2017 ANNUAL PROGRESS REPORT

FORMER TAYLOR INSTRUMENTS SITE 95 AMES STREET ROCHESTER, NEW YORK

PREPARED FOR:

ABB, INC. 131 PHOENIX CROSSING BLOOMFIELD, CT 06002

PREPARED BY:

AMEC FOSTER WHEELER ENVIRONMENT & INFRASTRUCTURE, INC. 2030 FALLING WATERS ROAD, SUITE 300 KNOXVILLE, TN 37922

AMEC FOSTER WHEELER PROJECT 3031152028

March 2018

March 12, 2018

Mr. Frank Sowers Environmental Engineer II NYSDEC Division of Environmental Remediation 6274 East Avon-Lima Road Avon, NY 14414-9519

Subject: 2017 Annual Progress Report Voluntary Cleanup Agreement (VCA) Index B8-0508-97-02 Former Taylor Instruments Facility Rochester, New York AMEC Project 3031152028

Dear Mr. Sowers:

In accordance with Section X.I.B. of the Taylor Instruments Site Voluntary Cleanup Agreement, enclosed please find one hard copy and one electronic copy of the 2017 Annual Progress Report. The Periodic Review Report is included as an Appendix.

If you have any questions, please call me at (865) 671-6774.

Sincerely,

Amec Foster Wheeler, Environment & Infrastructure, Inc.

Ricky A. Ryan/ P.E. Senior Principal Project Manager

K. JePenthing

K. Joe Deatherage Senior Environmental Engineer

Enclosures

cc: Bernette Schilling, NYSDEC (w/o enclosure [electronic]) John Frazer, MCDOH (w/o enclosure) Justin Deming, NYSDOH (w/ 1 electronic enclosure) Jean McCreary, Nixon Peabody LLP (w/ 1 electronic enclosure) Rick Podlaski, Thermo Fisher Scientific (w/ 1 electronic enclosure) Melody Christopher, ABB (w/ 1 hard copy + electronic enclosure) Nelson Walter, Amec Foster Wheeler (w/o enclosure [electronic])

Amec Foster Wheeler Environment & Infrastructure, Inc. 2030 Falling Waters Road, Suite 300 Knoxville, Tennessee 37922 Tel (865) 671-6774 Fax (865) 671-6254 www.amecfw.com

TABLE OF CONTENTS

2017 Annual Progress Report Former Taylor Instruments Site Rochester, New York

Section	n Description	Page No.
1.0	INTRODUCTION	1-1
2.0	GROUNDWATER MONITORING.2.1Scope of Work2.2Summary of Results	2-1
3.0	 2.3 Potentiometric Surface ANALYTICAL PROGRAM	
4.0	CONCLUSIONS AND RECOMMENDATIONS	4-1
5.0	REFERENCES	5-1
Ap Ap	NDICES opendix A: Figures opendix B: Periodic Review Report opendix C: Tables	

- Appendix D: Appendix E: Laboratory Reports and Chain-of-Custody Forms (see enclosed CD)
- Field Data Records (see enclosed CD)
- Appendix F: Well Construction Information

LIST OF FIGURES

Figure No.

Description

Figures are contained in Appendix A.

Figure 1	Well Locations
----------	----------------

Figure 2 VOCs in Overburden Monitoring Wells

- Figure 3 VOCs in Bedrock Monitoring Wells
- Figure 4 Overburden Contaminant Mass Graph
- Figure 5Bedrock Contaminant Mass Graph
- Figure 6 Overburden Potentiometric Surface Map, May 2017 Sampling Event
- Figure 7 Bedrock Groundwater Elevations, May 2017 Sampling Event
- Figure 8 Overburden Potentiometric Surface Map, November 2017 Sampling Event
- Figure 9 Bedrock Groundwater Elevations, November 2017 Sampling Event

LIST OF TABLES

Table No.	Description

Tables are contained in Appendix C.

- Table 1Overburden Monitoring Wells with COCs Exceeding NYSDEC Class GA Standards May
2017
- Table 2
 Bedrock Monitoring Wells with COCs Exceeding NYSDEC Class GA Standards November 2017
- Table 3Summary of VOC Results for Existing Overburden Wells for the 2000-2017 Sampling
Events
- Table 4Summary of VOC Results for Existing Bedrock Wells for the 2000-2017 Sampling Events

LIST OF ACRONYMS

μg/L μmole/L	micrograms per liter micromoles per liter
3DMe [®]	3-D Microemulsion [®]
AMEC Amec Foster Wheeler	AMEC Environment & Infrastructure, Inc. Amec Foster Wheeler Environment & Infrastructure, Inc.
COC	contaminant of concern
1,1-DCE cis-1,2-DCE trans-1,2-DCE	1,1-dichloroethene cis-1,2-dichloroethene trans-1,2-dichloroethene
EPA	Environmental Protection Agency
MS MS/MSD MSD mV	matrix spike matrix spike/matrix spike duplicate matrix spike duplicate millivolt
NYSDEC NYSDOH	New York State Department of Environmental Conservation New York State Department of Health
OM&M	Operations, Maintenance, and Monitoring
PARCC PCE	precision, accuracy, representativeness, completeness, and comparability tetrachloroethene
QC	quality control
RPD	relative percent difference
Site	former Taylor Instruments Site
TCE	trichloroethene
VFA	volatile fatty acid
VC VOC	vinyl chloride volatile organic compound

1.0 INTRODUCTION

This annual progress report summarizes the results from groundwater sampling events conducted in May and November 2017. These activities occurred at the former Taylor Instruments Site – New York State Department of Environmental Conservation (NYSDEC) Site #828028a located at 95 Ames Street in Rochester, New York (Figure 1 in Appendix A), pursuant to a Voluntary Cleanup Agreement (NYSDEC, 1997). The 2017 groundwater sampling events were the seventh year of sampling since Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) completed an expanded accelerated bioremediation application using 3-D Microemulsion[®] (3DMe[®]) in 2010 as the final required active Site remediation. This continued groundwater sampling is consistent with the objective stated in Amec Foster Wheeler's approved *Revised Work Plan for Accelerated Bioremediation and Permanent Decommissioning of the Remedial Treatment System* (MACTEC, 2010); an expanded accelerated bioremediation application followed by monitored natural attenuation as the final remedy for the Site. All activities described herein are also consistent with an assignable release for the Site, granted by the NYSDEC via letter dated September 2, 2005 (NYSDEC, 2005). In the same letter, NYSDEC approved previous remedial activities as implemented and determined that no further investigation or response would be required at the Site to render it safe for contemplated uses.

Details of the Site investigation and remedial history, including the certification of engineering and institutional controls, are presented in the *Periodic Review Report*, which is provided in Appendix B of this report as requested by NYSDEC (NYSDEC, 2018).

The first semi-annual groundwater sampling event for 2017 was conducted in May and the second in November. A summary of the sampling event results from 2001-2017, including results for the 2010 3DMe[®] baseline event, are included in this report.

Following decommissioning of the remedial treatment system and selected monitoring wells in 2010, 14 monitoring wells remain on the Site, as shown in Figure 1 (Appendix A). Unless otherwise agreed to by NYSDEC, contaminant conditions will continue to be monitored until groundwater concentrations of the contaminants of concern (COCs) are at or below the NYSDEC Class GA Standards.

2.0 GROUNDWATER MONITORING

2.1 SCOPE OF WORK

In the 2016 Periodic Review Report (Amec Foster Wheeler, 2017), Amec Foster Wheeler requested modifying the sampling frequency from semi-annual (twice a year) to annual (once a year) based on the continued demonstrated plume stability. This request was approved by NYSDEC for the overburden wells but not for the bedrock wells (NYSDEC, 2017). Based on the approval from NYSDEC, Amec Foster Wheeler personnel performed the May and November sampling events to provide an inclusive set of groundwater analytical data for the 2017 reporting period. During the May sampling event of overburden and bedrock wells, 20 samples were collected, while during the November sampling event of bedrock wells only, 12 samples were collected. The samples were submitted to Test America, Inc. for volatile organic compound (VOC) analyses by U.S. Environmental Protection Agency (EPA) Method 8260C (Table 1, Appendix C). As approved by NYSDEC in the revised 2011 Operations, Maintenance, and Monitoring Manual (MACTEC, 2011), the samples were analyzed for the six primary COCs remaining at the Site: tetrachloroethene (PCE); trichloroethene (TCE); cis-1,2-dichloroethene (cis-1,2-DCE); trans-1,2-dichloroethene (trans-1,2-DCE); 1,1-dichloroethene (1,1-DCE); and vinyl chloride. The results for the 2017 sampling events are presented in tables in Appendix C. Additionally, to further assess biological parameters supportive for contaminant degradation, selected samples collected during the May sampling event were also analyzed for methane/ethane by Method EPA RSK175. The methane/ethane samples were analyzed by Pace Analytical Energy Services, LLC. The results for these parameters are included in the laboratory reports in Appendix D. Data for dissolved oxygen, oxygen reduction potential, pH, and temperature were also collected in the field during the sampling events. Six of the samples collected for each event were associated with quality control efforts. All environmental samples, including field duplicates and matrix spike/matrix spike duplicate (MS/MSD) samples, were collected using a low-flow peristaltic pump at flow rates <400 milliliters per minute.

Analytical results from the 14 remaining Site wells are presented in Figures 2 and 3 (Appendix A). Laboratory reports and chain-of-custody forms for the 2017 samples are located in Appendix D. Purge and sample field data are presented in the field data records located in Appendix E.

2.2 SUMMARY OF RESULTS

This section presents the results of the groundwater sampling events conducted during 2017. The results summary focuses primarily on the most recent results for each location during the 2017 sampling events. Tables 1 and 2 (Appendix C) summarize the monitoring well locations with COCs exceeding NYSDEC Class GA Standards for overburden and bedrock monitoring wells, respectively. Tables 3 and 4 (Appendix C) show a historical summary of analytical results for the remaining overburden and bedrock monitoring wells, respectively, shown on Figure 1 (Appendix A). Sample VOC results are also presented in "flag boxes" shown on Figures 2 and 3 (Appendix A), representing overburden monitoring wells and bedrock monitoring wells, respectively. Complete laboratory analytical data reports for the 2017 events are included in Appendix D. Well construction information is provided in Appendix F.

While certain COCs remain above the NYSDEC Class GA Standards, substantial declines of COC concentrations have been observed in all Site monitoring wells. COCs in three of the eight overburden wells are presently near or below the NYSDEC Class GA standards, including monitoring wells TW-04 and TW-09 along the downgradient eastern property boundary, as shown in Figure 4 (Appendix A). COCs in the North Source Area bedrock well BR-15 are near the NYSDEC Class GA Standards.

As shown in Tables 1 and 2 (Appendix C), during the 2017 sampling events; PCE was not detected at any location above the NYSDEC Class GA Standard of 5 micrograms per liter ($\mu g/L$); TCE was detected above the NYSDEC Class GA Standard of 5 $\mu g/L$ in the groundwater samples collected from three overburden monitoring wells and five bedrock monitoring wells; cis-1,2-DCE was detected above the NYSDEC Class GA Standard of 5 $\mu g/L$ in the groundwater samples collected from four overburden monitoring wells and six bedrock monitoring wells; trans-1,2-DCE was detected above the NYSDEC Class GA Standard of 5 $\mu g/L$ in the groundwater samples collected from four overburden monitoring wells and six bedrock monitoring wells; trans-1,2-DCE was detected above the NYSDEC Class GA Standard of 5 $\mu g/L$ in the groundwater samples collected from one overburden monitoring well and three bedrock monitoring wells; 1,1-DCE was not detected at any location above the NYSDEC Class GA Standard of 5 $\mu g/L$; and vinyl chloride was detected above the NYSDEC Class GA Standard of 2 $\mu g/L$ in the groundwater samples collected from four overburden monitoring wells.

Following the expanded accelerated bioremediation application of 3DMe[®] in the overburden groundwater, total contaminant mass has been reduced from pre-injection values. Looking at specific COCs, the TCE contaminant mass in overburden wells has decreased steadily from 8.8 µmole/L prior to injection to 1.1 µmole/L in May 2017, demonstrating that the 3DMe[®] has been effective in reducing site source

contamination. Cis-1,2-DCE and vinyl chloride concentrations increased in source area monitoring wells OB-04 (South Source Area) and OB-08 (North Source Area) and in north plume well TW-17 as compared to October 2017, likely due to an abnormally high water table that was an average of 1.3 feet higher than the previous sampling event in November 2016, with five of the eight overburden monitoring wells having the highest water table since post-injection monitoring began in 2011. It's notable, however, that all three wells have had comparable concentrations post-2010 injection, e.g., OB-04 in 2011 and OB-08/TW-17 in May 2016. Despite these wells having had comparable concentrations post-injection, both the north and south plumes continue to demonstrate stability based on downgradient perimeter concentrations in TW-04 and TW-09 being below the standards. All other COCs are at minimal concentrations or were not detected. The overburden contaminant mass values are depicted on Figure 4 (Appendix A).

While decreases in contaminant mass have been noted in the affected overburden groundwater, the corresponding response in the bedrock groundwater has been slower, although evidence of contaminant biodegradation is apparent. Looking at specific COCs, the TCE contaminant mass has decreased from 14.2 µmole/L in the May 2010 pre-injection baseline event to 12.2 µmole/L in November 2017 a 14% decrease from May 2010; the cis-1,2-DCE contaminant mass has increased from 7.5 µmole/L in May 2010 to 28.4 µmole/L in November 2017, likely influenced by the degradation of TCE; and the vinyl chloride contaminant mass has increased from 0.1 µmole/L in May 2010 to 6.6 µmole/L in November 2017, reflecting biodegradation of TCE and cis-1,2-DCE. All other COCs have had lower concentrations or were not detected. Although historically bedrock concentrations have varied considerably, the overall decreases in TCE contaminant mass in correlation with overall more recent increases in TCE daughter products (cis-1,2-DCE and vinyl chloride) indicate that the bedrock groundwater has been affected by the enhanced contaminant biodegradation in the overburden groundwater. Specific evidence of this is in former North TCE Source Area bedrock well BR-15 where following the 2010 injection COCs have decreased to near or below their NYSDEC Class GA standards.

Seven years after completion of the expanded accelerated bioremediation application using 3DMe[®] in 2010 as the final required active Site remediation, the overburden groundwater contaminant plume in the southern portion of the Site has been stable for the past few years. As shown in Table 3 (Appendix C), downgradient perimeter monitoring well TW-04 has had COCs below their respective NYSDEC Class GA standards for the past two years. Additionally, COCs in downgradient plume well OB-06 dropped sharply in May 2017 and are now near the NYSDEC Class GA Standards for the first time ever.

The overburden groundwater contaminant plume in the northern portion of the Site is also demonstrating evidence of plume stability, as downgradient perimeter monitoring well TW-09 had COC's below their respective NYSDEC Class GA standards in May 2017, the first time in several years this has occurred. Additionally, downgradient perimeter well TW-20 has seen recent declines in contaminant mass.

The May 2017 field parameter data indicate that enhanced reducing conditions continue to be present based on the following:

- The average pH in the Site overburden wells has been reduced from 7.4 in the 2010 baseline sampling event to a neutral 7.0 in May 2017.
- The average oxygen reduction potential in the Site overburden wells has been reduced from 45 millivolts (mV) (2010 baseline) to -80 mV in May 2017.
- The average dissolved oxygen in the Site overburden wells has been reduced from 1.54 milligrams per liter (mg/L) (2010 baseline) to 1.11 mg/L in May 2017.
- Methane, an indicator of biological activity, is also very robust in most wells for which it was sampled in May 2017, i.e., Site overburden wells TW-04, OB-06, TW-17, and W-5, ranging from 46 µg/L to 27,000 µg/L.

2.3 POTENTIOMETRIC SURFACE

Associated with each monitoring event, a potentiometric surface map was generated to depict groundwater elevations for the overburden groundwater. AutoCAD 2015 was used to plot the potentiometric surface maps in Figures 6 and 8 (Appendix A). The program mathematically calculates contours based upon groundwater elevation measurements collected in the field.

The May and October 2017 overburden potentiometric maps (Figures 6 and 8 in Appendix A) were based upon water level information collected during the course of sampling activities on the subject Site. Overburden potentiometric surface mapping for the water level events is generally comparable to past groundwater mapping indicating groundwater flow is generally to the northeast. East perimeter well TW-04 had slightly elevated groundwater elevations in 2017, associated with an abnormally high Site-wide water table. This higher elevation resulted in TW-04 appearing to be upgradient of monitoring well OB-04; however, based on historical potentiometric surface mapping TW-04 is located downgradient of OB-04.

The bedrock water level data cannot readily be plotted due to the large variation in elevation heads. These variations are due to the fractured bedrock system. The head data appears to be bi-modally distributed possibly reflecting differing elevations of water bearing fractures. The historical absence of contaminants at the southwest corner of the Site and their presence in wells along the north and east Site perimeters also support the interpretation that bedrock groundwater flow beneath the two former source areas is generally towards the north/northeast. Bedrock water level elevations are presented on Figures 7 and 9 in Appendix A.

3.0 ANALYTICAL PROGRAM

Overall data quality is assessed by grouping particular data evaluation findings and reviewing them in terms of accuracy, precision, representativeness, completeness, and comparability (PARCC) criteria. Data generated during this monitoring period were evaluated for PARCC criteria after receipt of all analytical data.

3.1 ACCURACY

Accuracy is a quantitative measurement of agreement between an analytical result and the true value. Accuracy is determined by comparing known amounts of analytes, which are added to the sample prior to analysis, to the field analytical results. Accuracy is expressed as a percentage of recovery of the total amount of spiked analyte. For VOC analyses, each sample was spiked with surrogate compounds prior to analysis (and extraction), and chosen samples were spiked (in duplicate) with additional spikes [Matrix Spike (MS) and Matrix Spike Duplicate (MSD)]. Surrogate and MS/MSD recoveries evaluate accuracy and identify interferences from the sample matrix and were acceptable for VOC analysis for these sampling events.

3.2 **PRECISION**

Precision is a quantitative evaluation of the repeatability of a measurement. Precision of analytical measurements is determined by calculating the relative percent difference (RPD) between the two numerical values. For precision, the MS is performed in duplicate, and the values from both analyses are evaluated. Comparison of results from duplicate field samples may also be indicative of overall precision of a data set. However, field duplicates may be influenced by sampling precision and are not as controlled as laboratory duplicates.

For quality control purposes, an MS and MSD were taken for each set of 20 samples with a net result of one MS/MSD analysis for the May 2017 sampling event and one MS/MSD analysis for the November 2017 event. The evaluation of MS/MSD criteria was used to qualify the data. The evaluations of MS/MSD analyses are presented in the following tables.

BR-15 – May 2017	2017
------------------	------

Analyte	MS Value (μg/L)	Recovery (%)	MSD Value (µg/L)	MSD Recovery (%)	RPD	Control Limits (%)	RPD Limit
1,1-Dichloroethene	23.79	119	24.73	124	4	54-150	17
cis-1,2-DCE	24.03	120	23.76	119	1	68-131	17
Tetrachloroethene	22.44	112	22.44	112	0	57-138	16
trans-1,2-DCE	22.82	114	22.38	112	2	59-143	16
Trichloroethene	22.63	110	22.16	108	2	63-135	17
Vinyl Chloride	21.56	108	21.44	107	1	57-150	17

BR-15 – November 2017

Analyte	MS Value (μg/L)	Recovery (%)	MSD Value (μg/L)	MSD Recovery (%)	RPD	Control Limits (%)	RPD Limit
1,1-Dichloroethene	22.81	114	19.36	97	16	54-150	17
cis-1,2-DCE	27.77	113	25.91	103	7	68-131	17
Tetrachloroethene	19.65	98	21.82	109	10	57-138	16
trans-1,2-DCE	23.08	114	20.49	101	12	59-143	16
Trichloroethene	21.98	98	21.87	97	1	63-135	17
Vinyl Chloride	29.03	125	25.16	105	14	57-150	17

The RPDs did not exceed the National Functional Data Validation Guideline of 30 for water samples, and demonstrate that MS/MSD analyses are within acceptable limits.

Field duplicate sampling followed the same sampling outline as MS/MSD analysis. One duplicate sample was collected for each set of 20 samples, resulting in one duplicate sample for the May 2017 and one duplicate sample for the November 2017 sampling event. Field duplicate precision is presented in the following tables.

W-5 – May 2017

Sample ID	Analyte	Practical Quantitation Limit	Sample Result (µg/L)	Flag	Duplicate Result (µg/L)	Flag	RPD
W-5	cis-1,2-Dichloroethene	1	122		112		8.5
	trans-1,2-Dichloroethene	1	11.7		9.03		25.8
	Trichloroethene	1	78.5		87.4		10.7
	Vinyl Chloride	1	74.2		59.0		22.8

BR-15 – November 2017

Sample ID	Analyte	Practical Quantitation Limit	Sample Result (µg/L)	Flag	Duplicate Result (µg/L)	Flag	RPD
BR-15	cis-1,2-Dichloroethene	1	5.22		5.70		8.8
	trans-1,2-Dichloroethene	1	ND		ND		0
	Trichloroethene	1	2.43		2.33		4.2
	Vinyl Chloride	1	4.06		5.20		24.6

Field duplicate precision was evaluated between the two data sets for detected compounds. The RPDs did not exceed the National Functional Data Validation Guideline of 30 for water samples.

3.3 REPRESENTATIVENESS

Representativeness is a qualitative measurement of the degree to which analytical results reflect the true concentrations of analytes that may (or not) be present in a sample. Representativeness of organic analytical results of true site conditions is evaluated using trip blanks, field blanks, method blanks, and rinsates from decontaminated sampling equipment. Target organic compounds in quality control (QC) samples may represent contamination during sampling or transportation of samples to the laboratory. Compliance with holding time and extraction criteria also assures representativeness of results.

One field blank for the May 2017 event and one field blank for the November 2017 event were analyzed to characterize the water source used during these sampling events. Distilled water was used by the field crews for field blanks. No target VOCs were detected above the reporting limit in the field blanks.

No target VOCs were detected above the reporting limit in the method blank in May 2017 or November 2017.

One trip blank was analyzed during the May 2017 and November 2017 sampling events as part of the VOC laboratory QC program. No target VOCs were detected above the reporting limit in the trip blanks.

Equipment rinse samples were collected for each set of 20 samples, using distilled water to rinse field equipment, and analyzed for all target constituents. One rinsate blank was collected during the May 2017 event and the November 2017 event. No target VOCs were detected above the reporting limit in either rinsate blank.

Representativeness is considered complete due to the lack of target VOC detections in QC efforts.

3.4 COMPLETENESS

Completeness is a quantitative measurement of the usability of a data set. Completeness is defined as the percentage of data that satisfy validation criteria. Rejected data are not usable. Data qualified as estimated, however, is usable. Completeness goals were 100 percent for this report and are considered to be met.

3.5 COMPARABILITY

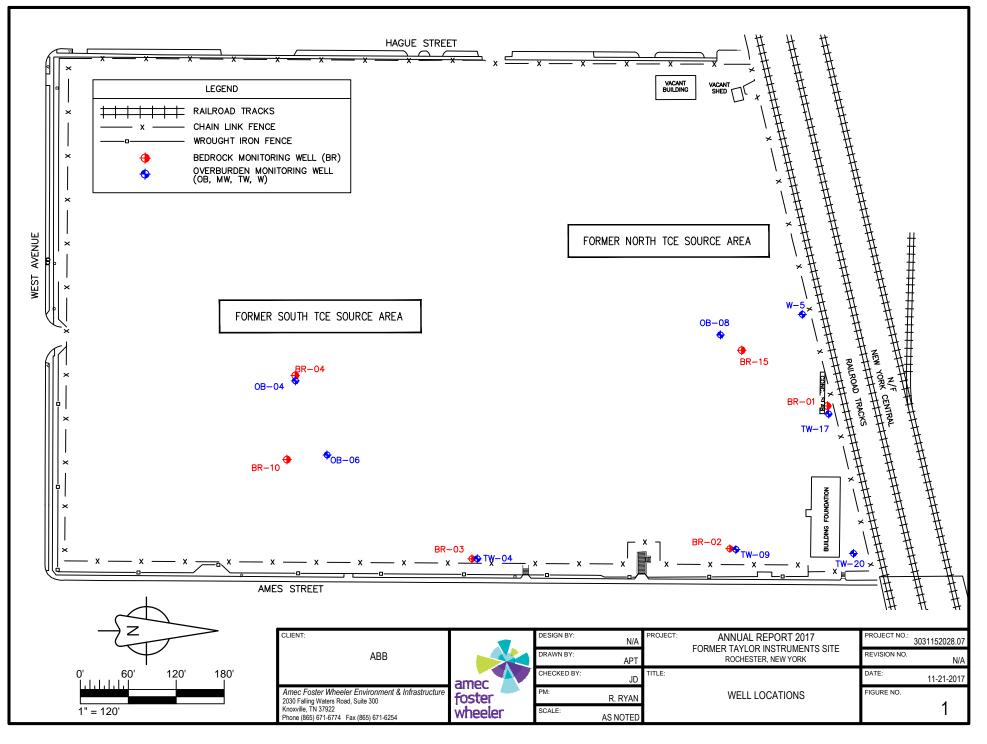
Comparability is a qualitative assessment of the confidence with which different data sets may be used to characterize a site. Comparability is a necessary criterion because sampling is often performed at different times and precision, accuracy, and representativeness are unique to each sampling event. Comparability between data generated at different times at a single site is evaluated by reviewing sample collection and handling procedures, sample matrix, and analytical methods used. Standardization of sampling protocols and analytical methods assures comparability as long as precision and accuracy criteria are satisfied for each data set. The overall analytical performance for this report was evaluated and is considered comparable to previous and future data sets.

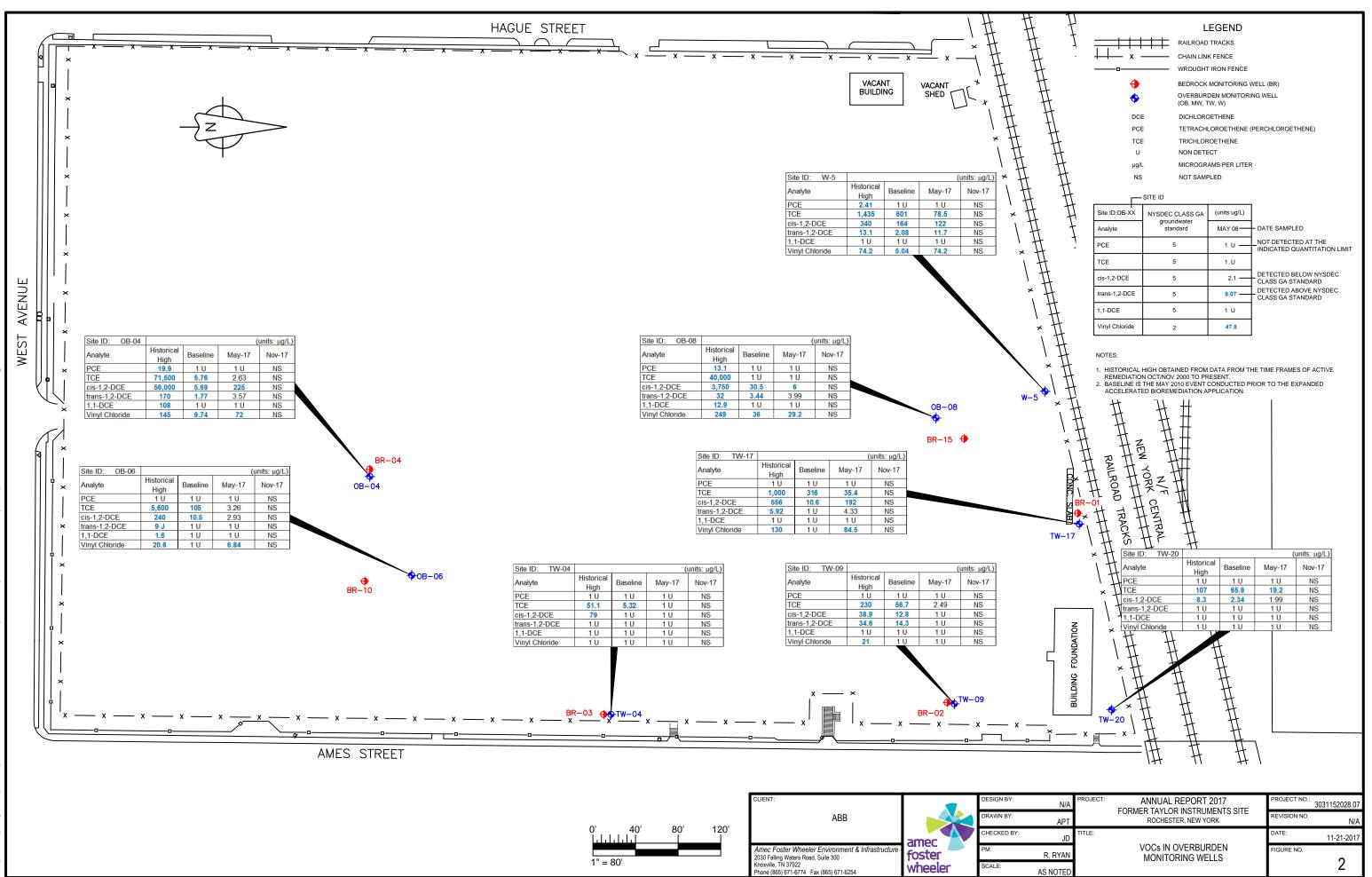
4.0 CONCLUSIONS AND RECOMMENDATIONS

A comparison of analytical data from the sampling events that occurred from 2001-2017 provides an evaluation of the Site remedial progress. The following overall conclusions and recommendations have been reached in this evaluation:

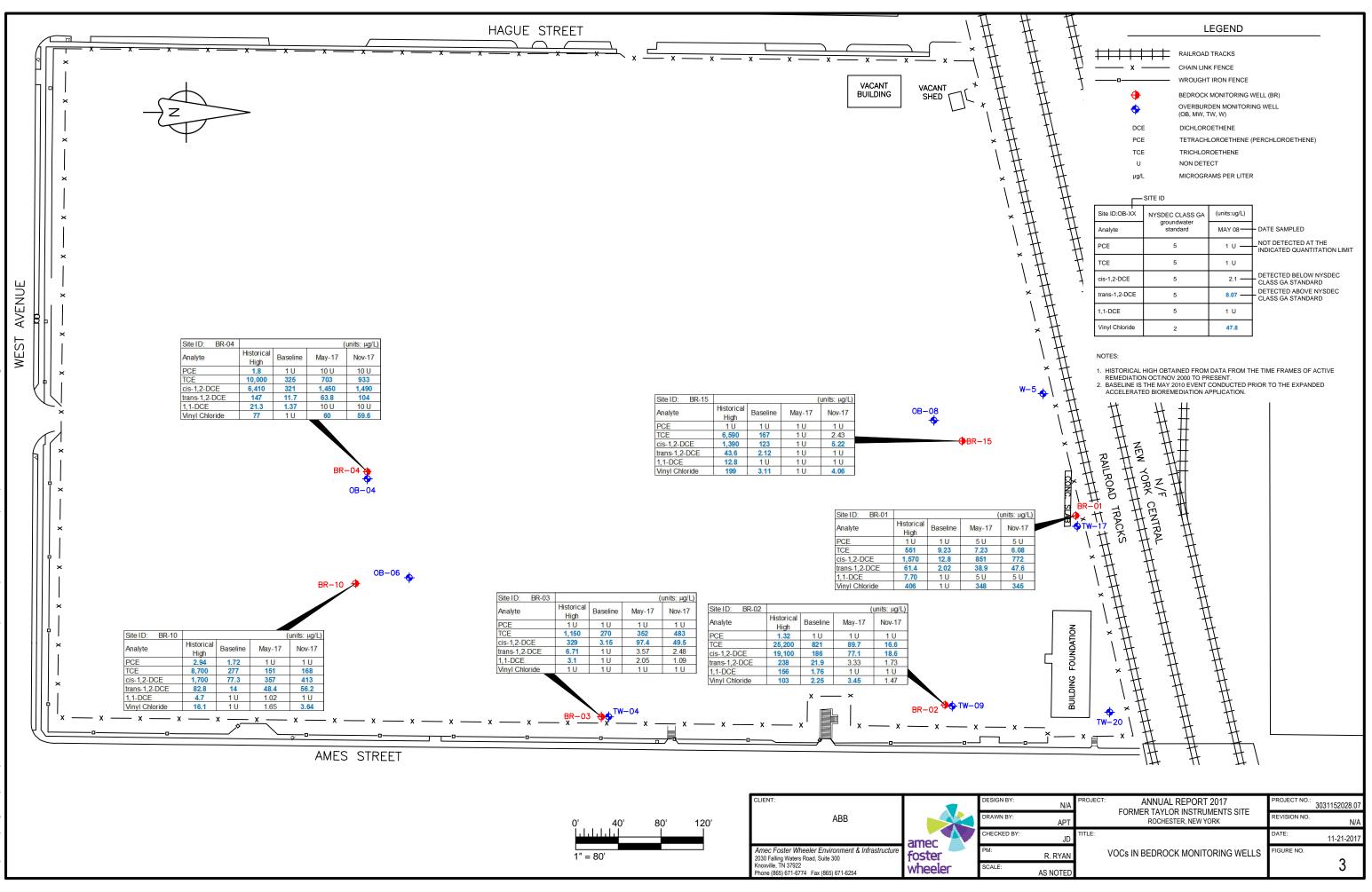
- Following shutdown of the remedial treatment system in 2006 and subsequent decommissioning in 2010, overall contaminant levels in the Site monitoring wells have not demonstrated significant rebound effects, and overall declines remain evident.
- While certain COCs remain above the NYSDEC Class GA Standards, substantial declines of COC concentrations have been observed in all Site monitoring wells. COCs in three of the eight overburden wells are presently near or below the NYSDEC Class GA standards, including TW-04 and TW-09 along the downgradient eastern property boundary.
- Since the 3DMe[®] injection, the total overburden groundwater contaminant mass has been reduced from pre-injection values. The decrease in contaminant mass indicates that the 3DMe[®] has enhanced contaminant biodegradation in the overburden monitoring wells.
- Bedrock groundwater has been affected by the enhanced contaminant biodegradation in the overlying overburden groundwater as indicated by the overall decreases in TCE contaminant mass in correlation with overall increases in TCE daughter products.
- In the southern portion of the Site the overburden groundwater contaminant plume has been stable for the past few years, as source area monitoring well OB-04 has had COC's near or below their respective NYSDEC Class GA Standards since May 2012, except for the recent May 2017 event which had an abnormally high water table. Additionally, downgradient perimeter well TW-04 has had COCs below their respective NYSDEC Class GA Standards for the past two years, while COCs in downgradient plume well OB-06 are now near NYSDEC Class GA Standards for the first time ever.
- In the northern portion of the Site the overburden groundwater contaminant plume is also demonstrating evidence of plume stability, as downgradient perimeter well TW-09 has COCs below the NYSDEC Class GA Standards. Downgradient perimeter well TW-20 also has seen recent declines in its contaminant mass.
- Groundwater monitoring events will continue to be conducted semi-annually for the six bedrock wells and annually for the eight overburden wells. Groundwater samples will be analyzed for the six primary COCs remaining at the Site: PCE; TCE; cis-1,2-DCE; trans-1,2-DCE; 1,1-DCE; and vinyl chloride. These VOCs will be analyzed using EPA Method 8260C. Additionally, as detailed in the revised *OM&M Manual* (MACTEC, 2011), the groundwater samples will be analyzed for the full suite of

8260C constituents every five years and prior to ending monitoring at any specified well.

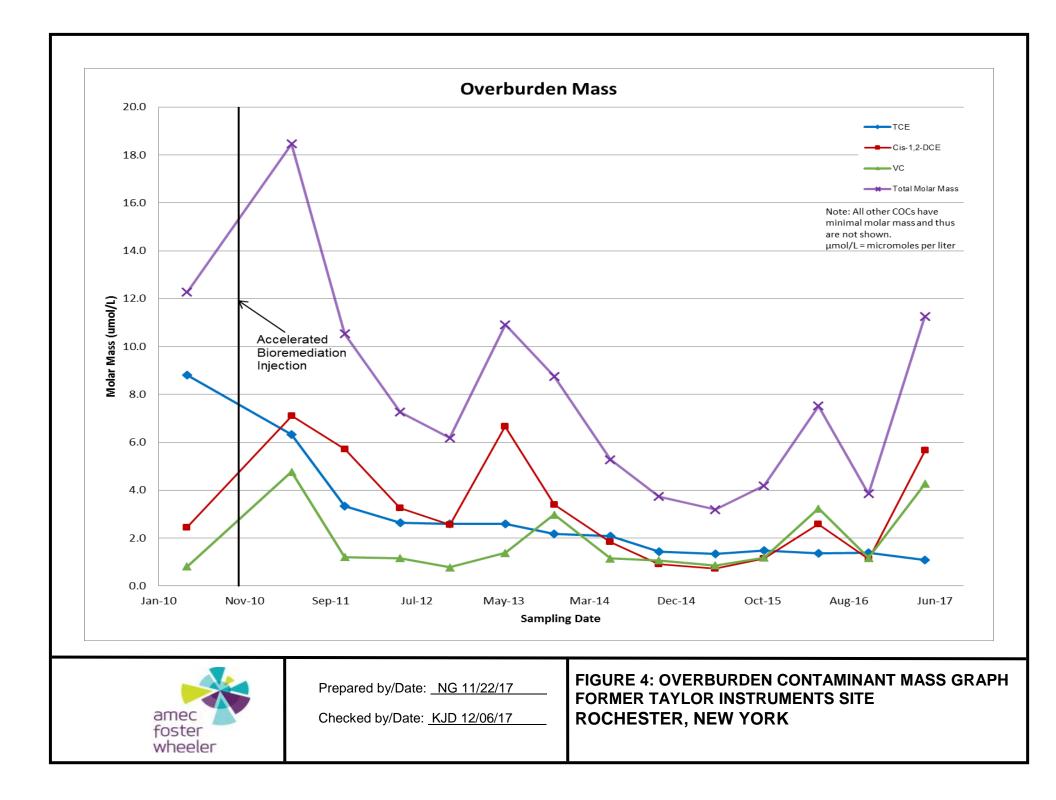

- Results for future post-closure monitoring events will be provided to NYSDEC in subsequent annual reports.
- As requested by NYSDEC (NYSDEC, 2018), the Site Periodic Review Report is provided in Appendix B of this report.

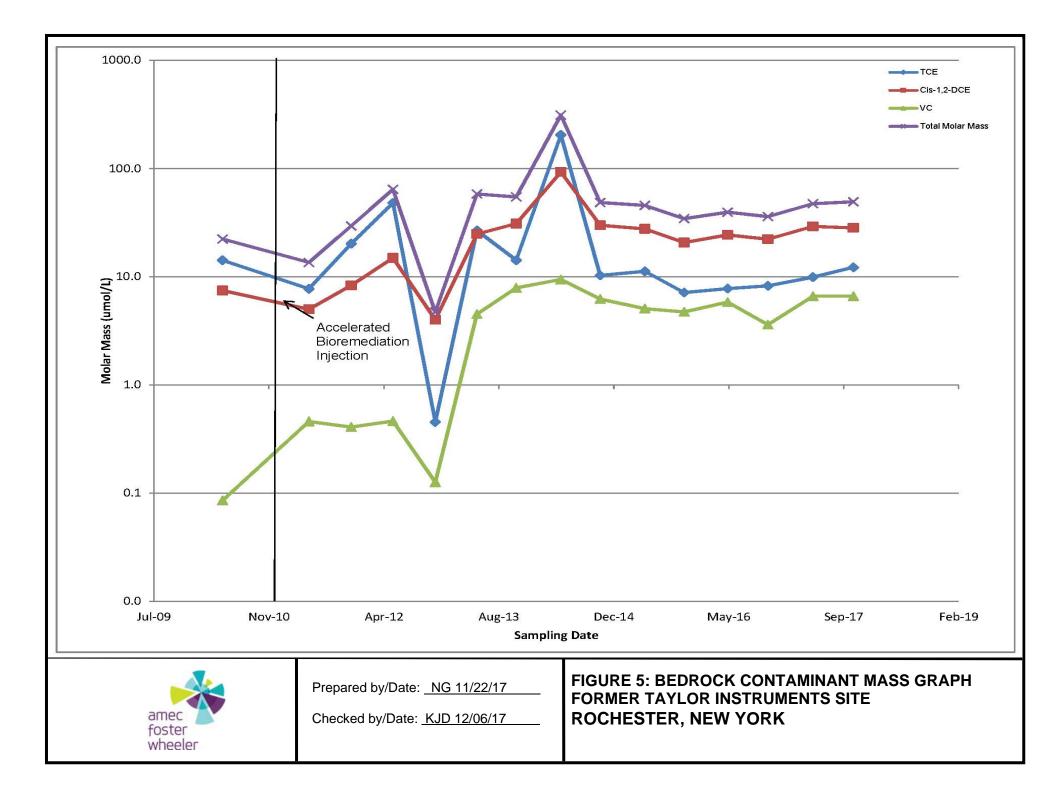

5.0 **References**

- Amec Foster Wheeler, 2017. 2016 Annual Progress report and Remedial Progress Evaluation, Former Taylor Instruments Site, Rochester New York. March 7.
- MACTEC, 2010. Revised Work Plan for Accelerated Bioremediation and Permanent Decommissioning of the Remedial Treatment System, Former Taylor Instruments Site, Rochester, New York. June 11.
- MACTEC, 2011. Operations, Maintenance, and Monitoring Manual, Rev. 1, Former Taylor Instruments Site, Monroe County, New York. Prepared for the New York State Department of Environmental Conservation (March).
- NYSDEC, 1997. Voluntary Cleanup Agreement Regarding the Taylor Instruments Site, Number B8-0508-97-02 (November).
- NYSDEC, 2005. Letter to Ms. Jean H. McCreary with Nixon Peabody LLC (September 2).
- NYSDEC, 2017. Site Management (SM) Periodic Review Report (PRR) Response Letter, Former Taylor Instruments Facility, Rochester, Monroe County, Site No. V00144. March 30.
- NYSDEC, 2018. *Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal.* Prepared by the New York State Department of Environmental Conservation. January 4.

