDROFURAN			10.2 95	0.00
29	1,2-DICHLOROETHANE	5.000	4.596	8.1 102	0.00
					
30	1,4-DIFLUOROBENZENE (1)	8.000	8.000	0.0 108	0.00
31	1,1,1-TRICHLOROETHANE	5.000	4.396	12.1 105	0.00
32	BENZENE	5.000	4.256	14.9 105	0.00
33	1,1,1-TRICHLOROETHANE BENZENE CARBON TETRACHLORIDE	5.000	4.507	9.9 105	0.00
34	CYCLOHEXANE	5.000	4.174	16.5 103	
35	1,2-DICHLOROPROPANE	5.000	4.339	13.2 103	0.00
36	BROMODICHLOROMETHANE	5,000	4.484 4.556	10.3 103	0.00
37	TRICHLOROETHENE	5.000	4.556	8.9 106	0.00
38	1,4-DIOXANE	5.000	4.085	18.3 92	0.00
39	METHYLMETHACRYLATE	5.000	4.337	13.3 97	0.00
40	HEPTANE	5.000	4.221	15.6 100	0.00
41	MIBK	5.000	4.007	19.9 90	0.00
42	CIS-1,3DICHLOROPROPENE	5.000	4.733	5.3 108	0.00
43	TRANS-1,3-DICHLOROPROPENE	5.000	4.283	14.3 94	0.00
44 I	CHLOROBENZENE-D5 (1)	8.000	8.000	0.0 107	0.00
45	1,1,2-TRICHLOROETHANE	5.000	4.490	10.2 104	0.00
46	TOLUENE	5.000	4.305	13.9 103	0.00
47	2-HEXANONE (MBK)	5.000	3.830	23.4 88	0.00
48	DIBROMOCHLOROMETHANE	5.000		11.0 100	0.00

^{(#) =} Out of Range

Data File : D:\HPCHEM\1\DATA\B052410\B052415.D Vial: 3 Acq On : 24 May 2010 11:32 pm Operator: TPH Sample : 5.0PPBv LCS Inst : SYSB Misc Multiplr: 1.00

MS Integration Params: 11095INT.P

: D:\HPCHEM\1\METHODS\TO052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Tue Jun 01 13:53:16 2010 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Dev	Area%	Dev(min)
49	1,2-DIBROMOETHANE	5.000	4.465	10.7	101	0.00
50	TETRACHLOROETHENE	5.000	4.475	10.5	103	0.00
51	CHLOROBENZENE	5.000	4.371	12.6	101	0.00
52	ETHYLBENZENE	5.000	4.245	15.1	99	0.00
53	M/P-XYLENE	10.000	8.805	12.0	100	0.00
54	BROMOFORM	5.000	4.568	8.6	99	0.00
55	STYRENE	5.000	4.469	10.6	98	0.00
56	O-XYLENE	5.000	4.283	14.3	99	0.00
57	1,1,2,2-TETRACHLOROETHANE	5.000	4.362	12.8	96	0.00
58 S	4-BROMOFLUOROBENZENE (1)	8.000	8.080	-1.0	105	0.00
59	4-ETHYLTOLUENE	5.000	4.343	13.1	94	0.00
60	1,3,5-TRIMETHYLBENZENE	5.000	4.336	13.3	98	0.00
61	1,2,4-TRIMETHYLBENZENE	5.000	4.462	10.8	98	0.00
62	1,3-DICHLOROBENZENE	5.000	4.475	10.5	99	0.00
63	BENZYL CHLORIDE	5.000	4.528	9.4	94	0.00
64	1,4-DICHLOROBENZENE	5.000	4.370	12.6	98	0.00
65	1,2-DICHLOROBENZENE	5.000	4.405	11.9	99	0.00
66	1,2,4-TRICHLOROBENZENE	5.000	4.710	5.8	110	0.00
67	NAPHTHALENE	5.000	5.459	-9.2	107	0.00
68	HEXACHLOROBUTADIENE	5.000	4.458	10.8	103	0.00

Data File : D:\HPCHEM\1\DATA\B052410\B052415.D Vial: 3 Operator: TPH Acq On : 24 May 2010 11:32 pm Sample : 5.0PPBv LCS Inst : SYSB Multiplr: 1.00 Misc

MS Integration Params: 11095INT.P

Quant Results File: TO052410.RES Quant Time: May 27 14:11 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Thu May 27 14:08:58 2010

Response via : Initial Calibration

DataAcq Meth: TO060909

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
1) BROMOCHLOROMETHANE (1)		40	246644	0 00	DDD**		0.00
30) 1,4-DIFLUOROBENZENE (1)	10.27	47	47E207	9.00	DDDv	,	
44) CHLOROBENZENE-D5 (1)	10.17	117	473237	0.00	DDBvr	(0.00
44) CHLOROBENZENE-D5 (1)	14.70	11/	472233	8.00	EEDA		7.00
System Monitoring Compounds							
58) 4-BROMOFLUOROBENZENE (1)							0.00
Spiked Amount 8.000 R.	ange 70	- 130	Recove	ry =	101.	00%	
Target Compounds						Qva	lue
2) PROPENE	4.07	41	60945	4.326	PPBv		98
•	4.14	85	185402	4.206	PPBv	-	99
4) CHLOROMETHANE	4.29	50	57885 184032 70071	3.464	PPBv		96
5) FREON 114	4.38	85	184032	3.540	PPBv		98
6) VINYL CHLORIDE	4.49	62	70071	3.947	PPBv		96
7) 1.3-BUTADIENE	4.62	54	44358	3.962	PPBv	•	97
8) BROMOMETHANE	4.86	94	80225 40135 26196	3.809	PPBv	-	97
9) CHLOROETHANE	5.01	64	40135	4.685	PPBv		94
10) ACROLEIN	5.41	56	26196	4.302	PPBv		98
11) ACETONE	5.53	43	107457	4.208	PPBv		83
	5.69		170517				
13) ETHANOL	5.10	45	19460	3.476	PPBv	-	94
14) 1,1-DICHLOROETHENE	6.24	61	19460 137832	4.706	PPBv	-	93
15) METHYLENE CHLORIDE	6.33	49	111396	4.324	PPBv		98
16) FREON 113	6.59		152604				
17) CARRON DIGHTETOR	6 62	76	260000	4.716	PPBv		97
10) TRANC_1 2-DICHLOROFTHENE	7 18	61	128806	4 814	PPBv	#	67
17) CARBON DISULFIDE 18) TRANS-1,2-DICHLOROETHENE 19) 1,1-DICHLOROETHANE	7 36	63	154546	4.654	PPBv	. "	98
20) MTBE	7.43	73	201089	4 349	PPBv		92
21) IPA	5.73	45	91819	3 697	PPBv		94
22) 2-BUTANONE (MEK)	7.72	43	91819 189761	3.980	PPBv		92
23) CIS-1,2-DICHLOROETHENE	8.12	61	120117	4 729	PPBv		99
24) VINYL ACETATE	7.49		245898				
25) HEXANE	8.35	41	98476	4 523	PPBv	- #	62
26) ETHYL ACETATE	8.34	61	27749	4 767	PPRV	. "	97
27) CHLOROFORM	8.40	83	98476 27749 170739	4 672	PPRV		99
28) TETRAHYDROFURAN	8.80	71	35490	4 492	PPRV		95
29) 1,2-DICHLOROETHANE	9.12		110546				
31) 1,1,1-TRICHLOROETHANE	9.37	97	138273	4 396	PPRV	,	99
32) BENZENE	9.82	7Ω	138273 222929	4 256	DDBv		97
33) CARBON TETRACHLORIDE			142179				98
34) CYCLOHEXANE	10.11			4.174			82
•	10.11						99
35) 1,2-DICHLOROPROPANE 36) BROMODICHLOROMETHANE	10.83	63 83	91567 181739	4.484	DDDD		96
				4.556			88
37) TRICHLOROETHENE 38) 1,4-DIOXANE	10.89			4.085			91
•	11.10	69					79
39) METHYLMETHACRYLATE	11.22	57	69763	4.337 4.221	DDD	17"	86
40) HEPTANE	11.84		216497	4 007	EEDV		91
41) MIBK	11.84		145684				99
42) CIS-1,3DICHLOROPROPENE	10 26	75	124520	4.733	DDB44		99
43) TRANS-1,3-DICHLOROPROPENE 45) 1,1,2-TRICHLOROETHANE	10 56	75 97	124520 89402	4.490	EEDV	-	90
45) 1,1,2-IRICHLOROETHANE							

^{(#) =} qualifier out of range (m) = manual integration B052415.D T0052410.M Mon Jul 12 15:24:15 2010

Vial: 3 Data File : D:\HPCHEM\1\DATA\B052410\B052415.D Operator: TPH Acq On : 24 May 2010 11:32 pm Sample : 5.0PPBv LCS Inst : SYSB Multiplr: 1.00 Misc

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: May 27 14:11 2010

Quant Method: D:\HPCHEM\1\METHODS\TO052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Thu May 27 14:08:58 2010

Response via : Initial Calibration

DataAcq Meth: T0060909

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	TOLUENE	12.89	91	222805	4.305 PPBv	100
47)	2-HEXANONE (MBK)	13.18	43	200737	3.830 PPBv	89
48)	DIBROMOCHLOROMETHANE	13.34	129	177881	4.448 PPBv	98
49)	1,2-DIBROMOETHANE	13.63	107	157337	4.465 PPBv	99
50)	TETRACHLOROETHENE	14.19	166	108746	4.475 PPBv	97
51)	CHLOROBENZENE	15.00	112	177339	4.371 PPBv	97
52)	ETHYLBENZENE	15.48	91	285091	4.245 PPBv	100
53)	M/P-XYLENE	15.71	91	482174	8.805 PPBv	94
54)	BROMOFORM	15.76	173	159221	4.568 PPBv	99
55)	STYRENE	16.16	104	161313		
56)	O-XYLENE	16.30	91	221922	4.283 PPBv	
57)	1,1,2,2-TETRACHLOROETHANE	16.26	83	218678	4.362 PPBv	
59)	4-ETHYLTOLUENE	18.03	105	275999		
60)	1,3,5-TRIMETHYLBENZENE	18.14	105	223005	4.336 PPBv	
61)	1,2,4-TRIMETHYLBENZENE	18.76	105	223577	4.462 PPBv	
62)	1,3-DICHLOROBENZENE	18.97	146	169629		
63)	BENZYL CHLORIDE	18.94	91	229148	4.528 PPBv	
64)	1,4-DICHLOROBENZENE	19.08	146	167473	4.370 PPBv	
65)	1,2-DICHLOROBENZENE	19.62	146	154254		
66)	1,2,4-TRICHLOROBENZENE	22.43	180	113962	4.710 PPBv	98
67)	NAPHTHALENE	22.56		279132		
68)	HEXACHLOROBUTADIENE	23.11	225	93232	4.458 PPBv	98

