2018 PERIODIC REVIEW REPORT

for the

FORMER TAYLOR INSTRUMENTS SITE 95 Ames Street City of Rochester Monroe County, New York NYSDEC Site Number: B8-0508-97-02

Prepared for:

GRAY ROCK ROCHESTER, LLC 14150 Route 31 Savannah, New York 13146

Prepared by:

8232 Loop Road Baldwinsville, NY 13027 (315) 638-8587

Project No. 2019020

200 North George Street Rome, NY 13440 (315) 281-1005

March 2019

TABLE OF CONTENTS

EXECUTIVE SUMMARY
SITE OVERVIEW 1
REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS
INSTITUTIONAL / ENGINEERING CONTROL PLAN COMPLIANCE
MONITORING PLAN COMPLIANCE
CONCLUSIONS AND RECOMMENDATIONS
CERTIFICATION

ATTACHMENTS

ATTACHMENT 1 - 2018 ANNUAL PROGRESS REPORT

ATTACHMENT 2 – PERIODIC REVIEW REPORT

ATTACHMENT 2 - INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

EXECUTIVE SUMMARY

As described in the *Soil Management Plan*, prepared by MACTEC Engineering and Consulting, Inc., the Former Taylor Instruments facility operated under several owners from approximately 1904 until 1993. During this period, the facility was a manufacturer of measuring instruments, including thermometers and control systems. The facility was subsequently demolished in 1995. In 1997, the site owner at the time, Combustion Engineering, entered into an Agreement with the New York State Department of Environmental Conservation (DEC) under the Voluntary Cleanup Program (VCP) to investigate and remediate the site.

In August 2018, ABB, Inc. sold the site to Gray Rock Rochester, LLC. As part of the transfer in ownership, ABB maintained responsibility for the monitoring and inspections required under the 2011 Operations, Maintenance and Monitoring (OM&M) Manual. ABB retained Wood Environment & Infrastructure Solutions, Inc. (Wood) to perform these services. On March 4, 2019, Wood submitted a 2018 Annual Progress Report to DEC, which included the groundwater monitoring results. Refer to *Attachment 1 – 2018 Annual Progress Report* for additional information. Wood also prepared a Periodic Review Report and an inspection report of the sub-slab depressurization system (SSD) at 80 Ames Street. Refer to *Attachment 2 – Periodic Review Report* and *Attachment 3 – Institutional and Engineering Controls Certification Form* for additional information.

SITE OVERVIEW

This Periodic Review Report (PRR) is for the former Taylor Instruments facility, located at 95 Ames Street in the City of Rochester, Monroe County, New York (the site). The site consists of one parcel totaling approximately 14.5 acres owned by Gray Rock Rochester, LLC and is currently vacant. The site formerly operated as a manufacturer of measuring instruments, including thermometers and control systems, from approximately 1904 until 1993, when operations ceased. Onsite structures were subsequently demolished in 1995. In 1997, the site owner (Combustion Engineering) entered into an Agreement with the DEC under the VCP to investigate and remediate the site. Remedial activities included cleaning onsite storm sewers, excavation and offsite disposal of shallow soils, a dual-phase vapor extraction (DPVE) system to remediate volatile organic compounds (VOCs) in deeper soils and groundwater, and a groundwater treatment system. Institutional controls and engineering controls (ICs/ECs) were also implemented and included:

- A deed restriction
- Compliance with the Soil Management Plan (SMP)
- A SSD system at the residence located at 80 Ames Street
- An asphalt cap
- Requirement for sub-slab depressurization for future buildings

The Construction Completion Report (CCR) was approved by the DEC in 2011. The 2011 OM&M Manual required semi-annual groundwater monitoring, an annual site-wide inspection and the submission of PRRs. In 2017, the DEC approved a reduction of the sampling schedule for the overburden wells from semi-annually to annually. Bedrock wells continue to be sampled twice per year.

In August 2018, ABB, Inc. sold the site to Gray Rock Rochester, LLC.

A PRR is required by the DEC to verify that the requirements outlined in the OM&M Manual are being adhered to. The PRR covers the period of February 14, 2018 to February 14, 2019.

REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

As detailed in the PRR, remedial activities included cleaning onsite storm sewers, the excavation and offsite disposal of approximately 29,000 tons of impacted soils, implementation of a DPVE system and the use of IC/ECs, including an asphalt cover.

In accordance with the 2018 real estate agreement between ABB and Gray Rock Rochester, Wood performed the required groundwater monitoring for 2018. The results are detailed in the 2018 Annual Progress Report, submitted to the Department March 4, 2019.

INSTITUTIONAL / ENGINEERING CONTROL PLAN COMPLIANCE

The following ICs/ECs were stipulated for the site in the SMP:

- The property may be used for restricted commercial or industrial use.
- Future buildings are prohibited from having subsurface basements.
- Use of groundwater is restricted.
- Future buildings must have SSD systems.
- Any future development of the site must adhere to the 2005 SMP.
- Data and information pertinent to site management must be reported, per the requirements of the OM&M Manual.

- Access to the site must be provided to representatives of the State of New York with reasonable prior notice.
- Use of ICs/ECs must be continued.
- The asphalt cover must be maintained, and any alternative cover material must be approved by the Department.

No IC/EC deficiencies were noted in this reporting period. No changes to the ICs/ECs are recommended.

MONITORING PLAN COMPLIANCE

The following monitoring requirements were stipulated for the site in the OM&M Plan:

- *Groundwater Quality Monitoring:* Annually for overburden wells and semi-annually for bedrock wells.
- *Site-Wide Inspections:* To be performed during semi-annual groundwater monitoring events.

Monitoring results are documented in the 2018 Annual Progress Report.

CONCLUSIONS AND RECOMMENDATIONS

The requirements for the site for this reporting period have been met.

CERTIFICATION

For each institutional control identified for the site, I certify that all of the following statements are true:

• The institutional controls employed at this site are unchanged from the date the controls were put in place, or last approved by the Department.

 Nothing has occurred that would impair the ability of the control to protect the public health and environment.

• Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control.

 Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control.

• If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document.

• Use of the site is compliant with the deed restriction.

• The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, David K. Meixell, P.E., of Plumley Engineering, P.C., 8232 Loop Road, Baldwinsville, New York, am certifying as Gray Rock Rochester, LLC's Designated Site Representative for the site.

Signature March 18, 2019
Date

ATTACHMENT 1 2018 PROGRESS REPORT

wood.

March 4, 2019

Mr. Frank Sowers
Project Manager
NYSDEC
Division of Environmental Remediation
6274 East Avon-Lima Road
Avon, NY 14414-9516

Subject: 2018 Annual Progress Report

Voluntary Cleanup Agreement (VCA) Index B8-0508-97-02

Former Taylor Instruments Facility

Rochester, New York Wood Project 3031152028

Dear Mr. Sowers:

In accordance with Section X.I.B. of the Taylor Instruments Site Voluntary Cleanup Agreement, enclosed please find one hard copy and one electronic copy of the 2018 Annual Progress Report.

If you have any questions, please call me at (865) 671-6774.

Sincerely,

Wood Environment & Infrastructure Solutions, Inc.

Ruty a. Rya

Ricky A. Ryan, P.E.

Senior Principal Project Manager

K. Joe Deatherage

Senior Environmental Engineer

K. Joe Deatherage

Enclosures

cc: Bernette Schilling, NYSDEC (w/o enclosure [electronic])

John Frazer, MCDOH (w/o enclosure)

Justin Deming, NYSDOH (w/ 1 electronic enclosure)

Jean McCreary, Nixon Peabody LLP (w/ 1 electronic enclosure) Rick Podlaski, Thermo Fisher Scientific (w/ 1 electronic enclosure)

Melody Christopher, ABB (w/ 1 hard copy + electronic enclosure)

Vance Litz, ABB (w/ 1 electronic enclosure)

Nelson Walter, Wood (w/o enclosure [electronic])

2018 ANNUAL PROGRESS REPORT

FORMER TAYLOR INSTRUMENTS SITE 95 AMES STREET ROCHESTER, NEW YORK

PREPARED FOR:

ABB, INC. 131 PHOENIX CROSSING BLOOMFIELD, CT 06002

PREPARED BY:

WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS, INC. 2030 FALLING WATERS ROAD, SUITE 300 KNOXVILLE, TN 37922

WOOD PROJECT 3031152028

March 2019

TABLE OF CONTENTS

2018 Annual Progress Report Former Taylor Instruments Site Rochester, New York

on	Description	Page No.
INTRO	DUCTION	1-1
GROUI	NDWATER MONITORING	2-1
2.1	Scope of Work	2-1
2.2	Summary of Results	2-2
2.3	Potentiometric Surface	2-4
ANALY	TICAL PROGRAM	3-1
3.1	Precision	3-1
3.2	Accuracy	3-2
3.3	Representativeness	3-3
3.4	Completeness	3-3
3.5	Comparability	3-4
CONCI	LUSIONS AND RECOMMENDATIONS	4-1
REFERI	ENCES	5-1
NDICES		
• •	5	
• •		
• •		CD)
• •		
ppendix	E: Well Construction Information	
	INTRO GROUI 2.1 2.2 2.3 ANALY 3.1 3.2 3.3 3.4 3.5 CONCI REFERI	INTRODUCTION

LIST OF FIGURES

Figure No	Description
Figures ar	re contained in Appendix A.
Figure 1	Well Locations
Figure 2	VOCs in Overburden Monitoring Wells
Figure 3	VOCs in Bedrock Monitoring Wells
Figure 4	Overburden Potentiometric Surface Map, May 2018 Sampling Event
Figure 5	Bedrock Groundwater Elevations, May 2018 Sampling Event

Overburden Potentiometric Surface Map, October 2018 Sampling Event

Bedrock Groundwater Elevations, October 2018 Sampling Event

Figure 6

Figure 7

Table No.

LIST OF TABLES

Description

	•
Tables are	contained in Appendix B.
Table 1	Overburden Monitoring Wells with COCs Exceeding NYSDEC Class GA Standards – May 2018
Table 2	Bedrock Monitoring Wells with COCs Exceeding NYSDEC Class GA Standards – October 2018
Table 3	Summary of VOC Results for Existing Overburden Wells for the 2000-2018 Sampling Events
Table 4	Summary of VOC Results for Existing Bedrock Wells for the 2000-2018 Sampling Events

LIST OF ACRONYMS

 $\begin{array}{ll} \mu g/L & \text{micrograms per liter} \\ \mu mole/L & \text{micromoles per liter} \end{array}$

3DMe[®] 3-D Microemulsion[®]

AMEC Environment & Infrastructure, Inc.

COC contaminant of concern

1,1-DCE 1,1-dichloroethene cis-1,2-DCE cis-1,2-dichloroethene trans-1,2-DCE trans-1,2-dichloroethene

EC engineering control

EPA Environmental Protection Agency

IC institutional control

MS matrix spike

MS/MSD matrix spike/matrix spike duplicate

MSD matrix spike duplicate

mV millivolt

NYSDEC New York State Department of Environmental Conservation

OM&M Operations, Maintenance, and Monitoring

PARCC precision, accuracy, representativeness, completeness, and comparability

PCE tetrachloroethene

QC quality control

RPD relative percent difference

Site former Taylor Instruments Site

TCE trichloroethene

VC vinyl chloride

VOC volatile organic compound

Wood Wood Environment & Infrastructure Solutions, Inc.

1.0 Introduction

This annual progress report summarizes the results from groundwater sampling events conducted in May and October 2018. These activities occurred at the former Taylor Instruments Site – New York State Department of Environmental Conservation (NYSDEC) Site #828028a located at 95 Ames Street in Rochester, New York (Figure 1 in Appendix A), pursuant to a Voluntary Cleanup Agreement (NYSDEC, 1997). The 2018 groundwater sampling events were the eighth year of sampling since Wood Environment & Infrastructure Solutions, Inc. (Wood) completed an expanded accelerated bioremediation application using 3-D Microemulsion® (3DMe®) in 2010 as the final required active Site remediation. This continued groundwater sampling is consistent with the objective stated in the approved Revised Work Plan for Accelerated Bioremediation and Permanent Decommissioning of the Remedial Treatment System (MACTEC, 2010) for an expanded accelerated bioremediation application followed by monitored natural attenuation as the final remedy for the Site. All activities described herein are also consistent with an assignable release for the Site, granted by the NYSDEC via letter dated September 2, 2005 (NYSDEC, 2005). In the same letter, NYSDEC approved previous remedial activities as implemented and determined that no further investigation or response would be required at the Site to render it safe for contemplated uses.

During 2018 the Site was sold to Gray Rock Rochester, LLC (Gray Rock). As detailed to NYSDEC in a December 7, 2018 email (Wood, 2018), Gray Rock is the new Site owner and responsible for certification of institutional and engineering controls (ICs/ECs) associated with the Site. On January 3, 2019 NYSDEC submitted to Gray Rock a reminder notice for the Site Periodic Review Report and IC/EC certification submittal (NYSDEC, 2019), that is due March 16, 2019.

The first semi-annual groundwater sampling event for 2018 was conducted in May and the second in October. A summary of the sampling event results from 2001-2018 are included in this report.

Following decommissioning of the remedial treatment system and selected monitoring wells in 2010, 14 monitoring wells remain on the Site, as shown in Figure 1 (Appendix A). Unless otherwise agreed to by NYSDEC, contaminant conditions will continue to be monitored until groundwater concentrations of the contaminants of concern (COCs) are at or below the NYSDEC Class GA Standards.

2.0 GROUNDWATER MONITORING

2.1 SCOPE OF WORK

The 2016 Periodic Review Report (Amec Foster Wheeler, 2017) included a request to modify the sampling frequency from semi-annual (twice a year) to annual (once a year) based on the continued demonstrated plume stability. This request was approved by NYSDEC for the overburden wells only (NYSDEC, 2017). Based on the approval from NYSDEC, Wood personnel performed the May and October sampling events to provide an inclusive set of groundwater analytical data for the 2018 reporting period. During the May sampling event of overburden and bedrock wells, 20 samples were collected (overburden wells and bedrock wells), while during the October sampling event of bedrock wells only, 12 samples were collected (bedrock wells only). The samples were submitted to Test America, Inc. for volatile organic compound (VOC) analyses by U.S. Environmental Protection Agency (EPA) Method 8260C (Table 1, Appendix B). As approved by NYSDEC in the revised 2011 Operations, Maintenance, and Monitoring Manual (MACTEC, 2011), the samples were analyzed for the six primary COCs remaining at the Site: tetrachloroethene (PCE); trichloroethene (TCE); cis-1,2-dichloroethene (cis-1,2-DCE); trans-1,2-dichloroethene (trans-1,2-DCE); 1,1- dichloroethene (1,1-DCE); and vinyl chloride. The results for the 2018 sampling events are presented in tables in Appendix B. Additionally, to further assess biological parameters supportive for contaminant degradation, selected samples collected during the May sampling event were also analyzed for methane/ethene by Method EPA RSK175. The methane/ethene samples were analyzed by Pace Analytical Energy Services, LLC. The results for these parameters are included in the laboratory reports in Appendix C. Data for dissolved oxygen, oxygen reduction potential, pH, and temperature were also collected in the field during the sampling events. Six of the samples collected for each event were associated with quality control efforts. All environmental samples, including field duplicates and matrix spike/matrix spike duplicate (MS/MSD) samples, were collected using a low-flow peristaltic pump at flow rates less than 400 milliliters per minute.

Analytical results from the 14 remaining Site wells are presented in Figures 2 and 3 (Appendix A). Laboratory reports and chain-of-custody forms for the 2018 samples are located in Appendix C. Purge and sample field data are presented in the field data records located in Appendix D.

2.2 SUMMARY OF RESULTS

This section presents the results of the groundwater sampling events conducted during 2018. The results summary focuses primarily on the most recent results for each location during the 2018 sampling events. Tables 1 and 2 (Appendix B) summarize the monitoring well locations with COCs exceeding NYSDEC Class GA Standards for overburden and bedrock monitoring wells, respectively. Tables 3 and 4 (Appendix B) show a historical summary of analytical results for the remaining overburden and bedrock monitoring wells, respectively, shown on Figure 1 (Appendix A). Sample VOC results are also presented in "flag boxes" shown on Figures 2 and 3 (Appendix A), representing overburden monitoring wells and bedrock monitoring wells, respectively. Complete laboratory analytical data reports for the 2018 events are included in Appendix C. Well construction information is provided in Appendix E.

While certain COCs remain above the NYSDEC Class GA Standards, substantial declines of COC concentrations have been observed in all Site monitoring wells as compared to historical concentrations. COCs in South Source Area downgradient perimeter well TW-04 were non- detect for the second consecutive year, the first time this has occurred, and have been below the NYSDEC Class GA Standards since May 2016. COCs in the North Source Area bedrock well BR- 15 have also been below the NYSDEC Class GA Standards for the past two years, the first time this has occurred.

As shown in Tables 1 and 2 (Appendix B), during the 2018 sampling events: PCE was not detected at any location above the NYSDEC Class GA Standard of 5 micrograms per liter (μ g/L); TCE was detected above the NYSDEC Class GA Standard of 5 μ g/L in the groundwater samples collected from five overburden monitoring wells and five bedrock monitoring wells; cis-1,2-DCE was detected above the NYSDEC Class GA Standard of 5 μ g/L in the groundwater samples collected from six overburden monitoring wells and five bedrock monitoring wells; trans-1,2- DCE was detected above the NYSDEC Class GA Standard of 5 μ g/L in the groundwater samples collected from five overburden monitoring well and three bedrock monitoring wells; 1,1-DCE was detected above the NYSDEC Class GA Standard of 5 μ g/L in the groundwater samples collected from one bedrock monitoring well; and vinyl chloride was detected above the NYSDEC Class GA Standard of 2 μ g/L in the groundwater samples collected from six overburden monitoring wells and four bedrock monitoring wells.

In the South Source Area contaminant plume COCs in downgradient plume well OB-06 have been stable for several years, while in downgradient perimeter well TW-04 COCs remain non-detect. The results from these two wells demonstrate that the downgradient portion of the South Area contaminant plume remains stable. In North Area perimeter well W-5, TCE is now at a historic low

concentration while vinyl chloride is at a historic high, demonstrating that enhanced reducing conditions continue to be in effect. COCs in North Source Area downgradient perimeter well TW-20 have been stable to declining for several years.

In certain overburden wells the concentrations of certain COCs, primarily daughter products DCE and vinyl chloride, increased from May 2017. In South Source Area well OB-04, cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride increased from May 2017, although it's notable that in downgradient plume well OB-06 the mass remains near the historic low observed in May 2017 and in downgradient perimeter well TW-04 all COCs remain non-detect. In North Source Area well OB-08, cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride increased from May 2017, but remain much lower than historical concentrations of all three COCs In North Source Area perimeter well TW-17, TCE, cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride increased relative to the past two years. It's notable, however, that the mass in downgradient perimeter well TW-20 has been stable to declining for several years. Despite the recent increase in daughter products in certain wells, the downgradient contaminant plume remains stable as demonstrated by downgradient/perimeter wells OB-06, TW-04 and TW-20.

Decreases in contaminant mass have been noted in the affected overburden groundwater. Corresponding response in the bedrock groundwater has been slower. The combined contaminant mass of the bedrock wells (47.7 micromoles per liter [µmole/L]) decreased slightly from 2017 (53.1 µmole/L) and has been generally stable since 2014. Some evidence of natural attenuation in bedrock groundwater is apparent, indicating that the bedrock groundwater has been affected by the enhanced contaminant biodegradation in the overburden groundwater. Specific evidence of this is in former North Source Area bedrock well BR-15 where COCs remain below their NYSDEC Class GA standards. Additionally, the decreases in TCE contaminant mass in BR-1 correlate with overall increases in TCE daughter products (cis-1,2-DCE and vinyl chloride) observed in BR-01 the past few years.

Eight years have passed since completion of the expanded accelerated bioremediation application using 3DMe® in 2010 as the final required active Site remediation. The downgradient portion of the overburden groundwater contaminant plume in the South Source Area has been stable for several years based on the results of OB-06 and TW-04. The downgradient overburden groundwater contaminant plume in the North Source Area is also demonstrating evidence of plume stability based on results of TW-20.

The May 2018 field parameter data indicate that conditions remain favorable for biodegradation based on the following:

• The average pH in the Site overburden wells is a neutral 7.0 in May 2018.

- The average oxygen reduction potential in the Site overburden wells is -81.5 millivolts.
- The average dissolved oxygen in the Site overburden wells is 1.04 milligrams per liter.
- Methane, an indicator of biological activity, is also very robust in Site overburden wells OB-06, TW-17, and W-5, ranging from 2,400 μg/L to 21,000 μg/L. Ethene, an indicator that complete anaerobic dechlorination of COCs is occurring, was detected in most wells for which it was sampled and is at a moderate concentration in TW-17 (56 μg/L).

2.3 POTENTIOMETRIC SURFACE

Associated with each monitoring event, a potentiometric surface map was generated to depict groundwater elevations for the overburden groundwater. AutoCAD 2015 was used to plot the potentiometric surface maps in Figures 4 and 6 (Appendix A). The program mathematically calculates contours based upon groundwater elevation measurements collected in the field.

The May and October 2018 overburden potentiometric maps (Figures 4 and 6 in Appendix A) were based upon water level information collected during the course of sampling activities on the subject Site. Overburden potentiometric surface mapping for the water level events is generally comparable to past groundwater mapping indicating groundwater flow is generally to the northeast.

The bedrock water level data cannot readily be plotted due to the large variation in elevation heads. These variations are due to the fractured bedrock system. The head data appears to be bimodally distributed possibly reflecting differing elevations of water bearing fractures. The historical absence of contaminants at the southwest corner of the Site and their presence in wells along the north and east Site perimeters also support the interpretation that bedrock groundwater flow beneath the two former source areas is generally towards the north/northeast. Bedrock water level elevations are presented on Figures 5 and 7 in Appendix A.

3.0 ANALYTICAL PROGRAM

Overall data quality is assessed by grouping particular data evaluation findings and reviewing them in terms of precision, accuracy, representativeness, completeness, and comparability (PARCC) criteria. Data generated during this monitoring period were evaluated for PARCC criteria after receipt of all analytical data.

3.1 PRECISION

Precision is a quantitative evaluation of the repeatability of a measurement. Precision of analytical measurements is determined by calculating the relative percent difference (RPD) between the two numerical values. For precision, the MS is performed in duplicate, and the values from both analyses are evaluated. Comparison of results from duplicate field samples may also be indicative of overall precision of a data set. However, field duplicates may be influenced by sampling precision and are not as controlled as laboratory duplicates.

For quality control purposes, an MS and MSD were taken for each set of 20 samples with a net result of one MS/MSD analysis for the May 2018 sampling event and one MS/MSD analysis for the October 2018 event. The evaluation of MS/MSD criteria was used to qualify the data. The evaluations of MS/MSD analyses are presented in the following tables.

BR-15 - May 2018

Analyte	MS Value (μg/L)	Recovery (%)	MSD Value (μg/L)	MSD Recovery (%)	RPD	Control Limits (%)	RPD Limit
1,1-Dichloroethene	23.16	116	24.61	123	6	54-150	17
cis-1,2-DCE	21.33	103	21.51	104	1	68-131	17
Tetrachloroethene	20.85	104	21.27	106	2	57-138	16
trans-1,2-DCE	23.86	119	24.95	125	4	59-143	16
Trichloroethene	21.36	101	22.82	108	7	63-135	17
Vinyl Chloride	23.39	117	24.16	121	3	57-150	17

BR-15 - October 2018

Analyte	MS Value (μg/L)	Recovery (%)	MSD Value (μg/L)	MSD Recovery (%)	RPD	Control Limits (%)	RPD Limit
1,1-Dichloroethene	22.70	113	22.18	111	2	54-150	17
cis-1,2-DCE	23.92	108	24.48	111	2	68-131	17
Tetrachloroethene	22.86	114	22.63	113	1	57-138	16
trans-1,2-DCE	20.57	101	20.94	103	2	59-143	16
Trichloroethene	24.54	111	24.68	112	1	63-135	17
Vinyl Chloride	25.20	118	25.07	118	1	57-150	17

The RPDs did not exceed the National Functional Data Validation Guideline of 30 for water samples and demonstrate that MS/MSD analyses are within acceptable limits.

Field duplicate sampling followed the same sampling outline as MS/MSD analysis. One duplicate sample was collected for each set of 20 samples, resulting in one duplicate sample for the May 2018 and one duplicate sample for the October 2018 sampling event. Field duplicate precision is presented in the following tables.

W-5 - May 2018

Sample ID	Analyte	Practical Quantitation Limit	Sample Result (µg/L)	Flag	Duplicate Result (µg/L)	Flag	RPD
W-5	cis-1,2-Dichloroethene	1	104		104		0
	trans-1,2-Dichloroethene	1	13.4		13.1		2.3
	Trichloroethene	1	45.9		44.3		3.5
	Vinyl Chloride	1	78.3		80.6		2.9

BR-15 - October 2018

Sample ID	Analyte	Practical Quantitation Limit	Sample Result (µg/L)	Flag	Duplicate Result (µg/L)	Flag	RPD
BR-15	cis-1,2-Dichloroethene	1	2.33		2.51		7.4
	Trichloroethene	1	2.29		2.54		10.4
	Vinyl Chloride	1	1.56		1.62		3.8

Field duplicate precision was evaluated between the two data sets for detected compounds. The RPDs did not exceed the National Functional Data Validation Guideline of 30 for water samples.

3.2 ACCURACY

Accuracy is a quantitative measurement of agreement between an analytical result and the true value. Accuracy is determined by comparing known amounts of analytes, which are added to the sample prior to analysis, to the field analytical results. Accuracy is expressed as a percentage of recovery of the total amount of spiked analyte. For VOC analyses, each sample was spiked with surrogate compounds prior to analysis (and extraction), and chosen samples were spiked (in duplicate) with additional spikes [Matrix Spike (MS) and Matrix Spike Duplicate (MSD)]. Surrogate and MS/MSD recoveries evaluate accuracy and identify interferences from the sample matrix and were acceptable for VOC analysis for these sampling events.

3.3 REPRESENTATIVENESS

Representativeness is a qualitative measurement of the degree to which analytical results reflect the true concentrations of analytes that may (or not) be present in a sample. Representativeness of organic analytical results of true site conditions is evaluated using trip blanks, field blanks, method blanks, and rinsates from decontaminated sampling equipment. Target organic compounds in quality control (QC) samples may represent contamination during sampling or transportation of samples to the laboratory. Compliance with holding time and extraction criteria also assures representativeness of results.

One field blank for the May 2018 event and one field blank for the October 2018 event were analyzed to characterize the water source used during these sampling events. Distilled water was used by the field crews for field blanks. No target VOCs were detected in the field blanks.

No target VOCs were detected in the method blank in May 2018 or October 2018.

One trip blank was analyzed during the May 2018 and October 2018 sampling events as part of the VOC laboratory QC program. No target VOCs were detected in the trip blanks.

Equipment rinse samples were collected for each set of 20 samples, using distilled water to rinse field equipment, and analyzed for all target constituents. One rinsate blank was collected during the May 2018 event and the October 2018 event. No target VOCs were detected in the rinsate blanks.

Representativeness is considered complete due to the lack of target VOC detections in QC efforts.

3.4 COMPLETENESS

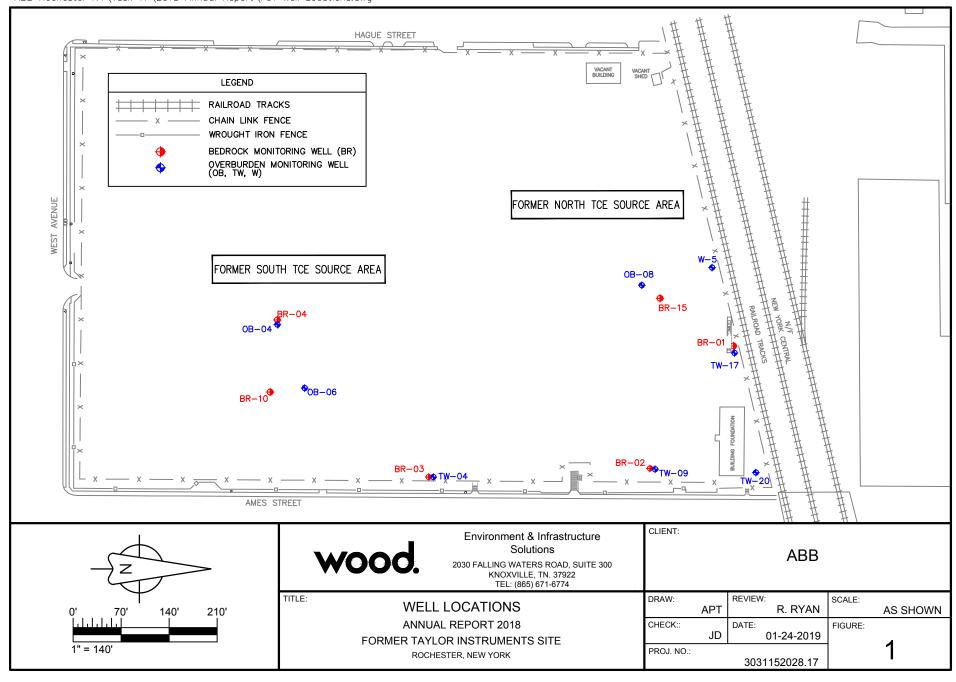
Completeness is a quantitative measurement of the usability of a data set. Completeness is defined as the percentage of data that satisfy validation criteria. Rejected data are not usable. Data qualified as estimated, however, is usable. Completeness goals were 100 percent for this report and are considered to be met.

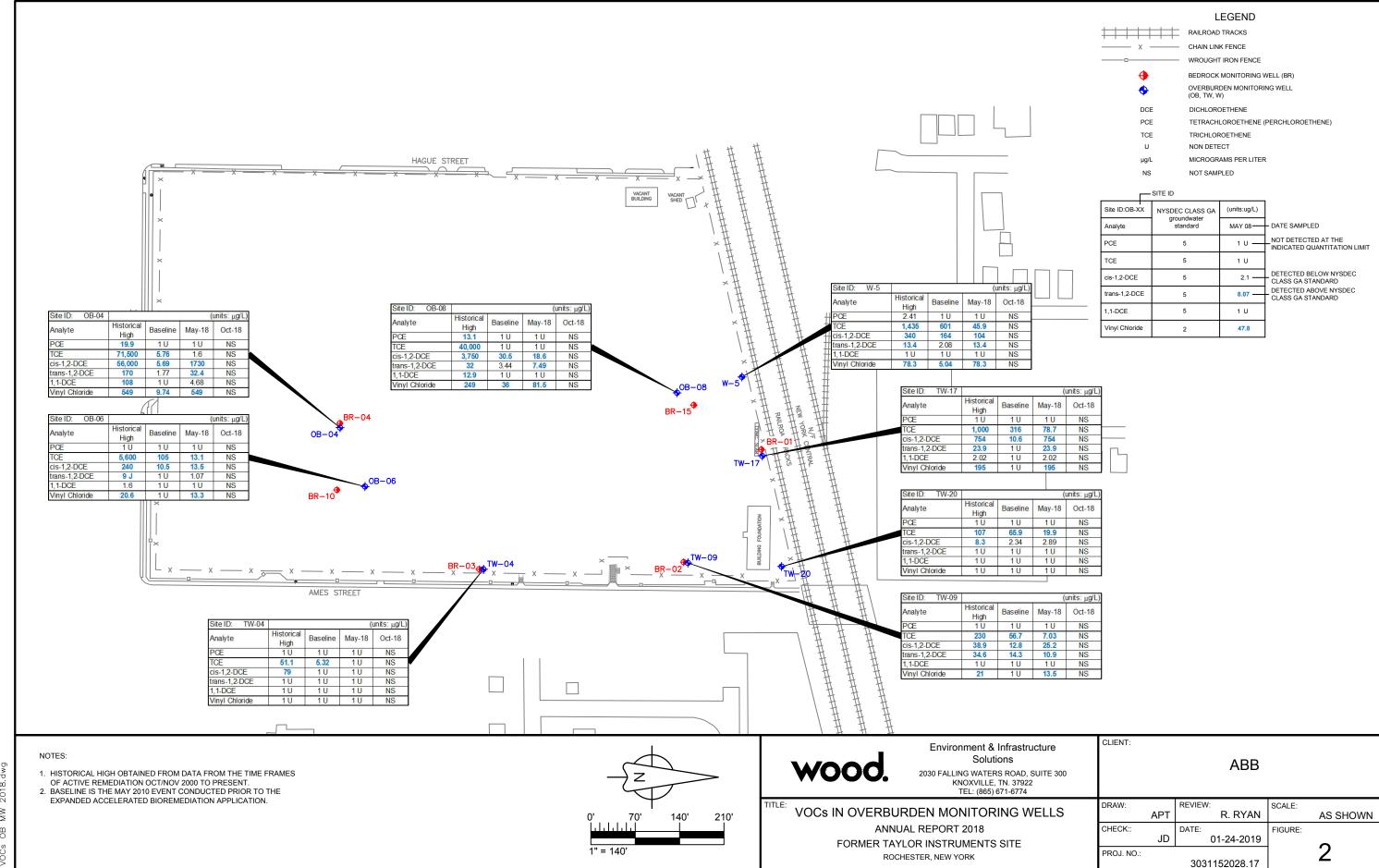
3.5 COMPARABILITY

Comparability is a qualitative assessment of the confidence with which different data sets may be used to characterize a site. Comparability is a necessary criterion because sampling is often performed at different times and precision, accuracy, and representativeness are unique to each sampling event. Comparability between data generated at different times at a single site is evaluated by reviewing sample collection and handling procedures, sample matrix, and analytical methods used. Standardization of sampling protocols and analytical methods assures comparability as long as precision and accuracy criteria are satisfied for each data set. The overall analytical performance for this report was evaluated and is considered comparable to previous and future data sets.