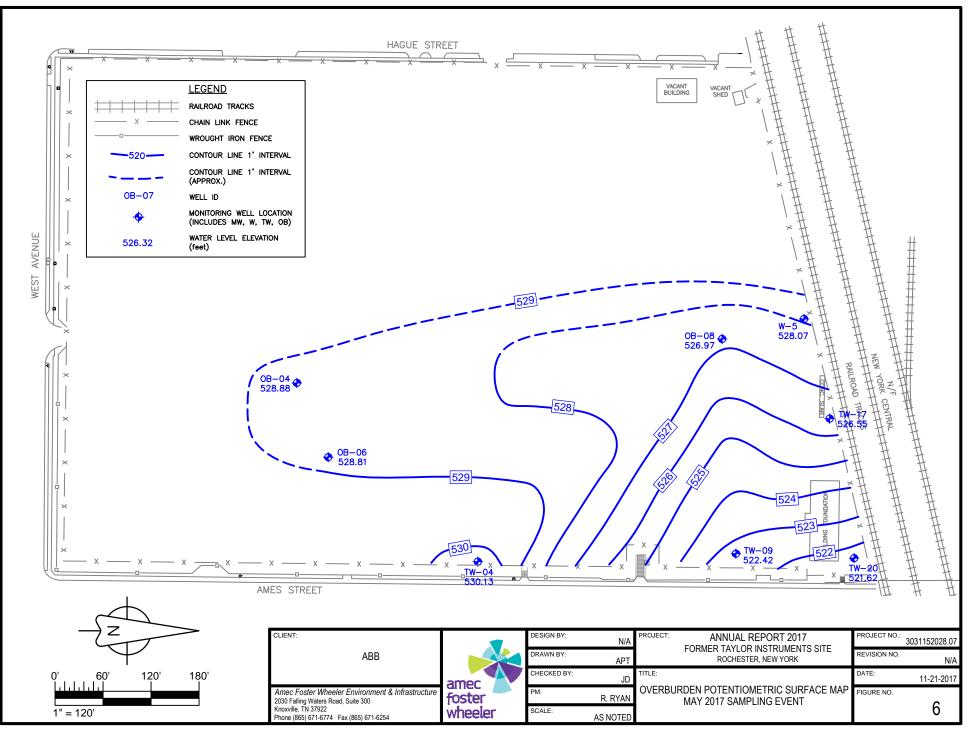

APPENDIX A

FIGURES

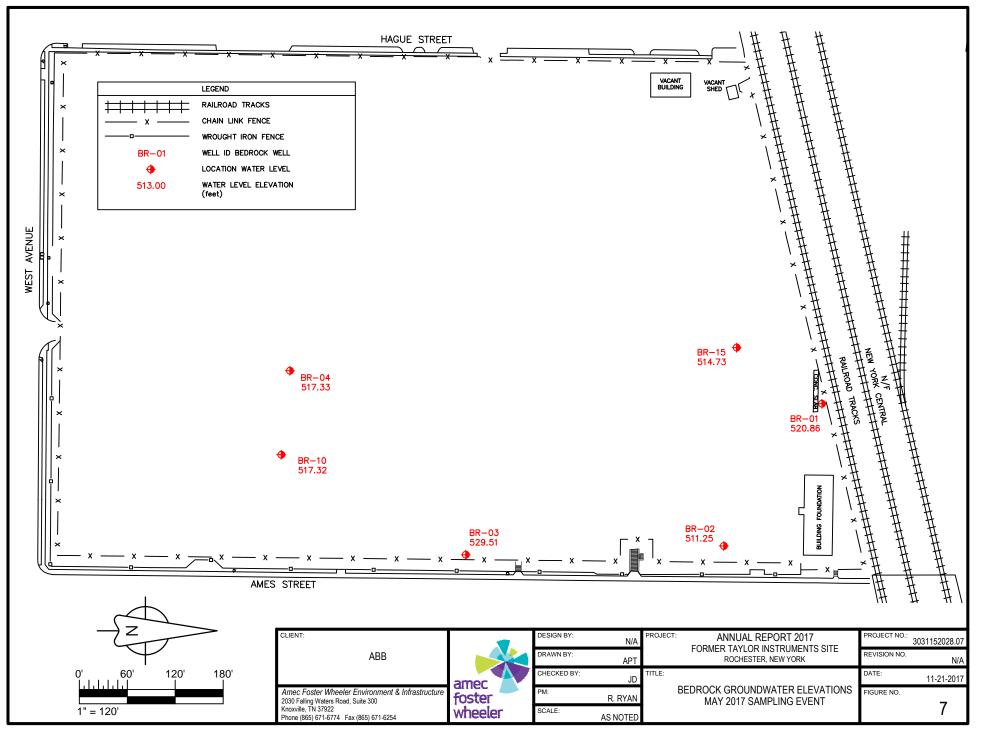


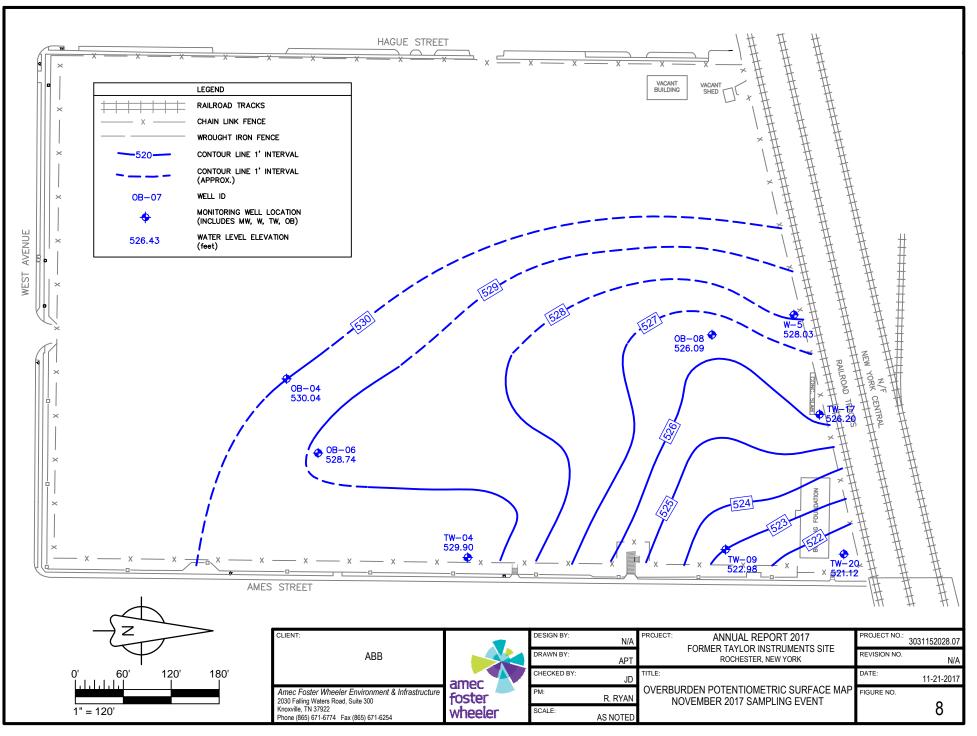


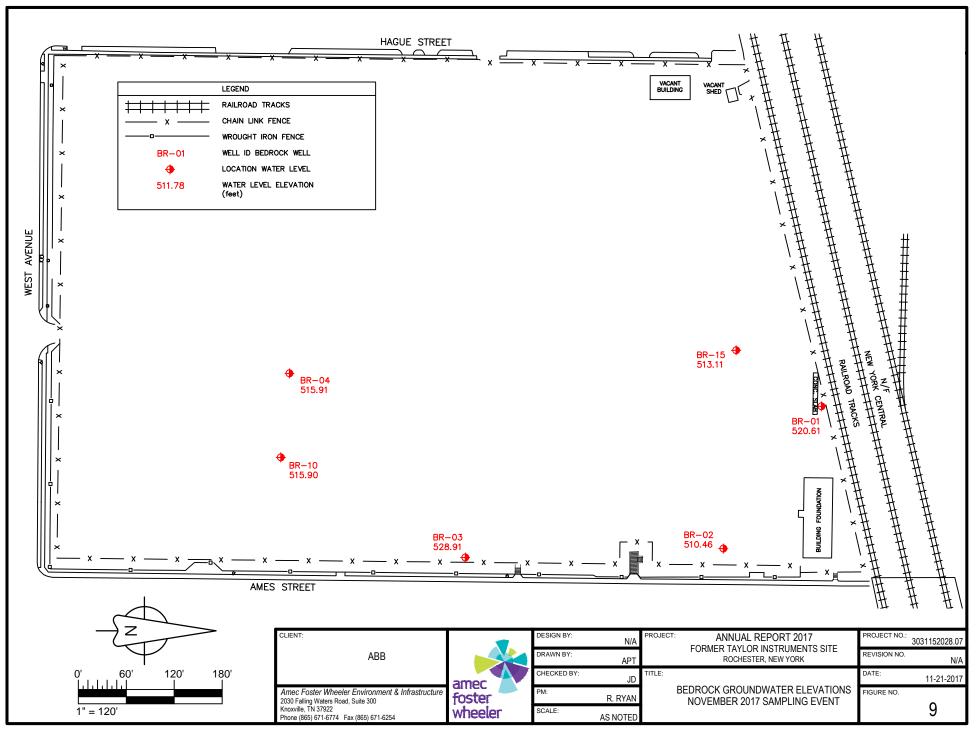
08: 2017 22 :01 Set:N/A Econs AB Sheet Paul 3031 m



08: 2017 5,2 t: 01 Set: N/A 52028 AB Sheet Paul 3031 ഹി






Plotted By:Troxel, Paul Sheet Set:N/A Layout:01 November 21, 2017 08:40:54am P:\CADD\Projects\3031\3031152028 ABB Rochester NY\Task 07\2017 Annual Report\F07 BR GW Elev Map May 2017.dwg

Plotted By: Troxel, Paul Sheet Set: N/A Layout: 01 November 21, 2017 12:48:56pm P:\CADD\Projects\3031\3031152028 ABB Rochester NY\Task 07\2017 Annual Report\F08 OB Pot Map November 2017.dwg

Plotted By:Troxel, Paul Sheet Set:N/A Layout:01 November 21, 2017 10:59:05am P:\CADD\Projects\3031\3031152028 ABB Rochester NY\Task 07\2017 Annual Report\F09 BR GW Elev Map November 2017.dwg

APPENDIX B

PERIODIC REVIEW REPORT

APPENDIX B PERIODIC REVIEW REPORT

Introduction

This Periodic Review Report (PRR) was prepared to fulfill the requirements of the New York State Department of Environmental Conservation's (NYSDEC) request for a Site Management PRR as requested in a letter dated January 4, 2018 (NYSDEC, 2018).

Executive Summary

The Site was the location of the former Taylor Instruments Facility that was operated from 1904 to 1993 under a variety of owners. In 1993 Combustion Engineering (CE) closed the facility. The Site is currently vacant. In 1997 a Voluntary Clean-up Agreement (VCA) was executed between CE and NYSDEC (VCA Index #B8-0508-97-02, NYSDEC, 1997).

Following extensive soil excavation, filling and capping, and other remedial activities, a groundwater remedy for chlorinated volatile organic compounds (VOCs) was implemented from January 2001 to May 2006. This included an on-site remedial treatment system which consisted of a dual-phase vacuum extraction (DPVE) and bedrock groundwater extraction and treatment system (System).

Upon concluding that the System had reached asymptotic contaminant removal rates, in July 2006 Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) (formerly MACTEC Engineering and Consulting, Inc. [MACTEC]) initiated a pilot-scale application of Hydrogen Release Compound (HRC) Advanced[®] near monitoring wells OB-08 in the North Trichloroethene (TCE) Source Area and OB-04 in the South TCE Source Area of the Site to evaluate the effectiveness of HRC Advanced[®] in accelerating the biodegradation of the Site contaminants of concern (COCs) in lieu of further operation of the System. The HRC Advanced[®] was effective in reducing TCE contamination in the overburden groundwater within the North and South TCE Source Areas.

Following NYSDEC's approval of MACTEC's Revised Work Plan for Accelerated Bioremediation and Permanent Decommissioning of the Remediation Treatment System (MACTEC, 2010a) in 2010, the System was decommissioned, most monitoring wells were abandoned, an expanded application of 3-D Microemulsion[®] (3DMe[®], formerly HRC Advanced[®]) was implemented, and post-closure monitoring of natural attenuation was implemented starting in 2011. Unless otherwise agreed to by NYSDEC, contaminant conditions will continue to be monitored in remaining wells (BR-01, BR-02, BR-03, BR-04, BR-10, BR-15, OB-04, OB-06, OB-08, TW-04, TW-09, TW-17, TW-20, and W-5) until groundwater concentrations of the COCs are at or below NYSDEC Class GA Standards. Figure 1 (Appendix A of the Annual Report [Amec Foster Wheeler, 2018]) depicts the remaining 14 monitoring wells and site boundaries. In October 2010, AMEC completed the expanded accelerated bioremediation application using 3DMe[®] in the vicinities of the remaining source area overburden monitoring wells and along the eastern portion of the Site.

Also in cooperation with the NYSDEC and the New York State Department of Health in 2010, following a sub-slab vapor investigation, ABB installed a sub-slab depressurization (SSD) system as a precautionary measure to mitigate sub-slab vapor at the 80 Ames residence across from the Site.

Complete details of the system decommissioning, 3DMe[®] injection, and SSD system installation were provided in the *Construction Completion Report* (CCR) (MACTEC, 2010b) which was approved by NYSDEC on February 16, 2011 (NYSDEC, 2011a).

Overburden and bedrock monitoring wells located on the Site have been sampled regularly from 2001 to 2017. Analytical data from the 2017 groundwater sampling events indicates that while certain COCs remain above the NYSDEC Class GA standards, overall substantial declines of COC concentrations have been observed in all Site monitoring wells. In the southern portion of the Site the overburden groundwater plume is stable based on the groundwater monitoring results from the past few years at downgradient perimeter monitoring well TW-04, as well as recent results from downgradient plume well OB-06. In the northern portion of the Site the overburden groundwater monitoring evidence of plume stability based on recent groundwater monitoring results at downgradient perimeter monitoring wells TW-09 and TW-20.

The 2017 field parameter data indicate that enhanced reducing conditions continue to be present based on the following:

• The average pH in the Site overburden wells has been reduced from 7.4 in the 2010 baseline sampling event to a neutral 7.0 in May 2017.

- The average oxygen reduction potential in the Site overburden wells has been reduced from 45 millivolts (mV) (2010 baseline) to -80 mV in May 2017.
- The average dissolved oxygen in the Site overburden wells has been reduced from 1.54 milligrams per liter (mg/L) (2010 baseline) to 1.11mg/L in May 2017.
- Methane, an indicator of biological activity, is also very robust in most wells for which it was sampled in May 2017, i.e., Site overburden wells TW-04, OB-06, TW-17, and W-5, ranging from 46 micrograms per liter (μ g/L) to 27,000 μ g/L.

During the past reporting period, no areas of noncompliance were noted. Additionally, no changes to the *Soil Management Plan* (MACTEC, 2005), the revised *Operations, Maintenance, and Monitoring* (OM&M) *Manual* (MACTEC, 2011), or frequency of PRR submittals are recommended. The requirements for discontinuing the Site management have not yet been met.

Site Overview

The Site is located at 95 Ames Street in Rochester, New York. The approximately 14-acre Site is vacant, containing a fabricated building that previously housed the System as well as a second small storage shed. The Site is mostly paved and is surrounded by a chain link fence. North of the Site are a railroad line and a commercial/industrial property; to the east across Ames Street are a food processing facility, residences, and a community center; to the south across West Avenue are residences; and to the west across Hague Street is Rochester Gas and Electric. Figure 1 (Appendix A of the Annual Report [Amec Foster Wheeler, 2018]) depicts the current Site layout.

On June 8, 2015 a utility easement agreement was executed with Rochester Gas & Electric for a 75-foot easement on the north end of the Site. The easement as depicted in the easement agreement was provided in the 2015 PRR (Amec Foster Wheeler, 2016).

Prior to Site remediation, site assessments identified the following contaminants:

Site Contamination

• Mercury and TCE were the principal Site contaminants present in Site soils.

- VOCs were being released from the North and South TCE Source Areas to overburden and bedrock groundwater at concentrations exceeding groundwater quality standards. TCE was the predominant site-related VOC in overburden and bedrock groundwater samples.
- Soil gas samples collected from downgradient Site perimeter locations contained TCE along with tetrachloroethene and dichloroethene at less frequent detections and lower concentrations.
- TCE and its degradation products were found at several locations in on-site sewers; they were the only VOCs detected. Mercury was detected at low levels in each of the water samples obtained from on-site sewer locations.

Complete details on the nature and extent of contamination prior to Site remediation were provided in the *Final Investigative Report* (Harding Lawson Associates, 1999).

Remedial Program

Comprehensive remedial actions implemented at the Site were previously detailed in the *Final Engineering Report, On-Site Storm Sewers* (Harding Lawson Associates, 2000a) [2000 FER], and the *Final Engineering Report* (MACTEC, 2003) [2003 FER]. The FER also contained the *Soil Management Plan* (MACTEC, 2005) which contains details on the Site engineering and institutional controls that have been recorded at the Site. These reports were all approved by NYSDEC.

Subsequent to the 2003 FER, the NYSDEC issued an *Assignable Release and Covenant Not to Sue* (AR-CNTS) (NYSDEC, 2005), subject to implementation of an Operations and Maintenance (O&M) Plan that acknowledged the satisfactory implementation of all Site remedial actions. The AR-CNTS indicated that:

"...no further investigation or response will be required at the Site respecting the Existing Contaminations to render the Site safe to be used for the Contemplated Uses." ... "The Department, therefore, hereby releases,... Volunteer for the further investigation and remediation of the Site, based on the release of threatened release of any Existing Contamination, provided that ... Volunteer pursue to completion the Department-approved O&M Plan..."

The Site is currently in post-closure groundwater monitoring. Six bedrock groundwater monitoring wells are sampled semi-annually and eight overburden groundwater monitoring wells are sampled annually for analysis of the six primary contaminants of concern remaining at the Site:

tetrachloroethene; TCE; cis-1,2-dichloroethene (cis-1,2-DCE); trans-1,2-dichloroethene (trans-1,2-DCE); 1,1-dichloroethene (1,1-DCE); and vinyl chloride by Environmental Protection Agency (EPA) Method 8260C. Additionally, the groundwater samples are tested for the full suite of 8260C constituents once every five years and prior to ending monitoring at any specified well. Unless otherwise agreed to by NYSDEC, contaminant conditions will continue to be monitored until groundwater concentrations of the COCs are at or below the NYSDEC Class GA Standards.

Complete details of the remedial program were provided in the April 2000 *Remedial Work Plan* (Harding Lawson Associates, 2000b), the *Final Engineering Report* (MACTEC, 2003), and the CCR (MACTEC, 2010b).

Evaluation of Remedy Performance, Effectiveness, and Protectiveness

The most current assessment of the effectiveness of the final Site remedial action is presented in the 2018 Annual Progress Report (Amec Foster Wheeler, 2018).

Institutional and Engineering Control (IC/EC) Plan Compliance Report

Specific details on IC/ECs for the Site were provided in the *Remedial Work Plan* (Harding Lawson Associates, 2000b), the *Soil Management Plan* (MACTEC, 2005), and the revised OM&M Manual (MACTEC, 2011). Certification of the IC/ECs is provided in the NYSDEC-approved certification form (Attachment A).

Monitoring Plan Compliance Report

The scope of the May and November 2017 semi-annual monitoring events, as well as future postclosure monitoring events, is provided in the revised OM&M Manual (MACTEC, 2011). A summary of recent monitoring, comparisons with remedial objectives, and conclusions and recommendations are provided in the 2017 Annual Progress Report (Amec Foster Wheeler, 2018). Amec Foster Wheeler has not identified deficiencies with the monitoring plan.

O&M Plan Compliance Report

The original Site O&M Manual (Harding ESE, 2001) governed all sampling events prior to the May 2011 monitoring event. The components of the plan included details of the DPVE System, including System maintenance; Site health and safety; Site environmental sampling; and reporting and notification requirements. The revised OM&M Manual (MACTEC, 2011), which governs OM&M activities beginning in 2011, was approved by NYSDEC on March 3, 2011 (NYSDEC, 2011b). The components of the revised OM&M Manual include Site groundwater monitoring, SSD system O&M, IC/ECs, and reporting and certification requirements.

O&M activities completed during the 2017 reporting period included two groundwater sampling events; yearly inspection of a SSD system at an off-site residential duplex; and the submittal of the 2017 Annual Progress Report (Amec Foster Wheeler, 2018) to NYSDEC. Amec Foster Wheeler has not identified deficiencies with the revised OM&M Manual (MACTEC, 2011). The yearly inspection of the SSD system at the off-site residential duplex located at 80 Ames Street/215 Danforth Street was conducted on October 31, 2017 by the installation contractor, Mitigation Tech (National Environmental Health Association National Radon Proficiency Program ID certification #100722). The inspection report is included as Attachment B. During the inspection of the SSD system, Amec Foster Wheeler observed that a small section of concrete slab had been removed in the basement at 215 Danforth Street. The owner of the duplex stated that the concrete had been removed as part of a plumbing project. A smoke test was performed over the damaged concrete and smoke was observed flowing down into the sub-slab. Amec Foster Wheeler repaired the damaged concrete on November 2, 2017 using a non-shrink concrete patch mix. A second smoke test was performed immediately after patching the concrete and no smoke was observed flowing down into the sub-slab, indicating the concrete was repaired sufficiently. A third smoke test was performed on December 12, 2017, after the repaired concrete had fully cured, by Mitigation Tech and no smoke was observed flowing down into the repaired sub-slab, confirming the sufficiency of the concrete repair.

Overall PRR Conclusions and Recommendations

Compliance with the revised Site O&M Manual (MACTEC, 2011) including performance and effectiveness of the Site remedy is detailed in the 2017 Annual Progress Report (Amec Foster

Wheeler, 2018). As indicated in that report, a comparison of analytical data from the 39 sampling events that occurred in 2001-2017 provides an evaluation of the Site remedial progress. The following overall conclusions and recommendations have been reached in this evaluation:

- Following shutdown of the remedial treatment system in 2006 and subsequent decommissioning in 2010, overall contaminant levels in the Site monitoring wells have not demonstrated significant rebound effects, and overall declines remain evident.
- While certain COCs remain above the NYSDEC Class GA Standards, substantial declines of COC concentrations have been observed in all Site monitoring wells. COCs in three of the eight overburden wells are presently near or below the NYSDEC Class GA standards, including TW-04 and TW-09 along the downgradient eastern property boundary.
- Since the 3DMe[®] injection, the total overburden groundwater contaminant mass has been reduced from pre-injection values. The decrease in contaminant mass indicates that the 3DMe[®] has enhanced contaminant biodegradation in the overburden monitoring wells.
- Bedrock groundwater has been affected by the enhanced contaminant biodegradation in the overlying overburden groundwater as indicated by the overall decreases in TCE contaminant mass in correlation with overall increases in TCE daughter products.
- In the southern portion of the Site the overburden groundwater contaminant plume has been stable for the past few years, as source area monitoring well OB-04 and downgradient perimeter monitoring well TW-04 generally have had COC's near or below their respective NYSDEC Class GA Standards since May 2012. Additionally, COCs in downgradient plume well OB-06 are now near NYSDEC Class GA Standards for the first time ever.
- In the northern portion of the Site the overburden groundwater contaminant plume is also demonstrating evidence of plume stability, as downgradient perimeter well TW-09 has COCs below the NYSDEC Class GA Standards. Downgradient perimeter well TW-20 also has seen recent declines in its contaminant mass.
- Groundwater monitoring events will continue to be conducted semi-annually for the six bedrock wells and annually for the eight overburden wells. Groundwater samples will be analyzed for the six primary COCs remaining at the Site: PCE; TCE; cis-1,2-DCE; trans-1,2-DCE; 1,1-DCE; and vinyl chloride. These VOCs will be analyzed using EPA Method 8260C. Additionally, as detailed in the revised *OM&M Manual* (MACTEC, 2011), the groundwater samples will be analyzed for the full suite of 8260C constituents every five years and prior to ending monitoring at any specified well.
- Results for future post-closure monitoring events will be provided to NYSDEC in subsequent annual reports.

References

- Amec Foster Wheeler, 2016. 2015 Annual Progress Report and Remedial Progress Evaluation, Former Taylor Instruments Site, Rochester, New York. Prepared for ABB, Inc. (February).
- Amec Foster Wheeler, 2018. 2017 Annual Progress Report and Remedial Progress Evaluation, Former Taylor Instruments Site, Rochester, New York. Prepared for ABB, Inc. (February).
- Harding ESE, 2001. Dual-Phase Vacuum Extraction Remediation System Operation and Maintenance Manual (OM&M), prepared for the former Taylor Instruments Site, 95 Ames Street in Rochester, New York (March).
- Harding Lawson Associates, 1999. *Final Investigative Report, Taylor Instruments Site, Rochester, New York.* Prepared for the New York State Department of Environmental Conservation (March).
- Harding Lawson Associates, 2000a. Final Engineering Report, On-Site Storm Sewers, Former Taylor Instruments Site, Rochester, New York. Prepared for Combustion Engineering (January).
- Harding Lawson Associates, 2000b. Remedial Work Plan, Taylor Instruments Site, 95 Ames Street, Rochester, New York. Prepared for Combustion Engineering (April).
- MACTEC, 2003. Final Engineering Report, Former Taylor Instruments Site, Rochester, New York. Prepared for Combustion Engineering (September).
- MACTEC, 2005. Soil Management Plan, Former Taylor Instruments Facility, 95 Ames Street, Rochester, New York 14611. Prepared for Combustion Engineering (April).
- MACTEC, 2010a. Revised Work Plan for Accelerated Bioremediation and Permanent Decommissioning of the Remedial Treatment System, Former Taylor Instruments Site, 95 Ames Street in Rochester, New York. Prepared for the New York State Department of Environmental Conservation (June 11).
- MACTEC, 2010b. Construction Completion Report, Former Taylor Instruments Site, Monroe County, New York. Prepared for the New York State Department of Environmental Conservation (December).
- MACTEC, 2011. Operations, Maintenance, and Monitoring Manual, Rev. 1, Former Taylor Instruments Site, Monroe County, New York. Prepared for the New York State Department of Environmental Conservation. (March).
- NYSDEC, 1997. Voluntary Cleanup Agreement, Taylor Instruments Site, Number B8-0508-97-02 (November).
- NYSDEC, 2005. Letter to Ms. Jean H. McCreary with Nixon Peabody LLC (September 2).
- NYSDEC, 2011a. Letter to Ricky Ryan of AMEC approving the CCR (February 16).
- NYSDEC, 2011b. Letter to Ricky Ryan of AMEC approving the Operations, Maintenance, and Monitoring Manual, Rev. 1, Former Taylor Instruments Site, Monroe County, New York. (March 3).

NYSDEC, 2018. Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal. (January 4).

Acronym List

2000 FER	Final Engineering Report, On-Site Storm Sewers (Harding Lawson Associates, 2000a)
2003 FER	Final Engineering Report (MACTEC, 2003)
3DMe [®]	3D Microemulsion [®]
μg/L	micrograms per liter
μmole/L	micromole per liter
Amec Foster Wheeler	Amec Foster Wheeler Environment & Infrastructure, Inc.
AR-CNTS	Assignable Release and Covenant Not to Sue
CCR	<i>Construction Completion Report</i> (MACTEC, 2010b)
CE	Combustion Engineering
COC	contaminant of concern
1,1-DCE	1,1-dichloroethene
cis-1,2-DCE	cis-1,2-dichloroethene
trans-1,2-DCE	trans-1,2-dichloroethene
DPVE	dual-phase vacuum extraction
EPA	Environmental Protection Agency
HRC	Hydrogen Release Compound
IC/EC	institutional and engineering control
MACTEC mV	MACTEC Engineering and Consulting, Inc. millivolts
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
O&M	operation and maintenance
OM&M	operations, maintenance, and monitoring
PRR	Periodic Review Report
Site	location of the former Taylor Instruments Facility
SSD	sub-slab depressurization
System	DPVE and bedrock groundwater extraction and treatment system
TCE	trichloroethene
VCA	Voluntary Cleanup Agreement
VOC	volatile organic compound

Attachment A

NYSDEC-Approved Certification Form

95 Ames Street Certification

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site No. V00144	Box 1	
Site Name Former Taylor Instruments Facility		
Site Address: 95 Ames Street Zip Code: 14611 City/Town: Rochester County: Monroe Site Acreage: 14.5		
Reporting Period: February 14, 2017 to February 14, 2018		
1. Is the information above correct?	YES	NO
If NO, include handwritten above or on a separate sheet.		
2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X
3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		$\boldsymbol{\chi}$
4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?	X	
If you answered YES to questions 2 thru 4, include documentation or evidenc that documentation has been previously submitted with this certification form		
5. Is the site currently undergoing development?		$\boldsymbol{\lambda}$
	Box 2 YES	NO
 Is the current site use consistent with the use(s) listed below? Industrial 	\times	
7. Are all ICs/ECs in place and functioning as designed?	\times	
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	and	
A Corrective Measures Work Plan must be submitted along with this form to address	these is	sues.
Signature of Owner, Remedial Party or Designated Representative Date		

SITE NO. V00144		Box 3
Description of In	stitutional Controls	
<u>Parcel</u> 120.410-1-2	<u>Owner</u> ABB, Inc. (Attn: Melody Christopher)	Institutional Control Ground Water Use Restriction Landuse Restriction
Ground-Water-Use-Re-		Soil Management Plan
Soil-Management_Pla Annual-contification 120:42-4-4	an	
Sub-slab-deprossurizal	ion-system	-Site-Management-Plan- Box 4
-Sub-slab-deprossurizat -Annual-Certification	ion-system	-
-Sub-slab-deprossurizat -Annual-Certification	ion-system	Box 4

are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO X □ . If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institution or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true: (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;		Box 5
 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification; b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO W TS NO<!--</td--><td></td><td>Periodic Review Report (PRR) Certification Statements</td>		Periodic Review Report (PRR) Certification Statements
reviewed by, the party making the certification; b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO X IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		I certify by checking "YES" below that:
are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO X IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
YES NO YES NO YES NO YES NO YES I		b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information procented is accurate and compare.
If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institution or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true: (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health are the environment; (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO YES NO X IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. 		
 or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true: (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health ar the environment; (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues. 		\times \Box
 since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health ar the environment; (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO YES NO X IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. 	•	
 the environment; (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO YES NO X IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. 		
remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		(b) nothing has occurred that would impair the ability of such Control, to protect public health an the environment;
Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X 0 IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.		
mechanism remains valid and sufficient for its intended purpose established in the document. YES NO X □ IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.		
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.		
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.		YES NO
DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.		$\boldsymbol{\lambda}$.
Signature of Owner, Remedial Party or Designated Representative		A Corrective Measures Work Plan must be submitted along with this form to address these issues.
		Signature of Owner, Remedial Party or Designated Representative

Г

IC CERTIFICATIONS SITE NO. V00144 Box 6 SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the 131 Phoenix Crussing 1<u>Melucly B. Christopher</u> at <u>ABB Ine</u> <u>Bloomfield, CT 06002</u> print name print business address am certifying as <u>Remedial Party</u> Owner or Bornet _____(Owner or Remedial Party) for the Site named in the Site Details Section of this form. hustylo <u>3/9/2018</u>) ろ Signature of Ovener, Remedial Party, or Designated Representative **Rendering Certification**

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

1 Ricky Ryan print name at 2030 Falling Waters Rd. Knoxville, 7N 37972 print business address am certifying as a Professional Engineer for the <u>ABBIAC</u>, <u>Remedial</u> <u>Pa-1</u> (Owner or Remedial Party) 6133 12 /2018 6 Signature of Professional Engineer, for the Owner or ite Remedial Party, Rendering Certification

County of Monroe Sewer Use Permit Renewal

CK# 7/1895

COUNTY OF MONROE SEWER USE PERMIT RENEWAL

Firm Name:	ABB Incorporated	Permit Number: IWC-999	
	95 AmesStreet	Fee:	\$ 75.00
		Expires;	November 30, 2020
Mailing Addr:	131 Phoenix Crossing Bloomfield, CT 06002	W/C Expire: District No:	4/1/2018
Business Type	Groundwater Remediation		

Has there been any revision to the plant sewer system or any change in industrial wastes discharged to the public sewer in the past twelve months

Yes: No: X If yes, please explain in a separate letter.

Average monthly consumption for the past twelve (12) months:

Water Account No.(s) NA (cu ft/gal) 80

In consideration of the granting of this renewal permit the undersigned agrees to comply with all the requirements in the Initial Permit as listed under II.

Name of person to be contacted for inspection & sampling purposes:

Type or Print: Joe Degtherage Phone No: 865-218-1049

YOUR PERMIT MUST BE SIGNED AS FOLLOWS:

1. For a corporation: by a responsible corporate officer. A corporate officer means:

(a) A president, secretary, treasurer or vice - president of the corporation in charge of a principal business function, or any other person who performs similar policy - or decision - making functions for the corporation: or

(b) The manager of one or more manufacturing, production, or operation facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25 million (in second - quarter 1980 dollars), if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.

2. For a partnership or sole proprietorship: by a general partner or the proprietor, respectively; or

3. By a duly authorized representative of the individual designated in items (1) or (2) above if:

(a) The authorization is made in writing by the individual described in items (1) or (2),

Monroe County

(b) The authorization specifies either an individual or a position having responsibility for the overall operation of the facility from

which the Industrial Discharge originates such as the position of plant manager, superintendent, position of equivalent responsibility,

or an individual or position having overall responsibility for environmental matters for the company; (A duly authorized representative may thus be either a named individual or any individual occupying named position); and

(c) The written authorization is submitted to this Department.

Print or Type: Keith	Knaueghase	Phone No.	<u>840-969-5302</u>
Signature:	mon	Da	to: 11/9/17
Title: Chief	Counsel and Sec	cretery	
Renewal Approved by:	Michael J. Garland, P.E.	el	Issued this 17 day of NOU 20 _
	Director of Environmental	Services-PureWaters	

Page 1

COUNTY OF MONROE SEWER USE PERMIT ENCLOSURE

ABB Inc. 5 Waterside Crossing Windsor, CT 06095 PERMIT NUMBER: 999 DISTRICT NUMBER: 8575

TYPE OF BUSINESS: Groundwater Monitoring LOCATION: 95 Ames Street Rochester, New York

SAMPLE POINT: IWC-999.1 - Monitoring Well Purge Water

REQUIRED MONITORING & EFFLUENT LIMITS

SAMPLE POINT: IWC-999.1 - Monitoring Well Purge Water

SELF-MONITORING FREQUENCY: Each and Every Batch Discharge

SAMPLING PROTOCOL: Sampling and analysis shall be performed in accordance with the techniques prescribed in 40 CFR Part 136 and amendments thereto. In the absence of 40 CFR Part 136 testing methodology, a New York State Department of Health, approved method is acceptable. A grab sample, collected from the above noted sample points shall be analyzed for the following:

Purgeable Halocarbons Purgeable Aromatics

Discharge Limitations: The summation of the purgeable halocarbon and purgeable aromatic compounds detected above 10 ug/l shall not exceed 2.13 mg/l.

SPECIAL CONDITIONS:

Quarterly flow summaries shall be submitted for billing purposes. It is imperative these summaries are submitted in a timely manner. If there is no discharge for a given quarter, then a letter must be submitted stating so.

11-16-2017

Permit Enclosure-Page 2 of 6

TERMS AND CONDITIONS

GENERAL REQUIREMENTS:

- A. The permittee agrees to accept and abide by all provisions of the Sewer Use Law of Monroe County(MCSUL) and of all pertinent rules or regulations now in force or shall be adopted in the future.
- **B.1** In addition to the parameters/limits outlined, the total facility discharge shall meet all other concentration values listed within the MCSUL and as described in Article III, Section 3.3(d) of the Law.
- **B.2** Included in Article II, Section 2.1, is the definition of "Normal Sewage". "Normal Sewage" may be discharged to the sewer system in excess of the concentrations outlined in the definition, however, the facility will be subject to the imposition of a sewer surcharge and possible self monitoring requirements as a result. Surcharging procedures are outlined in Article X of the MCSUL.
- **B.3** Regulatory sampling for analytes not specified under "required monitoring" shall be conducted by Monroe County at a minimum frequency of once every three (3) years.
- C. This permit is not assignable or transferable. The permit is issued to a specific user and location.
- **D.** Per Article IX, section 9.9 of the MCSUL, a violation by the permittee of the permit conditions may be cause for revocation or suspension of the permit after a Hearing by the Administrative Board, or if the violation is found to be within the emergency powers of the Director under Section 9.6. The revocation is immediate upon receipt of notice to the Industrial User. If the revocation or suspension is issued under Section 9.6, a Hearing shall be held as soon as possible.
- **E.** As provided under Article VI, Section 6.1, the Director and/or his duly authorized representatives shall gain entry on to private lands by permission or duly issued warrant for the purpose of inspection, observation, measurement sampling and testing in accordance with the provisions of this law and its implementing Rules and Regulations. The Director or his representatives shall not have authority to inquire into any processes used in any industrial operation beyond that information having a direct bearing on the kind and source of discharge to the sewers or the on-site facilities for waste treatment. While performing the necessary work on private lands, referred to above, the Director or his duly authorized representative shall observe all safety rules applicable to the premises as established by the owner and/or occupant.

SPECIAL CONDITION:

- A. All required monitoring shall be analyzed by a New York State Department of Health certified laboratory. All sampling and analysis must be performed in accordance with Title 40 Code of Federal Regulations Part 136.
- **B.** The pH range for this permit is 5.0 12.0 su. This range is specifically permitted by the Director as allowed under Article III, Section 3.3(b) of the MCSUL. pH must be analyzed within 15 minutes of the time of collection as specified in 40 CFR, part 136.
- C. The summation of all Total Toxic Organics(TTO) Compounds as defined in the Code of Federal Regulations (40 CFR part 433.11(e)) with detection levels above 10 ug/l shall not exceed 2.13 mg/l as imposed by the Director under Article III, Section 3.3 of the MCSUL unless Federal limits are more stringent under which the Federal limits will apply.
- **D.** Discharges of wax, fats, oil or grease shall not exceed 100 mg/l as imposed by the Director under Article III, Section 3.3 of the MCSUL.
- E. Discharges containing Phenolic compounds shall not exceed 2.13 mg/l as imposed by the Director under Article III, Section 3.3 of the MCSUL unless otherwise specified in the permit. These limits are applicable unless Federal limits are more stringent under which Federal limits will apply.

SURCHARGE CONCENTRATIONS:

Concentration and/or characteristics of normal sewage:

"Normal Sewage" shall mean sewage, industrial wastes or other wastes, which when analyzed, show concentration values with the following characteristics based on daily maximum limits:

a. B. O. D.	300 mg/l
b. Total Suspended Solids	300 mg/1
c. Total Phosphorus, as P	10 mg/l

Annual average concentrations above normal sewage are subject to surcharge as defined in Article X, section 10.7 of the MCSUL.

DISCHARGE LIMITATIONS (SEWER USE LIMITS)

Permissible concentrations of toxic substances and/or substances the Department wishes to control: The concentration in sewage of any of the following toxic substances and/or substances the Department wishes to control shall not exceed the concentration limits specified when discharged into the County Sewer System; metal pollutants are expressed as <u>total metals in mg/l (ppm)</u>: the following pollutant limits are based on daily maximum values:

a. Antimony (Sb)	1.0 mg/l
b. Arsenic (As)	0.5 mg/l
c. Barium (Ba)	2.0 mg/l
d. Beryllium (Be)	5.0 mg/l
e. Cadmium (Cd)	1.0 mg/l
f. Chromium (Cr)	3.0 mg/l
g. Copper (Cu)	3.0 mg/l
h. Cyanide (CN)	1.0 mg/l
i. Iron (Fe)	5.0 mg/l
j. Lead (Pb)	1.0 mg/1
k. Manganese (Mn)	5.0 mg/l
1. Mercury (Hg)	0.05 mg/l
m. Nickel (Ni)	3.0 mg/l
n. Selenium (Se)	2.0 mg/l
o. Silver (Ag)	2.0 mg/l
p. Thallium (Tl)	1.0 mg/l
q. Zinc (Zn)	5.0 mg/l

REPORTING REQUIREMENTS:

- A. Per the requirements of 40 CFR, Part 403.5, Significant Industrial Users must submit Periodic Reports on Continued Compliance to the Control Authority on a biannual (2/yr) basis. Deadline dates of submission for these reports will be August 15 and February 15, respectively.
- **B.** Discharge monitoring reports shall be submitted to the Control Authority upon receipt from the permittee's testing laboratory. Reports submitted from industrial users identified as Significant Industrial Users (SIU) must be accompanied by a certification statement as required by 40 CFR part 403 and the MCSUL, Article VI, section 6.12.
- C. Any Industrial User subject to the reporting requirements of the General Pretreatment Regulations shall maintain records of all information resulting from any monitoring activities required by 40 CFR, part 403.12 for a minimum of three (3) years. These records shall be available for inspection and copying by the Control Authority. This period of retention shall be extended during the course

of any unresolved litigation regarding the discharge of pollutants by the Industrial User or the operation of the POTW Pretreatment Program or when requested by the Director or the Regional Administrator.

NOTIFICATION REQUIREMENTS:

- A. Pursuant to Article VI, Section 6.10(5), the permittee shall notify the Department within 24 hours of becoming aware that discharge monitoring is in violation of any permit limit. This notification shall be directed to the Industrial Waste Section at 585-753-7600 Option 4. The User shall also repeat sampling and analysis for the analyte in non-compliance and submit the results of the repeat analysis to Monroe County within 30 days after becoming aware of the violation.
- **B.** Notify the Director in writing when considering a revision to the plant sewer system or any change in industrial waste discharges to the public sewers. The later encompasses either an increase or decrease in average daily volume or strength of waste or new wastes.
- C. Notify the Director immediately of any accident, negligence, breakdown of pretreatment equipment or other occurrence that occasions discharge to the public sewer of any waste or process waters not covered by this permit.

SLUG CONTROL

An Industrial User shall be required to report any/all slug discharges to the Monroe County sewer system by calling 585-753-7600 option 4. For the purpose of this permit enclosure, a slug discharge shall be identified as any discharge of a non-routine, episodic nature, including but not limited to an accidental spill or a non-customary batch discharge. Following a review process, the Control Authority (Monroe County) shall determine the applicability of a facility slug control plan. If the Control Authority decides that a Slug Discharge Control Plan (SDCP) is needed, the plan shall contain, at a minimum, the following elements:

- 1. Description of discharge practices, including non-routine batch discharges.
- 2. Description of stored chemicals.
- 3. Procedures for immediately notifying the Control Authority of slug discharges, including any discharge that would violate a prohibition under 40 CFR 403.5 (b), with procedures for follow up written notification within five (5) days.
- 4. If necessary, procedures to prevent adverse impact from accidental spills, including, but not limited to, inspection and maintenance of storage areas, handling and transfer of materials, loading and unloading operations, control of plant site run-off, worker training, building of containment structures or equipment, measures for containing toxic organic pollutants (including solvents) and/or measures and equipment for emergency purposes.