Data File : D:\HPCHEM\1\DATA\B052410\B052415.D Vial: 3 50

 Acq On : 24 May 2010 11:32 pm
 Operator: TPH

 Sample : 5.0PPBv LCS
 Inst : SYSB

 Misc : Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Time: May 27 14:11 2010 Quant Results File: TO052410.RES

Method : D:\HPCHEM\1\METHODS\TO052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Tue Jun 01 13:53:16 2010

D-\HPCHEM\1\DATA\R112110

	Į	Directory:	D:\HPCHEN	\1\DATA\B112110		51
Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1 2 3 4 5 6 7 8 9	1 2 3 6 7 21 21 22 23 24	B112101.d B112102.d B112103.d B112104.d B112105.d B112106.d B112107.d B112108.d B112109.d B112110.d	1. 1. 1. 1. 1. 1. 1.	BFB 5.0PPBv CCV 5.0PPBv LCS 6.25ug-m3 CCV AGO(K) 6.25ug-m3 LCS AGO(K) 1CLUP MBL 0.5X 10K0617-01 0.7X 10K0616-04 0.7X 10K0616-03 0.7X	CTWS-2568 CTWS-2552 CTWS-2553 CTWS-2569 CTWS-2570 1,1,400,800,0.5X 1.5,1,400,855,0.7X 1.5,1,400,855,0.7X 1.5,1,400,855,0.7X	21 Nov 2010 19:12 21 Nov 2010 19:52 21 Nov 2010 20:32 21 Nov 2010 21:12 21 Nov 2010 21:53 21 Nov 2010 22:33 21 Nov 2010 23:18 22 Nov 2010 00:22 22 Nov 2010 01:09 22 Nov 2010 01:56
11 12 13 14 15 16 17 18 19 20	25 26 27 27 28 32 33 34 35 21	B112111.d B112112.d B112113.d B112114.d B112115.d B112116.d B112117.d B112118.d B112119.d B112120.d	1. 1. 1. 1. 1. 1. 1. 1.	10K0616-02 0.7X 10K0616-01-20X-AR 10K0618-01 1X 10K0618-01 1XDUP 10K0618-02 1X 10K0662-04 10X 10K0662-05 10X 10K0669-01 80X/AR IOK0699-01 80X/AR	1.5,1,400,855,0.7X 1.5,1,400,30,20X 1,1,400,400,1X 1,1,400,400,1XDUP 1,1,400,400,1X 1,1,400,40,10X 1,1,400,40,10X 1,1,400,40,10X 2,1,400,10,80X 2,1,400,10,80X	22 Nov 2010 02:45 22 Nov 2010 03:25 22 Nov 2010 04:06 22 Nov 2010 05:31 22 Nov 2010 06:11 22 Nov 2010 06:52 22 Nov 2010 07:32 22 Nov 2010 08:13 22 Nov 2010 08:53
21 22 23 24 25 26 27	26 21 35 27 27 28 35	B112121.d B112122.d B112123.d B112124.d B112125.d B112126.d B112127.d	1. 1. 1. 1. 1.	10K0616-01 2X (CLUP) 10K0699-01 100X 10K0618-01 5X 10K0618-01 5XDUP 10K0618-02 5X DE 10K0699-01 200X	1.5,1,400,300,2X 2,1,400,10,80X 2,1,400,10,80X 1,1,400,400,1X 1,1,400,400,1X 1,1,400,400,1X 2/1,400,400,200X	22 Nov 2010 09:34 22 Nov 2010 10:15 22 Nov 2010 13:52 22 Nov 2010 14:33 22 Nov 2010 15:15 22 Nov 2010 15:57 22 Nov 2010 17:08
CC Bo	N N N	L H	22709 (P)		11-24-10 8 22792 8 22792 (610) QC 1124-10	

Acryl H BKP L

Comen L DACP L

WC 1127

* Fixed in data before reading report to cheed - data review note.

Sequence Name: C:\SMART\112110.SEQ

Date: 11-23-2010 Time: 16:20:21 Int. Std Volume: 100 cc

Sample Name	Inlet #	Auto Pos	Samp Vol.	Cal Std Vol.	Method	Time
BFB	1	1	100	0	C:\SMART\051010.CTD	12:00
5.0PPBv CCV	1	2	100	0	C:\SMART\051010.CTD	12:00
5.0PPBv LCS	1	3	100	0	C:\SMART\051010.CTD	12:00
6.25ug-m3 CCV	1	6	200	0	C:\SMART\051010.CTD	12:00
6.25ug-m3 LCS	1	7	50	0	C:\SMART\051010.CTD	12:00
CLUP	2	1	100	0	C:\SMART\051010.CTD	12:00
MBL 0.5X	2	1	800	0	C:\SMART\051010.CTD	12:00
10K0617-01 0.7X	2	2	855	0	C:\SMART\051010.CTD	12:00
10K0616-04 0.7X	2	3	855	0	C:\SMART\051010.CTD	12:00
10K0616-03 0.7X	2	4	855	0	C:\SMART\051010.CTD	12:00
10K0616-02 0.7X	2	5	855	0	C:\SMART\051010.CTD	12:00
10K0616-01 20X	2	6	30	0	C:\SMART\051010.CTD	12:00
10K0618-01 1X	2	7	400	0	C:\SMART\051010.CTD	12:00
10K0618-01 1XDUP	2	7	400	O	C:\SMART\051010.CTD	12:00
10K0618-02 1X	2	8	400	0	C:\SMART\051010.CTD	12:00
10K0662-04 10X	2	12	40	0	C:\SMART\051010.CTD	12:00
10K0662-05 10X	2	13	40	0	C:\SMART\051010.CTD	12:00
10K0662-06 10X	2	14	40	0	C:\SMART\051010.CTD	12:00
10K0699-01 80X	2	15	10	0	C:\SMART\051010.CTD	12:00
CLUP	2	1	100	0	C:\SMART\051010.CTD	12:00
10K0616-01 2X	2	6	300	0	C:\SMART\051010.CTD	12:00
CLUP	2	1	100	0	C:\SMART\051010.CTD	12:00
10K0699-01 100X	2	15	8	0	C:\SMART\051010.CTD	12:00
10K0618-01 5X	2	7	80	0	C:\SMART\051010.CTD	12:00
10K0618-01 5XDUP	2	7	80	0	C:\SMART\051010.CTD	12:00
10K0618-02 5X	2	8	80	0	C:\SMART\051010.CTD	12:00
10K0699-01 200X	2	15	400	0	C:\SMART\051010.CTD	12:00

analytical method: 1014/15 anstroment designatoraserial number: $S \neq S$ B'

LIMSEAT

HAME

SAMPLE NUMBERS:

ANALYSIS DATE:

O.O5 - 50 PPBV

HON-CONFORMANCE FORM

TOOSSAMO. AN

5-24-10 ICALDATE OUANE

	A MOTION AND A MANAGEMENT OF THE PROPERTY OF T	INTIAL CAUBEATION	INTIAL CALIBRATION COMPOUNDS ADJUSTMENT TO HIGHEST SOLIT	ADJUSTMENT TO HUGHEST STATOSPED IN CAL	AGAUSYMENT TO REPORTING UNIT IN C	CONTRUDIG CAURRATION CRITERIA FILE INURBER	FILE MUMOER:
	Anyl Cwiende) Seria ere, see ret, pithatate, ere the pithatate,		STESS THAN A S POINT RESPONSE FACTORS * CRITERIA ARE NOT HES OMPOUNDS, DATA MUST BE SED AS ESTMATED WITH ECALOUT, NOT	LIST COMPOUNDS WHEN MIGHEST POINT IS DROPPED ALONG WITH NEW UPPER END OF CURVE	LIST COMPOUNDS WHEN POINT IN CLYSVE IS DROPPED AND HEW MIGHEST POINT IS DROPPED AND HEW ALCAGE WITH REV. LIST ED PLOYER IS DROPPED AND HEW ALCAGE WITH REV. UPPER RIND OF TEXTREGULATION WITH REV. LIST ED PLOYER.	Marie Transport	F CRITERIA ARE HOT MET, UST COMPOUNDS, DATA MUST GE PLAGGED AS ESTIMATED WITH NOTE: ESALOUTHOT
MASSACHUSETTS and			Control Accompany to the Control Accompany to				
9260	9, RSD <*15% OR R>*0 99 EXCEPT CCC (MUST 9E <* 10%		7000			WD FOR CCC<=20%, ALL OTHERS	The second secon
8270	% RSD <=15% OR R>=0.39 EXCEPT CCC				The state of the s	%0 FOR CCG <= 20%, ALL OTHERS <= 30%	
ALL OTHERS (SW846 8000)	W. RSD <=15% OR R>=0 93 EXCEPT CCC 14=30%					74.D <=23.9%	
C C C C C C C C C C C C C C C C C C C				A A A A A A A A A A A A A A A A A A A	X.	%172 == C1%	2000 D
7170				Annual Account of the Control of the	Regiena Oos	-	- Kremson from
ALL 625	RSO -k. 35%				Acolain O.	%D ++ 20's.	
Z I D I d	%RSD **02%				Acatemic 0,5	100 a 0.00	
ALL TO-15	MRSD ** 38%, 5455% FOR DIFFICULT			A distribution	Ethan 0.0	WID 4-1199/4-8319, FOR DIFFUCUIT	14 Doxus (c)
АРИ	%RSD <= 30% of R>= 0.99		and the state of t		Methyloni Charile O.		HC00 (H)
524,2	%RSD <=20% or R >=0.99				Zon c.	%D <= 10% CS can be used as	
					MEKO		
(Comments of the comments of t		And the second s	Orași de la compositori della	77.60	Viny Actority O.		
				The state of the s	Hexana		
0.0000000000000000000000000000000000000	AND AND ADDRESS OF THE PARTY OF	A STATE OF THE PARTY OF THE PAR		4.7			The same of the Company of the Compa