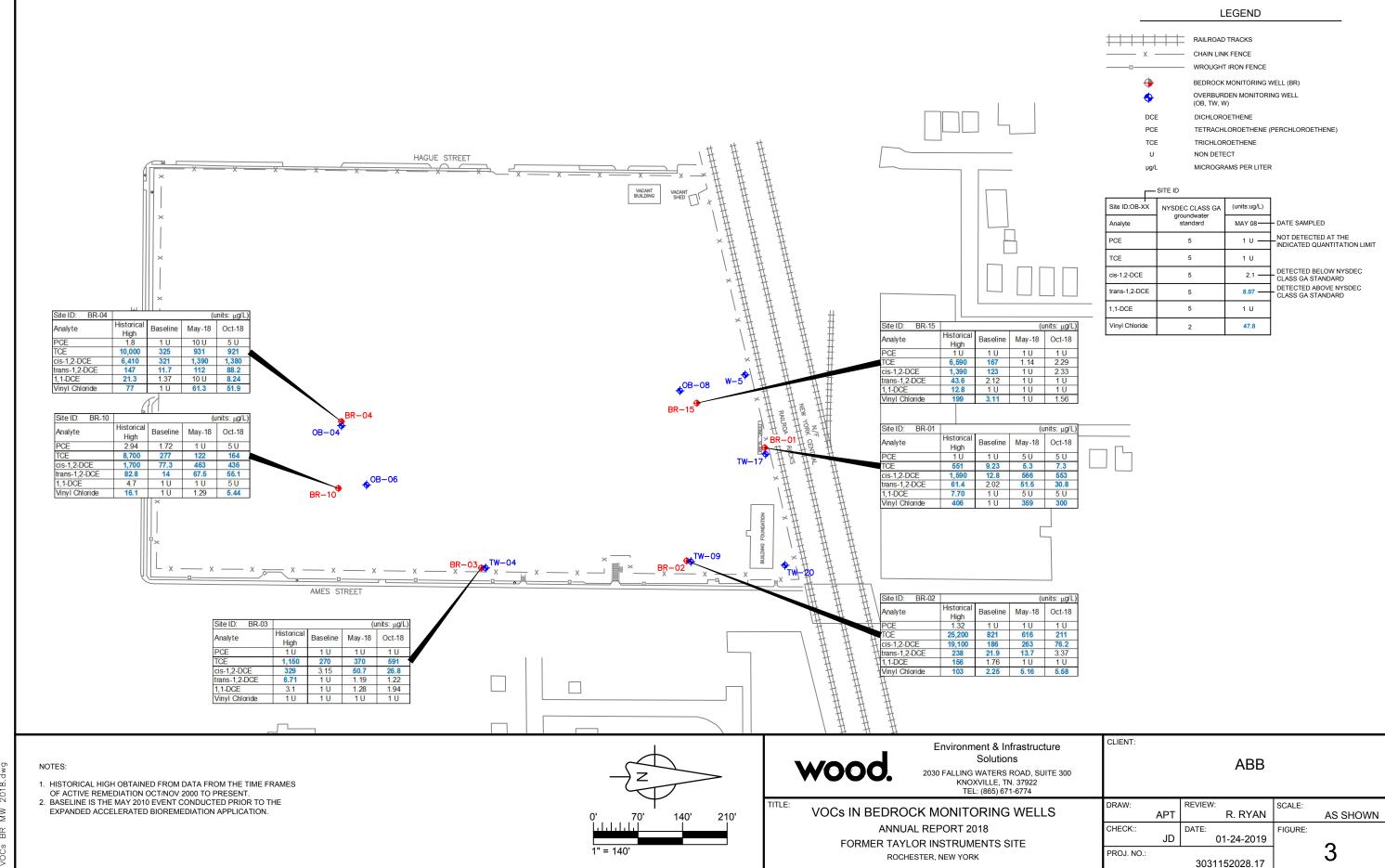
4.0 CONCLUSIONS AND RECOMMENDATIONS

A comparison of analytical data from the sampling events that occurred from 2001-2018 provides an evaluation of the Site remedial progress. The following overall conclusions and recommendations have been reached in this evaluation:

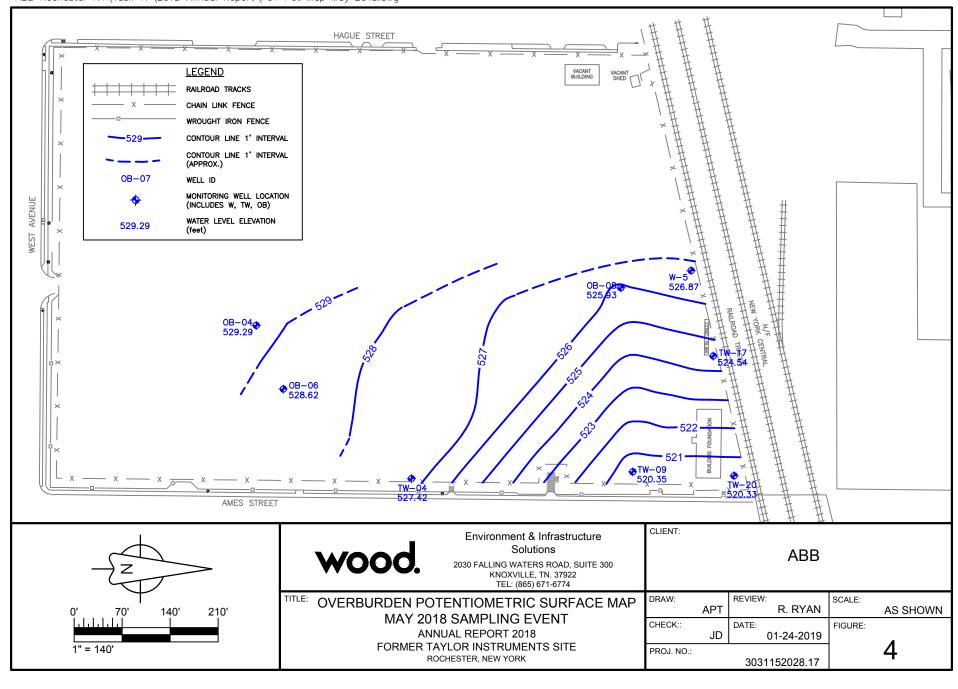

- Following shutdown of the remedial treatment system in 2006 and subsequent decommissioning in 2010, overall contaminant levels in the Site monitoring wells have not demonstrated significant rebound effects, and overall declines remain evident.
- While certain COCs remain above the NYSDEC Class GA Standards, substantial declines of COC concentrations have been observed in all Site monitoring wells as compared to historical concentrations. COCs in South Source Area downgradient perimeter well TW-04 were non-detect for the second consecutive year, the first time this has occurred, and have been below the NYSDEC Class GA Standards since May 2016. COCs in the North Source Area bedrock well BR-15 have also been below the NYSDEC Class GA Standards for the past two years, the first time this has occurred.
- In the South Source Area contaminant plume COCs in downgradient plume well OB-06 have been stable for several years, while in downgradient perimeter well TW-04 COCs remain non-detect. The results from these two wells demonstrate that the downgradient portion of the South Area contaminant plume remains stable.
- In North Area perimeter well W-5, TCE is now at a historic low concentration
 while vinyl chloride is at a historic high, demonstrating that reducing conditions
 and biological breakdown continue to be in effect. COCs in North Source Area
 downgradient perimeter well TW-20 have been stable to declining for several
 years, indicating that the downgradient portion of the North Area contaminant
 plume is stable.
- The combined contaminant mass of the bedrock wells (47.7 µmole/L) decreased slightly from 2017 (53.1 µmole/L) and has been generally stable since 2014. Some evidence of natural attenuation in bedrock groundwater is apparent, indicating that the bedrock groundwater has been affected by the contaminant biodegradation in the overburden groundwater.

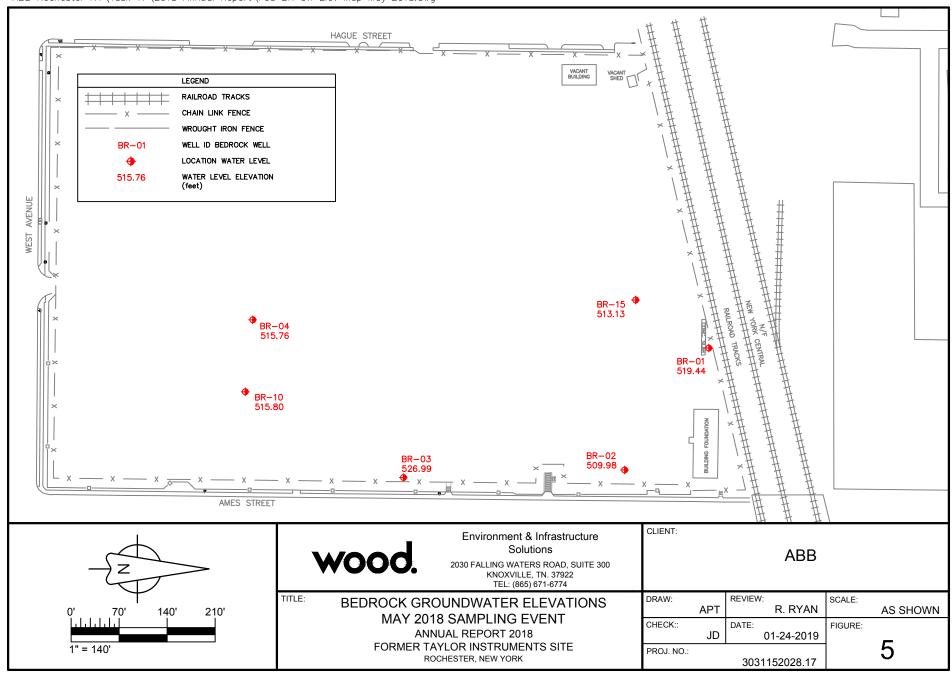

- Groundwater monitoring events will continue to be conducted semi-annually for the six bedrock wells and annually for the eight overburden wells. Groundwater samples will be analyzed for the six primary COCs remaining at the Site: PCE; TCE; cis-1,2-DCE; trans-1,2-DCE; 1,1-DCE; and vinyl chloride. These VOCs will be analyzed using EPA Method 8260C. Additionally, as detailed in the revised OM&M Manual (MACTEC, 2011), the groundwater samples will be analyzed for the full suite of 8260C constituents every five years (next event in 2020) and prior to ending monitoring at any specified well.
- Results for future post-closure monitoring events will be provided to NYSDEC in subsequent annual reports.

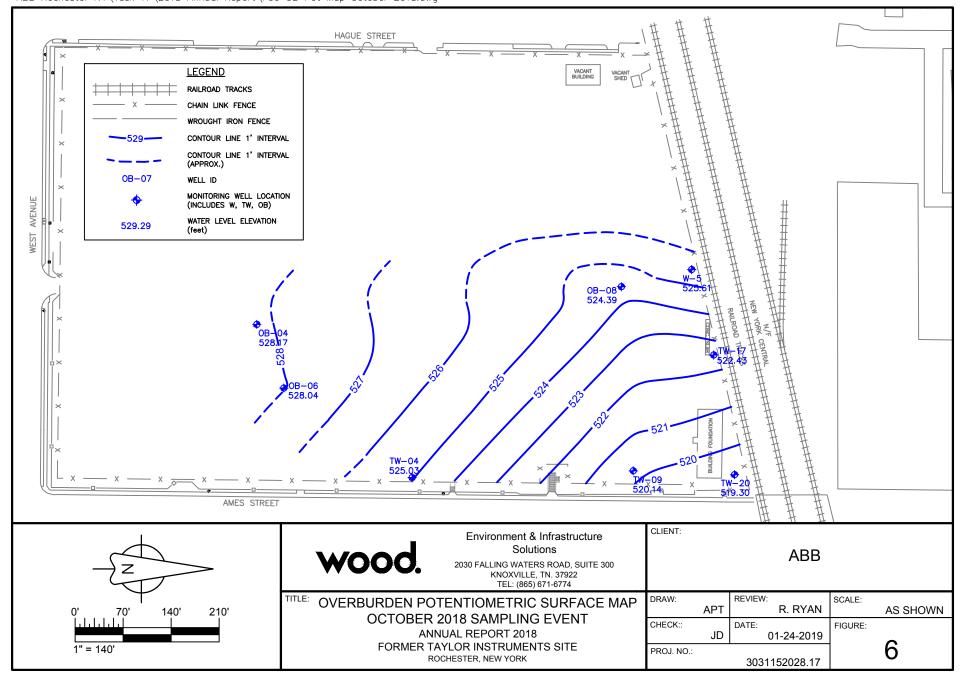
5.0 REFERENCES

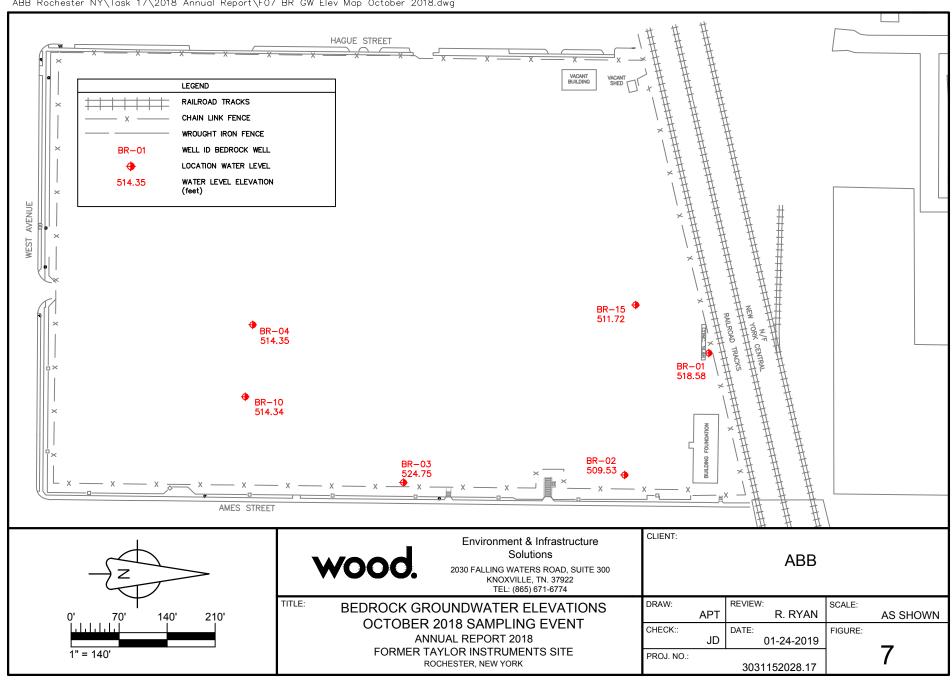

- Amec Foster Wheeler, 2017. 2016 Annual Progress report and Remedial Progress Evaluation, Former Taylor Instruments Site, Rochester New York. March 7.
- MACTEC, 2010. Revised Work Plan for Accelerated Bioremediation and Permanent Decommissioning of the Remedial Treatment System, Former Taylor Instruments Site, Rochester, New York. June 11.
- MACTEC, 2011. Operations, Maintenance, and Monitoring Manual, Rev. 1, Former Taylor Instruments Site, Monroe County, New York. Prepared for the New York State Department of Environmental Conservation (March).
- NYSDEC, 1997. Voluntary Cleanup Agreement Regarding the Taylor Instruments Site, Number B8-0508-97-02 (November).
- NYSDEC, 2005. Letter to Ms. Jean H. McCreary with Nixon Peabody LLC (September 2).
- NYSDEC, 2017. Site Management (SM) Periodic Review Report (PRR) Response Letter, Former Taylor Instruments Facility, Rochester, Monroe County, Site No. V00144. March 30.
- NYSDEC, 2019. Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal. Prepared by the New York State Department of Environmental Conservation. Submitted to Mr. Joe Verdi with Gray Rock Rochester, LLC. January 3.
- Wood, 2019. Email from Mr. Joe Deatherage with Wood Environment & Infrastructure Solutions, Inc. to Mr. Frank Sowers with the New York State Department of Environmental Conservation. December 7.

APPENDIX A FIGURES






Plotted By:Troxel, Paul January 24, 2019 12:42:37pm P:\CADD\Projects\3031\3031152028 ABB Rochester NY\Task 17\2018 Annual Repo VOCs OB MW 2018.dwg



Plotted By:Troxel, Paul January 24, 2019 12:42:54pm P: \CADD\Projects\3031\3031152028 ABB Rochester NY\Task 17\2018 Annual Report VOCs BR MW 2018.dwg

APPENDIX B TABLES

Table 1 Overburden Monitoring Wells with COCs Exceeding NYSDEC Class GA Standards May 2018

2018 Annual Progress Report Former Taylor Instruments Site Rochester, New York

	NYSDEC	Monitoring Well								
coc	Class GA Standard	OB-04	OB-06	OB-08	TW-09	TW-17	TW-20	W-5		
TCE	5	1.60	13.1	1 U	7.03	78.7	19.9	45.9		
cis-1,2-DCE	5	1730	13.5	18.6	25.2	754	2.89	104		
trans-1,2-DCE	5	32.4	1.07	7.49	10.9	23.9	1 U	13.4		
Vinyl Chloride	2	549	13.3	81.5	13.5	195	1 U	78.3		

All concentrations are in micrograms per liter.

Overburden monitoring well TW-04 has no exceedances of NYSDEC Class GA Standards.

Created by: <u>NG</u> on <u>06/21/2018</u> Checked by: <u>KJD</u> on <u>12/14/2018</u>

Notes: **Bold and shaded** values indicate detection exceeding NYSDEC Class GA Standards.

COC = contaminants of concern

DCE = dichloroethene PCE = tetrachloroethene

TCE = trichloroethene

U = not detected at practical quantitation limit

Table 2 Bedrock Monitoring Wells with COCs Exceeding NYSDEC Class GA Standards October 2018

2018 Annual Progress Report Former Taylor Instruments Site Rochester, New York

	NYSDEC		Monitoring Well							
coc	Class GA Standard	BR-01	BR-02	BR-03	BR-04	BR-10				
TCE	5	7.30	211	591	921	164				
cis-1,2-DCE	5	553	76.2	26.8	1380	436				
trans-1,2-DCE	5	30.8	3.37	1.22	88.2	55.1				
1,1-DCE	5	5 U	1 U	1.94	8.24	5 U				
Vinyl Chloride	2	300	5.58	1 U	51.9	5.44				

All concentrations are inmicrograms per liter.

Created by: <u>NG</u> on <u>12/12/2018</u> Checked by: <u>KJD</u> on <u>12/14/2018</u>

Bedrock monitoring well BR-15 has no exceedances of NYSDEC Class GA Standards

Notes: **Bold and shaded** values indicate detection exceeding NYSDEC Class GA Standards.

COC = contaminants of concern

DCE = dichloroethene
PCE = tetrachloroethene
TCE = trichloroethene

U = not detected at practical quantitation limit

Table 3 Summary of VOC Results for Existing Overburden Wells for the 2000-2018 Sampling Events

2018 Annual Progress Report Former Taylor Instruments Site Rochester, New York

Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (μg/L)
OB-04	11/19/00		70,000	2,900			
OB-04	03/24/01		150	3.2 J			
OB-04	06/18/01		39,000	21,000			
OB-04	09/13/01		NS (Dry)	NS (Dry)	NS (Dry)	NS (Dry)	NS (Dry)
OB-04	12/17/01	19.9	71,500	56,000	170	108	10.2
OB-04	03/12/02	12.9	65,600	1,640	16.6	3.8	
OB-04	06/09/02		3,650	554			
OB-04	09/23/02	1.8	3,760	1,950	7.5	4.9	2
OB-04	12/09/02		46.3	5.5			
OB-04	03/22/03		11.3	1.3			
OB-04	06/13/03		41.5	6.7			
OB-04	09/21/03	6.0	2,780	125	1.9		
OB-04	12/14/03		23.3	3			<u></u>
OB-04	06/19/04		394	87.2	1.3		<u></u>
OB-04	12/05/04	1.0	626	124	1.6		
OB-04	06/26/05		367	141	2.4		
OB-04	12/03/05		385	139	1.14		
OB-04	07/20/06		252	153	1.56		
OB-04 OB-04	12/06/06		1,920	892			1.19
OB-04	05/03/07		618	399	3.19	 	
OB-04 OB-04	12/13/07		109	1,350	5.43	2.19	 95.1
OB-04 OB-04				875			
OB-04 OB-04	05/05/08		125 44.9	675 258	5.72	1.60	145
	11/06/08	-			2.80		114
OB-04	05/06/09		28.9	102	2.27		21.7
OB-04	10/21/09	-	32.8	59.6			49.8
OB-04	05/12/10		5.76	5.69	1.77		9.74
OB-04	05/03/11		47.1	304	1.79		43.3
OB-04	11/01/11		5.68	51.1	2.51		33.2
OB-04	05/15/12		4.35	2.05	1.26		8.69
OB-04	10/30/12		3.94	2.31			4.25
OB-04	05/15/13		3.48	1.08			
OB-04	11/13/13		2.95				2.44
OB-04	05/07/14		1.46				1.21
OB-04	10/28/14						4.25
OB-04	05/12/15		1.82				3.7
OB-04	10/27/15		2.36				7.3
OB-04	05/03/16		1.84				8.03
OB-04	10/25/16		1.97	2.52	1.18		17.6
OB-04	05/09/17		2.63	225	3.57		72.0
OB-04	05/08/18		1.60	1,730	32.4	4.68	549
OB-06	11/17/00		2,600	60			
OB-06 (DUP)	11/17/00		3,300	80 J			
OB-06	03/21/01		540				

							Rochéster, New York									
Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (μg/L)									
OB-06	06/15/01		720	12 J												
OB-06	09/13/01		5,600	240	9.0 J											
OB-06	12/13/01		637	13.7												
OB-06	03/08/02		526	7.8												
OB-06	06/07/02		184	2.8												
OB-06	09/20/02		386	10.1												
OB-06	12/06/02		100	1.5												
OB-06	03/20/03		84.9	1.5												
OB-06	06/11/03		52.7	1.1												
OB-06	09/18/03		242	2.6												
OB-06	12/11/03		60	1												
OB-06	06/17/04		38.6													
OB-06	12/02/04		31.9	1.4												
OB-06	06/26/05		37.1	1.8												
OB-06	12/02/05		117	4.71												
OB-06	07/21/06		60.5	2.59												
OB-06	12/10/06		87.8	2.69												
OB-06	05/03/07		66.3	4.85												
OB-06	12/12/07		82.9	3.31												
OB-06	05/03/08		72.6	3.90												
OB-06	11/05/08		89.8	4.82												
OB-06	05/05/09		78.3	6.03												
OB-06	10/20/09		121	12.6												
OB-06	05/11/10		105	10.5												
OB-06	05/03/11		60	77.4												
OB-06	11/01/11		18.9	46.5	1.28		13.8									
OB-06	05/15/12		25.4	7.56			2.72									
OB-06	10/30/12		34.3	6.63			3.86									
OB-06	05/15/13		40.1	7.5			2.56									
OB-06	11/13/13		43.7	7.83	1.03		8.02									
OB-06	05/07/14		36.5	6.80			2.51									
OB-06	10/28/14		38.9	7.64	1.05		5.20									
OB-06	05/12/15		22.9	5.14			3.26									
OB-06	10/27/15		38.8	9.68	1.09		7.63									
OB-06	05/03/16		40.4	10.6	1.30	1.60	8.50									
OB-06	10/26/16		50.8	19.3	1.70	1.57	20.6									
OB-06	05/10/17		3.26	2.93			6.84									
OB-06	05/08/18		13.1	13.5	1.07		13.3									
OB-08	11/16/00		40,000	390 J												
OB-08	03/20/01		29,000	390 J												
OB-08	06/19/01		15,000	240 J												
OB-08	03/12/02	13.1	15,750	208	8.6	2.7										
OB-08	06/10/02		5,370													
OB-08	09/24/02	9.4	5,440	110	3.6											
See notes at en	nd of table															

			Roches	ster, New York			
Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (μg/L)
OB-08	12/09/02	8.9	8,050	94.2	5	1.3	
OB-08	03/24/03	5.1	3,480	37.3	2.2		
OB-08	06/13/03	3.9	2,250	15.3	1.2		
OB-08	09/22/03	2.6	2,780	32.1	3.1		
OB-08	12/15/03	3.3	1,360	10.8	1.5		
OB-08	06/20/04	2.9	725	13.1	2.5		
OB-08	12/06/04		429	5.80			
OB-08	06/29/05	1.3	570	3.3			
OB-08	12/06/05	2.12	797	6.25	2.17		
OB-08	07/21/06	2.13	890	7.85	3.91		
OB-08	12/06/06		73.7	1,550	10.7		
OB-08	05/03/07		2.48	3,750	29.6	12.7	3.08
OB-08	12/13/07			1,150	32.0	4.24	1.54
OB-08	05/05/08			41.4	8.07		47.8
OB-08	11/06/08			53.9	14.8		68.9
OB-08	05/06/09			42.5	10.2		83.8
OB-08	10/21/09			35.2	12.4		111
OB-08	05/12/10			30.5	3.44		36.0
OB-08	05/04/11			67.9	22.7		249
OB-08	11/02/11				15.5		4.73
OB-08	05/17/12			3.78	11.1		13.2
OB-08	10/31/12				11.2		3.15
OB-08	05/15/13				8.29		5.72
OB-08	11/14/13				2.44		
OB-08	05/07/14				3.50		3.03
OB-08	10/28/14				9.57		
OB-08	05/12/15				6.05		8.66
OB-08	10/27/15				5.47		
OB-08	05/03/16			10.7	13.4		67.5
OB-08	10/26/16				3.72		3.29
OB-08	05/09/17			6.00	3.99		29.2
OB-08	05/08/18			18.6	7.49		81.5
TW-04	10/24/00		42	79			
TW-04	03/22/01		14	16			
TW-04	06/15/01						
TW-04	09/14/01		27	38			
TW-04	12/13/01		51.1	19.4			
TW-04	03/05/02		51	3.7			
TW-04	06/04/02		20.7				
TW-04	09/17/02		21.2	7.1			
TW-04	12/04/02		42.5	5.5			
TW-04	03/18/03						
TW-04	06/10/03		19.3				
TW-04	09/16/03		29.2	3.1			
See notes at er	nd of table						

Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (μg/L)
TW-04	12/09/03		49.8	1.1			
TW-04	06/15/04		12.7				
TW-04	11/30/04		40.0				
TW-04	06/24/05		9.20	1.7			
TW-04	12/01/05		31.4				
TW-04	07/18/06		27.9				
TW-04	12/11/06		8.99				
TW-04	05/03/07		4.66				
TW-04	12/11/07		15.2				
TW-04	05/03/08		4.40				
TW-04	11/04/08		21.3				
TW-04	05/04/09		4.78				
TW-04	10/19/09						
TW-04	05/11/10		5.32				
TW-04	05/03/11		6.17				
TW-04	11/01/11		8.9	2.44			
TW-04	05/16/12		1.66	1.56			
TW-04	10/31/12			2.85			
TW-04	05/14/13			1.13			
TW-04	11/13/13			6.87			
TW-04	05/07/14			2.08			
TW-04	10/28/14			8.24			
TW-04	05/12/15			1.84			
TW-04	10/27/15			5.18			
TW-04	05/03/16						
TW-04	10/25/16			2.67			
TW-04	05/09/17						
TW-04	05/08/18						
TW-09	10/24/00		230	36			
TW-09	03/27/01		120	1.9 J			
TW-09	06/16/01		200	7.4			
TW-09	09/16/01		150	9.6			
TW-09	12/15/01		110	4			
TW-09	03/06/02		55.4	2			
TW-09	06/05/02		36.5				
TW-09	09/19/02		91.5	4			
TW-09	12/05/02		38				
TW-09	03/19/03						
TW-09	06/11/03		29.4				
TW-09	09/17/03		77	6.4			
TW-09	12/10/03		36.8	1.2			
TW-09	06/16/04		43.1	1.0			
TW-09	12/02/04		46.2	2.4			
TW-09	06/24/05		48.2	1.7			

2018 Annual Progress Report Former Taylor Instruments Site

TW-09 TW-09 TW-09 TW-09 TW-09 TW-09 TW-09	Date Sampled 12/05/05 07/18/06 12/06/06 05/03/07 12/13/07 05/05/08 11/06/08 05/06/09	PCE (μg/L) 	TCE (μg/L) 45.0 56.7 34.3 31.2 29.8	cis-1,2-DCE (μg/L) 1.48 1.35 2.60	trans-1,2-DCE (μg/L) 	1,1-DCE (μg/L) 	Vinyl Chloride (μg/L)
TW-09 TW-09 TW-09 TW-09 TW-09	07/18/06 12/06/06 05/03/07 12/13/07 05/05/08 11/06/08	 	56.7 34.3 31.2	1.35 2.60			
TW-09 TW-09 TW-09 TW-09	12/06/06 05/03/07 12/13/07 05/05/08 11/06/08	 	34.3 31.2	2.60			
TW-09 TW-09 TW-09	05/03/07 12/13/07 05/05/08 11/06/08	 	31.2				
TW-09 TW-09 TW-09	12/13/07 05/05/08 11/06/08			2.04			
TW-09 TW-09	05/05/08 11/06/08		29.8	3.01	1.46		
TW-09	11/06/08			1.28			
			50.5	4.70	4.87		
TIA / 00	05/06/00		71.2	12.6	12.0		
TW-09	03/00/09		72.1	32.6	32.0		5.83
TW-09	10/21/09		82.9	34.4	34.6		
TW-09	05/12/10		56.7	12.8	14.3		
TW-09	05/03/11		4.13	2.28			4.17
TW-09	11/02/11		1.24	4.23	7.07		6.26
TW-09	05/16/12		1.18	1.11	2.99		1.97
TW-09	11/01/12						
TW-09	05/14/13		4.05	2.91	5.58		3.49
TW-09	11/12/13			3.38	6.92		9.03
TW-09	05/07/14		6.06	4.15	3.47		2.09
TW-09	10/29/14		2.98	12.5	9.86		12.9
TW-09	05/13/15		16.4	18.7	11.8		9.81
TW-09	10/28/15		8.18	38.9	20.8		21
TW-09	05/04/16		10.8	16.8	6.85		6.90
TW-09	10/26/16		5.31	3.20	1.07		
TW-09	05/10/17		2.49				
TW-09	05/08/18		7.03	25.2	10.9		13.5
TW-17	11/17/00		1,000	7.9J			
TW-17	03/23/01		530				
TW-17	06/16/01		490				
TW-17	09/14/01		740				
TW-17	12/14/01		515				
TW-17	03/05/02		339				
TW-17	06/04/02		393				
TW-17	09/18/02		666				
TW-17	12/04/02		390				
TW-17	03/18/03		379				
TW-17	06/10/03		282				
TW-17	09/16/03		435				
TW-17	12/09/03		441				
TW-17	06/15/04		280				
TW-17	11/30/04		407	6.9			
TW-17	06/24/05		340	1.0			
TW-17	12/01/05		397	1.35			
TW-17	07/18/06		410	2.04			
TW-17	12/06/06		246	7.47			
TW-17	05/02/07		253	5.87			
See notes at en	d of table						

Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (μg/L)
TW-17	12/12/07		296	3.98			
TW-17	05/04/08		477	4.19			
TW-17	11/05/08		270	110			
TW-17	05/05/09		332	6.46			
TW-17	10/20/09		94	199	5.92		
TW-17	05/11/10		316	10.6			
TW-17	05/05/11		205	115			
TW-17	11/03/11		21.6	310			4.92
TW-17	05/16/12		2.16	156			6.28
TW-17	10/31/12			147			2.66
TW-17	05/16/13		2.63	556	1.22		39.3
TW-17	11/14/13			240			130
TW-17	05/08/14		1.38	112	4.21		48.0
TW-17	10/29/14			1.51			4.80
TW-17	05/13/15			2.74			2.1
TW-17	10/29/15		1.83	6.59			3
TW-17	05/03/16		13.5	170	2.95		84.4
TW-17	10/26/16		1.07	24.2			4.26
TW-17	05/10/17		35.4	192	4.33		84.5
TW-17	05/09/18		78.7	754	23.9	2.02	195
TW-20	10/25/00		5.2				
TW-20	03/27/01		12				
TW-20	06/16/01		2.9 J				
TW-20	09/14/01						
TW-20	12/14/01		3.1				
TW-20	03/06/02		2.4				
TW-20	09/18/02						
TW-20	12/04/02		11.6				
TW-20	03/19/03		2.4				
TW-20	06/10/03						
TW-20	09/17/03		5.0				
TW-20	12/10/03		14.8				
TW-04	06/15/04						
TW-20	12/01/04						
TW-20	06/24/05		1.5				
TW-20	12/01/05		6.32				
TW-20	07/18/06		12.0				
TW-20	12/06/06		13.2				
TW-20	05/02/07		8.28				
TW-20	12/11/07		4.58				
TW-20	05/02/08		4.50				
TW-20	11/04/08		23.0	3.47			
TW-20	05/04/09		25.2	1.55			
TW-20	10/19/09		78.8	5.50			
See notes at er	nd of table						

Rochester, New York									
Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (μg/L)		
TW-20	05/11/10		65.9	2.34					
TW-20	05/04/11		65	2.86					
TW-20	11/02/11		88.8	8.3					
TW-20	05/17/12		80.8	4.58					
TW-20	11/01/12		107	4.11					
TW-20	05/16/13		72.3	3.14					
TW-20	11/14/13		56.6	1.73					
TW-20	05/08/14		48.4	4.48					
TW-20	10/29/14		6.11						
TW-20	05/13/15		30.2	2.25					
TW-20	10/28/15		27.3						
TW-20	05/04/16		26.3						
TW-20	10/26/16		18.6						
TW-20	05/10/17		19.2	1.99					
TW-20	05/08/18		19.9	2.89					
W-5	11/16/00			27	11				
W-5	03/23/01		120	25	8.1				
W-5	06/18/01		62	23	9.6				
W-5	09/17/01		64	9.1	6.5				
W-5	12/17/01		1,435	39.5	9				
W-5 (DUP)	12/17/01		1,780	36.2	8.5				
W-5	03/07/02		737	21.6	3.5				
W-5 (DUP)	03/07/02		607	23.2	3.9				
W-5	06/06/02		155	15.7					
W-5 (DUP)	06/06/02		150	13.8					
W-5	09/19/02		960	49.6					
W-5 (DUP)	09/19/02		676	48.5	4.7				
W-5	12/05/02		777	52	3.6				
W-5 (DUP)	12/05/02		843	51.7	4				
W-5	03/20/03		262	132	3.4				
W-5 (DUP)	03/20/03		232	119	3.3				
W-5	06/11/03		234	128	5				
W-5 (DUP)	06/11/03		234	152	5.1				
W-5	09/18/03		510	129	4				
W-5 (DUP)	09/18/03		444	112	3.9				
W-5	12/11/03		550	127	3.5				
W-5 (DUP)	12/11/03		520	118	3.4				
W-5	06/16/04		348	98.9	5.4				
W-5 (DUP)	06/16/04		360	71.6	4.6				
W-5	12/02/04		569	125	4.7				
W-5 (DUP)	12/02/04		725	89.4	4.4				
W-5	06/25/05		381	98.2	3.7				
W-5 (DUP)	06/25/05		380	93.2	3.5				
W-5	12/05/05		1,100	76.9	2.13				
See notes at en	d of table								

Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (μg/L)
W-5 (DUP)	12/05/05		916	69.5			
W-5	07/19/06		212	104	2.34		3.63
W-5 (DUP)	07/19/06		219	99.0	2.30		3.81
W-5	12/05/06		263	122	2.89		7.14
W-5	05/03/07		1,140	340	4.61		4.43
W-5 (DUP)	05/03/07		1,070	336	4.60		4.00
W-5	12/13/07		835	158	3.83		22.1
W-5 (DUP)	12/13/07		850	124	3.36		16.1
W-5	05/05/08	2.41	1,180	314	4.41		6.77 J
W-5 (DUP)	05/05/08	2.25	1,110	342	4.33		13.6 J
W-5	11/06/08		687	143	3.28		8.86
W-5 (DUP)	11/06/08		703	126	2.88		8.85
W-5	05/06/09		961	124	2.61		1.33
W-5 (DUP)	05/06/09		961	123	2.69		
W-5	10/21/09		664	59.9	1.55		5.39 J
W-5 (DUP)	10/21/09		642	68.2	1.61		7.42
W-5	05/12/10		601	164	2.08		5.04
W-5 (DUP)	05/12/10		591	159	2.08		5.27
W-5	05/04/11		445	117	1.39		1.51
W-5 (DUP)	05/04/11		432	141	1.62		1.53
W-5	11/03/11		293	130	1.41		12.5
W-5 (DUP)	11/03/11		325	153	1.74		17.0
W-5	05/17/12		230	139	5.37		39.5
W-5 (DUP)	05/17/12		220	136	5.19		37.2
W-5	11/01/12		195	85	13.1		34.8
W-5 (DUP)	11/01/12		191	83.9	12.9		34.2
W-5	05/16/13		218	75	10.6		35.3
DUP-01	05/16/13		228	74.6	10.3		33.8
W-5	11/14/13		182	69.5	10.2		36.5
DUP-01	11/14/13		185	69.8	9.97		33.8
W-5	05/08/14		182	49.7	7.35		14.9
DUP-01	05/08/14		177	52.1	7.71		15.3
W-5	10/29/14		141	57.9	10.9		39.7
DUP-01	10/29/14		155	55.6	10.3		33.9
W-5	05/13/15		106	40.5	6.15		26.1
DUP-01	05/13/15		109	42.5	6.11		27.0
W-5	10/28/15		116	51.5	8.51		34.7
DUP-01	10/28/15		122	50.6	8.01		31.5
W-5	05/04/16		85.6	41.6	7.24		26.9
DUP-01	05/04/16		85.6	42.9	7.55		27.4
W-5	10/26/16		104	56.9	8.27		27.3
DUP-01	10/26/16		109	61.6	9.60		27.8
W-5	05/10/17		78.5	122	11.7		74.2
DUP-01	05/10/17		87.4	112	9.03		59.0
See notes at en	d of table						

2018 Annual Progress Report Former Taylor Instruments Site Rochester, New York

Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (μg/L)
W-5	05/09/18		45.9	104	13.4		78.3
DUP-01	05/09/18		44.3	104	13.1		80.6

Notes: -- = no detections

μg/L = micrograms per liter
1,1-DCE = 1,1-dichloroethene
cis-1,2-DCE = cis-1,2-dichloroethene
trans-1,2-DCE = trans-1,2-dichloroethene

DUP = duplicate
ID = identification
J = estimated value
TCE = trichloroethene

VOC = volatile organic compound

Prepared by <u>NG</u> on <u>12/12/2018</u> Checked by <u>KJD</u> on <u>12/14/18</u>

Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (μg/L)
BR-01	11/17/00	(µg/L)	(μg/L)	550	4.3 J	(μg/L)	3.5 J
BR-01	03/21/01		320	34	2.2 J		3.3 3
BR-01 (DUP)	03/21/01		320	35	2.4 J		
BR-01	06/16/01		270	59	4.4 J		
BR-01	09/14/01		31	170	16		
BR-01	12/14/01		63.8	77.5	2		
BR-01	03/09/02		47.3	5.5	1.6		
BR-01	06/08/02		85.7	10.1	3.2		
BR-01	09/20/02		107	16	4		
BR-01	12/07/02		14.3	83	3.8		
BR-01	03/21/03		25.8	2.1	1		
BR-01	06/12/03		60.9	4.6	2.8		
BR-01	09/19/03		102	4.6 11.4	2.8 1.7		
BR-01			102	61.7			
BR-01	12/12/03 06/18/04		551	61.7 42	20.6 6.1		
BR-01	12/03/04		65	4.3	1.4		
BR-01	06/26/05		199	6.5	1.0		
BR-01	12/02/05		1.12	36.2	1.10		
BR-01	07/19/06			3.09			
BR-01	12/08/06			3.73			
BR-01	05/02/07		67.5	10.6			
BR-01	12/10/07			70.6	4.33		
BR-01	05/02/08		4.19	10.7	1.63		
BR-01	11/04/08			98.7	2.23		
BR-01	05/04/09		3.26	11.3	1.95		
BR-01	10/19/09			6.92			
BR-01	05/11/10		9.23	12.8	2.02		
BR-01	05/04/11		2.05	14.6	1.03		
BR-01	11/03/11			41.6			3.61
BR-01	05/17/12		89.6	34.7	1.87		3.13
BR-01	10/31/12			29.6			7.88
BR-01	05/15/13		76.3	695	35.4	7.52	200
BR-01	11/14/13		111	1,470	34.4	6.87	406
BR-01	05/08/14		98.9	1,570	61.4	7.70	377
BR-01	10/29/14		86.9	1,590	56.6	7.62	320
BR-01	05/14/15		40.4	1,240	37.1		244
BR-01	10/29/15		31.8	906	39.8	4.03	244
BR-01	05/05/16		13.0	861	36.8		302
BR-01	10/27/16		10.9	787	30.0	2.50	158
BR-01	05/11/17		7.23	851	38.9		348
BR-01	11/01/17		6.08	772	47.6		345
BR-01	05/10/18		5.30	566	51.5		359
BR-01	10/24/18		7.30	553	30.8		300

Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (μg/L)
BR-02	11/18/00		1,800	540	31 J		
BR-02	03/21/01		1,200	95			
BR-02	06/17/01		1,000	94	27 J		
BR-02	09/15/01		7,000	1,500	63	31 J	
BR-02	12/15/01		6,500	1,830	59.8	30.3	19.6
BR-02	03/09/02		588	79.6	20.8	1.2	
BR-02	06/08/02		568	122	2.2		
BR-02	09/21/02		768	518	24.4	4.6	18.7
BR-02	12/07/02		694	172	29.8		5.6
BR-02	03/21/03		4,000	19,100	154	156	64.9
BR-02	06/13/03		710	17,900	120	122	68.1
BR-02	09/18/03		372	245	23.3		
BR-02	12/12/03		324	58.2	18.2		
BR-02	06/18/04		450	257	33.8	2.8	2.3
BR-02	12/03/04		647	242	23.4	1.4	1.4
BR-02	06/27/05		163	29	9.1		
BR-02	12/03/05		114	23.1	9.08		
BR-02	07/19/06		120	16.9	8.29		
BR-02	12/08/06	1.32	113	31.1	11.3		
BR-02	05/02/07		409	118	15.2	1.26	
BR-02	12/10/07		134	38.6	14.1		
BR-02	05/02/08		153	74.2	14.0		
BR-02	11/04/08		90.9	48.1	11.4		1.54
BR-02	05/04/09		88.1	142	20.5	1.00	1.19
BR-02	10/19/09		254	100	13.4	1.03	1.22
BR-02	05/11/10		821	186	21.9	1.76	2.25
BR-02	05/04/11		237	56.2	8.89		
BR-02	11/02/11		2230	483	24.6	4.35	8.25
BR-02	05/16/12		5070	1100	49.4	8.67	22
BR-02	11/01/12		44.5	23.3	4.69		
BR-02	05/16/13		904	169	12.6	1.61	2.3
BR-02	11/13/13		27	24.1	3.45		
BR-02	05/08/14		25,200	5,860	238	46.4	103
BR-02	10/29/14		25.3	19.7	2.52		
BR-02	05/14/15	-	506	167	7.23		3.41
BR-02	10/29/15		16.6	21.7	1.54		 10.6
BR-02	05/05/16		196 14.0	335	15.3	2.59	12.6
BR-02	10/27/16		14.9	30.3	1.65		 2.45
BR-02 BR-02	05/11/17 10/31/17		89.7 16.6	77.1 18.6	3.33 1.73		3.45
			616				1.47 5.16
BR-02 BR-02	05/09/18 10/24/18		211	263 76.2	13.7 3.37	 	5.16 5.58
BR-03	11/18/00	-	440	99	1.2 J	2.2 J	
BR-03	03/22/01		810	99 12 J	1.2 J 	2.2 J 3.2 J	
See notes at er			010	ı∠ J		J.Z J	

Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (µg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (μg/L)
BR-03	06/15/01		500	20 J			
BR-03	09/14/01		330	7.8 J			
BR-03	12/13/01		780	7.6		2.2	
BR-03	03/08/02		599	9.8		2.1	
BR-03	06/07/02		854	19.7		2.8	
BR-03	09/20/02		370	6.5			
BR-03	12/07/02		821	13.5			
BR-03	03/21/03		590	7.7		2	
BR-03	06/12/03		632	25.3	1.9	3	
BR-03	09/18/03		1,150	10.4	1.5	3.1	
BR-03	12/12/03						
BR-03	06/17/04		446	17.0	1.1	1.5	
BR-03	12/03/04		60.6	27.0		1.0	
BR-03	06/26/05		73.4	5.6			
BR-03	12/02/05		5.57	21.0			
BR-03	07/19/06		248	6.97			
BR-03	12/08/06		29.7	27.3			
BR-03	05/01/07		701	7.32		1.89	
BR-03	12/11/07		35.4	21.8			
BR-03	05/03/08		588	5.20		1.81	
BR-03	11/04/08		61.8	4.61			
BR-03	05/04/09		202	3.10			
BR-03	10/19/09		365	29.3	1.02	2.05	
BR-03	05/11/10		270	3.15			
BR-03	05/03/11		52.5	75			
BR-03	11/02/11			37.1			
BR-03	05/16/12		573	43.4	1.18	1.89	
BR-03	10/31/12		3.06	329	6.71	1.71	
BR-03	05/16/13		596	23.2	4.92	1.83	
BR-03	11/13/13		653	18.2		2.04	
BR-03	05/08/14		519	15.3	1.66	1.72	
BR-03	10/29/14		381	37.0	1.73	1.74	
BR-03	05/14/15		353	40.6	1.12	1.40	
BR-03	10/29/15		360	76.4	1.77	1.86	
BR-03	05/04/16		225	79.1	1.19	1.58	
BR-03	10/27/16		464	27.1	1.32	2.17	
BR-03	05/10/17		352	97.4	3.57	2.05	
BR-03	11/01/17		483	49.5	2.48	1.09	
BR-03	05/09/18		370	50.7	1.19	1.28	
BR-03	10/24/18		591	26.8	1.22	1.94	
BR-04	11/19/00		10,000	600	140	17 J	25 J
BR-04	03/24/01		9,000	400	95 J		
BR-04	06/19/01		4,300	320	61 J		
BR-04	09/17/01		5,000	420	100 J		
See notes at en	d of table.						

Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (μg/L)
BR-04	12/17/01	1.2	5,700	430	79.9	9	27.4
BR-04	03/12/02		5,750	384	77	8.1	23.4
BR-04	06/10/02		4,570	338	49		
BR-04	09/23/02		3,310	551	63.1	8.3	32.2
BR-04	12/09/02		5,300	535	77.6	8.3	27.1
BR-04	03/23/03	1.8	4,630	473	52	6.8	14.8
BR-04	06/13/03		302	1,280	19.5	3.6	1.2
BR-04	09/21/03		2,540	560	61	5.4	32.2
BR-04	12/14/03		3,650	507	51.9	6.2	14.3
BR-04	06/19/04		102	1,420	45.8	6.4	3.0
BR-04	12/05/04		4,090	2,810	90.0	15.3	8.3
BR-04	06/28/05		6.6	937	22.5	1.6	1.2
BR-04	12/03/05		16.4	127	2.21		
BR-04	07/20/06		3,940	6,410	147	21.3	12.9
BR-04	12/09/06		5.32	2,030	24.1	3.17	5.21
BR-04	05/01/07		56.9	446	12.7	1.09	
BR-04	12/12/07		8.64	240	4.36		3.07
BR-04	05/04/08		332	647	17.7	2.83	1.37
BR-04	11/06/08		7.04	490	8.51		3.28
BR-04	05/06/09		498	163	10.9	1.59	
BR-04	10/21/09		25.1	167	5.24		1.72
BR-04	05/12/10		325	321	11.7	1.37	
BR-04	05/03/11						
BR-04	11/01/11		4.29	5.02			
BR-04	05/15/12		55.1	76.6	2.9		2.72
BR-04	10/31/12		4.9	4.77			
BR-04	05/15/13		1,430	1,370	97.4	9.47	72.5
BR-04	11/12/13		638	1,320	66.9	9.96	77
BR-04	05/07/14		757	1,370	88.7	11.5	68.0
BR-04	10/29/14		514	955	77.4	9.33	55.1
BR-04	05/14/15		437	977	61.6	7.27	52.7
BR-04	10/29/15		331	661	64.9	7.78	46.2
BR-04	05/05/16		354	831	51.0	6.63	48.5
BR-04	10/27/16		441	972	81.9	9.15	62.0
BR-04	05/11/17		703	1,450	63.8		60.0
BR-04	11/01/17		933	1,490	104		59.6
BR-04	05/10/18		931	1,390	112	 9.24	61.3
BR-04	10/24/18		921	1,380	88.2	8.24	51.9
BR-10	11/18/00		4,000	450	27 J		
BR-10	03/28/01		4,700	980	110 J		
BR-10	06/18/01		8,500	1,000			
BR-10	09/17/01		8,700	1,700	160 J		
BR-10	12/16/01		5,350	1,200	82.8	3.4	5.6
BR-10	03/11/02	-	3,745	1,090	78.2	3.9	5.5

Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (µg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (μg/L)
BR-10	06/09/02		5,100	1,290	64.6	4.7	5.3
BR-10	09/22/02			120	9.8		
BR-10	12/09/02		3,060	750	60.1	2.3	
BR-10	03/22/03		2,580	886	42.2	2.5	3.1
BR-10	06/13/03		2,950	1,080	61.7	3.2	5.1
BR-10	09/21/03		2,250	400	49.4	2	16.1
BR-10	12/13/03		1,420	442	36.4	1.4	8.8
BR-10	06/19/04		1,520	507	62.9	2.9	6.8
BR-10	12/04/04		1,270	436	41.2	1.8	5.0
BR-10	06/27/05	1.3	558	166	17.3		1.3
BR-10	12/03/05	1.62	474	122	11.1		
BR-10	07/20/06		52.3	12.2	1.53		
BR-10	12/08/06		28.2	15.0	1.26		
BR-10	05/02/07	1.01	226	57.8	5.87		
BR-10	12/12/07		17.8	3.83			
BR-10	05/04/08	2.94	357	94.6	10.7		1.40
BR-10	11/05/08		8.44	3.02			
BR-10	05/05/09	1.67	235	66.1	10.3		1.07
BR-10	10/20/09		48	22	2.79		
BR-10	05/11/10	1.72	277	77.3	14.0		
BR-10	05/03/11	1.36	725	312	26.3		2.79
BR-10	11/01/11	1.35	417	231	25.3		2.87
BR-10	05/15/12	1.28	532	192	24		1.13
BR-10	10/31/12		7.28	2.21			
BR-10	05/15/13	 	517	153	26		
BR-10	11/12/13	 1.76	444	173	29	 1.11	 2.17
BR-10	05/07/14		329	189	32.8		1.02
BR-10	10/29/14	1.33	345	299	46.2	 1.49	2.72
BR-10	05/14/15		142	260	38.5		
BR-10 BR-10			201	343	56.5	 1.61	
	10/29/15		233	343 257	43.3		3.04
BR-10	05/05/16					1.50	
BR-10	10/27/16	1.19	154 151	345	50.1	1.50	2.11
BR-10	05/11/17		151	357	48.4	1.02	1.65
BR-10	11/01/17		168	413	56.2		3.64
BR-10	05/10/18		122 164	463	67.5		1.29
BR-10	10/24/18			436	55.1		5.44
BR-15	11/19/00		2,700	54 J			
BR-15 (DUP)	11/19/00		2,700	49 J			
BR-15 BR-15	03/26/01 06/18/01		2,500 2,300	33 J 49 J			
BR-15 BR-15	09/16/01		2,300 4,800	49 J 110 J			
BR-15	12/16/01		6,590	189	28.2	2	1.1
BR-15	03/11/02		5,500	172	36.6	2.2	
BR-15	06/09/02		5,800	373	36.9	4.6	3.8
See notes at end			•				

2018 Annual Progress Report Former Taylor Instruments Site Rochester, New York

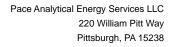
Sample ID	Date Sampled	PCE (µg/L)	TCE (μg/L)	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	1,1-DCE (μg/L)	Vinyl Chloride (μg/L)
·	·						
BR-15	09/22/02		4,390	555	40.3	7.5	5.4
BR-15	12/08/02		4,740	177	43.6	2.8	
BR-15	03/22/03		2,500	404	21.9	4.3	1.2
BR-15	06/13/03		1,180	1,390	24.8	8.4	3.9
BR-15	09/21/03		1,230	580	35.3	6.9	8.3
BR-15	12/13/03		2,000	194	24.9	2.8	
BR-15	12/12/07		212	380	2.81	1.48	15.7
BR-15	05/04/08		43.4	449	2.94	1.38	28.2
BR-15	11/06/08		4.08	4.04			
BR-15	05/06/09		261	105	1.33		6.40
BR-15	10/20/09		38.0	19.3			
BR-15	05/12/10		167	123	2.12		3.11
BR-15	05/04/11		1.74	27.2			25.9
BR-15	11/02/11		1.01	8.81			10.8
BR-15	05/16/12						
BR-15	11/01/12						
BR-15	05/14/13			1.53			7.51
BR-15	11/12/13				1.02		8.9
BR-15	05/07/14		1.64	8.33	2.47		41.1
BR-15	10/28/14			1.28	1.77		11.3
BR-15	05/13/15			1.94			16.9
BR-15	10/28/15						2.2
BR-15	05/04/16						1.42
BR-15	10/25/16						3.0
BR-15	05/09/17						
BR-15	10/31/17		2.43	5.22			4.06
DUP-01	10/31/17		2.33	5.70			5.20
BR-15	05/09/18		1.14				
BR-15	10/23/18		2.29	2.33			1.56
DUP-01	10/23/18		2.51	2.54			1.62

Notes: -- = no detections

μg/L = micrograms per liter
1,1-DCE = 1,1-dichloroethene
cis-1,2-DCE = cis-1,2-dichloroethene
trans-1,2-DCE = trans-1,2-dichloroethene

DUP = duplicate
ID = identification
J = estimated value
TCE = trichloroethene

VOC = volatile organic compound


Prepared by <u>NG</u> on <u>12/12/2018</u> Checked by <u>KJD</u> on <u>12/14/2018</u>

APPENDIX C

LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS (SEE ENCLOSED CD)

MAY 2018

LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS

May 30, 2018

Joe Deatherage Wood Environment & Infastructure Soultions, Inc 9725 Cogdill Road Knoxville, TN 37923 USA

RE: FRM. TAYLOR INSTRUMENTS

Pace Workorder: 26708

Dear Joe Deatherage:

Enclosed are the analytical results for sample(s) received by the laboratory on Friday, May 11, 2018. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ruth Welsh 05/30/2018 Ruth.Welsh@pacelabs.com

Customer Service Representative

Enclosures

As a valued client we would appreciate your comments on our service.

Please email PAESfeedback@pacelabs.com.

Report ID: 26708 - 1057146 Page 1 of 13

LABORATORY ACCREDITATIONS & CERTIFICATIONS

Accreditor: Pennsylvania Department of Environmental Protection, Bureau of Laboratories

Accreditation ID: 02-00538

Scope: **NELAP Non-Potable Water**

West Virginia Department of Environmental Protection, Division of Water and Waste Accreditor:

Management

Accreditation ID: 395

Non-Potable Water Scope:

South Carolina Department of Health and Environmental Control, Office of Environmental Accreditor:

Laboratory Certification

Accreditation ID: 89009003

Scope: Clean Water Act (CWA); Resource Conservation and Recovery Act (RCRA)

Accreditor: State of Virginia

Accreditation ID: 460201

Scope: Non-Potable Water

Accreditor: NELAP: New Jersey, Department of Environmental Protection

Accreditation ID: PA026

Scope: Non-Potable Water

Accreditor: NELAP: New York, Department of Health Wadsworth Center

Accreditation ID: 11815

Scope: Non-Potable Water

Accreditor: State of Connecticut, Department of Public Health, Division of Environmental Health

Accreditation ID: PH-0263

Scope: Clean Water Act (CWA) Resource Conservation and Recovery Act (RCRA)

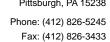
Accreditor: NELAP: Texas, Commission on Environmental Quality

Accreditation ID: T104704453-09-TX Scope: Non-Potable Water

Accreditor: State of New Hampshire

Accreditation ID: 299409

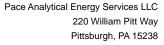
Scope: Non-potable water


Accreditor: State of Georgia Accreditation ID: Chapter 391-3-26

As per the Georgia EPD Rules and Regulations for Commercial Laboratories, PAES is Scope:

accredited by the Pennsylvania Department of Environmental Protection Bureau of Laboratories under the National Environmental Laboratory Approval Program (NELAC).

Report ID: 26708 - 1057146 Page 2 of 13


SAMPLE SUMMARY

Workorder: 26708 FRM. TAYLOR INSTRUMENTS

Lab ID	Sample ID	Matrix	Date Collected	Date Received
267080001	TW-04	Water	5/8/2018 09:55	5/11/2018 10:45
267080002	OB-06	Water	5/8/2018 13:30	5/11/2018 10:45
267080003	W-5	Water	5/9/2018 12:10	5/11/2018 10:45
267080004	TW-17	Water	5/9/2018 13:40	5/11/2018 10:45

Report ID: 26708 - 1057146 Page 3 of 13

PROJECT SUMMARY

Workorder: 26708 FRM. TAYLOR INSTRUMENTS

Workorder Comments

This report is being revised and reissued on 5-30-18 to correct the entry error for the collection date for samples W-5 and TW-17

Batch Comments

Batch: DISG/6843 - RSK175 QC

The relative percent difference between the sample and sample duplicate exceeded laboratory control limits; reference sample 266940001. Analyte Ethane, Ethene. Results for original and duplicate samples were below reporting limits.

Report ID: 26708 - 1057146 Page 4 of 13

ANALYTICAL RESULTS

Workorder: 26708 FRM. TAYLOR INSTRUMENTS

Date Received: 5/11/2018 10:45 Lab ID: 267080001 Matrix: Water

Sample ID: TW-04 Date Collected: 5/8/2018 09:55

PQL Parameters Results Units MDL DF Analyzed Ву Qualifiers

RISK - PAES						
Analysis Desc: EPA RSK175	Analytic	cal Method: EF	PA RSK175			
Methane Ethene	18 ug/l 0.20 U ug/l	0.50 0.20	0.031 1 0.021 1	5/17/2018 12:03 5/17/2018 12:03		D1
Luiene	0.20 0 ug/i	0.20	0.0211	3/17/2010 12.03	AIX	וט

Report ID: 26708 - 1057146 Page 5 of 13

ANALYTICAL RESULTS

Workorder: 26708 FRM. TAYLOR INSTRUMENTS

Lab ID: 267080002 Date Received: 5/11/2018 10:45 Matrix: Water

Sample ID: **OB-06** Date Collected: 5/8/2018 13:30

Parameters Results Units PQL MDL DF Analyzed By Qualifiers

RISK - PAES

Analysis Desc: EPA RSK175	Analytical Method: EPA RSK175						
Methane	16000 ug/l	50	3.1 100	5/18/2018 12:47	AK	d	
Ethene	3.8 ug/l	0.20	0.021 1	5/17/2018 12:14	AK	D1	

Report ID: 26708 - 1057146 Page 6 of 13

ANALYTICAL RESULTS

Workorder: 26708 FRM. TAYLOR INSTRUMENTS

Lab ID: 267080003 Date Received: 5/11/2018 10:45 Matrix: Water

Sample ID: W-5 Date Collected: 5/9/2018 12:10

Parameters Results Units PQL MDL DF Analyzed By Qualifiers

RISK - PAES

Analysis Desc: EPA RSK175	Analytical Method: EPA RSK175						
Methane	2400 ug/l	50	3.1 100	5/18/2018 12:57	AK	d	
Ethene	5.0 ug/l	0.20	0.021 1	5/17/2018 12:55	AK	D1	

Report ID: 26708 - 1057146 Page 7 of 13

ANALYTICAL RESULTS

Workorder: 26708 FRM. TAYLOR INSTRUMENTS

Lab ID: 267080004 Date Received: 5/11/2018 10:45 Matrix: Water

Sample ID: **TW-17** Date Collected: 5/9/2018 13:40

Parameters Results Units PQL MDL DF Analyzed By Qualifiers

RISK - PAES

Analysis Desc: EPA RSK175	Analytical Method: EPA RSK175						
Methane	21000 ug/l	50	3.1 100	5/18/2018 13:08	AK		d
Ethene	56 ug/l	0.20	0.021 1	5/18/2018 08:51	AK		

Report ID: 26708 - 1057146 Page 8 of 13

ANALYTICAL RESULTS QUALIFIERS

Workorder: 26708 FRM. TAYLOR INSTRUMENTS

DEFINITIONS/QUALIFIERS

MDL	Method Detection Limit. Can be used synonymously with LOD; Limit Of Detection.
PQL	Practical Quanitation Limit. Can be used synonymously with LOQ; Limit Of Quantitation.
ND	Not detected at or above reporting limit.
DF	Dilution Factor.
S	Surrogate.

RPD Relative Percent Difference. % Rec

Percent Recovery.

U Indicates the compound was analyzed for, but not detected at or above the noted concentration.

Estimated concentration greater than the set method detection limit (MDL) and less than the set reporting limit (PQL).

d The analyte concentration was determined from a dilution.

The duplicate relative percent difference (RPD) exceeded laboratory control limits. D1

Report ID: 26708 - 1057146 Page 9 of 13

QUALITY CONTROL DATA

Workorder: 26708 FRM. TAYLOR INSTRUMENTS

QC Batch: DISG/6843 Analysis Method: EPA RSK175

QC Batch Method: EPA RSK175

Associated Lab Samples: 267080001, 267080002, 267080003

METHOD BLANK: 55318

		Blank F	Reporting
Parameter	Units	Result	Limit Qualifiers
RISK			
Methane	ug/l	0.50 U	0.50
Ethene	ug/l	0.20 U	0.20 D1

LABORATORY CONTROL SAMPLE & LCSD: 55319 55320

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
RISK										
Methane	ug/l	44	42	43	96	97	85-115	1.1	20	
Ethene	ug/l	78	76	76	97	98	85-115	0.67	20	D1

SAMPLE DUPLICATE: 55325 Original: 266880001

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Qualifiers
RISK						
Methane	ug/l	9	11	19	20	
Ethene	ug/l	.032	.037	15	20	D1

SAMPLE DUPLICATE: 55326 Original: 266940001

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Qualifiers
RISK						
Methane	ug/l	42	42	1.8	20	
Ethene	ug/l	.0045	.0004	167	20	D1

Report ID: 26708 - 1057146 Page 10 of 13

QUALITY CONTROL DATA

Workorder: 26708 FRM. TAYLOR INSTRUMENTS

QC Batch: DISG/6845 Analysis Method: EPA RSK175

QC Batch Method: EPA RSK175

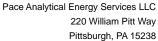
Associated Lab Samples: 267080002, 267080003, 267080004

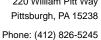
METHOD BLANK: 55346

		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
RISK				
Methane	ug/l	0.50 U	0.50	
Ethene	ug/l	0.20 U	0.20	

LABORATORY CONTROL SAMPLE & LCSD: 55347 55348

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
RISK Methane	ug/l	44	43	43	96	97	85-115	0.63	20	
Ethene	ug/l	78	77	77	99	99	85-115	0.066	20	


MATRIX SPIKE & MAT	CATE: 55349		55350		Original:						
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
RISK Methane Ethene	ug/l ug/l	0.24	44 78	52 92	55 99	117 118	124 128	70-130 70-130	5.9 7.7	20 20	d d


SAMPLE DUPLICATE: 55351 Original: 266950001

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Qualifiers
RISK Methane	ug/l	3700	3700	0.58	20	d

Report ID: 26708 - 1057146 Page 11 of 13

Fax: (412) 826-3433

QUALITY CONTROL DATA QUALIFIERS

Workorder: 26708 FRM. TAYLOR INSTRUMENTS

QUALITY CONTROL PARAMETER QUALIFIERS

D1 The duplicate relative percent difference (RPD) exceeded laboratory control limits.

d The analyte concentration was determined from a dilution.

Report ID: 26708 - 1057146 Page 12 of 13

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 26708 FRM. TAYLOR INSTRUMENTS

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
267080001	TW-04			EPA RSK175	DISG/6843
267080002	OB-06			EPA RSK175	DISG/6843
267080003	W-5			EPA RSK175	DISG/6843
267080002	OB-06			EPA RSK175	DISG/6845
267080003	W-5			EPA RSK175	DISG/6845
267080004	TW-17			EPA RSK175	DISG/6845

Report ID: 26708 - 1057146 Page 13 of 13

Pace Analytical 220 William Pitt Way Pittsburgh, PA 15238

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

(www.pacelabs.com 412-826-52	45				4.0										,					-						
Se	ection A	Section E	3		5 45	/ Sept. 20				Section C											F	Page:			of		
₹e	quired Client Information:	Required								Invoice Inform	nation:										ŀ					~ ~	
Co	impany: Voed EDF Solutions	Report To:	Ü	Toe	Deat	heray	É	-		Attention:														0	111)2 -	
٩d٠	mpany: Voed EDT Solutions dress: 2030 Fulling water Rd. Know. We TW 37922 nail To: Toe. deatherage is word pleases one; 65-218-1049 Fax.	Сору То:						<u> </u>		Company Na	me:							REGU	LATOR	RY A	GEN	CY		*****			
	Knowille, TW 37972			-						Address:		*****						N	PDES		GR	OUND) WAT	ER	DRINKING	WATER	
Ξm	nail To: Joe. deathernes @ worl plc.com	Purchase (Order	No.:						Pace Quote Reference:					_			υ	ST		RCF	RA			OTHER		
Ph	one: 865-218 - 10 40 Fax:	Project Na	me:	Fee	mes T	alu =	Touten	ment 5		Pace Project Manager:							_	Site L	ocation	T	Q ere	hest	tra				
₹e	equested Due Date/TAT: STANDARD	Project Nu	mber:	4	mer T. 103115	2428	13			Pace Profile #:							\dashv		STATE:								
	7,77003,00	<u> </u>			7/1/	5000								Т		Reques	ted /			ــــــــــــــــــــــــــــــــــــــ			- -				
	Section D Matrix 0	Codes	_											┪	<u>: T</u>	1				T	((,	<u></u>	┪				
	Required Client Information MATRIX	CODE	to left	OMP		COLLE	ECTED			<u> </u>	Pres	ervative	es	N/A												-	
	Drinking Wat Water	WT	(see valid codes to left)	C=COMP)				0.75	AT COLLECTION																		
	Waste Water Product	Р	valld o	(AB	COMPO STAR		COMPO END/G		LEC							J							ĝ				
	SAMPLE ID Soil/Solid Oil	SL OL	(see	(G=GRAB					COL	န္က			laOF	-	•	<u>જું</u>							Σ e				
	(A-Z, 0-9 / ,-) Wipe	WP AR	띩	1 1					P AT				8	٩	3	र्कि							orin				
	Sample IDs MUST BE UNIQUE Tissue Other	TS OT	CODE	TYPE					TEM	NT.A Prvec			state	ij	2 `	\$											
# ≥			MATRIX	SAMPLE					SAMPLE	# OF CONTAINERS Unpreserved H ₂ SO ₄	ا ي		Ace	<u>ام</u> ا	, ar	methonof ether							dua				
HEM #			Σ¥	SAN	DATE	TIME	DATE	TIME	SAN	H ₂ S	<u> </u>	TSP	Zinc Acetate & NaOH	Other	\$ \$	દૈ							Residual Chlorine (Y/N)	Pace	Project N	o./Lab I [,
1	TW-04 00-06 W-5		WT	6-			5-8	09:55		3		X			7	X							Ħ				
2	08-06		M				5-8	13:30		3		$ \lambda $				\overline{x}							I				
3	W-5		wt				5-9	12:10		3		X				K								-			
4			LT	16		_	5-9	13:40		3		X				X											
5												-	+-	-						-			\Box				
6			_									-			_		\vdash				-					. <u> </u>	
7														_	E					-			-				
8			_	<u></u>									_		Ł								+				
9													-		_						_		\pm				
10	The state of the s		-		-				Mr. Parket				\perp		4					<u> </u>		_		-			
11													+-	_	╁								士				
12														土	士					+		\Rightarrow	_				
	ADDITIONAL COMMENTS				SHED BY /		ON	DATE		TIME	<u> </u>	Α	CCEP	TED B	Y / A	AFFILIATIO	N		DATE		TIME			SAMP	LE CONDITI	ONS	
		₩ No4	2	6-01	land	Wood		5-10-1	8	15:30	X.	الم المنطقة		25	į	111	-		11.71	14	1		* 3	· · · · · · · · · · · · · · · · · · ·	.59		
					/																						
											\vdash							_		1				- ,			
						SAMPLE	R NAMF A	ND SIGNAT]]RI	=		•								1		-					
	Of the second se	RIGINA	1					ne of SAMPL						·								_	in O	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)	
					}										$\overline{}$	DATE Sign	ned				-		Temp in	eceiv Ice ()	Cust aled (Y/I	nple∉ (Y./i	
							SIGNATUR	RE of SAMPL	ER:							(MM/DD/Y							F	œ	So	Saj	- 1

Cooler Receipt Form

it	Name: Project:			Lab V	Vork Order:
	Shipping/Container Information (circle appropriate response)				
	Courier: FedEx UPS USPS Client Other:	_ Ai	r bill P	'resent	: Yes No
	Tracking Number:				
	Custody Seal on Cooler/Box Present: Yes No Seals	Intact:	Yes	No	
	Cooler/Box Packing Material: Bubble Wrap Absorbent F	oam	Other	r:	
	Type of Ice: Wet Blue None Ice Intact: Yes Mel	ted			
	Cooler Temperature: Radiation Screened: Yes	No.	Ch	ain of	Custody Present: Yes N
	Comments:	••			
,					
٠,	Laboratory Assignment/Log-in (check appropriate response)				
		YES	NO	N/A	
-	Chain of Custody properly filled out				Reference non-Conforma
-					
	Chain of Custody relinquished		ļ	<u> </u>	
	Sampler Name & Signature on COC				
	Containers intact				
	Were samples in separate bags				
	Sample container labels match COC Sample name/date and time collected				
ļ	Sufficient volume provided				
-	PAES containers used	1 .	 		
	Are containers properly preserved for the requested testing? (as labeled)				
	If an unknown preservation state, were containers checked? Exception: VOA's coliform				If yes, see pH form.
	Was volume for dissolved testing field filtered, as noted on the COC? Was volume received in a preserved container?				
	Headspace present?	1			
L	Comments:	1	1	1	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-151752-1

Client Project/Site: Former Taylor Instruments

For:

Wood E&I Solutions Inc 2030 Falling Waters Road Ste 300 Knoxville, Tennessee 37922

Attn: Mr. Joe Deatherage

Authorized for release by: 5/23/2018 1:36:49 PM

Shali Brown, Project Manager II (615)301-5031

shali.brown@testamericainc.com

.....LINKS

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	6
QC Sample Results	24
QC Association	27
Chronicle	28
Method Summary	31
Certification Summary	32
Chain of Custody	33

5

7

9

Sample Summary

Client: Wood E&I Solutions Inc Project/Site: Former Taylor Instruments TestAmerica Job ID: 490-151752-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-151752-1	TW-04	Water	05/08/18 09:55	05/11/18 10:00
490-151752-2	TW-09	Water	05/08/18 11:00	05/11/18 10:00
490-151752-3	TW-17	Water	05/09/18 13:40	05/11/18 10:00
490-151752-4	TW-20	Water	05/08/18 12:00	05/11/18 10:00
490-151752-5	OB-04	Water	05/08/18 15:35	05/11/18 10:00
490-151752-6	OB-06	Water	05/08/18 13:30	05/11/18 10:00
490-151752-7	OB-08	Water	05/08/18 17:35	05/11/18 10:00
490-151752-8	W-5	Water	05/09/18 12:10	05/11/18 10:00
490-151752-9	BR-01	Water	05/10/18 12:35	05/11/18 10:00
490-151752-10	BR-02	Water	05/09/18 15:20	05/11/18 10:00
490-151752-11	BR-03	Water	05/09/18 17:25	05/11/18 10:00
490-151752-12	BR-04	Water	05/10/18 11:18	05/11/18 10:00
490-151752-13	BR-10	Water	05/10/18 09:55	05/11/18 10:00
490-151752-14	BR-15	Water	05/09/18 10:35	05/11/18 10:00
490-151752-15	Dup-01	Water	05/09/18 01:01	05/11/18 10:00
490-151752-16	QAFB-01	Water	05/10/18 13:20	05/11/18 10:00
490-151752-17	QARB-01	Water	05/10/18 13:25	05/11/18 10:00
490-151752-18	QATB-01	Water	05/10/18 13:30	05/11/18 10:00

7

0

10

11

Case Narrative

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Job ID: 490-151752-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-151752-1

Comments

No additional comments.

Receipt

The samples were received on 5/11/2018 10:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.5° C.