SNC DEFINITION:

In accordance with 40 CFR 403.8 (f) (vii), an Industrial User is in significant noncompliance (SNC) if its violations meet one or more of the following criteria:

- A. Chronic violations of wastewater discharge limits defined as those which 66% or more of all the measurements taken during a six-month period exceed (by any magnitude) the daily maximum limit or the average limit for the same pollutant parameter (ref. Article IX, section 9.19 MCSUL). This criteria does NOT apply to the following Monroe County surchargeable parameters: Biochemical Oxygen Demand, Total Suspended Solids, Chlorine Demand and Total Phosphorus.
- B. Technical review criteria (TRC) violations defined as those in which 33% or more of all the measurements for each pollutant parameter taken during a six month period equal or exceed the product of the daily maximum limit or the average limit times the applicable TRC (ref. Article IX, section 9.19 MCSUL). This criteria does NOT apply to the following Monroe County surchargeable parameters: Biochemical Oxygen Demand, Total Suspended Solids, Chlorine Demand and Total Phosphorus.
- C. Any other violation of a pretreatment effluent limit (daily maximum or longer-term average) that the Control Authority determines has caused, alone or in combination with other discharges, interference or pass-through (including endangering the health or POTW personnel or the general public).
- D. Any discharge of a pollutant that has caused imminent endangerment to human health, welfare or the environment or has resulted in the POTW's exercise of its emergency authority under paragraph (t)(1)(vi)(8) of 40 CFR part 403 to prevent such a discharge.
- E. Failure to meet, within 90 days after the scheduled date, a compliance schedule milestone contained in a local control mechanism or enforcement order, for starting construction, completing construction or attaining final compliance.
- **F.** Failure to provide, within 30 days after the due date, required reports such as BMRs, 90 day compliance reports, periodic reports on continued compliance.
- G. Failure to accurately report noncompliance.
- **H.** Any other violation or group of violations that the Control Authority determines will adversely affect the operation and implementation of the local Pretreatment Program.

PENALTIES

Should the facility be considered in Significant Non-Compliance (SNC), based on the above mentioned criteria, the minimum enforcement response by Monroe County will be the publication of the company name in the Gannett Rochester newspaper. The company will be published as an Industrial User in Significant Non-Compliance (SNC). Fines and criminal penalties may follow this publication (ref. Article IX – MCSUL).

Nothing in this permit shall be construed to relieve the permittees from civil/criminal penalties for noncompliance under Article IX, Section 9.7(a)(5) MCSUL. Article IX provides that any person who violates a permit condition is subject to a civil penalty not to exceed \$25,000 for any one case and an additional penalty not to exceed \$25,000 for each day of continued violation.

80 Ames Street/215 Danforth Street Certification

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site No.	V00144	Site Details	Box 1			
Site Name Former Taylor Instruments Facility						
Site Address: City/Town: Ro County: Monro Site Acreage:	e	Zip Code: 14611				
Reporting Peri	od: February 14, 20	17 to February 14, 2018				
1. Is the info	rmation above correc	ct?	YES	NO		
lf NO, incl	ude handwritten abo	ve or on a separate sheet.	~			
	or all of the site prop mendment during thi	perty been sold, subdivided, merged, or undergone a s Reporting Period?		X		
	been any change of CRR 375-1.11(d))?	use at the site during this Reporting Period		Х		
4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?				X		
		stions 2 thru 4, include documentation or evidence n previously submitted with this certification form				
5. Is the site	currently undergoing	g development?		X		
			Box 2	2		
			YES	NO		
6. Is the curr Industrial	ent site use consiste	ent with the use(s) listed below?	X			
7. Are all ICs	s/ECs in place and fu	unctioning as designed?	X			
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.						
A Corrective Measures Work Plan must be submitted along with this form to address these issues.						
Signature of O	wner, Remedial Party	or Designated Representative Date				

	SITE NO. V00144		Box 3
	Description of Institutio	nal Controls	
		<u>Owner</u>	Institutional Control
	-120:440 - 1-2	ABB,-Inc(Attn:-Melody-Christopher)	-Ground-Water-Use-Restriction-
			-Soil-Management-Plan-
122000	Ground-Water-Jso-Restriction	ia-	
	Soil-Management-Plan		
		Roderick Nelson, Jr.	
			Site Management Plan
	-Sub-slab-depressurization-sys -Annual-Certification	tem	
			Box 4
	Description of Enginee	ring Controls	
	<u>Parcel</u>	Engineering Control	
áco _n	-1-20.410-1-2		
	Cover-System	-	
Chinese	Vapor Mitigation (future-build 120.42-1.4	ings)	
		Vapor Mitigation	
		Annual Centification	
			· · · · · · · · · · · · · · · · · · ·

Parcel 120.42-1.4 is located at 80 Ames St./215 DanForth St., Rochester, Ny 14611

Box 5
Periodic Review Report (PRR) Certification Statements
I certify by checking "YES" below that:
a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
b) to the best of my knowledge and belief, the work and conclusions described in this certificati are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
engineering practices, and the mormation presented is accurate and compete. YES NO
\mathbf{X} \Box
If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institution or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
(b) nothing has occurred that would impair the ability of such Control, to protect public health a the environment;
(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
YES NO
λ \Box
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
A Corrective Measures Work Plan must be submitted along with this form to address these issues.
Signature of Owner, Remedial Party or Designated Representative Date

ł

IC	CEF	RTIFI	CATI	ONS
ŝ	SITE	NO.	V00	144

Box 6

SITE OWNER OR DESIGNATED REPRESE I certify that all information and statements in Boxes 1,2, and 3 statement made herein is punishable as a Class "A" misdement	3 are true. I understand that a false
Penal Law.	131 Phoenix Crossing
Melody B. Christopher at ABBING.	Bloomfield CT 06002
print name print ous	
Penat Law. 1 <u>Melody B. Christopher</u> at <u>AbbInc</u> print bus am certifying as <u>Remedial Pasty</u>	(Owner or Remedial Party)
0	
for the Site named in the Site Details Section of this form.	
Meloch B. Christopher Signature of Owned Remedial Party, or Designated Represent Rendering Certification	19/20/B

IC/EC CERTIFICATIONS

Ш

Professional Engineer Signature

Box 7

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Ricky Ryan .	t 2030 Falling Waters Rd., Knox ville, TN 379 ZC print business address
print name	print business address
am certifying as a Professional Engineer f	or the <u>ABB Frice</u> , <u>Remedial Party</u> (Owner or Remedial Party)
Signature of Professional Engineer, for the Remedial Party, Rendering Certification	e Owner or

Attachment B

Mitigation Tech Inspection Report for Sub-Slab Depressurization System 80 Ames Street and 215 Danforth Street mitigation tech vapor intrusion specialists

INSPECTION REPORT

November 18, 2017

Mr. Joe Deatherage, P.E. Senior Engineer AMEC Foster Wheeler 2030 Falling Waters Rd., STE 300 Knoxville, TN 37922 Via email: joe.deatherage@amecfw.com

Re: ABB Rochester - Former Taylor Instruments Project No. 3031152028-01//// WO No. & PO No.: 3031152028.06. Work site: 80 Ames St./215 Danforth St., Rochester, NY Inspection Report for Sub-slab Depressurization System

For work completed October 31, 2017 per WO: 3031152028.06.

- 1. Conducted a visual inspection of the complete System (e.g., vent fan, piping, warning device, labeling on systems, etc.): SATISFACTORY
- 2. Conducted an inspection of all surfaces to which vacuum is applied: SATISFACTORY (see also note #4)
- 3. Inspected all components for condition and proper operation: SATISFACTORY
- 4. Identify and repair any leaks: a 1' x1' section of concrete floor had been removed by home owner for plumbing repairs. Subsequently repaired by Amec Foster Wheeler personnel and smoke tested to demonstrate a sufficient seal.
- 5. Inspect the exhaust or discharge point to verify that no air intakes have been located nearby: NO AIR INTAKES WITHIN TEN FEET
- 6. Conduct an airstream velocity measurement: SATISFACTORY
- 7. Conduct pressure field extension testing (to ensure that the system is maintaining a vacuum beneath the entire slab): **SATISFACTORY**
- 8. Interview an appropriate occupantor owner seeking comments and observations regarding the operation of the System:SATISFACTORY

I certify that this system is effectively maintaining sub-slab depressurization.

White E Maryan's

Nicholas E. Mouganis EPA listing # 15415-I; NEHA ID# 100722 ***mitigationtech.com

APPENDIX C

TABLES

Table 1 Overburden Monitoring Wells with COCs Exceeding NYSDEC Class GA Standards May 2017*

2017 Annual Progress Report

	Former Taylor Instruments Site Rochester, New York										
NYSDEC			Monitoring Well								
Class GA Standard	OB-04	OB-06	OB-08	TW-17	TW-20	W-5					
5	1 U	1 U	1 U	1 U	1 U	1 U					
5	2.63	3.26	1 U	35.4	19.2	78.5					
5	225	2.93	6.00	192	1.99	122					
5	3.57	1 U	3.99	4.33	1 U	11.7					
5	1 U	1 U	1 U	1 U	1 U	1 U					
2	72	6.84	29.2	84.5	1 U	74.2					
	Class GA Standard 5 5 5 5 5 5 5 5	Class GA Standard OB-04 5 1 U 5 2.63 5 225 5 3.57 5 1 U 2 72	Class GA Standard OB-04 OB-06 5 1 U 1 U 5 2.63 3.26 5 225 2.93 5 3.57 1 U 5 1 U 1 U 5 2.63 6.84	Class GA Standard OB-04 OB-06 OB-08 5 1 U 1 U 1 U 5 2.63 3.26 1 U 5 225 2.93 6.00 5 3.57 1 U 3.99 5 1 U 1 U 1 U 2 72 6.84 29.2	Class GA Standard OB-04 OB-06 OB-08 TW-17 5 1 U 1 U 1 U 1 U 1 U 5 2.63 3.26 1 U 35.4 5 225 2.93 6.00 192 5 3.57 1 U 3.99 4.33 5 1 U 1 U 1 U 1 U 2 72 6.84 29.2 84.5	Class GA Standard OB-04 OB-06 OB-08 TW-17 TW-20 5 1 U 1 U 1 U 1 U 1 U 1 U 5 2.63 3.26 1 U 35.4 19.2 5 2.25 2.93 6.00 192 1.99 5 3.57 1 U 3.99 4.33 1 U 5 1 U 1 U 1 U 1 U 1 U 5 3.57 1 U 3.99 4.33 1 U 5 1 U 1 U 1 U 1 U 1 U 2 72 6.84 29.2 84.5 1 U					

* Most recent sampling event

All concentrations are in micrograms per liter.

Created by: <u>NG</u> on <u>12/7/17</u> Checked by: <u>KJD</u> on <u>12/7/17</u>

Notes: **Bold and shaded** values indicate detection exceeding NYSDEC Class GA Standards COC = contaminants of concern

 $\mathsf{DCE} = \mathsf{dichloroethene}$

PCE = tetrachloroethene

TCE = trichloroetheneU = not detected at practical quantitation limit

Table 2 Bedrock Monitoring Wells with COCs Exceeding NYSDEC Class GA Standards November 2017 2017 Annual Progress Report Former Taylor Instruments Site Rochester, New York									
NYSDEC Monitoring Well									
Standard	BR-01	BR-02	BR-03	BR-04	BR-10	BR-15			
5	5 U	1 U	1 U	10 U	1 U	1 U			
5	6.08	16.6	483	933	168	2.43			
5	772	18.6	49.5	1490	413	5.22			
5	47.6	1.73	2.48	104	56.2	1 U			
5	5 U	1 U	1.09	10 U	1 U	1 U			
2	345	1.47	1 U	59.6	3.64	4.06			
	NYSDEC Class GA Standard 5 5 5 5 5 5 5 2	NYSDEC Class GA Standard BR-01 5 5 U 5 5 U 5 772 5 47.6 5 U 5 U	NYSDEC Class GA Standard Standard BR-01 BR-02 5 5 U 1 U 5 5 U 1 U 5 772 18.6 5 47.6 1.73 5 5 U 1 U 2 345 1.47	NYSDEC Class GA Standard Standard BR-01 BR-02 BR-03 5 5 U 1 U 1 U 1 U 5 772 18.6 49.5 1.73 2.48 5 5 U 1 U 1.09 1.09 1.09 1.09 1.09 1.01 <	November 20172017 Annual Progress Report Former Taylor Instruments Site Rochester, New YorkNYSDEC Class GA StandardBR-01BR-02BR-03BR-0455 U1 U1 U10 U56.0816.6483933577218.649.5149055 U1 U1.0910 U56.081.732.4810455 U1 U1.0910 U23451.471 U59.6	November 2017 2017 Annual Progress Report Former Taylor Instruments Site Rochester, New York NYSDEC Class GA Standard Monitoring Well DYSDEC Class GA Standard BR-01 BR-02 BR-03 BR-04 BR-10 5 5 U 1 U 1 U 10 U 1 U 5 5 U 1 U 1 U 10 U 1 U 5 6.08 16.6 483 933 168 5 772 18.6 49.5 1490 413 5 47.6 1.73 2.48 104 56.2 5 5 U 1 U 1.09 10 U 1 U 2 345 1.47 1 U 59.6 3.64			

All concentrations are in micrograms per liter.

Created by: <u>NG</u> on <u>12/7/17</u> Checked by: <u>KJD</u> on <u>12/7/17</u>

Notes: **Bold and <u>shaded</u>** values indicate detection exceeding NYSDEC Class GA Standards. COC = contaminants of concern DCE = dichloroethene PCE = tetrachloroethene

PCE = tetrachloroethene

TCE = trichloroetheneU = not detected at practical quantitation limit

Table 3 Summary of VOC Results for Existing Overburden Wells for the 2000-2017 Sampling Events										
2017 Annual Progress Report Former Taylor Instruments Site Rochester, New York										
Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (µg/L)				
11/19/00		70,000	2,900							
03/24/01		150	3.2 J							
06/18/01		39,000	21,000							
09/13/01		NS (Dry)	NS (Dry)	NS (Dry)	NS (Dry)	NS (Dry)				
12/17/01	19.9	71,500	56,000	170	108	10.2				
03/12/02	12.9	65,600	1,640	16.6	3.8					
06/09/02		3,650	554							
09/23/02	1.8	3,760	1,950	7.5	4.9	2				
12/09/02										
	6.0			1.9						
				1.3						
	1.0									
						1.19				
					2 19	95.1				
						145				
						143				
						21.7				
						49.8				
						9.74				
						43.3				
						33.2				
				1.20		8.69				
						4.25				
			1.08							
						2.44				
						1.21				
						4.25				
						3.7				
						7.3				
						8.03				
						17.6				
						72.0				
			80 J							
03/21/01		540								
06/15/01		720	12 J							
	Date Sampled 11/19/00 03/24/01 06/18/01 09/13/01 12/17/01 03/12/02 06/09/02 03/23/02 12/09/02 03/22/03 06/13/03 09/21/03 12/14/03 06/19/04 12/05/04 06/26/05 12/03/05 07/20/06 12/03/05 07/20/06 12/03/05 07/20/06 12/03/07 12/13/07 05/05/08 11/06/08 05/06/09 10/21/09 05/12/10 05/03/11 11/01/11 05/15/12 10/30/12 05/15/13 11/13/13 05/07/14 10/28/14 05/12/15 05/03/16 10/25/16 05/09/17 11/17/00 11/17/00 11/17/00	Date SampledPCE (µg/L)11/19/0003/24/0106/18/0109/13/0112/17/0119.903/12/0212.906/09/0209/23/021.812/09/0203/22/0306/13/0309/21/036.012/14/0306/19/0412/05/041.006/26/0512/03/0512/03/0512/03/0512/03/0512/03/0512/03/0512/06/0612/06/0612/05/041.005/05/0811/06/0805/05/0810/21/0905/03/1105/03/1105/03/1111/03/1205/15/1305/07/1405/07/1410/28/1405/03/1610/25/1605/03/1610/25/1605/03/1611/17/0011/17/0011/17/0011/17/0011/17/0011/17/0011/17/0011/17/0011/17/0011/17/0111/05/15/12	Summary of VOC Results for 200-2017 8 2017 Annue Former Tayl Roches Date Sampled PCE (µg/L) 11/19/00 11/19/00 03/24/01 06/18/01 06/18/01 06/18/01 03/24/01 06/18/01 03/202 12.9 06,600 6,600 03/12/02 12.9 05,600 03/22/03 11.3 06/13/03 06/13/03 12/17/04 1.0 06/26/05 06/26/05 12/03/05 12/03/05 12/06/06 12/06/06 12/06/06 12/06/06 12/06/06 12/06/06 05/05/08 11/106/08	Summary of VOC Results for Existing Over 2000-2017 Sampling Even 2007-2017 Instruments Site Rochester, New York	Summary of VOC Results for Existing Overburden Weils is 200-2017 Sampling Events: Subrester: New York Sumplet Progress Report Teormer Taylor Instruments Site Rochester: New York Date PCE (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) 11/19/00 a 70,000 2,000 a 03/24/01 a 70,000 2,000 a 04/34/20 12,9 5,000 10,000 04/34/20 12,9 6,000 10,000 04/34/20 1,000 2,000 0,000 04/34/20 1,01,31 1,01,01 12/19/01	Summary of VOC Results for Existing Overburcher Subscripting Events 2017 Annual Progress Report Exorbester, New York Date PCE (µg/L) Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Date PCE (µg/L) Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Sampled PCE (µg/L) Colspan="2" Colspan="2" Odd 2.900 - Odd 2.000 10 Odd 2.000 10 Odd 1.05 - Odd 1.05 - Odd 1.05 - Odd 1.05 - Odd 1.05 -				

2017 Annual Progress Report Former Taylor Instruments Site										
			Roches	ster, New York	-					
Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (µg/L)			
OB-06	09/13/01		5,600	240	9.0 J					
OB-06	12/13/01		637	13.7						
OB-06	03/08/02		526	7.8						
OB-06	06/07/02		184	2.8						
OB-06	09/20/02		386	10.1						
OB-06	12/06/02		100	1.5						
OB-06	03/20/03		84.9	1.5						
OB-06	06/11/03		52.7	1.1						
OB-06	09/18/03		242	2.6						
OB-06	12/11/03		60	1						
OB-06	06/17/04		38.6							
OB-06	12/02/04		31.9	1.4						
OB-06	06/26/05		37.1	1.8						
OB-06	12/02/05		117	4.71						
OB-06	07/21/06		60.5	2.59						
OB-06	12/10/06		87.8	2.69						
OB-06	05/03/07		66.3	4.85						
OB-06	12/12/07		82.9	3.31						
OB-06	05/03/08		72.6	3.90						
OB-06	11/05/08		89.8	4.82						
OB-06	05/05/09		78.3	6.03						
OB-06	10/20/09		121	12.6						
OB-00 OB-06	05/11/10		105	12.0						
OB-00	05/03/11		60	77.4						
OB-00 OB-06	11/01/11		18.9	46.5	1.28		13.8			
OB-06	05/15/12		25.4	7.56			2.72			
OB-06										
OB-06	10/30/12 05/15/13		34.3	6.63			3.86			
			40.1	7.5			2.56			
OB-06	11/13/13		43.7	7.83	1.03		8.02			
OB-06	05/07/14		36.5	6.80			2.51			
OB-06	10/28/14		38.9	7.64	1.05		5.20			
OB-06	05/12/15		22.9	5.14			3.26			
OB-06	10/27/15		38.8	9.68	1.09		7.63			
OB-06	05/03/16		40.4	10.6	1.30	1.60	8.50			
OB-06	10/26/16		50.8	19.3	1.70	1.57	20.6			
OB-06	05/10/17		3.26	2.93			6.84			
OB-08	11/16/00		40,000	390 J						
OB-08	03/20/01		29,000	390 J						
OB-08	06/19/01		15,000	240 J						
OB-08	03/12/02	13.1	15,750	208	8.6	2.7				
OB-08	06/10/02		5,370							
OB-08	09/24/02	9.4	5,440	110	3.6					
OB-08	12/09/02	8.9	8,050	94.2	5	1.3				

ľ

2000-2017 Sampling Events 2017 Annual Progress Report Former Taylor Instruments Site Rochester, New York										
	Data	PCE	Roche: TCE	ster, New York cis-1,2-DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride			
Sample ID	Date Sampled	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)			
OB-08	03/24/03	5.1	3,480	37.3	2.2					
OB-08	06/13/03	3.9	2,250	15.3	1.2					
OB-08	09/22/03	2.6	2,780	32.1	3.1					
OB-08	12/15/03	3.3	1,360	10.8	1.5					
OB-08	06/20/04	2.9	725	13.1	2.5					
OB-08	12/06/04		429	5.80						
OB-08	06/29/05	1.3	570	3.3						
OB-08	12/06/05	2.12	797	6.25	2.17					
OB-08	07/21/06	2.13	890	7.85	3.91					
OB-08	12/06/06		73.7	1,550	10.7					
OB-08	05/03/07		2.48	3,750	29.6	12.7	3.08			
OB-08	12/13/07			1,150	32.0	4.24	1.54			
OB-08	05/05/08			41.4	8.07		47.8			
OB-08	11/06/08			53.9	14.8		68.9			
OB-08	05/06/09			42.5	10.2		83.8			
OB-08	10/21/09			35.2	12.4		111			
OB-08	05/12/10			30.5	3.44		36.0			
OB-08	05/04/11			67.9	22.7		249			
OB-08	11/02/11				15.5		4.73			
OB-08	05/17/12			3.78	11.1		13.2			
OB-08	10/31/12				11.2		3.15			
OB-08	05/15/13				8.29		5.72			
OB-08	11/14/13				2.44					
OB-08	05/07/14				3.50		3.03			
OB-00	10/28/14				9.57					
OB-08	05/12/15				6.05		8.66			
OB-08	10/27/15				5.47					
OB-08	05/03/16			10.7	13.4		67.5			
OB-08	10/26/16				3.72		3.29			
OB-08	05/09/17			6.00	3.99		29.2			
TW-04	10/24/00		42	79						
TW-04 TW-04	03/22/01		42 14	79 16						
TW-04										
TW-04 TW-04	06/15/01		 27	 38						
TW-04	09/14/01									
TW-04	12/13/01		51.1 51	19.4 3.7						
TW-04	03/05/02 06/04/02		20.7							
TW-04			20.7 21.2	 7.1						
	09/17/02									
TW-04	12/04/02		42.5	5.5						
TW-04	03/18/03									
TW-04	06/10/03		19.3							
TW-04	09/16/03		29.2	3.1						
TW-04	12/09/03		49.8	1.1						

Table 3 (Continued)

			Former Tay	al Progress Report or Instruments Site ster, New York			
Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (µg/L)
TW-04	06/15/04		12.7				
TW-04	11/30/04		40.0				
TW-04	06/24/05		9.20	1.7			
TW-04	12/01/05		31.4				
TW-04	07/18/06		27.9				
TW-04	12/11/06		8.99				
TW-04	05/03/07		4.66				
TW-04	12/11/07		15.2				
TW-04	05/03/08		4.40				
TW-04	11/04/08		21.3				
TW-04	05/04/09		4.78				
TW-04	10/19/09						
TW-04	05/11/10		5.32				
TW-04	05/03/11		6.17				
TW-04	11/01/11		8.9	2.44			
TW-04	05/16/12		1.66	1.56			
TW-04	10/31/12			2.85			
TW-04	05/14/13			1.13			
TW-04	11/13/13			6.87			
TW-04	05/07/14			2.08			
TW-04	10/28/14			8.24			
TW-04	05/12/15			1.84			
TW-04	10/27/15			5.18			
TW-04 TW-04	05/03/16						
TW-04							
	10/25/16			2.67			
TW-04	05/09/17						
TW-09	10/24/00		230	36			
TW-09	03/27/01		120	1.9 J			
TW-09	06/16/01		200	7.4			
TW-09	09/16/01		150	9.6			
TW-09	12/15/01		110	4			
TW-09	03/06/02		55.4	2			
TW-09	06/05/02		36.5				
TW-09	09/19/02		91.5	4			
TW-09	12/05/02		38				
TW-09	03/19/03						
TW-09	06/11/03		29.4				
TW-09	09/17/03		77	6.4			
TW-09	12/10/03		36.8	1.2			
TW-09	06/16/04		43.1	1.0			
TW-09	12/02/04		46.2	2.4			
TW-09	06/24/05		48.2	1.7			
TW-09	12/05/05		45.0	1.48			

Table 3 (Continued)

ſ

	Summ	ary of VUC	2000-2017	EXISTING OVER Sampling Ever		or the			
Former Taylor Instruments Site Rochester, New York									
Sample ID	Date Sampled	PCE (µg/L)	TCE (µg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (µg/L)		
TW-09	07/18/06		56.7	1.35					
TW-09	12/06/06		34.3	2.60					
TW-09	05/03/07		31.2	3.01	1.46				
TW-09	12/13/07		29.8	1.28					
TW-09	05/05/08		50.5	4.70	4.87				
TW-09	11/06/08		71.2	12.6	12.0				
TW-09	05/06/09		72.1	32.6	32.0		5.83		
TW-09	10/21/09		82.9	34.4	34.6				
TW-09	05/12/10		56.7	12.8	14.3				
TW-09	05/03/11		4.13	2.28			4.17		
TW-09	11/02/11		1.24	4.23	7.07		6.26		
TW-09	05/16/12		1.18	1.11	2.99		1.97		
TW-09	11/01/12								
TW-09	05/14/13		4.05	2.91	5.58		3.49		
TW-09	11/12/13			3.38	6.92		9.03		
TW-09	05/07/14		6.06	4.15	3.47		2.09		
TW-09	10/29/14		2.98	12.5	9.86		12.9		
TW-09	05/13/15		16.4	18.7	11.8		9.81		
TW-09	10/28/15		8.18	38.9	20.8		21		
TW-09	05/04/16		10.8	16.8	6.85		6.90		
TW-09	10/26/16		5.31	3.20	1.07				
TW-09	05/10/17		2.49						
TW-17	11/17/00		1,000	7.9J					
TW-17	03/23/01		530						
TW-17	06/16/01		490						
TW-17	09/14/01		740						
TW-17	12/14/01		515						
TW-17	03/05/02		339						
TW-17	06/04/02		393						
TW-17	09/18/02		666						
TW-17	12/04/02		390						
TW-17	03/18/03		379						
TW-17	06/10/03		282						
TW-17	09/16/03		435						
TW-17	12/09/03		441						
TW-17	06/15/04		280						
TW-17	11/30/04		407	6.9					
TW-17	06/24/05		340	1.0					
TW-17	12/01/05		397	1.35					
TW-17	07/18/06		410	2.04					
TW-17	12/06/06		246	7.47					
TW-17	05/02/07		253	5.87					
TW-17	12/12/07		296	3.98					
See notes at e	nd of table								

Table 3 (Continued)

	Table 3 (Continued) Summary of VOC Results for Existing Overburden Wells for the 2000-2017 Sampling Events									
2017 Annual Progress Report Former Taylor Instruments Site Rochester, New York										
Sample ID	Date Sampled	PCE (µg/L)	TCE (µg/L)	cis-1,2-DCE (µg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (µg/L)			
TW-17	05/04/08		477	4.19						
TW-17	11/05/08		270	110						
TW-17	05/05/09		332	6.46						
TW-17	10/20/09		94	199	5.92					
TW-17	05/11/10		316	10.6						
TW-17	05/05/11		205	115						
TW-17	11/03/11		21.6	310			4.92			
TW-17	05/16/12		2.16	156			6.28			
TW-17	10/31/12			147			2.66			
TW-17	05/16/13		2.63	556	1.22		39.3			
TW-17	11/14/13			240			130			
TW-17	05/08/14		1.38	112	4.21		48.0			
TW-17	10/29/14			1.51			4.80			
TW-17	05/13/15			2.74			2.1			
TW-17 TW-17	10/29/15									
TW-17			1.83	6.59 170			3			
	05/03/16		13.5		2.95		84.4			
TW-17	10/26/16		1.07	24.2			4.26			
TW-17	05/10/17		35.4	192	4.33		84.5			
TW-20	10/25/00		5.2							
TW-20	03/27/01		12							
TW-20	06/16/01		2.9 J							
TW-20	09/14/01									
TW-20	12/14/01		3.1							
TW-20	03/06/02		2.4							
TW-20	09/18/02									
TW-20	12/04/02		11.6							
TW-20	03/19/03		2.4							
TW-20	06/10/03									
TW-20	09/17/03		5.0							
TW-20	12/10/03		14.8							
TW-04	06/15/04									
TW-20	12/01/04									
TW-20	06/24/05		1.5							
TW-20	12/01/05		6.32							
TW-20	07/18/06		12.0							
TW-20	12/06/06		13.2							
TW-20	05/02/07		8.28							
TW-20	12/11/07		4.58							
TW-20	05/02/08		4.50							
TW-20	11/04/08		23.0	3.47						
TW-20	05/04/09		25.2	1.55						
TW-20	10/19/09		78.8	5.50						
TW-20	05/11/10		65.9	2.34						
See notes at er			00.0	2.07						

	Table 3 (Continued)Summary of VOC Results for Existing Overburden Wells for the2000-2017 Sampling Events									
2017 Annual Progress Report Former Taylor Instruments Site Rochester, New York										
Sample ID	Date Sampled	PCE (µg/L)	TCE (µg/L)	cis-1,2-DCE (µg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (µg/L)			
TW-20	05/04/11		65	2.86						
TW-20	11/02/11		88.8	8.3						
TW-20	05/17/12		80.8	4.58						
TW-20	11/01/12		107	4.11						
TW-20	05/16/13		72.3	3.14						
TW-20	11/14/13		56.6	1.73						
TW-20	05/08/14		48.4	4.48						
TW-20	10/29/14		6.11							
TW-20	05/13/15		30.2	2.25						
TW-20 TW-20	10/28/15		27.3	2.25						
TW-20 TW-20	05/04/16		27.3 26.3							
TW-20	10/26/16		18.6							
TW-20	05/10/17		19.2	1.99						
W-5	11/16/00			27	11					
W-5	03/23/01		120	25	8.1					
W-5	06/18/01		62	23	9.6					
W-5	09/17/01		64	9.1	6.5					
W-5	12/17/01		1,435	39.5	9					
W-5 (DUP)	12/17/01		1,780	36.2	8.5					
W-5	03/07/02		737	21.6	3.5					
W-5 (DUP)	03/07/02		607	23.2	3.9					
W-5	06/06/02		155	15.7						
W-5 (DUP)	06/06/02		150	13.8						
W-5	09/19/02		960	49.6						
W-5 (DUP)	09/19/02		676	48.5	4.7					
W-5	12/05/02		777	52	3.6					
W-5 (DUP)	12/05/02		843	51.7	4					
W-5 (DOI) W-5	03/20/03		262	132	3.4					
W-5 (DUP)	03/20/03		232	119	3.3					
W-5	06/11/03		234	128	5					
W-5 (DUP)	06/11/03		234	152	5.1					
W-5	09/18/03		510	129	4					
W-5 (DUP)	09/18/03		444	112	3.9					
W-5	12/11/03		550	127	3.5					
W-5 (DUP)	12/11/03		520	118	3.4					
W-5	06/16/04		348	98.9	5.4					
W-5 (DUP)	06/16/04		360	71.6	4.6					
W-5	12/02/04		569	125	4.7					
W-5 (DUP)	12/02/04		725	89.4	4.4					
W-5	06/25/05		381	98.2	3.7					
W-5 (DUP)	06/25/05		380	93.2	3.5					
W-5	12/05/05		1,100	76.9	2.13					
W-5 (DUP)	12/05/05		916	69.5						
See notes at en										

2000-2017 Sampling Events 2017 Annual Progress Report Former Taylor Instruments Site Rochester, New York									
Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (µg/L)		
W-5	07/19/06		212	104	2.34		3.63		
W-5 (DUP)	07/19/06		219	99.0	2.30		3.81		
W-5	12/05/06		263	122	2.89		7.14		
W-5	05/03/07		1,140	340	4.61		4.43		
W-5 (DUP)	05/03/07		1,070	336	4.60		4.00		
W-5	12/13/07		835	158	3.83		22.1		
W-5 (DUP)	12/13/07		850	124	3.36		16.1		
W-5	05/05/08	2.41	1,180	314	4.41		6.77 J		
W-5 (DUP)	05/05/08	2.25	1,110	342	4.33		13.6 J		
W-5	11/06/08		687	143	3.28		8.86		
W-5 (DUP)	11/06/08		703	126	2.88		8.85		
W-5	05/06/09		961	124	2.61		1.33		
W-5 (DUP)	05/06/09		961	123	2.69				
W-5 (DOI) W-5	10/21/09		664	59.9	1.55		5.39 J		
W-5 (DUP)	10/21/09		642	68.2	1.61		7.42		
W-5 (DOF) W-5			642 601						
	05/12/10			164	2.08		5.04		
W-5 (DUP)	05/12/10		591	159	2.08		5.27		
W-5	05/04/11		445	117	1.39		1.51		
W-5 (DUP)	05/04/11		432	141	1.62		1.53		
W-5	11/03/11		293	130	1.41		12.5		
W-5 (DUP)	11/03/11		325	153	1.74		17.0		
W-5	05/17/12		230	139	5.37		39.5		
W-5 (DUP)	05/17/12		220	136	5.19		37.2		
W-5	11/01/12		195	85	13.1		34.8		
W-5 (DUP)	11/01/12		191	83.9	12.9		34.2		
W-5	05/16/13		218	75	10.6		35.3		
DUP-01	05/16/13		228	74.6	10.3		33.8		
W-5	11/14/13		182	69.5	10.2		36.5		
DUP-01	11/14/13		185	69.8	9.97		33.8		
W-5	05/08/14		182	49.7	7.35		14.9		
DUP-01	05/08/14		177	52.1	7.71		15.3		
W-5	10/29/14		141	57.9	10.9		39.7		
DUP-01	10/29/14		155	55.6	10.3		33.9		
W-5	05/13/15		106	40.5	6.15		26.1		
DUP-01	05/13/15		109	42.5	6.11		27.0		
W-5	10/28/15		116	51.5	8.51		34.7		
DUP-01	10/28/15		122	50.6	8.01		31.5		
W-5	05/04/16		85.6	41.6	7.24		26.9		
DUP-01	05/04/16		85.6	42.9	7.55		27.4		
W-5	10/26/16		104	56.9	8.27		27.3		
DUP-01	10/26/16		109	61.6	9.60		27.8		
W-5	05/10/17		78.5	122	11.7		74.2		
DUP-01	05/10/17		87.4	112	9.03		59.0		
Notes: = nα μg/L = 1,1-D cis-1,2	o detections = micrograms per li CE = 1,1-dichloroe 2-DCE = cis-1,2-dic 1,2-DCE = trans-1,	thene chloroethene	DU ID : J = TCI	P = duplicate = identification = estimated value E = trichloroethene C = volatile organi					

Table 4 Summary of VOC Results for Existing Bedrock Wells for the 2000-2017 Sampling Events 2017 Annual Progress Report Former Taylor Instruments Site Rochester, New York							
BR-01	11/17/00		180	550	4.3 J		3.5 J
BR-01	03/21/01		320	34	2.2 J		
BR-01 (DUP)	03/21/01		320	35	2.4 J		
BR-01	06/16/01		270	59	4.4 J		
BR-01	09/14/01		31	170	16		
BR-01	12/14/01		63.8	77.5	2		
BR-01	03/09/02		47.3	5.5	1.6		
BR-01	06/08/02		85.7	10.1	3.2		
BR-01	09/20/02		107	16	4		
BR-01	12/07/02		14.3	83	3.8		
BR-01	03/21/03		25.8	2.1	1		
BR-01	06/12/03		60.9	4.6	2.8		
BR-01	09/19/03		102	11.4	1.7		
BR-01	12/12/03		102	61.7	20.6		
BR-01	06/18/04		551	42	6.1		
BR-01	12/03/04		65	4.3	1.4		
BR-01	06/26/05		199	6.5	1.0		
BR-01	12/02/05		1.12	36.2	1.10		
BR-01	07/19/06			3.09			
BR-01	12/08/06			3.73			
BR-01	05/02/07		67.5	10.6			
BR-01	12/10/07			70.6	4.33		
BR-01	05/02/08		4.19	10.7	1.63		
BR-01	11/04/08			98.7	2.23		
BR-01	05/04/09		3.26	11.3	1.95		
BR-01	10/19/09			6.92			
BR-01	05/11/10		9.23	12.8	2.02		
BR-01	05/04/11		2.05	14.6	1.03		
BR-01	11/03/11			41.6			3.61
BR-01	05/17/12		89.6	34.7	1.87		3.13
BR-01	10/31/12			29.6			7.88
BR-01	05/15/13		76.3	695	35.4	7.52	200
BR-01	11/14/13		111	1,470	34.4	6.87	406
BR-01	05/08/14		98.9	1,570	61.4	7.70	377
BR-01	10/29/14		86.9	1,590	56.6	7.62	320
BR-01	05/14/15		40.4	1,240	37.1		244
BR-01	10/29/15		31.8	906	39.8	4.03	244
BR-01	05/05/16		13.0	861	36.8		302
BR-01	10/27/16		10.9	787	30.0	2.50	158
			7.23				
BR-01	05/11/17			851	38.9		348
BR-01	11/01/17		6.08	772	47.6		345
BR-02	11/18/00		1,800	540	31 J		
BR-02	03/21/01		1,200	95			

	Table 4 (Continued) Summary of VOC Results for Existing Bedrock Wells for the 2000-2017 Sampling Events									
2017 Annual Progress Report Former Taylor Instruments Site Rochester, New York										
Sample ID	Date Sampled	PCE (µg/L)	TCE (µg/L)	cis-1,2-DCE (µg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (µg/L)			
BR-02	06/17/01		1,000	94	27 J					
BR-02	09/15/01		7,000	1,500	63	31 J				
BR-02	12/15/01		6,500	1,830	59.8	30.3	19.6			
BR-02	03/09/02		588	79.6	20.8	1.2				
BR-02	06/08/02		568	122	2.2					
BR-02	09/21/02		768	518	24.4	4.6	18.7			
BR-02	12/07/02		694	172	29.8		5.6			
BR-02	03/21/03		4,000	19,100	154	156	64.9			
BR-02	06/13/03		710	17,900	120	122	68.1			
BR-02	09/18/03		372	245	23.3					
BR-02	12/12/03		324	58.2	18.2					
BR-02	06/18/04		450	257	33.8	2.8	2.3			
BR-02	12/03/04		647	242	23.4	1.4	1.4			
BR-02	06/27/05		163	29	9.1					
BR-02	12/03/05		114	23.1	9.08					
BR-02	07/19/06		120	16.9	8.29					
BR-02	12/08/06	1.32	113	31.1	11.3					
BR-02	05/02/07		409	118	15.2	1.26				
BR-02	12/10/07		134	38.6	14.1					
BR-02	05/02/08		153	74.2	14.0					
BR-02	11/04/08		90.9	48.1	11.4		1.54			
BR-02	05/04/09		88.1	142	20.5	1.00	1.19			
BR-02	10/19/09		254	100	13.4	1.03	1.22			
BR-02	05/11/10		821	186	21.9	1.76	2.25			
BR-02	05/04/11		237	56.2	8.89					
BR-02	11/02/11		2230	483	24.6	4.35	8.25			
BR-02	05/16/12		5070	1100	49.4	8.67	22			
BR-02	11/01/12		44.5	23.3	4.69					
BR-02	05/16/13		904	169	12.6	1.61	2.3			
BR-02	11/13/13		27	24.1	3.45					
BR-02	05/08/14		25,200	5,860	238	46.4	103			
BR-02	10/29/14		25.3	19.7	2.52					
BR-02	05/14/15		506	167	7.23		3.41			
BR-02	10/29/15		16.6	21.7	1.54					
BR-02	05/05/16		196	335	15.3	2.59	12.6			
BR-02	10/27/16		14.9	30.3	1.65					
BR-02 BR-02	05/11/17		89.7	50.5 77.1	3.33		3.45			
BR-02	10/31/17		16.6	18.6	1.73		1.47			
BR-02	11/18/00		440	99	1.2 J	2.2 J				
BR-03	03/22/01		810	99 12 J		2.2 J 3.2 J				
BR-03	06/15/01		500	12 J 20 J						
BR-03 BR-03	09/14/01		330	20 J 7.8 J						
BR-03	12/13/01		780	7.8 J 7.6		 2.2				
See notes at er			100	1.0		2.2				

	Table 4 (Continued) Summary of VOC Results for Existing Bedrock Wells for the 2000-2017 Sampling Events									
2017 Annual Progress Report Former Taylor Instruments Site Rochester, New York										
Sample ID	Date Sampled	PCE (µg/L)	TCE (µg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (µg/L)			
BR-03	03/08/02		599	9.8		2.1				
BR-03	06/07/02		854	19.7		2.8				
BR-03	09/20/02		370	6.5						
BR-03	12/07/02		821	13.5						
BR-03	03/21/03		590	7.7		2				
BR-03	06/12/03		632	25.3	1.9	3				
BR-03	09/18/03		1,150	10.4	1.5	3.1				
BR-03	12/12/03									
BR-03	06/17/04		446	17.0	1.1	1.5				
BR-03	12/03/04		60.6	27.0		1.0				
BR-03	06/26/05		73.4	5.6						
BR-03	12/02/05		5.57	21.0						
BR-03	07/19/06		248	6.97						
BR-03	12/08/06		29.7	27.3						
BR-03	05/01/07		701	7.32		1.89				
BR-03	12/11/07		35.4	21.8						
BR-03	05/03/08		588	5.20		1.81				
BR-03	11/04/08		61.8	4.61						
BR-03	05/04/09		202	3.10						
BR-03	10/19/09		365	29.3	1.02	2.05				
BR-03	05/11/10		270	3.15						
BR-03	05/03/11		52.5	75						
BR-03	11/02/11			37.1						
BR-03	05/16/12		573	43.4	1.18	1.89				
BR-03	10/31/12		3.06	329	6.71	1.71				
BR-03	05/16/13		596	23.2	4.92	1.83				
BR-03	11/13/13		653	18.2		2.04				
BR-03	05/08/14		519	15.3	1.66	1.72				
BR-03	10/29/14		381	37.0	1.73	1.74				
BR-03	05/14/15		353	40.6	1.12	1.40				
BR-03	10/29/15		360	76.4	1.77	1.86				
BR-03	05/04/16		225	79.1	1.19	1.58				
BR-03	10/27/16		464	27.1	1.32	2.17				
BR-03	05/10/17		352	97.4	3.57	2.05				
BR-03	11/01/17		483	49.5	2.48	1.09				
BR-04	11/19/00		10,000	600	140	17 J	25 J			
BR-04	03/24/01		9,000	400	95 J					
3R-04 3R-04	06/19/01		3,000 4,300	320	61 J					
BR-04 BR-04	09/17/01		4,300 5,000	420	100 J					
BR-04 BR-04	12/17/01	1.2	5,700	420	79.9	9	27.4			
BR-04 BR-04	03/12/02		5,750	430 384	79.9	8.1	27.4			
BR-04 BR-04	05/12/02 06/10/02		3,750 4,570	304 338	49					
	09/23/02		4,570 3,310	551	49 63.1	8.3	32.2			
BR-04 See notes at er			5,510	551	03.1	0.0	32.2			