Tune File : D:\HPCHEM\1\DATA\B112110\B112101.D

Tune Time : 21 Nov 2010 7:12 pm

Daily Calibration File : D:\HPCHEM\1\DATA\B112110\B112102.D

				353966	642719	603670
File	Sample		te Recovery %		al Standard	
B112103.D	5.0PPBv L	CS	95 	340634	625046	587828
B112107.D			92	335660	579469	548314
B112108.D	10K0617-0	1 0.7X	94	331807	564880	533096
B112109.D			92	332541		529622
B112110.D	10K0616-0		93	326454	549796	519902
B112111.D			92	327516	558872	524461
B112112.D	10K0616-0	1 20X	92	329450	551035	519052
B112113.D	10K0618-0	1 1X	94	323895	542605	528244
B112114.D	10K0618-0	1 1XDU	94	337593	606261	577893
B112115.D	10K0618-0	2 1X	95	337807	626208	580643
B112116.D	10K0662-0	4 10X		339362	635376	596965
B112117.D	10K0662-0		94	330781	616941	577296
B112118.D				325879	604097	563892
B112119.D	10K0699-0	1 80X	93	325732	597443	559733
B112120.D	CLUP		93	317263	575564	540755
B112121.D	10K0616-0	1 2X	94	316136	563248	529757
B112122.D	CLUP		94	308814	543748	506119
B112123.D	10K0699-0	1 100X	94	315925	541595	509726
B112124.D	10K0618-0	1 5X	95	309414	516243	491605
B112125.D	10K0618-0	1 5XDU	94	305131	534932	500909
B112126.D	10K0618-0	2 5X	95	315859	556320	523330
B112127.D	10K0699-0	1 200X	94	317249	562348	528840
~						

t - fails 24hr time check * - fails criteria

Created: Tue Nov 23 16:12:38 2010 SYSB

MS Integration Params: 11095INT.P

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15

AutoFind: Scans 2165, 2166, 2167; Background Corrected with Scan 2155

Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	19.9	37005	PASS
75	95	30	66	48.9	90947	PASS
95	95	100	100	100.0	185835	PASS
96	95	5	9	6.6	12325	PASS
173	174	0.00	2	0.0	0	PASS
174	95	50	120	71.2	132261	PASS
175	174	4	9	7.6	9996	PASS
176	174	93	101	96.5	127677	PASS
177	176	5	9	6.7	8546	PASS

56 Data File : D:\HPCHEM\1\DATA\B112110\B112102.D Vial: 2

Acq On : 21 Nov 2010 7:52 pm Operator: TPH Sample : 5.0PPBv CCV Misc : CTWS-2552 Inst : SYSB Multiplr: 1.00

MS Integration Params: 11095INT.P

: D:\HPCHEM\1\METHODS\TO052410.M (RTE Integrator) Method

: QUANT FILE FOR TO-14/TO-15 Title Last Update : Mon Jul 12 16:49:22 2010 Response via : Multiple Level Calibration

CHECKED BY: WILLIAM DONATH NOV 2 3 2010

: 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev: 30% Max. Rel. Area: 200%

	Compound	Amount	Calc.	%Dev	Area%	Dev(min)
1 I	BROMOCHLOROMETHANE (1)	8.000	8.000	0.0		0.00
2	PROPENE	5.000	4.309	13.8		0.02
3	DICHLORODIFLUOROMETHANE	5.000	4.260 3.718	14.8	134 132	0.02
4	CHLOROMETHANE	5.000	3.718	25.6	132	0.02
	FREON 114	5.000	3.966	20.7	129	0.02
5 6	VINYL CHLORIDE		3.893		133	0.02
7	1,3-BUTADIENE	5,000	3.758			
8	BROMOMETHANE	5.000 5.000	3.466	24.8 (30.7#	`)124	0.02
9	CHLOROETHANE	5.000	3.923	21.5	134	0.00
10	ACROLEIN		4.976	0.5		0.02
11	ACETONE	5.000	5.684	-13.7		0.00
12	TRICHLOROFLUOROMETHANE	5.000	5.684 3.995 5.059	20.1		0.02
13	ETHANOL	5.000	5.059	-1.2	175	0.02
14		5.000	4.277	14.5	139	0.02
15			3.935		138	0.02
16	FREON 113	5.000	4 299	14.0	142	0.02
17	CARBON DISULFIDE	5.000	4.299 4.582	8.4	149	0.02
18	TRANS-1,2-DICHLOROETHENE	5.000	4.302	12.0	140	
19	1,1-DICHLOROETHANE	5.000	4.452	11.0	145	0.00
	•	5.000	4.452	10 0	142	0.00
20	MTBE	5.000	4.361 6.138	22.0	202	0.00
21	IPA	5.000	3.782	24.0	130	0.00
22	2-BUTANONE (MEK)					
23	CIS-1,2-DICHLOROETHENE	5.000	4.3//	12.5	140	0.00
24	VINYL ACETATE	5.000	3.841 4.108	23.2	129 133	0.00
25	HEXANE	5.000	4.108		133	0.00
26	ETHYL ACETATE	5.000	4.861	2.8	142	
27	CHLOROFORM	5.000	4.402		144	0.00
28	TETRAHYDROFURAN	5.000	4.767	4.7	145	0.00
29	1,2-DICHLOROETHANE	5.000	4.159	16.8	132	0.00
30	1,4-DIFLUOROBENZENE (1)	8.000	8.000	0.0	147	0.00
31	1,1,1-TRICHLOROETHANE	5.000	4.322 4.441 4.289	13.6	139	0.00
32	BENZENE	5.000	4.441	11.2	148	0.00
33	CARBON TETRACHLORIDE	5.000	4.289	14.2	135	0.00
34	CYCLOHEXANE	5.000	4.438	11.2	149	0.00
35	1,2-DICHLOROPROPANE	5.000	4.531	9.4	145	0.00
36	BROMODICHLOROMETHANE	5.000	4.611	7.8	143	0.00
37	TRICHLOROETHENE	5.000	4.611 4.516	9.7	142	0.00
38	1,4-DIOXANE	5.000	4.474	10.5	136	0.00
39	METHYLMETHACRYLATE	5.000	4.614	7.7	139	0.00
40	HEPTANE	5.000	4.437	11.3	143	0.00
41	MIBK	5.000	4.081	18.4	125	0.00
42	CIS-1,3DICHLOROPROPENE			6.5	145	0.00
43	TRANS-1,3-DICHLOROPROPENE	5.000	4.775	4.5	142	0.00
44 I	CHLOROBENZENE-D5 (1)	8.000	8.000	0.0	149	0.00
45			4.500		145	0.00
46	TOLUENE		4.309	13.8	144	0.00
47				23.4		0.00
48	DIBROMOCHLOROMETHANE	5.000 5.000	4.307	13.9		

Data File : D:\HPCHEM\1\DATA\B112110\B112102.D Vial: 2 Operator: TPH Acq On : 21 Nov 2010 7:52 pm Sample : 5.0PPBv CCV Misc : CTWS-2552 Inst : SYSB Multiplr: 1.00

MS Integration Params: 11095INT.P

: D:\HPCHEM\1\METHODS\TO052410.M (RTE Integrator)

: QUANT FILE FOR TO-14/TO-15 Title Last Update : Mon Jul 12 16:49:22 2010 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Dev	Area%	Dev(min)
49	1,2-DIBROMOETHANE	5.000	4.308	13.8	136	0.00
50	TETRACHLOROETHENE	5.000	4.207	15.9	135	0.00
51	CHLOROBENZENE	5.000	4.271	14.6	138	0.00
52	ETHYLBENZENE	5.000	4.327	13.5	141	0.00
53	M/P-XYLENE	10.000	8.765	12.3	139	0.02
54	BROMOFORM	5.000	4.111	17.8	124	0.00
55	STYRENE	5.000	4.512	9.8	139	0.00
56	O-XYLENE	5.000	4.304	13.9	138	0.00
57	1,1,2,2-TETRACHLOROETHANE	5.000	4.768	4.6	147	0.00
58 S	4-BROMOFLUOROBENZENE (1)	8.000	7.632	4.6	139	0.00
59	4-ETHYLTOLUENE	5.000	4.527	9.5	137	0.00
60	1,3,5-TRIMETHYLBENZENE	5.000	4.379	12.4	138	0.00
61	1,2,4-TRIMETHYLBENZENE	5.000	4.527	9.5	139	0.00
62	1,3-DICHLOROBENZENE	5.000	4.494	10.1	139	0.00
63	BENZYL CHLORIDE	5.000	4.864	2.7	141	0.00
64	1,4-DICHLOROBENZENE	5.000	4.451	11.0	139	0.00
65	1,2-DICHLOROBENZENE	5.000	4.503	9.9	142	0.00
66	1,2,4-TRICHLOROBENZENE	5.000	4.402	12.0	143	0.00
67	NAPHTHALENE	5.000	4.072	18.6	147	0.00
68	HEXACHLOROBUTADIENE	5.000	4.330	13.4	140	0.00

Data File : D:\HPCHEM\1\DATA\B112110\B112102.D Vial: 2 Acq On : 21 Nov 2010 7:52 pm Operator: TPH Sample : 5.0PPBv CCV Misc : CTWS-2552 Inst : SYSB Multiplr: 1.00

MS Integration Params: 11095INT.P

: D:\HPCHEM\1\METHODS\TO052410.M (RTE Integrator)

: QUANT FILE FOR TO-14/TO-15 Title Last Update : Mon Jul 12 16:49:22 2010 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