GC/MS VOA

Method(s) 8260C: The following samples were diluted due to the nature of the sample matrix: BR-01 (490-151752-9) and BR-04 (490-151752-12). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

-6

6

a

10

11

Definitions/Glossary

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Qualifiers

GC/MS VOA

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Nashville

5/23/2018

Page 5 of 35

-

-9

4

5

U

7

0

10

11

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-1

Matrix: Water

Client Sample ID: TW-04 Date Collected: 05/08/18 09:55

Date Received: 05/11/18 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/15/18 04:04	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			05/15/18 04:04	1
Tetrachloroethene	ND		1.00		ug/L			05/15/18 04:04	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			05/15/18 04:04	1
Trichloroethene	ND		1.00		ug/L			05/15/18 04:04	1
Vinyl chloride	ND		1.00		ug/L			05/15/18 04:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		70 - 130					05/15/18 04:04	1
4-Bromofluorobenzene (Surr)	99		70 - 130					05/15/18 04:04	1
Dibromofluoromethane (Surr)	109		70 - 130					05/15/18 04:04	1
Toluene-d8 (Surr)	106		70 - 130					05/15/18 04:04	1

5/23/2018

3

6

0

9

10

11

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-2

Matrix: Water

Client Sample ID: TW-09 Date Collected: 05/08/18 11:00 Date Received: 05/11/18 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/15/18 04:31	1
cis-1,2-Dichloroethene	25.2		1.00		ug/L			05/15/18 04:31	1
Tetrachloroethene	ND		1.00		ug/L			05/15/18 04:31	1
trans-1,2-Dichloroethene	10.9		1.00		ug/L			05/15/18 04:31	1
Trichloroethene	7.03		1.00		ug/L			05/15/18 04:31	1
Vinyl chloride	13.5		1.00		ug/L			05/15/18 04:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	125		70 - 130					05/15/18 04:31	1
4-Bromofluorobenzene (Surr)	96		70 - 130					05/15/18 04:31	1
Dibromofluoromethane (Surr)	107		70 - 130					05/15/18 04:31	1
Toluene-d8 (Surr)	107		70 - 130					05/15/18 04:31	1

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-3

Matrix: Water

Client Sample ID: TW-17
Date Collected: 05/09/18 13:40
Date Received: 05/11/18 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	2.02		1.00		ug/L			05/15/18 07:14	1
cis-1,2-Dichloroethene	754		5.00		ug/L			05/16/18 04:38	5
Tetrachloroethene	ND		1.00		ug/L			05/15/18 07:14	1
trans-1,2-Dichloroethene	23.9		1.00		ug/L			05/15/18 07:14	1
Trichloroethene	78.7		1.00		ug/L			05/15/18 07:14	1
Vinyl chloride	195		1.00		ug/L			05/15/18 07:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	121		70 - 130					05/15/18 07:14	1
1,2-Dichloroethane-d4 (Surr)	100		70 - 130					05/16/18 04:38	5
4-Bromofluorobenzene (Surr)	99		70 - 130					05/15/18 07:14	1
4-Bromofluorobenzene (Surr)	94		70 - 130					05/16/18 04:38	5
Dibromofluoromethane (Surr)	110		70 - 130					05/15/18 07:14	1
Dibromofluoromethane (Surr)	111		70 - 130					05/16/18 04:38	5
Toluene-d8 (Surr)	106		70 - 130					05/15/18 07:14	1
Toluene-d8 (Surr)	87		70 - 130					05/16/18 04:38	5

5/23/2018

2

3

5

6

8

9

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-4

Matrix: Water

Client Sample ID: TW-20
Date Collected: 05/08/18 12:00
Date Received: 05/11/18 10:00

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/15/18 06:47	1
cis-1,2-Dichloroethene	2.89		1.00		ug/L			05/15/18 06:47	1
Tetrachloroethene	ND		1.00		ug/L			05/15/18 06:47	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			05/15/18 06:47	1
Trichloroethene	19.9		1.00		ug/L			05/15/18 06:47	1
Vinyl chloride	ND		1.00		ug/L			05/15/18 06:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	120		70 - 130					05/15/18 06:47	1
4-Bromofluorobenzene (Surr)	98		70 - 130					05/15/18 06:47	1
Dibromofluoromethane (Surr)	110		70 - 130					05/15/18 06:47	1
Toluene-d8 (Surr)	107		70 - 130					05/15/18 06:47	1

3

5

6

8

9

10

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-5

05/15/18 07:41

05/16/18 05:04

Matrix: Water

Client Sample ID: OB-04
Date Collected: 05/08/18 15:35
Date Received: 05/11/18 10:00

Toluene-d8 (Surr)

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	4.68		1.00		ug/L			05/15/18 07:41	1
cis-1,2-Dichloroethene	1730		10.0		ug/L			05/16/18 05:04	10
Tetrachloroethene	ND		1.00		ug/L			05/15/18 07:41	1
trans-1,2-Dichloroethene	32.4		1.00		ug/L			05/15/18 07:41	1
Trichloroethene	1.60		1.00		ug/L			05/15/18 07:41	1
Vinyl chloride	549		10.0		ug/L			05/16/18 05:04	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	127		70 - 130					05/15/18 07:41	1
1,2-Dichloroethane-d4 (Surr)	99		70 - 130					05/16/18 05:04	10
4-Bromofluorobenzene (Surr)	105		70 - 130					05/15/18 07:41	1
4-Bromofluorobenzene (Surr)	93		70 - 130					05/16/18 05:04	10
Dibromofluoromethane (Surr)	110		70 - 130					05/15/18 07:41	1
Dibromofluoromethane (Surr)	110		70 - 130					05/16/18 05:04	10

70 - 130

70 - 130

108

87

2

4

6

7

9

10

11

12

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Client Sample ID: OB-06 Lab Sample ID: 490-151752-6

Date Collected: 05/08/18 13:30 Matrix: Water

Date Received: 05/11/18 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/15/18 04:58	1
cis-1,2-Dichloroethene	13.5		1.00		ug/L			05/15/18 04:58	1
Tetrachloroethene	ND		1.00		ug/L			05/15/18 04:58	1
trans-1,2-Dichloroethene	1.07		1.00		ug/L			05/15/18 04:58	1
Trichloroethene	13.1		1.00		ug/L			05/15/18 04:58	1
Vinyl chloride	13.3		1.00		ug/L			05/15/18 04:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	117		70 - 130					05/15/18 04:58	1
4-Bromofluorobenzene (Surr)	99		70 - 130					05/15/18 04:58	1
Dibromofluoromethane (Surr)	102		70 - 130					05/15/18 04:58	1
Toluene-d8 (Surr)	109		70 - 130					05/15/18 04:58	1

3

5

6

8

9

10

11

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-7

Matrix: Water

Client Sample ID: OB-08
Date Collected: 05/08/18 17:35
Date Received: 05/11/18 10:00

Method: 8260C - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/15/18 05:26	1
cis-1,2-Dichloroethene	18.6		1.00		ug/L			05/15/18 05:26	1
Tetrachloroethene	ND		1.00		ug/L			05/15/18 05:26	1
trans-1,2-Dichloroethene	7.49		1.00		ug/L			05/15/18 05:26	1
Trichloroethene	ND		1.00		ug/L			05/15/18 05:26	1
Vinyl chloride	81.5		1.00		ug/L			05/15/18 05:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		70 - 130			-		05/15/18 05:26	1
4-Bromofluorobenzene (Surr)	97		70 - 130					05/15/18 05:26	1
Dibromofluoromethane (Surr)	109		70 - 130					05/15/18 05:26	1
Toluene-d8 (Surr)	108		70 - 130					05/15/18 05:26	1

2

6

9

10

11

Client: Wood E&I Solutions Inc

Client Sample ID: W-5

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-8

Matrix: Water

Date Collected: 05/09/18 12:10 Date Received: 05/11/18 10:00

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/15/18 08:08	1
cis-1,2-Dichloroethene	104		1.00		ug/L			05/15/18 08:08	1
Tetrachloroethene	ND		1.00		ug/L			05/15/18 08:08	1
trans-1,2-Dichloroethene	13.4		1.00		ug/L			05/15/18 08:08	1
Trichloroethene	45.9		1.00		ug/L			05/15/18 08:08	1
Vinyl chloride	78.3		1.00		ug/L			05/15/18 08:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		70 - 130					05/15/18 08:08	1
4-Bromofluorobenzene (Surr)	98		70 - 130					05/15/18 08:08	1
Dibromofluoromethane (Surr)	106		70 - 130					05/15/18 08:08	1
Toluene-d8 (Surr)	109		70 - 130					05/15/18 08:08	1

2

<u>ی</u>

5

9

1 N

11

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-9

Matrix: Water

Client Sample ID: BR-01 Date Collected: 05/10/18 12:35

Date Received: 05/11/18 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		5.00		ug/L			05/15/18 09:29	5
cis-1,2-Dichloroethene	566		5.00		ug/L			05/15/18 09:29	5
Tetrachloroethene	ND		5.00		ug/L			05/15/18 09:29	5
trans-1,2-Dichloroethene	51.5		5.00		ug/L			05/15/18 09:29	5
Trichloroethene	5.30		5.00		ug/L			05/15/18 09:29	5
Vinyl chloride	359		5.00		ug/L			05/15/18 09:29	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	120		70 - 130					05/15/18 09:29	5
4-Bromofluorobenzene (Surr)	98		70 - 130					05/15/18 09:29	5
Dibromofluoromethane (Surr)	106		70 - 130					05/15/18 09:29	5
Toluene-d8 (Surr)	109		70 - 130					05/15/18 09:29	

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-10

Matrix: Water

Client Sample ID: BR-02 Date Collected: 05/09/18 15:20 Date Received: 05/11/18 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/15/18 05:53	1
cis-1,2-Dichloroethene	263		5.00		ug/L			05/16/18 04:13	5
Tetrachloroethene	ND		1.00		ug/L			05/15/18 05:53	1
trans-1,2-Dichloroethene	13.7		1.00		ug/L			05/15/18 05:53	1
Trichloroethene	616		5.00		ug/L			05/16/18 04:13	5
Vinyl chloride	5.16		1.00		ug/L			05/15/18 05:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	121		70 - 130					05/15/18 05:53	1
1,2-Dichloroethane-d4 (Surr)	97		70 - 130					05/16/18 04:13	5
4-Bromofluorobenzene (Surr)	100		70 - 130					05/15/18 05:53	1
4-Bromofluorobenzene (Surr)	95		70 - 130					05/16/18 04:13	5
Dibromofluoromethane (Surr)	108		70 - 130					05/15/18 05:53	1
Dibromofluoromethane (Surr)	109		70 - 130					05/16/18 04:13	5
Toluene-d8 (Surr)	105		70 - 130					05/15/18 05:53	1
Toluene-d8 (Surr)	88		70 - 130					05/16/18 04:13	5

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-11

Matrix: Water

Client Sample ID: BR-03
Date Collected: 05/09/18 17:25
Date Received: 05/11/18 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.28		1.00		ug/L			05/15/18 08:35	1
cis-1,2-Dichloroethene	50.7		1.00		ug/L			05/15/18 08:35	1
Tetrachloroethene	ND		1.00		ug/L			05/15/18 08:35	1
trans-1,2-Dichloroethene	1.19		1.00		ug/L			05/15/18 08:35	1
Trichloroethene	370		1.00		ug/L			05/15/18 08:35	1
Vinyl chloride	ND		1.00		ug/L			05/15/18 08:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	125		70 - 130					05/15/18 08:35	1
4-Bromofluorobenzene (Surr)	99		70 - 130					05/15/18 08:35	1
Dibromofluoromethane (Surr)	107		70 - 130					05/15/18 08:35	1
Toluene-d8 (Surr)	108		70 - 130					05/15/18 08:35	1

5/23/2018

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-12

Matrix: Water

Date Collected: 05/10/18 11:18 Date Received: 05/11/18 10:00

Client Sample ID: BR-04

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		10.0		ug/L			05/15/18 09:56	10
cis-1,2-Dichloroethene	1390		10.0		ug/L			05/15/18 09:56	10
Tetrachloroethene	ND		10.0		ug/L			05/15/18 09:56	10
trans-1,2-Dichloroethene	112		10.0		ug/L			05/15/18 09:56	10
Trichloroethene	931		10.0		ug/L			05/15/18 09:56	10
Vinyl chloride	61.3		10.0		ug/L			05/15/18 09:56	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	122		70 - 130					05/15/18 09:56	10
4-Bromofluorobenzene (Surr)	100		70 - 130					05/15/18 09:56	10
Dibromofluoromethane (Surr)	109		70 - 130					05/15/18 09:56	10
Toluene-d8 (Surr)	107		70 - 130					05/15/18 09:56	10

3

4

6

8

9

4 4

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-13

Matrix: Water

Client Sample ID: BR-10
Date Collected: 05/10/18 09:55
Date Received: 05/11/18 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/15/18 09:02	1
cis-1,2-Dichloroethene	463		5.00		ug/L			05/16/18 03:47	5
Tetrachloroethene	ND		1.00		ug/L			05/15/18 09:02	1
trans-1,2-Dichloroethene	67.5		1.00		ug/L			05/15/18 09:02	1
Trichloroethene	122		1.00		ug/L			05/15/18 09:02	1
Vinyl chloride	1.29		1.00		ug/L			05/15/18 09:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	117		70 - 130			•		05/15/18 09:02	1
1,2-Dichloroethane-d4 (Surr)	99		70 - 130					05/16/18 03:47	5
4-Bromofluorobenzene (Surr)	98		70 - 130					05/15/18 09:02	1
4-Bromofluorobenzene (Surr)	94		70 - 130					05/16/18 03:47	5
Dibromofluoromethane (Surr)	112		70 - 130					05/15/18 09:02	1
Dibromofluoromethane (Surr)	111		70 - 130					05/16/18 03:47	5
Toluene-d8 (Surr)	107		70 - 130					05/15/18 09:02	1
Toluene-d8 (Surr)	88		70 - 130					05/16/18 03:47	5

5/23/2018

2

3

5

9

10

11

Client: Wood E&I Solutions Inc

Client Sample ID: BR-15

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-14

. Matrix: Water

Date Collected: 05/09/18 10:35
Date Received: 05/11/18 10:00

Method: 8260C - Volatile O		_		MDI	11	_	Dunmanad	Amahamad	D:: F
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/15/18 06:20	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			05/15/18 06:20	1
Tetrachloroethene	ND		1.00		ug/L			05/15/18 06:20	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			05/15/18 06:20	1
Trichloroethene	1.14		1.00		ug/L			05/15/18 06:20	1
Vinyl chloride	ND		1.00		ug/L			05/15/18 06:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	125		70 - 130					05/15/18 06:20	1
4-Bromofluorobenzene (Surr)	98		70 - 130					05/15/18 06:20	1
Dibromofluoromethane (Surr)	103		70 - 130					05/15/18 06:20	1
Toluene-d8 (Surr)	106		70 - 130					05/15/18 06:20	1

2

3

5

7

3

10

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-15

Matrix: Water

Client Sample ID: Dup-01
Date Collected: 05/09/18 01:01
Date Received: 05/11/18 10:00

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/15/18 10:24	1
cis-1,2-Dichloroethene	104		1.00		ug/L			05/15/18 10:24	1
Tetrachloroethene	ND		1.00		ug/L			05/15/18 10:24	1
trans-1,2-Dichloroethene	13.1		1.00		ug/L			05/15/18 10:24	1
Trichloroethene	44.3		1.00		ug/L			05/15/18 10:24	1
Vinyl chloride	80.6		1.00		ug/L			05/15/18 10:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	121		70 - 130					05/15/18 10:24	1
4-Bromofluorobenzene (Surr)	99		70 - 130					05/15/18 10:24	1
Dibromofluoromethane (Surr)	107		70 - 130					05/15/18 10:24	1
Toluene-d8 (Surr)	109		70 - 130					05/15/18 10:24	1

2

5

7

a

10

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-16

Matrix: Water

Date Collected: 05/10/18 13:20 Date Received: 05/11/18 10:00

Client Sample ID: QAFB-01

Method: 8260C - Volatile O	rganic Compou	inds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/15/18 03:10	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			05/15/18 03:10	1
Tetrachloroethene	ND		1.00		ug/L			05/15/18 03:10	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			05/15/18 03:10	1
Trichloroethene	ND		1.00		ug/L			05/15/18 03:10	1
Vinyl chloride	ND		1.00		ug/L			05/15/18 03:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		70 - 130					05/15/18 03:10	1
4-Bromofluorobenzene (Surr)	98		70 - 130					05/15/18 03:10	1
Dibromofluoromethane (Surr)	107		70 - 130					05/15/18 03:10	1
Toluene-d8 (Surr)	108		70 - 130					05/15/18 03:10	1

e

3

6

9

10

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-17

Matrix: Water

Client Samp	le l	D: (QAF	RB-01
Date Collected:	: 05	/10/	18 1	3:25

Date Received: 05/11/18 10:00

Method: 8260C - Volatile O	rganic Compou	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/15/18 03:37	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			05/15/18 03:37	1
Tetrachloroethene	ND		1.00		ug/L			05/15/18 03:37	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			05/15/18 03:37	1
Trichloroethene	ND		1.00		ug/L			05/15/18 03:37	1
Vinyl chloride	ND		1.00		ug/L			05/15/18 03:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		70 - 130					05/15/18 03:37	1
4-Bromofluorobenzene (Surr)	98		70 - 130					05/15/18 03:37	1
Dibromofluoromethane (Surr)	110		70 - 130					05/15/18 03:37	1
Toluene-d8 (Surr)	106		70 - 130					05/15/18 03:37	1

5/23/2018

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Lab Sample ID: 490-151752-18

Matrix: Water

Client Sample ID: QATB-01 Date Collected: 05/10/18 13:30 Date Received: 05/11/18 10:00

Method: 8260C - Volatile Or	•	•				_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			05/15/18 02:43	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			05/15/18 02:43	1
Tetrachloroethene	ND		1.00		ug/L			05/15/18 02:43	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			05/15/18 02:43	1
Trichloroethene	ND		1.00		ug/L			05/15/18 02:43	1
Vinyl chloride	ND		1.00		ug/L			05/15/18 02:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	123		70 - 130					05/15/18 02:43	1
4-Bromofluorobenzene (Surr)	100		70 - 130					05/15/18 02:43	1
Dibromofluoromethane (Surr)	111		70 - 130					05/15/18 02:43	1
Toluene-d8 (Surr)	105		70 - 130					05/15/18 02:43	1

3

5

6

8

9

10

11

TestAmerica Job ID: 490-151752-1

Prep Type: Total/NA

Client: Wood E&I Solutions Inc Project/Site: Former Taylor Instruments

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 490-514817/6 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 514817

		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,1-Dichloroethene	ND		1.00		ug/L			05/15/18 02:16	1
ı	cis-1,2-Dichloroethene	ND		1.00		ug/L			05/15/18 02:16	1
	Tetrachloroethene	ND		1.00		ug/L			05/15/18 02:16	1
	trans-1,2-Dichloroethene	ND		1.00		ug/L			05/15/18 02:16	1
	Trichloroethene	ND		1.00		ug/L			05/15/18 02:16	1
	Vinyl chloride	ND		1.00		ug/L			05/15/18 02:16	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 70 - 130 05/15/18 02:16 124 4-Bromofluorobenzene (Surr) 99 70 - 130 05/15/18 02:16 70 - 130 05/15/18 02:16 Dibromofluoromethane (Surr) 106 Toluene-d8 (Surr) 106 70 - 130 05/15/18 02:16

Lab Sample ID: LCS 490-514817/4

Matrix: Water

Analysis Batch: 514817

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	23.38		ug/L		117	79 - 124	
cis-1,2-Dichloroethene	20.0	20.94		ug/L		105	76 - 125	
Tetrachloroethene	20.0	19.54		ug/L		98	80 - 126	
trans-1,2-Dichloroethene	20.0	23.57		ug/L		118	79 - 126	
Trichloroethene	20.0	20.95		ug/L		105	80 - 123	
Vinyl chloride	20.0	22.92		ug/L		115	68 - 120	

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 114 70 - 130 4-Bromofluorobenzene (Surr) 101 70 - 130 Dibromofluoromethane (Surr) 106 70 - 130 Toluene-d8 (Surr) 103 70 - 130

Lab Sample ID: 490-151752-14 MS

Matrix: Water

Analysis Batch: 514817

	Sample Sample	Spike	MS	MS				%Rec.	
Analyte	Result Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	ND	20.0	23.16		ug/L		116	54 - 150	
cis-1,2-Dichloroethene	ND	20.0	21.33		ug/L		103	68 - 131	
Tetrachloroethene	ND	20.0	20.85		ug/L		104	57 - 138	
trans-1,2-Dichloroethene	ND	20.0	23.86		ug/L		119	59 - 143	
Trichloroethene	1.14	20.0	21.36		ug/L		101	63 - 135	
Vinyl chloride	ND	20.0	23.39		ug/L		117	57 - 150	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	118		70 - 130
4-Bromofluorobenzene (Surr)	93		70 - 130
Dibromofluoromethane (Surr)	104		70 - 130

TestAmerica Nashville

Page 24 of 35

9

3

5

8

10

11

12

Client Sample ID: BR-15 Prep Type: Total/NA

TestAmerica Job ID: 490-151752-1

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 490-151752-14 MS

Matrix: Water

Analysis Batch: 514817

Client Sample ID: BR-15 **Prep Type: Total/NA**

MS MS

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 103 70 - 130

Lab Sample ID: 490-151752-14 MSD

Matrix: Water

Analysis Batch: 514817

Client Sample ID: BR-15 Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND		20.0	24.61		ug/L		123	54 - 150	6	17
cis-1,2-Dichloroethene	ND		20.0	21.51		ug/L		104	68 - 131	1	17
Tetrachloroethene	ND		20.0	21.27		ug/L		106	57 - 138	2	16
trans-1,2-Dichloroethene	ND		20.0	24.95		ug/L		125	59 - 143	4	16
Trichloroethene	1.14		20.0	22.82		ug/L		108	63 - 135	7	17
Vinyl chloride	ND		20.0	24.16		ug/L		121	57 ₋ 150	3	17

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	118		70 - 130
4-Bromofluorobenzene (Surr)	98		70 - 130
Dibromofluoromethane (Surr)	107		70 - 130
Toluene-d8 (Surr)	102		70 - 130

Lab Sample ID: MB 490-515110/6

Matrix: Water

Analysis Batch: 515110

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB

Analyte	Result Qı	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND ND	1.00	ug/L			05/16/18 01:39	1
cis-1,2-Dichloroethene	ND	1.00	ug/L			05/16/18 01:39	1
Tetrachloroethene	ND	1.00	ug/L			05/16/18 01:39	1
trans-1,2-Dichloroethene	ND	1.00	ug/L			05/16/18 01:39	1
Trichloroethene	ND	1.00	ug/L			05/16/18 01:39	1
Vinyl chloride	ND	1.00	ug/L			05/16/18 01:39	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	70 - 130		05/16/18 01:39	1
4-Bromofluorobenzene (Surr)	94	70 - 130		05/16/18 01:39	1
Dibromofluoromethane (Surr)	111	70 - 130		05/16/18 01:39	1
Toluene-d8 (Surr)	88	70 - 130		05/16/18 01:39	1

La

Ma

An

ab Sample ID: LCS 490-515110/4			Client Sample ID: Lab Control Sample
latrix: Water			Prep Type: Total/NA
nalysis Batch: 515110			
	Cnika	100 100	9/ Boo

	Spike	LUS	LUS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	22.83		ug/L		114	79 - 124	
cis-1,2-Dichloroethene	20.0	24.23		ug/L		121	76 - 125	
Tetrachloroethene	20.0	17.85		ug/L		89	80 - 126	
trans-1,2-Dichloroethene	20.0	22.97		ug/L		115	79 - 126	

TestAmerica Nashville

Page 25 of 35

5/23/2018

TestAmerica Job ID: 490-151752-1

Client: Wood E&I Solutions Inc Project/Site: Former Taylor Instruments

Lab Sample ID: LCS 490-515110/4

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 515110

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Trichloroethene	20.0	23.49		ug/L		117	80 - 123	-
Vinyl chloride	20.0	22.62		ug/L		113	68 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		70 - 130
4-Bromofluorobenzene (Surr)	95		70 - 130
Dibromofluoromethane (Surr)	106		70 - 130
Toluene-d8 (Surr)	86		70 - 130

Lab Sample ID: 490-151824-A-22 MS **Client Sample ID: Matrix Spike Matrix: Water Prep Type: Total/NA**

Analysis Batch: 515110

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	ND		4000	5146	-	ug/L		126	54 - 150	
cis-1,2-Dichloroethene	45800		4000	44960	4	ug/L		-22	68 - 131	
Tetrachloroethene	ND		4000	3650		ug/L		91	57 - 138	
trans-1,2-Dichloroethene	309		4000	4747		ug/L		111	59 - 143	
Trichloroethene	2140		4000	6937		ug/L		120	63 - 135	
Vinyl chloride	ND		4000	4803		ug/L		119	57 ₋ 150	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		70 - 130
4-Bromofluorobenzene (Surr)	93		70 - 130
Dibromofluoromethane (Surr)	108		70 - 130
Toluene-d8 (Surr)	85		70 - 130

Lab Sample ID: 490-151824-A-22 MSD **Client Sample ID: Matrix Spike Duplicate**

Matrix: Water

Analysis Batch: 515110

7 that you battern of the												
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1,1-Dichloroethene	ND		4000	5016		ug/L		123	54 - 150	3	17	
cis-1,2-Dichloroethene	45800		4000	44500	4	ug/L		-34	68 - 131	1	17	
Tetrachloroethene	ND		4000	3703		ug/L		93	57 - 138	1	16	
trans-1,2-Dichloroethene	309		4000	4901		ug/L		115	59 - 143	3	16	
Trichloroethene	2140		4000	6966		ug/L		121	63 - 135	0	17	
Vinyl chloride	ND		4000	4796		ua/l		119	57 - 150	0	17	

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		70 - 130
4-Bromofluorobenzene (Surr)	95		70 - 130
Dibromofluoromethane (Surr)	108		70 - 130
Toluene-d8 (Surr)	86		70 - 130

TestAmerica Nashville

Page 26 of 35

5/23/2018

Prep Type: Total/NA

QC Association Summary

Client: Wood E&I Solutions Inc Project/Site: Former Taylor Instruments TestAmerica Job ID: 490-151752-1

GC/MS VOA

Analysis Batch: 514817

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-151752-1	TW-04	Total/NA	Water	8260C	
490-151752-2	TW-09	Total/NA	Water	8260C	
490-151752-3	TW-17	Total/NA	Water	8260C	
490-151752-4	TW-20	Total/NA	Water	8260C	
490-151752-5	OB-04	Total/NA	Water	8260C	
490-151752-6	OB-06	Total/NA	Water	8260C	
490-151752-7	OB-08	Total/NA	Water	8260C	
490-151752-8	W-5	Total/NA	Water	8260C	
490-151752-9	BR-01	Total/NA	Water	8260C	
490-151752-10	BR-02	Total/NA	Water	8260C	
490-151752-11	BR-03	Total/NA	Water	8260C	
490-151752-12	BR-04	Total/NA	Water	8260C	
490-151752-13	BR-10	Total/NA	Water	8260C	
490-151752-14	BR-15	Total/NA	Water	8260C	
490-151752-15	Dup-01	Total/NA	Water	8260C	
490-151752-16	QAFB-01	Total/NA	Water	8260C	
490-151752-17	QARB-01	Total/NA	Water	8260C	
490-151752-18	QATB-01	Total/NA	Water	8260C	
MB 490-514817/6	Method Blank	Total/NA	Water	8260C	
LCS 490-514817/4	Lab Control Sample	Total/NA	Water	8260C	
490-151752-14 MS	BR-15	Total/NA	Water	8260C	
490-151752-14 MSD	BR-15	Total/NA	Water	8260C	

Analysis Batch: 515110

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-151752-3	TW-17	Total/NA	Water	8260C	
490-151752-5	OB-04	Total/NA	Water	8260C	
490-151752-10	BR-02	Total/NA	Water	8260C	
490-151752-13	BR-10	Total/NA	Water	8260C	
MB 490-515110/6	Method Blank	Total/NA	Water	8260C	
LCS 490-515110/4	Lab Control Sample	Total/NA	Water	8260C	
490-151824-A-22 MS	Matrix Spike	Total/NA	Water	8260C	
490-151824-A-22 MSD	Matrix Spike Duplicate	Total/NA	Water	8260C	

4

6

0

10

11

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

Client Sample ID: TW-04 Lab Sample ID: 490-151752-1

Date Collected: 05/08/18 09:55 Date Received: 05/11/18 10:00

Matrix: Water

Batch Dil Initial Batch Batch Final Prepared Number Method Factor **Prep Type** Type Run **Amount Amount** or Analyzed **Analyst** Lab Total/NA Analysis 8260C 10 mL 10 mL 514817 05/15/18 04:04 P1B TAL NSH

Lab Sample ID: 490-151752-2 Client Sample ID: TW-09

Date Collected: 05/08/18 11:00

Matrix: Water

Date Received: 05/11/18 10:00

Dil Batch Batch Initial Final Batch **Prepared Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab 514817 Total/NA 8260C 05/15/18 04:31 P1B TAL NSH Analysis 10 mL 10 mL

Client Sample ID: TW-17 Lab Sample ID: 490-151752-3

Date Collected: 05/09/18 13:40

Matrix: Water

Date Received: 05/11/18 10:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			10 mL	10 mL	514817	05/15/18 07:14	P1B	TAL NSH
Total/NA	Analysis	8260C		5	10 mL	10 mL	515110	05/16/18 04:38	RP	TAL NSH

Client Sample ID: TW-20 Lab Sample ID: 490-151752-4

Date Collected: 05/08/18 12:00

Matrix: Water

Date Received: 05/11/18 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	10 mL	10 mL	514817	05/15/18 06:47	P1B	TAL NSH	

Client Sample ID: OB-04 Lab Sample ID: 490-151752-5

Date Collected: 05/08/18 15:35 Date Received: 05/11/18 10:00

Matrix: Water

Batch Batch Dil Initial Batch Final Prepared Method Number **Prep Type** Type Run **Factor Amount** Amount or Analyzed **Analyst** Lab Total/NA Analysis 8260C 10 mL 10 mL 514817 05/15/18 07:41 P1B TAL NSH Total/NA 8260C 10 10 mL 05/16/18 05:04 RP Analysis 10 mL 515110 TAL NSH

Client Sample ID: OB-06 Lab Sample ID: 490-151752-6

Date Collected: 05/08/18 13:30

Matrix: Water

Date Received: 05/11/18 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	514817	05/15/18 04:58	P1B	TAL NSH

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

Client Sample ID: OB-08 Date Collected: 05/08/18 17:35 Lab Sample ID: 490-151752-7

Matrix: Water

Date Received: 05/11/18 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	514817	05/15/18 05:26	P1B	TAL NSH

Lab Sample ID: 490-151752-8 Client Sample ID: W-5

Date Collected: 05/09/18 12:10 **Matrix: Water**

Date Received: 05/11/18 10:00

Dil Initial Batch **Batch** Final **Batch Prepared Prep Type** Type Method Run **Factor** Amount Amount Number or Analyzed Analyst Lab 05/15/18 08:08 P1B 514817 Total/NA 8260C TAL NSH Analysis 10 mL 10 mL

Client Sample ID: BR-01 Lab Sample ID: 490-151752-9

Date Collected: 05/10/18 12:35 **Matrix: Water**

Date Received: 05/11/18 10:00

Ratch Ratch Dil Initial Final Batch Prepared **Prep Type** Type Method Run **Factor Amount** Amount Number or Analyzed **Analyst** Lab 8260C 514817 05/15/18 09:29 P1B TAL NSH Total/NA Analysis 5 10 mL 10 mL

Client Sample ID: BR-02 Lab Sample ID: 490-151752-10 **Matrix: Water**

Date Collected: 05/09/18 15:20 Date Received: 05/11/18 10:00

Analysis

Batch Batch Dil Initial Final **Batch** Prepared Method Number **Prep Type** Type Run **Factor Amount Amount** or Analyzed Analyst Lab 514817 P1B Total/NA Analysis 8260C 10 mL 10 mL 05/15/18 05:53 TAL NSH Total/NA 8260C 5 05/16/18 04:13 RP

Client Sample ID: BR-03 Lab Sample ID: 490-151752-11

10 mL

10 mL

515110

Date Collected: 05/09/18 17:25 **Matrix: Water** Date Received: 05/11/18 10:00

Batch Dil Initial Final Batch Batch Prepared **Prep Type** Type Method Run **Factor Amount Amount** Number or Analyzed Analyst Lab TAL NSH Total/NA Analysis 8260C 10 mL 10 mL 514817 05/15/18 08:35 P1B

Client Sample ID: BR-04 Lab Sample ID: 490-151752-12

Date Collected: 05/10/18 11:18 **Matrix: Water**

Date Received: 05/11/18 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		10	10 mL	10 mL	514817	05/15/18 09:56	P1B	TAL NSH

TAL NSH

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

Client Sample ID: BR-10 Lab Sample ID: 490-151752-13

Date Collected: 05/10/18 09:55

Date Received: 05/11/18 10:00

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	514817	05/15/18 09:02	P1B	TAL NSH
Total/NA	Analysis	8260C		5	10 mL	10 mL	515110	05/16/18 03:47	RP	TAL NSH

Client Sample ID: BR-15 Lab Sample ID: 490-151752-14

Date Collected: 05/09/18 10:35

Date Received: 05/11/18 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	514817	05/15/18 06:20	P1B	TAL NSH

Client Sample ID: Dup-01 Lab Sample ID: 490-151752-15

Date Collected: 05/09/18 01:01 Date Received: 05/11/18 10:00

Batch Batch Dil Initial Final Bat

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	514817	05/15/18 10:24	P1B	TAL NSH

Client Sample ID: QAFB-01

Date Collected: 05/10/18 13:20

Lab Sample ID: 490-151752-16

Matrix: Water

Date Collected: 05/10/18 13:20 Date Received: 05/11/18 10:00

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C			10 mL	10 mL	514817	05/15/18 03:10	P1B	TAL NSH	

Client Sample ID: QARB-01 Lab Sample ID: 490-151752-17

Date Collected: 05/10/18 13:25 Date Received: 05/11/18 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	514817	05/15/18 03:37	P1B	TAL NSH

Client Sample ID: QATB-01 Lab Sample ID: 490-151752-18

Date Collected: 05/10/18 13:30

Date Received: 05/11/18 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	514817	05/15/18 02:43	P1B	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method Summary

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-151752-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL NSH
5030C	Purge and Trap	SW846	TAL NSH

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

9

6

9

10

44

Accreditation/Certification Summary

Client: Wood E&I Solutions Inc TestAmerica Job ID: 490-151752-1

Project/Site: Former Taylor Instruments

Laboratory: TestAmerica Nashville

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New York	NELAP	2	11342	03-31-19

4

5

0

9

TestAmerico

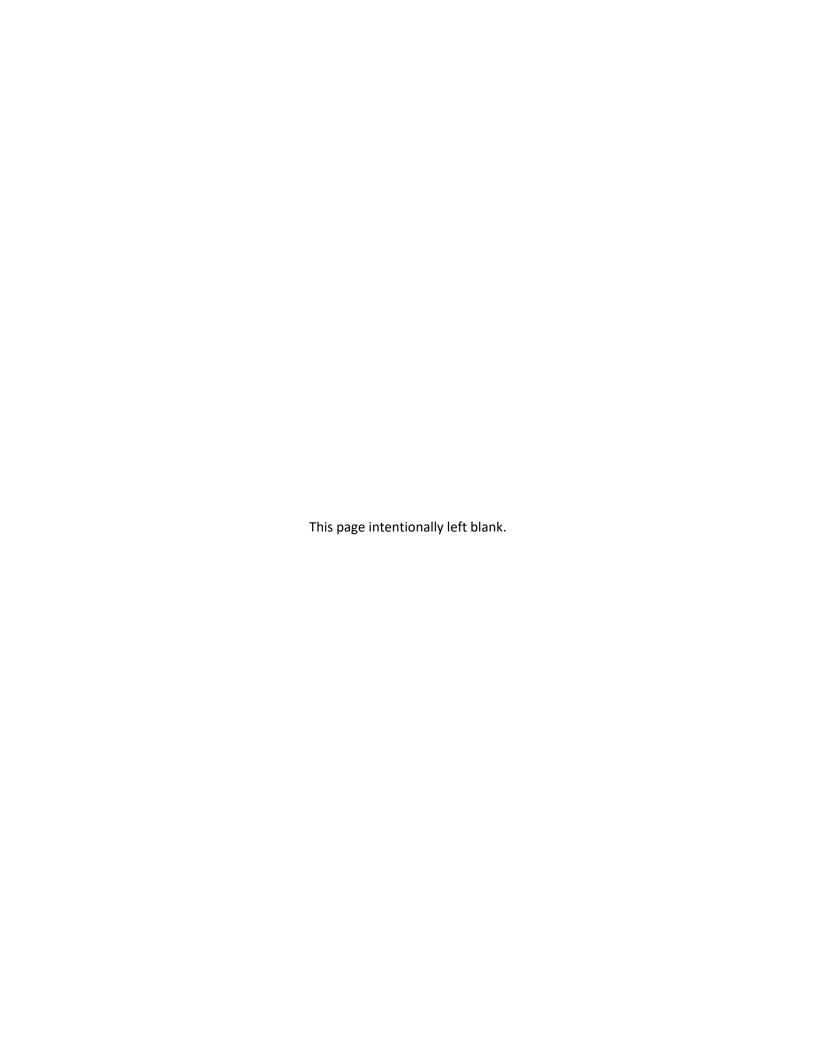
THE LEADER IN ENVIRONMENTAL TESTING Nashville, TN

COOLER RECEIPT FORM

Cooler Received/Opened On__05-11-2018_@__10:00 Time Samples Placed In Storage Time Samples Removed From Cooler (2 Hour Window) (last 4 digits, FedEx) 1. Tracking # Courier: _FedEx IR Gun ID___31470366_ 2. Temperature of rep. sample or temp blank when opened : 5 3. If Item #2 temperature is 0°C or less, was the representative sample or 4. Were custody seals on outside of cooler? If yes, how many and where: YES...NO...NA 5. Were the seals intact, signed, and dated correctly? 6. Were custody papers inside cooler? I certify that I opened the cooler and answered questions 1-6 (intial) 7. Were custody seals on containers: and Intact YES...NO.(Were these signed and dated correctly? YES...NO...N 8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Paper Other None 9. Cooling process: (ce) Ice-pack | Ice (direct contact) Other None 10. Did all containers arrive in good condition (unbroken)? YES NO...NA 11. Were all container labels complete (#, date, signed, pres., etc)? TES)..NO...NA 12. Did all container labels and tags agree with custody papers? 13a. Were VOA vials received? ₹ES...NO...NA b. Was there any observable headspace present in any VOA vial? Larger than this. 14. Was there a Trip Blank in this cooler? YES. NO...NA If multiple coolers, sequence # I certify that I unloaded the cooler and answered questions 7-14 (intial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? b. Did the bottle labels indicate that the correct preservatives were used 16. Was residual chlorine present? I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial) 17. Were custody papers properly filled out (ink, signed, etc)? YES...NO...NA ® ...NO...NA 18. Did you sign the custody papers in the appropriate place? YES...NO...NA 19. Were correct containers used for the analysis requested? €8...NO...NA 20. Was sufficient amount of sample sent in each container? I certify that I entered this project into LIMS and answered questions 17-20 (intial) I certify that I attached a label with the unique LIMS number to each container (intial) 21. Were there Non-Conformance issues at login? YES...(NO)Was a NCM generated? YES