	Table 4 (Continued)Summary of VOC Results for Existing Bedrock Wells for the 2000-2017 Sampling Events									
	2017 Annual Progress Report Former Taylor Instruments Site Rochester, New York									
Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (µg/L)			
BR-04	12/09/02		5,300	535	77.6	8.3	27.1			
BR-04	03/23/03	1.8	4,630	473	52	6.8	14.8			
BR-04	06/13/03		302	1,280	19.5	3.6	1.2			
BR-04	09/21/03		2,540	560	61	5.4	32.2			
BR-04	12/14/03		3,650	507	51.9	6.2	14.3			
BR-04	06/19/04		102	1,420	45.8	6.4	3.0			
BR-04	12/05/04		4,090	2,810	90.0	15.3	8.3			
BR-04	06/28/05		6.6	937	22.5	1.6	1.2			
BR-04	12/03/05		16.4	127	2.21					
BR-04	07/20/06		3,940	6,410	147	21.3	12.9			
BR-04	12/09/06		5.32	2,030	24.1	3.17	5.21			
BR-04	05/01/07		56.9	446	12.7	1.09				
BR-04	12/12/07		8.64	240	4.36		3.07			
BR-04	05/04/08		332	647	17.7	2.83	1.37			
BR-04	11/06/08		7.04	490	8.51		3.28			
BR-04	05/06/09		498	163	10.9	1.59				
BR-04	10/21/09		25.1	167	5.24		1.72			
BR-04	05/12/10		325	321	11.7	1.37				
BR-04	05/03/11									
BR-04	11/01/11		4.29	5.02						
BR-04	05/15/12		55.1	76.6	2.9		2.72			
BR-04	10/31/12		4.9	4.77						
BR-04	05/15/13		1,430	1,370	97.4	9.47	72.5			
BR-04	11/12/13		638	1,320	66.9	9.96	77			
BR-04	05/07/14		757	1,370	88.7	11.5	68.0			
BR-04	10/29/14		514	955	77.4	9.33	55.1			
BR-04	05/14/15		437	977	61.6	7.27	52.7			
BR-04	10/29/15		331	661	64.9	7.78	46.2			
BR-04	05/05/16		354	831	51.0	6.63	48.5			
BR-04	10/27/16		441	972	81.9	9.15	62.0			
BR-04	05/11/17		703	1,450	63.8		60.0			
BR-04	11/01/17		933	1,490	104		59.6			
BR-10	11/18/00		4,000	450	27 J					
BR-10	03/28/01		4,700	980	110 J					
BR-10	06/18/01		8,500	1,000						
BR-10	09/17/01		8,700	1,700	160 J					
BR-10	12/16/01		5,350	1,200	82.8	3.4	5.6			
BR-10	03/11/02		3,745	1,090	78.2	3.9	5.5			
BR-10	06/09/02		5,100	1,290	64.6	4.7	5.3			
BR-10 BR-10	09/22/02			120	9.8					
BR-10 BR-10	12/09/02		3,060	750	60.1	2.3				
BR-10 BR-10	03/22/03		3,060 2,580	750 886	42.2	2.3 2.5	3.1			
BR-10 BR-10	03/22/03 06/13/03									
See notes at er			2,950	1,080	61.7	3.2	5.1			

	Table 4 (Continued)Summary of VOC Results for Existing Bedrock Wells for the 2000-2017 Sampling Events									
	2017 Annual Progress Report Former Taylor Instruments Site Rochester, New York									
Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (µg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (µg/L)			
BR-10	09/21/03		2 250	400	49 4	2	16 1			
BR-10	12/13/03		1,420	442	36.4	1.4	8.8			
BR-10	06/19/04		1,520	507	62.9	2.9	6.8			
BR-10	12/04/04		1,270	436	41.2	1.8	5.0			
BR-10	06/27/05	1.3	558	166	17.3		1.3			
BR-10	12/03/05	1.62	474	122	11.1					
BR-10	07/20/06		52.3	12.2	1.53					
BR-10	12/08/06		28.2	15.0	1.26					
BR-10	05/02/07	1.01	226	57.8	5.87					
BR-10	12/12/07		17.8	3.83						
BR-10	05/04/08	2.94	357	94.6	10.7		1.40			
BR-10	11/05/08		8.44	3.02						
BR-10	05/05/09	1.67	235	66.1	10.3		1.07			
BR-10	10/20/09		48	22	2.79					
BR-10	05/11/10	1.72	277	77.3	14.0					
BR-10	05/03/11	1.36	725	312	26.3		2.79			
BR-10	11/01/11	1.35	417	231	25.3		2.87			
BR-10	05/15/12	1.28	532	192	23.5		1.13			
BR-10	10/31/12		7.28	2.21						
BR-10 BR-10	05/15/13		517	153	26					
			444		20	 1.11				
BR-10	11/12/13	1.76		173			2.17			
BR-10	05/07/14		329	189	32.8		1.02			
BR-10	10/29/14	1.33	345	299	46.2	1.49	2.72			
BR-10	05/14/15		142	260	38.5					
BR-10	10/29/15		201	343	56.5	1.61	3.04			
BR-10	05/05/16		233	257	43.3					
BR-10	10/27/16	1.19	154	345	50.1	1.50	2.11			
BR-10	05/11/17		151	357	48.4	1.02	1.65			
BR-10	11/01/17		168	413	56.2		3.64			
BR-15	11/19/00		2,700	54 J						
BR-15 (DUP)	11/19/00		2,700	49 J						
BR-15	03/26/01		2,500	33 J						
BR-15	06/18/01		2,300	49 J						
BR-15	09/16/01		4,800	110 J						
BR-15	12/16/01		6,590	189	28.2	2	1.1			
BR-15	03/11/02		5,500	172	36.6	2.2				
BR-15	06/09/02		5,800	373	36.9	4.6	3.8			
BR-15	09/22/02		4,390	555	40.3	7.5	5.4			
BR-15	12/08/02		4,740	177	43.6	2.8				
BR-15	03/22/03		2,500	404	21.9	4.3	1.2			
BR-15	06/13/03		1,180	1,390	24.8	8.4	3.9			
BR-15	09/21/03		1,230	580	35.3	6.9	8.3			
BR-15	12/13/03		2,000	194	24.9	2.8				
BR-15	12/12/07		212	380	2.81	1.48	15.7			
BR-15	05/04/08		43.4	449	2.94	1.38	28.2			
BR-15	11/06/08		4.08	4.04						
See notes at end			00	T.V.T						

2017 Annual Progress Report Former Taylor Instruments Site Rochester, New York									
Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (μg/L)		
BR-15	05/06/09		261	105	1.33		6.40		
BR-15	10/20/09		38.0	19.3					
BR-15	05/12/10		167	123	2.12		3.11		
BR-15	05/04/11		1.74	27.2			25.9		
BR-15	11/02/11		1.01	8.81			10.8		
BR-15	05/16/12								
BR-15	11/01/12								
BR-15 BR-15	05/14/13 11/12/13			1.53 	 1.02		7.51 8.9		
BR-15	05/07/14		1.64	8.33	2.47		41.1		
BR-15	10/28/14			1.28	1.77		11.3		
BR-15	05/13/15			1.94			16.9		
BR-15	10/28/15						2.2		
BR-15	05/04/16						1.42		
BR-15	10/25/16						3.0		
BR-15	05/09/17								
BR-15	10/31/17		2.43	5.22			4.06		
DUP-01	10/31/17		2.33	5.70			5.20		
Notes: = no detections μg/L = micrograms per liter 1,1-DCE = 1,1-dichloroethene cis-1,2-DCE = cis-1,2-dichloroethene trans-1,2-DCE = trans-1,2-dichloroethene				DUP = duplicate D = identification J = estimated value CE = trichloroethe /OC = volatile orga	ene				

APPENDIX D

LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS

MAY 2017 LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-128571-1 Client Project/Site: Former Taylor Instruments

For:

AMEC Foster Wheeler E & I, Inc 2030 Falling Waters Road Ste 300 Knoxville, Tennessee 37922

Attn: Mr. Joe Deatherage

Authorized for release by: 5/26/2017 1:30:40 PM

Shali Brown, Project Manager II (615)301-5031 shali.brown@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory,

LINKS Review your project results through TOTO ACCESS

Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	24
	30
Chronicle	31
Method Summary	34
Certification Summary	35
Chain of Custody	36
Receipt Checklists	39

Client: AMEC Foster Wheeler E & I, Inc Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-128571-1

.ab Sample ID	Client Sample ID	Matrix	Collected Received
90-128571-1	TW-04	Water	05/09/17 11:15 05/12/17 09:20
190-128571-2	OB-04	Water	05/09/17 13 10 05/12/17 09 20
190-128571-3	OB-08	Water	05/09/17 15 05 05/12/17 09 20
190-128571-4	BR-15	Water	05/09/17 17:25 05/12/17 09:20
190-128571-5	TW-17	Water	05/10/17 09:34 05/12/17 09:20
190-128571-6	TW-20	Water	05/10/17 11:08 05/12/17 09:20
90-128571-7	TW-09	Water	05/10/17 12:15 05/12/17 09:20
90-128571-8	OB-06	Water	05/10/17 13 20 05/12/17 09 20
90-128571-9	W-5	Water	05/10/17 14 55 05/12/17 09:20
90-128571-10	BR-03	Water	05/10/17 16 53 05/12/17 09 20
90-128571-11	DUP-01	Water	05/10/17 00 01 05/12/17 09 20
90-128571-12	BR-10	Water	05/11/17 09 20 05/12/17 09 20
90-128571-13	BR-04	Water	05/11/17 10 45 05/12/17 09 20
90-128571-14	BR-02	Water	05/11/17 12 28 05/12/17 09 20
90-128571-15	BR-01	Water	05/11/17 13 38 05/12/17 09 20
90-128571-16	QARB-01	Water	05/11/17 14:10 05/12/17 09:20
90-128571-17	QAFB-01	Water	05/11/17 14:15 05/12/17 09:20
90-128571-18	QATB-01	Water	05/11/17 14:20 05/12/17 09:20

Job ID: 490-128571-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-128571-1

Comments

No additional comments,

Receipt

The samples were received on 5/12/2017 9:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.7° C.

GC/MS VOA

Method(s) 8260C: The following sample was diluted due to the nature of the sample matrix: BR-04 (490-128571-13) and BR-01 (490-128571-15). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Definitions/Glossary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: Former Taylor Instruments

5 6

Qualifiers

GC/MS VOA	
Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
<u></u>	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
ĊFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: TW-04 Date Collected: 05/09/17 11:15 Date Received: 05/12/17 09:20

Lab Sample ID: 490-128571-1

Matrix: Water

13

Method: 8260C - Volatile C Analyte		Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00	ug	g/L			05/16/17 16:05	1
cis-1,2-Dichloroethene	ND		1.00	ug	g/L			05/16/17 16:05	1
Tetrachloroethene	ND		1.00	ug	g/L			05/16/17 16:05	1
trans-1,2-Dichloroethene	ND		1.00	ug	3/L			05/16/17 16:05	1
Trichloroethene	ND		1.00	ug	g/L			05/16/17 16:05	1
Vinyl chloride	ND		1.00	ug	3/L			05/16/17 16:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		70 - 130			-		05/16/17 16:05	1
4-Bromofluorobenzene (Surr)	101		70 - 130					05/16/17 16:05	1
Dibromofluoromethane (Surr)	100		70 - 130					05/16/17 16:05	1
Toluene-dB (Surr)	105		70 - 130					05/16/17 16:05	1

TestAmerica Job ID: 490-128571-1

Client Sample ID: OB-04 Date Collected: 05/09/17 13:10 Date Received: 05/12/17 09:20

Lab Sample ID: 490-128571-2 Matrix: Water

Analyte	Result	unds by G Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L		·····	05/16/17 16:31	1
cis-1,2-Dichloroethene	225		1,00		ug/L			05/16/17 16:31	1
Tetrachloroethene	ND		1.00		ug/L			05/16/17 16:31	1
trans-1,2-Dichloroethene	3.57		1.00		ug/L			05/16/17 16:31	1
Trichloroethene	2.63		1.00		ug/L			05/16/17 16:31	1
Vinyl chloride	72.0		1.00		ug/L			05/16/17 16:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		70-130			3		05/16/17 16:31	1
4-Bromofluorobenzene (Surr)	99		70 - 130					05/16/17 16:31	1
Dibromofluoromethane (Surr)	104		70-130					05/16/17 16:31	1
Toluene-d8 (Surr)	103		70 - 130					05/16/17 16:31	1

Client Sample Results

TestAmerica Job ID: 490-128571-1

Client Sample ID: OB-08 Date Collected: 05/09/17 15:05 Date Received: 05/12/17 09:20

Lab Sample ID: 490-128571-3 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/16/17 16 56	1
cis-1,2-Dichloroethene	6.00		1.00		ug/L			05/16/17 16:56	1
Tetrachloroethene	ND		1.00		ug/L			05/16/17 16:56	1
trans-1,2-Dichloroethene	3.99		1.00		ug/L			05/16/17 16:56	1
Trichloroethene	ND		1.00		ug/L			05/16/17 16:56	1
Vinyl chloride	29.2		1.00		ug/L			05/16/17 16:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		70-130				00	05/16/17 16:56	1
4-Bromofluorobenzene (Surr)	101		70 - 130					05/16/17 16:56	1
Dibromofluoromethane (Surr)	101		70.130					05/16/17 16:56	1
Toluene-dB (Surr)	103		70 - 130					05/16/17 16:56	1

TestAmerica Nashville

Client Sample ID: BR-15 Date Collected: 05/09/17 17:25 Date Received: 05/12/17 09:20

Lab Sample ID: 490-128571-4

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/16/17 17:21	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			05/16/17 17 21	1
Tetrachloroethene	ND		1.00		ug/L			05/16/17 17 21	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			05/16/17 17 21	1
Trichloroethene	ND		1.00		ug/L			05/16/17 17:21	1
Vinyl chloride	ND		1.00		ug/L			05/16/17 17:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		70-130			- 0 - ¹		05/16/17 17:21	1
4-Bromofluorobenzene (Surr)	100		70 - 130					05/16/17 17 21	1
Dibromofluoromethane (Surr)	101		70-130					05/16/17 17 21	1
Toluene-d8 (Surr)	104		70 - 130					05/16/17 17.21	1

RL

1.00

1.00

1.00

1.00

1.00

1,00

Limits

70-130

70-130

70 - 130

70-130

MDL Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

D

Prepared

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

192

ND

4.33

35.4

84.5

%Recovery Qualifier

97

100

101

102

TestAmerica Job ID: 490-128571-1

Client Sample ID: TW-17 Date Collected: 05/10/17 09:34 Date Received: 05/12/17 09:20

Analyte

1,1-Dichloroethene

Tetrachloroethene

Trichloroethene

Toluene-d8 (Surr)

Vinyl chloride

Surrogate

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 490-128571-5 **Matrix: Water**

05/16/17

05/16/17

05/16/17 05/16/17

05/16/17

05/16/17

05/16/17

05/16/17

05/16/17

05/16/17

	Dil Fac	Analyzed
	1	5/16/17 17:47
	1	5/16/17 17:47
2	1	5/16/17 17:47
	1	5/16/17 17 47
1	1	5/16/17 17:47
	1	5/16/17 17:47
	Dil Fac	Analyzed
	1	5/16/17 17:47
	1	5/16/17 17:47
	1	5/16/17 17:47
	1	5/16/17 17 47

RL

1.00

1.00

1.00

1.00

1.00

1.00

Limits

70-130

70 - 130

70 - 130

70-130

MDL Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

D

Prepared

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

1.99

ND

ND

19.2

ND

94

99

101

103

Qualifier

%Recovery

Client Sample ID: TW-20 Date Collected: 05/10/17 11:08 Date Received: 05/12/17 09:20

Analyte

1,1-Dichloroethene

Tetrachloroethene

Trichloroethene

Toluene-d8 (Surr)

Vinyl chloride

Surrogate

cis-1.2-Dichloroethene

trans-1,2-Dichloroethene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 490-128571-6 Matrix: Water

Analyzed

05/16/17 18:12

05/16/17 18:12

05/16/17 18:12

05/16/17 18:12

05/16/17 18:12

05/16/17 18:12

Analyzed

05/16/17 18:12

05/16/17 18:12

05/16/17 18:12

05/16/17 18.12

TestAmerica Nashville

Client Sample ID: TW-09 Date Collected: 05/10/17 12:15 Date Received: 05/12/17 09:20

Lab Sample ID: 490-128571-7

Matrix: Water

5 6 7

13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00	·	ug/L			05/16/17 18:38	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			05/16/17 18:38	1
Tetrachloroethene	ND		1.00		ug/L			05/16/17 18:38	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			05/16/17 18:38	1
Trichloroethene	2.49		1.00		ug/L			05/16/17 18:38	1
Vinyl chloride	ND		1.00		ug/L			05/16/17 18:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dii Fac
1,2-Dichloroethane-d4 (Surr)	98		70 - 130					05/16/17 18:38	1
4-Bromofluorobenzene (Surr)	101		70 - 130					05/16/17 18:38	1
Dibromofluoromethane (Surr)	100		70-130					05/16/17 18:38	1
Toluene-d8 (Surr)	105		70 - 130					05/16/17 18:38	1

TestAmerica Job ID: 490-128571-1

Client Sample ID: OB-06 Date Collected: 05/10/17 13:20 Date Received: 05/12/17 09:20

Lab Sample ID: 490-128571-8

Matrix: Water

Method: 8260C - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1,00		ug/L			05/16/17 19:03	1
cis-1,2-Dichloroethene	2.93		1.00		ug/L			05/16/17 19:03	1
Tetrachloroethene	ND		1,00		ug/L			05/16/17 19:03	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			05/16/17 19:03	1
Trichloroethene	3.26		1,00		ug/L			05/16/17 19:03	1
Vinyl chloride	6.84		1.00		ug/L			05/16/17 19:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		70.130			2		05/16/17 19:03	1
4-Bromofluorobenzene (Surr)	100		70-130					05/16/17 19 03	1
Dibromofluoromethane (Surr)	100		70-130					05/16/17 19 03	1
Toluene-d8 (Surr)	105		70 - 130					05/16/17 19 03	1

TestAmerica Nashville

TestAmerica Job ID: 490-128571-1

Client Sample ID: W-5 Date Collected: 05/10/17 14:55 Date Received: 05/12/17 09:20

Lab Sample ID: 490-128571-9

Matrix: Water

13

Method: 8260C - Volatile O Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
I,1-Dichloroethene	ND		1.00	ug/L			05/16/17 19:28	1
cis-1,2-Dichloroethene	122		1.00	ug/L			05/16/17 19 28	1
Fetrachloroethene	ND		1.00	ug/L			05/16/17 19 28	1
rans-1,2-Dichloroethene	11.7		1.00	ug/L			05/16/17 19:28	1
Frichloroethene	78.5		1.00	ug/L			05/16/17 19 28	1
/inyl chloride	74.2		1.00	ug/L			05/16/17 19 28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		70-130		8		05/16/17 19 28	1
4-Bromofluorobenzene (Surr)	100		70 - 130				05/16/17 19 28	1
Dibromofluoromethane (Surr)	101		70 - 130				05/16/17 19 28	1
Toluene-d8 (Surr)	104		70 - 130				05/16/17 19 28	1

×.

Client Sample Results

Limits

70-130

70.130

70 - 130 70 - 130

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

2.05

97.4

3.57

352

ND

102

104

102

99

%Recovery Qualifier

ND

TestAmerica Job ID: 490-128571-1

Client Sample ID: BR-03 Date Collected: 05/10/17 16:53 Date Received: 05/12/17 09:20

Analyte

1,1-Dichloroethene

Tetrachloroethene

Trichloroethene

Toluene-d8 (Surr)

Vinyl chloride

Surrogate

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 490-128571-10 Matrix: Water

water								
Dil Fac	Analyzed	Prepared	D	Unit	MDL	RL.		
1	05/17/17 13.49			ug/L		1.00		
1	05/17/17 13:49			ug/L		1.00		
1	05/17/17 13:49			ug/L		1.00		
1	05/17/17 13:49			ug/L		1.00		
1	05/17/17 13:49			ug/L		1.00		
1	05/17/17 13:49			ug/L		1.00		
Dil Fac	Analyzed	Prepared				ts		
1	05/17/17 13:49		-			130		
1	05/17/17 13:49					130		
1	05/17/17 13:49					130		
Y 000 1	05/17/17 13:49					130		

TestAmerica Job ID: 490-128571-1

Client Sample ID: DUP-01 Date Collected: 05/10/17 00:01 Date Received: 05/12/17 09:20

Lab Sample ID: 490-128571-11

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS							R
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	1
1,1-Dichloroethene	ND		1.00		ug/L			05/16/17 20:29	1	
cis-1,2-Dichloroethene	112		1,00		ug/L			05/16/17 20:29	1	
Tetrachloroethene	ND		1.00		ug/L			05/16/17 20:29	1	1
trans-1,2-Dichloroethene	9.03		1.00		ug/L			05/16/17 20:29	1	
Trichloroethene	87.4		1.00		ug/L			05/16/17 20:29	1	1
Vinyl chloride	59.0		1.00		ug/L			05/17/17 13:23	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	1
1,2-Dichloroethane-d4 (Surr)	97		70 - 130					05/16/17 20.29	1	
1,2-Dichloroethane-d4 (Surr)	98		70 - 130					05/17/17 13:23	1	
4-Bromofluorobenzene (Surr)	93		70.130					05/16/17 20.29	1	
4-Bromofluorobenzene (Surr)	106		70 - 130					05/17/17 13.23	1	
Dibromofluoromethane (Surr)	89		70-130					05/16/17 20.29	1	
Dibromofluoromethane (Surr)	100		70 - 130					05/17/17 13:23	1	
Toluene-d8 (Surr)	103		70_130					05/16/17 20.29	1	
Toluene-dB (Surr)	99		70 - 130					05/17/17 13:23	1	1

TestAmerica Job ID: 490-128571-1

Client Sample ID: BR-10 Date Collected: 05/11/17 09:20 Date Received: 05/12/17 09:20

Lab Sample ID: 490-128571-12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichioroethene	1.02		1.00		ug/L			05/16/17 21:35	1
cis-1,2-Dichloroethene	357		1.00		ug/L			05/16/17 21:35	1
Tetrachloroethene	ND		1.00		ug/L			05/16/17 21:35	1
trans-1,2-Dichloroethene	48.4		1.00		ug/L			05/16/17 21:35	1
Trichloroethene	151		1.00		ug/L			05/16/17 21:35	1
Vinyl chloride	1.65		1.00		ug/L			05/16/17 21:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dii Fac
1,2-Dichloroethane-d4 (Surr)	96		70-130					05/16/17 21:35	1
4-Bromofluorobenzene (Surr)	100		70-130					05/16/17 21:35	1
Dibromofluoromethane (Surr)	101		70 - 130					05/16/17 21:35	1
Toluene-d8 (Surr)	102		70 - 130					05/16/17 21:35	ii 1

Client Sample ID: BR-04 Date Collected: 05/11/17 10:45 Date Received: 05/12/17 09:20

Lab Sample ID: 490-128571-13

Method: 8260C - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		10.0		ug/L			05/16/17 21:10	10
cis-1,2-Dichloroethene	1450		10.0		ug/L			05/16/17 21:10	10
Tetrachloroethene	ND		10.0		ug/L			05/16/17 21:10	10
trans-1,2-Dichloroethene	63.8		10.0		ug/L			05/16/17 21:10	10
Trichloroethene	703		10.0		ug/L			05/16/17 21:10	10
Vinyl chloride	60.0		10.0		ug/L			05/16/17 21:10	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		70 - 130				· · · · · · · · · · · · · · · · · · ·	05/16/17 21:10	10
4-Bromofluorobenzene (Surr)	100		70 - 130					05/16/17 21:10	10
Dibromofluoromethane (Surr)	104		70 - 130					05/16/17 21:10	10
Toluene-d8 (Surr)	103		70 - 130					05/16/17 21:10	10

RL

1.00

1.00

1.00

1.00

1.00

1.00

Limits

70-130

70-130

70-130

70 - 130

MDL Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

D

Prepared

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

77.1

ND

3.33

89.7

3.45

%Recovery Qualifier

97

100

98

102

TestAmerica Job ID: 490-128571-1

Analyzed

05/16/17 19:54

05/16/17 19:54

05/16/17 19:54

05/16/17 19:54

05/16/17 19:54

05/16/17 19:54

Analyzed

05/16/17 19:54

05/16/17 19 54

05/16/17 19:54

05/16/17 19:54

Client Sample ID: BR-02 Date Collected: 05/11/17 12:28 Date Received: 05/12/17 09:20

Analyte

1,1-Dichloroethene

Tetrachloroethene

Trichloroethene

Toluene-d8 (Surr)

Vinyl chloride

Surrogate

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 490-128571-14 Matrix: Water

Client Sample ID: BR-01 Date Collected: 05/11/17 13:38 Date Received: 05/12/17 09:20

Lab Sample ID: 490-128571-15 Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1-Dichloroethene	ND		5.00		ug/L			05/16/17 20 45	5	
cis-1,2-Dichloroethene	851		5,00		ug/L			05/16/17 20 45	5	
Tetrachloroethene	ND		5.00		ug/L			05/16/17 20 45	5	-
trans-1,2-Dichloroethene	38.9		5,00		ug/L			05/16/17 20 45	5	
Trichioroethene	7.23		5.00		ug/L			05/16/17 20:45	5	2
Vinyl chloride	348		5.00		ug/L			05/16/17 20:45	5	13
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	96		70 - 130					05/16/17 20:45	5	
4-Bromofluorobenzene (Surr)	100		70-130					05/16/17 20:45	5	
Dibromofluoromethane (Surr)	101		70-130					05/16/17 20:45	5	
Toluene-d8 (Surr)	104		70 - 130					05/16/17 20:45	5	

TestAmerica Job ID: 490-128571-1

Client Sample ID: QARB-01 Date Collected: 05/11/17 14:10 D

Lab Sample ID: 490-128571-16

Matrix: Water

Date Received: 05/12/17 09:2	20								100
Method: 8260C - Volatile Or Analyte		unds by G Qualifier	C/MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/16/17 15:40	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			05/16/17 15:40	1
Tetrachloroethene	ND		1.00		ug/L			05/16/17 15:40	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			05/16/17 15:40	1
Trichloroethene	ND		1.00		ug/L			05/16/17 15:40	1
Vinyl chloride	ND		1.00		ug/L			05/16/17 15 40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		70 - 130			•		05/16/17 15:40	1
4-Bromofluorobenzene (Surr)	101		70 - 130					05/16/17 15:40	1
Dibromofluoromethane (Surr)	100		70 - 130					05/16/17 15.40	1
Toluene-d8 (Surr)	103		70 - 130					05/16/17 15:40	1

TestAmerica Nashville

Client: AMEC Foster Wheeler E & I, Inc Project/Site: Former Taylor Instruments TestAmerica Job ID: 490-128571-1

Client Sample ID: QAFB-01 Date Collected: 05/11/17 14:15 Date Received: 05/12/17 09:20

Lab Sample ID: 490-128571-17

Method: 8260C - Volatile C Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1-Dichloroethene	ND		1,00		ug/L			05/16/17 15:14	1	F
sis-1,2-Dichloroethene	ND		1.00		ug/L			05/16/17 15 14	1	
Fetrachloroethene	ND		1.00		ug/L			05/16/17 15:14	1	
rans-1,2-Dichloroethene	ND		1.00		ug/L			05/16/17 15:14	1	
Trichloroethene	ND		1.00		ug/L			05/16/17 15:14	1	2
Vinyl chloride	ND		1.00		ug/L			05/16/17 15:14	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	1
1,2-Dichloroethane-d4 (Surr)	98		70-130					05/16/17 15:14	1	
4-Bromofluorobenzene (Surr)	103		70 <i>-</i> 130					05/16/17 15:14	1	
Dibromofluoromethane (Surr)	101		70-130					05/16/17 15:14	1	
Toluene-d8 (Surr)	104		70-130					05/16/17 15.14	1	

Client Sample ID: QATB-01 Date Collected: 05/11/17 14:20 Date Received: 05/12/17 09:20

Lab Sample ID: 490-128571-18 Matrix: Water

6

Method: 8260C - Volatile Organic Compounds by GC/MS Analyte **Result Qualifier** RL MDL Unit Ð **Dil Fac** Prepared Analyzed 1,1-Dichloroethene ND 1.00 ug/L 05/16/17 14:49 1 cis-1.2-Dichloroethene ND 1.00 ug/L 05/16/17 14:49 1 Tetrachloroethene ND 1.00 ug/L 05/16/17 14:49 1 trans-1,2-Dichloroethene ND 1.00 ug/L 05/16/17 14:49 1 Trichloroethene ND 1.00 ug/L 05/16/17 14:49 1 Vinyl chloride ND 1.00 ug/L 05/16/17 14:49 1 %Recovery Surrogate Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 98 70-130 05/16/17 14:49 1 4-Bromofluorobenzene (Surr) 98 70-130 05/16/17 14 49 1 Dibromofluoromethane (Surr) 100 70-130 05/16/17 14:49 1 Toluene-d8 (Surr) 103 70-130 05/16/17 14:49 1

TestAmerica Nashville

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 490-4302 Matrix: Water Analysis Batch: 430238	38/8					Client Sam	ple ID: Method Prep Type: To		
Analysis Daten. 400200	MB	MB							
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	i
1,1-Dichloroethene	ND		1.00	ug/L			05/16/17 13:58	1	
cis-1,2-Dichloroethene	ND		1.00	ug/L			05/16/17 13 58	1	
Tetrachloroethene	ND		1.00	ug/L			05/16/17 13 58	1	
trans-1,2-Dichloroethene	ND		1.00	ug/L			05/16/17 13 58	1	F
Trichloroethene	ND		1.00	ug/L			05/16/17 13 58	1	
Vinyl chloride	ND		1.00	ug/L			05/16/17 13:58	1	i
	МВ	МВ							l
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	95		70 - 130				05/16/17 13:58	1	
4-Bromofluorobenzene (Surr)	101		70 - 130				05/16/17 13:58	1	
Dibromofluoromethane (Surr)	100		70 - 130				05/16/17 13:58	1	
Toluene-d8 (Surr)	104		70 - 130				05/16/17 13:58	1	

Lab Sample ID: LCS 490-430238/3 Matrix: Water Analysis Batch: 430238

	Spike	LCS LC	CS		%Rec.	
Analyte	Added	Result Q	ualifier Unit	D %Rec	Limits	
1,1-Dichloroethene	20 0	18.50	ug/L	92	79.124	
cis-1,2-Dichloroethene	20.0	22.48	ug/L	112	76 - 125	
Tetrachloroethene	20.0	20.36	ug/L	102	80 - 126	
trans-1,2-Dichloroethene	20.0	20.83	ug/L	104	79 - 126	
Trichloroethene	20.0	20.06	ug/L	100	80 - 123	
Vinyl chloride	20.0	20.58	ug/L	103	68 - 120	
1.00	100					

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		70 - 130
4-Bromofluorobenzene (Surr)	99		70.130
Dibromofluoromethane (Surr)	100		70.130
Toluene-d8 (Surr)	102		70 - 130

Lab Sample ID: LCSD 490-430238/4 Matrix: Water Analysis Batch: 430238

Analysis Daten. 450200										
		Spike	LCSD	LCSD				%Rec.		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene		20.0	21.44		ug/L		107	79-124	15	20
cis-1,2-Dichloroethene		20.0	21.69		ug/L		108	76-125	4	15
Tetrachloroethene		20.0	20.21		ug/L		101	80 - 126	1	17
trans-1,2-Dichloroethene		20.0	20 52		ug/L		103	79 - 126	2	15
Trichloroethene		20.0	20.10		ug/L		101	80 - 123	0	14
Vinyl chloride		20.0	19.84		ug/L		99	68 - 120	4	15
	LCSD LCSD									

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		70 - 130
4-Bromofluorobenzene (Surr)	101		70-130
Dibromofluoromethane (Surr)	101		70 - 130

TestAmerica Nashville

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Lab Sample ID: LCSD 490-430238/4

Client Sample ID: Lab Control Sample Dup

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water Analysis Batch: 430238									Prep Type: Tot	al/NÁ
	LCSD	LCSD								
Surrogate	%Recovery	Qualifier	Limits							
Toluene-d8 (Suπ)	102		70-130							
Lab Sample ID: 490-1285 Matrix: Water	71-4 MS							Cli	ent Sample ID: E Prep Type: Tot	
Analysis Batch: 430238										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	ND		20.0	23.79		ug/L		119	54 - 150	
cis-1,2-Dichloroethene	ND		20.0	24.03		ug/L		120	68 - 131	
Tetrachloroethene	ND		20.0	22.44		ug/L		112	57 - 138	
trans-1,2-Dichloroethene	ND		20.0	22.82		ug/L		114	59 - 143	
Trichloroethene	ND		20.0	22.63		ug/L		110	63 - 135	
Vinyl chloride	ND		20.0	21.56		ug/L		108	57 - 150	
22	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	95		70 - 130							
4-Bromofluorobenzene (Surr)	100		70 - 130							
Dibromofluoromethane (Surr)	101		70-130							

Lab Sample ID: 490-128571-4 MSD Matrix: Water Analysis Batch: 430238

Toluene-d8 (Surr)

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND		20,0	24.73		ug/L		124	54 - 150	4	17
cis-1,2-Dichloroethene	ND		20.0	23.76		ug/L		119	68 - 131	1	17
Tetrachloroethene	ND		20.0	22.44		ug/L		112	57 - 138	0	16
trans-1,2-Dichloroethene	ND		20.0	22.38		ug/L		112	59 - 143	2	16
Trichloroethene	ND		20.0	22.16		ug/L		108	63 - 135	2	17
Vinyl chloride	ND		20.0	21.44		ug/L		107	57 - 150	1	17
	MSD	MSD									

70 - 130

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		70 - 130
4-Bromofluorobenzene (Surr)	102		70 - 130
Dibromofluoromethane (Surr)	100		70 - 130
Toluene-d8 (Surr)	104		70 - 130

104

Lab Sample ID: MB 490-430242/7 Matrix: Water Analysis Batch: 430242

	MB	MB							
Analyte	Result	Qualifier	RL	MÐL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/16/17 15:10	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			05/16/17 15:10	1
Tetrachloroethene	ND		1.00		ug/L			05/16/17 15:10	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			05/16/17 15:10	1

TestAmerica Nashville

Prep Type: Total/NA

Client Sample 1D: Method Blank

Client Sample ID: BR-15 Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 490-430 Matrix: Water Analysis Batch: 430242	242/7						Client Sam	ple ID: Method Prep Type: To	
	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		1.00		ug/L	·		05/16/17 15:10	1
Vinyl chloride	ND		1.00		ug/L			05/16/17 15:10	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		70-130			•		05/16/17 15:10	1
4-Bromofluorobenzene (Surr)	95		70-130					05/16/17 15:10	1
Dibromofluoromethane (Surr)	93		70-130					05/16/17 15:10	1
Toluene-d8 (Suπ)	104		70 - 130					05/16/17 15:10	1

Lab Sample ID: LCS 490-430242/3 Matrix: Water Analysis Batch: 430242

Analysis Daton. 450242	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	20.0	18,80		ug/L		94	79 - 124
cis-1,2-Dichloroethene	20.0	19.26		ug/L		96	76 - 125
Tetrachloroethene	20.0	21.78		ug/L		109	80 - 126
trans-1,2-Dichloroethene	20.0	18.48		ug/L		92	79 - 126
Trichloroethene	20,0	19.62		ug/L		98	80.123
Vinyl chloride	20.0	16.49		ug/L		82	68 - 120

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		70-130
4-Bromofluorobenzene (Surr)	98		70 - 130
Dibromofluoromethane (Surr)	93		70-130
Toluene-d8 (Surr)	101		70 - 130

Lab Sample ID: LCSD 490-430242/4 Matrix: Water Analysis Ratch: 430242

Analysis Daton, 450242									
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	20.0	20 02		ug/L		100	79.124	6	20
cis-1 2-Dichloroethene	20.0	19.28		ug/L		96	76 - 125	0	15
Tetrachloroethene	20.0	21.44		ug/L		107	80 - 126	2	17
trans-1,2-Dichloroethene	20.0	19.12		ug/L		96	7 9 - 126	3	15
Trichloroethene	20.0	19.87		ug/L		99	80 - 123	1	14
Vinyl chloride	20.0	17.84		ug/L		89	68 - 120	8	15

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		70 - 130
4-Bromofluorobenzene (Surr)	98		70 - 130
Dibromofluoromethane (Surr)	93		70.130
Toluene-d8 (Suπ)	101		70-130

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

100

Lab Sample ID: 490-1285 Matrix: Water	36-A-4 MS						CI	ient Sa	mple ID: M Prep Type	atrix Spike a: Total/NA
Analysis Batch: 430242	•	Sample	Spike	MS			_		%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	ND		20.0	21.83		ug/L		109	54 - 150	
cis-1,2-Dichloroethene	ND		20.0	20.71		ug/L		104	68 - 131	
Tetrachioroethene	ND	F2 F1	20.0	121,1	F1	ug/L		605	57 - 138	
trans-1,2-Dichloroethene	ND		20.0	20.92		ug/L		105	59 - 143	
Trichloroethene	ND		20.0	21.86		ug/L		109	63 - 135	
Vinyl chloride	ND	2	20.0	19,51		ug/L		98	57 - 150	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	94		70 - 130							
4-Bromofluorobenzene (Surr)	97		70 - 130							
Dibromofluoromethane (Surr)	94		70-130							

70-130

Lab Sample ID: 490-128536-A-4 MSD Matrix: Water Analysis Batch: 430242

Toluene-d8 (Surr)

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND		20.0	21.26		ug/L		106	54 - 150	3	17
cis-1,2-Dichloroethene	ND		20.0	21.09		ug/L		105	68 - 131	2	17
Tetrachloroethene	ND	F2 F1	20.0	43.71	-F1 F2	ug/L		219	57 - 138	94	16
trans-1,2-Dichloroethene	ND		20.0	20.79		ug/L		104	59 - 143	1	16
Trichloroethene	ND		20.0	22.02		ug/L		110	63 - 135	1	17
Vinyl chloride	ND		20.0	19.30		ug/L		97	57 - 150	1	17
	Men	MOD									

	พรม	mau	
Surrogate	%Recovery	Qualifier	Limits
1.2-Dichloroethane-d4 (Surr)	94		70 - 130
4-Bromofluorobenzene (Surr)	98		70-130
Dibromofluoromethane (Surr)	94		70 - 130
Toluene-d8 (Surr)	100		70-130

Lab Sample ID: MB 490-430588/7 Matrix: Water

Analysis Batch: 430588

	MB	MB							
Analyte	Result	Qualifier	RL	MÐL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1,00		ug/L			05/17/17 12 57	1
cis-1_2-Dichloroethene	ND		1.00		ug/L			05/17/17 12 57	1
Tetrachloroethene	ND		1,00		ug/L			05/17/17 12 57	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			05/17/17 12:57	1
Trichloroethene	ND		1.00		ug/L			05/17/17 12:57	1
Vinyl chloride	ND		1.00		ug/L			05/17/17 12:57	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		70 - 130					05/17/17 12:57	1
4-Bromofluorobenzene (Surr)	105		70 - 130					05/17/17 12:57	1
Dibromofluoromethane (Surr)	103		70 - 130					05/17/17 12 57	1

TestAmerica Nashville

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

5/26/2017

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

94

99

99

Lab Sample ID: MB 490-430 Matrix: Water Analysis Batch: 430588)588/7						Cli	ent Sam	ple ID: Metho Prep Type: T	
	М	в мв								
Surrogate	%Recover	y Qualifier	Limits				F	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	10	1	70_130				1		05/17/17 12:57	1
Lab Sample ID: LCS 490-43	0588/3					Clie	ent Sa	mple ID	: Lab Control	Sample
Matrix: Water								•	Prep Type: T	
Analysis Batch: 430588										
-			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene			20.0	19.62		ug/L		98	79 - 124	
cis-1,2-Dichloroethene			20.0	20.15		ug/L		101	76 - 125	
Tetrachloroethene			20.0	23.66		ug/L		118	80 - 126	
trans-1,2-Dichloroethene			20.0	19.14		ug/L		96	79 - 126	
Trichloroethene			20.0	20.88		ug/L		104	80 - 123	
Vinyl chloride			20.0	20.38		ug/L		102	68 - 120	
	LCS L	cs								
Surrogate	%Recovery Q	ualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	97		70.130							

-	
Lab Sample ID: LCSD 490-430588/4	
Matrix: Water	
Analysis Batch: 430588	

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Suπ)

· · · · · · · · · · · · · · · · · · ·	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	20,0	19.90		ug/L		100	79 - 124	1	20
cis-1,2-Dichloroethene	20.0	19.95		ug/L		100	76.125	1	15
Tetrachloroethene	20.0	22.93		ug/L		115	80 - 126	3	17
trans-1,2-Dichloroethene	20.0	19.29		ug/L		96	79 - 126	1	15
Trichloroethene	20.0	20.71		ug/L		104	80 - 123	1	14
Vinyl chloride	20 0	20.45		ug/L		102	68 - 120	0	15

70 - 130

70 - 130

70 - 130

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		70 - 130
4-Bromofluorobenzene (Surr)	95		70-130
Dibromofluoromethane (Surr)	99		70-130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: 490-128526-A-1 MS Matrix: Water Analysis Batch: 430588