*** *** ***	Compound	AvgRF	CCRF		%Dev		Dev(min)
1 I	BROMOCHLOROMETHANE (1)	1.000	1.000		0.0	147	0.00
2	PROPENE	0.456			13.8	144	0.02
3	DICHLORODIFLUOROMETHANE	1.429	1.218		14.8	134	0.02
4	CHLOROMETHANE	0.542	0.403		25.6	132	0.02
5	FREON 114	1.686	1.337		20.7	129	0.02
6	VINYL CHLORIDE	0.576			22.2	133	0.02
7	1,3-BUTADIENE	0.363	0.273	•	24.8	129	0.02
8	BROMOMETHANE	0.683	0.474	Ì	(30.6#	124	0.02
9	CHLOROETHANE	0.278	0.218		21.6	134	0.00
10	ACROLEIN	0.197	0.197		0.0	191	
11	ACETONE	0.828	0.942		-13.8	206#	0.00
12	TRICHLOROFLUOROMETHANE	1,249			20.1		
1.3	ETHANOL	0.182			-1.1	175	0.02
14	1,1-DICHLOROETHENE	0.950	0.813		14.4	139	
15	METHYLENE CHLORIDE	0.836	0.657		21.4	138	0.02
16	FREON 113	1.044	0.898		14.0	142	0.02
17	CARBON DISULFIDE	1.788			8.3	149	0.02
18		0.868			12.0	140	0.02
19	1,1-DICHLOROETHANE		0.959		11.0	145	0.00
20	MTBE	1.500	1.308		12.8	142	0.00
21	IPA	0.806			-22.7		
22	2-BUTANONE (MEK)	1.545			24.3	130	0.00
23	CIS-1,2-DICHLOROETHENE	0.824			12.5	140	0.00
24	VINYL ACETATE	1.995			23.2	129	
25	HEXANE		0.580		17.8	133	
26	ETHYL ACETATE		0.184		2.6	142	0.00
27	CHLOROFORM	1.185			11.9	144	
28	TETRAHYDROFURAN		0.244		4.7	145	0.00
29	1,2-DICHLOROETHANE	0.780			16.8	132	
30	1,4-DIFLUOROBENZENE (1)	1.000			0.0	147	0.00
31	1,1,1-TRICHLOROETHANE	0.529			13.4	139	0.00
32	BENZENE	0.882	0.783		11.2	148	0.00
33	CARBON TETRACHLORIDE	0.531			14.1	135	0.00
34	CYCLOHEXANE	0.367	0.326		11.2	149	0.00
35	1,2-DICHLOROPROPANE		0.322		9.3	145	0.00
36	BROMODICHLOROMETHANE		0.629		7.8	143	
37	TRICHLOROETHENE		0.332		9.5	142	
38	1,4-DIOXANE	0.194	0.173		10.8		0.00
39	METHYLMETHACRYLATE	0.323	0.298		7.7	139	0.00
40	HEPTANE	0.278	0.247		11.2	143	0.00
41	MIBK	0.909	0.742		18.4	125	0.00
42	CIS-1,3DICHLOROPROPENE	0.518	0.484		6.6	145	0.00
43	TRANS-1,3-DICHLOROPROPENE	0.489	0.467		4.5	142	0.00
44 I	CHLOROBENZENE-D5 (1)	1.000	1.000		0.0	149	0.00
45	1,1,2-TRICHLOROETHANE	0.368			9.8	145	0.00
46	TOLUENE	0.958			13.9	144	0.00
47	2-HEXANONE (MBK)	0.970			23.4	123	0.00
48	DIBROMOCHLOROMETHANE	0.740			13.8	136	0.00

^{(#) =} Out of Range

Operator: TPH Acq On : 21 Nov 2010 7:52 pm Inst : SYSB Sample : 5.0PPBv CCV Misc : CTWS-2552 Multiplr: 1.00

MS Integration Params: 11095INT.P

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)
Title : QUANT FILE FOR TO-14/TO-15
Last Update : Mon Jul 12 16:49:22 2010 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

		Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
49		1,2-DIBROMOETHANE	0.652	0.562	13.8	136	0.00
50		TETRACHLOROETHENE	0.450	0.378	16.0	135	0.00
51		CHLOROBENZENE	0.751	0.641	14.6	138	0.00
52		ETHYLBENZENE	1.243	1.076	13,4	141	0.00
53		M/P-XYLENE	1.014	0.888	12.4	139	0.02
54		BROMOFORM	0.645	0.530	17.8	124	0.00
55		STYRENE	0.668	0.603	9.7	139	0.00
56		O-XYLENE	0.959	0.825	14.0	138	0.00
57		1,1,2,2-TETRACHLOROETHANE	0.928	0.885	4.6	147	0.00
58 8	3	4-BROMOFLUOROBENZENE (1)	0.536	0.512	4.5	139	0.00
59		4-ETHYLTOLUENE	1.176	1.065	9.4	137	0.00
60		1,3,5-TRIMETHYLBENZENE	0.952	0.834	12.4	138	0.00
61		1,2,4-TRIMETHYLBENZENE	0.927	0.840	9.4	139	0.00
62		1,3-DICHLOROBENZENE	0.702	0.631	10.1	139	0.00
63		BENZYL CHLORIDE	0.937	0.911	2.8	141	0.00
64		1,4-DICHLOROBENZENE	0.710	0.632	11.0	139	0.00
65		1,2-DICHLOROBENZENE	0.648	0.584	9.9	142	0.00
66		1,2,4-TRICHLOROBENZENE	0.448	0.394	12.1	143	0.00
67		NAPHTHALENE	1.246	1.015	18.5	147	0.00
68		HEXACHLOROBUTADIENE	0.387	0.335	13.4	140	0.00

(Not Reviewed)

Vial: 2 Data File : D:\HPCHEM\1\DATA\B112110\B112102.D Acq On : 21 Nov 2010 Operator: TPH 7:52 pm Sample : 5.0PPBv CCV Misc : CTWS-2552 Inst : SYSB Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: Nov 21 23:40 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Mon Jul 12 16:49:22 2010

Response via : Initial Calibration

DataAcq Meth: T0060909

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) BROMOCHLOROMETHANE (1)				8.00 PPBv 0.00
30) 1,4-DIFLUOROBENZENE (1)				8.00 PPBv 0.00
				8.00 PPBv 0.00
,,,,,,,,,				
System Monitoring Compounds				
58) 4-BROMOFLUOROBENZENE (1)				
Spiked Amount 8.000 Ra	ınge 70	- 130	Recove	ery = 95.38%
_				
Target Compounds			0.5000	Qvalue 4.309 PPBv 97
2) PROPENE	4.08			
3) DICHLORODIFLUOROMETHANE	4.16 4.30	. 85 EO	209432	
4) CHLOROMETHANE 5) FREON 114	4.40	50 96	20222	3.718 PPBv 98 3.966 PPBv 85
6) VINYL CHLORIDE	4.50	62	293629	3.893 PPBv 96
7) 1,3-BUTADIENE	4.63			3.758 PPBv 97
8) BROMOMETHANE	4.87	94	104752	
9) CHLOROETHANE	5.02	64	48230	3.923 PPBv 94
10) ACROLEIN	5.42	56	43473	3.466 PPBV 96 3.923 PPBV 94 4.976 PPBV 93
11) ACETONE	5.54	43	208340	5.684 PPBv 83
12) TRICHLOROFLUOROMETHANE	5.70			
13) ETHANOL	5.11	45	40759	5.059 PPBv 99
14) 1,1-DICHLOROETHENE	6.25	61	179755	4.277 PPBv 94
15) METHYLENE CHLORIDE	6.35	49	145452	3.935 PPBv 94
16) FREON 113	6.60	101	198642	4.299 PPBV 91 4.582 PPBV 98 4.399 PPBV # 86
17) CARBON DISHLETDE	6 - 63	76	362492	4.582 PPBv 98
18) TRANS-1,2-DICHLOROETHENE	7.19	61	168919	4.399 PPBv # 86
19) 1,1-DICHLOROETHANE	7.37	63	212189	4.452 PPBv 98
20) MTBE	7.44	73	289441	4.361 PPBv 93
21) IPA	5.74		218885	6.138 PPBv 92
22) 2-BUTANONE (MEK)	7.73	43	258610	3.782 PPBv 89
· ·	8.14			4.377 PPBv 99
24) VINYL ACETATE	7.50	43	339019	3.841 PPBv 94
25) HEXANE	8.35	41	128363	4.108 PPBv 95 4.861 PPBv 96
26) ETHYL ACETATE	8.34	61	40607	4.861 PPBv 96
27) CHLOROFORM	8.41			4.402 PPBv 99
28) TETRAHYDROFURAN	8.81	71	54044	4.767 PPBv 97
29) 1,2-DICHLOROETHANE	9.12	62	143561	4.159 PPBv 98 4.322 PPBv 99
31) 1,1,1-TRICHLOROETHANE	9.38	77	183853	4.322 PPBv 99 4.441 PPBv 99
32) BENZENE	9.83			
33) CARBON TETRACHLORIDE	9.99		182981 131000	4.289 PPBv 99 4.438 PPBv 94
34) CYCLOHEXANE	10.12	84 63	129306	4.436 PPBV 99
35) 1,2-DICHLOROPROPANE 36) BROMODICHLOROMETHANE	10.84	83	252703	4.611 PPBV 95
37) TRICHLOROETHENE	10.04	95	133205	4.516 PPBv 91
38) 1,4-DIOXANE	10.90	88	69589	4.474 PPBv 88
39) METHYLMETHACRYLATE	11.11	69	119686	4.614 PPBV 94
40) HEPTANE	11.23	57	99165	4.437 PPBv 84
41) MIBK	11.85	43	298157	4.081 PPBv 89
42) CIS-1,3DICHLOROPROPENE	11.80	75	194500	4.673 PPBv 99
43) TRANS-1,3-DICHLOROPROPENE	12.37	75	187741	4.775 PPBv 98
45) 1,1,2-TRICHLOROETHANE	12.57	97	125134	4.500 PPBv 88

^{(#) =} qualifier out of range (m) = manual integration B112102.D T0052410.M Mon Nov 22 09:12:05 2010