Chain of Custody Record

Client Information	Sampler: Noel Garland	Lab PM: Brown.		Carrier Tracking No(s):	COC No:
Client Contact: Mr. Joe Deatherage	Phone: 865-202-9213	E-Mail:	rown@testamericainc.com		Page: 6f 2
Company: AMEG Environment & Infrastructure; Inc. Word E D.		Silaii.Di	Analysis R	aguantad	Job#.
1Address: ANDI CALL LAKAAC MI	Due Date Requested:	3	Allalysis R	equesteα	Preservation Codes:
9720 Cogdill-Road Suit 300	TAT Requested (days):		nide		A - HCL M - Hexane
Knoxville State, Zip:		Ŝ	vinyl chloride		B - NaOH N - None C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S
TN, 37032 37922		d.	Eviny		E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2SO3
Phone: 865-218-1049(Tel)	PO#: G012500052 303115 2028.1	3	oa z''		G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate
Email. wolfptc.Clm joe.deatherage@emec.com	WO #.	à	(0) rans 1		I - Ice U - Acetone yr J - Di Water V - MCAA
Project Name: Former Taylor Instruments	Project #: 49001213		Scori		K - EDTA W - ph 4-5 L - EDA Z - other (specify)
Site:	SSOW#:		Sp(f(ds, o) No)		Other:
Rochester, NY	 				ō
	Sample Type	Matrix (W=water,	TICE POE		ogumno.
Sample Identification	Sample (C=comp, Sample Date Time G=grab)	S=solid, O≕waste/oil, BT=Tissue, A=Atr)	8260B .		Special Instructions/Note:
Sample Identification		ation Code:			- Special histractions/Note.
Tw-04 1	5-8-18 09:55 Grab	Water	X		3
2 Tw-09	5-8-18 11:00	Water	X		3 Loc: 490 151752
2 TW-09 3 TW-17	5-9-18 13:40	Water			1511
TW-20	5-8-18 17:00	Water	X		
5 08-04	5-8-18 15:35	Water			3
6 0B-06	5-8-18 13:30	Water			3
7 08 - 08	5-8-18 17:35	Water			3
W-5	5-9-18 17:10	Water			3
4 BR-01	5-14-18 12-35	Water			3
0 BR-02	5-9-18 15:20	Water			1
BR-03	5-9-18 17:05	Water			3
Possible Hazard Identification		<u></u>	Sample Disposal (A fee may be	assessed if samples are retain	ned longer than 1 month)
Non-Hazard Flammable Skin Irritant Poiso Deliverable Requested: I, II, III, IV, Other (specify)	n B Unknown Radiological		Return To Client Special Instructions/QC Requiren	Disposal By Lab Arch	nive For Months
Empty Kit Relinguished by:	Date:	TT	ime:	Method of Shipment:	
Relinquished by:			Received by:		Company
Relinquished by:	Date/Time. 5-10-14 [5:30	Company A	Received by:	legen Date/Time	8 1000 JAJVAS
					Company
Relinquished by,	Date/Time:	Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No			Cooler Temperature(s) °C and Other	Remarks: 3.5	


Chain of Custody Record

	Client Information	Sampler: N/e	Garlan	1	Lab P Brow	M: ∕n, Sha	ıli					Carrier 1	racking l	Vo(s):			COC No: 2 01	F2
	Client Contact: Mr. Joe Deatherage	Phone: 865	- 200 - C	1213	E-Mai shali		@testam	ericai	nc.com	1							Page:	
	Company: AMSC Environment & Infrastructure, Inc. Wood E	QI Solutions					Analysis Requeste								Job#:			
	Address: 2030 Falling waters Rd.	Due Date Requested:									T T	1 1 1 1 1				0,43 =	Preservation Codes:	
	City: TAT Requested (da			ays):			PCE 1,1-DCE ois/trans 1,2 DCE vinyl chloride											- Hexane - None
	Knoxville State, Zip:						yl ch									200	C - Zn Acetate O	- AsNaO2 - Na2O4S
	TN, 37932 37972 Phone:	PO#:					CE vir			}							F-MeOH R	- Na2SO3 - Na2S2SO3
	865-218-1049(Tel)	CO12800052 3831 (5 7-008.13			Q .	1,2 0										H - Ascorbic Acid T	- H2SO4 - TSP Dodecahydrate	
	Email: joe.deatherage@ amoc.com	WO #:				s or	trans									9	J - DI Water V	- Acetone - MCAA V- ph 4-5
	Project Name: Former Taylor Instruments	Project #* 49001213				e (%	E ois									taine		- other (specify)
	Site: Rochester, NY	SSOW#:				amp D (V	1,1-DC					}		İ		of contai	Other:	
				Sample	Matrix	red S	PCE										 	
			. .	Type	(w=water, S=solid,	Filte	3 TCE									Total Number		
T	Sample Identification BR-04 BR-15 MS/MSD Dup-01 QAFB-01 QARB-01 QARB-01	Sample Date	Sample Time	(C≔comp, G=grab)	O=waste/oil, BT=Tissue, A=Air)	Field	8260B									Total	Special Instr	ructions/Note:
age			$\geq <$	Preserva	ation Code:	XX	Α					14.3			31 (3)	\boxtimes	13 X 18 18 18 18 18 18 18 18 18 18 18 18 18	
3	BR-04	5-10-18	11:18	Grab	Water		$ X _{-}$									3	<u> </u>	
0,3	BR-10		09:55		Water	Ш	X									3		
CFS	6BR-15 MS/MSD		10:35		Water		X	<u> </u>		_						9	Loc:	: 490
9	Dup-01	5-9-18			Water	Ш	X									3	15	1752
18	QAFB-01	5-10-18			Water		X									3		
14	QARB-01	9-11-18			Water		X									3		
Ą	1 Q A+B-01	5-11-18	13:30	_	Water		X					\top				2		
					Water	П												
					Water													
					Water											1		
					Water			1								1 gale		*
	Possible Hazard Identification						mple Dis	sposa	I (A fe	e may	be as	sesse	d if sar	nples			d longer than 1 mor	nth)
	Non-Hazard Flammable Skin Irritant Poison B Onknown Radiological Deliverable Requested: I, II, III, IV, Other (specify)						Retur			Requir	Dis	posal	By Lab		<u> </u>	rchiv	re ForM	<i>lonths</i>
	Empty Kit Relinquished by:					Time:						Method of Shipment:						
	Relinquished by:	Date/Time:	Date:	. 5	Company WV		Received	by-					f	Date/Ti		7		ompany / /ac
	Relinquished by:	5 -10-16 Date/Time:	<u> 15:3</u>	<u>U</u>	Company	<u> </u>	Received	M/L	In	-1	110	1/		Date/Ti	<u> </u>	[iS	1000	TA JAZ
5/		Date/Time:	·										g de la companya de l					
5/23/201	Relinquished by:	Date/ Hittle:			Company		Received	by:						Date/Ti			C	ompany
201	Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Cooler Te	mperati	ure(s) °(and Ot	her Rem	arks:		۲,	3.5)		,
$\overline{\otimes}$	Δ 169 Ω MO						<u></u>									·		

OCTOBER 2018

LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-161953-1

Client Project/Site: Former Taylor Instruments

For:

Wood E&I Solutions Inc 2030 Falling Waters Road Ste 300 Knoxville, Tennessee 37922

Attn: Mr. Joe Deatherage

Authorized for release by: 10/30/2018 3:37:28 PM

Shali Brown, Project Manager II (615)301-5031

shali.brown@testamericainc.com

.....LINKS

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	6
QC Sample Results	16
QC Association	20
Chronicle	21
Method Summary	23
Certification Summary	24
Chain of Custody	25

9

10

Sample Summary

Client: Wood E&I Solutions Inc Project/Site: Former Taylor Instruments TestAmerica Job ID: 490-161953-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-161953-1	BR-01	Water	10/24/18 14:20	10/25/18 09:25
490-161953-2	BR-02	Water	10/24/18 09:15	10/25/18 09:25
490-161953-3	BR-03	Water	10/23/18 16:45	10/25/18 09:25
490-161953-4	BR-04	Water	10/24/18 12:20	10/25/18 09:25
490-161953-5	BR-10	Water	10/24/18 10:40	10/25/18 09:25
490-161953-6	BR-15	Water	10/23/18 14:25	10/25/18 09:25
490-161953-7	DUP-01	Water	10/24/18 01:01	10/25/18 09:25
490-161953-8	QATB-01	Water	10/24/18 15:10	10/25/18 09:25
490-161953-9	QAFB-01	Water	10/24/18 15:00	10/25/18 09:25
490-161953-10	QARB-01	Water	10/24/18 15:05	10/25/18 09:25

4

6

0

46

10

Case Narrative

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-161953-1

Job ID: 490-161953-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-161953-1

Comments

No additional comments.

Receipt

The samples were received on 10/25/2018 9:25 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.2° C.

GC/MS VOA

Method(s) 8260C: The following samples were diluted due to the nature of the sample matrix: BR-01 (490-161953-1), BR-03 (490-161953-3), BR-04 (490-161953-4) and BR-10 (490-161953-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

6

0

9

10

11

Definitions/Glossary

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

Limit of Quantitation (DoD/DOE)

Method Detection Limit Minimum Level (Dioxin)

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Not Calculated

Quality Control

Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

TestAmerica Job ID: 490-161953-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

Glossary

LOQ

MDA

MDC MDL

MLNC

ND

PQL

QC

RER

RL**RPD**

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)

TestAmerica Nashville

10/30/2018

Client: Wood E&I Solutions Inc

Client Sample ID: BR-01

Date Collected: 10/24/18 14:20

Date Received: 10/25/18 09:25

Toluene-d8 (Surr)

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-161953-1

Lab Sample ID: 490-161953-1

Matrix: Water

10/26/18 19:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		5.00		ug/L			10/26/18 19:25	5
cis-1,2-Dichloroethene	553		5.00		ug/L			10/26/18 19:25	5
Tetrachloroethene	ND	F1 F2	5.00		ug/L			10/26/18 19:25	5
trans-1,2-Dichloroethene	30.8		5.00		ug/L			10/26/18 19:25	5
Trichloroethene	7.30	F1	5.00		ug/L			10/26/18 19:25	5
Vinyl chloride	300		5.00		ug/L			10/26/18 19:25	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		70 - 130					10/26/18 19:25	5
4-Bromofluorobenzene (Surr)	98		70 - 130					10/26/18 19:25	5
Dibromofluoromethane (Surr)	95		70 - 130					10/26/18 19:25	5

70 - 130

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-161953-1

Lab Sample ID: 490-161953-2

Matrix: Water

Client Sample ID: BR-02 Date Collected: 10/24/18 09:15 Date Received: 10/25/18 09:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			10/26/18 18:57	1
cis-1,2-Dichloroethene	76.2		1.00		ug/L			10/26/18 18:57	1
Tetrachloroethene	ND		1.00		ug/L			10/26/18 18:57	1
trans-1,2-Dichloroethene	3.37		1.00		ug/L			10/26/18 18:57	1
Trichloroethene	211		1.00		ug/L			10/26/18 18:57	1
Vinyl chloride	5.58		1.00		ug/L			10/26/18 18:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		70 - 130					10/26/18 18:57	1
4-Bromofluorobenzene (Surr)	97		70 - 130					10/26/18 18:57	1
Dibromofluoromethane (Surr)	95		70 - 130					10/26/18 18:57	1
Toluene-d8 (Surr)	102		70 - 130					10/26/18 18:57	1

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-161953-1

Lab Sample ID: 490-161953-3

Matrix: Water

Client Sample ID: BR-03 Date Collected: 10/23/18 16:45

Date Received: 10/25/18 09:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.94		1.00		ug/L			10/26/18 03:02	1
cis-1,2-Dichloroethene	26.8		1.00		ug/L			10/26/18 03:02	1
Tetrachloroethene	ND		1.00		ug/L			10/26/18 03:02	1
trans-1,2-Dichloroethene	1.22		1.00		ug/L			10/26/18 03:02	1
Trichloroethene	591		5.00		ug/L			10/26/18 19:53	5
Vinyl chloride	ND		1.00		ug/L			10/26/18 03:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		70 - 130			•		10/26/18 03:02	1
1,2-Dichloroethane-d4 (Surr)	90		70 - 130					10/26/18 19:53	5
4-Bromofluorobenzene (Surr)	97		70 - 130					10/26/18 03:02	1
4-Bromofluorobenzene (Surr)	97		70 - 130					10/26/18 19:53	5
Dibromofluoromethane (Surr)	94		70 - 130					10/26/18 03:02	1
Dibromofluoromethane (Surr)	96		70 - 130					10/26/18 19:53	5
Toluene-d8 (Surr)	101		70 - 130					10/26/18 03:02	1
Toluene-d8 (Surr)	104		70 - 130					10/26/18 19:53	5

10/30/2018

2

3

5

0

0

10

11

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-161953-1

Lab Sample ID: 490-161953-4

Matrix: Water

Client Sample ID: BR-04
Date Collected: 10/24/18 12:20
Date Received: 10/25/18 09:25

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	8.24		5.00		ug/L			10/26/18 04:25	5
cis-1,2-Dichloroethene	1380		5.00		ug/L			10/26/18 04:25	5
Tetrachloroethene	ND		5.00		ug/L			10/26/18 04:25	5
trans-1,2-Dichloroethene	88.2		5.00		ug/L			10/26/18 04:25	5
Trichloroethene	921		5.00		ug/L			10/26/18 04:25	5
Vinyl chloride	51.9		5.00		ug/L			10/26/18 04:25	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		70 - 130					10/26/18 04:25	5
4-Bromofluorobenzene (Surr)	95		70 - 130					10/26/18 04:25	5
Dibromofluoromethane (Surr)	96		70 - 130					10/26/18 04:25	5
Toluene-d8 (Surr)	102		70 - 130					10/26/18 04:25	5

2

4

6

9

10

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-161953-1

Lab Sample ID: 490-161953-5

Matrix: Water

Client Sample ID: BR-10
Date Collected: 10/24/18 10:40
Date Received: 10/25/18 09:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		5.00		ug/L			10/26/18 04:53	5
cis-1,2-Dichloroethene	436		5.00		ug/L			10/26/18 04:53	5
Tetrachloroethene	ND		5.00		ug/L			10/26/18 04:53	5
trans-1,2-Dichloroethene	55.1		5.00		ug/L			10/26/18 04:53	5
Trichloroethene	164		5.00		ug/L			10/26/18 04:53	5
Vinyl chloride	5.44		5.00		ug/L			10/26/18 04:53	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 130			•		10/26/18 04:53	5
4-Bromofluorobenzene (Surr)	95		70 - 130					10/26/18 04:53	5
Dibromofluoromethane (Surr)	96		70 - 130					10/26/18 04:53	5
Toluene-d8 (Surr)	102		70 - 130					10/26/18 04:53	5

2

5

7

_

11

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-161953-1

Lab Sample ID: 490-161953-6

Matrix: Water

Client Sample ID: BR-15
Date Collected: 10/23/18 14:25
Date Received: 10/25/18 09:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			10/26/18 02:34	1
cis-1,2-Dichloroethene	2.33		1.00		ug/L			10/26/18 02:34	1
Tetrachloroethene	ND		1.00		ug/L			10/26/18 02:34	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			10/26/18 02:34	1
Trichloroethene	2.29		1.00		ug/L			10/26/18 02:34	1
Vinyl chloride	1.56		1.00		ug/L			10/26/18 02:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		70 - 130			-		10/26/18 02:34	1
4-Bromofluorobenzene (Surr)	96		70 - 130					10/26/18 02:34	1
Dibromofluoromethane (Surr)	95		70 - 130					10/26/18 02:34	1
Toluene-d8 (Surr)	104		70 - 130					10/26/18 02:34	1

2

3

5

9

10

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-161953-1

Lab Sample ID: 490-161953-7

Matrix: Water

Client Sample ID: DUP-01 Date Collected: 10/24/18 01:01 Date Received: 10/25/18 09:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			10/26/18 05:20	1
cis-1,2-Dichloroethene	2.51		1.00		ug/L			10/26/18 05:20	1
Tetrachloroethene	ND		1.00		ug/L			10/26/18 05:20	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			10/26/18 05:20	1
Trichloroethene	2.54		1.00		ug/L			10/26/18 05:20	1
Vinyl chloride	1.62		1.00		ug/L			10/26/18 05:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		70 - 130					10/26/18 05:20	1
4-Bromofluorobenzene (Surr)	97		70 - 130					10/26/18 05:20	1
Dibromofluoromethane (Surr)	94		70 - 130					10/26/18 05:20	1
Toluene-d8 (Surr)	101		70 - 130					10/26/18 05:20	1

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-161953-1

Lab Sample ID: 490-161953-8

Matrix: Water

Client Sample ID: QATB-01 Date Collected: 10/24/18 15:10

Date Received: 10/25/18 09:25

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			10/26/18 01:12	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			10/26/18 01:12	1
Tetrachloroethene	ND		1.00		ug/L			10/26/18 01:12	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			10/26/18 01:12	1
Trichloroethene	ND		1.00		ug/L			10/26/18 01:12	1
Vinyl chloride	ND		1.00		ug/L			10/26/18 01:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		70 - 130					10/26/18 01:12	1
4-Bromofluorobenzene (Surr)	98		70 - 130					10/26/18 01:12	1
Dibromofluoromethane (Surr)	94		70 - 130					10/26/18 01:12	1
Toluene-d8 (Surr)	102		70 - 130					10/26/18 01:12	1

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-161953-1

Lab Sample ID: 490-161953-9

Matrix: Water

Client Sample ID: QAFB-01

Date Collected: 10/24/18 15:00 Date Received: 10/25/18 09:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			10/26/18 02:07	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			10/26/18 02:07	1
Tetrachloroethene	ND		1.00		ug/L			10/26/18 02:07	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			10/26/18 02:07	1
Trichloroethene	ND		1.00		ug/L			10/26/18 02:07	1
Vinyl chloride	ND		1.00		ug/L			10/26/18 02:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		70 - 130					10/26/18 02:07	1
4-Bromofluorobenzene (Surr)	98		70 - 130					10/26/18 02:07	1
Dibromofluoromethane (Surr)	96		70 - 130					10/26/18 02:07	1
Toluene-d8 (Surr)	104		70 - 130					10/26/18 02:07	1

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-161953-1

Lab Sample ID: 490-161953-10

Matrix: Water

Client Sample ID: QARB-01 Date Collected: 10/24/18 15:05

Date Received: 10/25/18 09:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			10/26/18 01:39	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			10/26/18 01:39	1
Tetrachloroethene	ND		1.00		ug/L			10/26/18 01:39	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			10/26/18 01:39	1
Trichloroethene	ND		1.00		ug/L			10/26/18 01:39	1
Vinyl chloride	ND		1.00		ug/L			10/26/18 01:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		70 - 130					10/26/18 01:39	1
4-Bromofluorobenzene (Surr)	98		70 - 130					10/26/18 01:39	1
Dibromofluoromethane (Surr)	95		70 - 130					10/26/18 01:39	1
Toluene-d8 (Surr)	103		70 - 130					10/26/18 01:39	1

3

6

9

10

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

Client Sample ID: Method Blank

Prep Type: Total/NA

Lab Sample ID: MB 490-552878/7

Matrix: Water

Analysis Batch: 552878

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.00		ug/L			10/25/18 23:48	1
cis-1,2-Dichloroethene	ND		1.00		ug/L			10/25/18 23:48	1
Tetrachloroethene	ND		1.00		ug/L			10/25/18 23:48	1
trans-1,2-Dichloroethene	ND		1.00		ug/L			10/25/18 23:48	1
Trichloroethene	ND		1.00		ug/L			10/25/18 23:48	1
Vinyl chloride	ND		1.00		ug/L			10/25/18 23:48	1
	МВ	МВ							

Method: 8260C - Volatile Organic Compounds by GC/MS

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90	70 - 130		10/25/18 23:48	1
4-Bromofluorobenzene (Surr)	97	70 - 130		10/25/18 23:48	1
Dibromofluoromethane (Surr)	95	70 - 130		10/25/18 23:48	1
Toluene-d8 (Surr)	103	70 - 130		10/25/18 23:48	1

Lab Sample ID: LCS 490-552878/3

Matrix: Water

Analysis Batch: 552878

Client Sample ID: Lab Control Sample Prep Type: Total/NA

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	21.08		ug/L		105	79 - 124	
cis-1,2-Dichloroethene	20.0	20.13		ug/L		101	76 - 125	
Tetrachloroethene	20.0	21.65		ug/L		108	80 - 126	
trans-1,2-Dichloroethene	20.0	19.97		ug/L		100	79 - 126	
Trichloroethene	20.0	20.88		ug/L		104	80 - 123	
Vinyl chloride	20.0	20.66		ug/L		103	68 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130
Dibromofluoromethane (Surr)	97		70 - 130
Toluene-d8 (Surr)	102		70 - 130

Lab Sample ID: LCSD 490-552878/4

Matrix: Water

Analysis Batch: 552878

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD LCSD			%Rec.		RPD
Analyte	Added	Result Qualifier	Unit	D %Re	c Limits	RPD	Limit
1,1-Dichloroethene	20.0	21.26	ug/L		6 79 - 124	1	20
cis-1,2-Dichloroethene	20.0	20.01	ug/L	10	0 76 - 125	1	15
Tetrachloroethene	20.0	21.83	ug/L	10	9 80 - 126	1	17
trans-1,2-Dichloroethene	20.0	19.77	ug/L	S	9 79 - 126	1	15
Trichloroethene	20.0	21.09	ug/L	10	5 80 - 123	1	14
Vinyl chloride	20.0	20.97	ug/L	10	5 68 - 120	1	15

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130
Dibromofluoromethane (Surr)	97		70 - 130

TestAmerica Nashville

Prep Type: Total/NA

Client Sample ID: BR-15

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 490-552878/4

Matrix: Water

Analysis Batch: 552878

LCSD LCSD

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 70 - 130 103

Lab Sample ID: 490-161953-6 MS

Matrix: Water

Analysis Batch: 552878

Sar	iple Sample	Spike	MS	MS				%Rec.
Analyte Re	sult Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	ND	20.0	22.70		ug/L		113	54 - 150
cis-1,2-Dichloroethene	2.33	20.0	23.92		ug/L		108	68 - 131
Tetrachloroethene	ND	20.0	22.86		ug/L		114	57 - 138
trans-1,2-Dichloroethene	ND	20.0	20.57		ug/L		101	59 - 143
Trichloroethene	2.29	20.0	24.54		ug/L		111	63 - 135
Vinyl chloride	1.56	20.0	25.20		ug/L		118	57 ₋ 150

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		70 - 130
4-Bromofluorobenzene (Surr)	95		70 - 130
Dibromofluoromethane (Surr)	96		70 - 130
Toluene-d8 (Surr)	100		70 - 130

Lab Sample ID: 490-161953-6 MSD

Matrix: Water

Analysis Batch: 552878

0	0 1 -	0	1400	1400				0/ 🗖		-	
Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
ND		20.0	22.18		ug/L		111	54 - 150	2	17	
2.33		20.0	24.48		ug/L		111	68 - 131	2	17	
ND		20.0	22.63		ug/L		113	57 - 138	1	16	
ND		20.0	20.94		ug/L		103	59 - 143	2	16	
2.29		20.0	24.68		ug/L		112	63 - 135	1	17	
1.56		20.0	25.07		ug/L		118	57 ₋ 150	0	17	
	Result ND 2.33 ND ND ND 2.29	2.33 ND ND 2.29	Result ND Qualifier Added 2.33 20.0 ND 20.0 ND 20.0 ND 20.0 2.29 20.0	Result Qualifier Added Result ND 20.0 22.18 2.33 20.0 24.48 ND 20.0 22.63 ND 20.0 20.94 2.29 20.0 24.68	Result Qualifier Added Result Qualifier ND 20.0 22.18 2.33 20.0 24.48 ND 20.0 22.63 ND 20.0 20.94 2.29 20.0 24.68	Result Qualifier Added Result Qualifier Unit ND 20.0 22.18 ug/L 2.33 20.0 24.48 ug/L ND 20.0 22.63 ug/L ND 20.0 20.94 ug/L 2.29 20.0 24.68 ug/L	Result Qualifier Added Result Qualifier Unit D ND 20.0 22.18 ug/L 2.33 20.0 24.48 ug/L ND 20.0 22.63 ug/L ND 20.0 20.94 ug/L 2.29 20.0 24.68 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec ND 20.0 22.18 ug/L 111 2.33 20.0 24.48 ug/L 111 ND 20.0 22.63 ug/L 113 ND 20.0 20.94 ug/L 103 2.29 20.0 24.68 ug/L 112	Result Qualifier Added Added Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit	Result Qualifier Added Added Result Qualifier Unit Ug/L D %Rec Umits Limits RPD ND 20.0 22.18 ug/L 111 54 - 150 2 2.33 20.0 24.48 ug/L 111 68 - 131 2 ND 20.0 22.63 ug/L 113 57 - 138 1 ND 20.0 20.94 ug/L 103 59 - 143 2 2.29 20.0 24.68 ug/L 112 63 - 135 1	Result ND Qualifier Added 20.0 Result 22.18 Qualifier Unit ug/L D %Rec 111 Limits 54 - 150 RPD 2 17 2.33 20.0 24.48 ug/L 111 68 - 131 2 17 ND 20.0 22.63 ug/L 113 57 - 138 1 16 ND 20.0 20.94 ug/L 103 59 - 143 2 16 2.29 20.0 24.68 ug/L 112 63 - 135 1 17

MSD MSD

ND

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		70 - 130
4-Bromofluorobenzene (Surr)	96		70 - 130
Dibromofluoromethane (Surr)	98		70 - 130
Toluene-d8 (Surr)	100		70 - 130

Lab Sample ID: MB 490-553033/7

Matrix: Water

1,1-Dichloroethene

Tetrachloroethene

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Analyte

Analysis Batch: 553033

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac ND 1.00 ug/L 10/26/18 14:44 ND 1.00 ug/L 10/26/18 14:44 ND 1.00 ug/L 10/26/18 14:44

ug/L

TestAmerica Nashville

10/26/18 14:44

Page 17 of 26

1.00

Client Sample ID: BR-15 Prep Type: Total/NA

10/30/2018

TestAmerica Job ID: 490-161953-1

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 490-553033/7

Matrix: Water

Trichloroethene

Vinyl chloride

Analyte

Analysis Batch: 553033

Client Sam	ple	ID:	Met	hod	Blai	nk
	Pre	ep 1	Гуре	: To	tal/N	IA

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac $\overline{\mathsf{ND}}$ 1.00 ug/L 10/26/18 14:44 ND 1.00 ug/L 10/26/18 14:44

MB MB Qualifier Limits Surrogate %Recovery Prepared Dil Fac Analyzed 1,2-Dichloroethane-d4 (Surr) 94 70 - 130 10/26/18 14:44 4-Bromofluorobenzene (Surr) 96 70 - 130 10/26/18 14:44 Dibromofluoromethane (Surr) 95 70 - 130 10/26/18 14:44 Toluene-d8 (Surr) 102 70 - 130 10/26/18 14:44

Lab Sample ID: LCS 490-553033/3

Matrix: Water

Analysis Batch: 553033

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Бріке	LC2	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	21.47		ug/L		107	79 - 124	
cis-1,2-Dichloroethene	20.0	20.21		ug/L		101	76 - 125	
Tetrachloroethene	20.0	22.14		ug/L		111	80 - 126	
trans-1,2-Dichloroethene	20.0	20.09		ug/L		100	79 - 126	
Trichloroethene	20.0	21.27		ug/L		106	80 - 123	
Vinyl chloride	20.0	21.45		ug/L		107	68 - 120	

100 100

Chika

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130
Dibromofluoromethane (Surr)	95		70 - 130
Toluene-d8 (Surr)	102		70 - 130

Lab Sample ID: LCSD 490-553033/4

Matrix: Water

Analysis Batch: 553033

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	20.0	20.55		ug/L		103	79 - 124	4	20
cis-1,2-Dichloroethene	20.0	19.46		ug/L		97	76 - 125	4	15
Tetrachloroethene	20.0	21.15		ug/L		106	80 - 126	5	17
trans-1,2-Dichloroethene	20.0	18.87		ug/L		94	79 - 126	6	15
Trichloroethene	20.0	19.77		ug/L		99	80 - 123	7	14
Vinyl chloride	20.0	20.52		ug/L		103	68 ₋ 120	4	15

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		70 - 130
4-Bromofluorobenzene (Surr)	96		70 - 130
Dibromofluoromethane (Surr)	95		70 - 130
Toluene-d8 (Surr)	101		70 - 130

TestAmerica Nashville

TestAmerica Job ID: 490-161953-1

Client: Wood E&I Solutions Inc Project/Site: Former Taylor Instruments

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 490-161953-1 MS

Matrix: Water

Analysis Batch: 553033

Client Sample ID: BR-01 **Prep Type: Total/NA**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	ND		100	146.9		ug/L		145	54 - 150	
cis-1,2-Dichloroethene	553		100	643.1	4	ug/L		90	68 - 131	
Tetrachloroethene	ND	F1 F2	100	144.9	F1	ug/L		144	57 ₋ 138	
trans-1,2-Dichloroethene	30.8		100	161.9		ug/L		131	59 - 143	
Trichloroethene	7.30	F1	100	147.1	F1	ug/L		140	63 - 135	
Vinyl chloride	300		100	433.3		ug/L		134	57 ₋ 150	

MS MS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 70 - 130 91 4-Bromofluorobenzene (Surr) 96 70 - 130 Dibromofluoromethane (Surr) 70 - 130 98 Toluene-d8 (Surr) 104 70 - 130

Lab Sample ID: 490-161953-1 MSD

Matrix: Water

Analysis Batch: 553033

Client Sam	ole ID: BR-01
Prep Ty	pe: Total/NA

Think your Date in Court											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND		100	125.2		ug/L		123	54 - 150	16	17
cis-1,2-Dichloroethene	553		100	667.0	4	ug/L		114	68 - 131	4	17
Tetrachloroethene	ND	F1 F2	100	121.7	F2	ug/L		120	57 - 138	17	16
trans-1,2-Dichloroethene	30.8		100	142.8		ug/L		112	59 - 143	13	16
Trichloroethene	7.30	F1	100	126.3		ug/L		119	63 - 135	15	17
Vinyl chloride	300		100	426.3		ug/L		127	57 - 150	2	17

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		70 - 130
4-Bromofluorobenzene (Surr)	96		70 - 130
Dibromofluoromethane (Surr)	97		70 - 130
Toluene-d8 (Surr)	102		70 - 130

TestAmerica Nashville

10/30/2018

QC Association Summary

Client: Wood E&I Solutions Inc Project/Site: Former Taylor Instruments TestAmerica Job ID: 490-161953-1

GC/MS VOA

Analysis Batch: 552878

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-161953-3	BR-03	Total/NA	Water	8260C	
490-161953-4	BR-04	Total/NA	Water	8260C	
490-161953-5	BR-10	Total/NA	Water	8260C	
490-161953-6	BR-15	Total/NA	Water	8260C	
490-161953-7	DUP-01	Total/NA	Water	8260C	
490-161953-8	QATB-01	Total/NA	Water	8260C	
490-161953-9	QAFB-01	Total/NA	Water	8260C	
490-161953-10	QARB-01	Total/NA	Water	8260C	
MB 490-552878/7	Method Blank	Total/NA	Water	8260C	
LCS 490-552878/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 490-552878/4	Lab Control Sample Dup	Total/NA	Water	8260C	
490-161953-6 MS	BR-15	Total/NA	Water	8260C	
490-161953-6 MSD	BR-15	Total/NA	Water	8260C	

Analysis Batch: 553033

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-161953-1	BR-01	Total/NA	Water	8260C	_
490-161953-2	BR-02	Total/NA	Water	8260C	
490-161953-3	BR-03	Total/NA	Water	8260C	
MB 490-553033/7	Method Blank	Total/NA	Water	8260C	
LCS 490-553033/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 490-553033/4	Lab Control Sample Dup	Total/NA	Water	8260C	
490-161953-1 MS	BR-01	Total/NA	Water	8260C	
490-161953-1 MSD	BR-01	Total/NA	Water	8260C	

DD ID: 490-161953-1

TestAmerica Nashville

10/30/2018

2

3

6

8

9

11

Project/Site: Former Taylor Instruments

Lab Sample ID: 490-161953-1

Matrix: Water

Date Collected: 10/24/18 14:20 Date Received: 10/25/18 09:25

Client Sample ID: BR-01

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		5	10 mL	10 mL	553033	10/26/18 19:25	AK1	TAL NSH

Lab Sample ID: 490-161953-2 Client Sample ID: BR-02 Date Collected: 10/24/18 09:15

Matrix: Water

Date Received: 10/25/18 09:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	10 ml	10 mL	553033	10/26/18 18:57	AK1	TAL NSH	-

Client Sample ID: BR-03 Lab Sample ID: 490-161953-3

Date Collected: 10/23/18 16:45 **Matrix: Water**

Date Received: 10/25/18 09:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	552878	10/26/18 03:02	RP	TAL NSH
Total/NA	Analysis	8260C		5	10 mL	10 mL	553033	10/26/18 19:53	AK1	TAL NSH

Client Sample ID: BR-04 Lab Sample ID: 490-161953-4

Date Collected: 10/24/18 12:20 **Matrix: Water**

Date Received: 10/25/18 09:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		5	10 mL	10 mL	552878	10/26/18 04:25	RP	TAL NSH	

Client Sample ID: BR-10 Lab Sample ID: 490-161953-5

Date Collected: 10/24/18 10:40 Date Received: 10/25/18 09:25

1	<u> </u>										
		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	8260C		5	10 mL	10 mL	552878	10/26/18 04:53	RP	TAL NSH

Lab Sample ID: 490-161953-6 Client Sample ID: BR-15

Date Collected: 10/23/18 14:25 Date Received: 10/25/18 09:25

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			10 mL	10 mL	552878	10/26/18 02:34	RP	TAL NSH

TestAmerica Nashville

Matrix: Water

Matrix: Water

Lab Chronicle

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-161953-1

Lab Sample ID: 490-161953-7

10/26/18 01:12 RP

552878

10 mL

Matrix: Water

Matrix: Water

TAL NSH

Matrix: Water

Date Collected: 10/24/18 01:01 Date Received: 10/25/18 09:25

Client Sample ID: DUP-01

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	10 mL	10 mL	552878	10/26/18 05:20	RP	TAL NSH

Lab Sample ID: 490-161953-8 Client Sample ID: QATB-01

Date Collected: 10/24/18 15:10 Date Received: 10/25/18 09:25

Dil Initial Batch **Batch** Final **Batch** Prepared Method **Prep Type** Type Run **Factor** Amount **Amount** Number or Analyzed Analyst Lab

Lab Sample ID: 490-161953-9 Client Sample ID: QAFB-01

10 mL

Date Collected: 10/24/18 15:00

Analysis

8260C

Date Received: 10/25/18 09:25

Total/NA

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run **Factor Amount Amount** Number or Analyzed **Analyst** 8260C 552878 10/26/18 02:07 $\overline{\mathsf{RP}}$ TAL NSH Total/NA Analysis 10 mL 10 mL

Client Sample ID: QARB-01 Lab Sample ID: 490-161953-10 **Matrix: Water**

Date Collected: 10/24/18 15:05 Date Received: 10/25/18 09:25

Batch Batch Dil Initial Final **Batch** Prepared Method **Factor Prep Type** Run **Amount** Number or Analyzed Analyst Type Amount Lab 552878 10/26/18 01:39 RP Total/NA Analysis 8260C 10 mL 10 mL TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method Summary

Client: Wood E&I Solutions Inc

Project/Site: Former Taylor Instruments

TestAmerica Job ID: 490-161953-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL NSH
5030C	Purge and Trap	SW846	TAL NSH

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

-

A

7

Ö

10

4 4

Accreditation/Certification Summary

Client: Wood E&I Solutions Inc TestAmerica Job ID: 490-161953-1

Project/Site: Former Taylor Instruments

Laboratory: TestAmerica Nashville

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New York	NELAP	2	11342	03-31-19