	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
1,1-Dichloroethene	ND		20.0	20.99		ug/L		105	54 - 150	 	-
cis-1,2-Dichloroethene	ND		20.0	21.64		ug/L		106	68 - 131		
Tetrachloroethene	ND		20.0	22.70		ug/L		113	57 - 138		
trans-1,2-Dichloroethene	ND		20.0	20.31		ug/L		102	59 - 143		

TestAmerica Nashville

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 490-12852 Matrix: Water	6-A-1 MS						Client Sample ID: Matrix Spi Prep Type: Total/I						
Analysis Batch: 430588													
	Sample	Sample	Spike	MS	MS				%Rec.				
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits				
Trichloroethene	12.8		20.0	29.07		ug/L		81	63 - 135				
Vinyl chloride	ND		20.0	21.65		ug/L		108	57 - 150				
	MS	MS											
Surrogate	%Recovery	Qualifier	Limits										
1,2-Dichloroethane-d4 (Surr)	102		70 - 130										
4-Bromofluorobenzene (Surr)	93		70 - 130										
Dibromofluoromethane (Surr)	100		70 - 130										
Toluene-d8 (Surr)	99		70 - 130										

Lab Sample ID: 490-128526-A-1 MSD Matrix: Water Analysis Batch: 430588

Analysis Datch, 450500	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1,1-Dichloroethene	ND		20,0	21.27		ug/L		106	54 - 150	1	17	1
cis-1,2-Dichloroethene	ND		20.0	21.63		ug/L		106	68 - 131	0	17	
Tetrachloroethene	ND		20.0	22.43		ug/L		112	57 - 138	1	16	
trans-1,2-Dichloroethene	ND		20.0	20.22		ug/L		101	59 - 143	0	16	
Trichloroethene	12.8		20.0	32.08		ug/L		97	63.135	10	17	
Vinyl chloride	ND		20.0	22.00		ug/L		110	57 - 150	2	17	
	MSD	MSD										

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		70-130
4-Bromofluorobenzene (Surr)	91		70.130
Dibromofluoromethane (Surr)	97		70 - 130
Toluene-d8 (Surr)	98		70 - 130

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

TestAmerica Nashville

Client: AMEC Foster Wheeler E & I, Inc Project/Site: Former Taylor Instruments

GC/MS VOA

Analy	vsis	Batch:	430238

nalysis Batch: 430	238				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-128571-1	TW-04	Total/NA	Water	8260C	
490-128571-2	OB-04	Total/NA	Water	8260C	
490-128571-3	OB-08	Total/NA	Water	8260C	
490-128571-4	BR-15	Total/NA	Water	8260C	
490-128571-5	TW-17	Total/NA	Water	8260C	
490-128571-6	TW-20	Total/NA	Water	8260C	
490-128571-7	TW-09	Total/NA	Water	8260C	
490-128571-8	OB-06	Totai/NA	Water	8260C	
490-128571-9	W-5	Total/NA	Water	8260C	
490-128571-12	BR-10	Total/NA	Water	8260C	
490-128571-13	BR-04	Total/NA	Water	8260C	
490-128571-14	BR-02	Total/NA	Water	8260C	
490-128571-15	BR-01	Total/NA	Water	8260C	
490-128571-16	QARB-01	Total/NA	Water	8260C	
490-128571-17	QAFB-01	Total/NA	Water	8260C	
490-128571-18	QATB-01	Total/NA	Water	8260C	
MB 490-430238/8	Method Blank	Total/NA	Water	8260C	
LCS 490-430238/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 490-430238/4	Lab Control Sample Dup	Total/NA	Water	8260C	
490-128571-4 MS	BR-15	Total/NA	Water	8260C	
490-128571-4 MSD	BR-15	Total/NA	Water	8260C	
nalysis Batch: 430	242				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
490-128571-11	DUP-01	Total/NA	Water	8260C	
MB 490-430242/7	Method Blank	Total/NA	Water	8260C	
LCS 490-430242/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 490-430242/4	Lab Control Sample Dup	Total/NA	Water	8260C	
490-128536-A-4 MS	Matrix Spike	Total/NA	Water	8260C	
490-128536-A-4 MSD	Matrix Spike Duplicate	Total/NA	Water	8260C	
nalysis Batch: 430	588				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-128571-10	BR-03	Total/NA	Water	8260C	
490-128571-11	DUP-01	Total/NA	Water	8260C	
MB 490-430588/7	Method Blank	Total/NA	Water	8260C	
LCS 490-430588/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 490-430588/4	Lab Control Sample Dup	Total/NA	Water	8260C	
490-128526-A-1 MS	Matrix Spike	Total/NA	Water	8260C	
490-128526-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260C	

Client Sam Date Collecte Date Receive	d: 05/09/17 1	1:15					La	b Sample I		128571-1 trix: Wate
Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	430238	05/16/17 16:05		TAL NSH
Client Sam Date Collecte Date Receive	d: 05/09/17 1	3:10					La	b Sampie I		128571-2 trix: Wate
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	430238	05/16/17 16:31	NC	TAL NSH
Client Sam Date Collecte Date Receive	d: 05/09/17 1	5:05					La	b Sample I		128571-3 trix: Wate
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	430238	05/16/17 16:56	NC	TAL NSH
Client Sam Date Collecte Date Receive	d: 05/09/17 1 d: 05/12/17 0	7:25 9:20						b Sample I		128571-4 trix: Wate
Bren Turne	Batch	Batch Method	Due	Dil	Initial	Final	Batch	Prepared	Austral	1
Prep Type Total/NA	Type Analysis	8260C	Run	Factor 1	Amount 10 mL	Amount 10 mL	430238	or Analyzed 05/16/17 17:21	Analyst NC	Lab TAL NSH
Date Collecte	ple ID: TW d: 05/10/17 0 d: 05/12/17 0	9:34					La	b Sample I		128571- trix: Wate
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	430238	05/16/17 17:47	NC	TAL NSH
Date Collecte	pie ID: TW d: 05/10/17 1 d: 05/12/17 0	1:08					La	b Sample I		128571-(trix: Wate
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Bren Tune	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Amplust	Lab
Prep Type			riun.	Tactor	Allount	Allount		of Analyzeu	Analyst	TAL NSH
Total/NA	Analysis	8260C		1	10 mL	10 mL	430238	05/16/17 18:12		-

TestAmerica Nashville

Client Sam Date Collecter Date Received	d: 05/10/17 1	2:15					La	b Sample I		128571-7 trix: Wate
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	430238	05/16/17 18:38	NC	TAL NSH
Client Sam	ple ID: OB	-06					La	b Sample I	D: 490-	128571-
Date Collecte Date Received									Ма	trix: Wate
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	430238	05/16/17 19:03	NC	TAL NSH
Client Sam							La	b Sample I		
Date Received									IVIA	trix: Wate
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	430238	05/16/17 19:28	NC	TAL NSH
Client Sam Date Collecte Date Received	d: 05/10/17 1	6:53					Lab	Sample ID		28571-10 trix: Wate
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	430588	05/17/17 13:49	SW1	TAL NSH
Client Sam Date Collecte Date Received	d: 05/10/17 0	0:01					Lab	Sample ID		28571-1 trix: Wate
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	430242	05/16/17 20:29	P1B	TAL NSH
Total/NA	Analysis	8260C		1	10 mL	10 mL	430588	05/17/17 13 23	SW1	TAL NSH
Client Sam Date Collecte Date Received	d: 05/11/17 0	9:20					Lab	Sample ID		28571-1 trix: Wate
	Batch	Batch		Dil	Initial	Final	Batch	Prenared		

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	430238	05/16/17 21:35	NC	TAL NSH

-12 iter Client: AMEC Foster Wheeler E & I, Inc Project/Site: Former Taylor Instruments

13

Client Samp Date Collected Date Received	d: 05/11/17 1	0:45					Lab	Sample ID		28571-1: trix: Wate
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		10	10 mL	10 mL	430238	05/16/17 21:10	NC	TAL NSH
Client Samp Date Collected	d: 05/11/17 1	2:28					Lab	Sample ID		28571-1 trix: Wate
Date Received	I: 05/12/17 0	9:20								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	430238	05/16/17 19:54	NC	TAL NSH
Client Samp							Lab	Sample ID		
Date Collected Date Received									Ma	trix: Wate
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		5	10 mL	10 mL	430238	05/16/17 20:45	NC	TAL NSH
Client Samp Date Collected Date Received	d: 05/11/17 1	4:10					Lab	Sample ID		28571-1 trix: Wate
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	430238	05/16/17 15:40	NC	TAL NSH
Client Samp Date Collected Date Received	d: 05/11/17 1	4:15					Lab	Sample ID		28571-1 trix: Wate
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	430238	05/16/17 15:14	NC	TAL NSH
Client Samp Date Collected Date Received	d: 05/11/17 1	4:20					Lab	Sample ID		28571-1 trix: Wate
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA					1 111 0 0110	Anount	Romoer	Of Analyzed	Allalyst	Lav

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Client: AMEC Foster Wheeler E & I, Inc Project/Site: Former Taylor Instruments

Method	Method Description	Protocol	Laboratory
3260C	Volatile Organic Compounds by GC/MS	SW846	TAL NSH
Protocol F	References:		

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Accreditation/Certification Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-128571-1

Laboratory: TestAmerica Nashville

The accreditations/certifications listed below are applicable to this report.

1	Authority	Res antes	EDA Danian	lala milifa att Niversia	EvelopHen Date
	New York	Program NELAP	EPA Region	Identification Number	Expiration Date 03-31-18
	Hew Fork	ncen	2	11572	03-31-10

7. Ware custody seals on containers: YES NO and Intact YESNO. (MA) Were these signed and dated correctly? YESNO. (MA) 8. Packing mat'l used: Bubblewrap Plastic bap Peanuts Vermiculite Foam Insert Paper Other None 9. Cooling process: Ice-pack (cc (direct contact)) Dry ice Other None 10. Did all containers arrive in good condition (unbroken)? YESNONA 11. Were all container labels complete (#, date, signed, pres., etc)? TESNONA 12. Did all container labels and tags agree with custody papers? YESNONA 13. Were VOA vials received? YESNONA b. Was there any observable headspace present in any VOA vial? YESNONA 14. Was there a Trip Blank in this cooler? YES.MA 15. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YESNONA Sam./1 Y ±0.4 16. Was residual chiorine present? YESNONA 17. Were custody papers properly filled out (ink, signed, etc)? YESNONA 18. Did you sign the custody papers in the appropriate place? YESNONA 18. Were correct containers used for the analysis requested? YESNONA 19. Were sustody papers in the ach container? YESNONA <td< th=""><th></th><th></th></td<>		
Nashville, TN COOLER RECEIPT FORM 492-128571 Chain of Custody Goder Received/Opened On, 05-12:2017 @ 09:20 Time Samples Removed From Cooler Time Samples Placed in Storage (2 Hour Window) 1. Tracking &		
Cooler Received/Opened On 05-12-2017 @ 09:20 Time Samples Removed From Cooler		490-128571 Chain of Cunicity
1. Tracking #	Cooler Received/Opened On_05-12-2017 @ 09:20	
IR Gun ID_31470286PH Strip LotChloring Strip Lot 2. Temperature of rop. sample or temp blank when opened: Life Degrees Ceisius 3. If item #2 temperature is 0°C or less, was the representative sample or temp blank frozen? YES_NO_KM 4. Ware custody seals on outside of cooler? If yes, how many and where: If the temperature of the cooler and answered questions 1-5 (Initial) 5. Were the seals intact, signed, and dated correctly? 6. Were custody papers inside cooler? Leartify that I cooler and answered questions 1-5 (Initial) 7. Were custody seals on containers: YES NO 8. Packing mat'l used? Bubblewrat: Plastic bag 9. Cooling process: Gail te-pack te (direct contact) Gail container labels complete (#, date, signed, pres., etc)? Gail NoNA 10. Did all container labels complete (#, date, signed, pres., etc)? Gail NoNA 12. Did all container labels complete (#, date, signed, pres., etc)? Gail NoNA 13. Were VOA vials received? Gail NoNA b. Was there any observable headspace present in any VOA vial? YESNONA 14. Was there and robites indicate that the correct preservatives were used YESNONA 14. Was there an observable headspace preservatives were used YESNONA 15. On pres'd bottle,	Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
2. Temperature of rep. sample or temp blank when opened: Ling Degrees Celsius 3. If item #2 temperature is 0°C or less, was the representative sample or temp blank frozen? YES NO. NA 4. Ware custody seals on outside of cooler? 5. Ware the seals intact, signed, and dated correctly? 6. Were custody papers inside cooler? 6. Were custody seals on containers: 7. YES NO and Intact YESNO. NA 7. Were custody seals on containers: 7. YES NO and Intact YESNO. NA 7. Were custody seals on containers: 7. YES NO and Intact YESNO. NA 7. Were these signed and dated correctly? 7. Were custody seals on containers: 7. YES NO and Intact YESNO. NA 7. Were custody seals on containers: 7. YES NO and Intact YESNO. NA 7. Were custody seals on containers: 7. YES NO and Intact YESNO. NA 7. Were these signed and dated correctly? 7. Were custody seals on containers: 7. YES NO. and Intact YESNO. NA 7. Were custody seals on containers: 7. YES NO. and Intact YESNO. NA 7. Were these signed and dated correctly? 7. Were custody seals on containers: 7. YES NO. and Intact YESNO. NA 7. Were these signed and dated correctly? 7. Were custody seals on containers: 7. YES NO. AN 7. Were custody seals on containers: 7. YES NO. NA 7. Were these signed and dated correctly? 7. Were custody seals on containers: 7. YES NO. NA 7. Were these signed and dated correctly? 7. WES NONA 7. Were custody seals on containers: 7. YES NONA 7. Were custody seals on containers: 7. YES NONA 7. Were custody seals on container is pool condition (unbroken)? 7. Were custody seals and tags agree with custody papers? 7. YES NONA 7	1. Tracking #(last 4 digits, FedEx) Courier: _FedE	ix_
 3. If item #2 temperature is 0°C or less, was the representative sample or temp blank frozen? YES NO. (N) 4. Were custody seals on outside of cooler? If yes, how many and where: // FAA / 51 // (FB)NONA If yes, how many and where: // FAA / 51 // (FB)NONA Were the seals intact, signed, and dated correctly? (FB)NONA Icertify that I opened the cooler and answered questions 1-5 (initial) 7. Ware custody seals on containers: YES NO and intact YESNO. (NA) Were these signed and dated correctly? YESNONA Were these signed and dated correctly? (FB)NONA Were these signed and dated correctly? YESNO. (NA) B. Packing mat'l used? Eubbievrap Plastic bas Peanuts Vermiculite Foam insert Paper Other None 9. Cooling process: (FB) Ice-pack Ice (direct contact) Dry ice Other None 10. Did all container labels complete (#, date, signed, pres., etc.)? (FB)NONA 11. Were all container labels and tags agree with custody papers? (FB)NONA 12. Did all container labels and tags agree with custody papers? (FB)NONA 13. Ware VOA vials received? (FB)NONA 14. Was there any observable headspace present in any VOA vial? (FB)NONA 15. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YESNONA 16. Was residual chlorine present? (FB)NONA 17. Were custody papers in the appropriate place? (FB)NONA 18. Udy su sign the custody papers in the appropriate place? (FB)NONA (FB).	IR Gun ID 31470366 pH Strip Lot Chlorine Strip Lot	
4. Were custody seals on outside of cooler? (FBNONA If yes, how many and where: (FBNONA 5. Were the seals intact, signed, and dated correctly? (FBNONA 6. Were custody papers inside cooler? (FBNONA 1 cartify that I opened the cooler and answered questions 1-5 (Initial) (FBNONA 7. Ware custody seals on containers: YES NO and Intact YESNO.(MA) 8. Packing mat'l used? [Bubblewra] Plastic bas Peanuts Vermiculite Foam Insert Paper Other None 9. Cooling process: (FBNONA 10. Did all container labels complete (#, date, signed, pres., etc.)? (FBNONA 11. Were all container labels and tags agree with custody papers? (FBNONA 12. Did all container labels and tags agree with custody papers? (FBNONA 13. Were VOA vials received? (FBNONA 14. Was there any observable headspace present in any VOA vial? (FBNONA 15. On pres'd bottle, did pH test strips suggest preservation reached the correct pH level? YESNONA (FBNONA 15. On pres'd bottle, did pH test strips suggest preservatives were used (FBNONA 16. Was residual chiorine present? YESNONA 17. Were custody papers properly filled out (Ink, signed, et	2. Temperature of rep. sample or temp blank when opened:Degrees Celsius	2
If yes, how many and where: If yes, how many and yes in the appropriate place? If yes, how many and yes in the appropriate place? If yes, how many and yes the container: If yes, how many and yes the container is If yes, how where yes and in the container? If yes, how many and yes the yes and yes and yes and yes and yes and	3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank fro	zen? YES NO. NA
5. Were the seals intact, signed, and dated correctly? (E3).NONA 6. Were custody papers inside cooler? (E3).NONA 1. Leartify that I opened the cooler and answered questions 1-6 (initial) (E4)NONA 7. Were custody seals on containers: YES NO and intact YESNONA Were these signed and dated correctly? YESNONA YESNONA 8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Paper Other None 9. Cooling process: (Ea) Ice-pack (cs (direct contact)) Dry (cs Other None 10. Did all container strive in good condition (unbroken)? (T5)NONA 11. Were all container labels complete (#, date, signed, pres., etc)? (T5)NONA 12. Did all container labels and tags agree with custody papers? (T5)NONA 13a. Were VOA vials received? (T5)NONA 14. Was there any observable headspace present in any VOA vial? (T5)NONA 15a. On pres'd bottles, did pN test strips suggest preservation reached the correct pH level? YESNONA (T5)NONA 15a. Ware related the correct preservatives were used (T5)NONA 15a. On pres'd bottles, did pN test strips suggest preservation reached the correct pH level? YESNONA 16. Ware related chorine	4. Were custody seals on outside of cooler?	TESNONA
6. Were custody papers inside cooler? Were custody papers inside cooler and answered questions 1-6 (initial) 7. Were custody seals on containers: YES NO and intact YESNONA Were these signed and dated correctly? YESNO(MA) 8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Paper Other None 9. Cooling process: Ica pack ice (direct contact) Dry ice Other None 10. Did all containers arrive in good condition (unbroken)? TESNONA 11. Were all container labels complete (#, date, signed, pres., etc)? TESNONA 12. Did all container labels and tags agree with custody papers? TESNONA 13. Were VOA vials received? TESNONA 14. Was there any observable headspace present in any VOA vial? TESNONA 14. Was there an Trip Blank in this cooler? TESNONA 15. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YESNONA Sam / 14 J. J. S6 J. J. J. S6 J	If yes, how many and where: 1 Front 1519P	
Leartify that I opened the cooler and answered questions 1-6 (initial) 7. Were custody seals on containers: YES NO and intact YESNO. (NA) Were these signed and dated correctly? YES YESNO. (NA) 8. Packing mat'l used? Bubblevrat/Plastic bag Peanuts Vermiculite Foam Insert Paper Other None 9. Cooling process: Image: Depack Ice (direct contact) Dry ice Other None 10. Did all containers arrive in good condition (unbroken)? Image: Display in the container labels complete (#, date, signed, pres., etc)? Image: Display in the container labels and tags agree with custody papers? Image: Display in the custody papers? Image: Display in the custody papers? 13. Were VOA viais received? Image: Display in the custody papers? 14. Was there any observable headspace present in any VOA viai? Image: Display in the custody paper and answered questions 7.14 (initial) Image: Display in the custody paper in the correct preservatives were used Image: Display in the custody papers in the appropriate paper? Image: Display in the custody papers in the appropriate place? Image: Display in the custody papers in the appropriate place? Image: Display in the custody papers in the appropriate place? 15. Did you sign the custody papers in the appropriate place? <td>5. Were the seals intact, signed, and dated correctly?</td> <td>YES).NONA</td>	5. Were the seals intact, signed, and dated correctly?	YES).NONA
7. Ware custody seals on containers: YES NO and Intact YESNO. (MA) Were these signed and dated correctly? YESNO. (MA) 8. Packing mat'l used: Bubblewrap Plastic bap Peanuts Vermiculite Foam Insert Paper Other None 9. Cooling process: Ice-pack (cc (direct contact)) Dry ice Other None 10. Did all containers arrive in good condition (unbroken)? YESNONA 11. Were all container labels complete (#, date, signed, pres., etc)? YESNONA 12. Did all container labels and tags agree with custody papers? YESNONA 13. Were VOA vials received? YESNONA b. Was there any observable headspace present in any VOA vial? YESNONA 14. Was there a Trip Blank in this cooler? YES.MA 15. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YESNONA Sam./1 Y ±0.4 16. Was residual chiorine present? YESNONA 17. Were custody papers properly filled out (ink, signed, etc)? YESNONA 18. Did you sign the custody papers in the appropriate place? YESNONA 18. Were correct containers used for the analysis requested? YESNONA 18. Were correct containers used for the analysis requested? YESNONA	6. Were custody papers inside cooler?	TESNONA
Were these signed and dated correctly? YESNONA 8. Packing mat'l used: Bubblewrat: Plastic bas Peanuts Vermiculite Foam Insert Paper Other None 9. Cooling process: Ice lee-pack Ice (direct contact) Dry ice Other None 9. Cooling process: Ice lee-pack Ice (direct contact) Dry ice Other None 10. Did all containers arrive in good condition (unbroken)? Ice lee-pack Ice (direct contact) Dry ice Other None 11. Were all container labels complete (#, date, signed, pres., etc)? Ice lee-pack Ice (direct contact) Ice lee-pack Ice (International International Internatinterest International International Internatio	I certify that I opened the cooler and answered questions 1-6 (Initial)	(L)
8. Packing mat'l used Bubblewrat Plastic bas Peanuts Vermiculite Foam Insert Paper Other None 9. Cooling process: Ice Ice Ice (direct contact) Dry ice Other None 10. Did all containers arrive in good condition (unbroken)? Ice (direct contact) Dry ice Other None 11. Were all container labels complete (#, date, signed, pres., etc)? Ice None Ice None Ice None 12. Did all container labels and tags agree with custody papers? Ice None Ice None NonNA 13a. Were VOA viais received? Ice None Ice None Sam /1 + Joth 14. Was there a Trip Blank in this cooler? YES Non N If multiple coolers, sequence # Sam /1 + Joth 14. certify that unloaded the cooler and answered questions 7-14 (Initial) A A Sam /1 + Joth 15a. On pres'd bottles, did pH test strips suggest preservatives were used IcesNONA Ice If the bottle labels indicate that the correct preservatives were used IcesNONA 16. Was residual chlorine present? YESNONA YESNONA 17. Were custody papers properly filled out (Ink, signed, etc)? YESNONA Icerify that I checked for chlorine and pH as	7. Were custody seals on containers: YES NO and Intact	YESNO. NA
9. Cooling process: (a) Ice-pack Ice (direct contact) Dry ice Other None 10. Did all containers arrive in good condition (unbroken)? 11. Were all container labels complete (#, date, signed, pres., etc.)? 12. Did all container labels and tags agree with custody papers? 13. Were VOA vials received? b. Was there any observable headspace present in any VOA vial? 14. Was there a Trip Blank in this cooler? 15. No and the cooler and answered guestions 7.14 (Initial) 15. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YESNONA 16. Was residual chlorine present? 16. Was residual chlorine present? 17. Were custody papers properly filled out (Ink, signed, etc?? 17. Were custody papers in the appropriate place? 17. Were correct containers used for the analysis requested? 18. Were correct containers used for the analysis requested? 19. Were correct containers used for the analysis requested? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container?	Were these signed and dated correctly?	YESNO. NA
10. Did all containers arrive in good condition (unbroken)? YEDNONA 11. Were all container labels complete (#, date, signed, pres., etc)? TERNONA 12. Did all container labels and tags agree with custody papers? YEDNONA 13a. Were VOA vials received? YEDNONA 14. Was there any observable headspace present in any VOA vial? YEDNONA 14. Was there a Trip Blank in this cooler? YED.NA 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YEDNONA Sam /1? ±0 # 40/-1285 71-18 15a. On pres'd bottle, did pH test strips suggest preservation reached the correct pH level? YEDNONA Set SNONA 16. Was residual chlorine present? YEDNONA 17. Were custody papers properly filled out (Ink, signed, etc)? YEDNONA 18. Did you sign the custody papers in the appropriate place? YEDNONA 19. Were correct containers used for the analysis requested? YEDNONA 20. Was sufficient amount of sample sent in each container? YEDNONA	8. Packing mat'l used? Bubblewrad Plastic bag Peanuts Vermiculite Foam Insert	Paper Other None
11. Were all container labels complete (#, date, signed, pres., etc)? T. Did all container labels and tags agree with custody papers? 12. Did all container labels and tags agree with custody papers? (TES)NONA 13a. Were VOA vials received? (TES)NONA b. Was there any observable headspace present in any VOA vial? (TES)NONA 14. Was there a Trip Blank in this cooler? (YES)NONA 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YESNONA Sample To The grad answered questions 7-14 (Initial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YESNONA (TES)NONA 16. Was residual chlorine present? YESNONA 17. Were custody papers properly filled out (Ink, signed, etc)? (TES)NONA 18. Did you sign the custody papers in the appropriate place? (TES)NONA 19. Were correct containers used for the analysis requested? (TES)NONA 19. Were correct containers used for the analysis requested? (TES)NONA 20. Was sufficient amount of sample sent in each container? (TES)NONA	9. Cooling process:	ry ice Other None
12. Did all container labels and tags agree with custody papers? (FES)NONA 13a. Were VOA vials received? (FES)NONA b. Was there any observable headspace present in any VOA vial? (FES)NONA 14. Was there a Trip Blank in this cooler? (YES)NA 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YESNONA 5am/11 FOH 40v-128571-18 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YESNONA FES)NONA 16. Was residual chlorine present? YESNONA 17. Were custody papers properly filled out (link, signed, etc)? (FES)NONA 18. Did you sign the custody papers in the appropriate place? (FES)NONA 19. Were correct containers used for the analysis requested? (FES)NONA 20. Was sufficient amount of sample sent in each container? (FES)NONA	10. Did all containers arrive in good condition (unbroken)?	YES.NONA
13a. Were VOA vials received? b. Was there any observable headspace present in any VOA vial? 14. Was there a Trip Blank in this cooler? YES (NO) NA If multiple coolers, sequence # 14. Was there a Trip Blank in this cooler? YES (NO) NA If multiple coolers, sequence # 14. Was there a Trip Blank in this cooler? YES (NO) NA If multiple coolers, sequence # 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YESNONA b. Did the bottle labels indicate that the correct preservatives were used 16. Was residual chlorine present? Icertify that I checked for chlorine and pH as per SOP and answered questions 15-16 (initial) 17. Were custody papers properly filled out (ink, signed, etc)? YESNONA 18. Did you sign the custody papers in the appropriate place? 19. Were correct containers used for the analysis requested? 20. Was sufficient amount of sample sent in each container?	11. Were all container labels complete (#, date, signed, pres., etc)?	TERNONA
b. Was there any observable headspace present in any VOA viai? 14. Was there a Trip Blank in this cooler? YES DO NA If multiple coolers, sequence # 1 certify that I unloaded the cooler and answered guestions 7-14 (initial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YESNO.NA b. Did the bottle labels indicate that the correct preservatives were used 16. Was residual chlorine present? 17. Were custody papers properly filled out (ink, signed, etc)? 17. Were custody papers in the appropriate place? 18. Did you sign the custody papers in the appropriate place? 19. Were correct containers used for the analysis requested? 20. Was sufficient amount of sample sent in each container? 10. Was sufficient amount of sample sent in each container? 11. Were custody papers in the appropriate place? 11. Were correct containers used for the analysis requested? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient amount of sample sent in each container? 20. Was sufficient am	12. Did all container labels and tags agree with custody papers?	YES NO NA
14. Was there a Trip Blank in this cooler? YES (No. NA If multiple coolers, sequence #	13a. Were VOA vials received?	TES.NONA
I certify that I unloaded the cooler and answered questions 7-14 (initial) AA 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YESNO.NA b. Did the bottle labels indicate that the correct preservatives were used VESNO.NA 16. Was residual chlorine present? YESNO.NA 17. Were custody papers properly filled out (lnk, signed, etc)? YESNONA 18. Did you sign the custody papers in the appropriate place? YESNONA 19. Were correct containers used for the analysis requested? YESNONA 20. Was sufficient amount of sample sent in each container? WESNONA	b. Was there any observable headspace present in any VOA vial?	VEST.NONA
I certify that I unloaded the cooler and answered questions 7-14 (initial) AA 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YESNO.NA b. Did the bottle labels indicate that the correct preservatives were used VESNO.NA 16. Was residual chlorine present? YESNO.NA 17. Were custody papers properly filled out (lnk, signed, etc)? YESNONA 18. Did you sign the custody papers in the appropriate place? YESNONA 19. Were correct containers used for the analysis requested? YESNONA 20. Was sufficient amount of sample sent in each container? WESNONA	14. Was there a Trip Blank in this cooler? , YES NO. NA If multiple coolers, see	quence # SAm/17 4 71-18
b. Did the bottle labels indicate that the correct preservatives were used 16. Was residual chlorine present? 17. Were custody papers properly filled out (lnk, signed, etc)? 18. Did you sign the custody papers in the appropriate place? 19. Were correct containers used for the analysis requested? 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient amount of sample sent in each container? Example 20. Was sufficient	I certify that I unloaded the cooler and answered guestions 7-14 (initial)	A-A
16. Was residual chlorine present? YESNONA I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (initial) HGG 17. Were custody papers properly filled out (lnk, signed, etc)? YESNONA 18. Did you sign the custody papers in the appropriate place? YESNONA 19. Were correct containers used for the analysis requested? YESNONA 20. Was sufficient amount of sample sent in each container? WESNONA	15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH le	SVEI? YESNO NA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (initial) If the custody papers properly filled out (lnk, signed, etc)? 17. Were custody papers properly filled out (lnk, signed, etc)? (YES)NONA 18. Did you sign the custody papers in the appropriate place? (YES)NONA 19. Were correct containers used for the analysis requested? (FE)NONA 20. Was sufficient amount of sample sent in each container? (FE)NONA	b. Did the bottle labels indicate that the correct preservatives were used	VES NA
17. Were custody papers properly filled out (Ink, signed, etc)? YESNONA 18. Did you sign the custody papers in the appropriate place? YESNONA 19. Were correct containers used for the analysis requested? YESNONA 20. Was sufficient amount of sample sent in each container? YESNONA	16. Was residual chlorine present?	YESNO. NA
18. Did you sign the custody papers in the appropriate place? (YE3NONA 19. Were correct containers used for the analysis requested? (YE3NONA 20. Was sufficient amount of sample sent in each container? (YE3NONA	certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (in	itial) 1726
19. Were correct containers used for the analysis requested?	17. Were custody papers properly filled out (Ink, signed, etc)?	(YES)NA
20. Was sufficient amount of sample sent in each container?	18. Did you sign the custody papers in the appropriate place?	TESNONA
Kos	19. Were correct containers used for the analysis requested?	TESNONA
load the share I among a fail a marked to be I 1880 and a marked a weather at DD (1-1911)	20. Was sufficient amount of sample sent in each container?	YESNONA
certify that i entered this project into Lims and answered questions 17-20 (initial)	certify that I entered this project into LIMS and answered questions 17-20 (initial)	Itas
certify that Lattached a label with the unique LIMS number to each container (initial)	I certify that I attached a label with the unique LIMS number to each container (initial)	KG

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form

Revised 12/15/15

			narks:	Cooler Temperature(a) *C and Other Remarks:	erature(s) °C.	Cooler Temp						Custody Seals infact Custody Seal No.: A Yes A No	g
Compeny		Data/Time:				Received by:		Company			Dato/Time;	Relinquished by:	Reins
Company		Dena/Time:				Kaceward by:		Company					
A Z	0970	5/12/17	~	2	1	N	E	Ame	100	6	ナートラ	my ally	
		Shoment	Method of Shipment				Time:	7		Date		inquished by:	Emp
			1	vequarements.	sector on summary new remade	acidi musuluk	Å.					rave requester , n, n, r, const (specif)	
Months	Archive For		Disposal By Lab		To Client	Return To Client			Radiological		3 Unknown	Non-Hazard Plammable Skin Inflant Poison B	
month)	be assessed if samples are retained longer than 1 month)	ples are retain	sessed if san		Sample Disposal (A fee may	nple Dispo	Sal			ł		- 1	-
	<u></u>		_		_	X		Water	-	1	4	10-9-01	=
	-	3				X		Water		16:53		BR-03	Õ
	~	3				X		Water		14:55		W-5	<u>عـ</u>
						×		Water	-	13:20		08-06	~
		100				X		Water		12:15		TW-09	
	<u>, 1996.</u>	3				X		Water		11:08		tu-20	5
		-				×		Water		01:34	5-10-17	Tw-17	<u>~</u>
	~					X		Water		50:21	+	BR-15	<u><u></u></u>
		3				X		Water		13:05		80-80	<u>~</u>
					-	X		Water	F	13:10		08-04	~
	3	3				X		Water	3	11:15	5-09-17	Twort	-
- All All All All All All All All All Al			100 Total	A		A	XX	Preservation Code:	Presen	X			1
Special Instructions/Note:	· · · · · · · · · · · · · · · · · · ·	Total Number		\$24 Standard I		82609 TCE PC	Field Filtered	and a second	Sample Type (C=comp, G=grab)	Sampte Time	Sample Date	Sample Identification	Sam
	Other	ofer		et		E 1,1-C	Sam; (Sic)				SSOW	Sue: Rochester, NY	Roci
		ntalas				CE dia	1 340 (Y a () (2)				Project #: 49001213	Project Neme. P Former Taylor Instruments 4	Forn
U - Acelone V - MCAA	J - Di Watter	78				firans.	a ar b			-	wo #. 3031152028.08	inat pe.deatharage@amec.com 3	joe.d
	G - Anchor H - Ascorbic Add	1.7.54				1,2 DC	(0) = **				8	Prone: P 865-218-1049(Tel)	Phone: 865-2
P - Na2O4S Q - Na2SO3	E - NaHSO4	- - -	128571			E vinyl							State, Zip: TN, 37932
N - None O - AsNaO2	B - NaOH C - Zn Acetate	R .(Loc: 490			chlori			d TAT	eys): Standard TAT	TAT Requested (days):		Knoxville
dest	Preservation Codes:	-				de		0	ANDARD	7	Due Date Raqueste	ogdill Road	Address: 9725 C
	Job #1		Requested	Analysis Req	Anal							Environment & Infrastructure, Inc.	AME
1 of 2	Pager Page				icainc.com	E-Mai shali brown@testamericainc.com	ula: Iali.brown(E-Ma Shali	1313	1-6-20-6	From Slo5-		Mir. L
	COC No:	No(s):	Camer Tracking No(s):				Lab PM: Brown, Shali	25	and	Gorlan	Stampton: No 6 (Client Information	Cile
TestAmerica	TestA			ord	Reco	istody	of Cu	Chain of Custody Record				TestAmerica Nashville	

5

8

<mark>12</mark> 13

й 317

÷

1

8 ()

TestAmerica Nashville			Chai	n of Cu	Chain of Custody Record	ecord			TestA	lestAmerica
Client information	Sampler Nd P	Gorland		Lab PM: Brown, Shali			Carrier Tracking No(s):	g No(s):	COC No.	
Client Contact: Mr. Joe Deatherage	Eleb-2.2-295	5-9213		E-Mail: shali.brown@	E-Mait: shali.brown@testamericainc.com	100m			Page Page	5
Company: AMEC Environment & Infrastructure, Inc.						5	sis Requested		n dot	
Address: 9725 Cogdill Road	Due Date Requested:	Π			e	-	Loc: 490	_	- 21	
City: Knoxvilie	TAT Requested (days):	rs): Standard TAT					128571	<u>د .</u>		N - None N - None O - Auton
Stein, Zir: TN, 37932				_	i vinyi (12		_	D - Nitric Add E - NaHSO4	P - Na2045 Q - Na2SO3
Phone: 865-218-1049(Tel)	PO #			半間	,2 DCI			_	<u>n</u> .	ri - Milliousuus 5 - H2SO4 T - TSP Dodecehertete
ioe.deatherage@amec.com	WO #: 3031152028.08			Noj			_	_		U - Acetone V - MCAA
Project Name: Former Taylor Instruments	Project #: 49001213			es or	E ols/			_		W - ph 4-5 Z - other (specify)
Star Rochester, NY	SSOW#			isd iv	1,1-D		FT		of cor Other	
		23 (2)	Sample Matrix Type (versars, (C=Cemp, orecasis	ield Filtered	260B TCE PCI		24 Standard U		otal Number	
		N P	Preservation Code:	X		:			1	
- MS (BR-15)	21-6-5	17:25 () Water	er					3 matrix	50:40
	5-9-17	56:41	Water		×				metrix 5	
12 BR-10	ae: 60 2 1-11-5	ae: 60	Water					_		
13 BR-04		58:4	Water						60	
M BR-02		8c1C)	Water		×				3	
15 BR-01		13:38	Water		×				5	
4 Chad		10.61	Wate					ł	ート・ ナン 中	-2017-
16 QARD-01		14:10	Water		×				47	
10-876-01		51.2	Water	đ,					S	
16 QA 78-01	4	- Deidi	T Water	<u>G</u>					3	
Possible Hazard Identification	-		-		No Dienneal /	A fee may he		Ħ		
N N	Poison B Unknown	Radiological	pical		Return To Client	ant for may we	Disposal By Lab		Bisposal By Lab Archive For Month	Months
ested: I, II, III, IV, Other (specify)	1 3			Spec	Special Instructions/QC Rec	Ę	ients:		1	
Empty Kit Relinquished by:		Date:		Time:			Method o	Method of Shipmont		
Reinquested by mul Ally	DataTime 5-11-17	16:40	d Company Amer	37	Received by	Ø	2.7	SILLI	OR BAS LI	Company
Refirquestived by:	Date/Time:		Company		acian distant;			Data/Time;		Company
Reinquistred by:	Date/Time:		Company		Received by:			Date/Time:	2	Company
Custody Seals Intact: ∆ Yes ∆ No					Coder Temperature(a) *C an	(a) *C and Other	d Other Remarks:			

5

Login Sample Receipt Checklist

Client: AMEC Foster Wheeler E & I, Inc

Login Number: 128571 List Number: 1 Creator: Gundi, Hozar K

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey<br meter.	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact,	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or teaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 490-128571-1

List Source: TestAmerica Nashville

Pace Analytical Energy Services LLC 220 William Pitt Way Pittsburgh, PA 15238 Phone: (412) 826-5245

Phone: (412) 826-5245 Fax: (412) 826-3433

May 23, 2017

Joe Deatherage AMEC Environment & Infrastructure, Inc. 9725 Cogdill Road Knoxville, TN 37923 USA

RE: FRM. TAYLOR INSTRUMENTS

Pace Workorder: 22658

Dear Joe Deatherage:

Enclosed are the analytical results for sample(s) received by the laboratory on Friday, May 12, 2017. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ruth Welds

Ruth Welsh 05/23/2017 Ruth.Welsh@pacelabs.com

Customer Service Representative

Enclosures

As a valued client we would appreciate your comments on our service. Please email PAESfeedback@pacelabs.com.

Total Number of Pages ____

Report ID: 22658 - 927585

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

Page 1 of 13

LABORATORY ACCREDITATIONS & CERTIFICATIONS

Accreditor:	Pennsylvania Department of Environmental Protection, Bureau of Laboratories
Accreditation ID:	02-00538
Scope:	NELAP Non-Potable Water and Solid & Hazardous Waste
Accreditor: Accreditation ID: Scope:	West Virginia Department of Environmental Protection, Division of Water and Waste Management 395 Non-Potable Water
Accreditor: Accreditation ID: Scope:	South Carolina Department of Health and Environmental Control, Office of Environmental Laboratory Certification 89009003 Clean Water Act (CWA); Resource Conservation and Recovery Act (RCRA)
Accreditor:	NELAP: New Jersey, Department of Environmental Protection
Accreditation ID:	PA026
Scope:	Non-Potable Water; Solid and Chemical Materials
Accreditor:	NELAP: New York, Department of Health Wadsworth Center
Accreditation ID:	11815
Scope:	Non-Potable Water; Solid and Hazardous Waste
Accreditor:	State of Connecticut, Department of Public Health, Division of Environmental Health
Accreditation ID:	PH-0263
Scope:	Clean Water Act (CWA) Resource Conservation and Recovery Act (RCRA)
Accreditor:	NELAP: Texas, Commission on Environmental Quality
Accreditation ID:	T104704453-09-TX
Scope:	Non-Potable Water
Accreditor:	State of New Hampshire
Accreditation ID:	299409
Scope:	Non-potable water
Accreditor: Accreditation ID: Scope:	State of Georgia Chapter 391-3-26 As per the Georgia EPD Rules and Regulations for Commercial Laboratories, PAES is accredited by the Pennsylvania Department of Environmental Protection Bureau of Laboratories under the National Environmental Laboratory Approval Program (NELAC).

Report ID: 22658 - 927585

Pace Analytical Energy Services LLC 220 William Pitt Way Pittsburgh, PA 15238 Phone: (412) 826-5245 Fax: (412) 826-3433

SAMPLE SUMMARY

Workorder: 22658 FRM. TAYLOR INSTRUMENTS

Lab ID	Sample ID	Matrix	Date Collected	Date Received
226580001	TW-04	Water	5/9/2017 11:15	5/12/2017 12:00
226580002	TW-17	Water	5/10/2017 09:34	5/12/2017 12:00
226580003	OB-06	Water	5/10/2017 13:20	5/12/2017 12:00
226580004	W-5	Water	5/10/2017 14:55	5/12/2017 12:00

Report ID: 22658 - 927585

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

Page 3 of 13

Fax: (412) 826-3433

PROJECT SUMMARY

Workorder: 22658 FRM. TAYLOR INSTRUMENTS

Batch Comments

Batch: DISG/6119 - RSK175 QC

The relative percent difference between the sample and sample duplicate exceeded laboratory control limits; reference sample 226580001. Analyte Ethane. Results for original and duplicate samples were below reporting limits.

Batch: DISG/6123 - RSK175 QC

The matrix spike and/or spike duplicate, recovery or relative percent difference; accuracy influenced by the concentration of the reference sample 226180006. Analyte Methane and Ethene. Batch acceptance based on laboratory control sample recovery.