61 Data File : D:\HPCHEM\1\DATA\B112110\B112102.D Vial: 2

Operator: TPH Inst : SYSB Acq On : 21 Nov 2010 7:52 pm Sample : 5.0PPBv CCV Misc : CTWS-2552 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Results File: TO052410.RES Quant Time: Nov 21 23:40 2010

Quant Method: D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Mon Jul 12 16:49:22 2010
Response via : Initial Calibration
DataAcq Meth : T0060909

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	TOLUENE	12.90	91	311412	4.309 PPBv	100
47)	2-HEXANONE (MBK)	13.18	43	280505	3.832 PPBv	90
48)	DIBROMOCHLOROMETHANE	13.35	129	240541	4.307 PPBv	98
49)	1,2-DIBROMOETHANE	13.64	107	211998	4.308 PPBv	100
50)	TETRACHLOROETHENE	14.20	166	142780	4.207 PPBv	96
51)	CHLOROBENZENE	15.00	112	242028	4.271 PPBv	93
52)	ETHYLBENZENE	15.48	91	405884	4.327 PPBv	99
53)	M/P-XYLENE	15.71	91	670326	8.765 PPBv	94
54)	BROMOFORM	15.77	173	200115	4.111 PPBv	99
55)	STYRENE	16.16	104	227432	4.512 PPBv	95
56)	O-XYLENE	16.30	91	311425	4.304 PPBv	100
57)	1,1,2,2-TETRACHLOROETHANE	16.27	83	333823	4.768 PPBv	98
59)	4-ETHYLTOLUENE	18.03	105	401739	4.527 PPBv	97
60)	1,3,5-TRIMETHYLBENZENE	18.15	105	314545	4.379 PPBv	96
61)	1,2,4-TRIMETHYLBENZENE	18.76	105	316823	4.527 PPBv	95
62)	1,3-DICHLOROBENZENE	18.97	146	237933	4.494 PPBv	98
63)	BENZYL CHLORIDE	18.95	91	343785	4.864 PPBv	98
64)	1,4-DICHLOROBENZENE	19.08	146	238332		97
65)	1,2-DICHLOROBENZENE	19.63	146	220247	4.503 PPBv	95
66)	1,2,4-TRICHLOROBENZENE	22.43	180	148769	4.402 PPBv	98
67)	NAPHTHALENE	22.57	128	382898	4.072 PPBv	100
68)	HEXACHLOROBUTADIENE	23.11	225	126490	4.330 PPBv	95

Data File : D:\HPCHEM\1\DATA\B112110\B112102.D Vial: 2

MS Integration Params: 11095INT.P

Quant Time: Nov 21 23:40 2010 Quant Results File: T0052410.RES

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Data File : D:\HPCHEM\1\DATA\B112110\B112102.D Vial: 2 Operator: TPH Acq On : 21 Nov 2010 7:52 pm Sample : 5.0PPBv CCV Misc : CTWS-2552 Inst : SYSB Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Results File: TO052410.RES Quant Time: Nov 21 23:40 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)
Title : QUANT FILE FOR TO-14/TO-15
Last Update : Mon Jul 12 16:49:22 2010
Response via : Initial Calibration
DataAcq Meth : T0060909

Internal Standards	R.T.	QIon		Conc Units Dev(Min)
1) BROMOCHLOROMETHANE (1)				
30) 1.4-DIFLUOROBENZENE (1)	10.18	114	642719	8.00 PPBv 0.00
30) 1,4-DIFLUOROBENZENE (1) 44) CHLOROBENZENE-D5 (1)	14.95	117	603670	8.00 PPBv 0.00
, ,				
System Monitoring Compounds				
58) 4-BROMOFLUOROBENZENE (1)	16.90	174	308922	7.63 PPBv 0.00
Spiked Amount 8.000 Ran	ge 70	- 130	Recove	ry = 95.38%
Target Compounds				Qvalue
2) PROPENE	4.08	41	86893	4.309 PPBv 97 4.260 PPBv 99
3) DICHLORODIFLUOROMETHANE	4.16	85	269452	4.260 PPBv 99
4) CHLOROMETHANE	4.30	50	89129	3.718 PPBv 98
5) FREON 114	4.40	85	295829	3.966 PPBv 85
6) VINYL CHLORIDE	4.50	5∠	99191	3.893 PPBv 96
7) 1,3-BUTADIENE	4.63	54	60391	3.893 PPBv 96 3.758 PPBv 97 3.466 PPBv 96
8) BROMOMETHANE	4.87	94	104/52	3.466 PPBv 96
9) CHLOROETHANE	5.02	64	48230	3.923 PPBv 94 4.976 PPBv 93
10) ACROLEIN 11) ACETONE	D.4±∠ E.E4	20	200240	5.684 PPBv 83
12) TRICHLOROFLUOROMETHANE	5.70	101	200340	4.976 PPBv 93 5.684 PPBv 83 3.995 PPBv 98
·	5.11	101	40769	5.059 PPBv 99
	6.25		170755	4.277 PPBv 94
14) 1,1-DICHLOROETHENE 15) METHYLENE CHLORIDE	6.35		1/5/55	4.277 PPBv 94 3.935 PPBv 94 4.299 PPBv 91
16) FREON 113	6.60		199649	4.299 PPBv 91
17) CARBON DISULFIDE		76	362492	4.582 PPBv 98
18) TRANS-1,2-DICHLOROETHENE				
19) 1,1-DICHLOROETHANE	7.17	63	212189	
20) MTBE	7 44	63 73	212189 289441	4.361 PPBv 93
21) IPA	5 74	45	218885	6.138 PPBv 92
22) 2-BUTANONE (MEK)		43		
23) CIS-1,2-DICHLOROETHENE	8.14	61	159556	4.377 PPBv 99
24) VINYL ACETATE	7.50	43	159556 339019 128363	3.841 PPBv 94
25) HEXANE	8.35	41	128363	4.108 PPBv 95
26) ETHYL ACETATE	8.34	61	40607	4.861 PPBv 96
27) CHLOROFORM	8.41	83	230921	4.402 PPBv 99
28) TETRAHYDROFURAN	8.81	71	230921 54044 143561	4.767 PPBv 97
29) 1,2-DICHLOROETHANE	9.12	62	143561	4.159 PPBv 98
	9.38	97	183853	4.322 PPBv 99
32) BENZENE	9.83	78	314515	4.441 PPBv 99
33) CARBON TETRACHLORIDE	9.99	117	182981	4.289 PPBv 99
34) CYCLOHEXANE	10.12	84	131000	4.438 PPBv 94
35) 1,2-DICHLOROPROPANE	10.66	63	129306	4.531 PPBv 99
36) BROMODICHLOROMETHANE	10.84	83	252703	4.611 PPBv 95
37) TRICHLOROETHENE	10.90	95	133205	4.516 PPBv 91
38) 1,4-DIOXANE	10.90	88	69589	4.474 PPBv 88
39) METHYLMETHACRYLATE	11.11	69	119686	
40) HEPTANE	11.23	57	99165	4.437 PPBv 84
41) MIBK	11.85	43	298157	4.081 PPBv 89
42) CIS-1,3DICHLOROPROPENE	11.80	75	194500	4.673 PPBv 99
43) TRANS-1,3-DICHLOROPROPENE				
45) 1,1,2-TRICHLOROETHANE	12.57	97 		4.500 PPBv 88

^{(#) =} qualifier out of range (m) = manual integration B112102.D T0052410.M Mon Nov 22 09:12:23 2010

Data File : D:\HPCHEM\1\DATA\B112110\B112102.D

Vial: 2 Acq On : 21 Nov 2010 7:52 pm Operator: TPH Sample : 5.0PPBv CCV Inst : SYSB Misc : CTWS-2552 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Time: Nov 21 23:40 2010 Quant Results File: T0052410.RES

Quant Method: D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Mon Jul 12 16:49:22 2010
Response via : Initial Calibration

DataAcq Meth: TO060909

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	TOLUENE	12.90	91	311412	4.309 PPBv	100
47)	2-HEXANONE (MBK)	13.18	43	280505	3,832 PPBv	90
48)	DIBROMOCHLOROMETHANE	13.35	129	240541	4.307 PPBv	98
49)	1,2-DIBROMOETHANE	13.64	107	211998	4.308 PPBv	100
50)	TETRACHLOROETHENE	14.20	166	142780	4.207 PPBv	96
51)	CHLOROBENZENE	15.00	112	242028	4.271 PPBv	93
52)	ETHYLBENZENE	15.48	91	405884	4.327 PPBv	99
53)	M/P-XYLENE	15.71	91	670326	8.765 PPBv	94
54)	BROMOFORM	15.77	173	200115	4.111 PPBv	99
55)	STYRENE	16.16	104	227432	4.512 PPBv	95
56)	O-XYLENE	16.30	91	311425	4.304 PPBv	100
57)	1,1,2,2-TETRACHLOROETHANE	16.27	83	333823	4.768 PPBv	98
59)	4-ETHYLTOLUENE	18.03	105	401739	4.527 PPBv	97
60)	1,3,5-TRIMETHYLBENZENE	18.15	105	314545	4.379 PPBv	96
61)	1,2,4-TRIMETHYLBENZENE	18.76	105	316823	4.527 PPBv	95
62)	1,3-DICHLOROBENZENE	18.97	146	237933	4.494 PPBv	98
63)	BENZYL CHLORIDE	18.95	91	343785	4.864 PPBv	98
64)	1,4-DICHLOROBENZENE	19.08	146	238332	4.451 PPBv	97
65)	1,2-DICHLOROBENZENE	19.63	146	220247	4.503 PPBv	95
66)	1,2,4-TRICHLOROBENZENE	22.43	180	148769	4.402 PPBv	98
67)	NAPHTHALENE	22.57	128	382898	4.072 PPBv	100
68)	HEXACHLOROBUTADIENE	23.11	225	126490	4.330 PPBv	95

Data File : D:\HPCHEM\1\DATA\B112110\B112102.D Vial: 2 65

MS Integration Params: 11095INT.P

Quant Time: Nov 21 23:40 2010 Quant Results File: T0052410.RES

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Data File : D:\HPCHEM\1\DATA\B112110\B112103.D Vial: 3 Operator: TPH Acq On : 21 Nov 2010 8:32 pm Sample : 5.0PPBv LCS Misc : CTWS-2553 Inst : SYSB Multiplr: 1.00