Δ

5

9

4 4

Cooler Received/Opened On10-25-2018_@09:25	•					
Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)					
1. Tracking # (last 4 digits, FedEx) / Courier: _FedEx_						
IR Gun ID 14740456 pH Strip Lot A Chlorine Strip Lot	<u></u>					
2. Temperature of rep. sample or temp blank when opened: 3.2 Degrees Celsius						
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. MÃ)					
4. Were custody seals on outside of cooler?	Æ\$NONA					
If yes, how many and where: (rear)						
5. Were the seals intact, signed, and dated correctly?	ÆŞNONA					
6. Were custody papers inside cooler?	YESNONA					
certify that I opened the cooler and answered questions 1-6 (intial)	$\langle \langle \rangle \rangle$					
7. Were custody seals on containers: YES (NO) and Intact	YESNO. / Nix					
Were these signed and dated correctly?	YESNO(NA)					
8. Packing mat'l used? (Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	or Other None					
9. Cooling process: (Ice) Ice-pack Ice (direct contact) Dry Ice	Other None					
10. Did all containers arrive in good condition (unbroken)?	∀E\$ NONA					
11. Were all container labels complete (#, date, signed, pres., etc)?	MES., NONA					
12. Did all container labels and tags agree with custody papers?	(ES)NONA					
13a. Were VOA vials received?	₩ E3 NONA					
b. Was there any observable headspace present in any VOA vial?	YESNO)NA					
Larger than this.						
Larger man trus.						
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers, sequence	e #					
I certify that I unloaded the cooler and answered guestions 7-14 (intial)						
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA					
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA					
16. Was residual chlorine present?	YESNOT					
certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	(A) +					
17. Were custody papers properly filled out (ink, signed, etc)?	VESNONA					
18. Did you sign the custody papers in the appropriate place?	WES).NONA					
19. Were correct containers used for the analysis requested?	(ESNONA					
20. Was sufficient amount of sample sent in each container?	YES. NONA					
certify that I entered this project into LIMS and answered questions 17-20 (intial)						
certify that I attached a label with the unique LIMS number to each container (intial)						
1. Were there Non-Conformance issues at login? YESNO Was a NCM generated? YESNO#						

Chain of Custody Record

Client Information	Sampler: Not (M	Carland Lab PM: Brown, S						Carrier Tracking No(s):			COC No:	COC No:	
Client Contact: Mr. Joe Deatherage	Phone: 865-300	-9213	E-Mail:		testamerica	ainc com					Page:	1 4	F320+1
Company wood Environment and Infra structure AMEC Environment & Infrastructure, Inc	sulutions	1012	Januari.	DIOWING	gestament		 !a Banı				Job#:		7 0 23 1
	Due Date Requested:			100	-	Analys	is Requ	lestea			Preservati	ion Codes:	
Address: 9725 Cogdill Road 2030 Falling waters Rd. City: Swite 300	TAT Requested (days):				egi l						A - HCL		- Hexane
Knoxville	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				i oho						B - NaOH C - Zn Acet	tate O	- None - AsNaO2
State, Zip: TN, 37932					DCE vinyl chloride						D - Nitric Ao E - NaHSO F - MeOH	14 Q	- Na2O4S - Na2SO3 - Na2S2SO3
Phone: 865-218-1049(Tel)	PO#. C012608052- 303]]	5282813		_	5 BG						G - Amchlo	or S	- Na2S2SO3 - H2SO4 - TSP Dodecahydrate
Email: joe.deatherage@ amec.com wod∤ plC, C≎ m	wo# 3031 15 a	028.13		o or Nc	cis/trans 1,2						i - Ice J - Di Wate	U	- Acetone - MCAA
Project Name:	Project #:	000110		γes or N	ois/tr		1 1				K-EDTA L-EDA	w	/ - ph 4-5 - other (specify)
Former Taylor Instruments Site:	49001213 SSOW#:			nple (Yes	1,1-DCE) }	Other:		, , ,
Rochester, NY				NSD MSD	H 1,		1 1				ত		
		Sample	Matrix	Field Filtered Sample (Perform MS/MSD (Yes	8260B TCE PCE	1 1	1 1				Number		
	Sam	Type (C=comp,	(W=water, S=solid, O=waste/oil,	Id Fi	80]	Z		
Sample Identification	Sample Date Tir	ne G=grab) B						20.42	77. 1859.		Spe Spe	ecial Instru	uctions/Note:
BR-01	10-24-18 19:		Water	XX'			- -				3		
BR-02	 		Water	1	$\frac{2}{x}$	+ + +	\dashv				3		
Rio 42	10-24-18 09:		Water			+++	++					Loc: 490	
BR-03	 				X	+++	$\dashv \dashv$					1619	953
BR-04	10-24-18 12:		Water		X						3		
BR-10	10-24-18 10%		Water	-							3		
BR-15	10-73-18 14:		Water		X						3		
BR-15 MS/MSD	10-33-18 14:	>5	Water		X						6		
Dup-ol	16-33-18 5		Water		X					1	3		
BR-15 MS/MSD Dup-01 BBW-0+2 QATB-01	10-24-18 12:	45	Water		X						3 true	is	5510
1 QA PB-01	10-24-18 15:	UU	Water		X	1 7 1					3		
QARB-01	10-24-18 15:0	15	Water		X		T				3		
Possible Hazard Identification				Sam	7					s are retai	ined longer t	han 1 mor	nth)
Non-Hazard Flammable Skin Irritant Poison Deliverable Requested: I, II, III, IV, Other (specify)	n B Unknown	Radiological		Spec	Return To	Client ons/QC Rea		posal By	Lab	Arc	hive For	M	lonths
Empty Kit Relinquished by:	Date:			Time:					od of Shipm	ent:			
1 1 2 2 2	Date/Time:	((6) 0	ompany		Received by:	//-	11	/ Well		/Time:		- Ic	omp_ay
Relinquished by: Relinquished by:	U-24-14	6.40	ompany		Received by:	hop	yn	m	7	10/21 /Time:	5/18 0	125	A-NA)
												Co	ompany -
Relinquished by:	Date/Time;	C	company	F	Received by:				Date	/Time:		Co	ompany
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No				C	Cooler Temper	ature(s) °C and	Other Rem	arks:		3.	2		

APPENDIX D FIELD DATA RECORDS

MAY 2018 FIELD DATA RECORDS

Wood Environment & Infrastructure S	Solutions Inc.
FIELD DATA RECORD - GROUNDWATER SAM	PLING
PROJECT 2018 Semi-Annual Sampling Event	DATE 5-10-18
SITE ID BR-0 SITE TYPE	Monitor Well
SITE ACTIVITY START 11:38 END (3:50 JOB NUMB	ER 3031152028.13
WATER LEVEL MEASUREMENT POINT	
X TOP OF WELL RISER TOP OF PROTECTIVE CASING OTHER	PROTECTIVE CASING STICKUP (FROM GROUND) PROTECTIVE CASING / WELL DIFFERENCE FT
TO WATER 12.43 FT WELL DEPTH 38.6 FT	PID WELL NA PPM DIAMETER IN
FINAL DEPTH TO WATER 12-94 FT SCREEN LENGTH WAT FT	PID WELL WELL YES NO N/A MOUTH NA PPM INTEGRITY: CAP CASING
DRAWDOWN 0.51 FT DRAWDOWN 0.3315 GAL	PRODUCT LOCKED LOCKED COLLAR
((initial - final) x 0.16 (2-inch) or x 0.65 (4-inch) or x 1.5 (6-inch))	
PURGE RATE 0.17 LIMIN BEGIN PURGING [1:3]	PURGING 12.34 TOTAL VOL. PURGED SO GAL (purge rate (L/min) x duration (min) x 0.26 gal/L)
PURGE DATA VOL Purged pH SpC (cond) TURBIDIT	Y DO TEMPERATURE ORP WATER
Time(L) (units) (mS/cm) (NTU)	(mg/L) (°C) (mV) LEVEL Comments
11:36 FC 7.49 0.916 87.3	2.51 1287 -75.4 1267 pranget inf - Slight
11:46 1.8 7.13 0.892 79.0	0.87 12.97 -79.0 1287 0.53 13.17 -73.2 12.95 Emplied Flow CA
17:56 1.8 7.09 0.923 58.5	0.63 13.17 -73.2 12.95 Emplied Flower 0.60 13.05 -67.4 13.02
12:16 1.8 7.07 0.978 14.9	0-36 1331 -65.2 13.06 Stoned pump
12:22 0.9 7.07 0.004 11.6	0-30 13.51 -64.5 13.01 Clear- No olar
12:28 0.9 7.05 1.033 9.95	0.28 13.57 -64.8 1298
12:34 0.9 7.04 1.026 9.90	025 1350 -66.5 12.95 cler - ~0 ofor
12:35 - Cullect	Smy plp
	1
EQUIPMENT DOCUMENTATION	
TYPE OF PUMP TYPE OF TUBING	TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL (if applicable)
X PERISTALTIC TEFLON OR TEFLON LINED	POLYVINYL CHLORIDE TEFLON
SUBMERSIBLE X HIGH DENSITY POLYETHYLEN OTHER OTHER	NE STAINLESS STEEL X OTHER NA
PURGE OBSERVATIONS	NOTES Preservation Sample Name Time Collected
-2-5-11-11	Preservation Sample Name Time Collected 2:35 VOC (modified list) HCL PR-0 2:35
Tubing Intake 23.5 ft btoc	Sulfate
Λ	Methane/Ethene Duplicate
n //	
_ // [/	
SIGNATURE: MI	
SIGNATURE: NO SI	

Wood Environment & Infrastructu	re Solutions	Inc.				
FIELD DATA RECORD - GROUNDWATER	SAMPLING					
PROJECT Former Taylor Instruments 2018 Semi-Annual Sampling Event			í	DATE 5	9-18	
SITE ID BR-02 SIT	E TYPE Monitor	Well				
SITE ACTIVITY START (3:53 END 15:27 JO	B NUMBER 303115	2028.13				
WATER LEVEL MEASUREMENT POINT X TOP OF WELL RISER TOP OF PROTECTIVE CASIN OTHER	PROTECTIVE G CASING STICKU (FROM GROUND		PROTECTIVE CASING / WEL DIFFERENCE	L -0:45	FT	
INITIAL DEPTH 22.37 FT WELL UC	PID AMBIENT AIR	NA PPM	WELL DIAMETER	4	IN	
FINAL DEPTH TO WATER 70.80 FT LENGTH	7)- FT PID WELL MOUTH	NA PPM	WELL INTEGRITY: C.	YES	NO N/A	
DRAWDOWN 0.43 FT DRAWDOWN 0.27	95 PRODUCT THICKNESS	NA FT	CASII LOCKI COLL	ED 🗾		ī
((initial - final) x 0.16 {2-inch} or x 0.65 {4-inch} or x 1.5 {6-inch})						
PURGE RATE 0.122 LIMIN BEGIN 13.59	END PURGING 15	:17	TOTAL VOL. PURGED (purge rate (L/n	ک، ک noitarub x (nin	GAL (min) x 0.26 gal/L)	
PURGE DATA VOL Purged pH SpC (cond) T Time (L) (units) (mS/cm)	URBIDITY DO (NTU) (mg/L)	TEMPERATURE	ORP (mV)	WATER LEVEL	Comments	
14:05 FC 7.31 0.663 3	3.9 2.60	14.78	-42.2	22.50	Cloud, - No od	ur
	8.3 081	14.44 -	-47.9	22.62		
	4.8 0.69			22.67	Sloned pring	<u>_</u>
14:35 1.3 7.52 0.654	3.9 0.71	110 20	-34.2	22.75	Clarata, a	
2000 000	(-	32.82	slowed pup	ر ں گی
15:01 0.8 7.53 0.655 1	1.2 0.56	1.0		225	Cleuj- 1000	
15:09 0.8 7.54 0.656	0.6 0.57		-41.7	2260		_
	1.65 0.55		-44.5	22.80	Clew-nood	Por
15:20 000		P				_
	,_					
TYPE OF PUMP TYPE OF TUBING	TYPE OF I	PUMP MATERIAL	TYPE OF B	ADDER MAT	ERIAL (if applicable)	
X PERISTALTIC TEFLON OR TEFLON I		INYL CHLORIDE				
SUBMERSIBLE X HIGH DENSITY POLYE	THYLENE STAINL	ESS STEEL	X OTHER	NA		
OTHER OTHER	X OTHER	R <u>NA</u>	_			
PURGE OBSERVATIONS	NOTES	Second	- Camal		To Golfondard	
Tubing Intake @ 25.4 + B6-5	VOC (mod VFA's Sulfate Methane/I Duplicate	dified list) H	rvation Sampl	e Name	Time Collected	
SIGNATURE:						

Wood Environment & Infrastructure Solutions Inc.				
FIELD DATA RECORD - GROUND	WATER SAMPLI	NG		
Former Taylor Instruments PROJECT 2018 Semi-Annual Sampling Event			DATE 5	-9-18
SITE ID BR-03	SITE TYPE	Monitor Well		
SITE ACTIVITY START 15:39 END 17:35	JOB NUMBER	3031152028.13		
WATER LEVEL MEASUREMENT PO		FECTIVE	PROTECTIVE	
TOP OF PROTEC	CTIVE CASING CASI	M GROUND)	CASING / WELL	· FI
INITIAL DEPTH 7,38 FT DEPTH	YU FT AM	BIENT AIR NA PPM	WELL DIAMETER	IN
FINAL DEPTH TO WATER VIEW FT LENGT		O WELL OUTH NA PPM		NO N/A
DRAWDOWN 1.43 FT DRAWDOV	171 7 35 4 6 1	ODUCT ICKNESS NA FT	CASING LOCKED COLLAR	
((Initial - final) x 0.16 (2-inch) or x 0.65 (4-inch) or x 1.5 (THE PERSON NAMED IN COLUMN TO PERSON NAMED I	OUSDAY	
PURGE ON LIMIN PURGING	15:32 END PURG	SING 17:05	TOTAL VOL. PURGED (purge rate (L/min) x duration	
PURGE DATA VOL Purged pH SpC (c	cond) TURBIDITY	DO TEMPERATURE	ORP WATER	
Time (L) (units) (mS	/cm) (NTU)	(mg/L) (°C)	(mV) LEVEL	Comments
15:42 FC 7-70 0-7		131 12.80	-185.6 9.85 -189.1 10.21	orano test-NOV
16:00 1,2 7.76 0.7	4. Ca. 3	160 1309	-164.2 10.43	Orange Fint-NO.
1.70		1308	-144.0 10.57	UTAKAP TITAL TO
16:22 1.2 776 0.7	70 30.5 0	73 1286	-178.8 10.68	
16:32 1.2 7.80 0.7		21 12.99	-174.8 10.78	
10:42 1.0 7.78 0.7		7.23 12.93	-171.9 10.84	Sloved pump
16:50 0.8 7.76 07	770 19.4 0		-167.8 10.81	Elear-No oder
16.58 0.8 7.74 0.3		71 13.97	170 11081	
7.10 T.10	7 7 7 7		-169.7 IV-YI	
17:14 0.8 7.72 0.7	73 19 1 0	18 13.76	-1727 1081	
17:25 - 0	//	-plp -	[7-1] [8-6]	
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUB	ING	TYPE OF PUMP MATERIA	L TYPE OF BLADDER MAT	ERIAL (if applicable)
X PERISTALTIC TEFLON C	R TEFLON LINED	POLYVINYL CHLORID	_	
	SITY POLYETHYLENE	STAINLESS STEEL	X OTHER NA	-
OTHEROTHER		X OTHER NA		
PURGE OBSERVATIONS	NO	TES Pre:	servation Sample Name	Time Collected
Tubing Intake @ 23.5 + 610C		VOC (modified list) VFA's Sulfate Methane/Ethene	Sample Name HCL Sample Name	Time Collected 17:25
//		Duplicate		
had Dell	P	unged = 1L unter was Ras	before consect toolored with	ing to Flow cell. black flakes.
SIGNATURE:				

Wood Environment & Infrastructure	Solutions Inc.
FIELD DATA RECORD - GROUNDWATER SA	AMPLING
PROJECT Former Taylor Instruments 2018 Semi-Annual Sampling Event	DATE 5-10-18
SITE ID BR-U4 SITE TY	YPE Monitor Well
SITE ACTIVITY START (U: 1/2 END) 23	JMBER 3031152028.13
WATER LEVEL MEASUREMENT POINT X TOP OF WELL RISER TOP OF PROTECTIVE CASING	PROTECTIVE PROTECTIVE CASING STICKUP CASING / WELL
INITIAL DEPTH 16.77 WELL 44.2	(FROM GROUND) FT DIFFERENCE 0.75 FT
FINAL DEPTH 11 7 d SCREEN	FT AMBIENT AIR NA PPM DIAMETER YES NO N/A
DRAWDOWN CLUL DRAWDOWN (1) (10)	PRODUCT NA PPM INTEGRITY: CAP CASING LOCKED
DRAWDOWN	GAL THICKNESS NA FT COLLAR
PURGE 0.(80) LIMIN BEGIN PURGING 10.06	END TOTAL VOL. PURGED (L/min) x duration (min) x 0.26 gal/L)
PURGE DATA VOL Purged pH SpC (cond) TURB:	
Time (L) (units) (mS/cm) (NT (U.1.0) FC 8.16 0.366 53.	7 223 14.64 3.5 14.78 view tint-No
10:20 1.8 7.99 10.411 19.6	9 0.44 15.15 -35.4 16.78
	6 0.65 15.05 -90.4 16.78 (lear- No od.
10.40 1.8 7.17 1.413 6.0	- / (-:/-
10.50 1.8 7.14 1.571 4.0	
11:00 13 7.13 1.684 3.4	, (, 1)
11:15 0.9 7.14 1.702 4.3	
11:15 0.9 7.13 1.758 3.6	
11:18 Cullec	
College	
EQUIPMENT DOCUMENTATION	
TYPE OF PUMP TYPE OF TUBING X PERISTALTIC TEFLON OR TEFLON LINES	TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL (if applicable) D POLYVINYL CHLORIDE TEFLON
SUBMERSIBLE X HIGH DENSITY POLYETHY:	
OTHEROTHER	X OTHER NA
PURGE OBSERVATIONS	NOTES
	Preservation Sample Name Time Collected VOC (modified list) HCL PR-0 4
Tubing Intake 26.5 Et 670C	VFA's
TUDING WEEK	Sulfate Methane/Ethene
Λ	Duplicate
2.1/1	
(1 /// 1)	
SIGNATURE: M	

Wood E	nvironm	ent & lı	nfrastruc	ture S	olutions	Inc.				
FIELD DAT	ΓA RECOR	D - GRO	UNDWATE	ER SAMF	PLING					
	Former Taylor In: 2018 Semi-Annu		vent					DATE 5	10-18]
SITE ID	BR-10			SITE TYPE	Monitor	Well	g.			
SITE ACTIVITY	START U8.3	U END	0.00	JOB NUMBE	R 303115	2028.13				
WATER LEVEL		MEASUREM								
			WELL RISER PROTECTIVE CA	SING C	PROTECTIVE CASING STICKL FROM GROUNI		PROTECTIVE CASING / WE DIFFERENCE	LL 2	FT	
INITIAL DEPTH TO WATER	16.38	FT	DEPTH	7 1	PID AMBIENT AIR	NA PPM	WELL DIAMETER	6	IN	
FINAL DEPTH TO WATER	16.38	FT	SCREEN LENGTH	19 FT	PID WELL MOUTH	NA PPM	WELL INTEGRITY:	YES	NO N/A	
DRAWDOWN	6		RAWDOWN	G- GAL	PRODUCT THICKNESS	NA FT	LOC	KED LAR		
((initial - final) x	0.16 (2-inch) or x		_	0.12		1471	, 552			
PURGE RATE	0.180 LA	BEGIN MIN PURG		3 -	END PURGING 0	9:51	TOTAL VOL. PURGED (purge rate (L	3.23 /min) x duration	GAL (min) x 0.26 gal/L)	
PURGE DATA	VOL Purged	рН	SpC (cond)	TURBIDITY	DO	TEMPERATURE	ORP	WATER		
7ime	(L)	(units)	(mS/cm)	(NTU) 25.3	(mg/L)	13.57	(mV) 95,7	LEVEL	Comments	mode.
09:01	1.8	7.62	0.636	14.7	1.62	13.49	180-2	16.38	cloudy-	100 ogr
09:11	1.8	7.78	0.636	11.0	0.99	13.68	117.8	16.38		
16:60	1.8	7.80	0.637	8.18	0.98	13.50	42.0	14.38		
09:31	1.8	782	0.638	4.63	1.02	13.56	4,2	16.38		
09:41	1.8	7.80	0-638	8.08	0.57	13.49	-21.9	16.38		
09:46	0.9	7.82	0.637	751	0.60	13.48	-20.4	16.38		
07:5	0.9	782	0 638	6,17	0.59	13.49	-23-1	16.31		
09195			- Coll-	ect 5	mple					
					<u> </u>	_				
									<u></u>	
EQUIPMENT DO			OF TURNIC		7/00 00	D. II. 40 . A		0		
TYPE OF PU			OF TUBING FLON OR TEFLO	ON LINED	_	<u>PUMP MATERIA</u> /INYL CHLORID	_		ERIAL (if applicable	3)
SUBME			GH DENSITY PO			LESS STEEL	_ =	R <u>NA</u>	_	
OTHER		or	THER		X OTHER	R <u>NA</u>	_			
PURGE OBSER	VATIONS		_		NOTES		servation Sam		Time Collected	
		4.1					HCL BY	ple Name	09:55	
Tubing Intake @ 25.5 ft bto C					VFA's Sulfate		_			- 1
				ł	Methane Duplicate					
		1	7/1			1. 11	L.Cro		to, to A	on coll
	\wedge	///	/ [[-	Purged	ニー	. , M		10 11	0111
	m).	XX	\sim $^{\prime}$		wrter	nns Rus	tcolored	•		1
SIGNATURE:	17			-						
						,				

Wood Er	nvironme	ent & Iı	ıfrastruc	ture So	olutions	inc.			· · - · - ·		
FIELD DAT	A RECOR	D - GRO	UNDWATE	ER SAMF	LING						
	Former Taylor In: 2018 Semi-Annua		/ent					DATE 5-	9-18		
SITE ID	BR-15			SITE TYPE	Monitor	Well					
SITE ACTIVITY	START UK: V	END	0 49	JOB NUMBER	303115	2028.13					
WATER LEVEL		MEASUREM					-	_			
			WELL RISER PROTECTIVE CA	SING C	ROTECTIVE ASING STICKU FROM GROUNI		PROTECTIVE CASING / WE DIFFERENCE	LL _ a 25	FT		
INITIAL DEPTH TO WATER	18.55	FT	WELL 7	12 FT	PID AMBIENT AIR	NA PPM	WELL DIAMETER	6	IN		
FINAL DEPTH TO WATER	20.76	FT	SCREEN LENGTH	VA FT	PID WELL MOUTH	NA PPM	WELL INTEGRITY:		NO N	/A	
DRAWDOWN	7.21		AWDOWN 3.2	315 GAL	PRODUCT THICKNESS	NA FT	CAS LOC COL	KED	= $=$	_	
((initial - final) x (0.16 (2-inch) or x	0.65 (4-Inch) (or x 1,5 (6-inch))							_	
PURGE RATE	0.145 LA	BEGIN AIN PURG			URGING [/33	TOTAL VOL. PURGED (purge rate (L	5.つ	GAL (min) x 0.26 gal/	L)	
PURGE DATA	VOL Purged	ρН	SpC (cond)	TURBIDITY	DO	TEMPERATURE	ORP	WATER			
O 8 18	(L)	(units) 7.9+	(mS/cm)	(NTU)	G.K.S	(°C)	(mV)	IS.64	Clerr —	hA	ala
U8:3V	٦_	8.37	0187	6.63	5.27	14.39	177.9	18.93	CCCAP	10.	0 ~ 00
08:49	2	8.50	0,184	4.17	1.14	14.41	144.3	19.22			
08.54	2	5.65	0.184	4.91	0.97	1961	113.2	19.54			
179:06	7	8.61	0,184	2.38	0.20	14.80	101.4	1997			
09:18	Ž	8.55	0.183	2.48	0.70	14.78	99.8	2018			
09:30	2	8.54	0.183	2.12	0.57	14.87	93.1	21.32			
09:42	2	68:55	0.183	1.77	0.60	14.95	89.5	20-51	Somel,	Ohn	A
09:59	2	8.65	0.184	1.54	0.63	15.59	82.8	20.67	0		
10:09	1.2	8.66	0.184	1.63	0.56	15.64	80.7	20.73	5/100/	Pun	ß
10:17	0.8	8.68	0.184	1.60	0.58	15.94	80.3	20.74			
10,02	0.8	8.68	0.184	1.34	0.60	16.06	79.0	20.74			p
10:33	0.8	8.67	0.184	1,78	0.62	16.08	79.9	21.75	Clew-	no	000
10:35		4	Colle	ct S	ample	1					
EQUIPMENT DO		=									
TYPE OF PU			<u>OF TUBING</u> FLON OR TEFLO	OALL (NED		PUMP MATERIA /INYL CHLORID	_		ERIAL (if applica	ble)	
SUBME		=	GH DENSITY PO			LESS STEEL		R NA			
OTHER			THER		X OTHE			N	-		
PURGE OBSER	VATIONS				NOTES						
					~ 		servation Sam	ple Name	Time Collected		
	265 (1	1+00			VOC (mc	odified list)	HCL D/I	2-15	10:35		
Tubing Intake @	29.5 ft	B100		1	Sulfate						
					Methane Duplicate						- 1
			Λ								
	m	1/	V		Calla	t ms,	/msn	O BR-	15		4.
	my.	Alla	Λ		CUITA		. \ / \ /	- 17	9		
SIGNATURE:	, , , ,			-							

Wood Environment & Infrastructure Solutions Inc.	
FIELD DATA RECORD - GROUNDWATER SAMPLING	
PROJECT Former Taylor Instruments 2018 Semi-Annual Sampling Event	DATE 5-8-18
SITE ID OB-04 SITE TYPE Monitor Well	
SITE ACTIVITY START 13:43 END 15:39 JOB NUMBER 3031152028.13]
WATER LEVEL MEASUREMENT POINT X TOP OF WELL RISER PROTECTIVE TOP OF PROTECTIVE CASING CASING STICKUP OTHER (FROM GROUND) FT	PROTECTIVE CASING/WELL D. 3 FT
INITIAL DEPTH TO WATER 4.43 FT DEPTH 16.45 FT AMBIENT AIR NA PPM	WELL 2
FINAL DEPTH (.53 FT SCREEN 5 FT MOUTH NA PPM	WELL YES NO N/A INTEGRITY: CAP
DRAWDOWN 2.(V FT DRAWDOWN V.33 GAL PRODUCT THICKNESS NA FT	CASING LOCKED COLLAR
((initial - final) x 0.16 (2-inch) or x 0.65 (4-inch) or x 1.5 (6-inch))	
PURGE RATE 0.142 L/MIN BEGIN PURGING 13:47 END PURGING 15:71	TOTAL VOL. PURGED (purge rate (L/min) x duration (min) x 0.26 gal/L)
PURGE DATA Time (U) (U) (U) (U) (U) (U) (U) (U	(mv) LEVEL Comments -166.4 4.49 cleur-Solvent value -180.0 5.51 -195.5 6.17 dorkgray-Sirmy Solve -213.8 6.53 E-pl.ed Flow Cell -213.8 6.53 E-pl.ed Flow Cell -202.1 6.54 1.5ht gray-Slight St -196.4 6.53 Slowed Pump -186.0 6.54 Cloudy - Solvent oder -211.4 6.53 -213.7 6.53 -213.7 6.53 -213.2 6.53 Cleur-Sulvent oder
SUBMERSIBLE X HIGH DENSITY POLYETHYLENE STAINLESS STEEL OTHER OTHER NOTHER NOTES	X OTHER NA
	HCL OB-0 F 15.75
SIGNATURE:	

Wood Environmer	nt & Infrastruc	ture Solu	ıtions Ir	nc.		<u> </u>	* .
FIELD DATA RECORD	- GROUNDWATE	R SAMPLII	NG				
PROJECT Former Taylor Instr. 2018 Semi-Annual S						DATE 5-	8-18
SITE ID UB-06		SITE TYPE	Monitor We	ii .			
SITE ACTIVITY START 2:06	END 13:38	JOB NUMBER	3031152028	8.13			
WATER LEVEL MI	EASUREMENT POINT TOP OF WELL RISER TOP OF PROTECTIVE CA OTHER	SING CASI	ECTIVE NG STICKUP (M GROUND)	FT	PROTECTIVE CASING / WEI DIFFERENCE	LL -04	-T
INITIAL DEPTH 3.98	FT WELL 16	.45 FT AM		NA PPM	WELL DIAMETER	3	NI NI
FINAL DEPTH 5.28	SCREEN LENGTH	()	WELL UTH	NA PPM	WELL INTEGRITY: 0	YES	NO N/A
DRAWDOWN (.30	DRAWDOWN 0.3		ODUCT CKNESS	NA FT	CAS LOCK COLL	ED 🗆	= $=$ $ $
((initial - final) x 0.16 {2-inch} or x 0.6		3.13	,				
PURGE 0.135 L/MIN	BEGIN 12:0	9 END PURG	13:13	78	TOTAL VOL. PURGED (purge rate (L/	2.7°	GAL (min) x 0.26 gal/L)
13:34 1.7 13:34 1.3 13:41 1 13:48 1 13:56 1 13:14 1 13:12 1	pH (units) SpC (cond) (mS/cm) 7.01 0.758 7.05 0.745 7.08 0.746 7.05 0.746 7.07 0.743 7.07 0.743 7.06 0.736 7.06 0.731	4.49 0 3.63 0 3.67 0 3.72 0 4.02 0 4.79 0 4.74 0	(mg/L) 276 1-42 1-42 1-12 1-13 1-11 1-11 1-11 1-18 1-18	MPERATURE (°C) 2-63 2-33 2-89 2-64 2-67 2-67 2-67 2-67 2-67 2-7 2-7	ORP (mV) -81. (-114. 2 -135. U -158. 3 -164. 8 -173. 7 -198. 8 -210. 5 -214. 6	WATER LEVEL 456 5.26 5.27 5.32 5.29 5.28 5.28	Comments (lear - Solventuc Slinel pump
EQUIPMENT DOCUMENTATION IYPE OF PUMP TYPE OF TUBING TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL (if applicable) X PERISTALTIC TEFLON OR TEFLON LINED POLYVINYL CHLORIDE TEFLON SUBMERSIBLE X HIGH DENSITY POLYETHYLENE OTHER OTHER OTHER NA							
Tubing Intake (1,5 ft 6 ft)		VOC (modified VFA's Sulfate Methane/Ethe Duplicate	d list) i	+CL	8-0 6	Time Collected (3 : 3 /)	

Wood Environment & Infrastructure Solutions Inc	
FIELD DATA RECORD - GROUNDWATER SAMPLING	
PROJECT Former Taylor Instruments 2018 Semi-Annual Sampling Event	DATE 5-8-18
SITE ID UB-08 SITE TYPE Monitor Well	
SITE ACTIVITY START (5.4 END (7.40 JOB NUMBER 3031152028.13	
WATER LEVEL MEASUREMENT POINT X TOP OF WELL RISER PROTECTIVE TOP OF PROTECTIVE CASING CASING STICKUP OTHER (FROM GROUND)	PROTECTIVE CASING / WELL OIFFERENCE
INITIAL DEPTH 5.57 FT WELL 25.3 FT AMBIENT AIR NA	PPM DIAMETER 2 IN
FINAL DEPTH 7.93 FT SCREEN 10 FT PID WELL NA	
DRAWDOWN 1.96 FT DRAWDOWN 0.3136 GAL PRODUCT THICKNESS NA	CASING LOCKED COLLAR
((initial - final) x 0.16 (2-inch) or x 0.65 (4-inch) or x 1.5 (6-inch))	
PURGE C. 122 LIMIN PURGING 15:45 END PURGING 17:31	TOTAL VOL. PURGED (purge rate (U/min) x duration (min) x 0.26 gal/L)
	RATURE ORP WATER C) (mV) LEVEL Comments
	46-107.4 6.33 Cleur-Slight ac
	02 -110.4 7.05 Stoned pump
16:09 1.2 7.08 0.929 31.6 0.21 14.	40 -104.0 7.22 cloud, - black Flo
16:19 1.2 7.08 0.934 314 0.13 13.	93 -106.3 7.44 E-pl.ed Flow G
16:29 1.2 7.08 0944 33.5 058 13.	60 -99.2 7.51 clo-1, - Slight 8/
16:39 1.2 7.09 0946 31.4 0.14 13.	69 -92.2 7.52
16:49 1.2 7.09 0.95 26.9 0.10 13.	57 -90.2 7.53 Sloved promp
16:56 0.8 7.49 0.954 19.5 0.07 13.	64 -91.2 7.53 cloudy - Slight 31
17:03 0.8 7.09 0.960 17.3 0.06 13.	63 -87.4 7.53
	59 -91. 7.53
17.17 0.8 7.09 0.969 139 0.05 13.	67 -91.8 7.53 Claur- Slight "0.7"
	59 -93.6 7.53
17:31 0.8 7.08 0.982 9.65 0.03 13.	61 -90.5 7.53
17:35 - Collect Slupto -	
EQUIPMENT DOCUMENTATION	
TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP N	
X PERISTALTIC	
SUBMERSIBLE X HIGH DENSITY POLYETHYLENE STAINLESS STAINL	
PURGE OBSERVATIONS NOTES VOC (modified list)	Preservation Sample Name Time Collected HCL UD-US 17:35
Tubing Intake @ 3 V F1 b TOC VFA's Sulfate	
Methane/Ethene	
Duplicate	
	*
SIGNATURE: W	
SIGNATURE:	

Wood Er	vironment a	& Infrastru	cture Sol	utions	Inc.			·
	A RECORD - G							
PROJECT	Former Taylor Instrumen 2018 Semi-Annual Samp						DATE 5-	8-2018
SITE ID	TW-UF		SITE TYPE	Monitor	Well			
SITE ACTIVITY	START (18:2-1	END (0: 05	JOB NUMBER	3031152	2028,13			
WATER LEVEL	X TO	JREMENT POINT P OF WELL RISER P OF PROTECTIVE C HER	ASING CAS	OTECTIVE SING STICKUI OM GROUND		PROTECTIVE CASING / WEI DIFFERENCE	L 0.25	FT
INITIAL DEPTH TO WATER	8.90 FT	WELL DEPTH		ID MBIENT AIR	NA PPM	WELL DIAMETER	7	IN
FINAL DEPTH TO WATER	11.12 FT	SCREEN LENGTH		ID WELL IOUTH	NA PPM	WELL INTEGRITY: C		NO N/A
DRAWDOWN	2.72 FT	DRAWDOWN 0		RODUCT HICKNESS	NA FT	LOCK	ED	
((initial - final) x	0.16 {2-inch} or x 0.65 {4-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
PURGE RATE	0.130 LIMIN	BEGIN PURGING 0813	PUF	RGING 0	9:51	TOTAL VOL. PURGED (purge rate (L/	2.5 (min) x duration	9 GAL (min) x 0.26 gal/L)
PURGE DATA Time 08:40 08:50 09:10 09:10 09:30 09:37 09:51 09:51	VOL Purged (uni (uni (uni (uni (uni (uni (uni (uni	(ms/cm) (ms		5.68 3.77 3.73 3.80 3.44 3.76 3.76 1.4	TEMPERATURE (°C) 9.78 9.60 9.80 9.77 9.67 10.08 10.07 10.08	ORP (mV) 183.7 183.7 183.7 -16.7 -33.5 -40.3 -47.2 -48.4 -49.2	WATER LEVEL 9.84 10.68 10.92 11.13 11.12 11.13	Comments Claw-Nusdur Slund pump Glued pump
TYPE OF PU X PERIST SUBME	_	TYPE OF TUBING TEFLON OR TEFL HIGH DENSITY PO		POLYV	PUMP MATERIA INYL CHLORIDE ESS STEEL NA		N	ERIAL (if applicable)
PURGE OBSER Tubing Intake @	, 14.8 ft btoc		N	VOC (mod VFA's Sulfate Methane/f Duplicate	lified list)	ta Th	le Name	Time Collected (19:5)