Report ID: 22658 - 927585

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC. Page 4 of 13

Workorder: 22658 FRM. TAYLOR INSTRUMENTS

Lab ID: 226580001 Sample ID: TW-04				ved: 5/12/2017 12: ted: 5/9/2017 11:1		Water	
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву		Qualifiers
RISK - PAES							
Analysis Desc: EPA RSK175	Analytic	al Method: El	PA RSK175				
Methane Ethene	46 ug/l 0.20 U ug/l	0.50 0.20	0.019 1 0.0070 1	5/19/2017 11:28 5/19/2017 11:28	AK AK		

Report ID: 22658 - 927585

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

Page 5 of 13

Workorder: 22658 FRM. TAYLOR INSTRUMENTS

Lab ID: 226580002 Sample ID: TW-17				ved: 5/12/2017 12: ted: 5/10/2017 09:		Water	
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву		Qualifiers
RISK - PAES							
Analysis Desc: EPA RSK175	Analytic	al Method: E	PA RSK175				
Methane	27000 ug/l	100	3.8 200	5/22/2017 13:06	AK		d,M3,D3,B,M5
Ethene	26 ug/l	0.20	0.0070 1	5/19/2017 11:39	AK		

Report ID: 22658 - 927585

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

Page 6 of 13

Workorder: 22658 FRM. TAYLOR INSTRUMENTS

Lab ID: 226580003 Sample ID: OB-06				ved: 5/12/2017 12: ted: 5/10/2017 13:		Water	
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву		Qualifiers
RISK - PAES							
Analysis Desc: EPA RSK175	Analytic	al Method: E	PA RSK175				
Methane Ethene	22000 ug/l 1.4 ug/l	50 0.20	1.9 100 0.0070 1	5/22/2017 13:17 5/19/2017 11:49	AK AK		d,M3,D3,B,M5

Report ID: 22658 - 927585

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

Page 7 of 13

Workorder: 22658 FRM. TAYLOR INSTRUMENTS

Lab ID: 226580004 Sample ID: W-5				ved: 5/12/2017 12: ted: 5/10/2017 14:		Water	
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву		Qualifiers
RISK - PAES							
Analysis Desc: EPA RSK175	Analytic	al Method: E	PA RSK175				
Methane Ethene	3900 ug/l 4.7 ug/l	50 0.20	1.9 100 0.0070 1	5/22/2017 13:27 5/19/2017 12:00	AK AK		d,M3,D3,B,M5

Report ID: 22658 - 927585

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

Page 8 of 13

Pace Analytical®

ANALYTICAL RESULTS QUALIFIERS

Workorder: 22658 FRM. TAYLOR INSTRUMENTS

DEFIN	IITIONS/QU	JALIFIERS
	MDL	Method Detection Limit. Can be used synonymously with LOD; Limit Of Detection.
	PQL	Practical Quanitation Limit. Can be used synonymously with LOQ; Limit Of Quantitation.
	ND	Not detected at or above reporting limit.
	DF	Dilution Factor.
	S	Surrogate.
	RPD	Relative Percent Difference.
	% Rec	Percent Recovery.
	U	Indicates the compound was analyzed for, but not detected at or above the noted concentration.
	J	Estimated concentration greater than the set method detection limit (MDL) and less than the set reporting limit (PQL).
	5.0	
	D3	The matrix spike duplicate relative percent difference (RPD) exceeded laboratory control limits.
	В	The analyte was detected in the associated blank.
	d	The analyte concentration was determined from a dilution.

M5 The matrix spike duplicate sample recovery was outside laboratory control limits.

M3 The matrix spike sample recovery was outside laboratory control limits.

Report ID: 22658 - 927585

QUALITY CONTROL DATA

Workorder: 22658 FRM. TAYLOR INSTRUMENTS

QC Batch:	DISG/6119		Anal	ysis Metho	d:	EPA R	SK175			
QC Batch Method:	: EPA RSK175									
Associated Lab Sa	amples: 226580001, 22	26580002, 226580	003, 226	580004						
METHOD BLANK:	: 48883									
		Blar		Reporting						
Parameter	Units	Resu	ılt	Limit (Qualifiers	6				
RISK										
Methane	ug/l	0.50	U	0.50						
Ethene	ug/l	0.20	U	0.20						
LABORATORY CO	ONTROL SAMPLE & LCSI Units	D: 48884 Spike Conc.	LCS Result	48885 LCSD		LCSD % Rec	% Rec Limit	RPD	Max RPD	
	••••••	CONC.	Result	Result	/0 NEC	/01100	_		RPD	Qualifiers
RISK	01110	Conc.	Result	Result	/0 Kec	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Link		RPD	Qualifiers
Methane	ug/l	44	43	44	96	99	85-115	3.1	20	Qualifiers
										Qualifiers
Methane	ug/l ug/l	44	43 77	44	96 99	99	85-115	3.1	20	Qualifiers
Methane Ethene	ug/l ug/l	44 78	43 77 Origina	44 78	96 99	99	85-115	3.1	20	Qualifiers
Methane Ethene	ug/l ug/l	44	43 77 Origina	44 78 al: 226580	96 99 001	99	85-115 85-115	3.1	20	Qualifiers
Methane Ethene SAMPLE DUPLIC	ug/l ug/l ATE: 48888	44 78 Origina	43 77 Origina	44 78 al: 226580 DUP	96 99 001	99 101	85-115 85-115 Max	3.1	20	
Methane Ethene SAMPLE DUPLIC. Parameter	ug/l ug/l ATE: 48888	44 78 Origina	43 77 Origina I t	44 78 al: 226580 DUP	96 99 001	99 101	85-115 85-115 Max	3.1	20	

Report ID: 22658 - 927585

Page 10 of 13

QUALITY CONTROL DATA

Workorder: 22658 FRM. TAYLOR INSTRUMENTS

QC Batch: QC Batch Method: Associated Lab Sam	DISG/6123 EPA RSK175 pples: 226580002, 226	580003, 2265		lysis Metho	d:	EPA RSI	<175			
METHOD BLANK: 4	8942									
Parameter	Units		llank esult	Reporting Limit (Qualifiers	6				
RISK Methane	ug/l	0.0)20J	0.50	//3,D3,B	,M5				
LABORATORY CON	ITROL SAMPLE & LCSD:	48943		48944						
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
RISK Methane	ug/l	44	44	43	98	97	85-115	1	20	M3,M5,D3,B
MATRIX SPIKE & M	ATRIX SPIKE DUPLICATI	E: 48886		48887		Original	: 22618000	06		
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	Ma RPD RP	
RISK Methane	ug/l	11000	44	10000	11000	-2360	-49	70-130	-192 2	0 d,M3,D3,B,M5
SAMPLE DUPLICAT	E: 48945		Origin	al: 226600	002					
Parameter	Units	Origi Res		DUP Result		RPD	Max RPD			Qualifiers
RISK Methane	ug/l	0	.51	0.47		8.5	20			M3,D3,B,M5

Page 11 of 13

Pace Analytical®

Fax: (412) 826-3433

QUALITY CONTROL DATA QUALIFIERS

Workorder: 22658 FRM. TAYLOR INSTRUMENTS

QUALITY CONTROL PARAMETER QUALIFIERS

- B The analyte was detected in the associated blank.
- D3 The matrix spike duplicate relative percent difference (RPD) exceeded laboratory control limits.
- M3 The matrix spike sample recovery was outside laboratory control limits.
- M5 The matrix spike duplicate sample recovery was outside laboratory control limits.
- d The analyte concentration was determined from a dilution.

Report ID: 22658 - 927585

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC. Page 12 of 13

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 22658 FRM. TAYLOR INSTRUMENTS

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
226580001	TW-04			EPA RSK175	DISG/6119
226580002	TW-17			EPA RSK175	DISG/6119
226580003	OB-06			EPA RSK175	DISG/6119
226580004	W-5			EPA RSK175	DISG/6119
226580002	TW-17			EPA RSK175	DISG/6123
226580003	OB-06			EPA RSK175	DISG/6123
226580004	W-5			EPA RSK175	DISG/6123

Report ID: 22658 - 927585

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Energy Services LLC.

Page 13 of 13

CHAIN-OF-CUSTODY / Analytical Request Document

2	L)
1	2	5
(C	5
,	(.	C
ò		

	Address:		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
REGULATORY AGENCY	Company Name:	Copy To:	ddress: 2430 Falling hafter RU CODY TO:
	Attention:	· Report Tor Deatherast	company: Amec Foster wheeler
	Invoice Information:	Required Project Information:	Required Client Information:
Page	Section C	Section B	
		22658	TAUE ANIAIVIUCAI PITTSDUTGIN, PA 15238 www.pacelabs.com 412-826-5245
cument d accurately.	CHAIN-UF-CUSIOUY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.	ç	Distribution 220 William Pitt Way

007923

٥

Page:

-									-				-	-				-		-		 r—	—
DRINKING WATER							() de l'o													ONS	0		
DRINKIN	OTHER		in ^f uite Isteries				Pace Project No. / Lah LD													SAMPLE CONDITIONS	2		
ER		ų					Da Da													SAM	Ъ		
GROUND WATER		< *				(N/A)	Residual Chlorine	-				+		Η	Ĥ	Щ	\mathbf{H}		+		M		
GROU	RCRA	Rochester	2	(N/A) pa																TIME	1200		
NPDES	ы	Site Location	STATE:	Requested Analysis Filtered (Y/N)			··· ·						ļ				1			DATE	12		
N	UST	Site Lo	S	Analysi												\prod	$\ $				5 5.		-
				lested																VTION	PAS		
				Requ		2~6	outs/onation	X	X	X	X									ACCEPTED BY / AFFILIATION	d		
					t N/A		test sisylsnA			<u> </u>								Í	\Box) BY /			
						ЦОР	Zinc Acetate & Na Other	_					Н	П						EPTEL	3		
					ives	FIO ⁴	BAK					1		Ш						ACCI	S		
					Preservatives		L2Ь HCi	X	\times	\times	X				+	\square					\searrow		
					Pres		^{\$} ONH								Ħ				Π				
.:	lote ce:	oject r:	ofile #:				H ^s 2O⁵ ∩ubreserveq	┢─				+		╞┼	+	+	\parallel			TIME	16:40		
Address:	Pace Quote Reference:	Pace Project Manager:	Pace Profile #:			S	# OF CONTAINER	3	ω	m	m	T	Π							Ē	è		
						COLLECTION) TA 9MBT 3J9MAS							П	П		Ц				rt-		
		rents				AB AB	TIME	11:15	09:34	13:30	14:55									DATE	シー(1-(J		
		nstru.			CTED	COMPOSITE END/GRAB	DATE	t1-6-5	5-10-17		4									7			
		Former taylor tustruments	30311530 38,08		COLLECTED	Ш	TIME		3			T								RELINQUISHED BY / AFFILIATION	Amec F.W.		
		, tay	530			COMPOSITE START		11				+					$\left \right $		╢	BY / AF			
		laws	16.06			0	DATE	1		_										UISHED	troel borland		
	er No.:	L)						5				+			$\left \right $	\square	╟			ELINQ	Ľ		
	e Orde	Name:	Numbe			see valid codes		3			_	+	\mathbb{H}			\mathbb{H}	╟─		╢	R	ه و ا		
			Project Number:		i i i i i i i i i i i i i i i i i i i	a ZYZ ~ S ZYZ ~ S Z															5	 	
	Email To: jue , leatherage @ quecturcom				Matrix Codes MATRIX / CODE	Drinking Water Water Waste Water Product Soil/Solid	Air Air Other																
knox ville, TN 37922	quech	1	Requested Due Date/TAT: STAWDARD		_	Drin Wat Was Proc Soil/	Other Air Other													NTS			
37%	1001		gwb			(SAMPLE IU (A-Z, 0-9/ -) Sample IDS MUST BE UNIQUE													ADDITIONAL COMMENTS			
È	hera	Fax:	. 57		ation	: L	AMPLE IU (A-Z, 0-9 /) ole IDs MUST BE UN		rt.											NAL C			
ille	deat	1040	ate/TA		Informa	l.	2 Z 0-6 s MUS	moon	T	00	S									DDITIC			
NX C	100.	-814	Due D		n D d Client			13	3	0-20	5-2								$\ $	A			
Ł	i To:	Phone: SLS-DIS- 1049	lested		Section D Required Client Information		San	1	1	0		ľ						Į					
	Emai	Phon	Requ			,	# MƏTI	-	2	e	4	5	9	~		6	10	1	12				

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days. LUN

Samples Intact (V/Y)

Custody Sealed Cooler (Y/V)

Received on Ice (Y/N)

⊃° ni qm∋T

DATE Signed 05/11/17

ry Ter P

S. S.

SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER:

ORIGINAL

SIGNATURE of SAMPLER:

F-ALL-Q-020rev.07, 15-May-2007

Cooler Receipt Form

Client Name: <u>Amee</u> Project: Frm Taylor Lab Work Order: 22658	-
A. Shipping/Container Information (circle appropriate response)	
Courier: FedEx UPS USPS Client Other: Air bill Present: Yes No	
Tracking Number: 7865416/2498	
Custody Seal on Cooler/Box Present: Yes No Seals Intac: Yes No	
Cooler/Box.Packing Material: Bubble Wrap Absorbent Form Other	
Type of Ice: Wer Blue None Ice Intact: Yes Melied	
Cooler Temperature: 3°C Radiation Screened: Yes NC Chain of Custody Present: Yes No	
	_

B. Laboratory Assignment/Log-in (check appropriate response)

•	YES	NO	N/A	Comment Reference non-Conformance
Chain of Custody properly filled out	V			
Chain of Custody relinquished	0			
Sampler Name & Signature on COC	L			
Containers intact		-		
Were samples in separate bags	C	ł		· · · · · · · · · · · · · · · · · · ·
Sample container labels match COC Sample name/date and time collected	U			
Sufficient valume provided				
PAES containers used		1		
Are containers properly preserved for the requested testing? (as labeled)	C	1		
If an unknown preservation state, were containers checked? Exception: VOA's coliform				Lí yes, see pH form.
Was volume for dissolved testing field filtered, as noted on the COC? Was volume received in a preserved container?			ċ	

Cooler contents examined/received by :____

Date: 5.12.17

Date

_49

ÐN

NOVEMBER 2017 LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-140085-1 Client Project/Site: Former Taylor Instruments

For:

AMEC Foster Wheeler E & I, Inc 2030 Falling Waters Road Ste 300 Knoxville, Tennessee 37922

Attn: Mr. Joe Deatherage

Authorized for release by: 11/17/2017 1:57:22 PM

Shali Brown, Project Manager II (615)301-5031 shali.brown@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at: www.testamericainc.com

Table of Contents

Cover Page	
Table of Contents 2	2
Sample Summary 3	3
Case Narrative 4	1
Definitions	5
Client Sample Results 6	3
QC Sample Results 1	6
QC Association	20
Chronicle	21
Method Summary 2	23
Certification Summary 2	24
Chain of Custody 2	25
Receipt Checklists 2	27

Sample Summary

TestAmerica Job ID: 490-140085-1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: Former Taylor Instruments

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-140085-1	BR-15	Water	10/31/17 14:35	11/04/17 09:37
490-140085-2	BR-02	Water	10/31/17 16:05	11/04/17 09:3
490-140085-3	BR-03	Water	11/01/17 10:10	11/04/17 09:3
490-140085-4	BR-10	Water	11/01/17 12:04	11/04/17 09:3
490-140085-5	BR-04	Water	11/01/17 13:25	11/04/17 09:37
490-140085-6	BR-01	Water	11/01/17 14:45	11/04/17 09:31
490-140085-7	QATB-01	Water	11/01/17 15:30	11/04/17 09:31
490-140085-8	QARB-01	Water	11/01/17 15:35	11/04/17 09:3 ²
490-140085-9	QAFB-01	Water	11/01/17 15:40	11/04/17 09:3 ²
190-140085-10	DUP-01	Water	10/31/17 00:01	11/04/17 09:3

TestAmerica Nashville

Job ID: 490-140085-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-140085-1

Comments

No additional comments.

Receipt

The samples were received on 11/4/2017 9:31 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.1° C.

GC/MS VOA

Method(s) 8260C: Surrogate recovery for the following sample was outside control limits: BR-10 (490-140085-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8260C: Internal standard (ISTD) response for 1,4-dichlorobenzene-d4 in the following samples was outside of acceptance limits: BR-01 (490-140085-6). None of the compounds reported in the sample are associated with this ISTD; therefore, the data is reported.

Method(s) 8260C: The following samples was diluted due to the nature of the sample matrix: BR-04 (490-140085-5) and BR-01 (490-140085-6). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: AMEC Foster Wheeler E & I, Inc Project/Site: Former Taylor Instruments

5

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
Х	Surrogate is outside control limits
*	ISTD response or retention time outside acceptable limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	8
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	9
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	13
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Lab

Date Collected: 10/31/17 14:35 Date Received: 11/04/17 09:31

Client Sample ID: BR-15

Samp	le IC): 4	90-	140	085	-1
			Ma	trix:	Wat	ter

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			11/07/17 05:54	1
cis-1,2-Dichloroethene	5.22		1.00		ug/L			11/07/17 05:54	1
Tetrachloroethene	ND		1.00		ug/L			11/07/17 05:54	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			11/07/17 05:54	1
Trichloroethene	2.43		1.00		ug/L			11/07/17 05:54	1
Vinyl chloride	4.06		1.00		ug/L			11/07/17 05:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		70 - 130			-		11/07/17 05:54	1
4-Bromofluorobenzene (Surr)	110		70 - 130					11/07/17 05:54	1
Dibromofluoromethane (Surr)	105		70 - 130					11/07/17 05:54	1
Toluene-d8 (Surr)	105		70 - 130					11/07/17 05:54	1

Client Sample ID: BR-02 Date Collected: 10/31/17 16:05

Date Received: 11/04/17 09:31

Lab Sample ID: 490-140085-2 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			11/07/17 06:19	1
cis-1,2-Dichloroethene	18.6		1.00		ug/L			11/07/17 06:19	1
Tetrachloroethene	ND		1.00		ug/L			11/07/17 06:19	1
trans-1,2-Dichloroethene	1.73		1.00		ug/L			11/07/17 06:19	1
Trichloroethene	16.6		1.00		ug/L			11/07/17 06:19	1
Vinyl chloride	1.47		1.00		ug/L			11/07/17 06:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			70 - 130					11/07/17 06:19	1
4-Bromofluorobenzene (Surr)	93		70 - 130					11/07/17 06:19	1
Dibromofluoromethane (Surr)	103		70 - 130					11/07/17 06:19	1
Toluene-d8 (Surr)	103		70 - 130					11/07/17 06:19	1

Client Sample ID: BR-03 Date Collected: 11/01/17 10:10

Date Received: 11/04/17 09:31

Lab Sample ID: 490-140085-3 Matrix: Water

5

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.09		1.00		ug/L			11/07/17 06:45	1
cis-1,2-Dichloroethene	49.5		1.00		ug/L			11/07/17 06:45	1
Tetrachloroethene	ND		1.00		ug/L			11/07/17 06:45	1
trans-1,2-Dichloroethene	2.48		1.00		ug/L			11/07/17 06:45	1
Trichloroethene	483		10.0		ug/L			11/08/17 07:07	10
Vinyl chloride	ND		1.00		ug/L			11/07/17 06:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116		70 - 130					11/07/17 06:45	1
1,2-Dichloroethane-d4 (Surr)	100		70 - 130					11/08/17 07:07	10
4-Bromofluorobenzene (Surr)	102		70 - 130					11/07/17 06:45	1
4-Bromofluorobenzene (Surr)	123		70 - 130					11/08/17 07:07	10
Dibromofluoromethane (Surr)	107		70 - 130					11/07/17 06:45	1
Dibromofluoromethane (Surr)	114		70 - 130					11/08/17 07:07	10
Toluene-d8 (Surr)	104		70 - 130					11/07/17 06:45	1
Toluene-d8 (Surr)	98		70 - 130					11/08/17 07:07	10

Client Sample ID: BR-10 Date Collected: 11/01/17 12:04

Date Received: 11/04/17 09:31

Lab Sample ID: 490-140085-4 Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS Analyte **Result Qualifier** RL MDL Unit D Dil Fac Prepared Analyzed 1,1-Dichloroethene ND 1.00 ug/L 11/07/17 07:10 1 ug/L 11/08/17 07:33 10 cis-1,2-Dichloroethene 413 10.0 Tetrachloroethene ND 1.00 ug/L 11/07/17 07:10 1 trans-1,2-Dichloroethene 56.2 1.00 ug/L 11/07/17 07:10 1 **Trichloroethene** 168 1.00 ug/L 11/07/17 07:10 1 Vinyl chloride 3.64 1.00 ug/L 11/07/17 07:10 1 Limits Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 114 70 - 130 11/07/17 07:10 1 1,2-Dichloroethane-d4 (Surr) 100 70 - 130 11/08/17 07:33 10 4-Bromofluorobenzene (Surr) 135 X 70 - 130 11/07/17 07:10 1 4-Bromofluorobenzene (Surr) 131 X 70 - 130 11/08/17 07:33 10 Dibromofluoromethane (Surr) 104 70 - 130 11/07/17 07:10 1 70 - 130 Dibromofluoromethane (Surr) 108 11/08/17 07:33 10 Toluene-d8 (Surr) 95 70 - 130 11/07/17 07:10 1 Toluene-d8 (Surr) 70 - 130 10 99 11/08/17 07:33

TestAmerica Nashville

Client Sample ID: BR-04 Date Collected: 11/01/17 13:25

Date Received: 11/04/17 09:31

Lab Sample ID: 490-140085-5 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		10.0		ug/L			11/07/17 08:01	10
cis-1,2-Dichloroethene	1490		10.0		ug/L			11/07/17 08:01	10
Tetrachloroethene	ND		10.0		ug/L			11/07/17 08:01	10
trans-1,2-Dichloroethene	104		10.0		ug/L			11/07/17 08:01	10
Trichloroethene	933		10.0		ug/L			11/07/17 08:01	10
Vinyl chloride	59.6		10.0		ug/L			11/07/17 08:01	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		70 - 130					11/07/17 08:01	10
4-Bromofluorobenzene (Surr)	109		70 - 130					11/07/17 08:01	10
Dibromofluoromethane (Surr)	108		70 - 130					11/07/17 08:01	10
Toluene-d8 (Surr)	96		70 - 130					11/07/17 08:01	10

Client Sample ID: BR-01 Date Collected: 11/01/17 14:45

Date Received: 11/04/17 09:31

Lab Sample ID: 490-140085-6 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		5.00		ug/L			11/07/17 07:36	5
cis-1,2-Dichloroethene	772		5.00		ug/L			11/07/17 07:36	5
Tetrachloroethene	ND		5.00		ug/L			11/07/17 07:36	5
trans-1,2-Dichloroethene	47.6		5.00		ug/L			11/07/17 07:36	5
Trichloroethene	6.08		5.00		ug/L			11/07/17 07:36	5
Vinyl chloride	345		5.00		ug/L			11/07/17 07:36	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			70 - 130					11/07/17 07:36	5
4-Bromofluorobenzene (Surr)	99	*	70 - 130					11/07/17 07:36	5
Dibromofluoromethane (Surr)	107		70 - 130					11/07/17 07:36	5
Toluene-d8 (Surr)	106		70 - 130					11/07/17 07:36	5

5 6

Client: AMEC Foster Wheeler E & I, Inc Project/Site: Former Taylor Instruments

Client Sample ID: QATB-01 Date Collected: 11/01/17 15:30

Date Received: 11/04/17 09:31

Lab Sample ID: 490-140085-7 Matrix: Water

5 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			11/07/17 00:47	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			11/07/17 00:47	1
Tetrachloroethene	ND		1.00		ug/L			11/07/17 00:47	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			11/07/17 00:47	1
Trichloroethene	ND		1.00		ug/L			11/07/17 00:47	1
Vinyl chloride	ND		1.00		ug/L			11/07/17 00:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		70 - 130					11/07/17 00:47	1
4-Bromofluorobenzene (Surr)	103		70 - 130					11/07/17 00:47	1
Dibromofluoromethane (Surr)	103		70 - 130					11/07/17 00:47	1
Toluene-d8 (Surr)	104		70 - 130					11/07/17 00:47	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: Former Taylor Instruments

Client Sample ID: QARB-01 Date Collected: 11/01/17 15:35

Date Received: 11/04/17 09:31

Lab Sample ID: 490-140085-8 Matrix: Water

5 6

Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00	u	ıg/L			11/07/17 01:13	1
cis-1,2-Dichloroethene	ND		1.00	u	ıg/L			11/07/17 01:13	1
Tetrachloroethene	ND		1.00	u	ıg/L			11/07/17 01:13	1
trans-1,2-Dichloroethene	ND		1.00	u	ig/L			11/07/17 01:13	1
Trichloroethene	ND		1.00	u	ıg/L			11/07/17 01:13	1
Vinyl chloride	ND		1.00	u	ıg/L			11/07/17 01:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		70 - 130			-		11/07/17 01:13	1
4-Bromofluorobenzene (Surr)	104		70 - 130					11/07/17 01:13	1
Dibromofluoromethane (Surr)	100		70 - 130					11/07/17 01:13	1
Toluene-d8 (Surr)	104		70 - 130					11/07/17 01:13	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: Former Taylor Instruments

Client Sample ID: QAFB-01 Date Collected: 11/01/17 15:40

Date Received: 11/04/17 09:31

Lab Sample ID: 490-140085-9 Matrix: Water

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			11/07/17 01:38	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			11/07/17 01:38	1
Tetrachloroethene	ND		1.00		ug/L			11/07/17 01:38	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			11/07/17 01:38	1
Trichloroethene	ND		1.00		ug/L			11/07/17 01:38	1
Vinyl chloride	ND		1.00		ug/L			11/07/17 01:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			70 - 130					11/07/17 01:38	1
4-Bromofluorobenzene (Surr)	105		70 - 130					11/07/17 01:38	1
Dibromofluoromethane (Surr)	102		70 - 130					11/07/17 01:38	1
Toluene-d8 (Surr)	104		70 - 130					11/07/17 01:38	1

Client: AMEC Foster Wheeler E & I, Inc Project/Site: Former Taylor Instruments

Client Sample ID: DUP-01 Date Collected: 10/31/17 00:01

Date Received: 11/04/17 09:31

Lab Sample ID: 490-140085-10 Matrix: Water

5 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			11/07/17 08:27	1
cis-1,2-Dichloroethene	5.70		1.00		ug/L			11/07/17 08:27	1
Tetrachloroethene	ND		1.00		ug/L			11/07/17 08:27	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			11/07/17 08:27	1
Trichloroethene	2.33		1.00		ug/L			11/07/17 08:27	1
Vinyl chloride	5.20		1.00		ug/L			11/07/17 08:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	120		70 - 130			-		11/07/17 08:27	1
4-Bromofluorobenzene (Surr)	109		70 - 130					11/07/17 08:27	1
Dibromofluoromethane (Surr)	109		70 - 130					11/07/17 08:27	1
Toluene-d8 (Surr)	112		70 - 130					11/07/17 08:27	1

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 490-473709/6 **Client Sample ID: Method Blank** Matrix: Water Analysis Batch: 473709 MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			11/07/17 00:22	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			11/07/17 00:22	1
Tetrachloroethene	ND		1.00		ug/L			11/07/17 00:22	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			11/07/17 00:22	1
Trichloroethene	ND		1.00		ug/L			11/07/17 00:22	1
Vinyl chloride	ND		1.00		ug/L			11/07/17 00:22	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		70 - 130			-		11/07/17 00:22	1
4-Bromofluorobenzene (Surr)	103		70 - 130					11/07/17 00:22	1
Dibromofluoromethane (Surr)	102		70 - 130					11/07/17 00:22	1
Toluene-d8 (Surr)	105		70 - 130					11/07/17 00:22	1

Lab Sample ID: LCS 490-473709/3 Matrix: Water Analysis Batch: 473709

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	t D	%Rec	Limits	
1,1-Dichloroethene	20.0	17.98	ug/L		90	79 - 124	
cis-1,2-Dichloroethene	20.0	18.15	ug/L	-	91	76 - 125	
Tetrachloroethene	20.0	19.15	ug/L	-	96	80 - 126	
trans-1,2-Dichloroethene	20.0	18.09	ug/L		90	79 - 126	
Trichloroethene	20.0	18.09	ug/L	-	90	80 - 123	
Vinyl chloride	20.0	19.56	ug/L	-	98	68 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	112		70 - 130
4-Bromofluorobenzene (Surr)	103		70 - 130
Dibromofluoromethane (Surr)	95		70 - 130
Toluene-d8 (Surr)	104		70 - 130

Lab Sample ID: LCSD 490-473709/4 **Matrix: Water** Analysis Batch: 473709

Allalysis Balcii. 473709									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	20.0	18.45		ug/L		92	79 - 124	3	20
cis-1,2-Dichloroethene	20.0	18.35		ug/L		92	76 - 125	1	15
Tetrachloroethene	20.0	18.51		ug/L		93	80 - 126	3	17
trans-1,2-Dichloroethene	20.0	17.54		ug/L		88	79 - 126	3	15
Trichloroethene	20.0	17.06		ug/L		85	80 - 123	6	14
Vinyl chloride	20.0	19.15		ug/L		96	68 - 120	2	15
	`								

LCSD	LCSD	
%Recovery	Qualifier	Limits
111		70 - 130
103		70 - 130
98		70 - 130
	%Recovery 111 103	103

Prep Type: Total/NA

TestAmerica Nashville

7

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 490-473709/4 **Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA** Analysis Batch: 473709 LCSD LCSD Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 70 - 130 104 Lab Sample ID: 490-140085-1 MS **Client Sample ID: BR-15 Matrix: Water** Prep Type: Total/NA Analysis Batch: 473709 Sample Sample Spike MS MS %Rec. Result Qualifier Added **Result Qualifier** Analyte Unit D %Rec Limits 1,1-Dichloroethene ND 20.0 22.81 ug/L 114 54 - 150 68 - 131 cis-1,2-Dichloroethene 5.22 20.0 27.77 ug/L 113 Tetrachloroethene ND 20.0 19.65 ug/L 98 57 - 138 trans-1.2-Dichloroethene ND 20.0 23.08 114 59 - 143 ug/L Trichloroethene 2.43 20.0 21.98 ug/L 98 63 - 135 Vinyl chloride 4.06 20.0 29.03 ug/L 125 57 - 150 MS MS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 123 70 - 130 4-Bromofluorobenzene (Surr) 109 70 - 130 Dibromofluoromethane (Surr) 105 70 - 130 Toluene-d8 (Surr) 88 70 - 130

Lab Sample ID: 490-140085-1 MSD Matrix: Water Analysis Batch: 473709

· ····· , ··· · · · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND		20.0	19.36		ug/L		97	54 - 150	16	17
cis-1,2-Dichloroethene	5.22		20.0	25.91		ug/L		103	68 - 131	7	17
Tetrachloroethene	ND		20.0	21.82		ug/L		109	57 - 138	10	16
trans-1,2-Dichloroethene	ND		20.0	20.49		ug/L		101	59 - 143	12	16
Trichloroethene	2.43		20.0	21.87		ug/L		97	63 - 135	1	17
Vinyl chloride	4.06		20.0	25.16		ug/L		105	57 ₋ 150	14	17
	MSD	MSD									
Currente	0/ Decevery	Qualifian	l insite								

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	118		70 - 130
4-Bromofluorobenzene (Surr)	111		70 - 130
Dibromofluoromethane (Surr)	97		70 - 130
Toluene-d8 (Surr)	105		70 - 130

Lab Sample ID: MB 490-474026/8 **Matrix: Water** Analysis Batch: 474026

	MB MB					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND	1.00	ug/L		11/08/17 02:46	1
cis-1,2-Dichloroethene	ND	1.00	ug/L		11/08/17 02:46	1
Tetrachloroethene	ND	1.00	ug/L		11/08/17 02:46	1
trans-1,2-Dichloroethene	ND	1.00	ug/L		11/08/17 02:46	1

TestAmerica Nashville

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: BR-15 Prep Type: Total/NA

Lab Sample ID: MB 490-474026/8

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

5 6 7

Prep Type: Total/NA

Analysis Batch: 474026									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		1.00		ug/L			11/08/17 02:46	1
Vinyl chloride	ND		1.00		ug/L			11/08/17 02:46	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		70 - 130					11/08/17 02:46	1
4-Bromofluorobenzene (Surr)	113		70 - 130					11/08/17 02:46	1
Dibromofluoromethane (Surr)	107		70 - 130					11/08/17 02:46	1
Toluene-d8 (Surr)	99		70 - 130					11/08/17 02:46	1
_ Lab Sample ID: LCS 490-47	4026/4					Client	Sample ID:	Lab Control S	Sample
And a subject of							-	D	

Matrix: Water Analysis Batch: 474026

· ····· ······························	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	20.0	22.65		ug/L		113	79 - 124
cis-1,2-Dichloroethene	20.0	21.37		ug/L		107	76 - 125
Tetrachloroethene	20.0	22.11		ug/L		111	80 - 126
trans-1,2-Dichloroethene	20.0	21.43		ug/L		107	79 - 126
Trichloroethene	20.0	24.14		ug/L		121	80 - 123
Vinyl chloride	20.0	21.19		ug/L		106	68 - 120
				-			

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		70 - 130
4-Bromofluorobenzene (Surr)	96		70 - 130
Dibromofluoromethane (Surr)	110		70 - 130
Toluene-d8 (Surr)	99		70 - 130

Lab Sample ID: 490-140193-A-2 MS Matrix: Water Analysis Batch: 474026

Analysis Batch: 474026	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	ND		100	118.6		ug/L		119	54 - 150	
cis-1,2-Dichloroethene	ND		100	110.7		ug/L		111	68 ₋ 131	
Tetrachloroethene	ND		100	116.0		ug/L		116	57 - 138	
trans-1,2-Dichloroethene	ND		100	105.6		ug/L		106	59 ₋ 143	
Trichloroethene	ND		100	125.1		ug/L		125	63 - 135	
Vinyl chloride	ND		100	105.7		ug/L		106	57 - 150	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	93		70 - 130							
4-Bromofluorobenzene (Surr)	97		70 - 130							
Dibromofluoromethane (Surr)	108		70 - 130							
Toluene-d8 (Surr)	97		70 - 130							

Client Sample ID: Matrix Spike

Prep Type: Total/NA

7

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 490-140193-A-2 MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water** Prep Type: Total/NA Analysis Batch: 474026 Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added **Result Qualifier** Unit D %Rec Limits RPD Limit 1,1-Dichloroethene ND 100 129.3 ug/L 54 - 150 9 17 129 cis-1,2-Dichloroethene ND 100 111.5 68 - 131 17 ug/L 112 1 Tetrachloroethene ND 100 125.0 ug/L 125 57 - 138 7 16 trans-1,2-Dichloroethene ND 100 110.7 111 59 - 143 5 16 ug/L Trichloroethene ND 100 131.9 ug/L 132 63 - 135 5 17 Vinyl chloride ND 100 109.8 ug/L 110 57 - 150 4 17 MSD MSD Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 70 - 130 94 4-Bromofluorobenzene (Surr) 96 70 - 130 107 70 - 130 Dibromofluoromethane (Surr) Toluene-d8 (Surr) 99 70 - 130

GC/MS VOA

490-140193-A-2 MSD

Matrix Spike Duplicate

Analysis Batch: 473709

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-140085-1	BR-15	Total/NA	Water	8260C	
490-140085-2	BR-02	Total/NA	Water	8260C	
490-140085-3	BR-03	Total/NA	Water	8260C	
490-140085-4	BR-10	Total/NA	Water	8260C	
490-140085-5	BR-04	Total/NA	Water	8260C	
490-140085-6	BR-01	Total/NA	Water	8260C	
490-140085-7	QATB-01	Total/NA	Water	8260C	
490-140085-8	QARB-01	Total/NA	Water	8260C	
490-140085-9	QAFB-01	Total/NA	Water	8260C	
490-140085-10	DUP-01	Total/NA	Water	8260C	
MB 490-473709/6	Method Blank	Total/NA	Water	8260C	
LCS 490-473709/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 490-473709/4	Lab Control Sample Dup	Total/NA	Water	8260C	
490-140085-1 MS	BR-15	Total/NA	Water	8260C	
490-140085-1 MSD	BR-15	Total/NA	Water	8260C	
nalysis Batch: 474	026				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
490-140085-3	BR-03	Total/NA	Water	8260C	
490-140085-4	BR-10	Total/NA	Water	8260C	
MB 490-474026/8	Method Blank	Total/NA	Water	8260C	
LCS 490-474026/4	Lab Control Sample	Total/NA	Water	8260C	
490-140193-A-2 MS	Matrix Spike	Total/NA	Water	8260C	

Total/NA

Water

8260C

Client Sample ID: BR-15 Lab Sample ID: 490-140085-1 Date Collected: 10/31/17 14:35 Matrix: Water Date Received: 11/04/17 09:31 Dil Initial Batch Batch Batch Final Prepared Number Method Factor or Analyzed Prep Type Туре Run Amount Amount Analyst Lab Total/NA Analysis 8260C 10 mL 10 mL 473709 11/07/17 05:54 S1S TAL NSH Lab Sample ID: 490-140085-2 Client Sample ID: BR-02 Date Collected: 10/31/17 16:05 Matrix: Water Date Received: 11/04/17 09:31 Dil Batch Batch Initial Final Batch Prepared **Prep Type** Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 473709 Total/NA 8260C 11/07/17 06:19 S1S TAL NSH Analysis 10 mL 10 mL 1 **Client Sample ID: BR-03** Lab Sample ID: 490-140085-3 Date Collected: 11/01/17 10:10 Matrix: Water Date Received: 11/04/17 09:31 Batch Batch Dil Initial Final Batch Prepared Method Number or Analyzed Prep Type Type Run Factor Amount Amount Analyst Lab Total/NA Analysis 8260C 10 mL 473709 11/07/17 06:45 TAL NSH 10 mL S1S 1 Total/NA Analysis 8260C 10 10 mL 474026 11/08/17 07:07 P1B TAL NSH 10 mL **Client Sample ID: BR-10** Lab Sample ID: 490-140085-4 Date Collected: 11/01/17 12:04 Matrix: Water Date Received: 11/04/17 09:31 Dil Batch Batch Initial Final Batch Prepared Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260C 1 10 mL 10 mL 473709 11/07/17 07:10 S1S TAL NSH 11/08/17 07:33 P1B Total/NA Analysis 8260C 10 10 mL 10 mL 474026 TAL NSH **Client Sample ID: BR-04** Lab Sample ID: 490-140085-5 Date Collected: 11/01/17 13:25 Matrix: Water Date Received: 11/04/17 09:31 Dil Batch Batch Initial Final Batch Prepared Method or Analyzed Prep Type Туре Run Factor Amount Amount Number Analyst Lab 8260C 473709 11/07/17 08:01 S1S TAL NSH Total/NA Analysis 10 10 ml 10 ml **Client Sample ID: BR-01** Lab Sample ID: 490-140085-6 Date Collected: 11/01/17 14:45 Matrix: Water Date Received: 11/04/17 09:31 Batch Dil Initial Final Batch Batch Prepared Method Number Prep Type Туре Run Factor Amount Amount or Analyzed Analyst Lab Total/NA Analysis 8260C 473709 11/07/17 07:36 S1S TAL NSH 5 10 mL 10 mL

Date Collecte Date Receive									wa	trix: Wate
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	473709	11/07/17 00:47	S1S	TAL NSH
Client Sam	ple ID: QA	RB-01					La	b Sample II	D: 490-	140085-
Date Collecte	-							•		trix: Wate
Date Receive										
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	473709	11/07/17 01:13	-	TAL NSH
Client Sam Date Collecte Date Receive	•	5:40					La	b Sample II		trix: Wate
							Batch	Prepared		
-	Batch	Batch		Dil	Initial	Final	Datch	riepaieu		
Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Number	or Analyzed	Analyst	Lab
_			Run					•	Analyst S1S	
Prep Type Total/NA	Type Analysis	Method 8260C P-01	Run	Factor	Amount	Amount	Number 473709	or Analyzed	S1S	TAL NSH
Prep Type Total/NA Client Sam Date Collecte	Type Analysis ple ID: DUI d: 10/31/17 0	Method 8260C P-01 0:01	<u>Run</u>	Factor	Amount	Amount	Number 473709	or Analyzed 11/07/17 01:38	S1S	TAL NSH
Ргер Туре	Type Analysis ple ID: DUI d: 10/31/17 0	Method 8260C P-01 0:01	<u>Run</u>	Factor	Amount	Amount	Number 473709	or Analyzed 11/07/17 01:38	S1S	TAL NSH
Prep Type Total/NA Client Sam Date Collecte	Type Analysis ple ID: DUI d: 10/31/17 0 d: 11/04/17 0	Method 8260C P-01 0:01 9:31	Run	Factor 1	Amount 10 mL	Amount 10 mL	Number 473709	or Analyzed 11/07/17 01:38 Sample ID	S1S	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Client: AMEC Foster Wheeler E & I, Inc Project/Site: Former Taylor Instruments

5
8
9
10

lethod	Method Description	Protocol	Laboratory
260C	Volatile Organic Compounds by GC/MS	SW846	TAL NSH

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Client: AMEC Foster Wheeler E & I, Inc Project/Site: Former Taylor Instruments

Laboratory: TestAmerica Nashville

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New York	NELAP	2	11342	03-31-18