MS Integration Params: 11095INT.P

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)
Title : QUANT FILE FOR TO-14/TO-15
Last Update : Mon Jul 12 16:49:22 2010 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Dev	Area%	Dev(min)
1 I				0.0		
2	PROPENE		4.717			0.02
3	DICHLORODIFLUOROMETHANE		4.438			0.01
4	CHLOROMETHANE	5.000	3.847	23,1	131	0.02
5	FREON 114	5.000	3.847 3.698	26.0	131 115	0.02
6	VINYL CHLORIDE	5.000	4.014	19.7	132	0.02
7	1,3-BUTADIENE	5.000	3.899	22.0	129	0.01
8	BROMOMETHANE	5.000	3.580	28.4		
9	CHLOROETHANE	5.000	4.119	17.6	135	0.02 0.01
10	ACROLEIN	5,000	4.119 4.714	5.7	174	0.02
11	ACETONE	5.000	6.068	-21.4	211	0.01
12	TRICHLOROFLUOROMETHANE	5.000	4.132 2.777 4.682	17.4	129	0.02
13	ETHANOL	5.000	2.777 /40/	.44.5#	93	0.02
14	1,1-DICHLOROETHENE	5.000	4.682	6.4	147	0.02
15	METHYLENE CHLORIDE	5.000	4.267	14.7	144	0.01
16	FREON 113	5.000	4.747	5.1	151	0.01
17	CARBON DISULFIDE	5.000	4,845	3.1	152	0.01 0.02
18	CARBON DISULFIDE TRANS-1,2-DICHLOROETHENE	5.000	4.823	3.5	147	0.01
19	1,1-DICHLOROETHANE	5.000	4.762	4.8	149	
20	MTBE	5.000	4.513	9.7	141	0.00
21	IPA	5.000	3.755 3.750	24.9	119	0,01
22	2-BUTANONE (MEK)	5.000	3,750	25.0	124	0.00
23	CIS-1,2-DICHLOROETHENE	5.000	4.638	7.2	143	0.01
24	VINYL ACETATE	5.000	3.539	29.2	115	0.00
25	HEXANE	5.000	4.332 4.951	13.4	135	0.01
26	ETHYL ACETATE	5.000	4.951	1.0	139	0.00
27	CHLOROFORM	5.000		6.0	147	0.00
28	TETRAHYDROFURAN	5.000	4.551	9.0	133	0.01
29	1,2-DICHLOROETHANE	5.000	4.335	13.3	132	0.01
30	1,4-DIFLUOROBENZENE (1)	8.000	8.000	0.0	142	0.01
31		5.000	4.509	9.8	141	
32	BENZENE	5.000	4.638	7.2	151	0.00
33	CARBON TETRACHLORIDE	E 000	Λ ΕΛΩ	a n	140	
34	CYCLOHEXANE	5.000	4.597	8.1	150	0.01
35	1,2-DICHLOROPROPANE	5.000	4.682	6.4	146	0.00
36	BROMODICHLOROMETHANE	5.000	4.689	6.2		0.00
37	TRICHLOROETHENE	5.000	4.688	6.2	144	0.00
38	1,4-DIOXANE	5.000	3.465	Ø0.7#	102	0.00
39	METHYLMETHACRYLATE	5.000	4.389	12.2	129	0.00
40	HEPTANE	5.000	4.620	7.6	145	0.01
41	MIBK	5.000	3.363	(32.7#	100	0.00
42	CIS-1,3DICHLOROPROPENE	5.000	5.169	-3.4	156	0.00
43	TRANS-1,3-DICHLOROPROPENE	5.000	4.526	9.5	131	0.00
44 I	CHLOROBENZENE-D5 (1)	8.000	8.000	0.0	145	0.00
45	1,1,2-TRICHLOROETHANE	5.000		4.8		0.00
46	TOLUENE	5.000		10.6		0.00
47	2-HEXANONE (MBK)	5.000	* 1			0.00
48	DIBROMOCHLOROMETHANE	5.000	4.353	12.9	134	0.00

^{(#) =} Out of Range

67 Data File : D:\HPCHEM\1\DATA\B112110\B112103.D Vial: 3

Operator: TPH Acq On : 21 Nov 2010 8:32 pm Sample : 5.0PPBv LCS Misc : CTWS-2553 Inst : SYSB Multiplr: 1.00

MS Integration Params: 11095INT.P

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)
Title : QUANT FILE FOR TO-14/TO-15
Last Update : Mon Jul 12 16:49:22 2010 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Dev	Area%	Dev(min)
49	1,2-DIBROMOETHANE	5.000	4.448	11.0	137	0.00
50	TETRACHLOROETHENE	5.000	4.323	13.5	135	0.00
51	CHLOROBENZENE	5,000	4.411	11.8	139	0.00
52	ETHYLBENZENE	5.000	4.380	12.4	139	0.00
53	M/P-XYLENE	10.000	9.006	9.9	139	0.02
54	BROMOFORM	5.000	4.115	17.7	121	0.00
55	STYRENE	5.000	4.521	9.6	135	0.00
56	O-XYLENE	5.000	4.482	10.4	140	0.00
57	1,1,2,2-TETRACHLOROETHANE	5,000	4.582	8.4	138	0.00
58 S	4-BROMOFLUOROBENZENE (1)	8.000	7.586	5.2	135	0.00
59	4-ETHYLTOLUENE	5.000	4.309	13.8	127	0.00
60	1,3,5-TRIMETHYLBENZENE	5,000	4.276	14.5	131	0.00
61	1,2,4-TRIMETHYLBENZENE	5,000	4.422	11.6	132	0.00
62	1,3-DICHLOROBENZENE	5.000	4.429	11.4	133	0.00
63	BENZYL CHLORIDE	5.000	4.310	13.8	122	0.00
64	1,4-DICHLOROBENZENE	5.000	4.436	11.3	135	0.00
65	1,2-DICHLOROBENZENE	5.000	4.361	12.8	134	0.00
66	1,2,4-TRICHLOROBENZENE	5.000	3,953	20.9	125	0.00
67	NAPHTHALENE	5.000	2.911	41.8#	102	0.00
68	HEXACHLOROBUTADIENE	5.000	3.973	20.5	125	0.00

Data File : D:\HPCHEM\1\DATA\B112110\B112107.D Vial: 21 Acq On : 21 Nov 2010 11:18 pm Operator: TPH Sample : MBL 0.5X Misc : 1,1,400,800,0.5X Inst : SYSB Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: Nov 22 9:16 2010

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Mon Jul 12 16:49:22 2010
Response via : Initial Calibration

DataAcq Meth: T0060909

Internal Standards	R.T. QIon	Response	Conc Units Dev(Mi	n)
1) BROMOCHLOROMETHANE (1) 30) 1,4-DIFLUOROBENZENE (1) 44) CHLOROBENZENE-D5 (1)	8.29 49 10.18 114 14.95 117	335660 579469 548314	8.00 PPBv 0.00 8.00 PPBv 0.00 8.00 PPBv 0.00	0
System Monitoring Compounds 58) 4-BROMOFLUOROBENZENE (1) Spiked Amount 8.000 Ran	16.90 174 nge 70 - 13	269375 0 Recove	7.33 PPBv 0.00 ry = 91.63%	0
Target Compounds 11) ACETONE	5.55 43	22141	Qvalue 0.637 PPBv	e 71

Data File : D:\HPCHEM\1\DATA\B112110\B112107.D Vial: 21 69

 Acq On
 : 21 Nov 2010 11:18 pm
 Operator: TPH

 Sample
 : MBL 0.5X
 Inst : SYSB

 Misc
 : 1,1,400,800,0.5X
 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Time: Nov 22 9:16 2010 Quant Results File: T0052410.RES

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Vial: 23 Data File : D:\HPCHEM\1\DATA\B112110\B112109.D Operator: TPH Acq On : 22 Nov 2010 1:09 am : 10K0616-04 0.7X Inst : SYSB Sample : 1.5,1,400,855,0.7X Multiplr: 1.00 Misc

MS Integration Params: 11095INT.P

Quant Time: Nov 22 10:37 2010 Quant Results File: TO052410.RES

Quant Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

: QUANT FILE FOR TO-14/TO-15 Title

WILLIAM DONATI NOV 2 3 2010 Last Update : Mon Jul 12 16:49:22 2010

Response via : Initial Calibration

DataAcq Meth: T0060909

bacancq neen	. 100000				<i>ۇس.</i> م	
Internal Star	ndards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) BROMOCH	LOROMETHANE (1)	8.29	49	332541	8.00 PPBv	0.00
30) 1,4-DIF	LUOROBENZENE (1)	10.18	114	565538	8.00 PPBv	0.00
44) CHLOROB	ENZENE-D5 (1)	14.95	117	529622	8.00 PPBv	0.00
System Monite	oring Compounds					
58) 4-BROMO	FLUOROBENZENE (1)	16.90	174	261060	7.35 PPBv	0.00
	unt 8.000 R					
Target Compo	ands					Qvalue
3) DICHLOR	ODIFLUOROMETHANE	4.15	85	22540	0.379 PPB	v 98
4) CHLOROM	ETHANE	4.30	50	15853	0.704 PPB	v 97
10) ACROLEII	4	5.43	56	5592	0.681 PPB	v 94
11) ACETONE		5.54	43	463860	13.471 PPB	v 94
12) TRICHLO	ROFLUOROMETHANE	5.70	101	13931	0.268 PPB	v 99
13) ETHANOL		5.12	45	186863	24.688 PPB	v 96
15) METHYLEI	NE CHLORIDE	6.35	49	20335	0.586 PPB	v 97
16) FREON 1:	13	6.60	101	4323	0.100 PPB	v 88
21) IPA		5.75	45	30357	0.906 PPB	v 97
22) 2-BUTAN	ONE (MEK)	7.73	43	38157	0.594 PPB	v 91
25) HEXANE		8.36	41	17385	0.592 PPB	v 95
32) BENZENE		9.84	78	22273	0.357 PPE	v 97
34) CYCLOHE	KANE	10.12	84	3706	0.143 PPB	v # 77
37) TRICHLO	ROETHENE			6038		v 94
40) HEPTANE		11.24	57	1188	0.060 PPB	v 93
46) TOLUENE		12.89	91	11818	0.186 PPB	v 100