Wood Enviro	onment & Ir	frastructure	Solu	ıtions	Inc.		-		
FIELD DATA RI	ECORD - GRO	UNDWATER SA	MPLI	NG					
PROJECT 2018 S	Taylor Instruments emi-Annual Sampling Ev	ent					DATE 5	8-2018	
SITE ID T	v-09	SITE TY	PE	Monitor	Well				
SITE ACTIVITY START	UTIO END	JOB NUI	MBER	3031152	028.13				
WATER LEVEL		NT POINT VELL RISER PROTECTIVE CASING	CASI	TECTIVE NG STICKUI M GROUND		PROTECTIVE CASING / WE DIFFERENCE	LL (4.3	FT	
INITIAL DEPTH TO WATER		WELL 17.70	PIE T AN) IBIENT AIR	NA PPM	WELL DIAMETER	2	IN	
FINAL DEPTH TO WATER		SCREEN 5		WELL	NA PPM	WELL INTEGRITY: (NO N/A	
DRAWDOWN		AWDOWN 00416G	PR AL TH	ODUCT ICKNESS	NA FT	CAS LOCH COLI	KED		
((initial - final) x 0.16 {2-	Inch) or x 0.65 (4-inch) o	r x 1.5 (6-inch))			•				
PURGE RATE	5 L/MIN PURGI		PUR	SING (V	:56	TOTAL VOL. PURGED (purge rate (Li	min) x duration	7 GAL (min) x 0.26 gal/L)	
	Purged pH	SpC (cond) TURBII (mS/cm) (NT		DO (maff.)	TEMPERATURE	ORP (mV)	WATER LEVEL	6	
10:15	(L) (units) -C 7.10	(m\$/cm) (NT) 0.717 [9]		(mg/L) 7.52	11.34	20.0	12.10	Cleur - N/	1 Jos
10.35 1.	6 7.13	0.716 12		5.38 2.77	11.08	31.2	12.19	slunds	/s
11.42 1	7.14	0.720 36	8	188	1096	36.3	12.20	, ()	
11/49	7.14	0.720 3.9		1.77	11.09	37.8	15.29		_
11:00 ~	73(5)	- Collect		-10ر	-	78.0			
	1		_						
EQUIPMENT DOCUME TYPE OF PUMP		OF TUBING	54	TYPE OF I	PUMP MATERIA	L TYPE OF I	BLADDER MAT	ERIAL (if applicable)	
X PERISTALTIC		FLON OR TEFLON LINED		=	INYL CHLORIDE				
SUBMERSIBLE OTHER	=	GH DENSITY POLYETHYI HER	ENE —	OTHER	ESS STEEL NA	<u> </u>	R <u>NA</u>	•	
PURGE OBSERVATION	NS		NC	TES		4	- 72	Time Collected	
Tubing Intake @ <u>ੈ</u> ਉੱ		VOC (mod VFA's Sulfate Methane/I	·	+CL	<u>~-07</u>	<u> </u>			
SIGNATURE:	DA								

Wood En	vironme	ent & Ir	ıfrastruc	ture So	lutions	Inc.				
FIELD DAT	A RECOR	D - GRO	UNDWATE	R SAMP	LING					
	Former Taylor Ins 2018 Seml-Annua		rent					DATE 5-	-9-18	
SITE ID	TW-1=	}		SITE TYPE	Monitor	Well				
SITE ACTIVITY	START (2:2	END	3.51	JOB NUMBER	303115	2028.13				I
WATER LEVEL			WELL RISER PROTECTIVE CA	SING CA	ROTECTIVE ASING STICKU ROM GROUNE		PROTECTIVE CASING / WE DIFFERENCE	LL Mar	FT	
INITIAL DEPTH TO WATER	7.40	FT	WELL 7		PID AMBIENT AIR	NA PPM	WELL DIAMETER	2	IN	
FINAL DEPTH TO WATER	9.10	FT	SCREEN LENGTH	_	PID WELL MOUTH	NA PPM	WELL INTEGRITY:		NO N/A	
DRAWDOWN	1.70		AWDOWN O.		PRODUCT THICKNESS	NA FT	CAS LOCI COL	KED		
((initial - final) x 0	1.16 (2-inch) or x	0,65 (4-Inch) c	or x 1.5 (6-inch))							
PURGE RATE	0.119 LA	BEGIN PURG		. 9 Et	IRGING 13	.37	TOTAL VOL. PURGED (purge rate (L	2,1(/min) × duration	(min) x 0.26 gal/L)	
PURGE DATA	VOL Purged (L)	pH (units)	SpC (cond) (mS/cm)	TURBIDITY (NTU)	DO (mg/L)	TEMPERATURE	ORP (mV)	WATER LEVEL	Comments	= 1
12:33	FC	6.85	0.796	5.62	1.34	1231	-83.0	8.31	Cleur_Slight	odo
10:43	1.5	6.98	0.781	3.31	0.65	11.90	-101.7	9.08	Stuned pun	
13: 43	1,2	6.97	0.753	277	0.25	12.84	-129.0	9.11	Clear-Slish	tol
13:13	1.2	4.98	0.750	3.26	0-14	12.92	-143.7	9.18	Sloved pur	P
13:21	0.8	6.97	0.750	3.54	0.16	13.08	-198.8	9.13	•	
12 37	0.8	6.97	0.758	3.23 G.31	0.14	13.15	-153.7 -148.7	9.10		_
13:40		V. I. I.		ollect	Sampl			1,10	Clear-Sligh	1 od
							1 40			
 										\dashv
EQUIPMENT DO TYPE OF PUN X PERISTA	4P.	TYPE	OF TUBING FLON OR TEFLO	ON LINED		PUMP MATERIA			ERIAL (if applicable)	
SUBMER OTHER			GH DENSITY PO THER	LYETHYLENE	STAINI	ESS STEEL	X OTHE	R <u>NA</u>	-	
PURGE OBSERV	/ATIONS				NOTES	_		ala Mar	Time Collects d	
Tubing intake @.	14.75 ft	A		VOC (mo VFA's Sulfate Methane/ Duplicate	dified list) Ethene	HCL The	ple Name 17 	Time-follected 17: 40		
SIGNATURE:	m) g	10		_						

Wood Environment & Infrastructure Solutions Inc.												
FIELD DAT	A RECOR	D - GRO	UNDWATE	ER SAMPL	.ING							
	Former Taylor Ins 2018 Semi-Annua		/ent					DATE 5	-8-18			
SITE ID	TW	2-0		SITE TYPE	Monitor	Well						
SITE ACTIVITY	START 11.VS	END	0:03	JOB NUMBER	303115	2028.13						
WATER LEVEL		MEASUREME X TOP OF TOP OF TOP OTHER	WELL RISER PROTECTIVE CA	SING CA	OTECTIVE SING STICKU IOM GROUNI		PROTECTIVE CASING / WE DIFFERENCE	LL CLOSE	FI			
INITIAL DEPTH TO WATER	12.10	FT	WELL CEPTH	722 1	PID AMBIENT AIR		WELL DIAMETER	2	IN			
FINAL DEPTH TO WATER	12.45	FT	SCREEN LENGTH		PID WELL MOUTH	NA PPM	WELL INTEGRITY:	YES	NO N/A			
DRAWDOWN	0.35		AWDOWN 0 0		PRODUCT	NA FT	CAS LOCI COL	KED 🗾				
((initial - final) x 0).16 {2-Inch} or x	0.65 (4-Inch) c	or x 1.5 (6-inch))									
PURGE RATE	0.141	BEGIN PURG		EN PU	RGING	:56	TOTAL VOL. PURGED (purge rate (L	/min) x duration	GAL (min) x 0.26 gal/L)			
PURGE DATA	VOL Purged	pH (units)	SpC (cond) (mS/cm)	TURBIDITY (NTU)	DO (mg/L)	TEMPERATURE	ORP (mV)	WATER LEVEL	Comments			
11:15	FC	7.13	0.872	3.38	3.63	11.39	48.6	12.23	Cleny-Noido,			
11:35	1.6	7.15	0.837	0.95	2.41	11.28	50.6 55.0	12.38	Slumed suns			
11:42	0.9	7.14	0.835	069	2.51	11.75	58.1	12.45	3100000			
11:49	0.9	7-13	0.833	0.65	2.38	11.82	61,2	12.45				
12:00	0-9	7.14	0.833 - Co	0.55 11-ect	9.34	11.87	63.2	12.45				
17.00			- 0	1146)	Sur/	110						
			-									
									5			
			<u></u>				•					
TYPE OF PUN X PERISTA SUBMER OTHER	MP ALTIC RSIBLE	TYPE TE	OF TUBING EFLON OR TEFLO GH DENSITY PO		POLY	PUMP MATERIA VINYL CHLORIDE LESS STEEL R NA	E TEFLO		ER†AL (if applicable)			
PURGE OBSERV	/ATIONS			ı	OTES							
Tubing Intake @_	14.75		2 N		VOC (mo VFA's Sulfate Methane/ Duplicate	dified list) :		ple Name - 90	Time Collected			
SIGNATURE:	mo	1		_					s.l.			

Wood Environment & Infrastructure Solutions Inc.												
FIELD DATA RECORD - GROUNDWATER SAMPLING												
PROJECT Former Taylor Instruments 2018 Semi-Annual Sampling Event			DATE 5-	9-18								
SITE ID W-5	SITE TYPE	Monitor Well										
SITE ACTIVITY START (0.50 END 27	JOB NUMBER	3031152028.13										
WATER LEVEL MEASUREMENT F X TOP OF WELL TOP OF PROT	RISER PROTI	ECTIVE IG STICKUP IN GROUND)	PROTECTIVE CASING / WELL DIFFERENCE	- - 								
INITIAL DEPTH 5.20 FT DEP		BIENT AIR NA PPM	WELL DIAMETER	IN								
FINAL DEPTH 7.81 FT SCR		WELL UTH NA PPM	WELL YES INTEGRITY: CAP	NO N/A								
DRAWDOWN 2.6 FT DRAWD VOLUM		DDUCT CKNESS NA FT	CASING LOCKED COLLAR									
((initial - final) x 0.16 {2-inch} or x 0.65 {4-inch} or x 1.	5 (6-Inch))											
PURGE RATE O.100 LIMIN PURGING	10:5 P END PURG	ING 3:08	TOTAL VOL. PURGED (purge rate (L/min) x duration	GAL (min) x 0.26 gal/L)								
	C (cond) TURBIDITY	DO TEMPERATURE (mg/L) (°C)	ORP WATER (mV) LEVEL	Comments								
14.58 FC 6.83 1.	118 11-5 7	24 12.68	-14. 6.13	Cleur-Nu odor								
11:18 1.4 6.90 1.		34 1246	-16.3 7.27 -19.0 7.60	Entiel Flue Co								
11:18 6.89	12	39 13.76	-17.0 +.60 -27.2 7.93	Stoned purp								
11:38 09 6.91 1.	132 14.2 0		-31.0 7.86	Clear- no dor								
11:48 09 6.88 1.	135 8.51 0.	19 14.12	-38.2 7.82	.50								
11:58 0.9 6.86 1.	136 8.11 0.	18 1412	-36.3 7.82									
12:08 0.9 G.87 1.	134 7.90 0	17 14.07	-38.2 7.81									
13:11	collect 5	emplo										
	,											
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TO	UBING	TYPE OF PUMP MATERIA	L TYPE OF BLADDER MATE	ERIAL (if applicable)								
X PERISTALTIC TEFLOR	N OR TEFLON LINED	POLYVINYL CHLORIDE	TEFLON									
SUBMERSIBLE X HIGH D OTHER OTHER		STAINLESS STEEL OTHER NA	X OTHER <u>NA</u>									
PURGE OBSERVATIONS	NOT	•										
			ervation Sample Name 1	Time Collected								
Tubing Intake @ 19.3 ft btoC		VFA's Sulfate										
		Methane/Ethene Duplicate	Durol	12:10								
	// ~											
10 Alak												
SIGNATURE: VV SS VV												

Wood Environment & Infrast	ructure Soli	utions Inc.		
FIELD DATA RECORD - GROUNDW	ATER SAMPLI	NG		
Former Taylor Instruments PROJECT 2018 Semi-Annual Sampling Event			DATE 5	-10-18
SITE ID TOW-U	SITE TYPE	Monitor Well		
SITE ACTIVITY START 12:55 END 1305	JOB NUMBER	3031152028.13		
WATER LEVEL MEASUREMENT POINT				14
TOP OF WELL RISE TOP OF PROTECT! OTHER	VE CASING CASI	TECTIVE ING STICKUP OM GROUND) FT	PROTECTIVE CASING / WELL DIFFERENCE	FT
INITIAL DEPTH WELL TO WATER FT DEPTH	FT AN	D MBIENT AIR NA PPM	WELL DIAMETER	IN
FINAL DEPTH SCREEN LENGTH		D WELL NA PPM	WELL YES	NO N/A
DRAWDOWN DRAWDOWN	PF	RODUCT	CASING LOCKED	Z
FT VOLUME ((initial - final) x 0.16 {2-inch} or x 0.65 {4-inch} or x 1.5 {6-inch}		HICKNESS NA FT	COLLAR	/— —
PURGE BEGIN PURGING L/MIN PURGING	END	GING	TOTAL VOL. PURGED (purge rate (L/min) x duration	GAL (min) x 0.26 gal/L)
PURGE DATA		DO TEMPERATURE	ORP WATER	Comments
		10	Sing Peri-Pur	,
		_		
	_	i.,		
	V3			
				_
	G TEFLON LINED TY POLYETHYLENE	TYPE OF PUMP MATERIA POLYVINYL CHLORID STAINLESS STEEL OTHER NA		ERIAL (if applicable)
PURGE OBSERVATIONS	N	OTES	Manual Ata	Time Callesta
Tubing Intake @		VOC (modified list) VFA's Sulfate Methane/Ethens Duplicate	HCL Sample Name	Time Collected
SIGNATURE:				

Wood Environ	ment & Infrastruc	ture Solu	itions Inc.		
FIELD DATA RECO	ORD - GROUNDWATE	R SAMPLII	NG		
	or Instruments nnual Sampling Event			DATE 5	-10-18
SITE ID RAFB	-01	SITE TYPE	Monitor Well		
SITE ACTIVITY START 3	115 END 3:22	JOB NUMBER	3031152028.13		
WATER LEVEL	MEASUREMENT POINT		TECTIVE	PROTECTIVE	
	X TOP OF WELL RISER TOP OF PROTECTIVE CA	SING CASII	NG STICKUP M GROUND) FT	CASING / WELL DIFFERENCE	FT
INITIAL DEPTH TO WATER	FT DEPTH	FT AM	BIENT AIR NA PPM	WELL DIAMETER	IN
FINAL DEPTH TO WATER	SCREEN LENGTH		WELL NA PPM	WELL YES	NO N/A
DRAWDOWN	DRAWDOWN VOLUME		ODUCT ICKNESS NA FT	CASING LOCKED COLLAR	
((initial - final) x 0.16 (2-inch)	or x 0.65 (4-inch) or x 1.5 (6-inch))				
PURGE RATE	L/MIN PURGING	END PURC	SING	TOTAL VOL. PURGED (purge rate (L/min) x duration	GAL n (min) x 0.26 gal/L)
PURGE DATA VOL Purgi	ed pH SpC (cond)	TURBIDITY	DO TEMPERATURE	ORP WATER	
Time (L)	(units) (mS/cm)	(NTU)	(mg/L) (°C)	(mV) LEVEL	Comments
17.00	unred DI water	1210	KAPIP BITTE	7+	
	/*.				
1					
EQUIPMENT DOCUMENTATIVE OF PUMP X PERISTALTIC SUBMERSIBLE OTHER	TYPE OF TUBING TEFLON OR TEFLO HIGH DENSITY PO OTHER		TYPE OF PUMP MATERI, POLYVINYL CHLORID STAINLESS STEEL OTHER NA		TERIAL (if applicable)
PURGE OBSERVATIONS		NO	OTES	in .	
			Pre VOC (modified list)	Sample Name HCL GAFB-0	Time Collected
Tubing Intake @	A		VFA's Sulfate Methane/Ethene Duplicate		
SIGNATURE:	I slil	- -			

Wood Environment & Infrastructure Solutions Inc.											
FIELD DATA RECORD - GROUNDWATER SAMPLING											
PROJECT Former Taylor Instruments 2018 Semi-Annual Sampling Event											
SITE ID & ARB-0 SITE TYPE Monitor Well											
SITE ACTIVITY START (31.23 END / 3.27 JOB NUMBER 3031152028.13											
WATER LEVEL MEASUREMENT POINT											
TOP OF WELL RISER TOP OF PROTECTIVE CASING STICKUP OTHER											
INITIAL DEPTH WELL PID WELL TO WATER FT DEPTH FT AMBIENT AIR NA PPM DIAMETER IN											
FINAL DEPTH SCREEN FI PID WELL NA PPM INTEGRITY: CAP YES NO N/A MOUTH NA PPM INTEGRITY: CAP											
DRAWDOWN PRODUCT CASING LOCKED COLLAR THICKNESS NA FT COLLAR											
((initial - final) x 0.16 (2-inch) or x 0.65 (4-inch) or x 1.5 (6-inch))											
PURGE BEGIN END TOTAL VOL. PURGED GAL (purge rate (L/min) x duration (min) x 0.26 gal/L)											
PURGE DATA VOL Purged pH SpC (cond) TURBIDITY DO TEMPERATURE ORP WATER											
Time (L) (units) (mS/cm) (NTU) (mg/L) (°C) (mV) LEVEL Comments (3:25 POWED DI water over WL) ad. cutor											
	_										
	_										
EQUIPMENT DOCUMENTATION											
TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL (if applicable) X PERISTALTIC TEFLON OR TEFLON LINED POLYVINYL CHLORIDE TEFLON											
SUBMERSIBLE X HIGH DENSITY POLYETHYLENE STAINLESS STEEL X OTHER NA											
OTHER OTHER X OTHER NA											
PURGE OBSERVATIONS NOTES											
VOC (modified list) Preservation Sample Name Time Collected VOC (modified list) HCL QARB-0 13.35											
Tubing Intake @											
Methane/Ethene Duplicate											
SIGNATURE:											
SIGNATURE,											

Wood Environment & Infrastructure Solutions Inc.											
FIELD DAT	TA RECOR	D - GRO	JNDWATE	R SAMP	LING						
	Former Taylor In: 2018 Semi-Annua		ent					DATE 5-1	0-16		
SITE ID	QATI	3-01		SITE TYPE	Monitor	Well					
SITE ACTIVITY	START 13:22	END 1	3:32	JOB NUMBER	303115	2028.13					
WATER LEVEL			NT POINT /ELL RISER ROTECTIVE CA	SING CA	ROTECTIVE ASING STICKU ROM GROUNI		PROTECTIVE CASING / WE DIFFERENCE	ш 🦳	FI		
INITIAL DEPTH TO WATER			WELL OEPTH		PID AMBIENT AIR	NA PPM	WELL		IN		
FINAL DEPTH SCREEN FI PID WELL WELL YES NO N/A TO WATER FT LENGTH FT MOUTH NA PPM INTEGRITY: CAP											
DRAWDOWN GAL THICKNESS NA FT COLLAR											
((initial - final) x	0.16 (2-inch) or x							7	<i>′</i> — —		
PURGE RATE	L/N	BEGIN PURGI	NG		IRGING		TOTAL VOL. PURGED (purge rate (L	min) x duration	GAL (min) x 0.26 gal/L)		
PURGE DATA Time	VOL Purged (L)	pH (units)	SpC (cond) (mS/cm)	TURBIDITY (NTU)	DO (mg/L)	TEMPERATURE (°C)	ORP (mV)	WATER LEVEL	Comments		
13:30		<u> </u>	ab P	ranido	d —						
EQUIPMENT DO			OF TUBING	<i>j</i>	TYPE OF	PUMP MATERIA	L TYPE OF	BLADDER MAT	ERIAL (if applicable)		
	RSIBLE	X HI	FLON OR TEFLO		STAIN	'INYL CHLORIDI .ESS STEEL	X OTHE				
OTHER	• • •	от	HER	 _	X OTHER	RNA	_				
PURGE OBSER Tubing Intake @					VOC (mo		ervation Sam	ple Name TB-U	Time Collected		
			, /	1	Methane/ Duplicate						
SIGNATURE:	In) [- ;							

OCTOBER 2018 FIELD DATA RECORDS

Wood Environment & Infrastructure Solutions Inc.											
FIELD DATA RECORD - GROUNDWATER SAMPLING											
PROJECT Former Taylor Instruments 2018 Semi-Annual Sampling Event DATE											
SITE ID SITE TYPE Monitor Well											
SITE ACTIVITY START (7:37 END JOB NUMBER 3031152028.13											
WATER LEVEL MEASUREMENT POINT X TOP OF WELL RISER PROTECTIVE PROTECTIVE											
TOP OF PROTECTIVE CASING CASING STICKUP CASING/WELL DIFFERENCE FT DIFFERENCE											
INITIAL DEPTH 13.43 FT WELL 35-6 FT AMBIENT AIR NA PPM DIAMETER 4 IN											
FINAL DEPTH TO WATER 19.13 FT SCREEN PID WELL NA PPM INTEGRITY; CAP LENGTH MOUTH NA PPM INTEGRITY; CAP											
DRAWDOWN 0.70 FT DRAWDOWN VOLUME PRODUCT THICKNESS NA FT COLLAR COLLAR											
((initial - final) x 0.16 (2-inch) or x 0.65 (4-inch) or x 1.5 (6-inch))											
PURGE RATE 0.159 L/MIN BEGIN 12.53 END PURGING (V:18 TOTAL VOL. PURGED (purge rate (L/min) x 0.26 gal/L)											
PURGE DATA VOL Purged pH SpC (cond) TURBIDITY DO TEMPERATURE ORP WATER											
Time (L) (units) (mS/cm) (NTU) (mg/L) (°C) (mV) LEVEL Comments 17.56 FL 7.06 0905 23.0 227 1265 -1.5 1351 Cloudy small Hock (9)	leter										
13:06 1.8 7.29 0.859 16.4 1.11 12.87 -28.9 13.78	7-0										
13:16 1.8 7.15 0.873 9.18 1.29 13.01 -63.0 13.95 storel perf											
13:26 1,8 7.06 0.899 8.69 1,62 13.26 -69.4 14.12 Clear- no over											
13:36 1.6 7.01 0.974 5.59 202 1296 -67.9 14.16 Stoned samp											
13:43 6.99 0.987 4.82 1.63 1298 -70.2 19.14 Clew-nooder	thes										
17,70 10.11 0.17 0 1.75 1.47 1.12 -70.5 14.14	(14)										
13:57 6.99 0.998 3.66 1.00 12.85 -64.7 14:13											
14:04 6.49 0.496 3.29 0.77 12.96 -688 14.13 1 14:11 1 7.00 0.494 3.43 0.61 12.85 -71.9 14.13											
14:18 1 6.99 0.990 3.11 0.57 13:01 -70.7 14.13 clear- Nochan											
14:20 Collect Sun, 2/2 Smill black											
EQUIPMENT DOCUMENTATION											
TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL (if applicable) X PERISTALTIC TEFLON OR TEFLON LINED POLYVINYL CHLORIDE TEFLON											
X PERISTALTIC TEFLON OR TEFLON LINED POLYVINYL CHLORIDE TEFLON SUBMERSIBLE X HIGH DENSITY POLYETHYLENE STAINLESS STEEL X OTHER NA											
OTHER X OTHER X OTHER											
PURGE OBSERVATIONS NOTES											
Preservation Sample Name Time Collected VOC (modified list) HCL BR-UL (4:20											
Tubing Intake @ 258 Ft bto C Sulfate											
Tubing Intake @ Sulfate Methane/Ethene											
Duplicate											
SIGNATURE: MI DUM											
SIGNATURE:											

Wood E	nvironme	ent & Ir	ıfrastruc	ture Sc	lutions	Inc.			
FIELD DAT	TA RECOR	D - GRO	UNDWATE	ER SAMP	LING				
PROJECT	Former Taylor Ins 2018 Semi-Annua		/ent					DATE [V-24-18
SITE ID	BR-02			SITE TYPE	Monitor	Well			
SITE ACTIVITY	START 07:	55 END	19:25	JOB NUMBER	303115	2028.13			
WATER LEVEL			WELL RISER PROTECTIVE CA	SING C	ROTECTIVE ASING STICKU		PROTECTIVE CASING / WE DIFFERENCE	LL 4, C	FT
INITIAL DEPTH	22.91	FT			PID AMBIENT AIR	NA PPM	WELL	4	
FINAL DEPTH TO WATER	73.22	FT	SCREEN LENGTH	19 FT	PID WELL MOUTH	NA PPM	WELL INTEGRITY: (YES	NO N/A
DRAWDOWN	0.31	DF	RAWDOWN U.3	FUIS GAL	PRODUCT THICKNESS	NA FT	CAS LOCI COL	KED	
((initial - final) x	0.16 (2-inch) or x	0.65 (4-inch) (or x 1.5 (6-Inch))				18		Α
PURGE RATE	0.114 LA	BEGIN AIN PURG		D EI	URGING U	1:12	TOTAL VOL. PURGED (purge rate (L	1.78 min) x duration	GAL n (min) x 0.26 gal/L)
PURGE DATA	VOL Purged	pH (units)	SpC (cond) (mS/cm)	TURBIDITY (NTU)	DO (mg/L)	TEMPERATURE	ORP (mV)	WATER LEVEL	Comments
08:16	FC	7.53	0.603	11.5	2.00	12-47	-84.3	2-3.0	Clew- no oder
08136	1,2	7-66	0.609	10.4	0.48	12.79	-134.1	23.09	
08:46	1.2	7168	0-608	8.20	0.35	13.31	-143.0 -141.4	23.18	
05.56	1,2	767 267	0 607	5-86	0.33	13.47	-145.0	33.25	Sloned Jung
09:04	0.8	7.66	0.612	5.61	0.35	13.51	-1415	23.22	10000
09:12	0-8	7-67	0.611	5.63	U.36	13.48	-1442	23.22	
09:15			colle.		pir -				
				ļ					1 <u>1</u> 2
		1	 					<u> </u>	
									
TYPE OF PU X PERIST	ALTIC RSIBLE	TYPE TI	OF TUBING EFLON OR TEFLI IGH DENSITY PO		POLY	PUMP MATERIA VINYL CHLORID LESS STEEL	E TEFLO		[ERIAL (if applicable)
PURGE OBSER	VATIONS				NOTES				
: Tubing Intake €	, 249 F	+ broc	Λ		VOC (mo VFA's Sulfate Methane/ Duplicate	dified list) Ethene	HCL Sam	ple Name R-U2	P9:15
SIGNATURE:	h	pl		_					

Wood Environment & Infrastructure Solutions Inc.											
FIELD DA	FIELD DATA RECORD - GROUNDWATER SAMPLING										
PROJECT	Former Taylor In 2018 Semi-Annu		/ent					DATE U	-23-18		
SITE ID	BR-03			SITE TYPE	Monitor	Well					
SITE ACTIVITY	START 14:4	8 END	16:52	JOB NUMBER	303115	2028.13					
WATER LEVEL		MEASUREME									
		TOP OF TOP OF TOP OF TOP	PROTECTIVE CA	SING C	ROTECTIVE ASING STICKU ROM GROUNI		PROTECTIVE CASING / WE DIFFERENCE	11 24	FT		
INITIAL DEPTH TO WATER	11.53	FT	WELL 4	U. FT	PID AMBIENT AIR	NA PPM	WELL DIAMETER	420	IN		
FINAL DEPTH TO WATER	12.96	FT	SCREEN LENGTH	VA FI	PID WELL MOUTH	NA PPM			NO N/A		
DRAWDOWN	1.43		AWDOWN ()	9295 _{AL}	PRODUCT THICKNESS	NA FT	CAS LOCI COL	KED 1			
((initial - final) x	0.16 (2-inch) or x	0.65 (4-inch) c							9		
PURGE RATE	0.119 LI	BEGIN MIN PURG			ND URGING	:43	TOTAL VOL. PURGED (purge rate (L	min) x duration	3 GAL (min) x 0.26 gal/L)		
PURGE DATA	VOL Purged	pН	SpC (cond)	TURBIDITY	DO	TEMPERATURE	ORP	WATER			
Time	(L)	(units)	(mS/cm)	(NTU)	(mg/L)	(°C)	(mV)	LEVEL	Comments		
14:57	FC 1.5	8.33	0.597	177	3.31	14.69	-131.0	11.80	Clear-woder		
15:17	1.7	8.32		5.41	0.41	14.66	-1950	12.18	cl. l. A		
15:07	1,2	8.37	0.600	3.68	0.78	14.72	-229.3	12.46	Slavel purp		
15:37	1,2	8.06	0.678	3.41	0.06	14.80	-233.7	12-61			
15:47	1,2	7.87	127-119	7.13	0.76	14.86	- 213.2	1284			
15:57	1.2-	7-73	0.730	4.47	0-30	14.36	-181.6	12.89			
16:07	1.2	769	0.733	1268	0.30	14.14	-169.5	12-92	Slove punp		
16:17		770	0.723	0.90	0.30	14.76	-30.8	12.92			
16:07		7.71	0.717	3.50	0.30	14-33	-140.9	12.93			
16:35	0.8	7.69	0.700	1.53	031	14.28		12.94			
16:43	08_	7.68	0.702	1.54	0.32	14.29	-136.9	1295			
16:45 -		_ (ollect	Samp	10-				clew-Moder		
EQUIPMENT DO											
TYPE OF PU X PERIST			<u>OF TUBING</u> FLON OR TEFLO	ON CINED		<u>PUMP MATERIA</u> 'INYL CHLORIDI		· <u> </u>	ERIAL (if applicable)		
SUBME		=	GH DENSITY PO		=	ESS STEEL	X OTHER				
OTHER			HER		OTHER				-		
PURGE OBSER	VATIONS				NOTES						
				1,	~	Pres	ervation Sam	sle Name	Time Collected		
Tubing Intake (a) 25.9 64 67 60 C Tubing Intake (a) 25.9 64 67 67 67 67 67 67 67 67 67 67 67 67 67											
			1								
SIGNATURE:		Sh									
				_							

Wood E	nvironm	ent & li	ıfrastru	cture S	olu	tions	Inc.					
FIELD DAT	TA RECOR	D - GRO	UNDWAT	ER SAMI	PLIN	IG						
PROJECT	Former Taylor In: 2018 Semi-Annu		vent						DATE (V	-24-11	6	
SITE ID	BR-UY)		SITE TYPE	[Monitor	Well					
SITE ACTIVITY	START VY	S END	2:31	JOB NUMBE	R	303115	2028.13				5 1 (5)	
WATER LEVEL		MEASUREMI	ENT POINT WELL RISER		PPOTE	ECTIVE		PROTECTIVE				
A.:			PROTECTIVE C	ASING	CASIN	G STICKU I GROUNE		CASING / WE DIFFERENCE	LL 125	FT		
INITIAL DEPTH TO WATER	15.4	7 _{FT}	DEPTH	4.2 FT	PID AMB	IENT AIR	NA PPM	WELL DIAMETER	4	IN		
FINAL DEPTH TO WATER	18.47	FT	SCREEN LENGTH	/A FT	PID '	WELL JTH	NA PPM	WELL INTEGRITY: (NO	N/A	
DRAWDOWN	0		AWDOWN TO	g GAL		DUCT	NA FT	LOCI COL	KED Z	=	=	
((initial - final) x	0.16 (2-inch) or x	•		<u> </u>			(
PURGE RATE	0.200 LA	BEGIN MIN PURG		9	END PURGI	NG [):18	TOTAL VOL. PURGED (purge rate (L	min) x duration	GAL (min) x 0.26	i gal/L)	
PURGE DATA	VOL Purged	рН	SpC (cond)	TURBIDITY		DO	TEMPERATURE	ORP	WATER			
Time	FC	(units)	(mS/cm)	SC.6	+,	(mg/L)	(°C)	(mV) -47.5	ik.47	Commer	1 6	. ~ "
11:13	2	7.60	0,264	25.5		. 42	14.32	-101.3	18.47	Cloud	me ora	4 t
11: 73	2	7.14	1.202	15.8		77	14.30	-99.5	18-47	- Caral	200	der
11:33	2	7.11	1.516	7.85	0.	85	14.42	-90-7	18.47			
11:43	2	7.10	1.678	6.61		48	14.41	-95.4	18.47			
11:53	2	7.09	1.750	4.57	-	46	14.35	-98.0	16-47			
12:03	2	7.09	1.752	4.62		35	14.39	-100-7	1847			
12:08		7.09	1.777	253	_	28 26	,	-101.9	18.47			
12:13	- 1	7.09	1.816	253		72	14.35		18.47			
13:18	-	7.00		2.78			14.33	-103.7	18-47	r1.	14 5 4 6	1
[0,00			- GU) Mr	-119				- lew	_ N# 3"	
												×
EQUIPMENT DO		V										
TYPE OF PU X PERIST			OF TUBING	ONLINED	_	_	PUMP MATERIA		BLADDER MAT	ERIAL (if ap	plicable)	
X PERIST		=	EFLON OR TEFL GH DENSITY PO				INYL CHLORIDI LESS STEEL	=	IN R <u>NA</u>			
OTHER		=	THER		-		R NA		<u> </u>			
PURGE OBSER	VATIONS				NOT	ES					d.	$\overline{}$
						VOC (mo		HCL SAM	Die Name	Time Collected	Í	
Tubica lataka @	26.15	throc				VFA's	10.00%					
raung mand u	-				\exists	Sulfate Methane/	Ethene	-				
			Λ		Ш	Duplicate		_			-	
		. 1	II									
SIGNATURE:	0	/) ()	X .				10					
SIGNATURE:	m /	ver	1	_								

Wood E	nvironme	ant & Ir	fractruc	turo Se	alutione	Inc			
WOODU E	IVITOIIII	ant or ii	masuuc	iule 3	olutions	iiic.			
FIELD DAT	TA RECOR	D - GRO	UNDWATE	ER SAMF	PLING				
PROJECT	Former Taylor Ins 2018 Semi-Annua		ent					DATE [(-24-18
SITE ID	BIR-1U			SITE TYPE	Monitor	Well			
SITE ACTIVITY	START 09:35	END	047	JOB NUMBE	R 303115	2028.13			
WATER LEVEL		MEASUREME	NT POINT				-		
			WELL RISER PROTECTIVE CA	SING C	PROTECTIVE CASING STICKU FROM GROUNE		PROTECTIVE CASING / WE DIFFERENCE	LL , C	FT.
INITIAL DEPTH TO WATER	17.98		WELL DEPTH	7 FT	PID AMBIENT AIR	NA PPM	WELL DIAMETER	6	IN
FINAL DEPTH TO WATER	17.98	FT	SCREEN LENGTH	VA FT	PID WELL MOUTH	NA PPM	WELL INTEGRITY: (CAP YES	NO N/A
DRAWDOWN	4		AWDOWN -	GAL	PRODUCT THICKNESS	NA FT	CAS LOCK COLI	KED	
((initial - final) x	0.16 (2-inch) or x			-		(121	002.		
PURGE RATE	0.700 LIN	BEGIN IIN PURG			PURGING	Vi37	TOTAL VOL. PURGED (purge rate (L/	7.6	GAL (min) x 0.26 gal/L)
PURGE DATA	VOL Purged	ρH	SpC (cond)	TURBIDITY	DO	TEMPERATURE	ORP	WATER	
7ime	FC (L)	(units)	(mS/cm)	(NTU) 21, 2	(mg/L)	(°C)	(mV) -82.6	17-98	Comments (10.1, - No oclar
11/2	2	2.74	0 698	847	0.63	13.84	-162.4	17.98	clear-no odu
10.12	2	772	0717	667	0.31	13.93	-175.6	12.98	
10.33-	2	7.70	0776	6.36	0.29	14:00	-179.3	17.98	
11.77	1	7.71	0.705	6.57	0.28	14.07	-167.5	17.98	
10:32		7.70	0.727	6.60	0.28	14:00.	-182.5	17.98	
10:37		<i>t. +0</i>	0 789	4.84 Shn	029	14.00	-181.8	17.98	Clear- medr
1000			colled) Jnn	1717 -				
					<u> </u>				
EQUIPMENT DO	<u>IMP</u>	TYPE	OF TUBING			 PUMP_MATERIA	_		ERIAL (if applicable)
X PERIST	ALTIC RSIBLE		FLON OR TEFL GH DENSITY PC		=	INYL CHLORID LESS STEEL	_	N R <u>NA</u>	
		=	THER		OTHER			`	-
PURGE OBSER	VATIONS				NOTES	-			
Tubing Intake @	25.0 Ft	btuc	4		VOC (me VFA's Suffate Methane/	dified list) Ethene		ple Name	Time Collected (V V V
SIGNATURE:	nl	Sh			Phrsel with	2 L k	opferp Cr Enst Calor	ed with	to Flor Cel some fines.
	_			_					