Tes	tAm	eric	a
. – –			

THE LEADER IN ENVIRONMENTAL TESTING

Nashville, TN

COOLER RECEIPT FORM

Cooler Received/Opened On 11/3/2017 @ 09:30

Time Samples Removed From Cooler	Time Samples	Placed In Storage	(2 Hour Window)
1. Tracking # <u>4960</u> (I	ast 4 digits, FedEx)	Courier: <u>FedEx</u>	
IR Gun ID14740456	_ pH Strip Lot	Chlorine Strip Lo	ot
2. Temperature of rep. sample or temp b	lank when opened: $2c$	Degrees Celsius	
3. If Item #2 temperature is 0° C or less, w	as the representative san	nple or temp blank froz	en? YES NONA
4. Were custody seals on outside of cool	er?	. (ESNONA
If yes, how many and where:		147	ne
5. Were the seals intact, signed, and date	d correctly?		ESNONA
6. Were custody papers inside cooler?			YESNONA
I certify that I opened the cooler and answ	vered questions 1-6 (intial)	es
7. Were custody seals on containers:	YES (NO)	and Intact	YESNO. (NA)
Were these signed and dated correctly	?		YESNONA
8. Packing mat'l used? Bubblewray	Plastic bag Peanuts	Vermiculite Foam Ins	ert Paper Other None
9. Cooling process:	Ce Ice-pack	Ice (direct contact)	Dry ice Other None
10. Did all containers arrive in good cond	lition (unbroken)?		YESNONA
11. Were all container labels complete (#,	date, signed, pres., etc)?		TESNONA
12. Did all container labels and tags agree	e with custody papers?	'	TESNONA
13a. Were VOA vials received?			YES NO NA
b. Was there any observable headspac	e present in any VOA vial	?	FES.NONA
Larger than this.			
14. Was there a Trip Blank in this cooler?		If multiple coolers,	sequence #
I certify that I unloaded the cooler and ans			
15a. On pres'd bottles, did pH test strips			\bigcirc
b. Did the bottle labels indicate that the	e correct preservatives w	ere used	(res.l.noNA
16. Was residual chlorine present?	•		YESNONA
I certify that I checked for chlorine and pH		d questions 15-16 (inti	
17. Were custody papers properly filled o			ESNONA
18. Did you sign the custody papers in the			(YESNONA
19. Were correct containers used for the a			YESNONA
20. Was sufficient amount of sample sent			YES NO NA
I certify that I entered this project into LIM			
I certify that I attached a label with the uni-			
21. Were there Non-Conformance issues a	at login? YES. NO Was	a NCM generated? YE	s. <i>(</i> .NO)#

e
_
~
~
<u> </u>
S, CO
ā
~
_
đ
0
-
· •
ക
~
_
<
<u>ت</u> ب
10
- 92
e
Ē
_

Chain of Cust

490-140085 TestAmerica

Phone: \mathcal{S}_{1} = Phone: \mathcal{S}_{2} = \mathcal{S}_{2} = \mathcal{S}_{1} = \mathcal{S}_{2} = $$	Dirac 6520-7313 Table Size Dirac C.F. 2 Autorial Registerencian com Autorial Registerencian com Autorial Registerencian com Autorial Registerencian com 2 Autorial Registerencian com Autorial Registerencian com Autorial Registerencian com Autorial Registerencian com 3 Autorial Registerencian com Autorial Registerencian com Autorial Registerencian com Autorial Registerencian com 1 3 Autorial Registerencian com Autorial Registerencian com Autorial Registerencian com Autorial Registerencian com 1 3 Autorial Registerencian com Autorial Registerencian com Autorial Registerencian com Autorial Registerencian com 1 3 Autorial Registerencian com Autorial Registerencian com Autorial Registerencian com 1 3 Autorial Registerencian com Autorial Registerencian com Autorial Registerencian com Autorial Registerencian com 1 3 Autorial Registerencian com Autorial Registerencian com Autorial Registerencian com Autorial Registerencian com 1 1 1 1 1	Client Information	Sampler De Carlan	Lab PM: Brown, Shali			COC No:	
All Image: Contract of the i	Kit Transmission Transmission <thtransmission< th=""> Transmission</thtransmission<>		105-200	E-Mail. Sh:ali.brown(@testamericainc.com		Page:	
R. // Intermediation Construction Presentation const. 1. Vi Resentation const. 5. Nonder 1 vi Nicht 0	R.1. Пони Понклания <	nc.			lysis	guested	Job #.	
Tri Manuada (Latricit) Tri Manuada (Latricit) <thtri (latricit)<="" manuada="" th=""> Tri Manuada (Latricit)<!--</td--><td>Полнование (вслуг) Полнование (вслуг) Полнов</td><td>R</td><td>Due Date Requested:</td><td></td><td></td><td></td><td>Preservatio</td><td>ě.</td></thtri>	Полнование (вслуг) Полнов	R	Due Date Requested:				Preservatio	ě.
0 ¹³ 3031(5 2+023) 0.05 5:	North Color Solution Environment Environm		TAT Requested (days): Standard TAT		bitolilo ivi		A - HCL B - NaOH C - Zn Acetal D - Nitric Aci	
Normalization Solution	Normalized Normali						E - NaHSO4 F - MeOH	
Bits Bits <td>30015 <th< td=""><td></td><td>Ð</td><td>(0)</td><td>1,2 D</td><td></td><td>G - Amonior H - Ascorbic</td><td></td></th<></td>	30015 30015 <th< td=""><td></td><td>Ð</td><td>(0)</td><td>1,2 D</td><td></td><td>G - Amonior H - Ascorbic</td><td></td></th<>		Ð	(0)	1,2 D		G - Amonior H - Ascorbic	
Protect	Reserve Reserve <t< td=""><td>w.com</td><td>WO # 3031152028.08</td><td></td><td></td><td></td><td></td><td></td></t<>	w.com	WO # 3031152028.08					
Scional Scional Sample Date Sample Date Sample Date Sample Date Sample Date Time Sample Date Sample Date Sample Date Time Sample Date Time Sample Date Sample Date Sample Date Time Sample Date Time Sample Date Sample Date If 31-17-17-17-11 US 10-17-11 IV-17-17-11 UV-11-12 IV-17-11 UV-11-12 IV-17-12	Solves Sample Unit Carbon Sample Unit Sample Unit Carbon Sample Unit		Project #: 49001213	train Stra				z - other (specify)
Image: Sample Date <	Sample Date Samp		SSOW#:	Sec. 1. 1. 1. 1.	d-۱٬۱ :			
Sample Date Time Garantial Contraction State R Special Instructionship 1	Sample Date Time Constraint Sample Date Time Special InstructionsNuce: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td></td> <td></td> <td>d Filtered</td> <td>10E PCE</td> <td></td> <td>nədmul li</td> <td></td>			d Filtered	10E PCE		nədmul li	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{bmatrix} F-3 -17] [V:35] C \\ U \text{ Vater } \\ \begin{bmatrix} F-3 -17] [V:35] C \\ V \text{ Vater } \\ \begin{bmatrix} U-3 -17] [V:10] C \\ V \text{ Vater } \\ V \text{ Vater } \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\ \begin{bmatrix} V \text{ Vater } \\ V \text{ Vater } \\ \end{bmatrix} \\$		Time	BT=Tissue, A=Air) H.	826			ial Instructions/Note:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12 16:35	Water		-	m	
II-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		<u> </u>	Water			2	
Image: Second	1 13:34 C Vater X 1 3 1 13:35 C Vater X 1 3 1 15:34 C Vater X 1 3 1 15:35 C Vater X 1 3 1 15:34 C Vater X 1 3 1 15:35 C Vater X 1 3 1 15:35 C Vater X 1 3 1 15:35 C Vater X 1 3 1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1		++	Water	~		<u>, </u>	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Image: Name		<u> </u>	Water			3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Image: Signed in the second of the second		1 13.25 F	Water			2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 15:34 C Water X 1 3 1 15:35 C Water X 1 3 1 15:35 C Water X 1 1 3 1 15:35 C Water X 1 1 3 1 1 1 X 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<		1 14:45 6	Water			3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Image: Signed and the second of the secon		1 15:30 C	Water			3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Image: Second B Structure K Second B Seco		-) 15:35 C-	Water			3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Iv-31-17 Iv-31-17 Iv-31 Iv-31-17 Iv-31			Water	X		3	
$\sqrt{30}$ $(u-3l-12)$ $(x':35)$ C Water $\sqrt{10}$	15 1 <th1< th=""> <th1< th=""></th1<></th1<>			Water	×		£	
ant Poison B Unknown Hadiological Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Special Instructions/OC Requirements: Pate: Pate: Date:	ant Poison B Unknown Radiological Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Achive For Months Special Instructions/QC Requirements: Date: Date/Ime: Date/Ime: Method of Shipment: Date/Ime: Date/Ime:	3R-15 M5D		Water	×			/matrix
Date: Image: Company Company Special Instructions/QC Requirements: Date/Image: Date/Image: Company Company Date/Image: Company Company Method of Shipment: Date/Image: Date/Image: Company Company Company Received by: Pate/Image: Company Date/Image: Date/Image: Company Company Received by: Pate/Image: Company Date/Image: Date/Image: Company Company Received by: Date/Image: Company Date/Image: Date/Image: Company Company Received by: Date/Image: Company Date/Image: Date/Image: Company Company Received by: Date/Image: Company	Date: Date: Iteme Date: Date: Method of Shinent: Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Company Received by: Method of Shinent: Company Date/Time: Date/Time: Pate/Time: Date/Time: Company Received by:	ant	- Unknown	Sar	mple Disposal (A fee may be a Return To Client	ssessed if samples are isposal Bv Lab	retained longer th	
Date: Time: Time: Method of Shipment: Date/Time: Date/Time: Company Received by: Method of Shipment: Date/Time: Date/Time: Company Received by: Method of Shipment: Date/Time: Company Received by: Method of Shipment: 9530 Date/Time: Company Received by: Method of Shipment: 9730 Date/Time: Company Received by: Date/Time: 9730 Date/Time: Company Received by: Date/Time: 916-Time:	Date/Time: Date/Time: Time: Method of Shipment: Date/Time: Date/Time: Company Received by: Date/Time: Company Received by: Received by: Date/Time: Company Received by: Date/Time: Date/Time: Company Received by: Date/Time: Date/Time: Company Received by: Company Date/Time: Company Received by: Company			Spe	ecial Instructions/QC Requireme	ıts:		
Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Pate/Time: Date/Time: Company Received by: Mace/Mace/Mace/Mace/Mace/Mace/Mace/Mace/	Date/Time: Company Received by: Date/Time: Pate/Time: PCGO Date/Time: Company Received by: Date/Time: Company		Date:	Time:		Method of Shipment:		
Date/Time: Company Received by: Date/Time: Date/Time: Company Received by: Date/Time: Cooler Temperature(s) °C and Other Remarks: Zr (Date/Time: Company Received by: Date/Time: Company Date/Time: Company Received by: Date/Time: Company Company Received by: Date/Time: Company Conpany Received by: Date/Time: Company		1 21-	Company Amee FW	Received by: / X	Date/Time:		Company
Date/Time: Company Received by: Date/Time: Cooler Temperature(s) °C and Other Remarks: L L	Date/Time: Company Received by: Date/Time: Company Cooler Temperature(s) °C and Other Remarks: 2.1 2.1 2.1			Company	Received by:	Date/Time:		Company
Cooler Temperature(s) °C and Other Remarks:	Cooler Temperature(s) [°] C and Other Remarks:		Date/Time:	Company	Received by:	Date/Time:		Company
		al No.:			Cooler Temperature(s) °C and Other R	0		

i

Client: AMEC Foster Wheeler E & I, Inc

Login Number: 140085 List Number: 1 Creator: Stewart, Eric S

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 490-140085-1

List Source: TestAmerica Nashville

APPENDIX E

FIELD DATA RECORDS

MAY 2017 FIELD DATA RECORDS

17-
N/A
.26 gal/L)
nents
r-Solventodyn
Gray-Solvent ollor
- Strong oder- blan
hel F.C. flat
ed punp
m-Slight oder
- Solventedan
- Joluan of
applicable)
appicatio)
=

Amec Foster Wheeler E&I, Inc.
FIELD DATA RECORD - GROUNDWATER SAMPLING
PROJECT Former Taylor Instruments 2017 Semi-Annual Sampling Event DATE 5/10/17
SITE ID OB-06 SITE TYPE Monitor Well
SITE ACTIVITY START (2:20 END (3:29 JOB NUMBER 3031152028.08
WATER LEVEL MEASUREMENT POINT
TOP OF PROTECTIVE CASING CASING STICKUP OTHER (FROM GROUND) FT DIFFERENCE \mathcal{Q}_{FT}
INITIAL DEPTH 3.85 FT WELL DEPTH 16.45 FT AMBIENT AIR NA PPM DIAMETER
FINAL DEPTH 5.19 FT SCREEN UP FT PID WELL WELL WELL WELL INTEGRITY: CAP
DRAWDOWN 1.34 FT DRAWDOWN 0.214 GAL PRODUCT LOCKED LOCKED
((initial - final) x 0.16 {2-inch} or x 0.65 {4-inch} or x 1.5 {6-inch})
PURGE RATE 0.135 L/MIN BEGIN PURGING 12:24 END PURGING 13:19 TOTAL VOL. PURGED (purge rate (L/min) × duration (min) × 0.26 gal/L)
PURGE DATA VOL Purged pH SpC (cond) TURBIDITY DO TEMPERATURE ORP WATER
Time (L) (units) (mS/cm) (NTU) (mg/L) (°C) (mV) LEVEL Comments [2:77 FC 668 1.014 7.96 1.56 1258 -48.7 4.48 Clear-Solvent od,
12:37 1.6 6.89 1.013 8.39 0.70 1260 -71.2 5.19 Slowed pump
17:44 0.71.0 690 0.996 7.29 0.54 12.60 -110.8 5.27
12:51 1 6.90 0.987 8.50 0.47 17.48 -127.8 5.31 Slowed pump 12:58 0.85 6.90 0.971 8.77 0.39 12.83 -139.1 5.20 clear-solvent ola
12:58 0.85 6.90 0.971 8.77 0.39 12.83 -139.1 5.20 clear-solvent ular 13: v5 0.85 6.90 0.961 8.90 0.34 12.88 -149.9 5.19
13:12 0.85 6.90 0.954 7.92 0.27 13.04 -151.9 5.19
13:19 0.85 6.90 0.952 9.19 0.25 13.05 -154.0 5.19
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF PUMP TYPE OF PUMP
SUBMERSIBLE X HIGH DENSITY POLYETHYLENE STAINLESS STEEL X OTHER OTHER OTHER X OTHER X OTHER
PURGE OBSERVATIONS NOTES
Tubing Intake @_11.5 ff bfoc Image: Strate with an experiment of the strate with an e
SIGNATURE: MAN

Amec Foster Whe	eler E&I, Inc.			
FIELD DATA RECOR	ND - GROUNDWATER SAM	IPLING		
	al Sampling Event			09/17
	SITE TYPE	E Monitor Well	J	
SITE ACTIVITY	P ENDIS:U7 JOB NUME	BER 3031152028.08]	
WATER LEVEL 13:19	MEASUREMENT POINT	PROTECTIVE	PROTECTIVE	
	TOP OF PROTECTIVE CASING	CASING STICKUP (FROM GROUND)	CASING / WELL	FT
INITIAL DEPTH TO WATER 4.71	FT DEPTH 25.3 FT	PID AMBIENT AIR NA PPM	DIAMETER	IN
FINAL DEPTH TO WATER		PID WELL NA PPM	WELL YES INTEGRITY: CAP	NO N/A
DRAWDOWN T.48	FT DRAWDOWN 0.237 GAL	PRODUCT		
((Initial - final) x 0.16 {2-inch} or x	0.65 (4-inch) or x 1.5 (6-inch))			
PURGE RATE 0.122 LI	MIN PURGING 3:21	END PURGING 15.02	TOTAL VOL. PURGED (purge rate (L/min) x duration	GAL (min) x 0.26 gal/L)
PURGE DATA VOL Purged	pH SpC (cond) TURBIDI	TY DO TEMPERATURE	ORP WATER	
Time (L) 13:36 FC	(units) (mS/cm) (NTU) 7.20 0.868 20.0	(mg/L) (°C) 5.53 [3.33	(mV) LEVEL ~1リン3 5 フリ	Comments Clear-Slightodon
13:36 1.4	7.16 0.859 20.6		-124.2 6.23	Slunel A. A
13:46 1.2	7.15 0.856 25.1	0.40 13.14	-122.3 6.20	It.gran -no oden
13:56 1.2	7.15 0.853 31.5	0.30 13.00	-121.2 6.20	Cloudy - Slight oca
14:03 0.75	7.15 0.851 36.5		-1205 6.18	
14:10 0.75	7.16 0.854 34.6	0.22 13.06	-124.9 6.18	Emptical F.G.
14:20 1.2	7.17 0.864 28.0	0.24 12.95	-115. 6.18	
14:26 0.75	7.16 0.871 24.8	0.23 12.86	-116.7 6.18	
19:32 0.75	7.16 0875 21.7	0.23 12.86	-116.8 6.18	
14:38 0.75	7.16 0.881 19.2	0.21 12.86	-115. 6.18	
14:44 0.75	7.160884 30.2 7.150888 166	0.18 17.84	-1151 6.19	
14.56 0.75	7.15 0.892 16.6	017 1282		
19:02 0.75	7.15 0.898 8.25		-116.3 6.19 -119.5 6.19	Clear-no oden
				ULFRY = 100 UP IN
TYPE OF PUMP	TYPE OF TUBING	TYPE OF PUMP MATERI		ERIAL (if applicable)
	TEFLON OR TEFLON LINED			
	X HIGH DENSITY POLYETHYLE	NE	X OTHER NA	-
		X OTHER NA	_	
PURGE OBSERVATIONS		NOTES		
Tubing Intake @ JU Ftb	itac	Pre VOC (modified list) VFA's Sutfate	servation Sample Name HCI <u>UB-US</u>	15:05
	Λ	Methane/Ethene Duplicate		
SIGNATURE:	shi			

Amec Fo	ster Whe	eler E8	kl, Inc.						
FIELD DAT	TA RECOR	D - GRO	UNDWATI	ER SAMPI	LING				
	Former Taylor In 2017 Semi-Annu		rent		. <u></u> .			DATE しり	109/17
	Tw-0	14		SITE TYPE	Monitor	Weli			
SITE ACTIVITY	START 09	PU END!	1:20	JOB NUMBER	303115	2028.08			
WATER LEVEL			ENT POINT WELL RISER	29	OTECTIVE		PROTECTIVE	:	
			PROTECTIVE CA	ASING CA	SING STICKL		CASING / WE	IL (125	FT
INITIAL DEPTH TO WATER					PID AMBIENT AIR	NA PPM	WELL DIAMETER	2	IN
FINAL DEPTH TO WATER			SCREEN	5	PID WELL MOUTH	NA PPM	WELL INTEGRITY: (CAS		NO N/A
DRAWDOWN	2.60				PRODUCT THICKNESS	NA FT	LOC	KED 🔽	
((initial - final) x	0.16 (2-inch) or x	0.65 (4-inch) a	r x 1.5 (6-inch))						
PURGE RATE	0.[26	BEGIN MIN PURG				11	TOTAL VOL. PURGED (purge rate (L	ر mln) x duration	GAL (min) x 0.26 gal/L)
PURGE DATA	VOL Purged	pН	SpC (cond)	TURBIDITY	DO	TEMPERATURE	ORP	WATER	
Time		(units)	(mS/cm)	(NTU)	(mg/L)	(°C)	(mV)	LEVEL	Comments
09:47	PC	7.15 7.72	0.759 0.769	4,15	<u>4.10</u> 2.01	1035	132.7	7.82	clear - No odre
01:03		7.22	0.754	2.18	2.03	10.33	49.0	8.40	
10:10		7.22	0.745	2.41	2.13	10.33	26.1	8.71	stoned pump
10:00	1.3	7.23	0733	2,11	2.24	10:29	0.0	8.80	
10:30	1,3	7.23	0.732	1.12	2.16	10.38	-14.2	8.90	
10:36	0.75	7.23	0.730 0.707		2.73 2.77	10.45	-189.5 -72.2	8.95	slowed pump
10.50	0.75	7.24	0.707	$1, \forall \neq$ $n, \neq 1$	7.18	10.40	-30.3	8.87	
10.57	0.80	7.24	0.716	0.6(2.07	10.48	-34.4	8.85	
11:04	0.80	7.24		0.97	1.99	10-51	-36.8	8.83	
11:11	0.00		0.711	1.32	1.97	10.57	-36.0	8.82	clear-No oder
EQUIPMENT DO		<u>.</u>		<u> </u>		<u> </u>			
TYPE OF PU		-	OF TUBING		TYPE OF			BLADDER MAT	ERIAL (if applicable)
	ALTIC	TE	FLON OR TEFL	ON LINED	POLY	/INYL CHLORID)N	
			GH DENSITY PO	LYETHYLENE		LESS STEEL		R <u>NA</u>	
PURGE OBSER	VATIONS				NOTES				
				ļ	VOC (mr		HCL \mathcal{T}^{V}	ple Name ーイイ	Time Collected
Tubing Intake Ø	14 str bi	TUC		i	VFA's Sulfate				
	· <u> </u>				Methane		1	v-04	11:15
			1		Duplicate	1			—
	2	\sim	//						
	n g	Hr.	l						
SIGNATURE:	in 1	,		-					

Amec Fo	ster Whe	eler Eð	kl, Inc.	· · · · ·					
FIELD DAT	A RECOR	D - GRO	UNDWATE	ER SAMPI	LING				
	Former Taylor In: 2017 Semi-Annu		rent					DATE 5/	10/17-
	TW-0	9		SITE TYPE	Monitor	Weil			
	START //:/4	END	12:18	JOB NUMBER	303115	2028.08			
WATER LEVEL			ENT POINT WELL RISER	PR	OTECTIVE		PROTECTIVE		
				SING CA	SING STICKU ROM GROUNI		CASING / WE	LL	TT
INITIAL DEPTH TO WATER	10.53	FT	DEPTH		PID AMBIENT AIR	NAPPM	WELL DIAMETER	2	IN
FINAL DEPTH TO WATER	10.83	Тन	SCREEN	G 1	PID WELL MOUTH	NA PPM	WELL INTEGRITY:		NO N/A
DRAWDOWN	0.30				PRODUCT THICKNESS	NA FT	CAS LOC COL		
((Initial - final) x 0).16 (2-inch) or x	0.65 (4-inch) c	or x 1.5 (6-Inch))						
PURGE RATE	0.130 LA	BEGIN AIN PURG		EN PU		2:13	TOTAL VOL. PURGED (purge rate (L	/min) x duration	GAL (min) x 0.26 gal/L)
PURGE DATA	VOL Purged	pН	SpC (cond)	TURBIDITY	DO	TEMPERATURE	ORP	WATER	
	(L)	(units)	(mS/cm)	(NTU)	(mg/L) 7.54	(°C)	(mV) 36.5	LEVEL	<u>Comments</u> Clear - Medar
11:33	1.5	6.92	0.608	10.1	2.32	11.85	<u>~6.7</u> 44.8	10.83	Clear- ro daor
11:39	0.90	6.92	0.613	2.71	2.48	11.85	48.5	10.85	
11:45	0.90	6.94	0.629	1.97	2.14	11.92	51.2	10.87	Sloved pump
11:50	0.80	6.95	0.635	1.12	1.87	1212	<u>55.4</u>	10.83	
12.06	0-80	6.96	0.640	1.19	1.68	12.01	56.0	10.83	
12:13	0.80	6.98	0.6.95	0.86	1.61	11.84	60.6	10.03	
	<u>V.</u>								
									-
	. <u> </u>								
EQUIPMENT DO <u>TYPE OF PUN</u> X PERISTA SUBMER		<u>ТҮРЕ</u> те ні	<u>OF TUBING</u> FLON OR TEFL(GH DENSITY PO THER	LYETHYLENE	POLY	PUMP MATERIA /INYL CHLORIDI LESS STEEL RNA			<u>ERIAL</u> (if applicable)
PURGE OBSERV	ATIONS				NOTES	Bree	ervation Sam	nie Name	Time Collector
Tubing Intake @_	<u>1577</u> 6	toc	Л		VOC (mo VFA's Sulfate Methane/ Duplicate	rtificci ist) Ethene		ple Name 	Time Collected
SIGNATURE:	n)	,D	l	_					

Amec Fo	ster Whe	eeler E8	ki, Inc.						
FIELD DAT	TA RECOR	D - GRO	UNDWATE	ER SAMP	LING				
	Former Taylor In 2017 Semi-Annu	al Sampling Ev	vent				1	DATE 5	110/17
	Tw-	17		SITE TYPE	Monito	r Well			
SITE ACTIVITY	START 07:5	5 END	19:43	JOB NUMBER	303115	52028.08			
WATER LEVEL		MEASUREM			0075070.07		22272271/2		
		X TOP OF TOP OF OTHER	PROTECTIVE CA	SING C	ROTECTIVE ASING STICKU ROM GROUN		PROTECTIVE CASING / WE DIFFERENCE	al 6 25	FT
INITIAL DEPTH TO WATER	5.6	FT	DEPTH	, or FT	PID AMBIENT AIR	NA PPM	WELL DIAMETER	2	IN
FINAL DEPTH TO WATER	7.88	T	SCREEN	5 гт	PID WELL MOUTH	NA PPM	WELL INTEGRITY: (CAS		NO N/A
DRAWDOWN	2.19			50 _{GAL}	PRODUCT THICKNESS	NA FŤ	LOCI	KED 💆	
((initial - final) x	0.16 (2-inch) or x	0.65 {4-inch} c	er x 1.5 (6-inch))						
PURĜE RATE	0.109 U	MIN PURG) El Pi		9:31	TOTAL VOL. PURGED (purge rate (L	2.5 (min) x duration	GAL (min) × 0.26 gal/L)
PURGE DATA	VOL Purged	рН	SpC (cond)	TURBIDITY	DO	TEMPERATURE	ORP	WATER	
Time	(L)	(units)	(mS/cm)	(NTU)	(mg/L)	(°C)	(mV)	LEVEL	Comments
08:0-1	FC 1.7	7.04	0840	9.73	3.72	9.61 9.84	-97.8	4.40	clear-slight onlor
US:21	1,3	7.07	0.817	14.6	1.41	9.97	-92.8	7.70	·
08:34	1.4	7.07	0.799	19.1	1.53	9.98	-93.3	8.14	stoned pump
08:44	1	7.07	0.794	19.8	live	9.98	-112.1	8.03	Cleur-Slightode
05:52	0.8	7.07	0.779	19,1	0.85	10.00	-1101	8.04	
08:59	0.75	7.06	0.773	16.9	081	10.00	-104.6	8.05	slowel punp
09:07	0.75	7.06	0.769	15.5	077	9.95	-101.2	7.9	
09:15	0.75	7.06	0.761	15.0	0.59	9.96	-118,2	7.86	
09:31	0.75	7.06	0.761	15.3	0.59	10.01	-119.4		cleur-slight orlon
								, , ,	
•									
			OF TUBING						ERIAL (if applicable)
		_	FLON OR TEFLO			VINYL CHLORID	_		ELINE (II applicable)
			GH DENSITY PO		_	LESS STEEL		R <u>NA</u>	_
OTHER		01	THER			R <u>NA</u>			
PURGE OBSER	VATIONS				NOTES	Dee	servation Sam	ple Name	Time Collected
1	110	+1.tnc				dified (33)		-17	09:34
Tubing Intake @	14.75F	19100			VFA's Sulfate				
			Λ		Methane Duplicate		<u> 14</u>	-17-	<u>109:34</u>
			//						
	Δ	$\Lambda()$	V						
	m! /	ver	\backslash						
SIGNATURE:									

Amec Foster Wheeler E&I, Inc.
FIELD DATA RECORD - GROUNDWATER SAMPLING
PROJECT Former Taylor Instruments 2017 Semi-Annual Sampling Event DATE 5/10/17
SITE ID TW-20 SITE TYPE Monitor Well
SITE ACTIVITY START 09:45 END 1117 JOB NUMBER 3031152028.08
WATER LEVEL MEASUREMENT POINT X TOP OF WELL RISER TOP OF PROTECTIVE CASING OTHER (FROM GROUND) 2.7 FT PROTECTIVE CASING / WELL DIFFERENCE 0.77 FT
INITIAL DEPTH II:09 FT WELL I7.72 FT PID AMBIENT AIR NA PPM DIAMETER
FINAL DEPTH 11.52 FT SCREEN 5 FT PID WELL WELL WELL VES NO N/A
DRAWDOWN U.43 FT DRAWDOWN U.069 GAL PRODUCT THICKNESS NA FT CASING LOCKED COLLAR
((initial - final) x 0.16 (2-inch) or x 0.65 (4-inch) or x 1.5 (6-inch))
PURGE RATE 0.139 L/MIN BEGIN D9:5 END PURGING 1:06 TOTAL VOL. D.7 GAL (purge rate (L/min) x duration (min) x 0.26 gal/L)
PURGE DATA VOL Purged pH SpC (cond) TURBIDITY DO TEMPERATURE ORP WATER
<u>Time</u> (L) (units) (mS/cm) (NTU) (mg/L) (°C) (mV) LEVEL Comments 09:55 FC 7.14 0.987 1.86 6.18 1V.44 -31.9 11.26 Clear-NVVIV
10:05 1.5 7.12 0.978 0.99 4.67 11.04 -9.9 11.39
10:10 0.75 7.11 0971 0.96 774 10.90 -6.7 11 42 Cleur 1"DO" Ser
10:20 1.5 7.13 1.198 1.67 5.77 11.38 (.2 11.49 Slowed pump
10.26 0.80 7.13 1.040 0.60 5.73 10.94 8.4 11.50 Changed "DO" son
10:36 1.30 7.13 1.051 0.60 5.68 11.29 13.5 11.50
10:48 0.80 7.14 0.950 0.56 4.25 11.15 14.6 11.51
10.54 0.80 7.13 0.933 0.54 4.04 11.07 22.1 11.51
11200 11.80 7.14 0.925 0.83 3.69 11.02 24.4 11.52
11:06 0.80 7.14 0.924 0.90 3.55 0.97 76.9 11.52
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF PUMP TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL (if applicable)
SUBMERSIBLE X HIGH DENSITY POLYETHYLENE STAINLESS STEEL X OTHER OTHER OTHER X OTHER X OTHER
PURGE OBSERVATIONS NOTES Preservation Sample Name Time Collected
Tubing Intake @ 14.75 ff bto(Image: State
SIGNATURE:

Amec Foster Wheeler E&I, Inc.
FIELD DATA RECORD - GROUNDWATER SAMPLING
PROJECT Former Taylor Instruments 2017 Semi-Annual Sampling Event DATE 5/10/17-
SITE ID SITE TYPE Monitor Well
SITE ACTIVITY START 3:3 END 5105 JOB NUMBER 3031152028.08
WATER LEVEL MEASUREMENT POINT X TOP OF WELL RISER PROTECTIVE PROTECTIVE
TOP OF PROTECTIVE CASING CASING STICKUP OTHER (FROM GROUND) FT CASING / WELL O, 25 FT
INITIAL DEPTH 4.25 FT WELL 2.8 FT PID AMBIENT AIR NA PPM DIAMETER 2 IN
FINAL DEPTH C.G.3 FT SCREEN 5 FT PID WELL WELL VES NO N/A
DRAWDOWN 2.68 FT DRAWDOWN U.479 GAL PRODUCT NA FT CASING COLLAR
((initial - final) x 0.16 {2-lnch} or x 0.65 {4-inch} or x 1.5 {6-inch})
PURGE O, US LIMIN BEGIN DURGING 3:36 END PURGING 4:51 TOTAL VOL. PURGED (purge rate (L/min) x duration (min) x 0.26 gal/L)
PURGE DATA VOL Purged pH SpC (cond) TURBIDITY DO TEMPERATURE ORP WATER
Time (L) (units) (mS/cm) (NTU) (mg/L) (°C) (mV) LEVEL Comments 1 13:39 FC 6.85 1.102 13.2 2.51 12.15 -86.2 5.05 Clear-NU oldon
13.49 1.6 6.84 1.093 148 0.86 1244-85.0 6.50 Slovelpurp-drange tra
13:59 1 6.83 1.097 19.1 0.80 12-99 -71.6 6.75 14:09 1 6.87 1.104 11.5 0.56 13.0 -69.8 1.96 sloved pump
14.19 095 6.81 1.111 10.1 D.48 12.79 -66.4 6.92 Cleur- Woder
14:27 0.75 6.81 1.109 9.87 0.38 12.58 -65.0 6.92
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
14:43 0.75 6.80 1.122 6.32 0.33 13.08 -61.1 6.93 14:51 0.75 6.79 1.126 5.82 0.32 13.05 -58.8 6.93 clear - NO odm
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP TYPE OF TUBING
PURGE OBSERVATIONS NOTES Preservation Sample Name Time Collected
Tubing Intake @ 19.3 ft btoc [4:55]
Methana/Ethene $\mu - 5$ $\mu + 53$
Dupicate $\underline{Dup-0}$ $\underline{1-\varphi:55}$
SUBJECT MODEL

Amec Foster Wheeler E&I, Inc.									
FIELD DATA RECORD - GROUNDWATER SAMPLING									
PROJECT Former Taylor Instrum 2017 Semi-Annual Sa				DATE 5	-11-17-				
	BR-0 SITE TYPE								
SITE ACTIVITY START 12:35	END	JOB NUMBER	303115202	8.08					
X	ASUREMENT POINT TOP OF WELL RISER TOP OF PROTECTIVE CA OTHER		PROTECTIVE CASING / WE DIFFERENCE		en l				
INITIAL DEPTH 1.36 F	WELL J	Y. G FT AM		NA PPM	WELL DIAMETER	4	IN		
FINAL DEPTH TO WATER	SCREEN LENGTH		WELL	NA PPM	WELL INTEGRITY: (NO N/A		
DRAWDOWN U.30				NA FT	CAS LOCH COLI				
((initial - final) x 0.16 (2-inch) or x 0.65	{4-inch} or x 1.5 (6-inch})								
PURGE RATE 0.177 L/MIN		40 END PURG	ing (313	36	TOTAL VOL. PURGED (purge rate (L/	min) x duration	/ (min) x 0.26 gal/L)		
PURGE DATA VOL Purged Time (L)	pH SpC (cond) (units) (mS/cm)	TURBIDITY (NTU)	DO TEI (mg/L)	MPERATURE (°C)	ORP (mV)	WATER	Comments		
12:45 FC 7	18 0.799	38.3 1	58 17	2.38	-97.7	11:54	clear - NU odo		
	21 0.776	315 0		1.96 -	-104.3	11.70	Slund pump		
	2.08 0.930	<u>, , , , , , , , , , , , , , , , , , , </u>	10 A	2-03	-972	11.74	Sloved pump		
	.02 0.996 1.02 1.005			2.08	<u>-90.7</u> -90.3	11.70	Clear-NO oda		
13:22 0.80 7	7.01 1.008	1 1 1 1 1 1	45 1	205	-90.2	11.67			
	1.008		144 1	196	-90.2	11.66			
					le .				
		[
<u> </u>									
·									
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL (If applicable) X PERISTALTIC TEFLON OR TEFLON LINED POLYVINYL CHLORIDE TEFLON SUBMERSIBLE X HIGH DENSITY POLYETHYLENE STAINLESS STEEL X OTHER OTHER OTHER X OTHER X OTHER									
PURGE OBSERVATIONS		NO	TES						
Tubing Intake @_ 23.5 Af- bf		VOC (modified VFA's Sulfate Methane/Ethe Duplicate	d list) ti	rvation Sam	246 Name	Time Collected			
SIGNATURE: MARK									

Amec Fo	ster Whe	eler E	&I, Inc.	-					2	
FIELD DAT	TA RECOR	D - GRO	UNDWAT	ER SAMF	PLING					
	Former Taylor In 2017 Semi-Annu		vent					DATE 5	-11-17	
	BR-02			SITE TYPE	Monito	r Well				
SITE ACTIVITY	START 1015	- END	2:33	JOB NUMBE	R 303115	52028.08				
WATER LEVEL			WELL RISER PROTECTIVE C	ASING C	ROTECTIVE CASING STICKU		PROTECTIVE CASING / WE DIFFERENCE		FT	
INITIAL DEPTH TO WATER	21.39		WELL L	fle FT	PID AMBIENT AIR	NA PPM	WELL DIAMETER	Y		
FINAL DEPTH TO WATER	21.75	FT		NA-FT	PID WELL MOUTH	NA PPM	WELL INTEGRITY:		NO N/A	
DRAWDOWN	0.36			2-34 GAL	PRODUCT THICKNESS	NA FT	CAS LOC COL			
((initlal - final) x	0.16 (2-Inch) or x	0.65 (4-inch) (or x 1.5 (6-inch))							
PURGE RATE	0,092 11	AIN PURG		9		2:25	TOTAL VOL. PURGED (purge rate (L	/min) x duration	GAL (min) x 0.26 gal/L)	
PURGE DATA	VOL Purged	pH (units)	SpC (cond) (mS/cm)	TURBIDITY (NTU)	DØ (mg/L)	TEMPERATURE (°C)	ORP (mV)	WATER	Comments	
11:05	FC	7.69	0.614	37.5	1.50	13.59	-629	21.50	cloudy- no odo	
11:15	1.1	7.68	0.588	30.5	0.64	13.43	-79.6	21.59		
11:05		7.69 7.71	0.586	29.1	0.55	13.56	-87.9	121.64	Emptied F.C.	
11:35	0.85	7.68	0.587	33.4	0.49	13.95	-91.0	21.70	dear- no olor	
11:55	6.85	7.68	0.567	21.3	0.49	14.07	-84.9	21.71		
17:05	0.85	7.68	0.587	20.8	0.49	13.85	-99.9	21.75	Slaved pump	
12:15	0.75	7.68	0586	21.0	0.46	13.85	-100.7	21.75		
12:25	0.75	7.68	0.586	20.9	0.46	13.85	-95.7	21.75	Clear-No odos	
EQUIPMENT DO									ERIAL (if applicable)	
		_	EFLON OR TEFL	ON LINED		VINYL CHLORID			<u>Entrite</u> (in applications)	
	RSIBLE	Ξ	IGH DENSITY P(THER		_	LESS STEEL		R <u>NA</u>	-	
PURGE OBSER	VATIONS				NOTES					
Tubing Intake ()	<u>, 25.4</u> ft	BG-S btsc			VFA's Sulfate Methane	odified Hst) /Ethene	servation Sam	Ple Name P-02-		
	SIGNATURE:									

Amec Fo	oster Whe	eler Eð	&I, Inc.							
FIELD DA		D - GRO	UNDWATI	ER SAMPI	LING				29 29	
	Former Taylor In 2017 Semi-Annu	struments al Sampling E	vent					DATE 5	110/17-	
	BR-03	3		SITE TYPE	Monito	rWell			-	
SITE ACTIVITY	START 1510	7 END		JOB NUMBER	303115	52028.08				
WATER LEVE	Ľ	MEASUREM	ENT POINT WELL RISER	BE	ROTECTIVE		PROTECTIVE		8	
			PROTECTIVE CA	SING CA	ASING STICKL ROM GROUN		CASING / WE	LL	FT	
INITIAL DEPTI TO WATER		FT			PID AMBIENT AIR		WELL DIAMETER	4	IN	
FINAL DEPT		ना			PID WELL MOUTH	NA PPM	WELL INTEGRITY: (NO N/A	
DRAWDOWN	1,32			768	PRODUCT THICKNESS	NA FT	CAS LOCI COLI	KED 🗹		
((Initial - final) :	x 0.16 (2-inch) or x				111010100				·	
PURGE RATE	0.121 UN	MIN PURG		2 EN 2 PU		6:51	TOTAL VOL. PURGED (purge rate (L	7.07	GAL (min) x 0.26 gal/L)	
PURGE DATA	VOL Purged	pН	SpC (cond)	TURBIDITY	DO	TEMPERATURE	ORP	WATER	_	
Time 15:97	PC	(units) 7.88	(mS/cm) 0.771	(NTU) 133	(mg/L)	(°c) 11.91	(mV) -233.5	B.10	Comments Orange Tint	- NU do
15.37	1.3	7.89	0.764	76.0	0.39	11.72	-234.1	8.41		
15:45		7.85	0.760	53.7	434	11.66	-7248	8.57	Emptied	F.C.
15:55	1.3	7.87	0.761		0.55	11.61	-1903	8.73	Slowed pu	~~
16:01	0.75	7.83	0.760	37.1	0.33 U.34	11.65	-2026	8.81	Clew, -NU	adan .
16:07	0.75	7.81	0.760	29.7	0.35	11.52	-218.1	8.83	1 ma	10100 8
16:23	1.2	7.80	0760	25.6	0.33	11.48	-220.3	8.88	sloved pr	P
16:30	0.75	7.81	0.760	20.5	0.32	11.39	-220.2	8.87		
16:37	0-75	7.8	0.760		0.32	11.34	-217.2	8.86	Clev-NU	over
16:44	0.75	7.80	0.76		0.30 0.30	11.28	-215.7 -214.7			
10171	0-75	<i>+100</i>	0.701		0170	1.00	-JITIT	7:00		
	OCUMENTATIO					_				
		_	OF TUBING EFLON OR TEFLO		_	PUMP MATERIA			<u>ERIAL</u> (if applicable)	_
	ERSIBLE	=	IGH DENSITY PC			LESS STEEL		R <u>NA</u>	_	
	R	. <u> </u>				R <u>NA</u>				
PURGE OBSE	RVATIONS				NOTES		L			
				1		Pre: odified list)	HCL DI	Name	Time Collected	
Tubing Intake	0 23.5 Ft	btoc			VFA's Sulfate					
	·		//		Methane Duplicate					
		. ^	/	'			1	-0 -0	f. t.	
	Λ	/()	X		purged	21.0	in bett	in Len	reducy FO	46
	in l	All	/\		flor	Cell, W	aler na	s rusi	LOUTED WI	´`\
SIGNATURE:	SIGNATURE: MI AND SIGNATURE: SIGNATU									

Amec Foster Wheeler E&I, Inc.										
FIELD DATA RECORD - GROUNDWATER SAMPLING										
PROJECT Former Taylor Instruments 2017 Semi-Annual Sampling Event DATE 5-11-17-										
SITE ID BR-04 SITE TYPE Monitor Well										
SITE ACTIVITY START 09:26 END (0.50 JOB NUMBER 3031152028.08										
WATER LEVEL MEASUREMENT POINT X TOP OF WELL RISER PROTECTIVE PROTECTIVE										
TOP OF PROTECTIVE CASING CASING STICKUP CASING / WELL OF TO DIFFERENCE										
INITIAL DEPTH USEL WELL DEPTH USER HULL DEPTH USER HULL DEPTH USER HULL DEPTH USER HULL DIAMETER HIN										
FINAL DEPTH TO WATER US. 69 FT SCREEN NA FT PID WELL NA PPM WELL YES NO N/A										
DRAWDOWN O O FT DRAWDOWN OUTLG GAL PRODUCT THICKNESS NA FT CASING LOCKED COLLAR										
((initial - final) x 0.16 (2-inch) or x 0.65 (4-inch) or x 1.5 (6-inch))										
PURGE U.151 LIMIN BEGIN D9.3 END PURGING U.43 TOTAL VOL. PURGED (purge rate (L/min) x duration (min) x 0.26 gal/L)										
PURGE DATA VOL Purged pH SpC (cond) TURBIDITY DO TEMPERATURE ORP WATER										
Time (L) (units) (mS/cm) (NTU) (mg/L) (°C) (mV) LEVEL Comments U9:36 FC 8.39 0.136 55.5 1.98 13.13 -59.2 15.69 0rmsptint -	Neda									
09:36 1-6 8.37 0.136 55.9 1.98 13.13 -59.2 17.69 0rayotint - 09:46 1.5 8:45 0.097 35.9 1.94 13.00 -77.6 15.69 Emptied F.C.										
19:56 11 8 41 0128 1275 1 43 13 0V -1517 1519 ch 11 11										
10.04 1.2 7.19 1.182 12.4 1.37 13.81 -146.5 15.69 clear - NO 00	20									
10.12 1.2 7.13 1.346 9.31 086 14.11 -100.1 15.69										
10.20 1.2 7.12 1.465 740 054 13.71 -96.7 15.69										
10 28 1.2 7.12 1.514 7.79 0.45 13.61 -94.5 15.69										
10.33 0.75 7.11 1.540 5.15 0.42 13.62 -93.8 15.69										
10:38 0.75 7.11 1.569 4.39 0.40 13.62 -925 15.69										
10.43 0.75 7.11 1.585 3.98 0.39 13.66 -92.1 15.69										
	_									
	-									
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP TYPE OF TUBING										
Image: State of the state o										
PURGE OBSERVATIONS NOTES										
VOC (modified list) HCL BR-UY 10:45										
Tubing Intake @ 76.5 CF b tu C Methane/Ethene 131 HCL $pR - 04$ 0.49										
Duplicate										
SIGNATURE: MAN										