Select List

Data File : D:\HPCHEM\1\DATA\B112110\B112109.D Vial: 23 72

MS Integration Params: 11095INT.P

Quant Time: Nov 22 10:37 2010 Quant Results File: T0052410.RES

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Vial: 24 Data File : D:\HPCHEM\1\DATA\B112110\B112110.D Acq On : 22 Nov 2010 1:56 am Operator: TPH Inst : SYSB Sample : 10K0616-03 0.7X Multiplr: 1.00 Misc : 1.5,1,400,855,0.7X

MS Integration Params: 11095INT.P

Quant Results File: T0052410.RES Quant Time: Nov 23 15:20 2010

Quant Method: D:\HPCHEM\1\METHODS\TO052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15

MILLIAM DONATI NOV 5 3 5010 Last Update : Mon Jul 12 16:49:22 2010

Response via : Initial Calibration

DataA	cq Meth : T0060909				7,00	•
	rnal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1)	BROMOCHLOROMETHANE (1)	8.29	49	326454	8.00 PPBv	0.00
30)	1,4-DIFLUOROBENZENE (1)	10.18	114	549796	8.00 PPBv	0.00
	CHLOROBENZENE-D5 (1)		117	519902	8.00 PPBv	0.00
	em Monitoring Compounds					
	4-BROMOFLUOROBENZENE (1)					
Sp:	iked Amount 8.000	Range 70	- 130	Recove	ery = 93	.00용
_	et Compounds					Qvalue
,	DICHLORODIFLUOROMETHANE		85	22292	0.382 PPB	v 99
	CHLOROMETHANE	4.31		15114	0.684 PPB	v 100
-	ACROLEIN		56	7278	0.903 PPB	v 97
•	ACETONE				14.384 PPB	
12)	TRICHLOROFLUOROMETHANE				0.942 PPB	
	ETHANOL				13.647 PPB	
15)	METHYLENE CHLORIDE		49	16915	0.496 PPB	v 96
16)	FREON 113	6.61	101	4527	0.106 PPB	v 85
21)	IPA	5.75	45	39894 72302 26421	1.213 PPB	v 96
22)	2-BUTANONE (MEK)	7.74	43 41	72302	1.147 PPB	v 91
25)	HEXANE	8.36	41	26421	0.917 PPB	v 95
27)	CHLOROFORM	8.41	83	4420	0.091 PPB	v 98
32)	BENZENE			50531		
33)	CARBON TETRACHLORIDE	9.99	117	3878		
37)	TRICHLOROETHENE	10.90	95	1388	Commence of the second	
40)	HEPTANE	11.24			0.359 PPB	
46)	TOLUENE	12.89		118127		
47)	2-HEXANONE (MBK)	13.19	43	10798	0.171 PPB	
52)	ETHYLBENZENE	15.48	91	21898	0.271 PPB	v 99
53)	M/P-XYLENE	15.69 16.31	91	56195 20877	0.271 PPB 0.853 PPB 0.335 PPB	v 100
56)	O-XYLENE	16.31	91	20877	0.335 PPB	v 98
	4-ETHYLTOLUENE	18.04		6478	0.085 228	V 99
60)	1,3,5-TRIMETHYLBENZENE	18.15	105	5427	0.088 PPB	v 98
61)	1,2,4-TRIMETHYLBENZENE	18.77	105	18306		v 95
	1,4-DICHLOROBENZENE	19.09	146	4392	0.095 PPB	v 95
67)	NAPHTHALENE	22.57		5025	0.062 PPB	v 100

Sole & list

^{(#) =} qualifier out of range (m) = manual integration B112110.D T0052410.M Tue Nov 23 15:20:40 2010

MS Integration Params: 11095INT.P

Quant Time: Nov 23 15:20 2010 Quant Results File: TO052410.RES

Method : D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Mon Jul 12 16:49:22 2010

96

Vial: 25 Data File : D:\HPCHEM\1\DATA\B112110\B112111.D Operator: TPH Acq On : 22 Nov 2010 2:45 am Inst : SYSB : 10K0616-02 0.7X Sample Multiplr: 1.00 Misc : 1.5,1,400,855,0.7X

MS Integration Params: 11095INT.P

Quant Results File: TO052410.RES Quant Time: Nov 23 15:23 2010

Quant Method: D:\HPCHEM\1\METHODS\TO052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Mon Jul 12 16:49:22 2010

Response via : Initial Calibration

DataAcq Meth: T0060909

DataAcq Meth: 10000909				0.05	•
Internal Standards	R.T.	QIon	Response		its Dev(Min)
1) BROMOCHLOROMETHANE (1)	8,29	49	327516	8.00 PI	PBv 0.01
30) 1,4-DIFLUOROBENZENE (1)					
44) CHLOROBENZENE-D5 (1)	14.95	117	524461	8.00 PI	PBv 0.00
System Monitoring Compounds					
58) 4-BROMOFLUOROBENZENE (1)			259303		
Spiked Amount 8.000	Range 70	- 130	Recove	ery =	92.13%
Target Compounds					Qvalue
3) DICHLORODIFLUOROMETHANE				0.385 H	
4) CHLOROMETHANE	4.31		15303		
10) ACROLEIN	5.43	56	3738	0.462 1	PPBv 93
11) ACETONE	5.55	43	165897 43541 97248	4.892 1	PPBv 68
12) TRICHLOROFLUOROMETHANE		101	43541	0.852 I	PPBv 98
13) ETHANOL	5.11	45	97248	13.046 I	PPBv 97
15) METHYLENE CHLORIDE	6.35	49	16078	0.470 I	PPBv 98
16) FREON 113	6.60		4485		
17) CARBON DISULFIDE	6.63		4998		
21) IPA	5.75	45	33263	1.008	PPBv 95
22) 2-BUTANONE (MEK)	7.73	43	26099	0.413 H	PPBv 91
25) HEXANE	8.36	41	26815 4342 51149	0.927 1	PPBv 97
27) CHLOROFORM	8.41	83	4342	0.089	PPBv 98
32) BENZENE	9.84	78	51149	0.831	PPBv 97
33) CARBON TETRACHLORIDE	9.99	117	4199	0.113 1	PPBv 94
34) CYCLOHEXANE	10.12		5221		
38) 1,4-DIOXANE			1976		
40) HEPTANE	11.24		7097	0.365 I	PPBv 89
46) TOLUENE	12.89	91	118545	1.888 I	PPBv 99
50) TETRACHLOROETHENE	14.20	166	1482	(0.050)	PPBv 93
52) ETHYLBENZENE	15.48	91	1482 21818 56834 20834	0.268 I	PPBv 98
53) M/P-XYLENE	15.69	91	56834	0.855 1	PPBv 99
56) O-XYLENE	16.31	91	20834	0.331 J	PPBv 96
59) 4-ETHYLTOLUENE			6450		
60) 1,3,5-TRIMETHYLBENZENE			5133		
61) 1,2,4-TRIMETHYLBENZENE	18.77	105	17268		
64) 1,4-DICHLOROBENZENE				0.078 I	

School list

2+2 File . D.\UDGUEM\1\DATA\R112110\R112111 D Vial. 25 97

MS Integration Params: 11095INT.P

Quant Time: Nov 23 15:23 2010 Quant Results File: T0052410.RES

Method : D:\HPCHEM\1\METHODS\TO052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15
Last Update : Mon Jul 12 16:49:22 2010

112

Vial: 26 Data File : D:\HPCHEM\1\DATA\B112110\B112121.D Operator: TPH Acq On : 22 Nov 2010 9:34 am Inst : SYSB Sample : 10K0616-01 2X Misc : 1.5,1,400,300,2X Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Time: Nov 23 15:06 2010 Quant Results File: T0052410.RES

Quant Method: D:\HPCHEM\1\METHODS\T0052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Mon Jul 12 16:49:22 2010

Response via : Initial Calibration

Select LSI

DataAcq Meth : TO060909

Internal Standards				Conc Units I				
1) BROMOCHLOROMETHANE (1)								
30) 1,4-DIFLUOROBENZENE (1)	10 19	114	563248	8.00 PPBv	0.01			
44) CHLOROBENZENE-D5 (1)	14.95	117	529757	8.00 PPBv	0.00			
System Monitoring Compounds								
58) 4-BROMOFLUOROBENZENE (1)	16.90	174	267369	7.53 PPBv	0.00			
Spiked Amount 8.000	Range 70	- 130	Recove	ery = 94.3				
-								
Target Compounds					Qvalue			
3) DICHLORODIFLUOROMETHANE								
4) CHLOROMETHANE			1386					
10) ACROLEIN		56		0.313 PPBv				
11) ACETONE			121510					
12) TRICHLOROFLUOROMETHANE								
13) ETHANOL			21904					
15) METHYLENE CHLORIDE	6.35	49	5486	0.166 PPBv				
17) CARBON DISULFIDE	6.64	76	114563	1.621 PPBv				
21) IPA			6850					
22) 2-BUTANONE (MEK)	7.74							
25) HEXANE			39452					
27) CHLOROFORM	8.41	83	2695	0.058 PPBv				
31) 1,1,1-TRICHLOROETHANE	9.39							
32) BENZENE			22519					
34) CYCLOHEXANE			20415					
37) TRICHLOROETHENE	10.90	95	7059	0.273 PPBv				
40) HEPTANE			19586					
46) TOLUENE	12.89		87563					
00, 11111111111111111111111111111111111	14.20		2198					
52) ETHYLBENZENE			8860					
53) M/P-XYLENE			26397					
56) O-XYLENE	16.31	91	6118	0.096 PPBv	100			

Data File : D:\HPCHEM\1\DATA\B112110\B112121.D Vial: 26

 Acq On
 : 22 Nov 2010 9:34 am
 Operator: TPH

 Sample
 : 10K0616-01 2X
 Inst : SYSB

 Misc
 : 1.5,1,400,300,2X
 Multiplr: 1.00

MS Integration Params: 11095INT.P

Quant Time: Nov 23 15:06 2010 Quant Results File: TO052410.RES

Method : D:\HPCHEM\1\METHODS\TO052410.M (RTE Integrator)