Wood Er	nvironme	ent & Ir	frastruc	ture So	olutions	Inc.			
FIELD DAT	A RECOR	D - GRO	UNDWATE	ER SAMP	LING				
	Former Taylor Ins 2018 Semi-Annua		ent					DATE 10-	-23-16
SITE ID	BR-15			SITE TYPE	Monitor	Well			
SITE ACTIVITY	START 10 15	END	4:46	JOB NUMBER	303115	2028.13			
WATER LEVEL		MEASUREME	ENT POINT WELL RISER		DOTEOTI #				200 2010 0
			PROTECTIVE CA	SING C	ROTECTIVE ASING STICKU FROM GROUND		PROTECTIVE CASING / WE DIFFERENCE	LL (120	FT
INITIAL DEPTH TO WATER	19.96		WELL 7	ک _{FT}	PID AMBIENT AIR	NA PPM	WELL DIAMÉTER	6	IN
FINAL DEPTH TO WATER	21.89		SCREEN LENGTH	A FT	PID WELL MOUTH	NA PPM	WELL INTEGRITY: (NO N/A
DRAWDOWN	1.93		AWDOWN 2	695 GAL	PRODUCT THICKNESS	NA FT	CAS LOCI COLI	ŒD	
((initial - final) x (D.16 (2-inch) or x (0.65 (4-inch) o	r x 1.5 (6-inch))						
PURGE RATE	0.151 LA	BEGIN PURG		7 E	ND URGING	1.23	TOTAL VOL. PURGED (purge rate (L	イパラ min) x duration	7- GAL (min) x 0.26 gal/L)
PURGE DATA	VOL Purged	pН	SpC (cond)	TURBIDITY	DO	TEMPERATURE	ORP	WATER	
Time	(L) F((units)	(mS/cm) 0.33 7	(NTU)	(mg/L)	(°C)	(mV)	LEVEL	Cleur - No vivr
17:49	2	8.40	0.324	6.11	0.40	14.74	<u>-106.3</u> -173.6	20.03 20.34	clew - No vivr
13100	2	8.45	0.33	4.12	0.32	14.48	-187.9	20.63	
13:11	2	8.46	0300	2.64	0.31	14.55	-199.0	20.92	
13:02	2	8.47	0319	3.27	0.33	14-59	-213.9	21,20	
13:33	2	8.49	0.300	3.36	0.30	14.51	-723.7	21.45	Sloved Purp
13:43	1.5	8.37	0.320	3.18	0.26	14.52	-190.6	21.62	
13:53	1.5	8.33	0.301	2.75	0.26	14.59	-168.4	21.78	Sloved pump
14:13		8.42	0.322	1.79	0.21	14.38	-200-7	21.81	
14:13		8.39	0.323	1.6	0.22	14.35	-203-1	21.84	
14.23		8.35	0.324	2-15	0.72		-204-7	21.87	
14:25			- (ollest	Sun	110 -			
	-								//
EQUIDMENT DO	CUMENTATION								
TYPE OF PU			OF TUBING		TYPE OF	PUMP MATERIA	L TYPE OF I	BLADDER MAT	ERIAL (if applicable)
X PERIST.	ALTIC	TE	FLON OR TEFL	ON LINED	POLYV	INYL CHLORID	E TEFLO)N	
SUBMEI	RSIBLE	х н	GH DENSITY PO	LYETHYLENE	STAIN	LESS STEEL	X OTHE	RNA	- 3
OTHER		or	THER		X OTHER	R NA			
PURGE OBSER	VATIONS				NOTES				
					VOC (mo		ervation Samj HCL がん	Ple Name	Time Collected 14:25
Tubias lataka @	29.05 ft	htrc			VFA's		_		
Loon & unaka @			Λ		Sulfate Methane/	Ethene	_		
					Duplicate Duplicate		Юч	rel	14125
			$\cap II$		ms/r	nsD (D P a	5	
	\cap		UV		7	- , - , (11-04.	,	
SIGNATURÉ:	m	H	N						

Wood E	nvironme	ent & Ir	frastruc	ture So	lutions	inc.			
FIELD DAT	TA RECOR	D - GRO	UNDWATE	ER SAMP	LING				
PROJECT	Former Taylor Ins 2018 Semi-Annua		rent					DATE [/	-24-18
SITE ID	IDW-	0		SITE TYPE	Monitor	Well			
SITE ACTIVITY	START 1414	F END 1	4:47	JOB NUMBER	3031152	2028.13			
WATER LEVEL			ENT POINT WELL RISER PROTECTIVE CA	SING CA	ROTECTIVE ASING STICKUI ROM GROUND		PROTECTIVE CASING / WE DIFFERENCE	LL	=1
INITIAL DEPTH	NA NA	<u>-</u>	WELL DEPTH N		PID AMBIENT AIR	NA PPM	WELL DIAMETER	NA NA	IN IN
FINAL DEPTH TO WATER	NA NA	FT	SCREEN LENGTH N	1	PID WELL MOUTH	NA PPM	WELL INTEGRITY: (YES	
DRAWDOWN		DR	AWDOWN		PRODUCT		CAS LOCE	ING	
((initial - final) x	NA NA 0.16 (2-inch) or x	-	_	ia GAL	THICKNESS	NA FT	COLI	LAR	
PURGE RATE	NA L/I	BEGIN PURG			ND URGING	NA	TOTAL VOL. PURGED (purge rate (L	NA min) x duration	GAL (min) x 0.26 gal/L)
PURGE DATA	VOL Purged (L)	pH (units)	SpC (cond) (mS/cm)	TURBIDITY (NTU)	DO (mg/L)	TEMPERATURE	ORP (mV)	WATER LEVEL	Comments
14:45 =	- Culli		· · · · -	۸.		A 1	using	per, -pu	
<u> </u>			•				,		
					·				
X PERISTALTIC TEFLON OR TEFLON LINED POLYVINYL CHLORIDE T							TEFLO		ERIAL (If applicable)
PURGE OBSER	VATIONS		/		NOTES	_			The Bellevick
Tubing Intake @		VOC (mod VFA's Sulfate Methane/i Duplicate	diffed list) I	ervation Sam	ole Name 	Time Collected 14,45			
SIGNATURE:				-					

Wood Environment & Infrastructure Solutions Inc.									
FIELD DAT	TA RECOR	D - GRO	UNDWATI	ER SAMF	PLING				
PROJECT	Former Taylor In: 2018 Semi-Annu:	struments al Sampling Ev	rent					DATE 10	-24-18
SITE ID	QAFB.	-0		SITE TYPE	Monitor	Well			
SITE ACTIVITY	START 14:57	END	5:07	JOB NUMBE	R 303115	2028,13			
WATER LEVEL			WELL RISER PROTECTIVE CA	ASING C	PROTECTIVE CASING STICKU FROM GROUNE		PROTECTIVE CASING / WE DIFFERENCE	LL	- T
INITIAL DEPTH TO WATER	NA	न	WELL DEPTH	NA FT	PID AMBIENT AIR	NA PPM	WELL DIAMETER	NA	IN
FINAL DEPTH TO WATER	NA NA	FT	SCREEN LENGTH N	NA FT	PID WELL MOUTH	NA PPM	WELL INTEGRITY:	YES	NO N/A
DRAWDOWN		DF	AWDOWN		PRODUCT		CAS	ING KED	
((initial - final) x (NA 0.16 (2-Inch) or x			NA GAL	THICKNESS	NA FT	COL	LAR	
PURGE RATE	NA L/N	BEGIN NIN PURG			ND PURGING	NA	TOTAL VOL. PURGED (purge rate (L	NA /min} x duration	GAL (min) x 0.26 gal/L)
PURGE DATA	VOL Purged (L)	pH (units)	SpC (cond) (mS/cm)	TURBIDITY (NTU)	DO (mg/L)	TEMPERATURE (°C)	ORP (mV)	WATER LEVEL	Comments
15101 -	Poncel	DI	water 1	~to 5	1. (ittles		24100	SUMMUNS
					,				
				<u> </u>					
								_	<u> </u>
				<u> </u>					
		-							
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING PERISTALTIC TEFLON OR TEFLON LINED SUBMERSIBLE HIGH DENSITY POLYETHYLENE X OTHER NA X O									
PURGE OBSER	VATIONS				NOTES				
Tubing Intake @ Preservation Sample Name, VOC (modified list) HCL QAFO-0									
SIGNATURE:	W~		1						

Wood Environment & Infrastructure Solutions Inc.									
FIELD DAT	TA RECOR	D - GRO	UNDWATI	ER SAMP	LING				
PROJECT	Former Taylor In: 2018 Semi-Annua		rent					DATE [10	-2-4-18
SITE ID	QARB-	01		SITE TYPE	Monitor	Well			
SITE ACTIVITY	START 15:U	3 END	5:08	JOB NUMBER	303115	2028.13			
WATER LEVEL		MEASUREME	INT POINT WELL RISER	PE	ROTECTIVE		PROTECTIVE		
			PROTECTIVE CA	SING CA	ASING STICKU ROM GROUND		CASING / WE DIFFERENCE	LL	- T
INITIAL DEPTH TO WATER	NA		WELL DEPTH		PID AMBIENT AIR	NA PPM	WELL DIAMETER	NA	IN
FINAL DEPTH TO WATER	NA	FT	SCREEN LENGTH		PID WELL MOUTH	NA PPM	WELL INTEGRITY: 0	YES	NO N/A
DRAWDOWN		DR	AWDOWN		PRODUCT		CAS LOCH	ING	
((initial - final) x	NA (2-inch) or x			IA GAL	THICKNESS	NA FT	COLI	_AR	
PURGE RATE	NA L/N	BEGIN NIN PURG		EN PL	1	NA	TOTAL VOL. PURGED (purge rate (L/	NA min) x duration	GAL (min) x 0.26 gal/L)
PURGE DATA	VOL Purged (L)	pH (units)	SpC (cond) (mS/cm)	TURBIDITY (NTU)	DO (mg/L)	TEMPERATURE	ORP (ゕV)	WATER LÉVEL	Comments
15:05 -	- Poured		ater ove	r water	level;	nd.cuter	adiato	Sumple	bittles
									-
			<u> </u>	!					
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING PERISTALTIC TEFLON OR TEFLON LINED POLYVINYL CHLORIDE TEFLON SUBMERSIBLE HIGH DENSITY POLYETHYLENE X OTHER NA X OTHER NA X OTHER NA X OTHER NA									
PURGE OBSER	VATIONS				NOTES	_			
Tubing Intake @							ervation Samp	ole Name IR IB-0]	Time Collected 15005
	À		37					·	

Wood Environment & Infrastructure Solutions Inc.									
FIELD DA	TA RECOR	D - GRO	UNDWATI	ER SAMP	LING				
PROJECT	Former Taylor In 2018 Semi-Annu		ent					DATE [1-24-18
SITE ID	QA+B-0)		SITE TYPE	Monitor	Well			
SITE ACTIVITY	START 19; U	9 END I	5:11	JOB NUMBER	303115	2028.13			
WATER LEVEL		MEASUREME X TOP OF 1 TOP OF 1 OTHER	WELL RISER PROTECTIVE CA	SING C	ROTECTIVE ASING STICKU ROM GROUNE		PROTECTIVE CASING / WE DIFFERENCE	LL	- T
INITIAL DEPTH TO WATER		न	WELL DEPTH N	A FT	PID AMBIENT AIR	NA PPM	WELL DIAMETER	NA	IN
FINAL DEPTH TO WATER		FT	SCREEN LENGTH	IA FT	PID WELL MOUTH	NA PPM	WELL INTEGRITY: (NO N/A
DRAWDOWN	l NA		AWDOWN LUME	IA GAL	PRODUCT THICKNESS	NA FT	CAS LOCI COLI	KED	
((initial - final) x	0.16 (2-inch) or x	0.65 {4-inch} o	r x 1.5 (6-inch))						
PURGE RATE	NA L/I	BEGIN MIN PURG			ND URGING	NA	TOTAL VOL. PURGED (purge rate (Li	NA mln) x duration	GAL (min) x 0.26 gal/L)
PURGE DATA	VOL Purged (L)	pH (units)	SpC (cond) (mS/cm)	TURBIDITY (NTU)	DO (mg/L)	TEMPERATURE (°C)	ORP (mV)	WATER LEVEL	Comments
15:10	+ Lab	privid	el						
					-				
									}
TYPE OF PUMP TYPE OF PUMP TYPE OF PUMP TEFLON OR TEFLON LINED SUBMERSIBLE HIGH DENSITY POLYETHYLENE TYPE OF PUMP MATERIAL TYPE OF BLADDER TYP									
PURGE OBSER	RVATIONS	- 15			NOTES	_			
Tubing Intake			VOC (mo VFA's Sulfate Methane/ Duplicate	dified list) I	ervation Samm	ole Name FTB-U	Time Collected 15:10		
SIGNATURE:	h)	H	√	_					

APPENDIX E WELL CONSTRUCTION INFORMATION

Appendix E Well Construction Information

2018 Annual Progress Report Former Taylor Instruments Site Rochester, New York

						Screer	n Interval	Sur	vey Coordinates		Well Material	(Completio	on
Well ID	Date Installed	Well Purpose/Type	Well Location	Boring Depth	Well Depth	Тор	Bottom	Easting	Northing	Elevation	Riser/Screen	Flush- mount	Vault	Stick-up
BR-01	09/02/97	Monitor	Perimeter	42.2	42.2	NA	NA	750364.06	1150086.89	531.92	Stainless / Open	Χ		
BR-02	09/02/97	Monitor	Perimeter	44.0	44.0	NA	NA	750541.81	1149964.51	532.39	Stainless / Open	X		
BR-03	09/02/97	Monitor	Perimeter	40.1	40.1	NA	NA	750552.93	1149641.68	536.32	Stainless / Open			Х
BR-04	09/03/97	Monitor	South Source	44.2	44.2	NA	NA	750322.96	1149422.13	532.68	Stainless / Open	Х		
BR-10	07/28/00	Monitor	South Source	47.0	47.0	NA	NA	750426.90	1149411.76	532.29	Iron / Open	Х		
BR-15	07/26/00	Monitor	North Source	72.0	72.0	NA	NA	750293.39	1149980.43	531.69	Iron / Open	Х		
OB-04	09/05/97	Monitor	South Source	17.5	17.5	2.5	17.5	750329.65	1149422.19	532.80	PVC	X		
OB-06	07/19/00	Monitor	South Source	17.0	17.0	6.8	16.8	750421.89	1149461.50	532.60	PVC	Х		
OB-08	07/28/00	Monitor	North Source	25.5	25.3	15.3	25.1	750279.00	1149957.45	531.64	PVC	Х		
TW-04	03/15/96	Monitor	Perimeter	17.5	17.3	12.3	17.3	750552.18	1149648.54	536.34	PVC			Х
TW-09	03/30/96	Monitor	Perimeter	16.0	16.0	11.0	16.0	750542.22	1149971.84	532.30	PVC	Х		
TW-17	03/13/96	Monitor	Perimeter	15.0	15.0	10.0	15.0	750373.39	1150088.34	531.86	PVC			Х
TW-20	03/13/96	Monitor	Perimeter	15.0	15.0	10.0	15.0	750547.88	1150118.75	532.42	PVC			Х
W-5	09/15/82	Monitor	Perimeter	24.0	20.5	15.5	20.5	750248.88	1150056.27	531.52	PVC	Х		

Prepared by/Date: KJD 12/15/10

Checked by/Date: CRW 1/18/11

ATTACHMENT 2

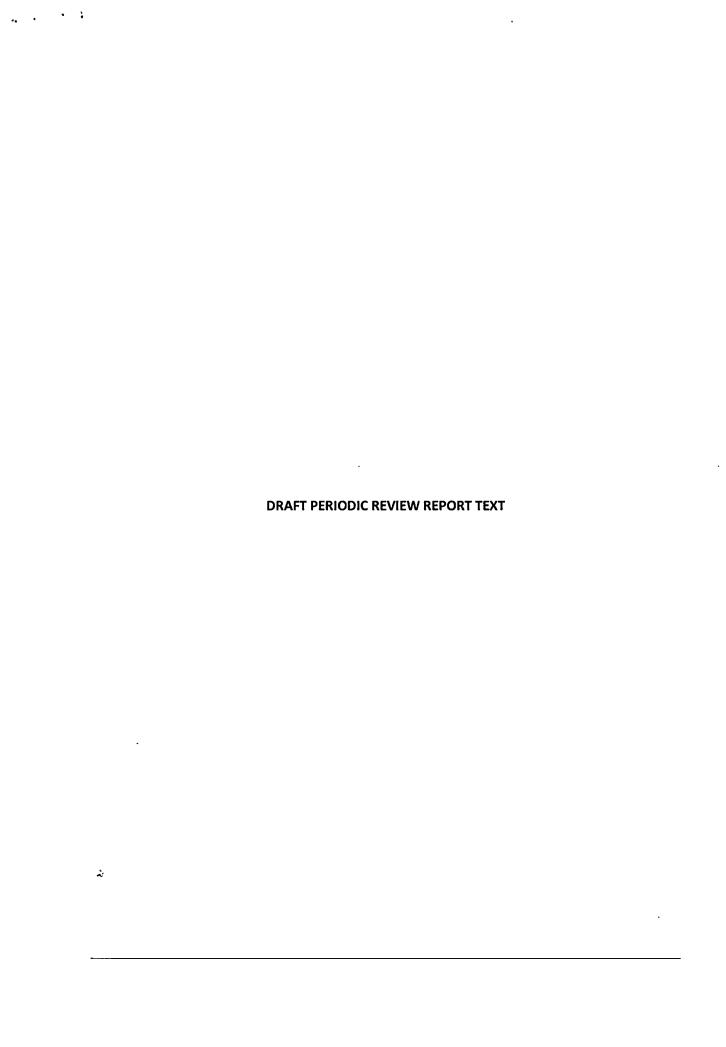
PERIODIC REVIEW REPORT

mitigation tech vapor intrusion specialists

INSPECTION REPORT

October 30, 2018

Mr. Joe Deatherage, P.E. Senior Engineer Wood Environment & Infrastructure Solutions, Inc. 2030 Falling Waters Rd., STE 300 Knoxville, TN 37922 Via email: Deatherage, Joe < joe.deatherage@woodplc.com>


Re: ABB Rochester - Former Taylor Instruments WO No. & PO-No.: 3031152028.11 Work site: 80 Ames St./215 Danforth St., Rochester, NY Inspection Report for Sub-slab Depressurization System

For work completed October 23, 2018 per WO 3031152028.11

- 1. Conducted a visual inspection of the complete System (e.g., vent fan, piping, warning device, labeling on systems, etc.): SATISFACTORY
- Conducted an inspection of all surfaces to which vacuum is applied: SATISFACTORY
- 3. Inspected all components for condition and proper operation: SATISFACTORY
- 4. Identify and repair any leaks: NO LEAKS OBSERVED
- 5. Inspect the exhaust or discharge point to verify that no air intakes have been located nearby: NO AIR INTAKES WITHIN TEN FEET
- 6. Conduct an airstream velocity measurement: SATISFACTORY
- 7. Conduct pressure field extension testing (to ensure that the system is maintaining a vacuum beneath the entire slab): SATISFACTORY
- 8. Interview an appropriate occupantor owner seeking comments and observations regarding the operation of the System: SATISFACTORY

I certify that this system is effectively maintaining sub-slab depressurization.

Nicholas E. Mouganis EPA listing #15415-I; NEHA ID# 100722 ***mitigationtech.com

PERIODIC REVIEW REPORT

Introduction

This Periodic Review Report (PRR) was prepared to fulfill the requirements of the New York State Department of Environmental Conservation's (NYSDEC) request for a Site Management PRR as requested in a letter dated January 3, 2019 (NYSDEC, 2019).

Executive Summary

The Site was the location of the former Taylor Instruments Facility that was operated from 1904 to 1993 under a variety of owners. In 1993 Combustion Engineering (CE) closed the facility. The Site is currently vacant. In 1997 a Voluntary Clean-up Agreement (VCA) was executed between CE and NYSDEC (VCA Index #B8-0508-97-02, NYSDEC, 1997). As a successor company to CE, ABB continues to fulfill the obligations of the VCA. During 2018 the Site was sold to Gray Rock Rochester, LLC (Gray Rock) who is now responsible for the continued adherence to the Institutional and Engineering Controls (ICs/ECs) associated with the Site.

Following extensive soil excavation, filling and capping, and other remedial activities, a groundwater remedy for chlorinated volatile organic compounds (VOCs) was implemented from January 2001 to May 2006. This included an on-site remedial treatment system which consisted of a dual-phase vacuum extraction (DPVE) and bedrock groundwater extraction and treatment system (System).

Following NYSDEC's approval of MACTEC's Revised Work Plan for Accelerated Bioremediation and Permanent Decommissioning of the Remediation Treatment System (MACTEC, 2010a) in 2010, the System was decommissioned, most monitoring wells were abandoned, an expanded application of 3-D Microemulsion* (3DMe*, formerly HRC Advanced*) was implemented, and post-closure monitoring of natural attenuation was implemented starting in 2011. Unless otherwise agreed to by NYSDEC, contaminant conditions will continue to be monitored by ABB in remaining wells (BR-01, BR-02, BR-03, BR-04, BR-10, BR-15, OB-04, OB-06, OB-08, TW-04, TW-09, TW-17, TW-20, and W-5) until groundwater concentrations of the COCs are at or below NYSDEC Class GA Standards.

The location of the remaining 14 monitoring wells and site boundaries are depicted in the Annual Progress Report (Wood, 2019).

Also, in cooperation with the NYSDEC and the New York State Department of Health in 2010, following a sub-slab vapor investigation, ABB installed a sub-slab depressurization (SSD) system as a precautionary measure to mitigate sub-slab vapor at the 80 Ames residence across from the Site.

Complete details of the system decommissioning, 3DMe[•] injection, and SSD system installation were provided in the *Construction Completion Report* (CCR) (MACTEC, 2010b) which was approved by NYSDEC on February 16, 2011 (NYSDEC, 2011a).

Complete results from the 2018 annual groundwater monitoring event are provided in the 2018 Annual Progress Report (Wood, 2019), to be submitted by Wood Environment & Infrastructure Solutions, Inc. (Wood) in March 2019.

According to ABB, no areas of noncompliance were noted, and no changes to the *Soil Management Plan* (MACTEC, 2005), the revised *Operations, Maintenance, and Monitoring* (OM&M) *Manual* (MACTEC, 2011), or frequency of PRR submittals are recommended. The requirements for discontinuing the Site management have not yet been met.

Site Overview

The Site is located at 95 Ames Street in Rochester, New York. The approximately 14-acre Site is vacant, containing a fabricated building that previously housed the System as well as a second small storage shed. The Site is mostly paved and is surrounded by a chain link fence. North of the Site are a railroad line and a commercial/industrial property; to the east across Ames Street are a food processing facility, residences, and a community center; to the south across West Avenue are residences; and to the west across Hague Street is Rochester Gas and Electric. The Annual Progress Report (Wood, 2019) depicts the current Site layout.

On June 8, 2015 a utility easement agreement was executed with Rochester Gas & Electric for a 75-foot easement on the north end of the Site. The easement as depicted in the easement agreement was provided in the 2015 PRR (Amec Foster Wheeler, 2016).

During 2018 the Site was sold by ABB, Inc. to Gray Rock Rochester, LLC, a New York limited liability company.

As documented by Wood in previous PRR submittals, site assessments conducted prior to Site remediation identified the following contaminants:

- Mercury and trichloroethylene (TCE) were the principal Site contaminants present in Site soils.
- VOCs were being released from the North and South TCE Source Areas to overburden and bedrock groundwater at concentrations exceeding groundwater quality standards. TCE was the predominant site-related VOC in overburden and bedrock groundwater samples.
- Soil gas samples collected from downgradient Site perimeter locations contained TCE along with tetrachloroethene and dichloroethene at less frequent detections and lower concentrations.
- TCE and its degradation products were found at several locations in on-site sewers; they were the only VOCs detected. Mercury was detected at low levels in each of the water samples obtained from on-site sewer locations.

Complete details on the nature and extent of contamination prior to Site remediation were provided in the *Final Investigative Report* (Harding Lawson Associates, 1999).

Remedial Program

Comprehensive remedial actions implemented at the Site were previously detailed in the *Final Engineering Report, On-Site Storm Sewers* (Harding Lawson Associates, 2000a) [2000 FER], and the *Final Engineering Report* (MACTEC, 2003) [2003 FER]. The Final Engineering Report (FER) also contained the *Soil Management Plan* (MACTEC, 2005) which contains details on the Site engineering and institutional controls that have been recorded at the Site. These reports were all approved by NYSDEC.

Subsequent to the 2003 FER, the NYSDEC issued an *Assignable Release and Covenant Not to Sue* (AR-CNTS) (NYSDEC, 2005) that was subject to implementation of an Operations and Maintenance (O&M) Plan that acknowledged the satisfactory implementation of all Site remedial actions. The AR-CNTS indicated that:

"...no further investigation or response will be required at the Site respecting the Existing Contaminations to render the Site safe to be used for the Contemplated Uses." ... "The Department, therefore, hereby releases,... Volunteer for the further investigation and remediation of the Site, based on the release of threatened release of any Existing Contamination, provided that ... Volunteer pursue to completion the Department-approved O&M Plan..."

The Site is currently in post-closure groundwater monitoring conducted by ABB, Inc. Six bedrock groundwater monitoring wells are sampled semi-annually and eight overburden groundwater monitoring wells are sampled annually for analysis of the six primary contaminants of concern remaining at the Site: tetrachloroethene (PCE); TCE; cis-1,2-dichloroethene (cis-1,2-DCE); trans-1,2-dichloroethene (trans-1,2-DCE); 1,1-dichloroethene (1,1-DCE); and vinyl chloride by Environmental Protection Agency (EPA) Method 8260C. Additionally, the groundwater samples are tested for the full suite of 8260C constituents once every five years and prior to ending monitoring at any specified well. Unless otherwise agreed to by NYSDEC, contaminant conditions will continue to be monitored by ABB until groundwater concentrations of the COCs are at or below the NYSDEC Class GA Standards.

Complete details of the remedial program were provided in the April 2000 *Remedial Work Plan* (Harding Lawson Associates, 2000b), the *Final Engineering Report* (MACTEC, 2003), and the CCR (MACTEC, 2010b).

Evaluation of Remedy Performance, Effectiveness, and Protectiveness

The most current assessment of the effectiveness of the final Site remedial action is presented in the 2018 Annual Progress Report (Wood, 2019), to be submitted by Wood in March 2019.

Institutional and Engineering Control (IC/EC) Plan Compliance Report

Specific details on IC/ECs for the Site were provided in the *Remedial Work Plan* (Harding Lawson Associates, 2000b), the *Soil Management Plan* (MACTEC, 2005), and the revised OM&M Manual (MACTEC, 2011). Certification of the IC/ECs is provided in the NYSDEC-approved certification form (Attachment A).

Monitoring Plan Compliance Report

The scope of the May and October 2018 semi-annual monitoring events, as well as future post-closure monitoring events, is provided in the revised OM&M Manual (MACTEC, 2011) supplemented by NYSDEC's approval in 2017 to sample overburden monitoring wells annually (NYSDEC, 2017). A summary of recent monitoring results, comparisons with remedial objectives, and conclusions and recommendations are provided in the *2018 Annual Progress Report* (Wood, 2019), to be submitted by Wood in March 2019. Wood has not found any deficiencies with the monitoring plan.

O&M Plan Compliance Report

The original Site O&M Manual (Harding ESE, 2001) governed all sampling events prior to the May 2011 monitoring event. The components of the plan included: details of the DPVE System, including System maintenance; Site health and safety; Site environmental sampling; and reporting and notification requirements. The revised OM&M Manual (MACTEC, 2011), which governs OM&M activities beginning in 2011, was approved by NYSDEC on March 3, 2011 (NYSDEC, 2011b). The components of the revised OM&M Manual include Site groundwater monitoring, SSD system O&M, IC/ECs, and reporting and certification requirements.

O&M activities completed by wood during the 2018 reporting period included: two groundwater sampling events; yearly inspection of the SSD system at an off-site residential duplex; and the submittal of the 2018 Annual Progress Report (Wood, 2019) to NYSDEC. Wood has not found any deficiencies with the revised OM&M Manual (MACTEC, 2011). The yearly inspection of the SSD system at the off-site residential duplex located at 80 Ames Street/215 Danforth Street was

conducted on October 23, 2018 by the installation contractor, Mitigation Tech (National Environmental Health Association National Radon Proficiency Program ID certification #100722). The inspection report is included as Attachment B. The contractor, Mitigation Tech, concluded that the system continues to operate as designed. Therefore, the EC remains in full effect.

Overall PRR Conclusions and Recommendations

Compliance with the revised Site O&M Manual (MACTEC, 2011) including performance and effectiveness of the Site remedy is detailed in the 2018 Annual Progress Report (Wood, 2019). As indicated in that report, a comparison of analytical data from sampling events that occurred in 2001-2018 provides an evaluation of the Site remedial progress. Details of the overall conclusions and recommendations reached in the evaluation are provided in the 2018 Annual Progress Report (Wood, 2019), to be submitted by Wood in March 2019.

References

- Amec Foster Wheeler, 2016. 2015 Annual Progress Report and Remedial Progress Evaluation, Former Taylor Instruments Site, Rochester, New York. Prepared for ABB, Inc. (February).
- Harding ESE, 2001. *Dual-Phase Vacuum Extraction Remediation System Operation and Maintenance Manual (OM&M)*, prepared for the former Taylor Instruments Site, 95 Ames Street in Rochester, New York (March).
- Harding Lawson Associates, 1999. Final Investigative Report, Taylor Instruments Site, Rochester, New York. Prepared for the New York State Department of Environmental Conservation (March).
- Harding Lawson Associates, 2000a. Final Engineering Report, On-Site Storm Sewers, Former Taylor Instruments Site, Rochester, New York. Prepared for Combustion Engineering (January).
- Harding Lawson Associates, 2000b. Remedial Work Plan, Taylor Instruments Site, 95 Ames Street, Rochester, New York. Prepared for Combustion Engineering (April).
- MACTEC, 2003. Final Engineering Report, Former Taylor Instruments Site, Rochester, New York.

 Prepared for Combustion Engineering (September).
- MACTEC, 2005: Soil Management Plan, Former Taylor Instruments Facility, 95 Ames Street, Rochester, New York 14611. Prepared for Combustion Engineering (April).
- MACTEC, 2010a. Revised Work Plan for Accelerated Bioremediation and Permanent

 Decommissioning of the Remedial Treatment System, Former Taylor Instruments Site, 95

 Ames Street in Rochester, New York. Prepared for the New York State Department of
 Environmental Conservation (June 11).
- MACTEC, 2010b. Construction Completion Report, Former Taylor Instruments Site, Monroe County, New York. Prepared for the New York State Department of Environmental Conservation (December).
- MACTEC, 2011. Operations, Maintenance, and Monitoring Manual, Rev. 1, Former Taylor Instruments Site, Monroe County, New York. Prepared for the New York State Department of Environmental Conservation. (March).
- NYSDEC, 1997. Voluntary Cleanup Agreement, Taylor Instruments Site, Number B8-0508-97-02 (November).
- NYSDEC, 2005. Letter to Ms. Jean H. McCreary with Nixon Peabody LLC (September 2).
- NYSDEC, 2011a. Letter to Ricky Ryan of AMEC approving the CCR (February 16).
- NYSDEC, 2011b. Letter to Ricky Ryan of AMEC approving the *Operations, Maintenance, and Monitoring Manual, Rev. 1, Former Taylor Instruments Site, Monroe County, New York.* (March 3).

- NYSDEC, 2017. Site Management (SM) Periodic Review Report (PRR) Response Letter, Former Taylor Instruments Facility, Rochester, Monroe County, Site No. V00144. March 30.
- NYSDEC, 2019. Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal. (January 3).
- Wood, 2019. 2018 Annual Progress Report and Remedial Progress Evaluation, Former Taylor Instruments Site, Rochester, New York. Prepared for ABB, Inc. (March).

Acronym List

2000 FER Final Engineering Report, On-Site Storm Sewers (Harding Lawson Associates,

2000a)

2003 FER Final Engineering Report (MACTEC, 2003)

3DMe^o 3D Microemulsion^o

AR-CNTS Assignable Release and Covenant Not to Sue

CCR Construction Completion Report (MACTEC, 2010b)

CE Combustion Engineering COC contaminant of concern

1,1-DCE 1,1-dichloroethene
cis-1,2-DCE cis-1,2-dichloroethene
trans-1,2-DCE trans-1,2-dichloroethene
DPVE dual-phase vacuum extraction

EPA Environmental Protection Agency

HRC Hydrogen Release Compound

IC/EC institutional and engineering control

MACTEC Engineering and Consulting, Inc.

NYSDEC New York State Department of Environmental Conservation

O&M operation and maintenance

OM&M operations, maintenance, and monitoring

PRR Periodic Review Report

Site location of the former Taylor Instruments Facility

SSD sub-slab depressurization

System DPVE and bedrock groundwater extraction and treatment system

TCE trichloroethene

VCA Voluntary Cleanup Agreement VOC volatile organic compound

Wood Wood Environment & Infrastructure Solutions, Inc.

Attachment A

NYSDEC-Approved Certification Form

Attachment B

Mitigation Tech Inspection Report for Sub-Slab Depressurization System 80 Ames Street and 215 Danforth Street

ATTACHMENT 3

INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Name Former Taylor Instruments Facility Site Address: 95 Ames Street Zip Code: 14611 City/Town: Rochester County: Monroe Site Acreage: 14.500 Reporting Period: February 14, 2018 to February 14, 2019 YES NO 1. Is the information above correct? If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Industrial 7. Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	Sit	e No.	Box 1						
City/Town: Rochester County: Monroe Site Acreage: 14.500 Reporting Period: February 14, 2018 to February 14, 2019 YES NO 1. Is the information above correct? X	Sit	e Name Fo	rmer Taylor Instr	uments Facility					
If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? If THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	Cit _y	y/Town: Ro unty:Monroe	chester e	Zip Code: 14611					
1. Is the information above correct? If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Industrial 7. Are all ICs/ECs in place and functioning as designed? X IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	Re	porting Perio	od: February 14, 2	2018 to February 14, 2019					
If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Industrial 7. Are all ICs/ECs in place and functioning as designed? X IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.					YES	NO			
2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Industrial 7. Are all ICs/ECs in place and functioning as designed? X IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	1.	Is the infor	mation above corre	ect?	×				
tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Industrial 7. Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.		If NO, inclu	ıde handwritten ab	ove or on a separate sheet.					
(see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Industrial 7. Are all ICs/ECs in place and functioning as designed? X IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	2.		•		•				
If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Industrial 7. Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	3.			X					
that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Industrial 7. Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	4.								
Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Industrial 7. Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.									
YES NO 6. Is the current site use consistent with the use(s) listed below? Industrial 7. Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	5.	Is the site of	currently undergoir	ng development?		X			
YES NO 6. Is the current site use consistent with the use(s) listed below? Industrial 7. Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.									
6. Is the current site use consistent with the use(s) listed below? Industrial 7. Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.					Box 2				
7. Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.					YES	NO			
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	6.		ent site use consist	tent with the use(s) listed below?	×				
DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	7.	Are all ICs/	ECs in place and t	functioning as designed?	×				
	AC	Corrective M	easures Work Pla	n must be submitted along with this form to	address these iss	ues.			
Signature of Owner, Remedial Party or Designated Representative Date	<u></u>		man Decrease LD	was Decimated Decimated	Dete				

SITE NO. V00144 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

120.410-1-2 Gray Rock Rochester,LLC- Attn: Joe Verdi

Ground Water Use Restriction

Landuse Restriction

Soil Management Plan

- Ground Water Use Restriction

- Landuse Restriction
- Soil Management Plan
- Annual certification

120.42-1.4 Roderick Nelson, Jr.

Site Management Plan

Sub-slab depressurization system

Annual Certification

Box 4

Description of Engineering Controls

Parcel <u>Engineering Control</u>

120.410-1-2

Vapor Mitigation Cover System

- Cover System

- Vapor Mitigation (future buildings)

120.42-1.4

Vapor Mitigation

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements			
1. I ce	ertify by checking "YES" below that:			
	a) the Periodic Review report and all attachments were prepared under the dire reviewed by, the party making the certification;	ction of,	and	
	 b) to the best of my knowledge and belief, the work and conclusions described are in accordance with the requirements of the site remedial program, and gene engineering practices; and the information presented is accurate and compete. 			
C	engineering practices, and the information presented is accurate and compete.	YES	NO	
		×		
or l	nis site has an IC/EC Plan (or equivalent as required in the Decision Document), for Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below the owing statements are true:			
	(a) the Institutional Control and/or Engineering Control(s) employed at this site i since the date that the Control was put in-place, or was last approved by the De			
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	ealth and	
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control			
	(d) nothing has occurred that would constitute a violation or failure to comply wi Site Management Plan for this Control; and	th the		
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the			
		YES	NO	
		X		
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.			
A Co	rrective Measures Work Plan must be submitted along with this form to address t	hese iss	sues.	
Signa	ature of Owner, Remedial Party or Designated Representative Date			

IC CERTIFICATIONS SITE NO. V00144

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

	Gray Rock Rochester, LLC
ı Joseph Verdi	at 14150 Route 31, Savannah, New York ,
print name	print business address
am certifying as Owner	(Owner or Remedial Party
for the Site named in the Site Details S	Section of this form.
Sisjolhill	03/18/19
Signature of Owner, Remedial Party, or	r Designated Representative Date
Rendering Certification	

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Plumley Engineering, P.C. at 8232 Loop Road, Baldwinsville, New York David K. Meixell, P.E. print business address

am certifying as a Professional Engineer for the **Gray Rock Rochester**, LLC

(Owner or Remedial Party)

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

print name

(Required for PE)

03/18/19 Date