Amec Fo	oster Whe	eler Ea	&I, Inc.							
FIELD DA	TA RECOR	RD - GRC	UNDWAT	ER SAMI	PLING					
	Former Taylor In 2017 Semi-Annu		vent				_		-11-17	-]
	BR-	0		SITE TYPE	Monitor	r Well				
SITE ACTIVITY	START 07:5	U END	09:2~(JOB NUMBE	R 303115	52028.08]			
WATER LEVEL	WATER LEVEL MEASUREMENT POINT X TOP OF WELL RISER PROTECTIVE PROTECTIVE									
			PROTECTIVE CA	SING	CASING STICKL (FROM GROUNI		CASING / WE		FT	
INITIAL DEPTH 15.76 FT WELL DEPTH 47 FT PID AMBIENT AIR NA PPM DIAMETER 6 IN										
FINAL DEPTH TO WATER		F T		/}_ FT	PID WELL MOUTH	NA PPM	WELL INTEGRITY:		NON/	A
DRAWDOWN	-6-			G GAL	PRODUCT THICKNESS	NA FT] LOC		- = =	
((Initial - final) x	0.16 (2-inch) or x			<u>V GAL</u>	TREMESS] 000	LAN	- +	~
PURGE RATE	0.164 ப	BEGII MIN PURG		7		9:19	TOTAL VOL. PURGED (purge rate (L	3.50/	/ GAL (min) x 0.26 gal/l	L)
PURGE DATA	VOL Purged	рH	SpC (cond)	TURBIDITY	(00	TEMPERATURE	ORP	WATER		
Time OS U U	(L)	(units)	(mS/cm)	(NTU)	(mg/L)	(°C)	(mV)	LEVEL	Comments	the second second second
08 16		7.38	0597 0594	69.2	0.50	12.02	191.2	15.26	Uranjo Ti	t-nd clu
08:23	1.2	7.88	0545	25.0		12.55	-29.2	15.26		
08:30	12	7.90	0545	22.0	0.39	12.65	- 69.5	15.26	Cleur-	h 11 al 1
08:36	1	7.92	0.545	20.8	0.36	1271	-1677	15.26	-icar- j	00000
08.42		7.93	0546	17.0	0.38	12.78	-162.8	15.26		
08:48		793	0.546	18.5	0.34	12.99	151.5	15.26		
08:58	1.6	7.93	0.596	18.1	0.30	1299	-1523	17,26		
09:09		7.94	0 545	16.6	0.29	13.02	-156.9	15.26	· · · ·	
09:09	0.8	7.94	0.545	162	0.29	1299	-161.4	15.26		
04:14	0.8	7.94	0.545	16.0	0.28	12.99	-157.9	15.76		
09:19	08	794	0.545	15.9	0.29	13,00	-162.4	15,26		
				 				1	-	
EQUIPMENT D	I OCUMENTATIO	I N	<u> </u>					ļ		
TYPE OF PL	JMP	TYPE	OF TUBING		TYPE OF	PUMP MATERI		BLADDER MAT	ERIAL (if applicat	ole)
X PERIST			EFLON OR TEFLO			INYL CHLORID		N		
	ERSIBLE		IGH DENSITY PO	LYETHYLEN	<u> </u>	LESS STEEL		R <u>NA</u>	-	
						R <u>NA</u>				
PURGE OBSER	VATIONS				NOTES	Dre	servation Sam	nia kiama	Time Collected	
						ad list)		ple Name		
Tubing Intake 🤇	25.5F	f btoc			VFA's Sulfate					i
			Λ		Methane Duplicate		_			
								1 28		,
	Λ	./) //		furged	=0.6L	- of ha	ter hef	not celon	recting
	I V	/1	' /		T' FI	Ion Cell	, water	uns R	ngt celon	2.1
SIGNATURE:	m	6	7	_						

Amec Foster Wheeler E&I, Inc.									
FIELD DATA RECORD - GROUNDWATER SAMPLING									
PROJECT 2017 Semi-Annual Sampling Event	DATE 05/09/17								
SITE ID BR-15 SITE TYPE	Monitor Well								
SITE ACTIVITY START 15:09 END 17:40 JOB NUME	3031152028.08								
WATER LEVEL MEASUREMENT POINT									
X TOP OF WELL RISER TOP OF PROTECTIVE CASING OTHER	PROTECTIVE CASING STICKUP (FROM GROUND)								
INITIAL DEPTH 16.98 FT DEPTH 72 FT									
FINAL DEPTH 19.31 FT SCREEN A FT									
DRAWDOWN 2.33 FT DRAWDOWN 3.5 GAL	PRODUCT CASING LOCKED LOCKED								
((initial - final) x 0.16 {2-inch} or x 0.65 {4-inch} or x 1.5 {6-inch})									
PURGE D.149 LIMIN BEGIN 15:17	END PURGING 17:24 TOTAL VOL. PURGED (purge rate (L/min) x duration (min) x 0.26 gal/L)								
PURGE DATA VOL Purged pH SpC (cond) TURBIDI									
Time (L) (units) (mS/cm) (NTU)	(mg/L) (°C) (mV) LEVEL Comments g								
15:34 2 8.36 0.169 7.30 15:34 2 8.46 0.150 3.81	1 4.20 19.74 -106.8 17.12 Clear- Moder								
10:16 2 000 0 100 210	0.40 14.81 -101.3 17.75								
15156 2 851 0.145 3.42									
16:07 2 8:53 0.144 3.38	0.28 14.80 -94.7 18.37								
16:18 2 8.58 0.145 2.7	9 0.25 14.54 -94.6 18.65 Sluned Punp								
16:28 1.5 8.56 0.145 2.27									
16:38 1.5 8.53 0.144 2.43	8 0.21 14.86 -77.8 19.00								
16.48 1.5 851 0.144 7.41									
16:58 1.2 0.58 0.144 252	- 0.21 14.76 -89.7 19.25 clear- NO of.								
17:16 0.8 8:63 0.145 2.38	0.19 14.59 -90 0 19.28								
17.24 0.8 8.62 0.144 2.09	0.19 14.59 -89.9 19.29								
EQUIPMENT DOCUMENTATION									
X PERISTALTIC TEFLON OR TEFLON LINED SUBMERSIBLE X HIGH DENSITY POLYETHYLEI									
PURGE OBSERVATIONS	NOTES								
	Preservation Sample Name Time Collected								
Tubing Intake @ 29.5 ft btoc	VFA's								
	Methane/Ethene								
	Duplicate								
	ms/msp cillected@BR-15								
ha X AX d									
SIGNATURE: MARA									

3.

Amec Foster Wheeler E&I, Inc.									
FIELD DATA RECORD - GROUNDWATER SAMPLING									
PROJECT Former Taylor Instruments 2017 Semi-Annual Sampling Event DATE 5-11-17-									
SITE ID (2 A-RB-0) SITE TYPE Monitor Well									
SITE ACTIVITY START 14:08 END 14.7 JOB NUMBER 3031152028.08									
WATER LEVEL MEASUREMENT POINT X TOP OF WELL RISER TOP OF PROTECTIVE CASING OTHER OTHER FT									
INITIAL DEPTH VELL PID AMBIENT AIR NA PPM DIAMETER IN									
FINAL DEPTH TO WATER FT LENGTH FT MOUTH NA PPM INTEGRITY: CAP									
DRAWDOWN FT DRAWDOWN GAL PRODUCT LOCKED LOCKED COLLAR									
((Initial - final) x 0.16 (2-inch) or x 0.65 (4-inch) or x 1.5 (6-inch))									
PURGE RATE L/MIN BEGIN PURGING END PURGING OUT TOTAL VOL. PURGED (purge rate (L/min) x duration (min) x 0.26 gal/L)									
PURGE DATA VOL Purged pH SpC (cond) TURBIDITY DO TEMPERATURE ORP WATER									
Time (L) (units) (mS/cm) (NTU) (mg/L) (°C) (mV) LEVEL Comments									
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP TYPE OF TUBING X PERISTALTIC Image: Submersible Image: Submersible Image: Submersible Image: Submersible									
PURGE OBSERVATIONS NOTES									
Tubing Intake @ Preservation Sample Name Time Collected VOC (modified list) HCL ULARD-UI (Yere) VFA's Suitate Methane/Ethene Image: Collected Duplicate Image: Collected Image: Collected Image: Collected									
SIGNATURE:									

Amec Foster Wheeler E&I, Inc.									
FIELD DATA RECORD - GROUNDWATER SAMPLING									
PROJECT Former Taylor Instruments 2017 Semi-Annual Sampling Event DATE 5-11-1 7-									
SITE ID QAFB_0 SITE TYPE Manitor Well									
SITE ACTIVITY START 1413 END 14:17 JOB NUMBER 3031152028.08									
WATER LEVEL MEASUREMENT POINT X TOP OF WELL RISER PROTECTIVE PROTECTIVE TOP OF PROTECTIVE CASING OTHER CASING STICKUP CASING / WELL OTHER OTHER (FROM GROUND) FT DIFFERENCE									
INITIAL DEPTH TO WATER FT WELL DEPTH FT AMBIENT AIR NA PPM DIAMETER									
FINAL DEPTH TO WATER FT SCREEN FT PID WELL NA PPM INTEGRITY: CAP									
DRAWDOWN DRAWDOWN GAL PRODUCT CASING VOLUME GAL THICKNESS NA FT. COLLAR									
((Initial - final) x 0.16 (2-inch) or x 0.65 (4-inch) or x 1.5 (6-inch))									
PURGE RATE L/MIN PURGING END PURGING PURGING OF TOTAL VOL. PURGED GAL (purge rate (L/min) x duration (min) x 0.26 gal/L)									
PURGE DATA VOL Purged pH SpC (cond) TURBIDITY DO TEMPERATURE ORP WATER Time (L) (units) (mS/cm) (NTU) (mg/L) (°C) (mV) LEVEL Comments									
19:15 - Poures DI water into Sample Buttles									
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP TYPE OF BLADDER MATERIAL (if applicable) TYPE OF PUMP TEFLON OR TEFLON LINED SUBMERSIBLE THIGH DENSITY POLYETHYLENE STAINLESS STEEL OTHER OTHER NA									
PURGE OBSERVATIONS NOTES									
Tubing intake @ Preservation Sample Name Time Collected VDC (modified list) HCL UHFB-01 UC:15 VFA's									
SIGNATURE:									

Amec Foster Wheeler E&I, Inc.										
FIELD DATA RECORD - GROUNDWATER SAMPLING										
	ECT 2017 Semi-Annual Sampling Event							DATE デー	11-17-	
	QATB-0 SITE TYPE Monitor Well					Well				
SITE ACTIVITY	START / 4:18	END Y	P.21	JOB NUMBER	3031152	2028.08				
WATER LEVEL		MEASUREMEI X TOP OF W TOP OF P OTHER		SING CASI	TECTIVE NG STICKU		PROTECTIVE CASING / WE DIFFERENCE		T I	
INITIAL DEPTH TO WATER					WELL DIAMETER		IN			
FINAL DEPTH TO WATER					D WELL DUTH		WELL INTEGRITY: (YES	NO N/A	
DRAWDOWN					RODUCT		CAS LOCH COLI		XE	
((initial - final) x	0.16 (2-inch) or x	0.65 (4-inch) or	x 1.5 (6-inch))					t <u></u>		
PURGE RATE	UN	BEGIN PURGIN	NG	END			TOTAL VOL. PURGED (purge rate (L/	min) x duration	GAL (mln) x 0.26 gal/L)	
PURGE DATA	VOL Purged (L)	pH (units)	SpC (cond) (mS/cm)	TURBIDITY (NTU)	DO (mg/L)	TEMPERATURE (°C)	ORP (mV)	WATER	Comments	
14:20-	t Lab	pro	.led	# trip	blank	-S				
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL (if applicable) X PERISTALTIC TEFLON OR TEFLON LINED POLYVINYL CHLORIDE SUBMERSIBLE X HIGH DENSITY POLYETHYLENE STAINLESS STEEL OTHER OTHER										
PURGE OBSER	VATIONS			NO	DTES					
Tubing Intake 🏾	Tubing Intake @ Preservation Sample Name Time Collected VOC (modified kst) HCL U HT Ø -U 102 -U VFA's Suifate									
SIGNATURE:	SIGNATURE: MARA									

Amec Fos	ter Whe	eler E8	I, Inc.						
FIELD DATA	A RECOR	D - GRO	UNDWATE	ER SAMPL	ING				
	ormer Taylor Ins 017 Semi-Annua		ent					DATE 5	-11-17-
	IDW-C	21		SITE TYPE	Monitor	Well			
	TART (3:5	5 END		JOB NUMBER	303115	2028.08			
WATER LEVEL	[NT POINT VELL RISER PROTECTIVE CA	SING CAS	TECTIVE		PROTECTIVE CASING / WE		7
			WELL		OM GROUNI		DIFFERENCE		
TO WATER		FT		FT_A	MBIENT AIR	NA PPM	DIAMETER	<u>ر</u> ـــــــــ	
FINAL DEPTH TO WATER					ID WELL IOUTH	NA PPM	WELL INTEGRITY: (CAS		NO N/A
DRAWDOWN	<u> </u>	FT VO			RODUCT HICKNESS	NA FT	LOCH		
((Initial - final) x 0.1	16 (2-inch) or x i	_			、		TOTAL NOL		
RATE	L/N	BEGIN IIN PURGI					TOTAL VOL. PURGED (purge rate (L)	(min) x duration	GAL (min) x 0.26 gal/L)
PURGE DATA	VOL Purged (L)	pH (units)	SpC (cond) (mS/cm)	TURBIDITY (NTU)	DO (mg/L)	TEMPERATURE	ORP (mV)	WATER	Comments
14:00 -	- Colle		mplp		<u>Surge</u>	unter	drin	U.5.h.	per:-pump
			-						
	E	IYPE (_	UMP MATERIA		-	ERIAL (if applicable)
		Х не	FLON OR TEFLO 3H DENSITY PO "HER		Ξ	/INYL CHLORIDE LESS STEEL R <u>NA</u>	<u> </u>	DN R <u>NA</u>	-
	ATIONS			N				ple Name	Time Collected
Tubing Intake @	$\overline{}$		_		VFA's Sulfate Methane/				
			\hat{O}		Duplicate				—
SIGNATURE:	ml) A	th	-					

NOVEMBER 2017 FIELD DATA RECORDS

Amec Fo	ster Whe	eler E8	d, Inc.						
FIELD DA1		D - GRO	UNDWATE	ER SAMPL	ING				
PROJECT	Former Taylor in: 2017 Semi-Annu		ent						-1-17
	BR-0			SITE TYPE	Monito	r Well			
SITE ACTIVITY	START 3:7	5 END		JOB NUMBER	303115	2028.08			
WATER LEVEL			NT POINT WELL RISER				5507507% /		
			PROTECTIVE CA	SING CAS	DTECTIVE SING STICKL OM GROUNI		PROTECTIVE CASING / WE DIFFERENCE		FT
INITIAL DEPTH TO WATER	11.43		WELL 38		ID MBIENT AIR	NA PPM	WELL DIAMETER	4	IN
FINAL DEPTH TO WATER	12.06				ID WELL IOUTH	NA PPM	WELL INTEGRITY:	- Children and Andrewson and And	
DRAWDOWN	0.63				RODUCT	NA FT	CAS LOC COL	KED	
((initial - final) x	0.16 {2-inch} or x	0.65 (4-inch) a							
PURGE RATE	0,171 un	BEGIN MIN PURG		5 ENI PUR		4:47	TOTAL VOL. PURGED (purge rate (L	2.5 /min) x duration	3 (min) x 0.26 gal/L)
PURGE DATA	VOL Purged	рН	SpC (cond)	TURBIDITY	DÖ	TEMPERATURE	ORP	WATER	
Time	(L) FC	(units)	(mS/cm)	(NTU)	(mg/L)	(°C)	(mV)		Comments
13:47	2.2	7.27	0.879	18.	<u>5.32</u> 1.63	13.62	117-9	12.03	Clenj-Weder Slund Dung
14'47	1.8	7.11	0.936	10-4	1.63 7.09	1364	100.0	12.14	stoned punp
14:12	0.9	7.04	0.962		2.50	13.61	99.6	12.19	stuned pump
14:18	0.9	7.02	0.985	3.65	2.8	17.63	98.8	12.06	cleur-nu odu.
14:24	0.9	6.94	91.002	6.76	3.04	13.62	99.0	12.06	
14-30	0.9	6.95	1.004	4.41	3,13	13.53	99.0	12-06	
14:36	0.9	4.16	1.005	1.94	2.87	13.50	98.9	1206	
14:42	0.9	6.96	1.006	1.87	2.80	13.48	98.4	12.0%	
	100								
	ł.								
	MP	TYPE	OF TUBING		_	PUMP MATERIA			ERIAL (if applicable)
	RSIBLE		GH DENSITY PO		_	LESS STEEL		R <u>NA</u>	_
		o	HER			R <u>NA</u>			
PURGE OBSER	VATIONS			N	IOTES	Pra	Servation Sam	nie Name	Time Collected
Tubing Intake @	23.5 ft	broc			VOC (mo VFA's Sulfate		HCL 1)	Ple Name P-0	14:45
			1	lE	Methane				
		D	/						
	\sim	an							

Amec Fo	ster Wheele	r E <mark>&I, I</mark> nc	•					
FIELD DAT	TA RECORD - (GROUNDW	ATER SAMP	LING				'
PROJECT	Former Taylor Instrumer 2017 Semi-Annual Samp				4 1			-31-17
	DR-UZ		SITE TYPE	Monitor	Well			
SITE ACTIVITY	START14:52	END	JOB NUMBER	303115	2028.08			
WATER LEVEL		UREMENT POINT DP OF WELL RISE DP OF PROTECTI	R PF VE CASING CA	ROTECTIVE ASING STICKL ROM GROUNI		PROTECTIVE CASING / WE DIFFERENCE	LL U.L	FT
INITIAL DEPTH TO WATER		WELL DEPTH		PID AMBIENT AIR	NA PPM	WELL DIAMETER	4	IN
FINAL DEPTH TO WATER		SCREEN		PID WELL MOUTH	NA PPM	WELL INTEGRITY: (NO N/A
DRAWDOWN	0.36 FT	DRAWDOWN VOLUME		PRODUCT THICKNESS	NA FT	CAS LOCI COLI	KED	
((initial - final) x	0.16 (2-inch) or x 0.65 (4							
PURGE RATE	0.144 LMIN				6:UV	TOTAL VOL. PURGED (purge rate (L	/min) x duration	GAL (min) x 0.26 gal/L)
PURGE DATA	VOL Purged p	H SpC (con	d) TURBIDITY	DO	TEMPERATURE	ORP	WATER	
Time (5111)	(L) (un FC Z	its) (mS/cn 7-9 (157		(mg/L) 5.118	1352	(mV) 95.3	LEVEL 2201	Comments Clenn-no olin
15:20	1.6 7.	76 0.59	6 6.06	1.40	14.13	93.5	22.15	Slone I punt
15:30	1.1 7.	71 0.59		0.91	13.89	94.2	2224	Slund pup
15:40		70 0.50		0.93	13.75	94.0 93.5	22.24	Clear-No du
16:00		68 0.6		0.88	13.70	97.3	72.25	Clear-Rosdor
<u> </u>								
				4 s.				
	TALTIC		3 TEFLON LINED TY POLYETHYLENE	POLY	PUMP MATERIA /INYL CHLORID LESS STEEL			ERIAL (if applicable)
	·				R <u>NA</u>	_		
PURGE OBSER						ervation Sam HCL Br	ple Name	Time Collected
Tubing Intake 🤅	25.4Et b55	()		VFA's Sulfate Methane Duplicate				
SIGNATURE:	mb	201						

Amec Foster Wheeler E&I, Ir	nc.		
FIELD DATA RECORD - GROUND	WATER SAMPLIN	IG	
PROJECT Former Taylor Instruments 2017 Semi-Annual Sampling Event]		DATE 11-1-2017
SITE ID BR-03	SITE TYPE	Monitor Well	
SITE ACTIVITY START 08:55 END 0:15	JOB NUMBER	3031152028.08	
WATER LEVEL MEASUREMENT PO		ECTIVE	PROTECTIVE
	CTIVE CASING CASIN (FROM	G STICKUP GROUND	CASING / WELL DIFFERENCE FT
INITIAL DEPTH TO WATER 7.96 FT DEPTH	4 40.1 FT AME		DIAMETER 4 IN
FINAL DEPTH 9.16 SCREE		WELL JTH NA PPM	WELL YES NO N/A INTEGRITY: CAP CASING
DRAWDOWN (, 20 FT DRAWDOW VOLUME	0.70 GAL THI	DUCT CKNESS NA FT	
((initial - final) x 0.16 {2-inch} or x 0.65 {4-inch} or x 1.5			
PURGE RATE 0. (32 L/MIN PURGING	U9:08 END PURG	ING 10:07	TOTAL VOL. PURGED (purge rate (L/min) x duration (min) x 0.26 gal/L)
	cond) TURBIDITY	DO TEMPERATURE	ORP WATER
Time (L) (units) (ms)	5/cm) (NTU) 1-29 21.0 11	(mg/L) (°C) 47 13.87	(mV) LEVEL Comments 117.0 8.19 Cleur-Nu Odur
	58 14.5 2	1.56 14.19	103.8 8.75 Sloved pump
09:31 63 7.93 0.7		57 14.01	103.6 8.96
		13.90	102.7 9.10 Sloved pump
	111 0.07	.04 13.80	103.3 9.14 cleur-novolar
		47 13.79	102.7 9.15 102.6 9.15 Clear-No lor
	110 1110		
			· · · · · · · · · · · · · · · · · · ·
<u>}</u> }}			
			· · · · · · · · · · · · · · · · · · ·
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUE PERISTALTIC TEFLON	BING OR TEFLON LINED		
		STAINLESS STEEL	X OTHER NA
PURGE OBSERVATIONS	NO	TES	
Tubing Intake @ 27.5 Et Stuc			HCL Sample Name Time Collected
1		Methane/Ethene Duplicate	
0 00			
SIGNATURE MARINE			

Amec Fo	ster Whe	eler E8	d, Inc.						
FIELD DAT	TA RECOR	D - GRO	UNDWATE	ER SAMP	LING				
	Former Taylor Ins 2017 Semi-Annua	al Sampling Ev	ent						-1-17
	BR-04	f		SITE TYPE	Monitor	Well			,
SITE ACTIVITY	START 2:1:	5 END	3:30	JOB NUMBER	303115	2028.08	s.		
WATER LEVEL				PI	ROTECTIVE		PROTECTIVE	:	
				SING C	ASING STICKL ROM GROUNI		CASING / WE		FT
INITIAL DEPTH TO WATER	16.68		DEPTH	4.2 FT	PID AMBIENT AIR	NA PPM	WELL DIAMETER		IN
FINAL DEPTH TO WATER	16.69			Л4 _{FT}	PID WELL MOUTH	NA PPM	WELL INTEGRITY: (CAS		NO N/A
DRAWDOWN	0.0			1065 GAL	PRODUCT THICKNESS	NA FT	LOCI	KED	
	0.16 (2-inch) or x				_			4	
PURGE RATE	0.221	BEGIN PURG	ING (7:3			3:23	TOTAL VOL. PURGED (purge rate (L	3. 74 (min) x duration	GAL (min) x 0.26 gal/L)
PURGE DATA	VOL Purged	, pH	SpC (cond)	TURBIDITY	DO	TEMPERATURE	ÓRP	WATER	
Time	(L) F((units) 7-96	(mS/cm)	(NTU) 18:3	(mg/L) 3.54	(°C) 14.60	(mV) 109.7	LEVEL	Comments Cleur - NU of in
12:37	2.2	7.37	0.756	9.72	0.85	15.13	99.0	16.69	Views - NO OF OF
12:47	2.2	7.12	1,293	5.77	0.87	15.14	102.7	16.69	ь.
12:55	1.8	7.05	1.579	2.30	1.20	15.01	102.8	16.69	
13:03	1.8	7.02	1.719	1.95	2.04	44.94	102.9	16.69	
13:08		7.02	1.795	1.99	2.13	14.95	1025	16.69	
13:13		7.02	1.841	1.70	2.21	14.89	1024	16.69	
13:23		7.03	1.893	1.20	2.73	15.03	101.0	16.69	<u>.</u>
- Cr.09		1.07					1000		
	DCUMENTATION	•	OF TUBING		TYPE OF	PUMP MATERIA		BLADDER MAT	ERIAL (if applicable)
	TALTIC	TE		ON LINED	POLY	INYL CHLORID			
	RSIBLE	Хн	GH DENSITY PO	LYETHYLENE		LESS STEEL	X OTHE	R <u>NA</u>	
OTHER			THER	·		R <u>NA</u>			
PURGE OBSER	VATIONS				NOTES	Pres	ervation Sam	ple Name	Time Collected
Tubing Intake @	,26.5 f	tbtrc			VFA's Sulfate Methane.	/Ethene		<u>8-04</u>	<u> 3:25</u>
		Λ,	\int		Duplicate	T			
SIGNATURE:	m	V A	KI	-					
				<u>I</u>					

1

Amec Foster Wheeler E&I, Inc.	
FIELD DATA RECORD - GROUNDWATER SAMPLING	
PROJECT Former Taylor Instruments 2017 Semi-Annual Sampling Event	
SITE ID SITE TYPE Monitor Well	
SITE ACTIVITY START 11:05 END 2:13 JOB NUMBER 3031152028.08	
WATER LEVEL MEASUREMENT POINT X TOP OF WELL RISER PROTECTIVE PROTECTIVE TOP OF PROTECTIVE CASING CASING STICKUP CASING / WELL OTHER (FROM GROUND) FT DIFFERENCE	
TO WATER 16.30 FT SCREEN LENGTH MA FT MOUTH NA PPM INTEGRITY: CAP LENGTH LENGTH LENGTH MOUTH CASING	
DRAWDOWN FT DRAWDOWN GGAL PRODUCT LOCKED COLLAR ((initial - final) x 0.16 (2-inch) or x 0.65 (4-inch) or x 1.5 (6-inch))	
PURGE RATE 0. 700 L/MIN BEGIN PURGING 11:19 END PURGING 7:01 TOTAL VOL. PURGED (purge rate (L/min) x duration (min) x 0.26 gal/L)	
PURGE DATA VOL Purged pH SpC (cond) TURBIDITY DO TEMPERATURE ORP WATER	
Time (L) (units) (mS/cm) (NTU) (mg/L) (°C) (mV) LEVEL Comments [1:2] FC 7.8 ° V_{-607} $Y4.7$ 6.60 19.31 18.0 16.30 $Clou L_{2} - M c d$	_
11:31 2 7.78 0.615 21,3 1.96 15.12 107.4 16.30	-
11:41 2 7.76 0.615 12.4 1.23 15.10 102.5 10.30 Cleur-No of.	
11:46 1 7.75 0.618 9.74 0.80 14.98 100.9 16.30	
11:51 1 7.74 0.618 7.92 0.81 14.98 100.1 16.30	
11:56 7.74 0.617 6.50 0.83 15.01 98.6 16.30 Clear - No ofer 13:01 1 7.74 0.618 5.88 0.84 15.04 97.0 16.30	4
13:01 1 7.74 0.618 5.88 0.84 15.04 97.0 16.30	\neg
	\neg
	_
	\neg
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL (if applicable)	
X PERISTALTIC TEFLON OR TEFLON LINED POLYVINYL CHLORIDE TEFLON	
PURGE OBSERVATIONS NOTES	
Tubing Intake @ 25.5 Ff bfoc X VOC (modified list) HCL DR-10 3:04 Sulfate	
Methane/Ethene	
n d/l	
SIGNATURE: MARY	

Amec Foster Wheeler E&I, Inc.		
FIELD DATA RECORD - GROUNDWATER SAM	PLING	
PROJECT Former Taylor Instruments 2017 Semi-Annual Sampling Event		DATE 10-31- 2 017
SITE ID BR-15 SITE TYPE	Monitor Well	
SITE ACTIVITY START 2:00 END 14:50 JOB NUMBE	R 3031152028.08	
WATER LEVEL MEASUREMENT POINT	PROTECTIVE	PROTECTIVE
TOP OF PROTECTIVE CASING		CASING / WELL DIFFERENCE
INITIAL DEPTH 18,57 FT WELL 72 FT	PID AMBIENT AIR NA PPM	DIAMETER 6 IN
FINAL DEPTH 70.91 FT SCREEN NA FT	PID WELL NA PPM	
DRAWDOWN 2-34 FT DRAWDOWN 3.5 GAL	PRODUCT THICKNESS NA FT	CASING LOCKED COLLAR
((initial - final) x 0.16 {2-inch} or x 0.65 {4-inch} or x 1.5 {6-inch})		
	END PURGING 14:30	TOTAL VOL. PURGED (purge rate (L/min) x duration (min) x 0.26 gal/L)
PURGE DATA VOL Purged pH SpC (cond) TURBIDITY	DO TEMPERATURE	ORP WATER
Time (L) (units) (mS/cm) (NTU)	(mg/L) (°C)	(mV) LEVEL Comments
12:24 FC 7.61 0.756 3.08 12:32 2 8.36 0.762 4.72	5.48 13.66	115.8 18.65 Clear- No d'un 82.8 14.97 Slaved pump
12:41 2 8.46 0.261 2.59	1.18 14.64	
12:51 2 8:46 0:353 3.77	1.09 19.57	94.7 19.3 stuned Pump 96.3 19.60
12:02 2 8.40 0.249 3.91	1.03 [4.5]	17.9 19.89 Sloved sund
13.14 2 8,31 0,249 2.37	1.01 14.61	96.6 20.15 Clear-Slight of
13:26 2 8.37 0.248 2.66	0.67 14.49	96.9 20.42 Slund suns
13:40 2 8.37 0.247 3.18	0.60 14.18	97.9 20.61
13:50 1.95 8.35 0.245 2.12	0.64 14.18	98. 20.74 Slundpurp
14:00 1.20 8.31 0.247 2.85	0.59 13.77	101.1 20.82 Stund Amp
14:10 1 8.31 0.254 1.38	0.61 13.51	100.2 20.84
14:20 1 8.29 0.257 1.29	0.63 13.36	101.1 2086 Cleur-Slight of
14:30 1 8.77 0.759 1.24	0.59 13.19	99.4 20.87
EQUIPMENT DOCUMENTATION		
TYPE OF PUMP		
X PERISTALTIC		
		X OTHER NA
	X OTHER NA	
PURGE OBSERVATIONS	NOTES	
		rervation Sample Name Time Collected
Tubing Intake @ 29.5 ft bt uc	VFA's	
1	Sulfate Methane/Ethene	
	Duplicate	Dup-01 14:35
	collect ms1	msD @ 14:35
		(* 17.35
SIGNATURE: MARY		

Amec Foster Wheeler E&I, Inc.
FIELD DATA RECORD - GROUNDWATER SAMPLING
PROJECT Former Taylor Instruments 2017 Semi-Annual Sampling Event DATE
SITE ID SITE TYPE Monitor Well
SITE ACTIVITY START 5:77 END 5:47 JOB NUMBER 3031152028.08
WATER LEVEL MEASUREMENT POINT X TOP OF WELL RISER PROTECTIVE PROTECTIVE
TOP OF PROTECTIVE CASING CASING STICKUP CASING / WELL OTHER (FROM GROUND)
INITIAL DEPTH TO WATER FT WELL DEPTH FT AMBIENT AIR NA PPM DIAMETER IN
FINAL DEPTH TO WATER FT SCREEN FT PID WELL NA PPM WELL YES NO M/A
DRAWDOWN FT DRAWDOWN GAL PRODUCT LOCKED LOCKED COLLAR
((initial - final) x 0.16 (2-inch) or x 0.65 (4-inch) or x 1.5 (6-inch))
PURGE RATE L/MIN BEGIN PURGING END PURGING TOTAL VOL. PURGED GAL (purge rate (L/min) x duration (min) x 0.26 gal/L)
PURGE DATA VOL Purged pH SpC (cond) TURBIDITY DO TEMPERATURE ORP WATER Time (L) (units) (mS/cm) (NTU) (mg/L) (°C) (mV) LEVEL Comments
15:40 poured DI water into sample bottles
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL, (if applicable) X PERISTALTIC TEFLON OR TEFLON LINED POLYVINYL CHLORIDE TEFLON SUBMERSIBLE X HIGH DENSITY POLYETHYLENE STAINLESS STEEL X OTHER OTHER OTHER OTHER X OTHER X OTHER
PURGE OBSERVATIONS NOTES
VCC (modified list) HCL & A+B 15:43
Tubing Intake @ VFA's
Methane/Ethene Duplicate
DAL

Amec Foster Wheeler E&I, Inc.
FIELD DATA RECORD - GROUNDWATER SAMPLING
PROJECT Former Taylor Instruments 2017 Semi-Annual Sampling Event DATE
SITE ID QARB-U SITE TYPE Monitor Well
SITE ACTIVITY START (5:32 END 15:37 JOB NUMBER 3031152028.08
WATER LEVEL MEASUREMENT POINT X TOP OF WELL RISER PROTECTIVE PROTECTIVE TOP OF PROTECTIVE CASING CASING STICKUP CASING / WELL OTHER (FROM GROUND) FT DIFFERENCE
INITIAL DEPTH FT WELL PID WELL IN TO WATER FT DEPTH FT AMBIENT AIR NA PPM DIAMETER
FINAL DEPTH TO WATER FT LENGTH FT MOUTH NA PPM INTEGRITY: CAP
DRAWDOWN FT DRAWDOWN FT DRAWDOWN FT DRAWDOWN GAL PRODUCT CASING LOCKED COLLAR
((initial - final) x 0.16 (2-inch) or x 0.65 (4-inch) or x 1.5 (6-inch))
PURGE RATE L/MIN BEGIN PURGING END PURGING PURGING TOTAL VOL. PURGED (purge rate (L/min) x duration (min) x 0.26 gal/L)
PURGE DATA VOL Purged pH SpC (cond) TURBIDITY DO TEMPERATURE ORP WATER Time (L) (units) (mS/cm) (NTU) (mg/L) (°C) (mV) LEVEL Comments
15:35 - penned D. F. water OCPA 4 - indicator
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL (if applicable) X PERISTALTIC TEFLON OR TEFLON LINED POLYVINYL CHLORIDE TEFLON SUBMERSIBLE X HIGH DENSITY POLYETHYLENE STAINLESS STEEL X OTHER OTHER OTHER X OTHER X OTHER X
PURGE OBSERVATIONS NOTES
Preservation Sample Name Time Collected. VOC (modified list) HCL Q A KO 15:35 VFA's Suffate

Amec Foster Wheeler E&I, Inc.	
FIELD DATA RECORD - GROUNDWATER SAMPLING	
PROJECT Former Taylor Instruments 2017 Semi-Annual Sampling Event	
SITE ID QATO-0 SITE TYPE Monitor Well	
SITE ACTIVITY START 19:28 END 19:1 - JOB NUMBER 3031152028.08	
NATER LEVEL MEASUREMENT POINT X TOP OF WELL RISER PROTECTIVE PROTECTIVE TOP OF PROTECTIVE CASING CASING STICKUP CASING / WELL OTHER (FROM GROUND) FT DIFFERENCE	
INITIAL DEPTH VELL PID WELL WELL IN DEPTH FT AMBIENT AIR NA PPM DIAMETER	
FINAL DEPTH TO WATER FT LENGTH FT MOUTH NA PPM INTEGRITY: CAP	
DRAWDOWN DRAWDOWN PRODUCT CASING	•
((initial - final) x 0.16 (2-inch) or x 0.65 (4-inch) or x 1.5 (6-inch))	
PURGE RATE L/MIN BEGIN END PURGING PURGING OF TOTAL VOL. PURGED GAL (purge rate (L/min) x duration (min) x 0.26 gal/L)	
PURGE DATA VOL Purged pH SpC (cond) TURBIDITY DO TEMPERATURE ORP WATER Time (L) (units) (mS/cm) g(NTU) (mg/L) (°C) (mV) LEVEL Comments	
15:70 Lab provide 1	
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL (if applicable) X PERISTALTIC TEFLON OR TEFLON LINED POLYVINYL CHLORIDE TEFLON SUBMERSIBLE X HIGH DENSITY POLYETHYLENE STAINLESS STEEL X OTHER OTHER OTHER X OTHER X OTHER X	
PURGE OBSERVATIONS NOTES Preservation Sample Name , Time Collected	
Tubing Intake @ VOC (modified list) HCL Q AT B - VI I So 3 V WFA's Sulfate Image: Sulfate Image: Sulfate Image: Sulfate Duplicate Duplicate Image: Sulfate Image: Sulfate	
SIGNATURE:	

Amec Fo	ster Whe	eler E&	l, Inc.						
FIELD DAT	TA RECOR	D - GROI	JNDWATE	R SAMPL	ING				
	Former Taylor In: 2017 Semi-Annu:		ent						-1-17-
SITE ID	IDW	•		SITE TYPE	Monitor	Well			
SITE ACTIVITY	START 5:1	5 _{END} l	5:25	JOB NUMBER	303115	2028.08		٠	
WATER LEVEL			NT POINT /ELL RISER ROTECTIVE CA	SING CAS	TECTIVE ING STICKU DM GROUND		PROTECTIVE CASING / WEI DIFFERENCE		FT
INITIAL DEPTH TO WATER			WELL	FT A	D MBIENT AIR	NA PPM	WELL DIAMETER	~	IN
FINAL DEPTH TO WATER					D WELL OUTH		WELL INTEGRITY: C	YES	NO N/A
DRAWDOWN					RODUCT		CASI LOCK	NG	
((initial - final) x	0.16 (2-inch) or x				IIGRNESS		COLL		<u> </u>
PURGE RATE	L/M	MIN PURGI	NG	END PUR	GING		TOTAL VOL. PURGED (purge rate (L/r	nin) x duration	GAL (min) × 0.26 gaVL)
PURGE DATA	VOL Purged	pH (units)	SpC (cond) (mS/cm)	TURBIDITY (NTU)	DO (mg/L)	TEMPERATURE (°C)	ORP (mV)	WATER LEVEL	Comments
15:20 -	culle		-ple P	on pur	s-pw	1.1.	masi	y pr	eri-pmp
				-					
								4	
	-			· ·					
					ω.				
			i.						
		TYPE (TE	DF TUBING FLON OR TEFLO GH DENSITY PO			PUMP MATERIA /INYL CHLORIDI LESS STEEL R <u>NA</u>			TERIAL (if applicable)
PURGE OBSER	VATIONS			N	OTES				
Tubing Intake (×	14	-		VOC (mo VFA's Sulfate Methane Duplicate	dified list) Ethene		le Name 	Time Collected
				T					

APPENDIX **F**

Well Construction Information

Appendix F Well Construction Information

2017 Annual Progress Report Former Taylor Instruments Site Rochester, New York

						Screen Interval Survey Coordinates					Well Material	Completion		
Well ID	Date Installed	Well Purpose/Type	Well Location	Boring Depth	Well Depth	Тор	Bottom	Easting	Northing	Elevation	Riser/Screen	Flush- mount	Vault	Stick-up
BR-01	09/02/97	Monitor	Perimeter	42.2	42.2	NA	NA	750364.06	1150086.89	531.92	Stainless / Open	Х		
BR-02	09/02/97	Monitor	Perimeter	44.0	44.0	NA	NA	750541.81	1149964.51	532.39	Stainless / Open	Х		
BR-03	09/02/97	Monitor	Perimeter	40.1	40.1	NA	NA	750552.93	1149641.68	536.32	Stainless / Open			Х
BR-04	09/03/97	Monitor	South Source	44.2	44.2	NA	NA	750322.96	1149422.13	532.68	Stainless / Open	Х		
BR-10	07/28/00	Monitor	South Source	47.0	47.0	NA	NA	750426.90	1149411.76	532.29	Iron / Open	Х		
BR-15	07/26/00	Monitor	North Source	72.0	72.0	NA	NA	750293.39	1149980.43	531.69	Iron / Open	Х		
OB-04	09/05/97	Monitor	South Source	17.5	17.5	2.5	17.5	750329.65	1149422.19	532.80	PVC	Х		
OB-06	07/19/00	Monitor	South Source	17.0	17.0	6.8	16.8	750421.89	1149461.50	532.60	PVC	Х		
OB-08	07/28/00	Monitor	North Source	25.5	25.3	15.3	25.1	750279.00	1149957.45	531.64	PVC	Х		
TW-04	03/15/96	Monitor	Perimeter	17.5	17.3	12.3	17.3	750552.18	1149648.54	536.34	PVC			Х
TW-09	03/30/96	Monitor	Perimeter	16.0	16.0	11.0	16.0	750542.22	1149971.84	532.30	PVC	Х		
TW-17	03/13/96	Monitor	Perimeter	15.0	15.0	10.0	15.0	750373.39	1150088.34	531.86	PVC			Х
TW-20	03/13/96	Monitor	Perimeter	15.0	15.0	10.0	15.0	750547.88	1150118.75	532.42	PVC			Х
W-5	09/15/82	Monitor	Perimeter	24.0	20.5	15.5	20.5	750248.88	1150056.27	531.52	PVC	Х		

Prepared by/Date: KJD 12/15/10

Checked by/Date: CRW 1/18/11