Title : QUANT FILE FOR TO-14/TO-15 Last Update : Mon Jul 12 16:49:22 2010

www.contestlabs.com

39 Spruce Street
East Longmeadow, MA
Phone: 1-413-525-2332
Fax: 1-413-525-6405

Page 15 of 15

AIR ONLY RECEIPT CHECKLIST

CLIENT NAME: Mactectie, TN RECEIVED BY: AP	DATE: 11/17/10
 Was chain of custody relinquished and signed? Does Chain agree with samples? 	AP (VES) NO NO
If not, explain: Sample AA-06 on C	oC Says AA-D7 on Summa Label. ARINT
3. All Samples in good condition?	(YES) NO
If not, explain:	
4. Are there any on hold samples?YES NO	STORED WHERE:
5. ARE THERE ANY RUSH OR SHORT HOLDING NOTIFIED?	G TIME SAMPLES? WHO WAS
Location where samples are stored: Air Lab	(Walk in clients only) if not already approved,
CONTAINERS SENT TO CON-TEST # of	Client Signature
Summa cans CL 5	Junnsel - 1024
Tedlar Bags	Tooning - 1027
Regulators 244 5	unused - 3098
Restrictors	I wanted to be
Tubes	
Other Tubing 1254	
	4 - 34 - 60
 Was all media (used & unused) checked into 	o the WASP asset management program?
2. Were all returned summa cans, restrictors, AIR Lab Outbound excel sheet?	& regulators documented as returned in the
. Were the Lab ID's documented in the Air L	ab Outbound excel sheet?
. Was the job documented in the Air Lab Log	;-In Access Database?
Laboratory comments:	
* Client called to continu sample	e label discrepancy AA-06 correct to

ANALYTICAL LABORATORY

AR SAMPLE CL. IN OF CUSTODY Phone: 413-525-2332

TS HANCE ST

EAST LONGNEADOW, NA 01028

Page _____ of

sampling date prior k completely, sign, date flow controllers must returned within 14 da of receipt or rental fer Summa canisters will retained for a minimu and retain the yellow Summa canisters an copy for your record of 14 days after Please fill out Will apply. clearing. D) PEQUESTED SZZZZ D OTHER ONLY USE WHEN USING PUMPS Clent PO # UNITAL C. DACKERS CI GIS KEY DATA DELIVERY (check one): DFAX CJEMAIL CIWEBSITE CLIENT Telephone (00) 58 - 154 OPDF Date Samoled Format: CLEXCEL Project # .. 本 X 8:: Emall Email: Info@contestlabs.com www.contestlabs.com 7537 8 E western in Che Proth Bay Kindy VIIC IN The same of the sa Proposal Provided? (For Billing purposas) D'AN LOW hormer general general Company Name: Project Location: Sempled By: Attention: Address:

300 Grand Comments 2000 Control 71 NO Wedia Codes: ら を か た Samuel * P. G. S-summa can Tel-fediar bag 5 2 6 Summa Canister Fallbe F- Wer 1000 TOWNS TO SERVE ないという IA - NOOOM -AIR 55 = SUB SLAB SG= SOIL GAS AMP-AMBENT N.C. J. Till "Mairix Code: d)0 = 0 くのり Ž O and the second and th Special Meduirements Code THE STATE OF X المارية المارية Data Enhancement OP? OV Enfanced Data Package CIV Hers of ENT COMMENTS Volume (Surchage Applies) Ž Required Detection Limits. _____ > MARCH DE Flow Rate Segulations: Sampled 001 SOFTWANT OF THE STATE OF THE ST 300 Entai i de la companya de l 10-Day Turnaround ** 0100 H-80% D-14/50 7-Day The 4 2000 Date 106 1 Time 940 0 \bigcirc <u></u> Media Lab 1 1 (1) proposal date Received by: (signature) FFT Sample Bescrietion 14-08 but 30100 A WOLL Reinquished by: (signature) Relinquishibi tiy. (signature) abecity Comments: Field D

NOORBED, TURNAROUND THE WILL NOT STATE THE MENTINGS HE AND SHOUSE BY CONTINUED TO SELVE SHOWS AND SHOWS AND SHOWS OF SHO ED OUT COMPLETELY ON IS O # OTHER TURNAROUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN IF THIS FORM IS NOT FILL IO = other. 10:09 | Approval Required A STATE OF THE

Other

0 /2 H 0 /4 0 8 /

Date Time:

Recovering (spontaries)

C-cassette

BL = BLANK

Fedix

Package/Envelope Freight Expedited Office/Print Services

Ship ▶ Track ▶ Manage ▶ Business Solutions ▶

Track Associated Shipments

Printer-Friendly

			Select tin
Master tracking no.®	874182691556	Destination	Anna ann an Aireann Ann Ann ann an Aireann ann an
Service type	Priority Overnight	Total pieces Total shipment weight	2 41.0 lbs/18.6 kg
All Shipments Associated with	the Master Tracking Number		
Delivered			
		·	
Tracking no.	Status	De	livery date
	Status Delivered	No	livery date v 17, 2010 10:09 AM
Tracking no.	Delivered	No	
Tracking no. 874182691556	Delivered Delivered	No	v 17, 2010 10:09 AM v 17, 2010 10:09 AM

Global Home | Small Business Center | Service Guide | About FedEx | Investor Relations | Careers | fedex.com Terms of Use | Security & Privac This site is protected by copyright and trademark laws under US and International law. All rights reserved.© 1995- 2010 FedEx

ATTACHMENT F DATA USABILITY SUMMARY REPORT

DATA USABILITY SUMMARY REPORT NOVEMBER 2010 AIR SAMPLING EVENT ABB ROCHESTER ROCHESTER, NEW YORK

1.0 INTRODUCTION

Four air samples were collected by MACTEC at residences near the former ABB Rochester Site on November 16, 2010 and submitted for off-site laboratory analyses. Samples were analyzed by Con-Test Analytical Laboratory in East Longmeadow, Massachusetts and reported in SDG 10K0616. A listing of samples included in this investigation is presented in Table 1. Samples were analyzed for the following parameters:

Volatile organic compounds (VOCs) in air by Method TO-15

Based on project specifications, the laboratory reported results for the following target compounds:

Vinyl chloride cis-1,2-dichloroethene Trichloroethene Tetrachloroethene

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

For samples analyzed by Method TO-15, a project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2002). Quality control (QC) limits identified in the USEPA Region II guideline (USEPA, 2006) were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification. The following laboratory or data validation qualifiers are used in the final data presentation.

U =target analyte is not detected above the reported detection limit J =concentration is estimated

Results are interpreted to be usable as reported by the laboratory unless discussed in the following section. Final samples results are summarized in Table 2.

The laboratory qualified all results with a D to indicate that samples were analyzed at a dilution. The D flags were removed from the final data set.

2.0 AIR SAMPLES - VOLATILE ORGANIC COMPOUNDS

The following data quality reviews were completed:

• sample collection and holding times

- blanks
- instrument calibration
- lab control samples
- surrogate recovery
- internal standard response
- field duplicates
- target compound identification and quantitation

With the exception of items discussed below, results are interpreted to be usable as reported by the laboratory.

Field duplicates

A field duplicate was collected from location IA-08. Trichloroethene was reported in sample IA-08 Dup and not in the original sample IA-08. Tetrachloroethene was reported in sample IA-08 and not in the duplicate IA-08 DUP. In both cases the concentrations detected were at or near the reporting limit, and the differences in results are not interpreted to indicate a significant precision problem with the data set. Results for trichloroethene and tetrachloroethene were qualified estimated (J/UJ) in the final data.

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2002. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; Draft DER-10; Division of Environmental Remediation; December 2002.

U.S. Environmental Protection Agency (USEPA), 2006. "Validating Air Samples Volatile Organic Analysis of Ambient Air in Canister by Method TO-15"; USEPA Region II; HW-31; Revision #4; October 2006.

Chris Ricardi, NRCC-EAC

December 15, 2010

Reviewed by: Wolfgang Calicchio

December 15, 2010

TABLE 1 SAMPLE SUMMARY DATA USABILITY SUMMARY REPORT NOVEMBER 2010 AIR SAMPLING EVENT ABB ROCHESTER ROCHESTER, NEW YORK

			Sample		
sample_name	sample_date	lab_sample_id	Туре	SDG	Method
AA-06	11/16/2010	10K0616-04	FS	10K0616	TO15
IA-08	11/16/2010	10K0616-02	FS	10K0616	TO15
IA-08 DUP	11/16/2010	10K0616-03	FD	10K0616	TO15
SS-08	11/16/2010	10K0616-01	FS	10K0616	TO15

TABLE 2 - FINAL RESULTS DATA USABILITY SUMMARY REPORT NOVEMBER 2010 AIR SAMPLING EVENT ABB ROCHESTER ROCHESTER, NEW YORK

		Location:	SS-08		IA-08		1A-08		AA-06		
		Field ID:		SS-08	IA-08		IA-08 DUP		AA-06		
		Sample ID:	nple ID: 10K0616-01 SDG: 10K0616 Date: 11/16/10		10K0616-02		10K0616-03		10K0616-04		
		SDG:			10K0616 10	10K0616		10K0616		10K0616	
		Type:			11/16/10		11/16/10		11/16/10		
			Type:		FS	FS		FD		FS	
			Result	Qual	Result	Qual	Result	Qual	Result	Qual	
TO15	Cis-1,2-Dichloroethene	μg/m3	4	0.4 U	0.3	14 U	0.3	L4 U	0.3	14 U	
TO15	Tetrachloroethene	μg/m3		1	0.2	<u>2</u> 4 J	0.2	24 UJ	0.2	24 U	
TO15	Trichloroethene	μg/m3	:	2.9	0.1	l9 UJ 👘	0.2	21 J	0.8	38	
TO15	Vinyl chloride	μg/m3	0.	26 U	0.0)9 U	0.0)9 U	0.0)9 U	

Notes:

U = undetected

J = estimated

FS = field_sample

FD = field duplicate